

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University

Department of Computing

Data Dissemination and Sharing in

Mobile Computing Environments

by

Xiaopeng FAN

A thesis submitted in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy

June 2010

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written, nor

material that has been accepted for the award of any other degree or diploma, except

where due acknowledgement has been made in the text.

 (Signature)

 Xiaopeng FAN (Name of Student)

 i

Abstract

With the prevalence of mobile devices and recent advances in wireless

communication technologies, mobile computing provides users with much easier

access to the information and services available on the Internet, regardless of users’

physical locations and movement behaviors. However, it is still challenging to

improve the efficiency of data access in wireless mobile networks. First, wireless

networks are notorious for the scarcity of communication bandwidth, energy,

memory, and other resources. Thus mobile nodes cannot transmit too many packets

for communication and store a mass of data locally. Second, dynamic topologies

exacerbate the performance of the algorithms and protocols designed for static

topologies. Third, many mobile applications, especially multimedia applications with

video or audio, require transmitting much larger amount of data than before, which

dramatically increase the traffic load of mobile networks.

To improve the efficiency of data access in wireless mobile networks, mobile data

management is one of the most important topics in mobile computing. It mainly

concerns the reliability and the efficiency of data access in mobile computing

environments under the difficulties like intermittent connectivity, mobility and

scarcity of resources. There are two key problems in mobile data management,

namely data dissemination and data sharing. In this thesis, we investigate the

challenging issues in designing algorithms and protocols to improve the performance

of data dissemination and sharing in wireless mobile networks. The whole thesis is

divided into three parts as follows.

In the first part of this thesis, we study data dissemination, i.e., how to disseminate a

message to other mobile nodes reliably and timely. There are mainly three ways to

disseminate a message to one or more nodes in a mobile network, namely unicast,

multicast, and broadcast. In this thesis, we focus on how to use gossiping to provide

 ii

reliable multicast, via building up mathematical models for gossiping to evaluate its

reliability. We first investigate the fault tolerance problem of gossip-based reliable

multicast protocols in mobile environments. We propose a generalized gossiping

algorithm and develop a mathematical model based on generalized random graphs to

evaluate the reliability of the gossiping protocol, answering questions like to what

extent our proposed gossiping algorithm can tolerate node failures, while

guaranteeing the specified message delivery ratio. We analytically derive the

maximum ratio of failed nodes that can be tolerated without reducing the required

degree of reliability. Next, we consider the typical hierarchical structure in an

infrastructure-based wireless network and propose a generalized hierarchical

gossiping algorithm, in which a multicast group is divided into smaller subgroups.

We develop a mathematical model based on generalized random graphs to evaluate

the reliability of hierarchical gossiping. We investigate the impact of the fanout

distributions at the two levels of hierarchy on the reliability of hierarchical gossiping,

and derive the critical condition for guaranteeing a gossiping message to be

propagated from subgroups to the whole multicast group. Simulations in both above

works have been carried out to validate the effectiveness of our analytical models in

terms of the reliability of gossiping and the success of gossiping.

In the second part of this thesis, we study data sharing in mobile computing

environments, i.e., how to share single or multiple data items with other mobile

nodes efficiently and consistently. We consider data caching as the most important

technique to share data items in mobile computing environments. We focus on the

cache placement problem, i.e., how to select cache nodes to minimize total access

cost in a mobile network. We deal with the cache placement problem in two cases:

sharing single data item and multiple data items.

First, we consider the cache placement problem for sharing single data item in a

mobile ad hoc network. We propose to achieve an optimal tradeoff between caching

 iii

overhead and total access delay by properly selecting a subset of wireless nodes as

cache nodes. Most of the existing cache placement algorithms use hop counts to

measure the total cost of a caching system, but hop delay in wireless mobile

networks varies due to the contentions among nodes and the traffic load on each link.

Therefore, we propose to evaluate the per-hop delay using a metric defined on the

contentions detected by a wireless node. We propose two heuristic cache placement

algorithms, one centralized and another distributed. The two algorithms are named

Centralized Contention-Aware Caching Algorithm (CCCA) and Distributed

Contention-aware Caching Algorithm (DCCA) respectively. Both algorithms detect

the variation of contentions and the change of the traffic flows to evaluate the benefit

of selecting a node as a cache node. We apply a TTL-based cache consistency

strategy to maintain the delta consistency among all the cache nodes. Simulation

results show that the proposed algorithms achieve better performance than other

alternative ones in terms of the average query delay, caching overhead, and query

success ratio.

Second, we consider the cache placement problem for sharing multiple data items

cooperatively in an Internet-based Mobile Ad Hoc Network (IMANET). In an

IMANET, mobile nodes access a set of data items on the Internet through gateway

nodes. To reduce the access delay from the Internet, mobile nodes can cooperatively

cache some data items. Our objective is to let each mobile node select a subset of

data items to cache cooperatively in its limited cache, such that the total access cost

of all the nodes is minimized. This problem has been proved to be NP-hard. We

propose a solution named Divide-and-Rule Cooperative Caching (DRCC), which

divides the cache space of each node into two components: selfish and altruistic. In

the selfish component, mobile nodes cache the most frequently accessed data items

according to its own preference, showing the side of selfishness of a node. In the

altruistic component, mobile nodes select data items in a randomized way, showing

the side of altruism of a node. Given a specific access frequency distribution, we can

 iv

find a near-optimal allocation solution to allocate cache sizes for the two

components, aiming at minimizing the total access cost. Simulation results show that

DRCC achieves much better performance than the existing best cooperative caching

strategy in MANETs in terms of average query delay, caching overheads, and query

success ratio. In particular, DRCC reduces caching overheads by 40% in average.

In the third part of this thesis, we apply our studies on mathematical modeling of

gossiping in cooperative caching to design a novel solution named Gossip-based

Cooperative Caching (GosCC) for data access in an IMANET. GosCC solves the

cache placement problem, considering the sequential relation among data items. It

makes use of the progress reports of mobile nodes assessing data items and the

content in mobile nodes’ caches to determine whether a data item should be cached

at a mobile node. GosCC applies the gossiping scheme to guarantee that mobile

nodes receive the accurate and timely information for making caching decisions.

Simulation results show that GosCC achieves much better performance than other

cooperative caching schemes, in terms of average interruption intervals and average

interruption times, while sacrificing acceptable message cost to a certain degree.

 v

Publications
Journal Papers

1. Xiaopeng Fan, Jiannong Cao, and Weigang Wu, Selfish or Altruistic:

Divide-and-Rule Cooperative Caching in IMANETs, IEEE

Transactions on Parallel and Distributed Systems, submitted.

2. Xiaopeng Fan, Jiannong Cao, and Weigang Wu, Contention-Aware

Data Caching in Wireless Multi-hop Ad Hoc Networks, Journal of

Parallel and Distributed Computing, Elsevier, submitted.

3. Xiaopeng Fan, Jiannong Cao, Weigang Wu, and Hui Cheng,

Modeling Hierarchical Gossiping in Reliable Multicast Protocols,

Computer Communications, Elsevier, under preparation.

4. Xiaopeng Fan, Jiannong Cao, Weigang Wu, and Michel Raynal, On

Modeling Fault Tolerance of Gossip-Based Reliable Multicast

Protocols, Journal of Parallel and Distributed Computing, Elsevier,

under preparation.

5. Weigang Wu, Jiannong Cao, and Xiaopeng Fan, Design and

Performance Evaluation of Overhearing-aided Data Caching in

Wireless Ad Hoc Networks, IEEE Transactions on Parallel and

Distributed Systems, submitted.

6. Hui Cheng, Jiannong Cao, and Xiaopeng Fan, GMZRP: Geography-

aided Multicast Zone Routing Protocol in Mobile Ad Hoc Networks,

Mobile Networks and Applications, (ACM/Springer), Vol. 14, No. 2,

pp. 165-177, 2009.

Conference Papers

7. Xiaopeng Fan, Jiannong Cao, and Weigang Wu, Gossip-based

Cooperative Caching for Data with Sequential Relation in IMANETs,

to be submitted.

8. Xiaopeng Fan, Jiannong Cao, and Weigang Wu, Contention-Aware

Data Caching in Wireless Multi-hop Ad Hoc Networks, Proceedings

 vi

of the sixth IEEE International Conference on Mobile Ad-hoc and

Sensor Systems (MASS'2009), October 2009, Macau SAR, China.

9. Xiaopeng Fan, Jiannong Cao, Weigang Wu and Hui Cheng,

Modeling Hierarchical Gossiping in Reliable Multicast Protocols,

Proceedings of the 2nd International Conference on Future

Generation Communication and Networking (FGCN'2008),

December 2008, Sanya, Hainan Island, China, (Invited Paper).

10. Weigang Wu, Jiannong Cao, and Xiaopeng Fan, Overhearing-aided

Data Caching in Wireless Ad Hoc Networks, Proceedings of the 6th

IEEE ICDCS International Workshop on Wireless Ad hoc and Sensor

Networks (WWASN’09), June, 2009, Montreal, Canada.

11. Xiaopeng Fan, Jiannong Cao, Weigang Wu, and Michel Raynal, On

Modeling Fault Tolerance of Gossip-Based Reliable Multicast

Protocols, Proceedings of the 37th International Conference on

Parallel Processing (ICPP’08), September 2008, Portland OR, USA.

12. Hui Cheng, Jiannong Cao, and Xiaopeng Fan, GMZRP: Geography-

aided Multicast Zone Routing Protocol in Mobile Ad Hoc Networks,

Proceedings of the 5th International ICST Conference on

Heterogeneous Networking for Quality, Reliability, Security and

Robustness (QShine’08), July, 2008, Hong Kong.

13. Zhijun Wang, Xiaopeng Fan, and Jiannong Cao, Design a

Hierarchical Cache System for Effective Loss Recovery in Reliable

Multicast, Proceedings of the 7th International Symposium on

Advanced Parallel Processing Technologies (APPT'2007), November,

2007, Guangzhou, China.

 vii

Acknowledgements

First and foremost, I want to thank Professor Jiannong Cao, my doctoral supervisor,

for his encouragement and rigorous supervision of my research. His support and

patience helped me overcome many difficult times during my PHD study. He

unremittingly trained me to be a good researcher, including think carefully and

express clearly. His vision, passion, and attitude towards the research deeply affected

me. What I have learned and experienced will benefit me much in the future.

I am also deeply grateful to Dr. Weigang Wu for our fruitful collaborations and

discussions. We explored ideas and wrote papers together. His kindness also helped

me handle problems in my life satisfactorily. I am also very grateful to all my co-

authors, Prof. Michel Raynal, Dr. Zhijun Wang, and Dr. Hui Cheng, for their

insightful comments and constructive suggestions.

I own a special thank to Dr. Bin Tang, now an Assistant Professor at Wichita State

University. He helped me to learn the NS2 simulation by sharing his works

altruistically. My thanks also go to Yu Huang, Gang Yao, Jin Yang, Xuping Tu,

Miaomiao Wang, Yan Sun, Yuan Zheng, and all other members of our research group

that I cannot enumerate here. I thank them for interesting discussions and

suggestions on my work.

Most importantly, I would like to thank my wife Haixia Mao. Her love, constant

support, and endless patience help me enjoy the journey of my PHD study. Finally, I

would like to express my heart-felt gratitude to my parents and my sisters, whose

unwavering faith and confidence in me is what drives me forward to make this far,

and to continue on the road ahead.

 ix

Table of Contents
Abstract ...i

Publications ..v

Acknowledgements...vii

Table of Contents ...ix

List of Figures ... xiii

List of Abbreviations...xvii

Chapter 1. Introduction ..1

1.1. Motivation..1

1.2. Contributions of the Thesis ..2

1.2.1. Contributions in Data Dissemination...3

1.2.2. Contributions in Data Caching...5

1.3. Outline of the Thesis ...9

Chapter 2. Background and Literature Review11

2.1. Wireless Mobile Networks.. 11

2.2. Gossiping for Data Dissemination ...13

2.2.1. Gossiping ...13

2.2.2. Mathematical Models of Gossiping ...14

2.3. Data Caching for Data Sharing ...15

2.3.1. Data Caching..15

2.3.2. Cache Placement for Sharing Single Data Item.................................16

2.3.3. Cooperative Caching..18

2.4. Generalized Random Graphs ..20

Chapter 3. Modeling Fault-Tolerance for Gossip-based Reliable
Multicast ..27

3.1. Overview ..27

3.2. Preliminaries..29

 x

3.3. A Fault-tolerant Gossip Model .. 32

3.3.1. Model Definition..32

3.3.2. Analysis of Gossiping..33

3.3.3. Case Study: Poisson Fanout Distribution ..36

3.4. Simulations .. 39

3.4.1. Reliability of Gossiping ...40

3.4.2. Success of Gossiping ...41

3.5. Summary.. 43

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast
Protocols ..45

4.1. Overview .. 45

4.2. Preliminaries ... 47

4.3. A Hierarchical Gossip Model ... 49

4.3.1. Model Definition..49

4.3.2. Analysis of Hierarchical Gossiping ...51

4.3.3. Case Study: Poisson Fanout Distribution ..53

4.4. Simulations .. 56

4.5. Summary.. 58

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad
Hoc Networks ...61

5.1. Overview .. 61

5.2. Problem Formulation ... 62

5.2.1. System Model ..63

5.2.2. TTL-based Consistency Management ...64

5.2.3. Problem Formulation ...66

5.3. A Heuristic Solution.. 69

5.3.1. Per-hop Delay ..70

5.3.2. Two Heuristic Rules...71

5.3.3. Centralized Contention-aware Caching Algorithm............................76

5.3.4. Distributed Contention-aware Caching Algorithm77

 xi

5.4. Performance Analysis ...82

5.4.1. Average Access Delay..83

5.4.2. Caching Overheads ..84

5.5. Simulations ..85

5.5.1. Static Networks ..86

5.5.2. Mobile Networks ...89

5.6. Summary..93

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs........95

6.1. Overview ..95

6.2. Problem Formulation ...99

6.2.1. System Model ..99

6.2.2. Problem Formulation ...99

6.3. A Divide-and-Rule Solution ...102

6.3.1. Divide and Rule ...102

6.3.2. Objective Function...103

6.3.3. Two Components in DRCC ...105

6.3.4. Divide-and-Rule Cooperative Caching..114

6.4. Parameter Analysis ... 119

6.5. Simulations ..121

6.5.1. Simulation Settings ..121

6.5.2. Simulation Results ...123

6.6. Summary..129

Chapter 7. Gossip-based Cooperative Caching for Data with
Sequential Relation in IMANETs ...131

7.1. Overview ..131

7.2. Problem Formulation ...134

7.2.1. System Model ..134

7.2.2. Problem Formulation ...135

7.3. Gossip-based Cooperative Caching...136

7.3.1. Design Rationale ..136

 xii

7.3.2. Gossip-based Cooperative Caching ...141

7.4. Parameter Analysis ... 145

7.5. Simulations .. 150

7.5.1. Simulation Settings ..151

7.5.2. Simulation Results ...152

7.6. Summary.. 157

Chapter 8. Conclusions and Future Works...159

8.1. Conclusions.. 159

8.2. Future Research Works.. 162

References ..165

 xiii

List of Figures
Figure 1.1: An outline of the contributions in this thesis ...3

Figure 2.1: An Internet-based Mobile Ad hoc NETwork (IMANET)........................12

Figure 3.1: The generalized gossiping algorithm...30

Figure 3.2: Mean fanout vs. Reliability of Gossiping under various non-failed node

ratio..38

Figure 3.3: Minimum times of executions for the required probability of gossiping

success. ..39

Figure 3.4: Reliability in a group with 1000 nodes. (a) q=0.1, 0.3, 0.5, and 1.0; (b)

q=0.4, 0.6, 0.8, and 1.0. ...40

Figure 3.5: Reliability in a group with 5000 nodes. (a) q=0.1, 0.3, 0.5, and 1.0; (b)

q= 0.4, 0.6, 0.8, and 1.0. ..41

Figure 3.6: The distribution of Gossiping Success with a pair of {f, q}. (a) f=4.0,

q=0.9; (b) f=6.0, q=0.6. ...42

Figure 4.1: The hierarchical gossiping algorithm ..47

Figure 4.2: Mean Fanout k at Level 2 vs. Reliability of Hierarchical Gossiping,

n=100000, nsubg=100..57

Figure 4.3: Mean Fanout k at Level 2 vs. Reliability of Hierarchical Gossiping,

n=500000, nsubg=500..57

Figure 5.1: Example to show how to calculate the contention delay of node N1 in a

802.11-based wireless network..70

Figure 5.2: Example to show how to calculate the hedging flow..............................73

Figure 5.3: Centralized Contention-aware Caching Algorithm75

Figure 5.4: DCCA at the data source ...78

Figure 5.6: DCCA at the client node..81

Figure 5.6: Average query delay vs. Mean query generation time.88

Figure 5.7: Average query delay vs. Mean update generation time.88

Figure 5.8: Caching Overheads vs. Mean query generation time..............................89

Figure 5.9: Caching Overheads vs. Mean update generation time.89

Figure 5.10: Average Query Delay vs. Maximum Speed ..91

Figure 5.11: Caching Overheads vs. Maximum Speed..91

Figure 5.12: Query Success Ratio vs. Maximum Speed..92

 xiv

Figure 6.1: An example to explain how to calculate average access hoops.100

Figure 6.2: Basic idea in DRCC with two strategies A and B102

Figure 6.3: Three Zipf-like distributions to show the impact of θ on the strategies of

cache placement...106

Figure 6.4: A Bipartite Random Graph to model the relation between mobile nodes

and data items ..109

Figure 6.5: Analytical results for average length of the shortest path l, m=1000, n

=100, T=0. ... 112

Figure 6.6: A sample process for a mobile node accessing a data item in movement

... 113

Figure 6.7: Divide-and-Rule Cooperative Caching ... 116

Figure 6.8: Analytical results on total access delay with T data items in the random

component and the parameter θ in the Zipf-like distribution, n =100, m=1000. ..120

Figure 6.9: Analytical results on the relation between T data items in the altruistic

component and the parameter θ when achieving the minimum total access cost,

n=100, m=1000, S/SD=100...120

Figure 6.10: Average query delay vs. Zipf-like Parameter124

Figure 6.11: Caching Overheads vs. Zipf-like Parameter..124

Figure 6.12: Query Success Ratio vs. Zipf-like Parameter......................................125

Figure 6.13: Average query delay vs. Mean Query Generate Time.........................126

Figure 6.14: Caching Overheads vs. Mean Query Generate Time.126

Figure 6.15: Query Success Ratio vs. Mean Query Generate Time.126

Figure 6.16: Average query delay vs. Maximum speed...127

Figure 6.17: Caching overheads vs. Maximum speed. ..128

Figure 6.18: Query success ratio vs. Maximum speed. ...128

Figure 7.1: The structure of gossip report..138

Figure 7.2: Gossip-based Cooperative Caching Algorithm.144

Figure 7.3: Relation between gossiping reliability S and fanout f...........................146

Figure 7.4: Relation between rounds R and number of nodes n..............................147

Figure 7.5: Average interruption interval vs. Data item size.153

Figure 7.6: Caching overheads vs. Data item size. ..153

Figure 7.7: Average interruption times vs. Data item size.154

Figure 7.8: Average interruption interval vs. Consuming data speed.154

Figure 7.9: Caching overheads vs. Consuming data speed......................................154

 xv

Figure 7.10: Average interruption times vs. Consuming data speed........................155

Figure 7.11: Average interruption interval vs. Maximum speed..............................156

Figure 7.12: Caching overheads vs. Maximum speed. ..156

Figure 7.13: Average interruption times vs. Maximum speed.156

 xvii

List of Abbreviations

AF: Access Flow

BR: Best-effort Reliability

CA: Contention-Aware

CC: Cooperative Caching

DCP: Dynamic Cache Placement

DRCC: Divide-and-Rule Cooperative Caching

GosCC: Gossip-based Cooperative Caching

HF: Hedging Flow

IMANET: Internet-based Mobile Ad Hoc Networks

MH: Mobile Host

MANET: Mobile Ad Hoc Network

NH: Number of Hops

NM: Number of Messages

PCS: Personal Communication Systems

PR: Probabilistic Reliability

QoS: Quality of Services

RF: Reply Flow

SR: Strong Reliability

SRCP: Sequential Relation Cache Placement

UF: Update Flow

Chapter 1. Introduction

 1

Chapter 1. Introduction

The main objective of this research is to investigate the issues and design novel

algorithms, techniques, and mathematical models for efficient data dissemination

and sharing in wireless mobile networks. In this thesis, a wireless mobile network

refers to a Mobile Ad hoc NETwork (MANET) or its Internet extensions, i.e., an

Internet-based Mobile Ad hoc NETwork (IMANET). With respect to the topic of

data dissemination and sharing, we mainly discuss gossiping and data caching as two

corresponding techniques. This chapter provides an introduction to our research,

discussing the characteristics of mobile computing and the new challenges in

developing applications for wireless mobile networks. The discussion serves as the

motivation of our works. We also summarize the contributions and outline the

organization of the thesis.

1.1. Motivation

Recent advances in wireless communication and portable devices have led to the

rapid development of mobile computing technologies and applications. In the last

decade, mobile computing [MM03] has emerged as a new computing paradigm.

However, developing mobile computing applications faces new challenges: 1)

mobile elements are resource-poor relative to static elements, such as mobile phones;

2) mobility is inherently hazardous. For example, portable computers are more

vulnerable to loss or damage, even may be stolen much easier than workstation in

office; 3) mobile connectivity is highly variable in performance and reliability and

the quality of communication is easy to be affected by the surrounding environments;

and 4) mobile devices rely on a finite energy source. Concerns of power

consumption must span many levels of hardware and software to be fully effective.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 2

Mobile data management [MM03, IB93] is one of the most important topics in

mobile computing. This topic mainly concerns reliable and efficient data access in

wireless mobile networks, targeting at overcoming the difficulties like intermittent

connectivity, mobility and scarcity of resources. There are two key problems in

mobile data management, namely “data dissemination” and “data sharing”. The first

problem is about how to disseminate a message to a set of mobile hosts reliably

and timely. The second problem is about how to share one or multiple data items

with a set of mobile hosts efficiently and consistently.

It remains a challenging task to improve the efficiency of data access in MANETs.

Firstly, wireless networks are notorious for the scarcity of communication bandwidth

and other resources. Thus mobile nodes cannot transmit too many packets for

communications. Moreover, due to the limited storage, mobile nodes cannot cache

all the frequently accessed data items locally. Secondly, mobile nodes move freely

and disconnections may occur frequently. Once a network partitions, mobile nodes in

one partition cannot access the data items cached by nodes in another partition. Data

accessibility in MANETs is then much lower than that in the conventional fixed

networks. Thirdly, many mobile applications, especially multimedia applications

with video or audio, require transmitting much larger amount of data than before,

which dramatically increase the traffic load of wireless mobile networks.

1.2. Contributions of the Thesis

The contributions of this thesis mainly lie on designing novel algorithms, techniques,

and mathematical models for data dissemination and sharing in wireless mobile

networks. As illustrated in Figure 1.1, our contributions mainly focus on two topics:

1) with respect to data dissemination, we focus on gossiping, in which each node

randomly selects one or a few of nodes to disseminate a message. We build up

mathematical models for gossiping to evaluate the reliability of gossip-based reliable

Chapter 1. Introduction

 3

multicast; and 2) with respect to data sharing, we focus on data caching, in which

data queries can be served by a set of cache nodes that are selected to hold some

copies of data items. We address the cache placement problem in data caching with

the objective of reducing the total access cost in MANETs.

Introduction

Data Dissemination Data Sharing

Fault-tolerant Gossip Hierarchical Gossip

Data Caching (Single Data Item)

Cooperative Caching (Multiple Data Items)

Gossip-based Cooperative Caching

Conclusions and Future Works

Part 3

Part 1 Part 2
Background and Literature Review

Figure 1.1: An outline of the contributions in this thesis

1.2.1. Contributions in Data Dissemination

Gossiping [BHO+99, KMG03] is one of the most important techniques to provide

probabilistic reliability in reliable multicast. Gossip-based multicast protocols rely

on a peer-to-peer interaction model for multicasting a message. They are scalable

since the loads are distributed among all participating nodes. In a wireless mobile

network, there are new challenging issues for designing gossip-based reliable

multicast protocols. The new characteristics of wireless mobile networks and devices

need be considered in the design. For example, we should consider the impacts of

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 4

the weak capacity of mobile devices on the fault-tolerant property of gossip-based

reliable multicast, while keeping its probabilistic reliability. As another example, we

can take advantage of the inherent hierarchical structure of some wireless mobile

networks to reduce the message cost of gossiping.

In this thesis, we propose two generalized gossiping algorithms, in which the fanout

distribution of all the nodes can be an arbitrary distribution. The fanout of a node

means the number of gossiping targets randomly selected from the network. Most

existing algorithms are designed with a specific fanout distribution. With our

generalized algorithms, we establish the corresponding mathematical models to

evaluate the reliability of gossiping. The details are described in the following

subsections.

1.2.1.1. Fault-tolerant Gossip Model

We aim to investigate the fault-tolerant property of gossip-based reliable multicast in

a wireless mobile network. Mobile devices are prone to fail, due to either their weak

capacity or their mobility. Moreover, wireless communication is also subject to

intermittent disconnections. Firstly, we propose a generalized gossiping algorithm in

which the fanout distribution of all the nodes can be an arbitrary probabilistic

distribution. Then, with the generalized algorithm, we develop a mathematical model

based on generalized random graphs to evaluate the reliability of gossiping, i.e., to

what extent gossip-based protocols can tolerate node failures, yet guarantee the

specified message delivery. We analytically derive the maximum ratio of failed

nodes that can be tolerated without reducing the required degree of reliability. We

also investigate the impact of the fanout distributions and the nonfailed member ratio,

on the reliability of gossiping. Simulations have been carried out to validate the

effectiveness of our analytic model in terms of the reliability of gossiping and the

Chapter 1. Introduction

 5

success of gossiping. The results obtained can be used to guide the design of fault

tolerant gossip-based protocols.

1.2.1.2. Hierarchical Gossip Model

In some wireless networks, such as cellular networks or WLANs, the structures of

such networks are inherently hierarchical. We reduce the message cost of gossiping

by dividing a multicast group into smaller subgroups and using a small set of nodes

in each subgroup to gossip among the subgroups. We propose a generalized

hierarchical gossiping algorithm and develop a mathematical model based on

generalized random graphs to evaluate the reliability of hierarchical gossiping. Using

our mathematical model, we investigate the impact of the fanout distributions at the

two levels of hierarchy on the reliability of hierarchical gossiping. We also discover

the critical condition for guaranteeing the gossiping messages to be propagated from

local subgroups to the whole group. Simulations have been carried out to validate the

effectiveness of our analytic model in terms of the reliability of gossiping and the

success of gossiping.

1.2.2. Contributions in Data Caching

Data caching [BO00, QPV01, CS02, KD02, KRW03, KRS00, LWY93, LGI+99,

MHV+97, QPV01, RS02] is one of the most attractive techniques for sharing data

items in wireless mobile networks, so as to reduce access delay and redundant data

transmission. The data source transfers some copies of a data item to some client

nodes, called cache nodes. Thus other client nodes can access the copies of the data

item from these cache nodes instead of the data source so that total access cost can

be reduced. Cooperative caching [YC06, TGD06, CLC07, ASM+08, DGV09] can be

considered as an extension of data caching, which further explore the potential of

data caching. A typical cooperative caching strategy allows the sharing and

coordination of cached data items among multiple nodes.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 6

There are mainly three sub-problems in data caching [W99, TCO01], cache

placement [BI94], cache replacement [AAF+95], and cache consistency [C03,

HCW+07, CZX+07]. The cache placement problem is about how to select cache

nodes to minimize total access cost. In this thesis, we mainly focus on the cache

placement problem. In two of our works, we also address the cache replacement

problem and the cache consistency problem respectively.

In wireless mobile networks, we need to address some challenging issues when

considering the cache placement problem. For example, due to the shared nature of

wireless medium, nodes may contend with each other to access data items. We

should consider the impact of these contentions on the cost of data access. Moreover,

if there is a set of data items to be accessed, we need consider what data items should

be selected for caching under the constraint of limited cache sizes. Additionally, the

relations among the data items can help us to improve the performance of data

access.

In this thesis, we deal with the cache placement problem in two cases: sharing single

data item and multiple data items. There are three contributions on this topic. Firstly,

we propose the Contention-aware Caching Algorithm to share single data item,

considering the impact of wireless contentions. Secondly, we propose the Divide-

and-Rule Cooperative Caching to share multiple data items under the constraint of

limited cache sizes. Thirdly, we propose Gossip-based Cooperative Caching to share

multiple data items with sequential relation, under the constraint of limited cache

sizes. The details are described in the following subsections.

1.2.2.1. Contention-aware Data Caching

We consider the cache placement problem in wireless multi-hop networks,

investigating how to achieve an optimal tradeoff between caching overheads and

total access delay by properly selecting a subset of wireless nodes as cache nodes

Chapter 1. Introduction

 7

when the network topology changes. We assume a data source updates a single data

item to be accessed by other client nodes. Most of the existing cache placement

algorithms use hop counts to measure the total cost of a caching system, but hop

delay in wireless networks maybe varies due to the contentions among nodes and the

traffic load on each link. Therefore, we evaluate the per-hop delay according to the

contentions detected by a wireless node.

We propose two heuristic cache placement algorithms, named Centralized

Contention-aware Caching Algorithm (CCCA) and Distributed Contention-aware

Caching Algorithm (DCCA). Both can detect the variation of contentions and the

change of the traffic flows in order to evaluate the benefit of selecting a node as a

cache node. We also apply a TTL-based cache consistency strategy to maintain the

delta consistency among all the cache nodes. Simulation results show that the

proposed algorithms achieve better performance than other alternative ones in terms

of average query delay, caching overheads, and query success ratio.

1.2.2.2. Divide-and-Rule Cooperative Caching

We consider the cache placement problem for sharing multiple data items

cooperatively in an IMANET. Mobile nodes access a set of data items on the Internet

through gateway nodes. To reduce the access delay from the Internet, mobile nodes

can cooperatively cache some data items. Our objective is to let each mobile node

select a subset of data items to cache in its limited cache such that the total access

cost of all the nodes is minimized. This problem is NP-hard [BR01].

We propose a novel solution named Divide-and-Rule Cooperative Caching (DRCC),

which divides the cache space of each node into two components: selfish and

altruistic. In the selfish component, mobile nodes cache the most frequently accessed

data items according to its own preference, showing the side of selfishness of a node.

In the altruistic component, mobile nodes select data items in a randomized way,

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 8

showing the side of altruism of a node. Given a specific access frequency

distribution, we can find a near-optimal allocation solution to allocate cache sizes for

the two components, aiming at minimizing the total access cost. Simulation results

show that DRCC achieves much better performance than the existing best

cooperative caching strategy in MANETs in terms of average query delay, caching

overheads, and query success ratio. In particular, DRCC reduces caching overheads

by 40% in average.

1.2.2.3. Gossip-based Cooperative Caching

We consider the relation among data items in designing cooperative caching in

IMANETs. We assume each mobile node accesses all the data items in a sequential

order. Most of the existing works does not consider the inherent relations among

these data items. With more demands on sharing a video or other media contents, the

relations among data segments (items) becomes much more important to improve the

efficiency of data access. We present a novel solution named Gossip-based

Cooperative Caching (GosCC) to address the cache placement problem, considering

the sequential relation among data items. The current ID of the data item accessed by

a mobile node is stored into a progress report. GosCC makes use of the information

about the progress reports of mobile nodes and the content in mobile nodes’ caches,

in order to determine whether a data item should be cached at a mobile node. To

obtain the aforementioned information reliably and in time, GosCC apply a gossip-

based scheme to guarantee that mobile nodes receive the accurate and timely

information for making caching decisions. Simulation results show that GosCC

achieves better performance than BDC [TGD06] in terms of average interruption

intervals and average interruption times, while sacrificing message cost to a certain

degree.

