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Abstract

In this thesis we investigate new methods to deal with the polysemy and word

mismatch problems in information retrieval (IR).

We tackle polysemy by using ‘document-contexts’, which aretext windows cen-

tred on query terms in a document. Analysis of the words in thevicinity of a query

term can identify its specific meaning in the context. In IR, many of the commonly

used term weights are variants of the TF-IDF form. The tradition TF-IDF weight of

a term depends only on the occurrence statistics of the term itself. We have studied a

novel ‘context-dependent’ term weight, which incorporates information based on the

words found in the document-contexts of a term. These term weights are generated

by a Boost and Discount (B&D) procedure, which utilizes any relevance information

that is available to estimate the probability of relevance of a context. Such relevance

information may come from actual relevance judgments that auser makes on a (small)

number of documents, as in ‘relevance feedback’ (RF). The theoretical justification

of our scheme to calculate the new term weights is provided bya probabilistic non-

relevance decision model of IR. We present experiments in theRF setting to test the

context-dependent term weights. We demonstrate that usingthe new term weights can

yield statistically significant improvement in retrieval compared with the traditional

weights.

Regarding the word mismatch problem, one plausible solutionis to use clustering

techniques. A traditional clustering evaluation measure used in IR is the MK1, which

is a score calculated for the single ‘optimal cluster’ that can be extracted from the clus-

tering result. MK1 is appropriate if a single retrieved cluster is desired. However, in

some applications it may be desirable for the retrieval results to be presented in mul-

tiple clusters according to sub-topics. For this case, we introduce a new evaluation

measure, called CS, which corresponds to finding an optimal combination of clusters.

We define a sub-class of CS, called CS1, applicable when the clusters are disjoint.

By reformulating the optimization to a 0-1 linear fractionalprogramming problem, we
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demonstrate that an exact solution of CS1 can be obtained by a linear time algorithm.

We discuss how our approach can be generalized to overlapping clusters, and present

greedy algorithms to obtain optimal estimates. We claim that one particular ‘cost ef-

fectiveness’ algorithm yields the global optimal solutionfor clusters that overlap only

by nesting. A mathematical proof of this claim by induction is presented.

We have also investigated whether clustering techniques can further improve the

retrieval effectiveness in relevance feedback using context-dependent term weights.

B&D utilizes information extracted from the judged documents to provide evidence of

relevance or non-relevance in the unseen documents. We use clustering to seek con-

texts from unseen documents that are similar to those in the judged documents. In

this way, additional relevance information can be obtainedfor B&D. Experiments on

the TREC-2005 collection show that a ‘clustered SVM’ scheme iseffective in further

improving relevance feedback effectiveness as compared tostandard B&D, yielding

small but statistically significant improvements in MAP. Thus, this is a promising di-

rection for further research.
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Chapter 1

Introduction

The popularization of the personal computer in the 1980s andthe advent of the World

Wide Web in the 1990s truly heralded the Era of Information. Nowadays people are

in constant need of information, whether to accomplish a task demanded by their job,

to fulfill their interests, or even to meet the requirements of everyday life, such as

finding about available choices of household consumables. With more and more in-

formation being stored electronically, the electronic computer itself provides people

with a powerful tool to search for information that they need. To harness this power,

it is necessary to develop methodologies to find relevant information both effectively

and efficiently. This is the aim of Information Retrieval (IR),which has been an ac-

tive area of research since the 1950s. IR research is multidisciplinary, encompassing

fields such as computer science, mathematics and linguistics. An important pioneering

implementation of an IR system was the SMART system developed by Salton and his

co-workers [71] in the 1960s, first at Harvard University andlater at Cornell Univer-

sity. Such IR systems allowed early IR experiments to be performed. By the 1970s, a
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number of retrieval methods were already developed using small corpora [73].

While IR research has been ongoing for half a century, even state-of-the art retrieval

systems today are still far from achieving perfect effectiveness. With the constant ex-

ponential growth of the available information, there is forone the question whether

techniques developed for small corpora can efficiently scale up to the huge corpora

which are the norm today. Furthermore, with more and more available data to search

from, it is conceivable that it is getting harder to distinguish between what is truly rel-

evant and what is not. Besides, there are intrinsic lexical problems associated with the

way people express their information need. A person’s information need is generally

stated in the form of a ‘query’ which consists of one or more ‘query terms’. There

is firstly the problem of polysemy, i.e. the existence of multiple meanings of a word.

An example is the query term ‘blackberry’, whereby the term itself does not indicate

whether the person desires information about blackberry the fruit or the mobile device.

Polysemy is a cause for query term ambiguity (e.g Spärck Jones et al. [77]). Because

of this problem, the IR system may return many irrelevant documents related to a topic

not desired by the user, resulting in poorprecision, which is equal to the percentage

of a retrieved list of documents that are relevant. Precision is an important evaluation

measure in IR. Another lexical problem is word mismatch (e.g.Xu and Croft [93]),

wherein the same concept may be referred to by different words, i.e. synonyms. For

example, if ‘automobile’ is one of the query terms, there maybe relevant documents

that do not contain the word ‘automobile’ at all, but the word‘car’ instead. In this

case, the IR system may fail to find some relevant documents ifit only returns docu-

ments containing the exact query terms, resulting in poorrecall, which is equal to the
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percentage of all relevant documents in the corpus that are retrieved. Recall is another

important evaluation measure in IR.

This thesis investigates new methods that deal with the polysemy and word-mismatch

problems mentioned above. Past research has found query expansion via relevance

feedback (RF) to be an effective way to tackle these lexical problems [65],[26]. Hence

in our work, we seek methods that improve the performance of standard query expan-

sion methods in the RF setting. Another way to deal with the polysemy problem, was

the use of ‘document-contexts’ (or simply ‘context’ for brevity) by Wu et al. [92],[91],

within a probabilistic retrieval model. The document-context of a termt is defined

as a text window of a fixed-size (i.e. fixed number of words) centred ont [92]. The

idea is that the words in the neighbourhood of a term that occurs in a document may

indicate the specific usage of the term. For example, if thereare words such as ‘fruit’,

‘nutrition’ or ‘vitamin’ in the vicinity of the word ‘blackberry’, then one may infer

the document is about the fruit rather than the device. Following Wu et al., the new

methods that we introduce in this thesis are based on document-contexts.

In regard to the word mismatch problem, one plausible solution is the use of clus-

tering techniques, which automatically classifies objectsinto groups according to their

similarity. According to the Cluster Hypothesis of Jardine and van Rijsbergen [35],

documents relevant to the same query tend to be similar to oneanother. Suppose a

documentA contains a synonym of an actual query term instead of the termitself (e.g.

‘car’ instead of ‘automobile’). If the text ofA is quite similar to a known relevant

document, then it is a good indication thatA is relevant as well. Forming clusters of

documents will group the documentA with other relevant documents, enabling it to
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be identified as relevant event though it does not contain a query term. The use of

clustering in IR has been investigated by various researchers (e.g., Salton [71], Jardine

and van Rijsbergen [35]). A review of this topic will be included in Chapter 2.

1.1 Research problems and motivation

In this section we describe the main research problems that are investigated in this

thesis and the motivation for studying these problems.

1.1.1 Context-dependent term-weighting

In information retrieval and text data mining, an importantelement is the weighting of

terms. A set of weights for all the terms that occur in a document constitutes a repre-

sentation of the document. It is well established in IR that the retrieval effectiveness

depends on appropriate term-weighting (Salton and Buckley [68]). A well-known and

common term weight in use is the TF-IDF (e.g. Robertson and Sparck-Jones [62]). For

example, the successful BM25 term weights introduced in the Okapi system (Robert-

son et al. [63]) are essentially TF-IDF weights. In general,the TF-IDF value of a termt

in a documentd depends on the occurrence statistics oft in d or in the corpus, but does

not depend on the other terms appearing in the document. In other words, TF-IDF is in-

dependent of the ‘document-contexts’ oft, using the definition of a document-context

as a fixed-size text window centred ont [92]. In this thesis, we investigate the new

class of context-dependent term weights, and address the following research problem:

Whether context-dependent term weights can improve the retrieval performance in RF
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compared to the traditional TF-IDF term weights?

Our study is motivated by the recent work of Wu et al. [91] who showed that

assigning TF-IDF weights to terms in a document can be interpreted as making rele-

vance decisions in information retrieval. They introduceda probabilistic nonrelevance

decision model in IR. Their model mimics a human making a series of ‘local rele-

vance decisions’ by reading texts in the vicinity of all the query terms that occur in a

document and deciding whether these portions of the document are individually rel-

evant to the query. Thus the model is based on document-contexts centred on query

terms. They derived a ranking formula that has a form similarto the BM25 weight

(e.g. Robertson and Walker [59]), provided that the term frequency weighting of the

query terms are adjusted according to the local evidence of relevance extracted from

the text windows. Their derivation involves making severalassumptions, in particular

the Minimal Context assumption, which states that for any query, the local relevance

at a locationk in a documentd is determined only by the single term occurring at lo-

cationk. As pointed out by Wu et al. [91], this assumption is not realistic because it is

expected that the words occurring close to a query term, and not the query term alone,

should affect the local relevance decision. They commentedthat such an unrealistic

assumption may cause performance limitations of TF-IDF term weights. Hence, we

are motivated to relax this assumption and investigate whether there is any advantage

in term weights that depend on contexts with a size larger than unity. Furthermore,

because of the common use of TF-IDF, it is of interest to test how effective are the

context-dependent term weights as compared with the traditional TF-IDF.
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1.1.2 Clustering evaluation measure

We investigate the use of clustering techniques as a solution to the word mismatch

problem. Numerous clustering algorithms have been developed in the past and appli-

cations of them are found in a broad range of disciplines. Therefore, we need to find

an effective clustering algorithm for our purpose. An important issue that arises is how

to define an appropriate measure to quantitatively evaluatethe clustering results. This

is the problem that we first address.

In order to quantify the quality of a document cluster, Jardine and van Rijsber-

gen [35] introduced the E-measure, which is a composite measure that combines the

precision and recall values of the cluster. They also definedthe MK1 measure which

is equal to the best E-measure attainable by retrieving a single cluster based on the

clustering of a set of documents. This is a natural benchmarkmeasure appropriate to

applications where a single retrieved cluster is desired. However, it is possible that

better retrieval effectiveness is attained by returning several clusters rather than a sin-

gle cluster (Griffiths et al. [22]). For example if a search query is too general, it may

cover several sub-topics, and documents relevant to the query may fall into different

sub-topic categories (Chik et al. [8]). Conventional similarity scores based on word

statistics do not necessarily yield a high value across different relevant sub-topics. In

this case, clustering algorithms may produce isolated clusters where relevant docu-

ments are concentrated. Correspondingly, an appropriate retrieval strategy would be to

identify the multiple ‘high precision’ clusters and returnall the documents contained

in them as a pool. The MK1 measure, which is associated with a single optimal cluster,

6



would not be an appropriate benchmark for this strategy. In fact, there are applications

where multiple clusters are naturally desired. For example, the web search engine

Vivisimo (Koshman, Spink and Jansen [43]) returns search results in clusters corre-

sponding to different sub-topics, and a user may find relevant information in more than

one of these clusters. We are therefore motivated to seek a new measure which will

more truly reflect the effectiveness of a clustering algorithm for applications where

multiple clusters are desired.

1.1.3 Enhancing retrieval effectiveness by clustering techniques

Our experiments have demonstrated the effectiveness of thenew context-dependent

term weights in a RF task being demonstrated by our experiments. In relevance feed-

back, the new term weights are obtained by utilizing relevance information being ex-

tracted from a small number of judged documents. We are motivated to investigate

whether further performance improvement can be obtained bydiscovering additional

relevance information via clustering techniques.

1.2 Contributions and their Significance

In this section we briefly state the main contributions of ourwork and their significance.

1. Improvement in retrieval effectiveness with new context-dependent term weights

We have investigated novel context-dependent term weightsin a relevance feedback

(RF) task. These weights are computed by a Boost and Discount (B&D) procedure.
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As such, this work represents the first experimental instantiation of context-dependent

term weights that are used for retrieval. These new term weights are shown to be

effective in enhancing the performance of RF, compared to using the traditional BM25

weights which are context-independent. Apart from RF, the new term weights may also

be used in other applications such as text categorization (e.g. Sebastiani [72] and Yang

[95]). Because our B&D procedure generates the new term weights by calculating

shifts to the widely used BM25 term weights, the method can readily be implemented

in systems that use the BM25 weights.

2. New clustering evaluation measure

We have introduced a new clustering evaluation measure, called CS (which stands for

‘Combination of Subclusters’), based on seeking an optimal combination of clusters

rather a single optimal cluster as in the traditional MK1 measure. As such, CS is an

extension of the MK1 measure. We show that calculating this measure can be reformu-

lated as an 0-1 optimization problem. For cases when clusters are disjoint, the problem

becomes a linear fractional 0-1 optimization problem whichcan be solved by linear

time algorithms. However, for arbitrarily overlapping clusters, the optimization prob-

lem is NP-hard. In this case, we have shown how the optimal solution can be estimated

by greed algorithms. While the greedy algorithms can be applied to arbitrarily over-

lapping clusters, we present a mathematical proof that one particular algorithm, based

on ‘cost effectiveness’, yields the global optimal solution for clusters that overlap only

by nesting.

Clustering has applications in many disciplines apart from IR, including pattern
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recognition (e.g. Jain [34]), data mining (e.g. Judd et al. [38]) and machine learning

(e.g. Carpineto et al. [6]). Our new measure for clustering effectiveness could be useful

in future developments of cluster analysis in IR and other disciplines. Commercial

applications of clustering for retrieval, such as Vivisimo, suggest that there is interest

for further research in this area. In our experiments, the better evaluation measures

obtained by combining clusters as compared with the traditional MK1 measure also

reveals a greater but latent potential of the clustering algorithms in grouping relevant

documents together. While we have focused on hierarchical clustering in our study,

the concept can readily be applied to any clustering algorithm, such as K-means.

1.3 Experimental environment

In this section, we briefly describe the test collections that we use in our experiments,

and also the retrieval evaluation measures that we use.

1.3.1 Test collections

Many of the early experiments in IR were conducted using small text corpora such

as the Cranford collection with several thousand documents [73]. In 1992, the Text

REtrieval Conference (TREC) was started (Harman [27]). TREC is anongoing series

of IR workshop which provides a platform for developing IR techniques by making

available large text collections. It also supplies sets of queries which come with rele-

vance judgements made by human experts on a pool of retrieveddocuments for each

query. By using TREC’s common evaluation package, it is possible for different TREC
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participants to compare the effectiveness of their different techniques.

Over the years, the size of the TREC test collections has expanded. In our work, we

have performed our experiments using various TREC collections, including TREC-2,

-6, -7, -8 and -2005. Some statistics of the collections are given in Table 1.1. Each

of these collections has 50 ‘topics’, consisting of ‘title’, ‘description’ and ‘narrative’

fields, which describe the topics in varying details. In our experiments, we use ‘title

queries’ extracted from the title fields because these have an average of between two

and three query terms, similar to typical web queries [79]. The TREC-2005 collection

has a much large size compared with previous collections (Table 1.1) and therefore

more in-line with current and future web search applications. However, in order to

demonstrate the robustness of our retrieval methods acrosscollections, our experiments

are also performed using the other collections (i.e. TREC-6, 7and 8). The reason for

choosing these collections is because of their different characteristics. While these ear-

lier collections have similar sizes, TREC-6 contains some very long documents, such

as congressional records. TREC-7 and TREC-8 use the same document collections

without congressional records, but TREC-7 contains more difficult queries for which

it is hard to achieve good retrieval results [89].

Table 1.1: Some statistics of the TREC collections used in ourexperiments.

TREC-2 TREC-6 TREC-7 TREC-8 TREC-2005

Av. # of title query terms 3.8 2.5 2.4 2.4 2.6

Av. # of rel docs per query 232.56 92.22 93.48 94.56 131.22

Number of documents 741,857 556,077 528,155 528,155 1,033,461
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1.3.2 Retrieval evaluation measures

As mentioned earlier,precisionand recall are two important evaluation measures in

IR. While precisionindicates the accuracy of the retrieval result,recall indicates its

completeness. These two measures do not take into account the ordering of the doc-

uments in the retrieval result. For systems that return a ranked list of documents, it is

useful to have a measure which emphasizes placing relevant documents higher in the

list. A measure that serves this purpose is the Average Precision (AP), which is defined

by:

AP =
1

R

N
∑

r=1

P (r)× rel(r), (1.1)

wherer is the rank,N is the number of the documents in the ranked list,R is the

number of relevant documents in the corpus,rel(r) is a binary function indicating

the relevance of the document at rankr (i.e. rel(r) is 1 or 0 if the document at rank

r is relevant or irrelevant respectively), andP (r) is the precision of the list at the

cut-off rank r. Eq.1.1 shows that the AP measure encompasses both precision and

recall. It is typical that the valueN = 1000 (Eq.1.1) is used in evaluations. For a

given set of queries, averaging the AP values for all the queries yields the MAP (Mean

Average Precision) measure. MAP is now the predominant evaluation measure in the

IR literature, such as used in TREC. It is clear that MAP, as for precision and recall,

ranges between 0 and 1, with a value of 1.0 indicating perfectretrieval.

In some applications, a high recall value may be important, such as in the searching

of patent or legal documents. However, some users may desirea small number of

truly relevant documents rather than getting the complete set of relevant documents.
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In this case, a common appropriate measure is P@n, i.e. the precision value of the

top n retrieved documents, with P@10 typically being used. However, Buckley and

Voorhees [3] had found P@10 to have a sensitivity issue, so that a large number of

queries (more than 50) may be required to distinguish the performance effectiveness

of two different methods. Hence, in this thesis we will not report evaluations with

P@10, but focus on the MAP measure only.

In Chapter 3 and Chapter 5, our experiments are performed in a RF setting, in

which relevance judgments are made onNRF documents, and the information fed back

to the system for a second retrieval. One established methodology to evaluate the RF

performance is based on theresidue collection, from which theNRF judged documents

are removed (e.g. Ruthven et al. [66]). The evaluation measures, such as MAP, are

calculated based on the remaining relevant documents in theresidue collection. We

also adopt this practice. Thus, our MAP values reported in this thesis are residue

measures.

1.4 Outline

The remainder of this thesis is as follows.

Chapter 2 Literature review and background: In this chapter we first review some

methods that have been used in past research to tackle the polysemy and word-mismatch

problems. In particularly, several topics involved with our new methods are reviewed

in greater detail, including (1) relevance feedback; (2) term weighting; and (3) appli-

cation of clustering techniques in IR.
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Chapter 3 Context-dependent term weights:We describe context-dependent term

weights that are computed by our Boost and Discount (B&D) procedure in a relevance

feedback (RF) setting. Extensive experimental results are presented to demonstrate

that the new term weights can produce enhanced retrieval effectiveness compared with

the baseline which uses context-independent BM25 weights.

Chapter 4 Clustering evaluation: We introduce the new clustering evaluation mea-

sure CS. Experiments are presented to demonstrate the subclass CS1, which applies to

non-overlapping (i.e. disjoint) clusters. For the case of overlapping clusters, we also

show how the estimates of the optimal measure may be obtainedby greedy approx-

imation algorithms. For the case where clusters overlap only by nesting, we present

a proof that the ‘cost effectiveness’ greedy algorithm in fact yields the global optimal

measure.

Chapter 5 Relevance feedback with document-context clustering: We describe a

method to apply clustering techniques as an extension to theB&D procedure to gener-

ate context-dependent term weights. Experimental resultsshow that this is a promising

direction for further research.

Chapter 6 Conclusion and future work: The main results and contributions of the

thesis are summarized. Some items for possible future work are proposed.
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Chapter 2

Literature Review and Background

This thesis tackles the polysemy and word mismatch problemsin information retrieval

(IR). In this chapter we first discuss these problems and review the various methods

that have been used in past research to solve them (Section 2.1). In particularly, among

the successful solutions to both the polysemy and word mismatch problems is ‘query

expansion’ viarelevance feedback(RF). Building on past research, we seek new so-

lutions to further improve the performance of query expansion in relevance feedback

(Chapter 3). In Section 2.2, we will present a review of RF in detail. Furthermore,

our new method presented in Chapter 3 is based on the novelcontext-dependent term

weights. Hence, Section 2.3 is included to discuss ‘Term weighting’, which is a crucial

element not only in IR, but also in various text mining tasks, such as text categorization.

As for the word mismatch problem, we investigate a new clustering method (Chapter 5)

to tackle it. In Section 2.4, cluster analysis is reviewed, including common clustering

algorithms, the use of clustering methods in IR, and cluster evaluation measures.
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2.1 The polysemy and word mismatch problems in IR

Even at quite early stages of IR research, it was realized that a factor which limits re-

trieval effectiveness is actually related to the difficultyfor a person to formulate search

requests. These requests, or queries, generally consist ofone or more query terms. In-

trinsic lexical problems with the query terms arise which affect retrieval effectiveness.

Two of the problems that we address in this thesis arepolysemyandword mismatch.

Polysemy refers to the existence of multiple meanings of a word (e.g. [79]). The

problem caused by polysemy in retrieval is that a query term by itself may not indicate

which specific meaning of the word is intended. There may be many documents con-

taining the query term, albeit with a meaning different fromthe user’s intension and

hence not of interest to the user.

Some solutions to the polysemy problem that have been studied in the past include:

1. Query modification Various ways of query modification (orquery expansion)

have been studied. Some of these methods are fully automatic, without any need of

user interaction. Others require some input from users. Salton and Lesk [69] tested

the effect of automatic query expansion by either broader ornarrower terms selected

from a hierarchical thesaurus. They found the effect to be inconsistent and hence the

method was not generally useful [69]. Voorhees [86] implemented query expansion

based on lexical-semantic relations encoded in WordNet [55], a large and general-

purpose lexical system built at Princeton University. Their experiments performed on

TREC collections found little benefit of the method both in thecase of long queries or

short queries. In fact, fully automated methods suffer the same polysemy problem, as
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the added terms may also have meanings different from that intended.

A method of query expansion that requires user input is relevance feedback (RF).

In RF, the retrieval system first returns a ranked list of documents based on the original

search query. The list is presented to the user, who then reads a number of the top

ranked documents and make relevance judgments on them. The judged relevant and ir-

relevant documents are then fed back to the retrieval system, which extract words from

the judged documents to modify the search query. RF has been studied extensively

in the past and found to be an effective scheme to enhance retrieval performance (e.g.

Rocchio [65], Harman [26] and Buckley [2]).

2. Latent Semantic Indexing (LSI) LSI was introduced by Deerwester et al. to

tackle the polysemy and word mismatch (or synonym) problems[18]. In LSI, the

individual terms that describe a document are replaced by ‘artificial concepts’ that can

be specified by one or combinations of several terms. While LSIhas been tested and

found to be effective in small text collections [18], its effectiveness does not seem to

be scalable to larger collections, such as those used in TREC.

3. Document-contextsThe document-context (or simply ‘context’) of a termt is

defined as a text window of a fixed-size (i.e. fixed number of words) centred ont (Wu

et al. [92]). It was shown in [92] and [90] that using document-contexts gave promising

results in retrospective experiments (i.e. given full relevance information). Hence, it is

worth studying whether document-context methods are effective in a predictive setting

as well (i.e. given no or partial relevance information).

Overall, query expansion in a relevance feedback setting has shown to be a success-

ful method to deal with the polysemy problem, while the document-context approach
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is also a promising direction. Hence, in our work we attempt to further improve the

retrieval performance by augmenting document-context methods to traditional query

expansion in relevance feedback. A more detailed review of RFwill be given in Sec-

tion 2.2.

The second problem that we address is word mismatch, which arises because in

writings, different people may use different words to express the same concept. In

retrieval this may be problematic because a person’s query terms may not match those

of a relevant document. For example, instead of the query term ‘automobile’, a relevant

document may use the word ‘car’. Some solutions to the word mismatch problems

include:

1. Query modification As for the polysemy problem, query expansion via rele-

vance feedback is also an effective solution for word mismatch. By query expansion,

extra query terms are selected from the judged relevant documents for a new retrieval.

A relevant document that does not match the original query term may be identified if

it contains the new terms in the expanded query.

2. Latent Semantic Indexing (LSI)The LSI method was introduced to tackle the

word mismatch as well as polysemy problems (Deerwester et al. [18]). However, as

mentioned above, the scalability of LSI methods to large text collections is question-

able.

