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Abstract

In this thesis we investigate new methods to deal with thggsshy and word
mismatch problems in information retrieval (IR).

We tackle polysemy by using ‘document-contexts’, which tes¢ windows cen-
tred on query terms in a document. Analysis of the words invibmity of a query
term can identify its specific meaning in the context. In IRngaf the commonly
used term weights are variants of the TF-IDF form. The trawif F-IDF weight of
a term depends only on the occurrence statistics of the tseti.iWe have studied a
novel ‘context-dependent’ term weight, which incorposat&ormation based on the
words found in the document-contexts of a term. These terighiseare generated
by a Boost and Discount (B&D) procedure, which utilizes angvahce information
that is available to estimate the probability of relevanta oontext. Such relevance
information may come from actual relevance judgments thsiea makes on a (small)
number of documents, as in ‘relevance feedback’ (RF). Ther#tieal justification
of our scheme to calculate the new term weights is provided pyobabilistic non-
relevance decision model of IR. We present experiments ifrRthaetting to test the
context-dependent term weights. We demonstrate that tisengew term weights can
yield statistically significant improvement in retrievarapared with the traditional
weights.

Regarding the word mismatch problem, one plausible solusido use clustering
techniques. A traditional clustering evaluation measwedun IR is the MK1, which
is a score calculated for the single ‘optimal cluster’ theat be extracted from the clus-
tering result. MK1 is appropriate if a single retrieved ¢irgs desired. However, in
some applications it may be desirable for the retrievalltesa be presented in mul-
tiple clusters according to sub-topics. For this case, wm@diuce a new evaluation
measure, called CS, which corresponds to finding an optinmabgmation of clusters.
We define a sub-class of CS, called CS1, applicable when theeduare disjoint.

By reformulating the optimization to a 0-1 linear fractiopabgramming problem, we



demonstrate that an exact solution of CS1 can be obtainedibgax kime algorithm.
We discuss how our approach can be generalized to overlgphisters, and present
greedy algorithms to obtain optimal estimates. We clainh dime& particular ‘cost ef-
fectiveness’ algorithm yields the global optimal solution clusters that overlap only
by nesting. A mathematical proof of this claim by inductigrpresented.

We have also investigated whether clustering techniquedwéher improve the
retrieval effectiveness in relevance feedback using etitependent term weights.
B&D utilizes information extracted from the judged docunsstat provide evidence of
relevance or non-relevance in the unseen documents. Wdustering to seek con-
texts from unseen documents that are similar to those inutigeld documents. In
this way, additional relevance information can be obtaifredB&D. Experiments on
the TREC-2005 collection show that a ‘clustered SVM’ schenedfesctive in further
improving relevance feedback effectiveness as comparsthtalard B&D, yielding
small but statistically significant improvements in MAP.UBh this is a promising di-

rection for further research.
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Chapter 1

Introduction

The popularization of the personal computer in the 1980slamadvent of the World
Wide Web in the 1990s truly heralded the Era of Informatiomwsdays people are
in constant need of information, whether to accomplish & tesnanded by their job,
to fulfill their interests, or even to meet the requiremerft®weryday life, such as
finding about available choices of household consumablegh Mbre and more in-
formation being stored electronically, the electronic porer itself provides people
with a powerful tool to search for information that they nedd harness this power,
it is necessary to develop methodologies to find relevantrimétion both effectively
and efficiently. This is the aim of Information Retrieval (IRyhich has been an ac-
tive area of research since the 1950s. IR research is nadgiidinary, encompassing
fields such as computer science, mathematics and linguigticimportant pioneering
implementation of an IR system was the SMART system develtyyeSalton and his
co-workers [71] in the 1960s, first at Harvard University daer at Cornell Univer-

sity. Such IR systems allowed early IR experiments to beoperéd. By the 1970s, a



number of retrieval methods were already developed usiradl rpora [73].

While IR research has been ongoing for half a century, evéersfethe art retrieval
systems today are still far from achieving perfect effemtioss. With the constant ex-
ponential growth of the available information, there is éore the question whether
techniques developed for small corpora can efficientlyescal to the huge corpora
which are the norm today. Furthermore, with more and moréadla data to search
from, it is conceivable that it is getting harder to distirgfubetween what is truly rel-
evant and what is not. Besides, there are intrinsic lexiaablpms associated with the
way people express their information need. A person’s médion need is generally
stated in the form of a ‘query’ which consists of one or moreexy terms’. There
is firstly the problem of polysemy, i.e. the existence of mplét meanings of a word.
An example is the query term ‘blackberry’, whereby the tetself does not indicate
whether the person desires information about blackbeeyrtht or the mobile device.
Polysemy is a cause for query term ambiguity (e.§r8k Jones et al. [77]). Because
of this problem, the IR system may return many irrelevanudoents related to a topic
not desired by the user, resulting in pgoecision which is equal to the percentage
of a retrieved list of documents that are relevant. Prexi@an important evaluation
measure in IR. Another lexical problem is word mismatch (&g.and Croft [93]),
wherein the same concept may be referred to by different syorel synonyms. For
example, if ‘automobile’ is one of the query terms, there rhayrelevant documents
that do not contain the word ‘automobile’ at all, but the wéedr’ instead. In this
case, the IR system may fail to find some relevant documeittsrifly returns docu-

ments containing the exact query terms, resulting in pecall, which is equal to the



percentage of all relevant documents in the corpus thaestieved. Recall is another
important evaluation measure in IR.

This thesis investigates new methods that deal with thespofy and word-mismatch
problems mentioned above. Past research has found quean®®p via relevance
feedback (RF) to be an effective way to tackle these lexiaablems [65],[26]. Hence
in our work, we seek methods that improve the performancéaoigrd query expan-
sion methods in the RF setting. Another way to deal with thgsgmhy problem, was
the use of ‘document-contexts’ (or simply ‘context’ for titg) by Wu et al. [92],[91],
within a probabilistic retrieval model. The document-@xitof a termt is defined
as a text window of a fixed-size (i.e. fixed number of words)tieehont [92]. The
idea is that the words in the neighbourhood of a term thatrscdcua document may
indicate the specific usage of the term. For example, if taezevords such as ‘fruit’,
‘nutrition’ or ‘vitamin’ in the vicinity of the word ‘blacklerry’, then one may infer
the document is about the fruit rather than the device. fatig Wu et al., the new
methods that we introduce in this thesis are based on dodwcoatexts.

In regard to the word mismatch problem, one plausible swius the use of clus-
tering techniques, which automatically classifies objettsgroups according to their
similarity. According to the Cluster Hypothesis of Jardimal asan Rijsbergen [35],
documents relevant to the same query tend to be similar tcanother. Suppose a
documentA4 contains a synonym of an actual query term instead of theitsgtf (e.g.
‘car’ instead of ‘automobile’). If the text ofd is quite similar to a known relevant
document, then it is a good indication thats relevant as well. Forming clusters of

documents will group the documedtwith other relevant documents, enabling it to



be identified as relevant event though it does not containesygerm. The use of
clustering in IR has been investigated by various resesdkeg., Salton [71], Jardine

and van Rijsbergen [35]). A review of this topic will be inckalin Chapter 2.

1.1 Research problems and motivation

In this section we describe the main research problems tieainaestigated in this

thesis and the motivation for studying these problems.

1.1.1 Context-dependent term-weighting

In information retrieval and text data mining, an importatgment is the weighting of
terms. A set of weights for all the terms that occur in a doauingenstitutes a repre-
sentation of the document. It is well established in IR that tetrieval effectiveness
depends on appropriate term-weighting (Salton and Buckigj) [ A well-known and
common term weight in use is the TF-IDF (e.g. Robertson andcBpkones [62]). For
example, the successful BM25 term weights introduced in tkepOsystem (Robert-
son et al. [63]) are essentially TF-IDF weights. In gendha, TF-IDF value of a term

in a document/ depends on the occurrence statisticsiafd or in the corpus, but does
not depend on the other terms appearing in the documenthén words, TF-IDF is in-
dependent of the ‘document-contexts’tptising the definition of a document-context
as a fixed-size text window centred 0f92]. In this thesis, we investigate the new
class of context-dependent term weights, and addressltheifog research problem:

Whether context-dependent term weights can improve thievatiperformance in RF



compared to the traditional TF-IDF term weights?

Our study is motivated by the recent work of Wu et al. [91] winmwed that
assigning TF-IDF weights to terms in a document can be intéed as making rele-
vance decisions in information retrieval. They introduegarobabilistic nonrelevance
decision model in IR. Their model mimics a human making a seoie'local rele-
vance decisions’ by reading texts in the vicinity of all theegy terms that occur in a
document and deciding whether these portions of the docuarerindividually rel-
evant to the query. Thus the model is based on documentxtsrdentred on query
terms. They derived a ranking formula that has a form simdathe BM25 weight
(e.g. Robertson and Walker [59]), provided that the termuUespy weighting of the
guery terms are adjusted according to the local evidencele¥ance extracted from
the text windows. Their derivation involves making sevarsgumptions, in particular
the Minimal Context assumption, which states that for anyrgjue local relevance
at a locationk in a documentl is determined only by the single term occurring at lo-
cationk. As pointed out by Wu et al. [91], this assumption is not igadibecause it is
expected that the words occurring close to a query term, antha query term alone,
should affect the local relevance decision. They commetitatisuch an unrealistic
assumption may cause performance limitations of TF-IDmtereights. Hence, we
are motivated to relax this assumption and investigate vdneghere is any advantage
in term weights that depend on contexts with a size larger thty. Furthermore,
because of the common use of TF-IDF, it is of interest to test bffective are the

context-dependent term weights as compared with the ivaditTF-IDF.



1.1.2 Clustering evaluation measure

We investigate the use of clustering techniques as a solttidhe word mismatch
problem. Numerous clustering algorithms have been deedlapthe past and appli-
cations of them are found in a broad range of disciplines.r8foee, we need to find
an effective clustering algorithm for our purpose. An intpot issue that arises is how
to define an appropriate measure to quantitatively evathatelustering results. This
is the problem that we first address.

In order to quantify the quality of a document cluster, Jaedand van Rijsber-
gen [35] introduced the E-measure, which is a composite mnedbat combines the
precision and recall values of the cluster. They also defihedK1 measure which
is equal to the best E-measure attainable by retrieving glesitluster based on the
clustering of a set of documents. This is a natural benchmmed&sure appropriate to
applications where a single retrieved cluster is desiredwever, it is possible that
better retrieval effectiveness is attained by returningesa clusters rather than a sin-
gle cluster (Griffiths et al. [22]). For example if a searclequis too general, it may
cover several sub-topics, and documents relevant to they quiey fall into different
sub-topic categories (Chik et al. [8]). Conventional siniijascores based on word
statistics do not necessarily yield a high value acrosewdifft relevant sub-topics. In
this case, clustering algorithms may produce isolatedtelsisvhere relevant docu-
ments are concentrated. Correspondingly, an appropriaievad strategy would be to
identify the multiple ‘high precision’ clusters and retuah the documents contained

inthem as a pool. The MK1 measure, which is associated withgéesoptimal cluster,



would not be an appropriate benchmark for this strategyadh there are applications
where multiple clusters are naturally desired. For examible web search engine
Vivisimo (Koshman, Spink and Jansen [43]) returns searshlt® in clusters corre-
sponding to different sub-topics, and a user may find rekwéormation in more than
one of these clusters. We are therefore motivated to seelvansasure which will
more truly reflect the effectiveness of a clustering algponitfor applications where

multiple clusters are desired.

1.1.3 Enhancing retrieval effectiveness by clustering techniges

Our experiments have demonstrated the effectiveness afawecontext-dependent
term weights in a RF task being demonstrated by our expergnémtelevance feed-
back, the new term weights are obtained by utilizing releeainformation being ex-
tracted from a small number of judged documents. We are atetivto investigate
whether further performance improvement can be obtainedispovering additional

relevance information via clustering techniques.

1.2 Contributions and their Significance

In this section we briefly state the main contributions ofwark and their significance.

1. Improvementin retrieval effectiveness with new contextlependent term weights

We have investigated novel context-dependent term weighasrelevance feedback

(RF) task. These weights are computed by a Boost and DiscourD)f&ocedure.



As such, this work represents the first experimental ingtaon of context-dependent
term weights that are used for retrieval. These new term htgigre shown to be
effective in enhancing the performance of RF, compared togusie traditional BM25
weights which are context-independent. Apart from RF, thveteem weights may also
be used in other applications such as text categorizatign $&bastiani [72] and Yang
[95]). Because our B&D procedure generates the new term weightcalculating
shifts to the widely used BM25 term weights, the method cadilgae implemented

in systems that use the BM25 weights.

2. New clustering evaluation measure

We have introduced a new clustering evaluation measuredc@S (which stands for
‘Combination of Subclusters’), based on seeking an optiroatlination of clusters
rather a single optimal cluster as in the traditional MK1 swea. As such, CS is an
extension of the MK1 measure. We show that calculating tigiasure can be reformu-
lated as an 0-1 optimization problem. For cases when chiaterdisjoint, the problem
becomes a linear fractional 0-1 optimization problem wigehn be solved by linear
time algorithms. However, for arbitrarily overlapping stars, the optimization prob-
lem is NP-hard. In this case, we have shown how the optimatisol can be estimated
by greed algorithms. While the greedy algorithms can be egpb arbitrarily over-
lapping clusters, we present a mathematical proof that antecplar algorithm, based
on ‘cost effectiveness’, yields the global optimal solatfor clusters that overlap only
by nesting.

Clustering has applications in many disciplines apart frénihcluding pattern



recognition (e.g. Jain [34]), data mining (e.g. Judd et 38]) and machine learning
(e.g. Carpineto et al. [6]). Our new measure for clusterifeptizeness could be useful
in future developments of cluster analysis in IR and otheciglines. Commercial
applications of clustering for retrieval, such as Vivisinsoggest that there is interest
for further research in this area. In our experiments, thtebevaluation measures
obtained by combining clusters as compared with the tathli MK1 measure also
reveals a greater but latent potential of the clusteringrélyms in grouping relevant
documents together. While we have focused on hierarchiaatering in our study,

the concept can readily be applied to any clustering algarjisuch as K-means.

1.3 Experimental environment

In this section, we briefly describe the test collections tixa use in our experiments,

and also the retrieval evaluation measures that we use.

1.3.1 Test collections

Many of the early experiments in IR were conducted using kteat corpora such
as the Cranford collection with several thousand documéidk [In 1992, the Text
REtrieval Conference (TREC) was started (Harman [27]). TREC @r@oing series
of IR workshop which provides a platform for developing IRHaiques by making
available large text collections. It also supplies setsu#rgps which come with rele-
vance judgements made by human experts on a pool of retra@gnents for each

guery. By using TREC’s common evaluation package, it is posédldifferent TREC



participants to compare the effectiveness of their diffetechniques.

Over the years, the size of the TREC test collections has eggarin our work, we
have performed our experiments using various TREC collestimcluding TREC-2,
-6, -7, -8 and -2005. Some statistics of the collections arengin Table 1.1. Each
of these collections has 50 ‘topics’, consisting of ‘tiflalescription’ and ‘narrative’
fields, which describe the topics in varying details. In oxpeximents, we use ‘title
queries’ extracted from the title fields because these havavarage of between two
and three query terms, similar to typical web queries [79f TREC-2005 collection
has a much large size compared with previous collectionsl€¢Ta.1) and therefore
more in-line with current and future web search applicatiorlowever, in order to
demonstrate the robustness of our retrieval methods amptiestions, our experiments
are also performed using the other collections (i.e. TREC#&hd8). The reason for
choosing these collections is because of their differeataitteristics. While these ear-
lier collections have similar sizes, TREC-6 contains somg l@rg documents, such
as congressional records. TREC-7 and TREC-8 use the same ddoumiieations
without congressional records, but TREC-7 contains morecdiffqueries for which

it is hard to achieve good retrieval results [89].

Table 1.1: Some statistics of the TREC collections used iregperiments.
TREC-2 TREC-6 TREC-7 TREC-8 TREC-2005

Av. # of title query terms 3.8 2.5 2.4 2.4 2.6
Av. # of rel docs per query  232.56 92.22 93.48 94.56 131.22
Number of documents 741,857 556,077 528,155 528,155 14633,
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1.3.2 Retrieval evaluation measures

As mentioned earlieprecisionandrecall are two important evaluation measures in
IR. While precisionindicates the accuracy of the retrieval reswgall indicates its
completeness. These two measures do not take into accauatdlring of the doc-
uments in the retrieval result. For systems that return kegitist of documents, it is
useful to have a measure which emphasizes placing releeantrtents higher in the

list. A measure that serves this purpose is the AveragestoaqiAP), which is defined

by:
1 N

AP = 7 Z P(r) x rel(r), (1.2)

r=1

wherer is the rank,NV is the number of the documents in the ranked ligtis the
number of relevant documents in the corpus|(r) is a binary function indicating
the relevance of the document at rank.e. rel(r) is 1 or O if the document at rank
r is relevant or irrelevant respectively), ait(r) is the precision of the list at the
cut-off rankr. EQ.1.1 shows that the AP measure encompasses both pneaisib
recall. It is typical that the valu&/ = 1000 (Eq.1.1) is used in evaluations. For a
given set of queries, averaging the AP values for all theigasgtields the MAP (Mean
Average Precision) measure. MAP is now the predominantuatiah measure in the
IR literature, such as used in TREC. It is clear that MAP, as fecigion and recall,
ranges between 0 and 1, with a value of 1.0 indicating peréigeval.

In some applications, a high recall value may be importamth ss in the searching
of patent or legal documents. However, some users may desmeall number of

truly relevant documents rather than getting the completefrelevant documents.

11



In this case, a common appropriate measure is P@n, i.e. #ugsjon value of the
top n retrieved documents, with P@10 typically being used. HaxeBuckley and
Voorhees [3] had found P@10 to have a sensitivity issue, abaHharge number of
queries (more than 50) may be required to distinguish theopeance effectiveness
of two different methods. Hence, in this thesis we will ngpae evaluations with
P@10, but focus on the MAP measure only.

In Chapter 3 and Chapter 5, our experiments are performed in ae®Rgs in
which relevance judgments are made/og- documents, and the information fed back
to the system for a second retrieval. One established melibgylto evaluate the RF
performance is based on tresidue collectionfrom which theN ¢ judged documents
are removed (e.g. Ruthven et al. [66]). The evaluation measguch as MAP, are
calculated based on the remaining relevant documents iretidue collection. We
also adopt this practice. Thus, our MAP values reported is ttiesis are residue

measures.

1.4 Outline

The remainder of this thesis is as follows.

Chapter 2 Literature review and background: In this chapter we first review some
methods that have been used in past research to tackle ylsepot and word-mismatch
problems. In particularly, several topics involved withr m@w methods are reviewed
in greater detail, including (1) relevance feedback; (Bntaveighting; and (3) appli-

cation of clustering techniques in IR.
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Chapter 3 Context-dependent term weights:We describe context-dependent term
weights that are computed by our Boost and Discount (B&D) piopein a relevance
feedback (RF) setting. Extensive experimental results ezsepted to demonstrate
that the new term weights can produce enhanced retriewdte#ness compared with
the baseline which uses context-independent BM25 weights.

Chapter 4 Clustering evaluation: We introduce the new clustering evaluation mea-
sure CS. Experiments are presented to demonstrate the ss1k34., which applies to
non-overlapping (i.e. disjoint) clusters. For the casewdrlapping clusters, we also
show how the estimates of the optimal measure may be obtayegeedy approx-
imation algorithms. For the case where clusters overlap bylnesting, we present
a proof that the ‘cost effectiveness’ greedy algorithm ict faelds the global optimal
measure.

Chapter 5 Relevance feedback with document-context clusieg: We describe a
method to apply clustering techniques as an extension B&ieprocedure to gener-
ate context-dependent term weights. Experimental resiuti® that this is a promising
direction for further research.

Chapter 6 Conclusion and future work: The main results and contributions of the

thesis are summarized. Some items for possible future werk@posed.
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Chapter 2

Literature Review and Background

This thesis tackles the polysemy and word mismatch probiemndéormation retrieval
(IR). In this chapter we first discuss these problems andwethe various methods
that have been used in past research to solve them (Sectjor2particularly, among
the successful solutions to both the polysemy and word nigm@oblems is ‘query
expansion’ viarelevance feedbadlRF). Building on past research, we seek new so-
lutions to further improve the performance of query expamsn relevance feedback
(Chapter 3). In Section 2.2, we will present a review of RF iradetFurthermore,
our new method presented in Chapter 3 is based on the nom&xt-dependent term
weights Hence, Section 2.3 is included to discuss ‘Term weightimdpich is a crucial
element not only in IR, but also in various text mining taskshsas text categorization.
As for the word mismatch problem, we investigate a new ctusganethod (Chapter 5)
to tackle it. In Section 2.4, cluster analysis is reviewad|uding common clustering

algorithms, the use of clustering methods in IR, and clustaluation measures.
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2.1 The polysemy and word mismatch problems in IR

Even at quite early stages of IR research, it was realizetcatfector which limits re-
trieval effectiveness is actually related to the difficutty a person to formulate search
requests. These requests, or queries, generally consiseadr more query terms. In-
trinsic lexical problems with the query terms arise whicleetf retrieval effectiveness.
Two of the problems that we address in this thesigoatgsemyandword mismatch

Polysemy refers to the existence of multiple meanings of elW®.g. [79]). The
problem caused by polysemy in retrieval is that a query tegritsielf may not indicate
which specific meaning of the word is intended. There may beydacuments con-
taining the query term, albeit with a meaning different frdme user’s intension and
hence not of interest to the user.

Some solutions to the polysemy problem that have been studtbe past include:

1. Query modification Various ways of query modification (@uery expansion
have been studied. Some of these methods are fully autgmatiout any need of
user interaction. Others require some input from usersto®and Lesk [69] tested
the effect of automatic query expansion by either broaderaorower terms selected
from a hierarchical thesaurus. They found the effect to bensistent and hence the
method was not generally useful [69]. Voorhees [86] impleted query expansion
based on lexical-semantic relations encoded in WordNe}t [®3arge and general-
purpose lexical system built at Princeton University. Tleiperiments performed on
TREC collections found little benefit of the method both in tlase of long queries or

short queries. In fact, fully automated methods suffer #iraes polysemy problem, as
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the added terms may also have meanings different from ttextded.

A method of query expansion that requires user input is agleg feedback (RF).
In RF, the retrieval system first returns a ranked list of doenit®s based on the original
search query. The list is presented to the user, who thers readimber of the top
ranked documents and make relevance judgments on themuddped relevant and ir-
relevant documents are then fed back to the retrieval systéinh extract words from
the judged documents to modify the search query. RF has bediedtextensively
in the past and found to be an effective scheme to enhaneevedtperformance (e.g.
Rocchio [65], Harman [26] and Buckley [2]).

2. Latent Semantic Indexing (LSI) LS| was introduced by Deerwester et al. to
tackle the polysemy and word mismatch (or synonym) problgB% In LSI, the
individual terms that describe a document are replacedrjiceal concepts’ that can
be specified by one or combinations of several terms. WhilehaSIbeen tested and
found to be effective in small text collections [18], itsexffiveness does not seem to
be scalable to larger collections, such as those used in TREC.

3. Document-contextsThe document-context (or simply ‘context’) of a tetns
defined as a text window of a fixed-size (i.e. fixed number ofdspcentred on (Wu
etal. [92]). It was shown in [92] and [90] that using documeaohtexts gave promising
results in retrospective experiments (i.e. given fullvatece information). Hence, it is
worth studying whether document-context methods are taféem a predictive setting
as well (i.e. given no or partial relevance information).

Overall, query expansion in a relevance feedback settinglhawn to be a success-

ful method to deal with the polysemy problem, while the doeuatacontext approach
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is also a promising direction. Hence, in our work we atteropiutther improve the
retrieval performance by augmenting document-contexhou to traditional query
expansion in relevance feedback. A more detailed review ofviRfbe given in Sec-
tion 2.2.

The second problem that we address is word mismatch, whisbsabecause in
writings, different people may use different words to esgréhe same concept. In
retrieval this may be problematic because a person’s geemystmay not match those
of arelevant document. For example, instead of the quemy ‘@ntomobile’, a relevant
document may use the word ‘car’. Some solutions to the woshratch problems
include:

1. Query modification As for the polysemy problem, query expansion via rele-
vance feedback is also an effective solution for word mismaBy query expansion,
extra query terms are selected from the judged relevantdeots for a new retrieval.
A relevant document that does not match the original query teay be identified if
it contains the new terms in the expanded query.

2. Latent Semantic Indexing (LSI) The LSI method was introduced to tackle the
word mismatch as well as polysemy problems (Deerwester. §18]). However, as
mentioned above, the scalability of LSI methods to largé ¢edections is question-
able.

3. Clustering Clustering methods automatically classify objects intougoac-
cording to their similarity. By theCluster HypothesigJardine and van Rijsbergen
[35]), relevant documents tend to be similar to one anotBéustering methods will

thus group relevant documents together. This will enablelevant document that
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does not contain the exact query term to be identified, tHratsgsimilarity with other
relevant documents. A more detailed review of the use otetirg in IR is presented
in Section 2.4.

