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Abstract

The main purposes of this thesis are to solve some polynomial optimization problems

and to find their applications. The polynomial optimization problems involved in this

thesis include the cubic spherical optimization problems and bi-quadratic optimization

problems.

The main contributions of this thesis are as follows:

In this thesis, we first consider a new model, the truncated generalized diffusion ten-

sor imagine (GDTI) model in medical engineering, which overcomes the drawback that

water movement in biological tissues often shows non-Gaussian diffusion behavior. In

the GDTI model, polynomial associated with even order tensors reflects the magnitude

of the signal, while polynomial associated with odd order tensors reflects the phase of

the signal. Moreover, we use the apparent skewness coefficient (ASC) value to measure

the phase of non-Gaussian signals. We present some properties of related tensors and

propose a direct computation method for calculating the ASC value.

We discuss the general cubic spherical optimization problems, which include the cu-

bic one-spherical/two-spherical/three-spherical optimization problems. For these three

problems, we present their NP-hardnesses and discuss the complexity results of some

special cases. For the NP-hardness cases, some approximation solution methods for

them are established.

Then we study the bi-quadratic optimization problem over two unit spheres. At

first, the problem is equivalently transformed into computing the largest M-eigenvalue

of related tensor. Based on the reformulation, power method for computing the largest

eigenvalue of a matrix is modified to compute the largest M-eigenvalue of a tensor.

To get a good approximation of the largest M-eigenvalue of a tensor, we introduce
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an initialization technique. The given numerical experiments show that the modified

method performs well.

Finally, we discuss the bi-quadratic optimization problems with quadratic con-

straints. First, we generalize the SDP relaxation scheme for approximately solving

NP-hard quadratic optimization to solve bi-quadratic optimization problems. Then we

show that each r-bound approximation solution of the relaxed bi-linear SDP problems

can be used to generate in randomized polynomial time an O(r)-approximation solution

for bi-quadratic optimization problems. Furthermore, we show that when the number

of constraints is not larger than two, bi-quadratic optimization problems are equivalent

to their corresponding SDP relaxation problems, which generalizes the result in [33].

Then, we present some approximation solutions with some quality bounds for the bi-

quadratic maximization model with some assumptions. For bi-quadratic optimization

problems with two constraints, some approximation solutions are established. Finally,

we extend the results from real cases to complex cases.
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Chapter 1

Introduction

Polynomial optimization problems have wide applications such as in independent com-

ponent analysis [11], blind channel equalization in digital communication [40], sensor

localization [8], strong ellipticity condition in solid mechanics [29, 30, 61, 63, 69], en-

tanglement problem in quantum physics [17] and so on. The theory and applications

of (constrained) polynomial optimization problems have attracted more and more in-

terests. This chapter gives some preliminarys and motivations of the polynomial opti-

mization problems we will consider in the thesis.

1.1 The Cubic Spherical Optimization Problems

1.1.1 The Three-dimensional Cubic Spherical Optimization

Problems

In medical engineering, a popular magnetic resonance imaging (MRI) model is said to be

diffusion tensor imaging (DTI) model. DTI model has wide applications in biological

and clinical applications [1]. For example, it may be used to study the properties

of water molecule diffusion in the brain, particularly for white matter fibers. Such

properties can be used to detect abnormalities and diseases in such tissues [2, 3].

In DTI model, a diffusion tensor D involved is a three dimensional symmetric ma-
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trix, that is, D ∈ S3×3. It is well known that D has six independent elements, which

is obtained by MRI techniques. Based upon the obtained D, the medical engineering

researchers can calculate some characteristic quantities, such as three eigenvalues, the

mean diffusivity (MD) and the fractional anisotropy (FA), and so on. These quanti-

ties are rotationally invariant, that is, independent from the choice of the laboratory

coordinate system.

However, in DTI model, one needs assume a perfect Gaussian distribution for the

water molecule movement [1]. In fact, water in biological structures often shows non-

Gaussian diffusion behavior, which affects the use of the DTI model. To overcome this

drawback, some new MRI models were introduced by medical engineering researchers.

One model is said to be diffusion kurtosis imaging (DKI) model, established in

[27, 36]. For a particular direction specified by a unit vector x, based on the denotations

that a gradient strength g, a pulse duration δ and a time interval ∆ between the centers

of the diffusion sensitizing gradient pulse, DKI model has the following form

ln(
S(b)

S(0)
) = −b

3∑
i1,i2=1

Dapp
i1i2
xi1xi2 +

1

6
b2(

1

3

3∑
i1=1

Dapp
i1i1

)2
3∑

i1,i2,i3,i4=1

W app
i1i2i3i4

xi1xi2xi3xi4 ,

where matrix Dapp is the apparent diffusion coefficient, the fourth order three dimen-

sional symmetric tensor W app is the apparent diffusional kurtosis (DK) tensor. The

parameter b is given by the usual expression b = (γδg)2(∆ − δ
3
), where γ is the gy-

romagnetic ratio. For this model, D-eigenvalues for a DK tensor was introduced in

[58]. They showed that the largest, the smallest and the average D-eigenvalues of a

DK tensor correspond with the largest, the smallest and the average apparent kurtosis

coefficients (AKC) of a water molecule in the space, respectively. Some computational

methods for related anisotropy value of AKC were presented there. Later, Han et al.

studied the properties of the extreme values and directions associated to DK tensor in

[22, 55].

Another model was introduced by Liu et al. in [34]. They introduced the so-called

generalized diffusion tensors imaging (GDTI) model, stated as following, to characterize
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the non-Gaussian diffusion of the water molecules in tissues

ln

(
S(b)

S(0)

)
= −

3∑
i1,i2=1

D
(2)
i1i2
b
(2)
i1i2

+
3∑

i1,··· ,i4=1

D
(4)
i1···i4b

(4)
i1···i4 + · · ·

+(−1)n
3∑

i1,··· ,i2n=1

D
(2n)
i1···i2nb

(2n)
i1···i2n + · · ·

+j

(
−

3∑
i1,i2,i3=1

D
(3)
i1i2i3

b
(3)
i1i2i3

+
3∑

i1,··· ,i5=1

D
(5)
i1···i5b

(5)
i1···i5 + · · ·

+(−1)n
3∑

i1,··· ,i2n+1=1

D
(2n+1)
i1···i2n+1

b
(2n+1)
i1···i2n+1

+ · · ·

 .

(1.1.1)

Here j is the square root of −1, and D(n) (n ≥ 2) are n-th order coefficient tensors

which can be determined by using some common statistical methods such as the least

square estimate method and Monte-Carlo simulations. It is not difficult to see that the

tensors b(n) (n ≥ 2) in (1.1.1) are functions of the direction, the magnitude and the

timing of the diffusion-encoding gradients. More precisely, if the magnetic field gradient

is a constant vector over the considered time, by [34], element b
(n)
i1i2···in of tensor b(n) can

be written as

b
(n)
i1i2···in = (γgδ)n

(
∆− n− 1

n+ 1
δ

)
xi1xi2 · · ·xin , i1, i2, · · · , in = 1, 2, 3. (1.1.2)

From (1.1.1), it is obvious that in the case of Gaussian diffusion, all the tensors D(n)

of orders higher than two are zero. For non-Gaussian diffusion, however, those higher

order tensors become significant and it is important to recognize that the higher order

terms in (1.1.1) have to be considered in such situations.

Furthermore, from (1.1.1), we can see that the real part of the logarithmic signal

is solely determined by the even order tensors and only affects the magnitude of the

signal, while the imaginary part is completely governed by odd order tensors and only

affects the phase of the signal. This shows that the DTI model may fail to identify the

underlying structure [35] with the diffusion behavior of the non-Gaussian signal with

the asymmetry. This point is even clearer for the one modeled by Phantom 4 in [34].

We refer readers to [22, 26, 55, 56] and references therein for non-Gaussian diffusion

with the symmetry.
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1.1.2 The General Cubic Spherical Optimization Problems

In the previous subsection, variables of polynomial involved in DKI and GDTI mod-

els are three dimensional. But in some other applications, such as signal processing

and independent component analysis, the cubic spherical optimization problems with

higher dimensional variables will be involved. Motivated by this, we are ready to

consider the general cubic spherical optimization problems, which include the cubic

one-spherical/two-spherical/three-spherical optimization problems.

It is well known that homogeneous multivariate polynomials have simple expressions

via tensors. Hence, we give some definitions which are involved in cubic spherical

optimization problems.

A tensor A ∈ ℜn×n×n is said to be symmetric, if its element Aijk is invariant under

any permutation of indices (i, j, k), [31, 32, 51]. Tensor B ∈ ℜn×n×q is called partially

symmetric with respect to the first two indices in the sense that Bijk = Bjik, for all

i, j = 1, 2, · · · , n, and k = 1, 2, · · · , q.

Based on these conceptions, the cubic one-spherical/two-spherical/three-spherical

optimization problems can be written as follows, respectively

min
x∈ℜn

g1(x) := Ax3 =
n∑

i,j,k=1

Aijkxixjxk

s.t. ∥x∥ = 1,

(1.1.3)

min
x∈ℜn,z∈ℜq

g2(x, z) := Bx2z =
n∑

i,j=1

q∑
k=1

Bijkxixjzk

s.t. ∥x∥ = 1, ∥z∥ = 1

(1.1.4)

and

min
x∈ℜn,y∈ℜp,z∈ℜq

g3(x, y, z) := Cxyz =
n∑

i=1

p∑
j=1

q∑
k=1

Cijkxiyjzk

s.t. ∥x∥ = 1, ∥y∥ = 1, ∥z∥ = 1,

(1.1.5)

where C ∈ ℜn×p×q is a third order tensor.

These three problems arise from the best rank-one approximation to the third order

symmetric tensor A, the third order partially symmetric tensor B, and the third order

tensor C, respectively. The best rank-one approximation problem has many applica-

tions in signal and image processing, wireless communication systems, and independent

component analysis, see [14, 12, 31, 32, 37, 51, 74] for details.

4



In [57], Qi et al. presented a Z-eigenvalue method by direct computation for solv-

ing (1.1.3) with n = 3. In [74], for solving (1.1.5), they proposed some methods,

including the generalized Rayleigh-Newton iteration method, alternating least squares

method and Jacobi Gauss-Newton iteration method. These methods approximately

solved (1.1.5), but did not guarantee the convergence even locally and quality bound.

Furthermore, Nesterov in [43] showed that (1.1.3) is NP-hard to solve. Thus, it is

not expected that there exist efficient exact methods to find global minimizers of the

NP-hard problems. It is important to find approximation algorithms for solving NP-

hard problems. To characterize the approximation algorithms, some quality measures

of approximation ratio are introduced as follows.

Definition 1.1.1 Let 0 ≤ ϵ < 1 and A be an approximation algorithm for the mini-

mization problem P. We say A is a (1− ϵ)-approximation algorithm if for any instance

of P the algorithm A returns a feasible solution with its corresponding objective value

p such that

p− pmin ≤ ϵ(pmax − pmin),

where pmax(resp. pmin) is the maximum (resp. minimum) value of the objective of P .

Furthermore, we say that the problem P has a polynomial time approximation scheme

(PTAS) if for every ϵ > 0, there exists a (1− ϵ)-approximation algorithm.

Definition 1.1.2 The problem has an r-bound approximation solution for the given

minimization model P, if there is an algorithm A whose complexity is polynomial such

that when applied to P, it returns a feasible solution with objective value p such that{
rp ≤ pmin ≤ p, if pmin ≥ 0,

pmin ≤ p ≤ rpmin, if pmin < 0,

where pmin is the minimum value of the problem and 0 < r ≤ 1. The feasible solution is

said to be an r-bound approximation solution of the minimization model. The algorithm

A is said to be an r-bound approximation algorithm.

For convenience of notations, we call feasible solution appeared in Definition 1.1.1

as (1− ϵ)−approximation solution.
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In a similar way, the definitions of approximation ratio can be presented for maxi-

mization problem and are omitted here. Based on these definitions, the approximation

algorithms for considered NP-hard problems will be studied.

1.2 Bi-quadratic Optimization Problems

Bi-quadratic optimization problems studied in the thesis include the following problems:

bi-quadratic optimization problem over two unit spheres and bi-quadratic optimization

problems with quadratic constraints.

1.2.1 Bi-quadratic Optimization Problem over Unit Spheres

Bi-quadratic optimization problem over two unit spheres has the following form:

max f(x, y) = Fxxyy
s.t. x⊤x = 1, y⊤y = 1

x ∈ ℜm, y ∈ ℜn

(1.2.6)

where F is a fourth order (m × m × n × n)-dimensional partially symmetric tensor.

Here, a tensor F is said to be fourth order partially symmetric if

Fijkl = Fjikl = Fijlk, for all i, j = 1, · · · ,m, and k, l = 1, · · · , n.

The problem (1.2.6) arises from the nonlinear elastic materials analysis and the entan-

glement problem in quantum physics.

In the nonlinear elastic materials analysis, both the ellipticity and strong ellipticity

play important roles, especially when a material is required to satisfy a number of

important statical and dynamical properties [13, 10]. By use of tensor expression of the

elastic material, the strong ellipticity condition and the ordinary ellipticity conditions

can be characterized by the positiveness and the nonnegativity of the minimization

model of (1.2.6) with m = n = 3, respectively. In this sense, tensor F is said to

be positive definite or positive semi-definite on ℜ3 × ℜ3, respectively. Recently, Qi et

al. [54, 21] established a necessary and sufficient condition for this by introducing the

concept of M-eigenvalues of tensor.

6



In quantum physics, the entanglement describes a certain type of correlations be-

tween subsystems of the full quantum system, and the standard mathematical formu-

lation of a composite quantum system is stated in terms of density matrix [18]. It is

shown that to identify whether a state, i.e., a density matrix, is entangled or not for a

general quantum state is considered to be a hard problem [20] and many attempts have

been made for this problem there. One attempt to solve the problem is to consider

the identification of the separability by use of the natural geometrical structure of the

problem, see [68]. For the case of a quantum system with two subsystems, it can be

formulated as the problem of finding the closest separable state to any given state [17].

That is, for given density matrix A ∈ ℜpq×pq, find a separable density matrix X which

minimizes the distance ∥A−X∥F. A matrix X is said to be a separable density matrix

iff for some positive integer N , there exist some matrices X i ∈ Sp×p
+ , Y i ∈ Sq×q

+ and

ρi > 0 such that

X =
N∑
i=1

ρiX
i ⊗ Y i

with
N∑
i=1

ρi = 1. To solve the problem, Dahl et al. [17] applied the Frank-Wolfe mini-

mizing method [7], involved the minimization model of (1.2.6). Furthermore, they used

an alternating eigenvalue maximization method to obtain its solution which may be

inefficient in computation.

More recently, minimization model of (1.2.6) was studied in [33]. The authors

showed that the problem is NP-hard to solve and presented some approximation solu-

tions based on SOS and SDP relaxation scheme.

1.2.2 Bi-quadratic Optimization Problems with Quadratic Con-

straints

The bi-quadratic optimization problems with quadratic constraints include the following

two forms:
min f(x, y) := Fxxyy
s.t. x⊤Apx ≥ 1, p = 1, · · · ,m1,

y⊤Bqy ≥ 1, q = 1, · · · , n1,

(1.2.7)
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and
max f(x, y) = Fxxyy
s.t. x⊤Apx ≤ 1, p = 0, 1, · · · ,m1,

y⊤Bqy ≤ 1, q = 1, · · · , n1,

(1.2.8)

where the matrices Ap ∈ ℜm×m (p = 1, 2, · · · ,m1) and Bq ∈ ℜn×n (q = 1, 2, · · · , n1) are

symmetric positive semidefinite, whereas A0 ∈ ℜm×m is symmetric indefinite matrix.

The bi-quadratic optimization problems (1.2.7) and (1.2.8) are natural generaliza-

tions of bi-quadratic optimization over unit spheres problem (1.2.6). Furthermore, these

two problems can be regarded as the generalizations of general quadratic optimization

problems. For example, if there exist matrices C ∈ ℜm×m and D ∈ ℜn×n such that

F = C ⊗D where ⊗ denotes the standard Kronecker product, then the minimization

model (1.2.7) will be equivalent to solving the following two quadratic optimization

problems:

min x⊤Cx

s.t. x⊤Apx ≥ 1, p = 1, · · · ,m1

(1.2.9)

and
min y⊤Dy

s.t. y⊤Bqy ≥ 1, q = 1, · · · , n1,
(1.2.10)

which were shown to be NP-hard even when C and D are positive definite due to [38].

In fact, the general quadratic maximization problem is also NP-hard from [42].

Therefore, it is reasonable to recall how to solve the NP-hard quadratic optimization

problems. A popular approach to approximately solving the considered problem is to

use their SDP relaxation problems [24, 48, 62]. Before proceeding, we present the SDP

relaxation scheme, illustrated by problem (1.2.9).

It is easy to see that (1.2.9) can be rewritten as

min C • (xx⊤)
s.t. Ap • (xx⊤) ≥ 1, p = 1, · · · ,m1.

(1.2.11)

So that, (1.2.9) can be written as the following matrix form

min C •X
s.t. Ap •X ≥ 1, p = 1, · · · ,m1,

X ≽ 0,

rank(X) = 1.

(1.2.12)
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By eliminating the rank-one requirement, the SDP relaxation problem of (1.2.9) is

obtained as
min C •X
s.t. Ap •X ≥ 1, p = 1, · · · ,m1,

X ≽ 0.

(1.2.13)

The obtained SDP relaxation problem is used for solving NP-hard quadratic opti-

mization problem. Notice the following quadratic minimization form, studied in [38]

min ∥x∥
s.t.

∑
l∈Ii

|hHl x| ≥ 1, i = 1, 2, · · · ,m,

x ∈ Fn,

(1.2.14)

where F is either ℜ or C. It was shown that the SDP relaxation for (1.2.14) could

provid an O(m2) approximation solution in the real case and an O(m) approximation

solution in the complex case.

