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Abstract 

Land degradation is a major problem world-wide. The degradation process is much 

related to the soil characteristics, topography, vegetation, land types, land use, 

climate, and human activities. Quantification of land degradation is difficult mainly 

due to the ambiguously expressed knowledge and the lack of appropriate information. 

However, there is a pressing need for an objective intelligent methodology of 

monitoring and assessment of land degradation at a regional scale. This research is to 

develop an approach of geographic image cognition (GEOIC) to study land 

degradation and explore its applications by combining hyperspectral images, 

geographic information and multi-source data/information. The approach is 

developed based on the methodology of object-based image analysis (OBIA) and 

realized through the segmentation of land degradation spectral response units 

(DSRUs) using the diagnostic indicators related to land degradation. The approach 

was tested and validated in a study area, located in an agriculture-pasture mixed 

region in the edge of Loess Plateau area with complex physical and geographical 

situations and widely distributed land degradation. 

In this research, the definition, conceptual issues, theoretical underpinning, and the 

framework of the GEOIC approach were first proposed. Its applications in mapping 

soil organic matter (SOM) and assessment of land degradation were investigated 

with the data collected in the study area. The GEOIC for the study of land 

degradation is to simulate the function and process of the visual interpretations of 

geoscience experts, and to extract spatial feature, spatial object and spatial pattern of 

land degradation from remote sensing images and multi-source information. Its 

realization was done through the DSRU segmentation by land type classification 

with integrating Hyperion images, geographic information, vegetation, soil, DEM 

and local information. The developed approach can improve the accuracy of the 

extraction of land degradation information. The research is the first attempt to apply 

the approach of GEOIC in the extraction of land degradation information. Moreover, 

the research provides a methodology of determining the diagnostic indicators related 

to land degradation and their combinations. The method of determining the 

diagnostic indicators from local farmers’ perception and from the comparison among 
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different combinations of the diagnostic indicators was also proposed. The results 

showed that the overall classification accuracy was improved by 11.5% when the 

optimal combination of diagnostic indicators was used. The higher classification 

accuracy was achieved at an appropriate level for GEOIC approach than at similar 

pixel level and for the SAM method and DSLI method. The differences among the 

results with the GEOIC method and the methods of DSLI and SAM are significant.  . 

Investigation on SOM mapping with the approach of GEOIC was also performed. 

The GEOIC approach based on DSRU estimation models for soil parameter mapping 

is of advantage. The results using Hyperion images are comparable well with the 

field survey results and close to the results with the Kridge interpolation of soil 

samples. The developed method can be used for mapping soil features at a regional 

scale by integrating field data, remote sensing images and various regional variables. 
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Chapter 1                                         

Introduction 

1.1 Monitoring of land degradation 

Population, land resources, and environment are three major subjects for human 

being. Land resources are defined as to be used land by human being under the 

definite technologies within a definite period (Sivakumar and Ndiangui, 2007). Land 

degradation is a major issue for land resources, and must be monitored. It is difficult, 

however, to trace the origin of the term “land degradation”. An international legally 

binding definition by the United Nations Convention to Combat Desertification 

(UNCCD) describes “land degradation” as “reduction or loss of the biological 

productivity resulting from land uses or combination of processes, such as soil 

erosion, deterioration of properties of soil and long-term loss of natural vegetation”. 

From the definition, land degradation implies a reduction of the potential 

productivity of the land (e.g., soil degradation and accelerated erosion, reduction of 

the quantity and diversity of natural vegetation) and results from a long history of 

human pressure upon land resources as well as from interactions between varying 

climatic characteristics and ecologically unbalanced human intervention (UNCOD, 

1977; Dregne and Boyadgiev, 1983; Oldeman et al., 1990; Hill et al., 1995).  

Land degradation is a major problem world-wide (Oldeman, 2000). Five global land 

degradation assessments, which were carried out between 1977 and 2003 and 

presented degradation estimates ranging 15% to 63% of global degradation, differ in 

the selection of measurable attributes of land degradation, in the quality of the data 

sets, and in their spatial coverage (Sivakumar and Ndiangui, 2007). Land degradation 

is also a serious issue in China. Soil erosion, land desertification, and grassland 
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degradation occur annually in large scale with total areas of about 10×103 km2, 

2.5×103 km2, and 2.0×105 km2, respectively. It is estimated that over one-third of 

terrestrial land area in China is threatened by land degradation, largely because of 

inappropriate land-use. Land degradation together with the population growth makes 

negative impacts on food production and living conditions. Therefore there is a 

considerable interest in the study of land degradation processes. One of the main 

study subjects is to monitor and assess the situation of land degradation, for which 

collection of all-scaled information on land degradation is required.  

Land degradation is closely related to physiognomy, soil characteristics, vegetation, 

land types, land use/ land cover, climate, and human activities. Therefore land 

degradation can be estimated and measured by these diagnostic indicators obtainable 

with remote sensing techniques and other approaches (Dregne and Boyadgiev, 1983; 

Oldeman, 2000; Stroosnijder, 2005). In general, monitoring and assessment of land 

degradation are based on two groups of techniques/approaches: conventional soil 

survey techniques and remote sensing techniques. The conventional soil survey 

techniques usually measure soil physical and chemical parameters as well as their 

changes for assessing the situation of land degradation, while the remote sensing 

techniques generally use satellite images for land degradation classification. On the 

other hand, the conventional classification methods using remote sensing images are 

pixel-based. Most of the studies used Landsat TM and SPOT images with the 

spectral index method for land degradation mapping at regional scale (Escadafal et 

al., 1994, 1995; Haboudane et al., 2002; Wang, 2006; Omuto and Shrestha, 2007; 

Chen and Rao, 2008; Gao and Liu, 2008;). Some investigators developed spectral 

unmixing methods, spectral angle matching techniques, and geostatistic methods for 

land degradation classification (e.g., Van der Meer, 2001; Shrestha et al., 2005; 

Boschetti et al., 2007; De Jong and Van De Meer, 2007). Many studies showed that 

it is difficult to quantify land degradation due to several factors/reasons, such as the 

ambiguously expressed knowledge, benchmark, diagnostic indicators, units, and 

scaling of land degradation assessment, and the limitations of the techniques of 

image analysis and information mining. In addition, the lack of appropriate 

information on land characteristics, vegetation cover and soil parameters is 

commonly regarded as a major obstacle in this research field (Hudson, 1971; Dregne 
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and Boyadgiev, 1983; De Jong, 1994; Escadafal et al., 1995; Williams and Balling, 

1996; Nicholson et al., 1998; Menenti et al., 1999; Stroosnijder, 2005; Wang, 2006; 

Sivakumar and Ndiangui, 2007; Chen and Rao, 2008; Gao and Liu, 2008).  

Recent advances in sensor technology and digital imaging techniques, along with 

ever increasing spectral and spatial resolutions have made possible to develop new 

and intelligent methods of exploiting imaged information for decision making. The 

intelligent methodology of monitoring and assessment of land degradation by 

integrating remote sensing images, geographic information, land information and 

geoscience knowledge has emerged with the development of techniques of 

geographic image analysis. 

1.2 Objectives and key issues of this research 

The goal of this research is to develop an approach of Geographic Image Cognition 

(GEOIC) to study land degradation and initiate its applications by combining 

hyperspectral images, geographical information and multi-source information. The 

approach will be tested and validated in a study area, located in an agriculture-

pasture mixed region in the edge of Loess Plateau area with complex physical and 

geographical situations and widely distributed land degradation. This research will 

complement and improve the theory and methodology for land degradation research 

in terms of eco-environment protection and sustainable land use. To achieve the 

above goal the following four main issues need addressing. 

 (1) The conception, connotation, and framework of the Geographic Image Cognition 

(GEOIC) for the study of land degradation need to be developed, which are based on 

the methodology of Object-based Image Analysis (OBIA). The term Geographic 

Image Cognition (GEOIC) is used in a literal sense to mean knowing or knowledge 

on images using geoscience knowledge, and in an intrinsic sense to mean the 

objectively knowing or knowledge on remote sensing images and multi-source 

information using geoscience knowledge. It provides an integrated approach for the 

extraction of land thematic information. The approach is developed from the 

methodology of OBIA. In other words GEOIC is an approach of developing the 

http://en.wikipedia.org/wiki/Knowledge�
http://en.wikipedia.org/wiki/Knowledge�
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automated methods to partition remote sensing imagery and multi-source information 

into meaningful image-objects and to assess their spatial, spectral, geographic and 

temporal characteristics in order to generate thematic information. The GEOIC 

approach extends the application fields of the OBIA methodology. Moreover, the 

approach focuses not only on the extraction of thematic information, but also on 

mining of thematic information and the quantification of ambiguously expressed 

knowledge. The approach is realized through the segmentation of geo-objects or 

meaningful image objects with remote sensing information, geographic information, 

and vegetation, soil, and other ancillary information. The advantages of the GEOIC 

approach include its emulation of a human interpreter’s ability in image 

interpretation and integration of different types of geo-data and a set of fuzzy-logic-

based rules into an object-based analysis process.  

(2) The method to select the appropriate diagnostic indicators related to land 

degradation and incorporate them into the GEOIC needs to be created. The GEOIC 

approach is an integrated approach for the extraction of land degradation information. 

It needs to integrate various diagnostic indicators related to land degradation. 

Therefore the second key issue is to develop a reliable method of choosing and 

determining the appropriate diagnostic indicators and the method of incorporating 

these indicators into the approach of GEOIC.  

(3) The method for up-scaling the estimation models for soil organic matter (SOM) 

mapping at regional scale under the approach of GEOIC needs to be studied. There 

exist some problems in the application of the established estimation models between 

the soil parameters and spectral reflectance for the interpretation of multi-spectral or 

hyperspectral images without making any corrections for the change of scale. 

Therefore, the third key issue is to determine the appropriate up-scaling method to 

the estimation models and investigate an effective way to map soil parameters at 

regional scale.  

(4) The systematic approach to the application of the GEOIC approach for extracting 

land degradation information needs developing. There exist a number of methods for 
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land degradation classification. The merits of the GEOIC approach over others need 

to be demonstrated.  

In relation to the above-mentioned four key issues, this study mainly includes three 

parts: 

 To discuss some conceptual issues and the theoretical background on GEOIC for 

the study of land degradation. This part aims at addressing the first key issue for 

developing the approach of GEOIC for land degradation study. 

 To apply the GEOIC approach in SOM mapping related to land degradation. The 

aim is to investigate the up-scaling method of the estimation models for SOM 

mapping using hyperspectral remote sensing images and multi-source data 

through the segmentation of Land Degradation Spectral Response Units 

(DSRUs). This part focuses on exploring the applicability of the GEOIC 

approach for mapping SOM to address the third key issue. 

 To apply the developed GEOIC approach in the extraction of land degradation 

information. DSRUs as land degradation mapping units and the diagnostic 

indicators for land degradation evaluation are determined from the comparison 

of different combinations of diagnostic indicators with the perception of local 

farmers. The approach is compared with the Spectral Angle Mapping (SAM) 

method and Degraded Soil Line Index (DSLI) method. This part aims at 

addressing the second and fourth key issues.   

1.3 Organization of the thesis and summary of contributions 

After this introduction, Chapter 2 focuses on research background and literature 

review about the classification and mapping methods of land degradation using 

multi-spectral and hyperspctral remote sensing data.  

Chapter 3 discusses some conceptual issues and the theoretical underpinning of 

GEOIC for the study of land degradation for developing the methodology. In this 

chapter, some factors influencing visual cognition on images are analyzed using the 

results obtained from geo-experts, skilled interpreters and simple users through a 
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questionnaire survey. The conception, connotation, models and mathematics 

methodologies related to the GEOIC for the study of land degradation is also 

discussed from different viewpoints. The framework of the GEOIC for the study of 

land degradation is then proposed.  

The GEOIC approach is tested and validated in a study area. Chapter 4 describes the 

situation of the study area and the collected data and methods of pre-processing 

Hyperion images in this research.  

Chapter 5 is devoted to the application of the GEOIC approach in SOM mapping 

using the data collected in the study area. The objective of this chapter is to 

investigate the up-scaling method of the estimation models for mapping SOM. In this 

chapter, the features of soil parameters, soil types and soil spectrums, and SOM 

spectral responses are discussed. The up-scaling method is then developed by setting 

up the SOM estimation models based on DSRUs using hyperspectral remote sensing 

images and multi-source data through the segmentation of DSRUs.  

Chapter 6 focuses on the application of the GEOIC approach for extracting land 

degradation information by land type classification using the data collected in the 

study area. The GEOIC approach is realized by the segmentation of DSRUs using 

Hyperion images, geographic information, vegetation, soil parameters, Digital 

Elevation Model (DEM) and local information. The diagnostic indicators of land 

degradation responding to spectrum feature, and other features of physiognomy, 

vegetation, and soil are determined by a comparison of the results of land 

degradation classification using different combinations of diagnostic indicators with 

the perception of local farmers. In addition, the GEOIC approach is compared with 

the SAM method and DSLI method using the data in the study area. The results 

showed a significant improvement in the accuracy of land degradation classification 

with the GEOIC approach and illustrated the development of a systematic approach 

for the quantification of ambiguously expressed information on land degradation.  

Chapter 7 summarizes the findings and provides recommendations for further study. 
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Figure 1.1 shows the flow of the research and relations among different sub-topics 

and chapters in the thesis. Through a literature review on monitoring and assessment 

of land degradation using remote sensing images, especially using hyperspectral 

remote sensing images, the key issues for the development of methodology are 

discussed. The conception, connotation, and framework of GEOIC on studying land 

degradation are formulated  

Because SOM is one of important diagnostic indicators related to land degradation, 

the second step is evaluating the potential of hyperspectral data for mapping soil 

parameters with the approach of GEOIC. The purpose is to find the quantitative 

relations between related feature parameters and the SOM contents and develop the 

up-scaling method of estimation models for SOM mapping at regional scale using 

Hyperion images and multi-source data through the segmentation of DSRUs.  
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Figure 1.1 The research flowchart and the relations among different sub-topics and 

chapters 

The third step is the application of the GEOIC approach for the extraction of land 

degradation information, which is illustrated with the example of the study area.  

DSRUs, as land degradation mapping units, are determined by the segmentation of 

Hyperion images and multi-source information. The diagnostic indicators for land 

degradation evaluation are also determined by the comparison of different 

combinations of diagnostic indicators with the perception of local farmers obtained 

from a farmer survey. The GEOIC approach is realized through the segmentation of 

DSRUs by land type classification using geoscience knowledge and local knowledge. 
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A comparison of the GEOIC approach with the pixel by pixel classification methods 

is done to demonstrate the merits of the approach of GEOIC.  

This research enriches the theory and methodology for land degradation research in 

terms of eco-environment protection and sustainable land use. The major 

conclusions and achievements of the research are summarized below: 

(1) This research developed the approach of GEOIC for the study of land degradation 

based on the methodology of OBIA. The definition, conceptual issues, and the 

theoretical underpinning, and the framework of the approach were proposed. The key 

objective of GEOIC on studying land degradation was to simulate the function and 

process of the visual interpretations by experts, and extract spatial feature, spatial 

object and spatial pattern of land degradation from remote sensing images and multi-

source information. It is an approach to develop the automated methods to partition 

remote sensing images and multi-source data into DSRUs and to assess their spatial, 

spectral, geographic and temporal characteristics.  

(2) This research is the first attempt to apply the approach of GEOIC in the 

extraction of land degradation information with remote sensing images and multi-

source information. The approach was realized through the DSRU segmentation by 

land type classification with integrating Hyperion images, geographic information, 

vegetation, soil parameters, DEM and local information. Especially, the approach 

was tested and validated in a study area located in Hengshan County in ShaanXi 

province, agriculture-pasture mixed area in Loess Plateau in China. It provided a 

systematic way for the extraction of land degradation information with hyperspectral 

images at a regional scale and demonstrated the improvement in the accuracy of land 

degradation assessment.  

(3) This research investigated and developed the SOM mapping method related to 

land degradation with hyperspectral images and soil spectral at a regional scale with 

the approach of GEOIC. The in-situ estimation models based on the relationship 

between the SOM contents and the spectral reflectance were developed by 

determining the sensitive bands for estimating SOM. The application of the in-situ 



                                                                                                   Chapter 1 Introduction 

 10 

estimation models to images needs compensating for the change of scale. The DSRU 

estimation models were developed based on the relationship between the contents of 

SOM and the spectral and regional variables of DSRUs. The DSRU estimation 

model is not only based on some variables in in-situ models, but also some 

environmental variables to compensate for the change of scale. The method provided 

a way for mapping soil features at a regional scale by integrating field data, remote 

sensing images and regional variables.  

(4) This research also provided a reliable method of integrating and determining the 

diagnostic indicators related to land degradation. Under the cognition mode of 

feature-object-pattern, DSRUs were segmented in the support of the integration of 

Hyperion images and multi-source information of various diagnostic indicators based 

on geoscience knowledge and geographic information. DSRU is an ecologically and 

geographically and spectrally homogeneous area with similar characteristics of 

physiognomy, vegetation, soil and image spectral information. It links hydrological 

and erosion processes with spectral response of land degradation. It is of significance 

not only to extract land degradation information, but also to integrate the diagnostic 

indicators related to land degradation. Moreover, the research firstly proposed the 

method of determining the diagnostic indicators related to land degradation from the 

local farmers’ perception and from the comparison of different combinations of 

diagnostic indicators.    
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Chapter 2                                                      

Research Background and Literature 

Review 

According to an international legally binding definition by the United Nations 

Convention to Combat Desertification (UNCCD), land is described as a “terrestrial 

bio-productive system that comprises soil, vegetation, other biota, and the ecological 

and hydrological processes that operate within the system”. It is the result of various 

natural landscape forming processes and human interference. The definition and 

connotation of land degradation described by UNCCD are mentioned in the 

introduction. From the definition and connotation, the knowledge on land 

degradation is usually expressed ambiguously and is difficult to be quantified. It can 

be measured and assessed by some diagnostic indicators, such as physiognomy, soil 

characteristics, vegetation, land types, land use/ land cover, climate, and human 

activities, and with remote sensing techniques and other approaches. This chapter 

reviews and comments on the literature about the basic conceptual issues of land 

degradation, methodologies for extracting land degradation information and image 

classification. Based on the review and comments the objectives of this research are 

clearly formulated. Section 1 addresses the background on monitoring of land 

degradation with remote sensing. Section 2 focuses on literature review about 

mapping of soil parameters related to land degradation. Section 3 summarizes the 

methodologies of land degradation classification.  
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2.1 Background on monitoring of land degradation with remote 
sensing 

2.1.1 Scale issue related to land degradation 

The issues of scale related to monitoring and assessment of land degradation were 

studied by many researches. Monitoring and assessment of land degradation is a 

process of investigating the characteristics, processes and distribution of land 

degradation for understanding a complex landscape. It is now widely recognized that 

landscape is a complex system having a hierarchical structure where dominant 

patterns and processes exist at specific scales (O’Neill et al., 1991; Walsh et al., 

1998; Wu and Marceau, 2002; Hay et al., 2003). To better understand and quantify 

monitoring and assessment of land degradation, useful concepts of scale related to 

remote sensing information have been developed.  

Scale is the fundamental determinant of hierarchical structure (Goodchild, 2001). In 

general terms, scale corresponds to one’s ‘window of perception’. More exactly, 

scale refers to the spatial dimensions at which entities, patterns, and processes can be 

observed and characterized. Furthermore, every scale reveals information specific to 

its level of observation (Marceau, 1999). No single scale is sufficient for assessing 

the varying sized, and spatially arranged components on the planet, a society, or in 

any complex system. Therefore, to appropriately monitor, model, and manage these 

environments a multi-scale (i.e. more than a single scale) approach is necessary (Lam 

and Quanttrochi, 1992; Hay and Marceau, 2004). Gibson et al. (2000) presented the 

definitions for the basic terms related to the concept of scales (Table 2.1). The term 

scale is most commonly used in relation to the absolute or relative scale of space. 
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Table 2.1 Definitions of the basic terms related to the concept of scale according to 

Gibson et al. (2000) 

Term Definition 
Scale The spatial, temporal, quantitative, or analytical dimension 

used to measure and study any phenomenon 
Extent The size of the spatial, temporal, quantitative, or analytical 

dimension of a scale 
Resolution (grain) The precision used in the measurement 
Absolute scale  The distance, time, or quantity measured on an objectively 

calibrated measurement device 
Relative scale A transformation of an absolute scale to one that describes 

the functional relationship of one object or process to 
another (e.g., the relative distance between two locations 
based on the time required by an organism to move 
between them) 

 

Remote sensing information refers to the pixel, gray level, texture, gray spectrum and 

texture analysis, dependent variables of image, image simulation and the information 

model (Ma, 1997). The basic geometric unit of an image is pixel. There are four 

scales in different forms in the conversion process from remote sensing image 

domain to land information domain: namely (1) cartographic scale, (2) scale of 

spatial extent, (3) scale of action, and (4) spatial resolution. The cartographic or map 

scale refers to the ratio of a distance on a map to the corresponding distance on the 

ground. A large-scale map covers a small area with a higher detail, while a small-

scale map covers a larger area with less detail. On the contrary, the geographical or 

observational scale refers to the size or spatial extent of the study. A geographic 

large-scale study covers a large area of interest, while a geographic small-scale study 

covers a small area (Cohen et al., 2003). The operational scale refers to the level at 

which observation processes operate in the environment (Turner et al., 2003). This 

scale, also called scale of action, represents a level at which a certain process 

phenomenon is best observed. Spatial resolution refers to the smallest distinguishable 

parts of an object, for instance a pixel size of a raster map or remote sensing images. 

The processes of land degradation at various scales reflect the various spatial 

distributing structures of land degradation types. Monitoring and assessment of land 

degradation depend on the above four types of scale. The study area (or geographic 

observation scale) determines the data of different spatial resolution required.  
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Scaling means a process of transferring data or information from one scale to another 

scale. As noted by Jarvis (1994), scaling represents a real challenge because of the 

nonlinearity between processes and variables, and heterogeneity in properties that 

determines the rates of processes. Practically, scaling can be performed by bottom-up 

or top-down approach. Up-scaling is to derive information at a larger scale with the 

information at a smaller scale, while down-scaling is decomposing the information at 

one scale into its constituents at a smaller scale. The scaling methods for monitoring 

and assessment of land degradation are based on statistical methodologies and 

geographical analysis methodologies, in which the most challenges lie on spatial 

heterogeneity of soil and vegetation and other factors indicating land degradation 

(Woodcock and Strahler, 1987). The up-scaling of environmental processes 

simplifies landscape complexity. Such a simplification is a critical issue in land 

surface modeling as ecosystem simulations depend closely upon the representation of 

land surface heterogeneity. This may inevitably cause significant biases in model 

prediction because many homogeneous phenomena or changes in environmental 

variables at a regional scale might be heterogeneous in valley or farm scale. To 

partially reduce the biases in environmental model simulations, several approaches 

had been proposed in the past two decades to improve the representation of land 

surface heterogeneity in these models (Wood, 1994; Pellenq et al., 2003; Bo and 

Wang, 2003). Remote sensing offers a great potential for scaling. It provides the 

required data not only for up-scaling or down-scaling physical models, but also for 

validating their outputs. Turner et al. (1996) conducted a study to determine the 

effects of spatial scale on the results obtained from a spatially distributed 

biogeochemical model. The results clearly indicated the differences in the inputs and 

outputs as spatial resolution is coarsened. Recently, scientists have demonstrated that 

remote sensing is a particular case of the modifiable areal unit problem (MAUP) 

(Marceau et al., 1994). This explains the inconsistencies in the results when remote 

sensing data are used to produce thematic maps or as inputs into physical models, 

without taking into account the impacts of scale. As noted by Raffy (1992), remote 

sensing models are often based on a relationship between a soil-level parameter and 

the sensor reflectance at a given wavelength. The general practice is to apply these 

models to the reflectance measured from satellites on heterogeneous surfaces, 

without any correction to compensate for the change of scale. Therefore, it is of 
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considerable importance that the scale effects in remote sensing should be fully 

understood to avoid any arbitrary and erroneous results.  

