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Abstract

The main purpose of this thesis is to study the asymptotical properties of multiobjective

optimization (also known as vector optimization) and vector variational inequalities.

Based on these asymptotical properties, we construct some proximal-type methods

for solving convex multiobjective optimization problems and weak vector variational

inequality problems.

We consider a convex vector optimization problem of finding weak Pareto optimal

solutions for an extended vector-valued map from a uniformly convex and uniformly

smooth Banach space to a real Banach space, with the latter being ordered by a closed,

convex and pointed cone with nonempty interior. For this problem, we develop an

extension of the classical proximal point method for the scalar-valued convex optimiza-

tion. In this extension, the subproblems involve the finding of weak Pareto optimal

solutions for some suitable regularizations of the original map by virtue of a Lyapunov

functional. We present both exact and inexact versions. In the latter case, the sub-

problems are solved only approximately within an exogenous relative tolerance. In both

cases, we prove weak convergence of the sequences generated by the subproblems to a

weak Pareto optimal solution of the vector optimization problem.

We also construct a generalized proximal point algorithm to find a weak Pareto opti-

mal solution of minimizing an extended vector-valued map with respect to the positive

orthant in finite dimensional spaces. In this extension, the subproblems involve finding

weak Pareto optimal solutions for the regularized map by employing a vector-valued

Bregman distance function. We prove that the sequence generated by this method con-

verges to a weak Pareto optimal solution of the multiobjective optimization problem by

assuming that the original multiobjective optimization problem has a nonempty and

compact weak Pareto optimal solution set.
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We formulate a matrix-valued proximal-type method to solve a weak vector vari-

ational inequality problem with respect to the positive orthant in finite dimensional

spaces through normal mappings. We also carry out convergence analysis on the method

and prove the convergence of the sequences generated by the matrix-valued proximal-

type method to a solution of the original problem under some mild conditions.

Finally, we investigate the nonemptiness and compactness of the weak Pareto opti-

mal solution set of a multiobjective optimization problem with functional constraints

via asymptotic analysis. We then employ the obtained results to derive the neces-

sary and sufficient conditions of the weak Pareto optimal solution set of a parametric

multiobjective optimization problem.

The study of this thesis has used tools from nonlinear functional analysis, multiob-

jective programming theory, vector variational inequality theory, asymptotical analysis

and numerical linear algebra.
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Chapter 1

Introduction

1.1 Proximal-type Methods

Let f : Rn → R∪{+∞} be a proper, closed and convex function. Consider the following

optimization problem:

(P) min f(x)

s.t. x ∈ Rn.

As f is allowed to be extended-valued, any constrained optimization problem,

(CP) min f0(x)

s.t. x ∈ K,

where f0 : K → R is a convex function, and K is a closed, nonempty and convex subset

of Rn, can easily be transformed into a form of (P) by defining

f(x) =

{
f0(x), if x ∈ K;

+∞, else.

Hence, theoretically, there is no loss of generality in considering the form of problem

(P). Many theoretical results can be obtained in this (unifying) method for both un-

constrained and constrained optimization problems.

Despite the fact that extended-valued functions allow such a unified treatment

of both unconstrained and constrained optimization problems, they are typically not
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tractable from a numerical computational point of view. Therefore, numerical algo-

rithms for the solution of a problem such as problem (P) have to account for the

constraints implicitly or, at least, some of these constraints. This can be done quite

elegantly by the proximal point methods.

Although our review is concentrated on the application of proximal point methods

to optimization problems, these methods may also be applied to several other problem

classes such as nonlinear systems of equations, complementarity problems, variational

inequalities and generalized equations.

1.1.1 Classical Proximal-Point Methods

The classical proximal-point method was introduced by Martinet [158] in an attempt

to alleviate the difficulties in a Tikhonov regularization method [195] when solving

an increasingly progressively ill-conditioned problem. Martinet was motivated by a

similar approach used in [21] in the case of convex quadratic minimization problems.

In the finite-dimensional case, the main difference between the Tikhonov regularization

and the proximal point method is that the point to which the sequence produced by

the latter method converges cannot be predicted. In the infinite-dimensional setting,

which has been considered by many authors, a more important difference exists: for

the Tikhonov regularization methods, strong convergence to a solution of the original

problem can be proven, whereas for the proximal point method, only weak convergence

can be obtained unless further strong assumptions are made.

Rockafellar’s paper [173] is an important step toward a wider appreciation of the

importance of the proximal point method. In [173], the proximal point algorithm was

analyzed for the problem of finding a zero in a maximal monotone map, which includes

that of solving a variational inequality problem and a convex optimization problem.

Actually, this general framework persists in most subsequent papers dealing with proxi-

mal point algorithms. In the mentioned paper, Rockafellar presented several significant

results. First the coefficient λk [see (1.1.1)] was allowed to vary from iteration to itera-

tion (whereas it was fixed in [158]). Second, and more importantly, the inexact solution

of the perturbed subproblems was allowed. Some convergence rate results were given.
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Applying it to the minimization problem (P), it generates a sequence {xk} ⊂ Rn

such that xk+1 is a solution of the following optimization problem:

min{f(x) +
λk

2
‖x− xk‖2} (1.1.1)

for k = 0, 1, 2, ..., λk ∈ (0, λ] and λ > 0. The objective function of this subproblem

is strictly convex as it is the sum of the original (convex) objective function f and a

strictly convex quadratic term. This term is usually called the regularization term.

This strictly convex regularization term guarantees that the subproblem (1.1.1) has a

unique solution for each k ∈ N . Hence the classical proximal point method is well

defined. Furthermore, it has the following global convergence properties.

Theorem 1.1.1 [101] Let xk and λk be defined in the classical proximal point method

(1.1.1). Let σk =
k∑

i=1

λi. Let

f̄ := inf{f(x)| x ∈ Rn}

be the optimal value and

X̄ := {x̄ ∈ Rn| f(x̄) = f̄}

be the solution set of problem (P). Assume that σk → +∞ as k → +∞. Then, we have

the following statements:

(1). The sequence of function values {f(xk)} converges to the optimal value f̄ ;

(2). If X̄ is nonempty, the whole sequence {xk} converges to an element of X̄.

Theorem 1.1.1 shows some very strong convergence properties under rather weak

conditions. In particular, it guarantees the convergence of the whole sequence {xk}, even

if the solution set X̄ contains more than one element. We note that many variations and

generalizations of Theorem 1.1.1 have been investigated in the literature. For example,

Burachik, Iusem and Svaiter [40] introduced an enlargement of monotone operators

and used it to define a family of inexact proximal point algorithms for a variational

inequality problem. Ferris [86] demonstrated the finite termination by assuming the

”weak sharpness” of the solution. For an extensive discussion on the finite termination

property of the proximal point method in the case of both optimization and variational

inequality problems, see [166].
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Rockafellar also gave another important contribution by showing that the Hestenes-

Powell method of multipliers for nonlinear programming is nothing else but the proximal

point algorithm applied to the dual optimization problem [174] and that new methods

of multipliers can be developed based on this observation. The idea of using under

and overrelaxations was put forward by Golshtein and Tretyakov [100], who proposed

a scheme similar to the generalized proximal point algorithm, where, λk is not allowed

to vary from iteration to iteration.

Several other aspects of the proximal point algorithm have been intensively investi-

gated. The first is that of the convergence rate already mentioned in the discussion of

[173]. Luque [155] extended Rockafellar’s analysis. By assuming various conditions on

the growth properties of T−1 in a neighborhood of 0 and by considering broad inexact-

ness rules, Luque studied in detail when the sequence xk generated by the generalized

proximal point algorithm converges sublinearly, linearly, or superlinearly. Another con-

tribution of Luque’s study is that, in contrast to the analysis in [173], the convergence

rate results are obtained without assuming uniqueness of the solution of the unper-

turbed problem.

The convergence rates alluded to deserve an elaboration. These rates refer to the

outer sequence xk produced by the algorithm. However, to generate these iterates, an

iterative inner method has to be used to calculate the resolvent approximately;; the

latter typically requires multiple iterations. Therefore, calculating xk can in general

require a possibly huge computational effort. This issue has been recently addressed

by Yamashita and Fukushima [204], where the proximal point algorithm is considered

to solve a nonlinear complementary problem. Using the Newton method applied to the

Fischer-Burmeister equation reformulation of the subproblems, the authors gave con-

ditions ensuring that only one step of the inner Newton method is eventually sufficient

to generate a suitable outer xk, thus ensuring a genuine superlinear convergence rate.

A key assumption in this reference is that the point to which the method converges is

nondegenerate.

From [173] it is not necessary to compute the exact minimizer of the subproblems

(1.1.1) at each step Rockafellar [173] provided some criteria under which inexact so-

lutions still provide similar global convergence properties. However, the criteria of

inexactness in Rockafellar [173] are not implementable in general because they assume

4



some knowledge regarding the exact solution of (1.1.1). Solodov and Svaiter have been

active in constructing of new variants of the proximal point algorithms [182, 183, 185],

where their main concern is the use of some new and more practical and/or effective

tolerance requirements in the solution of the subproblems.

The classical proximal-point method can be extended to infinite-dimensional Hilbert

spaces for which weak convergence of the iterates {xk} can be shown, (see, e.g. [101, 173]

and the references therein). It is worth noting that Güler provided a counterexample

showing that a strong convergence does not hold without any further modifications,

giving a negative answer to an open question in [173]. The classical proximal point

method has been constructed in Banach spaces (see, e.g. [46, 47]). It is interesting that

Solodov and Svaiter [184] were able to modify the proximal point algorithm to enforce

strong convergence of the method in Hilbert spaces using a technique similar to the

one used in the hyperplane projection algorithm. A similar result was achieved in [146]

by combining the proximal point algorithm with Tikhonov regularization. Recently,

Kamimura and Takahashi [129] have extended some of Solodov and Svaiter’s results to

more general Banach spaces.

1.1.2 Proximal-type Methods Using Bregman Functions

The simple idea behind each proximal-like method for the solution of convex minimiza-

tion problems is to replace the strictly convex quadratic term by a nonquadratic term

in the regularized subproblem (see, e.g., [23]).

There are several different possibilities in replacing the term ‖x − xk‖2 by another

strictly convex distance-like function. The one discussed in this subsection is defined

by

Bg(x, y) := g(x)− g(y)−∇g(y)>(x− y) x, y ∈ K × intK, (1.1.2)

where g : K ⊂ Rn → R is a real valued function. According to Facchinei and Pang

[85], a Bregman function is defined as follows.

Definition 1.1.1 Let K be a solid closed convex set in Rn. A function g : K → R is

a Bregman function with zone K if
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(1) g is strictly convex and continuous on K;

(2) g is continuously differentiable on intK;

(3) for all x ∈ K and all constants η, the set

{y ∈ intK| Bg(x, y) ≤ η}

is bounded;

(4) if xk is a sequence of points in intK converging to x, then

lim
k→+∞

Bg(x, xk) = 0.

If g is a Bregman function, then Bg is a Bregman distance. If g also satisfies the

following condition:

(5) ∇g(intK) = Rn;

then g is a full range Bregman function.

The standard and formal definition of the Bregman functions was given by Censor

and Lent [53] and is based on the work of Bregman [42] on the generalization of the

cyclic projection method for finding a point in the intersection of a finite number of

closed convex sets. Clearly, 1
2
‖x‖2 is a full range Bregman function with zone Rn. In

what follows, we give two nontrivial examples of the Bregman functions.

Example 1.1.1 Let K = Rn
+. Consider the function g : K → R defined by

g(x) =
n∑

i=1

xi log xi,

with the convention that 0 log 0 = 0.

Direct calculations yield

Bg(x, y) =
n∑

i=1

(xi log xi − yi log yi − (log yi + 1)(xi − yi)). (1.1.3)

Clearly, g is a full range Bregman function. Formula (1.1.3) is known as the Kullback-

Leibler relative entropy function, which is widely used in statistics.

6



Example 1.1.2 Suppose that

K = {x ∈ Rn| ai ≤ xi ≤ bi, i = 1, ..., n}

where for each i, −∞ < ai < bi < +∞ and consider the function g : K → R

g(x) =
n∑

i=1

[(xi − ai) log(xi − ai) + (bi − xi) log(bi − xi)]

where, again, we make the convention that 0 log 0 = 0. An easy calculation shows that

Bg(x, y) =
n∑

i=1

[(xi − ai) log
(xi − ai)

(yi − ai)
+ (bi − xi) log

(bi − xi)

(bi − yi)
].

In this case there is no difficulty in verifying that g is a full range Bregman function.

As observed in [55], there is no universal agreement on the definition of a Bregman

function, and different authors usually give different, if clearly related, definitions to

achieve their particular goals (see De Pierro and Iusem [72]; Censor and Zenios [54];

Eckstein [77] ; Güler [102]; and Censor et al. [52]). An in-depth study on the properties

of the Bregman functions is given in [28].

The Bregman distance function may be used to solve the optimization problem

(1.1.1) by generating a sequence xk in such a way that xk+1 is a solution of the following

subproblem

min f(x) +
λk

2
Bg(x, xk) (1.1.4)

for k = 0, 1, 2, ..., where x0 is a strictly feasible starting point. A convergence result

completely identical to Theorem 1.1.1 can then be shown for this method, see (Chen

and Teboulle [58]). Other references on these generalized proximal point methods and

on the applications of non-quadratic (e.g., logarithmic) proximal point algorithms to

decomposition include [15, 16, 14, 122, 193].

1.2 Multiobjective Optimization

Multiobjective optimization (also referred to as vector optimization) is part of math-

ematical programming dealing with decision problems characterized by multiple and

conflicting objective functions to be optimized over a feasible set of decisions.
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Multiobjective optimization has two main sources: economic equilibrium and wel-

fare theories of Edgeworth [77] and Pareto [164], and the mathematical backgrounds of

the ordered spaces of Cantor [48] and Hausdorff [110]. The game theory of Borel [39]

and von Neumann [163] and the production theory of Koopmans [134] also contributed

to this area. After the publication of Kuhn and Tucker’s paper [139] on the neces-

sary and sufficient conditions for optimality, and of Deubreu’s paper [73] on valuation

equilibrium and Pareto optimum, multiobjective optimization has been recognized as

a useful mathematical discipline.

Let Rn and Rm be Euclidean vector spaces referred to as the decision space and the

objective space respectively. Let F be a vector-valued objective function F : Rn → Rm

composed of m real-valued objective functions, F := (f1, ..., fm), where fi : Rn → R

for i = 1, ...,m and X ⊆ Rn a closed subset. A multiobjective optimization problem is

given by

min{F (x)| x ∈ X ⊆ Rn}. (1.2.1)

Decisions are rarely made based on only one criterion; often, decisions are based on

several conflicting criteria. A multiobjective optimization model provides the mathe-

matical framework to deal with these situations. In the last fifty years, many theoretical,

methodological, and applied studies have been undertaken on multiobjective program-

ming. Several monographs have been published (e.g., Yu [216], Sawaragi, Nakayama

and Tanino [177], Jahn [124], Luc [153], Chen, Huang and Yang [65], White [200] and

Miettinen [160]). Studies on multiobjective optimization can be divided into three

parts: theoretical study, numerical methods, and applications. In this thesis, we focus

on the first two parts of multiobjective optimization studies.

1.2.1 Theoretical Studies

An ordinary mathematical programming (or optimization) problem includes only one

objective function, and our aim is to find an element that minimizes this function. In

other words, the objective space has one dimension; therefore, the ordering in the ob-

jective space is trivial in ordinary mathematical programming. In a multiobjective op-

timization problem, an element that minimizes an objective function does not generally

minimize another objective functions. To characterize the optimality of multiobjective
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optimization problem, we need to define a partial order in the objective space Rm.

Let C = Rm
+ ⊂ Rm and C1 = {x ∈ Rm

+ | ‖x‖ = 1}. We define, for any y1, y2 ∈ Rm,

y1 ≤C y2 if and only if y2 − y1 ∈ C;

y1 6≤intC y2 if and only if y2 − y1 6∈ intC.

The extended space of Rm is R̄m = Rm ∪ {−∞C ,+∞C}, where −∞C is an imaginary

point; each of the coordinates is −∞ and the imaginary point +∞C is analogously

understood (with the conventions ∞C +∞C = ∞C , µ(+∞C) = +∞C for each positive

number µ). The point y ∈ Rm is a column vector and its transpose is denoted by y>.

The inner product in Rm is denoted by 〈·, ·〉.

Let K ⊂ Rn be convex and F : K → Rm ∪ {+∞C} be a vector-valued function.

x∗ ∈ K is said to be a Pareto optimal solution of F on K if

(F (K)− F (x∗)) ∩ (−C\{0}) = ∅,

x∗ ∈ K is said to be a weak Pareto optimal solution of F on K if

(F (K)− F (x∗)) ∩ (−intC) = ∅.

For a set S∗ ⊂ Rm, we often use the following notations:

MinCS
∗ = {y ∈ S∗| (y − C\{0}) ∩ S∗ = ∅},

WMinCS
∗ = {y ∈ S∗| (y − intC) ∩ S∗ = ∅}.

This definition provides globally Pareto optimal solutions. We can, of course, define

locally Pareto optimal solutions as in the case of ordinary optimization. Any globally

Pareto optimal solution is local, but the reverse is true only under appropriate convexity

assumptions [51, 154].

A characterization of Pareto optimality and weak Pareto optimality using level sets

is given in [81], along with a new solution concept of strict Pareto optimality. In a

convex multiobjective programming problem, the set of weak Pareto optimal solutions

is the union of the sets of Pareto optimal solutions of problems with parts of the original

objective functions [80].
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Moreover, approximate solutions to the multiobjective optimization problem are

considered. For example, an ε-Pareto optimal solution is defined in [151] as a feasible

solution x̄ for which there exists no x ∈ Rn such that

fi(x) ≤ fi(x̄)− εi, ∀i ∈ [1, ...,m],

fi(x) < fi(x̄)− εi, for some i ∈ [1, ...,m],

where ε is a vector in Rm
+ . Studies on approximate solutions can be found in [75, 147,

149, 201].

In any mathematical problem, the existence of a solution is the first question that

should be answered. The existence of Pareto optimal solutions had been discussed in

[33, 63, 109, 112, 123]. The existence of Pareto optimal or weak Pareto optimal solutions

was also discussed in connection with scalar optimization in [63, 73]. The existence of

Pareto optimal solutions with respect to general binary relations was stated in [187].

