
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

The Hong Kong Polytechnic University 

Department of Computing 

 

 

Reliable Service Discovery and Access in 

Pervasive Computing Environments 

 

By 

 

VASKAR RAYCHOUDHURY 

 

A Thesis Submitted in Partial Fulfillment of  

the Requirements for the Degree of  

Doctor of Philosophy 

 

 

February 2010 
 

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

 
 
 
 
 
 
 
 
 
 
 
 
 

CERTIFICATE OF ORIGINALITY 

 

I hereby declare that this thesis is my own work and that, to the best of my knowledge 

and belief, it reproduces no material previously published or written, nor material that 

has been accepted for the award of any other degree or diploma, except where due 

acknowledgement has been made in the text. 

 

 

                                                                   (Signature) 

 VASKAR RAYCHOUDHURY    (Name of Student) 

 

 iii



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 

Service discovery is one of the fundamental services in pervasive computing. 

Different services are provided by various portable devices which are interconnected in 

an ad hoc manner. However ensuring reliable service discovery and seamless service 

access is a desirable as well as challenging task in highly dynamic pervasive 

environments. Given the mobility and resource-constraints of pervasive devices and the 

unreliability of wireless connection, service unavailability can frequently occur in 

pervasive environments due to service provider failure, network partitioning, or service 

scope outage by service provider or user mobility. Due to the resource limitation of 

mobile nodes service discovery protocols must be message efficient which implies 

consumption of less bandwidth as well as lower processing overhead. Moreover, devices 

can suddenly fail, get disconnected or depart the network in which case, the services 

may become unavailable.  

Existing service discovery protocols did not adequately address the issues in 

providing users with continuous service access at all the times in an autonomous and 

proactive manner. In this research we address the challenging issues and make the 

following original contributions in this field.  

Firstly, we propose a directory community framework which works as the basis of 

our research in reliable service discovery and access in ad hoc networks. The directory 

community framework consists of a set of directory nodes along with a suite of 

protocols and algorithms to collaboratively provide reliable service discovery and 

seamless service access supports for mobile users in ad hoc networks. The directory 

community is constructed by dynamically electing a set of devices as directory nodes. 

Because of the resource constraints of mobile nodes, we choose to elect resource-rich 

 v



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

nodes with higher energy or computational capabilities as directories. We model the 

directory community formation problem as top-K weighted leader election in mobile ad 

hoc networks and develop a distributed algorithm to achieve the objective. Here, the 

weight indicates available node resources in terms of memory, processing power or 

energy. Our proposed directory election algorithm is scalable, reliable, message-efficient, 

and can handle dynamic topological changes in an efficient manner. 

Secondly, using afore-mentioned directory community, we propose a quorum-based 

fault-tolerant service discovery protocol. The elected directory nodes are divided into 

multiple quorums. Services registered with a directory are replicated among its quorum 

members, so that, upon the failure of a directory, services can still be available. This 

approach guarantees network-wide service availability using the quorum intersection 

property and reduces replication and update costs by minimizing the quorum size. 

Finally, based on the directory community, we develop a reliable and continuous 

service access mechanism for mobile users which works using service handoff. Service 

handoff provides mobile users seamless service access by proactively finding new 

matching services once the original service becomes unavailable. The proposed service 

handoff mechanism has two steps – handoff initiation and new service provider 

selection. Three different service handoff protocols have been designed for different 

situations. Our handoff protocols can reduce handoff message cost and time delay while 

achieving a load balance on service providers. 
 
 
 

vi  



 

Publications 

Journal Papers 

1. Vaskar Raychoudhury, Jiannong Cao, and Weigang Wu, “Top K-leader 

Election in Mobile Ad Hoc Networks,” submitted to IEEE Transactions on 

Computers on May 31, 2009. 

2. Vaskar Raychoudhury, Jiannong Cao, Weigang Wu, and Steven Lai, “K-

Directory Community: Reliable Service Discovery in MANET,” an extended 

version of the paper published in ICDCN 2010 has been invited for submission 

to the fast track publication in the Journal of Pervasive and Mobile Computing 

(JPMC) (submitted on January 20, 2010). 

Conference Papers 

3. Vaskar Raychoudhury, Jiannong Cao, Weigang Wu, and Steven Lai, “K-

Directory Community: Reliable Service Discovery in MANET,” In Proceedings 

of 11th International Conference on Distributed Computing and Networking 

(ICDCN2010), January 3-6, 2010, Kolkata, India. 

4. Vaskar Raychoudhury, “Efficient and Fault Tolerant Service Discovery in 

MANET using Quorum-based Selective Replication,” In Proceedings of 7th 

Annual IEEE International Conference on Pervasive Computing and 

Communications (Percom 2009: Google PhD Forum), Galveston, Texas, USA, 

March 9-13, 2009.  

5. Daqiang Zhang, Jiannong Cao, Jingyu Zhou, Minyi Guo, and Vaskar 

Raychoudhury, “An Efficient Collaborative Filtering Approach Using 

 vii



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Smoothing and Fusing,” In Proceedings of the 38th International Conference on 

Parallel Processing (ICPP’09), September 22-25, 2009, Vienna, Austria. 

6. [Invited Paper] Vaskar Raychoudhury, Jiannong Cao, and Weigang Wu, “Top 

K-leader Election in Wireless Ad Hoc Networks,” In Proceedings of 17th 

International Conference on Computer Communications and Networks 

(ICCCN’08), August 3 - 7, 2008, St. Thomas, U.S. Virgin Islands. 

7. Joanna Izabela Siebert, Jiannong Cao, Yu Zhou, Miaomiao Wang, and Vaskar 

Raychoudhury, “Universal Adaptor: A Novel Approach to Supporting Multi-

protocol Service Discovery in Pervasive Computing,” In Proceedings of 

International Conference on Embedded and Ubiquitous Computing (EUC’07), 

pp. 683-693, December, 2007, Taipei, Taiwan. 

8. Miaomiao Wang, Jiannong Cao, Joanna Izabela Siebert, Vaskar Raychoudhury, 

and Jing Li, “Ubiquitous Intelligent Object: Modeling and Applications,” In 

Proceedings of 3rd International Conference on Semantics, Knowledge and Grid 

(SKG'07), Oct. 29-31, 2007. Xian, China. 

9. Yu Zhou, Jiannong Cao, Vaskar Raychoudhury, Joanna Izabela Siebert, and 

Jian Lu, “A Middleware Support for Agent-Based Application Mobility in 

Pervasive Environments,” In Proceedings of the 27th International Conference 

on Distributed Computing Systems Workshops (ICDCSW’07), June 25-29, 

2007, Toronto, Ontario, Canada. 

 

 viii



 

Acknowledgements 

I wish to thank a multitude of people who have been helping me for the past few 

years of my PhD study. In particular, I would like to express my most sincere gratitude 

to my supervisor Dr. Jiannong Cao for his devoted guidance, constant encouragement, 

and invaluable suggestions, which helped me not only to complete this dissertation but 

also to prepare me for my future career. Dr. Cao is not only an outstanding researcher 

with broad knowledge, sharp intuition and grand vision, but also a very nice and kind 

person who encouraged me to face life with a positive attitude. It is mostly due to his 

compassionate treatment; Hong Kong became home away from home for me. He has 

taught me to always have high expectations and to demand more of myself. Working 

with him has been my invaluable and delightful experience.  

I would also like to thank Dr. Weigang Wu, for his insightful and illuminative 

suggestions on my research. Without his acuminous insight and guidance this 

dissertation would never have seen the daylight. Thanks Weigang, you taught me the 

steps before I started walking. 

Another very important person who always strives to make my research life 

enjoyable is my wife, Mrittika. No words are adequate to express my sincere gratitude 

to her, who stayed up with me nights and nights to encourage me, to check my papers 

and many a times just to show wordlessly that I am not alone at my endeavors. Now it is 

high time that I formally acknowledge her contribution. 

I am largely indebted to my friends and past and present colleagues like, Ping Yu, 

Hui Cheng, Gang Yao, Yu Zhou, Yu Huang, Xiaopeng Fan, Daqiang Zhang, Joanna 

Siebert, Edwin Wei, Xin Xiao, Long Cheng, Weiping Zhu, Miaomiao Wang, Yuan 

Zheng and all other members in Dr. Cao’s research group, for their insightful 

 ix



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

discussions and warm friendship. Another great friend is Jack Cheng who has significant 

contributions in making my Hong Kong stay colorful. Thanks Jack, for everything you 

have done for me. 

Another person who constantly inspired me to embrace the charms of academia from 

the onset of our acquaintances is Mr. Indrajit Dutt, currently my father-in-law. Had it not 

been for him, I would never have stepped out of my comfort zone to pursue research in 

a far away land from my home. I will forever remain indebted to him. 

I would like to thank my previous roommates, Vivek Kanhangad and Manas Sarkar 

for putting up with me during the times when I had to work late hours. They took their 

turns to encourage me at my hours of despair. Staying with Mr. Manas Sarkar was 

wonderfully soothing and was very much like staying with my family. 

Special thanks to Ms Miu Tai and Ms May Chu for their support and assistance in all 

administrative matters. I offer my sincere apologies to all those, who are inadvertently 

missed. 

Last, but by no means the least, I would like to express my deepest gratitude to my 

parents and my sister for their love and unstinted encouragement that enabled me to 

complete this work. 

 x



Table of Contents 
 

Table of Contents 
Abstract  ...................................................................................................................... v 

Publications ................................................................................................................... vii 

Acknowledgements ........................................................................................................ ix 

Table of Contents............................................................................................................ xi 

List of Figures................................................................................................................ xv 

List of Tables................................................................................................................ xvii 

List of Abbreviations.................................................................................................... xix 

Chapter 1 Introduction................................................................................................ 1 

1.1 Overview....................................................................................................................... 1 
1.2 Service Discovery in Pervasive Computing Environments – New Requirements .3 
1.3 Fault Tolerant Service Discovery in Pervasive Computing ..................................... 7 
1.4 Contribution of the Dissertation .............................................................................. 10 
1.5 Organization of the Dissertation .............................................................................. 12 

Chapter 2 Background and Literature Review....................................................... 15 

2.1 General Components of a Service Discovery System ............................................. 15 
2.1.1 Network Structure ..........................................................................................................18 
2.1.2 Service Discovery Architecture ......................................................................................18 
2.1.3 Services and Service Discovery Protocols .....................................................................19 
2.1.4 System Support Components .........................................................................................20 

2.2 Classification of Service Discovery Protocols.......................................................... 22 
2.3 Service Discovery in Infrastructure-based Networks............................................. 23 

2.3.1 SDPs for Local Area Networks ......................................................................................23 
2.3.2 SDPs for Wide Area Networks .......................................................................................24 
2.3.3 Fault Tolerance and Mobility Management Mechanisms...............................................25 

2.4 Service Discovery in Infrastructure-less Networks ................................................ 26 
2.4.1 Directory-less SDPs .......................................................................................................27 
2.4.2 Directory-based SDPs ....................................................................................................29 
2.4.3 Fault Tolerance and Mobility Management Mechanisms...............................................31 

2.5 Comparison of Existing Service Discovery Protocols............................................. 32 

 xi



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 
Chapter 3 Directory Community: A Framework for Reliable Service Discovery 
and Access .................................................................................................................... 35 

3.1 Generic Framework Structure .................................................................................35 
3.2 Directory Community Creation ...............................................................................38 
3.3 Reliable Service Discovery using Directory Community .......................................41 
3.4 Seamless Service Access using Directory Community............................................43 
3.5 Summary ....................................................................................................................44 

Chapter 4 Formation of Directory Community ...................................................... 45 

4.1 Overview.....................................................................................................................45 
4.2 Background ................................................................................................................48 
4.3 Problem Definition and Correctness Properties .....................................................51 
4.4 The Top K-Leader Election Algorithm ....................................................................51 

4.4.1 Data Structures and Message Types ............................................................................... 52 
4.4.2 K Leader Election Algorithm......................................................................................... 54 
4.4.3 K-leader Election in Presence of Network Partition ...................................................... 60 
4.4.4 Handling Node Failures ................................................................................................. 62 
4.4.5 Handling Node Recoveries ............................................................................................ 63 
4.4.6 Optimization in Message Cost ....................................................................................... 64 

4.5 Correctness of the Algorithm....................................................................................65 
4.6 Performance Evaluation ...........................................................................................71 

4.6.1 Simulation Setup and Metrics ........................................................................................ 71 
4.6.2 Simulation Results and Analysis .................................................................................... 73 

4.7 Prototype Implementation ........................................................................................84 
4.7.1 Testbed Architecture ...................................................................................................... 84 
4.7.2 Implementation .............................................................................................................. 85 
4.7.3 Result Analysis............................................................................................................... 86 

4.8 Summary ....................................................................................................................87 

Chapter 5 Quorum-based Reliable Service Discovery ........................................... 89 

5.1 Overview.....................................................................................................................89 
5.2 Protocol Preliminaries...............................................................................................91 

5.2.1 Directory Community Formation and Domain Construction......................................... 92 
5.2.2 Construction of Directory Quorum ................................................................................ 93 

5.3 The Proposed Service Discovery Protocol ...............................................................94 
5.3.1 Data Structures and Message Types ............................................................................... 95 
5.3.2 Maintenance of Service Discovery Infrastructure.......................................................... 96 

 xii



Table of Contents 
 

5.3.3 Service Registration......................................................................................................102 
5.3.4 Service Request/Reply..................................................................................................104 

5.4 Performance Evaluation ......................................................................................... 105 
5.4.1 Simulation Setup and Metrics.......................................................................................107 
5.4.2 Simulation Results and Analysis ..................................................................................108 

5.5 Prototype Implementation ...................................................................................... 121 
5.6 Summary .................................................................................................................. 123 

Chapter 6 Service Handoff Based Seamless Service Access................................. 125 

6.1 Overview................................................................................................................... 125 
6.2 Background .............................................................................................................. 128 
6.3 System Model and Preliminaries............................................................................ 129 

6.3.1 System Model...............................................................................................................129 
6.3.2 Basic Service Discovery Protocol ................................................................................130 

6.4 The Proposed Service Handoff Protocols .............................................................. 131 
6.4.1 Service Provider Initiated Handoff Protocol ................................................................132 
6.4.2 User Terminal Initiated Handoff Protocol ....................................................................134 
6.4.3 Hybrid Handoff Protocol ..............................................................................................136 

6.5 Performance Evaluation ......................................................................................... 137 
6.5.1 Simulation Setup and Metrics.......................................................................................138 
6.5.2 Simulation Results and Analysis ..................................................................................141 

6.6 Summary .................................................................................................................. 160 

Chapter 7 Conclusion and Future Directions........................................................ 161 

7.1 Conclusions .............................................................................................................. 161 
7.2 Future Directions ..................................................................................................... 165 

Bibliography ................................................................................................................ 167 

 
 

 xiii



 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Figures 
 

List of Figures 
Figure 1-1: Block Diagram for Research Contributions................................................. 10 

Figure 2-1: General Components of a Service Discovery System ................................. 16 

Figure 2-2: Classification of Existing Service Discovery Protocols .............................. 22 

Figure 3-1: Directory Community Framework............................................................... 37 

Figure 4-1: Pseudo-code for PHASE I of K-leader Election Algorithm......................... 54 

Figure 4-2: Pseudo-code for PHASE II of K-leader Election Algorithm ....................... 56 

Figure 4-3: Pseudo-code for PHASE III of K-leader Election Algorithm...................... 58 

Figure 4-4: Handling Network Partition: (a) Connected Diffusing Computation Tree, (b) 

Partition of Node n from Parent Node i, (c) Partition of Parent m of Node i ................. 61 

Figure 4-5: Optimized Diffusing Computation............................................................... 64 

Figure 4-6: General Performance of K leader Election .................................................. 75 

Figure 4-7: Effect of Mobility on Fraction of Time without K-Leaders (FT) ................ 77 

Figure 4-8: Effect of Mobility on Election Rate (ER) .................................................... 78 

Figure 4-9: Effect of Mobility on Election Time (ET).................................................... 80 

Figure 4-10: Effect of Mobility on Message Overhead (MO) ........................................ 81 

Figure 4-11: Effect of Node Failure on K-Leader Election ............................................ 82 

Figure 4-12: Prototype Implementation of Top K Leader Election Algorithm............... 84 

Figure 4-13: Performance Results of Prototype Implementation ................................... 86 

Figure 5-1: Service Discovery Architecture.................................................................... 92 

Figure 5-2: Pseudo-code for the Construction of Directory Quorums............................ 93 

Figure 5-3: An Example Directory Quorum ................................................................... 94 

Figure 5-4: Pseudo-code for the Maintenance of Service Discovery Infrastructure....... 99 

Figure 5-5: Service Context Information ...................................................................... 102 

Figure 5-6: Pseudo Code for Service Registration and Service Discovery .................. 103 

Figure 5-7: Quorum-based Service Matching Process ................................................. 105 

Figure 5-8: General Performance of the Service Discovery Protocol .......................... 110 

Figure 5-9: Effect of Node Mobility without Node Failure.......................................... 112 

Figure 5-10: Effect of Node Mobility with Node Failure ............................................. 114 

Figure 5-11: Effect of Node Failure on the Service Discovery Protocol ...................... 116 

Figure 5-12: General Service Discovery Performance with Varied Node Density....... 118 

 xv



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Figure 5-13: Effect of Node Mobility on Service Discovery with Varied Node Density

....................................................................................................................................... 120 

Figure 5-14: Prototype Implementation of Reliable Service Discovery Protocol ........ 121 

Figure 6-1: Pseudo-code for Service Provider Initiated Handoff Protocol................... 133 

Figure 6-2: Pseudo-code for User Terminal Initiated Handoff Protocol....................... 135 

Figure 6-3: Pseudo-code for Hybrid Handoff Protocol ................................................ 136 

Figure 6-4: Performance of Load Balance on Service Providers ................................. 142 

Figure 6-5: General Performance of Service Discovery Operations ............................ 144 

Figure 6-6: Effect of Node Mobility on the Service Discovery Operations (Study 1) . 147 

Figure 6-7: Effect of Node Mobility on the Service Discovery Operations (Study 2) . 148 

Figure 6-8: Effect of Node Failure on the Service Discovery Operations.................... 149 

Figure 6-9: General Performance of Service Handoff Protocols.................................. 151 

Figure 6-10: Effect of Node Mobility on “UserInit” .................................................... 154 

Figure 6-11: Effect of Node Mobility on “ProvInit” .................................................... 155 

Figure 6-12: Effect of Node Mobility on “Hybrid” ...................................................... 156 

Figure 6-13: Comparison of Effect of Node Mobility on “UserInit” and “Hybrid”..... 157 

Figure 6-14: Effect of Node Failure on Service Handoff ............................................. 159 

 

 
 
 

xvi 



List of Tables 
 

List of Tables 
Table 2-1: General Issues for Service Discovery............................................................ 17 

Table 2-2: Comparison of Existing Service Discovery Protocols................................... 33 

Table 4-1: Data Structures for K Leader Election Algorithm ......................................... 52 

Table 4-2: Message Types for K Leader Election Algorithm ......................................... 53 

Table 4-3: Simulation Parameters for K-leader Election Algorithm............................... 72 

Table 5-1: Data Structures for Reliable Service Discovery Protocol.............................. 95 

Table 5-2: Message Types for Reliable Service Discovery Protocol .............................. 96 

Table 5-3: Simulation Parameters for Reliable Service Discovery Protocol ................ 106 

Table 5-4: Implementation Results for Reliable Service Discovery Protocol .............. 123 

Table 6-1: Data Structures for Service Handoff Protocols............................................ 131 

Table 6-2: Message Types for Service Handoff Protocols............................................ 132 

Table 6-3: Simulation Parameters for Service Handoff Protocols ................................ 138 

 

 
 
 

 xvii



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



List of Abbreviations 
 

List of Abbreviations 
AD: Access Delay 

FT: Fraction of Time without K-leaders 

F-T: Fault Tolerance 

HD: Handoff Delay 

HR: Hit Ratio 

HSR: Handoff Success Rate 

MANET: Mobile Ad hoc NETwork 

NH: Number of Hops 

NH/HO: Number of Hops per Handoff 

NM: Number of Messages 

NM/HO: Number of Message per Handoff 

PvC: Pervasive Computing 

PvCE: Pervasive Computing Environment 

SD: Service Discovery 

SDP: Service Discovery Protocol 

TD: Time Delay 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 xix



 

 

 

 

 

Chapter 1  

Introduction 

This chapter discusses the idea of pervasive computing systems, their characteristics 

and the requirements as well as challenges for service discovery applications in these 

types of systems. In Section 1.1 we give a classification of pervasive environments 

based on the available underlying infrastructure supports and then we discuss the 

requirements for service discovery applications for different environments in Section 1.2. 

We also point out the reliability concerns for service discovery in pervasive computing 

systems in Section 1.3 and highlight our proposed methods to address them properly in 

Section 1.4. Finally, Section 1.5 gives a brief outline of the dissertation. 

1.1 Overview 

The paradigm of distributed computing went through a sea change with the advent of 

portable mobile devices and wireless networks. The system support functions were 

developed to cope with the challenges of mobile computing. Then came the next wave 

of computing trend – the paradigm of pervasive computing. The primary focus of 

pervasive computing is human-centric. A multitude of embedded and intelligent 

computing devices are required to automatically detect the application requirements for 

 



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

human users and to act accordingly to satisfy their need. We can describe the underlying 

philosophy of pervasive computing as - 

Pervasive computing aims to create a smart environment with embedded and 

networked computing devices providing human users with convenient and seamless 

service access in an intelligent and invisible manner. 

Applications of pervasive computing are wide-spread. There are enclosed smart 

environments – sometimes known as smart-spaces – examples include, smart home 

[46][15], smart office, smart classroom [102][88][5], smart meeting room [24], or smart 

museums [86][3]. Pervasive health-care [10][37][36] applications automatically monitor 

patient’s physical conditions and provide necessary medical supports. Similarly, elderly-

care [83][56] and assisted-living [73] applications keep track of the daily activities of 

lone older people and fetch them the required care by urgently calling ambulance or 

doctors when the need arises. Recently there is also much interest in developing social 

networking [47] applications that enable people to publish their current activity to 

friends and colleagues. There are also some important applications in the fields of 

entertainment [15][63] and logistics. Intelligent traffic management applications are 

being used in managing road, rail or air traffic in big cities. Altogether, pervasive 

computing is encompassing every aspect of human life by silently supporting computing 

all the time and everywhere.  

The enabling technologies of pervasive computing [61] consist of sensors (e.g., UC 

Berkeley Motes Sensor Network Platform), Radio Frequency ID (RFID) tags, intelligent 

appliances, embedded processors, wearable computers, handheld computers, smart 

phones and many others. Tiny intelligent sensors have made it possible to deploy 

ubiquitous services and thus create various smart environments. RFID tags allow subtle 

integration of objects (e.g., commodities in a superstore or books in a library) into the 

 2



Chapter 1  Introduction 
 

computing environment. The boundaries of pervasive computing have been further 

pushed by the development of new technologies as well as the extensive use of existing 

technologies, such as, the Internet, mobile and wireless communications, sensor 

networks, and the RFID technology. 

Depending on the available underlying network structure, pervasive applications can 

be developed over wired or wireless networks. Available wireless networks can be 

further classified into infrastructured wireless and ad hoc or infrastructure-less wireless 

networks. Wired and infrastructured wireless networks have the support of a stable 

network backbone through which they can access computing elements in the wired 

infrastructure through gateways, proxies and base stations. Examples of such 

environment are wireless office networks based on Wi-Fi. These environments are able 

to leverage from the high bandwidth resource-rich wired environments. Ad hoc wireless 

networks, on the other hand, are composed of multiple static or mobile entities, and do 

not provide any support for computing elements (mobile devices) to access the wired 

infrastructure. The network connections with peer devices are created and broken down 

on-the-fly and on an as-required basis. Examples of such environments are disaster-

stricken cities, under-construction sites, remote area (forest, volcano) monitoring, etc. 

Extensive research has been carried out for pervasive application development in 

infrastructured networks. In our research, we mainly focus on pervasive systems built 

over infrastructure-less networks, henceforth called infrastructure-less/ad hoc pervasive 

environments, as they offer more challenges and require novel solutions to address them. 

1.2 Service Discovery in Pervasive Computing Environments – 
New Requirements 

Design of a pervasive computing system is very much application-dependant. Also 

pervasive applications are mainly concerned about services instead of individual nodes 

 3



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

that provide them. Services can come from a single node or can be composed of a set of 

nodes. Different pervasive applications, such as, building smart spaces, developing 

assisted-living environments, health-care applications or intelligent information systems, 

are all service dependant. Thus, the service discovery applications are of wide 

importance in all types of pervasive computing systems. We define the terms - service, 

service discovery and service discovery protocol in the context of pervasive systems - 

 Service: A service is any hardware or software functionality (resources, data or 

computation) of a device that can be requested by other devices for usage. For 

example, the media player on a mobile device can be considered as a service 

which provides music and movie playing functionalities for that device and can 

be requested by peer devices. 

 Service Discovery: It is a process by which any potential user (human or device) 

requiring a service can find services on peer devices and determines how to 

access or utilize the discovered services. 

 Service Discovery Protocol (SDP): They are network protocols designed for 

automatic detection of devices and services provided by them. They aim to 

minimize administrative overhead of service discovery and to increase usability. 

In brief, service discovery enables devices and services to properly discover, 

configure, and communicate with each other with minimal or no human intervention. 

However, service discovery is not a novel application at all and has actively been used 

in traditional distributed as well as enterprise environments. Service discovery in 

enterprise networks are rather restricted as they consider mostly static and resource-rich 

computing devices connected through wired or infrastructured networks. Moreover, 

services in enterprise networks operate within a fixed scope, and hence, they can be 

 4



Chapter 1  Introduction 
 

protected by firewalls and can be managed by system administrators on a centralized 

basis.  

Pervasive computing environments, on the other hand, are far more dynamic and 

heterogeneous. When mingled with a purely ad hoc wireless network structure, the 

chances of occurrences of faults increase manifold. Moreover, due to their ad hoc nature 

compounded with node mobility, it is not possible to centrally control pervasive systems 

through system administrators. Devices must act through localized coordination, in 

order to discover services and use them in a reliable manner. Services in pervasive 

networks are not bound by any scopes and they are scattered in the ambience, this 

requires the capability of network-wide service discovery. All these goes to make 

service discovery in pervasive computing really challenging. 

But the most important challenge regarding service discovery in pervasive 

environment lies in figuring out how to satisfy human users or to blend with their 

environments. Integrating people in the smart environments presents us with the 

following new service discovery requirements -   

Autonomous and Proactive Support: Pervasive computing aims at automatically 

understanding user context and detecting user activity. Pervasive applications are 

situation-aware, i.e., they are designed to provide necessary services to users without 

explicit requests made by them. This is a crucial issue which demands for reliable and 

seamless provisioning of required services on a proactive basis.  

Security and Privacy: Since, users express their preferences during service discovery, 

and the devices owned by different users interact with each other while discovering 

services, there is always a high chance of giving away user’s personal information. Also, 

many a times, there are chances of deducing user intent based on some contextual 

 5



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

information which is also an equally vulnerable security issue and needs to be addressed 

during system design. 

User Responsibility Minimization: Service discovery in pervasive computing requires 

some prior knowledge on the part of the users and the service providers. Most of the 

existing service discovery protocols consider clients (service seekers), services 

(networked services) and directories (centralized service information storage) in some 

fixed roles. People, on the other hand, can assume any role, either a service provider, or 

a user based on the necessities. While acting as a service user, people can discover and 

use services without requiring to actively manage pervasive devices. But, while working 

as a service provider they may need to know respective service terminologies – such as, 

names and attributes, in order to publish their services for general accessibility. This 

certainly creates extra overhead on their parts. So, the system must provide as much 

support as it can in order to reduce the burden on users.  

Reliability and Fault Tolerance: The widespread belief is that pervasive applications 

are generally devised for people who are unable or less able to look after themselves, 

e.g., elderly people, young children, or ailing patients. Keeping it in mind, we can easily 

realize the sensitivity of the reliability issues of all kinds of pervasive computing 

applications, including service discovery. Most of the existing pervasive applications are 

human-centric and aim to provide people with unfaltering service support all the time. 

Consider cases of health-care or elderly care, which may even lead to loss of lives in 

case the system fails to detect the fall of an old person or a sudden deterioration of a 

patient’s condition, and hence, does not inform the doctor. Same goes for structure 

health monitoring and traffic accident detection applications. Infrastructure-less 

environments, like disaster-stricken city can also be benefited by reliable ad hoc 

composition of smart devices where users need to discover life-sustaining services. So, 

 6



Chapter 1  Introduction 
 

reliability or availability of services cannot be compromised when the involvement of 

human safety is concerned.  

The seriousness of fault tolerance and the major failure implications of several 

human-centric pervasive computing applications justify further exploration of the area. 

The studies carried out so far are not well coordinated or in-depth. So, in this 

dissertation we investigate the reliability issues of service discovery and access in 

pervasive applications. In the following section we describe the key fault concerns of 

service discovery and the challenges thereof, while addressing them in infrastructure-

less pervasive computing environments. 

1.3 Fault Tolerant Service Discovery in Pervasive Computing 

As already mentioned in the previous section, service discovery in pervasive 

computing introduces several critical challenges. In this section, we shall elaborate on 

the reliability concerns of a pervasive system. We shall discuss the fault situations that 

may thwart the normal service discovery operations in pervasive environments. We shall 

also discuss the challenges of employing traditional fault tolerance mechanisms to cope 

with service failures in pervasive computing environments. 

We divide the faults in pervasive environments into two types – infrastructure-

related and software and service-related. While the infrastructure-related faults cover 

hardware failures, such as, devices and network failures, software and service-related 

faults are concerned with failures of pervasive software and networked services.  

 Hardware-related Faults: Pervasive computing is mostly composed of several 

devices characterized by low processing power, insufficient memory size and 

limited energy supply which are connected in an ad hoc manner with low 

bandwidth [7][38] and unreliable wireless networks. Due to their limited 

 7



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

resource supply, pervasive devices are prone to failures caused by resource 

outage. Energy depletion can make a device unavailable and low signal strength 

can lead to device disconnection, otherwise perceived as unavailability. Similar 

situations can arise out of the feeble wireless network connections which are 

intermittent and fault-prone. Moreover, device mobility can also result in device 

unreachability when devices go out of the wireless network range.  

 Software and Service-related Faults: Contrary to the traditional distributed and 

mobile computing systems which use device-centric modeling, pervasive 

computing uses a service-centric system design. So, providing proper service to 

users based on their requirements is the key concern of pervasive computing. 

Currently, softwares for many pervasive devices are separately purchased from 

the market. They are poorly tested and not entirely reliable. So, they can crash at 

any instant rendering the device useless. Service failures in computing devices, 

however, can be caused by failure of the hosting device. Even if a service is not 

failed, still it can be unreachable due to network disconnection or device 

migration. Moreover, in a centralized directory-based service discovery system, 

services can be unavailable if the directory nodes fail or get disconnected. 

Service-related faults also comprise degradation of service quality over time. 

Services must continuously keep providing the same quality output and they 

should be self configuring and self-healing to protect against adverse 

environmental effects.  

The different types of failures discussed previously leads to service unavailability 

and unreliability in pervasive computing environments. These issues must be properly 

addressed to ensure smooth service discovery and access operations. However, fault 

tolerance in pervasive computing environments, poses several challenges due to its 

special characteristics and design requirements. 

 8



Chapter 1  Introduction 
 

Firstly, the dynamic nature of pervasive environment, resource-constrain of the 

participating devices, and the unreliability of wireless connection makes it hard to 

design robust fault tolerant mechanisms for them compared to the traditional distributed 

environment. Due to the resource-constrained nature of pervasive computing devices, it 

is hardly possible to use them as backup nodes as usually done in traditional distributed 

computing settings using static and resource-rich backup servers. Moreover, the 

pervasive devices used as backup nodes can fail, get disconnected or move away from 

the environment, in which case the replicated data is not available for recovery when 

faults occur. 

Secondly, pervasive computing devices usually form a decentralized co-ordination 

which is extremely ad hoc in nature. Having any dedicated node for service information 

storage is unrealistic in such dynamic environments. For, the same reasons, service 

discovery in pervasive computing do not require collection of global knowledge. 

Devices can co-operate with other nearby devices in a localized manner to discover and 

access services as and when required. Fault tolerance mechanisms should also be 

developed to work through localized interaction as global infrastructure for fault 

tolerance is unsuitable for pervasive systems and, at the same time, incurs high energy 

and message costs.  

Finally, pervasive environments are assumed to support users with minimal 

distraction and in an invisible manner. It is necessary for the system to find an 

alternative service provider autonomously when a device crash or disconnection renders 

a service inaccessible.  

We have proposed a model which can address the above challenges and can support 

reliable service discovery in pervasive computing environments. In the next section, we 

shall discuss our contributions in detail. 

 9



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

1.4 Contribution of the Dissertation 

The objective of this research is to study the fault tolerance related problems in 

service discovery and access in infrastructure-less pervasive computing environments 

and to provide innovative and cost-efficient solutions to address those problems. The 

dissertation makes several research contributions to achieve the afore-mentioned 

objective, which consists of the development of a framework for fault-tolerant service 

discovery and access. Based on that framework we have developed two mechanisms to 

support reliable service discovery and to provide seamless service access for mobile 

users in pervasive environments. Figure 1-1 shows how all of our works seamlessly fit 

into a reliable service discovery and access framework and present a coherent picture of 

our complete research. Here, we briefly describe our research contributions. A more 

detailed description of the framework will follow in Chapter 3. 
 

Mechanism for Reliable 
Service Discovery

Mechanism for Seamless 
Service Access

A Framework for Reliable Service Discovery & Access

Ad hoc Infrastructure-less Network Environments  

Figure 1-1: Block Diagram for Research Contributions 

Due to the dynamic nature of pervasive environments and the resource-constrain of 

mobile nodes, reliable service discovery and access operations must be accompanied 

with stable directory nodes. But as we have already assumed an infrastructure-less 

network environment, it is hard to introduce fixed and centralize service directory.  To 

cope with these limitations, we have proposed to elect top K-weighted nodes, from all 

 10



Chapter 1  Introduction 
 

the nodes in the environment, to perform as directories. The node weights can refer to 

any required attribute of a node, e.g. remaining battery life, memory size, processing 

capacity, etc. Together, the selected K directory nodes are called the directory 

community and the weight-based election will ensure that the elected directories are 

more reliable and less fault-prone. Since we use this directory community as the basis 

for our research in fault-tolerant service discovery and access in infrastructure-less 

pervasive computing environments, we call this a directory community framework. The 

framework consists of the directory community structure along with a suite of protocols 

for providing reliable service discovery and seamless service access supports for mobile 

users in pervasive computing environments. Below we briefly describe our proposed 

mechanisms for reliable service discovery and access. 

The reliable service discovery mechanism uses the directory community structure in 

order to ensure network-wide service availability in presence of directory node and 

service provider failures. The mechanism contains a quorum-based reliable service 

discovery protocol which works by dividing the directory community members into 

multiple quorums and then replicating the services registered with a single directory 

among its quorum members. This approach ensures controlled replication, minimal 

service discovery and update cost, and at the same time guarantees network-wide 

service availability by quorum intersection. Our simulation and testbed experiment 

results show that our protocol is fault-tolerant, message-efficient, and can cope with 

dynamic and frequent topological changes. 

The seamless service access mechanism, also developed over the directory 

community, aims to provide reliable and continuous service access support for mobile 

users using a process called service handoff. Service handoff is required to find alternate 

matching services for users, in case the original service they were accessing becomes 

unavailable. The major concerns of service handoff are – reducing handoff frequency 

 11



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

and delay as well as balancing loads on resource constrained service provider nodes. We 

have developed three service handoff protocols for different scenarios in order to 

address the above issues. Simulation results show that our handoff protocols can reduce 

message and time costs and can achieve good load balance among different service 

providers. 

1.5 Organization of the Dissertation 

With a view to provide mobile users with reliable service discovery and access 

support in ad hoc pervasive computing environments, we initially propose a directory 

community framework. Later this framework is used to develop a fault tolerant service 

discovery mechanism and a reliable service access mechanism using service handoff. 

Below we describe the organization of the dissertation - 

 Chapter 2 (Background and Literature Review): This chapter provides a 

basic introduction to the service discovery characteristics and issues in pervasive 

computing environments. We also study the existing research works in service 

discovery and analyze their advantages and disadvantages. 

