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Abstract

This thesis is concerned with the study of the risk-constrained portfolio selection prob-

lem arising from an ordinary investor and the insurer being an investor.

We first consider the problem for an insurer who can invest her surplus into financial

market. With value at risk (VaR) imposed as the dynamic risk constraint, the portfolio

selection problem is considered with two objectives: the ruin probability minimization

and wealth utility maximization. A closed-form solution is found by solving the as-

sociated Hamilton-Jacob-Bellman (HJB) equation for the first problem. By using the

exponential utility function, we solve the second problem by transforming this stochas-

tic optimal control problem into a deterministic optimal control one and using control

parametrization method.

Second, we consider the risk-constrained utility maximizing problem with a jump

diffusion model and a regime switching model for an ordinary investor. Conditional

value at risk (CVaR) and maximal value at risk (MVaR) are used as the risk constraint in

the two models, respectively. The associated HJB equations are treated with numerical

techniques.
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Chapter 1

Introduction

All investors, ranging from private individuals to banks and insurance companies, face

the investment problem of how to allocate a certain amount of money in different

assets and at what time instant. The pioneering work of Markowitz [94] first provided

a mathematically elegant way to formulate the optimal portfolio allocation problem and

developed the celebrated mean− variance optimization (MV O) approach for optimal

portfolio allocation. He considered a single-period model and adopted variance (or

standard deviation) as a measure of the portfolio’s risk. The novelty of his mean-

variance approach is that it reduces the optimal portfolio allocation problem to the

one in which only the mean and the variance of the rate of return are involved under

the normality assumption for the rates of return of the risky assets. This greatly

simplifies the problem of optimal portfolio allocation and makes a great leap forward

to the development of the field. The mean-variance approach by Markowitz has also

laid down solid theoretical foundation to the optimal portfolio allocation problem and

opened up an important field, namely, the modern portfolio theory.

Merton [95, 98] pioneered the development of the optimal consumption −portfolio
allocation problem in a continuous− time framework, which provides a more realistic

setting to deal with the problem. His work has opened up an important field in modern

finance, namely, the continuous − time portfolio theory. Under the assumption that

returns from the risky assets are stationary (i.e. the coefficients of the dynamics of the

returns are constant), and some specific forms of the utility function, Merton derived

1



closed-form solutions to the optimal portfolio allocation in a continuous-time setting.

Sparked by the work of Markowitz and Merton, portfolio selection problems have

been extensively studied along the two main categories: MVO problems and utility

maximization. Due to the appeal of utility maximization problems that they can

incorporate the risk attributes of an individual investor through the investor’s utility

function, the literature is dominated by the work in Merton’s direction. Merton’s

problem is later revisited with different kind of variation and constraint, for example,

with the introduction of the transaction cost, with the constraint that the investor may

also face regulatory requirements that it never has negative holdings in any stock. In

this work, we will focus on the problem in Merton’s direction and contribute to further

extension.

Most of the work considers the portfolio selection problem for an ordinary investor,

that is, how to allocate her wealth between the risky asset and risk free assets without

an external risk process. In reality, a kind of investors, such as an insurance company,

face the problem with receiving the stochastic cash flow, the risk from which can not

be traded away in the marketplace. This problem arises from the merging of finance

and insurance market, which is an important problem in actuarial fields. In other

words, in order to increase the profit or decrease the ruin probability, the insurance

company will invest the part of its reserve into financial market. Since the wealth can

go negative due to the process of stochastic cash flow, the chance of ruin is highly

possible to happen. Therefore, two important problems in insurance literature would

be the ruin minimization problem and the utility maximization problem in finite

time.

In a real market, the dynamics of stock prices, in addition to the geometry Brownian

motion used in Merton [95], often encounter large movements and non-stationary return.

The price evolution could cause a heavy tailed loss, and hence it would be of practical

relevance and importance to consider the asset models which can capture actual stock

market behavior. The analysis of price evolution which does reveal sudden and rare

breaks logically accounted for by exogenous events on information is often captured

by the jump − diffusion process. And, recently, Markov-modulated regime switch-

ing models have received much attention among researchers and market practitioners,

which incorporate the feature of non-stationary returns. From an economic perspec-
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tive, the Markovian regime− switching model can describe the stochastic evolution of

investment opportunity sets due to structural changes in the state of the economy.

With the rapid development of the derivatives markets, together with margin trading

on certain financial products, the exposure to losses of an investment can be many times

more than the initial capital allocation for that investment. Without a careful analysis

of the potential danger, the investment could cause catastrophic consequences when a

shock occurs. The financial crisis of 2007-present triggered by a liquidity shortfall in the

United States banking system has resulted in the collapse of large financial institutions,

such as the Bankruptcy of the Bear Stearns, the failure of American International

Group (AIG), the collapse of Lehman Brothers, the“bail out” of banks by national

governments and downturns in stock markets around the world. It is regarded as the

worst financial crisis since the Great Depression of the 1930s. Due to the current

financial crisis, risk management appears to be a discipline that is being taken far

more seriously these days.

The concern about risk is traced back in the original work of Markowitz [94], who has

investigated the appropriate definition and measurement of risk. The basic approach

in that work is to recognize that an investor faces a trade-off between risk and return

and to develop the implications of that trade-off. The main innovation introduced

by Markowitz is the use of volatility as a measure of risk to measure the risk of a

portfolio via the joint distribution of returns of all assets. In recent years, the growth of

trade activity and instances of financial market instability have prompted new studies

underscoring the need for market participation to develop reliable risk measurement

techniques. V alue at Risk(V aR) has emerged as an important risk management tool

with the precise task of answering to the following very relevant and precise questions

that how much the potential loss can be expected over a given period with a given

probability. Since V aR received its first wide representation in July 1993 in the Group

of Thirty report, the number of users and uses for V aR have increased dramatically. It

has widely been adopted within banking, insurance and finance industries sectors for

quantifying the market risk, portfolio optimization and setting capital adequacy(Jorion

[76], Dowd[33]), which include Basle Committee on Banking Supervision, the SEC, the

International Swap and Derivatives Association and the Derivatives Policy Group.

The portfolio selection problem, with both risk and return concerned, proceeds in
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two directions. One direction is the risk minimization with the return requirement,

which starts from the work of Markowitz [94]. But as the name might imply, risk man-

agement, is not about eliminating or minimizing risk. In today’s challenging economic

climate, firms must balance risk with caution and the long-term interests of and returns

to shareholders. That’s according to the latest report, entitled Financial Reform: A

Framework for Financial Stability released by The Group of Thirty (G30), an interna-

tional body of leading financiers and academics. Therefore, the other direction is the

utility maximization with risk constraint embedded, which appears more attractive as

the utility maximization is the main objective for an investor. In the literature, several

shortfalls with the study along the second direction include the inconsistence of the

portfolio with the risk constraint, the static setting or the assumption that full knowl-

edge in future is known. A reasonable treatment of this problem recently is imposing

the risk constraint in a dynamic manner, i.e. reevaluating it daily (or at least weekly),

which is based on the rules of Basel II Accord1.1.

Our focus in this work is on the dynamic portfolio choice of an investor trader

subject to a risk limit specified in terms of V aR (CV aR,MV aR). This problem has

not yet received a complete treatment in the existing insurance literature and general

model assumption for the dynamics of the risky asset.

1.1 Our Work and Outlines

Our focus is on the dynamic portfolio choice subject to certain risk constraint defined

in terms of V aR (CV aR,MV aR), both for an ordinary investor and an insurer. In

our work, the risk constraint is considered over a short duration of time with the

assumption that portfolio allocations do not change within this interval. We apply

V aR (CV aR,MV aR) as a risk constraint continuously over time. We consider this

1.1The current Basel Committee on Banking Supervision regulations introduce a risk control regula-

tion, which imposes a minimal level of eligible capital that the agents must maintain at all times as a

function of the portfolio V aR. This case is very important because it obligates financial institutions in

all developed countries to maintain eligible capital as a function of their bi-weekly market-risk V aR.

It is related to the capital reserve which the financial institution needs to hold, in order to prevent (at

a sufficiently high confidence level) insolvency due to an adverse development in the market situation.
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calculated V aR beyond the modeled horizon and constant investment/proportional

reinsurance opportunity set throughout. At each instant, the V aR (CV aR,MV aR) is

estimated and is applied to influence the strategy decision.

For the portfolio selection problem of an insurer, we first impose the dynamic risk

constraint on the portfolio selection. To make the risk constraint dynamically-consistent

with the portfolio, it makes sense to treat the problems (ruin probability minimiza-

tion and utility maximization) with imposing the risk constraint dynamically. For the

problem of ruin probability minimization, we derive the closed form solution for ruin

probability. As for maximizing the utility of final wealth, we transform the stochastic

control problem into the deterministic one, which appears much easier since there are

many packages for solving such a problem.

The risk constrained problem has not yet received a wide concern in other models

than normal distribution assumption in the existing literature. As an extension, we

consider it in a jump diffusion model and a switching model to improve the volatility

modeling.

When applying the dynamic risk constraint to the two models, the risk is stabilized,

and the risky investment is cut to meet the risk management. To the best of our

knowledge, we are the first to investigate the utility maximization problem when using

CV aR as a dynamic risk constraint in the jump diffusion model. Moreover, we are

the first to use the MV aR as the risk constraint in the switching model dynamically.

This means that the optimal consumption and investment results developed here are

uniformly optimal over different states of the economy described by the chain. In other

words, our method here can provide a conservative and prudent approach to determine

the optimal consumption and investment with risk constraints. In the literature, most

researchers considered the case that the V aR does not depend on the states of the

economy.

1.1.1 Outline of this work

In Chapter 2, the background of this work is presented, the model formulation and

methodology for the stochastic optimization problem are introduced, and the risk mea-
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sure and history of risk management in the literature are presented.

In Chapter 3, the problem of minimizing ruin probability with dynamical risk con-

straint is investigated firstly. If the insurer is allowed to invest his money in a risky

market which is composed of risk free asset and risky asset, V aR in a short time hori-

zon is analyzed for risk regulator and imposed as a constraint. Then the problem is

how to minimize the probability of ruin with a dynamic risk constraint. By solving

the corresponding Hamilton-Jacobi-Bellman equations, the explicit expressions for the

optimal value function and the corresponding optimal strategies are obtained.

Secondly, with a constrained V aR, the problem that the expected exponential utility

for the final wealth is to be maximized is considered. This can be posed as a stochastic

optimal control problem, where the diffusion reserve model introduced by Promislow

and Young [108] is used. Furthermore, proportional reinsurance, which is another

important instrument for decreasing the risk or increasing the final wealth, is also

included in this problem formulation. Then we transform the stochastic optimal control

problem into a deterministic one. The solution of this deterministic problem can be

approximated as an optimization problem by using existing optimization software, such

as NLPQLP (see [89, 90, 125]).

In Chapter 4, we consider the optimal portfolio selection problem subject to the risk

constraint with more realistic models in finance. In particular, we focus on using more

sophistical stochastic models to overcome some of the drawbacks of the pure geometry

Brownian motion process.

In the jump diffusion model, the asset price is assumed to be driven by a Brownian

motion perturbed by a compound Poisson process. This resembles a price process

perturbed by an exogenous factor which may cause large movements in price. The jump

size of the Poisson process and the rate of jump define, respectively, a scenario and its

occurrence probability. The stress testing is conducted to evaluate the performance and

assess the resilience of the portfolio subject to exceptional but major events. We use

CV aR as the risk constraint for the jump diffusion model, since V aR is not coherent

for this model. We examine how a conditional-value-at-risk constraint exerts influence

on the portfolio composition.
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In the regime switching model, the price dynamics of the risky asset are governed by

a Markov-modulated geometric Brownian motion. In particular, the market parameters

including the market interest rate of a bank account, the appreciation rate and the

volatility of the risky asset switch over time according to a continuous-time Markov

chain. The MV aR is defined as the maximum value of the V aRs of the portfolio

in a short time duration over different states of the chain. We consider the optimal

consumption and investment problem when both the regime-switching effect and the

V aR constraint are present.

The problem is reduced to the solution of the associated HJB equation, and an

efficient numerical method is proposed for the optimal constrained portfolio. We shall

provide numerical results for the sensitivity analysis of the optimal portfolio, the optimal

consumption and the CV aR (MV aR) level with respect to model parameters. These

results are also used to investigate the effect of the switching regimes.

Finally, concluding remarks are presented in Chapter 5, where some future problems

and research directions are also included.
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Chapter 2

Background

2.1 Market Model

Assume that the market consists of a risk-free asset and n risky assets (say stocks). First,

we fix a complete probability space (Ω,F ,P), where P is a real-world probability. The

stock prices are modeled as a geometric Brownian motion. Expressed mathematically,

the dynamics of the risky assets and the risk-free asset evolve according to

dS(t) = S(t)(µdt+ σdW (t)),

dB(t) = rB(t)dt, (2.1.1)

respectively2.1. Let“⊤” denote the transpose of a vector or matrix throughout this paper.

Here, W = (W1, ...,Wd)
⊤ is a d-dimensional standard Brownian motion, which stands

in for any and all sources of uncertainty in the price history of n stocks. The vector

µ = (µ1, ...µn)
⊤ ∈ Rn is the appreciation rates, matrix σ is the n× d volatility matrix,

andD(S(t)) denotes the diagonal matrix diag[S1, ..., Sn]. For one stock, Merton[96] first

introduced this geometric Brownian motion model into the continuous time finance.

2.1Model (2.1.1) is the traditional log-normal asset price model corresponding to the classical Black-

Scholes model.
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2.1.1 The ordinary investor

We name the investor an ordinary investor if her trading strategy is self −financing,
in other words, no other money is going in or out the market except the money gener-

ated by the trading strategy. Denote T , [0, T ], we now assume that, in the financial

market, a small investor with an initial capital x(≥ 0) can decide, at each time t ∈ T ,

(i) what account of wealth, πi(t), i = 1, ...n, she should invest in each of the avail-

able stocks, and x(t)−∑n
i=1 πi(t) is the amount of wealth invested in the risk-free bond;

(ii) what her consumption c(t)(≥ 0) should be.

Define the filtration Ft := σ{W (s), 0 ≤ s ≤ t}, which represents the information

available to the investor at each time t.

Definition 2.1. A real valued process f(·), defined on Q is progressively measurable

if the map(r, ω) → f(R, ω) from Q into R is Bs × Fs-measurable for each s ∈ T .

Denote π(t) = (π1(t), π2(t), ..., πn(t)). Here, (π(t), c(t)) is called a portfolio or strategy,

which is Ft- progressively measurable and satisfies certain integral condition. The

portfolio is assumed to be rebalanced instantly and free of cost. As a consequence, the

wealth process X(t) can be reformulated in terms of a process, which can be expressed

as

dX(t) =

n∑

i=1

πi(t)dS(t) + (X(t)−
n∑

i=1

πi(t))dt− c(t)

= [rX(t) + (µi − r)πi(t)]dt + π(t)σdW (t)− c(t). (2.1.2)

2.1.2 The insurer

In recent years, finance and insurance market has started to link. In order to increase

profits or decrease risks, the insurance company will invest part of its surplus into fi-

nancial market, which means that the insurance company, as an investor, will receive

stochastic cash flow denoted by its insurance business. There has been increasing atten-

tion towards the utilization of stochastic control theory to investment-related problems.
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Especially, maximizing the expected exponential utility and minimizing the probability

of ruin as two important objective functions in the actuarial literature have attracted

a great deal of interest.

In the actuarial science literature, there are two types of risk models to the surplus

process, the classical Cramer-Lundberg model and the diffusion approximation. The

Cramer-Lundberg model is used in the literature as an approximation to reality if the

number of individual contracts is large. Many characteristics of the risk process cannot

be calculated in closed form. One therefore often uses a diffusion approximation to the

risk model which, hopefully, helps to take almost optimal decisions. For the theory of

diffusion approximations, see Schmidli [114] for instance.

We use the surplus model introduced by Promislow and Young [108]. The accumu-

lated claim process C(t) is modeled as

dC(t) = kdt− bdW 0(t), (2.1.3)

where W 0(t) is a standard Brownian motion defined on (Ω,F ,P), adapted with the

filtration Ft
2.2. The surplus process {Xt; t ≥ 0}, which represents the liquid assets of

the company (also called the risk or the surplus process) is taken as the state variable.

With a safety loading θ > 0, the continuously paid premium is assumed to be c =

(1 + θ)k. Denote a = θk. In the absence of investment, the wealth is governed by




dX(t) = cdt− dC(t)

= adt+ bdW 0(t),

X0 = x,

(2.1.4)

where x denotes the initial reserve.

Strategy I (π(t)): Suppose that the insurer can invest its surplus in the financial market

with π(t) := {π(t, ω)}t∈T being the amount invested in the risky assets. Let the assets

prices follow (2.1.1), then




dXt = (rXt+ π(t)(µ−r1)+a)dt+ π(t)σdW (t)+bdW 0(t),

X0 = x,
(2.1.5)

Also, the cedent can divert part of her risk to the reinsurer by purchasing the reinsur-

ance. It is another increasingly important element in insurance business.

2.2Now Ft is the natural filtration of (W 0(t), W (t))
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Strategy II (q(t)): The proportional reinsurance q(t) := {q(t, ω)}t∈T is a predictable

process with 0 ≤ q(t) ≤ 1, for each t ∈ [0, T ]. If the risk exposure of the company is

fixed, then the reinsurer pays q(t) of each claim while the rest is paid by the cedent.

To this end, the cedent diverts part of the premiums to the reinsurer at the rate of

(1 + η)kq(t) with a proportional loading of η > θ




dX(t) = (θ − ηq(t))adt+ b(1 − q(t))dW 0(t),

X0 = x.
(2.1.6)

Strategy III (π(t), q(t)): Incorporating the strategy (π(t), q(t)) in (2.1.4) and using the

assets prices model (2.1.1) again, the dynamics of the resulting wealth process




dX(t) = (rX(t)+(µ−r1)π(t))dt+ (θ − ηq(t))adt+ b(1− q(t))dW 0(t)

+σπ(t)dW (t),

X0 = x.

(2.1.7)

All of the above strategies at time t are Ft- progressively measurable and satisfies certain

integral conditions.

2.1.3 Model generalization

In a complementary paper [97], Merton modeled stock prices as stochastic processes

with the market coefficients depending on the stock price, S, defined as

dS(t) = S(t)(µ(t, S(t))dt+ σ(t, S(t))dW (t)). (2.1.8)

This model allows the market coefficients to vary with time and the stock price, which

admits greater latitude when fitting actual market data to the model. For example,

there is empirical evidence which suggests that a low stock price increases the stock

price volatility more than a high stock price.

Harrison and Kreps [64] and Harrison and Pliska [65, 66] developed the mathematics

of continuous-time finance and allowed the stock price processes to be general stochastic

processes. This permits the market coefficients to be general random processes, such

as in the following equation

dS(t) = S(t)(µ(t)dt+ σ(t)dW (t)). (2.1.9)
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Modeling the market coefficients as random processes increases the generality of the

stock price model significantly. For example, it allows the use of stochastic volatility

models, which provides a better fit of actual market data to the model.

2.1.3.1 Jump diffusion model

In addition to the continuous process based on geometric Brownian motion, the anal-

ysis of price risky asset evolution does reveal sudden and rare breaks which could be

logically accounted for by exogenous events on information. Such a behavior from prob-

abilistic point of view is naturally modeled by a point process. This process governed

by Brownian motion and point process is called jump-diffusion process. The work in-

cludes [62, 63, 98] and so on, which have investigated the optimal investment problem.

In other field, the jump-diffusion process is mainly introduced in the pricing of options,

such as Merton [98], Jones [75] and Jarrow and Rudd [74]. For the mean-variance

analysis approach, see Guo and Xu [59].

Here, we model the prices of the risky assets by a geometry Levy process, which

satisfies the following stochastic differential equation

dS(t) = D(S(t))(µ(t)dt+ σ(t)dW (t)) +

∫

(−1,∞)k
γ(S(t−), z)N(dt, dz). (2.1.10)

Here W (t) is defined as , γ ∈ Rn×l, and N(dt, dz) = N(dt, dz) − λ(dz)dt is the com-

pensator of the homogeneous Poisson random measure N(dt,dz) on R+× (−1,∞)l with

intensity measure EN(1, dz) = λ(dz), where λ(dz) is the Levy measure associated with

N .