3. Clustering Clustering methods automatically classify objects into groups ac-

cording to their similarity. By theCluster Hypothesis(Jardine and van Rijsbergen

[35]), relevant documents tend to be similar to one another.Clustering methods will

thus group relevant documents together. This will enable a relevant document that
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does not contain the exact query term to be identified, through its similarity with other

relevant documents. A more detailed review of the use of clustering in IR is presented

in Section 2.4.

Apart from the proven success of query expansion, the work ofTombros and van

Rijsbergen [81] suggests that ‘query-specific clustering’ (see Section 2.4 below) is

a promising direction. Hence, we have applied query-specific clustering to our new

‘document-context’ method . This will be reported in Chapter5.

2.2 Relevance Feedback

In relevance feedback (RF), a user scans through a number of top ranked documents

returned by a retrieval system and makes relevance judgments on them. Information

extracted from the judged relevant or irrelevant documentsis then fed back to the

retrieval system to perform a second retrieval. Typically the relevance information is

used to modify the original query, either by adding terms to the original query (i.e.

query expansion), or to modify the weight of the query terms (i.e. query re-weighting).

In principle, RF can be an iterative process, with the retrieval results based on the

modified query being shown to the user, who again makes another relevance judgment

on the top ranked documents in the new result. Query modification via RF has been

found to be more effective in tackling the polysemy and word mismatch problems

than fully automatic methods that rely on a thesaurus. The remaining of this section

presents a survey of the past research in RF.
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Query expansion

Rocchio [65] first formulated the query expansion (QE) methodby means of relevance

feedback, implemented in the Vector Space model (VSM). In VSM, both documents

and queries are represented byn-dimensional vectors, wheren is the number of distinct

terms contained in the corpus. In Rocchio’s formulation, terms belonging to the known

relevant and irrelevant documents are added to the initial query vector~Q with positive

and negative weights respectively. Denoting the set of judged relevant and judged

irrelevant documents byR andI respectively, Rocchio’s formula of the modified query

vector is:

~QRF = ~Q+
1

card(R)

∑

~D∈R

~D

| ~D|1
−

1

card(I)

∑

~D∈I

~D

| ~D|1
, (2.1)

where| ~D|1 is the city-block length of the document vector~D. If the weight of a query

term drops below zero, it is removed from the query. Various modifications to the

QE method of Rocchio have been studied, such as the early work of Ide [32]. While

the works of Rocchio [65] and Ide [32] include all terms of the judged documents in

expanding the query, Harman [26] showed that it was more effective to select terms

from the judged documents for QE, according to an appropriate term ranking function.

Query expansion in a probabilistic model was also studied byRobertson et al. [63] and

Sp̈arck-Jones et al. [78]. They used a term selection function called offer weight [78],

which we will employ in our experiments as described in Section 3.3.2.

19



Pseudo-relevance feedback

One of the often cited problems of relevance feedback is actually the unwillingness

of users to make relevance judgments in a real application (e.g. Ruthven et al. [66]).

Hence, it is of interest to find ways to perform relevance judgments without direct user

involvement. Among the various methods, pseudo-relevancefeedback (PRF), or ‘blind

feedback’ is a possible approach. PRF was first proposed by Croft and Harper [10] to

estimate probabilities in a probabilistic model for an initial search. Subsequently, it is

found to be effective for improving document rankings (e.g.Buckley et al. [1]). The

assumption of PRF is that the top-ranked documents in the firstretrieval are mostly

relevant and contain useful terms that can help to discriminate relevant documents

from irrelevant ones. However, one problem of PRF is the possibility of query drift,

which occurs when the top ranked documents used for blind feedback actually contain

few or no relevant documents. In this case, the terms added byPRF will be poor for

detecting relevance, and hence degrade the retrieval performance.

Implicit feedback

Implicit feedback is another way to obtain relevance information without directly re-

questing a user to make relevance judgments. This approach is based on analysing

click logs, especially in the web search setting. Some recent studies have shown that

clickthrough data can be interpreted as implicit feedback (e.g. Joachims et al. [37]).

Each ‘click’ on a link to a page is regarded as an endorsement (i.e. judged to be rele-

vant), while negative inferences may be drawn from pages that are bypassed (e.g Das

Sarma et al. [16]). Huge amounts of such data may be collectedfrom web search
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engines and thus available in bulk. Hence, by utilizing clickthrough data, relevance

feedback may be a feasible technique in web search applications.

2.3 Term Weights

In Chapter 3, we describe our new method to solve the polysemy problem. The method

involves calculating ‘context-dependent term weights’ ofthe query terms. This section

provides the background knowledge of the important topic of‘term weighting’.

In IR and text mining, a document is represented by a set of weights which are

assigned to all the terms that occur in the document. For example, in the simplest

Boolean vector representation of a document, the presence orabsence of a term is

indicated by a unit or zero weight respectively. In general,the term weightindicates

the importance of each term in the document.

In the various IR models, term weighting is an important component that enters the

ranking functions, which assign scores to the retrieved documents in order to produce a

ranked list. For example, consider the Vector Space Model (VSM) of IR (e.g. Salton et

al. [70]). In this model, a documentd is represented by the vector~D, whose elements

are the term weightsw(ti, d) assigned to each termti in document. Suppose a queryq

consists of terms{qi}, so that its vector representation~Q contain the weightsw(qi, q).

In VSM, the ranking function is given by the ‘cosine similarity’, Sim( ~D, ~Q), which is

equal to the dot product of the document vector and the query vector, normalized by
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the vector lengths:

Sim( ~D, ~Q) =

∑

ti∈q∩d
w(ti, d)w(ti, q)

| ~D|| ~Q|
. (2.2)

The term weights in Eq.2.2 are not given by the VSM model itself, but may be defined

by various weighting schemes. Clearly, the value of the ranking function depends on

the particular weighting scheme that is used, and differentschemes may yield different

ranking results. In fact, it is well established that the performance of an IR system

depends crucially on an effective term weighting scheme (e.g. Salton and Buckley

[68]).

In the following, we describe some developments of term weighting research.

2.3.1 The TF-IDF weighting

It can be expected that weighting a term by more detailed statistics of its occurrence

in a document than the simple Boolean representation can helpto better discriminate

one document from another and thus aid document retrievals.Based on earlier works,

Salton and Buckley [68] identified three important components that constitute an ef-

fective term weight:

• term frequency (TF) in the document The pioneering work of Luhn [53] in

1958 first considered using the ‘occurrence frequency’ (or ‘term frequency’ as

it is now generally called in the literature), as an indicator of the significance of

a term. The more times a term appears in a document, the more itis regarded

being important. The term frequency of the termt in documentd is denoted by
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f(t, d).

• prevalence of the term in the collectionWords that appear in many documents

in the whole collection are regarded as too common and are notgood discrimi-

nators of a document’s content. In 1972, based on this intuition , Sp̈arck Jones

[76] introduced the well known weighting that is now called ‘inverse document

frequency’ (idf ). Theidf gives less weighting to terms that occur in many doc-

uments. A typical and simple definition of theidf is as follows [76]. For a

corpus consisting ofN documents, if a termt appears inn documents (with

n denoting the ‘document frequency’ of the term),idf weighting is given by

idf(t) = log(N/n).

• length of the documentIn a long and verbose document, there may be repeated

use of words. Hence, long documents may contain more query terms than short

documents. To avoid biasing long documents over short ones,[68] find that

including a length normalization factor in the term weightswill improve retrieval

performance.

Salton and Buckley [68] performed retrieval experiments with the Vector Space

Model using combinations of variants of TF and IDF components in the query and

document vectors. Some of the variants of the term frequency, f(t, d) that were tested

in [68] include: (1) binary weight; and (2) 0.5 + 0.5f(t, d)/max f(t, d). For idf ,

they also considered the variantlog((N − n)/n). They found the productf(t, d) ×

log(N/n(t)) to be the most effective. In the literature, terms weights that have a gen-

eralized TF component multiplied by an IDF component are generally referred to as
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‘TF-IDF’.

Over the past years, various IR models have been developed, including the Vec-

tor Space Model described above and probabilistic models. The various IR models

generally produce ranking functions that have forms which can be interpreted as a

summation over some function of the weighting of query terms(e.g. including fac-

tors such as the term frequencies in the document and the query itself, f(qi, d) and

f(qi, q)). It is remarkable that many of the term weights derived by these IR models

have the TF-IDF form. While the original introduction of the TF and IDF weights was

heuristic in nature, the later derivations by the models maybe regarded as theoretical

justification of the weights.

One important variation of the TF-IDF form is the BM25 weight introduced in the

Okapi system (Robertson et al. [63]). This is generally regarded as the state-of-the-

art term weight. This weighting was derived within a probabilistic retrieval model,

and a more detailed description of this weighting will be presented in Section 2.3.2.

Apart from BM25, another important variant of the TF-IDF termweight that is used

by various researchers (e.g. Wong et al. [89]) is the pivotednormalization weight of

Singhal et al. [74]:

WPN(d, q) =
∑

t∈d∩q

1 + ln(f(t, d))

1 + ln(avgf(d))
×

1

(1 + s) + s |d|1
∆

× f(t, q) · ln
N + 1

df
, (2.3)

wheres is a constant,avgf(d) is the average term frequency in documentd, |d|1 is the

City-block length ofd, and∆ is the average document length in the collection.
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2.3.2 Probabilistic retrieval model and the BM25 weighting

In IR, probabilistic retrieval models are generally based onranking documents accord-

ing to the Probability Ranking Principle, which states that retrieval effectiveness is

greatest if documents are ranked in the order of decreasing probability of relevance to

the query (e.g. Robertson [60]). Probabilistic retrieval was first suggested by Maron

and Kuhn in 1960 [54]. Subsequently, various probabilisticmodels have been pro-

posed, differing in the way the probability of relevance is estimated. Notable examples

of probabilistic retrieval models include: the Binary Independence model (Robertson

and Sp̈arck Jones [62]), the logistic regression model (Cooper et al. [9]), the 2-Poisson

model (Harter [28], Robertson and Walker [59]), and the language model (Ponte and

Croft [57], Lafferty and Zhai [47]).

One of the earliest probabilistic retrieval models was developed by Robertson and

Sp̈arck Jones [62]. They assigned weightings to query terms according to the prob-

abilities of term occurrence in relevant and irrelevant documents. The term weights

derived by their model are generally called RSJ weights. In practice, the RSJ weights

can be estimated if there are some known relevant documents,while in the absence of

such information, the estimate of the RSJ weight reduces to anidf form [59].

In [62] , two probabilities are defined for the termti:

pi = P (document containsti|document is relevant), (2.4)

qi = P (document containsti|document is not relevant). (2.5)
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The RSJ term weight is then given by:

wi = log
pi(1− qi)

(1− pi)qi
. (2.6)

Suppose relevance information is available –R out ofN documents are relevant, and

ri relevant documents contain the termti. Then, the estimates ofpi andqi are:

pi ≈
ri
R
, qi ≈

ni − ri
N −R

. (2.7)

The RSJ weight is then approximated by [62]:

wi = log
(ri + 0.5)(N −R− ni + ri + 0.5)

(R− ri + 0.5)(ni − ri + 0.5)
, (2.8)

where the value 0.5 is added to each of the components as a smoothing correction.

In the absence of relevance information,R andri are both set to zero in Eq.2.8,

which becomes:

wi = log
N − ni + 0.5

ni + 0.5
, (2.9)

thus yielding a weight with the IDF form.

Subsequently, the 2-Poisson model of Robertson and Walker [59] was introduced

to model term frequencies by a mixture of two Poisson distributions. A series of best

match term weighting functions were developed. In particular, this work led to the

BM25 term weight in which the effect of document length is taken into account [61],

[78]. The BM25 weight is essentially a special form of TF-IDF.
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The BM25 ranking formula for a documentd and queryq = {q1, . . . , qn} is:

BM25(d, q) =
n

∑

i=1

f(qi, d) · (k1 + 1)

f(qi, d) + k1 ·
(

1− b+ b · |D|
∆

) · wi(qi) ·
f(qi, q)

k3 + f(qi, q)
(2.10)

where|D| is the length of the document,∆ is the average document length in the text

collection, andwi is an IDF factor given by Eq.2.9.

2.3.3 Context-dependent term weights

The novel concept of context-dependent term weights was suggested by Wu et al. ([90]

and [91]) via their nonrelevance decision model of IR. As discussed in Section 2.3.1,

the traditional TF-IDF term weight of a termt depends on the occurrence statistics of

t but not on the other terms in the document or in the collection. On the other hand,

a context-dependent term weight of the termt is reweighted based on the document-

contexts oft. The comparison of retrieval effectiveness using these weights and the

performance using the traditional context-independent TF-IDF weights is the main

focus of Chapter 3.

2.4 Clustering

Cluster analysis is applied in a wide range of disciplines such as pattern recognition

[34], data mining [38], machine learning [6] and information retrieval [35]. In IR, as

mentioned above, clustering is a possible solution to the word mismatch problem. In

our work, we have studied the application of clustering techniques to our new method
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of context-dependent term weights for RF. This will be reported in Chapter 5. In this

section we give some background of cluster analysis, with a focus on IR.

We first provide describe several commonly used clustering algorithms (Section

2.4.1). Then we present a review of the application of clustering techniques in IR

(Section 2.4.3), and various commonly used clustering evaluation measures (Section

2.4.4).

2.4.1 Clustering algorithm

Over the past few decades, a large number of clustering algorithms have been devel-

oped. An extensive review of these algorithms is given by Xu and Wunsch [94]. Here,

we briefly describe some clustering algorithms that variousresearchers have used in

IR.

Hierarchical clustering

Hierarchical clustering methods produce tree-like structures of objects, such that ob-

jects strongly similar to each other are grouped into small clusters, which are in turn

nested within larger clusters containing less similar objects. Hierarchical clustering

algorithms may be broadly divided into two categories: agglomerative and divisive.

Agglomerative clustering starts from grouping the two mostsimilar objects, and pro-

ceed to build the tree-like structure from the bottom to the top by adding less and less

similar objects to the group. In divisive clustering, the single whole grouping of all the

items is progressively subdivided into smaller clusters.

In IR, agglomerative clustering is preferred (van Rijsbergen[83], Willett [88]).
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Hence, we will focus on agglomerative methods. There are several common agglom-

erative hierarchical clustering algorithms that are widely used. These differ in the

determination of which documents or clusters are merged at each stage in the building

of the hierarchical structure:

• Single LinkageIn single linkage, the similarity between two clusters is the max-

imum of the similarities between pairs of items, with the members of a pair being

taken from each of the two clusters. i.e. for two clustersCa andCb, the single

linkage similarity is:

S(Ca, Cb) = max
i∈Ca,j∈Cb

(S(i, j)). (2.11)

The method is called single linkage because clusters are joined at each stage by

the single strongest link between them. Single linkage tends to produce ‘chain-

like’ structures.

• Complete Linkage In complete linkage, the similarity between two clusters is

defined as:

S(Ca, Cb) = min
i∈Ca,j∈Cb

(S(i, j)). (2.12)

This method tends to produce small clusters that are tightlybound.

• Group averageThe group average method is intermediate between single link-

age and complete linkage, with the similarity between two clusters being the

average of the similarities between all pairs of items, withmembers of a pair

being taken from each of the two clusters.
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• Ward’s method In this method, the clusters that are merged at each stage are

chosen to minimize a certain objective function. For example, Ward’s imple-

mentation used an error sum of squares objective function.

Partitional clustering

Partitional methods are the main techniques of non-hierarchical clustering. The one

most commonly used isK-means. Partitional methods have the advantage of low

computation costs, typically in the order ofO(N) for time complexity for clustering

N objects, compared withO(N2) for hierarchical techniques. However, they gener-

ally require a number of experimental parameters, such as the number of partitions or

clusters required. Also, there is an arbitrary aspect in having to select some documents

as the initial seeds for clustering. These may be the reasonswhy partitional methods

are not commonly used for document clustering in IR.

Fuzzy

Unlike hard partitional clustering where each item only belongs to one cluster, in fuzzy

clustering an item is allowed to belong to all clusters with adegree of membership,

u ∈ [0, 1]. In document clustering, if each cluster corresponds to a different subtopic,

fuzzy clustering allows a document whose content includes several topics to belong

to more than one cluster. An example of fuzzy clustering is the fuzzy c-means (e.g.

Hoppner et al. [30] and Kummamuru et al. [44]).
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2.4.2 Similarity score

Generally a clustering algorithm requires the input of the similarity score between pairs

of items to be clustered, such as the scoresS(i, j) in Eq.2.11 and Eq.2.12. A common

similarity score is the cosine similarity:

S(i, j) =
~vi · ~vj
|~vi||~vj|

, (2.13)

where~vi and ~vj are the vector representations of the itemsi and j. In the case of

document clustering,~vi is the document vector~Di. Typically, TF-IDF term weights

(Section 2.3.1) are adopted for the vector representation.The ‘cosine’ of two docu-

ments has the geometric interpretation of being the ‘angle’between the two document

vectors inN -dimensional space, whereN is the number of distinct terms in the corpus.

Other measures that have been used by many researchers include the Dice coefficient

and Jaccard coefficient (e.g. Jardine and van Rijsbergen [35]).

Dang et al. [13] distinguished between the traditional ‘document based’ similarity

score defined by Eq.2.13 where the vector~vi is the document vector~Di, and a new

‘document-context based similarity’. The new similarity scoresimc(Di, Dj) is calcu-

lated as a function of the cosine similarity of pairs of contexts belonging to the two

documents. The reason for using this context-based similarity is to reduce the effect

of noise terms existing outside of the document-contexts. They found that using the

new similarities could produce better clusters, as measured by the MK1 measure. The

MK1 measure will be described in Section 2.4.4 below.
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2.4.3 Clustering in IR

In this section we review past research in IR where clustering techniques have been

applied.

Optimal Search

Cluster analysis was introduced in IR to improve retrieval efficiency [71] and effective-

ness [83]. TheCluster Hypothesisintroduced by Jardine and van Rijsbergen [35] has

been the basis behind the effort of various researchers to apply clustering techniques in

IR. The hypothesis states that documents relevant to the samequery are more similar to

one another than to irrelevant documents. In other words, ifclustering algorithms are

applied to a set of documents, then the relevant documents will be grouped together

based on their similarity. In the ideal case, clusters containing relevant documents

are well separated from the clusters of irrelevant documents. According to the cluster

hypothesis, one would expect the similarity scores betweenrelevant document pairs

(Rel-Rel) to be on average larger than those between relevant and irrelevant (Rel-Irr)

pairs. Hence, a distribution of similarity scores of Relevant-Relevant and Relevant-

Irrelevant pairs should look like the forms shown in Fig.2.1.

For document clustering in IR, two broad classes of clustering methods that have

been studied by various researchers are partitional clustering and hierarchical cluster-

ing (e.g. van Rijsbergen [83], Willett [88], Steinbach et al.[80]). Partitional meth-

ods such as K-means have the attraction of better time complexity than hierarchical

methods. Early studies found that the effectiveness of searches using partitional meth-

ods was poorer than searches without clustering (Salton [71]), though recently some
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Figure 2.1: Distribution of similarity scores between Relevant-Relevant and Relevant-
Irrelevant pairs.

promising results were reported by Steinbach et al. [80] with a ‘bisecting K-means’ al-

gorithm. Some authors have demonstrated the potential effectiveness of retrieval based

on hierarchical clustering (Griffiths et al. [22]; Tombros and van Rijsbergen [81]),

whereas other work found retrieval using unclustered collections to be more effective

(El-Hamdouchi and Willett [20]). For hierarchical clustering, various algorithms have

been applied, including single linkage, complete linkage,group average and Ward’s

method. Numerous comparisons of these algorithms have beenmade (Voorhees [85];

El-Hamdouchi and Willett [20]; Griffiths et al. [22]). While K-means groups docu-

ments into disjoint partitions, hierarchical methods generate a tree structure in which

documents that are more similar are nested within larger clusters containing less sim-

ilar documents. In the context of web document clustering, Zamir and Etzioni [97]

introduced the Suffix Tree Clustering algorithm which is based on identifying phrases

common to groups of documents. They defined a base cluster to be a set of documents

that share a common phrase. These base clusters may be overlapping in the sense

that a document may appear in more than one of them. Overlapping clusters are also
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produced by the Spherical Fuzzy c-Means algorithm of Kummamuru et al. [44].

Various retrieval strategies have been studied for searching a hierarchical system of

documents (van Rijsbergen and Croft [84], Croft [11], Voorhees[85], El-Hamdouchi

and Willett [20] and Willett [88]). With a top-down search, the query is first matched

against the two child clusters of the root, and the sub-tree is chosen for which the

query-cluster similarity is greater. The search then continues down the tree until some

retrieval criterion is satisfied. A bottom-up search startsat the base of the tree and

moves upwards until the retrieval criterion is satisfied. There are several approaches of

selecting the starting point of this type of search. It may bea relevant document if any

one is known. Otherwise, a nonclustered best match search can be performed, and the

document that is most similar to the query is chosen to be the start of the bottom-up

search. Another approach uses the bottom level clusters (Croft[11]). A bottom level

cluster is the smallest cluster through which a document joins the hierarchy. Thus, for

N documents, there areN bottom level clusters, up toN /2 of which can be duplicates.

A scan of all the bottom level clusters is performed, and the one that best matches the

query is chosen as the starting point of the bottom-up search. Some early studies of

top-down or bottom-up searches involved the retrieval a single cluster (van Rijsbergen

and Croft[84], Croft [11]). Griffiths et al. [22] found that searches which retrieved a

single bottom level cluster often returned only two or threedocuments. Hence, they

also considered either retrieving the 5 top-ranking bottomlevel clusters, or retrieving

sufficient top-ranking clusters to cover 10 distinct documents. Another retrieval strat-

egy that utilizes document clusters is to identify the clusters that are likely to contain

relevant documents and then rank each of the documents in these clusters against the
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query (Voorhees [85]). Some of the more recent work that seeks to identify ‘high

precision’ clusters include that of Kurland et al. [46].

Query-specific clustering

In the early stages of research of clustering in IR, document clustering was performed

on the entire corpus. This is called static clustering and the clusters thus formed are

independent of the search queries. More recently, query-specific clustering has been

studied by various researchers (Hearst and Pedersen [29]; Zamir and Etzioni [97],

Iwayama [33], Leuski [51], Tombros et al. [81], Liu and Croft [52]). Instead of the

entire corpus, query-specific clustering is performed on the retrieval results for each

query. Assuming that the initial retrieved list, say of 1000documents, are fairly well

matched to the given query, clustering of these documents may be expected to have

a larger chance of grouping together document relevant to the query. Tombros et al.

[81] showed that query-specific clustering had the potential to increase the retrieval

effectiveness compared to both static clustering and conventional document-based re-

trieval. Since query-specific clustering involves clustering only a small subset of the

whole document collection, the time required for clustering is much less than static

clustering. This is another advantage of query-specific clustering.

Query-specific clustering was also employed in the selection of relevant documents

in a relevance feedback environment (see next subsection).
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Clustering and relevance feedback

Various researchers have studied using clustering methodsto improve the performance

of PRF or RF. When clustering methods are applied in RF, the relevance judgments

may be made either before clustering is applied (‘pre-clustering relevance judgments’)

or after clustering is applied (‘post-clustering relevance judgments’). Works where

‘post-clustering relevance judgments’ is adopted includethose of Sakai et al. [67] and

Lee et al. [50]. Sakai et al. [67] studied a selective sampling method which skips some

top-retrieved documents based on a clustering criterion. The purpose of the sampling

is to select a more varied set of documents for feedback and isbased on the assumption

that top-ranked documents may be too similar and redundant.However, they did not

find significant improvements on NTCIR collections. Lee et al.[50] tested a cluster-

based resampling method for PRF and found the method to be effective for PRF.

Buckley et al. [2] had found that in relevance feedback, the retrieval effectiveness

increased with the number of known relevant documents. Whilea user may be ex-

pected to make relevance judgments on only a small number of documents, clustering

may be a plausible method to increase the amount of relevanceinformation for feed-

back to the retrieval system. This is the rationale of our approach to use clustering

methods for RF, as presented in Chapter 5.

Clustering and presentation of retrieval results

While it is common for retrieval systems to return the retrieval results to the user as a

ranked list, alternative ways of presentation have been studied by various researchers.

In particularly, clustering has been utilized as a way to organize the search results
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for presentation to the user. Hearst and Pedersen [29] introduced the Scatter/Gather

cluster-based browsing method. In user-studies, their method allowed the users to

easily locate clusters with the largest number of relevant documents. Leuski [51] also

found that organizing search results by clustering was an effective way for the user to

locate relevant material as quickly as possible. In this way, the clustering method can

assist a user to select relevant documents for RF.

