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ABSTRACT 

Bridge-vehicle interaction problem plays an important role in the bridge 

design, the bridge condition assessment and the overweight vehicle control. The 

topics including dynamic analysis of the bridge structure under moving vehicles 

and the identification of moving vehicle axle loads from the measured bridge 

responses have drawn much attention in recent years.  

Most of the existed approaches to solve the above topics are deterministic in 

which the uncertainty in the bridge-vehicle system and the loading processes is 

ignored. Moreover, the road surface roughness is treated as deterministic samples 

of irregular profile according to its power spectrum density defined in the ISO 

standard. A few research work has addressed the stochastic analysis of 

bridge-vehicle interaction problem in which the road surface roughness and the 

parameters in vehicle system were assumed as Gaussian random 

variables/processes and the perturbation method was employed to handle the 

uncertainties involved. Since the randomness in the bridge structure has not been 

introduced in the bridge-vehicle interaction problem and the perturbation method 

adopted in the previous research works tends to loss accuracy with the increasing 

in variation of uncertainty, the methods proposed in this Thesis aim to fulfill these 

gaps and to provide theoretical studies on the stochastic analysis of the 

bridge-vehicle interaction problem as well as on the identification of vehicle axle 

loads from samples of bridge response with uncertainties in both system 
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parameters and road surface roughness. 

The bridge is modeled as a simply supported planar Euler-Bernoulli beam 

with a vehicle either modeled as multiple forces or a mass-spring system moving 

on top. The finite element method is adopted to build the bridge-vehicle 

interaction model in which the system parameters as well as the road surface 

roughness are assumed as random processes. Firstly, only the randomness in road 

surface roughness is included and to be assumed as Gaussian random process 

represented by the Karhunen-Loève Expansion. Based on the formulated model, 

both the dynamic analysis and the moving force identification are conducted. 

Secondly, the uncertainty in the material properties of the bridge structure which is 

assumed to be small and have Gaussian property is further included. A stochastic 

finite element model is formulated with the Karhunen-Loève Expansion 

representing the Gaussian random processes in the equation of motion of the 

system. Based on the model, a general stochastic moving force identification 

algorithm is proposed to identify the statistics of the vehicle axle loads from 

samples of bridge response with uncertainty in both the excitations and system 

parameters. Finally, to model larger variation of uncertainty in the system 

parameters, the Spectral Stochastic Finite Element Method is adopted with the 

Karhunen-Loève Expansion and the Polynomial Chaos Expansion representing 

the Gaussian and non-Gaussian random processes, respectively. The system 

parameters are assumed as Gaussian random processes and will be further 

extended to non-Gaussian case which is regarded to be more appropriate. Dynamic 
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analysis on the bridge-vehicle interaction problem with large variation of 

uncertainty in both system parameters and excitation forces is conducted. All the 

methods proposed in this Thesis are verified with numerical examples in which the 

Monte Carlo Simulation is adopted to obtain the reference solutions. Results show 

that the proposed methods on the dynamic analysis of the bridge-vehicle 

interaction problem and on the identification of statistics of moving vehicle axle 

loads with uncertainties are effective and with good performance in the response 

statistics prediction even when large variation of uncertainties are existed in both 

the system parameters and the excitations. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Bridge plays an important role in a transportation system, and is directly 

linked to the country’s development as well as people’s daily living. However, it is 

subjected to the damaging effects of the daily traffic and freight trains. The 

importance of investigating the moving loads on top of the bridge deck was first 

recognized in the 19th century. Following the collapses of some railway bridges in 

Great Britain, engineers and researchers began to pay more attention to the 

dynamic behavior of the bridge under moving vehicular loads, and further research 

on new techniques for the bridge design and bridge condition assessment had been 

carried out (Cantieni 1983, 1992; Chan 1988, 1990). The structural conditions of 

the bridge will be affected by the operation loads including the dead load, live load, 

wind load and seismic load, etc. Among these loads, the moving vehicular axle 

load plays a vital role in the condition assessment especially for median span 

bridges.  

The dynamic response of a bridge can be significant and Cebon (1987) 

concluded that the dynamic wheel loads may increase road surface damage by a 

factor of two to four over that due to static ones. In order to evaluate the influence 

of a passing vehicle on a bridge deck, the dynamic problem is converted into a 
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pseudo-static one with a dynamic amplification factor (DAF) in the design codes. 

However, the DAF may not always reveal the true dynamic behavior of the bridge. 

The dynamic responses of a bridge structure subject to moving vehicular loads 

have been studied for decades. Various research works on bridge-vehicle 

interaction (BVI) problem can be found. These works can be categorized into two 

kinds according to the technique employed to decompose the equation of motion 

of the bridge-vehicle system: 

(1) Methods based on modal superposition technique (Green and Cebon 1994; 

Chatterjee et al. 1994; Wang and Chou 1998; Zhu and Law 2002a, 2003a; 

Law and Zhu 2003; Sniady 2008; Li et al. 2008). 

(2) Methods based on finite element method (Wang et al. 1992, 1996; Yang 

and Lin 1995; Henchi et al. 1998; Huang et al. 1998; Lei and Noda 2002; 

Lee and Yhim 2004, 2005; Nallasivam et al. 2007; Ju and Lin 2007). 

In these studies, different vehicle models such as moving force model, 

moving mass model, quarter car model, half car model and multi-axle 

three-dimensional vehicle model considering the pitch and roll effect according to 

American Association of State Highway and Transportation Officials (AASHTO) 

standard (Standard Specification for Highway Bridges 1989) etc. were used. The 

corresponding bridge models include beam model (Euler-Bernoulli beam and 

Timoshenko beam), plate model (single span orthotropic rectangular plate and 

multi-span continuous plate) and box-girder bridge model etc. There are also other 

kinds of bridge models such as the prestressed beam (Kim 2004; Kocaturk and 
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Simsek 2006; Simsek and Kocaturk 2007) and beams with cracks (Mahnond and 

Abou Zaid 2002; Khiem and Lien 2002; Law and Zhu 2004; Bilello and Bergman 

2004; Yang et al. 2008) have been adopted in the bridge-vehicle interaction 

problems. All these research works on the dynamic analysis of bridge-vehicle 

interaction problem are very important achievements for considering the dynamic 

effects rather than static ones. 

On the other hand, due to the importance of vehicle axle load information in 

transportation management and bridge condition assessment, how to acquire 

vehicle axle load accurately and efficiently is another important topic. Traditional 

ways to acquire vehicle axle load by stopping and weighing vehicle using 

weighbridge or loadometers are expensive and subject to bias. Weigh-in-motion 

(WIM) technique (Moses 1979; Davis and Sommerville 1987; Freund and 

Bonaquist 1989; Zhi et al. 1999) was developed for the purpose of obtaining 

vehicle axle loads when vehicle traveling across certain instrumented bridge. 

However, the WIM systems can only measure the equivalent static loads but not 

the peak dynamic wheel loads or the time series of these moving axle loads. Since 

the dynamic vehicular axle load it noted to increase the damage of the pavement, 

therefore, it should be accurately and efficiently acquired. A kind of identification 

technique emerged to meet the need of acquiring the time series of the dynamic 

vehicular axle loads. The main idea of this technique is using the measured bridge 

responses to identify the parameters of bridge-vehicle system from which the 

interaction forces can be subsequently identified. This technique is also called the 
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Moving Force Identification (MFI) technique which can be used to acquire 

vehicular axle loads, to inspect overweigh vehicles, and to further provide data for 

bridge condition assessment and bridge design. These MFI methods can mainly be 

divided into two categories:  

(1) Methods based on a continuous bridge model with the modal superposition 

technique to decouple the equation of motion of the bridge structure with the 

subsequent solution obtained using an optimization scheme, e.g. Time 

Domain Method (TDM) (Law et al. 1997), Interpretive Method II (IMII) 

(Chan et al. 1999), Frequency-Time Domain Method (FTDM) (Law et al. 

1999), State Space Method (SSM) (Zhu et al. 2006) and Identification based 

on genetic algorithm (Jiang et al. 2003, 2004) etc. 

(2) Methods based on discrete bridge model using the finite element method to 

model the bridge structure, e.g. Interpretive Method I (IMI) (O’ Connor and 

Chan 1988), Optimal State Estimation Approach (OSEA) (Law and Fang 

2001), Finite element approach with orthogonal function approximation 

(Law et al. 2004), Finite element approach with update static component 

(USC) technique (Pinkaew 2006) and Wavelet Based Method (WBM) (Law 

et al. 2008) etc.  

Although the aforementioned research works include most aspects in the 

dynamic analysis and moving force identification of the bridge-vehicle interaction 

(BVI), they are all deterministic methods which treat the parameters in 

bridge-vehicle system and other important factors such as road surface roughness, 

 4



traveling velocity of vehicles, etc, as deterministic. The samples of irregular 

profile according to its power spectral density defined in the ISO standard (ISO 

8606:1995(E) 1995) was often adopted to represent the effect of the road surface 

roughness in the dynamic analysis of bridge-vehicle interaction problem. In 

practice, randomness and uncertainties exist in the BVI problem. The excitation 

forces on the bridge deck can be random due to the irregular road profile. The 

uncertainty in the traveling velocity and uncertainties existed in the vehicle body. 

When performing deterministic analysis of the bridge-vehicle interaction problem, 

different sample of response data will be obtained in different computation due to 

different samples of road surface roughness is adopted. Therefore, the response 

statistics have to be included for a full description of the dynamic response of the 

bridge-vehicle system. Besides, the bridge structure often exhibits an inherent 

randomness. For example, the material properties in bridge structure such as the 

Young’s modulus, mass density, sectional area, Poisson ratio, etc. are often 

varying within the system; Moreover, concrete bridges often exhibit a large 

number of cracks, and the models on the cracks can only approximately simulate 

the dynamic behavior of bridge with damage; Similar problems can also be found 

in modeling the effect of prestress in reinforced concrete structures. The 

conventional deterministic analysis generally represents only an “approximation” 

of the actual reality due to unavoidable uncertainties in the structural properties as 

well as in the loading processes. Stochastic analysis should be performed instead 

for the bridge-vehicle interaction problem to give more reliable results to 
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engineers.  

The developments in stochastic computational mechanics provide 

methodologies either for the stochastic modeling of dynamic systems or 

evaluating the response statistics. Both the random excitations and system 

parameters may be assumed as Gaussian/non-Gaussian processes, and they can be 

represented by mathematic tools such as the Auto-Regressive Moving Average 

(ARMA) model (Samaras et al. 1985), Spectral Representation (SR) (Shinozuka 

and Jan 1972), Wavelet Representation (WR) (Zeldin and Spanos 1996), 

Karhunen-Loève Expansion (KLE) (Kac and Siegert 1947) and Polynomial Chaos 

Expansion (PCE) (Wiener 1938) etc. For the dynamic system with random 

excitations and deterministic system parameters, the equation of motion of the 

system which is a stochastic differential equation can be transformed into a set of 

deterministic equations when the random processes involved are represented by 

these mathematical tools. Numerical methods such as the Newmark-β method can 

then be employed to solve these equations to evaluate the response statistics. Great 

effort had been spent on developing techniques to solve the dynamic system with 

inherent uncertainties based on finite element model. It is commonly known as the 

Stochastic Finite Element Method (SFEM) in the past few decades. In most 

stochastic finite element applications, it is necessary to represent a 

continuous-parameter random field in terms of a vector of random variables. This 

process is known as discretization of the random field. Existing methods such as 

the mid-point method (Der Kiureghian and Ke 1988), the spatial averaging method 
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(Vanmarcke and Grigoriu 1983), the shape function method (Liu et al. 1986) and 

the series expansion method (Lawrence 1987; Spanos and Ghanem 1989) can be 

adopted to discretize these continuous random fields. To calculate the statistic of 

the dynamic response with uncertainties in the system parameters, the Monte 

Carlo Simulation (MCS) (Shinozuka 1972) which is a very versatile but 

comparatively time-consuming method, often serves to verify other stochastic 

methods. One of the alternatives which are widely used for evaluating the 

stochastic responses is the perturbation method (Hisada and Nakagiri 

1981).However, this approach is only justified for small deviations from the center 

value and it requires simulations to assess the reliability of results. Another 

approach which is similar to the perturbation method, the Neumann expansion 

method (Shinozuka and Nomoto 1980), also requires simulations to assess the 

reliability of the results. The convergence of the Neumann series representing the 

inverse operator requires the norm of the kernel smaller than one. The Spectral 

Stochastic Finite Element Method (SSFEM) proposed by Ghanem and Spanos 

(1991) overcomes these weaknesses. It is a general technique for the solution of 

complex problems in probabilistic mechanics and is capable of handling variables 

with a large range of variation. In this method, the KLE and/or PCE are employed 

to represent the random processes involved in the mathematical model for a 

structural system. However, it suffers from the curse of exponentially increased 

dimension in the Polynomial Chaos Expansion for the solution when the required 

number of the Karhunen-Loève components for both the system parameters and 
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excitation are large (Stefanou 2009). 

The dynamic analysis of a bridge deck under moving vehicles with 

uncertainties had been carried out by many researchers in recent years based on 

the analysis methods developed in computational mechanics. Some researchers 

considered the randomness in the excitation due to the road surface roughness 

while the system parameters of the bridge and vehicle were treated as 

deterministic. These works can mainly be classified into two categories including 

the frequency domain method (Da Silva 2004; Lin 2006) and the time domain 

method (Schenk and Bergman 2003; Seetapan and Chucheepsakul 2006). Others 

extended the work by introducing randomness in the vehicle modeling 

(Muscolino et al. 2002; Chang et al. 2006, 2009) in which Gaussian assumption 

was made on the system parameters and the perturbation method was employed 

for the solution. However, when the variation of uncertainties increases, the 

Gaussian assumption on the system parameters, which has a very small 

probability to take up a negative value, may lead to inaccurate solution and the 

perturbation method also tends to become less accurate. A stochastic model of 

traffic excitation on bridge in which the arrival of vehicles was assumed to 

follow a Poisson process, was proposed by Chen et al (2009) for the bridge 

structural condition assessment. However, the uncertainty in the arrival of 

vehicles will not be discussed in this Thesis. 

Research work by employing the finite element method should be conducted 

thus more complex structure with uncertainties in both excitation and system 
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parameters can be investigated. Moreover, the uncertainties in the bridge structure, 

which have been ignored in the aforementioned research works, should also be 

taken into account. It has already been mentioned that the modal analysis needs the 

knowledge of model shapes which are difficult to obtain for a complex structure 

with complex boundary condition in the bridge-vehicle interaction problem. Since 

the perturbation method can only handle small variation in random system 

parameters, more powerful methods based on finite element bridge-vehicle model 

should be introduced. 

1.2 Research Objectives 

Research work presented in this Thesis aims to perform a theoretical study of 

the bridge-vehicle interaction problem with uncertainties, to develop new 

methods on stochastic analysis of finite element model of bridge-vehicle system 

and to fill the gap of lacking stochastic moving force identification technique 

considering both randomness in excitations and system parameters. All the 

research work within this scope will be focused on the finite element 

bridge-vehicle interaction model which will be achieved with the completion of 

the following objectives: 

(1) To perform the dynamic analysis of a deterministic bridge-vehicle system 

with randomness in the excitation forces due to the road surface roughness 

and to develop a moving force identification technique based on the 

formulated model in which the mean value and variance of the excitation 
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forces can be identified from the response samples of the bridge deck. 

(2) To develop a bridge-vehicle interaction model with uncertainties in both 

system parameters and excitation forces. Based on the formulated model, 

firstly, the dynamic analysis will be performed and the response statistics 

of the bridge-vehicle system will be evaluated. Then stochastic moving 

force identification with uncertainty in both system parameters and 

excitation will be developed with discussion on the factors which may 

affect the algorithm. 

1.3 Outline of the Thesis 

The contents of this Thesis will be divided into eight Chapters. The outline is 

given as follows: 

In Chapter one, research background as well as the research gap of the 

existing dynamic analysis and moving force identification will be introduced. The 

research objectives are stated as above. An outline of the Thesis is also given at the 

end of this Chapter. 

In Chapter two, a detail literature review on existing research work related to 

the following topics will be addressed: deterministic dynamic analysis of 

bridge-vehicle interaction, deterministic moving force identification techniques, 

the randomness existing in bridge-vehicle interaction problem, the mathematical 

tools on representation of random process and the stochastic modeling techniques 

for engineering structures and the dynamic analysis of bridge-vehicle interaction 
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with uncertainties. 

In Chapter three, the bridge-vehicle system is modeled as a planar simply 

supported Euler-Bernoulli beam with moving forces on top. In order to introduce 

uncertainty to the moving forces, the basic theory of Karhunen-Loève Expansion 

and the representation of multi-dimensional Gaussian random processes using 

these tools are next addressed. The system modeling with Gaussian uncertainties 

in the excitation forces as well as the response statistics calculation of the bridge 

structure are introduced next. Numerical simulations will be conducted to verify 

the proposed algorithm and different factors which may affect the accuracy of the 

proposed algorithm will be investigated. Two kinds of force model will be 

adopted in the numerical simulation of the excitation on the bridge deck:  

(1) In Force Model I, the mean value of each force contains a deterministic 

component composed of two sine waves with different frequencies and a 

constant Coefficients of Variation (COV) at each time instance with 

Gaussian property. 

(2) In Force Model II, the mean value of each force is the same as in Force 

Model I and the random part of each moving force is assumed as a 

zero-mean Gaussian random process with a Power Spectral Density (PSD) 

function according to the ISO standard (ISO 8606:1995(E) 1995). 

In Chapter four, the bridge-vehicle system is modeled as a planar simply 

supported Euler-Bernoulli beam with a four degrees-of-freedom mass-spring 

system moving on top. The road surface roughness according to the ISO standard 
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(ISO 8606:1995(E) 1995) is introduced and regarded as the source of randomness 

in the interaction problem. The mathematical model is formulated and based on 

which the response statistics of the bridge-vehicle system is evaluated. Similarly, a 

moving vehicle axle load identification algorithm is proposed to quantify the mean 

value and variance of the interaction forces which are usually difficult to obtain 

from direct measurements from the “measured” response samples. 

In Chapter five, the uncertainties in the system parameters are included in the 

bridge-vehicle interaction model. The material properties of the bridge structure 

are assumed as Gaussian random processes. The bridge-vehicle system is modeled 

as a planar simply supported Euler-Bernoulli beam with moving forces on top. 

When the level of randomness in the system parameters is assumed not large, the 

response of the bridge is approximated by Gaussian random processes. The 

mathematical model of the bridge-vehicle system is formulated by adopting the 

finite element method and with the Gaussian random processes represented by the 

Karhunen-Loève Expansion, and the accuracy of which is verified with the 

numerical examples. A general moving force identification algorithm based on the 

formulated model with uncertainties in both system parameters and excitation 

forces are also proposed in this Chapter. 

In Chapter six, the assumption on the small variation of the system 

parameters is removed, and the bridge-vehicle interaction model with uncertainty 

in system parameters in the bridge structure is modeled by the Spectral Stochastic 

Finite Element Method (SSFEM) which is a powerful modeling technique that can 
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handle large uncertainties in the finite element model of a structure with good 

accuracy. The bridge-vehicle system is modeled as a planar simply supported 

Euler-Bernoulli beam with moving forces on top. The system parameters and 

excitation forces, which are assumed as Gaussian random processes will be 

represented by the Karhunen-Loève Expansion (KLE). The response of the bridge 

structure, which may have non-Gaussian properties, will be represented by the 

Polynomial Chaos Expansion. The accuracy of the model is verified in the 

numerical simulation with cases of large variation of uncertainties in system 

parameters. Since the stochastic system parameters with Gaussian assumption will 

have a small probability to take up negative values, it may lead to inaccurate 

solution. The non-Gaussian assumption is further adopted and the dynamic 

analysis of the bridge-vehicle interaction with non-Gaussian system parameters is 

performed. Due to the curse of exponentially increased dimension for Polynomial 

Chaos Expansion (PCE) for the solution when the required number of the 

Karhunen-Loève components for both the system parameters and excitation are 

large, a reduced Polynomial Chaos Expansion for non-Gaussian random processes 

is introduced to improve the efficiency of the dynamic analysis of the 

bridge-vehicle interaction problem with non-Gaussian uncertainty in system 

parameters. Numerical simulations will be conducted to investigate the accuracy 

of the proposed models with both the full PCE and reduced PCE, and the results 

are compared with those from the Monte Carlo Simulation. 

In Chapter seven, the dynamic analysis of the bridge-vehicle system with the 
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bridge modeled as a planar simply support Euler-Bernoulli beam with 

uncertainties in material properties and a moving vehicle modeled as a four 

degrees-of-freedom mass-spring system is performed. The road surface roughness 

is modeled as a Gaussian random process with a Power Spectrum Density (PSD) 

function defined according to the ISO standard (ISO 8606:1995(E) 1995). The 

cases with the Gaussian/non-Gaussian assumption for the material properties of 

the bridge structure are investigated. The mathematical model is formulated with 

the SSFEM and verified by the Monte Carlo Simulation in the numerical 

simulations. Different factors such as the order of Polynomial Chaos used and the 

level of randomness in both system parameters and excitation, etc., which may 

affect the accuracy of the proposed model, will be investigated. 

In Chapter eight, conclusions are drawn from the research work presented in 

the Thesis. Due to the limitation of the time and the author’ knowledge, some 

recommendations on the future work related to the bridge-vehicle interaction 

problem with uncertainties are addressed. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Deterministic Analysis of Bridge-Vehicle 

System 

The dynamic response of a bridge structure subject to moving vehicular loads 

has been studied for decades. Various research works on bridge-vehicle interaction 

(BVI) problem can be found.  

A general summarization has been included in the monograph written by 

Fryba (1999). Various types of moving forces includes constant, harmonic, 

arbitrarily varying in time, moving system with two-degrees-of-freedom, moving 

multi-axle system and moving random loads. The structure model includes 

single-/multi-span uniform/non-uniform beam, beam with elastic/non-elastic 

properties, beam/plate on elastic foundation and beam subject to axial forces. 

Beams with various boundary conditions subject to a moving load was also 

studied, and various factors which may influence the dynamic response of 

structure under moving forces, such as the velocity of the moving forces, the ratio 

between the weight of vehicle and beam, the initial conditions, the damping of the 

beam structure and etc. were discussed.  

A detailed review of the more recent developments in dynamic analysis of the 

deterministic bridge-vehicle interaction problem will be listed in this Chapter. 
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Since different research works have been done on this topic in which similar 

research was carried out by different scholars, a selected review will be given and 

the corresponding conclusions will be summarized. These works can mainly be 

categorized into two categories according to the method adopted to decompose the 

equation of motion of the bridge-vehicle system. 

2.1.1 Methods Based on Modal Superposition Technique 

Amongst various methods in the dynamic analysis of the bridge structure 

under moving vehicle, the modal superposition technique is typically used to 

decompose the equation of motion of the system in which the response of structure 

is represented by a set of modal shapes with different amplitudes. The equation of 

motion of a dynamic system, which is a partial differential equation, is 

transformed into a set of ordinary differential equations which can be easily solved 

by numerical methods such as the Newmark-β method. Existing research 

employing the modal superposition technique will be reviewed.  

With the bridge deck modeled as an Euler-Bernoulli beam, Green and Cebon 

(1994) gave the solution to the dynamic responses of the deck under a 

“quarter-car” vehicle model in the frequency domain using an iterative procedure. 

The algorithm was validated by extensive experiments on a typical highway 

bridge. Modal tests showed that beam and plate models of the bridge dynamics 

gave reasonable predictions on the measured vibration mode shapes and natural 

frequencies of the bridge. Results from the vehicle tests indicated that the method 
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proposed was accurate for predicting the dynamic response of short-span highway 

bridges under heavy vehicle loads. An analysis method for a beam with 

non-uniform cross-section and with a time varying concentrated force traveling on 

the top was proposed by Gutierrez and Laura (1997). The vibrational behavior of 

an elastic homogeneous isotropic beam with different boundary conditions due to 

a moving harmonic force was studied by Abu-Hilal and Mohsen (2000). Law and 

Zhu (2005) investigated the influence of braking on a multi-span non-uniform 

bridge deck under moving vehicle axle forces. Results showed that vehicle braking 

generates an equivalent impulsive force covering a wide range of the frequency 

spectrum. In this case, a large number of vibration modes are required in the 

computation for a higher accuracy in the dynamic responses of the structure. 

With the bridge deck modeled as a Timoshenko beam, the vibration of a 

continuous bridge deck under a vehicle modeled as a mass-spring system with 

two-degrees-of-freedom was carried out by Chatterjee et al. (1994). Wang (1997) 

proposed a modal analysis method to investigate the vibration of a multi-span 

Timoshenko beam under a moving force. The ratio of the radius of gyration of the 

cross-section to the span length was defined as a parameter, and the effect of this 

parameter on the first modal frequency of the beam was studied. Wang and Chou 

(1998) employed the large deflection theory to derive the equation of motion of the 

Timoshenko beam due to the couple effect of an external force with the weight of 

the beam. Results showed that the effect of weight of the beam increases the 

fundamental natural frequency of the structure. Both the dynamic deflection and 
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moment of the beam predicted by the theory including the effect of weight of beam 

are less than those predicted either by the small deflection theory or by the large 

deflection theory without including the effect of weight of beam. A dynamic 

analysis of a Timoshenko beam subject to a moving force was also investigated by 

Sniady (2008) in which a closed form solution was provided. 

When the bridge deck is modeled as a plate, Marchesiello et al. (1999) 

presented an analytical approach to the vehicle-bridge dynamic interaction 

problem with a seven-degrees-of-freedom vehicle system moving on a multi-span 

continuous bridge deck modeled as an isotropic plate. Both the flexural and 

torsional mode shapes were included in the study. An iterative method was 

adopted to calculate the responses of the bridge and vehicle separately, i.e. the 

equations of motion of the bridge and vehicle system were not coupled. The 

theoretical modes, defined by means of the Rayleigh-Ritz approach, had been 

found to be in good agreement with that from the finite element model. Zhu and 

Law (2003a) investigated the dynamic behavior of a rectangular orthotropic plate 

under moving loads Results showed that the impact factor of the plate increases 

with the ratio between the flexural and torsional rigidities of the plate, and the 

equivalent beam model of the bridge deck could give an accurate estimate on the 

impact factor along the centerline of the deck. But it would underestimate the 

dynamic response along the edge of the structure. A further study was carried out 

(Zhu and Law 2002a) on a more complex model with a two-axle 

three-dimensional vehicle model with seven degrees-of-freedom according to the 
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H20-44 vehicle design loading (Standard Specification for Highway Bridges 1989) 

moving on a multi-lane continuous bridge deck. The dynamic behavior of the 

bridge deck under single and several vehicles moving in different lanes was 

analyzed using the orthotropic plate theory and modal superposition technique. 

The impact factor is found varying in an opposite trend with the dynamic 

responses under the different loading cases in this study. 

2.1.2 Methods Based on Finite Element 

Finite Element Method (FEM) is a powerful technique originally developed 

for numerical solution of complex problems in structural mechanics. It is a 

numerical technique for finding approximate solutions of partial differential 

equations (PDE) as well as of integral equations. The solution approach is based 

either on eliminating the differential equation completely (steady state problems), 

or rendering the PDE into an approximate system of ordinary differential 

equations, which are then numerically integrated using standard techniques such 

as Newmark-β method, Runge-Kutta method, etc. In the Finite Element Analysis 

(FEA) of a structure, shape functions are assumed for specific finite elements to 

establish a relationship between the nodal displacements and the displacement 

field. According to the relationships that exist in the displacement and strain, and 

in the strain and stress, the system stiffness matrix can be obtained from the 

relationship between the nodal forces and nodal displacements via the minimum 

potential energy principle. Compared with the modal superposition technique 
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which needs modal shapes in decomposing the system equation which may be 

difficult to obtain for complex structures, the finite element method is capable of 

handling more complex bridge-vehicle models with complex boundary conditions 

in the dynamic analysis. Since the research work conducted on simple finite 

element model of the bridge-vehicle system had already been summarized in the 

monograph by Fryba (1999), the research works on complex models will be 

presented in the following paragraphs to show the advantage of the FEM. 

Wang et al. (1992; 1996) investigated the dynamic loading of girder bridges 

with different girder number and span length due to several vehicles moving 

across bridge decks with rough surface. The vehicle was simulated as a nonlinear 

model with eleven-degrees-of-freedom according to the HS20-44 truck in the 

AASHTO specifications (Standard Specification for Highway Bridges 1989). The 

maximum impact factors in different girders of bridges were obtained for different 

number of loading trucks, road surface roughness, transverse loading positions and 

the vehicle speeds. Huang et al. (1998) developed a procedure for obtaining the 

response of thin-walled curved box-girder bridges due to the HS20-44 truck model. 

The analytical results show that most impact factors of torsion and distortion are 

much larger than those from vertical bending responses. The impact factors of 

normal stress at different points in the same cross-section are quite different. 

Research work on a highway steel bridge with the effect of longitudinal grades 

under an eleven-degrees-of-freedom HS20-44 truck was also carried out by Huang 

and Wang (1998). The dynamic responses of three steel multi-girder bridges with 
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different span lengths due to multiple vehicles moving across rough bridge decks 

with different vehicle speeds are evaluated. Henchi et al. (1998) proposed an 

efficient algorithm for the dynamic analysis of a bridge discretized into 

three-dimensional finite elements with a system of vehicles running on top at a 

prescribed speed. The vehicular axle loads acting on the bridge deck were 

represented as nodal forces using shape functions. The coupled equations of 

motion of the bridge and vehicle model were solved directly without the use of 

iterative method. Numerical simulation showed that the proposed coupled method 

was much more efficient that the uncoupled iterative method. It is also declared 

that there is no limitation on the complexity (number of degrees-of-freedom) of 

the bridge structure in this method if the stability criterion was satisfied. Lee and 

Yhim (2004) studied the dynamic responses of single and two span continuous 

composite plate structures subject to multi-moving loads with the third-order plate 

theory. Results showed that the maximum deflection of symmetric laminates to 

dynamic loading was superior to that of the anti-symmetric laminates. However 

the differences in dynamic resistance for anti-symmetric layup sequences were 

similar to those of the symmetric cases. The authors (2005) also investigated the 

dynamic behavior of long-span box-girder bridges subject to moving vehicles with 

numerical simulation and experimental verification. Similar work was done by 

Kim et al. (2005) and Li et al. (2008) with numerical simulation of vehicles 

traveled along a girder bridge. Field test data was used to verify the proposed 

algorithm. Nallasivam et al. (2007) analyzed the impact effect on curved 
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box-girder bridges due to moving vehicles. The results highlighted that the impact 

factors of a curved box-girder bridge corresponding to torsion, distortion and their 

corresponding bimoments had been observed to be generally very high, while 

those of the other responses were also relatively higher than that of similar straight 

box-girder bridges. The analysis of bridge-vehicle dynamic response with the 

effect of braking and acceleration was studied by Ju and Lin (2007) with a finite 

element model. Numerical examples indicated that the bridge longitudinal 

response was more sensitive than the bridge vertical response when the vehicle 

braking or acceleration was active, especially for higher piers. 

There are also other kinds of method based on finite element model specially 

for interaction problems, such as the “moving element method”, in which the 

beam model is discretized into elements that ‘flow’ with the moving vehicle. A 

series of works has been carried out by Yang and co-workers in the 1990s (Yang 

and Lin 1995; Yang et al. 1995; Yang and Yau 1997) on bridge-vehicle element 

using the dynamic condensation. A vehicle-bridge interaction (VBI) element 

firstly introduced by Yang and Wu (2001) was used to solve the bridge-vehicle 

interaction problem. It is quite versatile to deal with vehicle models of various 

complexities, ranging from the moving load, moving mass, sprung mass, to 

suspended rigid bar, and etc.. Pan and Li (2002) used the method to solve the 

transient response of a vehicle-structure interaction problem in time domain. This 

method was also employed to model a train traveling along the railway beam (Koh 

et al. 2003). A car of the moving train was modeled as a mass-spring-dampers 
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system of three-degrees-of-freedom, and the rail was modeled as an infinite 

Euler-Bernoulli beam. Thus the ‘element’ would never reach the end of the beam. 

Contrasting to FEM, the moving vehicle always acts at the same point in the 

numerical model, thereby eliminating the need for keeping track of the contact 

point with respect to individual elements. Similar ‘moving element’ method was 

also proposed by Wu (2005a, 2005b, 2007) in which the method with “moving 

distributed mass element” was adopted to solve the problem of dynamic analysis 

on beam, frame and plate structures under moving forces. 

2.1.3 Other Research Work 

2.1.3.1 Response of Bridge with Prestressing Forces 

For an unbonded prestressed bridge, the prestressing force produces an axial 

force effect as well as a bending moment due to the eccentricity of prestressed 

tendons. The prestressed bridges are commonly modeled as axial loaded beams 

though the measured modal frequencies from beams or bridges show an opposite 

trend to that from the axial loaded beam theory (Saiidi et al. 1994). However, the 

axial loaded beam model had been adopted in theoretical analyses. Law and Lu 

(2005) studied the time domain responses of an unbonded prestressed beam 

modeled as an axial loaded beam on which a prestressed force identification 

algorithm was also proposed. Kocaturk and Simsek (2006) used Lagrange 

equations to study the dynamic response of eccentrically prestressed visco-elastic 

Timoshenko beams under a moving harmonic load, and the same problem was 
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further studied using higher order shear deformation theory (Simsek and Kocaturk 

2006). Although the effect of prestress force has been investigated in recent year 

for bonded prestress beams (Hamed and Frostig 2006), the dynamic analysis of 

such bridge model can rarely be found.  

2.1.3.2 Response of Bridge with Damage 

Research work on dynamic behavior of bridge with damage under moving 

forces has been carried out by many scholars. Mahmoud and Abou Zaid (2002) 

proposed a rotational spring model to simulate the effect of transverse cracks in 

simply supported undamped Euler-Bernoulli beams subject to a moving mass on 

which the dynamic analysis was performed. The presence of cracks resulted in 

higher deflections and it altered the beam response patterns. In particular, the 

largest deflection in a damage beam for a given speed needs longer time to build 

up, and a discontinuity appears in the slope of the beam-deflected shape at the 

crack location. Experimental validation of damage beams modeled by rotational 

spring model under a moving mass was carried out by Bilello and Bergman (2004) 

in which good agreement with the theoretical predictions was shown. Moreover, 

the percentage of variation in the beam response due to damage was, in general, 

larger than those in the structural natural frequencies. Law and Zhu (2004) studied 

the dynamic behavior of damaged reinforced concrete bridge structures under a 

moving vehicle modeled as either a moving mass or a moving mass-spring system. 

The damage function proposed by Abdel Wahab et al. (1999) was adopted in the 

study which is capable of representing either open or breathing crack model. Both 
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the numerical simulation and the experimental verification were conducted. 

Results showed the damage model used was accurate enough to describe the crack 

damage in the concrete bridge beam. The relative frequency change (RFC) and 

absolute frequency change (AFC) of the beam varied when the vehicle was 

moving on the bridge deck. They are sensitive to the weight of vehicle, and the 

frequency ratio between vehicle and bridge had some effect on the RFC and AFC. 

It is noted that the RFC would be a useful parameter in damage detection of bridge 

structure because it is very sensitive to damage. Yang et al. (2008) presented an 

analytical study on the free and forced vibration of inhomogeneous 

Euler-Bernoulli beams containing open edge cracks. The rotation spring model 

was adopted to model the cracks. Factors which may affect the dynamic deflection 

of the beam including the total number of cracks, slenderness ratio, boundary 

conditions, moving speed of force, etc. were examined. Results showed that the 

natural frequencies decreases and the dynamic deflection increases due to the 

presence of the edge crack and the axial compressive force. The natural 

frequencies were greatly influenced by the edge cracks while the dynamic 

deflection was not very sensitive to the presence and the location of crack. Both 

free vibration and dynamic response were much more affected by the axial 

compression than by the edge cracks.  

2.2 Deterministic Moving Force Identification 

The vehicle axle load and the gross weight information are very important 
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factors for bridge design and bridge condition assessment. Overweight vehicles 

will cause excessive damage to the load pavement and bridge structure. How to 

obtain vehicle axle load accurately and efficiently in order to achieve a reliable 

assessment of bridge condition and effective control of the transportation network 

becomes a crucial problem and it draws attention of many researchers. 

Traditional ways to acquire vehicle axle load by stopping and weighing 

vehicle using weighbridge or loadometer is expensive and subject to bias. Drivers 

of overweight vehicles may try to avoid the check points on the road because of the 

fear of penalty. It seems that an effective way to avoid this is to monitor vehicular 

weights all the time with some sort of undetectable weigh-in-motion stations.  

2.2.1 Weigh-In-Motion Technique  

To meet the need of controlling the overweight vehicles, considerable 

research work and tests have been carried out worldwide since the late 60s and 

early 70s on equipment and schemes for weighing vehicles at highway speed 

(Moses 1979; Davis and Sommerville 1987; Freund and Bonaquist 1989; Zhi et al. 

1999). Two famous research projects, namely, COST 323 and WAVE, were carried 

out in Europe (Jacob 1994; Jacob and O’Brien 1996). The Weigh-in-Motion (WIM) 

systems can mainly be categorized into two types, namely the road-surface system 

and the under-structure system (Law et al. 1997).  