Apart from the proven success of query expansion, the woifoofbros and van
Rijsbergen [81] suggests that ‘query-specific clusterirsge( Section 2.4 below) is
a promising direction. Hence, we have applied query-specifistering to our new

‘document-context’ method . This will be reported in Chafiter

2.2 Relevance Feedback

In relevance feedback (RF), a user scans through a numbep odméed documents
returned by a retrieval system and makes relevance judgnoenthem. Information
extracted from the judged relevant or irrelevant documenthen fed back to the
retrieval system to perform a second retrieval. Typicdily televance information is
used to modify the original query, either by adding termshi® original query (i.e.
query expansion), or to modify the weight of the query terngs Query re-weighting).
In principle, RF can be an iterative process, with the redlieesults based on the
modified query being shown to the user, who again makes an@lezance judgment
on the top ranked documents in the new result. Query modditaia RF has been
found to be more effective in tackling the polysemy and wordmatch problems
than fully automatic methods that rely on a thesaurus. Thengng of this section

presents a survey of the past research in RF.
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Query expansion

Rocchio [65] first formulated the query expansion (QE) mettwpcheans of relevance
feedback, implemented in the Vector Space model (VSM). liMyBoth documents
and queries are representedbgimensional vectors, whefeis the number of distinct
terms contained in the corpus. In Rocchio’s formulatiomiebelonging to the known
relevant and irrelevant documents are added to the in'miaiyqvector@ with positive
and negative weights respectively. Denoting the set ofgddgelevant and judged
irrelevant documents bi and/ respectively, Rocchio’s formula of the modified query

vector is:

Qrr =Q + ! Z b1 Z D, (2.1)

where\ﬁ]l is the city-block length of the document vector If the weight of a query
term drops below zero, it is removed from the query. Variouslifications to the
QE method of Rocchio have been studied, such as the early Vviidde §32]. While

the works of Rocchio [65] and Ide [32] include all terms of thdged documents in
expanding the query, Harman [26] showed that it was more®feeto select terms
from the judged documents for QE, according to an appraptém ranking function.
Query expansion in a probabilistic model was also studieldiyertson et al. [63] and
Sparck-Jones et al. [78]. They used a term selection functatled offer weight [78],

which we will employ in our experiments as described in Sec8.3.2.
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Pseudo-relevance feedback

One of the often cited problems of relevance feedback isaigtthe unwillingness
of users to make relevance judgments in a real applicatign Ruthven et al. [66]).
Hence, it is of interest to find ways to perform relevance judgts without direct user
involvement. Among the various methods, pseudo-releviaredtback (PRF), or ‘blind
feedback’ is a possible approach. PRF was first proposed by &rdfHarper [10] to
estimate probabilities in a probabilistic model for aniadisearch. Subsequently, it is
found to be effective for improving document rankings (eBgickley et al. [1]). The
assumption of PRF is that the top-ranked documents in therénséval are mostly
relevant and contain useful terms that can help to discateimelevant documents
from irrelevant ones. However, one problem of PRF is the pdggiof query drift
which occurs when the top ranked documents used for blirdbfsek actually contain
few or no relevant documents. In this case, the terms addétRBywill be poor for

detecting relevance, and hence degrade the retrievalrpefze.

Implicit feedback

Implicit feedback is another way to obtain relevance infation without directly re-
guesting a user to make relevance judgments. This apprsaaased on analysing
click logs, especially in the web search setting. Some resteidies have shown that
clickthrough data can be interpreted as implicit feedba&cy.(Joachims et al. [37]).
Each ‘click’ on a link to a page is regarded as an endorsementjgdged to be rele-
vant), while negative inferences may be drawn from pagdsaiteabypassed (e.g Das
Sarma et al. [16]). Huge amounts of such data may be colldoded web search
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engines and thus available in bulk. Hence, by utilizingkthcough data, relevance

feedback may be a feasible technique in web search apphsati

2.3 Term Weights

In Chapter 3, we describe our new method to solve the polyseaibjgm. The method
involves calculating ‘context-dependent term weightshaf query terms. This section
provides the background knowledge of the important topitesi weighting’.

In IR and text mining, a document is represented by a set ofweiwhich are
assigned to all the terms that occur in the document. For pleanmn the simplest
Boolean vector representation of a document, the presenabsemce of a term is
indicated by a unit or zero weight respectively. In gendta,term weightindicates
the importance of each term in the document.

In the various IR models, term weighting is an important comgnt that enters the
ranking functionswhich assign scores to the retrieved documents in ordeotiuge a
ranked list. For example, consider the Vector Space Mod8MYof IR (e.g. Salton et
al. [70]). In this model, a documedntis represented by the vectdr, whose elements
are the term weights (¢;, d) assigned to each tertnin document. Suppose a query
consists of termgg, }, so that its vector representatiO}montain the weights(¢;, q).
In VSM, the ranking function is given by the ‘cosine simitgtj Sz’m(ﬁ, Q), which is

equal to the dot product of the document vector and the questoy, normalized by
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the vector lengths:

Sim(D. g = 2uena s Dol @) 2.2)

Iojjte]

The term weights in Eq.2.2 are not given by the VSM modelfitgeit may be defined
by various weighting schemes. Clearly, the value of the rapkiinction depends on
the particular weighting scheme that is used, and diffeselnémes may yield different
ranking results. In fact, it is well established that thefpenance of an IR system
depends crucially on an effective term weighting schemg. (&alton and Buckley
[68]).

In the following, we describe some developments of term ht@ng research.

2.3.1 The TF-IDF weighting

It can be expected that weighting a term by more detailedsstat of its occurrence
in a document than the simple Boolean representation candélgtter discriminate
one document from another and thus aid document retrieBalsed on earlier works,
Salton and Buckley [68] identified three important composéhat constitute an ef-

fective term weight:

e term frequency (TF) in the document The pioneering work of Luhn [53] in
1958 first considered using the ‘occurrence frequency’ f@em frequency’ as
it is now generally called in the literature), as an indicaibthe significance of
a term. The more times a term appears in a document, the misreegjarded
being important. The term frequency of the tetin documentd is denoted by
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f(t,d).

e prevalence of the term in the collectionWords that appear in many documents
in the whole collection are regarded as too common and argauat discrimi-
nators of a document’s content. In 1972, based on this iotujtSgarck Jones
[76] introduced the well known weighting that is now calléaverse document
frequency’ (df). Theidf gives less weighting to terms that occur in many doc-
uments. A typical and simple definition of théf is as follows [76]. For a
corpus consisting ofV documents, if a term appears i documents (with

n denoting the ‘document frequency’ of the termyjf weighting is given by

idf (t) = log(N/n).

¢ length of the documentin a long and verbose document, there may be repeated
use of words. Hence, long documents may contain more quengstinan short
documents. To avoid biasing long documents over short d6&s.find that
including a length normalization factor in the term weightl improve retrieval

performance.

Salton and Buckley [68] performed retrieval experimentshwite Vector Space
Model using combinations of variants of TF and IDF composéntthe query and
document vectors. Some of the variants of the term frequefiityl) that were tested
in [68] include: (1) binary weight; and (2) 0.5 + 0,5¢,d)/ max f(t,d). Foridf,
they also considered the varidog((N — n)/n). They found the producf (¢, d) x
log(N/n(t)) to be the most effective. In the literature, terms weights tiave a gen-

eralized TF component multiplied by an IDF component areegaty referred to as
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‘TF-IDF’.

Over the past years, various IR models have been develapedding the Vec-
tor Space Model described above and probabilistic modelse various IR models
generally produce ranking functions that have forms whiah be interpreted as a
summation over some function of the weighting of query te(eg. including fac-
tors such as the term frequencies in the document and thg dself, f(q;,d) and
f(a@,q)). Itis remarkable that many of the term weights derived BsthIR models
have the TF-IDF form. While the original introduction of th& &nd IDF weights was
heuristic in nature, the later derivations by the models mayegarded as theoretical
justification of the weights.

One important variation of the TF-IDF form is the BM25 weightroduced in the
Okapi system (Robertson et al. [63]). This is generally régdras the state-of-the-
art term weight. This weighting was derived within a proliiabc retrieval model,
and a more detailed description of this weighting will besgr@ted in Section 2.3.2.
Apart from BM25, another important variant of the TF-IDF teweight that is used
by various researchers (e.g. Wong et al. [89]) is the pivotmunalization weight of
Singhal et al. [74]:

1+ In(f(t,d)) 1 N+1

WPN(d’q):t§q1+ln<avgf(d)) X (1+S)—|—8% Xf(t>Q)ln df )

(2.3)

wheres is a constantgvg f(d) is the average term frequency in documénti|, is the

City-block length ofd, andA is the average document length in the collection.
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2.3.2 Probabilistic retrieval model and the BM25 weighting

In IR, probabilistic retrieval models are generally basedasrking documents accord-
ing to the Probability Ranking Principle, which states thettieval effectiveness is
greatest if documents are ranked in the order of decreasaigapility of relevance to
the query (e.g. Robertson [60]). Probabilistic retrievabviest suggested by Maron
and Kuhn in 1960 [54]. Subsequently, various probabilistiedels have been pro-
posed, differing in the way the probability of relevancessmated. Notable examples
of probabilistic retrieval models include: the Binary Inéeplence model (Robertson
and Sgrck Jones [62]), the logistic regression model (Cooper. ¢899l the 2-Poisson
model (Harter [28], Robertson and Walker [59]), and the laggumodel (Ponte and
Croft [57], Lafferty and Zhai [47]).

One of the earliest probabilistic retrieval models was tged by Robertson and
Sparck Jones [62]. They assigned weightings to query termsrdet to the prob-
abilities of term occurrence in relevant and irrelevantuoents. The term weights
derived by their model are generally called RSJ weights. &tfce, the RSJ weights
can be estimated if there are some known relevant docunvehits, in the absence of
such information, the estimate of the RSJ weight reduces tdfaiorm [59].

In [62] , two probabilities are defined for the term

p; = P(document containg|document is relevaint (2.4)

¢ = P(document containg|document is not relevant (2.5)
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The RSJ term weight is then given by:

pi(1 - qi)

0= (2.6)

w; = log

Suppose relevance information is availabl& -eut of N documents are relevant, and

r; relevant documents contain the tetfnThen, the estimates of andg; are:

T n, —r
;R —, PN 2.7
P g W~ N g (2.7)
The RSJ weight is then approximated by [62]:
. +0.5)(N —R—mn; +r;+0.
w; = log (r; + 0.5)( R—n;+r;+0.5) 2.8)

(R —r; + 05)(%, —7r; + 05) ’

where the value 0.5 is added to each of the components as drsngpoorrection.
In the absence of relevance informatidd,andr; are both set to zero in Eqg.2.8,

which becomes:

N —n;+0.5

2.9

w; = log

thus yielding a weight with the IDF form.

Subsequently, the 2-Poisson model of Robertson and WalR¢mj&s introduced
to model term frequencies by a mixture of two Poisson distitims. A series of best
match term weighting functions were developed. In paréicuihis work led to the
BM25 term weight in which the effect of document length is tak&o account [61],

[78]. The BM25 weight is essentially a special form of TF-IDF.
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The BM25 ranking formula for a documedtnd queryy = {q, ..., g} iS:

n

fland) - (ki +1)
~ f(gi,d) + b - <1—b+b- ‘%)

) f(%;CI)
ks + f(ai, q)

BM?25(d, q) = w;(g;) (2.10)

where| D] is the length of the documenh is the average document length in the text

collection, andw; is an IDF factor given by Eq.2.9.

2.3.3 Context-dependent term weights

The novel concept of context-dependent term weights wagesigd by Wu et al. ([90]
and [91]) via their nonrelevance decision model of IR. As d&sed in Section 2.3.1,
the traditional TF-IDF term weight of a terindepends on the occurrence statistics of
t but not on the other terms in the document or in the collecton the other hand,
a context-dependent term weight of the teris reweighted based on the document-
contexts oft. The comparison of retrieval effectiveness using thesghitgiand the
performance using the traditional context-independerdOF weights is the main

focus of Chapter 3.

2.4 Clustering

Cluster analysis is applied in a wide range of disciplinehsag pattern recognition
[34], data mining [38], machine learning [6] and informaticetrieval [35]. In IR, as
mentioned above, clustering is a possible solution to thelwtsmatch problem. In

our work, we have studied the application of clustering téghes to our new method
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of context-dependent term weights for RF. This will be repdrn Chapter 5. In this
section we give some background of cluster analysis, withcad on IR.

We first provide describe several commonly used clusteriggrihms (Section
2.4.1). Then we present a review of the application of chiusgetechniques in IR
(Section 2.4.3), and various commonly used clusteringuawin measures (Section

2.4.4).

2.4.1 Clustering algorithm

Over the past few decades, a large number of clusteringitilgw have been devel-
oped. An extensive review of these algorithms is given by Xdi'&/unsch [94]. Here,
we briefly describe some clustering algorithms that vari@searchers have used in

IR.

Hierarchical clustering

Hierarchical clustering methods produce tree-like stmes of objects, such that ob-
jects strongly similar to each other are grouped into sma#iters, which are in turn

nested within larger clusters containing less similar cisje Hierarchical clustering

algorithms may be broadly divided into two categories: aggdrative and divisive.

Agglomerative clustering starts from grouping the two neistilar objects, and pro-

ceed to build the tree-like structure from the bottom to tietly adding less and less
similar objects to the group. In divisive clustering, thegle whole grouping of all the

items is progressively subdivided into smaller clusters.

In IR, agglomerative clustering is preferred (van Rijsber{&3], Willett [88]).
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Hence, we will focus on agglomerative methods. There arerakeommon agglom-
erative hierarchical clustering algorithms that are wydased. These differ in the
determination of which documents or clusters are mergedcit stage in the building

of the hierarchical structure:

e Single Linkageln single linkage, the similarity between two clusters s thax-
imum of the similarities between pairs of items, with the nbens of a pair being
taken from each of the two clusters. i.e. for two clust€gsandC;, the single
linkage similarity is:

S(C,,Cy) = max_(S(i, j)). (2.11)

1€Cq,JECY,

The method is called single linkage because clusters aredat each stage by
the single strongest link between them. Single linkagede¢agroduce ‘chain-

like’ structures.

e Complete Linkage In complete linkage, the similarity between two clusters is
defined as:

S(C,,Cp) = min _(S(3,7)). (2.12)

1€Cq,7€C,

This method tends to produce small clusters that are tidpatiynd.

e Group averageThe group average method is intermediate between sindge lin
age and complete linkage, with the similarity between twestdrs being the
average of the similarities between all pairs of items, watbmbers of a pair

being taken from each of the two clusters.
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e Ward’'s method In this method, the clusters that are merged at each stage are
chosen to minimize a certain objective function. For exampVard’'s imple-

mentation used an error sum of squares objective function.

Partitional clustering

Partitional methods are the main techniques of non-hibrzat clustering. The one
most commonly used i&-means Partitional methods have the advantage of low
computation costs, typically in the order ©f V) for time complexity for clustering
N objects, compared witth(N?) for hierarchical techniques. However, they gener-
ally require a number of experimental parameters, sucheasumber of partitions or
clusters required. Also, there is an arbitrary aspect inngato select some documents
as the initial seeds for clustering. These may be the reasbypgartitional methods

are not commonly used for document clustering in IR.

Fuzzy

Unlike hard partitional clustering where each item onlydngjs to one cluster, in fuzzy
clustering an item is allowed to belong to all clusters wittegree of membership,
u € [0, 1]. In document clustering, if each cluster corresponds tdfardnt subtopic,

fuzzy clustering allows a document whose content incluéeersl topics to belong
to more than one cluster. An example of fuzzy clustering ésftizzy c-means (e.g.

Hoppner et al. [30] and Kummamuru et al. [44]).
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2.4.2 Similarity score

Generally a clustering algorithm requires the input of ih@larity score between pairs
of items to be clustered, such as the scatésy) in Eq.2.11 and Eq.2.12. A common

similarity score is the cosine similarity:

(2.13)

wherev; andv; are the vector representations of the iteiend j. In the case of
document clusteringy; is the document vectab;. Typically, TF-IDF term weights
(Section 2.3.1) are adopted for the vector representafid ‘cosine’ of two docu-
ments has the geometric interpretation of being the ‘ariggéieen the two document
vectors inN-dimensional space, wheféis the number of distinct terms in the corpus.
Other measures that have been used by many researchedgitivduDice coefficient
and Jaccard coefficient (e.g. Jardine and van Rijsbergeh [35]

Dang et al. [13] distinguished between the traditional WWoent based’ similarity
score defined by Eq.2.13 where the veciprs the document vectab;, and a new
‘document-context based similarity’. The new similarigosesim.(D;, D,) is calcu-
lated as a function of the cosine similarity of pairs of catdebelonging to the two
documents. The reason for using this context-based sityilarto reduce the effect
of noise terms existing outside of the document-contextsgeyTound that using the
new similarities could produce better clusters, as meddwye¢he MK1 measure. The

MK1 measure will be described in Section 2.4.4 below.
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2.4.3 Clusteringin IR

In this section we review past research in IR where clugiei@chniques have been

applied.

Optimal Search

Cluster analysis was introduced in IR to improve retrievatieicy [71] and effective-
ness [83]. TheCluster Hypothesistroduced by Jardine and van Rijsbergen [35] has
been the basis behind the effort of various researcher9lyg alistering techniques in
IR. The hypothesis states that documents relevant to the iaeng are more similar to
one another than to irrelevant documents. In other wordsusgtering algorithms are
applied to a set of documents, then the relevant documetitbavgrouped together
based on their similarity. In the ideal case, clusters doimg relevant documents
are well separated from the clusters of irrelevant docusehtcording to the cluster
hypothesis, one would expect the similarity scores betwekvant document pairs
(Rel-Rel) to be on average larger than those between releadntralevant (Rel-Irr)
pairs. Hence, a distribution of similarity scores of Reldv@erlevant and Relevant-
Irrelevant pairs should look like the forms shown in Fig.2.1

For document clustering in IR, two broad classes of clusgtemethods that have
been studied by various researchers are partitional cingtand hierarchical cluster-
ing (e.g. van Rijsbergen [83], Willett [88], Steinbach et [80]). Partitional meth-
ods such as K-means have the attraction of better time cautypléan hierarchical
methods. Early studies found that the effectiveness otkearusing partitional meth-
ods was poorer than searches without clustering (Saltop, [(fibugh recently some
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Figure 2.1: Distribution of similarity scores between RaletvRelevant and Relevant-
Irrelevant pairs.

promising results were reported by Steinbach et al. [80) witisecting K-means’ al-

gorithm. Some authors have demonstrated the potentigtiwfeess of retrieval based
on hierarchical clustering (Griffiths et al. [22]; Tombrosdavan Rijsbergen [81]),

whereas other work found retrieval using unclustered cbtlas to be more effective
(El-Hamdouchi and Willett [20]). For hierarchical clusteg, various algorithms have
been applied, including single linkage, complete linkagy@up average and Ward'’s
method. Numerous comparisons of these algorithms haverbhadae (Voorhees [85];

El-Hamdouchi and Willett [20]; Griffiths et al. [22]). While #&eans groups docu-
ments into disjoint partitions, hierarchical methods gatesa tree structure in which
documents that are more similar are nested within largestets containing less sim-
ilar documents. In the context of web document clusterirgni and Etzioni [97]

introduced the Suffix Tree Clustering algorithm which is lshee identifying phrases
common to groups of documents. They defined a base clusterdsét of documents
that share a common phrase. These base clusters may beppuaglan the sense

that a document may appear in more than one of them. Ovenlgtusters are also
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produced by the Spherical Fuzzy c-Means algorithm of Kumnoraret al. [44].
Various retrieval strategies have been studied for seagahhierarchical system of
documents (van Rijsbergen and Croft [84], Croft [11], Voorhi@&g, EI-Hamdouchi
and Willett [20] and Willett [88]). With a top-down searclnet query is first matched
against the two child clusters of the root, and the sub-tseehbsen for which the
guery-cluster similarity is greater. The search then coas down the tree until some
retrieval criterion is satisfied. A bottom-up search stattshe base of the tree and
moves upwards until the retrieval criterion is satisfiedefEhare several approaches of
selecting the starting point of this type of search. It maylvelevant document if any
one is known. Otherwise, a nonclustered best match seandbecperformed, and the
document that is most similar to the query is chosen to bettré &f the bottom-up
search. Another approach uses the bottom level cluster$tfTI). A bottom level
cluster is the smallest cluster through which a documensijtie hierarchy. Thus, for
N documents, there ar€ bottom level clusters, up t&/2 of which can be duplicates.
A scan of all the bottom level clusters is performed, and thethat best matches the
guery is chosen as the starting point of the bottom-up sedome early studies of
top-down or bottom-up searches involved the retrieval glsinluster (van Rijsbergen
and Croft[84], Croft [11]). Griffiths et al. [22] found that seaes which retrieved a
single bottom level cluster often returned only two or thdeeuments. Hence, they
also considered either retrieving the 5 top-ranking botkewel clusters, or retrieving
sufficient top-ranking clusters to cover 10 distinct docatee Another retrieval strat-
egy that utilizes document clusters is to identify the @usthat are likely to contain

relevant documents and then rank each of the documentssga tihesters against the

34



guery (Voorhees [85]). Some of the more recent work that seekdentify ‘high

precision’ clusters include that of Kurland et al. [46].

Query-specific clustering

In the early stages of research of clustering in IR, documiestering was performed
on the entire corpus. This is called static clustering amddhsters thus formed are
independent of the search queries. More recently, quergisp clustering has been
studied by various researchers (Hearst and Pedersen [28)jr &And Etzioni [97],
Iwayama [33], Leuski [51], Tombros et al. [81], Liu and Cro®2]). Instead of the
entire corpus, query-specific clustering is performed anr#trieval results for each
guery. Assuming that the initial retrieved list, say of 1@ftuments, are fairly well
matched to the given query, clustering of these documenyshaaxpected to have
a larger chance of grouping together document relevantaatiery. Tombros et al.
[81] showed that query-specific clustering had the potetdiancrease the retrieval
effectiveness compared to both static clustering and caimreal document-based re-
trieval. Since query-specific clustering involves clustgronly a small subset of the
whole document collection, the time required for clustgns much less than static
clustering. This is another advantage of query-specifistehing.

Query-specific clustering was also employed in the selecioelevant documents

in a relevance feedback environment (see next subsection).

35



Clustering and relevance feedback

Various researchers have studied using clustering metbodgrove the performance
of PRF or RF. When clustering methods are applied in RF, the metevpidgments
may be made either before clustering is applied (‘pre-elusg relevance judgments’)
or after clustering is applied (‘post-clustering relevanedgments’). Works where
‘post-clustering relevance judgments’ is adopted inclilmbse of Sakai et al. [67] and
Lee et al. [50]. Sakai et al. [67] studied a selective sangpiirethod which skips some
top-retrieved documents based on a clustering criteridr@ gurpose of the sampling
is to select a more varied set of documents for feedback dvasisd on the assumption
that top-ranked documents may be too similar and redundiémicever, they did not
find significant improvements on NTCIR collections. Lee et[&0] tested a cluster-
based resampling method for PRF and found the method to hetiedféor PRF.
Buckley et al. [2] had found that in relevance feedback, theenal effectiveness
increased with the number of known relevant documents. Wahilser may be ex-
pected to make relevance judgments on only a small numbeyaefrdents, clustering
may be a plausible method to increase the amount of relevafarenation for feed-
back to the retrieval system. This is the rationale of oureagh to use clustering

methods for RF, as presented in Chapter 5.

Clustering and presentation of retrieval results

While it is common for retrieval systems to return the retmaesults to the user as a
ranked list, alternative ways of presentation have beeatiesilby various researchers.
In particularly, clustering has been utilized as a way toaaige the search results
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for presentation to the user. Hearst and Pedersen [29dintex the Scatter/Gather
cluster-based browsing method. In user-studies, theihodetllowed the users to
easily locate clusters with the largest number of relevactichents. Leuski [51] also
found that organizing search results by clustering was factafe way for the user to
locate relevant material as quickly as possible. In this,whag clustering method can
assist a user to select relevant documents for RF.

Clustering methods are actually implemented in some reahencial applications
for presentation. For example, the web search engine YiagKoshman et al. [43])

returns search results in clusters which correspond tereéifit sub-topics.

2.4.4 Clustering evaluation

With the abundance in clustering algorithms, it is importanevaluate the goodness
of the clusters that are formed. In the literature, theresaxeral methods of cluster
evaluation. The appropriate method to use depends on tldisgeoblem on hand.
Some important methods are described in the following. hiqadarly, for IR a tra-
ditional measure is MK1. This is a natural measure to use ihd€ause unlike other
schemes, it is actually based on precision and recall, wdnielihe standard measures

in IR.