2.1.3.2 Regime switching model

Despite the elasticity of the model in (2.1.9), empirical evidence suggests that a modifi-

cation of this model, called a regime-switching model, results in a more realistic model

of the stock market (see empirical evidence by Gray [17] and Kalimipalli and Susmel

[27] and the references therein).

To incorporate the feature of non-stationary returns, recently, regime-switching, or

Markov-modulated, models have received much attention among both researchers and
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market practitioners. From an economic perspective, the Markovian regime-switching

model can describe the stochastic evolution of investment opportunity sets due to struc-

tural changes in the state of the economy. This important economic feature cannot be

captured by a constant-coefficient model. Hamilton [61] pioneered the econometric ap-

plications of regime-switching models by considering a discrete-time Markov-switching

autoregressive time series model. Since then, regime-switching models, both discrete-

time and continuous-time, have found a wide range of applications in economics and

finance.

Let Y := {Y (t)}t∈T be a continuous-time, finite-state Markov chain with state space

Y := (Y1, Y2 . . . , YN) defined on (Ω,F ,P). The states of Y are interpreted as different

states of an economy. Following Elliott et al. (1994), we shall represent the state Y as

a finite set of unit vectors E := {e1, e2, . . . , eN}, where ei = (0, . . . , 1, . . . , 0)⊤ ∈ ℜN , for

each i = 1, 2, . . . , N . This is called the canonical representation of the state space of

Y . Suppose that Q denotes the rate matrix or the generator [qij ]i,j=1,2,...,N of Y , which

specifies the statistical properties of Y . With the canonical representation of the state

space of Y , Elliott et al. [38] provided the following semi-martingale decomposition for

Y :

Y (t) = Y (0) +

∫ t

0

QY (s)ds+M(t) , (2.1.11)

where {M(t)}t∈I is an RN -valued martingale with respect to the filtration FY
t =

σ{Y (s), 0 ≤ s ≤ t}.

Assume that the appreciation rate and the volatility of the dynamics switch over

time according to the state of a continuous time observed Markov chain, with the

included control, the dynamics evolves as:

dS(t) = µ(t, Y (t))dt+ σ(t, Y (t))dW (t). (2.1.12)

Some papers on the use of regime-switching models in finance include Elliott and

van der Hoek [40] for asset allocation, Elliott, Hunter and Jamieson [42] and Elliott and

Kopp [43] for short rate models, Elliott and Hinz [41] for portfolio analysis and chart

analysis, Guo [59] and Elliott et al. [39] for option pricing under incomplete markets,

Buffington and Elliott Elliott et al. [44] for volatility estimation, Elliott et al. [39] for

valuing options under Markov-switching GARCH models and Elliott et al. [46] for pric-

ing and hedging variance and volatility swaps, and others. Regime-switching models
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provide a natural and convenient way to describe the impact of the structural changes in

(macro)-economic conditions and business cycles on the price dynamics. They provided

a pertinent way to describe the non-stationary feature of returns of risky assets. More

recently, Yin and Zhou [133, 134] established a mean-variance portfolio selection prob-

lem under Markovian regime-switching models in a continuous-time economy. They

introduced the stochastic linear-quadratic control to deal with the problem and estab-

lished closed-form solutions to mean-variance efficient portfolios and efficient frontiers.

Gabih, Sass and Wunderlich [54] considered the utility maximization problem with

shortfall risk constraints when the dynamics of the stock return is modulated by a

continuous-time, finite-state hidden Markov chain. They employed the separation prin-

ciple to separate the control problem or the utility maximization problem and the

filtering problem of the hidden Markov chain. Gundel and Weber [58] obtained closed-

form solution to a utility maximization problem under a joint budget and downside

risk constraint, where the risk constraint is specified by a class of convex risk measures

proposed in Follmer and Schied [51] and Frittelli and Rosazza Gianin [53]. They consid-

ered a general semi-martingale framework for the asset price dynamics and developed

the closed-form solution based on the martingale approach for constrained maximiza-

tion problems. Sotomayor and Cadenillas [120] considered an optimal consumption and

investment problem with bankruptcy constraint under a Markovian regime-switching

model for the asset price dynamics.

2.2 The portfolio selection problem

2.2.1 Utility function

Both modern and classical theories of economic behavior use utility functions to describe

the amount of satisfaction of financial agents from wealth or consumption.

A classical example about utility would be that a glass of water has a much higher

utility for somebody who is lost in the desert than somebody in the civilization. Al-

though the glass of water might be exactly the same and therefore its price, the two

persons in the mentioned situation will perceive its value differently. For an investor
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given a range of investment choices, a utility function is used to measure the investor’s

utility of goods or services, by assigning it a numerical value.

In economic literature, for a utility function U , which is the function of wealth x,

several properties are considered:

(a) U ′(x) > 0, it reflects the fact that an investment with higher return has always

a higher utility than an investment with a lower return.

(b)(i) U ′′(x) > 0, or (ii) U ′′(x) = 0, or (iii) U ′′(x) < 0, it shows that the investor’s

attitude to risk is risk-loving, risk-neutral, or risk-averse, respectively.

(c) Define the risk aversion measure absolute risk aversion

A(x) = −U ′(x)

U ′′(x)
,

then (i) A′(x) > 0: increasing absolute risk aversion (IARA), (ii) A′(x) = 0: constant

absolute risk aversion (CARA), (iii) A′(x) < 0 : decreasing absolute risk aversion

(DARA). This property shows that the investor will increase (keep, or decrease) the

amount invested in risky assets when the wealth increases.

(c′) The other risk aversion measure is the relative risk aversion (RRA)

R(x) = −xU
′(x)

U ′′(x)
,

then (i) A′(x) > 0: increasing relative risk aversion (IRRA), (ii) A′(x) = 0: con-

stant relative risk aversion (CRRA), (iii) A′(x) < 0: decreasing relative risk aversion

(DRRA). This property is an assumption about the change of the percentage of wealth

invested in risky assets as wealth changes.

The following utility functions appear to be frequently used in the literature of

economics, insurance and finance. All of them satisfy (a) and (b)(iii).

• Quadratic Utility Function (IARA)

U(x) = ax− bx2, a ≥ 0, b ≥ 0, 0 < x <
a

2b
.

It has the property of IARA, which violates the common thought that a plausible

risk aversion should decrease, or at least should not increase with x, see [23].
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• Power Utility Function (CRRA)

U(x) =
x1−γ

1− γ
, γ ≥ 0, γ 6= 1, x > 0.

The power utility has a constant relative risk aversion of γ, and belongs to the class of

CRRA. It is commonly employed in the portfolio selection problem. As a special case

when γ → 1, it is reduced to the logarithmic utility function ln(x).

• Exponential Utility Function (CARA)

U(x) = −e−γx, γ > 0,

its absolute risk aversion is constant and equal to γ. Exponential utility can produce

simple results if asset returns are normally distributed. This utility function plays a

prominent role in insurance mathematics and actuarial practice. It is the only utility

function under which the principle of zero utility gives a fair premium that is indepen-

dent of the level of reserve of an insurance company (see [55] page 68]).

2.2.2 The problem formulation

The problem of an ordinary investor

In the work of Merton[96], the situation of an investor is to decide how much to

consume and how to allocate her wealth in a risky stock and a bank account of constant

interest r, i.e., the objective is to find (π(t), c(t))t∈T so that

E[

∫ T

t

U(c(s, x))dx+ U(T,X(T )], (s, x) ∈ [0, T ]× R+,

is maximized, with the dynamics following (2.1.2). Here U(·) is the utility function.

For the power utility function U(x) = x1−γ

1−γ
, Merton has showed that both risky

investment and consumption are a constant fraction of wealth:

α(x) =
1

γ

µ− r

σ2
, c(t, x) = g(t)x,

where g(t) is a decreasing function of t.
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The problem of an insurer

For simplicity, we denote a strategy by u and the resulting wealth process by Xu
t .

Define the corresponding ruin time as

τu , inf{t ≥ 0 : Xu
t ≤ 0}, (2.2.1)

and denote the probability of ruin given the initial reserve x by

ψu(x) = P (τu <∞|X0 = x).

• One objective is to minimize the ruin probability, that is, the goal is to find an optimal

strategy u∗ such that

ψ(x) = inf
u
ψu(x). (2.2.2)

• Another goal is the final wealth utility maximization problem

sup
u∈R

Et,xU(T,X(T ), (t, x) ∈ [0, T ]×R+.

In the literature, there have been many articles which consider the ruin probability

minimization and/ or utility maximization problem by investing the capital in a Black-

Scholes market and/ or reinsurance. The literature includes [16, 69, 70, 71, 92, 108,

115, 116, 123]. When the price dynamics of the risky asset are governed by a geometric

Brownian motion, the problem has been studied extensively by many researchers, such

as Browne [16, 115, 123, 133]. In most of these works, only one risky asset is considered.

Bai and Guo [10] have extended it to the case with a multi-asset in a complete market

with the constraint of no shortselling.

2.3 Risk measures and risk-related problem

Before introducing the risk measure, the concept of coherent measure is reviewed first.

Coherent measure:

Any acceptable risk measure ρ : X → R must satisfy the following properties:
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• Positive homogeneity: ρ(λx) = λρ(x) for all random variables x and all positive

real numbers λ.

• Subadditivity: ρ(x+ y) ≤ ρ(x) + ρ(y) for all random variables x and y.

• Monotonicity: x ≤ y implies ρ(x) ≥ ρ(y) for all random variables x and y.

• Transitional invariance: for all random variables x and real numbers a, ρ(x+ar0) =

ρ(x)− a and all riskless rates r0.

Remark: It can be proved that any positively homogeneous functional ρ is convex if

and only if it is subadditive.

Value at risk

The definitions of V aR and CV aR are borrowed from Rockafellar and Uryasev [109].

Let g(x) be the loss associated with a portfolio. Assume that g(x) is the loss induced

by x. Its occurrence probability is denoted by p(x).

Definition of V aR

The probability of g(x) not exceeding a threshold is given by

Ψ(a) =

∫

g(x)≤a

p(x)dx. (2.3.1)

Then, for a specified probability level k in (0, 1), the value of the V aR for the loss

random variable is defined by

V aR , min(a | Ψ(a) ≥ k) (2.3.2)

The existing V aR-related academic literature focuses mainly on measuring V aR

from different estimation methods to various calculation models. The classical works

in V aR methodology distinguish mainly three basic estimation concepts: historical,

Monte-Carlo and scenario simulations. Theoretical research that takes the V aR as a

risk measurement was initiated by Dowd [33] and Jorion [76] who applied the V aR

approach based on risk management emerging as the industry standard by choice or by

regulation.
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Although V aR can be quite efficiently estimated and managed when underlying risk

factors are normally (log-normally) distributed. However, for non-normal distributions,

V aR may have undesirable properties and is not coherent [102, 109, 110].

First, it doesn’t shed light on the size of extreme losses exceeding the V aR. As a

result, the risk manager doesn’t know the potential loss he may suffer when V aR is

violated. V aR’s failure to consider tail losses can then create some perverse outcomes.

For instance, if a prospective investment has a high expected return but also involves

the possibility of a very high loss, a V aR-based decision calculus might suggest that

the investor should go ahead with the investment if the higher loss does not affect the

V aR, regardless of the sizes of the higher expected return and possible higher losses.

Second, if the distribution of the return isn’t elliptical, sub-additivity of V aR will be

lost. This implies that portfolio diversification does not lead to an increase in risk and

the V aRs of different risk sources do not add up. As a result, a firm can create artificial

subsidiaries in order to save capital, which is against the regular capital management.

Moreover, from the remark, the absence of sub-additivity will result in the lack of

convexity. And this makes it difficult to solve the optimization problems concerned.

Conditional Value-at-Risk

To overcome the drawbacks above, an alternative measure, which is known as the

conditional value at risk (CV aR), also called Mean Excess Loss, Mean Shortfall, or Tail

V aR, is introduced to the optimization modeling in [128].

Definition of CVaR

CV aR ,
1

1− k

∫

g(x)≥V aR

g(x)p(x)dx, (2.3.3)

By definition, CV aR comes out as the conditional expectation of the loss exceeding

V aR. It quantifies the loss beyondV aR effectively, which will be shown in the later

application. Moreover, CV aR is a coherent risk measure with desirable properties such

as subadditivity and convexity ([109, 122]). CV aR is gaining its application for risk

management in the finance and insurance industry (see [47, 110, 124]).

V aR (CV aR) related problem
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In the static (one-period) setting, Rockafellar and Uryasev [11] considered CV aR

minimization with the return requirement. Along the direction of the mean-V aR opti-

mization, Klupperlberg and Korn [83], Alexander and Baptista [3] and Kast et al.[81]

studied utility maximization with risk constraint embedded.

The formulation of the problem in a continuous-time was introduced by Luciano

[91], Emmer, Kluppelberg and Korn [48] and Basak and Shapiro [11], all of them

considered the optimal portfolio allocation problem by maximizing the utility function

of an economic agent with the V aR constraint with continuous trading. Luciano [91]

provided analysis on derivations from the V aR constraint instead of explicitly applying

the constraint to the optimal portfolio allocation problem. In Emmer, Kluppelberg

and Korn [48], V aR is derived under the assumption that the strategy should maintain

the current portfolio weight. However, these conclusions are based on models that are

either static or dynamically inconsistent. A dynamically-consistent model is proposed

in Basak and Shapiro [11]. However they imposed the V aR constraint only at the

initial time and V aR is based on possible portfolio revisions from now on. Moreover,

unintended results are demonstrated in their work. They showed that a V aR-risk

constrained manager often optimally chooses a larger exposure to risky assets than

other managers and consequently incurs larger losses when losses occur. It assumes

that the portfolio’s V aR is never reevaluated after the initial date. In particular, V aR

limits have been found to induce increased risk exposure in some states and an increased

probability of extreme losses. Yiu [135] imposed the V aR in a dynamic-consistent

manner. To make the calculations tractable, he calculated the constraints abstracting

from within-interval trading and from considerations of backtesting, the constraint is

dynamically − consistent with the portfolio selection. His approach applied the V aR

constraint over time and stresses the repeated recalculations of the V aRs. It also

described how the V aR affects the investment decision dynamically. In Yiu [135], V aR

is calculated under the assumption that the current portfolio is kept unchanged over

the V aR horizon period. The measure of V aR in Yiu [135] only requires knowledge

of the current portfolio value, the current portfolio composition and the conditional

distribution of asset returns. It reflects the actual practice and the fact that financial

institutions monitor their traders and do not typically know the traders’ future portfolio

choices over the V aR horizon.
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Sparked by an unprecedented surge in the usage of various risk measures as risk

management tools among banks and financial and insurance institutions, more recently,

for insurance-related problem, minimizing the V aR and the CV aR as the optimal

standard criteria, Tan and Cai [21] and Cai et al. [22] study the optimal retentions for

the reinsurance and optimal retention level of a stop-loss reinsurance. Zhang et al.[136]

consider the utility maximization problem by using the CV aR constraint as a risk

constraint in the insurance company. They impose the constraint in the same manner

as Basak and Shapiro [11]. To the best of our knowledge, the work of Zhang et al.[136] is

the first one, which imbeds the risk constraint into the problem of utility maximization.

However, the shortcoming with their work is similar to [11], since they impose the risk

constraint in the same manner.

2.4 The methodology

Stochastic control is the study of dynamical systems subject to random perturbations

which can be controlled in order to optimize some performance criterion. A stochastic

control problem allows for decisions to be made at each time. These decisions will

constitute the solution to the problem.

In the existing literature, there are two approaches for solving the stochastic con-

trol problem. The first is using the dynamic programming (DP ) and the other is the

martingale method. Merton [96] is the first who applied stochastic control formulation

to the portfolio optimization problem with constant coefficients. Gradually the eco-

nomic literature is dominated by the stochastic dynamic programming approach, which

has the advantage that it identifies the optimal strategy automatically as a function

of the underlying observables, which is sometimes called a feedback form. To use dy-

namic programming, a necessary assumption is that the wealth should be governed by

Markovian dynamics.
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2.4.1 The controlled Markov process and dynamic program-

ming

We focus mainly in this work on finite horizon control problems. However, all the

results can easily be extended to the infinite time.

For the finite time interval T = [0, T ], the state of a dynamics system is denoted

by {X(s)}s∈I , valued in the state space O, which is defined on a complete probability

space (Ω,F ,P) with a filtration Ft. For later use, we let Q = [0, T )×O and Q denote

the closure of Q.

Roughly speaking, the Markov property says that if the present state X(t) is known,

then the future is independent of the old. This can be expressed precisely as follows.

Consider any finite set of times s1 < s2 < ... < sm < s ∈ T = [0, T ], then the Markovien

property tells that

P (X(s) ∈ B(R)|X(s1), ..., X(sm)) = P (X(s) ∈ B(R)|X(sm)).

Before introducing the dynamic programming, the following property is needed.

Let θ < τ be a stopping time before T . Assume that Φ(t, x) ∈ C2(Q) ∩ C(Q), with

suitable growth condition, and denote the operator

AΦ(t, x) = lim
h→0+

h−1[EtxΦ(t + h,X(t+ h))− Φ(t, x)]. (2.4.1)

The Dynkin formula:

(D) Et,xΦ(θ,X(θ)− Φ(t, X(t)) = Et,x

∫ θ

t

AΦ(s, x(s))ds

2.4.1.1 The controlled Markov process

The control u = {u(s), s ∈ T } is a progressively measurable process valued in the

control set U , a subset of Rn. For the following control models, the control u is called

admissible if the corresponding stochastic differential equation of the controlled state

dynamics has a strong solution and (2.4.3) is well defined. Let U denote the set of

admissible control process u. The controller is assumed to know the history of states
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when control is chosen now. We denote the dynamics of X(t) with the control included

by Xu(t), and let τ be the exit time of (s, x(s)) from Q.

Given two Borelian real-valued functions f and gτ defined on [0, T ] × Rn × U and

Rn, respectively, define

h(t, X(t)) =





g(t, x), if (t, x) ∈ [t0, T )× Rn,

gτ (x), if (t, x) ∈ T × Rn,

(2.4.2)

and we define a performance function

J(t, x, u) = E

[∫ τ

0

f(s,X(s), u(s))ds+ h(τ,X(τ))

]
. (2.4.3)

Here further (integrability) conditions on f and g are needed in order that the above

expectation is well-defined.

2.4.1.2 The optimal control problem

The stochastic optimal control problem is to find an optimal control u∗ ∈ U and the

value function v(t, x) which is defined by

v(t, x) = sup
u∈U

J(t, x, u) = J(t, x, u∗). (2.4.4)

Historically handled by Bellman’s principles, the research on control theory considerably

developed over the past few decades, inspired in particular by problems emerging from

mathematical finance. Bellman’s optimality principle, initiated by Bellman [12] and

also called the dynamic programming (DP ) principle, is a fundamental principle in

control theory. It formally means that if one has followed an optimal control decision

until some arbitrary observation time, say θ, then, given this information, it remains

optimal to use it after θ:

(DP ) V (t, x) = sup
u∈U

E

[∫ θ

t

f(s,X(s), u(s))ds+ V (θ,X(θ))

]
(2.4.5)

Although the (DP) has a clear intuitive meaning, its rigorous proof is technical and has

been studied by several authors and by different methods. We refer it to [49, 87].
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With the help of dynkin formula, the (DP ) principle leads to solving the Hamilton-

Jacobi-Bellman (HJB) equation associated to the stochastic control problem

(HJB) f(t, X(t), u(t)) + max
u∈U

AuΦ(t, x) = 0, (2.4.6)

where Au(x, t) denotes the generator of X(t) with constant control u included.

The controlled Markov process is extensively studied in Flemming [49] and Krylov

[87]. The verification theorem of controlled jump diffusion process can be found in [100]

and the regime switching process in [120], respectively.

Remark 2.1: The Markovian nature of the problem implies that it should suffice to

consider control process of the form u(s) = u(s,X(s)), which is called aMarkov control

policy. Without loss of generality, the optimal control in the following verification

theorem will be chosen as Markov control policy.