Clustering methods are actually implemented in some real commercial applications

for presentation. For example, the web search engine Vivisimo (Koshman et al. [43])

returns search results in clusters which correspond to different sub-topics.

2.4.4 Clustering evaluation

With the abundance in clustering algorithms, it is important to evaluate the goodness

of the clusters that are formed. In the literature, there areseveral methods of cluster

evaluation. The appropriate method to use depends on the specific problem on hand.

Some important methods are described in the following. In particularly, for IR a tra-

ditional measure is MK1. This is a natural measure to use in IRbecause unlike other

schemes, it is actually based on precision and recall, whichare the standard measures

in IR.

Cluster validity

The general task of evaluating cluster goodness comes undercluster validity (see

Halkidi et al. [23] for a review).

37



MK1

The E-measure was introduced by Jardine and van Rijsbergen [35] in IR to provide a

measure of the quality of a document cluster. This measure isa composite of the recall

and precision of a cluster and is given by Eq.(2.14)

E = 1−
(β2 + 1)PR

β2P +R
(2.14)

whereP andR are the standard precision and recall values, andβ is a constant that

specifies the relative weighting of precision and recall. The valueβ = 1 signifies equal

importance ofP andR. In the limit β → 0, we haveE → 1 − P . Hence, values

of β < 1 correspond to a ‘precision-oriented’ measure. On the otherhand, in the

limit β → ∞, we haveE → 1 − R. Henceβ > 1 correspond to a ‘recall-oriented’

measure. It can be seen from Eq.2.14 that the range of values of E is between 0 and

1. For the ideal case withP = R = 1, the equation givesE = 0, while the worst

caseP = R = 0 yieldsE = 1. Hence, a smaller numerical value ofE corresponds

to better cluster goodness. In the literature, it is also common to use the related F-

measure, which is defined asF = 1− E.

Jardine and van Rijsbergen [35] also defined the MK1 measure which is equal to

the best E-measure attainable by retrieving a single cluster based on the clustering of

a set of documents. This is a natural benchmark measure appropriate to applications

where a single retrieved cluster is desired. Various authors have used this measure

to evaluate clustering effectiveness. For example, Tombros et al. [81] compared the

effectiveness of the various types of hierarchical clustering algorithms based on the
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MK1 values obtained with the different algorithms. Dang et al. [13] used MK1 to

examine the clustering effectiveness using the traditional ‘document-based’ similarity

scores and new ‘context-based’ similarity scores.

In Chapter 4, we present a new class of measure of clustering effectiveness, called

CS. Instead of a single ‘optimal cluster’, the CS measure is based on a combination

of subclusters. This measure is appropriate for applications where it is desirable for

objects of the same class be grouped in tight ‘subclusters’ corresponding to the ‘sub-

classes’ or sub-topics. We will describe this measure in detail in Chapter 4.

Rand index

In fields outside of IR, the adjusted Rand index is commonly usedin the statistics

literature [31]. This index measures the agreement betweenthe appearance of pairs of

objects in each cluster, with their appearance in the assigned classes or categories.
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Chapter 3

Context-Dependent Term Weights

Among the various methods that have been investigated in past research to tackle the

polysemy problem in IR, query expansion (QE) via relevance feedback (RF) is a well

established approach. More recently, Wu et al. ([92] and [91]) introduced ‘document-

contexts’ (or simply contexts) as another solution to the problem. Contexts are basi-

cally fixed-sized text windows within a document. Suppose a document contains an

occurrence of a particular query termqi. The idea is that the specific usage of the

term qi in the document may be inferred by reading what other words appear in the

neighbourhood ofqi. It is of interest to investigate whether document-contexts may be

utilized in a RF setting, to further enhance the performance of the traditional QE. This

chapter presents such an investigation.

Motivated by the work of Wu et al. [91], our new method uses a new ‘context-

dependent term weight’. Term weights have been an area of IR research that has at-

tracted much attention in the past (Section 2.3). Many of thecommonly used term

weights are of the TF-IDF (term frequency× inverse document frequency) form. It
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was shown in [91] that assigning TF-IDF weights to terms in a document can be inter-

preted as making relevance decisions in IR. They introduced aprobabilistic nonrele-

vance decision retrieval model. Their model mimics a human making a series of ‘local

relevance decisions’ by reading texts in the vicinity of allthe query terms that occur in

a document and deciding whether these portions of the document are individually rele-

vant to the query. As such, the model is based on document-contexts centred on query

terms. By adjusting the term frequency weightings of the query terms according to the

local evidence of relevance extracted from the text windows, they derived a ranking

formula that has a form similar to the BM25 weight (e.g. Robertson and Walker [59],

Robertson [61]), which is essentially a special form of TF-IDF. The derivation of [91]

involves making several assumptions, in particular the Minimal Context assumption,

which states that for any query, the local relevance at a location k in a documentd is

determined only by the single term occurring at locationk. As pointed out in [91],

this assumption is not realistic because it is expected thatthe local relevance deci-

sion should depend not only on the occurrence of a query term,but also on the words

around it in the text. They commented that such an unrealistic assumption may cause

performance limitations of TF-IDF term weights. Hence, we are motivated to relax this

assumption and investigate whether there is any advantage in term weights that depend

on contexts with a size larger than unity. In comparison, thetraditional TF-IDF value

of a termt in a documentd depends on the occurrence statistics oft in d or in the

corpus, but does not depend on the other terms found in the document. In other words,

the traditional TF-IDF is independent of the contexts oft.

We introduce a ‘Boost and Discount’ (B&D) procedure to computethe new context-
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dependent term weights. B&D makes use of the any ‘relevance information’ that is

available. In our current study, where B&D is applied in the RF setting, the relevance

information is provided by the user’s relevance judgments on some of the retrieved doc-

uments. The approach can be applied to other applications, such as text categorization

([72], [95]), where there are given training samples of documents belonging to differ-

ent predefined categories. The B&D procedure adjusts the term-frequency component

of the BM25 term weight of an initial query termqi (i.e. not an expansion term) in an

unseen document, according to the probability of relevanceof the document-contexts

centered onqi. The probability of relevance of a context is estimated by a logistic re-

gression model. In effect, the term-frequency weighting,f(qi), d, of a query termqi is

promoted (‘boosted’) if it is surrounded by terms that are also observed in the surround-

ing of qi in known relevant documents. Likewise,f(qi, d) is demoted (‘discounted’) if

qi is surrounded by terms that are also observed in its surrounding in known irrelevant

documents. We define the ‘surrounding’ ofqi to be its document-context.

An overview of the rest of this chapter is as follows. In Section 3.2, we review the

document-context retrieval model of [91], which provides the theoretical basis of the

B&D procedure for calculating the new context-dependent term weights. The B&D

procedure is introduced in Section 3.2. Section 3.3 contains our experimental results,

with a comparison of the performance of RF using the new term weights and the base-

line which uses the traditional context-independent BM25 weights.
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3.1 Document-context based probabilistic non-relevance

decision model

In this section, we first describe the probabilistic nonrelevance decision model of Wu

et al. [91]. Various assumptions made in [91] will be discussed. We will adopt the

same assumptions in our new context-dependent term weight method for RF.

Following [91], a document-context of a termt is defined as a fixed-size text-

window centred ont:

Definition and Notation (Document-context).The document-context (or

simply context) of a termt is the text window consisting ofn words cen-

tred att. A context in the documentd, centred at locationk and having a

window size ofn terms is denoted byc(d, k, n).

The above notation means that the contextc(d, k, n) consists of the(n−1)/2 terms on

each side of the centre, as well as the central term,d[k], itself.

In the model of [91], a human arrives at a ‘document-wide relevance decision’

by making a series of ‘local relevance decisions’, i.e. whether specific portions of the

documents are individually relevant to the query. Such local judgments are made based

on the following assumption:

Assumption (Context-Based Local Relevance Decision).A local relevance

decision at any locationk in any documentd for any queryq is made on

the basis of the information in the context that is centered at k in d for

some maximal context sizen.
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The above assumption means that the user decides whether theportion of the docu-

ment centred at locationk is relevant solely by considering the words that occur in

the vicinity of k, within a context of sizen. The decision is not affected by what lies

in other parts of the documents outside the contextc(d, k, n). Wu et al. [91] tested

this assumption and found that given the context is large enough, the performance of

the document-context dependent model does not change substantially. Therefore, we

will assume that the Context-Based Local Relevance Decision istrue provided that the

context size parameter is appropriately calibrated.

Wu et al. [91] considered the local relevanceRd,k,q and the document-wide rele-

vanceRd,q to be binary variables, having the value 0 for non-relevanceand 1 for rele-

vance. In this case, following the TREC evaluation policy forad hoc retrieval tasks, a

document is relevant (Rd,q = 1) if any part of the document is judged to be relevant, i.e.

Rd,k,q = 1 for anyk. This is named the Disjunctive Relevance Decision Principleby

Kong et al. [42]. Alternatively, the document is irrelevantif Rd,k,q = 0 for all locations

k in the document. Instead of having to scan through all locationsk in a document,

Wu et al. [91] assume that any relevant information for a query q = {q1, q2, . . . , qNQ}

can only be found in contexts centred on query terms{qi}, i.e. at locationsk such

that the word at locationk, d[k], is one of the terms contained inq. This is called the

Query-Centric assumption:

Assumption (Query-Centric).For any queryq and any relevant document

d, the relevant information forq is located only in the contextsc(d, k, n)

for k ∈ [1, |d|] andd[k] ∈ q. (i.e., the relevant information is located

around query terms).
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The Query-Centric assumption implies thatRd,k,q = 0 for all locationsk whered[k]

is not a query term. The Context-Based Local Relevance Decisionand Query-Centric

assumptions together mean that the texts in the vicinity of the query terms will provide

the information needed to decide whether the particular portion of the document is

relevant. Specifically, the information is contained within a fixed-size text window

centred on the query term. In practice, the size of the text window can be much smaller

than the size of the whole document. Wu et al. [91] have testedthis assumption which

appears to hold in most cases, so we will simply accept it as true. Furthermore, the

above assumptions imply that in performing query expansionin relevance feedback,

the extraction of expansion terms can be limited to the contexts of query terms{qi}.

Another assumption made by [91] is the following:

Assumption (Location-Invariant Decision).For any queryq, if c(d, j, n) =

c(e, k, n), then the local relevance decisions made onc(d, j, n) andc(e, k, n)

are the same.

The above assumption means that the relevance judgements ontwo identical contexts

are the same, irrespective of the remaining content of the documents that contain them,

or of the positions where they occur in the documents. This isquite reasonable, once

the Context-Based Local Relevance Decision assumption is asserted. It is also in line

with the bag-of-words model commonly adopted in IR, whereby only the occurence

of a term is taken into account, but not its location in a document. Recently, there are

studies which suggest that term location is important, e.g.chornological term ranking

introduced by Troy et al. [82]. In [82], it is noted that the most important content
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of a document often appears near the beginning of the document, such as in a news

article. Hence, the Location-Invariant Decision assumption may not be always true, as

it excludes position consideration. Nonetheless, in our current study we assume it is

true for simplicity. This assumption may be relaxed in our future research (Chapter 6).

An important result of [91] is the demonstration that it is possible to derive the

probability of a documentd being relevant to queryq, p∇(Rd,q = 1),in terms of the TF

and IDF weights, where∇ indicates that the relevance decision is document-wide. To

achieve this derivation, it is necessary to make the following assumption:

Assumption (Minimal Context).For any query, the local relevance at a

locationk in a documentd is determined only by the single termd[k].

As pointed out by [91], this is a rather unrealistic assumption. Basically, it means

that the words close to a query term do not affect the local relevance judgment. As

discussed in Section 3.2, this assumption is one that we willrelax in our algorithm that

calculates context-dependent term weights. In [91], thereare other assumptions (e.g.,

query independent non-relevance probability assumption)related to the derivation of

the inverse document frequency (IDF). The term weights thatwe use in our current

study have an IDF component, and we will assume that these assumptions are true.

Having made the above assumptions, Wu et al. obtained the following:

p∇(Rd,q = 1) ∝
∑

t∈(V (q)∩V (d))

f(t, d)× idf(t)

f(t, d)− α + α |D|p
|∆(d)|p

(3.1)

where∝ denotes the rank-equivalence relation,| · |p denotes thep-norm length of its

argument,∆(d) is the normalized documentd, f(t, d) is the occurrence frequency of
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t in d, idf(t) is the inverse document frequency,V (·) denotes the set of distinct terms

of its argument, whileα is a constant parameter. To derive Eq.(3.1), Wu et al. replaced

the term frequencyf(t, d) by a weighted version,ω(t, d) = f(t, d) × p(f(t, d)|r̄),

wherep(f(t, d)|r̄) is the probability that all occurrences of the termt in documentd

are locally non-relevant. Comparing with Eq.2.10, the expression in the summation of

Eq.(3.1) is just the BM25 term weight [59]. Because of the query-centric assumption,

the probabilityp(f(t, d)|r̄) can be obtained by considering the evidence of relevance in

the contexts within the document. Thus, the probabilistic nonrelevance decision model

of [91] is equivalent to ranking documents according to a context-dependent version

of the BM25 term weights, wherebyf(t, d) is replaced byω(t, d).

3.2 Computing context-dependent term weights by Boost

and Discount

As described in the preceding section (3.1), the probabilistic model of Wu et al. [91]

yields context-dependent term weights which are identicalto the BM25 weights, ex-

cept that the term frequencyf(t, d) in the BM25 equation (Eq.2.10) is weighted by a

factor related to the probability of relevance of the all thecontexts oft. In this sec-

tion we describe how the novel context-dependent term weights may be generated by a

Boost and Discount (B&D) procedure. The B&D procedure is applicable when partial

relevance information is available, such as in a relevance feedback or text categoriza-

tion task. The theoretical justification of the method will be presented in the following.

There are two components in B&D: (1) Estimating the probability of relevance of
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a context based on the available evidence, and (2) Calculating the context-dependent

term weights based on the probability of relevance. These two components will be

described in Section 3.2.1 and Section 3.2.2 respectively.

3.2.1 Modeling the probability of relevance of a context

In statistics, a popular method which can be used to model theprobability of the occur-

rence of some event islogistic regression(e.g. Kleinbaum [41]). Logistic regression

relates a set of independent variables to a dichotomous dependent variable via the lo-

gistic function,f(z) = 1/(1 + e−z), which has a sigmoidal shape as shown in Fig.3.1.

Because the value off(z) lies between 0 and 1, it is well suited to model probabili-

ties. In general, the variablez is equal to the total contribution of a set of independent

variables{xi}:

z = γ0 + γ1x1 + γ2x2 + · · ·+ γnxn. (3.2)

The unknown parametersγi in Eq.3.2 are called logistic coefficients and indicate how

strongly the occurrence of an eventD depends on each of the variablesxi. Hence the

logistic modelmay be stated as:

P (D = 1|x1, x2, . . . , xn) = f(z) = f(γ0 + γ1x1 + γ2x2 + · · ·+ xn), (3.3)

wheref(z) is the logistic function. For example, logistic regressionis commonly used

in epidemiology, wherebyf(z) models the probability of illness (e.g. heart disease)

given a set of risk factors,{xi} (e.g. age, blood pressure, cholesterol level, etc.). In
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general applications, the coefficients{γi} are estimated by fitting data on the variables

xi to the observance ofD in the samples. In our case, as discussed below, the coef-

ficients are determined by calibrating them to yield the highest performance measure,

such as MAP. This is because we wish to seek the model parameters that can produce

the best retrieval performance.

�

�
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z

����
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γ=0.1
γ=0.2
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Figure 3.1: The logistic function,f(z) = 1/(1 + e−γz).

Logistic regression is well suited for our purpose to model the probability of rele-

vance of a given context, and our B&D model will adopt this method. In the following

we describe what the variables{xi} correspond to in our model.

According to the Query-centric assumption of Section 3.1, all evidence of relevance

(or non-relevance) only appears within the contexts of query terms,{qi}. In B&D, we

assume that this evidence is provided by the words that co-occur with each query term

qi within a context centred on the term. Suppose some partial relevance information

is available. For example, in relevance feedback, this information comes from a user’s
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judgment of a (small) number of documents to decide whether each of these is relevant

or non-relevant. The query-centric assumption implies that this judgment is made by

noticing the occurrence of certain words within the document-contexts centred on the

query terms in each document. From each known relevant document, we extract the

words that appear in all the contexts of each query termqi. We call these words ‘boost

terms’ for the queryqi. Note that each query termqi has its own set of ‘boost terms’,

which are denoted bySB(qi). Formally, the boost terms are defined as the following.

Definition. The boost terms,SB(qi), are the set of all terms that co-occur

with the query termqi within all document-contexts of sizeCB centred on

qi in all the known relevant documentsR:

SB(qi) =
⋃

d∈R
k∈Loc(qi,d)

d[l]∈c(d,k,CB)∧(l 6=k)

d[l],

whered[l] is the term at locationl in documentd, andLoc(qi, d) denotes

the set of all locations in the documentd where the query termqi occurs.

In the preceding definition, the term at the context centres,k, i.e. the query term

qi, is excluded because we consider the evidence of relevance to be based on the co-

occurring terms but not the query term itself.

Similarly, from all the known irrelevant documents, we extract the co-occurring

words in the contexts centred onqi, to obtain a set of ‘discount terms’ denoted by

SD(qi):

Definition. The discount terms,SD(qi), are the set of all terms that co-
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occur with the query termqi within all document-contexts of sizeCD cen-

tred onqi in all the known irrelevant documentsI:

SD(qi) =
⋃

d∈I
k∈Loc(qi,d)

d[l]∈c(d,k,CD)∧(l 6=k)

d[l].

Note that Definition 1 and Definition 2 for the sets of boost anddiscount terms,SB(qi)

andSD(qi), contain the constant parametersCB andCD, which are the sizes of the

contexts from which the co-occurring terms are extracted. Because terms that occur in

both known relevant and known irrelevant documents may not provide clear evidence

of relevance for an unseen document, in our experiments we remove from the sets

SB(qi) andSD(qi) any term found in their intersection. While the current defintions fo

the boost and discount terms are quite strong, relaxations in the term selection may be

considered in our future studies. For example, instead of removing fromSB(qi) and

SD(qi) all terms found in their intersection, we may retain such terms inSB(qi) if the

term occurs only once among all judged contexts, and similiarly for terms inSD(qi).

Now consider a contextc(d, k, Cm), which has a size ofCm words centred on

an occurrence ofqi at locationk in an unseen documentd. Again by the Query-

Centric assumption, if the words in the context are similar tothe ‘boost terms’ in

the setSB(qi), this would support the document as likely to be (locally) relevant too.

The more ‘boost terms’ are found in the context, the higher isthe probability that the

context is relevant. On the other hand, if ‘discount terms’ are found in the context,

it means there is a reduced probability that the context is relevant. Therefore, in the
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logistic model (Eq.3.3), we define two independent variables XB andXD which are

proportional to counts of boost and discount terms in the context, respectively. Hence,

for the probability of the contextc(d, k, Cm) to be relevant,P (R = 1) = f(z), where

z = γ0 + γBXB − γDXD. (3.4)

In Eq.3.4, the independent variablesXB andXD may be generally defined as weighted

counts:

XB(d, k) =
∑

d[l]∈c(d,k,Cm)∧ (l 6=k)

wB(d[l], qi) (3.5)

where the sum is over all locations within the context atc(d, k, Cm) excluding the

centre (locationk), andwB(d[l], qi) is a weight for the term at locationl. In Eq.3.5

the term at locationk, i.e. the query termqi, is not counted because we consider the

evidence of relevance to be only based on the co-occurring terms. The simplest choice

of the weightwB in Eq.3.5 is the unit count:

wB(d[l], qi) =















1 if d[l] ∈ SB(qi)

0 otherwise

. (3.6)

Another possible choice is the ‘idf-weighted’ count:

wB(d[l], qi) =















idf(d[l])/idf0 if d[l] ∈ SB(qi)

0 otherwise

. (3.7)

In the above equation, we use a common expression for the IDF:idf(d[l]) = log10((N+
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0.5)/(df(d[l]) + 0.5)) whereN is the total number of documents in the collection,

df(d[l]) is the document frequency ofd[l]. The factoridf0 = log10((N+0.5)/0.5) nor-

malizes the weightwB to between 0 and 1. An idf-weighted count gives less weighting

to words that are too common, and conforms to the intuition that such words are not

good discriminators to provide evidence of relevance. We have tested both types of

weighted counts, Eq.3.6 and Eq.3.7 in our experiments. For averaging over the 50

queries of TREC2005, the MAP values obtained using idf-weighted counts and unit

counts are 0.2951 and 0.2503 respectively. Hence, we find that the idf-weighted counts

give better results. In Section 3.3, we will only report experiments that use the weight-

ing of Eq.3.7. The discountXD(d, k) are defined similarly by matching the context

words with those in the set of discount terms,SD(qi):

XD(d, k) =
∑

d[l]∈c(d,k,Cm)∧ (l 6=k)

wD(d[l], qi) (3.8)

with

wD(d[l], qi) =















idf(d[l])/idf0 if d[l] ∈ SD(qi)

0 otherwise

. (3.9)

The probabilityP (R) for a context is interpreted as a degree of belief that the

context is relevant (e.g. Dang et al. [14]).P (R) = 1 andP (R) = 0 correspond

respectively to a firm belief that the context is relevant andthe belief that it is irrelevant.

The valueP (R) = 0.5 means there is total uncertainty regarding its relevance. In the

absence of any ‘boost’ or ‘discount’ terms in an unseen context, there is no available

evidence to indicate its relevance or non-relevance. In this case, the probabilityP (R)
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should be 0.5. Therefore we derive the value of the coefficient γ0 in Eq.3.3 to be

γ0 = 0, as the value of the logistic function atz = 0 is f(0) = 0.5. In our experiments,

we will obtain the values of the logistic coefficientsγB andγD by calibrating them

to yield the highest performance evaluation measure, such as MAP. The calibration

results will be presented in Section 3.3.

Note that Eq.3.5 and Eq.3.8, which calculate the weighted count of the words,

contain the constant parameterCm, i.e. the size of the context in an unseen document

for matching the boost and discount terms.

In our current study, we have treated all B&D terms uniformly irrespective of their

position of occurence within a context. Hence, in Eq.3.5 andEq.3.8 for the weight

for each term,wB(d[l], qi) andwD(d[l], qi), we have used idf-weighting without any

positional factor. In our future work, various positional weightings of the terms may be

studied, for example, the distance of a term from the contextcentre. Another example

is term ordering, i.e. whether the term occurs on the left or right side of the context

centre. With respect to the Location-Invariance Decision assumption mentioned in

the previous section, we may also relax the assumption by giving a larger weighting to

terms that occur near the beginning of a document. The vaiouspositional factors can be

easily included in our procedure by adjusting the weightswB(d[l], qi) andwD(d[l], qi).

3.2.2 Calculating the context-dependent term weights

The retrieval model of Wu et al. [91] derived a ranking function in which the term

weights have the BM25 form, with the difference that the term-frequencyf(t, d) is

adjusted by a factor related to the probability of relevanceof the contexts oft. In
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other words, the term weights become ‘context-dependent’.We now explain how the

context-dependent term weights are computed in the B&D procedure, utilizing the

probability of relevance of a context as estimated in the method described in Section

3.2.1 above.

According to the Query-centric assumption (Section 3.1), all evidence of relevance

only appears within the contexts ofquery terms. Therefore in B& D, we adopt the

BM25 term weights (Eq.2.10) for all terms that are not in the original query, while the

query terms{qi} are weighted by a BM25-like form withf(qi, d) in (Eq.2.10) being

replaced by a new component,fBD(qi, d). We writefBD(qi, d) in the following form:

fBD(qi, d) = f(qi, d) + ∆fBD(qi, d), (3.10)

in which∆fBD(qi, d) is the adjustment according to the probability of relevanceof the

contexts ofqi. In particularly,∆fBD(qi, d) should be proportional to the probability

of relevance. Furthermore,∆fBD(qi, d) should be equal to zero in the absence of

evidence of relevance (i.e. whenP (R) = 0.5). Therefore, we define∆fBD(qi, d) as in

the following, to satisfy these requirements:

∆fBD(qi, d) =
∑

k∈Loc(qi,d)

D × (P (R(c(d, k, Cm)))− 0.5), (3.11)

where the multiplicative factorD may be interpreted as a document length which

converts the probabilityP (R(c(d, k, Cm))) to a frequency count. In Eq.3.11, for a

context without any evidence of relevance, so thatP (R(c(d, k, Cm))) = 0.5, and
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P (R(c))− 0.5 = 0, thus giving no contribution to∆fBD(qi, d) as desired.