Research on the domination property was presented in [27, 155]. The concept of a

dominator for a multiobjective maximization problem with quasiconvex functions was

introduced in [49].

The most fundamental theorem in ordinary nonlinear programming is the Karush-

Kuhn-Tucker theorem [58]. Optimality conditions (usually under some appropriate con-

straint qualifications) for multiobjective optimization problem have been investigated by

a number of researchers [57, 59, 108, 148, 180, 198]. Second-order optimality conditions

were also studied in [13, 28, 131, 197]. They require second-order approximation sets

in the feasible region and new constraint qualifications. Optimality conditions for non-

differentiable problems were also discussed by several authors [32, 120, 130, 169, 188].

[121] provided optimality conditions in terms of directional derivatives. If all the func-

tions are locally Lipschitz, we obtained the optimality conditions in which the gradients

are replaced with generalized gradients in the KKT-type conditions [67]. In [32] upper

Dini derivatives were used to derive optimality conditions. [133] deals with a partially

differentiable and partially convex case.

The nonemptiness and compactness of the solution set of a multiobjective optimiza-

tion problem are important in both theory and methodology. They are an important

condition to guarantee the convergence of some algorithms (e.g., proximal-type algo-

rithms, Tikhonov-type regularization algorithms and so on). Recently, Deng [74, 76]
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obtained some necessary and sufficient conditions for the nonemptiness and compact-

ness of solution sets of a convex vector optimization problem. Huang and Yang [116] also

gave characterizations for the nonemptiness and compactness of the set of weak Pareto

optimal solutions of a convex vector optimization problem with extended vector-valued

functions in terms of the 0-coercivity of some scalar functions. Flores-Bazan [91] estab-

lished the existence results for finite dimensional vector optimization problems based

one the asymptotic description of the functions and sets. Several results have also been

obtained on the characterizations of solution sets of convex multiobjective optimization

problems [125, 150], and of nonconvex cases [92].

Stability and sensitivity analysis aims to analyze the qualitative and quantitative

behavior of the Pareto optimal solutions according to the changes of the parameter

values included in the original optimization problem. Stability analysis for set-valued

mapping multiobjective optimization problems was investigated in [87, 162, 168, 190].

[190] also studied the stability with respect to the change in domination structure of

the decision maker. [127] examined the stability of the compromise solution, not the

entire Pareto optimal set. [189] investigated the continuous dependence of solutions on

a parameter in a scalarization method. [8] dealt with the stability of not only the Pareto

optimal solutions but also of the approximate Pareto optimal solutions. Well-posedness

in vector optimization was discussed in [26, 114, 117]. Sensitivity in multiobjective

optimization was analyzed by considering the derivatives of the perturbation mapping

in [191]. A relationship between the derivative and the Lagrange multiplier vector

was also established in [191]. Kuk et al. [140] provided sensitivity analysis on those

perturbation mappings. [18] conducted a sensitivity analysis on the duality theory

in convex multiobjective programming with right-hand side perturbation. [68] also

dealt with sensitivity analysis in multiobjective optimization. [38] discussed differential

sensitivity analysis along with second-order efficiency conditions.

Convexity plays a very important role in optimization theory. Various general-

izations of convexity for multiobjective optimization problems have been made in the

literature. Under pseudo/quasiconvexity, the duality theory for multiobjective pro-

gramming problems has been studied in [22, 30, 199]. Interesting results in investigat-

ing the duality theory and the optimality conditions for multiobjective optimization

problems under some generalized convexity assumptions were obtained by Yang et al.
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[206, 207, 208, 209].

1.2.2 Numerical Methods

There are two general approaches to generate solution sets of multiobjective optimiza-

tion problems, scalarization methods and nonscalarizing methods, which convert the

multiobjective optimization problems into a scalar-valued objective optimization prob-

lem, a sequence of scalar-valued objective optimization problems, or another multiob-

jective optimization problem, respectively. Under some assumptions, the solution sets

of these new programs yield solutions of the original problem. Scalarization methods

explicitly employ a scalarizing function to accomplish the conversion, whereas non-

scalarizing methods use other means.

A. Scalarization Methods

The traditional approach to solving multiobjective optimization problems is by

scalarization. It involves formulating a multiobjective optimization problem through a

real-valued scalarizing function t, which is typically a function of the objective functions

of the multiobjective optimization problem, auxiliary scalar or vector variables, and/or

scalar or vector parameters. Sometimes, the feasible set of the multiobjective opti-

mization problem is additionally restricted by new constraint functions related to the

objective functions of the multiobjective optimization problem and/or the new variables

introduced. The most well-known scalarization techniques and list-related results in the

generation of various classes of solutions of the multiobjective optimization problems

can be found in [80, 220].

Many efficient methods have been proposed in investigating the numerical approach

of multiobjective optimization problems by scalarization. However, there is one prob-

lem: the course of scalarization itself is very complicated in some cases. There is no

doubt that it will increase the complexity of the algorithms from the computation

viewpoint. Furthermore, many problems cannot be scalarized. Although we can scalar-

ize such problems, the solution to these scalarized problems is another big problem.

Thus, developing nonscalarizing approaches to investigate multiobjective optimizations

is necessary in both theory and methodology.
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B. Nonscalarizing Methods

In contrast to scalarizing approaches discussed in Part A, nonscalarizing methods do

not explicitly use a scalarizing function but rather rely on other optimality conditions.

The main idea of nonscalarizing methods is the extension of several well-known methods

from the scalar case to the vector case. Although the advantages and drawbacks of these

and other methods (i.e., scalar case) have been widely discussed in most nonlinear

programming books, these extensions are not trivial works because of the different

structure between multiobjective optimization and scalar-valued optimizations.

The steepest descent method for multiobjective optimization was dealt with in [90]

and [104]. An extension of the projective gradient method to the case of convex con-

strained vector optimization can be found in [106]. Fliege [88] proposed an efficient

interior-point method for approximating the solution set of convex multiobjective opti-

mization problems. A combined homotopy interior-point method for a general multiob-

jective programming problem was dealt with in [186]. Recenlty, Miglierina et al. [161]

constructed a gradient-like method based on suitable directions for box-constrained

multi-objective optimizations without ”a priori” scalarization. The Newton’s Method

for unconstrained multiobjective optimization was conducted by Fliege et al. in this

working paper [89].

It is worth noting that Bonnel et al. [40] proposed the following vector-valued

proximal point algorithm to investigate a convex vector optimization problem in Hilbert

space:

(1). Choose x0 ∈ dom(F );

(2). Given xk, if xk ∈ C − ARGMINw{F (x) | x ∈ X}, then the algorithm stops,

otherwise go to (3);

(3). If xk /∈ C − ARGMINw{F (x) | x ∈ X}, then compute xk+1 such that

xk+1 ∈ C − ARGMINw{F (x) +
αk

2
‖ x− xk ‖2 ek | x ∈ θk}

where θk := {x ∈ X | F (x) ≤C F (xk)}, ek ∈ intC and ‖ ek ‖= 1, C−ARGMINw{F (x) |
x ∈ X} is the weak Pareto optimal solution set of F on X.
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Convergence analysis for the vector-valued proximal point algorithm was conducted

in [40]. They proved that the sequence generated by the vector-valued proximal point

algorithm weakly converges to a weak Pareto optimal solution of the vector optimization

problem under some mild conditions. The main results of [40] generalized the classical

results of Rockafellar’s [173] from the scalar case to the vector case.

In [50], Ceng and Yao proposed the following absolute approximate proximal point

algorithm to investigate a convex vector optimization problem in Hilbert space:

(1). Choose x0 ∈ dom(F );

(2). Given xk, if xk ∈ C − ARGMINw{F (x) | x ∈ X}, then the algorithm stops,

otherwise go to (3);

(3). If xk /∈ C − ARGMINw{F (x) | x ∈ X}, take any vector yk such that

yk ∈ C − ARGMINw{F (x) +
αk

2
‖ x− xk − ωk ‖2 ek | x ∈ θk}

and then compute the next iterate

xk+1 = (1− βk)yk + βkxk

and go to step (2), where θk := {x ∈ X | F (x) ≤C F (xk)}, ek ∈ intC and ‖ ek ‖= 1,

βk ∈ (0, 1) and lim
k→+∞

βk = 0, ωk is an error sequence.

Under some suitable conditions, they also proved that any sequence generated by

the algorithm weakly converges to a weak Pareto optimal solution of the convex vector

optimization problem.

1.3 Vector Variational Inequality

The concept of vector variational inequality in a finite dimensional Euclidean space

was first introduced by Giannessi [97]. Let X0 be a nonempty subset of Rn, and let

fi : K → Rn, i ∈ [1, ...,m] be vector-valued functions. Let

F := (f1, ..., fm), F (x)(v) = (〈f1(x), (v)〉, ..., 〈fm(x), (v))〉 (1.3.1)

for every x ∈ X0 and v ∈ Rn. The scalar product in a Euclidean space is denoted by

〈., .〉.

14



In [97], the vector variational inequality, presented by the function F and the set

X0, is the following problem: finding a x̄ ∈ X0 such that

F (x̄)(x− x̄) /∈ −Rm
+\{0} (1.3.2)

for any x ∈ X0.

The vector variational inequality problems have many important applications in

multiobjective decision-making problems, network equilibrium problems, traffic equi-

librium problems, and so on. Due to these significant applications, the study of vector

variational inequalities has attracted wide attention. In the last twenty years of de-

velopment, existence results of solutions, duality theorems and topological properties

of solution sets of several kinds of vector variational inequalities have been derived.

Chen and Yang [60] investigated general vector variational inequality problems and

vector complementary problems in infinite dimensional spaces. Chen [61] considered

the vector variational inequality problems with a variable ordering structure. A com-

plete review of the main results of the vector variational inequalities can be found in

the monograph [65].

The concept of a gap function is well-known both in the context of convex opti-

mization and variational inequality. The minimization of gap functions is a powerful

tool for solving variational inequality. Chen, Huang and Yang [65] generalized the gap

functions for variational inequalities to vector variational inequalities. The convexity

and differentiability of gap functions are also investigated in the monograph [65].

Vector variational inequalities and their generalizations have been also used as a tool

to solve vector (multiobjective) optimization problems. Several authors have discussed

relations between vector variational inequalities and vector optimization problems under

some convexity or generalized convexity assumptions. Lee [143] showed that a necessary

condition for a point to be a weak Pareto optimal solution of a vector optimization

problem for differentiable functions is that the point be a solution of a vector variational

inequality. Giannessi [98] considered another type vector variational inequality, which

is called the Minty type vector variational inequality for gradients: finding an x̄ ∈ X0

such that for any x ∈ X0, we have

(∇f1(x)
>(x− x̄), ...,∇fm(x)>(x− x̄)) /∈ −Rm

+\{0}. (1.3.3)
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Giannessi [98] provided the equivalence between the Pareto optimal solutions of a dif-

ferentiable convex vector optimization problem and the solutions of a Minty type vector

variational inequality for gradients which is a vector version of the classical Minty vari-

ational inequality for gradients. Moreover, Giannessi [98] also proved the equivalence

between the solutions of weak Minty- and Stampacchia- type vector variational inequal-

ities for gradients and weak Pareto optimal solutions of a differentiable convex vector

optimization problem. Lee [142] studied the equivalence between nondifferentiable con-

vex vector optimization problems and Minty type vector variational inequality and

Stampacchia type vector variational inequality. Yang [212] established the equivalence

between a vector variational-like inequality with a multiobjective programming prob-

lem for generalized invex functions. The vector variational-like inequality approach was

used in [144, 145] to prove some existence theorems for the generalized Pareto opti-

mal solutions of nondifferentiable invex vector optimization problems. The results in

[144, 145] are generalizations of the existence results established in [63, 62] for differen-

tiable and convex vector optimization problems and in [132] for differentiable preinvex

vector optimization problems. Ansari and Yao [5] proved the equivalence among the

Minty vector variational-like inequality, Stampacchia vector variational-like inequality,

and a nondifferentiable and nonconvex vector optimization problem. [5] also established

an existence theorem for generalized weakly efficient solutions of nondifferentiable non-

convex vector optimization problems by using a fixed point theorem. Yang [211] studied

the inverse vector variational inequality problems and their relations with some vector

optimization problems. Yang [213] also gave the equivalence between the solutions of a

Stampacchia vector variational inequality for gradients and the efficient solutions of a

linear fractional vector optimization problem of which the numerators of the objective

functions are linear and the denominators of the objective functions are the same linear

functions. Several existence results of solutions for vector equilibrium problems can be

found in [31, 56, 107, 136] and the references cited therein.

However to the best of our knowledge, there is no numerical method designed that

has yet to solve vector variational inequality problems, even no conceptual ones. Moti-

vated by this situations, in this thesis, we attempt to construct a matrix-valued proxi-

mal point algorithm to solve a weak vector variational inequality problem (which is an

extension of the classical proximal point algorithm proposed by Rockafellar in [173]).
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Chapter 2

Preliminaries

In this chapter, we introduce some definitions, notations and basic results that will be

used later in this thesis.

Let C ⊂ Rm be a closed and convex cone with intC 6= ∅ and C1 = {x ∈ C| ‖x‖ = 1}.
We define, for any y1, y2 ∈ Rm,

y1 ≤C y2 if and only if y2 − y1 ∈ C;

y1 6≤intC y2 if and only if y2 − y1 6∈ intC.

The extended space of Rm is R̄m = Rm ∪ {−∞C ,+∞C}, where −∞C is an imaginary

point, each of the coordinates is −∞ and the imaginary point +∞C is analogously

understood (with the conventions ∞C +∞C = ∞C , µ(+∞C) = +∞C for each positive

number µ). The point y ∈ Rm is a column vector and its transpose is denote by y>.

The inner product in Rm is denoted by 〈., .〉

2.1 Multiobjective Optimization

In this thesis, we consider the following multiobjective optimization problem:

C −MIN{F (x)| x ∈ Rn} (MOP )

where F : Rn → Rm
⋃
{+∞C} and denote by dom(F ) = {x ∈ Rn|F (x) 6= +∞C} the

effective domain of F.

18



It is known that the following constrained multiobjective optimization problem

C −MIN{F0(x)| x ∈ X0} (CMOP )

whereX0 is a nonempty closed convex subset of Rn and F0 : X0 → Rm is a vector-valued

function, is equivalent to (MOP), where

F (x) =

{
F0(x), x ∈ X0,

+∞C , x /∈ X0,

in the sense that they have the same sets of Pareto optimal solutions and the same

sets of weak Pareto optimal solutions.

Definition 2.1.1 [65] Let K ⊂ Rn be convex. A map F : K → Rm ∪ {+∞C} is said

to be C-convex if

F ((1− λ)x+ λy) ≤C (1− λ)F (x) + λF (y)

for any x, y ∈ K and λ ∈ [0, 1]. F is said to be strictly C-convex if

F ((1− λ)x+ λy) ≤intC (1− λ)F (x) + λF (y)

for any x, y ∈ K with x 6= y and λ ∈ (0, 1).

Definition 2.1.2 [221] A map F : K ⊂ X → Rm ∪ {+∞C} is said to be C-lsc at

x0 ∈ K if, for any neighborhood V of F (x0) in Rm, there exists a neighborhood U of x0

in Rn such that F (U ∩K) ⊆ V + C. The map F : K ⊂ X → Rm ∪ {+∞C} is said to

be C-lsc on K if it is C-lsc at every point x0 ∈ K.

Remark 2.1.1 [91] The Rm
+ -lower semicontinuity of F = (F1, ..., Fm) is equivalent to

the (usual) lower semicontinuity of each Fi, i = 1, ...,m.

Definition 2.1.3 [65] Let K ⊂ Rn be convex and F : K → Rm ∪ {+∞C} be a vector-

valued function. x∗ ∈ K is said to be a Pareto optimal solution of F on K if

(F (K)− F (x∗)) ∩ (−C\{0}) = ∅,

x∗ ∈ K is said to be a weak Pareto optimal solution of F on K if

(F (K)− F (x∗)) ∩ (−intC) = ∅.
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Lemma 2.1.1 [91] Let K ⊂ Rn be a closed set, and suppose that W ⊂ Rm is a closed

set such that W + C ⊆ W . Assume that F : K → Rm ∪ {+∞C} is C-lsc. The set

P = {x ∈ K| F (x)− λ ∈ −W} is then closed for all λ ∈ Rm.

Definition 2.1.4 [153] A cone C ⊆ Rm is called Daniell if any decreasing sequence

of Rm having a lower bound converges to its infimum. For example, the cone C = Rm
+

has the Daniell property.

Definition 2.1.5 [177] A set K ⊂ Rm is said to have the domination property with

respect to C, if there exists k ∈ Rm such that K ⊆ k + C.

Lemma 2.1.2 [40] If K ⊂ Rn is a convex set and F : K → Rm ∪ {+∞C} is a proper

C-convex mapping, then

C − ARGMINw{F (x) | x ∈ K} =
⋃

z∈C1

argmin{〈F (x), z〉 | x ∈ K}

where C −ARGMINw{F (x) | x ∈ K} is the weak Pareto optimal solution set of F on

K.

2.2 Vector Variational Inequality

Let X0 be a nonempty subset of Rn and let Ti : X0 → Rn, i ∈ [1, ...,m] be vector-valued

functions. Let

T := (T1, ..., Tm), T (x) = (T1(x), ..., Tm(x)), T (x)(v) = (〈T1(x), v〉, ..., 〈Tm(x), v〉)>

for every x ∈ X0 and v ∈ Rn. For any λ ∈ C1, a mapping λ(T ) : X0 → Rn is defined

by

λ(T )(x) = T (x)λ, x ∈ X0. (2.2.1)

Definition 2.2.1 [84] Let F : X0 → Rn be a mapping. A variational inequality (VI in

short) is a problem of finding x∗ ∈ X0 such that

(VI) 〈F (x∗), (x− x∗)〉 ≥ 0, ∀ x ∈ X0,

where x∗ is the solution of problem (VI).
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Definition 2.2.2 [101] A vector variational inequality (VVI in short) is a problem of

finding x∗ ∈ X0 such that

(VVI) T (x∗)>(x− x∗) 6≤C\{0} 0, ∀ x ∈ X0,

where x∗ is the solution of problem (VVI).

