

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF ELECTRONIC AND INFORMATION

ENGINEERING

Fundamental Research on Electronic Design
Automation in VLSI Design - Routability

Lu Jingwei

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Philosophy

February, 2010

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or

written, nor material that has been accepted for the award of any other degree

or diploma, except where due acknowledgement has been made in the text.

(Signed)

(Name of student)

ii

iii

Abstract

As the feature size of integrated circuits is revolutionized into nanometer scale,

delay of interconnection has become the dominant factor instead of the tran-

sistor internal delay. As a result, new demands on interconnection have been

proposed to the developers, and they usually enhance the routability of the

chip so as to improve the performance of interconnection. Under the general

research topic of routability, our work is focused on congestion prediction, clock

network synthesis, clock gating design and global routing. They are all critical

steps regarding routability concerns in the VLSI physical design.

In the early stages of the physical design, congestion prediction is necessary

for the routability evaluation. An accurate estimation of a placement result

is an effective metric to evaluate the behavior of the corresponding placer. In

our work we propose three models, shortest Manhattan distance (SMD) model,

Detour model and 3-step approach, for congestion prediction. The two major

techniques applied in modern global routers, the detoured routing as well as the

rip-up and rerouting, are considered in our work for further enhancement on

estimation accuracy. The experimental results of our work present a progress

on the performance compared to the previous congestion models.

The behavior (timing delay) of clock network synthesis (CNS) is mainly de-

termined by the clock skew and the PVT (Process, Voltage and Temperature)

variation factors. In our work, we develop two new clock network synthesizers

(DMST and DMSTSS) with several novel techniques to tackle these issues.

iv

A dual-MST based perfect matching and a hierarchical buffer sizing are pro-

posed to handle the clock latency range (CLR), which is the major metric for

performance evaluation. An iterative buffer insertion approach and a dual-MZ

blockage handling technique are developed for a proper distribution of buffers

and wires. Internal nodes of the clock tree are relocated based on the delay es-

timation by SPICE simulation. The clock skew can be further reduced in this

procedure. Slew table construction is designed to conform to the constraint

on slew rate. In the experimental results it is shown that our synthesizers can

effectively reduce the CLR in a much shorter runtime.

In the modern synchronous digital circuits, the clock network consumes

a great share of the total power cost. Therefore, it is necessary to engage

masking gates to reduce its power usage. This technique turns off the according

clock tree sections during their idle periods. In the previous clock gating

works, switched capacitance is a major metric to denote the power usage of

the clock network and the according controller network. Two clock gating

works, HKPUcg and HKPUst, are proposed in this thesis. HKPUcg aims at

minimizing the switched capacitance, and the objective of HKPUst is reducing

the clock skew. Two novel methods of power aware topology generation are

proposed, respectively. Moreover, a new decision technique on gate insertion

is developed to further reduce the switched capacitance and balance the delay

difference. From the experimental results, we can see that our clock gating

works can effectively reduce the total power usage. By SPICE simulation, the

clock skew is small.

Among the modern global routers, the technique of iterative rip-up and

rerouting is widely applied. Based on this technique, we develop two methods

of dynamic steiner point relocation and edge-based maze routing to further

reduce the overflow and shorten the wirelength. The first approach is imple-

mented in constant time with a new data structure constructed for pins, steiner

points and subnet connection. The second approach is built up based on the

v

propagation among the global edges instead of global bins. From the experi-

mental results, we can see that our router is efficient and robust compared to

the previous state-of-the-art global routers.

vi

Acknowledgements

At first, I would like to express the deepest gratitude to my chief supervisor,

Dr. Bruce Chiu-Wing Sham, for his excellent direction, patient instruction

and generous help throughout the past two years. During my MPhil study,

Dr. Sham not only enriches my academic experiences, broadens my horizon of

research, but also impresses me with his kindness and tolerance. Without him

I could not finish my MPhil study, and it is a great honor of mine to study

under his supervision.

Secondly, I would like to express the sincere thanks to my co-supervisor,

Prof. Evangeline Fung-Yu Young, for her guidance and cares to me. Besides

research instructions, Prof. Young also gives me encouragement to pursue

higher goals in my career life. Without her I could not proceed my study at

VLSI CAD, let alone my future works. It is beyond my words to express my

appreciation to her.

Thirdly, I would like to thank my colleague, William Chow-Wing Kai, for

his support to my research work. I have benefited a lot from the discussion

with him regarding academic problems and living concerns. It is a memorable

experience of mine to work with him.

Meanwhile, I appreciate the cares and helps from my parents during my

study in Hong Kong. I could never pursue my oversea education without their

comprehension and support.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Our Contribution . 2

1.3 Outline of Thesis . 3

2 Background 5

2.1 Overview of VLSI Physical Design 5

2.2 Metrics Analysis . 7

2.2.1 Signal Delay Models . 7

2.2.2 Clock Skew and Clock Latency Range(CLR) 9

2.2.3 Clock Slew Rate . 10

2.2.4 Congestion Probability and Overflow 11

2.2.5 Power on Capacitance and Wirelength 12

3 Literature Review 15

3.1 Overview . 15

3.2 Congestion Prediction . 15

3.3 Clock Network Synthesis . 17

3.4 Clock Gating Design . 18

3.5 Global Routing . 19

3.6 Summary . 21

viii

4 Congestion Prediction 22

4.1 Overview . 22

4.2 Problem Formulation . 22

4.3 Analysis of Congestion Models 24

4.4 SMD Model . 24

4.5 Detour Model . 26

4.5.1 Estimation of Detoured length 27

4.5.2 Congestion Estimation 28

4.6 3-Step Approach . 30

4.6.1 Preliminary Estimation 31

4.6.2 Detailed Estimation . 32

4.6.3 Congestion Redistribution 33

4.7 Experimental Results . 35

4.8 Summary . 41

5 Clock Network Synthesis 42

5.1 Overview . 42

5.2 Problem Formulation . 43

5.3 Methodology . 44

5.3.1 A Dual-MST based Geometric Perfect Matching 46

5.3.2 Hierarchical Buffer Sizing 50

5.3.3 Iterative Buffer Insertion 53

5.3.4 Dual-MZ Blockage Handling Technique 55

5.3.5 Merging Point Relocation with SPICE Simulation 56

5.3.6 Slew Table Construction 59

5.4 Experimental Results . 61

5.5 Summary . 67

6 Clock Gating Design 71

6.1 Overview . 71

ix

6.2 Problem Formulation . 72

6.2.1 Clock Tree and Controller Tree 72

6.2.2 Switched Capacitance 74

6.3 Methodology . 75

6.3.1 Power Aware Topology Generation 76

6.3.2 Concurrent Gate and Buffer Insertion 78

6.4 Experimental Results . 80

6.5 Summary . 87

7 Global Routing 89

7.1 Overview . 89

7.2 Problem Formulation . 90

7.3 Methodology . 91

7.3.1 Dynamic Steiner Point Relocation 91

7.3.2 Edge-based Monotonic and Maze Routing 94

7.4 Experimental Results . 97

7.5 Summary . 99

8 Conclusion 104

Bibliography 107

x

List of Figures

2.1 VLSI physical design flow. 6

2.2 A clock inverter and its corresponding RC delay model 8

2.3 π-model of a single wire . 8

2.4 (a) Non-equidistant clock tree (b) Equidistant clock tree. 10

2.5 Slew effect on square wave. 11

2.6 The tracks between tile T1 and tile T2. 12

2.7 The capacitance accumulation in clock tree. 13

2.8 (a) Minimum spanning tree (b) Steiner tree. 14

4.1 SMD model for a two-pin net 25

4.2 Possible routes inside a tile (routed from the upper-left corner

to the lower-right corner) . 25

4.3 Detour model for a two-pin net 29

4.4 An example of computing the congestion measures for a two-pin

net in the detailed estimation step 32

4.5 An example of congestion redistribution 34

4.6 Congestion maps of horizontal wires (case: ibm03) 37

4.7 Error distribution of horizontal wires (case: ibm03) 38

5.1 Design flows of DMST and DMSTSS 45

5.2 Comparison of (a) an asymmetric tree and (b) a symmetric tree 48

5.3 Example of buffer sizing . 50

5.4 Definition of lrt and lbf . 52

xi

5.5 A clock tree divided by buffer levels L1 and L2 53

5.6 Design flow of iterative buffer insertion 54

5.7 Design flow of (a) dual-MZ and (b) specific maze routing 57

5.8 Possible synthesis results of (a) complete detour and (b) dual-

MZ . 58

5.9 DMSTSS synthesis result of the benchmark ispd09fnb1 59

5.10 Driving length reference at (a) single wire and (b) binary branch 60

6.1 A gated clock binary tree. 73

6.2 An example of activity pattern transmission. 74

7.1 (a) Chip decomposition (b) Grid graph 91

7.2 (a) Before rerouting (b) After rerouting 93

7.3 Comparison of two solutions . 96

7.4 (a) Global bin-based router (b) Global edge-based router 97

xii

List of Tables

4.1 Notations in congestion prediction 23

4.2 Percentage of detoured nets . 27

4.3 Improvement of wirelength estimation 28

4.4 Information of the test cases . 35

4.5 Comparison on the mean and standard deviation of error of the

congestion models for more congested circuits 36

4.6 Comparison of the runtime of the congestion models 39

4.7 Comparison on the mean of error of the congestion models when

the circuit is global routed by AMGR 40

4.8 Comparison on the mean of error of the congestion models when

the circuit is global routed by MaizeRouter 40

5.1 Buffer configuration . 61

5.2 Circuit information of the benchmarks from ISPD 2009 62

5.3 Variation of the transistor . 63

5.4 Comparison between different matching methods 64

5.5 Comparison of computing platforms 64

5.6 Comparison among DMSTSS, the three synthesizers in ASP-

DAC 2010 and the best result in ISPD 2009. 65

5.7 Comparison among DMSTSS, the three synthesizers in ASP-

DAC 2010 and the best result in ISPD 2009. 66

xiii

5.8 Comparison among DMSTSS, the three synthesizers in ASP-

DAC 2010 and the best result in ISPD 2009. 67

5.9 Comparison of CLR for fixed buffer sizing in DMSTSS 68

5.10 Comparison of CLR for fixed buffer sizing in DMST 69

5.11 Circuit information of the benchmarks from r1 to r5 70

5.12 Performance of DMSTSS on r1 to r5 70

6.1 Buffer and gate configuration 80

6.2 Clock skew and switched capacitance with gate insertion 82

6.3 Clock skew and switched capacitance with gate insertion 83

6.4 Circuit information of the benchmarks from r1 to r5 83

6.5 Performance comparison between HKPUcg and other clock gat-

ing works. 84

6.6 Performance comparison between HKPUcg and other clock gat-

ing works. 84

6.7 Performance comparison between HKPUcg and other clock gat-

ing works. 85

7.1 Notations in global routing . 90

7.2 Information of ISPD08 benchmarks 98

7.3 Performance comparison based on ISPD08 benchmarks 99

7.4 Performance comparison based on ISPD08 benchmarks 100

7.5 Performance comparison based on ISPD08 benchmarks 101

7.6 Comparison of HKPUgr and NCTU on the modified ISPD08

benchmarks, with 2 tracks removed on each edge. 102

7.7 Comparison of HKPUgr and NCTU on the modified ISPD08

benchmarks, with 2 tracks added on each edge. 103

xiv

Chapter 1

Introduction

1.1 Motivation

In the modern time, integrated circuit (chip) is widely applied in the electronic

equipments. Almost every digital appliance, like computer, camera, music

player or mobile phone, has one or several chips on its circuit board. VLSI,

the acronym of very-large-scale integration, is the process of combining a huge

amount of transistor-based circuits into a single chip. Complex of electronic

components are designed, specified then fabricated on the substrate, which is

made of pure semiconductor materials. Physical design is at the lowest level

of the VLSI design flow, it is the process of determining the actual location

of all the active devices and interconnecting the pins inside the boundary of

a VLSI chip. As the improvement on the craft of semiconductor manufacture

proceeds into deep-submicron and nanometer scale and the enlargement of

integration scale into billions of transistors, designing demands of much stricter

rules (power usage, process variation, timing closure) have been proposed. It

is no longer applicable for the manual operation to deal with problems of such

huge difficulty.

Instead of traditional manual design, electronic design automation (EDA)

is applied to automate the design process of semiconductors and improve the

efficiency of the work. The major objective of EDA is to develop a category of

1

Chapter 1 Introduction 2

CAD (computer aided design) software tools. Meanwhile, the according per-

formance simulation can be applied in PC or supercomputers, which is very

attainable. In the procedure of EDA, fundamental comprehension on the VLSI

technology and the knowledge on the feature attributes are important skills

for the designers. Therefore, they can efficiently fill the gap between system

specification and chip manufacture. By means of problem formulation, algo-

rithm devision and performance evaluation, designers are supposed to build

up a program to automate the physical design in a computer.

Due to the prevalent application of nanometer-scale technology in the mod-

ern integrated circuits, the excessively high density of interconnections will re-

sult in negative effect towards the routability of the chip. This is because the

over-congestion of wires will severely damage the quality of the signal trans-

mission in each network, therefore impair the circuit performance. As a result,

routability optimization has become a major concern in the VLSI physical de-

sign. In our research work, routability is improved in several correlated steps:

congestion prediction, clock tree synthesis and global routing.

1.2 Our Contribution

In VLSI physical design, our research work is focused on the topic of routability.

It includes both the estimation and the implementation of the interconnections

of the networks. Our contribution is composed of four parts:

1. Congestion Prediction. We propose three models (SMD model, detour

model and 3-step approach) to evaluate the congestion in early stages.

Based on the packing results of a placer, the grade of congestion of all

the tiles on the chip can be estimated by our prediction models. The

result of prediction is an effective metric to evaluate the performance of

the according placer, therefore enhance the routability of the chip and

facilitate the network interconnection (routing) in later stages.

Chapter 1 Introduction 3

2. Clock Network Synthesis. In our work, we develop two synthesizers (DM-

STSS and DMST). Overall six novel techniques are proposed to improve

the performance. A merging node relocation approach is devised to re-

duce the clock skew, which is the major concern in CNS. By our blockage

handling approach, distribution problems for buffer insertion are success-

fully solved, and the additional resource cost is very low. Besides, the

capacitance usage, although a less important concern, is also reduced by

our merging approach.

3. Clock Gating Design. It is an extended work based on the clock network

synthesis. In clock gating design, the power usage of the network becomes

the major concern. In this thesis, two clock gating works (HKPUcg

and HKPUst) are proposed. An improved power aware topology of the

clock tree is implemented. Meanwhile, a decision technique on clock gate

insertion is developed to reduce the resultant switched capacitance thus

cut down the power usage. Our synthesizers can guarantee exact zero

skew without violation on the slew rate constraint.

4. Global Routing. We propose a new global router, HKPUgr, for inter-bin

connection of all the networks in the chip. We developed two novel

methods, a dynamic steiner point relocation technique as well as an

edge-based maze routing technique, to reduce the wirelength and via

length. In each iteration of iterative rip-up and rerouting, our approach

is proved to achieve the optimum solution based on a common composite

cost function of global routing.

1.3 Outline of Thesis

This thesis is organized as follows. We give the introduction of our thesis in

chapter 1. The background knowledge regarding this thesis is presented in

Chapter 1 Introduction 4

chapter 2, with the overview of the VLSI physical design and some discussions

on the related performance metrics. Previous research works are reviewed and

analyzed in chapter 3. Three models of congestion prediction is discussed in

chapter 4 with comprehensive analysis. Two clock network synthesizers with

six technical enhancements are proposed in chapter 5. Clock gating design is

proposed in chapter 6 to reduce the power usage of the clock network by gate

insertion. A new global router is proposed in chapter 7 to reduce the total

wirelength. Finally, we reach our conclusion in chapter 8.

Chapter 2

Background

2.1 Overview of VLSI Physical Design

Modern VLSI design is usually divided into four concatenated stages: behav-

ioral design, structural design, logic design and physical design. In the VLSI

physical design, the source code at register transfer level (RTL) in hardware

description language (HDL) is converted into specific circuit layout for manu-

facture. VLSI physical design is typically solved in a hierarchical framework.

For problem simplification with less concerns of optimization involved, each

design stage would be mostly independently improved. Meanwhile, correlated

optimization concerns among various stages should also be engaged, in order

to maintain the total layout problem manageable for the subsequent stages

(fabrication). The procedure of VLSI physical design is generally composed of

five steps: partitioning, floorplanning, placement, clock tree synthesis, global

routing and detailed routing. The design flow is shown by the gray rectangles

in figure 2.1. Sometimes partitioning, floorplanning and placement are sum-

marized into a superior stage of placement, and clock tree synthesis, global

routing and detailed routing are summarized into a superior stage of routing.

Partitioning divides a circuit into smaller parts. The objective is to restrict

each part within a prescribed range. Meanwhile, the amount of interconnec-

tions among different components is minimized so as to enhance the routability

5

Chapter 2 Background 6

Figure 2.1 VLSI physical design flow.

Circuit

Design
Partitioning Floorplanning Placement

Clock Tree

Synthesis

Global

Routing

Detailed

Routing
Fabrication

and reduce the power usage. Partitioning is a fundamental step of the VLSI

physical design, it transforms a large problem into smaller ones of manageable

sizes. In the literature, the research works on partitioning mainly include iter-

ative partitioning algorithms [45, 28, 48, 81] and ratio cut approaches [73, 51].

Floorplanning is applied after partitioning to determine the approximate

location of each module in the chip area. A good approach of floorplanning

should minimize the total chip area, facilitate the following routing stage and

reduce the signal delay. Modules with higher density connections should be

placed closer to each other. In retrospect to the past, various approaches con-

cerning floorplanning have been proposed. They are mainly composed of rect-

angular dual graph approach [47], planar triangulated graph approaches [90,

93], hierarchical approach [77], simulated annealing approach [97] and floorplan

sizing approach [67, 87].

In placement, each module has fixed shape and terminal locations. The

main target is to determine the optimal position of every module on the chip.

The placement algorithms can be divided into two main categories: itera-

tive improvement and constructive placement. General methods include force-

directed [2, 34, 66], simulated annealing [82], partitioning [23] and resistive

network [16].

Chapter 2 Background 7

The major target of clock network synthesis is to connect all the syn-

chronous signal receivers together with the signal source. Buffer insertion,

sizing and wire customization are also engaged to synthesize the work and

further improve the timing performance. The basic two approaches of clock

tree construction are the top-down procedure [40] and the bottom-up proce-

dure [41]. There are also two general methods of signal delay computation:

linear delay estimated by wirelength and Elmore RC delay model [26].

In global routing, the grid is decomposed into small rectangles, which are

named global bins. Only inter-bin connection among the pins of each network

is applied in global routing. It is aimed at reducing the degree of conges-

tion and the total wirelength. A good global router will evenly distribute

the congestion over the whole routing area. The general routing methods in-

clude multi-commodity flow-based approaches [6, 85] and single-turn routing

approach [43].

Detailed routing follows the global routing and implements the intercon-

nections inside the global bins. Track assignment between global bins is also

completed. The general approaches include channel routing [78] and hierar-

chical routing [4].

2.2 Metrics Analysis

In this section, we introduce the major metrics for performance evaluation

in this thesis. Generally, the evaluation is based on the result regarding two

items: (1) timing delay (2) power consumption. Both of the two metrics should

be minimized in order to improve the performance of our research work.

2.2.1 Signal Delay Models

In clock tree synthesis, there are plenty of delay models in different orders.

By applying these models, signal delay at any point of the clock network can

Chapter 2 Background 8

Figure 2.2 A clock inverter and its corresponding RC delay model

A BA B

b
C

d
C

b
R

b
d

Figure 2.3 π-model of a single wire

A B

1

2
wC

1

2
wC

w
R

be calculated. Linear delay model is a simple model for delay computation

and balancing. The pathlength between a clock sink to the source is used to

denote its according timing delay. Besides, Elmore RC model [26] is a more

effective delay model. Compared to the linear model, Elmore RC model is

more accurate together with increased complexity of computation.

An example of RC delay model of a buffer is shown in figure 2.2. The

corresponding formula to calculate the buffer delay is shown as below

DB = db +Rb × Cd (2.1)

where Cd means the load capacitance at point B, db is the internal delay

of a buffer and Rb is the driver resistance of a buffer.

The delay model of a wire can be obtained in a similar way. We usually use

π-model to denote the wire delay case, as illustrated in figure 2.3. Based on

the Elmore delay model, the following equation is used to calculate the delay

of a wire,

Dw = Rw ×

(

1

2
× Cw + Cd

)

(2.2)

Chapter 2 Background 9

where Cd denotes the load capacitance at point B, Rw denotes the unit

resistance of a wire and Cw denotes the unit capacitance of a wire.

2.2.2 Clock Skew and Clock Latency Range(CLR)

Let S denote the set of sinks, S = {s1, . . . , s|S|}. si is the ith sink, and dsi

represents the internal delay between the source and the sink si. The skew

of a clock network means the maximum difference of the source-to-sink delay

among all the sinks. To minimize the skew, we need to build a clock network

with all dsi as close as possible. Notice that the skew is not determined by the

average delay of the sinks, but by the difference between the maximum delay

and the minimum delay. The equation for clock skew (Cs) calculation is shown

as below.

Cs = max{dsi |∀si ∈ S} −min{dsi |∀si ∈ S} (2.3)

Two examples in linear delay model are shown in figure 2.4. Figure 2.4(a)

is a non-equidistant solution. We can find that ds1 < ds2 < ds3 , and the

pathlength skew is (ds3 − ds1). However, in figure 2.4(b) ds1 = ds2 = ds3 and

the pathlength skew is zero. Therefore, the equidistant one is better than the

non-equidistant one, although its total wirelength is longer.

Due to the PVT (process, voltage and temperature) variation, the actual

performance of the clock network would be worse than the theoretical estima-

tion. In ISPD 2009 Clock Network Synthesis Contest [88, 39], a new metric

named clock latency range (CLR) is formulated, concerning voltage variation

additionally. Assume that the supplied voltage at each buffer vary between

Vdd1 and Vdd2 . Therefore, two voltage sources Vdd1 and Vdd2 are applied in two

simulation tests independently to simulate the voltage uncertainty. The metric

of CLR is thus determined by the difference between the maximal and minimal

clock skew values under these two given voltage supplies. CLR is the major

Chapter 2 Background 10

Figure 2.4 (a) Non-equidistant clock tree (b) Equidistant clock tree.