Cluster validity

The general task of evaluating cluster goodness comes whalster validity (see

Halkidi et al. [23] for a review).
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MK1

The E-measure was introduced by Jardine and van Rijsber§ém[&R to provide a
measure of the quality of a document cluster. This measaredsnposite of the recall
and precision of a cluster and is given by Eq.(2.14)

(32 +1)PR

E=1-
3P+ R

(2.14)

where P and R are the standard precision and recall values, @amgla constant that
specifies the relative weighting of precision and recalle Valueg = 1 signifies equal

importance ofP and R. In the limit 5 — 0, we haveEl — 1 — P. Hence, values
of B < 1 correspond to a ‘precision-oriented’ measure. On the dtled, in the

limit 5 — oo, we haveE — 1 — R. Hencep > 1 correspond to a ‘recall-oriented’
measure. It can be seen from Eq.2.14 that the range of vatluBdsobetween 0 and
1. For the ideal case witl = R = 1, the equation give& = 0, while the worst

caseP = R = Oyields £ = 1. Hence, a smaller numerical value Bfcorresponds

to better cluster goodness. In the literature, it is alsoroomto use the related F-
measure, which is defined 5= 1 — E.

Jardine and van Rijsbergen [35] also defined the MK1 measuiehvighequal to
the best E-measure attainable by retrieving a single ¢lbsiged on the clustering of
a set of documents. This is a natural benchmark measure @pgisoto applications
where a single retrieved cluster is desired. Various asthave used this measure
to evaluate clustering effectiveness. For example, Tombtal. [81] compared the

effectiveness of the various types of hierarchical clustealgorithms based on the
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MK1 values obtained with the different algorithms. Dang kt[d3] used MK1 to
examine the clustering effectiveness using the traditisltwument-based’ similarity
scores and new ‘context-based’ similarity scores.

In Chapter 4, we present a new class of measure of clusterfeciieéness, called
CS. Instead of a single ‘optimal cluster’, the CS measure isdas a combination
of subclusters. This measure is appropriate for applinatighere it is desirable for
objects of the same class be grouped in tight ‘subclustersesponding to the ‘sub-

classes’ or sub-topics. We will describe this measure iaibietChapter 4.

Rand index

In fields outside of IR, the adjusted Rand index is commonly usettie statistics
literature [31]. This index measures the agreement bettreappearance of pairs of

objects in each cluster, with their appearance in the asdiglasses or categories.
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Chapter 3

Context-Dependent Term Weights

Among the various methods that have been investigated tr@ssarch to tackle the
polysemy problem in IR, query expansion (QE) via relevanedlfack (RF) is a well
established approach. More recently, Wu et al. ([92] and)) [@troduced ‘document-
contexts’ (or simply contexts) as another solution to thebfgm. Contexts are basi-
cally fixed-sized text windows within a document. Suppos®eudent contains an
occurrence of a particular query terqn The idea is that the specific usage of the
term ¢; in the document may be inferred by reading what other worgeapin the
neighbourhood of;. It is of interest to investigate whether document-corstexay be
utilized in a RF setting, to further enhance the performaritkeotraditional QE. This
chapter presents such an investigation.

Motivated by the work of Wu et al. [91], our new method uses @& fentext-
dependent term weight’. Term weights have been an area aéd®arch that has at-
tracted much attention in the past (Section 2.3). Many ofctbramonly used term

weights are of the TF-IDF (term frequenegy inverse document frequency) form. It
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was shown in [91] that assigning TF-IDF weights to terms imawgnent can be inter-
preted as making relevance decisions in IR. They introdugaeabilistic nonrele-
vance decision retrieval model. Their model mimics a humahking a series of ‘local
relevance decisions’ by reading texts in the vicinity ofth# query terms that occur in
a document and deciding whether these portions of the daaene individually rele-
vant to the query. As such, the model is based on documeméxdsrcentred on query
terms. By adjusting the term frequency weightings of the gtenms according to the
local evidence of relevance extracted from the text winddwsy derived a ranking
formula that has a form similar to the BM25 weight (e.g. Rolmertand Walker [59],
Robertson [61]), which is essentially a special form of TH=IDhe derivation of [91]
involves making several assumptions, in particular theiidah Context assumption,
which states that for any query, the local relevance at ditmté in a document! is
determined only by the single term occurring at locationAs pointed out in [91],
this assumption is not realistic because it is expectedtheatocal relevance deci-
sion should depend not only on the occurrence of a query temiglso on the words
around it in the text. They commented that such an unreabssumption may cause
performance limitations of TF-IDF term weights. Hence, weraotivated to relax this
assumption and investigate whether there is any advandgem weights that depend
on contexts with a size larger than unity. In comparison ttaditional TF-IDF value
of a termt¢ in a document/ depends on the occurrence statisticg af d or in the
corpus, but does not depend on the other terms found in thenteat. In other words,
the traditional TF-IDF is independent of the contexts.of

We introduce a ‘Boost and Discount’ (B&D) procedure to comphigenew context-
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dependent term weights. B&D makes use of the any ‘relevarfoenration’ that is
available. In our current study, where B&D is applied in the REisg, the relevance
information is provided by the user’s relevance judgmentsame of the retrieved doc-
uments. The approach can be applied to other applicatioob,as text categorization
([72], [95]), where there are given training samples of doeats belonging to differ-
ent predefined categories. The B&D procedure adjusts thefrelgqmency component
of the BM25 term weight of an initial query term (i.e. not an expansion term) in an
unseen document, according to the probability of relevarfitke document-contexts
centered ony;. The probability of relevance of a context is estimated bgaasttic re-
gression model. In effect, the term-frequency weightif(g; ), d, of a query terny; is
promoted (‘boosted’) if it is surrounded by terms that asmabserved in the surround-
ing of ¢; in known relevant documents. Likewisgg;, d) is demoted (‘discounted’) if
¢; is surrounded by terms that are also observed in its suringmal known irrelevant
documents. We define the ‘surrounding’@to be its document-context.

An overview of the rest of this chapter is as follows. In SewxtB.2, we review the
document-context retrieval model of [91], which providke theoretical basis of the
B&D procedure for calculating the new context-dependemhtereights. The B&D
procedure is introduced in Section 3.2. Section 3.3 cogtaim experimental results,
with a comparison of the performance of RF using the new terigi®and the base-

line which uses the traditional context-independent BM2givs.
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3.1 Document-context based probabilistic non-relevance

decision model

In this section, we first describe the probabilistic nonratee decision model of Wu
et al. [91]. Various assumptions made in [91] will be disagssWe will adopt the
same assumptions in our new context-dependent term weiggihioth for RF.

Following [91], a document-context of a termis defined as a fixed-size text-

window centred on:

Definition and Notation (Document-context).The document-context (or
simply context) of a term is the text window consisting of words cen-
tred att. A context in the document, centred at locatiok and having a

window size ofn terms is denoted by(d, k, n).

The above notation means that the conté¢ut i, n) consists of thé¢n — 1) /2 terms on
each side of the centre, as well as the central téfhj, itself.

In the model of [91], a human arrives at a ‘document-widevaabee decision’
by making a series of ‘local relevance decisions’, i.e. \Whespecific portions of the
documents are individually relevant to the query. Suchllpciyments are made based

on the following assumption:

Assumption (Context-Based Local Relevance Decistigcal relevance
decision at any locatioh in any document for any queryg is made on
the basis of the information in the context that is centered i d for

some maximal context size

43



The above assumption means that the user decides whethgortien of the docu-
ment centred at locatioh is relevant solely by considering the words that occur in
the vicinity of &, within a context of sizex. The decision is not affected by what lies
in other parts of the documents outside the contéxtk,n). Wu et al. [91] tested
this assumption and found that given the context is largeigmothe performance of
the document-context dependent model does not changeastibBy. Therefore, we
will assume that the Context-Based Local Relevance Decisitbaggprovided that the
context size parameter is appropriately calibrated.

Wu et al. [91] considered the local relevangg; , and the document-wide rele-
vancelR,;, to be binary variables, having the value O for non-relevarmt 1 for rele-
vance. In this case, following the TREC evaluation policyddrhoc retrieval tasks, a
document is relevanf{; , = 1) if any part of the document is judged to be relevant, i.e.
Rqrq = 1foranyk. This is named the Disjunctive Relevance Decision Prindigle
Kong et al. [42]. Alternatively, the document is irrelevénR,; ;. , = 0 for all locations
k in the document. Instead of having to scan through all looatk in a document,
Wu et al. [91] assume that any relevant information for ayuer {¢1, ¢, ..., ano}
can only be found in contexts centred on query tefm$, i.e. at locations: such
that the word at locatiog, d[k], is one of the terms contained ¢n This is called the

Query-Centric assumption:

Assumption (Query-Centricfor any query; and any relevant document
d, the relevant information fog is located only in the contextgd, k, n)
for k € [1,|d|]] andd[k] € q. (i.e., the relevant information is located
around query terms).
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The Query-Centric assumption implies that, , = 0 for all locationsk whered|k]

is not a query term. The Context-Based Local Relevance DedsidrQuery-Centric
assumptions together mean that the texts in the vicinit@@ftjuery terms will provide
the information needed to decide whether the particulatiggoiof the document is
relevant. Specifically, the information is contained witla fixed-size text window
centred on the query term. In practice, the size of the temtlauw can be much smaller
than the size of the whole document. Wu et al. [91] have tabiscssumption which
appears to hold in most cases, so we will simply accept itwaes tFurthermore, the
above assumptions imply that in performing query expansiaelevance feedback,
the extraction of expansion terms can be limited to the casitef query termg¢;}.

Another assumption made by [91] is the following:

Assumption (Location-Invariant Decisiorijor any queryy, if ¢(d, j,n) =
c(e, k,n), thenthe local relevance decisions made(@hj, n) andc(e, k, n)

are the same.

The above assumption means that the relevance judgemetw® atentical contexts
are the same, irrespective of the remaining content of tbardents that contain them,
or of the positions where they occur in the documents. Thigiite reasonable, once
the Context-Based Local Relevance Decision assumption ist@edsé is also in line
with the bag-of-words model commonly adopted in IR, wherebly the occurence
of a term is taken into account, but not its location in a doeatmRecently, there are
studies which suggest that term location is important, éxgrnological term ranking

introduced by Troy et al. [82]. In [82], it is noted that the shamportant content
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of a document often appears near the beginning of the dodymerh as in a news

article. Hence, the Location-Invariant Decision assumpthay not be always true, as

it excludes position consideration. Nonetheless, in ourecul study we assume it is

true for simplicity. This assumption may be relaxed in odufa research (Chapter 6).
An important result of [91] is the demonstration that it isspible to derive the

probability of a document being relevant to query, pv (R4, = 1),in terms of the TF

and IDF weights, wher& indicates that the relevance decision is document-wide. To

achieve this derivation, it is necessary to make the folhgnassumption:

Assumption (Minimal Context)For any query, the local relevance at a

locationk in a document! is determined only by the single temik].

As pointed out by [91], this is a rather unrealistic assuompti Basically, it means

that the words close to a query term do not affect the locavegice judgment. As

discussed in Section 3.2, this assumption is one that weelélk in our algorithm that

calculates context-dependent term weights. In [91], theeeother assumptions (e.q.,
query independent non-relevance probability assumptielajed to the derivation of

the inverse document frequency (IDF). The term weights Weause in our current

study have an IDF component, and we will assume that thesenggi®ns are true.

Having made the above assumptions, Wu et al. obtained tlosvioh:

Ft,d) x idf (¢)
(3.1)
te(vu%vw)) f(t,d) =+ appi

pv(Rdvq = 1) X

wherex denotes the rank-equivalence relatipn|, denotes the-norm length of its
argumentA(d) is the normalized document f (¢, d) is the occurrence frequency of
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tin d, idf (t) is the inverse document frequenéi(-) denotes the set of distinct terms
of its argument, whilev is a constant parameter. To derive Eq.(3.1), Wu et al. replac
the term frequency (¢, d) by a weighted versiony(t,d) = f(t,d) x p(f(t,d)|r),
wherep(f(t,d)|r) is the probability that all occurrences of the tetrim document]

are locally non-relevant. Comparing with Eq.2.10, the eggi@n in the summation of
Eq.(3.1) is just the BM25 term weight [59]. Because of the qreagtric assumption,
the probabilityp( f(t, d)|7) can be obtained by considering the evidence of relevance in
the contexts within the document. Thus, the probabilisticrelevance decision model

of [91] is equivalent to ranking documents according to atextadependent version

of the BM25 term weights, wherebf(, d) is replaced by(¢, d).

3.2 Computing context-dependent term weights by Boost

and Discount

As described in the preceding section (3.1), the probaioilisodel of Wu et al. [91]
yields context-dependent term weights which are identwéhe BM25 weights, ex-
cept that the term frequendi(¢, d) in the BM25 equation (Eg.2.10) is weighted by a
factor related to the probability of relevance of the all tomtexts oft. In this sec-
tion we describe how the novel context-dependent term weigly be generated by a
Boost and Discount (B&D) procedure. The B&D procedure is ajpiplie when partial
relevance information is available, such as in a relevaeedbjack or text categoriza-
tion task. The theoretical justification of the method wél fresented in the following.

There are two components in B&D: (1) Estimating the probgbdf relevance of
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a context based on the available evidence, and (2) Calcoglttencontext-dependent
term weights based on the probability of relevance. Thesedwmponents will be

described in Section 3.2.1 and Section 3.2.2 respectively.

3.2.1 Modeling the probability of relevance of a context

In statistics, a popular method which can be used to modertigability of the occur-
rence of some event Isgistic regressior(e.g. Kleinbaum [41]). Logistic regression
relates a set of independent variables to a dichotomousdepevariable via the lo-
gistic function,f(z) = 1/(1 + e~*), which has a sigmoidal shape as shown in Fig.3.1.
Because the value gf(z) lies between 0 and 1, it is well suited to model probabili-
ties. In general, the variableis equal to the total contribution of a set of independent
variables{z;}:

z = + 7101+ YVol2 +  + YTy (3.2)

The unknown parameters in Eq.3.2 are called logistic coefficients and indicate how
strongly the occurrence of an evedtdepends on each of the variables Hence the

logistic modeimay be stated as:

P(D = 1|IL‘1,ZE2, e ,IL‘n) = f(Z) = f(')/() +7x + Yoo + -0 +xn)7 (33)

wheref(z) is the logistic function. For example, logistic regressmnommonly used
in epidemiology, whereby (z) models the probability of illness (e.g. heart disease)

given a set of risk factord,z;} (e.g. age, blood pressure, cholesterol level, etc.). In
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general applications, the coefficiedts } are estimated by fitting data on the variables
x; to the observance db in the samples. In our case, as discussed below, the coef-
ficients are determined by calibrating them to yield the bgilperformance measure,
such as MAP. This is because we wish to seek the model panantiest can produce

the best retrieval performance.

-20 -10 10 20

N O

Figure 3.1: The logistic functiory,(z) = 1/(1 + e 7).

Logistic regression is well suited for our purpose to motel probability of rele-
vance of a given context, and our B&D model will adopt this nogthin the following
we describe what the variabl¢s; } correspond to in our model.

According to the Query-centric assumption of Section 3lvédence of relevance
(or non-relevance) only appears within the contexts of gyjtenms,{¢;}. In B&D, we
assume that this evidence is provided by the words that corauth each query term
¢; Within a context centred on the term. Suppose some partalarce information

Is available. For example, in relevance feedback, thigmé&dion comes from a user’s
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judgment of a (small) number of documents to decide whetheh ef these is relevant
or non-relevant. The query-centric assumption implies tiia judgment is made by
noticing the occurrence of certain words within the docureamtexts centred on the
query terms in each document. From each known relevant dextjiwe extract the
words that appear in all the contexts of each query tgrive call these words ‘boost
terms’ for the query;;. Note that each query term has its own set of ‘boost terms’,

which are denoted b¥z(¢;). Formally, the boost terms are defined as the following.

Definition. The boost terms$(g¢;), are the set of all terms that co-occur
with the query terng; within all document-contexts of sizéz centred on

¢; in all the known relevant documentis

Sp(q:) = U (i),

deR
keLoc(g;,d)
dlllec(d,k,Cp)N(I#£k)

whered|l] is the term at location in documentd, and Loc(g;, d) denotes

the set of all locations in the documenhtvhere the query terny occurs.

In the preceding definition, the term at the context centkes,e. the query term
¢;, is excluded because we consider the evidence of relevartoe based on the co-
occurring terms but not the query term itself.

Similarly, from all the known irrelevant documents, we exirthe co-occurring

words in the contexts centred @f to obtain a set of ‘discount terms’ denoted by

Sp(qi):

Definition. The discount terms$,(¢;), are the set of all terms that co-
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occur with the query ternp; within all document-contexts of sizé, cen-

tred ong; in all the known irrelevant documents

Sp(ai) = U d[l].
del
k€ Loc(q;,d)

dll]€c(d,k,Cp)A(I#£k)

Note that Definition 1 and Definition 2 for the sets of boost distount termssz(¢;)
and Sp(g;), contain the constant parametérs and Cp, which are the sizes of the
contexts from which the co-occurring terms are extractedaBse terms that occur in
both known relevant and known irrelevant documents may rotige clear evidence
of relevance for an unseen document, in our experiments mewe from the sets
Sp(q;) andSp(g;) any term found in their intersection. While the current défims fo
the boost and discount terms are quite strong, relaxatiotigeiterm selection may be
considered in our future studies. For example, insteadrabuéng from Sg(¢;) and
Sp(q;) all terms found in their intersection, we may retain sucimgem Sz (¢;) if the
term occurs only once among all judged contexts, and siryilfar terms inSp(g¢;).
Now consider a context(d, k, C,,), which has a size of’,, words centred on
an occurrence of;; at locationk in an unseen document Again by the Query-
Centric assumption, if the words in the context are similatht® ‘boost terms’ in
the setSp(¢;), this would support the document as likely to be (locallygvant too.
The more ‘boost terms’ are found in the context, the highdénesprobability that the
context is relevant. On the other hand, if ‘discount termg #®und in the context,

it means there is a reduced probability that the contextlevamt. Therefore, in the
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logistic model (Eq.3.3), we define two independent variablg and X, which are
proportional to counts of boost and discount terms in theednrespectively. Hence,

for the probability of the context(d, k, C,,,) to be relevantP(R = 1) = f(z), where

z =" +v8XB — YpXp. (3.4)

In Eq.3.4, the independent variabl&s and X, may be generally defined as weighted

counts:

Xp(d, k) = > wp(dll], ¢;) (3.5)

dll]ec(d,k,Crm ) A (I£k)
where the sum is over all locations within the context(@t, &, C,,,) excluding the
centre (locatiork), andwg(d|l], ¢;) is a weight for the term at locatioh In Eg.3.5
the term at locatiort, i.e. the query terng;, is not counted because we consider the
evidence of relevance to be only based on the co-occurrngstel' he simplest choice
of the weightwg in EQ.3.5 is the unit count:

1 if dfl] € Sp(g:)
ws(dll], g:) = e Sula). (3.6)

0 otherwise

Another possible choice is the ‘idf-weighted’ count:

waldlll. ¢) = idf (d[l]) /idfo if d[l] € Sp(g) | 3.7

0 otherwise

In the above equation, we use a common expression for thedpf|l]) = log,,((N+
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0.5)/(df(d[l]) + 0.5)) where N is the total number of documents in the collection,
df (d[l]) is the document frequency dfi]. The factoridf, = log,,((N +0.5)/0.5) nor-
malizes the weight s to between 0 and 1. An idf-weighted count gives less weightin
to words that are too common, and conforms to the intuitiat such words are not
good discriminators to provide evidence of relevance. Weshasted both types of
weighted counts, Eq.3.6 and EQ.3.7 in our experiments. ¥eraging over the 50
queries of TREC2005, the MAP values obtained using idf-weidgltounts and unit
counts are 0.2951 and 0.2503 respectively. Hence, we finthth&df-weighted counts
give better results. In Section 3.3, we will only report esipeents that use the weight-
ing of Eq.3.7. The discounX,,(d, k) are defined similarly by matching the context

words with those in the set of discount terms,(¢;):

Xp(d, k) = > wp(dll], ¢:) (3.8)
dilj€c(d,k,Com ) A (1£k)

with

idf (d[l)) /idfo if d[l] € Sp(q;
wp(dll ) — (d[l]) fidfo it d[l] (i) | (3.9)

0 otherwise

The probability P(R) for a context is interpreted as a degree of belief that the
context is relevant (e.g. Dang et al. [14]R(R) = 1 and P(R) = 0 correspond
respectively to a firm belief that the context is relevant trecbelief that it is irrelevant.
The valueP(R) = 0.5 means there is total uncertainty regarding its relevancéhd
absence of any ‘boost’ or ‘discount’ terms in an unseen ctntieere is no available

evidence to indicate its relevance or non-relevance. kaase, the probability(R)
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should be 0.5. Therefore we derive the value of the coefficignn Eq.3.3 to be
v = 0, as the value of the logistic functionat= 0 is f(0) = 0.5. In our experiments,
we will obtain the values of the logistic coefficientg and~, by calibrating them
to yield the highest performance evaluation measure, ssdiAP. The calibration
results will be presented in Section 3.3.

Note that Eq.3.5 and Eq.3.8, which calculate the weightachtof the words,
contain the constant parametey,, i.e. the size of the context in an unseen document
for matching the boost and discount terms.

In our current study, we have treated all B&D terms unifornnigspective of their
position of occurence within a context. Hence, in Eq.3.5 Bqd3.8 for the weight
for each termwp(d[l], ¢;) andwp(d[l], ¢;), we have used idf-weighting without any
positional factor. In our future work, various positionagightings of the terms may be
studied, for example, the distance of a term from the corttestre. Another example
is term ordering, i.e. whether the term occurs on the leftgitrside of the context
centre. With respect to the Location-Invariance Decisisguanption mentioned in
the previous section, we may also relax the assumption biyggévlarger weighting to
terms that occur near the beginning of a document. The v@asisonal factors can be

easily included in our procedure by adjusting the weighi$d|(], ¢;) andwp (d[l], ;).

3.2.2 Calculating the context-dependent term weights

The retrieval model of Wu et al. [91] derived a ranking funatin which the term
weights have the BM25 form, with the difference that the térequencyf(t, d) is

adjusted by a factor related to the probability of relevaoté¢he contexts of. In
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other words, the term weights become ‘context-depend&’ now explain how the
context-dependent term weights are computed in the B&D phareg utilizing the
probability of relevance of a context as estimated in thehoetdescribed in Section
3.2.1 above.

According to the Query-centric assumption (Section 3.Lgwdence of relevance
only appears within the contexts qtiery terms Therefore in B& D, we adopt the
BM25 term weights (Eq.2.10) for all terms that are not in thigioal query, while the
query terms{q;} are weighted by a BM25-like form witli(¢;, d) in (Eq.2.10) being

replaced by a new componetfip(q;, d). We write fzp(g;, d) in the following form:

fep(qi,d) = f(qi,d) + Afep(q: d), (3.10)

in which A fgp(q;, d) is the adjustment according to the probability of relevamiche
contexts ofg;. In particularly,A fsp(g;, d) should be proportional to the probability
of relevance. Furthermore)fzp(q;,d) should be equal to zero in the absence of
evidence of relevance (i.e. whét{R) = 0.5). Therefore, we definA f5p(q;, d) as in

the following, to satisfy these requirements:

Afspland) = Y Dx(P(R(c(dk,Cp))) = 0.5), (3.11)

k€Loc(q;,d)

where the multiplicative facto) may be interpreted as a document length which
converts the probability?(R(c(d, k,C,,))) to a frequency count. In Eq.3.11, for a

context without any evidence of relevance, so tRafR(c(d, k,C,,))) = 0.5, and
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P(R(c)) — 0.5 = 0, thus giving no contribution ta\ fz(q;, d) as desired.
Using the logistic regression model estimate of the prdivalof relevance as de-

scribed in the previous section, Eq.3.11 becomes:

Afeplgd)= > Dx(f(ysXp(d,k) —ypXp(d, k) —05),  (3.12)

k€Loc(g;,d)

wheref(-) is the logistic function.

If the contexts ofg; contain many terms which match with the discount terms
Sp(qi), so that the weighted coutf(d, k) becomes sufficiently large, it is possi-
ble for A fzp in EQ.(3.12), and hencészp in EQ.(3.10), to become negative. In this
case, it is actually desirable that the term weiffi;, d) also goes negative, as this will
indicate that the document is irrelevant based on the ev&lefithe contexts. To allow
the sign of the term weight to follow that ¢f; », we modify the BM25 term-frequency

factor to:

Font (v d) = DolIpolid)  on(faplg.d). (319
abs(fzp(gi,d)) + k [1 " b%}

where|d|, is the Euclidean length af, andA is the average Euclidean length of all
documents in the collection. Adding tBen(fsp(q:,d)) factor in Eq.3.13, will let
fem(q;, d) become negative whefsp(g;, d) is negative, as desired.

