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Abstract 

 

The utilization of multi-robot systems has a major advantage when comparing to 

single robot systems, for example, with multiple robots working together, it has the 

potential to accomplish a task faster than a single robot. However, when a team of 

robots is sharing the same worksite, the Simultaneously Localization and Mapping 

(SLAM) problem becomes much more difficult to resolve because a huge amount of 

information is needed to be processed as well as analyzed. But on the other hand, 

multi-robot SLAM can be more efficient if robots can exchange and share information 

regarding their sensed data properly. 

 

In the SLAM problem, especially for Autonomous Underwater Vehicle (AUV) and 

Unmanned Aerial Vehicle (UAV), it is necessary to include non-linear and 

non-Gaussian parameters, for which the traditional Kalman Filter (KF) cannot yield 

ideal solution. In applications involving non-linear and non-Gaussian parameters, 

Particle Filters (PF), which are based on the concept of Monte Carlo simulation, are 

more suitable estimation techniques. However, in problems involving multiple 

dimensions, such as the multi-robot SLAM problem, when a huge number of particles 

are being used, two problems, namely particle impoverishment and sample size 

dependency, will occur during the particle updating stage and these problems will 

become more severe. The problems will reduce the accuracy of the estimation results 

and resampling algorithms, such as Sequential Importance Sampling, Stratified 

Resampling and Systematic Resampling are used to alleviate these two problems. 

 

In this thesis, a novel PF algorithm for tackling the particle impoverishment and 

sample size dependency problems is being studied and its application in a multi-robot 

system is examined. In this algorithm, Ant Colony Optimization (ACO) is 

incorporated into the generic particle filter in order to drive the proposal distribution 

to approximate the optimal solution. Mathematical proof and results obtained from a 
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single variable estimation problem as well as from the robot localization problem 

show that, after the ACO optimization, better proposal distribution and more accurate 

estimation results can be obtained.  

 

In order to evaluate the performance of the ACO improved PF (PFACO) when applied 

to non-linear and non-Gaussian problems, such as the localization and SLAM 

problem, studies were conducted and utilization of PFACO algorithm for multi-robot 

systems was introduced. In a multi-robot environment, when two robots encounter, 

the same information on the same estimation problem represented by the two sets of 

particles will be re-evaluated based on information conveyed by particles from 

different sets. The particles are then merged into a single set and in such cases, 

parallel computing can be applied in order to reduce the processing time. By software 

simulation, our results are better than those from traditional approaches both in 

estimation error and execution time.   
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Chapter 1 Robot, Multi-robot and SLAM 

1.1 Robots 

A robot is a virtual or mechanical artificial system. In practice, with dedicated 

electro-mechanical design, by its appearance or movements, it has intent or agency of 

its own to accomplish tasks. There is no consensus on what machines should be 

qualified as robots, but there is a general agreement among experts and the public that 

robots tend to do some or all of the followings: moving around, operating a 

mechanical limb, sensing and manipulating their environments, and exhibiting 

intelligent behavior, especially behavior which mimics humans or other animals, 

either mentally or physically.  

 

At present, based on their applications, there exist two types of robots, namely 

general-purpose autonomous robots and dedicated robots. The general-purpose 

autonomous robots typically possess the ability to navigate autonomously within the 

environment, handling some basic tasks and communicate with human or other robots. 

General-purpose robots may perform a variety of functions simultaneously or they 

may take on different roles at different times of the day. Dedicated robots concentrate 

on a specific service or industrial tasks, such as car production, packaging and 

automated guided vehicles.  

 

While most robots are being used in industry or at home, performing labor intensive 

or life saving jobs, new types of robots are under development in cutting-edge 

laboratories around the world and these include swarm robots [1, 2], nanorobots [3], 

reconfigurable robots[4], fully autonomous rescue robot [5, 6], etc.  
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1.2 Multi-robot System 

The research of multi-robot system has grown very fast in recent years. It is probably 

due to the fact that researchers realize the multi-robot system has advantages over 

single robot system. First, multi-robot system which is composed of low-cost robots is 

more fault-tolerant than a single robot that has expensive equipment [7]. Also, it has 

the ability to finish complex tasks more efficiently than a single robot. For example 

multiple robots can estimate their position faster and more accurately due to their 

ability of exchanging information related to their positions faster whenever they sense 

each other[8]. Moreover, by scheduling the tasks cooperatively, less computational 

burden is assigned to each robot in a multi-robot system than given to a single robot 

by exchanging, broadcasting and integrating information among robots [9, 10]. 

 

1.3 Simultaneous Localization and Mapping (SLAM) 

Simultaneous Localization and Mapping (SLAM) is one of the active topics in robotic 

navigation research. Mobile robot system that equipped with SLAM solution as well 

as able to navigate autonomously is a very promising feature because they can be 

applied to explore environments where it is impossible for human beings to visit, such 

as underwater [11, 12], underground [13] or even in other planets, such as Mars [14] 

that are not suitable to carry-out long-term human activities due to safety concerns 

and cost effectiveness issues.  

 

One of the basic prerequisites in robotic autonomous navigation is to endow robots 

with spatial memory as well as orientation and directional processing abilities that 

parallel those of human beings, therefore, they possess the ability to build a map and 

from this self-generated map to localize themselves. Moreover, the SLAM methods 

provide a mean through which a map of the environment can be built while at the 

same time providing an estimation of the location of the robot [15].  
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The key challenge of SLAM is to deal with various kinds of uncertainties, including 

noise, ambiguity, biases, and modeling errors. In [16], Brooks summarized this 

problem and suggested probabilistic approaches to solve it: 

Mobile robots sense their environment and receive error laden readings. 

They try to move a certain distance and direction, only to do so 

approximately. Rather than try to engineer these problems away it may 

be possible, and may be necessary, to develop map making and 

navigation algorithm which explicitly represent these uncertainties, but 

still provide robust performance. 

 

In fact, numerous studies discovered that, by controlling statistical bounds on the 

estimated and observed environmental information, it is possible to achieve the 

approximation by balancing the uncertainties in SLAM due to system noise and 

over-confidence by relying on measured data which exceeds the objective accuracy of 

approximation.  

 

Although many other localization and mapping methods exist, e.g. GPS, if the 

application is not an air-based system or when GPS signals cannot be received 

accurately, then establishing a solution for the SLAM problem becomes necessary [17, 

18]. Dead reckoning is another process to estimate one’s current position based on a 

previously determined position. However, even if we have motion measurement, 

without the observation information to correct the prior estimated pose and mapping 

and formulate the posterior values, it is no doubt that the estimated parameters will 

gradually deviate from the real one [19, 20]. Assuming a situation where we are 

operating in a GPS-denied environment and to solve the self-localization problem, it 

is very difficult to obtain a comparatively accurate result with only the motion 

measurements or even with a combination of Inertial Navigation System (INS) such 

as accelerometers, gyroscopes, wheel encoders, doppler, or image based 

pseudo-inertial measurements, since very small motion errors will propagate 
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themselves forward in time and enlarging the error. This problem, along with the lack 

of state observability, will lead to a diverge in the estimation results; in other words 

the accuracy of the state estimation will quickly worsen [21, 22]. In certain situations 

many of these problems can be alleviated, or at least delayed, by enforcing certain 

constraints on portions of the navigation filter [22], which serves as statistical 

estimator based on data obtained various sensors.  

 

Moreover, if we only attempt to build a map or localize a target using relative 

measurements, such as range and bearing information, it may not be possible to build 

a map without knowing the robot's location. In situations where good priori 

information is known, in regards to the robot's location, a solution to the map building 

problem can be obtained. However, as soon as the robot begins to move around, the 

uncertainty in its location will aggregate without bound for reasons that have been 

stated previously, so the map building result will degrade. Solving the SLAM problem 

is the logical resolution to these issues. 

 

Another advantage for solving the SLAM problem is that it allows us to apply 

instruments which are light-weight and low-cost, as opposed to attempt to solve the 

mapping and localization problems separately which may in fact require more costly 

and complex instrumentations (e.g. GPS). When implemented correctly, a solution to 

the SLAM problem should involve a minimal amount of instrumentation. Additionally, 

solving the SLAM problem can be done in an autonomous fashion using online 

algorithms; therefore it can be anticipated that little or no user input will be required 

for utilizing a SLAM instrument suite.  

 

Due to advantages produced by the SLAM technique when comparing to other 

localization and mapping methods, there exist applications which successfully adopt 

SLAM method to produce substantial improved results [23]. A number of successful 

experiments for indoor mobile robots have been performed under various indoor 

situations[22] and these robots implement some kinds of experimental SLAM 
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algorithms, such as  DP-SLAM that uses novel data structures to achieve real-time 

SLAM algorithm without landmarks  [23, 24], 6D-SLAM which is capable of 

closing the loop in six-dimension with 3D scanners  [25], and vSLAM (Visual 

SLAM) [26]. The literature [27] presented a comprehensive survey on various 

algorithms when applied to indoor mobile robot experiments. In addition, special 

outdoor applications can be found in undersea autonomous vehicles [27-29] , aerial 

unmanned vehicle [30] and robotic exploration of mines [31]; future application in 

space exploration [32] is also possible. Currently, in many of these applications, the 

SLAM solution is only used for navigation purpose, however some of those systems 

do make use of information obtained from the created map for other purpose [31]. 

 

In addition to robotics applications, a complete SLAM solution may help people to 

enhance their capabilities in localization and mapping, which is potentially a very 

powerful tool. In particular, it is hypothesized that the correct implementations of 

SLAM solutions combined with the proper instrument suite will enable one to design 

systems that could be used by humans, which operate autonomously. Instead of using 

the heavy and expensive instrument, such systems only equip light-weight and 

low-cost instrument that can be developed in future. One example of this can be used 

in military force to localize targets at a distance, to track future troop movements and 

real-time mapping. This scenario filled by SLAM based systems would be for 

environments in which GPS signals either are not accurate enough, or are not 

dependable, such as the urban canyon or indoor environments [33]. Similar SLAM 

systems for non-military applications may also exist in areas of human space planet 

exploration, as well as in terrestrial applications such as for the use of search and 

recovery teams in situations when GPS signals are not accessible or are not too 

accurate. 

 



 

 6 

1.4 SLAM Solutions 

A common scenario adopted in SLAM application involves a robot traveling in an 

area giving neither the absolute position of the robot nor an accurate map of the 

environment. In order to estimate a consistent map, the robot has to process 

information related to its surrounding features and information (e.g. heading and 

position information). To reduce the error, in this process, these relative observations 

of features of the surrounding are used to jointly estimate the environment by 

inferring the position and heading, associated with the previously stored information 

(called prior). To accomplish this joint estimation, there are many SLAM algorithms 

that exist in the literature, two main branches of which are the Kalman Filters and 

Particle Filters. 

1.4.1 Kalman Filters 

The first SLAM solution is based on the Kalman Filter concept. As an recursive filter, 

the Kalman Filter is an optimal Bayesian estimator that operates strictly based on the 

assumptions that the system can be estimated by a Gaussian posterior probability 

distribution together with a linear motion and measurement model [34, 35]. 

Researchers later derived a technique that the nonlinear motion and measurement 

model can approximately assume to be linear, which resulted in the Extended Kalman 

Filter that is an analytical approximation of the Bayes’ filter. This recursive solution 

provided by the extended Kalman Filter is sufficient if the posterior probability 

distribution for SLAM states can be adequately characterized by a uni-modal 

Gaussian distribution [36].  

1.4.2 Particle Filters 

Other approaches are based on the concept of Monte Carlo Methods, which has the 

ability to present posterior probability with a large number of discrete, weighted 

samples[37]. In the realization of SLAM, each sample (particle) is a hypothesis of the 
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posterior (robot pose and the corresponding set of landmarks) that is propagated 

according to a motion model and then evaluates the fitness of this hypothesis relative 

to the target distribution [38], which mostly related to measurement information. 

From this particle-based approach, some algorithms are successful including the 

DP-SLAM [23, 24] and FastSLAM [39], as well as methods that attempt to describe 

the geometry of objects in the map with various methodologies [40, 41]. 

Unfortunately, many of these methodologies have serious limitations. For example, 

the DP-SLAM algorithm is formulated for use with a specific type of measurement 

device. In the cases that attempt to describe the complex geometries of the 

environment, it is difficult to compute a solution in real-time especially for 

higher-dimensional or geometrically complex situations, such as with numerous 

landmarks of various shapes. 

 

1.4.3 Particle Filtering SLAM 

In the following, we will briefly outline Particle Filters (PF) adopted in SLAM 

application, while details of the particle filter will be introduced in Chapter 2. PF 

typically draws a new set of particles after weights have been assigned. In PF, 

uncertainty of the state is stored in dispersion of these uniformly weighted samples; a 

broader spread implies more uncertain estimation. Consequently, multi-modal 

distributions from state constraints or nonlinear propagation can be easily 

approximated. However, too many particles having small weight will decrease the 

efficiency of particle representation, which means that more particles will be needed 

to construct the distribution. To avoid the problem, the hypotheses are compared with 

a feature observation, and those particles which are consistent with the observation 

are given larger weights and duplicated, that is, the resampling process. After 

resampling, particles have smaller weights are likely to be eliminated. Surviving 

particles are then propagated according to motion control information at the next time 

step, and these processes are being repeated. 
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Advantages of the PF based SLAM include the ability to represent an arbitrarily 

complicated posterior distribution of the robot pose, as well as many independent 

estimates of the map. Additionally, PF converge to any distributions with infinite 

particles [37] so that theoretically it will achieve the optimal posterior solution. As 

computational power increases, estimators based on PF will only improve their 

characterization of the posterior. Unlike the Kalman Filters, the computational 

complexity of the PF scales linearly with the dimension of the state, allowing 

favorable application in online SLAM applications. Furthermore, the most important 

features are that the PF based SLAM algorithms have demonstrated solutions to two 

unsolvable problems in SLAM: global localization and the kidnapped robot problem 

[42]. Both problems utilize the multiple hypothesis nature of PF to determine true 

position under the initial global uncertainty. 

 

Although there are numerous advantages in PF SLAM, it also includes certain 

disadvantages that are difficult to overcome especially the particle impoverishment 

and particle size dependency problem. When particles are evenly distributed but do 

not match the likelihood distribution in a plausible manner, the efficient sample size is 

decreased, and therefore, the particle impoverishment problem occurs [37]. As a result, 

intuitively, this PF application needs more sample to generate the posterior, resulting 

in particle size dependency. The two problems are somehow related to the failure that 

the proposal distribution (in most cases characterized by the transition model) is not 

able to meet the target distribution (from observation), usually derived from an 

accurate sensor measurement[37]. This scenario is becoming increasingly relevant to 

the current trends in inertial systems produce smaller, chip-based accelerometers and 

gyros [43]. In these cases, an extremely accurate feature observation device would be 

ideal, since, hypothetically, there are an infinite number of particles preserved in the 

algorithm. Practical implementations are restricted to a finite number of particles, the 

problem becomes more severe especially in higher dimension problems, such as in 

multi-robot SLAM, which causes the estimated dimension to be very high compared 
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to the particle size [44].  

 

1.5 Major Contributions 

To avoid the problems in PF, the basic idea is to duplicate particles with larger 

weights and eliminate the low-weighted ones; this is achieved by the re-sampling 

process. Previous researchers show numerous resampling methods [45-47]. However, 

they become useless when applied to the multi-robot SLAM application because of 

the fact that it is a high dimension estimation problem. Furthermore, these methods 

are not promising enough because the copied samples are no longer statistically 

independent after resampling so the previous convergence result will be lost. It is 

called losing sampling diversity [48]. This thesis proposes a novel method to optimize 

the particle distribution which meets the following requirements: 

 The Particle Impoverishment and Particle Size Dependency problem can be 

avoided in multi-robot SLAM application. 

 

 This kind of PF is suitable to distributed implementation in a multi-robot 

processing system, e.g. it may be computed in parallel.  

 

1.6 Thesis Outline 

In Chapter 2, the concept of PF will be discussed. They are considered to be form of 

sequential methods of Monte Carlo Simulation, using a set of random samples to draw 

the posterior density function of a Bayesian Estimation. Furthermore, some improved 

PF methods, as well as their significances and drawbacks, are discussed. 

 

In Chapter 3, we introduce a biologically inspired method namely the Ant Colony 

Optimization method. This method mathematically simulates the nature behavior of 
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ants; they can always travel along the shortest path between their food and colony, 

because they leave a matter called pheromone along their paths. In recent years, this 

phenomenon is noticed by scientists and, accordingly, created such an optimization 

method – the ACO. 

 

In Chapter 4, we will introduce an improved Particle Filter method, which possibly 

avoid the PF limitations and also is suitable for implementation in a multi-robot 

system. Considering the requirements, we apply ACO into PF to re-arrange the 

particles so that the proposal distribution is similar to the target distribution.  

 

In Chapter 5, we present mathematical and experimental proofs of the ACO improved 

PF. In the mathematical proof, the K-L Divergence between the proposal distribution 

and the target distribution will show that ACO actually has the ability to optimize the 

particle distribution. In addition, various PFs are employed to accomplish the same 

estimation task in order to compare their performances.  

 

In Chapter 6, utilization of the ACO improved PF on a multi-robot system is 

discussed. The basic idea of the system is as follows: before the encounter between 

robots, PFs are running independently in each robot. As soon as the robots encounter, 

the localization PF still runs separately, while the mapping task can be achieved with 

two approaches based on our requirements. In the efficient approach the mapping 

estimation is assigned to robots; in the accurate approach, mapping estimation is 

running separately in each robot, and then, combination and correction of all 

estimated maps is completed to build an accurate map.  

 

In Chapter 7, techniques presented in previous chapters are implemented in a Matlab 

simulation platform. To further compare the performance of ACO improved PF, 

results of other estimation methods are also presented. Finally, Chapter 8 states the 

main conclusions and further direction for PF based SLAM research. 



 

 11 

Chapter 2 SLAM and its Particle Filtering Implementation 

2.1 Introduction 

Solving the Simultaneous Localization and Mapping (SLAM) problem is the key to 

implement autonomous robot systems because the SLAM solution builds the 

surrounding map and pin-points the location of the robot in the map which is 

necessary information for mobile robot navigation. In addition, the possibility to 

explore the surrounding and accomplish tasks within an estimated environment can 

also be achieved if a map is available. Applications with full SLAM solution is 

necessary in situations when global measurements, such as GPS, are not available, for 

instance in applications where a robot operates indoors or in an urban canyon. 

However, in SLAM, small errors due to signal noises from various sources including 

sensors and actuators will aggregate. In such situations, uncertainties related to 

locations of objects in the environment as well as poses of robots become tightly 

linked. This is due to the fact that in these situations, the robot must rely on relative 

measurements related to its current pose. To solve this probabilistic problem, SLAM 

researchers mainly focus on the probabilistic derivation of the general Bayes’ Filters 

[49], and their solution based on Extended Kalman Filters (EKF), Particle Filters (PF) 

and their descendants. 

 

This chapter begins with a review of the Bayes’ Filter and its application to the SLAM 

problem. It is followed with a brief introduction to the Kalman Filters, and PF, for 

which an in-depth discussion is given. In addition, some improved PF algorithms are 

also introduced.  
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2.2 SLAM Fundamentals 

As shown in Figure 2.1, we consider a mobile robot moving through an environment 

taking relative observations using a noisy sensor.  

 

(a) 

 

 

 

 

 

(b) 

 

Figure 2.1 Demonstrations of Mobile Robot navigation and its sensor measurement 

(a) The mobile robot is navigating in the environment, the robot state includes { , , }R RX Y  ; (b) 

Measurement from the robot, the grid-occupancy information from the sensor is regarded as 

relative observation { }z  so that the state { , , }R RX Y  can be estimated. 

 

As mentioned in Chapter 1, the robotic SLAM problem can be treated as a 

probabilistic problem, estimating the robot’s location as well as parameters of the map 

are based on the maximum probability derived from the given measurements and 

z 

YR                            XR 
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inputs. This estimation problem can be related to a Hidden Markov Model (HMM), as 

shown in Figure 2.2, which is to estimate the single variable state given the 

measurement. 