2.1.2 Mapping unit related to land degradation 

Mapping unit is another major factor affecting the results of monitoring and 

assessment of land degradation. The mapping unit can be a nation, a region, a county, 

a town, a village, a field, a patch, or a pixel. The mapping unit for monitoring and 

assessment of land degradation should be an ecologically homogeneous tract of land 

at a scale. It describes the characteristics of the most obvious (mappable) land 

attributes: physiognomy, soil, vegetation, and land use and land cover (including 

human alteration of them). A landscape is supposed to be divided into many 

ecologically and geographically homogeneous areas with similar characteristics of 

physiognomy, vegetation, and soil. A homogeneous area with similar soil-vegetation 

pattern typically covering a hill slope or a part of a hill slope is thought to be the 

result of hydrological and erosion processes related to land degradation. The 

mapping unit affects the accuracy of the extracted land degradation information. 

Different spatial scale produces the results of different accuracy: with larger scale, 

the representation of environmental characteristics is less and the precision of 

monitoring and assessment of land degradation will be lower.   

In the hydrology, ‘naturally homogeneous areas’ were introduced as a necessary tool 

for hydrological modeling. These ‘naturally homogeneous areas’ in hydrology are 

referred to as Representative Elementary Area (REA) or Hydrological Response Unit 

(HRU), assuming non-variability of the data and parameters within its delineation 

(De Wit et al., 2005). A similar concept called ‘Desertification Response Units’ 

(DRUs) was introduced in the field of land degradation research, aiming at linking 

hydrological and erosion processes from one temporal and spatial resolution to 

another (Imeson et al., 1995; Imeson, 2000). The classification of DRUs was based 

on spatial patterns of soil and vegetation because these patterns are thought to be the 

result of the movement of water, water availability and the redistribution of water in 

the landscape or the catchments. Based on these ideas, the ‘Land Degradation 

Spectral Response Unit’ (DSRUs) is proposed in this study as the unit for monitoring 
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and assessment of land degradation using remote sensing data. The classification of 

DSRU is based on spatial patterns of soil and vegetation, and spectral features and 

geographic information. 

2.1.3 Benchmark related to land degradation 

Determination of ecological benchmark is one of major topics in land degradation 

research. The classification of land degradation is generally based on a defined 

benchmark with various degrees of degradation, i.e. non-degraded land, slightly 

degraded land, moderately degraded land, and highly degraded land. However, the 

benchmark is difficult to identify in practice because of difficulty in finding a 

“baseline” which ecologically has not been affected by human activities. Many 

studies on the benchmark for land degradation evaluation were conducted. The 

academic ecological benchmark (or called absolute baseline) which is the top 

vegetation communities according to natural environment and climate was proposed 

by The Food and Agriculture Organization of the United Nations (FAO) and United 

Nations Environment Program (UNEP) (Dregne and Boyadgiev, 1983). From the 

ecological point of view, the changes in vegetation structure from the top vegetation 

communities to others are directly indicative to land degradation (Grainger, 1992). 

On the contrary, some researchers suggested that the baseline should be relative, 

which changes with time, because most vegetation communities in dry land area 

differ from its own vegetation communities due to climate variation and human 

activities (Sun and Li, 1999). They proposed that the preserved land regarded as non-

degraded land in a local area was used as the relative baseline for land degradation 

assessment. Another group of researchers proposed the use of the average situation in 

a defined time period with the detailed degradation data in the area as baseline. Three 

kinds of theories for land degradation assessment were developed: the human-

induced soil degradation based on the assessment of absolute degraded land with 

diagnostic indicators (representative one: the ‘Global Assessment of the Status of 

Human-induced Soil Degradation’ (GLASOD) project by the International Soil 

Reference and Information Centre (ISRIC) and UNEP) (Oldeman et al., 1990); the 

assessment of relative degraded land affected by human activities based on a 

combination of land productivity and management level (representative one: the 
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‘Soil Degradation in South and Southeast Asia’ (ASSOD) project by ISRIC, UNEP 

and FAO); and the comprehensive assessment of land degradation based on 

landscape diversity or spatial heterogeneity according to differences in soil 

degradation and vegetation degradation in ecological system (representative one: by 

Russia academic institute). Among the three theories, the theory of relative baseline 

was widely developed by the most of land degradation researchers at a regional scale 

(Wang, 2006). However, it should be noted that different factors affect the process of 

land degradation at different scales in different regions. The development of the 

methods to extract land degradation information related to land productivity and 

management level is a very important research area.  

2.1.4 Methodology for monitoring and assessment of land degradation 

Extraction of land degradation information is of importance for monitoring and 

assessment of land degradation situation. It involves the collection of information on 

climate, soil, vegetation, physiognomy, land resources and productivities, and the 

interpretation of all the information/data. The knowledge on land degradation is often 

expressed ambiguously. Consequently, land degradation can sometimes be estimated 

or measured directly, but often be indirectly estimated from land characteristics 

and/or diagnostic criteria. A diagnostic criterion, also named as land degradation 

evaluation indicator, is a variable serving as a basis for assessing land degradation in 

a given area (Doran and Parkin, 1994; Imeson, 2000; Stroosnijder, 2005; Sivakumar 

and Ndiangui, 2007). The variables can be land characteristics, physiognomy, soil 

characteristics, vegetation, land use/land cover, climate, and human activities, or 

function of them. There is considerable freedom in the way these various diagnostic 

indicators are integrated (Zonneveld, 1989). It is therefore of importance to develop a 

systematic approach to the evaluation of land degradation through an integration of 

these diagnostic indicators.  

The methodologies of geo-analysis on earth surface using remote sensing images 

were developed in recent years. Chen and Zhao (1990) proposed an approach of 

geographic image analysis, which has two functions: the provision of the information 

that can be obtained with remote sensing and the analysis of the information that 
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cannot be reflected on remote sensing images according to the bi-dimension and their 

correlations. On the basis of the above idea, Luo (2000) proposed a concept of 

remote sensing intelligent geo-interpretation model. The approach of geographic 

image analysis focuses on extracting, coding, reserving, accessing and utilizing 

remote sensing information using artificial intelligence. It is a transformation process 

from physical and / or semantic image information to precisely defined codes or 

thematic mapping (Zhou et al., 2001; Luo, 2000). It is also a process of image 

interpretation and decision making by imitating geoscience experts. The models of 

geographic image analysis are its core (Luo et al., 2001). Combined with the spatial 

cognition behaviors and cognition psychological studies, the modes of spatial 

cognition were studied and the idea of GEOIC was proposed by several researchers 

(e.g., Lu et al., 2005; Luo et al., 2001; Zhou et al., 2001). Cognition is the process of 

objectification cognition. Spatial cognition is also named as spatial object cognition. 

Therefore, spatial object is the key target in the research on geographic image 

cognition. The object-based image analysis is the core research of geographic image 

cognition in remote sensing domain. These ideas and concepts were applied in the 

classification of land cover, land use and the spatial pattern of earthquake-induced 

crust deformations based on the information on spectrum, texture and spatial 

information in images (Luo et al., 2001; Lu et al., 2005).  

The advancement of feature recognition and image analysis techniques facilitates the 

extraction of thematic information to support policy and decision making. As a 

strong driver, the availability of Very High Spatial Resolution (VHSR) data and the 

ever increasing use of geo-information for all kinds of spatially relevant management 

issues have catalyzed the development of new methods to exploit image information 

more ‘intelligently’. The methodology of Object-Based Image Analysis (OBIA) has 

emerged with the development of new earth observation techniques (Baatz et al., 

2008; Lang, 2008). The OBIA is mainly to provide adequate and automated methods 

for the analysis of VHSR imagery by describing the imaged reality using spectral, 

textural, spatial and topological characteristics. It offers a framework for machine-

based interpretation of complex classes, defined by spectral, spatial and structural as 

well as hierarchical properties (Burnett and Blaschke, 2003; Hay et al., 2003; Benz et 

al., 2004). The ultimate aim of the OBIA should focus on incorporating and 

http://en.wikipedia.org/wiki/Artificial_intelligence�
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developing geography-based intelligence (Blaschke et al., 2005; Lang, 2008). The 

methodology of the OBIA was developed from a predominantly pixel-spectra based 

model to a dynamic multi-scale object-based contextual model that attempts to 

emulate the way in which human interprets images. It can play a key role in image 

understanding (Blaschke, 2003; Lang and Langanke, 2005).  

There are numerous challenges in the path from pixel to object and to intelligence 

which need to be addressed. Several researchers have proposed new concepts and 

studied the methodology of OBIA related to geographic image analysis and GEOIC. 

Hay and Castilla (2006) proposed the concept of Geographic Object-Based Image 

Analysis (GEOBIA) based on the previous studies on the OBIA. GEOBIA is the 

automated methods to partition remote sensing imagery into meaningful image-

objects and assess their characteristics through spatial, spectral and temporal scales, 

so as to generate new geographic information in GIS-ready format. Lang and Tiede 

(2007) proposed the term geon to describe generic spatial objects that can be defined 

as a homogenous geo-spatial referencing unit, specifically designed for spatial-

related policy making. Having studied the method of geo-analysis of remote sensing 

images and OBIA, one can find that there is a close relation between GEOIC and 

OBIA. All the above studies focused on developing the automated intelligent 

methods to extract thematic information to imitate the visual interpretation on images.  

The idea and concept related to GEOIC can be applied in land resource researches 

using remote sensing images. The recent developments in the methodology for 

extracting land thematic information and land evaluation are to improve the precision 

and veracity of information extraction and evaluation through an integration of multi-

source data. A new area of development is the approach of GEOIC, which integrates 

the models of statistics, artificial neural network and logical reasoning for intelligent 

processing and analysis on multi-source information combined with geoscience 

knowledge.  

Land degradation information is one of major types of land information. Therefore, 

the approach of GEOIC can be applied in extracting thematic information on land 

degradation. The approach of GEOIC on studying land degradation should simulate 
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the function and process of the visual interpretation by experts and extract spatial 

feature, spatial object and spatial pattern of land degradation from remote sensing 

images based on integrating geoscience knowledge and geographic information and 

multi-source information on various diagnostic indicators.  

Land degradation research has gained a great impetus over the last two decades. 

Many successful case studies were reported and several new methods were 

developed. However, little effort has been made towards building the conceptual 

foundation for the approach of GEOIC, in particular the methodological foundation 

of GEOIC on studying land degradation, and the method for an efficient integration 

of the diagnostic indicators.  

2.2 Mapping of soil parameters using remote sensing images 

Soil characteristics are major diagnostic indicators related to land degradation. 

Attention should be paid to the comprehensive responses of soil physical and 

chemical features to their spectral reflectance characteristics. Soil spectral data 

collected in lab and field were used to detect and map soil surface features by some 

researchers (e.g., Baumgardner et al., 1985; Hunt et al., 1987; Mulders, 2001; De 

Jong et al., 2001; Van der Meer, 2001). Several papers analyzed the absorption 

features in the spectral region between 0.4µm and 2.5µm wavelengths and correlated 

them with soil features, such as soil color, SOM, soil moisture, particle size 

distribution, soil texture, iron oxides and soil mineralogy (e.g., Al-Abbas et al., 1972; 

Dalal and Henry, 1986; Frazier, 1989; Escadafal, 1994; Ben-Dor and Banin, 1995; 

Ben-Dor et al., 1997; Ingleby and Crowe, 2000; Thomasson et al., 2001; Ben-Dor et 

al., 2002; Reeves et al., 2002; Liu et al., 2002; Cozzolino and Morón, 2006; Roder et 

al., 2008). Most of the early studies identified the relations between organic carbon 

content and spectral variables based on the reflectance in the visible range of the 

solar spectrum (Shields et al., 1968; Al-Abbas et al., 1972; Page, 1974). Some 

studies showed that soil chemical features and their physical structure also influenced 

the VIS-NIR spectra. The study by Bowers and Hanks (1965) indicated that the 

oxidation of organic matter would increase the spectral reflectance of soil, as well as 

the smaller particle size. Some studies revealed that soil reflectance decreased in the 



                                               Chapter 2 Research Background and Literature Review 

 21 

wavelength range of 0.4µm to 2.5µm with an increase in organic matter content 

(Hoffer and Johannsen, 1969; Latz et al., 1984). Moreover major efforts were made 

to correlate specific spectral bands with SOM. Stoner and Baumgardner et al. (1985) 

identified five distinct soil reflectance types by spectral curve shape and the spectral 

absorption features related to soil constituents. Ben-Dor and Bannin (1994) used the 

full reflective spectrum to predict SOM and other mineralogical and chemical soil 

properties based on multivariate statistics. Galvão and Vitorello (1998) set up a 

relationship between the SOM content and soil spectral reflectance in the 0.5µm to 

0.7µm region using AVIRIS data. Bocheng et al. (2004) studied the spectral 

characteristics of brown-humid soil to estimate SOM content and found that the 

SOM content was highly correlated with the original reflectance, the logarithm of the 

reciprocal reflectance in 0.447µm, the first differentiation of the logarithm of the 

reciprocal reflectance in bands of 0.516µm and 0.615µm. Hill and Schutt (2000) 

found organic matter had a strong influence on soil reflectance and proposed a 

method to parameterize soil reflectance spectra with the variables related to specific 

shape characteristics of the spectral profile. The method can be used to estimate 

organic carbon concentrations in soil with regular calibration of the regression 

models. Thomas et al. (2006) investigated the use of both Multiple Linear 

Regression (MLR) and Partial Least-Square Regression (PLSR) to construct a model, 

which can simultaneously estimate topsoil organic matter and texture from the 

images for high resolution topsoil mapping.  

Recent spectroscopic studies have shown that SOM, soil types, grain size, soil 

moisture, and other parameters are indicative of land degradation and could be 

predicted with hyperspectral remote sensing technique (Shrestha et al., 2005). 

Hyperspectral remote sensing technique not only produces laboratory-like 

reflectance spectra with absorption bands specific to object’s properties, but also 

helps improve the accuracy of mapping soil parameters (Pieters and Mustard, 1988; 

Kruse et al., 1993). Soil spectral data have been used to detect and map soil 

degradation. Several multivariate regression models have been developed (Krishnan 

et al., 1980; Leone and Sommer, 2000). Krishnan et al. (1980) found that four types 

of soil reflectance in his study had no spectral absorption features related to SOM in 

the range of 0.8-2.4µm wavelength and the correlation coefficients between the SOM 
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content and spectral reflectance in 0.623µm and 0.564µm were high. Leone and 

Sommer (2000) applied the multivariate statistical analysis in high resolution 

laboratory reflectance spectra of soil samples to assess soil degradation levels in a 

test site. Some studies directly mapped soil degradation using soil spectral features. 

De Jong (1994) assessed the soil hardening and classified the major soil types 

applying hyperspectral remote sensing in a Mediterranean environment. Dematte et 

al. (2004) developed a methodology based on spectral reflectance to evaluate soil 

types and soil tillage systems related to soil erosion. Vagen et al. (2005) studied a 

method of sensing landscape level change in soil fertility following deforestation and 

conversion in the highlands of Madagascar using VIS-NIR spectroscopy. 

Though some of the studies were proved to be successful in estimating the 

relationship between the soil parameters and soil spectral reflectance in both 

laboratory and field environments, and in mapping soil conditions, there is not an 

effective way to map soil parameters at a regional scale so as to derive topsoil 

physical/chemical characteristics. It should be mentioned that several regression 

models between the soil parameters and soil spectral reflectance are rarely, or not at 

all, directly applied to the interpretation of  multi-spectral or hyperspectral images. 

This is mainly due to the following two reasons:  

(i)     Traditional multi-spectral satellite images such as Landsat with several 

bands and wide band width of 100 to 200 um do not have sensitive spectral 

response to soil surface features (De Jong, 1994). The established 

relationship cannot be transferred to the limited band set of multi-spectral 

images.  

(ii)     The application of the model of a soil-level parameter with respect to 

sensor reflectance to images lacks sufficient corrections to compensate the 

change of scale. Relationship models, established based on detail point-

based data in small area or local scale, may lead to estimation errors and 

un-realistic estimates of surface condition at extrapolation to a regional 

scale (Raffy, 1992; Raffy and Gregoire, 1998).  
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Many researchers have attempted to determine the most appropriate up-scaling 

technique for the models at different scales (Hay et al., 1997; Raffy and Gregoire, 

1998). Hay et al. (1997) described a scaling technique that employs object-specific 

kernels to analyze and incorporate the influence of different sized, shaped, and 

spatially distributed objects within the up-scale images. Hay and Marceau (1998) 

stressed that the object-specific up-scaling ideas may provide a new framework for 

potential solution of a series of difficult scale issues. There are still a lot of rooms for 

investigating the methods of up-scaling estimation models for soil mapping with 

hyperspectral satellite images at regional scale.  

2.3 Methodologies for land degradation classification with 
remote sensing images  

In general, monitoring and assessment of land degradation are based on two types of 

data/information: conventional soil survey data and remote sensing data. The early 

efforts to map land degradation only based on conventional soil survey data have 

been criticized (UNCOD, 1977; UNEP, 1987; Hellden, 1991; Thomas and Middleton, 

1994; Nicholas et al., 1997). Although many studies about land degradation were 

successfully done in field, there were no better ways to make the findings from field 

studies at patch-scale and valley-scale applicable in a relatively large area. Thus, 

there is a pressing need for an objective measure of land degradation at a regional 

scale by a synergy of remote sensing data and other types of information. 

With the development of remote sensing technology, it was believed that remote 

sensing can significantly contribute to solving these problems (Hill et al., 1995). Soil 

and vegetation parameters, influenced by land degradation, proved to be detectable 

using numerical analysis of remote sensing images (Baumgardner et al., 1985). The 

information on vegetation cover can be directly extracted from images through a 

relationship between vegetation indices and vegetation cover. Some authors 

established the relationship between soil erodibility and the vegetation cover fraction, 

estimated from the vegetation indices using remote sensing images (Hudson, 1957; 

Hudson, 1971; Cyr et al., 1995; Biard and Baret, 1997; Hill et al., 1998; Arsenault 

and Bonn, 2005; Chen and Rao, 2008). The chemical and physical properties of 
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surface soil are reflected in the spectral responses, and therefore can be detected 

(Fischer, 1991; Leone and Sommer, 2000). This was discussed in section 2.2. 

Most of the studies used multi-spectral images and high resolution images to map 

land degradation at a regional scale (Escadafal et al., 1994, 1995; Haboudane et al., 

2002; Wang, 2006; Chen and Rao, 2008; Gao and Liu, 2008). Several indices of soil 

degradation, wind erosion, and water erosion with different expressions and 

standards were proposed to measure soil degradation, which incorporated soil 

physical and chemical properties, soil loss, soil deposition, soil bulk density and soil 

formation (Adejuwon and Ekanade, 1988; Escadafal et al., 1994; Mougenot and 

Cailleau, 1995; Escadafal et al., 1995; Menenti et al., 1999; Haboudane et al., 2002; 

Chabrillat et al., 2003; Mohamed et al., 2005; Nasir et al., 2005; Vagen et al., 2005; 

De Wit et al., 2006). These indices were classified into five types: (i) index based on 

land degradation conceptual model; (ii) land degradation comprehensive index based 

on multi-indicators; (iii) land degradation proportion index; (iv) soil degradation 

distance index; and (v) index based on land degradation spectral model. Table 2.2 

presents some of land degradation indices in literature. These indices were developed 

based on old generation remote sensing sensors and multi-spectral remote sensing 

data and conventional soil survey data.  
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Table 2.2 indices of land degradation in literature 
Index types Name Method algorithm literature 

Conceptual 
model 

Hazard Index of Land 
Degradation (DH) 

Comprehensive assessment on situation and rate 
of land degradation considering frangibility 
physical condition and human being stress 

DH = DS + DR + IR + AP + PP 
Where DS = desertification status, DR = desertification rate, 
IR = inherent risk, AP = animal pressure, PP = population 
pressure  

Menenti et al. 
(1999) 

Spectral Index of Land 
Degradation （LDI） 

Comprehensive  assessment on situation and rate 
of land degradation using remote sensing data 
and human being stress 

LDI = SD + VD + C + A  
Where SD = (spectroscopic indicator of) soil degradation 
severity, VD = vegetation degradation severity, C = 
climate data, A = ancillary data (population) 

Chabrillat et al. 
(2003) 

Comprehensi
ve index  

Weighted Mean Index of 
Land Degradation (LD) 

Weighted means of multi-indicators, such as soil, 
vegetation and others 

LD=∑P i× Mi 
Where Pi=weight of indicator i,  Mi=value of indicator i 

Soil surveying 

Proportion 
index 

Land Degradation Proportion 
Index (LDPI) 

Calculation of area of different degraded degree 
land using weighted means 

LDPI=(percentage × area in slightly degraded land + 
percentage × area in moderately degraded land +percentage × 
area in highly degraded land )/ total area 

Soil surveying 

Distance 
index 

Soil Degradation Distance 
Index (DDI) 

Calculation the distance of soil parameters in one 
sample to baseline sample, based on soil 
surveying data 

DDI=[(P1-P’1)/P’1+(P2-P’2)/P′2+…+(Pn-P’n)/P’n]×100/n  
Where Pi=value of soil parameter at the initial stage, 
Pi’=value of soil parameter at the later stage 

Adejuwon and 
Ekanade et al. 
(1988) 

Soil Physical Degradation 
Index (PDI)  

Based on soil physical parameters using soil 
surveying data  

PDI=CI/(%SA+(FC-WP)*100)   
Where SA= percentage of stable aggregates, FC= field 
capacity, WP= wilting point, CI= crusting index 

De Paz et al. 
(2006) 

Soil Chemical Degradation 
Index (CDI) 

Based on soil chemical parameters using soil 
surveying data 

CDI=（Salts＋Na）/CEC 
Where Salts, Na, and CEC are contents of salt and sodium 
and cation exchange capacity  

De Paz et al. 
(2006) 

Soil Biological Degradation 
Index (BDI) 

Based on soil parameters indicative biological 
indicators using soil surveying data  

BDI=1/SOM  
Where SOM= content of soil organic matter 

De Paz et al. 
(2006) 

Land 
degradation 
spectral 
model 

Soil Line Index (SLI) Based on soil line theory using ASTER data SLI=tanα /tan β  Mohamed et al. 
(2005) 

Salinity Index (SI, NDSI) Based on bands algebraic calculation using 
several bands of IRS-1B data 

31 BBSI ×=  
)43/()43( BBBBNDSI +−=  

Nasir et al. (2005) 

Soil Fertility Spectral Index 
(SFI) 

Based on logic regression method using TM data 

ik
X

k

k kYiP
YiP

SEF ∑
=

+=
=−

=
=
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)1(

ln βα  

Vagen et al. (2005) 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22de%20Paz%20JM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22de%20Paz%20JM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22de%20Paz%20JM%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus�
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Moreover, most of the studies about land degradation focused on the methodologies 

of classification. Conventional classification methods using remote sensing images 

were based on pixels (De Jong, 1994; Turner et al., 1995; Escadafal et al., 1995; 

Tripathy, 1996; Hill and Schütt, 2000; Okin et al., 2001; Dehaan and Taylor, 2002; 

Gregory, 2003; Vagen et al., 2005). The classical pixel by pixel approaches have 

been used for the classification of land use /land cover and land degradation, such as 

unsupervised classification methods including K-Means etc, and supervised 

classification methods including maximum likelihood classifier, and nearest-mean 

classifier, etc. Spectral analysis approaches range from relatively simple maximum 

likelihood classification techniques to sophisticated ones, such as the spectral feature 

matching methods and spectral unmixing methods. Several researchers conducted the 

spectral feature matching of image spectra with selected reference spectra from a 

spectral library and proposed the spectral angle classifier. Some studies developed 

the spectral unmixing methods which determine the relative abundance of materials 

or end members within each pixel based on the spectral characteristics of those 

materials (Kruse et al., 1993; Boardman, 2006). The linear unmixing and the spectral 

angle matching techniques were also applied to assess their suitability in mapping 

surface features in land degradation studies (Okin et al., 2001; Shrestha et al.,  2005; 

Pierre et al., 2005). Several authors proposed the spectral unmixing using a linear 

model and analyzing the fraction image to study soil degradation (Hill et al., 1995; 

Van der Meer, 1997; Haboudane et al., 2002). Hill et al. (1998) applied the spectral 

mixture analysis methodology to soil degradation mapping in semi-natural 

ecosystems of the Mediterranean. Omuto and Shrestha (2007) proposed a tree 

classification method. Johansen et al. (2008) quantified the indicators of riparian 

condition and assessed these indicators for detecting the change in riparian condition 

using two multi-spectral QuickBird images. The study by Gao and Liu (2008) 

concluded that the spatial resolution of the ASTER data exerts only a negligible 

effect on the mapping accuracy. However, for the spectral matching methods and the 

spectral unmixing methods, one must select a reference spectrum, which, however, 

cannot completely represent a given soil type or land cover type, because there are 

many factors affecting reflectance. It is very difficult to select pure spectra in spectral 

library to represent typical soil types or land cover types, resulting in poor precision 

of classification. 