The classical verification approach consists of finding a smooth solution to the HJB

equation, and checking that this candidate, under suitable sufficient conditions, coin-

cides with the value function. This result is usually called a verification theorem and

provides the optimal control as a byproduct. The assertions of a verification theorem

may slightly vary from problem to problem, depending on the required sufficient tech-

nical conditions. As the proof is standard, in the following section, we will simply state

the verification theorems.

• The controlled diffusion

The controlled diffusion is defined by

dX(t) = µ(X(t), u(t))dt+ σ(X(t), u(t))dW (t),

X(0) = x ∈ Rn, (2.4.7)

where

µ : Rn × U → Rn, σ : Rn × U → Rn×d.

The functions µ and σ are given functions. The control u is called admissiable if (2.4.7)

has a strong solution and (2.4.3) is well defined. For each constant control v ∈ U , the
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generator of X(t)

AvΦ(t, x, v) (2.4.8)

=
∂Φ

∂t
(t, x, v) +

n∑

i=1

µi(X(t), v)
∂Φ

∂xi
(t, x, v) +

1

2

k∑

i,j=1

(σσT )i,j(x, v)
∂2φ

∂xi∂xj
(t, x, v).

The verification theorem for controlled diffusion model is

Verification Theorem 2.2: Let Φ ∈ C2(Q) ∩ C(Q) be a classical solution of (2.4.6),

Et,xΦ(τ, xτ ) ≥ −∞ for all (t, x) ∈ Q, and

Et,x

∫ τ

t

Au(s)Φ(s, xs)ds <∞.

Then

(a) Φ(t, x) ≥ Ju(t, x);

(b) Let u∗ ∈ U and satisfy

u∗(s) ∈ argmaxu∈U [A
uV (s, x∗(s)) + f(x, x(s), u(s))]

for almost all (s, ω) ∈ Q, then

V (t, x) = Φ(t, x) = Ju
∗

(t, x).

The first and most famous application in finance of this verification theorem for stochas-

tic control problem is Merton’s portfolio selection problem.

• Stochastic control of Jump diffusions

The controlled jump diffusion is

dX(t) = µ(t, X(t), u(t))dt+ σ(t, X(t), u(t))dW (t)) +∫

(−1,∞)k
γ(X(t−), z, u(t))N(dt, dz). (2.4.9)

With the constant control v included, the generator of X(t) is

AvΦ(x, t) =
n∑

i=1

µi(x, v)
∂Φ

∂xi
(x) +

1

2

n∑

i,j=1

(σσTi,j)(x, v)
∂2Φ

∂xi∂xj
(x) +

l∑

k=1

∫

R

{Φ(x+ γk(x, u(x), zk))− Φ(x)−∇ · Φ(x)γk(x, u(x), zk)}γk(dzk). (2.4.10)

Verification Theorem 2.3 : Suppose Φ ∈ C2(Q)∩C(Q) satisfying the following con-

ditions
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a) (i) AvΦ(x) + f(x, v) ≤ 0 for all x ∈ O, v ∈ U ;

(ii) Ex[|Φ(x(τ))|+
∫ τ
0
{|AΦ(X(t))|+|σT (X(t))∇Φ(X(t))|2+

∑l
i=1

∫
R
|φ(x+γj(x, u(x), zj))−

Φ(x)}|2γj(dzjdt)] <∞ for all u ∈ U ;
b) moreover, suppose that for each x ∈ O there exists u∗(x) ∈ U such that

(iii) Au
∗

φ(x) + f(x, u∗(x)) = 0;

then u∗ is an optimal control and

V (x, t) = Φ(x, t) = Ju
∗

(x, t) for all x ∈ O.

• Controlled regime switching diffusions

For each constant control u, the controlled switching regime diffusion is defined by

dX(t) = µ(X(t), Y (t), u(t))dt+ σ(X(t), Y (t), u(t))dW (t),

X(0) = x ∈ Rn. (2.4.11)

Let Gt denote the sigma field generated by {(X(s), Y (s)) : s ≤ t}. With a constant

control policy v, (X(t),Y(t)) is a Markov process with generator

Avφ(x, t, i) =
∂φ

∂t
+ µ(X(t), i, v)

∂Φ

∂x
+

1

2
σ2(X(t), i, v)

∂2φ

∂x2
+ 〈φ,QY (t)〉i . (2.4.12)

According to Ito formula:

Φ(t1, X(t1), Y (t1), u(t1)) = Φ(t, X(t), Y (t), u(t)) +∫ t1

t

[Au(s)Φ(s,X(s), Y (s))ds+ dM̄(s)], (2.4.13)

where dM̄(s) = µ(X(s), Y (s), u(s))dW (s)+dM(s). With some reasonable assumptions,

Dynkin formula holds. The resulting HJB equations are the following system:

f(t, x(t), u(t), i) + max
u∈U

AuΦ(x, t, u(t), i) = 0, i = 1, 2, ...n. (2.4.14)

Verification Theorem 2.4: Let Φ(t, x, i) ∈ C2(Q) ∩ C(Q) be a classical solution of

(2.4.6) for all i = 1, 2, . . . , n, Et,xΦ(τ, x(τ), y(τ)) <∞ for all (t, x) ∈ Q, and

Et,x

∫ τ

t

|Au(s)Φ(s, x(s), y(s))|ds <∞.
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Then for all (t, x) ∈ Q:

(a) Φ(t, x, i) ≥ Ju(t, x, i).

(b) Let u∗ be measurable and satisfying

u∗(s) ∈ argmax[AvV (s, x∗(s), y(s), u(s))] + f(s, x(s), y(s), u(s))

for almost all (s, ω) ∈ Q, then

Φ(t, x, i) = V (t, x, i) = Ju
∗

(t, x, i).

Remark 2.5: Note that now the Markov control policy u = u(t, X(t), Y (t)).

2.4.2 Martingale method

The classical optimal investment/consumption problem dealing with the martingale

method is initially treated under the assumption of complete markets 2.3, which implies

that the family of martingale measures is a singleton. This approach was developed

by Cox and Huang [25, 26], Karatzas et al. [80] and Pliska [105]. With the help of

the Girsanov Theorem, the original probability can be changed into an equivalent mar-

tingale measure under which all the stock prices discounted by the bond rate become

martingales. The fact that every martingale relative to a Brownian filtration can be

represented as a stochastic integral with respect to the underlying Brownian motion

plays a key role in the proof. Moreover, the consumption process can also be financed,

that is, there is a corresponding portfolio process which, together with the consumption

process, results in a nonnegative wealth process. Then those authors found a simple

expression for the optimal investment/consumption process.

Difficulties with this approach arise in incomplete markets. Fortunately, the intro-

duction by Harrison and Kreps [64], Harrison and Pliska [65] and Ross [112] of the

2.3Incomplete markets in Mathematical Finance correspond to a setting, in which the controller has

full information about many aspects of the system (the market), but various exogenously imposed

constraints (taxation, transaction costs, bad credit rating, legislature etc.) prevent him/her from

choosing the control (portfolio) outside a given constraint set. In fact, even without government-

imposed portfolio constraints, financial markets will typically not offer tradable assets corresponding

to a variety of sources of uncertainty (weather conditions, non-listed companies, etc.) The financial

agent will still observe many of these sources, as their uncertainty evolves, but will typically not be

able to trade in all of them
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notion of equivalent martingale measures has created the possibility of solving such

problems by convex duality methods. One distinctive aspect of this approach is that it

relates the original, or “primal”, stochastic control problem to a certain“dual” one, in

the sense that a solution to the primal problem induces a solution for the dual (and vice

versa). This duality goes back to Bismut [14], and is exploited by many authors, such

as [67, 68, 79], and more recently by Kramkov and Schachermayer [86]. They related

the marginal utility from the terminal wealth of the optimal portfolio to the density of

the martingale measure, using powerful convex−duality techniques. In particular, the

papers by Kramkov and Schachermayer [86] discussed the minimal conditions on the

agent’s utility function and the financial market model. Since then, stochastic duality

theory proved to be remarkably successful as a method of solving portfolio selection

problems, again because of its capability to exploit the underlying convexity.

Convex duality methods establish a connection between the original problem, called

the primal problem, and another problem, called the dual problem. A common theme

of all these papers is to take the original problem, which involves a maximization over a

class of policies, and restate it in terms of the dual problem, which involves a minimiza-

tion over some family of “constructed”measures. The hope is that the dual problem is

easier to solve than the primal problem. The convexity properties of the primal problem

are critical in establishing the connection between this problem and the corresponding

dual problem. This connection allows us to construct the solution to the primal problem

by using the solution to the dual problem.

The work mentioned above dealt with the application of martingale (duality) to

problems in which there are no portfolio constraints, that is, at every instant the in-

vestor can freely distribute the wealth among all of the assets. However, there are a

range of issues where the portfolio may be restricted in some way (see [29, 132]), or

where the objective may be to super-replicate some contingent claim while observing

a portfolio constraint. For example, the holding of the money-market account should

never be below some fixed value (see Cvitanic and Karatzas [30], Karatzas and Kou

[77]). Another example is an optimal investment/consumption problem in the presence

of transaction costs (see Cvitanic and Karatzas [31]). Their method of solution involves

a completion of the incomplete market. This is called a fictitious completion, since the

market is completed with fictitious stocks. The fictitious stocks are carefully chosen so
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that the optimal portfolio will not be invested in them. The optimal portfolio process

in the fictitious market will then be a potential solution in the original, incomplete

market. The authors construct many fictitious markets and find the optimal portfolio

process in each one. The optimal solution in the original and incomplete market is then

the optimal portfolio process which maximizes the expected utility of terminal wealth.

Although it appears attractable to apply convex duality to portfolio selection prob-

lems, there has been a severe lack of transparency when applying convex duality meth-

ods, as pointed out in Rogers [111]. The method works only when the candidate dual

problem can be produced as desired. However, little is known about when the dual

problem is good enough, especially, for the problems with portfolio constraints, which

are studied by the group of Cvitanic and Karatzas with fictitious markets. The in-

troductory comments in Cvitanic and Karatzas [29] suggested that the construction of

the fictitious markets is the outcome of a good deal of patient experimentation (the

situation is not unlike that of solving a complicated differential equation, in which one

might patiently experiment with different candidate solutions to eventually come up

with the actual solution, the correctness of which is verified by substitution).

The comparison of DP method and the martingale method:

• ForDP , the optimal control is first derived as a function of the value function and

then substituted into the HJB equation and the solution leads to the value function,

while for the latter the procedure goes on in the inverse direction: the value function is

first derived without referring to the control and the optimal strategy is then obtained

from the martingale representation according to the value function.

• DP is a dynamic approach, while the latter is static.

• DP needs the Markovianity, while the latter needs a martingale measure.

2.4.3 The deterministic transform

Let the dynamics of the wealth be denoted by X(t). Most of the work focuses on

the models that X(t) or lnX(t) is a semimartingale, therefore the decomposition of

the utility function of U(X(T )) into the sum/product of a deterministic term and
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a martingale term can be expected. That is, U(X(T )) = U1(X1(T )) + U2(X2(T ))

or U(X(T )) = U1(X1(T )) · U2(X2(T )), where X1(T ) is a deterministic process and

U2(X2(t)) is martingale. If we succeed in this decomposition, the treatment of the

expectation of the utility can be greatly simplified for the deterministic problem.

Flemming and Hernandez [50] deal with the investment problem, when lnX(t) has

a decomposition of the deterministic part and Brownian martingale. The problem of

the HARA utility function is reduced to the deterministic problem by taking expecta-

tion. Later Flemming and Shiu [51] consider the same problem but with the stochastic

volatility and consumption. Using the same argument, the problem is simplified by

reducing an uncertainty.

In this work, we treat the problem of embedding the risk constraint into the utility

maximization. Experiential utility, which is popular in actuary mathematics, is used

here. The problem is reduced to a deterministic optimal control problem. Thus, it is

easily solved by using some software packages for the deterministic control problem.
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Chapter 3

Risk management in insurance

company

In this chapter, we consider two important problems in insurance: minimizing the ruin

probability and maximizing the expected utility of final wealth.

With investment and/or proportional reinsurance applied, the problems can be

posed as stochastic optimal control problems. In the literature, they are dominated

by the dynamic programming methods (see for example [10, 16, 133]). Wang et al.[131]

is the only one who applies the martingale approach, when the risk process is modeled

by the Levy process to investigate the optimal investment for an insurer.

In this chapter, V aR, which is dynamically-consistent with the control, is applied

to influence the decision. We obtain the closed-form solution for the ruin probability

minimization. Due to the appearance of the portfolio constraint, unfortunately, it is

difficult to find the closed-form solution when treating the utility solution by either

dynamic programming or martingale methods. However, for the exponential utility

function, the problem can be transformed into the optimal deterministic problem and

it can be solved by the numerical soft package.
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3.1 Minimizing ruin probability

Suppose that the insurer is allowed to invest her surplus in a financial market consisting

of a risk-free asset (bond or bank account) and a risky asset (stock or mutual fund). A

strategy u is described by a stochastic process πt, which represents the amount invested

in the risky asset at time t. A restriction considered in this paper is the prohibition of

short selling of the risky assets. We analyze V aR over a short time horizon and impose

it as a risk constraint. Then the problem is how to minimize the probability of ruin

with a V aR constraint.

In the absence of control we use the reserve model



dXt = adt + bdW 0(t),

X0 = x,
(3.1.1)

where x is the initial reserve.

Specifically, the price process of the risk-free asset is given by

dBt = rBtdt, r > 0,

and the price process of the risky asset follows geometric Brownian motion

dSt = µStdt+ σStdW (t), µ > r,

where r, µ and σ are constants, ρS(0 ≤ ρ2S ≤ 1) is the correlation coefficient between

W (t) andW 0(t). As pointed out in [16], the case that ρ2S = 1 is uninteresting since there

is only one source of randomness. We will not consider this uninteresting case. W (t)

can be rewritten as
√

1− ρ2W 1(t) + ρW 0(t), where W 0(t) and W 1(t) are independent.

Incorporating strategy u (or π(t)) into (3.1.1), the resulting reserver process Xu
t can be

rewritten as



dXu
t = (rXu

t + πt(µ− r1) + a)dt+ πtσ
√

1− ρ2dW 1(t) + (πtσρ+ b)dW 0(t),

X0 = x,
(3.1.2)

We call a strategy π admissible if it is Ft- progressively measurable, and satisfies

E
∫∞

0
π2
t dt <∞. Let UI1 denote the class of all admissible strategies u.

For each admissible strategy π, the corresponding ruin time is

τπ := inf{t ≥ 0 : Xπ
t ≤ 0}, (3.1.3)
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the probability of ruin is

ψπ(x) = P (τπ <∞|X0 = x),

and the minimal probability of ruin is

ψ(x) = inf
π
ψπ(x). (3.1.4)

By Fleming and Soner [49], the problem is reduced to solving the associated (HJB)

equation

(rx+ a)ψ
′

(x) +
1

2
b2ψ

′′

(x) + min
π

[(µ− r)πψ
′

(x) + (
1

2
σ2π2 + σbρSπ)ψ

′′

(x)] = 0, (3.1.5)

with the boundary condition

ψ(0) = 1, ψ(∞) = 0. (3.1.6)

The problem has been studied by Browne [16] by the following verification theorem of

the HJB equation.

Verification theorem I1: Let Φ(x) be a convex smooth solution of (3.1.6) with the

boundary condition (3.1.17), and

π∗ = argminπ{[(µ− r)πψ
′

(x) + (
1

2
σ2π2 + σbρSπ)ψ

′′

(x)]} (3.1.7)

then ψ(x)= Ψ(x) and π∗ is the optimal portfolio.

The proof of this theorem is standard (see Taksar and Markussen [123], Nrylov

Chapter I, or Browne [16]). When there is no V aR constraint, the main result is

Lemma 3.1.1 by Browne [16].

Lemma 3.1.1. The optimal strategy is given by

π0(x) =
1

µ− r

[
−(rx+ a) +

√
(rx+X)2 + Y 2

]
, (3.1.8)

where X = a− bρS(µ−r)
σ

and Y =
b
√

1−ρ2
S
(µ−r)

σ
.

Then, the optimal investment strategy without constraint is

π∗
t =

1

µ− r

[
−(rX∗

t + a) +

√
(rX∗

t + a− bρS(µ− r)

σ
)2 +

b2(1− ρ2S)(µ− r)2

σ2

]
. (3.1.9)

33



It follows from (3.1.8) that π(x) is decreasing with respect to x.

When short selling is forbidden, we use the superscript π0(x) to denote the optimal

strategy. It can be seen from (3.1.9) that if ρ ≤ 0, then π(0) > 0 and π(∞) > 0, and

the optimal strategy follows that in Lemma 2.1. However, if ρ > 0, then π(∞) < 0, the

short selling constraint is active when x is larger than some value.

To facilitate our proof later, we summarize some results from Schmidli [114] here.

Lemma 3.1.2. When no short selling is imposed as the constraint, if π(0) ≤ 0, then

the optimal strategyis π0(0) = 0. If π(0) > 0, we denote

x0 =





bρ(µ−r)
2σr

+ b(1−ρ2)(µ−r)
2σρr

− a
r
, ρ > 0,

∞, ρ ≤ 0,

(3.1.10)

then the optimal strategy is given by

π0(x) =





−(rx+a)+
√

(rx+X)2+Y 2

µ−r
, 0 ≤ x < x0,

0, x ≥ x0,

(3.1.11)

which is also a decreasing function with respect to x.

3.1.1 V aR constraint

In order to regulate the market risk and for the market supervision, a portfolio should

be able to control the level of risk. In this work, V aR is used as the risk measure.

Denote

π̃t := (1, πt),

σ̃ :=


 b 0

ρσ
√

(1− ρ2)σ


 ,

and

W̃ (t) := (W 0(t),W 1(t))⊤,
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which is a two- dimensional standard Brownian motion.

Let ∆t = s− t be the horizon period, integrating (3.1.2) leads to

e−rsXπ
s − e−rtXπ

t =

∫ s

t

e−ru(π(u)(µ− r) + a)du+

∫ s

t

e−ruπ̃(u)σ̃dW̃ (u). (3.1.12)

Assuming that the portfolio is adjusted frequently and the interval [t, s) is small, we

can approximate π(u) by π(t). This means that there is no trading between constraint

re-evaluation, and the investment is roughly constant in the given horizon period. It

is a reasonable approximation since the portfolio can only be adjusted in discrete time

and the decision made is based on the holdings at time t. Denote e−rsXπ
t by Yt. From

(3.1.12), we have

Y π
s = Y π

t + (πt(µ− r) + a)
e−rs − e−rt

−r +

∫ s

t

er(s−u)π̃(u)σdW̃ (u).

Then, the conditional mean on time t is given by

EtX
π
s = er(s−t)Xπ(t) + (πt(µ− r) + a)

1− er(s−t)

−r ,

and the conditional covariance is given by

Covt[X
π
s , X

π
u ] = π̃tσ̃σ̃

⊤π̃⊤
t e

r|s−u|−er(s+u−2t)

.

The conditional variance is therefore given by

V art(X
π
s ) =

π̃σ̃σ̃⊤π̃⊤

−2r
(1− e2r(s−t)).

We denote the discounted loss e−r∆tXπ
t+∆t−Xπ

t by △Xπ(t). Another definition of V aR

P (△Xπ
t ≤ V aRt) = k

implies that

V aRt = φ−1(k)

√
π̃tσ̃σ̃⊤π̃⊤

t

−2r
(1− e2r∆t) + (πt(µ− r) + a)

1− er∆t

r
.

The risk constraint may now be imposed, i.e.,

V aR ≤ Ř, (3.1.13)

where Ř denotes the predefined risk level that the investor can tolerate. Then the

constraint of restricting V aR at level Ř is

k1
√
σ2π2

t + 2σbρSπt + b2 − k2πt ≤ R,
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where

k1 = φ−1(k)

√
e2r∆t − 1

2r
, k2 = (µ− r)

er∆t − 1

r
, and R = Ř− er∆t − 1

r
a.

Let UI1 denote the set of all admissible strategies which satisfy

k1
√
σ2π2

t + 2σbρSπt + b2 − k2πt ≤ R. (3.1.14)

Then the optimal portfolio problem with V aR constraint is to find the optimal strategy

π∗ ∈ UI1 such that

ψ(x) = inf
π∈U

ψπ(x), (3.1.15)

which is regarded as Problem I1.