 

 

Figure 2.2 Hidden Markov Model 

In the second row, each shape represents a random variable that can adopt any of a number of 

values. The random variable st is the hidden state at time t (with the model from the above 

diagram, 1 2 3{ , , ,..., }t ns s s s s . The random variable tz is the observation at time t, 

1 2 3{ , , ,..., }t nz z z z z  . The arrows in the diagram denote conditional dependencies 

representing the probability 12 23 34{ , , , }p p p between states. 

 

 

From Figure 2.2, it is clear that the conditional probability distribution of the hidden 

variable ts  at time t, given the value of the hidden variable 1ts  , depends only on the 

value of the hidden variable 1ts  ; the values at time t − 2 and before have no 

influence. This is called the Markov property. Similarly, the value of the observed 

variable tz  only depends on the value of the hidden variable ts  (both at time t). 

 

 

 

 

 

 

        p12            p23           p34                    

S1                S2           S3            S4               Sn 

 

 

z1          z2            z3            z4               zn 
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We can augment this Hidden Markov Model (HMM) idea to a 1D-Estimation, 

Localization and SLAM as shown in Figure 2.3. In the upper part of this figure, more 

unknown variables are introduced, which can be regarded as a special form of HMM 

model. In order to solve this problem based on the HMM model, usually we employ 

the Bayes’ Filter.  

 

 

( , | , )t t tp s m z u  

 

 

( | , , )t t tp s z u m  

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2.3 A Dynamic Bayesian Network in SLAM and different problems of mobile robot 

application 

(a) From the basic HMM model, to SLAM problem. More states and measurements are added into 

the network. (b) SLAM can be regarded as the special case of HMM to estimate two unknown 

variables:  the robot state and the map. 

 

In probabilistic form, the SLAM posterior is represented as: 

( | , )t t tp s z u

( | )t tp s z

s1        s2         ……………………          sn 

   u2      z2                   un          zn 

m m 
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                              ( , | , )t t tp s m z u                       (2.1) 

where ts denotes the history of the state vector from time 0 to t: 0 1 2{ , , , , }ts s s s , 

tz denotes the history of measurement from time 1 to t, tu denotes the history of 

control vector, and m denotes a vector describing the value of map grids which is 

assumed to be time invariant. This probability distribution describes the joint posterior 

density of map (either in grid-occupancy, landmark or topology representation) and 

robot state (from time 1 to t) given the recorded observations and control inputs up to 

and including time t. In general, a recursive solution to the SLAM problem is applied. 

Starting with an estimate for the distribution 1 1

1( , | , )t t

tp s m z u 

  at time t-1, the joint 

posterior, following a control tu  and observation tz , is computed using Bayes’ 

theorem [42] . This computation requires that a state transition model and an 

observation model are defined describing the effect of the control input and 

observation respectively. 

 

The transition (motion) model for the robot can be described in terms of a probability 

distribution on state transitions in the form given in Equation 2.2. 

1( | , )t t tp s s u                       (2.2) 

 

That is, the state transition is assumed to be a Markov process which assumes that the 

next state ts  depends on the immediately preceding state 1ts   and the applied 

control tu and is independent of the observations ( tz ) and the map (m). 

 

The observation model describes the probability of making an observation tz when 

the robot location and map information are known and is generally described in the 

form represented by Equation 2.3. 
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( | , )t tp z s m                     (2.3) 

It is reasonable to assume that once the robot location and map are defined, 

observations are conditionally independent given the map and the current pose of the 

robot. 

 

The SLAM algorithm is now implemented in a two-step recursive (sequential) form 

with prediction (time-update) and correction (measurement-update). 

 

Time-update (Prediction) 

             
1 1 1

1 1 1( , | , ) ( | , ) ( , | , )t t t t

t t t t t tp s m z u p s s u p s m z u d s  

          (2.4) 

Measurement Update (Correction) 

                 

1

1

( | , ) ( , | , )
( , | , )

( | , )

t t
t t t t t

t t t

t

p z s m p s m z u
p s m z u

p z z u






           

 (2.5) 

 

Equations 2.4 and 2.5 provide a recursive procedure for calculating the joint posterior 

( , | , )t t tp s m z u for the robot state st and the map m at time t based on all observation 

tz  and all control input tu up to and including time t. The recursion also is a function 

of a motion model (2.2) and an observation model (2.3). 

 

The above two steps formulates the Bayes’ Filter by Bayes theorem: 

     
1 1

1 1 1( , | , ) ( | , ) ( | , ) ( , | , )t t t t

t t t t t t t tp s m z u p z s m p s s u p s m z u ds  

        
 (2.6) 

where η is a proportionality constant. This is only an optimal solution in theory and it 

can never be obtained analytically because the integration in Equation 2.4 is usually 

intractable. 

 

It is worth noting that the map building problem may be formulated as computing the 

conditional density ( | , , )t t tp m s z u . This assumes that the location of the robot st is 

known (or at least deterministic) at all times, subject to the information of initial 
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location. A map m is then constructed by fusing observations from different locations. 

Conversely, the localization problem may be formulated as computing the probability 

distribution ( | , , )t t

tp s z u m . This assumes that the map information is known with 

certainty, and the objective is to compute an estimate of the robot location relative to 

the map. Therefore, the computation of SLAM joint probability becomes a mutual 

calculation process, that is, we first estimate the robot state, construct the surrounding 

estimation map based on previous state, and then compute the new state again after 

the movement and prediction. 

 

Note that in the filter discussed in the following chapters, the map (variable m) is 

represented by the grid-occupancy method[50], which divides the map into several 

grids (Figure 2.4). Each grid can be represented as obstacle or space. Although it has 

larger dimension number than the landmark based method [51], it is much more 

accurate and practical than the landmark presentation because it is not always possible 

to define a landmark in a real application. The grids-representation is an 

approximation to the reality but it is sufficient for purposes of algorithm development 

being discussed. The error due to the approximation can, for the most part, be 

absorbed into the measurement error as well as into uncertainty in grid map locations 

so it has the ability to achieve the map accuracy requirements.  

 

 

Figure 2.4 Example of grid-occupancy map 

 

The measurement model usually includes a model of the physical measurements, as 
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well as the noise characteristics of these measurements. To be consistent with what is 

used throughout the analysis given in the thesis, range and bearing measurements 

pairs will be considered as simultaneous measurements of the environment, that is, 

both sets of data from two measurements will affect the SLAM result in the same 

time-step. This is a reasonable assumption for a number of instruments that are used 

in SLAM implementations, such as the SICK laser. 

 

Solutions to the probabilistic SLAM problem involve finding an appropriate 

representation for both the motion model (Equation 2.2) and observation model 

(Equation 2.3) that allow efficient and consistent computation of the prior and 

posterior distribution in Equation 2.4 and 2.5. Until now, the most common 

representation is in the form of a state-space model with additive Gaussian noise, 

leading to the application of the Extended Kalman Filter [52-56]. An alternative 

method is to describe the robot motion model given in Equation 2.2 with a set of 

samples to demonstrate either a Gaussian or a non-Gaussian probability distribution. 

This leads to the use of PF. These methods are being discussed in the following 

sections. 

 

2.3 Extended Kalman Filter 

Though difficult or impossible to compute in closed-form, Equation 2.6 can be 

approximated by restricting the SLAM posterior to a Gaussian probability density 

function (pdf). When a motion and observation models can be regarded as a linear 

function, together with noise coming from a Gaussian distribution, it is possible to 

apply Kalman Filter to this recursive process to obtain the optimal Bayesian posterior 

[52-56] . The SLAM problem can be interpreted as a state space system, and therefore 

it is suitable to be solved by the Kalman Filter framework [33], although in many 

real-life applications there are often non-linearity involved.  
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To overcome this drawback, the linearization of non-linear motion and measurement 

models forms the basis of the Extended Kalman Filter (EKF), an analytic 

approximation of the optimal filter for non-linear situations [52]. This formulation is 

essentially the same as the traditional Kalman Filter, but the linearization performed 

allows for its compliable to the real world’s system dynamics and the measurement 

models. 

 

The EKF formulation is based on three assumptions:  

 Firstly it assumes the posterior is a Gaussian distribution, which is 

described as ( )p s .  

 Secondly, noises in the motion model and the environmental 

measurements are assumed to be noise with Gaussian distribution.  

 Thirdly, it also assumes that the substantial errors are not incurred by 

making use of linear approximations of the dynamics of the state 

propagation in time, as well as in the physics of states relationships for 

environmental measurements.  

In EKF, the mean posterior contains robot pose information (2D or 3D position and 

heading) and the mean position estimate for each mapped environment. To further 

adjust the estimation, the state covariance and pair-wise correlations between states 

are stored in the filter covariance matrix, where the variances which lie on the 

diagonal as the a priori knowledge with regard to the uncertainty in the individual 

states.  

 

As a nonlinear version of Kalman Filter (KF), EKF represent the SLAM posterior 

distribution as a high-dimensional multivariable Gaussian parameterized by a mean 

t  and covariance t for each state. Compared to KF, the state transition and 

observation models need not be linear function but may instead be differentiable 

functions given in Equations 2.7 and 2.8: 
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                        1( , ) t r a n

t t t ts f s u v                           (2.7) 

                          
( ) measure

t t tz h s v                          (2.8) 

 

Where tran

tv  and measure

tv  are the noises which are assumed to be zero mean white 

noises. The function f can be used to compute the predicted state from the previous 

estimate and similarly the function h can be used to compute the predicted 

measurement from the predicted state, both of which are nonlinear functions. 

However, f and h cannot be applied to the covariance directly as KF does. Instead, a 

matrix of partial derivatives (called the Jacobian) is computed. At each time step the 

Jacobian is evaluated with current predicted states. These matrices can be used in the 

Kalman filter equations. This process essentially linearizes the non-linear function 

around the current estimate.  

 

The main procedure of EKF can be illustrated by the following flow-chart, Figure 2.5. 

 

Figure 2.5 Flow-chart of EKF 

Initial estimates for prior state and error covariance 

Time Update (Predict): 

(1) Project the state ahead 

(2) Project the error covariance ahead 

 

Measurement Update (Correct) 

(1) Compute the Kalman gain 

 

(2) Update estimate with measurement zt 

 

(3) Update the error covariance 
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The detailed derivation of EKF is omitted in this section, which may be found in 

various literatures[54, 55]. Referring to the time update step in Figure 2.5, the state 

and covariance are estimated from the previous time step t-1 to the current time step t. 

The measurement updates equations correct the state and covariance estimates with 

the measurement zt.  

 

An important feature of EKF is that the Jacobian Ht in the equations for the Kalman 

gain Kt serves to correctly propagate or ―magnify‖ only the relevant component of the 

measurement information. For example, if there is not a one-to-one mapping between 

zt and the state via h, the Jacobian Ht affects the Kalman gain so that it only magnifies 

the portion of the residual ˆ( )t tz h s that does not affect the state.  

 

One disadvantage of the basic EKF is the growth in complexity of the filter with the 

dimension of state-space in its map. This is primarily due to the fact that this method, 

in its original formulation, relies on a covariance matrix of size
2( )O N , where N is the 

number of estimation states. Another drawback of the basic EKF SLAM algorithm is 

the single-hypotheses data association [57]. It is a decision-making process in which 

an incoming measurement is either matched with an existing landmark in the filter 

map or deemed as a new feature. This decision process is not a trivial task in SLAM 

applications, where the pose and map uncertainty and measurement noise can all 

contribute to data association failure, and then can induce estimate divergence [51]. In 

the basic EKF framework, the filter must pick one association (e.g. a feature in 

landmark representation, or a grid in the grid-occupancy representation) for reference, 

typically with a maximum likelihood heuristic, and the effects of an incorrect decision 

probably will lead to the divergence.  

 

However, there has been significant effort on the improvement of EKF in recent years. 

One method which has been shown to resolve the complexity issues surrounding the 
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use of EKF formulations and is considered as the state-of-the-art by many researchers, 

is known as Atlas[58]. This method assumes constant time, or at least bounded time, 

operation and is therefore not dependent on the size of the map. Moreover, it should 

be noted that the use of this Atlas method is not limited to EKF solutions of the 

SLAM problem, because it is a general framework to reduce complexity, rather than a 

filtering method itself. There are other EKF related methods which also claim either 

constant time or improved time operation and have experimentally shown to produce 

good results, e.g. Sparse Extended Information Filters (SEIF) [59, 60] and 

compressed EKFs [61, 62].  

 

2.4 Particle Filters 

EKF method solves the non-Gaussian estimation problem by linearizing the 

non-linear function around the current estimate, which is the first order Taylor 

expansion of the nonlinear functions. Successful attempts at solving the SLAM 

posterior without restraining its form to Gaussian distribution employ a more recent 

estimation tool called Particle Filters (PF). They are a large class of Monte Carlo 

estimation methods used in partially observable Markov chains[42]. First proposed in 

the 1950s [63], the PF has recently enjoyed attention while the enhancements in 

applied statistics and computer processing speeds have prompted its application to a 

broader range of estimation problems [46, 52, 64]. Improvements to the basic PF 

techniques by Gordon [46], Liu and Chen[65] in the mid-to-late 1990s have produced 

recursive Bayesian estimators with established theoretical convergence that are no 

longer bound to the Gaussian assumption that are imposed on the Kalman Filter and 

its derivatives. Furthermore, the PF are credited with having solved the global 

localization and the kidnapped robot problem [43], both of which were previously 

unsolved and considered to be crucial for a robust mobile robot application[66]. 

 

In this section, we ignore the specific application of SLAM and concentrate on the 
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general framework of PF (or the single variable estimation problem). The Bayes’ 

Filter recursion in Section 2.6 becomes the following: 

         1 1 1 1 1( | , ) ( | ) ( | , ) ( | , )t t

t t t t t t t t t tp s z u p z s p s s u p s z u ds               (2.9) 

 

In order to simplify the following discussion, comparing to the SLAM Bayes’ Filter in 

Equation 2.6, the above equation does not include the parameter of the map (m). 

 

Generally, the PF algorithm is illustrated in the following pseudo-codes. 

 

Algorithm 2.1: The generic PF 

1 1 1 1[{ ( ), ( )} ] [{ ( ), ( )} , ]N N

t t i t t i ts i w i PF x i w i z     

Initialization: Generate particle samples 0 0 1{ ( ), ( )}N

is i w i   

Prediction:  

For i =1:M 

 Predict 1( ) ~ ( ( ) | ( ), )t t t ts i q s i s i z  

 Assign the particle a weight 

End For 

Measurement update  

Calculate total weight: 1[{ ( )} ]M

t it sum w i   

For i=1:M 

 Normalize: 1( ) ( )t tw i t w i  

End For 

Resampling 

 

 

The above estimation is shown in the following detailed recursive algorithm: 

1. Propagation Step: 
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Estimate the new pose ( )ts i  from 1 1( | , )t t tp s s u  , which propagating each 1ts   using 

independent samples with 1tu  , which is defined by a motion model. 

                       1( ) ( ( ) , ( ) )t t ts i f s i u i                        (2.10) 

where tu  represents the input motion information, however in this case the input 

noise can be represented by any probability distribution that can be sampled from. 

This process approximates the following predictive density: 

                   
1 1

1 1 1( | , ) ( | , )t t

t t t tp s s u p s z u 

                     
 (2.11) 

 

2. Measurement Step: 

Particles are drawn from a proposal distribution ( )tq s according to a Sequential 

Monte Carlo technique known as importance sampling  [46, 52]. Weights are then 

assigned to the particles based on: 

                      1

( | , ) ( ( ) ) ( ( ) )
M

t t t

i

p s z u q s i w s i



                

 (2.12) 

where w is a set of importance weights given by the ratio of the target (posterior) 

distribution to the proposal distribution: 

                        

( | , )
( )

( ( ))

t t

t
t

t

p s z u
w i

q s i
                        (2.13) 

and then normalized according to: 

                      1

( ) )
( )

( ))
M

j

w i
w i

w j





                          

 (2.14) 

where M is the total number of particles used to represent the distribution. The 

original PF uses the motion model 1( | , )t t tp s s u  as the proposal distribution, so the 

assigned weighting factor becomes: 

                      
( ) ( | )t t tw i p z s                            (2.15) 

which in SLAM applications is the robot observation or perceptual likelihood [32, 
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43] . A detailed derivation of the PF can be found in [67]. Applying this principle to 

the recursive Bayesian framework is resulted in the sequential importance sampling. 

 

3. Re-sampling Step: 

Let us discuss the situation when particle impoverishment occurs. If we take samples 

from the posterior and proposal distribution, we can observe that weights of samples 

which are far away from the true value will decrease during the iterations according to 

Equation 2.13, while just a small number of particles can maintain their weights.  

 

In order to illustrate the weight function Equation 2.13 is being expanded into the 

following:  

( | ) ( )
( )

( ( ) | )

( , )

( ( ) | )

( | ) ( )

( ( ) | )

( | )

( ( ) | )

t t t

t t t

t t

t t

t t t

t t

t t

t t

p z s p s
w i

q s i z

p z s

q s i z

p s z p z

q s i z

p s z

q s i z









 

(2.16) 

The ratio in the last line of the above equation is called the importance ratio. We can 

see that samples ( | )t tq s z  which are far away from the numerator ( | )t tp s z  will 

decrease its corresponding weight values in the iterations based on Equation 2.16, 

while just a small number of particles can maintain their weights. This iteration runs 

over time, so the variance of the whole set of particles increases. A detailed proof can 

be found in [68]. Therefore, the unconditional variance (that is, when the observations 

are regarded as random) of the importance ratios increases over time. [69, 70] 

 

In that case, we want the proposal density to be very close to the posterior density. 

When this happens, we obtain the following results for the mean and variance [66]. 
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( | )

( | )
( ) 1

( | )
t

t t

t tq y

p s z

q s z
 

                    

 (2.17) 

and 

              

2

( | ) ( | )

( | ) ( | )
v a r ( ) ( ( 1 ) ) 0

( | ) ( | )
t t

t t t t

t t t tq y q y

p s z p s z
E

q s z q s z 
  

        

 (2.18) 

 

An increase in the variance has an adverse effect on the accuracy of the Monte Carlo 

simulations [71]. In other words, the variance should be close to zero in order to 

obtain reasonable estimations. In practice, the degeneracy caused by the increase in 

variance can be observed by monitoring the importance weights. Typically, what can 

be observed is that, after a few iterations, one of the normalized importance weights 

approaches to 1, while the remaining weights tend to zero. It is called particle 

impoverishment or particle degeneracy. 

 

To measure the degeneracy of the PF from the particle weights, the effective sample 

set size effM  is introduced in [72] [47], and it is defined as:  

                         
*1 v a r ( ( ) )

s
e f f

t

M
M

w i



                     (2.19) 

where *

1( ) ( ( ) | ) / ( ( ) | ( ), )t

t t t t tw i p s i z q s i s i z is referred to the ―true weight‖. Although 

this cannot be computed determinably, an estimate of effM of effM  can be obtained 

by Equation 2.20: 

                        

2

1

1

( ( ) )
s

e f f M

t

i

M

w i





                      (2.20) 

where ( )tw i  is the normalized weight. Notice that eff sM M  and small effM infers 

that severe degeneracy happens. According to [73-75], the optimal proposal 

distribution function that minimizes the variance of the true weights *( )tw i  

conditioned on 1( )ts i and tz . 
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1 1

1 1

1

( | ( ), ) ( | ( ), )

( | , ( ) ( | ( ))

( | ( ))

t t t opt t t t

t t t t t

t t

q s s i z p s s i z

p z s s i p s s i

p z s i

 

 







 

(2.21) 

 

Related to the definition of weight, we yield the optimal weighting as Equation 2.22: 

1
1

1

1 1

1 1

( | ( )) ( ( ) | ( ))
( ) ( )

( ( ) | ( ), )

( ) ( | ( ))

( ) ( | ( )) ( ( ) | ( ))

t t t t
t t

t t t

t t t

t t t t t t

i

p z s i p s i s i
w i w i

q s i s i z

w i p z s i

w i p z s i p s i s i ds






 

 





 

  

(2.22) 

From the above equation, we can see that the choice of proposal distribution is 

optimal since for a given 1( )ts i , ( )kw i takes the same value (Equation 2.21), whatever 

sample is drawn from 1( | ( ), )t t t optq s s i z . Hence, conditional on 1( )ts i , var( ( )) 0tw i  . 