Chapter 1. Introduction

 9

1.3. Outline of the Thesis

The structure of this thesis is described in Figure 1.1. Chapter 1 is our introduction to

this thesis. Chapter 2 briefly presents the literature review of the relevant topics and

provides some necessary background knowledge for works reported in this thesis.

Finally, we conclude the thesis with discussion on directions of our future works in

Chapter 8. The main body of this thesis is divided into three parts from Chapter 3 to

Chapter 7. The details are presented as follows.

In the first part, we mainly discuss mathematical models for gossiping. This part is

composed of two chapters. In Chapter 3, we propose a generalized gossiping

algorithm and a fault-tolerance gossiping model to describe the fault tolerant

property of the proposed algorithm. In Chapter 4, we propose a generalized

hierarchical gossiping algorithm and develop a mathematical model based on

generalized random graphs to evaluate the reliability of hierarchical gossiping.

In the second part, we mainly discuss how to deal with the cache placement problem

in wireless mobile networks. This part consists of two chapters. In Chapter 5, we

investigate the cache placement problem for sharing one data item in wireless mobile

networks. We define the cache placement problem on a dynamic network topology

as Dynamic Cache Placement (DCP). We take the contentions among wireless nodes

into consideration and present two heuristic algorithms named Centralized

Contention-aware Caching Algorithm (CCCA) and its distributed version DCCA.

In Chapter 6, we investigate the cache placement problem for sharing multiple data

items in cooperative caching. We take the distribution of data access frequencies into

consideration and present an algorithm named Divide-and-Rule Cooperative

Caching (DRCC) which improves the performance of cooperative caching by

providing a tradeoff between caching data items for self and for others.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 10

In the third part, we try to build up a cooperative caching system by applying

gossiping to disseminate the information about caching. This part only includes one

chapter. In Chapter 7, we consider the relation among data items in cooperative

caching for sharing multiple data items in IMANETs. We present a novel solution

named Gossip-based Cooperative Caching (GosCC) to address the cache placement

problem, considering the sequential relation among data items.

Chapter 2. Background and Literature Review

 11

Chapter 2. Background and Literature

Review

In this chapter, we provide a literature review and some background knowledge

related to the research in this thesis. The organization of this chapter is as follows.

Firstly, Section 2.1 presents an overview of wireless mobile networks. Section 2.2

presents an overview of gossiping with its existing mathematical models. Section 2.3

describes the related works on the topic of data caching. Finally, Section 2.4 makes a

brief introduction to the mathematical tool used in this thesis, i.e., the generalized

random graph theory.

2.1. Wireless Mobile Networks

In this thesis, a wireless mobile network is a network that consists of Mobile Hosts

(MHs), which communicate with each other by using wireless communication.

Sometime, we use “wireless network” or “mobile network” to stand for a wireless

mobile network in some chapters. There are many different wireless mobile

networks proposed, such as cellular networks, Wireless LANs, and Wireless Mesh

networks, etc [IK96, P97, V99, FZ94]. The architectures of all the wireless mobile

networks can be classified into two categories: infrastructure-based networks and ad

hoc networks [AM98, M01, M99]. An infrastructure-based network generally

consists of a large number of MHs and relatively fewer but more powerful Mobile

Support Stations (MSSs) that are connected by a wired or wireless backbone

network. Messages among mobile users are normally relayed by one or more MSSs.

In this thesis, we mainly focus on MANETs, and its extension IMANETs [CMC99].

A MANET is an infrastructure-less network that consists of a collection of

autonomous MHs communicating with each other through wireless channels. The

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 12

signal coverage range and the distance between two hosts determine whether they

are directly connected. Each host is a router and the communication between two

hosts can be multiple hops. Both link and host failures may frequently occur. The

topology of a MANET can dynamically change due to the mobility of MHs and link

or host failures. MANETs provides an attractive solution for networking in the

situation where network infrastructure is not available, such as battlefield, rescue

operations and so on.

Figure 2.1: An Internet-based Mobile Ad hoc NETwork (IMANET)

In an IMANET as Figure 2.1 shows, mobile users access the Internet through some

gateway nodes by multi-hop communications, without requiring any infrastructure in

the users’ proximity. In fact, an IMANET combines a MANET with the Internet to

provide universal information accessibility. With the growth of mobile devices, an

IMANET is well suited for many Internet applications in terms of facilitating

flexible accessibility and information availability. The contents on the Internet can be

provided to mobile users much easier.

Mobile nodeGateway node

Internet Internet

Internet

Chapter 2. Background and Literature Review

 13

2.2. Gossiping for Data Dissemination

2.2.1. Gossiping

In this thesis, data dissemination means the procedure that disseminates a message

from a source to a set of destinations. Normally, data dissemination can be addressed

by reliable multicast or broadcast [EGB+03, DGH+87, GT92, RMM98, BHO+99,

WFC07, FanCW+08].

Existing multicast protocols guarantee one of the three types of reliability: Strong

Reliability (SR), Best-effort Reliability (BR) and Probabilistic Reliability (PR)

[BHO+99]. Compared with strong reliability and best-effort reliability, probabilistic

reliability does not always guarantee atomicity but can provide message delivery

guarantee with some required probability. For example, Bimodal Multicast [BHO+99]

provides a bimodal delivery guarantee which changes the traditional “all or nothing”

guarantee to the “almost all or almost none” guarantee.

Gossiping [BHO+99, KMG03] is one of the most important techniques to provide

probabilistic reliability in reliable multicast. Gossip-based multicast protocols rely

on a peer-to-peer interaction model for multicasting a message, and they are scalable

since the loads are distributed among all participating nodes. Redundant messages

are used to achieve reliability and fault tolerance. A few pioneering works on

gossiping have been done for both wired and wireless networks. In wired networks,

many works can be found on data dissemination [KMG03], consistency management

in replicated databases [DGH+87], and failure detection [RMH98].

As we all know, much work has been done in the topic of reliable multicast in

MANETs [CRB01, LEP03]. In wireless networks, gossip-based protocols have been

proposed for multicast in mobile ad hoc networks (MANETs). A seminal approach is

the Anonymous Gossip (AG) protocol [CRB01], which is a descendant of the pbcast

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 14

[BHO+99] protocol. The Route Driven Gossip (RDG) [LEP03] protocol uses a pure

gossip scheme, by which messages, negative acknowledgments, and membership

information is gossiped uniformly without requiring an underlying multicast

primitive.

2.2.2. Mathematical Models of Gossiping

In this subsection, we briefly review the previous work on developing mathematical

models of gossiping. Three different modelling approaches have been used,

including the recurrence model, the epidemic model, and the random graph model.

In pbcast [BHO+99], the analysis work shows how to calculate the bimodal delivery

distribution for a given networking setting. The authors derive a recurrence

relationship between the successive gossiping rounds of the protocol. However, due

to its complexity, the model cannot determine the accurate value of the reliability of

gossiping. Analysis based on this model only calculates an upper bound in round t on

the probability that st+1 nodes will receive the gossip message in the next round t+1.

It does not show how to find a proper number of rounds required in gossiping.

The second approach is based on the epidemic model [JLW+07]. Two mechanisms,

Local Retransmission and Gossiping (LRG), are combined to provide the high

reliability of data delivery. Since the gossiping process is similar to the spreading of

epidemic diseases, the authors use the so-called SI model in epidemiology to analyze

LRG. In this model, the balance equations are developed to describe the process of

spreading messages among Group Cluster Heads (GCHs). However, this model did

not take the message losses and node failures into consideration.

More recently, the random graph theory [B01] has been used to model gossiping.

The seminal work is the model proposed by Microsoft [KMG03], which aims at

establishing the relationship between the success of the gossiping protocols and the

Chapter 2. Background and Literature Review

 15

key gossip parameters, including the fanout and the failure rate. The model considers

the presence of arc {x, y} in a random graph (,)nn pς as saying that x gossips

message to y. The success of gossiping means the existence of a directed path from

the source node s to every other node in the random graph. The probability of the

success of gossiping is denoted by (,)np nπ . It is proved that the limit of

(,)np nπ is
cee

−− if pn is equal to (log(n)+c+o(1)/n, where c is a constant. If the

proportion of the failed nodes is ε, that is, n’=(1-ε)*n, gossiping succeeds with the

probability
cee

−− if [log (1)] /np n c o n′ ′= + + . Although the success of gossiping, i.e.,

all of the group members receive the message, is important, we still need to know

the probability that one node receives the message during gossiping if we cannot

guarantee such a strong requirement as the success of gossiping in practice. Both of

them are considered in detail by our mathematic model.

2.3. Data Caching for Data Sharing

2.3.1. Data Caching

Data caching [BO00, QPV01, CS02, KD02, KRW03, KRS00, LWY93, LGI+99,

MHV+97, QPV01, RS02] is one of the most attractive techniques that can share one

or more data items in wireless multi-hop ad hoc networks [NSC03, H01, TG07,

TGD06, FCW09, WCF09]. The data source transfers some copies of a data item to

some client nodes, called cache nodes. Thus other client nodes can access the copies

of the data item from these cache nodes instead of the data source. By this way, total

access delay is decreased because of the service provided by cache nodes. However,

the data source is responsible for updating the copies at cache nodes periodically or

aperiodically. This brings more traffic cost. Obviously, there is a trade-off between

average access delay and overall traffic cost.

There are mainly three sub-problems in data caching [W99, TCO01], including

cache placement [BI94], cache replacement [AAF+95], and cache consistency [C03,

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 16

HCW+07, CZX+07]. The cache placement problem is how to select cache nodes to

minimize total access cost. The cache replacement problem is how to replace data

items in the cache when the cache is full. The cache consistency problem is how to

maintain cache consistency, i.e., consistency among the source data owned by the

data source and the cache copies held by a collection of cache nodes.

In this thesis, we mainly focus on the cache placement problem. We study two cases

on the cache placement problem as follows.

Firstly, if a data source aims to share single data item with other mobile nodes and

the data item is updated periodically or aperiodically, the cache placement problem

becomes how to select cache nodes to obtain the optimal trade-off between total

access delay and overall caching overhead.

Secondly, if a set of data sources aims to share multiple data items with other

mobile nodes under the constraints of cache sizes, the cache placement problem

becomes what data items should be cached in which mobile nodes under the

constraint of cache space, so that total access delay is minimized. Normally, we use

cooperative caching to address this problem. We will review the existing works in

cooperative caching in Section 2.2.3.

2.3.2. Cache Placement for Sharing Single Data Item

In this subsection, we focus on the cache placement for sharing single data item in a

wireless multi-hop ad hoc network. The key problem of determining the optimal

cache placement in an arbitrary network topology has the similarity to two problems

in graph theory viz. the facility location problem and the k-median problem [SK02].

As we all known, the two problems have been proved to be NP-Hard. In the facility

location problem, setting up a cache at a node incurs a certain fixed cost, and the

goal is to minimize the sum of total access cost and the fixed costs of all caches. On

Chapter 2. Background and Literature Review

 17

the other hand, the k-median problem is to minimize the total access cost under the

constraint of the number of cache nodes, i.e., that at most k nodes can be selected as

cache nodes. A number of constant factor approximation algorithms have been

developed for each of the two problems [CG99], under the assumption of triangular

inequality of edge costs. Without the triangular inequality assumption, either

problem is as hard as approximating the set cover [JV01], and thus can be

approximated better than O(log|V|) unless P=NP.

In [LGI+99], the authors address the problem of proxy placement and employ

dynamic programming to determine the optimal placement. They only consider the

case of tree topology. In the context of wireless network, Nuggehailli et al. [NSC03]

formulate the cache placement problem in ad hoc wireless networks as a special case

of the connected facility location problem [SK02], named as the rent-or-buy problem.

An existing facility is given, along with a set of locations at which further facilities

can be built. Every location is associated with a service demand, denoted by pk,

which must be served by one facility. The cost of serving k by using facility j is

equal to pk*ckj, where ckj is the cost of connecting k to j. The fixed cost of opening a

facility at any location is zero. Besides selecting the sites to build the facilities, all of

the facilities should be connected by using a Steiner Tree with the given facility as

root. To the best of our knowledge, the best solution for this problem is 2.92-

approximation algorithm [EGR+08]. In [NSC03], the authors propose an algorithm

named POACH, which is a 6-approximation-ratio algorithm for ad hoc wireless

networks. However, POACH is designed for static topology such that it does not

work properly in a distributed way and in a mobile ad hoc network. Moreover, the

performance of POACH is evaluated by the numerical results, which cannot reflect

the reality of wireless ad hoc networks. Although the author mentioned that POACH

can be implemented in a distributed fashion, there is still no any real implementation

in the original work and the extended version ECHO [NSC+06]. Another key point is

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 18

that ECHO requires global topological information and disseminating such

information in a low-cost manner. It is not a good choice in a mobile ad hoc network.

2.3.3. Cooperative Caching

When we discuss how to share multiple data items, mobile nodes may cache data

items in a cooperative way in order to improve the efficiency of data access in

wireless mobile networks. Cooperative caching [YC06, TGD06, CLC07, ASM+08,

DGV09] has been proved as an efficient way to improve the performance of data

access. A typical strategy in cooperative caching works as follows. Data sources

transfer some data copies to some nodes called cache nodes. Other nodes can access

the data item from cache nodes instead of data sources. Consequently, access delay

can be decreased because of the service provided by these cache nodes. In this way,

each cache node not only serves the requests from its own but also the data requests

from other nodes. Each cache node caches data items not only on behalf of its won

needs but also on the behalf of others.

The major problem in cooperative caching is the cache placement problem [H01,

YC04, YC06, TGD06, TG07, NSC03, TCC07], i.e., what data items should be

cached at which mobile nodes under the constraint of cache space, so that total

access cost is minimized. The existing solutions on this topic can be categorized into

three categories, including selfish schemes, cooperative schemes and global schemes.

Firstly, selfish schemes make mobile nodes cache data items only by their own

preferences. Hara [H01] proposes SAF (Static Access Frequency) scheme that makes

each node cache the items most frequently accessed by self. Yin and Cao [YC04]

proposes Greedy-S (Greedy Scheme) that considers the impact of the access

frequencies and the sizes of data items on the caching decision. Data items with

higher access frequencies and smaller sizes are preferred to be cached. Under such

Chapter 2. Background and Literature Review

 19

schemes, the performance is even worse when there are fewer client nodes and

access frequencies are uniform for all the nodes.

Secondly, cooperative schemes consider the requirements from both self and other

nodes. Hara [H01] presents Dynamic Access Frequency and Neighborhood (DAFN)

that eliminates the replica duplication among neighboring mobile hosts in order to

improve SAF. Dynamic Connectivity based Grouping (DCG) is the third cooperative

caching schemes proposed in [YC04]. DCG aims at sharing replicas in larger group

of mobile hosts than DAFN that shares replicas among neighboring nodes. However,

it is not easy to find stable nodes to act as “central nodes” in order to collect

neighboring information and determine caching placements, when there are frequent

failures and movements in ad hoc networks. This is the same problem as the one in

One-To-One Optimization (OTOO) [YC04] and Reliable Neighbor Scheme (RN)

[YC04]. Yin and Cao [YC06] proposes three distributed caching schemes, viz.

CacheData, CachePath, and HybridCache. CacheData caches the passing-by data

items at each node. CachePath caches the path to the nearest cache of the passing-by

data item. HybridCache caches the data item if its size is small enough, else caches

the paths to the data item. These three schemes are simple but much efficient

schemes. However, the only consideration is that CachePath depends on the

modification of routing protocols and sometimes the node that modified the route

should reroute the request to the original data center.

Thirdly, global schemes consider the impact of the benefit to the whole system when

a node intends to evaluate the result of its caching decision. Tang et al. present

Benefit-based Data Caching (BDC) scheme [TGD06] in order to maximize the

benefit (i.e., the reduction in total access cost) instead of minimizing the total access

cost. To the best of our knowledge, it is the best solution that presents approximation

algorithms for the general cache placement problem with multiple data items under

memory constraints. Thus, we also use BDC as our counterpart in simulations.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 20

However, BDC has similar but better performance compared with other schemes in

mobile environments and it cannot determine the value of the benefit threshold in the

distribution version. Moreover, data servers periodically broadcast to the entire

network the latest cache list, which results in much message cost.

2.4. Generalized Random Graphs

The generalized random graph [NSW01] is the most important mathematical tool

used in this thesis. We model gossiping by using the generalized random graph

theory in Chapter 3 and Chapter 4. Additionally, we also use the bipartite random

graphs to model the relation between mobile nodes and data items in Chapter 6. With

respect to GosCC in Chapter 7, we also use our mathematical model for gossiping to

analyze the performance of GosCC. Therefore, we must make a brief introduction to

random graph and the generalized random graph theory in this subsection.

Although the theory of random graphs is one of the youngest branches of graph

theory, it is second to none in importance. In the 1940s and 1950s, there are some

sporadic papers written by Erdos, in which Erdos used random methods to show the

existence of graphs with seemingly contradictory properties [B01]. The great

discovery of Erdos was that we can use probabilistic methods to demonstrate the

existence of the designed graphs without actually constructing them. This is a

revolutionary work in both graph theory and combinatorics.

The systematic study of random graphs was started by Erdos and Renyi in 1959.

They laid the foundation of a rich theory of random graphs, proving many of the

fundamental results in a series of papers. In this thesis, we are mainly interested in

the phenomena of phase transition, i.e., while a random graph with n nodes and a

certain number of edges is unlikely to have the property P at hand, a random graph

with a few more edges is very likely to have the property P. This term “phase

transition” is borrowed from physics. The most dramatic example of a phase

Chapter 2. Background and Literature Review

 21

transition discovered by Erdos and Renyi is the appearance of the giant component

during the process of increasing the probability of connecting two nodes. The giant

component is the biggest connected subgraph formed after a phase transition

happens. It has a size of order at least n2/3, while the sizes of other components are of

order at most n2/3/2.

In this thesis, we mainly use the second probabilistic space in the random graph

theory [B01], i.e., if the total number of nodes is n, the space (,)n pς is defined for

0≤p≤1. To get a random element of this space, we select the edges independently

with the probability p. In another way, the ground set of (,)n pς is the set of all 2N

graphs (N=C(n,2)), and the probability of a graph H with m edges in this space is

pm(1-p)N-m.

Each edge on a random graph appears independently with the probability p. If a

random graph has n nodes and there are average z edges for each node, we know

p=z/(n-1). Let pk be the ratio of the nodes with k degrees in (,)n pς . We can obtain

the following equation.

(1)
!

k z
k n k

k

n z ep p p
k k

−
−⎛ ⎞

= − ≈⎜ ⎟
⎝ ⎠

 (2.1)

Therefore, pk follows the Poisson distribution Po(z). This is the traditional ER model

[B01] in the random graph theory.

With the development of the random graph theory, the node degree distribution can

be arbitrary distribution [NSW01], other than the Poisson distribution. Newman et al

[NSW01] proposed a new way to model the random graphs with arbitrary degree

distributions by generating functions. This is called the generalized random graph

theory.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 22

On unipartite undirected graphs with arbitrary probability distribution of the degrees

of their nodes, the new method provides a formalism for calculating a variety of

quantities, both local and global. In all respects other than their degree distribution of

their nodes, these graphs are assumed to be entirely random. This means that the

degrees of all nodes are independent identically-distributed random integers drawn

from a specified distribution. For a given choice of these degrees, also called “degree

sequence,” the graph is chosen uniformly at random from the set of all graphs with

that degree sequence. All properties calculated in this thesis are average over the

ensemble of graphs generated in this way. This also means the results by the new

way are statistical.

(1) Generating functions

The new method to describe random graphs with arbitrary degree distributions is

based on the generating functions, among which the most fundamental one is he

generating function G0(x) for the probability distribution of node degree k. We can

obtain the following equation.

∑
∞

=

=
0

0)(
k

k
k xpxG (2.2)

where pk is the probability that a randomly chosen node on the graph has degree k.

The distribution pk is assumed correctly normalized, so that G0(1)=1. Because the

probability distribution is normalized and positive definite, G0(x) is also absolutely

convergent for all |x|≤1, and hence has no singularities in this region. All the

calculations of this generalize random graph model will be confined to the region

|x|≤1.

(2) Derivatives

The probability pk is given by the k-th derivatives of G0 by the following equation.

Chapter 2. Background and Literature Review

 23

0
0

1
!

k

k xk

d Gp
k dx == (2.3)

Thus the one function G0(x) encapsulates all the information contained in the

discrete probability distribution pk. Thus, we say the function G0(x) “generates” the

probability distribution pk.

(3) Moments

The average over the probability distribution generated by a generating function, for

example, the average degree z of a node in the case of G0(x), can be obtained by the

following equation.

)1(0Gkpkz
k

k ′=== ∑ (2.4)

This means if we can calculate a generating function, we can also calculate the mean

of the probability distribution which it generates. Higher moments of the distribution

can be calculated from higher derivatives as follows.

1

0)(
=⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛== ∑

x

n

k
k

nn xG
dx
dxpkk (2.5)

(4) Powers

If the distribution of a property P of an object is generated by a given generating

function, the distribution of the total of P summed over m independent realizations

of the object is generated by the m-th power of that generating function. For example,

if we select m nodes at random from a random graph, the distribution of the sum of

the degrees of these nodes is generated by [G0(x)]m. We take the simple case of two

nodes. The square [G0(x)]2 of the generating function for a single node can be

expanded as

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 24

[]
2

2
0 () k j k

k j k
k jk

G x p x p p x +⎡ ⎤= =⎢ ⎥⎣ ⎦
∑ ∑ (2.6)

The coefficient of the power of xn in this expression is the sum of all powers pjpk

such that j+k=n. It shows that this property extends also to all higher powers of the

generating function.

There is another important quantity is the distribution of the degree of the nodes that

we arrive at a node with the probability proportional to the degree of the node, and

the node therefore has a probability distribution of degree proportional to kpk. The

correct normalized distribution is generated by the following equation.

)1(
)(

0

0

G
xGx

kp
xkp

kk

k
kk

′
′

=
∑

∑ (2.7)

If we start at a randomly selected node and follow each of the edges of this node to

reach the k nearest neighbours, each of the nodes arrived have the distribution of

remaining outgoing edges generated by this function, less one power of x, to allow

for the edge that we arrived along. Thus the distribution of outgoing edges is

generated by the following function:

)(1
)1(
)()(0

0

0
1 xG

zG
xGxG ′=

′
′

= (2.8)

where z is the average node degree.

In Chapter 6, we refer to the bipartite random graphs. We use it to model the relation

between mobile nodes and data items. There are many other examples, such as the

collaboration graphs of scientists, company directors, and movie actors. In [NSW01],

the authors also provide a similar model to investigate the theory of bipartite random

graphs, by taking moving actors as an example. Consider a bipartite random graph of

M movies and N actors, in which each actor has appeared in an average of μ movies

Chapter 2. Background and Literature Review

 25

and each actor has appeared in an average of ν actors. The relation among the four

parameters can be explained in the following equation.

M N
μ υ

= (2.9)

Let pj be the probability distribution of the degree of actors, i.e., the number of

movies that an actor joins. Let qk be the probability of the degrees of movies, i.e., the

number of actors in a movie. Therefore, the tow generating function for the two

probabilities are describes as follows:

0 0() ()j j k k
j k

f x p x g x q x= =∑ ∑ (2.10)

All the important results are derived by these two generating functions. More details

can be found in [NSW01].

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 27

Chapter 3. Modeling Fault-Tolerance for

Gossip-based Reliable Multicast

In this chapter, we introduce the proposed generalized gossiping algorithm with its

fault-tolerant mathematical model. This chapter is organized as follows: Section 3.1

is the overview to this work. Section 3.2 provides the network model, the

generalized gossiping algorithm, and the preliminaries for the theory of generalized

random graphs. In Section 3.3, we present a mathematical model for analyzing fault

tolerance of our gossiping algorithm. Simulation results are reported in Section 3.4.

Finally, Section 3.5 concludes this chapter.

3.1. Overview

Reliable multicast is one of the most important techniques to disseminate data items

throughout all kinds of networks. It is very essential to design distributed systems

and applications, such as publish/subscribe systems [EGH+03], distributed databases

[DGH+87], consistency management [GT92], and distributed failure detection

[RMH98]. There are two challenging issues when we evaluate the performance of a

reliable multicast protocol. The first issue is how to evaluate the scalability of the

protocol. Traditional solutions applicable in small-scale settings are not scalable and

reliable in large distributed systems. How to design multicast protocols guaranteeing

specified reliability in large-scale systems has become a challenging problem for

researchers. The second issue is how to evaluate the fault-tolerance of these reliable

multicast protocols. Wireless nodes are prone to fail due to the limited resources.

Moreover, mobile nodes move freely such that disconnections may occur frequently.

In this chapter, we mainly focus on the second issue. Our objective is to propose a

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 28

mathematical model to describe and analyze the perforamce of fault-tolerance for

gossip-based reliable multicast protocols.

As we all know, there are three ways for data dissemination in wireless mobile

networks, i.e., unicast, multicast, and broadcast. Although broadcast can be used to

broadcast a message among the network by taking advantage of the broadcast nature

of wireless communication, this will results in congesting wireless medium if all the

nodes uses the wireless medium at the same time. On the other hand, gossiping can

be considered as a controlled form of flooding. In wireless mobile networks, it is

difficult to build up and maintain a structure like a tree, due to dynamic topologies.

Gossiping is independent to the network topology. Moreover, the peer-to-peer

interaction model in gossiping can provide better scalability and resilience to node

and link failures in a wireless mobile network.

In this chapter, we first describe a generalized gossiping algorithm, which differs

from existing algorithm, and allows each node to generate a random number of

gossiping targets by following a specified probability distribution. In the traditional

gossiping algorithms, each node normally has a fixed number of gossiping targets.

With respect of our proposed gossiping algorithm, we develop a mathematical model

to analyze its fault tolerance property by using the generalized random graph theory

[NSW01]. We observe that the process of generating a random graph is very similar

to the process of gossiping a message in a multicast group. Thus, we use the size of

the giant component in a random graph to represent the probabilistic reliability of

gossiping, in the sense that nodes in the giant component can be reached by the

source node with a very high probability. We consider node failures and analyze the

performance of gossiping in terms of the reliability and the success of gossiping.

Compared with the Microsoft’s work [KMG03], our proposed model in this chapter

is with three advantages. First, we propose a novel way to represent the reliability of

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 29

gossiping by the size of the giant component [NSW01] on a generalized random

graph, which provides a much simpler way to describe the reliability of gossiping.

Second, we discuss not only the success of gossiping, but also the reliability of

gossiping, i.e., the percentage of non-failed nodes that receive the message. Third,

the analysis in our model can be performed for various fanout distributions besides

the Poisson distribution. Gossiping tailored for different applications over various

types of overlays or physical topologies may need to use different fanout

distributions in order to improve the performance of gossip-based reliable multicast

protocols.

3.2. Preliminaries

In this subsection, we first introduce our system model and describe a generalized

gossiping algorithm. Then we provide the preliminaries on the theory of generalized

random graphs.

In our system model, a multicast group G is composed of n members, which have

the same interest to share the same message m. Each member has a unique ID. We

consider a fail-stop failure model, where failed nodes will not gossip messages they

receive any more, and they fail only by crashes. Moreover, we assume the source

never fails. In real applications, we assume that a scalable membership protocol is

available, such as [GKM01, ADH05], which can be applied to gossip-based reliable

multicast protocols in large-scale systems. Membership protocols are beyond the

scope of this chapter and will not be discussed further.

We propose a generalized gossiping algorithm as shown in Figure 3.1, which

considers various distributions of the fanouts of the gossiping nodes. When a

member receives the message m for the first time, it generates a random number fi by

following a specified probability distribution P. Then the node chooses fi gossip

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 30

targets from its own membership view and sends the message out. If a member

receives the message again, it discards it immediately.

The reliability of gossiping is defined as the ratio of the number of non-failed

members that received the message m to the total number of non-failed members in

the group G. We denote the reliability of gossiping as R(q, P), the probability that a

non-failed member can receive the message m after one execution of our gossiping

algorithm. The success of gossiping is defined as all of the non-failed members

receive the message m at least once after t executions of our gossiping algorithm,

denoted by S(q, P, t). In this chapter, we focus on the relationship between the

parameters of the gossiping algorithm and the reliability of gossip-based multicast

protocols. The key parameters in gossiping are listed as follows:

 P: Fanout Distribution, the probability distribution of the fanout of members;

 q: Non-failed Member Ratio, the ratio of the number of the non-failed

members to the number of the total members.

Figure 3.1: The generalized gossiping algorithm

Algorithm for each node in a multicast group G

Upon member i receiving the message m for the first time

{

Member i generates a random number fi by following a specified

probability distribution P.

Member i selects fi nodes uniformly at random from its membership

view.

Member i sends the message m to the selected fi nodes.

}

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 31

Compared with the traditional Poisson random graph model, generalized random

graph [NSW01, N03], which has been previously applied in Physics, is a more

general model for random graphs. It is applicable to arbitrary degree distribution in a

random graph. Before we introduce our mathematical model for gossiping, we

briefly introduce some fundamental results from the generalized random graph

theory: Degree Distribution, Component, Phase Transition, and Giant

Component.

Degree Distribution denotes the probability distribution of the degrees of nodes in a

generalized random graph. A Component is a set of nodes that can reach each other

along the paths on the graph. A Phase Transition refers to the phenomenon that,

while a random graph with n nodes and a certain number of edges is unlikely to have

one special property, a random graph just with a few more edges is very likely to

have this property. A good example of a phase transition is the critical point of the

connectivity of a random graph. The critical point means the point at which the

connectivity of a random graph grows dramatically. The Giant Component is the

biggest component formed after a phase transition happens. It has a size of order at

least n2/3, while the sizes of other components are of order at most n2/3/2.

In our gossiping algorithm, the number of each member’s gossip targets is a random

variable and these random variables are independent and identically-distributed

random variables. In fact, it is similar to the case that we draw some samples from

the total population but without putting back any of them, because each nonfailed

member only gossips once in our algorithm. The execution of the gossiping

algorithm dies out when the nonfailed members that received the message m are in

the same connected component. Therefore, the distribution of the fanout has the

most important impact on the reliability of gossiping and the success of gossiping.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 32

3.3. A Fault-tolerant Gossip Model

In this subsection, we first propose an analytical model for fault-tolerant gossiping

by using the theory of generalized random graphs. Here the term of “fault-tolerant”

means that if a proposed gossiping algorithm aims to achieve the required reliability,

it should take node failures into consideration. Then we show how to use this model

to analyze the performance of the gossiping algorithm by taking the Poisson fanout

distribution as an example.

3.3.1. Model Definition

A gossiping model Gossip(n, P, q) consists of n members to participate in gossiping

with the fanout distribution P. Only a ratio q of all of the members can work

correctly and other nodes may fail by crashes during gossiping. We consider two

cases of failures which are treated as the same case. Members may crash either

before receiving the message, or after receiving the message but not yet forwarding

it to others. P is the fanout distribution of non-failed members that participate in

gossiping. As mentioned before, we assume that the source node that initiates

gossiping never fails. We use the terms “source member” and “source node”

interchangeably in this section.