3.1.2 The HJB equation and its solutions

To solve the problem with both short selling and VaR constraint, we use the dynamic

programming approach described in Fleming and Soner (1993). With the help of dy-

namic programming, the problem is to solve the HJB equation with V aR constraint:

(rx+ a)ψ
′

(x) +
1

2
b2ψ

′′

(x) +

min
k1
√
σ2π2+2σbρSπ+b2−k2π≤R

[(µ− r)πψ
′

(x) + (
1

2
σ2π2 + σbρSπ)ψ

′′

(x)] = 0, (3.1.16)

with the boundary condition

ψ(0) = 1, ψ(∞) = 0. (3.1.17)

Rearranging the constraint condition

k1
√
σ2π2 + 2σbρSπ + b2 − k2π ≤ R

yields

(k21σ
2 − k22)π

2 + 2(k21σbρS − k2R)π + k21b
2 −R2 ≤ 0. (3.1.18)

As the risk arising from the insurance itself cannot be eliminated, we hope to adjust

the risky investment π to satisfy the risk constraint due to the correlations and mutual
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effect of insurance and investment. Before discussing the problem with constraint, we

investigate how V aR changes with π. Denote

V (π) = k1
√
σ2π2 + 2σbρπ + b2 − k2π,

then the constraint condition is

V (π) ≤ R. (3.1.19)

The derivative of V (π)

V ′(π) =
k1σ(σπ + ρb)√

(σπ + ρb)2 + (1− ρ2)b2
− k2. (3.1.20)

From this expression, it is easily seen that the following properties hold.

(a) If σ is so large such that k1σ√
1+ (1−ρ2)

ρ2

> k2, we will differentiate the case ρ ≥ 0 or

ρ < 0. If ρ ≥ 0, then V aR always increases with π. In this case, to decrease V aR we

should decrease the risky investment. While if ρ < 0, then V ′(π) < 0 in the interval

[0,
√

(1−ρ2)b2k22
(k21σ

2−k22)σ
2 − ρb

σ
), and V ′(π) ≥ 0 in the interval [

√
(1−ρ2)b2k22
(k21σ

2−k22)σ
2 − ρb

σ
,∞). To decrease

the risk, the adjustment of risky investment is similar to (b).

(b) If σ is large enough to make k1σ > k2 but
k1σ√

1+ (1−ρ2)

ρ2

< k2 hold, then whether ρ ≥

0 or ρ < 0, we have V ′(π) < 0 in (0,
√

(1−ρ2)b2k22
(k21σ

2−k22)σ
2 − ρb

σ
] and V ′(π) ≥ 0 in [

√
(1−ρ2)b2k22
(k21σ

2−k22)σ
2 −

ρb
σ
,∞), that is, V aR becomes smaller first and becomes larger later when π becomes

larger. In this case, to decrease V aR, we hope to increase the risky investment if it is

small and decrease it if it is too large.

(c) If σ is small, which leads to k1σ ≤ k2, then whether ρ ≥ 0 or not, V ′(π) < 0

for all nonnegative π, that is, V aR decreases with π. In fact, k1σ ≤ k2 means that

the insurer has certain confidence (the given probability) that the risky investment will

bring return. As a result, increasing risky investment can eliminate the risk.

From the analysis, to decrease the risk, we expect to improve risky investment when

V ′(π) < 0 and cut it if V ′(π) ≥ 0. In fact, this can be justified by the following results.

In this work, for the problem with constraint, we obtain the explicit expression

of optimal risky investment and analytical solution of the ruin probability by solving
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the resulted HJB equation. To show the effect of risk constraint, we compare the

investment strategies with those without constraint.

The complete results are listed in Table 4.1. The results justify the analysis about

V aR above. In this table, ¶ denotes the strategy interval that is optimal for the no short

selling constraint but violate the V aR constraint, π1 and π2 are defined by the roots of

(3.1.21), x1, x2 and xγ are defined by (3.1.27), (3.1.34) and (3.1.76), respectively.

The details are given in the following sections.

Case 3.1.1 The case of k21σ
2 − k22 > 0

Denote

△ = 4(k21σbρS − k2R)
2 − 4(k21σ

2 − k22)(k
2
1b

2 − R2)

= 4k21(k
2
1σ

2b2ρ2S + σ2R2 + k22b
2 − k21σ

2b2 − 2k2σbρSR).

Then we solve the optimal problem in the following cases:

If △ < 0, there does not exist π which satisfies (3.1.18). It is a trivial case and makes

no sense as a too small value is used for R.

If △ ≥ 0, the equation

(k21σ
2 − k22)π

2 + 2(k21σbρS − k2R)π + k21b
2 − R2 = 0 (3.1.21)

has two roots and we denote them by π1 and π2, respectively.

Case 3.1.1-(i) If π1 > 0, then the solution to (3.1.18) is [π1, π2], which coincides with

that of (3.1.19). Thus (3.1.16) becomes

(rx+ a)ψ
′

(x) +
1

2
b2ψ

′′

(x) + min
π1≤π≤π2

[(µ− r)πψ
′

(x) + (
1

2
σ2π2 + σbρπ)ψ

′′

(x)]} = 0.

(3.1.22)

with the boundary condition

ψ(0) = 1, ψ(∞) = 0. (3.1.23)

From (3.1.8), we can see that π(x) is strictly decreasing with respect to x in [0, x0), and

be the constant 0 when x ≥ x0. Therefore, the maximizer is attained at x = 0, and
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k21σ
2 − k22 > 0

∆ < 0 , There is no admissible strategies

∆ ≥ 0 x π0(x) π∗(x) =

π1 > 0 π1 > π0(0) ∀x ¶ π0(x) < π1 π1

π1 ≤ π0(0) x ∈ [0, x1) π0(x) ∈ [π1, π2] π0(x)

admisssiable ≤ π2 x ∈ [x1,∞] ¶ π0(x) < π1 π1

interval x ∈ [x1,∞) ¶ π0(x) < π1 π1

[π1, π2] π2 < π0(0) x ∈ [x2, x1) π0(x) ∈ (π1, π2] π0(x)

x ∈ [0, x2) ¶ π0(x) > π2 π2

π1 ≤ 0 π2 ≥ π0(0) ∀x π0(x) ∈ [0, π2] π0(x)

admissiable x ∈ [0, x2) ¶ π0(x) > π2 π2

interval [0, π2] π2 < π0(0) x ∈ [x2,∞) π0(x) ∈ [0, π2] π0(x)

k21σ
2 − k22 < 0

∆ < 0 , the strategy is still optimal in the constrained case

∆ ≥ 0 x π0(x) π∗(x) =

admisssiable π2 > π0(0) ∀x ¶ π0(x) < π2 π2

interval : x ∈ [0, x2) π0(x) ∈ (π2,∞) π0(x)

[π2,∞) π0(0) ≥ π2 x ∈ [x2,∞) ¶ π0(x) ≤ π2 π2

k21σ
2 − k22 = 0

k21σbρ− k2R > 0, There is no admissible strategies

x π0(x) π∗(x) =

R2 − k21b
2 > 0 π0(x) is still optimal in the constrained case

k21σbρ− k2R R2 − k21b
2 ≤ 0 γ > π0(0) ∀x ¶ π0(x) < γ γ

< 0 admisssiable γ ≤ π0(0) [0, xγ) π0(x) > γ π0(x)

interval : [γ,∞) [xγ ,∞) π0(x) ≤ γ γ

k21σbρ− k2R R2 − k21b
2 > 0 π0(x) is still optimal in the constrained case

= 0 R2 − k21b
2 < 0 There is no optimal strategy

Table 3.1: The main results when V aR constraint is imposed.
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equals
−a+

√
a2−2

abρ(µ−r)
σ

+
b2(µ−r)2

σ2

µ−r
.

Case 3.1.1-(i)-(a)

If π1 > π0(0), the optimal strategyπ0(x) given by (3.1.11) does not satisfy (3.1.22) for

any x ≥ 0. Let π∗(x) denote the optimal strategywith constraint, we guess π∗(x) as

π∗(x) = π1, x ≥ 0,

and the corresponding solution of (3.1.22) is

f(x) = 1− c1,1

∫ x

0

e
∫ y
0 g1(u)dudy, (3.1.24)

where

g1(u) = − ru+ a + (µ− r)π1
1
2
b2 + 1

2
σ2π2

1 + σπ1bρ
, (3.1.25)

c1,1 =
1∫∞

0
e
∫ y
0 g1(u)dudy

. (3.1.26)

In fact, the guess is true according to Theorem 3.1.1(a).

Case 3.1.1-(i)-(b)

If π2 ≥ π0(0) ≥ π1, denote

x1 =





x̌1, if there exists x̌1 > 0 such that π0(x̌1) = π1,

∞, otherwise.

(3.1.27)

For x > x1, π
0(x) < π1 due to the decreasing property of π0(x). Therefore π0(x) does

not satisfy (3.1.18) on (x1,∞). In this case, we guess that

π∗(x) =





−(rx+a)+
√

(rx+X)2+Y 2

µ−r
, 0 < x < x1,

π1, x ≥ x1.

(3.1.28)

Plugging (3.1.28) into (3.1.22) and solving the resulting equation, we get that

f(x) =





1− c2,1
∫ x
0
exp[−(µ−r

σ
)2
∫ y
0

du

−(ru+X)+
√

(ru+X)2+Y 2
]dy, 0 < x < x1,

c2,2 + c2,3
∫ x
x1
e
∫ y
x1
g1(u)dudy, x ≥ x1,

(3.1.29)
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where

c2,1 =
1∫ x1

0
exp[−(µ−r

σ
)2
∫ y
0

du

−(ru+X)+
√

(ru+X)2+Y 2
]dy +M

, (3.1.30)

c2,2 = 1− c2,1

∫ x1

0

exp[−(
µ− r

σ
)2
∫ y

0

du

−(ru+X) +
√
(ru+X)2 + Y 2

]dy, (3.1.31)

c2,3 = −c2,1 exp[−(
µ − r

σ
)2
∫ x1

0

du

−(ru+X) +
√

(ru+X)2 + Y 2
], (3.1.32)

and

M = exp[−(
µ − r

σ
)2
∫ x1

0

du

−(ru+X) +
√

(ru+X)2 + Y 2
]

∫ ∞

x1

e
∫ y

x1
g1(u)dudy. (3.1.33)

This guess is justified by Theorem 3.1.1.(b).

Case 3.1.1-(i)-(c)

If π0(0) > π2 ≥ π1, then π0(x) > π2 when 0 ≤ x < x2 and π0(x) < π1 when x > x1,

which does not satisfy the constraint. Denote

x2 =





x̌2, if there exists x̌2 > 0 such that π0(x̌2) = π2,

∞, otherwise.

(3.1.34)

Similarly, we guess that

π∗(x) =





π2, 0 ≤ x < x2,

−(rx+a)+
√

(rx+X)2+Y 2

µ−r
, x2 ≤ x < x1,

π1, x ≥ x1,

(3.1.35)

and

f(x) =





1− c3,1
∫ x
0
e
∫ y
0 g2(u)dudy, 0 ≤ x < x2,

c3,2 + c3,3
∫ x
x2
exp[−(µ−r

σ
)2
∫ y
x2

du

−(ru+X)+
√

(ru+X)2+Y 2
]dy, x2 ≤ x < x1,

c3,4 + c3,5
∫ x
x1
e
∫ y
x1
g1(u)dudy, x ≥ x1,

(3.1.36)
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where

g2(u) = − ru+ a + (µ− r)π2
1
2
b2 + 1

2
σ2π2

2 + σπ2bρ
, (3.1.37)

c3,3 =
−1

e−
∫ x2
0 g2(u)du +

∫ x1
x2

exp[−(µ−r
σ
)2
∫ y
x2

du

−(ru+X)+
√

(ru+X)2+Y 2
]dy +N

, (3.1.38)

c3,1 = −c3,3e−
∫ x2
0 g2(u)du, (3.1.39)

c3,2 = 1− c3,1

∫ x2

0

e
∫ y

0
g2(u)dudy, (3.1.40)

c3,4 = c3,2 + c3,3

∫ x1

x2

exp[−(
µ− r

σ
)2
∫ y

x2

du

−(ru+X) +
√

(ru+X)2 + Y 2
]dy,(3.1.41)

c3,4 + c3,5

∫ ∞

x1

e
∫ y

x1
g1(u)dudy = 0, (3.1.42)

N = exp[−(
µ− r

σ
)2
∫ x1

x2

du

−(ru+X) +
√

(ru+X)2 + Y 2
]. (3.1.43)

It is just the result of Theorem 3.1.1(c).

Theorem 3.1.1 When k21σ
2 − k22 > 0, △ ≥ 0 and π1 > 0, the admissible interval is

[π1, π2] .

(a) If π1 > π0(0), let f(x) be given by (3.1.24), then f(x) is a twice continuously dif-

ferentiable concave solution of (3.1.16)-(3.1.17) and the corresponding optimal strategy

with constraint is π∗(x) ≡ π1.

(b) If π2 ≥ π0(0) ≥ π1, let f(x) be given by (3.1.29), then f(x) is a twice continuously

differentiable concave solution of (3.1.16)-(3.1.17) and the corresponding optimal strat-

egy with constraint is given by (3.1.28).

(c) If π0(0) > π2, let f(x) be given by (3.1.36), then f(x) is a twice continuously dif-

ferentiable concave solution of (3.1.16)-(3.1.17) and the corresponding optimal strategy

with constraint is given by (3.1.35).

Proof. (a) Let f(x) be given by (3.1.24), differentiating

(rx+ a)f
′

(x) +
1

2
b2f

′′

(x) + (µ− r)πf
′

(x) + (
1

2
σ2π2 + σbρπ)f

′′

(x)
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with respect to π and setting the derivatives equal to zero, we get the optimal strategy

πmin(x) = − µ− r

σ2g1(x)
− bρ

σ
. (3.1.44)

By π0(0) < π1, we have

−a +
√
a2 − 2abρµ−r

σ
+ b2

(µ−r)2

σ2

µ− r
< π1, (3.1.45)

which implies that

1

2
(µ− r)σ2π2

1 + aσ2π1 + abσρ− 1

2
(µ− r)b2 > 0. (3.1.46)

Then we can conclude that

πmin(0) < π1. (3.1.47)

It is easy to verify that πmin(x) is decreasing. Therefore,

πmin(x) = − µ− r

σ2g1(x)
− bρ

σ
< π1, x ≥ 0. (3.1.48)

From f
′′

(x) > 0, we know that the minimum of the left side in (3.1.22) is attained at

π1, then (3.1.22) becomes

(rx+ a)f
′

(x) +
1

2
b2f

′′

(x) + (µ− r)π1f
′

(x) + (
1

2
σ2π2

1 + σbρπ1)f
′′

(x) = 0. (3.1.49)

By the construction of f(x), it is easily seen that f(x) solves (3.1.49).

(b) Let f(x) be given by (3.1.29), differentiating

(rx+ a)f
′

(x) +
1

2
b2f

′′

(x) + (µ− r)πf
′

(x) + (
1

2
σ2π2 + σbρπ)f

′′

(x)

with respect to π and setting the derivatives equal to zero, we get the optimal strategy

π(x) given by

πmin(x) =





−(rx+a)+
√

(rx+X)2+Y 2

µ−r
, 0 ≤ x < x1,

β(x), x ≥ x1,

(3.1.50)

where

β(x) = − µ− r

σ2g1(x)
− bρ

σ
.
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In order to prove that (3.1.28) is the optimal strategy with constraint, we need to verify

that

β(x) ≤ π1, for x ≥ x1.

This follows from the fact that the function β(x) is decreasing and β(x1) = π0(x1) = π1.

The rest of the proof is the same as that in Theorem 3.1.1(a).

The proof of (c) is just to copy the procedure above. �

Case 3.1.1-(ii)

If π1 ≤ 0, then the solution to (3.1.19) is [0, π2], and (3.1.16) becomes

(rx+ a)ψ
′

(x) +
1

2
b2ψ

′′

(x) + min
0≤π≤π2

[(µ− r)πψ
′

(x) + (
1

2
σ2π2 + σbρπ)ψ

′′

(x)]} = 0.

(3.1.51)

with the boundary condition

ψ(0) = 1, ψ(∞) = 0. (3.1.52)

If π0(0) ≤ π2, then VaR constraint is inactive and the optimal solution follows that

without constraint.

If π0(0) > π2, denote

π∗(x) =





π2, 0 < x < x2,

π0(x), x ≥ x2,

(3.1.53)

and

f(x) =





1− c4,1
∫ x
0
e
∫ y
0 g2(u)dudy, 0 ≤ x < x2,

c4,2 + c4,3
∫ x
x2
exp[−(µ−r

σ
)2
∫ y
x2

du

−(ru+X)+
√

(ru+X)2+Y 2
]dy, x2 ≤ x < x0,

c4,4 + c4,5
∫ x
x0
e
∫ y

x0
g1(u)dudy, x ≥ x0,

(3.1.54)

where

g2(u) = − ru+ a + (µ− r)π2
1
2
b2 + 1

2
σ2(π2)2 + σπ2bρ

, (3.1.55)
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c4,3 =
−1

e−
∫ x2
0 g2(u)du +

∫ x0
x2

exp[−(µ−r
σ
)2
∫ y
x2

du

−(ru+X)+
√

(ru+X)2+Y 2
]dy +N

, (3.1.56)

c4,1 = −c4,3e−
∫ x2
0 g2(u)du, (3.1.57)

c4,2 = 1− c4,1

∫ x2

0

e
∫ y
0 g2(u)dudy, (3.1.58)

c4,4 = c4,2 + c4,3

∫ x0

x2

exp[−(
µ− r

σ
)2
∫ y

x2

du

−(ru+X) +
√

(ru+X)2 + Y 2
]dy,(3.1.59)

c4,4 + c4,5

∫ ∞

x0

e
∫ y

x0
g0(u)dudy = 0, (3.1.60)

P = exp[−(
µ− r

σ
)2
∫ x0

x2

du

−(ru+X) +
√

(ru+X)2 + Y 2
]. (3.1.61)

Theorem 3.1.2. If k21σ
2 − k22 > 0, △ ≥ 0 and π1 < 0, let f be given by (3.1.54). Then

f(x) is a twice continuously differentiable concave solution of (3.1.16)-(3.1.17) and the

corresponding optimal strategy with constraint is given by (3.1.53).

Proof. The proof is similar to that of Theorem 3.1.1. Here we omit it.

Case 3.1.2 The case of k21σ
2 − k22 < 0

If △ < 0, all π ≥ 0 satisfies (3.1.18). Thus, the investment strategy given by (3.1.11) is

still optimal. If △ ≥ 0, the equation

(k21σ
2 − k22)π

2 + 2(k21σbρ− k2R)π + k21b
2 −R2 = 0 (3.1.62)

has two roots and we still denote them by π1 and π2, respectively. Due to the no short

selling constraint π ≥ 0 and V ′(π) < 0 in [0,∞), the solution to (3.1.19) is [π2,∞) .

Thus (3.1.16) becomes

(rx+ a)ψ
′

(x) +
1

2
b2ψ

′′

(x) + min
π≥π2

[(µ− r)πψ
′

(x) + (
1

2
σ2π2 + σbρπ)ψ

′′

(x)] = 0. (3.1.63)
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with the boundary conditions

ψ(0) = 1, ψ(∞) = 0. (3.1.64)

Case 3.1.2-(i)

If π2 > π0(0), then all the strategies defined by (3.1.9) are less than π2. From the

previous analysis, we should increase risky investment to satisfy the V aR constraint.

Let π∗(x) = π2 and

f(x) = 1− c5,1

∫ x

0

e
∫ y

0
g2(u)dudy, (3.1.65)

where

c5,1 =
1∫∞

0
e
∫ y

0
g2(u)dudy

, (3.1.66)

and g2(u) is defined by (3.1.55).

Then the optimal strategy is just π∗(x) and f(x) is the optimal solution, which is the

conclusion of Theorem 3.1.3 (a).