This is the variance of the different ( )tw i resulting from different sampled ( )ts i . 

 

However, in real applications, it may not be so straightforward to achieve the optimal 

proposal distribution ( 1( | , )t t tp s s z ), because it requires the ability to sample from 

( | ( ), )t t tq s s i z and to evaluate the integral over the new state. Using a non-optimal 

proposal distribution in PF, a large number of samples are thus effectively removed 

from the sample set because their importance weights become numerically 

insignificant. That is the reason why resampling scheme is an important research topic 

related to PF applications. 

 

Nevertheless, the importance sampling approximation depends on how close the 

proposal distribution is to the target distribution because it operates based on their 

weights. As illustrated in Figure 2.6, if the higher likelihood area is too narrow or if 

there is little overlap between the prior and the likelihood, one needs to move the 
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samples to regions of high likelihood. Various improved resampling approaches have 

been proposed to solve this problem.  

 

 

Figure 2.6 A scenario of particle impoverishment 

When new measurements (i.e. the likelihood) appear in the tail of the prior, the particles predicted 

from the prior density will distribute far from the likelihood. 

 

To reallocate computational resources and obtain a more accurate distribution, 

resampling the particles is necessary. Initially proposed by Gordon et al. [46], this 

resampling technique, known as Sampling Importance Resampling (SIR) or Bootstrap 

Filtering, produced the first effective PF [46, 76]. This recursion, is illustrated in 

Figure 2.7, makes the particles with higher weights reproduce more in the next time 

step while those with the smaller weights eliminated. This approach optimally will 

reach the Bayesian posterior in the limit of infinite particles [63, 77]. 

 

Figure 2.7The basic PF uses discrete points and SMC methods to approximate an evolving 

posterior distribution 
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A resampling scheme associates to each particle ( )tx i  a number of ―children‖, 

saying iN  , such that 
1

N

ii
N N


 (usually M=N). Several selection schemes 

have been proposed in the literatures. These schemes satisfy ( )( ) i

i tN Nw   but their 

performance varies in terms of the variance of the particles var( )iN . However, later 

literatures [47, 78] indicate that the restriction ( ( )( ) i

i tN Nw  ) is unnecessary to 

obtain convergence results. So it is possible to design biased but computationally 

inexpensive selection schemes. 

 

We will later present various resampling schemes, namely: Sampling Importance 

Resampling (SIR), Residual Resampling, Minimum Variance Sampling. However, we 

found that the specific choice of resampling scheme does not significantly affect the 

performance of the PF in our application due to finite particles, so we used SIR in all 

the experiments presented in following chapters. 

 

Sampling Importance Resampling (SIR) and multinomial sampling 

Many resampling techniques are derived from the work of Efron [67], Rubin [79] and 

Smith and Gelfand[80] . Resampling involves mapping the set { ( ), ( )}t ts i w i into an 

equally weighted random set { ( ) : 1,..., }tx i i M with probabilities 

{ ( ) : 1,..., }w i i M as proposed in the paper by Gordon [46, 81] as well as the 

mathematical proof. After constructing the cumulative distribution of the discrete set, 

a uniformly drawn sampling index i is projected onto the distribution range, as shown 

in Figure 2.8 and then onto the distribution domain. The intersection with the domain 

constitutes the new sample index j. That is, the vector ( )tx j is termed to be the new 

sample set. Obviously, the vectors with the larger sampling weights will end up with 

more copies after the resampling process. 
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Figure 2.8Resampling process illustration, where a random sample { ( ), ( )}t

tx i w i is mapped into 

an equally weighted random measure 
1{ ( ), }tx j N 

. The index i is drawn from a uniform 

distribution. 

 

Sampling M times from the cumulative discrete distribution ( )

1
( )( )

M i t t

ti
w i dx

  is 

equivalent to drawing ( ; 1,..., )iN i M from a multinomial distribution referring to the 

parameters M and ( )tw i . This procedure can be implemented in ( )O N operations. As 

we are sampling from a multinomial distribution, the variance is 

var( ) ( )(1 ( ))i t tN Nw i w i 
.
 As pointed out in  [46, 82], it is possible to design better 

selection schemes with lower variance. 

 

Residual Resampling 

The residual resampling procedure involves three steps [65, 83]. Firstly, set 

( )i tM Mw i    . Secondly, perform an SIR procedure to select the remaining 

1

M

t i

i

M M M


  samples with the updated new weights 1( ) ( ( ) )t t t iw i M w i M M   . 

Finally, add the results to the current iM . For this scheme, the variance 

( var( ) ( ) ( )(1 ( ))i t t tM M i w i w i   ) is smaller than the one given by the SIR scheme. 

Moreover, this procedure is computationally cheaper. 



 

 31 

 

Minimum Variance Sampling 

This strategy includes the stratified sampling [47] and the Tree Based Branching 

Algorithm presented in [84]. One samples a set of M points uniformly in the interval 

[0,1], each of the points has a distance of 1M   apart. The number of children iM  is 

taken to be the number of points that lies between 
1

1

( )
i

t

j

w j




 and 
1

( )
i

t

j

w j


 . This 

strategy introduces a variance on iM  even smaller than the residual resampling 

scheme, namely var( ) ( )(1 ( ))i t t t tM M w i M w i   . Its computational complexity is 

( )N . 

 

However, generally speaking, the above methods are not promising enough because 

the copied samples are no longer statistically independent after resampling so the 

previous convergence result will be lost. It is called losing sampling diversity [48]. 

Furthermore, although these improved resampling methods are proved to have lower 

complexity and smaller variance than the traditional SIR in theory, the experimental 

results show the particle variance are not significantly different [85, 86] due to the 

limited number of samples, so two problems in PF are sometimes still exit in that 

scenario. We still choose the traditional SIR as the resampling method in the 

experiments presented in the rest of the thesis. 

2.5 Improved Proposal Distribution Function 

Nowadays, there still exist a large number of improved methods for PF algorithm. 

However, the success of the PF algorithm depends on the validity of following 

underlying assumptions [87]: 

 

Monte Carlo (MC) assumption: The Dirac point-mass approximation provides an 

adequate representation of the posterior distribution. 
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Importance Sampling (IS) assumption: It is possible to obtain samples from the 

posterior by sampling from a suitable proposal distribution and applying importance 

sampling corrections. 

 

If any of these conditions are not met, the PF algorithm will perform poorly. The 

discreteness of the approximation poses a resolution problem. In the resampling stage, 

any particular sample with a high importance weight will be duplicated many times. 

Consequently, the whole set of particles may finally degenerate into a single particle. 

This degeneracy will limit the ability of the algorithm to search for lower minima in 

other regions of the error surface. In other words, the number of samples used to 

describe the posterior density function will become too small and inadequate. A 

straightforward strategy to overcome this problem is to increase the number of 

particles. A more refined strategy is to implement a Markov chain Monte Carlo 

(MCMC) step after the selection step as discussed in the following section. 

 

2.5.1 MCMC Move Step 

After the selection scheme at time t, we derive N particles ( N M ) distributed 

marginally approximately according to ( | )t tp s z . Since the selection step favors the 

creation of multiple copies of the ―fittest‖ particles, it enables us to track time varying 

filtering distributions. However, many particles might not been copied during 

selection step ( 0iN  ), whereas others might end up having a large number of 

children, the extreme case being iN N  for a particular value i. In this case, there is 

a severe depletion of samples. We, therefore, require a procedure to introduce sample 

variety after the selection step without affecting the validity of the approximation. 

 

A strategy for solving this problem involves the introduction of MCMC steps of 
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invariant distribution ( | )t tp s z on each particle [70, 82, 88-90]. The basic idea is that 

if particles are initially distributed according to the posterior ( | )t tp s z , then applying 

a Markov chain transition kernel ( | )t ts s , with invariant distribution ( | )t tp s z such 

that ( | ) ( | ) ( | )t t t t t ts s p s z p s z  , still results in a set of particles distributed 

according to the posterior of interest. However, the new particles might have been 

moved to more interesting areas of the state space. In fact, by applying a Markov 

transition kernel, the total variation of the current distribution with respect to the 

invariant distribution can only decrease. Note that we can incorporate any of the 

standard MCMC methods, such as the Gibbs sampler [91] and Metropolis Hastings 

algorithms [92], into the filtering framework, but we no longer require the kernel to be 

ergodic. The MCMC move step can also be interpreted as sampling from the finite 

mixture distribution 1

1

( | ( ))
N

t t

i

N s s i



 .Convergence results for this type of algorithm 

are presented in [89]. 

 

2.5.2 Alternative PF Proposal Distribution 

The selection of a proposal distribution function is one of the most critical design 

issues in importance sampling algorithms and forms the major issue addressed in the 

following chapters of this thesis. The preference for proposal distribution functions 

which minimize the variance of the importance weights is advocated by Doucet [82]. 

The following result has been proved in [70] that the proposal distribution 

1 1( | , ) ( | , )t t t t

t tq s s z p s s z  minimizes the variance of the importance weights 

conditional on 1ts   and tz . 

 

This selection of proposal distribution has also been proposed by other researchers 

including Kong[69], Liu[93] and Zaritskii [94]. Nevertheless, the distribution 
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1

1( | , ) ( | )t t

t t tq s s z p s s

 (the transition prior, also is the motion model in SLAM 

application) is the most popular choice of proposal distribution function [34, 46, 47, 

95, 96]. Although it results in higher Monte Carlo variation than the optimal proposal 

function 1( | , )t t

tp x x y  because it does not incorporate the most recent observation, 

it is usually easier to implement [46, 97, 98]. The transition prior is defined in terms 

of the probabilistic model governing the states’ evolution and the process noise 

statistics. For example, if assumption of the Gaussian process noise model is held, the 

transition prior is simply defined in Equation (2.23): 

                      1 1 1( | ) ( ( , 0 ) , )t t t tp x x N f x Q                    (2.23) 

As illustrated before, if we fail to use the latest available information to propose new 

values for the states, only a few particles will have significant importance weights 

when their likelihood are evaluated. It is therefore of paramount importance to move 

towards the regions of high likelihood. This problem also arises when the likelihood 

function is too narrow comparing to the prior function. In Chapter 4 and 5, we shall 

describe our method mathematically and experimentally, based on the Ant Colony 

Optimization, to re-arrange the particle set to achieve the optimal importance 

function.  

 

Prior Editing [82] is an ad-hoc acceptance test for proposing particles in regions of 

high likelihood. After the prediction step, the residual error ˆ( ( ))t t t te z h s i   is 

calculated. If t te K r , where r is the scale of the measurement error model and 

lK  is a constant chosen to indicate the region of non-negligible likelihood, then this 

sample ˆ ( )tx i is rejected. This iteration stops until a specified number of particles meet 

the criteria. This approach is too heuristic and therefore increasing the computation 

cost unless the rejection rate is small. In addition, it will also introduce a bias on the 

distribution of the particles. 

 



 

 35 

There is another method called Rejection Methods [65]. It is based on the principle 

that if the likelihood is bounded, say ( | )t t tp z s R , it is possible to sample from the 

optimal importance distribution 1( | , )t t tp s s z  using an accept/reject procedure. First, 

we obtain a sample from the prior 1
ˆ ~ ( | )t ts p s s   and a uniform variable [0,1]~u U . 

Subsequently, the sample from the prior is accepted if ˆ( | ) /t t tu p z s R . Otherwise, 

we will reject this sample and repeat the process until all M samples are accepted. 

Unfortunately, the rejection sampler requires a random number of iterations at each 

time step. This leads to expensive and unpredictable computation in high-dimensional 

space [98-100].  

 

The auxiliary Particle Filter [100] allows us to obtain approximate samples from the 

optimal importance distribution by introducing an auxiliary variable k. Specifically, 

the aim of the algorithm is to draw samples from the joint distribution 

        
1 1 1

1( , | , ) ( | ( ) ) ( | ( ) ) ( ( ) | )t t t y

t t t t tq s k s z p z k p s s k p p k y  


        

 (2.24) 

where ( )t k , k=1,…,M is an additional variable equals to the mean, mode, or other 

value associated with the transition prior. One way to accomplish this objective is to 

evaluate the marginal auxiliary variable weights 

1 1 1( | , ) ( | ( )) ( ( ) | )t t t t

t tg k s z p z k p x k z    and use them to select N particles from the 

transition prior. Typically, one boosts the samples set so that M>N. The PF then 

proceeds to evaluate the correlation weights 

                            

( | ( ) )

( | ( ) )

t t
t

t t j

p z s j
w

p z k
                      (2.25) 

where j = 1,…,N and kj denotes the k-th ―parent‖ of particle j. Finally, the correction 

weights are used to perform a second resampling step to obtain M particles 

approximately distributed according to the posterior distribution. 

 

Compared to the generic PF, the auxiliary PF can generate better estimates of the 
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posterior whenever the likelihood is situated in one of the prior tails. On the other 

hand, if the likelihood and prior are mostly overlapped, the generic PF may produce 

more accurate estimates. The latter behavior is a consequence of the extra variance 

introduced by the additional selection step. 

 

Another way to interpret the auxiliary PF is to treat the distribution 1( , | , )t t

tq s k s z as 

an importance proposal. Therefore, the following importance weights are obtained as 

follows: 

1 1

1

1 1

1

1 1

1

( ( ) | )

( | ( )) ( | ( )) ( ( ) | )

( | ( )) ( | ( )) ( ( ) | )

( | ( )) ( | ( )) ( ( ) | )

( | ( ))

( | ( ))

t t

t t t

t t t t

t t

t t t t

t t

t t t t

t t

t t

p s k y
w

p z k p s s k p s k z

p z s k p s s k p s k z

p z k p s s k p s k z

p z s k

p z k







 



 



 









 

(2.26) 

 

However, the three methods presented above for an improved proposal distribution 

have numerous inefficiencies as discussed in the literature. Researchers also try to 

incorporate Kalman Filters to design better proposal distribution. 

 

Extended Kalman Particle Filter 

Extended Kalman Filter is also adopted to construct the proposal distribution function, 

by incorporating the most current observation with the optimal Gaussian 

approximation of the state [88, 101]. It relies on the first order Taylor series 

expansions of the likelihood and transition prior, as well as a Gaussian assumption on 

all random variables in question. In this framework, the EKF approximates the 

optimal MMSE (Minimal Mean Square Error) estimator of the system state by 

calculating the conditional mean of the state, given all observations. This is achieved 

in a recursive framework, by propagating the Gaussian approximation of the posterior 

distribution through time, combining it at each time step with the new observation. In 

other words, the EKF runs the following recursive approximation to the true posterior 
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filtering density, 

                   
ˆ( | ) ( | ) ( , )t t

t N t t tp s z p s z N x P 
                  

 (2.27) 

Within the PF framework, a separate EKF is used to generate and propagate a 

Gaussian proposal distribution for each particle, i.e., 

1 ˆ( ( ) | ( ), ) ( ( ), ( )), 1, ,t t

t t tq s i s i z N s i P i i N    

(2.28) 

That is, at time t-1 one uses the EKF equations, with the new data, to calculate the 

mean and covariance of the importance distribution function for each particle. Next, 

we go to sample the i-th particle as the usual PF steps. This method requires that we 

propagate the covariance ˆ( )P i and specify the EKF process and measurement noise 

covariance. Since EKF is an MMSE estimator, this local linearization leads to an 

improved annealed sampling algorithm, whereby the variance of each proposal 

distribution changes with time. Ideally, the algorithm starts searching over a large 

region of the error surface and eventually, it concentrates on the regions with smaller 

errors. 

 

Although EKF possibly creates a better proposal distribution by making a Gaussian 

assumption on the form of the posteriors as well as introducing inaccuracies due to 

linearization, in fact, the current observation at time t in the proposal distribution that 

generated by EKF will not be Gaussian. This can be easily shown by a Bayes’ rule 

expansion of the proposal distribution [75]. 

 

Unscented Particle Filter 

Similar to Extended Kalman PF, the Unscented PF uses Unscented Kalman Filter 

(UKF) as a distribution generation mechanism within the PF framework, because 

UKF is regarded as having a bigger support overlap with the true posterior 

distribution than the overlap achieved by the EKF estimates. This is in part related to 

the fact that the UKF calculates the posterior covariance accurately to the third order, 

while the EKF relies on a first order biased approximation. In short, the UKF uses a 
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deterministic sampling technique known as the unscented transform to recursive 

minimum mean-square-error (RMMSE) estimation [102] to pick a minimal set of 

sample points (called sigma points) around the mean. These sigma points are then 

propagated through the non-linear functions, from which the mean and covariance of 

the estimate are then recovered up to the second order of the Taylor expansion. 

Consequently, the result is a filter which can capture the true mean and covariance 

more accurately. In addition, this technique removes the requirement to explicitly 

calculate Jacobians, which for complex functions can be a difficult task in itself. 

 

2.6 PF SLAM  

PF has a number of useful properties when compared to other methodologies for 

solving the SLAM problem, e.g. EKF. First, the PF can approximate arbitrarily 

complex probability distributions, where the EKF is only applicable to Gaussian 

descriptions at all levels of uncertainty. It is useful to apply PF into the non-linear and 

non-Gaussian environment. Additionally, PF is not significantly affected by 

non-linearities in the motion and measurement models of the robot.  

 

For application of PF to the SLAM problem it is possible to begin at the SLAM 

posterior which is more complicated than the robot localization 

posterior ( , | , )t t

tp s m z u . Similar to the Kalman Filter formulation, this probabilistic 

relationship is valid if the Markov assumption is valid. The Markov assumption states 

that if the current state is known then the previous and future data are conditionally 

independent. Similar to the EKF process, the SLAM posterior can be converted into 

the Bayes’ Filter by the Bayes’ Rule as stated in Equation (2.6). 

 

The Bayes’ Filter can be solved in an approximate manner using PF discrete samples. 

The SLAM posterior may be thought of as a belief state, where a single ( )belief i is 



 

 39 

used to present the hypothesis vector including robot’s pose, the map of the 

environment, and an associated weight that defines the probability of the given belief 

being correct. In PF, this is presented by M samples of a continuous probability 

distribution along with the associated weight for each sample. 

         1 , ,( ) ( ( ) , ( ) | ( ) , ( ) ) { ( ) , ( ) , ( ) }t t

t t i mbelief i p s i m i z i u i s i m i p i          (2.29) 

At initialization of this belief state, ( )belief i  is defined by whatever probability 

distribution is known to define the uncertainty in ts  and m [64].  

                        
0 0

0 0( , | , ) ( , )p s m z u p s m                    (2.30) 

 

First, if a prior information describing the uncertainty in the states is available it is 

used to define the initial distributions above. These initial distribution are then 

sampled from uniform distribution to create the particle representation of the state 

space 0 ( )s i , 0 ( )w i , in which the initial particle weighting 0 ( )w i  is set to 1
M

 [64]. 

 

The measurement step alters the belief state by assigning the particle weights using 

the likelihood of the particle occurrence given the measurement, tz . 

                          
( | ( ) , ( ) )t tp z s i m i                          (2.31) 

 

The remaining derivation of PF SLAM is similar to the general PF which was 

described previously in Algorithm 2.1, except that the PF SLAM includes two sets of 

variables (the robot pose and the map) to be estimated. 

 

2.7 PF SLAM Challenges 

Despite their abilities to track arbitrarily complex, multi-modal distributions, PF 

algorithms still have some challenges to be overcome. First, PF carries a pronounced 

computational requirement: the number of particles which is needed to track a 
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variable increases the scales exponentially with the dimension of the variable state. 