                                                Chapter 2 Research Background and Literature Review  

 27 

Hyperspectral images have made precise spectrum feature analysis and sensitive 

spectrum response to surface features possible (Hill et al., 1995, 1998). The 

developments of scanner systems that acquire data in many narrow-wavelength 

bands allow the use of almost continuous reflectance data in many fields of research, 

such as geological survey, mineral exploration, soil survey, land degradation 

monitoring, mine environment monitoring, pollution survey and water bodies 

monitoring (Leone and Sommer, 2000). Therefore, utilization of hyperspectral 

remote sensing technique to carry out detailed land degradation mapping becomes 

possible at a regional scale. Some investigators developed the spectral unmixing 

methods and the spectral angle matching techniques with hyperspectral images for 

land degradation mapping (e.g., Van der Meer, 2001; Goovaerts et al., 2005; 

Shrestha et al., 2005; Boschetti et al., 2007). The information on green vegetation, 

blasted vegetation and bare soil was interpreted to reflect the degree of 

desertification at a large scale by comparing AVIRIS and EO-1 Hyperion in 

Argentina dry lands (Gregory, 2003). 

Several issues have to be tackled due to insufficient spatial information and 

geoscience knowledge. There is a limitation in these spectral approaches which 

account only for the correlation between spectral bands but neglect the correlation 

between neighboring pixels (Atkinson and Lewis, 2000). The traditional pixel-based 

spectral classification methods neglect some potentially useful spatial information 

and do not consider the spectral dependence between pixels and their neighbours, i.e. 

spatial autocorrelation. To solve the problem of neglecting spatial information, 

numerous studies were conducted using spatial statistics in the texture classification 

of land use and land cover (Haralick et al., 1973; Chen et al., 1997; Stein et al., 

1999). Geostatistics refers to a group of techniques for the analysis of spatial data. It 

provides variogram and not only analyzes multivariate spatial correlation between a 

pixel and its neighbors for measuring image texture, but also does the spatial 

decomposition or image filtering of signal values (Woodcock et al., 1988; Rossi et 

al., 1994; Atkinson and Lewis, 2000; Curran, 2001; Goovaerts et al., 2005) . Some 

studies found that the approach based on texture measures can achieve higher 

accuracy depending upon the nature of the data and texture (Chica-Olmo and 

Abarca-Hernández, 2000; Berberoglu et al., 2007). Application of geostatistic 
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methods for classification and spectral matching were also investigated (Nazzareno 

and Michele, 2004; Van Der Meer, 2006; De Jong and Van De Meer, 2007; 

Berberoglu and Akin, 2009). Nazzareno and Michele (2004) proposed a multivariate 

indicator kriging approach, which integrated spatial information and various 

absorption band estimates from soil survey data, to classify soil degradation for 

Mediterranean agricultural lands. Van der Meer (2006) proposed an indicator 

kriging-based classifier for mapping the minerals alunite, kaolinite, illite and chlorite 

using airborne hyperspectral imaging spectrometer data and field spectra. However, 

a main problem with variogram as a measure of texture is that the homogeneous 

regions of different texture within an image must be large enough to allow the 

computation of the variogram up to a reasonable number of lags. In many cases, 

however, the parcels of interest in an image are too small compared with the spatial 

resolution of the image.  

The above-mentioned pixel-based classification methods only use the spectral and 

texture information, and do not take advantage of the information about the shape 

and the spatial relations among the image regions. The current developments are to 

integrate spectrum, texture and spatial information in images and geographic 

information. The object-oriented analysis method has been developed based on fuzzy 

logic after image segmentation. The method was mainly used in the classification of 

land cover and land use and forest (Civanlar and Trussell, 1986; Kosko, 1992; Kruse 

et al., 1993; Herold et al., 2005; Lewinski  and Polawski, 2005; Carleer and Wolef, 

2006; Yu et al., 2006; Laliberte et al., 2007; Jacquin et al., 2008; Mallinis et al., 

2008; Kim et al., 2008; Zhou et al., 2008). Some studies showed that the object-

oriented classification approaches can produce better results than the pixel-based 

approaches (Manakos et al., 2000; Oruc et al., 2004; Whiteside and Ahmad, 2005; 

Brandtberg and Warnen, 2006; Matinfar and Sarmadian, 2007; Kamagata et al., 

2008).  

As we know, land degradation process is related to several factors, like physiognomy, 

soil characteristics, vegetation, land use/land cover, climate, and human activities. 

Therefore land degradation research must integrate and take full advantage of various 

types of data and information. However, the conventional methods for land 
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degradation classification were pixel-based, suffering from the problems as 

mentioned above. With the development of the OBIA methodology, the idea of 

GEOIC has been proposed. The GEOIC approach integrates remote sensing 

information, geographic information, and the knowledge on land resources and takes 

into account the spectral, texture, shape, and spatial relation between pixels based on 

fuzzy logic methods. The GEOIC is also an appropriate approach to handle the 

knowledge on land degradation which is frequently expressed ambiguously. Little 

however, has been done in this research area and further developments are highly 

required.  

Many investigations on soil and land degradation with remote sensing images were 

conducted in arid and semi-arid zones that are considered particularly favorable to 

remote sensing techniques (e.g., Escadafal, 1994; Mathieu et al., 1998). But in an 

agriculture-pasture mixed region, like in the Loess Plateau in China (see chapter 4 

for the detail), where physical geographical situation is very complex and land 

degradation is widely distributed, the assessment of the land degradation is much 

more complex. It is important to develop an approach, which is valid for such a 

complex situation.  
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Chapter 3                                                      

Some Issues About Geographic Image 

Cognition on Land Degradation 

This chapter has five sections. The first section introduces the GEOIC and its key 

objective. The second section describes a conceptual framework of the GEOIC when 

applied for land degradation assessment, and its merits over other approaches. The 

third section discusses some concepts related to the GEOIC. The factors affecting 

image visual cognition are discussed in section 4, where a questionnaire survey was 

conducted and the results were analyzed. The last section devotes to a general 

discussion of the GEOIC approach, its theoretical underpinning, model underpinning, 

and methodological framework for land degradation assessment.    

3.1 Introduction to GEOIC  

To effectively extract land thematic information, the approach of GEOIC was 

developed based on the geographic image analysis and OBIA. As mentioned in 

Chapter 2, it is the objectification cognition on remote sensing images and multi-

source information using geo-knowledge. The GEOIC, as an integrated approach, is 

the extension of the methodology of OBIA. Its key content is based on the 

methodology of OBIA as shown in Figure 3.1. 
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Figure 3.1 The OBIA as an integrated approach (after Lang (2008) with some 

modification) 

The GEOIC is an approach of developing automated methods to partition remote 

sensing imagery and multi-source information into meaningful image-objects and 

assessing their spatial, spectral, geographic and temporal characteristics in order to 

generate thematic information. To this end the GEOIC incorporates knowledge and 

methods from different disciplines involved in the generation and use of geographic 

information.  

The general objective of GEOIC is mining thematic information and quantifying 

ambiguously expressed knowledge (from remote sensing imagery and multi-source 

information), from which intelligence can be obtained. Here, intelligence refers to 

thematic information that enables users to effectively perceive, interpret and respond 

to some specific issue, such as global climate change, natural resources management, 

land use/land cover mapping, and others (Hay and Castilla, 2006; Hay and Castilla 

2008). The GEOIC is regarded as an approach to replicate (and/or exceed 

experienced) human interpretation of remote sensing images in automated/semi-

automated ways. This can result in more accurate, less subjective, and repeatable 

information, and reduce labor and time cost. Essentially, the GEOIC provides a way 

to move from simply collecting images, to creating geo-intelligence. In other words, 

Provision of units, regionalization 

Classification, interpretation 
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the GEOIC aims at extracting, mining, coding, reserving, accessing and utilizing 

remote sensing information and multi-source information with artificial intelligence. 

It is a translation process from physical and / or semantic image information to 

precisely defined codes or thematic mapping. It is significant to understand the 

mutual relationship among scale, space and experience in the process of cognition on 

land information. 

3.2 GEOIC on studying land degradation 

The approach of GEOIC connects the features in remote sensing images and multi-

source information with vision, experience, knowledge and memory in human brain 

about land degradation, and forms symbolic expression of spatial information. There 

are three levels in the approach namely the spatial feature perception, the spatial 

object cognition and the spatial pattern cognition, among which the spatial object 

cognition is the core element. In other words, the approach is a process from the 

spatial feature perception to the spatial object cognition and to the spatial pattern 

cognition under the cognition mode of feature-object-pattern. It is related to 

information layer, physical layer and semantic layer (Luo, 2000). The information 

layer reflects the inherent and fundamental geo-features of two-dimensional remote 

sensing images and ancillary information, such as spectrum features, spatial features, 

and temporal features of land degradation. The physical layer is related to detailed 

information on geo-objects. The semantic layer describes the geographic attributes 

and the mutual relationships between environment variables (see Figure 3.2). 

http://en.wikipedia.org/wiki/Artificial_intelligence�
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Figure 3.2 Three information layers for GEOIC (after Luo (2000) with some 

modification) 

The GEOIC on studying land degradation is to simulate the function and process of 

the visual interpretation by experts, and extract spatial feature, spatial object and 

spatial pattern of land degradation and mine the information on land degradation 

from remote sensing images and multi-source information. The approach is realized 

through the segmentation of meaningful image objects with the support of an 

integration of remote sensing images and multi-source information on various 

diagnostic indicators, based on geoscience knowledge and geographic information. 

The approach provides a systematic approach for the study of land degradation 

(Figure 3.3). As one can see, all the diagnostic indicators related to land degradation 

are integrated through a geon concept. A geon concept is discussed in section 3.3. 

The information of diagnostic indicators was integrated and generated conditioned 

information, i.e. the information of meaningful image objects, which is directly used 

in the process of monitoring and evaluation of land degradation. By this, it enables 

monitoring of meta-indicators effectively to support the decision making. 
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Figure 3.3 Conceptual framework of the approach GEOIC on studying land 

degradation 

Although the GEOIC is developed from the methodology of OBIA, there are some 

differences between them. The GEOIC approach is an extension of OBIA 

methodology. It focuses not only on the extraction of thematic information, but also 

on mining thematic information and quantifying ambiguously expressed knowledge. 

Table 3.1 gives a comparison. Its applications cover a wider area, like land use and 

land cover classification, vegetation classification, land degradation evaluation, land 

quality evaluation, soil parameters mapping, and forest development, etc. The 

advantage of the GEOIC approach includes the emulation of a human interpreter’s 

ability in image interpretation, and integration of different types of geo-data into an 

object-based analysis process and a set of fuzzy-logic-based rules.  
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Table 3.1 Comparison of the GEOIC approach with OBIA methodology 

GEOIC approach OBIA methodology 
For mining thematic information and quantification of 
ambiguously expressed knowledge  

For extraction of thematic information 

A process of image segmentation, and classification, 
extraction, and mining of thematic information 

A process of image segmentation, and 
classification and extraction of thematic 
information 

Based on spectral and texture information, spatial 
relation, and geoscience knowledge and local knowledge 

Based on spectral and texture information, and 
spatial relation 

Segmentation of geo-objects or meaningful image 
objects, e.g. DSRU and land unit  

Segmentation of image objects or meaningful 
image objects 

Using remote sensing information, geographic 
information, vegetation, soil, and field survey 
information 

Mainly using remote sensing information 

Application in land use and land cover classification, 
vegetation classification, and land degradation 
evaluation, land quality evaluation, soil parameters 
mapping, and forest development, etc. 

Application in land use and land cover 
classification, vegetation classification, etc. 

 

3.3 Some concepts related to GEOIC 

The term cognition in a wider sense means the act of knowing or knowledge, 

including feeling, consciousness, idea, imagination, memory and thought. It in some 

loose ways refers to the human-like processing of information. A remote sensing 

image is a typical, complicated and uncertain information source, which reflects the 

earth’s surface spatial and spectral information obtained by sensors. One can hardly 

describe exactly what really happens if just looking at an image and suddenly 

‘seeing’ something. But you indeed notice that if you do any kind of pattern 

recognition (Tarr and Cheng, 2003). Human interpretation for image cognition can 

derive little information if using the point-by-point approach, because less 

information can be derived from the brightness of individual pixels. However, one 

can get more information from the context and the patterns of brightness [i.e. texture], 

of groups of pixels, and from the sizes, shapes and arrangements of parcels of 

adjacent pixels (Campbell, 2002). Human interpreters also implicitly use structural 

knowledge in the manual classification process. They do not only consider 

contextual information but also information about the shape and the spatial relations 

between the image regions. One way to make use of this additional information is to 

organize the images into objects that represent the regions of similar pixels prior to 

the classification. In most cases, information important for the understanding of an 

http://en.wikipedia.org/wiki/Knowledge�
http://en.wikipedia.org/wiki/Information�
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image is not represented in a single pixel but in meaningful image objects and their 

mutual relations (Blaschke, 2003). An interpreter for image cognition must often 

delineate, or outline, regions as they are observed in remote sensing images. In many 

cases the human brain can easily manage to detect and delineate features that 

otherwise in a machine-based way are hardly to extract (Blaschke et al., 2005). 

Indeed, image cognition is to make an explicit way, in which we deal with imaged 

information in various scales, we manage to relate recognized objects to each other 

with ease, and we understand complex scene contents readily. Image cognition can 

supply the information that cannot be obtained by remote sensing and analyze the 

information that could not be reflected by remote sensing images according to the bi-

dimension and their correlations. Therefore, image cognition is the process of 

objectification cognition on images. Spatial cognition is also named as spatial object 

cognition. The core research of image cognition is spatial object cognition. 

The term geon is proposed to describe generic spatial objects that are derived by 

regionalization and homogenous in terms of a varying spatial phenomenon under the 

influence of, and partly controlled by, policy actions (Lang and Tiede, 2007; Lang, 

2008). A geon (from Greek gé = Earth and on = part, unit) can be defined as a 

homogenous geo-spatial referencing unit, specifically designed for policy-related 

spatial decisions. In the real world, it is close to geo-object. For geo-object, the term 

‘object’ refers to a discrete spatial entity that has many permanent properties which 

endow it with an enduring identity and which differ in some way or another from the 

properties of its surroundings (Smith, 2001). A geographic object, or geo-object, is a 

bounded geographic region that can be identified for a period of time as the reference 

of a geographic term such as those used in map legends. It is an object of a certain 

minimal size (as to allow representation in a map) on or near the surface of the Earth, 

such as a city, a forest, a lake, a mountain, an agricultural field, a vegetation patch 

and so on (Smith and Mark, 1998; Castilla and Hay, 2008). In remote sensing images, 

geon is related to image-object. Image-objects are fiat objects. They are created by 

human cognition on images (Smith, 2001). Human’s image cognition can identify 

entities that can be related to real entities in the landscape. Image cognition is a 

relatively new approach to the analysis of remote sensing images where the basic 

units, instead of being individual pixels, are image-objects. An image-object is a 
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discrete region in an image that is internally coherent and different from their 

surroundings (Benz et al., 2004). When an image object can be seen as a proper 

representation of an instance of some type of geo-object, then we can say it is a 

meaningful image-object, that is, a representation of a geo-object. Regarding the 

ontological status of image-objects, it has to be noted that they do not exist 

autonomously within images. Rather, they are created during the segmentation. 

Segmentation produces image regions, and these regions, once they are considered 

meaningful, become image objects; in other words an image object is a ‘peer 

reviewed’ image region; refereed by a human expert. A pixel as a technically defined 

unit cannot be assigned a valid corresponding real-world object, but an image object 

can (Castilla and Hay, 2008). 

3.4 Influencing factors of image visual cognition 

The aim of monitoring and evaluation of land degradation is to investigate the 

characteristics, processes and distribution of land degradation for better 

understanding a complex landscape. It is now widely recognized that landscape is a 

complex system with a hierarchical structure where dominant patterns and processes 

exist at specific scales. Remote sensing images reflect the landscape’s spatial 

information obtained by sensors. Although the approach of GEOIC on studying land 

degradation is an integrated and automated one for the extraction of land degradation 

information, human’s visual cognition on images impenetrate its whole process, 

including the choice of diagnostic indicators, the determination of threshold values of 

diagnostic indicators, membership functions, and rule sets of land degradation 

assessment, and the selection of validated samples, which are the base for the 

application of the GEOIC in the extraction of land degradation information. This also 

fully exhibited the connotation of image cognition with geoscience knowledge. But 

human’s visual cognition on the environment is a common experience, easy to share, 

yet difficult to express in words or even rule sets. Because of the complexity and 

uncertainty of a landscape, image information and human’s visual cognition, as well 

as the approach of GEOIC firstly applied in land degradation research, several 

factors, especially man-made factors, influence the process of image visual 

interpretation or image visual cognition on landscape. Most of the studies on the 
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influencing factors as well as their effects on visual image cognition performed the 

qualitative analysis only, little for quantitative analysis. We therefore conducted a 

questionnaire survey aiming at a quantitative analysis to supply a foundation for the 

determination and the selection of diagnostic indicators and validated samples. 

3.4.1 Questionnaire on image visual cognition 

A questionnaire on image visual cognition was designed in this study and sent to 46 

individuals. They consisted of geo-experts, skilled image interpreters and simple 

users, with the age in the range of 20-60 years and with work experience in the range 

of 1-20 years, including 24 females and 22 males from different institutes in China.  

The questionnaire included various feature images of single land use type, such as 

cultivated land, forestry land, grassland, residential land, water, and sandy land, etc. 

It also included feature images of different types of vegetation cover, vegetation 

growing situation and percentage of barren land. They were chosen from medium 

resolution images to high resolution images of TM image, ETM+ image, SPOT2 4 

image, SPOT5 image and QUICKBIRD image. These feature images were not 

labeled by any types, name and features in the questionnaire. Tables 3.2 and 3.3 list 

some examples of feature images. The aim of the questionnaire is to collect the 

information about cognition on land use type, vegetation cover, and vegetation 

growth, percentage of barren land, and color and texture of feature images from geo-

experts, skilled interpreters and simple users. The survey results were analyzed to 

show the differences in cognition abilities, influenced by experience, specialty, 

background knowledge, age, gender, etc, in the process of visual interpretation on 

images.  
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Table 3.2 Some examples of feature images of different land use types 

 TM/ETM+ SPOT24+ 
ETM+ 

SPOT5 QUICKBIRD 

Cultivated 
land  

   
Irrigable     Dry land 

 
Paddy field  Irrigable   

Garden land 
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Forest   Open forest    

 
Forest   Open forest  
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Natural 

 
Natural      Man-made 

 
Natural      Man-made 

Urban 
Residential 
land      

Residential   Industrial 
Village 
residential 
 land  
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River 
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Sandy land 
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Table 3.3 Some examples of feature images of different vegetation situations 

 Vegetation cover Vegetation growing situation Ratio of barren land  

Type 1 

 

   
 High:  >60% 

 

 
High 

 
High: >60% 

Type 2 

 

  
Medium:  30%-60% 

 

 
Medium 

 
Medium: 30%-60% 

Type 3 

 

 
Low:  <30% 

 

 
Low 

 
Low: < 30% 

 

3.4.2 Analysis of the survey results  

Experience is important for skillful and successful image interpretation. As we know, 

in manual air-photo or satellite image interpretation a lot of experience is required. It 

mostly needs training to match the imaged false color schemes with natural 

phenomena and to understand certain texture or structures and the imaged features. 

This is because human vision is challenged when dealing with remote sensing 

images. Three issues distinguish the interpretation of remotely sensed images from 

the interpretation in our everyday experience. Firstly, remotely sensed images 

usually portray an overhead view – an unfamiliar perspective. Secondly, many 

remote sensing images use radiation outside the visible portion of the spectrum. 

Finally, remote sensing images often portray the earth’s surface at unfamiliar scales 

and resolutions (Campbell, 2002). Unfortunately, even long time learning cannot 

prevent us from facing ambiguity when features are very like in structure or color. In 
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the process, experience pays an important role in image interpretation. Tables 3.4 to 

3.6 and Figure 3.4. summarize the survey results. One can see that the participants 

with more than 5 years of work experience are better in the cognition on feature 

images of land use type from TM/ETM+ image, fusion image of SPOT2 4 and ETM+, 

SPOT5 image and QUICKBIRD image, and have higher percentage of correct 

interpretation compared with the other participants. The same group of participants is 

also superior in the cognition on vegetation cover, vegetation growth, and percentage 

of barren land. The finding was consistent with Lang's (2005) study of cognitive 

abilities, who pointed out the interest of a skilled interpreter may differ from that of a 

simple user. The former looks for certain features, whereas the latter is mainly 

interested in the information he wants to obtain.  

Table 3.4 The correctness of cognition on feature images of land use type in four 

types of images by different participant groups (unit: %) 
Types Sub-types TM/ETM+ SPOT2 4+ETM+ SPOT 5 QUICKBIRD 

Age <=25 64 73 42 41 
25-30 66 70 38 47 
>30 78 77 52 51 

Work experience <= 1 year 67 73 43 43 
1-5 years 63 72 41 43 
> 5 years 80 75 45 46 

Specialty RS 79 70 50 48 
GIS 69 76 52 47 
Land 63 71 43 39 

Survey 53 64 39 48 
Knowledge More RS knowledge 66 71 40 45 

A bit of RS knowledge 68 76 45 44 
Total  67 73 42 45 

 
 

Table 3.5 The correctness of cognition on feature images of vegetation situation by 

the participants with different work experience (unit: %) 

Types Vegetation cover Vegetation growth Ratio of barren land 
0-30% 30-60% >60% High Medium Low 0-30% 30-60% >60% 

≤1 year 74  67  81  81  44  65  39  50  58  
1-5 years 78  66  67  78  49  62  53  53  68  
> 5 years 83  84  81  82  55  64  54  55  85  
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Table 3.6 The correctness of cognition on feature images of vegetation situation by 

the participants with different background knowledge (unit: %) 

Types Vegetation cover Vegetation growth 
0-30% 30-60% >60% High Medium Low 

With more RS knowledge 81  68  71  43  46  63  
With a bit RS knowledge 77  72  80  31  56  63  
With geoscience knowledge 78  70  71  44  48  65  
With no geoscience knowledge 81  68  81  34  53  63  
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Figure 3.4 The correctness of cognition on feature images of different vegetation 

situation 

The results showed that there was not much difference in image cognitive abilities on 

land use type and vegetation among the participants with different background 

knowledge, and no superiority for the participants with more remote sensing 

knowledge. The results also showed not much difference among the participants with 

different specialties. This suggested that the background knowledge of the 

participants has little influences on the image cognitive ability on feature images of 

single land use type.  