1s

2s

3s

1s

2s

3s

source

sink

(a) (b)

metric for performance evaluation in our CNS work.

p1max
= max{dsi |∀si ∈ S, Vdd1} (2.4a)

p1min
= min{dsi |∀si ∈ S, Vdd1} (2.4b)

p2max
= max{dsi |∀si ∈ S, Vdd2} (2.4c)

p2min
= min{dsi |∀si ∈ S, Vdd2} (2.4d)

CLR = max{p1max
, p2max

} −min{p1min
, p2min

} (2.4e)

It can be concluded from the above equations that CLR represents both

the deviation caused by delay models and the voltage variation.

2.2.3 Clock Slew Rate

The slew rate of an electronic circuit is generally defined as the maximum

rate of change on the signal transmission. In physical design, we estimate

the duration of the signal rising (falling) time for slew rate maintenance in

the circuit. Signal rising (falling) time means the timing delay from low-level

to high-level (high to low). For better signal quality therefore shorter rising

Chapter 2 Background 11

(falling) time, proper buffer insertion is necessary for driving power supply.

An example of slew demonstration is shown in figure 2.5.

Figure 2.5 Slew effect on square wave.

TO

V

rising time falling time

The restriction on clock slew describes the requirement on the rising (falling)

signal rate. In some previous clock gating works [65, 11], it is defined to be the

limited maximum load capacitance (≤ 20×Cg). In ISPD 2009 Clock Network

Synthesis Contest [88, 39], it is defined to be the lasting time from 10% → 90%

(90% → 10%) of the signal strength, and the upper limit is set to be 100 ps.

Slew rate violation at any point would be regarded as a failure of the whole

clock network synthesis.

2.2.4 Congestion Probability and Overflow

In congestion prediction, we model the degree of congestion for every tile in

terms of the accumulated probability. Therefore, the congestion probability is

the major metric for performance evaluation. In global routing, the maximal

capacity for each edge is predefined, and the exceeding amount is named as

overflow. We need to minimize the total overflow of the grid to improve the

congestion. The whole chip area is decomposed into rectangular tiles, and ei,j

Chapter 2 Background 12

Figure 2.6 The tracks between tile T1 and tile T2.

track

tile T1 tile T2

denotes the edge connecting the two adjacent tiles Ti and Tj. The respective

capacity, demand and overflow on this edge are denoted as capi,j, demi,j and

ovfi,j, respectively. ovftotal means the total overflow of the whole circuit. The

capacity of an edge is determined by the number of tracks on it. As shown in

figure 2.6, the red double-arrow line denotes a single track. Since there are six

tracks in all on e1,2, we have cap1,2 = 6. There will be overflow if the according

demand of tracks dem1,2 exceeds the capacity. The general definition of ovfi,j

and ovftotal are shown as below.

ovfi,j =











demi,j − capi,j : demi,j > capi,j

0 : demi,j ≤ capi,j

(2.5)

ovftotal =
∑

all ei,j

ovfi,j (2.6)

2.2.5 Power on Capacitance and Wirelength

Power consumption has become a critical issue in the system-on-chip (SoC)

design. Besides previous research works, much more work remains to be done

Chapter 2 Background 13

Figure 2.7 The capacitance accumulation in clock tree.

1DC

1WC
2WC

2DC
3DC

3WC
4WC

4DC

5WC
6WC

5DC

7DC

6DC

to automate the design flow. The equation for power usage computation is

P = 1
2
αCdfV

2
dd. α is the amount of transition periods, Cd is the total load

capacitance of the network, f represents the signal frequency and Vdd denotes

the voltage supply. According to the above equation, the consumed power

is in a linear relationship with the total capacitance Cd. Therefore, total

capacitance is optimized in our work to reduce the power consumption.

In clock network synthesis, both the buffers and the wires have their con-

tribution to the capacitance. We denote the procedure of capacitance accumu-

lation in figure 2.7, where CDi
denotes the downstream capacitance, and CWi

denotes the capacitance contributed by a segment of wire. Notice that when

there are buffer insertions, downstream capacitance will be changed according

to the input capacitance of buffers.

CD5
= (CD1

+ CD2
) + (CW1

+ CW2
) (2.7a)

CD6
= (CD3

+ CD4
) + (CW3

+ CW4
) (2.7b)

CD7
= (CD5

+ CD6
) + (CW5

+ CW6
) (2.7c)

In global routing, the capacitance is approximated by the total wirelength.

Chapter 2 Background 14

We can reduce the power consumption by means of wirelength minimization.

Notice that in our work, based on the rectilinear grid, the distance between

each pair of pins is not the Euclidean distance. Instead, the Manhattan dis-

tance is applied which equals the sum of the horizontal and vertical distance.

Rectilinear steiner minimum tree (RSMT) is an efficient approach to achieve

the shortest connection of a network with multiple pins. Insertion of proper

steiner points is a necessary step in the steiner tree construction. Two compa-

rable examples are shown in figure 2.8, where T1, T2, T3 are the three original

pins to be connected, and S1 is an additional steiner point. The minimum

spanning tree (MST) solution is shown in the left case, and the rectilinear

steiner minimum tree (RSMT) solution is shown in the right case. It is obvi-

ous that the steiner tree is a better solution with a shorter wirelength caused.

The rectilinear steiner minimum tree problem is NP-hard, but plenty of ap-

proximation schemes have been proposed with acceptable performance [35].

Some are with even optimal performance at particular cases.

Figure 2.8 (a) Minimum spanning tree (b) Steiner tree.

(a) (b)

1T

2T

3T

1T

2T

3T

1S

Chapter 3

Literature Review

3.1 Overview

In this thesis, our research focus is located at the routability in VLSI physical

design. During the early designing time, congestion prediction is applied in

order to evaluate the degree of congestion in terms of respective probability on

edge occupancy. In clock network synthesis, buffers cannot be inserted inside

the blockage areas, which are preoccupied by macro blocks during the place-

ment stage. Therefore, routability is maintained by proper buffer distribution

for clock signal transmission. Clock gating design is an associating step of CNS

aiming at power reduction. It is implemented by turn on/off active/inactive

modules selectively. Subsequently except for the clock network, global routing

implements the connection of the rest of the networks inside the chip area.

Congestion and overflow are minimized and the according routability is max-

imized.

3.2 Congestion Prediction

By virtue of the non-stopping reduction of feature size in the VLSI design, in-

terconnection delay replaces the transistor delay to be the dominant factor on

15

Chapter 3 Literature Review 16

the signal delay. Therefore, routability has become a critical concern regard-

ing the total timing performance of the circuit. However, improper design or

operation in early stages will cause negative effect to the routing performance.

For instance, arbitrary packing of modules will possibly lead to uneven distri-

bution of congestion. As a result, the interconnection of such placement result

may not be completed by global routers. Therefore, it is quite necessary to

develop algorithms to improve routability during the placement or some other

early designing steps, where congestion prediction is an effective technique of

them. Congestion prediction can provide the probability of usage of all the

tiles on the chip.

In retrospect to the past research achievements, several models have been

proposed. In the works [14, 7, 57], a packing is divided into tiles and conges-

tion is estimated in each tile, assuming that each net is routed in either L- or

Z-shape. In [50], the congestion model used is the average net density on the

boundaries of different regions in a floorplanning. In the papers [49, 54], prob-

abilistic analysis is performed to estimate congestion and routability. They

assume that all feasible routes have the same probability of being selected. In

practice, routes of less bends are more desirable. In the papers [42, 96], ex-

tended versions of [54] are proposed. The authors take into account the impact

of the number of bends in a routing path on the probability of occurrence of

the path. However, the accuracy of their congestion models will depend on

the accuracies of their predictions on the distribution of the number of bends

in the routed circuit. The paper [99] proposed to predict congestion by using

the Rent’s rule. However, connections of the nets are already known in the

floorplanning and placement stage, and we should be able to predict conges-

tion more accurately than simply using the Rent’s rule. The papers [94, 95]

proposed to use global routers to estimate congestion, which will be more accu-

rate but the runtime penalty is high. The paper [75] presented a probabilistic

congestion prediction method based on routers intelligence. The paper [89]

Chapter 3 Literature Review 17

gives an tutorial on all recent congestion technique and show the importance

of the congestion prediction.

3.3 Clock Network Synthesis

After placement, the interconnection of all the networks should be completed in

the stage of routing, in which clock network synthesis is the first step. In VLSI

circuits, digital modules are synchronized by receiving clock signals, which are

transmitted from a source through the clock network. In clock network synthe-

sis, the clock skew is usually a major concern, which represents the difference of

the signal arrival time at all the terminals. In order to synchronize one circuit,

each terminal must be reached by the clock signal within a small time range.

Otherwise, the performance on synchronization is unacceptable. Regarding

the maximum attainable frequency of operation in the circuits, the resultant

clock skew of the synthesis work must be reduced into a predetermined range.

Clock skew minimization is a popular research topic during the past decades.

Plenty of research achievements have been proposed by previous researchers.

Some earlier proposed works concentrated on the distribution of wirelength

between the source and the sinks to achieve delay equalization. Jackson [40]

firstly presented a clock routing algorithm in a top-down course. Later, a geo-

metric perfect matching was proposed in [41] in a bottom-up procedure. More

improvements were also made to reach exact equidistant tree [25] for the clock

network. Afterwards, delay balancing using Elmore delay model [26] became

prevalent to acquire more accurate information on the timing delay. Clock tree

with exact zero skew [92] was proposed by applying such balancing method.

The deferred-merging and embedding (DME) technique [3, 10] was proposed

to achieve zero skew with a shorter wirelength in the clock tree. In topol-

ogy generation, some algorithms were proposed for both un-buffered [24] and

buffered [12] clock trees respectively. In [31, 17] buffer insertion was involved

Chapter 3 Literature Review 18

for power supply and transition time reduction

In the recent years, tolerance on variation became a focus of attention. This

is mainly due to the uncertainty of various uncertain factors inside a circuit,

such as process [63, 100], voltage [76] and temperature [80]. In order to keep

a chip stable and functioning well, methods with greater tolerance on varia-

tion are widely favored. Many researchers focused on robust algorithms for

variation minimization. Techniques such as wire sizing [52], buffer sizing [15]

and link insertion [71, 72] are applied. In ISPD 2009 clock network synthesis

contest [88, 39], a voltage variation related objective, CLR, was formulated.

Several new benchmarks were released accordingly. Subsequently, some re-

lated research works were proposed [86, 53, 55]. In [55], a dual-MST topology

generation approach was devised and analyzed Its objective is to minimize the

maximal edge cost during the weighted perfect matching.

3.4 Clock Gating Design

In modern VLSI design, optimization on the power consumption is necessary, in

case chip overheat and battery shortage (for portable devices). Clock network

affords the synchronization of digital modules in the circuits. However, it is also

quite power consuming. From statistics, it is shown that twenty to fifty percent

of the dynamic power usage is contributed by the clock network [46]. Therefore,

optimization on clock network is an effective way to make the chip less power

consuming. At each clock period, only a small portion of the digital module set

is active. The remaining modules are temporarily idle and they can be turned

off for power saving. Based on this assumption, gated clock network is proposed

in the sequential circuits for enable/disable control signal transmission. The

principal idea is to turn off the idle modules and the according sections of the

clock tree, and the unnecessary switching power can thus be cut down.

Clock gating can be applied on logic level [8], register-transfer-level level [22]

Chapter 3 Literature Review 19

and architecture level [56], respectively. Nevertheless, optimization on these

upper design levels may ignore the physical information and cause unnecessary

detours or snaking wires. Upper level improvement may be offsetted by lower

level implementation [30]. As a matter of fact, physical location of the modules

should be taken into account during the clock gating design, in case wirelength

overhead thus power waste.

Some achievements have been proposed with simultaneous logical and phys-

ical concerns. The design of activity-driven gated clock network was proposed

in [91] and [27]. However, clock skew was only concerned by gate number

balancing, and the contribution of wires were ignored. Meanwhile, the gate

insertion was not applied concurrently within the topology generation. In [13],

similarity of activity patterns between clock nodes was utilized, and the per-

formance was improved with reduced power consumption. Instruction stream

was proposed in [64] to simulate the probabilistic information of each mod-

ule. In [65], a gating method regarding microprocessor design was developed

to minimize the switched capacitance. However, no relationship of activities

was concerned while merging each pair of nodes. Meanwhile, the resulted clock

tree was still non-zero skew. Recently, a comprehensive technique was proposed

in [11]. It is composed of a recursive computation on effective switched capaci-

tance and a solution sampling method based on merging segment set. Despite

the improvement on performance, the approach is very time and memory con-

suming, and the slew rate is too ideal (limit on downstream capacitance) which

may not be applicable for industry use.

3.5 Global Routing

After clock network synthesis, global routing and detailed routing are applied

to complete the interconnections of the rest of the networks. In the stage of

Chapter 3 Literature Review 20

global routing, the grid is decomposed into global bins. By such decomposi-

tion, all the pins are labelled with the coordinates of their according global

bins. In each network, only the pins from different global bins need to be con-

nected together. The specific inner-bin connection will be implemented in the

detailed routing. Plenty of research works regarding global routing have been

proposed with a great deal of improvements achieved [60]. Meanwhile, there

were two global routing contests held in 2007 [62, 37] and 2008 [38], which

greatly stimulated the research interests in global routing.

Among those state-of-the-art global routers, they generally employ two

categories of basic techniques: (1) iterative rip-up and rerouting (2) multi-

commodity flow. The approach of iterative rip-up and rerouting does not

confine routing selections in the early steps. However, it completes the task

by means of numerous iterations of rerouting to gradually approach the fi-

nal target of zero overflow. Repetitious rerouting would cost additional run-

time to fulfill the work, thus focus is usually centralized on those congested

area to make the processing efficient. The distribution of routing power is

asymmetrical among all the nets, and congested nets usually get a big share.

There are already a number of algorithms proposed based on it. Chi Dis-

persion [32] is a global routing approach implemented based on cost ampli-

fication. Labyrinth [44] is implemented based on the scheme of predictable

routing. These are the two early global routers employing this technique.

Recently, more and more global routers are presented, including Archer [68],

BoxRouter [18], FGR [74], FastRoute [69, 70, 101], MaizeRoute [58, 59], NTHU-

Route[29, 9], NTUgr [33] and NCTU [21]. Most of them apply FLUTE [19, 20],

a rather efficient tool based on look-up table, to generate the Rectilinear Steiner

Minimum Tree (RSMT) for each network. FastRoute is of rather high speed

and it can be integrated into placement to provide interconnection information.

MaizeRoute is implemented with extreme-edge-shift technique, and NTHU

Chapter 3 Literature Review 21

uses the concept of region-based constraint for overflow reduction. For the ap-

proach of multi-commodity flow, the global routing problem is formulated and

transferred into an integer linear programming (ILP) problem to be solved. A

recent router from the work by Albrecht [1] provides an approximation method

based on this approach.

3.6 Summary

From the above review, it is shown that some achievements have been made

by previous researchers on the topic of routability. Nevertheless, owing to

the development of the craft on semiconductors and the enlargement of the

integration scale, new requirements on routability have been proposed. There-

fore, there are still large space for performance improvement. In congestion

estimation, a lot of efficient models have been proposed, such as some prede-

fined patterns for resource assignment and probabilistic analysis. The influence

caused by routing procedure still lacks enough concerns. In clock network syn-

thesis and clock gating design, equidistant clock tree and zero skew approach

have been developed and improved. Nonetheless, excessive focus on wirelength

optimization would deteriorate the tolerance on variability and reduce the ro-

bustness of the work. In global routing, recent global routers focused on fast

reduction of overflow, but the optimization on wirelength and via connection

is partly ignored.

Chapter 4

Congestion Prediction

4.1 Overview

Congestion prediction is of crucial importance in the early stages of the physical

design. In this chapter, we propose three congestion models: SMD (shortest

Manhattan distance), Detour model [84] and 3-step approach [83]. From the

experimental results it is shown that the 3-step approach is the most efficient

one considering the accuracy of congestion prediction.

4.2 Problem Formulation

Congestion modeling is an important part of interconnect estimation during

the floorplanning and placement stage. Given a packing which is partitioned

into lh × lw tiles (according to the length of tile, tl), we will calculate the net

density at each tile according to the congestion model. Net density means the

accumulated probability of tracking paths in each tile, which are contributed

by all the nets in the chip. Based on the congestion information obtained

from the net density, we can evaluate the routability of the packing result.

The objective of our work is to minimize the difference between the results of

estimation and routing, in order to predict the grade of congestion accurately

at early stages of the physical design.

22

Chapter 4 Congestion Prediction 23

Table 4.1 Notations in congestion prediction

Notation Description
tl Length of a tile

chmax Maximum horizontal wire capacity inside a tile
cvmax Maximum vertical wire capacity inside a tile
ck(r) The number of tiles that is r tiles from the source of net k
DTk The shortest Manhattan distance between the source and sink of

the net k
dk(x, y) The distance from the source of net k to tile (x, y)
Pk(x, y) A rough estimation of the probability of net k passing through

the tile (x, y)
W (x, y) The weight of tile (x, y)
CFk Congestion factor of the net k
lkd Detoured length of the net k

Ek(x, y) Probability of net k passing through (x, y)
Eh

k (x, y) Probability of net k passing through (x, y) horizontally
Ev

k(x, y) Probability of net k passing through (x, y) vertically
Eh(x, y) Expected number of wires passing through (x, y) horizontally
Ev(x, y) Expected number of wires passing through (x, y) vertically
Ah(x, y) Actual number of wires passing through (x, y) horizontally,

obtained from global routing result
Av(x, y) Actual number of wires passing through (x, y) vertically,

obtained from global routing result
(sxk, s

y
k) Coordinate of the source tile of net k

(txk, t
y
k) Coordinate of the terminal tile of net k

T d
k The set of extra tiles when the detoured nets pass through

outside the bounding box of net k
Tk The set of tiles inside the bounding box of net k

Tk(d) The set of tiles inside the bounding box of net k,
being d tiles away from the source

Chapter 4 Congestion Prediction 24

4.3 Analysis of Congestion Models

In the previous works regarding congestion prediction, we usually break down

the multi-pin nets into 2-pin nets first. A network with N pins can be de-

composed into N − 1 subnets, each subnet is a connection of two pins. In

this section, we mainly propose three models of congestion prediction. All of

them are constructed based on 2-pin subnets decomposition. Respective prin-

cipal analysis and performance comparison are listed. These models are SMD,

Detour and 3-step approach, which are discussed as follows.

4.4 SMD Model

When we assume that all the nets are routed in their shortest Manhattan

distances, the tiles within the smallest bounding box of net k can be divided

into DTk − 1 divisions where DTk is the shortest Manhattan distance between

the source and sink of net k. An example is shown in figure 4.1. The tiles

are divided into three divisions D1, D2 and D3. Intuitively, if the nets are

restricted to be routed within the bounding box with the shortest Manhattan

distance, the nets will pass through exactly one tile in each division of the

corresponding smallest bounding box. Instead of assuming that the probability

of each possible route is the same, we propose a new congestion model, SMD

model, assuming that a net will pass through the tiles in the same division with

the similar probability. Thus, all the tiles that have the same distance from

the source or sink of a net k will have the same probability of being passed

through by net k.

Let sk(x, y) denote the distance from the source of net k to tile (x, y). The

tiles having the same distance from the source of net k will be grouped in the

same division. Let ck(r) be the number of tiles that is r tiles from the source

of net k. Hence, the probability of net k passing through (x, y), Pk(x, y), can

Chapter 4 Congestion Prediction 25

Figure 4.1 SMD model for a two-pin net

D3D2

D1 D3

D2

D2

D1

1/3 1/2

1/2 1/3

1/2 1/3

1/2

The probability

of net k

passing through

each tile

source

sink

Divisions

source

sink

be calculated by the following equation:

Pk(x, y) =
1

ck(dk(x, y))
(4.1)

Figure 4.2 Possible routes inside a tile (routed from the upper-left corner to
the lower-right corner)

Right

boundary
Upper

boundary

Left

boundary
Lower

boundary

(a) tiles on the boundary (b) tiles in the center

In addition, a net may pass through a tile either horizontally or vertically.

When a net is routed from the upper-left corner to the lower-right corner of

the bounding box, the net may pass through a tile with a path as shown in

figure 4.2. If the tile is on the boundary of the bounding box, the route may

pass through the tile in two ways. The four different cases of the tile lying along

the top, the left, the bottom and the right boundary are shown in figure 4.2a.

If the tile is on the left or right (at the top or bottom) of the bounding box,

Chapter 4 Congestion Prediction 26

the length of the route passing through the tile horizontally (vertically) is 0.5tl
2

and the length of the route passing through the tile vertically (horizontally) is

1.5tl
2
. If a tile is not on the boundary of the bounding box, the net may pass

through the tile in four different ways. They are shown in figure 4.2b. In this

case, the length of the route passing through the tile horizontally or vertically

is 2tl
4
. Thus, we can calculate Eh

k (x, y) and Ev
k(x, y) by the following equations:

Eh
k (x, y) =



























3×Ek(x,y)
4

: y = syk or y = tyk(x 6= sxk and x 6= txk)

Ek(x,y)
4

: x = sxk or x = txk(y 6= syk and y 6= tyk)

Ek(x,y)
2

: others

(4.2a)

Ev
k(x, y) =



























Ek(x,y)
4

: y = syk or y = tyk(x 6= sxk and x 6= txk)

3×Ek(x,y)
4

: x = sxk or x = txk(y 6= syk and y 6= tyk)

Ek(x,y)
2

: others

(4.2b)

Finally, the expected number of wires passing through (x, y) horizontally

and vertically, Eh(x, y) (Ev(x, y)), can be calculated by following equations:

Eh(x, y) =
∑

all net k

Eh
k (x, y) (4.3a)

Ev(x, y) =
∑

all net k

Ev
k(x, y) (4.3b)

4.5 Detour Model

The congestion models discussed before assume that all nets are routed in

their shortest Manhattan distances. However, the congestion model can be

more accurate when we consider net routing without this assumption. This

is reasonable as it is nearly impossible to route all the nets in their shortest

Chapter 4 Congestion Prediction 27

Manhattan distances for any large circuit. In this section, we will also pro-

pose a new congestion model (called Detour model [84]) in which each net

is not necessarily routed in its shortest Manhattan distance. Detour model is

proposed based on the SMD model. It assumes that a route may have detours.

4.5.1 Estimation of Detoured length

Table 4.2 Percentage of detoured nets

In this section, we show how to estimate the congestion of the tiles when

nets may detour. Obviously, the nets may detour only when some locations of

the packings are very congested. We perform global routing on the packings to

illustrate the percentage of detoured nets under different routing environments.