Weigh-in-Motion systems can obtain the vehicle axle loads for bridge and 

pavement design. However, the above system can only measure the equivalent 
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static loads but not the peak dynamic wheel loads or the time series of moving axle 

loads. In fact, the dynamic response of a bridge due to dynamic moving loads can 

be significant, and Cebon (1987) concluded that the dynamic wheel loads may 

increase road surface damage by a factor of two to four over that due to static ones. 

For this reason the studies on dynamic wheel loads and ways to measure them had 

always been of interest. The dynamic wheel loads have been described in different 

terminology such as pavement loads, tyre forces, contact forces and interaction 

forces, etc. Basically, all of them refer to the dynamic variation of the interactive 

forces exerted from the vehicular axle and acting on the contact surfaces. Three 

systems had been used to acquire such data: (1) Tyre Pressure Transducer System; 

(2) Strain-Gauged Axle Housing Transducer System; and (3) Wheel Force 

Transducer System. Whittemore et al. (1970) and Cantieni (1992) had separately 

given a summary of the above three systems. These systems were subject to bias 

because they all used instrumented vehicles to measure dynamic axle loads which 

prompt the need to develop a system to measure dynamic interaction forces using 

an unbiased random sample of vehicles.  

2.2.2 Moving Force Identification Technique 

A method based on force identification provides an effective way to solve the 

above problem. The main idea of this method is using the measured bridge 

responses to identify the parameters of a bridge-vehicle system, and subsequently 

to identify the contact forces. This method is also called the Moving Force 
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Identification (MFI) technique which can be used to acquire vehicle axle loads, 

inspect overweight vehicles, and to prepare data for bridge design and bridge 

condition assessment. 

The first MFI method was proposed by O’Connor and Chan (1988) named as 

the Interpretive Method I (IMI). Consequently, various methods on different 

bridge-vehicle system were developed to identify the interactions force between 

bridge and vehicle based on vibration theory and system identification technique. 

In the literature review on the MFI method, the bridge models including the 

Euler-Bernoulli beam model, Timoshenko beam model, orthotropic plate model, 

multi-span plate model etc were adopted. MFI algorithm on prestressed beams can 

also be found (Law et al. 2008). The vehicle was commonly modeled as moving 

forces, moving masses or the two-axle vehicle model, etc. These methods can 

mainly be divided into two categories: 

(1) Methods based on modal superposition technique with a continuous bridge 

model.  

In this kind of method, the modal superposition technique is firstly employed 

to decouple the equation of motion of the bridge and force model to a set of 

ordinary differential equations. Then the relationship between the moving forces 

and bridge responses in each mode can be formulated. Finally, the inverse problem 

can be solved by least-squares estimation with regularization or other optimization 

methods. Methods within this kind include: 

 Time Domain Method (TDM).  
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This method was firstly proposed by Law et al. (1997) in which the 

relationship of moving axle force and modal response is formulated by 

convolution integral. The discrete form of equation of motion of the system 

for each vibration mode can be obtained by assuming the time series of 

moving forces to be step functions in small time intervals. The time varying 

forces on a simply supported beam can be identified by solving the resulting 

discrete equations. The application of this method on identifying the moving 

forces on a multi-span continuous bridge was investigated by Zhu and Law 

(2000, 2001a, 2002b). The research was also extended to study the possibility 

of identifying axle loads when applied to real bridge-vehicle system with road 

surface roughness and incomplete vehicle speed. Experimental tests showed 

that the method can identify individual axle loads travelling at non-uniform 

speed with small error (Zhu and Law 2003c). The effect of bearing stiffness on 

the bridge support was also included in this MFI procedure by Zhu and Law 

(2006). 

 Interpretive Method II (IMII). 

This method was firstly proposed by Chan et al. (1999) in which the 

bridge was modeled as a planar simply supported Euler-Bernoulli beam with a 

single force moving on top. The bridge responses at various locations, such as 

the vertical displacement or bending moments, were transformed to modal 

values. The central different method is used to numerically differentiate the 

modal displacements to obtain the corresponding modal velocities and modal 
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accelerations. Then the values of the axle load at any time instance can be 

obtained by solving the linear equations using least-squares method. The IMII 

was adopted to identify the moving forces on a multi-span continuous 

Timoshenko beam with non-uniform cross-section (Zhu and Law 1999) and a 

generalized orthogonal function approach was also proposed to obtain the 

derivatives of bridge modal responses from the strain measurements instead 

of direct differentiation (Zhu and Law 2001b). 

 Frequency-Time Domain Method (FTDM). 

This method was proposed by Law et al. (1999) in which Fast Fourier 

Transform (FFT) was performed on the ordinary differential equations after 

applying the modal superposition technique. A relationship between the 

moving forces and the bridge responses in frequency domain can be 

formulated in terms of the Frequency Response Function (FRF). The 

equations in frequency domain are discretized and least-squares method is 

applied to solve the equation. Finally the time history of moving forces can be 

obtained by performing the inverse Fourier transformation. The regularization 

method (Law et al. 2001) and the SVD technique (Yu and Chan 2003) were 

adopted in the inverse procedure respectively to improve the accuracy of this 

method. 

 State Space Method (SSM). 

This method was firstly proposed by Zhu and Law (2001c) combined 

with a high-precision integration method. The bridge was modeled as a 
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non-uniform continuous Euler-Bernoulli beam. Hamilton principle and modal 

superposition were employed to establish the system model including the 

mass, damping and stiffness matrices in state space, and then the identification 

procedure is performed with regularization. Application of this method on a 

plate model can be found in Zhu et al. (2006) and Law et al. (2007). 

 Method of Moments (MOM) based algorithm. 

This method was proposed by Yu et al. (2008a, 2008b) in which the 

moving vehicle loads were described as a combination of whole basis 

functions, such as the orthogonal Legendre or Fourier series, and the force 

identification can be transformed into a parameter identification problem. 

 Identification based on genetic algorithm. 

This method was proposed by Jiang et al (2003, 2004) in which the 

acceleration signals of a bridge model at selected locations were adopted and 

the corresponding velocities and displacements were obtained by integration. 

Pseudo-inverse and singular value decomposition were first employed to 

arrive at approximations of the moving forces and a genetic algorithm is then 

used to find the best estimated value of the forces by minimizing the errors 

between the measured accelerations and the reconstructed ones in each 

generation. 

(2) Methods based on finite element method (FEM) on discrete bridge model. 

The finite element method is adopted to model the bridge structure. A 

location matrix (or vector for the case with one moving force) is introduced for the 
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moving forces with which the concentrate forces applied on the bridge deck can be 

transformed into nodal forces. Based on the formulated finite element model, 

moving force identification can be conducted in which the least-squares estimation 

with regularization or other optimization methods are adopted to identify the 

moving forces. Methods of this kind include: 

 Interpretive Method I (IMI). 

This method was proposed by O’Connor and Chan (1988). The bridge 

structure is modeled with an assembly of lumped masses interconnected by 

massless elastic beam elements, and thus the nodal responses of 

displacements and bending moments at any time instance can be related to the 

moving forces. The forces are then identified from the responses (Chan and 

O’Connor 1990). 

 Optimal State Estimation Approach (OSEA). 

This method in which a vector was introduced to indicate the location of 

the moving forces in the finite element model of the bridge deck was firstly 

proposed by Law and Fang (2001). The bridge-vehicle model is formulated in 

the state space and the moving forces are identified in the time domain by 

adopting the dynamic programming technique to overcome the weakness of 

having large fluctuations in the identified results. The method was later 

applied in vehicle axle load identification of a three dimensional bridge under 

a moving truck by Gonzalez et al. (2008). The first-order regularization was 

adopted instead of the zeroth-order regularization to improve the accuracy of 
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the identified results from contaminated response data. 

 Finite Element approach with orthogonal function approximation. 

The method was proposed by Law et al. (2004) in which the same idea of 

OSEA is employed for the moving force identification. Orthogonal functions 

were employed to curve fit the strain or displacement signals, and the 

velocities and accelerations can then be accurately calculated through 

differentiation. The force identification problem is then transformed into a set 

of linear equations which is solved with the least-squares method with 

regularization taking the coefficients as unknowns. The improved reduction 

system (IRS) scheme (O’Callahan 1989) was employed to reduce the 

degrees-of-freedom (dofs) of the bridge structure The dofs which are 

measured in field tests were retained as contrast to the use of the selection 

matrix in OSEA to achieve the same purpose. 

 Finite Element approach with update static component (USC) technique.  

This method was proposed by Pinkaew and Akarawittayapoom (2003). It 

is an iterative method based on finite element model in which the moving 

loads to be identified were decomposed into static and dynamic components. 

The static component was updated iteratively until convergence is achieved in 

the identified moving forces (Pinkaew 2006). This method was further 

verified in experimental tests (Pinkaew and Asnachinda 2007) and the 

application of which was extended to more complex bridge-vehicle models 

(Asnachinda et al. 2008). Results show that the method is very accurate even 
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with relative large level of noise in the measured bridge response. 

 Wavelet Based Method. 

This method was firstly proposed by Wu and Shi (2006) in which the 

nodal responses and nodal forces were represented with wavelet basis. By 

employing a Galerkin procedure, the relationship between the coefficients of 

responses and the coefficients of moving forces in the wavelet domain is 

formulated. The wavelet coefficients of moving forces can be identified by 

solving the set of equations and the time history of forces can be obtained by 

signal reconstruction. The method was further applied on identifying vehicle 

axle loads on a prestressed bridge structure by Law et al. (2008). 

In the group of moving force identification methods based on modal 

superposition, the SVD technique was firstly suggested by Yu and Chan (2002; 

2003) in solving the linear problem with pseudo-inverse using bending moment of 

bridge response which greatly improved the accuracy of the TDM and FTDM. 

Theoretical reviews of four method including IMI, IMII, TDM and FTDM and the 

corresponding comparative studies including experimental tests have been 

conducted by Chan et al. (2001a; 2001b). Parameters including the speed of 

vehicles, sampling frequency, axle-spacing-to-span ratio (ASSR) and the 

sensitivity to noisy data were studied. Numerical simulations and experiments in 

laboratory showed that the accuracy of these four methods was independent of 

sampling frequency and both the IMII and TDM were also independent of the 

speed of vehicle. However, the accuracy of IMI was significantly affected by the 
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ASSR and noise level. If the number of bridge modes was equal to the number of 

sensors, IMII would be good for applications with any ASSR and a low level of 

noise. TDM and FTDM were suitable for any case studied but time consuming. 

The potential of the above four identification methods were again studied by Yu 

and Chan (2007). A comparison between TDM and the finite element approach 

with orthogonal function approximation was given by Zhu and Law (2002c). 

Results showed that the latter gave consistently smaller error in the results for all 

noise levels while the accuracy of TDM was affected by noise to a large extent. 

The orthogonal function approximation of response signals was shown to be 

effective in filtering the high-frequency noise components in the responses. It was 

also emphasized that pre-processing of the measured data to remove the 

measurement noise should be conducted before the identification. It should be 

noted that the two kinds of functions which are commonly used in MFI, i.e. the 

orthogonal functions and cubic spline interpolation, have different performances. 

As contrast to the orthogonal functions which are capable of smoothing the signal, 

cubic spline interpolation do not have such benefit. But it is a very accurate 

method for obtaining the differentiation of the interpolated signal and it can be 

used in IMII instead of central difference method to achieve better performance. 

MFI technique based on finite element model is suitable for solving problem in 

bridge models with complex boundary conditions while the TDM and FTDM are 

not applicable due to the difficulty to obtain the vibration mode shapes for such 

structure. Moreover, TDM and FTDM are very time consuming when there are 
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multiple forces on top of a complex structure. The road surface roughness is a very 

important factor and it has always been considered in most of the moving force 

identification procedures in which deterministic samples are adopted to represent 

the effect of the road surface roughness. The random nature of the road surface 

roughness will be further discussed in the stochastic analysis of bridge-vehicle 

interaction problem in this Thesis. It should also be noted that other methods 

(Thite and Thompson 2003a, 2003b; Nordstrom and Nordberg 2004; Liu and 

Shepard 2005; Lu and Law 2006; Nordberg and Gustafsson 2006a, 2006b) had 

been adopted in force identification may also be applicable for the moving force 

identification problem. 

2.2.3 Model Condensation Technique 

The structural analysis on large-scale bridge/buildings is computationally 

expensive or sometimes even impractical with the full degrees-of-freedom model. 

Similarly in the inverse problems of the force or parameter identification, 

structural response measured from field test is limited, i.e. to obtain the structural 

responses at all the degrees-of-freedom (dofs) of the structure is impractical due to 

the limitations of responses and measuring techniques. The model condensation 

techniques can help to alleviate the problems. Since model condensation 

techniques play a very important role in structural dynamic analysis and the 

inverse analysis especially for large-scale structural systems, a brief review on this 

topic will be given in this Section. 

 36



The first model condensation method is called Guyan/Iron method (Guyan 

1965; Iron 1965) which is a static condensation method. Considering a system 

with only static forces Fm applied on selected dofs. Partitioning the stiffness matrix 

and response vector gives 
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where the subscript ‘m’ and ‘s’ denote the master (selected) dofs and slave 

(truncated) dofs, respectively. From the second equation in Equation (2.1), the 

relationship between the selected response vector xm and the truncated response 

vector xs can be obtained as 

msmsss xKKx 1−−=                         (2.2) 

The response vector x can be formulated from the selected response xm as 
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where  is the static transformation matrix between the full state 

vector x and the master coordinates vector x
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m. The condensed mass and stiffness 

matrix MRs, KRs, respectively, can be expressed as 

s
T
sRs MTTM = ,                  (2.4) s

T
sRs KTTK =

where M and K are respectively the system matrices before reduction. The 

eigen-solution for the condensed system can be denoted as 

( ) 02 =− mRsRs uMK ω                      (2.5) 

where ω2 and um are respectively the eigenvalues and eigenvectors of the 

condensed system. It is noted that any frequency response functions generated 
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from the reduced matrices in Equation (2.4) are exact only when frequency is 

equal to zero. For a dynamic system with an excitation frequency, the neglected 

inertia effect will become more significant which may cause condensation error in 

this method. Since improper selection of dofs in model condensation may result in 

singularity of the eigenvalue problem, several selection schemes (Shan and 

Raymund 1982; Matta 1987) of the master dofs were developed to improve the 

accuracy. These schemes can also be adopted in other model reduction methods 

reviewed in this Section. 

In order to improve the Guyan/Iron method, the dynamic condensation 

method was developed to include the inertia terms neglected in Equation (2.1) 

(Kuhar and Stahle 1974; Miller 1980). The equation becomes, 
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The eigenvalue problem becomes, 

02 =
⎭
⎬
⎫

⎩
⎨
⎧
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

s

m

sssm

msmm

sssm

msmm

x
x

KK
KK

MM
MM

ω              (2.7) 

Thus the truncated response vector xs can be obtained in terms of xm as 

[ ] [ ] mdmsmsmsssss xTxMKMKx =−−−=
− 212 ωω              (2.8) 

where [ ] [ ]smsmssssd MKMKT 212 ωω −−−=
−  is the dynamic transformation 

matrix between the full state vector and the master coordinates. It is noted that the 

eigenvalueω in Td is unknown. This problem could be solved by selecting a 

system frequencyω  beginning with an initial zero value. A new transformation 

matrix based on the updated eigenvalue is calculated. The process is repeated until 
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the eigenvalue no longer changes. After obtaining the dynamic transformation 

matrix, the condensed mass and stiffness matrix MRd, KRd, respectively, can be 

expressed as 

d
T
dRd MTTM = ,                  (2.9) d

T
dRd KTTK =

To avoid the matrix inverse in calculating Td, using the binomial theorem and 

neglecting the higher order terms ofω up to , T2ω d can be obtained as 

[ ] [ ] [ ] [ ]smsmsssssssmsmssssd MKKMIKMKMKT 21121212 ωωωω −−−=−−−=
−−−−  

[ ][ ] ( )[ ]smsmsssssmsssmsmssssss MKKMKKMKKMIK −+−=−+−= −−−− 1212121 ωωω  

(2.10) 

Substituting Equations (2.8) and (2.10) into Equation (2.7) and neglecting the 

higher order terms of ω compared to ω2, it gives 

( ) ( ) msmssmsmmmsmssssssmssmssmsmm xKKKKxKKMKKKKMM 11112 −−−− −=−−ω  

(2.11) 

From Equation (2.11), the eigenvalue can be calculated directly without the 

need of iteration. In fact, the eigenvalue calculated from Equation (2.11) equals to 

the one calculated from Guyan/Iron method which can be expressed as 

mRsmRs uKuM =2ω                       (2.12) 

where MRs, KRs are the matrices as shown in Equation (2.4). Employing the 

relationship formulated in Equation (2.12), the dynamic transformation matrix Td 

can be obtained from the following equation, 

( )[ ]RsRssmsmsssssmssid KMMKKMKKT 111 −−− −+−=          (2.13) 

where MR and KR are the system mass and stiffness after reduction. Tid is the 
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transformation matrix for a new model condensation method called the Improved 

Reduction System (IRS) method. The formulation including Equations (2.10) to 

(2.13) was proposed by Gordis (1992).  

The same dynamic transformation matrix Tid was also derived by O’Callahan 

(1989) with a different procedure. The following is a brief introduction. 

Considering a static force F applied on all the dofs of a structure and performing 

the same partition as in Guyan/Iron method, Equation (2.1) becomes 
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where Fs is the force applied on the slave dofs. The truncated set of equations in 

Equation (2.14) is 

ssssmsm FxKxK =+                      (2.15) 

Solving the Equation (2.15), xs can be calculated as 

sssmsmsss FKxKKx 11 −− +−=                   (2.16) 

Thus the full state vector x can be expressed as 

Fdms xxTx +=                        (2.17) 

where Ts has been shown in Equation (2.3) and xFd is the truncated distributed 

force adjustment defined as 
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According to Equations (2.12) and (2.14), the full modal vector u can be 

expressed in terms of the selected vector um using the static reduction, i.e. 

. xmsuTu = Fd can be obtain as 
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mRRsssssmssFd uKMTMKuMTKx 1121 −−− == ω         (2.19) 

Combine Equations (2.18) and (2.19), 

( ) mIRSmRRssssss uTuKMTMKTx =+= −− 11           (2.20) 

where  

( )[ ]RRsmsmsssssmssIRS KMMKKMKKT 111 −−− −+−=        (2.21) 

It is noted that TIRS in Equation (2.21) is identical to Tid shown in Equation 

(2.13). The mass and stiffness matrices for the reduced system shown in Equation 

(2.13) or (2.21) have superior performance than that in Guyan/Iron method since 

the deleted inertia effect has been included. The improved mass and stiffness 

matrices for the reduced system become 

IRS
T
IRSRI MTTM = ,              (2.22) IRS

T
IRSRI KTTK =

The IRS method is relatively insensitive to the number and location of the 

dofs comparing to the two methods mentioned above. 

The IRS method was further improved and modified to become iterative by 

other researchers which are called the Iterative IRS method (IIRS). There are two 

kinds of IIRS method. The first one was proposed by Blair (1991). Since the 

transformation matrix for IRS utilized the reduced mass and stiffness matrices 

approximated by the Guyan/Iron method, an improvement can be made by using 

the newly approximated matrices described in Equation (2.22) and a better 

transformation matrix can be constructed by iterations on Equation (2.21), that is 

( )[ ]iRIiRIsmssssmssiIRS T ,
1

,
1

1, KMMMKKT −−
+ −+−=          (2.23) 

and Equation (2.22) becomes 
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1,1,1, +++ = iIRS
T

iIRSiRI MTTM ,         (2.24) 1,1,1, +++ = iIRS
T

iIRSiRI KTTK

The second kind of IIRS method (Friswell 1995) made further improvement 

by modifying Equation (2.23) as 

( )[ ]iRIiRIsmiIRSsssmssiIRS ,
1

,,
1

1, KMMTMKKT −−
+ −+−=         (2.25) 

2.3 Stochastic Analysis of Bridge-Vehicle System 

2.3.1 Source of Randomness 

Although most of the deterministic analysis of bridge-vehicle interaction 

problem consider the road surface roughness as an uncertain factor, yet it is 

conventionally treated in a deterministic manner, i.e. the road surface roughness 

was considered as deterministic samples of irregular profile according to its power 

spectral density defined in the ISO standard (ISO 8606:1995(E) 1995). The 

randomness in the excitation forces on the bridge deck may be caused by the road 

surface roughness, the random velocities of vehicles, the random arrivals of 

vehicles and uncertainties in the vehicle system. When performing deterministic 

analysis of a bridge under moving vehicle, different samples of response data will 

be obtained in different computation due to the different samples of road surface 

roughness adopted. Thus the response statistics have to be estimated in the 

dynamic analysis for a full description of the response of the bridge-vehicle 

system under moving vehicle. Besides, when expressing the problem in a literal 

sense, the bridge-vehicle system often exhibits an inherent randomness. For 

example, the values of system parameters in the bridge structure such as the 
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Young’s modules, mass density, sectional area, Poisson ratio and etc. have a 

distribution. Moreover, concrete bridges in use often contain local damages. 

Uncertainties are also existed in modeling the prestressing effect and the 

constraints in bridge structure. The conventional deterministic analysis generally 

represents only an “approximation” of the actual reality due to these unavoidable 

uncertainties in the structural properties as well as in the loading processes. 

Stochastic analysis should be performed instead for the bridge-vehicle interaction 

problem. 

2.3.2 Stochastic Methods in Structural Dynamics 

2.3.2.1 Representation of the Stochastic Process 

The representation of the stochastic process plays a very important role in 

stochastic analysis of engineering structure. The uncertainties in engineering 

structures are often represented by stochastic processes (or variables) which can be 

represented by mathematic tools. System equations may become much easier to 

solve with the representation of the stochastic processes involved, e.g. the 

stochastic system equations will be transformed into a set of deterministic 

equations. These mathematical tools include: the autoregressive moving average 

(ARMA) model (Gersch and Yonemoto 1977), filtered (Spanos and Hansen 1981) 

or Poisson (Grigoriu 1996) white noise model, Spectral Representation (SR) 

(Shinozuka and Jan 1972), Karhunen-Loève Expansion (KLE) (Kac and Siegert 

1947), Polynomial Chaos Expansion (PCE) (Wiener 1938) and Wavelets 
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Representation (WR) (Spanos and Failla 2004), etc. 

Among the various tools aforementioned, the Spectral Representation 

method appears to be most widely used (Schuëller 1997). In this method, sample 

functions of the stochastic processes or fields are generated according to 

prescribed power spectrum density information. For the stationary or homogenous 

case, the Fast Fourier Transform (FFT) is utilized for improving the computational 

efficiency. The Spectral Representation generates ergodic sample functions, each 

of which exactly fulfills the requirements of the target power spectrum. The 

spectral representation-based algorithm can be extended to non-stationary case 

with the generation of stochastic waves, and to the incorporation of non-Gaussian 

stochastic fields by a memoryless nonlinear transformation together with an 

iterative procedure to match the target spectrum density (Yamazaki and Shinozuka 

1988; Deodatis and Micaletti 2001) or via the sampling theorem (Grigoriu 1998). 

Karhunen-Loève Expansion is another method that is capable of representing 

Gaussian (Kac and Siegert 1947) as well as non-Gaussian (Phoon et al. 2002, 2005) 

stochastic processes (or fields). The most important property of this expansion is 

that the spatial random fluctuations can be decomposed into a set of deterministic 

functions in the spatial variables multiplied with random coefficients that are 

independent of these variables. Thus a large number of correlated random 

variables can be reduced to a few more important uncorrelated ones. Hence the 

representation is most suitable for band-limited colored excitations and stochastic 

finite element representation of random media. The Karhunen-Loève Expansion is 
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a mean-square convergent representation technique irrespective of the 

probabilistic structure of the process with a finite variance. The closer a process is 

to white noise, the more terms are required in its expansion. It might also be 

utilized to represent the uncorrelated but non-independent random variables in 

other expansion, e.g. the Polynomial Chaos Expansion, with a new set of 

independent Gaussian random variables. 

Polynomial Chaos Expansion (PCE), which is often regarded as a 

generalization of the above Karhunen-Loève Expansion, has been proposed for 

applications where the covariance function is not known a-priori (Ghanem and 

Spanos 1991). For the special case of a Gaussian random process, the PCE 

coincides with the KLE. The Polynomial Chaos Expansion is adjustable in two 

ways: increasing the number of random variables involved in the expansion results 

for a refinement in the random fluctuations, while an increase of the maximum 

order of the polynomial captures nonlinear (non-Gaussian) behavior of the 

process. 

Similar to the deterministic case, wavelet analysis is often used to avoid the 

missing of local features in time or space domain in Fourier analysis (Schuëller 

2006). The Wavelet Presentation of random process is also studied in stochastic 

senses (Dijkerman and Mazumdar 1994; Spanos and Failla 2004; Spanos et al. 

2005). The “detail capturing” features of wavelets may prove advantageous for 

system identification and damage detection purposed. However, it is not obvious 

that wavelets possess overwhelming advantages over traditional methods such as 
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Spectral Representation or ARMA model, etc. (Schuëller 1997). 

2.3.2.2 Stochastic Response Calculation 

The evaluation of the stochastic response of structures is the main theme in 

stochastic mechanics.  

Monte Carlo Simulation (MCS) (Shinozuka 1972) is a powerful tool for 

handling stochastic system even with highly nonlinear and large number of 

random variables. Traditional MCS is time consuming which limits the application 

of this ‘universal’ method. With the evolution of digital computers, MCS is 

increasingly utilized to generate samples of the stochastic response for systems 

where no analytical solution is available. However, it is most widely used for 

checking and verifying approximate analytical results on the stochastic response in 

this research study.  

The analytical procedures based on the representation of the stochastic 

process have been developed to simulate the system with uncertainties and 

numerical methods can be employed to solve the system equation to obtain the 

response statistics. These methods with correlation analysis, spectral analysis, 

wavelet analysis, Karhunen-Loève Expansion and Polynomial Chaos Expansion, 

etc, have been successfully developed. 

2.3.3 Stochastic Finite Element Method 

The system of an engineering structure and its environment often exhibits a 

certain extent of randomness. In the last two decades, many researchers have 
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interest in the research on structures with uncertainties. The Stochastic Finite 

Element Method (SFEM) modeled the structure with finite elements with random 

properties and it is one of most important development widely used in stochastic 

analysis of engineering structures. Seven monographs on this method are available 

(Nakagiri and Hisada 1985; Ghanem and Spanos 1991; Qiu and Liu 2003; Kleiber 

and Hien 1993; Haldar and Mahadevan 2000; Elishakoff and Ren 2003; Qin et al. 

2006). These literatures cover various methods for modeling the random fields and 

solving the stochastic finite element problem. 

The issues in SFEM can mainly be distinguished into three categories. The 

first issue is the discretization of the random field of the structure containing 

uncertainty in system parameters. The second one addresses the methods for 

evaluating of the stochastic response of the Finite element model. The third one is 

the estimation of the response statistics. 

2.3.3.1 Discretization of Random Fields 

In the dynamic analysis of structures with uncertainties, the material 

properties are often modeled as spatially correlated continuous stochastic 

processes (or fields) which are usually characterized in terms of statistics such as 

the mean values and auto-correlation functions. The stochastic processes (or fields) 

representing the random material properties may be assumed statistically Gaussian 

or non-Gaussian. Although the SFEM is based on the discretization of strain or 

stress field, the SFEM requires a second discretization of the random fields 

associated with the system parameters, which is not necessarily identical to the 
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other discretization. It should be noted that different kind of discretization of 

random fields will lead to different number of random variables needed for 

representing, thus affecting the response statistics of the structure. The 

discretization of random fields is very different from the concept of element 

meshing in deterministic finite element method where different finite element 

mesh only affects the accuracy of the responses of structure when the number of 

element not too small. Most of the research work on the SFEM utilizes the 

discretization of finite element to describe the stochastic field of system 

parameters. This can facilitate the formulation of SFEM since the system 

parameters can be assumed to be constant within an element. The solution 

regarding the response statistics are highly influenced by the discretization used. 

Research on the effect of mesh size (Mahadevan and Haldar 1991; Li and Der 

Kiureghian 1993; Liu and Liu 1993) had been conducted and it was suggested that 

the mesh size should be carefully selected by examining the correlation of the 

stochastic field of the structure which may be characterized by the correlation 

distance (Shinozuka and Deodatis 1988; Schuëller and Brenner 1996) or the scale 

of fluctuation (Vanmarcke 1983; Schuëller and Brenner 1996). 

There are several methods available for discretization of a random field and a 

review of which was given by Li and Kiureghian (1993). A new and efficient 

discretization based on the principles of optimal linear estimation theory was also 

proposed. These discretization methods are midpoint method, local averaging 

method, weighted integral method, shape function method, and series expansion 
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method, etc.  

In the midpoint method (Der Kiureghian and Ke 1988), the field within the 

domain of an element is described by a single random variable representing the 

value of the field at the central point of the element. The value within the field of 

the element is assumed to be a constant.  

The local averaging method proposed by Vanmarcke and Grigoriu (1983) 

described the field within each element in terms of the spatial average of the field 

throughout the element. This definition would expect a better fit over the midpoint 

method because of the averaging process.  

Takada (1990) and Deodatis (1990) proposed the concept of weighted 

integral that involved element integration of the stochastic fields and deterministic 

weighting functions on the basis of a variational theorem when spatially varying 

material properties were taken into account. The weighted integral method can be 

used effectively without increasing the number of random variables for the case 

where a finer discretization is needed in the mid-point method. The midpoint 

method tends to lead to an over-estimation of the variance of the response and the 

local average method gives an underestimation, while the weighted integral 

method leads to the most accurate results.  

The shape function method (Liu et al. 1986) described a random field with an 

element in terms of a set of nodal values and the corresponding shape functions. In 

this case, the nodal realization of the discretized field is a continuous function 

which is different from those in the midpoint method and local average method 
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which are stepwise functions with discontinuities along the element boundaries.  

Another method for random field discretization is the series expansion 

method based on the representation of the stochastic field. This method was 

introduced by Spanos and Ghanem (1989) by employing the Karhunen-Loève 

Expansion. The field is thus represented by a finite set of random variables with 

truncation. 

2.3.3.2 Methods for Evaluating the Stochastic Responses 

After the discretization of the random field, the methods for evaluating the 

stochastic response of the finite element model will be reviewed.  

Monte Carlo Simulation (MCS) (Shinozuka 1972) is always applicable for 

solving engineering problems modeled with finite element and with uncertainty in 

system parameters. It is a versatile method where accurate results including the 

probability density distribution of random responses can be obtained with 

sufficient runs. However, the MCS is time consuming and it has been traditionally 

employed to verify the results from newly developed analytical methods in 

stochastic computational mechanics. A direct application of the MCS in the finite 

element analysis of structures with random non-uniformity of material properties 

can be found in Reusch and Estrin (1998). 

The Perturbation Method (PM), which is well-known as one of the effective 

methods for general nonlinear problems, has also been adopted to estimate the 

response statistics of a finite element model with uncertainties. It is considered to 

be one of the most widely used methods due to its analytical tractability and 
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computational efficiency. Each stochastic quantity of a system is expanded into a 

series with deviations in the stochastic parameters at their mean values under the 

assumption of small variation. By comparing the coefficients of different order of 

perturbations, a set of deterministic equations can be obtained to relate the 

stochastic excitations and the stochastic responses. The pioneering application of 

PM in problems of mechanical engineering where the structural shape is uncertain 

was carried out by Hisada and Nakagiri (1981). Extensive applications using the 

perturbation-based FEM in the stochastic analysis of structure with uncertainties 

can be found. A stochastic finite element modeling in linear transient heat transfer 

problem was proposed by Hien and Kleiber (1997) based on the combination of 

the second-order perturbation technique and second-moment analysis. A dynamic 

and reliability analysis of a complex nonlinear structural system subject to random 

forces using the PM method was proposed by Moon et al. (2004). A reliability 

analysis on linear structure with parameter uncertainty subject to non-stationary 

earthquake was carried out using the PM-based stochastic finite element method 

by Chaudhuri and Chakraborty (2006). Free vibration analysis and reliability 

analysis of a rotating beam with random properties under a stochastic load 

modeled as a stationary white noise were investigated by Hosseini and Khadem 

(2005, 2007) with the second-order perturbation method. The PM based stochastic 

finite element method was adopted by Onkar et al. (2006) to conduct the buckling 

analysis of laminated plates with random material properties and by Pandit et al. 

(2008) to study the deflection statistics of laminated sandwich plates with random 
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material properties. 

For the inverse problem, ,a model updating method was proposed by Xia and 

Hao (2003) to detect the structural damage based on the PM-based stochastic finite 

element model. An improved perturbation method for stochastic finite element 

model updating was proposed by Hua et al. (2008). In the aforementioned 

applications, the first- and second-order perturbation method is commonly used 

under the assumption of small deviations from the center value and only the first 

two moments are obtained. Though the higher order perturbation can be 

formulated in a similar way, it is rarely done due to its huge computational efforts 

and the unavailability of information on higher-order moments of the stochastic 

input parameters (Elishakoff and Ren 2003). 

It is well known that the inverse of an operator in an equation can be 

expanded in a convergent series (Mikhlin 1957). The adoption of the Taylor series 

expansion in the inverse of the operator in the system equation to obtain the 

random fluctuation of the displacement will result in exactly the same equations as 

those obtained by the perturbation technique (Elishakoff and Ren 2003). The 

Neumann expansion method for stochastic finite element method was firstly 

introduced by Shinozuka and Nomoto (1980). Similar to the Perturbation Method, 

the Neumann expansion method requires simulations in order to assess the 

reliability of the results and it is also quite difficult to extend it to obtain higher 

order moments than the first two. The stochastic finite element method with 

Neumann expansion was employed by Chakraborty and Dey (1998) to analysis a 
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multi-degrees-of-freedom linear structural system involving uncertain parameters 

subject to harmonic excitation in the frequency domain. This stochastic finite 

element method was also employed by Chakraborty and Sarkar (2000) to obtain 

the solution of a curved beam on uncertain elastic foundation. A comparison 

among the Neumann expansion based SFEM, the PM based SFEM and the MCS 

based SFEM was carried out by Lei and Qiu (2000). An improved form of 

Neumann expansion method was introduced by Ghanem and Spanos (1991) in 

which the Neumann expansion is conjunction with a Galerkin based finite element 

method where the Karhunen-Loève expansion is employed to represent random 

parameters in the random operator. This improvement leads to an explicit 

expression in the solution process as a multivariate polynomial function of a set of 

uncorrelated random variables from which the statistical moments of the solution 

can be obtained. Similar work had been done by Hussein et al. (2008) and Galal et 

al. (2008) in which the Neumann expansion and the Polynomial Chaos were 

adopted. The adoption of KLE (or PC) in the Neumann expansion-based SFEM is 

a useful improvement. However, the convergence of the series to represent the 

inverse operator requires the norm the kernel L-1Π smaller than one, where L and 

Π are deterministic and random operators in a structural system, respectively. 

The Spectral Stochastic Finite Element Method (SSFEM) (Ghanem and 

Spanos 1991) which is capable of handing complex and general problems in 

probabilistic mechanics with high level of randomness in both system parameters 

and excitations was developed to overcome weaknesses of the previous methods. 
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In this method, the KLE is employed to represent the continuous Gaussian random 

field of material properties with a countable set of random variables. For the 

random response solution where the covariance function is not known a-priori, the 

Polynomial Chaos is adopted to represent. The Polynomial Chaos is also 

commonly adopted in this method to represent non-Gaussian material properties.  

Since the SSFEM will be employed in the stochastic analysis of 

bridge-vehicle system in this Thesis, a detail review on the development and the 

application studies of SSFEM will be conducted. The monograph on SSFEM by 

Ghanem and Spanos (1991) was focused on the basis theory of stochastic 

modeling and analysis of structure with uncertainties in finite element.  

An implementation of the SSFEM to fulfill the need of this method when 

applied to the dynamic analysis of stochastic vibration system was further 

presented by Ghanem (1999a) where the modeling of uncertainty in system 

parameters was further extended to non-Gaussian/non-linear cases. The SSFEM 

was coupled with the element-free Galerkin method by Kim and Inoue (2004) to 

provide an alternative analysis tool in the problems with random material 

properties and structures with complex meshing. Since the system matrices in the 

SSFEM tend to be much larger than those in the deterministic FEM, two 

approaches including an iterative solution scheme and the method based on 

hierarchical basis concept were presented by Ghanem and Kruger (1996) to 

achieve an efficient solution. The proposed algorithms can dramatically reduce 

the amount of computation in the numerically solution. Similar iterative solution 
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of a linear model based on SSFEM was also studied by Pellissetti and Ghanem 

(2000). A substructure coupling technique integrating with the SSFEM based on 

orthogonal decompositions and projections of stochastic processes was also 

presented by Sarkar and Ghanem (2003) to improve the efficiency of computation. 

A model reduction of the stochastic representation for a better computational 

efficiency of the spectral stochastic Galerkin schemes in the solution of partial 

differential equations with stochastic coefficients was proposed by Doostan et al. 