Moreover, the results indicated that the correctness of the cognition on feature 

images of urban residential land, village residential land, road, lake, river, and 

cultivated land was higher than that of the cognition on forestry land, grassland, 

barren land, sandy land, and salinization land. When looking at these feature images 

one can identify image features of some types of land use. For example, one can 
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distinguish a river by its shape from other features (e.g., lakes) that have similar 

spectral values. This is accord with the rule of image interpretation. The results also 

showed that the correctness of the cognition on feature images of land use type in 

TM/ETM+ image and fusion image of SPOT2 4 and ETM+ were higher than that in 

images of SPOT 5 and QUICKBIRD. This is probably due to the coarse 

classification of land use in medium resolution images and finer classification in high 

resolution images. For example, feature images of cultivated land were identified in 

images of TM/ETM+ and SPOT2 4+ETM+, while irrigable land and dry land which 

are the sub-types of cultivated land were identified in images of SPOT 5 and 

QUICKBIRD. Another possible reason is that unlike a complex image including 

several types of land use, each chosen feature image in the questionnaire only 

included a single type of land use, with no context relations and background 

circumstances about it as reference of interpretation. So the cognitive ability on 

feature images of a single type of land use was not improved with high resolution 

images compared with the medium resolution images.  

Regarding the gender the results indicated that the males did better in the cognition 

on feature images of vegetation cover, percentage of barren land and vegetation 

growth, but almost no difference in the cognition on feature images of land use type 

(see Figure 3.5 to 3.8). The correctness of the cognition on feature images of 

vegetation cover with 0-30%, 30-60% and 60-100% by the male participants was 

81%, 73%, and 77%, respectively, while it was 77%, 66% and 73% by the female 

participants. The correctness of the cognition on feature images of vegetation cover 

was higher than that of the cognition on vegetation growth and the percentage of 

barren land. These phenomena may be explained by sex differences in cognitive 

abilities. The process of the cognition on feature images of vegetation cover, the 

percentage of barren land and vegetation growth is related not only to image features 

including color, texture, and shape, but also to visual–spatial abilities, such as visual 

perception and spatial visualization, and quantitative abilities. The process of the 

cognition on land use types is closely related to human memory of images of various 

land use types in addition to image features. Many studies concluded that there is sex 

differences in verbal, quantitative, and visual–spatial abilities and males are in favor 

in visual–spatial abilities (Maccoby and Jacklin, 1974; Linn and Pulos, 1983; Smith 
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and McPhee, 1987; Schiff and Oldak,1990; Eals and Silverman, 1994; Halpern, 

2000). Halpern (2000) reviewed cognitive abilities, and concluded that 

psychometrically, measures of mathematical ability tend to be strongly correlated 

with spatial ability. Unlike the visual–spatial abilities, the memory of location, words, 

and objects is better for a female.  

.
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Figure 3.5 Sex differences in the cognition on feature images of land use types in 

four types of images 

Sex difference in cognition on vegetation growth

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

High Medium Low Vegetation growth

C
or

re
ct

 p
er

ce
nt

ag
e

Male
Female

 
Figure 3.6 Sex differences in the cognition on feature images of different vegetation 

growth situation 
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Figure 3.7 Sex differences in the cognition on feature images of different vegetation 

cover 
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Figure 3.8 Sex differences in the cognition on feature images of different ratio of 

barren land 

The above results imply that experience, age and gender have influences on the 

visual cognitive abilities on remote sensing images. The experience did make 

differences in the cognition abilities on feature images of land use types and gender 

made differences in the cognition on vegetation cover, vegetation growth and the 
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percentage of barren land in the process of visual manual interpretation on images. 

The effects of the experience, age and gender on cognitive abilities were different. 

Therefore, the diagnostic indicators and their threshold values, and the validated 

samples should be chosen and determined by experienced experts for the application 

of GEOIC in the extraction of land degradation information. Moreover, local farmers 

who know well the land degradation situation should participate in the process of 

selection and determination. It is necessary to combine the results of experts’ with 

farmers’ cognition on land degradation for deriving the appropriate indicators and 

choosing validated samples when the approach of GEOIC is applied. However it is 

of importance to develop a standardized methodology of image cognition from visual 

cognition to automatic comprehensive cognition by integrating remote sensing image 

information, spatial information, geographic information and experience in computer 

environment. The approach of GEOIC can transform the non-standardized image 

cognition to the standardized image cognition.  

3.5 The approach of GEOIC 

3.5.1 The theoretical underpinning of the GEOIC approach 

The approach of GEOIC aims at the simulation of the logical and visual cognition of 

geoscience experts. It includes description, identification, classification and 

interpretation of land degradation information and mapping of its distribution. 

Moreover, it also includes mining of implicit land degradation information and 

geoscience knowledge in remote sensing images and multi-source information for 

decision making with a combination of various geographic models. Cognition 

models, which are the core of the GEOIC approach, include models of image pre-

processing and analysis, visual cognition on images, logical cognition on images and 

geo-knowledge mining and decision-making (Luo et al.,  2001). 

The approach of GEOIC is based on theories and methodologies of several 

disciplines. Earth surface features are reflected in images with the variation of grey 

level, lightness and spectrum of pixels, which are the physical basis for information 

extraction. The methods and models of image pre-processing and analysis are based 
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on mathematic theory, statistics theory, probability theory, remote sensing 

information theory, and geo-statistics theory, etc. Visual cognition on land 

degradation using remote sensing images and multi-source information is based on 

cognition theory, geoscience theory, evolution theory and artificial neural network 

(ANN) techniques, etc. Logical cognition is also based on geoscience theory, 

information theory, knowledge processing theory and fuzzy set theory, etc. Mining 

and decision-making on land degradation information is often based on theories of 

systematology, cybernetics, catastrophe and operation, and synergetics method, etc. 

Figure 3.9 shows the underpinning of the GEOIC approach. 

Figure 3.9 Theoretical underpinning of the approach of GEOIC 

3.5.2 The model underpinning of the GEOIC approach  

For the quantification of ambiguously expressed knowledge from remote sensing 

imagery and multi-source information, the GEOIC approach is to obtain the features 

and spatial distribution of land degradation through visual cognition and logical 

cognition. A series of multi-functional models for the GEOIC should be established 

to provide functionality of analysis, classification, extraction, simulation, imitation, 

mining, assessment and decision-making. The underpinning models of the GEOIC 

approach consist of four layers (see Figure 3.10). The first layer includes the models 
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of image pre-processing and analysis, which perform functions of basic image pre-

processing and analysis for image enforcing, object inspecting, geometry rectifying, 

texture analysis, shape and color discrimination and basic image classification based 

on mathematics, statistics, and geo-statistics. It can obtain the primary information of 

the unknown surface features in feature space domain (Luo 2000). 

The second layer includes the models of image visual cognition. Three-dimensional 

entities are projected into two-dimension images, so images can not represent all 

information precisely on actual surface objects. Therefore, the aim of image visual 

cognition on land degradation should interpret more information in a profound level 

integrating relevant geo-knowledge based on remote sensing images and multi-

source information on the basis of cognition models. Image classification models 

based on ANN, genetic algorithms and statistics models, etc, will simulate 

visualizing and thinking of visual neuron processing to obtain the complicated non-

linear information.  

The third layer includes the models of image logical cognition based on knowledge 

processing models, knowledge discovery models and fuzzy sets models, etc. They 

are used for extracting and mining land degradation information and detecting 

change information based on meaningful image objects in a profound level to extract 

the thematic information that is often expressed ambiguously. With the support of 

cognition network and geographic knowledge, the precision of processing and 

analysis on land degradation information will be improved in the process of image 

logical cognition. 

The last layer includes the models of knowledge mining and decision-making 

analysis, such as models of operational research theory, system theory, mathematics, 

and statistics. They are used for decision-making analysis on geographical 

differentiation and land degradation distribution and land use/land cover change. 
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Figure 3.10 Model underpinning of the GEOIC approach  

The GEOIC approach is an integrated way involving the methodologies of multi-

disciplines. Geographical research indicates that the distribution of natural and 

human phenomena, such as vegetation, soil, land use, land cover and land 
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some extent by remote sensing information in one or more instance. Statistics is the 

basic technique for analyzing and processing remote sensing images. The various 

mathematical and statistical models are used in the process of the GEOIC for the 

study of land degradation for calculating basic statistics and transformation of 

statistics of pixel reflectance (such as Fourier transform, wavelet analysis, and 

principal components analysis), and for the extraction of land degradation 

information based on statistics (such as regression analysis, trend analysis and 

hierarchical cluster analysis in supervised classification, discrimination analysis and 

maximum likelihood classifier and feature analysis, etc). Moreover, some methods of 

extracting spectrum feature are also based on statistics models. Furthermore the soft 

classification methods have been proposed to solve the problem of mixed pixel and 

wrong classified types affecting classification precision, such as fuzzy clustering 

classification, spatial structure texture classification, ANN, etc. With the 

development of fuzzy sets theory, knowledge processing models, and robust statistics, 

the approach of GEOIC has been developed to a new stage by combining fuzzy 

theory, robust statistics, and spatial analysis and multiple scales analysis integrating 

geoscience knowledge.  

3.5.3 The methodological framework of GEOIC on studying land 

degradation 

Under the conceptual framework of GEOIC on studying land degradation, the 

methodological framework of GEOIC on studying land degradation was proposed in 

this study (see Figure 3.11). Firstly, the features of physiognomy, vegetation, soil, 

and land use and land cover, etc, related to the diagnostic indicators of land 

degradation are analyzed. The spectral features and spectral responses to these 

diagnostic indicators are also analyzed. The results from these analyses provide a 

base for building geoscience knowledge and cognition network. The approach of 

GEOIC is supported with the so-called cognition networks. A cognition network 

controls the system of target classes of land degradation and the class definitions as 

well as the mode of representation. It provides the basis for a rule-based 

classification system. 
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The second step is the segmentation of image objects, called as Land Degradation 

Spectral Response Units (DSRUs). In the GEOIC, the ‘image object’ is the central 

element of investigation. The segmentation of DSRUs is realized through integrating 

various diagnostic indicators, such as remote sensing images, vegetation, soil, DEM, 

land use, and field survey data, etc. To this end, image segmentation with 

knowledge-based classification is conjoined.  

The third step is building cognition network and rule sets for mining and extraction 

of land degradation information. Cognition network language used to set up rule sets 

offers a range of tools and algorithms to address complex target classes. Establishing 

a rule set is based on a combination of image feature analysis, field survey, 

geoscience knowledge, and the local knowledge aiming at user’s targets. Even if 

there are methods and techniques to formulate the knowledge and to encapsulate it 

into rule bases, it is hard to encapsulate the vast intuitive knowledge of a skilled 

interpreter in a rule system. Transferring existing experience effectively into 

procedural and structural knowledge remains a challenge. 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.11 Approach of GEOIC on studying land degradation 

Field survey 
Soil 
Vegetation 
Land use 
DEM 

Semantic reasoning 

Fuzzy models 
ANN models 

Determining DSRUs (spatial objects)   

Features of land 
degradation and their 
spectral responses 

Hyperspectral images 

Image pre-processing 

Multi-source images registration  

Field survey 

Estimation of soil 
organic matter 

Spatial objects analysis 

Spectral 

Texture 

Shape 

Context 

 …… 
Features training and studying 

Geo-knowledge and 
rule database Initial classification of land degradation 

Information extracting and mining  

Decision-making 

 

Spatial 
feature 

 

Spatial 
object 

 

Spatial 
pattern 

 



                                      Chapter 3 Geographic Image Cognition on Land Degradation  

 52 

The last step is the partition of multi-source images into geo-object or meaningful 

image objects for land degradation classification using fuzzy models and ANN 

models, etc, under the cognition network and rule sets in software. The meaningful 

image objects are labeled by rule-based classifiers using the required spectral and 

geometrical features and spatial relations between image objects. The rule-based 

classification is the process of associating initial DSRUs (image-objects) to classes of 

land degradation (geo-objects), based on both the internal features of the objects and 

their mutual relationships. The distribution of land degradation classes is used for 

land degradation analysis and decision-making by spatial pattern cognition. 
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Chapter 4                                                      

Test Area and Data Acquisition 

This chapter describes the test area, the collection of surface-soil samples and soil 

reflectance spectra, and acquisition of Hyperion data. In this chapter, the pre-

processing method of Hyperion data is discussed in detail, including geometric 

rectification, radiant correction, and spectrum reconstruction.  

4.1 Test area 

The test area is in Hengshan County located in the northern part of Shaanxi province, 

China with latitude from 37
 o
22' to 38

 o
74' N and longitude from 108

 o
65' to 110

 o
02' 

E (Figure 4.1). Hengshan County is in the transitional area from Mu Us Desert in its 

south to Loess Plateau in its north. The terrain of Hengshan County is characterized 

by a gradual increase in the altitude from 890 m in the northwest to 1535 m in the 

southeast. Stratum is leaning to northwest with time aged from east to west. It is in 

the edge of Loess Plateau, mainly in the south of Wu Ding River. A part of the area 

is rocky, including erinaceous rock, erinaceous shale and some marl. These 

sediments are in Oligo-Miocene age. Sandstone is the major rock type there, 

including fine sandy sediments. A part of that is coarse grain, alternated with sandy 

marl and conglomerate. This area is designated as “hill”. Local names are “Liang” 

and “Mao”. “Liang” and “Mao” mean Loess-hilly slope land and Loess-hilly top land, 

respectively. The area is in the temperate zone with continental monsoon semi-arid 

steppe climate. High-pressure center from Siberia affects this area chronically, so the 

climate is chilliness and desiccation. Precipitation concentrates from July to 

September each year with an average annual precipitation of 397mm and evaporation 

of 2085.5mm. The main soil type in the study area is Sandic Entisols, and the 
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dominant soil structure is physical granule. The average content of organic matter in 

the agriculture land was 0.68% according to the second soil survey in 1980. 

Two large rivers, Wuding River and Lu River, divide the whole county into two 

geographical parts: one is the north on Wuding River and the west on Lu River, 

which is in Mu Us desert, suffering from great desertification; the other is the south 

on Wuding River and the east on Lu River, which is in Loess Plateau, encountering 

serious water erosion. The test area is in agriculture-pasture mixed area with wind 

and water erosion and complex physical geographical situation. The area of land 

degradation accounts for about 2/3 of total area of the county.  

 

 

Figure 4.1 Test area: Hengshan County in Shaanxi Province 
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4.2 Data collection 

4.2.1 Soil sample collection  

For the study, 84 surface-soil samples in the whole county area were collected in the 

early June of 2003 (see Figure 4.2). The rectangular frame within the area was 

covered with Hyperion images with approximately 16km×12km. The sampling sites 

were selected based on soil, geological and topographic properties so as to cover 

most of the surface conditions. The sampling sites were positioned with a Trimble 

Pro XRR GPS receiver. Soil samples were pre-processed and the chemical and 

physical properties of each soil sample were analyzed. Particle size distribution was 

determined using the pipette method on Na-saturated samples. SOM was measured 

by rapid dichromate oxidation technique. Total nitrogen and available nitrogen were 

measured by Kjeldahl method and steam-distillation method, respectively. Available 

Phosphorus and Potassium were measured by Mehlich 1 extraction method. Total 

iron was measured by means of ICP-AES spectrometry. Soil moisture was measured 

with TDR in-phase flight in June of 2003. 

 

Figure 4.2 Distribution of soil samples in the test area 



                                                                   Chapter 4 Test Area and Data Acquisition 

 56 

4.2.2 Spectroscopy collection 

Field reflectance spectra was measured and recorded between 10:00 AM and 2:30 

PM on a clear sunny day after EO-1 overflight in July of 2003, using a high spectral 

resolution Analytical Spectral Device (ASD). It operated in visible, near infrared and 

shortwave infrared bands (0.35–2.5µm). The radiometric measurements were carried 

out with resolution intervals of 0.01µm between 0.35µm and 1.0µm and 0.02µm 

between 1.0µm and 2.5µm. A reference panel by Labsphere Incorporated, Sutton, 

New Hampshire was used as reference before and after each measurement. The 

reflectance spectra were collected at one meter above the ground with 8% field of 

view under clear-sky condition. The bidirectional effects of the target reflectance 

were accounted for by carrying out measurements over a very short time interval and 

by keeping the viewing angle constant and in vertical position. In addition, the 

reflectance spectra of the soil samples were measured in the laboratory using ASD. 

Five individual spectra were averaged for each measured sample.  

The nine-point weighted average method was applied to smooth the spectral curve: 
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where Yi is the weighted reflectance mean of the target for a particular channel, and R 

is the reflectance measured by the instrument for a particular channel and i is the 

channel number (Rock et al., 1994).  

4.2.3 Hyperion image acquisition  

Hyperion is the imaging spectrograph carried by US EO-1 Earth Observatory 

Satellite. It is a push-broom sensor with one telescope and two spectrographs. The 

main technical parameters of Hyperion are given in Table 4.1. The 220-channel 

Hyperion data with 30 m spatial resolution were acquired over the test area on July 

23, 2003, covering a ground area of approximately 8×12 km. Land use map in 2002, 
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soil map at a scale of  1:100 000 and topographic map at a scale of 1:100 000 in 

Hengshan County were also collected.  

 Table 4.1 The Technical specifications of Hyperion 

Band Spectral Spectral Spatial Image Radiation Quantization Weight 
number range resolution Resolution swath accuracy Rank  

  μm nm M km % Bit kg 
220 0.40-2.50 10 30 7.5 6 12 49 

 

EO-1 is a part of NASA's New Millennium Program, designed to validate new 

technologies for remote sensing (Ungar, 2003). It was launched from Vandenberg 

Air Force Base on 21 November 2000 and placed in a sun-synchronous orbit with an 

altitude of 705 km and a 10:01 AM descending node. Its equatorial crossing time is 

one minute behind Landsat-7 and the orbit repeatability is 16 days. It is able to image 

the same location in daylight as many as 5 times every 16 days. The payload is 

comprised of three instruments: Hyperion, Advanced Land Imager and the Linear 

Etalon Imaging Spectral Array and Atmospheric Corrector. The Hyperion instrument 

consists of two push-broom imaging spectrometers with one covering the 

Visible/Near Infrared (VNIR) and the other Short-Wave Infrared (SWIR). Both 

spectrometers share a common telescope, producing hyper-spectral images with a 

spatial resolution of 30 m/pixel and spectral resolution of 10nm/band. A Hyperion 

image covers 7.5 km in width and typically around 53.6 km (8 s) or 80.4 km (12 s) in 

along track, which depends on the duration of the data collection. The VNIR 

spectrometer has 50 calibrated bands, ranging from 0.43 to 0.93 μm, and the SWIR 

spectrometer has 148 calibrated bands, ranging from 0.91 to 2.4 μm (see Table 4.2). 

The stability and S/N performance of Hyperion is lower than that of AVIRIS for 

several technical reasons. Hyperion can, thus, be considered a “moderate-fidelity” 

instrument in comparison to AVIRIS. A primary goal of the EO-1 program is to 

provide technical and scientific inputs to future orbital imaging spectrometer 

missions.  
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Table 4.2 Summary of Hyperion band wavelengths 

Bands Spectrometer Calibration Wavelength range (μm) 
1-7 VNIR Uncalibrated 0.36-0.42 
8-57 VNIR Calibrated 0.43-0.93 
58-70 VNIR Uncalibrated 0.94-1.06 
71-76 SWIR Uncalibrated 0.85-0.9 
77-224 SWIR Calibrated 0.91-2.4 
225-242 SWIR Uncalibrated 2.41-2.58 

Peripheral bands with low signal and bands at the spectral overlap of the 

two spectrometers are uncalibrated, with DNs set to 0 during processing 

from L0 to L0.5 or L1 data. 

4.3 Data pre-processing  

Having analyzed the Hyperion data of all 220 bands, we eliminated some bands 

because of no signal, low signal-to-noise ratio or bad lines. The remaining 133 bands 

were used for this study. The central wavelength of 133 bands is listed in Table 4.3. 

Signal-to-Noise Ratio (SNR) gives an indication of data quality (Duggin et al., 1986). 

The homogenous area method was thus selected to calculate SNR values, i.e. use of 

the scenes in dark and bright locations to calculate signal mean (S) and its standard 

deviation (N), resulting SNR values. Figure 4.3 shows the SNR values with respect 

to band numbers for three typical objects: water body, vegetation and sandy land in 

the study area. 
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Table 4.3 Central wave length of 133 bands 

Band Central wave Band Central wave Band Central wave Band Central wave 
 length  length  length  length 
  nm   nm   nm   nm 

1 467.519989  34 803.299988  67 1213.977036  100 1599.890235  
2 477.690002  35 813.479980  68 1225.671375  101 1611.584574  
3 487.869995  36 823.650024  69 1237.365714  102 1623.278913  
4 498.040009  37 833.830017  70 1249.060054  103 1634.973253  
5 508.220001  38 844.000000  71 1260.754393  104 1646.667592  
6 518.390015  39 854.179993  72 1272.448732  105 1658.361931  
7 528.570007  40 864.349976  73 1284.143072  106 1670.056271  
8 538.739990  41 874.530029  74 1295.837411  107 1681.750610  
9 548.919983  42 884.700012  75 1307.531750  108 1693.444950  

10 559.090027  43 894.880005  76 1319.226090  109 1705.139289  
11 569.270020  44 905.049988  77 1330.920429  110 1716.833628  
12 579.450012  45 972.989990  78 1342.614769  111 1728.527968  
13 589.619995  46 983.080017  79 1354.309108  112 1740.222307  
14 599.799988  47 993.169983  80 1366.003447  113 1751.916646  
15 609.969971  48 1003.299988  81 1377.697787  114 1763.610986  
16 620.150024  49 1013.299988  82 1389.392126  115 1775.305325  
17 630.320007  50 1023.400024  83 1401.086465  116 1786.999664  
18 640.500000  51 1033.489990  84 1412.780805  117 1798.694004  
19 650.669983  52 1043.589966  85 1424.475144  118 1810.388343  
20 660.849976  53 1053.689941  86 1436.169484  119 1822.082683  
21 671.020020  54 1063.790039  87 1447.863823  120 1833.777022  
22 681.200012  55 1073.890015  88 1459.558162  121 1845.471361  
23 691.369995  56 1094.089966  89 1471.252502  122 1857.165701  
24 701.549988  57 1104.189941  90 1482.946841  123 1868.860040  
25 711.719971  58 1164.680054  91 1494.641180  124 1880.554379  
26 721.900024  59 1174.770020  92 1506.335520  125 1892.248719  
27 732.070007  60 1184.869995  93 1518.029859  126 1903.943058  
28 742.250000  61 1194.969971  94 1529.724198  127 1915.637397  
29 752.429993  62 1155.505339  95 1541.418538  128 1927.331737  
30 762.599976  63 1167.199678  96 1553.112877  129 1939.026076  
31 772.780029  64 1178.894017  97 1564.807217  130 1950.720416  
32 782.950012  65 1190.588357  98 1576.501556  131 1962.414755  
33 793.130005  66 1202.282696  99 1588.195895  132 1974.109094  

            133 1985.803434  
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Figure 4.3 Spectral curves of water body, vegetation and sandy land in SNR image 

The geometric correction was carried out using the polynomial approach based on 10 

ground control points with ENVI software. In our study, accessorial data including 

land use map were interpreted from SPOT image (resolution 10 m) covering the 

study area, which was corrected with topographic map at 1:10 0000. The fitting 

accuracy (Root Mean Square (RMS)) was calculated from the residual errors for 10 

control points. The estimated RMS was 0.026364 pixel. The residual errors of each 

point and corrected image were given in Figure 4.4 and Figure 4.5, respectively. 