With a SLAM posterior that includes hundreds of dimensions, which represent the 

robot’s position and heading, grids in the map, it could require millions of particles to 

be tracked effectively [103, 104]. Thus, a considerable amount of computational 

power is needed if we want to finish the real-time SLAM solution. 

 

Another drawback of the PF SLAM, as it was originally formulated, is that its 

computation scale is proportional to the size of state spaces. This is a result of the 

exponential time behavior of this implementation of PF, which is not acceptable for 

problems such as SLAM which has to solve numerous states in real-time. Moreover, 

problem will a higher dimension implies that it needs more samples to achieve the 

result.  

 

2.7.1 Improved SLAM Approaches 

Rao-Blackwellized Particle Filter and FastSLAM 

The Rao-Blackwellized Particle Filter (RBPF) [105] has offered some solutions to 

this computational burden problem. This method has not only showed great 

enhancement to the computational efficiency, but also improvement in estimation 

accuracy. The concept of Rao-Blackwellized PF for application to the SLAM problem 

has been greatly developed by Montemerlo and Thrun [32, 77, 101]. Based on the 

Rao-Blackwellized concept, a recent innovation introduced by Montemerlo [77] solve 

the computation problem by conditioning the SLAM posterior on the entire path 

instead of the current pose. The basic premise is this: if the entire path of the robot is 

known, not just the current pose, a single landmark observation will not affect the 

location or uncertainty of any other map landmark. Consequently, landmark 

measurements are conditionally independent. All landmark correlations are ignored 

and the SLAM posterior can be represented as the product of the path posterior and N 

independent landmark estimators represented by Equation 2.32. 
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                 1

( , | , ) ( | , ) ( | , , )
N

t t t t t t n t t t

n

p s z u p s z u p s z u 


            (2.32) 

Montemerlo also illustrates that all update equations for the filter will depend only on 

the most recent pose under the Markov property of the SLAM posterior. Also, this has 

the benefit of only having to maintain N 2*2 covariance matrices for each particle as 

opposed to a full (2N+3) * (2N+3) covariance matrix. This factorization, illustrated in 

Figure 2.9, forms a PF based on the sampling architecture of Rao-Blackwellization, 

where a small subset of variables are sampled (the robot pose information) and other 

marginal 
1

( | , , )
N

n t t t

n

p s z u


 are calculated in closed form (landmark estimation 

parameters) [93]. The application of this principle to the position-tracking PF was 

introduced by [94]. Building on the structure of Equation 2.33, Montemerlo 

developed an algorithm named FastSLAM that represents the posterior with N+1 

filters, one of each term represents a different hypothesis of the SLAM posterior. As 

in Equation 2.33 each particle represents robot pose and a set of independent data, 

statistics of landmarks, considered as marginal.  

 

Figure 2.9 The factored SLAM posterior 

 Each particle carries a post estimate as well as map features. Map features are 

independent, so that they are considered to be marginal .Therefore, the states in 

particles are reduced. 
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[ ] [ ] [ ] [ ] [ ] [ ]

1 , 1 , , ,, , , , ,m m m m m m

t t t t N t N ts s                 (2.33) 

The bracketed notation represents the index of the particle. The agent pose 

information for each hypothesis [ ]m

ts  is updated with the SIR method explained 

previously. 

 

The rest of the SLAM posterior is estimated by independent Gaussian estimators 

representing the mean 
[ ]

,

m

n t  and covariance 
[ ]

,

m

n t  of each observed landmark. Given 

a two or three dimensional Cartesian space, these landmarks will be low-dimensional 

and fixed in size. Each particle carries its own set of landmark estimators. Taken in 

total, the particles form an array of M hypotheses that represent a discrete 

approximation to the optimal Bayesian SLAM posterior [32]. 

 

Researchers further broaden the above methods from landmark based map 

representation to grid-based map. Actually they perform a similar idea, which 

estimates a posterior ( | , )t t tp s z u  about potential trajectories ts  of the robot given 

its observations tz and its odometry measurements 1tu  . This distribution is then used 

to compute a posterior over map grids and trajectories: 

1

1 1

1

    ( , | , )                          (2.34.1)

( | , , ) ( | , )     (2.34.2)

( | , ) ( | , )

t t t

t t t t t t

t t t t t

p s m z u

p m s z u p s z u

p m s z p s z u



 







 

(2.34) 

where Equation 2.34.2 is obtained from 2.34.1 by assuming that m is independent of 

the odometry measurements 1tu   given all poses ts  of the robot and the 

corresponding observations 1tz  . 

 

To estimate the first term of Equation 2.34.2, namely the posterior 
1( | , )t t tp s z u 

, the 

Rao-Blackwellized mapping uses a PF in which an individual map is associated to 
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every sample [95]. Each map is built given the observation tz and the trajectory ts  

represented by the corresponding particle. The naïve implementation of this idea of 

the Rao-Blackwellized PF requires O(MK) operations, where M is the number of 

particles in the PF and K is the number of map grids. 

 

In some extents, the RBPF reduces the number of variables that must be sampled by 

identifying variables that do not need to be sampled to be computed. However, the 

construction of optimal proposal distribution is much more straightforward, and can 

be considered as alternative methods of RBPF. 

 

2.8 Conclusions 

In this chapter, we derive a possible solution of SLAM by the Bayes’ Filter. Due to an 

intractable term, we use two categories of problem: Kalman Filters and PF to estimate 

the term which is not integrable. Comparing to Kalman Filters, PF require less 

computational effort, as well as having the ability to estimate non-Gaussian and 

non-linear distribution. However, PF, especially those applied in high dimensional 

problems, e.g. multi-robot SLAM, suffered from the particle impoverishment problem 

and particle size dependency. To eliminate these problems, a number of improved 

strategies, such as improved proposal distribution approaching the optimal solution, 

and Rao-Blackwellized Particle Filter constructing conditionally independence terms 

to reduce the computational dimension, are discussed and analyzed. In fact, the 

resampling step can be regarded as a combinatorial optimization problem. In next 

chapter, we will introduce one of its solutions, the Ant Colony Optimization, and 

attempt to use it in PF in the following chapters. 
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Chapter 3 Ant Colony Optimization 

3.1 Introduction  

Ant Colony Optimization (ACO) is inspired from the foraging behavior of some ant 

species and is often regarded as a metaheuristic method [106]. ACO is a general 

method for solving combinatorial optimization problems, whose framework will be 

discussed in Section 3.2. The ACO is inspired by the pheromone trail laying and 

following behavior of real ants which make use of pheromones as a communication 

medium. Similar to its biological counter-part, in ACO algorithm implementation, it 

simulates a colony of simple entities, called artificial ants, mediated by artificial 

pheromone trails to track the optimal solution. During this process, the pheromone 

trails is treated as a distributed numerical data set from which ants use to construct a 

solution and ants adopt during the algorithm’s execution to reflect their search 

experience. 

 

The development of ACO is inspired from natural behavior of ants. In the early 

nineties an algorithm called Ant System (AS) was proposed as a novel heuristic 

approach for the solution of combinational optimization problems [107-109] . It was 

first used to solve the traveling salesman problem (TSP) [110, 111] . Despite the 

encouraging initial results, AS could not compete with the most advanced algorithms, 

such as Cross-entropy method [112], Bees Algorithm [113, 114], Genetic and 

Evolutionary Computation [115, 116] for solving combinatorial optimization 

problems. However, it played an important role in stimulating different improved 

ACO algorithms such as MAX-MIN Ant System, Ant Colony System, etc., which 

obtain much better computational performance, and with applications in a variety of 

problems. In fact, improved ACO was applied to different optimization problems 

besides the TSP, including quadratic assignment, vehicle routing, sequential ordering, 

scheduling, routing in the complex networks, and so on [117-122] . 
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3.2 Framework of the ACO Algorithm 

Ant Colony Optimization (ACO) has been formalized into a metaheuristic for 

combinatorial optimization problems by Dorigo and co-workers [109]. A metaheurstic 

is a set of algorithmic concepts that can be used to define heuristic methods applicable 

to a set of problems. In other words, metaheuristic is a general-purpose algorithmic 

framework that is able to be applied into different kinds of optimization problems 

with relatively few modifications, such as Simulated Annealing [123, 124] , Tabu 

Search [125-127], Iterated Local Search [128] , Evolutionary Computation [129-131], 

and Ant Colony Optimization[106, 109, 109, 132, 133]. 

 

Combinatorial optimization is a branch of optimization problem. Its domain is 

optimization problems where the set of feasible solutions is discrete or can be reduced 

to a discrete one, and the goal is to find the best possible solution. One of the most 

representative examples of combinatorial optimization problem is the Traveling 

Salesman Problem (TSP), while it also includes Vehicle Routing Problem, Minimum 

Spanning Tree Problem, etc.  A model ( , , )P S f   of a combinatorial 

optimization problem consists of the following conditions: 

 a search space S defined over a finite set of discrete decision variable 

, 1, ,iX i n , 

 a set Ω of constraints among the variable, 

 an objective function 0:f S R  to be minimized.
1
 

The generic variable iX  takes values that satisfies all constraints in 
1{ ,..., }iD

i i iD v v . 

A feasible solution *s S , which is a complete assignment of values to variables that 

                                                             
1
 A maximization problem can be easily changed to a minimization problem, by modifying a 

maximizing function g into f, which f=-g. 
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satisfies all constraints in Ω, is called a global optimum if and only if: 

*( ) ( )f s f s for s S  . 

 

The pheromone model of ACO can be derived after the general model of a 

combinatorial optimization problem. A pheromone value is associated with each 

possible solution component. Formally speaking, the pheromone value ij  is 

associated with a solution component ijc . The set of all possible solution components 

is denoted by C. 

 

Figure 3.1 The Construction of ACO Solution  

Assuming that ant colony moves from A to B, several edges through different vertices can be 

obtained. So a candidate solution can be represented by a set of vertices, such as 

1 2 3 4 5 6{ , , , , , }v v v v v v and 1 2 3 8 9 6{ , , , , , }v v v v v v , or a set of edges, such as 

1 2 3 4 5 6{ , , , , , }e e e e e e and 1 2 3 7 8 5 6{ , , , , , , }e e e e e e e , based on different applications 
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In ACO, an artificial ant builds a solution based on the following rules.  

1)  The ants traversing the fully connected Construction Graph, denoted as 

( , )CG V E  as shown in Figure 3.1, where V is a set of vertices and E is a set of edges. 

This kind of graph offers two ways to present the set of solution components C: 

components may be represented either by vertices or by edges. Artificial ants move 

from vertex to vertex along edges in the graph, simultaneously building a partial 

candidate solution incrementally.  

 

2)  Ants deposit a certain amount of pheromone on the components; that is, either on 

the vertices or on the edges that they traverse. The amount   of pheromone 

deposited is a user-defined parameter, or depending on the quality of the solution 

found. Subsequent ants use the pheromone information as a reference for their 

traverse path selection toward promising regions in the search space. 

 

A more detailed description of the ACO is given below and the algorithm description 

is given in Algorithm 3.1. 

1) Construct Ant Solutions: A set of m artificial ants constructs solutions from 

elements of a finite set of available solution components 

{ }, 1,..., , 1,...,ij iC c i n j D   . A solution construction begins with an empty partial 

solution 
Ps  . At each iteration, the partial solution 

Ps is built by adding a feasible 

solution component from the set ( )PN s C , which is defined as the set of 

components that can be added to the current partial solution 
Ps following all of the 

constraints in  .  

 

The choice of a solution component from ( )PN s is guided by a stochastic mechanism, 

which is biased by the pheromone associated with elements of ( )PN s . The rule for 
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the stochastic choice of solution components varies across different ACO algorithms. 

 

2) Apply Local Search: Once solutions have been constructed, and before updating 

the pheromone, it is common to improve the solutions obtained by the ants through a 

local search. This phase, which is highly problem-oriented, is optional although it is 

usually included in state-of-the-art ACO algorithms. 

 

3) Update Pheromone: The aim of the pheromone update is to increase the 

pheromone values associated with good or promising solutions, and to decrease those 

that are associated with bad ones. The complete ACO algorithm is shown below: 

 

Algorithm 3.1 The Ant Colony Optimization Metaheuristic 

 

Set Parameters, initialize pheromone trails 

While termination condition not met do 

 Construct Ant Solutions 

 Apply Local Search (optional) 

 Update Pheromones 

End while 

 

3.3 Alternative ACO algorithms 

Algorithm 3.1 depicts the ACO framework, from which several alternative search 

methods are developed. The MAX-MIN Ant system and Ant Colony System are two 

most successful ones among others. In the following, we will introduce the algorithm 

of the original Ant System, as well as these two improved alternatives. 
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1) Ant System (AS): It is the first ACO algorithm proposed in the literatures [108, 

109]. Its main characteristic is that, at each iteration, the pheromone values are 

updated by all the m ants that have built a solution in the iteration. The pheromone ij  

associated with a candidate solution is updated according to Equation 3.1. 

                        1

( 1 )
m

k

i j i j i j

k

    


                     (3.1) 

where  is the evaporation rate, m is the number of ants, and 
k

ij  is the quantity of 

pheromone laid on the path ( , )i j by ant k: 

           

/ , i f  a n t  k  u s e d  p a t h  ( i , j )  f o r  i t s  t o u r

0 , o t h e r w i s e

k

ij

Q L



 


           (3.2) 

where Q is a constant, and kL  is the length of the tour constructed by ant k. 

 

In the construction of a solution, ants select the solution through a stochastic 

mechanism. When ant k is in original location i and has so far constructed the partial 

solution Ps , the probability of going to vertex j is given by the following equation.: 

 

               

( )

, if c ( )

0,  otherwise

P
ij

ij ij P

ijk
ij ijij c N s

N s
p

 

 

 

 





 



                  (3.3) 

where ( )PN s  is the set of feasible components; that is, all the possible solutions. 

The parameters α and β control the relative importance of pheromone ij versus the 

heuristic information ij , which is given by: 

                             

1
ij

ijd
 

                          

 (3.4) 

where ijd is the cost of the ant’s tour when constructing the candidate solution. For 

example, it equals to the length between city i and j in TSP. 
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2) MAX-MIN Ant System (MMAS): This algorithm [134] is an improved strategy 

over the original Ant System. Its characterizing elements are that only the best ant 

updates the pheromone trails and that the value of the pheromone is bounded. The 

pheromone update is implemented as follows: 

                 

m a x

m i n
1

[ ( 1 ) ]
m

b e s t

i j i j i j

k





    


                        (3.5) 

where max and min are respectively the upper and lower bounds imposed on the 

pheromone; the operator [ ]a

bx is defined as: 

                      

,  i f  x > a

[ ] ,  i f  x < b

,  o t h e r w i s e

a

b

a

x b

x




 



                        (3.6) 

and 
best

ij  is 

              

1 / ,  i f  ( i , j )  b e l o n g s  t o  t h e  b e s t  s o l u t i on

0 ,  o t h e r w i s e

b e s tb e s t

ij

L



 
         

 (3.7) 

bestL  is the cost of constructing the best solution. This can (subject to the problem) 

either be the best found in the current iteration iteration-best ( ibL )or be the best 

solution found since the start of the algorithm best-so-far ( bsL ) or combination of 

both. 

 

Concerning the lower and upper bounds on the pheromone values, max and min , they 

are typically obtained empirically and adjusted for a specific problem [135]. 

Nevertheless, some guidelines have been provided for defining max and min  on the 

basis of analytical consideration.[134]  

 

3) Ant Colony System (ACS): The most important contribution of ACS [136, 

136-138] is the introduction of a local pheromone update in addition to the 
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pheromone update performed at the end of the construction process (called offline 

pheromone update). 

 

The local pheromone update in ACS is performed by all ants after each construction 

step. Each ant applies the pheromone only to the last path traversed 

0(1 )ij ij        
                   

 (3.8) 

where  (0,1]  is the pheromone evaporate coefficient, and 0  is the initial value 

of the pheromone. 

 

The main goal of the local update is to diversify the search performed by subsequent 

ants during an iteration by decreasing the pheromone concentration on the traversed 

path; ants encourage subsequent ants to choose other edges and, hence, to produce 

different solutions. This makes it less likely that several ants produce an identical 

solution during one iteration. 

 

The offline pheromone update, similar to MMAS, is applied at the end of each 

iteration by only one ant, which can be either iteration-best or best-so-far. However, 

the update equation is different as given in Equation 3.9. 

       

( 1 ) , i f  ( i , j )  b e l o n g s  t o  b e s t  s o l u t i o n 

,

i j i j

ij

ij otherwise

   




  
 

          

 (3.9) 

As in MMAS, 1/ij bestL  , where bestL can be either ibL or bsL . 

 

Another important difference between ACS and AS is in the decision rule used by ants 

during the construction process. In ACS, the so-called pseudorandom proportional 

rule is used; the probability for an ant to move candidate solution component i to 

another component j depends on a random variable q uniformly distributed over [0,1], 

and the parameter q0; if 0q q , then 
( )

arg max { }P
ij

il ilc N s
j  


 , otherwise Equation 

3.3 is used. The following table summarizes different definitions applied in ACO 
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algorithms discussed above. 

 

 Pheromone Probability 

AS 

1

(1 )
m

k

ij ij ij

k

   


    
( )

, if c ( )

0,  otherwise

P
ij

ij ij P

ijk
ij ijij c N s

N s
p

 

 

 

 





 



  

MMAS max

min
1

[(1 ) ]
m

best

ij ij ij

k





   


    
( )

, if c ( )

0,  otherwise

P
ij

ij ij P

ijk
ij ijij c N s

N s
p

 

 

 

 





 



  

ACS 
0(1 )ij ij          

( )

, if c ( )

0,  otherwise

P
ij

ij ij P

ijk
ij ijij c N s

N s
p

 

 

 

 





 



  

except 
( )

arg max { }P
ij

il ilc N s
j  


  

when 0q q  

Table 3.1 Definitions of Alternative ACO Algorithms 

 

3.4 Convergence Proof 

In Chapter 2, we introduced a couple of novel PF methods, the extended Kalman PF 

and Unscented PF which successfully construct sub-optimal proposal distributions. 

Similar to these ideas, when working in multi-robot SLAM problem, we plan to apply 

a metaheuristic method to construct the distributions. As one of the metaheuristic 

candidates, the convergence of ACO will be conducted in the following sections.  

3.4.1 Previous Proof Works 

In this section, we will propose two theorems for algorithms proposed in the previous 

section. First, we show that
minglb,ACO  , which employs global best pheromone update 

rule and a lower limit of the feasible pheromone trails, is guaranteed to find an 

optimal solution with a probability that can be made arbitrarily close to one if given 
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enough time. Second, we show that after the optimal solution was found with a fixed 

number of iteration 0t , the pheromone trails on the connections of the optimal 

solution are larger than those on any other connections. This result is then extended to 

show that an optimal solution can be constructed with a probability larger than 

min max1 ( , )    , where max  is the maximum value the pheromones may take. The 

detailed proof of Theorem 3.1 and its corollary can be found in [139]. 

 

Theorem 3.1: Let 
*( )P t be the probability that the algorithm 

minglb,ACO   
locates an 

optimal solution at least once within the first t iterations. Then, for an arbitrary choice 

of a small 0  and for a sufficiently large t, it holds that 

                               
*( ) 1P t                          (3.10) 

and asymptotically 

                                

*l i m ( ) 1
t

P t


                      (3.11) 

 

Theorem 3.2: Let *t  be the iteration when the first optimal solution has been found. 

Then a value 0t   exists such that the following holds: 

( ) ( )ij klt t  , 
*( , )i j s  , 

*( , ) ( , )k l L k l s    , and 
* *

0 (1 ) /t t t t           

 

Corollary 3.1: Let *t  be the iteration when the first optimal solution has been found 

and 
*( , , )P s t k  be the probability that an arbitrary ant k constructs *s  in the tth 

iteration, with *t t . 