(2007). Various applications can be found to analyze engineering problems with 

random material properties with SSFEM. Le Maitre et al. (2001a, 2001b) 

employed the SSFEM as a solver for the fluid flow problem. Similar studies for 

uncertainty quantification in Computational Fluid Dynamic (CFD) problem was 

proposed by Knio and Le Maitre (2006). Ngah and Young (2007) applied the 

SSFEM to predict the performance of a composite structure with variable material 

constitutive properties. Foo et al. (2007) investigated the solution of riser-sections 

with uncertain measured pressure loads and/or uncertain material properties with 

generalized Polynomial Chaos. An efficient solution of a stochastic system 

modeled with SSFEM (Ghanem et al. 2007) was applied on an embankment dam 

problem in which the SSFEM solution consisting of high dimensional polynomials 

in Gaussian independent variables was obtained for the coarse mesh problem. The 

attained solution was used to define a new basis for solving the fine mesh problem. 

The idea proposed shows the possibility of application of the SSFEM in the 

stochastic analysis of uncertain engineering structures even with extremely large 
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number of degrees-of-freedom.  

There are other stochastic finite element methods which provide alternative 

ways to solve engineering problem with stochastic material proprieties including 

Stochastic Response Surface Method (SRSM) (Isukapalli et al. 1998; Huang and 

Kou 2007; Huang et al. 2007), Stochastic Reduced Basis Method (SRBM) (Nair 

and Keane 2002; Mohan et al. 2008) and methods based on variational principles 

(Ren et al. 1997; Lei and Qiu, 2000; Asokan and Zabaras 2006), etc. 

2.3.3.3 Estimation of the Response Statistics 

When the stochastic system equation is solved numerically, the estimation of 

response statistics is the last step. It is very important for the perturbation method 

and Neumann expansion method since the results from which can not be directly 

used for reliability analysis. The estimation approaches can be divided into three 

categories including the statistical approach, the non-statistical approach and the 

hybrid approach (Schuëller 1997). 

Statistical approaches are based on a finite number of deterministic analyses 

using samples of the system parameters according to their original probability 

density functions. The Monte Carlo Simulation is categorized as one of these 

approaches, which transforms the basic stochastic fields associated with the 

system parameters into those of the system response fields by using many samples. 

Other sample techniques such as Latin Hypercube Sampling (McKay et al. 1979), 

etc. can be employed to generate the field of random parameters to achieve higher 

efficiency. The updated Latin hypercube sampling which is regarded as one of the 
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most important efficient sampling technique was first proposed by Florian (1992). 

It was an extension of the work of McKay et al. (1979). Further improvements had 

also been made by Huntington et al. (1998). 

Non-statistical approaches refer to those methods directly estimates the 

response function of the random variables or discretized stochastic fields. The 

Perturbation Method, Neumann expansion method and the SSFEM are belonging 

to this type. The response statistics of the first two methods require simulation of 

random variables to assess the reliability of the results. However, the results of 

SSFEM can be directly used for response statistics since the set of random 

variables are orthogonal and the moments of responses can be directly obtained by 

the deterministic coefficients calculated form the eigenvalue analyses of the 

covariance kernel. 

The response surface method (Faravelli 1989, 1990) is one of the hybrid 

methods which were firstly approximated with the aid of the non-statistical 

approaches, and then the response statistics are computed by substituting digitally 

generated stochastic fields into the above response surface. Statistical approaches 

such as the Monte Carlo Simulation requires an enormous amount of computation 

effort. More efficient methods have been proposed to reduce the sample size 

including the efficient sampling techniques such as important sampling, Latin 

hypercube sampling, etc. which are also denoted as “variance reduction 

techniques” as well as response surface method. The response surface method 

(Huang and Kou 2007) has been intensively adopted to solve problems where the 
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physical properties exhibit spatial random variation. Although most of the 

relevant literatures used the above sampling techniques and the response surface 

method, these techniques are limited to problems involving a small number of 

random variables. Application of the above techniques to SFEM is not 

straightforward, primarily due to the large number of correlated random variables, 

thus the techniques such as the KLE are employed to discretize the continuous 

stochastic field to reduce the number of random variables. Also a combination of 

statistical approach and non-statistical approach was proposed to improve the 

efficiency of calculation. Yamazaki et al. (1988) proposed a method which 

combined the Neumann expansion and Monte Carlo simulation. A combination of 

the SSFEM and Monte Carlo Simulation was also proposed by Huang et al. 

(2007). 

2.3.4 Stochastic Forward Problem of Bridge-vehicle 

Interaction 

The development in stochastic computational mechanics provided a 

foundation for solving stochastic bridge-vehicle interaction problem. Research 

work on the dynamic response of a bridge deck under random moving force 

excitations has been carried out by many researchers.  

Some researchers only considered the randomness in the excitation due to the 

road surface roughness and the system parameters in both bridge and vehicle 

model were treated as deterministic. A general study on the stochastic analysis of a 
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simply supported beam with a random force moving on top with constant velocity 

was carried out by Fryba (1999). Research work addressed on this aspect can 

mainly be classified into the following categories: 

 Method based on MCS. 

In this method, the dynamic response of a bridge-vehicle system is directly 

evaluated with MCS. The Monte Carlo Simulation was employed by Sasidhar and 

Talukdar (2003) to study the non-stationary response of a simply supported girder 

bridge induced by the vehicle travelling at variable speed with the road surface 

roughness assumed as random process. O’Brien et al. (2006) studied the bridge 

roughness index (BRI) as an indicator of bridge dynamic amplification using 

Monte Carlo Simulation. Results showed that there is a clear correlation between 

the BRI and the dynamic amplifier factor (DAF).  

 Frequency domain method. 

In this method, the response of a bridge-vehicle system is evaluated in 

frequency domain. Lin (2006) developed a spectral approach in which the random 

forces were assumed as a series of sinusoidal waves and the variation of bridge 

deflections due to a moving vehicle was evaluated. A closed-form solution on the 

variances of the bridge deflections in frequency domain was also presented. For 

the dynamic analysis of the bridge-vehicle system, the representation of the 

vehicle effect is not accurate since the effect of inertia has been ignored. Li et al. 

(2002) investigated the vibration analysis of a coupled bridge-vehicle system in 

which the vehicle was modeled as a moving oscillator. Da Silva (2004) used 
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quarter vehicle model with one axle and two degrees-of-freedom to investigate the 

dynamic performance of highway bridge decks with irregular pavement surface 

via spectral density analysis in frequency domain. Results showed that the effect 

due to interaction of the vehicles with an irregular pavement surface was much 

more significant than that produced by the load mobility alone. These dynamical 

effects increased drastically with the decrease of the pavement surface quality. The 

pseudo excitation method combined with moving element method was employed 

by Lu et al. (2009) to study non-stationary random vibrations of a bridge-vehicle 

system. 

 Time domain method. 

In this method, the response of a bridge-vehicle system is evaluated in time 

domain. The random vibration of a simply supported Euler-Bernoulli beam 

subject to random loads moving with time-varying velocity was studied by Zibdeh 

(1995). Similar study on laminated composite beam was investigated by Zibdeh 

and Abu-Hilal (2003). A uniform Euler-Bernoulli beam with different boundary 

conditions subject to a random moving concentrated force was investigated by 

Abu-Hilal (2003). Results showed that the fixed-fixed and the pinned-fixed beams 

behaved, in general, similar to pinned-pinned beam. Closed form solutions for the 

mean and variance of the responses for an Euler-Bernoulli, Rayleigh and 

Timoshenko beam models under a random moving load with constant covariance 

were obtained using correlation analysis by Zibdeh et al. (2004). Results showed 

that Timoshenko model has the largest dynamic effect among the three models. 
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Dynamic behavior of multi-girder bridges under heavy trucks was investigated by 

Liu et al. (2002) based on the correlated road surface roughness where the spatial 

coherence function is approximately taken as a constant. Schenk and Bergman 

(2003) investigated the second moment characteristics of a linear system under a 

moving concentrate load in which the surface roughness was modeled as spatial 

Gaussian and stationary colored noise. Seetapan et al. (2006) studied the dynamic 

response of a two-span beam subject to a two degrees-of-freedom vehicle in time 

domain. The road surface roughness was modeled by filtered white noise, and the 

equation of the coupled vehicle-bridge system was formulated in state space. 

Statistical moments of the state vectors were obtained by solving the first-order 

Lyaponov equation. Reliability analysis of bridge-vehicle interaction was also 

evaluated by Xiang et al. (2007) with a time domain transfer matrix method. 

Others extended the work by introducing randomness in the system modeling 

in which Gaussian assumption was made on the system parameters. 

Fryba et al. (1993) performed the stochastic finite element analysis with the 

first order perturbation method, and the first order second moment method was 

adopted to evaluate the variance of the deflection and bending moment of a beam 

on foundations with uncertain damping and stiffness under a moving force. The 

effects of the number of finite elements, vehicle speed, etc. were investigated and 

different correlation functions such as the exponential covariance, cosine 

covariance were tested. The dynamic analysis of an Euler-Bernoulli beam excited 

by a moving oscillator with random mass, velocity and acceleration was 
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investigated by Muscolino et al. (2002) with the improved perturbation approach. 

Chang et al. (2006, 2009) studied the dynamic response of an Euler-Bernoulli 

beam subject to a moving oscillator/half-car model with uncertain parameters such 

as random mass, stiffness, damping, velocity as well as acceleration. Modal 

analysis was used to obtain governing equations of motion with time-dependent 

random coefficients. The improved perturbation technique was adopted to 

evaluate the statistical characteristics of deflection of the beam and the method 

proposed was verified by Monte Carlo Simulation. The reliability analysis for a 

bridge-vehicle system with uncertainties in excitation forces, material properties 

of bridge and the irregular profile was performed by Cho et al. (2010) with an 

improved response surface method. 

There are situations which may need to model the uncertainty in system 

parameters with large variations. Research (Da Silva 2004) showed that the effects 

due to interaction of the vehicles with an irregular pavement surface, in some cases, 

were even larger than those due to the static presence of the vehicles. When the 

quality of pavement surface is poor, large uncertainties due to road surface 

roughness need to be taken into account. The perturbation based SFEM is suitable 

for handling the case with small uncertainty. However, when the system response 

at a certain time instance has strong nonlinear behavior with respect to the system 

parameters, the lower-order approximation of perturbation may fail to estimate the 

response statistics (Schuëller 1997). A more effective method should be adopted 

for the stochastic analysis of bridge-vehicle interaction problem with large 
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uncertainties.  

The stochastic aspects in moving force identification of bridge-vehicle 

system have not been investigated by researchers. The research work in this Thesis 

aims to fill this gap with new methods proposed for the stochastic dynamic 

analysis of bridge-vehicle system with uncertainties and new techniques 

developed for the stochastic moving vehicle load identification and for the 

quantification of the randomness in the excitations. 
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CHAPTER 3 

BEAM-LOAD SYSTEM WITH UNCERTAINTY 

IN EXCITATION 

3.1 Introduction 

Existing approaches of moving force identification treat the beam-load 

system as deterministic in which the identified results do not have any statistical 

prediction them. In fact, uncertainties exist in both the interaction forces and 

structural responses, and their existence erodes the accuracy of the identified 

moving loads. In this Chapter, a new method will be proposed to evaluate the 

dynamic response of bridge structure under random moving forces which are 

assumed as Gaussian random. The Karhunen-Loève Expansion will be adopted to 

represent these random processes. A new model will be formulated for the 

dynamic analysis of bridge-vehicle interaction problem with randomness in 

excitation based on which a stochastic moving force identification technique is 

presented with the statistics of the moving force time histories identified from 

samples of the structural responses. Numerical simulations with two forces 

moving over a simply supported beam will be conducted to verify the proposed 

forward analysis method as well as the stochastic moving force identification 

algorithm with the Monte Carlo Simulation. 
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The beam-load model formulated with the finite element method is given in 

Section 3.2. Basic theory of the Karhunen-Loève Expansion as well as its 

application to represent a multi-dimensional Gaussian random process vector will 

be addressed in Section 3.3. The model formulated by using KLE is developed and 

the forward analysis as well as the response statistics of the beam will be 

conducted in Section 3.4. The stochastic moving force identification with 

uncertainties based on this model will be proposed in Section 3.5. Numerical 

simulation will be conducted in Section 3.6 which includes the verification of the 

forward analysis, the proposed identification algorithm and a comparison between 

the proposed stochastic moving force identification with an existing deterministic 

method. A summary will be given at the end of this Chapter. 

3.2 Equation of Motion of Beam under Moving 

Forces 

The structure is modeled as a planar simply supported beam with multiple 

moving loads on top as shown in Figure 3.1. The equation of motion can be 

expressed as 
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where A is the cross-sectional area, ρ is the mass per unit length. c and EI are the 

damping and the flexural rigidity of the beam, respectively. w(x,t) is the 

displacement of the beam. vi is the speed of the ith moving load Fi(t). δ(t) is the 

Dirac delta function. NF is the number of moving loads. 
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Employing the Hermitian cubic interpolation shape functions and with the 

assumption of Rayleigh damping, the equation of motion of the structure can be 

rewritten as 

FHRKRCRM bbbb =++ &&&                         (3.2) 

where Mb, Cb and Kb are the deterministic mass, damping and stiffness matrices of 

the beam structure, R, R& and R&& are the deterministic nodal displacement, velocity 

and acceleration response vectors respectively and HbF is the equivalent nodal 

load vector of the moving forces with 
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where Nd is the number of degree-of-freedom of the beam structure after 

considering the boundary condition. The shape function Hi can be written for this 

structure in the global coordinate as 
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where xj(t) is the location of the jth force on the ith element at time t with (i-1)l ≤ xj(t) 

<il and l is the length of the beam element. 

The nodal responses of the bridge model under the moving forces can be 
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obtained directly by solving Equation (3.3). The displacement of the bridge at 

position x and time t can then be expressed as: 

( ) ( ) ( )txtxw RH=,                               (3.5) 

where ( ){ }000)( LL
T
ixx HH =  and ( )TixH  is the shape function of the beam 

structure. H(x) is a 1×Nd vector with zero entries except at the ith beam element on 

which the force is located. 

3.3 Karhunen-Loève Expansion 

The Karhunen-Loève Expansion (KLE), which is also known as “Proper 

Orthogonal Decomposition” (POD) or “Principal Component Analysis” (PCA) is 

a powerful and elegant method for data analysis aiming at a low-dimensional 

approximation of a high-dimensional process. The equivalence of the above three 

techniques was investigated by Liang et al. (2002) and Wu et al. (2003). This 

kind of expansion minimizes the mean-squares error by representing the random 

field in finite number of terms (Schenk and Schuëller 2005). A mathematical 

background of KLE with a discussion on the properties was provided by Hall et 

al. (2006). 

The KLE has already been widely adopted in image processing and data 

compression, and a review of the application of KLE in structural analysis is given 

in this Section. The application of KLE in structural analysis mainly includes the 

deterministic modal analysis and stochastic process representation. A technical 

research report was presented by Newman (1996a; 1996b) on the model reduction 
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technique with a dynamic system by adopting the KLE. The “modal shape” 

obtained from the POD was used in a Galerkin process to obtain lower 

dimensional models for structural analysis by Azeez and Vakakis (2001). The 

application of KLE in deterministic modal analysis was also extended to 

non-linear systems. An overview on the modal analysis of a nonlinear mechanical 

system with POD was provided by Kerschen et al. (2005). The KLE was adopted 

to create low-dimensional, reduced order model for a group of linear coupled 

oscillators with strongly nonlinear end attachments by Ma et al. (2008). The 

stochastic analysis of a structural system has also been performed based on the 

K-L representation of both Gaussian (Kac and Siegert 1947) and non-Gaussian 

(Phoon et al. 2002, 2005) stochastic processes. The stochastic analysis of a 

dynamic system with nonlinear physical properties and non-stationary Gaussian 

random excitation was studied by Pradlwarter et al. (2003) and Schenk et al. (2004; 

2005) in which the KLE was adopted to represent the random processes involved. 

The basic theory of KLE and its representation of a Gaussian random process 

will be introduced below. 

3.3.1 Theory 

The Karhunen-Loève Expansion of a random process u(x,θ) is based on its 

covariance function C(x1,x2) which is bounded, symmetric and positive definite 

with the following spectral decomposition 
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where λn and φn(x) are the eigenvalue and eigenvector of the covariance kernel, 

respectively. They can be proved to be the solution of the following integral 

equation (Ghanem and Spanos 1991) 

( ) ( ) ( )∫ = 21121 , xdxxxx nnn ϕλϕC                      (3.7) 

Due to the symmetry and the positive definiteness of the covariance kernel, 

the eigenfunctions are orthogonal and they form a complete set representing the 

covariance function. The eigenvectors can be normalized according to the 

following 

( ) ( )∫ = nmmn dxxx δϕϕ                             (3.8) 

where δnm is the Kronecker delta. The random process u(x,θ) can then be written as 
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where ( )xu  denotes the expected value of u(x,θ) and ξn(θ) is a set of uncorrelated 

random variables. An explicit expression for ξn(θ) can also be expressed as 
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n

n ϕθ
λ

θξ ,~1                       (3.10) 

When u(x,θ) is a Gaussian random process, ξn(θ) will be a group of standard 

Gaussian random variables have the following properties, 

( )( ) 0=θξnE , ( ) ( )( ) kllkE δθξθξ =                  (3.11) 

where E(●) denotes the expectation. 

3.3.2 Representation of Stochastic Process Vector  

A m-dimensional stochastic process vector V(t,θ) can be defined as 
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( ) ( ) ( ){ }T
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The mean and random component of the ith element of V(t,θ) denoted as 

( )tiv  and ( )θ,~ tiv  respectively can be expressed as 

( ) )),(( θtEt ii vv = , ( mi ,,1L= )                        (3.13) 

( ) ( ) ( )ttt iii vvv −= θθ ,,~ , ( mi ,,1L= )                    (3.14) 

where E(●) denotes the expectation. 

The stochastic process vector V(t,θ) can be discretized at equal time step 

intervals ∆t, and the number of time instants is n=T/∆t+1, where T is the total 

time duration. The Karhunen-Loève (K-L) Expansion of the discrete vector of 

stochastic processes can be obtained by reshaping the discretized vector process 

into a one-dimensional process VV as 
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nmmnn ttttttt )},(),(),(),(),(),({, 1212111 θθθθθθθ vvvvvvVV LLLL=  

(3.15) 

with the covariance matrix ΓVV,VV defined by 
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which can also be written in the following matrix form (Schenk and Schuëller 

2005) as 
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where Nv=m×n and the corresponding KLE is defined in the following eigenvalue 

problem as 

0, =− jjj ϕλϕVVVVΓ                          (3.18) 
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After the truncation at the kv
th order according to Equation (3.9), the K-L 

representation of VV is then denoted by 
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where µVV(t) is the mean vector and X(j) are the Karhunen-Loève vectors and 

has a dimension of N{ Tj
m
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component of the ( )θ,~ tiv  can be expressed as 
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where xi
(j)(t) is of size 1×n representing the jth K-L components of the ith term in 

V(t,θ), and they can be extracted from the Karhunen-Loève vectors X(j)(t) 

according to Equations (3.15) to (3.20). Subsequently V(t,θ) becomes 
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with the mean vector µV(t), ξ0(θ)=1, ( ) { }T
mvvvx L21

0 = , and 
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3.4 System Modeling and Response Statistics 

In the dynamic analysis of a bridge structure under stochastic moving forces, 

the random excitation force vector F(t,θ) which is assumed as a 

multi-dimensional Gaussian random process can be firstly represented by its K-L 

components f(j)(t) multiplied by the corresponding random coefficients ξj(θ) 

which are standard Gaussian random variables according to Equation (3.21) as 
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where kF is the number of K-L components retained after truncation. 

Based on the superposition of the linear system and the representation of the 

stochastic moving forces as a sum of independent vectors of the corresponding 

K-L components, the stochastic structural nodal displacement, velocity and 

acceleration vectors denoted as R(t,θ),  and  respectively can be 

expressed as 
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where y(j), ( )jy&  and ( )jy&&  are the corresponding deterministic components. It 

should be noted that though the expansion for the stochastic nodal response vector 

have the same forms as those for the excitation forces, these deterministic 

components in the response vectors calculated from the corresponding K-L 

components of the excitation forces can not be considered as K-L components, and 

the number of terms in these expansions equals to the number of the K-L 

components in the KLE of the stochastic forces, i.e. kR=kF.  

Substituting Equations (3.22) to (3.25) into Equation (3.2) and taking the 

inner product of both side of the equation with ξk(θ) and employing the 

orthogonal property as shown in Equation (3.11), we have 
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Equation (3.26) can be solved by Newmark-β method and the deterministic 

coefficients y(j), ( )jy&  and ( )jy&&  can be obtained. The mean and variance of the 

random nodal displacements of the bridge structure can be evaluated as  
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where the subscript “R” denotes the random nodal displacement vector. The 

mean and variance of displacement of the beam at position x and time t can be 

obtained according to Equation (3.5) as 
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where the subscript “w” denotes the random displacement under the bridge deck. 

The statistics of the velocity and acceleration of the bridge structure at any 

position can be obtained in a similar way by replacing the y(j) in Equation (3.28) 

with ( )jy& and ( )jy&& , respectively. 

3.5 Stochastic Moving Force Identification 

In the stochastic moving force identification procedure, a set of nodal 

response samples, e.g. the nodal displacement samples, will form a discretized 

multi-dimensional random process vector with Gaussian properties denoted as 

. According to Equation (3.21), the random nodal displacement vector of 

the bridge structure can be represented by its K-L components as 
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where  is the number of K-L components of the nodal response samples after 

truncation and ξ

Rk̂

j(θ) are standard Gaussian random variables having the orthogonal 

properties described in Equation (3.11). Noted that the K-L components of the 

nodal displacement denoted as  are different from the components for the 

nodal displacement in the forward analysis denoted as . The random nodal 

velocity vectors and acceleration vectors will respectively take the forms as 
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where ( ) )(ˆ ty j&  and ( ) )(ˆ ty j&& are the first and second derivatives of  with 

respect to time t, respectively.  

)(ˆ )( tjy

It is noted that the covariance matrix of the stochastic excitation forces to be 

identified is not known a-prior, and therefore the KLE of the excitation forces 

can not be performed. However, based on the superposition of the linear system 

and the representation of the stochastic nodal response vector as a sum of 

independent vectors of the corresponding K-L components, the random 

excitation ( )θ,ˆ tF  can be represented as 

( ) ( ) ( )( )∑
=

=
Fk

j

j
j tt

ˆ

0

ˆ,ˆ fF θξθ                       (3.32) 

where  is the deterministic coefficient vector corresponding to  

and  is the number of components for the stochastic moving forces to be 

identified with . It should be noted that Equation (3.32) is not a KLE of 

the excitation forces vector and  is not the vector of K-L components from 

)(ˆ )( tjf )(ˆ )( tjy

Fk̂

RF kk ˆˆ =

)(ˆ )( tjf
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the eigenvalue analysis of the covariance kernel of the stochastic excitation forces 

but it represents the corresponding terms related to the K-L components of the 

random nodal displacement in the inverse problem. 

Since only the degrees-of-freedom (dofs) with measured data are included in 

the nodal response vector  in the force identification procedure, a model 

condensation technique should be adopted to reduce the bridge model with full 

dofs to match the dofs of measured data. Substituting Equations (3.29) to (3.32) 

into the condensed equation of motion of the system and taking the inner product 

of both side of the equations with 

),(ˆ θtR

( )θξk  and employing the orthogonal property 

as shown in Equation (3.11), 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttytyty k
b

k
b

k
b

k
b fHKCM ˆˆˆˆˆˆˆˆ =++ &&&& , ( )Fkk ˆ,,0 L=    (3.33) 

where , , and  are the mass, damping, stiffness and location 

matrices of the bridge deck in the inverse problem after condensation respectively. 

In this Thesis, the Improved Reduced System (IRS) reduction scheme 

(O’Callahan 1989) is adopted to condense the unmeasured degrees-of-freedom of 

the bridge structure. All the measured dofs are denoted as the master dofs and the 

remaining dofs are called the slave dofs. The mass, damping, stiffness and 

location matrices can be partitioned according to the master and slave dofs as 

bM̂ bĈ bK̂ bĤ
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where the subscript ‘m’ and ‘s’ denote the master dofs and slave dofs, 
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respectively. 

The transformation matrix T in IRS is defined as 

is TTT +=                              (3.35) 

where  
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The condensed matrices in Equation (3.33) can be obtained as 

TMTM b
T

b =ˆ ,                          TCTC b
T

b =ˆ

TKTK b
T

b =ˆ                            (3.36) b
T

b HTH =ˆ

The components of the stochastic moving loads can be identified from the 

corresponding K-L components of the stochastic nodal responses according to 

Equation (3.33) by using the least-squares method as 
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where ( ) ( ) ( ) ( ) ( ) ( )tytytyt k
b

k
b

k
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The mean value and variance of the identified forces can be expressed as 
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ˆ
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2
f̂F )

where the subscript “F” denotes the identified random moving forces. 

3.6 Numerical Simulation 

In this Section, the beam-load model will be introduced followed by the 

proposed method for the forward analysis of a bridge structure under random 

moving forces. The stochastic moving force identification algorithm based on the 
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proposed model will be verified by the Monte Carlo Simulation (MCS) with 

numerical examples. The beam model is divided into eight planar 

Euler-Bernoulli finite elements each with of 5 m length. The sampling rate for all 

the simulations is 200 Hz. 

The relative errors between the statistics of calculated response and the 

reference response from the MCS denoted as RE in forward problem is defined 

as 

%100×
−

=
ref

refcal

R

RR
RE                      (3.39) 

The relative errors between the statistics of the identified moving forces and 

the reference forces denoted as FE, in inverse problem is defined as 

%100
2

2 ×
−

=
ref

refcal

F

FF
FE                     (3.40) 

3.6.1 Beam-Load Model 

3.6.1.1 Beam Model I 

Beam model I for the numerical simulation will have the following 

properties: Length of the beam L=40 m; Cross-sectional area A=4.8 m2; Second 

moment of inertia of cross-section I=2.5498 m4; Damping ratio ζ=0.02 for all 

modes; Elastic modulus E and mass density ρ of material are 5×1010 N/m2 and 

2.5×103 kg/m3 respectively. The first three natural frequencies of the beam are 3.2, 

12.8 and 28.8 Hz and Rayleigh damping is assumed for the beam structure. 

3.6.1.2 Force Model I 
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In Force Model I, the mean values of the two random time-varying moving 

forces are 

F1d=20000(1+0.1sin(10πt)+0.05sin(40πt))               (3.41) 

F2d=20000(1-0.1sin(10πt)+0.05sin(40πt))               (3.42) 

where the subscript ‘d’ denotes the deterministic part. The randomness in the 

moving forces with Gaussian property is defined with a specific value of 

Coefficient Of Variation (COVF) at each time instance. This model is a 

non-stationary Gaussian white noise model in which the covariance kernel has a 

very small correlation length. 

3.6.1.3 Force Model II 

This force model is a stationary Gaussian random process in which the 

covariance kernel has a given correlation length. In Force Model II, the mean 

values of the two random time-varying moving forces are the same as those for 

Force Model I but with different properties of randomness as described below. 

The random part of each moving force is assumed as a zero-mean Gaussian 

random process with a Power Spectrum Density (PSD) function SFF(ω) as 

( ) ( )ωω rrFFF AS Φ=                     (3.43) 

where AF is a constant and Φrr(ω) is the PSD of the surface roughness of road 

pavement according to the ISO specification (ISO 8606:1995(E), 1995) as 
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ω
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where Φ(ω0) is an amplitude coefficient associated with the travel path surface 

 78



roughness and ω0 is the reference angular spatial frequency. According to the 

theory of the Spectral Representation (Shinozuka and Deodatis 1991) for a 

stationary Gaussian random process, the surface profile r(x) can be simulated by 

the following series, 

∑
=

+=
kN

k
kkrk xAxr

1

)cos()( ϕω               (3.45) 

where  

( )krrrkA ωωΦ∆= 2                     (3.46) 

( )1min −∆+= kk ωωω                    (3.47) 

( ) ωωω ∆−= minmaxkN                   (3.48)

In Equations (3.45) to (3.48), Ark is the amplitude of the harmonics. φk is a 

random phase angle uniformly distributed in the interval [0, 2π]. ∆ω is the 

frequency increment and Nk is the total number of frequency divisions in the 

interval [ωmin, ωmax]. ωmin, ωmax are the minimum and maximum frequencies 

respectively in the spectrum defined. According to Equation (3.45), the random 

parts of the two moving forces, F1r and F2r, can be represented as 

∑
=

+=
kN

k
kkrkFr vtAAF

1
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( )[∑
=

+−=
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k
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1
2 cos ϕω ]           (3.50) 

where la is the distance between the two forces and v is the velocity. The subscript 

‘r’ denotes the random part. Samples of the random moving forces with Gaussian 

properties can be generated according to Equations (3.41), (3.42), (3.49) and 

(3.50).  
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The Coefficient Of Variation (COVF) of the moving forces is defined as 

( )

( )⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∑
∑

i
F

i
F

F tMEAN

tVAR
ECOV

i

i

                   (3.51) 

where E(●) denotes the expectation. 

The parameters for the random part of the two moving forces used in the 

numerical simulation are: AF=2×105, ω0=1 rad/s, ωmin=0.1 rad/s, ωmax=10 rad/s, 

∆ω=2π/2L=0.0785 rad/s (Henchi et al. 1998), la=4 m, v=40 m/s. Set 

Φ(ω0)=1×10-6, 4×10-6, 16×10-6, 64×10-6 and 256×10-6 m3 to represent different 

levels of randomness of the excitation forces. The corresponding COVF are equal 

to 0.0382, 0.0778, 0.1517, 0.3073 and 0.6256 respectively according to 

Equations (3.44) to (3.51). 

3.6.2 Forward Analysis: Response Statistics 

In the forward problem of the present dynamic analysis of a beam structure 

under two random moving forces with Gaussian property, both kinds of force 

model will be adopted in the proposed K-L method and the accuracy of the 

proposed method will be verified with the Monte Carlo Simulation.  

Ten thousand samples of random moving forces are generated within the 

population from which the covariance kernel shown in Equation (3.17) is 

obtained. The K-L components of the random moving forces as shown in 

Equation (3.22) can be obtained by performing the eigenvalue analysis on the 

kernel. A threshold B on the eigenvalues λj of the K-L component is selected and 
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the K-L component will be truncated when its eigenvalue is smaller than B. For 

each of the K-L components of the moving loads in Equation (3.26), the 

Newmark-β method is employed to calculate the corresponding components of the 

nodal responses at each time step.  

For the case with Force Model I, the accuracy of the proposed K-L method at 

different levels of uncertainty in excitation with B=100 is investigated. Results 

from the Monte Carlo Simulation with 10000 runs are taken as reference. The 

percentage errors in the mean value and variance of the mid-span displacements 

calculated from both methods according to Equation (3.39) are shown in Table 3.1. 

A comparison of the mid-span displacement for the case with COVF=10% is 

plotted in Figure 3.2.  

For the case with Force Model II, an extra study is carried out on the 

selection of the threshold value B for the truncation of the K-L component. The 

criterion for selecting the threshold is to use as few K-L components as possible in 

the forward analysis while maintaining sufficient accuracy. Threshold values 

equal to 100, 105, 106, 107 and 108 are studied and the number of the K-L 

components left after truncation, the time cost for the response calculation and the 

relative error of the statistics between the calculated response from the K-L 

method and the Monte Carlo Simulation are compared in Table 3.2. The mean 

value of the response is noted not to be affected by the truncation while the 

calculated variance of the response maintains a good accuracy for B≤107. 

Therefore B=107 is suggested as the threshold for truncation in this case. The K-L 
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components with eigenvalues λj smaller than 107 are truncated and the number of 

K-L components used in the response calculation is 19 which is much less than the 

total number of the K-L components in the expansion noted as 442. It is also noted 

from Table 3.2 that the time cost for calculations with different trial threshold 

values for truncation is similar. This is because most of the time is spent on the 

eigenvalue analysis of the covariance kernel in the response calculation. The mean 

and variance of 10000 samples of the mid-span displacement calculated from the 

Monte Carlo Simulation is taken as reference. The mean and variance of the 

mid-span displacement calculated from the proposed K-L method are compared 

with the reference ones from MCS in Figure 3.2 with good agreements. However, 

the time required for the response calculation using the proposed K-L methods is 

31.96 s which is much less than 243.39 s required by the MCS running on a 

computer with Intel(R) Core(TM) Duo CPU 2.66Hz and 4GB RAM.  

The accuracy of the proposed method at different levels of randomness in the 

interaction forces is further investigated. The relative errors of the mean value and 

variance of the seven nodal displacements along the beam at equal spacing 

calculated from both the K-L methods and MCS at different levels of uncertainty 

according to Equation (3.39) are shown in Table 3.3. Results from both methods 

on two force models show very similar accuracy at different levels of uncertainty. 

The relative error in both the mean value and variance of the response decreases 

slightly with reduction in the COVF of the interaction forces. The accuracy of the 

proposed method in the forward analysis is not sensitive to the level of randomness 
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in the excitation forces. 

3.6.3 Inverse Analysis: Force Identification 

3.6.3.1 Verification of the Algorithm 

In the inverse force identification procedure, a set of 500 samples of seven 

displacements evenly distributed underneath the beam structure are generated for 

the moving force identification according to Equation (3.23) in which the 

Gaussian random variables are generated using the Latin Hypercube sampling 

technique and the deterministic coefficients are obtained in the forward analysis. 

There are 16 degrees-of-freedom (dofs) in the planar beam structure and the 

Improved Reduced System (IRS) (O’Callahan 1989) scheme is employed to 

condense the structural system to only seven dofs. The computation procedure for 

the moving force identification is given as follows: 

a) The averaging process is performed according Equation (3.13) on the 500 sets 

of seven nodal displacements. The covariance kernel of the displacement 

samples can then be calculated according to the theory described in Section 

3.3.2. The eigenvalue analysis on the kernel is performed to obtain the K-L 

components of the random nodal displacement, and the cubic spline 

interpretation will be adopted to each K-L component of displacement. The 

first and second derivatives representing corresponding components of the 

velocities and accelerations can then be derived according to Equations (3.30) 

and (3.31). 
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b) The system matrices of the beam structure, Mb, Cb, Kb, and the location 

matrix Hb in Equation (3.2) are formulated with the finite element method, 

and the IRS scheme is adopted for the model condensation. 

c) The corresponding components of the interaction forces can be calculated 

according to Equation (3.37) based on the K-L components of the nodal 

responses and their derivatives. The statistics of the identified forces can be 

evaluated according to Equation (3.38). 

The statistics of the moving forces for reference are calculated from the two 

force models introduced in Sections 3.6.1.2 and 3.6.1.3, respectively. Due to the 

relatively large error in the identified forces when the moving loads enter and 

leave the beam as noted in Figures 3.4 to 3.7, the relative error FE calculated for 

the whole time history is relatively large. Therefore only data within 0.1s-0.9s for 

the first axle force and 0.2s-1.0s for the second axle force will be adopted in the 

following error analysis. 

For the case with Force Model I, the errors in the mean value and variance of 

the interaction forces identified from the 500 response samples according to 

Equation (3.40) are shown in Table 3.4. A comparison of the mean value and 

variance of the identified random moving forces from the two methods for the case 

of COVF=10% are plotted in Figures 3.4 and 3.5, respectively. Results show that 

the mean value of the identified random moving forces is very accurate, while 

large error exists in the variance. The error in the variance of the identified forces 

is noted to be almost independent of the COV of the interaction forces. 
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For the case with Force Model II, a comparison of the statistics between the 

identified and the reference forces for the case of Φ(ω0)= 16×10-6 m3 are plotted in 

Figures 3.6 and 3.7. The errors in the mean value and variance of the interaction 

forces identified from the set of 500 response samples according to Equation (3.40) 

with different level of randomness are shown in Table 3.5. Results show that both 

the mean value and variance of the random moving forces are accurately 

identified. It is also revealed that the proposed stochastic force identification 

algorithm has a good accuracy for different level of randomness even when the 

COVF is quite large (e.g. COVF=0.6256) and the relative error in the identified 

statistics of the moving forces are not sensitive to the level of randomness. 

For the two force models adopted, the mean value of random moving force 

can be accurately identified. However, the variance of the random moving forces 

is accurately identified for the case of Force Model II comparing with the 

variance with large error in the identification for the case of Force Model I. This 

large error exists in the procedure of obtaining the corresponding components of 

nodal velocity and nodal acceleration from the K-L components of nodal 

displacement with the cubic spline interpolation. Since the white noise model is 

adopted in Force Model I, the two adjacent time instances of the time history of 

response of structure are independent with each other. This property also exhibits 

by the K-L components of the nodal displacement. Therefore the differentiation 

process to find the first and second derivatives will not be accurate due to the 

discontinuity of signal in the adjacent time instances. For the case of Force 
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Model II, the correlation length in the defined covariance kernel of the Gaussian 

random forces is larger than zero. Thus the K-L components of nodal 

displacement will be smooth between two adjacent time instances. The 

corresponding derivatives can therefore be accurately calculated with the cubic 

spline interpolation technique and the variance of moving forces can finally be 

effectively identified. 

