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Abstract

The main purposes of this thesis are to solve some polynomial optimization problems
and to find their applications. The polynomial optimization problems involved in this
thesis include the cubic spherical optimization problems and bi-quadratic optimization

problems.
The main contributions of this thesis are as follows:

In this thesis, we first consider a new model, the truncated generalized diffusion ten-
sor imagine (GDTT) model in medical engineering, which overcomes the drawback that
water movement in biological tissues often shows non-Gaussian diffusion behavior. In
the GDTI model, polynomial associated with even order tensors reflects the magnitude
of the signal, while polynomial associated with odd order tensors reflects the phase of
the signal. Moreover, we use the apparent skewness coefficient (ASC) value to measure
the phase of non-Gaussian signals. We present some properties of related tensors and

propose a direct computation method for calculating the ASC value.

We discuss the general cubic spherical optimization problems, which include the cu-
bic one-spherical /two-spherical /three-spherical optimization problems. For these three
problems, we present their NP-hardnesses and discuss the complexity results of some
special cases. For the NP-hardness cases, some approximation solution methods for

them are established.

Then we study the bi-quadratic optimization problem over two unit spheres. At
first, the problem is equivalently transformed into computing the largest M-eigenvalue
of related tensor. Based on the reformulation, power method for computing the largest
eigenvalue of a matrix is modified to compute the largest M-eigenvalue of a tensor.

To get a good approximation of the largest M-eigenvalue of a tensor, we introduce

IT



an initialization technique. The given numerical experiments show that the modified

method performs well.

Finally, we discuss the bi-quadratic optimization problems with quadratic con-
straints. First, we generalize the SDP relaxation scheme for approximately solving
NP-hard quadratic optimization to solve bi-quadratic optimization problems. Then we
show that each r-bound approximation solution of the relaxed bi-linear SDP problems
can be used to generate in randomized polynomial time an O(r)-approximation solution
for bi-quadratic optimization problems. Furthermore, we show that when the number
of constraints is not larger than two, bi-quadratic optimization problems are equivalent
to their corresponding SDP relaxation problems, which generalizes the result in [33].
Then, we present some approximation solutions with some quality bounds for the bi-
quadratic maximization model with some assumptions. For bi-quadratic optimization
problems with two constraints, some approximation solutions are established. Finally,

we extend the results from real cases to complex cases.
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Chapter 1

Introduction

Polynomial optimization problems have wide applications such as in independent com-
ponent analysis [11], blind channel equalization in digital communication [40], sensor
localization [8], strong ellipticity condition in solid mechanics [29, 30, 61, 63, 69], en-
tanglement problem in quantum physics [17] and so on. The theory and applications
of (constrained) polynomial optimization problems have attracted more and more in-
terests. This chapter gives some preliminarys and motivations of the polynomial opti-

mization problems we will consider in the thesis.

1.1 The Cubic Spherical Optimization Problems

1.1.1 The Three-dimensional Cubic Spherical Optimization

Problems

In medical engineering, a popular magnetic resonance imaging (MRI) model is said to be
diffusion tensor imaging (DTI) model. DTI model has wide applications in biological
and clinical applications [1]. For example, it may be used to study the properties
of water molecule diffusion in the brain, particularly for white matter fibers. Such

properties can be used to detect abnormalities and diseases in such tissues [2, 3].

In DTT model, a diffusion tensor D involved is a three dimensional symmetric ma-



trix, that is, D € 833, It is well known that D has six independent elements, which
is obtained by MRI techniques. Based upon the obtained D, the medical engineering
researchers can calculate some characteristic quantities, such as three eigenvalues, the
mean diffusivity (MD) and the fractional anisotropy (FA), and so on. These quanti-
ties are rotationally invariant, that is, independent from the choice of the laboratory

coordinate system.

However, in DTI model, one needs assume a perfect Gaussian distribution for the
water molecule movement [1]. In fact, water in biological structures often shows non-
Gaussian diffusion behavior, which affects the use of the DTI model. To overcome this

drawback, some new MRI models were introduced by medical engineering researchers.

One model is said to be diffusion kurtosis imaging (DKI) model, established in
[27, 36]. For a particular direction specified by a unit vector z, based on the denotations
that a gradient strength ¢, a pulse duration ¢ and a time interval A between the centers

of the diffusion sensitizing gradient pulse, DKI model has the following form

3
(—g) =—b Z DiP iy i, + = b2 ZDZ’Z’)z Z W i Ty Ty T Ty
in,i2=1 11 1 i1,i2,83,i4=1
where matrix D7 is the apparent diffusion coefficient, the fourth order three dimen-
sional symmetric tensor W? is the apparent diffusional kurtosis (DK) tensor. The
parameter b is given by the usual expression b = (ydg)?(A — —)7 where ~v is the gy-
romagnetic ratio. For this model, D-eigenvalues for a DK tensor was introduced in
[58]. They showed that the largest, the smallest and the average D-eigenvalues of a
DK tensor correspond with the largest, the smallest and the average apparent kurtosis
coefficients (AKC) of a water molecule in the space, respectively. Some computational
methods for related anisotropy value of AKC were presented there. Later, Han et al.
studied the properties of the extreme values and directions associated to DK tensor in

22, 55].

Another model was introduced by Liu et al. in [34]. They introduced the so-called

generalized diffusion tensors imaging (GDTI) model, stated as following, to characterize



the non-Gaussian diffusion of the water molecules in tissues
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Here j is the square root of —1, and D™ (n > 2) are n-th order coefficient tensors
which can be determined by using some common statistical methods such as the least
square estimate method and Monte-Carlo simulations. It is not difficult to see that the
tensors b™ (n > 2) in (1.1.1) are functions of the direction, the magnitude and the
timing of the diffusion-encoding gradients. More precisely, if the magnetic field gradient
is a constant vector over the considered time, by [34], element me ;. of tensor b™ can

be written as

—1
b™ gy (A=
ivigin, = (799) ( o

5> Ty Tiy - Ty, G100, 0 = 1,2, 3. (1.1.2)

From (1.1.1), it is obvious that in the case of Gaussian diffusion, all the tensors D™
of orders higher than two are zero. For non-Gaussian diffusion, however, those higher
order tensors become significant and it is important to recognize that the higher order

terms in (1.1.1) have to be considered in such situations.

Furthermore, from (1.1.1), we can see that the real part of the logarithmic signal
is solely determined by the even order tensors and only affects the magnitude of the
signal, while the imaginary part is completely governed by odd order tensors and only
affects the phase of the signal. This shows that the DTI model may fail to identify the
underlying structure [35] with the diffusion behavior of the non-Gaussian signal with
the asymmetry. This point is even clearer for the one modeled by Phantom 4 in [34].
We refer readers to [22, 26, 55, 56] and references therein for non-Gaussian diffusion

with the symmetry.



1.1.2 The General Cubic Spherical Optimization Problems

In the previous subsection, variables of polynomial involved in DKI and GDTT mod-
els are three dimensional. But in some other applications, such as signal processing
and independent component analysis, the cubic spherical optimization problems with
higher dimensional variables will be involved. Motivated by this, we are ready to
consider the general cubic spherical optimization problems, which include the cubic

one-spherical /two-spherical /three-spherical optimization problems.

It is well known that homogeneous multivariate polynomials have simple expressions
via tensors. Hence, we give some definitions which are involved in cubic spherical

optimization problems.

A tensor A € R"*"*" is said to be symmetric, if its element A;;;, is invariant under
any permutation of indices (i, 7, k), [31, 32, 51]. Tensor B € R™*"*? is called partially
symmetric with respect to the first two indices in the sense that B;;, = Bj, for all
,7=12--- nand k=1,2,--- ,q.

Based on these conceptions, the cubic one-spherical/two-spherical /three-spherical
optimization problems can be written as follows, respectively

n
min  ¢1(z) ;= Az® = Y Agpxvizag

reRr ij,k=1 (1.1.3)
st. |zl =1,

n g
min Go(x, 2) = Ba?z = Y, > Bysxizjz

TER ZzER ij=1k=1 (1.1.4)
st flafl =1, flzfl =1
and n » 4
min g3(x,y, 2) == Cryz = CijkTiYiZk
zeR" yeRP zeRY ( ) z:zzljzzzlkgl J J (115)
5.t. el =1, flyll =1, llzll = 1,

where C € R"*P*9 ig a third order tensor.

These three problems arise from the best rank-one approximation to the third order
symmetric tensor A, the third order partially symmetric tensor B, and the third order
tensor C, respectively. The best rank-one approximation problem has many applica-
tions in signal and image processing, wireless communication systems, and independent

component analysis, see [14, 12, 31, 32, 37, 51, 74] for details.
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In [57], Qi et al. presented a Z-eigenvalue method by direct computation for solv-
ing (1.1.3) with n = 3. In [74], for solving (1.1.5), they proposed some methods,
including the generalized Rayleigh-Newton iteration method, alternating least squares
method and Jacobi Gauss-Newton iteration method. These methods approximately

solved (1.1.5), but did not guarantee the convergence even locally and quality bound.

Furthermore, Nesterov in [43] showed that (1.1.3) is NP-hard to solve. Thus, it is
not expected that there exist efficient exact methods to find global minimizers of the
NP-hard problems. It is important to find approximation algorithms for solving NP-
hard problems. To characterize the approximation algorithms, some quality measures

of approximation ratio are introduced as follows.

Definition 1.1.1 Let 0 < € < 1 and A be an approrimation algorithm for the mini-
mization problem P. We say 2 is a (1 —€)-approximation algorithm if for any instance
of P the algorithm A returns a feasible solution with its corresponding objective value

p such that

P — Pmin S E(pma;t - pmin)7

where Pimax(TeSp. Pmin) s the mazimum (resp. minimum) value of the objective of P .

Furthermore, we say that the problem P has a polynomial time approximation scheme

(PTAS) if for every e > 0, there exists a (1 — €)-approximation algorithm.

Definition 1.1.2 The problem has an r-bound approximation solution for the given
minimization model P, if there is an algorithm A whose complexity is polynomial such

that when applied to P, it returns a feasible solution with objective value p such that
rp S Pmin S D, if Pmin 2 07
Pmin S p S TPmin, if Pmin < 07

where pmin 1S the minimum value of the problem and 0 < r < 1. The feasible solution is
said to be an r-bound approzimation solution of the minimization model. The algorithm

A is said to be an r-bound approximation algorithm.

For convenience of notations, we call feasible solution appeared in Definition 1.1.1

as (1 — e)—approximation solution.



In a similar way, the definitions of approximation ratio can be presented for maxi-
mization problem and are omitted here. Based on these definitions, the approximation

algorithms for considered NP-hard problems will be studied.

1.2 Bi-quadratic Optimization Problems

Bi-quadratic optimization problems studied in the thesis include the following problems:
bi-quadratic optimization problem over two unit spheres and bi-quadratic optimization

problems with quadratic constraints.

1.2.1 Bi-quadratic Optimization Problem over Unit Spheres

Bi-quadratic optimization problem over two unit spheres has the following form:

max f(x,y) = Frayy
st. 2la=1,y'y=1 (1.2.6)
r e R yeR”

where F is a fourth order (m x m x n X n)-dimensional partially symmetric tensor.

Here, a tensor F is said to be fourth order partially symmetric if
-Fz'jkl = -Fjikl = Jrijlk; for all Z,j = 1, e, MM, and k),l = 1, e, N

The problem (1.2.6) arises from the nonlinear elastic materials analysis and the entan-

glement problem in quantum physics.

In the nonlinear elastic materials analysis, both the ellipticity and strong ellipticity
play important roles, especially when a material is required to satisfy a number of
important statical and dynamical properties [13, 10]. By use of tensor expression of the
elastic material, the strong ellipticity condition and the ordinary ellipticity conditions
can be characterized by the positiveness and the nonnegativity of the minimization
model of (1.2.6) with m = n = 3, respectively. In this sense, tensor F is said to
be positive definite or positive semi-definite on i3 x R3, respectively. Recently, Qi et
al. [54, 21] established a necessary and sufficient condition for this by introducing the

concept of M-eigenvalues of tensor.



In quantum physics, the entanglement describes a certain type of correlations be-
tween subsystems of the full quantum system, and the standard mathematical formu-
lation of a composite quantum system is stated in terms of density matrix [18]. It is
shown that to identify whether a state, i.e., a density matrix, is entangled or not for a
general quantum state is considered to be a hard problem [20] and many attempts have
been made for this problem there. One attempt to solve the problem is to consider
the identification of the separability by use of the natural geometrical structure of the
problem, see [68]. For the case of a quantum system with two subsystems, it can be
formulated as the problem of finding the closest separable state to any given state [17].
That is, for given density matrix A € RP?*P4 find a separable density matrix X which
minimizes the distance ||A — X||g. A matrix X is said to be a separable density matrix
iff for some positive integer N, there exist some matrices X* € S, V' € 871 and

pi > 0 such that
N

X=> pX'®Y

i=1

N

with > p; = 1. To solve the problem, Dahl et al. [17] applied the Frank-Wolfe mini-
i=1

mizing method [7], involved the minimization model of (1.2.6). Furthermore, they used

an alternating eigenvalue maximization method to obtain its solution which may be

inefficient in computation.

More recently, minimization model of (1.2.6) was studied in [33]. The authors
showed that the problem is NP-hard to solve and presented some approximation solu-

tions based on SOS and SDP relaxation scheme.

1.2.2 Bi-quadratic Optimization Problems with Quadratic Con-

straints

The bi-quadratic optimization problems with quadratic constraints include the following

two forms:
min f(z,y) := Frryy

st. zTAxr>1, p=1,--- ,my, (1.2.7)
yTquZ 17 q:]-7 y 11,



and
max f(x,y) = Frryy

st. 2l Az <1, p=01,---,my, (1.2.8)
y By <1, g=1,--,n,
where the matrices A, € R"™*™ (p=1,2,--- ,my) and B, € ™" (¢ =1,2,--- ,ny) are

symmetric positive semidefinite, whereas Ay € ™™ is symmetric indefinite matrix.

The bi-quadratic optimization problems (1.2.7) and (1.2.8) are natural generaliza-
tions of bi-quadratic optimization over unit spheres problem (1.2.6). Furthermore, these
two problems can be regarded as the generalizations of general quadratic optimization
problems. For example, if there exist matrices C' € R™*™ and D € R™*" such that
F = C ® D where ® denotes the standard Kronecker product, then the minimization

model (1.2.7) will be equivalent to solving the following two quadratic optimization

problems:
min z'Cz
(1.2.9)
st. 2TAxr>1,p=1-- ,m
and
min y' D
vy (1.2.10)

st. y'By>1,qg=1,--- ,ny
which were shown to be NP-hard even when C' and D are positive definite due to [38].

In fact, the general quadratic maximization problem is also NP-hard from [42].

Therefore, it is reasonable to recall how to solve the NP-hard quadratic optimization
problems. A popular approach to approximately solving the considered problem is to
use their SDP relaxation problems [24, 48, 62]. Before proceeding, we present the SDP
relaxation scheme, illustrated by problem (1.2.9).

It is easy to see that (1.2.9) can be rewritten as

min C e (zx")
(1.2.11)
st. Aye(zx’)>1, p=1,--- ,my.
So that, (1.2.9) can be written as the following matrix form
min C' e X
st. A,e X >1 p=1,--- ,my,
pti=n P ! (1.2.12)
X =0,
rank(X) = 1.

8



By eliminating the rank-one requirement, the SDP relaxation problem of (1.2.9) is

obtained as

min C e X
st. A,e X >1 p=1--- my, (1.2.13)
X = 0.

The obtained SDP relaxation problem is used for solving NP-hard quadratic opti-

mization problem. Notice the following quadratic minimization form, studied in [38]

min | z||

s.t. Z ‘h{laﬁ‘ Z 1, 7/ - 172; s M, (1214)
lel;
reF",

where F is either ® or C. It was shown that the SDP relaxation for (1.2.14) could
provid an O(m?) approximation solution in the real case and an O(m) approximation

solution in the complex case.