Definition 2.2.3 [65] A weak variational inequality (WVVI in short) is a problem of

finding x∗ ∈ X0 such that

(WVVI) T (x∗)>(x− x∗) 6≤intC 0, ∀x ∈ X0,

where x∗ is called a solution of problem (WVVI). Denote by X∗ the solution set of

problem (WVVI). Let λ ∈ C1, consider the corresponding scalar-valued variational in-

equality problem of finding x∗ ∈ X0 such that:

(VIPλ) 〈λ(T )(x∗), x− x∗〉 ≥ 0, ∀x ∈ X0.

Denote by X∗
λ be the solution set of (VIPλ).

It is worth noticing that the binary relation 6≤intC is closed in the sense that if

xk → x∗ as k →∞, xk 6≤intC 0, then we have x∗ 6≤intC 0 because of the closeness of the

set W =: Rm \ (−intC).

Definition 2.2.4 [84] Let X0 ⊂ Rn be nonempty, closed and convex, and F : X0 → Rn

be a single-valued mapping.

(i) F is said to be monotone on X0 if, for any x1, x2 ∈ X0, there holds

〈F (x1)− F (x2), x1 − x2〉 ≥ 0.

(ii) F is said to be pseudomonotone X0 if, for any x1, x2 ∈ X0 , there holds

〈F (x2), x1 − x2〉 ≥ 0 ⇒ 〈F (x1), x1 − x2〉 ≥ 0.

Clearly, a monotone map is pseudomonotone.

We now give the definitions of C-monotonicity of a matrix-valued map.
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Definition 2.2.5 [65] Let X0 ⊂ Rn be nonempty, closed and convex. T : X0 → Rn×m

is a mapping, which is said to be C-monotone on X0 if, for any x1, x2 ∈ X0, there holds

(T (x1)− T (x2))
>(x1 − x2) ≥C 0.

Proposition 2.2.1 [118] Let X0 and T be defined as in Definition 2.2.4., we have the

following statements:

(i) T is C-monotone if and only if, for any λ ∈ C1, the mapping λ(T ) : X0 → Rn

defined by (2.2.1) is monotone.

(ii) if T is C-monotone, then for any λ ∈ C1, λ(T ) : X0 → Rn is pseudomonotone.

Definition 2.2.6 [85] Let a set-valued map G : X0 ⊂ Rn ⇒ Rn be given, it is said to

be monotone if

〈z − z̄, w − w̄〉 ≥ 0

for all z and z̄ in X0, all w in G(z) and w̄ in G(z̄). It is said to be maximal monotone

if, in addition, the graph

gph(G) = {(z, w) ∈ Rn ×Rn | w ∈ G(z)}

is not properly contained in the graph of any other monotone operator from Rn to Rn.

2.3 Asymptotical Analysis

Definition 2.3.1 [172] Given b ∈ Rm and an m× n real matrix T, the set

M = {x ∈ Rn|Tx = b}

is an affine set in Rn. Therefore, for any S ⊂ Rn there exists a unique smallest affine

set containing S, which is called the affine hull of S and is denoted by affS.

Definition 2.3.2 [172] The relative interior of a convex set S in Rn, which we denoted

by riS, is defined by

riS = {x ∈ affS|∃ε > 0, (x+ εB) ∩ (affS) ⊂ S},

where B is the Euclidean unit ball in Rn.
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Definition 2.3.3 [172] Let S ⊂ Rn be any set. The closure clS and interior intS of

S can be defined by the formula

clS = ∩{S + εB|ε > 0},

intC = {x|∃ε > 0, x+ εB ⊂ S}.

Definition 2.3.4 [17] Let K be a nonempty set in Rn. Then the asymptotic cone of

the set K, denoted by K∞, is the set of all vectors d ∈ Rn that are limits in the direction

of the sequence {xk} ⊂ K, namely

K∞ = {d ∈ Rn| ∃tk → +∞, and xk ∈ K, lim
k→+∞

xk

tk
= d}. (2.3.1)

In the case where K is convex and closed, then, for any x0 ∈ K,

K∞ = {d ∈ Rn| x0 + td ∈ K, ∀ t > 0}. (2.3.2)

Lemma 2.3.1 [175] A set K ⊂ Rn is bounded if and only if its asymptotic cone is just

the zero cone: K∞ = {0}.

Definition 2.3.5 [17] For any given function f : Rn → R ∪ {+∞}, the asymptotic

function of f is defined as the function f∞ such that epif∞ = (epif)∞, where epif =

{(x, t) ∈ Rn ×R|f(x) ≤ t} is the epigraph of f . Consequently, we can give the analytic

representation of the asymptotic function f∞:

f∞(d) = inf{ lim inf
k→+∞

f(tkdk)

tk
: tk → +∞, dk → d}. (2.3.3)

When f is a proper convex and lower semi-continuous (lsc in short) function, we have

f∞(d) = sup{f(x+ d)− f(x)| x ∈ dom f} (2.3.4)

or equivalently

f∞(d) = lim
t→+∞

f(x+ td)− f(x)

t
= sup

t>0

f(x+ td)− f(x)

t
, ∀ d ∈ dom f (2.3.5)

and

f∞(d) = lim
t→0+

tf(t−1d), ∀ d ∈ dom f. (2.3.6)
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Let K ⊂ Rn. Define the scalar-valued indicator function δK as

δK(x) =

{
0, x ∈ K,

+∞, otherwise,

We have that δ∞K = δK∞ , where K ⊂ Rn is a nonempty set.

Definition 2.3.6 [175] The function f : Rn → R ∪ {+∞} is said to be coercive if its

asymptotic function f∞(d) > 0, for all d 6= 0 ∈ Rn and it is said to be counter-coercive

if its asymptotic function f∞(d) = −∞, for some d 6= 0 ∈ Rn.

Proposition 2.3.1 [175] Let f1 and f2 be lsc and proper on Rn, and suppose that

neither is counter-coercive. Then

(f1 + f2)
∞ ≥ f∞1 + f∞2 ,

where the inequality becomes an equality when both functions are convex and domf1 ∩
domf2 6= ∅.

Proposition 2.3.2 [17] Let f : Rn → R ∪ {+∞} be proper convex and lsc. Then the

following three statements are equivalent:

(a) f is coercive;

(b) The optimal set {x ∈ Rn| f(x) = inf f} is nonempty and compact;

(c) lim inf
‖x‖→+∞

f(x)
‖x‖ > 0.

Definition 2.3.7 [175] A set-valued mapping S : Rn ⇒ Rm is said to be outer semi-

continuous (osc in short) at x̄ if

lim sup
x→x̄

S(x) ⊂ S(x̄),

where

lim sup
x→x̄

S(x) :=
⋃

{xk}∈A

lim sup
k→+∞

S(xk)

=
⋃

xk∈A

{u| ∃ xk → x̄, ∃ uk → ū, with uk ∈ S(xk)},

where A = {{xk} ⊂ Rn : xk → x̄ as k → +∞}.
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Lemma 2.3.2 [175] Let S : Rn ⇒ Rm be a set-valued mapping. Then S is outer semi-

continuous if and only if gphS is closed in Rn×Rn; moreover, S is outer semicontinuous

if and only if S−1 is outer semicontinuous.

Proposition 2.3.3 [175] For any extended-real-valued functions f1 and f2, one has

that

lim inf
x→x̄

[f1(x) + f2(x)] ≥ lim inf
x→x̄

f1(x) + lim inf
x→x̄

f2(x) (2.3.7)

if the sum on the right hand side is not ∞−∞. On the other hand, one always has

lim inf
x→x̄

λf(x) = λ lim inf
x→x̄

f(x), (2.3.8)

when λ ≥ 0.

Lemma 2.3.3 [74] If K ⊂ Rn is a nonempty, closed and convex set and each compo-

nent Fi of F is convex, then, the following statements are equivalent:

(a) C − ARGMINw{F (x) | x ∈ K} is nonempty and compact;

(b) argmin{Fi(x) | x ∈ K} is nonempty and compact for every i ∈ [1, ...,m];

(c) K∞ ∩ (∪m
i=1{d ∈ Rn | Fi

∞(d) ≤ 0}) = {0}.
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Chapter 3

Proximal-type Methods for A

Convex Vector Optimization

Problem in Banach Spaces

3.1 Introduction

An important motivation for making analysis about the convergence properties of var-

ious proximal point algorithms is related to The Mesh Independence Principle [3, 111].

The mesh independence principle replies on infinite dimensional convergence results for

predicting the convergence properties of the discrete finite dimensional method. It also

provides a theoretical foundation to justify the refinement strategies and help design the

refinement process. Many practice problems in economics and engineering are modeled

in infinite dimensional spaces, such as optimal control problems, shape optimization

problems, and problems of minimal area surface with obstacles, among many others.

In many shape optimization problems, the function space is only a Banach and not a

Hilbert space. Thus, analyzing the convergence properties of the algorithms in Banach

spaces is important and necessary.

A vector optimization problem (VOP in short) is a variant of multiobjective opti-

mization, which is constructed in infinite dimensional spaces.
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In this chapter, we consider a convex vector optimization problem of finding weak

Pareto optimal solutions for an extended vector-valued map from a uniformly convex

and uniformly smooth Banach space to a real Banach space, with the latter being

ordered by a closed, convex, and pointed cone with a nonempty interior. We propose

both exact and inexact vector-valued proximal point algorithms based on a Lyapunov

function. In both cases, we prove that any sequence generated by the algorithms weakly

converges to a weak Pareto optimal solution of the vector optimization problem.

This chapter is outlined as follows.

In section 3.2.2, we present the basic definitions, notations and some preliminary

results. In section 3.2.3, we propose an exact vector-valued proximal point algorithm

based on a Lyapunov functional, carry out convergence analysis on this algorithm, and

prove that any sequence generated by the algorithms weakly converges to a weak Pareto

optimal solution of the vector optimization problem. In section 3.2.4, we propose an

inexact vector-valued proximal point algorithm based on a Lyapunov functional and

carry out convergence analysis on this algorithm, in which the subproblems are solved

only approximately within a given tolerance. In section 3.2.5, we draw some conclusions

and provide some remarks.

3.2 Preliminaries

In this section, we present some basic definitions and propositions for the proof of our

main results. A Banach space X is said to be strictly convex if ‖ (x+y)
2

‖< 1 for all

x, y ∈ X with ‖ x ‖=‖ y ‖= 1 and x 6= y. It is said to be uniformly convex if

lim
n→∞

‖ xn − yn ‖= 0

for any two sequences {xn} and {yn} in X such that ‖ xn ‖=‖ yn ‖= 1 and

lim
n→∞

‖ xn + yn

2
‖= 1.

A uniformly convex Banach space is reflexive and strictly convex. A Banach space X

is said to be smooth if the limit

lim
t→0

‖ x+ ty ‖ − ‖ x ‖
t

(3.2.1)
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exists for all x, y ∈ U , where U = {x ∈ X :‖ x ‖= 1}. It is said to be uniformly

smooth if the limit (3.2.1) is attained uniformly for x, y ∈ U . We know that the space

Lp(1 < p <∞), lp and Sobolev space W p
m are uniformly convex and uniformly smooth

Banach spaces.

In this chapter, let X be a uniformly convex and uniformly smooth Banach space

with norm ‖ . ‖X , denote by X∗ with norm ‖ . ‖X∗ the dual space of X and Y be a real

Banach space ordered by a pointed, closed and convex cone C with nonempty interior

intC, which defines a partial order ≤C in Y, i. e., for any y1, y2 ∈ Y ,

y1 ≤C y2 if and only if y2 − y1 ∈ C;

and a binary relation

y1 6≤intC y2 if and only if y2 − y1 6∈ intC.

The extended space Ȳ = Y ∪ {−∞C ,+∞C}, where +∞C and −∞C are two distinct

elements not belonging to Y . We denote Y ∗ as the dual space of Y and C∗ as the

positive polar cone of C, i.e.,

C∗ = {z ∈ Y ∗ : 〈z, y〉 ≥ 0,∀y ∈ C}.

Denote by C∗+ = {z ∈ Y ∗ : 〈y, z〉 > 0} for all y ∈ C\{0}.

Our analysis holds without requiring reflexivity of the Banach space Y. This detail

is not negligible, because we do need the cone C to have a nonempty interior. The

prototypical infinite dimensional Banach spaces are the Lp space (1 ≤ p < ∞), and

their most relevant cones are the so-called positive cones consisting of all p-integrable

functions, which are nonnegative almost everywhere. As well known, these cones have

an empty interior, except for the case of L∞, which happens to be nonreflexive. Thus,

our analysis covers at least one meaningful example, where the order is induced by a

cone in an infinite dimensional space.

We state ([119], Lemma 1.1) as the following lemma.

Lemma 3.2.1 Let e ∈ intC be fixed and C∗0 = {z ∈ C∗|〈z, e〉 = 1}, then C∗0 is a

weak∗-compact subset of C∗.
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The normalized duality mapping J : X → 2X∗ is defined by

Jx = {v ∈ X∗ : 〈x, v〉 = ‖x‖2 = ‖v‖2}

where 〈., .〉 stands for the usual dual product in X. We know that the normalized

duality mapping is equal to the identity operator of Hilbert space and has the following

important properties [129]:

A. ‖ x ‖2 − ‖ y ‖2≥ 2〈x− y, j〉, for all x, y ∈ X and j ∈ Jy;

B. if X is smooth, then J is single valued;

C. if X is smooth, then J is norm-to-weak∗ continuous;

D. if X is uniformly smooth, then J is uniformly norm-to-norm continuous on each

bounded subset of X.

Definition 3.2.1 [159] Let X be a normed space. Define a function δX(ε) : [0, 2] →
[0, 1] by the formula

δX(ε) = inf{1− ‖x+ y

2
‖ : x, y ∈ U, ‖x− y‖ ≥ ε}

if X 6= {0}, and if X = {0} by the formula

δX(ε) =

{
0, if ε = 0;

1, if 0 < ε ≤ 2.

Then δX is the modulus of convexity of X.

Definition 3.2.2 [159] Let X be a normed space. Define a function ρX(τ) : (0,∞) →
[0,∞) by the formula

ρX(τ) = sup{1

2
(‖x+ τy‖+ ‖x− τy‖)− 1 : x, y ∈ U}

if X 6= {0}, and if X = {0} by the formula

ρX(τ) =

{
0, if 0 < τ < 1;

τ − 1, if τ ≥ 1.
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Then ρX is the modulus of smoothness of X. Let hX(τ) = ρX(τ)/τ , if the space X is

uniformly smooth. Then,

lim
τ→0+

hX(τ) = 0.

Lemma 3.2.2 [8] Let X be a real Banach space. Let δX(ε) be the modulus of convexity

and ρX(τ) be the modulus of smoothness of the Banach space X. If x, y ∈ X are such

that ‖ x ‖≤M and ‖ y ‖≤M , then we have

〈Jx− Jy, x− y〉 ≥ (2L)−1M2δX(
‖ x− y ‖

2M
) (3.2.2)

〈Jx− Jy, x− y〉 ≥ (2L)−1M2δX∗(
‖ Jx− Jy ‖

2M
) (3.2.3)

and

‖ Jx− Jy ‖≤ 8MhX(16L ‖ x− y ‖ /M) (3.2.4)

where L > 0 is the constant in Figiel′s inequalities [91].

Definition 3.2.3 [40] The set (F (x0) − C) ∩ F (X) is said to be C − complete, if for

every sequence {αn} ⊂ X, with α0 = x0 such that

F (αn+1) ≤C F (αn)

for all n ∈ N , there exists α ∈ X such that F (α) ≤C F (αn) for all n ∈ N .

Definition 3.2.4 [40] A map F : X → Y ∪ {+∞C} is said to be positively lower

semicontinuous if for every z ∈ C∗, the scalar-valued function x → 〈F (x), z〉 is lower

semicontinuous.

Let’s consider following vector optimization problem:

C −Minw{F (x)|x ∈ X} (V OP )

where X is a uniformly convex and uniformly smooth Banach space and Y is a real

Banach space, F : X → Y ∪ {+∞C} is C-convex and denote by

dom(F ) = {x ∈ X|F (x) 6= +∞C}

the effective domain of F.
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Notice that any constrained vector optimization problem

C −Minw{F0(x)|x ∈ X0} (CV OP )

where F0 : X0 → Y is C − convex and X0 is a nonempty closed convex subset of X, is

equivalent to the extended-valued (VOP) with

F (x) =

{
F0(x), if x ∈ X0;

+∞, if x /∈ X0.

in the sense that they have the same set of weak Pareto optimal solutions.

Lemma 3.2.3 [8] Let s > 0 and X be a Banach space. Then X is uniformly convex

if and only if there exists a continuous, strictly increasing and convex function g :

[0,∞) → [0,∞), g(0) = 0 such that

‖ x+ y ‖2≥‖ x ‖2 +2〈y, j〉+ g(‖ y ‖)

for all x, y ∈ {z ∈ X :‖ z ‖≤ s} and j ∈ Jx.

We now introduce a real-valued function in the Banach space, which has similar

properties with ‖ x− y ‖2, is a Hilbert space.

Definition 3.2.5 Let X be a uniformly convex and uniformly smooth Banach space.

The Lyapunov functional L : X ×X → R+ is defined by

L(x, y) =‖ x ‖2 −2〈x, Jy〉+ ‖ y ‖2

for x, y ∈ X. It is easy to see that

(‖ x ‖ + ‖ y ‖)2 ≥ L(x, y) ≥ (‖ x ‖ − ‖ y ‖)2 (3.2.5)

for any x, y ∈ X.

Proposition 3.2.1 [8] Let X be a uniformly convex and uniformly smooth Banach

space, {yn} and {zn} be two sequences of X. If L(yn, zn) → 0 and either {yn} or {zn}
is bounded, then we have that ‖yn − zn‖ → 0.
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Proposition 3.2.2 [8] Let X be a uniformly convex and uniformly smooth Banach

space and X0 be a nonempty, closed and convex subset of X. Then there exists a

unique element x∗ ∈ X0 such that

L(x∗, x) = inf{L(z, x) : z ∈ X0}. (3.2.6)

For every nonempty, closed and convex subset X0 of a uniformly convex and uni-

formly smooth Banach space X, we can define a map PX0 of X onto X0 by PX0x = x∗,

where x∗ is defined by (3.2.6). The map PX0 is coincident with the metric projection

when X is a Hilbert space.

Lemma 3.2.4 [171] Let X be a reflexive Banach space with X∗ being strictly convex. f

is a proper lower semicontinuous convex function and J is a normalized duality mapping

of X into X∗. Then, for all λ > 0 the mapping T = ∂f + λJ maps X onto X∗.