The experimental results are shown in table 4.2. We can see that if the packing

is more congested, more nets may detour. Thus, we can first use SMD model

to evaluate the congestion of the packing and calculate the congestion factor

of each net k by following equation:

CFk =
∑

(x,y)∈T

2× (Eh(x, y)− Eh
k (x, y) + Ev(x, y)− Ev

k(x, y))

|skx − tkx|+ 1× |sky − tky|+ 1
× (chmax + cvmax)

(4.4)

where skx ≤ x ≤ tkx and sky ≤ y ≤ tky.

From the equation, we can see that if CFk is larger than one, it means that

the bounding box is very congested for net k and the net k may likely detour.

Chapter 4 Congestion Prediction 28

Thus, we can estimate the length of detour of net k by the following equation

(if lkd is smaller than zero, it is adjusted to zero):

lkd = ⌊(CFk − 1)×DTk⌋ (4.5)

Table 4.3 Improvement of wirelength estimation

We have performed global routing on the packings to verify the estimation

of detoured length. The experimental results are shown in table 4.3. From the

experiments, we can see the error between our estimated wirelength (the multi-

pin nets are decomposed into 2-pins nets by rectilinear minimum spanning tree

first) and the actual wirelength by global routing is always smaller than the

error between the wirelength of rectilinear minimum spanning tree (RMST)

and the actual wirelength. It means that we can always estimate the wirelength

more accurately by using congestion factor.

4.5.2 Congestion Estimation

As the detoured nets may pass through outside the bounding box, some extra

tiles may be passed through by those nets. These extra tiles are the tiles

when the detoured nets pass through outside the bounding box of net k with

detoured length less than lkd . First, we define T d
k as those extra tiles for a

net k. In real cases, Pk(x, y) for (x, y) ∈ T d
k will depend on the location of

the congestion area. Detours happen because of some random over-congested

tiles. Because of this random situation, it is reasonable to assume that all tiles

Chapter 4 Congestion Prediction 29

Figure 4.3 Detour model for a two-pin net

D3

D2

D1

D3

D2

D2

D1

1-2c

2

1-2c

2

1-2c

3

The probability of net k (detoured length is 2)

passing through each tile

source

sink

Divisions

source

1-2c

2

T
d
k T

d
k T

d
k

T
d
k

T
d
k

T
d
k

T
d
kT

d
kT

d
k

T
d
k

T
d
k

T
d
k

c

c

c c

c

c

c

ccc

c

c

T
d
k

T
d
k

D3

D4

D4

c

c

1

4

1-2c

2

sink

D5

D3

D4 D5 cc

1-2c

3

1-2c

3

1-2c

3

1-2c

3

1-2c

3

1

4

1

4

1

4

T
d
kT

d
k

(x, y) in T d
k have the same probability. Hence, we can build the congestion

map based on SMD model. An example is shown in figure 4.3.

The detoured net may often pass through outside the bounding box with

less bends. If edge shifting [69] is used, the most common case is that either the

whole vertical or horizontal path is outside the bounding box. Thus, either

all horizontal segments or all vertical segments are passing through outside

the bounding box. In this case, we assume that half of the wirelength of the

detoured net will be contributed by the tile in T d
k .

The detoured net may often pass through outside the bounding box with

less bends. The most common case is that either the whole vertical or hor-

izontal path is outside the bounding box. Thus, we assume that half of the

wirelength of the detoured net will be contributed by the tile in T d
k . Hence,

we can calculate Pk(x, y) where (x, y) ∈ T d
k by following equation:

Ek(x, y) =
DTk + lkd
2× |T d

k |
: (x, y) ∈ T d

k (4.6)

where |T d
k | is the number of tiles in T d

k

Chapter 4 Congestion Prediction 30

Hence, we can calculate Ek(x, y) of other tiles (for any (x, y) /∈ T d
k) that

inside the bounding box following equation:

Ek(x, y) =
1− c ∗ |T d

k |sk(x,y)
ck(sk(x, y))

(4.7)

where |T d
k |sk(x,y) is the number of tiles in same diagonal of the division sk(x, y)

and c is Ek(x, y) for any (x, y) ∈ T d
k . In addition, a net may pass through a

tile either horizontally or vertically. We will calculate Eh
k (x, y) and Ev

k(x, y)

by equation 4.2.

4.6 3-Step Approach

The estimation process is divided into three steps: preliminary estimation,

detailed estimation and congestion redistribution. To avoid over-estimating

congestion, we perform a preliminary estimation step first to determine which

regions are likely to be over-congested. A region should be more attractive to

net routing if it is less congested. Then, we will make use of this information to

predict the congestion measures during the detailed estimation step. We use a

SMD model described in section 4.4 because of its simplicity and experimental

results have shown that this model can give accurate estimations. Finally,

congestion redistribution will be performed to simulate the rip-up and reroute

operations of the detailed routing step by moving wires from over-congested

regions to less congested regions. We use a 3-step approach [83] as follows:

• Preliminary Estimation: We estimate the congestion measure at each

tile roughly according to the bounding box of each net so that we can

determine which regions are likely to be over-congested.

• Detailed Estimation: Based on the information obtained from the pre-

liminary estimation step, we estimate the congestion measure at each tile

by using a diagonal-based congestion model.

Chapter 4 Congestion Prediction 31

• Congestion Redistribution: We will simulate the rip-up and reroute pro-

cess of the routing stage by moving wires from over-congested tiles to

less congested tiles.

4.6.1 Preliminary Estimation

In practice, we will choose to route a net over the tiles that are less congested to

prevent overflow. It means that some tiles are more attractive to net routing

and some tiles are less. However, this fact is usually ignored in traditional

congestion models. In our approach, a preliminary estimation of the congestion

map will be performed to obtain this information. If a rough estimation of the

congestion measure of a tile, P (x, y), is above the maximum wire capacity, the

tile (x, y) will be less attractive to net routing. On the other hand, if P (x, y) is

well below the maximum wire capacity, the tile (x, y) will be more attractive to

net routing. We will make use of these P (x, y) values to improve the accuracy

of the detailed estimation step.

In this preliminary estimation step, we assume that all the tiles inside the

bounding box of a net k, Tk, have the same probability, Pk(x, y), of being passed

through by net k. In addition, we assume that the nets can be routed in their

shortest Manhattan distances. The wirelength and the area of the bounding

box can be computed as |txk−sxk|+ |tyk−syk|+1 and (|txk−sxk|+1)×(|tyk−syk|+1)

respectively. Pk(x, y) can thus be calculated by the following equation:

Pk(x, y) =
|txk − sxk|+ |tyk − syk|+ 1

(|txk − sxk|+ 1)× (|tyk − syk|+ 1)
(4.8)

We can then obtain a preliminary estimation by adding up the congestion

measures due to different nets:

P (x, y) =
∑

all k

Pk(x, y) (4.9)

Chapter 4 Congestion Prediction 32

Figure 4.4 An example of computing the congestion measures for a two-pin
net in the detailed estimation step

0.4 0.5

0.5 0.4

0.5 0.2

0.5

The probability of net k

passing through each tile

Divisions

source

sink0.51

1 0.5

0.5

1

1source

sink

W(x, y)

8036

30 80

80

35

32source

sink

P(x, y) obtained from

preliminary estimation

c
h
max = 20

c
v
max = 20

(p, q)

D3D2

D1 D3

D2

D2

D1source

sink

4.6.2 Detailed Estimation

In our approach, we will predict the congestion measures by using a diagonal

(orthogonal to the source-sink connection) based model during the detailed

estimation step. We first assume that all the nets are routed in their shortest

Manhattan distances. The tiles inside the smallest bounding box of net k

can be divided into DTk − 1 divisions where DTk is the shortest Manhattan

distance between the source and the sink. An example is shown in figure 4.4.

In this example, the tiles are divided into three divisions D1, D2 and D3.

Intuitively, if the net is restricted to be routed within the bounding box, the

net will pass through exactly one tile in each division. We assume that the

net will pass through the tiles in the same division with probabilities weighted

according to W (x, y) where W (x, y) is computed by the following equations

according to the P (x, y) obtained in the preliminary estimation step.

Chapter 4 Congestion Prediction 33

W (x, y) =











1 : P (x, y) < (chmax + cvmax)

chmax+cvmax

P (x,y)
: otherwise

(4.10)

If P (x, y) is smaller than the sum of chmax and cvmax, the tile (x, y) is unlikely

to be over-congested and so W (x, y) is 1. If P (x, y) is larger than the sum of

chmax and cvmax, that tile should have a smaller W (x, y) when P (x, y) is larger.

It reflects the case in the routing stage that the nets will be routed to pass

through less congested tiles. Hence, the probability of net k passing through

(x, y), Ek(x, y), can be calculated according to the weight of each tile, W (x, y),

by the following equation:

Ek(x, y) =
W (x, y)

∑

(i,j)∈Tk(dk(x,y))
W (i, j)

(4.11)

In the example of figure 4.4, chmax and cvmax are 20. When we focus on

divisionD2, (p, q) the tile at the upper right corner is a congested tile according

to the preliminary estimation step because P (p, q) is 80, which is larger than

the sum of chmax and cvmax. Thus, W (p, q) should be smaller than 1 and it is

computed as 0.5 according to equation 4.10. Hence, the probability of net k

passing through (p, q), Ek(p, q), is 0.2. It is smaller than the others in the same

division because the tile (p, q) is likely to be over-congested. In addition, a net

may pass through a tile either horizontally or vertically. We will calculate

Eh
k (x, y) and Ev

k(x, y) by equation 4.2.

4.6.3 Congestion Redistribution

In real routing, if some tiles are over-congested or some nets cannot be routed,

rip-up and reroute will be performed. In our approach, we perform congestion

redistribution to achieve the same purpose of moving wires from over-congested

tiles to less congested tiles. We will only move around those congestion mea-

sures within the same diagonal (division). In this case, we may simulate the

Chapter 4 Congestion Prediction 34

routing process when less congested path is always selected and the total con-

gestion of one division can be maintained at one. An example is shown in

figure 4.5. In Tk(1) of net k, the tile with congestion estimation 7.2 is the most

congested in this division but it is not over-congested (less than the maximum

wire capacity of a tile). Thus, no action will be taken. In Tk(2), the tile with

12.4 is the most congested in this division and is over-congested. Thus, we will

move 0.2 (net k’s contribution to the congestion measure of this tile) from this

tile to the least congested tile of the same division.

Figure 4.5 An example of congestion redistribution

12.4 5.8

7.2 8.4

6.5 7.2

4.6

Congestion map after

detailed estimation

source

sink 12.2 5.8

7.2 8.4

6.5 7.4

4.6

Congestion map after

congestion redistribution

source

sink

This tile is the most

congested in the

division and it is

over-congested

Assume that the maximum wire capacity of a tile is 10
0.2

In general, we will find the tile, (xm, ym), with the maximum vertical (hori-

zontal) congestion and the tile, (xl, yl), with the minimum vertical (horizontal)

congestion from each division of all the nets. If the tile with the maximum

vertical (horizontal) congestion is over-congested, we will move Ev
k(xm, ym)

(Eh
k (xm, ym)) from (xm, ym) to (xl, yl). After redistribution, the summation of

Ev
k(x, y) (E

h
k (x, y)) in the same division still equals one. Thus, the assumption

that each net will pass through exactly one tile in each division within the

bounding box still holds.

Chapter 4 Congestion Prediction 35

4.7 Experimental Results

In the experiments, the test cases used are the ISPD-02 suite circuits [36]. The

length of a tile, tl, is 40µm. The detailed information of the testing circuits

are shown in table 4.4. Our prediction models are robust approaches with no

inclusion of circuit-oriented parameter tuning. Therefore, the performance of

our work should be consistently good based on the packing results from various

placers. In our experiments, all the circuits are first placed using a wirelength

driven placer, Capo [5]. Four placement solutions are obtained for each test

case. Global routing is then performed on each placement solution by a maze

routing based global router [44]. During global routing, we set wiring capacity

value to simulate two environments: more congested and less congested cases.

For the data sets shown in table 4.5, there are about 0%− 2% over-congested

tiles after global routing. Different congestion models are then used to estimate

the congestion of the placed circuits and their estimations are then compared

with the actual congestion measures obtained from the global router.

Table 4.4 Information of the test cases

We compare our SMD model, Detour model and the 3-step approach with

Chapter 4 Congestion Prediction 36

Table 4.5 Comparison on the mean and standard deviation of error of the
congestion models for more congested circuits

the models from Lou’s model [54] and Westra’s model [96]. We have im-

plemented all the congestion models and compared the estimations with the

results of the maze router. All programs were written in the C language and

run on a machine (Sun Blade 1000) with 750MHz processor and 2GB mem-

ory. We will compare the congestion models by calculating the mean of error,

µ and the standard deviation of error, µstd according the following equations:

µh =

∑

(x,y)∈T
|Ah(x,y)−Eh(x,y)|

chmax

|T |

µv =

∑

(x,y)∈T
|Av(x,y)−Ev(x,y)|

cvmax

|T |

µ =
µh + µv

2
(4.12)

Chapter 4 Congestion Prediction 37

Figure 4.6 Congestion maps of horizontal wires (case: ibm03)

Lou’s model Westra’s model

3-step approach Global routing

µstd =

√

√

√

√

∑

(x,y)∈T ((|A
v(x,y)−Ev(x,y)|

cvmax
− µ)2 + (|A

h(x,y)−Eh(x,y)|
chmax

− µ)2)

|T |
(4.13)

where T is the set of all tiles that either their actual congestion measures or

estimated congestion measures are non-zero.

The experimental results are shown in table 4.5. The values are the averages

of the four placement solutions for each test case. We can see that SMD model

can give smaller means in most cases than the Lou’s [54] and Westra’s [96]

models. Detour model also have smaller standard deviations of error than

SMD model but the improvement is not significant. The accuracies can be

further improved when we can simulate the rip-up and reroute operations by

performing the preliminary estimation and congestion redistribution steps by

the 3-step approach. For the standard deviation of the error, the results of all

Chapter 4 Congestion Prediction 38

Figure 4.7 Error distribution of horizontal wires (case: ibm03)

Lou’s model Westra’s model 3-step approach

the models are similar.

In figure 4.6, the congestion maps obtained by different congestion models

and the actual one (obtained by global routing) are shown. We can see that

there are many regions that are predicted as over-congested in the Lou’s and

Westra’s models and there are also a lot of empty regions in their models.

However, the nets can be ripped up and rerouted to avoid passing through

the over-congested regions. There is thus no over-congested region after global

routing and most of the tiles in the placed region are used by some nets. In our

modeling, we applied the preliminary estimation and congestion redistribution

steps, and a similar congestion map can be obtained. Clearer comparisons

can be illustrated by the error distributions of different congestion models in

figure 4.7. We can see that differences occur in the surroundings of the over-

congested tiles. It is because the global routing step will rip up the nets from

the over-congested tiles and reroute them in the less congested tiles in the

surroundings. Results show that we can improve the congestion estimation

accuracy in different parts of the circuit.

In addition, we have compared the runtime of different congestion models.

The results are shown in table 4.6. If we apply the detailed estimation step

only, the runtime is faster than both the Lou’s [54] and Westra’s [96] models. If

Chapter 4 Congestion Prediction 39

Table 4.6 Comparison of the runtime of the congestion models

we also apply the preliminary estimation and congestion redistribution steps,

the runtime is slower. However, it is still acceptable because a more accurate

congestion model can help us to spend less time in the later routing stage.

Finally, we compare the mean of error of the congestion models with ISPD-

07 suite circuits [37] and the circuits are global routed by two different global

routers (AMGR [98] and MaizeRouter [58]). The results are shown in the

table 4.7 and table 4.8. We can see that the 3-step approach also have smallest

mean of error among different congestion models. Besides the circuit adaptec2,

the results are very consistent. Although these two global routers apply two

different approaches (AMGR mainly applied maze routing and MaizeRouter

mainly applied Steiner tree routing and edge shifting), we can have similar

results.

In figure 4.6, the congestion maps obtained by different congestion models

Chapter 4 Congestion Prediction 40

Table 4.7 Comparison on the mean of error of the congestion models when
the circuit is global routed by AMGR

Table 4.8 Comparison on the mean of error of the congestion models when
the circuit is global routed by MaizeRouter

and the actual one (obtained by global routing) are shown. We can see that

there are many regions that are predicted as over-congested in the Lou’s and

Westra’s models and there are also a lot of empty regions in their models.

However, the nets can be ripped up and rerouted to avoid passing through

the over-congested regions. There is thus no over-congested region after global

routing and most of the tiles in the placed region are more or less used by some

nets. In our modeling, we applied the preliminary estimation and congestion

redistribution steps, and a similar congestion map can be obtained compared

with the routing map. From these subjective results, we can conclude that our

Chapter 4 Congestion Prediction 41

model is more accurate than the other two.

4.8 Summary

In this chapter we analyze three models of congestion prediction in the early

stages of VLSI physical design. SMD model is the fastest technique with

the least amount of calculation involved. Detour model pays attention to

surrounding tiles and 3-step approach with congestion redistribution is proved

to be the most accurate one. Apparently, from the performance comparison we

can conclude that our models have made significant improvement on accuracy

of prediction compared to the previous models.

Chapter 5

Clock Network Synthesis

5.1 Overview

In this chapter, we propose two novel clock network synthesizers, DMST and

DMSTSS. Some heuristics are proposed to optimize the CLR as well as the

clock skew and the power usage. It mainly contains the following features:

(1) A dual-MST based perfect matching algorithm is developed for symmetric

clock tree construction. (2) A look-up table based hierarchical buffer sizing

approach is developed for variation tolerance improvement. (3) An iterative

buffer insertion technique is developed for delay balancing and capacitance

reduction. (4) A dual-MZ blockage handling technique is developed for buffer

location distribution and blockage avoidance. SPICE simulation is also applied

for accurate delay estimation, the internal nodes of the clock tree are thus relo-

cated for further skew minimization. A slew constraint (≤ 100ps) is employed

in our synthesizer. We build a slew table for real-time reference during the

execution of our program to satisfy this constraint.

In addition to the measurement of CLR, Monte Carlo simulation is also

applied in the experiments. Monte Carlo simulation can simulate the variation

of buffers, so as to provide a common method for performance evaluation of

our clock network synthesizer. It can ensure that our proposed approach is

practically variation-tolerant.

42

Chapter 5 Clock Network Synthesis 43

5.2 Problem Formulation

Let T = {V,E} denote the clock tree. V = {vi|i = 1, 2, . . . ,mv} is the set of

nodes, and E = {ej|j = 1, 2, . . . ,mv − 1} is the set of clock edges between the

node vj and its corresponding parent. Let |ej| denote the length of the edge

ej. We use S = {vk|k = 1, 2, . . . ,ms} (where ms < mv) to denote the set of

modules (the sinks, or leaf nodes). dsi denotes the signal delay of the ith sink.

The rest (mv −ms) nodes are named internal nodes. We use |V |, |E| and |S|

to indicate the number of elements in V , E and S, respectively. The leaves

are at level 0, and the root is at the highest level. Node vi is said to be at

level ni if there are ni edges on the path from vi to the farthest leaf of the tree.

Moreover, we assume that the topology of the clock tree is full binary, and

every internal node has exactly two children. The skew of T is the difference

between the longest signal delay and the shortest signal delay from the source

to any sinks. Detailed definition can be found in the ISPD 2009 contest [88].

The restriction on clock slew describes the requirement on the signal tran-

sition time reduction. It is defined to be the rising time from 10% to 90%

of the signal strength (90% to 10% for the falling time, respectively). The

upper limit is set to be 100ps. During the clock tree synthesis, it is necessary

to maintain the signal transition time under this upper limit throughout the

whole network.

CLR is the major metric in the performance evaluation. Two independent

SPICE simulations under different voltage source (Vdd1 or Vdd2) are applied.

The value of CLR is determined by the difference between the maximal and

minimal clock skew values under the two given voltage sources. Meanwhile,

nominal clock skew is also considered, which is the maximal clock skew of all

the voltage settings.

The power consumed by CMOS circuits consists of two components: static

and dynamic power. The static power is mostly determined by the feature size

Chapter 5 Clock Network Synthesis 44

and other technology. Therefore, in this chapter we only consider dynamic

power minimization. The definition of the dynamic power is P = 1
2
αCfV 2

dd.

C means the total load capacitance on the circuit, f is the frequency of the

clock signal and Vdd is the power supply. α means the amount of switch times

in each clock cycle. For clock tree α = 2, because there is one rising and one

falling edge in each clock period. Since α, f and Vdd are constant parameters

in the digital circuits, we can use the total load capacitance C as a measure of

the power usage. In the following sections, we try to minimize the capacitance

for the power usage reduction. The upper limit of the total capacitance is

predefined as an attribute of benchmarks to limit the power consumption.

Given the physical location of all the modules (sinks), the objective of

our work is to minimize the resultant CLR of each benchmark. Our work is

subjected to the following three constraints:

1. Total capacitance cannot exceed the according limit of each benchmark.

2. Slew rate cannot exceed 100ps along the clock network.

3. Buffer cannot be placed on the blockage area.

5.3 Methodology

In this chapter, two novel clock network synthesizers, DMST and DMSTSS,

are proposed for clock skew and load capacitance minimization. Both of the

two synthesizers are designed in a bottom-up procedure with the application of

DME [3, 10] technique. DMST is developed based on the construction of dual

minimum spanning trees (dual-MST) in geometric matching. Elmore model

computation is applied in DMST for delay balancing. DMSTSS is developed

based on DMST with the inclusion of delay estimation from SPICE simulation

and clock tree tuning.

Chapter 5 Clock Network Synthesis 45

Figure 5.1 Design flows of DMST and DMSTSS

nodes set V, at level i

building dual-MST

merging-

with iterative buffer

insertion and wire

connection

merging

succeeds

 remerging-

with dual-MZ blockage

handling

relocation of merging

nodes at level i+1

(a) DMST

applying DMST

(b) DMSTSS

SPICE simulation of the

clock tree

merging fails

nodes set V, at level i

V V’,

i i+1

node pairs

upper section removing,

from level i+1 to the root

V V’,

i i+1

DMST

Chapter 5 Clock Network Synthesis 46

DMST is an iterative approach, the general procedure of DMST is shown

in figure 5.1(a). At the beginning of each iteration, we have a group of nodes

to be merged. This is denoted as V . V can be composed of either clock sinks

or internal nodes. A dual-MST based perfect matching technique is applied

first to obtain a geometric matching solution upon the node group V . During

the merging of each matched pair of nodes, a new technique of iterative buffer

insertion and wire connection is applied to deal with the buffer distribution

problem. If the merging fails because of blockages, this pair is re-merged

with an exclusive dual-MZ blockage handling technique. After the successful

merging of all the nodes in V and the generation of the nodes in V ′, this

procedure is finished. It is then performed iteratively with V replaced by V ′,

until a complete clock tree is constructed.