 

Figure 4.4 Residual errors of each control point in geometric correction 
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Figure 4.5 The geometric corrected image 

In order to reduce the influence of atmospheric scatter, water vapour absorption 

caused by mixed gasses, solar irradiance, and the solar zenith angle, the raw image 

data were converted to relative reflectance using the method of Internal Average 

Relative Reflectance (IARR) for image calibration. This is a simple available method 

for image calibration which is based only on image itself without field spectrum data. 

Figure 4.6 shows the spectra of vegetation using Hyperion data normalized to 

reflectance using the IARR method. Resampling was carried out using the nearest 

neighboring method so as not to severely alter the pixel values.  
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Figure 4.6 The relative reflectance image using the IARR method for image 

calibration 
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Chapter 5                                                      

Mapping Soil Organic Matter Using the 

GEOIC Approach and Hyperspectral Data 

Soil organic matter (SOM) is a solid phase component which is the nutrient 

storehouse of vegetation. It can not only provide the nutrition for vegetation growing 

but also improve physical condition and temperature of soil. The SOM is one of the 

important criteria of soil fertility and also one of important diagnostic indicators 

related to land degradation. Mapping of SOM provides a base for land degradation 

evaluation. Soil spectrum and spectral models are the major research topics of image 

spectroscopy of SOM. As reviewed in section 2.2, numerous studies have been 

conducted. Although some of the studies have proved to be successful in mapping 

soil conditions, there exist some problems in the application of the established 

regression models for the interpretation of multi-spectral or hyperspectral images 

without any corrections to compensate for the change of scale. Many researchers 

have attempted to determine the most appropriate up-scaling technique to the 

models at different scales, but few effective ways have been developed to map soil 

parameters at a regional scale.  

For studying up-scaling problem as mentioned above the GEOIC approach can be an 

appropriate one. This chapter is to investigate the up-scaling method for mapping 

SOM with the approach of GEOIC, and to demonstrate its usefulness using the 

hyperspectral data and multi-source data from the study area. The up-scaling method 

is developed by setting up the SOM estimation models based on DSRUs.  
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5.1 Analysis of soil features and spectral responses in the study 
area  

In order to develop the estimation models for mapping SOM using the collected data 

in the study area (refer to section 4.2) with the GEOIC approach, the soil features and 

spectral responses were analyzed in detail. The SOM contents were in a range from 

0.124% to 1.827%. The values of various soil parameters for different land use types 

are shown in Table 5.1. Statistical tests indicated that the average content of SOM, 

total nitrogen (TN), and the ratio of sand particle to clay particle were significantly 

different among irrigable land, non-irrigable land, and forestry land, abandon arable 

land, barren grassland, and garden land. The contents of SOM and TN decreased in 

the following order: irrigable land, non-irrigable land, man-made grassland, garden 

land, forestry land, barren grassland, other forestry land, and abandon arable land, 

from 0.77% to 0.22% for SOM and from 0.06% to 0.02% for TN. The cation 

exchange capacity (CEC) showed a similar decreasing trend with the maximum of 

11.37 cmol/kg for irrigable land and the minimum of 8.08 cmol/kg for barren grass 

land. But the ratio of sand particle to clay particle showed an increasing trend in a 

similar order with abandon arable land having the maximum ratio of 67.97 and 

irrigable land having the minimum ratio of 9.29.  

Table 5.1 Soil properties of different types of land use 

 Land type Sand/Clay Bulk density SOM CEC SM TN Power/Clay 
    g/cm3 % cmol/kg % %   

Irrigable land 9.29  1.32  0.77  11.37  7.77  0.06  1302.6  
Non-irrigable land 10.20  1.26  0.53  11.08  6.35  0.04  1582.7  
Man-made grassland 13.34  1.34  0.50  11.09  5.96  0.03  2182.2  
Forestry land  31.75  1.44  0.43  9.49  7.06  0.03  1357.3  
Other forestry land  39.77  1.39  0.32  9.98  4.18  0.02  1228.4  
Barren grass land 24.51  1.37  0.42  8.08  4.51  0.03  894.1  
Abandon arable land 67.97  1.47  0.22  9.56  3.97  0.02  572.6  
Garden land 14.07  1.29  0.48  . 7.26  0.03  354.4  
Average 14.03  1.30  0.54  10.77  6.26  0.04  1506.5  
Difference level <0.05 <0.05 <0.05   <0.05 <0.05 No Dif. 
 

The ternary of soil texture was measured in lab according to the international soil 

texture classification criterion (for clay granule <2 µm, for silt granule = 2-20 µm, 

for sand granule = 20-2000 µm) (see Figure 5.1). The distribution of the particles 
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composition of the soil samples centralized relatively with dominant sandy particle, 

whose content was more than 87.5%. The soil samples were divided into three types: 

sandy loam soil, loamy sandy soil and sandy soil. Table 5.2 lists the characteristics 

for each soil type. The contents of SOM, TN, total iron, soil water, total Phosphorus 

(TP), and CEC decreased from sandy loam soil to loamy sandy soil, and to sandy soil, 

while the content of total Potassium (TK) increased from sandy loam soil to loamy 

sandy soil, and to sandy soil. The phenomena may be related to the content of clay 

grain in soil. The more the clay ingredient is in the soil, the higher the grain’s 

adsorption to the nutrition and water will be.  

 

Figure 5.1 Triangle drawing of soil texture 

Table 5.2 The soil characteristics in Hengshan county 

Soil type Clay Silt Sand Fe SOM TN Soil moisture 
  % % % mg/kg % % % 

Loamy sandy 3.27  9.57  87.16  22393  0.674  0.035  10.82  
Sandy soil 1.18  3.86  94.97  16094  0.342  0.022  7.48  
Sandy loam 4.85  16.37  78.79  23195  0.690  0.048  12.23  

soil type K TP CEC AN AK AP pH 
  mg/kg mg/kg cmol/kg mg/kg mg/kg mg/kg   

loamy sandy 19694  580.75  10.69  93.20  90.19  4.35  7.61  
Sandy soil 21321  455.32  8.34  45.73  57.63  4.52  7.60  
Sandy loam 19115  630.48  11.51  89.42  85.09  4.64  7.46  
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The soil spectral reflectance synthetically reflects the physical-chemical 

characteristics of surface substance. SOM, total iron, silt, sand and mineralogy 

(quartz, magnetite, kaolinite and smectite) are the most important components 

influencing the reflectance intensity and the spectral features. They can be used for 

the characterization and classification of soil. The variation of soil parent materials 

and changes in vegetation cover and weather can change soil characteristics and its 

respective spectral reflectance. SOM is one of soil properties that significantly 

influence the bidirectional reflectance characteristic of soil substrate. Therefore the 

detection of its change is essential to determine soil degradation and help extract the 

information on land degradation with remote sensing data. In the study area, the 

reflectance spectra of 84 soil samples were measured in lab. Figure 5.2 shows the 

spectral curves of three soil types, which are similar in shape with the spectral 

reflectance of sandy soil highest and that of loamy sandy soil lowest. Figures 5.3 and 

5.4 show the changes in spectral reflectance of soil with various amounts of SOM 

content, and with different percentages of vegetation cover. One can see from the 

figures that the reflectance was higher for lower content of SOM, and also for soil 

with less vegetation cover. These are easy to understand. The average reflectance of 

soil samples with more than 1% content of SOM was 0.1183 and with less than 1% 

content of SOM was 0.24. The analysis of the lab spectra for different soil samples 

shows that SOM had no absorption apex at 0.35-2.5µm. These results are also 

consistent with the statement by Stoner and Baumgardner (1981) that the SOM 

content had a negative correlation with the reflectance at visible light band and at 

0.62-0.66µm band.  
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Figure 5.2 Soil spectral curves 

 

Figure 5.3 The spectral reflectance of soil with various amounts of SOM content 
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Figure 5.4 The spectral reflectance of soil with different vegetation coverage 

 5.2 Methods  

5.2.1 In-situ estimation model of SOM 

It is critical to develop an in-situ estimation model based on soil parameters and the 

spectral reflectance of the soil samples measured in laboratory. In this study we 

develop the estimation models of SOM using the statistics method and the fuzzy 

estimation method. The detailed procedure is introduced below.  

5.2.1.1 Multivariate statistical analysis  

Multivariate statistical analysis can be applied in the analysis of soil spectral data 

using software SPSS 15.0. SPSS provides a powerful statistical-analysis in a 

graphical environment, using descriptive menus and simple dialog boxes. In this 

study, the correlation coefficients between the measured soil parameters and the 

absorption feature parameters at obtained wavelength were calculated. Principal 

Components Analysis (PCA) was also conducted to transform the relative variables 
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into the independent variables. Multi-regression between the spectral reflectance and 

associated soil parameters and analysis of variance were conducted.  

A linear regression model expresses the dependent variable (spectral reflectance) as a 

linear function of independent variables (soil properties): 

ikikiii eXXXY +++++= ββββ ...22110                                                    (5-1) 

where β0 is the intercept or constant term of the regression model; βj (j=1, 2, …k) are 

the regression coefficients to be estimated, iY  is the dependent variable for case i 

with error ie ; Xki is the kth independent variable for case i.  

Ci is caseweight. If caseweight is not specified, Ci =1. Let I be the number of distinct 

cases; p the number of independent variables. Then C is sum of caseweights:∑
=

I

i
iC

1

. 

The regression coefficients of the model are estimated using the least square 

technique. The outputs include estimated regression coefficients (β), their standard 

errors, the standardized regression coefficients (Beta), statistical quantity t, and test 

boundary value. Operations start with the correlation matrix R. R is the sample 

correlation matrix for X1………Xp and Y: 
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where rkj=
jjkk

kj

SS

S
 and ryk = rky =

yykk

ky

SS

S
. In the model, some descriptive statistics 

are described in the following: Skj is sample covariance for Xk and Xj; Syy is sample 

variance for Y; Sky is sample covariance for Xk and Y; P* is number of coefficients in 

the model. P*=P if the intercept is not included; otherwise P*=P+1. 
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The SPSS model summary table reports the strength of the relationship between the 

model and the dependent variable, including Multiple R, R square, adjusted R square, 

and standard error of the estimate. Multiple R as the multiple correlation coefficient 

is the linear correlation between the observed and model-predicted values of the 

dependent variable. Its large value indicates a strong relationship. R Square, the 

coefficient of determination, is the squared value of the multiple correlation 

coefficient. It shows that about half the variation in time is explained by the model. 

The expression of Multiple R is: 

R = yyr−1                                                                                                  (5-3) 

The expression of R square is: 

R2 = yyr−1                                                                                                     (5-4) 

The expression of adjusted R square is: 

R2
adj = R2-

∗−
−

pC
pR )1( 2

                                                                                    (5-5) 

The standard error of the estimate is the mean square residual from the ANOVA 

table, or expressed as:  

( ) ( )∗− PCSSe /                                                                                           (5-6) 

The SPSS analysis of variance table (ANOVA table) is also important in the model. 

ANOVA tables can be employed to determine how well the model and each 

parameter fit the data by comparing the mean least square error estimated to the 

mean pure experimental error and by assuming that the errors are normally 

distributed. Tests such as the F test can then be employed to assess the significance 

of the fit both for the model as a whole and for the individual parameters of the 

vector β. This can be expressed in a tabular form as discussed below: 
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Analysis of Variance Df Sum of Squares Mean Square 

Regression P SSR (SSR)/p 

Residual C-p* SSe (SSe)/(C-p*) 
 

The ANOVA table includes regression and residual sums of squares, mean square, F, 

and probability of F. The regression row displays the information about the variation 

accounted for by the model. The residual row displays the information about the 

variation that is not accounted for by the model. If the regression and residual sums 

of squares are approximately equal, it means that about half of the variation is 

explained by the model. The significance value of the F statistic is less than 0.05, 

which means that the variation explained by the model is not due to chance. While 

the ANOVA table is a useful test of the model's ability to explain any variation in the 

dependent variable, it does not directly address the strength of that relationship.  

The expression of residual sum of squares (SSe) is: 

SSe=ryy(C-1)Syy                                                                                           (5-7) 

with degrees of freedom C-p*. 

The expression of sum of squares due to regression (SSR ) is: 

SSR = R2(C-1)Syy                                                                                                                (5-8) 

with degrees of freedom p. 

The standardized regression coefficients (Betak ) is: 

Betak = ryk                                                                                                                          (5-9) 

The standardized error Betak is estimated by: 
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 F-test for Betak: 
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with 1 and C-p* degrees of freedom. 

5.2.1.2 Estimation with a fuzzy set approach  

The fuzzy set theory is suitable to make decisions in complex systems. It has been 

commonly used for imprecise information in a non-probabilistic sense and allows an 

integration of the information on various parameters into modeling and evaluation 

process. Fuzzy set theory may be regarded as a generalization of classical set theory. 

A fuzzy set is defined in terms of its membership function. In the classical set theory 

the membership of a set element is either 1 if it is within a defined boundary, or 0 if 

outside the boundary. But a fuzzy set is defined in terms of a membership function 

which maps the domain of interest onto the interval [0, 1]. The membership function 

for a fuzzy set usually is a curve in shape. The membership function of a set A 

defined over a domain X takes the form: 

μA: X→[0,1] 

The set A can be expressed as:  

A={(μA(X)),x X,μA(X) [0,1]} 

In the model estimation process a set of samples is usually divided into two groups: 

one for modeling and the other for validation. For instance, in the case study 

described in chapter 4, 84 soil samples were randomly divided into modeling 

samples and validation samples. The former is about 80% of total samples, and latter 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TGF-4MYMG0X-8&_mathId=mml1&_user=107833&_cdi=5253&_rdoc=9&_ArticleListID=696963905&_acct=C000008378&_version=1&_userid=107833&md5=b768fa369be60bde4cec624072aa1e0a�
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TGF-4MYMG0X-8&_mathId=mml2&_user=107833&_cdi=5253&_rdoc=9&_ArticleListID=696963905&_acct=C000008378&_version=1&_userid=107833&md5=f47087249bc1ad0a373ca32eacd01693�
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TGF-4MYMG0X-8&_mathId=mml2&_user=107833&_cdi=5253&_rdoc=9&_ArticleListID=696963905&_acct=C000008378&_version=1&_userid=107833&md5=f47087249bc1ad0a373ca32eacd01693�
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TGF-4MYMG0X-8&_mathId=mml2&_user=107833&_cdi=5253&_rdoc=9&_ArticleListID=696963905&_acct=C000008378&_version=1&_userid=107833&md5=f47087249bc1ad0a373ca32eacd01693�
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is the rest 20%. Let n be the number of modeling samples, and m the number of 

modeling indicators. Then the eigenvalue matrix is expressed: 

nmijxX ×= )(                                                                                                                 (5-12) 

where ijx  is eigenvalue of  sample j  with respect to indicator i（the spectral 

reflectance of jth soil sample to ith indicator）， mi ,,2,1 = , nj ,,2,1 = . 

The n samples are divided into c classes. The matrix of relative membership 

degree is expressed: 

nchjuU ×= )(                                                                                                                                                (5-13) 

where hju  is the relative membership degree of  sample j subject to class h, 

ch ,,2,1 = . The optimal parameter of the model is calculated by determining the 

optimal cluster center and the weight of all modeling samples:  

cmihsS ×= )(*                                                                                                                                             (5-14) 

where ihs  is eigenvalue standard of class h and indicator i, 10 ≤≤ ihs 。 
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where iw  is the weight of modeling class i. 

The validation samples are classified based on a fuzzy model and the membership 

degree of the validation samples is computable: 
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where *
hju  is membership degree of sample j subject to class h. 

The optimized matrix of relative membership degree (U*) through the circulation 
iterative calculation is expressed:  

nchjuU ×= )(* *                                                                                                                                    (5-17) 

The class eigenvalue jh  of  sample j is calculated by following expression:  

    T
cjjjj uuuch ),,,(),,2,1( **

2
*
1  ⋅=                                                                                            (5-18) 

The class eigenvalue vector of n samples is calculated by expression:  

    ),,,( 21 nhhhH =                                                                                                          (5-19) 

The relationship model between SOM and soil spectral reflectance can be 

established based on the fuzzy estimation approach (Li et al., 2003, 2008). The 

relationship model is as follows: 

bhay +=ˆ                                                                                                                     (5-20) 
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jy is the measured content of SOM, ŷ is the estimated content of SOM. 

The relative error of the estimated value for the validation samples is expressed as:  

jjjj yyye /)ˆ( −=                                                                                                     (5-21) 

where je  is the relative error, jy  measured value, and jŷ  estimated value. 

The estimated model is considered satisfactory if the averaged relative error  

%20≤e  and if the change in %20≤e  for selection more modeling samples to set 

up the estimated model again under the above steps. 
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5.2.2 Determining optimal spectral bands for the SOM estimation  

The development of the estimation models of SOM firstly needs determining the 

sensitive spectral bands to SOM for an area of interest. In the study area the method 

of choosing optimal spectral bands by Giorgio et al. (2005) was applied. Having 

analyzed the average reflectance of lab spectra of soil samples, three band regions 

were divided in view of a small inflexion of the reflectance of spectrum in the 

0.35µm to 1.38µm region (Figure 5.5). The negative correlation coefficients between 

soil spectral reflectance and the SOM content in the study area are higher at bands of 

R625, R740, and R1336 in three regions of 0.35-0.63µm, 0.63-0.84µm, and 0.84-1.38µm, 

respectively (Figure 5.6). Thus, these 3 bands were considered as the optimal spectral 

bands for the SOM estimation. The band of 0.74µm was chosen as the most optimal 

spectral band. This was because not only the negative correlation coefficient of SOM 

was the highest at band of R740, but also band of R740 was maximally influenced by 

the variations of the correlation coefficient in the visible and in the near infrared 

range (Latz  et al., 1984; Krishnan et al.,  1980).  

Average reflectance of soil samples
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Figure 5.5 Average reflectance of soil sample spectrum 
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The correlation coefficient between SOM and reflectance
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Figure 5.6 Correlation coefficients between contents of SOM and spectral reflectance 

To determine the optimal spectral regions for estimating SOM, the correlation 

coefficients were calculated between the SOM content and the ratio of reflectance in 

band of 0.74µm as the denominator to one beyond 0.74µm as the numerator. The 

wavelength with the highest correlation coefficient was chosen. Then these ratios 

were highly correlated with the SOM content when using a region of 0.43-0.45µm as 

the numerator. To do a comparison, the correlation coefficients in the range of 0.4-

1.2µm as the numerator and 0.74µm as the denominator were also computed. The 

results showed the relatively highest correlation coefficient was in 0.45µm 

wavelength. The correlation coefficient was again calculated between the SOM 

content and the ratios of reflectance in 0.45µm as the denominator to ones beyond 

0.45µm as the numerator. It has been demonstrated that the higher correlation 

coefficients were in bands of 0.44µm band and 0.56µm.  
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5.2.3 Segmentation of DSRUs with the GEOIC approach 

In this study we should segment Land Degradation Spectral Response Units (DSRUs) 

for the development of the DSRU estimation models of SOM with the developed 

GEOIC approach. Therefore this section discusses the segmentation of DSRUs with 

the GEOIC approach using the data/information in the study area (see Chapter 4) as 

an example.  

A land characteristic is an attribute of land that can be measured or estimated. Land 

units, as determined by soil survey and often derived and updated with physiognomy, 

soil, vegetation, land use, land cover and remote sensing images, are normally 

described in terms of land characteristics (Zonneveld, 1989). Determining land units 

is the basis for SOM mapping for land degradation evaluation at a regional scale. As 

mentioned above in this study we propose the idea of DSRU It is used not only as the 

modeling unit of estimation models of SOM, but also as mapping unit at a regional 

scale using remote sensing techniques. The segmentation of DSRUs is done through 

integrating different types of data and knowledge under the GEOIC approach, i.e. 

based on spatial characteristics of physiognomy situation, soil and vegetation, and 

remote sensing image information. 

A basic element in an object analysis is an image object, which is a contiguous 

region in an image. Each image object has homogeneous characteristic properties. 

The best segmentation should provide optimal information for further processing 

(Baatz and Scha¨pe, 2000; Chaudhuri and Sarkar, 1995; Hofmann et al., 1998; Laine 

and Fan, 1996; Mao and Jain 1992). An initial segmentation relies on low-level 

information, e.g. the pixel values and basic features of the intermediate image objects, 

and provides the image object primitives with a certain spectral behavior, shape and 

context. These object features enable a preliminary classification. The classification 

results can be used as high-level input for segmentation, a so-called classification-

based segmentation. Typically, objects of interest are extracted by these iterative 

loops of classification and processing. Thereby, image objects as processing units 

can continuously change their shape, classification and mutual relations. This 

segmentation can be realized as an optimization process. The regions of minimum 
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heterogeneity, given certain constraints, have to be found. The criteria for 

heterogeneity, definition of constraints and the strategy for the sequence of 

aggregation determine the final segmentation results. Multi-scale segmentation 

results were used to construct a hierarchical network of image objects that 

simultaneously represented image information in different spatial scales. The image 

objects were networked, so that each image object “knew” its context 

(neighbourhood), its super-object, and its sub-objects (see Figure 5.7). 

 

 

Figure 5.7 Structure of a hierarchical network 

The above-mentioned image segmentation method was used for the determination of 

DSRUs. The segmented image objects are DSRUs using those variables related to 

land degradation. The climate variable sometimes may not be considered if an area 

of interest is not large and climate variation could be small, like the study area 

mentioned in Chapter 4. In this case only layers of physiognomy, vegetation, soil 

type and image information were used in the process of segmentation of DSRUs.  

Vegetation index (Modified Chlorophyll Absorption Ratio Index (MCARI)) derived 

from Hyperion images were used as the vegetation layer (see Figure 5.8). The 

expression of MCARI followed Kim et al. (1994) and Daughtry et al. (2000): 

MCARI= [(R700-R670)-0.2(R700-R550)] (R700/R670)                                        (5-22)                     
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where R500, R670 and R700 represent the reflectance at wavelength of 550nm, 670nm 

and 700nm, respectively.  

Soil map produced from the soil survey in 1980 was collected. Soil map at scale of 

1:100 000 (1980) was used as the soil layer for the segmentation of DSRUs. Slope 

and elevation derived from DEM （ 30×30 m ） was used as the layers of 

physiognomy characteristics. Hyperion data fusion transformations representing 

spectral information was the comprehensive response to land use/land cover, soil, 

vegetation and the effects of human activities. The problem of hyperspectral 

dimensionality such as the Hughes phenomenon must not be neglected. It was noted 

that the performance of a classifier is affected by the poor estimates of training 

statistics beyond about ten features (De Jong and Van Der Meer, 2007). In this study, 

nine fusion transformations, from first principal component (PCA1) to the ninth 

principal component (PCA9) calculated from Hyperion hyperspectral bands were 

used as spectral layers. The weight of each principal component is determined, 

considering its eigenvalue and spectral information related to above 5 optimal bands. 