3.3 Exact Vector-valued Proximal-type Method in

Banach Spaces

Lemma 3.3.1 If S ⊂ X is a convex set and F : S → Y ∪ {+∞C} is a proper and

C − convex map, then

C − ARGMINw{F (x) | x ∈ S} =
⋃

z∈C∗0

argmin{〈F (x), z〉 | x ∈ S}

where C − ARMINw{F (x) | x ∈ S} is the weak Pareto optimal solution set of F .

This follows immediately from Theorem 2.1 in [40].

Let {ek} ⊂ intC be such that ‖ ek ‖= 1 and ε > 0. For any given xk, let θk = {x ∈
X | F (x) ≤C F (xk)}. Here we propose the following proximal-type method based on

Lyapunov functional (PML, in short):

Step (1) : Take x0 ∈ domF ;

Step (2) : Given any xk, if xk ∈ C−ARGMINw{F (x) | x ∈ X}, then the algorithm

stops, otherwise goes to step (3);
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Step (3): If xk /∈ C − ARGMINw{F (x) | x ∈ X}, then compute xk+1 such that

xk+1 ∈ C − ARGMINw{F (x) +
εk

2
L(x, xk)ek | x ∈ θk} (3.3.1)

where εk ∈ (0, ε]. Go to step (2).

We now present the main results of this section.

Theorem 3.3.1 Let F : X → Y ∪{+∞C} be a proper C−convex and positively lower

semicontinuous mapping. Then any sequence {xk} generated by the method (PML) is

well-defined.

Proof. Let x0 ∈ domF be an initial point and assume that the algorithm has reached

step k. We show that the next iterative xk+1 does exist. Take any z ∈ C∗0 and define

a new function φk(x) : X → R ∪ {+∞} as follows:

φk(x) = 〈F (x), z〉+ δθk
(x) +

εk

2
L(x, xk)〈ek, z〉 (3.3.2)

where

δθk
(x) =

{
0, if x ∈ θk;

+∞, if x /∈ θk.

As F is proper C -convex and positively lower semicontinuous, it is clear that θk is a

convex and closed set by its definition. Since xk ∈ θk, θk is nonempty. It follows that

〈F (x), z〉+ Iθk
(x) is proper convex and lower semicontinuous with respect to x. By the

definition of L(x, xk), we know that

L(x, xk) = ‖x‖2 − 2〈x, Jxk〉+ ‖Jxk‖2 = ‖Jx‖2 − 2〈x, Jxk〉+ ‖Jxk‖2.

Hence

∇xL(x, xk) = 2Jx− 2Jxk.

As {ek} ⊂ intC and the definition of C∗0, we have that 〈ek, z〉 > 0. Now we can define

ωk = εk

2
〈ek, z〉, it is easy to check that ωk > 0 for all k ∈ N . From Lemma 3.2.3, we

know that

rge{∂x(〈F (x), z〉+ Iθk
(x)) + ωkJx} = X∗.

It follows that

rge{∂x(〈F (x), z〉+ Iθk
(x)) + ωkJx− ωkJxk} = X∗.
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That is

0 ∈ rge{∂x(〈F (x), z〉+ Iθk
(x)) + ωkJx− ωkJxk}.

Thus the subdifferential of φk(x) has some zeros, which are minimizers of φk(x). From

Lemma 3.3.1, we have that

xk+1 ∈ arg minφk(x) ⊂ C − ARGMINw{F (x) +
εk

2
L(x, xk)ek + Iθk

(x)ek}.

xk+1 is a solution of (3.3.1). The proof is complete. 2

Theorem 3.3.2 Let the assumptions in Theorem 3.3.1 hold and suppose further that

the set (F (x0)− C) ∩ F (X) is C-complete and X̄ is nonempty and compact, where X̄

is the weak Pareto optimal solution set of F over X. The sequence {xk} generated by

the method (PML) is then bounded.

Proof. Based on the method (PML), we know that if the sequence stops at some

iteration, it will be a constant thereafter. We now assume the sequence {xk} will not

stop after a finite step k. Define E ⊂ X as follows

E = {x ∈ X | F (x) ≤C F (xk), ∀ k ∈ N}. (3.3.3)

E is nonempty based on the fact that the set (F (x0) − C) ∩ F (X) is C-complete. As

xk+1 is a weak Pareto optimal solution of problem (3.3.1), there exists zk ∈ C∗0 such

that xk+1 is a solution of the following problem:

(P ∗
k ) min {φk(x)| x ∈ X}

with z = zk. Thus xk+1 satisfies the first-order necessary optimality condition of prob-

lem (P ∗
k ). By the definition of θk, we have that θk ⊂ domF , ∅ 6= dom(Iθk

) ⊂ domF .

Thus, we derive that there exists µk ∈ ∂{〈F (.) + εk

2
L(., xk)ek, zk〉(xk+1)}. Through

Theorem 3.23 of [170], one has that

〈x− xk+1, µk〉 ≥ 0, ∀x ∈ θk. (3.3.4)

We define another function as follows:

ϕk(x) = 〈F (x), zk〉.
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From (3.3.2) we know that there exists some γk ∈ ∂ϕk(xk+1) such that

µk = γk +
εk

2
〈ek, zk〉(2Jxk+1 − 2Jxk). (3.3.5)

Now taking any x∗ ∈ E, it is clear that x∗ ∈ θk and we derive

〈x∗ − xk+1, γk +
εk

2
〈ek, zk〉(2Jxk+1 − 2Jxk)〉 ≥ 0. (3.3.6)

Based on the definition of the subgradient of ϕk,

〈F (x∗)− F (xk+1), zk〉 ≥ 〈x∗ − xk+1, γk〉.

As x∗ ∈ E and zk ∈ C∗0 , and it follows that 〈F (x∗) − F (xk+1), zk〉 ≤ 0 and it follows

that 〈x∗ − xk+1, γk〉 ≤ 0. From (3.3.6), we have

εk

2
〈ek, zk〉〈x∗ − xk+1, X2Jxk+1 − 2Jxk〉 ≥ 0.

By defining ηk = εk

2
〈ek, zk〉, it is easy to check that ηk > 0. That is

2〈x∗ − xk+1, Jxk+1〉 − 2〈x∗ − xk+1, Jxk〉

= 2〈x∗, Jxk+1〉 − 2〈xk+1, Jxk+1〉 − 2〈x∗, Jxk〉+ 2〈xk+1, Jxk〉

= ‖x∗‖2 − 2〈x∗, Jxk〉+ ‖xk‖2 − ‖x∗‖2 + 2〈x∗, Jxk+1〉 − ‖xk+1‖2

−‖xk+1‖2 + 2〈xk+1, Jxk〉 − ‖xk‖2 ≥ 0. (3.3.7)

By the definition of Lyapunov functional L(x, y) and (3.3.7), we obtain the following

inequality:

L(xk+1, xk) ≤ L(x∗, xk)− L(x∗, xk+1). (3.3.8)

Summing up inequality (3.3.8), we have
∞∑

k=0

L(xk+1, xk) ≤ L(x∗, x0) < +∞. It follows

that

lim
k→+∞

L(xk+1, xk) = 0. (3.3.9)

From the property (3.2.5) of Lyapunov functional, we have that

(‖ xk+1 ‖ − ‖ x∗ ‖)2 ≤ L(x∗, xk+1) ≤ L(x∗, xk) ≤ L(x∗, x0) ≤ (‖ x0 ‖ + ‖ x∗ ‖)2

which implies

‖ xk+1 ‖≤‖ x0 ‖ +2‖x∗‖ ∀ k. (3.3.10)

We conclude that {xk} is bounded. The proof is complete. 2
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Theorem 3.3.3 Let the assumptions in Theorem 3.3.2 hold. Then any weak cluster

point of {xk} belongs to X̄.

Proof. As {xk} is bounded, it has some weak cluster points. Next we will show that

all of weak cluster points are weak Pareto optimal solutions of the problem (VOP). Let

x̂ be one of the weak cluster points of {xk} and {xkj
} be a subsequence of {xk}, which

weakly converges to x̂. For any z ∈ C∗
0 , we define the function ψz : X → R ∪ {+∞}

as ψz(x) = 〈F (x), z〉. Since F is positively lower semicontinuous and C-convex, ψz

is also lower semicontinuous and convex, it follows that ψz(x̂) ≤ lim inf
j→+∞

ψz(xkj
). By

the fact that xk+1 ∈ θk, we have that F (xk+1) ≤C F (xk) for every k ∈ N . Thus,

ψz(xk+1) ≤ ψz(xk). Therefore,

ψz(x̂) ≤ lim inf
j→+∞

ψz(xkj
) = inf{ψz(xk)}.

Hence for any z ∈ C∗
0 , we have ψz(x̂) ≤ ψz(xk), which implies

F (x̂) ≤C F (xk). (3.3.11)

Assume that x̂ is not a weak Pareto optimal solution of the problem (VOP), then there

exists x̄ ∈ X such that F (x̄) ≤intC F (x̂). Taking zk ∈ C∗0 as the same as in the

problem (P ∗
k ), from Lemma 3.2.1 we know that C∗0 is weak∗-compact. By virtue of the

Banach-Alaoglu Theorem, there exists z̄ ∈ C∗0 such that z̄ is a weak∗-cluster point of

{zkj
}. Without loss of generality, we assume that

w∗ − lim
j→+∞

zkj
= z̄.

It follows that

〈F (x̄)− F (x̂), zkj
〉 ≥ 〈F (x̄)− F (xkj+1), zkj

〉 = ϕkj
(x̄)− ϕkj

(xkj+1), (3.3.12)

where ϕkj
is defined as the proof of Theorem 3.3.2. From (3.3.5), there exists some

γkj
∈ ∂ϕkj

(xkj+1) such that

ϕkj
(x̄)− ϕkj

(xkj+1) ≥ 〈x̄− xkj+1, γkj
〉

= 〈x̄− xkj+1, µkj
〉 − ηkj

〈x̄− xkj+1, 2Jxkj+1 − 2Jxkj
〉.

Since xkj+1 is a solution of problem (P ∗
kj

), we have 〈x̄− xkj+1
, µkj

〉 ≥ 0, and we can see

that

ϕkj
(x̄)− ϕkj

(xkj+1) ≥ −ηkj
〈x̄− xkj+1, 2Jxkj+1 − 2Jxkj

〉
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−ηkj
〈x̄− xkj+1, Jxkj+1 − Jxkj

〉 ≥ −ηkj
‖ Jxkj+1 − Jxkj

‖‖ x̄− xkj+1 ‖ . (3.3.13)

By Proposition 3.2.1, (3.3.9) and the fact that {xk} is bounded, it is easy to check that

lim
j→+∞

‖ xkj+1 − xkj
‖= 0. (3.3.14)

From inequality (3.2.4), we have

‖ Jxkj+1 − Jxkj
‖‖ x̄− xkj+1 ‖≤ 8MhX(16L ‖ xkj+1 − xkj

‖ /M) ‖ x̄− xkj+1 ‖

where we use the fact that {xk} is bounded byM . Meanwhile, by (3.3.14) and Definition

3.2.2, we obtain that

lim
j→+∞

hX(16L‖xkj+1 − xkj
‖/M) = 0. (3.3.15)

Thus, based on (3.3.14), (3.3.15) and the boundedness of {xk}, we draw the conclusion

that the limit of the right expression in (3.3.13) vanishes as j →∞. It is clear that

〈F (x̄)− F (x̂), z̄〉 ≥ 0. (3.3.16)

Then we obtain that (3.3.16) contradicts with the facts that z̄ ∈ C∗0 and the assump-

tion F (x̄) ≤intC F (x̂), thus we can conclude that x̂ is a weak Pareto optimal solution

of the problem (VOP). The proof is complete. 2

Theorem 3.3.4 Consider the same assumptions as those in Theorem 3.3.2 and further

suppose that the normalized dual mapping J is weak-to-weak continuous. Then the

whole sequence {xk} weakly converges to a weak Pareto optimal solution of the problem

(VOP).

Proof. Let’s consider the contrary, assume that there are two x̂ and x̃ are weak cluster

points of {xk}, and that {xkj
} and {xki

}, which are two subsequence of {xk}, which

satisfy

w − lim
j→+∞

xkj
= x̂, w − lim

i→+∞
xki

= x̃.

Thus, it is clear from Theorem 3.3.3 that x̂ and x̃ are weak Pareto optimal solutions

of the problem (VOP). Furthermore, from (3.3.11), we obtain that x̂ and x̃ ∈ E, that
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is L(x̂, xk) and L(x̃, xk) are bounded and convergent. Let l̄1 and l̄2 be their limits

respectively. Then we have

lim
k→+∞

(L(x̂, xk)− L(x̃, xk)) = l̄1 − l̄2. (3.3.17)

On the other hand, from the definition of the Lyaponov functional, we obtain that

L(x̂, xk)− L(x̃, xk) =‖ x̂ ‖2 −2〈x̂− x̃, Jxk〉− ‖ x̃ ‖2 . (3.3.18)

Let W be the limit of (3.3.18), taking k = kj in (3.3.18) and using the weak-to-weak

continuity of normalized duality map J , we can derive that W = −L(x̂, x̃). Repeating

with k = ki, we have W = L(x̃, x̂). It follows that

L(x̂, x̃) + L(x̃, x̂) = 0. (3.3.19)

That is

〈J(x̂)− J(x̃), x̂− x̃〉 = 0.

By (3.2.2), we have

0 ≥ (2L)−1M2δX(
‖ x̂− x̃ ‖

2M
).

From Definition 3.2.1, we derive that

‖ x̂− x̃ ‖= 0.

Thus, we obtain that x̂ = x̃, which proves the uniqueness of the weak cluster point of

{xk}. The proof is complete. 2

3.4 Inexact Vector-valued Proximal-type Method in

Banach Spaces

As in Eckstein [78], the ideal form of the proximal point algorithm is often impractical

since, in most cases, iteratively updating xk+1 exactly is either impossible or is the same

as solving the original problem 0 ∈ Tx. Moreover, there seems to be little justification

in the effort required to solve the problem accurately when the iterate is far from the
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solution point. Rockafellar [173] also gave an inexact variant of the proximal point

algorithm, that is finding zk+1 ∈ H such that

zk+1 + ckv
k+1 − zk = βk

where βk is regarded as the error sequence. It was shown that, if ‖ βk ‖→ 0 quickly

enough such that
∞∑

k=0

‖ βk ‖<∞,

then zk is weakly convergent to z with 0 ∈ T (z). Because of its relaxed accuracy

requirement, the inexact proximal point algorithm is more practical than the exact one.

Thus the study of inexact proximal point algorithm has received extensive attention

and various forms of the algorithm have been developed for scalar-valued optimization

problems and variational inequality problems.

For any given xk, let θk = {x ∈ X | F (x) ≤C F (xk)}, εk ∈ (0, ε] and ε > 0. The

sequence {ek} ⊂ intC such that ‖ ek ‖= 1. We now present an inexact version of vector-

valued generalized proximal point algorithm based on Lyapunov functional (GPPAL,

in short):

Step (1) : Take x0 ∈ domF ;

Step (2) : Given xk, if xk ∈ C − ARGMINw{F (x) | x ∈ X}, then the algorithm

stops; otherwise, go to step (3); and

Step (3): If xk /∈ C − ARGMINw{F (x) | x ∈ X}, then compute xk+1 such that

xk+1 ∈ C − ARGMINw{F (x) +
εk

2
(L(x, xk)− 〈x, βk+1〉)ek | x ∈ θk}, (3.4.1)

go to step (2), where {βk} ⊂ X∗ is regarded as the error sequence, which is satisfied

with ∞∑
k=0

‖ βk ‖X∗< +∞ (3.4.2)

and ∞∑
k=0

〈xk, βk〉 exists and is finite. (3.4.3)

Before we show the main results of this section, we present the following assumptions

of the initial point x0 and the solution sets:
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(A) X̄ is nonempty and compact;

(B) the set (F (x0)−C)∩F (X) is C− complete, which means that for all sequences

{an} ⊂ X, with a0 = x0, such that F (an+1) ≤C F (an) for all n ∈ N , there exists a ∈ X
such that F (a) ≤C F (an) for all n ∈ N .

Theorem 3.4.1 Let F : X → Y ∪ {+∞C} be a proper, C- convex and positively

lower semicontinuous mapping. Then, any sequence {xk} generated by the algorithm

(GPPAL) is well-defined.

Proof Let x0 ∈ domF be the initial point and we assume that the algorithm has

reached step k, then we will show that the next iterative xk+1 does exist. Take any

z ∈ C∗0 and define a function φk(x) : X → R ∪ {+∞} as follows:

φk(x) = 〈F (x), z〉+ Iθk
(x) +

εk

2
(L(x, xk)− 〈x, βk+1〉)〈ek, z〉 (3.4.4)

where

Iθk
(x) =

{
0, if x ∈ θk;

+∞, if x /∈ θk.

From the assumptions that F is C -convex and positively lower semicontinuous, it is

clear that θk is a convex set by its definition. Since xk ∈ θk, θk is nonempty. It follows

that 〈F (x), z〉 + Iθk
(x) is convex and lower semicontinuous with respect to x. By the

definition of L(x, xk), we know that

L(x, xk) = ‖x‖2 − 2〈x, Jxk〉+ ‖Jxk‖2 = ‖Jx‖2 − 2〈x, Jxk〉+ ‖Jxk‖2.

Hence

∇xL(x, xk) = 2Jx− 2Jxk.

By the fact of {ek} ⊂ intC and the definition of C∗0, we have that 〈ek, z〉 > 0. Now we

can define ωk = εk

2
〈ek, z〉, it is easy to check that ωk > 0 for all k ∈ N . From Lemma

3.2.3, we know that

rge{∂x(〈F (x), z〉+ Iθk
(x)) + ωkJx} = X∗.

It follows that

rge{∂x(〈F (x), z〉+ Iθk
(x)) + ωkJx− ωkJxk − ωkβk+1} = X∗.
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That is

0 ∈ rge{∂x(〈F (x), z〉+ Iθk
(x)) + ωkJx− ωkJxk − ωkβk+1}.