Using the logistic regression model estimate of the probability of relevance as de-

scribed in the previous section, Eq.3.11 becomes:

∆fBD(qi, d) =
∑

k∈Loc(qi,d)

D × (f(γBXB(d, k)− γDXD(d, k))− 0.5), (3.12)

wheref(·) is the logistic function.

If the contexts ofqi contain many terms which match with the discount terms

SD(qi), so that the weighted countXD(d, k) becomes sufficiently large, it is possi-

ble for ∆fBD in Eq.(3.12), and hencefBD in Eq.(3.10), to become negative. In this

case, it is actually desirable that the term weightf(qi, d) also goes negative, as this will

indicate that the document is irrelevant based on the evidence of the contexts. To allow

the sign of the term weight to follow that offBD, we modify the BM25 term-frequency

factor to:

fBM(qi, d) =
abs(fBD(qi, d))

abs(fBD(qi, d)) + k
[

1− b+ b |d|2
∆

] · sign(fBD(qi, d)), (3.13)

where|d|2 is the Euclidean length ofd, and∆ is the average Euclidean length of all

documents in the collection. Adding thesign(fBD(qi, d)) factor in Eq.3.13, will let

fBM(qi, d) become negative whenfBD(qi, d) is negative, as desired.

Fig.3.2 depicts the flow of relevance feedback, with context-dependent term weights

being obtained by the B&D procedure. In the figure, the left branch corresponds to

standard QE, with the term weights of both the initial query terms and expansion
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terms being given by the traditional BM25 equation (Eq.2.10). The right branch corre-

sponds to context-dependent term weights being used for theinitial query terms. Re-

ferring to Fig.3.2, compared with traditional query expansion using standard BM25

weights alone, the additional steps in the B&D procedure include: (1) the extrac-

tion of boost/discount terms from the known relevant and non-relevant documents

and (2) scanning through each context of every query term{qi} and matching with

the boost/discount terms. Our current focus is on investigating the effectiveness of

context-dependent term weights. Efficiency considerationis not our primary concern

in this study.
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PRF {NPRF , NQE , αQE , k , b}  

Make relevance judgment on the top NRF  

documents returned by PRF. { NRF } 

Extract contexts from judged documents 

Extract boost/discount terms 
from contexts in judged 
relevant/irrelevant documents. 
{ CB, CD} 

Select positive/negative query-expansion 
terms from the judged relevant/irrelevant 

documents. {NQE ,NQE,irr } 

Expand query vector : qQE {αQE,βQE } 

Re-rank the top Nrerank passages of the 
initial retrieval. Calculate a new 
matching score of each passage with 
the expanded query qQE 
� use traditional BM25 term 

weights for all terms 
{ Nrerank, k , b} 

Do B&D? 
YES (B&D) NO (baseline) 

Output retrieval result (ranked list of documents) 

Query 
expansion 

Initial retrieval for query q={ qi} 

Obtain ranked list of documents based on their best ranked passages 

Re-rank the top Nrerank passages of the 
initial retrieval. Calculate a new 
matching score of each passage with 
the expanded query qQE 

� for original query terms qi, 
calculate shift in BM25 tf based 
on matching boost & discount 
terms {Cm, γB, γD, D}   

� use traditional BM25 term 
weights for all other QE terms 

Figure 3.2: Flow diagram of relevance feedback with standard query expansion or with
B& D. The parameters used in the various steps are indicated incurly brackets.
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3.3 Experiments

The main goal of our current study is to compare the effectiveness of retrieval that uses

context-dependent term weights with the traditional TF-IDF weights in the RF setting.

As explained above, the context-dependent term weights areonly calculated for the

initial query terms{qi}. We use the state-of-the-art BM25 term weights for all query

expansion terms that do not appear in the initial query.

As indicated in Fig.3.2, after an initial retrieval with thequeryqi, pseudo-relevance

feedback (PRF) is performed. The list of documents retrievedby PRF is then supplied

to the RF stage of the experiments, where relevance judgmentsare made on the top

NRF documents in the list. The main reason why we include PRF is to obtain a strong

baseline for comparison with the results of using the new term weights. Using PRF

will produce a retrieval list that contains more highly ranked relevant documents than

the initial retrieval, i.e. there will be more relevant documents in the topNRF . Past

research (e.g Buckley et al. [2] showed that the effectiveness of RF increased with

the number of known relevant documents. Hence, using the PRF produced list, rather

than the initial list, should yield a better performance forthe baseline. Any further

improvement obtained by using the new term weights would then be a more convincing

demonstration of the effectiveness of these term weights.

Section 3.3.1 describes the experimental environment and setup. Section 3.3.2

presents the calibration of various model parameters: (A) pseudo-relevance feedback

(PRF),(B) Query expansion using standard BM25 term weights, (C)B&D procedure.

Section 3.3.3 contains the comparison of the performance ofrelevance feedback using
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the context-dependent term weights against the baseline.

3.3.1 Experimental environment and setup

We have performed experiments using the 50 title queries of each of the TREC-6, 7, 8

and 2005 test collections. In Section 1.3 we have described the reasons for choosing

these various collections in our experiments. Some statistics of the collections are

shown in Table 1.1. Here, we have not used TREC-2 which containssome long queries,

with an average of 3.8 terms per query. On the other hands, thetitle queries of TREC-6,

7, 8 and 2005 all contain an average of close to 2.5 terms. The various parameters used

by the baseline (QE with BM25 term weights) and the B&D procedure are calibrated

using the TREC-2005 collection. The reason for choosing this collection as the basis

of parameter calibration is its much large size compared with previous collections and

therefore more in-line with current and future web search applications. In order to

demonstrate the robustness of the B&D algorithm across collections, we conducted

experiments for the other collections (i.e. TREC-6, 7 and 8) using the same set of

parameters optimized for TREC-2005. In our experiments, the standard IR techniques

of stemmingandstop-word removalare applied. Stemming refers to converting words

into their root forms. For example, the wordsretrieval, retrieve, retrieved, retrieving

will all be converted to the root representation,retrieV. We have used the common

Porter stemming algorithm [58] on all documents and queries. Stop-word removal

means that words which are considered non-informative (e.g. prepositions,the, a, and,

or, of, etc.), are removed from the documents and queries.

Our retrieval system is ‘passage-based’ rather than ‘document-based’, following
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previous studies (e.g. Callan [5] and Kaszkiel and Zobel [39]) which found that

passage-based retrievals could yield better retrieval results. In passage-based retrieval,

each document is divided into blocks, called ‘passages’. Inour system, each passage

contains a fixed number of words. All the passages are ranked according to the val-

ues of their ranking function. The final retrieved units are then the original documents

ranked according to their highest ranking constituent passages [5]. It was found in [39]

that a passage size of between 150 and 300 words gave the best performance. Hence,

our experiments have used passages that consist of 250 words.

Regarding the evaluation of our RF retrieval results, the wellestablished residue

MAP measure [66] is used, as described in Section 1.3. The residue MAP is calculated

based on remaining relevant document in the residue collection, from which theNRF

judged documents are removed.

Last, we briefly describe some assumptions that we have used in our experimen-

tal environment for RF. These assumptions are mainly adoptedfollowing Wong et al.

[89]: (1) Identical judgment assumption: For a given query,the relevance judgment

made by a user in RF is identical to the relevance judgment madeby the evaluator

for all documents in the collection; (2) Independent assessment assumption: The rel-

evance judgment for the same document and the same query is the same irrespective

of the relevance judgment of other documents and queries; (3) Non-identifying term

assumption: Query terms which are not in the initial query formulated by the user

should occur in more than one document in the collection, thus preventing these query

terms from uniquely identifying a relevant document; (4) Default irrelevance assump-

tion: If the relevance of a document to a query has not been judged by an evaluator,
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Table 3.1: List of parameters used in pseudo-relevance feedback (PRF), query expan-

sion and ‘Boost & Discount’

Symbol Description

NPRF Number of top passages assumed to be relevant in PRF

NRF Number of relevance judgments made in RF

NQE Number of query expansion terms selected from judged relevant documents

NQE,irr Number of query expansion terms from judged irrelevant documents

αQE Weight of original query vector in the expanded query vector

βQE Weight of positive vs. negative components of the query-expansion vector

k Scaling in the BM25 term-frequency factor

b Slope in the BM25 term-frequency factor

Nrerank Number of passages returned by an initial retrieval to be re-ranked in RF

CB Size of contexts in relevant documents for ”Boost” terms extraction

CD Size of contexts in irrelevant documents for ”Discount” terms extraction

Cm Size of contexts in an unseen document for matching B&D terms

γB Logistic coefficient for Boost terms

γD Logistic coefficient for Discount terms

D Multiplicative factor controlling the strength of B&D (Eq.3.11)

the document is assumed to be irrelevant to the query [87].

3.3.2 Calibration of model parameters

In this subsection, we describe the calibration of the various model parameters using

the TREC-2005 collection. A list of the parameters is summarized in Table 3.1.
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Pseudo-relevance feedback (PRF)

In passage-based retrieval, PRF makes the assumption that the topNPRF passages re-

turned by an initial retrieval are relevant, whereNPRF is a fixed number. The original

query vector~q is thus modified by adding terms selected from these topNPRF pas-

sages and a second retrieval is performed. However in our experiments, instead of

simply selecting terms from the topNPRF passages, we made a modification in the

PRF scheme for the following reason. We have observed that theTREC-2005 col-

lection contains many document duplicates. For example, two different documents in

the collection may be essentially the same news article, butdiffer by having different

time tags. Large portions of these two documents are actually identical. It is quite

probable that the topNPRF passages also consist of duplicates. Including duplicates

in the PRF process would bias toward the duplicated passages.Therefore, instead of

simply using the topNPRF passages for term selection, we check for duplicate pas-

sages, skipping any duplicates found. The duplicates are detected by having the same

matching score with the query, as well as having identical vocabularies above a 95%

threshold. The matching score for a passage is obtained by summing the term weights

of all the query terms appearing in the passage. Our condition for duplicity means that

the passages must have the same occurrences of the query terms andhave vocabulary

overlaps above the 95% threshold.

After skipping any duplicate found, the QE terms are then selected from the top

distinctNPRF passages. As in standard RF, the expansion terms are selectedaccording

to a ranking score (Harman [26]). For each termt appearing in the topNPRF passages,
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we compute a score:

Score(t) =
freq(t)

1 + freq(t)
× idf(t)× pf(t)×

(

1 +
tmprf(t)

1 + tmprf(t)

)

(3.14)

wherefreq(t) = total term frequency oft in the top distinctNPRF passages,pf(t) =

number of these passages containt, idf(t) = inverse document frequency oft in the

whole collection, andtmprf(t) = df(t)− pf(t)+1, with df(t)= document frequency

of t in the collection. The first three factors in Eq.3.14 is similar to one of the ranking

scores found to be effective by Harman [26], who used a ‘noise’ factor similar to IDF.

The rationale for including the last bracketed factor in Eq.3.14 is as follows. In this

factor,tmprf(t) is proportional to the number of passages in the collection that contain

termt, apart from those in the topNPRF . If tmprf(t) is small, the termt would not be

very useful as a query expansion term because it occurs rarely. Hence, we add a factor

that reduces the score of those terms that have small values of tmprf(t). The last factor

in Eq.3.14 serves this purpose because it is monotonically increasing, bound between

1 and 2. Averaging over 50 queries of TREC-2005, we found that the MAP values

obtained by including or excluding thetmprf(t) factor in Eq.3.14 are 0.2781 and

0.2776 respectively. The query expansion vector~qQE PRF is made up of the topNQE

terms with the highest scores given by Eq.3.14. In our experiments, we setNPRF = 20

andNQE = 80, since these values were shown to be effective in our early studies.

An expanded query vector~qPRF is then obtained by mixing the initial query~q with

64



the vector~qQEPRF :

~qPRF = αQE

~q

|~q|
+ (1− αQE)

~qQE PRF

|~qQE PRF |
(3.15)

whereαQE is a mixing factor with a value between 0 and 1, and|~q| and |~qQE PRF |

are city-block lengths. A second retrieval is performed forthe new query~qPRF . In

the calibration of PRF, we seek the set of parameters that yields the most relevant

documents in the top 20 (i.e. the best P@20), so that the largest amount of relevant

information will be available for RF that makes 20 relevance judgments (NRF = 20).

The set of parameters that we calibrate is{αQE, k, b}, wherek andb are parameters in

the BM25 term-frequency factor, Eq.2.10. The standard values of{k, b} are{1.2, 0.75}

[59]. In our calibration, we allowed different values of{k, b} for terms contained in

the initial query~q and the QE terms~qQEPRF . For TREC-2005, the optimal set of

parameters that we found is summarized in Table 3.2.

Table 3.2: Summary of parameters used for pseudo relevance feedback (PRF).

Initial query terms Query expansion terms

NPRF αQE NQE k b k b

20 .25 80 5.0 .65 1.2 .75

Calibration of the baseline (BM25 term weights)

In this section, we present calibration results of our RF baseline model which uses

traditional BM25 term weights for all terms in an expanded query. One important

difference between RF and PRF as described above is that in RF, some of the docu-
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ments may be judged as irrelevant, whereas in PRF (for passage-based retrieval) the

topNPRF passages are simply assumed to be relevant. Therefore in RF, ‘irrelevance’

as well as ‘relevance’ information is available. In query expansion, we include terms

extracted from known irrelevant documents as negative components of the expanded

query (see Eq.3.20). It should be noted that in RF, a user makesrelevance judgements

on whole documents, and so information from the whole of the judged documents is

used for feedback. However in the passage-based PRF, information contained in the

top retrievedpassagesis used.

In our RF experiments, relevance judgments are made on the topNRF documents

returned by PRF. Similar to the procedure for PRF (Section 3.3.2), because of the issue

of duplicate documents in TREC-2005 we check for duplicates inthe PRF retrieval

output, skipping any duplicate found. Because of the Context-Based Local Relevance

Decision and the Query-Centric assumptions (Section 3.1), we select QE terms from

the document-contexts of the topNRF documents, rather from the whole documents.

We have tested several context sizes with the 50 queries of TREC-2005. With context

sizes of 21, 41, 61 and 81, we obtained MAP values that vary from 0.286 to 0.291,

and the differences are not statistically significant. In the experiments reported here,

a context size of 41 (i.e. the centre query term plus 20 words on each side of it) is

used for QE terms selection. Suppose within the topNRF distinct documents, there

areNrel relevant documents,{R}, andNirr irrelevant documents,{I}. We define a

ranking score that is a variation of the ‘offer weight’,OW (t), used for expansion term

selection in the Okapi system (e.g. Robertson et al. [59] and Spärck Jones et al. [78]).
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For a termt that appears in one or more of the documents in{R}, the score is:

Srel(t) =
frel(t)

1 + frel(t)
×OW (t)×

(

1 +
drel(t)

1 + drel(t)

)

, (3.16)

whereOW (t) is the offer weight given by:

OW (t) = r(t)× log10

{

[r(t) + 0.5]× [N − df(t)−Nrel + r(t) + 0.5]

[df(t)− r(t) + 0.5]× [Nrel − r(t) + 0.5]

}

, (3.17)

whereN is the total number of documents in the collection andr(t) is the number of

documents inR containingt. In Eq.3.16,frel(t) is the total number of occurrences oft

in the set{R},anddrel(t) = df(t)−r(t)+1. Eq.3.16 has the same form as Eq.3.14, the

ranking score used in PRF. The difference is that for Eq.3.16,the scores are calculated

based on known relevant documents, as opposed to the blind feedback of the topNPRF

passages for Eq.3.14. We have added thefrel(t) factor in Eq.3.16 because Harman [26]

showed that a ranking function including afrel(t) factor enhanced the performance of

QE. The purpose of thedrel(t) factor in Eq.3.16 is the same as that of thetmprf

factor in Eq.3.14, namely to reduce the score for terms that rarely occur in the unseen

documents. In analogy to the Eq.3.16, we define the score for aterm t appearing in

judged irrelevant documents as follows:

Sirr(t) =
firr(t)

1 + firr(t)
×OWirr(t)×

(

1 +
dirr(t)

1 + dirr(t)

)

. (3.18)

wherefirr(t) is the total number of occurrences oft in {I}, dirr(t) = df(t)− i(t) + 1,
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with i(t) being the number of known irrelevant documents containing the wordt, and

OWirr(t) = r(t)× log10

{

[i(t) + 0.5]× [N − df(t)−Nirr + r(t) + 0.5]

[df(t)− i(t) + 0.5]× [Nirr − i(t) + 0.5]

}

. (3.19)

We construct the query expansion vector~qrel, whose elements correspond to the

NQE terms in{R} having the highest scoresSrel(t). The vector~qirr is similarly con-

structed, withNQE,irr terms selected from{I} based on the highest term weights

Sirr(t). The overall query expansion vector~qQE RF is then obtained by mixing~qrel

and~qirr :

~qQE RF = βQE

~qrel
|~qrel|

− (1− βQE)
~qirr
|~qirr|

, (3.20)

whereβQE is a mixing constant with a value between 0 and 1. In Eq.(3.20), the terms

extracted from the known irrelevant documents are given a negative weight. Finally,

the RF query vector~qRF is a weighted sum of the initial query~q and the query expan-

sion vector~qQE RF :

~qRF = αQE

~q

|~q|
− (1− αQE)

~qQE RF

|~qQE RF |
. (3.21)

Rather than performing a new retrieval using the query~qRF , we re-rank the pas-

sages returned by the initial retrieval for the original query ~q. This re-ranking ensures

that all the passages and hence the final documents retrievedcontain at least one of the

original query terms. The re-ranking is done by calculatinga new ranking score of each

passage for the query~qRF . SupposeNP passages are returned by the initial retrieval.

Rather than re-ranking all of these passages, we only re-rankthe top min(Nrerank, NP )

68



of the passages, whereNrerank is a constant parameter. The reason for doing this is that

we assume that the lowly ranked passages returned by the initial retrieval are unlikely

to be relevant. Re-ranking only the top passages will avoid the bottom passages from

being spuriously promoted in the re-ranking. Without loss of generality,Nrerank can

be set toNP to cover all passages.
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Figure 3.3: Calibration of Query Expansion via RF parameters,based on averaging
over 50 title queries of TREC-2005.

We perform the calibration of our system for the case ofNRF = 20. We seek the set
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of parameters{αQE, βQE, NQE, NQE,irr, Nrerank, b, k} that give the best residue MAP.

Fig.3.3 represents the calibration of these parameters. Inall the plots, the residue MAP

values are averages over 50 queries of TREC-2005. In each of theplots Fig.3.3, only

the parameters shown in the X-axis are varied, while the remaining parameters are

fixed at the values indicated in the figures. Note that becauseof the large number

of parameters (Table 3.1) and calibration time considerations, we do not perform an

exhaustive grid search of the globally optimal set of parameters. Rather, as indicated

in Fig.3.3, we seek local optimal values of each parameter, within the ranges shown

in the figure. From the plots, we obtain the following best setof the parameters{

αQE = 0.20, βQE = 0.85, NQE = 240, NQE,irr = 160, Nrerank = 160000, k = 2.5,

b = 0.75}.

According to Eq.(3.20), when the value of the parameterβQE is less than 1.0, the

query expansion vector~qQE RF contains contribution of terms extracted from known

irrelevant documents. Fig. 3.3(b) suggests that averagingover 50 queries, the residue

MAP obtained withβQE = 0.85 is slightly better than the value obtained withβQE =

1.0. The results suggest that there is some benefit to include negatively weighted terms

in relevance feedback. However, previous work by Dunlop [19] and Wong et al. [89]

found that negative query expansion does not always give good performance. There-

fore, we have compared the performance forβQE = 1.0 andβQE < 1.0 in more detail.

Fig.3.4 shows the results of a trial experiment in which we analyse the difference

between MAP values obtained for QE withβQE = 1.0 andβQE = 0.8, with all the

remaining parameters being equal. We use the notationNR@20 to denote the number

of relevant documents among the top 20 documents returned byPRF, i.e. the number
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of known relevant documents for RF. Fig.3.4 shows the values of MAP(βQE = 1.0)-

MAP(βQE = 0.8), averaged over queries with the same value ofNR@20 for TREC-

2005, plotted againstNR@20. The figure illustrates the following points: (1) While

the calibration plot Fig.3.3(b) shows that averaging over 50 queries,βQE = 0.8 gives

slightly better MAP thanβQE = 1.0, there may be some queries for whichβQE = 1.0

gives the better performance. (2) For queries with small values ofNR@20, βQE = 1.0

tends to be better. In particular, Fig.3.4 shows that forNR@20=0 and 1, the MAP

obtained withβQE = 1.0 is on average better than that obtained withβQE = 0.8 by

over 0.01. (3) At larger values ofNR@20, βQE = 0.8 tends to be better. In Fig.3.4,

this is particularly apparent forNR@20=7 and 12.
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Figure 3.4: Difference between residue MAP values obtainedfor QE withβQE = 1.0
andβQE = 0.8, averaged over queries with the same value ofNR@20 for TREC-2005,
plotted againstNR@20.

The above results shown in Fig.3.4 suggest that there may be some benefit in

calibrating the set of parameters differently for different queries, depending on the

NR@20 value of the query. Therefore, we have investigated a scheme(called ‘Split’)

in which different sets of parameter values are used for different queries, according to
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 Figure 3.5: Residue MAP averaged over 50 queries of TREC-2005, obtained by setting
βQE = 1.0 for queries withNR@20 ≤ Nsplit and settingβQE = 0.8 for queries with
NR@20 > Nsplit.

the value ofNR@20. Specifically, we define a parameterNsplit such that we use one

particular set of parameter values forNR@20 ≤ Nsplit, and a different set of param-

eters whenNR@20 > Nsplit. We performed some trial experiments in which we set

βQE = 1.0 for queries withNR@20 ≤ Nsplit, but useβQE = 0.8 for queries with

NR@20 > Nsplit. Fig.3.5 shows the residue MAP obtained with this scheme with var-

ious values ofNsplit, averaging over the 50 queries of TREC-2005. The MAP values

obtained withβQE = 0.8 andβQE = 1.0 for all queries are also indicated in Fig.3.5

by two horizontal lines. The figure shows that for some valuesof Nsplit, the MAP

obtained by ‘Split’ is better than the values obtained with constantβQE for all queries.

The result is best forNsplit ≤ 5, with the MAP values being similar forNsplit between

1 and 5. Therefore, we will adopt this scheme in our experiments, settingNsplit to 3,

in order to stay away from the ‘cliff’ with the rapid decreasein MAP (which occurs at

Nsplit = 6 for the case shown in Fig.3.5). Referring to Fig.3.4, settingNsplit to 3 also

seems reasonable, as Fig.3.4 depicts a change in behavior for NR@20 > 3. Hence,

we perform new calibrations separately for queries withNsplit ≤ 3 and queries with
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Nsplit > 3. The results are summarized in Table 3.3.

Calibration of B&D parameters

We have performed calibration of B&D on the TREC-2005 collection, forNRF = 20.

B&D is applied in conjunction with query expansion, as indicated in the flow diagram

depicted in Fig.3.2. In addition to the parameters{αQE, βQE, NQE, NQE,irr, Nrerank,

b, k} used in the baseline, we also seek the set of parameters{γB, γD,D,CB,CD,Cm}

that together give the best MAP. Similar to the baseline calibration, we adopt a ‘Split’

scheme for B&D. Hence, we perform calibrations separately, for the set of queries with

NR@20 ≤ 3 and for queries withNR@20 > 3. The calibrations are shown in Fig.3.6

(NR ≤ 3) and Fig.3.7 (NR ≤ 3). The results are summarized in Table 3.3.