Let (,P)nς be the space of generalized random graphs generated by gossiping,

consisting of n nodes in the group G, and each node chooses its gossiping targets

from its own membership view. Let pk be the probability that a randomly chosen

node from one element in (,P)nς has the degree k, and qk be the probability that a

node with the degree k is also a non-failed node. The degree distribution in the

random graph (,P)nς can be generated by the following generating function

[NSW01]:

0
0

() k
k k

k
F x p q x

∞

=

= ∑ (3.1)

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 33

In the above model, pk can be any probability distribution. But we investigate the

special case of uniform probability for qk because we assume the setting for each

member gossiping is the same one. We set qk=q for all k, i.e. all of the nodes fail

with the same probability (1-q). Note that the total number of non-failed nodes is

equal to n*q.

3.3.2. Analysis of Gossiping

The methodology in this work is to investigate the properties of generalized random

graphs to analyze the performance of the generalized gossiping algorithm. We

consider two of the most important problems, including how to evaluate the

reliability of gossiping and how to guarantee the success of gossiping. There are n

members in the group G and the total number of the non-failed members is denoted

by nnonfailed = [n*q]. We define nrece as the number of non-failed members that

receive the message m after one execution of the algorithm. The reliability of

gossiping R(q, P) can be defined as R(q, P)= nrece/ nnonfailed. The number of non-failed

members that receive the message m at least one time after t executions of the

algorithm is referred to as t
recen . The success of gossiping S(q, P, t) can be defined as

Pr(S(q, P, t)) = Pr(t
rece nonfailedn n=), where all of the non-failed members receive the

message m at least one time after t executions of the proposed algorithm.

3.3.2.1. Reliability of Gossiping R(q, P)

Since the giant component changes the connectivity of a random graph, the

probability that a randomly chosen node belongs to this component is increased

dramatically. With the size of the giant component growing, the probability that

nodes receive the message m is also increased, which means more and more

members can receive the message m sent from the source node in gossiping.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 34

Firstly, the condition for the appearance of the giant component can be obtained in

the following steps. According to the generalized random graph theory, the mean

size <s> of the components in the random graph (,P)nς is defined as follows:

0

1

(1)1
1 (1)

qGs q
qG

′⎡ ⎤
= +⎢ ⎥′−⎣ ⎦

 (3.2)

where 0
0

() k
k

k

G x p x
∞

=

= ∑ is defined as the generating function for the probability

distribution of nodes degree k, and 1 0 0() () (1)G x G x G′ ′= is the generating function of

the probability distribution of the number of outgoing edges. Eq. (3.2) diverges

where the equation 11 (1) 0qG′− = is satisfied, which is also the critical point at which

a random graph achieves the giant component. According to the result above, the

non-failed member ratio at the critical point is

1

1
(1)cq

G
=

′
 (3.3)

where c is the critical point at which the generated random graph begins to improve

its connectivity dramatically.

Secondly, we refer to S as the size of the giant component, which means the ratio of

the total number of the non-failed nodes in the giant component to the total number

of non-failed nodes in the random graph. S can be calculated by the following

equation:

0 0(1) ()S F F u= − (3.4)

where u is the solution of the self-consistency condition u=1-F1(1)-F1(u), and F1(x)

is defined as 0 0() / (1)F x G′ [CNS+00].

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 35

3.3.2.2. Probability of Success of Gossiping: Pr(S(q, P, t))

The success of gossiping is the result that all of the non-failed group members

receive the message m. In one execution of our gossiping algorithm, we can increase

the probability of gossiping success by increasing the fanout of members. However,

this method is not a pragmatic one in the implementation of real applications. For

example, one node only has one physical neighbour but it still needs to send the

message m to all of the other nodes at one execution. Therefore, we consider another

means to increase the probability of the success of gossiping by increasing the

number of executions of our gossiping algorithm, in order to guarantee the required

probability of the success of gossiping.

In the repeated executions, each execution can be viewed as one independent

Bernoulli trial. So t times of executions can be considered as a t times Bernoulli

trials. We define X as the number of executions in which a non-failed member

receives the message m during t executions. We do not consider how many times for

each non-failed member to receive the message m in one execution. We use pr to

denote the requirement of the reliability R(q, P), and it is obvious that X follows a

Binomial distribution B(t, pr). The distribution of X is in the following:

() () (1)k k t k
t r rP X k C p p −= = − , k = 0, 1, 2, …, t

The probability of the success of gossiping S(q, P, t) can be calculated by the

following:

Pr((, ,)) (1) 1 (1)t
rS q P t P X p= ≥ = − − (3.5)

If the requirement for the success of gossiping is denoted by the probability ps, we

can obtain the requirement of t as follows:

lg(1) / lg(1)s rt p p t N≥ − − ∈ (3.6)

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 36

3.3.3. Case Study: Poisson Fanout Distribution

In this subsection, we take the Poisson distribution as an example of the fanout

distributions to show how to apply our mathematical model in the performance

analysis of gossiping.

The fanout distribution is specified by a Poisson distribution Po(z), where z is the

mean of Poisson distribution Po(z), and is also the average fanout. Then, the

gossiping model can be defined as Gossip(n, Po(z), q). This gossiping model can be

modelled by a random graph model (, ())n Po zς . Let pk be the probability that a

randomly chosen node from (, ())n Po zς has the degree k, and q be the non-failed

node ratio. It is important to notice that, although the distribution of node degrees

may be changed by node failures, it is always a Poisson distribution but with a

smaller mean fanout q*z [CNS+00].

Theorem 1: For a Poisson distribution, the new generating function for the random

graphs after removing failed nodes is (1)
0 () zq xF x e −= .

Proof: Let 0 ()F x be the new generating function. Then, 0 ()F x can be derived in the

following steps:

0
0

() () k

k
F x P k x

∞

=

′= ∑

0
0

0

0

0 0

(1)
!

k z
k kk k

k k k

kf e q q x
kk

−∞ ∞
−

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑

0 0

00 0 0

(1)
(1) !()!

k kk
k z

k
k k k

q z qx e
q k k k

∞ ∞
−

= − =

−
=

− −∑ ∑

0

00 0 0

() ()
(1) ! ()!

k kk k
k z

k
k k k

q z fq z zqx e
q k k k

−∞ ∞
−

= − =

− −
=

− −∑ ∑

0

()
!

k
zq k

k

zqe x
k

∞
−

=

= ∑

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 37

(1)zq xe −=

It is clear that these new generated graphs are still random graphs with the Poisson

degree distribution, only with a smaller mean degree. �

We can obtain the following generating functions for (, ())n Po zς :

(1)
0

0

() k zq x
k

k

F x p qx e
∞

−

=

= =∑ (3.7)

(1)
0

0
() k z x

k
k

G x p x e
∞

−

=

= =∑ (3.8)

(1)0
1

0

()()
(1)

z xG xG x e
G

−′
= =

′
 (3.9)

According to Eq. (3.3), the critical point qc can be obtained by 11 (1) 1cq G z′= = .This

means that, to the guarantee on the reliability of gossiping, the non-failed member

ratio q should be greater than 1/z, i.e.:

1/q z> (3.10)

It is trivial that (1)
0 1() () z xG x G x e −= = in case of the Poisson distribution. By

following Eq. (3.4), we can obtain the size of the giant component by

1 zqSS e−= − (3.11)

Eq. (3.11) shows that the reliability of gossiping R(q, Po(z)) can be improved if we

increase the fanout z or q.

Then, given the reliability of gossiping (represented by S) and the non-failed node

ratio q, the mean fanout z of the Poisson distribution can be obtained as follows:

ln(1) /()z S qS= − − (3.12)

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 38

Figure 3.2: Mean fanout vs. Reliability of Gossiping under various non-failed node
ratio.

Figure 3.2 shows the numerical results of z against S under various q. With these

results, we can determine the proper mean fanout for the Poisson distribution.

However, remember that Eq. (3.10) should still be held. The reliability of gossiping

ranges from 0.111 to 0.999.

Since the reliability of gossiping can be evaluated by the size of the giant component

S, the condition for the success of gossiping S(q, Po(z), t) in Eq. (3.6) can be revised

as follows:

lg(1) / lg(1)st p S t N≥ − − ∈ .

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

Reliability of Gossiping S

M
ea

n
Fa

no
ut

 f

q=0.2
q=0.4
q=0.6
q=0.8
q=1.0

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 39

Figure 3.3: Minimum times of executions for the required probability of gossiping

success.

Figure 3.3 shows the analytical results of the minimum number of executions with a

specified probability of the success of gossiping.

3.4. Simulations

To examine the effectiveness of our analytic model, we have carried out extensive

simulations. We evaluate the performance of our gossiping algorithm according to

the following metrics:

 The reliability of gossiping

 The success of gossiping

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

10

12

14

16

18

20

Relialbity of Gossiping S

R
eq

ui
re

d
M

in
im

un
 T

im
es

Success of gossiping Ps = 0.999

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 40

We use MATLAB 7.0 to implement and execute our gossiping algorithm. We

evaluate the performance of the algorithm with two different group sizes of the

groups 1000 and 5000 members. The key parameters, i.e., the fanout distribution and

the non-failed member ratio, are varied to evaluate their impact. In our simulation,

we take the Poisson distribution as an example for both the simulations and our

analysis. Compared with the analytical results obtained by our mathematical model,

the simulation results are well consistent.

3.4.1. Reliability of Gossiping

We set the non-failed member ratio q to be 0.1, 0.2, 0.3, …, 1.0 respectively. The

mean fanout f for the fanout distribution is varied from 1.10 to 6.7 with an

incremental step 0.4. The reason why we select this range is the value of the

reliability is almost covered from 0 to 1. For each pair of {f, q}, we run our gossiping

algorithm 20 times and report the average results of the reliability of gossiping. In

addition, we calculate the size of giant component for each case.

(a) (b)

Figure 3.4: Reliability in a group with 1000 nodes. (a) q=0.1, 0.3, 0.5, and 1.0; (b)

q=0.4, 0.6, 0.8, and 1.0.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Fanout f

R
el

ia
bi

lit
y

of
 G

os
si

pi
ng

 S

Gossiping Simulation (Nodes =1000)

q=0.1 Simulation
q=0.1 Analysis
q=0.3 Simulation
q=0.3 Analysis
q=0.5 Simulation
q=0.5 Analysis
q=1.0 Simulation
q=1.0 Analysis

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Fanout f

R
el

ia
bi

lit
y

of
 G

os
si

pi
ng

 S

Gossiping Simulation (Nodes =1000)

q=0.4 Simulation
q=0.4 Analysis
q=0.6 Simulation
q=0.6 Analysis
q=0.8 Simulation
q=0.8 Analysis
q=1.0 Simulation
q=1.0 Analysis

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 41

Figure 3.4 and Figure 3.5 show the results in simulation and analysis for

configurations with 1000 and 5000 nodes respectively. To see the results clearly, we

divide each figure into two plots by a group of different q. In each plot, each dotted

line denotes the simulations, while the continuous line represents the size of giant

components using our mathematical model solved by Eq. (3.11).

We first observe that all of the critical points for each fanout are held under the

condition that the non-failed member ratio q should be greater than the reciprocal of

the mean fanout f. For each fanout in our simulation, the reliability of gossiping can

be guaranteed under the above condition. Figure 3.4 also shows that the results of

simulations tally with the analytical results except very few points. The curves in

Figure 3.5 are very similar to those in Figure 3.4. However, the simulation results

tally with the analytical results better than in Figure 3.4, which indicates that our

modeling works much better in larger scale systems.

(a) (b)

Figure 3.5: Reliability in a group with 5000 nodes. (a) q=0.1, 0.3, 0.5, and 1.0; (b)
q= 0.4, 0.6, 0.8, and 1.0.

3.4.2. Success of Gossiping

Besides reliability, we also measure the success of gossiping. We select two pairs of

key parameters {f, q} as follows: {4.0, 0.9}, and {6.0, 0.6}. The requirement for the

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Fanout f

R
el

ia
bi

lit
y

of
 G

os
si

pi
ng

 S

Gossiping Simulation (Nodes =5000)

q=0.1 Simulation
q=0.1 Analysis
q=0.3 Simulation
q=0.3 Analysis
q=0.5 Simulation
q=0.5 Analysis
q=1.0 Simulation
q=1.0 Analysis

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Fanout f

R
el

ia
bi

lit
y

of
 G

os
si

pi
ng

 S

Gossiping Simulation (Nodes =5000)

q=0.4 Simulation
q=0.4 Analysis
q=0.6 Simulation
q=0.6 Analysis
q=0.8 Simulation
q=0.8 Analysis
q=1.0 Simulation
q=1.0 Analysis

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 42

success of gossiping is set to 0.999, the same value as in our analysis. For each pair

of parameters, we run our gossiping algorithm for 20 times in one simulation, and

each simulation is repeated for 100 times. Then we report the distribution of the

number X, i.e. the number of gossiping succeeds among 20 executions. If X is

approximately follows a binomial distribution B(20, R(q, Po(z))), this means the

calculation in Eq. (3.6) is valid.

Figure 3.6 plots the results of the simulations and analysis in a group with 2000

nodes. In the figure, each bar represents the simulation result of the probability

Pr(X=k) where k ranges from 0 to 20, while the continuous line represents the value

of Pr(X=k) from X~B(20, R(q, Po(z))). According to Eq. (3.6), we can obtain the

required number of executions as follows:

lg(1 0.999) / lg(1 0.967)t t N≥ − − ∈

Obviously, t should be greater than three. Figure 3.6 shows the simulation results

tally with our analytic results well.

(a) (b)

Figure 3.6: The distribution of Gossiping Success with a pair of {f, q}. (a) f=4.0,
q=0.9; (b) f=6.0, q=0.6.

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 k times

Th
e

di
st

riu
bu

tio
n

of
 X

 P
r(X

=k
)

Gossiping Success Simulation (Nodes =2000)

Analysis B(20, 0.967)
Simulation

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k times

Th
e

di
st

rib
ut

io
n

of
 X

 P
r(X

=k
)

Gossiping Success Simulation (Nodes =2000)

Analysis B(20, 0.967)
Simulation

Chapter 3. Modeling Fault-tolerance for Gossip-based Reliable Multicast

 43

It is interesting to notice that the gossiping with {4.0, 0.9} and {6.0, 0.6} can obtain

the same reliability of gossiping in one execution as 0.967 because the product of f*q

are the same one. However, their corresponding distributions of gossiping success

are not exactly identical. This is because the mean fanout and the nonfailed node

ratio have different impact factors on the probability of the success of gossiping.

3.5. Summary

Based on the generalized random graph theory, we develop a mathematical model to

analyze the performance of the generalized gossiping algorithm, in terms of the

reliability of gossiping and the success of gossiping. We focus on the fault tolerance

of gossiping by taking node failures into consideration. We propose to represent the

reliability of gossiping by using the size of the giant component in a random graph

for the first time. Our model can be resolved by the generalized random graph theory

and derive the relationship between the parameters of gossiping, and the reliability of

gossiping and the success of gossiping. Our model shows that there exists a

threshold value of the number of the non-failed nodes ratio for guaranteeing a

specific reliability in gossiping. We have carried out extensive simulations to

validate our proposed model. The simulation results tally with our analytic results

very well. Therefore, our analytic model is effective and accurate.

The analytical results we obtained from our fault-tolerant gossip model can be used

to design a gossip-based reliable multicast protocol for data dissemination in a

wireless mobile network. First, we should know the failure model of mobile devices

so that we can know the nonfailed node ratio. Second, we should consider the

membership view provided by a membership protocol so that we can use a proper

fanout distribution for such a membership view. The best case is we can find enough

gossiping targets for each node. We should deal with the problem how the fanout

distribution can be adaptive to the views provided by the membership protocols.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 44

Third, there is one point we can confirm, i.e., we are going to make full use of the

broadcast nature of wireless communication. The gossip message can be broadcast to

let all the neighboring nodes receive it. Fourth, our proposed generalized gossiping

algorithm is not complex so that it can be easily implemented to a network protocol.

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast Protocols

 45

Chapter 4. Modeling Hierarchical Gossiping

in Reliable Multicast Protocols

In this chapter, we introduce the proposed hierarchical gossiping algorithm with its

mathematical model. This chapter is arranged as follows. Firstly, Section 4.1 is the

overview to this work. Section 4.2 describes the system model, the generalized

hierarchical gossiping algorithm, and the preliminaries for the theory of generalized

random graphs. In Section 4.3, we present our mathematical model for analyzing the

performance of hierarchical gossiping. Simulation results are reported in Section 4.4.

Finally, Section 4.5 concludes this chapter.

4.1. Overview

Considerable research in gossip-based reliable multicast protocols [EGH+03] has

been done because of the importance of scalability and fault-tolerance in distributed

systems. In these protocols, each node forwards messages to a small set of gossip

targets, chosen from the entire or partial view of the multicast group. Gossip-based

protocols probabilistically deliver the message to all the group members. Compared

with the strong reliability of traditional protocols [BHO+99], a gossip-based protocol

can deliver much higher scalability and fault tolerance with probabilistic guarantees.

However, the attractive reliability properties are derived from a high degree of

message redundancy. This results in a large number of messages, which may be

expensive in a wide-area network setting.

In some wireless networks, such as wireless LANs and wireless mesh networks

[AWW05], the infrastructures of these networks are hierarchical inherently. There

are two distinct sets of entities, including a large number of mobile hosts (MHs) and

relatively fewer but more powerful mobile support stations (MSSs). MSSs are

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 46

interconnected using a wired or wireless network, while MHs are connected to MSSs

using wireless communications. Each MSS is in charge of a cell. A cell is a logical or

geographical coverage area under a MSS. Each MH that has identified itself with a

particular MSS is considered to be local to the MSS. A MH can directly

communicate with a MSS (and vice versa) only if the MH is physically located

within the cell serviced by the MSS. In this chapter, we aim to take advantage of

these characteristics of infrastructure-based wireless networks.

As we know, hierarchical gossiping [KMG03] divides the whole group into smaller

subgroups according to some network proximity, such as physical topology or RTT,

to reduce the messages cost by using fewer messages between subgroups. Within

each subgroup, members gossip the message in the same way as flat gossiping

[KMG03] does. However, each node in a small set Q within each subgroup

maintains a remote view of some group members in other subgroups. Once receiving

the gossiping message, a node in Q sends the message out to other subgroups by

choosing its gossip targets from its remote view. Compared with flat gossiping

[KMG03], it means that hierarchical gossiping can achieve the same reliability but

use fewer messages.

In this chapter, we focus on developing a mathematical model to analyze the

reliability of hierarchical gossiping. We first describe a generalized hierarchical

gossiping algorithm, where the number of gossiping targets of a node follows any

given probability distribution. In traditional gossiping algorithms, each node

normally has a fixed number of gossiping targets. Targeted at this proposed

algorithm, we develop a mathematical model to analyze the reliability of hierarchical

gossiping using the generalized random graph theory [NSW01]. We observe that the

process of generating a random graph is similar to the process of gossiping a

message in a multicast group. Consequently, we use the size of the giant component

in a random graph to represent the reliability of gossiping firstly in [FCW+08], in the

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast Protocols

 47

sense that each node in the giant component can be reached by the source node with

a very high probability. In our previous work [FCW+08], we focus on the fault-

tolerance of flat gossiping by considering the node-failure model. Compared with

our previous work [FCW+08], this chapter focuses on analyzing the reliability of

hierarchical gossiping under the critical condition to propagate a message from

local subgroups to the whole group.

4.2. Preliminaries

In this section, we first introduce our system model and describe a generalized

hierarchical gossiping algorithm. Then we provide the preliminaries on the theory of

generalized random graphs.

Figure 4.1: The hierarchical gossiping algorithm

Algorithm for each node in each subgroup in a multicast group G

Upon Member i receiving the message m for the first time
{

Member i generates a random number fi by following the Level-1 fanout
distribution Pintra.

Member i selects fi nodes uniformly at random from its local view Vlocal.
Member i sends the message to the selected fi nodes.

If Member i∈Q
{
 Member i generates a random number ki by following the Level-2 fanout

distribution Pinter
 Member i selects ki nodes from its remote view Vremote.
 Member i sends the message to the selected ki nodes.
}

}

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 48

In our system model, a multicast group G is composed of n members, which have an

interest to share the same message m. Each member has a unique ID. We assume that

members do not fail and a scalable hierarchical membership protocol is available for

a large-scale system, such as the protocols in [GKM02, DGH+87]. The whole group

is divided into nsubg subgroups, in each of which the number of group members is

ni_subg, i=1, 2,…, nsubg. We also assume that nsubg is much smaller than ni_subg. In each

subgroup, the membership protocol maintains a small partial view Vlocal of the

subgroup for each group member. Additionally, there is a small set Q among the

members in each subgroup and nodes in Q are provided with a remote view Vremote

that contains members in other subgroups. We denote the size of Q as q*ni_subg,

where q is named as the remote view ratio.

Our mathematical model of gossiping is based on a generalized hierarchical

gossiping algorithm as shown in Figure 4.1, which allows for various distributions of

the fanouts of nodes.

The reliability of hierarchical gossiping is defined as the ratio of the number of

members that receive the message m to the total number of members in the group G.

We denote the reliability of hierarchical gossiping as R(Pintra, Pinter), i.e., the

probability that a member receives the message m after one execution of our

proposed algorithm. We investigate the impact of the two distributions Pintra and

Pinter on the reliability of gossip-based multicast protocols. We refer to the process of

gossiping within each subgroup and among subgroups as the Level-1 and Level-2

gossiping respectively. The key parameters in hierarchical gossiping are listed as

follows:

 Pintra: the fanout distribution at the Level-1, i.e., the probability

distribution of the fanout of members within one subgroup.

 Pinter: the fanout distribution at the Level-2, i.e., the probability

distribution of the fanout of members between different subgroups.

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast Protocols

 49

Compared with the traditional Poisson random graph model, a generalized random

graph [NSW01] [N03] is a more general model for random graphs. It is applicable to

arbitrary degree distributions in a random graph. Some preliminaries can be found in

our previous work [FCW+08].

4.3. A Hierarchical Gossip Model

In this section, we first propose an analytical model for hierarchical gossiping by

using the theory of generalized random graphs. Then, we show how to use this

model to analyze the performance of the hierarchical gossiping algorithm by taking

the Poisson fanout distribution as an example.

4.3.1. Model Definition

A hierarchical gossiping model HGossip(n, nsubg, Pintra, Pinter) consists of n members,

grouped into nsubg subgroups, to participate in gossiping with two fanout

distributions Pintra and Pinter. Each member in the same subgroup selects the number

of its gossip targets by following the fanout distribution Pintra. Moreover, if we

consider each subgroup as one super node, each subgroup selects the number of its

gossip targets by following the fanout distribution Pinter. We aim to investigate the

two key problems as follows:

 What is the critical condition for guaranteeing the gossiping message to

be propagated from Level 1 to Lever 2?

 Given Pintra and Pinter, how to evaluate the reliability of hierarchical

gossiping?

We describe the completed process that the message m is propagated as follows.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 50

4.3.1.1. Level-1 Gossiping

First, the source node s in some subgroup sends the gossiping message m to its

gossip targets, which are selected from its local view by following the fanout

distribution Pintra. Then the message m is propagated within the subgroup. If some

nodes in Q receive the message, they send the message m to other subgroups outside.

In subgroup Gsub_i, we describe the result of gossiping as one of the elements in the

random graph space _ int(,)i sub ran Pς .

Let pk_intra be the probability that a randomly chosen node from _ int(,)i sub ran Pς has the

degree k. The degree distribution in the random graph space _ int(,)i sub ran Pς can be

generated by the following generating function [NSW01]:

0 _ int _ int
0

() k
ra k ra

k
G x p x

∞

=

= ∑ (4.1)

where G0_intra is absolutely convergent for all |x|≤1.

4.3.1.2. Level-2 Gossiping

At the Level-2, we consider each subgroup as one super node in our hierarchical

gossiping model. The message m is propagated from one super node to another. The

result of gossiping can be modeled as one of the elements in the random graph

space int(,)subg ern Pς . Let pk_inter be the probability that a randomly chosen node from

one element in int(,)subg ern Pς has the degree k. The degree distribution in the random

graph space int(,)subg ern Pς can be generated by the following generating function

[NSW01]:

0_ int _ int
0

() k
er k er

k
G x p x

∞

=

= ∑ (4.2)

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast Protocols

 51

4.3.2. Analysis of Hierarchical Gossiping

We analyze the reliability of hierarchical gossiping through the properties of the

corresponding generalized random graphs. We discuss two important problems in

our hierarchical gossiping algorithm: how to guarantee the message to be propagated

from the Level-1 to the Level-2, and how to evaluate the reliability of hierarchical

gossiping. With the size of the giant component growing, the probability that nodes

receive the message m is increased, which means more and more members can

receive the message m sent from the source node s in gossiping.

4.3.2.1. Critical Condition of Propagating Message from Level 1 to Level 2

Obviously, the Level-2 gossiping depends on the Level-1 gossiping. If the Leve-1

gossiping fails, it is impossible for other subgroups to receive the message m.

Therefore, the critical condition for hierarchical gossiping includes two sub-

conditions. The first sub-condition is that at least one node in the set Q of each

subgroup receives the gossiping message m. The second sub-condition is that the

fanout between subgroups should be great enough to guarantee the appearance of the

giant component in the Level-2 gossiping.

According to the generalized random graph theory, the mean size <sintra> of the

components on one random graph in _ int(,)i subg ran Pς is

0 _ int
int

1_ int

(1)
1

1 (1)
ra

ra
ra

G
s

G
′

= +
′−

 (4.3)

where 1_ int 0 _ int 0 _ int() () (1)ra ra raG x G x G′ ′= is the generating function of the probability

distribution of number of outgoing edges. Eq. (4.3) diverges where the

equation 1_ int1 (1) 0raG′− = is satisfied, which is also the critical point at which a

random graph achieves the giant component.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 52

We refer to Sintra as the size of the giant component within each subgroup in the

Level-1 gossiping, which means the ratio of the number of nodes in the giant

component to the total number of nodes in the random graph that represents the

result of the execution of our hierarchical gossiping algorithm in each subgroup.

Sintra can be calculated by the following equation:

int 1_ int1 ()ra raS G u= − (4.4)

where u is the smallest non-negative real solution of u=G1_intra(u) [NSW01]. We

define q as the ratio of the number of nodes in Q to the number of nodes in each sub-

group. As we mentioned before, q is also the remote view ratio. Therefore, it is

necessary to guarantee that the gossiping message m should be propagated to any

node in the set of Q. So the first sub-condition can be described exactly as follows:

intraS > 1 - q (4.5)

Next, we consider the second sub-condition. According to the generalized random

graph theory, the mean size <Sinter> of the components on one random graph

in int(,)subg ern Pς is

0 _ int
int

1_ int

(1)
1

1 (1)
er

er
er

G
s

G
′

= +
′−

 (4.6)

where 1_ int 0 _ int 0 _ int() () (1)er er erG x G x G′ ′= is the generating function of the probability

distribution of number of outgoing edges. Eq. (4.6) diverges where the

equation 1_ int1 (1) 0erG′− = is satisfied, which is also the critical point at which a

random graph achieves the giant component.

4.3.2.2. Reliability of Hierarchical Gossiping R(Pintra, Pinter)

First, we define nrece as the number of members that receive the message m after the

execution of the hierarchical gossiping algorithm. The reliability of gossiping R(Pintra,

Pinter) can be defined as follows:

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast Protocols

 53

intra inter receR(P , P) = n / n (4.7)

Let Sinter be the size of the giant component in the random graph that is the result of

the execution of our hierarchical gossiping algorithm in the Level-2 gossiping.

Therefore, Sinter also represents the probability that each subgroup in Level 2 receives

the gossiping message m. It can be obtained by the following equation:

int 1_ int1 ()er erS G u= − (4.8)

where u is the smallest non-negative real solution of u=G1_inter(u) and

1_ int 0 _ int 0 _ int() () (1)er er erG x G x G′ ′= .

We refer to S as the reliability of hierarchical gossiping R(Pintra, Pinter) at the two

levels, which means the ratio of the total number of the nodes in the two giant

components to the total number of nodes on the two random graphs.

int int _
1

int int

subgn

er ra i subg
i

ra er

S S n
S S S

n
== =
∑ i

 (4.9)

4.3.3. Case Study: Poisson Fanout Distribution

In this subsection, we take the Poisson distribution as the example of the fanout

distribution, in order to show how to apply our mathematical model in the

performance analysis of hierarchical gossiping.

We assume that Pintra and Pinter are two Poisson fanout distributions, which are

denoted as Po(z1), Po(z2) respectively. Then, the gossiping model can be defined as

HGossip(n, nsubg, Po(z1), Po(z2)). Let pk be the probability that a randomly chosen

node from 1(, ())n Po zς or 2(, ())subgn Po zς has the degree k. We can obtain the

following generating functions:

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 54

1 (1)
0_ int

0
() z xk

ra k
k

G x p x e
∞

−

=

= =∑ (4.10)

2 (1)
0_ int

0
() z xk

er k
k

G x p x e
∞

−

=

= =∑ (4.11)

It is trivial that we find G0_intra(x) is equal to G1_intra(x) according to the

definition 1_ int 0 _ int 0 _ int() () (1)ra ra raG x G x G′ ′= , and G0_inter(x) is the same case. Let S1

and S2 be the sizes of giant components at the two levels respectively. According to

the theory of generalized random graphs [NSW01], we obtain the size of giant

components at the two levels as follows:

1 1
1 1 z SS e−= − (4.12)

2 2
2 1 z SS e−= − (4.13)

4.3.3.1. Critical Condition of Propagating Success

To simplify our model, we define the number of nodes in each subgroup is equal to

m=n/nsubg. As we mentioned in Section 4.2, the ratio q for the small set Q can be

obtained by z2/m. Therefore, the condition for guaranteeing the message m to be

propagated from Level 1 to Level 2 can be described as the following theorem.

Theorem 1: Hierarchical Gossiping Model HGossip(n, nsubg, Po(z1), Po(z2))

guarantees the gossiping message m to be propagated from Level 1 to Level 2 if and

only if 1 2 2log() /(1)z z m z m> − and z2>1.

Proof: we denote A as the event that the message m cannot be propagated into the set

Q for any subgroup. If A happens, it means that the message m cannot reach any

node that can send the message m out of the subgroup, i.e., hierarchical gossiping

fails. From the view of generalized random graphs, none of the nodes in the set Q is

covered by the giant component. Therefore, we obtain the probability of the event A

as follows:

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast Protocols

 55

1P(A) = 1- S (4.14)

Next, we obtain the first sub-condition that S1 should be greater than 1-q. We

describe it as follows:

S1>1-q (4.15)

We substitute q with z2/m and Eq. (4.15) can be written as follows:

2
1 1 zS

m
> − (4.16)

According to Eq. (4.12) and Eq. (4.16), we obtain the first sub-condition as follows:

2 2
1 log() /(1)z zz

m m
> − (4.17)

As for the second sub-condition, it is equal to guarantee that the giant component

appears in the random graph. The mean size <s> of the components on any of the

random graphs in 2(, ())subgn Po zς is

0 _ int

1_ int

(1)
1

1 (1)
er

er

G
s

G
′

= +
′−

 (4.18)

where 1_ int int int() () (1)er er erG x G x G′ ′= is the generating function of the probability

distribution of number of outgoing edges. Eq. (4.18) diverges where the

equation 1_ int1 (1) 0erG′− = is satisfied, which is also the critical point at which a

random graph achieves the giant component. Note 1_ int 2(1)erG z′ = . Therefore,

according to the theory of generalized random graphs, we obtain the second sub-

condition in the following:

z2 >1 (4.19)

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 56

4.3.3.2. Reliability of Hierarchical Gossiping: R(Po(z1), Po(z2))

We refer to Stotal as the reliability of hierarchical gossiping R(Po(z1), Po(z2)). Stotal

can be easily calculated as follows:

Stotal = S1*S2 (4.20)

4.4. Simulations

To demonstrate the effectiveness of our analytic model, we carry out the following

extensive simulations. We evaluate the performance of our gossiping algorithm

according to the following metrics:

 The reliability of gossiping

 The success of gossiping

We use MATLAB 7.0 to implement and execute our gossiping algorithm. We

evaluate the performance of the proposed algorithm with two different group sizes

with 1000 and 5000 members respectively. The key parameters, i.e., the fanout

distribution and the non-failed member ratio, are evaluated in our simulations to

investigate their corresponding impact on the reliability of hierarchical gossiping. In

our simulations, we take Poisson distribution as an example for both the simulations

and our analysis.