3.6.3.2 Number of Samples Used 

Results in Table 3.5 are promising, but the number of response samples 

required is quite large that might not be acceptable in engineering practice. The 

effect of reducing the number of response samples on the identification accuracy 

should be further investigated.  

When the number of response samples decreases, the statistics of the 

responses may not be accurately represented by the limit number of samples, and 

the variance of the identified excitation forces may become inaccurate. Moreover, 

the variance of the identified forces will become unstable, i.e. identification based 

on a small and different group of response samples will lead to different results. 

The better the samples representing the statistics of the whole population, the more 

accurate variance can be identified. The relative error between the identified and 

the reference forces from different number of response samples is shown in Tables 

3.6 and 3.7 for the case of Force Model I and Force Model II, respectively. 

Results show that the relative errors in the mean value of the identified 

moving forces are quite small and they increase slightly with a decrease in the 
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sample number down to 10. The error in the variance of the identified moving 

forces increases with decreasing sample number. For the case of Force Model I, 

since the error in the differentiation of the K-L component of the nodal 

displacement is included, the relative errors in the variance of the identified 

excitation forces are very large especially when the number of samples becomes 

small. For the case of Force Model II, when the number of response samples used 

in the identification is smaller than 100, a relative large error in the variance occurs. 

The identified results become unstable as noted in Table 3.7 where the relative 

error for the case from 20 samples is larger than that for the case from 10 samples. 

This is true only when the group of 10 samples used in the identification can better 

represent the statistics of the response than the group of 20 samples used. The 

decrease in the number of response samples used in the identification will give rise 

to an inaccuracy in the variance of the identified forces and even in the identified 

mean force time histories when the COVF is relatively large (e.g. larger than 0.5). 

The accuracy of the identified mean value will be further discussed in next Section 

and in Table 3.8 for the case of Force Model II.  

3.6.3.3 Comparison with Existing Deterministic Moving Force 

Identification Method 

The proposed method is used to study the same beam structure as in Law et al. 

(2004) but treating the excitation as a population including uncertainty. A 

comparison of the identified time history of the moving forces between the 

stochastic moving force identification technique and the deterministic one (Law et 
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al. 2004) from only one sample of bridge response will be conducted in this 

Section. 

To clearly demonstrate the advantage of the stochastic force identification 

method with large uncertainties, the Force Model II with a high level of 

randomness in the excitation forces with Φ(ω0)= 64×10-6 m3 is adopted. The 

identified moving forces in the deterministic approach with only one response 

sample are compared with the reference forces in Figure 3.8. It should be noted 

that when only one response sample generated in the forward problem is used, 

different moving forces will be identified from response samples with different 

randomness included. The uncertainty in the response sample is propagated into 

the identified forces in the moving force identification. The percentage error in 

the identified moving forces by adopting the deterministic approach (Law et al. 

2004) is FE=37.16% according to Equation (3.40) which is very large. A 

comparison between the relative errors in the mean values of the identified 

moving forces from different number of samples is given in Table 3.8 where the 

case of “1 sample” denotes results from the deterministic moving force 

identification technique. Results in Table 3.8 show that the relative error in the 

identified forces increase significantly with increasing level of randomness. The 

deterministic approach almost fail to identify the moving forces when COVF is 

large, e.g. larger than 0.5.  

The identified results using the stochastic force identification method from 

both 10 and 100 samples are compared with those from the deterministic 
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approach in Figure 3.9 and Table 3.8. When 10 samples are used, the accuracy of 

the identified forces is significantly improved when the randomness in excitation 

forces is large, e.g. in the case when Φ(ω0)=4×10-6, 16×10-6 and 64×10-6 m3. For 

the case where the randomness in the excitation force is very small, e.g. when 

Φ(ω0)=1×10-6 m3, the accuracy of the identified forces is similar to that from the 

deterministic approach. This is because when the randomness in the responses is 

small, the averaging effect in the proposed approach is not so notable. For the 

case when the level of randomness is relatively high, e.g. Φ(ω0)=256×10-6 m3, 

large relative error is found because only 10 samples can not effectively 

eliminate the effect of uncertainties in the responses in this case. 100 samples 

may noted to be sufficient and the relative error calculated from Equation (3.40) 

is FE=5.41% which is small. Results in the case when Φ(ω0)=256×10-6 m3 show 

that the uncertainties in the structural responses can be separated from the 

deterministic component through the averaging procedure. The identified time 

histories of the moving forces are very accurate when 100 samples are adopted 

compared with the erroneous results from only one sample. It is noted that when 

a relative large number of response samples, e.g. 100 samples, is used in the 

proposed method, the mean value of the identified moving forces is very accurate 

even with a high level of randomness in the response. The accuracy of the 

identified results is relatively not sensitive to the level of randomness. It may be 

concluded that the proposed moving force identification algorithm based on the 

uncertainty model could lead to more accurate identified results compared with 
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the existing deterministic method. 

3.7 Summary 

In this Chapter, both the dynamic analysis and the moving force 

identification with a beam-load model are performed. The bridge structure is 

modeled as a simply supported planar Euler-Bernoulli beam with random 

moving forces on top. These random moving forces are assumed as Gaussian 

random process. The Karhunen-Loève Expansion is adopted to represent both the 

random excitation forces and the structural response. The mathematical model 

for the beam-load system with random moving excitation forces is formulated 

based on which the forward analysis and the stochastic moving force 

identification technique are proposed. Two force models on the random 

excitations are adopted in the numerical simulation in which the proposed 

stochastic method is verified with MCS and the following conclusions are drawn. 

The proposed method is found very accurate in the forward problem of 

response prediction with different levels of uncertainty and results are not 

sensitive to the level of randomness in the excitation forces. In the inverse force 

identification problem, the statistics of the random moving forces can be 

accurately identified from a set of samples of the structural response. The accuracy 

of identification is significantly improved with a small number of measured 

responses samples by the stochastic force identification approach when compared 

to that obtained from an existing deterministic method based on one sample of 
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measured response. The uncertainties in the measured responses can be largely 

removed from the mean values of the identified moving forces in the 

identification process when a relative large number of response samples are used. 

The mean value of the identified moving forces are very accurate even when the 

level of randomness in the response is high, and the accuracy of the identified 

results is relatively not sensitive to the level of randomness. 

The method proposed in this Chapter can be extended to engineering 

application of a bridge-vehicle interaction problem in which the uncertainty in 

the excitation forces can be regarded as the uncertainty arising from the road 

surface roughness whereas the uncertainties in the system parameters of the 

bridge structure are neglected. This extension will be described in next Chapter. 

The proposed method is general to account for the errors caused by the surface 

roughness in the identification procedure. A significant advantage of the 

proposed approach is that it can identify mean force time histories which are free 

of most of the effect of random errors arising from the environmental factors 

while the propagation of these random errors in the identification procedure is 

noted in the variance of identified value of each time instance in the time 

duration studied.  
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Table 3.1 - Relative error in the statistics of the mid-span displacement with 
uncertainty in excitation (Force Model I) 

 

COVF

RE (%) 
1% 2% 5% 10% 

Mean Value 0.01% 0.01% 0.04% 0.06% 

Variance 3.43% 3.63% 3.48% 4.94% 

 

 

 

Table 3.2 - Relative error in the statistics of the mid-span displacement with 
different threshold for truncation 

 

Threshold B for truncation  
 

100 105 106 107 108

Number of K-L components 136 129 58 19 6 

Time Cost (s) 38.95 37.93 33.62 31.96 31.16 

Mean Value 0.33% 0.33% 0.33% 0.33% 0.33% 
RE (%) 

Variance 1.62% 1.67% 1.98% 2.29% 20.08% 
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Table 3.3 - Relative error in the statistics of the mid-span displacement with 
uncertainty in excitation (Force Model II) 

 

Different level of randomness Φ(ω0) (10-6 m3) 
RE (%) 

1 4 16 64 256 

Mean value 0.03% 0.12% 0.15% 0.16% 0.49% 

Variance 0.89% 1.57% 1.66% 1.76% 1.93% 

 

 

Table 3.4 - Relative error in the statistics of the identified forces with different 
uncertainty (Force Model I) 

 

COVF

FE (%) 
1% 2% 5% 10% 

Force (deterministic) 11.35% 11.42% 11.54% 12.04% 

Mean value 3.58% 3.58% 3.58% 3.58% 
500 samples 

Variance 39.73% 40.03% 39.90% 39.97% 
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Table 3.5 - Relative error in the statistics of the identified forces with different 
uncertainty (Force Model II) 

 

Different level of randomness Φ(ω0) (10-6 m3) 
FE (%) 

1 4 16 64 256 

Mean value 3.58% 3.58% 3.59% 3.60% 3.62% 

Variance 6.91% 6.96% 8.59% 5.80% 6.29% 

 

 

Table 3.6 - Relative error in the identified forces using different number of 
response samples (Force Model I) 

 

Number of response samples used 
FE (%) 

10 20 50 100 200 500 

Mean value 4.27% 4.13% 3.76% 3.74% 3.67% 3.58% 

Variance *64.75% *48.50% 42.92% 41.79% 40.19% 39.97% 

*-denotes the results become unstable. 
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Table 3.7 - Relative error in the identified forces using different number of 
response samples (Force Model II) 

 

Number of response samples used 
FE (%) 

10 20 50 100 200 500 

Mean value 5.03% 4.88% 5.34% 3.72% 3.69% 3.59% 

Variance *29.22% *34.58% 21.28% 14.58% 10.92% 8.59% 

* denotes the results become unstable. 

 

 

Table 3.8 - Relative error in the mean value of the identified moving forces with 
different approaches (Force Model II) 

 

Different level of randomness Φ(ω0) (10-6 m3) 
FE (%) 

1 4 16 64 256 

Deterministic method 
(1 sample) 3.94% 10.01% 13.01% 37.16% 69.38% 

Stochastic method  
(10 samples) 3.92% 3.89% 5.94% 9.90% 31.31% 

Stochastic method  
(100 samples) 3.58% 3.79% 4.37% 4.32% 5.41% 
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Figure 3.1 - Beam-load model 
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Figure 3.2 - Comparison of mid-span responses from the two methods (Force 
Model I) 
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Figure 3.3 - Comparison of mid-span responses from the two methods (Force 
Model II) 

 

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3
x 104 Mean value of F1

Fo
rc

e(
N

)

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3
x 104 Mean value of F2

time(t)

Fo
rc

e(
N

)

 

 

Identified
Theoretical

 
 

Figure 3.4 - Mean value of identified forces from 500 samples (Force Model I) 
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Figure 3.5 - Variance of identified forces from 500 samples (Force Model I) 
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Figure 3.6 - Mean value of identified forces from 500 samples (Force Model II) 
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Figure 3.7 - Variance of identified forces from 500 samples (Force Model II) 
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Figure 3.8 - Identified force time histories from a deterministic approach (Force 
Model II) 
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Figure 3.9 - Comparison of the identified force time histories from different 
approaches (Force Model II) 
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CHAPTER 4 

BRIDGE-VEHICLE INTERACTION WITH 

UNCERTAINTY IN EXCITATION 

4.1 Introduction 

The beam-load model in Chapter THREE provides a theoretical background 

to investigate the problem of bridge-vehicle interaction problem. The 

disadvantage of adopting the moving forces to simulate the vehicle axle loads is 

that inertia effect of the moving force model can not be appropriately modeled. 

Moving mass model is one alternative which, however, tend to introduce too 

much rigidity into the vehicle model. The mass-spring systems such as the 

quarter car model (Schenk et al. 2002; Xiang et al. 2007), half car model (Law et 

al. 2004; Pinaew 2006), tractor-trailer model (Mulcahy 1983; Law and Zhu 2005), 

three dimensional vehicle model (Liu et al. 2002; Kim et al. 2005), etc., which 

are capable of modeling more complex and practical vehicle axle loads, have 

been widely adopted in the bridge-vehicle interaction problem. By modeling the 

vehicle with mass-spring system, the road surface roughness which is one of the 

most important factors can be introduced in the bridge-vehicle interaction 

problem. Da Silva (2004) concluded that the effects due to the interaction of the 

vehicles with an irregular pavement surface are much more important than those 
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produced by the load mobility alone and these effects are even larger than those 

due to the static presence of the vehicles in some cases. 

In this Chapter, a new bridge-vehicle interaction model will be introduced in 

which the bridge is modeled as a simply supported planar Euler-Bernoulli beam 

with a vehicle moving on top modeled by a four degrees-of-freedom mass-spring 

system. The road surface roughness is assumed as Gaussian random process and it 

will be represented by the Karhunen-Loève Expansion. By representing the 

Gaussian random process involved, the equation of motion of the bridge-vehicle 

system becomes a set of ordinary differential equations which can be easily solved 

by any numerical methods such as the Newmark-β method and the response 

statistics of the bridge can be evaluated. Based on the model formulated, a 

stochastic force identification algorithm is proposed in which the statistics of the 

moving interaction forces can be accurately identified from a set of random 

samples of responses of the bridge deck. Numerical simulations are conducted in 

which the Gaussian assumption for the road surface roughness, the response 

statistics calculation and the new stochastic force identification technique based on 

the proposed stochastic bridge-vehicle model are verified. 

The outline of this Chapter is as follows: the equation of motion of the 

bridge-vehicle system will be introduced in Section 4.2. The formulations of a 

bridge-vehicle system with the road surface roughness modeled as a Gaussian 

random process is given in Section 4.3 with discussions on the response statistics. 

Numerical simulations are conducted in Section 4.4 with the verification of the 
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proposed technique and studies on the effect of different influencing factors in 

practice which may affect the accuracy of the proposed analysis approach. A 

discussion on the possibility of adopting the contaminated response data for 

random interaction forces identification is presented in Section 4.5. A summary is 

given in Section 4.6. 

4.2 Modeling of the Bridge-Vehicle System 

4.2.1 The Vehicle Model 

A vehicle with four degrees-of-freedom moving at a uniform speed  over a 

simply-supported beam-like bridge deck is shown in Figure 4.1. The equation of 

motion of the vehicle is derived using the Lagrange formulation as follows (Law et 

al. 2004): 
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where Y={yV θV y1 y2}T is the vector of displacement of the vehicle in which yV and 

θV are the displacement and rotation of the vehicle body; y1 and y2 are the 

displacements of m1 and m2, respectively. and are the first two derivatives 

of Y which represent the vector of the velocity and acceleration of the vehicle, 

respectively. M

Y& Y&&

V1, MV2, CV11, CV12, CV21, CV22, KV11, KV12, KV21, KV22 are the 

sub-matrices of mass, damping and stiffness matrices for the vehicle, respectively, 

which are given as follows.  
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where S is the axle spacing, {Ksi, Csi, (i=1,2)} are the stiffness and the damping of 

the two suspensions, mv, Iv are the mass and the moment of inertia of the vehicle, 

m1, m2 are the masses of the bogie. a1 and a2 denote the dimensions of the vehicle 

as shown in Figure 4.1. F0 is the static load vector due to vehicle. F(t,θ)={F1(t,θ), 

···, FNF(t,θ)}T is the vehicle-bridge interaction force vector with NF=2, and 
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 (4.2) 

where θ denotes the random dimension; Kt1, Kt2, Ct1, Ct2 are the stiffness and 

damping of the two tires, respectively; r(x,θ) is the road surface roughness at the 

location of tires which is assumed as a Gaussian random process; The mathematic 

model for the road surface roughness will be given in Section 4.3.1.  and 

 are the position of the front axle and rear axle respectively at time t, and g is 

the acceleration of gravity. 

)(ˆ1 tx

)(ˆ2 tx

),),(ˆ( θttxw i  is the stochastic vertical dynamic 

deflection of the bridge deck at the contact position of the ith moving load at time t. 
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The over-dot (·) denotes the differentiation with respect to time t and the right 

prime (′) denotes the differentiation with respect to local coordinate x. 

4.2.2 The Coupled Equation of Motion 

Substituting Equation (4.2) into Equations (3.1) and (4.1), the combined 

equation of motion of the bridge-vehicle system can be obtained as 

),(),()(),()(),()( θθθθ ttttttt PZKZCZM =++ &&&              (4.3) 

where Z(t,θ)={R(t,θ) Y(t,θ)}T is the vector of stochastic displacement of the 

bridge-vehicle system, similarly,  and 

 are the vectors of stochastic velocity and acceleration, 

respectively; θ denotes the random dimension. M(t), C(t), K(t) are the 

time-varying matrices of the bridge-vehicle system. P(t,θ) is the stochastic force 

vector acting on the system. Details of these matrices are shown as follows: 

Tttt )},(),({),( θθθ YRZ &&& =

Tttt )},(),({),( θθθ YRZ &&&&&& =

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

2

1

2

00
00

0
)(

V

V

Vbb

t
M

M
MHM

M ; ; 

;  ;  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
=

tVV
T
bt

VV

VbVbb

t
CCCHC

CC
CHCHC

C

2221

1211

2221

0)(

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
=

tVV
T
bt

VV

VbVbb

t
KKKHK

KK
KHKHK

K

2221

1211

2221

0)(

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

),(
0
0

),(

0

θ

θ

t

t

b

f

FH

P

( )
( ) ⎭

⎬
⎫

⎩
⎨
⎧

+′
+′

=
)),(ˆ()(ˆ),(ˆ

)),(ˆ()(ˆ),(ˆ
),(

22222

11111

θθ
θθθ

txrKtxtxrC
txrKtxtxrCt

tt

tt
&

&
f ; 

where Ct=diag(Ct1, Ct2); Kt=diag(Kt1, Kt2), and 
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Equation (4.3) is a set of stochastic ordinary differential equations which can 

not be directly solved by the Newmark-β method. The stochastic displacement of 

the bridge at position x and time t can be expressed as: 

( ) ( ) ( )θθ ,,, txtxw RH=                          (4.4) 

It is noted that Equation (4.4) is similar to Equation (3.5) except that the 

randomness has been included. 

4.3 Bridge-Vehicle Interaction with Road Surface 

Roughness 

4.3.1 The Road Surface Roughness 

In ISO-8606 specification (ISO 8606:1995(E) 1995), the road surface 

roughness is related to the velocity of vehicle by a formula between the velocity 

power spectral density (PSD) and the displacement PSD. The general form of the 

displacement PSD of the road surface roughness is given as: 

( ) ( )( ) α−= 00 fffSfS dd                         (4.5) 

where f0 is the discontinuity frequency equal to 1/2π (cycle/m) and f is the spatial 

frequency in cycle/m. Sd(f) is the Power Spectral Density (PSD) in m3/cycles. Sd(f0) 

is the roughness coefficient in m3/cycles. Equation (4.5) gives an estimate on the 

degree of roughness of the road by the Sd(f0) value. This classification is made by 
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assuming a constant vehicle velocity PSD and taking α=2. 

Based on this ISO specification, the road surface roughness in the time 

domain can be simulated by applying the inverse fast Fourier transformation on 

Sd(f0) as follows (Henchi et al. 1998) 
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where Lc is, in general, twice the length of the bridge. θk is a set of independent 

random angle uniformly distributed between 0 and 2π. According to Equation 

(4.6), the samples of the road surface roughness rk(x) can be generated. 

4.3.2 Forward Problem 

In this Section, the irregular profiles of the road surface are assumed as 

samples from a Gaussian random process with a PSD defined in Section 4.3.1. 

According to the theory of the Karhunen-Loève Expansion introduced in Section 

3.3, the road surface roughness can be represented by its K-L components as 

( )∑
=

=
rk

j

j
j xrxr

1

)( )(),( θξθ                          (4.7) 

where ξj(θ) are the standard Gaussian random variables with the orthogonal 

properties shown in Equation (3.11); θ denotes the random dimension; r(j)(x) is the 

jth K-L components of the road surface roughness. kr is the number of the K-L 

components of the road surface roughness after truncation. The first derivative of 

r(x,θ) with respect to location x is given as 
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The random interaction forces f(t,θ) due to the road surface roughness acting 

on the bridge-vehicle system are obtained as 
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Based on the superposition principle of the linear system and the 

representation of the random excitation forces as a sum of independent 

components according to Equation (4.9), the stochastic nodal displacement vector 

of the bridge and vehicle denoted as R(t,θ) and Y(t,θ) , respectively, can be 

expanded with the following forms, 
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( ) ( ) ( ) ( )tt
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, YY θξθ                        (4.11) 

Combining Equations (4.10) and (4.11), 
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0
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where Z(j)(t)={R(j)(t) Y(j)(t)}T and kz=kr. kz is the number of the corresponding 

components of the stochastic nodal displacement vector of the bridge-vehicle 

system; R(j)(t), Y(j)(t) and Z(j)(t) are vectors of the deterministic component of the 

nodal displacement of the bridge, vehicle and the whole coupled system, 

respectively. It is noted that the corresponding expansion for the nodal responses 
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of the bridge-vehicle system contains the zeroth component (j=0) which represents 

the nodal responses due to deterministic moving vehicle axle loads. 

Taking the derivatives with respect to time t in Equation (4.12), the 

corresponding component vectors for the nodal velocity and nodal acceleration in 

the bridge-vehicle system respectively can be represented as, 
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Substituting Equations (4.9) and (4.12) to (4.14) into Equation (4.3) and 

taking the inner product of both side of the equations with ξk(θ), and employing 

the orthogonal property demonstrated in Equation (3.11), Equation (4.3) can be 

rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttt kkkk PZKZCZM =++ )()()( &&& , (k=0,···,kZ)    (4.15) 

where P(0)={HbF0 0 0}T and P(k)={0 0 f(k)(t)}T, k=1,···,kZ. 

Compared with Equation (4.3), Equation (4.15) is a set of deterministic 

ordinary differential equations which can be solved by any numerical methods 

such as the Newmark-β method. The first two statistics of the displacements of the 

vehicle can be evaluated as  
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where the subscript “Z” denotes the nodal displacement vector for the 

bridge-vehicle system. The mean value and variance of the nodal displacement 

under the bridge deck at position x and time t can be obtained according to 
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Equation (4.4) as 
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where the subscript “w” denotes the random displacement under the bridge 

deck.. 

4.3.3 Inverse Problem: Moving Force Identification 

An inverse procedure can be formulated based on the bridge-vehicle 

interaction model formulated in the forward problem. The response statistics of the 

interaction forces between the bridge and vehicle can be identified indirectly from 

samples of the “measured” responses of the bridge. Any kind of responses of the 

bridge structure, e.g. displacement, strain, velocity and acceleration, can be 

adopted in the force identification. Though in practice, the strain and acceleration 

signals are more frequently used, the displacement signals are however adopted in 

this study. It should be noted that the displacements of bridge w(x,t,θ) can be 

obtained according to the following relationship from the strain ε(x,t,θ), 
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txwztx
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∂
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θθε                        (4.18) 

where represents the distance from the neutral axis of the beam cross-section to 

the strain gauge. 

z

Suppose that a set of displacements ).,(ˆ kji txw θ  (or strains ).,(ˆ kji tx θε ) is 

measured from the bridge, where i=1,···,Nm, j=1,···,NT, k=1,···,Nθ. Nm, NT and Nθ 

are the number of the measurement points, time instants and samples, 
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respectively. The nodal displacement vector of the bridge  can be 

obtained from Equation (4.4) (or together with Equation (4.18) in case the strains 

are used). Assuming the responses along the random dimension θ at each node 

and each time instance are Gaussian distributed, samples of the nodal 

displacements vector of the bridge  can be represented by a small 

number of its K-L components according to the theory introduced in Section 

3.3.2 as 
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where is the number of K-L components of the stochastic nodal displacement 

after truncation. 

Rk̂

The corresponding components for the vectors of the stochastic nodal 

velocities  and nodal accelerations  of the bridge model are 

obtained from the K-L components of nodal displacement  by 

differentiation using the cubic spline interpolation technique as 
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Due to the superposition principle of the linear system and the orthogonal 

property of the K-L components, the random excitation force can also be 

represented as 
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where  are the corresponding components of the random interaction forces 

to be identified and . It should be noted that both the components and the 

number of these components for both the bridge responses and the interaction 

forces in inverse problem are different from those in the forward problem. The 

number of the K-L components in forward problem, which is truncated when the 

eigenvalue λ

( ) )(ˆ tjP

RP kk ˆˆ =

i in Equation (3.9) is much smaller than the rest, is dependent on the 

properties of the random process to be represented, i.e. the closer the random 

process to white noise, the more terms are required in its expansion. 

Substituting Equations (4.19) to (4.22) into the equation of motion of the 

condensed bridge structure in the inverse problem and taking the inner product of 

both sides of the equation with ξk(θ), and then employing the orthogonal property 

demonstrated in Equation (3.11), we have 

( ) ( ) ( ) ( )tttt k
b

k
b

k
b

k
b

)()()()( ˆˆˆˆˆˆˆˆ PHRKRCRM =++ &&& , k=0,···,       (4.23) Pk̂

where , , and  are the mass, damping, stiffness and location 

matrices respectively of the condensed bridge structure in the inverse problem. In 

this study, the Improved Reduced System (IRS) reduction scheme (O’ Callahan 

1989) is adopted and the expressions of these condensed matrices have been 

shown in Equation (3.36). 

bM̂ bĈ bK̂ bĤ

From Equation (4.23), the corresponding components in the expansion of 

the random interaction forces ( ) )(ˆ tkP  can be identified using the least-squares 

method as 

( ) ( ) )(ˆˆˆˆ )(1)( tt kT
bb

T
b

k UHHHP
−

=                   (4.24) 
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where . ( ) ( ) ( )tttt k
b

k
b

k
b

k )()()()( ˆˆˆˆˆˆ)( RKRCRMU ++= &&&

The response statistics of the identified random interaction forces are 

obtained as 

( ) ( ) ( )ttMEAN 0P̂P = ,           (4.25) ( ) ( ) ( )(∑
=

=
Pk

j

j ttVAR
ˆ

1

2
P̂P )

where the subscript “P” denotes the random interaction force vector. 

4.4 Numerical Simulation 

4.4.1 Bridge-vehicle Model 

The parameters of the bridge-vehicle model for the numerical simulation are 

shown in Table 4.1. The traveling velocity of vehicle is 20 m/s. The bridge model 

is divided into eight Euler-Bernoulli finite elements each of 3.75 m length. The 

first five natural frequencies are 3.9，15.6，35.1，62.5 and 97.6 Hz. The sampling 

rate for all the simulations is 200 Hz which can capture the response of the first 

five natural modes of the beam. The bridge responses used for moving force 

identification are obtained from the forward analysis either using the K-L method 

from Equation (4.15) or using the Monte Carlo Simulation (MCS). 

4.4.2 Verification of the Proposed Stochastic Approach 

4.4.2.1 Gaussian Assumption of the Road Surface Roughness 

It is not easy to obtain the distribution of the set of samples rk(x) 

theoretically from Equation (4.6) where a Gaussian assumption may not be 
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appropriate. A theoretical background of the correctness of Gaussian assumption 

to the road surface roughness was provided in the work by Shinozuka and 

Deodatis (1991). However, in this Section, a numerical study is provided to 

demonstrate the appropriateness of the Gaussian assumption to the road surface 

roughness. The Class A road with Sd(f0)= 6×10-6 m3/cycles is assumed in the 

following studies except in Section 4.4.4 where different classes of road profiles 

will be investigated. 

Ten thousand samples of the irregular road surface profile are generated to 

represent the random process r(x,θ). The uniformly distributed random angle θk 

is represented by a random number between zero to one with the command 

‘rand’ in MATLAB. The values at an arbitrary position denoted as x1 on the road 

surface profile along the random dimension forms a set of samples from the 

population of the corresponding random variable r(x1,θ). The statistics of the 

random variable r(x1,θ) are compared with the corresponding Gaussian random 

variable with the same mean value and standard deviation. Comparisons between 

these two kinds of random variables at the 1/4 span, mid-span and 3/4 span are 

shown in Figure 4.2 in which the Probability Density Function (PDF) and the 

Cumulative Density Function (CDF) of the generated samples are denoted by the 

dash lines and those from the corresponding Gaussian variables are represented 

by solid lines. Results show that the PDF and the CDF for the road surface 

roughness are very close to those for the corresponding Gaussian random 

variables. The assumption of the Gaussian random process for the road surface 
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roughness is thus demonstrated to be appropriate. 

4.4.2.2 Forward Problem: The Statistics of Response  

The statistics of the bridge response calculated from the algorithm proposed 

in Section 4.3.2 will be compared with results from the MCS. Ten thousand 

samples of the irregular road surface profile generated according Equation (4.6) 

is adopted for both methods. 

In the K-L method proposed in Section 4.3.2, 10000 samples of the random 

excitation forces f(t,θ) are obtained from samples of the irregular road surface 

profile. The KLE is applied to f(t,θ) according to the theory introduced in Section 

3.3.2.The K-L components when the eigenvalue iλ  in Equation (3.9) is less 

than unity, which are much smaller than the rest, are truncated. A total number of 

106 K-L components is retained after truncation to represent 10000 samples of 

random forces. For each of the K-L components of the random interaction forces 

in Equation (4.9), Newmark-β method is employed to calculate the 

corresponding components of the stochastic nodal displacement, velocity and 

acceleration vectors denoted by Z(k)(t),  and  respectively at 

each time step. A total of 500 samples of seven displacements evenly distributed 

under the bridge deck are generated by using Latin Hypercube Sampling (LHS) 

technique for comparison of the statistics of response with the MCS. 

)()( tkZ& )()( tkZ&&

In the MCS, samples of bridge response are obtained from the deterministic 

time response analysis according to Equation (4.3) by neglecting the random 

dimension. A comparison of the statistics of the mid-span displacement under the 
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bridge deck from the two methods is shown in Figure 4.3. The relative errors 

between the mean value and variance from the two methods according to 

Equation (3.39) are 0.04% and 2.13%, respectively. Results from the two 

methods are in good agreement which indicates that the proposed method is 

accurate and the Gaussian assumption for the road surface roughness is 

appropriate for the study. Compared with the MCS, the proposed K-L method is 

much faster. The time required in the calculation of the response statistics using 

the K-L method is 173.14 s compared with 1769.43 s required by the Monte 

Carlo Simulation for 10000 runs on a computer with Inter(R) Core(TM)2 Duo 

CPU 2.66 Hz with 4GB RAM.  

4.4.2.3 Inverse Problem: Identify the Statistics of the Interaction 

Forces  

In the force identification, two sets of 500 samples of seven evenly 

distributed displacements of the bridge deck are adopted with one from the MCS 

and another from the KLE of the random nodal displacements in which the 

samples of standard Gaussian random variables are generated with the LHS. The 

Improved Reduced System (IRS) reduction scheme (O’Callahan 1989) is 

employed in the identification procedure to reduce the system matrices Mb, Cb, 

Kb as well as the location matrix Hb from 16 degrees-of-freedom (dofs) to only 

seven translational dofs. When the eigenvalue iλ  in the KLE is less than 10-20, 

the corresponding K-L components of the random nodal displacements vector 

 are truncated. A total of 111 number of K-L components after truncation ( θ,ˆ tR )
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is retained in this case. The cubic spline interpolation technique is employed to 

calculate the corresponding components in the nodal velocities and accelerations 

vectors of the bridge structure by Equations (4.20) and (4.21) from the K-L 

components of the nodal displacement vector in Equation (4.19). The 

corresponding components of the interaction forces can be obtained from 

least-squares estimation according to Equation (4.24). The mean value and 

variance of the interaction forces can be obtained according to Equation (4.25). 

The theoretical statistics of the interaction forces serve as reference are 

calculated from 10000 samples of the bridge displacements and their derivatives 

obtained from the MCS in the forward analysis. 

A comparison of mean value and variance of the theoretical and the 

identified interaction forces is shown in Figures 4.4 and 4.5, respectively. Due to 

the relatively large error in the identified interaction forces when the vehicle axle 

loads enter and leave the bridge span (e.g. see Figure 4.4), the relative error FE 

calculated for the whole time history will be relatively large. Since the error is 

stable in the remaining period of the time history, only the data from 0.05s-1.45s 

after entry of the first axle for the front axle force and 0.25s-1.65s after the entry 

of the rear axle for the rear axle force will be included in the error analysis of this 

study. The relative errors in the mean value and variance between the theoretical 

and identified interaction forces according to Equation (3.40) are listed in Table 

4.2. Results show good agreement of the identified statistics of the interaction 

forces from the two methods. For the K-L method proposed in Section 4.3.3, the 
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identified statistics of the interaction forces using the two kinds of samples are 

very closed to each other which indicates the displacement samples calculated 

from the MCS approximately form a discretized Gaussian random process, i.e. 

the random response of the bridge deck in this case can be assumed as Gaussian 

distributed. 

The mean values of the identified interaction forces are noted to have small 

fluctuations and they are close to the equivalent static axle loads. This fluctuation 

arises from the vibration of vehicular system acting on the bridge deck and the 

effect of the road surface roughness. The former would be dependent on the 

stiffness combination of the vehicle and bridge systems, but it would be in 

general much smaller than that due to the road surface roughness. The stochastic 

modeling of the road surface roughness in this paper results in the fact that the 

“dynamic” components due to road surface roughness in the existing 

deterministic analysis method become “stochastic” components and are 

represented in the variance of the identified forces. Therefore, only the 

fluctuations due to the vehicular system have been included in the mean values 

of the identified interaction forces which are shown to be relatively small. 

4.4.3 Number of the Samples Used 

In practical application of the algorithm, the number of samples of the 

responses used in the identification is a very important factor to be considered. It 

is obvious that 500 samples of the response signals are too many to obtain in the 
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field test, while for a stochastic identification algorithm without the assumption 

of the ergodicity in the response samples, using a small number of displacement 

samples in the force identification may fail to represent the statistics of the 

random process leading to poor results in the variance of the identified 

interaction forces. 

The influence of the number of samples used on the accuracy of the 

identified force statistics is investigated with results shown in Table 4.3. Samples 

of the bridge displacements are generated from the forward analysis with Monte 

Carlo Simulation. The error in the mean value increases slightly with a decrease 

in the sample number while error in the variance increases slightly with 

decreasing sample number down to 50 and it goes up dramatically with further 

decrease in the sample number. When the sample number is less than 20, poor 

results are obtained due to the failure of representing the statistics of the whole 

population and the variance of the identified moving forces become unstable, i.e. 

different groups of samples will result in different variance of the identified force. 

In the following study, 50 samples of the displacement from the forward analysis 

with MCS will be adopted in the force identification. 

It is noted that samples of the bridge displacement from the same population 

may require the same vehicle to run over the bridge for many times which may not 

be feasible for all the situations in practice. The possibility of getting more 

samples from a set of over-provided sensors has been considered. But the 

measured data from one measurement contains only one sample information of the 

road roughness. Since all sensors are dependent, therefore the different 

combinations of responses from the sensor set may not be able to provide more 
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statistical information. The problem on how to get the required number of 

measurement samples in an efficient way would need to be solved in future. 

4.4.4 The Effect of Road Surface Roughness 

In previous Sections of the numerical simulations in this Chapter, Class A 

road with Sd(f0)= 6×10-6 m3/cycles has been adopted. A further study will be 

conducted to investigate the application of the proposed identification algorithm 

with different classes of road profiles in this Section. The road classifications 

according to the ISO specification is based on the value of roughness coefficient 

Sd(f0). Five classes of road representing different qualities of the road surface are 

studied. They are classified as A=very good, B=good, C=average, D=poor, 

E=very poor with the value of roughness coefficient Sd(f0) equals to 6×10-6, 

16×10-6, 64×10-6, 256×10-6 and 1024×10-6 m3/cycles, respectively. Typical 

irregular pavement profiles are shown in Figure 4.6. 

The relative errors between the reference and identified interaction forces 

with different classes of road are listed in Table 4.4. Results show that the 

relative error in the mean value increases slightly with the decrease of the quality 

of the road surface, while the relative error in the variance is not sensitive to the 

road class. When the quality of the road surface decreases, the coefficient of 

variation (COV) of the bridge response due to vehicle excitations will increase. 

The accuracy of the mean value of the identified interaction forces is slightly 

affected by the quality of the road surface. The identified and reference mean 

value and variance of the interaction forces from the Class E road are compared 
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in Figures 4.7 and 4.8. The reference values are obtained from the MCS in which 

10000 samples of bridge displacement are adopted to identify the corresponding 

samples of the interaction forces. It can be seen that though the shape of the 

variance of the identified interaction forces in the case with Class E road shown 

in Figure 4.8 is different from that with Class A road shown in Figure 4.5, the 

relative error shown in Table 4.4 is not sensitive to different classes of road. The 

maximum Coefficient Of Variation (COV) of the time-varying forces calculated 

as the ratio of the identified time-varying standard deviation to the identified 

time-varying mean value of the moving force is 0.8748. This is very large 

indicating that the proposed algorithm can identify the moving forces with quite 

large COV and this property makes the proposed method very attractive for 

engineering application. 