For general quadratic maximization form

max x⊤Ax

s.t. x⊤Aix ≤ 1, i = 1, 2, · · · ,m
(1.2.15)

where Ai, for all i = 1, 2, · · · ,m are symmetric positive matrices with positive semidef-

inite sum and A is an arbitrary matrix, the relative accuracy between (1.2.15) and its

corresponding SDP relaxation problem is shown to be 1
2 ln(2m2)

in [42], which improves

bound established in [44] for the case when all Ai are of rank 1. Sturm and Zhang

in [65] presented a matrix decomposition method to get an approximation solution for

quadratic problem over the intersection of an ellipsoid and a half-plane by solving its

corresponding SDP relaxation. Later, the decomposition method was extended to the

case that the constraints are two quadratic inequalities in [72]. Furthermore, the results

were strengthened for the complex Hermitian matrices cases in [25].

Later, He et al. studied the more general cases that

min x⊤Ax

s.t. x⊤Aix ≥ 1, i = 0, 1, · · · ,m,
x ∈ Fn

(1.2.16)
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and
max x⊤Ax

s.t. x⊤Aix ≤ 1, ∀i = 0, 1, · · · ,m
x ∈ Fn

(1.2.17)

where F is either the real field ℜ or the complex field C. They proved that for (1.2.16),

provided that matrix A and all but one of Ak are positive semidefinite, the ratio between

the optimal value of (1.2.16) and its SDP relaxation would be upper bounded by O(m2)

as F = ℜ, and by O(m) as F = C. For the maximization model (1.2.17), they proved

that the ratio is bounded from below by O( 1
logm

) for both the real and complex case

and at most one of Ak are indefinite.

More recently, higher order polynomial optimizations received much attention. Prob-

lem (1.2.6) was studied in [33]. They showed that the problem is NP-hard to solve and

there is no polynomial time algorithm returning bounds with finite relative quality

bound. Based upon the complexity analysis, some approximation methods by SDP

relaxation were presented in their paper. Latest, Quartic polynomial optimization with

quadratic constraints, of the following form, were considered in [39]

max Gxxxx
s.t. x⊤Aix ≤ 1, i = 1, 2, · · · ,m,

and
min Gxxxx
s.t. x⊤Aix ≥ 1, i = 1, 2, · · · ,m,

where Ai ∈ ℜn×n for i = 1, · · · ,m are positive semidefinite matrices and G is a fourth or-

der (n×n×n×n)-dimensional symmetric tensor. It was proved that each α-approximate

solution of the relaxed SDP can be used to generate in randomized polynomial time an

O(α)-approximate solution for the original optimization, where O(·) depends on the

dimension of variables and the number of constraints.

1.3 Notation

To conclude this chapter, we present some notations that will be used throughout the

thesis. Tensor A denotes a third order (n× n× n)-dimensional real symmetric tensor,

B denotes a third order (n × n × q)-dimensional real partially symmetric tensor and
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C denotees a third order (n × p × q)-dimensional real tensor. F is a fourth order

(m × m × n × n)-dimensional real partially symmetric tensor. G is a fourth order

(n× n× n× n)-dimensional symmetric tensor. We assume that m,n, p, q ≥ 2 without

specification.

Let ℜ denote the real number field and C denote the complex number field. The

spaces of n-dimensional real and complex vectors are denoted by ℜn and Cn, respec-

tively. The spaces of n×n real symmetric and complex Hermitian matrices are denoted

by Sn and Hn, respectively. Matrix Z ∈ Hn means that Re(Z) is symmetric and Im(Z)

is skew-symmetric, where Re(Z) and Im(Z) stand for the real and imaginary part of

Z, respectively. For two real matrices A and B with the same dimension, A •B stands

for usual matrix inner product, i.e., A •B = tr(A⊤B), where tr(·) denotes the trace of

a matrix. In addition, ∥A∥F denotes the Frobenius norm of A, i.e., ∥A∥F = (A • A)1/2,
and In denotes the n × n identity matrix. For two complex matrices A and B, their

inner product

A •B = Re(tr(AHB)) = tr
(
Re(A)⊤Re(B) + Im(A)⊤Im(B)

)
,

where AH denotes the conjugate transpose of matrix A. The notation A ≽ 0 (≻ 0)

means that A is positive semidefinite (positive definite).
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Chapter 2

The Measure of Diffusion Skewness

and Kurtosis in Magnetic

Resonance Imaging

2.1 Introduction

In this chapter, we consider the following lower-order approximation of (1.1.1)

ln

(
S(b)

S(0)

)
= −

3∑
i1,i2=1

D
(2)
i1i2
b
(2)
i1i2

+
3∑

i1,i2,i3,i4=1

D
(4)
i1i2i3i4

b
(4)
i1i2i3i4

− j
3∑

i1,i2,i3=1

D
(3)
i1i2i3

b
(3)
i1i2i3

,

(2.1.1)

which is obtained by truncating (1.1.1) to the fourth order tensor and contains useful

information of the signal. Moreover, the first two terms of (2.1.1) are related to the

magnitude of the signal and the last term of (2.1.1) is related to the phase of the signal.

The second order tensor D(2) is the diffusion tensor. For convenience of notation, we

call the third order tensor D(3) and the fourth order tensor D(4) in (2.1.1) the diffusion

skewness (DS) tensor and the diffusion kurtosis (DK) tensor, respectively. On the other

hand, it is important to note that the values D
(2)
i1i2
, D

(3)
i1i2i3

and D
(4)
i1i2i3i4

in (2.1.1) are not

independent of the coordinate system. That is, these values will be changed when

the coordinate system is rotated. However, to understand the biological and clinical

meaning of the corresponding tensors in (2.1.1), the quantities and parameters which

12



are independent from coordinate system choices, denoted by invariants, are needed.

Therefore, it is important to find, measure and calculate the invariants involved in the

model (2.1.1).

Recall that the main invariants of the diffusion tensor D(2) are its eigenvalues, which

have already been widely used in the DTI technique [1]. Recently, some important

invariants, based on the definition of D-eigenvalue, related to D(4) in the DKI model

were presented by Qi et al. in [58]. Moreover, a method for calculating D-eigenvalues

was presented there. Motivated by these, in this chapter, we discuss the quantities

and parameters associated with the DS tensor D(3) in (2.1.1), which include the largest

and the smallest apparent skewness coefficients (ASC) values. Then we study their

computation formulas and relationships.

This chapter is organized as follows. In Section 2.2, we discuss some further prop-

erties of the invariants of D(4). In Section 2.3, based on the concept of Z-eigenvalues

of tensors [51], we show that the largest and the smallest ASC values are invariant

under coordinate rotations and may have important biological and clinical meanings.

In Section 2.4, we propose numerical methods to calculate the largest and the smallest

ASC values and the AKC values. In Section 2.5, we provide some numerical examples

for calculating ASC values. Some final conclusions are made in Section 2.6.

2.2 The AKC Values

In this section, we first summarize the concept and properties of AKC values, then

further discuss some properties of the D-eigenvalues and Kelvin eigenvalues of D(4). To

this end, let us write

D = (γgδ)2
(
∆− 1

3
δ

)
D(2) (2.2.2)

and

W = (γgδ)4
(
∆− 3

5
δ

)
D(4). (2.2.3)

In practice, D is positive definite. Then the apparent diffusion coefficient (ADC) [1] is

Dapp = Dx2 ≡
3∑

i,j=1

Dijxixj.
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Let the eigenvalues of D be α1 ≥ α2 ≥ α3 > 0, then the mean diffusivity [1] can be

calculated by

MD =
α1 + α2 + α3

3
.

As [51, 58], we denote Dx and Wx3 as two vectors in ℜ3 with their ith component as

(Dx)i =
3∑

j=1

Dijxj

and

(Wx3)i =
3∑

j,k,l=1

Wijklxjxkxl,

respectively, for i = 1, 2, 3. Based on these notations, Qi et al. in [58] introduced the

following concepts of D-eigenvalues and D-eigenvectors of W , which is a generalization

of Z-eigenvalues and Z-eigenvectors presented in [51].

Definition 2.2.1 A real number λ is said to be a Z-eigenvalue of the mth order n-

dimensional symmetric tensor W̄, if there exists a real vector x ∈ ℜn satisfying the

following system {
W̄xm−1 = λx,

∥x∥ = 1.

Vector x is called the Z-eigenvector associated with Z-eigenvalue λ.

Definition 2.2.2 A real number λ is said to be a D-eigenvalue of W, if there exists a

real vector x such that {
Wx3 = λDx,

Dx2 = 1.
(2.2.4)

The real vector x is called the D-eigenvector of W associated with the D-eigenvalue λ.

For the fourth order three dimensional symmetric tensor W , it is easy to see that

a D-eigenvalue reduces to a Z-eigenvalue when D is an identity matrix. Furthermore,

from the definition of D-eigenvalues, a key formula for the tensor W is as follows:

Kapp(x) =
M2

D

D2
app

Wx4, (2.2.5)
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where Kapp(x) is the AKC value at the direction x, and

Wx4 ≡
3∑

i,j,k,l=1

Wijklxixjxkxl.

Denote the largest and the smallest AKC values as Kmax and Kmin, respectively. Then

we have the following results which were proved in [58].

Theorem 2.2.1 D-eigenvalues of W are real numbers and always exist. If x is a D-

eigenvector associated with a D-eigenvalue λ, then

λ = Wx4.

Denote the largest and the smallest D-eigenvalues of W as λDmax and λDmin respectively.

Then the largest AKC value is

Kmax =M2
Dλ

D
max (2.2.6)

and the smallest AKC value is

Kmin =M2
Dλ

D
min. (2.2.7)

Theorem 2.2.2 The D-eigenvalues of W are invariant under rotations of coordinate

systems.

From these two theorems, we know that Kmax and Kmin are also invariants of W .

In the rest of this section, we discuss some further properties of D-eigenvalues of W .

Before proceeding, we recall the following reformulated matrix W ∈ ℜ6×6, denoted

by the Kelvin matrix, of tensor W

W =



W1111 W1122 W1133

√
2W1112

√
2W1113

√
2W1123

W1122 W2222 W2233

√
2W2212

√
2W2213

√
2W2223

W1133 W2233 W3333

√
2W3312

√
2W3313

√
2W3323√

2W1112

√
2W2212

√
2W3312 2W1212 2W1213 2W1223√

2W1113

√
2W2213

√
2W3313 2W1213 2W1313 2W1323√

2W1123

√
2W2223

√
2W3323 2W1223 2W1323 2W2323


.
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Obviously, matrix W has six eigenvalues and six eigenvectors. Suppose that σ is an

eigenvalue of W with its corresponding eigenvector v ∈ ℜ6. For vector v, there exists a

matrix V ∈ ℜ3×3 such that

V =


v1

1√
2
v4

1√
2
v5

1√
2
v4 v2

1√
2
v6

1√
2
v5

1√
2
v6 v3

 .

For simplicity, the eigenvalue σ with its eigenvector v of the matrix W is said to be a

Kelvin eigenvalue of W , and its corresponding matrix V is said to be a Kelvin eigen-

tensor of W .

Based on these definitions, we can assert that the Kelvin eigenvalues of tensor W
are also invariants. In fact, the theory about Kelvin eigenvalues of W can be traced

back to Kelvin 150 years ago [66] and has been discussed in [4]. We wonder how

about the relations between D-eigenvalues and Kelvin eigenvalues. By the definitions

of D-eigenvalues and Kelvin eigenvalues, the following propositions hold.

Proposition 2.2.1 Let W be a fourth order three dimensional fully symmetric tensor,

and let σ be a Kelvin eigenvalue of W, associated with a Kelvin eigentensor V . If there

exists a vector x ∈ ℜ3 such that V = xxT , then σ is a D-eigenvalue of W.

Proposition 2.2.2 Let σ1, σ2, · · · , σ6 be 6 Kelvin eigenvalues of W. Suppose D = I.

Then we have

−
6∑

m=1

(−σm)+ ≤ λDmin ≤ λDmax ≤
6∑

m=1

(σm)+,

where (a)+ = max{a, 0}.

Proof. It is easy to verify that we have the spectral decomposition of W as follows

W =
6∑

m=1

σmE
m ⊗ Em, (2.2.8)

where ⊗ denotes the outer tensor product,

Em =


εm11

1√
2
εm12

1√
2
εm13

1√
2
εm12 εm22

1√
2
εm23

1√
2
εm13

1√
2
εm23 εm33

 ,
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and εm = (εm11, ε
m
22, ε

m
33, ε

m
12, ε

m
13, ε

m
23)

T is the mth normalized eigenvector of W [4]. It is

clear that for each m, Em is a symmetric matrix satisfying trace ((Em)2) = 1, which

implies that µ2
m1 + µ2

m2 + µ2
m3 = 1, where µm1 ≤ µm2 ≤ µm3 are three eigenvalues of

Em. By (2.2.8), we have that for any x = (x1, x2, x3)
T ,

Wx4 =
3∑

i,j,l,k=1

Wijklxixjxkxl

=
6∑

m=1

σm(x
TEmx)2.

(2.2.9)

It is well known that µm1 ≤ xTEmx ≤ µm3 for any m = 1, · · · , 6. This implies that

0 ≤ (xTEmx)2 ≤ max{µ2
m1, µ

2
m3} ≤ 1. Therefore, by (2.2.9), we obtain the desired

result and complete the proof. �

Now we discuss the independence of eigenvalues of fourth order three dimensional

tensor. We first give the following definition.

Definition 2.2.3 A set S consisted of the functions

yi = fi(x1, x2, · · · , xn), i = 1, 2, · · · ,m, (2.2.10)

which are defined on the region Ω in ℜn, is said to be functionally dependent on Ω, if

there exist an index i0 and a function φ defined on an appropriate region in ℜm−1, such

that

yi0 ≡ φ(f1(x1, x2, · · · , xn), f2(x1, x2, · · · , xn), · · · ,
fi0−1(x1, x2, · · · , xn), fi0+1(x1, x2, · · · , xn), · · · , fm(x1, x2, · · · , xn))

holds for any (x1, x2, · · · , xn) ∈ Ω. If for any sub-region Ω′ of Ω, there are no i0 and

such function φ that

yi0 ≡ φ(y1, y2, · · · , yi0−1, yi0+1, · · · , ym)

holds on Ω′, then the function set S is said to be functionally independent on Ω.

For the functional independence, we have the following theorem.

Theorem 2.2.3 Suppose that m ≤ n and there exists an mth order determinant |A| in
the Jacobian matrix of the functions set (2.2.10) such that |A| ≠ 0 holds on Ω. Then

the functions set S is functionally independent on Ω.

17



It is important to note that the trace ΠK of matrix W corresponding with tensor

W is an important invariant, which characterizes the average AKC value on a spher-

ical surface and has physics significance. In addition, the largest D-eigenvalue λDmax

and the smallest D-eigenvalue λDmin of W play an important role in the diffusion anal-

ysis of the water molecule in biological tissue. From Proposition 2.2.2, we see that

the largest D-eigenvalue and the smallest D-eigenvalue of W can be estimated with

an interval determined by the Kelvin eigenvalues of W . However, this result does not

mean that there must be some functional dependence between the largest (smallest) D-

eigenvalues and Kelvin eigenvalues ofW . In fact, the following example shows that both

{λDmax, λ
D
min,ΠK} and {λDmax, λ

D
min, σmax, σmin} are functionally independent on a consid-

ered region, where σmax and σmin denote the largest and smallest Kelvin eigenvalues of

W , respectively.

Example 2.2.1 Let W be a fourth order three dimensional fully symmetric tensor with

W1111 = t1, W2222 = t2, W3333 = t3, W1122 = t4 and its other elements are zero, and

let D = I. Consider the case where 0 < t1 < t3 < 3t4 < t2, t1 < t4 and t1t2 < t24. By

Definition 2.2.2, it is easy to obtain that the D-eigenvalues of W are as follows

λ1 = t1, λ2 = t2, λ3 = t3, λ4 =
t1t3
t1 + t3

, λ5 =
t2t3
t2 + t3

.

Under the given conditions, it is easy to see that the largest and smallest D-eigenvalues

of W are

λDmax = F1(t1, t2, t3, t4) := t2 and λDmin = F2(t1, t2, t3, t4) :=
t1t3
t1 + t3

,

respectively.

On the other hand, it is clear that the trace ΠK in sense of Kelvin

ΠK = F3(t1, t2, t3, t4) := t1 + t2 + t3 + 2t4.

Moreover, by direct computation, we obtain that the set consisted of all Kelvin eigen-

values of W is{
t1 + t2 +

√
(t1 − t2)2 + 4t24
2

,
t1 + t2 −

√
(t1 − t2)2 + 4t24
2

, t3, 2t4, 0, 0

}
,

which implies that the largest and smallest Kelvin eigenvalues of W are

σmax = F4(t1, t2, t3, t4) :=
t1 + t2 +

√
(t1 − t2)2 + 4t24
2
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and

σmin = F5(t1, t2, t3, t4) :=
t1 + t2 −

√
(t1 − t2)2 + 4t24
2

,

respectively. Based on these above, it is easy to verify that the Jacobian matrices of

F̂ := (F1, F2, F3) and F̃ := (F1, F2, F4, F5) are

∇F̂ (t1, t2, t3, t4) =


0 1 0 0

t23
(t1 + t3)2

0
t21

(t1 + t3)2
0

1 1 1 2


and

∇F̃ (t1, t2, t3, t4) =

0 1 0 0

t23
(t1 + t3)2

0
t21

(t1 + t3)2
0

1

2

(
1 +

t1 − t2√
(t1 − t2)2 + 4t24

)
1

2

(
1− t1 − t2√

(t1 − t2)2 + 4t24

)
0

2t4√
(t1 − t2)2 + 4t24

1

2

(
1− t1 − t2√

(t1 − t2)2 + 4t24

)
1

2

(
1 +

t1 − t2√
(t1 − t2)2 + 4t24

)
0 − 2t4√

(t1 − t2)2 + 4t24


,

respectively. It is easy to see that for F̂ and F̃ , the conditions required in Theorem 2.2.3

are satisfied. Hence, we know that both {λDmax, λ
D
min,ΠK} and {λDmax, λ

D
min, σmax, σmin}

are functionally independent on

Ω := {(t1, t2, t3, t4) | 0 < t1 < t3 < 3t4 < t2, t1 < t4 and t1t2 < t24}.