Fig.3.2 depicts the flow of relevance feedback, with conteefiendent term weights
being obtained by the B&D procedure. In the figure, the lefnbracorresponds to

standard QE, with the term weights of both the initial quesgits and expansion
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terms being given by the traditional BM25 equation (Eq.2.I®e right branch corre-
sponds to context-dependent term weights being used fonitied query terms. Re-
ferring to Fig.3.2, compared with traditional query exgansusing standard BM25
weights alone, the additional steps in the B&D procedureunttel (1) the extrac-
tion of boost/discount terms from the known relevant and-redevant documents
and (2) scanning through each context of every query tgrth and matching with
the boost/discount terms. Our current focus is on investigahe effectiveness of
context-dependent term weights. Efficiency considerasarot our primary concern

in this study.
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Initial retrieval for query={ g}
v
PRF {NPRFa NQE, aQE; k ’ t}

i

Make relevance judgmeon the tofNgr
documents returned by PRFNgr }

!
Extract contexts from judged documents

______________________________________________________

l Seect positive/negative que-expansior
Query , terms from the judged relevant/irrelevant
expansion documents. Kloe ,Nog,irr }
i ! i
i Expand query vectordoe { aoe,foe }
NO (baseline) YES (B&D)l
Extract boost/discount tern
from contexts in judged
relevant/irrelevant documents.
{Cs, Cp}
, !
Re-rank the tofNerank passages of tr Re-rank the tofNerank passages of tr
initial retrieval. Calculate a new initial retrieval. Calculate a new
matching score of each passage with matching score of each passage with
the expanded quenye the expanded quenye
e use traditional BM25 term e for original query termsj;,
weights for all terms calculate shift in BM25f based
{Nrerank K , B on matching boost & discount
terms {Cn, J&, }b, D}
e use traditional BM25 term
weights for all other QE terms
[
]
Obtain ranked list of documents based on their tzedted passages
i

Output retrieval result (ranked list of documents)

Figure 3.2: Flow diagram of relevance feedback with stasthdaery expansion or with
B& D. The parameters used in the various steps are indicateariy brackets.
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3.3 Experiments

The main goal of our current study is to compare the effentgs of retrieval that uses
context-dependent term weights with the traditional TH~M2eights in the RF setting.
As explained above, the context-dependent term weighteryecalculated for the
initial query terms{¢,; }. We use the state-of-the-art BM25 term weights for all query
expansion terms that do not appear in the initial query.

As indicated in Fig.3.2, after an initial retrieval with thaeryg;, pseudo-relevance
feedback (PRF) is performed. The list of documents retriéyeBRF is then supplied
to the RF stage of the experiments, where relevance judgraemtsiade on the top
Nrr documents in the list. The main reason why we include PRF istaima strong
baseline for comparison with the results of using the new tereights. Using PRF
will produce a retrieval list that contains more highly radkelevant documents than
the initial retrieval, i.e. there will be more relevant daoents in the topVyr. Past
research (e.g Buckley et al. [2] showed that the effectivernéRF increased with
the number of known relevant documents. Hence, using the P&tfuped list, rather
than the initial list, should yield a better performance tioe baseline. Any further
improvement obtained by using the new term weights would b@a more convincing
demonstration of the effectiveness of these term weights.

Section 3.3.1 describes the experimental environment atwps Section 3.3.2
presents the calibration of various model parameters: §&udo-relevance feedback
(PRF),(B) Query expansion using standard BM25 term weightsB&ID) procedure.

Section 3.3.3 contains the comparison of the performancel®@fance feedback using
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the context-dependent term weights against the baseline.

3.3.1 Experimental environment and setup

We have performed experiments using the 50 title queriead ef the TREC-6, 7, 8
and 2005 test collections. In Section 1.3 we have descriftedetasons for choosing
these various collections in our experiments. Some staisf the collections are
shown in Table 1.1. Here, we have not used TREC-2 which corgaimg long queries,
with an average of 3.8 terms per query. On the other handstlthgueries of TREC-6,
7, 8 and 2005 all contain an average of close to 2.5 terms. di@us parameters used
by the baseline (QE with BM25 term weights) and the B&D procedare calibrated
using the TREC-2005 collection. The reason for choosing thiiection as the basis
of parameter calibration is its much large size comparel priévious collections and
therefore more in-line with current and future web searcpliegtions. In order to
demonstrate the robustness of the B&D algorithm acrossatmites, we conducted
experiments for the other collections (i.e. TREC-6, 7 and &)githe same set of
parameters optimized for TREC-2005. In our experiments,téredsaird IR techniques
of stemmingandstop-word removadre applied. Stemming refers to converting words
into their root forms. For example, the wordgrieval, retrieve, retrieved, retrieving
will all be converted to the root representatigatrieV. We have used the common
Porter stemming algorithm [58] on all documents and queri®®p-word removal
means that words which are considered non-informative feepositionsthe, a, and,
or, of, etc.), are removed from the documents and queries.

Our retrieval system is ‘passage-based’ rather than ‘decttibased’, following
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previous studies (e.g. Callan [5] and Kaszkiel and Zobel)[3#&)ich found that
passage-based retrievals could yield better retrievaltsedn passage-based retrieval,
each document is divided into blocks, called ‘passagesauinsystem, each passage
contains a fixed number of words. All the passages are rant@utding to the val-
ues of their ranking function. The final retrieved units drert the original documents
ranked according to their highest ranking constituentggss [5]. It was found in [39]
that a passage size of between 150 and 300 words gave thesbiestnpance. Hence,
our experiments have used passages that consist of 250.words

Regarding the evaluation of our RF retrieval results, the westidblished residue
MAP measure [66] is used, as described in Section 1.3. Thaue®MAP is calculated
based on remaining relevant document in the residue calledtom which theNz
judged documents are removed.

Last, we briefly describe some assumptions that we have nseariexperimen-
tal environment for RF. These assumptions are mainly addptieadving Wong et al.
[89]: (1) Identical judgment assumption: For a given quéng relevance judgment
made by a user in RF is identical to the relevance judgment rbgdbe evaluator
for all documents in the collection; (2) Independent agsess assumption: The rel-
evance judgment for the same document and the same quewgy sauthe irrespective
of the relevance judgment of other documents and queri¢$\¢B-identifying term
assumption: Query terms which are not in the initial quemmialated by the user
should occur in more than one document in the collectiors graventing these query
terms from uniquely identifying a relevant document; (4¥dRdt irrelevance assump-

tion: If the relevance of a document to a query has not beegegidy an evaluator,
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Table 3.1: List of parameters used in pseudo-relevancdéstd PRF), query expan-

sion and ‘Boost & Discount’

Symbol Description

Nprp Number of top passages assumed to be relevant in PRF
Ngp Number of relevance judgments made in RF
Nor Number of query expansion terms selected from judged retel@cuments

Nogi» Number of query expansion terms from judged irrelevant doents

agE Weight of original query vector in the expanded query vector

Baor Weight of positive vs. negative components of the queryaaspon vector
k Scaling in the BM25 term-frequency factor

b Slope in the BM25 term-frequency factor

N,eranie  Number of passages returned by an initial retrieval to benéed in RF

Cg Size of contexts in relevant documents for "Boost” termsamtton

Cp Size of contexts in irrelevant documents for "Discounthterextraction
Cm Size of contexts in an unseen document for matching B&D terms
vB Logistic coefficient for Boost terms

YD Logistic coefficient for Discount terms

D Multiplicative factor controlling the strength of B&D (EqXBL)

the document is assumed to be irrelevant to the query [87].

3.3.2 Calibration of model parameters

In this subsection, we describe the calibration of the verimodel parameters using

the TREC-2005 collection. A list of the parameters is sumnearin Table 3.1.
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Pseudo-relevance feedback (PRF)

In passage-based retrieval, PRF makes the assumption ¢hiapt -z~ passages re-
turned by an initial retrieval are relevant, wheYe - is a fixed number. The original
query vectorg is thus modified by adding terms selected from theseNop pas-
sages and a second retrieval is performed. However in owrements, instead of
simply selecting terms from the taNprr passages, we made a modification in the
PRF scheme for the following reason. We have observed thal RteC-2005 col-
lection contains many document duplicates. For example different documents in
the collection may be essentially the same news articlediffet by having different
time tags. Large portions of these two documents are agtigddhtical. It is quite
probable that the topVpr passages also consist of duplicates. Including duplicates
in the PRF process would bias toward the duplicated passagesefore, instead of
simply using the topVprr passages for term selection, we check for duplicate pas-
sages, skipping any duplicates found. The duplicates dest@el by having the same
matching score with the query, as well as having identicabbaolaries above a 95%
threshold. The matching score for a passage is obtainedrbmswg the term weights
of all the query terms appearing in the passage. Our condioduplicity means that
the passages must have the same occurrences of the quesatethave vocabulary
overlaps above the 95% threshold.

After skipping any duplicate found, the QE terms are theedet from the top
distinct Nprr passages. As in standard RF, the expansion terms are sedecteding

to a ranking score (Harman [26]). For each térappearing in the top/» - passages,
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we compute a score:

Score(t) = _Jrea®) x idf (t) x pf(t) x (1 +

tmpr f (t)
1+ freq(t) ) (3.14)

1+ tmpr f(f)
where freq(t) = total term frequency of in the top distinctNprr passagesyf(t) =
number of these passages contaiiif(¢) = inverse document frequency ofn the
whole collection, andmpr f(t) = df (t) — pf(t) + 1, with df (¢)= document frequency
of ¢ in the collection. The first three factors in Eg.3.14 is sanib one of the ranking
scores found to be effective by Harman [26], who used a ‘néastor similar to IDF.
The rationale for including the last bracketed factor inEtg is as follows. In this
factor,tmpr f(t) is proportional to the number of passages in the collectiahdontain
termt, apart from those in the taNpgx. If tmpr f(t) is small, the term would not be
very useful as a query expansion term because it occury.rétehce, we add a factor
that reduces the score of those terms that have small vdluesof (¢). The last factor
in Eq.3.14 serves this purpose because it is monotonigatheasing, bound between
1 and 2. Averaging over 50 queries of TREC-2005, we found tr&atMAP values
obtained by including or excluding thenpr f(t) factor in Eq.3.14 are 0.2781 and
0.2776 respectively. The query expansion vegtos prr is made up of the topVg
terms with the highest scores given by Eq.3.14. In our erpatis, we seNprr = 20
andNgg = 80, since these values were shown to be effective in our eartjies.

An expanded query vectgh - is then obtained by mixing the initial quegwith
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the vectorgy e, rr:

@B PRE_

q_'pRF = (IQE% + (1 — OzQE) (315)

\qoE_PRF|

whereagg is a mixing factor with a value between 0 and 1, afidand |y prF|
are city-block lengths. A second retrieval is performedtfe@ new queryprr. In
the calibration of PRF, we seek the set of parameters thalsyible most relevant
documents in the top 20 (i.e. the best P@20), so that thesiaageount of relevant
information will be available for RF that makes 20 relevangdgments Vg = 20).
The set of parameters that we calibrat¢dsg s, k, b}, wherek andb are parameters in
the BM25 term-frequency factor, Eq.2.10. The standard wadfigk, b} are{1.2,0.75}
[59]. In our calibration, we allowed different values £f, b} for terms contained in
the initial queryq and the QE termgys,.rr. For TREC-2005, the optimal set of

parameters that we found is summarized in Table 3.2.

Table 3.2: Summary of parameters used for pseudo relevaanddéck (PRF).

Initial query terms Query expansion terms

NPRF QQE NQE k b k b

20 25 80 5.0 .65 1.2 .75

Calibration of the baseline (BM25 term weights)

In this section, we present calibration results of our RF lo@senodel which uses
traditional BM25 term weights for all terms in an expandedrgueOne important

difference between RF and PRF as described above is that in RE, abthe docu-
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ments may be judged as irrelevant, whereas in PRF (for patsesgpel retrieval) the
top Nprr passages are simply assumed to be relevant. Therefore irfeievance’
as well as ‘relevance’ information is available. In querpamnsion, we include terms
extracted from known irrelevant documents as negative oompis of the expanded
query (see E@.3.20). It should be noted that in RF, a user mal@snce judgements
on whole documents, and so information from the whole of tliged documents is
used for feedback. However in the passage-based PRF, intfomwantained in the
top retrievedpassagess used.

In our RF experiments, relevance judgments are made on th& tpplocuments
returned by PRF. Similar to the procedure for PRF (Sectior2B.Because of the issue
of duplicate documents in TREC-2005 we check for duplicatethénPRF retrieval
output, skipping any duplicate found. Because of the CorBased Local Relevance
Decision and the Query-Centric assumptions (Section 3.&¢)select QE terms from
the document-contexts of the tdyk» documents, rather from the whole documents.
We have tested several context sizes with the 50 queries oCTRID5. With context
sizes of 21, 41, 61 and 81, we obtained MAP values that vam 93286 to 0.291,
and the differences are not statistically significant. l& éxperiments reported here,
a context size of 41 (i.e. the centre query term plus 20 wordsaxh side of it) is
used for QE terms selection. Suppose within the Agp- distinct documents, there
are N,; relevant documentg,R}, and N,,.. irrelevant documents{/}. We define a
ranking score that is a variation of the ‘offer weigh®J¥'(¢), used for expansion term

selection in the Okapi system (e.g. Robertson et al. [59] quddcR Jones et al. [78]).
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For a termy that appears in one or more of the documentgi, the score is:

. frel(t) drel(t)
Srel(t) = m X OW(t) X <1 + H—d—rel(t)) 5 (316)

whereOW (t) is the offer weight given by:

[F(t) + 0.5] x [N — df (t) — Nyes + 1(t) + 0.5]
[dF(£) — 7(t) + 0.5] X [Nyet — 1(t) + 0.5]

OW (t) = r(t) x logyq { } . (3.17)

where N is the total number of documents in the collection atd is the number of
documents iR containingt. In Eq.3.16,f,,(¢) is the total number of occurrencestof
inthe sef{ R},andd,..;(t) = df (t)—r(t)+1. Eq.3.16 has the same form as Eq.3.14, the
ranking score used in PRF. The difference is that for Eq.3MESscores are calculated
based on known relevant documents, as opposed to the bédddek of the topVpr
passages for Eq.3.14. We have addedfihét) factor in Eq.3.16 because Harman [26]
showed that a ranking function includingfa, (¢) factor enhanced the performance of
QE. The purpose of thd,,(¢) factor in Eq.3.16 is the same as that of thepr f
factor in Eq.3.14, namely to reduce the score for terms draly occur in the unseen
documents. In analogy to the Eq.3.16, we define the score tiemat appearing in
judged irrelevant documents as follows:

o fzrr(t) : dzrr(t)
Sirr(t) — m X OWzrr(t) X (1 + 1+ dzrr(t)) . (318)

wheref;..(t) is the total number of occurrencestah {1}, d;..(t) = df (t) —i(t) + 1,
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with i(¢) being the number of known irrelevant documents contairtiegaordt, and

[i(t) +0.5] x [N — df () — Niry +1(t) + 0.5]
[df (t) —i(t) 4+ 0.5] X [Ny, — i(t) + 0.5] } - (3.19)

OWipp(t) = 7(t) X logy, {

We construct the query expansion vecif;, whose elements correspond to the
Nor terms in{ R} having the highest scorés.;(t). The vectorg,.. is similarly con-
structed, withNyg ;- terms selected frord/} based on the highest term weights
Sir(t). The overall query expansion vect@sz rr is then obtained by mixing;.;
andg;,, :

Grel Girr

dor-rr = Boe—— — (1 — Bor) = (3.20)

|q_;”el’ irr|
wherefgg is a mixing constant with a value between 0 and 1. In Eq.(312@)terms
extracted from the known irrelevant documents are givengatnes weight. Finally,

the RF query vectafrr is a weighted sum of the initial quefyand the query expan-

sion vectorgg g _rr -

— —

qQE_RF

qrr = OCQE% — (1 - agr) (3.21)

Gor rr|

Rather than performing a new retrieval using the qugry, we re-rank the pas-
sages returned by the initial retrieval for the original iqu@€ This re-ranking ensures
that all the passages and hence the final documents retacemain at least one of the
original query terms. The re-ranking is done by calculaimgw ranking score of each
passage for the quernyr. SupposeVy passages are returned by the initial retrieval.

Rather than re-ranking all of these passages, we only reth@top minV,..qnx, Np)
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of the passages, whehé.,...;. IS a constant parameter. The reason for doing this is that
we assume that the lowly ranked passages returned by tia ieitieval are unlikely

to be relevant. Re-ranking only the top passages will avadothttom passages from
being spuriously promoted in the re-ranking. Without losgenerality, N,.c,..x can

be set taVp to cover all passages.
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Figure 3.3: Calibration of Query Expansion via RF parameteased on averaging
over 50 title queries of TREC-2005.

We perform the calibration of our system for the casé/gf. = 20. We seek the set
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of parameter§agr, Sor, Noe: NoE.irrs Nrerank, b, k} that give the best residue MAP.
Fig.3.3 represents the calibration of these parametegdl time plots, the residue MAP
values are averages over 50 queries of TREC-2005. In each pfdtseFig.3.3, only
the parameters shown in the X-axis are varied, while the ir@nta parameters are
fixed at the values indicated in the figures. Note that becafiske large number
of parameters (Table 3.1) and calibration time considenatiwe do not perform an
exhaustive grid search of the globally optimal set of patense Rather, as indicated
in Fig.3.3, we seek local optimal values of each parametghimthe ranges shown
in the figure. From the plots, we obtain the following best ¢lethe parameters
aop = 0.20, Bor = 0.85, Nog = 240, Ngg.ir = 160, Nyerank = 160000, k = 2.5,
b=0.75}.

According to Eq.(3.20), when the value of the paramgtgr is less than 1.0, the
query expansion vectai,r_rr contains contribution of terms extracted from known
irrelevant documents. Fig. 3.3(b) suggests that averamieg50 queries, the residue
MAP obtained with5g; = 0.85 is slightly better than the value obtained withy =
1.0. The results suggest that there is some benefit to includgimely weighted terms
in relevance feedback. However, previous work by Dunlog fifl Wong et al. [89]
found that negative query expansion does not always give gedormance. There-
fore, we have compared the performancedgr, = 1.0 andj5ge < 1.0 in more detail.

Fig.3.4 shows the results of a trial experiment in which walyse the difference
between MAP values obtained for QE witly; = 1.0 and 8o = 0.8, with all the
remaining parameters being equal. We use the not&iga20 to denote the number

of relevant documents among the top 20 documents return&RByi.e. the number
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of known relevant documents for RF. Fig.3.4 shows the valliédAP(5or = 1.0)-
MAP(8or = 0.8), averaged over queries with the same valugv@fa20 for TREC-
2005, plotted againsk;z@20. The figure illustrates the following points: (1) While
the calibration plot Fig.3.3(b) shows that averaging ov@gGeries3or = 0.8 gives
slightly better MAP tharByr = 1.0, there may be some queries for whiéhz = 1.0
gives the better performance. (2) For queries with smallegbfN;@20, for = 1.0
tends to be better. In particular, Fig.3.4 shows that¥g#Q20=0 and 1, the MAP
obtained withgor = 1.0 is on average better than that obtained wit, = 0.8 by
over 0.01. (3) At larger values d¥;@20, Sor = 0.8 tends to be better. In Fig.3.4,

this is particularly apparent fa¥z;@20=7 and 12.
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0.01 W
Il Il H \D\ Il Il Il Il Il Il \D\D\ Il

0.00 = = Q i |:| I_I B
0 4 6 10 12 14 16 18 20

-0.01
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MAP('GQE =1 O) - MAP(ﬁQE 208)

-0.03
Nz@20

Figure 3.4: Difference between residue MAP values obtafoe®@E with 8or = 1.0
andggr = 0.8, averaged over queries with the same valu&/gfu20 for TREC-2005,
plotted againsiV;@20.

The above results shown in Fig.3.4 suggest that there mayie $enefit in
calibrating the set of parameters differently for differeuieries, depending on the

Nr@20 value of the query. Therefore, we have investigated a sclfeatied ‘Split’)

in which different sets of parameter values are used foeufit queries, according to
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Figure 3.5: Residue MAP averaged over 50 queries of TREC-2@@&in@d by setting
Bor = 1.0 for queries withNz@20 < N,,;; and setting3or = 0.8 for queries with
NR@20 > Nsplit-

the value of N;@20. Specifically, we define a paramet®T,;; such that we use one
particular set of parameter values fR@20 < N,,;;, and a different set of param-
eters whenVp@20 > Ng,;;. We performed some trial experiments in which we set
Bor = 1.0 for queries withNz@20 < Ny, but usefyr = 0.8 for queries with
Nr@20 > Ny Fig.3.5 shows the residue MAP obtained with this schemke vat-
ious values ofV,,;;, averaging over the 50 queries of TREC-2005. The MAP values
obtained withsgr = 0.8 and g = 1.0 for all queries are also indicated in Fig.3.5
by two horizontal lines. The figure shows that for some valoes/,,;;, the MAP
obtained by ‘Split’ is better than the values obtained withstant3, z for all queries.
The result is best folN,,;;; < 5, with the MAP values being similar fa¥,,;;; between

1 and 5. Therefore, we will adopt this scheme in our expert)esettingV,,;;; to 3,

in order to stay away from the ‘cliff’ with the rapid decreaseMAP (which occurs at
Nsuiie = 6 for the case shown in Fig.3.5). Referring to Fig.3.4, sgtiV,,;;; to 3 also
seems reasonable, as Fig.3.4 depicts a change in behavidizf@20 > 3. Hence,

we perform new calibrations separately for queries Wth,;; < 3 and queries with
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Ngpiie > 3. The results are summarized in Table 3.3.

Calibration of B&D parameters

We have performed calibration of B&D on the TREC-2005 collattior Nz = 20.
B&D is applied in conjunction with query expansion, as indéchin the flow diagram
depicted in Fig.3.2. In addition to the parametéts)z, Sor, Noe, Noeirrs Nrerank:

b, k} used in the baseline, we also seek the set of parametgrsp, D, Cp, Cp, Cy, }
that together give the best MAP. Similar to the baselinebcation, we adopt a ‘Split’
scheme for B&D. Hence, we perform calibrations separatehthfe set of queries with
Nr@20 < 3 and for queries withVz@20 > 3. The calibrations are shown in Fig.3.6

(Ng < 3) and Fig.3.7 Vg < 3). The results are summarized in Table 3.3.

Table 3.3: Summary of the parameters calibrated to obt&ést residue MAP for
TREC-2005, using the baseline or B&D models

Initial query terms

T
NRF W;rgnf:t NR . Nrerank k
age Soe Noe Noeir 1000 b w» w D GG C Cy

<3 23 10 80 200 160 35.45 - - - - -

Baselne >3 .17 .85 180 120 120 2.0 90 - - - - -

20 NS 20 .85 240 160 160 25 .75 - - - -
<3 23 10 80 120 200 4.0.65 .125 .06 10.0 41 21 21

>3 25 9 180 100 120 4.0 .75 .15 .07 120 21 11 51

B&D

<3 .25 1.0 120 200 160 25 .35 - - - - -
Baseline >3 .17 .9 180 140 160 20 .9 - - - - -
10 NS .17 .85 180 200 160 2.0 .65
<3 275 1.0 120 200 160 2.0 .35 .275 .06 120 61 21 31
>3 .25 1.0 140 120 120 3.0 .95 275 .11 120 11 11 31

Note: (1) Corresponding to the ‘Split’ scheme, two differeris s parameters are
calibrated for queries withiVy; <= 3 and Ny > 3, whereNy, is the number of relevant
documents in the top NRF returned by pseudo-relevance fekdlpar the Baseline,
calibration is also performed without ‘Split’, as indicateg ‘NS’ in the third column.
(2) The BM25{k,b} values shown in the table are applied to the initial query t®rm
{¢;}. For the query expansion (QE) terms, the standard vallkeis}={1.2,0.75 are
used for all cases (both Baseline and B&D).

B&D
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Figure 3.6: Calibration of B&D parameters, for TREC-2005 quewéh Nz@Q20 < 3.
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Figure 3.7: Calibration of B&D parameters, for TREC-2005 qusewéh Nz@20 > 3.
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3.3.3 Comparison of RF performance using context-dependent term
weights vs baseline
Judging top 20 documents of the initial retrieval

We first compare the value of residue MAP obtained using tinéext-dependent term
weights computed by B&D, against the baseline MAP value abthusing the tradi-
tional BM25 weights for all terms. Fig. 3.8 shows the diffezerbetween the B&D
MAP and the baseline (with Split) value, for the 50 title gasrof TREC-2005. In the
figure, the queries are sorted in increasing ordeNg@20, which is the number of
known relevant documents in the relevance feedback Wjth = 20. The figure shows
that for most queries, using the context-dependent tergitecomputed by B&D can
yield better MAP values than using the baseline BM25 weighitafl terms. The av-
erage MAP values are summarized in Table 3.4. For the baselth standard BM25
term weights, we show in Table 3.4 the MAP values for both \aitldl without Split.
As expected, the value obtained using Split is higher than tibtained without Split.
For TREC-2005 averaging over 50 queries, the values of re8itAle obtained by the
baseline with and without Split are 0.2971 and 0.2957 rasgadg, while B&D yields
a MAP value of 0.3148. Therefore B&D can yield a relative imgnment in residue
MAP by about 6.0% over the best baseline result. We have eldettie statistical
significance of the improvement with the Wilcoxon mathcipads signed-ranks test.
The Wilcoxonp-values indicate that the improvement obtained by B&D idstiatlly

significant at the 99% confidence level (Table 3.4).
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Figure 3.8: Difference of the residue MAP values obtaine@&p and the QE base-
line (with Split) for the 50 title queries of TREC 2005. The ges are sorted in
increasing order oV @20, which is indicated by the X-axis.