Thus the subdifferential of φk(x) has some zeros, which are minimizers of φk(x). Thus,

the subdifferential of φk(x) has some zeroes, which are minimizers of φk(x). By Lemma

3.3.1, we conclude that such a minimizer satisfies

xk+1 ∈ arg minφk(x) ⊂ C −ARGMINw{F (x) +
εk

2
(L(x, xk)−〈x, βk+1〉)ek + Iθk

(x)ek}.

Hence, it satisfies (3.4.1) and can be taken as xk+1. The proof is complete. 2

Theorem 3.4.2 Let the assumptions in Theorem 3.4.1 hold. Furthermore suppose

that the assumption (A) and (B) hold. The sequence {xk} generated by the algorithm

(GPPAL) is then bounded.

Proof. From the algorithm (GPPAL), we know that if the sequence stops at some

iterations, it will be a constant thereafter. Now we assume the sequence {xk} will not

stop after a finite step k. Define E ⊂ X as follows

E = {x ∈ X | F (x) ≤C F (xk) ∀k ∈ N}.

It is easy to check E is nonempty by the fact that the set (F (x0) − C) ∩ F (X) is C-

complete. Since xk+1 is a weak Pareto optimal solution of problem (3.4.1) and there

exists zk ∈ C∗0 such that xk+1 is a solution of following problem

(P̄k) min {φk(x)| x ∈ X}

with z = zk. Thus, xk+1 satisfies first-order necessary optimality condition of problem

(P̄k). By the definition of θk, we have that θk ⊂ domF , ∅ 6= dom(Iθk
) ⊂ domF , then

we derive that there exits µk ∈ ∂{〈F (.) + εk

2
(L(., xk) − 〈., βk+1〉)ek, zk〉(xk+1)}. By the

virtue of Theorem 3.23 of [170], one has that

〈x− xk+1, µk〉 ≥ 0 (3.4.5)

for any x ∈ θk. We can now define another function as follows:

ϕk(x) = 〈F (x), zk〉.
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From (3.4.4) we know that there exists some γk ∈ ∂ϕk(xk+1) such that

µk = γk +
εk

2
〈ek, zk〉(2Jxk+1 − 2Jxk − βk+1). (3.4.6)

Taking x∗ ∈ E, clearly x∗ ∈ θk and we can derive the following:

〈x∗ − xk+1, γk +
εk

2
〈ek, zk〉(2Jxk+1 − 2Jxk − βk+1)〉 ≥ 0. (3.4.7)

From the definition of the subgradient of ϕk, it follows that

〈F (x∗)− F (xk+1), zk〉 ≥ 〈x∗ − xk+1, γk〉.

By the fact x∗ ∈ E and zk ∈ C∗0, it is easy to check that

〈F (x∗)− F (xk+1), zk〉 ≤ 0

and it follows that 〈x∗ − xk+1, γk〉 ≤ 0. From (3.4.7) we obtain that

εk

2
〈ek, zk〉〈x∗ − xk+1, 2Jxk+1 − 2Jxk − βk+1〉 ≥ 0. (3.4.8)

Now we can define ηk = εk

2
〈ek, zk〉, it is easy to check that ηk > 0. By the definition of

Lyapunov functional L(x, y) and (3.4.8), we can derive the following inequalities:

L(x∗, xk)− L(x∗, xk+1)− L(xk+1, xk)− 〈x∗ − xk+1, βk+1〉 ≥ 0,

L(xk+1, xk) ≤ L(x∗, xk)− L(x∗, xk+1) + 〈xk+1 − x∗, βk+1〉. (3.4.9)

Thus, we obtain that for all l ≥ 1

L(x∗, xl) ≤ L(x∗, x0)−
l−1∑
k=0

L(xk+1, xk) +
l−1∑
k=0

〈xk+1 − x∗, βk+1〉.

From the property (3.4.2) of the error sequence, we know that

0 ≤
∞∑

k=0

〈x∗, βk+1〉 ≤
∞∑

k=0

‖ βk+1 ‖‖ x∗ ‖< +∞,

and
∞∑

k=0

〈x∗, βk+1〉 is convergent. Combining with (3.4.3), one has that
∞∑

k=0

〈xk+1 −

x∗, βk+1〉 exists and is finite. It follows that

Q = sup
l≥1

{
l−1∑
k=0

〈xk+1 − x∗, βk+1〉} (3.4.10)
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From the property (3.2.5) of Lyapunov functional L(x, y) and (3.4.10), we obtain that

(‖ xl ‖ − ‖ x∗ ‖)2 ≤ L(x∗, xl) ≤ L(x∗, x0) +Q ≤ (‖ x0 ‖ + ‖ x∗ ‖)2 +Q

which implies that

‖ xl ‖≤
√

(‖ x0 ‖ + ‖ x∗ ‖)2 +Q+ ‖ x∗ ‖≤M

where M is any real number larger than
√

(‖ x0 ‖ + ‖ x∗ ‖)2 +Q+ ‖ x∗ ‖ for all l ≥
1. Since X̄ is nonempty compact, we conclude that {xk} is bounded. Summing up

inequality (3.4.9) and from (3.4.10), we have

∞∑
k=0

L(xk+1, xk) ≤ L(x∗, x0) +
∞∑

k=0

〈xk+1 − x∗, βk+1〉 < +∞.

It follows that

lim
k→+∞

L(xk+1, xk) = 0. (3.4.11)

Theorem 3.4.3 Let assumptions in Theorem 3.4.2 hold. Then any weak cluster points

of {xn} belong to X̄.

Proof. Since {xk} is bounded, it has some weak cluster points. Next we will show that

all of weak cluster points are weak Pareto optimal solution of problem problem (VOP).

Let x̂ be one of the weak cluster points of {xk} and {xkj
} be a subsequence of {xk}, which

weakly converges to x̂. We define, for each z ∈ C∗0, the function ψz : X → R∪{+∞} as

ψz(x) = 〈F (x), z〉. Since F is positively lower semicontinuous and C-convex, ψz is also

lower semicontinuous and convex, it follows that ψz(x̂) ≤ lim inf
j→+∞

ψz(xkj
). By the fact

that xk+1 ∈ θk, we can see that F (xk+1) ≤C F (xk) for k ∈ N . Thus, ψz(xk+1) ≤ ψz(xk).

Therefore,

ψz(x̂) ≤ lim inf
j→+∞

ψz(xkj
) = inf{ψz(xk)}.

Hence, we have that for all z ∈ C∗0

ψz(x̂) ≤ ψz(xk),

which implies

F (x̂) ≤C F (xk).

Assuming that x̂ is not the weak Pareto optimal solution of problem (VOP), then there

exists x̄ ∈ X such that F (x̄) ≤intC F (x̂). Taking zk ∈ C∗0 to be the same as that in
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problem (P̄k), from Lemma 3.2.1 we know that C∗0 be weak∗-compact. By virtue of

Banach-Alaoglu Theorem, there exists z̄ ∈ C∗0 such that z̄ is a weak∗-cluster point of

{zkj
}. Without loss of generality, we can assume that

w∗ − lim
j→+∞

zkj
= z̄ (3.4.12)

thus we have that

〈F (x̄)− F (x̂), zkj
〉 ≥ 〈F (x̄)− F (xkj+1), zkj

〉 = ϕkj
(x̄)− ϕkj

(xkj+1), (3.4.13)

where ϕkj
is defined in the proof of Theorem 3.4.2. From (3.4.6), there exist some

γkj
∈ ∂ϕkj

(xkj+1) such that

ϕkj
(x̄)− ϕkj

(xkj+1) ≥ 〈x̄− xkj+1, γkj
〉

= 〈x̄− xkj+1, µkj
〉 − ηkj

〈x̄− xkj+1, Jxkj+1 − Jxkj
− βkj+1〉.

As xkj+1 is the solution of problem (P̄kj
), we have 〈x̄− xkj+1, µkj

〉 ≥ 0 and we can see

that

ϕkj
(x̄)− ϕkj

(xkj+1) ≥ −ηkj
〈x̄− xkj+1, Jxkj+1 − Jxkj

〉 − ηkj
〈xkj+1 − x̄, βkj+1〉

≥ −ηkj
‖ Jxkj+1 − Jxkj

‖‖ x̄− xkj+1 ‖ −ηkj
‖ βkj+1 ‖‖ xkj+1 − x̄ ‖ . (3.4.14)

By Proposition 3.2.1 and (3.4.11) and the fact of the boundedness of {xk}, we obtain

that

lim
j→+∞

‖ xkj+1 − xkj
‖= 0. (3.4.15)

From inequality (3.2.4), we have

‖ Jxkj+1 − Jxkj
‖‖ x̄− xkj+1 ‖≤ 8MhX(16L ‖ xkj+1 − xkj

‖ /M) ‖ x̄− xkj+1 ‖

where we use the fact that {xk} is bounded byM . Meanwhile, by (3.4.15) and Definition

3.2.2, we obtain the following:

lim
j→+∞

hX(16L‖xkj+1 − xkj
‖/M) = 0. (3.4.16)

Thus, through (3.4.2), (3.4.15), (3.4.16) and by the fact of the boundedness of {xk}, we

draw the conclusion that the limit of the right-hand expression in (3.4.14) disappears

as j →∞. Clearly,

〈F (x̄)− F (x̂), z̄〉 ≥ 0. (3.4.16)
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Then we can see that (3.4.16) contradicts with the facts that z̄ ∈ C∗0 and the assump-

tion F (x̄) ≤intC F (x̂), thus we can conclude that x̂ is a weak Pareto optimal solution

of problem (VOP). The proof is complete. 2

Theorem 3.4.4 Consider the same assumptions in Theorem 3.4.3 and assume that

the normalized dual mapping J is weak-to-weak continuous. Then the whole sequence

{xk} weakly converges to a weak Pareto optimal solution of problem (VOP).

Proof This is similar to the proof of Theorem 3.3.4, and thus we do not include it

anymore. The proof is complete. 2

3.5 Remarks and Conclusions

In this chapter, we considered a convex vector optimization problem of finding weak

Pareto optimal solutions for an extended vector-valued map from a uniformly convex

and uniformly smooth Banach space to a real Banach space with respect to the partial

order induced by a closed, convex, and pointed cone with a nonempty interior. For this

problem, we developed an extension of the proximal point method for scalar-valued con-

vex optimization. In this extension, the subproblems involve the finding of weak Pareto

optimal points for the suitable regularization of the original map through the Lyapunov

functional. We presented both exact and inexact versions, where the subproblems are

solved only approximately within a relative tolerance. In both cases, we proved the

weak convergence of the generated sequence to a weak Pareto optimal solution of the

vector optimization problem.

Remark 3.5.1 The difference between the algorithm (GPPAL) and the algorithm (PML)

is that there is an error sequence {βk} in the step (3) of the algorithm (GPPAL) such

that the subproblems are solved only approximately. When the sequence {βk} = 0, the

two algorithm are coincident with each other. Thus, the algorithm (PML) is a special

case of the algorithm (GPPAL) and the algorithm (GPPAL) is more practical than the

algorithm (PML), due to its relaxed accuracy requirement.

45



Chapter 4

Generalized Proximal Point

Algorithms for Multiobjective

Optimization Problems

4.1 Introduction

The simple idea behind each proximal-like method to solve convex minimization prob-

lems is to replace the strictly quadratic term in the regularized subproblem by non-

quadratic ones.

The notion of a Bregman distance function originated in [42] and the name was

firstly used in optimization problems and their related topics by Censor and Lent [53]

as a natural extension of the quadratic term in the classical proximal point algorithm.

Since then various proximal point algorithms based on Bregman distance functions have

been extensively used for scalar-valued optimization problems and other problems (e.g.,

[28, 54, 58, 72, 134] in finite dimensional spaces, [184] Hilbert spaces and [46, 47] Banach

spaces.)

In this chapter, we consider a convex multiobjective optimization problem (MOP, in

short) of finding weak Pareto optimal solutions for a map from Rn to Rm∪{+∞C}, with

the latter being ordered by the positive orthant. We construct a generalized proximal
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point algorithm based on a vector-valued Bregman distance function for solving the

problem (MOP), carry out convergence analysis on the algorithm using asymptotic

cones and asymptotic functions, and prove the sequence generated by the algorithm

converges to a weak Pareto optimal solution of the problem (MOP). The main purpose

of this chapter is to extend some important and interesting results in ([40], [47], [60],

[53], [58]) to more general cases.

The outline of this chapter is as follows.

In section 4.2, we present the basic definitions, notations, and preliminary results.

In section 4.3, we propose a vector-valued generalized proximal point algorithm and

carry out convergence analysis. In section 4.4, we draw some conclusions.

In this chapter, let C = Rm
+ .

4.2 Vector-valued Bregman Distance Functions

Definition 4.2.1 [65] Let F : K ⊂ Rn → Rm be a vector-valued function. F is said to

be Gâteaux differentiable at x0 ∈ K if there exists an n×m matrix DF (x0) such that,

for any v ∈ Rn,

DF (x0)v = lim
t↘0

F (x0 + tv)− F (x0)

t
.

DF (x0) is called the Gâteaux derivative of F at x0. F is said to be Gâteaux differentiable

on K, if F is Gâteaux differentiable at every interior point of K.

Definition 4.2.2 Vector-valued Bregman Distance

Let G : Rn → Rm∪{+∞C} be a proper, strictly C- convex and C-lsc map with closed

convex domain K0 := dom(G) and intK0 6= ∅. Suppose that G is Gâteaux differentiable

on K0 with Gâteaux derivative DG(.). The vector-valued Bregman distance with

respect to G is the map BG : K0 × intK0 → Rm defined by

BG(z, x) := G(z)−G(x)−DG(x)>(z − x). (4.2.1)

Clearly, BG(z, x) ∈ C, ∀ (z, x) ∈ K0 × intK0.
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Let us consider the following assumptions on G.

A1: For any x, y, z ∈ intK0, if (DG(x)−DG(y))>(z − x) /∈ −intC, then

(DG(x)−DG(y))>(z − x) ∈ C.

A2: For any x ∈ K0, λ ∈ C1, bounded sequences {xk} ⊂ intK0 and {yk} ⊂ intK0

such that lim
k→+∞

‖xk − yk‖ = 0 then

lim
k→+∞

〈BG(x, xk)−BG(x, yk), λ〉 = 0.

A3: For any bounded sequences {xk} ⊂ K0, {yk} ⊂ intK0 satisfying lim
k→+∞

yk = y,

and for any λ ∈ C1, lim
k→+∞

〈BG(xk, yk), λ〉 = 0, we have

lim
k→+∞

xk = y.

A4: For every y ∈ Rn and λ ∈ C1, there exists x ∈ intK0 such that 〈DG(x), λ〉 = y.

Definition 4.2.3 The function G is said to be a vector-valued Bregman distance func-

tion if it satisfies A1 − A3.

Definition 4.2.4 The function G is said to be a strengthened vector-valued Bregman

distance function if it satisfies A1 − A4.

Next, we present two examples of the strengthened vector-valued Bregman distance

function in different spaces.

Example 4.2.1 When G(·) = 1
2
‖ . ‖2 em, where em ∈ intC such that ‖ en ‖= 1, the

Bregman distance with respect to 1
2
‖ . ‖2 em can be derived as follows:

BG(z, x) =
1

2
‖ z ‖2 en −

1

2
‖ x ‖2 em − 〈x, z − x〉em =

1

2
‖ z − x ‖2 em.

It is elementary to check that G is a strengthened vector-valued Bregman distance

function, which was investigated by Bonnel et.al. [40] and Ceng and Yao [60].
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Example 4.2.2 Let X = Rn, Y = R2 and G : Rn → R2 be defined by

G(.) =


n∑

i=1

aixi log aixi

n∑
i=1

bixi log bixi

 ,

where ai, bi ∈ R and ai

bi
= β is a constant for i = 1, ..., n. The Bregman distance with

respect to G can be derived as follows:

BG(x, y) =


n∑

i=1

aixi log xi

yi
−

n∑
i=1

ai(xi − yi)

n∑
i=1

bixi log xi

yi
−

n∑
i=1

bi(xi − yi)

 .

Clearly, G is also a strengthened vector-valued Bregman distance function.

Proposition 4.2.1 (Three points property). Let x ∈ K0 and y, z ∈ intK0. Then, the

following relation is true:

(DG(y)−DG(z))>(z − x) = BG(x, y)−BG(x, z)−BG(z, y). (4.2.2)

Proof. By the definition of BG, we have

DG(z)>(x− z) = G(x)−G(z)−BG(x, z) (4.2.3)

DG(y)>(z − y) = G(z)−G(y)−BG(z, y) (4.2.4)

DG(y)>(x− y) = G(x)−G(y)−BG(x, y) (4.2.5)

Subtracting (4.2.3) and (4.2.4) from (4.2.5), we obtain the desired result.

4.3 Generalized Proximal Point Algorithm and Con-

vergence Analysis

Denote by X̄ the weak Pareto optimal solution set of problem (MOP). We make the

following assumptions:
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(A) the set X̄ is nonempty and compact;

(B) there exists x0 ∈ Rn such that {x ∈ Rn| F (x) ≤C F (x0)} ⊆ dom(F ) ∩ intK0.

We propose the following vector-valued generalized proximal point algorithm based

on a strengthened Bregman distance function (VPPAB, in short):

Step (1) : Take x0 ∈ domF ∩ intK0 such that {x ∈ Rn| F (x) ≤C F (x0)} ⊆
domF ∩ intK0.

Step (2) : Given xk, if xk ∈ X̄, then xk+p = xk for all p ≥ 1 and the algorithm

stops, otherwise go to step (3).

Step (3): If xk /∈ X̄, then compute xk+1 satisfying

xk+1 ∈ C − ARGMINw{F (x) +
εk

2
BG(x, xk) | x ∈ θk}, (4.3.1)

where θk := {x ∈ Rn | F (x) ≤C F (xk)}, εk ∈ (0, ε], ε > 0 and go to step (2).

Next, we establish the main results of this paper.

Theorem 4.3.1 Let F : Rn → Rm ∪ {+∞C} be a proper C-convex and C-lower semi-

continuous map. Under assumptions (A) and (B), any sequence {xk} generated by the

algorithm (VPPAB) is well-defined and bounded.

Proof. Let x0 ∈ domF ∩ intK0 be an initial point and we assume the algorithm has

reached step k. We show that the next iterative xk+1 does exist. Defining a function

Wk(x) : Rn → Rm ∪ {+∞C} as follows:

Wk(x) = F (x) + δθk
(x)e+

εk

2
BG(x, xk) (4.3.2)

where e = (1, · · · , 1)> ∈ Rm
+ and δθk

(x) is the indicator function of set θk.