2.3 The ASC Values

As mentioned, we may use ASC values to characterize the phase of the magnetic reso-

nance signal in biological tissues. Let us write

A = (γgδ)3
(
∆− 2

4
δ

)
D(3), (2.3.11)

which is a third order three dimensional fully symmetric tensor. It is easy to see that A
has ten independent elements because of symmetry. For those elements of A which are

equal to each other, we use the element Aijk with i ≤ j ≤ k to represent them. That is,

if we say that A122 = 4, this automatically implies that A212 = A221 = 4. Then, the ten
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independent elements of A are A111;A222;A333;A112;A113;A223;A122;A133;A233;A123.

We call A111;A222;A333 the diagonal elements of A. We denote Sapp(x) the apparent

skewness coefficient at direction x as follows

Sapp(x) =
Ax3

∥x∥3
, (2.3.12)

where

Ax3 ≡
3∑

i,j,k=1

Aijkxixjxk.

We denote Ax2 as a vector in ℜ3 with its ith component as

(Ax2)i =
3∑

j,k=1

Aijkxjxk,

for i = 1, 2, 3. Denote the largest and the smallest ASC values as Smax and Smin

respectively. Then

Smax = max Ax3

s.t ∥x∥2 = 1,
(2.3.13)

and
Smin = min Ax3

s.t ∥x∥2 = 1.
(2.3.14)

The critical points of (2.3.13) and (2.3.14) satisfy the following system for some λ ∈ ℜ
and x ∈ ℜ3: {

Ax2 = λx,

∥x∥2 = 1.
(2.3.15)

From Definition 2.2.1, we have the following two theorems which can be proved by

a similar way to that in [58].

Theorem 2.3.1 For tensor A, Z-eigenvalues always exist. If x is a Z-eigenvector

associated with a Z-eigenvalue λ, then

λ = Ax3.

Denote the largest and the smallest Z-eigenvalues of A as λZmax and λZmin respectively.

Then the largest ASC value is

Smax = λZmax, (2.3.16)

and the smallest ASC value is

Smin = λZmin. (2.3.17)
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Theorem 2.3.2 [53] The Z-eigenvalues of A are invariant under rotations of co-

ordinate systems.

Remark 2.3.1 By these two theorems, Smax and Smin are also invariants of A, and

can be calculated by a similar method to that given in [58], which will be presented in

Section 2.4. On the other hand, from definitions of Z-eigenvalues and Z-eigenvectors,

we know that λ is a Z-eigenvalue of A with its corresponding eigenvector x if and only

if −λ is a Z-eigenvalue of A with the associated eigenvector −x. Hence, λZmin = −λZmax.

Denote the unit sphere as

Ξ := {x ∈ ℜ3 : x21 + x22 + x23 = 1}.

Then the average ASC value over the Ξ is defied as

MΞ =
1

Ξ

∫ ∫
Ξ

Sapp(x)dA =
1

4π

∫ ∫
Ξ

Ax3

∥x∥3
dA, (2.3.18)

where the denominator Ξ = 4π is the area of the surface Ξ. Here, we slightly abuse the

symbol Ξ for both the surface and its area.

Noting the fact that A is an odd order full symmetric tensor, it is obvious that for

any closed surface Λ with symmetry about the origin, the average ASC value over Λ is

equal to zero. Specially, it holds that MΞ = 0.

2.4 Computation of the ASC and AKC Values

Now we are ready to describe direct methods to obtaining all Z-eigenvalues of A and

D-eigenvalues of W , respectively. Then Smax, Smin, Kmax and Kmin can be calculated.

The first method is used to find all the Z-eigenvalues of A. The key idea here is to

reduce the three variable system (2.3.15) to a system of two variables. Here, we regard

λ as a parameter instead of a variable. Then, we may use the Sylvester formula of the

resultant of a two variable system [16] to solve this system.

Based on the consideration above, we state the following theorem which generalizes

Theorem 3 in [57] and can be proved in a similar way to that used in [58] .
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Theorem 2.4.1 (a) If A211 = A311 = 0, then x = (±1, 0, 0)T are two Z-eigenvector of

A associated with the Z-eigenvalue λ = ±A111, respectively.

(b) For any real root t of the following equations:{
A211t

3 + (2A212 −A111)t
2 + (A222 − 2A112)t−A122 = 0,

A311t
2 + 2A312t+A322 = 0,

(2.4.19)

x = ± 1√
t2 + 1

(t, 1, 0)T (2.4.20)

is a Z-eigenvector of A with the Z-eigenvalue λ = Ax3.

(c) λ = Ax3 and

x =
±(u, v, 1)T√
u2 + v2 + 1

(2.4.21)

constitute a Z-eigenpair of A, where u and v are a real solution pair of the following

polynomial equations:
−A311u

3 − 2A312u
2v −A322uv

2 + (A111 − 2A313)u
2 + 2(A112 −A323)uv

+A122v
2 + (2A113 −A333)u+ 2A123v +A133 = 0,

A211u
2 −A311u

2v − 2A312uv
2 + 2(A212 −A313)uv + 2A213u−A322v

3

+ (A222 − 2A323)v
2 + 2(A223 −A333)v +A233 = 0.

(2.4.22)

All the Z-eigenpairs of tensor A are given by (a) if A211 = A311 = 0, (b) and (c)

otherwise.

We regard the polynomial equation system (2.4.22) as equations of u. We may write

it as {
α0u

3 + α1u
2 + α2u+ α3 = 0,

β0u
2 + β1u+ β2 = 0,

where α0, · · · , α3, β0, β1, β2 are polynomials of v, which can be calculated by (2.4.22).

It has complex solutions if and only if its resultant vanishes [16]. By the Sylvester

theorem [16], its resultant is equal to the determinant of the following 5× 5 matrix:

α0 α1 α2 α3 0

0 α0 α1 α2 α3

β0 β1 β2 0 0

0 β0 β1 β2 0

0 0 β0 β1 β2


,
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which is a one-dimensional polynomial of v.

To find approximate solutions of all the real roots of a one dimensional polynomial,

we can use the following Sturm Theorem in [41].

Theorem 2.4.2 Let ψ be a nonconstant polynomial of degree l, with real coefficients

and let c1 and c2 be two real numbers such that c1 < c2 and ψ(c1)ψ(c2) ̸= 0. The

sequence ψ0, ψ1, · · · , ψl defined by

ψ0 = ψ, ψ1 = ψ′, ψi+1 = −ψi−1 mod ψi, i = 1, 2, · · · , l − 1

and ψl+1 ≡ 0 is called a sequence of Sturm. Denote by v(x) the number of changes of

signs in the sequence ψ0(x), ψ1(x), · · · , ψl(x)). Then the number of distinct real roots

of ψ on the interval (c1, c2) is equal to v(c1)− v(c2).

We may find the approximate solutions of all the real roots of this one-dimensional

polynomial such that their differences with the exact solutions are within a given error

bound. We then substitute them to (2.4.22) to find the corresponding approximate

real solutions of u. Correspondingly, approximate values of all the Z-eigenvalues and

Z-eigenvectors can be obtained. Based on this, we can obtain the largest and smallest

ASC values.

Now we are ready to present the method used to find all the D-eigenvalues of W ,

which is similar as above and is based on the following theorem given in [58].

Theorem 2.4.3 Let W̄ be a fourth order three dimensional tensor such that its entries

satisfy W̄ijkl =
3∑

h=1

d̄ihWijkl for i, j, k, l = 1, 2, 3, where d̄ih is the ith row hth column

element in the inverse D−1 of D. Then we have

(a) If W̄2111 = W̄3111 = 0, then λ =
W̄111

D11

is a D-eigenvalue of W with a D-

eigenvector x = (±
√

1

D11

, 0, 0)T .

(b) For any real root t of the following equations:
−W̄2111t

4 + (W̄1111 − 3W̄2112)t
3 + 3(W̄1112 − W̄2122)t

2

+(3W̄1122 − W̄2222)t+ W̄1222 = 0,

W̄3111t
3 + 3W̄3112t

2 + 3W̄3122t+ W̄3222 = 0,

(2.4.23)

23



x = ± 1√
D11t2 + 2D12t+D22

(t, 1, 0)T (2.4.24)

is a D-eigenvector of W with the D−eigenvalue λ = Wx4.

(c) λ = Wx4 and

x =
±(u, v, 1)T√

D11u2 + 2D12uv + 2D13u+D22v2 + 2D23v +D33

(2.4.25)

constitute a D-eigenpair of W, where u and v are a real solution of the following poly-

nomial equations:

−W̄3111u
4 − 3W̄3112u

3v + (W̄1111 − 3W̄3113)u
3 − 3W̄3122u

2v2

+(3W̄1112 − 6W̄3123)u
2v ++(3W̄1113 − 3W̄3133)u

2

−3W̄3223uv
2 − W̄3222uv

3 + 3W̄1122uv
2 + (6W̄1123 − 3W̄3233)uv

+(3W̄1133 − W̄3333)u+ W̄1222v
3 + 3W̄1223v

2 + 3W̄1233v + W̄1333 = 0,

−W̄3111u
3v + W̄2111u

3 − 3W̄3112u
2v2 + (3W̄2112 − 3W̄3113)u

2v

+3W̄2113u
2 − 3W̄3122uv

3 + (3W̄2122 − 6W̄3123)uv2

+(6W̄2123 − 3W̄3133)uv + 3W̄2133u+ 3W̄2223v
2 − W̄3222v

4

+(W̄2222 − 3W̄3223)v
3 − 3W̄3233v

2 + (3W̄2233 − W̄3333)v + W̄2333 = 0.

(2.4.26)

All the D-eigenpairs of tensor W are given by (a) if W̄2111 = W̄3111 = 0, by (b) and

(c) otherwise.

2.5 Numerical Examples

In this section, we present preliminary numerical experiments for the DS tensor with the

method presented in Section 2.4. The computation was done on a personal computer

(Pentium IV, 2.8GHz) by running MatlabR2006a. A numerical example for DK tensor

can be found in [58]. That example is derived from data of MRI experiments on the

white matter of rat spinal cord specimen fixed in formalin. The MRI experiments were

conducted on a 7 Tesla MRI scanner at Laboratory of Biomedical Imaging and Signal

Processing at The University of Hong Kong.

For the test examples below, we choose the parameters in (1.1.2) as follows

△ = 1, δ = 0.5, g = 1, γ = 1.
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Then the tensor A in (2.3.11) becomes A =
3

32
D(3).

By Theorem 2.4.1, we can obtain all the Z-eigenvalues of A, and the associated

eigenvectors. As mentioned in Remark 2.3.1, −λ must be another Z-eigenvalue of it

when λ is a Z-eigenvalue ofA. Throughout this section, we present only the nonnegative

Z-eigenvalues and the corresponding Z-eigenvectors of A in the following tables.

Example 2.5.1 This example was taken from [34], conducted by Monte-Carlo simula-

tions using computer-synthesized phantoms with a Y -shape tube. The Y -shape tube is

asymmetric and the DTI technique fails to identify this structure.

For this example, the ten independent elements of D(3) are D
(3)
111 = −2.36, D

(3)
112 =

47.9, D
(3)
113 = 0, D

(3)
122 = −0.773, D

(3)
123 = −0.575, D

(3)
133 = 0.282, D

(3)
222 = −28.7, D

(3)
223 =

0, D
(3)
233 = 3.61, D

(3)
333 = 0.488 in unit of 10−8mm3/s.

The numerical results for Example 2.5.1 are listed in the Table 2.5.1.

number x1 x2 x3 λ× 107

(1) 0 -1.0000 0 0.2691

(2) -0.0062 -1.0000 -0.0002 0.2691

(3) -0.8514 0.5244 0.0097 0.4922

(4) 0.8480 0.5299 -0.0108 0.4548

(5) -0.0431 0.0557 0.9975 0.0044

(6) 0.0494 -0.0684 0.9964 0.0049

Table 2.5.1: Z-eigenvalues and eigenvectors of A in Example 2.5.1

From Table 2.5.1, we can see that there are 12 Z -eigenvalues and corresponding

Z-eigenvectors for A, and the largest and smallest Z-eigenvalues of A are 0.4922×10−7

and −0.4922×10−7, which attained at (−0.8514, 0.5244, 0.0097)T and (0.8514,−0.5244,

−0.0097)T , respectively. This implies that Smax = 0.4922×10−7 and Smin = −0.4922×
10−7.

In order to illustrate the efficiency of our method, we also calculate the Z-eigenvalues

and corresponding Z-eigenvectors of ten third order three dimensional full symmetric

tensors which are constructed randomly in the following example.
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Example 2.5.2 The elements of tensor A are drawn by a normal distribution with

mean zero and standard deviation one.

Using the method provided in Section 2.4, we compute all the Z-eigenvalues of

A, and the associated eigenvectors. In Table 2.5.2, the largest Z-eigenvalue and the

corresponding Z-eigenvectors are listed for ten tensors. Moreover, in Table 2.5.3, all the

nonnegative Z-eigenvalues with corresponding Z-eigenvectors are presented for Tensor

1 in ten tensors.

Tensor x1 x2 x3 λZmax

1 -0.5784 0.7896 0.2050 2.1161

2 -0.8364 -0.0495 0.5459 3.2879

3 -0.6272 -0.2393 -0.7411 2.6702

4 -0.0836 -0.8832 -0.5467 2.9957

5 0.7021 -0.6410 0.3100 2.5146

6 -0.7327 0.6778 0.0612 4.1874

7 0.1531 0.5353 0.8307 3.5715

8 0.7981 -0.5944 0.0991 4.2279

9 -0.6308 -0.6893 -0.3563 3.3815

10 -0.2657 0.7381 -0.6201 3.4800

Table 2.5.2: The Largest Z-eigenvalues with Z-eigenvectors for ten tensors

number x1 x2 x3 λ

(1) -0.3518 -0.9140 0.2020 0.9434

(2) -0.5784 0.7896 0.2050 2.1161

(3) -0.4346 -0.6970 -0.5704 1.6851

(4) 0.9455 0.1980 -0.2585 1.4644

(5) 0.0836 -0.5452 0.8341 1.5940

(6) 0.8322 -0.1726 0.5269 0.5171

(7) 0.3823 -0.1797 -0.9064 0.0165

Table 2.5.3: Nonnegative Z-eigenvalues and Z-eigenvectors of Tensor 1

26



2.6 Final Conclusion

In this chapter, in order to overcome the drawback of DTI model, we consider the

truncated GDTI model. Based on the model, we introduce the concept of diffusion

skewness in magnetic resonance imaging and discuss the measure of the diffusion skew-

ness and kurtosis. The diffusion skewness and kurtosis provide two dimensionless values

for characterizing the phase of the signal in tissues and the degree of non-Gaussian of

the diffusion displacement probability distribution, respectively. For the water molecule

with Gaussian distribution in biological structures, the skewness and kurtosis are zero.

But, for non-Gaussian signal with asymmetry about the origin, the skewness and the

kurtosis have significant values. Based on the Z-eigenvalues and D-eigenvalues of ten-

sor, the methods for calculating the largest (smallest) ASC values and largest (smallest)

AKC values are presented. These ASC and AKC values are the principal invariants un-

der rotations of coordinate systems and can be calculated in any Cartesian coordinate

system. We hope that these quantities and properties can be used in practice.
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Chapter 3

The Cubic Spherical Optimization

Problems

3.1 Introduction

In this chapter, we study the cubic spherical optimization problems, which include the

cubic one-spherical/two-spherical/three-spherical optimization problems.

Motivated by the NP-hardness of the cubic one-spherical optimizaiton problem, we

first analyze the complexity of problems (1.1.4) and (1.1.5). In Section 3.2, we will show

that the other two cubic spherical optimization problems are both NP-hard. Thus, it

is not expected that there exist efficient exact methods to find global minimizers of

these cubic spherical optimization problems when n, p, q are large. Therefore, we are

interested in finding approximation algorithms for solving cubic spherical optimization

problems.

This chapter is organized as follows. In Section 3.2, we establish the NP-hardness

of (1.1.4) and (1.1.5). For problem (1.1.5), we discuss some polynomial time solvable

cases in Section 3.3 and study some cases for which polynomial time approximation

schemes (PTAS) exist. In Section 3.5, we present polynomial time approximation solu-

tion methods, which return a 1√
min{n,p,q}

bound for (1.1.5). In Section 3.6, we discuss

some approximation algorithms for solving one-spherical optimization problem. In the
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last section, a practical method for the three-spherical optimization problem is pre-

sented and some related numerical results are reported.

3.2 NP-Hardness of the Two-spherical/Three-spherical

Optimization Problems

It was proved in [43] that optimization problem (1.1.3) is NP-hard. But the question

remains: would (1.1.4) or (1.1.5) be easy to solve globally? In this section, we show

that they are both NP-hard to solve.

To establish the NP-hardness of (1.1.4), we first show that problem (1.1.4) is equiv-

alent to a quartic maximization problem.

Theorem 3.2.1 For each k, let Bk be a symmetric n×n matrix with its (i, j)th element

as Bijk. Then the cubic two-spherical optimization problem (1.1.4) is equivalent to the

following quartic maximization problem:

max
x∈ℜn

q∑
k=1

⟨Bkx, x⟩2

s.t. ∥x∥ = 1.

(3.2.1)

Proof. Denote α(x) as a vector in ℜq, with its kth component as

α(x)k =
n∑

i,j=1

Bijkxixj.

Then we may rewrite (1.1.4) as

min
∥x∥=1

min
∥z∥=1

⟨α(x), z⟩ = min
∥x∥=1

−∥α(x)∥ = − max
∥x∥=1

∥α(x)∥.

This is equivalent to

max
∥x∥=1

∥α(x)∥2 = max
∥x∥=1

q∑
k=1

⟨Bkx, x⟩2,

which is problem (3.2.1). �

According to Theorem 4 of [43], problem (3.2.1) is NP-hard. Hence, we have the

following conclusion.
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Corollary 3.2.1 The cubic two-spherical optimization problem (1.1.4) is NP-hard.

Now let us go to the hardness of (1.1.5). To obtain the NP-hardness of (1.1.5), we

need the following results, which shows that if n = p and C is partially symmetric, then

the cubic three-spherical optimization problem (1.1.5) always has a global minimizer

(x∗, y∗, z∗) with x∗ = y∗.

Theorem 3.2.2 Suppose that tensor C in problem (1.1.5) is a third order (n× n× q)-

dimensional partially symmetric tensor with respect to the first two indices. Then there

exist x∗ ∈ ℜn and z∗ ∈ ℜq such that (x∗, x∗, z∗) is a global minimizer of (1.1.5).