Then it holds that  

*

min max
ˆlim ( , , ) 1 ( , )

t
P s t k   


 

    

(3.12)
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3.4.2 Convergence Proof based on Entropy 

In this section, a more general convergence theorem is proved based on entropy 

definition[140]. In information theory, entropy is a measure of the uncertainty 

associated with a random variable. The term usually refers to the Shannon entropy, 

which quantifies, in the sense of an expected value, the information contained in a 

message, usually in units such as bits. Equivalently, the Shannon entropy is a 

measurement of the average information content of a distribution based on a reference. 

Actually the term entropy in information theory is a measure of randomness in a 

probability distribution, but it also can demonstrate the distribution randomness in PF 

or the tendency of ants traverse in ACO. 

 

Theorem 3.3: 

Referring to Theorem (3.1), ACO converges to the optimal solution after enough 

iteration. 

 

Proof:  

Assuming that it exists M ants in the model, which is represented as k (k = 1,2,3…M). 

For a given problem, the algorithm does search in the number of N states in the state 

space. We represent the search state with the number s (s = 1, 2, 3…N) 

 

The state model is depicted in Figure 3.2. We use ,1 ,2 , ( , ){ , ,..., }k k k k

s s s s q i jL l l l  to represent 

the state space that the ants search , in which q(s,k) is the cumulative number function 

in the sth search state of kth ant. Therefore, the probability distribution function over 

the state space is ,1 ,2 , ( , ){ , ,..., }k k k k

s s s s q s kP p p p . 

The search entropy of kth ant in sth search state is defined as, 

                           

( , )

, ,

1

log
q s k

k k k

s s r c s r

r

H p p


                   (3.13) 

where c means the base of the logarithm used. 
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 According to the above definition, the search entropy is given below: 

                              1

N
k k

s

s

H H


                         (3.14) 

which demonstrates the uncertainties of kth ant searching the solution in sth state. 

Therefore, the overall entropy of the ant colony is represented by Equation 3.15 

                             1

1 M
k

k

H H
M 

                         (3.15) 

which demonstrates the average uncertainties of the whole ant colony. 

 

It is trivial to derive that the above three entropies reach their maximum value when 

all , ( , )

k

s q s kp  have equivalent values. 

 

 

 

Figure 3.2 A search state model demonstration 

 

The optimization process can be changed into the problem of searching for a solution 

under the above model, in which
,1 ,2 , ( ){ , ..., }k k k k

s s s s q iL l l l . The state s is independent of 

the ant number k while the search state only depends on the search probability k

sP .  

 

1

kL  
2

kL  
3

kL  k

NL  
1

k

NL 
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Theorem 3.4: If a problem can be generalize as the above model (Figure 3.2) then 

each status diagram is corresponding to a probability sequence. 

When the ants select the target based on the probability sequence stably, the algorithm 

convergences if and only if 

lim ( ) 0
t

H t


  

Necessity: Assume that there is only one ant in the colony. It selects the direction 

based on the probability sequence ,1 ,2 , ( )( , ,..., )s s s s q iP p p p . Since the algorithm stably 

converges, lim ( ) (0,0,...,0,1,0,..,0)s
t

P t


 . Note that the position of 1 appearing is only 

related to the number of s. From the definition of entropy, we can derive 

lim ( ) 0s
t

H t


 . Let the search probability be 
,{ | 1,2,...}s s tP p t  . For the ant colony 

includes M ants, the search probability is 

         
{ ( ) | 1 , 2 , . . . } { ( ( 1 ) ) | 1 , 2 , . . . }k

s s sP P t t P t M k t                 (3.16) 

Since the search is convergence,  

             
l i m ( ) l i m ( ) ( 0 , 0 , . . . , 0 , 1 , 0 , . . . , 0 )k

s s
t t

P t P t
 

 
                

(3.17) 

 Therefore, the entropy of the whole ant colony is still lim ( ) 0
t

H t


  

 

Sufficiency: If the ant colony has only one ant, let us assume that the entropy in 

search state i is { (1), (2),..., ( ),...}i i i iH H H H t .  

 

Let the search entropy in time t is ( )H t , so 

                    
l i m ( ) 0 l i m ( ) 0i
t t

H t H t
 

  
                    (3.18)

 

Since the probability sequence selection of ants is stable, we get 

lim ( ) (0,0,...,0,1,0,...,0)i
t

P t



                 (3.19)

 

Therefore, the algorithm converges. 

 

For the ant colony includes M ants, the entropy of colony is  
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1 2 1 2 1 2{ (1), (1),..., (1), (2), (2),..., (2),..., ( ), ( ),..., ( ),...}M M M

s s s s s s s s s sH H H H H H H H t H t H t
 

 (3.20)
 

Since lim ( ) 0 lim ( ) 0s
t t

H t H t
 

   , we know searching entropy of M ants for one 

solution equals to  searching entropy of one ant for M solutions. Therefore 

s sH H . 

 

From the above proofs, we can deduce that the probability sequence sP  

corresponding to sH is convergence. Obviously, the probability sequence of a certain 

ant in state s is identical to the subset of probability sequence corresponding to
sH , so 

for any 1 k M  , we have lim ( ) (0,0,...,0,1,0,...,0)k

s
t

P t


 . Also note that the 

position of 1 only depends on s. Therefore, the algorithm is convergent. 

3.5 Conclusions 

In this chapter, we have introduced the fundamental framework of Ant Colony 

Optimization, as well as three types of ACO algorithm within this framework. Based 

on the previous works about the convergence proof under a specific type of ACO 

algorithm, we propose a more general convergence proof based on entropy. In the 

next chapter, we will discuss how the ACO can be applied into PF in order to optimize 

the proposal distribution. 
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Chapter 4 Ant Colony Optimization Improved Particle 

Filter 

 

4.1 Introduction                                                        

As discussed in previous chapters, PF based multi-robot SLAM system has two 

characteristics. 

1) In general, the number of dimension in the multi-robot SLAM can be estimated by 

Equation 4.1. 

3 r md n n   ,                          (4.1) 

Where rn  is the number of robots, mn is the number of map grids. Since the number 

of map grids is significantly larger than the number of robots, it dominates the 

dimension of the state space. Therefore, the estimation of map consumes a huge 

proportion of the total computational effort. For example, assuming the situation that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

there are two robots navigating in an environment divided into 100 100  grids 

cooperatively; the cost of our experiment is equivalent to the estimation problem with 

10006  dimensions as estimated by Equation 4.1. Note that the map with  100 100  

grids may only represent an area of 100 100cm cm  or 1 1m m in the real world if 

we define that one grid is 1 1cm cm in the map. Alternatively we can modify the grids 

definition into5 5cm cm , so as to relieve the computational requirements, but at the 

cost of reducing the resolution of the map representation. 

 

Moreover, high dimension problem requires more particle samples to keep the error 

level [37] to a minimal. A straightforward method to improve the estimation accuracy 

is by using more particles, which will aggravate the computational burden. 

Nevertheless, a more elegant method is to optimize the particle distribution (or 
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optimize the proposal distribution) so as to improve the particle efficiency, which was 

proposed by [75, 141]. A detailed analysis of this problem will be presented in 

following sections. 

 

2) Another characteristic, or potential advantage in multi-robot system is its feasibility 

to distribute the computing process to different robots more efficiently comparing to a 

single robot system[142]. Since low-cost computing processor is already available in 

each robot, the system has the potential to accomplish real-time high-dimension 

estimation cooperatively. 

 

To fully utilize the computational potential of multiple processors, there exist several 

distributed PF algorithms [86], which can share the computational burden by all the 

processors with some distributed implementations. Relevant methods will be 

reviewed and a distributed PF designed for multi-robot system will be discussed in 

Chapter 6. 

 

4.2 Optimal Proposal Distribution Construction 

As discussed in Chapter 2, particle impoverishment is a major problem due to the 

random prediction sample in PF algorithm, especially in the case of high dimensional 

state estimation problem. Referring to the existing literatures [71, 75, 143], there are 

mainly two ways to select the optimal proposal distribution that brings the lowest 

variance of weights. 

 

The first case is that ts  is a member of a finite set. In such case, the integrals in 

Equation 2.4 becomes a summation, and therefore sampling from 1( | ( ), )t t tp s s i z is 

possible.  
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Another feasible method is the analytic evaluation by assuming the distribution 

1( | ( ), )t t tp s s i z is Gaussian [71, 75, 143], which indicates the dynamics are nonlinear 

and the measurements are linear. Such a system can be represented by Equation 4.2 

and 4.3: 

1( ) tran

t t ts f s v                        (4.2) 

( ) measure

t t tz h s v                       (4.3) 

and : x xM M
f R R is a nonlinear transition function, observation : x xM M

h R R is a 

linear  function, and tranv  and measurev
  

are mutually independent. 

 

We can obtain the proposal distribution with the assumption of Normal Distribution as 

Equation 4.4 and 4.5:  

1( | , ) ( ; , )t t t tp s s z N s m                      (4.4) 

and 

1 1( | ) ( ; ( ( )), )T

t t t tp z s N z H f s Q HRH                (4.5) 

 

Although in reality, the assumption of analytic evaluations cannot be held in most 

cases, it is possible to construct suboptimal approximations to the optimal proposal 

distribution by using local linearization techniques [143], or using unscented 

transform [75], both of which have been introduced in Chapter 2. 

 

Finally, in application, it is often convenient to choose the proposal distribution to be 

the prior 1( | ( ))t tp s s i  

1 1( | ( ), ) ( | ( ))t t t t tq s s i z p s s i                   (4.6) 

We obtain the weighting function with Equation 4.7 

1( ) ( ) ( | ( ))t t t tw i w i p z s i                   (4.7) 

This would seem to be the most common choice of proposal distribution since it is 
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intuitive and simple to implement.  

 

As discussed in Section 2.3, it is necessary to have a better proposal distribution 

therefore we attempt to develop an algorithm to determine the proposal distribution 

rather than the fixed model based construction methods. A common measurement of 

the difference between two distinct probability distributions P and Q is often referred 

to Kullback–Leibler Divergence (K-L divergence) [144]. As a non-symmetric 

measure, it represents the expected number of extra bits required to code samples 

from P when using a code based on Q, rather than a code based on P. Typically P 

represents the ―true‖ distribution data, observations, or a precise calculated theoretical 

distribution. The distribution Q typically represents a theory, model, description, or 

approximation of P. 

 

For probability distributions p and q of a discrete random variable the K-L divergence 

of distributions Q from P is defined as Equation 4. 8 

1

( )
( | ) ( ) log

( )

n

i

p i
D p q p i

q i

                     (4.8) 

where n samples are randomly drawn from these two distributions. From the above 

equation, we can anticipate that if two distributions are identical, the K-L divergence 

between them is zero.  

 

Suppose that we know the optimal distribution, and try to approach our proposal 

distribution to the optimal one by minimizing the K-L divergence. In such a situation, 

however, there are two different types of distributions in our problem; the optimal one 

is the continuous distribution while the other is discrete. To let the comparison 

becomes ―equal‖, we have to accomplish the following two procedures: 

(1) Converting the continuous distribution into discrete distribution with a number of 
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random samples taken in the state space.  

(2) Converting the discrete distribution into another discrete distribution; the 

converted distribution has the identical samples with the distribution from (1). 

 

For the first problem, the conversion method works as follows: 

1. Generate a random number from the standard uniform distribution; call this ix ; 

2. Compute the value probability density from the pdf such that ( )f x p ; call this 

ip . 

3.  Normalize all ip . 

 

For example, we need to convert a simple normal distribution 

2

2
1

( )
2

x

p x e




  in 

[0,1] with the interval 0.1, so we compute the following probability ip : 

1 2 11{ , ,..., }

{ (0), (0.1),... (1)}

{0.3989,0.397,0.391,...,0.242}

ip p p p

p p p







 

(4.9) 

After normalization, the probability ip  becomes: 

{0.1069,0.1064,0.1048,...0.0648}ip               (4.10) 

 

When we turn to the second problem of adjusting the discrete distribution to another 

fixed sample discrete distribution, normally, a first conversion has to be made from 

discrete distribution to continuous distribution, and then a second conversion is made 

from continuous one to discrete one similar to the process presented in the previous 

problem. A more direct method will be presented in the following, which is adopted 

from the interpolation methods. 

 

One of the simplest interpolation methods is linear interpolation. Generally, linear 
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interpolation [145] takes two samples, say ( , )a as y and ( , )b bs y , and the interpolant is 

given by: 

( )
( )

( )

b a
a a

b a

y y
p p y y

s s


  


 at the sampling point as             (4.11) 

 

For example, we have the following discrete probability density: 

[ , ] {[0.1,0.3],[0.3,0.4],[0.4,0.5],[0.8,0.9],[0.9,0.7],[1,0.5]}i ix p      (4.12) 

From the above definition, we can get more sampling points as follows: 

[ , ] {[0.1,0.3],[0.2,0.35],[0.3,0.4],[0.4,0.5],

[0.5,0.6],[0.6,0.7],[0.7,0.8],[0.8,0.9],[0.9.0.7],[1,0.5]}

i ix p 
 

(4.13) 

A further normalization also is needed and it is similar to the process in Equation 

4.10. 

 

Having two methods for conversion, we attempt to determine the solution of this 

optimization problem in the following.  

 

Since the sampling method is obtained from the idea of interpolation methods, let us 

recall the error analysis of linear interpolation governed by Equation 4.14: 

 
2 1

( ) ( )  where max ( )
8

b aq s p s C s s C p x              (4.14) 

where the function p() denotes the distribution function which we want to achieve and 

its second derivative exits, and s is the sampling point between as  and bs  .  

According to Equation 4.14, the error is proportional to the square of the distance 

between the sampling points. Moreover, if the second derivative function, ( )p x , 

equals to zero, the error caused from linear interpolation will approach zero and this 

becomes our Theorem 4.1.  

 

Theorem 4.1: Assuming that we need to approach an unknown distribution through a 



 

 64 

set of discrete sample distribution, the desired size of samples in different interval of 

( )p s is proportional to ( )p x , saying: 

( , ) ( , )p a b

effM p a b                      (4.15) 

 

According to Theorem (4.1), for example, in the situation that a Gaussian distribution, 

represented by Equation 4.16 

2
1 1

( ) exp
22

x
p x



 

   
   

   

                (4.16) 

 

Then its second derivative is equal to Equation 4.17:  

 

2 2 2

2 2

1 1 1 1 1
( ) exp exp

2 22

x x x
p x

  

     

            
              

             

 (4.17) 

 

In the situation when the mean 0  and the standard deviation 1  , the 

probability density function becomes Equation 4.18: 

21
( ) exp

22

x
p x



 
  

 
                    (4.18) 

So that its second derivative is represented by Equation 4.19: 

2
21

( ) ( 1)exp( )
22

x
p x x


                      (4.19) 

 

To better understand the situation, the comparison of normal distribution function 

(Equation 4.18) and its second derivative function (Equation 4.19) is shown in Figure 

4.1. 
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Figure 4.1 The Comparison of Normal Distribution Function and its Second Derivative Function 

From the second derivative of Gaussian distribution, we conclude that more samples are needed 

near the top of Gaussian distribution (the gray areas). 

 

As shown in Figure 4.1, we can see that the second derivative reaches the highest in 

absolute value within the gray area, where the Gaussian distribution value reaches the 

highest and (almost) the lowest. Considering Theorem 4.1, we need more samples 

within these intervals if we wish that the discrete distribution approaches the Gaussian 

distribution based on the measurement of K-L Divergence. Moreover, considering the 

second derivative, the value in red highlighted central area (equals to 1) is more than 

twice of that in the marginal areas (smaller than 0.5). Thus we only need to take 

samples in the high probability area, i.e. the central gray area. 

 

 
x 
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Given the relationship between the Gaussian distribution and its discrete sampling 

distribution, the method of construction of a sampled Gaussian distribution and 

elimination of particle impoverishment is straightforward and we have to move some 

samples around the high likelihood area based on their weights. Since most of the 

sensor noise are based on Gaussian distribution, or mixed Gaussian distribution, it 

also provides us a technique to determine characteristics of different sensors, for 

which more samples are always needed around the mean to construct the curve with 

higher second derivative rather than the linear line, no matter the noise is following a 

Gaussian or a non-Gaussian distribution.  

 

4.3 ACO Solution under Combinatorial Optimization 

Since our objective is to drive the proposal distribution to the optimal solution under 

the non-Gaussian situation and the actual model of distribution is not known 

beforehand.  So the traditional methods, the extended Kalman Particle Filter and 

Unscented Particle Filter, which are both based on a fixed model are just 

approximately approaching the optimal solution but probably will never identical to 

the optimal one.  

 

In addition to the above two methods, we propose another approach for constructing 

an optimal proposal distribution, in which we imagine that the particles can ―move‖ in 

the state space so that better distribution can be achieved through the existing 

optimization methods. Referring to the formulation of the combinatorial optimization 

problem framework given in Section 3.2, the optimal proposal distribution problem 

being considered can be classified as a combinatorial optimization problem, whose 

details are given below. 
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1 1

1

1

1

( ( ( ( ) | ( ), ), ( | , ))

( ) 1

. .
( | ( )) ( ( ) | ( ))

( )
( ( ) | ( ), )

t t t t

M

i

t t t t
t

t t t

Min D q s i s i z p s s z

w i

s t
p z s i p s i s i

w i
q s i s i z



 












 



 

(4.20) 

where D() is the K-L divergence between two distributions. 

 

Because this problem when the model is not known in advance, heuristics are usually 

considered to be one of the possible solutions. In the following, we will attempt to 

apply ACO to this combinatorial optimization problem. 

 

To solve this problem, details of the PFACO algorithm based on the ACO framework 

are listed in the followings. 

1) Construct Ant Solutions: To optimize the generic PF, we adopt ACO before the 

updating step in PF. An ant replaces the randomly-generated particle in the Sequential 

Monte Carlo concept. So we assume that we have m artificial ants to construct the 

distribution and the ants are initially distributed from the prior information (4.14), 

incorporating the transition information. Therefore, to build a more optimal candidate 

solution set, we need to feed measurement information into the distribution; the 

weighting function, which is related to the measurement, is also applied to evaluate 

the stochastic search performance as well as terminating the search when certain 

criterion in measurement is met. As the main algorithm of ACO, Ant System runs 

with a stochastic search as governed by Equation 4.21 under the constraints from the 

set ( )PN s  to maximize the evaluation function, so as to fulfill Theorem (4.1).  

 

all particles

[ ( )] [ ( )]
( )

[ ( )] [ ( )]

ij ij

ij

is is

s

t t
p t

t t

 

 

 

 





              (4.21) 
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where the term α represents pheromone value, ( )ij t  denotes pheromone value 

corresponding to trail connecting ant j and ant i;  β represents the heuristic 

information, which is defined as the reciprocal of the distance of every two particles 

as defined in Equation 4.22: 

1
( )ij

ij

t
d

                          (4.22) 

 

Note that the velocity of movement is defined as a random number between zero and 

the difference of the original point and the target point. It will terminate until all 

particles’ positions converge to the high likelihood probability region (the general or 

local optimal solution) within a certain threshold, defined by Equation 4.23. 

                   

j c o n s t a n t  v a l u e
T h r e s h o l d

n u m b e r  o f  p a r t i c l e s
                 (4.23) 

 

2)Update Pheromone: The pheromone value of a traversed trail is enhanced by a 

constant value, others are reduced according to the evaporation rate.  

 

The updating rule of evaporation value is given in Equation 4.24. As we already 

have ( )ij t , without loss of generality, let us define ant j is the one intending to move 

during the iteration and ant i is the potential moving target. Note that the candidate 

partial solution may lie in the trail, so this move is also considered as a kind of 

stochastic search. Referring to Equation 4.24, pheromone is updated during this 

iteration according to the target of the stochastic move. In the meanwhile, evaporation 

is carried out all the time together with either enhancement with the value ( )i t  

(defined as the weight of ant i at iteration t) or nothing as governed by Equation 4.24: 

 

( 1) (1 ) ( ) ( )   j set of particles lie in the movement path

( 1) (1 ) ( ) j set of other particles

ij ij ij

ij ij

t t t

t t

   

  

    


   
   

(4.24) 
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where 0 1   is the evaporation rate, Δτ is an enhanced value equals to the weight 

of ant i.  