4.5 Discussion on the Measurement Noise 

In practical engineering application, the response data is polluted by 

measurement noise. It should be noted that the noise effect on the “measured” 

displacement responses has not been included in this stochastic moving force 

identification algorithm. The mean value of the interaction force can be 

accurately identified from the contaminated data because the noise effect can be 

mostly removed by the averaging procedure on the response samples. Any noise 

removal procedures can be applied before the force identification procedure to 

improve the accuracy in the variance of the identified random interaction forces. 
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It is noted that the randomness in the response signals, e.g. strains or 

accelerations due to road surface roughness may also be removed by the noise 

removal procedure. Fortunately, the difference between the randomness in the 

response signals caused by road surface roughness and the measurement noise is 

judged from whether they are derived from the system equation of motion, i.e. 

the random part of the acceleration due to the road surface roughness can be 

obtained from differentiation of the random part of displacement. This property 

does not hold for the random part due to the noise pollution. To deal with the 

noise polluted data, both the strain and acceleration data of the bridge deck can 

be measured, and the noise removal procedure on the strain data can be 

implemented by referring to the acceleration data as follows: firstly, calculate the 

displacement signals based on the strain signals with noise removed. Then the 

differentiation on the displacement signals is performed to obtain the calculated 

accelerations signals. Finally, the calculated acceleration signals are compared 

with the measured acceleration signals. If good agreement is achieved, it 

indicates that the randomness in the strain signals due to measurement noise are 

removed while the randomness in the strain signals due to random excitations 

remains. Otherwise, the parameters for the noise removal filter should be reset 

for another trial. 

The proposed strategy described above may be effective to handle the noisy 

data to achieve an accurate variance of the identified interaction forces. However, 

the noise removal technique discussed here is beyond the scope of this study. 
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4.6 Summary 

A new strategy on the bridge-vehicle interaction problem is formulated in 

which both the irregular road surface profile and the system responses are 

assumed as Gaussian random processes which can be represented by the 

Karhunen-Loève Expansion. By representing the Gaussian random process 

involved, the equation of motion of the bridge-vehicle system becomes a set of 

deterministic equations which can be easily solved by any numerical methods 

such as the Newmark-β method. A stochastic force identification algorithm is 

proposed based on this model in which statistics of the moving interaction forces 

are accurately identified from a set of samples of the random responses of the 

bridge deck. 

The numerical simulations have been conducted to achieve the following 

purposes. The Gaussian assumption for the road surface roughness is 

demonstrated to be correct. The response statistics calculated from the proposed 

method compared with those from the Monte Carlo Simulation are found to be 

accurate. The stochastic moving force identification algorithm adopted to 

identify the statistics of the interaction forces between the bridge and the moving 

vehicle is found to be effective.  

To consider practical engineering application, the effect of the number of 

response samples used and the effect of the different road surface roughness on 

the accuracy of the proposed stochastic force identification algorithm are 

investigated. It is recommended that 50 response samples may be suitable for a 
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satisfactory identification of the variance of the moving vehicle axle forces. 

Results also show that the proposed force identification algorithm can identify 

the moving forces with COV at any time instance as large as 0.8, and the relative 

error in the variance of the identified forces is not sensitive to the road class. 

To conduct the research work a step further in the following Chapters, the 

inherent randomness in the material properties of the bridge structures will be 

included. New techniques will be employed to formulate the bridge-vehicle 

interaction model with uncertainties in both excitations and system parameters. 

Base on this new model, the dynamic analysis as well as the stochastic moving 

force identification technique will be proposed. 
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Table 4.1- Parameters of the bridge-vehicle systems 
 

Bridge Vehicle 

L=30 m Iv=1.47×105 kgm2 mv=17735 kg 

EI=2.5×1010 Nm2 a1=0.519 a2=0.481 

ρA=5.0×103 kg/m m1=1500 kg m2=1000 kg 

z=1.0 m ks1=2.47×106 N/m ks2=4.23×106 N/m 

f1=1.03 Hz kt1=3.74×106 N/m kt2=4.60×106 N/m 

f2=4.75 Hz cs1=3.00×104 N/m/s cs2=4.00×104N/m/s 

f3=10.11 Hz ct1=3.90×103 N/m/s ct2=4.30×103N/m/s 

ζ=0.02 for all mode S=4.27 m  

 

 

Table 4.2 - Relative error in the identified forces from different kinds of response 
samples 

 

FE (%) Mean Value Variance 

Kinds of Samples K-L Samples MC Samples K-L Samples MC Samples

Front Axle 3.61 3.68 9.51 8.62 

Rear Axle 3.26 3.32 15.97 13.86 
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Table 4.3 - Relative error in the identified forces from different number of 
response samples 

 

FE (%) Mean Value Variance 

Number of 
Samples 10 20 50 100 200 500 10 20 50 100 200 500

Front Axle 3.79 3.66 3.58 3.65 3.65 3.68 45.1 36.8 17.8 13.0 11.0 8.62

Rear Axle 3.41 3.32 3.19 3.29 3.21 3.32 42.06 31.6 24.1 21.6 17.2 13.9

 

 

Table 4.4 - Relative error in the identified forces from different classes of roads 
 

FE (%) Mean Value Variance 

Road Class A B C D E A B C D E 

Front Axle 3.58 3.62 3.93 5.37 9.29 17.8 17.9 17.7 17.9 17.8

Rear Axle 3.19 3.19 3.24 3.84 5.88 24.1 24.6 24.3 24.6 24.5

 

 

 126



 

 

Iv, θv

Ks2, Cs2 Ks1, Cs1 

Kt2, Ct2 Kt1, Ct1 

m2 m1

a2S a1S

mv, yv 

y1 y2 

L

)(tx1

)(tx2  
)(1 tP)(2 tP

v

 
 

Figure 4.1 - The bridge-vehicle system 
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Figure 4.2 - Comparison of the PDF and CDF between samples from the road 
surface and the corresponding Gaussian random variable 
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Figure 4.3 - Comparison of statistics of mid-span displacement 
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Figure 4.4 - Comparison of identified and theoretical mean value of the interaction 
forces (Class A Road) 
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Figure 4.5 - Comparison of identified and theoretical variance of the interaction 
forces (Class A Road) 
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Figure 4.6 - Typical road surface profiles 
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Figure 4.7 - Comparison of the identified and theoretical mean value of the 
interaction forces (Class E Road) 
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Figure 4.8 - Comparison of identified and theoretical variance of the interaction 
forces (Class E Road) 
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CHAPTER 5 

STOCHASTIC BEAM-LOAD SYSTEM: THE 

GAUSSIAN ASSUMPTION 

5.1 Introduction 

A bridge-vehicle interaction model has been proposed in Chapter FOUR in 

which the randomness in the excitation due to road surface roughness is included. 

Since the bridge-vehicle system has an inherent randomness in the material 

properties of the bridge structure, from this Chapter, it will be included in the 

bridge-vehicle interaction problem to provide a practical estimation of the 

response statistics of the bridge-vehicle system. Though there are other sources 

of randomness, e.g. the velocity of vehicle, etc. which can also be modeled as a 

random variable or random process. However, these factors will not be discussed 

in this Chapter. 

Methods for introducing randomness in the material properties of a structure 

in engineering problems have been reviewed in Chapter two. In last two Chapters, 

the Karhunen-Loève Expansion (KLE) was adopted to represent both the random 

excitation force and random response of the bridge structure which are assumed 

as Gaussian random processes. When the material properties of a bridge structure 

are assumed as Gaussian random processes, they can also be represented by the 
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KLE. It should be noted that the random response of a dynamic system with 

Gaussian randomness in both the system parameter and excitation tends to be 

non-Gaussian. However, the random response is assumed with Gaussian property 

in this Chapter under the assumption of small randomness in system parameters. 

The random response assumed with Gaussian property and it can be represented 

by a set of deterministic coefficients multiplying with the corresponding standard 

Gaussian random variables. This is a simplification of the traditional solution to 

the problem in the Spectral Stochastic Finite Element Method (SSFEM) 

(Ghanem and Spanos 1991). The algorithm proposed in this Chapter based on the 

Gaussian assumption of the random response may be more economical for 

solving the stochastic bridge-vehicle interaction problem with uncertainty in 

system parameters compared with SSFEM, though with a disadvantage of a 

lower accuracy when the randomness in system parameter becomes large. 

A stochastic finite element model is proposed in this Chapter for a 

bridge-vehicle system with inherent randomness and stochastic loading. The 

algorithm based on the proposed model can handle random excitation forces with 

large uncertainties but with relatively small uncertainties in the system parameters. 

The bridge is modeled as a simply supported Euler-Bernoulli beam with Gaussian 

random elastic modulus and mass density of material and Gaussian random 

moving forces on top. The equation of motion of the bridge-vehicle system with 

Gaussian uncertainties is presented with the adoption of the Karhunen-Loève 

Expansion, and the response statistics are obtained by solving the system equation 
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of motion using the Newmark-β method. A statistical relationship between the 

random moving forces and the random structural responses is derived. Based on 

the stochastic finite element model, a general stochastic moving force 

identification algorithm is then formulated. Numerical simulations are given to 

verify the beam-load model in the forward analysis and the proposed stochastic 

moving force identification algorithm with quantifications on the errors occur at 

different stages of the identification process. Case studies on different factors 

which may affect the accuracy of the formulated model and the proposed force 

identification algorithm are also presented. 

The stochastic system modeling with Gaussian uncertainties using KLE is 

introduced in Section 5.2 and the general force identification algorithm based on 

the formulated stochastic finite element model will be developed in Section 5.3. 

Numerical simulation on the verification of both the formulated model and the 

application of this stochastic moving force identification algorithm is presented 

in Section 5.4. Discussions on the algorithms proposed in the Chapter will be 

addressed in Section 5.5. A summary is given in Section 5.6. 

5.2 Modeling of Gaussian Uncertainty in System 

Parameters 

5.2.1 The Stochastic Finite Element Algorithm 

The mass density ρ(x,θ), Young’s modulus E(x,θ) and damping c(x,θ) of a 

beam structure are assumed as Gaussian random processes with the mean value 
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)(xρ , )(xE , )(xc and standard deviation σρ, σE, σc, respectively. The random 

components of these random processes are denoted as ),(~ θρ x , ),(~ θxE  and 

),(~ θxc , respectively. The equation of motion of the beam structure with random 

material properties and random excitations can be written as 

( ) ( ) ( ) ( )θθθθρ ,,,,,, 2

2

txw
t

xctxw
t

Ax
∂
∂

+
∂
∂  

( ) ( ) ( ) (∑
=

−=
∂
∂

+
FN

i
ii tvxtFtxw

x
IxE

1
4

4

,,,, δθθθ )           (5.1) 

It is noted that Equation (5.1) is similar as Equation (3.1) but with the randomness 

in material properties included. Employing the Hermitian cubic interpolation 

shape functions and with the assumption of Rayleigh damping, Equation (5.1) will 

take the following form 

( ) ( ) ( ) ( )θθθθθθθ ,,)(,)(,)( tttt bFHRKRCRM =++ &&&           (5.2) 

where R(t,θ), ),( θtR& and ),( θtR&& are the random nodal displacement, velocity and 

acceleration vectors of the beam structure, respectively with M(θ), C(θ), K(θ) are 

the stochastic mass, damping and stiffness matrices of the beam structure, 

respectively; , , . )(~)( θθ MMM += b )(~)( θθ CCC += b )(~)( θθ KKK += b

)(~ θM , )(~ θC  and )(~ θK are the random components of the system mass, damping 

and stiffness matrices, respectively, and they can be obtained by assembling the 

corresponding elemental matrices as 

( )∫= l

eeTe dlAx HHM θρ ,~~ , ( )∫= l

eeTe dlIxE BBK θ,~~         (5.3) 

where He and Be are respectively the shape function matrix and 

strain-displacement matrix of each element. l is the length of each element. 
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Rayleigh damping is assumed with the equation, 

)()()( θθθ KMC KM cc +=                         (5.4) 

where cM and cK are constants. 

The KLE can be employed to represent the Gaussian random processes 

according to Equation (3.9). Taking the Young’s modulus for example 

( ) ( ) ( ) ( )∑
=

+=
Ek

i
iii xxExE

11

111
, ϕλθξθ                    (5.5) 

where kE is the number of components in the KLE for the Young’s modulus after 

truncation. The elemental stiffness matrix becomes 

( ) ( ) ( ) e
i

k

i
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i
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1

1
11

)(~ KBBK ∑∫∑
==

== θξϕλθξθ        (5.6) 

and the system stiffness matrix K(θ) can be expressed as 

( )∑
=

+=
Ek

i
iib

11

11
)( KKK θξθ                        (5.7) 

where 
1i

K  can be assembled from e
i1

K . Let K0=Kb, we have  

( )∑
=

=
Ek

i
ii

01

11
)( KK θξθ                             (5.8) 

Similarly the system mass matrix can be expressed as 

( )∑
=

=
ρ

θξθ
k

i
ii

02

22
)( MM                           (5.9) 

Since the Rayleigh damping matrix is the linear combination of the system 

mass and stiffness matrices according to Equation (5.4), the damping matrix can 

be written as 

( )∑
=

=
ck

i
ii

03

33
)( CC θξθ                           (5.10) 
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where kρ and kc are the number of the components in the KLE for mass density and 

damping after truncation, respectively, and kc=kρ+kE. 

The random excitation force vector F(t,θ) can be expressed by its K-L 

components according to Equation (3.21) as 

( ) ( ) ( )( )∑
=

=
Fk

j

j
j tt

01

1

1
, fF θξθ                       (5.11) 

where  are the K-L components for the random moving forces and k)()( 1 tjf F is the 

number of K-L components retained after truncation.  

Since the covariance matrix of the response in Equation (3.17) is not known 

a-priori, the KLE can not be performed according to Equation (3.21) for the 

nodal displacement vector R(t,θ). However, it is assumed that the randomness in 

system parameters in this Chapter is small and the structural response can be 

approximated to have Gaussian property. The response will therefore take the 

following form as 

( ) ( ) ( )( )tt
Rk

j

j
j∑

=

=
0

, yR θξθ                         (5.12) 

where kR is the number of corresponding components y(j)(t) which is determined 

by the number of K-L components for both the excitation forces and system 

parameters as kR=kρ+kE+kF

Similarly, the nodal velocity vector and nodal acceleration vector will 

respectively take the following forms, 

( ) ( ) ( ) ( )tt
Rk

j

j
j∑

=

=
0

, yR && θξθ                         (5.13) 
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( ) ( ) ( ) ( )tt
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where ( )jy& and ( )jy&& are the first and second derivatives of y(j)(t) with respect to time 

t, respectively.  

By substituting Equations (5.8) to (5.14) into Equation (5.2) and taking the 

inner product on both sides of the equation with ξk(θ) and employing the 

orthogonal property shown in Equation (3.11), we have 
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Let ( ) ( ) ( ) ( )∑
=

=
ρ

θξθξθξ
k

i
ikji

jk

1

,

2

22
MM ,  

( ) ( ) ( ) ( )∑
=

=
ck

i
ikji

jk

0

,

3

33
CC θξθξθξ  and ( ) ( ) ( ) ( )∑

=

=
Ek

i
ikji

jk

0

,

1

11
KK θξθξθξ . 

Rewriting Equation (5.15) in matrix form, 
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(5.16) 

where km=kR and ( ) ( ) ( )θξθξθξ kji  are constants which can be calculated 

analytically (Ghanem and Spanos 1991). 
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5.2.2 Response Statistics 

The nodal response vectors of the beam structure can be obtained according 

to Equations (5.12) to (5.14) once the deterministic components y(j)(t), ( ) )(tjy&  

and ( ) )(tjy&&  are calculated by solving Equation (5.16) using the Newmark-β 

method. The mean and the variance of the nodal displacements can then be 

evaluated as  

( ) ( )( )ttMEAN 0yR = ,              (5.17) ( ) ( ) ( )(∑
=

=
mk

j

j ttVAR
1

2yR )

)

where the subscript “R” denotes the random displacement vector. The random 

displacement of the bridge at position x and time t can be derived as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(∑∑
==

==
mm k

j

j
j

k

j

j
j txtxtxw

00

,, yHyH θξθξθ         (5.18) 

Thus the mean and variance of displacement at position x and time t can be 

obtained as 

( ) ( ) ( ) ( )txtxMEAN w
0, yH= ,      (5.19) ( ) ( ) ( ) ( )(∑

=

=
mk

j

j
w txtxVAR

1

2, yH )

where the subscript “w” denotes the random displacement of the beam structure. 

Substituting the first and second derivatives ( )jy& and ( )jy&& of the 

components y(j) in Equation (5.19), the mean and variance of random velocity 

and acceleration at position x and time t can be obtained. Samples of the random 

displacements can be easily generated according to Equation (5.12) with any 

available sampling techniques, e.g. Latin Hypercube Sampling (LHS) (Florian 

1992) to simulate the Gaussian random variables ξj(θ). The probabilistic density 
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function of the displacement of the beam structure at position x and time t can 

also be obtained according to Equation (5.18) after the components y(j) are 

calculated. 

5.3 Moving Force Identification with Gaussian 

Uncertainty in System Parameters 

To identify the statistics of the moving forces applied on the beam structure 

from samples of the responses, the KLE can be applied to represent the 

‘measured’ response, e.g. displacement, to obtain the K-L components denoted 

as  according to Equation (3.21). It is important to note that the K-L 

components of the “measured” responses  in the inverse procedure are 

different from those denoted as y

( ) ( )tjŷ

)(ˆ )( tjy

(j)(t) calculated in the forward problem from 

Equation (5.16). The identification of forces may not be so ‘simple’ as that in the 

case of a deterministic system, i.e. the statistics of excitation forces can not be 

identified by applying a general inverse method, e.g. with a least-squares 

estimation, to solve Equation (5.16) from the K-L components of response 

. This is because of the existence of non-zeros in the (j,0) and (0,j) 

sub-blocks in the system matrix in Equation (5.16). 

)(ˆ )( tjy

Before the stochastic moving force identification algorithm is proposed, two 

kinds of problem will be firstly addressed. The first kind of problem refers to a 

deterministic system under Gaussian random excitations. The second one refers 

to a system with Gaussian uncertainties under deterministic excitations. With the 
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assumption of small uncertainties in the system parameters and according to the 

Problem of the Second Kind defined in Section 5.3.2, the stochastic moving 

force identification problem based on the stochastic finite element model with 

the KLE representing uncertainties in both the system parameters and excitations 

formulated can be transformed into the Problem of the First Kind as defined in 

Section 5.3.1. As demonstrated in Chapter 3, similar stochastic moving force 

identification problem had already been solved. The solution of the Problem of 

the First Kind will also be briefly addressed in Section 5.3.1 according Equations 

(5.27) and (5.28). 

5.3.1 Problem of the First Kind 

In this kind of problem, the non-diagonal blocks in Equation (5.16) are all 

zero. The system equation can be expressed as 

( ) ( ) ( )( ) ( ) ( ) ( )( )txttt k
b

k
d

k
d

k
d fHyKyCyM )(=++ &&& , ( )mkj ,,0 L=     (5.20) 

In the moving force identification problem, the measured responses, e.g. 

displacement, will form a population with a mean value and variance. Performing 

the Karhunen-Loève Expansion on the displacements vector according to 

Equation (3.21) will lead to 

( ) ( ) ( )( )tt
Rk

j

j
j∑

=

=
ˆ

0

ˆ,ˆ yR θξθ                      (5.21) 

It is noted that the K-L components ( ) ( )tjŷ  from the ‘measured’ responses in 

the inverse problem are different from y(j)(t) obtained in the forward problem from 

Equation (5.16), i.e. the ‘energy’ in each component has been redistributed in the 
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inverse analysis. However the following equalities representing the mean value 

and variance of responses still hold because they are from the same population of 

response samples. 

( ) ( ) ( )( )tt 00ˆ yy =                          (5.22a) 

( )( ) ( )( )∑∑
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j

j

j yy                     (5.22b) 

For a second-order linear differential equation which has the form denoted 

by Equation (5.16), a polynomial operator P(D) (Borrelli and Coleman 1987) can 

be introduced to establish the relationship between each K-L components of the 

excitation forces and responses for both the forward and inverse problems as 

( ) ( ) ( )[ ] ( ) ( )ttDP jj fy =                     (5.23a) 

( ) ( ) ( )[ ] ( ) ( )ttDP jj fy ˆˆ =                     (5.23b) 

where  and D is a differential operator which has the 

action . Repeat application of the operator one more time 

produces the derivative ÿ and this operator is denoted by D

( ) ddd KDCDMDP ++= 2

yDyyD &≡→:

2. The operator P(D) is a 

linear operator with the following property (Borrelli and Coleman 1987), 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]n
n

n
n DPcDPcDPccccDP yyyyyy +++=+++ LL 2

2
1

1
2

2
1

1  

(5.24) 

where ci , i=1,⋯,n. are constants. 

The following equality can be obtained from Equations (5.22a) and (5.23) 

as 

( ) ( ) ( )( )tt 00ˆ ff =                          (5.25) 

Equation (5.25) shows that the mean value of the identified moving forces is 
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equal to the mean value of the excitation force samples in the forward problem 

which are known. In Chapter 3, numerical simulation shows that the variance of 

the identified moving forces and the variance of true excitation forces are equal 

as shown in Equation (5.26) despite the fact that ‘energy’ in each component of 

the identified set of forces has been redistributed, i.e. , j>0. )()(ˆ )()( tt tt yy ≠

( )( ) ( )( )∑∑
∞

=

∞

=

=
1

2

1

2ˆ
j

j

j

j ff                       (5.26) 

Therefore the relationship between the K-L components of responses and 

excitation forces in the inverse problem can be expressed in the same form of 

Equation (5.20) as  

( ) ( ) ( ) ( ) ( )( ) ( )( )txttt j
b

j
d

j
d

j
d fHyKyCyM ˆ)(ˆˆˆ =++ &&& ,   (5.27) )ˆ,,0( Fkj L=

It is noted that Equation (5.27) is similar to Equation (3.33), and the 

definitions of the matrices and variables in Equation (5.27) can refer to Section 

3.5. The mean value and variance of the identified forces can be obtained as 

( ) ( )tMEAN F
0f̂= ,             (5.28) ( ) ( )( )(∑

=

=
Fk

j

j
F ttVAR

ˆ

1

2
f̂ )

where the subscript “F” denotes the random moving force vector. 

5.3.2 Problem of the Second Kind 

If a system with Gaussian uncertainties is subject to deterministic moving 

forces, the terms in the force vector on the right-hand-side of Equation (5.16) are 

all equal to zero except f(0)(t) which represents the deterministic forces. Only the 

diagonal blocks and the (i,0) and (0,i) blocks of the mass, stiffness and damping 
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matrices in Equation (5.16) are non-zero. The system equation of motion of this 

kind of problem can then be rewritten as 

First Row of the Equation of Motion: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttt 00,000,000,0 yKyCyM ++ &&&   
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,0)0()( yKyCyMfH &&&  

(5.29a) 

Other Rows of the Equation of Motion: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttt kkkkkkkkk yKyCyM ,,, ++ &&&  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )ttt kkk 00,00,00, yKyCyM ++−= &&& , (k=1,…,km)  (5.29b) 

Noting that for the model formulated in Equation (5.16), each diagonal 

block of system matrices M(k,k), C(k,k), K(k,k), (k= 0,1,⋯,km) are equal to the 

deterministic system matrix Md, Cd, Kd respectively, and thus the left-hand-side 

of Equation (5.29) is the same as the corresponding part in Equation (5.20). The 

terms on the right-hand-side of Equation (5.29) except f(0)(t) can be regarded as 

the effect due to uncertainty in system parameters on the randomness of the 

structural responses. 

5.3.3 General Force Identification Algorithm 

When Gaussian uncertainty in both excitation and system parameters is 

considered, the system equation of motion can be expressed as Equation (5.16). 

The first row of the system equation of motion can be written similar to Equation 

(5.29a). Other rows can be expressed as  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ttt kkkkkkkkk yKyCyM ,,, ++ &&&  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )ttttx kkkk
b

00,00,00,)( yKyCyMfH ++−= &&& ,  (k=1,…,km) 

      (5.30) 

When the uncertainty in system parameters is included in the moving force 

identification, the linear relationship between the K-L components of the 

excitation forces and responses for a deterministic system as demonstrated in 

Equation (5.20) does not hold. In order to take advantage of the linear 

characteristic in the case of the deterministic system, we need to transform 

Equations (5.29a) and (5.30) to the form as shown in Equation (5.20) such that 

the stochastic moving force identification can be performed following the 

procedure as described for the Problem of First Kind in Section 5.3.1. 

It should be noted that equality shown in Equation (5.22a) on the mean 

values of the random response of the beam structure still holds. Noting that the 

summation terms on the right-hand-side of Equation (5.29a) are the higher order 

terms which are much smaller compared to the corresponding terms on the 

left-hand-side of Equation (5.29a) when the uncertainty in system parameters is 

small, therefore, they can be ignored. The deterministic component of the 

excitation forces f(0)(t) can be identified from Equation (5.29a) with an 

under-estimation. If the uncertainty in system parameters is not very large, the 

deterministic force components f(0)(t) can be accurately identified. 

Let , , and , , denote the sets of K-L components of the 

responses obtained in the forward problem from Equation (5.16) for the First and 

)( j
dy )( j

dy& )( j
dy&& )( j

sy )( j
sy& )( j

sy&&
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Second Kind of problem, respectively. In the moving force identification 

procedure for a system with both Gaussian excitation and Gaussian system 

parameters, the ‘excitations’ due to uncertainty in system parameters are known a 

prior, and , ,  can be evaluated from Equation (5.29b). The equation 

for the random K-L components can be rewritten according to Equations (5.29b) 

and (5.30) as 

)( j
sy )( j

sy& )( j
sy&&

( ) ( ) ( ) ( ) ( )( ) ( ) ( )txttt j
b

j
db

j
db

j
db fHyKyCyM )(=++ &&&           (5.31) 

where ( ) ( ) ( )( ) ( )( )ttt j
s

jj
d yyy −= , ( ) ( ) ( ) ( ) ( )( )ttt j

s
jj

d yyy &&& −= , ( ) ( ) ( ) ( ) ( )( )ttt j
s

jj
d yyy &&&&&& −= . 

( ) )(tjy ,  and ( ) )(tjy& ( ) )(tjy&& are the K-L components of the responses 

obtained in the forward problem from Equation (5.31) which has the same form as 

Equation (5.20). However, ( ) )(tjy , ( ) )(tjy&  and ( ) )(tjy&&  which are related to the 

forward problem responses are not available in the inverse procedure. We know 

from Equation (5.22b) that the K-L components of response  from the 

“measured” samples in the inverse problem and that in the forward problem 

 are obtained from the same covariance kernel denoted as KN. The 

covariance kernel for  and 

( ) ( )tjŷ

( ) ( )tjy

( ) ( )tj
dŷ ( ) ( )tj

dy  is denoted as KNd and that for the 

covariance kernel for  and ( ) ( )tj
sŷ ( ) ( )tj

sy  is denoted as KNs. These three Kernels 

will have the following relationship according to Equations (3.17) and (5.17) as 

( ) ( )∑
=

++=
Rk

j

Tj
s

j
dsd

1

2 YYKNKNKN                 (5.32) 

where Yd
(j) and Ys

(j) are the vectors of kernel KNd and KNs assembled from yd
(j) 

and ys
(j), respectively. The relationships between Yd

(j) and yd
(j) and between Ys

(j) 

and ys
(j) respectively are the same as that exhibited between X(j) and x(j) as shown 
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in Section 3.3.2. 

For Problem of the First Kind, the second and third terms on the 

right-hand-side of Equation (5.32) are equal to zero. For the problem of second 

kind, the first and third terms on the right-hand-side of Equation (5.32) are equal 

to zero. When the responses signals are contaminated with noise, Yd
(j) mainly 

consists of components with high frequency while Ys
(j) is traditionally varying 

slowly with time for a general discretization of random field of the system 

parameters, and thus the third term in Equation (5.32) is usually 

small compared to other terms due to a low correlation between Y

( ) ( )∑
=

Rk

j

Tj
s

j
d

1

2 YY

d
(j) and Ys

(j). 

The significance of these three Kernels on the accuracy of the identified results 

will be further discussed in the numerical simulations. To maintain the symmetric 

characteristic of the third term in Equation (5.32), the equation is refined to have 

the following expression as 

( ) ( ) ( ) ( )∑∑
==

+++=
RR k

j

Tj
d

j
s

k

j

Tj
s

j
dsd

11

YYYYKNKNKN            (5.33) 

5.3.4 Identification Procedure 

The moving force identification can then be performed according to 

Equations (5.31) and (5.32) with the stochastic model of the beam-load system in 

Equation (5.16) according to the following procedure: 

Step 1 The response samples used for the stochastic moving force identification 

can either be obtained from the field tests or from the numerical 
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simulation of the forward analysis. It is noted that the response samples 

measured from field test on a bridge each time under the “same 

condition” are in fact different due to the existence of many random 

factors and these samples are assumed to be from the whole population 

of a random process. For the response samples obtained from numerical 

simulation, they are generated according to Equations (5.12) to (5.14) 

with sampling technique to obtain samples for the standard Gaussian 

random variables involved. The obtained response samples will form a 

population of a random process. The procedure of calculating KN as 

shown in Equation (5.32) according to Section 3.3.2 is: Firstly, the mean 

value and random component of the response samples from 

measurement or numerical simulation are calculated according to 

Equations (3.13) and (3.14) respectively, and then the random 

component of the response vector will be reshaped according Equation 

(3.15). Finally, the covariance kernel for the response samples denoted as 

KN can be calculated according to Equation (3.16). 

Step 2 Employ the deterministic moving force identification method (Law et al. 

2004) together with the Improved Reduced System (IRS) reduction 

scheme (O’ Callahan 1989) to obtain the mean value of moving forces. It 

is noted that when uncertainty in both system parameters and excitation 

is considered, the higher order (summation) terms in Equation (5.30a) 

are ignored under the assumption of small variation of the randomness in 
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system parameter in the deterministic force identification algorithm. 

Step 3 When the system parameters are assumed to be known, the mean values 

of the moving forces identified in Step 1 can be adopted to calculate the 

corresponding components of response , ,  due to the 

‘system’ uncertainties according to Equation (5.29b). KN

)( j
sy )( j

sy& )( j
sy&&

s in Equation 

(5.32) can be obtained from these components. 

Step 4 Assuming the third term in Equation (5.32) is small compared to KNd 

and it can be ignored, then KNd can be obtained from KNd=KN-KNs. 

The K-L components  in the inverse problem can be calculated by 

performing the eigenvalue analysis on KN

)(ˆ j
dy

d and the variance of moving 

forces can be identified in the same way as that in a deterministic system 

as shown in Section 5.3.1. Cubic spline interpretation is applied to each 

component  to obtain the first and second order derivatives which 

are the corresponding components for velocity and acceleration. The 

corresponding components of the interaction forces can be obtained from 

Equation (5.27) using a general inverse procedure such as the 

least-squares estimation adopted in this study, and the statistics of the 

identified forces can then be obtained according to Equation (5.28). 

)(ˆ j
dy

5.4 Numerical Simulation 

5.4.1 Beam-Load Model 

This beam model adopted in this study is the same as Beam Model I in 
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Section 3.6.1.1 except the system parameters in beam structure are assumed as 

Gaussian random processes. The elastic modulus E and the mass density ρ are 

assumed with mean value 5×1010 N/m2 and 2.5×103 kg/m3, respectively, and 

they have the spatial correlation represented by an exponential auto-covariance 

function as: 

( ) )exp(, 212
21 a

xx
xx

−
−= σC                      (5.34) 

where σ is the standard deviation of system parameters E or ρ,  and｜xa 1-x2｜are 

the correlation length and the positive dislocation of two points in a spatial domain 

of interest which are set to 1.0 and 5m, respectively, for both parameters in this 

study. Both the random elastic modulus E and mass density ρ are assumed with the 

same spatial correlation and the same Coefficient Of Variation (COV), i.e. 

COVE=COVρ. This selection is arbitrary as the same analysis is applicable for the 

case when the randomness in E or ρ is totally different. 

The force models introduced in Sections 3.6.1.2 and 3.6.1.3 will be adopted 

in this study. The one moving force model (F1 in Force Model I and II) will be 

adopted in both the forward and inverse analysis. The two-force model (Force 

Model I) will also be adopted in the forward analysis. The velocity of the moving 

forces is 40 m/s except in Section 5.4.2.2 where the factor of moving velocity is 

specifically investigated. 

5.4.2 Forward Analysis 

5.4.2.1 Verify with Monte Carlo Simulation 
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Ten thousand samples of the random excitation forces will be adopted in 

both the proposed method and Monte Carlo Simulation to calculate the response 

statistics. In the proposed method, the covariance kernel of the excitation forces 

in Equation (3.17) is obtained from samples according to Section 3.3.2. The K-L 

components for the forces can be obtained by performing the eigenvalue analysis 

on the derived kernel. The first kF K-L components with relative large 

eigenvalues λj are retained according to the criterion as 99.0
1

≥∑∑ = j
k

j j
F λλ . 

The covariance kernels of the system parameters are defined according to 

Equation (5.34), and the case with the coefficient of variation equals to 5% is 

shown in Figure 5.1. Employing the eigenvalue analysis on the covariance kernel 

of system parameters, nine K-L components are adopted to represent the 

fluctuation of each random field in the structural model with eight beam elements. 

Based on the model formulated, the components y(j)(t) )()( tjy&  and )()( tjy&&  of 

the responses can be obtained by solving Equation (5.16) with the Newmark-β 

method. The response statistics of the displacements of the beam model can then 

be evaluated according to Equation (5.19). 

When one random moving force is applied on the beam structure, i.e. the 

single moving force model (F1 in Force Model I and II) is adopted. The number 

of K-L components for the F1 in Force Model I remained after truncation is 190 

while the number of K-L components for the F1 in Force Model II is 1. It is noted 

that the closer the random process to white noise, the more K-L components are 

required in the representation. It is noted that the computational efficiency can be 
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greatly improved by adopting a Gaussian moving force model with a specific 

correlation length since the system matrices in Equation (5.16) will be much 

smaller. The statistics of the random displacements of beam under the moving 

force are obtained from Equation (5.19) with verification by MCS. Comparisons 

of the mean value and variance of the mid-span displacement of the beam 

obtained from both methods with COVF=10% and COVE=COVρ=5% for the case 

with F1 in Force Model I is shown in Figure 5.2. Comparisons of the mean value 

and variance of the mid-span displacement of the beam obtained from both 

methods with Φ(ω0)= 16×10-6 m3 and COVE=COVρ=5% for the case with F1 in 

Force Model II is shown in Figure 5.3. Results from these two methods are in 

good agreement. The relative error RE according to Equation (3.39) for the mean 

value and variance in the case with F1 in Force Model I is 0.08% and 7.39%, 

respectively. The relative error RE for the mean value and variance in the case 

with F1 in Force Model II are 0.08% and 3.87%, respectively. 

When two random moving forces are applied on the beam structure, i.e. the 

two moving force model (Force Model I) is adopted, and the number of K-L 

components for the excitation force remained after truncation is 199. Both the 

cases for the beam under deterministic excitation forces (F1 and F2 with 

COVF=0%) and random excitation forces (F1 and F2 with COVF=10%) are 

studied. It is noted that the former one is a special case in which only the first 

term f(0)(t) in the force vector in Equation (5.16) is non-zero. The mean and 

variance of the mid-span displacement of the beam calculated from the proposed 
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method are compared with those from the MCS in Figures 5.4 and 5.5, 

respectively. Results show that the response statistics from the two methods are 

in good agreement. However, the proposed method is much faster with the 

computation time required for the proposed method at 41.33 s compared with 

1772.59 s required by the MCS for 10000 runs on a computer with Pentium(R) 

DCPU 3.00Hz with 2GB RAM. Within the time required in the proposed method, 

only 700 runs for the MCS can be conducted. The resulting percentage errors in 

the mean value and variance of the mid-span displacement of bridge are 

respectively 0.169% and 7.27% compared with the corresponding errors using 

the proposed method of 0.034% and 4.34% respectively when COVE=COVρ=5% 

and COVF=10%. 

The above study on the verification of the forward analysis shows similar 

performance of the algorithm with the three kinds of force models proposed. In 

the following study on the factors which may affect the accuracy of the proposed 

method, the Force Model I with two moving forces shown in Section 5.4.1.2 will 

be adopted. 

5.4.2.2 Effect of Moving Velocity  

The robustness of the proposed method is further investigated with different 

velocity for the two moving forces. The coefficient of variation of random 

system parameters is set at 5%, i.e. COVE=COVρ=5%. The mid-span 

displacement calculated from the proposed method are compared with those from 

MCS with 10000 samples in Table 5.1 for both the case with deterministic 
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excitation forces (F1 and F2 with COVF=0%) and random excitation forces (F1 

and F2 with COVF=10%) under different velocities. The relative errors are 

calculated according to Equation (3.39). Results from two methods are shown in 

good agreement especially for the mean value. It may be concluded that the 

accuracy of the proposed algorithm is insensitive to the velocity of the moving 

forces. In the sub-Sections 5.4.2.3 and 5.4.2.4, a moving velocity of 40 m/s for 

the two moving forces will be adopted. 

5.4.2.3 Effect of the Level of Randomness in System Parameters 

The accuracy of the proposed method with different levels of uncertainty in 

system parameters is studied in this sub-Section. Again MCS with 10000 samples 

is used to obtain the reference sets of results which are regarded to be “accurate”. 