 Chapter 3 (Directory Community: A Framework for Reliable Service 

Discovery and Access): In this chapter we describe our directory community-

framework which is developed to provide reliable service discovery and access 

support to mobile users in infrastructure-less pervasive computing environments. 

The requirements for a directory-based framework and the benefits of this 

framework in developing fault-tolerant service discovery and access protocols 

have been elaborately explained. 

 Chapter 4 (Formation of Directory Community): This chapter discusses our 

underlying support structure for reliable service discovery in pervasive systems. 

 12



Chapter 1  Introduction 
 

We propose a method to elect top K nodes as directories, based on their available 

resource contents. The community of K directory nodes will be later used for 

providing fault tolerance support in service discovery and access applications. 

 Chapter 5 (Quorum-based Reliable Service Discovery): In this chapter we 

describe our proposed quorum-based reliable service discovery protocol 

developed over the directory community. The protocol works by forming a 

quorum of directory nodes and replicating service registration information 

among the quorum members. 

 Chapter 6 (Service Handoff Based Seamless Service Access): In this chapter 

we present three different service handoff protocols which enable seamless 

service access for mobile users in a message and time efficient manner. The 

service handoff protocols are also developed over the directory community. 

 Chapter 7 (Conclusion and Future Directions): This chapter concludes the 

dissertation with summary of our research works and discussions on future 

research directions. 
 
 

 13



 

 



 

 

 

 

 

Chapter 2  

Background and Literature Review 

This chapter discusses the background of service discovery research in general with 

special attention to the service discovery systems and solutions developed especially for 

pervasive computing systems. In Section 2.1 we discuss the basic building blocks of a 

service discovery system along with some essential system support components. We 

then briefly discuss the issues and currently available design choices to setup the 

background for classifying the existing service discovery protocols. We provide a 

classification of the existing service discovery solutions in Section 2.2. Section 2.3 and 

Section 2.4 describes the service discovery protocols for infrastructure-based and 

infrastructure-less pervasive environments, respectively and elaborates their 

architectural designs, fault tolerance mechanisms, and mobility management techniques. 

We conclude the chapter with a tabular representation of prominent service discovery 

protocols containing their design and operational descriptions. 

2.1 General Components of a Service Discovery System 

Service discovery applications are developed to enable users reuse service modules 

provided by other users and devices. Existing service discovery systems can be 

 



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

classified according to the network type and system architecture of the service discovery 

system. 
 

Networks

Discovery Architecture

Services

Discovery Protocols

Discovery PrimitivesF
A
U
L
T

T
O
L
E
R
A
N
C
E

S
E
C
U
R
I
T
Y

&

P
R
I
V
A
C
Y

M
O
B
I
L
I
T
Y

M
G
M
T

 

Figure 2-1: General Components of a Service Discovery System 

In this section we shall discuss the major components of a service discovery system. 

As shown in Figure 2-1, the lowest layer of a service discovery system consists of the 

underlying network structure. Above that we have the discovery system architecture, 

which can be either two-party-based or three-party-based depending on the absence or 

presence of a service information registry or directory along with service providers and 

service users. The next higher layer consists of a pool of services provided by multiple 

devices in the network. Service discovery is facilitated by the use of various discovery 

protocols designed for different network structures and discovery models. Users, human 

or devices alike, can discover services or access them using different primitives 

provided by the discovery protocols. Service discovery systems also require fault 

tolerance supports as well as measures to protect security and privacy of the users. Due 

to the dynamic nature of pervasive environments, service discovery systems should also 

provide support to handle user and device mobility. We consider all the horizontal boxes 

as core components of a generic service discovery system and the vertical boxes as 

 16



Chapter 2   Background and Literature Review 
 

essential system support service components. Different protocols may choose to 

implement the system support modules depending on the application and user 

requirements, but they are necessary for any industry-standard service discovery 

protocol. 

We list some of the major issues (Table 2-1) and concerns that are associated with 

different modules of a generic service discovery system and are required to be addressed 

while designing such a system. 

Table 2-1: General Issues for Service Discovery 

   

Discovery  Primitives Discover and Access 

Discovery: Approach (Pull / Push), Service Information 
State (soft / hard), Scope, Selection Policy (Automatic 
/ manual),  

Service Discovery  
Protocols 

Access: Invocation Policy, Usage Policy (Lease-based / 
completely released) 

Services Naming, Attributes  

Discovery 
Architecture 

Directory-based (Centralized/ Distributed) / Directory-
less 

Connection Type: Wired / Wireless (single / multi hop) 

C
O

R
E

 C
O

M
PO

N
E

N
TS

 

Network 

Dynamics: Static or Mobile 

Fault Tolerance Types of Faults: Hardware-related (Device & 
Network), Software-related (Software & Service)  

Mobility 
Management 

Network Partition, Unreachability of devices 

SY
ST

E
M

 S
U

PP
O

RT
 

C
O

M
PO

N
E

N
TS

 

Security & Privacy Securing Privacy of service provider and user 

We briefly describe some of the issues before classifying the existing service 

discovery protocols based on their design and characteristics. 

 17



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

2.1.1 Network Structure 

Based on the nature of the underlying network, service discovery protocols adopt 

different designs. Wired networks consist of resource-rich and static computing devices 

connected through high-bandwidth network cables. Examples of these types of systems 

are enterprise networks. Wireless networks, on the other hand, can be employed either in 

static or in mobile settings. Static wireless networks mostly contain high bandwidth 

network backbone infrastructure, which supports the networking need of the 

participating computing entities. Mobile wireless networks, however, lack any such 

infrastructure support. They create an ad hoc composition of multiple resource-

constrained portable and handheld devices connected by unreliable and intermittent 

wireless connectivity. As stated in Section 1.1, wired networks and static wireless 

networks, which have some common properties, are together called as infrastructure-

based networks. Mobile wireless environments, on the other hand, are called 

infrastructure-less or ad hoc and are more difficult to handle. Pervasive computing 

systems, though can adopt either infrastructure-based or ad hoc network environment, or 

a hybrid of them, they are characteristically more close to the ad hoc wireless 

environment due to their limited resource availability, extreme dynamism and unreliable 

network connections. 

2.1.2 Service Discovery Architecture 

Service discovery protocols adopt either a directory-based or a directory-less 

discovery model. For the directory-based model there is a dedicated directory node (SD) 

along with the service providers (SP) and service consumers or clients (SC). The 

directory node maintains service information and processes queries and announcements. 

Some directories provide additional functionality. For instance, Ninja SDS [49] 

directories support secure announcements and queries. The directory-based model is 

 18



Chapter 2   Background and Literature Review 
 

more suitable for environments with hundreds or thousands of services. The directory-

less model, on the other hand, has no dedicated directory. When a query arrives, every 

service (SP) processes it. If the service matches the query, it replies. When hearing a 

service announcement, a client (SC) can record service information for future use. The 

non-directory-based model is suitable for simple environments such as individual homes 

where the services are relatively few.  

Directory-based systems are usually more efficient and scalable than directory-less 

ones. Based on the number of services and the size of the network, directory-based 

systems can use a single centralized directory or multiple directory nodes distributed 

across the network in strategically important locations. Depending on the organization 

of the directory nodes, directory-based models can be distinguished either as flat or as 

hierarchical. In a flat directory structure, directories have peer-to-peer relationships. For 

example, within an INS sub-domain, directories have a mesh structure: a directory 

exchanges information with all other directories. Salutation [86] and Jini [50] can also 

adopt flat structure. On the other hand, a hierarchical directory structure follows the 

DNS model in which information, advertisements and queries are propagated up and 

down through the hierarchy. Parents store information of their children and thus in this 

type of system, the root node may possibly become a bottleneck. Examples include 

Rendezvous [26] and Ninja SDS [49], both of which have a tree-like hierarchy of 

directories. 

2.1.3 Services and Service Discovery Protocols 

Services are identified by their names and discovered by matching their attributes. So, 

it is very important to have easily discoverable names and attributes for services. Some 

protocols choose user friendly service naming (e.g. Jini [50]), where as others used 

some standard naming template (e.g. Rendezvous [26]). 

 19



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Service discovery protocols provide users the means to automatically discover 

networked services. Over the past few years, many organizations have designed and 

developed service discovery protocols. Examples in academia include the Massachusetts 

Institute of Technology’s Intentional Naming System (INS) [1], University of California 

at Berkeley’s Ninja Service Discovery Service (SDS) [49], and IBM Research’s 

DEAPspace [70]. Major software vendors ship their service discovery protocols with 

their current operating systems— for example, Sun Microsystems’ Jini Network 

Technology [50], Microsoft’s Universal Plug and Play (UPnP) [95], and Apple’s 

Rendezvous [26] (currently known as ‘Bonjour’). Other organizations have also 

proposed discovery protocols standards, including Salutation Consortium’s Salutation 

protocol [86], Internet Engineering Task Force’s Service Location Protocol (SLP) [42], 

and Bluetooth Special Interest Group’s Bluetooth SDP [14]. 

 The methods of exchanging service discovery and registration information among 

clients, services, and directories are basically of two types – active / pull-based / query-

based discovery and passive / lazy / push-based / announcement-based discovery. In the 

query-based approach, a party receives an immediate response to a query and does not 

need to process unrelated announcements. Multiple queries asking for the same 

information are answered separately. In the announcement-based approach, interested 

parties listen on a channel. When a service announces its availability and information, 

all parties hear the information. So in this approach, a client might learn that the service 

exists and a directory might register the service’s information. Many protocols support 

both approaches. 

2.1.4 System Support Components 

After we have discussed the prime issues associated with the core components of 

service discovery operations in general, we also discuss the supportive operations that 

 20



Chapter 2   Background and Literature Review 
 

are important for service discovery in real pervasive environments. The first one of this 

is fault-tolerance, the second one is mobility management while the third and final one 

is support for security and privacy.  

Fault Tolerance and Mobility Support 

 In Section 1.3, we have described the basic fault issues for service discovery in 

pervasive computing. Existing service discovery protocols mostly consider crash of 

service providers or directory nodes which gives rise to service unavailability. This type 

of fault requires redundancy support to keep the operation ongoing if a directory node 

fails. Service unavailability can also arise due to user or device mobility and network 

disconnection. Mobility is a crucial issue for infrastructure-less pervasive environments 

and requires special attention to cope with the challenges.  

When a service becomes unavailable it must be deleted from the directory or registry 

in order to keep the service information up-to-date and freeing the memory of stale 

service information. This is achieved by maintaining a soft service state which is 

required to be renewed at specified intervals by the service provider. In case the service 

is unavailable, the service state cannot be renewed, which leads to the deletion of the 

service from the registry. A hard service state, on the other hand, does not require to be 

renewed by the service providers. However, the directories must poll the service 

providers to find out whether the service information is up-to-date.  

Another way of doing away with accumulated service usage information in service 

providers is by providing lease-based service. In lease-based service usage, service users 

must renew their lease with the service providers before the lease gets expired or the 

user fails or leaves the environment. Otherwise, the service providers simply delete the 

service states associated with the user and free the memory space. The alternative way is 

to explicitly release a service for a user and maintain the service execution information.  

 21



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Security and Privacy Support 

Security is another important issue required to be addressed for service discovery in 

pervasive computing. Since, users might need to interact with possibly unknown devices 

acting as directories and service providers in different environments, none of the parties 

involved is keen to take the first move for the fear of breach of privacy. So, it is 

important to maintain proper security and privacy at all times. 

2.2 Classification of Service Discovery Protocols 

Existing service discovery protocols can be grossly classified based on their 

underlying network structure and the discovery infrastructure built over that. In the 

Figure 2-2 we give a classification of existing protocols. 

Service 
Discovery

Broadcast
-based

Infrastructure-less 
Networks

Infrastructure-based 
Networks

Wide Area 
Networks

Local Area 
Networks

DHT Overlay-
based

Directory-
less

Directory-
based

Ad hoc Short-
range Network

Directory-
less

Directory-
based

Directory-
less

Directory-
based

Directory 
Overlay

Flat Hybrid
Hierarchical

 

Figure 2-2: Classification of Existing Service Discovery Protocols 

 22



Chapter 2   Background and Literature Review 
 

2.3 Service Discovery in Infrastructure-based Networks 

Infrastructure-based networks are characteristically either wired networks or wireless 

networks with network backbone support. Service discovery protocols (SDP) for 

infrastructure-based networks have been developed either for limited area networks 

(LAN) or for wide area networks (WAN). 

2.3.1 SDPs for Local Area Networks 

As a LAN is covered by a single administrative domain, DHCP services can be used 

for them. Also they contain resource-rich devices which are mostly static and provide 

high-bandwidth network support. Enterprise environments and smart office and home 

environments can be considered as ideal examples of these types of systems. Some of 

the well-known protocols for this environment are Jini [50], UPnP [95], SLP [42], and 

FRODO [90].  

Jini is a Java-based service discovery protocol introduced by Sun Microsystems 

where services are represented as Java objects. Jini adopts the directory-based discovery 

model where all the service information is centrally maintained in the registry or lookup 

servers. Universal Plug and Play or UPnP, on the other hand, is a Microsoft-initiated 

standard that extends the Microsoft Plug-and-Play peripheral model. UPnP uses a 

directory-less model and enables peer-to-peer network connectivity of intelligent 

appliances, wireless devices, and PCs of all form factors. The Service Location Protocol 

or SLP has been designed for TCP/IP networks and can choose to operate using a 

directory-based or a directory-less model. FRODO is a directory-based service 

discovery protocol for home networks where directory nodes are elected based on 

available resources.  

 23



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Another directory-based protocol, named Salutation [86], has been developed by 

IBM. This can be used for any network and can perform either in P2P mode or in 

centralized manner. Salutation is useful to solve the problems of service discovery and 

utilization among a broad set of appliances and equipment and in an environment of 

widespread connectivity and mobility. The Salutation architecture defines an entity 

called the Salutation Manager (SLM) that functions as a directory of applications, 

services and devices, generically called “Networked Entities”. The SLM allows 

networked entities to discover and to use the capabilities of the other networked entities. 

2.3.2 SDPs for Wide Area Networks 

Service discovery protocols for wide area networks have separate design concerns. 

These types of networks usually contain large number of devices and services that need 

to be managed and so, the developed service discovery protocols must be highly 

scalable. Also WANs do not have support for broadcast or multicast mechanisms. 

Moreover, to ensure network-wide service availability, they must have multiple replicas 

for each service. So, there must be a trade-off between the need to maintain consistency 

among service replicas and the generated network traffic. Also, the requested service 

should be available to the user within optimal time and by using minimum number of 

messages. Some of the well-known protocols for infrastructure-based wide area 

networks are SSDS [49], CSP [62], INS/Twine [8], Superstring [82], and GloServ [5]. 

All these protocols use a structured distribution of directory servers which stores the 

service information. The directory structure can be well classified into three modes - flat, 

hierarchical or hybrid. 

INS/Twine forms a flat directory structure which is a peer-to-peer overlay network of 

resolvers constructed by means of distributed hash tables (DHT). INS/Twine uses the 

Chord [89] DHT system. Another example is One Ring Rules Them All [19] which uses 

 24



Chapter 2   Background and Literature Review 
 

structured P2P overlays as a platform for service discovery and implements over Pastry 

[84] DHT system. The infrastructure proposed relies on a universal ring that all 

participating nodes are expected to join. The major advantage of using DHT based 

protocols is the efficient lookup which usually takes O(log(N)) hops, where N is the 

number of nodes in the overlay network. However, DHT systems do not take into 

account the actual physical distance between the overlay nodes and also they are costly 

in terms of resources. Due to this, using DHT based protocols for pervasive 

environments can incur higher costs. Contrary to the peer-to-peer directory overlay 

structure, SSDS, CSP and GloServ form a hierarchical structure of directory nodes. 

With a view to tackle the disadvantages associated with either type, Superstring, 

combines both the peer-to-peer and hierarchical topologies and provide a hybrid model. 

It utilizes a flat topology to discover top-level nodes that specialize in a particular kind 

of service. From this top-level node, a hierarchy is created which reflects the 

hierarchical structure of service descriptions and helps to resolve user queries. Another 

research based on hybrid directory structure is the Project JXTA protocols [93] which 

establish a virtual network overlay on top of existing physical network infrastructure. 

They store the service information in rendezvous peers. This approach combines DHT 

methods with a random walker that checks for non-synchronized indices. In order to 

avoid expensive network traffic, the resolver nodes are not required to maintain a 

consistent distributed hash index. Instead, a limited-range walker is used to walk the 

rendezvous from the initial DHT target. 

2.3.3 Fault Tolerance and Mobility Management Mechanisms 

In infrastructured networks, the existing service discovery protocols are mostly 

directory-based. So, fault tolerance supports are required to safeguard the system against 

possible failures of directory nodes. Usual approach to achieve this is by redundancy. 

 25



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

For central storage, such as, FRODO, there is a backup of the directory node which 

takes over in case the central directory fails. For distributed storage, e.g., INS/Twine, 

JXTA, and One Ring Rule Them All, multiple copies of service information are 

maintained in different servers. When one or more fails, the rest can still answer the 

queries. 

Service information maintenance on the face of mobility is tackled by many 

protocols in these types of networks. Jini uses a lease-based mechanism for service 

access by users. SLP and UPnP, however, enforce expiry time for service registrations 

and advertisements, respectively, and GloServ requires periodic renewal of service 

registrations, all in order to remove outdated service information. SSDS maintains 

service information state as soft states. 

2.4 Service Discovery in Infrastructure-less Networks 

Infrastructure-less networks are highly dynamic and consist of multiple resource- 

constrained and possibly mobile devices. They are connected through weak wireless 

connectivity and form a mobile ad hoc network. In these environments, we assume that 

the participating devices provide some services to their peer devices which can be 

discovered and accessed through carefully designed service discovery protocols. 

Depending on where the service information is maintained, the existing service 

discovery protocols for ad hoc environment have been classified into directory-based 

and directory-less models. We first discuss the existing directory-less service discovery 

protocols and analyze their features. Next we shall elaborate on the available directory-

based protocols. 

 26



Chapter 2   Background and Literature Review 
 

2.4.1 Directory-less SDPs 

In the directory-less service discovery protocols, the service information is stored 

with the service providers themselves. There are two distinctly identified methods for 

directory-less service discovery in ad hoc networks. The first method works by 

broadcasting service information as well as service requests and the second approach 

works by building DHT-based P2P overlay [53][103][76][49][32][18] for mobile ad hoc 

networks (MANET). We first describe the broadcast based method followed by the DHT 

overlay approach. 

Broadcast-based Service Discovery 

Broadcast-based service discovery can adopt either push or pull model. In a push-

based discovery model, service advertisements are distributed by the service providers 

to all the nodes in the network. A pull-based discovery model, however, necessitates a 

service requestor to broadcast their service request to other nodes until a matching 

service is found. The broadcasting nature of this model is grossly unsuitable for the 

mobile ad hoc networks due to their high demand of bandwidth and energy. So, these 

protocols can only be used in small scale networks. Some of the protocols which use 

broadcast policy are Bluetooth [14], DEAPspace [70], Allia [77], GSD [20], DSD [21], 

and Konark [47]. 

Among all the protocols mentioned above, Bluetooth and DEAPspace are designed 

for single hop ad hoc networks where the rests are for multi-hop networks. Bluetooth 

has been developed following a client server model whereas, DEAPspace follows a 

peer-to-peer architecture. DEAPspace is a push-based decentralized discovery protocol 

in which each node maintains information about its known services and periodically 

exchanges its known service list with the neighbors via broadcast. Similar policy for 

 27



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

broadcast is also used in Konark which allows each node to store service information 

from itself and other known services. However, Konark is multihop in nature and 

supports both pull and push based advertisement and discovery using multicast. The 

broadcast in DEAPspace significantly increases the message overhead and can lead to 

multicast storm. To cope with this problem, Konark proposes a service gossip algorithm 

which suppresses repeated message delivery by caching the service information and also 

the multicast is performed at random intervals. In GSD, every node stores service 

advertisement from any other node within a maximum of N hop distance, known as 

advertisement diameter. Allia and DSD, on the other hand, allow nodes to advertise their 

services only within their transmission range. In Allia, nodes which cache service 

advertisements form an alliance with the advertising node. Difference between Allia and 

DSD is that, in DSD, nodes which stores advertisements from their neighbors, can also 

forward the advertisement to other nodes, unlike in Allia, based on the forwarding policy.  

Some other protocols in this category are Wu and Zitterbart [101], Cheng and Marsic 

[25] and Varshavsky et al [96]. These protocols support cross-layer types of service 

discovery. Wu and Zitterbart is a directory-less P2P protocol based on DSR routing 

protocol in which every node caches service advertisements and performs both pull and 

push based discovery. Cheng and Marsic, on the other hand, is based on on-demand 

multicast routing protocol (ODMRP) in which nodes cache service advertisements 

depending on their interest. Varshavsky et al proposes a protocol which has two main 

components - a routing protocol independent Service Discovery Library (SDL) and a 

Routing Layer Driver (RLD). SDL function is to store information about the service 

providers. RLD, which is closely coupled with the MANET routing mechanism, is used 

to disseminate service discovery requests and advertisements. Each node has the stack 

containing SDL and RLD and form a P2P networking with other nodes. 

 28



Chapter 2   Background and Literature Review 
 

DHT Overlay-based Service Discovery 

There are several MANET-oriented DHT systems [76][104][32] which integrate 

DHT with different ad hoc routing protocols to provide indirect routing in MANET. 

Ekta [76], MADPastry [104], and CrossROAD [32], each integrates Pastry [84] with 

DSR [51], AODV [75], and OLSR [28], respectively, to share routing information 

between network layer and application layer. An opposite approach is adopted by virtual 

ring routing (VRR) [18] which is a network-layer routing protocol inspired by overlay 

routing on DHTs and can significantly reduce traffic compared with broadcast-based 

schemes. Ekta implements a service discovery protocol and there are other DHT overlay 

based service discovery protocols [53][103] for MANET. DHT-based systems for 

service discovery, however, have certain drawbacks. Ekta and VRR construct a DHT 

substrate without taking into account the actual physical distance between nodes. This 

can cause undesirably long search latency and deterioration of success ratio of service 

discovery with the growing network scale. On the other hand, MADPastry proposed a 

clustering method which groups the overlay nodes according to their physical distance. 

But, MADPastry routes information using location-dependent addresses. These 

identifiers can change with mobility and node failures, so, it always requires 

mechanisms to look up the location of a node given a fixed identifier which is costly. 

2.4.2 Directory-based SDPs 

Given the resource-poor nature of the devices and their mobility, it is difficult to 

choose single centralized directory nodes. To cope with this limitation, directories are 

dynamically selected from mobile nodes considering their available resources, such as, 

processing power, memory size, battery life, or node coverage, etc. It is true that, 

dynamic directory assignment incurs extra overhead to the network because, directories 

should be selected and their identities should be informed to the rest of the network 

 29



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

nodes. Moreover, directory nodes must be constantly available on the face of node 

failures and dynamic topology changes and network partitions. Even with these 

difficulties, a directory-based system proves to be more scalable and fault tolerant than a 

directory-less one in the infrastructure-less environments. Moreover, using directories 

will most certainly decrease the discovery delay and will enhance load balancing among 

service providers, so as to reduce the load on individual services and enhance the overall 

service discovery performance. Examples of directory-based service discovery protocols 

for ad hoc wireless networks are - Service Rings [58], Lanes [59], DSDP [60], Tyan et al 

[94], Sailhan et al [85], Kim et al [57], and Splendor [105].  

The basic approach followed by these protocols is the same. They select some nodes 

as directories based on some parameters and then form an overlay or backbone network 

connecting those nodes. Here we give a brief account of the protocols named above. 

Service Rings forms an overlay of nodes which are physically close and offer similar 

services. This structure, built over the transport layer, is called service ring. Each service 

ring provides a service access point (SAP), which acts like a directory and through 

which services provided by any of the members of a ring can be accessed. SAPs of 

different rings connect with each other to form a hierarchical structure. The protocol 

Lanes is inspired by the content addressable network (CAN) protocol, for wired P2P 

networks. In Lanes, nodes are grouped together to form a linear structure, called lanes. 

Each node in a lane contains same service information and share the same anycast 

address. Multiple lanes are loosely coupled together. DSDP selects certain directory 

nodes in the network, based on available resources, to form a dominating set, or a virtual 

backbone. The backbone of directory nodes is then used for both service discovery and 

routing. Tyan et al., proposes a protocol in which the network is divided into hexagonal 

grids, each having a gateway. The gateway nodes are used for routing and work as 

directory nodes. The connected overlay of gateways forms a virtual backbone. Kim et al, 

 30



Chapter 2   Background and Literature Review 
 

proposed a volunteer node based protocol where volunteers are relatively stable and 

resource rich nodes and form an overlay structure with other volunteers. The volunteers 

in fact act as directory nodes. 

Sailhan et al., proposed a protocol for large-scale mobile ad hoc networks in which 

multiple directory nodes distributed across the network interconnect to form a backbone. 

The directory nodes are so deployed that at least one directory is reachable in at most a 

fixed number of hops, H, known as the vicinity of the directory. Directories store service 

information available in their vicinity. Their protocol builds a hybrid network bridging 

mobile ad hoc networks and infrastructure-based networks, where some nodes have the 

same network interface, where others hold several network interfaces, and act as 

gateways with other networks. 

2.4.3 Fault Tolerance and Mobility Management Mechanisms 

Fault tolerance in infrastructure-less environments is more difficult than in 

infrastructured networks. The dynamic nature of the environment, resource-constrain of 

the participating devices, and the unreliability of wireless connection makes it hard to 

design robust fault tolerant mechanisms for them compared to the traditional distributed 

environment. Fault tolerance requires withstanding failure of directory nodes. INS [1] 

and LANES cope with directory failure by maintaining multiple copies of service 

information at different nodes. Most of the directory-based protocols replace failed 

directory nodes with newly selected ones. 

Mobility management, however, is very challenging in ad hoc environments. 

Frequent node mobility renders the topology unstable and disconnections give rise to 

inconsistency in service information. In order to maintain consistency of service and 

route to service information, either a proactive or a reactive method has been adopted by 

 31



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

existing protocols. In a proactive approach, the participating nodes periodically 

exchange messages to update information. Example is, when a service provider 

periodically sends advertisements to update its location. A reactive method, however, 

updates information based on triggering of certain events. So, if a user finds out that a 

previously cached service is unreachable, then it seeks for new service information. 

Directory-less service discovery protocols cope with node mobility by adjusting the 

service advertisement rate and the diameter of announcements. For example, GSD 

implements a small advertisement time interval for highly dynamic environments, 

opposed to a larger value for comparatively stable networks. The advertisement 

diameter (in number of hops) is also regulated depending on different mobility 

situations. Similarly, Allia controls the frequency of advertisements and the diameter of 

the alliance considering the mobility of nodes. 

Most of the directory-based protocols for ad hoc service discovery require special 

mechanisms to maintain the directory structure – backbone or overlay. The job of these 

algorithms is to ensure smooth operation by handling node joining or leaving scenarios, 

broken connections, network partition and partition merges. Service Rings, Lanes, 

DSDP, Tyan et al, and Sailhan et al, all proposes similar mechanisms. 

2.5 Comparison of Existing Service Discovery Protocols 

In this section, we compare the major service discovery protocols in terms of their 

underlying network model, architectural design, communication model and adopted 

fault tolerance methods. 

 

 

 32



Chapter 2   Background and Literature Review 
 

Table 2-2: Comparison of Existing Service Discovery Protocols 

SDP Network 
Model 

Discovery 
Architecture 

Communication  
Model 

Fault tolerance Policy 

Jini Enterprise 
network 

Directory-based, 
Centralized 

Wired or 
infrastructured 
wireless 

Lease mechanism for 
granting access to services 

UPnP Enterprise 
network 

Directory-less, 
P2P 

Wired or 
infrastructured 
wireless 

-Expiry time for 
advertisements 

-“Device unavailable” 
notification 

SLP Enterprise 
network 

Directory-based,  
or Directory-less 

Wired or 
infrastructured 
wireless 

- Lifetime for service 
registrations  

Salutation Any Network Directory-based, 
Centralized or 
P2P 

 Periodic availability check of 
services 

FRODO Home 
network 

Directory-based, 
Centralized 

Wired or 
infrastructured 
wireless 

-Central election and re-
election (FT) 

-Recovering from 
Central/Backup failure (FT) 

-Soft state for 300D 
devices, periodic poll of 3D 
devices 

SSDS Wide-area 
network 

Directory-based, 
Hierarchical 

Wired or 
infrastructured 
wireless 

Soft state of service 
announcements 

CSP Wide-area 
network 

Directory-based, 
Hierarchical 

Wired or 
infrastructured 
wireless 

Frequent updates for intra-
domain movements; 

no updates in the global 
network 

INS/ Twine Wide-area 
network 

Overlay network 
of directories 
(a.k.a. resolvers) 
which form a DHT 

Wired or 
infrastructured 
wireless 

-Each strand is stored on 
multiple nodes (FT) 

-Hybrid state management 
scheme 

Super- 
string 

Wide-area 
network 

Directory-based 
DHT overlay 

Wired or 
infrastructured 
wireless 

None 

GloServ Local & 
Wide-area 
network 

Directory-based, 
Hybrid (mix of 
Hierarchical & 
flat) 

Wired or 
infrastructured 
wireless 

Registration is periodically 
renewed  

Service Discovery Protocols for Ad hoc Networks 

Bluetooth Ad hoc 
network 

Directory-less 
Client-Server 

Wireless Single 
hop, Request/ 
Response -based 

Implicit (no caches are 
maintained) 

DEAPspace Wireless ad 
hoc network 

Directory-less, 
Unstructured P2P  

Wireless Single 
hop, Broadcast-
based 

Nodes broadcast their entire 
view – rapid convergence 

Allia Ad hoc 
network 

Directory-less, 
Unstructured P2P 

Wireless Multi-
hop, Broadcast-
based 

Adjusting advertisement 
rates and alliance diameter 
based on mobility of nodes 

 33



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

GSD Mobile  ad 
hoc network 

Directory-less, 
Unstructured P2P 

Wireless Multi-
hop, Broadcast-
based 

Adjusting advertisement 
time interval and 
advertisement diameter 
based on mobility of nodes 

DSD Mobile  ad 
hoc network 

Directory-less, 
Unstructured P2P 

Wireless Multi-
hop, Broadcast-
based 

Adjusting advertisement 
diameter and rates based on 
mobility of nodes 

Konark Wireless ad 
hoc network 

Directory-less, 
Unstructured P2P 

Wireless Multi-
hop, Broadcast-
based 

Servers periodically 
announce their services and 
specify lifespan of 
advertisements 

Ekta Mobile ad 
hoc network 

Directory-less Wireless Multi-
hop,  

None 

Service   
Rings 

Mobile ad 
hoc network 

Directory-based, 
Structured 
overlay 

Wireless Multi-
hop 

-Periodically checking for 
consistency using RingCheck 
message 

-Algorithms for repairing 
broken rings, network 
partition and reintegration 

Lanes Mobile ad 
hoc network 

Directory-based, 
Structured 
overlay 

Wireless Multi-
hop 

-Proactive maintenance 

-Algorithms for node 
login/logoff, broken 
connections, network 
partition and reintegration 

DSDP Mobile ad 
hoc network 

Directory-based,  

Flat structured 
overlay 

Wireless Multi-
hop 

-Periodic service registration 

-Algorithms for backbone 
maintenance 

Tyan et al. Mobile ad 
hoc network 

Directory-based,  

Flat structured 
overlay 

Wireless Multi-
hop 

Periodic service 
advertisements and electing 
new gateway node when the 
existing gateway moves away 

Sailhan et 
al. 

Mobile ad 
hoc network 

Directory-based, 
Hierarchical 
structured 
overlay 

Wireless Multi-
hop 

Periodic service 
advertisements 

Kim et al. Mobile ad 
hoc network 

Directory-based, 
Flat  
unstructured 
overlay 

Wireless Multi-
hop 

Adjusting advertisement 
diameter and rates, electing 
new volunteers 

Splendor Mobile ad hoc 
network 
(public 
environment) 

Directory-based Wireless Multi-
hop 

-Soft state storage of 
service information 

-Hard-state storage of 
services represented by 

proxies 

 
 
 
 
 
 
 
 
 

 34



 

 

 

 

 

Chapter 3  

Directory Community: A Framework for 

Reliable Service Discovery and Access 

This chapter describes the directory community framework which refers to a group 

of service discovery directory nodes, called directory community, along with a suite of 

protocols and algorithms for reliable service discovery and access over ad hoc network 

environments. Section 3.1 presents a generic description of our directory community 

framework. In Section 3.2, the directory community creation has been discussed with 

necessary design principles, challenging issues and our proposed solution technique. 

Section 3.3 and Section 3.4 discuss the design principles and our proposed solution 

approaches to provide reliable service discovery and access operations using the 

directory community framework. Finally, Section 3.5 concludes this chapter by 

summarizing our contributions. 

3.1 Generic Framework Structure 

As already mentioned in Chapter 1, the existing fault tolerance support for service 

discovery operations in ad hoc infrastructure-less pervasive environments is inadequate. 

The primary objective of our research is to ensure reliable service discovery and 

seamless service access for mobile users in heterogeneous and fault-prone pervasive 

 



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

computing environments. A large number of portable and embedded devices in these 

environments work collaboratively in a purely ad hoc manner and without any central 

control. This necessitates a localized and bottom-up interaction model which will 

achieve fault-tolerant service discovery minimizing both message and energy costs. To 

achieve this goal, we prefer a directory based service discovery solution to a directory-

less one as the former appears to be more robust and fault tolerant than the latter. 

Moreover, directory-less or ad hoc service discovery protocols mostly resort to 

expensive message broadcasts which is not practical and not even feasible, for pervasive 

computing environments with large number of dynamically changing devices.  

But, even if we want to use a directory-based model, still the dynamic resource-

constrained and error-prone nature of pervasive environment prohibits the use of single, 

centralized and dedicated directory node. To cope with this limitation we propose an 

ingenious solution namely, the directory community framework. The directory 

community is composed of a set of directory nodes in an ad hoc network environment 

and a suite of protocols and algorithms for these directory nodes to collaboratively 

provide reliable service discovery and seamless service access for mobile users.  

The directory community is used as a basic infrastructure over which many different 

service discovery related protocols have been developed. To make it more clear, the 

directory community provides application developers with a sense of reliability in a 

heavily dynamic and inherently unreliable network environment. The directory 

community is robust enough to carry on with fault-tolerant service discovery operations 

even when one or more directory nodes fail. However, proper functioning of the 

directory community depends on the judicious formation and timely maintenance of the 

structure. 

 36



Chapter 3                          Directory Community: A Framework for Reliable Service Discovery and Access 
 

The directory community framework shown in Figure 3-1 has three different layers. 

The lowest layer concerns about the formation of a robust directory community.  After 

the directory community has been successfully formed, we have developed two higher 

layers intended to provide reliable service discovery and access supports for mobile 

users. However, application developers can use the directory community to develop 

many kinds of fault-tolerant service management protocols, including service discovery, 

service access, service composition, etc.  
 

 

Figure 3-1: Directory Community Framework 

For the directory community we have adopted a common system model. All the 

protocols and algorithms developed using the directory community share the same 

system model for their functioning. Since dynamic and ad hoc pervasive computing 

environment shares great similarities with mobile ad hoc networks, we have modeled 

the underlying network of a pervasive environment as a MANET. MANET nodes are 

mobile, resource-constrained and prone to disconnection.  

The directory community framework is set up over a MANET that consists of a set of 

n (n>1) mobile nodes, each of which has a unique ID. The nodes communicate by 

 37



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

sending and receiving messages through wireless channels. Whether two nodes are 

neighbors, i.e. they are directly connected, is determined by the signal coverage range 

and the distance between the nodes. Each node is a router and the communication 

between two nodes can be multiple hops. We assume variable message delay, so the 

message delivery is non FIFO. A node may fail by crashing, i.e. prematurely halting, but 

it acts correctly until it possibly crashes. A mobile node that crashes in a run is called a 

faulty node; otherwise, it is correct. A node only knows the IDs of its neighboring nodes. 

Each node has a weight associated with it. The weight of a node indicates its ability to 

be chosen as a directory node and can be any performance related attribute such as the 

node’s battery power, memory size, computational capabilities etc. Two nodes may have 

the same weight value. Since, two or more nodes can have identical weights, in order to 

create a total ordering among all the nodes, we use the <id, wt> tuple. So, if more than 

one node has the same weight, then the one with the higher id is selected over the other. 