Case 3.1.2-(ii)

If π2 ≤ π0(0), let x2 be defined by (3.1.34), then the risk is above the V aR constraint

when x > x2. In order to satisfy the risk constraint, the risky investment should be

increased. Denote

π∗(x) =





−(ru+a)+
√

(rx+X)2+Y 2

µ−r
, 0 ≤ x < x2,

π2, x ≥ x2,

(3.1.67)

and

f(x) =





1− c6,1
∫ x
0
exp[−(µ−r

σ
)2] dy

−(ru+X)+
√

(ru+X)2+Y 2
]dy, 0 < x < x2,

c6,2 + c6,3
∫ x
x2
e
∫ y

x2
g2(u)dudy, x ≥ x2,

(3.1.68)

where

c6,1 =
1∫ x2

0
exp[−(µ−r

σ
)2
∫ y
0

du

−(ru+X)+
√

(ru+X)2+Y 2
]dy +M

, (3.1.69)

46



c6,2 = 1− c6,1

∫ x2

0

exp[−(
µ− r

σ
)2
∫ y

0

du

−(ru+X) +
√
(ru+X)2 + Y 2

]dy, (3.1.70)

c6,3 = −c6,1 exp[−(
µ − r

σ
)2
∫ x2

0

du

−(ru+X) +
√

(ru+X)2 + Y 2
]. (3.1.71)

Then the optimal strategyand solution are optimal, which is justified by Theorem 3.1.3

(b).

Theorem 3.1.3. When k21σ
2 − k22 < 0, △ ≥ 0, the admissible interval is [π2,∞).

(a) If π2 ≥ π0(0), let f be given by (3.1.65). Then f(x) is a twice continuously dif-

ferentiable concave solution of (3.1.16)-(3.1.17) and the corresponding optimal strategy

with constraint is given by π2.

(b) If π2 < π0(0), let f be given by (3.1.68). Then f(x) is a twice continuously differen-

tiable concave solution of (3.1.16)-(3.1.17) and the corresponding optimal strategywith

constraint is given by (3.1.67).

Proof. The proof is similar to that of Theorem 3.1.1. Here we omit it.

Case 3.1.3 The case of k21σ
2 − k22 = 0

Case 3.1.3-(i)If k21σbρ − k2R > 0, there is no solution for (3.1.18), which is a trivial

case.

Case 3.1.3-(ii) If k21σbρ− k2R = 0, we have two cases to discuss.

Case 3.1.3-(ii)-(a)

If R2 − k21b
2 > 0, the investment strategy given by (3.1.9) satisfies (3.1.18), so it is still

optimal with V aR imposed.

Case 3.1.3-(ii)-(b)

If R2 − k21b
2 ≤ 0, there is no solution to (3.1.18), that is, there is no optimal strategy

in the constrained case.

Case 3.1.3-(iii) If k21σbρ− k2R < 0, we denote

γ̌ =
R2 − k21b

2

2(k21σbρ− k2R)
,

γ = max(γ̌, 0), (3.1.72)
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then the admissible interval is [γ,∞).

Case 3.1.3-(iii)-(a)

If γ > π0(0), then π0(x) < γ for each x ≥ 0, which can not satisfy the constraint, then

we should increase the amount in the risky asst. In fact, it is trivial to prove that the

optimal strategy is π∗(x) = γ and

f(x) = 1− c7,1

∫ x

0

e
∫ y

0
gγ(u)dudy, (3.1.73)

where

gγ(u) = − ru+ a + (µ− r)γ̌
1
2
b2 + 1

2
σ2γ̌2 + σγ̌bρ

, (3.1.74)

c7,1 =
1∫∞

0
e
∫ y
0 gγ(u)dudy

. (3.1.75)

Case 3.1.3-(iii)-(b)

For the case γ < π0(0), denote

xγ =





x̌γ, if there exists x̌γ > 0 such that π(x̌γ) = γ,

∞, otherwise.

(3.1.76)

Obviously, if x ∈ (xγ ,∞), then π0(x) < γ, which does not satisfy the constraint. Just

similar to the previous discussion, the optimal strategy and the optimal solution to

(3.1.16) are

π∗(x) =





−(rx+a)+
√

(rx+X)2+Y 2

µ−r
, 0 < x < xγ ,

γ, x ≥ xγ ,

(3.1.77)

and

f(x) =





1− c8,1
∫ x
0
exp[−(µ−r

σ
)2
∫ y
0

du

−(ru+X)+
√

(ru+X)2+Y 2
]dy, 0 ≤ x < xγ ,

c8,2 + c8,3
∫ x
xγ
e
∫ y

xγ
gγ(u)dudy, x ≥ xγ ,

(3.1.78)

respectively, where

c8,1 =
1

Mγ +Nγ

∫∞

xγ
e
∫ y

xγ
gγ(u)dudy

, (3.1.79)
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c8,2 = 1− c1Mγ , (3.1.80)

c8,3 = −c1Nγ, (3.1.81)

Mγ =

∫ xγ

0

exp[−(
µ− r

σ
)2
∫ y

0

du

−(ru+X) +
√
(ru+X)2 + Y 2

]dy, (3.1.82)

Nγ = exp[−(
µ− r

σ
)2
∫ xγ

0

du

−(ru+X) +
√
(ru+X)2 + Y 2

]. (3.1.83)

We omit the proof.

3.1.3 Conclusion for this section

The results in this section can be summarized as follows. The sensitivity analysis shows

how V aR changes with the value of risky investment. To satisfy the risk constraint,

risky investment is adjusted based on the sensitive analysis. By solving the associated

HJB equation, we obtain the analytic solutions. If the ruin probability is minimized,

the insurer will put less money into the risky asset if her surplus is large. Once the

dynamic V aR is taken into account and imposed as a risk constraint, the results show

that the risky investment coincides with that without constraint for the states that V aR

is inactive. And for the states with an active V aR constraint, risky investment should

be decreased/increased if V aR is increasing/ decreasing with the risky investment.

3.2 The wealth maximization with risk constraint

We investigate the wealth maximization problem in finite time interval in this subsec-

tion. Optimal investment and proportional reinsurance (u , (q(t), π(t))) are included

in this problem formulation in both complete and incomplete market. For risk manage-

ment, V aR will be imposed dynamically as the risk constraint. Assume that r(t), µ(t)

and σ(t) are deterministic function of t. Incorporating the strategy u = (q(t), π(t)) in

(2.1.4), the dynamics of the resulting wealth process Xu
t follows





dXu(t) = (rXu(t)+π(t)(µ(t)−r(t)1))dt+ (θ − ηq(t))adt+ b(1 − q(t))dW 0(t)

+π(t)σ(t)dW (t)

X0 = x.

(3.2.1)
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The strategy u = (q(t), π(t)) (equivalently, π̃(t)), 0 ≤ t ≤ T , is said to be admissible

if

(a) it is Ft -progressively measurable,

(b)
∫ T
0
‖σ̃⊤(t)π̃(t)‖2dt <∞ P - almost surely,

(c) q(t) ∈ [0, 1], ∀t ∈ [0, T ].

Let UI2 be the class of all admissible strategies u.

We assume that the following conditions are satisfied in this section.

Assumption 3.2.1. There exist M and ǫ ∈ R+ such that

0 ≤ r(t) < µi(t), b(t) ≤M,

ξ⊤Σ(t)ξ ≥ ǫ‖ξ‖2, ∀(t, ξ) ∈ [0, T ]×Rn

b2(t)x2 ≥ ǫx2, ∀(t, x) ∈ [0, T ]×R, (3.2.2)

where Σ(t) = σ(t)σ⊤(t).

Problem (I2). The problem is to find an admissible strategy u∗ ∈ UI2 such that the

expectation of the final wealth utility defined by

U(Xu(T )) = λ0 −
γ

m
e−mX

u(T ) (3.2.3)

is maximized, where the constant m is the risk aversion parameter (see Pratt [107]).

When the market is complete3.1, the problem has been solved by Bai and Guo [10].

While it is difficult to derive the smooth solution of the associated HJB equation in

the incomplete market. Generally speaking, it should resort to numerical solution to

this second order nonlinear PDE.

Although the problem presented here is a stochastic optimal control problem, how-

ever, for the exponential utility function, the problem can be reduced to a deterministic

control problem. The solution of the former is significantly more difficult than the so-

lution of the latter since there are many existing packages for the latter, such as control

parametrization (see [126] for reference).

3.1See the footnote 2.3 in Chapter 2 about the meaning
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In this section, we first show how the stochastic optimal control problem can be

transformed into a deterministic optimal control problem. Then the solution of this

deterministic problem is approximated by the existing optimization software, such as

NLPQLP ( see [89, 90, 125]). Some numerical examples are given to demonstrate the

effectiveness of the proposed approach .

3.2.1 The deterministic problem

We first present a transform theorem which connects the original stochastic optimal

control problem and the deterministic optimal control problem.

Rewrite the dynamics (3.2.1) as





dXu(t) = (r(t)Xu(t)+π(t)(µ(t)−r(t)))dt+ (θ − ηq(t))adt+ b(1 − q(t))dW 0(t)+

π(t)σdW (t)

= [rXu(t) + (θ − η)a+ π̃(t)(̃µ(t)−r(t)1̃)]dt+ π̃(t)σ̃(t)dW̃ (t),

X0 = x,

(3.2.4)

where

σ̃(t) =


 b 0

0 σ(t)


 ,

π̃(t) = (π0(t), π1(t), ..., πn(t)), π0(t) = 1− q(t);

µ̃(t) = (µ0(t), µ1(t), ..., µn(t))
⊤, µ0(t) = aη + r;

W̃ = (W0,W1, ...,Wd)
⊤, 1̃

⊤
= {1, 1, · · · , 1}︸ ︷︷ ︸

n+1

. (3.2.5)

Let Ȟ denote the class of all L2[0, T ] functions and ǔ(t) denote the control which is

only dependent on the time t.

Theorem 3.2.2. For any path ω, denote ǔω(t) := u(t, ω). Assume that U(Xu(t)) can

be written as the product of U1(X
u
1 (t)) and U2(X

u
2 (t)), where U1(X

ǔ
1 (t)) is deterministic

for all ǔ ∈ L2[0, T ], and U2(X
u
2 (t)) is nonnegative local martingale. Then,

max
u

EU(Xu(T )) ≤ max
u

EU1(X
u
1 (T )) ≤ max

ǔ∈L2[0,T ]
U1(X

ǔ
1 (T )). (3.2.6)
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Denote

ǔ∗ = arg maxǔ∈L2[0,T ]U1(X
ǔ
1 (T )). (3.2.7)

For any ω ∈ Ω, let

u∗(t, ω) = ǔ∗ω(t) := ǔ∗(t).

If U(Xu∗

2 (T )) is a martingale, then we have

max
u

EU(Xu(T )) = U1(X
ǔ∗

1 (T )). (3.2.8)

Proof. See the Appendices.

From (3.2.4), we have

X(t) = c(t) +

∫ t

0

er(t−s)(π̃(s)(̃µ(s)−r(s)1̃)ds+ π̃σ̃dW̃ (s)), (3.2.9)

where c(t) = ertx+ ert−1
r

(θ − η)a. Thus,

max
u

E{U(Xu(T ))} (3.2.10)

⇔ max
u

{−γ exp(−mc(T ) +
∫ T
0
e−r(s−T )(−mπ̃(s)(̃µ(s)−r(s)1̃)ds−mπ̃(s)σ̃dW̃ (s)))

m
}

⇔ max
u

{−E exp(

∫ T

0

−me−r(s−T )π̃(s)(̃µ(s)−r(s)1̃)ds+ e−r(s−T )mπ̃(s)σ̃(s)dW̃ (s))}

Denote σ̃σ̃⊤(s) by Σ̃(s),

Xu
1 (T ) :=

∫ T

0

−me−r(s−T )π̃(s)(̃µ(s)−r(s)1̃) + m2e−2
∫ T

s
r(τ)dτ π̃(s)Σ̃(s)π̃⊤(s)

2
ds,

Xu
2 (T ) :=

∫ T

0

−me−r(s−T )π̃(s)σ̃(s)dW̃ (s)− m2e−2
∫ T
s
r(τ)dτ π̃Σ̃(s)π̃⊤(s)

2
ds, (3.2.11)

and

U1(X
u
1 (T )) := − exp(Xu

1 (T )), U2(X
u
2 (T )) := exp(Xu

2 (T )).

Obviously, U2(X
u
2 (T )) is a martingale under Assumption 3.2.1. By Theorem 3.2.2, the

primal problem (i.e. Problem (I2)) is reduced to the deterministic problem

max
ǔ∈Ȟ

U1(X
ǔ
1 (T )). (3.2.12)

This is equivalent to

Problem (I ′2). Find an admissible strategy ǔ ∈ H such that

∫ T

0

(−me−r(s−t)π̃(s)(̃µ(s)−r(s)1̃) + m2e−2r(s−t)π̃Σ̃(s)π̃⊤

2
)ds (3.2.13)
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is minimized, subject to

0 ≤ q(t) ≤ 1. (3.2.14)

In the next subsection, we will show that Problem (I ′2) admits an optimal solution.

3.2.2 Existence of optimal solutions

As Theorem 3.2.2 tells us that optimal strategy is the same for almost all the paths,

the problem is reduced to seeking a deterministic control strategy for Problem (I ′2). If

ǔ ∈ Ȟ, define

‖ǔ‖22 =
∫ T

0

‖ǔ‖2ds.

Note that H̃ is a Hilbert space if the inner product of ǔ(a) and ǔ(b) is defined by

〈ǔ(a), ǔ(b)〉 =
∫ T

0

ǔ(a)(s)(ǔ(b))⊤(s)ds (3.2.15)

Theorem 3.2.3. Let function J(π̃) be defined by

J(π̃) =





−m
∫ T
0
e
∫ T
s
r(τ)dτ π̃(s)(µ̃(s)− r(s)1̃) + m2

2
e2

∫ T
s
r(τ)dτ π̃(s)Σ̃(s)π̃⊤(s)ds, π̃ ∈ Ȟ

∞, otherwise.

Then, the following properties are satisfied.

(i) J(π̃) is convex;

(ii) J(π̃) is coercive, i.e.,

lim
‖π̃‖→∞

J(π̃) = ∞;

and

(iii) J(π̃) is lower-semicontinuous, i.e., for every π̃ and π̃(n) ∈ Ȟ, with

lim
n→∞

‖π̃(n) − π‖2 = 0,

we have

J(π̃) ≤ lim inf
n→∞

J(π̃(n)); (3.2.16)
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(iv) There exists a π̃∗ ∈ Ȟ such that J(π̃∗) = inf π̃∈Ȟ J(π̃).

Proof. The proof is given in the Appendices.

Suppose that the strategy is constrained in a closed and convex set C. Denote

K = {π̃|π̃(t) ∈ C, π̃ ∈ Ȟ}. With the similar argument to Theorem 3.2.2, we can

concentrate on the deterministic strategy K.

Corollary 3.2.4. Define

JK(π̃) :=





−m
∫ T
0
e
∫ T

t
r(τ)dτ π̃(t)(µ̃(t)− r(t)1̃) + m2

2
e2

∫ T

t
r(τ)dτ π̃(t)Σ̃(t)π̃⊤(t)dt, u ∈ K

∞, otherwise.

Then there exists π̃∗ ∈ K such that J(π̃∗) = inf π̃∈U J(π̃).

Proof. The proof is just to repeat the procedure of Theorem 3.2.2.

3.2.3 Numerical examples

As it is often impossible to derive the analytical solution, numerical methods are un-

avoidable. We use the control parametrization method (see [89, 90, 125]). Let the time

horizon [0,T] be partitioned into N subintervals, and let π̃(∈ Ȟ) be approximated as

piecewise constant function, given by

π̃(t) =
N∑

j=0

χ[tj ,tj+1)(t)π̃
j, (3.2.17)

where 0 < t0 < t1 < t2 < · · · tN < tN+1 = T and χI(t) is the indicator function defined

by

χI(t) =





1, if t ∈ I,

0, elsewhere.

For each j = 1, . . . , N , π̃j is a vector specifying the value of π̃ on the sub-interval

[tj , tj+1). Such a strategy should be chosen to minimize (3.2.13) subject to the dy-

namics (3.2.14). Then Problem (I ′2) can be solved as an optimization problem, and

various optimization software packages, such as NLPGLP (see[89, 90, 125]), can be

used for this purpose.
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Figure 3.2.1: The risky investment in Case 1

3.2.3.1 The optimal problem in a complete market

Consider a complete market, i.e., the number of the stocks n is equal to the number

of underlying of the market(the dimension of the W (t)). The proportional reinsurance

q(t) ∈ [0, 1] is the only constraint. In this market, Bai and Guo [10] have studied the

problem by the stochastic dynamic programming. We conduct the numerical experi-

ments with the help of NLPQLP for our model. Two sets of parameters are given to

show that when trading interval approaches to zero the solutions converge to those in

[10].

Case I (0 < q(t) < 1 when the reinsurance constraint is inactive): the model parameters

m=1.0, r=0.1, T=26, a=0.3, η=0.1, b=0.2, µ=0.2 and σ=0.5. Figure 3.2.1 and Figure

3.2.2 plot the risky investment and the proportional reinsurance, respectively.

Case II ( q(t)=0 when the reinsurance constraint is active): a=0.7, η=1, m=1, r=0.05,

T=26, b=0.3, µ=0.2, σ=0.5. Figure 3.2.3 and Figure 3.2.4 compare the risky investment

and the proportional reinsurance under the risk control with those under no control,

respectively.
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Figure 3.2.2: The proportional reinsurance in Case 1
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Figure 3.2.3: The risky investment in Case 2
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Figure 3.2.4: The propotional reinsurance in Case 2

3.2.3.2 The incomplete market

• The number of stocks is less than the uncertainty (n < m):

Incompleteness arises if n is assumed to be strictly smaller than m. To show the effec-

tiveness of the method, we also solve the problem under this assumption (n < m). Here,

one risky asset is supposed, and the Brownian Motion is two-dimensional. The follow-

ing parameters are used: m=0.4, r=0.1, a=0.2, T=26, η=0.2, µ=0.2, b=0.2, σ1=0.5,

σ2=0.2. Figure 3.2.5 and Figure 3.2.6 plot the risky investment and the proportional

reinsurance, respectively.

• Portfolio constraint: VaR is imposed as the risk constraint:

In this example, parameters are assumed to be constants. We consider the loss

from time tn to tn+1, for n=0, 1, ... , N. Let ∆t = tn+1 − tn, Y
u(s) = e−rsXu(s) and

∆Y u(t) = Y u(tn+1) − Y (tn). Suppose that (π(s), q(s)) is unchanged in the interval

[tn, tn+1), we have

∆Y u(t) =
e−r(t+∆t) − e−rt

−r {π̃(s)(̃µ−r1̃) + (θ − η)a

r
}+ e−r(t+∆t)

∫ t+∆t

t

e−rsπ̃σ̃dW̃ (s).
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Figure 3.2.5: The optimal risky investment in the incomplete market (n < m)
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Figure 3.2.6: The optimal propotional reinsurance in the incomplete market (n < m)
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It follows that

Xu(t+∆t) = er∆t(Xu(t)−Nu(t)) +Nu(t) +

∫ t+∆t

t

er(t+∆t−s)π̃σ̃dW̃ (s), (3.2.18)

where

Nu(∆t) =
π̃(s)(̃µ−r1̃) + (θ − η)a)

−r . (3.2.19)

Denote the discounted loss Xu(t+∆t)− er∆tXu(t) by ∆Xu(t). Then

V art{∆Xu(s)} =
1− e2r(s−t)

−2r
π̃Σ̃π̃⊤ (3.2.20)

and

Et{∆Xu(s)} = Nu(t) + er(s−t)(Xu(t)−Nu(t)). (3.2.21)

It follows from (3.2.20) and (3.2.21) that

V aR = −Nu(t)(1− er∆t) + Φ−1(k)

√
1− e2r∆t

−2r
π̃Σ̃π̃⊤. (3.2.22)

If we constrain the maximal risk to R, i.e.,

V aR ≤ R, (3.2.23)

then the portfolio constraint is

−(π̃t(µ̃−r1) + (θ − η)a)
er∆t − 1

r
+ Φ−1(k)

√
1− e2r∆t

−2r
π̃Σ̃π̃⊤ ≤ R. (3.2.24)

Remark 3.1. If k is larger than 0.5, this constraint set is closed and convex. In fact,

it is nonempty for reasonable choices of the parameters.

In this experiment, we use the parameters: a = 0.1, η = 0.2, µ = 0.2, σ = 0.5, m =

0.5, r = 0.1, b = 0.2, θ= 0.5 and R= 0.6.