The mean fanout f in Level 1 is also the mean value z1 of the fanout distribution

Po(z1). The mean fanout k in Level 2 is also the mean value z2 of the fanout

distribution Po(z2). For the critical condition, we choose the value of the mean

fanout f=log(q)/(q-1) according to Theorem 1, which is the minimum value at the

critical point. The value of the size of Q is calculated by q = k/1000. Therefore, the

proper value of the mean fanout f in Level 1 can be calculated by the value of the

mean fanout k in Level 2. Compared with the analytical results obtained by our

mathematical model, the simulation results are well consistent. For each pair of {f,

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast Protocols

 57

k}, we run our hierarchical gossiping algorithm for 15 times and report the average

results of the reliability of hierarchical gossiping. In addition, we calculate the size of

giant component for each case to be compared with the results of simulations.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Mean Fanout k in Level-2

R
el

ia
bi

lit
y

of
 H

ie
ra

rc
hi

ca
l G

os
si

pi
ng

Hierarchical Gossiping(nodes = 100000, subgroup = 100)

Analytical Result
Simulation Result

Figure 4.2: Mean Fanout k at Level 2 vs. Reliability of Hierarchical Gossiping,
n=100000, nsubg=100

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean Fanout k in Level-2

R
el

ia
bi

lit
y

of
 H

ie
ra

rc
hi

ca
l G

os
si

pi
ng

Hierarchical Gossiping(nodes = 500000, subgroup = 500)

Analytical Result
Simulation Result

Figure 4.3: Mean Fanout k at Level 2 vs. Reliability of Hierarchical Gossiping,
n=500000, nsubg=500

We first observe that all of the critical conditions for each pair of fanouts {f, k} are

held when the mean fanout k in Level 2 is greater than 1.0. For each pair fanouts {f,

k} in our simulation, the reliability of hierarchical gossiping can be guaranteed under

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 58

the above condition. Figure 4.2 also shows that the results of simulations tally with

the analytical results except for very few points. The curves in Figure 4.3 are very

similar to those in Figure 4.2. However, the simulation results tally with the

analytical results better than that in Figure 4.2, which indicates that our modeling

works better in large-scale systems.

4.5. Summary

Based on the generalized random graph theory, we have developed a mathematical

model to analyze the performance of the hierarchical gossiping algorithm in terms of

the reliability of hierarchical gossiping. Our model can be solved by the generalized

random graph theory and we derive the relationship between the fanout distributions

at the two levels of gossiping and the reliability of hierarchical gossiping. Using our

model, we discover there is a critical condition that is related to the fanout

distributions at two levels, under which we can guarantee the gossiping message to

be propagated from subgroups to the whole group. We have carried out simulations

to validate our proposed model. The simulation results tally with our analytic results.

The analytical results we obtained from our hierarchical gossip model can be used to

design a gossip-based reliable multicast protocol for data dissemination in a wireless

mobile network. First, we should provide members in a multicast group with local

view, remote view, or both by using a hierarchical membership protocol. In some

infrastructure-based wireless networks, it is easy to organize the members of a

multicast group into a hierarchical structure. Normally, we should propose a method

based on clustering. Second, we should select a subset of nodes in each sub-group to

propagate a gossiping message to other sub-groups. The relation between the fanouts

in both levels should agree with our analytical results from our mathematical model.

Chapter 4. Modeling Hierarchical Gossiping in Reliable Multicast Protocols

 59

Third, our proposed hierarchical gossiping algorithm is not complex so that it can be

easily implemented to a network protocol.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 61

Chapter 5. Contention-Aware Data Caching in

Wireless Multihop Ad Hoc Networks

In this chapter, we introduce the proposed contention-aware data caching algorithms.

This chapter is organized as follows. Firstly, Section 5.1 is the overview to this work.

Section 5.2 describes the system model, the cache consistency model, and the

problem formulation. In Section 5.3, we present the main ideas of our algorithms and

describe the corresponding details. In Section 5.4, we analyze the performance of the

proposed algorithms by developing a mathematical model. Simulation results are

reported in Section 5.5. Finally, Section 5.6 concludes this chapter.

5.1. Overview

In a wireless network, due to the shared nature of wireless medium, nodes may

contend with each other to access the data items. Consequently, the per-hop delay on

each node is different from each other [YK06]. Some previous works conclude that

the per-hop delay mainly depends on the contention delay in the 802.11-based

wireless ad hoc networks [YK06]. Moreover, when more than one nodes access the

same data item at one cache node, it dramatically increases the probability of access

collisions. Thus, more collisions bring more retransmissions of data requests so that

total access delay is increased sharply. As a result, it is necessary to consider the

impact of contentions at wireless nodes on the performance of a caching system.

In this chapter, our cache placement problem is much different from the previous

problems in the following way. There are three important points: 1) each hop has

different weight in a wireless multihop ad hoc network due to the contentions; 2) the

strategy of selecting cache nodes results in the changes on the contentions of

wireless nodes because of the introduced or saved traffic flows; and 3) the

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 62

contentions can be also changed due to the movement of mobile nodes. Therefore,

our problem can be described as the cache placement problem in a network with

dynamic topologies. We define such a problem as Dynamic Cache Placement (DCP).

We prove that DCP is NP-hard. Due to the intractability of DCP, we address it by

proposing our heuristics, which dynamically collects the contention variation on

wireless nodes from the MAC layer, and selects the nodes that are with lower

contentions and reduce more traffic flows as cache nodes. Our goal is to find an

algorithm to select the set of cache nodes in order to minimize total cost, which

includes caching overheads and total access delay. To the best of our knowledge, this

is the first time to take the contentions into consideration for a caching system in a

wireless multi-hop ad hoc network.

The proposed heuristic algorithms, Centralized Contention-Aware Caching

Algorithm (CCCA) and Distributed Contention-aware Caching Algorithm (DCCA),

provide a sub-optimal solution to DCP. Our algorithms have the following desirable

properties: 1) it is a polynomial time algorithm; 2) it is a cross-layer designed

algorithm because it makes caching decisions based on the contention information

collected from the MAC and routing layer; 3) it can be easily applied and adapted to

any arbitrary dynamic network topology; and 4) it can be easily implemented in a

distributed asynchronous fashion.

5.2. Problem Formulation

In this section, we first introduce the system model for our work. Then we propose a

TTL-based cache consistency strategy in our system. Finally, we formulate the cache

placement problem in wireless multi-hop ad hoc networks as Dynamic Cache

Placement (DCP).

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 63

5.2.1. System Model

Let G(V, E) be a connected graph representing a wireless multihop ad hoc network

with n (n=|V|) nodes connected by m (m=|E|) links. Two network nodes

communicate directly with each other, which is represented by an edge in the graph,

whereas two nodes that cannot communicate with each other may still contend

directly with each other, due to the shared nature of wireless medium. The radius of

the contention range r depends on the type of wireless networks. Normally, the

radius of the contention range in 802.11-based ad hoc networks is two times as long

as the radius of the transmission range. The data rate of channel is defined as W. We

describe all the notations used in the system model in Table 5.1.

Table 5.1: Notations used in system model

V The set of mobile nodes in the network

E The set of links in the network

n The number of nodes

m The number of links

Ni The i-th wireless node in the network

r The radius of the contention range of a wireless node

W The data rate of wireless channel

d The single data item

S The data source that updates the data item d.

sd The size of data item d.

sr The size of a data request

fu The update frequency for the data source updating d

fa(i) The access frequency for Ni access d

VC
The vector VC = {c1, c2,…, cn} that describes the solution of a caching strategy,
where ci =1 if one copy of the data item d is cached on the node Ni. Otherwise,
ci is equal to 0.

St The version number of di at the data source

Ct
j The version number of di at the cache node Nj at time t.

T The expiration time T for each copy at a cache node

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 64

For some Internet services or other mobile applications, a group of wireless nodes

need to access the data item d maintained by the data source S. Let sd be the size of

data item d. The data source S updates the data item d with a given frequency fu, i.e.,

the data item d changes with the mean update time Tu. Node Ni accesses the data

item d with the access frequency fa(i). The size of a data request is defined as sr. In

order to reduce the access delay, the data source caches the copies of the data item d

at some cache nodes in the network. We define two phases of our caching system in

this chapter, including the update phase and the access phase. The first phase is that

the data source updates cache copies in the network, and the second phase means

that the client nodes send their queries for the data item d to their corresponding

closest cache nodes. We define a cache placement strategy by the vector VC = {c1,

c2,…, cn}, where ci =1 if one copy of the data item d is cached on the node Ni.

Otherwise, ci is equal to 0.

To model our problem, we have the following assumptions.

 The data source S always possesses a cache copy of data item d.
 Links are bidirectional.
 Wireless nodes never fail.

5.2.2. TTL-based Consistency Management

In this chapter, we apply a TTL-based cache consistency strategy to maintain the

delta consistency among all the cache nodes [CZX+07]. In the proposed TTL-based

caching strategy, each data copy is associated with an expiration time T, i.e., the

Time-To-Live (TTL) value. If a query arrives before the expiration time, the copy is

considered valid and the reply message is generated locally. Otherwise, the copy is

considered invalid until the next update from the data source. The query should be

replied by the data source S or other cache nodes that holds a valid cache copy.

However, client nodes are not aware of the validation of cache copies before sending

queries.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 65

If a cache copy is invalid, the corresponding cache node will not serve any request

but forward it to the nearest cache node from its backup cache node list, until next

updates from the data source. If an access request is forwarded to the nearest cache

node by a cache node that hold an invalid copy, there is no any cooperation between

the two cache nodes. Therefore, the first cache node is not aware of the validation of

the cache copy at the second cache node.

There are several reasons why we use a TTL-based caching consistency strategy in a

wireless multihop ad hoc network. First, in a TTL-based strategy, there is no need for

the data source to keep track of the locations of cache nodes. Therefore, it is resilient

for mobile nodes to join or leave the set of cache nodes and thus it is suitable for

highly dynamic systems. Second, each node determines the validity of cache copy

autonomously so that validations of expired cache copies can be performed with

either the data source or other mobile nodes with valid copies. Third, the proposed

TTL-based strategy guarantees that the staleness of the requested data item is time-

bounded. It offers the flexibility to use different TTL values to cater for different

consistency requirements that may vary with the nature of shared contents and user

tolerance.

Next, we define the delta consistency model as follows. Let St denote the version

number of the source data and Ct
j be the version number of the cached copy on cache

node Nj at time t. Initially, the version number of the source data is set to zero and

then increased one upon each subsequent update. The version number of the cache

copy is set to that of the source data at the time when it is synchronized. Thus, the

delta consistency [CZX+07] can be defined as follows:

, , , 0 , . . t t
jt j s t S Cττ τ δ −∀ ∀ ∃ ≤ ≤ = (5.1)

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 66

In the delta consistency model, any read of the data item d is never out of date by

more than δ time. In this chapter, the parameter δ can be replaced by the expiration

time T to show the degree of the users’ requirements.

5.2.3. Problem Formulation

Given a set of graphs Gk={G0, G1, G2, ..., Gk}, which describes the topology changes

for a wireless multi-hop ad hoc network G. We define a set V={N1, N2, ..., Nn} as n

wireless nodes that are located by a piecewise functions {g1, g2, ..., gn}, where gi, 1≦

i≦n maps the time interval [0,T] to Gk. Given k functions f1, f2, ... , fk, fi:Gi→[0,1],

we select the cache nodes for Gi such that at given moment t∈[0,T], fi forms a sup-

problem SPi for all the mobile nodes located by {g1, g2, ..., gn}. We describe all the

notations used in problem formulation in Table 5.2.

Table 5.2: Notations used in problem formulation

Gk
{G0, G1, G2, ..., Gk}, which describes the topology changes for a wireless
multi-hop ad hoc network G.

SPi
Ond of the sup-problem of the dynamic cache placement problem

PATH(i, j) The directed path from the sender Ni to the receiver Nj

w(i, j),
The sum of the total weight of each hop on the path PATH(i, j).

Cost(Gi, Vc(i))
The total cost for the sub-problem SPi, given a strategy Vc(i)

wmin(c, S)
The minimum weight among all of the paths from cache node c to the data
source S.

dc(x) The contention delay of node x.

Cu The traffic cost that the data source S sends the updates to all the cache nodes.

Ca
The traffic cost for client nodes sending their queries to their
corresponding closest cache nodes, and cache nodes (including the data
source) send replies to these client nodes

Da The access delay that all the requesting nodes experience.

β
The parameter in the objective function for SPi to indicate the relative
importance of access delay and caching overheads.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 67

We divide the cache placement problem in wireless multi-hop ad hoc networks into

smaller sub-problems. For each sup-problem SPi, we also provide a formal

formulation for the cache placement problem. Given a directed connected graph

Gi(V,E) and the weight of each link depends on the contentions of the sender. Let C

be the set of cache nodes. Each message is sent from the sender Ni to the receiver Nj

by following a directed path PATH(i, j). The weight of the path, w(i, j), is the sum of

the total weight of each hop on this path. The weight of each hop (x, y) is measured

by the per-hop delay of the sender x, D(x). As we mentioned before, D(x) is mainly

determined by the contention delay of the node x in a contention-based MAC

protocol. Let dc(x) be the contention delay of node x. Then we substitute the

contention delay dc(x) for the per-hop delay D(x) in this chapter. We obtain w(i, j) as

follows:

(,) () (,) !c
x

w i j d x x PATH i j and x j= ∈ =∑

Next, let wmin(c, S) be the minimum weight among all of the paths from cache node c

to the data source S. Let wmin(i, c) be the minimum weight among all of the paths

from the node Ni to the cache node c that holds a valid cache copy of the data item

d.

As we mentioned in Section 5.2.1, the cost in the update phase is defined as Cu, i.e.,

the traffic cost that the data source S sends the updates to all the cache nodes. The

cost in the access phase includes: 1) the traffic cost, Ca, i.e. client nodes send their

queries to their corresponding closest cache nodes, and cache nodes (including the

data source) send replies to these client nodes, and 2) the access delay Da that these

nodes experience.

Therefore, given a strategy Vc(i) for the sub-problem SPi, we define the cost Cost(Gi,

Vc(i)) as follows:

(, ())i c u a aCost G V i C C Dβ= + + (5.2)

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 68

with β indicating the relative importance of access delay and caching overheads. We

can model different network scenarios and quality of service requirements by

varying the parameter β.

To explain more details in Eq. (5.2), we have two extreme cases. Firstly, if all the

nodes are cache nodes, the access traffic cost Ca and the access delay Da will be zero.

However, the data source S has to update all the copies at all the nodes. The update

traffic cost will be maximized. Secondly, if the data source S decides not to cache the

data item in any of the other nodes, the access traffic cost and the access delay will

be maximized, while the update traffic cost will be zero.

Therefore, the cache placement problem for the sub-problem SPi is to select a set of

cache nodes Vc(i) to minimize the cost Cost(Gi, Vc(i)):

min

min

min

(, ()) (,)

(,) ()

(,) ()

i c d u
j C

r a
j V c C

a
j V c C

Cost G V i w j S s f

w j c s f j

w j c f jβ

∈

∈ ∈

∈ ∈

= × ×

+ × ×

+ ×

∑

∑∑

∑∑

 (5.3)

The total cost for DCP is defined as Ctotal, which can be calculated as follows:

0
(, ())

k

total i c
i

C Cost G V i
=

= ∑ (5.4)

Each solution for DCP is to find the k functions to minimize the total cost Ctotal. DCP

can be proved NP-hard as follows:

Theorem 1: The computation of DCP is NP-hard.

Proof: If the topology of the network is not changed, it is proved that DCP is the

rent-or-buy problem, the special case of the connected facility location problem. It

has been proved NP-hard [SK02].

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 69

If the network topology changes due to the mobility of nodes, DCP is one of the

special cases of the mobile facility location problem [BBK+00]. The mobile facility

location problem is proposed for continuously moving points. Given a set ST of n

demand points in d-dimensional space (d≥1), find a set P of k supply points so that

the dispersion defined as the sum of the Lp distance between demand points and their

nearest supply pints in P is minimized. If we consider the cache nodes as facilities,

DCP can be transformed to a mobile facility location problem. Similar to the rent-or-

buy problem, DCP in mobile networks considers the cost of updates. The mobile

facility location problem is NP-hard. Therefore, DCP is also a NP-hard problem. □

As mentioned in [BBK+00], the data structures and algorithms that have been

developed for the static problems (i.e. network nodes are not mobile) are not directly

applicable to the setting of moving nodes when the motion of the facilities must

satisfy natural constraints. Therefore POACH [NSC03] is not expected as efficient as

in mobile networks. Our simulations also demonstrate this point.

5.3. A Heuristic Solution

In this section, we first explain how to calculate the per-hop delay for each node in

order to evaluate the weight of each path. Then we propose our two contention-

aware caching algorithms, i.e., Centralized Contention-aware Caching Algorithm

(CCCA) and Distributed Contention-aware Caching Algorithm (DCCA), which

provide two heuristic rules to minimize the total cost in Eq. (5.4), i.e., balance

caching overheads with total access delay.

In our proposed algorithms, we use two key parameters to implement our heuristic

rules, including Hedging Flow (HF) and Contention Coefficient (CC). The reason

why we propose the two parameters is that the total cost is related to the changes of

the network topology and the related traffic flows. We will describe the details in the

following sub-sections.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 70

5.3.1. Per-hop Delay

Since we consider the difference among hops in wireless multi-hop ad hoc networks,

we explain how to obtain the per-hop delay at wireless nodes to describe the weight

of paths, along which each node sends its data packets. To model the per-hop delay,

we make use of the previous work proposed in [YK06]. The per-hop delay consists

of the queuing delay, the contention delay, and the transmission delay. However, the

work [YK06] shows that average transmission delay is fixed, and average queuing

delay is determined by both the mean and the variance of contention delay. Thus the

per-hop delay is determined by the contention delay.

Figure 5.1: Example to show how to calculate the contention delay of node N1 in a
802.11-based wireless network

The contention delay is the interval between the time that the packet becomes the

Head of the Line (HOL) in the node’s queue, and the time that the packet actually

starts to be transmitted on the physical medium. In this chapter, we focus on the

contention delay in the 802.11-based wireless ad hoc networks, but the method can

be also applicable for any contention-based MAC protocols. We define CR(i) as the

set of nodes in the contention range of the mobile node Ni. The contention delay d(i,

c) at the node Ni can be calculated by the following equation:

(,) ()b i i dd i c DIFS R w m Tε= + + (5.5)

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 71

where DIFS is defined in 802.11 as DCF Inter-Frame Space, Rb is the probability that

the channel state is busy, wi is the number of back-off slots at mobile node Ni. The

parameter ε is the value of back-off slot, mi is the number of data packets transmitted

by the neighbouring nodes during Ni’s back-off process, and Td is the duration of a

successful data transmission. Next, we present a simple example to explain how to

calculate the contention delay in 802.11 as follows.

In Figure, the contention range CR(1) is referred to as the node set {N2, N3, N4, N5},

each of which is in the contention range of N1. The parameter aji is the discount

factor of concurrent influence to the node Ni from the node Nj [YK06]. Thus the

contention delay of the node N1 can be calculated as follows:

,1
1 1

(1)

() (1)(1,) () j a a
d

j CR

a f j fd c DIFS w m T
W W

ε
∈

= + + +∑ (5.6)

In our simulation works, we collect the related parameters in Eq. (5.6) by interposing

a detector in the source code of IEEE 802.11 MAC in NS2 [FV97]. The contention

information is stored in the common header of each packet in NS2.

5.3.2. Two Heuristic Rules

In this subsection, we explain our heuristic rules in detail. As shown in Eq. (5.4), our

objective is to minimize the total cost of a caching system. When we select a cache

node, the first important point is that how much traffic flows can be saved and added.

The best case is that we maximize the total traffic flows, in which we consider the

flows saved as positive and the flows introduced as negative. Thus, we define such a

kind of flows as Hedging Flow (HF), which is borrowed from the financial industry.

Those nodes with higher HFs can be considered as the candidates of cache nodes.

The second important point is how to minimize the cost of sending and receiving

data packets. Since the contention delay is used to describe the weight of each path,

those nodes with more contentions are not suitable to act as cache nodes. Therefore,

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 72

we propose the parameter Contention Coefficient to describe the level of contentions

on each node.

Before we introduce the first heuristic rule, we should clarify the traffic flows in a

caching system as follows. There are mainly three kinds of traffic flows in a caching

system. The first one is the Access Flow (AF), which is defined as the flows that

traverse a node for data access. The second one is the Reply Flow (RF), which is

referred to as the flows that traverse a node to reply data requests from cache nodes

or the data source S. The third one is the Update Flow (UF), which is defined as the

flows that traverse a node to update cache copies on cache nodes from the data

source S. Therefore, it is important to select some special nodes as the candidates for

cache nodes. By selecting these candidates, we aim to reduce the access flows and

the reply flows as many as possible, while increasing the update flows as few as

possible. As a result, we make the length of paths for data access and update as short

as possible. As we mentioned, Hedging Flow describes the variation of the traffic

flows if we select some node as a cache node. We denote the hedging flow of the

node Ni as HF(i), which can be calculated as follows:

() () () ()HF i AF i RF i UF i= Δ + Δ − (5.7)

Given a node Ni that we intend to select as a cache node, we obtain the reduced

access flow ΔAF(i), the reduced reply flow ΔRF(i), and the introduced update flow

UF(i), three of which traverse Ni. In the above calculation, note that both the access

flows and the reply flows include the traffics flows that traverse Ni, besides the

traffic flows generated by Ni. Therefore, the first rule of our heuristic algorithm is

given as follows:

Rule 1: When selecting the candidates of cache nodes, those nodes with their HFs

higher than a given threshold Θ1 should be selected.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 73

To explain this rule, we use the following example shown in Figure 5.2. In this

example, we combine the access flows with the reply flows for simplicity. That

means we use the access flow represents the two flows, and we assume the reply

flow is sent out along the reverse path from the requestor to its closest cache node. In

this example, N1 is the data source S. If we plan to select N3 as the cache node, the

reduced access flow is calculated by the following equation:

(3) ((4) (5) (6) (7) (8)) () (3,1)a a a a a r dAF f f f f f s s wΔ = + + + + × + × (5.8)

Figure 5.2: Example to show how to calculate the hedging flow

This means the reduced access flow is the sum of the access flows that traverse N3,

which should be forwarded to N1 within two hops. Then the introduced update flow

can be obtained by the following equation:

(3) (1,3)U dUF f s w= × × (5.9)

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 74

According to the definition of hedging flow, the hedging flow of the node N3, HF(3),

can be obtained as follows:

(3) (3) (3)HF AF UF= Δ − (5.10)

In generally, the first heuristic rule aims at optimizing the length of the paths from

client nodes to their corresponding closest cache nodes, i.e., client nodes access the

data item with much smaller cost. However, this operation changes the traffic loads

locally so that the contentions in the network are also changed. Therefore, the second

heuristic rule is designed to select the cache nodes from these candidates with fewer

contentions.

To select the cache nodes from these candidates, we detect the variation of

contentions on all the candidates. If the contentions are lower enough, it can decrease

the access delay dramatically. Therefore, we present our second heuristic rule as

follows:

Rule 2: When selecting a cache node from the set of the candidates, those nodes

with their contention coefficients smaller than Θ2 should be selected.

When we design our algorithms to implement Rule 2, we use the parameter

Contention Coefficient of Ni, CC(i), to describe the level of contentions on the node

Ni. We define F(i) as the set of the nodes that have traffic flows traversing Ni. Thus

we can obtain CC(i) by the following equation:

() (,) (() ())
()

CC i d i c f i f ja aj F i
= × + ∑

∈
 (5.11)

In a contention-based MAC protocol, we can collect the contention information from

the MAC layer every Tcon seconds, in order to calculate the variation of contentions

on each node. For example, from the time t to the time (t+Tcon), we count the number

of back-offs on Ni, and the number of the packets sending by Ni’s neighbors during

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 75

Ni’s back-offs. Then the Contention Coefficient CC(i) can be calculated by Eq. (5.11).

Normally a dramatic variation of contentions between two sequential periods means

that traffic flows are changed dramatically, or the network topology is changed

around nodes. We detect the variation of contentions regardless of the mobility

model. This is also one of the merits of our solution.

Figure 5.3: Centralized Contention-aware Caching Algorithm

Algorithm 1: Centralized Contention-aware Caching Algorithm
INPUT:
Graph G[n][n], Contention Coefficients CC[n]

OUTPUT:
Cache Node Set C[n], Nearest Cache Node Set NC[n]

BEGIN
The data source S converts the adjacency matrix G to a directed weighted graph

G’ by CC[n].
C = {S} and NC = {S}
while (V-C) != Ø

for each node x∈(V-C)
S calculates the hedging flow HF(x).
while (y∈RoutingTable(x) & y ∉C & HF(y) has not calculated before)

 if(wmin(y, x) < wmin(y, NC[y]))
 then HF(x) += (wmin(y,NC[y])-wmin(y, x))*(sd+sr)*fa(y)
 end while
HF(x) -= wmin(S, x)*sd*fu

 if HF(x) >Θ1, then add x to the cache candidates set H.
 end for

if H == Ø, break.
 for each node a∈ H
 if CC[a]<Θ2 ,then add a to the cache node set C.
 end for
 S re-calculates contention coefficients CC[n].

 S converts G to another directed weighted graph G’ by CC[n].
 for each node z∈V & z∉C
 [] arg min (,)b CNC z w z b∈=
 end for

end while // V-C
END.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 76

5.3.3. Centralized Contention-aware Caching Algorithm

In this subsection, we present a centralized algorithm named Centralized Contention-

aware Caching Algorithm (CCCA) to address DCP. CCCA is mainly designed for

the case of static topology, such as in a wireless sensor network. CCCA starts with

the case that only the data source S has the data item d. Other nodes access the data

item d from S. Then nodes collect their neighboring sets and calculate their

corresponding contention coefficients. Next, each node sends these information to

the data source S. Then the data source S calculates the hedging flows for these

nodes and selects the set of cache nodes. Then the data source S finds the closest

cache node for each node in an iterative way. Simultaneously, the data source S

updates the date item d periodically. Other client nodes access the data item from its

nearest cache node or the data source S.

CCCA is divided into two steps. In the first step, we select the candidates for the

cache nodes. These candidates are selected one by one with Rule 1, which means we

select nodes whose hedging flows are greater than the threshold Θ1. In the second

step, we select those whose contention coefficients are smaller than Θ2 as cache

nodes with Rule 2. Since the set of cache nodes changes with the movement of

wireless nodes, the traffic flows are also changed consequently. Then we re-calculate

the contention coefficients with the changed traffic flows. It is noted that Θ2 is

normalized in the interval [0, 1]. Let TF(i) be the total flows that traverse node Ni.

When the data source S re-calculates contention coefficients, TF(i) is changed to

TF’(i) and CC(i) is changed to CC’(i). We can obtain CC’(i) by Eq. (5.12).

'()'() ()
()

TF iCC i CC i
TF i

= (5.12)

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 77

5.3.4. Distributed Contention-aware Caching Algorithm

In this subsection, we describe a localized and distributed implementation of CCCA,

namely Distributed Contention-aware Caching Algorithm (DCCA). One of the

advantages of DCCA is that it can adapt itself to dynamic traffic conditions in a

mobile wireless ad hoc network with low communication overheads, in order to

select proper nodes as the cache nodes. We describe DCCA by two algorithms,

including the Algorithm 2 at the side of the data source and the Algorithm 3 at the

client nodes.

5.3.4.1. DCCA at the data source

The data source is responsible for sending the latest updates to all the cache nodes,

and maintaining cache consistency among all the cache copies by applying a TTL-

based strategy.

There are two key points that should be considered in the design of DCCA. Firstly,

the set of cache nodes is changing with the dynamic network topology. Thus, the

data source S should know which node is in the current set of cache nodes in order to

reduce the message cost for sending the redundant updates to the node that was one

of the cache nodes but is not a cache node now. Under such a condition, each cache

node should notify the event that it resigns as a cache node. Therefore, if a cache

node decides not to be a cache node after detecting the condition of contentions

around itself, it sends a CacheLeave message to the data source S.

Secondly, the TTL value maybe expires. How to deal with the queries sent to a cache

node that holds an invalid copy of the data item is an important issue. In DCCA, the

data source should make each cache node know some of the other cache nodes, i.e.,

the backup cache nodes, which are also maintained as a node list at each cache node.

If a client node sends a query to its closest cache node that holds an invalid cache

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 78

copy, the query should be forwarded to one of the backup cache nodes, which maybe

hold a valid cache copy.

Figure 5.4: DCCA at the data source

Therefore, there are four operations in the Algorithm 2 at the data source. First, the

data source S sends a CacheUpdate message to all the cache nodes once the data

item changes. Second, if the data source receives a CacheRequest message from a

node, it sends a CacheReply message to answer the request. Third, if the data source

receives a CacheLeave message, it removes the node from the cache set. Fourth, the

data source also can update the topology information according to the received

TopologyBroadcast message in the Algorithm 3. The details are describes in the

Algorithm 2.

Algorithm 2: DCCA at the data source

Notation:

 G[n][n]: the adjacency matrix of the network topology.

 CC[n]: the set of contention coefficients for all the nodes.

 C[n]: the set of cache nodes.

 NL[i]: the neighboring list of a node.

(A) Receives a data update.

 Send CacheUpdate(C, d, version) to each cache node in C by unicast.

(B) Receives CacheRequest(i)

 if C[i]!=1, then include Ni into C and send CacheReply(ACK, d, version) to

Ni.

(C) Receive CacheLeave(i)

 Remove Ni from the cache node set C.

(D) Receive TopologyBroadcast(NL[i], C[i], VF[i])

 Update G[n][n] by NL[i].

(E) Receive AccessRequst(j)

 Send AccessReply(d) to node Nj.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 79

5.3.4.2. DCCA at the client node

In this subsection, we describe DCCA at the client node. Each node in the network is

responsible for detecting the changes of the network topology and its contention

level, in order to decide whether it is should be a cache node by local information.

There are several key operations for each client node.

Firstly, each node collects its neighbour set every Ttop seconds. Then each node

broadcasts a TopologyBroadcast message to its one-hop neighbours. The

TopologyBroadcast message for Ni contains the list of its neighbouring node NL(i),

the flag of cache nodes C[i] (1 means Ni is one of the cache nodes, otherwise 0), and

its own access frequency fa(i) to the data item d.