PCA1, PCA2 and PCA3 were with large eigenvalue and contained more information 

related to the optimal bands, therefore their weights were set 1; while the weights for 

PCA7, PCA8 and PCA9 were set 0.3. The land use map at scale of 1:100 000 

(interpreted from TM images and SPOT 2 4 images in 2001) was used as the 

thematic layer in the segmentation process (Table 5.3). Its significance is only for the 

case that any segmentation does not span the polygon border line of vector data in 

the thematic layer. It is noted that only polygon vector data as the thematic layer 

could be included in the segmentation process.  
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Figure 5.8 Vegetation index (MCARI) derived from Hyperion images 

Table 5.3 Segmentation layers and their weights 

Layers Weight 
PCA1 1.0 
PCA2 1.0 
PCA3 1.0 
PCA4 0.5 
PCA5 0.5 
PCA6 0.5 
PCA7 0.3 
PCA8 0.3 
PCA9 0.3 
Soil type map  1.0 
DEM 1.0 
Slope 1.0 
MCARI 1.0 
Land use map(thematic layer) 1.0 
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The segmentation used in this study was a bottom-up region-merging approach, 

starting with one-pixel objects. The segmentation algorithm utilizes spectral 

information to extract continuous, independent and homogeneous regions or image 

objects. Spectral or color heterogeneity is defined as: 
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where wc is the weight attributed to each channel and σc is the standard deviation of 

the spectral values in each channel. The standard deviations themselves are weighted 

by the object sizes n. Object features are calculated after the segmentation using 

spectral, shape and textural features. The spectral features are the channel means, 

standard deviations, brightness and maximum difference. Object shape is obtained by 

calculating object length/width proportion and a shape index. Brightness and shape 

index are defined as: 
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Brightness B is the mean value of the spectral mean values c¯i of an image object. 

The shape index S is the border length e of the image object divided by four times the 

squared root of its area A. Concerning texture, first and second order texture 

measures are derived from either the Grey-Level Co-occurrence Matrix (GLCM) or 

the Grey-Level Divergence Vector (GLDV), such as homogeneity, contrast, 

dissimilarity, entropy, angular second moment, mean, standard deviation and 

correlation. The GLCM and GLDV are computed for each input channel and in four 

spatial directions: 0°, 45°, 90°and 135°. To obtain a direction-invariant quantity, all 

the four directional values are summed up for texture calculation. 

In the subsequent step, smaller image objects were merged into bigger ones. Visual 

interpretation of different image segmentation results showed that it was extremely 
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beneficial to use DEM, soil type, vegetation index and nine data fusion 

transformations in the segmentation process.  

In this study, the developed GEOIC approach was applied in SOM mapping. DSRUs 

were partitioned automatically with remote sensing images and multi-source data. 

Their spatial, spectral, geographic and temporal characteristics were assessed for 

developing DSRU estimation models of SOM. The eCognition software is regarded 

as an appropriate tool of the segmentation of DSRUs because it can supply the 

function of image multi-segmentation. In the segmentation process, a user needs to 

define several parameters, like scale parameter, layer weight and adjustable criteria 

for homogeneity or heterogeneity in color and shape. Scale is a crucial factor for 

image understanding. In software eCognition, the scale parameter is an abstract term 

which determines the maximum allowable heterogeneity for the resulted image 

objects. Adjustment of the scale parameter will indirectly influence the average 

object size: a larger value leads to bigger objects. In this study, different scale 

parameters were chosen to determine an appropriate one and to study its effect on the 

precision of estimation models in the study area. Four levels at scale parameters of 

25, 50, 100 and 200, representing different size of DSRUs, from smaller to larger, 

were chosen in the area (Figure 5.9). The homogeneity criterion was set as follows: 

color 0.8 and shape 0.2 (Table 5.4).  

Table 5.4 Four scale parameters for image segmentation 

Level Scale 
parameter 

Spectral heterogeneity Shape heterogeneity Number of units 
Color Shape Smoothness compactness 

1 25 0.8 0.2 0.5 0.5 36021 
2 50 0.8 0.2 0.5 0.5 9760 
3 100 0.8 0.2 0.5 0.5 3180 
4 200 0.8 0.2 0.5 0.5 1161 
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Figure 5.9 The results of segmentation with four scale parameters 

5.2.4 Up-scaling method of estimation models for SOM 

As mentioned in Chapter 2, the term scaling refers to translating information from 

one scale to another. Many of the inconsistencies in the results exist when remote 

sensing data are used to produce thematic maps or as inputs into physical models, 

without explicitly taking into account the impact of scale.  

Remote sensing physical models may be described by the dependence of a parameter 

R(ｌ(ω)) on the measured radiance ｌ(ω) at a point ω of the surface. For each ω in a 

given area Ω, the model R generates a value R(ｌ(ω)), which is usually a density, 

such as SOM (Figure 5.10). The natural objective of satellite measurements is to 

obtain the value of R at a regional size. Namely, satellite measurements aim to reach 

the value: 
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∫∫ΩΩ ωω dR ))((1
                                                                                            (5-26) 

where Ω is one pixel of area; |Ω| is the definitional domain of Ω, for each point ω∈Ω. 

This is the ideal value which would be obtained by computing R(l (ω)) using the 

model and the measurement of l at each point ω of the area Ω (at the same instant) 

and evaluating the quantity R for the whole area Ω from its value at each ω. For each 

point ω∈Ω at a microscopic scale of the in-situ experiment we note the radiances in 

n radiometer channels 

   ))(),...,(()( 1 ωωω n =                                                                               (5-27) 

In fact, the actual value given by the model with the satellite measurement is R(L), 

where L is the measured reflectance of the pixel (Figure 5.10). In the following, we 

consider a perfect sensor, that is, a sensor, with which the impulse response is a 

squared window. In other words, the reflectance measured by sensor is  

 ∫∫ΩΩ
= ωωρω dL )()(1

                                                                            (5-28) 

where the given function ρ>0 is the impulse response of the sensor and satisfies (for 

a perfect sensor, one has ρ(ω)=1): 

∫∫Ω =
Ω

1)(1
ωωρ d                                                                                      (5-29) 
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Figure 5.10 The model R validated at a local scale, generates a value R(ｌ(ω)) from 

the radiance ｌ(ω) at ω∈Ω. The microscopic area ω is mathematically represented 

by a point. 

As noted by Raffy (1992), there is difference between , which is the 

exact value of R(ｌ(ω)) integrated over the pixel, and the value obtained from the 

satellite measurement, R(L). The models used in remote sensing are based on a 

relationship between the measured radiances and the physical parameters of the soil 

surface. A number of them are semi-empirical, in the sense that they contain some 

constants, which were adjusted by taking account of in situ models, and generally 

carried out in a given type of medium. Once validated in-situ, these models are 

applied to large scale areas.  

The value φ(ω) is considered to be the `actual’ value of a parameter, such as SOM, 

for ω∈Ω. A perfect remote sensing model satisfies: 

)),(()( ωωϕ R=      for ω∈Ω                                                                    (5-30) 

In general the models are not perfect, and the relation between φ and R depends on 

some constant parameters pi if using multiple linear regression analysis. 

),...,( 1 kppp =                                                                                                    (5-31) 

Then, for these models, called semi-empirical models, we have 
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                                                   (5-32) 

These models, even validated with in-situ experiments, are developed with regional 

scale data, in order to discover the exact regional value for the parameter Ф: 

                                                                                    (5-33) 

To approximate Ф, once ploc is estimated, we deduce 

                                                                       (5-34) 

Raffy and Gregoire (1998) demonstrated that those constants, appropriate for in-situ 

experiments, were no longer appropriate for a regional scale. For remote sensing 

applications, these constants must be determined by a new least square cost function.  

Remote sensing models are often based on a relationship between a soil-level 

parameter and the sensor reflectance at a given wavelength. The general practice is to 

apply these models to the reflectance measured from satellites, without making any 

correction for the change of scale. The practice, however, can result in arbitrary and 

erroneous results. Therefore, it is necessary to consider the scale effects in remote 

sensing. When the model at local scale extrapolated to a larger scale, a general 

method is proposed to build a new model connected to the one at local scale and 

connected to the variables at a large scale to compensate for the change of scale. 

In the study, an in-situ estimation model based on the relationship between the SOM 

content and soil spectral reflectance of soil samples in field survey is difficult to 

apply to the images. Therefore the estimation model based on the relationship 

between the SOM content and the spectral and regional variables of DSRUs was 

proposed and developed. The estimation model was defined as DSRU model in this 

study. This model was set up based on a hypothesis that a homogenous DSRU has 

similar soil properties. A property parameter of a soil sample was regarded as an 
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attribute of a DSRU where the soil sample was collected. The average parameter 

value of several soil samples was calculated if a DSRU includes several soil samples.  

The flowchart of up-scaling method of SOM estimation models from in-situ model to 

DSRU model is given in Figure 5.11. The laboratory data were used to analyze the 

features of soil parameters and soil spectral reflectance and spectral responses to soil 

parameters. The field survey data were used to formulate semi-empirical 

relationships between soil spectral reflectance and the SOM content at in-situ field 

scale. The features of DSRU, such as color, area, mean and standard deviation of 

principle components PCA1, PCA2, PCA3, and vegetation index MCARI, and the 

mean and standard deviation of elevation and slope, and spectral information of 

sensitive bands were used in DSRU model. 

 

Figure 5.11 Approach flowchart of up-scaling of the SOM estimation model using 

remote sensing images 
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5.3 The test results and discussions 

5.3.1 In-situ model estimation of SOM 

The two methods of the multiple regression model (refer to section 5.2.1.1) and 

fuzzy set model (refer to section 5.2.1.2) were used to develop the in-situ models of 

SOM with the test data. The two different methods were used to validate the 

consistency of chosen optimal spectral bands for the SOM estimation with the 

spectral data of soil samples. These bands were used as variables in the model 

estimation of SOM using Hyperion images. 

5.3.1.1 SOM estimation based on multiple statistics analysis 

As discussed in section 5.2.2, analysis of the correlation between soil spectra 

reflectance in lab and the SOM content of soil samples gave 5 optimal spectral bands 

at the wavelength of 0.44µm, 0.56µm, 0.625µm, 0.74µm and 1.336µm. However, as 

pointed out by Latz et al. (1984) and Krishnan et al. (1980), SOM caused a large 

variation in the reflectance of spectrum from the 0.5µm to 0.8µm region, therefore 

only four bands of 0.44µm, 0.56µm, 0.625µm and 0.74µm were used for the 

estimation.  

He et al. (2004) proved that the transformation of the first differentiation of the 

logarithm of the reciprocal reflectance could produce a stronger correlation with the 

SOM content. Let W be the ratio of the first differentiation of the logarithm of the 

reciprocal reflectance in one band to that in another band, such as 

((log(1/R740))’/(log(1/R440))’), (log(1/R740))’/(log(1/R560))’, 

(log(1/R625))’/(log(1/R440))’, and (log(1/R625))’/(log(1/R560))’, etc. The result for the 

band of 0.625µm over the band of 0.56µm has the higher correlation coefficient of 

0.8948, consistent with the result of Krishnan et al. (1980), who demonstrated that 

SOM content was strongly correlated with the ratio of the first differentiation of the 

logarithm of the reciprocal reflectance in band 0.623µm to that in band 0.564µm. 

Therefore different regression models were estimated with W = 

(log(1/R625))’/(log(1/R560))’. The results are given in Table 5.5. 
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Table 5.5 The result of in-situ SOM estimation models based on regression analysis 

Model types Estimation equation adjusted R2 F value 
Linear Y=23.245w-10.567 0.7457 70.45 

Logarithmic Y=20.446lnw-8.2354 0.7265 69.34 
Quadratic Y=16.466-4.385w+2.668w2 0.8684 80.34 

Power Y=12.435w3.7232 0.6818 66.34 
Exponential Y=0.2563e 6.7554w 0.6456 65.23 

 

In the table W = (log(1/R625))’/(log(1/R560))’, R is the reflectance, and Y is the SOM 

content. The quadratic curve model (y=16.466-4.385w+2.668w2) was chosen, with 

the highest adjusted R Squared coefficient (R2) and F value. The statistical test 

indicated the equation is significant at p<0.001, where p is significant level. The 

predicted SOM contents with the quadratic model showed a linear relationship with 

the test values, which suggests the model is appropriate.  

5.3.1.2 SOM estimation based on a fuzzy set method 

The SOM content and the first differentiation of the logarithm of the reciprocal 

reflectance for bands of 0.44µm, 0.56µm, 0.625µm, 0.74µm and 1.336µm were input 

variables in SOM estimation model based on the fuzzy set approach discussed above. 

Among all the soil samples, 66 samples were used for modeling and 18 samples for 

validation. In the modeling we set 5 classes and the calculation precision of 10-5. 

Using the software module developed by Li et al. (2003), we got  

156.0317.0ˆ −= hy                                                                                            (5-35) 

where ŷ is the estimated content of SOM and h is the class eigenvalue.  

The correlation coefficient of the model was 0.9623, and the optimal weight of 

variables was (0.153, 0.156, 0.208, 0.345, 0.138) for the bands of 0.44µm, 0.56µm, 

0.625µm, 0.74µm and 1.336µm, respectively. The result is given in Table 5.6. The 

average error of estimated SOM content was 10.52%, indicating a higher precision of 

the model. The stability of the estimation model was tested with different samples for 

modeling and evaluation.  In the test we used 4 samples for validation and 80 
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samples for modeling. The average error is only a small increase to 11.68%, which 

suggests the established model is stable. 

Table 5.6 The result of in-situ SOM estimation model based on fuzzy set analysis 
Correlation Model parameter Maximal Minimal Average No. of second Second 

coefficient a b error error error validation samples average error 
      % % %   % 

0.9623  0.317  -0.156  19.03  0.56  10.52  4  11.68  

 

The above results showed that the transformation of soil spectral reflectance is useful 

to improve the correlation between the SOM content and the spectral reflectance, 

especially the first differentiation of the logarithm of reciprocal reflectance, 

consistent with Cloutis’s results (Cloutis, 1996). Moreover, the above analyses 

indicated (1) both multivariate statistical analysis and fuzzy set analysis gave 

consistent results; and (2) the spectral reflectance of soil samples in bands of R440, 

R560, R625, R740, and R1336 was significantly correlated with the content of SOM. 

These bands can be used as the variables of estimation model of SOM using 

Hyperion images. 

5.3.2 DSRU models estimation of SOM with the GEOIC approach 

To solve the problem of in-situ model estimation of SOM, the DSRU estimation 

models were proposed in this study under the approach of the GEOIC. Through 

integrating soil spectral knowledge and geographic knowledge, the segmentation of 

DSRUs was conducted based not only on spatial characteristics of physiognomy 

situation, soil and vegetation, but also on remote sensing image information. The 

spectral wavelengths of Hyperion images were not the same as the lab spectral 

wavelengths collected by ASD. The spectral bands of R467, R560, R625, R740, and R1336 

in Hyperion images were chosen as optimal ones for the SOM estimation with 

Hyperion images. The features of DSRUs, such as color, area, the mean and standard 

deviation of reflectance in bands R467, R560, R625, R740, R1336 of Hyperion images, the 

mean and standard deviation of principle components PCA1, PCA2, and PCA3, 

vegetation index MCARI of Hyperion images, and the mean and standard deviation 
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of elevation and slope, were used as the variables to set up the DSRU estimation 

models at different scale levels of 25, 50, 100, and 200.  

The correlation between each of the above variables and the content of SOM of 

DSRUs was analyzed (see Table 5.7). The results showed that the logarithm of 

reflectance R625 and the logarithm of PCA2, the average of elevation and MCARI, 

and the quantities of (1/logR467)/(1/logR625), (1/logR560)/(1/logR625), 

(1/logR560)/(1/logR740), (1/logR625)/(1/logR740), (1/logR740)/(1/logR625) and their 

reciprocals were significantly correlated with the SOM content for all the scales (at 

significant level less than 0.01). Color, (1/logR625)/(1/logR1336), the standard 

deviation of the reflectance in bands of R560 and R625, and the standard deviation of 

MCARI were significantly correlated with SOM content at scale levels of 25 and 50, 

while the average reflectance in bands of R1336, R467 and R560, (1/logR467)/(1/logR560), 

and (1/logR560)/(1/logR467) were significantly correlated with SOM content at scale 

levels of 100 and 200. These suggested that the standard deviations of the variables 

were significantly correlated with SOM at smaller scale levels, while the averages of 

the variables were at larger scale levels. This can be explained by the result that 

every scale reveals the information specific to its level of observation (Marceau, 

1999). Scale refers to the spatial dimension at which entities, patterns, and processes 

can be observed and characterized. No single scale is sufficient for assessing the 

varying sized, and spatially arranged components on the planet, a society, or in any 

complex system (Hay and Marceau, 2004).  
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Table 5.7 Correlation significance of SOM content with various variables estimated 

by DSRU models at four scale levels 

  Scale parameter 
25 50 100 200 

COLOR   *     
Log (R467)   * ** ** 
Log (R560) * ** ** ** 
Log (R625) ** ** ** ** 
Log (PCA2) ** ** ** ** 
MEAN R1336     **   
MEAN R467   * ** ** 
MEAN R560   * ** ** 
MEAN R625 * ** ** ** 
MEAN elevation ** ** ** ** 
MEAN MCARI ** ** ** ** 
MEAN PCA2 **   **   
MEAN PCA3   ** ** * 
Standard deviation R560 *       
Standard deviation R625 **       
Standard deviation MCARI **     ** 
(1/logR1336)/(1/logR625) *       
(1/logR467)/(1/logR560)   ** ** ** 
(1/logR467)/(1/logR625) ** ** ** ** 
(1/logR467)/(1/logR740) ** ** **   
(1/logR560)/(1/logR467)   ** ** ** 
(1/logR560)/(1/logR625) ** ** ** ** 
(1/logR560)/(1/logR740) ** ** ** ** 
(1/logR625)/(1/logR1336) *       
(1/logR625)/(1/logR467) ** ** ** ** 
(1/logR625)/(1/logR560) ** ** ** ** 
(1/logR625)/(1/logR740)  ** ** ** ** 
(1/logR740)/(1/logR467) ** ** **   
(1/logR740)/(1/logR560) * ** ** ** 
(1/logR740)/(1/logR625) ** ** ** ** 

     ** : significant level < 0.01; *  : significant level < 0.05 

At scale levels of 25, 50, 100, and 200, the number of DSRUs used for modeling was 

82, 71, 48 and 24, respectively. The results showed that the stepwise multiple 

regression models at scale levels of 25, 50 and 100 were statistically significant at 

significance level less than 0.01, with the determinative coefficients (R2) of 0.562, 

0.721 and 0.722, respectively. The sum of squares and mean square at scale level of 

100 was the lowest (see Table 5.8). This displays the information about the variation 

accounted for by the model. The determinative coefficient (R2) at scale level of 50 

was similar to that at scale level of 100. The model at scale level of 200 had no 

statistical significance. It was probably due to too few statistical samples. However, 

the determinative coefficients of DSRU models were lower than those of in-situ 

models. This scaling effect may be partly caused by the inability of the satellite 
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imagery to detect small scale heterogeneity. Field sampling is able to detect small-

scale changes, and the spectral averaging process of DSRU results in a decrease in 

pixel variation. The spectral averaging effect is likely to be the main reason for the 

low range of image spectral reflectance and the dominance of low values of DSRUs. 

Meantime, a potential cause for pixel signal heterogeneity may be due to the 

vegetation distribution pattern. In the study area, the vegetation distributes sparse, 

and the distribution pattern of vegetation was similar. Therefore, this potentially 

increased signal heterogeneity within each pixel while decreasing heterogeneity 

within each DSRU in Hyperion images.  

The type of DSRU estimation model of SOM at different scales was: 

Y= B0+B1X1+B2X2+B3X3+…+BnXn                                                                 (5-36) 

Where Y is the SOM content of DSRU, and X1, X2, X3,…,Xn is DSRU features. B0 is 

the constant of regression model. B1, B2, B3,…,Bn are the coefficients of independent 

variables of X1, X2, X3,…,Xn.  

Table 5.8 Parameters of regressions estimated by DSRU estimation models at four 

scales 

 Scale parameter 
25 50 100 200 

R 0.750 0.849 0.849 0.988 
R Squared  0.562 0.721 0.722 0.977 
Adjusted R Squared 0.43 0.56 0.419 0.724 
Std. Error of the Estimate 0.208 0.183 0.183 0.191 
Sum of 
Squares 

Regression 3.482 3.883 2.001 3.09 
Residual 2.715 1.502 0.772 0.073 
Total 6.196 5.385 2.773 3.163 

Df 
 

Regression 19 26 25 22 
Residual 63 45 23 2 
Total 82 71 48 24 

Mean 
Square 

Regression 0.183 0.149 0.08 0.14 
Residual 0.043 0.033 0.034 0.036 

F value 4.253 4.474 2.384 3.86 
Significance level .000 .000 .010 .226 
 

 



                                                                                        Chapter 5 Mapping Soil Organic Matter  

 94 

The meaning of each independent variable is: X1 = the mean of MCARI, X2= the 

mean of elevation, X3= the mean of slope, X4= the mean of R467, X5= the mean of 

R560, X6= the mean of R625, X7= the mean of R1336, X8= the standard deviation of 

MCARI, X9= the standard deviation of elevation, X10= the standard deviation of slope, 

X11= the standard deviation of R467, X12= the standard deviation of R560, X13= the 

standard deviation of R625, X14= the standard deviation of R740, X15= the standard 

deviation R1336, X16= LogR467, X17= (1/logR467)/(1/logR560), X18= 

(1/logR740)/(1/logR560), X19= (1/logR560) / (1/logR740), X20= (1/logR625)/(1/logR560), 

X21=(1/logR740)/(1/logR467), X22=(1/logR560)/(1/logR467), X23= 

(1/logR625)/(1/logR1336), X24= (1/logR1336) / (1/logR625), and X25= 

(1/logR1336)/(1/logR560). 

The estimated regression models at scale levels of 25, 50, and 100: 

Y=-706.113 -0.078X1 +0.004X3 -1.045X8 -0.015 X9 + 0.004 X10 -0.001X11 +0.003X12 -

0.002X13 -0.001X14 +354.993X18+351.054X19                                                         (5-37) 

Y=-302.41 +0.116X1 +0.008X3 -0.003X5 -2.43X8 + 0.005X9 +0.032X10 -0.002X11 -

0.005X12 +0.006X13 +30.050X16 +59.642X20 -2.04 X21 -53.126 X22 +85.771X23 

+117.687 X24                                                                                                           (5-38) 

Y= 37.022 -0.898X1 +0.002X2 -0.008X3 -0.002X4 + 0.003X6 -0.003X7 -3.519X8 -

0.003X9 +0.064X10 -0.002X14 +0.004X15 -77.032 X17 +56.177 X20 -9.392 X21  -7.895 

X25                                                                                                                               (5-39) 

In the model at scale level of 25, the standardized coefficients showed that the effect 

of independent variables on dependent variable of Y was in the following decreasing 

order: (1/logR560) / (1/logR740), (1/logR740)/(1/logR560), and the standard deviations of 

R560, R625, R467, and R740. The tests on each independent variable showed that 

(1/logR560)/(1/logR740), (1/logR740)/(1/logR560), and the standard deviations of R560, 
R625, and R740 all had significant effect on dependent variable of Y. In the model at 

scale level of 50, the standardized coefficients showed that the effect of each 

independent variables on dependent variable was in the following decreasing order: 

(1/logR1336)/(1/logR625), (1/logR625)/(1/logR1336), LogR467, the mean of R560, the 

standard deviations of R560, and R625, (1/logR625)/(1/logR560), the standard deviations 
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of R467, and (1/logR560)/(1/logR467). The tests on each independent variable showed 

that (1/logR1336) / (1/logR625), (1/logR625)/(1/logR1336), and LogR467 had significant 

effect on the dependent variable. In the model at scale level of 100, the standardized 

coefficients showed that the effect of the independent variables on the dependent 

variable was in the following decreasing order: the means of R625 and R467, 

(1/logR625)/(1/logR560), the mean of R1336, (1/logR467)/(1/logR560), the standard 

deviation of R740, and (1/logR1336)/(1/logR560).  