E.g., if there are two nodes p and q with tuples, <1, 10> and <2, 8>, respectively, then 

node p is the higher weight node. But, if p and q has tuples like <1, 10> and <2, 10>, 

respectively, then node q is selected over p. 

In the next few sections, we shall discuss the different layers of the directory 

community framework along with the general design principles, challenging issues and 

our proposed solution approaches. 

3.2 Directory Community Creation 

As already mentioned, directory community consists of a group of directory nodes 

for service discovery and access in infrastructure-less pervasive computing 

environments, along with a suite of protocols and algorithms to facilitate those 

operations in a fault-tolerant manner. Creation of directory community has to follow 

certain standard design principles as described below.  

 38



Chapter 3                          Directory Community: A Framework for Reliable Service Discovery and Access 
 

Firstly, the directory nodes must be relatively stable, so that, the directory community 

achieves extra stability compared to the unstable nature of the usual MANET nodes. As 

mobile ad hoc networks consist of limited-resource devices characterized by low 

processing power, insufficient memory size, limited energy supply and low network 

bandwidth [7][38], resource-based election will ensure that the directories are more 

reliable and less fault-prone. So, to achieve stability, directory nodes can be selected 

considering relatively higher processing power, memory size, or battery life, etc. Also 

nodes with low mobility profile can be considered.  

Secondly, due to the resource constrained nature of MANET nodes, the directory 

community formation must be achieved at a low message expense which implies 

consumption of less bandwidth and low processing overhead. Message cost can be 

significantly reduced if directory community creation is carried out by decentralized or 

localized interaction of neighboring nodes. This approach will be suitable for MANET 

as there is no central control in this type of network.  

Thirdly, the directory community must be maintained periodically in order to be up 

and functioning. Failed directory nodes should be replaced quickly to continue with the 

ongoing applications. Since, the directory community is the heart and soul of the 

framework, the correct functioning of the upper layer protocols will be utterly dependant 

on the proper maintenance of the structure. Also, the maintenance overhead should be 

kept to a minimum. 

Finally, the size of the directory community should be enough to cater to the needs of 

all the nodes in the network. So, depending on the size of the network, directory 

community size can be varied. If more nodes join the network, new directory nodes may 

need to be selected to join the community. On the other hand, if the network size shrinks 

 39



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

considerably, some directory nodes can be dropped to minimize the directory 

community maintenance overhead. 

However, achieving the above design principles is challenging due to many reasons. 

Firstly, MANET nodes are resource-constrained. So, using them as service discovery 

directories will quickly reduce their capacity and will require re-election of new 

directory nodes. Secondly, mobile ad hoc networks are extremely dynamic and have 

unreliable wireless connectivity. Also, nodes can fail by resource depletion or can 

suddenly withdraw from the network. Due to all these possibilities, MANETs can suffer 

from dynamic topological changes caused by frequent network partitioning as well as 

partition merges. In these environments, creation and timely maintenance of directory 

community in a message efficient manner is extremely difficult. 

Addressing all the above challenges is important while designing a directory 

community framework for reliable service discovery operations. Directory community 

can be created by multiple means. Possible approaches can be like - cluster formation 

considering relatively resource rich nodes, or leader election to chose directory nodes 

with requisite properties, or some other useful algorithms. 

In this research, we have opted to create directory community by electing top K 

highest weight nodes in a MANET, where weight can be any resource-related attribute 

of a node and K is a ratio of the directory nodes to the total number of network nodes. 

We have proposed a distributed algorithm for directory community formation which 

works through localized interaction of participating devices. Considering the directory 

nodes as leaders, we have modeled the problem as a top-K weighted leader election 

problem. The problem is challenging and so far, there is no K-leader election algorithm 

designed for mobile ad hoc networks. Details of our solution approach will be found in 

Chapter 4. 

 40



Chapter 3                          Directory Community: A Framework for Reliable Service Discovery and Access 
 

After the directory community is successfully formed, we start to develop different 

fault-tolerant service discovery and access protocols over the directory community. In 

the following two sub-sections we shall describe our proposed protocols for reliable 

service discovery and seamless service access. 

3.3 Reliable Service Discovery using Directory Community 

In the heavily dynamic network environments, like MANET, services can suddenly 

become unavailable due to many possible failure situations. Service providers may fail 

or service directories may fail as well. While the former can be easily addressed by 

finding out alternative services matching user request, the latter is much more difficult 

to address. Directory failures in service discovery systems require all the services 

registered with the failed directory to re-register with other available directories in order 

to publish them and become available once more. For mobile users, service 

unavailability can also occur if the user moves out of the scope of the service provider.  

Different protocols can be developed to address above problems. In this research, 

however, we address the directory failure problem and investigate the means of 

tolerating this type of fault while using our directory community. Reliability and fault-

tolerance is achieved at the cost of replication. While developing reliable service 

discovery protocols using directory community we need to pay heed to the following 

design principles. 

Firstly, the MANET nodes are resource constrained. So, degree of replication must 

be controlled in such a way that the replication and update related costs can be 

minimized. Moreover, the message costs of service discovery should also be controlled. 

Overall, the service availability amidst directory failures must be achieved at minimum 

extra overhead.  

 41



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Secondly, frequent node mobility can result in network partitions as well as partition 

merges, thereby changing the network topology and also the number of directory nodes 

in a single network component. So, the number of directory nodes and service replicas 

may need to be altered from time to time. Moreover, the service availability will be 

affected if the service replicas are not available due to network partitioning. So, 

maintaining the reliable service discovery operations on the face of dynamic topological 

changes requires special techniques to cope with. 

Finally, scalability is also an important issue in the dynamic MANET environments. 

With the increase in network size and with frequent joining and leaving of nodes, new 

directory nodes may need to be created, new service replicas have to be generated and 

old service replicas must be removed or updated. 

Many different fault-tolerant service discovery protocols can be designed on the 

directory community satisfying the above design criteria. Services can be replicated in 

the entire directory community, or a within a small group of directory nodes which can 

synchronize the service information among each other. The second approach will 

certainly be cheaper but could be less reliable depending on the design. So, in order to 

strike a balance between cost and reliability, we have proposed a quorum-based reliable 

service discovery protocol for MANET using the directory community. In this approach, 

elected directory nodes form quorums among themselves and replicate services 

registered with them among its quorum members. This approach ensures network-wide 

service availability with minimal replication. Following the quorum intersection 

property, we can guarantee that if a service matching user request is available, the user 

can certainly find the service by forwarding a request only to its quorum members. This 

reduces service discovery cost. However, success of this approach depends on the 

continuous availability of the quorum nodes. Detailed description of the quorum-based 

service discovery approach is in Chapter 5. 

 42



Chapter 3                          Directory Community: A Framework for Reliable Service Discovery and Access 
 

3.4 Seamless Service Access using Directory Community 

Service users in pervasive computing environments usually access services while on 

the move. Devices, static or mobile, often limit their access scopes by physical boundary 

(e.g., the room in which the device is active) or network hops (for multi-hop ad hoc 

networks). Mobile users may frequently move out of the scope of a service provider and 

experience disconnection. We call this scenario as service unavailability. Continuous 

service access can also be hampered when the service provider suddenly crashes or 

moves away from the user, or when the underlying network gets partitioned. Any 

mechanism for providing seamless service access support must address the following 

concerns. 

Firstly, whenever a service becomes unavailable, it must be quickly detected and all 

users using that service should be handed over to another service provider which is 

providing the same service. If no matching service provider is available, any near 

matches can be used provided the quality of service falls within the user specifications. 

Otherwise, the user has to be notified about the service unavailability. 

Secondly, the service execution consistency should be maintained while a change of 

service provider takes place. Service execution consistency indicates a continuity of the 

service execution states across multiple providers. So, proper check-pointing and 

recovery mechanisms are required for Also, the resumption of service execution at an 

alternate service provider must be very smooth once the service has been handed over to 

a different provider. 

Thirdly, any service handover mechanism for MANET environment must be scalable. 

With the increased network dynamics and high volume of nodes, seamless service 

access can be often disrupted frequently requiring service handovers. Also the service 

 43



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

handovers must incur minimal costs. Otherwise, the increased number of handovers will 

quickly diminish the network lifetime.  

Finally, in a MANET environment, service provider nodes are usually resource-

constrained. So, while assigning a new user to a service provider, the load on the service 

provider must be considered. Overloaded nodes will soon fail due to resource depletion 

and that will require many more service handovers. 

Existing service discovery solutions in pervasive computing rarely address the afore-

mentioned issues. We want to use our directory community framework to provide 

seamless service access support for mobile users. We propose an approach, called 

service handoff, by which new matching service providers are automatically selected for 

a user once the original service provider becomes unavailable. The objective of service 

handoff is to maintain service execution consistency for service users and load balance 

for service providers. Our proposed service handoff approach has three different 

protocols depending on the initiator of the handoff. We shall describe our service 

handoff protocols in detail in Chapter 6. 

3.5 Summary 

In this chapter we have introduced our directory community framework. The 

framework has a collection of directory nodes, carefully chosen from all the nodes in an 

ad hoc network considering available node resources, along with a suite of protocols 

that aim to provide reliable and fault-tolerant service discovery and seamless service 

access supports to mobile users in these environments. We have initially introduced the 

layered structure of the directory community framework followed by detailed 

description of individual layers.  
 

 44



 

 

 

 

 

Chapter 4  

Formation of Directory Community 

This chapter describes formation of our directory community framework which is 

required for reliable service discovery and access over ad hoc pervasive environments 

consisting of multiple portable mobile devices connected through unreliable wireless 

networks. Section 4.1 presents a brief overview regarding the issues which need to be 

addressed in order to develop the directory community for mobile ad hoc networks 

(MANET). Section 4.2 to 4.7 contains detailed description of our directory community 

formation and maintenance techniques as well as the performance measurements. 

Finally, Section 4.8 concludes the chapter by summarizing our main contributions. 

4.1 Overview 

As already mentioned in Chapter 3, we create directory community by electing top K 

highest resource nodes in a MANET and formulate the problem as a top K leader 

election problem. Typically, the leader election problem is to elect a unique node to play 

a particular role [67]. Many distributed algorithms in ad hoc networks, such as mutual 

exclusion, synchronization, concurrency control, etc, require selecting one or more 

nodes to act as leaders. Leader election in traditional distributed environment has been 

well studied. Many solutions [2][71][92][4][9][39][74][35][29][45][97] have been 

 



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

proposed to solve the leader election problem in traditional distributed environment. 

However, existing algorithms are not suitable for weighted leader election in mobile ad 

hoc environment due to the following challenges. 

Firstly, given the resource constrain of mobile nodes any leader election algorithm 

for MANET must be message efficient which implies consumption of less bandwidth as 

well as lower processing overhead. Secondly, due to variable number of nodes and 

frequent network partitioning electing a fixed number K of leaders is not suitable. 

Instead, we should define K as a ratio of the number of leaders to the total number of 

nodes in the current network component. Finally, due to the network partitions and node 

failures, it is impossible to elect globally unique leaders. So, we have to elect different 

sets of leaders for different network components and same set of leaders for two or more 

components merging together. 

So far, there is no K-leader election algorithm designed for mobile ad hoc networks. 

Several leader election algorithms [44][67] have been proposed for ad hoc networks to 

select a single leader. These algorithms are designed to perform id-based node election 

and cannot be modified to perform weight-based K-leader election since two nodes may 

have the same weight value. More importantly, node weights change frequently 

depending on the operating conditions, and so the elected leaders can soon be incapable 

of hosting specific services. Several weight-based clustering algorithms [11][12][22] 

have been proposed for mobile networks, but they elect cluster heads only within single 

hop neighborhood and cannot be adapted for multi-hop election. Leader election 

algorithm proposed in [97] considers weight-based single leader election and outlines a 

method to extend their algorithm to elect K leaders, but they do not provide details of 

the suggested method which is not as message efficient as ours.  

 46



Chapter 4                           Formation of Directory Community 
 

Another similar type of problem is supernode selection which involves the selection 

of a subset of the peers in a large scale, dynamic network to serve a distinguished role. 

The specially selected peers must be well-dispersed throughout the network, and must 

typically fulfill additional requirements such as load balance, resources, access, and 

fault tolerance. Supernode selection shows up in many peer-to-peer and networking 

applications. For example, in peer-to-peer file sharing systems, such as Kazaa [55] and 

Gnutella [41], protocols were developed for the designation of qualified supernodes 

(ultrapeers) to serve the ordinary peers for scalable content discovery. The supernode 

selection problem also shows up in the fields of sensor networks, ad-hoc wireless 

networks, and peer-based Grid computing. In ad-hoc wireless networks, connectivity 

under highly dynamic conditions is achieved by identifying a subset of the nodes to 

serve as bridging nodes. This subset is formed using a distributed dominating set 

protocol such as in [31][99][100] so that every node is within broadcast range of a 

bridging node. Within sensor networks, supernodes are selected for the purpose of data 

aggregation under the conditions that they are well-distributed among the sensors and 

also have sufficient remaining battery life [35]. However, leader election problem differs 

from supernode selection in that the former assumes all nodes vote (directly or indirectly) 

on the choice of each supernode. 

Compared with the existing works summarized above, our proposed algorithm has 

the following distinct features. Firstly, we do not assume a unique weight value for each 

node. In our design, nodes can have same or different weight values. Such an 

assumption is reasonable and necessary for electing nodes with some desirable property, 

e.g. memory size. Secondly, except one-hop neighbors, we do not assume a node knows 

other nodes in the network. This is inspired by the observation that an ad hoc network is 

highly dynamic and auto-configured, which makes it infeasible for a node to know all 

other nodes in a network. Thirdly, we consider dynamic topology with frequent network 

 47



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

partitions and node failures. And finally, we want to elect K leaders in a message 

efficient manner. With the above features, much more challenges arise in the design of 

leader election algorithm and existing solutions cannot work at all.  

Our proposed K-leader election algorithm is phase-based and uses a diffusing 

computation based approach. We first select some coordinator nodes with highest 

weight among their 2-hop neighbors. Those coordinator nodes then start diffusing 

computations to collaboratively collect the weight values of all the nodes in the 

environment to choose top K weighted nodes as K leaders. Our algorithm operates 

asynchronously in a mobile ad hoc network and can adapt to dynamic and frequent 

topological changes. We have also provided theoretical proof regarding the correctness 

of the proposed algorithm. 

We have carried out extensive simulations to evaluate the performance of our 

proposed algorithm. Our results show that our algorithm is scalable, fault-tolerant and 

incurs low message cost. We have also implemented our algorithm on a wireless testbed 

system. The experimental results obtained are found to be in congruence with the 

simulation results. 

4.2 Background 

Although leader election is a well-known research problem in distributed computing, 

very little work has been carried out for weight-based leader election. We will briefly 

outline the available weight less and weight-based election algorithms. 

Among the leader election algorithms which do not concern node weights they make 

some unrealistic assumptions. Several leader election algorithms [2][17][92] proposed 

for wired networks assume process crashes and link failures and are therefore close to 

our considerations. However, while [2] and [92] assumes process failures occur before 

 48



Chapter 4                           Formation of Directory Community 
 

election starts, election algorithm described in [17] requires that every message be 

reliably broadcast to all other nodes and that the network be message order-preserving 

i.e., a message m sent by a node i at time t is received by all nodes before another 

message m’ sent by node j at some instant t’>t. Such assumptions are very strong for 

dynamic and ad hoc mobile environments. For the algorithm proposed in [71], it is for 

infrastructured wireless networks where the election is in fact done by the wired part of 

the network using Garcia Molina’s bully algorithm [40]. 

Many leader election algorithms have been proposed for static networks [39][74]. 

These algorithms construct several spanning trees with a prospective leader at the root 

and recursively reduce the number of spanning trees to one. However, these algorithms 

work only for the static topology and hence cannot be used in a mobile setting. Similarly, 

there have been several algorithms [4][9][35][29][45][97] for clustering and hierarchy-

construction that can be adapted to perform leader election. But, these algorithms 

assume static networks and therefore cannot be used in, mobile settings. There are also 

some clustering algorithms [66][13] proposed for mobile networks. But these algorithms 

either assume that the nodes remain static during cluster head election [66], or they incur 

heavy cluster maintenance cost [13]. Moreover, they elect cluster heads only within 

single hop neighborhood. 

Leader election algorithms for ad hoc networks are proposed in [44][67][90] and [97]. 

Based on the routing protocol named TORA [72], Malpani et al developed an election 

algorithm [67]. The algorithms presented in [67] are not weight-based leader election. 

As stated earlier, we are interested in a weight-based K leader election algorithm, 

because of the applications discussed in Section 4.1. In the algorithms in [67], a node 

that detects a partition in the network gets elected as the leader and a partition can be 

detected by any “random” node. Also, no proof of correctness of their algorithms has 

been provided for the case of concurrent topological changes.  

 49



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

There are also some algorithms which proposed weight based leader election, but 

they have certain limitations. Although, weight-based leader election algorithms for 

mobile ad hoc networks have been proposed in [44], these algorithms are unrealistic as 

they require nodes to meet and exchange information in order to elect a leader and are 

not well-suited to the applications discussed earlier. Sundramoorthy et al [90] design a 

leader election algorithm to solve the dynamic directory election problem in service 

discovery environment. Several weight-based clustering algorithms [11][12][22] have 

been proposed for mobile networks, but they elect cluster heads only within single hop 

neighborhood. 

There is a weight-based single leader election algorithm [97] for mobile ad hoc 

networks which considers concurrent topological changes and adopts the well-known 

diffusing computation approach proposed by Dijkstra and Scholten [33]. The algorithm 

works by constructing a spanning tree of the network nodes, and then gradually 

shrinking the tree, by allowing every node to report their highest weight downstream 

node to their parent in the tree, so that, eventually, the root of the tree will know the 

highest weight node in the environment and select it as the leader. The authors have 

proposed an extension of their algorithm for electing K leaders, by which, nodes in each 

level select K highest weight nodes among their downstream nodes and report to the 

parent. They propose K as a fixed number, known a priori to all the nodes. This method 

may fail to guarantee always exactly K leaders for all the connected components, as 

discussed in Section 4.1. To resolve this issue, we, employ a ratio based approach for K 

leader election where K/N is a proper fraction, N being the total number of nodes in a 

connected network component. Moreover, in their algorithm, several nodes can start 

diffusing computation in response to the departure of a leader and hence, multiple 

diffusing computations can be in progress concurrently generating plenty of unnecessary 

overhead. Our algorithm stalls multiple diffusing computations by selecting a handful of 

 50



Chapter 4                           Formation of Directory Community 
 

coordinator nodes, which will be allowed to carry out diffusing computations. This 

approach proves to be economical in terms of message cost. In the following section we 

formally describe the problem with the related correctness properties. 

4.3 Problem Definition and Correctness Properties 

Based on our motivation and requirements discussed in Section 4.1, we formally 

state our problem definition for electing top K weighted leaders in mobile ad hoc 

networks: Given a network of mobile nodes each with some weight value, each 

connected component will eventually elect a set K of leaders in such a way, that the K 

leaders are the top K highest weight nodes in that component. 

The problem is required to satisfy the following three correctness properties: 

 Safety: There should never be more or less than K leaders in a connected 

component. 

 Liveness: Eventually a set of K leaders are elected for the current network 

component.  

 Agreement: Each elected node should be among the top K weighted nodes 

within the current network component. 

In the next section we shall describe our top-K weighted leader election algorithm in 

detail. 

4.4 The Top K-Leader Election Algorithm 

Our proposed algorithm adopts the diffusing computation [33] approach to perform 

K-leader election. The algorithm operates in three phases. In Phase I, one or more nodes 

 51



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

having highest weight among their 2-hop neighbors are voted as RED nodes. Other 

nodes are called WHITE nodes. Then, in Phase II, the RED nodes start the diffusing 

computation procedure asynchronously and build individual diffusion trees. The 

diffusing computation collects weight values of all the nodes in the network. To save 

message cost, a WHITE node is allowed to be included in the diffusion tree of only one 

RED node. Finally, in Phase III, all the RED nodes coordinate among themselves, and 

the results collected by different RED nodes are merged, in such a way, that, eventually 

the highest weight RED node receives the complete weight information of all the nodes 

in the network. It then chooses the top K highest weight nodes as leaders and informs 

every other node.  

In this section we shall describe our algorithm in detail. A description of the data 

structures and message types used precedes the formal description of our algorithm. 

After that we discuss about the additional measures adopted by us to cope with frequent 

network partitions and node failures. Finally, we propose a message-efficient version of 

our algorithm. 

4.4.1 Data Structures and Message Types 

While executing our algorithm, each node i maintains necessary information about its 

state in the data structures listed in Table 4-1 and may exchange messages listed in Table 

4-2. 

Table 4-1: Data Structures for K Leader Election Algorithm 

Variable Meaning 

id Identifier of node i 

wt Weight of node i 

color Color of node i = {WHITE, RED} 

 52



Chapter 4                           Formation of Directory Community 
 

visitor Identifier of RED node which visits node i 

nbr Set of immediate (1-hop) neighbors of node i 

pred Predecessor of i in the diffusion tree 

succ Successors of i in the diffusion tree 

in_electn A binary variable indicating if node i is currently in an election or not 

ldr A binary variable indicating if node i is leader or not 

ResultQ List of nodes visited by node i (during diffusion) 

RedQ List of RED nodes known by i (during diffusion) 

LDR List of K leaders of node i and their weights 

Table 4-2: Message Types for K Leader Election Algorithm 

Message Purpose 

ELECT(i,wti) For node i to exchange weight with its neighbors 

VOTE(i) For a node to vote its highest weight neighbor i 

SEARCH(i, v) For growing the diffusion tree initiated by RED node i. Where v is the node 
voted by the sender. 

ACK() For acknowledging SEARCH exchanged among a set of nodes visited by 
the same RED node 

NACK(i, wti) For acknowledging SEARCH exchanged among a set of nodes visited by 
different RED nodes. This message helps a node to fill in the RedQ 

ATTACH(i) For acknowledging SEARCH from a node and attaching as a child to that 
node – used in the optimized version of our algorithm 

SIGNAL(RedQ
i, ResultQi) 

For node i to send its result to its predecessor in response of the SEARCH 
message received 

DIRECT(i, wti) For RED node i to direct all but the highest weight RED node (j) in it’s 
RedQ to send their result to j. This message is only used by the RED nodes 
for exchanging the RED node information  

RESULT(P, 
ResultQi) 

For RED node i to send its ResultQ to it’s highest weight RED node. P is 
the set of RED nodes to which i sent DIRECT. This message is only used 
by the RED nodes to exchange results 

LEADER 
(LDR) 

For the highest weight RED node to announce the new set of K leaders to 
all other nodes 

 53



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

4.4.2 K Leader Election Algorithm 

As discussed in Section 4.3, our algorithm operates in three asynchronous phases. 

Different nodes can be in different phases at the same time without global knowledge 

about phases of other nodes. An election can be triggered at a node either when the node 

lost connection with one or more of its leaders or the weight of one or more leaders fall 

below some application defined threshold. 

A. Phase I  

When a node detects the absence of a leader, it bootstraps for a new election process 

by changing its color to WHITE and setting in_electn to true. It then sends an ELECT 

message containing its weight to all its 1-hop neighbors.  
 

/*******************************PHASE I*******************************/ 
//The code executed by each node, i 
(1) colori ← WHITE, predi ←NULL, visitori ←NULL,  

outi ← 0, RedQi ←NULL, ResultQi ← NULL; 
(2) send ELECT (i, wti) to all the neighbors in nbri; 
(3) wait until an ELECT message is received from each neighbor; 
(4) send VOTE(i) to j, where j is the the highest weight node in nbri; 
(5) wait until a VOTE received from each node in nbri or a SEARCH is received; 
(6) if (a VOTE received from each node in nbri) colori ←RED; 

Figure 4-1: Pseudo-code for PHASE I of K-leader Election Algorithm 

When a node receives an ELECT, it also undergoes bootstrapping. After a node 

receives ELECT messages from all its neighbors, it sends a VOTE to the highest weight 

neighbor and then enters Phase II. A node must send ELECT messages to all neighbors 

and receive ELECT from all the neighbors before deciding on whom to VOTE. If a node 

receives VOTE from all neighbors, it must be highest weight among its 2-hop neighbors. 

It then changes its color to RED and enters Phase II as RED node. All other nodes 

remain WHITE. Some nodes are highest weight among 1 hop neighbors, but not among 

 54



Chapter 4                           Formation of Directory Community 
 

2-hop neighbors. These nodes do not receive VOTE(s) from all the neighbors and will 

remain blocked in Phase I for the time being. At the end of Phase I there are one or more 

RED nodes in the network, but they do not know each other. And it is not necessary that 

all other WHITE nodes have less weight than the RED nodes. So, a second phase is 

necessary to collect weights of all the nodes in the network. 

B. Phase II 

In Phase II, each RED node starts a diffusing computation separately and unaware of 

the others. Each RED node then grows a diffusion tree as a root, by sending SEARCH 

to all of its 1-hop neighbors. Each node i, other than the root, designates the neighbor 

from which it first receives a SEARCH as its predecessor (pred) in the diffusion tree 

and the root as the visitor. Node i then forwards the SEARCH to all neighbors except 

the predecessor. Node i, does not, however, immediately return any acknowledgement to 

its predecessor and keep it blocked. 

So, when two or more diffusion trees of different RED reach their boundary nodes, 

they stop propagating any further and start shrinking towards the root. Eventually, the 

boundary nodes receive either ACK or NACK from all their neighbors and send 

SIGNAL to their predecessors with their own id and weight stored in ResultQ. Each 

node also forwards its RedQ via a SIGNAL message. The predecessors, in turn, send 

their SIGNAL to their own predecessors, and so on, until the root node receives all 

pending SIGNALs. After a node sends its SIGNAL, it enters Phase III. 

If a node is blocked in Phase I as it is highest among its 1- hop neighbors but not 2-

hop neighbors, it will enter Phase II after receiving the first SEARCH message and carry 

out the task of Phase II as described above. 
 

 55



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

/******************************PHASE II*******************************/ 
(7) if (colorl = RED) {//for node l 

predi ← 0; 
send SEARCH(l, v) to each node j in nbrl; } 

//This part is executed by each node i 
(8) when SEARCH(l, v) is received from node j  

if (visitori = NULL) {   // node i has not been visited by any RED node 
visitori ← l;  
predi ← j;  
insert i into the ResultQi; 
succi ←nbri \{predi};  
send SEARCH(l, v) to nbrk; 

} 
else {          // suppose that node i has been visited by RED node k, so, visitori =k 

if (k = l) send ACK( ) to j; 
else send NACK(k, wtk) to j;  

} 
when j receives the NACK(k, wtk) from i { 

put (k, wtk) into RedQj; 
send SIGNAL(RedQj, ResultQj) to predj; 

} 
(9) Node i waits until an ACK / NACK / SIGNAL received from each node j in succi { 

if (predi = 0) GoTo Phase III;    // this is the starting RED node 
else{ 

merge RedQj into RedQi;  
merge ResultQj into ResultQi; 
send SIGNAL(RedQi, ResultQi) to predi; 

} 
} 

Figure 4-2: Pseudo-code for PHASE II of K-leader Election Algorithm 

When a node i receives SIGNAL from its successors, it appends its own id and 

weight to the received ResultQ, and also appends its RedQi to the received RedQ before 

sending its own SIGNAL. In this way, the root node will eventually have the weight 

information of all the nodes in its diffusion tree and also the knowledge of the RED 

nodes in the adjacent diffusion trees as obtainable from the RedQ. Thus, at the end of 

Phase II, every RED node knows one or more other RED nodes and has visited a subset 

of nodes in the network. 

 56



Chapter 4                           Formation of Directory Community 
 

C. Phase III 

As mentioned earlier, when the diffusing computation is finished by a RED node r, it 

has collected information of one or more other RED nodes in its RedQr and information 

of a subset of network nodes in the ResultQr. In case, there is no other RED node in the 

RedQr of node r, except itself, node r will select the top K highest weight nodes from its 

ResultQr, as leaders, and terminate the election algorithm. Otherwise, Phase III will be 

triggered. In Phase III, RED nodes exchange their partial knowledge about the weight 

values of visited nodes and at the end, only the highest weight RED node receives the 

global knowledge about all the nodes in the environment. This RED node then selects 

the K highest weighted leaders.  

In Phase III, there are mainly two types of messages – DIRECT and RESULT 

exchanged between the RED nodes. When a RED node enters Phase III, it will check 

the weights of all nodes in its RedQ, and will clearly identify the lower weight and 

higher weight RED nodes other than itself. Among all higher weight RED nodes, all but 

the highest weight RED node are called intermediate-RED-nodes. For the sake of clarity, 

we name the highest weight RED node in the RedQ of RED node i, as RHi. 

A RED node i having no other RED node in its RedQi except itself and its RHi, sends 

a RESULT to RHi with its own ResultQi. Upon receiving a RESULT from node i, node j 

will insert ResultQi into ResultQj, and will delete i from RedQj.  

In case a RED node i have no lower weight RED node, but one or more intermediate 

RED nodes, node i sends its RHi information to each of the intermediate nodes in its 

RedQj, via a DIRECT message, asking them to directly send their RESULT to RHi, 

without waiting for RESULT from i. After that, node i will send its own RESULT to RHi. 

Upon receiving a DIRECT message from node i, node j will insert RHi into RedQj, 

unless it is already there, and will delete i from RedQj.  

 57



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

/******************************PHASE III******************************/ 
//This part is executed by each RED node i 
(10) if (wti =min(RedQi) ) { 

k← max(RedQi);  
P← RedQi\{k};  
send DIRECT(k, wtk) to each node in P; 
send RESULT(|P|, ResultQi) to k; 

} 
(11) else{ 
        P← RedQi\{k|wtk≥wti}; 

      wait until a RESULT or DIRECT received from each j in P; 
 for (a RESULT(Q, ResultQj) from j) { 

merge ResultQj into ResultQi;  
merge Q into RedQi; 
delete j from RedQi; 

} 
for (a DIRECT(k, wtk) from j)  

put k into RedQi; delete j from RedQi; 
if(|RedQi|>1){ 

m← max(RedQi); 
send DIRECT(m, wtm) to nodes in RedQi\{m}; 
send RESULT(ResultQi) to m; 

} 
 else{ 

sort the nodes in ResultQi based on their weights; 
LDR ← top K of ResultQi; 
send a LEADER(LDR) message to nodes in LDR; 

} 
} 

Figure 4-3: Pseudo-code for PHASE III of K-leader Election Algorithm 

Every RED node i, having one or more lower weight RED nodes, waits to receive 

RESULT or DIRECT message from all the lower weight nodes before sending its own 

RESULT and DIRECT messages. Then, node j will check whether it has any 

intermediate RED node. In case, it has intermediate RED nodes, it will send a DIRECT 

message to each of them, before sending its RESULT to RHi. 

After a RED node has received, all RESULT or DIRECT messages from all lower 

weight RED nodes, and has no other RED node in its RedQ except itself, it must be the 

 58



Chapter 4                           Formation of Directory Community 
 

highest weight RED node in the network component and is termed as elector. The 

elector then sorts its ResultQ and selects the top K nodes according to the weight values, 

as K leaders. It then sends a LEADER message containing the list of K leaders (LDR) to 

all the other RED nodes, who, in turn, will forward the message to their diffusion tree 

members. Any node receiving the LEADER message will set in_electn to false and will 

set ldr to true if it is one of the leaders. 

D. Handling Delayed Messages 

As the phases are asynchronous we need to introduce proper mechanisms to handle 

cases when a node receives a message from another node belonging to a different phase. 

We can associate different messages to respective phases in order to simplify our 

discussion. While ELECT and VOTE messages belong to Phase I, SEARCH, SIGNAL, 

ACK and NACK messages are exchanged in Phase II. Phase III consists of DIRECT, 

RESULT and LEADER messages. In case a node receives messages from lower phases, 

it simply ignores the message, e.g., when a node is in Phase II and it receives an ELECT 

message, it discards the ELECT. But when a node receives messages from higher phases, 

we design specific techniques to handle it. Below we describe our techniques for 

different phases. 

Phase I: Consider node i is in Phase I and receives SEARCH from one or more 

neighbors before receiving all ELECT from the neighbors. We have two ways to handle 

this. One way is, Node i will send ATTACH to that node which sent the SEARCH 

message. The other way is to wait for all ELECT messages until the last of its neighbors 

send SEARCH. There is a tradeoff between the two approaches. When the first way may 

reduce the total election time, the second way may result in nodes with less number of 

neighbors be chosen as RED nodes and thus the RED nodes are not as resource-efficient 

as they are required to be for carrying out the next phases.  

 59



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Similarly, consider node i in Phase I which has sent and received all ELECT and is 

waiting for VOTE, and in the mean time, it receives a SEARCH from its neighbor j, 

then it will check whom j voted. If j did not VOTE i, then i will enter Phase II. 

Phase II: Suppose a RED node i, which is still ongoing diffusing computation, 

receives a RESULT or DIRECT from another RED node in Phase III. Node i will handle 

such messages following the mechanisms described in Phase III, but will not send any 

RESULT or DIRECT until it terminates diffusing computation and enters Phase III. 

4.4.3 K-leader Election in Presence of Network Partition 

In this section we consider concurrent topological changes. Nodes can freely move 

across the terrain which may result into network partitions as well as partition merges. 

Partitions can take place either during election or after the election. 

A. Handling Network Partition 

Network partitions may occur during an ongoing election and after an election has 

been finished. We first discuss about handling partitions during an ongoing election 

process which may result in one of the following three cases:  

 Case I) Network Partition in Phase I: A node may need to wait forever to receive 

ELECT or VOTE messages from partitioned neighbors. We use a probe-reply 

mechanism to address this problem. Nodes waiting for neighbors to send messages 

can probe their neighbors. If no reply comes from a neighbor after probing three 

times, the neighbor is deleted from the neighbor list. 

 Case II) Network Partition in Phase II: A node may need to wait for ACK, NACK 

or SIGNAL from partitioned children. This case can have the following two sub-

cases as illustrated using Figure 4-4. 

 60



Chapter 4                           Formation of Directory Community 
 

 

 

Figure 4-4: Handling Network Partition: (a) Connected Diffusing Computation Tree, (b) 
Partition of Node n from Parent Node i, (c) Partition of Parent m of Node i 

(i) Partition with the children: In Figure 4-4 (a), node n is a child of node i and 

node i waits to receive SIGNAL from n. In Figure 4-4 (b), node n got 

partitioned and it can no longer send its SIGNAL to node i. If node i cannot 

detect this incident, it may keep on waiting forever. To resolve this issue, we 

again use the probe-reply mechanism between the parent and child nodes. 

Node i will start a timer for each neighbors after sending the SEARCH and 

wait for receiving ACK, NACK or SIGNAL. In case, the timer expires before 

the message arrives, node i will probe the neighbor node which failed to send 

SIGNAL. If three consecutive probing cannot fetch any reply, the node will be 

deleted from the set of successors (succ). 

(ii) Partition with the parent: As illustrated in Figure 4-4 (c) where node i receives 

SIGNAL from child nodes j, k, n, but cannot reach its own parent node m. In 

this case also, node i needs to detect that m has been partitioned and should 

terminate diffusing computation. 

 Case III) Network Partition in Phase III: RED nodes in a network component may 

get disconnected if a partition occurs. When one RED node does not receive a 

message from other RED nodes in its RedQ, it can probe them. Any RED node 

which does not reply to a probing is deleted from the RedQ. 

 61



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Now we discuss about handling partitions that may occur after an election is over. 

When K leaders have been successfully elected, they will send periodic heartbeat 

messages to all other nodes in the network. If a network partition occurs, one or more 

leaders may get disconnected. Any node detecting such incident will start a probing. If 

consecutive three probing fails without receiving any reply, a new election will 

commence. 

B. Handling Merging of Network Partitions  

Node mobility may cause network partitions to merge at times. When two partitions 

come closer, they form a link to inter-connect. We need to address following cases while 

handling partition merges: 

 Case I) If two components each with K leaders merge: In this case, meeting nodes 

of two adjacent partitions exchange their K leader information over the newly 

formed link. After they receive the set of 2*K leaders obtained from both the 

components, they sort them by weight, and select the top K leaders and then 

broadcast the information to other nodes. 

 Case II) If one or both the merging partitions are without K leaders and are 

undergoing election process: In this case, we choose to wait until one or both of 

the partitions finish their election and then they will exchange their leader 

information over the newly formed link as discussed for the Case I. 