For general quadratic maximization form

max x' Az

(1.2.15)
st. 2TAx<1, i=1,2---.,m

where A;, for all © = 1,2,--- ,m are symmetric positive matrices with positive semidef-
inite sum and A is an arbitrary matrix, the relative accuracy between (1.2.15) and its

corresponding SDP relaxation problem is shown to be ﬁ in [42], which improves

52
bound established in [44] for the case when all A; are of ra;k 1. Sturm and Zhang
in [65] presented a matrix decomposition method to get an approximation solution for
quadratic problem over the intersection of an ellipsoid and a half-plane by solving its
corresponding SDP relaxation. Later, the decomposition method was extended to the

case that the constraints are two quadratic inequalities in [72]. Furthermore, the results

were strengthened for the complex Hermitian matrices cases in [25].

Later, He et al. studied the more general cases that

min z' Az
st. x'Ax>1, i=0,1,---,m, (1.2.16)
reF"



and
max x' Az

st. z'Axz <1, Vi=0,1,---,m (1.2.17)

S
where F is either the real field  or the complex field C. They proved that for (1.2.16),
provided that matrix A and all but one of Ay are positive semidefinite, the ratio between
the optimal value of (1.2.16) and its SDP relaxation would be upper bounded by O(m?)
as F = R, and by O(m) as F = C. For the maximization model (1.2.17), they proved
that the ratio is bounded from below by O(—) for both the real and complex case

log
and at most one of A; are indefinite.

More recently, higher order polynomial optimizations received much attention. Prob-
lem (1.2.6) was studied in [33]. They showed that the problem is NP-hard to solve and
there is no polynomial time algorithm returning bounds with finite relative quality
bound. Based upon the complexity analysis, some approximation methods by SDP
relaxation were presented in their paper. Latest, Quartic polynomial optimization with

quadratic constraints, of the following form, were considered in [39]

max Gzrzx

st. xTAxr <1, i=1,2,---.,m,
and
min Gzrxx
st. x'Ax>1, i=1,2---,m,
where A; € R " fori = 1,--- , m are positive semidefinite matrices and G is a fourth or-

der (nxnxnxn)-dimensional symmetric tensor. It was proved that each a-approximate
solution of the relaxed SDP can be used to generate in randomized polynomial time an
O(a)-approximate solution for the original optimization, where O(:) depends on the

dimension of variables and the number of constraints.

1.3 Notation

To conclude this chapter, we present some notations that will be used throughout the
thesis. Tensor A denotes a third order (n x n x n)-dimensional real symmetric tensor,

B denotes a third order (n x n x ¢)-dimensional real partially symmetric tensor and

10



C denotees a third order (n X p x ¢)-dimensional real tensor. F is a fourth order
(m x m X n x n)-dimensional real partially symmetric tensor. G is a fourth order
(n X n x n x n)-dimensional symmetric tensor. We assume that m,n, p,q > 2 without

specification.

Let R denote the real number field and C denote the complex number field. The
spaces of n-dimensional real and complex vectors are denoted by R" and C", respec-
tively. The spaces of n x n real symmetric and complex Hermitian matrices are denoted
by 8™ and H", respectively. Matrix Z € H" means that Re(Z) is symmetric and Im(Z2)
is skew-symmetric, where Re(Z) and Im(Z) stand for the real and imaginary part of
7, respectively. For two real matrices A and B with the same dimension, A ¢ B stands
for usual matrix inner product, i.e., A @ B = tr(A' B), where tr(-) denotes the trace of
a matrix. In addition, || Az denotes the Frobenius norm of 4, i.e., |Allp = (4 e A)"?

and I, denotes the n x n identity matrix. For two complex matrices A and B, their

inner product
Ae B =Re(tr(A"B)) = tr (Re(4) "Re(B) + Im(A4) "Im(B)) ,

where A¥ denotes the conjugate transpose of matrix A. The notation A = 0 (= 0)

means that A is positive semidefinite (positive definite).

11



Chapter 2

The Measure of Diffusion Skewness
and Kurtosis in Magnetic

Resonance Imaging

2.1 Introduction

In this chapter, we consider the following lower-order approximation of (1.1.1)

S(b) 9,0 - @ @ < ORG)
8 (S(O)>__ Z Diys,bis, Z D iyigisVinizisis — J Z D iy Vi inis»

i1,02=1 11,82,13,14=1 11,i2,13=1

which is obtained by truncating (1.1.1) to the fourth order tensor and contains useful
information of the signal. Moreover, the first two terms of (2.1.1) are related to the
magnitude of the signal and the last term of (2.1.1) is related to the phase of the signal.
The second order tensor D is the diffusion tensor. For convenience of notation, we
call the third order tensor D® and the fourth order tensor D™ in (2.1.1) the diffusion
skewness (DS) tensor and the diffusion kurtosis (DK) tensor, respectively. On the other
hand, it is important to note that the values D§f§2, Dg’gzig and Dgfi)w-m in (2.1.1) are not
independent of the coordinate system. That is, these values will be changed when

the coordinate system is rotated. However, to understand the biological and clinical

meaning of the corresponding tensors in (2.1.1), the quantities and parameters which

12



are independent from coordinate system choices, denoted by invariants, are needed.
Therefore, it is important to find, measure and calculate the invariants involved in the

model (2.1.1).

Recall that the main invariants of the diffusion tensor D® are its eigenvalues, which
have already been widely used in the DTI technique [1]. Recently, some important
invariants, based on the definition of D-eigenvalue, related to D® in the DKI model
were presented by Qi et al. in [58]. Moreover, a method for calculating D-eigenvalues
was presented there. Motivated by these, in this chapter, we discuss the quantities
and parameters associated with the DS tensor D®) in (2.1.1), which include the largest
and the smallest apparent skewness coefficients (ASC) values. Then we study their

computation formulas and relationships.

This chapter is organized as follows. In Section 2.2, we discuss some further prop-
erties of the invariants of D). In Section 2.3, based on the concept of Z-eigenvalues
of tensors [51], we show that the largest and the smallest ASC values are invariant
under coordinate rotations and may have important biological and clinical meanings.
In Section 2.4, we propose numerical methods to calculate the largest and the smallest
ASC values and the AKC values. In Section 2.5, we provide some numerical examples

for calculating ASC values. Some final conclusions are made in Section 2.6.

2.2 The AKC Values

In this section, we first summarize the concept and properties of AKC values, then
further discuss some properties of the D-eigenvalues and Kelvin eigenvalues of D™, To

this end, let us write
1
D = (vg6)? (A — 55) D@ (2.2.2)
and
W = (vg6)* (A - 25) DW. (2.2.3)
In practice, D is positive definite. Then the apparent diffusion coefficient (ADC) [1] is

3
2 2
Dapp =Dx* = D”.%lx]

1,j=1

13



Let the eigenvalues of D be a; > ay > a3 > 0, then the mean diffusivity [1] can be

calculated by
a1+ Qg + Qg

3

As [51, 58], we denote Dz and Waz? as two vectors in 2 with their 7th component as

Mp =

3
(DZL’)Z = Z Dijxj
7j=1

and

3
Wa?), = Z Wijki T Tpxi,

Jik =1
respectively, for ¢ = 1,2,3. Based on these notations, Qi et al. in [58] introduced the
following concepts of D-eigenvalues and D-eigenvectors of W, which is a generalization

of Z-eigenvalues and Z-eigenvectors presented in [51].

Definition 2.2.1 A real number X is said to be a Z-eigenvalue of the mth order n-
dimensional symmetric tensor W, if there exists a real vector v € R" satisfying the
following system
Wamt = Az,
{ ]l = 1.

Vector x s called the Z-eigenvector associated with Z-eigenvalue A.

Definition 2.2.2 A real number X is said to be a D-eigenvalue of W, if there exists a

real vector x such that

(2.2.4)

Wa? = \Dux,
Dz? =1.

The real vector x is called the D-eigenvector of VW associated with the D-eigenvalue .

For the fourth order three dimensional symmetric tensor W, it is easy to see that
a D-eigenvalue reduces to a Z-eigenvalue when D is an identity matrix. Furthermore,
from the definition of D-eigenvalues, a key formula for the tensor W is as follows:
_ Mp
= 5

app

Kopp() Wat, (2.2.5)
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where Kgp,(2) is the AKC value at the direction z, and

3
W5E4 = Z Wijklxixjxkl'b
35,k 0=1
Denote the largest and the smallest AKC values as K. and K, respectively. Then

we have the following results which were proved in [58].

Theorem 2.2.1 D-eigenvalues of W are real numbers and always exist. If x is a D-

eigenvector associated with a D-eigenvalue X\, then
A= Wat,

Denote the largest and the smallest D-eigenvalues of W as A2 and NP, respectively.
Then the largest AKC value is

Kuax = MNP (2.2.6)

max

and the smallest AKC value is

Kuin = MAND. (2.2.7)

Theorem 2.2.2 The D-eigenvalues of VW are invariant under rotations of coordinate

systems.

From these two theorems, we know that K., and K, are also invariants of W.

In the rest of this section, we discuss some further properties of D-eigenvalues of W.

Before proceeding, we recall the following reformulated matrix W € R6*6, denoted

by the Kelvin matrix, of tensor W

Wi Wiiaz Wizs  V2Wie V2Winns V2Wiios

Witz Wazaa Wasss  V2Wasiz V2Wasiz V2Waoos

Wiiss Waass Wisss  V2Wiziz V2Wazis V2Wiasos
VoWiiz V2Wario V2Wazia 2Wisie 2Wisis 2Wias
V2Wiis V2Wanis V2Waziz 2Wisis 2Wigiz 2Wigas
V2Wiias V2Was V2Wazes  2Wisas  2Wigss  2Wagas
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Obviously, matrix W has six eigenvalues and six eigenvectors. Suppose that ¢ is an
eigenvalue of W with its corresponding eigenvector v € R°. For vector v, there exists a
matrix V € 23*3 such that
Uy \/%wl \/%vg,
V= \/iﬁwl Vg \%vﬁ
\/%v5 \/%vﬁ U3

For simplicity, the eigenvalue o with its eigenvector v of the matrix W is said to be a
Kelvin eigenvalue of W, and its corresponding matrix V' is said to be a Kelvin eigen-

tensor of W.

Based on these definitions, we can assert that the Kelvin eigenvalues of tensor W
are also invariants. In fact, the theory about Kelvin eigenvalues of W can be traced
back to Kelvin 150 years ago [66] and has been discussed in [4]. We wonder how
about the relations between D-eigenvalues and Kelvin eigenvalues. By the definitions

of D-eigenvalues and Kelvin eigenvalues, the following propositions hold.

Proposition 2.2.1 Let W be a fourth order three dimensional fully symmetric tensor,
and let o be a Kelvin eigenvalue of W, associated with a Kelvin eigentensor V. If there

exists a vector x € R3 such that V = xx®, then o is a D-eigenvalue of W.

Proposition 2.2.2 Let 01, 09, -+, 06 be 6 Kelvin eigenvalues of YW. Suppose D = 1.
Then we have

6 6
- Z(_Um)Jr < )\Ill)lin < )\ﬁax < Z(Um)+;
m=1

m=1

where (a); = max{a,0}.

Proof. It is easy to verify that we have the spectral decomposition of W as follows

6
W=> 0,E"®E", (2.2.8)

m=1

where ® denotes the outer tensor product,

m 1 _.m 1 _m
f1 B2 Bt
m

mo__ 1 _m 1 m
BT = 2 G2 5% |0

m

1 _m 1 _m
vtz 3 €33

16



and €™ = (eTt el et el el em) T is the mth normalized eigenvector of W [4]. Tt is
clear that for each m, E™ is a symmetric matrix satisfying trace ((E™)?) = 1, which
implies that p2, + p2,, + 23 = 1, where fiy < fima < jim3 are three eigenvalues of

E™. By (2.2.8), we have that for any x = (1, 29, 23)7,

3
WZE4 = Z Wijklx'iflfjxkflfl
bhLk=L (2.2.9)
= Zam(xTme)Q.
m=1

It is well known that p,,; < 27 E™x < fi,,3 for any m = 1,--- 6. This implies that
0 < (2TE™x)? < max{p?,, 123} < 1. Therefore, by (2.2.9), we obtain the desired

result and complete the proof. U

Now we discuss the independence of eigenvalues of fourth order three dimensional
tensor. We first give the following definition.
Definition 2.2.3 A set S consisted of the functions
yi:fi($17x27"' 7~Tn)7 Z:1727 » 1T, (2210)

which are defined on the region € in R", is said to be functionally dependent on €, if
there exist an index ig and a function @ defined on an appropriate region in R™ L, such

that

Yip = gO(f1<I‘1,I27"' an)an(xlax%"' 71'”)7"' )
fio—l('Ilaan"' ,xn),fi0+1($1,$2,"' 71'71)7'” 7fm(x17$27"' 7$n))
holds for any (x1,xs, -+ ,x,) € Q. If for any sub-region ' of Q, there are no iy and

such function ¢ that

Yio = (Y1, Y25+ > Yio—1> Yio+15 " > Ym)

holds on €, then the function set S is said to be functionally independent on €.

For the functional independence, we have the following theorem.

Theorem 2.2.3 Suppose that m < n and there exists an mth order determinant |A| in
the Jacobian matriz of the functions set (2.2.10) such that |A| # 0 holds on 2. Then

the functions set S is functionally independent on 2.

17



It is important to note that the trace Il of matrix W corresponding with tensor

W is an important invariant, which characterizes the average AKC value on a spher-

D

ical surface and has physics significance. In addition, the largest D-eigenvalue A, .

D

and the smallest D-eigenvalue A/, of W play an important role in the diffusion anal-
ysis of the water molecule in biological tissue. From Proposition 2.2.2, we see that
the largest D-eigenvalue and the smallest D-eigenvalue of W can be estimated with
an interval determined by the Kelvin eigenvalues of WW. However, this result does not
mean that there must be some functional dependence between the largest (smallest) D-
eigenvalues and Kelvin eigenvalues of WW. In fact, the following example shows that both
D AR Tk} and {AD, AL, Oumax, Omin b are functionally independent on a consid-

ered region, where o,,,, and o,,;, denote the largest and smallest Kelvin eigenvalues of

W, respectively.

Example 2.2.1 Let W be a fourth order three dimensional fully symmetric tensor with
Witi1 = t1, Whooo = to, Whsss = t3, Whiao = t4 and its other elements are zero, and
let D = I. Consider the case where 0 < t1 < t3 < 3ty < tg, t1 < t4 and t1ty < ti. By
Definition 2.2.2, it is easy to obtain that the D-eigenvalues of W are as follows

t1ts totls

M=t M=ty Ag=ts, M= DA = .
1 1 2 2 3 3 4 t1+t3 5 t2—|—t3

Under the given conditions, it is easy to see that the largest and smallest D-eigenvalues

of W are

i1t
Aﬁax - Fl(t17t27t37t4> = t2 and Aﬁjn - F2<t17t27t37t4> = i )
t o+t

respectively.

On the other hand, it is clear that the trace IIx in sense of Kelvin
HK = Fg(tl,tg, tg,t4) = tl + tz + t3 + 2t4.