DMSTSS is a more advanced synthesizer. It is developed based on DMST

with real-time SPICE simulation included for delay estimation. The flow of

DMSTSS and its relationship with DMST are illustrated in figure 5.1(b). A

clock tree is firstly built up by employing DMST. Then SPICE simulation is

applied and the whole clock tree is specified with detailed signal delay infor-

mation. Based on this, the internal nodes of each level are relocated for clock

skew minimization. Notice that the synthesis result of DMSTSS is no longer a

zero skew tree in terms of the Elmore model, but it has better performance in

real circuits work. The details of our techniques are discussed in the following

parts.

5.3.1 A Dual-MST based Geometric Perfect Matching

Traditional matching algorithms mainly focused on wirelength minimization [40,

24]. Our approach focuses on the construction of symmetric topology. In our

clock tree, every root-to-leaf path will have similar buffer and wire distri-

bution. This design will make the clock tree less sensitive towards process

Chapter 5 Clock Network Synthesis 47

variation factors with the negative influence distributed in the sections of the

clock tree more evenly. An example is shown in figure 5.2 to compare the

differences between an asymmetric topology and a symmetric topology. In T1,

V = {v1, . . . v4} is a group of nodes. v5 and v6 are the internal nodes at the first

level and v7 is the root. The same naming rule is also applied in T2. In both T1

and T2, all the root-to-leaf paths are equidistant, and the total wirelength of T1

is shorter than that of T2. However, T2 is symmetric, but T1 is asymmetric. In

T1 the branches in the same level differ, for instance, dis (v1, v5) 6= dis (v3, v6).

Therefore, the clock skew of T1 is more sensitive towards process variation

factors. T2 is preferable in our work rather than T1.

A dual-MST based geometric matching technique is developed for topology

generation (a general definition of geometric matching can be found in [41]). It

is a weighted perfect matching approach. Given a set of nodes V = {v1, v2 . . . vm},

we first construct a complete graph G = {V,E}. Let |V | and |E| denote

the number of nodes and edges in the graph G, so|V | = m. Since G is a

complete graph, every pair of two nodes vi, vj is connected by an edge ei,j ,

E = {e1,2, e1,3 . . . em−1,m} and |E| = m(m−1)
2

. The cost of matching two nodes

vi and vj is denoted as fc (ei,j). In our work we set fc(ei,j) to be the Manhattan

distance between vi and vj. Let M denote the matching result of G. M is

composed of a group of edges and it is a subset of E. The maximal pairing

cost of M is denoted as Cmax and defined as below. We will get close to a

symmetric clock tree by reducing Cmax in each level.

Cmax = max{fc (ei,j) : ∀ei,j ∈ M} (5.1)

At the beginning, the pairing cost fc of every edge of E is computed, sorted

in ascending order and stored in memory. Then the matching algorithm based

on dual-MST is applied iteratively to generate every matching pair. The input

of the approach is a complete graph G = {V,E}. Similar to the Kruskal’s

MST algorithm, edges in E are inserted orderly in terms of fc. During this

Chapter 5 Clock Network Synthesis 48

Figure 5.2 Comparison of (a) an asymmetric tree and (b) a symmetric tree

(a) T1 (b) T2

v5

v3

v1

v2

v4

v6

v7

v1

v2

v3

v4

v7

v5

v6

Procedure 1 partition(G)

Require: G = {V,E} is a complete graph, E is sorted in ascending order of
fc (ei,j).
if |V | ≤ 1 then
return;

else if |V | = 2 then
merge(v1, v2);
return;

else
Building dual-MST with |V | − 2 edges inserted.
Two subgraphs G′ = {V ′, E ′} and G′′ = {V ′′, E ′′} are generated
Two minimum spanning trees st′ and st′′ for V ′ and V ′′ are generated
if |V ′| is odd and |V ′′| is odd then
em,n = argei,j min{fc (ei,j) |∀ni ∈ V ′, ∀nj ∈ V ′′};
merge(vm, vn);
remove vm from V ′;
remove vn from V ′′;
remove em,x from E ′, ∀x ∈ V ′;
remove en,y from E ′′, ∀y ∈ V ′′;

end if
partition(G′);
partition(G′′);
return;

end if

Chapter 5 Clock Network Synthesis 49

procedure, no cycle is allowed. When |V | − 2 edges have been inserted, two

disjoint sub-trees st′ and st′′ are generated. Meanwhile, G is divided into two

disjoint complete sub-graphs G′ = {V ′, E ′} and G′′ = {V ′′, E ′′}. Notice that

all the nodes of V ′ are connected by st′, and all the nodes of V ′′ are connected

by st′′, respectively. It is obvious that st′ and st′′ are two minimum spanning

trees for G′ and G′′, so dual-MST have been built up. If either |V ′| or |V ′′| is

an even number, it goes to the next iteration. Otherwise, an edge subset E0

will be extracted from E. Every edge ei,j of E0 has one node vi from V ′ and

the other node vj from V ′′. The edge em,n of E0 with the minimum cost value

fc is determined as a matching pair.

fc (em,n) = min{fc (ei,j) : ∀ei,j ∈ E0} (5.2)

Notice that this dual-MST based matching approach is a geometric perfect

matching. This means 2×⌊ |V |
2
⌋ nodes will be matched, and ⌈log2 |S|⌉ levels are

performed. Assume that we are at the ith level with the node group Vi. The

time complexity of fc computation equals O
(

|Vi|
2). On average, the number

of partitioning stages is ⌈log2 (|Vi|)⌉. Thus the time complexity of partitioning

is calculated as below.

O





⌈log2(|Vi|)⌉
∑

j=1

(

1

2
×

|Vi|

2j−1
×

(

|Vi|

2j−1
− 1

)

× 2j−1

)



 (5.3)

Therefore, the total complexity of the ith level is still O(|Vi|
2) on average.

While |Vi| = ⌈ |S|
2i−1 ⌉, the time complexity on average for the whole geometric

matching is shown below.

O





⌈log2 |S|⌉
∑

i=1

⌈
|S|

2i−1
⌉
2



 = O
(

|S|2
)

(5.4)

Our approach aims at constructing a symmetric clock tree but it is only a

heuristic giving close proximity to the optimal solution. Compared to other

Chapter 5 Clock Network Synthesis 50

geometric matching methods, ours might generate longer wire length but would

help to boost the performance of the clock tree. Specific comparison can be

found in the section of the experimental results.

5.3.2 Hierarchical Buffer Sizing

The slew rate (transition time) of the clock signal should always be observed in

order to guarantee the performance of a digital system. Thus, buffer insertion

becomes a necessary step in clock tree synthesis. A clock buffer with larger

size can provide larger driving power. It gives a smaller slew rate and less

clock buffers is needed to be inserted. In addition, the signal delay of a larger

buffer is less sensitive to variations. On the other hand, buffers with larger

size will consume more power, and larger space is required for placement.

Therefore, appropriate buffer sizing is an important issue in balancing the

power consumption and variations.

Figure 5.3 Example of buffer sizing

v5 v6

v7

v1 v2 v3 v4

b7

b5 b6

b1 b2 b3 b4

The signal delay of a clock sink is determined by the path from the root to

itself. In this chapter, it is named by a root-to-leaf signal path. The insertion

Chapter 5 Clock Network Synthesis 51

point at a higher level will occupy a larger number of such root-to-leaf signal

paths. As shown in figure 5.3, v7 at level 2 will cover 4 downstream clock sinks

(v1, v2, v3, v4) and v5 at level 1 will cover 2 downstream clock sinks (v1, v2).

Therefore, we should enlarge the size of the buffers at higher levels to balance

the signal delay of more clock sinks. Ideally, the clock buffers can be sized

according to the example in figure 5.3. In this example, buffers with larger

size will be inserted in upper levels and the smaller buffers will be used in lower

level of the clock tree. In this chapter, an algorithm is devised to appropriately

design the buffer size in descending order from the root to the leaves. Given

one type of buffer, we connect a group of buffers in parallel to simulate larger

buffer sizes.

Our main target in clock tree synthesis is to minimize the negative effect

caused by variation factors. For this target, every root-to-leaf path should be

constructed in similar pattern, with proper buffer location and sizing. Thus

the number of buffer levels in each root-to-leaf path should be exactly the

same. Moreover, the size of the buffer insertion in each buffer level should also

be the same for all the sinks. Under this precondition, the size of the buffers

at each insertion point is uniquely determined by its downstream buffer levels.

It is a waste of time to devise the size for any specific insertion point during

the synthesis. We develop a sizing rule based on some internal attributes of

the clock sinks. During the procedure of clock tree synthesis, we compute the

optimal size for each buffer level in advance and build up a table for buffer

sizing reference. Subsequently, all the buffer insertion will follow this sizing

table to determine its buffer size.

Here, we describe our rule for the construction of buffer sizing table. We

define the total amount of different buffer sizes to be an integer m. Let szb (x)

denote the objective buffer size and x denote the amount of downstream buffer

levels. According to figure 5.3, szb (x) is a monotonically increasing function.

Moreover, we define L = {L0, L1, . . . , Lm} to be the buffer levels between

Chapter 5 Clock Network Synthesis 52

different buffer sizes, as shown in figure 5.5. When Li−1 ≤ x < Li, szb (x) = i.

L0 is assumed to be zero, and Lm is assumed to be infinite. The rest of the

elements in L is determined in the following way. An initial clock tree with the

smallest buffer size (single buffer) at each insertion point is constructed first.

In this initial tree, the number of buffer levels between the source node and

the root is denoted as lrt, and the number of buffer levels between the root to

the clock sink within the longest root-to-leaf signal path is denoted as lbf . An

example is shown in figure 5.4. Based on the value of lrt and lbf , the buffer

configuration is computed according to the following formula,

Li = ⌊(lbf − lrt)×
cap

tot cap
× δi⌋ × 2 + 1 (5.5)

where cap is the used capacitance of the initial clock tree, and tot cap is the

total capacitance allowed. δi is a parameter that is related to the driving

power of i parallel buffers. Here i means the amount of parallel buffers and

i = 1, 2, . . . ,m− 1.

Figure 5.4 Definition of lrt and lbf

source

si

lrt

lbf

root

sk

sj

The size of buffers cannot be arbitrary in the real cases, and we connect

a number of buffers in parallel to enlarge the size. Notice that we don’t use

node levels but downstream buffer levels to determine the buffer sizes. Let lvi

denote the amount of downstream buffer levels at an internal node vi. The

amounts of buffer levels of its children nodes are denoted by lLvi and lRvi . Hence,

the value of lvi is determined by the following formula.

lvi = max{lLvi , l
R
vi
} (5.6)

Chapter 5 Clock Network Synthesis 53

Figure 5.5 A clock tree divided by buffer levels L1 and L2

L2 L1

lvi = 0 if vi is a sink node. Since it is a bottom-up method, the correspond-

ing buffer levels of the internal nodes can be computed in this way.

5.3.3 Iterative Buffer Insertion

In our synthesizer of DMST, the topology is constructed level by level with

concurrent buffer insertion and wire connection. This is mainly because ac-

curate sub-tree information is important at geometric matching in each level.

In DMSTSS, we will iteratively remove and rebuild the upper levels of the

clock tree for merging point tuning. Global buffer distribution in the whole

clock tree may lead to local cost increment for other tree sections. However,

these benefited tree sections may be removed in the further tuning. Thus, it is

improper to distribute the buffers globally along the whole tree. We developed

a greedy algorithm of iterative buffer insertion, which is mainly focus on local

optimization with skew balancing and load capacitance minimization.

An example is illustrated in figure 5.6 to demonstrate our approach for

merging two nodes v1 and v2. Let e1,2 denote the edge connecting the two

nodes. Based on their downstream capacitances and sub-tree delays, the lo-

cation of the delay balancing point, v0, can be computed. Let lv1 denote

the amount of downstream buffer levels of v1, and lv2 denote the amount of

downstream buffer levels of v2, respectively. Generally, our method of buffer

distribution can be divided into the following two parts.

Chapter 5 Clock Network Synthesis 54

Figure 5.6 Design flow of iterative buffer insertion

(a)

(b)

(c)

v0

b1

v1 v2

b1

b0

v1 v2

b2

v0

v0

v2v1

(1) lv1 = lv2 . We assume an upstream buffer b0 at v0, as shown in fig-

ure 5.6(a). If b0 can drive v1 and v2 directly, the merging of v1 and v2 is

finished. Otherwise, two back-to-back buffers b1 and b2 will be placed in a

new delay balancing point along e1,2, as shown in figure 5.6(b). The distance

between b1 and b2 is set to be zero, and they are both located at v0. There-

fore, the current load capacitance left to the upper level is minimized. If no

slew violation occurs, the merging is finished. Otherwise, assume there is slew

violation along ev1,b1 . b2 will be removed and b1 will be shifted leftwards to

its nearest non-slew-violation location. After the insertion of b1, we enter the

next iteration.

(2) lv1 6= lv2 . Assume that lv1 ≤ lv2 . We will insert a buffer b1 along e1,2,

following the rule that b1 is in the same location of v0, as shown in figure 5.6(c).

Therefore, the current load capacitance left to the upper level is minimized. If

no slew violation occurs, we enter the next iteration with the insertion of b1.

Otherwise, there must be slew violation along ev1,b1 . b1 will be shifted leftward

to its nearest non-slew-violation point. After the insertion of b1, we enter the

Chapter 5 Clock Network Synthesis 55

next iteration.

Notice that in the next iteration, v0 replaces v1 as an input node, and

v2 is remained. Similarly, e0,2 replaces e1,2. In our discussion of iterative

buffer insertion, only straight wire connection is described in details. However,

snaking cannot be completely avoided in some particular cases. When the

delay difference between the two nodes cannot be solved with straight wire

balancing, snaking wire technique can be applied.

5.3.4 Dual-MZ Blockage Handling Technique

Because of the existence of macro blocks, there may be pre-assigned obstacles

on the chip area. Wires can cover these blockage areas freely, but buffers

will cause violation. The connection is thus constrained. Traditionally, clock

tree synthesizer can be divided into two steps. They do clock routing first to

connect all the sinks to the signal source. Subsequently, buffer sizing, insertion

and wire sizing are determined then. In case of buffer violation in the second

step, clock routing has to detour out of the blockage areas in the first step. An

example of possible result of traditional synthesis is shown in figure 5.8(a).

Instead of above mentioned approach, our approach considers concurrent

buffer sizing and insertion during the procedure of clock routing. A novel

blockage handling method, dual-MZ, is developed based on the traditional

maze routing technique. Several enhancements are developed to make it satisfy

the clock network synthesis constraints. We first decompose the chip into a

M × N grid. Assume that v1 and v2 are the two nodes to be merged. Two

independent maze routersmz1 andmz2 are initialized for v1 and v2, exclusively.

Therefore, a dual-MZ is constructed. The priority queue of each maze router

is sorted by the downstream delay values of its elements in ascending orders.

Let dly1 and dly2 denote the minimum downstream delays of mz1 and mz2.

Without loss of generality, assume that dly1 ≤ dly2, and mz1 is selected to be

Chapter 5 Clock Network Synthesis 56

the primary router. Like ordinary maze routing, it will search the four adjacent

grid points in one iteration. The downstream delay of mz1 is then increased,

so dly1 will be updated. When dly1 becomes bigger than dly2, mz2 will replace

mz1 to be the primary router and continue the routing job. In this way, mz1

and mz2 are executed in turns, and the values of dly1 and dly2 stay close to

each other. A design flow of dual-MZ is shown in figure 5.7. When the two

routers meet at the end, their accumulated delays will not differ a lot. dual-MZ

can result in less buffer insertions and wire detours, so the power consumption

is reduced. Notice that during this procedure, wire connection together with

buffer insertion is concurrently applied along the propagation trace of the two

routers, and they both contribute to the delay accumulation for comparison.

A possible synthesis result of dual-MZ is shown in figure 5.8(b).

Our dual-MZ can save resources with less buffers and wires cost involved.

Notice that the size of the grid graph (M × N) is manually determined in

our algorithm. M and N can be scaled in order to derive a tradeoff between

routing complexity and routing quality. In our experiments, both M and

N are set to be 1000. A synthesis result of the benchmark ispd09fnb1 is

shown in figure 5.9 (the detailed information of ispd09fnb1 can be found in

table 5.2). The green stars denote the clock sinks, the blue squares denote the

buffers, the purple circle denotes the signal source, the red lines denote the

wire connection and the gray rectangles denote the blockage areas. We can see

that by applying dual-MZ, clock wire can cover the blockage area freely with

proper buffer insertion outside. Resources cost can be reduced by our method

efficiently.

5.3.5 Merging Point Relocation with SPICE Simulation

DMSTSS is an advanced version of DMST with SPICE tuning involved. Given

a clock tree, SPICE simulation can provide accurate delay estimation at any

Chapter 5 Clock Network Synthesis 57

Figure 5.7 Design flow of (a) dual-MZ and (b) specific maze routing

compare dly1 and dly2

concurrent buffer

insertion and wire

connection

update dly1 or dly2

(a) dual-MZ

propagate to four

adjacent grid points

(b) mz router

mz1 runs for

 one iteration

dly1 dly2 dly1 > dly2

mz2 runs for

one teration

check if mz1 and

mz2 meet

yes

no

build up mz1 and mz2

merging finished

point. Based on this additional information, clock tree can be adjusted to

improve the deviation caused by Elmore model. Nevertheless, despite im-

provement on clock skew, the runtime cost of SPICE simulation is quite large.

Thus we need to reach a tradeoff between performance and efficiency.

Our merging point relocation is a level-by-level approach. Here the level

means not buffer level but the node level in the tree structure. The specific

flow is shown in figure 5.1(b). After DMST, a clock tree is available. SPICE

simulation of the tree is applied to get the delay estimation. Based on this

Chapter 5 Clock Network Synthesis 58

Figure 5.8 Possible synthesis results of (a) complete detour and (b) dual-MZ

0

0
1 2

1 2

accurate estimation, all the internal nodes in the current level will be relo-

cated simultaneously. Then the tree sections at upper levels are removed and

rebuilt by DMST, based on the set of nodes at the current level. Because of

this iterative removing and rebuilding, slew violation caused by merging point

relocation can be avoided. Meanwhile, the upper topology of the tree is dy-

namically improved. DMSTSS is applied in this iterative way, it ends when

the root is reached.

The relocation of each merging point is based on Elmore delay computation

of wire connections. No buffer computation is involved in this tuning approach.

Assume that v0 is the node to be relocated, and v1 and v2 are its two children

Chapter 5 Clock Network Synthesis 59

Figure 5.9 DMSTSS synthesis result of the benchmark ispd09fnb1

nodes. e0,1 and e0,2 are the two according edges. We first update the delay

values of the nodes with SPICE estimation result. Then a bidirectional search

is applied from v0 to v1 and v2, along e0,1 and e0,2. This search stops when it

meets the first buffer on the edge or it meets the ending node. Assume the two

stops of the bidirectional search to be n1 and n2 on e0,1 and e0,2, respectively.

Then the two wire connections ev0,n1
and ev0,n2

are removed and remerged.

Notice that here Elmore model is still used in delay computation, but the

specific delay values are from SPICE estimation.

5.3.6 Slew Table Construction

In our work, slew rate constraint (≤ 100ps) is engaged along the whole clock

tree. Real-time slew tuning will cost a lot of time and decrease the efficiency

of the program. We pre-build a look up table for slew reference during the

execution of our program. The procedure to construct the slew table can be

divided into two categories, single wire and binary branch. At any node, we

Chapter 5 Clock Network Synthesis 60

need to get the maximum driving length from the slew table, with upstream

buffer size, downstream buffer size and downstream wirelength as the indexes.

This is shown in figure 5.10. We can assume that the current node to be v0,

and l0 is the maximum driving length for the next buffer insertion b0. l0 is what

we need to get from the slew table in the program. As shown in figure 5.5, the

buffer size szb0 for the next level can be derived from our buffer sizing table, so

it is a know value. At the single wire in figure 5.10(a), downstream information

of szb1 and l1 are ready to utilize. Therefore, with three available indexes of

szb0 , szb1 and l1, we can get l0 from the slew table. We can get l0 for a binary

branch in the same way, as shown in figure 5.10(b). The only difference is that

there are two additional indexes required for the slew table, which are szb2 and

l2 as the downstream buffer size and wire length of the other branch.

As stated in 5.3.2, buffer size are defined by the number of parallel buffer

connection in our work. Thus szb0 , szb1 and szb2 are discrete values (integers

actually) and they can be used as table indexes directly. However, wire length

is a real continuous value in nanometer scale. Therefore, we quantize the wire

length of l0, l1 and l2 during the slew table construction in order to maintain

the table size within a proper range. During the clock tree synthesis, a linear

interpolation program is applied to transfer the actual wire length into discrete

table index.

Figure 5.10 Driving length reference at (a) single wire and (b) binary branch

(a) (b)

b1

l1

b0

l0

b1

l1

b0

l0

b2

l2

v0 v0

Chapter 5 Clock Network Synthesis 61

5.4 Experimental Results

In this section, our experimental results are presented. We implement our clock

tree synthesizer in the C language and the program is executed on the Linux

operating system with an Intel Core2 Quad 2.4GHz CPU and 4GB memory.

In our experiment, one type of wire and one type of buffer is used in our clock

tree synthesizer. The unit resistance of the wire is 0.0003Ω/nm, and the unit

capacitance of the wire is 0.00016fF/nm. The specific configuration of the

buffer in different sizes is shown in table 5.1. In our synthesizer, the maximum

buffer size is set to be 6, which is inserted on the connection path between

the source and the root. Hence we list the attributes of different buffer sizes

less than or equal to 6. This table is generated from our SPICE simulation

statistics. Cb means the input capacitance, Rb means the driver resistance and

db means the internal delay of a buffer, respectively. During the evaluation, two

power supplies with Vdd1 = 1.0V and Vdd2 = 1.2V are employed independently

for the simulation of voltage variation and CLR computation.

Table 5.1 Buffer configuration

buffer sizes Cb (fF) Rb(Ω) db(ps)
1 35 66.9 4.92
2 70 40.5 5.63
3 105 31.3 6.13
4 140 26.4 6.52
5 175 25.0 6.95
6 210 20.7 7.20

Two benchmarks suites are included in our experiment. The first one is re-

leased from the ISPD 2009 contest [88]. Detailed information of the benchmark

circuits is shown in table 5.2.