Table 3.3: Summary of the parameters calibrated to obtain the best residue MAP for
TREC-2005, using the baseline or B&D models

 
 

     Initial query terms 
NRF 

Term 
weight NR 

αQE βQE NQE NQE,irr 
Nrerank 

(×1000) 
k b γΒ γD D CB CD Cm 

≤  3 .23 1.0 80 200 160 3.5 .45 -  - - - - 
>  3 .17 .85 180 120 120 2.0 .90 -  - - - - Baseline 

NS .20 .85 240 160 160 2.5 .75 -  - - - - 
≤  3 .23 1.0 80 120 200 4.0 .65 .125 .06 10.0 41 21 21 

20 

B&D 
>  3 .25 .9 180 100 120 4.0 .75 .15 .07 12.0 21 11 51 

                
≤  3 .25 1.0 120 200 160 2.5 .35 -  - - - - 
>  3 .17 .9 180 140 160 2.0 .9 -  - - - - Baseline 

NS .17 .85 180 200 160 2.0 .65       
≤  3 .275 1.0 120 200 160 2.0 .35 .275 .06 12.0 61 21 31 

10 

B&D 
>  3 .25 1.0 140 120 120 3.0 .95 .275 .11 12.0 11 11 31 

 Note: (1) Corresponding to the ‘Split’ scheme, two different sets of parameters are
calibrated for queries withNR <= 3 andNR > 3, whereNR is the number of relevant
documents in the top NRF returned by pseudo-relevance feedback. For the Baseline,
calibration is also performed without ‘Split’, as indicatedby ‘NS’ in the third column.
(2) The BM25{k,b} values shown in the table are applied to the initial query terms
{qi}. For the query expansion (QE) terms, the standard values{k,b}={1.2,0.75} are
used for all cases (both Baseline and B&D).
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Figure 3.6: Calibration of B&D parameters, for TREC-2005 queries withNR@20 ≤ 3.
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Figure 3.7: Calibration of B&D parameters, for TREC-2005 queries withNR@20 > 3.
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3.3.3 Comparison of RF performance using context-dependent term

weights vs baseline

Judging top 20 documents of the initial retrieval

We first compare the value of residue MAP obtained using the context-dependent term

weights computed by B&D, against the baseline MAP value obtained using the tradi-

tional BM25 weights for all terms. Fig. 3.8 shows the difference between the B&D

MAP and the baseline (with Split) value, for the 50 title queries of TREC-2005. In the

figure, the queries are sorted in increasing order ofNR@20, which is the number of

known relevant documents in the relevance feedback withNRF = 20. The figure shows

that for most queries, using the context-dependent term weights computed by B&D can

yield better MAP values than using the baseline BM25 weights for all terms. The av-

erage MAP values are summarized in Table 3.4. For the baseline with standard BM25

term weights, we show in Table 3.4 the MAP values for both withand without Split.

As expected, the value obtained using Split is higher than than obtained without Split.

For TREC-2005 averaging over 50 queries, the values of residueMAP obtained by the

baseline with and without Split are 0.2971 and 0.2957 respectively, while B&D yields

a MAP value of 0.3148. Therefore B&D can yield a relative improvement in residue

MAP by about 6.0% over the best baseline result. We have checked the statistical

significance of the improvement with the Wilcoxon mathched-pairs signed-ranks test.

The Wilcoxonp-values indicate that the improvement obtained by B&D is statistically

significant at the 99% confidence level (Table 3.4).
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Figure 3.8: Difference of the residue MAP values obtained byB&D and the QE base-
line (with Split) for the 50 title queries of TREC 2005. The queries are sorted in
increasing order ofNR@20, which is indicated by the X-axis.

Judging top 10 documents of the initial retrieval

The results of our RF experiments presented above show that for making relevance

judgments on the top 20 document returned by PRF (i.e.NRF = 20), B&D performs

better than the QE baseline. It is also of interest to comparethe performance based

on a smaller number of relevance judgments. This is because it is more realistic for a

user to make relevance judgments on the top 10 documents rather than the top 20. This

also corresponds to typical web-based retrieval systems that return 10 documents in

each page of results. Therefore, we have performed further experiments on relevance

feedback withNRF = 10 for both our QE baseline system and the B&D algorithm.

It is expected that for both the baseline and B&D, the best settings for the case of

NRF = 10 may be different from those obtained forNRF = 20. Therefore, we per-

formed new calibrations for TREC-2005 to find the sets of parameters that give the

best residue MAP values. The new sets of parameters for the baseline and for B&D
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Table 3.4: Summary of the residue MAP values obtained by the baseline and B&D
term weights in RF with 20 or 10 relevance judgments, for various TREC collections 

Baseline (No Split)  Baseline (Split) 
B&D 
(Split)  

 B&D – Baseline(No 
Split) 

  
B&D – 

Baseline(Split) NRF TREC 

MAP MAP Increase p-value 
 

MAP increase p-value 

2005 0.3148 0.2957 
0.0191 
(6.5%) 

0.0000 
 

0.2971 
0.0177 
(6.0%) 

0.0017 

6 0.2544 0.2463 
0.0081 
(3.3%) 

0.0495 
 

0.2349 
0.0195 
(8.3%) 

0.0037 

7 0.2302 0.2115 
0.0187 
(8.8%) 

0.0034 
 

0.2134 
0.0168 
 (7.9%) 

0.0085 
20 

8 0.2790 0.2548 
0.0242 
(9.5%) 

0.0000 
 

0.2616 
0.0174 
(6.7%) 

0.0016 

          

2005 0.3060 0.2864 
0.0196 
 (6.8%) 

0.0003 
 

0.2917 
0.0143 
(4.9%) 

0.0043 

6 0.2803 0.2606 
0.0197 
 (7.6%) 

0.0091 
 

0.2433 
0.037 

(15.2%) 
0.0016 

7 0.2359 0.2281 
0.0078 
 (3.4%) 

0.0381 
 

0.2262 
0.0097 
(4.3%) 

0.0305 
10 

8 0.2892 0.2607 
0.0285 

 (10.9%) 
0.0000 

 
0.2602 

0.029 
(11.1%) 

0.0000 

Note: For ‘Split’, two different sets of parameters are used for queries withNR ≤ 3
andNR > 3, as indicated in Table 3.3. Thep-values are obtained with the Wilcoxon
Matched-pairs signed-ranks test, shown up to 3 digits.

are also summarized in Table 3.3.

The results of the residue MAP are shown in Table 3.4. Following the procedure

employed forNRF = 20, for B&D we also tested the Split scheme. Separate calibra-

tions are performed for queries withNR@10 ≤ 3 and for queries withNR@10 > 3.

For the baseline, we again report the values of residue MAP obtained for both with

and without Split. Table 3.4 show that for TREC-2005 withNRF = 10, the residue

MAP obtained by B&D is 0.3060, which has a relative improvement of 4.9% over the

best baseline value (0.2917). For this case, the Wilcoxonp-values indicate that the

improvement is statistically significant at the 99% confidence level. It should be re-
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minded that the residue MAP values as shown in Table 3.4 cannot be directly compared

across different values ofNRF , because they are calculated using different residue sets

of relevant documents in the whole collection.

Other TREC collections

While our results reported above show that B&D is effective in improving the perfor-

mance of RF with bothNRF = 10 andNRF = 20 for TREC-2005, we wish to confirm

whether this improvement is also observed for other TREC collections. Hence we

have also performed the experiments using the TREC-6, 7 and 8 collections. In order

to claim that the improvement due to B&D is collection-independent, we need to show

that the improvement can be obtained using the same set of parameters as found for

TREC-2005, without any further calibrations. Therefore, ourexperiments for TREC-

6, 7 and 8 are carried out using the parameters shown in Table 3.3. Furthermore, we

have used the Split scheme as described above. Because the calibrations are performed

for TREC-2005, the best baseline MAP values obtained using Split is bound to be bet-

ter than the value obtained without Split. The reason is thatthe calibration without

Split is a subset of the Split scheme. However, as we apply thesame sets of calibrated

parameters to TREC-6, 7 and 8, it is not guaranteed that the Split sets of parameters

will yield better MAP than the ‘No Split’ set of parameters. Therefore, as a tougher

condition to demonstrate the effectiveness of the B&D term weights over the baseline,

for the baseline we obtain MAP values for both the Split and ‘No Split’ schemes. We

set the requirement that the B&D MAP value must be better than the higher of the

MAP values, with statistical significance at the 95% confidence level, in order to claim
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the effectiveness of the B&D term weights.

The results of the RF experiments are included in Table 3.4. The residue MAP

values reported for TREC-7 and TREC-8 are averages over the respective 50 title

queries of these collections. For TREC-6, there is one query (Q348) that has 5 relevant

documents in the whole collection. We found that for this query, all the 5 relevant

documents are retrieved within the top 10 documents returned by PRF. Hence, when

NRF = 10, there is no relevant document in the residue collection. Therefore, in this

case (TREC-6,NRF = 10) the residue MAP values shown in Table 3.4 are averages

over 49 queries. Similarly, another query (Q312) has 11 relevant documents in the

whole collection, and all of these are retrieved within the top 20 documents of PRF.

Therefore, forNRF = 20, the residue MAP values for TREC-6 are averages over 48

queries.

As shown in Table 3.4, in some cases (e.g. TREC-6), the QE baseline obtained

without Split is actually better than using Split. However,for all the collections tested

and for both 10 and 20 relevance judgments, we found that the residue MAP obtained

by B&D is always better than the QE baseline values, whether with or without Split.

Overall, the improvement is statistically significant at the 95% confidence level. There-

fore, our results have confirmed the effectiveness of context-dependent term weights

in RF, both across collections and for different numbers of relevance judgments made.
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Chapter 4

Clustering Evaluation

To tackle the word mismatch problem in IR, query expansion in relevance feedback

has been found to be an effective solution. Clustering methods are another possible

solution. In the next chapter (Chapter 5) we will investigatethe use of clustering meth-

ods in the determination of context-dependent term weights. Before that, we need to

find an effective clustering algorithm for our purpose. Thisleads to the following re-

search problem – what is an appropriate measure to evaluate the goodness of clustering

results? This is the problem that we first consider in this chapter1.

4.1 Clustering effectiveness measure based on a combi-

nation of subclusters

A clustering algorithm separates a collection of objects into groups which are called

clusters. When objects are manually assigned to groups, these groups are called classes

1This chapter is based on two of our published papers: Dang et al. [12] and [14].
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or categories. For example in IR, objects (e.g. documents) may be assigned to one of

two classes: relevant or irrelevant. In IR, the ultimate goalis to recover all the relevant

documents from a given collection. Ideally, the clusteringalgorithm groups all the

relevant and irrelevant documents into two separate clusters. In this ideal scenario,

the IR task would be reduced to identifying any one of the relevant documents, as the

cluster that it belongs to contains all the remaining relevant documents.

It was pointed out by Dang et al. [12] that there are applications in IR where it

is desirable for objects of the same class to be grouped into multiple subclusters. For

example, for better presentation of retrieval results, thesearch engine Vivisimo [43]

returns the retrieval results in the form of clusters, whichtypically correspond to dif-

ferent subtopics of a search query. In this case, more than one cluster may contain

information relevant to a user’s need. For such applications, a good clustering algo-

rithm should group objects of the same class together, not necessarily all into a single

cluster, but into smaller ‘high precision’ clusters. Such ‘tight’ clusters where relevant

documents are concentrated are illustrated by the clustering result as shown in Fig.4.1.

The figure depicts a dendrogram that represents the group-average clustering of the

top-40 retrieved documents of one of the TREC-7 queries. The horizontal axis is a

dissimilarity scale. The leaf nodes on the right border of the dendrogram correspond

to individual documents. The IDs of only the relevant documents are printed in text

form at their leaf nodes, but not the IDs of the irrelevant documents. Visually, the rel-

evant documents seem to be concentrated into several groups. Intuitively, we expect

that these groups generally correspond to different sub-topics categories [8].

The MK1 measure was introduced by Jardine and van Rijsbergen [35] for the eval-
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Figure 4.1: Dendrogram representing group-average clustering of the top 40 retrieved
documents of TREC-7, query 351 (Falkland petroleum exploration).

uation of clustering results. As MK1 is equal to the E-measure (Eq.2.14) of the single

‘optimal cluster’ that could be extracted from the clustering results, this measure is

appropriate for applications where it is desirable for all relevant documents to be con-

centrated in a single cluster. For the different type of applications that desire ‘tight’

high-precision clusters, we have introduced a new class of measures ([12]), called CS

(combination of subclusters) that reflects this requirement. This measure is obtained

in terms of an optimization problem, whose objective function is the micro-average

F-measure, which is introduced in the following (Section 4.1.1).

4.1.1 Micro-average F-measure

The E-measure as defined in Eq.(2.14) applies to binary classes, whereby an object (i.e.

document) belongs either to the ‘relevant’ or the ‘irrelevant’ class. In order to broaden

the applicability of our approach, we first generalize the E-measure to multiple-classes.
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This generalization enables our approach to deal with graded relevance [15] in infor-

mation retrieval, as well as data-mining problems with multiple-classes.

We denote the classes byLR, whereR = 1, 2, . . . , c, with c being the total number

of classes. Suppose there are a total ofNR elements of a particular classLR in a

collection of objects. LetS = {C1, C2, . . . , Cn} be a given family of clusters of the

objects. For a clusterCi of sizeN(Ci), let r(Ci, LR) denote the number of elements

in Ci that belong to the classLR. The precision of the setCi with respect to the class

LR is π(Ci, LR) = r(Ci, LR)/N(Ci), while its recall isρ(Ci, LR) = r(Ci, LR)/NR.

The E-measureE(Ci, LR) and F-measureF (Ci, LR) combine the precision and recall

values. The F-measure is defined as:

F (Ci, LR)
def
=

(β2 + 1)π(Ci, LR)ρ(Ci, LR)

β2π(Ci, LR) + ρ(Ci, LR)
, (4.1)

while E(Ci, LR) = 1− F (Ci, LR). A higher F-measure, and hence lower E-measure,

implies a better quality of the cluster [21], with the perfect cluster havingF = 1.

Substituting the expressions ofπ(Ci, LR) andρ(Ci, LR) in Eq.(4.1), we can rewrite

the F-measure as:

F (Ci, LR) =
(β2 + 1)r(Ci, LR)

β2NR +N(Ci)
. (4.2)

For each individual cluster in the familyS, the F-measure with respect to class

LR may be calculated, and we denote the largest of these values as F ∗(LR). In the

context of information retrieval, Jardine and van Rijsbergen [35] defined a performance

measure for a clustering algorithm, called MK1, which is equal to 1-F ∗, withLR being
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the class of ‘relevant documents’. Extending to multiple classes, Larsen and Aone [48]

introduced an ‘overall F-measure’,FS, which is the sum of the best F-measure for each

class weighted according to the class size. Zhao and Karypis[98] called this the FScore

measure and it is given by

FS =
c

∑

R=1

NR

N
F ∗(LR), (4.3)

wherec is the total number of classes. In Eq.(4.3), the sum is over all class labels, and

N =
∑

R NR is the total number of elements in the collection.

A subset ofS is specified by a set of indices,J ⊆ {1, 2, . . . , n}. For this subset,

we can calculate a micro-average F-measure which is defined as the F-measure of the

union of all members of the subset. LetCJ denote the union of all the clusters labeled

by the indices contained inJ : CJ = ∪i∈JCi , J ⊆ {1, 2, . . . , n}. In analogy to

Eq.(4.2), the micro-average F-measure ofCJ is defined as

Fµ(Ci, LR)
def
=

(β2 + 1)r(CJ , LR)

β2NR +N(CJ)
, (4.4)

wherer(CJ , LR) = total number of classLR elements inCJ , andN(CJ) = |CJ | =

number of objects inCJ . The macro-average F-measure may be defined as a simple

average of the individual F-measures of the component clusters ofCJ :

FM(Ci, LR)
def
=

1

|J |

∑

i∈J

F (Ci, LR). (4.5)

The measureF ∗(LR), or the Fscore measure, Eq.(4.3), are appropriate clustering
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effectiveness measures if it is desired that all elements ofeach individual classLR

are grouped into a single cluster. However, if it is desirable for elements belonging

to the same class to be grouped together in ‘high precision’ clusters, an appropriate

measure is the micro-average F-measureFµ(LR). One reason why the macro-average

F-measure is not appropriate is that if there are overlapping clusters, it would double

count the overlapping items. Also, if an algorithm returns alarge number of high

precision, but small clusters,FM(LR) would be poor because it is limited by the small

recall value of each of the clusters. On the other hand,Fµ(CJ , LR) does not have this

problem. The maximum micro-average F-measure with respectto classLR is:

F ∗
µ(LR) = max

J⊆{1,2,...,n}
Fµ(CJ , LR) = max

J⊆{1,2,...,n}

(β2 + 1)r(CJ , LR)

β2NR +N(CJ)
. (4.6)

Note that while it is obvious that pooling together clusterswill yield a better recall

than selecting a single cluster, whether a better micro-average E-measure (or alterna-

tively F-measure) can be obtained depends on the presence ofmultiple high-precision

clusters. This is because the E-measure and F-measures are composites of both recall

and precision.

Before discussing how to define a new effectiveness measure based on merged

clusters, we first review the algorithm for obtaining MK1, which is the E-measure of

the single ‘optimal cluster’. Such an algorithm (Algorithm0) is shown in Fig.4.2.

Starting from the root, the algorithm steps through all splitting-levels, which are the

(dis)similarity levels at which a cluster splits into two children clusters. The E-measure

of every cluster in the hierarchy is computed, and the smallest value is returned as
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MK1.

Algorithm 0 (MK1)

1 Do hierarchical clustering ofN documents

2E ← E-measure of the single cluster consisting of all theN documents

3 for each of the(N − 1) splitting-levels of the hierarchydo

4 Compute E-measure,Ei, of each cluster

5 E ← min(E,mini Ei)

6 endfor

7 MK1← E

Figure 4.2: Algorithm to calculate MK1

In analogy to MK1, we define a class of measure called CS, which equals to the

best micro-average E-measure that is attainable by a combination of clusters. For a

hierarchical system consisting ofN documents, it is expected that the total number

of possible combinations is of the order of2N and the question arises whether it is

possible to find the optimal combination by an efficient algorithm with polynomial

time complexity. Otherwise, the practicality of such a measure is questionable. In

fact, in designing a new effectiveness measure, we impose a requirement that the time-

complexity to compute the new measure should be comparable to computing MK1.

In Section 4.2, we will demonstrate that it is possible to obtain a linear time com-

plexity algorithm for CS if we restrict to seeking the optimalcombination of disjoint

clusters. As for the general case where clusters are non-disjoint, at the moment we

are unable to provide a polynomial time algorithm to solve the optimization problem.

Rather, we will present several greedy algorithms to yield estimates of the optimal

E-measure, as described in Section 4.3.
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4.2 Optimal combination of disjoint clusters – CS1

Instead of seeking the best out of all possible combinationsof clusters, we study a

sub-class of the problem that restricts the clusters to be disjoint. In particular, we

consider the following scheme. First, we form disjoint clusters by cutting a hierarchical

structure at one of the splitting-levels (Fig.4.3). Out of all possible subsets of these

disjoint clusters, we seek the one that yields the smallest micro-average E-measure.

We then step through all the splitting-levels, and for each level we find the cluster

combination that gives the smallest micro-average E-measure. We define a measure,

called CS1, to be the smallest value among these locally optimal E-measures, stepping

through all levels of the hierarchy. The algorithm to obtainCS1 is summarized in

Fig.4.4 (Algorithm 1).

 

(a) (b) 
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Figure 4.3: Illustration of clusters used in (a) Algorithm 1and (b) Algorithms 2A,
2B, 2C as applied to the same hierarchical system. Each leaf node is a document, and
relevant documents are denoted by ‘r’.

Algorithm 1 (CS1) differs from Algorithm 0 (MK1) in two major aspects. First, in

Algorithm 1 (line 4) we discard all the ‘singleton’ clusters. This is necessary because
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Algorithm 1 (CS1)

1 Do hierarchical clustering ofN documents

2E ← E-measure of the single cluster consisting of all theN documents

3 for each of the(N − 1) splitting-levels of the hierarchydo

4 Discard all singleton clusters

5 Eµ ← smallest micro-average E-measure among all combinations of the re-

maining clusters

6 E ← min(E,Eµ)

7 endfor

8 MK1← E

Figure 4.4: Algorithm to calculate CS1

otherwise the globally smallest value ofE would be obtained by simply merging all

the singleton relevant documents. This would then give the largest possible value of

r(CJ , LR) (equalsRT , the total number of relevant documents among theN docu-

ments) in the numerator of Eq.(4.4) and the smallest possible size of a merged cluster

containingRT relevant documents (N(CJ) = RT ). Secondly at each level of the hi-

erarchy in Algorithm 1, we look for the optimal combination of clusters that gives the

smallest micro-average E-measure, instead of picking out the single clusterCi that has

the smallest valueEi as in Algorithm 0. This step in Algorithm 0 has linear time-

complexity, so it is desirable that the corresponding stepsin Algorithm 1 also have

linear time-complexity. We will demonstrate in Section 4.2.1 how such an algorithm

that solves the optimization problem exactly can be found. Fig.4.3(a) shows an ex-

ample of a hierarchical system of clusters that illustratesAlgorithm 1. In this figure,

cutting the hierarchical tree at levelL yields the disjoint clustersC1, C2 andC3, as

well as a singletonS. The singletonS is discarded, and line 5 of the algorithm seeks
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among the combinations ofC1, C2 andC3 the one that has the smallest micro-average

E-measure.

In Algorithm 1, by seeking the smallest micro-average E-measure among all com-

binations of the clusters and stepping through the hierarchy, we necessarily include

among the candidates the single ‘optimal cluster’ of MK1. The only exception is when

MK1 corresponds to the E-measure of a singleton relevant cluster, which is a candidate

being excluded by step 4 of Algorithm 1. Hence we can make the following remark:

Remark 1. The value of CS1 is always smaller than or equal to MK1,

except when MK1 is attained by selecting a singleton relevant cluster.

4.2.1 Reformulation of the optimization problem

A crucial step in computing CS1 according to Algorithm 1 is finding the combination

of clusters that yields the smallest value of the micro-average E-measure. This problem

may be solved by a reformulation to a well-known optimization problem, as shown

below.

Writing E = 1 − F , we may restate our problem as the following. Given a set of

clusters{C1, C2, . . . , Cm} , we seek a subset of these clusters

CJ =
⋃

i∈J

Ci, withJ ⊆ U,U ≡ {1, 2, . . . ,m} (4.7)

that maximizes the objective function

F =
(1 + β2)rJ

β2card(R) +NJ

(4.8)
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whererJ = card(∪i∈JRi) andNJ = card(∪i∈JCi).

We first make the following observation regarding the optimal solution:

Observation 1.The setJ which maximizes the objective functionF nec-

essarily does not include any clusterCi which contains only irrelevant

document.

This observation may be proved by contradiction. Suppose the clusterCJ is the

optimal solution and that it has a component clusterCi that contains only irrelevant

documents. Then, by dropping the clusterCi from CJ , there would be no decrease in

rJ , whileNJ is reduced in Eq.(4.8), leading to an increase inF . Hence, the optimiza-

tion problem may be simplified by discarding all clusters which do not contain any

relevant documents. Without loss of generality, we relabelthe remaining clusters such

thatU = {1, 2, . . . ,m} is the set of indices of clusters containing at least one relevant

document. Note thatm in the relabeled set is different from the original value if some

clusters have been discarded. Then, the number of relevant documents in clusterCi

must be greater than zero:

ri > 0 for all i ∈ U.

Up to now, the statement of the optimization problem given above is quite general and

does not say whether the clusters contain any common elements. On the other hand,

our current problem stated by Line 6 in Algorithm 1 is a special case whereby all the

clusters{Ci} are disjoint. This property arises because all the clustersare obtained by

cutting the hierarchical tree at a certain similarity level. In this case for the merged
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clusterCJ , we haverJ =
∑

i∈J ri andNJ =
∑

i∈J Ni, whereNi is the total number of

documents in each of the component clusterCi. Introducing the variables{xi}, where

1 ≤ i ≤ m, given by

xi =















1 if i ∈ J

0 if i /∈ J

(4.9)

the objective function, Eq.(4.8), can be rewritten as

F =
(1 + β2)

∑m

i=1 rixi

β2card(R) +
∑m

i=1 Nixi

. (4.10)

The original optimization can therefore be reformulated asmaximizingF in Eq.(4.10),

for xi ∈ {0, 1}, which is precisely a unconstrained 0-1 linear hyperbolic (or fractional)

programming problem (Hammer and Rudeanu [24], Nagih and Plateau [56], Robillard

[64], Hansen et al. [25]). While the general 0-1 linear hyperbolic programming prob-

lem with arbitrary coefficients is NP-hard (Hansen et al. [25]), in the instances where

the denominator is always positive, exact algorithms have been proposed by various

authors. In particular, quadratic time algorithms were given by Hammer and Rudeanu

[24] and Robillard [64], while Hansen et al. [25] and Nagih andPlateau [56] pro-

vided linear time algorithms. For our present case, all the coefficients in Eq.(4.10) are

positive definite, hence the optimization can be solved exactly in linear time.