Denote by X̄k the weak Pareto optimal solution set of the following multiobjective

optimization problem:

C −MIN{Wk(x)| x ∈ Rn} (MOPk).
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It is clear that θk is a nonempty and convex set by its definition. Since F is C-convex

and C -lsc, it follows that each of the coordinates of {F (x) + δθk
(x)e} is convex and lsc

with respect to x. By the assumption (A), we know that X̄ is nonempty and compact.

By virtue of Lemma 2.3.3, for any i ∈ [1, ...,m] we have

F∞
i (d) > 0 ∀ d 6= 0 ∈ Rn. (4.3.3)

From the definition of an indicator function, we know that

δθk

∞(d) = δθk
∞(d) =

{
0, if d ∈ θk

∞;

+∞, if d /∈ θk
∞.

Combining this formula with (4.3.3), for any i ∈ [1, ...,m] we have

F∞
i (d) + δθk

∞(d) > 0 ∀d 6= 0 ∈ Rn. (4.3.4)

Meanwhile, from the assumption A4 of G, we know that

rge(〈DG(x), λ〉) = Rn, ∀ λ ∈ C1

which means that

rge(DGi(x)) = Rn.

Thus, there exists x∗ ∈ domF ∩ intK0 such that

(DG(x∗)−DG(xk))λ
> = 0.

Thus, the following strictly convex optimization problem:

min{(BG)i(x, xk)| x ∈ θk},

has a unique optimal solution x = xk. Furthermore, from Theorem 3.4.1 in [17], we

have

(BG)i
∞(d, xk) ≥ 0 ∀ d 6= 0 ∈ Rn. (4.3.5)

Thus, by Proposition 2.3.1, we have that

(Wk)
∞
i (d) = f∞i (d) + δθk

∞(d) +
εk

2
(BG)i

∞(d, xk).

Combining (4.3.4) and (4.3.5) with this equation,

(Wk)
∞
i (d) > 0 ∀ d 6= 0 ∈ Rn and i ∈ [1, ...,m].
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That is for every i ∈ [1, ...,m], we have

{d ∈ Rn| F∞
i (d) + (BG)i

∞(d, xk) ≤ 0} ∩ θ∞k = {0}.

Thus

∪m
i=1{d ∈ θ∞k | F∞

i (d) + (BG)i
∞(d, xk) ≤ 0} = {0}.

Denote by X̄k the weak Pareto optimal solution set of problem (4.3.1). By Lemma

2.3.3, X̄k is nonempty. Thus, any element of X̄k can be taken as xk+1.

We claim that the sequence {‖xk‖} is bounded from above. If not, without loss of

generality, assume ‖xk‖ → +∞ as k → ∞. From (4.3.3), we know that 〈F (x), λ〉 is

coercive for any λ ∈ C1. By Proposition 2.3.2, it follows that

lim inf
‖xk‖→+∞

〈F (xk), λ〉
‖xk‖

> 0. (4.3.6)

However by the definition of the algorithm (VPPAB), we have

lim inf
‖xk‖→+∞

〈F (xk), λ〉
‖xk‖

≤ lim inf
‖xk‖→+∞

〈F (x0), λ〉
‖xk‖

= 0, (4.3.7)

a contradiction with (4.3.6). Thus, ‖xk‖ is bounded. The proof is complete. 2

Lemma 4.3.1 Let the assumptions in Theorem 4.3.1 hold. Then, for any λ ∈ C1, we

have

lim
k→+∞

〈BG(xk+1, xk), λ〉 = 0.

Proof. From algorithm (VPPAB), we know that if the sequence stops at some iteration,

xk will be a constant vector thereafter. We now assume that the sequence {xk} will not

stop finitely. Define E ⊂ Rn as follows

E = {x ∈ Rn | F (x) ≤C F (xk) ∀k ∈ N}.

Assuming that F (Rn) has the domination property, it follows from the Daniell property

of Rm
+ that we have E is nonempty. Since xk+1 is a weak Pareto optimal solution of

problem (4.3.1), there exists a λk ∈ C1 such that xk+1 is the solution of the following

problem (MOPλk
):

min{wλk
(x)| x ∈ Rn},
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where wλk
(x) = 〈F (x), λk〉 + εk

2
〈BG(x, xk), λk〉 + δθk

(x). Thus xk+1 satisfies the first-

order necessary optimality condition of problem (MOPλk
). It is clear that θk ⊂ domF ∩

intK0 and ∅ 6= dom(δθk
) ⊂ domF ∩ intK0. From Theorem 3.23 of [170] and the

definition of a strengthened vector-valued Bregman distance function, there exist µk ∈
∂〈F (.), λk〉(xk+1) and νk ∈ ∂δθk

(xk+1) such that

µk +
εk

2
(DG(xk+1)−DG(xk))λk + νk = 0.

By the fact that 〈νk, x− xk+1〉 ≤ 0 for any x ∈ θk, we have that

〈µk +
εk

2
(DG(xk+1)−DG(xk))λk, x− xk+1〉 ≥ 0 ∀x ∈ θk.

Let x∗ ∈ E. It is obvious that x∗ ∈ θk for all k ∈ N and we deduce that

〈µk +
εk

2
(DG(xk+1)−DG(xk))λk, x

∗ − xk+1〉 ≥ 0.

By the definition of subgradient of 〈F (xk+1), λk〉, we have that

〈F (x∗)− F (xk+1), λk〉 ≥ 〈µk, x
∗ − xk+1〉.

By the fact that x∗ ∈ θk for all k ∈ N , we have 〈F (x∗) − F (xk+1), λk〉 ≤ 0. It follows

that

〈µk, x
∗ − xk+1〉 ≤ 0

and
εk

2
〈(DG(xk+1)−DG(xk)λ, x

∗ − xk+1〉 ≥ 0.

That is
εk

2
((DG(xk+1)−DG(xk))(x

∗ − xk+1)) /∈ −intC. (4.3.8)

Furthermore, by the assumption A1 on G, we obtain

((DG(xk+1)−DG(xk))(x
∗ − xk+1) ∈ C.

By Proposition 4.2.1 and taking x∗ as x, xk as y , xk+1 as z, we have

BG(x∗, xk)−BG(x∗, xk+1)−BG(xk+1, xk) ≥C 0.

It follows that

BG(x∗, xk+1) ≤C BG(x∗, xk)−BG(xk+1, xk). (4.3.9)
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And from (4.3.9), we have that for each λ ∈ C1

〈BG(xk+1, xk), λ〉 ≤ 〈BG(x∗, xk), λ〉 − 〈BG(x∗, xk+1), λ〉, k = 0, 1, ...

For all x∗ ∈ E and λ ∈ C1, the sequence 〈BG(x∗, xk), λ〉 is a nonnegative and nonin-

creasing sequence, and is hence convergent. Thus

∞∑
k=0

〈BG(xk+1, xk), λ〉 ≤
∞∑

k=0

{〈BG(x∗, xk), λ〉 − 〈BG(x∗, xk+1), λ〉}

≤ 〈BG(x∗, x0), λ〉 <∞

hence

lim
k→+∞

〈BG(xk+1, xk), λ〉 = 0.

The proof is complete. 2

Theorem 4.3.2 Let the assumptions in Theorem 4.3.1 and Lemma 4.3.1 hold. Any

cluster point of {xk} belongs to X̄.

Proof. If there exists k0 ≥ 1 such that xk0+p = xk0 ,∀p ≥ 1. Thus, clearly, xk0 is a

cluster point of {xk} and it is also a weak Pareto optimal solution of problem (MOP).

Now suppose that the algorithm does not terminate finitely. Then, by Theorem 4.3.1,

we have that {xk} is bounded and it has some cluster points. Next we will show that

all of cluster points are weak Pareto optimal solutions of problem (MOP). Let x̂ be one

of the cluster points of {xk} and {xkj
} be a subsequence of {xk}, which converges to x̂.

Let λ ∈ C1. We define a function ψλ : Rn → R ∪ {+∞} as ψλ(x) = 〈F (x), λ〉, x ∈ Rn.

Since F is C-lower semicontinuous and C-convex, ψλ is also lower semicontinuous and

convex. It follows that ψλ(x̂) ≤ lim inf
j→+∞

ψλ(xkj
). By the fact that xk+1 ∈ θk, we can see

that F (xk+1) ≤C F (xk) for k ∈ N . Thus, ψλ(xk+1) ≤ ψλ(xk). Therefore,

ψλ(x̂) ≤ lim inf
j→+∞

ψλ(xkj
) = inf

k
{ψλ(xk)}.

Hence, we have that

ψλ(x̂) ≤ ψλ(xk), ∀ k.

The arbitrariness of λ guarantees the following:

F (x̂) ≤C F (xk), ∀ k. (4.3.10)
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Suppose that, in contrast, there exists x̄ ∈ Rn such that F (x̄) ≤intC F (x̂). Taking

λkj
∈ C1, as C1 is compact, there exists λ̄ ∈ C1 such that λ̄ is a cluster point of {λkj

}.
Without loss of generality, we assume the following:

lim
j→+∞

λkj
= λ̄.

Thus we have that

〈F (x̄)− F (x̂), λkj
〉 ≥ 〈F (x̄)− F (xkj+1), λkj

〉 = ψλkj
(x̄)− ψλkj

(xkj+1).

Let wλ be the function defined in the proof of Lemma 4.3.1. There exist some ϕkj
∈

∂ψλkj
(xkj+1), ρkj

∈ ∂wλkj
(xkj+1) and νkj

∈ ∂δθkj
(xkj+1) such that

ρkj
= ϕkj

+
εkj

2
(DG(xkj+1)−DG(xkj

))λkj
+ νkj

.

It follows that

ψλkj
(x̄)− ψλkj

(xkj+1) ≥ 〈ϕkj
, x̄− xkj+1〉

= 〈ρkj
, x̄−xkj+1〉−

εkj

2
〈(DG(xkj+1)−DG(xkj

))λkj
, x̄−xkj+1

〉−〈νkj
, x̄−xkj+1〉. (4.3.11)

From the definition of algorithm (VPPAB) and the subdifferential of δθkj
, we have

〈ρkj
, x̄− xkj+1〉 ≥ 0, 〈νkj

, x̄− xkj+1〉 ≤ 0. (4.3.12)

Combining (4.3.11) with (4.3.12), that is

ψλkj
(x̄)− ψλkj

(xkj+1) ≥ −
εkj

2
〈(DG(xkj+1)−DG(xkj

))λkj
, x̄− xkj+1〉. (4.3.13)

By Proposition 4.2.1, we have

〈(DG(xkj+1)−DG(xkj
))λkj

, x̄− xkj+1〉

= 〈BG(x̄, xkj
)−BG(x̄, xkj+1), λkj

〉 − 〈BG(xkj+1, xkj
), λkj

〉. (4.3.14)

By the fact that 〈λkj
, BG(xkj+1, xkj

)〉 ≥ 0, we have

〈(DG(xkj+1)−DG(xkj
))λkj

, x̄− xkj+1〉 ≤ 〈BG(x̄, xkj
)−BG(x̄, xkj+1), λkj

〉.

From Lemma 4.3.1, clearly, for any λ ∈ C1,

lim
j→+∞

〈BG(xkj+1, xkj
), λ〉 = 0. (4.3.15)
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Thus, we have lim
j→+∞

xkj+1 = x̂ by the assumption A3 on G. All the conditions of

assumption A2 are satisfied. Thus,

lim
j→+∞

〈BG(x̄, xkj
)−BG(x̄, xkj+1), λkj

〉 = 0.

Thus we have that

〈F (x̄)− F (x̂), λ̄〉 ≥ 0 (4.3.16)

where λ̄ is the cluster point of {λkj
}. We can then conclude that (4.3.16) contradicts

with the facts that λ̄ ∈ C1 and the assumption F (x̄) ≤intC F (x̂), thus we can claim

that x̂ is a weak Pareto optimal solution of problem (MOP). The proof is complete. 2

Theorem 4.3.3 Assume the same assumptions as in Theorem 4.3.2 and further sup-

pose that DG(.) is norm-to-norm continuous. Then the whole sequence {xk} converges

to a weak Pareto optimal solution of problem (MOP).

Proof Suppose that, in contrast, both x̂ and x̃ are two distinct cluster points of {xk}
and

lim
j→+∞

xkj
= x̂, lim

i→+∞
xki

= x̃,

By Theorem 4.3.2, x̂ and x̃ are both weak Pareto optimal solutions of problem (MOP).

From the proof of Lemma 4.3.1, we have for any λ ∈ C1, the sequence 〈BG(x̂, xk), λ〉
and 〈BG(x̃, xk), λ〉 are convergent, let l̄1 and l̄2 be their limits respectively. Then

lim
k→+∞

{〈BG(x̂, xk), λ〉 − 〈BG(x̃, xk), λ〉} = l̄1 − l̄2. (4.3.17)

Taking k = kj in (4.3.17) and using the norm-to-norm continuity of 〈DG(.), λ〉, we can

derive

l̄1 − l̄2 = −〈BG(x̃, x̂), λ〉).

Repeating with k = ki, we have

l̄1 − l̄2 = 〈BG(x̂, x̃), λ〉.

It follows that

〈BG(x̂, x̃) +BG(x̃, x̂), λ〉 = 0.
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Using (4.2.1), we deduce that

〈(DG(x̂)−DG(x̃))>λ, x̂− x̃〉 = 0.

By C -strict convexity of G, it is easy to check that 〈λ,DG(.)〉 be a strictly monotone

operator for any λ ∈ C1, thus we conclude that x̂ = x̃, which proves the uniqueness of

the cluster point of {xk}. The proof is complete. 2

4.4 Conclusions

In this chapter, we considered a convex multiobjective optimization problem of a weak

Pareto optimal solution for minimizing an extended vector-value map in finite dimen-

sional spaces. We constructed a vector-valued generalized proximal point algorithm

based on a strengthened vector-valued Bregman distance function and proved that the

sequence generated by this algorithm converges to a weak Pareto optimal solution of

the multiobjective optimization problem under the condition that the original opti-

mization problem has a nonempty and compact solution set. Our results are not only

some extensions of generalized proximal point algorithms from the scalar case to the

vector case but are also some generalizations of vector-valued proximal point algorithm

without any exogenously selected vectors in the objective space.
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Chapter 5

A Proximal-type Method in Vector

Variational Inequalities

5.1 Introduction

The concept of a vector variational inequality problem was firstly introduced by Gian-

nessi [101] in finite dimensional spaces. vector variational inequalities have found many

important applications in multiobjective decision making problems, network equilib-

rium problems, traffic equilibrium problems and so on. These significant applications

have made the study of vector variational inequality problems highly attractive Through

the last twenty years of development, existence results of solutions, duality theorems

and topological properties of solution sets of several kinds of vector variational inequal-

ities have been derived. A complete review of the main results of vector variational

inequalities can be found in the monograph [65].

However to the best of our knowledge, no numerical method has yet been designed

to solve vector variational inequality problems. Motivated by this situations, in this

chapter we firstly attempt to construct a matrix-valued proximal point algorithm for

solving a weak vector variational inequality problem (which is an extension of the clas-

sical proximal point algorithm proposed by Rockafellar [173]), carry out convergence

analysis on the method and prove that the sequence generated by the algorithm con-

verges to a solution of the weak vector variational inequality problem under some mild
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conditions.

The chapter is organized as follows.

In section 5.2, we present some basic concepts, assumptions and preliminary results.

In section 5.3, we introduce a matrix-valued proximal point algorithm and carry out

convergence analysis on the algorithm. In section 5.4, we draw the conclusion.

5.2 Subgradients and Normal Mappings

In this section, we present the basic definitions and propositions used in this chapter.

Definition 5.2.1 [65] Let F : K ⊂ Rn → Rm ∪ {+∞C} be a vector-valued mapping.

A n×m matrix V is said to be a weak subgradient of F at x̄ ∈ K if

F (x)− F (x̄)− V >(x− x̄) 6≤intC 0 ∀ x ∈ K.

Denote by ∂w
CF (x̄) the set of weak subgradients of F on K at x̄.

Definition 5.2.2 [65] Let F : K ⊂ Rn → Rm ∪ {+∞C} be a vector-valued mapping.

A n×m matrix V is said to be a strong subgradient of F at x̄ ∈ K if

F (x)− F (x̄)− V >(x− x̄) ≥C 0 ∀ x ∈ K.

Let K ⊂ Rn be nonempty, closed and convex. A vector-valued indicator function

δ(x | K) of K at x is defined by

δ(x | K) =

{
0, if x ∈ K;

+∞C , if x /∈ K.

An important and special case in the theory of weak subgradient is that when F (x) =

δ(x | K) becomes a vector-valued indicator function of K. By the Definition 5.2.1, we

obtain V ∈ ∂w
Cδ(x

∗ | K) if and only if

V >(x− x∗) 6≥intC 0 ∀x ∈ K. (5.2.1)
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Definition 5.2.3 A set V NK(x∗) ⊂ Rn×m= ∂w
Cδ(x

∗ | K) is said to be a weak normality

operator set to K at x∗ if, for every V ∈ V NK(x∗), the inequality (5.2.1) holds.

Clearly, V NK(x∗) = ∂w
Cδ(x

∗ | K). As for the scalar case, from [172] we know that

v∗ ∈ ∂δK(x∗) = NK(x∗) if and only if

〈v∗, x− x∗〉 ≤ 0 ∀x ∈ K (5.2.2)

where δK(x) is the scalar-valued indicator function of K. The inequality (5.2.2) means

that v∗ is normal to K at x∗.

Definition 5.2.4 Let V NK(.) : Rn ⇒ Rn×m be a set-valued mapping, which is said to

be a weak normal mapping for K, if for any y ∈ K, V ∈ V NK(y) such that

V >(x− y) 6≥intC 0, ∀x ∈ K. (5.2.3)

V NK(.) is said to be strong normal mapping for K, if for any y ∈ K, V ∈ V NK(y)

such that

V >(x− y) ≤C 0, ∀x ∈ K. (5.2.4)

As in [171], the normal mapping for K is a set-valued mapping, which is defined as

follows: if for any y ∈ K, v ∈ NK(y) such that

〈v, x− y〉 ≤ 0, ∀x ∈ K.