There are three traditionally common geometric matching methods, which

are MMM [40], KCR [41] and CL [24]. MMM applies a top-down approach to

Chapter 5 Clock Network Synthesis 62

Table 5.2 Circuit information of the benchmarks from ISPD 2009

Chip Size No. of No. of block limit
Circuits

(mm x mm) sinks (Area %) CAP (fF)
ispd09f11 11.0 x 11.0 121 0 (0%) 118000
ispd09f12 8.1 x 12.6 117 0 (0%) 110000
ispd09f21 12.6 x 11.7 117 0 (0%) 125000
ispd09f22 11.7 x 4.9 91 0 (0%) 80000
ispd09f31 17.1 x 17.1 273 88 (24.38%) 250000
ispd09f32 17.0 x 17.0 190 99 (34.26%) 190000
ispd09fnb1 2.6 x 2.1 330 53 (37.69%) 42000
ispd09f33 15.3 x 15.3 209 80 (27.68%) 195000
ispd09f34 16.0 x 16.0 157 99 (38.67%) 160000
ispd09f35 15.3 x 15.3 193 96 (33.22%) 185000
ispd09fnb2 6.4 x 4.4 440 1346 (63.88%) 88000
avg. 12.1 x 11.6 203 169 (23.62%) 140273

construct the clock tree, and it cannot be embedded into our clock network

synthesizer. We apply a bottom-up approach, which is based on the geometric

matching procedure of KCR [41]. Other than the traditional bottom-up merg-

ing procedure of KCR, dual-MST is newly developed in our perfect matching.

For additional performance comparison, we implement CL [24] in our synthe-

sizer to replace the dual-MST based matching method, with the other com-

ponents of our synthesizer unchanged. In CL, the cluster size is maintained

to be 2
3
of the group of nodes (in [24], the ratio is between

(

1
2
, 1
)

so 2
3
is a

proper setting). The result of comparisons is shown in table 5.4. The result is

obtained from execution on the benchmarks in table 5.2, and SPICE simula-

tion is involved during clock tree synthesis for each case. In the performance

evaluation, Monte Carlo simulation is performed based on the variations of the

buffers. The main parameters of the transistors with variations to construct

the buffer are shown in table 5.3.

In table 5.4, nominal clock skew (ps) (average value obtained after Monte

Chapter 5 Clock Network Synthesis 63

Table 5.3 Variation of the transistor

NMOS PMOS
Parameters

Typical Slow Fast Typical Slow Fast
lint(10

−9) 3.750 2.875 4.625 3.75 2.875 4.625
vth0 0.404 0.431 0.377 -0.384 -0.411 -0.355
k1 0.400 0.420 0.379 0.400 0.422 0.378
u0 0.054 0.051 0.057 0.020 0.018 0.022

xj(10
−8) 1.40 1.54 1.26 1.40 1.54 1.26

Carlo simulation with random variations of the buffers), capacitance percent-

age (C%) and CPU time (seconds) are shown for performance comparison.

Compared to the approach of CL, the nominal clock skew obtained by dual-

MST approach is similar in some cases and the average nominal clock skew

can be reduced significantly in some particular cases. It is because the cost

difference between the matching pair with the smallest cost and the matching

pair with the largest cost are larger while CL is applied. This results in more

snaking wires for skew balancing and hence more buffers should be inserted.

The clock tree becomes less variation-tolerant when there are more buffer in-

sertions. In addition, buffers cannot be inserted at some blockage regions. The

total capacitance can be reduced significantly and so as the power consumption

while there are less buffer insertions. It is also the reason that our matching

technique, dual-MST, can outperform CL in total capacitance and CPU time.

A summary of the performance of different clock tree synthesizers is shown

in table 5.6, table 5.7 and table 5.8. CLR (ps), clock skew (ps), capacitance

percentage (%) and CPU runtime (seconds) are listed for performance compar-

ison. DMSTSS is our proposal in this chapter. As discussed in section 5.3, it

is an extended work of DMST applying real-time SPICE simulation for clock

tree tuning. We compare our results with three clock network synthesizers

published in ASP-DAC 2010 (HKPU [55], NTU [86] and NCTU [53]) and the

best result with the smallest CLR of each circuit published in the ISPD 2009

Chapter 5 Clock Network Synthesis 64

Table 5.4 Comparison between different matching methods

CL Dual-MST
Circuits Nominal Nominal

skew
C% CPU

skew
C% CPU

ispd09f11 17.66 83.4 388 18.20 79.3 180
ispd09f12 17.37 91.9 446 17.50 89.3 213
ispd09f21 19.18 83.3 427 18.76 83.2 210
ispd09f22 16.28 91.7 288 14.00 79.4 113
ispd09f31 24.10 78.4 1182 24.46 83.4 777
ispd09f32 21.49 83.1 853 21.54 82.4 420
ispd09fnb1 13.65 152.3 346 12.58 82.0 82
ispd09f33 23.51 79.2 785 23.56 83.6 483
ispd09f34 20.02 83.2 647 20.59 85.7 354
ispd09f35 23.73 89.1 1190 22.19 85.0 453
ispd09fnb2 19.49 123.2 593 15.35 87.9 202
avg. 19.68 94.4 650 18.97 83.8 317

contest [88] (ISPD09). The computing platforms for the above synthesizers

are shown in table 5.5.

Table 5.5 Comparison of computing platforms

Synthesizer CPU MEM
DMSTSS,HKPU Intel Core2 2.4 GHz 4 GB
NTU Intel Xeon 2.0 GHz 16 GB
NCTU Intel Xeon 3.0 GHz 32 GB
ISPD09 AMD Opteron 2.8 GHz 128 GB

According to the results in table 5.6, table 5.7 and table 5.8, we can see that

the CLR obtained from DMSTSS is outstanding. Generally, the average CLR

of DMSTSS is only 81.5% of HKPU (86.2% in all 11 circuits), 47.7% of NTU,

54.6% of NCTU and 41.8% of ISPD09. Meanwhile, the average CPU time of

our approach is only 107% of HKPU (108% in all 11 circuits), 5.4% of NTU,

10.8% of NCTU and 1.8% of ISPD09. CLR, as a combined evaluation index of

both clock skew and voltage variation, is the first criterion in comparison. It

Chapter 5 Clock Network Synthesis 65

Table 5.6 Comparison among DMSTSS, the three synthesizers in ASP-DAC
2010 and the best result in ISPD 2009.

DMSTSS HKPU [55]
Circuits

CLR SKEW C% CPU CLR SKEW C% CPU
ispd09f11 10.1 5.5 87.4 208 12.2 6.5 79.3 180
ispd09f12 8.8 5.4 93.2 227 10.9 7.0 89.3 213
ispd09f21 9.7 6.3 93.9 258 12.1 6.7 83.2 210
ispd09f22 6.9 4.2 89.2 136 9.9 4.3 79.4 113
ispd09f31 11.0 8.0 83.4 727 13.4 10.1 83.4 777
ispd09f32 9.9 7.6 85.2 485 11.5 8.8 82.4 420
ispd09fnb1 12.1 6.2 91.6 95 13.8 7.8 82.0 82
avg.(7) 9.8 6.2 89.8 305 12.0 7.3 82.7 285
ispd09f33 13.6 10.2 88.8 531 13.4 7.9 83.6 483
ispd09f34 9.9 8.5 91.0 385 11.3 6.2 85.7 354
ispd09f35 11.3 9.9 90.8 507 13.1 11.1 85.0 453
ispd09fnb2 13.1 8.7 87.9 202 13.1 8.7 87.9 202
avg.(11) 10.6 7.3 89.7 342 12.3 7.7 83.8 317

can be seen that our DMSTSS has great advantage on CLR compared to NTU,

NCTU and ISPD09. Even compared with our previous work HKPU, there

is still more than 10% improvement. Meanwhile, our synthesizer DMSTSS

is much faster than the proposed works. It is a little slower than that of

HKPU with less than 10% additional runtime, but the total efficiency is still

good. Additionally, due to the practicality problems of CLR (voltage supplies

at different points will not vary simultaneously), we listed the nominal clock

skew of each work as the SKEW (ps) in the tables. Notice that the clock skew

of DMSTSS is improved based on HKPU, although it is still larger than the

results of NTU, NCTU and ISPD09.

A summary of the performance of our clock tree synthesizer with fixed

buffer sizes is shown in table 5.9 and table 5.10. No buffer sizing technique is

applied here. CLR, capacitance percentage and CPU time are listed. NBf is

the number of buffers used in every buffer insertion along the whole clock tree.

We run our program with two scenarios, DMST and DMSTSS. With smaller

Chapter 5 Clock Network Synthesis 66

Table 5.7 Comparison among DMSTSS, the three synthesizers in ASP-DAC
2010 and the best result in ISPD 2009.

NTU [86] NCTU [53]
Circuits

CLR SKEW C% CPU CLR SKEW C% CPU
ispd09f11 19.7 4.5 NA 4639 18.8 7.1 NA 2200
ispd09f12 17.5 4.1 NA 4231 15.5 3.1 NA 1923
ispd09f21 19.9 3.9 NA 4629 17.0 3.0 NA 2231
ispd09f22 16.5 3.7 NA 3937 16.3 4.1 NA 1370
ispd09f31 31.1 4.8 NA 11112 22.6 7.6 NA 6360
ispd09f32 23.0 4.2 NA 7293 20.6 5.5 NA 3967
ispd09fnb1 15.7 6.8 NA 3719 14.3 3.8 NA 1743
avg.(7) 20.5 4.6 NA 5651 17.9 4.9 NA 2828
ispd09f33 NA NA NA NA NA NA NA NA
ispd09f34 NA NA NA NA NA NA NA NA
ispd09f35 NA NA NA NA NA NA NA NA
ispd09fnb2 NA NA NA NA NA NA NA NA
avg.(11) NA NA NA NA NA NA NA NA

buffer size, the CLR is larger and less capacitance is used. With larger buffer

size, the CLR is smaller and the total capacitance is increased significantly.

We can observe that buffer insertion with fixed size is not a good idea in clock

tree synthesis, and there is a tradeoff between load capacitance and CLR.

Compared to the results to DMSTSS shown in table 5.6, we can see that the

capacitance can be utilized more efficiently with significant CLR reduction by

using our buffer sizing technique discussed in 5.3.2.

Our DMSTSS synthesizer has good performance on the ISPD 2009 bench-

marks shown in table 5.2. However, the average amount of clock sinks is

only 203. Even the largest size of the benchmarks has only 440 sinks. These

benchmarks are too small and they are less representative of the modern tech-

nologies. We choose five additional standard benchmarks, r1 to r5 from [92],

to further test our synthesizers. The information of the benchmarks is shown

in table 5.11. The average sink amount of r1 to r5 is 1346. Since there is no

Chapter 5 Clock Network Synthesis 67

Table 5.8 Comparison among DMSTSS, the three synthesizers in ASP-DAC
2010 and the best result in ISPD 2009.

ISPD09 [88]
Circuits

CLR SKEW C% CPU
ispd09f11 22.3 6.3 89.9 23358
ispd09f12 22.2 5.4 87.9 14992
ispd09f21 19.6 3.2 86.7 26420
ispd09f22 16.4 3.0 85.0 9432
ispd09f31 45.1 7.6 73.5 40088
ispd09f32 18.4 7.7 89.9 2888
ispd09fnb1 19.8 7.2 63.1 477
avg. (7) 23.4 5.8 82.3 16807
ispd09f33 NA NA NA NA
ispd09f34 NA NA NA NA
ispd09f35 NA NA NA NA
ispd09fnb2 NA NA NA NA
avg. (11) NA NA NA NA

capacitance limit in the original benchmark attributes, we manually set an ap-

propriate value of capacitance limit for each case. The performance statistics

of DMSTSS for r1 to r5 are shown in table 5.12, with CLR (ps), SKEW (ps),

CAP (fF) and CPU (seconds) listed. Notice that SKEW means the maximal

clock skew value of the evaluation results under two voltage supplies and two

signal signs. We can see that our synthesizer has good performance on this

benchmark series. The average CLR and capacitance cost are 13.9 ps and

408765 fF on r1 to r5, respectively.

5.5 Summary

In summary, two clock tree synthesizers, DMST and DMSTSS, have been pro-

posed. Several novel methods, including dual-MST perfect matching, buffer

insertion and sizing, dual-MZ blockage handling, clock tree tuning with SPICE

Chapter 5 Clock Network Synthesis 68

Table 5.9 Comparison of CLR for fixed buffer sizing in DMSTSS

DMSTSS
NBf = 1 NBf = 3

Circuits
CLR C% CPU CLR C% CPU

ispd09f11 57.6 49.9 73 23.46 105.1 320
ispd09f12 51.4 47.8 64 17.78 98.8 279
ispd09f21 58.1 48.0 76 20.59 105.9 341
ispd09f22 40.8 46.9 43 15.83 96.4 168
ispd09f31 81.0 50.7 295 24.26 107.6 1545
ispd09f32 80.3 51.1 163 23.71 110.9 910
ispd09fnb1 19.3 52.3 38 14.79 109.8 135
ispd09f33 73.6 50.8 225 21.36 102.5 946
ispd09f34 74.3 51.2 128 21.39 105.6 606
ispd09f35 84.5 50.1 236 24.86 109.6 1000
ispd09fnb2 32.1 54.2 95 16.53 123.5 355
avg.(11) 59.4 50.3 130 20.41 106.8 601

simulation and slew table construction are developed to solve the clock net-

work synthesis problem. Our dual-MST based geometric matching method can

construct a clock tree of symmetric structure with increased tolerance towards

process variation. Our buffer sizing technique is able to utilize the capacitance

more efficiently in order to reduce the negative effect of variations. Besides,

iterative buffer insertion and dual-MZ blockage handling can solve the problem

on connection of a merging pair with delay balancing and saving on resources

usage. Internal nodes relocation further tunes the clock tree and reduces the

clock skew. Meanwhile the slew table provides driving length of each buffer

insertion during the program execution, in order to satisfy the slew rate con-

straint. Experimental results show that our improved synthesizer has good

performance and high efficiency. From the comparison in table 5.6, table 5.7

and table 5.8 with the previous works based on the ISPD 2009 benchmark

suite, we can see our synthesizer with the best performance on CLR and run-

time. Additionally, the results in table 5.12 on the benchmarks r1 to r5 shows

consistently good performance thus robustness of our DMSTSS synthesizer

Chapter 5 Clock Network Synthesis 69

Table 5.10 Comparison of CLR for fixed buffer sizing in DMST

DMST
NBf = 1 NBf = 3

Circuits
CLR C% CPU CLR C% CPU

ispd09f11 62.2 49.1 0.6 31.7 103.3 0.6
ispd09f12 60.2 48.5 0.6 31.1 101.3 0.6
ispd09f21 71.2 51.3 0.6 30.0 108.0 0.7
ispd09f22 50.3 45.5 0.6 27.9 91.8 0.6
ispd09f31 94.0 51.7 0.9 37.3 108.8 1.6
ispd09f32 88.9 51.1 0.7 34.4 114.9 0.8
ispd09fnb1 31.6 50.0 1.1 39.9 115.4 1.1
ispd09f33 84.6 51.5 0.8 35.2 104.1 1.8
ispd09f34 79.3 50.8 0.7 34.0 108.0 0.7
ispd09f35 95.0 51.0 2.9 58.9 108.8 3.1
ispd09fnb2 46.4 53.2 2.2 17.1 123.3 2.2
avg.(11) 69.4 50.7 1.1 35.1 108.0 1.3

on larger circuits. The result from Monte Carlo simulation shows that our

topology is more tolerant on the process variations.

Chapter 5 Clock Network Synthesis 70

Table 5.11 Circuit information of the benchmarks from r1 to r5

Chip Size No. of No. of block limit
Circuits

(mm x mm) sinks (Area %) CAP (fF)
r1 8.6 x 8.6 267 0 (0%) 170000
r2 11.6 x 11.7 598 0 (0%) 330000
r3 12.2 x 12.0 862 0 (0%) 450000
r4 15.9 x 15.9 1903 0 (0%) 950000
r5 18.2 x 17.8 3101 0 (0%) 1500000
avg. 13.3 x 13.2 1346 0 (0%) 680000

Table 5.12 Performance of DMSTSS on r1 to r5

DMSTSS
Circuits

CLR (ps) SKEW (ps) CAP (fF) CPU (s)
r1 12.8 9.2 129200 391
r2 11.0 8.3 222514 819
r3 13.3 11.1 286208 1150
r4 13.0 11.4 561388 4266
r5 19.6 18.9 844516 9407
avg. 13.9 11.8 408765 3207

Chapter 6

Clock Gating Design

6.1 Overview

In this chapter, we propose two novel synthesizers, HKPUst and HKPUcg,

to construct a binary clock tree in a bottom-up course. Simultaneous opti-

mization on the clock skew and the power dissipation is applied. The topology

generator is responsible for a buffered and gated clock tree, and the clock gates

are inserted concurrently. In our work, the downstream masking information

of subtrees is taken into account during each merging step. Two algorithms

of topology generation, dual-MST [55] and NNS [24], are applied in our work.

The according cost functions are improved for power awareness, therefore it

can reduce the switched capacitance. HKPUcg applies the same slew rate

(Cd ≤ 20× Cg) as previous works [65, 11]. Besides, in HKPUst we perform

a more strict slew constraint (≤ 100ps) along the whole clock network. Thus

the constraint on buffer and gate location is emphasized. The experimental

results show that our method can greatly reduce the power consumption of the

clock network with proper gate insertion. Meanwhile, the nominal clock skew

is guaranteed to be exact zero. With the simulation of SPICE, the resultant

skew is still acceptable.

71

Chapter 6 Clock Gating Design 72

6.2 Problem Formulation

6.2.1 Clock Tree and Controller Tree

Let T = {V,E} denote the clock tree. V = {vi|i = 1, 2, . . . ,mv} is the set of

nodes, and E = {ej|j = 1, 2, . . . ,mv − 1} is the set of clock edges between the

node vj and its corresponding parent. Let |ej| denote the length of the edge

ej. Apparently, for the root node there will be no edge assigned. Let G =

{gi|i = 1, 2, . . . ,mv − 1} denote the set of gates. The gate gj is assigned to be

on the edge ej masking the node vj directly. We use S = {vk|k = 1, 2, . . . ,ms}

(where ms < mv) to denote the set of modules (the sinks, or leaf nodes). The

rest (mv −ms) nodes are named internal nodes. The root is said to be at level

0. Node vi is said to be at level ni if there are ni edges on the path from vi

to the root of the tree. Moreover, we assume that the topology of the clock

tree is full binary. Every internal node has exactly two children. The skew

of T is the difference between the longest signal delay and the shortest signal

delay from the source to any sinks. As proposed in [65], we assume that the

control logic is located at the center of the chip. Star routing is also applied in

the controller tree, denoted as T ctr. A control edge ENi in T ctr will transmit

the enable signal to the respective gate gi on the edge ei in the clock tree T .

An example of a clock tree T as well as its controller tree T ctr is shown in

figure 6.1.

During the operating time of a circuit, each module will have its active and

idle times. It is usually specified as different activity patterns. The activity

patterns can be obtained by the simulation of the design at the behavioral

level [27]. Let Ai denote the activity pattern of the node vi. It is a binary

string with 1s indicating the active periods and 0s indicating the idle periods

of a sink or an internal node. If vi is a sink node, we can directly obtain Ai

from the benchmark file. Otherwise, suppose vi to be an internal node with

two children nodes vL and vR accordingly. The clock signal at vi must be

Chapter 6 Clock Gating Design 73

enabled whenever its left or right child is active. Therefore, Ai is calculated

by performing the bitwise OR operation on the activity patterns of vL and vR.

Hence Ai = AL∪AR. An example of a bottom-up activity pattern transmission

is shown in figure 6.2.

Let P (Ai) denote the activity of the node vi, and Ptr (Ai) denote its transi-

tion probability. These two factors are calculated based on the corresponding

pattern of vi. The specific equations are shown as below

P (Ai) =
ATno (Ai)

Len (Ai)
, Ptr (Ai) =

TRno (Ai)

2× (Len (Ai)− 1)
(6.1)

where ATno (Ai) is the number of active times (1s) in Ai, and TRno (Ai) is

the number of transitions (10 or 01) in Ai. Len (Ai) denotes the stream length

of Ai.

Figure 6.1 A gated clock binary tree.

control logic

1v 2v 3v 4v

6v

7v

1g 2g 3g 4g

5g 6g

1e 2e 3e 4e

1EN

5e 6e

clock signal

5v

7e

2EN

3EN
4EN

5EN

6EN

clock

tree T

controller

tree CtrT

Chapter 6 Clock Gating Design 74

Figure 6.2 An example of activity pattern transmission.

Aa

va vb

Ab

Ai

vi

idle

active

6.2.2 Switched Capacitance

The power consumed by CMOS circuits consists of two components: static

and dynamic power. The static power is mostly determined by the feature

size and other technology. In this chapter, we only consider dynamic power

minimization. The definition of the dynamic power is P = 1
2
αCfV 2

dd. C means

the total load capacitance on the circuit, f is the frequency of the clock signal

and Vdd is the power supply. α means the amount of switch times in each clock

cycle. For clock tree α = 2, because there is one rising and one falling edge in

each clock period. α = 1 in the controller tree, respectively. Since f and Vdd are

constant parameters in the digital circuits, we can use the switched capacitance

as a measure of the power usage. Assume that a subtree Ti rooted at vi with

a gate insertion gi, and the controller tree is denoted as T ctr
i . The unmasked

load capacitance for Ti and T ctr
i are Cu

vi
and Cu

T ctr
i

= CENi
+ Cg accordingly,

Cg denotes the input capacitance of a gate. We can get the equation for the

downstream switched capacitance of vi as SCvi = Cu
vi
P (Ai). Similarly, the

corresponding switched capacitance for the controller tree T ctr
i is measured as

SCT ctr
i

= (CENi
+ Cg)Ptr (Ai).

The power consumption of a clock network is directly proportional to the

Chapter 6 Clock Gating Design 75

average switched capacitance for each clock cycle. The total switched capaci-

tance is contributed by a gated and buffered clock tree T and a controller tree

T ctr. In order to reduce the switching activity, modules and clock tree sections

can be disabled by clock gates during their inactive clock periods. From the

above example, we can see that the original capacitance of node vi is C
u
vi
. With

gate gi inserted at vi, the resultant switched capacitance is SCvi + SCT ctr
i

. If

Cu
vi
< SCvi + SCT ctr

i
, the capacitance will be reduced with the insertion of gi.