4.2.2 Experiments on CS1

We have performed experiments to compare the CS1 and MK1 measures. In our ex-

periments, clustering is performed using the hierarchicalclustering routines provided
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by the open source C Clustering Library of de Hoon et al. [17]. We first describe the

experimental environment before presenting the results indetail.

Experimental environment

Our new evaluation measure CS1, just like the traditional MK1, can be applied both

to the clustering of an entire document collection and to query-specific clustering. In

this thesis, we compare CS1 with MK1 with extensive experiments of query-specific

clustering on the TREC-2, -6 and -7 ad hoc test collections. Onereason why we have

chosen to use query-specific clustering is computational time consideration. This is a

concern because of the large size of the test collections (Table 1.1). Another reason is

that there are applications of query-specific clustering which involve locating relevant

documents in multiple clusters (e.g. Iwayama [33], Leuski [51]), and CS1 would be an

appropriate evaluation measure.

Each of the TREC collections comes with 50 topics for which relevance judgment

is available. Table 1.1 shows some statistics for these collections. We have chosen the

three collections because of their different characteristics. First, the title queries for

both TREC-6 and TREC-7 generally consist of three query terms or fewer, which are

typical in real-life web-search requests. It is useful to study both TREC-6 and TREC-7

because TREC-6 contains many longer documents. On the other hand, TREC-2 is quite

different from the others in that it contains some title queries with more query terms,

and there are on average many more relevant documents per query in the collection.

In query-specific clustering, we first perform an initial retrieval for each title query

with our search engine. We then apply single-linkage, complete-linkage and group
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average clustering algorithms to the top-100 and top-1000 retrieved documents for

each query. Based on the cluster hierarchies thus obtained, we compute both MK1 and

CS1 according to the algorithms (Algorithm 0 and Algorithm 1)described above.

As mentioned in the previous section, the linear time algorithm of Hansen et al.

[25] is applicable to the optimization problem in computingCS1. However, for ease of

implementation, we have used the algorithm of Robillard [64]in our study. As shown

below, this later algorithm also provides an interpretation of the component clusters

that constitute the optimal combination which yields the smallest E-measure. Suppose

the clusters are labeled such that them fractionsri/Ni are ordered in an non-decreasing

order:

r1
N1

≤
r1
N1

≤ · · · ≤
rm
Nm

. (4.11)

Let k be an integer in{1, 2, . . . ,m} such that

∑m

j=k rj

β2card(R) +
∑m

j=k Nj

<
ri
Ni

for all i ≥ k (4.12)

and
∑m

j=k rj

β2card(R) +
∑m

j=k Nj

≥
ri
Ni

for all i < k. (4.13)

Robillard’s optimal solution,x∗ ∈ {0, 1}m is given by:

x∗ =















1 if j ≥ k

0 if j < k

(4.14)
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and the maximal value is

F ∗ =
(1 + β2)

∑m

j=k rj

β2card(R) +
∑m

j=k Nj

. (4.15)

The fractionri/Ni is actually the precision of the clusterCi. Therefore, Robillard’s

algorithm means that the component clusters in the combination that gives the least E-

measure are those that have the highest precision, with Eq.(4.12) and (4.13) providing

the ‘stopping criterion’. The fraction that appears on the left-hand side of Eq.(4.12)

and (4.13) is actually(1 + β2)−1 times the F-measure of the merged cluster composed

of {Ck, Ck+1, . . . , Cm}. To arrive at the optimal solution, one successively picks the

highest precision clusters in a ranked list until(1 + β2)−1 times the cumulative F-

measure of the merged pool is larger than the precision of thenext remaining cluster.

Hansen et al. [25] made a similar observation in their work ona different optimization

problem, and they called it a ‘precision-driving optimality’. In our case, the ‘precision-

driven’ solution is somewhat surprising in that it applies to all values of the parameter

β, which specifies the relative importance of precision and recall. The effect ofβ only

enters through the stopping criterion Eq.(4.12) and (4.13).

Obviously to calculate MK1 and CS1 as described above, it is necessary to know

whether each document in a cluster is relevant or not. This information is provided

by TREC’s relevance judgments. However, due to the large size of the TREC col-

lections (Table 1.1), it is infeasible to assess the relevance of every document in the

corpus. Rather, a method of pooling is used to select documents for relevance judg-

ment (Voorhees [87], Soboroff [75]. The top-ranked documents of each TREC par-
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ticipant, up to a specific ‘pool depth’ (generally set at 100)are picked and merged to

form a set of documents that are judged. Consequently it is typical that some of the

documents returned by any retrieval system are not judged. The general practice in

TREC evaluations is that any document that is not judged is assumed to be irrelevant

(Voorhees [87]). This assumption has been under scrutiny invarious studies (Keenan

et al. [40], Zobel [96]). The work of Keenan et al. [96] indicated that the pool depth

(100 documents) used in TREC adequately identifies the relevant documents in the

entire collection, at least in the gigabyte regime. Zobel [96] concluded that the results

of TREC retrieval experiments were reliable. In the different setting of NTCIR, an

evaluation workshop of Japanese text retrieval similar to TREC, Kuriyama et al. [45]

also investigated the method of pooling. They verified the effectiveness of pooling in

finding relevant documents and also confirmed the reliability of evaluations using the

test collection based on pooling. In our experiments, we have also adopted the as-

sumption that all non-judged documents are irrelevant. However, in order to confirm

that the assumption does not have a significant impact on our experiments which use

the TREC-2, -6 and -7 collections, we have performed some additional experiments

in which we discard any retrieved documents that do not have relevance judgment in-

formation. The results using the filtered document sets, as summarized in Table 4.2,

demonstrate that the assumption does not affect the qualitative conclusions in our cur-

rent work. Hence this gives us confidence in the calculationsin our experiments using

the concerned assumption.
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Results forβ = 1.0

The results for our experiments, for the case ofβ = 1.0, are summarized in Table 4.1.

In the table, the values of MK1 and CS1 are averages over 50 queries for each of the

TREC collections. In the third column of the data in Table 4.1,we have also included

a third quantity, called CS1s. This is the value of CS1 that we would have obtained if

‘singleton’ clusters were not discarded (line 4 in Algorithm 1). As mentioned before,

this value corresponds to a merged cluster containing all the relevant documents alone

and no irrelevant documents. Without line 4 in Algorithm 1, no matter what cluster-

ing algorithm is used, the ideal cluster would be achieved bypicking all the relevant

singleton documents at the leaf-nodes level in the algorithm. As this is obviously an

over-optimistic scenario, CS1s would not serve as a meaningful evaluation measure,

and it is included here only to indicate the lower bound for CS1.

The fourth data column in Table 4.1 is the difference betweenthe measures,∆=MK1-

CS1. We find∆ to be positive for all of the TREC collections used, and for allclus-

tering algorithms, i.e. the average CS1 is always smaller than the corresponding MK1

numerically. To test for the statistical significance of thedifference between MK1 and

CS1, we performed the Wilcoxon matched-pairs signed-ranks test. Thep-values as

presented on the last column of Table 4.1 indicate that thereis statistical significance

at the 99.9% level for almost all cases. In fact, we find that for every individual query,

CS1 is generally equal to or smaller than MK1. This can be illustrated by plotting the

scatter diagram of CS1 against MK1 for every query. Figures 4.5(a) to (c) show the

scatter diagrams for the top-1000 retrieved documents of TREC-7, using three cluster-
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ing algorithms. Each point in the figures corresponds to an individual query. As the

points generally lie below the 45 degree line, the smaller value of CS1 is confirmed.

The plots for the other collections all show this behaviour.

Table 4.1: Evaluation measures forβ = 1.0, averaged over 50 queries for each collec-
tion.
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Figure 4.5: Plots of CS1 vs. MK1 for top 1000 retrieved documents for the queries of
TREC-7, withβ = 1.0.

Results for filtered sets of retrieved documents that have relevance judgment in-

formation

As mentioned in the Experimental environment section, onlya subset of documents

in each TREC test collection are judged for relevance, and thecommon assumption

is that all non-judged documents are irrelevant. In this section we investigate the im-

pact of this assumption and present some additional experiments in which we discard

all retrieved documents that do not have relevance judgmentinformation. The data as

summarized in Table 4.2 shows that for the worst case (TREC-6, top-1000 retrieved

documents), on average only about 329 documents among the retrieved sets are judged

for each query. However, comparing our previous results in Table 4.1 and the results

in Table 4.2, we find that the assumption in concern does not have a significant im-

pact. From Table 4.2, after filtering the documents that are not judged, both MK1 and

CS1 are found to be improved. This is expected because all the relevant documents

are retained in the filtering, while a lot of irrelevant ‘noise’ documents are removed.

However, while the numerical difference between CS1 and MK1 in Table 4.2 is re-
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duced compared with Table 4.1, we still observe the average CS1 to be always smaller

than MK1. The percentage difference∆/MK1 is in the range of 0.5% to 10.2% for the

top-100 retrieved set, and 7.8% to 31.3% for the top-1000 retrieved set. Furthermore,

we have confirmed the statistical significance in all cases bythe Wilcoxon test. At

β = 1, group average clustering still gave the best MK1, while complete linkage gave

the best CS1, the same as the findings in the Results forβ = 1.0 section. In the rest

of this section, our experiments are performed without filtering away the non-judged

documents.

Table 4.2: Averaged evaluation measures forβ = 1.0. Retrieved documents that do
not have relevance judgment information are discarded.
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Results forβ = 0.5 and 2.0

In addition to computing the cluster effectiveness measureMK1 with β = 1.0, it is

common in the literature [35] to use the valuesβ = 0.5 and 2.0, which represent

precision-oriented and recall-oriented retrieval, respectively. We have also studied

these regimes, and the experimental results are presented in Table 4.3. Forβ = 0.5

and 2.0, we again confirm that the values of CS1 are categorically smaller than the

corresponding MK1 values. For clarity, in Fig.4.6 we have plotted the MK1 and CS1

values againstβ for the top-1000 retrieved documents for TREC-7.

Table 4.3: Evaluation measures for different values ofβ, averaged over 50 queries.
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Figure 4.6: Plots of the average values of CS1 and MK1 vsβ, for the top 1000 retrieved
documents for the queries of TREC-7, corresponding to three types of hierarchical
clustering algorithms as indicated

Some statistics of the optimal combinations of clusters

The important implication of smaller values of CS1 compared with MK1 is that a

retrieval strategy that combines multiple clusters has some potential of out-performing

a strategy that returns a single cluster. Of course, the difficulty is how to identify the

appropriate clusters to combine. Therefore we further analyze the characteristics of

the optimal solutions which might help in this respect. Someexamples of the statistics

of the optimal solutions are shown in Table 4.4.

Table 4.4: Statistics of the optimal clusters for TREC-7.
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Note: All values are averaged over 50 queries. Here, CS1 corresponds to the optimal
combination of clusters obtained by cutting a hierarchicaltree at a single similarity

level.
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The data in the table shows that for clustering of the top-100documents, MK1

and CS1 correspond to roughly the same number of relevant documents, but the total

number of documents in the CS1 optimal solution is generally smaller. This means

there are fewer irrelevant documents in the CS1 solution, thus giving a higher precision

value. Since recall is roughly the same, a higher precision leads to a higher F-measure

for the combination of clusters. For clustering of the top-1000 documents, the optimal

solution for CS1 generally contains much fewer documents than the MK1 solution.

With both complete linkage and group average clustering, the CS1 optimal solution

returns a lot more relevant documents than the single cluster of MK1. The last column

in Table 4.4 shows the average number of clusters being combined to yield the optimal

solution for CS1. For complete linkage clustering of 1000 documents, the optimal

solution is made up of about 18 clusters on average. It appears that on average each

of these clusters consist of 3 to 4 documents only, indicating that the method picks

up small clusters where relevant documents are concentrated, and excludes irrelevant

documents as much as possible.

4.3 Optimal combination of overlapping clusters – CS2

As discussed in Section 4.2, our proposed new clustering effectiveness measure, CS1,

corresponds to an optimal combination of clusters that are disjoint. For completeness,

we will consider the case where some clusters have common elements. This will show

how our cluster evaluation approach can be applied to more general problems and clus-

tering algorithms. The corresponding clustering effectiveness measure, applicable for
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general overlapping clusters, will be called CS2. Examples where overlapping clus-

ters occur include Suffix Tree Clustering (Zamir and Etzioni [97]) and fuzzy c-Means

clustering (e.g. Kummamuru et al. [44]). With hierarchicalclustering, members of the

family of bottom level clusters may also overlap in a nested fashion (El-Hamdouchi

and Willett [20]).

In order to demonstrate our approach for overlapping clusters, we will study the

problem of the optimal combination of the bottom level clusters of a hierarchical sys-

tem as an example (e.g. Fig.4.3(b)). Based on Observation 1 stated in Section 4.2,

we can discard any bottom level clusters that do not contain any relevant documents.

Suppose there arem bottom level clusters that remain. Our optimization problem is to

find the subset of thesem clusters that yield the maximum micro-average F-measure,

Eq.(4.8). This maximal value is the value of the CS2 measure.

Algorithms

In general for overlapping clusters, we can re-formulate the optimization in a similar

manner as for the disjoint case. The difference is that for overlapping clusters, we

cannot writerJ andNJ in Eq.(4.8) as simple sums ofri andNi over all the component

clustersCi in the merged clusters. As before, we introduce the variables which indicate

the presence or absence of clusterCi in the merged clusterCJ , Eq.(4.9). However,

instead of being a fraction of linear functions as in Eq.(4.8), the objective function

F in the present case is a non-linear function in{xi}. In the most general case, the

exact form ofF will involve an exponential number of coefficients that specify the

number of documents in all the possible intersections of theclusters. Specifically,
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these coefficients include:

ri = card(Ri) = number of relevant documents in clusterCi

rij = card(Ri ∩Rj)

= number of common relevant documents in clustersCi andCj

rijk = card(Ri ∩Rj ∩Rk)

= number of common relevant documents in clustersCi , Cj andCk

...

r12...m = card(R1 ∩R2 ∩ . . . ∩Rm) (4.16)

and similarly

Ni = card(Ci) = number of relevant documents in clusterCi

Nij = card(Ci ∩ Cj)

= number of common relevant documents in clustersCi andCj

...

N12...m = card(C1 ∩ C2 ∩ . . . ∩ Cm) (4.17)

Before we discuss the algorithms for solving the optimization problem, we first

note a similarity between this problem and the Red-Blue Set Cover (RBSC) problem

introduced by Carr et al. [7], which is itself a natural generalization of the well-known

set cover problem. In RBSC, there are finite sets of ‘red’ elementsR, ‘blue’ elements

B, and a familyS which is a subset of the superset, i.e.S ⊆ 2R∪B. The problem

is to find a subfamily which covers all blue elements, but which covers a minimum

possible number of red elements. For our case, intuitively the optimal solution that

maximizes the objective functionF , Eq.(4.8), would contain as many relevant doc-

uments as possible and as few irrelevant documents as possible. The similarity with
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RBSC is realized by replacing our relevant and irrelevant documents by ‘blue’ and

‘red’ elements respectively. However, our problem differsfrom RBSC in the follow-

ing. First, RBSC requires complete cover of the blue elements (relevant documents),

but our optimization problem does not impose the requirement to completely cover all

the relevant documents. Second, the objective function that RBSC seeks to minimize

is the number of red elements (irrelevant documents) in the cover. However, in our

case the objective function has the more complex fractionalform of Eq.(4.8).

In each of Eq.(4.16) and (4.17), there are of the order of2m coefficients, where

m is the total number of clusters. Note that in the special caseof completely disjoint

clusters, the only non-zero coefficients areri andNi, and the optimization reduces to

a 0-1 linear fractional programming problem as discussed inSection 4.2.1. However

in the most general case, because of the exponential number of coefficients, we cannot

find a polynomial time algorithm. Instead, we take the standard approach to estimate

the optimal solution by greedy algorithms.

Generally, a greedy algorithm is an iterative process in which every iteration takes

the step that maximizes some given heuristics. There are several choices of greedy

algorithms that are apparent for our problem:

Algorithm 2A. First, because of the similarity of our problem with the set cover,

our first algorithm adopts an approach commonly used in the later problem. Specifi-

cally, at each iteration we select the clusterCk that has the largest ‘cost effectiveness’.

In our case, the cost effectiveness isrc/Nc, whererc is the number of relevant docu-

ments in the clusterCk that are not yet in the pool, andNc is the total number of new

documents that would be added to the pool by merging withCk.
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Algorithm 2B. We follow the ‘precision-driven optimality’ approach of the disjoint

cluster problem. At each iteration, the cluster that has thelargest precisionrk/Nk is

selected. It should be noted that if all clusters are disjoint, Algorithms 2A and 2B are

actually equivalent.

Algorithm 2C. Lastly, we consider the natural ‘true greedy’ algorithm. Ateach

iteration, we select from the set of remaining clusters the one that gives the largest

value of the objective functionF on merging withC, the current pool.

The reason why we have described several greedy algorithms is that at the moment,

we are unable to obtain a performance guarantee for any of them and so we do not have

the theoretical knowledge of which one will give the best estimate to the true optimal

solution. Therefore, we will compare by experiments the optimal estimates obtained

by each of them. One might have thought the ‘true greedy’ algorithm (2C) would

be the best, but our results presented in the next section found that in some cases it

actually gives the worst estimate. This shows that for our problem, experiments to try

out several algorithms are needed to find a good estimate of the optimal solution.

The three algorithms 2A, 2B and 2C, which estimate the maximummicro-average

F-measure attainable by combination of a subset ofm bottom level clusters, are sum-

marized in Fig.4.7. It should be noted that these algorithmsdo not step through the

hierarchical levels as in Algorithm 1 (line 3) because we areseeking the optimal com-

binations of the bottom level clusters. In Fig.4.7, the bottom level clusters have in-

dices1, . . . ,m. As an illustration, in Fig.4(b) the bottom level clusters are labeled by

B1, B2, . . . , B6. In this example,B3 is nested withinB4, andB5 is nested withinB6.
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Algorithm 2A (Heuristics: Largest ‘cost effectiveness’)

1C ← ⊘, J ← {1, 2, , . . . m}, F ← 0

2 do

3 findk ∈ J that maximizes∆rc
∆Nc

, where

∆rc = card((C ∪ Ck) ∩R)− card(C ∩R) and

∆Nc = card(C ∪ Ck)− card(C ∩R)

4 C ← C ∪ Ck, J ← J − {k}

5 F ← max

(

F,
(1 + β2)card(C ∩R)

β2card(R) + card(C)

)

6 while J 6= ⊘

7E ← 1− F

Algorithm 2B (Heuristics: Largest precision)

1C ← ⊘, J ← {1, 2, , . . . m}, F ← 0

2 do

3 k ← argmax
k∈J

rk
Nk

4 C ← C ∪ Ck, J ← J − {k}

5 F ← max

(

F,
(1 + β2)card(C ∩R)

β2card(R) + card(C)

)

6 while J 6= ⊘

7E ← 1− F

Algorithm 2C (‘True greedy’)

1C ← ⊘, J ← {1, 2, , . . . m}, F ← 0

2 do

3 findk ∈ J that maximizes∆rc
∆Nc

, where

FC =
card(C ∪ Ck) ∩R

β2card(R) + card(C ∪ Ck)
4 C ← C ∪ Ck, J ← J − {k}

5 F ← max

(

F,
(1 + β2)card(C ∩R)

β2card(R) + card(C)

)

6 while J 6= ⊘

7E ← 1− F

Figure 4.7: Greedy approximation algorithms to estimate optimal effectiveness mea-

sure for overlapping clusters
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4.3.1 Experiments – overlapping clusters

We have applied each of the greedy algorithms (2A, 2B and 2C) toestimate the smallest

E-measure obtainable by combining bottom level clusters for the top-100 and top-1000

retrieved documents of TREC-2, -6 and -7 title queries. The families of bottom level

clusters are specified by the hierarchical systems studied in the experiments of Section

4.2.2.

We have performed our experiments forβ = 1.0, which means equal importance

of recall and precision. The results are summarized in Table4.5, where we have also

included the MK1 and CS1 measures (taken from Table 4.1) as references.

Table 4.5: Estimates of optimal combination of bottom levelclusters, using several
greedy algorithms (Algorithms 2A, 2B and 2C), averaged over the queries of each
TREC collection
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Comparing the experimental optimal estimates obtained by Algorithms 2A,2B and
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2C, it is found that for all TREC collections and for all clustering methods, Algorithm

2A, which selects clusters based on ‘cost effectiveness’ ateach iteration, always pro-

duces the smallest estimate of the E-measure for the optimalcombination of bottom

level clusters. This can be seen by the average values shown in Table 4.5. Furthermore,

we have carried out the Wilcoxon matched-pairs signed-ranks test and confirmed the

statistical significance of this finding, with p-values generally far below 0.0001. On

the other hand, for both single linkage and group average clustering, the data shows

a somewhat surprising result that the ‘true greedy’ algorithm (2C) actually gives the

largest, hence worst, estimate. Only for complete linkage clustering does the ‘true

greedy’ algorithm give comparable estimates as the ‘precision-driven’ algorithm (2B).

An explanation for the poor performance of the ‘true greedy’algorithm is that at the

early iterations, it tends to select the larger low-precision clusters containing more

relevant documents and hence a larger recall. Such clustersmay well yield a larger

F-measure than some of the other high-precision but small clusters containing only

two or three documents. In this way, the algorithm locks manyirrelevant documents

in the pool, preventing a low eventual E-measure. However, Algorithms 2A and 2B

favour the tight high-precision clusters at each iteration, thus keeping the irrelevant

documents out of the pool.

We emphasize that it is only for our present optimization problem that we observe

the best greedy algorithm to be the one based on selecting thebest ‘cost effectiveness’

cluster at each iteration. In particular, our problem is a special example of overlapping

clusters where the bottom level clusters overlap in a nestedfashion. Since other greedy

algorithms may prevail for other families of overlapping clusters, we have to perform
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experiments to obtain the estimates for all the algorithms discussed here. Furthermore,

it is interesting to study how far our best estimate is from the true optimal value. Future

research could include seeking a bound of the estimates for the algorithms, to indicate

how far the estimates are from the true optimal value. Another action may be to seek

the true optimal solution by enumeration and compare with our greedy estimates. Of

course, the number of combinations of clusters is exponential, so this could only be

attempted for queries that do not have too many, say within 20or 30, relevant docu-

ments.

From Table 4.5, it is observed that our estimates of the best E-measure obtainable

by combining bottom level clusters as obtained by Algorithm2A are generally smaller

than CS1. We have also confirmed the statistical significance of this difference, as in-

dicated by the Wilcoxonp-values given on the last column of Table 4.5. The reason for

the better results of Algorithm 2A may be understood by referring to the example of

Fig.4.3. Algorithm 2A allows combination of clusters corresponding to different simi-

larity levels. In Fig.4.3(b), the optimal combination is clearlyB1 andB4, which cover

all the relevant documents in the system, without includingany irrelevant documents.

In comparison, Algorithm 1 may either selectC2 in Fig.4.3(a) which yields a smaller

recall, or the combinedC1 andC2 which yields a smaller precision.
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4.4 The MMF Problem and Optimality of GAA for Nested

Clusters

In this section, we discuss in greater detail the the optimization problem defined by

Eq.(4.6), which we will call the Maximum Micro-average F-measure (MMF) problem.

4.4.1 MMF problem and related work

It is clear that for a finite family of clusters,S, a maximal valueF ∗
µ(LR) must exist,

corresponding to the maximum value ofF (CJ , LR) among all possible subsetsCJ of

S. However, it is possible for more than one subset ofS to yield the same maximal

valueF ∗
µ(LR). In this case, we impose an additional condition:

Largest Recall Condition. If more than one subset ofS yield the

same maximal valueF ∗
µ(LR), the global optimal solutionG of the MMF

problem is defined to be the one that contains the largest number of class

LR elements,r(G,LR) , i.e. the one that has the largest recall.

As mentioned in Section 2.4.4, values ofβ larger than 1 in the E-measure Eq.(2.14)

correspond to a recall-oriented regime. Forβ →∞ in Eq.(4.6),F ∗
µ ≈ maxJ r(CJ , LR)/NR,

which means that the objective function is dominated by recall. The optimal valueF ∗
µ

will then be attained by a subset that covers all the classLR elements in the collec-

tion, so thatr(CJ), LR reaches the largest possible valueNR. Therefore whenβ is
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sufficiently large, Eq.(4.6) becomes

F ∗
µ(LR) = max

CJ

(β2 + 1)NR

β2NR +N(CJ)
(4.18)

whereCJ is constrained to cover all the classLR elements in the collection. This is the

’precision at fixed recall of 1’ problem considered by Gao andEster [21]. SinceNR is

a constant, the maximization, Eq.(4.18) is equivalent to minimizingN(CJ). Our MMF

problem is then reduced to finding the subfamilyCJ that covers allLR elements in the

collection but includes the minimum possible number of elements belonging to other

classes. This is a multiple-class generalization of the Red-Blue Set Cover (RBSC)

problem introduced by Carr et al. [7] who considered binary class (’Red’/’Blue’) ele-

ments. RBSC is in turn an extension of the classical set cover problem.