Moreover, by direct computation, we obtain that the set consisted of all Kelvin eigen-

values of W is

ty+to+/(t — )2+ 483ty + 1y — /(L — t2)? + 483
9 ) 9 7t372t47070 9

which implies that the largest and smallest Kelvin eigenvalues of W are

ty +to 4 /(1 — t2)? 4 413
2

Omax — F4(t17t27t37t4) =
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and

t+ty — A/ (t; — to)2 + 4t2
O-min:F5(t17t2,t3,t4> = 1+ 2 \/(21 2) + 47

respectively. Based on these above, it is easy to verify that the Jacobian matrices of

0 1 0 0
: t3 3
VE(t, ty, t3,ty) = | —2— 1
(b1, 2, ta, ta) (t+13)2  (ty + t3)2
1 1 1 2
and
VF(t17t27t37t4) -
0 1 0 0
_ 0 _ 0
(t1 + t3)? (th +t3)?
1 t —t 1 t —t 2t
- 1 + 1 2 - 1— 1 2 0 4
2 Vit —t2)? + 4t ) 2 Vit —t2)? + 4t Vit —t2)? + 4t
1 t —t 1 t —t 2t
L 1~ L2 L 1 — U2 0 _ 4
2 Vit —t)2+ 42 ] 2 V(t —t2)? + 482 V(t — t2)? + 4t2

respectively. It is easy to see that for Fand F , the conditions required in Theorem 2.2.3

are satisfied. Hence, we know that both {\2 AP TIx} and {A\2 AP, oo Omin}

min? min?

are functionally independent on

Q= {(t1,to, ta,ts) | 0 <ty <tz <3ty <to, t; <ty and tity < t3}.

2.3 The ASC Values

As mentioned, we may use ASC values to characterize the phase of the magnetic reso-

nance signal in biological tissues. Let us write

A = (vg9)? (A — 25) DB, (2.3.11)

which is a third order three dimensional fully symmetric tensor. It is easy to see that A
has ten independent elements because of symmetry. For those elements of A which are
equal to each other, we use the element A;;;, with ¢ < j <k to represent them. That is,

if we say that A9 = 4, this automatically implies that As;s = Az = 4. Then, the ten
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independent elements of A are «4111;«4222; Asss: A112; A113; A223;«4122; A133; «4233;«4123-
We call Aj11; Aggo; Asss the diagonal elements of A. We denote Sgp,(2z) the apparent
skewness coefficient at direction x as follows

Ax?
Sapp() = T (2.3.12)

where
3
A 3 — A0
T = ijkTiLj -
1,5,k=1

We denote Az? as a vector in R2 with its ith component as

3
(Az?); = Z Az,

k=1
for i« = 1,2,3. Denote the largest and the smallest ASC values as Spax and Spin
respectively. Then

Smax: max AIB
(2.3.13)
st el =1,
and
Shin = min Ax?
(2.3.14)

st |z =1.
The critical points of (2.3.13) and (2.3.14) satisfy the following system for some A € &

and z € R3:
Ax? = \a,
(2.3.15)

lz[1* = 1.

From Definition 2.2.1, we have the following two theorems which can be proved by

a similar way to that in [58].

Theorem 2.3.1 For tensor A, Z-eigenvalues always exist. If x is a Z-eigenvector

associated with a Z-eigenvalue A, then

A= Az’
Denote the largest and the smallest Z-eigenvalues of A as N2, and N2, respectively.
Then the largest ASC value is
Smax = Aria)m (2316)
and the smallest ASC value s
Swin = Ay (2.3.17)
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Theorem 2.3.2 [53] The Z-eigenvalues of A are invariant under rotations of co-

ordinate systems.

Remark 2.3.1 By these two theorems, Spax and Sy are also invariants of A, and
can be calculated by a similar method to that given in [58], which will be presented in
Section 2.4. On the other hand, from definitions of Z-eigenvalues and Z-eigenvectors,
we know that X is a Z-eigenvalue of A with its corresponding eigenvector x if and only

Z :_>\Z

min max -’

if =\ is a Z-eigenvalue of A with the associated eigenvector —x. Hence, A

Denote the unit sphere as
E={r e : 2? +a3+a3 =1}
Then the average ASC value over the = is defied as

1 1 Ax?
ME = E//Esapp(fﬂ)dA = E//E ||1‘||3dA7 (2318)

where the denominator = = 47 is the area of the surface =. Here, we slightly abuse the

symbol = for both the surface and its area.

Noting the fact that A is an odd order full symmetric tensor, it is obvious that for
any closed surface A with symmetry about the origin, the average ASC value over A is

equal to zero. Specially, it holds that Mz = 0.

2.4 Computation of the ASC and AKC Values

Now we are ready to describe direct methods to obtaining all Z-eigenvalues of A and

D-eigenvalues of W, respectively. Then Sy, Smin, Kmax and K, can be calculated.

The first method is used to find all the Z-eigenvalues of A. The key idea here is to
reduce the three variable system (2.3.15) to a system of two variables. Here, we regard
A as a parameter instead of a variable. Then, we may use the Sylvester formula of the

resultant of a two variable system [16] to solve this system.

Based on the consideration above, we state the following theorem which generalizes

Theorem 3 in [57] and can be proved in a similar way to that used in [58] .
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Theorem 2.4.1 (a) If Ay = Az =0, then x = (£1,0,0)T are two Z-eigenvector of
A associated with the Z-eigenvalue A = £ A111, respectively.

(b) For any real root t of the following equations:

Ag11t® + (24212 — A1)t + (Agze — 2A112)t — Ajag = 0, (2.4.19)
Agi1t? + 2A315t 4 Aszy = 0,
1
r=+—=—(t,1,0)7 2.4.20
(1.0 (2.420)
is a Z-eigenvector of A with the Z-eigenvalue N = Ax3.
(¢) A\ = Az® and
T

T = O (2.4.21)

u? +0v2+1

constitute a Z-eigenpair of A, where u and v are a real solution pair of the following

polynomial equations:

—Azu® — 2A310u%0 — Azgouv® + (A1 — 2A313)U2 + 2(Aj12 — Asaz)uv
+ A120v? + (2A113 — Assz)u + 2A1930 + Ayzz = 0,
A211u2 — A311u2v — 2A312UU2 + 2(./4212 - Aglg)uv + 2./4213% — ./43221}3

+ (Aggo — 2A323)U2 + 2( A9z — Aszsgz)v + Aggz = 0.
(2.4.22)

All the Z-eigenpairs of tensor A are given by (a) if Aan = A3y =0, (b) and (c)

otherwise.

We regard the polynomial equation system (2.4.22) as equations of u. We may write

it as
aou?® + aqgu? + aou + ag = 0,
{ Bou? + Bru+ B2 = 0,
where aqg, - -+, as, o, b1, B2 are polynomials of v, which can be calculated by (2.4.22).
It has complex solutions if and only if its resultant vanishes [16]. By the Sylvester

theorem [16], its resultant is equal to the determinant of the following 5 x 5 matrix:

Qp 1 Qo Q3 0

0 Qp 1 Q9 Q3

Bo Bi B2 O 0 [,
0 Bo Bi P2 O
0 0 B B B
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which is a one-dimensional polynomial of v.

To find approximate solutions of all the real roots of a one dimensional polynomial,

we can use the following Sturm Theorem in [41].

Theorem 2.4.2 Let 1) be a nonconstant polynomial of degree [, with real coefficients

and let ¢y and ¢y be two real numbers such that ¢y < co and ¥(cy)(cy) # 0. The
sequence g, Y1, -+, defined by

w0:w7 ¢1:¢/7 ’l/}i%*l:_wi*l mOdwiu Z:17277l_1

and Y41 = 0 is called a sequence of Sturm. Denote by v(x) the number of changes of
signs in the sequence Vg(x),11(x), -+ ;¢ (x)). Then the number of distinct real roots

of ¥ on the interval (c1,c2) is equal to v(cy) — v(cy).

We may find the approximate solutions of all the real roots of this one-dimensional
polynomial such that their differences with the exact solutions are within a given error
bound. We then substitute them to (2.4.22) to find the corresponding approximate
real solutions of u. Correspondingly, approximate values of all the Z-eigenvalues and

Z-eigenvectors can be obtained. Based on this, we can obtain the largest and smallest
ASC values.

Now we are ready to present the method used to find all the D-eigenvalues of W,

which is similar as above and is based on the following theorem given in [58].

Theorem 2.4.3 Let W be a fourth order three dimensional tensor such that its entries

3

satisfy Wijkl = ZJthijkl fori,j,k,1 =1,2,3, where d;, is the ith row hth column
h=1

element in the inverse D~' of D. Then we have

Wi

(a) If Woii = Wain = 0, then A\ =

1
eigenvector x = (+4/—=—,0,0)7.
Dy

(b) For any real root t of the following equations:

1s a D-eigenvalue of W with a D-
11

“Warnit* + Wit — 3War12)t? + 3(Wii12 — Wargo)t?
+(3Wi122 — Wagga )t + Wigas = 0, (2.4.23)
Wiinit? + 3Ws119t? + 3Wai99t + Wigas = 0,
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1
r ==
V' D11t2 + 2D1ot + Doy
is a D-eigenvector of W with the D—eigenvalue A = Wa?.

(t,1,0)T (2.4.24)

(c) \=Wz* and

_ +(u, v, 1)
\/D11U2 + 2D12UU + 2D13U + D22U2 + 2D23’U + D33

(2.4.25)

T

constitute a D-eigenpair of VW, where u and v are a real solution of the following poly-

nomial equations:

;

—V7V3111U4 - 3W3112U3U + (Wnn - 3W3113)U3 - 3W3122U2U2
+(3Wit12 — 6Wa123)u?v + +(3Wi113 — 3Wsi33)u?

—3Ws223u0* — Wiggouv® + 3Wi120uv? + (6Wi123 — 3Wiass)uw
+(3Wi1s3 — Wigss )t + Wigoav® + 3Wino3v® + 3Wia330 + Wigss = 0,
—Ws1110%0 + Wort® — 3Ws119u0? 4 (3Wh112 — 3Waii3)uv
+3Wa113u? — 3Wsi00uv® + (3Wa190 — 6W3123)uv?

+(6Wa123 — 3Wa133)uv + 3Waissu + 3Wagosv? — Wiggov®

+(Wazz2 — 3Ws223)0® — 3Ws2330% + (3Wa233 — Wisss)v + Wasss = 0.

(2.4.26)

All the D-eigenpairs of tensor W are given by (a) if War11 = Wsi11 = 0, by (b) and

(c) otherwise.

2.5 Numerical Examples

In this section, we present preliminary numerical experiments for the DS tensor with the
method presented in Section 2.4. The computation was done on a personal computer
(Pentium IV, 2.8GHz) by running MatlabR2006a. A numerical example for DK tensor
can be found in [58]. That example is derived from data of MRI experiments on the
white matter of rat spinal cord specimen fixed in formalin. The MRI experiments were
conducted on a 7 Tesla MRI scanner at Laboratory of Biomedical Imaging and Signal

Processing at The University of Hong Kong.
For the test examples below, we choose the parameters in (1.1.2) as follows
AN=16=05g=1, ~y=1

24



3
Then the tensor A in (2.3.11) becomes A = ﬁD(S).

By Theorem 2.4.1, we can obtain all the Z-eigenvalues of A, and the associated
eigenvectors. As mentioned in Remark 2.3.1, —\ must be another Z-eigenvalue of it
when A is a Z-eigenvalue of A. Throughout this section, we present only the nonnegative

Z-eigenvalues and the corresponding Z-eigenvectors of A in the following tables.

Example 2.5.1 This example was taken from [34], conducted by Monte-Carlo simula-
tions using computer-synthesized phantoms with a Y-shape tube. The Y-shape tube is

asymmetric and the DTT technique fails to identify this structure.

For this example, the ten independent elements of D® are Dﬁ)l = —2.36, Dﬁé =
479, D%, = 0,D%), = —0.773, D), = —0.575, D), = 0.282, D), = —28.7, D{), =

0, Dé‘f;)?, = 3.61, Dég)?) = 0.488 in unit of 10~ ¥mm?/s.

The numerical results for Example 2.5.1 are listed in the Table 2.5.1.

number Ty To T3 A\ x 107
) 0 -1.0000 0 0.2691

(2) -0.0062 | -1.0000 | -0.0002 | 0.2691

(3) -0.8514 | 0.5244 | 0.0097 | 0.4922

(4) 0.8480 | 0.5299 | -0.0108 | 0.4548

(5)

(6)

-0.0431 | 0.0557 | 0.9975 | 0.0044
0.0494 | -0.0684 | 0.9964 | 0.0049

Table 2.5.1: Z-eigenvalues and eigenvectors of A in Example 2.5.1

From Table 2.5.1, we can see that there are 12 Z -eigenvalues and corresponding
Z-eigenvectors for A, and the largest and smallest Z-eigenvalues of A are 0.4922 x 10~7
and —0.4922x 107, which attained at (—0.8514,0.5244,0.0097)" and (0.8514, —0.5244,
—0.0097)T, respectively. This implies that Sy = 0.4922 x 1077 and Sy, = —0.4922 x
1077,

In order to illustrate the efficiency of our method, we also calculate the Z-eigenvalues
and corresponding Z-eigenvectors of ten third order three dimensional full symmetric

tensors which are constructed randomly in the following example.
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Example 2.5.2 The elements of tensor A are drawn by a normal distribution with

mean zero and standard deviation one.

Using the method provided in Section 2.4, we compute all the Z-eigenvalues of
A, and the associated eigenvectors. In Table 2.5.2, the largest Z-eigenvalue and the
corresponding Z-eigenvectors are listed for ten tensors. Moreover, in Table 2.5.3, all the
nonnegative Z-eigenvalues with corresponding Z-eigenvectors are presented for Tensor

1 in ten tensors.

Tensor T To T3 P
1 -0.5784 | 0.7896 | 0.2050 | 2.1161
2 -0.8364 | -0.0495 | 0.5459 | 3.2879
3 -0.6272 | -0.2393 | -0.7411 | 2.6702
4 -0.0836 | -0.8832 | -0.5467 | 2.9957
5 0.7021 | -0.6410 | 0.3100 | 2.5146
6 -0.7327 | 0.6778 | 0.0612 | 4.1874
7 0.1531 | 0.5353 | 0.8307 | 3.5715
8 0.7981 | -0.5944 | 0.0991 | 4.2279
9 -0.6308 | -0.6893 | -0.3563 | 3.3815
10 ] -0.2657 | 0.7381 | -0.6201 | 3.4800

Table 2.5.2: The Largest Z-eigenvalues with Z-eigenvectors for ten tensors

number 1 T T3 A
(1) -0.3518 | -0.9140 | 0.2020 | 0.9434
(2) -0.5784 | 0.7896 | 0.2050 | 2.1161
(3) -0.4346 | -0.6970 | -0.5704 | 1.6851
(4) 0.9455 | 0.1980 | -0.2585 | 1.4644
(5) 0.0836 | -0.5452 | 0.8341 | 1.5940
(6)
(7)

6 0.8322 | -0.1726 | 0.5269 | 0.5171
0.3823 | -0.1797 | -0.9064 | 0.0165

7

Table 2.5.3: Nonnegative Z-eigenvalues and Z-eigenvectors of Tensor 1
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2.6 Final Conclusion

In this chapter, in order to overcome the drawback of DTI model, we consider the
truncated GDTI model. Based on the model, we introduce the concept of diffusion
skewness in magnetic resonance imaging and discuss the measure of the diffusion skew-
ness and kurtosis. The diffusion skewness and kurtosis provide two dimensionless values
for characterizing the phase of the signal in tissues and the degree of non-Gaussian of
the diffusion displacement probability distribution, respectively. For the water molecule
with Gaussian distribution in biological structures, the skewness and kurtosis are zero.
But, for non-Gaussian signal with asymmetry about the origin, the skewness and the
kurtosis have significant values. Based on the Z-eigenvalues and D-eigenvalues of ten-
sor, the methods for calculating the largest (smallest) ASC values and largest (smallest)
AKC values are presented. These ASC and AKC values are the principal invariants un-
der rotations of coordinate systems and can be calculated in any Cartesian coordinate

system. We hope that these quantities and properties can be used in practice.
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Chapter 3

The Cubic Spherical Optimization

Problems

3.1 Introduction

In this chapter, we study the cubic spherical optimization problems, which include the

cubic one-spherical /two-spherical /three-spherical optimization problems.