Proof. Let (x̄, ȳ, z̄) be an optimal solution of (1.1.5) with optimal value λ ≤ 0. As the

constraints of (1.1.5) satisfy the linear independence constraint qualification, according

to the optimality conditions, (x̄, ȳ, z̄) satisfies the following equations for Lagrangian

multipliers α, β and γ:

n∑
j=1

q∑
k=1

Cijkȳj z̄k = αx̄i, i = 1, · · · , n,
n∑

i=1

q∑
k=1

Cijkx̄iz̄k = βȳj, j = 1, · · · , n,
n∑

i=1

n∑
j=1

Cijkx̄iȳj = γz̄k, k = 1, · · · , q,

∥x̄∥ = 1,

∥ȳ∥ = 1,

∥z̄∥ = 1.

Then,

α = α
n∑

i=1

x̄2i =
n∑

i=1

n∑
j=1

q∑
k=1

Cijkx̄iȳj z̄k = λ.

Similarly, we have β = λ and γ = λ. Thus, we have

n∑
j=1

q∑
k=1

Cijkȳj z̄k = λx̄i, i = 1, · · · , n,
n∑

i=1

q∑
k=1

Cijkx̄iz̄k = λȳj, j = 1, · · · , n,
n∑

i=1

n∑
j=1

Cijkx̄iȳj = λz̄k, k = 1, · · · , q,

∥x̄∥ = 1,

∥ȳ∥ = 1,

∥z̄∥ = 1.

(3.2.2)
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We denote C̄(z̄) as a real n× n symmetric matrix with its (i, j)-th entry being C̄ij(z̄) =
q∑

k=1

Cijkz̄k. Then, (3.2.2) leads to


C̄(z̄)(−ȳ) = −λx̄,

C̄(z̄)x̄ = −λ(−ȳ),
∥x̄∥ = 1, ∥ − ȳ∥ = 1,

which indicates that x̄,−ȳ are left-singular and right-singular vectors for −λ of C̄(z̄),
respectively. From the symmetric property of C̄(z̄), we know that either λ or −λ is the

eigenvalue of C̄(z̄). Now we consider two cases.

If λ is an eigenvalue of C̄(z̄) associated with an eigenvector x∗, we denote z∗ = z̄.

Then, Cx∗x∗z∗ = λ.

If −λ is an eigenvalue of C̄(z̄) associated with an eigenvector x∗, we denote z∗ = −z̄.
Then, Cx∗x∗z∗ = λ.

Therefore, (x∗, x∗, z∗) is a global minimizer of optimization problem (1.1.5). �

With this result in hand, we can assert that optimization problem (1.1.4) can be

regarded as a special case of (1.1.5). Thus the NP-hardness of (1.1.5) is also established.

Corollary 3.2.2 The cubic three-spherical optimization problem (1.1.5) is NP-hard.

As mentioned earlier, (1.1.4) is a special case of (1.1.5). Therefore, from now on we

focus on problems (1.1.3) and (1.1.5).

3.3 Polynomial Time Solvable Cases

In spite of NP-hardness of (1.1.5), there exist some special cases which can be solved

in polynomial time. We present a couple of such cases in this section.

For the tensor C in (1.1.5), it is easy to see that there exist matrices Ai ∈ ℜp×q,

Bj ∈ ℜq×n, and Ck ∈ ℜn×p for i = 1, 2, · · · , n, j = 1, 2, · · · , p and k = 1, 2, · · · , q such
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that Cxyz can be rewritten as

Cxyz =
n∑

i=1

(y⊤Aiz)xi =

p∑
j=1

(z⊤Bjx)yj =

q∑
k=1

(x⊤Cky)zk. (3.3.3)

Based on this observation, we have the following theorem.

Theorem 3.3.1 Suppose that there exist orthogonal matrices P ∈ ℜn×n and Q ∈ ℜp×p

such that P⊤CkQ for all k = 1, 2, · · · , q are n × p diagonal matrices. Then (1.1.5) is

polynomial time solvable.

Proof. Without loss of generality, after some orthogonal transformations, we may

assume that n ≥ p and Ck (k = 1, 2, · · · , q) are n× p diagonal matrices. Then

Cxyz =
n,p,q∑

i,j,k=1

Ck
ijxiyjzk =

p∑
j=1

xjyj

q∑
k=1

Ck
jjzk.

Therefore, we have that

max
∥x∥=1

max
∥y∥=1

max
∥z∥=1

Cxyz ≤ max
∥x∥=1

max
∥y∥=1

max
∥z∥=1

p∑
j=1

x2
j+y2j
2

∣∣∣∣ q∑
k=1

Ck
jjzk

∣∣∣∣
= max

∥x∥=∥y∥=1

p∑
j=1

x2
j+y2j
2

max
∥z∥=1

q∑
k=1

Ck
jjzk ≤ max

∥x∥=∥y∥=1

p∑
j=1

x2
j+y2j
2

q∑
k=1

Ck
j∗j∗z

∗
k

=
q∑

k=1

Ck
j∗j∗z

∗
k,

where j∗ and z∗ satisfy
q∑

k=1

Ck
j∗j∗z

∗
k = max

1≤j≤p
max
∥z∥=1

q∑
k=1

Ck
jjzk. Note that j∗ and z∗ can be

found in polynomial time. Let x∗ and y∗ be the unit vectors such that their j∗-th entries

are 1 and the rest of entries are 0, then we have that max
∥x∥=∥y∥=∥z∥=1

Cxyz = Cx∗y∗z∗.

Thus we can assert that (x∗, y∗,−z∗) is an optimal solution of (1.1.5), which complete

the proof. �

Remark 3.3.1 It is necessary to show that max
∥x∥=∥y∥=∥z∥=1

Cxyz = max
∥x∥=1

max
∥y∥=1

max
∥z∥=1

Cxyz.

Suppose that (x∗, y∗, z∗) is an optimal solution of the cubic three-spherical optimiza-

tion problem. Then for any optimal solution of the multilinear optimization (x̄, ȳ, z̄),

Cx∗y∗z∗ ≥ Cx̄ȳz̄. On the other hand, there holds

Cx̄ȳz̄ = max
∥y∥=1

max
∥z∥=1

Cx̄yz ≥ max
∥y∥=1

max
∥z∥=1

Cx∗yz = Cx∗y∗z∗,
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where the last equality comes from the fact that (y∗, z∗) is singular vector pair associated

with the largest singular value of Cx∗. So we have the result.

Similarly, if Ai for i = 1, 2, · · · , n or Bj for j = 1, 2, · · · , p can be simultaneously

diagonalized by orthogonal matrices, then (1.1.5) is polynomial time solvable.

To get another polynomial time solvable case, we recall (1.2.6), the bi-quadratic

optimization problem over unit spheres, considered in [33].

Suppose that λ is the optimal value of (1.1.5) with an optimal solution (x̄, ȳ, z̄).

Without loss of generality, we assume that λ < 0.

It is easy to show that the cubic three-spherical optimization problem (1.1.5) can

be reformulated as the following problem

max
x∈ℜn,y∈ℜp,

h1(x, y) := ∥Cxy∥2

s.t. x⊤x = 1, y⊤y = 1.

In fact,

h1(x, y) =

q∑
k=1

(
n∑

i=1

p∑
j=1

Cijkxiyj)2 =
n∑

i,s=1

p∑
j,t=1

(

q∑
k=1

CijkCstk)xiyjxsyt.

Thus, (1.1.5) can be reformulated as the following optimization problem

min
x∈ℜn,y∈ℜp

n∑
i,s=1

p∑
j,t=1

(−
q∑

k=1

CijkCstk)xiyjxsyt

s.t. x⊤x = 1, y⊤y = 1.

(3.3.4)

It is easy to see that (x̄, ȳ) is an optimal solution of optimization problem (3.3.4) with

the optimal value −λ2 when (x̄, ȳ, z̄) is an optimal solution of (1.1.5).

33



Furthermore, for any x ∈ ℜn and y ∈ ℜp, there hold

n∑
i,s=1

p∑
j,t=1

q∑
k=1

CijkCstkxiyjxsyt

=
n∑

i,s=1

1
2

p∑
j,t=1

(
q∑

k=1

(CijkCstkyjyt + CsjkCitkyjyt))xixs

=
n∑

i,s=1

p∑
j,t=1

1
2

q∑
k=1

(CijkCstk + CsjkCitk)xiyjxsyt

=
p∑

j,t=1

(
n∑

i,s=1

1
2

q∑
k=1

(CijkCstk + CsjkCitk)xixs)yjyt

=
p∑

j,t=1

1
2

n∑
i,s=1

(1
2

q∑
k=1

(CijkCstk + CsjkCitk)xixs + 1
2
(CitkCsjk + CstkCijk)xixs)yjyt

=
n∑

i,s=1

p∑
j,t=1

1
4

q∑
k=1

(CijkCstk + CsjkCitk + CitkCsjk + CstkCijk)xixsyjyt

=
n∑

i,s=1

p∑
j,t=1

1
4

q∑
k=1

(CijkCstk + CsjkCitk + CitkCsjk + CstkCijk)xiyjxsyt.

Therefore, by letting tensor C̃ have elements

C̃ijst =
1

4

q∑
k=1

(CijkCstk + CsjkCitk + CitkCsjk + CstkCijk),

the optimization problem (3.3.4) will be equivalent to the following optimization prob-

lem

h2min := min
x∈ℜn,y∈ℜp

h2(x, y) =
n∑

i,s=1

p∑
j,t=1

−C̃ijstxiyjxsyt

s.t. x⊤x = 1, y⊤y = 1,

(3.3.5)

where C̃ satisfy the symmetric property: C̃ijst = C̃sjit = C̃itsj for all i, s = 1, · · · , n and

j, t = 1, 2, · · · , p.

Therefore, the cubic optimization problem (1.1.5) may be regarded as subclasses of

the bi-quadratic optimization problem (1.2.6). According to Corollary 3.7 and Theorem

4.1 in [33], we have the following result.

Theorem 3.3.2 If min{n, p, q} = 2, then the cubic three-spherical optimization prob-

lem (1.1.5) is polynomial time solvable.
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3.4 Polynomial Time Approximation Scheme Cases

of Three-spherical Optimization Problem

Now we are ready to present some special cases of (1.1.5) which have PTAS. Before

proceeding, we consider the cubic polynomial optimization of the special form

min
n,p,q∑

i,j,k=1,

Cijkxiyjzk

s.t. ∥x∥ = 1, ∥y∥ = 1, ∥z∥ = 1,

z ≥ 0.

(3.4.6)

In this case, one can choose z ∈ ℜq
+ to be from grid points {0,

√
1
d
, · · · ,

√
d−1
d
, 1} such

that z21 + · · ·+ z2q = 1, for some given integer d. They represent uniform grid points on

the partial sphere {z ∈ ℜq
+ : ∥z∥ = 1}. The total number of such feasible grid points is(

q + d− 1

d

)
which is a polynomial in q for any fixed integer d ≥ 1.

For each feasible grid point z̄, one can solve the maximum singular value of the

matrix C(z̄) with its (i, j)-th entry being C(z̄)ij = Cijkz̄k. It’s well known that the

singular value of matrix can be solved in polynomial time. Let z̄ be the one among

these grid points whose objective value is the greatest and x̄, ȳ be the corresponding

left-singular and right-singular vectors. Then, by Bomze and de Klerk [9], the feasible

solution pair (−x̄, ȳ, z̄) returns a (1− 1
d
)-approximation solution to (3.4.6). In conclusion,

the following result is established.

Theorem 3.4.1 There is a PTAS for solving problem (3.4.6).

Note that the variables x, y and z are equal “in rights”, and so Theorem 3.4.1 is

valid when we consider the case that z ≥ 0 is replaced by x ≥ 0 or y ≥ 0. In fact, for

the original optimization, if we know in advance the sign of optimal vector x∗ or y∗ or

z∗, then the PTAS can be modified slightly. For instance, for Ai, i = 1, · · · , n as in

(3.3.3), if all entries in matrix Ai have the same sign pattern, then we can see that

|Cxyz| = |y⊤(
n∑

i=1

Aixi)z| ≤ |y|⊤|
n∑

i=1

Aixi||z|,

35



where | · | denotes the entries being the absolute value of corresponding entries. Hence

the sign of optimal solution (x∗, y∗, z∗) can be known in advance, which leads to a

PTAS. In a similar pattern, there exists a PTAS if each matrix Bj or Ck has the same

sign.

Furthermore, notice the fact that the number of sign patterns for x, y and z are at

most 2n, 2p and 2q, respectively. Thus, if min{n, p, q} is fixed, then a PTAS for (1.1.5)

can be obtained by solving subproblem (3.4.6) at most 2min{n,p,q} times, which gives the

following statement.

Corollary 3.4.1 If min{n, p, q} is fixed, there exists a PTAS based on the grid sampling

on simplex for solving (1.1.5).

On the other hand, if we recall (3.3.5), combining with Corollary 3.7 and Theorem

4.1 in [33], then we have the following result.

Theorem 3.4.2 If min{n, p, q} is fixed, then there exists a PTAS based on sum of

squares for solving (1.1.5).

3.5 Relative Quality Bound

In general, Definition 1.1.2 is stronger than Definition 1.1.1. However, we have the

following result for odd order spherical optimization problems based on the following

theorem.

Theorem 3.5.1 For an odd order spherical optimization problem, the following results

hold.

If there is a (1− ϵ)-approximation solution with 0 ≤ ϵ ≤ 1
2
, then the corresponding

value is a (1− 2ϵ)-bound.

If there is an r-bound, then its corresponding approximation solution is a 1−r
2
-

approximation solution.
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The proof is trivial since the absolute value of the maximum value and the absolute

value of the minimum value is the same, so that we omit the details of the proof.

In the subsequent discussion, we will present a quite simple but efficient method for

(1.1.5) by finding the singular values of matrices.

Theorem 3.5.2 There exists a 1√
min{n,p,q}

-bound for (1.1.5).

Proof. To get the relative quality bound, we rewrite (1.1.5) as follows

Cxyz =
q∑

k=1

(x⊤Cky)zk,

for some suitable matrices Ck as in (3.3.3).

For k = 1, 2, · · · , q, we solve the following problem by finding the singular values of

a matrix in polynomial time

max x⊤Cky

s.t. ∥x∥ = 1,

∥y∥ = 1.

Let k∗ be the one whose objective value is the largest and x∗, y∗ be the optimizer

and z∗k∗ be −1 accordingly and the rest of entries be 0. Then for any feasible solution

pair (x, y, z), there holds

(Cxyz)2 = (
q∑

k=1

(x⊤Cky)zk)
2 =

q∑
i,j=1

(x⊤Ciy)(x⊤Cjy)zizj

≤ q
q∑

i=1

(x⊤Ciy)2z2i ≤ q
q∑

i=1

(x∗⊤Ck∗y∗)2z2i ≤ q(x∗⊤Ck∗y∗)2.

Furthermore, there holds

(x∗⊤Ck∗y∗)2 = (Cx∗y∗z∗)2 ≤ max
∥x∥=∥y∥=∥z∥=1

(Cxyz)2 ≤ q(x∗⊤Ck∗y∗)2,

which implies the result. �

37



3.6 Approximate Algorithms for One-Spherical Op-

timization Problem

In this section, we turn our attention to (1.1.3). It’s easy to solve (1.1.3) when n ≤ 3

by the direct computation method proposed in the second chapter. Hence, we focus on

(1.1.3) for n ≥ 4.

3.6.1 Approximation Bound Based On Sum of Squares (SOS)

It is easy to see that optimization problem (1.1.3) is equivalent to the following opti-

mization problem

pmin := max γ

s.t. Ax3 − γ ≥ 0, ∀ x ∈ {x ∈ ℜn | ∥x∥ = 1} .

Since the function Ax3 is an odd function, the above optimization problem can be

reformulated equivalently to :

pmins := max β

s.t. −(Ax3)2 − β(x⊤x)3 ≥ 0, ∀ x ∈ ℜn.
(3.6.7)

Obviously, pmins = −p2min.

Let N ≥ 0 be an integer. Consider the N -order SOS relaxation:

pN := max β

s.t. (x⊤x)N(−(Ax3)2 − β(x⊤x)3) ≽SOS 0, x ∈ ℜn.
(3.6.8)

where the inequality g ≽SOS 0 means that g is SOS, i.e., a sum of squares of other

polynomials. It is easy to see that pN ≥ pmins.

To obtain the convergence result, we need the following lemma in [60].

Lemma 3.6.1 Let p(x) be a homogeneous positive definite polynomial of degree m,

where m is even and x ∈ ℜn. Then for any integer N satisfying

N ≥ nm(m− 1)

4 log 2
ε(p)− n+m

2
,

where ε(p) =
sup

∥x∥=1
p(x)

inf
∥x∥=1

p(x)
, (x⊤x)Np(x) is SOS.
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Based upon Lemma 3.6.1, the approximation ratio is presented as follows.

Theorem 3.6.1 For an even N satisfying N ≥ 15n
2 log 2

− n+6
2
, we have

0 ≤ pmins − pN
−pmins

≤ 15n

(N + n+6
2
)2 log 2− 15n

. (3.6.9)

Proof. It is easy to see that 0 is the maximum of −(Ax3)2 over sphere and

pmins(x
⊤x)3 ≤ −(Ax3)2 ≤ 0, ∀x ∈ ℜn.

Taking β < pmins, we have

(pmins − β)(x⊤x)3 ≤ −(Ax3)2 − β(x⊤x)3 ≤ −β(x⊤x)3, ∀x ∈ ℜn.

Hence ε(−(Ax3)2 − β(x⊤x)3) ≤ −β
pmins−β

.

Fix N satisfying N > 15n
2 log 2

− n+6
2
, and choose

βN = pmins +
15npmins

(N + n+6
2
)2 log 2− 15n

< pmins.

Then

N =
15n

2 log 2

−βN
pmins − βN

− n+ 6

2
.

From Lemma 3.6.1, we can see that (x⊤x)N((−Ax3)2−βN(x⊤x)3) is SOS. On the other

hand, It is easy to see that pN ≤ pmins. Therefore,

0 ≤ pmins − pN
−pmins

≤ pmins − βN
−pmins

=
15n

(N + n+6
2
)2 log 2− 15n

.