 

A pseudo-code describing the optimization algorithm is given in Algorithm 4.1 

 

Algorithm 4.1: The ACO improved PF Alogorithm 

Function PFACO 

While the distance between particles and their targets are not within a certain 

threshold governed by Eqn. (4.31) 

---Choose particle i whose distance is within the threshold 

---Select the moving target based on the probability Eqn.(4.29) 

---Move towards the target with a velocity 

---Update the parameters (e.g. pheromone value, heuristic information) of the ACO, 

and particle weight 

End While 

 

 

This ACO algorithm converges when Pij approaches one [146], so it implies that the 

particle i definitely re-locates to a closer proximity of particle j. When this 

convergence holds during each iteration, most particles converge to this particle j, 

which is represented as the neighborhood of a higher likelihood (higher weights) 

based on Equation 4.21. In this process, two parameters determine the relative 

influence. If 0  , all particles choose to remain in their original positions so the 

algorithm degenerates to a generic PF; if, 0  , particles tend to move towards 

neighborhood around higher likelihood, so the distribution is approaching ( | )t tp z s . 

 

Optimized by the ACO, the particle impoverishment problem is basically alleviated 

because it continuously compares the evaluation function, or the measurement, in 

every iteration, as well as it tends to stay near to its original position (the prior). 
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Therefore, the particle samples have a tendency to be around high mixture likelihood 

regions. As a result, most of the particles which are scattered far away from the true 

state will converge to states that represent high probability as shown in Figure 4.2. 

Therefore, when configured with suitable parameters (ρ, τ0, constant value in 

threshold, etc.), ACO has the ability to balance between the diversity and the 

impoverishment of PF.  

 

Figure 4.2 ACO Improved PF 

Because particle j as a moving target has higher weight and shorter distance than the other 

particles, pij (denoted by the length of arrow) is larger than other probabilities. Therefore particle 

i moves towards particle j. 

 

 

 

4.4 Conclusions 

The construction of the proposal distribution is analyzed and reformulated in the 

combinatorial optimization framework. As a metaheuristic method to combinatorial 

optimization problems, ACO is applied to optimize the proposal distribution. In the 
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next chapter, case studies and proof of the ACO improved PF are given. 
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Chapter 5 Analysis of PFACO  

5.1 Introduction 

In Chapter 4, a biologically inspired method, the ACO algorithm, to optimize the 

particle distribution has been proposed so that particles can better approximate the 

optimal proposal distribution. Advantages of the proposed method are: 

1) the near-optimal proposal distribution will lead to smaller variance of weights, so 

that the efficiency of particles can be maintained;  

2) it is suitable for implementing in multi-robot systems by considering the system’s 

characteristics as stated in Section 4.2. 

 

In this chapter, a detailed study, including a comparison between different types of PF 

and a variance of weights comparison for cases with extreme variance values, will be 

presented in order to analyze the performance of ACO improved PF; in addition, a 

mathematical proof on the ACO improvement PF by measuring the K-L Divergence 

[140] is also given in the latter part of this chapter. 

 

5.2 Case Studies 

5.2.1 Single Variable Estimation 

A nonlinear single variable economic model, given in Equations 5.1 and 5.2,  

adopted from [75] was employed to compare results of various methods, including 

Extended Kalman Filter[147], Unscented Kalman Filter [37, 148], generic PF (PF 

with Sequential Importance Re-sampling) [37], PF with EKF Proposal [37], PF with 

UKF proposal [87] and PF with ACO improvement.  

 

             
2( 1) 1 sin(4 10 ) 0.5 ( ) ( )s t t s t w t                     (5.1) 
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2( )
( ),  t 30

5( )
( )

2 ( ),  t>30
2

s t
u t

z t
s t

u t


 

 
  


                     (5.2) 

 

where w(t) stands for the zero-mean white noise, and u(t) stands for noise with 

Gamma distribution[149], where the variance of w(t) is 51 10 , and the two 

parameters of Gamma distribution, k and θ, equal to 7 and 2, respectively. 

 

From t=1 to 60 in a single test run, given the noise measurement, the state sequence st 

was applied to all filtering methods. In order to minimize the effect of randomness, all 

experiments included 30 runs. In all PF, the number of particles used was 200. Table 

5.1 and 5.2 show the mean and variance of the Root Mean Square Error (RMSE) 

obtained from different PF algorithms. Figure 5.1 depicts the RMSE for different 

algorithms. 

 

Filters RMS Error RMSE Percentage (EKF=100%) 

EKF 0.98087 100 

UKF 0.68237 69.57 

Generic PF  0.77918 79.44 

PF+MCMC 0.79492 81.04 

PF+EKF 0.95391 97.25 

PF+UKF 0.3792 38.66 

PF+EKF+MCMC 0.95354 97.21 

PF+UKF+MCMC 0.39387 40.16 

PF+ACO  0.28153 28.70 

 

 

Table 5.1 RMS value of error 
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0 0.5 1 1.5

PF+ACO 

PF+UKF+MCMC

PF+EKF+MCMC

PF+UKF

PF+EKF

PF+MCMC

Generic PF 

UKF

EKF

 

Figure 5.1 Comparison of RMSE from different filters 

 

Filters Variance 

EKF 0.059334 

UKF 0.029767 

Generic PF  0.054233 

PF+MCMC 0.041409 

PF+EKF 0.044244 

PF+UKF 0.021977 

PF+EKF+MCMC 0.049126 

PF+UKF+MCMC 0.01669 

PF+ACO  0.001619 

Table 5.2 Variance of RMS Error 

 

From the above tables and figure, we can conclude that our PFACO can produce the 

best results in term of error level. In addition, the variance of our method is also the 

smallest comparing to other methods, implying that the PFACO can give more stable 

performance according to [150]. 

 

The average execution time in each run was measured and given in Table 5.3. 
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Filters Time (Sec) 

EKF 0.53321 

UKF 0.92803 

Generic PF  0.89604 

PF+MCMC 1.95805 

PF+EKF 5.9355 

PF+UKF 11.68094 

PF+EKF+MCMC 10.06142 

PF+UKF+MCMC 22.88661 

PF+ACO  3.18547 

Table 5.3 Execution Time of Filters 

 

According to Table 5.3, the PFACO requires a longer computational time than the 

Kalman Filters and generic PF, which generally will give a larger estimation error. But 

compared to the similar PF with an improved proposal distribution, the extended 

Kalman Particle Filter and Unscented Kalman Particle Filter (both with and without 

MCMC), PFACO takes a shorter execution time.  

 

The following figure represents the estimation results from all filters of one run, 

which shows that PFACO can track the estimation accurately throughout the whole 

experiment. 
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Figure 5.2 The diagram of different PF tracking result 

The ACO improved PF performs better than other PFs in the single variable estimation test. 

Besides, the extended Kalman Particle Filter performs worse than generic PF, especially from 

time interval 1 to 30, it may be caused from the transition function is with the white noise, which 

EKF probability cannot track quite well, even compared to the generic PF. After the time 30, with 

another measurement function, almost all PFs perform quite well. 

 

Before we present the conditional distribution details of various kinds of filters as 

shown in Figure 5.3(c), an example to demonstrate the conditional 

distributions 1( | )t tp z z   and ( | )t tp s z  are depicted in Figure 5.3 (a) and 5.3(b). In 

these two examples, the curves parallel to the zt or st axis denote the distribution at a 

specific time, i.e. t=1 to 60. So these two figures show the measurement and the 

posterior distributions from the generated particles. In the measurement demonstration 

(Figure 5.3a), a sharper distribution is preferred because it represents measurements 

from particles concentrate in a true measurement. In the posterior distribution (Figure 

5.3b), it is desired that particles are distributed with a mixed-Gaussian model, 

especially in cases including a non-Gaussian estimation applications.  
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Figure 5.3c includes conditional distributions sequence obtained from different 

proposal distribution construction methods for solving the previous single variable 

estimation problem. The first row represents distributions of different PF, from which 

we can observe the different proposal distribution construction methods leading to 

different predicted measurements. The two distributions with a sharper peak (UKF 

and ACO proposal distributions), referring the accurate measurement predictions with 

smaller variances. Moreover, the second row in the figure shows different posterior 

distributions ( | )t tp s z , representing the state distribution based on certain 

measurement. Unlike the measurement probability distribution, some non-Gaussian 

distributions, such as mixed distribution, may occur during the experiment. However, 

PFACO provided the possibility to construct a mixed distribution with the particles, and 

it is useful in robot localization without the prior information of an initial position; the 

other three PF merely introduced the posterior to Gaussian distribution. 
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(a) 

 

(b) 

Figure 5.3 (a)(b) 

Sampled distributions in a run 
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5.2.2 Single Robot Localization 

 

In order to evaluate the performance of the PFACO when applied to robot’s localization 

problem, it was implemented using a Matlab program originally developed by Vale 

[151] and modified by the author (Figure 5.4). 

 

This Matlab program has the ability to simulate a mobile robot movement and its 

noisy measurement from a SICK laser sensor maneuvering within a map described 

using a matrix file. In Figure 5.4a, blue particles on the right chart represent the 

hypothesis of positions from generic PF, while the green particles from the PFACO. 

When the estimation was in progress, the blue and green particles would be re-drawn 

continuously as in Figure 5.4a and weights of each particle would be plotted (Figure 

5.4b). The noisy observation of sensors is shown in Figure 5.4c. In the following 

experiment, the generic PF and PFACO were applied to estimate the robot pose 

(including the position and orientation) along with a series of points. (Asterisks in the 

Figure 5.5) 
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(a) 

 

(b) 

 

 

(c) 

Figure 5.4 Interface of Particle Filters in Robotic Localization Demonstration 

In Figure 5.4a on the top, the left map shows the true map and the trajectory of the robots’ 

navigation (red curve) along the asterisks set in advance, and the right map is the evolution 

demonstrations of particles representing the robot’s pose while the robot is traversing in the area. 

In Figure 5.4 b, the graphs depict the pose particles’ weight distribution of robot. Figure 5.4c 

shows the observation from the SICK laser sensor equipped in robot. 
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Figure 5.5 Asterisks as the navigation targets 

The positions of asterisks are pre-defined and stored in a matrix. Robot will move along these 

asterisks during the experiments. 

 

The generic PF, extended Kalman PF, Unscented PF, and PFACO were applied to the 

same localization problem. Without the prior information of initial poses, neither filter 

could track the poses accurately at the beginning, so some traces, standing for 

multiple hypotheses, appear in the particle evolution demonstration at couples of 

initial running steps. However, after enough information has been obtained, all filters 

could return to the correct trajectory.  

 

(a) 
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(b) 

 
(c) 

 

(d) 

Figure 5.6 Navigation Progress 

(a) The localization result from generic PF, in which the particle deviation happened in upper 

middle of the map, and lasted for a long running process. (b) The localization result from 

extended Kalman PF, in which the particle deviation happened in right lower corner of the 

map. (c) The localization result from Unscented PF, in which the particle deviation happened 

from the right top corner to the middle lower part.(d) The localization result from extended 

Kalman PF, in which there are also some deviations. But comparatively, they are shorter than 

the other three PF methods. 

Particle deviation refers to the fact that the particle set deviates from the true 
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trajectory with a significant distance. In mathematics, the deviation makes this 

particle set negligible in Monte Carlo estimation because these particles will have a 

relatively small weights. Thus it can be regarded as an explanation of particle 

impoverishment. Figure 5.6a shows the process obtained from generic PF, and its 

particle deviation was almost the laragest among the four algorithms. Figure 5.6b and 

5.6c were captured from the extended Kalman PF and Unscented PF localization, 

whose particle evolutions were so similar, and both had particle deviation with almost 

the same degree. However, the PFACO comparatively had smaller particle deviation 

than the other three PF methods. 

 

To evaluate the results quantitatively, we compare the RMS error of the position and 

orientation of the robot in Table 5.4.  The table also shows the percentage error of 

three different versions of PF using the RMS error of the generic PF as reference. 

 

Filters RMS Error in Position Position Error (%)   

Generic PF 4.5045 - 

Extended Kalman PF 3.2918 73.08% 

Unscented PF 2.8605 63.50% 

PF+ACO  1.9027 43.24% 

 RMS Error in 

Orientation 

Orientation Error (%) 

Generic PF 3.7746 - 

Extended Kalman PF 2.3207 61.48% 

Unscented PF 2.2439 59.45% 

PF+ACO  0.8529 22.60% 

Table 5.4 RMS Error of Four PF in single robot localization (particle number is 200) 

From Table 5.4, it is obvious that PFACO has smaller errors in robot position and 

orientation estimation than other three methods using the same number of particles. It 

is because our ACO plays an important role in the optimization of particle distribution 

in PF, alleviating particle impoverishment from occurring.  

 

Table 5.5 shows the execution time of the four PF, using 200 particles, and the generic 

PF took the shortest computation time, and PFACO took shorter time than the extended 
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Kalman PF and Unscented PF. 

Filters Execution Time 

Generic PF  42.17231 

Extended Kalman PF  60.23145 

Unscented PF 91.93079 

PF+ACO  53.19893 

Table 5.5 Execution Time for Four PF (in Sec) 

From the above results, the RMS error in all cases of the PFACO was less than that 

obtained from the generic PF. Thus a smaller number of particles is needed to 

maintain the error level, and therefore, PFACO will make robot localization problem 

consuming less computational time and in addition, the size dependency problem can 

be avoided. 

 

In the above experiment, we merely made the estimation on the pose of robot, i.e. the 

localization of robot, based on the assumption that the robot had already gotten the 

prior information of a map.  

5.2.3 Single Robot SLAM 

In this section, using the single robot SLAM experiment platform and map, we 

attempted to solve the single robot SLAM problem by four PF methods used in the 

above sections. Since an estimated map will be developed after the experiment, we 

introduce a way to investigate the grid-occupancy map and results obtained by using 

different filtering methods are presented in the following paragraphs. In Equation 5.3, 

it illustrates the method applied in evaluating the error and it is by counting the 

difference between the true value and estimation value of map grids one by one: 

 

                           , 1

L

m ij ij

i j

E m m


                       (5.3) 

where ijm  is the true value of map grid ij, ijm  is the estimation value of map grid ij. 

Thus the equation simply counts the different grids between the true map and the 
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estimated map one by one. 

 

There is an addition feature which is the mapping function included in the simulation 

program. The generated map as shown in Figure 5.6 was stored in memory 

continuously during the mapping process. The software can automatically compare 

these maps, and calculate their error (Equation 5.3) after the mapping algorithm.  

 

       

(a)                                 (b) 

 

Figure 5.7 Map Re-draw 

Part of the estimated map matrix stored in the memory and the map based on its information 

 

Figures 5.8 and 5.9 illustrate the localization results and mapping results of SLAM 

obtained from four PF. In Figure 5.6, because the map information was not provided 

in advance, the multiple hypotheses of robot’s initial pose were not taken in the initial 

steps, so there were not many simultaneous particle traces representing the hypotheses 

in the map of the experiments as illustrated in Figure 5.6.  
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 5.8 Single robot Localization results (a) Localization results of generic PF. (b) Localization 

results of extended Kalman PF. (c) Localization results of Unscented PF. (d) Localization results 

from PFACO.  

 

 

The estimated maps as shown in Figure 5.9 are re-drawn from the map grids matrix. 

We can observe that the localization results depicted in Figure 5.9 are similar to those 

obtained from single robot localization experiments. The generic PF’s mapping results 

has the largest error, while the ―noise‖ in Figure 5.9b and 5.9c are within the same 

level. Comparatively, the PFACO has the smallest errors. 
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(a)                       (b) 

  

(c)                      (d) 

Figure 5.9 Single robot mapping (a) Mapping results of generic PF. (b) Mapping results of 

extended Kalman PF. (c) Mapping results of Unscented PF. (d) Mapping results from PFACO. More 

error can be found in the generic PF mapping, while extended Kalman PF and Unscented PF are 

in the same error range.  

 

 

The following Table 5.6 includes the error and its percentage by comparison, and 

Table 5.7 shows execution time. Both tables are obtained from single robot SLAM. 
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Filters RMS Error in Position Position Error (%) 

Generic PF 17.5435 - 

Extended Kalman PF 13.3442 76.06% 

Unscented PF 13.7347 78.29% 

PF+ACO  7.2483 41.32% 

 RMS Error in Orientation Orientation Error (%) 

Generic PF 5.2239 - 

Extended Kalman PF 5.6204 107.59% 

Unscented PF 3.3570 64.26% 

PF+ACO  1.4309 27.39% 

 RMS Error in Mapping Mapping Error (%) 

Generic PF 10239 - 

Extended Kalman PF 8924 87.16% 

Unscented PF 8729 85.25% 

PF+ACO  6024 58.83% 

Table 5.6 RMS Error of Four PF in single robot SLAM (All particle number is 200) 

 

Filters Execution Time 

Generic PF  494.53507 

Extended Kalman PF  664.30649 

Unscented PF 703.50325 

PF+ACO  574.35045 

Table 5.7 Execution Time of Four PF in single robot SLAM (in Sec) 

These numerical results are similar to our observation from Figures 5.8 and 5.9. 

PFACO has the smallest error in localization and mapping, in both cases, the RMS 

errors are just half of those obtained from the extended Kalman PF and Unscented PF, 

also it is much better than generic PF. Similar to the localization problem, PFACO took 

shorter time to complete comparing to the other two improved PFs. Since non-linear 

noise is added to the motion and sensor models, but proposal distributions in generic 

PF, extended Kalman PF and Unscented PF are only approximations to the optimal 

proposal distribution, consequently, estimation result from PFACO is better. 

5.3 Variance Improvement in PFACO 

In this section, we will concentrate on the performance of our PFACO in cases under 

more extreme conditions by considering the variance of particles’ weight. Large 
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variance or small variance of weights in particle sets generated after the transition 

model (i.e. motion model in robotics application) often lead to diverse results. 

Therefore, we generated particles with different degrees of variance, so as to further 

investigate performances of the ACO improved PF under those cases. 

 

We employed another single variable model defined by Equation 5.4 and 5.5. 

 

( 1) 6 sin(4 2 ) 0.5 ( ) ( )s t e t s t w t                     (5.4) 

2( ) 0.2 ( ) ( )z t s t u t                      (5.5) 

where w(t) and u(t) stand for the zero-mean Gaussian process noise and measurement 

white noise respectively. By tuning the variance of w(t) and u(t), we can generate 

particles which have weights that give different variances of their weights. Then we 

manually positioned the particles in almost the same distance from the true value in 

the state space to tune their weight variance. As a result, their variance almost equals 

to zero. As stated in Equation 4.21, if particles are distributed with equi-distance from 

measurement then the probabilities of moving towards other particles are almost the 

same, that is, their probabilities are averagely low. However, the probability of 

standstill is higher by setting its default probability in ACO algorithm, so particles 

will remain in their initial positions. Thus the variance of the whole particle set 

remains zero. An experiment based on such a situation will be given in this section. 

Having a large variance, it represents the situation that particles are so distant from 

each other. Having differences in weights, with the effort of ACO, particles with 

smaller weights will move towards ones with larger weights, and then the particle set 

will end up with a smaller variance for the weights. 

 

The variance of weights was tuned approximately from 0.0001 to 10, with a step size 

of 0.1 and the improved results are presented in Figure 5.10. 
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Figure 5.10  The effect of variance change before and after ACO algorithm 

The figure shows that the variances above one will always decrease to zero. But the variances 

between zero and one only decrease to the value between 0.01 and 0.06. Generally speaking, the 

ACO improves the weight variance of PF. 