Motivated by the NP-hardness of the cubic one-spherical optimizaiton problem, we
first analyze the complexity of problems (1.1.4) and (1.1.5). In Section 3.2, we will show
that the other two cubic spherical optimization problems are both NP-hard. Thus, it
is not expected that there exist efficient exact methods to find global minimizers of
these cubic spherical optimization problems when n,p,q are large. Therefore, we are
interested in finding approximation algorithms for solving cubic spherical optimization

problems.

This chapter is organized as follows. In Section 3.2, we establish the NP-hardness
of (1.1.4) and (1.1.5). For problem (1.1.5), we discuss some polynomial time solvable
cases in Section 3.3 and study some cases for which polynomial time approximation
schemes (PTAS) exist. In Section 3.5, we present polynomial time approximation solu-
tion methods, which return a ——L—— bound for (1.1.5). In Section 3.6, we discuss

4/min{n,p,q}

some approximation algorithms for solving one-spherical optimization problem. In the
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last section, a practical method for the three-spherical optimization problem is pre-

sented and some related numerical results are reported.

3.2 NP-Hardness of the Two-spherical /Three-spherical

Optimization Problems

It was proved in [43] that optimization problem (1.1.3) is NP-hard. But the question
remains: would (1.1.4) or (1.1.5) be easy to solve globally? In this section, we show

that they are both NP-hard to solve.

To establish the NP-hardness of (1.1.4), we first show that problem (1.1.4) is equiv-

alent to a quartic maximization problem.

Theorem 3.2.1 For each k, let B* be a symmetric nxn matriz with its (i, j)th element
as Biji. Then the cubic two-spherical optimization problem (1.1.4) is equivalent to the

following quartic mazimization problem:

zeRT 2 (3.2.1)

Proof. Denote a(x) as a vector in R?, with its kth component as

Oé([L’)k = Z Bz»jkxixj.

ij=1

Then we may rewrite (1.1.4) as
min min (a(x), z) = min —||a(z)|| = — max ||a(x)||.
min min (a(z), 2) = min —lo(z)]| = - max la(z)]

This is equivalent to

q
ma fla(o)||* = mox (B, 2)”
xll=

z||=1
ol pt

which is problem (3.2.1). O

According to Theorem 4 of [43], problem (3.2.1) is NP-hard. Hence, we have the

following conclusion.
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Corollary 3.2.1 The cubic two-spherical optimization problem (1.1.4) is NP-hard.

Now let us go to the hardness of (1.1.5). To obtain the NP-hardness of (1.1.5), we

need the following results, which shows that if n = p and C is partially symmetric, then

the cubic three-spherical optimization problem (1.1.5) always has a global minimizer

(x*, y*, 2*) with z* = y*.

Theorem 3.2.2 Suppose that tensor C in problem (1.1.5) is a third order (n X n X q)-

dimensional partially symmetric tensor with respect to the first two indices. Then there

erist t* € R" and z* € RY such that (z*, x*, z*) is a global minimizer of (1.1.5).

Proof. Let (Z, 9, z) be an optimal solution of (1.1.5) with optimal value A < 0. As the

constraints of (1.1.5) satisfy the linear independence constraint qualification, according

to the optimality conditions, (Z,7, Z) satisfies the following equations for Lagrangian

multipliers «, 8 and 7:

Then,

~

M=
M=

Cijklyjzr = oy,

<
I
—_
i
—

M=
M=

Ciji®izr = By,

@
I
—_
i
—

M1
M-

@
Il
—
= <
Il
-

CijkTillj = Y2k,

=

i=1,--

j=1,--

k=1,

n n n q
o = OéZf? == Zzzcwk.flgjzk =\
=1

i=1 j=1 k=1

Similarly, we have 8 = A and v = \. Thus, we have

( q9
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j=1k=1
n  4q
1?7,1 k;l
Yo CikTiy; = Ak, k=1,
z]| = 1,
gl =1,
| Izl =1.

(3.2.2)



We denote C(2) as a real n x n symmetric matrix with its (4, j)-th entry being C;(z) =

q
> CijkZk. Then, (3.2.2) leads to
k=1

C(2)(-y) = -z,
C(2)z = —A(-p),
|zl =1, [[—-yll=1,

which indicates that Z, —j are left-singular and right-singular vectors for —\ of C(%),
respectively. From the symmetric property of C(2), we know that either A or —\ is the

eigenvalue of C(Z). Now we consider two cases.

If \ is an eigenvalue of C(Z) associated with an eigenvector x*, we denote z* = Z.
Then, Cx*x*z* = .

If — )\ is an eigenvalue of C(Z) associated with an eigenvector *, we denote 2* = —Z.
Then, Cx*x*z* = .

Therefore, (z*, z*, z*) is a global minimizer of optimization problem (1.1.5). O

With this result in hand, we can assert that optimization problem (1.1.4) can be

regarded as a special case of (1.1.5). Thus the NP-hardness of (1.1.5) is also established.

Corollary 3.2.2 The cubic three-spherical optimization problem (1.1.5) is NP-hard.

As mentioned earlier, (1.1.4) is a special case of (1.1.5). Therefore, from now on we

focus on problems (1.1.3) and (1.1.5).

3.3 Polynomial Time Solvable Cases

In spite of NP-hardness of (1.1.5), there exist some special cases which can be solved
in polynomial time. We present a couple of such cases in this section.
For the tensor C in (1.1.5), it is easy to see that there exist matrices A® € RP*9,

Bl € " and C¥ ¢ RVP fori =1,2,---,n,j =1,2,--- ,pand k = 1,2,--- ,q such
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that Cxyz can be rewritten as

n p q

Cayz = Z(yTAiz)xi = Z(ZTBjx)yj = Z(xTC'ky)zk. (3.3.3)

i=1 j=1 k=1

Based on this observation, we have the following theorem.
Theorem 3.3.1 Suppose that there exist orthogonal matrices P € R™*" and Q € RP*P

such that PTC*Q for all k = 1,2,--- ,q are n X p diagonal matrices. Then (1.1.5) is

polynomial time solvable.

Proof. Without loss of generality, after some orthogonal transformations, we may

assume that n > p and C* (k= 1,2,--- ,q) are n x p diagonal matrices. Then
n,p,q p q
— k — ey k
Cryz = g Ciixiyjze = g T;Y; E Ci%k
i,gk=1 j=1 k=1
Therefore, we have that
Pog2y2 |
max max max Cryz < max max max y_ —5=|> Clz
At i WA A A Ji
lzll=1 llyll=1 [|z]=1 lzll=1 llyll=1 ll=l=1 j= k=1
P 2,2 q p 2, 2 4
x4+ys x.+y.
=  max I max Y CFz, < max ) D Gl
=[lyll=1 ;= lzll=1 5=y 7 llzll=llyll=1 ;= - 7
lzll=llyll=1 j=1 k=1 yl=1,=1 —1
q
— k *
= > Ciuz,
k=1

q q

where j* and 2* satisfy > Ck ..2f = max max Y C%z,. Note that j* and 2* can be
- 1<j<p zl=1 4=y

found in polynomial time. Let x* and y* be the unit vectors such that their j*-th entries

are 1 and the rest of entries are 0, then we have that ol ﬁn”aylcl | Cryz = Cx*y*z*.
z||=llyl|=|lz]|=1

Thus we can assert that (z*, y*, —2z*) is an optimal solution of (1.1.5), which complete

the proof. O

Remark 3.3.1 [t is necessary to show that ||x||:|1{;l||E]L:}T|z\\:1cxyz = Iirvl\ﬁle Hrgr}”au:)i |I|£1Ha:)§ Cryz.
Suppose that (z*,y*,2*) is an optimal solution of the cubic three-spherical optimiza-
tion problem. Then for any optimal solution of the multilinear optimization (Z,y,2),
Cx*y*z* > Cxyz. On the other hand, there holds

Cryz = max max CTyz > max max Cx*yz = Cx™y* 2",
lyl=11zll=1 lyll=1 flzll=1
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where the last equality comes from the fact that (y*, z*) is singular vector pair associated

with the largest singular value of Cx*. So we have the result.

Similarly, if A® for i = 1,2,--- ,n or B’ for j = 1,2,--- ,p can be simultaneously

diagonalized by orthogonal matrices, then (1.1.5) is polynomial time solvable.

To get another polynomial time solvable case, we recall (1.2.6), the bi-quadratic

optimization problem over unit spheres, considered in [33].

Suppose that A is the optimal value of (1.1.5) with an optimal solution (z,7, ).

Without loss of generality, we assume that A < 0.

It is easy to show that the cubic three-spherical optimization problem (1.1.5) can

be reformulated as the following problem

h = 2
omax, - h(z,y) = [[Cayll

s.t. rir=1 y'ly=1

In fact,

q n

h(e,y) =Y > Comriyy)* =D > (O CinCom)miyszsye

k=1 i=1 j=1 i,s=1jt=1 k=1

Thus, (1.1.5) can be reformulated as the following optimization problem

n

p q
min — 2> CijiCar) iy, 25y
zeR" yeRP 7;752:1 ]7752:1< kgl I ! ) ! ! (334)

s.t. rlr=1, y'ly=1

It is easy to see that (Z,y) is an optimal solution of optimization problem (3.3.4) with

the optimal value —\? when (Z, 7, z) is an optimal solution of (1.1.5).
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Furthermore, for any = € 1™ and y € RP, there hold

Cz’jkcsthiijsyt

NE
En
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=
»
I
=

.
o~
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Il
NIE
M=
MQ

(

(CiikCatnyiyr + CoinCitnyjye) i
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V)
Il
—
o
=
Il
—
i
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I
NIE
AM*@ .
MQ

(CijiCstic + CsjiCitk) iy x5yt

-
w
Il
—_
-
Il
—
Eonl
Il
—

I
M=
M=
MQ

(CijiCstic + CsjiCitke)TiT5) Yyt

Ji=1 is=1 k=1
p n q

= > 13 (3 X (CijiCsti + CojuCit)Tiws + 5 (CorCojie + CstkCiji)Tis)y;ye
7t=1 1i,5=1 =1

=
=
Bl

(CijiCoti + CsjkCitke + CitkCsji + CstiCij )i YU

@
. .
Mhs EM*@ .
N

ol
(=1L

(CijiCotic + CsjkCitke + CitkCsjic + CstkCiji) iy TsYs.-

~
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Il
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o
=
Il
—_
Eonl
Il
—

Therefore, by letting tensor C have elements

N 1 <
Cijot = 1 Z(Cijkcstk + CsjiCitre + CitrCsjie + CstCijic),
k=1

the optimization problem (3.3.4) will be equivalent to the following optimization prob-

lem »
homin := min ho(x,y) = -G st LY i T Yy
TER™ yERP () i,szzl j,tZ::1 ! ’ (3.3.5)
st. a'x=1, yly=1,
where C satisfy the symmetric property: (fijst = ésjit = (f'itsj forall i,s =1,--- ,n and

j?t:1727'” y D-

Therefore, the cubic optimization problem (1.1.5) may be regarded as subclasses of
the bi-quadratic optimization problem (1.2.6). According to Corollary 3.7 and Theorem
4.1 in [33], we have the following result.

Theorem 3.3.2 If min{n,p,q} = 2, then the cubic three-spherical optimization prob-

lem (1.1.5) is polynomial time solvable.
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3.4 Polynomial Time Approximation Scheme Cases

of Three-spherical Optimization Problem

Now we are ready to present some special cases of (1.1.5) which have PTAS. Before
proceeding, we consider the cubic polynomial optimization of the special form

n?p7q
min Z Cijkaniyjzk
1:7j7k:17

stz =1, [lyll =1, [|z]| =1,
z>0.

(3.4.6)

In this case, one can choose z € R4 to be from grid points {0, \/g, Y. d%‘ll, 1} such
that 22 + -+ + zZ = 1, for some given integer d. They represent uniform grid points on

the partial sphere {z € R4 : ||z|] = 1}. The total number of such feasible grid points is

+d—1
(q ) which is a polynomial in ¢ for any fixed integer d > 1.
d

For each feasible grid point Z, one can solve the maximum singular value of the
matrix C(Z) with its (7, j)-th entry being C(2);; = CijrZk. It’s well known that the
singular value of matrix can be solved in polynomial time. Let Z be the one among
these grid points whose objective value is the greatest and z,y be the corresponding
left-singular and right-singular vectors. Then, by Bomze and de Klerk [9], the feasible
solution pair (—Z, , Z) returns a (1—21)-approximation solution to (3.4.6). In conclusion,

the following result is established.

Theorem 3.4.1 There is a PTAS for solving problem (3.4.6).

Note that the variables x, y and z are equal “in rights”, and so Theorem 3.4.1 is
valid when we consider the case that z > 0 is replaced by x > 0 or y > 0. In fact, for
the original optimization, if we know in advance the sign of optimal vector z* or y* or
2*, then the PTAS can be modified slightly. For instance, for A ¢ = 1,--- ,n as in

(3.3.3), if all entries in matrix A® have the same sign pattern, then we can see that
Cayz| = |y (O A'wi)z| < [y|T| > A'wil|2],
i=1 i=1
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where | - | denotes the entries being the absolute value of corresponding entries. Hence
the sign of optimal solution (z*,y* 2*) can be known in advance, which leads to a
PTAS. In a similar pattern, there exists a PTAS if each matrix B7 or C* has the same

sign.

Furthermore, notice the fact that the number of sign patterns for x, y and z are at
most 2", 2P and 29, respectively. Thus, if min{n, p, ¢} is fixed, then a PTAS for (1.1.5)
can be obtained by solving subproblem (3.4.6) at most 2"} times, which gives the

following statement.

Corollary 3.4.1 Ifmin{n,p,q} is fized, there exists a PTAS based on the grid sampling
on simplex for solving (1.1.5).

On the other hand, if we recall (3.3.5), combining with Corollary 3.7 and Theorem
4.1 in [33], then we have the following result.

Theorem 3.4.2 If min{n,p,q} is fized, then there exists a PTAS based on sum of
squares for solving (1.1.5).

3.5 Relative Quality Bound

In general, Definition 1.1.2 is stronger than Definition 1.1.1. However, we have the
following result for odd order spherical optimization problems based on the following

theorem.

Theorem 3.5.1 For an odd order spherical optimization problem, the following results
hold.

If there is a (1 — €)-approzimation solution with 0 < € < %, then the corresponding

value is a (1 — 2¢)-bound.

If there is an r-bound, then its corresponding approrimation solution is a l—gr—

approximation solution.
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The proof is trivial since the absolute value of the maximum value and the absolute

value of the minimum value is the same, so that we omit the details of the proof.

In the subsequent discussion, we will present a quite simple but efficient method for

(1.1.5) by finding the singular values of matrices.

Theorem 3.5.2 -bound for (1.1.5).

There exists @ —————
A /mln{n D,q}

Proof. To get the relative quality bound, we rewrite (1.1.5) as follows

q

Cryz = 3" CHy)a

k=1

for some suitable matrices C* as in (3.3.3).

For k =1,2,--- ,q, we solve the following problem by finding the singular values of
a matrix in polynomial time
max x' Oy
st |zl =1,
lyll = 1.

Let k* be the one whose objective value is the largest and x*, y* be the optimizer
and zj. be —1 accordingly and the rest of entries be 0. Then for any feasible solution

pair (z,v, z), there holds

q q .
Cay2)* = (L (TC*)a) = 3 @ Oy Ciy)a
= 1,)=
q q
S ;( TC«z ) q;( *Tck*y*)QZiQ Sq(fFTCk*y*)z‘

Furthermore, there holds

(T Cy) = (Catys) < ||x||=ﬁ5||a=}f|zu=1<cxyz)2 < g Ny,

which implies the result. 0

37



3.6 Approximate Algorithms for One-Spherical Op-

timization Problem

In this section, we turn our attention to (1.1.3). It’s easy to solve (1.1.3) when n < 3

by the direct computation method proposed in the second chapter. Hence, we focus on

(1.1.3) for n > 4.