The random system with both deterministic excitation forces (F1 and F2 with 

COVF=0%) and random excitation forces (F1 and F2 with COVF=10%) is 

investigated. Different coefficients of variation for the elastic modulus E and 

mass density ρ with values equal to 1%, 2%, 5% and 10%, respectively, are 

adopted and the statistics of the mid-span displacement are calculated using both 

methods. The relative difference of the mid-span displacement between the 

results from the proposed method and MCS according to Equation (3.39) is 

shown in Table 5.2. Results from the proposed method agree well with those 

from the MCS. There is very small difference for the calculated mean values and 

the relative difference increases slightly with the randomness of system 

parameters. The calculated variance is accurate when the coefficient of variations 
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of the system parameters is small, e.g. smaller than 5%. When the level of 

randomness in system parameters increases, relative large error emerged as 

shown in Table 5.2 for COVE=COVρ=10% which indicates the Gaussian 

assumption for the response in this case is inappropriate and the non-Gaussian 

assumption should be adopted for the random response of the beam. 

5.4.2.4 Effect of the Level of Randomness in Excitation 

The coefficient of variation of the system parameters is maintained at 

COVE=COVρ=5% and the accuracy of the proposed method with different levels 

of randomness in excitation is studied in this sub-Section. Since the randomness 

in the excitation forces in bridge-vehicle interaction problem tends to be large 

due to the road surface roughness of the bad road condition (Da Silva 2004), the 

coefficient of variation of the forces in this study are set to 5%, 10%, 20%, 50% 

and 80%. The “reference” mid-span displacements calculated from MCS are 

compared with those from the proposed method under random forces with 

different levels of randomness in Table 5.3 according to the relative difference 

computed from Equation (3.39). For both the calculated mean and variance, 

results from the two methods are similar indicating that large uncertainties in 

excitation forces can be modeled satisfactorily by employing the KLE in the 

proposed method. The relative difference in the mean value increases slightly 

with an increase in the randomness of the excitation forces while the relative 

error in the variance decreases slightly. The latter indicates that the error in the 

proposed algorithm is mainly influenced by the COV of the system parameters. 
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When the randomness in the excitation forces is large, the influence from COV 

of the system model will become less significant, and results from the proposed 

method will become more accurate.  

5.4.3 Inverse Analysis 

In the numerical simulations for the inverse analysis, two kinds of single 

moving force model (F1 in Force Model I and II) are adopted. To demonstrate the 

feasibility of the moving force identification algorithm proposed, F1 in Force 

Model I will be firstly adopted to study the error occurs at each stage of the 

inverse procedure following the identification steps in Section 5.3.4. Different 

factors which may affect the accuracy of the proposed algorithm will be further 

investigated for the case with two kinds of single moving force model. 

In Step 1, 500 sample sets of seven nodal displacements evenly distributed 

along the structure are obtained from simulation using the proposed method in 

the forward analysis as described in Section 5.2.1 which is noted as the K-L 

method. The Latin Hypercube Sampling (LHS) is adopted to generate the 

corresponding samples of the standard Gaussian random variables in Equation 

(5.18). The covariance kernel of the response KN is shown in Figure 5.6.  

In Step 2, a comparison is given in Figure 5.7 between the mean value of the 

identified moving force and the theoretical one obtained from sample sets of the 

random force used in the forward analysis. Result shows that the averaging of 

response samples removes the effect of randomness in the responses and greatly 
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improves the accuracy in the force identification. The relative error RE=3.37% is 

very small.  

In Step 3, substitute the mean value of the identified moving force into 

Equation (5.29) and use Newmark-β method to solve the differential equations. 

The components ys
(j) are calculated and the covariance kernel KNs subsequently 

obtained is shown in Figure 5.8. The relative error between the calculated and 

theoretical covariance kernel KNs is shown in Figure 5.9. The theoretical 

covariance kernel is calculated using the true mean value instead of the mean 

value of the identified moving force. The corresponding relative error RE=2.47% 

is quite small indicating that the error arising from the identification of the mean 

value of force has little effect on the eigenvalues of kernel KNs.  

In Step 4, calculate KNd according to Equation (5.32) using KN minus KNs. 

The relative error between the calculated and theoretical covariance kernel KNd 

which is the third term in Equation (5.32) is shown in Figure 5.10. The 

theoretical covariance kernel is obtained using the K-L components of response 

in the forward problem from Equation (5.16) by setting COVE=COVρ=0%. The 

corresponding RE=10.51% is relatively small. In the KLE of KNd, the 

eigenvalues and eigenvectors forming the K-L components of responses  

will directly affect the statistics of the identified moving force. Therefore it is 

important to show how significant the effect on the eigensolutions of KN

)(ˆ j
dy

d when 

the third term in Equation (5.32) is ignored. A comparison of the first eight 

eigenvalues for the calculated and theoretical covariance kernel KNd is shown in 
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Figure 5.11. The comparison of the first eight K-L components of the mid-span 

displacement of the beam structure calculated from the theoretical and calculated 

KNd is shown in Figure 5.12. Results show that eliminating  in 

Equation (5.32) will only affect several order of the eigensolutions of KN

( ) ( )∑
=

Rk

j

Tj
s

j
d

1

2 YY

d, e.g. 

the 3rd, 4th and 5th orders. Most eigensolutions remain the same as the theoretical 

ones especially for the first two orders which correspond to the two largest 

eigenvalues. The comparison of the identified and theoretical statistics of moving 

force is shown in Figure 5.13 with the relative error for the mean value and 

variance equal to 3.44% and 52.37% respectively.  

In the proposed algorithm, the mean value of the identified moving force, 

which may be the most important statistic of the moving force, is accurately 

identified. It is noted that the error for the variance of moving force is quite large 

because the assumption of the third term in Equation (5.32) is small compared 

the KNd may not valid when randomness in excitation in small. This is the first 

type of error. Since the variance of the identified moving force is the summation 

from all the identified corresponding components of the moving force as 

demonstrated in Equation (5.31), small fluctuations in each K-L component of 

displacement will be enlarged in the identification and will cause an 

overestimation on the variance of the moving force. This is noted as the second 

type of error. The third type of error lies with the cubic spline interpolation in the 

computation for the velocities and accelerations from the K-L components of 

displacement which have relatively high frequency fluctuations. This type of 
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error is only significant for the case with F1 in Force Model I which will lead to 

an underestimation of the variance of moving force and it can be eliminated by 

adopting other force models with larger correlation length for the Gaussian 

random process such as F1 in Force Model II. Further studies will be provided to 

study the performance of the proposed force identification algorithm with 

discussions on different factors which may affect the accuracy. 

5.4.3.1 Effect of the Number of Samples Used 

The number of samples of displacement used in the simulation will affect 

the accuracy of the identification algorithm because the response statistics of the 

beam structure is required to identify the statistics of the moving force. If a 

relatively small number of displacement samples are adopted in the moving force 

identification, they may fail to represent the statistics of the whole population 

with the randomness carrying into the identification results, i.e. different statistics 

of force will be obtained from using different groups of small number of 

samples.  

The influence of the number of samples on the accuracy of the identified 

force statistics is studied with results for the two kinds of single moving force 

model shown in Table 5.4 and Table 5.5. Results show that the error in the mean 

value increases slightly with a decrease in the sample number. When the number 

of response samples is small, the mean value of the identified moving force may 

become unstable. The relative error in the variance of identified F1 in Force 

Model I is quite large since the third kind of error described in the paragraph 
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above Section 5.4.3.1 is included. The relative error in the variance of identified 

F1 in Force Model II is relatively small which increases slightly with decreasing 

sample number down to 100 and it goes up sharply with further decrease in the 

sample number. When the sample number is less than 100, different groups of 

samples may result in different variance of the identified force. Such instability 

of result is noted for the cases of 10 samples and 20 samples in Table 5.4. 

A comparison of the identified and theoretical variance for the moving force 

(F1 in Force Model I) with 500 response samples when COVE=COVρ=5% and 

COVF=10% is shown in Figure 5.13. Although the relative error in the variance 

identification from a small number of sample is large, the variance of moving 

force can still be estimated with a relative error equals to 134.4% together with 

the mean value and the latter is very accurate corresponding to the theoretical 

moving force using five samples for F1 in Force Model I COVE=COVρ=5% and 

COVF=10% as shown in Figure 5.14. A Comparison of the identified and 

theoretical variance for the moving force (F1 in Force Model II) with 200 

response samples when COVE=COVρ=5% and Φ(ω0)=16×10-6 m3 is shown in 

Figure 5.15., the variance of the identified moving force is shown to be accurate. 

Whether the samples used can truly represent the statistics of its population 

will be the most important factor for the variance identification of moving forces. 

In the following case study, 200 samples of displacement will be used to 

maintain a good representation of the response statistics. 

5.4.3.2 Effect of the Level of Randomness in System Parameters 
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Before the result of this study is presented, it is noted from Equation (5.32) 

that the third term on the right-hand-side which causes error in the identification 

algorithm will decrease when either the level of randomness in system 

parameters or in excitation decreases. The kernel KNs can be calculated from the 

assumed level of randomness of system parameters and it is then removed from 

KN before the force identification using KNd according to Equation (5.32) at the 

beginning of Step 4. The following discussions refer to a comparison of the 

values of KNd and the third term in Equation (5.32) which will be the key point 

on the accuracy of the statistics of the identified force, particularly with the 

variance. 

The identified results when COVF=10% for F1 in Force Model I and 

Φ(ω0)=16×10-6 m3 for F1 in Force Model II with different levels of randomness 

in system parameters are shown in Tables 5.6 and 5.7, respectively. The error in 

the mean value of the identified moving force decreases just slightly with the 

decrease of the level of randomness in system parameters. Error in the variance 

of the identified moving forces increases with an increase in the level of 

randomness in system parameters for both force models. The error in variance for 

identified F1 in Force Model II is small and it is almost half of that for F1 in 

Force Model I when the randomness in system parameters is small. With the 

increasing of the level of randomness in system parameters, e.g. when COVE and 

COVρ are larger than 5%, the assumption of a small third term in Equation (5.32) 

compared to KNd may not be true when COVF=10%, and the identification error 
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becomes large for both force models. It is noted that the error in the variance for 

the case COVE=COVρ=2% is smaller than that for the case of COVE=COVρ=1% 

in Table 5.6. This can be explained as follows: when the level of randomness in 

system parameters decreases, the second type of error defined in the paragraph 

above Section 5.4.3.1 causing an overestimated variance will decrease. The cubic 

spline interpolation procedure which would cause an underestimated variance 

noted as the third type of error in the identification becomes the main source of 

error. This phenomenon can not be found in Table 5.7 for the case with F1 in 

Force Model II since the third type of error is very small and it can be ignored. 

5.4.3.3 Effect of the Level of Randomness in Excitation 

Another study on the influence of level of randomness in excitation on the 

accuracy of identified force statistics when COVE=COVρ=5% for the two kinds 

of force model are shown in Tables 5.8 and 5.9. Results show that error in the 

mean value of the identified moving force decreases just slightly with the 

decrease in the level of randomness in excitation. Error in the variance increases 

when the level of randomness in excitation decreases. According to Equation 

(5.32), both KNd and the third term decrease when COVF decreases. Results 

show that when COVF becomes small, the third term in Equation (5.32) can not 

be assumed to be small compared to KNd, and thus the identification error 

becomes large. On the other hand, when COVF is larges, the third term in 

Equation (5.32) becomes small compared with KNd, and the variance can then be 

accurately identified.  When COVF is large, the error in variance of the 
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identified moving force will not decrease with an increasing COVF. A 

comparison of the identified and theoretical statistics of moving force F1 in Force 

Model I using 200 samples with COVE=COVρ=5% and COVF=15% is shown in 

Figure 5.16. Results show that when KNd is relatively large compared with the 

third term in Equation (5.32), all the statistics including mean value and variance 

of the moving force can be accurately identified. It should be noted that in 

bridge-vehicle interaction problem with uncertainty in system parameters, the 

randomness in excitation forces due to road surface roughness will be large 

compared with the randomness in system parameters. The proposed stochastic 

moving force identification technique in this Chapter will be suitable for 

identifying the statistics of the interaction forces. As shown in Table 5.9, except 

for the case when Φ(ω0)=1×10-6 m3 for F1 in Force Model II where the roughness 

of the path surface is very small, both the mean value and variance of the moving 

force can be accurately identified. 

5.5 Discussions 

The proposed method has been shown much more efficient than the Monte 

Carlo simulation in the forward analysis. The required number of K-L 

components that represent the random process is a very important index affecting 

the computation efficiency of the proposed method, and it will be affected by the 

selected covariance kernel. A covariance kernel that needs the minimum number 

of terms in its representation should be selected especially for system with a 
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larger number of degrees-of-freedom. Attention is drawn to Equation (3.17) 

where the covariance matrix tends to become very large when the number of the 

components in vector V(t,θ) or the number of time instances increases leading to 

long computation time with the eigenvalue analysis. A high sampling rate of data 

is therefore not recommended in the stochastic analysis as a result of the above 

argument. A Galerkin type procedure (Ghanem and Spanos 1991) can also be 

employed for solving the Fredholm equation shown in Equation (3.7) to improve 

the computational efficiency of the eigenvalue problem. However, the method 

used in this Chapter is chosen as an alternative. 

The numerical studies in Section 5.4.3 refer to the inverse identification of a 

single moving force crossing a beam structure. According to the equation of 

motion of the beam-load model in Equation (5.16) that more forces can be easily 

included in the identification, the coupling of these moving forces may be 

difficult to separate. The mean values of these identified moving forces may not 

be as accurate as that for a single moving force, and this will lead to further 

degradation of the variance. To identify multiple forces, the inverse procedure 

with a least-squares solution of Equation (5.27) adopted in this Chapter may not 

give results as good as for the case of a single moving force. Further research 

should be carried out to improve the proposed method by giving estimation on 

the third term in Equation (5.32) rather than ignore this term. 

By eliminating the location matrix Hb(x) in the equation of motion of the 

stochastic system, the algorithm can give promising results not limited to the 
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stochastic moving force identification but to any force identification problem in a 

dynamic system with relatively small uncertainty in system parameters. 

5.6 Summary 

A new approach for the dynamic analysis of a beam-load system considering 

uncertainties in both the system parameter and excitation is presented. The 

material properties such as the mass density, elastic modulus and damping of the 

beam structure as well as the random moving forces on top are assumed as 

Gaussian random processes, The Karhunen-Loève expansion is employed to 

represent these Gaussian random processes in the stochastic modeling. The 

response of beam is assumed with Gaussian distribution under the assumption of 

the small randomness in the system parameters. The formulated mathematical 

model for the stochastic beam-load system is solved by Newmark-β method. With 

reference to the stochastic finite element model and the force identification 

algorithm developed for a deterministic system with Gaussian random excitation, 

a general algorithm that includes both the Gaussian system parameters and 

excitations in the inverse problem is also developed. Numerical simulations are 

conducted to verify the proposed model in the forward analysis and in stochastic 

moving force identification. Different factors which may affect the accuracy of the 

proposed model and algorithm are investigated. 

In the forward analysis, results show that the proposed method has high 

computational efficiency, insensitive to moving velocity of the forces and good 
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accuracy for the practical case with relatively small uncertainty in system 

parameters but large randomness in excitation.  

In the inverse analysis, the errors in the mean value of the identified force 

increase slightly with a decrease in the number of sample of “measured” 

responses. Whether or not the samples used can truly represent the statistics of its 

population will be the most important requirement for an accurate identification 

of the variance of the moving force. A method to determine the threshold number 

of sample is proposed to maintain a good representation of the response statistics 

of the moving force. The effect of level of randomness depends on the 

relationship between the values of the covariance kernel for the case of a 

deterministic system under random excitation (KNd) and the third term in 

Equation (5.32) which is the key to good accuracy in the statistics of the 

identified force particularly the variance. When the covariance kernel is 

relatively large compared to the error term (the third term) in Equation (5.32), all 

the statistics including the mean value and variance of the moving force can be 

accurately identified. 

For the case with large uncertainties in the system parameters, higher order 

polynomial chaos expansion may be adopted to represent the random response in 

the proposed model at the expense of exponentially increased computational cost 

which will be introduced in next Chapter. 
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Table 5.1 - Relative error of mid-span displacement for different vehicle speed 
 

COVE= COVρ=5% COVF=0% COVF=10% 

Vehicle Speed 
(m/s) 10 20 30 40 50 10 20 30 40 50 

Mean Value 0.003 0.009 0.005 0.055 0.055 0.100 0.080 0.027 0.034 0.022

Variance 1.633 1.649 1.310 1.455 1.675 4.628 5.133 5.812 4.344 5.862

 

 
Table 5.2 - Relative error of mid-span displacement for different level of 

randomness in system parameters 
 

RE (%) (COVF=0%) (COVF=10%) 

COVE= COVρ 1% 2% 5% 10% 1% 2% 5% 10% 

Mean Value 0.002 0.008 0.055 0.089 0.032 0.041 0.034 0.099

Variance 0.621 1.293 1.455 6.624 3.697 4.169 4.344 5.826

 

 
Table 5.3 - Relative error of mid-span displacement for different level of 

randomness in excitation forces 
 

RE (%) COVE= COVρ=5% 

COVF  5% 10% 20% 50% 80% 

Mean Value 0.020 0.032 0.061 0.153 0.251 

Variance 4.821 4.344 2.550 2.117 1.810 
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Table 5.4 - Relative error in the identified forces from different number of 

response samples (F1 in Force Model I) 
 

Number of response samples 
FE (%) 

5 10 20 50 100 150 200 500 

Mean value 8.31 5.76 4.48 3.95 3.48 3.49 3.40 3.37 

Variance 134.4 108.7 138.1 91.00 74.86 66.84 55.28 52.37 

 

 
Table 5.5 - Relative error in the identified forces from different number of 

response samples (F1 in Force Model II) 
 

Number of response samples 
FE (%) 

5 10 20 50 100 150 200 500 

Mean value 10.30 11.93 4.88 3.95 3.48 3.45 3.45 3.45 

Variance - - 63.92 27.92 18.84 21.00 18.63 19.80 

 ‘-’ denotes extremely large value. 
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Table 5.6 - Relative error in the identified force for different level of uncertainty 

in system parameters (F1 in Force Model I) 
 

COVE and COVρ
FE (%) 

1% 2% 5% 7% 10% 

Mean value 3.34 3.34 3.40 3.43 3.56 200 samples 

COVF=10% Variance 43.85 36.13 55.28 119.8 232.5 

 

 

Table 5.7 - Relative error in the identified force for different level of uncertainty 
in system parameters (F1 in Force Model II) 

 

COVE and COVρ
FE (%) 

1% 2% 5% 7% 10% 

Mean value 3.50 3.50 3.44 3.41 3.38 200 samples 

Φ(ω0)=16×10-6 Variance 20.13 20.91 19.34 73.41 236.7 
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Table 5.8 - Relative error in the identified forces for different level of uncertainty 
in excitation (F1 in Force Model I) 

 

COVF

FE (%) 
1% 2% 5% 10% 15% 20% 

Mean value 3.37 3.38 3.37 3.40 3.45 3.45 200 samples 
COVE=5% 
COVρ=5% Variance - - 272.1 55.28 30.40 31.81 

‘-’ denotes extremely large value. 

 

 

Table 5.9 - Relative error in the identified forces for different level of uncertainty 
in excitation (F1 in Force Model II) 

 

Φ(ω0) (10-6) 
FE (%) 

1 4 16 64 256 

Mean value 3.45 3.44 3.44 3.46 3.43 200 samples 
COVE=5% 
COVρ=5% Variance 47.41 27.16 18.00 18.73 19.75 
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Figure 5.1 - Kernel for the K-L decomposition 
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Figure 5.2 - Comparison of statistics of mid-span displacement (F1 in Force Model 

I) 
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Figure 5.3 - Comparison of statistics of mid-span displacement (F1 in Force Model 
II) 
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Figure 5.4 - Comparison of statistics of mid-span displacement for COVF=0% 
(Force Model I) 
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Figure 5.5 - Comparison of statistics of mid-span displacement for COVF=10% 

(Force Model I) 
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Figure 5.6 - Covariance kernel of KN  
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Figure 5.7 - Comparison of identified and theoretical moving force 
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Figure 5.8 - Covariance kernel of KNs  
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Figure 5.9 - Error between the calculated and theoretical KNs
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Figure 5.10 - Error between the calculated and theoretical KNd 
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Figure 5.11 - Comparison of the first eight eigenvalues of KNd 
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Figure 5.12 - Comparison of the first eight K-L components of mid-span 
displacement 

 177



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3
x 104 Mean Value

F(
N

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12
x 106 Variance

V
ar

F(N
2 )

Time (s)

 

 

Identified
Theoretical

 
 

Figure 5.13 - Comparison of identified and theoretical force statistics (500 
samples) 
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Figure 5.14 - Comparison of identified and theoretical force statistics (5 samples) 

 178



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3
x 104 Mean value

F(
N

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
x 106 Variance

V
ar

.(N
2 )

Time (s)

 

 

Identified
Theoretical

 
 

Figure 5.15 - Comparison of identified and theoretical force statistics with 
Φ(ω0)=16×10-6 m3 (200 samples) 
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Figure 5.16 - Comparison of identified and theoretical force statistics with 
COVF=15% (200 samples) 
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CHAPTER 6 

STOCHASTIC BEAM-LOAD SYSTEM: THE 

SSFEM MODEL 

6.1 Introduction 

In Chapter FIVE, a Gaussian assumption was made for the random response 

based on which an “economic” stochastic finite element model is proposed for 

the problem of a beam under stochastic moving loads with relatively small 

uncertainty in the physical parameters of the beam. Numerical results show the 

proposed model is accurate and efficient. However, when the level of 

randomness in system parameter increases, the proposed model will become 

inaccurate and the Polynomial Chaos should be adopted to represent the response 

of the beam structure which may have non-Gaussian properties. This method is 

noted as the Spectral Stochastic Finite Element Method (SSFEM) proposed by 

Ghanem and Spanos (1991). A detail review of the applications of SSFEM on 

various engineering problems has been conducted in Section 2.3.3.2. In this 

Chapter, the dynamic response calculation of a beam structure with both inherent 

randomness and stochastic loading moving on top will be conducted with the 

SSFEM to model the uncertainties. The algorithm proposed in this Chapter can 

solve the problem of the beam-load system with large uncertainties in both system 
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parameters and excitation forces. The random moving forces and system 

parameters are assumed to have Gaussian/non-Gaussian properties and they will 

be represented by the Karhunen-Loève Expansion (KLE)/Polynomial Chaos 

Expansion (PCE). The stochastic response of the beam structure with 

non-Gaussian properties will be represented by the Polynomial Chaos Expansion. 

The formulated model will be verified in numerical simulations with the Monte 

Carlo Simulation. Different levels of randomness for both the excitation forces and 

system parameters as well as the order of Polynomial Chaos used which may 

affect the accuracy of the proposed algorithm will be investigated. 

The outline of this Chapter is: a review on the basic theory and applications 

on representing the random processes with the Polynomial Chaos will be given in 

Section 6.2. The modeling of the beam-load system with uncertainties is proposed 

in Section 6.3 in which the SSFEM is adopted. The system parameters are firstly 

assumed as Gaussian random processes with prescribed covariance kernels and 

then will be assumed to have non-Gaussian property for further study. Numerical 

simulations are conduced in Section 6.4 to verify the algorithm proposed and to 

investigate different factors which may affect the accuracy. A summary will be 

given in Section 6.5 with some conclusions. 

6.2. Polynomial Chaos 

Wiener’s polynomial chaos (Wiener 1938) is fundamentally a framework 

for separating the stochastic components of system response from the 
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deterministic components. It derives from the Cameron-Martin theorem 

(Cameron and Martin 1947) which establishes that a random process with finite 

second order moments can be decomposed into an infinite, convergent series of 

polynomials of random variables. The Hermite orthogonal polynomial is the first 

such series which is known to be the optimum basis for Gaussian distributions 

because the weighting function of the Hermite polynomials is the same as their 

probability density function. Treatment of other important distributions, e.g. 

uniform, Poisson distribution, etc. is achieved via the Askey scheme discussed by 

Xiu and Karniadakis (2002) in which each distribution type is related to a 

specific group of orthogonal polynomials to achieve the convergence properties.  

The basic theory of adopting the Polynomial Chaos to represent a random 

process will be introduced in the following. 

Any element u(θ) from a square integrable space admits the following 

representation, 

( ) ( )( ) ( ) ( )( )θξθξθξθ
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iiiiiia θξθξθξ )        (6.1) 

where Γp(●) are the polynomial chaoses of order p, are deterministic 

coefficients. The expansion is convergent in the mean-square sense. The 

polynomial chaoses of order greater than one have zero mean. Polynomials of 

different order are orthogonal to each other, and so are the polynomials within the 

same order. It has been proved that Equation (6.1) can be rewritten in the following 

L321 ,, iiia
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form (Ghanem and Spanos 1991), 

( ) ( )(∑
∞

=

Ψ=
0i

iibu θξθ )                              (6.2) 

where bi are the generalized Fourier coefficients and Ψi(ξ(θ)) are the Hermite 

Polynomials of ξi(θ) with ξi(θ) defined as the standard Gaussian random variables. 

There is a one-to-one correspondence between the functions Ψ(●) and Γ(●). For 

example, the term a0Γ0 in Equation (6.1) is the same as b0Ψ0 in Equation (6.2). For 

the finite dimensional polynomial chaos, the upper limit on the summations in 

Equation (6.2) is replaced by a number equal to the dimension of the polynomials 

involved, when i1=2, a1Γ0(ξ1(θ)) and a2Γ0(ξ2(θ)) in Equation (6.1) are identical 

with the term b1Ψ1(ξ1(θ)) and b1Ψ2(ξ2(θ)) in Equation (6.2) respectively. The series 

in Equation (6.1) can be refined along the random dimension θ either by adding 

more random variables {ξi(θ)} or by increasing the maximum order of 

polynomials including in the PCE. The first refinement takes into account higher 

frequency random fluctuations of the underlying stochastic process, while the 

second refinement captures strong nonlinear dependence of the solution process of 

this stochastic process (Ghanem 1999b). 

The polynomials {Ψi(ξ(θ))} are orthogonal satisfying the relationship 

ijiji δ2Ψ=ΨΨ                              (6.3) 

where <●> denotes the inner product and δij is the Kronecker delta. The value of 

2
iΨ  can be calculated analytically (Ghanem and Spanos 1991). 

The generalized Fourier coefficients bi in Equation (6.2) can be evaluated 

from 
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To evaluate the coefficients bi in a PCE of a random process, several 

numerical methods had been proposed. One of the simple and direct way by 

adopting MCS to simulate the polynomials of ξi(θ) in Equation (6.4) was 

introduced by Field et al. (2002). This method needs numerous samples for the 

standard Gaussian random variables to achieve accurate results. Other sampling 

techniques such as the important sampling, the LHS and etc. can also be utilized 

instead of the MCS to improve the computational efficiency. The numerical 

integration method proposed by Field et al. (2002) is an alternative which also has 

good performance. The method proposed by Choi et al. (2004) using Latin 

Hypercube Sampling and Fitting Regression model shows both high efficiency 

and good accuracy. 

The PCE has been extended to represent more complex random processes 

with non-Gaussian non-stationary properties. A representation of lognormal 

stochastic process via Polynomial Chaos was proposed by Ghanem (1999c) 

which is useful in the context of the SSFEM as well as for the analytical 

investigation of the mathematical properties of lognormal processes. Sakamoto 

and Ghanem (2002a; 2002b) proposed a method to simulate non-Gaussian 

non-stationary random processes/fields according to the prescribed marginal PDF 

and correlation function with the expansion of the non-Gaussian process at 

discrete points using PCE. On the other hand, the Polynomial Chaos is also 

adopted to provide mathematical models for the experimental data. Research 
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works on the identification of the probabilistic models of the random coefficients 

in stochastic boundary value problems from experimental data were carried out 

by Desceliers et al. (2006) in which the maximum likelihood estimation is 

adopted to identify the unknown field projected on the Polynomial Chaos basis. 

Das et al. (2009) proposed two different computational techniques to estimate the 

probability model of a finite dimensional approximation of the underlying 

non-Gaussian and non-stationary stochastic process which is assumed to be 

completely characterized by experimental measurements taken simultaneously 

over space and time. 

A study on the accuracy of adopting the Polynomial Chaos to represent the 

non-Gaussian random variables/processes was conducted by Field and Grigoriu 

(2004) which demonstrated that the accuracy of the PCE improves in some cases 

as additional terms are retained but not in all cases and the PCE for certain 

processes may become computational demanding or even prohibitive because of 

the large number of coefficients that need to be calculated. The “stochastic 

arithmetic” on Polynomial Chaos and the functions of Polynomial Chaos are 

often required to be evaluated in problems of computational mechanics, e.g. the 

inner product of the Polynomial Chaos in SSFEM. An overview on the 

techniques to solve the numerical challenges in using the Polynomial Chaos to 

represent stochastic processes was presented by Debusschere et al. (2004) in 

which several methods were proposed for performing arithmetic on the 

evaluation of polynomial and non-polynomial functions of variables represented 
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by PCE. 

6.3 System Modeling with Uncertainty 

6.3.1 Gaussian System Parameters 

6.3.1.1 Representing the Inputs and Outputs 

When the system parameters are assumed as Gaussian random processes, 

they can be represented by the KLE according to Equations (5.8) to (5.10). As 

the covariance matrix of the response in Equation (3.17) is not known a-priori, 

the nodal displacement vector R(t,θ) which may have non-Gaussian property will 

be expanded by the Polynomial Chaos in this Chapter according to Equation (6.2) 

as  

( ) ( ) ( ) ( )tt
RK

j

j
j∑

=

Ψ=
0

, yR θθ                         (6.5) 

where Ψj(θ) is the jth order of Polynomial Chaos and y(j)(t) in Equation (6.5) is the 

deterministic coefficient corresponding to Ψj(θ). KR is the dimension of the 

Polynomial Chaos Expansion which can be calculated as (Ghanem and Spanos 

1991), 

( )
!!

!1
pk
pkK

s

s
R

+
=+                              (6.6) 

where ks is the number of K-L components required in the representation of the 

response which depends on the number of K-L components adopted in the 

representation of both the excitation forces and system parameters, e.g. if the 

randomness in Young’s modulus, mass density and excitation forces are 
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independent, then ks=kE+kρ+kF. kE, kρ, kF are the number of K-L components in the 

KLE of the Gaussian distributed Young’s modulus, mass density and the excitation 

forces as shown in Equations (5.8), (5.9) and (5.11), respectively. p is the order of 

the Polynomial Chaos. 

Therefore, the random velocity and acceleration vectors will take the 

following form as  
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where ( )jy& and ( )jy&& are the first and second derivatives of coefficients ( )jy  in 

Equation (6.5). 

The KLE of the excitation forces in Equation (5.11) can then be projected 

on the basis of the Polynomial Chaos and will take the form as 
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6.3.1.2 Formulation of the System 

Substituting Equations (5.8) to (5.10), (6.5), and (6.7) to (6.9) into Equation 

(5.2) and taking the inner product on both sides of the equation with Ψk(θ) and 

employing the orthogonal property in Equation (6.3), we have 
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Rewrite Equation (6.10) in matrix form, we have 
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(6.11) 

where the values of the inner product of polynomial chaos <●> are constants and 

they can be obtained analytically (Ghanem and Spanos 1991). It should be noted 

that the sparsity patterns of the system matrices M, C and K respectively are 

determined from the value of inner product of polynomial chaos <●>. 

6.3.2 Non-Gaussian System Parameters 

6.3.2.1 A Full PCE Model 

Since the Gaussian assumption on the material properties of engineering 

structures has a very small probability that will take up negative values, the 

non-Gaussian assumption is more appropriate. Using the KLE to represent these 

random physical parameters which are assumed as non-Gaussian random 
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processes, may require an iterative procedure (Phoon et al. 2005). In this study, 

the PCE is adopted as an alternative. Taking the Young’s modulus for example 
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, θθ )                       (6.12) 

where KE is the number of Polynomial Chaoses used to represent the Young’s 

modulus after truncation which can be calculated from 
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where kE is the number of terms in the KLE as shown in Equation (5.5), p is the 

order of the Polynomial Chaos and )( 1iE  are the deterministic coefficients of 

Young’s modulus corresponding to ( )θ
1i

Ψ  in the PCE. Thus the random 

components of the stiffness matrix for each element eK~ can be obtained as 
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where I is the moment of inertia of the beam structure and l is the length of beam 

element. is the deterministic matrix for each element corresponding to e
i1

K ( )θ
1i

Ψ  

and . The stochastic stiffness matrix of the beam structure 

K
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eeTie
i dlIxE BBK )( 1

1

b can be expressed as 
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where  is the deterministic matrix for the beam model corresponding to 
1i

K

( )θ
1i

Ψ  which can be assembled from e
i1

K . Kd denotes the deterministic component 

of the stiffness matrix Kb. Let K0=Kd, we have  
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Similarly the stochastic mass matrix of the beam structure can be expressed 

as 

( )∑
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ρ

θ
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i
iib
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22
MM                            (6.17) 

where Kρ is the number of Polynomial Chaos used to represent the mass density 

after truncation which can be similarly calculated according to Equation (6.13) by 

replacing kE with kρ which denotes the number of terms used in the KLE for the 

mass density. Since the Rayleigh damping matrix assumed in this study is a linear 

combination of the system mass matrix and system stiffness matrix according to 

Equation (5.4), the system damping matrix can also be written as 
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where Kc is the number of Polynomial Chaos used to represent the damping after 

truncation and 
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As noted in Equation (5.11), the excitation forces with Gaussian properties 

can be represented by KLE and projected on the Polynomial Chaos basis for the 

response representation according to Equation (6.9). When the excitation forces 

are assumed as non-Gaussian random processes, they can be represented by 

Polynomial Chaos as 
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j
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where KF is the number of Polynomial Chaoses retained after truncation in the 

representation of the excitation forces, which can be calculated as 
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where kF is the number of terms in the KLE of the excitation forces. Again 

Equation (6.19) can be projected on the Polynomial Chaos adopted to represent the 

response of beam structure as 
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Substituting Equations (6.5), (6.7), (6.8), (6.16) to (6.18) and (6.21) into 

Equation (5.2) and taking the inner product on both sides of the equation with 

Ψk(θ) and employing the orthogonal property in Equation (6.3), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑∑
= == =

ΨΨΨ+ΨΨΨ
R cR K

j

K

i

j
ikji

K

j

K

i

j
ikji tt

0 00 0 3

33

2

22
yCyM &&& θθθθθθ

ρ

 

( ) ( ) ( ) ( ) ( ) ( ) ( )tt k
kb

K

j

K

i

j
ikji

R E

FHyK 2

0 01

11
Ψ=ΨΨΨ+∑∑

= =

θθθ     (6.22) 

Let ( ) ( ) ( ) ( )
∑
= Ψ

ΨΨΨ
=

ρ θθθK

i
i

k

kjijk

0
2

,

2

2

2 MM , 

( ) ( ) ( ) ( )
∑
= Ψ

ΨΨΨ
=

cK

i
i

k

kjijk

0
2

,

3

3

3 CC
θθθ

 and ( ) ( ) ( ) ( )
∑
= Ψ

ΨΨΨ
=

EK

i
i

k

kjijk

0
2

,

1

1

1 KK
θθθ

. 

Equation (6.22) has the same matrix form as shown in Equation (6.11). The values 

of the inner product of polynomial chaos <●> are constants and they can be 

obtained analytically (Ghanem and Spanos 1991). 

6.3.2.2 A Reduced PCE Model 

The KLE of a non-Gaussian process results in a set of deterministic 
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coefficients multiplying the corresponding uncorrelated non-Gaussian random 

variables {ξi(θ)} which are not independent with each other. In the PCE of a 

non-Gaussian process, these uncorrelated non-Gaussian random variables are 

projected on the Polynomial Chaos basis. The dimension of PCE in the 

representation of the stochastic response of a beam structure is determined by the 

number of K-L components in the KLE of the excitation forces and system 

parameters as well as the order of Polynomial Chaos adopted according to 

Equation (6.6). When a large number of K-L components is required to represent 

the excitation forces, an extremely large number of Polynomial Chaos may be 

required in the PCE of non-Gaussian random responses which makes the 

problem unsolvable due to the limit capability of computer. In the PCE for a 

random process, the number of K-L components adopted is usually not larger 

than twenty (Eiermann et al. 2007). This drawback limits the application of the 

SSFEM in the case with relatively simple excitation forces.  

For the case when a larger number of K-L components is required, an 

alternative way is proposed in this sub-Section by eliminating the correlation 

terms with an assumption of the uncorrelated non-Gaussian random variables to 

be independent. This treatment may lead to inaccurate results when the level of 

randomness in system parameters becomes large. However, since the sensitivities 

of the retained Polynomial Chaos in the reduced PCE are larger than the 

eliminated ones and the Polynomial Chaos is a mean-square convergent series for 

a random process with finite second order moments, by increasing the number of 
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terms adopted in the KLE, the reduced PCE can have the performance as good as 

that in a full PCE as introduced in Section 6.3.2.1. Increasing the number of K-L 

components in the KLE of the non-Gaussian system parameters can be achieved 

by refining the distance between the two points in a spatial domain of interest. 

These additional terms from the refining procedure are regarded as compensation 

to the covariance kernel of the non-Gaussian random processes to be represented. 