Judging top 10 documents of the initial retrieval

The results of our RF experiments presented above show thatdking relevance
judgments on the top 20 document returned by PRF {V.g= = 20), B&D performs
better than the QE baseline. It is also of interest to comffegeerformance based
on a smaller number of relevance judgments. This is becaisenore realistic for a
user to make relevance judgments on the top 10 documenés thtn the top 20. This
also corresponds to typical web-based retrieval systeatsrétiurn 10 documents in
each page of results. Therefore, we have performed furtparienents on relevance
feedback withNzr = 10 for both our QE baseline system and the B&D algorithm.
It is expected that for both the baseline and B&D, the besinggttfor the case of
Ngrr = 10 may be different from those obtained foiz» = 20. Therefore, we per-
formed new calibrations for TREC-2005 to find the sets of pataradahat give the

best residue MAP values. The new sets of parameters for $adiba and for B&D
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Table 3.4: Summary of the residue MAP values obtained by #seline and B&D
term weights in RF with 20 or 10 relevance judgments, for wasidREC collections

B&D Baseline (No Split) Baseline (Split)
(Split) B&D — Baseline(No B&D —

Nee TREC P Split) Baseline(Split)

MAP MAP  Increase p-value MAP increase p-value
0.0191 0.0177

2005 0.3148 0.2957 (6.5%) 0.0000 0.2971 (6.0%) 0.0017
0.0081 0.0195

20 6 0.2544 0.2463 (3.3%) 0.0495 0.2349 (8.3%) 0.0037
0.0187 0.0168

7 0.2302 0.2115 (8.8%) 0.0034 0.2134 (7.9%) 0.0085
0.0242 0.0174

8 0.2790 0.2548 (9.5%) 0.0000 0.2616 (6.7%) 0.0016
0.0196 0.0143

2005 0.3060 0.2864 (6.8%) 0.0003 0.2917 (4.9%) 0.0043
0.0197 0.037

0 6 0.2803 0.2606 (7.6%) 0.0091 0.2433 (15.29) 0.0016
0.0078 0.0097

7 0.2359 0.2281 (3.4%) 0.0381 0.2262 (4.3%) 0.0305
0.0285 0.029

8 0.2892 0.2607 (10.9%) 0.0000 0.2602 (11.1%) 0.0000

Note: For ‘Split’, two different sets of parameters are useddgoeries withNy < 3
and Ny > 3, as indicated in Table 3.3. Thevalues are obtained with the Wilcoxon
Matched-pairs signed-ranks test, shown up to 3 digits.

are also summarized in Table 3.3.

The results of the residue MAP are shown in Table 3.4. Fohligwhe procedure
employed forNzr = 20, for B&D we also tested the Split scheme. Separate calibra-
tions are performed for queries withi;@10 < 3 and for queries withV;@10 > 3.

For the baseline, we again report the values of residue MARirmdd for both with
and without Split. Table 3.4 show that for TREC-2005 witliz» = 10, the residue
MAP obtained by B&D is 0.3060, which has a relative improvetw@®.9% over the
best baseline value (0.2917). For this case, the Wilcgxwalues indicate that the

improvement is statistically significant at the 99% conficketevel. It should be re-
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minded that the residue MAP values as shown in Table 3.4 ¢dedirectly compared
across different values df -, because they are calculated using different residue sets

of relevant documents in the whole collection.

Other TREC collections

While our results reported above show that B&D is effectivempiioving the perfor-
mance of RF with bottNypr = 10 and Nrr = 20 for TREC-2005, we wish to confirm
whether this improvement is also observed for other TREGecttins. Hence we
have also performed the experiments using the TREC-6, 7 antle®tians. In order
to claim that the improvement due to B&D is collection-indegent, we need to show
that the improvement can be obtained using the same set afnpéers as found for
TREC-2005, without any further calibrations. Therefore, experiments for TREC-
6, 7 and 8 are carried out using the parameters shown in Taklé=8rthermore, we
have used the Split scheme as described above. Becauséelnaticals are performed
for TREC-2005, the best baseline MAP values obtained usingiSplound to be bet-
ter than the value obtained without Split. The reason is tthatcalibration without
Splitis a subset of the Split scheme. However, as we applgdhee sets of calibrated
parameters to TREC-6, 7 and 8, it is not guaranteed that thesgdi of parameters
will yield better MAP than the ‘No Split’ set of parametershérefore, as a tougher
condition to demonstrate the effectiveness of the B&D terngiits over the baseline,
for the baseline we obtain MAP values for both the Split and 3$plit’ schemes. We
set the requirement that the B&D MAP value must be better thanhigher of the

MAP values, with statistical significance at the 95% confatelevel, in order to claim
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the effectiveness of the B&D term weights.

The results of the RF experiments are included in Table 3.4 résidue MAP
values reported for TREC-7 and TREC-8 are averages over thectegp80 title
queries of these collections. For TREC-6, there is one que3d@)that has 5 relevant
documents in the whole collection. We found that for thisrguall the 5 relevant
documents are retrieved within the top 10 documents retulbyePRF. Hence, when
Ngrr = 10, there is no relevant document in the residue collectiorer@iore, in this
case (TREC-6)Ngr = 10) the residue MAP values shown in Table 3.4 are averages
over 49 queries. Similarly, another query (Q312) has 1llvasiedocuments in the
whole collection, and all of these are retrieved within thp 20 documents of PRF.
Therefore, forNgr = 20, the residue MAP values for TREC-6 are averages over 48
queries.

As shown in Table 3.4, in some cases (e.g. TREC-6), the QE hasefitained
without Split is actually better than using Split. Howewer, all the collections tested
and for both 10 and 20 relevance judgments, we found thaegidue MAP obtained
by B&D is always better than the QE baseline values, whethtr @i without Split.
Overall, the improvement is statistically significant a 85% confidence level. There-
fore, our results have confirmed the effectiveness of ctvitegendent term weights

in RF, both across collections and for different numbers lefvance judgments made.
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Chapter 4

Clustering Evaluation

To tackle the word mismatch problem in IR, query expansiorelavance feedback
has been found to be an effective solution. Clustering metlame another possible
solution. In the next chapter (Chapter 5) we will investighteuse of clustering meth-
ods in the determination of context-dependent term weigBé&fore that, we need to
find an effective clustering algorithm for our purpose. Tle&ds to the following re-

search problem —what is an appropriate measure to evaheag@bodness of clustering

results? This is the problem that we first consider in thiotdra.

4.1 Clustering effectiveness measure based on a combi-

nation of subclusters

A clustering algorithm separates a collection of objects groups which are called

clusters. When objects are manually assigned to group® ¢inesps are called classes

1This chapter is based on two of our published papers: Danlg g2} and [14].
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or categories. For example in IR, objects (e.g. documentg)baassigned to one of
two classes: relevant or irrelevant. In IR, the ultimate go&b recover all the relevant
documents from a given collection. Ideally, the clusteradgorithm groups all the

relevant and irrelevant documents into two separate chisti this ideal scenario,

the IR task would be reduced to identifying any one of thevaaié documents, as the
cluster that it belongs to contains all the remaining rel¢dmcuments.

It was pointed out by Dang et al. [12] that there are applicetiin IR where it
is desirable for objects of the same class to be grouped intbpie subclusters. For
example, for better presentation of retrieval results,sb@ch engine Vivisimo [43]
returns the retrieval results in the form of clusters, whigbically correspond to dif-
ferent subtopics of a search query. In this case, more tharcluster may contain
information relevant to a user’'s need. For such applicati@ngood clustering algo-
rithm should group objects of the same class together, resssarily all into a single
cluster, but into smaller *high precision’ clusters. Sutight’ clusters where relevant
documents are concentrated are illustrated by the clagtegsult as shown in Fig.4.1.
The figure depicts a dendrogram that represents the grana@ clustering of the
top-40 retrieved documents of one of the TREC-7 queries. Thiedrdal axis is a
dissimilarity scale. The leaf nodes on the right border efdendrogram correspond
to individual documents. The IDs of only the relevant docaoteeare printed in text
form at their leaf nodes, but not the IDs of the irrelevantuduents. Visually, the rel-
evant documents seem to be concentrated into several grintpgively, we expect
that these groups generally correspond to different splzdacategories [8].

The MK1 measure was introduced by Jardine and van Rijsbe8§giidr the eval-
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Figure 4.1: Dendrogram representing group-average clogtef the top 40 retrieved
documents of TREC-7, query 351 (Falkland petroleum explomati

uation of clustering results. As MK1 is equal to the E-meagig.2.14) of the single

‘optimal cluster’ that could be extracted from the clusigrresults, this measure is
appropriate for applications where it is desirable for @lévant documents to be con-
centrated in a single cluster. For the different type of Epibns that desire ‘tight’

high-precision clusters, we have introduced a new classeafsores ([12]), called CS
(combination of subclusters) that reflects this requirem@&his measure is obtained
in terms of an optimization problem, whose objective fumatis the micro-average

F-measure, which is introduced in the following (Sectioh %).

4.1.1 Micro-average F-measure

The E-measure as defined in Eq.(2.14) applies to binaryedassereby an object (i.e.
document) belongs either to the ‘relevant’ or the ‘irrelevalass. In order to broaden

the applicability of our approach, we first generalize the&asure to multiple-classes.
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This generalization enables our approach to deal with graelevance [15] in infor-
mation retrieval, as well as data-mining problems with riplétclasses.

We denote the classes by;, whereR = 1,2,.. ., ¢, with ¢ being the total number
of classes. Suppose there are a total\gf elements of a particular clads; in a
collection of objects. Let = {C4,Cs,...,C,} be a given family of clusters of the
objects. For a cluster; of size N(C;), letr(C;, Lr) denote the number of elements
in C; that belong to the claskr. The precision of the sé&t; with respect to the class
Lrisw(C;, Lg) = r(C;, Lr)/N(C;), while its recall isp(C;, Lr) = r(C;, Lr)/Nkg.
The E-measuré'(C;, Lr) and F-measuré’(C;, Lr) combine the precision and recall

values. The F-measure is defined as:

aet (8% +1)m(Ci, Lr)p(Cy, L)
F(CHLR) - 6277(01'7[/]%) +p<CZ7LR) )

(4.1)

while E(C;, Lg) = 1 — F(C;, Lg). A higher F-measure, and hence lower E-measure,
implies a better quality of the cluster [21], with the petfetuster havingl’ = 1.
Substituting the expressions ofC;, Lr) and p(C;, L) in Eq.(4.1), we can rewrite

the F-measure as:

(8% + 1)r(C;, Lg)
B2Ng + N(C;)

F(C;, Lp) = (4.2)

For each individual cluster in the famil§, the F-measure with respect to class
Lr may be calculated, and we denote the largest of these vaduBs(arz). In the
context of information retrieval, Jardine and van Rijsberf$s] defined a performance

measure for a clustering algorithm, called MK1, which is&da 1-F*, with Ly being
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the class of ‘relevant documents’. Extending to multipkesskes, Larsen and Aone [48]
introduced an ‘overall F-measurd’g, which is the sum of the best F-measure for each
class weighted according to the class size. Zhao and KgdBglisalled this the FScore

measure and it is given by

&:gfﬁwuﬂ (4.3)
wherec is the total number of classes. In Eq.(4.3), the sum is oVetads labels, and
N =", Ny is the total number of elements in the collection.

A subset ofS is specified by a set of indiced, C {1,2,...,n}. For this subset,
we can calculate a micro-average F-measure which is defsmdted-measure of the
union of all members of the subset. L&} denote the union of all the clusters labeled

by the indices contained id: C; = U;c,C; , J C {1,2,...,n}. In analogy to

Eq.(4.2), the micro-average F-measur&pfis defined as

def (B2 +1)r(Cy, Lg)
Fu(Ci Lr) = B2Ng+ N(Cy) ’

wherer(C}, Lg) = total number of clasd.z elements inC;, and N(C;) = |Cy| =
number of objects i';. The macro-average F-measure may be defined as a simple

average of the individual F-measures of the componentearisistfC;:

of 1
Fu(CiLr) € 57 > F(Ci, Lg). (4.5)

e

The measurd™(Lg), or the Fscore measure, Eq.(4.3), are appropriate clogteri
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effectiveness measures if it is desired that all elementsach individual clas<.
are grouped into a single cluster. However, if it is desedil elements belonging
to the same class to be grouped together in ‘high precisiosters, an appropriate
measure is the micro-average F-meaddrelz). One reason why the macro-average
F-measure is not appropriate is that if there are overlappinsters, it would double
count the overlapping items. Also, if an algorithm return&u@e number of high
precision, but small clusters;,(Lg) would be poor because it is limited by the small
recall value of each of the clusters. On the other hdfd(';, L) does not have this
problem. The maximum micro-average F-measure with redpexdtassL is:

(B2 + 1)r(Cy, Lg)

Flle) = max  Fu(Colr) = max Ny - 4O

Note that while it is obvious that pooling together clustsiyield a better recall
than selecting a single cluster, whether a better microaaeeE-measure (or alterna-
tively F-measure) can be obtained depends on the presenaeltigble high-precision
clusters. This is because the E-measure and F-measurasnapesites of both recall
and precision.

Before discussing how to define a new effectiveness meassed lian merged
clusters, we first review the algorithm for obtaining MK1, ialinis the E-measure of
the single ‘optimal cluster’. Such an algorithm (Algorith®) is shown in Fig.4.2.
Starting from the root, the algorithm steps through alltpty-levels, which are the
(dis)similarity levels at which a cluster splits into twailchen clusters. The E-measure

of every cluster in the hierarchy is computed, and the srsiallalue is returned as
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MK1.

Algorithm 0 (MK1)

1 Do hierarchical clustering aV documents

2 ¥ < E-measure of the single cluster consisting of all Meéocuments
3for each of thg N — 1) splitting-levels of the hierarchgto

4 Compute E-measuré;;, of each cluster

5 E < min(F, min; E;)

6 endfor

7TMK1l <+ F

Figure 4.2: Algorithm to calculate MK1

In analogy to MK1, we define a class of measure called CS, wiqcials to the
best micro-average E-measure that is attainable by a catnxinof clusters. For a
hierarchical system consisting of documents, it is expected that the total number
of possible combinations is of the order df and the question arises whether it is
possible to find the optimal combination by an efficient ailgpon with polynomial
time complexity. Otherwise, the practicality of such a mgads questionable. In
fact, in designing a new effectiveness measure, we imposguarement that the time-
complexity to compute the new measure should be compamblemputing MK1.

In Section 4.2, we will demonstrate that it is possible tcagbt linear time com-
plexity algorithm for CS if we restrict to seeking the optinca@mbination of disjoint
clusters. As for the general case where clusters are ngoirdjsat the moment we
are unable to provide a polynomial time algorithm to solwe dptimization problem.
Rather, we will present several greedy algorithms to yiekieges of the optimal

E-measure, as described in Section 4.3.
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4.2 Optimal combination of disjoint clusters — CS1

Instead of seeking the best out of all possible combinataindusters, we study a
sub-class of the problem that restricts the clusters to bpidt. In particular, we

consider the following scheme. First, we form disjoint ¢éus by cutting a hierarchical
structure at one of the splitting-levels (Fig.4.3). Out Bfpmssible subsets of these
disjoint clusters, we seek the one that yields the smalléstoraverage E-measure.
We then step through all the splitting-levels, and for eastell we find the cluster
combination that gives the smallest micro-average E-nmreadi¥e define a measure,
called CS1, to be the smallest value among these locally apameasures, stepping
through all levels of the hierarchy. The algorithm to obt&i§1 is summarized in

Fig.4.4 (Algorithm 1).

I—
W

S R

r

() (b)

Figure 4.3: lllustration of clusters used in (a) Algorithmatd (b) Algorithms 2A,
2B, 2C as applied to the same hierarchical system. Each lelafisa document, and
relevant documents are denoted by ‘r’.

Algorithm 1 (CS1) differs from Algorithm 0 (MK1) in two majorspects. First, in

Algorithm 1 (line 4) we discard all the ‘singleton’ clusterEhis is necessary because
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Algorithm 1 (CS1)

1 Do hierarchical clustering oV documents
2 E + E-measure of the single cluster consisting of all Méocuments
3for each of thg N — 1) splitting-levels of the hierarchgio

4 Discard all singleton clusters

5 E,, < smallest micro-average E-measure among all combinatibtiseae-
maining clusters

6 E < min(E, E,)

7 endfor

8 MKl «+ F

Figure 4.4: Algorithm to calculate CS1

otherwise the globally smallest value Bfwould be obtained by simply merging all
the singleton relevant documents. This would then give dingelst possible value of
r(Cy, Lr) (equalsRkr, the total number of relevant documents among &heocu-
ments) in the numerator of Eq.(4.4) and the smallest passibe of a merged cluster
containing R relevant documents\((C;) = Ry). Secondly at each level of the hi-
erarchy in Algorithm 1, we look for the optimal combinatiohatusters that gives the
smallest micro-average E-measure, instead of pickingnausingle cluste€’; that has
the smallest valud’; as in Algorithm 0. This step in Algorithm O has linear time-
complexity, so it is desirable that the corresponding step&lgorithm 1 also have
linear time-complexity. We will demonstrate in Section.4.Bow such an algorithm
that solves the optimization problem exactly can be found.4R3(a) shows an ex-
ample of a hierarchical system of clusters that illustrétigmrithm 1. In this figure,
cutting the hierarchical tree at levélyields the disjoint cluster€’;, C; andCs, as

well as a singletory. The singletonS is discarded, and line 5 of the algorithm seeks
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among the combinations @f,, C; andC5 the one that has the smallest micro-average
E-measure.

In Algorithm 1, by seeking the smallest micro-average E-sneaamong all com-
binations of the clusters and stepping through the hieyanele necessarily include
among the candidates the single ‘optimal cluster’ of MK1e Bimly exception is when
MK1 corresponds to the E-measure of a singleton relevasteduwhich is a candidate

being excluded by step 4 of Algorithm 1. Hence we can makedhewing remark:

Remark 1. The value of CS1 is always smaller than or equal to MK1,

except when MK1 is attained by selecting a singleton relegtuster.

4.2.1 Reformulation of the optimization problem

A crucial step in computing CS1 according to Algorithm 1 is firgdthe combination
of clusters that yields the smallest value of the micro-agerE-measure. This problem
may be solved by a reformulation to a well-known optimizatjgroblem, as shown
below.

Writing £ = 1 — F, we may restate our problem as the following. Given a set of

clusters{Cy, (s, ..., C,} , we seek a subset of these clusters

c;=Jc; with C U, U = {1,2,...,m} (4.7)

icJ

that maximizes the objective function

. (1 + ﬁQ)TJ
~ B2card(R) + Ny

(4.8)
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wherer; = card(U;e s R;) andN; = card(U;e ;C;).

We first make the following observation regarding the optiszdution:

Observation 1. The set/ which maximizes the objective functian nec-
essarily does not include any clust€y which contains only irrelevant

document.

This observation may be proved by contradiction. SupposelinsterC; is the
optimal solution and that it has a component clustethat contains only irrelevant
documents. Then, by dropping the clustérfrom C;, there would be no decrease in
r 7, While N; is reduced in Eq.(4.8), leading to an increasé’irHence, the optimiza-
tion problem may be simplified by discarding all clusters ebhdo not contain any
relevant documents. Without loss of generality, we reléiteremaining clusters such
thatU = {1,2,...,m} is the set of indices of clusters containing at least oneagle
document. Note that: in the relabeled set is different from the original valueafree
clusters have been discarded. Then, the number of relevanintents in cluste;

must be greater than zero:

r; >0 forall: e U.

Up to now, the statement of the optimization problem giveovalis quite general and
does not say whether the clusters contain any common elem@mtthe other hand,
our current problem stated by Line 6 in Algorithm 1 is a specése whereby all the
clusters{C;} are disjoint. This property arises because all the cluster®btained by
cutting the hierarchical tree at a certain similarity levél this case for the merged
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clusterC;, we haver; = ., r;andN; = Y., N;, whereN; is the total number of
documents in each of the component clusterintroducing the variable&z; }, where

1 <i <m, given by
1 ifieJ
T; = (4.9)
0 ifi¢J

the objective function, Eq.(4.8), can be rewritten as

(14 6%) 200 ras

- B2card(R) + > " Niw; (4.10)

The original optimization can therefore be reformulatethagimizing ' in Eq.(4.10),
for z; € {0, 1}, which is precisely a unconstrained 0-1 linear hyperbaidi@actional)
programming problem (Hammer and Rudeanu [24], Nagih an@&ld66], Robillard
[64], Hansen et al. [25]). While the general 0-1 linear hypédyprogramming prob-
lem with arbitrary coefficients is NP-hard (Hansen et al.]]2® the instances where
the denominator is always positive, exact algorithms haenlproposed by various
authors. In particular, quadratic time algorithms weresgiby Hammer and Rudeanu
[24] and Robillard [64], while Hansen et al. [25] and Nagih dpldteau [56] pro-
vided linear time algorithms. For our present case, all tredfcients in Eq.(4.10) are

positive definite, hence the optimization can be solvedtixaclinear time.

4.2.2 Experiments on CS1

We have performed experiments to compare the CS1 and MK1 mesadn our ex-

periments, clustering is performed using the hierarclotigdtering routines provided
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by the open source C Clustering Library of de Hoon et al. [17¢ fikst describe the

experimental environment before presenting the resuligiail.

Experimental environment

Our new evaluation measure CS1, just like the traditional Mé&dn be applied both
to the clustering of an entire document collection and taypspecific clustering. In

this thesis, we compare CS1 with MK1 with extensive experisienquery-specific

clustering on the TREC-2, -6 and -7 ad hoc test collections. i@ason why we have
chosen to use query-specific clustering is computationsd tonsideration. This is a
concern because of the large size of the test collectionddTal). Another reason is
that there are applications of query-specific clusteringctvinvolve locating relevant

documents in multiple clusters (e.g. lwayama [33], LeuSki], and CS1 would be an
appropriate evaluation measure.

Each of the TREC collections comes with 50 topics for whiclkvahce judgment
is available. Table 1.1 shows some statistics for thesedddins. We have chosen the
three collections because of their different characiesstFirst, the title queries for
both TREC-6 and TREC-7 generally consist of three query termeveerf which are
typical in real-life web-search requests. It is useful talgtboth TREC-6 and TREC-7
because TREC-6 contains many longer documents. On the otirHREC-2 is quite
different from the others in that it contains some title geemwith more query terms,
and there are on average many more relevant documents pgrigtiee collection.

In query-specific clustering, we first perform an initialrretal for each title query

with our search engine. We then apply single-linkage, ceteginkage and group
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average clustering algorithms to the top-100 and top-1@d@eved documents for
each query. Based on the cluster hierarchies thus obtairgechmpute both MK1 and
CS1 according to the algorithms (Algorithm 0 and Algorithnd&scribed above.