A power aware clock tree topology with proper buffer and gate insertion will

efficiently reduce the switched capacitance, hence cut down the power usage

of the circuits.

Given a testcase with the physical location and the activity pattern of all

the modules, together with the circuit models of wire/buffer/gate, the objective

of our work is to construct a buffered and gated clock network T as well as a

controller network T ctr. Subject to the two constraints of zero skew and slew

rate constraint, the resultant total switched capacitance SCT + SCT ctr should

be minimized.

6.3 Methodology

In our clock gating work, two synthesizers, HKPUcg and HKPUst, are pro-

posed. HKPUcg applies the same slew rate (Cd ≤ 20× Cg) as previous works [65,

11]. The driver capacitance of every buffer/gate cannot exceed 20 times of a

gate input capacitance. Besides, in HKPUst we perform a more strict slew

constraint (≤ 100ps) along the whole clock network. Slew table is constructed

in advance to provide driving ability at each gate/buffer insertion point. We

build our clock trees based on two topology generation methods. In HKPUcg,

NNS [24] is applied with an newly improved power aware cost function. Ev-

ery time the pair of nodes with the minimum cost are merged together. In

HKPUst, the dual-MST construction method [55] is applied also with newly

Chapter 6 Clock Gating Design 76

improved cost function. The resulting clock tree is close to a full symmetry.

As a result of the cost improvement, the according topology can result in lower

power usage. A recursive buffer/clock gate insertion method is developed for

bottom-up merging. Blockage handling technique from [55] is also involved,

because the buffers and gates cannot be placed inside blockage regions. Elmore

model [26] is applied for clock delay computation, and DME technique [3, 10]

is applied for wirelength minimization. Thus, segment is used instead of point

to represent the set of merging location, and deferred embedding is applied to

reduce total wirelength.

6.3.1 Power Aware Topology Generation

In order to save the power, the nodes with a bigger similarity of activity pat-

terns should have a higher priority to be matched. Assume va and vb to be a

pair of two nodes, as shown in figure 6.2. If the corresponding activity pat-

terns Aa and Ab are similar, the resulted activity Ai will have a shorter active

period, and smaller power cost will be caused. Besides the concerns on activ-

ity patterns, an estimation of the merging cost Pwr (va, vb) is also required.

This can be determined in multiple ways. For instance, we can actually merge

the two nodes together to obtain the exact connection information. However,

exact buffer insertion and wire balancing are performed, which will cost longer

time. Instead, we develop a new method for potential switched capacitance

estimation. The Manhattan distance between the nodes va and vb is denoted

by D(va, vb). The Elmore delay difference of these two nodes is denoted by

DLY (va, vb). The delay and power consumption for unit wirelength are de-

noted by ρD and ρP respectively, which are computed in advance for simulation

reference. If DLY (va,vb)
ρD

is smaller than D(va, vb), then the two nodes can be

merged without snaking wire involved, and the corresponding equation for

Chapter 6 Clock Gating Design 77

power cost computation is shown as below

Pwr (va, vb) = ρP ×D(va, vb)× P (Ai) (6.2)

Otherwise, snaking will be included, as shown in the following equation

Pwr (va, vb) = ρP ×
DLY (va, vb)

ρD
× P (Ai) (6.3)

An improved power aware dual-MST matching technique is developed for

HKPUst. A specific definition of a geometric matching of one iteration can

be found in [41]. The detailed description is shown in procedure 1 of chap-

ter 5. It is a weighted perfect matching approach. Given a set of nodes

V = {v1, v2 . . . vm}, we first construct a complete graph G = {V,E}. Let |V |

and |E| denote the number of nodes and edges in the graph G, so|V | = m.

Since G is a complete graph, every pair of two nodes vi, vj is connected by an

edge ei,j, E = {e1,2, e1,3 . . . em−1,m} and |E| = m(m−1)
2

. The cost of matching

two nodes vi and vj is denoted as fc (ei,j). Let M denote the matching result

of G. M is composed of a group of edges and it is a subset of E. The maximal

pairing cost of M is denoted as Cmax and defined as below. We will get close

to a symmetric clock tree by reducing Cmax in each level. The merging cost

fDMST
c (va, vb) for dual-MST is shown as below. α and β are the weights of the

Manhattan distance and the estimated power cost, respectively.

fDMST
c (va, vb) = α×D(va, vb) + β × Pwr(va, vb) (6.4)

Similarly, an improved power aware NNS matching technique is developed

for HKPUcg. We compute the two edges of ea and eb based on zero skew

concerns. The cost function is an estimation of the resultant total switched

capacitance, which is shown as below

fNNS
c (va, vb) = |ea| × P (Aa) + |eb| × P (Ab) (6.5)

Chapter 6 Clock Gating Design 78

By means of these weighted cost functions, the node pairs with a bigger

similarity of switching activity and a shorter distance will have a higher priority

to be matched. Our approach of topology generation is based on concurrent

gate insertion, therefore the downstream information of the two merging nodes

are accurate.

6.3.2 Concurrent Gate and Buffer Insertion

A recursive buffer and gate insertion technique is developed for two objectives:

(1) slew rate constraint (2) power usage reduction. Buffers are utilized for

power supply to restrict the signal transition time, and clock gate insertion

can reduce the switched capacitance by disabling idle sections. We model

the buffer and gate with according attributes for Elmore delay computation.

Some previous works [15] already proposed to construct a buffered clock tree

with zero clock skew. In our work, we apply similar approach for both buffer

and clock gate insertion. The input/output capacitance and resistance of the

buffers and clock gates should be obtained first. Hence, the delay of wire,

buffers and clock gates can be computed based on Elmore RC model.

In HKPUst, we try to maintain the level of buffers and gates of every source-

to-sink clock path exactly the same. During the procedure of the bottom-up

binary merging, we first examine the two downstream levels of gates. If they

differ by two or more, a penalty cost will be engaged. Such matching result

will probably be discarded due to the huge cost. Buffer levels will be balanced

accordingly. By means of this level balancing, the clock skew will be reduced

significantly, and the negative effect caused by signal variation will be reduced.

Here we will describe our technique of gate insertion based on a determined

matching result. We first define three different kinds of gate insertion. They

are virtual gate insertion at the upstream level, temporal gate insertion at the

current level and none gate insertion. Temporal insertion is controlled by the

Chapter 6 Clock Gating Design 79

balancing of gate levels, which will be further divided into two kinds of single

gate insertion and one kind of back-to-back double gates insertion. The inser-

tion of a gate is assumed to be closest to the internal merging node for switched

capacitance minimization. Since DME technique is applied in our work, we

assume the middle point of the merging segment to be the gate location. The

comparison among the three assumption of gate insertion are based on the re-

sulting switched capacitance, which are SCvir, SCtmp and SCnon, respectively.

If the power consumption of the virtual insertion or the none insertion is the

smallest, no insertion of any gate will definitely result in less switched capaci-

tance compared to the choice of temporal gate insertion. Therefore, we discard

any insertion of gates at the current level. Otherwise, temporal gate insertion

will probably reduce the switched capacitance rather than the others, and here

we will accept the insertion of gates.

An example is shown in figure 6.2. The activity Ai equals to Aa ∪ Ab.

The edge connection between each of the two nodes to the merging node are

denoted as ea and eb. Cea and Ceb are their corresponding capacitance cost.

The equations to compute the three resulting switched capacitance are shown

as below

SCvir (va, vb) = (Cu
a + Cea + Cu

b + Ceb)× P (Ai) + Cu
T ctr
i

× Ptr (Ai) (6.6)

SCtmp (va, vb) = (Cu
a + Cea)× P (Aa) + Cu

T ctr
a

× Ptr (Aa) + Cu
b + Ceb (6.7)

SCnon (va, vb) = Cu
a + Cea + Cu

b + Ceb (6.8)

Notice that here we only describe the equation of SCtmp for a single gate

insertion at node va. The other two equations can be derived in a similar way.

Chapter 6 Clock Gating Design 80

6.4 Experimental Results

In this section, our experimental results are presented. We implement our

clock network synthesizer in C programming language. The binary is executed

on a Linux machine with an Intel Core2 Quad 2.4G Hz CPU and 4GB memory.

We first discuss our work HKPUst. The benchmark suite used for the

experiments is released from the ISPD 2009 CNS contest [88]. The detailed

information of the benchmark circuits is shown in table 5.2 of chapter 5. In

our experiment, one type of wire and one type of buffer is used in our clock

tree synthesizer. The unit resistance of the wire is 0.0003Ω/nm, and the unit

capacitance of the wire is 0.00016fF/nm. The specific configuration of the

buffer in different sizes is shown in table 6.1. In our synthesizer, the maximum

buffer size is set to be 6. Hence we list the attributes of different buffer sizes

up to 6. Notice that the corresponding attributes of a gate is listed in the last

row of table 6.1. This table is generated from our SPICE simulation statistics.

Cb means the input capacitance, Rb means the driver resistance and db means

the internal delay of a buffer, respectively. We also apply SPICE simulation.

The according power supply is set to be V dd = 1.0V , and the PTM model is

of 45 nanometer scale.

Table 6.1 Buffer and gate configuration

buffer sizes Cb (fF) Rb(Ω) db(ps)
1 35 66.9 4.92
2 70 40.5 5.63
3 105 31.3 6.13
4 140 26.4 6.52
5 175 25.0 6.95
6 210 20.7 7.20

gate 35 52.45 17.03

A summary of the performance of HKPUst is shown in table 6.2 and ta-

ble 6.3. We run our program with different values of α and β for topology

Chapter 6 Clock Gating Design 81

tuning. The clock skew (SKEW), total capacitance (TC), optimal capacitance

(OSC), switched capacitance (SC) and CPU time are listed. The respective

units are picoseconds (ps) for SKEW, seconds for CPU and femto-farad (fF)

for capacitance. TC denotes the original total capacitance cost of the clock

tree without gate insertion. OSC denotes the resulted capacitance after dis-

abling of all the idle periods at each node. SC denotes the resulted switched

capacitance of our gated clock tree. It can be seen that SC is mostly smaller

than TC, which means an effective power reduction in our gated clock tree con-

struction. The nominal skew of each clock tree is zero. Additionally, we use

SPICE for further evaluation and get the accurate skew estimation, as listed

in the table. The activity pattern of all the sinks are generated by ourselves,

according to the instruction and RTL description used in [65]. The length of

the activity pattern is 10000 for every benchmark. It can be speculated that

the power cost of HKPUst should be larger than the previous ones with loose

slew constraint, but the signal transition time is more consistent hence the

work is more practical in use. Generally, in HKPUst the switched capacitance

can be reduced by around 10% with the insertion of clock gates. Meanwhile,

the simulated clock skew is only about 20 ps in average. The runtime of our

program is less than 3 seconds, which represents good efficiency.

Besides, we choose another benchmark suite (r1 to r5) from [92] for perfor-

mance evaluation. In this benchmark suite, the unit resistance of the wire is

0.003Ω/um, and the according unit capacitance is 0.02fF/um. The original

benchmarks only contain physical information of the sinks. Further on, they

were modified in [65] with the inclusion of logic information (activity patterns).

The activity pattern is transformed from the instruction stream based on the

logic description of all the instructions. The information of the benchmarks is

shown in table 6.4, which is similar to the table 5.11. Additionally, for each

benchmark, the number of instructions, the length of the instruction stream

Chapter 6 Clock Gating Design 82

Table 6.2 Clock skew and switched capacitance with gate insertion

HKPUst (α = 1, β = 0)
Circuits

SKEW TC OSC SC CPU
ispd09f11 20.0 103973 61868 78939 0.37
ispd09f12 17.2 104874 65539 78970 0.34
ispd09f21 20.0 118028 68813 89140 0.35
ispd09f22 15.6 69810 43786 53173 0.32
ispd09f31 33.7 221639 136596 179336 3.83
ispd09f32 33.4 175122 101850 138156 0.51
ispd09f33 20.6 171747 107773 139467 5.44
ispd09f34 22.2 144688 92341 118570 0.49
ispd09f35 16.9 165546 104232 134708 8.11
ispd09fnb1 18.6 32635 23452 32635 0.70
ispd09fnb2 19.7 67041 46550 66280 2.40
avg. 21.6 125009 77527 100852 2.08

and the average activity are listed. For the whole benchmark suite, the av-

erage amount of modules, instructions and activity are about 1346.2, 108.2

and 38.9%, respectively. In our experiments, we still use the circuit models of

buffers and gates in [65]. Another more practical model is proposed in [11],

which is a future work of ours.

We construct another synthesizer, HKPUcg, for performance comparison

with previous works. In HKPUcg, the constraint on slew rate is the same as the

works in [65] and [11]. That is, the driver capacitance for each buffer/gate can-

not exceed 20× Cg. We listed four previous synthesizers with ours, HKPUcg,

for performance comparison. GCR and GCRred were proposed in [65]. GCR

denotes the gated clock routing algorithm with gate insertion at every internal

node of the clock tree. GCRred is an advanced version of GCR, where clock

gates are selectively removed for switched capacitance improvement. GBCR

and GBCRnt were proposed in [11]. GBCR denotes the gated and buffered

clock routing with the application of dynamic programming and solution sam-

pling. Meanwhile, the topology generated in GCR is reused in GBCR. In

Chapter 6 Clock Gating Design 83

Table 6.3 Clock skew and switched capacitance with gate insertion

HKPUst (α = 2, β = 1)
Circuits

SKEW TC OSC SC CPU
ispd09f11 16.7 103851 61422 78261 0.37
ispd09f12 16.6 103998 65090 79603 0.35
ispd09f21 25.7 108116 67586 81043 0.35
ispd09f22 8.5 69552 43938 53597 0.32
ispd09f31 19.3 220522 128744 174024 5.60
ispd09f32 21.7 162525 103658 123151 0.50
ispd09f33 18.8 155995 100329 128386 6.30
ispd09f34 20.3 139518 88924 109183 0.46
ispd09f35 21.6 163376 102231 128963 8.13
ispd09fnb1 29.6 34370 24869 34370 0.63
ispd09fnb2 27.5 70478 50113 69788 1.90
avg. 20.6 121118 76082 96397 2.26

Table 6.4 Circuit information of the benchmarks from r1 to r5

Chip Size No. No. Inst. Average
Circuits

(mm x mm) Sinks Inst. Length Activity (%)
r1 8.6 x 8.6 267 64 10000 39.86
r2 11.6 x 11.7 598 89 10000 39.60
r3 12.2 x 12.0 862 108 10000 36.91
r4 15.9 x 15.9 1903 120 10000 40.56
r5 18.2 x 17.8 3101 160 10000 37.42
avg. 13.3 x 13.2 1346.2 108.2 10000 38.87

GBCRnt, a new topology was generated for performance improvement. The

applied benchmark suite are exactly the same for the above five research works.

The performance of the five clock gating research works are shown in table 6.5,

table 6.6 and table 6.7. In these two tables, the total switched capacitance cost

(SC in pF), total wirelength of the clock tree (CLK in mm) and the controller

tree (CTR in mm), and the CPU runtime (CPU in sec) are listed for compar-

ison.

It can be observed that GCR has the largest switched capacitance thus the

Chapter 6 Clock Gating Design 84

Table 6.5 Performance comparison between HKPUcg and other clock gating
works.

HKPUcg GCR [65]
Circuits

SC CLK CTR CPU SC CLK CTR CPU
r1 39.33 1290 1079 0.36 101.12 1320 14784 0.08
r2 84.28 2582 2306 0.57 276.03 2574 46530 0.61
r3 112.53 3305 3086 0.85 405.56 3322 70073 1.50
r4 241.55 6795 5588 2.29 1104.28 6671 203585 5.81
r5 372.19 9856 9802 6.14 2037.13 10072 393876 18.8
avg. 169.98 4766 4372 2.04 784.28 4792 145770 5.36

Table 6.6 Performance comparison between HKPUcg and other clock gating
works.

GCRred [65] GBCR [11]
Circuits

SC CLK CTR CPU SC CLK CTR
r1 50.95 1581 3597 0.09 46.81 1657 1400
r2 115.35 3101 10937 0.61 98.63 3328 2985
r3 157.47 4130 15767 1.52 141.66 5322 4831
r4 367.08 8918 43306 5.90 369.28 13568 8855
r5 590.84 13058 78879 19.03 572.82 20543 12588
avg. 256.34 6158 30497 5.43 245.84 8884 6132

power consumption. The major reason is every node in GCR is assigned with

a clock gate, therefore the resultant controller tree becomes the main contri-

bution to the total power usage. With the inclusion of gate removal technique,

GCRred effectively reduces 79.1% of the total wirelength of its controller tree.

Meanwhile, the addition in clock tree is acceptable (only 28.5%). As a matter

of fact, the resulting cost of the switched capacitance in GCRred is reduced by

67.3% compared to GCR. Despite the performance improvement, the heuristic

of gate removing in GCRred is generally based on the activity comparison,

which is not fully performance-driven. There are still useless gate insertion

which may cause negative effect towards the power reduction.

Chapter 6 Clock Gating Design 85

Table 6.7 Performance comparison between HKPUcg and other clock gating
works.

GBCRnt [11]
Circuits

SC CLK CTR
r1 40.36 1357 675
r2 85.86 2713 1863
r3 121.17 3828 1973
r4 249.82 7395 3358
r5 377.87 10520 4211
avg. 175.02 5163 2416

GBCR is implemented based on the objective of switched capacitance min-

imization as well as the modified benchmark suite proposed in [65]. Buffer

insertion is applied to replace some of the gate insertion in GCRred for driving

power supply. As a result, the total wirelength of the according controller tree

is further reduced by 79.9% compared to that of GCRred. When two subtrees

are merged together, a group of 25K2 merging segments are generated accord-

ing to different gating/buffering scenarios. In experiments of GBCR, K is kept

to be 10 for every simulation. Thus there are 2500 times of delay and segment

computation in every merging procedure, which is much more time consum-

ing. In GBCR, the topology from GCRred is directly reused, and the resulting

switched capacitance is reduced by 4.1%. The topology generation is based on

NNS [24], with the cost function to be the resultant switched capacitance for

the merging. The formula is shown as below

fGCR
a,b = (Cu

a + Cn
a)× pa + (Cu

b + Cn
b)× pb + Cctr

a × ptra + Cctr
b × ptrb (6.9)

GBCRnt is an improved version of GBCR, where a new topology is devised.

It is also based on NNS [24] with newly developed cost function involved. The

formula is shown as below

Chapter 6 Clock Gating Design 86

fGBCRnt
a,b = |ea| × pa + |eb| × pb + β ×

(

|ectra | × ptra + |ectrb | × ptrb
)

(6.10)

where β is set to be 0.01 in the experiments. The cost function is only

used for nodes matching, and the controller tree may not have the edges ectra

and ectrb indeed. Therefore, β should be less than 1.0. With the inclusion of

the new topology, GBCRnt has improvement on both clock tree and the clock

tree. Compared to GBCR, the wirelength of the clock tree and the controller

tree have been reduced by 41.9% and 60.6%, accordingly. As a matter of fact,

the resultant total switched capacitance is reduced by 28.8%.

Compared to the best reported experimental results, that is, the results

from GBCRnt, our work has bigger wirelength of clock and controller tree.

However, the resulting total switched capacitance is smaller. This is because

the the efficiency of each gate for masking off idle branches is higher in our

synthesizer, and the nodes with similar activity patterns are more probable to

be merged. Our synthesizer, HKPUcg, proposes better performance compared

to the other four gating works. Generally, HKPUcg can reduce the switched

capacitance by 78.3%, 33.7%, 30.9% and 2.9%, compared to GCR, GCRred,

GBCR and GBCRnt, respectively. GBCRnt is the best reported clock gating

work so far, and our synthesizer can still outperform it. Meanwhile, there are

2500 times of computation for every merging procedure. However, in HKPUcg

there are only 5 times of computation accordingly. Thus there is a great

improvement on the efficiency in HKPUcg.

Let K denote the amount of instructions, L denote the maximum number

of active sinks of all the instructions, B denote the length of the instruction

stream, and N denote the number of sinks. As stated in [65],the time complex-

ity is composed of O (B) for initialization, O (NKL) for activity computation,

O (N2K2) for transitional probability computation and (N2) for topology gen-

eration. As a matter of fact, the overall complexity is O (B +N2K2). Notice

Chapter 6 Clock Gating Design 87

that N2 is only the average complexity of topology generation, the complexity

of the worst case is still N3. The complexity of the work in [11] is stated as

O (N3 + BN), which is worse with the operation on the whole activity pattern

at each merging node.

In our work, we use a K ×K matrix to restore the instruction transition-

module activation table (ITMAT [65]) for every sink, the total additional mem-

ory cost is NK2. During the bottom-up merging procedure, it is just necessary

to compute the OR result of the ITMAT of two nodes, with the complexity of

K2. Therefore, the total complexity for transitional probability computation is

only NK2. Notice that the ITMAT matrix of any nodes can be reused by their

parent nodes, so the total extra cost on memory is still NK2. As a result, the

overall complexity of our clock gating work is reduced to O (B +N2 +NK2).

The experimental results regarding the major three metrics (SC, CLK and

CTR) of GCR, GCRred, GBCR and GBCRnt are all obtained from [11] (the

results of GCR and GCRred reported in [65] have some errors in the com-

putation of switched capacitance, which are verified and corrected in [11]).

Additionally, we obtain the debugged source code of the work in [65]. For the

comparison of runtime, we execute the according program of GCR and GCRred

in our platform. In table 6.5 and table 6.6, the CPU runtime of HKPUcg, GCR

and GCRred is also listed. It is shown that due to the improvement on com-

plexity of our program (from O (B +N2K2) to (B +NK2 +N2)), the average

runtime is reduced by 61.9%, compared to the runtime of GCR and GCRred.

The runtime of GBCR and GBCRnt have not been obtained for comparison.

6.5 Summary

Power saving and clock skew are two major concerns in clock network synthe-

sis. A power aware topology generation is proposed with improved design on

the cost function. Meanwhile, a concurrent buffer/gate insertion technique is

Chapter 6 Clock Gating Design 88

proposed. It can distribute the gate properly in high efficiency. This is devel-

oped in order to optimize the power dissipation of a clock distribution network.

In both of the two proposed synthesizers, HKPUcg and HKPUst, zero clock

skew is guaranteed. Experimental results show that our method can greatly

reduce the switched capacitance hence reduce the power consumption of the

clock network. Compared to the previous clock gating works, HKPUcg have

better performance on power saving. Meanwhile, the resultant simulated clock

skew of HKPUst under SPICE is still acceptable, with no slew rate violation

engaged.