3.6.1 Approximation Bound Based On Sum of Squares (SOS)

It is easy to see that optimization problem (1.1.3) is equivalent to the following opti-

mization problem

Pmin = mMax 7y

st. A —y >0, Vre{reR"||z|=1}.

Since the function Axz® is an odd function, the above optimization problem can be

reformulated equivalently to :

Pmins -= INax B

(3.6.7)
st. —(Az*)?2 - B(xT2)? >0, Ve R
Obviously, pmins = —P2,;,-
Let N > 0 be an integer. Consider the N-order SOS relaxation:
= max
by b (3.6.8)

st. (zT2)N(—(Az?)? - B(x"2)?) =505 0, © € R".
where the inequality g =sos 0 means that ¢ is SOS, i.e., a sum of squares of other

polynomials. It is easy to see that py > Dmins-

To obtain the convergence result, we need the following lemma in [60].

Lemma 3.6.1 Let p(z) be a homogeneous positive definite polynomial of degree m,

where m is even and x € R™. Then for any integer N satisfying

nm(m — 1) n+m
N>m L) o0y -
Z " lloga W T3
sup p(z)
where e(p) = ”ﬂ‘;lp(x), (xT2)Np(x) is SOS.

llzll=1
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Based upon Lemma 3.6.1, the approximation ratio is presented as follows.

Theorem 3.6.1 For an even N satisfying N > 2%(5);2 — ”T%, we have

s — 1
0< Pmins PN < on

. 3.6.9
T DPmins (N + )2log2 — 15n ( )

Proof. It is easy to see that 0 is the maximum of —(Ax?)? over sphere and
Pmins(z )% < —(Az%)? <0, Vo e R
Taking 8 < pmins, We have
(Prins = B)(x"2)* < —(A2”)* = B(aT2)* < —B(z2)®, Vo e R".

Hence e(—(Az*)? — B(zTx)?) < —L

— Pmins—8"
Fix N satisfying N > % — ”TJFG, and choose
15npm'ms
= Pmins T+ < Pmins-
P =p (N + =9)2log2 — 16n "

Then

v lm =By n+6
N 2 IOg 2pmins - BN 2 '
From Lemma 3.6.1, we can see that (z"2)V((—Az?)? — By (z"2)?) is SOS. On the other

hand, It is easy to see that py < pins. Therefore,

N N 1
0< Pmins — PN < Pmins BN _ . on '
This completes the proof. O

3.6.2 Approximation Bound Based On Semidefinite Relaxation

Scheme
In general, SOS relaxation algorithm might not be quite efficient for practical problems

when n is large. Therefore, we discuss approximation bound based on semidefinite

relaxation.
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It is well known that semidefinite relaxation method is an efficient method for even
order polynomial optimization problem. Therefore, we first reformulate (1.1.3) as the
following quartic optimization problem

Eg}}elnril Gzt = i}j}%;:() GijlTiT ;T (3.6.10)
st. Zo=1, |z] =2,
where G is a fourth order ((n +1) x (n+1) x (n+ 1) x (n + 1))-dimensional real sym-

metric tensor with

G m forl =1,and 7,5,k # 1,
ikl = Y
’ 0, Otherwise.

Consider the following SDP relaxation of (3.6.10),
min (Q_X) o X
st. Xpn=1, TeX =2 (3.6.11)
X = 0.

Based on the relationship in [6]: ST C {X € 8™ : | X||p < I, # X}, we may relax
(3.6.11) as

min (Q_X)oX
st. Xu=1, TeX=2, (3.6.12)
1X|F < 2.

Stack up the entries of symmetric matrix X, denoted by vecg(-). Then there exists
a suitable matrix ) such that the quadratic SDP relaxation can be rewritten in the

vector form
min  vecs(X) " Quecg(X)

st. (vecs(X))1 =1, vecs(l41) vecs(X) = 2,
[vecs(X)|| < 2.

After eliminating two variables by the first two constraints, there exist two suitable
quadratic functions go(w) and ¢;(w) such that the relaxation can be rewritten as

min  go(w)

st qr(w) < 4.
Using the matrix decomposition in [65], we can see that the standard SDP relaxation
for above quadratic optimization problem is tight. By the obtained optimization w* of
above quadratic optimization, together with the stack relation between vector w and
matrix X, we can get a feasible solution of (3.6.12), which returns a lower bound for

(3.6.11) and (1.1.3) in polynomial time.
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3.7 Practical Method for Solving Problem (1.1.5)

It’s easy to see that the approximation solution given in section 3.5 is not a KK'T point
of problem (1.1.5). Therefore, we will present a modified power method to get a ‘good’
solution of problem (1.1.5). Without loss of generality, we assume that n < p < gq.

Algorithm 3.7.1

e Initial step: Input tensor C and matrices A*, with entries
(AZ)Jk = Cijka VZ = 1, 2, R I8
Substep 1: Compute the largest singular value X and its corresponding left-
singular and right-singular vectors y*, 2* for matrices A*, i =1,2,--- ,n.
Substep 2: Choose the index iy with the singular value N being the largest among
AL N2 )
. 0 _ ,io -0 — 4ip ,.0 7 0
Substep 3: Let y° = y*, 2" = 2", x° be the vector with x; = —1 and the rest of

entries be 0. Let ] = 0.

o Iterative step: Compute matriz Ca' € RP*T with its entries
(Cl’l)jk = ZCkaﬁ
i=1

Compute the largest singular value and its corresponding left-singular and right-

singular vectors y™+1, —z*1 for matriz Cx'. Let '™ be the vector with entries

p q
In __ o141 +1 _ zin .
X, _Zlkzlcmky] Zp - Take x —Wandl—l—{—l
i=1k=

Obviously, Algorithm 3.7.1 includes two parts: initial step and iterative step. By

means of Theorem 3.5.2, the initial step provides a lower bound satisfying
Cryz > v/nCa’y’2°, ¥ |lzfl = [ly| = ||2] = L.
Furthermore,
Cal iyl = _||oy Y| < Caly T < Calyls!

which indicates that the sequence {Cz'y'z'} generated by Algorithm 3.7.1 is non-

increasing. Based upon this observation, we establish the following convergence result.
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Theorem 3.7.1 Suppose that the sequence {z', ', 2!} generated by Algorithm 3.7.1 is
infinite. Then each accumulation point of the sequence {x',y', 2!} is a KKT point of
the problem (1.1.5).

Proof. From Iterative step of Algorithm 3.7.1, we have

Calytl = —\phH1
Calzltl = )yt

CyltizHl = —|Cyltlattt||alt,
=1 =l =l =1

Note that Cxyz is bounded on the unit sphere. Combining this with the fact that
{Ca! Ty 121 is non-increasing, we know that {CaxT 1y 121} is convergent and there

holds
Caltly 11— Calyl !

— C$l+1yl+12l+1 Cl’l I+1 l+1 +Cl’l I+1 H—l CSL’Z l l

IN

Cal 1yt Cplytl i
= Oz — 2yt <0,

where in the last inequality we use the fact that Cz!Tly*12+l < Caoy!*tizi*! for any

||| = 1 from the obtained z!*!

From the convergence of sequence {Cx'y'z'}, we know Cz!Tly 12l — Calylzt — 0.
Furthermore, ||Cy!™tzt*t| > |C2%C2° > 0, which leads to ||z!™! — 2!|| — 0 since
Cy Tl = —||Cy! 12! || 2!, Therefore, {z'} is convergent. As a result, {\'} is also

convergent.

Suppose that (z*,y*, z*) is an accumulation point of {(z!, 4!, 2!)}. Without loss of

generality, we assume that

lim 2! = z* lim y'* =%, lim 2* = 2%,  lim X' = \*.
l—o00 lp—00 I —00 l—00

Then, there holds

Crry* = —\2*

CCL’*Z* — _/\>x<y>|<7

Cyzr = —[ICy =",
[z = [yl = [l="]l = 1.
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Figure 3.7.1: Numerical Results of Example 3.7.1

As a consequence, we have
=N = —[|Cy"2"]| = Cay"z,
which completes the proof. O

To illustrate that the procedure performs well, the following two examples are con-

sidered.

Example 3.7.1 The example is taken from [74]. Tensor C is a random low-rank (40 x
30 x 40)-dimensional tensor generated as the sum of 20 rank-one tensors, each rank-one
tensor x ® y ® z is generated with components of x,y and z uniformly distributed in
(0,1). Figure 3.7.1 shows the numerical results, where “inval” and “lval” denote the
initial value and corresponding lower bound obtained by the initial step of Algorithm
3.7.1, respectively. “val” denotes the value obtained by Algorithm 3.7.1. From Figure

3.7.1, we can claim that the Algorithm performs well.

Example 3.7.2 Consider the problem (1.1.5) with (n X p X q)-dimensional tensor C

whose entries are uniformly distributed in (0,1).
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Table 3.7.2 reports the average value of 100 problems, where “Dim” denotes the
dimension of Tensor C, “lval” denotes the average lower bound by the initial step and
Theorem 3.5.2, “alval” denotes the average value obtained by Algorithm 3.7.1. “CPU”

denotes the average working time of the computer excluding the input/output time.

Dim upval alval CPU
(3 x5 x 10) -6.7970 -6.2303 0.0441
(5 x 10 x 30) -20.5247 | -19.4263 | 0.0563
(10 x 30 x 50) -63.2307 | -61.3158 | 0.0798
(30 x 50 x 100) -197.9735 | -193.6653 | 0.4516
(
(

50 x 100 x 300) | -618.4687 | -612.3631 | 3.8347
100 x 300 x 500) | -1945.3 -1936.4 22.5809

Table 3.7.2: The numerical results of Example 3.7.2

3.8 Some Remarks

In this chapter, we discuss the cubic spherical optimization problems. We present the
NP-hardness of the cubic two-spherical /three-spherical optimization problems. Since
the cubic two-spherical optimization is a special case of the three-spherical optimization
problem, we focus on the cubic three-spherical optimization problem. We discuss some
special cases of three-spherical optimization which can be polynomial time solvable or
have PTAS. For general cases, we present a quality bound. For one-spherical opti-
mization, some approximation bounds are discussed based on SOS and SDP schemes.
Finally, a practical method for solving the cubic three-spherical optimization problem
is proposed. However, there is little discussion for the cubic one-spherical optimization
problem. So in future study, how to obtain approximation bound will be considered

and it is possible to design some practical methods.
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Chapter 4

A Practical Method for the
Bi-quadratic Optimization Problem

Over Unit Spheres

4.1 Introduction

To solve problem (1.2.6), we first consider its optimal condition following the tensor
product notation used in [51, 15, 70]. Before proceeding, we denote F - xyy as a

m n
vector with its ith component being > > Fijuz;yry, and Frry- as a vector with
j=1 k=1

its Ith component being > > Fjjuz;x;yx. For any minimizer (z,y) of (1.2.6), by the
ij=1k=1
optimality theory [7, 47], there exist A\, u € R such that

( F-xyy = \x
Frry = py

'r=1

y'ly=1
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Certainly, the optimal condition can further be simplified as

( Fxyy = \x
Frxy = Ay (411)
xlr=1
T, _

(v y=1

If \,z and y are real solutions of (4.1.1), A is said to be an M-eigenvalue of tensor F,
and z and y are said to be a left M-eigenvector and a right M-eigenvector of tensor F,
associated with the M-eigenvalue A, respectively [54]. Here, the letter M is borrowed

from word material.

By the discussion above, we know that problem (1.2.6) is equivalently transformed
into computing the largest M-eigenvalue of tensor F, i.e., solving (4.1.1). For this
system, it seems not difficult to solve. However, this is not true since neither equation
of system (4.1.1) is linear. Moreover, this problem is also shown to be NP-hard [33].
Motivated by the fact that this problem is a subproblem of the entanglement problem,
in practice, we may aim to find a “good” solution of the problem. In the next section, we
will propose a practical method to compute the largest M-eigenvalue of tensor F based
on the power method for computing the largest eigenvalue in magnitude of a matrix
[19]. Compared with the alternating eigenvalue maximization method for solving (4.1.1)
proposed in [17], the computation cost of our method is less. As for the validity of this
method, it is guaranteed theoretically for the convex case. To make the conclusion hold
generally, we introduce a translation technique into the method. Furthermore, to make
the generated sequence converge to a good solution of the problem, we also develop an
initialization scheme in Section 4.3. The given numerical experiments in Section 4.4
show that the proposed method could generate a well-approximated point to the global

maximizer of our concerned problem.

4.2 Practical Power Method and Its Convergence

It is well known that the power method is an efficient method for computing the largest
eigenvalue (in the sense of absolute value) of a matrix [19]. This method was extended

to compute the best rank-1 approximations to higher-order tensors, i.e., the largest
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Z-eigenvalue (also in the sense of absolute value) of higher-order tensors [32, 31, 54].
Motivated by this, we propose a modified power method to compute the largest M-

eigenvalue of a tensor.

Algorithm 4.2.1

Initialization Step. Take initial points 2° € R™,y° € R™ with ||2°]| = [|4°|| = 1, and
let t = 0;

Iterative Step. Execute the following procedures alternatively until convergence:

L — FLoptytyt. 2 = 't )
IR
gt = Faltlgttiyt. it = g .
) — I
7771
t=t+1.

In the following, we would give a theoretical analysis to the method. For the ob-
jective function F(z,y), from (1.2.6), we know that it is a bi-quadratic function with

respect to variables x,y, respectively. That is, the function can be written as
F(z,y) = Frayy = ' B(y)z = y' C(x)y,

where B(y) and C(z) are respectively symmetric matrices in R8”*™ and R"*" with

components

Bz‘j(y) = Z Jrz‘jklykyla Ckl(m) = Z Ejk[l’il'j.

k=1 ij=1

Based on this analysis, we have the following conclusion for Algorithm 4.2.1.

Theorem 4.2.1 Suppose that for any x € R™,y € R", the matrices B(y) and C(x)
are both positive definite. Then the generated sequence {F(x',y")} by Algorithm 4.2.1

18 nondecreasing.
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Proof. From the assumption, we know that for any fixed x € R™, the function F(z,y)
is strictly convex with respect to y € R”, and similarly, the function F(z,y) is strictly

convex with respect to z € R™ for any fixed y € R". Thus, for any ¢ > 0,

F(l't+1> yt) - F(xt7 yt) 2 <$t+1 - xt> vxF(xt7 yt)> (422)

To show the conclusion, we are ready to show the nonnegativity of the inner product

term in the right-hand side. Since
V.F(a',y') = 2F - a'y'y’,

from Algorithm 4.2.1, one has

t+1 _ VmF(xtayt) ‘
[V F (2, yt)]|

Recalling the Cauchy-Schwartz inequality and the choice of '™, we conclude from

(4.2.2) that F(z! y*) > F(a',y") and it holds strictly if z**! # z*.

Similarly, we can conclude that that F'(z'*! y**1) > F(z'*! y') and it holds strictly
if yt+1 7& yt.

Combining these two cases, we obtain the desired result. O

Before giving an analysis to Theorem 4.2.1, we first give an explanation of the

condition of Theorem 4.2.1 by introducing the following definition.

Definition 4.2.1 A fourth order partially symmetric tensor F is said to be positive

definite on ™ x R" if for any nonzero vectors x € R™ and y € R", it holds that

Frayy = Z Z FijkiTiZyey > 0.

i,j=1k,l=1

From this definition, we know that the matrices B(y) and C(x) are both positive
definite for any nonzero vectors x € ™ and y € R” if and only if tensor F is positive
definite on ™ x R".

From Theorem 4.2.1, we may conclude that the generated sequence {(z*,y")} con-

verges to a stationary point of problem (1.2.6) in the “convex” case [7]. Now, one key
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problem is posed naturally: how about the algorithm for the general case? That is,
for the case that either matrix B(y) or matrix C(x) is not positive definite. To solve
this problem, we now make a translation to the corresponding tensor in the objective

function by introducing the following “identity” tensor Z € Jm>*m>nxmn.