Secondly, each node collects its contention coefficient every Tcon seconds. If the

contention coefficient CC[i] at Ni is smaller than Θ3, Ni calculates its hedging flow

HF(i). If HF(i) is greater than Θ4, Ni broadcasts a ContentionBroadcast message to

its one-hop neighbours. The ContentionBroadcast message consists of its contention

coefficient CC[i] and its hedging flow HF(i). The ContentionBroadcast message is

broadcast with a timeout Tcb. If Ni receives the ContentionBroadcast from all its

neighbours within Tcb, Ni compares its own HF(i) with that of its neighbours. If HF(i)

is the maximum one, Ni sends a CacheRequest message to the data source S with a

timeout Tcr. If the data source S sends back a CacheReply message, which includes

an acknowledgment and the latest update of the data item d, Ni updates its state to

open a cache node and updates the cache copy with the latest version. Then Ni

broadcasts an OpenCacheNode message to its neighbors. If Ni does not receive a

CacheReply message within Tcr, Ni waits for the next period of contention detection.

Thirdly, if any node forwards a CacheUpdate message, it can select a specified

number of cache nodes as its backup cache nodes. If a client node knows that its

current closest cache node holds an invalid copy of the data item d, it can send the

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 80

query to one of the backup cache nodes. This operation is also carried out at each

cache node for forwarding a query when its cache copy is invalid.

Fourthly, each client node updates its nearest cache node when it receives an

OpenCacheNode message or a CloseCacheNode message, whether the message is

sent to it or not.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 81

Figure 5.5: DCCA at the client node

Algorithm 3: DCCA at the client node Ni
Notation:

 Ttop: the timer for topology detection
 Tcon: the timer for contention detection
 Tcb: the timeout for receiving ACK messages from the data source S.
 T: the time-to-live value for each copy
 Θ3: the threshold of contention coefficient
 Θ4: the threshold of hedging flow
 C[n]: the set of cache nodes
 NL[i]: the neighboring list of Ni
 NC[i]: the nearest cache node for Ni
 VF[i]: the valid flag of the cache copy at Ni.
 backup_num: the number of backup cache nodes in BL[i]
 BL[i]: an ids list of backup cache nodes when the local copy is invalid

(A) Procedure TopologyDectection()
 Broadcast TopologyBroadcast(NL[i], C[i], VF[i], fa(i)) every Ttop seconds.
(B) Procedure ContentionDectection()
 Calculate its contention coefficient CC[i] and hedging flow HF(i) every Tcon
seconds.
 if CC[i]<Θ3, & HF(i)>Θ4, then broadcasts ContentionBroadcast(CC[i], HF(i))
with a timeout Tcb.
 else if C[i]==1, then send CloseCacheNode(j) to the data source s.
(C) Receive TopolgoyBroadcast(NL(j), C[j], VF[j])
 if VF[j]==true & C[j]==1, then update NC[i].

(D) Receive ContentionBroadcast(CC[j], HF(j))
 if HF(i)<HF(j), then send AckContention(true)
 else send AckContention(false)
(E) Receive AckContention(T)
 if Tcb>0 & receive AckContention(true) from all of its neighbours, then send
CacheRequest(i) to the data source s and set a waiting timeout Tcr.
 else wait for the next ContentionDectection().
(F) Receive CacheReply(C, d, version)
 if Tcr >0, then update its cache copy and broadcasts OpenCacheNode(i) to its one-
hop neighbours.
(G) Receive OpenCacheNode(j)
 if w(i,j)<w(i,NC[i]), then NC[i]=j.
(H) Receive AccessRequst(j)
 if C[i]==1 & VF[i]==True , then send AccessReply(d) to node Nj.
 else if BL[i] !=Ø, then forward AccessRequest(j) to BL[i].

else send AccessRequest(j) to S.
(I) Receive CacheUpdate(C, d, version)
 if C[i]==1, then update data d and set the TTL value T.
 select backup_num closer cache nodes from C into BL[i].
(J) Receive CloseCacheNode(j)
 if NC[i]==j, then select the nearest cache node from BL[i].

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 82

5.4. Performance Analysis

In this section, we develop a simple analytical model to analyze the performance of

the proposed cache management strategy. Specifically, we want to estimate average

query delay and caching overheads for the proposed scheme. We focus on the

performance of the proposed algorithms evaluated in terms of the above two metrics.

All the notations used in our analytical model are showed in Table 5.3.

Table 5.3: Notations used in the analytical model

There are some assumptions to be used in our analytical model. They are described

as follows:

 The MAC protocol used in our model is based on a contention-based
protocol.

 The time between updates to the data item d is assumed to follow a
Poisson distribution with the mean μ.

 Node Ni generates a query according to a Poisson distribution with the
mean λi.

 The process of querying at each node is a Poisson process and they are
independent with each other.

tu
time instant of a data update

μ The mean of the exponential distribution in the updating process
(i.e., fu)

T timeout in the TTL consistency model

λi node Ni’s query arrival rate (i.e., fa(i))

1h average path length between the data source and the cache nodes

2h average path length between the querying node and the closest cache
node

r0 the maximum node transmission range

E[d] the average access delay for all the mobile nodes accessing all the
data items

Ci the flag to show whether the node Ni is a cache node.

E1
the event that the contention coefficient CC[i] at the node Ni is
smaller than the threshold Θ3

E2
the hedging flow HF[i] at the node Ni is greater than the threshold
Θ4.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 83

5.4.1. Average Access Delay

There are two steps in the process of evaluating average access delay. In the first step,

we will evaluate the average hops between two mobile nodes in a rectangular

topology. In the second step, we consider the average access delay in two cases.

Under the first case, the timeout T in our TTL consistency model is greater than the

mean μ in the update model. Under the second case, the timeout T in our TTL

consistency model is smaller than the mean μ in the update model.

5.4.1.1. Average Path Length

In our model, we assume a rectangular topology with area a×b and the uniform

distribution of mobile nodes like the setting in [BE03]. Two nodes can form a link if

the distance s between them is smaller than r0, where r0 is the maximum node

transmission range. We want to evaluate the expected number of hops between any

two nodes. Using the stochastic geometry, the probability function of s is given in

[BE03] as

2
2 2

4() (0.5)
2

sf s ab as bs s
a b

π
= − − + (5.13)

for 0≤s<b<a. Let E[H] be the expected number minimum number of hops between

any two nodes in the network. Let SL=hr0. Then E[SL] can be obtained by the

following equation [BE03]:

3 3 2 2
2 2

2 2 2 2

2 2 2 2 2 2

1[] [(3)]
15

1 [cosh cosh]
6

a b a bE SL a b
b a b a

b a b a a bar ar
a b b a

= + + + − − +

+ +
+

 (5.14)

And the value of E[H] can be evaluated by the following equation

0[] [] /E H E SL r≥ (5.15)

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 84

Therefore, we use E[H] to evaluate the average path 1h length between the data

source and the cache nodes. In the same way, the average path length 2h between the

querying node and the closest cache node is also can be evaluated.

5.4.1.2. When T>μ

In this case, each node can access the most updated data item d because our TTL

consistency model guarantees the valid copy of the data item at each cache node. Let

E[d] be the average access delay for all the mobile node accessing all the data items.

10
0

1[] ([])
nt c

i i i
i

E d C h E d dt
n

λ
=

= × × ×∑∫ (5.16)

In Eq. (5.16), the contention delay c
id is defined in Eq. (5.5).

5.4.1.3. When T≤μ

In this case, it is possible that a cache copy at one of the cache nodes may be invalid

in our TTL consistency model before an update comes. In our proposed algorithm, if

the query cannot be responded when the cache copy is invalid, the receiver should

forward the query to one of its backup cache nodes or the data source. Therefore, the

average access delay for all the mobile nodes accessing all the data items can be

evaluated by the following equation:

1 20
0

1[] (() [])
nt c

i i i
i

E d C h h E d dt
n

λ
=

= × × + ×∑∫ (5.17)

5.4.2. Caching Overheads

In general, there are seven kinds of messages in our caching system, including

TopologyDectection, ContentionBroadcast, AckContention, CacheRequest,

OpenCacheNode, CloseCacheNode and CacheReply.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 85

Since we detect the topology information periodically, the total number Otop of the

TopologyDectection messages can be evaluated by the following equation:

0

1t

top
top

O n dt
t

= × ∫ (5.18)

To evaluate the total number Ocon of the ContenttionBroadcast messages, we define

two events, E1 and E2. E1 is the event that the contention coefficient CC[i] at node Ni

is smaller than the threshold Θ3. E2 is the event that the hedging flow HF[i] at node

Ni is greater than the threshold Θ4. Let P(E1) be the probability of the event E1, and

P(E2) be the probability of the event E2. Then we can obtain the following equation:

1 20

1 () ()
t

con
con

O n P E P E dt
t

= × × ×∫ (5.19)

To evaluate the total number Oack of the AckContention messages, we define another

event E3, which is the event that a node receives all the AckContention within the

timeout Tcb. Let N be the average number of a node’s neighbours. Then we can

obtain the following equation:

1 2 30
(() () ())

t

ackO n P E P E P E N dt= × × × ×∫ (5.20)

With respect to other messages, the total caching overheads mainly consists of the

three messages we have discussed. Thus, the total caching overhead O can be

evaluated by the following equation:

top con ackO O O O≈ + + (5.21)

5.5. Simulations

In this section, we demonstrate the performance of our proposed algorithms over

randomly generated network topologies through simulations. We first compare the

performance of CCCA with that of POACH in a wireless network with static

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 86

topology, in term of average query delay and caching overheads. Then we compare

the performance of the solutions returned by NOCACHE, POACH and DCCA in

mobile networks. Here NOCACHE is a simple strategy that has no cache node in the

network.

Our simulations are carried out by using the NS2 simulator. The NS2 [FV97]

simulator contains many models for common ad hoc network routing protocols,

IEEE Standard 802.11 MAC layer protocol, and two-way ground reflection

propagation models [BMJ+98]. The DSDV routing protocol [CB94] is used in our

work to provide routing services.

We simulated our algorithm in a network of randomly placed 100 nodes in an area of

2000x500m2. Note that the normal radio range for two directly communicating nodes

in the NS2 is about 250 meters. In our simulations, we set node 0 as the data source

S and the size of data item d is 1500 bytes.

Each network node is a client node. Each client node in the network sends out a

single stream of read-only queries for a data item maintained by a data source. Each

query is essentially an http request for the data item d with a timeout to guarantee a

valid reply.

We also apply a simple TTL-based caching consistency strategy in our simulation.

The value of the timeout T is 8 seconds.

5.5.1. Static Networks

In this subsection, we evaluate the relative performance of CCCA and the previous

work POACH [NSC03].

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 87

In our simulations, the time interval between two consecutive queries is known as

the query generation time and follows a Poisson distribution with the mean value Tq

which we vary from 2 to 12 seconds. In our update model, the time between two

consecutive updates is defined as the update generation time and follows a Poisson

distribution with the mean value Tu, which we vary from 2 to 12 seconds. We set the

timeout for each request as 20 seconds.

We measure two performance metrics for comparison of various cache placement

strategies, viz., average query delay and caching overheads. Query delay is defined

as the interval between the time when a client node sends its data requests out and

the time when the client node receives the reply from its closest cache node. Average

query delay is the average of query delays over all queries sent by all the nodes.

Caching overheads includes all of the data packets in our caching system, viz., data

requests, data replies, data updates and other messages for caching systems. Note

that these packets do not include routing packets because the two strategies use the

same routing protocol DSDV. In our CCCA, we set the hedging flow threshold Θ1 as

100.0 and set the contention threshold Θ2 as 0.04.

5.5.1.1. Average Query Delay

Figure 5.6 and Figure 5.7 show the results of comparison between POACH and

CCCA in terms of average query delay. In Figure 5.6, we vary the mean query

generation time while keeping the mean update generation time Tu constant at 2

seconds. We observe that our CCCA outperforms POACH constantly for all mean

query generation time. The difference is much more significant for lower mean

generation time, which suggests that CCCA is more suitable for higher frequency of

data access. In Figure 5.7, we vary the mean update generation time while keeping

the mean query generation time constant at 4 seconds. The results shows that CCCA

also outperforms the POACH.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 88

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2 4 6 8 10 12

Mean Query Generation Time (s)

A
ve

ra
ge

 q
ue

ry
 d

el
ay

CCCA

POACH

Figure 5.6: Average query delay vs. Mean query generation time.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

4 6 8 10 12

Mean Update Generation Time (s)

A
v
er

ag
e

q
u
er

y
d
el

ay

CCCA

POACH

Figure 5.7: Average query delay vs. Mean update generation time.

5.5.1.2. Caching Overheads

Figure 5.8 and Figure 5.9 are presented to show the performance comparison

between POACH and our CCCA in terms of caching overheads. In Figure 5.8, we

vary the mean query generation time while keeping the mean update generation time

Tu constant at 2 seconds. We observe that CCCA has a better performance than

POACH constantly for all mean query generation time. In Figure 5.9, we vary the

mean update generation time while keeping the mean query generation time constant

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 89

at 4 seconds. Figure 5.8 and Figure 5.9 show CCCA outperforms POACH, especially

in the case with higher update and access frequency.

0

5000

10000

15000

20000

25000

30000

35000

40000

2 4 6 8 10 12

Mean Query Generation Time (s)

C
ac

hi
ng

 O
ve

rh
ea

ds

CCCA

POACH

Figure 5.8: Caching Overheads vs. Mean query generation time.

0

5000

10000

15000

20000

25000

30000

35000

40000

4 6 8 10 12
Mean Update Generation Time (s)

C
ac

hi
ng

 O
ve

rh
ea

ds

CCCA

POACH

Figure 5.9: Caching Overheads vs. Mean update generation time.

5.5.2. Mobile Networks

In this subsection, we evaluate the performance of NOCACHE, POACH and DCCA

in mobile networks. Note that we still use POACH in a centralized manner due to the

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 90

unpractical factors to implement a distributed version in a mobile ad hoc network. To

implement POACH in a distributed manner, each node needs to maintain some

progeny and distance information, as mentioned in [NSC+06]. However, these

information are dynamic in a mobile network so that any error can result in the

failure of the execution of POACH. Moreover, the distributed version of POACH

requires global topological information and disseminating such information in a low-

cost manner. It is not a good choice in a mobile ad hoc network.

In our simulations, mobile nodes move based on the random waypoint model in NS2.

In this model, each node selects a random destination and moves towards the

destination with a speed selected randomly from (0m/s, vmaxm/s). After the node

reaches its destination, it pauses for a period of time (chosen to be 20 seconds) in our

simulation and repeat the movement pattern. To focus on the impact of mobile speed

on the performance of the cache placement algorithms, we set the mean query

generation time as 2 seconds and set the mean update generation time as 30 seconds.

We set the contention threshold Θ3 as 0.04 and set the hedging flow threshold Θ4 as

100.

Due to the mobility of wireless nodes, data queries may be lost, or the data reply

may be lost, or the query delay is beyond the timeout that mobile nodes can endure.

Therefore, we introduce another metric named query success ratio besides average

query delay and caching overheads in mobile networks. The query success ratio is

defined as the percentage of the queries that receive the requested data item within

the query success timeout period. We set the timeout of the request as 20 seconds.

5.5.2.1. Average Query Delay

Figure 5.10 shows simulation results of comparing three caching algorithms, viz.

NOCACHE, POACH and DCCA in terms of average query delay. The NOCACHE

strategy means that there is no data caching in the system. In Figure 5.10, we vary

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 91

the maximum speed of mobile nodes from 2m/s to 16m/s while keeping the mean

update generation time and the mean update generation time. We observe that DCCA

outperforms POACH and NOCACHE constantly for all the maximum speed. The

results also show that DCCA has a much better performance with higher speed.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

Maximum Speed (m/s)

A
v
er

ag
e

Q
ue

ry
 D

el
ay

 (
s) DCCA

NOCACHE

POACH

Figure 5.10: Average Query Delay vs. Maximum Speed

0

10000

20000

30000

40000

50000

2 4 6 8 10 12 14 16

Maximum Speed (m/s)

C
ac

hi
ng

 O
ve

rh
ea

ds

DCCA

NOCACHE

POACH

Figure 5.11: Caching Overheads vs. Maximum Speed.

5.5.2.2. Caching Overhead

Figure 5.11 shows simulation results in terms of caching overheads. In Figure 5.11,

we vary the maximum speed of mobile nodes from 2 m/s to 16 m/s while keeping

the mean update generation time and the mean update generation time. We observe

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 92

in Figure 5.11 that DCCA outperforms POACH and NOCACHE constantly for all

the maximum speed and the performance of DCCA is stable.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 4 6 8 10 12 14 16

Maximum Speed (m/s)

Q
u
er

y
 S

uc
ce

ss
 R

at
io

DCCA

NOCACHE

POACH

Figure 5.12: Query Success Ratio vs. Maximum Speed

5.5.2.3. Query Success Ratio

Figure 5.12 shows simulation results in terms of query success ratio. We vary the

maximum speed of mobile nodes from 2 m/s to 16 m/s while keeping the mean

update generation time and the mean update generation time. Although the query

success ratio is decreased with higher speed, we still observe that DCCA

outperforms POACH and NOCACHE constantly for all the maximum speed.

In summary, simulation results show that CCCA and DCCA both achieves better

performance than other alternatives in terms of average query delay, caching

overheads, and query success ratio, especially in a mobile environment. Additionally,

the performance of CCCA and DCCA are much stable than other alternatives. Here

we should clarity the point that there are still some ups and downs from Fig.5.6 to

Fig. 5.9 as the mean query or update generation time increases. This is because we

now evaluate each point by using the average value of simulations for 5 times. We

can reduce this undulation by carrying out our simulations with more times.

Chapter 5. Contention-Aware Data Caching in Wireless Multihop Ad Hoc Networks

 93

5.6. Summary

In this chapter, we addressed the cache placement problem in wireless multi-hop ad

hoc networks. We investigate the impact of contentions on the performance of data

caching. To the best of our knowledge, this is the first time to consider the

contribution of contentions to the total cost in a caching system in wireless ad hoc

networks. Since most of the previous work aim to minimize total cost evaluated by

the hops of messages, these strategies cannot achieve their expected performance in

real applications in wireless multihop ad hoc networks. We present two heuristic

rules to minimize the total cost as follows. The first rule aims to reduce the access

traffic flows as many as possible and increase the update traffic flows as few as

possible. The second rule intends to select cache nodes with fewer contentions from

the candidates selected from the first heuristic rule. Based on the two heuristic rules,

we present CCCA (Centralized Contention-aware Caching Algorithm) and DCCA

(Distributed Contention-aware Caching Algorithm). In our simulations, we evaluate

the proposed algorithms in static networks and mobile networks respectively. We

take caching overheads, average query delay, and success query ratio as our

performance metrics. The results demonstrate that our algorithms outperform the

previous work, particularly in more challenging scenarios, such as higher query

frequency, higher update frequency and higher mobility.

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 95

Chapter 6. Divide-and-Rule Cooperative

Caching in IMANETs

In this chapter, we introduce the proposed Divide-and-Rule Cooperative Caching

algorithm, DRCC. This chapter is organized as follows. Firstly, Section 6.1 is the

overview to this work. Section 6.2 describes the network model and the problem

formulation. In Section 6.3, we present the design of our algorithms and

mathematically analyze the performance. In Section 6.4, we make an analysis on the

key parameters in DRCC in order to obtain the optimal solution. Simulation results

are reported in Section 6.5. Finally, Section 6.6 concludes this chapter.

6.1. Overview

In Internet-based Mobile Ad Hoc Networks (IMANETs) [CMC99], mobile nodes

may cache data items in a cooperative way in order to reduce total access cost.

Cooperative caching [YC06, TGD06] has bee proved as an efficient way to improve

the performance of data access in wireless networks. A typical strategy in

cooperative caching works as follows. Data sources transfer some data copies to

some nodes called cache nodes. Other nodes may access data items from the

corresponding closest cache nodes, instead of data sources. Consequently, total

access cost can be reduced because of the service provided by these cache nodes.

However, due to the limited cache space, not all the data items can be cached locally.

It is required to consider what data items should be selected at which mobile node to

minimize total access cost.

Therefore, “to be selfish, or to be altruistic, that is the question in cooperative

caching.” Each mobile node should make caching decision on whether to cache a

data item or not. If each mobile node caches data items only according to its own

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 96

preference, some data items will be only accessed from their data sources. This

definitely results in longer access delay. If each mobile node caches data items only

for others, this brings more message costs for exchanging the information about

access frequencies and the corresponding distances for accessing data items.

Consequently, there should be a trade-off between selfishness and altruism in

cooperative caching.

In fact, the major problem in cooperative caching is the cache placement problem

[TG07, NSC03, TCC07], i.e., how can each mobile node select a subset of data

items to cache cooperatively in its limited cache so that the total access cost of all

the nodes is minimized? Clearly, total access cost mainly depends on two important

factors. One is the access frequency for each mobile node accessing each data item.

The other is the distance between each mobile node and the corresponding closest

cache node for each data item. As we mentioned, there are two important drawbacks

in the existing cache placement strategies. Firstly, it is costly for one node collecting

the information about other nodes’ access frequencies to various data items, and

letting others know its own access frequencies. Secondly, the distances between

mobile nodes and the corresponding closest cache nodes for multiple data items are

dynamic in an IMANET, due to the dynamic topology in an ad hoc network.

Additionally, it is also costly to update the information about the distances to the

closest cache nodes in time.

In this chapter, we aim at improving the performance of cooperative caching by

taking the impact of data access pattern into consideration. There are three key

points on the novelty of DRCC. First, we consider the cache placement problem

from a new view. Our solution is based on the observation on data access pattern. We

find that most of the simulations in previous works apply the Zipf-like distribution as

data access pattern and the Zipf-like distribution has been validated in web page

requests in practice [BCF+99]. Since data access pattern describes the distribution of

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 97

access frequency, it is beyond the level of access frequency. Second, the objective of

cache placement is to minimize total access delay. DRCC changes the original

objective by trying to provide an optimal trade-off between nodes’ selfishness and

altruism, and make the cache placement problem much easier to be addressed in

mobile environments. How to divide the cache space at one node makes the

granularity of cache placement upgrade from data item to the whole cache. Third, the

difficulty of detecting dynamic distances between client nodes and the closest cache

nodes is circumvented by reducing average access hops. DRCC provides a new

probabilistic way to evaluate total access delay.

In this chapter, we propose a novel caching strategy for the cache placement problem,

in which different data items are treated with different schemes with respect to

selfishness and altruism. We aim to provide an optimal trade-off between selfishness

and altruism by dividing the limited cache space into two components, including the

selfish component and the altruistic component. In the selfish component, each

mobile node selects the most frequently accessed T data items according to its own

data access frequencies, showing the side of selfishness of a node. On the other hand,

each mobile node randomly selects yi data items from the rest of data items and

guarantee yi follows the Poisson distribution Po(R). The reason why we choose the

Poisson distribution will be explained in Section 6.3.2. These data items selected are

cached into the altruistic component. Since it is costly to find the accurate hops from

a mobile user to the closest cache node due to the dynamic topology, we define

average access hops as average hops for any mobile node accessing any data item in

IMANETs. Therefore, our objective is to minimize total access cost by minimizing

average access hops due to the intractability of the original NP-hard problem. We

model the relationship between mobile nodes and data items into a bipartite random

graph [NSW01]. Thus we can evaluate the impact of average access hops on total

access cost.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 98

We treat the selection of data items in the selfish component and the altruistic

component with different schemes, which enlightens us on the name of our solution,

i.e., Divide-and-Rule Cooperative Caching (DRCC). We must clarify that the term

“Divide-and-Rule” is different from the one “Divide-and-Conquer” in the way that

the latter is to divide a problem into smaller and similar ones and solve each with the

same way, while the first is to divide a problem into smaller ones and solve each

with different ways.

Our new cooperative caching scheme, DRCC, focuses on the problem of how to

make full use of limited cache space efficiently at each mobile node so that total

access cost can be minimized. Compared with other alternative solutions, DRCC has

the following four advantages: (1) DRCC reduces caching overheads to a great

degree. Since each mobile node makes caching decision based on its own data access

frequencies, there are fewer communication messages among mobile nodes; (2)

DRCC is adaptive in the way that it can adjust the spaces allocated for the selfish

component and the altruistic component according to the distribution of the data

access frequencies. Once the distribution is changed, the allocation strategy is also in

tune with the parameter of the distribution; (3) DRCC is with higher scalability. The

altruistic component is designed to reduce average access hops between mobile

nodes and cache nodes without sending communication messages for exchanging the

information about mobile nodes’ cache contents. The data items in the altruistic

component are randomly selected, but the number of the selected data items at each

node follows a specified distribution in order to guarantee the probability of reducing

average access hops. To the best of our knowledge, this is a novel way to deal with

the relationship between mobile nodes and data items; and (4) DRCC is independent

to the mobility models. As we all know, it is not easy to find a mobility model to

describe various cases in the real world. DRCC focuses on the relationship between

mobile nodes and data items so that it can adapt itself to any mobility model.

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 99

6.2. Problem Formulation

In this section, we first introduce the system model for our work, and then we

formulate the cache placement problem with multiple data items in IMANETs.

6.2.1. System Model

Let G(V, E) be a graph representing an IMANET with n (n=|V|) mobile nodes,

V={MN1, MN2,..., MNn}. Two mobile nodes communicate directly with each other,

which is represented by an edge on the graph. Mobile nodes access m data items in

the set D={d1, d2, ..., dm}, such as web pages. The size of data item di is denoted by

SD. Each data item is maintained by only one data source, i.e., a gateway node. We

define SRi as the data source of data item di. Moreover, mobile node MNi accesses

the data item dj with the frequency p(j).

Let dmin(i,j) denote the minimum hops for MNi accessing data item dj from the

closest cache node. The closest cache node for MNi accessing dj can be one of the

nodes that have the copy of data item dj or the source node SRj. The size of MNi’s

cache is denoted by S.

To model the cache placement problem in a MANET, we have the following

assumptions:

 Gateway nodes serve as the sources of the data items that they obtain from
the Internet.

 Links are bidirectional.
 Mobile nodes never fail.
 Each hop delay is the same.

6.2.2. Problem Formulation

The objective of the cache placement problem is to determine which data items

should be cached at which mobile nodes so that the total access cost of all the nodes

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 100

is minimized. In our problem, cache placement is subjected to limited cache sizes at

individual nodes. Therefore, the cache placement problem is to select a set of sets of

cache nodes M={M1, M2 , M3, ..., Mm}, where each mobile node in Mj stores a copy

of dj, in order to minimize the total access cost as follows:

min
1 1

(,) (() (,))
n m

i j
G M p j d i jτ

= =

= ×∑∑ (6.1)

under the cache space constraint that

|{Mj|i∈Mj}|≦ S SD⎢ ⎥⎣ ⎦ , for all i∈V,

which means that MNi appears at most S SD⎢ ⎥⎣ ⎦ sets of M.

Cache Node Client NodeGateway Node Access da

A
da

da

da

B

C

db

dc

dc

MN1

MN2

1
2

1

1

2

11

1 1

1

db

Figure 6.1: An example to explain how to calculate average access hoops.

The cache placement problem has been proved NP-hard [BR01], and can be viewed

as a generalization of the facility location problem with multiple types of facilities

and constraints on the number of facilities located at a point. Eq. (6.1) shows that the

key contributor of the total access cost is the access hops for mobile nodes accessing

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 101

all the data items, since the access frequencies to data items are normally stable for a

mobile node. As we mentioned in the introduction, it is costly and difficult to know

the minimum access hops from the requestor to the closest cache node in a dynamic

topology.

In this chapter, we use average access hops, denoted by h, to replace the minimum

hops dmin in the objective function, in order to circumvent the intractability of the

NP-hard problem. We will provide a probabilistic way to evaluate the impact of

average access hops on the total access cost. The proposed solution DRCC is also

designed to achieve the optimal trade-off between selfishness and altruism by

minimizing average access hops.

We provide an example in Figure 6.1 to explain the meaning of average access hops

further. At time t, the topology of an IMANET is described in Figure 6.1. There are

13 mobile nodes in the network. Three gateway nodes, denoted by A, B, and C,

maintain three data items da, db, and dc. Let hM be the average access hops for the

strategy M. In Figure 6.1, there are two cache nodes MN1 and MN2, at which the

cache size is equal to 2. In the strategy M, MN1 caches data items da and dc, while

MN2 caches data items da and db. Other mobile nodes access the three data items da,

db, and dc from their corresponding nearest cache nodes or the corresponding

gateway nodes. In Figure 6.1, we just describe the hops for accessing da by using the

red lines with arrows. Let Da be the total hops for all the nodes accessing da and we

find that Da is equal to 12. In the same way, we obtain Db and Dc, 18 hops and 16

hops respectively. Then hM can be obtained by the following equation:

() /() 46 /(13 3) 1.18M a b ch D D D n m= + + × = × ≈ (6.2)

From Eq. (6.2), we know that the strategy M can make every mobile node access

every data item with about 1.18 hops in an IMANET. The objective function in Eq.

(6.1) can be revised as follow:

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 102

1 1
(,) (())

n m

M
i j

G M p j hτ
= =

= ×∑∑ (6.3)

6.3. A Divide-and-Rule Solution

In this section, we present our Divide-and-Rule Cooperative Caching (DRCC)

algorithm in detail. First, we introduce the basic idea in DRCC. Second, we describe

the details of our objective function for evaluating the performance of cooperative

caching by DRCC. Third, we present the detailed design of the two components in

DRCC with mathematical models. Here we take the Zipf-like distribution [BCF+99]

as an example to describe the data access frequencies, and investigate the

characteristics of the Zipf-like distribution to find some interesting phenomena for

our design. Finally, we present the distributed implementation of DRCC, including

the key data structures and the proposed algorithm.

Selfish Component Altruistic Component

T data items R data itemsCache

BA

Figure 6.2: Basic idea in DRCC with two strategies A and B

6.3.1. Divide and Rule

To improve the performance of data access, there are normally two kinds of

strategies in cooperative caching to reduce the total access cost. In the first strategy,

a mobile node caches the data items that it accesses with higher frequencies. The

total access cost will be reduced because the cached data items will be obtained

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 103

without any delay and message cost. Therefore, a mobile node in the first strategy is

selfish. In the second strategy, a mobile node caches the data items that are requested

by other mobile nodes. This depends on the number of these mobile nodes and the

distances from them. If the number of these requesting nodes is great enough, and

the distances are small enough, there will be enough benefits for a mobile node to

cache a data item at the cost of a part of its cache size. In such a case, a mobile node

is altruistic and the total access cost can also be reduced.

In DRCC, we aim to propose a strategy that treats the data items with different

caching schemes in terms of selfishness and altruism. We divide the whole cache at

each node into two components: the selfish component and the altruistic component.

In the selfish component, each mobile node caches the most frequently accessed T

data items so that it can access them with the minimum distance, i.e. zero. In the

altruistic component, each mobile node cache a group of data items randomly

selected from the set of the rest of data items. However, the number of data items in

the altruistic component should follow the Poisson distribution Po(R) in order to

guarantee the probability that each mobile node can access (m-T) data items. Note

that the total number of data items in the cache is constrained by the cache sizes of

mobile nodes. We try to make an optimal trade-off between selfishness and altruism.

In Figure 6.2, there are two strategies A and B. The only difference between them is

that the sizes for the selfish component and the altruistic component are different.

Therefore, the key problem in DRCC is how to design the parameter T and R to find

the optimal allocation strategy according to the data access frequencies.