4.4.4 Handling Node Failures 

We consider node failure by crashing, i.e. premature halting.  To handle failures, we 

use our probing mechanism to enable a node to detect the failure of its neighbors. We 

 62



Chapter 4                           Formation of Directory Community 
 

also consider that node failure can happen anytime - while an election is ongoing or 

finished. We address these cases separately:- 

 Case I) Node failure during leader election: node failure during an election can be 

caused by failure of either a RED or a WHITE node. First, we consider the failure 

of RED nodes. We adopt the backup approach to handle such failures. After a node 

is elected as a RED node in Phase I, it will select the highest weight node among 

its neighbors as a backup node, called a GREEN node. The GREEN node will take 

over the role of RED node in case the latter crashes. Such a mechanism is suitable 

and efficient considering that only few nodes are RED nodes and they are more 

reliable than other nodes. Now, let us discuss the failure of a WHITE node. In 

Phase I and II, a node will detect a crashed WHITE neighbor using probe-reply 

and delete it from its neighbor list. In Phase III, only RED nodes need to send and 

receive messages. Therefore, WHITE node failures during Phase III will not affect 

the algorithm performance unless the network gets partitioned. 

 Case II) Node failure after K leader election: After the election is over, all the 

nodes have equal priority and there is no specific node color. This case can be 

handled in the same way as the partitions are handled (described at the end of 

Section 4.4.3). 

4.4.5 Handling Node Recoveries 

Our algorithm handles node recovery and new node joining in the similar way. When 

a failed node recovers or a new node joins the network, they first initialize the data 

structures described in Table 4-1. After that the recovered node is without a leader and it 

will initiate a new election. 

 63



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Following our algorithm, after the K-leaders are elected, all nodes in the network will 

be designated either as leaders or as followers. Every follower node in a connected 

network component will have the same set of K leaders and every follower will know all 

the K leaders. Each leader will send periodic heartbeat messages to the followers. When 

any one of the leaders fails, one or more nodes can detect the failure and they will begin 

a new election starting from Phase I. 

4.4.6 Optimization in Message Cost 

In order to reduce the number of messages, we use a message optimization policy 

(Election-Opt) which aims to reduce the number of ACK and NACK messages. With the 

increase in node density, every node may have many neighbors and they need to send 

ACK/NACK for all the SEARCH received from the neighbors. In order to reduce the 

number of ACK/NACK, a node only acknowledges (by sending an ATTACH) the first 

SEARCH received, and can ignore the rest. To illustrate the benefit of this method we 

use the following example: 

 

Figure 4-5: Optimized Diffusing Computation 

As shown in Figure 4-5, upon receiving a SEARCH from node i, node j and k each 

sends an ATTACH requesting i to accept them as children. Node i starts a timer after 

sending the SEARCH and accepts all nodes as its children which sends an ATTACH 

before the timer expires. Nodes j and k also propagate SEARCH received from i to each 

other. Since, both of them already have node i as their parent, none sends ACK/NACK 

 64



Chapter 4                           Formation of Directory Community 
 

to the other. Eventually, node j and k sends their SIGNAL to node i. In this way, nodes j 

and k just send two messages (one ATTACH + one SIGNAL) each and therefore the 

total number of messages reduce from six to four. 

In the next section we shall prove the correctness of our proposed algorithm using the 

correctness properties mentioned in Section 4.3.1. 

4.5 Correctness of the Algorithm 

The proof of correctness of our K-leader election algorithm requires establishing the 

safety, liveness and agreement properties as described in Section 4.3.1. 

Lemma 1. After Phase I finishes, there is at least one RED node for any connected 

component C (V, E). 

Proof. We assume that every node has a unique id and some weight value. As 

described in Section 4.3.2, we ensure total ordering among all the nodes, using <id, wt> 

tuple, so that one node can be chosen as highest weight among all others.  

Initially, every node sends ELECT containing its <node id, node weight>, which will 

be received by all the nodes in its transmission range as the links are reliable. When a 

node receives an ELECT from all its immediate neighbors, it finds out the highest 

weight neighbor and sends a VOTE to that. 

Now for a node to become a RED node, it must receive a VOTE from each of its 

immediate neighbors. So, we have to establish that there will definitely be at least one 

such node which receives VOTE(s) from all its neighbors. As stated previously, there is 

at least one node in the environment which is highest weight among others. The highest 

weight node must receive VOTE(s) from all its neighbors. So, at least one node in a 

 65



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

connected component will receive VOTE from all its neighbors. That node will be 

chosen as the RED node. So, the lemma holds. 

In case where node mobility may create partitions, we manage the neighbor list using 

a probe-reply method. So, eventually partitioned nodes will be detected and deleted 

from the neighbor list and only nodes in the current network component are considered 

for Lemma 1 as discussed above. Thus, the Lemma 1 holds for dynamic topological 

changes.           

Lemma 2. The diffusing computation started by a RED node in Phase II eventually 

terminates. 

Proof. The termination condition for diffusing computation is that the computation 

terminates when all processes are idle and all channels are empty.  

In our algorithm, after a node is voted as a RED node, it starts diffusing computation 

and grows a tree of visited nodes rooted at it. We can have one or more RED nodes in 

the environment and all of them will start diffusing computation at different times. In 

our algorithm, any WHITE node will participate in a single diffusing computation. So, if 

a WHITE node has joined diffusing computation tree of one RED node, it will not 

accept another request from a different RED node.  

We propose that, a RED node starts diffusing computation by sending a SEARCH to 

all its immediate neighbors. When a WHITE node receives a SEARCH directly from the 

root through the incoming channel, it forwards the SEARCH through all outgoing links. 

This phase of the diffusing computation is about the “growing” of a diffusion tree. A 

SEARCH may be delivered in the following three cases: 

 Case I) An unvisited WHITE node n receives a SEARCH directly from a root or via 

some other WHITE node: n sets the node from which it receives SEARCH as its 

 66



Chapter 4                           Formation of Directory Community 
 

parent and forwards the message to all the successors. Node n does not send any 

immediate reply to the parent for the time being and keeps it blocked.  

 Case II) An already visited WHITE node n receives a SEARCH from the root of its 

tree via some other WHITE node:  n acknowledges the SEARCH immediately by 

sending an ACK message. As the ACK will eventually reach the receiver so the 

sender will not remain blocked forever. 

 Case III) An already visited WHITE node receives a SEARCH from a RED node, 

which is NOT its root, either directly, or via some other WHITE node: n 

acknowledges the SEARCH immediately by sending a NACK. As the NACK will 

eventually reach the receiver so the sender will not remain blocked forever. 

For Case I, the parent of node of n remains blocked until it receives either an ACK, 

or a NACK or a SIGNAL from every node to which it has sent a SEARCH. This is 

called the “shrinking” phase of the diffusion computation tree. When a node receives 

replies corresponding to all the SEARCH sent, it sends a SIGNAL to the parent node. In 

this way, every blocked node ultimately unblocks after receiving one or more message it 

is waiting for. At the end, the initiating RED node eventually receives replies from all its 

immediate neighbors in finite time, which ensures that no node in the current diffusion 

computation tree remains blocked forever. Thus, all the nodes can be considered idle as 

all of them finished diffusing computation and the channels are also idle as there are no 

messages being passed through them. This is the termination condition for diffusing 

computation as specified before. So Lemma 2 holds.  

In case where node mobility may create partitions, we can detect the partitions in 

finite time and update the neighbor list by deleting partitioned nodes. Thus, no node will 

wait forever to receive messages from partitioned nodes. So eventually the RED node 

 67



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

will receive SIGNAL from all its neighbors and terminate the diffusing computation in 

finite time. Thus, the Lemma 2 also holds for networks with dynamic changes.     

Lemma 3. After Phase III finishes, the highest weight RED node in any connected 

component C (V, E) eventually receives information regarding all the nodes in the 

component. 

Proof. After the Phase II ends, one or more RED nodes present in the network have 

partial information regarding the nodes visited by the diffusing computation initiated by 

it. There can be two cases,  

 Case I) There is only one RED node in the connected network component – if a 

RED node r finds out that only its own id appears in the RedQr then r must be the 

highest weight RED node in the network. So, the RED node chooses top K 

weighted nodes as leaders and terminates the algorithm. For this case, there will be 

no need to carry out Phase III. 

 Case II) There is more than one RED node in the connected network component – 

if a RED node r finds out that its RedQr contains nodes other than itself, then the 

network must have more than one RED node. Let us denote the highest weight 

RED node in the RedQr of node r as RHr. We can have the following sub-cases for 

this case: 

(i) r has the lowest weight in RedQr: r sends DIRECT messages to all nodes in 

RedQr, except RHr, and sends RESULT to RHr. 

(ii) r has the intermediate weight in RedQr: r waits until DIRECT or RESULT 

from all lower weight nodes in RedQr  arrive and then sends DIRECT to the 

higher weight nodes in RedQr before sending RESULT to RHr. 

 68



Chapter 4                           Formation of Directory Community 
 

(iii) r has the highest weight in RedQr (r = RHr): r waits for DIRECT or RESULT 

from lower weight nodes in RedQr and updates the RedQr whenever a 

message is received. After all the messages are received, then r checks the 

RedQr. If r ≠ RHr, then r carries out step B. Otherwise, r terminates the 

algorithm as the highest weight RED node in the network and the Lemma 3 

holds.  

In presence of partitions, RED nodes may not receive message from other RED 

nodes which have been partitioned. If a RED node waits on a partitioned RED node, the 

routing algorithm will check the reachability of the node for which it waits. If the node 

is unreachable, it simply deletes the RED node from its RedQ. In this way, the algorithm 

can terminate also in presence of partitions or node failures. So, the lemma also holds 

for a network with dynamic changes.          

Theorem 1 (Liveness): The election algorithm eventually terminates electing a set of 

K leaders for the current network component. 

Proof. Following lemmas 1, 2 and 3 consecutively, the highest weight RED node i 

for any connected component C (V, E) eventually receives information regarding all the 

nodes in the component and terminates in finite time. After i has the complete 

knowledge regarding all the nodes in the network, it sorts the nodes using the total order 

and selects the top K highest weight nodes as a definite percentage of the total number 

of nodes in the network. So, liveness property holds for the algorithm.    

Theorem 2 (Safety): There should never be more or less than K leaders in a 

connected component. 

Proof. Immediately after the election algorithm terminates, the highest weight RED 

node selects the K highest weight nodes in the environment as leaders. So initially there 

 69



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

are exactly K leaders, and not more or less than K, which ensures that the safety 

property is satisfied.  

But as we consider a dynamic topology, with node crash and migration, one or more 

leaders may become unavailable at some point in time which results in less than K 

leaders for a network component. When a node fails to receive periodic heartbeat 

messages from one or more leaders, it will start probing them. In case probing yields no 

result, the node will start a new election to elect a new set of K leaders. So, after a leader 

becomes unavailable and before a re-election triggers, there may be a brief spell when 

the network has less than K leaders. But eventually the network will elect exactly K 

number of leaders in finite time.  

Again, for the case of partition merges (discussed in Section 4.4.3 B) if both the 

merging partitions have K leaders, the newly formed network component may have 

more or less than K nodes. We adjust the number of leaders after the merging 

components collaborate to select the top K leaders from the existing set of leaders. This 

operation will finish in finite time and eventually the new network component will have 

exactly K leaders as required. So, eventually, the safety property holds for the algorithm.

             

Theorem 3 (Agreement): Each elected leader should be among the top K weighted 

nodes within the current network component. 

Proof. After the highest weight RED node has collected the weight information of all 

the nodes in its network component, it will elect the top K weighted nodes as leaders. 

Thus, the elected leaders will definitely be the top K nodes by weight and the agreement 

condition is satisfied. 

 70



Chapter 4                           Formation of Directory Community 
 

But in presence of node mobility and consequent changes in network topology along 

with node crash, there may arise many dynamic situations. When two network 

components merge together, they will bring two different sets of K leaders which as a 

whole may not be among the K highest weight nodes in the newly combined network 

component. The meeting nodes then exchange the leader information of their respective 

components and then choose the top K weighted nodes which are highest among all the 

nodes in the current component. Thus, eventually it is ensured that the elected leaders 

are among the top K weighted nodes in the current network component. Hence the 

agreement condition is met.         

In this section we have successfully proved the correctness properties of our 

algorithm. In the next section we shall discuss in depth the experimental evaluation 

results of our proposed top K weighted leader election algorithm. 

4.6 Performance Evaluation 

We have carried out extensive simulations to evaluate the performance of our 

algorithm. Both the normal and message efficient versions of our algorithm have been 

simulated. Moreover, to show the advantage of our algorithm, we have also extended the 

single leader election algorithm proposed in [97] to a K-leader election algorithm and 

have compared their results with ours. We follow the simulation settings from [97] for 

the ease of comparison.  

4.6.1 Simulation Setup and Metrics 

The simulation system consists of two modules: the network and the leader election 

algorithm. The main parameters of the simulations are shown in Table 4-3. We consider 

100 nodes moving at 20m/s with a 20% node failure rate as default. Unless otherwise 

 71



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

specified, these default values will be used for our experiment. The network nodes are 

randomly scattered in a square territory. Total number of nodes is varied to examine the 

effect of system scale on the performance. To make the performance results in different 

scenarios comparable, we also scale the territory size according to the total number of 

nodes. For message routing, we have implemented a simple protocol based on the “least 

hops” policy, which is adopted in many classical routing protocols in ad hoc networks. A 

routing table is proactively maintained at each node.  

Table 4-3: Simulation Parameters for K-leader Election Algorithm 

Parameters Values 
Number of nodes, (N) 50 100 150 200 
Territory scale (m2) 700 1000 1200 1400
K/n 25% 
Mean Link Delay (ms) 5 
Max Link Delay (ms) 100 
Transmission radius (m) 250 
Routing-protocol     Least hops 
Node failure rate (FR) (in %) 10, 20, 30, 40, 50 
Mobility Model Random Waypoint 
Max. node speed (Vmax) (m/s) 10, 20, 30 
Min. node speed (Vmin) (m/s) 5 
Pause time (ms) 10 
Probing time (seconds) 1 
Probing interval (seconds) 2 

The leader election algorithms are implemented as applications running on top of the 

network. The weight values of the nodes are assigned randomly. In case of node failures, 

the faulty nodes are randomly selected and a faulty node crashes in a randomly chosen 

time. The failure detection part is simulated based on the heartbeat-like approach. 

In the simulations, we measure the performance of all the algorithms using the 

following metrics: 

 72



Chapter 4                           Formation of Directory Community 
 

Fraction of Time without K-Leaders (FT) is the fraction of simulation time that a 

node is involved in an election (as indicated by in_electn = true). This metric is a 

measure of the time a node lacks K leaders. The lower the value of FT is, the higher is 

the efficiency of the algorithm to ensure availability of K leaders to a node. 

Election-Rate (ER) is defined as the average number of elections that a node 

participates in per unit time (i.e. the average rate at which node i goes from in_electni = 

false to in_electni = true). Higher the election rate, higher is the time without K leaders, 

because a node participates in a new election only when it lacks K leaders. If our 

algorithm can ensure that a node retains K leaders for longer duration, then the election 

rate will decrease and the message overhead will also decrease which can contribute 

towards saving more resources for a node following the objective of our research.  

Election-Time (ET) is defined as the mean time elapsed between the instant at 

which a node begins participating in an election process (corresponds to in_electni = 

true in our algorithm) and the instant at which it knows the identity of its K leaders 

(in_electni = false). It is a measure of how efficient the algorithm is. Less election time 

can ensure longer time a node has K leaders. 

Message-Overhead (MO) is defined as the average number of messages sent by a 

node per election. Message overhead for a node is calculated dividing total number of 

messages sent by a node over the entire simulation period with the total number of 

elections the node participates in. The less is the message overhead, the more is the 

saving in resource for a mobile node. 

4.6.2 Simulation Results and Analysis 

Below we present our simulation results with analysis. We have simulated our 

algorithm, labeled as “Election-Main” and the optimized version, labeled as “Election-

 73



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Opt”. We also have simulated the K-leader election version of algorithm presented in 

[97], labeled as “Vasu”. We run each simulation for 100 simulation minutes and each 

point is obtained by averaging over 10 different runs. We first report the general 

performance of our algorithm measured with respect to the four metrics and then we 

shall discuss the effect of mobility and node failure rates on the performance, all in 

separate sub sections. 

A. General Performance of K-leader Election Algorithm 

In this sub-section, we discuss the performance of “Election-Main”, “Election-Opt” 

and “Vasu” under the default values of the simulation parameters. 

Performance of FT: In Figure 4-6 (a), we plot the fraction of time a node is without 

K leaders (FT) with respect to N for “Election-Main”, “Election-Opt” and “Vasu”. We 

observe that FT for a node increases with increase in N. We choose K as one quarter of 

the total number of nodes in a connected component. So, for a single connected 

component there will be more leaders with the increase in N. With more leaders, there is 

a higher chance that the leaders will fail or get partitioned. This will raise the need of 

higher election rate (Figure 4-6 (b)) and renders the nodes without K leaders for longer 

time. Figure 4-6 (a) shows that “Election-Opt” ensures higher leader availability than 

“Vasu” and “Election-Main”. “Vasu” induces multiple concurrent diffusing 

computations by different nodes when they detect failure or departure of a leader. High 

node density and a high node failure rate only increases the number of diffusing 

computations, which delays the election of new set of leaders ultimately increasing the 

FT. “Election-Main”, on the other hand, decreases multiple diffusing computations by 

picking up few RED nodes to carry out the same, so, it can finish K leader elections 

quicker than “Vasu”. But still, in “Election-Main” nodes havelower leader availability as 

each node needs to wait for all its neighbors to send ACK, NACK or SIGNAL messages. 

 74



Chapter 4                           Formation of Directory Community 
 

Failure of one or more neighbors will necessitate probing the neighbor which increases 

the election time as well as the fraction of time without K leaders. “Election-Opt” 

decreases multiple ACK/NACK messages and hence the election finishes faster than 

“Election-Main” resulting in higher time of availability for K-leaders. 
 

0.2

0.3

0.4

0.5

0.6

50 100 150 200
No. of Nodes (N)

Fr
ac

. o
f T

im
e 

W
/O

 K
 L

ea
de

rs
 (F

T) Election-Main@20m/s
Election-Opt@20m/s
Vasu@20m/s

0.1

0.12

0.14

0.16

0.18

0.2

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
R

at
e 

(E
R

) (
pe

r m
in

)

Election-Main@20m/s
Election-Opt@20m/s
Vasu@20m/s

(a) FT vs. N (b) ER vs. N 

180

200

220

240

260

280

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(E
T)

 (m
ill

i-s
ec

)

Election-Main@20m/s
Election-Opt@20m/s
Vasu@20m/s

4

9

14

19

50 100 150 200
No. of Nodes (N)

M
es

sa
ge

 O
ve

rh
ea

d 
(M

O
)

Election-Main@20m/s
Election-Opt@20m/s
Vasu@20m/s

(c) ET vs. N (d) MO vs. N 

Figure 4-6: General Performance of K leader Election 

To further bolster the accuracy of our simulation results, we have calculated the 

confidence of the FT metric. Sample means for “Election-Main”, “Election-Opt” and 

“Vasu” for N=100 are 0.415, 0.26 and 0.47, respectively. Our measurement finds out 

that FT of each of the simulated protocols has a 95% confidence level with confidence 

intervals of (0.3990 to 0.4210), (0.2513 to 0.269919) and (0.4633 to 0.4802), 

respectively. 

 75



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Performance of ER: In the Figure 4-6 (b), we show the mean election rate (ER) of a 

node with respect to increasing N, for “Election-Main”, “Election-Opt” and “Vasu”. As 

explained for Figure 4-6 (a), election rate increases with increasing number of nodes (N). 

In Figure 4-6 (b), election rate of all three algorithms increase with increasing N. This is 

because with more nodes at a high speed, the network topology changes frequently 

giving rise to partition with leaders. If all the K leaders are not available, a new election 

triggers.  

Performance of ET: Figure 4-6 (c) shows the required election time of K leaders for 

“Election-Main”, “Election-Opt” and “Vasu”. We can observe that the election time 

increases with increase in N for all the algorithms. This is because elections can be 

expected to be longer when there are more nodes. “Election-Main” has highest election 

time at N=200, because, the higher number of ACK and NACK messages exchanged 

increases the election duration. We also calculate the confidence on the simulated values 

of ET and we found that the sample mean for N=100 for “Election-Main”, “Election-

Opt” and “Vasu” are 78.35326, 76.64 and 262.047, respectively. ET of each of the 

simulated protocols has a 95% confidence level with confidence intervals of (77.579 to 

78.984), (75.379 to 77.176) and (260.772 to 264.892), respectively. 

Performance of MO: Figure 4-6 (d) shows the message overhead of each node for 

“Election-Main”, “Election-Opt” and “Vasu”. We can see that “Election-Opt” is far 

more message efficient than “Election-Main” and “Vasu”. This is attributed to the 

multiple concurrent diffusing computations which start on the detection of a leader 

failure in “Vasu”. And for “Election-Main” the high message overhead is due to many 

ACK/NACK messages. “Election-Opt”, restricts the number of diffusing computations. 

It also discards multiple ACK/NACK messages by using ATTACH which saves more 

node resources.  

 76



Chapter 4                           Formation of Directory Community 
 

In general, from the above results we can realize that all the four metrics, FT, ER, ET 

and MO increases with the increase in the total number of nodes taking part in 

simulations. Comparing our algorithm with “Vasu”, our algorithm consistently performs 

better than “Vasu”.  

B. Effect of Node Mobility on Our Algorithm 

In this sub-section we study the effect of varied node speeds on the performance of 

our algorithm. We vary node speeds from 10 m/s to 30 m/s and during our simulation. 

Effect of Mobility on FT: Figure 4-7 (a) and (b) compares “Election-Opt” with 

“Vasu” with node speeds 10m/s and 30m/s respectively. 
 

0.2

0.3

0.4

0.5

50 100 150 200
No. of Nodes (N)

Fr
ac

. o
f T

im
e 

W
/O

 K
 le

ad
er

s 
(F

T) Election-Opt@10m/s
Vasu@10m/s

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200
No. of Nodes (N)

Fr
ac

. o
f T

im
e 

W
/O

 K
 le

ad
er

s 
(F

T)

Election-Opt@30m/s

Vasu@30m/s

(a) FT vs. N (Vmax = 10m/s) (b) FT vs. N (Vmax = 30m/s) 

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200
No. of Nodes (N)

Fr
ac

. o
f T

im
e 

W
/O

 K
 le

ad
er

s 
(F

T)

Election-Opt@10m/s
Election-Opt@20m/s
Election-Opt@30m/s

0.1

0.2

0.3

0.4

0.5

0.6

50 100 150 200
No. of Nodes (N)

Fr
ac

. o
f T

im
e 

W
/O

 K
 le

ad
er

s 
(F

T)

Vasu@10m/s
Vasu@20m/s
Vasu@30m/s

(c) FT vs. N for “Election-Opt” (d) FT vs. N for “Vasu” 

Figure 4-7: Effect of Mobility on Fraction of Time without K-Leaders (FT) 

 77



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

We can observe in Figure 4-7 (a) that FT increases with N at Vmax = 10m/s. This 

observation is similar to that observed in Figure 4-6 (a) and can be explained similarly. 

An interesting fact is revealed by Figure 4-7 (b) where FT decreases with increase in N 

for both the curves plotted. This can be explained in the light of high node speed. With 

node speed as high as 30m/s, nodes get disconnected from their leaders, but they get 

reconnected within the probing period which results in higher time of availability of K 

leaders for nodes and lower election rates (Figure 4-8 (b)). We also show the variation of 

FT with N for different values of Vmax for “Election-Opt” (Figure 4-7 (c)) and “Vasu” 

(Figure 4-7 (d)), separately. For both the cases, FT increases at lower speeds, but 

decreases at higher speed. 
 

0.1

0.12

0.14

0.16

0.18

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
R

at
e 

(E
R

) (
pe

r m
in

)

Election-Opt@10m/s

Vasu@10m/s

0.1

0.13

0.16

0.19

0.22

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
R

at
e 

(E
R

) (
pe

r m
in

)

Election-Opt@30m/s
Vasu@30m/s

(a) ER vs. N (Vmax = 10m/s) (b) ER vs. N (Vmax = 30m/s) 

0.1

0.13

0.16

0.19

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
R

at
e 

(E
R

) (
pe

r m
in

)

Election-Opt@10m/s
Election-Opt@20m/s
Election-Opt@30m/s

0.1

0.13

0.16

0.19

0.22

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
R

at
e 

(E
R

) (
pe

r m
in

)

Vasu@10m/s
Vasu@20m/s
Vasu@30m/s

(c) ER vs. N for “Election-Opt” (d) ER vs. N for “Vasu” 

Figure 4-8: Effect of Mobility on Election Rate (ER) 

 78



Chapter 4                           Formation of Directory Community 
 

Effect of Mobility on ER: Figure 4-8 (a) and (b) compares “Election-Opt” with 

“Vasu” at node speeds 10m/s and 30m/s respectively. We can observe in Figure 4-8 (a) 

that ER increases with N at Vmax = 10m/s. This observation can be explained similarly as 

done for Figure 4-6 (b) that ER increases with node speed as leader nodes frequently get 

disconnected from others necessitating a new election. An interesting fact shown in 

Figure 4-8 (b) is that ER decreases with increase in N for both the algorithms. This can 

be explained in the light of high node speed. With node speed as high as 30m/s, nodes 

get disconnected from their leaders, but they get reconnected within the probing period 

without restarting a new election which lowers the ER. We also show the variation of 

ER with N for different values of Vmax for “Election-Opt” (Figure 4-8 (c)) and “Vasu” 

(Figure 4-8 (d)), separately. For both the cases, ER increases at lower speeds, but 

decreases at higher speed. 

Effect of Mobility on ET: Figure 4-9 (a) and (b) depicts the change of ET with N by 

varying node speeds from 10m/s to 30m/s, for “Election-Opt” and “Vasu”. Observation 

from Figure 4-9 (a) is similar to that in Figure 4-6 (c), that the ET increases with N. This 

is because, with more nodes in a dynamic environment, the topology frequently changes 

which requires probing some nodes which increases the overall election time. ET, on the 

other hand, decreases with any further increase in node speed (Figure 4-9 (b)). At higher 

node speed, such as, Vmax = 30m/s, election rate decreases significantly as nodes get 

disconnected from their leaders but remains so for short duration. This decreases the 

probing time and ultimately the election time gets decreased. 

We also show the variation of ET with N for different values of Vmax for “Election-

Opt” (Figure 4-9 (c)) and “Vasu” (Figure 4-9 (d)), separately. For both the cases, ET 

increases with increasing node speed. At higher speeds, link breaks occur more 

frequently which increases both the routing overhead (in terms of number of control 

 79



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

packets) as well as message delays. But the ET decreases at higher speed as the nodes 

remain disconnected only for very short durations. Thus, fresh election can be avoided. 
 

150

175

200

225

250

275

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(E
T)

 (m
ill

i-s
ec

)

Election-Opt@10m/s

Vasu@10m/s
240

250

260

270

280

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(E
T)

 (m
ill

i-s
ec

)

Election-Opt@30m/s

Vasu@30m/s

(a) ET vs. N (Vmax = 10m/s) (b) ET vs. N (Vmax = 30m/s) 

160

185

210

235

260

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(E
T)

 (m
ill

i s
ec

)

Election-Opt@10m/s
Election-Opt@20m/s
Election-Opt@30m/s

250

260

270

280

50 100 150 200
No. of Nodes (N)

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(E
T)

 (m
ill

i s
ec

)

Vasu@10m/s
Vasu@20m/s
Vasu@30m/s

(c) ET vs. N for “Election-Opt” (d) ET vs. N for “Vasu” 

Figure 4-9: Effect of Mobility on Election Time (ET) 

Effect of Mobility on MO: Figure 4-10 (a) and (b) depicts the change of MO with N 

by varying node speeds from 10m/s to 30m/s, for “Election-Opt” and “Vasu”. As the 

election rate increases with N, message overhead also increases at lower speed (Figure 

4-10 (a)) and similarly it decreases with further increase in node speed (Figure 4-10 (b)), 

as the election rate decreases. But the variation of MO for “Election-Opt” is 

significantly lower than that of “Vasu”. For “Vasu”, with the increase in ER, the number 

of nodes carrying out diffusing computation concurrently also increases which generates 

many messages. Our algorithm restricts MO by allowing only the RED nodes to carry 

 80



Chapter 4                           Formation of Directory Community 
 

out diffusing computations. The ELECT messages generated in Phase I of our algorithm 

are also controlled in such a way. When a node starts Phase I and sends ELECT message 

to its neighbors, the receiver of ELECT message will not start a new election even if it 

detected the departure of a leader. This gives us an edge over “Vasu” in controlling MO 

and conserving energy. 
 

4

7

10

13

16

50 100 150 200
No. of Nodes (N)

M
es

sa
ge

 O
ve

rh
ea

d 
(M

O
)

Election-Opt@10m/s

Vasu@10m/s

4

7

10

13

16

50 100 150 200
No. of Nodes (N)

M
es

sa
ge

 O
ve

rh
ea

d 
(M

O
)

Election-Opt@30m/s

Vasu@30m/s

(a) MO vs. N (Vmax = 10m/s) (b) MO vs. N (Vmax = 30m/s) 

4

5

6

7

50 100 150 200
No. of Nodes (N)

M
es

sa
ge

 O
ve

rh
ea

d 
(M

O
)

Election-Opt@10m/s
Election-Opt@20m/s
Election-Opt@30m/s

10

12

14

16

18

20

50 100 150 200
No. of Nodes (N)

M
es

sa
ge

 O
ve

rh
ea

d 
(M

O
)

Vasu@10m/s
Vasu@20m/s
Vasu@30m/s

(c) MO vs. N for Election-Opt” (d) MO vs. N for “Vasu” 

Figure 4-10: Effect of Mobility on Message Overhead (MO) 

C. Effect of Node Failure on Our Algorithm 

In this sub-section, we report the results of varying node failure (FR) rates on the 

performance of our algorithm. We fail a percentage, p, of the total number of nodes (N), 

participating in the election process in such a way that throughout the execution time, at 

 81



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

least as many as (p*N/100) nodes are always in the list of failed nodes. We release 

nodes in the head of this list if more than the expected number of nodes has been failed. 

The released nodes are considered as recovered nodes which takes part in K leader 

election as described in Section 4.4.5. Below we describe our results by varying node 

failure rates (FR) from 10% to 50%. All the following experiments are executed at 

default values, i.e., with 100 nodes moving at a speed of 20m/s, the transmission radius 

being 250 m. The results have been reported in Figure 4-11 (a) to (d). 
 

0.2

0.35

0.5

0.65

0.8

10% 20% 30% 40% 50%
Node Failure Rate (Fr)

Fr
ac

. o
f T

im
e 

W
/O

 K
 L

ea
de

r (
FT

)

Election-Opt@20m/s

Vasu@20m/s
0.1

0.15

0.2

0.25

10% 20% 30% 40% 50%
Node Failure Rate (Fr)

M
ea

n 
El

ec
tin

 R
at

e 
(E

R
) (

pe
r m

in
) Election-Opt@20m/s

Vasu@20m/s

(a) FR vs. FT (N = 100) (b) FR vs. ER (N = 100) 

200

225

250

275

300

10% 20% 30% 40% 50%
Node Failure Rate (Fr)

M
ea

n 
El

ec
tio

n 
Ti

m
e 

(E
T)

 (m
ill

i s
ec

)

Election-Opt@20m/s

Vasu@20m/s
4

8

12

16

20

10% 20% 30% 40% 50%
Node Failure Rate (Fr)

M
es

sa
ge

 O
ve

rh
ea

d 
(M

O
)

Election-Opt@20m/s

Vasu@20m/s

(c) FR vs. ET (N = 100) (d) FR vs. MO (N = 100) 

Figure 4-11: Effect of Node Failure on K-Leader Election 

Effect of FR on FT: Figure 4-11 (a) depicts the change of FT with varying node 

failure rates for “Election-Opt” and “Vasu”. Initially FT increases with FR and then 

 82



Chapter 4                           Formation of Directory Community 
 

decreases with further increase in FR. This can be explained by the fact that, at very high 

node failure rates, leader nodes frequently fail which results in low availability of 

leaders. We can observe that, even at high failure rates, “Election-Opt” can achieve 

higher leader availability compared to “Vasu”. 

Effect of FR on ER: Figure 4-11 (b) depicts the change of ER with varying node 

failure rates for “Election-Opt” and “Vasu”. The election rate increases initially and 

decreases with further increase in FR. This can be explained similarly as for Figure 4-11 

(a). With increasing FR, elections are higher as leaders get unavailable frequently, but 

with very high FR, the network is mostly partitioned and leader availability increases 

within each partition which decreases the election rate. 

Effect of FR on ET: Figure 4-11 (c) plots the change of ET with varying node failure 

rates for “Election-Opt” and “Vasu”. The election time initially increases with FR, as 

nodes get frequently partitioned which requires probing to detect failures. With further 

increase in FR, however, network gets divided in small partitions with few nodes in each 

partition. This decreases the election time as the election needs to be carried out only 

within small set of participating nodes. 

Effect of FR on MO: Figure 4-11 (d) shows the change of MO with varying node 

failure rates for “Election-Opt” and “Vasu”. Following the trend of election rate change 

with respect to FR, message overhead also increases with increase in ER and decreases 

with decreasing ER.  

We can argue from the above results that, our algorithm performs better than “Vasu” 

consistently and significantly. 

 83



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

4.7 Prototype Implementation 

To further demonstrate the feasibility of our algorithm in real applications, we 

implement it in a testbed. We compared the performance of “Election-Opt” and “Vasu” 

on a sensor network testbed with 40 MicaZ [30] motes distributed over a single floor of 

the Man Wai building in the Hong Kong Polytechnic University. 

4.7.1 Testbed Architecture 

The testbed, as shown in Figure 4-12 (c), contains MicaZ [30] sensor nodes (Figure 

4-12 (a)) running TinyOS [64] and a MIB600 gateway (Figure 4-12 (b)). 
 

 

(a) MicaZ Node (b) MIB600 Gateway (c) Part of Our Testbed 

Figure 4-12: Prototype Implementation of Top K Leader Election Algorithm 

In order to make our system more flexible, we have implemented a two-layer-

architecture. On the bottom, we have a topology layer which emulates physical and 

routing layer together and ensures end-to-end routing among network nodes. Above that 

layer we have the application layer which implements the weight-based K-leader 

election algorithm. The election algorithm gets the neighborhood information from the 

topology layer. We assign random numbers to different sensor nodes as weights. K is 

chosen as ⌈N/4⌉, where N is the total number of nodes in the network. The nodes are 

considered static as it is difficult to make them mobile in a testbed. We have also 

 84



Chapter 4                           Formation of Directory Community 
 

implemented node failure. We arbitrarily switch off some sensor nodes during the 

algorithm execution and consider this as node failure. We consider 10% node failure rate. 

4.7.2 Implementation 

In order to implement our algorithm efficiently, we have adopted an event-driven 

model. We have a set of states for each node and a set of events. Based on the events we 

divide the protocol into multiple states. Node states are changed by triggering of an 

event. We have mainly three events – send message, receive message and timeout. Node 

states considered for “Election-Opt” are – INIT, WAIT-for-ELECT, RECV-all-ELECT, 

SEND-VOTE, PHASE-II, RECV-SEARCH, SEND-ATTACH, FWD-SEARCH, WAIT-for-

SIGNAL, PHASE-III, and FINISH. Similarly, node states for “Vasu” are - INIT, RECV-

SEARCH, SEND-ATTACH, FWD-SEARCH, WAIT-for-SIGNAL, RCVD-All-SIGNAL, 

and FINISH.  

We measure the performance of our algorithm using two metrics – total number of 

messages exchanged for one election (Mtot) and total time for a single election (ET). We 

test the system with 10, 20, 30 and 40 nodes. We generate random topologies. The 

experiment is run for 10 times each with different topologies for a fixed number of 

nodes, and the average values are reported. 

In addition to the testbed system itself, we also have a special node employed to 

monitor the performance of the system. Initially, when the execution starts, each node 

undergoes a bootstrapping phase to initialize the variables and chooses a random weight 

value. After that, the monitoring node broadcasts the topology information to all the 

nodes in the network. When a node receives the topology, it populates its neighbor list 

and starts the K leader election at randomly chosen time. When the execution finishes 

 85



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

with electing K leaders, the monitoring node sends the performance results to the 

computer. 