Though the number of the KLE increase, the total number of Polynomial Chaos 

adopted under the assumption of independent {ξi(θ)} will be much smaller than 

that in a full PCE where the number of K-L components is usually smaller than 

twenty due to the curse of dimensionality (Stefanou 2009). 

According to the assumption of independent {ξi(θ)}, after the decomposition 

of a non-Gaussian random process u(x,t,θ) along the dimension x and t using the 

finite element method and KLE respectively, each uncorrelated random variable 

ξi(θ), which is assumed as mutually independent in the reduce PCE model, can 

be expanded by a one-dimensional Polynomial Chaos as demonstrated in 

Equation (6.2). The relationship between the number of K-L components kp and 

the number of Polynomials Kp required for a reduced PCE of order p becomes 

Kp=kp×p                              (6.23) 

The dimension of PCE under this independent assumption is significantly 

reduced as shown in Equation (6.23) which may allow this modified stochastic 

finite element algorithm to solve the problem where a large number of K-L 

components are required in the PCE of the excitation force or the system 
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parameters with a trade off in accuracy. 

According to the reduced PCE for the non-Gaussian random process, the 

system matrices can be expressed as follows 
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where p1, p2 and p3 are the order of Polynomial Chaos adopted and p3=max(p1,p2), 

kE , kρ and kc are the number of the K-L components adopted, KE , Kρ and Kc are 

the number of terms of the Polynomial Chaos in the reduced PCE for the Young’s 

modulus, mass density and damping, respectively. The relationship between the 

number of K-L components kp and the number of Polynomials Kp required for a 

reduced PCE of order p has been defined in Equation (6.23), and 
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(i=1,2,3) K-L component and ki
th (i=1,2,3) order of Polynomial Chaos for the 

Young’s modulus, mass density and damping, respectively. 

The random excitation forces can similarly be expanded as 

)()()()(),( )(

0 0 0
,,

)( 1

1 1

4

4

4141

1

1
tctt j

k

j

k

j

p

k
kjkj

j
j

F F

ffF ∑ ∑ ∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′Ψ== θθξθ  

∑
=

′Ψ=
FK

j

j
j t

0

)( )()( Fθ                   (6.28) 

where  is the deterministic coefficient corresponding to )()( )(
,

)( 1
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( )θjΨ ; kF, p4 and KF are the number of K-L components, the order of 

Polynomial Chaos and the dimension of the reduced PCE for the excitation force 

vector, respectively. 

The nodal displacement vector with non-Gaussian property can be 

represented by the reduced PCE after truncation, 
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where KR is the dimension of the reduced PCE which is related to the order of the 

Polynomial Chaos p5 and the number of terms used in the KLE kR as demonstrated 

in Equation (6.23). In Equation (6.29), kR=kE+kρ+kF, . )()( )(
,

)( 2

52
tct j

kj
j yy ′=′

Taking the first and second derivatives of Equation (6.29) with respect to t, 

the velocity and acceleration vectors can be obtained respectively as 
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Substituting Equations (6.24) to (6.26) and (6.28) to (6.31) into Equation 

(5.2), taking inner product of both side of Equation (5.2) with Ψk(θ) and 

employing the orthogonal property of Polynomial Chaos introduced in Equation 

(6.3), a equation with the same form as Equation (6.22) can be obtained as 
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6.3.3 Response Statistics 

Equations (6.11), (6.22) and (6.32) can be solved by employing the 

Newmark-β method, respectively, to obtain the deterministic coefficients in the 

Polynomial Chaos Expansion for the responses, and the response statistics of the 

nodal displacements can be evaluated as  
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where the subscript “R” denotes the random nodal displacement vector of the 

bridge structure. The random displacement of the bridge at position x and time t 

can be derived according to Equations (4.4) and (6.5) as 
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The mean and variance of displacement at position x and time t can be 

obtained as 
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where the subscript “w” denotes the random displacement of the bridge. 

6.4 Numerical Simulation 

To demonstrate the effectiveness of the application of SSFEM for a beam 

under moving loads including uncertainty, numerical examples are given in this 
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Section to verify the algorithm proposed in this Chapter. The system parameters 

of the beam structure are assumed as Gaussian random processes. Since the 

Gaussian assumption still has a very small probability that will take up negative 

values, the log-normal distributed system parameters are further adopted in the 

numerical example. The reduced PCE proposed to solve the problem of a beam 

under moving loads with uncertainty where an extremely large number of K-L 

components is usually required in the random response representation, will also 

be verified. Results from the MCS are regarded as reference to compare with 

those calculated from the proposed algorithm. The sampling rate in all the 

numerical simulation is 200 Hz. The beam structure is divided into eight beam 

elements with uncertain system parameters. The velocities of the moving forces 

are 40 m/s. 

6.4.1 Gaussian System Parameter 

The beam model shown in Section 5.4.1 and the Force Model II introduced 

in Section 3.6.1.3 are adopted in this study. Two cases will be studied in the 

following sub-Sections. In Case 1, only the uncertainties in the system 

parameters are included, and the effect of different coefficient of variation for the 

system parameters and different order of the Polynomial Chaos Expansion for the 

nodal response will be studied. A combination of the level of uncertainty in 

system parameters and the order of the Polynomial Chaos with acceptable 

relative error will be identified. In Case 2, both the uncertainties in system 
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parameters and excitation forces will be considered. The accuracy of the SSFEM 

under different COVF will be investigated for a specified level of the uncertainty 

in system parameters. 

6.4.1.1 Case 1: Deterministic Excitation and Gaussian Material 

Property 

The two deterministic moving forces have been defined according to 

Equations (3.41) and (3.42). Since the covariance kernels for the system 

parameters have been defined according to Equation (5.34) for given value of σ, 

the K-L components representing the system parameters can be obtained by 

performing eigenvalue analysis on the defined kernels. In the present case of a 

beam with eight elements, nine K-L components are used to represent the 

random system parameters with the spatial correlation defined in Equation (5.34). 

According to Equation (6.6), the numbers of terms in PCE for the random 

response when the order of Polynomial Chaos equals to 1, 2, and 3 are 10, 55 and 

220 respectively. By solving Equation (6.11) using the Newmark-β method, the 

deterministic coefficients in the PCE of the random nodal response can be 

calculated. The response statistics can then be evaluated according to Equation 

(6.35).  

A convergence study on the statistics of the mid-span displacement of the 

beam structure from the Monte Carlo Simulation is conducted. Results from 

50000 runs of MCS are obtained as converged and they are used as reference 

values. The percentage error according to Equation (3.39) for different runs of 
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MCS when COVE=COVρ=20% and t=0.5s, is shown in Figure 6.1. Results show 

that the percentage error for variance is larger than that for the mean value and 

both statistics of the mid-span displacement have small error after 5000 

simulations. Hence, results from 10000 Monte Carlo Simulations is taken as 

reference for comparison with those from the SSFEM.  

A study on the effectiveness of the SSFEM at different level of uncertainty 

in system parameters with different order of Polynomial Chaos is given. The 

relative errors between the statistics of the mid-span displacement from the 

SSFEM and MCS are shown in Table 6.1. Results show that the calculated mean 

values of the mid-span displacement from SSFEM are very accurate. The relative 

error in the mean values slightly increases with an increase in the coefficient of 

variation of the system parameters. However, for a fixed level of uncertainty in 

system parameters, an increase in the order of PC will give a slightly reduced 

relative error. The maximum COV of the system parameters adopted is 20% in 

this study. Numerical simulations with larger COV of the system parameters, e.g. 

COVE=COVρ=30%, will encounter difficulties with the MCS with the Gaussian 

assumption on the system parameters, because samples of the system parameters 

will have negative values that will cause divergence in the calculated response 

statistics in MCS. 

The accuracy of variances of the mid-span displacement from SSFEM is 

dramatically affected by the order of PC adopted. When the uncertainty in system 

parameters are very small with COVE=COVρ=5%, satisfactory results can be 
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obtained with different order of PC. However, the use of higher order PC can not 

improve the accuracy. When the level of randomness in system parameters is at 

10% or higher, the use of first order PC will result in large error in the variance 

calculation. When COVE=COVρ=20%, the third order PC is required to achieve a 

good accuracy. The variances of the mid-span displacement calculated from 

SSFEM with different order PC when COVE=COVρ=10% and 

COVE=COVρ=20% are compared with those from MCS in Figure 6.2 and 6.3, 

respectively. 

It is concluded that for the case with very low level of uncertainty in system 

parameters, e.g. COV smaller than 5%, first order PC is suggested in this study. 

That is to say, when the uncertainty in system parameters is small, the Gaussian 

assumption would be appropriate for the random responses. An increase in the 

order of PC can not improve the accuracy which may be due to the limitation of 

the PC approximations (Field and Grigoriu 2004) not able to improve the 

accuracy with additional terms. Second order PC is sufficient to maintain good 

accuracy in this problem for the case with COVE=COVρ=10%. 

6.4.1.2 Case 2: Gaussian Excitation and Material Property 

When both the randomness in system parameters and excitation forces are 

considered, the covariance kernel for the system parameters is also defined the 

same as for Case 1 above and the Force Model II described in Section 3.6.1.3 is 

adopted. The level of uncertainty in system parameters with COVE=COVρ=10% 

is studied in this case and the second order PC which is proved to be sufficient to 
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maintain good accuracy is adopted. Samples of the random moving forces are 

generated according to Equations (3.49) and (3.50). The covariance kernel of the 

random forces is calculated from these samples according to Equation (3.17), and 

eigenvalue analysis is then performed on the kernel to give the corresponding 

K-L components. The first kF K-L components with larger eigenvalue λj are 

retained according to the criterion as Bj
k

j j
F ≥∑∑ =

λλ
1

. It should be noted that 

more K-L components will be retained when B is close to unity, e.g. when 

B=0.99, the number of retained K-L components kF is equal to 53 for different 

COVF. In this study, B is set to 0.95 which lead to kF=16 according to the 

criterion. The computational cost is dramatically decreased compared with the 

case when B=0.99 while maintaining good accuracy. Taking nine K-L 

components to represent the random fields of system parameters, the numbers of 

terms in PCE required for the response with second order PC is 351.  

The random moving forces with different COVF are applied on the beam 

structure. A study of convergence similar as that in Case 1 is conducted. The 

percentage error for different number of iterations in MCS according to Equation 

(3.39) when COVE=COVρ=10%, COVF=62.56% and t=0.5s, is shown in Figure 

6.4 where results from 50000 runs of MCS are regarded as reference. Similar 

trend can be observed as in the convergence analysis in Case 1 and the results 

from 10000 runs of Monte Carlo Simulations are adopted as reference solution 

for the error analysis of results from SSFEM. A comparison of the statistics of 

the mid-span displacement from the SSFEM and the MCS with different COVF is 
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shown in Table 6.2. A comparison of the mid-span displacement for the case with 

COVE=COVρ=10% and COVF=62.56% is shown in Figure 6.5. Results show that 

for both the mean value and variance of the mid-span displacement, very small 

difference exists in the results from the two methods under different COVF. The 

relative error increases slightly with increasing COVF. It can be concluded that 

when the order of PC in PCE is sufficient to represent the uncertainty in system 

parameters, the proposed algorithm for a beam-load system with uncertainty 

using SSFEM can maintain a good accuracy even when large uncertainties exist 

in the moving forces. 

6.4.2 Non-Gaussian System Parameters: A Full PCE 

Model  

6.4.2.1 The Lognormal Distributed System Parameters 

The Young’s modulus E and the mass density ρ of the beam structure are 

assumed as lognormal random processes with mean value 2.5×1010 m/s2 and 2.5

×103 kg/m3 respectively and the Coefficients Of Variation (COV) denoted as 

COVρ and COVE, respectively. A lognormal random process L(x,θ) projected on 

the Polynomial Chaos basis will take the following form (Ghanem 1999c): 
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where δij is the Kronecker delta and L0(x) refers to the mean of the lognormal 

process calculated as 
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where µg and σg
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where µL and σL
2 are the mean and variance of the lognormal random process. 

g(x,θ) has the following relationship with L(x,θ), 

( ) ( )θθ ,, xgexL =                              (6.39) 

gi(x) and ξi(θ) are the K-L components and the corresponding standard Gaussian 

random variables in the KLE of g(x,θ), respectively. kl is the number of terms in 

the KLE retained after truncation. The Gaussian random process g(x,θ) is assumed 

to have the spatial correlation represented by an exponential auto-covariance 

function as 

( ) )exp(, 212
21 a

xx
xxC g

−
−= σ                    (6.40) 

where  and｜xa 1-x2｜are the correlation length and the distance of two points in 

a spatial domain of interest, respectively. Both the Young’s modulus E and mass 

density ρ are assumed with the same spatial correlation and the same level of 

Coefficient Of Variation (COV) in this study, i.e. COVE=COVρ. This selection is 

arbitrary as the same analysis is applicable for the case when the levels of 

randomness in E and ρ are totally different. 

6.4.2.2 Case 3: Deterministic Excitation and Non-Gaussian Material 

Property 
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Only the uncertainties in material properties are included in this sub-Section 

to investigate the accuracy of the modeling of the randomness in system 

parameters with PCE. The two deterministic moving forces applied on the beam 

structure are shown in Equations (3.41) and (3.42). The material properties which 

are assumed as lognormal random processes will be represented by the PCE 

according to the theory described in Section 6.4.2.1 with the following steps:  

(1) The mean values and variances of the corresponding Gaussian random 

processes denoted as µg and σg
2 are calculated from µL and σL

2 of the 

lognormal distributed material properties according to Equation (6.38).  

(2) The covariance kernels for these Gaussian random processes are defined 

according to Equation (6.40). 

(3) The KLE are adopted to calculate the K-L components gi(x) for the 

corresponding Gaussian random processes and the PCE for the lognormal 

distributed system parameters can be performed according to Equation 

(6.36). 

In this study, nine K-L components will be adopted for the corresponding 

Gaussian random processes. Since the deterministic matrices , ,  in 

Equations (6.16) to (6.18) respectively can be obtained from the  corresponding 

deterministic components in PCE of the material properties, the deterministic 

coefficients for the random response are obtained from Equation (6.22) and the 

response statistics can be evaluated according to Equation (6.35). 

1i
K

2i
M

3i
C

Since the order of Polynomial Chaos (PC) adopted will affect the accuracy 
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in the uncertainty modeling of the system parameters, a study on the different 

order of PC for the different level of randomness in system parameters is 

conducted and the statistics of the mid-span displacement of the beam structure 

calculated from the proposed method are compared with the results from MCS. 

The cases of different level of randomness in system parameters with 

COVE=COVρ=5%, 10%, 20%, 30%, 40% and 50% are chosen. Four 

combinations on the order of PC are adopted including: (1) ODS=1, ODR=3; (2) 

ODS=2, ODR=2; (3) ODS=2, ODR=3; (4) ODS=3, ODR=3, where ODS and ODR 

are the order of PC for representing the system parameters and the response, 

respectively. In MCS, 10000 samples of the lognormal distributed system 

parameters are generated according to Equation (6.36) in which kl=9, ODS=3, to 

calculate samples of the beam response with deterministic analysis. The first two 

statistics of the mid-span displacement of the beam are calculated from both the 

SSFEM with different combinations of the order of PC and MCS, and they are 

compared in Figures 6.6 and 6.7 respectively, with the percentage errors shown 

in Table 6.3 calculated according to Equation (3.39).  

Results show that when the randomness in system parameters is smaller 

than 10%, the calculated response statistics at mid-span of the beam are very 

accurate for all the combinations. When the randomness in system parameters is 

larger than 20%, large errors exist in the variance of the calculated response for 

Combination #1. This is because when ODS=1, the PCE is equivalent to KLE and 

the lognormal distributed material properties are approximated by the Gaussian 
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random processes with the same mean value and variance and this approximation 

will cause large error when the randomness in system parameters is large. By 

increasing the order of PC adopted, accurate results are obtained. The calculated 

mean values are more accurate than the corresponding variances. The relative 

errors in the calculated statistics of the mid-span response increase with the level 

of the randomness in system parameters and decrease with the order of PC 

adopted. It should be noted that when the level of randomness in system 

parameters are small, an increase in the order of PC may not improve the 

accuracy of the results but with more computational efforts. Therefore, the choice 

of a proper order of PC in the PCE is very important. When the randomness in 

system parameters is not very large, e.g. smaller than 30%, the order of PC with 

ODS=2 and ODR=2 can give acceptable results on both the mean value and 

variance. 

6.4.2.3 Case 4: Gaussian Excitation and Non-Gaussian Material 

Property 

The Force Model II introduced in Section 3.6.1.3 will be adopted as the 

random excitation. The order of PC with ODS=2 and ODR=2 is selected to 

investigate the effect of the level of the randomness in excitation on the accuracy 

of the proposed algorithm when COVE=COVρ=20%. Different level of 

randomness in excitation as defined in Section 3.6.1.3 with COVF equal to 0.0382, 

0.0778, 0.1517, 0.3073 and 0.6256 respectively, will be adopted and the criterion 
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in the KLE of the excitation forces is defined as 99.0
1

≥∑∑ = j
k

j j
F λλ . 

The first two statistics of the mid-span displacement of the beam calculated 

from the SSFEM and MCS are compared in Figures 6.8 and 6.9 respectively with 

different level of randomness in excitation and the percentage errors calculated 

according to Equation (3.39) are shown in Table 6.4. 

Results show that the calculated statistics of the mid-span displacement are 

very accurate. The percentage error in the mean value increases slightly with a 

increase in the level of randomness in excitation and the errors in the calculated 

variance slightly decrease with the level of randomness in excitation as noted in 

Table 6.4. This is because for the calculated mean value of the response, the error 

in the averaging procedure on the samples of the excitation forces may increase 

with the level of randomness and it will propagate into the mean value of the 

calculated response. The errors in the calculated variance are mainly coming 

from the errors in the modeling of randomness in system parameters since the 

modeling of Gaussian excitation forces by adopting KLE is very accurate as 

shown in Section 3.6.2; When the level of randomness in the excitation forces 

increases, the errors from the system modeling will become insignificant and the 

errors in the calculated statistics of the response will decrease. 

6.4.3 Non-Gaussian System Parameters: A Reduced PCE 

Model 

To verify the application of the reduced PCE model on the problem of a 
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beam under moving forces with uncertainty, the two moving forces have mean 

values defined in Equations (3.41) and (3.42), and the lognormal distributed 

randomness with a specific value of Coefficient Of Variation (COVF) at each 

time instance, are adopted. It should be noted that this stochastic force model 

represents an extreme case in which a large number of K-L components are 

required in KLE of the random processes. The reduced PCE model is used to 

handle the problem where the traditional full PCE model will at the expense of a 

proper accuracy. 

Both the system parameters and the excitation forces are assumed as 

lognormal random processes in this sub-Section. 500 samples of a lognormal 

distributed variable at each time instance of the excitation forces (or at specified 

location for material properties) are obtained from its corresponding Gaussian 

random distribution with the corresponding samples generated from LHS 

according the relationship shown in Equation (6.39). With the first two statistics 

of the lognormal random processes, the covariance kernel for the KLE can be 

obtained from the generated samples according to the theory introduced in 

Section 3.3.2. The first kv K-L components are retained according the criterion 

defined as 99.0
1

≥∑∑ = j
k

j j
v λλ , where λj is eigenvalues in the eigenvalue 

analysis of the kernel. 

The covariance kernel of the corresponding Gaussian random processes for 

the system parameters has been defined in Equation (5.34). A positive dislocation 

of two points in a spatial domain of interest is set to 0.5m and a is set as unity for 
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both the Young’s modulus E and mass density ρ in the following study. It should 

be noted that the covariance kernel for the two system parameters can be totally 

different. However, the same value of｜x1-x2｜and a are assumed in this study. 

The sampling rate for all the simulations is 200Hz. The proposed algorithm is 

verified with the Monte Carlo Simulation on 10000 samples. 

6.4.3.1 Coefficients in One-dimensional Polynomial Chaos   

  Expansion 

Before a detailed investigation of the proposed reduced PCE model is 

conducted, a comparison of the different methods to calculate the coefficients in 

the representation of non-Gaussian random variable with one-dimensional 

Polynomial Chaos will be given and one of these methods will be adopted to 

calculate the coefficients in the one-dimensional PCE in the reduced PCE model.  

Two functions of the standard Gaussian random variable ξ with a zero mean 

value and unit standard deviation are shown as 

)3(4)1(2 32
1 ξξξξ −+−++=Y                        (6.41) 

ξeY =2                                                 (6.42) 

Different methods are adopted to calculate the coefficients in the 

one-dimensional PCE of the two functions with the order up to four. The 

percentage errors and the time required in the calculated coefficients in PCE for 

different order of PC according to Equation (3.39) by using MCS method (Field 

2002) with 10000 samples, the Latin Hypercube Sampling (LHS) method 

(Reagan et al. 2005) with 300 samples, and Fitting Regression Model (FRM) 
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method (Choi et al. 2004) using 300 samples respectively are shown in Table 6.5. 

The programme runs on a computer with Intel Core(TM)2, Quad CPU 2.40Hz 

and 8GB RAM.  

Results show that using the fitting regression model method has both high 

efficiency and accuracy comparing with the other two methods especially for 

those random variables which can be approximated as Polynomial functions of 

Gaussian random variables, and this method will be adopted in the following 

study to calculate the coefficients in the one-dimensional PCE in the reduced 

PCE model. 

6.4.3.2 Effect of the Level of Randomness in System Parameters 

To verify the proposed non-Gaussian model on the material properties with 

the reduced PCE, different levels of randomness in system parameters, i.e. 

different COVρ and COVE are investigated. To highlight the effect of the level of 

randomness in system parameters on the accuracy of the non-Gaussian model, 

the two excitation forces are assumed as deterministic (COVF=0%) in this 

sub-Section with values defined in Equations (3.41) and (3.42). Different orders 

of Polynomial Chaos are adopted to represent the lognormal random processes of 

system parameters. The effect of the order of Polynomial Chaos on the accuracy 

of the non-Gaussian model will also be investigated. 

The mean value and variance of the mid-span displacement of the beam 

structure calculated by using the proposed algorithm with a reduce PCE model 

with different order of PC and the MCS are compared in Figure 6.10 and Figure 
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6.11, respectively. The percentage errors of the results compared with those from 

the MCS are listed in Table 6.6. 

Results show that the calculated mean values for all the cases are very 

accurate and the relative error increases slightly with the increase of level of 

randomness in system parameters. The order of PC adopted has little effect on 

the accuracy of calculated mean value in general. For the variance of the 

mid-span displacement, the use of a low order of PC such as an order equals to 2, 

can achieve an accurate variance of the mid-span displacement as noted in Table 

6.6 when the COVE and COVρ are small, e.g. smaller that 0.2,. However, the 

result can be improved when the 3rd and 4th order PC is used, and the results from 

a 4th-order representation is better that that from a 3rd-order representation. When 

the COVE and COVρ are larger than 0.2, large errors exist in the calculated 

variance when only a 2nd-order PCE is adopted. Another phenomenon noted in 

Table 6.6 is that for a very large COVE and COVρ, e.g. larger than 0.4, the results 

from a 3rd-order representation is better that that from a 4-order representation. 

This phenomenon can be explained as follows: the error in the coefficient 

calculation from the one-dimensional polynomial chaos expansion will be 

propagated into every K-L components via the covariance kernel, e.g. the error in 

the calculated coefficients in the one-dimensional PCE will be amplified by the 

K-L components of the random processes from the covariance kernel and it will 

cause larger errors in the coefficients in the reduced PCE model. When more 

coefficients in the one-dimensional PCE are included in the calculation with 
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higher order polynomial chaos, the computation error will be amplified and 

accumulated affecting the accuracy of the calculated response statistics. 

6.4.3.3 Effect of the Level of Randomness in Excitation 

 Investigation on the effect of the level of randomness in excitation is 

similarly conducted with COVρ=COVE=20% in this Section. Different levels of 

randomness of the lognormal distributed excitation forces are used with different 

order polynomial chaos for representing.  

The mean value and variance of the mid-span displacement of the beam 

structure calculated by using the proposed method with different order of PCE 

and the MCS are compared in Figure 6.12 and Figure 6.13, respectively. The 

percentage errors of the results compared to those from the MCS are listed in 

Table 6.7. 

Results show that the order of Polynomial Chaos will generally not affect 

the accuracy of the mean value of the mid-span displacement. When the COVF 

are equal or larger than 0.2, a relative large error exists in the calculated variance 

which means a 2nd-order representation is not sufficient. When the COVF 

becomes large, e.g. equals 0.4 or 0.5, a 3-order representation has better 

performance that a 4-order representation. The reason for this phenomenon has 

been explained in the last paragraph in Section 6.4.3.2. 

It may be concluded that when a system with the coefficients of variation of 

both the system parameters and excitation forces smaller than 0.2, a 2nd-order 

representation of the polynomial chaos should be sufficient to obtain accurate 
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response statistics of the system. In other cases with larger coefficients of 

variation, a 3rd-order representation of polynomial chaos is recommended. When 

the coefficients of variation of the excitation forces reach a large value of 0.5, the 

response statistics of the proposed non-Gaussian model still maintain a good 

accuracy when the coefficients of variation of system parameters are not large. 

6.5 Summary 

A new method for the dynamic analysis of a beam with large uncertainty in 

system parameters under stochastic moving loads is proposed in this Chapter. 

The Spectral Stochastic Finite Element Method (SSFEM) proposed by Ghanem 

and Spanos (1991) is adopted to model the bridge structure with random physical 

parameters. The Karhunen-Loève Expansion/Polynomial Chaos Expansion is 

adopted to represent both the system parameters and the moving forces which are 

assumed as Gaussian/non-Gaussian random processes, and the Polynomial Chaos 

Expansion is adopted to represent the random responses with non-Gaussian 

properties. A reduced PCE model is also proposed to solve the cases where a 

large number of K-L components are required in PCE of random processes 

involved in the equation of motion of the system. The mathematical model 

formulated is solved by Newmark-β method and the statistics of response 

evaluated are compared with those from the Monte Carlo Simulation. Different 

levels of uncertainties in the system parameters and excitation forces are studied 

with the following conclusions: 
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(1) The calculated mean values from SSFEM in all cases are very accurate. The 

relative error compared to the results from MCS slightly increases with the 

level of uncertainty in system parameters and the order of PC adopted will not 

affect the accuracy of the calculated mean values.  

(2) For the case with Gaussian system parameters, when the uncertainty in 

system parameters is very small, e.g. smaller than 5%, the Gaussian 

assumption for the response of beam structure is appropriate. An assumption 

of non-Gaussian uncertainties for the response cannot improve the accuracy 

of the calculated variance. When the level of randomness in system 

parameters increases, the Gaussian assumption for the response, i.e. the 

adoption of the first order PC to represent the response, will result in large 

error in the variance estimation. Hence a higher order PC must be adopted to 

represent the random response with high non-Gaussian property, to get 

accurate results especially in the variance. When the level of randomness in 

system parameters is high, e.g. COV larger than 0.3, the Gaussian assumption 

for the system parameters will include negative values and it will cause 

divergence in the calculated response statistics in MCS. When the order of 

PC is sufficient to approximate the uncertainty in system parameters, both the 

mean value and variance of the mid-span displacement calculated from 

SSFEM are very accurate even with very large uncertainties in the moving 

excitation forces. The errors in the calculated mean value and variance 

increase slightly with an increase in the level of uncertainties in the excitation 
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forces. 

(3) For the case of non-Gaussian system parameters with a full PCE model, 

appropriate orders of PC adopted for representing both the non-Gaussian 

system parameters and the response should be selected to improve the 

computational efficiency while maintaining the accuracy of the proposed 

algorithm. When the COV of the system parameters is smaller than 10%, the 

non-Gaussian system parameters may be approximated with a Gaussian 

distribution with the same mean value and variance. Higher order PC must be 

adopted to represent the non-Gaussian randomness when the COV of system 

parameters increases. 

(4) In the case of non-Gaussian system parameters with a reduced PCE model, 

when the coefficients of variation of both the system parameters and 

excitation forces is smaller than 0.2, a 2nd-order representation of the 

Polynomial Chaos is sufficient to obtain accurate response statistics of the 

beam structure. In other cases with larger coefficients of variations, a 

3rd-order representation of polynomial chaos is recommended. 
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Table 6.1 - Percentage error in the statistics of mid-span displacement with 
different order of Polynomial Chaos used 

 

RE (%) Mean Value Variance 

Order of PC 1 2 3 1 2 3 

5% 1.48×10-3 2.95×10-4 2.94×10-4 0.72 1.05 1.13

10% 0.02 1.52×10-3 1.14×10-3 5.95 0.48 0.93

15% 0.13 0.01 3.66×10-3 15.8 3.09 0.43
COVE=COVρ

20% 0.48 0.09 0.03 31.0 10.9 2.50

 

 

 
Table 6.2 - Percentage error in the statistics of mid-span displacement with 

different level of randomness in excitation forces when order of PC=2 
 

RE (%) COVE=COVρ=10% 

COVF 3.82% 7.78% 15.71% 30.73% 62.56% 

Mean Value 0.05 0.08 0.18 0.36 0.92 

Variance 1.27 1.59 1.87 2.04 2.20 
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Table 6.3 - Percentage error in mid-span displacement statistics due to different 
level of randomness in system parameters 

 

COVF=0% Order of PC 

Combination#1 Combination#2 Combination#3 Combination#4 

ODS ODR ODS ODR ODS ODR ODS ODRCOVE=COVρ

1 3 2 2 2 3 3 3 

5% 0.01 0.01 0.01 0.01 

10% 0.02 0.01 0.01 0.01 

20% 0.09 0.03 0.03 0.03 

30% 0.51 0.08 0.06 0.06 

40% 2.04 0.24 0.17 0.13 

Mean 

Value 

50% 7.39 0.57 0.39 0.27 

5% 0.16 0.03 0.01 0.01 

10% 2.44 0.65 0.28 0.28 

20% 10.77 3.23 1.53 1.47 

30% 30.84 8.00 3.94 3.62 

40% 82.42 15.13 7.91 6.86 

Variance 

50% 261.02 24.45 13.96 11.48 
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Table 6.4 - Percentage error in the calculated response statistics due to different 
level of randomness in excitation 

 

COVF

COVE=COVρ=20% 
3.82% 7.78% 15.17% 30.73% 62.56% 

Mean value 0.07 0.07 0.17 0.46 0.83 

Variance 2.15 2.44 2.72 1.83 1.60 

 

 

Table 6.5 - Percentage error in coefficients calculation of the three methods in 
one dimensional PCE 

 

Functions Y1 Y2

Methods MCS LHS RFM MCS LHS RFM 

b0 0.07 0.14 0 0.01 0.06 0.03 

b1 0.04 0.98 0 0 0.29 0.29 

b2 0.09 1.84 0 0.05 0.61 0.24 

b3 0.23 2.75 0 0.08 0.80 0.67 

b4 0.02 2.81 0 0.08 0.80 0.25 

Time (s) 35.34 0.17 0.14 33.07 0.14 0.11 
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Table 6.6 - Percentage error in mid-span displacement statistics due to different 
level of PC representation when COVF=0% 

 

COVF=0% COVE=COVρ

 Order of PC 5% 10% 20% 30% 40% 50% 

2 0.01 0.02 0.03 0.06 0.31 0.84 

3 0.01 0.02 0.06 0.20 0.56 1.34 Mean Value 

4 0.01 0.02 0.06 0.22 0.68 1.85 

2 0.63 1.51 2.58 8.31 14.85 21.66 

3 0.06 0.14 1.51 3.27 4.77 5.00 Variance 

4 0.08 0.11 1.36 2.88 3.01 8.11 

 

Table 6.7 - Percentage error in mid-span displacement statistics due to different 
level of PC representation when COVE=COVρ=20% 

 

COVE=COVρ=20% COVF

 Order of PC 10% 20% 30% 40% 50% 

2 1.81 1.90 1.99 2.11 2.24 

3 1.79 1.83 1.84 1.87 1.91 Mean Value 

4 1.79 1.83 1.83 1.80 1.88 

2 4.23 11.2 14.0 17.8 23.1 

3 3.35 4.44 3.93 4.83 5.21 Variance 

4 3.59 6.90 3.82 12.5 16.2 
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Figure 6.1 - Convergence analysis of the MCS in Case 1, when 
COVE=COVρ=20% and t=0.5s 
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Figure 6.2 - Comparison of calculated variance from SSFEM and MCS in Case 1 
when COVE=COVρ=10% 
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Figure 6.3 - Comparison of calculated variance from SSFEM and MCS in Case 1 
when COVE=COVρ=20% 
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Figure 6.4 - Convergence analysis of the MCS in Case 2, when 
COVE=COVρ=10%, COVF=62.56% and t=0.5s 
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Figure 6.5 - Comparison of calculated statistics from SSFEM and MCS in Case 2, 
when COVE=COVρ=10% and COVF=62.56% 
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Figure 6.6 - Comparison of mean value of mid-span displacement with different 

order of PC used 
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Figure 6.7 - Comparison of variance of mid-span displacement with different 
order of PC used 
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Figure 6.8 - Comparison of mean value of mid-span displacement with different 
level of randomness in excitation when COVE=COVρ=20% 
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Figure 6.9 - Comparison of variance of mid-span displacement with different level 
of randomness in excitation when COVE=COVρ=20% 
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Figure 6.10 - Comparison of mean value of mid-span displacement when 
COVF=0% and different order of PC Used 
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Figure 6.11 - Comparison of variance of mid-span displacement when COVF=0% 
and different order of PC Used 
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Figure 6.12 - Comparison of mean value of mid-span displacement when 
COVE=COVρ=20% with different level of randomness in excitation 
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Figure 6.13 - Comparison of variance of mid-span displacement when 
COVE=COVρ=20% with different level of randomness in excitation 
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CHAPTER 7 

STOCHASTIC BRIDGE-VEHICLE 

INTERACTION: THE SSFEM MODEL 

7.1 Introduction 

In this Chapter, an extension of the theory developed on the beam-load 

model in Chapter SIX is presented for the bridge-vehicle interaction problem in 

which the Spectral Stochastic Finite Element Method (SSFEM) is adopted to 

model the bridge structure with Gaussian distributed material property. The road 

surface roughness is assumed as Gaussian random process with Power Spectrum 

Density (PSD) function defined according to the ISO standard (ISO 8606:1995(E) 

1995). It will be represented by the Karhunen-Loève Expansion. The 

bridge-vehicle system is modeled by a simply supported planar beam with a four 

degrees-of-freedom moving mass-spring system on top. It should be noted that 

since the finite element method is adopted to model the bridge-vehicle system, 

theoretically, an extension to a more complex structure can be achieved. 

The outline of this Chapter is: the modeling of the bridge-vehicle system 

with uncertainties is introduced in Section 7.2 in which the material properties of 

the bridge are assumed as Gaussian random processes and they will further be 

assumed with non-Gaussian property and modeled by the PCE. Numerical 
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simulations are conducted in Section 7.3 with verifications on the proposed 

algorithm with the Monte Carlo Simulation. Discussions on the computational 

aspects of the SSFEM on the bridge-vehicle interaction problem with 

uncertainties will be addressed in Section 7.4. A summary will be given in 

Section 7.5 at the end of the Chapter. 

7.2 The Coupled Model with Uncertainty in System 

Parameters 

7.2.1 Gaussian System Parameters 

The coupled equation of motion of the bridge-vehicle interaction system has 

already been formulated in Equation (4.3). In this Chapter, the uncertainty in the 

system parameters is considered and the system matrices are stochastic. The 

Young’s modulus, mass density and damping, which are assumed as Gaussian 

random processes, are represented by the KLE. Following the procedure 

introduced in Section 5.2.1, the stochastic stiffness, mass and damping matrix 

can be derived as shown in Equations (5.8) to (5.10), respectively. The road 

surface roughness which is assumed as a Gaussian random process is represented 

by KLE according to Equation (4.7). The random excitation forces f(t,θ) due to 

road surface roughness acting on the bridge-vehicle system can be obtained as 

shown in Equation (4.9). 

Since the covariance matrix of the response is not known a-priori, the nodal 

displacement vector of the bridge-vehicle system R(t,θ) and Y(t,θ) in Equation 
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(4.3) which may have non-Gaussian property due to the existence of the Gaussian 

uncertainties in the system parameters, will be expanded by the Polynomial Chaos 

according to Equation (6.2) after truncation as  

( ) ( ) ( ) ( )tt
ZK

j

j
j∑

=

Ψ=
0

, RR θθ                     (7.1) 

( ) ( ) ( ) ( )tt
ZK

j

j
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Ψ=
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, YY θθ                     (7.2) 

Combining Equations (7.1) and (7.2), we have 
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j

j
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where Z(j)(t)={R(j)(t) Y(j)(t)}T and. KZ is the dimension of the PCE for the response 

vector of the bridge-vehicle system which can be calculated as 
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where ks represents the number of K-L components of the response which depends 

on the number of K-L components in representing both the road surface roughness 

and system parameters, e.g. if the randomness in Young’s modulus, mass density 

and the road surface roughness are independent, then ks=kE+kρ+kr. p is the order of 

the Polynomial Chaos. It is noted that the PCE of the responses of the 

bridge-vehicle system contains the zeroth component (j=0) which represents the 

responses due to the deterministic moving vehicular axle loads. 