 

Before ACO (variance) After ACO (variance) 

0.0001 0.0001 

0.2131 0.0218 

0.5310 0.0301 

0.8150 0.0559 

1.1754 0.0075 

1.8657 6.4543×10
-29

 

4.2213 6.4543×10
-29

 

7.2852 6.4543×10
-29

 

9.5429 6.4543×10
-29

 

Table 5.8 Cases with Extreme Weight Variance of ACO Improvement 

 

The variance improvement can be illustrated by the changes in variance value before 

and after the application of the ACO algorithm and results are given in Table 5.8 
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which represents nine runs of the same experiment with different initial settings of 

particles. 

5.4 Optimization in PFACO 

In this section, we will propose a theorem and its proof, explaining how the PFACO can 

produce better solution when compared to generic PF, which employs a transition 

function as the proposal distribution. 

 

Theorem 5.1: With the convergence of ACO, the PFACO can always achieve the 

optimal proposal distribution when the ACO converges to an optimal solution. 

 

Proof: In the generic form, a transition model is often used as the predicted proposal 

distribution: 

1 1( | , ) ( | )i i

t t t t t tranq s s z p s s                     (5.6) 

However, the optimal one is as follow: 

1 1( | , ) ( | , )i i

t t t opt t t tq s s z p s s z                     (5.7) 

 

The second term 1( | , )i

t t tp s s z  in real world presents the probability that moving to 

state ts  in time t, given the samples in previous time step 1ts   and the measurement 

tz . This generic transition model can approximately equals to this optimal model only 

if the following two conditions are satisfied. 

1) The motion sensor has no error in the motion detection; or 

2) the motion sensor noise has similar noise variance as the observation sensor. 

 

Nevertheless, the above two conditions are difficult to achieve in most of our 

experiments due to the different variances contributed by various sensors’ errors. The 

observation sensors, e.g. laser sensors and vision sensors, are becoming more accurate, 
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but this is not the same case for motion sensors. With different variance level, 

traditional transition model based on the motion sensors is not as suitable as it used to 

be, especially in experiments include observation sensors and motion sensors. Figure 

5.11 shows a comparison of the two distributions and a mixture distribution of them 

which is a non-Gaussian distribution.  

 

Figure 5.11 A mixture density of two different normal distributions, which having different 

variance values. We can tell that the mixture distribution is mainly dominated by the smaller 

variance normal distribution rather than the larger one. 

 

The approximation of K-L Divergence is generated by a set of sample data set: 

1s , 2s ,… Ns , based on the model density p(s), so 

1

1
( || ) [log ( ( )) log ( ( ))]

N

i

D p q p s n q s n
N 

                 (5.8)  

For the generic PF, the above K-L Divergence equals to 

1 1

1

1
( || ) [log ( ( ) | ( ), ) log ( ( ) | ( ))]

N

t t t t t

i

D p q p s n s i z q s n s i
N

 



         (5.9) 

To evaluate the K-L Divergence, we take N Monte Carlo samples in state space for ts , 
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calculate their probability density given the condition of particle 1( )ts i and tz . Note 

that two Monte Carlo methods are separated, in which N samples (denoted as index n) 

are used to calculate K-L Divergence, and M samples (denoted as index i) are used to 

calculate the SLAM posterior (also known as PF). 

 

Recall that the ACO probability that drives the particle to move by the function in 

Equation 4.21. It is trivial to know from this equation that the ACO algorithm 

converges if and only if ( ) 1ijp t  , which indicates the necessary and sufficient 

conditions of ACO convergences is 0ijd   or 
all particles

lim ( ) ( )ij is
t

s

t t 




  . These two 

conditions are corresponding to the high probability density ( | )t tp x z (the blue curve) 

and 1( | )t tp x x  (the red curve) as distributions depicted in Figure 5.11. Consequently, 

majority of particles will be located around the peak of the mixture likelihood density 

function. 

 

Assuming we take samples 1 2
ˆ ˆ ˆ, ,..., ns s s  in the optimal proposal distribution, in order 

to approach the optimal proposal distribution according to the definition of K-L 

Divergence and our Theorem 4.1, we will derive the relationship of the number of 

samples and the optimal distribution. If it is necessary to have M samples 

( 1, ,...,k k k Ms s s  ) in order to generate N samples ( 1
ˆ ˆ ˆ, ,...,k k k Ns s s  ) in the continuous 

optimal proposal distribution according to Theorem 4.1, the number of samples 

needed to be considered is proportional to the second derivative of the optimal 

distribution, which can be illustrated by Figure 5.12 and Equation 5.10: 
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Figure 5.12 Demonstration of the samples size M and N.  

Within [-1, 0], there are k=3 intervals. In the 1
st
 and 2

nd
 interval, M1=1 and M2=1 samples may be 

sufficient to represent the distribution because all the second derivatives in this interval are nearly 

equal to zero ,and  M3=3 sample are needed to re-construct the distribution. So the red samples 

are the most efficient and accurate representation samples. Comparatively, the blue ones are less 

efficient and accurate. 

 

1

1

[ ( ) ( ) ( )] /

[ ( ) ( ) ( )]

k k k N

k k k N

M N f s f s f s N

f s f s f s





 

 

     

      
 

(5.10) 

In the above equation, λ is a constant, indicating that number of M is determined by 

the summation of the second derivatives of all samples in this interval.  

 

As Figure 5.12, we uniformly take k samples in the optimal Gaussian distribution, and 

within these intervals, M samples are in the original discrete distribution, that is, 

1 2{ , , , }
ki kM M M M . Similarly, samples in the proposal distribution are also 
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separated into k intervals, that is 1 2{ , , , }
ki kN N N N  

 

Because of the convergence of Ant Colony Optimization algorithm (Section 4.2), 

given a certain continuous optimal proposal distribution with M samples, the sample 

ts  are moved from the ts  after the ACO improvement according to the 

interpolation introduced in Section 4.2.  

 

Therefore, we can compare two K-L Divergence before the ACO improvement, then 

Equation 5.9 becomes  

      
1 i n t  

1

k

1
ˆ[ l o g ( ( ) | ( ) , ) l o g ( ( )

1
( | | ( ))]| )

k

k

i n erva

t t

l

t t tp s n s i z q s n sq iD p
M

 

 

     (5.11) 

and  

1 int

1

 k

1
ˆ[log ( ( ) | ( ), ) log ( ( ) | ( ))( || ) ]

1

k

t t t t t

k

i n erval

p s n s i z q s n s iD p q
M

 

 

 

   . (5.12) 

 

Let the sequence 1 2
ˆ ˆ ˆ ˆ{ , , , }

ki kM M M M  denote the required particle number in each 

interval based on Equation 5.10. After sufficient iterations to achieve the optimal 

solution, if in an interval that the required particle number ˆ
k ki iM N , such as k = 1,2 

in Figure 5.12, it is trivial that 

                     ( | | ) ( | | )D p q D p q .                         (5.13) 

 

If within the intervals that the required particle number ˆ
k ki iM N , such as k = 3 in 

Figure 5.12, then  
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1 1

1 1 1

1 1

1 1

ˆ ˆ( ( ) | ( ), ) ( ( ) | ( ), )1
( || ) ( || ) [log log )]

( ( ) | ( )) ( ( ) | ( ))

ˆ ˆ( ( ) | ( ), ) ( ( ) | ( ), )1
[log log ]

ˆ( ( ) | ( )) ( ( ) | ( ), )

M
k k k k k k

n k k k k

k k k k k k

k k k k k

p x n x i y p x n x i y
D p q D p q

M q x n x i q x n x i

p x n x i y p x n x i y

M q x n x i p x n x i y

  


  

 

 

  

 




1

1

1 1

                                                                                                          (22.1)

ˆ( ( ) | ( ), )1
[log 0]                               

( ( ) | ( ))

M

n

M
k k k

n k k

p x n x i y

M q x n x i





 

 



                             (5.14.1)

0

 

(5.14) 

 

The step (5.14.1) comes from the convergence of Ant Colony Optimization (Section 

4.2). So within the intervals that the required particle number ˆ
k ki iM N  

( || ) ( || )D p q D p q  

Given a number ε, with enough iteration, we can always achieve arbitrarily small K-L 

Divergence. Overall, when the K-L Divergence takes summation in all the intervals, 

we can conclude that ( || ) ( || )D p q D p q . 

 

The above theorem shows that the proposal distribution can ultimately achieve 

optimal one with Ant Colony Optimization when the number of iterations in a 

qualitative way. A quantitative study to the performance of PFACO will be shown in 

the following theorem and proof. 

 

The main purpose of following proof is to bound the error introduced by the 

sample-based representation of PF. To derive this bound, we assume that the optimal 

distribution is given by a discrete, piecewise constant distribution [152] such as a 

discrete density or a multi-dimensional histogram. For such a representation, we can 

determine the number of samples so that the K-L Divergence between the maximum 

likelihood estimate based on the samples and the optimal distribution does not exceed 

a pre-defined probability. The optimization of PF can be achieved if its probability is 

larger than that of generic PF with the same amount of particle samples. 
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Theorem 5.2: With a given  , if we need the efficient particle size n to approach the 

true distribution with an upper bound  on the K-L Divergence with probability 

1   in generic PF, then in PFACO, the probability is always 1.  

 

Proof : 

Given the true distribution 
1( | ( ), )t t tp s s i z

, after it is sampled to k bins, let the vector 

1 2( , ,..., )kS S S S denote the number of samples drawn from each bin and S is 

distributed according to a multinomial distribution: 

~ ( , )kS Multinomial n p . 

where 1 kp p p  specifies the probability of each bin. The maximum likelihood 

estimate of p is given by 1p̂ n S . The K-L Divergence of these of two 

distributions p  and p̂  is  

                       

ˆ
ˆ( | | ) l o g ( )

j

j

x j

p
D p p X

p


                   

 

(5.15)

 
Furthermore, when p  is the true distribution, the likelihood ratio statistic n  for 

testing p  is given as: 

ˆ
ˆlog log( )

ˆ log

j

n j

x j

j j

x

p
n p

p

n p












 

(5.16) 

 

After some arrangement by logarithm rules, we can derive
ˆ jp n

n j

x

  . Please be 

noted that   also can be arbitrarily small due to the assumption that   is an enough 

small number. 

 



 

 100 

From the Equations 5.15 and 5.16, it can be proved that the likelihood ratio statistic is 

n times the K-D Divergence between the proposal distribution and the true 

distribution: 

   

ˆlog ( || )n nD p p 
  

(5.17) 

We can see from literature [153] that the likelihood ratio converges to a chi-square 

distribution with k-1 degree of freedom 

2

12log n d k  
  

(5.18)
 

when n . 

 

Let ˆ( ( || ) )pP D p p  denote the probability that the relative entropy between the true 

distribution and the proposal distribution is less than or equal to ε. The relationship 

between this probability and the number of samples is as follows: 

2

1

ˆ ˆ( ( || ) ) (2 ( || ) 2 )

(2log 2 )

( 2 )

p p

p n

k

P D p p P nD p p n

P n

P n

 

 

 

  

 

 
 

(5.19)

 

By replacing the second step of Equation 5.19 with the likelihood ratio statistic, and 

by using the convergence result stated in Equation 5.18, the quantiles δ of the 

chi-square distribution are given by 

2 2

1 1,1( ) 1k kP       
  

(5.20) 

If we choose n such that 2n  is equal to
2

1,1k    , we can combine the above two 

equations together and get 

ˆ( ( || ) ) 1pP D p p                         (5.21) 

To explicitly summarize, if we choose the number of samples as 
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2

1 , 1

1

2
kn 


 

                      (5.22)
 

Then we can guarantee that with the probability 1-δ, the relative entropy between the 

proposal distribution and the true distribution is less than ε with a finite particle size n. 

 

Note that Equation 5.19 can be modified as follows after the ACO improvement is 

successfully applied: 

ˆ
(2log 2 ) (2log 2 )jp n

j

x

p n pP n P n              (5.23) 

 

When we maintain Equation 5.22, because 
ˆ jp n

j

x

  is arbitrarily small, so equation 

ˆ
2log 2jp n

j

x

n   is always true. Therefore the above probability is always one. It 

means that provided any ε, with the ACO improvement, we can always achieve the 

K-L Divergence with an upper bound of ε with a particle number n.  

5.5 Conclusions 

In this chapter, a number of experiments have been presented to examine the 

performance of PFACO comparing with other filtering methods. The results show that 

the novel method tracks more accurately than other methods and takes shorter 

computational time than other improved proposal distribution methods both in single 

variable estimation and in single robot localization problems. Moreover, the variance 

of particle weights decreases after the ACO improvements in experiments. In Section 

5.3, two theorems about the ACO optimization have been introduced. First, it will 

converge to the optimal proposal distribution after infinite iterations. Second, with a 

pre-defined thresold, if the generic PF need an efficient particle size to approach the 

optimal distribution with a certain probability, then the PFACO has larger probability to 

achieve optimal with the same threshold and same particle number. In next chapter, 

the PFACO will be applied to the multi-robot SLAM problem.
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Chapter 6 PFACO Application on Multi-robot SLAM  

6.1 Introduction 

In Chapter 4, the PFACO algorithm was introduced and it was applied to solve the 

single variable estimation problem as well as the single robot localization problem. 

However, as mentioned in Section 4.1, one of the advantages of our PFACO is that it is 

easy to be implemented in a multi-robot system and fully utilize the available 

computational power provided by the robots. Therefore for problems related to  

multi-robot, such as multi-robot SLAM, the time required to identify the solution can 

be reduced when comparing to a single robot system, with the assumption that an 

optimal communication system with no data loss and no time delay[154, 155] is 

available. 

 

Because researchers had solved several key problems related to the implementation of 

distributed generic PF [156], in the following sections, we will focus on the 

realization of the novel PFACO using distributed computing algorithm. In addition, the 

coordinating strategy using distributed or ordinary PF algorithms of a multi-robot 

system adopted for solving the multi-robot SLAM problem will also be discussed. 

 

6.2 Distributed Implementation of PFACO 

The multi-robot system is simulated by the same simulator program introduced in 

Section 5.2. It is further modified and enhanced with the multi-robot function, to 

make it applicable to multi-robot SLAM simulation, experimental details will be 

introduced in Chapter 7. Furthermore, the Parallel Computing toolbox is applied in 

this program. This toolbox can simulate a parallel computing process and speedup the 

program using multi-core processors, in which each core is called a worker in the 

program. In order to make use of the Parallel Computing Toolbox, we have to 
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establish ―the Matlab parallel language worker pool” with parallel workers. For 

example, if we have a dual-core processor, the following command is necessary: 

matlabpool open 2 

which indicating that we will open two pools of MATLAB sessions for parallel 

computation. 

 

We can then further modify the program to make it suitable for parallel computing. 

For example, the parfor-loop, a parallel version of a for-loop, enables the execution of 

statements in the loop using a maximum of M Matlab workers to simulate the parallel 

programming. The statement is automatically divided into M parts and distributed to 

workers (cores), so all we need to do is to simply modify some commands in the 

original program. In the following, we only convert the ordinary loops to parallel 

computing loops, because in the PFACO, loops are the main programming structure, 

also it is reasonable to distribute loops to multi-robot’s processors in the real 

applications. 

 

However, in Matlab’s parfor command requirements, the computation included in 

those loops must be independent[157, 158], implying that the data being modified in 

one loop cannot be modified in another simultaneous loop. Although some techniques 

regarding to distributed computing with share parameters has been developed, we are 

able to comfortably split the data into any number of arbitrary parts and fully utilize 

the computational power with independent parameters. 

 

Thus we analyzed every step of the PFACO to derive a suitable approach to tackle the 

problem. The PFACO includes three steps, which are:  

1) Particle generations, also referred as prediction; 

2) Particles movement, based on the ACO algorithm; 

3) Re-sampling. 
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By analyzing the three steps involved in the PFACO, in the prediction step, it is trivial 

to modify the existing algorithm by using distributed techniques as particles are 

generated independently. For the re-sampling step, although it used to be a problem 

years ago, however, literatures in recent years [156] presented several methods to 

tackle this problem. Therefore, in the rest of this section, we will concentrate on the 

implementation of the ACO in a distributed approach.   

 

Referring to Algorithm (4.1) , we can anticipate that the particles’ state as well its 

weight can be calculated by different robots in a multi-robot environment in each 

iteration, except for some shared parameters, e.g. the parameter d representing the 

distance between particles. However, we could modify Algorithm (4.1), so that the 

parameters update stage is performed outside the loops, as shown in Figure 6.1. 
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Figure 6.1 Flow-chart of ACO improved PF ran in four robots (also similar with different size of 

the troop). The whole process is divided into 4 sub-processes, each of which is implemented by the 

processors in robots. 

 

As shown in Figure 6.1, the Algorithm 4.1 is divided into 4 parts, which can be 
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computed in different processors. Loops in each part can be automatically 

pre-processed by the Matlab program, and then assigned to different processors. We 

assume that there is a control centre to communicate with robots and assist to 

pre-process some data. After all the tasks in loops are finished, data is transferred to 

the control centre and then, continues the program. 

 

6.3 Coordination Strategy for Multi-robot SLAM 

We have to clarify the scenario in which the multi-robot system employs the 

distributed or ordinary PF to solve the SLAM problem. Previous studies [159-161] on 

multi-robot SLAM often assumed that the relative poses of robots, or at least their 

initial poses, are known in advance, so under such an assumption, the single robot 

SLAM problem, which only includes the pose (the position and angle) of one robot, 

can be easily augmented into larger dimension estimation problems, and a multi-robot 

SLAM can be implemented by simply incorporating another set of robot poses into 

the filter. However, an important scenario of a multi-robot system is ―encountering‖, 

which means a robot detects another robot, implying that their relative pose can be 

obtained, so the assumption about initial poses are no longer necessary [161-163]. 

From the moment they encounter and know their relative pose, we can choose 

whether they both can start to jointly estimate the same map area.  

 

In our experimental platform, we assumed that a robot can always distinguish its peers 

from other static objects (such as walls, obstacles, etc.), although this data association 

problem is still another major problem in SLAM[77, 164]. Furthermore, as stated in 

[162], for simplicity it is assumed that once a robot detects another robot within its 

laser sensing area, the exact relative poses of each other are also known.  

 

In the following experiments, the robots also do not know the initial positions, or their 

relative positions. They simultaneously explore the area as depicted in Figure 6.2. 
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(a) 

  

          (b)            (c) 

Figure 6.2 Two Robots before Encounter (a)The navigation of two robots in the map; (b)The map 

estimated by robot A (the one at the top of the map); (c) The map estimated by robot B (the one at 

the bottom of the map). 

The two map and their poses estimations are totally independent as the single robot SLAM are run 

in two robots. 

 

These figures are derived from the simulation program which is further developed 

based on the localization version introduced in Chapter 4. There are mainly two 

differences between the single robot SLAM version and multi-robot SLAM version: 

1) There are two sets of asterisks representing landmarks which help the robots in 
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navigation; the landmarks are only used for simulation and experimental use in 

order to make sure that robots in different algorithms run with the same trajectory 

rather than a random run which is the case in passive SLAM; 

2) Two robots move independently within the map along the asterisks; the maps are 

jointly estimated by two robots. 

 

At the beginning of the navigation, the SLAM posterior estimation problems are 

totally independent, that is, their measurement and estimation states are not co-related. 

Thus, before the encounter, the PF are being executed separately in each robot just 

like the single robot system and individual maps are generated by each robot peer as 

shown in Figure 6.2b and 6.2c.  

 

As shown in Figure 6.3a, when two robots encounter, they will exchange the map data. 

The relative pose either detected using sensors or received from the other robot 

provides us a larger map that is obtained by linking together the two robots’ separate 

maps (Figure 6.3). Consequently, the robots continue to navigate until one of the 

robots finds itself traversing the area which other robot had visited before (Figure 6.4). 

The distributed PF becomes active to solve the multi-robot SLAM. However, in this 

process, the requirements in the localization problem and the mapping problem of 

multi-robot SLAM are different so that it is being discussed in the following.  