6.3.2. Objective Function

As we mentioned in Section 6.2, we aim to minimize total access cost by minimizing

average access hops and considering the constraint of limited cache space. Obviously,

reducing average access hops can reduce total access hops if mobile users access all

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 104

the data items with the same access pattern. In our design, we consider the benefit of

caching some data items into the selfish component in order to make mobile nodes

access these data items with zero cost. Moreover, we consider the effect of caching

some data items randomly into the altruistic component in order to reduce average

access hops as few as possible under the constraint of cache size allocated for the

altruistic component.

In Figure 6.2, there are two caching strategies of DRCC, including A and B. There

are more spaces allocated for the selfish component in the strategy B than that in the

strategy A. Therefore, the strategy A makes mobile nodes access more data items

with zero cost but its average access hops is greater than that in the strategy B. There

is a trade-off between the selfish component and the altruistic component with

respect of selfishness and altruism.

First, we take the extreme case, the strategy X, as the opponent to other strategies. In

the strategy X, all the cache spaces are allocated for the altruistic component. Let hX

be the average access hops. Therefore total access cost can be obtained by the

following equation:

1 1
(,) ()

n m

X X
i j

G X p j h n hτ
= =

= × = ×∑∑ (6.4)

Second, let hA be the average access hops in the strategy A. Thus total access cost

can be obtained by the following equation:

1 1 1 1
(,) () 0 ()

n T n m

A
i j i j T

G A p j p j hτ
= = = = +

= × + ×∑∑ ∑ ∑ (6.5)

Obviously, the result of designing the selfish component is that the delay of

accessing these data items in the selfish component is zero. Therefore, we can obtain

Eq. (6.6) from Eq. (6.5).

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 105

1
(,) (1 ())

T

A
i

G A n h p iτ
=

= × × − ∑ (6.6)

In Section 6.3.3, we will discuss how to obtain average access hops hA by our

mathematical model. In Section 6.4, we will discuss how to find the optimal

parameters for the strategy A.

6.3.3. Two Components in DRCC

In this subsection, we first take the Zipf-like distribution as an example to describe

data access frequencies. Then we explain the detailed design of two components

respectively. Additionally, we also provide the mathematical models for both

components.

6.3.3.1. The Zipf-like Distribution

To show the design of DRCC, we take the Zipf-like distribution as an example. The

reason why we select it is that the Zipf-like distribution is considered as the most

famous mathematical model of web requests [BCF+99]. Moreover, there are many

simulation works in cooperative caching which use the Zipf-like distribution as the

data access pattern. However, note that DRCC does not depend on the Zipf-like

distribution. Given any distribution, we can analyze the performance of DRCC

mathematically.

Here, each mobile node accesses all the data items by following the Zipf-like

distribution Z(θ) as follows:

1

1() 1m

i

p k
k

i
θ

θ=

=
∑

 (6.7)

where the probability p(k) of a request for the k-th popular data item is proportional

to 1/kθ and 0≤θ≤1.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 106

Firstly, let us observe some interesting phenomena in the Zipf-like distribution. In

Figure 6.3, there are three instances of the Zipf-like distribution. If θ=1, the

distribution follows the strict Zipf distribution, while for θ=0, the corresponding

distribution follows the uniform distribution. We are interested in the impact of the

Zipf-like distribution on our proposed DRCC. Figure 6.3 shows that three Zipf-like

distributions with different values of θ have different impacts on the access

probability in terms of the preference ranking of data items. The curve with θ=1 is

the most skewed one compared with the other two. It shows that caching the most

frequently accessed data items in the selfish component can bring much more

benefits to the performance of data caching because the accumulated probability of

accessing the top T data items almost accounts for the whole probabilistic space. On

the other hand, the straight line with θ=0 shows that the probability for accessing

each data item is with the same benefit such that the advantage of caching any data

item should be determined by other factors, such as the hops to other mobile nodes.

Probability

1

Selfishness Altruism

1 2 5

Θ=0
Θ=0.5
Θ=1.0

3 m Preference Rank6 874

1

1() 1m

i

p k
k

i
θ

θ=

=
∑

Figure 6.3: Three Zipf-like distributions to show the impact of θ on the strategies of
cache placement

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 107

Secondly, as Figure 6.3 shows, the selfish component is designed for node itself,

which shows the side of selfishness of a mobile node. However, the altruistic

component is designed for other nodes, which shows the side of altruism of a mobile

node. Therefore, when the parameter θ is smaller enough, we should cache more data

items on the altruistic component. On the other hand, when the parameter is greater

enough, we should cache more data items in the selfish component.

6.3.3.2. The Selfish Component

In the selfish component, we select the most frequently accessed T data items from

the set D of data items, which means T data items are the most popular data items for

one node.

Let SSTA be the set of data items that are located at the selfish component of MNi’s

cache. Thus, SSTA is the set of data items {d1, d2, ..., dT}. Let AP(k) be the

accumulated access probability for the top k data items. AP(T) can be obtained by the

following equation:

1
() ()

T

i
AP T p i

=

= ∑ (6.8)

where p(i) can be determined by Eq. (6.7).

It is obvious that a mobile node with higher AP(T) can reduce its own access delay

more. However, this does not consider others’ requirements. Some data items will be

accessed only at the data sources. The total access cost will be increased by the

retransmissions of remote requests due to the long delay or the network partitions.

Another important point is the factor 1 iθ∑ in Eq. (6.7) has the same style of the

Riemann Zeta-function ζ(s) [RZF].

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 108

1

1 1 1 1() ...
1 2 3s s s s

i
s

i
ς

∞

=

= = + + +∑ (6.9)

where s is a complex variable. Eq. (6.9) is a Dirichlet series which converges

absolutely to an analytic function on the open half-plane of s such that Real(s)>1 and

diverges elsewhere. It is clear we cannot obtain an analytical function in Eq. (6.8)

when 0≤θ≤1. Thus our objective function can not be expressed with an analytical

style.

6.3.3.3. The Altruistic Component

As we mentioned in the introduction, it is costly for each mobile node to detect the

variation of the dynamic distances to the closest cache nodes. Our method is to

reduce average access hops with a high probability, not to find the path with the

minimum access hops for data items. This is much different from the existing cache

placement strategies. According to the definition, average access hops depend on the

topology and the data items in the altruistic component. As we all know, in an

IMANET, we cannot predict the changes of the topology. Therefore, we try to reduce

average access hops by increasing the number of data items in the altruistic

component, so that the probability that a mobile node can access a data item can be

increased.

The data items in the altruistic component are randomly selected in order that other

mobile nodes can access these data items with high probability. This is the side of

mobile nodes’ altruism. Obviously, the more data items we select in the altruistic

component are, the more possibly mobile nodes can access any data item within

fewer hops. However, the size of the altruistic component is still subjected to the

total cache space.

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 109

In the altruistic component, we select yi data items from the set (D-SSTA) in order to

minimize average access hops, where yi follows the Poisson distribution Po(R). We

investigate the expectation R with its impact on the probability that each mobile

node can access any data item.

MN1 MN2 MN3 MNn

dT+1 dT+2 dT+3

...

...

dm

{ y1, y2, y3,..., yn } follows Poisson distribution Po(R)

y1

y2 yn

Figure 6.4: A Bipartite Random Graph to model the relation between mobile nodes
and data items

We propose a Bipartite Random Graph [NSW01] to model the result of randomly

selecting data items from a data set. We select average R data items from (m-T) data

items by following the Poisson distribution [NSW01] Po(R). The reason why we

choose the Poisson distribution is as follows: 1) the results of randomly selecting

data items are under the full control of the parameters we select; 2) the average

length of shortest paths between mobile nodes and data items can be obtained easily

and well-formedly; and 3) the total access hops in the altruistic component can be

balanced because of the even nature of the Poisson distribution. One of our future

works is to investigate the impact of other distributions.

As Figure 6.4 shows, we construct a bipartite random graph with n mobile nodes and

(m-T) data items. Mobile node MNi selects yi data items randomly from the set of

data items (D-SSTA). Thus we obtain a degree sequence { y1, y2, y3, ..., yn } for all the

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 110

mobile nodes, and yi follows the Poisson distribution Po(R) with the expectation R.

Therefore, each mobile node caches a subset of the set (D-SSTA) of data items with

the average size R data items. Hence it can be deduced that each data item is also

cached by a subset of mobile nodes V with the average size ν. The relationship

among the parameters: m-T, n, R and ν can be described by the following equation:

R

m T n
ν

=
−

 (6.10)

As Figure 6.4 shows, we have two sets of nodes in each part in the bipartite random

graph. One is the set of mobile nodes, and the other is the set of data items. By

following this way, a bipartite random graph consists of the two parts. Let pj be the

probability distribution of the degree of the mobile node MNi. We also define qk as

the probability distribution of the degree of the data item dk. Therefore, according to

the theory of bipartite random graph, we can define two generating functions which

generate the above two probability distributions:

0 () j
j

j

f x p x= ∑ (6.11)

0 () k
k

k
g x q x= ∑ (6.12)

Since the two distributions are two Poisson distributions, it is trivial that we can

obtain the following equations:

0
(1)() R xf x e −= (6.13)

(1)
0 () xg x eν −= (6.14)

If we choose an edge randomly on the bipartite random graph and follow it in both

ways to reach the data item and the mobile node, the distribution of the number of

other edges leaving those two nodes is generated by the following equations:

1 0
1() ()f x f x
R

′= (6.15)

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 111

1 0
1() ()g x f x
ν

′= (6.16)

Now we can define the generating function G0(x) for the distribution of the number

of co-items (i.e., the data items that are cached by two mobile nodes) of a randomly

selected mobile node as:

0 0 1

(1)(1)() (())
xR eG x f g x e

ν − −= = (6.17)

If we randomly select an edge on the bipartite random graph, the distribution of the

number of co-items of the mobile node to which it leads can be generated by the

follow function:

1 1 1

(1)(1)() (())
xR eG x f g x e

ν − −= = (6.18)

Let zk be the average number of the neighbours who are k hops away from a

randomly selected mobile node. The generating function for zm can be found as

follows:

0
(1)

1

() 1
()

(()) 2
k

k

G x for k
G x

G G x for k−

=⎧
= ⎨ ≥⎩

 (6.19)

Then the average number zm of the kth nearest neighbours can be obtained by the

following equation:

[]
1()

1 2
1 1 0 1

1

(1) (1)
kk

k
k x

zdGz G G z
dx z

−
−

=

⎡ ⎤
′ ′= = = ⎢ ⎥

⎣ ⎦
 (6.20)

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 112

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

8

9

10

Expectation R in Poisson Distribution Po(R)

Average Length of Shortest Path l
Ceil(l)

Figure 6.5: Analytical results for average length of the shortest path l, m=1000, n
=100, T=0.

Here we are mainly interested in the average length l of the shortest path between

two randomly selected mobile nodes on our bipartite random graph. The path length

can be estimated approximately when the total number of neighbours of a mobile

node out to that distance is equal to the total number of the mobile nodes on the

bipartite random graph, i.e., when

1
1

l

k
k

z n
=

+ =∑ (6.21)

From Eq. (6.15) and Eq. (6.16), we know that z1=nR2(m-T) and z2=z1
2. Therefore,

the average length l can be obtained as follows:

2

log
log() log()

nl
nR m T

=
− −

 (6.22)

To investigate the relation between average length l and the expectation R in Po(R),

we present the analytical results in Figure 6.5. To make the results more clear, we

also describe the relation among l⎡ ⎤⎢ ⎥ and R. As Figure 6.5 shows, average length l

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 113

drops sharply at the beginning of increasing R. However, from some point, average

length l is increased slowly, which means that adding more data items to the

altruistic component cannot make more benefits any longer.

MN1

MN1

MN2

MN3

MN4

MN5

MN6

Movement path Access path

dj

Figure 6.6: A sample process for a mobile node accessing a data item in movement

In DRCC, average length l is used to evaluate the probability that each mobile node

can access any data item by encountering a specified number of other mobile nodes,

i.e., if we randomly select one mobile node and one data item, we find that the

shorter the shortest path is, the more possibly the mobile node accesses the data item.

In Figure 6.6, we present an example that describes the process for the mobile node

MNi accessing the data item dj. MN1 firstly encounters MN2 and dj may be in the

cache of MN2. Then MN1 encounters MN3 and MN4 at the same time. Then MN1

comes across MN5. Finally, MN1 meets with MN6 and finds the requested data item dj.

In an IMANET, it cannot be predicted which mobile node will come across.

However, given enough conditions, we can know the probability that a mobile node

encounters how many mobile nodes during a time period when moving. This is

beyond the scope of this chapter. In this chapter, we mainly focus on the impact of

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 114

the number of mobile nodes encountered on the length of path for a mobile node

accessing a data item.

Moreover, in Figure 6.4, we observe that the access path on a bipartite random graph

follows the style that two terminal nodes attached to each edge are located in two

parts, like a zigzag. In an IMANET, a normal path for a mobile node accessing a data

item consists of all the intermediate nodes from the sender to the receiver. Therefore,

half of the edges of the path on a bipartite random graph can be removed. Average

access hops h can be evaluated by the average length l of the shortest paths. We

assume that the underlying routing protocols can provide the shortest path for all the

mobile nodes. The evaluation is with a very high probability, which converges to 1 if

the numbers of mobile nodes and data items are infinite. We present average access

hops h by the following equation:

2

1 log
2 log() log()

nh
nR m T

= ×
− −

 (6.23)

From Eq. (6.23), we know that each mobile node can access every data item that are

not cached locally within h other mobile nodes with a very high probability. We can

increase the value of R in order to reduce the value of h. However, the cache sizes at

each mobile node are limited, we should increase the number of data items in caches

under the constraint of the cache sizes. The selection of the parameters in DRCC will

be discussed in Section 6.4.

6.3.4. Divide-and-Rule Cooperative Caching

In this subsection, we present a distributed algorithm named Divide-and-Rule

Cooperative Caching (DRCC) to solve the cache placement problem with multiple

data items in IMANETs.

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 115

6.3.4.1. Key Data Structures

Closest Cache Tables are the most important data structure in DRCC. Mobile node

MNi maintains the closest cache node MNj that has a copy of the data item dk for

each data item in the network. MNi also maintains a closest_cache table, where an

entry in the closest_cache table is of the form (dk, MNj) where MNj is the closest

cache node that has the copy of dk, known by MNi. Note that if MNi is the data

source SRk or has cached dk, MNi is the closest cache node for dk.

Waiting Node Lists are another key data structure in DRCC. Each data source SRi

maintains a waiting list for the data item di. In the waiting list for data item di, there

is the set of nodes that have sent the cache requests for requesting to be as a cache

node for data item di. Data source SRi does not send the cache copies of di to the

waiting nodes until the number of waiting nodes meets with the requirement of the

parameter (nR/(m-T)), which is determined by Eq. (6.10) in DRCC.

Cache Request Lists are maintained by all the mobile nodes. The objective of this

data structure is to improve the efficiency of sending cache requests. Since one

mobile node maybe act as more than one data source in the network, we call such

mobile node as multiple data source. For each multiple data source SRi, MNj

maintains a list that records the cache requests sent to SRi. MNi combines these cache

requests into one message. When SRi sends the corresponding cache replies to these

waiting nodes, each of the intermediary nodes can know which node will be its own

closest cache node for data item di.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 116

Figure 6.7: Divide-and-Rule Cooperative Caching

Algorithm 1: Divide-and-Rule Cooperative Caching Algorithm

SETTING:

A Network Graph G(V,E) and a data set D with m data items.

BEGIN

MNi selects the top T data items from D and sends CacheRequest to the data

sources.

MNi selects yi data items randomly (yi follows Poisson distribution Po(R)) from

D-Ssta and sends the CacheRequest to the data sources.

MNi sends DataRequest if there is an entry in ClosestCacheTable, else

broadcast BcastDataRequest.

On receiving CacheRequest

 If MNi is the data source, wait until collets nR/(m-T) CacheRequest and then

sends CacheCopy to the requestors.

On receiving DataReply

 If MNi is the requestor, checks the timeout Treq and if valid, then serves the

application and counts the successful access, else discards it.

 Else If local memory has available space, then caches it.

On receiving CacheCopy

 If MNi is the requestor, saves the copy.

 Else updates its ClosestCacheTable from CacheNodeList. If local memory

has available space, then caches it.

On receiving DataRequest(dj)

 If MNi holds dj, sends DataReply(dj) to the requestors.

 Else If MNi knows the closest cache node for dj, forwards the request to the

node.

On receiving BcastDataRequest(dj)

 If MNi holds dj, sends DataReply(dj) to the requestors.

 Else if MNi knows the closest cache node for dj, forwards the request to the

node and updates ReceivedNodeList.

 Else if Node_Sum in ReceivedNodeList is greater than h, discards the

BcastDataRequest and forwards DataRequest to the data source.

 Else broadcasts BcastDataRequest and updates ReceivedNodeList.

END

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 117

6.3.4.2. Caching Strategy

In this subsection, we describe the caching strategy and the corresponding cache

replacement strategy in the two components in DRCC. The first one is about how to

minimize total access hops. The second is about how to replace data items from

cache contents once the cache space is full.

The caching policy of DRCC is as follows. To minimize the total access cost in the

selfish component, each mobile node is selfish such that they should cache the most

frequently accessed data items for self. Each mobile node selects the most frequently

accessed T data items and caches them into the selfish component, which is

determined by Eq. (6.10) and Eq. (6.27). Each data item is with different weight by

the Zipf-like distribution. We aim at accessing the most popular data items locally so

that total access cost in the selfish component is minimized.

Next, each mobile node generates a random number yi by following the Poisson

distribution Po(R), where the parameter R is determined by Eq. (6.26) after we find

the near-optimal T in Eq. (6.27). Then each mobile node randomly selects yi data

items from the set of data items, D-Ssta.

Then the mobile node MNi holds a small data set CRi that including (T+yi) data items

and the total data sizes in CRi should be smaller than its cache size S. MNi sends the

CacheRequest message to the corresponding data source SRi for data item di that is

one of the members in CRi. After the data source SRi collects (nR/(m-T))

CacheRequest messages from mobiles nodes. Then SRi sends the CacheCopy

message to the requestors. The CacheCopy message is composed of two parts: (1)

the copy of data item di, and (2) the CacheNodeList that includes all of the cache

nodes which have sent CacheRequest messages for data item di until now.

Consequently, mobile node can know other nodes that cache the same data items. If

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 118

MNi receives any CacheCopy message, it updates its own ClosestCacheTable to

store the closest one.

If MNi sends a DataRequest message for data item dj with a timeout Treq, MNi first

searches the content of its own cache. If dj is in MNi’s cache, MNi accesses the data

item immediately. Otherwise, MNi looks up its ClosestCacheTable to find the closest

cache node that holds the copy of dj. If MNi finds the closest cache nodes, it sends

the DataRequest message to the closest cache node. Otherwise, if there is no any

entry in the ClosestCacheTable, MNi sends the DataRequest message to the data

source SRj and broadcasts the BcastDataRequest message to its neighbours. The

BcastDataRequest message includes a field named ReceviedNodeList, which records

the new receivers. Mobile node MNk receives the BcastDataRequest message from

MNi. If MNk holds the copy of dj, it sends a DataReply message to MNi. If MNk

knows the closest cache node, it forwards the DataRequest message to the node and

updates the ReceivedNodeList in the BcastDataRequest message. Otherwise, MNi

counts the total number Node_Sum of mobile nodes in the ReceivedNodeList. If the

number Node_Sum is greater than h in Eq. (6.23), MNk discards the

BcastDataRequest message. Otherwise, MNk updates the RecivedNodeList and

broadcasts the BcastDataRequest message to its neighbours.

If MNi does not receive the DataReply within the timeout Treq, it sends the

DataRequest message again. If MNi does not receive the DataReply for two times, it

sends the DataRequest message to the corresponding data source.

When the local cache of a mobile node is not full, each mobile node can cache the

passing-by data items that it does not cache in its own cache before. When the local

cache is full, mobile node MNi is required to replace a data item randomly selected

from its altruistic component. Remember that the data items in the selfish component

should not be replaced. MNi only replaces the data items in the altruistic component.

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 119

6.4. Parameter Analysis

In this section, we develop a simple mathematical model to analyze the key

parameters in DRCC. According to our analysis, we find a near-optimal solution to

allocate cache sizes for the two components, which can minimize the total access

cost.

To analyze the performance of DRCC, we first provide how to calculate the total

access cost for the strategy A by Eq. (6.6) and Eq. (6.23) as follows:

2
1

log(,) (1 ())
2 log() log()

T

i

n nG A p i
nR m T

τ
=

= × × −
− − ∑ (6.24)

Then the cache placement problem in cooperative caching can be mapped to an

optimal problem as follows:

(,)Minimize G Aτ (6.25)

. . Ss t T R
SD

⎢ ⎥+ ≤ ⎢ ⎥⎣ ⎦
 (6.26)

As we mentioned in Eq. (6.9), we cannot find an analytical function in the form of

the sum for the Riemann Zeta-function. Therefore, we must make an investigation of

the value of the total access cost. To investigate the relation between the total access

cost and the two parameters T and θ, we present the analytical results in Figure 6.8.

It shows that the total access cost is increased with increasing the number of data

items in the selfish component, or reducing the parameter θ in the Zipf-like

distribution Z(θ). Given the parameter θ, the cache size S and the data item size SD,

the optimal value of T lies on the middle of the range from 1 to 100. When T is much

smaller or bigger, the total access cost will be much greater than the ones when T is

in the middle of the range [0, S/SD].

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 120

Figure 6.8: Analytical results on total access delay with T data items in the random
component and the parameter θ in the Zipf-like distribution, n =100, m=1000.

To make the relation more clear, we find the number of data items T when we

achieve the minimum total access cost for a specific Zipf-like parameter θ. The

analytical results are presented in Figure 6.9. It shows that the number of data items,

T, in the selfish component is nearly linearly proportional to the parameter θ in the

Zipf-like distribution.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

Parameter θ in the Zipf-like distribtion Z(θ)

T
da

ta
 it

em
s

w
he

n
ac

hi
ev

in
g

m
in

im
um

 to
ta

l a
cc

es
s

co
st

Figure 6.9: Analytical results on the relation between T data items in the altruistic
component and the parameter θ when achieving the minimum total access cost,

n=100, m=1000, S/SD=100

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 121

We take our simulation setting as a case study. The number of mobile node n is equal

to 100 and the number of data items m is equal to 1000. The cache size S is equal to

75000 bytes and the size of each data item is equal to 750 bytes. We present an

approximate result for describing the relation between the optimal T and the Zipf-

like parameter θ as follows:

62.5 10optT θ≈ × − (6.27)

We take one of the settings in our simulations as an example. We take the value of

the parameter θ of the Zipf-like distribution as 0.8. We find that the number of data

items in the selfish component T is equal to 40, which means that there should be the

most frequently accessed 40 data items in the selfish component at the cache of each

mobile node, while 60 data items in the altruistic component.

6.5. Simulations

In this section, we demonstrate the performance of DRCC compared with Benefit-

Based Data Caching (BDC) [TGD06] through simulations over randomly generated

network topologies. To the best of our knowledge, BDC is with the best performance

in cooperative caching for multiple data items in mobile environments. We will show

the performance of two strategies by presenting the results in terms of the same

metrics under the same setting.

6.5.1. Simulation Settings

Our simulations are carried out by using the NS2 simulator [FV97]. The NS2

simulator contains models for common ad hoc network routing protocols, IEEE

Standard 802.11 MAC layer protocol, and two-way ground reflection propagation

models [BMJ+98]. The DSDV routing protocol [PB94] is used in our work to

provide routing services.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 122

6.5.1.1. Network Setup

We simulated DRCC and BDC in a wireless network with randomly placing 100

mobile nodes in an area of 2000x500m2. Mobile nodes move based on the random

waypoint model [BMJ+98] in NS2. In this model, each node selects a random

destination and moves towards the destination with a speed selected randomly from

(0m/s, vmax m/s). After the node reaches its destination, it pauses for a period of time

(chosen to be 100 seconds) in our simulation and repeat the movement pattern. Note

that the normal radio range for two directly communicating nodes in the NS2 is

about 250 meters. We assume that there are 1000 data items with the same size 750

bytes. We setup two randomly placed data sources (servers) S0 and S1 as the gateway

nodes, where S0 maintains the data items with even IDs and S1 maintains the data

items with odd IDs.

6.5.1.2. Client Query Model

In our simulation, each mobile node is a client node. Each client node sends out a

single stream of read-only queries and each query is a request for a data item. We use

the http requests as these queries in the simulations. The time interval between two

consecutive queries is defined as the query generate time, and follows the

exponential distribution with the mean value Tquery, which we vary from 3 to 40

seconds. The success of data access means that the data reply responds to the data

request within a timeout. We set the timeout as 40 seconds, same as BDC.

6.5.1.3. Data Access Pattern

Data access pattern means the distribution for mobile node accessing a group of data

items. As we mentioned at the beginning of this chapter, we assume that mobile

users in our simulations are with the same access pattern. In our simulation, each

mobile node accesses these 1000 data items by following the Zipf-like distribution

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 123

Z(θ). Additionally, we investigate the impact from the parameter θ on the

performance of both caching strategies.

6.5.1.4. Performance Metrics

We measure three performance metrics for comparison of various cache placement

strategies, viz., average query delay, caching overheads and query success ratio.

Query delay is defined as the interval between the time when a client node sends its

data request out and the time when the client node obtains the reply from its nearest

cache node. Average query delay is the average of query delays over all queries.

Caching overheads includes all of the packets in our caching system, viz., data

requests, data replies, and other messages for caching systems. Note that these

packets do not include routing packets because the two strategies use the same

routing protocol DSDV. Query success ratio is referred to as the percentage of the

queries that receive the reply data item within the period of the query success

timeout.

6.5.2. Simulation Results

In this subsection, we present the simulation results comparing the two caching

strategies, viz. BDC and DRCC, under the data access pattern and study the effect of

various values on the performance metrics.

6.5.2.1. Varying Zipf-like Parameter θ

In Figure 6.10, Figure 6.11 and Figure 6.12, we vary the Zipf-like distribution

parameter θ from 0.0 to 1.0 while keeping the cache size as a constant, the mean

query generate time Tq as 10 seconds, and the maximum speed Vmax as 2.0m/s. We

choose the cache size to be big enough to fit 100 data items, i.e., 75Kbytes. We

observe that DRCC outperforms BDC, especially in terms of caching overheads. The

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 124

results show that DRCC can reduce at least 20% and up to 50% message cost, while

it obtains much better performance in terms of average access delay. When the Zipf-

like parameter θ is smaller than 0.2, the performance of average query delay and

query success ratio are much similar between BDC and DRCC.

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zipf-like Parameter θ

A
ve

ra
ge

 Q
ue

ry
 D

el
ay

(s
)

BDC

DRCC

Figure 6.10: Average query delay vs. Zipf-like Parameter

0

50000

100000

150000

200000

250000

300000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zipf-like Parameter θ

C
ac

hi
n
g

o
ve

rh
ea

ds

BDC

DRCC

Figure 6.11: Caching Overheads vs. Zipf-like Parameter

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 125

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Zipf-like Parameter θ

Q
ue

ry
 s

uc
ce

ss
 r

at
io

BDC

DRCC

Figure 6.12: Query Success Ratio vs. Zipf-like Parameter.

6.5.2.2. Varying Mean Query Generate Time Tq

In Figure 6.13, Figure 6.14 and Figure 6.15, we vary the mean query generate time

Tq from 3 to 40 seconds in our data access pattern while keeping the Zipf-like

distribution parameter θ as 0.8 (this selection is based on the real web trace study

[BCF+99]), and the maximum speed Vmax as 2.0m/s. We observe that DRCC

outperforms BDC but the differences mainly focus on the setting when the mean

query generate time is small, which means that the performance are similar when the

query arrival rate is low. For a system with sparse data requests, there are few

differences among all the caching strategies. The results show that DRCC reduces at

least 25% and up to 50% message cost while obtain better performance than that of

BDC.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 126

0.01

0.1

1

10

3 5 10 15 20 25 30 35 40

Mean Query Generate Time(s)

A
ve

ra
ge

 Q
ue

ry
 D

el
ay

(s
)

BDC

DRCC

Figure 6.13: Average query delay vs. Mean Query Generate Time.

0

100000

200000

300000

400000

500000

3 5 10 15 20 25 30 35 40

Mean Query Generate Time(s)

C
ac

hi
ng

 O
ve

rh
ea

ds

BDC

DRCC

Figure 6.14: Caching Overheads vs. Mean Query Generate Time.

0

0.2

0.4

0.6

0.8

1

1.2

3 5 10 15 20 25 30 35 40

Mean Query Generate Time(s)

Q
ue

ry
 S

uc
ce

ss
 R

at
io

BDC

DRCC

Figure 6.15: Query Success Ratio vs. Mean Query Generate Time.

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 127

6.5.2.3. Varying Maximum Speed Vmax

In Figure 6.16, Figure 6.17 and Figure 6.18, we vary the maximum speed Vmax from

2 to 20m/s in our data access pattern while keeping the Zipf-like distribution

parameter θ as 0.8, and the mean query generate time Tq as 8. We observe that

DRCC outperforms BDC in most cases, especially in terms of caching overheads,

which means DRCC uses much less messages but obtains better performance

metrics compared with BDC. The results show that DRCC reduces at least 16% and

at most 71% message cost. Moreover, the results of BDC are not stable when the

speed of mobile nodes is increasing while the performance of DRCC is much stable.

Therefore, the results also show that DRCC is much suitable for mobile networks,

which is also one of our motivations for designing such a strategy of cooperative

caching in mobile networks.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2 4 6 8 10 12 14 16 18 20

Maximum Speed(m/s)

A
ve

ra
ge

 Q
ue

ry
 D

el
ay

(s
)

BDC

DRCC

Figure 6.16: Average query delay vs. Maximum speed

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 128

0

50000

100000

150000

200000

250000

300000

2 4 6 8 10 12 14 16 18 20

Maximum Speed(m/s)

C
ac

hi
ng

 o
ve

rh
ea

ds

BDC

DRCC

Figure 6.17: Caching overheads vs. Maximum speed.

0

0.2

0.4

0.6

0.8

1

1.2

2 4 6 8 10 12 14 16 18 20

Maximum Speed(m/s)

Q
ue

ry
 S

uc
ce

ss
 R

at
io

BDC

DRCC

Figure 6.18: Query success ratio vs. Maximum speed.

In summary, simulation results show that DRCC achieves better performance than

other alternatives in terms of average query delay, caching overheads, and query

success ratio, especially reducing overheads by 40% in average. The performance of

DRCC is much stable than that of BDC, especially in mobile networks.

Chapter 6. Divide-and-Rule Cooperative Caching in IMANETs

 129

6.6. Summary

In this chapter, we address the cache placement problem with multiple data items in

IMANETs. We consider the impact of the distribution of data access frequencies on

the performance of cooperative caching. We first formulate the cache placement

problem in IMANETs as an optimization problem under the constraint of limited

cache size. To deal with the dynamic topology of IMANETs, average access hops is

proposed to replace the length of the shortest paths in a mobile ad hoc network. We

present a novel caching strategy named Divide-and-Rule Cooperative Caching

(DRCC) that caches different data items with different strategies to minimize

average access hops. We also present the analytical results for the problem above. In

our simulations, we evaluate DRCC in IMANETs with different settings. We take

average query delay, caching overheads and query success ratio as our performance

metrics. The results demonstrate that our algorithms outperform the previous work.

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 131

Chapter 7. Gossip-based Cooperative Caching

for Data with Sequential Relation in

IMANETs

In this chapter, we introduce the proposed Gossip-based Cooperative Caching

algorithm, GosCC. This chapter is organized as follows: Firstly, Section 7.1 is the

overview to this work. Section 7.2 describes the network model and the problem

formulation. In Section 7.3, we present the design of our algorithms. In Section 7.4,

we make an analysis on the parameter in GosCC. Simulation results are reported in

Section 7.5. Finally, Section 7.6 concludes this chapter.