This completes the proof. �

3.6.2 Approximation Bound Based On Semidefinite Relaxation

Scheme

In general, SOS relaxation algorithm might not be quite efficient for practical problems

when n is large. Therefore, we discuss approximation bound based on semidefinite

relaxation.
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It is well known that semidefinite relaxation method is an efficient method for even

order polynomial optimization problem. Therefore, we first reformulate (1.1.3) as the

following quartic optimization problem

min
x̄∈ℜn+1

Ḡx̄4 =
n∑

i,j,k,l=0

Ḡijklx̄ix̄jx̄kx̄l

s.t. x̄0 = 1, ∥x̄∥ = 2,

(3.6.10)

where Ḡ is a fourth order ((n+ 1)× (n+ 1)× (n+ 1)× (n+ 1))-dimensional real sym-

metric tensor with

Ḡijkl =

 1
4Aijk

for l = 1, and i, j, k ̸= 1,

0, Otherwise.

Consider the following SDP relaxation of (3.6.10),

min (ḠX) •X
s.t. X11 = 1, I •X = 2,

X ≽ 0.

(3.6.11)

Based on the relationship in [6]: Sm×m
+ ⊆ {X ∈ Sm×m : ∥X∥F ≤ Im •X} , we may relax

(3.6.11) as

min (ḠX) •X
s.t. X11 = 1, I •X = 2,

∥X∥F ≤ 2.

(3.6.12)

Stack up the entries of symmetric matrix X, denoted by vecS(·). Then there exists

a suitable matrix Q such that the quadratic SDP relaxation can be rewritten in the

vector form
min vecS(X)⊤QvecS(X)

s.t. (vecS(X))1 = 1, vecS(In+1)
⊤vecS(X) = 2,

∥vecS(X)∥ ≤ 2.

After eliminating two variables by the first two constraints, there exist two suitable

quadratic functions q0(w) and q1(w) such that the relaxation can be rewritten as

min q0(w)

s.t. q1(w) ≤ 4.

Using the matrix decomposition in [65], we can see that the standard SDP relaxation

for above quadratic optimization problem is tight. By the obtained optimization w∗ of

above quadratic optimization, together with the stack relation between vector w and

matrix X, we can get a feasible solution of (3.6.12), which returns a lower bound for

(3.6.11) and (1.1.3) in polynomial time.
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3.7 Practical Method for Solving Problem (1.1.5)

It’s easy to see that the approximation solution given in section 3.5 is not a KKT point

of problem (1.1.5). Therefore, we will present a modified power method to get a ‘good’

solution of problem (1.1.5). Without loss of generality, we assume that n ≤ p ≤ q.

Algorithm 3.7.1

• Initial step: Input tensor C and matrices Ai, with entries

(Ai)jk = Cijk, ∀i = 1, 2, · · · , n.

Substep 1: Compute the largest singular value λi and its corresponding left-

singular and right-singular vectors yi, zi for matrices Ai, i = 1, 2, · · · , n.

Substep 2: Choose the index i0 with the singular value λi0 being the largest among

{λ1, λ2, · · · , λn}.

Substep 3: Let y0 = yi0 , z0 = zi0, x0 be the vector with x0i0 = −1 and the rest of

entries be 0. Let l = 0.

• Iterative step: Compute matrix Cxl ∈ ℜp×q with its entries

(Cxl)jk =
n∑

i=1

Cijkxli.

Compute the largest singular value and its corresponding left-singular and right-

singular vectors yl+1,−zl+1 for matrix Cxl. Let xln be the vector with entries

xlni =
p∑

j=1

q∑
k=1

Cijkyl+1
j zl+1

k . Take xl+1 = xln

∥xln∥ and l = l + 1.

Obviously, Algorithm 3.7.1 includes two parts: initial step and iterative step. By

means of Theorem 3.5.2, the initial step provides a lower bound satisfying

Cxyz ≥
√
nCx0y0z0, ∀ ∥x∥ = ∥y∥ = ∥z∥ = 1.

Furthermore,

Cxl+1yl+1zl+1 = −∥Cyl+1zl+1∥ ≤ Cxlyl+1zl+1 ≤ Cxlylzl,

which indicates that the sequence {Cxlylzl} generated by Algorithm 3.7.1 is non-

increasing. Based upon this observation, we establish the following convergence result.
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Theorem 3.7.1 Suppose that the sequence {xl, yl, zl} generated by Algorithm 3.7.1 is

infinite. Then each accumulation point of the sequence {xl, yl, zl} is a KKT point of

the problem (1.1.5).

Proof. From Iterative step of Algorithm 3.7.1, we have

Cxlyl+1 = −λlzl+1,

Cxlzl+1 = −λlyl+1,

Cyl+1zl+1 = −∥Cyl+1zl+1∥xl+1,

∥xl+1∥ = ∥yl+1∥ = ∥zl+1∥ = 1.

Note that Cxyz is bounded on the unit sphere. Combining this with the fact that

{Cxl+1yl+1zl+1} is non-increasing, we know that {Cxl+1yl+1zl+1} is convergent and there

holds
Cxl+1yl+1zl+1 − Cxlylzl

= Cxl+1yl+1zl+1 − Cxlyl+1zl+1 + Cxlyl+1zl+1 − Cxlylzl

≤ Cxl+1yl+1zl+1 − Cxlyl+1zl+1

= C(xl+1 − xl)yl+1zl+1 ≤ 0,

where in the last inequality we use the fact that Cxl+1yl+1zl+1 ≤ Cxyl+1zl+1 for any

∥x∥ = 1 from the obtained xl+1.

From the convergence of sequence {Cxlylzl}, we know Cxl+1yl+1zl+1 − Cxlylzl → 0.

Furthermore, ∥Cyl+1zl+1∥ ≥ |Cx0y0z0| > 0, which leads to ∥xl+1 − xl∥ → 0 since

Cyl+1zl+1 = −∥Cyl+1zl+1∥xl+1. Therefore, {xl} is convergent. As a result, {λl} is also

convergent.

Suppose that (x∗, y∗, z∗) is an accumulation point of {(xl, yl, zl)}. Without loss of

generality, we assume that

lim
l→∞

xl = x∗, lim
lk→∞

ylk = y∗, lim
lk→∞

zlk = z∗, lim
l→∞

λl = λ∗.

Then, there holds

Cx∗y∗ = −λ∗z∗

Cx∗z∗ = −λ∗y∗,
Cy∗z∗ = −∥Cy∗z∗∥x∗,
∥x∗∥ = ∥y∗∥ = ∥z∗∥ = 1.
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Figure 3.7.1: Numerical Results of Example 3.7.1

As a consequence, we have

−λ∗ = −∥Cy∗z∗∥ = Cx∗y∗z∗,

which completes the proof. �

To illustrate that the procedure performs well, the following two examples are con-

sidered.

Example 3.7.1 The example is taken from [74]. Tensor C is a random low-rank (40×
30×40)-dimensional tensor generated as the sum of 20 rank-one tensors, each rank-one

tensor x ⊗ y ⊗ z is generated with components of x, y and z uniformly distributed in

(0, 1). Figure 3.7.1 shows the numerical results, where “inval” and “lval” denote the

initial value and corresponding lower bound obtained by the initial step of Algorithm

3.7.1, respectively. “val” denotes the value obtained by Algorithm 3.7.1. From Figure

3.7.1, we can claim that the Algorithm performs well.

Example 3.7.2 Consider the problem (1.1.5) with (n × p × q)-dimensional tensor C

whose entries are uniformly distributed in (0, 1).
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Table 3.7.2 reports the average value of 100 problems, where “Dim” denotes the

dimension of Tensor C, “lval” denotes the average lower bound by the initial step and

Theorem 3.5.2, “alval” denotes the average value obtained by Algorithm 3.7.1. “CPU”

denotes the average working time of the computer excluding the input/output time.

Dim upval alval CPU

(3× 5× 10) -6.7970 -6.2303 0.0441

(5× 10× 30) -20.5247 -19.4263 0.0563

(10× 30× 50) -63.2307 -61.3158 0.0798

(30× 50× 100) -197.9735 -193.6653 0.4516

(50× 100× 300) -618.4687 -612.3631 3.8347

(100× 300× 500) -1945.3 -1936.4 22.5809

Table 3.7.2: The numerical results of Example 3.7.2

3.8 Some Remarks

In this chapter, we discuss the cubic spherical optimization problems. We present the

NP-hardness of the cubic two-spherical/three-spherical optimization problems. Since

the cubic two-spherical optimization is a special case of the three-spherical optimization

problem, we focus on the cubic three-spherical optimization problem. We discuss some

special cases of three-spherical optimization which can be polynomial time solvable or

have PTAS. For general cases, we present a quality bound. For one-spherical opti-

mization, some approximation bounds are discussed based on SOS and SDP schemes.

Finally, a practical method for solving the cubic three-spherical optimization problem

is proposed. However, there is little discussion for the cubic one-spherical optimization

problem. So in future study, how to obtain approximation bound will be considered

and it is possible to design some practical methods.
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Chapter 4

A Practical Method for the

Bi-quadratic Optimization Problem

Over Unit Spheres

4.1 Introduction

To solve problem (1.2.6), we first consider its optimal condition following the tensor

product notation used in [51, 15, 70]. Before proceeding, we denote F · xyy as a

vector with its ith component being
m∑
j=1

n∑
k,l=1

Fijklxjykyl, and Fxxy· as a vector with

its lth component being
m∑

i,j=1

n∑
k=1

Fijklxixjyk. For any minimizer (x, y) of (1.2.6), by the

optimality theory [7, 47], there exist λ, µ ∈ ℜ such that
F · xyy = λx

Fxxy· = µy

x⊤x = 1

y⊤y = 1
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Certainly, the optimal condition can further be simplified as
F · xyy = λx

Fxxy· = λy

x⊤x = 1

y⊤y = 1

(4.1.1)

If λ, x and y are real solutions of (4.1.1), λ is said to be an M-eigenvalue of tensor F ,

and x and y are said to be a left M-eigenvector and a right M-eigenvector of tensor F ,

associated with the M-eigenvalue λ, respectively [54]. Here, the letter M is borrowed

from word material.

By the discussion above, we know that problem (1.2.6) is equivalently transformed

into computing the largest M-eigenvalue of tensor F , i.e., solving (4.1.1). For this

system, it seems not difficult to solve. However, this is not true since neither equation

of system (4.1.1) is linear. Moreover, this problem is also shown to be NP-hard [33].

Motivated by the fact that this problem is a subproblem of the entanglement problem,

in practice, we may aim to find a “good” solution of the problem. In the next section, we

will propose a practical method to compute the largest M-eigenvalue of tensor F based

on the power method for computing the largest eigenvalue in magnitude of a matrix

[19]. Compared with the alternating eigenvalue maximization method for solving (4.1.1)

proposed in [17], the computation cost of our method is less. As for the validity of this

method, it is guaranteed theoretically for the convex case. To make the conclusion hold

generally, we introduce a translation technique into the method. Furthermore, to make

the generated sequence converge to a good solution of the problem, we also develop an

initialization scheme in Section 4.3. The given numerical experiments in Section 4.4

show that the proposed method could generate a well-approximated point to the global

maximizer of our concerned problem.

4.2 Practical Power Method and Its Convergence

It is well known that the power method is an efficient method for computing the largest

eigenvalue (in the sense of absolute value) of a matrix [19]. This method was extended

to compute the best rank-1 approximations to higher-order tensors, i.e., the largest
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Z-eigenvalue (also in the sense of absolute value) of higher-order tensors [32, 31, 54].

Motivated by this, we propose a modified power method to compute the largest M-

eigenvalue of a tensor.

Algorithm 4.2.1

Initialization Step. Take initial points x0 ∈ ℜm, y0 ∈ ℜn with ∥x0∥ = ∥y0∥ = 1, and

let t = 0;

Iterative Step. Execute the following procedures alternatively until convergence:

x̄t+1 = F · xtytyt, xt+1 =
x̄t+1

∥x̄t+1∥
;

ȳt+1 = Fxt+1xt+1yt·, yt+1 =
ȳt+1

∥ȳt+1∥
;

t = t+ 1.

In the following, we would give a theoretical analysis to the method. For the ob-

jective function F (x, y), from (1.2.6), we know that it is a bi-quadratic function with

respect to variables x, y, respectively. That is, the function can be written as

F (x, y) = Fxxyy = x⊤B(y)x = y⊤C(x)y,

where B(y) and C(x) are respectively symmetric matrices in ℜm×m and ℜn×n with

components

Bij(y) =
n∑

k,l=1

Fijklykyl, Ckl(x) =
m∑

i,j=1

Fijklxixj.

Based on this analysis, we have the following conclusion for Algorithm 4.2.1.

Theorem 4.2.1 Suppose that for any x ∈ ℜm, y ∈ ℜn, the matrices B(y) and C(x)

are both positive definite. Then the generated sequence {F (xt, yt)} by Algorithm 4.2.1

is nondecreasing.
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Proof. From the assumption, we know that for any fixed x ∈ ℜm, the function F (x, y)

is strictly convex with respect to y ∈ ℜn, and similarly, the function F (x, y) is strictly

convex with respect to x ∈ ℜm for any fixed y ∈ ℜn. Thus, for any t ≥ 0,

F (xt+1, yt)− F (xt, yt) ≥ ⟨xt+1 − xt,∇xF (x
t, yt)⟩. (4.2.2)

To show the conclusion, we are ready to show the nonnegativity of the inner product

term in the right-hand side. Since

∇xF (x
t, yt) = 2F · xtytyt,

from Algorithm 4.2.1, one has

xt+1 =
∇xF (x

t, yt)

∥∇xF (xt, yt)∥
.

Recalling the Cauchy-Schwartz inequality and the choice of xt+1, we conclude from

(4.2.2) that F (xt+1, yt) ≥ F (xt, yt) and it holds strictly if xt+1 ̸= xt.

Similarly, we can conclude that that F (xt+1, yt+1) ≥ F (xt+1, yt) and it holds strictly

if yt+1 ̸= yt.

Combining these two cases, we obtain the desired result. �

Before giving an analysis to Theorem 4.2.1, we first give an explanation of the

condition of Theorem 4.2.1 by introducing the following definition.

Definition 4.2.1 A fourth order partially symmetric tensor F is said to be positive

definite on ℜm ×ℜn if for any nonzero vectors x ∈ ℜm and y ∈ ℜn, it holds that

Fxxyy =
m∑

i,j=1

n∑
k,l=1

Fijklxixjykyl > 0.

From this definition, we know that the matrices B(y) and C(x) are both positive

definite for any nonzero vectors x ∈ ℜm and y ∈ ℜn if and only if tensor F is positive

definite on ℜm ×ℜn.

From Theorem 4.2.1, we may conclude that the generated sequence {(xt, yt)} con-

verges to a stationary point of problem (1.2.6) in the “convex” case [7]. Now, one key
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problem is posed naturally: how about the algorithm for the general case? That is,

for the case that either matrix B(y) or matrix C(x) is not positive definite. To solve

this problem, we now make a translation to the corresponding tensor in the objective

function by introducing the following “identity” tensor I ∈ ℜm×m×n×n:

Iijkl =

{
1, if i = j and k = l

0, otherwise

Take τ ∈ R such that τ > max{|λ| | λ is an M-eigenvalue of tensor F} and set

F̄ (x, y) = τIxxyy + Fxxyy , F̄xxyy.

It is easy to see that tensor F̄ is positive definite on ℜm × ℜn and has the same

symmetry property as tensor F . Furthermore, if x and y constitute a pair of M-

eigenvectors of tensor F̄ associated with M-eigenvalue λ, then they are also a pair of

M-eigenvectors of tensor F associated with M-eigenvalue (λ−τ). Since function F̄ (x, y)
satisfies the assumptions in Theorem 4.2.1, we can apply Algorithm 2.1 to compute the

largest M-eigenvalue of tensor F̄ and hence we can obtain the largest M-eigenvalue of

tensor F .

Now, one more question rises accordingly: How to choose a suitable τ? In fact, this

can be solved based on the estimation of the largest eigenvalue of the unfolded matrix

of tensor F defined below.

Define the following index mapping from four indices i, j, k, l to two indices s, t:

s = n(i− 1) + k, t = m(j − 1) + l.

Using this mapping, we may unfold tensor F into a matrix A ∈ ℜmn×mn. From the

partial symmetry of tensor F , we know that the unfolded matrix A is symmetric. Based

on this representation, the objective function F (x, y) can be written as a quadratic form:

F (x, y) = (x⊗ y)⊤A(x⊗ y),

where x⊗y denotes the Kronecker product of vectors x and y which is a vector in ℜmn.

Based on this, we can immediately obtain the following conclusion.

Proposition 4.2.1 Suppose matrix A is the unfolded matrix of tensor F . Then tensor

F is positive definite on ℜm × ℜn provided that matrix A is positive definite on ℜmn.
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Furthermore, all the M-eigenvalues of tensor F lie in the interval composed by the

smallest eigenvalue and the largest eigenvalue of matrix A.

From the Geršgorin Disc Theorem [19], we know that the magnitude of any eigen-

value of matrix A must be less than or equal to

max
1≤s≤mn

mn∑
t=1

|Ast|.

This can easily be computed. In fact, since matrix A is symmetric, τ =
∑

1≤i≤j≤mn

|Aij| is

sufficiently large to guarantee that (τI +F) satisfies the assumption in Theorem 4.2.1.

To end this section, we give an example to show that a fourth order partially sym-

metric tensor F may be positive definite on ℜm × ℜn but the corresponding unfolded

matrix A is not positive definite on ℜmn.

Example 4.2.1 Consider the following fourth order two-dimensional tensor F with

entries
F1111 = 12, F1112 = 1, F1122 = 2,

F1222 = 1, F1212 = 5, F1222 = 1, F2222 = 12.