As mentioned in the previous section, the linear time atgoriof Hansen et al.
[25] is applicable to the optimization problem in computi@§1. However, for ease of
implementation, we have used the algorithm of Robillard j84jur study. As shown
below, this later algorithm also provides an interpretatid the component clusters
that constitute the optimal combination which yields theaBest E-measure. Suppose
the clusters are labeled such thatthé&actionsr; /V; are ordered in an non-decreasing

order:

1 1 T'm
]l < — 4.11
Ny = Ny — - N, ( )

Let k& be an integerif1,2,...,m} such that

Z;n—k Tj T
— — foralli > k 4.12
Brcard(R) + > 7 N; < N; t= (4.12)
and
o ‘
2k T i forall i < k. (4.13)

> L
Brcard(R) + 3 7 Nj — N;

Robillard’s optimal solutionz* € {0, 1}™ is given by:

1 ifj>k
o= (4.14)

0 ifj<k
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and the maximal value is

. (1+5%) Z;n:k Tj

= Peard(R) + >, N, (4.15)

The fractionr; /N; is actually the precision of the clustéf. Therefore, Robillard’s
algorithm means that the component clusters in the conbmdtat gives the least E-
measure are those that have the highest precision, witd.Eg)(and (4.13) providing
the ‘stopping criterion’. The fraction that appears on thi-hand side of Eq.(4.12)
and (4.13) is actuallyl + 3%)~! times the F-measure of the merged cluster composed
of {Ck, Cyy1,...,Cy}. To arrive at the optimal solution, one successively pities t
highest precision clusters in a ranked list urtil+ 3%)~! times the cumulative F-
measure of the merged pool is larger than the precision afi¢lxeremaining cluster.
Hansen et al. [25] made a similar observation in their worka alifferent optimization
problem, and they called it a ‘precision-driving optimglitin our case, the ‘precision-
driven’ solution is somewhat surprising in that it appliesatl values of the parameter
B, which specifies the relative importance of precision ardlte The effect of3 only
enters through the stopping criterion Eq.(4.12) and (4.13)

Obviously to calculate MK1 and CS1 as described above, itéessary to know
whether each document in a cluster is relevant or not. THdgnmation is provided
by TREC's relevance judgments. However, due to the large dizkeoTREC col-
lections (Table 1.1), it is infeasible to assess the relevaf every document in the
corpus. Rather, a method of pooling is used to select docufientelevance judg-

ment (Moorhees [87], Soboroff [75]. The top-ranked docutseri each TREC par-
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ticipant, up to a specific ‘pool depth’ (generally set at 1869 picked and merged to
form a set of documents that are judged. Consequently it isayfhat some of the
documents returned by any retrieval system are not judgée. géneral practice in
TREC evaluations is that any document that is not judged isnasd to be irrelevant
(Voorhees [87]). This assumption has been under scrutingiiious studies (Keenan
et al. [40], Zobel [96]). The work of Keenan et al. [96] indied that the pool depth
(100 documents) used in TREC adequately identifies the mi@l@cuments in the
entire collection, at least in the gigabyte regime. Zob#é] ®ncluded that the results
of TREC retrieval experiments were reliable. In the différseatting of NTCIR, an
evaluation workshop of Japanese text retrieval similarR&T, Kuriyama et al. [45]
also investigated the method of pooling. They verified theatizeness of pooling in
finding relevant documents and also confirmed the relighilitevaluations using the
test collection based on pooling. In our experiments, weetego adopted the as-
sumption that all non-judged documents are irrelevant. &l@w in order to confirm
that the assumption does not have a significant impact onxparienents which use
the TREC-2, -6 and -7 collections, we have performed someiadditexperiments
in which we discard any retrieved documents that do not heleyance judgment in-
formation. The results using the filtered document setsyasrsarized in Table 4.2,
demonstrate that the assumption does not affect the guaitaonclusions in our cur-
rent work. Hence this gives us confidence in the calculatioosir experiments using

the concerned assumption.
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Results for5 = 1.0

The results for our experiments, for the cas@ et 1.0, are summarized in Table 4.1.
In the table, the values of MK1 and CS1 are averages over 5@eguer each of the
TREC collections. In the third column of the data in Table #v&,have also included
a third quantity, called CS1s. This is the value of CS1 that welevbave obtained if
‘singleton’ clusters were not discarded (line 4 in Algoniti). As mentioned before,
this value corresponds to a merged cluster containing @ltelevant documents alone
and no irrelevant documents. Without line 4 in Algorithm b, matter what cluster-
ing algorithm is used, the ideal cluster would be achievegibking all the relevant
singleton documents at the leaf-nodes level in the algoritAs this is obviously an
over-optimistic scenario, CS1s would not serve as a meaunliegaluation measure,
and it is included here only to indicate the lower bound for CS1

The fourth data column in Table 4.1 is the difference betvihemeasureg\=MK1-
CS1. We findA to be positive for all of the TREC collections used, and forchlls-
tering algorithms, i.e. the average CS1 is always smaller tihe corresponding MK1
numerically. To test for the statistical significance of thiggerence between MK1 and
CS1, we performed the Wilcoxon matched-pairs signed-raesis tThep-values as
presented on the last column of Table 4.1 indicate that tisestistical significance
at the 99.9% level for almost all cases. In fact, we find thaefeery individual query,
CS1is generally equal to or smaller than MK1. This can betifusd by plotting the
scatter diagram of CS1 against MK1 for every query. Figurééd.to (c) show the

scatter diagrams for the top-1000 retrieved documents ofO-REIsing three cluster-
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ing algorithms. Each point in the figures corresponds to dividual query. As the
points generally lie below the 45 degree line, the smalléwevaf CS1 is confirmed.

The plots for the other collections all show this behaviour.

Table 4.1: Evaluation measures for= 1.0, averaged over 50 queries for each collec-
tion.

MK1 CS1 CSls A=MKI1-CS1 A/MK1 MK1-CS1

(%) p-value
Trec-2, B=1.0
Single linkage ~ 0.753 0.749 0.674 0.004 0.6% 0.0007
top-100  Group average  0.751 0.730 0.674 0.021 2.1% <0.0001

Complete linkage 0.754 0.720 0.674 0.034 4.6% <0.0001

Single linkage ~ 0.720 0.623 0.274 0.097 134%  <0.0001
top-1000  Group average  0.677 0.520 0.274 0.157 232%  <0.0001
Complete linkage  0.707 0.484 0.274 0.223 31.5%  <0.0001

Trec-6, B=1.0
Single linkage  0.655 0.634 0474 0.021 3.2% 0.0001
top-100  Group average  (0.648 0.599 0.474 0.049 7.6% <0.0001

Complete linkage  (0.652 0.586 0.474 0.066 10.1%  <0.0001

Single linkage  0.659 0.578 0.238 0.081 12.3% <0.0001
top-1000  Group average  (0.597 0.468 0.238 0.129 21.7%  <0.0001
Complete linkage 0.611 0.436 (0.238 0.175 28.6%  <0.0001

Trec-7, £=1.0
Single linkage  0.711 0.693 0.556 0.018 2.5% 0.0015
top-100  Group average  0.707 0.652 0.556 0.055 7.8% <0.0001

Complete linkage 0.719 0.638 0.556 0.081 11.2%  <0.0001

Single linkage ~ 0.728 0.609 0.272 0.119 16.3%  <0.0001
top-1000  Group average  0.697 0.504 0.272 0.193 2171%  <0.0001
Complete linkage 0.714 0.473 0.272 0.241 33.8%  <0.0001
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(a) Single linkage (b) Group average (c) Complete linkage
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Figure 4.5: Plots of CS1 vs. MK1 for top 1000 retrieved docutséor the queries of
TREC-7, withg = 1.0.

Results for filtered sets of retrieved documents that have tevance judgment in-

formation

As mentioned in the Experimental environment section, @nubset of documents
in each TREC test collection are judged for relevance, anaddnemon assumption
is that all non-judged documents are irrelevant. In thigsiseave investigate the im-
pact of this assumption and present some additional expatsnn which we discard
all retrieved documents that do not have relevance judgmérmation. The data as
summarized in Table 4.2 shows that for the worst case (TREGpE1000 retrieved

documents), on average only about 329 documents amondtieved sets are judged
for each query. However, comparing our previous resultsaiold 4.1 and the results
in Table 4.2, we find that the assumption in concern does na hasignificant im-

pact. From Table 4.2, after filtering the documents that atgudged, both MK1 and

CS1 are found to be improved. This is expected because aleteeant documents
are retained in the filtering, while a lot of irrelevant ‘neislocuments are removed.

However, while the numerical difference between CS1 and MiKTable 4.2 is re-
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duced compared with Table 4.1, we still observe the averadet@€Be always smaller
than MK1. The percentage differendgMK1 is in the range of 0.5% to 10.2% for the
top-100 retrieved set, and 7.8% to 31.3% for the top-10Q@exetd set. Furthermore,
we have confirmed the statistical significance in all casethbyWilcoxon test. At
B =1, group average clustering still gave the best MK1, while plate linkage gave
the best CS1, the same as the findings in the Results for1.0 section. In the rest
of this section, our experiments are performed withoutrfiigg away the non-judged

documents.

Table 4.2: Averaged evaluation measures/fdor 1.0. Retrieved documents that do
not have relevance judgment information are discarded.

Number of
documents after MK1 CS1 A=MK1-CS1 AMKI MK1-CS1
: (%) p-value
filtering
Trec-2, £=1.0
Single linkage 0.744 0.741 0.003 0.5% 0.0005
top-100  Group average 79.8 0.743 0.727 0.016 2.2% <0.0001
Complete linkage 0.744 0.717 0.028 3. 7% <0.0001
Single linkage 0.593 0.547 0.046 7.8% <0.0001
top-1000 ~ Group average 396.3 0.573 0473 0.100 175%  <0.0001
Complete linkage 0.583 0.445 0.138 23.7% <0.0001
Trec-6, £=1.0
Single linkage 0.649 0.631 0.019 2.9% 0.0002
top-100  Group average 779 0.644 0.596 0.047 7.4% <0.0001
Complete linkage 0.645 0.583 0.062 9.6% <0.0001
Single linkage 0.594 0.535 0.058 9.83% <0.0001
top-1000  Group average 329.4 0.547 0.447 0.100 18.4% <0.0001
Complete linkage 0.568 0.422 0.145 25.6% <0.0001
Trec-7, £=1.0
Single linkage 0.708 0.691 0.017 2.4% 0.0022
top-100  Group average 91.2 0.704 0.650 0.054 7.7% <0.0001
Complete linkage 0.709 0.637 0.072 10.2% <0.0001
Single linkage 0.677 0.591 0.086 12.7% <0.0001
top-1000  Group average 430.6 0.656  0.43% 0.168 256%  <0.0001
Complete linkage 0.673 0.462 0.211 31.3% <0.0001
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Results for5 = 0.5 and 2.0

In addition to computing the cluster effectiveness meadlikd with 5 = 1.0, it is
common in the literature [35] to use the valués= 0.5 and 2.0, which represent
precision-oriented and recall-oriented retrieval, respely. We have also studied
these regimes, and the experimental results are preseniable 4.3. Fors = 0.5
and 2.0, we again confirm that the values of CS1 are catedgrgalaller than the
corresponding MK1 values. For clarity, in Fig.4.6 we havetigld the MK1 and CS1

values against for the top-1000 retrieved documents for TREC-7.

Table 4.3: Evaluation measures for different valueg,cdveraged over 50 queries.

Trec-2
p=0.5 B=1.0 £=2.0
MK1 CS1 A/MK1 MK1 CS1 AMK1 MK1 CS1 A/MK1
Single 0.677 0.645 4.7% 0.753 0.749 0.6% 0.782 0.782 0.1%
top-100 Group av. 0.662 0.609 7.9% 0.751 0.730 2.7% 0.782 0.776 0.8%
Complete  0.668 0.593 11.3% 0.754 0.720 4.6% 0.783 0.771 1.6%
Single 0.696 0.520 25.2% 0.720 0.623 13.4% 0.653 0.610 6.4%
top-1000 Group av.  0.613 0.432 29.5% 0.677 0.520 232% 0.635 0.516 18.8%
Complete  0.654 0.405 38.1% 0.707 0.484 31.5% 0.650 0.475 26.9%
Trec-6
B=0.5 B=1.0 B=20
MK1 CS1 AIMK 1 MK1 CS1 AMK1 MK1 CS1 AMK1
Single 0.571 0.550 3.8% 0.655 0.634 3.2% 0.668 0.650 2.6%
top-100 Group av.  0.549 0.506 7.9% 0.648 0.599 7.6% 0.667 0.622 6.7%

Complete  0.554 0.490 11.5% 0.652 0.586 10.1% 0.672 0.614 8.6%

Single  0.568 0471 17.1% 0.659 0.578 12.3% 0.654 0.600 8.3%
1op-1000 Group av.  0.505 0.383 24.2% 0.597 0.468 21.7% 0.612 0.461 24.6%
Complete 0496 0.360 21.3% 0.611 0.436 28.6% 0.620 0423 31.8%

Trec-7
£=0.5 £=1.0 £=2.0
MK1 CS1 A/MK1 MK1 CSl1 AMK1 MK1 CS1 AIMK1
Single 0.647 0.609 6.0% 0.711 0.693 2.5% 0.709 0.702 1.0%
top-100 Group av.  0.630 0.561 10.9% 0.707 0.652 7.8% 0.709 0.632 3.9%

Complete  0.639 0539 15.7% 0.719 0.638 11.2% 0713 0.669 6.1%

Single 0639 0482 24.5% 0.728 0.609 16.3% 0.705 0.625 11.4%
top-1000 Group av.  0.582 0.406 30.2% 0.697 0.504 27.7% 0.679 0.509 25.0%
Complete  0.612 0.382 37.6% 0.714 0.473 33.8% 0.698 0467 33.1%
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(a) Single linkage (b) Group average (c) Complete linkage
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Figure 4.6: Plots of the average values of CS1 and MKa,¥er the top 1000 retrieved
documents for the queries of TREC-7, corresponding to thrpestyf hierarchical
clustering algorithms as indicated

Some statistics of the optimal combinations of clusters

The important implication of smaller values of CS1 compareth WK1 is that a
retrieval strategy that combines multiple clusters hasespatential of out-performing
a strategy that returns a single cluster. Of course, thedliffi is how to identify the
appropriate clusters to combine. Therefore we furtheryaealhe characteristics of
the optimal solutions which might help in this respect. S@ax&mples of the statistics

of the optimal solutions are shown in Table 4.4.

Table 4.4: Statistics of the optimal clusters for TREC-7.

Trec-7,3=1
MK1 CS1
number of docs number of . number of Number Of
. . . number of docs in . subclusters in
in optimal relevant docs in . . relevant docs in .
. . . optimal solution . . the optimal
solution optimal solution optimal solution .
solution
Single linkage 54.9 22.3 53.0 21.5 1.9
top-100  Group average 544 22,6 39.5 2.3 4.6
Complete linkage 54.4 21.8 34.4 22.5 7.1
Single linkage 181.7 32.9 50.2 28.6 7.8
top-1000  Group average 79.2 254 64.6 40.1 12.8
Complete linkage 120.2 30.3 67.2 433 18.4

Note: All values are averaged over 50 queries. Here, CS1 cpords to the optimal
combination of clusters obtained by cutting a hierarchicak at a single similarity
level.
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The data in the table shows that for clustering of the top-d6€uments, MK1
and CS1 correspond to roughly the same number of relevantraas, but the total
number of documents in the CS1 optimal solution is generatigler. This means
there are fewer irrelevant documents in the CS1 solutiors, ¢giwing a higher precision
value. Since recall is roughly the same, a higher precigads to a higher F-measure
for the combination of clusters. For clustering of the t@)®Q documents, the optimal
solution for CS1 generally contains much fewer documents tha MK1 solution.
With both complete linkage and group average clustering,G81 optimal solution
returns a lot more relevant documents than the single cloftK1. The last column
in Table 4.4 shows the average number of clusters being cadlbd yield the optimal
solution for CS1. For complete linkage clustering of 1000uwoents, the optimal
solution is made up of about 18 clusters on average. It appbat on average each
of these clusters consist of 3 to 4 documents only, indigativat the method picks
up small clusters where relevant documents are concedtrate excludes irrelevant

documents as much as possible.

4.3 Optimal combination of overlapping clusters — CS2

As discussed in Section 4.2, our proposed new clusterirgtfeness measure, CS1,
corresponds to an optimal combination of clusters that esjeidt. For completeness,
we will consider the case where some clusters have commaoreats. This will show
how our cluster evaluation approach can be applied to marergeproblems and clus-

tering algorithms. The corresponding clustering effestess measure, applicable for
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general overlapping clusters, will be called CS2. Examplesre overlapping clus-
ters occur include Suffix Tree Clustering (Zamir and Etzi@]) and fuzzy c-Means
clustering (e.g. Kummamuru et al. [44]). With hierarchiclistering, members of the
family of bottom level clusters may also overlap in a nesteshion (EI-Hamdouchi
and Willett [20]).

In order to demonstrate our approach for overlapping dsstee will study the
problem of the optimal combination of the bottom level chustof a hierarchical sys-
tem as an example (e.g. Fig.4.3(b)). Based on Observatioatddsin Section 4.2,
we can discard any bottom level clusters that do not contayrr@levant documents.
Suppose there are bottom level clusters that remain. Our optimization prable to
find the subset of these clusters that yield the maximum micro-average F-measure,

Eq.(4.8). This maximal value is the value of the CS2 measure.

Algorithms

In general for overlapping clusters, we can re-formulagedftimization in a similar
manner as for the disjoint case. The difference is that farlapping clusters, we
cannot writer; and N; in Eq.(4.8) as simple sums ef and /V; over all the component
clustersC; in the merged clusters. As before, we introduce the varsashéch indicate
the presence or absence of clustérin the merged clustef’;, Eq.(4.9). However,
instead of being a fraction of linear functions as in Eq.4tBe objective function
F in the present case is a non-linear function(in}. In the most general case, the
exact form of " will involve an exponential number of coefficients that Spethe

number of documents in all the possible intersections ofclbsters. Specifically,
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these coefficients include:

r; = card(R;) =number of relevant documents in clustér
rij = card(R; N R;)
= number of common relevant documents in clustgrandC;
rije = card(R; N R; N Ry)

= number of common relevant documents in clustgrsC; andCj,

r2.m = card(RiNRyN...NRy) (4.16)

and similarly

N; = card(C;) =number of relevant documents in clustér
Nij = card(C;NC5)

= number of common relevant documents in clustgrandC;

N12...m = CCLT’d(Cl N Cg N...N Cm> (417)

Before we discuss the algorithms for solving the optimizagiwoblem, we first
note a similarity between this problem and the Red-Blue Set Q®BSC) problem
introduced by Carr et al. [7], which is itself a natural gefieedion of the well-known
set cover problem. In RBSC, there are finite sets of ‘red’ elemBntblue’ elements
B, and a familyS which is a subset of the superset, i.8.C 2“8, The problem
is to find a subfamily which covers all blue elements, but Wwhiovers a minimum
possible number of red elements. For our case, intuitivedydptimal solution that
maximizes the objective functiof, Eq.(4.8), would contain as many relevant doc-

uments as possible and as few irrelevant documents as |[gos$ie similarity with
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RBSC is realized by replacing our relevant and irrelevant dwnts by ‘blue’ and
‘red’ elements respectively. However, our problem diffesmsnm RBSC in the follow-
ing. First, RBSC requires complete cover of the blue elemeateant documents),
but our optimization problem does not impose the requirgrcecompletely cover all
the relevant documents. Second, the objective functionRB&SC seeks to minimize
is the number of red elements (irrelevant documents) in dverc However, in our
case the objective function has the more complex fractifurad of Eq.(4.8).

In each of Eq.(4.16) and (4.17), there are of the orde?"dfoefficients, where
m is the total number of clusters. Note that in the special chs®mpletely disjoint
clusters, the only non-zero coefficients ayend V;, and the optimization reduces to
a 0-1 linear fractional programming problem as discusse$iiction 4.2.1. However
in the most general case, because of the exponential nurhbeeficients, we cannot
find a polynomial time algorithm. Instead, we take the stati@pproach to estimate
the optimal solution by greedy algorithms.

Generally, a greedy algorithm is an iterative process irctvievery iteration takes
the step that maximizes some given heuristics. There aeyaeshoices of greedy
algorithms that are apparent for our problem:

Algorithm 2A. First, because of the similarity of our problem with the sater,
our first algorithm adopts an approach commonly used in ttee f@oblem. Specifi-
cally, at each iteration we select the clusigrthat has the largest ‘cost effectiveness’.
In our case, the cost effectiveness-igV., wherer, is the number of relevant docu-
ments in the clustef’;, that are not yet in the pool, and, is the total number of new

documents that would be added to the pool by merging with
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Algorithm 2B. We follow the ‘precision-driven optimality’ approach o&ldlisjoint
cluster problem. At each iteration, the cluster that haddtgest precision /Ny, is
selected. It should be noted that if all clusters are disjdigorithms 2A and 2B are
actually equivalent.

Algorithm 2C. Lastly, we consider the natural ‘true greedy’ algorithm. estch
iteration, we select from the set of remaining clusters the that gives the largest
value of the objective functioA’ on merging withC', the current pool.

The reason why we have described several greedy algorighiatiat the moment,
we are unable to obtain a performance guarantee for any iof éimel so we do not have
the theoretical knowledge of which one will give the besineate to the true optimal
solution. Therefore, we will compare by experiments themalk estimates obtained
by each of them. One might have thought the ‘true greedy’rdtya (2C) would
be the best, but our results presented in the next sectiordfthat in some cases it
actually gives the worst estimate. This shows that for oabjem, experiments to try
out several algorithms are needed to find a good estimate afttimal solution.

The three algorithms 2A, 2B and 2C, which estimate the maximuaono-average
F-measure attainable by combination of a subset diottom level clusters, are sum-
marized in Fig.4.7. It should be noted that these algoritdmsot step through the
hierarchical levels as in Algorithm 1 (line 3) because wesaeking the optimal com-
binations of the bottom level clusters. In Fig.4.7, the dottlevel clusters have in-
dicesl,...,m. As an illustration, in Fig.4(b) the bottom level clusters &abeled by

By, Bs, ..., Bg. In this example B3 is nested withinB,, and Bs is nested withinSs.
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Algorithm 2A (Heuristics: Largest ‘cost effectiveness’)

1C+—o,J«{1,2,,...m},F«+0

2do

3 findk € J that maximizesgss, where
Ar. = card((CUCy) N R) — card(C' N R) and
AN, = card(C U Cy) — card(C N R)

4 C+—CUC,, J+J—{k}

(1+ p*)card(C N R)
5 F + max (R B2card(R) + card(c))
6 while J £ &

TE+—1-F

Algorithm 2B (Heuristics: Largest precision)

1C+o,J«{1,2,,...m},F«+0

2do
3 k < argmaxr—k
keJ k
4 C+—CUC,, J+J—{k}
(1+ B*)card(C N R)
F F
> max ( " B2eard(R) + card(C)
6 while J # ©
TE+1-F

Algorithm 2C (‘True greedy’)

10+ 0,0« {1,2,,...m},F +0
2do
3 findk € J that maximizesﬁ#cc, where

card(CUCy)NR

F pu
“ " B2card(R) + card(C U Cy)
4 C+—CUC,, J<+J—A{k}

(L+ f*)card(C N R)
5 Fem“<ﬂwmmm+wmwo
6 while J # ©

TE+1-F

Figure 4.7: Greedy approximation algorithms to estimatinugd effectiveness mea-
sure for overlapping clusters
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4.3.1 Experiments — overlapping clusters

We have applied each of the greedy algorithms (2A, 2B and 2€3timate the smallest
E-measure obtainable by combining bottom level clusterghi®top-100 and top-1000
retrieved documents of TREC-2, -6 and -7 title queries. Theliesnof bottom level
clusters are specified by the hierarchical systems studitatiexperiments of Section
4.2.2.

We have performed our experiments for= 1.0, which means equal importance
of recall and precision. The results are summarized in Téllewhere we have also

included the MK1 and CS1 measures (taken from Table 4.1) asaretes.

Table 4.5: Estimates of optimal combination of bottom leslelsters, using several
greedy algorithms (Algorithms 2A, 2B and 2C), averaged oter queries of each
TREC collection

MK1 csi Algorithm 2A Algorithm 2B Algorithm 2C CS1-2A
(Maximize An,/AN,) ~(Maximize n,/N;)  (True greedy) ~ p-value
Trec-2, B=1.0
Single linkage ~ 0.753 0.749 0.739 0.742 0.751 0.0002
top-100  Group average 0.751 0.730 0.706 0.715 0.743 < 0.0001
Complete linkage  0.754 0.720 0.701 0.708 0.708 <0.0001
Single linkage ~ 0.720 0.623 0.524 0.542 0.643 <0.0001
top-1000  Group average 0.677 0.520 0.418 0.446 0.590 < 0.0001
Complete linkage  0.707 0.484 0.408 0431 0.429 <0.0001
Trec-6, B=1.0
Single linkage ~ 0.655 0.634 0.615 0.621 0.636 <0.0001
top-100  Group average  0.648 0.599 0.562 0.575 0.601 < 0.0001
Complete linkage  0.652 0.586 0.553 0.562 0.560 <0.0001
Single linkage ~ 0.659 0.578 0.506 0.519 0.567 <0.0001
top-1000  Group average  0.597 0.468 0.388 0415 0.466 < 0.0001
Complete linkage  0.611 0.436 0.377 0.396 0.392 < 0.0001
Trec-7, B=1.0
Single linkage ~ 0.711 0.693 0.673 0.677 0.694 <0.0001
top-100  Group average  0.707 0.652 0.621 0.631 0.686 < 0.0001
Complete linkage  0.719 0.638 0.612 0.621 0.617 <0.0001
Single linkage ~ 0.728 0.609 0.523 0.538 0.612 <0.0001
top-1000  Group average 0.697 0.504 0.417 0.441 0.548 < 0.0001
Complete linkage  0.714 0473 0407 0431 0.420 <0.0001

Comparing the experimental optimal estimates obtained gpthms 2A,2B and
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2C, itis found that for all TREC collections and for all clustgy methods, Algorithm
2A, which selects clusters based on ‘cost effectivenessaeh iteration, always pro-
duces the smallest estimate of the E-measure for the optiamabination of bottom
level clusters. This can be seen by the average values sholable 4.5. Furthermore,
we have carried out the Wilcoxon matched-pairs signedsaegt and confirmed the
statistical significance of this finding, with p-values gextly far below 0.0001. On
the other hand, for both single linkage and group averageeing, the data shows
a somewhat surprising result that the ‘true greedy’ alpari{2C) actually gives the
largest, hence worst, estimate. Only for complete linkagstering does the ‘true
greedy’ algorithm give comparable estimates as the ‘pi@tidriven’ algorithm (2B).
An explanation for the poor performance of the ‘true greemgorithm is that at the
early iterations, it tends to select the larger low-prexisclusters containing more
relevant documents and hence a larger recall. Such clusteysvell yield a larger
F-measure than some of the other high-precision but smadkeals containing only
two or three documents. In this way, the algorithm locks miarglevant documents
in the pool, preventing a low eventual E-measure. Howevigothms 2A and 2B
favour the tight high-precision clusters at each iteratibms keeping the irrelevant
documents out of the pool.