In Section 4.3, we described several greedy algorithms to provide estimates to the

MMF problem, Eq.(4.6). Our experiments for various hierarchical clustering methods

showed that Algorithm 2A, which is based on a ‘cost-effectiveness’ heuristics, yields

numerically better estimates than the other greedy algorithms. Hierarchical clustering

algorithms generate clusters that overlap only by nesting (e.g. Fig.4.3). This means

any pair of the clusters may either be disjoint, or in case they intersect, one of them is

a proper subset of the other. In this section, we study further the MMF optimization

problem for the sub-class of clustering algorithms which generate clusters that overlap

only by nesting. First, we make a slight modification to Algorithm 2A by including

explicitly a stopping criterion in the iterative process. The modified algorithm (GAA)

is shown in Fig.4.8. We make the important claim that for clusters that overlap only
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by nesting, GAA yields the true global optimal value. We willprovide a mathematical

proof of this claim. Our result has practical significance because hierarchical clustering

is commonly used [35],[11],[88],[81]. In fact, our result also applies to a family of

disjoint clusters, as these may be regarded as a special caseof ‘overlap only by nesting’

whereby none of the clusters actually intersect. This meansthe results are applicable

to partitional clustering algorithms, e.g. K-means, as well.

For a given family of clustersS = {C1, C2, . . . , Cn}, we seek an optimal subset of

S that yield the maximal micro-average F-measure, Eq.4.6. Inthe rest of this section,

we will drop the factor(β2 + 1) in the numerator of the objective function which does

not affect the maximization. For further simplification of the notation, we will also

hide the labelLR, with the understanding that the derivations presented below can be

applied to each individual class labelLR. Accordingly, we denote the constant factor

β2NR in the denominator by a constantA. Hence, our problem becomes seeking the

following maximal value:

F ∗
µ = max

J⊆{1,2,...,n}

r(CJ)

A+N(CJ)
= max

J⊆{1,2,...,n}

r
(
⋃

i∈J Ci

)

A+N
(
⋃

i∈J Ci

) . (4.19)

In Line 5 of GAA (Fig.4.8), the value∆Hr(Ci) is equal to the number ofnewclass

LR elements that the clusterCi would add to the current poolH, while ∆HN(Ci)

is equal to the total number ofnew elements that would be added. Thus, the ratio

∆Hr(Ci)/∆Hr(Ci) can be regarded as a ‘cost effectiveness’ measure of adding the

clusterCi to the pool. Line 5 means that at each iteration, among the remaining clusters

the one with the largest cost effectiveness is selected as a candidate to be added to the
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Algorithm GAA

Input: ClustersCi, i = 1, 2, . . . , n

Output: Optimal valueF ∗
µ ; Indices of component sets of the optimal solutionJ∗.

1H ← ⊘, F ← 0, J∗ ← ⊘

2 J ← {1, 2, . . . , n}

3 stop← false

4 do

5 k ← argmax
i∈J

[

∆Hr(Ci)

∆HN(Ci)

]

, where

r(Ci) = number of classLR elements inCi

N(Ci) = number of elements inCi

∆Hr(Ci) = r(H ∪ Ci)− r(H)

∆HN(Ci) = N(H ∪ Ci)−N(H)

6 if ∆Hr(Ci)
∆HN(Ci)

≥ F (H)

7 thenH ← H ∪ Ck

8 F ← r(H)
A+N(H)

9 J ← J − k, J∗ ← J∗ + k

10 elsestop← true

11while J 6= ⊘ AND stop = false

12F ∗
µ ← F

Figure 4.8: Greedy approximation algorithm (GAA) for MMF problem

current pool. If the cost effectiveness of this candidate isnumerically larger than or

equal to the F-measure of the current pool, then it is added tothe pool. Otherwise,

the iteration stops. This criterion is stated in Line 6 of thealgorithm. In the rest

of this section, we discuss the application of GAA to families of clusters in which

any overlapping of the clusters occur only by nesting (e.g. hierarchical clustering in
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Fig.(4.3)). Formally, we define the instance in which the clusters overlap only by

nesting as follows.

Definition 1. The clusters{C1, C2, . . . , Cn} ‘overlap only by nesting’ iff

∀Ci∀Cj(Ci ∩ Cj 6= ∅)⇒ (Ci ⊆ Cj) ∨ (Cj ⊆ Ci).

The above definition means that if two clusters intersect, then one of them must be

a subset of the other. It is obvious that the following proposition holds:

Proposition 1. For a family of clusters that overlap by nesting, the union

of any subset of the clusters,CJ , can be written as a union of disjoint

clusters.

The main goal of this section is to prove the following theorem.

Theorem 1.For the instance of the MMF problem where the clusters in the

given family overlap only by nesting, the greedy approximation algorithm

GAA yields the global maximal valueF ∗
µ . If more than one subfamily of

clusters yield the same global maximal valueF ∗
µ , then GAA will return the

one that satisfies the Largest Recall Condition.

Theorem 1 can be proved by mathematical induction. The proofincludes: (1)

a basis step; (2) an inductive step; and (3) a termination condition corresponding to

Line 6 of the GAA algorithm. We will make extensive use of the following Lemma

[64],[25]:

Lemma 1. For two fractionsa1/b1 anda2/b2, whereai ≥ 0, bi > 0, i =

1, 2, we havemin
[

a1
b1
, a2
b2

]

≤ a1+a2
b1+b2

≤ max
[

a1
b1
, a2
b2

]

. Here, the inequalities
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are strict if (a1b2 − a2b1) 6= 0, while the equalities are strict if(a1b2 −

a2b1) = 0.

The proof of the basic step and inductive step will utilize Lemma 2 as stated below.

This lemma involves a numerical comparison of the F-measureof a known subset of

the global optimal solution and the largest cost effectiveness among the remaining

clusters, which corresponds to the cluster selected in Line5 of GAA.

Lemma 2. Given an instanceS in which the clusters overlap only by

nesting, and a subsetH known to be a proper subset of the global optimal

G of MMF. If the clusterC ∈ S\H has the largest cost effectiveness

∆Hr(C)/∆HN(C) among the clusters inS\H, and ∆Hr(C)
∆HN(C)

≥ r(H)
A+N(H)

,

thenC must also be a subset ofG.

Proof. SinceH is known to be a proper subset ofG,G must be equal to the union ofH

and some subset ofS\H . LetG = H ∪K. Then, by Proposition 1, we can writeK as

a union of a set of disjoint clusters{Ci}whereCi ∈ S\H, andK = C1∪C2∪· · ·∪Cm.

We will now prove Lemma 2 by contradiction: If we assume that the clusterC is nota

subset of the optimal solutionG, then a contradiction arises. The possible scenarios in

whichC is not a subset ofG are: (i)C andG are disjoint, or (ii)G contains a proper

subset ofC. In case (ii) we also need to differentiate between three sub-cases: (iia)C

andH are disjoint, and (iib)C andH overlap,C andK also overlap, and (iic)C and

H overlap, whileC andK are disjoint.

Case (i). SinceG = H ∪K, we can writer(G) andN(G) asr(G) = r(H)+∆Hr(K)

andN(G) = N(H) + ∆HN(K), whereK = C1 ∪ C2 ∪ · · · ∪ Cm andCi ∈ S\H.
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Since the clustersCi are disjoint,r(K) = r(C1) + r(C2) + · · ·+ r(Cm) andN(K) =

N(C1) +N(C2) + · · ·+N(Cm). Hence

∆Hr(K)

∆HN(K)
=

∆Hr(K) = ∆Hr(C1) + ∆Hr(C2) + · · ·+∆Hr(Cm)

∆HN(K) = ∆HN(C1) + ∆HN(C2) + · · ·+∆HN(Cm)
. (4.20)

Repeated application of Lemma 1 to Eq.(4.20) leads to

∆Hr(K)

∆HN(K)
≤ max

i=1,...,m

∆Hr(Ci)

∆HN(Ci)
. (4.21)

Since the clusterC has the largest∆Hr/∆HN among all clusters inS\H, by

Eq.(4.21) we have

∆Hr(C)

∆HN(C)
≥

∆Hr(K)

∆HN(K)
. (4.22)

Since we assume thatG = H ∪K is the optimal solution, it is necessary that

F (H) ≤ F (H ∪K)

r(H)

A+N(H)
≤

r(H) + ∆Hr(K)

A+N(H) + ∆HN(K)
. (4.23)

By Lemma 1,

min

[

r(H)

A+N(H)
,
∆Hr(K)

∆HN(K)

]

≤
r(H) + ∆Hr(K)

A+N(H) + ∆HN(K)
≤ max

[

r(H)

A+N(H)
,
∆Hr(K)

∆HN(K)

]

.
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Hence, Eq.(4.22) and Eq.(4.23) lead to

r(H) + ∆Hr(K)

A+N(H) + ∆HN(K)
≤

∆Hr(K)

∆HN(K)
≤

∆Hr(C)

∆HN(C)
.

Again by Lemma 1,

r(H) + ∆Hr(K)

A+N(H) + ∆HN(K)
≤

r(H) + ∆Hr(K) + ∆Hr(C)

A+N(H) + ∆HN(K) + ∆HN(C)
. (4.24)

SinceC andG are disjoint,r(G∪C) = r(H)+∆Hr(K)+∆Hr(C) andN(G∪C) =

N(H) + ∆HN(K) + ∆HN(C). Therefore, Eq.(4.24) yields

r(G)

A+N(G)
≤

r(G ∪ C)

A+N(G ∪ C)
,

that isF (G) ≤ F (G∪C). If F (G) < F (G∪C), G cannot be the optimal solution. If

F (G) = F (G∪C), sinceG∪C contains more classLR elements thanG, it also means

G cannot be the optimal solution that we seek under the LargestRecall Condition, as

stated in Section 4.4.1. Therefore in either case a contradiction arises.

The proof that a contradiction occurs also in the cases (iia), (iib) and (iic) is quite

similar to the above, and the detail will be omitted here. In all cases, the assumption

thatC is not a subset of the global optimal solution cannot be true.Therefore, the

clusterC with the largest∆Hr/∆HN must be a subset of the optimal solutionG. 2

Lemma 3. Consider an arbitrary family of clustersS. Given that a subset

H is a subset of the global optimalG of MMF, if the clusterC ∈ S\H

has the largest cost effectiveness∆Hr(C)/∆HN(C) among the remaining
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clusters inS\H, and ∆Hr(C)
∆HN(C)

< r(H)
A+N(H)

, then none of the clusters in

S\H is a subset ofG.

Proof. It follows immediately from Lemma 1 thatF (H ∪ C) < F (H). Therefore

C cannot be a subset of the global optimal solution. SinceC has the largest cost

effectiveness∆Hr(C)/∆HN(C) among the remaining clusters inS\H, it follows by

the same argument that none of the remaining clusters inS\H can be a subset of the

global optimal solution.2

We now present the proof of Theorem 1 by mathematical induction.

Proof [Theorem 1: Basis step].The greedy approximation algorithm (GAA) selects

the cluster with the largest∆Hr(C)/∆HN(C) in each iteration, whereH is the current

pool. At the first step, the current pool is the empty set, which must be a subset of the

global optimal solution. Furthermore,Fµ(∅) = 0, so for any cluster containing at

least one classLR element,∆Hr(C)/∆HN(C) = r(C)/N(C) > Fµ(∅). Hence, by

Lemma 2 the cluster selected by GAA at the first iteration mustbe a subset of the

global optimal.

Proof [Theorem 1: Inductive step]. Assume that at theith iteration of GAA, all the

clusters included in the current poolH are subsets of the optimal solution. Then it

readily follows from Lemma 2 that as long as the current poolH is not the optimal

solution itself, the cluster selected according to GAA at the (i + 1)th iteration must

also be a subset of the optimal solution.

Proof [Theorem 1: Termination condition (Lines 6 – 9 of GAA)]. The termination

condition follows immediately from Lemma 3.

120



We now prove the last statement of Theorem 1. This statement concerns the situ-

ation where more than one subset of clusters yield the same maximal valueF ∗
µ . The

statement means that the GAA iterations will continue untilthe solution with the most

LR elements is obtained.

Proof. By induction, the global maximal valueF ∗
µ must be reachable by GAA. Sup-

pose there are more than one subset of clusters that yield thesame valueF ∗
µ , and sup-

poseG is the first of these subsets that is reached after some iterations of GAA. Among

the remaining clusters inS\G, let C be the one that has the largest cost effectiveness

∆Gr(C)/∆GN(C). If ∆Gr(C)/∆GN(C) = F (G) = F ∗
µ , thenF (G ∪ C) = F ∗

µ by

Lemma 1. Hence,G ∪ C also yields the optimal valueF ∗
µ . SinceC satisfies the con-

dition at Line 6 of GAA, it is added to the pool. Because∆Gr(C) must be positive,

G∪C must contain more classLR elements thanG. Repeated application of the argu-

ments shows that the final solution reached by GAA is the subset yielding the optimal

valueF ∗
µ that contains the most classLR elements.2

Finally, we prove the uniqueness of the global optimal solution found, as stated in

Theorem 2.

Theorem 2. For the MMF problem instances where the given clusters

overlap only by nesting, there is a unique global optimal solutionG under

the Largest Recall Condition.

Proof. This theorem means that there cannot be two distinct subsetsG andG′ such

that they both yield the maximal value, i.e.F (G) = F (G′) = F ∗
µ , and both have the

largest recall. We will prove by contradiction. Assume two such distinct subsetsG and
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G′ exist. LetG ∩ G′ = H. H may be the empty set or a set of clusters. Note that we

cannot haveH = G, which corresponds toG being a proper subset ofG′. Otherwise,

sinceG andG′ have the same recall, all elements inG′\G must not belong to the class

LR. ThenG′ must have a poorer precision thanG, and so they cannot both yield the

maximalF ∗
µ . LetG = H ∪K andG′ = H ∪K ′. By Lemma 1,

min

[

r(H)

A+N(H)
,
∆Hr(K

′)

∆HN(K ′)

]

≤
r(H) + ∆Hr(K

′)

A+N(H) + ∆HN(K ′)
≤ max

[

r(H)

A+N(H)
,
∆Hr(K

′)

∆HN(K ′)

]

min

[

r(H)

A+N(H)
,
∆Hr(K

′)

∆HN(K ′)

]

≤ F ((G′) ≤ max

[

r(H)

A+N(H)
,
∆Hr(K

′)

∆HN(K ′)

]

.

SinceF (H) ≤ F (G′), this impliesF (G′) ≤ ∆Hr(K
′)/∆HN(K ′). Because

F (G) = F (G′), and∆Hr(K
′)/∆HN(K ′) = ∆Gr(K

′)/∆GN(K ′), it leads toF (G)

≤ ∆Gr(K
′)/ ∆GN(K ′). Then again by Lemma 1,F (G) ≤ F (G ∪ K ′). Similarly,

F (G′) ≤ F (G′ ∪K). Therefore bothG andG′ cannot be the global optimal solution

under the Largest Recall Condition because∆Gr(K
′) and∆Gr(K) must be non-zero.

The contradiction means that the global optimal solution isunique.2

4.4.2 Worst case time-space complexity of GAA

As discussed in Section 4.4.1, the maximization of micro-average F-measure (MMF)

is a generalization of the Red-Blue Set Cover (RBSC) problem [7]. Inthe limit of suf-

ficiently largeβ and in the instances in which the clusters contain binary-class (‘Red’/

‘Blue’) elements, MMF is equivalent to RBSC. RBSC in turn contains as a special

case the classical Set Cover (SC) problem [7]. Therefore, MMF is at least as hard as

122



SC, which is known to be NP-hard. For a family ofn sets, there are2n − 1 possible

combinations of the sets. Hence solving MMF, Eq.(4.19), by enumeration requires

exponential time.

In every iteration of the GAA algorithm for MMF (Fig.4.8), Line 5 selects from

among the remaining clusters not yet added to the pool, the one that has the largest ‘cost

effectiveness’∆Hr(Ci)/∆HN(Ci). At the first step, there aren candidate clustersCi,

wherei ∈ J andJ = {1, 2, . . . , n} that need to be scanned. At each subsequent

iteration, there is one fewer candidate cluster inJ . However, the cost effectiveness

of all remaining candidate clusters need to be recalculatedat Line 5 of every iteration

because of the reference to the updated poolH. A maximum ofn iterations need

to be performed in the algorithm. Therefore, the worst-casetime complexity of the

algorithm isO(n2).

For a collection ofN objects, the algorithm needs to store the indices of all the class

LR objects, whether or not these have been included in the current poolH. Hence, the

space complexity of the algorithm isO(N).
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Chapter 5

Clustering for Relevance Feedback

One of the IR problems that we tackle in this thesis is word mismatch. As mentioned in

Chapter 2 (Literature Review and Background), query expansionvia relevance feed-

back (RF) is a well established method and is shown to be an effective solution to

this problem. Alternatively, clustering methods have beeninvestigated in the past as

another possible solution (see Chapter 2 for a review). However, the effectiveness of

clustering methods to enhance IR performance has been inconclusive [81]. While some

researchers showed that utilizing hierarchical clustering in retrieval was a promising

approach (e.g. Griffiths et al. [22]), the results of some others were negative (e.g. El-

Hamdouchi and Willett [20]). In the early studies, documentclustering was generally

performed on the entire corpus, which is an approach called static clustering. More

recently, query-specific clustering has been studied by various researchers (e.g. Hearst

and Pedersen [29]). Instead of the entire corpus, query-specific clustering is performed

on the retrieval results for each query. Tombros and van Rijsbergen [81] showed that

query-specific clustering had the potential to increase theretrieval effectiveness com-
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pared to both static clustering and conventional document-based retrieval.

In Chapter 3 we studied context-dependent term weights and introduced a Boost

and Discount (B&D) procedure which computes these term weights in the setting of

relevance feedback (RF). We showed that using the context-dependent term weights

enhanced retrieval effectiveness compared with using the traditional BM25, which

are a form of context-independent TF-IDF weights. We are motivated to investigate

whether augmenting clustering methods to our B&D procedure can further enhance

the retrieval effectiveness attained by using context-dependent term weights. Follow-

ing past research, like that of Tombros et al. [81], we use query-specific clustering in

our methods. This chapter presents the findings of our pilot study in this approach.

Our general approach is to use clustering methods to discover more boost and dis-

count terms. A trial experiment (described in Section 5.1) shows that if more boost

and discount terms are found (from relevant and irrelevant documents respectively),

the retrieval performance can be enhanced. We have thus performed an extensive set

of experiments in the RF setting, comprised of various ways ofapplying clustering to

find more relevant contexts apart from those contained in thejudged relevant docu-

ments. In our experiments, we find that it is generally very hard to achieve further per-

formance improvement over the context-dependent term weight approach of Chapter

3. In particularly, the use of clustering techniques alone is unable to yield performance

enhancement compared with not using clustering. One problem is that our clustering

methods tend to introduce too much noise to the set of boost and discount terms used

by B& D. On the other hand, another well known classification method in machine

learning is the support vector machine (SVM). We tested using SVM with B&D, but

125



our experiments found that it also does not yield performance improvement. Further

tests were performed by combining clustering techniques with SVM. We find that a

scheme which applies SVM to clustered contexts is able to produce small but statisti-

cally significant improvement in MAP, compared with the standard B&D result, in the

TREC-2005 test collection.

An outline of the remaining of this chapter is as follows. In Section 5.1 we discuss

our general approach in applying clustering techniques in RF. Section 5.2 discusses

some aspects of our experimental settings. In Section 5.3 wedescribe some of the

methods that we have tested and the experimental results.

5.1 Clustering approach

As discussed in Chapter 3, in a RF task whereNRF documents are judged, from the

known relevant and irrelevant documents we extract the setsof boost and discount

terms,SB(qi) andSD(qi). The premise of our approach is that clustering techniques

can help to discover more boost and discount terms. The assumption is that if more

of these terms are known then the performance of RF using our context-dependent

term weights will be enhanced. By using clustering, we try to discover more relevant

and irrelevant contexts from which to extract the boost and discount terms. First, we

perform a retrieval by RF, with the standard B&D procedure. Then, query-specific

clustering is carried out on the combination of contexts1 of the top rankedN docu-

ments of standard B&D retrieved list, together with the contexts of the judgedNRF

1The reason for performing context-clustering rather than document-clustering is discussed in Sec-
tion 5.2.
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documents. The reason for clustering the top ranked documents of a B&D retrieved

list, rather than those of a PRF or baseline QE list, is becausethe B&D list is expected

to contain more relevant documents at the top. This would be helpful since our aim is

to discover more unseen relevant contexts2 3. By the cluster hypothesis, the relevant

contexts in the unseen documents will form clusters with thecontexts of the judged

relevant documents, thus allowing them to be identified.

To test the assumption that discovering more boost and discount terms can enhance

retrieval effectiveness, we first perform a ‘retrospective’ experiment, where the set of

all the relevant documents for each query are known. Then, from the relevant docu-

ments found in the topN (with N = 80) of the previously retrieved list, we extract the

set of ‘retrospective boost terms’,SB,retro(qi). Similarly, from all the irrelevant doc-

uments in the topN , we extract the set of ‘retrospective discount terms’,SD,retro(qi).

These terms are combined with the sets previously extractedfrom the RF judged doc-

uments, i.e.SB,RF (qi) ∪ SB,retro(qi) andSD,RF (qi) ∪ SD,retro(qi) . We then perform a

retrieval with B&D, using the new sets of terms to estimate theprobability of relevance

of a context (see Section 3.2). In this case, we obtained the MAP to be 0.4124. In com-

parison, using the sets of termsSB,RF (qi) andSD,RF (qi) extracted from the 20 judged

documents yields a MAP value 0.3148 (Table 3.4). Hence, if all the relevant and ir-

relevant documents in just the top 80 documents are identified, this can in principle

lead to a relative improvement in MAP by over 30%. Our objective is to test whether

2We define ‘relevant contexts’ to be the contexts contained inrelevant documents. Similarly, ‘irrel-
evant contexts’ are those found in irrelevant documents.

3In this chapter, we use the phrase ‘unseen documents’ to refer to the documents that are not among
theNRF documents judged for relevance in RF. Similarly, ‘unseen contexts’ are contexts found in the
‘unseen documents’.
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clustering methods can help to identify these relevant and irrelevant documents.

5.2 Experimental settings

We first discuss several aspects of the basic experiment environment that we have

adopted.

A. Context clustering.

We perform clustering of contexts rather than clustering ofdocuments. First, using

contexts follows the Query-centric assumption that evidence of relevance or irrele-

vance is found only within the contexts in a document. Furthermore, clustering con-

texts, not the whole documents, will avoid the clustering being affected by too many

noise terms that appear outside of the contexts. This approach is supported by the work

reported by Dang et al. [13], who showed that better clustering results were obtained

using context-based similarity scores rather than document-based similarity scores.

B. Clustering algorithm.

Based on the results of Chapter 4, among the various hierarchical clustering algorithms

tested, complete linkage gave the best clustering result, in terms of the CS measure

(Table 4.3 and Table 4.5). This means that among the algorithms, complete linkage is

most effective one in forming tight high-precision clusters. This suits our purpose as

we wish to minimize any noise being introduced into the sets of boost and discount

terms. Therefore, we will use complete linkage in our experiments.
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C. Context similarity.

A necessary input to the clustering algorithm is a measure ofsimilarity between a

pair of contexts. Following Dang et al. [13], we use a cosine similarity between the

context vectors,~c1(d1, k1,m) and ~c2(d2, k2,m), in which the term weights are given

by a modified BM expression:

sim(~c1, ~c2) =
~c1 · ~c2
|~c1| × |~c2|

, (5.1)

with the term weights in the context vectors being

w(t, c1(d1, k1,m)) =
f(t, d1)

f(t, d1) +
| ~d1|
∆

√

log
N − df(t) + 0.5

df(t) + 0.5
, (5.2)

where| · | is the Euclidean length, and∆ is the average Euclidean document length.

The IDF factor in Eq.5.2 is a square root of the logarithmic term. This is unlike the

standard BM expression [59], which uses the logarithmic factor itself rather than the

square root. It was found that using the square root gave better clustering results [13],

as the term is multiplied with itself in the cosine calculation. Hence, we will also adopt

this form.