Chapter 7

Global Routing

7.1 Overview

The purpose of a global router is to decompose a large routing problem into

small and manageable subproblems (detailed routing) [79]. Our router, HKPUgr,

can be divided into two main parts: 2D global routing and 3D layer assigning.

In the 2D global routing, it is composed of two steps: original routing and

iterative rerouting. During the first step, we apply FLUTE [19, 20] to get the

steiner points of each net, Minimum spanning tree (MST) is then constructed

to generate the original network. Based on the according topology, each net is

decomposed into 2-pin nets, and routed with L-shape routing technique. The

net ordering of L-shape routing is in an increasing order of the bounding box

size. In the following step of iterative rip-up and rerouting, we do L-shape

rerouting for ML times followed by monotonic rerouting for MM times. Maze

rerouting is then engaged to further improve the congestion with three substeps

involved. They are congested-cost-function based maze rerouting, historical-

cost-based maze rerouting and surrounding nets rerouting. When the target

on total overflow is reached, we use maze routing once more to reduce the

wirelength. Notice that no additional congestion will be further caused.

89

Chapter 7 Global Routing 90

Table 7.1 Notations in global routing

Notation Description
ni The ith net of the net list
pi The ith pin in a net
si The ith steiner point in a net

Kpi ,Ksi The node structure of the ith pin or steiner point
sub(pi, pj) The subnet between pi and pj

Gi The ith grid point
E(i,j) The edge between Gi and Gj

cGi
The accumulated cost of Gi

cEi,j
The accumulated cost of Ei,j

c(Gi,Gj) The cost of the edge between Gi and Gj

cbnd The unit cost of a bending
FE(i) The cost of the edge E with usage of i
CE(i) The first order of FE(i)
pi The probability to be occupied with usage of i

7.2 Problem Formulation

The chip is decomposed into rectangular global bins of the same size. All

the pins are then distributed into their according bins. An example of chip

decomposition is shown in figure 7.1(a). In figure 7.1(b), each vertex represents

a global bin (grid point), and each edge (grid edge) connecting two adjacent

bins represents the boundary in figure 7.1(a). In global routing, only inter-bin

connections are implemented. The implementation of inner-bin connections

are completed in detailed routing.

Let N denote the set of nets, N = {n1, n2, . . . , n|N |}. Let Pi denote the set

of pins for the ith net, Pi = {p1i , p
2
i , . . . , p

|Pi|
i }. We use ei to denote the edge i,

and the set of edges is denoted by E. We use OFei to denote the overflow on

the edge ei. cei and dei are used to denote the capacity and demand of edge ei,

respectively. On the edge ei, the overflow is defined as the exceeding amount

of demand towards its capacity. If dei is greater than cei , OFei equals dei − cei .

Otherwise, OFei equals zero.

The global routing problem is usually formulated as below. Given a grid

Chapter 7 Global Routing 91

Figure 7.1 (a) Chip decomposition (b) Grid graph

Cells

graph as shown in figure 7.1(b), a set of networks N and the capacity of edges

E, the major task of a global router is to implement the inter-bin connection

for each network. The resultant overflow is the major metric and it should

be minimized. The total wirelength, as a secondary concern, should also be

minimized.

7.3 Methodology

7.3.1 Dynamic Steiner Point Relocation

In global routing, rip-up and rerouting is a popular approach. In each iter-

ation, nets or 2-pin subnets are selectively rip-up and rerouted for one time.

As this procedure proceeds, congestion and overflow will be improved at later

iterations. Steiner points are originally determined by FLUTE [19, 20] in most

Chapter 7 Global Routing 92

global routers. However, during the procedure of iterative rip-up and rerout-

ing, topology of the network improved and the steiner points need relocating.

Some routers rebuild the topology at the end of each iteration for steiner points

regeneration. However, this method is restrictive to the space of improvement.

If there are several subnets of a network to be rerouted in one iteration, un-

changed steiner point after the rerouting of one subnet may damage the quality

of the rerouting of other subnets. Meanwhile, since tree traversal is needed for

steiner points regeneration, it is also time consuming.

In our router, we develop a new technique, dynamic steiner point reloca-

tion, to tackle the problem. After rerouting the subnet subj, we dynamically

determine and relocate the steiner points of the net to the optimal location.

Here we use nodes to represent both pins and steiner points. For each node, it

has at least one but at most four neighboring nodes. We use a data structure

K to record the information of nodes, including coordinates, address of neigh-

bouring nodes and corresponding subnets. Notice that the neighborhood is a

mutual relationship.It is quite easy to traverse the whole net from any starting

node in the net.

As shown in figure 7.2(a), a net ni is assumed to be composed of five pins

and one steiner point, withKp0 , . . . , Kp4 , Ks0 as their corresponding node struc-

tures. We can see that Kp1 is the only neighbor of Kp0 , with the connecting

subnet sub(p0, p1). Kp1 has three neighbors of Kp0 , Kp2 , Ks0 . In this example,

sub (p1, s0) is the subnet to be rip-upped and rerouted. Before rerouting, we

traverse other subnets and label the global bins with according subnet id. This

method can facilitate the generation of new steiner point after rerouting. Af-

ter the rerouting of sub (p1, s0) and the formation of the new connection, the

two ending nodes become s′0 and p4, as shown in 7.2(b). s0 is thus removed,

and the two subnets sub (p3, s0) and sub (p4, s0) are merged together to become

one subnet sub (p3, p4). Meanwhile, Kp4 has replaced Ks0 to be the neighbor of

Kp3 , vice versa. A new steiner point s′0 is then generated on the path between

Chapter 7 Global Routing 93

p1 and p2. Subnet sub (p1, p2) is divided into sub (p1, s
′
0) and sub (p2, s

′
0), and

Ks′
0
becomes the common neighbor of both Kp1 and Kp2 .

Assume it to be the ith iteration of the rerouting. In this example, sub (p1, s0)

is transformed into sub (p4, s
′
0), and it is marked with the iteration label i. Be-

sides, sub (p3, p4), sub (p1, s
′
0) and sub (p2, s

′
0) are newly generated and we need

to determine whether or not to reroute them in the same iteration. There

are additional judgment on condition that the requirement is met. If both

(p3, s0) and sub (p4, s0) have been rerouted in the ith iteration, sub (p3, p4) will

be rerouted with a smaller probability K0, because it is a result of merging

and the potential of improvement is expanded. Otherwise, sub (p3, p4) will be

rerouted with a bigger probability K1. On the contrary, owing to the reduced

freedom of solution, sub (p1, s
′
0) and sub (p2, s

′
0) should be rerouted only when

sub (p1, p2) has not been rerouted in this iteration. Additionally, a probability

which is quite close to one is multiplied to the decision value in case deadlocks.

Figure 7.2 (a) Before rerouting (b) After rerouting

pin

steiner point

a

0p 1p 2p

3p 4p
0s

rerouting

b

0p 1p 2p

3p 4p

0s

merging

dividing

Chapter 7 Global Routing 94

7.3.2 Edge-based Monotonic and Maze Routing

In global routing, layer assignment is applied after completing the planar inter-

bin connection of all the networks. If the edges of the planar connection

of a network are assigned into different layers, inter-layer connection (via) is

necessary to keep the connectivity of the network.

In the planar view, the resultant amount of via for each network is generally

determined by its number of planar bendings. In the modern global routers,

the factor of bendings is usually involved in the cost function to improve the

performan of routing and rip-up rerouting.

Traditional maze routers are based on the propagation of grid points, and

it utilize a queue to maintain the points which have been reached. In each

step, the point with the minimal cost is popped from the queue, and we call it

the major point. The the adjacent four points are propagated from the major

point, and each of them is labelled with an accumulated cost value, as well as a

parent point. Such procedure continues until we reach the sink terminal. This

approach can get the optimal result, if the cost is a sum of the two weighted

factors, congestion and wirelength. Nonetheless, with the amount of bendings

as an additioanl factor, the result generated by the maze router is no longer

optimum.

In the global routing, the cost function is usually composed of the following

three factors: congestion, wirelength and bendings, shown as below

Cost = #cong +#wire+#bend (7.1)

In this section, we present an example to describe the shortcomings of maze

router based on point propagation. As shown in figure 7.3 (a), {G0, . . . G3}

denotes the grid points, and cGi
denotes the cost of Gi. Suppose that G0 and

G1 have already been reached, with cost values cG0
and cG1

accordingly. At

the point G2, there are two solutions available. c0G2
= cG0

+ c(G0,G2) and c1G2
=

Chapter 7 Global Routing 95

cG1
+c(G1,G2). Assume that c0G2

> c1G2
, then G2 is labelled with value of c1G2

, and

G1 becomes the parent of G2. In the next turn, G3 is propagated from G2 with

a cost of cG3
= c1G2

+ cbnd + c(G2,G3). This procedure appears very reasonable,

because we get the solution (G3 → G2 → G1) for G3. However, due to the

additional bending cost, it is possible that c0G2
+ c(G2,G3) < c1G2

+ cbnd+ c(G2,G3).

Therefore, the path (G3 → G2 → G0) is a better choice than (G3 → G2 → G1),

but it cannot be acquired through traditional maze routing approach.

We develop a new maze router based on the propagation of grid edges,

optimum result based on equation 7.1 can always be obtained. E(i,j) denotes

the edge connecting the points Gi and Gj, and cEi,j
denotes the respective

propagation cost. In our method, we use edge as the basic propagation unit.

During the routing, each edge in the grid is assigned with a cost value and a

parent edge. The edge cost is also an accumulated value from the source edge.

We apply a priority queue as a storage for the edges. During each time of

rerouting, the target two pin net will be removed, and the net is decomposed

into to two subnets : a source subnet and a sink subnet. The basic object of

rerouting is to connect the two subnets together. At the beginning, we traverse

the source subnet and store all the the adjacent edges into the queue. In each

step of propagation, one edge is extracted from the top of the queue, which

has the minimal cost value. This edge has one of its two adjacent points as the

starting point, and the other one as the ending point. The other three edges

adjacent to the ending point are the target edges for propagation. Notice that

the one of the three with the same direction as the original edge is assured to

have the optimal solution. However, the other two perpendicular edges would

possibly be updated with better solution in the following steps, due to the

bending factors.

An example of edge propagation is shown in figure 7.4(a). Suppose that

E(0,2) and E1,2 have already been reached and stored in the queue. Suppose

that E0,2 is currently the major edge, and E1,2 is still in the queue, thus

Chapter 7 Global Routing 96

cE0,2
< cE1,2

. Two edges {E(2,4), E(2,3)} can be propagated in this turn. E(2,3)

is in the same direction with E(0,2), so cE2,3
= cE0,2

+ cG2,G3
is determined to

be the accumulated cost value of E2,3. Notice that no further update for E(2,3)

is necessary, because any cost cx from the following major edges will be larger

than cE0,2
, therefore cx+cG2,G3

> cE0,2
+cG2,G3

. Therefore, E0,2 → E2,3 is proved

to be the optimal solution for E2,3. Meanwhile, E2,4 is in the perpendicular

direction with E0,2, and c′E2,4
= cE0,2

+ cG2,G4
+ cbnd become the cost of E2,4,

and E0,2 → E2,4 is a conditional solution for E2,4. In the next step, E1,2

becomes the major edge, as shown in figure 7.4(b). If c′E2,4
> cE1,2

+ cE2,4
,

E1,2 → E2,4 turns out to be a better solution than E0,2 → E2,4, and it is

also the optimal solution for E2,4. E2,4 is then updated with the parent path

E1,2 and the respective cost, and it won’t be updated in future. Generally,

in the new approach the optimal solution can be certainly reached, and the

computational cost for updating is reduced compared to the traditional maze

router.

Figure 7.3 Comparison of two solutions

0G

1G

2G
3G

optimal

solution

actual

solution

Chapter 7 Global Routing 97

Figure 7.4 (a) Global bin-based router (b) Global edge-based router

0G

1G

2G 3G0,2E

1,2E

2,3E

2,4E

4G

0G

1G

2G 3G
0,2E

1,2E

2,3E

2,4E

4G

(a) (b)

7.4 Experimental Results

In this section, our experimental results are presented. We implement our

router in C programming language and the router is executed on Linux oper-

ating system with a Intel Xeon 1.6GHz CPU and 16GB memory. Besides 2-D

router, we use the layer assignment work from NCTU [21] to build up the 3-D

solution. The benchmark circuits used in our experiment are proposed in [61].

The detailed information of the benchmark circuits are shown in table 7.2.

Based on the ISPD08 benchmarks, we compare the results of our router

HKPUgr with the previous research works. NTHU-Route2.0 [9], NTUgr [33]

and FastRoute3.0 [101] are the winners in the ISPD 2008 Global Routing

Contest [38]. Besides, NCTU [21] is also included for comparison, which is

the best reported work so far. The experimental results of various routers

are shown in table 7.3, table 7.4 and table 7.5. It can be found that our

router HKPUgr can outperform all the other works in 6 benchmarks, with less

overflow and shorter wirelength caused. Meanwhile, our router HKPUgr can

solve 12 cases without any overflow generated.

Additionally, we considered the robustness of the global routers. Specified

Chapter 7 Global Routing 98

parameter settings may deteriorate the robustness of the routers, and these will

make the routers unadaptable towards other cases. As a matter of fact, we

modified the benchmarks with different capacity supplies. The corresponding

statistics will become a verification of the stability of different routers. In

table 7.6, 4 units of capacity (2 tracks) are removed from each edge, in order

to make the benchmarks more congested. Similarly, In table 7.7 4 units of

capacity (2 tracks) are added to each edge so as to alleviate the congestion.

We include the best reported global router, NCTU, for comparison based on

those modified benchmarks. From the result of worse congestion in table 7.6,

our router is better in 13 cases. It represents the adaptability of our router

in the congested situation. From the result of less congestion in table 7.7, our

router can outperform the other in 6 cases.

Table 7.2 Information of ISPD08 benchmarks

Circuits Grids No. of No. of Max. Ave.
List Size nets routed nets deg. deg.
adaptec1 324x324 219k 177k 340 4.2
adaptec2 424x424 260k 208k 153 3.9
adaptec3 774x779 466k 368k 82 4.0
adaptec4 774x779 515k 401k 171 3.7
adaptec5 465x468 867k 548k 121 4.1
newblue1 399x399 332k 271k 74 3.5
newblue2 557x463 463k 374k 116 3.6
newblue3 973x1256 552k 442k 141 3.2
bigblue1 227x227 283k 197k 74 4.1
bigblue2 438x471 577k 429k 260 3.5
bigblue3 555x557 1.12M 666k 91 3.4
bigblue4 403x405 2.23M 1.13M 129 3.7
newblue4 455x458 636k 531k 152 3.6
newblue5 637x640 1.26M 892k 258 4.1
newblue6 463x464 1.29M 835k 123 3.8
newblue7 488x490 2.64M 1.65M 113 3.6

Chapter 7 Global Routing 99

Table 7.3 Performance comparison based on ISPD08 benchmarks

HKPUgr NTHU-Route2.0 [9]
Circuits OVF WL CPU OVF WL CPU
adaptec1 0 53.33 885 0 53.44 600
adaptec2 0 51.76 181 0 52.29 126
adaptec3 0 129.7 1164 0 131.0 654
adaptec4 0 120.6 206 0 121.7 156
adaptec5 0 153.7 1419 0 155.4 1380
bigblue1 0 56.40 970 0 56.00 842
bigblue2 0 90.09 550 0 90.60 520
bigblue3 0 129.8 398 0 130.7 300
bigblue4 152 224.5 6383 162 231.0 7896
newblue1 0 46.13 655 0 46.50 372
newblue2 0 74.69 93 0 75.70 72
newblue3 34960 105.3 16473 31454 106.5 7344
newblue4 158 127.6 3071 138 130.5 5802
newblue5 0 228.9 1562 0 231.6 1164
newblue6 0 176.0 1402 0 176.9 1086
newblue7 78 348.1 6738 62 353.4 8634

7.5 Summary

In general, we develop a new global router HKPUgr to improve the routing

quality. Aside from the traditional techniques, we introduce two new methods

for better performance, including dynamic steiner points relocation and edge-

based monotonic and maze routing. Our router is implemented in the planar

view, and the routing result will be projected into 3-dimension stereo view to

assign the connection into different layers accordingly.

Chapter 7 Global Routing 100

Table 7.4 Performance comparison based on ISPD08 benchmarks

NTUgr [33] FastRoute3.0 [101]
Circuits OVF WL CPU OVF WL CPU
adaptec1 0 57.40 270 0 55.20 300
adaptec2 0 53.70 66 0 53.70 60
adaptec3 0 135.0 264 0 133.0 240
adaptec4 0 123.7 72 0 123.0 60
adaptec5 0 159.9 918 0 161.0 660
bigblue1 0 60.00 1086 0 59.50 420
bigblue2 0 91.20 14898 0 98.80 960
bigblue3 0 133.5 240 0 132.0 120
bigblue4 188 242.8 24786 156 244.0 1800
newblue1 6 49.30 58650 0 48.20 300
newblue2 0 76.90 36 0 76.30 60
newblue3 31024 188.3 50640 31634 132.0 2160
newblue4 142 143.8 67086 154 154.0 1020
newblue5 0 244.9 1230 0 240.0 660
newblue6 0 186.6 1278 0 186.0 600
newblue7 310 372.2 86730 108 361.0 9600

Chapter 7 Global Routing 101

Table 7.5 Performance comparison based on ISPD08 benchmarks

NCTU [21]
Circuits OVF WL CPU
adaptec1 0 53.5 234
adaptec2 0 51.69 87
adaptec3 0 130.35 293
adaptec4 0 120.67 137
adaptec5 0 154.7 544
bigblue1 0 56.56 381
bigblue2 0 89.4 671
bigblue3 0 129.66 263
bigblue4 164 223.99 3922
newblue1 0 45.99 218
newblue2 0 74.88 54
newblue3 31808 104.28 7886
newblue4 134 126.79 2455
newblue5 0 230.31 902
newblue6 0 176.87 580
newblue7 114 338.63 4291

Chapter 7 Global Routing 102

Table 7.6 Comparison of HKPUgr and NCTU on the modified ISPD08 bench-
marks, with 2 tracks removed on each edge.

-4
HKPUgr NCTU [21]

Circuits OVF WL CPU OVF WL CPU
adaptec1 44 55.56 2223 4618 56.88 648
adaptec2 706 52.78 1592 3816 52.43 338
adaptec3 0 131.9 2559 4 133.5 867
adaptec4 0 121.2 442 0 121.2 283
adaptec5 0 156.8 2649 2298 158.1 1483
bigblue1 1922 58.74 2559 12046 58.32 916
bigblue2 4782 95.63 3508 4382 93.24 1527
bigblue3 24 130.3 1239 760 130.2 718
bigblue4 730 226.9 9980 870 226.4 8586
newblue1 3366 47.73 2760 4224 47.25 553
newblue2 0 74.75 152 0 74.99 83
newblue3 38562 106.0 17200 NA NA NA
newblue4 1902 130.7 7758 1800 129.3 5671
newblue5 482 232.3 6880 1994 232.5 2619
newblue6 0 180.1 3452 8912 181.0 1804
newblue7 6750 353.9 38789 NA NA NA

Chapter 7 Global Routing 103

Table 7.7 Comparison of HKPUgr and NCTU on the modified ISPD08 bench-
marks, with 2 tracks added on each edge.

+4
HKPUgr NCTU [21]

Circuits OVF WL CPU OVF WL CPU
adaptec1 0 52.31 635 0 52.30 253
adaptec2 0 51.21 138 0 51.13 99
adaptec3 0 128.4 953 0 128.8 356
adaptec4 0 120.3 218 0 120.3 193
adaptec5 0 152.0 1223 0 152.4 648
bigblue1 0 54.42 637 0 54.80 341
bigblue2 0 87.70 334 0 87.37 440
bigblue3 0 129.3 439 0 129.2 307
bigblue4 0 224.3 788 0 223.1 1303
newblue1 0 45.14 124 0 45.03 154
newblue2 0 74.64 124 0 74.83 81
newblue3 32048 104.9 16112 28920 104.0 13599
newblue4 0 126.1 469 0 125.2 749
newblue5 0 227.0 1334 0 227.0 1561
newblue6 0 173.6 1119 0 173.8 610
newblue7 0 343.7 931 NA NA NA

Chapter 8

Conclusion

In this thesis, we have introduced some fundamental ideas regarding the re-

search topic of routability of the VLSI physical design. Specifically, our focus

is located at congestion prediction, clock network synthesis, clock gating de-

sign and global routing. In the literature review at chapter 3, we can see that

plenty of research works have been proposed by earlier researchers to address

the problem of routability. Based on the previous achievements, our work has

proposed novel techniques to further improve the performance and enhance

the routability.

Congestion prediction is applied at early stages of the physical design. It

provides the designer with an estimation of the routability on the chip. Based

on the analysis of previous estimation models, we develop three models in

chapter 4 for accuracy improvement. SMD model is the fastest technique with

the least amount of computation involved, only the tiles inside the bounding

box of each subnet are included. Further on, detour model pays extra atten-

tion to the surrounding tiles, which becomes adaptive to the over-congested

areas. 3-step approach is composed of routing selection and congestion redis-

tribution. The result is of enhanced similarity with that of the technique of

iterative rip-up and rerouting, which is widely applied in the modern global

routers. From the experimental results, it can be concluded that our models

have made significant improvements on the accuracy of prediction, compared

104

Chapter 8 Conclusion 105

the the previous models.

In terms of the requirements proposed in the ISPD 2009 CNS contest, we

develop two clock network synthesizers (DMST and DMSTSS) in chapter 5

with six novel techniques involved. A new method of topology construction,

dual-MST, is proposed to build up a tree structure that is very close to a

symmetric one. This approach can reduce the sensitivity of the clock skew

against voltage variation effectively. Moreover, the developments on hierarchi-

cal buffer sizing, iterative buffer insertion and blockage handling techniques

further improve the performance and reduce the power consumption. From

slew table, the signal transition time can be reduced by the reference of driver

ability. In DMSTSS, a method of merging point relocation is developed. Based

on the delay estimation of SPICE simulation, clock skew is further reduced by

the relocation. Experimental results show that our DMSTSS can outperform

all the previous synthesizers with smaller CLR and program runtime in every

benchmark. Meanwhile, the three constraints on slew rate, buffer distribution

and total capacitance are followed.