4.7.3 Result Analysis 

We can see from the Figure 4-13 (a) that the total number of messages for “Election-

Opt” and “Vasu” increases with the increase in N. The increase in messages for “Vasu” 

is considerably higher than our algorithm which is due to the multiple diffusing 

computations proposed in their algorithm. Similar trend is shown in Figure 4-13 (b) 

where the total election times (ET) for both the algorithms have been plotted. “Vasu” 

has a very high value for ET with the increase in N pertaining to the many diffusing 

computation which needs to be finished before the K leaders get elected. 
 

0

50

100

150

200

10 20 30 40
No. of Nodes

To
ta

l N
o.

 o
f M

es
sa

ge
s Election-Opt

Vasu

0

20000

40000

60000

80000

100000

10 20 30 40
No. of Nodes

El
ec

tio
n 

Ti
m

e 
(in

 m
ill

i-s
ec

) Election-Opt

Vasu

(a) Mtot vs. N (b) ET vs. N 

0

50

100

150

200

10 20 30 40
No. of Nodes

To
ta

l N
o.

 o
f M

es
sa

ge
s

Election-Opt

Vasu

0

20000

40000

60000

80000

100000

10 20 30 40
No. of Nodes

El
ec

tio
n 

Ti
m

e 
(in

 m
ill

i-s
ec

)

Election-Opt

Vasu

(c) Mtot vs. N (FR = 10%) (d) ET vs. N (FR = 10%) 

Figure 4-13: Performance Results of Prototype Implementation 

 86



Chapter 4                           Formation of Directory Community 
 

In Figure 4-13 (c) and Figure 4-13 (d) we show the performance results of “Election-

Opt” and “Vasu” in presence of node failures. We have implemented our mechanisms of 

handling node failures and the results indicate that our algorithm still performs better 

than “Vasu” in real scenarios where node failures may occur. But the total number of 

messages and the election time increases on the face of node failures. Mtot increases 

because of the multiple probing messages used and the ET is increasing as the probing 

time adds up to the normal election time. 

The prototype implementation results clearly show the ability of our algorithm to be 

implemented in practical scenarios consisting of multiple resource-constrained devices.  

4.8 Summary 

In this chapter, we describe in depth about the formation and maintenance of 

directory community structure – as a basis for reliable service discovery in dynamic 

pervasive environments. Due to the similarity of characteristics between pervasive 

environments and mobile ad hoc networks, we have modeled the underlying network of 

a pervasive computing system as a MANET. The directory community consists of K 

nodes with highest available resources in the network of MANET nodes. We modeled 

the directory community formation problem as a K leader election problem in MANET 

based on available node resources. To solve this problem, we propose a ratio-based top 

K weighted leader election algorithm for MANET considering frequent and dynamic 

topological changes where node weight represents resources available at a mobile node, 

e.g. processing capability, battery power, etc.  

Our algorithm aims to elect the top K weighted leader nodes where K is a ratio of the 

leaders to the total nodes in a connected network component. A diffusing computation 

approach is adopted to collect the weight information for electing K leaders. To reduce 

 87



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

message cost, we first locally choose some higher weight nodes among 2-hop neighbors, 

as RED nodes, to act as coordinators. Then, each RED node initiates a diffusing 

computation procedure to collect the weight information of other nodes collaboratively. 

Finally, the information collected by different RED nodes is merged together to elect the 

final leaders. Such an approach is useful as we can minimize the number of diffusing 

computations and hence can save many messages. Since, we address leader election for 

resource constrained nodes, a message-efficient approach will save more node resources. 

We also design mechanisms to handle node failures and network partitions. The 

simulation results and testbed experiments show that, benefiting from the use of RED 

nodes, our algorithm can elect weighted top K leaders with much less message cost than 

other algorithms. 

 
 

 88



 

 

 

 

 

Chapter 5  

Quorum-based Reliable Service 

Discovery 

This chapter describes our reliable service discovery mechanism using a quorum-

based fault-tolerant service discovery protocol (SDP) for MANET developed over the 

directory community framework. Section 5.1 presents a brief overview of the issues 

which need to be addressed in order to develop a reliable service discovery protocol for 

mobile ad hoc environment. Section 5.2 introduces some preliminary operations 

required for our protocol. The service discovery protocol has been described in detail in 

Sections 5.3 to 5.4 along with the results of in depth performance analysis. Finally, 

Section 5.6 concludes this chapter by summarizing our contributions. 

5.1 Overview 

Service discovery in MANET has remained an interesting research problem for years. 

Existing service discovery protocols in MANET address several challenging issues, 

such as, building proper infrastructure to reduce discovery delay and boost discovery 

success, and providing support for enhancing scalability [85]. But the service 

availability issue has been largely ignored.  

 



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Service unavailability can arise due to the failure of service provider or directory 

nodes. While service provider failure is easy to address, directory failures are rather 

complicated to handle as it renders all services registered with the failed directory 

unavailable. As already mentioned in Chapter 3, we want to develop a reliable service 

discovery protocol using the directory community framework, and we have introduced 

the design issues. Directory-based service discovery protocols for MANET are more 

robust than the directory-less ones, though the former incurs high maintenance overhead. 

Our proposed service discovery protocol [79]  is fault tolerant and message-efficient 

where multiple directory nodes work collaboratively to enhance system robustness by 

increasing service availability in the system. After the directory community has been 

successfully formed, the elected directory nodes form quorums among themselves. In 

order to ensure network-wide service availability with minimal replication, each 

directory replicates all the services registered with it, with only its quorum members. 

Following the quorum intersection property, we can guarantee that if a service matching 

user request is available, the user can certainly find the service by forwarding a request 

only to its quorum members. This reduces service discovery cost. The message overhead 

is further checked by dividing the network into one or more tree-structured domains, 

thereby eliminating loops, and also by restricting broadcast and flooding. We also 

consider directory failure, where, a failed directory is one which either crashes or 

becomes unfit of hosting services due to dissipation of resources. We handle directory 

failure by timely replacing a failed directory with a suitable node carefully picked up 

using an incremental election approach. Our protocol is also able to cope with dynamic 

topology changes caused by frequent network partitions and node failures. 

However, there are some works similar to our approach. As already mentioned in 

Chapter 2, Kim et al. [57] have proposed a volunteer node based service discovery 

protocol for MANET where volunteers are relatively stable and resource rich nodes and 

 90



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

form an overlay structure. The volunteers in fact act as directory nodes and they are 

mobile in nature. Due to the close similarity of our protocol with this approach, we have 

decided to compare the performance of our protocol with this one. This approach, 

however, has a couple of limitations which makes it more costly than our protocol, as 

we shall see later. Firstly, the overlay may develop loops and cycles, which increases 

service discovery cost. Secondly, the volunteer advertisement broadcast can 

significantly increase the traffic. There is also a quorum-based service matching policy 

[6] which is somehow related to our solution but has many differences. The proposed 

approach is for wireless mesh networks. Mesh nodes are static and are not constrained 

by energy, so they do not face the usual problems of a dynamic MANET environment. 

The authors also did not consider fault tolerance issues and did not evaluate their 

approach by simulations or testbed experiments. 

We have carried out extensive simulations to evaluate the performance of our 

proposed protocol, and we present our results with in-depth analysis. Our results show 

that our protocol is scalable and fault-tolerant. Also, it can guarantee service availability 

with low message overhead. Moreover, our protocol can handle dynamic and concurrent 

topological changes. We have also implemented our protocol on a wireless testbed 

system. The experimental results obtained are found to be in congruence with the 

simulation results. The testbed experiments prove that our protocol can be useful in 

practical scenarios comprising an ad hoc composition of multiple low resource devices. 

5.2 Protocol Preliminaries 

As mentioned previously, our service discovery protocol works by using the directory 

community framework. Here we briefly recapitulate the directory community formation 

approach. This approach also divides the entire network into multiple tree-structured 

domains. We utilize these domains in our service discovery protocol. 

 91



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

5.2.1 Directory Community Formation and Domain Construction 

Directory community is created by electing top K weighted directory nodes where 

weight is any resource-related attribute of a node. The problem is formulated as a top K 

leader election [78] problem in MANET. The algorithm operates in three phases and 

uses diffusing computations [33]. 
 

 

Figure 5-1: Service Discovery Architecture 

In Phase I, one or more nodes having the highest weight among their 2-hop neighbors 

are voted as RED nodes. Other nodes are called WHITE nodes. Then, in Phase II, the 

RED nodes start the diffusing computation procedure asynchronously in order to collect 

weight values of other nodes in the network. Each RED node builds a diffusion tree 

(Figure 5-1) and at the end of Phase II, each RED node has weight information of the 

nodes in its diffusion tree and knows about other neighboring RED nodes with whom its 

own diffusing computation tree meets. So, after Phase II, the entire network is divided 

into several tree structured domains, termed as domain trees, with a RED node as the 

root of each domain tree. As RED node knows other nearby RED nodes, they act as 

gateways to the neighboring domains. Finally, in Phase III, all the RED nodes 

coordinate among themselves, and the results collected by different RED nodes are 

merged, in such a way, that, eventually the highest weight RED node receives the 

 92



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

complete weight information of all the nodes in the network. It then chooses the top K 

highest weight nodes as directories and informs every other node. Each directory then 

executes a quorum generation algorithm described below and constructs its own quorum.  

5.2.2 Construction of Directory Quorum 

After the directory nodes have been elected, they execute a quorum generation 

algorithm to form directory quorums. In our protocol, the quorum is constructed 

following the method proposed by Lin et al. [65]. We choose their method because of 

several advantages. Firstly, the quorums are symmetric, i.e. each node is included in the 

same number of quorums and all the quorums have the same number of nodes. This will 

ensure even load distribution among the directory nodes. Secondly, this method allows 

flexibility in quorum size with respect to the number of directories. Finally, the method 

allows generation of multiple quorums for each node (based on multiple generating sets) 

to enhance the availability of the quorum system. Figure 5-2 presents the pseudo code of 

the quorum generation algorithm given by [65]. 
 

/***************************************************************/ 
//The code executed by each node, i 
(1) elect set of directories K → {0,1,.....,K-1}; 
//This code executed by each directory node 
(2) go to Q_Gen(K) to generate directory quorums; 
/*************************Q_Gen Algorithm************************/ 
(2A) Var: c, τ, m, w, i, K 
(2B) c ← 

⎥⎥
⎤

⎢⎢
⎡
m
K , τ ← 

⎥⎥
⎤

⎢⎢
⎡ +

m
K
2

1 , 1 ≤ m ≤ K; 

(2C) Quorum generation set   
Qg = {0, 1, ...., m-1, w1, w2,....., wτ-1} ........................ (i) 

where, m -1 ≤ w1 ≤ 2m – 1 , 0 < wi +1 - wi ≤ m for all 1≤ i ≤ τ-2, and wτ-1 ≥ (K-1)/2 

Figure 5-2: Pseudo-code for the Construction of Directory Quorums 

From equation (i) in the Q_Gen Algorithm in Figure 5-2, there can be more than one 

quorum generation set for a given m. Lin et al. [65] has proved that the size of a quorum 

 93



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

can be smallest when m equals
2

1+K . Let us consider an example with 25 directory 

nodes {K0, K1,…, K24}, so that, K = 25, m = 4, c = 7 and τ = 4. Some of the possible 

quorum generation sets formed with the given values are: {{0, 1, 2, 3, 4, 8, 12}, {0, 1, 2, 

3, 5, 9, 12}, {0, 1, 2, 3, 6, 9, 12}, {0, 1, 2, 3, 6, 9, 13},…}. We construct quorums using 

the generation set {0, 1, 2, 3, 5, 9, 12} as shown in Figure 5-3.  

 

Figure 5-3: An Example Directory Quorum 

One can see that any two quorums have a nonempty intersection. One can also use a 

union of multiple generating sets as a single quorum generation set. This approach 

increases the availability of the quorum system. If the number of directories K = n2 for 

some n, the size of quorums generated by the above described quorum construction 

method is ≈ (3n)/2, for m = n. This quorum size is comparatively smaller than many 

other available schemes and that is why we chose this method for quorum generation 

over the others. For every directory node we generate a quorum of the smallest size. 

5.3 The Proposed Service Discovery Protocol 

Our service discovery protocol works using the backbone of domain trees and 

ensures fault tolerance by replicating services in the directory quorums. Key to the 

efficient functioning of our protocol is the proper and timely maintenance of the domain 

trees and the directory quorums in the face of sheer dynamicity posed by the mobile ad 

 94



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

hoc networks. In this section we shall describe our protocol in detail. The first part 

concerns our policies for the maintenance of service discovery infrastructure. It includes, 

techniques to maintain directory quorum and domain tree structures and mechanisms to 

handle frequent network partitions and partition merging. Following that we shall 

elaborate the methods for service registration and service information replication and 

finally we describe the mechanisms for service request and reply. A description of the 

data structures and message types used precedes the formal description of our protocol. 

5.3.1 Data Structures and Message Types 

While executing our protocol, each node i maintains necessary information about its 

state in the data structures listed in Table 5-1 and may exchange types of messages listed 

in Table 5-2.  

Table 5-1: Data Structures for Reliable Service Discovery Protocol 

Variable Meaning 

idi Identifier of node i 

wti Weight of node i 

wt_senti Binary variable indicating whether node i has informed its weight to the 
elector or not 

root Identifier of domain root node 

dir Binary variable indicating whether node i is a directory or not 

predi Predecessor of i in the diffusion tree 

succi Successors of i in the diffusion tree 

elector Identifier of the highest weight RED node in the network 

new_wt Set of new nodes joining the network and their weights maintained by the root

Dir_List Set of domain directories known to the domain root 

Node_List Set of all nodes in the network and their weights maintained by the elector 

LDR Set of K directories and their weights maintained by the elector 

Q_Mem Set of quorum members of a directory  

Pub_Host Nearest directory of a service provider with which it registers its service 

LookUp_Host Nearest directory of a service requestor from which it requests a service 

 95



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Table 5-2: Message Types for Reliable Service Discovery Protocol 

 Message Purpose 

ADVdd (root, pred,  
Dir_List, new_wt) 

Domain directory advertisement by domain root to its successors 
and the elector. Parameter new_wt is optional. Only when a new 
node joins the network, its weight is sent to elector. 

Dom_Dir_HB(wti) Heart-beat message by a domain directory to the domain root 
upon receiving an ADVdd. The weight value is sent to check 
whether the directory node is still capable of hosting services. 

ATTACH_REQ A disconnected or newly joined node broadcasts a request to join 
a domain tree 

REP A node replies upon receiving an ATTACH_REQ 

ATTACH(i) Node i requests to attach to the node which first sends a REP 

ACK(i,wti) A newly joined node sends its weight to the domain root, upon 
receiving a ADVdd

In
fr

as
tru

ct
ur

e 
M

ai
nt

en
an

ce
 M

es
sa

ge
s 

LEADER (LDR) For the elector to announce the new set of K leaders to all other 
nodes 

REG (S) A service provider registers its service to its Pub_Host 

Q_REG(S) Pub_Host of a service provider registers the service with each 
node in its Q_Mem 

Q_ACK(S) Each node in the set Q_Mem of a Pub_Host acknowledges 
successful registration of a service to the Pub_Host 

REG_Done(S) A Pub_Host acknowledges successful service registration to the 
service provider 

REQ(S) A service requestor requests for a service to its LookUp_Host 

Q_REQ(S) LookUp_Host forwards the service request to each node in its 
Q_Mem Se

rv
ic

e 
D

is
co

ve
ry

 M
es

sa
ge

s 

Service_Reply(S) Reply containing a matching service 

5.3.2 Maintenance of Service Discovery Infrastructure  

After the preliminary operations have been completed (Section 5.2), every domain 

root periodically collects information about the directories present in its domain and 

sends a common directory advertisement message (ADVdd) to other nodes which 

contains list of all the domain directories. To avoid broadcast, directory advertisements 

are distributed using the domain tree. A node receiving ADVdd caches it and finds the 

nearest directory node. 

 96



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

Maintenance of service discovery infrastructure is crucial for our service discovery 

protocol. Below we discuss separately the procedures of maintaining domain tree 

structures and the directory quorums in presence of node mobility and arbitrary 

topological changes. We also discuss our mechanisms to cope with frequent network 

partitions and partition merging. 

A. Domain Tree Maintenance 

To maintain the domain tree structure we need to handle the following four cases that 

may happen mainly due to the node mobility:  

 Case I) A Node Leaves Current Domain: When a node leaves the domain the 

domain tree gets disconnected and the successors of the departing node have no 

parent. To avoid this condition, it is important to detect such a scenario and 

handle it, in order to keep the domain tree connected. In our protocol, every node 

periodically checks its connectivity with its parent (pred) in the tree. If node i 

loses connection with parent j, node i broadcasts an ATTACH_REQ to all nodes 

within its wireless transmission range. Any node n receiving an ATTACH_REQ 

replies with a REP and starts a timer. When node i receives the first REP, it sends 

an ATTACH to the sender and ignores the other REPs. When node n receives an 

ATTACH from node i, it adds i in the successor set and forwards the next 

incoming ADVdd to it along with other successors. If no REP is received by node 

i after sending an ATTACH_REQ then possibly a partition has occurred which 

can be handled as described in Section 5.3.2 C. 

 Case II) A Node Joins A New Domain: A node can join a domain either as a node 

which freshly joins the network or as a node which migrates from another 

domain. In either case, the node assumes that it has no parent and it follows the 

 97



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

steps mentioned in Case I in order to join a domain tree. 

 Case III) A Directory Node Leaves Current Domain: The domain roots 

periodically track the domain directory nodes to ensure their presence. When a 

directory node receives an ADVdd message, it sends a Dom_Dir_HB to the 

domain root. When the domain root receives Dom_Dir_HB messages it updates 

the list of available domain directories in order to reflect joining of new 

directories to the domain and leaving of old directories from the domain. In case, 

the weight of a directory falls below some threshold, the domain root informs the 

elector to replace it considering failed. Also the domain tree is updated to keep it 

connected when a directory node leaves the current domain. When a directory 

node joins a different domain following Case II it will send the heart-beat 

message to the new domain root upon receiving the ADVdd. 
 

/*****************************************************/
// After domain directories have finished Quorum Generation 
(3) send Dom_Dir_HB to domain root r; 
(4) while node r receives Dom_Dir_HB from directory d;  

Dir_List ← d; 
(5) when all domain directories have sent Dom_Dir_HB { 

send ADVdd to each succi∈ r and to elector; 
start the timer for next ADVdd; 
} 

(6) while node i receives ADVdd from pred { 
if (dir = TRUE) { 

send Dom_Dir_HB to root r ; 
send ADVdd to each succj∈ i ; 

} 
else { 

if(wt_sent = = FALSE) { //newly joined node 
send ACK(i, wti) to r; 
wt_sent =  TRUE; 

} 
Pub_Host = LookUp_Host ← nearest (Dir_List); 
send ADVdd to each succj∈ i ; 

} 
   } 

 98



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

(7) while node r receives ACK(i, wti) from i 
new_wt ← (i, wti); 

(8) send new_wt to the elector with the next ADVdd ; 
/*****************************************************/ 
//This part is executed by elector e (incremental directory election) 
(9) while node e receives ADVdd from domain root r { 

tmp ← Dir_Listr;  //Var: tmp => temporary directory list 
Node_List ← new_wtr; 

} 
(10) if all roots have sent ADVdd { 

match tmp with LDR; 
if they match with original top-K 

do nothing; 
else { 

elect new nodes from Node_List for the failed ones; 
send LEADER to each LDRl∈ ; 

} 
} 

/*****************************************************/ 
//Domain Tree Maintenance 
//This part is periodically executed by each node i  
(11) check connectivity with pred; 
(12) if connected 

do nothing; 
else { 

pred = NULL; 
broadcast ATTACH_Req; 

} 
(13) if node j receives an ATTACH_Req  

send REP and start a timer T; 
(14) if node i receives REP from j { //for the ATTACH_Req it sent 

if (pred = = NULL) { 
send ATTACH to j; 
pred = j; 

} 
else  

do nothing; 
(15) while node j receives ATTACH from i { 

if (timer T not expired) { 
succj ← i; 
stop timer; 

} 
} 

Figure 5-4: Pseudo-code for the Maintenance of Service Discovery Infrastructure 

 Case IV) A Domain Root Leaves Current Domain: This problem is tackled by 

 99



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

using a backup node for the domain root. Every root node selects a 

comparatively high resource node as the backup root. The backup root node will 

monitor the root node and in case the latter fails or migrates out of the current 

domain, the backup node can take over as the root node. If the domain root joins 

a different domain, it follows Case II. 

B. Directory Quorum Maintenance 

Maintaining the directory quorum structure is critical to satisfy the quorum 

intersection property which assumes that quorum nodes are stable and always available. 

Unless a failed quorum node is replaced readily, service lookup may fail. In order to 

ensure higher availability of quorum members, we propose an incremental directory 

election approach. 

After a newly joined node attaches to some domain (refer to Case II of Section 5.3.2 

A.), it receives a ADVdd from the domain root, and sends an ACK(id, wt) message to the 

root informing its id and weight value. Domain roots periodically update the elector 

about the newly joined nodes, so that, the elector always maintains a list of all the nodes 

currently available in the network. Once a node has sent its weight value to the elector, it 

does not need to do such operation any more even if it migrates across domains. But, a 

node must update its weight to the domain root if its weight changes from the initial 

value. In case, the existing directories become unavailable, the elector chooses from 

other suitable nodes to replace for unavailable directories and sends LEADER messages 

to each directories informing about the changes. After a new directory takes charge for 

an old directory, it will contact its quorum members and register services maintained by 

them. It will also send heart beat to its current domain root, so that the domain root 

includes it as a domain directory in the next ADVdd message. 

 100



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

C. Handling Network Partitions 

Network partitions may occur at anytime during the service discovery operation. This 

can divide the network into two or more components with more or less than K 

directories in individual components. This will upset the quorum structure and hence the 

service discovery will be affected. 

In order to cope with this frequent variation in number of directory nodes in a 

network component we propose to choose K as a ratio of the number of directories to 

the total number of nodes in the current network component. Thus, the value of K is 

adjusted when a network gets partitioned or when two or more network components 

merge together.  

In case a partition occurs, it is important to detect the partition as quickly as possible. 

Our protocol can detect partition as described earlier in the Case I of Section 5.3.2 A. 

The detecting node then informs its nearest directory D, which tries to contact the 

elector. If the elector or its backup node exists in the same component it collects the 

node weights by traversing through the domain tree and adjusts the K directories by 

adding new directories or removing some directories depending on the number of nodes 

in the network component. The directory nodes then re-adjust the quorums accordingly 

to achieve maximum reliability. If no elector exists in the partition, the directory node D 

traverses the domain tree to collect different node weights. The highest weight directory 

then takes charge as the elector. Service discovery operation during the quorum 

reorganization process may be affected little bit but our experimentation shows that the 

effect is very little and the approach is scalable. 

 

 

 101



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

D. Handling Merging of Network Partitions 

Node mobility may cause network partitions to merge at times. The number of K 

directories can be different for the two merging partitions depending on the total number 

of nodes present in them. When two partitions come closer, they form a link to inter-

connect. The meeting nodes of two adjacent partitions exchange their elector 

information over the newly formed link. The two elector nodes can then communicate 

among themselves and the highest weight elector will be selected as the unique elector. 

The elector then chooses the top K weighted nodes, from the sets of directory nodes of 

the two merging components, as directories for the newly formed network component. 

The new directory nodes then require reforming the quorums to carry on with fault-

tolerant service discovery. Experiments show that very few directory nodes are changed 

when partitions merge causing minimal quorum reformation overhead. 

5.3.3 Service Registration 

Service providers register only with functional information. Detailed service context 

(Figure 5-5) is forwarded to the user on request.  
 

 

Figure 5-5: Service Context Information 

When a service provider (P) wants to register a service (S), he registers with the 

nearest directory, called the publishing host (PH). Similarly, for a user looking for a 

 102



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

service, the nearest directory with which he may register is called the lookup host (LH). 

The distance between two nodes can be obtained from the underlying routing protocol.  

After receiving the registration request from P, the PH registers the service locally 

and forwards the request to its quorum members. After the service has been registered at 

all the quorum members, PH receives an acknowledgement from each of them and then 

it sends a REG_Done message back to P informing P about the other directory nodes to 

which service S has been registered. 
 

/***************************************************/ 
// When a service provider P wants to register a service S 
(16) P sends REG (S) to Pub_Host PH; 
(17) while PH receives REG (S) from P { 

register (S); 
send Q_REG (S) to each MemQq _∈  

} 
(18) while a Q_Mem of PH receives Q_REG (S) from PH { 

register (S); 
send Q_ACK (S) to PH; 

} 
(19) while PH receives Q_ACK (S) from all MemQq _∈  { 

send REG_Done(S) to P; 
} 

/***************************************************/ 
// When a service requestor R wants to receive a service S 
(20) R sends REQ (S) to LookUp_Host LH; 
(21) while LH receives REQ (S) from R { 

if (match (S) = = TRUE) //try to match S with registry 
send Service_Reply(S) to R; 

send Q_REQ (S) to each MemQq _∈  

} 
(22) while a Q_Mem of LH receives Q_REQ (S) from LH{ 

if (match (S) = = TRUE) //try to match S with registry 
send Service_Reply(S) to R; 

} 

Figure 5-6: Pseudo Code for Service Registration and Service Discovery 

 103



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

The service registration is updated using a lease-based approach. Each registration is 

associated with a lease. The service provider P needs to renew its lease with the PH 

before timeout. Failing to do so, due to unavailability of either P or PH, will prompt the 

PH to delete the service information and to inform its quorum members to follow suit. 

In case of any change made to S, P informs the PH about the new version number. 

PH makes the change and updates its quorum members in order to maintain consistency. 

If the PH is unavailable, P can try to contact other quorum members of PH - nearest 

to it - with whom it can renew the lease. This ensures the availability of S even if the PH 

fails. If S is updated in the mean time, to a higher version, its replicas will not be 

updated accordingly. So, if a user discovers S, he will ask P for the copy with the highest 

version number. 

When PH fails, P registers with a new PH, either from its cache, or sends out a 

directory request, to the neighboring domain, in case the cache is empty. 

5.3.4 Service Request/Reply 

When a user (U) is interested to discover a particular service S, he sends a discovery 

request to its lookup host (LH). After LH receives a user request, it checks its own 

registration information for a matching service and if available, it replies the user with 

the identity of the service provider, P. LH also forwards the discovery request to its 

quorum members which can directly reply to U if a matching service is found.  

After U receives a reply, it checks the functional information and contacts the 

provider to receive complete service context information. Unused service replies are 

cached for possible future needs.  
 

 104



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

 

Figure 5-7: Quorum-based Service Matching Process 

To illustrate the quorum based service discovery approach (Figure 5-7), we use the 

following example. Let us consider that, the service provider P has registered the service 

S with its publishing host, say K11, (Figure 5-3) which has replicated the service to its 

quorum (Q11), i.e., {K12, K13, K14, K17, K20, K23}. Now when U sends a service discovery 

request to its lookup host, say K23, it then forwards the request to its quorum Q23, i.e. 

{K23, K24, K0, K1, K4, K7, K10}. Since, Q11∩Q23 = {K23}, K23 can match U’s discovery 

request with P’s advertisement. 

Following the quorum intersection property, we can guarantee that, using our service 

discovery approach, if a service requested by a user is ever published and available, it 

must be matched through the user’s lookup host or its quorum members. 

5.4 Performance Evaluation 

We have carried out extensive simulations to evaluate the performance of our 

proposed protocol. To prove the efficiency of our protocol, we have chosen to compare 

with the volunteer node based service discovery protocol presented in [57]. We 

generally follow the simulation settings from [57] for easy comparison. The time to live 

(TTL) values for the volunteer advertisement (TTLmax_a) and the service request (TTLr) 

messages are fixed at 3 and 2, respectively to obtain the best performance of their 

 105



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

protocol. Moreover, for the optimal performance, every client belongs to a maximum of 

2 volunteer regions and each volunteer advertises themselves once every simulation 

minute. Rest of the simulation parameters are same for both the protocols and are listed 

in Table 5-3. 

Table 5-3: Simulation Parameters for Reliable Service Discovery Protocol 

Parameters Values 

Number of nodes, (N) 50 100 150 200 

Territory scale (m2) 700 1000 1200 1400 

Territory scale (m2)  
[Simulation with variable node density] 

1500 

Number of service types (ns) 20 40 60 80 

K/n 25% 

Mean Link Delay (ms) 5 

Max Link Delay (ms) 100 

Transmission radius (m) 250 

Transmission radius (m) 
[Simulation with variable node density] 

100 

Routing-protocol     Least hops 

Node failure rate (FR) (in %) 10, 20, 30, 40, 50 

Mobility Model Random Waypoint 

Max. node speed (Vmax) (in m/s) 5, 10, 20 

Min. node speed (Vmin) (in m/s) 5 

Pause time (ms) 10 

Parent Probing time (per minute) 1 

Directory advertisement (per minute) 1 

RED node to elector beacon (per minute) 1 

Service request (per minute) 2 

 106



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

5.4.1 Simulation Setup and Metrics 

The simulation system consists of two modules: the network backbone consisting of 

domain trees and directory quorums and the service discovery protocol. We consider 

100 nodes moving at 10m/s with a 20% node failure rate as default. Unless otherwise 

specified, these default values will be used for our experiments. The network nodes are 

randomly scattered in a square territory. We have carried out simulations to test the 

effects of scalability and node density. The effect of scalability is studied by varying 

total number of nodes while scaling the territory size accordingly, so as to keep the node 

density constant. On the other hand, the effect of node density is studied by varying the 

total number of nodes while keeping the territory size constant. For message routing, we 

have implemented a simple protocol based on the “least hops” policy, which is adopted 

in many classical routing protocols in ad hoc networks. A routing table is proactively 

maintained at each node.  

The directory election and quorum formation are carried out prior to the service 

discovery operations. Later, directory nodes are incrementally added to replace failed 

directories. The weight values of the nodes are assigned randomly. In case of node 

failures, the faulty nodes are randomly selected and a faulty node crashes in a randomly 

chosen time. The failure detection part is simulated based on the heartbeat-like approach.  

We assume that, every node is a service provider that provides a service of a certain 

type. A service type is assigned to each node in a round robin fashion. If there are 10 

service types in a network with 100 nodes, 10 nodes provide the same service. Therefore, 

with high ns, service density (ds = N/ns average number of service providers providing a 

same type of service) is low and vice versa. 

 107



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

In the simulations, we measure the performance of both the protocols using the 

following metrics:  

NM (Number of Messages): The total number of messages exchanged for service 

discovery. This includes the messages required for directory election, quorum formation 

and backbone maintenance. Here, a “message” refers to an “end-to-end” message, i.e. a 

message from the source to the destination node. Such a message may be forwarded by 

several intermediate nodes in the network level. 

NH (Number of Hops): The total number of hops of the messages exchanged to 

achieve the global decision. One “hop” means one network layer message, i.e. a point-

to-point message. Compared with NM, NH can reflect the message cost of an algorithm 

more precisely. 

HR (Hit Ratio): The ratio of the total number of successful discovery requests to the 

total number of discovery requests.  

TD (Time Delay): This is the average delay between the time any successful request 

is sent from a client and the time corresponding reply is received by the same client. TD 

is measured in milliseconds. 

5.4.2 Simulation Results and Analysis 

Below we present our simulation results with analysis. We have simulated our 

protocol, labeled as “Q-SDP” and the volunteer-based SDP [57] labeled as “V-SDP”. We 

run each simulation for 20 simulation minutes and each point is obtained by averaging 

over 10 different runs. As already mentioned before, we simulate the protocols twice, 

once by varying the nodes and territory size while keeping node density constant and 

again by varying the node density while keeping the territory size constant.  

 108



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

5.4.2.1 Simulation with Fixed Node Density 

We first report the performance in general cases and then we shall discuss the effect 

of mobility and node failure rates on the performance, all in separate sub sections. 

A. General Performance of Quorum-based Service Discovery Protocol 

In this sub-section, we discuss the performance of “Q-SDP” and “V-SDP” under the 

default values of the simulation parameters. We plot the results of our experiments in 

Figure 5-8 (a)-(d). 

Performance of NM: From Figure 5-8 (a) we observe that NM increases with N and 

“V-SDP” consistently uses more messages than “Q-SDP”. This is because, while “Q-

SDP” disseminates messages using a tree, “V-SDP” broadcasts volunteer advertisements. 

Also, service discovery requests are sent through volunteer overlay which can have 

loops and cycles and hence increases NM. In presence of node failure, service providers 

and volunteer nodes may fail and the rate of broadcast significantly increases thereby 

increasing the NM.  

Performance of NH: Figure 5-8 (b) shows that NH increases with N and “V-SDP” 

incurs higher NH than “Q-SDP”. This observation follows directly from that of NM as 

increase in NM implies increase in NH. But, as “V-SDP” controls the message hops 

using pre-defined TTL values, hence the NH for “V-SDP” are not very significantly 

different than that of our protocol.  

Performance of TD: From Figure 5-8 (c) we can see that increase of TD with 

respect to N is faster for “V-SDP” than “Q-SDP”. This is due to the fact that with node 

mobility and node departure or failure, volunteer nodes are scarce and the delay in 

discovering service becomes higher as the volunteer nodes decrease in number. We, on 

 109



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

the other hand, significantly reduce TD by choosing nearest directory as LH or PH and 

forwarding discovery requests using the domain tree. 

To further bolster the accuracy of our simulation results, we have calculated the 

confidence of the TD metric. Sample means of “Q-SDP” and “V-SDP” for N=100 are 

10.715 and 21.131, respectively. Our measurement finds out that TD of both the 

simulated protocols have a 95% confidence level with confidence intervals of (10.1251 

to 11.2681) and (20.5990 to 21.8421), respectively. 
 

0

50000

100000

150000

200000

50 100 150 200
No. of Nodes

N
M

Q-SDP@10m/s

V-SDP@10m/s

0

200000

400000

600000

800000

50 100 150 200
No. of Nodes

N
H

Q-SDP@10m/s

V-SDP@10m/s

(a) NM vs. N (b) NH vs. N 

10

15

20

25

30

50 100 150 200
No. of Nodes

TD

Q-SDP@10m/s

V-SDP@10m/s

0.6

0.7

0.8

0.9

1

50 100 150 200
No. of Nodes

H
R

Q-SDP@10m/s

V-SDP@10m/s

(c) TD vs. N (d) HR vs. N 

Figure 5-8: General Performance of the Service Discovery Protocol 

Performance of HR: Figure 5-8 (d) shows that HR rapidly decreases with respect to 

N for “V-SDP” compared to “Q-SDP”. This is because, with a failure rate (FR) of 20%, 

 110



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

total number of nodes (N) decreases, and the service density (ds) decreases rapidly, so 

the HR also decreases for “V-SDP” as matching services may not be found. “Q-SDP” 

can guarantee higher service availability as long as a matching service exists in the 

network. We also calculate the confidence on the simulated values of HR and we found 

that the sample mean with N=100 for “Q-SDP” and “V-SDP” are 0.84 and 0.83, 

respectively. HR of both the simulated protocols have a 95% confidence level with 

confidence intervals of (0.8337 to 0.8517) and (0.8179 to 0.8398), respectively. 

In general, from the above results we can realize that, NM, NH, and TD increase with 

N, whereas, HR decreases with N. Comparing our protocol with “V-SDP”, we can 

conclude that “Q-SDP” consistently performs better than “V-SDP”.  

B. Effect of Node Mobility on Our Protocol 

In this sub-section we study the effect of varied node speed on the performance of 

our protocol.  

 Effect of Node Mobility without Node Failure 

Initially we vary Vmax from 5m/s to 20m/s without considering any node departure 

and plot the results in Figure 5-9 (a) to (d).  

Effect of Mobility on NM: Figure 5-9 (a) shows the variation of NM with respect 

to N for increasing Vmax, for both “V-SDP” and “Q-SDP”. We can observe that NM 

quickly increases with N for both the protocols. However, “Q-SDP” incurs less 

message overhead than “V-SDP”. One reason for this is that we disseminate messages 

using the domain tree structure and avoid all types of broadcasting or flooding. “V-

SDP” on the other hand, broadcast volunteer advertisements which significantly 

increase the traffic. Also, NM increases with increase in Vmax, though this effect is 

more pronounced for “V-SDP” than for “Q-SDP”. Change of NM for “Q-SDP” is very 

 111



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

little. The only increase in NM is due to the backbone maintenance cost incurred by 

frequent node mobility. Since, no node failure has been considered here, the quorum 

maintenance cost is ignored. For “V-SDP”, the NM increases rapidly with node speed. 