 

 

 

 



 

 109 

 

(a) 

 

(b) 

Figure 6.3 Two robots encounter (a) Two robots are encounter (b) Two estimated map is combined 

as a larger one as their relative poses are known. 
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(a) 

 

(b) 

Figure 6.4 Start of Multi-robot SLAM (a) The system starts the multi-robot SLAM when a robot is 

traversing the area another robot visited before; (b) a map is almost generated at the moment. So 

we have two options: 1) coordinately estimate the rest of the map 2) improve the accuracy of the 

existing map 

For the localization problem of a multi-robot system, because robots are always 

navigating in the environment, the poses of robots are always being updated 

throughout the whole process. Therefore, the PF running in each robot have to work 

individually and deal with different problems. Nevertheless, the relative pose after the 

encounter does offer us a reference for correction with the knowledge of both robots’ 

poses as governed by Equation 6.1.  
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( ) ( | ) ( | , )B B B B A ABp s p s z p s s                    (6.1) 

The estimation of the pose of robot B is determined by its own measurement and 

estimation from another robot (say robot A). The importance coefficient α and β are 

defined based on their estimation accuracy, such as sensor error, where 0 1  , 

0 1   and 1   . In Figure 6.5, it illustrates the result by applying Equation 

6.1 to estimate the current pose of robot B. It is obvious that more accurate result can 

be obtained by considering information both from robot A and robot B.  

 

 

 

 

Figure 6.5 A joint estimation demonstration of the robot position (the angle is omitted). Neither of 

the self-measurement and other robot measurement is exactly accurate to the true position. But the 

joint estimation reduces some of the estimation error. 

 

The mapping function of multi-robot SLAM can be jointly performed by two robots’ 

as long as their relative poses are already known. Because the mapping result data is 

static due to the map grid invariance, if one map grid is already estimated by one 

robot, certainly another robot can estimate again to construct a more accurate map. Or 

it is not necessary to update the map again if we only wish to accomplish the mapping 



 

 112 

in the shortest time instead of emphasizing the accuracy of the map, so these robots 

can deal with the same map estimation problem, share the workloads and speed up the 

map estimation by distributed PF. Therefore, there exist two approaches in our joint 

mapping strategy, one is the efficient approach, and the other is the accuracy 

approach. 

 

While operating based on the efficient approach, the mapping strategy is given below: 

when one robot (let us call it robot A) is traversing the area that robot B has visited 

before, and it realizes that its sensors are receiving data that robot B obtained before 

(it is easy to calculate since their relative poses are known) then robot A will stop 

constructing the map and commence to solve the PF which is running in robot B, 

indicating that the two robots are sharing the same problem. The PFACO distributed 

running in robot A and robot B is as shown in Figure 6.1. 

 

In the accuracy approach, the robots still run the PF separately after encounter. 

However, the major difference between single robot’s mapping comparing to 

multi-robot is in the prediction step. When robot A is traversing the area where robot 

B has visited before, instead of a simple transition function, the map generated from 

robot B is also considered. The prediction function is given in Equation 6.2: 

1( ) ( ( )) ( )A A B

t m t mm i f m i m i                    (6.2) 

where m  and m  both are predefined constants, which indicate different accuracy 

levels of equipments, such as the range sensors, embodied in each robot. ( ( ))A

tf m i  

denotes the map estimated by robot A after the transition model, where ( )Bm i  

denotes the map estimation by robot B. For the grid-occupancy map in our experiment, 

the conditions 0 1  , 0 1   and 1m m    are defined. Figure 6.6 shows 

the results of the algorithm obtained by applying the accurate mapping option. 
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(a) 

 

(b) 

 

(c) 

Figure 6.6 Demonstration of the accurate map estimation 

(a) The joint map estimated by two robots, in which the orange part is estimated by robot B (not 

included in the figure), and the blue part is estimate by robot A (shown in the figure); (b) The map 

estimation from laser sensor data in robot A; (c) The joint estimation after process by Eqn. 6.2 

 

6.4 Conclusions 

In Section 6.1, the distributed version of our PFACO has been presented. In order to be 

computed distributive, the computing loop of our algorithm has to be independent. 

Therefore certain modifications of the algorithm are applied. In the second section of 

this chapter, we mainly focused on the application of multi-robot SLAM, especially 

how to deal with the mapping problem with multiple robots. After encounter, the 

relative poses of robots are known, which can be used as a correction reference to 
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localization. Also, two different requirements in mapping can be adopted namely 

efficiency or accuracy, two different algorithms are introduced in order to satisfy the 

different requirements. In the next chapter, we will conduct several multi-robot 

SLAM experiments based on the PFACO and encounter strategy based on a Matlab 

simulation program. 
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Chapter 7 Multi-robot SLAM Simulation 

 

7.1 Introduction 

In Chapter 5, we studied experimental results of PFACO and other filtering methods 

when applied to a single variable estimation problem, single robot localization and 

SLAM problem. In Chapter 6, we also proposed the distributed version of PFACO for 

the SLAM problem and its application in a multi-robot system. In this chapter, we 

will further examine the following issues: 

1) the PFACO performance comparing to other PF methods in solving the multi-robot 

SLAM problem; 

2) different outcomes due to the accurate and efficient approaches in the mapping. 

 

The simulation program of multi-robot SLAM has some differences comparing with 

the single robot version and the localization version. The interface of this program is 

shown in Figure 7.1. 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 7.1 Multi-robot SLAM simulation program in Matlab 

(a) A complete view of the interface; (b) The navigation of two robots, in which the left map 

shows the true map and the trajectory of the robots’ navigation (red curve) along the 

asterisks set in advance, and the right map is the evolution demonstrations of  particles 

representing the robot’s pose while the robot is traversing in the area. (c) the graphs depict 

the pose particles’ weight distribution of robot A. (d) the observation from the SICK laser 

sensor equipped in robot A.(e) the graphs depict the pose particles’ weight distribution of 

robot B. (f) the observation from the SICK laser sensor equipped in robot B. 
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In Figure 7.1, the interface shows the localization information, including the particles 

weights representing the robot poses (Figure 7.1c and 7.1e), and the sensing results by 

the SICK laser sensors. Besides the information provided in the interface, the 

mapping information of two robots is simultaneously stored with the binary matrix as 

shown in Figure 7.2a, in which the value of one represents the obstacle sensed from 

the laser sensor, and value of zero represents the empty space. Therefore, the mapping 

information, as shown in Figure 7.2b, can be re-produced by a simple drawing 

command in Matlab.  

 

7.2Multi-robot SLAM  

In this section, a comparison of four PF algorithms including the generic PF, the 

Extended Kalman Particle Filter, the Unscented Particle Filter and PFACO, in solving 

the multi-robot localization problem is provided. Four SLAM methods were tested 

and all tests were conducted with the same initial particle set, so that the random 

factors can be minimized during the comparison. Since some of the algorithms, i.e. 

the generic PF and the extended Kalman Particle Filter, are difficult to be modified to 

fully utilize distributed computing power, in order to compare their estimation results 

and execution time, our PFACO on multi-robot SLAM is set to run in the accuracy 

mapping approach, that is, in each PF estimation, the maps are estimated twice by two 

robots.  

 

In the following experiments, four PF methods are employed to solve the same 

multi-robot SLAM problem. Similar to previous experiments, when the two robots are 

navigating along the asterisks, the laser sensor will provide information for the PF 

SLAM estimators. 

 

Figures 7.2 and 7.3 show the estimation of map and poses from four PF algorithms. 
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(a) 

 

(b) 

 

 

(c) 
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(d) 

 

Figure 7.2 The poses estimation from four PF methods. Given the same motion trajectory and 

observation, different results are obtained by PF methods: 

(a) In the estimation from the generic PF, some deviation of the trajectory can be found. Also 

there exists some error accumulation which was in the right top corner. (b) Estimation from 

Extended Kalman PF; (c) Estimation from the Unscented PF, (d) Estimation from ACO 

improved PF 

 

In Figure 7.2, though all four methods have some deviations, such as particles were 

located outside the map area, in the particle evolutions, the estimated paths were 

generally fit the robot trajectory. From Figure 7.2a, the generic PF produced some 

path estimation errors in the upper right corner of the trajectory. The other three PF 

methods estimated the trajectory satisfactorily.  
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(a)                       (b) 

   

(c)                       (d)   

 

Figure 7.3 Maps estimated by PF methods 

(a) Estimated map from generic PF; (b) Estimated map from Extended Kalman PF; (c) Estimated 

map from Unscented PF; (d) Estimated map from ACO improved PF. We can see that the ACO 

improved PF have less deviation in map estimation than other three methods. 

 

 

Referring to Figure 7.3, comparison between different PF methods for mapping is 

presented. By observation, the map created by generic PF, as shown in Figure 7.3a, 

has the largest errors in estimation and a numerical measurement will be presented in 

the following section. With the same particle size, the Extended Kalman PF and 

Unscented PF represented by Figure 7.3b and 7.3c have less deviation in the mapping. 

Comparatively, in Figure 7.3d, the PFACO estimated obstacles having least deviation 
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among the four methods in Figure 7.3 a~7.3c. Although these four estimated map is 

not quite satisfactory due to the large noise added, further enhancement techniques 

can be used afterwards to produce better maps. 

 

The mapping results are now analyzed quantitatively. After the alignment between the 

estimated map and the original map, error estimation is conducted. That is the 

mapping error (Em) and the pose error (Epos) is represented as follows:  

                          , 1
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m ij ij

i j

E m m


                          (7.1) 
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where L is the number of grids in one edge. In Equation 7.1, ijm  is the estimated 

value of grid ij, while ijm  is the true value. Similarly, RX  and RY  are the 

estimated value of the position in axis X and Y; RX  and RY  are the true value of 

position in Equation 7.2;   is the estimated angle and   is the true angle in 

Equation 7.3.  

 

 Generic PF Error percentage Extended Kalman PF Error (%) 

Em 9703 - 6281 64.73% 

Epos 120.6237 - 100.2955 83.15% 

Eang 31.3138 - 40.9202 130.68% 

 Unscented PF Error percentage PF+ACO Error (%) 

Em 6034 62.19% 4723 48.68% 

Epos 88.9311 73.73% 80.2138 66.50% 

Eang 30.5793 97.65% 26.3901 84.27% 

Table 7.1 Multi-robot SLAM error and error percentage (comparing with generic PF) 

 

To study the computational time of different PF methods, we compare the cumulative 
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computational time of determining values of three states, i.e. the map, the position and 

the angle, and the results are listed in Table 7.2. 

 

 Generic PF Extended Kalman PF Unscented PF PF+ACO 

Position 119.41 194.53 196.37 141.52 

Angle 57.93 87.99 89.28 97.15 

Map 620.78 740.79 831.92 799.25 

Total 798.12 1023.31 1117.57 1037.92 

Table 7.2 The cumulative running time (in seconds) of three states 

The generic PF takes the shortest time to complete the computation, while the other three methods 

are in the same range. But the PFACO requires shorter time to accomplish the map and position 

states than the Unscented PF because the PFACO has advantages solving high dimension problem. 

 

Table 7.2 shows that the execution time of PFACO is shorter than the Unscented PF, 

and is in the same range of that obtained for extend Kalman PF. The execution time in 

Matlab simulation seems quite long compared to most of the mobile robot application 

requirements. However, it mostly results from that Matlab is not an optimized 

programming language, and it includes numerous parts that are not necessary in robot 

applications, for example, the GUI to demonstrate the results. Therefore, the 

execution of the algorithms can be shortened when applied in real cases. 

7.3 Mapping Approaches 

After a comparison of different PF methods, we will focus on the different maps 

resulted from two mapping approaches as discussed in Section 6.3 namely the 

efficient and the accurate approaches. Figure 7.4 depicts the map created from the 

same experimental data but under these different mapping approaches.  
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(a)                  (b) 

Figure 7.4 The maps estimated under two different approaches 

(a) The map under efficient approach, in which two maps (the blue and red map) are simply 

linked together, accept some purple grids representing the obstacle estimated by both robots; 

(b) the map under accurate approach as stated in Equation. 6.2 (both α and β equal to 0.5), 

which has less deviation with the original map. But some obstacles (wall) are not continuous. 

 

Table 7.3 shows the error which is defined by Equation 7.1 and accumulated 

execution time of the map estimation.  

 Accurate Efficient 

Em  1037 5006 

Execution Time (Sec) 820.13 529.27 

Table 7.3 Multi-robot SLAM Results from the two mapping approaches 

 

From Table 7.3, we can anticipate that the accurate approach is more suitable in robot 

navigation because it allows the robots to acquire its surrounding more precisely and 

determine its action autonomously. However, the efficient approach is also useful if 

we do not need such an accurate map, especially if we can process the estimated map 

(Figure 7.3a) with some image processing filtering methods [165], the ―noise‖ in this 

map can be possibly eliminated. Furthermore, the processing time of the efficient 
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approach is much shorter than the accurate one. 

 

7.4 Conclusions 

In this chapter, two experiments, concentrating on the comparison of different PF 

applications in multi-robot SLAM as well as comparing the two distinct mapping 

approaches, have been presented. Based on results derived from the first experiment, 

we can conclude that PFACO leads to least deviation in mapping and localization 

among the four methods, and its total processing time is in the same level of the other 

two proposal distribution methods (EKF, UKF proposal distributions). The second 

comparison shows the different results characterized in the mapping error and the 

cumulative running time from two approaches. These two approaches can be utilized 

depending on actual application requirements. 
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Chapter 8 Conclusions and Future Works 

8.1 Conclusions 

The SLAM (Simultaneous Localization and Mapping) problem is a fundamental 

problem in the development of autonomous mobile robot system and therefore, it is 

attracting numerous researchers to work on this field. Between two main branches of 

SLAM solution namely the Kalman Filters and Particle Filters, in this thesis, we 

mainly focus on the Particle Filters approach for solving the multi-robot SLAM 

problem due to its advantage in estimating non-Gaussian and non-linear models both 

of which are relevant to the SLAM problem. However, multi-robot SLAM is a 

high-dimensional estimation problem and when applying Particle Filtering to obtain a 

solution, the most straightforward method is to enlarge the particle size so that the 

particle impoverishment problem can be minimized, but on the other hand, it also 

increases the computation burden.  

 

In order to tackle this problem, some researchers focused on deriving methods to 

establish the proposal distribution to get closer to the optimal distribution. Rather than 

applying the traditional modeling methods to approach the optimal solution, such as 

the extended Kalman Particle Filter and Unscented Particle Filter, we proposed a 

biologically inspired method, the Ant Colony Optimization, to direct the proposal 

distribution to approximate the optimal solution.  

 

We first conducted an analysis of the optimization of PF proposal distribution. Based 

on this framework, we rewrote it as a combinatorial optimization problem. So it is 

possible to be solved by Ant Colony Optimization (ACO) as a novel algorithm 

namely the PFACO. The mathematical proof showed that the ACO can drive the 

proposal distribution to approach the optimal solution and improve the efficient 

particle size. Therefore, fewer particles are needed to re-construct the optimal solution. 
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Because the theoretical theorems are ideal cases with infinite iterations, a threshold in 

iteration is set in experiments to better balance the optimized result and efficiency. 

Furthermore, from our experimental results, it substantiated that the estimation results 

produced by ACO improved PF are more accurate than generic Particle Filters and 

other Particle Filters with improved proposal distribution such as extended Kalman 

Particle Filter and Unscented Particle Filter. 

 

Consequently, PFACO was applied in solving the multi-robot SLAM problem. We 

implemented the algorithm using a simulation program written in Matlab. Also, to 

efficiently utilize the algorithm for a multi-robot system and make full use of the 

computational power in each robot, we designed a modified version of our algorithm 

for distributed computing.  

 

Being different from traditional multi-robot SLAM solution, in our experiment, we do 

not need to obtain the prior information about the relative poses in advance. Our 

solution is this: when the navigation starts, SLAM is accomplished by every robot 

independently as a single SLAM problem before robots encounter. Once the 

encounter occurs, the relative poses information is obtained, and then the encounter 

strategies are applied. When the robots encounter, the map stored in each robot 

obtained from the single SLAM is linked and combined into a larger map which is 

shared by each robot. Then a mutual correction of the poses information can be 

conducted to establish more accurate poses estimation. Finally, there are two possible 

mapping approaches: the accurate approach and the efficient approach. 

 

The result of mapping with efficient approach as if the whole estimated map is linked 

by partial maps generated by individual robots. Because the robot determines that it is 

not necessary to update the map again if we only wish to accomplish the mapping in 

the shortest time instead of the accuracy of a map grid. On the other hand, with the 

accurate approach, when a map-grid is already estimated by one robot, it is estimated 

again by another robot and considered jointly to construct a more accurate map.  
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For this project, the following conclusions are made. 

1) As a metaheuristic method to combinatorial optimization problems, ACO can be 

applied to optimize the proposal distribution. By optimizing the particle distribution, 

the experimental results show that the PFACO tracks more accurately than other 

methods and takes shorter computational time than other improved proposal 

distribution methods when using the same number of particles.  

 

2) To fully utilize the computational power of robots, a key issue in distributed 

computing is to partition processing tasks included in loops into different processors. 

However, the computation included in those loops must be independent, implying that 

the data being modified in one loop is not modified in another. The PFACO algorithm 

was modified in order to implement the algorithm into a multi-robot system. 

 

3) Two mapping approaches lead to different results. The efficient approach roughly 

estimates the environment map, while the accurate approach estimates the map with 

two robots. They can be selected according to different application requirements.  

 

8.2 Further Development  

The experiments carried out in this thesis are based on the Matlab simulation program, 

and they are based on the assumptions that optimal communication and accurate 

sensors are available. Therefore, several technical problems should be resolved in 

applications using real robots.  

1) The relative pose assumption is not held in application, so in practice the relative 

pose is also needed to be estimated, and an extra dimension in the filters will be 

included.  

 

2) In our experiments, we assumed that there is a central control between robots to 
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assign the computational tasks and enabling real-time and optimal communication 

within the multi-robot system. In practice, noises from various sources or 

communication error (such as communication lost between robots) may be introduced. 

So a fault-tolerant and flexible communication technique [166] together with an error 

checking method is necessary.   

 

3) The Matlab experiments often take longer time than the practical experiments 

because they are not optimized as demonstration modules (such as the GUI) are 

included but in practical applications such modules may not be necessary. Therefore, 

the Matlab experiments are only for comparison between different filter algorithms 

and optimizing the program and building it in a real experiment is a better way to 

evaluate the execution time in practice.  

 

4) Finally, the map in Matlab simulation is built on simple planar boundaries. If it is 

modified into a more complicated map presentation, although the complexity in grid 

occupancy map based PF remains the same, not depending on the kind of obstacles, a 

suitable sensor, e.g. vision sensor, is needed to detect the obstacles with tiny or 

different shape. Consequently, more sensor model may be needed in the Matlab 

simulation program. 

 

Inspired from this thesis, some future research directions of the multi-robot SLAM 

can be made.  

1) From the idea of tuning the particle distribution, better solution by various 

optimization methods can also be developed. Since we already established the 

combinatorial problem based on the relationship between Monte Carlo samples and 

optimal proposal distribution, other optimization methods and meta-heuristic, such as 

Evolutionary Computation, Simulated Anneal, can also be applied to construct the 

better proposal distribution function.  

 

However, the main problem of these methods is their computational complexity. In 
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some cases, the real-time requirement of the estimation problems, such as multi-robot 

SLAM, is critical. Thus a proper decision to trigger and terminate the metaheuristic 

methods is also necessary to be considered by some Machine Learning methods. 

 

Furthermore, other model based methods, e.g. extended Kalman Particle Filter, 

Unscented Particle Filter, can be combined with the above metaheuristic methods, so 

that the accuracy and estimation time can be improved. 

 

2) The so-called efficient mapping approaches may not be the most efficient due to 

the fact that we cannot actively control our robots. This subject is called Active 

SLAM, which is the combination of trajectory planning and SLAM.  

 

In our future investigation, the multi-robot Active SLAM will be conducted in order 

to explore an unknown environment and build its map more efficiently. The multiple 

robots coordinate control is not trivial at all. In the current stage, the Maximum 

Entropy method, as well as Reinforcement Learning, is considered to select the most 

optimal navigation path. 
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