For this symmetric tensor, the unfolded matrix is:

A =


12 1 1 5

1 2 5 1

1 5 2 1

5 1 1 12


It is easy to verify that for x, y ∈ ℜ2,

F (x, y) = Fxyxy =
2∑

i,j,k,l=1

Fijklxixjykyl

= (x1y1 + x1y2)
2 + (x1y2 + x2y2)

2 + (x2y1 + x1y1)
2 + (x2y1 + x2y2)

2

+10(x1y1 + x2y2)
2,

and it is positive for any nonzero vectors x, y ∈ ℜ2. However, for w = (0, 1,−1, 0)⊤,

w⊤Aw = −6 < 0, i.e., the unfolded matrix A is not positive definite on ℜ4.
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4.3 Initialization Technique

From the discussion in section 4.2, we know that the given power method can generate a

stationary point of problem (1.2.6) generally. However, whether an accumulation point

of the generated sequence is a “good” maximizer of problem (1.2.6) or not strongly

depends on the initialization. In this sense, we claim that Algorithm 4.2.1 only partially

solves problem (1.2.6).

To obtain a good maximizer of problem (1.2.6), we will introduce an initialization

technique into Algorithm 4.2.1 inspired by the initialization strategy for computing the

best rank-1 symmetric approximation to a symmetric tensor in [59]. This initialization

technique is based on the basic fact that the unit eigenvector corresponding to the

largest eigenvalue of positive definite and symmetric matrix G is a maximizer of the

function g(x) = x⊤Gx over the unit sphere.

Suppose the unfolded matrix A of tensor F is positive definite, w ∈ ℜmn is an

unit eigenvector of matrix A associated with the largest eigenvalue µ, and (x∗, y∗) is

a solution of problem (1.2.6). Then f(x∗, y∗) ≤ µ and the equality holds only when

x∗ ⊗ y∗ coincide with ±w. Motivated by this, we may take an initial point (x0, y0) in

Algorithm 4.2.1 that maximizes the inner product ⟨x⊗ y, w⟩ over unit spheres.

To solve the subproblem, we need to fold vector w into a matrix in ℜm×n in the

following way: for k = 1, 2, · · · ,mn, set i =
⌈
k
n

⌉
, j = (k − 1) mod n + 1 and

Wij = wk.

Then the inner product ⟨x⊗ y, w⟩ can be expressed as a bi-linear function x⊤Wy and

the involved subproblem is as follows

max x⊤Wy

s.t. x⊤x = 1, y⊤y = 1

which is also equivalent to the following minimization problem [32]:

min ∥W − µxy⊤∥2F
s.t. µ ∈ R

x⊤x = 1, y⊤y = 1

(4.3.3)
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where ∥ · ∥F denotes the Frobenius norm of a matrix. This optimization problem can

easily be solved via singular eigenvalue decomposition of matrix W [19]. That is, if

matrix W has the following singular eigenvalue decomposition

W = U⊤ΣV =
r∑

i=1

σiuiv
⊤
i

where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and r is the rank of the matrix, then u1 and v1 constitute

the solution of problem (4.3.3). Thus, the initialization subproblem can be solved by

letting x0 = u1, y0 = v1.

4.4 Numerical Experiments and Simulations

Combining discussions in Sections 4.2 and 4.3, we can give a complete algorithm to

compute a good approximation of the largest M-eigenvalue of a fourth order partially

symmetric tensor.

Algorithm 4.4.1

Initial Step: Input F and unfold it to obtain matrix A.

Substep 1: Take τ =
∑

1≤s≤t≤mn

|Ast|, set F̄ = τI + F and unfold F̄ to matrix

Ā.

Substep 2: Compute the eigenvector w of matrix Ā associated with the largest

eigenvalue and fold it into the matrix W .

Substep 3: Compute the singular vectors u1 and v1 corresponding to the

largest singular value of the matrix W .

Substep 4: Take x0 = u1, y0 = v1, and let t = 0.

Iterative Step: Execute the following procedures alternatively until certain convergence

criterion is satisfied and output x∗, y∗:

x̄t+1 = F̄ · xtytyt, xt+1 =
x̄t+1

∥x̄t+1∥
;

ȳt+1 = F̄xt+1xt+1yt·, yt+1 =
ȳt+1

∥ȳt+1∥
;
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t = t+ 1.

Final Step: Output the largest M-eigenvalue of tensor F : λ = F̄x∗x∗y∗y∗− τ , and the

associated M-eigenvectors: x∗, y∗.

It is easy to see that the algorithm contains two parts: the initial step and the

iterative step. In fact, the initial step, i.e., computing the largest eigenvalue and the

corresponding eigenvector of a matrix, is also an iterative scheme [19]. For Algorithm

4.4.1, the computation complexity at each iterative step is of order O(m2n+mn2). Thus,

if the largest M-eigenvalue of tensor A can be generated within few steps, this algorithm

can be said to be practical. To check this, we first make the numerical experiments

of Algorithm 4.4.1 on two fourth order three dimensional partially symmetric tensors,

and then compute the global optimal values of the objective functions by the projected

gradient method [10], combined with the uniform grid method in high order accuracy.

Example 4.4.1 Consider the tensor whose entries are uniformly generated in (-1,1):

F(1, :, 1, :) =


−0.9727 0.3169 −0.3437

−0.6332 −0.7866 0.4257

−0.3350 −0.9896 −0.4323



F(1, :, 2, :) =


0.3169 0.6158 −0.0184

−0.7866 0.0160 0.0085

−0.9896 −0.6663 0.2559



F(1, :, 3, :) =


−0.3437 −0.0184 0.5649

0.4257 0.0085 −0.1439

−0.4323 0.2559 0.6162



F(2 :, 1, :) =


−0.6332 −0.7866 0.4257

0.7387 0.6873 −0.3248

−0.7986 −0.5988 −0.9485



F(2, :, 2, :) =


−0.7866 0.0160 0.0085

0.6873 0.5160 −0.0216

−0.5988 0.0411 0.9857


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F(2, :, 3, :) =


0.4257 0.0085 −0.1439

−0.3248 −0.0216 −0.0037

−0.9485 0.9857 −0.7734



F(3, :, 1, :) =


−0.3350 −0.9896 −0.4323

−0.7986 −0.5988 −0.9485

0.5853 0.5921 0.6301



F(3, :, 2, :) =


−0.9896 −0.6663 0.2559

−0.5988 0.0411 0.9857

0.5921 −0.2907 −0.3881



F(3, :, 3, :) =


−0.4323 0.2559 0.6162

−0.9485 0.9857 −0.7734

0.6301 −0.3881 −0.8526


For this tensor, its largest M-eigenvalue 2.3227 which is marked in Figure 4.4.1 by

the horizontal line.

Example 4.4.2 Consider the tensor whose entries are uniformly generated in (0,5):

F(1, :, 1, :) =


1.9832 1.0023 4.2525

2.6721 3.2123 2.8761

4.6384 2.9484 4.0319



F(1, :, 2, :) =


1.0023 4.9748 2.3701

3.2123 1.3024 3.2064

2.9484 4.9946 3.8951



F(1, :, 3, :) =


4.2525 2.3701 2.4709

2.8761 3.2064 3.4492

4.0319 3.8951 0.6581


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F(2, :, 1, :) =


2.6721 3.2123 2.8761

3.0871 0.1393 4.4704

1.7450 3.0394 4.6836



F(2, :, 2, :) =


3.2123 1.3024 3.2064

0.1393 4.9456 2.9980

3.0394 4.3263 0.5925



F(2, :, 3, :) =


2.8761 3.2064 3.4492

4.4704 2.9980 0.4337

4.6836 0.5925 4.3514



F(3, :, 1, :) =


4.6384 2.9484 4.0319

1.7450 3.0394 4.6836

0.3741 1.6947 2.7677



F(3, :, 2, :) =


2.9484 4.9946 3.8951

3.0394 4.3263 0.5925

1.6947 4.2633 0.1524



F(3, :, 3, :) =


4.0319 3.8951 0.6581

4.6836 0.5925 4.3514

2.7677 0.1524 2.2336


For this tensor, its largest M-eigenvalue is 26.1187 which is marked in Figure 4.4.2

by the horizontal line.

From Figures 4.4.1 and 4.4.2, we can see that the largest M-eigenvalue can be highly

approximated within few steps especially for the second example. In fact, we have done

many numerical experiments of Algorithm 4.4.1 on tensors whose entries are uniformly

generated in (0, L) for some positive number L, and the numerical results show that

this algorithm has a particularly good performance for this kind of tensor.
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Figure 4.4.1: Numerical Result of Example 4.4.1
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Figure 4.4.2: Numerical Result of Example 4.4.2
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Figure 4.4.3: Numerical Result for a Tensor with m = 12, n = 18

We also do two numerical experiments on tensors with high dimensions. Here,

we would not compute the largest M-eigenvalue of the tensors using the globalization

method since its computation cost is extremely high.

Figure 4.4.3 shows the numerical result of Algorithm 4.4.1 on a tensor whose entries

are uniformly generated in (-5,5) with m = 12, n = 18, and Figure 4.4.4 shows the

numerical result on a tensor whose entries are uniformly generated in (-5,5) with m =

30, n = 18.

From the given numerical experiments, we can claim that the numerical result of

Algorithm 4.4.1 is good although the iterative procedure is at most linearly convergent

in theory [19]. Since the computing cost at the iterative step of the algorithm is very

small, the designed algorithm is really efficient in practice especially for the large scale

problem.

4.5 Some Comments

Although we can not guarantee that the obtained solution is a global optimization

solution, the numerical results indicate that Algorithm 4.4.1 is practical since the solu-

57



0 5 10 15 20 25 30 35 40 45 50
35

40

45

50

55

60

Iteration Numbers

La
rg

es
t M

−
E

ig
ev

al
ue

s

Figure 4.4.4: Numerical Result for a Tensor with m = 30, n = 18

tion can be generated within few steps. Hence, we hope that with further research the

practical method can be designed with global convergence.
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Chapter 5

Bi-quadratic Optimization

Problems with Quadratic

Constraints

5.1 Introduction

In this chapter, we consider two bi-quadratic polynomial optimization problems (1.2.7)

and (1.2.8).

Let Fmin and Fmax be the optimal values of (1.2.7) and (1.2.8), respectively. Ob-

viously, Fmax ≥ 0. Furthermore, throughout this chapter, we assume that the optimal

values Fmin and Fmax are attainable, which implies that Fmin ≥ 0.

From the fact that (1.2.7) and (1.2.8) can be regarded as the generalization of (1.2.6),

which is NP-hard to solve from [33], we can assert that the problems are also NP-hard.

Motivated by the methods for approximately solving (1.2.6) in [33] and the general

NP-hard quadratic optimization problem in [42, 38], we consider the following SDP
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relaxations of the considered problems

min g(X, Y ) := (FX) • Y
s.t. Ap •X ≥ 1, p = 1, · · · ,m1,

Bq • Y ≥ 1, q = 1, · · · , n1,

X ≽ 0, Y ≽ 0

(5.1.1)

and
max g(X, Y ) = (FX) • Y
s.t. Ap •X ≤ 1, p = 0, 1, · · · ,m1,

Bq • Y ≤ 1, q = 1, · · · , n1,

X ≽ 0, Y ≽ 0,

(5.1.2)

respectively. Denote by gsdpmin and gsdpmax the optimal values of (5.1.1) and (5.1.2), respec-

tively. Without loss of generality, we assume that the optimal values are attainable,

which implies that gsdpmin ≥ 0. It is easy to see that, for the optimization problem (1.2.7)

with m1 = n1 = 1, A1 = Im and B1 = In, the optimal solution satisfy the equality

constraints, that is, the problem can be equivalently reformulated as (1.2.6) studied by

Ling et al. in [33]. In this case, from [33], we know that its bi-linear SDP relaxation

is tight for the problem (1.2.6). However, for a general quadratic/bi-quadratic prob-

lem, its SDP relaxation is not tight for the original problem. As stated previous, its

SDP relaxation does not always provide a tight approximation in general. However, it

does lead to provably approximation solutions for certain type of quadratic optimiza-

tion problems, see [5, 23, 42], which motivates us to extend the existing methods for

quadratic optimization problems to bi-quadratic optimization problems.

This chapter is organized as follows. In Section 5.2, we analyze the approximation

ratio of the SDP relaxations for bi-quadratic optimization problems. In Section 5.3, we

present a polynomial time approximation algorithm for the bi-quadratic maximization

model. In Section 5.4, we extend the approximation bound results obtained in Section

5.2 to the complex cases.
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5.2 Bi-linear SDP Relaxation Bounds for Bi-quadratic

Optimization Problems

In this section, we study approximation solutions for the bi-quadratic optimization

models (1.2.7) and (1.2.8), based upon approximation solutions for their corresponding

bi-linear SDP relaxations.

Consider the special case of (1.2.7), in which m1 = n1 = 1, A1 and B1 are positive

definite. It is easy to see that the optimal solution pair must satisfy the constraints

with equality. In this case, there exists an appropriate tensor F̄ such that (1.2.7) is

equivalent to

min F̄xxyy
s.t. x⊤x = 1,

y⊤y = 1,

which has no polynomial time algorithm A to get a positive bound approximation

solution for every instance of (1.2.7), see Theorem 2.2 in [33].

Based on the definition of r-bound, in the following, we argue that there is a finite

and data-independent approximation bound between the optimal values of (1.2.7) and

its SDP relaxation. To this end, we need some probability estimation results which play

important roles in what follows. Lemma 5.2.1 (a) comes from [23], Lemma 5.2.2 comes

from [38] and has been used in [39], and Lemma 5.2.3 comes from [64]. In addition,

Lemma 5.2.1 (b) can be proved easily by Lemma 5.2.1 (a) and symmetry.

Lemma 5.2.1 Let A and Z be two real symmetric n × n matrices with Z ≽ 0 and

tr(AZ) ≥ 0. Let ξ ∼ N (0, Z) be a normal random vector with zero mean and covariance

matrix Z. Then the following probability estimation hold.

(a) For any 0 ≤ γ ≤ 1 we have

Prob
{
ξ⊤Aξ < γE[ξ⊤Aξ]

}
< 1− 3

100
.

(b) For β ≥ 1, we have

Prob
{
ξ⊤Aξ > βE[ξ⊤Aξ]

}
< 1− 3

100
.
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Lemma 5.2.2 Let A and Z be two real symmetric n × n matrices with A ≽ 0 and

Z ≽ 0. Suppose ξ ∼ N (0, Z) is a normal random vector with zero mean and covariance

matrix Z. Then, for any γ > 0,

Prob
{
ξ⊤Aξ < γE[ξ⊤Aξ]

}
≤ max

{
√
γ,

2(r − 1)γ

π − 2

}
,

where r := min{rank(A), rank(Z)}.

Lemma 5.2.3 Let A and Z be two real symmetric n × n matrices with A ≽ 0 and

Z ≽ 0. Suppose ξ ∼ N (0, Z) is a normal random vector with zero mean and covariance

matrix Z. Then, for any γ > 0,

Prob
{
ξ⊤Aξ > γE[ξ⊤Aξ]

}
≤ e

1
2
(1−γ+ln γ).

Let γ = 1
ρ2
. It holds that

Prob
{
ρ2ξ⊤Aξ > E[ξ⊤Aξ]

}
≤ e

1
2
(1− 1

ρ2
−2 ln ρ)

.

Now we are ready to establish the first main result in this section, which characterizes

the approximation ratio for the bi-linear SDP relaxation to (1.2.7). Our argumentation

is similar to those of [23] and [38].

Theorem 5.2.1 Suppose that the optimal value of (5.1.1) is nonnegative. Let (X̄, Ȳ )

be an r-bound approximation solution of (5.1.1). Then we have a feasible solution (x̄, ȳ)

of (1.2.7) and the probability that

r

108m2
1n

2
1

F (x̄, ȳ) ≤ Fmin ≤ F (x̄, ȳ)

is at least
1

2500
.

Proof. Consider the semidefinite programming of the following form

min (Ȳ F) •X
s.t. Ap •X ≥ 1, p = 1, · · · ,m1,

X ≽ 0,

(5.2.3)

62



where Ȳ F is a symmetric m×m matrix with

(Ȳ F)kl =
n∑

k,l=1

FijklȲkl.

It is well-known that there exists an optimal solution X∗ of (5.2.3) with rank rX∗

satisfying rX∗ (rX∗+1)
2

≤ m1, which can be found in polynomial time; cf. [49] and [25].

Clearly, it holds that

(Ȳ F) •X∗ ≤ (FX̄) • Ȳ .

Based upon X∗, we further consider the following standard SDP problem

min (FX∗) • Y
s.t. Bq • Y ≥ 1, q = 1, · · · , n1,

Y ≽ 0.

(5.2.4)

We can find an optimal solution Y ∗ of (5.2.4) with rank rY ∗ satisfying rY ∗ (rY ∗+1)
2

≤ n1.

Since X∗ and Y ∗ are the optimal solutions of (5.2.3) and (5.2.4) respectively, the matrix

pair (X∗, Y ∗) satisfies

0 ≤ (FX∗) • Y ∗ ≤ (FX̄) • Ȳ (5.2.5)

and

rX∗ ≤
√
2m1, rY ∗ ≤

√
2n1. (5.2.6)

Let ξ ∼ N (0, X∗) and η ∼ N (0, Y ∗) be two independent normal random vectors,

whose covariance matrices are X∗ and Y ∗ respectively. From the process of the proof

of Theorem 3.3 in [23], it follows by Lemma 5.2.1 (b) and Lemma 5.2.2 that

Prob(Ω) ≥ 3

100
−m1max

{
√
γ1,

2(rX∗ − 1)γ1
π − 2

}
, (5.2.7)

where

Ω =

{
min

1≤p≤m1

ξ⊤Apξ ≥ γ1, ξ
⊤(Y ∗F)ξ ≤ µ1(Y

∗F) •X∗
}
,

γ1 > 0 and µ1 ≥ 1. By the assumption that the optimal value of (5.1.1) is nonnegative,

we can see that (Fxx⊤) • Y ∗ ≥ 0 for any given sample value x of ξ in Ω. Hence, by

Lemma 5.2.1 (b), we have

Prob
{
η⊤(Fxx⊤)η > µ2(Fxx⊤) • Y ∗} < 1− 3

100
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for every sample value x of ξ in Ω, where µ2 ≥ 1. Note that the above estimation is

independent with the sample value x of ξ. Consequently, it is easy to prove that

Prob
({
η⊤(Fξξ⊤)η > µ2(Fξξ⊤) • Y ∗} ∩ Ω

)
≤
(
1− 3

100

)
Prob(Ω),

which implies that the conditional probability

Prob
{
η⊤(Fξξ⊤)η > µ2(Fξξ⊤) • Y ∗ | Ω

}
≤ 1− 3

100
. (5.2.8)

On the other hand, from the independence of the random variables ξ and η, it follows

from Lemma 5.2.2 that for any γ2 > 0,

Prob

{
min

1≤q≤n1

η⊤Bqη < γ2 | Ω
}

= Prob

{
min

1≤q≤n1

η⊤Bqη < γ2

}
≤

n1∑
q=1

Prob
{
η⊤Bqη < γ2E[η

⊤Bqη]
}

≤ n1max

{
√
γ2,

2(rY ∗ − 1)γ2
π − 2

}
.