Then the random velocity vector and acceleration vector will take the 

following form as  
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j
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where ( )jZ& and ( )jZ&& are the first and second derivatives of coefficients ( )jZ with 

respect to time, respectively. 

The KLE of the excitation force vector due to road surface roughness in 

Equation (4.9) can be rewritten on the basis of the Polynomial Chaos as 
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Substituting Equations (5.8) to (5.10), (7.3), and (7.5) to (7.7) into Equation 

(4.3), taking the inner product on both sides of the equation with Ψk(θ) and 

employing the orthogonal property in Equation (6.3), we have 
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Rewrite Equation (7.8) in matrix form, we have 
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(7.9) 

where the values of inner product of polynomial chaos <●> are constants and they 

can be obtained analytically (Ghanem and Spanos 1991) or numerically (Field et 

al. 2002). 

7.2.2 Non-Gaussian System Parameters 

When the material properties of the bridge structure are assumed to have 

non-Gaussian property, which is more appropriate for engineering applications, 

the PCE will be adopted to represent these non-Gaussian random processes in the 

SSFEM model. The stochastic system matrices with non-Gaussian property are 

represented by PCE according Equations (6.16) to (6.18). Substituting these 

equations together with Equations (7.3), and (7.5) to (7.7) into Equation (4.3) and 

taking the inner product on both sides of the equation with Ψk(θ) and employing 

the orthogonal property in Equation (6.3), we have 
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matrix form of Equation (7.10) is the same as Equation (7.9). 

7.2.3 Response Statistics 

Equations (7.8) and (7.10) can be solved by employing the Newmark-β 

method. The coefficients in the Polynomial Chaos Expansion for the responses of 

the bridge-vehicle system can be obtained, and the first two statistics of the nodal 

displacements for both the bridge and vehicle model can be evaluated as  

( ) ( )( )ttMEAN 0ZZ = ,    ( ) ( ) ( )( )∑
=

Ψ=
ZK

j
j

j ttVAR
1

22ZZ          (7.11) 

where the subscript “Z” notes the nodal displacement vector for the bridge-vehicle 

system. 

The random displacement of the bridge at position x and time t can be derived 

according to Equations (4.4) and (7.11) as 
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The mean and variance of displacement at position x and time t can be 

obtained as 
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Samples of the bridge displacements can be easily generated by using any 

sampling techniques e.g. LHS, to simulate the standard Gaussian random 

variables Ψj(θ) in Equation (7.12). These samples are useful for further numerical 

simulation for moving force identification and reliability analysis for bridge 

safety assessment, etc. The probabilistic density function of the bridge 
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displacement at position x and time t can also be obtained according to Equation 

(7.12) when the coefficients R(j) are calculated. By replacing the coefficients R(j) 

with ( )jR&  and ( )jR&& in Equation (7.13), the mean and variance of random velocity 

and acceleration at position x and time t can also be obtained. 

7.3 Numerical Simulation 

7.3.1 Gaussian System Parameters 

When the system parameters such as the Young’s modulus, mass density 

and damping of the bridge structure are assumed as Gaussian random processes, 

the exponential auto-covariance function can be defined as in Equation (5.34) 

with  and｜ xa 1-x2｜which are the correlation length and the positive 

dislocation of two points in a spatial domain of interest. They are set to 1.0 and 

3.75m, respectively, for all the parameters. The sampling rate in all the numerical 

simulation is 200 Hz. The bridge structure is divided into eight beam elements 

with uncertain system parameters. The velocity of the moving vehicle is 20 m/s 

To select the appropriate order of PC in the representation of response for 

different level of randomness in system parameters, an investigation is carried 

out without considering the road surface roughness, i.e. let Sd(f0) in Equation (4.6) 

equal to zero. Performing the eigenvalue analysis on the defined kernel for the 

system parameters, the nine K-L components for each system parameter can be 

obtained.  Following the procedure introduced in Section 5.2.1, the stochastic 

stiffness, mass and damping matrix can be derived according to Equations (5.8) 
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to (5.10), respectively. In this case, only the P(0)(t) in the force vector in Equation 

(7.7) is non-zero. By solving Equation (7.9), the statistics of the nodal response 

of bridge model can be obtained according to Equation (7.13). The first two 

statistics of the mid-span displacement of the bridge from the proposed method 

and the MCS with 10000 runs in the cases when COVE=COVρ=10% and 

COVE=COVρ=20% are compared in Figure 7.1 and 7.2, respectively. For both 

cases, either the 2nd-order or the 3rd-order PCE are adopted to represent the 

bridge response. The relative errors between the first two statistics of the 

mid-span displacement calculated from the two methods are shown in Table 7.1.  

Results show that the calculated response statistics of the mid-span 

displacement agree well with those from MCS. Using higher order of PCE for 

the response can improve the accuracy in the calculated variance and this 

improvement may not significant when the randomness in system parameters is 

small, e.g. COVE and COVρ are smaller than 10%.  

It is noted in Table 7.1 that the 2nd-order PC is capable of representing the 

randomness in system parameters equals to 10% with good accuracy. In the 

following study, the 2nd-order PC is adopted to represent the response of bridge 

with COVE=COVρ=10% under a moving vehicle with different road surface 

conditions. The criterion for truncation in the KLE of the road surface roughness 

is 99.0
1

≥∑∑ = j
k

j j
F λλ . A comparison of the mean value and variance of the 

mid-span displacement of the bridge deck from the SSFEM and MCS with 10000 

runs under different road surface conditions is given in Figure 7.3 and 7.4, 
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respectively. The corresponding percentage errors calculated according to 

Equation (3.39) are shown in Table 7.2.  

Results show that the calculated response statistics are very accurate with all 

road surface conditions. The errors in the calculated mean value increase slightly 

with the deterioration of the road surface condition while the errors in calculated 

variance decease slightly with the deterioration of the road surface condition. The 

reason for this phenomenon has been explained at the end of Section 6.4.2.3. 

7.3.2 Non-Gaussian System Parameters 

7.3.2.1 Dynamic Analysis Procedure 

The dynamic analysis of the bridge-vehicle system with uncertainties is 

performed with the proposed algorithm implemented in MATLAB software. 

10000 samples of the irregular road profile are generated according to Equation 

(4.6) in Section 4.3 in which uniformly distributed random angle θk is expressed 

by a random number between 0 to 1 using the command ‘rand’. The 

corresponding samples of random excitation forces P(t,θ) are calculated 

according to the Equations in Section 4.2.2. These samples of excitation forces 

will be adopted either to calculate samples of the response in the MCS or to 

obtain the covariance kernel of the excitation forces in SSFEM.  

The procedure of calculating the covariance kernel from samples according 

to Section 3.3.2 is: (a) the mean value and random component of the samples for 

the vector of the Gaussian processes are calculated according to Equations (3.13) 
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and (3.14) respectively; (b) Then the random component of the vector can be 

reshaped according Equation (3.15). (c) Finally, the covariance kernel for the 

samples can be calculated according to Equation (3.16).  

Eigenvalue analysis is then performed on the kernel to give the 

corresponding K-L components. The first kF K-L components with eigenvalue λj 

larger than a threshold value B are retained according to the criterion of 

Bj
k

j j
F ≥∑∑ =

λλ
1

. For the system parameters with log-normal property, the 

KLE is performed on the prescribed auto-covariance function of the 

corresponding Gaussian random process as shown in Equation (6.40) to obtain 

the K-L components gi(x) for the corresponding Gaussian processes g(x,θ). In 

this study,  and｜xa 1-x2｜are set to unity and 3.75m respectively for both 

parameters, and nine K-L components are adopted to represent the fluctuation of 

the corresponding Gaussian random process in the structural model with eight 

beam elements. The corresponding coefficients in the PCE for the system 

parameters with log-normal properties can be calculated according Equation 

(6.36) to form the system matrices in Equation (7.10). The Newmark-β method is 

employed to solve the formulated Equation (7.10) and the response statistics can 

be obtained. In the MCS, samples for the log-normal distributed system 

parameters can be obtained according to Equation (6.36) in which the 

deterministic coefficients gi(x) are calculated from the covariance kernel defined 

in Equation (6.40) and samples for the standard Gaussian random variables ξi(θ) 

are generated by the command “randn” in MATLAB software. 
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According to the procedure introduced above, the response statistics of the 

mid-span displacement of the bridge for the case when Sd(f0)= 64×10-6 m3/cycles 

and COVE=COVρ=20% with the threshold value B=0.99 is calculated and 

compared with those from 10000 Monte Carlo Simulations in Figure 7.5. The 

order of PC for representing both the log-normal distributed system parameters 

and the response are equal to two to facilitate further study on the effect of the 

order of PC on the accuracy of the proposed method in Section 7.3.2.2. Results 

show that the mean values and variances of the mid-span displacement from the 

two methods are in good agreement. The percentage errors defined in Equation 

(3.39) for the mean value and variance are 0.22% and 1.36%, respectively. 

To further study the effectiveness of the SSFEM on bridge-vehicle 

interaction problem with non-Gaussian uncertainties, different factors including 

the level of randomness, the order of PC used in SSFEM, the threshold for 

truncation in the K-L expansion of the excitation forces and the level of the 

randomness in excitation will be investigated in the following sub-Sections. 

7.3.2.2 Level of Randomness in System Parameters 

In the study of the level of randomness in system parameters on the 

accuracy of the proposed method, the randomness in the excitation forces due to 

the road surface roughness will not be considered, i.e. Sd(f0)=0. As different order 

of PC for representing both the system parameters and responses is required at 

different level of randomness in system parameters to maintain a good accuracy 

of the SSFEM algorithm, a study is carried out in this sub-Section to examine the 
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features observed for an appropriate selection. 

The cases with different level of randomness in system parameters when 

COVE=COVρ=5%, 10%, 20%, 30%, 40% and 50% are chosen. Four 

combinations on the order of PC are adopted including: (1) ODS=1, ODR=3; (2) 

ODS=2, ODR=2; (3) ODS=2, ODR=3; (4) ODS=3, ODR=3, where ODS and ODR 

are the order of PC for representing the system parameters and the response, 

respectively. In MCS, 10000 samples of the log-normal distributed system 

parameters are generated to calculate samples of the bridge response according to 

Equation (6.36) in which kl=9, ODS=3. The deterministic coefficients gi(x) are 

calculated from the covariance kernel defined in Equation (6.40) and samples of 

the standard Gaussian random variables ξi(θ) are generated with the command 

“randn” in MATLAB software. The first two statistics of the mid-span 

displacement of the bridge deck are calculated from the SSFEM with different 

combinations of the order of PC and MCS, and they are compared in Figures 7.6 

and 7.7, respectively, and with the percentage error calculated according to 

Equation (3.39) and shown in Table 7.3.  

Results in Table 7.3 show that the order of PC with ODS=1 and ODR=3 can 

only give accurate results for different level of randomness in system parameters 

when the COV of the system parameters is small, e.g. smaller than 20% in 

calculating the mean value and smaller than 10% in calculating the variance. 

Large errors in the results occur with larger COVE and COVρ. It is noted that 

when the order of PC is equal to unity, the PCE is identical to the KLE and the 
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non-Gaussian random processes, e.g. the log-normal distributed system 

parameters in this study, are approximated by the corresponding Gaussian 

random processes with the same mean and variance. It may be concluded that 

when the COV of the system parameters is small, the non-Gaussian distributed 

system parameters can be well approximated with the Gaussian distributions 

which can be represented properly with the KLE. For calculating the mean value 

of the mid-span displacement, the combinations with order of PC where ODS >1 

and ODR >1 give accurate results as shown in Table 7.3. The relative errors 

increase with the level of randomness in system parameters and decrease with the 

order of PC used. The adoption of a higher order PC larger than two for both the 

system parameters and response will slightly improve the accuracy of the 

proposed algorithm but with a dramatic increase of the computational efforts due 

to a significant increase in both the size of the system matrices and the number of 

non-zero sub-matrices in Equation (7.9). 

The relative error in calculating the variance of the mid-span displacement 

also increases with the level of randomness in system parameters and it decreases 

with the order of PC used. When the randomness in system parameters is not 

very large, e.g. smaller than 30%, the order of PC with ODS=2 and ODR=2 can 

give acceptable results on the variance. Results from Table 7.3 show that the 

accuracy of the proposed algorithm is significantly improved by adopting the 

second order PC instead of the first order PC in representing the non-Gaussian 

randomness in the system parameters. 
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In the following sub-Sections, the randomness in excitation due to road 

surface roughness will be included into the bridge-vehicle interaction problem 

with the level of randomness in system parameters assumed as 

COVE=COVρ=20%. Results in Table 7.3 shows that the order of PC with ODS=2 

and ODR=2 can be selected to maintain a good representation of the randomness 

in system parameters. This combination of the order of PC will be adopted for 

further study in this Chapter on the effect of randomness in the excitation forces 

on the proposed algorithm for the bridge-vehicle interaction with non-Gaussian 

uncertainty in system parameters.  

7.3.2.3 Truncation in Karhunen-Loève Expansion 

Since the number of terms retained in the KLE of the excitation forces will 

affect both the number of terms in the PCE for the response and the accuracy of 

the calculated response statistics from the proposed algorithm, the threshold 

value B defined in the criterion in Section 7.3.2.1 for the truncation in KLE is 

investigated in this sub-Section. 

Different classes of road profile are included in this study. A comparison of 

statistics of the mid-span displacement with different threshold values in 

truncation from both MCS and SSFEM is given in Figure 7.8 when 

COVE=COVρ=20% and Sd(f0)=64×10-6. Only results for the case with Sd(f0)= 

64×10-6 m3/cycles are shown in Table 7.4 and both the number of K-L 

components retained after truncation and the percentage errors in the calculated 

statistics of the mid-span displacement with different value of the threshold B 
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adopted are listed. For other classes of road profile defined by Sd(f0), the number 

of K-L components retained after truncation for each value of B is found 

identical with the results shown in Table 7.4 due to the linear relationship 

between Sd(f0) and r(x) as noted in Equation (4.6). The errors in the calculated 

mean values are not sensitive to the value of B while the errors in the calculated 

variances falls sharply at B=0.95 to B=0.96 and it decreases slightly with further 

increase of B. Similar trend has also been shown in Figure 7.8. Large error in the 

calculated variance of the mid-span displacement when B=0.95 is mainly due to 

the truncation of two K-L components from 14 to 12 for the excitation forces 

which have been included in the case when B=0.96. When the threshold value B 

is close to unity, more K-L components are retained and the proposed algorithm 

is more accurate but at the expense of a dramatic increase of the computational 

effort as noted in Equation (7.4) where an increase of kr may lead to a significant 

increase of KZ. To maintain the accuracy of the proposed method and yet a 

reasonable computation effort, a threshold with B=0.97 will be adopted in the 

following sub-Section. 

7.3.2.4 Level of the Randomness in Excitation 

Investigations on the effect of the level of randomness in excitation due to 

different road surface roughness are conducted in this sub-Section. The mean 

value and variance of the mid-span displacement of the bridge deck calculated 

with the SSFEM and the MCS are compared in Figure 7.9 and Figure 7.10, 

respectively. The percentage errors according to Equation (3.39) in the results 
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from SSFEM compared with those from the MCS are listed in Table 7.5.  

Results show that the first two statistics of the mid-span displacement 

calculated from the proposed method and the MCS at a specific level of 

randomness in excitation, are very close to each other. The percentage error in 

the mean value increases slightly with an increase in the level of randomness in 

excitation and the errors in the calculated variance in the response are not 

sensitive to randomness in excitation as noted in Table 7.5. It may be concluded 

that the proposed algorithm has good performance in the response statistics 

prediction in solving the bridge-vehicle interaction problem with large 

uncertainties in both system parameters and the excitation forces. 

7.4 Discussions on Computational Aspects 

Computational aspects in numerical simulations related to the application of 

the proposed algorithms on the bridge-vehicle interaction problem with 

uncertainties are discussed in this sub-Section. 

To solve the formulated mathematical models in forward analysis as shown 

in Equations (5.16), (6.11) and (6.22), one of the key points is to form the system 

matrices denoted as M, K and C in which numerous sub-matrices denoted as 

M(j,k), K(j,k) and C(j,k), respectively are included. These sub-matrices have the 

same sizes as the corresponding deterministic system matrices noted as Md, Kd 

and Cd, respectively, therefore, the sizes of the system matrices for the random 

system can be extremely large when either the bridge contains numerous 
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degrees-of-freedom or a high order of Polynomial Chaos is required in 

representing the non-Gaussian random processes involved. For static analysis of 

a random structure, system equation based on the SSFEM is a set of linear 

equations where methods for solving large-scale linear equations can be adopted 

to solve. A hierarchical approach (Ghanem and Kruger 1996) was also developed 

for the numerical solution of the static analysis on a random structure according 

to the symmetric nature of the system matrices. For dynamic analysis of random 

structures, the system equations of a random structure based on stochastic finite 

element model are ordinary differential equations and numerical methods such as 

the Newmark-β method is employed to solve. Due to the large-scale of the 

system matrices especially for the case of non-Gaussian system parameters, only 

the sub-matrices M(j,k), K(j,k), C(j,k) with non-zero values are stored and this 

strategy is achieved with the command “sparse” in the MATLAB programme, 

and it can dramatically save the storage required and improve the computational 

efficiency. 

The sparsity patterns of the system matrices M, C and K respectively are 

determined by the value of inner product of polynomial chaos <●> in M(j,k), K(j,k) 

and C(j,k), respectively. Typical sparsity patterns when the number of K-L 

components is equal to nine with different order of Polynomial Chaos adopted 

are shown in Figure 7.11. In the four figures, each dot represents a sub-matrix 

with non-zero values and the ‘nz’ denotes the number of non-zero sub-matrices. 

Figure 7.11(a) shows the sparsity pattern for ODs=ODR=1 which represents 
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the case introduced in Chapter 5 with the Gaussian assumption for both random 

system parameters and the random response. Noted from Figure 7.11(a) that the 

system matrices have small sizes and contain a small number of non-zero 

sub-matrices which is the reason why the model is regarded as “economic”.  

Figure 7.11(b) shows the sparsity pattern for ODs=1 and ODR=3 which 

represents the case introduced in Section 6.3.1 with the Gaussian assumption for 

the random system parameters and the non-Gaussian assumption for the random 

responses represented by a 3rd-order Polynomial Chaos. It is noted from Figure 

7.11(b) that the size of the system matrices is much larger than that in Figure 

7.11(a). Since the Gaussian assumption is made for system parameters, the 

number of non-zero sub-matrices is relatively small comparing with the total 

number of sub-matrices in the system matrices. Only a small storage is required 

if these system matrices are sparsely stored in the procedure of numerical 

computing. 

Figure 7.11(c) shows the sparsity pattern for ODs=2 and ODR=2 which 

represents the case introduced in Section 6.3.2 with the non-Gaussian assumption 

for both the random system parameters and the random response are adopted 

with a 2nd-order Polynomial Chaos in the representation. Since the maximum 

order of PCE is 2, the size of the system matrices is much smaller than that in 

Figure 7.11(b). When an order of Polynomial Chaos larger than one is adopted in 

the representation of the non-Gaussian system parameters, the number of the 

non-zeros sub-matrices will increase dramatically. In case of large non-Gaussian 
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uncertainties exist in the system parameters for a engineering structure, a high 

order of PC is required to calculate the response statistic with SSFEM which may 

be very time consuming. The sparsity pattern for ODs=2 and ODR=3 is also 

shown in Figure 7.11(d). 

When the randomness in system parameters is small, the accuracy of the 

algorithm may not be improved by increasing the order of Polynomial Chaos 

adopted as shown in the numerical simulation in Chapters 6 and 7, which 

however may require much more computational efforts. Therefore, appropriate 

selections on both the algorithm and the order of PC adopted are very important 

and they should be carefully examined. 

7.5 Summary 

The dynamic analysis of the bridge-vehicle interaction problem with 

Gaussian/non-Gaussian uncertainties is presented in this Chapter. The bridge is 

modeled as a simply supported Euler-Bernoulli beam with 

Gaussian/non-Gaussian material parameters. A vehicle moves on top of the beam 

is modeled by a deterministic four degrees-of-freedom mass-spring system, and 

the road surface roughness is assumed as a Gaussian random process with a 

power spectrum density function defined according to ISO standard. The 

mathematic model of the bridge is formulated based on the Spectral Stochastic 

Finite Element Method coupling with the equation of motion of the vehicle 

system. Numerical simulations with the proposed method and the Monte Carlo 
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simulation show good agreement in the results for cases with different level of 

uncertainties in the system parameters and different road conditions. The 

following conclusions on the proposed method are drawn: 

(1) The proposed algorithm by employing the SSFEM on the dynamic analysis 

of the bridge-vehicle interaction problem with Gaussian/non-Gaussian 

uncertainty in system parameters is effective and with good performance in 

the response statistics prediction even when large variation exists in both the 

system parameters and the excitations. 

(2) Appropriate order of PC adopted for representing the non-Gaussian system 

parameters and the response should be selected to improve the 

computational efficiency while maintaining the accuracy of the proposed 

algorithm. When the COV of the system parameters is smaller than 10%, the 

non-Gaussian system parameters may be approximated with a Gaussian 

distribution with the same mean value and variance. Higher order PC must 

be adopted to represent the non-Gaussian randomness when the COV of 

system parameters increases. 

(3) The randomness in the Gaussian excitation forces on the bridge-vehicle 

system can be well represented by the KLE. An appropriate threshold for 

truncation in the KLE should be chosen to minimize the number of K-L 

components retained while maintaining the accuracy. The percentage error 

in the mean value increases slightly with an increase in the level of 

randomness in the excitation and the errors in the calculated variance on 
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response are not sensitive to randomness in the excitations. 
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Table 7.1 - Percentage error in mid-span displacement statistics due to different 
level of Gaussian randomness in system parameters 

 

RE(%) COVE=COVρ=10% COVE=COVρ=20% 

Sd(f0)=0 2nd-Order PC 3rd-Order PC 2nd-Order PC 3rd-Order PC 

Mean Value 0.11 0.11 0.25 0.19 

Variance 2.75 3.03 11.64 5.12 

 
 
 

Table 7.2 - Percentage error in mid-span displacement statistics due to different 
level of randomness in excitation with Gaussian system parameters 

 

B=0.99 COVE=COVρ=10% 

Sd(f0) 0 6×10-6 16×10-6 64×10-6 256×10-6 1024×10-6

Mean Value 0.11 0.12 0.14 0.33 0.48 1.28 

Variance 2.75 2.45 1.89 2.19 1.14 0.78 
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Table 7.3 - Percentage error in mid-span displacement statistics due to different 
level of non-Gaussian randomness in system parameters 

 

COVF=0% Order of PC 

Combination#1 Combination#2 Combination#3 Combination#4 

ODS ODR ODS ODR ODS ODR ODS ODRCOVE=COVρ

1 3 2 2 2 3 3 3 

5% 0.01 0.01 0.01 0.01 

10% 0.02 0.01 0.01 0.01 

20% 0.12 0.03 0.03 0.03 

30% 0.68 0.09 0.05 0.05 

40% 2.79 0.29 0.18 0.15 

Mean 

Value 

50% 11.48 0.74 0.61 0.23 

5% 0.17 0.02 0.02 0.02 

10% 2.60 0.18 0.07 0.07 

20% 11.64 1.09 0.15 0.15 

30% 34.51 2.79 0.49 0.38 

40% 98.91 5.30 2.27 1.68 

Variance

50% 358.11 9.19 7.72 5.43 
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Table 7.4 - Percentage error in the calculated responses using different threshold 
for truncation in KLE of road surface roughness 

 

Threshold B for truncation COVE=COVρ=20% 
Sd(f0)=64×10-6

0.95 0.96 0.97 0.98 0.99 

Number of K-L 
Components kF Retained 12 14 18 24 39 

Mean Value 0.22 0.22 0.22 0.22 0.22 
RE (%) 

Variance 18.99 3.21 1.77 1.82 1.68 

 
 
 

Table 7.5 - Percentage error in mid-span displacement statistics due to different 
level of randomness in excitation with non-Gaussian system parameters 

 

B=0.97 COVE=COVρ=20% 

Sd(f0) 0 6×10-6 16×10-6 64×10-6 256×10-6 1024×10-6

Mean Value 0.03 0.07 0.11 0.22 0.28 0.54 

Variance 1.09 1.19 2.32 1.77 1.62 1.62 
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Figure 7.1 - Comparison of statistics of mid-span displacement from SSFEM and 
MCS with different order of PC when COVE=COVρ=10% 
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Figure 7.2 - Comparison of statistics of mid-span displacement from SSFEM and 
MCS with different order of PC when COVE=COVρ=20% 
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Figure 7.3 - Comparison of mean values of mid-span displacement from SSFEM 
and MCS, when COVE=COVρ=10% 
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Figure 7.4 - Comparison of variances of mid-span displacement from SSFEM and 
MCS, when COVE=COVρ=10% 
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Figure 7.5 - Comparison of response statistics from SSFEM and MCS, when 
COVE=COVρ=20%, Road C and B=0.99 
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Figure 7.6 - Comparison of mean values of mid-span displacement with different 
order of PC used 
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Figure 7.7 - Comparison of variances of mid-span displacement with different 
order of PC used 
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Figure 7.8 - Comparison of statistics of mid-span displacement with different 
threshold for truncation when COVE=COVρ=20% and Sd(f0)=64×10-6
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Figure 7.9 - Comparison of mean values of mid-span displacement under different 
road surface conditions when COVE=COVρ=20%, B=0.97 and ODs=ODR=2 
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Figure 7.10 - Comparison of variances of mid-span displacement under different 
road surface conditions when COVE=COVρ=20%, B=0.97 and ODs=ODR=2 
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Figure 7.11 - Typical sparsity patterns of the system matrices in SSFEM with 
different order of PCE when ks=9 
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CHAPTER 8 

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

8.1 Summary 

The work in this Thesis aims to provide a theoretical study of bridge-vehicle 

interaction problem with uncertainties in both the interaction forces due to road 

surface roughness and the material properties in the bridge structure. The 

uncertainties in this system are modeled as Gaussian/non-Gaussian random 

processes which are represented by the Karhunen-Loève Expansion and/or 

Polynomial Chaos Expansion. The research work is conducted the following 

steps: 

(1) Only the randomness due to road surface roughness is considered in the 

bridge-vehicle interaction problem in Chapters THREE and FOUR. The 

bridge-vehicle system is assumed to have deterministic parameters and the 

road surface roughness is assumed as a Gaussian random process with a 

Power Spectrum Density function defined according to the ISO standard 

(ISO 8606:1995(E) 1995). The system modeling is conducted with the 

Gaussian random processes represented by the Karhunen-Loève Expansion. 

Based on the model developed, a moving force identification technique is 
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proposed to identify the statistics of the interaction forces (or moving forces) 

on the bridge deck from samples of “measured” bridge response. The 

algorithm is first developed on a beam-load model and then extended to a 

bridge-vehicle interaction model with the vehicle modeled as a four 

degrees-of-freedom mass-spring system. Since the finite element method is 

adopted for the system modeling, the proposed method can be applied to 

cases with more complex bridge and vehicle configurations. 

(2) To carry out the research work one step further, small uncertainty in the 

material properties of the bridge structure is included in the study of the 

bridge-vehicle interaction problem in Chapter FIVE. According to the fact 

that when the randomness in the system parameters is small, the random 

responses of bridge which may have non-Gaussian properties can be 

approximated by Gaussian random processes. The moving excitation forces 

applied on the bridge deck are also assumed as Gaussian random processes. 

All these Gaussian random processes are represented by the 

Karhunen-Loève Expansion based on which an “economic” stochastic finite 

element model is formulated. The proposed model in this Chapter can 

accurately simulate the bridge-vehicle interaction problem with small 

uncertainties in the system parameters and large uncertainties in the 

excitation forces. Based on the model developed, a general Stochastic 

Moving Force Identification (SMFI) algorithm is proposed to identify the 

statistics of the moving forces on the bridge deck from samples of the 
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random bridge response considering randomness in the system parameters.  

(3) Since the algorithm developed in Step two may tend to be inaccurate with 

increasing randomness in system parameters, the Spectral Stochastic Finite 

Element Method is adopted in Chapter SIX and SEVEN to modeling the 

uncertainties. The stochastic bridge response, which may have 

non-Gaussian property, is represented by the Polynomial Chaos Expansion. 

The material properties of the bridge structure are firstly assumed as 

Gaussian random processes which are represented by the Karhunen-Loève 

Expansion. With increasing uncertainty in system parameters, the Gaussian 

assumption for the system parameters which has a small probability of 

taking negative values, is impractical in engineering problems, and these 

negative system parameters will cause divergence in MCS. Therefore, the 

non-Gaussian assumption is further adopted for the system parameters to 

have an algorithm to be effective in case of large uncertainties in both the 

system parameters and excitation forces. The theory is first applied on a 

beam-load model and then to a bridge-vehicle interaction problem. 

8.2 Conclusions 

With all the research work conducted, the following conclusions are drawn: 

(1) When the material properties of a bridge structure are assumed to be 

deterministic and the randomness in the excitations on the bridge due to 

road surface roughness is considered in the bridge-vehicle interaction 
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problem.  

 The modeling of Gaussian uncertainties in the excitations and the 

responses with the Karhunen-Loève Expansion is very accurate. 

Moreover, the accuracy is not sensitive to the level of randomness. 

 The proposed stochastic moving force identification algorithm based on 

this model for the identification of the statistics of excitation forces from 

the “measured” response samples is found to be effective even when the 

randomness in excitation forces is very large, e.g. when COVF is larger 

than 0.8. The relative error in the variance of the identified forces is also 

not sensitive to the level of randomness.  

 The accuracy of identified interaction forces (or moving forces) is 

significantly improved with a small number of measured responses 

samples in the stochastic force identification approach when compared to 

that obtained from an existing deterministic method (Law et al. 2004) of 

using one sample of measured response.  

 The uncertainty in the measured responses can be largely removed from 

the mean values of the identified moving forces in the identification 

process when a relative large number of response samples are used. It is 

recommended that 50 response samples may be suitable for a satisfactory 

identification of the variance of the moving vehicle axle forces. 

(2) When the material properties of bridge structure are assumed to have small 

Gaussian uncertainties, e.g. the coefficient of variation is not larger than 
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5%, the response of the bridge under Gaussian random moving forces can 

be approximated by Gaussian random processes and is represented by the 

Karhunen-Loève Expansion. 

 This “economic” stochastic finite element model proposed based on the 

KLE has high computational efficiency, insensitive to the velocity of the 

moving forces and good accuracy in the prediction of response statistics 

for the practical case with relatively small uncertainty in system 

parameters but large randomness in excitation.  

 A general stochastic moving force identification algorithm which 

includes both the Gaussian system parameters and excitations in the 

inverse problem is developed based on this stochastic finite element 

model for the bridge-vehicle interaction problem. The relative error in 

the mean value of the identified force increases slightly with a decrease 

in the number of sample of “measured” responses. Whether or not the 

samples used can truly represent the statistics of its population will be the 

most important requirement for an accurate identification on the variance 

of the moving force.  

 The effect of level of randomness depends on the relationship between 

the covariance kernel for the case of a deterministic system under 

random excitation and the third term in Equation (5.32) which is the key 

to good accuracy on the statistics, particularly the variance of the 

identified force. When the covariance kernel is relatively large compared 
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with the error term (the third term in Equation (5.32)), all the statistics 

including the mean value and variance of the moving force can be 

accurately identified. 

 It should be declared that by eliminating the location matrix in this SMFI 

algorithm, it is also applicable for other force identification procedure in 

a stochastic dynamic system as long as the assumption of small 

uncertainties in the system parameters is valid. 

(3) The proposed algorithm by employing the SSFEM in the dynamic analysis 

of the bridge-vehicle interaction problem with Gaussian/non-Gaussian 

uncertainty in system parameters is effective and with good performance in 

the response statistics prediction even when large variation exists in both the 

system parameters and the excitations.  

 For the case with Gaussian system parameters, when the uncertainty in 

system parameters is very small, e.g. smaller than 5%, the Gaussian 

assumption for the response of bridge structure is appropriate. An 

assumption of non-Gaussian uncertainties for the solution cannot 

improve the accuracy in the variance prediction.  

 When the level of randomness in the system parameters increases, the 

Gaussian assumption for the solution, i.e. the use of first order PC in 

response representation, will result in large error in the variance 

prediction. Hence the non-Gaussian assumption with higher order PC 

must be adopted for the random response of the bridge structure to 
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achieve accurate results especially in the variance.  

 At a high level of randomness in system parameters, e.g. COV larger 

than 0.3, the Gaussian assumption for the system parameter which may 

result in negative values, will cause divergence in the response statistics 

calculation in MCS. Therefore, a non-Gaussian assumption should be 

adopted.  

 In case of non-Gaussian system parameters, appropriate orders of PC 

adopted for representing both the non-Gaussian system parameters and 

the response should be selected to improve the computational efficiency 

while maintaining the accuracy of the proposed algorithm. When the 

COV of the system parameters is smaller than 10%, the non-Gaussian 

system parameters may be approximated with a Gaussian distribution 

with the same mean value and variance. Higher order of PC larger than 

one must be adopted to represent the non-Gaussian randomness when the 

COV of system parameters increases.  

 In cases when the excitation forces require a large number of K-L 

components to represent, an extremely large number of Polynomial 

Chaos may be required in the PCE of the non-Gaussian random 

responses which makes the problem unsolvable due to the limit 

capability of computer. A reduce PCE model is proposed as an 

alternative in which the uncorrelated non-Gaussian random variables in 

PCE are assumed to be independent with a larger number of K-L 
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components as a compensation. This model can effectively reduce the 

computational efforts with a trade off in the accuracy of prediction. 

When the coefficients of variation of both the system parameters and 

excitation forces is smaller than 0.2, a 2nd-order representation of the 

polynomial chaos is sufficient to obtain accurate response statistics of a 

beam structure. In other cases with larger coefficients of variations, a 

3rd-order representation of polynomial chaos is recommended. 

8.3 Recommendations 

The proposed algorithms in this Thesis can successfully solve the 

bridge-vehicle interaction problem with uncertainties to some extent. 

Nevertheless, there are still flaws in these algorithms to note. Moreover, some 

further research which is regarded to be important by the author within the scope 

of the bridge-vehicle interaction problem with uncertainties will be addressed. 

Recommendations on the improvements of the existing algorithms and on further 

research directions of this interesting topic are: 

(1) The Spectral Stochastic Finite Element Method adopted in modeling the 

uncertainties in the bridge-vehicle interaction problem has good accuracy 

even when the randomness in both system parameters and excitation forces 

are large. However, the dimension of Polynomial Chaos is noted to be 

dependent on the number of K-L components and the order of Polynomial 

Chaos adopted. The covariance kernel which requires minimum number of 
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K-L components to represent the uncertain system parameters should be 

selected. The covariance matrix for the random excitation forces tends to 

become very large with an increasing number of the forces and the number 

of time instances. This will lead to long computation time in the eigenvalue 

analysis. A high sampling rate of data is therefore not recommended. A 

Galerkin type procedure (Ghanem and Spanos 1991) can also be employed 

for solving the Fredholm equation to improve the computational efficiency 

for the eigenvalue problem. Since the size of the system matrices in 

SSFEM equals to the dimension of Polynomial Chaos multiplied by the 

number of degrees-of-freedom of the random system, in the dynamic 

analysis of a stochastic finite element model with a large number of 

degrees-of-freedom, the stochastic model reduction technique (Doostan et 

al. 2007) is recommended to reduce the computation. Other methods such 

as the modal superposition technique in which the stochastic shape 

functions obtained from random eigenvalue analysis (Ghosh et al. 2005, 

Ghanem and Ghosh 2007) are adopted, the Stochastic Reduced Basis 

Method (SRBM) (Nair and Keane 2002; Mohan et al. 2008), etc. can also be 

employed as alternatives to solve this problem. 

(2) The stochastic moving force identification algorithm proposed in this 

Thesis is based on the stochastic finite element model with the assumption 

of small uncertainty in system parameters. Since the algorithm in this thesis 

tends to loss accuracy with increasing level of randomness in system 
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parameters, a more general force identification algorithm based on the 

Spectral Stochastic Finite Element Model with Gaussian/non-Gaussian 

uncertainty in system parameters would be a new task to be accomplished 

to fill the gap of the lack of force identification algorithm on stochastic 

finite element model. Once this force identification algorithm is proposed, 

the response data from either experiments or field tests can be utilized to 

identify the statistics of the excitation forces based on the representation of 

experimental data with Polynomial Chaos (Desceliers et al. 2006; 2007). 

(3) The randomness in the velocity of vehicles, the physical parameters of the 

vehicle system especially for the stiffness and damping of tires, should be 

further included in the uncertain bridge-vehicle interaction model. It should 

be noted that the inclusion of the randomness in the parameters of tires will 

introduce the inner product of Polynomial Chaos with four terms which can 

be calculated according to the method provided by Debusschere et al. 

(2004). 

(4) Further research work may also be extended to develop a stochastic 

bridge-vehicle interaction model with a stream of vehicles moving on the 

bridge with Poisson arrivals in which only the randomness in the arrival of 

vehicle is considered. The Poisson distribution can be represented by 

Charlier Polynomial Chaos and the stochastic analysis of this 

bridge-vehicle interaction model may give an overall estimation on the 

vehicle loading of the bridge structure. 
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