D. Pre-clustering relevance judgments

When clustering methods are applied in RF, a consideration is whether the relevance

judgments are made before clustering is applied (‘pre-clustering relevance judgments’)

or after clustering is applied (‘post-clustering relevance judgments’).
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Works where ‘post-clustering relevance judgments’ is adopted include those of

Sakai et al. [67] and Lee et al. [50] (see 2.4.3). While the selective sampling method

studied by Sakai et al. [67] studied did not find significant improvements on NTCIR

collections. However, Lee et al. [50] tested a cluster-based resampling method for PRF

and reported that the method was effective for PRF.

In our RF experiments, we have adopted the alternative ‘pre-clustering relevance

judgments’ procedure. Relevant judgments are made on the topNRF documents of the

PRF retrieved list as in the standard RF approach (Chapter 3, Fig. 3.2). Subsequently,

clustering techniques are applied to the contexts of top-ranked documents in the re-

trieved list in order to discover more relevant contexts from the unseen documents (see

Fig.5.1). The main reason why we use this procedure is to enable the comparison of

our retrieval results with the standard B&D results obtainedpreviously (Table 3.4),

noting that to have a fair comparison, the residue collections should be the same in two

sets of RF experiments. This in turn means that the sets of judged documents in the

two sets of RF experiments should be identical. Using the ‘post-clustering relevance

judgments’ procedure will results in a set of judged documents different from those

used in Chapter 3, so that the retrieval results cannot be directly compared. Of course,

it is also of interest to test the effectiveness of ‘post-clustering relevance judgments’,

but a new baseline needs to be established. We will leave thisstudy for our future

research.

Fig.5.1 shows the flow of our clustering approach for RF. In thefigure, Step 1 to

Step 3 are the standard RF procedures by query expansion and using B&D-computed

term weights. These are the steps used in the experiments described in Chapter 3. Step
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4 to Step 8 represent the additional application of clustering techniques. In the next

Section, we will describe several methods that we have tested for the specific ways in

which clustering techniques are used in Step 6 and Step 7.

Clustering for RF

1. Make relevance judgments on the topNRF documents returned by PRF

2. Extract contexts,{XJ}, and boost and discount terms from judged documents

3. Retrieval by QE, with B&D-computed term weights

4. Extract contexts,{XU}, from the topN documents of the B&D retrieved list

5. Apply clustering method to the sets of contexts,XJ andXU

6. Assign an unseen context as relevant (Rclus) or irrelevant (Iclus) according to the

clustering result

7. Extract extra boost termsSB,clus and discount termsSD,clus from the assigned rele-

vant and irrelevant contexts

8. Retrieval by B&D using the expanded sets of boost and discount terms

Figure 5.1: Flow of our general approach of applying clustering in RF

5.3 Experimental results

In this section we present the results of various methods that we have tested. All of

these methods follow the general procedure according to thesteps shown in Fig.5.1.

The methods differ in the way clustering techniques are applied to try to discover more

boost and discount terms (Step 6 and Step 7 of Fig.5.1). In thecurrent pilot study, the

results we present in this section are obtained for the TREC-2005 collection, as our
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B&D calibration (Chapter 3) was performed based on this collection.

Method A: Clustering only

As discussed in Section 5.2, we apply complete linkage clustering to the combined set

XJ ∪XU which are respectively the contexts found in the judgedNRF documents and

those in the topN = 80 documents in the standard B&D retrieved list. After forming

a hierarchical structure of the contexts, the question is how to select clusters from this

structure. If the cluster hypothesis holds, we expect the contexts in the unseen relevant

documents to form clusters with those in the judged relevantclusters. Because these

relevant contexts may fall into different subtopics, we seek the optimal combination

of subclusters as discussed in Chapter 4. In Chapter 4, it was shown that the optimal

combination of subclusters corresponds to the set which hasthe best CS2 value, i.e.

the maximal micro-average F-measure. However, one difference between our current

problem and the calculations of Chapter 4 should be noted. While the maximal micro-

average F-measureF ∗
µ (i.e. 1.0-CS2), Eq.4.6 is calculated based on all the known

relevant documents in the collection, in our current case only the relevant documents

within theNRF judged documents are known.

Let RJ denote the set of judged relevant contexts andrJ(S) denote the number of

contexts in the set of combined subclusters,S, that belong toRJ . In analogy to Eq.4.6,

we seek the optimal combination of subclusters of contexts that yields the maximal

value of the following objective function:

F ∗
µ,R = max

S

(β2 + 1)rJ(S)

β2card(RJ) + card(S)
. (5.3)
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In Eq.5.3, the micro-average F-measure is defined based on the set of judged relevant

contexts,RJ , only. The optimal solution of Eq.5.3 can be easily obtainedby the GAA

algorithm (Fig.4.8). Our expectation is thatunseenrelevant contexts will be found in

the optimal solution,S∗, by association with thejudgedrelevant contexts. Thus, all

unseen contexts found inS∗ are assigned as ‘relevant’ (Step 6 in Fig.5.1). Then, a

set of extra boost terms is obtained by extracting from all the unseen contexts that are

included in the optimal solution (Step 7 in Fig.5.1).

Likewise, we assume thatunseenirrelevant contexts are similar to thejudgedirrel-

evant contexts. Thus, we seek the unseen irrelevant contexts by means of optimizing an

analogous function as Eq.5.3, but defined according to the judgedirrelevantcontexts:

F ∗
µ,I = max

S

(β2 + 1)iJ(S)

β2card(IJ) + card(S)
, (5.4)

whereIJ is the set of judged irrelevant contexts andiJ(S) denotes the number of

contexts in the setS that belong toIJ . The optimal solution of Eq.5.4 can also be

obtained by GAA.

We have performed RF experiments, with 20 relevance judgments (i.e.NRF = 20),

on the TREC-2005 collection according to the flow shown in Fig.5.1. For the context

clustering in Step 4 and Step 5 of Fig.5.1, we setN = 80, i.e. we apply clustering to the

contexts of the top 80 unseen documents, together with the contexts in the 20 judged

documents. In our first experiment (labeled A1), the size of the contexts used in the

clustering is set to 61 words. As shown below (see Table 5.1),we find the cluster size

does not affect the retrieval results very much. The unseen contexts found in the opti-
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mal solutions of Eq.5.3 and Eq.5.4 are assigned as relevant and irrelevant respectively.

Then extra boost termsSB,clus and discount termsSD,clus are extracted from these con-

texts (Step 7 of Fig.5.1). As shown in Table 5.1, we find the RF performance to be

quite poor (MAP=0.2417) compared with the standard B&D result (MAP=0.3148).

Analysing the sets of unseen contexts being assigned as relevant (Rclus) or irrelevant

(Iclus), we find that these have on average a precision of 0.61 and 0.54 respectively.

The poor precision of the (Iclus) contexts indicate that the clustering method is not ef-

fective in picking out irrelevant contexts among the unseencontexts. This means there

is much noise being introduced in the discount terms, which may be the cause for the

poor performance of Method A1.

Since a higher precision for the contextsRclus is observed, we then tried a different

setting (Method A2), where we only add the extra boost termsSB,clus to our B&D

procedure, but uses only the discount termsSD extracted from the judged irrelevant

documents. With Method A2, we obtain MAP=0.3064. Although some extra boost

terms are discovered by the clustering method, some of the these are actually noise

terms, because the precision of the assigned contextsRclus is less than 1. It appears

that detrimental effect of the noise is more than the benefit of finding some extra terms.

We have also tested various context sizes for clustering, but no significant differ-

ence is found. For example with a context size of 101 word (Method A3 in Table 5.1),

the MAP is 0.3066, close to the value for the context size of 41word.

Therefore, we find that applying clustering only fails to bring performance im-

provement in RF, compared to not using clustering.

Because the use of clustering alone (Method A) does not produce performance

134



Table 5.1: RF (NRF=20) performance with various settings of Method A, averaged
over 50 queries of TREC-2005. 

Standard B&D Method A1 Method A2 Method A3
SB,clusand SD,clus SB,clusonly SB,clusonly

Context size = 61 Context size = 61 Context size = 101
MAP 0.3148 0.2417 0.3064 0.3066

Wilcoxon p - 0.000 0.043 0.033  
 
 
Note: The Wilcoxonp-value refers to the comparison between standard B&D and the

respective methods.

improvement over the standard B&D method, we have investigated using some other

common classification method, such as the Support Vector Machine (Method B below),

or a combination of clustering with other techniques (Method C).

Method B: SVM only

Support Vector Machine (SVM) is a popular classification method in machine learning

(e.g. Burges [4]). Given a set of training samples, each marked as belonging to one of

two categories, a SVM training algorithm builds a model thatwill determine which of

the categories a new test sample belongs to. Intuitively, a SVM model represents the

samples as points in high dimensional space, mapped so that the samples belonging to

the two categories are separated as wide as possible. A hyperplane is then constructed

to separate the samples belonging to the two categories. A new test sample is then

mapped to the same space, and is classified according to whichside of the hyperplane it

falls into. In our case, the training samples are the judged relevant and judged irrelevant

contexts in RF. SVM may then be used to predict whether an unseen context is relevant

or irrelevant.

In our experiments, we have used theSVMlight software package, which is an
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implementation of SVM by Joachims (e.g. Joachims [36]). Forboth training and test

samples, the size of the contexts is chosen to be 101 words, asin Method A2 and A3

above. Also similar to the experiments for Method A, the testsamples are the unseen

contexts belonging to the topN = 80 unseen documents.

Instead of trying to discover relevant and irrelevant contexts among the unseen

samples by means of clustering (Steps 5 and 6 in Fig.5.1), in Method B the unseen

contexts are assigned as relevant or irrelevant according to the prediction of the SVM.

As for Method A, we have tested two experimental settings — Method B1: Extract

both extra boost termsSB,SVM and discount termsSD,SVM from the relevant and ir-

relevant contexts predicted by SVM; and Method B2: Only add the extra boost terms

SB,SVM to the original setSB.

As summarized in Table 5.2, the MAP values obtained by MethodB1 and B2 are

0.2996 and 0.3148 respectively. Hence, just as in Method A, the noise in discount terms

introduced in Method B1 harms the RF performance. It happens that the MAP value

obtained by Method B2 is actually the same as the standard B&D value (0.3148). On

average, there seems to be no advantage in the SVM method compared with standard

B&D.

Table 5.2: RF (NRF=20) performance of Method B, averaged over 50 queries of
TREC-2005

Standard B&D Method B1 Method B2
SB,SVMand SD,SVM SB,SVMonly

Context size = 101 Context size = 101
MAP 0.3148 0.2996 0.3148

Wilcoxon p - 0.103 0.650  
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Method C: SVM applied to clustered contexts

Method B involves a single SVM model based on a single set of training samples

consisting of all the judged relevant and irrelevant contexts. However, this approach

may suffer the following problem. In the set of judged relevant contexts, the contexts

may fall into different subtopics. In this case, contexts belonging to the same subtopic

are expected to be similar to one another, but may not be similar to those which belong

to a different subtopic. In Method B, all the judged relevant contexts are treated as

positive training samples, without considering the possibility that these samples falling

into different subtopics may actually be quite different. This may cause problems

when the SVM model defines the boundary between the positive and negative training

samples.

We consider an alternative method (Method C) to take into account the above prob-

lem which occurs in Method B. In Method C, the judged relevant and irrelevant con-

texts are firstly grouped into separate clusters, which would correspond to different

subtopics. Suppose we formnR clusters among the judged relevant contexts, andnI

clusters among the judged irrelevant contexts. Suppose theclusters of judged relevant

contexts are denoted byCR,j, wherej = 1, 2, . . . , nR. We first define a SVM model,

SVMR,1 in which the contexts belonging to clusterCR,1 are taken as positive training

samples, while all the remaining judged relevant contexts,together with the judged

irrelevant contexts, are taken as negative training samples. Then, suppose an unseen

contextcU receives a scoreS1(cU) according to the prediction of SVMR,1. Likewise,

for each of thenR clusters we define a SVM model: SVMR,j, with j = 1, 2, . . . , nR.
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Each of these models is used to predict the class of the unseencontextcU , yielding a set

of scoresSR,j(cU). Similarly, we define SVM models based on the judged irrelevant

contexts, SVMI , k, with k = 1, 2, . . . , nI . The corresponding scores that each of these

models assigns to the unseen contextcU is denotedSI,k(cU).

In Method C, we wish to define an overall score for the unseen context cU that

can sum up all the scores predicted by the various models, to indicate whethercU are

mostly predicted to belong to the class of a relevant contextor an irrelevant context.

One such possible overall score is:

S(cU) =

nR
∑

j=1

SR,j(cU)−
nI
∑

k=1

SI,k(cU). (5.5)

If S(cU) is positive, it meanscU is overall mostly predicted to be a relevant context.

On the other hand, ifS(cU) is negative, we assigncU to be irrelevant.

In Method C, it is necessary to set the parametersnR andnI , i.e. the number of

clusters formed among the judged relevant and judged irrelevant contexts, respectively.

We have considered two schemes:

• Method C1. FixnR andnI to certain constant values;

• Method C2. In defining the context similarity score, we use thecosine simi-

larity Eq.5.1, with one additional condition: If two contexts have fewer than a

threshold ofnmatch words in common, their similarity is set to zero. Clusters

are obtained by cutting the hierarchical tree at the similarity level Sim = 0.

Increasing the value ofnmatch has the effect of separating the contexts into

a larger number of smaller clusters, such that the contexts in each cluster have
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many words in common.

We have tried various parameter values for both Method C1 and Method C2. For

Method C1, we find the best parameter values to be:nR = 2, nI = 3. For Method C2,

we find the best parameter isnmatch = 11. The corresponding MAP values obtained

by these methods are 0.3158 and 0.3157 respectively (Table 5.3). These values are

numerically better than the standard B&D values (0.3148), but the differences are not

statistically significant at the 95% confidence level. Analysing the results, we plot

the query-by-query results of the MAP differences of the these methods and standard

B&D, in Fig. 5.2. The plot for Method C1 shows that for queries with smallNR

values (say,NR ≤ 10) Method C1 can mostly improve MAP over standard B&D.

However, for queries with largerNR (say,NR > 10) the method tends to give poorer

results. This may indicate that the valuesnR = 2 andnI = 3 that we obtained based

on averaging over 50 queries may not be appropriate for queries with largeNR. For

queries with largeNR, there are many judged relevant contexts, which may fall into

many subtopics. Hence, using the small values of the number of clusters,nR = 2 and

nI = 3, may not be sufficient for these queries. This suggests theremay be a need to

use separate calibrations for queries withNR ≤ 10 andNR > 10. For Method C2,

the plot shows that the difference from standard B&D is quite small, as indicated in

the average values being 0.3157 and 0.3148 respectively. Wefind that the reason for

the small difference is because Method C2 generally discoververy small numbers of

relevant contexts among the unseen contexts, so few extra boost terms are discovered.

Nonetheless, the results suggest that it may be beneficial tomix the conidtions of

Method C1 and Method C2 for different queries, according to thevalue ofNR. We
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tried this scheme, as shown by Method C3 in Fig.5.2 and Table 5.3. Specifically, for

this method, we use the Method C1 conditions for queries withNR ≤ 10, and use the

Method C2 conditions for queries withNR > 10. The resulting MAP is found to be

0.3197 (Table 5.3). This is a small improvement over standard B&D (relative amount

being 1.56%), but the improvement is statistically significant at the 99% confidence

level based on the Wilcoxonp-value. 
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Figure 5.2: Difference of the residue MAP values obtained byvarious Method C con-
ditions and standard B&D, for the 50 title queries of TREC 2005.The queries are
sorted in increasing order ofNR@20, which is indicated by the X-axis.

We have also tested the settings of Method C3 on the TREC-6, and -7collections.

As summarized in Table 5.4 , we find that statistically significant performance im-

provement over the standard B&D value is not observed in theseother collections. It is

possible that the specific settings used in Method C3 may not beoptimal for the other
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Table 5.3: RF (NRF=20) performance with various settings of Method C, averaged
over 50 queries of TREC-2005 

Standard B&D Method C1 Method C2 Method C3
n r =2, n i =3 nmatch=11 Mixture

SB,clusonly SB,clusonly SB,clusonly

Context size = 101 Context size = 101 Context size = 101
MAP 0.3148 0.3158 0.3157 0.3197

Wilcoxon p - 0.244 0.064 0.003  
Note. Method C3 is a mixture of conditions — For queries withNR <= 10: follows
Method C1 conditions; for queries withNR > 10: follows Method C2 conditions.

Table 5.4: MAP values obtained in RF (NRF=20) with Method C3, averaged over 50

queries of various TREC collections

TREC-2005 TREC-6 TREC-7

standard B&D 0.3148 0.2554 0.2302

Method C3 0.3197 0.2534 0.2310

Wilcoxonp 0.0016 0.762 0.925

collections, i.e. thenR, nI , nmatch values, as well as the boundary value ofNR for

the mixture of Method C1 and Method C2 conditions. More detailed calibration of

the parameters needs to be performed to see whether the performance of these other

collections can be improved also. This will be a direction for our ongoing research.

In summary, in our experiments we find that it is generally very hard to utilize

clustering methods to achieve performance in RF that is better than our standard B&D

results. There seems to be some promising results for the useof clustering in RF in

the TREC-2005 collection, for which all the calibrations are performed. However,

the effectiveness of the method has not been observed in the other test collections.

One question is whether proper calibration of the various parameters can lead to better
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performance for all the collections. Alternatively, otherschemes utilizing clustering

techniques need to be devised and tested. The use of clustering for RF tasks is a topic

that is worth further investigation.
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Chapter 6

Conclusion and Future Work

We have investigated new methods to tackle the polysemy and word mismatch prob-

lems in IR. Among the methods that have been studied in past research, query ex-

pansion via relevance feedback (RF) is a well established solution to both of these

problems. In addition, Wu et al. [92] showed that using ‘document-contexts’ to tackle

the polysemy problem was a promising direction. As for word mismatch, document

clustering has been studied by various researchers in the past, though its effectiveness

has been inconclusive. More recently, Tombros et al. [81] suggested query-specific

clustering, rather than static clustering of the whole corpus, might be a promising ap-

proach. The new methods that we have studied are based on these past results.

This chapter presents a summary of our work and states its main contributions.

Some items are also proposed for possible future studies in our ongoing research.
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6.1 Summary and contributions

Context-dependent term weights

We have studied context-dependent term weights as a new solution to the polysemy

problem. The new weighting of a termt depends not only on the occurrence statistics

of the term itself, but also on the evidence of relevance of the document-contexts of the

term. A document-context is a fixed size text window in a document. We introduce a

Boost and Discount (B&D) procedure to compute the new term weights in the setting

of relevance feedback (RF). While the traditional query expansion method in RF uti-

lizes the information of the known relevant or irrelevant documents to add extra terms

to the search query, our method utilizes this information tomodify the term weights of

the original query terms. This work represents the first experimental instantiation of

context-dependent term weights that are used for retrieval.

We have performed extensive experiments to evaluate the effectiveness of the new

term weights as compared with the context-independent BM25 weights. Our exper-

iments use the title queries of the TREC-6, -7, -8, and 2005 testcollections. With

either 10 or 20 relevance judgments, we find that using the newterm weights yields

improvements compared with the baseline BM25 term weights. We find that the new

term weights yield relative improvements in MAP over the baseline ranging from 3.3%

to 15.2%, with statistical significance at the 95% confidencelevel across all four test

collections.

While we have demonstrated the effectiveness of context-dependent term weights

in RF, these new term weights may also be used in other applications such as text cate-
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gorization. Because our B&D procedure computes the new term weights by calculating

shifts to the widely used BM25 term weights, the method can readily be implemented

in systems that use the BM25 weights.

A new clustering evaluation measure

Before we investigate the use of clustering techniques in IR, we need to find an effec-

tive clustering algorithm for our purpose. Hence, we have first addressed the issue of

how to define an appropriate clustering evaluation measure.

A traditional clustering effectiveness measure is MK1, which is based on finding

the single optimal cluster that can be got from the clustering result. We have proposed

a new optimal clustering effectiveness measure based on a combination of clusters

rather than a single cluster. This new measure, called CS (‘Combination of Subclus-

ters’), will reflect more truly the performance of a clustering algorithm for applications

where it is desirable for relevant documents to be grouped together in tight and high-

precision subclusters, corresponding to different subtopics. For cases when clusters

are disjoint, whence the measure is called CS1, we show that the problem becomes a

linear fractional 0-1 optimization problem which can be solved by linear time algo-

rithms. Numerically, CS1 is theoretically smaller than or equal to MK1, as we have

confirmed experimentally by an implementation of an exact algorithm.

We further discussed how our approach can be generalized to more general prob-

lems involving overlapping clusters, whence the new measure is called CS2. We show

how optimal estimates of CS2 can be obtained by greedy algorithms. We prove that a

greedy algorithm with a ‘cost-effectiveness’ heuristics yields the global optimal solu-
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tion for the class of clustering algorithms which generate either clusters that overlap by

nesting within each other, or disjoint clusters that do not overlap. The uniqueness of

the optimal solution is also proved. For a family ofn clusters containing a total ofN

objects, this greedy algorithm has a worst case time complexity of O(n2) and a space

complexity ofO(N).

Based on our new CS1 or CS2 measures, we find that among the hierarchical clus-

tering algorithms that we tested, complete linkage clustering is the most effective in

forming multiple high precision clusters. Therefore we choose to employ complete

linkage in our experiments to study the use of clustering in IR.

Clustering for relevance feedback

We have investigated whether augmenting clustering methods to our B&D procedure,

which computes context-dependent term weights, can further enhance the performance

of RF. The B&D algorithm utilizes information extracted from the judged documents to

provide evidence of relevance or non-relevance in the unseen documents. Our general

approach is to use clustering methods to discover more boostand discount terms used

by B&D.

We have performed an extensive set of experiments in RF, comprised of various

ways of applying clustering to find more relevant or irrelevant contexts apart from those

contained in the judged documents. In our experiments, we find that it is generally very

hard to achieve further performance improvement over the context-dependent term

weight approach in which no clustering is applied.

As we do not observe performance improvement by augmenting clustering tech-
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niques on their own to the B&D procedure, we have investigatedusing a combination

of clustering and another common classification method, theSupport Vector Machine

(SVM). We find that a scheme in which SVM is applied to clustered samples of the

judged relevant contexts is effective in improving RF performance. With 20 relevance

judgments, we show that for TREC2005 a relative improvement of1.6% in MAP over

standard B&D (i.e. without clustering) can be obtained, withstatistical significance at

the 95% confidence level. However, this improvement is not reproduced on the TREC-

6, 7 or 8 collections. Hence, the use of clustering for RF tasksin IR is a topic that is

worth further investigation in our ongoing research

6.2 Future research

In this section, we outline several possible items for future research in context-dependent

term weights and clustering as applied in IR.

• Generalize B&D procedure to use n-grams.In the method described in this

chapter, the B&D procedure that compute the context-dependent term weights

is based on matching single terms (i.e. unigrams) in the contexts within unseen

documents, with the boost and discount terms, which are alsounigrams. We will

further investigate whether there is any advantage in usingn-grams (i.e. bigrams,

trigrams, etc.) instead of unigrams.

• Various relaxations in the B&D procedure. While we have reported a pilot

study of the B&D procedure, various relaxations of the Boost and Discount term

selection and weighting may be investigated. In particularly, relaxation of the
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Location-Invariance Decision assumption may be considered, such as by assign-

ing a larger weight to terms that occur near to the beginning of a document.

Weightings based on the position of occurence of a term within a context can

also be studied. Variations in the selection of the B&D terms include imposing

criteria based on the number of occurence of the terms in the judged documents

(see Section 3.2.1).

• Compare RF results with other recent methods.While we have demonstrated

the effectiveness of using the new term weights in RF based on query expansion,

it is of interest to compare the performance of our method with other RF meth-

ods. For example, there are methods based on language models, such as the

relevance model of Lavrenko and Croft [49].

• Post-clustering relevance judgments. As explained in Section 5.2, in our

clustering RF experiments were performed with ‘pre-clustering relevance judg-

ments’. It is also of interest to study ‘post-clustering relevance judgments’ to see

whether clustering can enhance RF performance in this setting.

• Use of other clustering algorithms for RF experiments.While we have used

hierarchical (complete linkage) clustering for our RF experiments reported in

this thesis, other clustering algorithms may be used in future studies. Examples

of these algorithms include k-means and fuzzy c-means clustering.
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