Figure 3.2.7 compares the risky investment with and without V aR constraint. It is

easily seen from this figure that if V aR is active, the risky investment should be cut

down to meet the risk management. Figure 3.2.8 plots the proportional reinsurance,

which is also compared in both cases. If the constraint is active, the proportional

reinsurance should be increased, compared with the case without constraint. Figure

3.2.9 reflects the V aR level and V aR is stabilized once it is active.
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Figure 3.2.7: The risky investment compared in the cases: with and without constraint.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25

q(
t)

t

Without VaR constraint
With VaR constraint

Figure 3.2.8: The propotional resinsurance compared in the cases: with and without

constraint.
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Figure 3.2.9: VaR level.
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Chapter 4

The optimal consumption and

investment problem

In Merton’s problem, the value function can be separated into a function of t and of x:

V (t, x) = h(t)xγ . With this transformation, the HJB equation becomes an ordinary

differential equation with respect to h(t), which is explicitly solved. In this chapter, the

optimal control problem is studied when the dynamics for risky asset follows the jump

diffusion and regime switching model, and we will borrow the idea of Merton to solve

the HJB equations.

In this chapter, suppose that an agent can invest her wealth into a continuous-time

financial model consisting of a bank account B and a risky asset S, which are tradable

continuously over a finite time horizon [0, T ], where T ∈ (0,∞). Let π := {π(t)}t∈T
denote the amount of wealth allocated to the risky asset S at time t, where π(t) :=

π(t, ω) is Gt 4.1- progressively measurable.

Also suppose that an agent needs continuous consumption over this given period.

Let {c(t)}t∈T represent the consumption rate of an economic agent at time t, where

c(t) := c(t, ω) is a non-negative Gt- progressively measurable process. Define u(t) :=

(c(t), π(t)) to be our control process. We say {u(t)}t∈T is admissible if

∫ t

0

(π(s)2 + c(s))ds <∞ , t ≥ 0 , P − a.s. (4.0.1)

4.1It will be defined in a later section (page 60)
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Suppose that U1(·, ·), U1(·, ·) : T × [0,∞) → R are two utility functions. Let τ

represent the time at which the agent’s wealth reaches 0, i.e., τ = inf{t, |x(t) = 0},
and let U1(x, 0) = 0. By selecting optimal admissible control, the investor wishes to

maximize the total expected utility of consumption and wealth over a given time horizon

[0, T ] with an initial wealth x0,

max
u(t)

E

[∫ τ

0

U1(t, c(t))dt

]
+Ψ(τ,Xτ ) (4.0.2)

where

Ψ(t, x(t)) =





U1(t, x), if(t, x) ∈ [t0, T ]×Rn

U2(x), if(t, x) ∈ T × Rn

(4.0.3)

Suppose that upon bankruptcy the agent should quit and the boundary condition

is just V (0, t) = 0 from (4.0.3). By the numerical solution to the HJB equation, we

investigate the effect of the CV aR (MV aR) constraint.

4.1 The jump diffusion model

Risk-constrained allocation of risky assets in financial portfolios is particularly impor-

tant in situations when asset returns appear to have large fluctuations. This problem

is addressed here.

We will resort to stress testing to get useful information on a firm’s risk exposure.

Stress testing ([3, 93, 88, 124]) can be considered as a procedure that aims to identify

possible losses which may accrue under extreme movements of asset prices by con-

structing scenarios. We implement it by the methods in Berkovwitz [13], who suggests

assigning probabilities to scenarios that are identified by stress testing.

To construct scenarios which are reflecting real situations in a portfolio model, a

compound Poisson process is incorporated into the stock price evolution. This resembles

a price process perturbed by an exogenous factor which may cause large movements in

price. The jump size of the Poisson process and the rate of jump define, respectively, a

scenario and its occurrence probability.
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The stress testing is conducted to evaluate the performance and assess the resilience

of the portfolio subject to exceptional but major events. We examine how a conditional-

value-at-risk constraint exerts an influence on the portfolio composition.

4.1.1 Continuous-time optimal portfolios

We proceed to formulate the investment model as follows:

i) Let B(t) be the deterministic price process of the risk free asset, say a bond. It is

written as

dB(t) = rB(t)dt (4.1.1)

with a fixed interest rate r.

ii) Let S(t) denote the price process of the risky asset. It is assumed that S(t) evolves

according to the jump diffusion model. Specially,

dS(t) = S(t)(µdt+ σdw(t) + dJ(t)) (4.1.2)

where µ, σ and W (t) are defined as previously, J(t) is a compound Poisson process. We

assume that J(t) takes the form
∑N(t)

k=1 Yk, where, N(t) is a Poisson process with rate

λ, which denotes the number of extreme events (sudden jump of the dynamics of price

process)that have occurred up to time t. And Yi, i ≥ 1, are independent and identically

distributed random variables which reflect that how severe the extreme event can be

when it occurs. We also assume that for each k = 1, . . . , N(t), the value of Yk is greater

than or equal to -1. We denote the augmented σ-algebra generated by W (t) and J(t)

by Gt.

Then, the dynamics of a portfolio, which consists of B(t), S(t) and the consumption

c(t), is given by

dX(t) =
X(t)− π(t)

B(t)
dB(t) + π(t)

dS(t)

S(t)
− c(t)dt

= (π(t)(µ− r) + rX(t)− c(t))dt+ π(t)σdW (t) + π(t)dJ(t). (4.1.3)
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4.1.2 Stress testing of the loss and CV aR

Before conducting the stress testing and applying risk constraint, we first derive the

return (loss) over [t, t+∆t) when a compound Poisson process is added into the stock

evolution. Assume that ∆t is small and the portfolio is not adjusted in [t, t+∆t). Let

α = −r, θ(t) =
π(t)(µ− r)− c(t)

−r . (4.1.4)

Then, the dynamics (4.1.3) becomes

dX(t) = α(θ(t)−X(t))dt+ π(t)σdW (t) + π(t)dJ(t). (4.1.5)

Define

Y (t) := eαtX(t). (4.1.6)

From (4.1.5), we have

dY (t) = αθ(t)eαtdt+ eαtπ(t)σdW (t) + eαtπ(t)dJ(t). (4.1.7)

By integrating (4.1.7) over [t, t +∆t), we obtain

Y (t+∆t)− Y (t)

= α

∫ t+∆t

t

θ(s)eαsds+

∫ t+∆t

t

eαsπ(s)σdW (s) +

∫ t+∆t

t

eαsπ(s)dJ(s). (4.1.8)

Assume that ∆t is so small that π(s), c(s), θ(s) and eαs can be approximated by π(t),

c(t), θ(t) and eαt ( with errors less than 0(∆t
3
2 )), respectively. Then, (4.1.8) becomes

Y (t+∆t)− Y (t)

= θ(t)(eα(t+∆t) − eαt) +

∫ t+∆t

t

eαtπ(t)σdW (s) +

∫ t+∆t

t

eαtπ(s)dJ(s). (4.1.9)

From (4.1.6), we obtain

X(t+∆t)

= e−α∆t(X(t)− θ(t)) + θ(t) + e−α∆tω(t)

∫ t+∆t

t

(σdW (s) + dJ(s)). (4.1.10)

Let the return, adjusted for the future value of the current portfolio value consistent

with (4.1.10),

∆X(t) = X(t+∆t)− er∆tX(t). (4.1.11)
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From (4.1.5) and (4.1.11), the loss is

−∆X(t) = e−α∆tθ(t)− θ(t)− e−α∆tπ(t)(∆P (t) + ∆Q(t))

= a1π(t)(∆P (t)) + ∆Q(t)) + a2π(t) + bc(t) (4.1.12)

where

a1 = −er∆t, a2 =
µ− r

r
(er∆t − 1), b = −1

r
(er∆t − 1), (4.1.13)

∆P (t) =

∫ t+∆t

t

σdW (s) (4.1.14)

and

∆Q(t) =

∫ t+∆t

t

dJ(s). (4.1.15)

It is clear from the Markov property of jump-diffusion process that, at time t, ∆P (t) ∼
N(0,∆tσ2), and ∆Q(t) has a compound Poisson distribution given by

∆Q(t) = (

N(t+∆t)∑

k=1

Yk −
N(t)∑

k=1

Yk) ∼
N(∆t)∑

k=1

Yk. (4.1.16)

Let ft(x) denote the density function of the loss, and define

Z = a1π(t)∆P (t) + a2π(t) + bc(t).

Then, from the answer to Problem 14 of Section 1.8 given in [57], it follows that

ft(x) = e−λ∆t
∞∑

k=0

(λ∆t)k

k!

∫
Φ(z) · Φk∗(x− z)dz. (4.1.17)

Here Φ(x) is the density function of a2π(t)+bc(t), Φ
k∗(x)(k ≥ 1) is the density function

of
∑k

i=1 aiπ(t)Yi and Φ0∗(x) is the dirac function.

4.1.2.1 Stress testing

In (4.1.14), for a given portfolio, b is a negative constant and a2 is positive assuming

that µ > r. Therefore, the loss mainly comes from the movements of stock prices.

In the dynamics of (4.1.13), ∆P (t) has a normal distribution and ∆Q(t) captures the

extreme losses.
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As we know, for a sufficiently small time interval ∆t, the jumps with i (i ≥ 2) jumps

can be neglected. Then, the scenarios can be constructed as follows. Let the event with

a jump in this interval be the scenario and its probability denoted by α. Thus, the loss

can be tested as a normal model with a scenario being incorporated. It follows from

(4.1.17) that the combined loss density function is approximated by

fc ∼ (1− α)f + αfs = (1− λ∆t)fs + λ∆tfs,

where f and fs are the first two terms of the right hand of (4.1.17).

The general V aR is

V aR = a′1|π(t)|+ a2ω(t) + bc(t), (4.1.18)

where a′1=aF
−1
c (k) with

F−1
c (k) = min(a |

∫ a

−∞

fc(x)dx ≥ k). (4.1.19)

The general CV aR is

CV aR = a′′1|π(t)|+ a2π(t) + bc(t), (4.1.20)

where a′′1=aH(k) and

H(k) =
1

1− k

∫

x≥F−1
c (k)

xfc(x)dx. (4.1.21)

4.1.3 Optimal problem with risk constraint

Let UJ denote the class of all admissible strategies u. Suppose that CV aR can not

exceed a level R. Then, the final optimal portfolio problem with the CV aR constraint

can be formally stated as :

Problem F1

max
(π(x,t),c(x,t))∈UJ

E

[∫ τ

0

U1(t, c(t))dt

]
+Ψ(τ,Xτ) (4.1.22)

subject to

dX(t) = (π(t)(µ− re) + rX(t)− c(t))dt+ π(t)(σdW (t) + dU(t)), (4.1.23)

a′′1|π(t)|+ a2π(t) + bc(t) ≤ R. (4.1.24)
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To solve the optimal portfolio problem, we make use of the dynamic programming

method introduced in Chapter 2. Define the value function as

V (x, t) := sup
(π(x,t),c(x,t))∈UJ

E

[∫ τ

0

U1(t, c(t))dt

]
+Ψ(τ,Xτ ) (4.1.25)

where x is a possible state of Xt. Denote

G(x, π(x, t), c(x, t)) := π(x, t)(µ− r) + rx− c(x, t)

and

H(π(x, t)) := π2(x, t)σ2.

Then, the corresponding HJB equation is given by

∂V

∂t
+ sup

π(x,t),c(x,t)

(U1(t, c(x, t)) +G(x, π(x, t), c(x, t))
∂V

∂x
+

1

2
H(π(x, t))

∂2V

∂x2

+λE(V (x+ π(x, t)Y, t)− V (x, t))) = 0 (4.1.26)

with the boundary conditions

V (x, T ) = U2(T,X(T )), V (0, t) = 0, (4.1.27)

subject to the CV aR constraint

a′′1|π(t)|+ a2π(t) + bc(t) ≤ R. (4.1.28)

For the optimal portfolio problem with the CV aR constraint, it requires first to solve

the following static optimization problem

max
π(x,t),c(x,t)

(U1(t, c(x, t)) +G(x, π(x, t), c(x, t))
∂V

∂x
+

1

2
H(π(x, t))

∂2V

∂x2

+λE(V (x+ π(x, t)Y, t)− V (x, t))) (4.1.29)

subject to (4.1.28).

Introducing the Lagrange function, we obtain

L(π(x, t), c(x, t), λ1(x, t), λ2(x, t)) = U1(t, c(x, t)) +G(x, π(x, t), c(x, t))
∂V

∂x

+
1

2
H(π(x, t))

∂2V

∂x2
+ λE(V (x+ π(x, t)Y, t)− V (x, t))− λ1(x, t)(R− a′′1π(x, t)

−a2π(x, t)− bc(x, t))− λ2(x, t)(R− (−a′′1)π(x, t)− a′2π(x, t)− bc(x, t)). (4.1.30)
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Then, the first order necessary conditions of optimality for the static optimization

problem are given by

(µ− r)
∂V

∂x
+ Σπ(x, t)

∂2V

∂x2
+ λEVπ(x, t)

+λ1(x, t) (a
′′
1 + a2) + λ2(x, t) (−a′1 + a2) = 0, (4.1.31)

∂U1

∂c
=
∂V

∂x
− λ1(x, t)b− λ2(x, t)b, (4.1.32)

λ1(x, t)(R− a′′1π(x, t)− a2π(x, t)− bc(x, t)) = 0, (4.1.33)

λ2(x, t)(R− (−a′′1)π(x, t)− a2π(x, t)− bc(x, t)) = 0, (4.1.34)

λ1(x, t) ≤ 0, (4.1.35)

λ2(x, t) ≤ 0. (4.1.36)

In addition, (4.1.31) is used for finding πopt(x, t), (4.1.32) is used to solve for copt(x, t),

(4.1.33) and (4.1.34) are applied to solve for λ1(x, t) and λ2(x, t) whenever λ1(x, t) 6= 0

and λ2(x, t) 6= 0. Substituting ωopt(x, t) and copt(x, t) into (4.1.26) gives

∂V

∂t
+ U1(t, copt(x, t)) +G(x, πopt(x, t), copt(x, t))

∂V

∂x
+

1

2
H(πopt(x, t))

∂2V

∂x2

+λE(V (x+ πopt(x, t)Y, t)− V (x, t)) = 0, (4.1.37)

which can, in principle, be solved for the value function Vopt(x, t). However, in view

of the nonlinearity in copt(x, t) and πopt(x, t) , the HJB equation is highly nonlinear.

Thus, numerical methods are required to be used for finding πopt(x, t), copt(x, t), λ1(x, t),

π2(x, t) and Vopt(x, t) iteratively.

4.1.4 Numerical results

In this section, we consider the classical utility function

U1(t, x) = U2(t, x) = e−δtxγ δ > 0 , 0 < γ < 1, (4.1.38)

where δ is the discount factor. By using a trial function

V (x, t) = e−δth(t)xγ δ > 0 , 0 < γ < 1, (4.1.39)

which separates the x and t variables, the HJB equation is reduced to a Bernoulli

equation for h(t) which is an ordinary differential equation.
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When the CV aR constraint is imposed, although the variation of V (x, t) in x is

still well modeled by the term xγ, the function h will depend on x as well because of

ω and c. However, we shall show later numerically that for some reasonable values of

the parameters, h is a slow varying function of x and its derivatives with respect to x

is therefore very small.

In the following sections, to illustrate the effect of the jump Y and simplify the

calculations, Y is assumed to be a constant y. Let the utility function be defined by

(4.1.39). Then the HJB equation for the value function is given by

∂V

∂t
+ e−δtc

γ
opt(x, t) + (ωopt(x, t)(µ− r) + rx− copt(x, t))

∂V

∂x
+

1

2
π2
opt(x, t)σ

2∂
2V

∂x2

+λe−δth(x, t)((x+ π(x, t)y)γ − xγ) = 0. (4.1.40)

Neglecting the derivatives of h with respect to x, we obtain

∂V

∂x
= γe−δth(t)xγ−1,

∂2V

∂x2
= γ(γ − 1)e−δth(t)xγ−2, (4.1.41)

∂V

∂t
= e−δth′(t)xγ − δe−δth(t)xγ . (4.1.42)

Then, substituting (4.1.41) and (4.1.42) into (4.1.40), dividing it by e−δtxγ and rear-

ranging the terms gives

h′(x, t) + A(ωopt(x, t), x)h(t) +B(copt(x, t), h(t)) = 0 (4.1.43)

with the boundary condition

h(x, T ) = 1, (4.1.44)

where

A(πopt(x, t), x) = γ

(
πopt(x, t)

x
(µ− r) + r

)
+

1

2

π2
opt(x, t)

x2
σ2γ(γ − 1)− δ

+λ((1 +
ωopt(x, t)

x
y)γ − 1), (4.1.45)

B(copt(x, t), h(t)) =
c
γ
opt(x, t)

xγ
− γh(x, t)copt(x, t)

x
. (4.1.46)

We transform (4.1.43) into a convenient form

g′(t) + (1− β)A(ωopt(x, t), x)g(t) + (1− β)B(copt(x, t), g(t))g(t)
γ = 0,

with the boundary condition

g(T ) = 1,

where

g(t) = h(t)1−β , β = − γ

1− γ
. (4.1.47)
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4.1.4.1 Algorithms

Dividing the computational domain into a grid of Nx ×Nt mesh points, the final algo-

rithm can be summarized as follows:

1) For the unconstrained case, λ
(0)
1 (x, t) = λ

(0)
2 (x, t) = 0. Thus (4.1.47) is reduced to

g′(t) + (1− β)Ag(t) + (1− β)B = 0, (4.1.48)

where

A = γ

(
π
(0)
opt(x, t)

x
(µ− r) + r

)
+

1

2

π
(0)
opt(x, t)

2

x2
σ2γ(γ − 1)− δ

+λ((1 +
π
(0)
opt

x
y)γ − 1) (4.1.49)

and B = 1− γ.

From the optimality condition (4.1.31), π
(0)
opt(x, t) is calculated from

(µ−r)γxγ−1h(t)+ω
(0)
opt(x, t)σ

2γ(γ−1)xγ−2h(t)+λh(t)γ(x+π
(0)
opt(x, t)y)

γ−1y = 0. (4.1.50)

Dividing (4.1.50) by γh(t)xγ−1 yields

(µ− r) +
π
(0)
opt(x, t)

x
σ2(γ − 1) + λ(1 +

π
(0)
opt(x, t)

x
y)γ−1y = 0. (4.1.51)

By Newton’s method,
π
(0)
opt(x,t)

x
can be obtained, which is only dependent on time t.

Substituting
π
(0)
opt(x,t)

x
into (4.1.48 ), we get the explicit solution of (4.1.47)

g(t) = (
B

A
+ 1)e

1
B
A(T−t) − B

A
. (4.1.52)

As a result, c
(0)
opt(x, t) has a simple form of xg−1(t). The solution of the unconstrained

problem will be used as an initial guess in the iterative algorithm. Set iterative index

k=0.

2) For x = [0,∆x, · · · , Nx∆x] and t = [(Nt−1)∆t, · · · ,∆t, 0], for notational simplicity,

we omit (x, t) in all the functions involved. Then, we calculate π
(k+1)
opt , λ

(k+1)
1 , λ

(k+1)
2 and

c
(k+1)
opt from

(µ− r)V (k)
x (x) + σ2π

(k+1)
opt V (k)

xx (x) + λEV (k)
π (x+ πy, t)

+λ
(k)
1 (a′′1 + a2) + λ

(k)
2 (−a′′1 + a2) = 0, (4.1.53)
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λ
(k+1)
1 (R− (a′′1 + a2)ω

(k+1)
opt − bc

(k)
opt) = 0, (4.1.54)

λ
(k+1)
1 (R− (−a′′1 + a2)ω

(k+1)
opt − bc

(k)
opt) = 0, (4.1.55)

γ(c
(k+1)
opt )γ−1 = (γxγ−1h(k) − eδt)(λ

(k+1)
1 + λ

(k+1)
2 )b (4.1.56)

respectively.

3) For x = [0,∆x, · · · , Nx∆x] and n = [Nt − 1, · · · , 0], solve

g(k+1)
n = g

(k+1)
n+1 +∆t(1− β)A(π

(k+1)
opt , x)g

(k+1)
n+1 + (1− β)B(c

(k+1)
opt , g(k)n )(g(k)n )γ . (4.1.57)

4) Return to 2) with k =: k + 1 until convergence.