7.1. Overview

Before we discuss the cache placement problem in this chapter, we make a brief

introduction on data relations. In general, there are two kinds of basic relations

among data items. Firstly, the relation is inherent and we name it as Inherent

Relation (IR). For example, if a video file can be divided into many segments as

different data items due to the big size of a video, there is an inherent sequential

relation among these data items for a mobile user to access. Secondly, the relation

among data items is extrinsic and we name it as Extrinsic Relation (ER). For

example, when a mobile user is driving in a city and the traffic information

[WCL+08] to the destination should be cached on the mobile nodes in advance along

the path to the destination. If we consider the traffic information as data items, the

relation among these data item comes from the movement of mobile user. To clarify

the existing data relations in detail, we can categorize them into three categories,

including time-based relationship, spatial-based relationship, and semantic

relationship. The first one means that the relations among data items can be

described in a time-related way. For example, a video file is composed of a series of

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 132

segments that are used by following the sequence of time. This is one of the most

typical relations in the real world so that we take the sequential relation as our target.

The spatial-based relationship means that the relation results from the spatial

information of data items. For example, a driver plans to drive to a destination. The

traffic condition on each crossing along the path from the source to the destination is

related by the location of the user. The third one means that the relations among data

items are defined in a semantic way. The semantics can be defined by applications.

Additionally, we consider data relations in cooperative caching but our topic is much

different from several other related topics on caching. Firstly, context-aware caching

considers the behaviors of mobile users and the relation between data items. For

example, the authors [KP07] propose the relation among files by investigating the

users’ file access experience. In [SUE00], the authors propose a general automatic

hoarding algorithm by establishing the association rules of data items. It is clear that

the relation in context-aware caching is mainly from the investigation of user

experience, rather than the inherent relations among data items. Secondly, semantic

caching [DFJ+96, RDK03, LLS99] is derived from query reasoning in query

optimization in database systems. Tuples in a distributed database system are

mapped into a multidimensional semantic space. Each cluster of tuples within a

semantic subspace is cached and described by a restrict condition. Comparing

restrict conditions between a query and the cache, clients are able to determine what

tuples are available and what tuples are missing. However, there is no directly

cooperation among users. Semantic caching just plays the role of describing the

content of caches and the queries at each client node.

In a cooperative caching strategy, as we mentioned, it is important that how mobile

nodes can communicate with each other to exchange the information about caching.

In our work, mobile nodes mainly exchange two kinds of information, including the

progress report that describes the current IDs of data items used by mobile nodes,

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 133

and the cache contents in mobile nodes’ caches. As we all know, nodes in a mobile

ad hoc network are not connected by any fixed infrastructure. Gossiping [DGH+87,

RMH98, BHO+99, KMG03] is well matched to the needs of ad hoc networks

because it is a controlled form of flooding, i.e., messages are slowly propagated

through the whole network without congesting the wireless medium. Gossiping is

also independent of the network topology. Gossip-based multicast protocols rely on a

peer-to-peer interaction model for multicasting a message, and they are scalable

since the load is distributed among all participating nodes. Redundant messages are

used to achieve reliability and fault tolerance. In wireless networks, gossip-based

protocols have been proposed for multicast in mobile ad hoc networks (MANETs).

In this chapter, we propose an adaptive strategy for cache placement to make mobile

users access all the data items in a sequential order. Our objective is to minimize

total interruption intervals for all the mobile users across all the data items. We name

the proposed strategy as Gossip-based Cooperative Caching (GosCC). The

information about the progress reports and the cache content is exchanged by

gossiping, which is a suitable way to improve the reliability of communication in

such a mobile and wireless environment like IMANETs. Our caching decision is

made based on the information above and constrained by the limited cache sizes of

mobile nodes. GosCC have the three advantages: 1) the proposed strategy is reliable

in a mobile wireless environment because of reliable communication by gossiping; 2)

GosCC implements cooperative caching in a randomized way; and 3) GosCC is

independent to mobility models.

There are four points on the novelty of GosCC. Firstly, we introduce the relation

among data items into cooperative caching. We improve the performance of caching

by making use of these relations. Secondly, we apply gossiping as a reliable

dissemination way to exchange the information of the progresses of mobile user

using data items, and the cache content among mobile nodes. Thirdly, GosCC makes

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 134

total interruption intervals as the objective of cooperative caching, rather than total

query delay. It is much different from the existing works because we introduce data

relation into cooperative caching so that we are mainly interested in the efficiency of

using data items according to user experience. Lastly, the difficulty of detecting

dynamic distances between client nodes and the corresponding closest cache nodes is

circumvented by providing a probabilistic way for mobile nodes to communication

with each other. Caching decisions are made based on more accurate and timely

information. GosCC can also be analyzed in a mathematical way to evaluate the

performance of cooperative caching for data relation.

7.2. Problem Formulation

In this section, we first introduce the system model for our work. Next, we formulate

the cache placement problem with multiple data items in IMANETs.

7.2.1. System Model

Let G(V, E) be a graph representing an Internet-based Mobile Ad Hoc Networks with

n (n=|V|) nodes, V={MN1, MN2,..., MNn}. Two mobile nodes communicate directly

with each other, which is represented by an edge on the graph. Mobile users require

to access m data items D={d1, d2, ..., dm} by following the sequential order from d1 to

dm, such as the segmentations in a video file. The size of data item di is the same one

denoted by SD. Each data item is maintained only by one data source, such as a

gateway node (GW). We define SRi as the data source of the data item di. The size of

MNi’s cache is the same and denoted by S.

To model our problem, we have the following assumptions:

 Gateway nodes always maintain the copies of data items they cached from
the Internet.

 Links are bidirectional.
 Mobile nodes never fail.

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 135

 Each hop delay is the same.

7.2.2. Problem Formulation

In our problem, cache placement is to determine what data items should be cached at

which mobile nodes so that the total interruption intervals are minimized. We name

the proposed problem as the Sequential Relation Cache Placement problem (SRCP).

Our objective is much different from the traditional cache placement problem in the

way that we aim to minimize the total interruption intervals rather than the total

access delay. The interruption interval for data item dj at the mobile node MNi is

defined as the interval t(i,j) between the time when MNi finishes using the data item

dj-1, and the time when MNi begins to use the data item dj. Note that the interruption

interval is much different from the query delay, which is defined as the interval

between the time when a client node sends its data request out and the time when the

client node obtains the reply from its nearest cache node. We consider user

experience as our major concern after we introduce the sequential data relation into

cooperative caching.

In SRCP, cache placement is subjected to limited cache sizes at individual nodes.

The cache placement problem is to select a set of sets of cache nodes M={M1, M2,

M3, ..., Mm}, where each mobile node in Mj stores a copy of dj, to minimize the total

interruption intervals as follows:

1 1
(,) (,)

n m

i j
T G M t i j

= =

= ∑∑ (7.1)

s.t. |{Mj|i∈Mj}|≤S,

where MNi appears at most S sets of M. The traditional cache placement problem has

been proved NP-hard [RDK03]. In this chapter, the optimal solution for SRCP is that

the total interruption intervals are zero. However, it is clear that the optimal solution

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 136

is hard to be achieved due to the access delay for each mobile node to access each

data item in such a mobile environment. We aim to minimize the total interruption

intervals by making mobile nodes access all the data items at local cache as more as

possible. But mobile nodes also need to consider the progresses of other nodes using

data items and cooperate with each other, in order to reduce the probability that one

mobile node cannot access the data items continuously, i.e., the process of using data

items is interrupted.

7.3. Gossip-based Cooperative Caching

In this section, we firstly present our design rationality for our proposed caching

strategy, Gossip-based Cooperative Caching. Next, we describe GosCC in detail with

the key data structures and the detailed algorithm.

7.3.1. Design Rationale

In this subsection, we present our design rationale for our proposed Gossip-based

Cooperative Caching (GosCC). The whole subsection is divided into two parts: 1)

two important characteristics in SRCP that are much different from the traditional

cache placement problem; and 2) three heuristic rules in our design.

7.3.1.1. Characteristics in SRCP

Normally, the traditional cache placement strategy balances a tradeoff between

access delay and message cost. In SRCP, we also concern access delay, but it is not

the most important objective. The reasons are presented as follows.

Firstly, total access delay may be the most important metrics in the previous works

for measuring the performance of cooperative caching. As we know, access delay is

defined as the interval between the time when a mobile node sends its data request

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 137

out, and the time when the client node obtains the reply from its nearest cache node.

However, in SRCP, we are concerned about the interruption interval much more than

access delay. This is because we know the access model of each node, i.e., each

mobile user accesses all the data items in a sequential order from data item d1 to dm.

If a mobile node fetches the next data item in its own cache, there will not be any

delay when using the next data item. We do not care about how long the data item is

fetched from other nodes and where the data item comes from, i.e., access delay on

the data item is not the most important one after we consider the sequential relation

among data items. We further define a new event named as Use-in-Time, which

means the interruption interval for using one data item is zero, i.e., the data item is

cached locally before using it. Therefore, we consider the most important

performance metric in SRCP as Average Interruption Interval (AII), which is

referred to as the average of interruption intervals over all nodes. AII is applied to

describe the performance of a cooperative caching system for SRCP from a global

view.

Secondly, user experience in cooperative caching becomes more and more important

than before. It is not desirable for a mobile user to see a video in his mobile device

with many interruptions. Therefore, we consider another metrics, Average

Interruption Times (AIT), which is defined as the average of interruption times when

mobile users access all the data items in a sequential order. In fact, the final objective

of our work is to provide a QoS-based data access service for all the mobile users.

Our work is a pioneering work on combining cooperative caching with QoS.

7.3.1.2. Three Heuristic Rules in SRCC

Since we have explained the two characteristics of SRCP above, we next consider

three heuristic rules in our proposed GosCC strategy. Before we explain the details

of the three heuristic rules, there are three terms to be defined clearly. The first term

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 138

is the parameter “Buffer Window” (BW), which is defined as the number of the

cached data items that consists of an array of data items continuously following the

current data item using by mobile users.

Figure 7.1: The structure of gossip report

The second term is “Gossip Report” (GR) described in Figure 7.1. In GosCC, we

apply gossiping as the style of exchanging the caching information among mobile

nodes. There are two kinds of the digests in one GR, including the cache digest and

the progress digest. The cache digest is designed to describe the cache content in a

mobile node. Let C_DIGEST(i, t) be the cache digest of the mobile node MNi at time

t. C_DIGEST(i,t) is composed of a vector with m bits. The jth bit is used to denote

whether the jth data item is cached at MNi or not. The progress digest is reported as

follows. Let P_DIGEST(i,t) be the progress digest of MNi at time t in one GR.

P_DIGEST(i,t) consists of n data IDs and the corresponding timestamps. The kth data

ID is the current data ID used by mobile node MNk, known by MNi at time t. The

detailed structure of a gossip report is described in Figure 7.1 as follows.

In GosCC, each mobile node periodically gossips its own gossip reports to other

nodes randomly selected from n mobile nodes. In C_DIGEST, MNi describes its own

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 139

cache content to other nodes so that other mobile nodes can send data requests to the

closest cache node for data items. In P_DIGEST, MNi just stores the IDs of the data

item that is used now by all the nodes and each ID is with a timestamp to show the

latest updated version. Each mobile node is only allowed to updates its own current

data item in P_DIGEST. To control redundant gossip messages, each gossip report

should not be forwarded beyond R rounds. It means that each gossip report is

gossiped only R times. We will discuss the determination of the parameter R in

Section 7.4.

Rule 1: The next data item to be used by a mobile node is always the most important

one.

In GosCC, the first important point is how to make the interruption interval as less as

possible. As we mentioned, mobile nodes know the sequential order of data access.

Thus the interruption interval mainly depends on the interval between the time when

a mobile user finishes using a data item and the time when the mobile user begins to

use the next data item. Therefore, GosCC applies a scheme named the Buffering-

Next Scheme (BNS). BNS is designed for collecting the set of data items in the

buffer window of a mobile node in a timely way.

Before we explain the details of BNS, we categorize the data request into 3 levels to

establish the order of priority. Data item dj at mobile node MNi is assigned with a

priority index, p(i,j). If the data item dj is the next data item in the buffer window of

MNi, we set the priority index p(i,j) as 1; If the data item dj is not the next one but in

the buffer window of MNi, we set the priority index p(i,j) as 2. If the data item dj is

not in the buffer window of MNi, we set the priority index p(i,j) as 3.

In BNS, each mobile node detects the progress of its using data item periodically and

sends the “active” cache requests with the predefined priorities. The maximum

number of cache requests in one round cannot reach the maximum number of data

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 140

items that can be cached in the remainder of the MNi cache. The maximum number

Max_Num of data items that can be cached in one mobile node is determined

by S SD⎢ ⎥⎣ ⎦ .

Rule 2: When there are still available spaces to cache more data items, mobile nodes

investigate the progress digest and sends cache requests for the most popular data

item in a global view.

In GosCC, we mentioned that the progress digest can provide mobile nodes with the

global information on the progresses of other mobile users using data items. Mobile

node MNi checks the progress digest in the latest gossip report received. If the data

item dj is with the maximum times in appearance and there are still available space at

MNi, MNi sends a cache request for data item dj+BW to its closest cache node.

Rule 3: When cache replacement is required, each data item with its ID smaller than

the minimum data ID in the progress digest should be replaced.

Once mobile node MNi receives a gossip report from MNj, MNi updates the progress

digest and forwards the report to randomly selected mobile nodes if the gossip report

is still in its life time. MNi also checks its own cache content. If MNi finds that there

are some data items that are smaller than the minimum data ID in the received

progress report, MNi replace these data items from its own cache. It means that there

is no use for these data items because we know the progress of the “slowest” mobile

node.

In a gossip report, there are two important data item IDs. One is the maximum one

MAX_ID, and the other is the minimum one, MIN_ID. A mobile node with higher

current data ID means that the node consumes the data items with a higher speed. On

the other hand, a mobile node with lower current data ID means the node consumes

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 141

the data items with a lower speed. Let VAR_RANGE be the variation range of a

progress digest. It can be obtained by Eq. (7.2).

_ _ _VAR RANGE MAX ID MIN ID= − (7.2)

It is clear that the best case for VAR_RANGE is zero. This means that the only data

item that all mobile nodes should cache is the next one. On the other hand, if the

variation range is very large (the maximum value is m-1), the range of data items for

all the mobile nodes to cache is from 1 to m. Therefore, we propose a threshold

named the range threshold THr. If mobile node MNi detects that the variation range

VAR_RANGE is greater than THr, MNi actively sends the data items that will be used

by the mobile node with MIN_ID to the node.

7.3.2. Gossip-based Cooperative Caching

In this subsection, we present a distributed algorithm named Gossip-based

Cooperative Caching (GosCC) to solve the cache placement problem with accessing

multiple data items in a sequential order. GosCC is formed of two important

components, including the key data structures and the detailed algorithm.

7.3.2.1. Key Data Structures

Closest Cache Tables are the most important data structure in GosCC. Mobile node

MNi maintains the closest cache node MNj that has a copy of the data item dk for

each data item dk in the network. MNi also maintains a closest_cache table, where an

entry in the closest_cache table is of the form (dk, MNj) where MNj is the closest

cache node that has the copy of dk, known by MNi. Note that if MNi is the data

source or has cached dk, MNi is the closest cache node for dk.

Progress Tables are another major data structure maintained by each mobile node.

In the progress table, mobile node MNi stores the progress information for other

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 142

mobile nodes when MNi receives a progress digest from other nodes. An entry in the

progress table is of the form (MNi, Current_ID, Timestamp).

7.3.2.2. GosCC Algorithm

GosCC is mainly composed of three components, including gossiping, sending cache

requests, and cache replacement. The details of GosCC are described in Figure 7.2.

Every Tg seconds, mobile node MNi builds up a GossipReport(MNi,TS,GR) message,

where TS is the timestamp and GR is the current gossip report at mobile node MNi.

The GossipReport(MNi,TS,GR) message mainly includes two components:

C_DIGEST and P_DIGEST. Let fi be the fanout of MNi and the fanout fi follows the

Poisson distribution [FCW+08, NSW01]. MNi selects the fi mobile nodes as its

gossiping targets and send the GossipReport(MNi,TS,GR) message to these targets. If

MNj is one of the MNi’s gossiping targets, MNj receives the

GossipReport(MNi,TS,GR) message, and updates its ClosestCacheTable and

ProgressTable. If the attached round counter in GR is smaller than the maximum

round R, MNj forwards the GossipReport(MNi,TS,GR) message to fj gossiping targets

randomly selected. The gossip operation does not finish until the round counter in

the GR is equal or greater than R.

Every Tr seconds, mobile node MNi carries out the BNS scheme as explained in the

above subsection. MNi builds up several CacheRequest messages and sends them to

the corresponding closest cache nodes from MNi’s ClosestCacheTable. Note that the

maximum number of cache requests should be smaller than the maximum number of

data items that can be cached in the current cache size.

Once MNi receives a GossipReport(MNj,TS,GR) message from MNj, two operations

will be followed. Firstly, MNi calculates the variation range and checks whether

VAR_RANGE is greater than THr or not. If the answer is yes, MNi selects the mobile

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 143

node MNj with MIN_ID as the target to help. If MNi holds the copy of the next data

item that MNj maybe requires, MNi sends a CacheReply message with the data item

dk to MNj. Secondly, MNj checks the progress digest in GossipReport(MNj,TS,GR). If

the data item dj is with the maximum times in appearance and there are still available

spaces at MNj, MNj sends a CacheRequest message for data item di+BW to its closest

cache node.

When the cache space is full and there are still another data item needs to be cached

at MNi, MNi removes all the data items with their IDs smaller than MIN_ID in its

progress table. If there are no such data items, MNi just remove the data items with

the oldest timestamp.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 144

Algorithm 1: Gossip-based Cooperative Caching Algorithm
SETTING:
 A Network Graph G(V,E) and a data set D with m data items.
BEGIN

Every Tg second, MNi sends GossipReport(MNi,TS,GR) to fi gossiping targets
randomly selected from all the mobile nodes.

Every Tr seconds, MNi sends CacheRequest to the corresponding mobile
nodes by following the priority order.

On receiving GossipReport(MNj,TS,GR)
 If MNi is the destination and receives GossipReport(MNi,TS,GR) for the first

time, MNi updates ClosestCacheTable from C_DIGEST and updates its
ProgressTable from P_DIGEST. MNi increases the round counter RC in GR by
one.

 If the RC <R, MNj sends GossipReport(MNi,TS,GR) to fj gossiping targets.
 Else MNj stops gossiping.
 If MNi is not the destination, MNi updates its ClosestCacheTable from

C_DIGEST. MNi updates the ith entry in P_DIGEST in GossipReport(MNi,TS,GR).
MNi compares P_DIGEST with its own ProgressTable and makes revisions on
both tables based on the timestamps. Then MNi forwards GossipReport to the next
hop.

 If VAR_RANGE>THr and MNi holds any copy of the data items in the
buffer window of the mobile node with MIN_ID in P_DIGEST, MNi sends a
CacheReply(MNi, dk) to the node.

 If x is the data ID that with the maximum times in appearance in
P_DIGEST and there is still available space, MNi sends a CacheRequest message
to its closest cache node.

On receiving CacheRequest(MNj, ID)

If MNi is the destination and the copy of ID is in its cache, MNi sends
CacheReply to MNj.

If MNi is not the destination but the copy of ID is in its cache, MNi sends
CacheReply to MNj and discards CacheRequest.

Else MNi forwards CacheRequest to the next hop.

On receiving CacheReply(MNj, dk)
 If MNi is the requestor, MNi updates its ClosestCacheTable and stores dk

locally if there are available spaces. If there is no space, MNi replaces data items
by following our cache placement strategy.

 If MNi is not the requestor but dk is in request, MNi caches it locally and
forwards DataReply to the next hop.

END

Figure 7.2: Gossip-based Cooperative Caching Algorithm.

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 145

7.4. Parameter Analysis

In this section, we provide the analysis work for the parameter design in our

proposed GosCC. Firstly, we make a brief introduction to the Gossiping-based

Algorithms (GAs) and find the most important factors on the performance of these

algorithms. Secondly, we mainly focus on two problems in GosCC, including 1) how

much percentage of mobile nodes can eventually receive a gossip message; and 2)

how long a gossip message can be propagated to all the mobile nodes. Thirdly, we

evaluate the probability that a Use-in-Time event happens, i.e., the probability that a

data item can be accessed from the local cache when it is in need.

As we mentioned in Chapter 2 and Chapter 3, gossip-based Algorithms, i.e.,

epidemic algorithms, are well examined in the recent years [EGK+04]. Such an

algorithm is considered as a potentially effective solution for disseminating

information in large-scale systems [BHO+99, KMG03]. GAs mimic the spread of a

contagious disease. In addition to their inherent scalability, gossip-based algorithms

are easy to deploy, robust, and resilient to failures. It is possible to adjust the

parameters of a gossip-based algorithm to achieve higher reliability, despite process

crashes and disconnections, packet losses, and a dynamic network topology [CRB01,

LEH03].

In our analysis, we apply the infect-and-die model [NSW01, M93]. Each node

gossips the same gossip message exactly once, i.e., each node forwards the gossip

message to its gossiping targets only for the first time when receiving the gossip

message, even if the node maybe receives the copies of the message from other

nodes again.

The fact that a healthy person is infected by an infectious means a mobile node

receives a gossip message from another mobile node successfully. Basically, each

node forwards the gossip message with a limited number of times R. Each mobile

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 146

node forwards the gossip message each time to a randomly selected set of mobile

nodes of limited size f, the fanout of the dissemination. To simplify our analysis, the

fanout f is the mean value of a Poisson distribution Po(f) [FCW+08, EGK+04]. Here

we will use the mathematical models for gossiping in Chapter 2.

In this model, we mainly focus on two problems. The first one is what the final

proportion of mobile nodes eventually receives a gossip message is, i.e., what the

reliability of gossiping is. The second one is how long a gossip message can be

propagated to all the mobile nodes, i.e., how many rounds R is required to make all

nodes receive the gossip message.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Reliability of Gossiping S

M
ea

n
Fa

no
ut

 f

Relation between Reliability and Mean Fanout

Figure 7.3: Relation between gossiping reliability S and fanout f.

With respect to the first problem, let m be a gossip message. Let S be the final

proportion of mobile nodes that received m, i.e., the probability that the message m

can be received by all the mobile nodes successfully. Note that S is also named as the

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 147

reliability of gossiping. It has been proved that S can be calculated from the

following equation [FCW+08, EGK+04].

1 fSS e−= − (7.3)

To explain the relation between S and f, we can transform Eq. (7.3) to Eq. (7.4).

ln(1/(1))f S S= − (7.4)

As Figure 7.3 shows, we increase the value of the mean fanout f so that we can

improve the reliability of gossiping S dramatically. It is necessary to increase the

mean fanout to a much greater value, like 10, so that we can make the reliability to

reach 99.99% [FCW+08]. Therefore, there is no need to use the reliability of

gossiping to 100% because we need also consider the message cost in GosCC.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Number of Nodes in Gossiping log10(n)

N
ec

es
sa

ry
 R

ou
nd

s
R

Figure 7.4: Relation between rounds R and number of nodes n

The second problem is about the latency of infection, which can be used to evaluate

the speed of gossiping. Bella [B01] shows that the number of necessary rounds R to

infect all of the nodes can be obtained as Eq. (7.5) shows.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 148

ln() / ln(ln()) (1)R n n O= + (7.5)

However, we know that the result from Eq. (7.5) is only the theoretical result. The

reason is that any intermediate node on the path from the sender to the receiver in an

IMANET can know the content of the gossip message, as we make use of this point

in our GosCC. Therefore, the speed of the convergence of GosCC will be much

quicker than that of the theoretical case. We only consider R in Eq. (7.5) as an upper

bound. As Figure 7.4 shows, the necessary round R for 100 nodes is almost 3.

Next, we try to evaluate the probability that a Use-in-Time event happens. As we

mentioned in Section 7.2, a Use-in-Time event means a data item is cached locally

before a mobile user use it. There is no any interruption interval for this data item.

Let dk be one of the data items. We define the event UIT(dk, MNi) as the Use-in-Time

event that MNi uses the data item dk without any interruption interval. Let tSD be the

consuming time for a mobile node uses a data item since we assume that the sizes of

all the data items are the same. Let vu be the speed of mobile user consuming data

items, such as the speed of mobile users playing a movie. Therefore the consuming

time tsd can be obtained as follows:

SD ut SD v= (7.6)

We mainly concern the total interruption intervals. As we mentioned in Section 7.2,

the interruption interval t(i,j) is zero if mobile node MNi accesses the data item dj and

the copy of dj is in MNi’s cache. If dj is not in the local cache, MNi is required to

obtain the copy from other nodes, including the data source SRj. Let h be the average

length of the shortest path from MNi to the closest cache node that holds the copy of

dj. We assume that each hop delay is the same and it can be denoted by thop. But the

precondition for a successful retrieval is that each mobile node knows the cache

content of other nodes. This is guaranteed by gossiping these contents in a

probabilistic way. A gossip message is propagated to all the nodes with the success

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 149

probability S. Therefore, total interruption intervals T(G,M) can be calculated as

follows:

1 1

(,) (1 ((,)))
n m

j i hop
i j

T G M P UIT d MN t h S
= =

= − × × ×∑∑ (7.7)

Our final objective is to minimize the total interruption intervals under the constraint

of the cache sizes. If the event UIT(dk, MNi) happens, the data item dk should be

cached before all the data items in the buffer window BW are consumed completely.

However, the occurrence of the event UIT(dk, MNi) should be under the premise that

the gossip message m is received by all the mobile nodes within R rounds. If a gossip

message is gossiping only by one round, we consider that the gossiping algorithm is

executed one time. In the repeated executions, each execution can be viewed as one

independent Bernoulli trial [FCW+08]. So R rounds of executions can be considered

as R times Bernoulli trials. We define X as the number of executions in which a

mobile node receives the gossiping message m during R rounds. We do not consider

how many times for each node to receive the message m in one execution. It is

obvious that the reliability of gossiping S is the probability that a mobile node

receives the gossiping message in one execution. Thus X follows a Binomial

distribution B(R, PR). The distribution of X is in the following:

() () (1)k k R k
RP X k C S S −= = − (7.8)

where k = 0, 1, 2, …, R. We denote PR as the probability that a mobile node receives

the gossiping message m at lease one time within R rounds. Therefore, PR can be

obtained from the following equation:

(1) 1 (1)R
RP P X S= ≥ = − − (7.9)

Finally, the following condition described in Eq. (7.10) should be satisfied when we

calculate the total interruption intervals in Eq. (7.7).

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 150

2 (1 (1))R
hop

SD

h t SS BW
SD t

× × − −
≥ ≥ (7.10)

However, it does not mean that the greater the buffer window BW is, the better the

performance is. Since the number of cache requests sent by a mobile node is based

on the size of the buffer window, we should also consider the message cost. There is

a tradeoff between the total interruption intervals and the total message cost.

Therefore, we set the timer Tr for sending cache requests as follows:

r
u

BW SDT
v
×

= (7.11)

Another timer is the gossip timer Tg. To determine the value of Tg, we should

consider the number of messages in gossiping. Let T be the total time of running our

proposed GosCC. Let Mg be the total number of messages generated by gossiping.

We can obtain Mg from Eq. (7.12).

R
g

g

TM n f h
T

= × × × (7.12)

As Eq. (7.12) shows, the gossip timer Tg is related to not only the parameters of

gossiping algorithm, but also the network condition. In real application, GosCC is

required to detect the average length of the shortest path from the source to gossiping

targets.

7.5. Simulations

In this section, we demonstrate the performance of GosCC compared with Benefit-

Based Data Caching (BDC) [TGD06] through simulations over randomly generated

network topologies.

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 151

7.5.1. Simulation Settings

Our simulations are carried out by making use of the NS2 simulator [FV97]. The

NS2 simulator contains different models for routing protocols in common ad hoc

networks, IEEE Standard 802.11 MAC layer protocol, and two-way ground

reflection propagation models [BMJ+98]. The DSDV routing protocol [PB94] is used

in our work to provide routing services.

7.5.1.1. Network Setup

We simulated GosCC and BDC in a network with 100 mobile nodes randomly

placed in an area of 2000x500m2. Mobile nodes move based on the random

waypoint model [BMJ+98] in NS2. In this model, each node selects a random

destination and moves towards the destination with a speed selected randomly from

(0m/s, vmaxm/s). After the node reaches its destination, it pauses for a period of time

(chosen to be 100 seconds) in our simulation and repeat the movement pattern. Note

that the normal radio range for two directly communicating nodes in the NS2 is

about 250 meters. We assume that there are 1000 data items with the same size as

1000 bytes. We setup two randomly placed data sources (servers) S0 and S1 as the

gateway nodes, where S0 maintains the data items with even IDs and S1 maintains

the data items with odd IDs.

7.5.1.2. Client Query Model

In our simulation, each mobile node is a client node. Each client node sends out a

stream of the http requests by following the sequential order of data items from d1 to

d1000. Once a mobile node receives an http reply or obtains the requested data from

the passing-by reply messages, the mobile node makes the schedule for requesting

the next data item, according to the size of data item and the consuming data speed

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 152

of mobile nodes. We count the interruption interval for each data item and sum them

up as the total interruption intervals.

7.5.1.3. Data Access Pattern

As we mentioned at the beginning of this chapter, we consider the impact of the

sequential order among data items on the performance of cooperative caching. Each

data item should be accessed successfully by local cache or from other nodes’ reply.

Otherwise, a mobile node will wait for the requested data item until it obtains the

data item. In our simulation, each mobile node accesses the 1000 data items by

following the sequential order from 1 to 1000.

7.5.1.4. Performance Metrics

We measure three performance metrics for comparison of various cache placement

strategies, viz., average interruption interval, average interruption times, and

caching overheads. As we mentioned in Section 7.2, Average Interruption Interval

(AII) is referred to as the average of interruption intervals over all nodes. Average

Interruption Times (AIT) is defined as the average of interruption times when mobile

users access all the data items in a sequential order. Caching overheads includes all

of the related packets in our caching system, viz., data requests, data replies, and

other messages for caching systems. Note that these packets do not include routing

packets because the two strategies use the same routing protocol DSDV.

7.5.2. Simulation Results

In this subsection, we present the simulation results comparing the two caching

strategies, viz. BDC and GosCC, under the data access pattern and study the effect of

various values on the performance metrics.

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 153

7.5.2.1. Varying Data Item Size SD

In Figure 7.5, Figure 7.6 and Figure 7.7, we vary the data size from 1000 bytes to

8000 bytes while keeping the total cache size as 750k bytes, the maximum speed

Vmax as 2.0m/s and the consuming data speed vu as 400 bytes per second. We observe

that GosCC outperforms BDC in terms of average interruption interval and average

interruption times. However, the message cost is higher than BDC. The simulation

results show the reliability of gossiping depends on the redundant messages.