This implies, together with (5.2.8), that

Prob

{
η⊤(Fξξ⊤)η ≤ µ2(Fξξ⊤) • Y ∗, min

1≤q≤n1

η⊤Bqη ≥ γ2 | Ω
}

≥ 1− Prob
{
η⊤(Fξξ⊤)η > µ2(Fξξ⊤) • Y ∗ | Ω

}
− Prob

{
min

1≤q≤n1

η⊤Bqη < γ2 | Ω
}

≥ 3

100
− n1max

{
√
γ2,

2(rY ∗ − 1)γ2
π − 2

}
,

(5.2.9)

where the first inequality comes from the fact that

Prob(U ∩ V ) ≥ 1− Prob(U c)− Prob(V c)

for any two random events U and V , where U c stands for the contrary event of U , etc.

Noticing the relation that{
min

1≤p≤m1

ξ⊤Apξ ≥ γ1, min
1≤q≤n1

η⊤Bqη ≥ γ2, η
⊤(Fξξ⊤)η ≤ µ1µ2(FX∗) • Y ∗

}
⊇
{
η⊤(Fξξ⊤)η ≤ µ2(Fξξ⊤) • Y ∗, min

1≤q≤n1

η⊤Bqη ≥ γ2,

}∩
Ω,

it follows from (5.2.7) and (5.2.9) that

Prob

{
min

1≤p≤m1

ξ⊤Apξ ≥ γ1, min
1≤q≤n1

η⊤Bqη ≥ γ2, η
⊤(Fξξ⊤)η ≤ µ1µ2(BX∗) • Y ∗

}
≥
(

3

100
−m1max

{
√
γ1,

2(rX∗ − 1)γ1
π − 2

})(
3

100
− n1max

{
√
γ2,

2(rY ∗ − 1)γ2
π − 2

})
.
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Let γ1 =
1

104m2
1
, γ2 =

1
104n2

1
, µ1 = 1 and µ2 = 1. By (5.2.6), we have

√
γ1 ≥

2(rX∗ − 1)γ1
π − 2

and
√
γ2 ≥

2(rY ∗ − 1)γ2
π − 2

.

Thus, it holds that

Prob

{
min

1≤p≤m1

ξ⊤Apξ ≥ γ1, min
1≤q≤n1

η⊤Bqη ≥ γ2, η
⊤(Fξξ⊤)η ≤ µ1µ2(FX∗) • Y ∗

}
≥ 1

2500
,

which implies that there exists a vector pair (x, y) ∈ ℜm ×ℜn such that

min
1≤p≤m1

x⊤Apx ≥ γ1, min
1≤q≤n1

y⊤Bqy ≥ γ2 (5.2.10)

and

y⊤(Fxx⊤)y ≤ µ1µ2(FX∗) • Y ∗. (5.2.11)

Let x̄ =
x

√
γ1

and ȳ =
y

√
γ2

. Then, by (5.2.10), we know that (x̄, ȳ) is a feasible solution

pair of (1.2.7), i.e.,

x̄⊤Apx̄ ≥ 1 (p = 1, · · · ,m1) and ȳ⊤Bqȳ ≥ 1 (q = 1, · · · , n1).

Furthermore, by (5.2.5) and (5.2.11), we have

f(x̄, ȳ) ≤ µ1µ2

γ1γ2
(FX∗) • Y ∗ ≤ µ1µ2

γ1γ2
(FX̄) • Ȳ . (5.2.12)

Since (X̄, Ȳ ) is an r-bound approximation solution of (5.1.1), one has

(FX̄) • Ȳ ≤ 1

r
gsdpmin ≤ 1

r
fmin,

where the second inequality due to the fact that (5.1.1) is a relaxation of (1.2.7). This

implies, together with (5.2.12), that

F (x̄, ȳ) ≤ µ1µ2

γ1γ2
(FX̄) • Ȳ ≤ 108m2

1n
2
1

r
Fmin.

Thus the desired result follows. �

In the case where m1, n1 ≤ 2, we have the following result, which is a generalization

of Theorem 2.4 in [33].

Proposition 5.2.1 Suppose that m1, n1 ≤ 2. Then, the bi-quadratic optimization prob-

lem (1.2.7) and its bi-linear SDP relaxation (5.1.1) are equivalent.
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Proof. Without loss of generality, we assume that m1 = n1 = 2. Suppose that (X̄, Ȳ )

is an optimal solution pair of (5.1.1). Similar to the proof of the theorem above, we can

find a matrix pair (X∗, Y ∗) such that

(FX∗) • Y ∗ ≤ (FX∗) • Ȳ ≤ (FX̄) • Ȳ (5.2.13)

and
rX∗(rX∗ + 1)

2
≤ 2,

rY ∗(rY ∗ + 1)

2
≤ 2. (5.2.14)

By (5.2.13) and (5.2.14), we know that (X∗, Y ∗) is an optimal solution matrix pair of

(5.1.1), which satisfies rX∗ = rY ∗ = 1. Hence, there exist x∗ ∈ ℜm and y∗ ∈ ℜn such

that X∗ = x∗(x∗)⊤ and Y ∗ = y∗(y∗)⊤. Then, we have

(x∗)⊤Apx
∗ ≥ 1 (p = 1, 2), (y∗)⊤Bqy

∗ ≥ 1 (q = 1, 2) (5.2.15)

and

F (x∗, y∗) = g(X∗, Y ∗). (5.2.16)

By (5.2.15), we know that (x∗, y∗) is feasible for (1.2.7). Furthermore, by (5.2.16), it

follows that

F (x∗, y∗) = Fmin.

We obtain the desired result and complete the proof. �

In the rest of this section, we discuss the approximation bound for the maximization

problem (1.2.8).

Theorem 5.2.2 Suppose that (X̄, Ȳ ) is an r-bound approximation solution of (5.1.2).

Then we have a feasible solution (x̄, ȳ) of (1.2.8) such that

r

4 (1 + 2 ln(100m2
1)) ln (100n1)

Fmax ≤ F (x̄, ȳ) ≤ Fmax.

Proof. Without loss of generality, we assume that the ranks of matrices X̄ and Ȳ satisfy

rX̄ ≤
√
2(m1 + 1), rȲ ≤

√
2n1, respectively. Let X̄ = ZZ⊤ with Z ∈ ℜm×rX̄ . Since

Z⊤(Ȳ F)Z is symmetric, there exists an orthogonal matrix Q such that Q⊤Z⊤(Ȳ F)ZQ

is diagonal. Let ξk, k = 1, 2, · · · , rX̄ be i.i.d random variables taking values −1 and 1

with equal probabilities, and let

x(ξ) :=
1√

max
0≤p≤m1

(ξ⊤Āpξ + 1)
ZQξ,

66



where Āp = Q⊤Z⊤ApZQ (p = 0, 1, · · · ,m1) and ξ = (ξ1, · · · , ξrX̄ )
⊤.

It is easy to see that the random vector x(ξ) is always well-defined from the positive

semidefinition of Ai for i = 1, 2, · · · ,m1, and x(ξ)
⊤Apx(ξ) ≤ 1 for all p = 0, 1, · · · ,m1.

From the definition of x(ξ), it holds that

x(ξ)⊤(Ȳ F)x(ξ) =
1

max
0≤p≤m1

(ξ⊤Āpξ + 1)
ξ⊤Q⊤Z⊤(Ȳ F)ZQξ

=
1

max
0≤p≤m1

(ξ⊤Āpξ + 1)
(Ȳ F) • X̄.

It is ready to verify that tr(Āp) = Ap • X̄ ≤ 1 (p = 0, 1, · · · ,m1) and Āp ≽ 0 for

p = 1, · · · ,m1. Therefore, from the process of the proof of Theorem 4.2, Lemma 4.1 in

[23] and (12) in [42], it follows that for any α > 2,

Prob(Θ) ≥ 3

100
− 2m2

1e
−α−1

2 , (5.2.17)

where

Θ =

{
x(ξ)⊤(Ȳ F)x(ξ) ≥ 1

α
(Ȳ F) • X̄

}
.

Let η ∼ N (0, Y ∗) be an normal random variable with the covariance matrix Y ∗. From

the fact that x(ξ) and η are independent, by a similar way to that used in the proof of

Theorem 5.2.1, we can prove that the conditional probability

Prob
{
η⊤(Fx(ξ)x(ξ)⊤)η < ν(Fx(ξ)x(ξ)⊤) • Ȳ | Θ

}
< 1− 3

100
(5.2.18)

for any 0 ≤ ν ≤ 1.

On the other hand, since E[η⊤Bqη] = Bq • Ȳ ≤ 1 for q = 1, · · · , n1, it is ready to see

that {η⊤Bqη > β} ⊆ {η⊤Bqη > βE[η⊤Bqη]}, where β > 0. Consequently, by Lemma

5.2.3, we have that for q = 1, · · · , n1,

Prob
{
η⊤Bqη > β

}
≤ Prob

{
η⊤Bqη > βE[η⊤Bqη]

}
≤ e

1
2
(1−β+lnβ).

Therefore, from the independence of x(ξ) and η, we have

Prob

{
max

1≤q≤n1

η⊤Bqη > β | Θ
}

= Prob

(
n1∪
q=1

{
y⊤Bqy > β

})
≤ n1e

1
2
(1−β+lnβ).

(5.2.19)
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By (5.2.18) and (5.2.19), it follows that

Prob

{
max

1≤q≤n1

η⊤Bqη ≤ β, η⊤(Fx(ξ)x(ξ)⊤)η ≥ ν(Fx(ξ)x(ξ)⊤) • Ȳ | Θ
}

≥ 3

100
− n1e

1
2
(1−β+lnβ).

(5.2.20)

Noticing that{
η⊤(Fx(ξ)x(ξ)⊤)η ≥ 1

α
ν(FX̄) • Ȳ , max

1≤q≤n1

η⊤Bqη ≤ β

}
⊇
{
η⊤(Fx(ξ)x(ξ)⊤)η ≥ ν(Fx(ξ)x(ξ)⊤) • Ȳ , max

1≤q≤n1

η⊤Bqη ≤ β

}∩
Θ,

it follows from (5.2.17) and (5.2.20) that

Prob

{
η⊤(Fx(ξ)x(ξ)⊤)η ≥ 1

α
ν(FX̄) • Ȳ , max

1≤q≤n1

η⊤Bqη ≤ β

}
≥
(

3

100
− 2m2

1e
−α−1

2

)(
3

100
− n1e

1
2
(1−β+lnβ)

)
.

Let α = 1 + 2 ln(100m2
1) and β = 4 ln(100n1), we have

Prob

{
η⊤(Fx(ξ)x(ξ)⊤)η ≥ 1

α
ν(FX̄) • Ȳ , max

1≤q≤n1

η⊤Bqη ≤ β

}
≥ 1

104
> 0,

which implies that there exist vectors x̄ = x(ξ) ∈ ℜm and y ∈ ℜn such that

x̄⊤Apx̄ ≤ 1 (p = 0, 1, · · · ,m1), y⊤Bqy ≤ β (q = 1, · · · , n1)

and

y⊤(F x̄x̄⊤)y ≥ 1

α
ν(FX̄) • Ȳ .

Let ȳ =
y√
β

and ν = 1. Then (x̄, ȳ) is a feasible solution of (1.2.8) satisfying

1

αβ
(FX̄) • Ȳ ≤ ȳ⊤(F x̄x̄⊤)ȳ ≤ fmax.

Furthermore, by the definition of r-bound approximation solution, we obtain the desired

result and complete the proof. �

Similar to Proposition 5.2.1, we have

Proposition 5.2.2 Suppose that the numbers of constraints on x and y are not larger

than 2, respectively. Then, the bi-quadratic optimization problem (1.2.8) and its bi-

linear SDP relaxation (5.1.2) are equivalent.
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Remark Notice that the computational effort required for solving the bi-linear SDP

relaxations of (1.2.7) and (1.2.8) can be significantly large. Therefore, it is very in-

teresting to analyze the size of the resulted SDP relaxations, which will be our future

research topic.

5.3 Approximation Solution of Bi-quadratic Prob-

lems

Our main goal in this chapter is to design polynomial time approximation algorithms

for (1.2.7) and (1.2.8). Theorems 5.2.1 and 5.2.2 show that this task depends strongly

on our ability to approximately solve the relaxed problems (5.1.1) and (5.1.2), which by

themselves are also NP-hard. However, it is possible to derive approximation solution of

the relaxed problems. In this section, we consider some forms of optimization problems

whose approximation solution of their SDP relaxation problem can be solved in poly-

nomial time. We first give an approximation result for the general model (1.2.8) under

some mild assumptions. Then we investigate the bi-quadratic optimization problems

with two constraints.

5.3.1 The Bi-quadratic Maximization Model

In this subsection, we consider the maximization problem (1.2.8). To this end, we make

the following assumptions.

(A1) |tr(A0)| < m, tr(Ap) < m for every p = 1, · · · ,m1, and tr(Bq) < n for every

q = 1, · · · , n1.

(A2) There exist nonnegative numbers αp (p = 0, 1, · · · ,m1) with
m1∑
p=0

αp = 1 and

βq (q = 1, · · · , n1) with
n1∑
q=1

βq = 1, such that

m1∑
p=0

αpAp − Im ≽ 0 and

n1∑
q=1

βqBq − In ≽ 0.

(A3) A0 + Im ≽ 0.
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Now we are ready to present some properties of feasible solutions of (5.1.2) under

Assumptions (A1)-(A3).

Lemma 5.3.1 Suppose that (A1)-(A3) holds. Then for any feasible solution pair

(X,Y ) of (5.1.2), there hold

(1) ( 1
m
Im,

1
n
In) is a feasible solution pair of (5.1.2).

(2) tr(X) ≤ 1, tr(Y ) ≤ 1 and (A0 •X)2 ≤ 1.

Proof. It is easy to see that (1) holds from Assumption (A1).

Since (X, Y ) is feasible, X ≽ 0 and Y ≽ 0. Consider Assumption (A3), A0 • X ≥
−tr(X). Combining with Assumption (A2), we have

tr(X) ≤ (

m1∑
p=0

αpAp) •X =

m1∑
p=0

αp(Ap •X) ≤
m1∑
p=0

αp = 1.

So, we can assert that A0 •X ≥ −1 and tr(X) ≤ 1.

By a similar way, we can show that tr(Y ) ≤ 1, which complete the proof. �

To obtain an approximation solution of bi-linear relaxation problem, we further need

the following lemma, which generalizes the result used in [33].

Lemma 5.3.2 For any X ∈ Sm, the following statements hold.

(1) If ∥X∥F ≤ 1
m
, then X̄ := X + 1

m
Im ≽ 0.

(2) Suppose m ≥ 2. If tr(X) ≤ 0 and X ≽ − 1
m
Im, then ∥X∥F ≤

√
1− 1

m
.

Proof. (1) Since ∥X∥F ≤ 1
m
, it follows that |xii| ≤ 1

m
for every i = 1, · · · ,m. This

implies that

tr(X̄) = tr(X) + 1 =
m∑
i=1

xii + 1 ≥ 0. (5.3.21)

To show that X̄ ≽ 0, by Lemma 2.1 in [6], we only need to show that

√
m− 1∥X̄∥F ≤ tr(X̄). (5.3.22)
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It is easy to see that

∥X̄∥2F = ∥X∥2F +
2

m
tr(X) +

1

m
, (5.3.23)

which implies, together with (5.3.21), that

(m− 1)∥X̄∥2F − (tr(X̄))2 = (m− 1)
[
∥X∥2F + 2

m
tr(X) + 1

m
− 1

m−1
(tr(X) + 1)2

]
≤ (m− 1)

[
1
m2 +

2
m
tr(X) + 1

m
− 1

m−1
(tr(X) + 1)2

]
= −

(
tr(X) + 1

m

)2 ≤ 0.

Therefore, (5.3.22) holds. This shows that X̄ ≽ 0.

(2) Since X̄ = X + 1
m
Im ≽ 0, it follows that

−1 ≤ tr(X) ≤ 0, (5.3.24)

from the given condition that tr(X) ≤ 0. Moreover, it holds that

∥X̄∥2F ≤ (tr(X̄))2

= (tr(X))2 + 2tr(X) + 1,

where the inequality is due to the positive semidefiniteness of X̄. This implies, together

with (5.3.23), that

∥X∥2F ≤ (tr(X))2 + 2

(
1− 1

m

)
tr(X) + 1− 1

m
. (5.3.25)

Consider the optimization problem as follows

pmax := max p(t) = t2 + 2bt+ c

s.t. l ≤ t ≤ u.

It is easy to verify that pmax = max{p(l), p(u)}. Consequently, by this, (5.3.24) and

(5.3.25), we know that ∥X∥2F ≤ 1− 1
m

and complete the proof. �

Considering linear transformations X := X − 1
m
Im, Y := Y − 1

n
In, we know that

based on Lemma 5.3.1 and Lemma 5.3.2, a restriction and a relaxation for (5.1.2) can

be written in a unified form as

pλ := max Φ(X,Y ) = (FX) • Y + 1
m
(FIm) • Y + 1

n
(FX) • In + 1

mn
(FIm) • In

s.t.
(
Ap •X + 1

m
tr(Ap)

)2 ≤ 1, p = 0, 1, · · · ,m1,(
Bq • Y + 1

n
tr(Bq)

)2 ≤ 1, q = 1, · · · , n1,

∥X∥F ≤ λ,

∥Y ∥F ≤ λ,

(5.3.26)
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where λ = 1
max{m,n} and λ =

√
1− 1

max{m,n} correspond to the restriction and the

relaxation, respectively. It is easy to see that matrix pair (0, 0) ∈ Sm ×Sn is a feasible

solution of (5.3.26) for any λ ≥ 0. Furthermore p0 =
1

mn
(FIm) • In.