In the following subsections, we will first carry out a stress test to check how CV aR

catch the extreme loss with the constructed scenario. Then we explore the effect of the

CV aR constraint. Numerical experiments are carried out in the environment of Matlab

7 and Fortran 90.

In our calculations, unless otherwise specified, the following parameters are used:

δ = 0.2, γ = 0.5, the appreciation rate µ = 0.2, σ = 0.5, r = 0.1, the discount factor δ

= 0.2 , time T is fixed as 20 years, Nt = 1000 and ∆t is equal to 1/52 year (i.e. about

one week), ∆x = 2 and Nx = 500.

4.1.4.2 Stress test

In this subsection, stress test is conducted to evaluate the risk exposure in a scenario.

We consider a scenario, where ∆t = 0.1 year, λ = 1 and the jump magnitude is −0.9

(i.e. the stock price may drop by 90 percent with 0.1 probability in 0.1 year). Figure

4.1.1 depicts density function of a1ω(t)(∆P (t) + ∆Q(∆t)) in two situations: a normal

economy (f) and a scenario characterized by a negative jump (fc). It is easily seen from

the heavy tail of fc that bigger losses are more likely to occur in this situation. As a

result, the investor will suffer a bigger mean loss above the same V aR, which will be

shown by Figure 4.1.2. Let CV aR (f) and CV aR (fc) denote, respectively, the CV aRs

based on f and fc. Figure 4.1.2 shows that CV aR (fc) is much larger than CV aR (f)

for high confidence levels. Thus, to capture the loss exceeding the V aR, it is reasonable

to use CV aR as the risk measure.
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Figure 4.1.1: A typical loss distribution density with jumps
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Figure 4.1.2: CV aR for different confidence levels

4.1.4.3 The results with CV aR constraint

In this subsection, CV aRs, optimal risky investments and the value functions are com-

pared between the cases with and without constraint, respectively. Let t = 10, x =

400 and the risk level R is constrained to 120. The figures are plotted when the jump

rate and jump magnitude vary between [0,0.4] and (-1,1], respectively, which denote
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different economic conditions.

Figure 4.1.3 describes the value of CV aRs. And Figure 4.1.4 shows that we have

stabilized the CV aRs once they are active.

Figure 4.1.5 and Figure 4.1.6 plot the risky investment in the cases without and

with constraint, respectively. It is easily seen from the two figures that if the constraint

is inactive, the allocation in risky assets is the same as that in the unconstrained case.

However, once the CV aR constraint is active, the risky investment should be cut back

to meet the risk constraint.

From Figure 4.1.7 and Figure 4.1.8, it is clearly observed that v(x, t) is decreased

once the constraint is active. It is trivial since the investment is constrained.

Compared with the case without constraint, little difference can be seen for the

consumption when CV aR constraint is applied, and thus we will not plot the figure

here. And this will be explained in the next numerical example.

For the given wealth and time, we examine closer the optimal portfolios with CV aR

constraint in the normal market and in bad economy market. A risk constraint R = 70

is assumed. Let the bad market parameters λ = 0.12, y=-0.3, t =10, and x varies from

0 to 1000. From Figure 4.1.9, similar investment trends are observed in both cases.

Once the constraint becomes active, the investor should reduce the risky investment

to decrease the risk exposure. The result is similar to that reported in ([135]), where

the normal market with a V aR constraint is considered. Figure 4.1.10 depicts the

consumption pattern at the time t = 10. With the parameters above, the investor

should consume more in a bad economy. When the risk constraint is imposed, the

investor would consume more than that without constraint. However, the effect of the

risk constraint to the consumption pattern is negligible, which reflects that the risky

investment has a big weight in the portfolio and it is enough to decrease the risk by

cutting the risky investment. Figure 4.1.11 plots h(x, t) over time t for two values

of wealth. When the risk constraint is imposed, h(x, t) is decreased little and little

variation in x is observed with the approximation (4.1.41). In fact, the accuracy of

the solution can be assessed by calculating the residual value of the HJB equation as

that in Yiu [135]. We find that the discrete error measure of the HJB is less than
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8.35557× 10−4.
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Figure 4.1.3: CVaR under different jump amplitude and jump rate

0
0.1

0.2
0.3

0.4

−1

0

1
0

50

100

150

jump rate λjump magnitude  y  

C
V

a
R

Figure 4.1.4: CV aRs with stressed risk constraint under different

jump magnitudes and jump rates for x=400, t = 10.
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and jump rates
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Figure 4.1.6: The optimal risky investment with stressed risk

constraint under different jump magnitudes and jump rates for

x=400, t=10.

4.2 The regime switching model

4.2.1 Price dynamics and the optimization problem

Suppose the instantaneous market interest rate r(t) of the bank account B is:

r(t) = r(t, Y (t)) = 〈r, Y (t)〉 , (4.2.1)
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Figure 4.1.7: The value functions under different jump magnitudes

and jump rates
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Figure 4.1.8: v(x,t) with stressed risk constraint under different

jump magnitudes and jump rates for x=400, t=10.

where Y (t) is defined by (2.1.11), 〈·, ·〉 denote an inner product in ℜN and r :=

(r1, r2, . . . , rN)
′ ∈ ℜN with ri > 0 (i = 1, 2, . . . , N).

77



0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

 x

ω

 

 

without constraint, λ=0
with constraint, λ=0
without constraint, λ=0.12,y=−0.3
with constraint, λ=0.12,y=−0.3

Figure 4.1.9: For λ=0.12, y=-0.3, t = 10, the optimal ω with

stressed risk constraint
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Figure 4.1.10: For λ=0.12, y=-0.3, t = 10, the optimal consump-

tion

Then, the price process of the bank account B is governed by:

B(t) = exp

(∫ t

0

r(s)ds

)
, B(0) = 1 . (4.2.2)

Let µ(t) and σ(t) denote the appreciation rate and the volatility rate of the risky asset
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Figure 4.1.11: For λ=0.12, y=-0.3, the utility function

at time t, respectively. We suppose that

µ(t) := µ(t, Y (t)) = 〈µ, Y (t)〉 ,

σ(t) := σ(t, Y (t)) = 〈σ,X(t)〉 , (4.2.3)

where µ := (µ1, µ2, . . . , µN)
⊤ ∈ ℜN and σ := (σ1, σ2, . . . , σN)

⊤ ∈ ℜN with µi > ri and

σi > 0, for each i = 1, 2, . . . , N .

The price process {S(t)}t∈T of the risky asset S is assumed to be:

dS(t) = S(t)

(
µ(t)dt+ σ(t)dW (t)

)
, S(0) = s . (4.2.4)

For each t ∈ T , write G(t) := FY (t)∨F(t), an enlarged σ field generated by FY (t) and

F(t).

Let {X(t)}t∈T denote the wealth process of the economic agent with initial wealth

X(0) = x > 0 and initial state Y (0) = ei ∈ E . Then,

dX(t) = [π(t)(µ(t)− r(t)) + r(t)X(t)− c(t)]dt+ π(t)σ(t)dW (t) . (4.2.5)

The set of all admissible control processes is denoted by UR. Then, the expected

discounted utility of the agent is defined as:

J(x0, y; u(·)) := E

[ ∫ τ

0

U1(t, c(t))dt+Ψ(τ,Xτ)|Y0 = y,X(0) = x0

]
, (4.2.6)
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In the sequel, we shall present the MV aR constraint of the problem. First, as

previously, for a short time interval h, let π(τ) = π(t) and c(τ) = c(t), for all τ ∈ [t, t+h].

We also assume that there is no regime-switching in the small time interval. In other

words, X(τ) = X(t), for all τ ∈ [t, t + h].

First, we define the following three quantities:

αi := −ri ,

θi(τ) := θi(t) =
π(t)(µi − ri)− c(t)

−ri
,

Y (τ) := eαiτX(τ) , i = 1, 2, . . . , N , τ ∈ [t, t + h] . (4.2.7)

Then, in the small time interval [t, t+ h],

Y (t + h)− Y (t) = θi(t)(e
αi(t+h) − eαit) +

∫ t+h

t

eαiτπ(t)σidW (τ) . (4.2.8)

This implies that

X(t+ h) = e−αih(X(t)− θi(t)) + θi(t) +

∫ t+h

t

e−αi(t+h−τ)π(t)σidW (τ) , (4.2.9)

which is an Ornstein-Uhlenbeck process with a negative mean-reverting parameter αi.

The conditional mean of V (t+ h) given G(t) and X(t) = ei under the measure P is:

E[X(t + h)|G(t), X(t) = ei] = θ(t) + e−αih(X(t)− θi(t)) , (4.2.10)

and the conditional variance of V (t+ h) given G(t) and Y (t) = ei is:

V ar[X(t+ h)|G(t), Y (t) = ei] =
σ2
i π

2(t)

2αi
(1− e−2αih) . (4.2.11)

Now, we define the discounted net loss of the portfolio over the time interval [t, t + h]

as below:

∆iX(t, h) := X(t)− e−rihX(t+ h) , ∀i = 1, 2, . . . , N (4.2.12)

which, conditional on G(t), can be viewed as a function of the random variable X(t+h).

Then, under P, the V aR of the portfolio V aR(t, h, i, β) with probability level β over

the time interval [t, t + h] given G(t) and Y (t) = ei is defined as:

P(∆iV (t, h) ≤ V aR(t, h, i, k)|G(t), Y (t) = ei) = k . (4.2.13)
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Since ∆iX(t, h) is normally distributed conditional on G(t) and Y (t) = ei, it can be

shown that

V aR(t, h, i, k) = −θi(t)(1− erih) + Φ−1(k)

√
σ2
i π

2(t)

2αi
(1− e−2αih) , (4.2.14)

which depends on the portfolio decision π(t) we made at time t.

Let

a1i := Φ−1(1− k)

√
e2rih − 1

2ri
,

a2i := −
(
µi − ri

ri

)
(erih − 1) ,

bi :=
1

ri
(erih − 1) . (4.2.15)

Then,

V aR(t, h, i, β) = a1i|π(t)|σi + a2iπ(t) + bic(t) , i = 1, 2, . . . , N . (4.2.16)

We define the MV aR of the portfolio with probability level k over the time horizon

[t, t+ h] given G(t) as:

MV aR(t, h, k) = max
i=1,2,...,N

V aR(t, h, i, k) . (4.2.17)

Then, the constraint of restricting MV aR at the level R is:

MV aR(t, h, k) ≤ R . (4.2.18)

This is equivalent to the following N constraints:

a1i|π(t)|σi + a2iπ(t) + bic(t) ≤ R , i = 1, 2, . . . , N . (4.2.19)

For simplicity, assume that there is no short selling. We have

(a1iσi + a2i)π(t) + bic(t) ≤ R , i = 1, 2, . . . , N . (4.2.20)

We shall have an upper bound to constrain the investment in the risky asset S. That

is, π(t) is bounded above. The constraint on the consumption will be imposed if R is

small.

The portfolio optimization problem with the MV aR constraint is then formulated be-

low:
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Problem F2:

sup
(π(x,t),c(x,t))∈UR

E

[ ∫ τ

0

U1(t, c(t))dt+Ψ(τ,Xτ )

]
(4.2.21)

subject to:

dX(t) = [π(t)(µ(t)− r(t)) + r(t)X(t)− c(t)]dt+ π(t)σ(t)dW (t) ,

(a1iσi + a2i)π(t) + bic(t) ≤ R , i = 1, 2, . . . , N . (4.2.22)

4.2.2 Regime-switching HJB equation and the optimality con-

ditions

Given X(0) = x and Y (0) = y, denote the value function

V (t, x, y) := sup
(π,c)∈UR

E

[ ∫ T

t

U1(τ, c(τ))dτ |X(t) = x, Y (t) = y

]
. (4.2.23)

We shall derive a system of regime-switching HJB equation for the value function.

Assume that the control process u is Markovian with respect to G. That is,

u(t) = u(t, X(t), Y (t)) .

Then we write π(t) by π(t, x, y) and c(t) by c(t, x, y), with X(t) = x and Y (t) = y.

Let

F (t, x, y, π(t, x, y), c(t, x, y)) = π(t, x, y)(µ(t)− r(t)) + r(t)x− c(t, x, y) , (4.2.24)

and

G(t, x, y, π(t, x, y), c(t, x, y)) = π2(t, x, y)σ2(t) . (4.2.25)

Let Vi := V (t, x, ei), for each i = 1, 2, . . . , N , and V := (V1, V2, . . . , VN). Then, by the

principle of dynamic programming in the stochastic optimal control, it can be shown

that the value function V satisfies the following regime-switching HJB equation:

∂V

∂t
+ sup

π,c

[
U(t, c(t, x, Y (t))) + F (t, x, Y (t), π(t, x, y(t)), c(t, x, Y (t)))

∂V

∂x

+
1

2
G(t, v,X(t), π(t, v,X(t)), c(t, v,X(t)))

∂2V

∂x2
+ 〈V, QY (t)〉

]
= 0 , (4.2.26)
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with terminal and boundary conditions:

V (T, x, y) = 0 ,

and

V (t, 0, y) = 0 ,

subject to a set of N V aR constraints:

(a1iσi + a2i)π(t) + bic(t) ≤ R , i = 1, 2, . . . , N .

Hence, the vector V of the value functions at different regimes satisfies the following

system of coupled HJB equations:

∂Vi

∂t
+ sup

π,c

[
U(t, c(t, x, ei)) + F (t, x, ei, π(t, x, ei), c(t, x, ei))

∂Vi

∂v

+
1

2
G(t, x, ei, π(t, x, ei), c(t, x, ei))

∂2Vi

∂x2
+ 〈V, Qei〉

]
= 0 , (4.2.27)

with terminal and boundary conditions:

Vi(T, x, ei) = 0 ,

and

Vi(t, 0, ei) = 0 , i = 1, 2, . . . , N ,

subject to a set of N V aR constraints:

(a1iσi + a2i)π(t) + bic(t) ≤ R , i = 1, 2, . . . , N .

In the sequel, we shall consider the situation when there are two states in the Markov

chain and the agent has a power utility function. We shall illustrate how to simplify

the above system of HJB equations in this situation. First, we assume that the rate

matrix Q of the chain is:

Q =


 −p p

p −p


 , (4.2.28)

where p is a positive real constant. We then consider the following power utility function

for consumption:

U(t, c(t, x, y)) := e−δtc(t, x, y)γ , δ > 0 , 0 < γ < 1 . (4.2.29)
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Here, δ represents an impatient factor for consumption and it is assumed to be a

positive constant. In this case, the value functions for the two economic states satisfy

the following pair of coupled HJB equations:

∂V1

∂t
+ e−δtc

γ
opt(t, x, e1) + [πopt(t, x, e1)(µ1 − r1) + r1x− copt(t, x, e1)]

∂V1

∂x

+
1

2
π2
opt(t, x, e1)σ

2
1

∂2V1

∂x2
− pV1 + pV2 = 0 , (4.2.30)

and

∂V2

∂t
+ e−δtc

γ
opt(t, x, e2) + [πopt(t, x, e2)(µ2 − r2) + r2x− copt(t, x, e2)]

∂V2

∂v

+
1

2
π2
opt(t, x, e2)σ

2
2

∂2V2

∂v2
+ pV1 − pV2 = 0 . (4.2.31)

Following the approach in Merton [97], we assume that the value function is of the

following form:

Vi = V (t, x, ei) = e−δthi(t, x)x
γ , i = 1, 2 . (4.2.32)

This form is in line with the form of the power utility function. As in Yiu [135], we

neglect the derivatives of hi (i = 1, 2) with respect to v and obtain:

∂Vi

∂x
= γe−δthi(t, x)x

γ−1 , (4.2.33)

∂2Vi

∂x2
= γ(γ − 1)e−δthi(t, x)x

γ−2 , (4.2.34)

and

∂Vi

∂t
= e−δth′i(t, x)x

γ − δe−δthi(t, x)v
γ , i = 1, 2 , (4.2.35)

where h′i represents the derivative of hi with respect to t. For each i = 1, 2, we define:

Ai(πopt(t, x, ei), v)hi(t, x) :=

γ

[
πopt(t, x, ei)

v
(µi − ri) + ri

]
+

1

2

(
π2
opt(t, x, ei)

x2

)
σ2
i γ(γ − 1)− δ − p , (4.2.36)

and

Bi(πopt(t, x, ei), hi(t, x)) :=
copt(t, x, ei)

vγ
− γhi(t, x)copt(t, x, ei)

v
. (4.2.37)

Substituting (4.2.36)-(4.2.37) into (4.2.30) and (4.2.31), we get

h′1(t, x) + A1(πopt(t, x, e1), v)h1(t, x) +B1(copt(t, x, e1), h1(t, x)) + ph2(t, x) = 0(4.2.38)
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and

h′2(t, x) + A2(πopt(t, x, e2), v)h2(t, x) +B2(copt(t, x, e2), h2(t, x)) + ph1(t, x) = 0, (4.2.39)

with terminal conditions hi(T, x) = 0, for i = 1, 2.

Let ψ := − γ
1−γ

and gi(t, x) := (hi(t, x))
1−ψ, for each i = 1, 2. Then, we obtain the

following system of coupled ordinary differential equations (O.D.E.s) for gi (i = 1, 2):

g′1(t, x) + A1(πopt(t, x, e1), v)g1(t, x) + (1− ψ)B1(copt(t, x, e1), g1(t, x)
1−γ)

+(1− ψ)pg2(t, x)
1−γg1(t, x)

γ = 0, (4.2.40)

g′2(t, x) + A2(πopt(t, x, e2), v)g2(t, x) + (1− ψ)B2(copt(t, x, e2), g2(t, x)
1−γ)

+(1− ψ)pg1(t, x)
1−γg2(t, x)

γ = 0 , (4.2.41)

with the terminal conditions gi(T, x) = 0, for each i = 1, 2.

For the case when there is no MV aR constraint, gi (i = 1, 2) satisfy the following

system of coupled ordinary differential equations :

g′1(t) + (1− ψ)A1g1(t) + (1− ψ)B1 + (1− ψ)pg2(t)
1−γg1(t)

γ = 0 , (4.2.42)

and

g′2(t) + (1− ψ)A2g2(t) + (1− ψ)B2 + (1− ψ)pg1(t)
1−γg2(t)

γ = 0 , (4.2.43)

where

Ai = γ

(
(µi − ri)

2

σ2
i (1− γ)

+ r +
1

2

(µi − ri)
2

σ2
i (1− γ)

)
− δ − p , (4.2.44)

and Bi = 1− γ, for i = 1, 2.

4.2.3 Numerical experiments and discussions

In this section, we shall conduct numerical experiments to provide sensitivity analysis

for the optimal portfolio, the optimal consumption and the V aR level arising from

the Markov-modulated model when the model parameters vary. We shall identify the

model parameters that have significant effects on the optimal portfolio, the optimal
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consumption and the V aR level. Here, we also make comparisons of the qualitative

behaviors of the optimal portfolio, the optimal consumption and the V aR level obtained

from our model (Model I) to those arising from the model without switching regimes

(Model II). For each of the comparisons, we vary the specimen value of one parameter

of Model I and keep the other parameters of Model I unchanged. We also assume that

the specimen values of Model II are the same as those of Model I, except for the varying

parameter in Model I. If the value of the varying parameter in Model I is identical to

the value of its counterpart in Model II, Model I and Model II are identical to each

other. In this fashion, we can perform both the sensitivity analysis and the comparison

between Model I and Model II at the same time. For illustration, we consider the

situation when there are two states in the Markov chain in Model I, and, so we have a

pair of coupled HJB equations for the optimal investment and consumption problem

under Model I. Here, we assume that State 1 and State 2 of the chain X represent a

Economy 1 (E1) and Economy 2 (E2), respectively. We shall solve this pair of coupled

HJB equations numerically by employing an iterative algorithm.