Let ‖A‖M be a matrix norm of the matrix A ∈ Rn×m (see [156]). In this chapter, we

always assume that the matrix norm ‖A‖M is compatible with ‖.‖, i.e.,

‖Ax‖ ≤ ‖A‖M‖x‖

for all A ∈ Rm×n and x ∈ Rn.

We now introduce a new notion.

Definition 5.2.5 Let T : X0 → Rn×m be a mapping, which is said to be norm se-

quentially bounded if for any bounded sequence {xk} ⊂ X0, it holds that the sequence

{‖T (xk)‖M} is bounded.
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Lemma 5.2.1 [171] Let K be a nonempty closed and convex subset of Rn. Let T1 :

Rn ⇒ Rn be the normality mapping to K and T2 : Rn → Rn be any single-valued

monotone operator such that K ∩ dom(T2) 6= ∅ and T2 is continuous on K. Then, we

have T1 + T2 is a maximal monotone operator.

Lemma 5.2.2 [175] (Minty’s theorem) Let λ > 0 and T : Rn ⇒ Rn be monotone.

Then (I + λT )−1 is monotone and nonexpansive. Moreover, T is maximal monotone if

and only if rge(I + λT ) = Rn. In that case (I + λT )−1 is maximal monotone too, and

it is a single-valued mapping from all of Rn into itself.

5.3 Convergence Analysis for a Matrix-valued Proximal-

type Method

A weak vector variational inequality (WVVI in short) is a problem of finding x∗ ∈ X0

such that

(WVVI) T (x∗)>(x− x∗) 6≤intC 0, ∀x ∈ X0,

where x∗ is called a solution of problem (WVVI). Denote by X∗ the solution set of

problem (WVVI). We also denote by X̂ the ideal solution set of problem (WVVI), i.e.

for any x∗ ∈ X̂, it holds that

T (x∗)>(x− x∗) ≥C 0, ∀x ∈ X0.

Let λ ∈ C1, consider the corresponding scalar-valued variational inequality problem of

finding x∗ ∈ X0 such that:

(VIPλ) 〈λ(T )(x∗), x− x∗〉 ≥ 0, ∀x ∈ X0.

Denote by X∗
λ the solution set of (VIPλ).

Proposition 5.3.1 For any x∗ ∈ X0, let V NX0(x
∗) be a weak normality operator set

to X0 at x∗ and V ∈ V NX0(x
∗). Then, there exists a λ ∈ C1 such that λ(V ) ∈ NX0(x

∗).
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Proof. By Definition 5.2.3, we know that

V >(x− x∗) 6≥intC 0 ∀x ∈ X0

and

V >(x− x∗) ∈ Rm\(intC) ∀x ∈ X0.

That is

V >(X0 − x∗) ⊂ Rm\(intC)

and we have

V >(X0 − x∗) ∩ intC = ∅.

By the convexity of X0, we have that there exists a λ̄ ∈ C\{0} such that

〈λ̄(V ), x− x∗〉 ≤ 0, x ∈ X0.

Since ‖λ̄‖ > 0, it follows that

〈 λ̄

‖λ̄‖
(V ), x− x∗〉 ≤ 0, x ∈ X0.

Clearly, we have λ̄
‖λ̄‖ ∈ C1. Without loss of generality, let λ = λ̄

‖λ̄‖ , we have

〈λ(V ), x− x∗〉 ≤ 0 ∀x ∈ X0.

That is λ(V ) ∈ NX0(x
∗). The proof is complete. 2

Proposition 5.3.2 [175] The normal mapping NX0(x) is outer semicontinuous at x̄.

In other words, if xk → x̄, vk ∈ NX0(xk) and vk → v̄, then v̄ ∈ NX0(x̄)

We denote by Φ ⊂ Rn×m the set of the matrices. This satisfies that for any V ∈ Φ,

there exist some λ ∈ C1 such that

0 = V λ.

We propose the following matrix-valued proximal point algorithm (MPPA, in short) for

solving problem (WVVI ):

Step (1) : Take any x0 ∈ X0;
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Step (2) : Given any xk ∈ X0. If xk ∈ X∗, then the algorithm stops and let

xk+p = xk for any p ≥ 1, otherwise goes to step (3);

Step (3) : If xk /∈ X∗, then we define xk+1 by the following conclusion:

T (xk+1) + εk(xk+1 − xk)e
>
k + V NX0(xk+1) ⊂ Φ (5.3.1)

where the sequence {ek} ⊂ Rm
++ and ‖ek‖ = 1, εk ∈ (0, ε], ε > 0 and V NX0(.) is the

strong normal mapping to X0. Go to step (2).

Next we will show the main results of this chapter.

Theorem 5.3.1 Let T : X0 → Rn×m be continuous and C-monotone on X0, if domT ∩
intX0 6= ∅. The sequence {xk} generated by the algorithm (MPPA) is well-defined.

Proof Let x0 ∈ X0 be an initial point and suppose that the algorithm (MPPA) reaches

step k. We then show that the next iterate xk+1 does exist. Under the assumptions,

T (.) is continuous and C -monotone on X0. By virtue of Proposition 2.2.1, we have

λ(T ) is monotone and continuous on X0 for any λ ∈ C1. By the definition of strong

normality mapping, for any λ ∈ C1, the mapping V NX0(x)λ is a normality mapping

to X0. Thus, by the assumption domT ∩ intX0 6= ∅ and Lemma 5.2.1, we obtain that

for any x ∈ X0, the mapping V NX0(x)λ+ T (x)λ is maximal monotone. Let αk = e>k λ.

Since ek ∈ Rm
++, obviously the sequence {αk} is positive for every λ ∈ C1. Thus, by

Lemma 5.2.2, we conclude that

rge{V NX0(.)λ+ T (.)λ+ εkαkI(.)} = Rn.

Hence, for any given εkαkxk ∈ Rn, there exists a xk+1 ∈ X0 such that

εkαkxk ∈ (T + V NX0)(xk+1)λ+ εkαkxk+1 (5.3.2)

and

0 ∈ (T + V NX0)(xk+1)λ+ εkαkxk+1 − εkαkxk.

That is the inclusion (5.3.1) holds. The proof is complete. 2
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Theorem 5.3.2 Let the same assumptions as in Theorem 5.3.1 hold. Suppose further

that X̂ is nonempty. Then, the sequence {xk} generated by the algorithm (MPPA) is

bounded.

Proof. From the algorithm (MPPA), we know that if the algorithm stops at some

iteration, the point xk will be a constant thereafter. Now we assume that the sequence

{xk} will not stop after a finite number of iteratives. From (5.3.1), we know that there

exist some λk ∈ C1 such that

0 ∈ λk(T )(xk+1) + εk(xk+1 − xk)e
>
k λk + V NX0(xk+1)λk.

Thus, there exist some γk+1 ∈ V NX0(xk+1) such that

0 = λk(T )(xk+1) + εk(xk+1 − xk)e
>
k λk + λk(γk+1) (5.3.3)

By definition of a strong normal mapping, it holds that λk(γk+1) ∈ NX0(xk+1) for any

λk ∈ C1 , that is

〈λk(γk+1), x− xk+1〉 ≤ 0, ∀ x ∈ X0. (5.3.4)

Combining (5.3.3) with (5.3.4), it follows that

〈λk(T )(xk+1) + εk(xk+1 − xk)e
>
k λk, x− xk+1〉 ≥ 0 ∀x ∈ X0. (5.3.5)

On the other hand, by virtue of the ideal solution set X̂ is nonempty, we know that for

any given λk ∈ C1, the following scalar-valued variational inequality problem (V IPλk
)

has a nonempty solution set, where

(V IPλk
) 〈λk(T )(x∗), x− x∗〉 ≥ 0, ∀ x ∈ X0.

Hence, there exists a x∗ ∈ X̂ such that x∗ is also a solution of problem (V IPλk
). Hence,

we have

〈λk(T )(x∗), x∗ − xk+1〉 ≤ 0.

By the C -monotonicity of T, we have that

〈λk(T )(xk+1), x
∗ − xk+1〉 ≤ 0. (5.3.6)

Combining (5.3.5) with (5.3.6), we obtain that

〈εkλk
>ek(xk+1 − xk)

>, x∗ − xk+1〉 ≥ 0.
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From the proof of Theorem 5.3.1, we know that εk〈λk, ek〉 > 0. It follows that

〈xk+1 − xk, x
∗ − xk+1〉 ≥ 0

2〈xk+1 − xk, x
∗〉+ 2〈xk − xk+1, xk+1〉 ≥ 0

‖xk‖2−2〈xk, x
∗〉+‖x∗‖2−‖xk‖2+2〈xk, xk+1〉−‖xk+1‖2−‖xk+1‖2+2〈xk+1, x

∗〉−‖x∗‖2 ≥ 0.

That is

‖ xk+1 − x∗ ‖2≤‖ xk − x∗ ‖2 − ‖ xk − xk+1 ‖2 . (5.3.7)

Clearly, the sequence {‖ xk − x∗ ‖2} is nonnegative and nonincreasing. Furthermore

{‖ xk−x∗ ‖2} is also bounded below, as denoted by l∗ the lower bound of the sequence.

By the fact (5.3.7), we have

∞∑
k=0

‖ xk − xk+1 ‖2≤‖ x0 − x∗ ‖2 −l∗ ≤‖ x0 − x∗ ‖2<∞

and

lim
k→+∞

‖ xk − xk+1 ‖= 0. (5.3.8)

Again from (5.3.7), we obtain that

‖xk − x∗‖ ≤ ‖x0 − x∗‖

for all x∗ ∈ X̂. By the nonemptiness of X̂, we conclude that {xk} is bounded. The

proof is complete. 2

Theorem 5.3.3 Let the same assumptions as in Theorem 5.3.2 hold. We also assume

that T is norm sequentially bounded. Then any accumulation point of {xk} is a solution

of problem (WV V I).

Proof. If there exists k0 ≥ 1 such that xk0+p = xk0 ,∀p ≥ 1. Then, it is clear that

xk0 is the unique cluster point of {xk} and it is also a solution of problem (WV V I).

Suppose that the algorithm does not terminate finitely. Then, by Theorem 5.3.2, we

have that {xk} is bounded and it has some cluster points. Next we show that all of

cluster points are solutions of problem (WV V I). Let x̂ be a cluster points of {xk} and

{xkj
} be a subsequence of {xk}, which converges to x̂. From the limit (5.3.8), we know
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that lim
j→+∞

‖ xkj+1 − xkj
‖=0. That is xkj+1 → x̂ as j → +∞. By formula (5.3.1), we

derive that there exist γkj+1 ∈ V NX0(xkj+1) and λkj
∈ C1, such that

λkj
(T )(xkj+1) + λkj

(γkj+1) + εkj
(xkj+1 − xkj

)e>kj
λkj

= 0.

That is

‖λkj
(T )(xkj+1) + λkj

(γkj+1) + εkj
(xkj+1 − xkj

)e>kj
λkj

‖ = 0.

It follows that

0 ≥‖ λkj
(T )(xkj+1) + λkj

(γkj+1) ‖ − ‖ εkj
(xkj

− xkj+1)e
>
kj
λkj

‖

=‖ λkj
(T )(xkj+1) + λkj

(γkj+1) ‖ −εkj
αkj

‖ xkj
− xkj+1 ‖, (5.3.9)

where αkj
= e>kj

λkj
. From (5.3.8), we know that lim

j→+∞
‖ xkj

− xkj+1 ‖= 0. Since

λkj
∈ C1, by the compactness of C1, we know that the sequence {λkj

} has a convergent

subsequence. Without loss of generality, we assume that λkj
→ λ̄. Furthermore we

have λ̄ ∈ C1 and λ̄ 6= 0. Thus, taking the limit in (5.3.9), we deduce the following:

lim
j→+∞

‖λkj
(T )(xkj+1) + λkj

(γkj+1)‖ = 0. (5.3.10)

We claim that the sequence {λkj
(γkj+1)} is bounded. Suppose that, in contrast, without

loss of generality, we assume that ‖λkj
(γkj+1)‖ → +∞ and

λkj
(γkj+1)

‖λkj
(γkj+1)‖ → ω̄ ∈ Rn and

ω̄ 6= 0. From (5.3.10), we know that

0 = lim
j→+∞

‖λkj
(T )(xkj+1) + λkj

(γkj+1)‖
‖λkj

(γkj+1)‖
= lim

j→+∞
‖
λkj

(T )(xkj+1)

‖λkj
(γkj+1)‖

+
λkj

(γkj+1)

‖λkj
(γkj+1)‖

‖= ‖0+ω̄‖,

(5.3.11)

since T is norm sequentially bounded, which yields that

‖λkj
(T )(xkj+1)‖ ≤ ‖T (xkj+1)‖M‖λkj

‖ = ‖T (xkj+1)‖M ≤ µ < +∞

for some µ > 0. Obviously, the equality (5.3.11) contradicts with the assumption ω̄ 6= 0.

Thus, the sequence {λkj
(γkj+1)} is bounded. Without loss of generality, we assume that

λkj
(γkj+1) → ω̂ ∈ Rn. Furthermore, from (5.3.10) and the continuity of T , we derive

that

‖λ̄(T )(x̂) + ω̂‖ = 0.

Hence, we have

λ̄(T )(x̂) + ω̂ = 0.
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Meanwhile, from the definition of strong normal mapping and Proposition 5.3.2, we

have ω̂ ∈ NX0(x̂). By the definition of NX0(x̂), we know that

〈ω̂, x− x̂〉 ≤ 0 ∀x ∈ X0.

That is

〈λ̄(T )(x̂), x− x̂〉 ≥ 0 ∀x ∈ X0. (5.3.12)

Thus

T (x̂)>(x− x̂) /∈ −intC ∀x ∈ X0. (5.3.13)

We conclude that x̂ is a solution of problem (WV V I). The proof is complete. 2

Theorem 5.3.4 Let the same assumptions as those in Theorem 5.3.3 hold. Suppose

further that X∗ = X̂, the whole sequence {xk} converges to a solution of problem

(WV V I).

Proof Suppose that, in contrast, both x̂ and x̃ are two distinct cluster points of {xk}
and

lim
j→+∞

xkj
= x̂, lim

i→+∞
xki

= x̃.

From Theorem 5.3.3, we know that x̂ and x̃ are solutions of problem (WV V I). By

virtue of Theorem 5.3.1 and the proof of Theorem 5.3.2, we know that there exist λ̂

and λ̃ ∈ C1 such that

〈λ̂(T )(x̂), x̂− xk+1〉 ≤ 0, 〈λ̃(T )(x̃), x̃− xk+1〉 ≤ 0. (5.3.14)

By the C -monotonicity of T , we have

〈λ̂(T )(xk+1), x̂− xk+1〉 ≤ 0, 〈λ̃(T )(xk+1), x̃− xk+1〉 ≤ 0. (5.3.15)

From (5.3.6), we obtain that

〈xk+1 − xk, x̂− xk+1〉 ≥ 0, 〈xk+1 − xk, x̃− xk+1〉 ≥ 0. (5.3.16)

Similar to (5.3.7), we obtain that

‖ xk+1 − x̂ ‖2≤‖ xk − x̂ ‖2 − ‖ xk − xk+1 ‖2, (5.3.17)
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and

‖ xk+1 − x̃ ‖2≤‖ xk − x̃ ‖2 − ‖ xk − xk+1 ‖2 . (5.3.18)

Combining (5.3.17) with (5.3.18), we obtain that both sequences {‖ xk − x̂ ‖2} and

{‖ xk − x̃ ‖2} are nonnegative and nonincreasing, hence they are convergent. So there

exist β̂, β̃ ∈ R such that

lim
k→+∞

‖ xk − x̃ ‖= β̃, lim
k→+∞

‖ xk − x̂ ‖= β̂. (5.3.19)

Clearly, we have

‖ xk − x̂ ‖2=‖ xk − x̃ ‖2 +2〈xk − x̃, x̃− x̂〉+ ‖ x̃− x̂ ‖2 . (5.3.20)

Combining (5.3.19) with (5.3.20), we deduce the following

lim
k→+∞

〈xk − x̃, x̃− x̂〉 =
1

2
(β̂2 − β̃2− ‖ x̃− x̂ ‖2). (5.3.21)

Taking k = ki in (5.3.21), we obtain that

β̂2 − β̃2 =‖ x̃− x̂ ‖2 .

Changing the places of x̂ and x̃ in (5.3.20) and repeating k = kj in (5.3.21), we have

that

‖ x̃− x̂ ‖2= β̃2 − β̂2.

Thus, we conclude that

‖ x̃− x̂ ‖= 0,

which establishes the uniqueness of the cluster points of {xk}. The proof is complete. 2

5.4 Conclusions

In this chapter, we formulated a matrix-valued proximal point algorithm to solve the

weak vector variational inequality problem with respect to the positive orthant in finite

dimensional spaces by virtue of normal mappings, carried out convergence analysis on

the method and proved the convergence of the generated sequence to a solution of the

weak vector variational inequality problem under some mild conditions.
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Chapter 6

Asymptotic Analysis for Parametric

Multiobjective Optimization

Problems

6.1 Introduction

The main idea of some existing algorithms for scalar-valued optimization problems (e.g.,

proximal-type methods [173], Tikhonov-type regularization algorithms [193], viscosity

approximate methods [157] and so on) is to solve a sequence of subproblems instead of

solving the origin problem. Thus, the nonemptiness and compactness of solution set of

the subproblems is significant in both theory and methodology. What is worth noting is

that it is important to guarantee the boundedness of the sequences of solutions obtained

by solving subproblems for scalar-valued optimization problems and variational inequal-

ity problems (e.g., [9, 10, 11, 12, 17, 16]). Finding sufficient conditions, particularly the

necessary and sufficient conditions, which are easy to verify, for the nonemptiness and

compactness of the solution set of optimization problems is significant.

In recent years, the study of numerical methods for solving multiobjective optimiza-

tion problems has received extensive attention. Motivated by the goal of designing

more efficient algorithms to solve more complicated multiobjective optimization mod-

els, investigating the nonemptiness and compactness of solution sets of multiobjective
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optimization problems is important and necessary. Deng [73, 76] obtained the neces-

sary and sufficient conditions for the nonemptiness and compactness of solution sets of

convex vector optimization problems. Huang and Yang [117] gave characterizations for

the nonemptiness and compactness of the set of weak Pareto optimal solutions of an

unconstrained/constrained convex vector optimization problem with extended vector-

valued functions in terms of the 0-coercivity of some scalar functions. Flores-Bazan [91]

established existence results for finite dimensional vector optimization problems based

on the asymptotic description of the functions and sets.