This is possibly because at high node speeds service providers move quickly through 

the system and users need to broadcast service requests if they do not find any service 

provider in the vicinity. 
 

0

50000

100000

150000

200000

50 100 150 200
No. of Nodes

N
M

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

0

200000

400000

600000

50 100 150 200
No. of Nodes

N
H

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

(a) NM vs. N (b) NH vs. N 

10

15

20

25

30

50 100 150 200
No. of Nodes

TD

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

0.6

0.7

0.8

0.9

1

50 100 150 200
No. of Nodes

H
R

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

(c) TD vs. N (d) HR vs. N 

Figure 5-9: Effect of Node Mobility without Node Failure 

Effect of Mobility on NH: Figure 5-9 (b) shows the variation of NH with respect 

to N for increasing Vmax, for both “V-SDP” and “Q-SDP”. We can see that NH 

increases with N and Vmax for both the protocol and variation of NH for “V-SDP” is 

pretty close to the variation of NH for “Q-SDP”. This is because, the “V-SDP” 

 112



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

restricts message hops using TTL values. Still, “Q-SDP” incurs slightly lower NH than 

“V-SDP” for different values of N and Vmax. 

Effect of Mobility on TD: From Figure 5-9 (c) we can see the variation of TD with 

respect to N and Vmax for “V-SDP” and “Q-SDP”. TD for “Q-SDP” increases with. 

This is because, with increase in number of service requestors the average delay to 

reply individual query also increases. But, for “Q-SDP” with increase in N, K 

increases and the size of individual directory quorum also increases. This ensures 

higher replication of service information which holds back very fast increase of TD. 

“V-SDP”, on the other hand, experiences fast increase in TD with increase in N as 

well as Vmax. This is attributed to the fact that, with higher N, the numbers of service 

requestor increase, so, the TD increases. Also, at higher node speeds, the volunteer 

nodes move faster, rendering the service requestors deprived of volunteers. Then the 

service requestors need to find new volunteers before requesting a service and this 

goes to increase the overall TD.  

Effect of Mobility on HR: Figure 5-9 (d) plots the change of HR with N and Vmax 

for “V-SDP” and “Q-SDP”. In absence of node failure, “Q-SDP” always maintains 

100% HR for all values of N. This is achieved through the quorum intersection. The 

HR for V-SDP, however, decreases with increasing N and Vmax. Thus, with many 

service requestors, there can be some unsuccessful service requests due to service 

provider or volunteer mobility. So, we can see that, if all nodes are available, “Q-SDP” 

can always find a service matching user request where “V-SDP” may not. 

 Effect of Node Mobility with Node Failure 

In Figure 5-10 (a) to (d), we present the performance results of “V-SDP” and “Q-

SDP” by varying Vmax from 5m/s to 20m/s and keeping the node departure rate at 20%. 

 113



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Effect of Mobility on NM: As shown in Figure 5-10 (a), NM increases for both 

“V-SDP” and “Q-SDP” with N and Vmax. With 20% node failure rate, the NM 

increases with N as the directory nodes may fail which generates extra traffic for 

quorum maintenance. “V-SDP” also presents similar performance of NM. In their case, 

increase in NM can be explained by the fact that, at higher speeds, volunteer nodes 

may move away. So, service users and service providers may need to broadcast 

volunteer request message which increases the message cost. The change of NM is 

very similar to the trend observed in Figure 5-9 (a). However, NM slightly decreases 

in current case, due to the decrease in effective value of N caused by node failures.  
 

0

50000

100000

150000

200000

50 100 150 200
No. of Nodes

N
M

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

0

200000

400000

600000

50 100 150 200
No. of Nodes

N
H

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

 
(a) NM vs. N (b) NH vs. N 

10

20

30

40

50 100 150 200
No. of Nodes

TD

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

0.6

0.7

0.8

0.9

1

50 100 150 200
No. of Nodes

H
R

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

(c) TD vs. N (d) HR vs. N 

Figure 5-10: Effect of Node Mobility with Node Failure 

Effect of Mobility on NH: Figure 5-10 (b) shows the variation of NH for “V-SDP” 

and “Q-SDP” with N and Vmax. NH increases for both the protocols with increasing 

 114



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

values of N and node speeds. Though the changes are similar to those observed in 

Figure 5-9 (b), the current values of NH are little lower due to the lower N caused by 

20% FR. 

Effect of Mobility on TD: We can observe from Figure 5-10 (c), that TD increases 

with N and Vmax for both “V-SDP” and “Q-SDP”. At higher node speeds “V-SDP” 

performs worse than “Q-SDP” because volunteer nodes can migrate away and the 

service requesters may not have any volunteer in range when they search for one. This 

increases the discovery delay (TD). Also, the TD here is higher than the one presented 

in Figure 5-9 (c) because, with failure of nodes, the number of service providers 

decrease which lowers the service density (ds) in the network and increased TD. 

Effect of Mobility on HR: Figure 5-10 (d) shows the decrease in HR for “V-SDP” 

and “Q-SDP” with N and Vmax. With node departure, the service density (ds) decreases 

and as a result the HR significantly decreases for “V-SDP”. For “Q-SDP” the HR only 

decreases if there are no matching services in the network due to service provider 

failures. 

C. Effect of Node Failure on Our Protocol 

In this sub-section, we report the results of varying node failure (FR) rates on the 

performance of our protocol. We fail a percentage p of all the nodes (N), participating 

in the election process in such a way that throughout the execution time, at least as 

many as (p*N/100) nodes are always in the list of failed nodes. We release nodes in 

the head of this list if more than the expected number of nodes has been failed. The 

released nodes starts participating in service discovery protocol as freshly joined 

nodes as described in the Case II of Section 5.3.2 (A). Below we describe the results 

with varying node failure rate (FR) from 10% to 50%. All the following experiments 

 115



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

are executed at default values, i.e., with 100 nodes moving at a speed of 20m/s. The 

results have been reported at Figure 5-11 (a)-(d). 

Effect of FR on NM and NH: We can observe from Figure 5-11 (a) and (b), that 

NM and NH decreases with increase in FR. This is straightforward, because with 

increase in FR, N decreases rapidly, so NM and NH also decrease for both “V-SDP” 

and “Q-SDP”.  

Effect of FR on TD: Figure 5-11 (c) shows that TD decreases for “V-SDP” and “Q-

SDP” with increasing FR. This is because of the fact that, with high rates of node failure, 

number of service requesters decrease, so the average delay in service discovery (TD) 

decreases over the entire operational period. 
 

30000

40000

50000

60000

70000

80000

90000

10% 20% 30% 40% 50%
Node Failure Rate

N
M Q-SDP@10m/s

V-SDP@10m/s

90000

110000

130000

150000

170000

190000

10% 20% 30% 40% 50%
Node Failure Rate

N
H

Q-SDP@10m/s

V-SDP@10m/s

(a) NM vs. FR (b) NH vs. FR

5

9

13

17

21

25

10% 20% 30% 40% 50%
Node Failure Rate

TD

Q-SDP@10m/s

V-SDP@10m/s

0.6

0.7

0.8

0.9

1

10% 20% 30% 40% 50%
Node Failure Rate

H
R

Q-SDP@10m/s

V-SDP@10m/s

(c) TD vs. FR (d) HR vs. FR

Figure 5-11: Effect of Node Failure on the Service Discovery Protocol 

 116



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

Effect of FR on HR: Figure 5-11 (d) shows that HR decreases for “V-SDP” and 

“Q-SDP” with increasing FR. With high FR, service density (ds) in the system 

decreases rapidly, so the HR also decreases as matching services may not be found. 

From the performance results and the analysis, we can see that all the performance 

metrics of our protocol (“Q-SDP”) are significantly better than “V-SDP” under 

different node speeds and node failure rates. So, our protocol proves to be more robust 

under high node failure rates and higher node mobility. 

5.4.2.2 Simulation with Variable Node Density 

In this sub-section we show the effect of varying node density by keeping the 

network territory size constant and by increasing the total number of nodes. We initially 

report the general performance of “Q-SDP” and “V-SDP” at the default values of 

simulation parameters. Later we shall study the effect of node mobility on the 

performance of our simulated protocols while changing the node density continuously. 

A. Performance in General Cases 

Here we plot the results of our experiments in Figure 5-12 (a)-(d). The performance 

metrics used are same as before. 

Performance of NM: From Figure 5-12 (a) we observe that NM increases with N 

for both the protocols and they use less messages than that depicted in the Figure 5-8 (a). 

This is because, in the current case, the network is heavily partitioned with low node 

density and hence the number of messages required for service discovery or to maintain 

the service discovery structures is pretty low. Also the transmission radius is just 100 m 

contrary to 250 m considered before. So, the numbers of neighbors for each node will 

also decrease. Moreover, we have considered a default node failure rate of 20% which 

 117



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

further reduces the total number of nodes. However, from Figure 5-12 (a) we can see 

that the “Q-SDP” gains over “V-SDP” in terms of NM as the network grows denser 

gradually. 

Performance of NH: Figure 5-12 (b) shows that NH increases with N and “V-SDP” 

incurs higher NH than “Q-SDP”. Also we observe that increase in NH with N for both 

the protocols are less than shown in Figure 5-8(b). All these observations and the related 

explanations can be obtained from that of NM as increase in NM implies increase in NH.  
 

0

20000

40000

60000

80000

50 100 150 200
No. of Nodes

N
M

Q-SDP@10m/s

V-SDP@10m/s

0

50000

100000

150000

200000

250000

50 100 150 200
No. of Nodes

N
H

Q-SDP@10m/s

V-SDP@10m/s

(a) NM vs. N (b) NH vs. N 

15

20

25

30

35

50 100 150 200
No. of Nodes

TD

Q-SDP@10m/s

V-SDP@10m/s

0.6

0.7

0.8

0.9

1

50 100 150 200
No. of Nodes

H
R

Q-SDP@10m/s

V-SDP@10m/s

(c) TD vs. N (d) HR vs. N 

Figure 5-12: General Service Discovery Performance with Varied Node Density 

Performance of TD: From Figure 5-12 (c) we can see TD for service discovery is 

quite high while compared with Figure 5-8 (c). The increase in TD can be attributed to 

the fact that, at low node density, service density (ds) in each network component in a 

 118



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

partitioned network can be quite low. This hinders service discovery and hence, the TD 

increases compared to that shown in Figure 5-8 (c). Also, we can see that TD gradually 

increases and finally it drops little bit. This is because, with the increase in N, the 

service density increases and also, the network connectivity increase. Due to all these 

reasons, finding a service provider becomes more difficult and time consuming. We can 

observe from Figure 5-12 (c) that “Q-SDP” can find services quicker than “V-SDP”. So, 

our protocol is still more efficient than “V-SDP” while operating at varying node 

densities. 

Performance of HR: Figure 5-12 (d) shows that HR is lower in sparse networks 

compared to that shown in Figure 5-8 (d) and it increases with N for both the simulated 

protocols. This is because, at very low node density, service density (ds) in different 

network components is very low and hence the service discovery may not be successful. 

This lowers the average success rate of service discovery at lower N. The HR gradually 

increases with N as the network becomes gradually connected. Our protocol achieves a 

higher success rate for service discovery than “V-SDP” at similar network conditions. 

This proves the usability of a quorum-based service matching protocol. 

In general, from the above results we can realize that, our protocol performs better 

than “V-SDP” at varied node densities and under dynamic network conditions where 

topologies change frequently. Next we shall discuss the effect of varying node speeds on 

our protocol. 

B. Effect of Node Mobility 

In order to test the effect of node mobility on the performance of “Q-SDP” and “V-

SDP”, we varied the Vmax from 5 m/s to 20 m/s, keeping FR at 20%. We can observe 

from Figures 13 (a)-(d) that, NM, NH, TD and HR values increase with Vmax for both 

 119



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

the protocols. This is because, at higher node speeds, networks frequently get 

disconnected and it requires more messages for detecting network partitions and 

managing the service discovery structures on the face of partitions. This is why, NM and 

NH increases with increase in Vmax. The increase in TD is also due to the highly 

dynamic network conditions that take place with increase in Vmax. The frequent 

topological changes that occur by network partitioning and partition merges contributes 

in the delay of service discovery. The TD value slightly decreases at high values of N 

due to the increased service density and network connectivity. The same reasons are 

responsible for the decrease in HR with increased node speeds. The results also show 

that “Q-SDP” gains in performance over “V-SDP” even in the sparsely connected 

network environment. 
 

0

25000

50000

75000

50 100 150 200
No. of Nodes

N
M

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

0

75000

150000

225000

300000

50 100 150 200
No. of Nodes

N
H

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

(a) NM vs. N (b) NH vs. N 

10

20

30

40

50

50 100 150 200
No. of Nodes

TD

Q-SDP@5m/s
Q-SDP@10m/s
Q-SDP@20m/s
V-SDP@5m/s
V-SDP@10m/s
V-SDP@20m/s

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200
No. of Nodes

H
R

Q-SDP@5m/s Q-SDP@10m/s
Q-SDP@20m/s V-SDP@5m/s
V-SDP@10m/s V-SDP@20m/s

(c) TD vs. N (d) HR vs. N 

Figure 5-13: Effect of Node Mobility on Service Discovery with Varied Node Density 

 120



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

Thus, altogether, our simulation results prove that the proposed quorum-based 

service discovery protocol is message-efficient, fault-tolerant and can cope with node 

mobility and frequent topological changes caused by network partitions and partition 

merges. 

5.5 Prototype Implementation 

To further demonstrate the feasibility of our protocol in real applications, we 

implement it on a sensor network testbed. The testbed (Figure 5-14 (c)) contains 20 

MicaZ [30] sensor nodes (Figure 5-14 (a)) running TinyOS [64] and a MIB600 gateway 

(Figure 5-14 (b)) and is distributed over a single floor of the Hong Kong PolyU Mong 

Man Wai building. 
 

  
(a) MicaZ Node (b) MIB600 Gateway 

 
 

(c) Part of Our Testbed (d) Implementation Overview 

Figure 5-14: Prototype Implementation of Reliable Service Discovery Protocol 

 121



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

In order to make our system more flexible, we implement three major components as 

shown in Figure 5-14 (d). On the bottom, we have an end-to-end routing layer which is 

responsible for message delivery between nodes in the network. Above the routing layer, 

we have a quorum layer. It uses the send/receive interface provided by the routing layer 

to exchange messages between the quorum members. On the top layer, we have the 

service module. It uses the update and read interface provided by the quorum layer to 

allow the clients to register services. We assign random numbers to different sensor 

nodes as weights. Total number of directories is K where we choose K as ⌈N/4⌉, N 

being total number of nodes in the network. The nodes are considered static as it is 

difficult to make them mobile in a testbed. We have also implemented node failure. We 

arbitrarily switch off some sensor nodes during service discovery and consider them 

failed. We considered maximum node failure rate of 10%. 

The sensors nodes are equipped with light, temperature and sound sensors and can 

provide different kinds of services. The client can request service from the nearest 

directory node. In addition to the testbed system itself, we also have a special node 

employed to monitor the performance of the system. Initially, when the execution starts, 

each node undergoes a bootstrapping phase to initialize the variables and chooses a 

random weight value. After that, the monitoring node broadcasts the topology and 

directory information to all the nodes in the network. When a node receives the topology, 

it populates its neighbor list and finds out the nearest directory. Then a node starts 

service discovery at randomly chosen time. When the execution finishes, the monitoring 

node sends the performance results to the computer. 

We measure the performance of our protocol using two metrics – average service 

response time and average number of service discovery messages transmitted in the 

network. We test the system with 10 and 20 nodes. We generate random topologies. The 

 122



Chapter 5                                            Quorum-based Reliable Service Discovery 
 

experiment is run for 10 times each with different topologies for a fixed number of 

nodes, and the average values are reported in Table 5-4. 

Table 5-4: Implementation Results for Reliable Service Discovery Protocol 

Performance Metrics Values (N=10) Values (N=20)
Average hit ratio 100% 96.5% 
Average service response time (ms) 12 37 
Average number of messages sent for each sensor node 1 1 

The results show that the success rate of service discovery is very high and the 

discovery time is low. The results are very similar to that obtained by simulation. Since 

the average number of service discovery messages sent by each node is 1 at most, we 

can logically conclude that our protocol can minimize the energy spent by sensor nodes. 

5.6 Summary 

In this chapter, we address the problem of reliable service discovery in pervasive 

environments by tolerating directory failures. Directory failures during an ongoing 

service discovery and access operation in a MANET are difficult to handle as it implies 

that all services registered with a failed directory must re-register them with other 

available directories in order to publish themselves. The chances of directory failure are 

abundant in a highly dynamic network, like the pervasive computing system. 

To tackle the directory failure problem we have proposed a fault tolerant service 

discovery protocol for mobile ad hoc networks using our directory community 

framework. Initially, nodes with top K highest resources are elected as directories and 

form a directory community. The nodes in the directory community are naturally more 

reliable than other resource constrained nodes. The elected directory nodes then form 

quorums and replicate services among the quorum members in order to enhance service 

 123



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

availability despite directory failures. Quorum-based approach has been adopted in 

order to achieve fault-tolerance with limited replication. Quorum intersection property is 

used for network-wide service availability with low message overhead. To further 

reduce message cost, the network is divided into several tree-structured domains. To 

tolerate the failure of directory nodes, an incremental directory election approach has 

been adopted. Our protocol can also cope with arbitrary topological changes caused by 

network partitions and partition merges. Besides extensive simulations we also have 

implemented our protocol on a testbed of wireless sensor nodes. The simulation and 

experiment results show that our protocol increases service availability and system 

robustness even with a high rate of node failure.  
 

 124



 

 

 

 

 

Chapter 6  

Service Handoff Based Seamless 

Service Access 

This chapter describes our proposed mechanism for seamless service access by 

mobile users in infrastructure-less pervasive environments using a service handoff 

approach. We make use of our directory community framework to develop the service 

handoff protocols. Section 6.1 presents a brief overview of our motivation and the issues 

that are required to be addressed for efficient and successful service handoff. Section 6.2 

gives some background information about the previous endeavors to realize service 

handoff in pervasive computing environments. From Sections 6.3 to 6.5 we describe our 

service handoff protocols with detailed discussion of the handoff and load balancing 

techniques along with the performance results. Finally, Section 6.6 concludes the 

chapter by summarizing our contributions. 

6.1 Overview 

We have already introduced in Chapter 3, the general design principles and 

challenging issues of designing a seamless service access mechanism for mobile users in 

pervasive computing environments. We have also proposed our own service handoff 

 



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

policy to achieve the same objective. Existing service discovery solutions in pervasive 

computing [50][42][95][82][21][103][76][104][32][60][94][85][57] rarely address the 

issues associated with continuous and seamless service access. One prominent work 

[80] in maintaining service execution continuity in ad hoc networks uses a migratory 

service [81] based model. Migratory services are built using Smart Messages [54], and 

can migrate like mobile agents from one device to another, if the device currently 

hosting the service becomes unsuitable to host it any longer. Though this approach is 

useful, there are plenty of service types which are not suitable for migration as a mobile 

agent. 

Service handoff is an alternative approach to keep service access ongoing for a 

mobile user, when it gets disconnected with the service provider. Service handoff refers 

to the process by which new matching service providers are automatically selected for a 

user once the original service provider becomes unavailable. Basically an experience of 

seamless connection with a single service provider is simulated for the user. The 

objective of service handoff is to maintain service consistency by handing over the 

service execution states from one provider to another. Service handoff is, however, 

different from traditional handoff operations for mobility management in wireless 

networks. Handoff for mobility management focuses on the quality of network 

connection and initiates handoff based on signal strength or other related metrics. Their 

primary objective is to reduce the handoff delay.  

Service handoff operation has two basic steps - initiating handoff and selecting 

handoff destination. While the former decides when to start handoff the latter chooses 

the provider to which the service should be handed off.  

Initiating service handoff is challenging in a pervasive environment because 

pervasive devices are connected in an ad hoc manner and can move freely at will. In 

 126



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

such a dynamic environment, it is hard to detect the disconnection between a user and a 

service provider in a timely manner and to trigger the handoff process. 

Selecting handoff destination also has some key challenges. Firstly, due to device 

resource constrains, heavily loaded service providers are often prone to failure by quick 

resource depletion. To avoid this scenario and to maximize the lifetime of a service 

discovery system, load balancing among service providers is absolutely necessary. 

Secondly, pervasive devices are fault-prone. So, failure of service providers will result 

in many other handoffs. Thus, carefully choosing a service provider will surely reduce 

handoff frequency and related costs. Finally, proper selection of handoff destination can 

control the handoff delay. 

In this research, we propose a service discovery solution which especially focuses on 

providing seamless service access to mobile users using the service handoff approach. 

To the best of our knowledge, service handoff for seamless service access has not been 

investigated earlier. In order to realize the objective of ensuring reliable and continuous 

service access for mobile users, we make use of our directory community framework. 

We assume that the entire network is divided into multiple service provisioning domains 

with each domain containing many service providers whose scope is limited by the 

domain boundaries. Each domain also contains a set of top-K weighted directory nodes. 

We have proposed three different service handoff protocols depending on the action 

performed by the initiating node. The proposed protocols carefully selects handoff 

destination in order to achieve a load balance among the service providers. The 

directory community based service discovery and handoff policy appears to be fairly 

scalable, robust and fault-tolerant. Our performance evaluation shows that our service 

handoff protocols can achieve good load balance among the service providers. They are 

highly scalable and can cope with frequent node mobility and node failures. 

 127



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

6.2 Background 

Service continuity has not been investigated widely in the perspective of mobile and 

pervasive computing. There are some works on service migration [48][91] in pervasive 

computing, which studies the issues and challenges of migrating an ongoing service 

from one device to another to suit the conditions of continuous service execution. In 

[48], a centralized model for context-aware service migration has been proposed, and 

[91] considers a transport layer overlay to assist users to seamlessly migrate through 

heterogeneous networking environments. Both these works treat ‘service’ similar as user 

applications which can run on any suitable device. On the contrary, service discovery 

applications consider dedicated service providers which only can provide particular 

services hosted by them.  

Service continuity in ad hoc network has been studied in [43] and [80]. The idea of 

“follow-me” services has been proposed in [43]. Services can migrate from node to 

node, following a mobile user, in order to maintain seamless interaction with the client 

application. Migration is triggered by disconnections (between client applications and 

services) which are assumed to be predictable and so, cannot cope with unpredictable 

failures. To address these shortcomings a migratory service based reliability approach 

has been proposed in [80]. In that, services periodically take check points and store it in 

a backup node. In case the original service fails, the backup takes over. Services are 

modeled as mobile agents and can move from node to node to provide fault tolerance 

against predictable failures of hosting nodes. Their protocol however, does not support 

fault tolerance in case of unpredictable device failures or network disconnection. 

As already mentioned in Chapter 2, existing SDPs for pervasive and ad hoc mobile 

environment use either a directory-less [103][76][104][32] or a directory based 

[60][94][85][57] architecture. Directory-less SDPs are costly because, they often resort 

 128



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

to expensive message broadcast. On the other hand, directory-based SDPs are robust, 

but they incur high maintenance overhead. The general approach followed by directory-

based SDPs is to develop a virtual backbone and to disseminate service advertisements 

and discovery requests using the backbone. Protocols mentioned in [60][94][85] all uses 

the backbone based approach.  

Kim et al. [57], however, proposed a volunteer node based SDP for mobile ad hoc 

network where volunteers are relatively stable and resource rich nodes and form an 

overlay structure. This approach suffers from certain limitations. Firstly, the overlay 

may develop loops and cycles, which may increase service discovery cost. Secondly, the 

volunteer advertisement broadcast can significantly increase the traffic. Despite its 

limitations, this approach shares some of our design considerations. The volunteers, in 

fact, function as our directory nodes and the resource-based volunteer selection is also 

similar to our resource-based K-directory election approach (described in Section 6.3.2). 

So, we choose to compare our protocols with the volunteer node based SDP. But this 

SDP does not have any service handoff feature which is our key contribution and we can 

specifically illustrate how service handoff benefits seamless service access in mobile 

environment. 

6.3 System Model and Preliminaries 

In this section we introduce our system model and the assumptions and describe a 

preliminary service discovery protocol used by service users. 

6.3.1 System Model 

We have already mentioned that our service handoff protocols work using the 

directory community. The generic system model of the directory community framework 

 129



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

has already been described in Section 3.1. Here we state some specific assumptions. We 

know that the entire network is divided into multiple service domains (Figure 5-1) 

during the directory community creation (refer to Section 5.2.1). We assume that service 

providers restrict their service access scopes by the domain boundaries. Nodes can move 

freely across domain boundaries. So, when a user moves from one domain to the next, 

they require a different service provider. Nodes belonging to neighboring domains can 

communicate only through a gateway node in order to exchange handoff related 

messages. Each node is a router and any two nodes within a domain are neighbors if 

they are within each others signal coverage range. Also any two nodes within a domain 

can be connected using multiple hops. We assume that there are multiple service types 

in the environment and each domain has one or more instances of each type of service, 

without which service handoff cannot be successful. 

6.3.2 Basic Service Discovery Protocol 

The service handoff approach ensures service access continuity for mobile users. So, 

users must discover required services and start using them before the need arises for a 

service handoff. We use a very simple directory based service discovery protocol that 

can be implemented over the directory community. After the directory election is 

complete, the elector sends identifier of the domain directories to each node in the 

domain. All the service provider nodes then find out the nearest directory in their 

domain and register their services with the directory.  

A service provider (P) registers its service (S) with directory (D) using only the 

functional information (service type, name, etc). Detailed service context (Figure 5-5) is 

sent to the user on request. Directory nodes enlist the registered services with respect to 

types and share the list with the elector. The service registration is updated using a lease-

based approach. Each registration is associated with a lease. The service provider P 

 130



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

needs to renew its lease with D before timeout, else D removes the service. During 

periodic lease renewal, P also sends the checkpoint of service execution states for all the 

users it is currently serving. The stored checkpoints are used to resume service with a 

new provider when a service handoff takes place. Thus our directory-based approach 

can ensure fault-tolerance against sudden failure of service providers. If D fails, P 

registers with a new D, either from its cache, or sends a directory request to the elector, 

if the cache is empty.  

When a user (U) looks for a service S, he sends a discovery request to its nearest 

directory (D). On reception of a service request, D replies the requestor with a matching 

service. If no matching service is available with D, it forwards the request to other 

directories. 

6.4 The Proposed Service Handoff Protocols 

Service handoff is triggered if a disconnection takes place between the service 

provider and the user. Depending on the information used and action taken to initiate the 

handoff, we have proposed three different handoff protocols – service provider initiated, 

user terminal initiated and hybrid. Before describing the protocols in detail, we list the 

notations in Table 6-1 and types of exchanged messages in Table 6-2

Table 6-1: Data Structures for Service Handoff Protocols 

Symbols Meaning 
ε elector node in a domain 

P A service provider  
S A service type 
U A service user 
D Directory node with which P registers S and from which U looks up S

φ Service execution state of a user 

 131



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Table 6-2: Message Types for Service Handoff Protocols 

Message Purpose 

DISCONN(P,U) P (or U) sends to D after detecting a disconnection with U (or P) 

PAGE(U,φ) ε sends to another ε to search for U 

SEARCH(U) ε searches for U in its domain 

ACK(U) ε acknowledges the requesting elector about successful paging of U 

NACK(U) ε informs the requesting elector about unsuccessful paging of U 

ElectorREQ U sends to neighbor nodes querying for ε  

ElectorREP(ε) Nodes receiving a ElectorREQ sends the identifier of ε to the requestor 

JoinREQ(U,ε,D) U sends to the current ε requesting a handoff from its previous ε and D 

StateQRY(U,ε,D) ε requests the state(φ) of a newly migrated U from the U’s previous ε 

StateSEND(U,φ) ε sends the state(φ) of a migrated U to its current ε 

6.4.1 Service Provider Initiated Handoff Protocol 

When a service provider P gets disconnected with a user it is serving, it requests the 

directory node to search the user. The directory node probes the user to check for its 

availability. If the probing remains unsuccessful, then the directory contacts the elector 

and requests to start a handoff operation. The elector sends a PAGE message containing 

the user’s id and its service execution state to the electors of adjacent domains.  

Any elector receiving a PAGE message searches for the migrated user in its domain. 

Paging incurs high message and time costs which evidently increases with increasing 

node density. Again, with low node density paging may not be successful at the first try 

due to possible network disconnections. So, electors repeat paging when faced with 

network disconnections until a mobile node is found by an elector which then notifies 

others to stop searching.  

If any elector finds the user in its domain it will choose a matching service for the 

user and will reinstate the service execution states, so that in the new provider, the 

 132



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

service starts executing from the point where it stopped in the previous provider. If the 

service states are large, it is inadvisable to send the states during paging. In that case, the 

original elector may choose to send the states after a neighboring elector finds the user 

in its domain. After the completion of a successful handoff, the new elector sends an 

acknowledgement to the old elector which instructs the old directory and service 

provider to delete the information of the migrated user. 
 

/********************************************************/ 
// When a P detects disconnection with a U 
(1) P sends DISCONN(P,U) to D; 
(2) if D receives DISCONN(P,U) from P { 

send probe to U; 
if no-reply to probe 

send DISCONN(P,U) to ε; 
} 

(3) if ε receives DISCONN(P,U) from D  
handoff detection( );  

/********************************************************/ 
handoff detection( ) 
{ 

ε sends PAGE(U,φ) to each ε’ of adjacent domains;  
while node ε’ receives PAGE from ε { 
ε’ sends SEARCH(U) to look for U in its domain; 
if U NOT found in domain of ε’ 

ε’ sends NACK(U) to ε; 
else { 

ε’ selects suitable service for U and resumes the service execution 
after reloading φ;  
ε’ sends ACK(U) to ε; 

} 
while ε receives NACK from ε’ { 

ε waits to receive response from all ε’ to which PAGE was sent; 
if all ε’ sends NACK,  

ε decides that U has crashed; 
} 
while ε receives ACK from ε’  

ε informs D to delete the information of U; 
}  

Figure 6-1: Pseudo-code for Service Provider Initiated Handoff Protocol 

 133



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

New service provider selection for handoff is done by the elector in such a way that 

the newly arrived request goes to the least loaded service provider. We consider that 

each user request has unit load value. So, if a service provider is serving 30 users, then 

the load on the provider is 30 units. Service providers can pre-set some load threshold 

while registering with an elector. In this way, the elector will not assign any more users 

to a provider which is already operating at threshold. 

If a service domain covers small area, users entering that domain may have already 

left before a service handoff from its previous domain has been completed. In this case, 

the elector of the current domain will start a new handoff process until a successful 

service handoff is achieved. 

6.4.2 User Terminal Initiated Handoff Protocol 

When a user terminal experiences a disconnection with the service provider, it tries to 

contact the lookup directory. If the directory can be reached, it selects an alternate 

service provider for the user in case the current one is unavailable. This process is called 

intra-domain handoff. Directory nodes can detect failure of a service provider by the 

lease renewal timeout. In this case, a directory node proactively finds new service 

provider for all the users associated with the failed provider and resumes service 

execution from the checkpoints stored by the previous provider. 
 

/*************************************************************/ 
//When a user terminal MT detects disconnection with P  
(1) MT sends DISCONN(P,U) to D; 
(2) if no-reply from D  {      //also disconnected from D  

send DISCONN(P,U) to ε; 
if no-reply { 

// check current domain 
if(CheckForDomain( ) = TRUE);  

InitiateHandoff ( );      // start service handoff  
else 

 134



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

find new ε;       //the elector may have changed 
} 

else { //connection with D persists 
D selects alternative provider P’ for U and resumes the service execution 
after reloading φ;  

} 
/*************************************************************/ 
bool CheckForDomain( ) { 

broadcast ElectorREQ to 1-hop neighbors; 
if node j receives a ElectorREQ  

send ElectorREP(ε(j)); 
when node i receives ElectorREP from j 

if(ε (j) ε (i))  // a domain change has occurred ≠
return TRUE; 

} 
/*************************************************************/ 
InitiateHandoff( ) 
{ 

send JoinREQ(U, ε’, D) to ε;  
//ε’ is previous elector and D is previous directory 
while node ε receives JoinREQ from U  

ε sends StateQRY(U, ε’, D) to ε’; 
while node ε’ receives StateQRY from ε { 

 retrieve service execution state (φ) of U from D; 
ε’ sends StateSEND(U,φ) to ε; 

} 
while node ε receives StateSEND from ε’{ 

ε selects suitable service for U and resumes the service execution after 
reloading φ;  

} 
} 

Figure 6-2: Pseudo-code for User Terminal Initiated Handoff Protocol 

But if the user terminal cannot access the lookup directory, it checks for its current 

location (domain). This can be done by asking neighboring nodes about their domain 

elector. If the user terminal finds out a change in the domain, it sends a join request to 

the new elector containing its id, previous domain’s elector id and previous lookup 

directory id. The new elector then queries the old elector about the user which in turn 

sends back the user’s ongoing service execution states and removes the information 

 135



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

from local directory. The new elector then chooses a matching service provider for the 

user following the afore-mentioned load balance policy and reinstates the service 

execution states. 

6.4.3 Hybrid Handoff Protocol 

The paging process in service provider initiated handoff mechanism creates a burden 

on the network by consuming plenty of precious bandwidth. This process also wastes 

much of node resources. The user terminal initiated handoff, though significantly less 

costly, demands higher complexity of the mobile terminal. To strike a balance between 

these two handoff mechanisms, we propose a hybrid handoff mechanism which 

combines the previous two approaches for a better use of resources. 
 

/**********************************************************/ 
// when a MT detects a domain change  
(1) MT send JoinREQ(U, ε’, D) to ε;  
//ε’ is previous elector and D is previous directory 
(2) while node ε receives JoinREQ from U  

MigratedUserList ← (U, ε’, D); 
/**********************************************************/ 
//when D informs ε’ about the disconnection of U from P 
(3) ε’ send PAGE(U,φ) to each ε’ of adjacent domains;  
(4) while ε  receives PAGE from ε’ { 

if U belongs to MigratedUserList { 
ε selects suitable service for U and resumes the service execution 
after reloading φ;  
ε sends ACK(U) to ε’; 

} 
else { 

ε waits till time T to check if it receives a JoinREQ from U; 
if no JoinREQ from U comes until time > T 

ε sends NACK(U) to ε’; 
} 

} 

Figure 6-3: Pseudo-code for Hybrid Handoff Protocol 

 136



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

Upon a disconnection between the service provider and user, the user terminal detects 

its current domain, while the service provider asks the elector to page the neighboring 

domains. When the user joins a new domain, it sends a join request to the elector of the 

new domain informing its id, previous domain’s elector and directory ids. The new 

elector then waits to receive a paging message from the old elector of the user. When the 

paging message is available, the new elector finds a matching service for the user 

following the load balance policy, and hands over the service execution states to it, 

while sending an acknowledgement for successful handoff to the previous elector. If a 

domain elector receives the paging message, but the user has not moved in to that 

domain, then the elector waits for a certain time expecting the possible arrival of the 

user. After a time limit the elector sends a NACK message to the elector which was 

paging for the user. 

6.5 Performance Evaluation  

We have carried out extensive simulations to evaluate the performance of our 

proposed protocols. In absence of any other service handoff protocols, we first compare 

the load balance and service discovery performance of our protocols with the protocol 

proposed by Kim et al. [57]. After that, we analyze in-depth the performance of our 

proposed handoff protocols. To obtain the best performance of the protocol presented in 

[57], the TTL values for the volunteer advertisement (TTLmax_a) and the service request 

(TTLr) messages are fixed at 3 and 2, respectively. Moreover, every client belongs to a 

maximum of 2 volunteer regions and each volunteer advertises themselves once every 

simulation minute. All simulation parameters have been listed in Table 6-3. 

 137



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

6.5.1 Simulation Setup and Metrics 

The network nodes are randomly scattered in a square territory. The total number of 

nodes is varied to examine the effect of system scale on the performance. In order to test 

the load balancing performance, the total number of nodes has been increased while 

keeping the territory size constant (thereby increasing the node density). The territory is 

divided into 3x3 square grids which are considered as service domains.  For message 

routing, we have implemented a simple protocol based on the “least hops” policy, which 

is adopted in many classical routing protocols in ad hoc networks. A routing table is 

proactively maintained at each node. We consider 200 nodes moving at 20m/s with a 

20% node failure rate as default values of simulation parameters. 