We emphasize that it is only for our present optimizatiorbpem that we observe
the best greedy algorithm to be the one based on selectirggtiecost effectiveness’
cluster at each iteration. In particular, our problem iseci example of overlapping
clusters where the bottom level clusters overlap in a ndatkdon. Since other greedy

algorithms may prevail for other families of overlappingsters, we have to perform
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experiments to obtain the estimates for all the algorithiresu$sed here. Furthermore,
itis interesting to study how far our best estimate is fromttine optimal value. Future
research could include seeking a bound of the estimatebdalgorithms, to indicate
how far the estimates are from the true optimal value. Anocdicon may be to seek
the true optimal solution by enumeration and compare withgoeedy estimates. Of
course, the number of combinations of clusters is expoalerstd this could only be
attempted for queries that do not have too many, say withior20, relevant docu-
ments.

From Table 4.5, it is observed that our estimates of the bese&sure obtainable
by combining bottom level clusters as obtained by Algori®¥nare generally smaller
than CS1. We have also confirmed the statistical significahttésodifference, as in-
dicated by the Wilcoxop-values given on the last column of Table 4.5. The reason for
the better results of Algorithm 2A may be understood by raigrto the example of
Fig.4.3. Algorithm 2A allows combination of clusters capending to different simi-
larity levels. In Fig.4.3(b), the optimal combination i®afly B; and B,, which cover
all the relevant documents in the system, without includinyg irrelevant documents.
In comparison, Algorithm 1 may either select in Fig.4.3(a) which yields a smaller

recall, or the combined’; andC, which yields a smaller precision.
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4.4 The MMF Problem and Optimality of GAA for Nested

Clusters

In this section, we discuss in greater detail the the opttion problem defined by

Eq.(4.6), which we will call the Maximum Micro-average F-aseire (MMF) problem.

4.4.1 MMF problem and related work

It is clear that for a finite family of clusters§, a maximal value;(Lg) must exist,
corresponding to the maximum value BfC;, Lr) among all possible subsets of
S. However, it is possible for more than one subsebdb yield the same maximal

valueF;(Lg). In this case, we impose an additional condition:

Largest Recall Condition. If more than one subset ¢ yield the
same maximal valué’; (L), the global optimal solutiod: of the MMF
problem is defined to be the one that contains the largest auoiltlass

Ly elementsr (G, Lg) , i.e. the one that has the largest recall.

As mentioned in Section 2.4.4, valuesfarger than 1 in the E-measure Eq.(2.14)
correspond to a recall-oriented regime. Bor» oo in EQ.(4.6),F}; ~ max; 7(Cy, Lr)/Nr,
which means that the objective function is dominated byltethe optimal valuer’;
will then be attained by a subset that covers all the clas®lements in the collec-

tion, so thatr(C;), L reaches the largest possible valiig. Therefore wherp is
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sufficiently large, Eq.(4.6) becomes

) - (8% +1)Ng
Fi(Lg) = max BN7+ N(Cy) (4.18)

whereC'; is constrained to cover all the clabg elements in the collection. This is the
'precision at fixed recall of 1’ problem considered by Gao &ster [21]. SinceVy is

a constant, the maximization, Eq.(4.18) is equivalent toimizing N (C';). Our MMF
problem is then reduced to finding the subfandily that covers all; elements in the
collection but includes the minimum possible number of elata belonging to other
classes. This is a multiple-class generalization of the Bled-Set Cover (RBSC)
problem introduced by Carr et al. [7] who considered binaagsl('Red’/’'Blue’) ele-
ments. RBSC is in turn an extension of the classical set cowdigm.

In Section 4.3, we described several greedy algorithmsdeighe estimates to the
MMF problem, Eq.(4.6). Our experiments for various hiehacal clustering methods
showed that Algorithm 2A, which is based on a ‘cost-effemtiess’ heuristics, yields
numerically better estimates than the other greedy alguost Hierarchical clustering
algorithms generate clusters that overlap only by nestng. (Fig.4.3). This means
any pair of the clusters may either be disjoint, or in casg thiersect, one of them is
a proper subset of the other. In this section, we study fuittiee MMF optimization
problem for the sub-class of clustering algorithms whichegate clusters that overlap
only by nesting. First, we make a slight modification to Aligfam 2A by including
explicitly a stopping criterion in the iterative proceshielmodified algorithm (GAA)

is shown in Fig.4.8. We make the important claim that for ®tsthat overlap only
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by nesting, GAA yields the true global optimal value. We wilbvide a mathematical
proof of this claim. Our result has practical significancedaese hierarchical clustering
is commonly used [35],[11],[88],[81]. In fact, our resulsa applies to a family of
disjoint clusters, as these may be regarded as a speciafcaserlap only by nesting’
whereby none of the clusters actually intersect. This méamnsesults are applicable
to partitional clustering algorithms, e.g. K-means, ad.wel

For a given family of clusters = {C4,Cs, ..., C,}, we seek an optimal subset of
S that yield the maximal micro-average F-measure, Eq.4.€hdrest of this section,
we will drop the factor 3% + 1) in the numerator of the objective function which does
not affect the maximization. For further simplification diet notation, we will also
hide the label_, with the understanding that the derivations presentealhbean be
applied to each individual class labg). Accordingly, we denote the constant factor
32Ny in the denominator by a constaAt Hence, our problem becomes seeking the
following maximal value:

r(Cy) " (Uies Gi)

Fr= — = . 4.19
K JE{?S}?,M A+ N(Cy) Jg{r?,g.}in} A+ N (UieJ OZ) ( )

In Line 5 of GAA (Fig.4.8), the valué\ 5 (C;) is equal to the number afewclass
Ly elements that the clustér; would add to the current podl/, while Ay N(C})
is equal to the total number ofew elements that would be added. Thus, the ratio
Agr(C;)/Apr(C;) can be regarded as a ‘cost effectiveness’ measure of aduéng t
clusterC; to the pool. Line 5 means that at each iteration, among thaireny clusters

the one with the largest cost effectiveness is selected asdidate to be added to the
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Algorithm GAA

Input: ClustersC;,i=1,2,....,n

Output: Optimal valuel’;; Indices of component sets of the optimal solution
1H+ 0, F+0,J"+~ 0
2J+{1,2,...,n}

3 stop+ false

4do

5 k¢ argmax [ Aur(Ci)

ies | AgN(Cy)
r(C;) = number of clasd r elements irC;

} , where

N(C;) = number of elements i6;

i Apr(Ch)
if APII{N(Q) > F(H)

then H <+ H U C},

r(H)
F = v

© 00 N O

J—J—k J «—J +k
10 elsestop+ true

11 while J # @ AND stop = false
12F; « F

Figure 4.8: Greedy approximation algorithm (GAA) for MMFotem

current pool. If the cost effectiveness of this candidateumerically larger than or
equal to the F-measure of the current pool, then it is addedeigool. Otherwise,
the iteration stops. This criterion is stated in Line 6 of #igorithm. In the rest
of this section, we discuss the application of GAA to fansili&f clusters in which

any overlapping of the clusters occur only by nesting (eigranchical clustering in
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Fig.(4.3)). Formally, we define the instance in which thestdus overlap only by

nesting as follows.

Definition 1. The clusterdC}, Cs, ..., C,} ‘overlap only by nesting’ iff

The above definition means that if two clusters interseen thne of them must be

a subset of the other. It is obvious that the following praopas holds:

Proposition 1. For a family of clusters that overlap by nesting, the union
of any subset of the cluster§;;, can be written as a union of disjoint

clusters.
The main goal of this section is to prove the following theore

Theorem 1. For the instance of the MMF problem where the clusters in the
given family overlap only by nesting, the greedy approxiomedlgorithm
GAA yields the global maximal valug;. If more than one subfamily of
clusters yield the same global maximal valdg then GAA will return the

one that satisfies the Largest Recall Condition.

Theorem 1 can be proved by mathematical induction. The pradfides: (1)
a basis step; (2) an inductive step; and (3) a terminatiowiton corresponding to
Line 6 of the GAA algorithm. We will make extensive use of tleddwing Lemma

[64],[25]:

Lemma 1. For two fractionsa; /b, andas /by, Wherea; > 0,b; > 0,7 =

in |& g2 a1tag a1 a2 i iti
1,2, we havenin [bl, bJ < 352 < max [bl, bJ- Here, the inequalities
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are strict if (a1by — agb1) # 0, while the equalities are strict ifa;b, —

azbl) =0.

The proof of the basic step and inductive step will utilizerirea 2 as stated below.
This lemma involves a numerical comparison of the F-meastiseknown subset of
the global optimal solution and the largest cost effecégsnamong the remaining

clusters, which corresponds to the cluster selected in hioeGAA.

Lemma 2. Given an instanceés in which the clusters overlap only by
nesting, and a subséf known to be a proper subset of the global optimal

G of MMF. If the clusterC' € S\H has the largest cost effectiveness

Apr(C)/AxgN(C) among the clusters if\ H, and AA}I,{;/((CC)) > Aj’;(NH()H) ,

thenC must also be a subset 6f

Proof. SinceH is known to be a proper subset@f G must be equal to the union &f
and some subset 6\ H . LetG = H U K. Then, by Proposition 1, we can wrif€ as
a union of a set of disjoint clustefg’; } whereC; € S\ H, andK = C;UCyU- - -UC,,.
We will now prove Lemma 2 by contradiction: If we assume thatc¢lusteiC' is nota
subset of the optimal solutiai, then a contradiction arises. The possible scenarios in
which C'is not a subset off are: (i) C' andG are disjoint, or (ii)G' contains a proper
subset ofC'. In case (ii) we also need to differentiate between threecaisles: (iia)'
and H are disjoint, and (iib)’ and H overlap,C and K also overlap, and (iic)’ and
H overlap, whileC' and K are disjoint.

Case (i). Sinc& = HU K, we can write(G) andN (G) asr(G) = r(H) + Apr(K)
andN(G) = N(H) + AyN(K), whereK = C, UCy U ---UC,, andC; € S\H.
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Since the cluster§; are disjoint,;(K) = r(Cy) +r(Cs) + - - - + r(C,,) and N (K) =

N(Cy) 4+ N(Cs) +---+ N(C,,). Hence

AHT(K) . AHT(K) :AH’I“(O1)+AHT(CQ)+"'+AH7”(Cm)

= . (4.20
AgN(K) ApgN(K)=AgN(Cy)+AgN(Cy)+---+AgN(Cp) ( )
Repeated application of Lemma 1 to Eq.(4.20) leads to

Since the cluster’ has the largesf\ /Ay N among all clusters irb\ H, by

Eq.(4.21) we have

ApN(C) = AgN(K)

(4.22)

Since we assume that = H U K is the optimal solution, it is necessary that

F(H) < F(HUK)

r(H) < r(H)+ Agr(K)

A+N(H) ~ A+ N(H)+ AgN(K) (4.23)
By Lemma 1,
min r(H) Apr(K) < r(H)+ Agr(K) < max r(H) Agr(K)
A+ N(H) AgN(K)] = A+ N(H) +AgN(K) = [A+ N(H) AyN(K)

118



Hence, Eq.(4.22) and Eq.(4.23) lead to

r(H)+ Agr(K) < Apr(K) < Apr(C)
A+ N(H)+AyN(K) — AgN(K) =~ AgN(C)

Again by Lemma 1,

r(H)+ Agr(K) < r(H)+ Agr(K) + Apr(C)
A+ NH)+AyN(K) — A+ N(H)+ AgN(K)+ AyN(C)’

(4.24)

SinceC andG are disjoint;(GUC) = r(H)+ Agr(K)+Agxr(C)andN(GUC) =

N(H)+ AgN(K)+ AgN(C). Therefore, Eq.(4.24) yields

r(G) < r(GUCQC)
A+ N(G) — A+ NGuQy

thatisF(G) < F(GUC). If F(G) < F(GUC(), G cannot be the optimal solution. If
F(G) = F(GUQ), sinceGUC contains more classy elements that, it also means
G cannot be the optimal solution that we seek under the LaResall Condition, as
stated in Section 4.4.1. Therefore in either case a cowctiadiarises.

The proof that a contradiction occurs also in the cases (iid) and (iic) is quite
similar to the above, and the detail will be omitted here. llitases, the assumption
that C' is not a subset of the global optimal solution cannot be trlieerefore, the

clusterC' with the largestA yr /Ay N must be a subset of the optimal solutiGh O

Lemma 3. Consider an arbitrary family of clusterS. Given that a subset
H is a subset of the global optim&l of MMF, if the clusterC' € S\H
has the largest cost effectivenesgr(C') /Ay N (C) among the remaining

119



clusters inS\H, and £242 < {0, then none of the clusters in

S\ His a subset of-.

Proof. It follows immediately from Lemma 1 that'(H U C') < F(H). Therefore
C' cannot be a subset of the global optimal solution. Si@icbas the largest cost
effectiveness\ yr(C) /Ay N(C') among the remaining clusters f\ H, it follows by
the same argument that none of the remaining clustefs i can be a subset of the
global optimal solutiond

We now present the proof of Theorem 1 by mathematical indaocti
Proof [Theorem 1: Basis step].The greedy approximation algorithm (GAA) selects
the cluster with the largest ;(C') /Ay N (C') in each iteration, wher# is the current
pool. At the first step, the current pool is the empty set, Wimtist be a subset of the
global optimal solution. Furthermord;,()) = 0, so for any cluster containing at
least one clasér element,Ayr(C)/AyN(C) = r(C)/N(C) > F,(0). Hence, by
Lemma 2 the cluster selected by GAA at the first iteration niestn subset of the
global optimal.
Proof [Theorem 1: Inductive step]. Assume that at thé" iteration of GAA, all the
clusters included in the current pofl are subsets of the optimal solution. Then it
readily follows from Lemma 2 that as long as the current pdols not the optimal
solution itself, the cluster selected according to GAA & th+ 1)'" iteration must
also be a subset of the optimal solution.
Proof [Theorem 1: Termination condition (Lines 6 — 9 of GAA)]. The termination

condition follows immediately from Lemma 3.

120



We now prove the last statement of Theorem 1. This statenoenaeens the situ-
ation where more than one subset of clusters yield the samemakvalue ;. The
statement means that the GAA iterations will continue uh#lsolution with the most
Lr elements is obtained.

Proof. By induction, the global maximal valug; must be reachable by GAA. Sup-
pose there are more than one subset of clusters that yiekhthe valud;, and sup-
posed is the first of these subsets that is reached after somaatesaif GAA. Among

the remaining clusters if\G, let C' be the one that has the largest cost effectiveness
Agr(C)/AgN(C). If Agr(C)/AgN(C) = F(G) = F;, thenF(G U C) = F; by
Lemma 1. Hencer U C' also yields the optimal valug;. SinceC' satisfies the con-
dition at Line 6 of GAA, it is added to the pool. Becauder(C) must be positive,

G U C must contain more cladsi elements thar'. Repeated application of the argu-
ments shows that the final solution reached by GAA is the dylsieling the optimal
valueF; that contains the most clags; elements™D

Finally, we prove the uniqueness of the global optimal sotutound, as stated in

Theorem 2.

Theorem 2. For the MMF problem instances where the given clusters
overlap only by nesting, there is a unique global optimautoh G under

the Largest Recall Condition.

Proof. This theorem means that there cannot be two distinct subsatsd G’ such
that they both yield the maximal value, i.€(G) = F(G') = F};, and both have the

largest recall. We will prove by contradiction. Assume twils distinct subsets and
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G’ exist. LetG NG’ = H. H may be the empty set or a set of clusters. Note that we
cannot have! = G, which corresponds t6&' being a proper subset 6f. Otherwise,
sinceG andG’ have the same recall, all elementsif, G must not belong to the class
Lr. ThenG’ must have a poorer precision thah and so they cannot both yield the

maximalF;. LetG = H U K andG’ = H U K'. By Lemma 1,

min[ r(f) AH?“(K’)}< r(H) + Apr(K')

r(H) AHT(K/):|
A4+ N(H) AgN(K')| = A+ N(H)+ AgN(K')

< max lA T N(H) AgN(E)

min [

r(H) Agr(K') , r(H) Agr(K')
AT NH) AHN(K’)} < F((G) = max [A T N(H)’ AHN(K’)}

Since F(H) < F(G), this impliesF(G') < Apr(K')/AgN(K'). Because
F(G) = F(G"), andAgr(K')JAuN(K') = Agr(K')/AgN(K'), it leads toF' (G)
< Agr(K')/ A¢N(K'). Then again by Lemma 1(G) < F(G U K'). Similarly,
F(G") < F(G' U K). Therefore botlG andG’ cannot be the global optimal solution
under the Largest Recall Condition because-(K’) andAqsr(K) must be non-zero.

The contradiction means that the global optimal solutiamigjue.O

4.4.2 \Worst case time-space complexity of GAA

As discussed in Section 4.4.1, the maximization of micrerage F-measure (MMF)
is a generalization of the Red-Blue Set Cover (RBSC) problem [#hérimit of suf-
ficiently larges and in the instances in which the clusters contain binaagsc(‘Red’/
‘Blue’) elements, MMF is equivalent to RBSC. RBSC in turn contaiesasspecial

case the classical Set Cover (SC) problem [7]. Therefore, MdViit least as hard as
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SC, which is known to be NP-hard. For a familyofets, there ar2” — 1 possible
combinations of the sets. Hence solving MMF, Eq.(4.19), byreeration requires
exponential time.

In every iteration of the GAA algorithm for MMF (Fig.4.8), heé 5 selects from
among the remaining clusters not yet added to the pool, taéhat has the largest ‘cost
effectivenessAyr(C;)/ArN(C;). At the first step, there are candidate clusters;,
wherei € J andJ = {1,2,...,n} that need to be scanned. At each subsequent
iteration, there is one fewer candidate cluster/inHowever, the cost effectiveness
of all remaining candidate clusters need to be recalculatéthe 5 of every iteration
because of the reference to the updated gdol A maximum ofn iterations need
to be performed in the algorithm. Therefore, the worst-dase complexity of the
algorithm isO(n?).

For a collection ofV objects, the algorithm needs to store the indices of all dnssc
Ly objects, whether or not these have been included in therdyo®! H. Hence, the

space complexity of the algorithm dg(V).
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Chapter 5

Clustering for Relevance Feedback

One of the IR problems that we tackle in this thesis is wordmaigh. As mentioned in
Chapter 2 (Literature Review and Background), query expansenrelevance feed-
back (RF) is a well established method and is shown to be antefesolution to
this problem. Alternatively, clustering methods have bewestigated in the past as
another possible solution (see Chapter 2 for a review). Hewehe effectiveness of
clustering methods to enhance IR performance has beendlusire [81]. While some
researchers showed that utilizing hierarchical clustenmretrieval was a promising
approach (e.g. Griffiths et al. [22]), the results of somesgiwere negative (e.g. El-
Hamdouchi and Willett [20]). In the early studies, documenstering was generally
performed on the entire corpus, which is an approach cathtt slustering. More
recently, query-specific clustering has been studied bhipwaresearchers (e.g. Hearst
and Pedersen [29]). Instead of the entire corpus, quergi{gpelustering is performed
on the retrieval results for each query. Tombros and van &iggn [81] showed that

query-specific clustering had the potential to increased¢heval effectiveness com-
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pared to both static clustering and conventional docurbased retrieval.

In Chapter 3 we studied context-dependent term weights amaticed a Boost
and Discount (B&D) procedure which computes these term weighthe setting of
relevance feedback (RF). We showed that using the cont@drdient term weights
enhanced retrieval effectiveness compared with using réuditional BM25, which
are a form of context-independent TF-IDF weights. We areivatad to investigate
whether augmenting clustering methods to our B&D procedarefarther enhance
the retrieval effectiveness attained by using contexeddpnt term weights. Follow-
ing past research, like that of Tombros et al. [81], we useygapecific clustering in
our methods. This chapter presents the findings of our gilolysin this approach.

Our general approach is to use clustering methods to disocowee boost and dis-
count terms. A trial experiment (described in Section 5Hgwss that if more boost
and discount terms are found (from relevant and irrelevacuthents respectively),
the retrieval performance can be enhanced. We have thusrpexd an extensive set
of experiments in the RF setting, comprised of various wayspplying clustering to
find more relevant contexts apart from those contained ifjutdiged relevant docu-
ments. In our experiments, we find that it is generally venglhia achieve further per-
formance improvement over the context-dependent termhwaigproach of Chapter
3. In particularly, the use of clustering techniques al@agnable to yield performance
enhancement compared with not using clustering. One proldehat our clustering
methods tend to introduce too much noise to the set of boastiscount terms used
by B& D. On the other hand, another well known classificatiorthrad in machine

learning is the support vector machine (SVM). We testedguSM with B&D, but
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our experiments found that it also does not yield perforreangprovement. Further
tests were performed by combining clustering techniqueék &VM. We find that a
scheme which applies SVM to clustered contexts is able tdym® small but statisti-
cally significant improvement in MAP, compared with the stard B&D result, in the
TREC-2005 test collection.

An outline of the remaining of this chapter is as follows. kc8on 5.1 we discuss
our general approach in applying clustering techniques inJ®Etion 5.2 discusses
some aspects of our experimental settings. In Section 5.8eseribe some of the

methods that we have tested and the experimental results.

5.1 Clustering approach

As discussed in Chapter 3, in a RF task whatg- documents are judged, from the
known relevant and irrelevant documents we extract the afel®ost and discount
terms,Sz(q;) andSp(gq;). The premise of our approach is that clustering techniques
can help to discover more boost and discount terms. The ggsums that if more

of these terms are known then the performance of RF using miexisdependent
term weights will be enhanced. By using clustering, we tryiszover more relevant
and irrelevant contexts from which to extract the boost asdadint terms. First, we
perform a retrieval by RF, with the standard B&D procedure. nlfepiery-specific
clustering is carried out on the combination of contéxtsf the top rankedV docu-

ments of standard B&D retrieved list, together with the crtg®f the judgedVzr

1The reason for performing context-clustering rather thacudhent-clustering is discussed in Sec-
tion 5.2.
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documents. The reason for clustering the top ranked docisnoéra B&D retrieved
list, rather than those of a PRF or baseline QE list, is becdugsB&D list is expected
to contain more relevant documents at the top. This wouldebgfill since our aim is
to discover more unseen relevant contéxts By the cluster hypothesis, the relevant
contexts in the unseen documents will form clusters withatetexts of the judged
relevant documents, thus allowing them to be identified.

To test the assumption that discovering more boost anduis¢erms can enhance
retrieval effectiveness, we first perform a ‘retrospectesgperiment, where the set of
all the relevant documents for each query are known. Them the relevant docu-
ments found in the topV (with V = 80) of the previously retrieved list, we extract the
set of ‘retrospective boost terms3g ,..1,0(¢;). Similarly, from all the irrelevant doc-
uments in the topV, we extract the set of ‘retrospective discount ternss,,c.,.(¢;)-
These terms are combined with the sets previously extrdiiedthe RF judged doc-
uments, i.eSg rr(¢:) U Spretro(@i) aNASDH rr (i) U Sp retro(¢;) - We then perform a
retrieval with B&D, using the new sets of terms to estimateptabability of relevance
of a context (see Section 3.2). In this case, we obtained the td be 0.4124. In com-
parison, using the sets of terfig zr(¢;) andSp rr(g;) extracted from the 20 judged
documents yields a MAP value 0.3148 (Table 3.4). Hence] thal relevant and ir-
relevant documents in just the top 80 documents are idedhtifiés can in principle

lead to a relative improvement in MAP by over 30%. Our objexts to test whether

2We define ‘relevant contexts’ to be the contexts containgelevant documents. Similarly, ‘irrel-
evant contexts’ are those found in irrelevant documents.

3In this chapter, we use the phrase ‘unseen documents’ toteeflee documents that are not among
the Nrr documents judged for relevance in RF. Similarly, ‘unseemexts’ are contexts found in the
‘unseen documents’.

127



clustering methods can help to identify these relevant aetevant documents.

5.2 Experimental settings

We first discuss several aspects of the basic experimentoanvent that we have

adopted.

A. Context clustering.

We perform clustering of contexts rather than clusteringleduments. First, using
contexts follows the Query-centric assumption that evigeof relevance or irrele-
vance is found only within the contexts in a document. Furtteee, clustering con-
texts, not the whole documents, will avoid the clusterinneaffected by too many
noise terms that appear outside of the contexts. This appieaupported by the work
reported by Dang et al. [13], who showed that better clusgerésults were obtained

using context-based similarity scores rather than doctHip@sed similarity scores.

B. Clustering algorithm.

Based on the results of Chapter 4, among the various hieratachirstering algorithms
tested, complete linkage gave the best clustering resuterms of the CS measure
(Table 4.3 and Table 4.5). This means that among the algasitocomplete linkage is
most effective one in forming tight high-precision clustefhis suits our purpose as
we wish to minimize any noise being introduced into the sétisomst and discount

terms. Therefore, we will use complete linkage in our expents.
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C. Context similarity.