The DSRU estimation models of SOM at different scale levels included different 

independent variables. The combined independent variables by the sensitive bands in 

R467, R560, R625, R740 and R1336 were also included into DSRU estimation models and 

had significant effects on the dependent variable at different scale levels. The 

standard deviations of R467, R560, R625, and R740 were included into the DSRU 

estimation models at small scale level and had significant effects on the dependent 

variable. On the other hand, the means of R467, R560, R625, and R740 were included into 

the DSRU estimation models at large scale level and had significant effects on the 

dependent variable. This difference may be partly caused by the spectral averaging 

process that results in the decrease in pixel variation from scale level of 25 to scale 

level of 100.  

Moreover, the means of MCARI and slope and the standard deviations of MCARI, 

elevation and slope had significant effects on the DSRU estimation models at the 

scale levels of 25, 50 and 100; while the mean of elevation had a significant effect on 

the estimation model at large scale level. It was found that the environmental 

variables of elevation, slope and vegetation index (MCARI) were major factors 

affecting the distribution of SOM at a regional scale, and therefore should be 

introduced into the DSRU estimation models. It also demonstrated the impact of 

scale on modeling SOM using remote sensing techniques. Remote sensing provides 

the possibility of conducting empirical studies to understand the behavior of 

variables when changing scale, and derive appropriate rules for scaling. The study 

result was consistent with the results by other researchers about scale effects on 

modeling and scaling methods through introducing some regional variables or scale 

invariant variables into models by a change of scale in different fields (Raffy, 1992; 
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Friedl et al., 1995; Turner et al., 1996; Friedl, 1997). Raffy (1992) proposed a 

method to reduce the error introduced by a change of scale when linking a ground 

parameter. Friedl et al. (1995) demonstrated that Normalized Difference Vegetation 

Index (NDVI) is not scale invariant. Turner et al. (1996) conducted a study to 

determine the effects of spatial scale on the results obtained from a spatially 

distributed biogeochemical model. Their results clearly indicated the differences in 

the inputs and outputs because of low spatial resolution  

A comparison of the measured SOM of the check samples with the estimated values 

using the DSRU estimation models indicated that the SOM can be reliably obtained 

from fusing Hyperion imagery and multi-source data through the segmentation of 

DSRUs at an appreciate scale with the GEOIC approach. The estimated results by 

the DSRU models at scale levels of 50 and 100 were tested using DSRU samples. 

The results showed a linear relation between the measured values and the estimated 

values of SOM.  

The fractions of vegetation and water body were first derived by linear spectral 

mixture model in Hyperion images. The information on the flourishing vegetation 

with MCARI>0.05 was then derived from the above vegetation fraction. The 

Hyperion images were processed by masking the information on flourishing 

vegetation and water body. These processed Hyperion images were used to map the 

distribution of SOM at scale levels of 50 and 100 by the DSRU models. The results 

are plotted in Figure 5.12 and Figure 5.13. The figures showed that the irrigated land 

and dike field contained higher contents of SOM, while the Loess-hilly top land, 

Loess-hilly slope land and sandy land contained lower contents of SOM. This was in 

agreement with the field survey results, showing a gradual decrease in the SOM 

contents from the irrigated land, dike field, terrace, Loess-hilly top land, and to 

Loess-hilly slope land and to the sandy land. Furthermore, the distribution of SOM 

was close to the results with the Kridge interpolation of soil samples (Figure 5.14). 

But one should note that the distribution of SOM using Hyperion images was only 

relative, and the mapping results only showed spatial variation of SOM in the study 

area. 
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Figure 5.12 SOM mapping based on the DSRU models at scale level of 50 with 

Hyperion images 
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Figure 5.13 SOM mapping based on the DSRU models at scale level of 100 with 

Hyperion images 
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Figure 5.14 SOM content estimated by the Kridge interpolation method 

The SOM content seems to have a negative correlation with soil reflectance. The 

land with a high content of SOM was gray black in the image, while that with a low 

content of SOM was shiny white. This is because the organic material contains a 

substance called humic acid which can decrease the reflectance of soil spectral. With 

a decrease in organic matter, the influence of humic acid to soil spectrum is 

decreased (Baumgardner et al., 1985). The result of the study agreed to Xu (1986) 

who pointed out that the soil reflectance would increase after the organic material 

removed.  

By application of the GEOIC approach, the DSRU estimation models based on the 

relationship between the SOM contents and features of spectral and regional 

variables of DSRU were able to accurately estimate the SOM at a regional scale. The 

DSRU estimation model is not only based on some variables in in-situ model, but 

also considers some environmental variables to compensate for the change of scale. 
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The results from our method using the GEOIC approach were consistent with the 

previous study results by Raffy (1992) and Hay and Marceau (1998).  

The method of DSRU estimation model is an application example of the GEOIC 

approach for soil parameters mapping. It has two main advantages in SOM mapping: 

(1) the method can overcome the pixel by pixel spectral variation and the SOM 

variation in a homogenous area, (2) it integrates different types of geo-data into an 

object-based analysis process and introduces different environmental variables into 

the estimation models. The presented GEOIC approach for the SOM estimation 

combines spectral information and texture information with soil types, vegetation, 

land use information, and in-situ information from field surveys. This case study 

demonstrated the GEOIC approach is valid for monitoring and evaluation of soil 

quality with hyperspectral images.  

However, some problems must be identified and overcome for the application of 

Hyperion image data to map SOM. Hyperspectral data directly collected in the field 

or acquired with remote sensing techniques might be affected by the natural soil 

surface conditions (e.g., roughness, moisture, stoniness, etc), the atmosphere, and the 

illumination conditions. These effects should be further studied and corrected on the 

basis of an extended spectral data set collected directly in the field together with 

ancillary data. In addition, the accuracy of SOM mapping with this approach should 

be further improved. However, the implementation of DSRU estimation models for 

SOM mapping seems to be complicated in areas where physical and geographical 

situations are very complex and fragmentized. A potential solution might be the 

coupling of the current approach using hyperspectal images of high spatial resolution 

and DEM at scale of 1:10 000 or 1:50 000 together with ancillary data and larger 

number of soil samples.  

A further improvement of this study can be obtained by a careful analysis of the 

dependence of accuracy on natural site conditions, integration of other additional 

data (such as LIDAR data), and a more efficient usage of ancillary information and 

local knowledge. The GEOIC approach should be applied in other areas to validate 

the reliability of the approach.  
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5.4 Summary of the GEOIC application in SOM mapping  

Based on the above discussions the flowchart for SOM mapping with the GEOIC 

approach is given in Figure 5.15. 

 

 

 

 

 

 

 

 

Figure 5. 15 The technical flowchart for mapping soil parameters using hyperspectral 

data 

Analyzing the test data showed that the spectral reflectance of soil samples in bands 

R467, R560, R625, R740, R1336 were significantly correlated to the SOM content. The in-

situ estimation models based on the relationship between the SOM content and the 

transformation of the spectral reflectance in bands R467, R560, R625, R740, and R1336, 

developed using the multiple regression method and the fuzzy set method, were valid 

to estimate the SOM of soil samples. The five sensitive bands can be used for the 

SOM estimation using Hyperion images. However, the in-situ estimation models 

were difficult to be applied to images because of less correction applied to 

compensate the change of scale. Under the approach of GEOIC, the DSRU 

estimation models were developed based on the relationship between the SOM 
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content and the spectral and regional variables of DSRUs. The models developed 

with the stepwise multiple regression method were valid to estimate the SOM 

content using Hyperion images. The determinative coefficient (R2) of the model 

increased from 0.562 at scale level of 25, to 0.721 at scale level of 50, and to 0.722 at 

scale level of 100. The mean square of regression models at scale level of 100 was 

lowest. The variables of combination of sensitive bands in R467, R560, R625, R740 and 

R1336 were included into the DSRU regression models and had significant effects on 

dependent variable of SOM at different scale levels. The environmental variables of 

elevation, slope and vegetation index (MCARI) were also included in the DSRU 

models. The result of SOM mapping based on the DSRU estimation models using 

Hyperion images is compatible to the field survey results. It is also close to the result 

of the Kridge interpolation on SOM using soil samples. Mapping SOM can be done 

cost-effectively and in a timely manner instead of collecting and measuring large 

amount of soil samples in large areas. 

The method of DSRU estimation model is an application example of the GEOIC 

approach. It has two main advantages in SOM mapping: overcoming the pixel by 

pixel spectral variation and the SOM variation in a homogenous area; and 

integrating different types of geo-data into an object-based analysis process and also 

introducing different environmental variables into the estimation models. The 

method provided a useful tool for mapping soil features at a regional scale by 

combining field data, remote sensing images and regional variables.  

Advances in hyperspectral technology have enabled the remote acquisition of the 

detail information on vegetation and soil over large areas. Although the use of 

hyperspectral remote sensing images has gained considerable momentum in 

vegetation mapping, there are some limitations in the application for soil mapping. 

We explored in this study the applicability of Hyperion data and the GEOIC 

approach for SOM mapping at a regional scale. We demonstrated how the GEOIC 

approach applied in SOM mapping compensates for the change of scale of estimation 

models. The object-based integration of Hyperion imagery with environmental 

variables holds immense potential for soil parameter mapping in a heterogeneous 

landscape. 
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There are some problems in the application of remote sensing images for mapping 

SOM. The regression models between the spectral reflectance and the SOM content 

based on experimental data in the test area may have limitations to be applied in 

other areas because of different variables of estimation models. But the up-scaling 

method for estimation model to compensate the change of scale can be applicable in 

most areas. On the other hand, hyperspectral data directly collected in the field or 

acquired with remote sensing techniques might be affected by the natural soil 

surface conditions (e.g., roughness, moisture, stoniness, etc), the atmosphere, and 

the illumination conditions. These effects should be further studied and corrected on 

the basis of an extended spectral data set collected directly in the field together with 

ancillary data. Moreover, a comparison of other approaches, such as neural networks 

or other mathematics/statistics methods with the regression method in integrating 

multi-source data for developing the estimation models should be conducted to see if 

they are useful to further improve the accuracy of estimation models.  
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Chapter 6                                                      

Application of the GEOIC Approach in the 

Extraction of Land Degradation 

Information Using Hyperion Images 

Extraction of land degradation information is important for the assessment of land 

degradation situation. Land degradation can sometimes be estimated or measured 

directly, but often be indirectly estimated by land characteristics and/or diagnostic 

criteria (Olderman, 2000), such as land characteristics, soil characteristics, vegetation, 

land use/land cover, climate, and human activities, or function of them. The 

evaluation unit is one of the major factors affecting the accuracy of the extraction of 

land degradation information. It is an ecologically homogeneous tract of land at a 

scale. It describes the characteristics of the most obvious (mappable) land attributes. 

Several studies have shown that it is difficult to quantify land degradation due to 

several issues, such as the ambiguously expressed knowledge, and benchmark, 

diagnostic indicators, unit, and methodologies to be used, and method for scaling of 

land degradation evaluation, and influencing factors on land degradation process 

(FAO 2002; Wang, 2006; Sivakumar and Ndiangui, 2007; Chen and Rao, 2008; Gao 

and Liu, 2008).  

With the development of OBIA methodology, the approach of GEOIC has been 

developed which was discussed in Chapter 3. The GEOIC approach not only 

integrates remote sensing information, geographic information, and the knowledge 

on land resources, but also takes into account the spectral, texture, shape, and spatial 

relation between pixels based on fuzzy logic methods. For the ambiguously 
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expressed knowledge on land degradation and complex ecosystems, like the study 

area described in Chapter 4, the GEOIC approach is more appropriate and can 

significantly enhance the role of remote sensing technique for the extraction of land 

degradation information. Little however, has been done in this research area. This 

chapter is to explore the applicability of Hyperion data and the GEOIC approach for 

extracting land degradation information through land type classification. The GEOIC 

approach is realized by the segmentation of DSRUs using Hyperion images, 

geographic information, vegetation, soil parameters, DEM and local information. 

The approach is also compared with the Spectral Angle Mapping (SAM) method and 

the Degraded Soil Line Index (DSLI) method. In this chapter, we demonstrate how 

the GEOIC approach significantly improves the accuracy of land degradation 

classification. Furthermore we illustrate how the systematic approach can quantify 

ambiguously expressed information of land degradation. The above-mentioned three 

approaches are tested in the study area described in Chapter 4.  

6.1 Features of land types and spectral response to land 
degradation 

In this study we should know well the features of land types and spectral response to 

land degradation for a comprehensive grasp of the geoscience knowledge using the 

GEOIC approach in the study area. Therefore this section briefly discusses the 

features of land types and spectral response to land degradation.   

The values of various soil parameters for different land types are shown in Table 6.1. 

The content of SOM ranged from 0.124% to 1.827%, with the average of 

0.618%±0.284%. The statistical tests showed that the average contents of SOM, total 

nitrogen (TN), available nitrogen(AN) and physical clay content are significantly 

different among irrigated land, dike field, terrace, Loess-hilly top land, Loess-hilly 

slope land and sandy land. The contents of SOM and TN gradually decreased in the 

order of irrigated land, dike field, terrace, Loess-hilly top land, Loess-hilly slope land, 

and sandy land. AN, available potassium (AK) and clay content showed a decreasing 

trend in similar to that for SOM and TN, while available phosphorus (AP) did not. 
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These results were generally in agreement with local farmers’ perception of land 

quality.  

Table 6.1 Contents of nutrients and clay in the soils of different land types 

Types SOM TN AN AP AK Clay 
  % % % mg/kg mg/kg % 
Irrigated land 0.960  0.068  125.17  8.94  133.04  11.30  
Dike field 0.711  0.053  105.13  4.89  135.48  10.81  
Terrace 0.648  0.048  108.84  5.12  114.19  10.78  
Loess-hilly top land  0.542  0.044  98.57  4.47  127.48  8.74  
Loess-hilly slope land 0.437  0.036  90.03  3.66  87.30  9.38  
Sandy land 0.202  0.017  71.57  5.09  79.36  2.89  
F value 18.28** 15.92** 3.39** 8.78** 4.89** 7.99** 

** Distinct difference in level of significance less than 0.01 

The mean values of various soil parameters for different degraded land types are 

shown in Table 6.2. The statistical tests indicated that the average contents of SOM, 

TN, and AK are significantly different among the highly, moderately, and slightly 

degraded grassland and non-degraded grassland. The average contents of SOM, TN, 

and AP, total iron, and soil moisture are significantly different between non-degraded 

arable land and degraded arable land. The average contents of SOM and TN are 

significantly different between highly-degraded forestry land and slightly degraded 

forestry land. The average contents of AP and AK in non-degraded forestry land are 

higher than those in degraded forestry land.  
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Table 6.2 Comparison of the means of soil characteristics at different types of land 

degradation in the study area 
Land use Degradation degree Fe SOM TN Soil moisture CEC AK AP 

type   mg/kg % % % cmol/kg mg/kg mg/kg 
Grassland  Slight wind erosion 18850  0.75  0.05  11.93  7.50  95.59  6.30  
 High wind erosion 16071  0.12  0.02  8.83  8.31  37.48  2.34  
 Slight water erosion 23902  0.76  0.04  10.06  9.60  106.83  3.70  
 Moderate water erosion 22291  0.57  0.04  10.90  11.56  78.02  2.51  
 High water erosion 22075  0.43  0.04  11.87  13.25  75.90  13.58  
 No degradation 24923  0.80  0.04  8.80  17.00  111.92  2.44  
  Difference level No Dif. <0.001 <0.05 No Dif. <0.05 <0.05 No Dif. 
Arable land Slight wind erosion 19398  0.35  0.02  8.38  10.55  47.67  2.81  
 High wind erosion 18232  0.37  0.02  6.92  8.70  63.19  7.41  
 Slight water erosion 23474  0.62  0.07  7.96  11.84  72.47  4.31  
 Moderate water erosion 24116  0.61  0.04  8.28  10.51  86.66  4.03  
 High water erosion 21612  0.45  0.04  8.07  8.98  79.69  6.84  
 No degradation 23453  0.90  0.05  19.64  12.05  92.91  4.71  
  Difference level <0.001 <0.001 <0.001 <0.05 No Dif. <0.05 No Dif. 
Forestry land Slight wind erosion 11815  0.18  0.01  6.50  6.69  31.55  2.24  
 High wind erosion 11409  0.14  0.01  7.75  6.08  48.98  2.86  
 Slight water erosion 20659  0.73  0.05  8.25  10.54  79.00  4.21  
 Moderate water erosion 22079  0.72  0.03  8.86  10.74  82.26  6.16  
 High water erosion 20683  0.37  0.03  7.97  10.87  63.70  4.13  
 No degradation 21500  0.65  0.04  10.97  10.23  107.59  6.08  
  Difference level No Dif. <0.05 <0.001 No Dif. No Dif. <0.05 <0.05 

 

The soil spectral reflectance synthetically indicates the physical-chemical 

characteristics of surface substance. In the study area, the reflectance spectra of 84 

soil samples were measured in the lab. The results indicated that the reflectance 

spectra for non-degraded land, slightly degraded land, moderately degraded land and 

highly degraded land were different. The reflectance of soil was higher for the 

moderate and high wind erosion lands than for the non-degraded land and slight wind 

erosion land (see Figure 6.1).The field survey results indicated 90% of the area of the 

high wind erosion land was bare, with only one to three individual plants of 

watermelon, bean, potato and broomcorn per squared meter. On the other hand, 

scattered desert artemisia distributed on the high wind erosion grassland with only 

less than 10% vegetation cover. The soil spectra showed that the reflectance 

decreased from the high wind erosion soil, to the moderate wind erosion soil, and to 

the slight wind erosion soil and non-degraded soil, while the reflectance of the slight 

wind erosion soil and non-degraded soil was similar (Figure 6.1). These results 
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demonstrated that the reflectance of soil is positively correlated to the degree of 

degradation.  

The reflectance of soil was higher for the high water erosion land than for the non-

degraded land and slight and moderate water erosion lands (Figure 6.2). The 80% of 

the area of high water erosion arable land was bare, with three to four individual 

plants of potato per squared meter, while scattered clover distributed on the high 

water erosion grassland with less than 10% of vegetation cover. The soil spectra also 

showed that the reflectance of soil was higher for the high water erosion land than for 

the moderate and slight water erosion lands and non-degraded land. However, the 

reflectance for the moderate water erosion land, slight water erosion land, and non-

degraded land was similar (Figure 6.2).  

 

Figure 6.1 Lab spectrum of soil at different degree of wind erosion in Hengshan 

County 
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Figure 6.2 Lab spectrum of soil at different degree of water erosion in Hengshan 

County 

6.2 Methodologies 

6.2.1 Land degradation classes and land types  

Land degradation classes must be first defined for an area of interest. In the study 

area the land degradation was divided into 4 classes: highly degraded land, 

moderately degraded land, slightly degraded land and non-degraded land (see Figure 

6.3).  

Non-degraded land: no topsoil is lost. The land by a river, irrigated land, dike field 

land, and wood land and farmland with high vegetation cover in fertile soil belong to 

this class. 

Slightly degraded land: small amount of the surface soil is lost due to over-farming 

and water flow. Orchard land and agricultural land in terrace are in this class. 
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Moderately degraded land: large portion of topsoil is lost due to rills and extensive 

agricultural activities and moderate water erosion. In this class are Loess-hilly top 

land, part of arable land and barren grassland with a small quantity of vegetation in 

slope areas with low fertile soil.  

Highly degraded land: most of the topsoil and part of subsoil or substratum are lost 

due to severely water erosion and wind erosion. This class includes wind-erosion 

soil (desertification) land and land in steep hillsides with sparse vegetation and 

lower fertile. 

 
Figure 6.3 Different types of land degradation 

A survey of land quality and land degradation with farmers’ perceptions was carried 

out in 107 household’s fields in 2003. The ‘Participatory Rural Appraisal (PRA) 

Technology’ played a very important role in the study. PRA is a participatory 

method for the analysis of the problems and potentialities of a given issue and to 

identify potential solutions with the direct stakeholders involved. The PRA can thus 

be used to analyze the major agricultural and environmental systems we identified in 

more detail. The PRA is an intensive, systematic, semi-structured learning process 

carried out in a community with the help of a multi-disciplinary team. In this study, 

semi-structural discussion and questionnaire survey were used to get detailed 

information about land quality and land degradation. Local farmers classified the 

land into eight types: irrigated land, dike field, terrace, Loess-hilly top land, Loess-

hilly slope land, sandy land, residential land and water body (see Table 6.3). The 

results of the survey indicated that the farmers were competent in the assessment of 

land quality and land degradation with some diagnostic indicators, such as 

topographic characteristics, soil characteristics, agricultural managements, yield, and 

amount of fertilizer, crop performance, sandy erosion degree, and water erosion 
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degree. Each type of land except residential land and water body was attributed to 

one of the six land quality levels and one of the four land degradation classes, as 

given in Table 6.3. 

Table 6.3 Land types, quality levels, and degradation classes in Hengshan County by 

the farmers’ survey 
Degradation 

type 
Land quality 
level by PRA 

Land 
Types 

Description 

Non 
-degraded 
 

First level  Irrigated land Higher productivity with high fertile soil, in the flatness 
and wide area and in lower elevation area, in convenient 
irrigation and traffic area, higher covered vegetation 

Second level Dike field High productivity, in the flatness and narrow area with high 
fertile soil, in convenient irrigation and non- convenient 
traffic area, in low to high  elevation area, highly covered 
vegetation 

Slightly 
Degraded 

Third level Terrace Moderate productivity, short cultivation time, less nutrient 
and lower maturity, in high elevation area, in un-
convenient irrigation and traffic area, moderately covered 
vegetation 

Moderately 
Degraded 

Forth level Loess-hilly top 
land  

Low productivity, moderate water erosion, in slope area 
with low fertile soil, in relative flatness area, in higher 
elevation area, in un-convenient irrigation and traffic area, 
moderately covered vegetation 

Highly 
degraded 
 

Fifth level Loess-hilly 
slope land  

Lower productivity, severely water erosion, in steep slope 
area with lower fertile soil, in high elevation area, in un-
convenient irrigation and traffic area, lower covered 
vegetation 

Sixth level Sandy land  Severely wind erosion, lower productivity, not as major 
agricultural land, in the flatness area with lower fertile soil, 
in low elevation area, in convenient irrigation and traffic 
area, lower covered vegetation 

 / Residential land  Much of the land occupied by man-made structures 
/ Water body Lakes, reservoirs and rivers 

 

6.2.2 GEOIC approach for studying land degradation 

According to the results of the farmers’ survey, there are four classes of land 

degradation corresponding to different land types. In the study, we used the GEOIC 

approach for extracting land degradation information by land type classification 

based on the segmentation of DSRUs. The land types were classified using 

eCognition Professional 7.0 by combining the images at different scale levels, 

including layers of nine fusion transformations of Hyperion images, vegetation index 

(MCARI), slope, elevation, SOM and land use map and their different combinations. 