In this chapter, we are concerned with the extended-valued parametric multiobjec-

tive optimization problem, and we obtain the necessary and sufficient conditions for the

nonemptiness and compactness of the weak Pareto optimal solution set of the problem

by virtue of asymptotical analysis.

This chapter is organized as follows.

In section 6.2, we present the concepts, basic assumptions and preliminary results. In

section 6.3, we propose various necessary and sufficient conditions for the nonemptiness

and compactness of the weak Pareto optimal solution set of the parametric multiobjec-

tive optimization problem. In section 6.4, we draw the conclusion.

6.2 Parametric Multiobjective Optimization

In this section, we present the basic definitions and propositions used later in this

chapter.

Firstly we consider the following extended-valued multiobjective optimization prob-

lem with functional constraints,

(MOPFC) MinC F0(x)

s.t. x ∈ S0 = {x ∈ Rn| G(x) ≤D 0},

where F0 : Rn → Rm ∪ {+∞C} is a vector-valued function, (F0)i is the ith component

of F0 and G : Rn → Rl is also a vector-valued function, Gj is the jth component of G.

Let D = Rl
+ ⊂ Rl be the positive orthant that defines a partial order in Rl as follows:
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for any y1, y2 ∈ Rl,

y1 ≤D y2 if and only if y2 − y1 ∈ D;

y1 6≤intD y2 if and only if y2 − y1 6∈ intD.

Denote by X̄FC the weak Pareto optimal solution set of problem (MOPFC). Let F :

Rn ×Rl → Rm ∪ {+∞C} be a vector-valued perturbed function such that

F (x, u) =

{
F0(x), if G(x) ≤D u;

+∞C , else.

Defining a family of perturbed problems with F (x, u):

(MOPu) InfC{F (x, u)| x ∈ Rn}.

Let A ⊂ Rl be a nonempty set. By z∗ ∈ InfCA, we mean that

(1) z∗ ∈ Rm ∪ {+∞C};

(2) z �C\{0} z
∗,∀z ∈ A;

(3) ∃zk ∈ A such that zk → z∗.

Clearly, the primal problem (MOPFC) is identical to problem (MOPu) with u = 0.

Define the optimal value function by

P (u) = InfC{F (x, u)| x ∈ Rn}, u ∈ Rl.

Denote by domP the domain of P and X̄u the weak Pareto optimal solution set of

problem (MOPu) for any u ∈ domP .

Definition 6.2.1 [175] A function f : Rn × Rm → R ∪ {+∞} with value f(x, u) is

said to be level-bounded in x locally uniformly in u if for each ū ∈ Rm and a ∈ R there

is a neighborhood V ∈ N(ū) along with a bounded set B ⊂ Rn such that {x| f(x, u) ≤
a} ⊂ B for all u ∈ V .

Proposition 6.2.1 [175] For any collection of sets Ki ⊂ Rn for i ∈ I, and an arbitrary

index set, one has

[
⋂
i∈I

Ki]
∞ ⊂

⋂
i∈I

K∞
i , [

⋃
i∈I

Ki]
∞ ⊃

⋃
i∈I

K∞
i .
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The first inclusion holds as an equation for a closed and convex, Ki with nonempty

intersection. The second holds as an equation when I is finite.

Proposition 6.2.2 [175] For any function f : Rn → R̄ and any α ∈ R, one has

{x| f(x) ≤ α}∞ ⊂ {x| f∞(x) ≤ 0}.

This is an equation when f is convex, lsc and proper, and {x| f(x) ≤ α} 6= ∅.

We state ([175], Theorem 1.17) as the following lemma.

Lemma 6.2.1 Let’s consider

p(u) := inf
x
f(x, u), x(u) := arg min

x
f(x, u),

in the case of a proper and lsc f : Rn × Rm → R ∪ {+∞} such that f(x, u) is level-

bounded in x locally uniformly in u. Then, it holds that the function p is proper and lsc

on Rm, and for any u ∈ domp the set x(u) is nonempty and compact.

Lemma 6.2.2 (Theorem 3.31 [175]) Let f : Rn×Rl → R∪{+∞} be a proper, convex

and lsc function. Then, f(x, u) is level-bounded in x uniformly in u if and only if

f∞(d, 0) > 0, ∀ d 6= 0. (6.2.1)

If this is fulfilled, the function p(u) := infx f(x, u) has

p∞(u) = inf
x
f∞(x, u), (6.2.2)

attained when finite.

6.3 Asymptotical Analysis for Multiobjective Opti-

mization Problems

Theorem 6.3.1 Let’s consider the problem (MOPFC). Suppose that F0 is proper, C-

convex and C-lsc, and G is proper, D-convex and D-lsc. Then, X̄FC is nonempty and

compact if and only if

∩l
i=1{d ∈ Rn| G∞

i (d) ≤ 0}
⋂
∪m

j=1{d ∈ Rn| (F0)
∞
j (d) ≤ 0} = {0} (6.3.1)
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Proof. From the assumptions, we know that G is proper, D-convex and D-lsc. That

is, Gi is convex and lsc. Through the problem (MOPFC), we obtain that

S0 = {x ∈ Rn| G(x) ≤D 0} = {x ∈ Rn| Gi(x) ≤ 0,∀ i ∈ [1, ..., l]}.

By Lemma 2.1.1, we have S0 is nonempty, closed and convex. Let (S0)i = {x ∈
Rn| Gi(x) ≤ 0}, hence we have

∩l
i=1(S0)i = S0

and (S0)i is also closed and convex for every i ∈ [1, ..., l]. By Proposition 6.2.1, we know

that

S∞0 = (∩l
i=1(S0)i)

∞ = ∩l
i=1(S0)

∞
i .

From Proposition 6.2.2, we obtain

(S0)
∞
i = {d ∈ Rn| G∞

i (d) ≤ 0}.

It follows that

S∞0 = ∩l
i=1{d ∈ Rn| G∞

i (d) ≤ 0}. (6.3.2)

By virtue of Lemma 2.3.3, we have X̄FC is nonempty and compact if and only if

S∞0
⋂
∪m

j=1{d ∈ Rn| (F0)
∞
j (d) ≤ 0} = {0}. (6.3.3)

Combining (6.3.2) with (6.3.3), we obtain that

∩l
i=1{d ∈ Rn| G∞

i (d) ≤ 0}
⋂
∪m

j=1{d ∈ Rn| (F0)
∞
j (d) ≤ 0} = {0}.

The proof is complete. 2

Proposition 6.3.1 Let the assumptions in Theorem 6.3.1 hold. Then, F (x, u) is C-

convex on Rn ×Rl.

Proof. From the definition, we know that

F (x, u) =

{
F0(x), if G(x) ≤D u;

+∞, else.

For any (x1, u1), (x2, u2) ∈ Rn ×Rl, we have that

αF (x1, u1) =

{
αF0(x1), if G(x1) ≤D u1;

+∞, else.
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and

(1− α)F (x2, u2) =

{
(1− α)F0(x2), if G(x2) ≤D u2;

+∞, else.

That is

αF (x1, u1) + (1− α)F (x2, u2) =


αF0(x1) + (1− α)F0(x2), if G(x1) ≤D u1,

G(x2) ≤D u2;

+∞, else.

From the D-convexity of G, we obtain that

G(αx1 + (1− α)x2) ≤D αG(x1) + (1− α)G(x2). (6.3.4)

If G(x1) ≤D u1 and G(x2) ≤D u2, the inequality (6.3.4) can be rewritten as follows

G(αx1 + (1− α)x2) ≤D αG(x1) + (1− α)G(x2) ≤D αu1 + (1− α)u2. (6.3.5)

From definition of F (x, u), we have

F (αx1+(1−α)x2, αu1+(1−α)u2) =


F0(αx1 + (1− α)x2), if G(αx1 + (1− α)x2)

≤D αu1 + (1− α)u2;

+∞, else.

On the other hand, by the C-convexity of F0, we obtain that

F0(αx1 + (1− α)x2) ≤C αF0(x1) + (1− α)F0(x2). (6.3.6)

Thus, we obtain that

F (αx1 + (1− α)x2, αu1 + (1− α)u2) = F0(αx1 + (1− α)x2)

≤C αF0(x1) + (1− α)F0(x2) = αF (x1, u1) + (1− α)F (x2, u2)

for any (x1, u1), (x2, u2) ∈ Rn × Rl, if G(x1) ≤D u1 and G(x2) ≤D u2. That is, F (x, u)

is C-convex on Rn ×Rl. The proof is complete. 2

Proposition 6.3.2 Let the assumptions in Proposition 6.3.1 hold and S : Rl ⇒ Rn be

a set-valued mapping, where

S(u) = {x ∈ Rn| G(x) ≤D u}.

Then, S is outer semicontinuous.
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Proof. Let’s consider the set

gph(S) = {(u, x) ∈ Rl ×Rn| x ∈ S(u)}

= {(u, x) ∈ Rl ×Rn| Gi(x) ≤ ui,∀ i ∈ [1, ..., l]}.

We claim that gph(S) is closed on Rl ×Rn. Without loss of generality, we assume that

{uk} ⊂ Rl, {xk} ⊂ Rn such that (uk, xk) ∈ gph(S) and

uk → ū, xk → x̄. (6.3.7)

Denote by uk
i the ith components of uk. That is for any i ∈ [1, ..., l], we have uk

i → ūi.

For any ε > 0 and i ∈ [1, ..., l]

Gi(x
k) ≤ uk

i + ε ∀ k = 1, 2, ...

and

lim inf
xk→x̄

Gi(x
k) ≤ Gi(x

k) ≤ uk
i + ε, ∀ k = 1, 2, .... (6.3.8)

As Gi(x) is lsc, we obtain

lim inf
xk→x̄

Gi(x
k) ≥ Gi(x̄). (6.3.9)

Combining (6.3.7) and (6.3.8) with (6.3.9), we obtain that

ūi + ε ≥ Gi(x̄), ∀ i ∈ [1, ..., l].

The arbitrariness of ε guarantees that

ūi ≥ Gi(x̄), ∀ i ∈ [1, ..., l].

That is

G(x̄) ≤D ū,

which means that x̄ ∈ S(ū). Thus, gph(S) is closed. By virtue of Lemma 2.3.2, we

conclude that the set-valued mapping S is outer semicontinuous. The proof is complete.

2

Proposition 6.3.3 Let F : Rn×Rl → Rm ∪{+∞C} be a perturbed function such that

F (x, u) =

{
F0(x), if G(x) ≤D u;

+∞, else.

If the assumptions in Proposition 6.3.2 hold, then F (x, u) is C-lsc on Rn ×Rl.
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Proof From Remark 2.1.1, we know that F (x, u) is C-lsc if and only if all components

of F (x, u) are lsc on Rn × Rl. Thus, we only need to check that for any j ∈ [1, ...,m],

the following scalar-valued perturbed function is lsc,

fj(x, u) =

{
(F0)j(x), if G(x) ≤D u;

+∞, else.

We have

fj(x, u) = (F0)j(x) + δS(u)(x), (6.3.10)

where δS(u)(x) is an indicator function of set S(u), i.e.

δS(u)(x) =

{
0, if G(x) ≤D u;

+∞, else.

Let {xk} ⊂ Rn and {uk} ⊂ Rl be two sequences such that

xk → x̄, uk → ū

as k → +∞. From (6.3.10), we have

lim inf
k→+∞

fj(xk, uk) = lim inf
k→+∞

{(F0)j(xk) + δS(uk)(xk)}, ∀ j ∈ [1, ...,m].

By Proposition 2.3.2, we obtain that

lim inf
k→+∞

fj(xk, uk) ≥ lim inf
k→+∞

(F0)j(xk) + lim inf
k→+∞

δS(uk)(xk), ∀ j ∈ [1, ...,m]. (6.3.11)

From Proposition 6.3.2, we know that S(uk) is outer semicontinuous as k → +∞, that

is

lim sup
uk→ū

S(uk) ⊂ S(ū)

and

x̄ ∈ S(ū).

It follows that

lim inf
k→+∞

δS(uk)(xk) = δS(ū)(x̄) = 0. (6.3.12)

By the C-lower semiconinuouity of F0, we know that (F0)j(x) is lsc for any j ∈ [1, ...,m].

That is

lim inf
k→+∞

(F0)j(xk) ≥ (F0)j(x̄), ∀ j ∈ [1, ...,m]. (6.3.13)
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Combining (6.3.11) and (6.3.12) with (6.3.13), we have

lim inf
k→+∞

fj(xk, uk) ≥ (F0)j(x̄), ∀ j ∈ [1, ...,m].

Thus, we obtain that fj(xk, uk) is lsc on Rn ×Rl for any j ∈ [1, ...,m]. Clearly, F (x, u)

is C -lsc on Rn ×Rl.

Theorem 6.3.2 Let the assumptions in Proposition 6.3.3 hold. Suppose further that

X̄FC is nonempty and compact. Then for any u ∈ domP , X̄u is nonempty and compact.

Proof. From the assumption, we know that X̄FC is nonempty and compact, that is

the following problem (MOP0),

(MOP0) InfC{F (x, 0)| x ∈ Rn}.

has a nonempty and compact weak Pareto optimal solution set. By virtue of Lemma

2.3.3, we have

{d ∈ Rn| f∞i (d, 0) ≤ 0} = {0}, ∀ i ∈ [1, ...,m]. (6.3.14)

Denote by (X̄u)i the solution set of the following scalar-valued optimization problem

inf{fi(x, u)| x ∈ Rn}, u ∈ Rl

where fi(x, u) is the ith component of F (x, u). From Proposition 6.3.1 and Proposition

6.3.3, we know that F (x, u) is proper, C-convex and C-lsc on Rn×Rl, which means that

all components of F (x, u) are proper, convex and lsc. By virtue of Lemma 6.2.2 and

(6.3.14), we obtain that fi(x, u) is level-bounded in x and locally uniformly in u. We

also see that all functions fi(·, u) on Rn have f∞i (·, u) as their asymptotic functions. By

Lemma 6.2.1, we conclude that (X̄u)i is nonempty and compact. Thus, X̄u is nonempty

and compact for any u ∈ domP .

6.4 Conclusions

In this chapter, we investigated the asymptotical properties of parametric multiobjective

optimization. Various necessary and sufficient conditions were given for the nonempti-
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ness and compactness of the weak Pareto optimal solution set of a convex parametric

multiobjective optimization problem.
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Chapter 7

Conclusions and Suggestions for

Future Studies

In this thesis, we studied the asymptotical properties of multiobjective optimization and

vector variational inequalities. Based on these asymptotical properties, we constructed

some proximal-type methods for solving convex multiobjective optimization problems

and weak vector variational inequality problems.

In chapter 3, we considered a convex vector optimization problem of finding weak

Pareto optimal solutions for an extended vector-valued map from a uniformly convex

and uniformly smooth Banach space to a real Banach space with the latter being ordered

by a closed, convex and pointed cone with a nonempty interior. For this problem, we

developed an extension of the proximal point method for scalar-valued convex optimiza-

tion as well as some proximal point algorithms in vector optimization. In this extension,

the subproblems involve the finding of weak Pareto optimal solutions for suitable reg-

ularizations of the original map. We presented both exact and inexact versions, where

the subproblems are solved only approximately within a relative tolerance. In both

cases, we proved weak convergence of the sequence generated to a weak Pareto optimal

solution, by assuming convexity of the map with respect to C and C -completeness of

the initial section.

In chapter 4, we also proposed a generalized proximal point algorithm for finding

a weak Pareto optimal solution for minimizing an extended vector-valued map with
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respect to the positive orthant in finite dimensional spaces through the vector-valued

Bregman distance function. We proved that the sequence generated by this algorithm

converges to a weak Pareto optimal solution of the multiobjective optimization problem

under the condition that the original optimization problem has a nonempty and compact

solution set.

In chapter 5, we constructed a matrix-valued proximal-type method to solve a

monotone-type weak vector variational inequality, carried out convergence analysis on

the method, and proved that the sequence generated by our method converges to a

solution of the weak vector variational inequality problem under some mild conditions.

In chapter 6, we investigated the nonemptiness and compactness of the weak Pareto

optimal solution set of a convex multiobjective optimization problem with functional

constraints via asymptotic analysis. We also employed the obtained results to derive

the necessary and sufficient conditions of the weak Pareto optimal solution set of a

convex parametric multiobjective optimization problem.

Overall, we obtained some new results and methods for the theory of multiobjective

optimization problems and vector variational inequality problems. Some of our results

(e.g., Chapter 3 and Chapter 6) include the corresponding results studied by others as

special cases; and some of our results (e.g., Chapter 4 and Chapter 5) are original.

However, some of our results are quite abstract, and they are difficult to make

numerical tests, due to the fact that the proximal-type method is a conceptual scheme

rather than an implementable algorithm. It merely transforms a given problem into

a sequence of better behaved subproblems. Thus, the performance of the method

depends on the specific algorithm used to solve the subproblems. In this situation, it

makes little sense to compare the proximal-type method with other methods in terms of

computational efficiency unless a specific procedure is chosen to solve the subproblems.

In this thesis, we refrained from discussing the algorithms to solve the subproblems;

hence, we did not discuss the implementation issues or comparisons with alternative

approaches.

The following is a list of some interesting problems to be dealt with in future re-

search:
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[1]. Although the proximal point method is difficult to apply to some practical prob-

lems, we should find ways to overcome these difficulties in future research and

select some suitable examples for numerical test by choosing a specific procedure.

[2]. In chapter 6, we have investigated the convex multiobjective optimization problem

with functional constraints and derived the necessary and sufficient conditions for

nonemptiness and compactness of weak Pareto optimal solution set. Thus, we

will apply these results to construct some vector-valued primal-dual proximal

point methods to solve the multiobjective optimization problems with functional

constraints.

[3]. We will attempt to propose some proximal-type methods to solve the set-valued

vector variational inequality problem.

[4]. We will attempt to characterize convex composite multiobjective optimization

problems, and derive the necessary and sufficient conditions of nonemptiness and

compactness of weak Pareto optimal solution set of the problems. We will then

apply the obtained results to propose some proximal-type methods to solve the

convex composite multiobjective optimization problems.

In studying those problems, we will obtain some new results by using the methods

introduced by others, or by introducing new methods to deal with these problems. We

will focus more on these and other related problems. We will also intend to obtain more

useful results.
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