A necessary input to the clustering algorithm is a measursiroilarity between a
pair of contexts. Following Dang et al. [13], we use a cosinglarity between the
context vectorsg¢; (di, k1, m) andés(ds, ke, m), in which the term weights are given
by a modified BM expression:

1+ Cy

sim(ci, é3) = G (5.1)

with the term weights in the context vectors being

__fed) ) N—df() +05
vl ) = f(t,dy) + %\/log df (t) + 0.5 (5.2)

where| - | is the Euclidean length, anl is the average Euclidean document length.
The IDF factor in Eq.5.2 is a square root of the logarithmrerte This is unlike the
standard BM expression [59], which uses the logarithmicofaitself rather than the
square root. It was found that using the square root gaverlatistering results [13],
as the term is multiplied with itself in the cosine calcudati Hence, we will also adopt

this form.

D. Pre-clustering relevance judgments

When clustering methods are applied in RF, a consideratiormetiver the relevance
judgments are made before clustering is applied (‘pretetiusy relevance judgments’)

or after clustering is applied (‘post-clustering relevajodgments’).
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Works where ‘post-clustering relevance judgments’ is aeldpnclude those of
Sakai et al. [67] and Lee et al. [50] (see 2.4.3). While thect®ie sampling method
studied by Sakai et al. [67] studied did not find significanpiovements on NTCIR
collections. However, Lee et al. [50] tested a cluster-dassampling method for PRF
and reported that the method was effective for PRF.

In our RF experiments, we have adopted the alternative ‘justering relevance
judgments’ procedure. Relevant judgments are made on th¥ gpglocuments of the
PRF retrieved list as in the standard RF approach (Chapter 33 Subsequently,
clustering techniques are applied to the contexts of toged documents in the re-
trieved list in order to discover more relevant contextsrfithe unseen documents (see
Fig.5.1). The main reason why we use this procedure is tolenlé comparison of
our retrieval results with the standard B&D results obtaipegviously (Table 3.4),
noting that to have a fair comparison, the residue collestghould be the same in two
sets of RF experiments. This in turn means that the sets oegudgcuments in the
two sets of RF experiments should be identical. Using thet-plsstering relevance
judgments’ procedure will results in a set of judged docutmelifferent from those
used in Chapter 3, so that the retrieval results cannot betlyimompared. Of course,
it is also of interest to test the effectiveness of ‘posttduing relevance judgments’,
but a new baseline needs to be established. We will leavesthdy for our future
research.

Fig.5.1 shows the flow of our clustering approach for RF. Infipere, Step 1 to
Step 3 are the standard RF procedures by query expansion iagdB&D-computed

term weights. These are the steps used in the experimemsiasin Chapter 3. Step
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4 to Step 8 represent the additional application of clusgetechniques. In the next
Section, we will describe several methods that we haveddstehe specific ways in

which clustering techniques are used in Step 6 and Step 7.

Clustering for RF

1. Make relevance judgments on the t¥p» documents returned by PRF

2. Extract contexts{ X, }, and boost and discount terms from judged documents
3. Retrieval by QE, with B&D-computed term weights

4. Extract contexts{ X}, from the topN documents of the B&D retrieved list

5. Apply clustering method to the sets of contexts,and X

6. Assign an unseen context as relevaiy,f;) or irrelevant () according to the
clustering result

7. Extract extra boost terntss ., and discount term§p, ., from the assigned rele-
vant and irrelevant contexts

8. Retrieval by B&D using the expanded sets of boost and dizdeums

Figure 5.1: Flow of our general approach of applying clustgin RF

5.3 Experimental results

In this section we present the results of various methodswhahave tested. All of
these methods follow the general procedure according tetdps shown in Fig.5.1.
The methods differ in the way clustering techniques areie@pb try to discover more
boost and discount terms (Step 6 and Step 7 of Fig.5.1). Inuhent pilot study, the

results we present in this section are obtained for the TREI5-20llection, as our
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B&D calibration (Chapter 3) was performed based on this ctidlac

Method A: Clustering only

As discussed in Section 5.2, we apply complete linkage etfungj to the combined set
X ; U Xy which are respectively the contexts found in the judggd- documents and
those in the topV = 80 documents in the standard B&D retrieved list. After forming
a hierarchical structure of the contexts, the question g tacselect clusters from this
structure. If the cluster hypothesis holds, we expect timeoas in the unseen relevant
documents to form clusters with those in the judged relechrgters. Because these
relevant contexts may fall into different subtopics, wekst® optimal combination
of subclusters as discussed in Chapter 4. In Chapter 4, it veagnstihat the optimal
combination of subclusters corresponds to the set whichihebest CS2 value, i.e.
the maximal micro-average F-measure. However, one difterdetween our current
problem and the calculations of Chapter 4 should be noted.e/Mn maximal micro-
average F-measurg; (i.e. 1.0-CS2), Eq.4.6 is calculated based on all the known
relevant documents in the collection, in our current cadg the relevant documents
within the Ny judged documents are known.

Let R, denote the set of judged relevant contexts aj(#) denote the number of
contexts in the set of combined subclustéfghat belong taR ;. In analogy to Eq.4.6,
we seek the optimal combination of subclusters of contéws yields the maximal

value of the following objective function:

. (8% + Drs(S)
Fun= e B2card(Ry) + card(S) (:3)
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In EqQ.5.3, the micro-average F-measure is defined basedeaetiof judged relevant
contexts,R;, only. The optimal solution of Eq.5.3 can be easily obtaibgdhe GAA
algorithm (Fig.4.8). Our expectation is thatseerrelevant contexts will be found in
the optimal solution,S*, by association with th@idgedrelevant contexts. Thus, all
unseen contexts found ifi* are assigned as ‘relevant’ (Step 6 in Fig.5.1). Then, a
set of extra boost terms is obtained by extracting from &luhseen contexts that are
included in the optimal solution (Step 7 in Fig.5.1).

Likewise, we assume thanhseernrrelevant contexts are similar to thedgedirrel-
evant contexts. Thus, we seek the unseen irrelevant certgxheans of optimizing an

analogous function as Eq.5.3, but defined according to thgedirrelevantcontexts:

. (8% +1)is(S)
Bt =M% G card(T) + card(S)’ (5-4)

where I; is the set of judged irrelevant contexts aidS) denotes the number of
contexts in the sef that belong tol;. The optimal solution of Eq.5.4 can also be
obtained by GAA.
We have performed RF experiments, with 20 relevance judgi{eat Ngr = 20),

on the TREC-2005 collection according to the flow shown in Eilg.5or the context
clustering in Step 4 and Step 5 of Fig.5.1, weSet 80, i.e. we apply clustering to the
contexts of the top 80 unseen documents, together with thiexts in the 20 judged
documents. In our first experiment (labeled Al), the sizehefdontexts used in the
clustering is set to 61 words. As shown below (see Table wé)ind the cluster size

does not affect the retrieval results very much. The unseategts found in the opti-
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mal solutions of Eq.5.3 and Eq.5.4 are assigned as relemdntralevant respectively.
Then extra boost terntss ., and discount termsSy, ;s are extracted from these con-
texts (Step 7 of Fig.5.1). As shown in Table 5.1, we find the Rifgpmance to be
quite poor (MAP=0.2417) compared with the standard B&D re@UlAP=0.3148).
Analysing the sets of unseen contexts being assigned asmnelg,;,.;) or irrelevant
(Iaus), we find that these have on average a precision of 0.61 addréspectively.
The poor precision of thel(, ;) contexts indicate that the clustering method is not ef-
fective in picking out irrelevant contexts among the unssantexts. This means there
is much noise being introduced in the discount terms, whialy bre the cause for the
poor performance of Method Al.

Since a higher precision for the conteXs, . is observed, we then tried a different
setting (Method A2), where we only add the extra boost tefng,, to our B&D
procedure, but uses only the discount tersiisextracted from the judged irrelevant
documents. With Method A2, we obtain MAP=0.3064. Althougime extra boost
terms are discovered by the clustering method, some of #ethre actually noise
terms, because the precision of the assigned confexisis less than 1. It appears
that detrimental effect of the noise is more than the bengfimding some extra terms.

We have also tested various context sizes for clusteringndsignificant differ-
ence is found. For example with a context size of 101 word (i[détA3 in Table 5.1),
the MAP is 0.3066, close to the value for the context size oivddd.

Therefore, we find that applying clustering only fails torlgriperformance im-
provement in RF, compared to not using clustering.

Because the use of clustering alone (Method A) does not peogedormance
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Table 5.1: RF NVzr=20) performance with various settings of Method A, avedage
over 50 queries of TREC-2005.

Standard B&D Method Al Method A2 Method A3
SB,(:Iusand %,clus SB,(:Iusonly SB,clusomy
Context size =61 Context size =61 Context sizek 10
MAP 0.3148 0.2417 0.3064 0.3066
Wilcoxon p - 0.000 0.043 0.033

Note: The Wilcoxomp-value refers to the comparison between standard B&D and the
respective methods.

improvement over the standard B&D method, we have investijasing some other
common classification method, such as the Support VectohMag¢Method B below),

or a combination of clustering with other techniques (Meitk).

Method B: SVM only

Support Vector Machine (SVM) is a popular classificationmoetin machine learning
(e.g. Burges [4]). Given a set of training samples, each ntaakebelonging to one of
two categories, a SVM training algorithm builds a model thiditdetermine which of
the categories a new test sample belongs to. Intuitively/ldl & 10del represents the
samples as points in high dimensional space, mapped sdhésamples belonging to
the two categories are separated as wide as possible. Adigperis then constructed
to separate the samples belonging to the two categories.wAtest sample is then
mapped to the same space, and is classified according to sitlebf the hyperplane it
falls into. In our case, the training samples are the judgkvant and judged irrelevant
contexts in RF. SVM may then be used to predict whether an arcsgdgext is relevant
or irrelevant.

In our experiments, we have used t8¥M'9"* software package, which is an
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implementation of SVM by Joachims (e.g. Joachims [36]). bath training and test
samples, the size of the contexts is chosen to be 101 wordsMethod A2 and A3
above. Also similar to the experiments for Method A, the ssshples are the unseen
contexts belonging to the ta§ = 80 unseen documents.

Instead of trying to discover relevant and irrelevant ceisteamong the unseen
samples by means of clustering (Steps 5 and 6 in Fig.5.1),athdtl B the unseen
contexts are assigned as relevant or irrelevant accorditigetprediction of the SVM.
As for Method A, we have tested two experimental settings —hde B1: Extract
both extra boost termSp sy, and discount termsp sy, from the relevant and ir-
relevant contexts predicted by SVM; and Method B2: Only addetktra boost terms
Sp.svu to the original sebs.

As summarized in Table 5.2, the MAP values obtained by Me®band B2 are
0.2996 and 0.3148 respectively. Hence, just as in Metholdebise in discount terms
introduced in Method B1 harms the RF performance. It happeatgite MAP value
obtained by Method B2 is actually the same as the standard B&i2\8.3148). On
average, there seems to be no advantage in the SVM methodaoeanpith standard

B&D.

Table 5.2: RF Nzr=20) performance of Method B, averaged over 50 queries of
TREC-2005

Standard B&D Method B1 Method B2
Sg.symand $ sym Sg sywmonly
Context size = 101 Context size = 101

MAP 0.3148 0.2996 0.3148
Wilcoxonp - 0.103 0.650
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Method C: SVM applied to clustered contexts

Method B involves a single SVM model based on a single setahittg samples
consisting of all the judged relevant and irrelevant cotsteXlowever, this approach
may suffer the following problem. In the set of judged rel@veontexts, the contexts
may fall into different subtopics. In this case, contexthging to the same subtopic
are expected to be similar to one another, but may not beagitoithose which belong
to a different subtopic. In Method B, all the judged relevanttexts are treated as
positive training samples, without considering the passilithat these samples falling
into different subtopics may actually be quite differenthiSfmay cause problems
when the SVM model defines the boundary between the positgeagative training
samples.

We consider an alternative method (Method C) to take intowaticive above prob-
lem which occurs in Method B. In Method C, the judged relevaut iarelevant con-
texts are firstly grouped into separate clusters, which daokrespond to different
subtopics. Suppose we forny, clusters among the judged relevant contexts, .and
clusters among the judged irrelevant contexts. Supposaukters of judged relevant
contexts are denoted &y ;, wherej = 1,2,...,ngr. We first define a SVM model,
SVMg; in which the contexts belonging to clusiéf, ; are taken as positive training
samples, while all the remaining judged relevant contexigether with the judged
irrelevant contexts, are taken as negative training sasnpl@en, suppose an unseen
contextc,; receives a scord (¢ ) according to the prediction of SVM,. Likewise,

for each of theny clusters we define a SVM model: SViM, with j = 1,2,...,ng.
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Each of these models is used to predict the class of the ussegexic;, yielding a set
of scoresSg ;(cy). Similarly, we define SVM models based on the judged irreteva
contexts, SVM, k, with k£ = 1,2, ..., n;. The corresponding scores that each of these
models assigns to the unseen contegxis denotedS; ;. (cy ).

In Method C, we wish to define an overall score for the unseenegon;; that
can sum up all the scores predicted by the various modelsdtoate whethee,, are
mostly predicted to belong to the class of a relevant corgesn irrelevant context.

One such possible overall score is:

S(ev) =Y Srylcr) = Srrlew). (5.5)
j=1 k=1

If S(cy) is positive, it meansgy is overall mostly predicted to be a relevant context.
On the other hand, if (cy) is negative, we assign; to be irrelevant.

In Method C, it is necessary to set the parametgreandn;, i.e. the number of
clusters formed among the judged relevant and judgedwarteontexts, respectively.

We have considered two schemes:

e Method C1. Fixny andn; to certain constant values;

e Method C2. In defining the context similarity score, we usedbsine simi-
larity EQ.5.1, with one additional condition: If two contexhave fewer than a
threshold ofnmatch words in common, their similarity is set to zero. Clusters
are obtained by cutting the hierarchical tree at the simyldevel Sim = 0.
Increasing the value aitmatch has the effect of separating the contexts into
a larger number of smaller clusters, such that the context¢ach cluster have
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many words in common.

We have tried various parameter values for both Method C1 asithddi C2. For
Method C1, we find the best parameter values toe= 2, n; = 3. For Method C2,
we find the best parameterisnatch = 11. The corresponding MAP values obtained
by these methods are 0.3158 and 0.3157 respectively (TaBle Bhese values are
numerically better than the standard B&D values (0.3148)ihmeidifferences are not
statistically significant at the 95% confidence level. Asalg the results, we plot
the query-by-query results of the MAP differences of theséhmethods and standard
B&D, in Fig. 5.2. The plot for Method C1 shows that for querieshasmall Ny
values (say Nz < 10) Method C1 can mostly improve MAP over standard B&D.
However, for queries with large¥y (say, Nr > 10) the method tends to give poorer
results. This may indicate that the values = 2 andn; = 3 that we obtained based
on averaging over 50 queries may not be appropriate for esievith largeNp. For
queries with largeVg, there are many judged relevant contexts, which may fadl int
many subtopics. Hence, using the small values of the nunflsusters,ny = 2 and
n; = 3, may not be sufficient for these queries. This suggests thaxebe a need to
use separate calibrations for queries wih < 10 and Ny > 10. For Method C2,
the plot shows that the difference from standard B&D is quital§ as indicated in
the average values being 0.3157 and 0.3148 respectivelyind/¢éhat the reason for
the small difference is because Method C2 generally discogr small numbers of
relevant contexts among the unseen contexts, so few extist teyms are discovered.
Nonetheless, the results suggest that it may be beneficiaixahe conidtions of
Method C1 and Method C2 for different queries, according tovlae of N. We
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tried this scheme, as shown by Method C3 in Fig.5.2 and TaBleSpecifically, for
this method, we use the Method C1 conditions for queries With< 10, and use the
Method C2 conditions for queries witNz > 10. The resulting MAP is found to be
0.3197 (Table 5.3). This is a small improvement over stath&&D (relative amount
being 1.56%), but the improvement is statistically sigaificat the 99% confidence

level based on the Wilcoxagmvalue.

Method C1 Method C2
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Figure 5.2: Difference of the residue MAP values obtaineddryous Method C con-
ditions and standard B&D, for the 50 title queries of TREC 200%e queries are
sorted in increasing order df ; @20, which is indicated by the X-axis.

We have also tested the settings of Method C3 on the TREC-6, acallettions.
As summarized in Table 5.4 , we find that statistically sigaifit performance im-
provement over the standard B&D value is not observed in tb#sr collections. Itis

possible that the specific settings used in Method C3 may noptmal for the other
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Table 5.3: RF {Vzr=20) performance with various settings of Method C, averaged
over 50 queries of TREC-2005

Standard B&D Method C1 Method C2 Method C3
n,=2,n;=3 nmatch=11 Mixture
SB,clusonly SB,cIusonIy SB;,clusonly
Context size =101 Context size =101 Context siz@E
MAP 0.3148 0.3158 0.3157 0.3197
Wilcoxonp - 0.244 0.064 0.003

Note. Method C3 is a mixture of conditions — For queries With<= 10: follows
Method C1 conditions; for queries withi; > 10: follows Method C2 conditions.

Table 5.4: MAP values obtained in RV ~=20) with Method C3, averaged over 50

queries of various TREC collections
TREC-2005 TREC-6 TREC-7

standard B&D 0.3148 0.2554 0.2302
Method C3 0.3197 0.2534  0.2310
Wilcoxon p 0.0016 0.762 0.925

collections, i.e. their, n;, nmatch values, as well as the boundary value/\d$ for
the mixture of Method C1 and Method C2 conditions. More detiadalibration of
the parameters needs to be performed to see whether therpanice of these other
collections can be improved also. This will be a directiondar ongoing research.

In summary, in our experiments we find that it is generallyyveard to utilize
clustering methods to achieve performance in RF that istbié@ our standard B&D
results. There seems to be some promising results for thefudastering in RF in
the TREC-2005 collection, for which all the calibrations aerfprmed. However,
the effectiveness of the method has not been observed inthiee ®st collections.

One question is whether proper calibration of the variouamaters can lead to better
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performance for all the collections. Alternatively, ottehemes utilizing clustering
techniques need to be devised and tested. The use of ahgsteriRF tasks is a topic

that is worth further investigation.
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Chapter 6

Conclusion and Future Work

We have investigated new methods to tackle the polysemy amnd mismatch prob-
lems in IR. Among the methods that have been studied in pasargs, query ex-
pansion via relevance feedback (RF) is a well establishadatisnlto both of these
problems. In addition, Wu et al. [92] showed that using ‘doent-contexts’ to tackle
the polysemy problem was a promising direction. As for wolidmatch, document
clustering has been studied by various researchers in #igtpaugh its effectiveness
has been inconclusive. More recently, Tombros et al. [8fpssted query-specific
clustering, rather than static clustering of the whole asrpnight be a promising ap-
proach. The new methods that we have studied are based enpd@igtsesults.
This chapter presents a summary of our work and states its ocwaitributions.

Some items are also proposed for possible future studiegriarayoing research.
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6.1 Summary and contributions

Context-dependent term weights

We have studied context-dependent term weights as a newosoto the polysemy
problem. The new weighting of a tertrdepends not only on the occurrence statistics
of the term itself, but also on the evidence of relevance etitcument-contexts of the
term. A document-context is a fixed size text window in a doenimWe introduce a
Boost and Discount (B&D) procedure to compute the new term kigim the setting
of relevance feedback (RF). While the traditional query espanmethod in RF uti-
lizes the information of the known relevant or irrelevantdments to add extra terms
to the search query, our method utilizes this informatiomtwlify the term weights of
the original query terms. This work represents the first erpental instantiation of
context-dependent term weights that are used for retrieval

We have performed extensive experiments to evaluate teet®tiness of the new
term weights as compared with the context-independent BM@ghts. Our exper-
iments use the title queries of the TREC-6, -7, -8, and 2005cw#ctions. With
either 10 or 20 relevance judgments, we find that using theteaw weights yields
improvements compared with the baseline BM25 term weights fild that the new
term weights yield relative improvements in MAP over theddae ranging from 3.3%
to 15.2%, with statistical significance at the 95% confiddeeel across all four test
collections.

While we have demonstrated the effectiveness of contextviigmt term weights

in RF, these new term weights may also be used in other apphsatuch as text cate-
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gorization. Because our B&D procedure computes the new teighigeby calculating
shifts to the widely used BM25 term weights, the method cadilgae implemented

in systems that use the BM25 weights.

A new clustering evaluation measure

Before we investigate the use of clustering techniques in ERneed to find an effec-
tive clustering algorithm for our purpose. Hence, we haw fiddressed the issue of
how to define an appropriate clustering evaluation measure.

A traditional clustering effectiveness measure is MK1, ahhis based on finding
the single optimal cluster that can be got from the clusterasult. We have proposed
a new optimal clustering effectiveness measure based omaéigation of clusters
rather than a single cluster. This new measure, called CS (@wation of Subclus-
ters’), will reflect more truly the performance of a clustgralgorithm for applications
where it is desirable for relevant documents to be groupgether in tight and high-
precision subclusters, corresponding to different subsopFor cases when clusters
are disjoint, whence the measure is called CS1, we show teatrdblem becomes a
linear fractional 0-1 optimization problem which can beveal by linear time algo-
rithms. Numerically, CS1 is theoretically smaller than oua&gto MK1, as we have
confirmed experimentally by an implementation of an exagbaihm.

We further discussed how our approach can be generalizedit® general prob-
lems involving overlapping clusters, whence the new measucalled CS2. We show
how optimal estimates of CS2 can be obtained by greedy ahgasit We prove that a

greedy algorithm with a ‘cost-effectiveness’ heuristigslgs the global optimal solu-
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tion for the class of clustering algorithms which generéteee clusters that overlap by
nesting within each other, or disjoint clusters that do nartap. The uniqueness of
the optimal solution is also proved. For a familysotlusters containing a total gf
objects, this greedy algorithm has a worst case time coritplekO(n?) and a space
complexity of O(N).

Based on our new CS1 or CS2 measures, we find that among the hieahotus-
tering algorithms that we tested, complete linkage clusgeis the most effective in
forming multiple high precision clusters. Therefore we ad® to employ complete

linkage in our experiments to study the use of clusterindrin |

Clustering for relevance feedback

We have investigated whether augmenting clustering msttodur B&D procedure,
which computes context-dependent term weights, can fuethigance the performance
of RF. The B&D algorithm utilizes information extracted frohetjudged documents to
provide evidence of relevance or non-relevance in the undeeuments. Our general
approach is to use clustering methods to discover more laoaistiscount terms used
by B&D.

We have performed an extensive set of experiments in RF, ¢segpof various
ways of applying clustering to find more relevant or irrel@v@ontexts apart from those
contained in the judged documents. In our experiments, el it is generally very
hard to achieve further performance improvement over theest-dependent term
weight approach in which no clustering is applied.

As we do not observe performance improvement by augmentirsgecing tech-
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niques on their own to the B&D procedure, we have investigasg a combination
of clustering and another common classification methodStiygport Vector Machine
(SVM). We find that a scheme in which SVM is applied to clustesamples of the
judged relevant contexts is effective in improving RF parfance. With 20 relevance
judgments, we show that for TREC2005 a relative improvememt@$o in MAP over

standard B&D (i.e. without clustering) can be obtained, giftistical significance at
the 95% confidence level. However, this improvement is nato@uced on the TREC-
6, 7 or 8 collections. Hence, the use of clustering for RF taskR is a topic that is

worth further investigation in our ongoing research

6.2 Future research

In this section, we outline several possible items for fet@search in context-dependent

term weights and clustering as applied in IR.

e Generalize B&D procedure to use n-grams.In the method described in this
chapter, the B&D procedure that compute the context-deperidem weights
is based on matching single terms (i.e. unigrams) in theext®tvithin unseen
documents, with the boost and discount terms, which areualgwams. We will
further investigate whether there is any advantage in usiggams (i.e. bigrams,

trigrams, etc.) instead of unigrams.

e Various relaxations in the B&D procedure. While we have reported a pilot
study of the B&D procedure, various relaxations of the Boosdt@iscount term
selection and weighting may be investigated. In partitylaelaxation of the
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Location-Invariance Decision assumption may be consdjesech as by assign-
ing a larger weight to terms that occur near to the beginning document.
Weightings based on the position of occurence of a term wighcontext can
also be studied. Variations in the selection of the B&D ternwdude imposing
criteria based on the number of occurence of the terms iruthgeeld documents

(see Section 3.2.1).

Compare RF results with other recent methodsWhile we have demonstrated
the effectiveness of using the new term weights in RF basediery@xpansion,
it is of interest to compare the performance of our methott wiher RF meth-
ods. For example, there are methods based on language msdelsas the

relevance model of Lavrenko and Croft [49].

Post-clustering relevance judgments. As explained in Section 5.2, in our
clustering RF experiments were performed with ‘pre-clustgrelevance judg-
ments’. Itis also of interest to study ‘post-clusteringekance judgments’ to see

whether clustering can enhance RF performance in this gettin

Use of other clustering algorithms for RF experiments.While we have used
hierarchical (complete linkage) clustering for our RF expents reported in
this thesis, other clustering algorithms may be used irréustudies. Examples

of these algorithms include k-means and fuzzy c-meanseciogt
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