0

10

20

30

40

50

1000 2000 3000 4000 5000 6000 7000 8000

Data Item Size (Bytes)

A
ve

ra
g
e

In
te

rr
up

tio
n

In
te

rv
al

 (
s)

BDC

GosCC

Figure 7.5: Average interruption interval vs. Data item size.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 2000 3000 4000 5000 6000 7000 8000

Data Item Size (Bytes)

C
ac

hi
ng

 O
ve

rh
ea

ds

BDC

GosCC

Figure 7.6: Caching overheads vs. Data item size.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 154

0

20

40

60

80

100

1000 2000 3000 4000 5000 6000 7000 8000

Data Item Size (Bytes)

A
ve

ra
ge

 I
nt

er
ru

pt
io

n
T

im
es

BDC

GosCC

Figure 7.7: Average interruption times vs. Data item size.

0

5

10

15

20

25

30

35

40

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Consuming Data Speed (B/s)

A
ve

ra
ge

 I
nt

er
ru

pt
io

n
In

te
rv

al
 (

s)

BDC

GosCC

Figure 7.8: Average interruption interval vs. Consuming data speed.

0

20

40

60

80

100

120

140

160

180

200

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1
00

0

Consuming Data Speed (B/s)

A
v
er

ag
e

In
te

rr
u
p
tio

n
 T

im
es BCC

GosCC

Figure 7.9: Caching overheads vs. Consuming data speed.

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 155

7.5.2.2. Varying Consuming Data Speed vu

In Figure 7.8, Figure 7.9 and Figure 7.10, we vary the consuming data speed Vu from

100 to 1000 bytes per second in our data sequential access pattern while keeping the

cache size as 75k bytes, and the maximum speed Vmax as 2.0m/s. We observe that

GosCC outperforms BDC again in terms of average interruption interval, average

interruption times and caching overheads. The simulation results show the

performance of GosCC is stable and almost independent to the consuming data

speed.

0

10000

20000

30000

40000

50000

60000

70000

1
00

2
00

3
00

4
00

5
00

6
00

7
00

8
00

9
00

10
00

Consuming Data Speed (B/s)

C
ac

h
in

g
 O

ve
rh

ea
d
s

BDC

GosCC

Figure 7.10: Average interruption times vs. Consuming data speed

7.5.2.3. Varying Maximum Speed Vmax

In Figure 7.11, Figure 7.12 and Figure 7.13, we vary the maximum speed Vmax from

2 to 20m/s in our data access pattern while keeping the cache size as 75k bytes, and

the consuming data speed as 400 bytes per second. We observe that GosCC

outperforms BDC in terms of average interruption interval and average interruption

times. However, caching overheads of GosCC are worse than that of BDC to a

certain degree.

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 156

0

2

4

6

8

10

2 4 6 8 10 12 14 16 18 20
Maximum Speed (m/s)

A
ve

ra
g
e

In
te

rr
up

tio
n

In
te

rv
al

 (
s)

BDC

GosCC

Figure 7.11: Average interruption interval vs. Maximum speed.

0

10

20

30

40

50

60

70

80

90

2 4 6 8 10 12 14 16 18 20

Maximum Speed (m/s)

A
ve

ra
ge

 I
nt

er
ru

pt
io

n
T

im
es BDC

GosCC

Figure 7.12: Caching overheads vs. Maximum speed.

0

10000

20000

30000

40000

50000

2 4 6 8 10 12 14 16 18 20

Maximum Speed (m/s)

C
ac

hi
ng

 O
ve

rh
ea

d
s

BDC

GosCC

Figure 7.13: Average interruption times vs. Maximum speed.

Chapter 7. Gossip-based Cooperative Caching for Data with Sequential Relation in IMANETs

 157

Simulation results show that GosCC achieves much better performance than BDC in

terms of average interruption interval, average interruption times. However, the

message cost is normally greater than that of BDC. The reason mainly includes: 1)

we consider the sequential relation among data items such that GosCC is much

“smarter” than other cooperative caching strategies. The progresses of mobile users

using data items play an important role in making caching decisions. The global

view of the progress information is propagated throughout the whole network in a

timely way; and 2) redundant messages in gossiping cannot be avoided so that

message cost is still worse than other cooperative caching strategies. This will be one

of our future works to control the redundant message in a more grained way.

7.6. Summary

In this chapter, we first present the Sequential Relation Cache Placement problem

(SRCP) and aim at minimizing total interruption intervals. SRCP is with the major

difference from the traditional cache placement problem, in the way that we consider

user experience as our major concern after we introduce the sequential data relation

into cooperative caching. To increase the probability that mobile nodes access data

item in their local caches, we present a cooperative caching strategy named Gossip-

based Cooperative Caching (GosCC) that helps mobile nodes exchanges the

information on cache content and the progress of using data reliably and timely. We

introduce three heuristic rules to minimize total interruption intervals. In our

simulations, we evaluate the proposed algorithms in IMANETs with different

settings. We take average interruption interval, average interruption times, and

caching overheads as our performance metrics. The results demonstrate that our

algorithms outperform the previous work in terms of average interruption intervals

and average interruption times, while sacrificing message cost to a certain degree.

Chapter 8. Conclusions and Future Works

 159

Chapter 8. Conclusions and Future Works

In this chapter, we briefly summarize our works and outline the directions for future

research.

8.1. Conclusions

Data dissemination and sharing are two important issues on the topic of mobile data

management. In this thesis, we mainly study how to disseminate and share one data

item or multiple data items in a mobile ad hoc network, from the point of view of

theoretical algorithm research and practical protocol design. The major work of the

thesis can be summarized as follows.

In Chapter 3, considering the weak capacity of mobile devices, we investigate the

problem, to what extent gossip-based protocols can tolerate node failures, yet

guarantee the specified message delivery. We propose a generalized gossiping

algorithm and develop a mathematical model based on generalized random graphs

for evaluating the fault-tolerance of gossiping. We analytically derive the maximum

ratio of failed nodes that can be tolerated without reducing the required degree of

reliability. We also investigate the impact of the parameters, namely the fanout

distribution and the non-failed member ratio, on the reliability of gossip-based

reliable multicast protocols. Simulations have been carried out to validate the

effectiveness of our analytical model in terms of the reliability of gossiping and the

success of gossiping. The results obtained can be used to guide the design of fault

tolerant gossip-based protocols.

In Chapter 4, considering the typical hierarchical structure in an infrastructure-based

wireless network, we propose a generalized hierarchical gossiping algorithm. To

evaluate the reliability of the proposed algorithm, we develop a mathematical model

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 160

based on generalized random graphs. We investigate the impact of the parameters,

the fanout distributions at the two levels of hierarchy, on the reliability of

hierarchical gossiping. We also discover the critical condition for guaranteeing the

gossiping messages to be propagated from local subgroups to the whole group. Our

simulation works have been carried out to validate the effectiveness of our analytical

model, in terms of the reliability of gossiping and the success of gossiping.

In Chapter 5, considering the contentions when wireless nodes communicate with

each other, we define the cache placement problem on a dynamic network topology

as Dynamic Cache Placement (DCP), in which mobile nodes aim to share single data

item in mobile computing environments. There is only one data source that

maintains one data item and other client nodes require accessing the data item. Due

to the impact of contentions in wireless networks, one hop delay is different from

each other and it varies with the traffic load. Thus the previous algorithms cannot

achieve their expected performance. We define three data flows in DCP, including

access flows, reply flows, and update flows. Then we present the idea of hedging

flow to evaluate the benefits of select a node as a candidate of a cache node. We

propose two heuristic cache placement algorithms, Centralized Contention-Aware

Caching Algorithm (CCCA) and Distributed Contention-aware Caching Algorithm

(DCCA), both of which detect the variation of contentions to evaluate the benefits of

selecting a node as cache node. Simulation results show that the proposed algorithms

achieve much better performance than other alternative ones in terms of average

query delay, caching overheads, and query success ratio.

In Chapter 6, we consider the cache placement problem in cooperative caching for

sharing multiple data items among a group of mobile nodes in an Internet-based

Mobile Ad hoc Network (IMANET). A typical cache placement strategy deals with

the problem that what data items should be cached at which mobile nodes, in order

to minimize total access delay for mobile users accessing a set of data items.

Chapter 8. Conclusions and Future Works

 161

However, most of the existing solutions rely on a node’s knowledge about data

access frequencies. In an IMANET, due to the dynamic topology changes and

scarcity of resources on mobile nodes, it is difficult and costly for mobile nodes to

exchange the information about data access frequencies and the hops to their

corresponding closest cache nodes. To address these challenging issues, we propose

a solution named Divide-and-Rule Cooperative Caching (DRCC), which divides the

cache space of each node into two components: selfish and altruistic. In the selfish

component, mobile nodes cache the most frequently accessed data items according

to its own preference, showing the side of selfishness of a node. In the altruistic

component, mobile nodes select data items in a randomized way, showing the side of

altruism of a node. Given a specific distribution of data access frequencies, we can

find a near-optimal allocation solution to allocate cache sizes for the two

components, aiming at minimizing the total access cost. Simulation results show that

DRCC achieves much better performance than the existing best cooperative caching

strategy in MANETs in terms of average query delay, caching overheads, and query

success ratio. In particular, DRCC reduces caching overheads by 40% in average.

In Chapter 7, considering the relation among a set of data items, we reconsider the

cache placement problem in cooperative caching for sharing multiple data items in

Internet-based Mobile Ad Hoc Networks (IMANETs). With more demands on

sharing a video or other media contents, the relations among data segments (items)

becomes much more important to improve the efficiency of data access. We review

the existing relations among data items and select the sequential relation as the most

typical one. We present a novel solution named Gossip-based Cooperative Caching

(GosCC) to address the cache placement problem, considering the sequential relation

among data items. Each mobile node accesses all the data items in a sequential order

and the current ID of the data item accessed by a mobile node is stored into a

progress report. GosCC makes use of the information about the progress reports of

mobile nodes and the contents in mobile nodes’ caches, in order to determine

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 162

whether a data item should be cached at a mobile node. To obtain the

aforementioned information reliably and in time, GosCC applies the gossiping

scheme to guarantee that mobile nodes receive the accurate and timely information

for making caching decisions. Simulation results show that GosCC achieves better

performance than other alternatives in terms of average interruption intervals and

average interruption times, while sacrificing message cost to a certain degree.

8.2. Future Research Works

In Chapter 3, we propose a generalized gossiping algorithm, which can cover all the

distributions of the fanouts. We take the Poisson distribution as an example in the

thesis. However, it is still challenging to consider other distributions in order to

discover some new characteristics of gossiping, such as the Power-law distribution

or other specific distributions. Another possible issue is to consider how to select

gossiping targets more reasonable. In the existing works, there are few works

considering the relationship between the neighbors of a mobile node in view of

membership and the physical neighbors in real network settings. As we all know, it is

relatively easier to construct an overlay in a fixed network. However, how to build

up an overlay in a mobile network will have a great impact on the performance of

gossiping. This can be one of the possible directions in this topic.

In Chapter 4, we propose a general hierarchical gossiping algorithm in order to take

advantage of the inherent hierarchical structure of the infrastructure-based wireless

networks. However, our work is a preliminary work for protocol designs in wireless

networks. We should take a typical hierarchical wireless network as an example to

provide reliable multicast protocols. We consider how to provide a gossip-based

reliable multicast protocol for Wireless Mesh Networks (WMNs), which have

emerged as a significant technology for the next-generation networking. WMNs are

dynamically self-organized and self-configured, with the nodes in the network

Chapter 8. Conclusions and Future Works

 163

automatically establishing an ad hoc network and maintaining the mesh connectivity.

There are two kinds of nodes in WMNs, mesh routers and mesh clients. Mesh

routers plays the role of building the backbone of WMNs due to their minimal

mobility. WMNs can be integrated with other networks such as the Internet, cellular,

wireless LANs, wireless MAN, etc. through the gateway and bridging functions in

the mesh routers. According to these characteristic of WMNs, building up a

hierarchical gossip-based reliable multicast protocol is a promising work.

In Chapter 5, 6, and 7, we mainly discuss the cache placement problem in mobile

computing environments. We take wireless interferences, user mobility, limited

cache size, data access pattern, and data relation into consideration, and find some

new problems in our research. Although we consider a TTL-based consistency

model in CCCA and DCCA, cache consistency is still another important problem in

data caching. Few works consider both the cost of data access and the cost of

maintaining cache consistency. For example, Tang et al. [TCC07] considers the

access cost with the maintaining cost for a TTL-based consistency model. This can

be one of pioneering works on considering both two costs. Nevertheless, this work is

considered in the Interned. Tang et al. [TG07] and Hara [H01] consider the update

cost with the access cost together. However, there is no any consistency model in the

two papers. As we all know, there are many consistency models for maintaining

different levels of cache consistency. How to consider the maintaining cost with the

access cost under different consistency models will be one of the possible directions

on the topic of cooperative caching.

In Chapter 7, we introduce data relation into the topic of cooperative caching.

However, we only take the sequential relation among data items as our research

subject, although we categorize these relations into time-based relationship, spatial-

based relationship, and semantic relationship, as we mentioned in the Section 7.1.

What are the impacts of other relationships on the performance of cooperative

Data Dissemination and Sharing in Mobile Computing Environments, PhD Thesis, Xiaopeng Fan, 2010

 164

caching? Is there any more formal model on how to describe the relationship among

data items? To answer these problems, there should be some novel works to be done

in the future.

 165

References
[AAF+95] S. Acharya, R. Alonso, M. Franklin and S. Zdonik. Broadcast Disk: Data

Management for Asymmetric Communication Environments. In Proc. ACM SIGMOD, pp.

199-210, May 1995.

[ADH05] A. Allavena, A. Demers and J. Hopcroft. Correctness of a Gossip-based

Membership Protocol. In Proc. 24th ACM Symposium on the Principle of Distributed

Computing (PODC), pp. 292–301, 2005.

[AM98] S. A. Ahson, and I. Mahgoub. Research Issues in Mobile Computing. In Proc. of

IEEE Int’l Performance, Computing, and Communications Conference (IPCCC’98), pp.

209-215, 1998.

[ASM+08] H. Artail, H. Safa, K. Mershad, Z. Abou-Atme, N. Sulieman. COACS: A

Cooperative and Adaptive Caching System for MANETS. IEEE Transactions on Mobile

Computing, Vol. 7, No. 8, pp. 961-977, 2008.

[AWW05] I.F. Akyildiz, X. Wang, and W. Wang, Wireless Mesh Networks: A Survey,

Computer Networks Journal (Elsevier), March 2005.

[B01] B. Bollobás. Random Graphs, Cambridge University Press, U.K, pp. 130-153, 2001.

[BBK+00] S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick, and M. Segal. Mobile facility

location. In Proc. of the 4th International Workshop on Discrete Algorithms and Methods for

Mobile Computing & Communications, 2000

[BCF+99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zipf-like

Distributions: Evidence and Implications. In Proc. of INFOCOM, 1999.

[BE03] C. Bettstetter and J. Eberspacher, Hop Distances in Homogeneous Ad Hoc Networks,

In Proc. 57th IEEE Vehicular Technology, Conf. (VTC-Spring ’03), vol. 4, pp. 2286-2290,

Apr. 2003.

[BHO+99] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal

 166

Multicast. ACM Transactions on Computer Systems, Vol. 17, No. 2, pp 41-88, May, 1999.

[BI94] D. Barbara and T. Imielinski. Sleepers and Workaholics: Caching Strategies in

Mobile Environments. In Proc. ACM SIGMOD, pp. 1-12, 1994.

[BMJ+98] J. Broch, D. A. Maltz, D. B. Johnson, Y-C. Hu, and J. Jetcheva. A Performance

Comparison of Multi-hop Wireless Ad Hoc Network Routing Protocols. In Proc. of

MOBICOM, 1998.

[BO00] G. Barish and K. Obraczka. World Wide Web Caching: Trends and Technologies.

IEEE Communications Magazine, Internet Technology Series, 2000.

[BPC+07] P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, and Y. Hu. Wireless Sensor

Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee standards.

Computer Communications, 30(7): 1655-1695 (2007).

[BR01] I. Baev and R. Rajaraman. Approximation Algorithms for Data Placement in

Arbitrary Networks. In Proc. of SODA, 2001.

[C03] G.. Cao. A Scalable Low-Latency Caching Invalidation Strategy for Mobile

Environments. IEEE Tran. Knowledge and Data Engineering, 15, 1, 2003.

[CG99] M. Charikar and S. Guha. Improved Combinatorial Algorithms for the Facility

Location and k-median Problems. In Proc. of FOCS, 1999.

[CLC07] C. Chow, H. Leong, A. Chan. GroCoca: Group-based Peer-to-Peer Cooperative

Caching in Mobile Environment. IEEE Journal on Selected Areas in Communications, Vol.

25, No. 1, January 2007.

[CMC99] M.S. Corson, J.P. Macker, G.H. Cirincione. Internet-Based Mobile Ad Hoc

Networking. IEEE Internet Computing, July–August 1999, pp. 63–70.

[CNS+00] D. Callaway, M. Newman, S. Strogatz and D. Watts. Network Robustness and

Fragility: Percolation on Random Graphs. Phys. Rev. Lett. 85, pp. 5468-5471. 2000

[CS02] E. Cohen and S. Shenkar. Replication strategies in unstructured peer-to-peer

networks. In Proceedings of the ACM Conference of the Special Interest Group on Data

 167

Communication (SIGCOMM), 2002.

[CRB01] R. Chandra, V. Ramasubramanian, and K. Birman. Anonymous gossip: improving

multicast reliability in mobile ad hoc networks. In Proc. 21st Int. Conf. Distributed

Computing Systems (ICDCS), 2001, pp. 275–283.

[CZX+07] J. Cao, Y. Zhang, L. Xie and G. Cao, Data Consistency for Cooperative Caching

in Mobile Environments, IEEE Computer, Apr. 2007.

[DFJ+06] S. Dar, M. Franklin, B. Jónsson, and D. Srivastava, and M. Tan. Semantic Data

Caching and Replacement. In Proceedings of the 22th International Conference on VLDB,

1996.

[DGH+87] A.J. Demers, D.H. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,

D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated Database Maintenance. In

Proc. Sixth Ann. ACM Symp. Principles of Distributed Computing (PODC), pp. 1-12, Aug.

1987.

[DGV09] Y. Du, A, Gupta, G. Varsamopoulos. Improving On-demand Data Access

Efficiency in MANETs with Cooperative Caching. Elsevier Ad Hoc Networks, pp. 579-598,

2009.

[EGH+03] P. T. Eugster, R. Guerraoui, S. B. Handurukande, P. Kouznetsov, and A.

Kermarrec. Lightweight probabilistic broadcast. ACM Tran. Computer, (4): pp. 341-374

(2003).

[EGK+04] P. Euqster, R. Guerraoui, A. Kermarrec and L. Massoulieacute. Epedimic

Information Dissemination in Distributed System. IEEE Computer, Vol. 37, No 5, May,

2004.

[EGR+08] Friedrich Eisenbrand, Farizio Grandoni, Thomas Rothvob, Guido Schafer.

Approximating Connected Facility Location Problems via Random Facility Sampling and

Core Detouring. In Proc. 19th Annu. ACM-SIAM Symp. on Discrete Algorithms (SODA’08),

San Francisco, California, 20-22.01.2008.

[FanCW+08] X. Fan, J. Cao, W. Wu and H. Cheng. Modeling Hierarchical Gossiping in

Reliable Multicast Protocols. In Proc. of the 2nd International Conference on Future

 168

Generation Communication and Networking (FGCN'2008), December 2008, Sanya, Hainan

Island, China, (Invited Paper).

[FCW09] X. Fan, J. Cao, and W. Wu. Contention-Aware Data Caching in Wireless Multi-

hop Ad Hoc Networks. In Proc. of the sixth IEEE International Conference on Mobile Ad-

hoc and Sensor Systems (MASS'2009), October 2009, Macau SAR, China.

[FCW+08] X. Fan, J. Cao, W. Wu, and M. Raynal. On Modeling Fault Tolerance of Gossip-

Based Reliable Multicast Protocols. In Proc. of ICPP, 2008.

[FV97] Kevin Fall and Kannan Varadhan. NS notes and documentation. in The VINT

Project, UC Berkely, LBL, USC/ISI, and Xerox PARC, 1997.

[FZ94] G. Forman and J. Zahorjan. The Challenges of Mobile Computing. IEEE Computers,

1994, pp 38-47.

[GKM01] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie´. SCAMP: Peer-to-Peer

Lightweight Membership Service for Large-Scale Group Communication. In Proc. of the

Third Int’l Workshop Networked Group Comm. (NGC), Nov. 2001.

[GT92] R. Golding and K. Taylor. Group Membership in the Epidemic Style. Technical

Report UCSC-CRL-92-13, Dept. of Computer Science, Univ. of California, Santa Cruz,

1992.

[H01] T. Hara. Effective Replica Allocation in Ad Hoc Networks for Improving Data

Accessibility. In Proc. of INFOCOM, 2001.

[HCW+07] Yu Huang, Jiannong Cao, Zhijun Wang, Beihong Jin and Yulin Feng, Achieving

Flexible Cache Consistency for Pervasive Internet Access, in Proc. of the 5th Annual IEEE

Intl. Conf. on Pervasive Computing and Communications (PerCom), pp.239-250, 2007

[IB93] T. Imielinski, and B. Badrinath. Data Management for Mobile Computing. ACM

SIGMOD Record, 1993.

[IK96] T. Imielinski, and H. F. Korth. Mobile Computing. Kluwer Acdemic Publishers, 1996.

[JLW+07] W. Jia, D. Lu, G. Wang, L. Zhang and W. Lu. Local Retransmission-based Gossip

 169

Protocol in Mobile Ad Hoc Networks. In Proc. of IEEE WCNC 2007, pp. 4244-4249.

[JV01] K. Jain and V. Vazirani. Approximation Algorithms for Metric Facility Location and

k-median Problems using the Primal-dual Schema and Lagrangian Relaxation. Journal of

the ACM, 48(2), 2001.

[KD02] M.R. Korupolu and M. Dahlin, Coordinated Placement and Replacement for Large-

Scale Distributed Caches, IEEE Trans. Knowledge and Data Eng., vol. 14, no. 6, pp. 1317-

1329, Nov./Dec. 2002.

[KMG03] A.-M. Kermarrec, L. Massoulie´, and A.J. Ganesh. Probabilistic Reliable

Dissemination in Large-Scale Systems. IEEE Trans. Parallel and Distributed Systems, VOL.

14, NO. 3, March, 2003.

[KP97] G. Kuenning and G. Popek. Automated Hoarding for Mobile Computers. In Proc. of

SOSP, 1997.

[KRS00] P. Krishnan, D. Raz, and Y. Shavitt, The Cache Location Problem, IEEE/ACM

Trans. Networking, vol. 8, no. 5, pp. 568-582, Oct. 2000.

[KRW03] C. Krick, H. Ra¨cke, and M. Westermann, Approximation Algorithms for Data

Management in Networks, Theory of Computing Systems, vol. 36, no. 5, pp. 497-519, Sept.

2003.

[LEH03] J. Luo, P. T. Eugster, and J. P. Hubaux. Route driven gossip: Probabilistic reliable

multicast in ad hoc networks. In Proc. of IEEE INFOCOM, Apr. 2003, pp. 2229–2239.

[LGI+99] B. Li, M. Golin, G. Ialiano, and X. Deng. On the Optimal Placement of Web

Proxies in the Internet. In Proc. of IEEE INFOCOM, March 1999.

[LLS99] K. Lee, H. Leong, and A. Si. Semantic Query Caching in a Mobile Environment. In

ACM SIGMOBILE Mobile Computing and Communications Review, Vol. 2, Issue 2, April,

1999.

[LWY93] A. Leff, J.L. Wolf, and P.S. Yu, Replication Algorithms in a Remote Caching

Architecture, IEEE Trans. Parallel and Distributed Systems, vol. 4, no. 11, pp. 1185-1204,

Nov. 1993.

 170

 [M01] V. Murthy. Mobile Computing: Operational Models, Programming Modes and

Software Tools. In Proc. of the 15th IEEE International Parallel and Distributed Processing

Symposium (IPDPS’01), pp. 2016-2025, 2001.

[M03] M. E. J.Newman. The Structure and Function of Complex Networks. SIAM Review

45, pp. 167-256, 2003.

[M93] J.D. Murray. Mathematical Biology. Springer, Berlin, 2nd edition, 1993.

[M99] A. Murphy. Algorithm Development in the Mobile Environment, In Proc. of Int’l

Conf. on Software Engineering, pp. 728-729, 1999.

[MHV+97] B.M. Maggs, F.M. Heide, B. Vo¨cking, and M. Westermann, Exploiting Locality

for Data Management in Systems of Limited Bandwidth, Proc. IEEE Symp. Foundations of

Computer Science (FOCS ’97), pp. 284-293, Oct. 1997.

[MM03] M. Mallick. Mobile and Wireless Design Essentials. Weley Publishing, Inc.,

Indianapolis, Indianan, 2003.

[N03] M. E. J.Newman. The Structure and Function of Complex Networks. SIAM Review 45,

pp. 167-256, 2003.

[NSC03] P. Nuggehalli, V. Srinivasan, and C. Chiasserini. Energy-efficient Caching

Strategies in Ad Hoc Wireless Networks. In Proc. of MobiHoc, 2003.

[NSC+06] P.Nuggehalli, V.Srinivasan, C. F. Chiasserini and R. R. Rao. Efficient Cache

Placement in Multi-hop Wireless Networks. In ACM/IEEE Transactions on Networking,

Volume 14 , Issue 5 (October 2006).

[NSW01] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary

degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

[P97] C. E. Perkins. Mobile IP. IEEE Communications Magazine, vol. 35 no. 5, pp. 84-99,

1997.

[PB94] C. Perkins and P. Bhagwat. Highly Dynamic Dsdv Routing for Mobile Computers.

 171

In Proc. of SIGCOMM, 1994.

[QPV01] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the placement of web server

replicas. In Proc. of the IEEE Conference on Computer Communications (INFOCOM), 2001.

[RDK03] Q. Ren, M. Dunham, and V. Kumar. Semantic Caching and Query Processing. In

IEEE Transaction on Konwledge and Data Engineering, Vol 15, No.1, pp. 192-210,

Januarey/Febauary, 2003.

[RMH98] R. Renesse, Y. Minsky, and M. Hayden. A Gossip-Style Failure Detection Service.

In Proc. of IFIP International Conference on Distributed Systems Platforms and Open

Distributed Processing, Middleware'98.

[RS02] M. Rabinovich and O. Spatscheck, Web Caching and Replication. Addison-Wesley,

2002.

[RZF] Http://en.wikipedia.org/wiki/Riemann_zeta_function.

[SK02] C. Swamy and A. Kumar. Primal-dual Algorithms for Connected Facility Location

Problems. In Proc. of the 5th International Workshop on Approximation Algorithms for

Combinatorial Optimization (APPROX 2002), 2002.

[SUE00] Y. Saygin, O. Ulusoy, and A. Elmagarmid. Association Rules for Supporting

Hoarding in Mobile Computing Environments. In Proc. of the 10th International Workshop

on Research Issues in Data Engineering, 2000.

[TCC07] X. Tang, H. Chi, and S. T. Chanson. Optimal Replica Placement under TTL-Based

Consistency. IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 3, pp.

351-363, March 2007.

[TCO01] K. Tan, J. Cai, and B. Ooi. An Evaluation of Caching Invalidation Strategies in

Wireless Environments. IEEE Tran. Parallel and Distributed System, 12, 789, 2001.

[TG07] B. Tang and H. Gupta. Caching Placement in Sensor Networks Under Update Cost

Constraint. Journal of Discrete Algorithms, Volume 5, Issue 3, pp. 422-435, September 2007.

[TGD06] B. Tang, H. Gupta and S. Das. Benefit-based Data Caching in Ad Hoc Networks.

 172

In Proc. of ICNP, Santa Barbara, California, November 2006.

[V99] U. Varshney. Networking Support for Mobile Computing. Communications of AIS,

vol. 1 article. 1, pp. 1-30, 1999.

[W99] J. Wang. A survey of web caching schemes for the Internet. ACM SIGCOMM Comput.

Commun. Rev., vol. 29, no. 5, pp. 35–46, Oct. 1999.

[WCL+08] Y. Wang, E. Chan, W. Li and S. Lu. Location Dependent Cooperative Caching in

MANETs. In Proc. of ICPP, 2008.

[WCF09] W. Wu, J. Cao, and X. Fan. Overhearing-aided Data Caching in Wireless Ad Hoc

Networks. In Proc. of the 6th IEEE ICDCS International Workshop on Wireless Ad hoc and

Sensor Networks (WWASN’09), June, 2009, Montreal, Canada.

[WFC07] Z. Wang, X. Fan, and J. Cao. Design a Hierarchical Cache System for Effective

Loss Recovery in Reliable Multicast, In Proc. the 7th International Symposium on Advanced

Parallel Processing Technologies (APPT'2007), November, 2007, Guangzhou, China.

[YC04] L. Yin and G. Cao. Balancing the Tradeoffs between Data Accessibility and Query

Delay in Ad Hoc Network. In Proc. of SRDS, 2004.

[YC06] L. Yin and G. Cao. Supporting Cooperative Caching in Ad Hoc Networks. IEEE

Transactions on Mobile Computing, Vol. 5, No. 1, pp. 77- 89, January, 2006.

[YK06] Y. Yang and R. Kravets. Achieving Delay Guarantees in Ad Hoc Networks through

Dynamic Contention Window Adaptation. In Proc. of IEEE INFOCOM, 2006.

	372_001
	372_002
	372_003
	372_004
	372_005
	372_006
	372_007
	372_008
	372_009
	372_010
	372_011
	372_012
	372_013
	372_014
	372_015
	372_016
	372_017
	372_018
	372_019
	372_020
	372_021
	372_022
	372_023
	372_024
	372_025
	372_026
	372_027
	372_028
	372_029
	372_030
	372_031
	372_032
	372_033
	372_034
	372_035
	372_036
	372_037
	372_038
	372_039
	372_040
	372_041
	372_042
	372_043
	372_044
	372_045
	372_046
	372_047
	372_048
	372_049
	372_050
	372_051
	372_052
	372_053
	372_054
	372_055
	372_056
	372_057
	372_058
	372_059
	372_060
	372_061
	372_062
	372_063
	372_064
	372_065
	372_066
	372_067
	372_068
	372_069
	372_070
	372_071
	372_072
	372_073
	372_074
	372_075
	372_076
	372_077
	372_078
	372_079
	372_080
	372_081
	372_082
	372_083
	372_084
	372_085
	372_086
	372_087
	372_088
	372_089
	372_090
	372_091
	372_092
	372_093
	372_094
	372_095
	372_096
	372_097
	372_098
	372_099
	372_100
	372_101
	372_102
	372_103
	372_104
	372_105
	372_106
	372_107
	372_108
	372_109
	372_110
	372_111
	372_112
	372_113
	372_114
	372_115
	372_116
	372_117
	372_118
	372_119
	372_120
	372_121
	372_122
	372_123
	372_124
	372_125
	372_126
	372_127
	372_128
	372_129
	372_130
	372_131
	372_132
	372_133
	372_134
	372_135
	372_136
	372_137
	372_138
	372_139
	372_140
	372_141
	372_142
	372_143
	372_144
	372_145
	372_146
	372_147
	372_148
	372_149
	372_150
	372_151
	372_152
	372_153
	372_154
	372_155
	372_156
	372_157
	372_158
	372_159
	372_160
	372_161
	372_162
	372_163
	372_164
	372_165
	372_166
	372_167
	372_168
	372_169
	372_170
	372_171
	372_172
	372_173
	372_174
	372_175
	372_176
	372_177
	372_178
	372_179
	372_180
	372_181
	372_182
	372_183
	372_184
	372_185
	372_186
	372_187
	372_188
	372_189
	372_190
	372_191
	372_192
	372_193
	372_194