1, ifi=jand k=1
TLiji = ,
0, otherwise

Take 7 € R such that 7 > max{|\| | A is an M-eigenvalue of tensor F} and set

F(x,y) = Zoxyy + Frayy = Froyy.

It is easy to see that tensor F is positive definite on R™ x R" and has the same
symmetry property as tensor JF. Furthermore, if z and y constitute a pair of M-
eigenvectors of tensor F associated with M-eigenvalue ), then they are also a pair of
M-eigenvectors of tensor F associated with M-eigenvalue (A—7). Since function F(x,y)
satisfies the assumptions in Theorem 4.2.1, we can apply Algorithm 2.1 to compute the
largest M-eigenvalue of tensor F and hence we can obtain the largest M-eigenvalue of

tensor F.

Now, one more question rises accordingly: How to choose a suitable 77 In fact, this
can be solved based on the estimation of the largest eigenvalue of the unfolded matrix

of tensor F defined below.

Define the following index mapping from four indices i, j, k, [ to two indices s, t:
s=n(i—1)+k t=m(—1)+1L

Using this mapping, we may unfold tensor F into a matrix A € R"™*™"_ From the
partial symmetry of tensor F, we know that the unfolded matrix A is symmetric. Based

on this representation, the objective function F'(z,y) can be written as a quadratic form:
F(z,y) = (z®y) Alz ®y),

where z ® y denotes the Kronecker product of vectors x and y which is a vector in ™.

Based on this, we can immediately obtain the following conclusion.

Proposition 4.2.1 Suppose matrix A is the unfolded matrix of tensor F. Then tensor

F is positive definite on R™ x R™ provided that matriz A is positive definite on R™".
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Furthermore, all the M-eigenvalues of tensor F lie in the interval composed by the

smallest eigenvalue and the largest eigenvalue of matriz A.

From the Gersgorin Disc Theorem [19], we know that the magnitude of any eigen-

value of matrix A must be less than or equal to

mn
2z, 2 Al

This can easily be computed. In fact, since matrix A is symmetric, 7= >  |4;|is
1<i<j<mn

sufficiently large to guarantee that (7Z + F) satisfies the assumption in Theorem 4.2.1.

To end this section, we give an example to show that a fourth order partially sym-
metric tensor F may be positive definite on R™ x R" but the corresponding unfolded

matrix A is not positive definite on R™".

Example 4.2.1 Consider the following fourth order two-dimensional tensor F with

entries
Funn =12, Fie =1, Fue =2,

~F'1222 = 17 ]:1212 = 57 f1222 = 17 -F2222 = 12.

For this symmetric tensor, the unfolded matrix is:

12 1 1 5

1 2 5 1
A—

1 5 2 1

5 1 1 12

It is easy to verify that for x,y € R?,

2
F(z,y) = Fayzy= 3 FijuTliYeli
ijl=1
= (z1n + 2132)* + (@12 + T2y2)? + (T2y1 + 2151)° + (T2 + 2232)?

+10(z1y1 + Tay2)?,

and it is positive for any nonzero vectors x,y € R%. However, for w = (0,1,—1,0)",

wl Aw = —6 < 0, i.e., the unfolded matriz A is not positive definite on R*.
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4.3 Initialization Technique

From the discussion in section 4.2, we know that the given power method can generate a
stationary point of problem (1.2.6) generally. However, whether an accumulation point
of the generated sequence is a “good” maximizer of problem (1.2.6) or not strongly
depends on the initialization. In this sense, we claim that Algorithm 4.2.1 only partially

solves problem (1.2.6).

To obtain a good maximizer of problem (1.2.6), we will introduce an initialization
technique into Algorithm 4.2.1 inspired by the initialization strategy for computing the
best rank-1 symmetric approximation to a symmetric tensor in [59]. This initialization
technique is based on the basic fact that the unit eigenvector corresponding to the
largest eigenvalue of positive definite and symmetric matrix G is a maximizer of the

function g(z) = x" Gz over the unit sphere.

Suppose the unfolded matrix A of tensor F is positive definite, w € R™ is an
unit eigenvector of matrix A associated with the largest eigenvalue u, and (z*,y*) is
a solution of problem (1.2.6). Then f(z*,y*) < p and the equality holds only when
x* ® y* coincide with +w. Motivated by this, we may take an initial point (z¢,yo) in

Algorithm 4.2.1 that maximizes the inner product (r ® y, w) over unit spheres.

To solve the subproblem, we need to fold vector w into a matrix in R™*" in the

following way: for k =1,2,--- ,mn, set i = ’—%-‘, j=(k—=1)modn + 1 and

Then the inner product (r ® y,w) can be expressed as a bi-linear function ='Wy and

the involved subproblem is as follows

max ' Wy

st. 'z =1,y
which is also equivalent to the following minimization problem [32]:

min [|W — pxy |3
st. peR (4.3.3)

rr=1yy=1
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where || - ||[r denotes the Frobenius norm of a matrix. This optimization problem can
easily be solved via singular eigenvalue decomposition of matrix W [19]. That is, if

matrix W has the following singular eigenvalue decomposition
T
W=U"SV =Y ouuw,
i=1
where o1 > 09 > --- > 0, > 0 and r is the rank of the matrix, then u; and v; constitute

the solution of problem (4.3.3). Thus, the initialization subproblem can be solved by

letting x¢ = w1, yo = v1.

4.4 Numerical Experiments and Simulations

Combining discussions in Sections 4.2 and 4.3, we can give a complete algorithm to
compute a good approximation of the largest M-eigenvalue of a fourth order partially

symmetric tensor.

Algorithm 4.4.1

Initial Step: Input F and unfold it to obtain matrix A.
Substep 1: Take 7= Y. |Ayl, set F = 7Z + F and unfold F to matrix

1<s<t<mn

Substep 2: Compute the eigenvector w of matrix A associated with the largest

eigenvalue and fold it into the matrix W.

Substep 3: Compute the singular vectors u; and v; corresponding to the

largest singular value of the matrix W.

Substep 4: Take x¢g = uy,y9 = v1, and let t = 0.

Iterative Step: Execute the following procedures alternatively until certain convergence

criterion is satisfied and output z*, y*:

T t, t,t t+1 £t+1
:L‘t-‘rl:‘F'xyy’ x :||ft+1H’
—t+1 __ ﬁ t+1, t+1, 1 t+1 __ gt+l .
SR N A
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t=1t+1.

Final Step: Output the largest M-eigenvalue of tensor F: A = Fao*xz*y*y* — 7, and the

associated M-eigenvectors: z*, y*.

It is easy to see that the algorithm contains two parts: the initial step and the
iterative step. In fact, the initial step, i.e., computing the largest eigenvalue and the
corresponding eigenvector of a matrix, is also an iterative scheme [19]. For Algorithm
4.4.1, the computation complexity at each iterative step is of order O(m?*n+mn?). Thus,
if the largest M-eigenvalue of tensor A can be generated within few steps, this algorithm
can be said to be practical. To check this, we first make the numerical experiments
of Algorithm 4.4.1 on two fourth order three dimensional partially symmetric tensors,
and then compute the global optimal values of the objective functions by the projected

gradient method [10], combined with the uniform grid method in high order accuracy.

Example 4.4.1 Consider the tensor whose entries are uniformly generated in (-1,1):

—0.9727 0.3169 —0.3437
F(1,5,1,:) =1 —0.6332 —0.7866 0.4257
—0.3350 —0.9896 —0.4323

0.3169  0.6158 —0.0184
—0.7866 0.0160  0.0085
—0.9896 —0.6663 0.2559

52,0 = ( )
—0.3437 —0.0184 0.5649
F(1,43,)=| 04257 0.0085 —0.1439
—0.4323 0.2559  0.6162
—0.6332 —0.7866 0.4257
L1 = 0.7387  0.6873 —0.3248
—0.7986 —0.5988 —0.9485

—0.7866 0.0160 0.0085
F(2,:,2,:) = 0.6873 0.5160 —0.0216
—0.5988 0.0411 0.9857
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0.4257  0.0085 —0.1439
—0.3248 —0.0216 —0.0037
—0.9485 0.9857 —0.7734

53,0) = ( )
—0.3350 —0.9896 —0.4323
F(3,:51,:) = —0.7986 —0.5988 —0.9485
0.59853  0.5921 0.6301
52,0 = ( )

—0.9896 —0.6663 0.2559
—0.5988 0.0411  0.9857
0.5921 —0.2907 —0.3881

—0.4323 0.2559  0.6162
F(3,53,:) = —0.9485 0.9857 —0.7734
0.6301 —0.3881 —0.8526

For this tensor, its largest M-eigenvalue 2.3227 which is marked in Figure 4.4.1 by

the horizontal line.

Example 4.4.2 Consider the tensor whose entries are uniformly generated in (0,5):

1.9832 1.0023 4.2525
F(1,5,1,:) = | 2.6721 3.2123 2.8761
4.6384 2.9484 4.0319

1.0023 4.9748 2.3701
F(1,:,2,)) =] 32123 1.3024 3.2064
2.0484 4.9946 3.8951

4.2525 2.3701 2.4709

F(1,:,3,))=| 2.8761 3.2064 3.4492
4.0319 3.8951 0.6581
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2.6721 3.2123 2.8761
3.0871 0.1393 4.4704
1.7450 3.0394 4.6836

3.2123 1.3024 3.2064
0.1393 4.9456 2.9980
3.0394 4.3263 0.5925

2.8761 3.2064 3.4492
F(2,:3,:) = | 4.4704 2.9980 0.4337
4.6836 0.5925 4.3514

4.6384 2.9484 4.0319
1.7450 3.0394 4.6836
0.3741 1.6947 2.7677

2.9484 4.9946 3.8951
3.0394 4.3263 0.5925
1.6947 4.2633 0.1524

4.0319 3.8951 0.6581
F(3,:53,:) = | 4.6836 0.5925 4.3514
27677 0.1524 2.2336

For this tensor, its largest M-eigenvalue is 26.1187 which is marked in Figure 4.4.2
by the horizontal line.

From Figures 4.4.1 and 4.4.2, we can see that the largest M-eigenvalue can be highly
approximated within few steps especially for the second example. In fact, we have done
many numerical experiments of Algorithm 4.4.1 on tensors whose entries are uniformly
generated in (0, L) for some positive number L, and the numerical results show that

this algorithm has a particularly good performance for this kind of tensor.
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Figure 4.4.3: Numerical Result for a Tensor with m = 12,n = 18

We also do two numerical experiments on tensors with high dimensions. Here,
we would not compute the largest M-eigenvalue of the tensors using the globalization

method since its computation cost is extremely high.

Figure 4.4.3 shows the numerical result of Algorithm 4.4.1 on a tensor whose entries
are uniformly generated in (-5,5) with m = 12,n = 18, and Figure 4.4.4 shows the
numerical result on a tensor whose entries are uniformly generated in (-5,5) with m =

30,n = 18.

From the given numerical experiments, we can claim that the numerical result of
Algorithm 4.4.1 is good although the iterative procedure is at most linearly convergent
in theory [19]. Since the computing cost at the iterative step of the algorithm is very
small, the designed algorithm is really efficient in practice especially for the large scale

problem.

4.5 Some Comments

Although we can not guarantee that the obtained solution is a global optimization

solution, the numerical results indicate that Algorithm 4.4.1 is practical since the solu-
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Figure 4.4.4: Numerical Result for a Tensor with m = 30,n = 18

tion can be generated within few steps. Hence, we hope that with further research the

practical method can be designed with global convergence.
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Chapter 5

Bi-quadratic Optimization
Problems with Quadratic

Constraints

5.1 Introduction

In this chapter, we consider two bi-quadratic polynomial optimization problems (1.2.7)

and (1.2.8).

Let Fiin and Fp.x be the optimal values of (1.2.7) and (1.2.8), respectively. Ob-
viously, Flax > 0. Furthermore, throughout this chapter, we assume that the optimal

values Fii, and Fj.. are attainable, which implies that F,.;,, > 0.

From the fact that (1.2.7) and (1.2.8) can be regarded as the generalization of (1.2.6),
which is NP-hard to solve from [33], we can assert that the problems are also NP-hard.

Motivated by the methods for approximately solving (1.2.6) in [33] and the general
NP-hard quadratic optimization problem in [42, 38|, we consider the following SDP
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relaxations of the considered problems

min g(X,Y):=(FX)eY
st. A,eX>1 p=1,---,my,

(5.1.1)
Bq°Y217q:17"',n17
X=0,Y =0
and
max ¢(X,Y)=(FX)eY
st. A, eX <1, p=0,1,---m,
pta =P m (5.1.2)

Bq.Ygla q:1>"'an17
X>=0,Y >0,

respectively. Denote by ¢*® and ¢°% the optimal values of (5.1.1) and (5.1.2), respec-
tively. Without loss of generality, we assume that the optimal values are attainable,
which implies that gffffl > 0. It is easy to see that, for the optimization problem (1.2.7)
with my = ny = 1, A; = I, and B; = [,, the optimal solution satisfy the equality
constraints, that is, the problem can be equivalently reformulated as (1.2.6) studied by
Ling et al. in [33]. In this case, from [33], we know that its bi-linear SDP relaxation
is tight for the problem (1.2.6). However, for a general quadratic/bi-quadratic prob-
lem, its SDP relaxation is not tight for the original problem. As stated previous, its
SDP relaxation does not always provide a tight approximation in general. However, it
does lead to provably approximation solutions for certain type of quadratic optimiza-
tion problems, see [5, 23, 42], which motivates us to extend the existing methods for

quadratic optimization problems to bi-quadratic optimization problems.

This chapter is organized as follows. In Section 5.2, we analyze the approximation
ratio of the SDP relaxations for bi-quadratic optimization problems. In Section 5.3, we
present a polynomial time approximation algorithm for the bi-quadratic maximization
model. In Section 5.4, we extend the approximation bound results obtained in Section

5.2 to the complex cases.
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5.2 Bi-linear SDP Relaxation Bounds for Bi-quadratic

Optimization Problems

In this section, we study approximation solutions for the bi-quadratic optimization
models (1.2.7) and (1.2.8), based upon approximation solutions for their corresponding

bi-linear SDP relaxations.

Consider the special case of (1.2.7), in which m; = n; = 1, A; and B; are positive
definite. It is easy to see that the optimal solution pair must satisfy the constraints
with equality. In this case, there exists an appropriate tensor F such that (1.2.7) is

equivalent to
min Frryy

st. z'z=1,

y'y =1,
which has no polynomial time algorithm 2 to get a positive bound approximation

solution for every instance of (1.2.7), see Theorem 2.2 in [33].

Based on the definition of r-bound, in the following, we argue that there is a finite
and data-independent approximation bound between the optimal values of (1.2.7) and
its SDP relaxation. To this end, we need some probability estimation results which play
important roles in what follows. Lemma 5.2.1 (a) comes from [23]|, Lemma 5.2.2 comes
from [38] and has been used in [39], and Lemma 5.2.3 comes from [64]. In addition,

Lemma 5.2.1 (b) can be proved easily by Lemma 5.2.1 (a) and symmetry.

Lemma 5.2.1 Let A and Z be two real symmetric n X n matrices with Z = 0 and
tr(AZ) > 0. Let & ~ N(0,2) be a normal random vector with zero mean and covariance

matrix Z. Then the following probability estimation hold.

(a) For any 0 <~y <1 we have

Prob {¢T AL < yE[¢TAE} < 1— %

(b) For > 1, we have

3
Prob {¢TA¢ > BE[ET AL} < 1— 05"
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Lemma 5.2.2 Let A and Z be two real symmetric n X n matrices with A = 0 and
Z = 0. Suppose & ~ N (0, Z) is a normal random vector with zero mean and covariance
matriz Z. Then, for any v > 0,

i),

Prob {£TA¢ < yE[¢" A€]} < max {ﬁ 2

where r := min{rank(A), rank(Z)}.