Table 6-3: Simulation Parameters for Service Handoff Protocols 

Parameters Values 

Number of nodes, (N) 100 200 300 

Territory scale (m2) 1500 

Number of service types (ns) 5 

Number of service domains 9 

K/n 25% 

Mean link delay (ms) 5 

Max link delay (ms) 100 

Transmission radius (m) 100 

Routing-protocol     Least hops 

Node failure rate (FR) (in %) 10, 20, 30, 40, 50 

Mobility model Random Waypoint 

Node speed V (in m/s) 10, 20, 30 

Pause time (ms) 10 

The directory election is carried out prior to service discovery and handoff operations. 

Later, directory nodes are incrementally added to replace migrated directories. The 

weight values of the nodes are assigned randomly. The load threshold of a service 

 138



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

provider is chosen as one-third of its weight and each user request is assigned random 

load value. 

We assume that, every node can provide certain type of service. A service type is 

assigned to each node in a round robin fashion. If there are 5 service types in a network 

with 100 nodes, 20 nodes provide the same service. Therefore, with high ns, service 

density (ds = N/ns average number of service providers providing same type of service) 

is low and vice versa. 

We simulate node failure by stopping a percentage, p, of all the nodes (N), 

participating in the protocol in such a way that throughout the execution time, at least as 

many as (p*N/100) nodes are always in the list of failed nodes. We release nodes in the 

head of this list if more than the expected number of nodes has been failed. The released 

nodes starts participating in service discovery and access as freshly joined nodes. 

In the simulations, we measure the service discovery and load balancing performance 

using the following metrics: 

NM (Number of Messages): The total number of messages exchanged for service 

discovery. This includes the messages required for directory election, backbone 

maintenance and service handoff. Here, a “message” refers to an “end-to-end” message, 

i.e. a message from the source to the destination node. Such a message may be 

forwarded by several intermediate nodes in the network level. 

NH (Number of Hops): The total number of hops of the messages exchanged to 

achieve the global decision. One “hop” means one network layer message, i.e. a point-

to-point message. Compared with NM, NH can reflect the message cost of an algorithm 

more precisely. 

 139



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

AD (Access Delay): For new service requests, AD is the average delay between the 

time any successful request is sent from a user and the time corresponding reply is 

received by the same user. AD is measured in milliseconds. 

For continuous service access operations across multiple domains, we assume that 

the service provider in the user’s current domain periodically (the period is specified by 

the user in the service request) sends service results to the user. In this case, AD is 

measured by the message delay from the service provider to the user. 

SL (Normalized System Load): This is the number of service requests of a 

particular type generated within a domain divided by the total number of service 

requests of the same type generated in the entire network. 

The following metrics are used specially to evaluate the cost and performance of our 

proposed service handoff protocols: 

NM/HO (Number of Messages per Handoff): This indicates the average number of 

“end-to-end” messages exchanged to realize a single handoff operation. 

NH/HO (Number of Hops per Handoff): This indicates the average number of hops 

to realize a single handoff operation. 

HD (Handoff Delay): Average delay between the time a handoff is triggered for a 

user and the time the handoff is successfully completed for the same user. HD is 

measured in milliseconds. 

HSR (Handoff Success Rate): The ratio of the total number of successful handoff 

operations to the total number of handoff operations triggered. 

In the next section we shall describe all our performance results in detail. 

 140



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

6.5.2 Simulation Results and Analysis 

Below we present our simulation results with analysis. We have simulated our three 

service handoff protocols and the Volunteer node based SDP presented in [57]. We have 

labeled the user terminal initiated, service provider initiated and hybrid handoff 

protocols as “UserInit”, “ProvInit”, and “Hybrid”, respectively. The volunteer node 

based SDP has been labeled as “V-SDP”.  

We run each simulation for 20 simulation minutes and each point is obtained by 

averaging over 10 different runs. We first report the load balancing performance in 

Section 6.5.2.1, followed by the service discovery performance in Section 6.5.2.2, and 

then in Section 6.5.2.3 we provide a detailed analysis of the service handoff 

performances of our proposed protocols. 

6.5.2.1 Performance of Load Balancing 

Since, our proposed service handoff protocols assign new service requests or service 

handoff requests to the service provider with highest load capacity, we can achieve load 

balance on the service providers. This is a very crucial property given the resource-

constrained nature of the MANET nodes. 

In the network, the electors in each domain count the number of users of a particular 

type of service in its domain for the entire simulation period. Nine numerical values 

corresponding to nine discovery domains are collected for each type of service. These 

values are normalized by the total number of users requesting that particular service type 

in the entire network over the entire simulation period. We plot the average value of 

normalized load for 5 service types. The same process to calculate the domain load is 

also adopted in “V-SDP”. 

 141



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

We evaluate the load balance performance of all our handoff protocols which show 

very similar performance due to the singular load balance policy adopted. We plot the 

average value of the normalized load in all the service domains for all three handoff 

protocols. We compare the load balance in our protocols with that of the “V-SDP”, for 

different node speeds, and plot the results in Figure 6-4.  
 

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9
Domain No.

N
or

m
al

iz
ed

 L
oa

d 
(S

L)

H/O@100 V-SDP@100 H/O@200

V-SDP@200 H/O@300 V-SDP@300

Figure 6-4: Performance of Load Balance on Service Providers 

The results show that the load in different service domains is almost evenly 

distributed using our service handoff protocols. The “V-SDP”, on the other hand, does 

not achieve proper load balance. One reason for this is, in our protocol, service requests 

are assigned to service providers by the directory nodes, so, the assignments are more or 

less uniform across different service providers. But, for “V-SDP”, service providers 

themselves decide whether they can accept a new service request or not depending on 

their capacities. So, the load can widely vary from provider to provider. Since, in “V-

SDP” terminally loaded service providers can refuse a service request which then must 

be reassigned to a different and less loaded service provider, the service discovery delay 

is higher in this case. Our protocol, on the other hand, can achieve lower discovery 

delay at the cost of maintaining the current load information of different service 

providers at the directory nodes. 

 142



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

6.5.2.2 Performance of Service Discovery and Access 

In this sub-section, we compare the performances of “UserInit”, “ProvInit”, and 

“Hybrid” with respect to “V-SDP”, first under default values of simulation parameters 

and then by varying node speeds and node failure rates. 

A. Performance in General Cases 

We plot the results of service discovery experiments in Figure 6-5 which are carried 

out using default values of simulation parameters. 

Performance of NM: From Figure 6-5 (a) we observe that NM increases with N for 

all the protocols and “ProvInit” incurs the highest message overhead. This is because, 

“ProvInit” uses message flooding to page a migrated user. However, “UserInit” and 

“Hybrid” use less number of messages than “V-SDP” as evident from Figure 6-5 (c). 

This is attributed to the fact that the handoff protocols, though incur extra overhead for 

handoff, can significantly reduce the recurrent service discovery cost. But, “V-SDP” 

broadcasts volunteer advertisements and requires recurrent service discovery when 

domain change occurs for a mobile user. In presence of node failure, service providers 

and volunteer nodes may fail and the rate of broadcast significantly increases to discover 

alternate service provider, thereby increasing the NM. 

Performance of NH: Figure 6-5 (b) shows that NH increases with N for all the 

simulated protocols. This observation follows directly from Figure 6-5 (a) as increase in 

NM implies increase in NH. Similar observation can be obtained from Figure 6-5 (d) 

which shows that “V-SDP” incurs higher NH than “UserInit” and “Hybrid”. The 

increase in NH for “V-SDP” is because of the absence of any handoff functionalities. 

Users move to new domains and try to connect to old service providers and directory 

 143



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

nodes. While unable to connect with previous service providers, they request for new 

services. This approach ultimately increases the message hops. 
 

0

500000

1000000

1500000

2000000

2500000

100 200 300
No. of Nodes (N)

N
M

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

0

1000000

2000000

3000000

100 200 300
No. of Nodes (N)

N
H

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

(a) NM vs. N (V = 20m/s) (b) NH vs. N (V = 20m/s) 

100000

150000

200000

250000

300000

350000

400000

100 200 300
No. of Nodes (N)

N
M

UserInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

100000

200000

300000

400000

500000

600000

700000

100 200 300
No. of Nodes (N)

N
H

UserInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

(c) NM vs. N ( “UserInit”, “Hybrid” “V-SDP”) (d) NH vs. N ( “UserInit”, “Hybrid”,“V-SDP”)

0

10

20

30

40

50

100 200 300
No. of Nodes (N)

A
cc

es
s 

D
el

ay
 (A

D
)

UserInit@20m/s ProvInit@20m/s
Hybrid@20m/s V-SDP@20m/s

 
(e) AD vs. N (V = 20m/s) 

Figure 6-5: General Performance of Service Discovery Operations 

 144



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

Performance of AD: Figure 6-5 (e) shows that AD also increases with N for all the 

simulated protocols. “V-SDP” shows highest AD as the users have to discover service 

every time they move to a new domain. Also, as already mentioned, the load balancing 

strategy of “V-SDP” has significant impact in increasing the AD. Among the handoff 

protocols, “ProvInit” has highest delay as the handoff delay is higher for this protocol 

(explained in Section 6.5.2.3). 

From the results we can see that, with the exception of “ProvInit”, which has the 

highest message overhead, our service handoff protocols, in general, performs better 

than “V-SDP” during service discovery and access operations. Thus we can claim that 

service handoff is an essential operation that can enable mobile users to have better 

service discovery and access in a dynamic environment. 

B. Effect of Node Mobility 

In this sub-section we study the effect of varied node speeds on the performance of 

our simulated protocols. Figure 6-6 shows the performance of NM, NH and AD with N 

by varying V from 10m/s to 30m/s and keeping FR at 20%.  

Effect of Mobility on NM: From Figure 6-6 (a1)-(a4) we can see the increase in NM 

with N is higher at increased node speed. This is because, with higher V, nodes 

frequently change domains requiring more handoff and discovery operations which 

results in higher NM. Also we can see that “V-SDP” has very slight difference in NM 

compared to “UserInit” and “Hybrid”. So, considering NM, “V-SDP” is not really very 

bad than our protocols, but our protocols improve significantly over “V-SDP” with 

respect to NH, as described in the following point. 

Effect of Mobility on NH: From Figure 6-6 (b1)-(b4) the same can be said about the 

faster increase of NH at higher V. Also, we can see that “V-SDP” incurs higher NH than 

 145



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

“UserInit” and “Hybrid” at higher V. The reason for higher NH for “V-SDP” has already 

been explained before. With increasing node speeds, service users move more frequently 

and which require more service requests to be generated. 

Effect of Mobility on AD: From Figure 6-6 (c1)-(c3) we can also observe that AD 

increases slightly with increase in V. This is because, with higher V, nodes frequently 

change domains requiring more handoff and discovery operations which results in 

higher AD. From Figure 6-6 (c1) and (c3) we can see that the AD slightly decreases at 

very high node density. This is because, at high node density, it is easy to find a service 

provider as there will be more service providers in a domain. From Figure 6-6 (c4) we 

notice that AD firstly increases with V for “V-SDP” but decreases at very high node 

speeds. This is because, at very high node speeds, the disconnected nodes often get re-

connected before the check for disconnection is complete. We can also see that “V-SDP” 

incurs higher AD than our service handoff protocols.  

 

100000

150000

200000

250000

300000

350000

400000

450000

100 200 300
No. of Nodes (N)

N
M

UserInit@10m/s
UserInit@20m/s
UserInit@30m/s

100000

200000

300000

400000

500000

600000

100 200 300
No. of Nodes (N)

N
H

UserInit@10m/s
UserInit@20m/s
UserInit@30m/s

12

13

14

15

16

100 200 300
No. of Nodes (N)

A
cc

es
s 

D
el

ay
(A

D
)

UserInit@10m/s
UserInit@20m/s
UserInit@30m/s

(a1) NM vs. N (V=10, 20,30m/s) (b1) NH vs. N (V=10, 20, 30m/s) (c1) AD vs. N (V=10, 20, 30 m/s)

100000

700000

1300000

1900000

2500000

3100000

100 200 300
No. of Nodes (N)

N
M

ProvInit@10m/s
ProvInit@20m/s
ProvInit@30m/s

100000

800000

1500000

2200000

2900000

3600000

100 200 300
No. of Nodes (N)

N
H

ProvInit@10m/s
ProvInit@20m/s
ProvInit@30m/s

19

20

21

22

23

100 200 300
No. of Nodes (N)

A
cc

es
s 

D
el

ay
(A

D
)

ProvInit@10m/s
ProvInit@20m/s
ProvInit@30m/s

(a2) NM vs. N (V=10, 20,30m/s) (b2) NH vs. N (V=10, 20, 30m/s) (c2) AD vs. N (V=10, 20, 30 m/s)

 146



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

100000

150000

200000

250000

300000

350000

400000

450000

100 200 300
No. of Nodes (N)

N
M

Hybrid@10m/s
Hybrid@20m/s
Hybrid@30m/s

100000

200000

300000

400000

500000

600000

100 200 300
No. of Nodes (N)

N
H

Hybrid@10m/s
Hybrid@20m/s
Hybrid@30m/s

0

3

6

9

12

15

100 200 300
No. of Nodes (N)

A
cc

es
s 

D
el

ay
(A

D
)

Hybrid@10m/s
Hybrid@20m/s
Hybrid@30m/s

(a3) NM vs. N (V=10, 20, 30m/s) (b3) NH vs. N (V=10, 20, 30m/s) (c3) AD vs. N (V=10, 20, 30 m/s)

100000

150000

200000

250000

300000

350000

400000

450000

100 200 300
No. of Nodes (N)

N
M

V-SDP@10m/s
V-SDP@20m/s
V-SDP@30m/s

300000

400000

500000

600000

700000

100 200 300
No. of Nodes (N)

N
H

V-SDP@10m/s
V-SDP@20m/s
V-SDP@30m/s

20

30

40

50

100 200 300
No. of Nodes (N)

A
cc

es
s 

D
el

ay
 (A

D
)

V-SDP@10m/s
V-SDP@20m/s
V-SDP@30m/s

(a4) NM vs. N (V=10, 20, 30m/s) (b4) NH vs. N (V=10, 20, 30m/s) (c4) AD vs. N (V=10, 20, 30 m/s)

Figure 6-6: Effect of Node Mobility on the Service Discovery Operations (Study 1) 

For clearer understanding regarding the variation of performance metrics for 

“UserInit”, “Hybrid” and “V-SDP” we plot several graphs in Figure 6-7. The figures 

compare the performance of NM, NH and AD (also the AD values of “ProvInit” has 

been included) with N for the three protocols at node speeds of 10m/s and 30m/s and 

keeping FR at 20%.  

The results are similar to those observed in Figure 6-6. Figure 6-7 (a) and (b) shows 

that the three protocols use similar NM. But, Figure 6-7 (c) and (d) shows that the NH 

requirement for “V-SDP” is much higher than rest of the two protocols. The reason for 

higher NH in “V-SDP” has already been explained above. We can see from Figure 6-7 (e) 

and (f) that the AD is highest for “V-SDP” and least for “Hybrid” at both V= 10m/s and 

V= 30m/s. 

 

 

 147



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

100000

150000

200000

250000

300000

350000

400000

100 200 300
No. of Nodes (N)

N
M

UserInit@10m/s
Hybrid@10m/s
V-SDP@10m/s

100000

150000

200000

250000

300000

350000

400000

450000

100 200 300
No. of Nodes (N)

N
M

UserInit@30m/s
Hybrid@30m/s
V-SDP@30m/s

(a) NM vs. N (V=10m/s) (b) NM vs. N (V=30m/s) 

100000

200000

300000

400000

500000

600000

700000

100 200 300
No. of Nodes (N)

N
H

UserInit@10m/s
Hybrid@10m/s
V-SDP@10m/s

100000

200000

300000

400000

500000

600000

700000

100 200 300
No. of Nodes (N)

N
H

UserInit@30m/s
Hybrid@30m/s
V-SDP@30m/s

(c) NH vs. N (V=10m/s) (d) NH vs. N (V=30m/s)  

0

10

20

30

40

100 200 300
No. of Nodes (N)

A
cc

es
s 

D
el

ay
(A

D
)

UserInit@10m/s ProvInit@10m/s
Hybrid@10m/s V-SDP@10m/s

0

10

20

30

40

100 200 300
No. of Nodes (N)

A
cc

es
s 

D
el

ay
 (A

D
)

UserInit@30m/s ProvInit@30m/s
Hybrid@30m/s V-SDP@30m/s

(e) AD vs. N (V=10m/s) (f) AD vs. N (V=30m/s) 

Figure 6-7: Effect of Node Mobility on the Service Discovery Operations (Study 2) 

C. Effect of Node Failure 

In this sub-section, we compare the service discovery performance of our proposed 

handoff protocols with “V-SDP” with regard to varying node failure rates (FR). All 

experiments have been executed at default values of simulation parameters.  

 148



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

100000

400000

700000

1000000

1300000

1600000

10% 20% 30% 40% 50%
Node Failure Rate

N
M

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

150000

200000

250000

300000

10% 20% 30% 40% 50%
Node Failure Rate

N
M

UserInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

(a) NM vs. FR (b) NM vs. FR (for “UserInit”, “Hybrid”, “V-SDP”)

300000

600000

900000

1200000

1500000

10% 20% 30% 40% 50%
Node Failure Rate

N
H

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

200000

300000

400000

500000

600000

10% 20% 30% 40% 50%
Node Failure Rate

N
H

UserInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

(c) NH vs. FR (d) NH vs. FR (for “UserInit”, “Hybrid”, “V-SDP”)

0

10

20

30

40

10% 20% 30% 40% 50%
Node Failure Rate

A
cc

es
s 

D
el

ay
(A

D
)

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s
V-SDP@20m/s

 
(e) AD vs. FR

Figure 6-8: Effect of Node Failure on the Service Discovery Operations 

Effect of FR on NM: Figure 6-8 (a) shows that NM decreases for all the protocols 

with increasing node failure rates. The decrease is most prominent for “ProvInit” 

because with high FR, the network gets less dense and hence the paging cost decreases 

rapidly. The other three protocols (“UserInit”, “Hybrid” and “V-SDP”) show the similar 

 149



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

trend of variation in NM. This is more clearly described in Figure 6-8 (b) where NM 

decreases rapidly for “UserInit”, “Hybrid” and “V-SDP” with increase in FR. This is 

because, at high FR, number of service providers and users decreases. 

Effect of FR on NH: Figure 6-8 (c) shows the variation of NH decreases for all the 

protocols with increasing node failure rates. This trend is similar to that observed for 

NM. Figure 6-8 (d) shows the change of NH only for “UserInit”, “Hybrid” and “V-SDP”. 

Effect of FR on AD: Figure 6-8 (e) shows that AD decreases rapidly with increased 

FR for “V-SDP”. This is because, at high node failure rates, number of successful service 

discovery decreases, so the average AD also decreases. But for our handoff protocols, 

the access delay decreases very slowly. This is due to the fact that, at high FR many 

service provider nodes fail which requires further service handoff and increases the AD. 

From the above discussions we can find out that our proposed handoff protocols are 

message efficient, incur low access delay and can cope with frequent node mobility and 

node failures. So, service handoff can be useful in service discovery operations in 

mobile and pervasive environments. In the next section, we shall analyze the 

performance of our proposed handoff protocols in greater detail. 

6.5.2.3 Performance Comparison of Service Handoff Protocols 

In this sub-section, we rigorously study the handoff performances of “UserInit”, 

“ProvInit”, and “Hybrid”, first under default values of simulation parameters and then 

by varying node speeds and node failure rates. 

A. Performance in General Cases 

Here, we analyze “UserInit”, “ProvInit”, and “Hybrid” under the default values of the 

simulation parameters. 

 150



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

0

50

100

150

200

250

100 200 300
No. of Nodes (N)

N
M

 / 
H

O

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s

0

50

100

150

200

250

300

100 200 300
No. of Nodes (N)

N
H

 / 
H

O

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s

(a) NM/HO vs. N (V = 20m/s) (b) NH/HO vs. N (V = 20m/s) 

0

25

50

75

100 200 300
No. of Nodes (N)

H
an

do
ff

 D
el

ay
 (H

D
)

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s

0.5

0.6

0.7

0.8

0.9

1

100 200 300
No. of Nodes (N)

H
/O

 S
uc

c 
R

at
e 

(H
SR

)

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s

(c) HD vs. N (V = 10m/s) (d) HSR vs. N (V = 20m/s) 

Figure 6-9: General Performance of Service Handoff Protocols 

Performance of NM/HO: Figure 6-9 (a) shows the results of NM/HO of our 

proposed handoff protocols. Both the metrics are highest for “ProvInit” and lowest for 

“UserInit”. Paging, used in “ProvInit” increases the message cost per handoff. We can 

also find out that NM/HO for “Hybrid” slightly decreases with N initially and then 

increases with further increase in N. This is because of the fact that, at very low network 

density, the user terminal cannot reach the domain elector with single try due to frequent 

network disconnection. At very high node density, however, each message is forwarded 

through many intermediate hops, thereby increasing NM/HO. “UserInit” is the most 

message-efficient among all the handoff protocols as no paging is required here. 

Performance of NH/HO: Figure 6-9 (b) shows the results of NH/HO of our 

proposed handoff protocols. Following the same trend as in NM/HO, NH/HO is highest 

 151



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

for “ProvInit” and lowest for “UserInit”. Paging, used in “ProvInit” increases the 

message cost per handoff. We can also find out that NH/HO for “Hybrid” slightly 

decreases with N initially and then increases with further increase in N. This has already 

been explained above. 

Performance of HD: Figure 6-9 (c) shows the change of HD with N. HD is the 

highest for “ProvInit” and lowest for “Hybrid”. For “ProvInit” HD is highest when the 

network is sparse. This is because repeated paging may be required to reach all nodes in 

a sparse network. The HD decreases as the network gets connected. But, at very high 

node density, the HD increases again as the NM/HO and NH/HO increases. We can 

observe similar effects for “Hybrid” which can be explained with same logic except one 

thing. The high HD at lower node density is because of the fact that the user terminal 

may not reach the domain elector with single try due to the disconnected network status. 

The HD, however, decreases slowly with N for “UserInit” as the network grows denser. 

For “UserInit”, the HD steadily decreases as the network grows denser. This is because, 

“UserInit” does not require paging and the handoff delay in this case is solely dependant 

on the combined message transmission delays (no paging delays). This also contributes 

to the higher rate of handoff success for “UserInit”, as explained in the next paragraph.  

To further bolster the accuracy of our simulation results, we have calculated the 

confidence of the HD metric. Sample means for “UserInit”, “ProvInit” and “Hybrid” 

with N=100 are 29, 32 and 17.6, respectively. Our measurement finds out that HD of 

each of the simulated protocols has a 95% confidence level with confidence intervals of 

(28.3990 to 29.9421), (30.2513 to 32.9269) and (17.4932 to 18.1067), respectively. 

Performance of HSR: Figure 6-9 (d) plots the variation of HSR with N for the 

handoff protocols. For all the handoff protocols, HSR increases initially with N and then 

decreases with further increase in N. This is because, at lower node density the handoff 

 152



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

is often unsuccessful due to network disconnection. The success rate increases as the 

network grows denser. However, at very high network density the high handoff delay 

may render the handoff unsuccessful. For “ProvInit”, at very high network density, the 

migrated user may move to a different domain even before it has been detected, thus the 

HSR becomes further low. The HSR values prove that “ProvInit” is the least efficient of 

the proposed service handoff protocols. But we can as well see that, “UserInit” and 

“Hybrid” achieve pretty high handoff efficiency.  

We also calculate the confidence on the simulated values of HSR and we found that 

the sample mean with N=100 for “UserInit”, “ProvInit” and “Hybrid” are 0.88, 0.6875 

and 0.826, respectively. ET of each of the simulated protocols has a 95% confidence 

level with confidence intervals of (0.8757 to 0.8908), (0.6705 to 0.7379) and (0.7822 to 

0.8923), respectively. 

B. Effect of Node Mobility 

In this sub-section we study the effect of varying V (from 10m/s to 30m/s, keeping 

FR at 20%) on the performance of our handoff protocols, on an individual basis. 

Effect of Mobility on “UserInit”: Figure 6-10 (a) and (b) shows that NM/HO and 

NH/HO increases with increase in V. This is because at higher V number of handoff 

increases due to frequent node mobility.  

As shown in Figure 6-10 (c), HD increases with V. This is normal as the users or 

service providers frequently change domain, thereby increasing the handoff completion 

time. Also HSR decreases with increase in V (Figure 6-10 (d)), because nodes 

frequently change domains before a handoff is successfully completed. But, at very high 

node speeds (V=30m/s) migrated nodes sometime rejoins their previous domain before 

 153



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

the handoff fails and thus makes the handoff successful. Same can be observed for 

“Hybrid” as described later. 
 

0

2

4

6

100 200 300
No. of Nodes (N)

N
M

 / 
H

O

UserInit@10m/s
UserInit@20m/s
UserInit@30m/s

10

15

20

25

100 200 300
No. of Nodes (N)

N
H

 / 
H

O

UserInit@10m/s
UserInit@20m/s
UserInit@30m/s

(a) NM/HO vs. N (b) NH/HO vs. N 

20

25

30

35

100 200 300
No. of Nodes (N)

H
an

do
ff

 D
el

ay
 (H

D
)

UserInit@10m/s
UserInit@20m/s
UserInit@30m/s

0.6

0.7

0.8

0.9

1

100 200 300
No. of Nodes (N)

H
/O

 S
uc

c 
R

at
e 

(H
SR

)

UserInit@10m/s
UserInit@20m/s
UserInit@30m/s

(c) HD vs. N (d) HSR vs. N 

Figure 6-10: Effect of Node Mobility on “UserInit” 

Effect of Mobility on “ProvInit”: Figure 6-11 shows the “ProvInit” performances 

with varied node speeds. The trends of variation of different metrics are similar to those 

observed in Figure 6-10 and can be explained similarly. However, the NM/HO, NH/HO 

and HD in this case are considerably higher than those of “UserInit” because of the 

paging time involved. The paging delay increases the resulting HD (Figure 6-11 (c)) 

compared to other two handoff protocols. The HSR (Figure 6-11 (d)) is also lowest for 

“ProvInit” due to the high HD. 
 

 154



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

0

50

100

150

200

250

300

350

100 200 300
No. of Nodes (N)

N
M

 / 
H

O

ProvInit@10m/s
ProvInit@20m/s
ProvInit@30m/s

0

100

200

300

400

100 200 300
No. of Nodes (N)

N
H

 / 
H

O

ProvInit@10m/s
ProvInit@20m/s
ProvInit@30m/s

(a) NM/HO vs. N (b) NH/HO vs. N 

25

35

45

55

65

75

100 200 300
No. of Nodes (N)

H
an

do
ff

 D
el

ay
 (H

D
)

ProvInit@10m/s
ProvInit@20m/s
ProvInit@30m/s

0.5

0.6

0.7

0.8

0.9

1

100 200 300
No. of Nodes (N)

H
/O

 S
uc

c 
R

at
e 

(H
SR

) ProvInit@10m/s
ProvInit@20m/s
ProvInit@30m/s

(c) HD vs. N (d) HSR vs. N 

Figure 6-11: Effect of Node Mobility on “ProvInit” 

Effect of Mobility on “Hybrid”: Figure 6-12 shows the performances of “Hybrid” 

with varied node speeds.  

The trends of variation of different metrics are once again similar to those observed 

in Figure 6-10 and Figure 6-11, and can be explained similarly. The handoff message 

costs and time delay for “Hybrid” increases with increase in V. The handoff success rate 

decreases, in general, with increase in V, but at very high node speed (V = 30m/s), the 

HSR slightly increases. This has already been explained before. 
 

 155



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

0

3

6

9

12

15

100 200 300
No. of Nodes (N)

N
M

 / 
H

O

Hybrid@10m/s
Hybrid@20m/s
Hybrid@30m/s

0

25

50

75

100

100 200 300
No. of Nodes (N)

N
H

 / 
H

O

Hybrid@10m/s
Hybrid@20m/s
Hybrid@30m/s

(a) NM/HO vs. N (b) NH/HO vs. N 

15

20

25

30

35

100 200 300
No. of Nodes (N)

H
an

do
ff

 D
el

ay
 (H

D
)

Hybrid@10m/s
Hybrid@20m/s
Hybrid@30m/s

0.5

0.6

0.7

0.8

0.9

1

100 200 300
No. of Nodes (N)

H
/O

 S
uc

c 
R

at
e 

(H
SR

)

Hybrid@10m/s
Hybrid@20m/s
Hybrid@30m/s

(c) HD vs. N (d) HSR vs. N 

Figure 6-12: Effect of Node Mobility on “Hybrid” 

Performance comparison of “UserInit” and “Hybrid”: We have plotted results 

(Figure 6-13) comparing “UserInit” and “Hybrid” at different node speeds. The values 

of the performance metrics of these two handoff protocols are closer to each other.  

Figure 6-13 (a) and (b) shows the variations in NM/HO and NH/HO and we can find 

that for both the protocols, the message costs increase with node speeds. Also, “Hybrid” 

is always little more expensive than the “UserInit”. At very high node density and node 

speeds, the NH/HO increases rapidly for the “Hybrid”. This is because, “Hybrid” uses 

paging and at considerably higher node density, each message is forwarded through 

many intermediate hops, thereby increasing NH/HO.  
 

 156



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

0

5

10

15

100 200 300
No. of Nodes (N)

N
M

 / 
H

O

UserInit@10m/s
Hybrid@10m/s
UserInit@20m/s
Hybrid@20m/s
UserInit@30m/s
Hybrid@30m/s

0

20

40

60

80

100 200 300
No. of Nodes (N)

N
H

 / 
H

O

UserInit@10m/s
Hybrid@10m/s
UserInit@20m/s
Hybrid@20m/s
UserInit@30m/s
Hybrid@30m/s

(a) NM/HO vs. N (b) NH/HO vs. N 

15

20

25

30

35

100 200 300
No. of Nodes (N)

H
an

do
ff

 D
el

ay
 (H

D
)

UserInit@10m/s
Hybrid@10m/s
UserInit@20m/s
Hybrid@20m/s
UserInit@30m/s
Hybrid@30m/s

0.5

0.6

0.7

0.8

0.9

1

100 200 300
No. of Nodes (N)

H
/O

 S
uc

c 
R

at
e 

(H
SR

)

UserInit@10m/s Hybrid@10m/s
UserInit@20m/s Hybrid@20m/s
UserInit@30m/s Hybrid@30m/s

(c) HD vs. N (d) HSR vs. N 

Figure 6-13: Comparison of Effect of Node Mobility on “UserInit” and “Hybrid” 

The change in handoff delay (HD) for “Userinit” and “Hybrid” has been depicted in 

Figure 6-13 (c). We can see that the HD increases with node speeds and “UserInit” 

incurs higher handoff delay than “Hybrid” in general. “Hybrid” can achieve a low HD 

compared to “UserInit” as the handoff process is started by both the parties concerned, 

i.e., the user and the service provider, which ultimately helps to reduce the total handoff 

delay. “UserInit”, on the other hand, faces higher HD by waiting for response from the 

previous domain elector of the migrated user. 

Figure 6-13 (d) shows the Handoff success rate (HSR) is higher for “UserInit” than 

“Hybrid” and decreases slightly at V=20m/s for both the protocols. This has already 

 157



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

been explained earlier. “UserInit” has higher HSR compared to “Hybrid” as “UserInit” 

does not use paging for handoff. One interesting thing to notice from the Figure 6-13 is 

that the simulation parameters for service handoff mostly achieves best result with 

N=200. So, we can conclude that at this value of N, the network is ideally connected to 

realize the best handoff performance. 

C. Effect of Node Failure 

In this sub-section, we study the effects of varying FR on the performance of our 

proposed handoff protocols. All experiments have been executed at default values of 

simulation parameters and the results are presented in Figure 6-14. 
 

0

50

100

150

200

250

10% 20% 30% 40% 50%
Node Failure Rate

N
M

 / 
H

O

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s

0

50

100

150

200

250

10% 20% 30% 40% 50%
Node Failure Rate

N
H

 / 
H

O

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s

(a) NM/HO vs. FR (b) NH/HO vs. FR

0

2

4

6

8

10

10% 20% 30% 40% 50%
Node Failure Rate

N
M

 / 
H

O

UserInit@20m/s

Hybrid@20m/s

0

5

10

15

20

25

30

10% 20% 30% 40% 50%
Node Failure Rate

N
H

 / 
H

O

UserInit@20m/s

Hybrid@20m/s

(c) NM/HO vs. FR ( “Userinit” & “Hybrid”) (d) NH/HO vs. FR ( “Userinit” & “Hybrid”) 

 158



Chapter 6                                    Service Handoff Based Seamless Service Access 
 

0

25

50

75

10% 20% 30% 40% 50%
Node Failure Rate

H
an

do
ff

 D
el

ay
 (H

D
)

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s

0.5

0.6

0.7

0.8

0.9

1

10% 20% 30% 40% 50%
Node Failure Rate

H
/O

 S
uc

c 
R

at
e 

(H
SR

)

UserInit@20m/s
ProvInit@20m/s
Hybrid@20m/s

(e) HD vs. FR (f) HSR vs. FR

Figure 6-14: Effect of Node Failure on Service Handoff 

Effect of FR on NM/HO: Figure 6-14 (a) shows that NM/HO decreases with 

increase in FR. This is straightforward, because at higher FR, N decreases, so NM/HO 

also decreases. But the decrease is not very fast for “UserInit” and “Hybrid”, because, 

higher FR means many service providers fail and their users need to be handed off to 

other providers. However, NM/HO decrease rapidly for “ProvInit” because increasing 

FR signifies lower node density and less paging cost for a single handoff. 

Effect of FR on NH/HO: From Figure 6-14 (b) we can see that NH/HO decrease 

with increased FR. This can be explained similar to NM/HO, because at higher FR, N 

decreases, and thus NH/HO also decreases. 

Effect of FR on HD: The HD (Figure 6-14 (c)) also decreases very slowly with 

increased FR except for “ProvInit”. This is due to the fact that, at higher FR, the network 

density decreases rapidly which results in network disconnection and hence the delay in 

finding migrated user by paging becomes higher for “ProvInit”. For “UserInit” and 

“Hybrid”, the decrease in HD is simply attributed to the low value of N. 

Effect of FR on HSR: The HSR also decreases (Figure 6-14 (d)) with increasing FR 

due to frequent failure of nodes. 

 159



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

From the above results, we can see that our service handoff protocols can cope well 

with high node failure rates and still can guarantee HSR of more than 50%. So, our 

protocols are robust under high node failure rates and high node mobility. 

6.6 Summary 

In this chapter, we address the issues regarding continuous and seamless service 

access for mobile users in an ad hoc infrastructure-less pervasive computing 

environment. The continuous service access is often hampered due to service provider 

failure, network partitioning, or service scope outage by service provider or user 

mobility. Service handoff is needed to provide users with alternate matching services in 

case the original service becomes unavailable. However, existing service discovery 

solutions for pervasive computing do not address this problem. 

We have studied the problem and have presented our novel mechanism for seamless 

service access for mobile users in pervasive computing environments using service 

handoff. Service handoff enables users to continue service access while on the move, by 

automatically transferring the service execution states to an alternative matching service 

provider when the original provider fails or the user moves out of its scope. We have 

developed three service handoff protocols - user initiated, service provider initiated and 

hybrid - depending on the initiator of the handoff. We have carried out extensive 

simulations to study the benefit of using service handoff for continuous service access 

and also to analyze the handoff efficiency of our proposed protocols. The results show 

that our protocols can support seamless service access for mobile users at low message 

cost and time delay while achieving high load balance among service providers. 

 
 

 160



 

 

 

 

 

Chapter 7  

Conclusion and Future Directions 

This chapter concludes this dissertation by summarizing our original contributions in 

Section 7.1 and by pointing towards the possible future directions of furthering our 

research in Section 7.2. 

7.1 Conclusions 

As a newly evolving paradigm of computing, pervasive computing has received 

significant research focus in the recent years. Pervasive applications have been 

developed over both wired and infrastructured wireless networks as well as ad hoc 

wireless networks in order to serve different requirements and objectives. Service 

discovery is a well-known application of mobile and pervasive computing. As the 

pervasive computing paradigm gradually changes the world into a service-based one 

more and more efficient service discovery solutions are being sought by users for 

various system and network structures. Though there are many existing service 

discovery protocols for wired and infrastructure-based wireless networks having support 

of fixed and stable network backbone, service discovery research over the ad hoc 

wireless network consisting of static or mobile entities is far from complete. One of the 

crucial issues of service discovery in pervasive computing is about how to ensure 

 



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

reliability and fault tolerance during ongoing service discovery and access operations. 