By stacking up the entries of a symmetric matrix (ignoring the symmetric part) into

a vector, denoted by vecS(·), there exists a suitable quadratic function q0(u, v) such that

(5.3.26) can be rewritten into the following form

pλ := max q0(u, v)

s.t.
(
vecS(Ap)

⊤u+ 1
m
tr(Ap)

)2 ≤ 1, p = 0, 1, · · · ,m1,(
vecS(Bq)

⊤v + 1
n
tr(Bq)

)2 ≤ 1, q = 1, · · · , n1,

∥u∥ ≤ λ, ∥v∥ ≤ λ,

(5.3.27)

where u = vecS(X), v = vecS(Y ). It is well-known that for a quadratic function

q(x) = c + 2b⊤x + x⊤Ax, the homogenized version of q(x) can be represented by the

matrix denoted by

M(q(·)) =

(
c b⊤

b A

)
.

Hence, a standard SDP relaxation for the homogenized version of (5.3.27) is

z(λ2) := max Q̄0 • Z
s.t. C̄p • Z ≤ 1, p = 0, 1, · · · ,m1 + n1,

C̄ • Z ≤ λ2,

D̄ • Z ≤ λ2,

Z =


1 u⊤ v⊤

u W U⊤

v U V

 ≽ 0,

(5.3.28)

where Q̄0, C̄p, (p = 0, 1, · · · ,m1 + n1), C̄ and D̄ are some suitable matrices, which

correspond to the matrix representations of the homogenized version of the quadratic

functions with respect to (u, v) in problem (5.3.27), respectively. Note that (5.3.28) can

be solved in polynomial time.

Based upon the analysis above, we arrive at the following conclusion.

Theorem 5.3.1 Suppose that Assumptions (A1)-(A3) hold and (FIm)•In ≥ 0. Then a
(1−γ)2

(
√
m1+n1+3+γ)2ρ(ρ−1)

-bound approximation solution of (5.1.2) can be found in polynomial
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time, where ρ = max{m,n} and

γ = max

{
1

m
|tr(A0)|,

1

m
tr(Ap), p = 1, · · · ,m1,

1

n
tr(Bq), q = 1, 2, · · · , n1

}
.

Proof. We consider the problem (5.3.27) with λ = 1
ρ
. By Theorem 1 in [67], there

exists a feasible solution (u, v) of problem (5.3.27) satisfying

q0(u, v) ≥
(1− γ)2

(
√
m1 + n1 + 3 + γ)2

z

(
1

ρ2

)
.

On the other hand, it is easy to see that z(λ) is concave on λ ≥ 0, and hence

z
(

1
ρ2

)
≥
(
1− 1

ρ(ρ−1)

)
z(0) + 1

ρ(ρ−1)
z
(
1− 1

ρ

)
≥ 1

ρ(ρ−1)
z
(
1− 1

ρ

)
≥ 1

ρ(ρ−1)
gsdpmax,

where the second inequality is due to z(0) = p0 = 1
mn

(BIm) • In ≥ 0, and the last

inequality comes from the fact that z
(
1− 1

ρ

)
≥ p√

1− 1
ρ

≥ gsdpmax. Therefore,

q0(u, v) ≥
(1− γ)2

(
√
m1 + n1 + 3 + γ)2ρ(ρ− 1)

gsdpmax. (5.3.29)

By the obtained (u, v) and the stack relation between the vector and the matrix, we can

find a feasible matrix pair (X̄, Ȳ ) for (5.3.26) with λ = 1
ρ
such that Φ(X̄, Ȳ ) = q0(u, v).

Denote X∗ = X̄ + 1
m
Im and Y ∗ = Ȳ + 1

n
In. By Lemma 5.3.2 (1), it holds that (X∗, Y ∗)

is a feasible solution of (5.1.2), satisfying

(FX∗) • Y ∗ ≥ (1− γ)2

(
√
m1 + n1 + 3 + γ)2ρ(ρ− 1)

gsdpmax.

Therefore, we can assert that (X∗, Y ∗) is a (1−γ)2

(
√
m1+n1+3+γ)2ρ(ρ−1)

-bound approximation

solution of (5.1.2). Combining with the fact that 0 ≤ γ < 1, the desired result follows.

�

5.3.2 The Bi-quadratic Optimization Problems with Two Con-

straints

In this subsection, we first consider the following problem

Fmax := max Fxxyy
s.t. x⊤Ax ≤ 1,

y⊤By ≤ 1,

(5.3.30)
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where A ∈ Sm and B ∈ Sn are positive definite. We assume that (FIm) • In ≥ 0.

Without loss of generality, we further assume that A = Im and B = In.

Notice that the optimal solution must satisfy the constraints with equality. There-

fore, the bi-linear SDP relaxation of (5.3.30) can be written equivalently as follows

gsdpmax := max (FX) • Y
s.t. tr(X) = 1,

tr(Y ) = 1,

X ≽ 0, Y ≽ 0.

(5.3.31)

By a similar procedure used in Subsection 5.3.1, a restriction and a relaxation of

(5.3.31) can be written in a unified form as

pλ := max (FX) • Y + 1
m
(FIm) • Y + 1

n
(FX) • In + 1

mn
(FIm) • In

s.t. tr(X) = 0,

tr(Y ) = 0,

∥X∥F ≤ λ,

∥Y ∥F ≤ λ,

(5.3.32)

where λ = 1
max{m,n} and λ =

√
1− 1

max{m,n} correspond to the restriction and the

relaxation, respectively. Hence, it follows that p√
1− 1

max{m,n}
≥ gsdpmax ≥ p 1

max{m,n}
≥

p0 = 1
mn

(FIm) • In ≥ 0. Furthermore, for vecS(X) and vecS(Y ), we can eliminate

two variables, say X11 and Y11, by their linear relation with the other variables. For

convenience, let

u = vecS(X)\X11 and v = vecS(Y )\Y11.

Then, there exist Q0 ∈ ℜLm×Ln , Q1 ∈ SLm , Q2 ∈ SLn , b0 ∈ ℜLm , c0 ∈ ℜLn and

d0 =
1

mn
(FIm) • In ∈ ℜ such that the above problem is equivalent to

pλ := max q(u, v) = u⊤Q0v + 2b⊤0 u+ 2c⊤0 v + d0

s.t. q1(u, v) = u⊤Q1u ≤ λ2,

q2(u, v) = v⊤Q2v ≤ λ2,

(5.3.33)

where Lm = m(m + 1)/2 − 1, Ln = n(n + 1)/2 − 1 and Q1, Q2 are positive definite.

Furthermore, it is easy to see that the SDP relaxation of the homogenized version of
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(5.3.33) is

z(λ2) := max Q̄0 • Z
s.t. Q̄1 • Z ≤ λ2

Q̄2 • Z ≤ λ2,

Z =


1 u⊤ v⊤

u W U⊤

v U V

 ≽ 0,

(5.3.34)

where Q̄0, Q̄1, Q̄2 are three matrices which correspond to the homogenized version of

the quadratic functions q(u, v), q1(u, v) and q2(u, v), respectively.

Consider problem (5.3.34) with λ0 = 1√
2ρ

and ρ = max{m,n}. Since this SDP has

three constraints, so that an optimal solution Z∗ can be computed in polynomial time

such that its rank equals 2 (e.g., see [72]). Let us denote by I11 the (Lm + Ln + 1) ×
(Lm + Ln + 1) symmetric matrix with 1 at its (1, 1)th position and 0 elsewhere. It is

clear that I11 • Z∗ = 1. Hence, by Corollary 4 in [65], one can always find two vectors

zi = (ti, (u
i)⊤, (vi)⊤)⊤(i = 1, 2) ∈ ℜ1+Lm+Ln such that Z∗ = z1(z1)⊤ + z2(z2)⊤ and

I11 • zi(zi)⊤ = I11 • Z∗/2 = 1/2, for i = 1, 2,

which implies that t21 = t22 = 1/2. From the structure of the constraints of (5.3.33), it is

ready to know that both Q̄1 and Q̄2 are positive semidefinite. Consequently, since Z∗

is feasible for (5.3.34), it holds that

(zi)⊤Q̄1z
i ≤ λ20 and (zi)⊤Q̄2z

i ≤ λ20, for i = 1, 2,

which implies that (ūi, v̄i) = (ui/ti, v
i/ti), i = 1, 2, are feasible solutions of (5.3.33) with

λ = 1
ρ
. Furthermore, we have

q(ū1, v̄1) + q(ū2, v̄2) =
(
Q̄0 • z1(z1)⊤ + Q̄0 • z2(z2)⊤

)
/t21 = 2Q̄0 • Z∗ = 2z(λ20),

which implies that either (ū1, v̄1) or (ū2, v̄2), denoted by (ū, v̄), satisfies

q(ū, v̄) ≥ z(λ20).

On the other hand, it is easy to see that z(·) is concave, and hence

z(λ20) ≥
(
1− 1

2ρ(ρ− 1)

)
z(0) +

1

2ρ(ρ− 1)
z(1− 1/ρ) ≥ 1

2ρ(ρ− 1)
z(1− 1/ρ),
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where the last inequality due to the assumption that z(0) ≥ d0 ≥ 0. Therefore,

q(ū, v̄) ≥ z(λ20) ≥
1

2ρ(ρ− 1)
z(1− 1/ρ) ≥ 1

2ρ(ρ− 1)
Fmax, (5.3.35)

where the last inequality comes from the fact that z(1−1/ρ) ≥ p√
1−1/ρ

≥ gsdpmax ≥ Fmax.

Similar to the process of the proof of Theorem 5.3.1, from the obtained (ū, v̄), we can find

a feasible matrix pair (X̄, Ȳ ) of (5.3.31) such that (FX̄) • Ȳ = q(ū, v̄). Consequently,

by using a similar procedure to that used in Theorem 2.4 in [33], we can get a vector

pair (x̄, ȳ) such that ∥x̄∥ = ∥ȳ∥ = 1 and ȳ⊤(F x̄x̄⊤)ȳ ≥ q(ū, v̄). This shows that (x̄, ȳ)

is a feasible solution of (5.3.30), and hence Fmax ≥ ȳ⊤(F x̄x̄⊤)ȳ ≥ q(ū, v̄). Together

with (5.3.35), we can assert that (x̄, ȳ) is a 1
2max{m,n}(max{m,n}−1)

-bound approximation

solution of (5.3.30). Therefore, the following assertion is established.

Theorem 5.3.2 If (FIm) • In ≥ 0, then a 1
2max{m,n}(max{m,n}−1)

-bound approximation

solution of (5.3.30) can be found in polynomial time.

In fact, from above procedure, we can see that assumption (FIm) • In ≥ 0 is used

to guarantee that z(0) ≥ 0. Therefore, if we replace F by F − cIm ⊗ In with constant

c ≤ 1
mn

(FIm) • In, then z(0) ≥ 0 is guaranteed. By Theorem 5.3.2, there exists a

feasible solution pair (x̄, ȳ) such that

F x̄x̄ȳȳ − c ≥ 1

2max{m,n}(max{m,n} − 1)
(Fmax − c).

Let c = ḡmin, where ḡmin is the minimum value of the objective in (5.3.31), then c ≤
1

mn
(FIm) • In. This leads to the following result.

Theorem 5.3.3 There exists a
(
1− 1

2max{m,n}(max{m,n}−1)

)
-relative approximation so-

lution for (5.3.30) in polynomial time.

We conclude this subsection by considering the following minimization problem

min Fxxyy
s.t. x⊤x ≥ 1,

y⊤y ≥ 1.

(5.3.36)
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It is easy to see that the optimal solution must satisfy the constraints with equality if

fmin is attainable. Thus, the bi-linear SDP relaxation can be written as (5.3.31) with

tensor −B, which leads to the following result.

Theorem 5.3.4 Suppose that the optimal value is attainable. If (FIm)•In ≤ 0, then a

1
2max{m,n}(max{m,n}−1)

-bound approximation solution of (5.3.36) can be found in polyno-

mial time. Otherwise, there exists a
(
1− 1

2max{m,n}(max{m,n}−1)

)
-relative approximation

solution for (5.3.36) in polynomial time.

5.4 Extensions and Discussions

Motivated by the aforementioned work on complex SDP in [38], our analysis can be

extended to the so-called complex bi-quadratic optimization problems. In this section,

we further consider the minimization model

min F (x, y) := Fxxyy
s.t. xHApx ≥ 1, p = 1, · · · ,m1,

yHBqy ≥ 1, q = 1, · · · , n1,

x ∈ Cm, y ∈ Cn

(5.4.37)

and the maximization model

max F (x, y) = Fxxyy
s.t. xHApx ≤ 1, p = 0, 1, · · · ,m1,

yHBqy ≤ 1, q = 1, · · · , n1,

x ∈ Cm, y ∈ Cn,

(5.4.38)

where Ap ∈ Hm (p = 1, · · · ,m1) and Bq ∈ Hn (q = 1, · · · , n1) are positive semidefinite,

whereas A0 ∈ Hm is indefinite.

A similar procedure to that in Section 5.2 can be applied to yield approximation

bounds for the complex bi-quadratic optimization problems above. To this end, we need

the following probability estimation results, which come from [23] and [38], respectively.
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Lemma 5.4.1 Let A,Z be two Hermitian matrices satisfying Z ≽ 0 and tr(AZ) ≥ 0.

Let ξ ∼ NC(0, Z) be a complex normal random vector. Then,

(a) For any 0 ≤ γ ≤ 1, it holds that

Prob
{
ξHAξ < γE(ξHAξ)

}
< 1− 1

20
.

(b) For any β ≥ 1, it holds that

Prob
{
ξHAξ > βE(ξHAξ)

}
< 1− 1

20
.

Lemma 5.4.2 Let A,Z be two Hermitian positive semidefinite matrices. Suppose that

ξ is a random vector generated from the complex-valued normal distribution NC(0, Z).

Then for any γ > 0, the following probability estimation hold.

(a) Prob
{
ξHAξ < γE(ξHAξ)

}
≤ max

{
4

3
γ, 16(r − 1)2γ2

}
,

(b) Prob
{
ξHAξ > γE(ξHAξ)

}
≤ re−γ,

where r := min{rank(A), rank(Z)}.

The following main result in this section can be proved in the similar ways to that used

in the proofs of Theorems 5.2.1 and 5.2.2.

Theorem 5.4.1 Let (X̄, Ȳ ) be an r-bound approximation solution of the bi-linear SDP

relaxation of (5.4.37). Then we have a feasible solution (x̄, ȳ) of (5.4.37) and the

probability that
r

1600m1n1

F (x̄, ȳ) ≤ Fmin ≤ F (x̄, ȳ)

is at least
1

3600
.

Suppose that (X̄, Ȳ ) be an r-bound approximation solution of the bi-linear SDP

relaxation for (5.4.38). Then we have a feasible solution (x̄, ȳ) of (5.4.38) and the

probability that

r

(1 + 2 ln 100m2
1) ln

(
40
√
2n

3
2
1

)Fmax ≤ F (x̄, ȳ) ≤ Fmax

is at least
1

4000
.
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It is well-known that if the number of constraints in the considered complex SDP

problem is at most 3, then its rank-one optimal solution can be found, see Theorem 2.1,

Proposition 5.1 in [25]. As a consequence, we get the following proposition which can be

proved by similar ways to that used in the proofs of Proposition 5.2.1 and Proposition

5.2.2.

Proposition 5.4.1 Suppose that the numbers of constraints on x and y are less than 4,

respectively. Then, the bi-quadratic optimization problems (5.4.37), (5.4.38) and their

relaxations are equivalent, respectively.

5.5 Some Remarks

For bi-quadratic optimization problems with quadratic constraints, we show that some

approximation solutions can be obtained in randomize polynomial time via the cor-

responding bi-linear SDP relaxation problems. Then we present some approximation

solutions for some special cases. However, there are some issues may be addressed in

future study.

Because approximation solutions are obtained in randomize polynomial time, it is

hoped that determinable approximation solutions may be obtained by matrix decom-

position. In addition, some possible approximation solutions with improved quality

bound may be designed for some special cases of considered problems.
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Chapter 6

Conclusions and Suggestions for

Future Studies

In this thesis, we studied some polynomial optimization problems arising in practical

applications.

In Chapter 2, we establish an application of cubic one-spherical optimization prob-

lem in magnetic resonance imaging of medical engineering.

In Chapter 3, we first present complexity analysis of the cubic two-spherical/three-

spherical optimization problems. We discuss some special cases which are solvable in

polynomial time and have PTAS. We then establish a quality bound for general case

of the cubic three-spherical optimization problem. Furthermore, some approximation

solution methods for one-spherical optimization problem are presented. Finally, a prac-

tical method for three-spherical optimization is proposed.

In Chapter 4, for bi-quadratic optimization problem over unit spheres, we reformu-

late the problem as the largest M-eigenvalue computation problem and then generalize

the power method to obtain the reformulated problem. To make the proposed method

more effective, an initialization technique is introduced.

In Chapter 5, for bi-quadratic optimization problems with quadratic constraints,

we first present the relationship between the problems and their corresponding SDP

relaxations. We then propose some approximation solutions for some special cases.
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In previous chapters, we have already raised some questions. Here, the following is

a list of some interesting and challenging problems for future research.

1. Since multivariate polynomials have simple expressions with aid of tensors, it is

of great significance to establish properties and definitions of related tensors.

2. Develop some new applications of polynomial optimization problems in academic

researches and practical applications.

3. For the cubic one-spherical optimization problem, to propose some approximation

solution methods with quality bounds. In addition, it is interesting to establish the

conditions under which the problem is solvable in polynomial time.

4. For the cubic two-spherical/three-spherical optimization problems, propose method

to improve the quality bound obtained in this thesis.

5. To consider the following general polynomial optimization problem:

min A(x(1))m1(x(2))m2 · · · (x(ml))ml

s.t. B(p)(x(1))p1(x(2))p2 · · · (x(ml))pl ≥ 0, for p = 1, 2, · · · , q.

where A is a (m1,m2, · · · ,ml)-order (n1 × n2 × · · · × nl)-dimensional tensor, B(p) is a

(p1, · · · , pl)-order tensor and x(i) ∈ ℜni .

We will continue work on related topics.
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