Lemma 5.2.3 Let A and Z be two real symmetric n X n matrices with A = 0 and
Z = 0. Suppose & ~ N (0, Z) is a normal random vector with zero mean and covariance

matrix Z. Then, for any v > 0,
Prob {¢TA¢ > vE[¢TAg)} < ez,
Let v = p%. It holds that

Prob { g% A¢ > El¢T Ag)} < 220

Now we are ready to establish the first main result in this section, which characterizes
the approximation ratio for the bi-linear SDP relaxation to (1.2.7). Our argumentation

is similar to those of [23] and [38].

Theorem 5.2.1 Suppose that the optimal value of (5.1.1) is nonnegative. Let (X,Y)
be an r-bound approximation solution of (5.1.1). Then we have a feasible solution (z,y)

of (1.2.7) and the probability that

r
87272
10®miny

s at least .
15 at least ooos

Proof. Consider the semidefinite programming of the following form

min (YF)eX
st. A, e X >1 p=1--- my, (5.2.3)
X >0,
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where Y F is a symmetric m X m matrix with

(Y]:)kl = Z -Fz'jkl?kl-

k=1

It is well-known that there exists an optimal solution X* of (5.2.3) with rank rx-
satisfying —TX*(B”H)

Clearly, it holds that

< my, which can be found in polynomial time; cf. [49] and [25].

(YF)e X*<(FX)eY.
Based upon X*, we further consider the following standard SDP problem

min (FX*)eY
st. By,eY >1 g=1,--- ng, (5.2.4)
Y > 0.

We can find an optimal solution Y* of (5.2.4) with rank ry« satisfying LZYH) < ny.
Since X* and Y* are the optimal solutions of (5.2.3) and (5.2.4) respectively, the matrix
pair (X*,Y™*) satisfies

0< (FX*)eY* < (FX)eY (5.2.5)

and

Tx* S le, Ty * S 2n1. (526)

Let £ ~ N(0,X*) and n ~ N(0,Y™) be two independent normal random vectors,
whose covariance matrices are X* and Y™ respectively. From the process of the proof

of Theorem 3.3 in [23], it follows by Lemma 5.2.1 (b) and Lemma 5.2.2 that

3 2(rxs — 1
Prob(§2) > Tog ~ Mumex {ﬁ, %} , (5.2.7)

where

Q= { min ETAL >y, € (VIF)E< (Y F) o X*} ,

1<p<mu
7 > 0 and pq > 1. By the assumption that the optimal value of (5.1.1) is nonnegative,
we can see that (Fzx') e Y* > 0 for any given sample value z of £ in Q. Hence, by

Lemma 5.2.1 (b), we have

Prob {n" (Fzz")n > po(Fzz ) e Y*} <1 — %
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for every sample value x of £ in €2, where puy > 1. Note that the above estimation is

independent with the sample value x of £. Consequently, it is easy to prove that

Prob ({n"(FE&E )N > pa(FEET) @ Y} N Q) < (1 - 1%()) Prob (1),

which implies that the conditional probability

Prob {n"(FEE )N > pa(FEET) oY | Q) < 1— % (5.2.8)

On the other hand, from the independence of the random variables £ and 7, it follows

from Lemma 5.2.2 that for any v, > 0,

Prob{ min n' By < s | Q} = Prob{ min 7' By < 'yg}

1<g<n 1<g<n;
< Y Prob{n'Bm < nERh By}

q=1
2(ry« — 1
< nlmax{\/%,%}.

This implies, together with (5.2.8), that
Prob {UT(fffT)U < pp(FEET) oY, min 0T By > s | Q}
Sq=ni
> 1 Prob {3 (76T ) > pa(F6€T) 0¥ | 2) = Prob { win 7By <2 | 2}
>g=ni

3 27" *—1
Zﬁ—nlmax{\/%,%}a

(5.2.9)

where the first inequality comes from the fact that
Prob(UNV) > 1 — Prob(U¢) — Prob(V°)

for any two random events U and V', where U¢ stands for the contrary event of U, etc.

Noticing the relation that
{ min AL >y, min " By > y,n" (FEET)N < papa(FX) @ Y*}
1<p<my 1<g<n,
2 {nT(fffT)n S ne(FEET) oY, min 5" By = 52, } ne,

it follows from (5.2.7) and (5.2.9) that

Prob{ min {TAE > v, | min n"Byn > v2,n (FEET )N < papa(BX*) o Y*
sqsni

1<p<mq

3 2(rx —1 3 2(ry« — 1
> <m—m1max{ﬁ,%}) (m—mmax{\/%,%}>.
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Let 71 = 151 T2 2 = Toim 2,u1f1andu2f1 By (5.2.6), we have

2 *_1 *—]_
ﬁZ (TX 2)71 and \/%> (TY 2)7'
7“'_

Thus, it holds that

Frob {152? §TAE > ", Win nTBqn > Yo, (FEET)N < ppia(FX*) Y*}
1

> _7

= 2500

which implies that there exists a vector pair (z,y) € R™ x R" such that

T
lgglnl T Ay >,  Din y By > 72 (5.2.10)
and
y' (Frz")y < ppa(FX*) o Y™ (5.2.11)
Let 7 = —— and y= v Then, by (5.2.10), we know that (Z, y) is a feasible solution

M V2
pair of (1.2.7), i

'AT>1(p=1,---,m) and ¥ Bg>1(qg=1,---,n1).

Furthermore, by (5.2.5) and (5.2.11), we have

f(@9) < ’;15220)(*) ‘;1’;22(5%) V. (5.2.12)

Since (X,Y) is an r-bound approximation solution of (5.1.1), one has

_ _ 1
(FX)oV < —g% < fmm,

mm —

r

where the second inequality due to the fact that (5.1.1) is a relaxation of (1.2.7). This
implies, together with (5.2.12), that

108m?2n?
1ny
—EIlln

Hiftz (.FX) oY <
Y172 r

Thus the desired result follows. O

F(z,9) <

In the case where my,n; < 2, we have the following result, which is a generalization

of Theorem 2.4 in [33].

Proposition 5.2.1 Suppose that my,n, < 2. Then, the bi-quadratic optimization prob-
lem (1.2.7) and its bi-linear SDP relazation (5.1.1) are equivalent.
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Proof. Without loss of generality, we assume that m; = n; = 2. Suppose that (X,Y)
is an optimal solution pair of (5.1.1). Similar to the proof of the theorem above, we can

find a matrix pair (X*,Y™) such that
(FX*)oY* < (FX*) oY < (FX)oY (5.2.13)

and
* * 1 * * 1
% <2, % <2 (5.2.14)
By (5.2.13) and (5.2.14), we know that (X*,Y™*) is an optimal solution matrix pair of
(5.1.1), which satisfies rx+ = ry- = 1. Hence, there exist 2* € R™ and y* € R" such

that X* = 2*(2*)" and Y* = y*(y*)". Then, we have
(@) Apr* > 1 (p=1,2), (y') By >1(¢=1,2) (5.2.15)
and
F(z*,y") = g(X*,Y™). (5.2.16)

By (5.2.15), we know that (z*,y*) is feasible for (1.2.7). Furthermore, by (5.2.16), it
follows that
F(iL'*, y*) = Fmin-

We obtain the desired result and complete the proof. O

In the rest of this section, we discuss the approximation bound for the maximization

problem (1.2.8).

Theorem 5.2.2 Suppose that (X,Y) is an r-bound approximation solution of (5.1.2).
Then we have a feasible solution (z,y) of (1.2.8) such that

.
Fmang_a_ SFmax-
4 (1 + 21n(100m2)) In (100n,) (&.9)

Proof. Without loss of generality, we assume that the ranks of matrices X and Y satisfy
re < \/2(my+1), rg < +/2n4, respectively. Let X = ZZT with Z € R™*"x. Since
ZT(Y F)Z is symmetric, there exists an orthogonal matrix @ such that QT Z" (Y F)ZQ
is diagonal. Let &,k = 1,2,--- ,rg be i.i.d random variables taking values —1 and 1
with equal probabilities, and let
1
() 1= s QS

0<p<my
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where Ap = QTZTAPZQ (p =0,1,--- >m1) and § = (gla"' 75?")2)T'

It is easy to see that the random vector x(§) is always well-defined from the positive
semidefinition of A; for i =1,2,--- ;my, and z(&)TA,x(§) < 1forallp= 0,1, -+ ,m;.
From the definition of z(§), it holds that

HOTVFIE) = eyt @7 (VF)20¢

0<p<my

1
" max (ETAL+1) (YF)e X

0<p<my

It is ready to verify that tr(A,) = A, X < 1 (p = 0,1,---,m;) and A, = 0 for
p=1,--- ,mq. Therefore, from the process of the proof of Theorem 4.2, Lemma 4.1 in

23] and (12) in [42], it follows that for any a > 2,

3 a—1
> T2 L.
Prob(©) > 100 2mie” 7, (5.2.17)

where

o= {x@)wm(g) > Ly X} |

Let n ~ N(0,Y*) be an normal random variable with the covariance matrix Y*. From
the fact that z(§) and 7 are independent, by a similar way to that used in the proof of

Theorem 5.2.1, we can prove that the conditional probability

Prob {1 (Fr()e(6) < v(Fr(©r(©) ) oV |0} <1- o (5218)

forany 0 <v <1.

On the other hand, since E[n' B,n] = quf/ <lforq=1,---,nq, it is ready to see
that {n"B,n > B} C {n"B,n > BE[n" B}, where 8 > 0. Consequently, by Lemma
5.2.3, we have that for g =1,--- ,nq,

Prob {n" By > 8} < Prob {n" By > BE[n" By]} < e20 -0,

Therefore, from the independence of z(¢) and 7, we have

Prob {1%2231 n'Bm >3 | @} = Prob (U {yTqu > 5})

q=1

(5.2.19)
< n1€%(1—6+1n5).
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By (5.2.18) and (5.2.19), it follows that

Prob { s 1" By < o PO 2 @O oY [Of
Zi—nlei(l_ﬂﬂnﬁ)- B
100

Noticing that

{07 Fel@a© = SoFX) 0¥ 7B < 5
{ T(Fa(€)2() W > UFr(€)a(©)T) o V. max nTBqn<5}ﬂ

1<<

it follows from (5.2.17) and (5.2.20) that

Prob {n (Fa(€e(e)Tn 2 é (FX)o ¥, max B77<5}

— \ 100 100

Let a =1+ 21In(100m?) and 8 = 41n(100n,), we have
Prob 0" (Fz(&)x (&) )n > l1/(.7-")?) oY, max n'Bn< By > L > 0,
e EREECTI Y 15
which implies that there exist vectors T = z(£) € R™ and y € R" such that

jTAP"E<1 (p:(),l,-'- ’ml)’ yTquSﬁ (q:L--- anl)

and

yT(}"iﬂiT)y > lV(]-")_() oY
(0%

Let y = and v = 1. Then (Z,y) is a feasible solution of (1.2.8) satisfying

Y
VB
e —(FX) oY <y (Fzz")j < fuax-
Furthermore, by the definition of r-bound approximation solution, we obtain the desired

result and complete the proof. U

Similar to Proposition 5.2.1, we have

Proposition 5.2.2 Suppose that the numbers of constraints on x and y are not larger
than 2, respectively. Then, the bi-quadratic optimization problem (1.2.8) and its bi-

linear SDP relaxation (5.1.2) are equivalent.
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Remark Notice that the computational effort required for solving the bi-linear SDP
relaxations of (1.2.7) and (1.2.8) can be significantly large. Therefore, it is very in-
teresting to analyze the size of the resulted SDP relaxations, which will be our future

research topic.

5.3 Approximation Solution of Bi-quadratic Prob-

lems

Our main goal in this chapter is to design polynomial time approximation algorithms
for (1.2.7) and (1.2.8). Theorems 5.2.1 and 5.2.2 show that this task depends strongly
on our ability to approximately solve the relaxed problems (5.1.1) and (5.1.2), which by
themselves are also NP-hard. However, it is possible to derive approximation solution of
the relaxed problems. In this section, we consider some forms of optimization problems
whose approximation solution of their SDP relaxation problem can be solved in poly-
nomial time. We first give an approximation result for the general model (1.2.8) under
some mild assumptions. Then we investigate the bi-quadratic optimization problems

with two constraints.

5.3.1 The Bi-quadratic Maximization Model

In this subsection, we consider the maximization problem (1.2.8). To this end, we make

the following assumptions.

(A1) |tr(Ap)| < m, tr(A,) < m for every p =1,--- ,m4, and tr(B,) < n for every
q = 17 cee, N
mi
(A2) There exist nonnegative numbers o, (p = 0,1,--- ,m;) with > a, = 1 and

p=0
ny
ﬁq (q = 17 o 7n1) with Z ﬁq = 1, such that

q=1

Zoszp—Im >~ 0 and Zﬁqu — 1, = 0.
p=0 q=1

(A3) Ay + I, = 0.
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Now we are ready to present some properties of feasible solutions of (5.1.2) under

Assumptions (A1)-(A3).
Lemma 5.3.1 Suppose that (A1)-(A3) holds. Then for any feasible solution pair
(X,Y) of (5.1.2), there hold

(1) (£1,,21,) is a feasible solution pair of (5.1.2).

(2) tr(X) <1, tr(Y) <1 and (Ag e X)?> < 1.

Proof. It is easy to see that (1) holds from Assumption (Al).

Since (X,Y) is feasible, X > 0 and Y > 0. Consider Assumption (A3), Ay e X >
—tr(X). Combining with Assumption (A2), we have

tr(X) < (Zoszp) o X = Zozp(Ap e X) < Zap =1
p=0 p=0 p=0
So, we can assert that Ape X > —1 and tr(X) < 1.

By a similar way, we can show that tr(Y) < 1, which complete the proof. O

To obtain an approximation solution of bi-linear relaxation problem, we further need
the following lemma, which generalizes the result used in [33].
Lemma 5.3.2 For any X € 8™, the following statements hold.

(1) If || X||r < %, then X == X + %Im = 0.

(2) Suppose m > 2. If tr(X) <0 and X = —=1,,, then || X||p < /1 — L.

Proof. (1) Since ||X||p < L, it follows that |z;| < + for every ¢ = 1,---,m. This

implies that
tr(X) =te(X)+1=Y a;+1>0. (5.3.21)

=1

To show that X > 0, by Lemma 2.1 in [6], we only need to show that

Vm — 1| X|r < tr(X). (5.3.22)
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It is easy to see that

_ 2 1
X% =1 X2+ =tr(X) + — 5.3.23
115 = XI5+ —te(X) + —, (5.3.23)

which implies, together with (5.3.21), that

(m — DIXIZ ~ (X)) = (m— 1) [IX] + Z6e(X) +
< (m=1) [z + o tr(X) + 5 = o (0(X) + 1)7]
= —(tr(X)+ L) <o

3=
3
L

Therefore, (5.3.22) holds. This shows that X = 0.

(2) Since X = X 4+ L1, = 0, it follows that
—1 < tr(X) <0, (5.3.24)
from the given condition that tr(X) < 0. Moreover, it holds that

XM%< (tr(X))?
(tr(X))? + 2tr(X) + 1,

where the inequality is due to the positive semidefiniteness of X. This implies, together
with (5.3.23), that
2 2 1 1
X7 < (X)) +2(1—— ) tr(X) +1——. (5.3.25)
m m

Consider the optimization problem as follows

Pmax ‘= mMax p(t> =t>+ 20t +c
st [ <t<u.