Many pervasive applications, such as, health care, elderly care, or smart environments, 

are built to provide humans with unfaltering service support all the time. So, reliability 

or availability of services cannot be compromised in these critical applications. In this 

dissertation we mainly focus on addressing the reliability issues of service discovery and 

access in pervasive applications developed over extremely dynamic ad hoc and 

infrastructure-less network environments consisting of multiple resource-constrained 

static or mobile devices. We have modeled the underlying networks to be mobile ad hoc 

(MANET) in nature. We provide innovative and cost-efficient solutions to address the 

reliability concerns.  

Our research in fault tolerant service discovery is based on a directory community 

framework which consists of a directory community structure and a suite of reliable 

service discovery and access protocols developed over the structure. A directory 

community is a collection of top-K weighted mobile nodes, where weight indicates 

various node resources, such as, the memory size, processing capacity, or remaining 

battery life, etc, and which perform as service discovery directories. We prefer directory 

based solution as it is more robust than a directory-less one and has the power to 

minimize both message and energy costs. Moreover, the weight-based election will 

ensure that the elected directories are more reliable and less fault-prone. We have 

designed an algorithm for top K directory election in ad hoc and mobile environment 

through localized interaction of participating nodes. The algorithm is phase-based and 

works using a diffusing computation approach. It first selects some coordinator nodes 

with highest weight among their 2-hop neighbors. The coordinator nodes then start 

diffusing computations to collaboratively collect the weight values of all the nodes in 

the environment to choose top K weighted nodes as K leaders. Besides proving the 

correctness properties of the proposed algorithm, we have also evaluated our algorithm 

 162



Chapter 7  Conclusion and Future Directions 
 

by extensive simulations. The results show that our algorithm is fault-tolerant and 

message-efficient and can cope with dynamic topological changes that frequently occur 

in mobile ad hoc environment. We have also implemented our algorithm on a wireless 

testbed to study its performance and applicability in real environments. 

Based on the directory community framework, we have developed two different 

mechanisms – one for reliable service discovery in the midst of sudden failure of 

directory nodes and the other for reliable and continuous service access despite service 

provider failure, node mobility and network partitioning. 

The mechanism for reliable service discovery consists of a discovery protocol which 

aims to address the different service unavailability issues caused by many possible 

failure situations. While simple service failure requires fresh service discovery attempts 

on the part of the users, failures of service directories are more complicated to handle. 

Directory failure necessitates all services registered with a failed directory to re-register 

with other available directories in order to publish them. To cope with this problem we 

propose to replicate services among multiple directory nodes. In order to limit 

replication and update costs, we choose a selective replication policy, by which, all the 

directory nodes form quorums among themselves and replicate services registered with 

them among its quorum members. This approach ensures network-wide service 

availability with minimal replication. Following the quorum intersection property, we 

can guarantee that if a service matching user request is available, the user can certainly 

find the service by forwarding a request only to its quorum members. This reduces 

service discovery cost. The message overhead is further reduced by dividing the 

network into one or more tree-structured domains, thereby eliminating loops, and also 

by restricting broadcast and flooding. We handle failure of directory nodes, by timely 

replacing a failed directory with a suitable node carefully picked up using an 

incremental directory election approach. We have carried out extensive simulations to 

 163



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

study the important properties supported by our protocol. The results show that our 

protocol is fault-tolerant, message-efficient, and incurs lower delay in service discovery. 

We have also implemented a prototype of our protocol on a wireless testbed system 

consisting of multiple sensor nodes. The implementation results corroborate with our 

simulation studies and prove the applicability of the protocol in practical scenarios. 

The other mechanism for seamless service access is developed to support users in ad 

hoc pervasive environment with reliable and continuous service access. Given the 

dynamic nature of MANET, resource-constrain of the participating devices, and the 

unreliability of wireless connection, service access in pervasive environment is often 

unreliable and intermittent. Service providers and users frequently get disconnected due 

to their mutual mobility, node failures, service failures, and network partitions. To cope 

with these limitations, we propose a service handoff scheme which automatically selects 

new matching service providers for users, once the original service provider becomes 

unavailable. Service handoff is different from traditional handoff operations for mobility 

management in wireless networks which focuses on the quality of network connection 

and initiates handoff based on signal strength or other related metrics. Service handoff 

operation consists mainly of two steps – service handoff initation and handoff 

destination selection. Handoff initiation requires detecting the requirements of triggering 

a handoff, which is non-trivial given the extreme dynamics of the MANET environment. 

Handoff destination selection is also challenging as it requires us to achieve a load 

balance among the service providers; otherwise, resource depletion of service providers 

may result in increased handoff frequency. In this research, we present three novel 

service handoff protocols, depending on the action performed by the initiating node, 

which achieves load balancing among the service provider and increases reliability of 

service access. We have studied the performance of our protocol by simulations. The 

results indicate that our proposed service handoff protocols can support seamless service 

 164



Chapter 7  Conclusion and Future Directions 
 

access for mobile users at low message cost and time delay while achieving high load 

balance among service providers. 

In summary, our algorithms and protocols are experimentally proven to support 

reliability, scalability and fault tolerance for service discovery and access applications in 

dynamic and ad hoc mobile environments consisting multiple service providers and 

users. So, we can claim to have fulfilled our objectives proposed at the beginning of this 

dissertation. 

7.2 Future Directions 

We close this dissertation with our comments and suggestions on the ways in which 

the current research can be advanced.  

Presently our distributed algorithm for K-directory election works through localized 

collaboration of the participating devices, where, finally, one single node must collect 

the global knowledge to elect the top K weighted directory nodes. This approach 

requires extra maintenance overhead for the single elector node. In future, we want to 

design a new algorithm which will act in a purely localized manner to elect directory 

nodes. Localized algorithms with high degree of localization incur low message cost and 

help to reduce the maintenance overhead. Since, our protocols for reliable service 

discovery and access are based on the directory community framework, a more efficient 

approach for directory election and directory community maintenance will surely 

improve the overall performance of our protocols. But, designing a truly localized 

algorithm to ensure globally unique K directory nodes is a non-trivial task. 

We have realized that, it is not always possible to guarantee exactly K directory 

nodes in a MANET at all the times. Instead, we can opt for selecting directory nodes in 

such a way that each directory node serves equal or almost same number of users. This 

 165



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

approach will be effective in achieving load balance among the directories and hence the 

average lifetime of individual directory nodes will be increased. When combined with 

our service handoff mechanism, which tries to achieve load balance among the service 

providers, this improved directory election policy will guarantee significant increase of 

the average lifetime of the pervasive system. To obtain further energy optimization, 

nodes lying in network boundary should not be chosen as directories, as they will be less 

utilized and hence their purpose will not be satisfied. 

So far, our directory election algorithm and the quorum based reliable service 

discovery protocol have been implemented using a wireless sensor network tested with 

all the nodes being MicaZ sensor motes. Being sure that our protocol performs well 

using the resource constrained sensor nodes, we want to carry out further 

experimentation using multitude of devices consisting of sensor nodes, smart phones, 

laptops and PDAs. Device heterogeneity will surely help us to better understand the 

weaknesses of our protocols and to take necessary improvement measures. We also want 

to undertake experiments to study the feasibility of our service handoff algorithms under 

different operating environments. 

Finally, we would like to investigate the performance of our protocols and algorithms 

in heterogeneous network environments rather than the pure mobile ad hoc networks we 

have considered so far. More challenges will be introduced if a heterogeneous network, 

comprising ad hoc as well as infrastructured components with multiple networking 

protocols and interfaces, is considered. Our protocols must be adapted to the different 

situations that may occur due to the mixture of various networks. Service handoff will 

have to take care of the issues related to inter-network handoff and service discovery 

among cross platform nodes will also be much more difficult. If different directory 

nodes support different network interfaces, the inter-directory communication must be 

facilitated through special protocol adapters.  

 166



 

 

 

 

 

 
 

Bibliography 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Bibliography 
 

Bibliography 
[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The Design and 

Implementation of an Intentional Naming System,” In Proceedings of Seventeenth 

ACM Symposium on Operating Systems Principles (SOSP’99), ACM Press, pages 

186–201, Charleston, SC, December, 1999. 

[2] M. Aguilera, C. Gallet, H. Fauconnier, and S. Toueg, “Stable leader election,” In 

Proceedings of the Fifteenth International Symposium on Distributed Computing 

(DISC'2001), LNCS 2180, 2001. 

[3] B. Al-Takrouri, K. Detken, C. Martinez, M. K. Oja, S. Stein, L. Zhu, and A. 

Schrader, “Mobile Holsten Tour: Contextualized Multimedia Museum Guide,” In 

Proceedings of the 6th International Conference on Advances in Mobile Computing 

and Multimedia (MoMM), pp. 460-463, Linz, Austria, November, 2008. 

[4] A. Amis, R. Prakash, T. Vuong, and D.T. Huynh, “Max-Min D-Cluster Formation 

in Wireless Ad Hoc Networks,” In Proceedings of Nineteenth Annual Joint 

Conference of the IEEE Computer and Communications Societies (INFOCOM), 

Volume 1, pp. 32 – 41, Tel Aviv, Israel, March, 2000. 

[5] K. Arabshian and H. Schulzrinne, “GloServ: Global service discovery 

architecture,” In Proceedings of MobiQuitous, pp. 319–325, June, 2004. 

[6] I. Aydin, C. Jaikaeo, and C. Chen, “Quorum-based Match-Making for Wireless 

Mesh Network,” In Proceedings of First IEEE International Conference on 

Wireless and Mobile Computing, Networking and Communications (WiMob'2005). 

[7] B. R. Badrinath, A. Acharya, and T. Imielinski, “Designing Distributed Algorithms 

for Mobile Computing Networks,” Journal of Computer Communications. Volume 

19, No. 4, April, 1996. 

[8] M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A Scalable Peer-to-

Peer Architecture for Intentional Resource Discovery,” In Proceedings of 

 169



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

International Conference on Pervasive Computing 2002, August, 2002. 

[9] S. Banerjee and S. Khuller, “A Clustering Scheme for Hierarchical Control in 

Multi-Hop Wireless networks,” In Proceedings of IEEE Conference on Computer 

Communications (INFOCOM), Anchorage, Alaska, April, 2001. 

[10] M. Bang, A. Larsson, and H. Eriksson, “NOSTOS: A Paper-Based Ubiquitous 

Computing Healthcare Environment to Support Data Capture and Collaboration,” 

In Proceedings of the 2003 AMIA Annual Symposium, pp. 46-50, Washington DC, 

Nov 8-12, 2003. 

[11] S. Basagni, “Distributed clustering for ad hoc networks,” In Proceeding of 

International Symposium on Parallel Architectures, Algorithms and Networks, pp. 

310–315, June, 1999. 

[12] S. Basagni, “Distributed and mobility-adaptive clustering for multimedia support 

in multi-hop wireless networks,” In Proceedings of Vehicular Technology 

Conference, VTC, Vol. 2, pp. 889–893, 1999. 

[13] P. Basu, N. Khan, and T. Little, “A Mobility based metric for clustering in mobile 

ad hoc networks,” In Proceedings of International Workshop on Wireless 

Networks and Mobile Computing, April. 2001. 

[14] Bluetooth SIG. Specification. http://bluetooth.com/. 

[15] J. Bohn, “The Smart Jigsaw Puzzle Assistant: Using RFID Technology for 

Building Augmented Real-World Games,” In Proceedings of the Pervasive Games 

Workshop, 2004. 

[16] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer, “Easyliving: 

Technologies for Intelligent Environments,” In Proceedings of the 2nd  international 

symposium on Handheld and Ubiquitous Computing (HUC), Lecture Notes in 

Computer Science (LNCS), Volume 1927, pp. 12-29, Bristol, UK, September, 

2000. 

[17] J. Brunekreef, J. Katoen, R. Koymans, and S. Mauw, “Design and Analysis of 

 170

http://bluetooth.com/


Bibliography 
 

Leader Election Protocols in Broadcast Networks,” Distributed Computing, vol. 9 

no. 4, pages 157-171, 1996. 

[18] M. Caesar, M. Castro, et al., “Virtual ring routing: network routing inspired by 

DHTs,” In Proceedings of ACM SIGCOMM, pp. 351-362, 2006. 

[19] M. Castro, P. Druschel, A.-M. Kermarrec. and A. Rowstron, “One ring to rule 

them all: Service discovery and binding in structured peer-to-peer overlay 

networks,” In Proceedings of the SIGOPS European Workshop, Saint-Emilion, 

France, September. 2002. 

[20] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “GSD: A novel group-based 

service discovery protocol for MANETs,” In Proceedings of Fourth IEEE 

Conference on Mobile and Wireless Communications Networks (MWCN), 

September, 2002. 

[21] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin, “Toward distributed service 

discovery in pervasive computing environments,” IEEE Transactions on Mobile 

Computing, February, 2006. 

[22] M. Chatterjee, S. K. Das. and D. Turgut, “WCA: A Weighted Clustering Algorithm 

for Mobile Ad hoc Networks,” Journal of Cluster Computing, Special issue on 

Mobile Ad hoc Networking, Vol. 5, Issue 2, pp. 193-204, April 2002. 

[23] A. Chen, R.R. Muntz, S. Yuen, I. Locher, S. Park, and M.B. Srivastava, “A Support 

Infrastructure for the Smart Kindergarten,” IEEE Pervasive Computing, Volume 1, 

No. 2, pp. 49-57, April-June, 2002. 

[24] H. Chen, F. Perich, D. Chakraborty, T. Finin, and A. Joshi, “Intelligent Agents 

Meet Semantic Web in a Smart Meeting Room,” Proceedings of the Third 

International Joint Conference on Autonomous Agents & Multi Agent Systems 

(AAMAS’04), July, 2004. 

[25] L. Cheng and I. Marsic, “Service discovery and invocation for mobile ad hoc 

networked appliances,” In Proceedings of Second International Workshop 

 171



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Networked Appliances (IWNA 00), December 2000. 

[26] S. Cheshire and M. Krochmal. “DNS-Based Service Discovery,” IETF Internet 

draft, September 2008, http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt. 

[27] C. Cho and D. Lee, “Survey of Service Discovery Architectures for Mobile Ad Hoc 

Networks,” Unpublished term paper, Mobile Computing, CEN 5531, Computer 

and information sciences and Engineering Department, University of Florida 

Gainesville, USA, 2005. 

[28] T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR),” RFC 

3626, October, 2003. 

[29] C. Coore, R. Nagpal, and R. Weiss, “Paradigms for Structure in an Amorphous 

Computer,” Technical Report 1614, Massachusetts Institute of Technology 

Artificial Intelligence Laboratory, October, 1997. 

[30] Crossbow Technology: http://www.xbow.com/. 

[31] B. Das and V. Bharghavan, “Routing in ad-hoc networks using minimum connected 

dominating sets,” In Proceedings of IEEE International Conference on 

Communications (ICC), pages 376–380, 1997. 

[32] F. Delmastro, “From Pastry to CrossROAD: Cross-layer ring overlay for ad hoc 

networks,” In Proceedings of the 3rd IEEE International Conference on Pervasive 

Computing and Communication Workshops, pp.60–64, March, 2005. 

[33] E. W. Dijkstra and C.S. Scholten, “Termination Detection for Diffusing 

Computations,” Information Processing Letters, vol. 11, no. 1, 1980.  

[34] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” 

Communications of the ACM, 17:634-644, 1974. 

[35] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century Challenges: 

Scalable Coordination in Sensor Networks,” In Proceedings of ACM MobiCom, 

August, 1999. 

[36] J. Favela, M. Rodriguez, A. Martinez, and V. Gonzalez, “Ambient Computing 

 172

http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt
http://www.xbow.com/


Bibliography 
 

Research for Healthcare: Challenges, Opportunities and Experiences,” 

Computación y Sistemas Vol. 12 No. 1, 2008, pp 109-127, ISSN 1405-5546, 

[37] P. Fergus, K. Kifayat, S. Cooper, M. Merabti, and A. El Rhalibi, “A Framework for 

Physical Health Improvement using Wireless Sensor Networks and Gaming,” In 

Proceedings of ICST/IEEE International Workshop on Technologies to Counter 

Cognitive Decline (TCCD), in conjunction with the Third International 

Conference on Pervasive Computing Technologies for Healthcare (Pervasive 

Health), City University, London, UK, 31st March, 2009. 

[38] G. Forman and J. Zahorjan, “The Challenges of Mobile Computing,” IEEE 

Computer, vol. 27, no. 4, April, 1994. 

[39] R. Gallager, P. Humblet, and P. Spira, “A Distributed Algorithm for Minimum 

Weight Spanning Trees,” ACM Transactions on Programming Languages and 

Systems, vol.4, no.1, pages 66-77, January, 1983. 

[40] H. Garcia-Molina, “Elections in a Distributed Computing System,” IEEE 

Transactions on Computers, vol. C-31, no. 1, 1982. 

[41] Gnutella Protocol Development, http://www.the-gdf.org, 2005. 

[42] E. Guttman and C. Perkins, “Service location protocol,” version 2, June 1999. 

[43] R. Handorean, R. Sen, G. Hackmann, and G.-C. Roman, “Context Aware Session 

Management for Services in Ad Hoc Networks,” In Proceedings of 2005 IEEE 

International Conference on Services Computing (SCC'05), pp.113-120, July, 2005. 

[44] K. P. Hatzis, G. P. Pentaris, P.G. Spirakis, V.T. Tampakas, and R.B. Tan, 

“Fundamental Control Algorithms in Mobile Networks,” In Proceedings of 

Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures, 1999. 

[45] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-Efficient 

Communication Protocol for Wireless Microsensor Networks,” In Proceedings of 

Hawaiian International Conference on Systems Science, January, 2000. 

[46] S. Helal, W. Mann, H. El-Zabadani et al., “The gator tech smart house: A 

 173



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

programmable pervasive space,” IEEE Computer, vol. 38, no. 3, pp. 50-60, 2005. 

[47] S. Helal, N. Desai, V. Verma, and C. Lee, “Konark- a service discovery and 

delivery protocol for ad hoc networks,” In Proceedings of the Third IEEE 

Conference on Wireless Communication Networks WCNC, March, 2003. 

[48] H. Hemmati, A. Ranjbar, M. Niamanesh, and R Jalili, “A Model to Support 

Context-Aware Service Migration in Pervasive Computing Environments,” In 

Proceedings of  the Ninth World Multi-Conf. on Systemics, Cybernetics and 

Informatics, Orlando, Florida, USA, July 10-13, 2005. 

[49] T. D. Hodes, Steven E. Czerwinski, Ben Y. Zhao, Anthony D. Joseph, and Randy 

H. Katz, “An architecture for secure wide-area service discovery,” ACM Wireless 

Networks Journal, vol. 8, nos. 2/3, pp. 213–230, 2002. 

[50] Jini Technology Core Platform Specification, v. 2.0, Sun Microsystems, June 2003; 

www.sun.com/software/jini/specs/core2_0.pdf. 

[51] D. Johnson, D. Maltz, and J. Broch, “DSR: The dynamic source routing protocol 

for multihop wireless ad hoc networks,” Chapter 5, pp.139–172, Addison-Wesley, 

2001. 

[52] S. Johnson. “Emergence: the connected lives of ants, brains, cities, and software,” 

Penguin. 2001. 

[53] E. Kang, M. J. Kim, E. Lee, and U. Kim, “DHT-Based Mobile Service Discovery 

Protocol for Mobile Ad Hoc Networks,” In Proceedings of the Fourth International 

Conference on Intelligent Computing: Advanced Intelligent Computing Theories 

and Applications - with Aspects of Theoretical and Methodological Issues (ICIC 

'08), September, 2008. 

[54] P. Kang, C. Borcea, G. Xu, A. Saxena, U. Kremer, and L. Iftode, “Smart Messages: 

A Distributed Computing Platform for Networks of Embedded Systems,” Computer 

Journal, special issue on mobile and pervasive computing, pp. 475-494, 2004. 

[55] Kazaa, http://www.kazaa.com. 

 174

http://www.sun.com/software/jini/specs/core2_0.pdf
http://www.kazaa.com/


Bibliography 
 

[56] C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa, B. MacIntyre, E. D. 

Mynatt, T. Starner, and W. Newstetter, “The Aware Home: A Living Laboratory for 

Ubiquitous Computing Research”, In Proceedings of Cooperative Buildings 

(CoBuild’99), pp.191-198, 1999. 

[57] M. J. Kim, M. Kumara, and B.A. Shirazi, “Service Discovery Using Volunteer 

Nodes in Heterogeneous Pervasive Computing Environments,” Journal of 

Pervasive and Mobile Computing, vol. 2, pp. 313-343, 2006. 

[58] M. Klein, B. Konig-Ries, and P. Obreiter, “Service rings – a semantic overlay for 

service discovery in ad hoc networks,” In DEXA Workshops, pages 180-185, 2003. 

[59] M. Klein, B. Konig-Ries, and P. Obreiter, “Lanes – a light weight overlay for 

service discovery in mobile ad hoc networks,” Technical Report 2003-6, 

University of Karlsruhe, May 2003. 

[60] U. C. Kozat and L. Tassiulas, “Service discovery in mobile ad hoc networks: an 

overall perspective on architectural choices and network layer support issues,” Ad 

Hoc Networks 2(1): 23-44 (2004).  

[61] M. Kumar and S. K. Das, “Pervasive computing: Enabling technologies and 

challenges,” In A. Zomaya, editor, Handbook of Nature-Inspired and Innovative 

Computing: Integrating Classical Models with Emerging Technologies. Springer, 

2006. 

[62] C. Lee and S. Helal, “A Multi-Tier Ubiquitous Service Discovery Protocol for 

Mobile Clients,” In Proceedings of the International Symposium on Performance 

Evaluation of Computer and Telecommunication Systems (SPECTS’03), Montréal, 

Canada, 2003. 

[63] W. Lee, W. Woo, and J. Lee, “TARBoard: Tangible Augmented Reality System for 

Table-top Game Environment,” In Proceedings of the Pervasive Games Workshop 

2005. 

[64] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer, and D. 

 175



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

Culler, “The Emergence of Networking Abstractions and Techniques in TinyOS,” In 

Proceedings of NSDI, March, 2004. 

[65] C. M. Lin, G. M. Chiu, and C. H. Cho, “A New Quorum-Based Scheme for 

Managing Replicated Data in Distributed Systems”, IEEE Trans. Computers 

51(12): 1442-1447 (2002). 

[66] D. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless Networks,” IEEE 

Journal on Selected Areas in Communications, 15(7):1265-75, September, 1997. 

[67] N. Malpani, J. L. Welch, and N. vaidya, “Leader Election Algorithms for Mobile 

Ad Hoc Networks,” In Proceedings of Fourth International Workshop on Discrete 

Algorithms and Methods for Mobile Computing and Communications, Boston, 

MA, August, 2000. 

[68] R. S. Marin-Perianu, P. Hartel, and H. Scholten, “A Classification of Service 

Discovery Protocols,” Technical Report TR-CTIT-05-25, Centre for Telematics 

and Information Technology, University of Twente, 2005. 

[69] A. N. Mian, R. Baldoni, and R. Beraldi, “A Survey of Service Discovery Protocols 

in Multihop Mobile Ad Hoc Networks,” IEEE Pervasive Computing, 8(1):66--74, 

2009. 

[70] M. Nidd, “Service Discovery in DEAPspace,” IEEE Personal Communications, 

(2001) 39-45 

[71] S.H. Park, “An Election Protocol in a Mobile Environment,” In Proceedings of 

PDPTA2000, pp. 200-210, June, 2000. 

[72] V. D. Park and M. S. Corson, “A Highly Adaptive Distributed Routing Algorithm 

for Mobile Wireless Networks,” In Proceedings of IEEE INFOCOM, April, 1997.  

[73] D. J. Patterson, O. Etzioni, D. Fox, and H. Kautz, “Intelligent Ubiquitous 

Computing to Support Alzheimer’s Patients: Enabling the Cognitively Disabled”, 

In Proceedings of the First International Workshop on Ubiquitous Computing for 

Cognitive Aids (UniCog), 2002. 

 176



Bibliography 
 

[74] D. Peleg, “Time Optimal Leader Election in General Networks,” Journal of 

Parallel and Distributed Computing, vol.8, no.1, pages 96-99, January, 1990. 

[75] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” In 

Proceedings of Second IEEE Workshop on Mobile Computer Systems and 

Applications, pp.90–100, IEEE Computer Society, February, 1999. 

[76] H. Pucha, S. Das, and Y. Hu, “Ekta: An efficient DHT substrate for distributed 

applications in mobile ad hoc networks,” In Proceedings of Sixth IEEE Workshop 

on Mobile Computing Systems and Applications (WMCSA), 2004. 

[77] O. V. Ratsimor, D. Chakraborty, A. Joshi, T. Finin, “Allia: Alliance-based service 

discovery for ad hoc environments,” In Proceedings of ACM Workshop on Mobile 

Commerce (WMC`02), September, 2002. 

[78] V. Raychoudhury, J. Cao, and W. Wu, “Top K-leader Election in Wireless Ad Hoc 

Networks,” In Proceedings of Seventeenth International Conference on Computer 

Communications and Networks (ICCCN’08), St. Thomas, U.S. Virgin Islands, 

August 3 - 7, 2008. 

[79] V. Raychoudhury, J. Cao, W. Wu, and S. Lai, “K-Directory Community: Reliable 

Service Discovery in MANET,” In Proceedings of Eleventh International 

Conference on Distributed Computing and Networking (ICDCN2010), January 3-

6, 2010, Kolkata, India. 

[80] O. Riva, J. Nzouonta, and C. Borcea, “Context-aware Fault Tolerance in 

Migratory Services,” In Proceedings of Fifth Annual International Conference on 

Mobile and Ubiquitous Systems: Computing, Networking and Services 

(MobiQuitous'08), July, 2008. 

[81] O. Riva, T. Nadeem, C. Borcea, and L. Iftode, “Context-aware Migratory Services 

in Ad Hoc Networks,” IEEE Transactions on Mobile Computing, 6(12):1313-1328, 

December, 2007. 

[82] R. Robinson and J. Indulska, “Superstring: A Scalable Service Discovery Protocol 

 177



Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

for the Wide Area Pervasive Environment,” In Proceedings of the Eleventh IEEE 

International Conference on Networks, Sydney, September, 2003. 

[83] M. Rodriguez, V. Gonzalez, P. Santana, and J. Favela, “A Home-based 

Communication System for Older Adults and their Remote Family,” Computers in 

Human Behavior Journal. Vol. 25. Pp. 609-618. Elsevier Press. ISSN: 0747-5632 

[84] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Location, 

and Routing for Large-Scale Peer-to-Peer Systems,” In Proceedings of IFIP/ACM 

International Conference on Distributed Systems Platforms (Middleware), Lecture 

Notes in Computer Science (LNCS), Volume 2218, pp. 329–350, Heidelberg, 

Germany, November, 2001. 

[85] F. Sailhan and V. Issarny, “Scalable Service Discovery for MANET,” In 

Proceedings of IEEE PerCom’05, pp. 235-246, 2005. 

[86] The Salutation Consortium. Salutation architecture specification version 2.0c, June, 

1999, available online at http://www.salutation.org/. 

[87] C. Santoro, F. Paternò, G. Ricci, and B. Leporini, “A Multimodal Mobile Museum 

Guide for All,” In Proceedings of Mobile Interaction with the Real World, 

Workshop at MobileHCI 2007, Singapore, Sep 11--14, 2007. 

[88] Y. Shi, W. Xie, G. Xu, R. Shi, E. Chen, Y. Mao, and F. Liu, “The Smart Classroom: 

Merging Technologies for Seamless Tele-Education,” IEEE Pervasive Computing, 

vol. 2, no. 2, pp. 47-55, April-June 2003. 

[89] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: 

A scalable peer-to-peer lookup service for internet applications,” In Proceedings 

of the 2001 ACM SIGCOMM Conference, pages 149–160, August, 2001. 

[90] V. Sundramoorthy, J. Scholten, P. G. Jansen, and P. H. Hartel, “Service discovery at 

home,” In Proceedings of Fourth International Conference on Information, 

Communications & Signal Processing and Fourth IEEE Pacific-Rim Conference 

on Multimedia (ICICS/PCM). IEEE Computer Society Press, Singapore. pp. 1929-

 178



Bibliography 
 

1933, December, 2003. 

[91] K. Takasugi, M. Nakamura, S. Tanaka, and M. Kubota, “Seamless Service 

Platform for Following a User’s Movement in a Dynamic Network Environment,” 

In Proceedings of PerCom 2003, pp. 71-78. 

[92] G. Taubenfeld, “Leader Election in presence of n-1 initial failures,” Information 

Processing Letters, vol.33, no.1, pages 25-28, October, 1989.  

[93] B. Traversat, M. Abdelaziz, and E. Pouyoul, “Project JXTA: A Loosely-Consistent 

DHT Rendezvous Walker,” Sun Microsystems Inc. 

http://www.jxta.org/project/www/docs/jxta-dht.pdf, May, 2003. 

[94] J. Tyan and Q.H Mahmoud, “A Comprehensive Service Discovery Solution for 

Mobile Ad Hoc Networks”, In ACM/Kluwer Journal of Mobile Networks and 

Applications (MONET), Vol. 10 (8), pp. 423-434, August, 2005. 

[95] UPnP Device Architecture 1.0, UPnP Forum, December, 2003, 

www.upnp.org/resources/documents/CleanUPnPDA10120031202s.pdf. 

[96] A. Varshavsky, B. Reid, and E. de Lara, “A Cross Layer Approach to Service 

Discovery and Selection in Manets,” In Proceedings of Second International 

Conference on Mobile Ad-Hoc and Sensor Systems (MASS’05), IEEE Press, 

Washington DC, USA, November, 2005. 

[97] S. Vasudevan, J. Kurose, and D. Towsley, “Design and Analysis of a Leader 

Election Algorithms for Mobile Ad Hoc Networks,” In Proceedings of ICNP, pp. 

350–360, 2004. 

[98] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, and D. Towsley, “Leader 

Election Algorithms for Wireless Ad Hoc Networks,” In Proceedings of IEEE 

DISCEX III, April 22-24, 2003. 

[99] P. Wan, K. Alzoubi, and O. Frieder, “Distributed construction of connected 

dominating set in wireless ad hoc networks,” Mobile Networks and Applications, 

9(2), 2004. 

 179

http://www.jxta.org/project/www/docs/jxta-dht.pdf
http://www.upnp.org/resources/documents/CleanUPnPDA10120031202s.pdf


Reliable Service Discovery and Access In Pervasive Computing Environments: Vaskar Raychoudhury 
 

[100] J. Wu, F. Dai, M. Gao, and I. Stojmenovic, “On calculating power-aware 

connected dominating sets for efficient routing in ad hoc wireless networks,” 

Journal of Communications and Networks, 4(1), March 2002. 

[101] J. Wu and M. Zitterbart, “Service awareness in mobile ad hoc networks,” Paper 

Digest of the 11th IEEE Workshop on Local and Metropolitan Area Networks 

(LANMAN), Boulder, Colorado, USA,  March, 2001. 

[102] S. S. Yau, S. K. S. Gupta, F. Karim, S. I. Ahamed, Y. Wang, and B. Wang, “Smart 

Classroom: Enhancing Collaborative Learning Using Pervasive Computing 

Technology,” In Proceedings of American Society of Engineering Education 2003 

Annual Conference, June, 2003. 

[103] H. J. Yoon, E. J. Lee, H. Jeong, and J. S. Kim, “Proximity-Based Overlay Routing 

for Service Discovery in Mobile Ad Hoc Networks,” In Proceedings of Nineteenth 

International Symposium on Computer and Information Sciences (ISCIS), 2004. 

[104] T. Zahn and J. Schiller, “MADPastry: A DHT substrate for practicably sized 

MANETs,” In Proceedings of Fifth Workshop on Applications and Services in 

Wireless Networks (ASWN), June, 2005. 

[105] F. Zhu, M. Mutka, and L. Ni, “Splendor: A secure, private and location-aware 

service discovery protocol supporting mobile services,” In Proceedings of the First 

International Conference on Pervasive Computing and Communication 

PerCom’03, Pages 235-242, 2003. 

[106] F. Zhu, M. W. Mutka, and L.M. Ni, “Service Discovery in Pervasive Computing 

Environments,” IEEE Pervasive Computing, vol. 4, no. 4, pp. 81–90, 2005. 

 180


	Abstract 
	Publications 
	Acknowledgements 
	Table of Contents 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	List of Figures 
	List of Tables 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	List of Abbreviations 
	Chapter 1  Introduction 
	1.1 Overview 
	1.2 Service Discovery in Pervasive Computing Environments – New Requirements 
	1.3 Fault Tolerant Service Discovery in Pervasive Computing 
	1.4 Contribution of the Dissertation 
	1.5 Organization of the Dissertation 
	Chapter 2  Background and Literature Review 
	2.1 General Components of a Service Discovery System 
	2.1.1 Network Structure 
	2.1.2 Service Discovery Architecture 
	2.1.3 Services and Service Discovery Protocols 
	2.1.4 System Support Components 

	2.2 Classification of Service Discovery Protocols 
	2.3 Service Discovery in Infrastructure-based Networks 
	2.3.1 SDPs for Local Area Networks 
	2.3.2 SDPs for Wide Area Networks 
	2.3.3 Fault Tolerance and Mobility Management Mechanisms 

	2.4 Service Discovery in Infrastructure-less Networks 
	2.4.1 Directory-less SDPs 
	2.4.2 Directory-based SDPs 
	2.4.3 Fault Tolerance and Mobility Management Mechanisms 

	2.5 Comparison of Existing Service Discovery Protocols 

	Chapter 3  Directory Community: A Framework for Reliable Service Discovery and Access 
	3.1 Generic Framework Structure 
	3.2 Directory Community Creation 
	3.3 Reliable Service Discovery using Directory Community 
	3.4 Seamless Service Access using Directory Community 
	3.5 Summary 

	 
	Chapter 4  Formation of Directory Community 
	4.1 Overview 
	4.2 Background 
	4.3 Problem Definition and Correctness Properties 
	4.4 The Top K-Leader Election Algorithm 
	4.4.1 Data Structures and Message Types 
	4.4.2 K Leader Election Algorithm 
	4.4.3 K-leader Election in Presence of Network Partition 
	4.4.4 Handling Node Failures 
	4.4.5 Handling Node Recoveries 
	4.4.6 Optimization in Message Cost 

	4.5 Correctness of the Algorithm 
	4.6 Performance Evaluation 
	4.6.1 Simulation Setup and Metrics 
	4.6.2 Simulation Results and Analysis 

	4.7 Prototype Implementation 
	4.7.1 Testbed Architecture 
	4.7.2 Implementation 
	4.7.3 Result Analysis 

	4.8 Summary 

	Chapter 5  Quorum-based Reliable Service Discovery 
	5.1 Overview 
	5.2 Protocol Preliminaries 
	5.2.1 Directory Community Formation and Domain Construction 
	5.2.2 Construction of Directory Quorum 

	5.3 The Proposed Service Discovery Protocol 
	5.3.1 Data Structures and Message Types 
	5.3.2 Maintenance of Service Discovery Infrastructure  
	5.3.3 Service Registration 
	5.3.4 Service Request/Reply 

	5.4 Performance Evaluation 
	5.4.1 Simulation Setup and Metrics 
	5.4.2 Simulation Results and Analysis 
	5.4.2.1 Simulation with Fixed Node Density 
	5.4.2.2 Simulation with Variable Node Density 


	5.5 Prototype Implementation 
	5.6 Summary 

	Chapter 6  Service Handoff Based Seamless Service Access 
	6.1 Overview 
	6.2 Background 
	6.3 System Model and Preliminaries 
	6.3.1 System Model 
	6.3.2 Basic Service Discovery Protocol 

	6.4 The Proposed Service Handoff Protocols 
	6.4.1 Service Provider Initiated Handoff Protocol 
	6.4.2 User Terminal Initiated Handoff Protocol 
	6.4.3 Hybrid Handoff Protocol 

	6.5 Performance Evaluation  
	6.5.1 Simulation Setup and Metrics 
	6.5.2 Simulation Results and Analysis 
	6.5.2.1 Performance of Load Balancing 
	6.5.2.2 Performance of Service Discovery and Access 
	6.5.2.3 Performance Comparison of Service Handoff Protocols 


	6.6 Summary 

	Chapter 7  Conclusion and Future Directions 
	7.1 Conclusions 
	7.2 Future Directions 

	 
	 
	 
	 
	 
	Bibliography 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 