4.2.3.1 The iterative algorithm

In this subsection, we shall present the iterative algorithm and specify some specimen

values of the model parameters in our implementation. In the iterative algorithm, we

use the unconstrained solution as an initial guess. We divide the domain of the com-

putation into a grid of Nt×Nv mesh points, where Nt and Nv represent the number of

mesh points in the space and the time domains, respectively. The steps in the iterative

algorithm are presented as follows:

For each v = [0,∆v, · · · , Nv∆v], t = [(Nt − 1)∆t, · · · ,∆t, 0] and n = Nt − 1, · · · , 0,
Step I: For each i = 1, 2, set the initial values π

(0)
opt(t, x, ei) =

(µi−ri)x

σ2i (1−γ)
and c

(k)
opt(t, x, ei) =

vh
−1/(1−γ)
i (0, x)(i=1, 2).

g
(0)
1,n and g

(0)
2,n are computed from the following two equations:

g
(0)
1,n = g

(0)
1,n+1 +∆t(1 − ψ)A1g

(0)
1,n+1 +∆t(1− ψ)B1 + (1− ψ)p(g

(0)
2,n+1)

1−γ(g
(0)
1,n+1)

γ, (4.2.45)

and

g
(0)
2,n = g

(0)
2,n+1 +∆t(1 − ψ)A2g

(0)
2,n+1 +∆t(1− ψ)B2 + (1− ψ)p(g

(0)
1,n+1)

1−γ(g
(0)
2,n+1)

γ. (4.2.46)
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Step II: With the risk constraint, according to (3.5), we look for π and c from

max
π,c

[
U(t, c(t, x, ei)) + F (t, x, ei, π(t, x, ei), c(t, x, ei))

∂Vi

∂x

+
1

2
G(t, x, ei, π(t, x, ei), c(t, x, ei))

∂2Vi

∂v2
+ 〈V, Qei〉

]
. (4.2.47)

That is, for k > 1, π
(k)
opt(t, x, ei) and c

(k)
opt(t, x, ei) (i=1,2) are solved from

sup
π
(k)
1 ,c

(k)
1

[
Un(c

(k)
1 ) + Fn(v, π

(k)
1 , c

(k)
1 )

∂V
(k−1)
1

∂x
+

1

2
Gn(π

(k)
1 , c

(k)
1 )

∂2V
(k−1)
1,n

∂v2

−pV (k−1)
1,n + pV

(k−1)
2,n

]
, (4.2.48)

sup
π
(k)
2 ,c

(k)
2

[
Un(c

(k)
2 ) + Fn(v, π

(k)
2 , c

(k)
2 )

∂V
(k−1)
2

∂x
+

1

2
Gn(π

(k)
2 , c

(k)
2 )

∂2V
(k−1)
2,n

∂v2

−pV (k−1)
2,n + pV

(k−1)
1,n

]
. (4.2.49)

Here

V
(k−1)
i,n = e−δth

(k−1)
i,n (t, x)xγ = e−δtg

(k−1)
i,n (t, x)1−γvγ , i = 1, 2 . (4.2.50)

Also, we compute g
(k)
1,n and g

(k)
2,n from the following equations recursively.

g
(k)
1,n = g

(k)
1,n+1 +∆t(1− ψ)A1(π

(k)
opt(t, x, e1), x)g

(k)
1,n+1 +

∆t(1 − ψ)B1(c
(k)
opt(t, x, e1), h

(k−1)
1,n+1) + ∆tp(1− ψ)(g

(k−1)
2,n+1)

1−γ(g
(k−1)
1,n+1)

γ ,(4.2.51)

and

g
(k)
2,n = g

(k)
2,n+1 +∆t(1− ψ)A1(π

(k)
opt(t, x, ei)g

(k)
2,n+1 +

∆t(1 − ψ)B2(c
(k)
opt(t, x, e2), h

(k−1)
2,n+1) + ∆tp(1− ψ)(g

(k−1)
1,n+1)

1−γ(g
(k−1)
2,n+1)

γ .(4.2.52)

Step III: Return to Step II with k = k + 1 until ‖V (k−1) − V (k)‖1 < ǫ.

Here, we implement the above iterative algorithm by Matlab. We consider some hy-

pothetical values for the model parameters and assume that T = 20 years, v = 1000,

Nv = 500, Nt = 1000, δ = 0.2, γ = 0.5, r1 = 0.1, µ1 = 0.2 and σ1 = 0.5. The max-

imum loss is limited to R = 100 with probability k = 0.99. Indeed, we find that the
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optimal results are robust with respect to R. When the interest rate r2 of the bond,

the appreciation rate µ2 and the volatility rate σ2 of the stock in E2 are identical to

their corresponding values in E1, Model I and Model II are identical to each other. In

this case, the numerical results for the optimal investment, the optimal consumption

and the V aR level obtained from Model I are the same as those arising from Model II

no matter what the value of the parameter p in the rate matrix of the chain is. We

find that the optimal results are robust with respect to the change in the value of p.

By varying one parameter at one time, we can perform the sensitivity analysis for the

optimal investment, the optimal consumption and the V aR level with respect to that

particular parameter and also make comparison between Model I and Model II. Here,

we further assume that the parameter p in the rate matrix is 0.5 and focus on how

the optimal investment, the optimal consumption and the V aR level change with the

parameters r2, µ2 and σ2.

4.2.4 The effect of σ2

Here, we shall focus on the effect of the volatility σ2 in E2 on the optimal investment,

the optimal consumption and the V aR level. When σ1 > (<)σ2, E1 is said to be

a “Bad” (“Good”) economy relative to E2. In this case, Model I and Model II are

different from each other. When σ1 = σ2 (E1 and E2 coincide), there is no switching

regime and Model I is identical to model II.

Figure 4.2.1 plots π1 against the volatility σ2 from the potential regime E2. It can be

seen that when theMV aR constraint is active, the current π1 decreases as σ2 increases.

Figures 4.2.2 and 4.2.3 depict the plots of the optimal proportion of investment in the

stock, the V aR level, respectively, against the portfolio value and t = 14 years. The

plots are compared when there is no switching (σ2 = 0.5 ) and when the state switches

to E2. From Figure 4.2.2, we see that when the Markov chain is changed to E2, the

optimal investment in the stock under Model II decreases significantly as σ2 increases.

The result here also reflects that the regime-switching in volatility has significant impact

on the optimal investment. The V aR level decreases substantially when σ2 increases.

This means that the agent does not prefer to take the risk by investing in the stock

when the volatility σ2 is high.
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Figures 4.2.4 and 4.2.5 plot the consumption level in E1 and E2, respectively, when

the volatility in E2 varies. Figure 4.2.4 shows that the current consumption level c1 in

E1 is affected by σ2 which is in the other regime. Figure 4.2.5 shows how c2 is affected

by σ2 in the same regime. From both Figure 4.2.4 and 4.2.5 we see that the change in

volatility in one regime has a common effect to both regimes. That is, the agent will

consume more to increase his utility when the volatility in either regime increases.
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Figure 4.2.1: The optimal investment (E1) against the

volatility σ2.

4.2.5 The effect of µ2

In this subsection, we investigate the impact of the appreciation rate µ2 of the stock in

State 2 on the optimal investment, the optimal consumption and the V aR level. When

µ1 > (<)µ2, E1 is said to be a “Good” (“Bad”) economy relative to E2. In this case,

Model I and Model II are different from each other. When µ1 = µ2, E1 and E2 coincide,

and Model I and Model II are identical.

With the imposed MV aR constraint, Figure 4.2.6 plots π1 against µ2 in regime

E2. It can be seen that when the MV aR constraint is active, π1 increases with µ2.

Figures 4.2.7 and 4.2.8 depict the plots of the optimal proportion of investment in the

stock and the V aR level, respectively, against the optimal portfolio value for different
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Figure 4.2.2: The optimal investment (E2) against the portfolio

value v for different σ2
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Figure 4.2.3: The VaR level (E2) against the portfolio value v for

different σ2

value of µ2 and t = 14 years. In these figures, we compare the cases when there is no

regime switching and when the state switches to E2. From Figure 4.2.7, the effect of µ2

on the qualitative behavior of the optimal investment against the portfolio value x is

significant. The optimal investment in the stock increases as µ2 increases. Also, in the

case that µ2 = 0.2 and µ2 = 0.5, there is a critical point at which there is a reversal of

the optimal investment behavior from increasing to decreasing. From Figure 4.2.8, the
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Figure 4.2.4: The optimal consumption (E1) against the portfolio

value v for different σ2
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Figure 4.2.5: The optimal consumption (E2) against the portfolio

value v for different σ2

qualitative behavior of the V aR level changes significantly with µ2. In particular, an

increase in µ2 shifts the curve of the V aR level against the portfolio value x upwards.

This reflects that when the appreciation rate µ2 of the stock is higher, the economic

agent is more willing to take higher risk by investing more in the stock.

Figures 4.2.9 and 4.2.10 plot the consumption level in E1 and E2, respectively, when
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µ2 in E2 varies. Both figures show that the optimal consumption against the portfolio

value x shifts downward when µ2 increases. This reveals that the agent consumes less

and invests more in the stock when the appreciation rate of the stock is higher.
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Figure 4.2.6: The optimal investment (E1) against µ2.
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Figure 4.2.7: The optimal investment(E2) against the portfolio

value v for different µ2
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Figure 4.2.8: The optimal V aR (E2) against the portfolio value v

for different µ2
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Figure 4.2.9: The optimal consumption (E1) against the portfolio

value v for different µ2

4.2.6 The effect of r2

We shall consider the impact of the interest rate r2 of the bond on the optimal invest-

ment, the optimal consumption and the VaR level. When r1 > (<)r2, E1 is said to

be a “Good” (“Bad”) economy relative to E2. In this case, Model I and Model II are

different from each other. When r1 = r2, E1 and E2 coincide, i.e., Model I and Model
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Figure 4.2.10: The optimal consumption (E2) against the portfolio

value v for different µ2

II are identical. With the imposed MV aR constraint, Figure 4.2.11 plots π1 against r2.

The figure shows that when the MV aR constraint is active, the current π1 is smaller

if the interest r2 in E2 gets higher. Figures 4.2.12 and 4.2.13 depict the plots of the

optimal investment in the stock and the V aR level, respectively, against the optimal

portfolio value for different value of r2 and t = 14 years. We compare the cases in which

there is that no regime switching and the cases where the state changes to E2.

In Figure 4.2.12, the impact of r2 on the qualitative behavior of the optimal invest-

ment against the portfolio value x is significant. The curve of the optimal investment

against the portfolio value shifts upwards as r2 decreases. Also, when r2 decreases to a

certain level, say r2 = 0.1, the qualitative behavior of the optimal investment against

the portfolio value changes. There is a critical point at which the optimal investment

against the portfolio value x changes from increasing to decreasing. From Figure 4.2.13,

the effect of r2 on the V aR level is significant. A decrease in r2 shifts the curve of the

V aR level against the portfolio value upwards. It also results in the change in the

qualitative behavior of the V aR level. For example, when r2 decreases to 0.1, there is

a critical point or a threshold level for the portfolio value, below which the V aR level

increases as x does and above which the V aR level stays constant at a saturated level

no matter what the value of r2 is. This might be attributed to the presence of the

MV aR constraint, which limits the amount of risk taken by the agent. Figure 4.2.14
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Figure 4.2.11: The optimal investment (E1) against the

volatility σ2
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Figure 4.2.12: The optimal investment (E2) against

the portfolio value v for different r2

and 4.2.15 plot the consumption level in E1 and E2, respectively, against the optimal

portfolio value for different values of r2. Figure 4.2.14 shows that current consumption

is affected by µ2 in the other regime. From Figure 4.2.14 and Figure 4.2.15, we see that

the curve of the optimal consumptions against the portfolio value shift downwards as

r2 decreases in general.
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Figure 4.2.13: The V aR level (E2) against the portfolio value v

for different r2
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Figure 4.2.14: The optimal consumption (E1) against the portfolio

value v for different r2
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Chapter 5

Conclusions and future research

directions

5.1 Conclusions

In this thesis, we have solved the risk constrained problem in finance and insurance. The

dynamic risk is measured by V aR, CV aR orMV aR, and imposed as a constraint, which

is consistent with the strategy decision in the sense of dynamics. In the actuarial science

literature, we are the first to consider this risk management model. Also we consider the

risk constrained problem from an ordinary investor under the jump diffusion model and

regime switching model. The dynamic risk constraint applied in this work overcomes the

shortcomings of those mentioned in the introduction. The results can be summarized

as follows:

The insurer being an investor

With V aR applied as the dynamic risk, ruin probability minimization and final

wealth utility maximization have been studied in this thesis.

• For the ruin probability minimization, we obtain the closed-form solutions for the

ruin probability and optimal investment in the risky asset. The results shows that if the

constraint is inactive, the risky investment is the same as that without constraint. Once

the constraint is active, the optimal risky investment should be decreased/ increased if
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V aR is increasing/ decreasing with the risky investment.

• If the insurer’s objective is to maximize the wealth utility in the finite time, we

transform the primal stochastic control problem into a deterministic one. With the

help of optimization software, numerical experiments are conducted to show the effect

of the V aR constraint. The results show that the risky investment is smaller and the

proportional reinsurance is larger than those without risk constraint. Also to show the

effectiveness of this transformation, a numerical example is given, which indicates that

our results coincide with the existing results when there is no constraint. Moreover, our

methods can work on the incomplete market when the number of stocks is less than

the number of uncertainty.

For an ordinary investor

We have investigated the portfolio selection problem with the jump diffusion model

and the regime switching model.

• In this thesis, CV aR is first embedded in the utility maximization problem under

the jump diffusion model. With CV aR as a risk constraint: (i) the stress test of the

loss shows how severe an extreme event appears and CV aR is more sensitive to catch

the heavy-tailed loss; (ii) the numerical results shows that when CV aR is active as the

risk constraint, the risky investment should be cut to meet the risk management.

•We considered the optimal portfolio selection problem under theMV aR constraint

when the price dynamics of the risky asset are governed by a Markov-modulated GBM .

The optimal portfolio selection problem was formulated as a constrained utility maxi-

mization problem over a finite time horizon. A system of coupled HJB equations are

derived for the problem. We define MV aR as the risk constraint and examine the

sensitivity of the model parameters. These results are also used to investigate the effect

of the switching regimes. The results show that the effect of the same model parameter

from different regime (current or potential) on the portfolio selection is similar whether

with the risk constraint or not. That is, for both cases the risky investment should be

cut once the risk constraint is active.
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5.2 Future research directions

To study optimal control problems, a powerful tool is dynamic programming. When

value function is smooth enough, it solves dynamic programm equation. In this work,

numerical algorithms to the HJB equations are used to investigate the effect of the risk

constraint, which is implemented under the assumptions that there exists a sufficiently

smooth solution to the HJB equation.

In general, however, the value function is not smooth enough to satisfy the dynamic

programm equations in the classical or usual sense. Also there are many other functions

other than the value function with satisfy the equation almost everywhere. Therefore

a weak formulation of solutions to these equations is necessary if we are to pursue the

method of dynamic programming.

Crandall and Lions have provided such a weak formulation which they called the

viscosity solutions in their celebrated paper [27]. And a great deal of interest is arising

in designing numerical scheme of approximating the solution of HJB equations, such as

Markov chain approximation (see [49] Chapter IX). We will study the risk constrained

problem with the scheme of viscosity solution in future work.

To study the problem, another popular method is to use the martingale method. It

works well in more models, such as the Ito setting, than the Markov ones. The optimal

portfolio is constructed by the martingale representation in a risk neutral martingale

measure. For the risk constrained problem, we have obtained the existence of the

solution and constructed it for the optimal consumption-investment problem in the

diffusion model by the martingale method together with the convex technique, which is

not included in this dissertation to keep consistence. We will investigate other models

with this method.

In the existing literature, the transaction is assumed to be rebalanced instantly and

free of cost. In fact, the costs incur when setting up a new portfolio or rebalancing

an existing portfolio, thus it must be considered in any realistic analysis. Transaction

costs can be used to model a number of costs, such as brokerage fees, bidask spreads,

taxes, or even fund loads. The introduction of the proportional transaction cost is first

accomplished by Magill and Cosntantinides [93]. Later the problem is widely studied
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by incorporating proportional transaction and/or fixed costs (See for example [9, 2,

32, 84, 93, 100, 119]). It is well recognized that transaction costs affect the investor’s

holding period of a particular asset, and investors accommodate transaction costs by

drastically reducing the frequency and volume of trades. For the risk management, it

should make sense to consider the effect of V aR constraint.

Also, intervention lag and execution delay always take place in decision-making

problems in economics and finance. In many situations, firms or investors face regu-

latory delays (delivery lag), which may be significant, and thus need to be taken into

account when management strategies are decided in an uncertain environment. In fi-

nancial market context, execution delay is related to liquidity risk (see e.g. [121]) and

occurs with the transaction cost. Indeed, hedge funds frequently hold illiquid assets,

and need some time to find a counterpart to buy or sell them. Furthermore, this notice

period gives the hedge fund manager a reasonable investment horizon. The decision

involves optimally exercising a real option or optimally manipulating (with some as-

sociated cost) a state variable, which is the source of uncertainty. Several problems

that fit into this framework can be found in the literature (see [20, 82] for reference).

However, little is known about how the decision can be made with the risk constraint.
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Chapter 6

Appendices

The proof of Theorem 2.2: The first part is obvious according to the definition and

properties of nonnegative local martingale.

By assumption,

max
ǔ∈L2[0,T ]

U1(X
ǔ
1 (T )) = U1(X

ǔ∗

1 (T )) (A.1)

and

EU(Xu∗(T )) = EU1(X
u∗

1 (T )), (A.2)

where (A.2) follows the fact that U2(X
u∗

2 (T )) is a martingale.

From the properties of nonnegative local martingale, we have

max
u

EU(Xu(T )) ≤ max
u

EU1(X
u
1 (T ))

≤ Emax
u

U1(X
u
1 (T )) ≤ U1(X

ǔ∗

1 (T )). (A.3)

On the other hand, from the definition of ǔ and (3.2.7), obviously,

U1(X
ǔ∗

1 (T )) = EU1(X
u∗

1 (T )) ≤ max
u

EU(Xu(T )). (A.4)

Therefore,

max
u

EU(Xu(T )) = U1(X
ǔ∗

1 (T )) (A.5)

holds.
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The proof of Theorem 2.3:

(i) The convexity is obvious, since

e
∫ T
t
r(τ)dτ π̃(t)(µ̃(t)− r(t)1̃) and

m2

2
e2

∫ T
t
r(τ)dτ π̃(t)Σ̃(t)π̃⊤(t)

are concave.

(ii) From Assumption 3.2.1, we obtain

lim
‖π̃‖2→∞

J(π̃) ≥ lim
‖π̃‖2→∞

(−mMeMT ‖π̃‖+ m2

2
ε‖π̃‖2)

= ∞. (A.6)

(iii)

lim
‖π̃(n)−π‖2=0

|
∫ T

0

e
∫ T
t
r(τ)dτ π̃(n)(t)(µ̃(t)− r(t)1̃)dt−

∫ T

0

e
∫ T
t
r(τ)dτ π̃(t)(µ̃(t)− r(t)1̃)dt|

≤ lim
‖π̃(n)−π̃‖2=0

(MeMT ‖π̃(n) − π̃‖2) = 0. (A.7)

Also,

lim
‖π̃(n)−π̃‖2=0

|
∫ T

0

m2

2
e2

∫ T
t
r(τ)dτ (π̃(n)(t)Σ̃(t)(π̃(n))⊤(t)dt− π(t)Σ̃(t)π⊤(t))dt|

= lim
‖π̃(n)−π̃‖2=0

∫ T

0

|‖e
∫ T
t
r(τ)dτ π̃(n)(t)σ̃‖2 − ‖e

∫ T
t
r(τ)dτ π̃(t)σ̃‖2|dt

= lim
‖π̃(n)−π̃‖2=0

∫ T

0

e2
∫ T
t
r(τ)dτ |(π̃(n)(t)σ̃ − π̃(t)σ̃)(π̃(n)(t)σ̃ + π̃(t)σ̃)⊤|dt

≤ lim
‖π̃(n)−π̃‖2=0

∫ T

0

e2MT ‖π̃(n)(t)σ̃ − π̃(t)σ̃‖2‖π̃(n)(t)σ̃ + π̃(t)σ̃‖2dt

= 0. (A.8)

Thus, (iii) holds.

(iv) From Ekeland and Temam [37], ∃ a π̃∗ ∈ Ȟ such that J(π̃∗) = minπ̃∈H J(π̃).
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