It is easy to verify that ppa.x = max{p(l),p(u)}. Consequently, by this, (5.3.24) and
(5.3.25), we know that || X[|3 <1 — L and complete the proof. O

Considering linear transformations X := X — %Im, Y =Y — %In, we know that
based on Lemma 5.3.1 and Lemma 5.3.2, a restriction and a relaxation for (5.1.2) can
be written in a unified form as

pri=max P(X,Y)=(FX)eY + L(FI,)eY + L(FX)el,+-(FI,)el,

s.t. (Ap o X + %tr(Ap))2 <1, p=0,1,---,my,
(Bq oY + %tr(Bq))2 <1,qg=1,---,nq,
[ X|[F < A,

Y]r <A
(5.3.26)
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where A = m and A = /1 — m correspond to the restriction and the
relaxation, respectively. It is easy to see that matrix pair (0,0) € ™ x S™ is a feasible

solution of (5.3.26) for any A > 0. Furthermore py = —(F1,,) e I,.

1
mn
By stacking up the entries of a symmetric matrix (ignoring the symmetric part) into

a vector, denoted by vecg(+), there exists a suitable quadratic function go(u,v) such that

(5.3.26) can be rewritten into the following form

pa :=max qo(u,v)

s.t. (vecS(Ap)Tu + %tr(Ap))2 <1, p=0,1,---,my, (5.3.27)
(vecs(By) Tv + %tlr(Bq))2 <1l,q=1,---,n4, o
Jull <A, [lo]l <A,
where u = vecg(X),v = vecg(Y). It is well-known that for a quadratic function

q(r) = ¢+ 2b"x + 2" Ax, the homogenized version of q(x) can be represented by the

Mig()) = (b Z )

Hence, a standard SDP relaxation for the homogenized version of (5.3.27) is

matrix denoted by

z(A%) :=max QpeZ
s.t. C'poZg 1, p=0,1,--- ,my + nq,
CeZ <)\,
DeZ <\, (5.3.28)

1 u' ol

Z=\|u W UT | =0,
v U V

where Qo, (jp, (p =0,1,--- ,my +ny), C and D are some suitable matrices, which
correspond to the matrix representations of the homogenized version of the quadratic
functions with respect to (u, v) in problem (5.3.27), respectively. Note that (5.3.28) can

be solved in polynomial time.

Based upon the analysis above, we arrive at the following conclusion.

Theorem 5.3.1 Suppose that Assumptions (A1)-(A8) hold and (FI,,)el, > 0. Then a

(1-)2
(Vmi4n1+347)2p(p—1)

-bound approximation solution of (5.1.2) can be found in polynomial
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time, where p = max{m,n} and

1 1 1
v :max{—]tr(Ao)], —tr(A4,),p=1,---,my, —tr(B,),¢q=1,2,--- ,nl}.
m m

Proof. We consider the problem (5.3.27) with A = %. By Theorem 1 in [67], there
exists a feasible solution (u,v) of problem (5.3.27) satisfying

o) 2 e ()

On the other hand, it is easy to see that z(\) is concave on A > 0, and hence

2 (%) ><1ﬁ>z§0)+ A (1-1)

Pk (1

1 sdp
(p 1) gmax’

where the second inequality is due to 2(0) = py = - (Bl,) e I, > 0, and the last

| \/

| V

max

. . _1 sdp
inequality comes from the fact that z (1 p) >p \/q > ¢°? . Therefore,

(1 - 7)2 d
v) > sdp 5.3.29
() 2 e = 1)’ (5:3:29)

By the obtained (u,v) and the stack relation between the vector and the matrix, we can
find a feasible matrix pair (X,Y) for (5.3.26) with \ = % such that ®(X,Y) = qo(u,v).
Denote X* = X + +1, and Y* =Y 4 2],,. By Lemma 5.3.2 (1), it holds that (X*,Y™*)
is a feasible solution of (5.1.2), satisfying

Y
(FX*) o ¥* > (-7 g
(Vm1+mn1+34+7)%p(p—1)

(1—)?
(Vmi+n1+3+7)2p(p—1)

solution of (5.1.2). Combining with the fact that 0 <~ < 1, the desired result follows.
U

Therefore, we can assert that (X* Y*) is a -bound approximation

5.3.2 The Bi-quadratic Optimization Problems with Two Con-

straints

In this subsection, we first consider the following problem

Flhax := max  Frxyy
st. xTAr <1, (5.3.30)

y'By <1,
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where A € 8™ and B € 8" are positive definite. We assume that (F1,,) e I, > 0.
Without loss of generality, we further assume that A = I,,, and B = [,,.

Notice that the optimal solution must satisfy the constraints with equality. There-

fore, the bi-linear SDP relaxation of (5.3.30) can be written equivalently as follows

gmax

sdb = max (FX)eY
L,

(5.3.31)

1

X =0, Y =0.

By a similar procedure used in Subsection 5.3.1, a restriction and a relaxation of

(5.3.31) can be written in a unified form as

pr:=max (FX)eY + L(FI,)eY +1(FX)el,+ (FI,)elI,
s.t. tr(X) =0,
tr(Y) =0, (5.3.32)
1 X[F < A,
IYr <A

where A\ = m and A = ,/1— m correspond to the restriction and the
relaxation, respectively. Hence, it follows that p m > g > p >

max{m,n}

po = ——(FIy) eI, > 0. Furthermore, for vecg(X) and vecs(Y), we can eliminate
two variables, say Xi; and Yi;, by their linear relation with the other variables. For
convenience, let

u=wvecg(X)\ X1 and v =wvecg(Y)\Y11.
Then, there exist Qy € RE=*In Q, € Stm, Qy € St by € R, ¢y € R and

dy = min(]: I,,) ® I, € R such that the above problem is equivalent to

pai=max  q(u,v) = u' Qv + 2bj u + 2¢f v + dy
st. q(u,v) =u'Quu < N\ (5.3.33)
Q2(U7U) = UTQ2U S A27

where L,, = m(m+1)/2 -1, L, = n(n+1)/2 — 1 and @1, Q> are positive definite.

Furthermore, it is easy to see that the SDP relaxation of the homogenized version of
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(5.3.33) is
2(A?) :=max QpeZ
s.t. Ql ' A S )\2

s 0 7 < N\,

@207< (5.3.34)
1 u' ol

Z=|u W U" | =0,
v U V

where Qg, Q1, Q- are three matrices which correspond to the homogenized version of

the quadratic functions q(u,v), ¢1(u,v) and g(u,v), respectively.

Consider problem (5.3.34) with \g = WLQ,) and p = max{m,n}. Since this SDP has

three constraints, so that an optimal solution Z* can be computed in polynomial time
such that its rank equals 2 (e.g., see [72]). Let us denote by Iy the (L., + L, + 1) x
(Ly + Ly, + 1) symmetric matrix with 1 at its (1, 1)th position and 0 elsewhere. It is
clear that I;; @ Z* = 1. Hence, by Corollary 4 in [65], one can always find two vectors
2h=(t, (u) T, (W) T) T (i = 1,2) € RIFLm+Ln guch that Z* = 21(21) T + 22(22)7 and

IheZ () =1,2%/2=1/2, fori=1,2

=

which implies that ¢? = ¢3 = 1/2. From the structure of the constraints of (5.3.33), it is
ready to know that both Q; and Q. are positive semidefinite. Consequently, since Z*

is feasible for (5.3.34), it holds that
()7 Quz' < A2 and ()T Qoz' < A3, fori=1,2,

which implies that (u’, %) = (u'/t;, v'/t;), i = 1,2, are feasible solutions of (5.3.33) with

A= %. Furthermore, we have
g(a',v") + q(@®,v*) = (Qo e 2" (") T + Qo @ 2*(2*) ") /t] = 2Q¢ ® Z* = 22()\3),
which implies that either (a!,o') or (u?,v?), denoted by (u, ), satisfies
q(@, ) = 2(Ap).

On the other hand, it is easy to see that z(-) is concave, and hence

2 Y N+ —Y - _ 1 a-
092 (1= o ) 00+ 5o - 10 2 1= 1)
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where the last inequality due to the assumption that z(0) > dy > 0. Therefore,

q(a,0) = 2(A5) > H1=1/p) =

= —FmaX7
2p(p — 1)

where the last inequality comes from the fact that z(1—1/p) > p ST > ¢ > F o

max —

50 =] (5.3.35)

Similar to the process of the proof of Theorem 5.3.1, from the obtained (@, v), we can find
a feasible matrix pair (X,Y) of (5.3.31) such that (FX) eY = q(u,v). Consequently,
by using a similar procedure to that used in Theorem 2.4 in [33], we can get a vector
pair (Z,9) such that ||Z|| = ||g|| = 1 and " (FZz ")y > q(,v). This shows that (Z,7)

is a feasible solution of (5.3.30), and hence Fy.. > §' (F2Z")y > q(ii,v). Together

1
2max{m,n}(max{m,n}—1

with (5.3.35), we can assert that (z,y) is a s-bound approximation

solution of (5.3.30). Therefore, the following assertion is established.

Theorem 5.3.2 If (F1,,) e, > 0, then a L )-bound approximation

2max{m,n}(max{m,n}—1

solution of (5.5.80) can be found in polynomial time.

In fact, from above procedure, we can see that assumption (FI,,) e I, > 0 is used
to guarantee that z(0) > 0. Therefore, if we replace F by F — cl,,, ® I,, with constant
¢ < =(FI,) e I,, then z(0) > 0 is guaranteed. By Theorem 5.3.2, there exists a
feasible solution pair (Z,y) such that

1

2max{m,n}(max{m,n} — 1)

Ffi’gg_cz (Fmaac_c>‘

Let ¢ = Gmin, Where gu, is the minimum value of the objective in (5.3.31), then ¢ <

%(}" I,,) ® I,. This leads to the following result.

Theorem 5.3.3 There exists a (1 ~ Smax(m n}(;ax{m n}_1)>—relatz’ve approximation so-

lution for (5.53.30) in polynomial time.

We conclude this subsection by considering the following minimization problem

min  Frryy
st. xlz>1, (5.3.36)
yly>1.
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It is easy to see that the optimal solution must satisfy the constraints with equality if
fmin 1s attainable. Thus, the bi-linear SDP relaxation can be written as (5.3.31) with

tensor —B, which leads to the following result.

Theorem 5.3.4 Suppose that the optimal value is attainable. If (FI,,)e 1, <0, then a

1
2max{m,n}(max{m,n}—1

)—bound approzimation solution of (5.3.36) can be found in polyno-

_ 1
2max{m,n}(max{m,n}—1)

mial time. Otherwise, there exists a (1 )—relative approximation

solution for (5.3.36) in polynomial time.

5.4 Extensions and Discussions

Motivated by the aforementioned work on complex SDP in [38], our analysis can be
extended to the so-called complex bi-quadratic optimization problems. In this section,

we further consider the minimization model

min  F(x,y) := Frayy
st. Az >1 p=1,--- ,my,

(5.4.37)
yHqu > 17 q = 17 y N,
reC" yeC"
and the maximization model
max F(x,y) = Frryy
st. 2HA <1, p=0,1,---,my,
=l : (5.4.38)

yHquS 17 q= ]-a , N1,
reC” yeC",
where A, e H™ (p=1,--- ,my) and B, € H" (¢ =1,--- ,ny) are positive semidefinite,

whereas Ag € H™ is indefinite.

A similar procedure to that in Section 5.2 can be applied to yield approximation
bounds for the complex bi-quadratic optimization problems above. To this end, we need

the following probability estimation results, which come from [23] and [38], respectively.
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Lemma 5.4.1 Let A, Z be two Hermitian matrices satisfying Z = 0 and tr(AZ) > 0.

Let £ ~ N¢(0,Z) be a complex normal random vector. Then,

(a) For any 0 <~ <1, it holds that

Prob {¢"A¢ < yE(E"A¢)} <1 - %

(b) For any 8 > 1, it holds that

Prob {¢"A¢ > BE(ETAG} <1— %

Lemma 5.4.2 Let A, Z be two Hermitian positive semidefinite matrices. Suppose that
€ is a random vector generated from the complez-valued normal distribution No(0, Z).

Then for any v > 0, the following probability estimation hold.
4

(a) Prob {€7AE < B(€7A)} < max {gv, 16(r - 1)%2} ,

(b) Prob {7 A¢ > yE(§7AE)} <re7,

where r := min{rank(A), rank(Z)}.

The following main result in this section can be proved in the similar ways to that used

in the proofs of Theorems 5.2.1 and 5.2.2.

Theorem 5.4.1 Let (X,Y) be an r-bound approzimation solution of the bi-linear SDP
relazation of (5.4.37). Then we have a feasible solution (z,y) of (5.4.37) and the

probability that
,

" F
16001, (@

1s at least

3600

Suppose that (X,Y) be an r-bound approxvimation solution of the bi-linear SDP
relazation for (5.4.38). Then we have a feasible solution (Z,y) of (5.4.38) and the
probability that

r

(14 210 100m2) In (40\/5711% )

Fmax S F(£>g) S Fmax

18 at least

4000
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It is well-known that if the number of constraints in the considered complex SDP
problem is at most 3, then its rank-one optimal solution can be found, see Theorem 2.1,
Proposition 5.1 in [25]. As a consequence, we get the following proposition which can be
proved by similar ways to that used in the proofs of Proposition 5.2.1 and Proposition

5.2.2.

Proposition 5.4.1 Suppose that the numbers of constraints on x and y are less than 4,
respectively. Then, the bi-quadratic optimization problems (5.4.37), (5.4.38) and their

relaxations are equivalent, respectively.

5.5 Some Remarks

For bi-quadratic optimization problems with quadratic constraints, we show that some
approximation solutions can be obtained in randomize polynomial time via the cor-
responding bi-linear SDP relaxation problems. Then we present some approximation
solutions for some special cases. However, there are some issues may be addressed in

future study.

Because approximation solutions are obtained in randomize polynomial time, it is
hoped that determinable approximation solutions may be obtained by matrix decom-
position. In addition, some possible approximation solutions with improved quality

bound may be designed for some special cases of considered problems.
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Chapter 6

Conclusions and Suggestions for

Future Studies

In this thesis, we studied some polynomial optimization problems arising in practical

applications.

In Chapter 2, we establish an application of cubic one-spherical optimization prob-

lem in magnetic resonance imaging of medical engineering.

In Chapter 3, we first present complexity analysis of the cubic two-spherical/three-
spherical optimization problems. We discuss some special cases which are solvable in
polynomial time and have PTAS. We then establish a quality bound for general case
of the cubic three-spherical optimization problem. Furthermore, some approximation
solution methods for one-spherical optimization problem are presented. Finally, a prac-

tical method for three-spherical optimization is proposed.

In Chapter 4, for bi-quadratic optimization problem over unit spheres, we reformu-
late the problem as the largest M-eigenvalue computation problem and then generalize
the power method to obtain the reformulated problem. To make the proposed method

more effective, an initialization technique is introduced.

In Chapter 5, for bi-quadratic optimization problems with quadratic constraints,
we first present the relationship between the problems and their corresponding SDP

relaxations. We then propose some approximation solutions for some special cases.
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In previous chapters, we have already raised some questions. Here, the following is

a list of some interesting and challenging problems for future research.

1. Since multivariate polynomials have simple expressions with aid of tensors, it is

of great significance to establish properties and definitions of related tensors.

2. Develop some new applications of polynomial optimization problems in academic

researches and practical applications.

3. For the cubic one-spherical optimization problem, to propose some approximation
solution methods with quality bounds. In addition, it is interesting to establish the

conditions under which the problem is solvable in polynomial time.

4. For the cubic two-spherical /three-spherical optimization problems, propose method

to improve the quality bound obtained in this thesis.

5. To consider the following general polynomial optimization problem:

min A(l‘(l))ml(l‘@))ﬁw .. (:E(mz))rm

S.t. B(p) (a;(l))pl ($(2))p2 e (:C(ml)>pl Z O7 for p= 1’ 2, S q.

where A is a (mq, my, - ,my)-order (n; X ny x --- x n;)-dimensional tensor, B®) is a

(p1,- -+ ,p)-order tensor and (¥ € R™.

We will continue work on related topics.
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