For the objective of power saving in the clock network, enough concerns

should be taken during the procedure of synthesis. In our work, we achieve

the target of power saving by logic gates insertion to mask off the inactive

modules and branches. We propose two gated synthesizers (HKPUcg and HK-

PUst) in chapter 6 with several novel techniques. Improved implementation on

topology generation are proposed. Besides, a newly developed buffer/gate in-

sertion technique are devised to reduce the power dissipation. Compared to the

previous clock gating works, the resultant switched capacitance of HKPUcg is

smaller. Meanwhile, the complexity of our algorithm is smaller, which is shown

by the reduced CPU runtime in HKPUcg. In HKPUst, the buffered/gated so-

lution can reduce the switched capacitance compared to that of its original

buffered solution, and the resulting clock skew is still acceptable.

In the stage of global routing, routability is fully emphasized. A new global

Chapter 8 Conclusion 106

router, HKPUgr, is proposed in chapter 7 aiming at a better quality of rout-

ing design. Our router is built up upon the technique of iterative rip-up and

rerouting. Furthermore, we introduce two new methods to improve the perfor-

mance, including dynamic steiner points relocation and edge-based monotonic

and maze routing. With fast reduction on overflow, the amount of wirelength

and via connection can also be reduced by our approach. From the experi-

mental results, we can see that most of the benchmarks can be solved by our

approach with a shorter wirelength.

Routability has dominant effect on the quality of signal transmission and

the timing delay of the circuit. Therefore, exclusive concerns should be in-

volved throughout the whole VLSI physical design procedure. In particular,

we achieve the improvement on routability in several correlative steps. Dur-

ing the early designing time, our prediction models will provide the designer

with a good estimation on the routability of the packing results, so as to

facilitate routing the networks in the subsequent routing procedure. In clock

network synthesis, our contribution on proper buffer distribution will maintain

the routability of the clock tree. Additionally, clock gating is an associating

step of CNS aiming at power reduction. Subsequently, global routing imple-

ments the connection of the rest of the networks inside the area of the chip.

The newly proposed techniques will shorten the total wirelength, in order to

reduce the signal delay and improve the routability.

Bibliography

[1] C. Albrecht. Global Routing by New Approximation Algorithms for

Multicommodity Flow. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 20(5):622 – 631, May 2001.

[2] H. Anway, G. Farnham, and R. Reid. Plint Layout Systems for VLSI

Chips. In Proceedings of IEEE/ACM Design Automation Conference,

pages 449 – 452, 1985.

[3] K. D. Boese and A. B. Kahng. Zero-Skew Clock Routing Trees with Min-

imum Wirelength. In Proceedings of 5th the Annual IEEE International

ASIC Conference and Exhibit, pages 17 – 21, 1992.

[4] M. Burstein and R. Pelavin. Hierarchical Wire Routing. In Proceedings of

IEEE/ACM International Conference on Computer Aided Design, pages

223 – 234, 1983.

[5] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can Recursive Bisection

Produce Routable Placements? In Proceedings of IEEE/ACM Design

Automation Conference, pages 477–482, 2000.

[6] R. C. Carden and C. K. Cheng. A Global Router Using an Efficient

Approximate Multicommodity Multiterminal Flow Algorithm. In Pro-

ceedings of IEEE/ACM Design Automation Conference, pages 316 – 321,

1991.

107

[7] C. C. Chang, J. Cong, D. Z. Pan, and X. Yuan. Interconnect-Driven

Floorplanning with Fast Global Wiring Planning and Optimization. In

Proceedings of SRC Tech. Conference, November 2000.

[8] C.-M. Chang, S.-H. Huang, Y.-K. Ho, J.-Z. Lin, H.-P. Wang, and Y.-S.

Lu. Type-Matching Clock Tree for Zero Skew Clock Gating. In Pro-

ceedings of IEEE/ACM Design Automation Conference, pages 714–719,

June 2008.

[9] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang. NTHU-Route 2.0: A Fast

and Stable Global Router. In Proceedings of IEEE/ACM International

Conference on Computer Aided Design, pages 338 – 343, November 2008.

[10] T. H. Chao, Y. C. Hsu, J. M. Ho, and A. B. Kahng. Zero Skew Clock

Routing with Minimum Wirelength. IEEE Transactions on Circuits

and Systems II: Analog and Digital Signal Processing., 39(11):799 – 814,

1992.

[11] W. C. Chao and W. K. Mak. Low-Power Gated and Buffered Clock

Network Construction. ACM Transactions on Design Automation of

Electronic Systems, 13(1), January 2008.

[12] R. Chaturvedi and J. Hu. Buffered Clock Tree for High Quality IC

design. In International Symposium on Quality Electronic Design, pages

381 – 386, 2004.

[13] C. Chen, C. Kang, and M. Sarrafzadeh. Activity-Sensitive Clock Tree

Construction for Low Power. In International Symposium on Low Power

Electronics and Design, pages 279 – 282, 2002.

108

[14] H. M. Chen, H. Zhou, F. Y. Young, D. Wong, H. H. Yang, and N. Sher-

vani. Integrated Floorplanning and Interconnect Planning. In Proceed-

ings of IEEE/ACM International Conference on Computer Aided De-

sign, pages 354 – 357, November 1999.

[15] Y. P. Chen and D. F. Wong. An Algorithm for Zero-Skew Clock Tree

Routing with Buffer Insertion. In Proceedings of European Design and

Test Conference, pages 230–236, 1996.

[16] C. K. Cheng and E. S. Kuh. Module Placement Based on Resistive

Network Optimization. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 3:218 – 225, 1984.

[17] J. D. Cho and M. Sarrafzadeh. A Buffer Distribution Algorithm for High-

Speed Clock Routing. In Proceedings of IEEE/ACM Design Automation

Conference, pages 537–543, June 1993.

[18] M. Cho and D. Z. Pan. BoxRouter: A New Global Router Based on Box

Expansion and Progressive ILP. In Proceedings of IEEE/ACM Design

Automation Conference, pages 373 – 378, July 2006.

[19] C. Chu. FLUTE: Fast Lookup Table Based Wirelength Estimation Tech-

nique. In Proceedings of IEEE/ACM International Conference on Com-

puter Aided Design, pages 696 – 701, November 2004.

[20] C. Chu and Y.-C. Wong. FLUTE: Fast Lookup Table Based Rectilinear

Steiner Minimal Tree Algorithm for VLSI Design. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 27(1):257 –

268, January 2008.

[21] K.-R. Dai, W.-H. Liu, and Y.-L. Li. Efficient Simulated Evolution Based

Rerouting and Congestion-Relaxed Layer Assignment on 3-D Global

109

Routing. In Proceedings of Asia and South Pacific Design Automation

Conference, pages 570–575, January 2009.

[22] M. Donno, A. Ivaldi, L. Benini, and E. Macii. Clock-Tree Power Op-

timization based on RTL Clock-Gating. In Proceedings of IEEE/ACM

Design Automation Conference, pages 622 – 627, June 2003.

[23] A. E. Dunlop and B. W. Kernighan. A Procedure for Placement of

Standard Cell VLSI Circuits. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 4:92 – 98, 1985.

[24] M. Edahiro. A Clustering-Based Optimization Algorithm in Zero-Skew

Routings. In Proceedings of IEEE/ACM Design Automation Conference,

pages 612–616, July 1993.

[25] M. Edahiro and T. Yoshimura. Minimum Path-Length Equi-Distant

Routing. In Proceedings of IEEE Asia-Pacific Conference on Circuits

and Systems, pages 41–46, 1992.

[26] W. C. Elmore. The Transient Response of Damped Linear Networks

with Particular Regard to Wide Band Amplifiers. Journal of Applied

Physics, 19(1):55–63, January 1948.

[27] A. H. Farrahi, C. Chen, A. Srivastava, G. Tellez, and M. Sarrafzadeh.

Activity-Driven Clock Design. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 20(6):705 – 714, June 2001.

[28] C. M. Fiduccia and R. M. Mattheyses. A Linear Time Heuristic for

Improving Network Partitions. In Proceedings of IEEE/ACM Design

Automation Conference, pages 175 – 181, 1982.

[29] J.-R. Gao, P.-C. Wu, and T.-C. Wang. A New Global Router for Modern

Designs. In Proceedings of Asia and South Pacific Design Automation

Conference, pages 232 – 237, January 2008.

110

[30] David Garrett, Mircea Stan, and Alvar Dean. Challenges in Clockgating

for a Low Power ASIC Methodology. In International Symposium on

Low Power Electronics and Design, pages 176 – 181, 1999.

[31] L. P. P. P. Ginneken. Buffer Placement in Distributed RC-tree Networks

for Minimal Elmore Delay. In International Symposium on Circuits and

Systems, pages 865–868, May 1990.

[32] R. T. Hadsell and P. H. Madden. Improved Global Routing through Con-

gestion Estimation. In Proceedings of IEEE/ACM Design Automation

Conference, pages 28 – 31, June 2003.

[33] C.-H. Hsu, H.-Y. Chen, and Y.-W. Chang. Multi-layer Global Routing

Considering Via and Wire Capacities. In Proceedings of IEEE/ACM

International Conference on Computer Aided Design, pages 350 – 355,

November 2008.

[34] C. P. Hsu. APLS2: A Standard Cell Layout System for Double-layer

Metal Technology. In Proceedings of IEEE/ACM Design Automation

Conference, pages 443 – 448, 1985.

[35] F. K. Hwang, D. S. Richards, and P. Winter. Steiner Tree Problems.

Networks, 22(1):55 – 89, October 2006.

[36] ISPD. http://vlsicad.eecs.umich.edu/BK/ISPD02bench/. 2002.

[37] ISPD. http://www.sigda.org/ispd2007/rcontest/. 2007.

[38] ISPD. http://www.sigda.org/ispd2008/contests/ispd08rc.html. 2008.

[39] ISPD. http://www.sigda.org/ispd/contests/09/ispd09cts.html. 2009.

[40] M. A. B. Jackson, A. Srinivasan, and E. S. Kuh. Clock Routing for

High-Performance ICs. In Proceedings of IEEE/ACM Design Automa-

tion Conference, pages 573–579, June 1990.

111

[41] A. Kahng, J. Cong, and G. Robins. High-Performance Clock Routing

Based on Recursive Geometric Matching. In Proceedings of IEEE/ACM

Design Automation Conference, pages 322–327, July 1991.

[42] A. B. Kahng and X. Xu. Accurate Pseudo-Constructive Wirelength and

Congestion Estimation. In Proceedings of International Workshop on

System Level Interconnect Prediction, pages 61 – 68, April 2003.

[43] R. M. Karp, F. T. Leighton, R. L. Rivest, C. D. Thompson, U. Vazi-

rani, and V. Vazirani. Global Wire Routing in Two-Dimensional Arrays.

Algorithmica, 2:113 – 129, 1987.

[44] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. Pattern Routing:

Use and Theory for Increasing Predictability and Avoiding Coupling.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 21(7):777 – 790, July 2002.

[45] B. W. Keinighan and S. Lin. An Efficient Heuristic Procedure for Par-

titioning Graphs. Bell System Technical Journal, 49:291 – 307, January

1970.

[46] T. Kitahara, F. Minami, T. Ueda, K. Usami, S. Nishio, M. Mruakata,

and T. Mitsuhashi. A Clock-Gating Method for Low-Power LSI Design.

In Proceedings of Asia and South Pacific Design Automation Conference,

pages 307 – 312, January 1998.

[47] K. Kozminski and E. Kinnen. Rectangular Dual of Planar Graphs. Net-

works, 15:145 – 157, 1985.

[48] B. Krishnamurthy. An Improved Min-Cut Algorithm for Partitioning

VLSI Networks. IEEE Transactions on Computers, 33:438 – 446, 1984.

[49] Kusnadi and J. D. Carothers. A Method of Measuring Nets Routability

for MCMs General Area Routing Problems. In Proceedings of ACM

112

International Symposium on Physical Design, pages 186 – 194, March

1999.

[50] S. T. W. Lai, E. F. Y. Young, and C. C. N. Chu. A New and Efficient

Congestion Evaluation Model in Floorplanning: Wire Density Control

with Twin Binary Trees. In European Design and Test Conference, April

2003.

[51] J. F. Lee and C. K. Wong. A Performance-Aimed Cell Compactor with

Automatic Jogs. IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, 11:1495 – 1507, 1992.

[52] I.-M. Liu, T.-L. Chou, D. F. Wong, and A. Aziz. Zero-Skew Clock Tree

Construction by Simultaneous Routing, Wire Sizing and Buffer Insertion.

In Proceedings of IEEE/ACM International Conference on Computer

Aided Design, pages 33–38, Nov 2000.

[53] W. H. Liu, Y. L. Li, and H. C. Chen. Minimizing Clock Latency Range

in Robust Clock Tree Synthesis. In Proceedings of Asia and South Pacific

Design Automation Conference, pages 389 – 394, January 2010.

[54] J. Lou, S. Krishnamoorthy, and H. S. Sheng. Estimating Routing Con-

gestion Using Probabilistic Analysis. In Proceedings of ACM Interna-

tional Symposium on Physical Design, pages 112–117, March 2001.

[55] J. Lu, W. K. Chow, C. W. Sham, and E. F. Y. Young. A Dual-MST

Approach for Clock Network Synthesis. In Proceedings of Asia and South

Pacific Design Automation Conference, pages 467 – 473, January 2010.

[56] Y. Luo, J. Yu, J. Yang, and L. Bhuyan. Low Power Network Proces-

sor Design Using Clock Gating. In Proceedings of IEEE/ACM Design

Automation Conference, pages 712 – 715, June 2005.

113

[57] Y. C. Ma, X. L. Hong, S. Q. Dong, S. Chen, Y. C. Cai, C. K. Cheng, and

J. Gu. Dynamic Global Buffer Planning Optimization Based on Detail

Block Locating and Congestion Analysis. In Proceedings of IEEE/ACM

Design Automation Conference, pages 806 – 811, July 2003.

[58] M. D. Moffitt. MaizeRouter: Engineering an Effective Global Router. In

Proceedings of Asia and South Pacific Design Automation Conference,

pages 226 – 231, January 2008.

[59] M. D. Moffitt. MaizeRouter: Engineering an Effective Global Router.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 27(11):2017 – 2026, November 2008.

[60] M. D. Moffitt, J. A. Roy, and I. L. Markov. The Coming of Age of (Aca-

demic) Global Routing. In Proceedings of ACM International Symposium

on Physical Design, pages 148 – 155, April 2008.

[61] G.-J. Nam, C. Sze, and M. Yildiz. The ISPD Global Routing Benchmark

Suite. In Proceedings of ACM International Symposium on Physical De-

sign, pages 156 – 159, April 2008.

[62] G.-J. Nam, M. Yildiz, D. Z. Pan, and P. H. Madden. ISPD Placement

Contest Updates and ISPD 2007 Global Routing Contest. In Proceedings

of ACM International Symposium on Physical Design, pages 167 – 167,

April 2007.

[63] S. Natarajan, S. L. Sam, D. Boning, A. Chandrakasan, R. Vallishayee,

and S. Nassif. A Methodology for Modeling the Effects of Systematic

Within-Die Interconnect and Device Variation on Circuit Performance.

In Proceedings of IEEE/ACM Design Automation Conference, pages

172–175, June 2000.

114

[64] J. Oh and M. Pedram. Gated Clock Routing Minimizing the Switched

Capacitance. In European Design and Test Conference, pages 692 – 697,

1998.

[65] J. Oh and M. Pedram. Gated Clock Routing for Low-Power Microproces-

sor Design. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 20(6):715 – 722, June 2001.

[66] T. Ohtsuki, T. Sudo, and S. Goto. CAD Systems for VLSI in Japan.

Information and Control, 59, 1983.

[67] R. H. J. M. Otten. Efficient Floorplan Optimization. In Proceedings of

IEEE International Conference on Computer Design, pages 499 – 503,

1983.

[68] M. M. Ozdal and M. D. F. Wong. ARCHER: A History-driven Global

Routing Algorithm. In Proceedings of IEEE/ACM International Con-

ference on Computer Aided Design, pages 481 – 487, November 2007.

[69] M. Pan and C. Chu. FastRoute: a Step to Integrate Global Routing into

Placement. In Proceedings of IEEE/ACM International Conference on

Computer Aided Design, pages 464 – 471, November 2006.

[70] M. Pan and C. Chu. FastRoute 2.0: A High-quality and Efficient Global

Router. In Proceedings of Asia and South Pacific Design Automation

Conference, pages 250 – 255, January 2007.

[71] A. Rajaram, J. Hu, and R. Mahapatra. Reducing Clock Skew Variabil-

ity via Crosslinks. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 25(6):1176–1182, June 2006.

[72] A. Rajaram and D. Z. Pan. Variation Tolerant Buffered Clock Network

Synthesis with Cross Links. In Proceedings of ACM International Sym-

posium on Physical Design, pages 157–164, April 2006.

115

[73] S. Rao. Finding Near Optimal Separators in Planar Graphs. In Annual

Symposium on Foundations of Computer Science, pages 225 – 237, 1987.

[74] J. A. Roy and I. I. Markov. High-performance Routing at the Nanome-

ter Scale. In Proceedings of IEEE/ACM International Conference on

Computer Aided Design, pages 496 – 502, November 2007.

[75] M. Saeedi, M. S. Zamani, and A. Jahanian. Prediction and Reduction

of Routing Congestion. In Proceedings of International Workshop on

System Level Interconnect Prediction, pages 72 – 77, April 2006.

[76] R. Saleh, S. Z. Hussain, S. Rochel, and D. Overhauser. Clock Skew Ver-

ification in the Presence of IR-Drop in the Power Distribution Network.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 19(6):635 – 644, June 2000.

[77] L. A. Sanchis. Multi-Way Network Partitioning. IEEE Transactions on

Computers, 38:62 – 81, 1989.

[78] A. Sangiovanni-Vincentelli and M. Santomauro. YACR: Yet Another

Channel Router. In Proceedings of Custom Integrated Circuits Confer-

ence, pages 460 – 466, 1982.

[79] M. Sarrafzadeh and C. K. Wong. An Introduction to VLSI Physical

Design. In The McGraw-Hill Companies, Inc., 1996.

[80] S. Sauter, D. Schmitt-Landsiedel, R. Thewes, and W. Webber. Effect of

Parameter Variations at Chip and Wafer Level on Clock Skews. IEEE

Transactions on Semiconductor Manufacturing, 13(4):395–400, Novem-

ber 2000.

[81] D. G. Schweikert and B. W. Kernighan. A Proper Model for the Par-

titioning of Electrical Circuits. In Proceedings of IEEE/ACM Design

Automation Conference, pages 57 – 62, 1972.

116

[82] C. Sechen and A. Sangiovanni-Vincentelli. TimberWolf3.2: A New Stan-

dard Cell Placement and Global Routing Package. In Proceedings of

IEEE/ACM Design Automation Conference, pages 432 – 439, 1986.

[83] C. W. Sham and E. F. Y. Young. Congestion Prediction in Early Stages.

In Proceedings of International Workshop on System Level Interconnect

Prediction, pages 91–98, 2005.

[84] C. W. Sham and E. F. Y. Young. Congestion Prediction in Floorplan-

ning. In Proceedings of IEEE/ACM Design Automation Conference,

pages 1107–1110, June 2005.

[85] E. Shargowitz and J. Keel. A Global Router Based on Multicommodity

Flow Model. Integration: The VLSI Journal, 5:3 – 16, 1987.

[86] X. W. Shih, C. C. Cheng, Y. K. Ho, and Y. W. Chang. Blockage-

Avoiding Buffered Clock-Tree Synthesis for Clock Latency-Range and

Skew Minimization. In Proceedings of Asia and South Pacific Design

Automation Conference, pages 395 – 400, January 2010.

[87] L. Stockmeyer. Optimal Orientation of Cells in Slicing Floorplan De-

signs. Information and Control, 57:91 – 101, 1983.

[88] C. N. Sze, P. Restle, G.-J. Nam, and C. Alpert. ISPD2009 Clock Network

Synthesis Contest. In Proceedings of ACM International Symposium on

Physical Design, pages 149–150, March 2009.

[89] T. Taghavi, F. Dabiri, A. Nahapetian, and M. Sarrafzadeh. Tutorial

on Congestion Prediction. In Proceedings of International Workshop on

System Level Interconnect Prediction, pages 15 – 24, April 2007.

[90] H. Tang and W. K. Chen. Generation of Rectangular Duals of a Planar

Triangulated Graph by Elementary Transformations. In International

Symposium on Circuits and Systems, pages 2857 – 2860, 1989.

117

[91] G. E. Tellez, A. Farrahi, and M. Sarrafzadeh. Activity-Driven Clock De-

sign for Low Power Circuits. In Proceedings of IEEE/ACM International

Conference on Computer Aided Design, pages 62 – 65, November 1995.

[92] R.-S. Tsay. Exact Zero Skew. In Proceedings of IEEE/ACM International

Conference on Computer Aided Design, pages 336–339, Nov 1991.

[93] S. Tsukiyama, K. Tani, and T. Maruyama. A Condition for a Maximal

Planar Graph to Have a Unique Rectangular Dual and Its Application to

VLSI Floor-plan. In International Symposium on Circuits and Systems,

pages 931 – 934, 1989.

[94] M. Wang and M. Sarrafzadeh. Modeling and Minimization of Routing

Congestion. In Proceedings of IEEE/ACM Design Automation Confer-

ence, pages 185 – 190, July 2000.

[95] M. Wang, X. Yang, and M. Sarrafzadeh. Congestion Minimization Dur-

ing Placement. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 19(10):1140 – 1148, October 2000.

[96] J. Westra, C. Bartels, and P. Groeneveld. Probabilistic Congestion Pre-

diction. In Proceedings of ACM International Symposium on Physical

Design, pages 204–209, March 2004.

[97] D. F. Wong and C. L. Liu. Floorplan Design of VLSI Circuits. Algorith-

mica, 4:263 – 291, 1989.

[98] L. Xiao, L. Li, and Z. Qian. AMGR in International Symposium on

Physical Design. April 2008.

[99] X. J. Yang, R. Kastner, and M. Sarrafzadeh. Congestion Estimation

During Top-Down Placement. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 21(1):72 – 80, January 2002.

118

[100] S. Zanella, A. Nardi, A. Neviani, M. Quarantelli, S. Saxena, and

C. Guardiani. Analysis of the Impact of Process Variations on Clock

Skew. IEEE Transactions on Semiconductor Manufacturing, 13(4):401

– 407, November 2000.

[101] Y. Zhang, Y. Xu, and C. Chu. FastRoute 3.0: A Fast and High Quality

Global Router Based on Virtual Capacity. In Proceedings of IEEE/ACM

International Conference on Computer Aided Design, pages 344 – 349,

November 2008.

119