The classification process involved the following four steps (see Figure 6.4), as 

discussed below. 
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6.2.2.1 Segmentation of DSRUs 

In this study, we use DSRU as a land unit for land degradation evaluation using 

remote sensing technique. The conception of DSRU and the method of segmentation 

of DSRUs were described in Chapter 5. DSRU is an ecologically and geographically 

and spectrally homogeneous area with similar characteristics of physiognomy, 

vegetation, soil and image spectral information. The segmentation of DSRUs is not 

only based on spatial characteristics of topography, soil and vegetation, but also the 

features of land degradation represented in remote sensing image information. In the 

process of the segmentation of DSRUs, variables or diagnostic indicators related to 

land degradation were as input layers. The climate variable was not considered due 

to a small variation in the study area. Thus, layers of physiognomy, vegetation, and 

soil, and image information were chosen for the segmentation of DSRUs. Vegetation 

index (MCARI) derived from Hyperion images were used as the indicator of yield 

and crop performance. SOM interpreted by Hyperion images was used as the 

indicator of soil characteristics and soil fertilizer. The distribution of SOM was 

estimated by the DSRU estimation models using Hyperion images (as discussed in 

Chapter 5). The slope and elevation derived from a DEM（30×30 m）were used to 

indicate topographic characteristics. Nine fusion transformations from first principal 

component (PCA1) to the ninth principal component (PCA9) calculated from 

Hyperion hyperspectral spectral bands were used as spectral indicators. The land use 

map (at scale of 1:100 000) (interpreted from TM images and SPOT 2 4 images in 

2001) was used as thematic layer in the segmentation process (Table 6.4). 
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Figure 6.4 Flowchart of the extraction of land degradation information using the 

GEOIC approach 

The different combinations of these diagnostic indicators as input layers were chosen 

for the segmentation of DSRUs (see Table 6.4). The different combinations of input 

layers (spectral indicators from PCA1 to PCA9, topographic indicators including 

elevation and slope, vegetation indicator of MCARI, and soil indicator of SOM, and 

land use map as the thematic layer) determined by their weights were used for 

determining the appropriate diagnostic indicators for the extraction of land 

degradation information.  
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Table 6.4 Layers used in the segmentation process and their weights in eight types of 

combinations 
Layers Hyperion+

Elevation+
Slope+ 

MCARI+ 
SOM 

Hyperion+
Elevation+

Slope+ 
MCARI 

Hyperion+
Elevation+

Slope+ 
SOM 

Hyperion+
Elevation+

SOM 

Hyperion+
Elevation+

Slope 

Hyperion+ 
Elevation+ 

MCARI 

Hyperion+ 
Elevation 

Hyperion 

PCA1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PCA2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PCA3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PCA4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
PCA5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
PCA6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 
PCA7 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
PCA8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
PCA9 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Elevation 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 
Slope 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 

MCARI 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 
SOM 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 

Land use 
map 

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

*Note that the weighting scheme of spectral indicators from PCA1 to PCA9 has been discussed in Chapter 6 

Different scale parameters were chosen to determine an appropriate scale parameter 

and to study the effect of the size of image objects (DSRUs) on the precision of 

extracting land degradation information in the study area. Scale parameter 1 which 

means the relatively smallest size of image objects was chosen to represent a scale 

level similar to pixel level. Four scale levels with scale parameters of 25, 50, 100 and 

200, representing the sizes of DSRUs from small to large, were chosen in the study. 

The image was segmented starting from similar pixel level (scale parameter 1), to 

low level (scale parameter 25), a medium level (scale parameter 50 and scale 

parameter 100) and to high level (scale parameter 200).  

In this study, based on the visual interpretation of different image segmentation 

results and the experience, the homogeneity criterion was set as color 0.8 and shape 

0.2; and for the shape criterion, smoothness 0.5 and compactness 0.5. The image 

objects of DSRUs were generated based upon the above adjustable criteria and 

parameters throughout the segmentation process. 

6.2.2.2 Initial classification of land types 

The DSRUs from the segmentation at scale level 25 based on one of the indicator 

combinations were classified into seven classes: cloud (red), cloud shadow (blue 
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black), irrigated land and dike field (green), dike field and Loess-hilly slope land 

(sky blue), Loess-hilly top land and sandy land (rose pink), residential land (navy 

blue), and water (black). The initial classification of land type was conducted by the 

Neighbour Classifier using the mean and standard deviation of layer values of each 

DSRU in eCognition (Figure 6.5). The selection of training samples of different land 

types was based on color composite images of RGB by PCA1, PCA2 and PCA3 of 

the Hyperion images in eCognition Professional 7.0. Because the Neighbour 

Classifier with complex distribution in feature space is not based on a continuous 

Gaussian distribution function, a practical way is to choose a few samples first and 

then gradually add necessary samples to meet classification needs in the process of 

choosing training samples. 

6.2.2.3 The second classification of land types  

Three of the above seven classes in the initial process of classification,  i.e. irrigated 

land and dike field, dike field and Loess-hilly slope land, and Loess-hilly top land 

and sandy land, were further classified into six types. Each type is defined by a fuzzy 

set consisting of membership functions of DSRU features. With the results of field 

survey and visual interpretation, the combined class of the dike field and Loess-hilly 

slope land was further divided into the dike field and the Loess-hilly slope land. The 

former has the elevation from 1040 to 1160 m, or MCARI > 0.05 and slope <8o. The 

combined class of the Loess-hilly top land and sandy land was further divided into 

the Loess-hilly top and the sandy land with MCARI>-0.3 and <-0.3, respectively. 

The combined class of the irrigated land and dike field was further divided into the 

irrigated land and the dike land with MCARI>0.3 and <0.3, respectively. The above 

thresholds for elevation, slope degree, MCARI were determined by the field survey 

and visual interpretation based on the knowledge of land type and land degradation. 

In addition to the features based on spectral and shape information, other features 

based on contextual information, such as the relation to neighbour objects, were also 

used in the classification.  
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Figure 6.5 False color composite image by RGB as PCA1, PCA2 and PCA3 

6.2.2.4 Land degradation evaluation 

With the results of the farmers’ survey, irrigated land and dike field regarded as high 

quality land was classified as non-degraded land; terrace as slightly degraded land; 

Loess-hilly top land as moderately degraded land; and Loess-hilly slope land and 

sandy land as highly degraded land. Besides, the Loess-hilly slope land and Loess-

hilly top land were further classified into the first, second and third sub-classes 

according to land degradation degree. Each sub-class is defined by a fuzzy set which 

consists of membership functions of DSRU features using MACRI and SOM. The 

first class of the Loess-hilly top land has MCARI in the interval of 0.09 to 0.3 or 

SOM value larger than 0.5, while the third class has MCARI in between -1.0 and -0.2 

or SOM value smaller than 0.3. The rest is for the second class. The Loess-hilly 

slope land was further divided into the first, second, and third class, with SOM value 

in between 0.5 and 0.95; 0.3 and 0.5; and 0 and 0.3, respectively. The thresholds for 
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MCARI and SOM were also determined with the field survey and visual 

interpretation using the knowledge of land degradation. 

The images with DSRU resulted from the segmentation at similar pixel level and at 

scale levels of 50, 100, 200 based on different types of combinations were classified 

in turn by the above procedures with the same membership function.  

6.2.3 Spectral Angle Mapping (SAM) 

In this study we compared the developed GEOIC approach with an existing method 

of the Spectral Angle Mapping (SAM) and the developed method of the Degraded 

Soil Line Index (DSLI). Therefore the following two sections briefly discuss these 

two methods.   

The SAM method developed by Kruse et al. (1993) is a classification approach 

which determines the similarity between the reference spectrum and the image 

spectrum that have a common origin by the calculation of the angle θ, treating them 

as vectors in a space with dimensionality equal to the n number of bands (Kruse et al., 

1993). The spectral angle is calculated from the following equation: 

θ= )arccos(
rt

rt
•

•                                                                                         (6-1) 

where r  is the reference spectral vector and t  is the test spectral vector. The 

attribution of each scene pixel to a given class by the SAM approach is based on the 

measurement of the angle between the reference spectrum vector and each image 

vector in the n-dimension space. As we know, the smaller the angle, the higher the 

similarity will be. The implementation of the SAM approach gives an image with an 

angle θ for each reference spectrum. Using the θ angle and a pre-set threshold, we 

can attribute the theme that has smaller θ value than the threshold to each pixel.  
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6.2.4 Degraded Soil Line Index (DSLI) 

The conventional soil line is a synthetic representation of the reflectance spectra of a 

large number of soils, taken at two spectral bands: 

ρNIR = a + bρR                                                                                                (6-2) 

where ρNIR is the reflectance determined at a band in the NIR interval of high 

vegetation reflectance due to the leaf mesophyl structure (>0.76µm), ρR is the 

reflectance measured within the chlorophyll absorption band (0.65-0.68µm), b is the 

slope of the soil line, and a is the intercept of the line. The above equation is called 

the “soil line” (Baret et al., 1993). 

The soil line, a linear relationship between bare soil reflectance observed in two 

different wavebands, is widely used for the interpretation of remote sensing data. The 

soil line is a trend line according to the relative spectral reflectance value in the 

coordinate of red-band and near infred band. The longer the two band interval, the 

lower the relativity of the reflectance values will be, and the soil line intercept will 

increase. Because soil reflection spectrums reflect soil color, humidity, roughness, 

SOM, Fe shadow, etc, the soil line parameters are relevant to the soil chemical and 

physical characteristics. 

The DSLI method is proposed based on the SAM approach and the soil line concept 

in this study. A slightly degraded bare soil line and a highly degraded bare soil line 

must firstly be chosen to carry out this method. The definition of these lines requires a 

collection of points from the pixels of the image itself or derived from ground 

spectral measurements. 

In a bi-dimensional space, any point P representing bare soil is located between the 

highly degraded bare soil line and that of the slightly degraded soil line (Figure  6.6). 

The ratio of the tangent of angle α to the tangent of angle β, called the degraded soil 

line index (DSLI), is carried out for classification after processing of the 

spectroradiometric data. The method does not limit itself to the choice of specific 
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bands. Point I is the interception of the two lines. The DSLI can be estimated in a bi-

dimensional space by the following equation: 

β
α

tan
tan

=DSLI                                                                                              (6-3) 

The DSLI can be adapted to a n-dimension space, knowing that n is the number of 

bands. In this case, the highly degraded soil line and the slightly degraded soil line 

can be defined by using many spectral bands and selecting a single band as reference.  

In this test study, the DSLI method was also used for extracting land degradation 

information directly. The results of the pixel by pixel DSLI and SAM classification 

methods were used for a comparison with the results of GEOIC approach.  

 

Figure 6.6 Concept of the DSLI approach in a bidimensional space 

6.2.5 Ground truthing 

The stratified random samples were selected from the field survey data and SPOT5 

satellite image and the classified images at different scale levels. The land type of 

each sample was interpreted from the SPOT5 satellite image and DEM using the 

visual interpretation method. We randomly selected 40 places in the study area to 

compare the classification outputs with the interpretation results and the ground-

based measurements. Confusion matrices were developed to determine the 

classification accuracy of land type classification for each classification method. 
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6.3 The test results and discussions 

6.3.1 Determination of diagnostic indicators for GEOIC approach  

As mentioned above, the GEOIC approach was used in this study through the 

segmentation of DSRUs with different combinations of input layers. The DSRUs 

were classified as different land degradation classes and land types with and without 

ancillary information. The results were subsequently compared. Different classes of 

land degradation, i.e. non-degraded land including irrigated land and dike field, 

slightly degraded land including terrace land, moderately degraded land including 

Loess-hilly top land, and highly degraded land including Loess-hilly slope land and 

sandy land were classified. The accuracy of land degradation classification using the 

GEOIC approach by different combinations of input layers was tested with 40 

samples interpreted from the SPOT5 satellite image and DEM using the visual 

interpretation method. The determination of diagnostic indicators related to land 

degradation was based on the overall classification accuracy and Kappa coefficients. 

The accuracy evaluation results of land degradation classification at four scale 

levels by different combinations of input layers are showed in Table 6.5. The results 

showed the overall accuracy of classification was 76.8% at scale level of 50 without 

additional data, i.e. only with Hyperion images as input layers; but 76.1% with 

Hyperion images and elevation as the input layers. The overall accuracy was 

increased with the combination of three indicators, i.e. Hyperion+Elevation+SOM, 

Hyperion+Elevation+Slope, and Hyperion+Elevation+MCARI. The classification 

accuracy with Hyperion+Elevation+Slope was higher, with the overall accuracy of 

82.9% and Kappa coefficient of 0.80 at the scale level of 200. This implied that the 

influence of slope layer is more than the layers of vegetation and SOM in the study 

area. With a combination of four indicators, i.e. Hyperion+Elevation+Slope+MCARI 

and Hyperion+Elevation+Slope+SOM, the overall accuracy was higher compared 

with that using the combination of three indicators. At scale level of 50 we achieved 

the overall accuracy of 83.5% and Kappa coefficient of 0.79. It implied that the 

vegetation layer is more influential than layer of SOM in the study area. This is due 

to the importance of vegetation on soil erosion control. With the combination of 
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Hyperion+Elevation+Slope+MCARI+SOM, the classification accuracy reached the 

highest, with the overall accuracy of 88.32% and Kappa coefficient of 0.86 at the 

scale level of 100. The results indicated that the classification accuracy is higher with 

ancillary information than with Hyperion images only. The overall accuracy was 

increased by 11.5% when additional data were used. The overall accuracy of 

classification will increase when a new diagnostic indicator related to land 

degradation is used. Moreover, one observes that natural site conditions and 

vegetation condition, especially physiognomy, are more relevant than soil condition 

for land degradation classification in the study area.  

Table 6.5 Accuracy evaluation of land degradation classification at four scale levels 

by different combinations of input layers 

Layers Scale level of 25 Scale level of 50 Scale level of 100 Scale level of 200 
 Overall 

accuracy 
(%) 

Kappa 
Coe. 

Overall 
accuracy

(%) 

Kappa 
Coe. 

Overall 
accuracy

(%) 

Kappa 
Coe. 

Overall 
accuracy

(%) 

Kappa 
Coe. 

Hyperion+Elevation+
Slope+MCARI+SOM 

82.34 0.7889 83.31 0.8015 88.32 0.861 72.35 0.7235 

Hyperion+Elevation+
Slope+MCARI 

82.58  0.7830  83.45  0.7920  76.50  0.7090  77.19  0.7150  

Hyperion+Elevation+
Slope+SOM 

78.26  0.7314  79.26  0.7402  71.26  0.6512  75.70  0.6980  

Hyperion+Elevation+
SOM 

69.75  0.6498  74.88  0.7052  69.66  0.6438  76.58  0.7260  

Hyperion+Elevation+
Slope 

69.17  0.6434  74.58  0.7015  69.68  0.6536  82.94  0.7980  

Hyperion+Elevation+
MCARI 

69.80  0.6500  76.00  0.7180  69.80  0.6450  77.50  0.7350  

Hyperion+Elevation 69.55  0.6478  76.07  0.7197  68.86  0.6347  68.98  0.6348  
Hyperion 72.65  0.6819  76.82  0.7305  69.40  0.6438  70.78  0.6618  

 

As mentioned above, the results of the farmers’ survey indicated that farmers were 

competent in the assessment of land quality and land degradation with some 

diagnostic indicators, such as topographic characteristics, soil characteristics, 

agricultural managements, yield, and the amount of fertilizer, crop performance, 

sandy erosion degree and water erosion degree (Table 6.6). The farmers’ survey 

result further validated the above accuracy evaluation results of land degradation 

classification.  
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Table 6.6 Farmers’ indicators for land quality assessment and corresponding criteria 
Indicator suite Indicator Percentage Description 

Soil attributes Soil texture 79 Loam soil better than sandy soil 
 Soil nutrient 54 The more the better 
 Soil depth 17 The deeper the better 
 Soil tilth 11 Easy to be ploughed  
 Water retention 11 Keeping water for a longer time 
 Soil color 3 The darker the better 
Topography Slope gradient 89 Flat lands better than slope lands 
 Slope aspect 17 Shady slope better than sunny slope 
Agricultural 
Management 

Water availability 81 With irrigation infrastructures or near the river 

 Fertilizer input 21 The more the better 
 Traffic condition 14 Easy to be  connected to road net  
 Distance to home  11 The nearer the better  
 Farming history 3 The longer the better  
Crop performances Crop yields 40 High quality land with high yields 
 Growth status 21 Crop grow more rapidly in high quality land 
Environment 
factors 

Wind erosion 20 Low quality land is bad with high wind erosion 

 Water erosion 20 Low quality land with gully 
Biology indicators Weed status 11 Low quality land with plenty of weeds 
 Indicator species 3 Low quality land with sonchus oleraceus 
*Percentage means the percentage of the farmers who used the specified indicator to assess land quality and land 

degradation. 

Therefore, crop performance reflected by vegetation index and topographic factors, 

such as slope and elevation, were chosen as the diagnostic indicators for extracting 

land degradation information in the study area. Topographic characteristics and 

vegetation are two important indicators for monitoring and assessing land 

degradation. In fact, SOM and texture in topsoil also influenced the process of soil 

erosion. SOM has significant effects on agriculture management, soil texture and soil 

nutrients. In the study area, there was no distinct difference in soil texture between 

sandy loamy soil and loamy sandy soil, but difference between sandy soil and above 

two types of soil. Thus SOM was chosen as the diagnostic indicator. In addition the 

remote sensing image which is the comprehensive response of land use and land 

cover, soil, vegetation and the effects of human activities on land degradation, was 

also used as the diagnostic indicator in the study area.  

6.3.2 Land degradation mapping using the GEOIC approach  

In the application of the GEOIC approach, the layers of nine fusion transformations 

of the Hyperion images, MCARI, slope, elevation, SOM and land use map were used 

for DSRU segmentation. The land in the study area was classified into irrigated land, 
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dike field, Loess-hilly slope land, Loess-hilly top land, and sandy land. In addition, 

the Loess-hilly slope land and top land were further classified into three sub-classes. 

According to different degrees of degradation, the land is categorized into non-

degraded, slightly degraded, moderately degraded, highly degraded. 

The classification results at similar pixel level and four scale levels of 25, 50, 100 

and 200 give the information on all the objects of a certain subset, e.g. the number of 

total objects assigned as irrigated land is equal to 240, and the total area of the 

objects was 21694500 m2, and the mean area of irrigated land object was 81663 m2 

at scale level of 100. The percentage of each land degradation class out of the total 

study area was calculated (Figure 6.7 and Table 6.7). For classification at scale level 

of 100, the total areas of non-degraded and moderately degraded agricultural land 

were 18.3% and 37.2% of total study area, respectively; while the area of highly 

degraded agricultural lands was 29.3% (see Table 6.7). The image at scale level of 25 

had the majority of image objects in small size with the average size of 7815 m2 in 

the scene. The average size of image objects increased from the similar pixel level to 

scale parameter 200. The classification using the information of the small DSRUs at 

scale level of 25 resulted in an overestimation of Loess-hilly slope land and Loess-

hilly top land in the Loess area. It may be due to the similar spectral properties of 

vegetation and fragmentized patch. Incorporating the linkage between neighboring 

objects and relative large DSRUs allows differentiating these types by calculating the 

standard deviation, shape features, texture measures and classes related features. This 

resulted in the improved classification results of these types.  

In the false color composite image by RGB as PCA1, PCA2 and PCA3, the large 

amount of sky blue pixels and rose pink pixels indicated that many edges are defined 

on the right bottom of the image, whereas several large green and sky blue objects 

did appear on the upper and middle of the image. These low-variance objects were 

predominantly irrigated land and sandy land.  
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Figure 6.7  Average object size of different land types at four scale levels 

Table 6.7 Percentage of the area with different degradation classes in the total area 

and objects numbers at four scale levels* 
Land degradation Land type   SL25 SL50 SL100 SL200 

type   NO Per. NO Per. NO Per. NO Per. 
        %   %   %   % 

Non-degraded Irrigated Land   2636  7.11  719  7.38  240  7.71  95  8.02  
 Dike Field  2878  7.52  903  8.74  305  10.58  108  7.41  
  Sub-total   5514  14.63  1622  16.12  545  18.29  203  15.43  
Moderately degraded Loess-hilly Top_1 2699  9.32  661  10.19  138  8.50  57  9.47  
 top land Top_2 9085  27.21  2269  25.73  590  26.86  212  32.48  
  Top_3 1286  3.82  266  3.19  62  1.85  18  2.23  
    Sub-total 13070  40.35  3196  39.11  790  37.21  287  44.18  
Highly degraded Loess-hilly Slope_1 4865  13.01  1156  11.72  309  8.99  119  7.90  
 slope land Slope_2 4023  11.34  1101  11.72  308  11.79  122  12.92  
  Slope_3 1611  4.43  369  4.52  129  5.57  46  4.86  
   Sub-total 10499  28.78  2626  27.96  746  26.35  287  25.68  
 Sandy land  974  4.12  191  3.58  49  2.94  19  2.73  
  Sub-total   11473  32.90  2817  31.54  795  29.29  306  28.41  

* SL: Scale level; NO: number of objectives; Per.: percent 

The slightly degraded land of terrace land cannot be classified due to the low 

resolution of Hyperion data at 30×30 m /pixel and DEM data, and the complex 

physical geographic situation of fragmentized patch in Loess Plateau area. The 

results also showed that unclassified area and the cloud were 1.4% and 9.1% of total 

study area at scale level of 100, respectively, while the residential land area and 

water body area were 0.6% and 4.2% of the study area, respectively.  
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The classified images of the study area at five scale levels are illustrated in Figure 

6.8 to Figure 6.12. They showed that larger structures were formed at the expense of 

smaller structures. In addition, these classification results revealed an important shift 

in class membership, particularly the inferior left and right of the images where the 

Loess-hilly top land and Loess-hilly slope land were shifted to the dike field and 

irrigated land, and the patches of Loess-hilly top land and Loess-hilly slope land 

became bigger. Overall, these results indicated that landscape configuration 

considerably changed from the level at scale of 25 to the level at scale of 200. 
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Figure 6.8 Classification of land degradation at similar pixel scale level 
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Figure 6.9 Classification of land degradation at the scale level of 25 
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Figure 6.10 Classification of land degradation at the scale level of 50 

 



                                                                    Chapter 6 Extraction of Land Degradation Information  

 129 

 

Figure 6.11 Classification of land degradation at the scale level of 100 

 



                                                                    Chapter 6 Extraction of Land Degradation Information  

 130 

 

Figure 6.12 Classification of land degradation at the scale level of 200 
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6.3.3 Land degradation mapping using the SAM approach 

The reference spectra were chosen essentially based on the results of the statistical 

analysis of spectral reflectance data. An angle image θ is produced for each reference 

spectral signature. The spectral signatures associated with different classes of land 

degradation were analyzed using the field survey results. The value of 0.15 rad was 

defined as a threshold for the maximum angle between the image vector and the 

reference spectrum vector for each degradation class. By regrouping of the similar 

pixels with θ angle less than 0.15 rad into one class, the state of land degradation 

classification is presented in Figure 6.13. The classification result from the SAM 

method is shown in Table 6.10 with an overall accuracy of 67.2% and the error 

matrix. According to this data, the highly degraded land was mapped with high 

producer’s accuracy (omission error). 

 

Figure 6.13  Land degradation mapping based on the SAM approach 

6.3.4 Land degradation mapping using the DSLI method 

The frequency distribution of the result obtained with the DSLI index is presented in 

Figure 6.14. It can be seen that the highly degraded land was at high DSLI index 
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value of 0.89 and the slightly degraded land was at a quite low DSLI value of 0.16, 

and the average value was 0.52 and the standard deviation was 0.21. The application 

of a threshold to the frequency distribution of the DSLI index may provide well-

defined classes. A median filter with a 3×3 window was applied to obtain 

homogeneous classes and to reduce the presence of isolated pixels. Figure 6.15 shows 

the result of post-processing. The DSLI map was classified by the Iterative Self-

Organizing Data Analysis Technique (ISODATA) method. It is a method of 

unsupervised classification. The method can split and merge clusters based on an 

algorithm. User can define threshold values for the parameters. Computer can run the 

algorithm with iteration until the threshold is reached. In this study, the parameters in 

the ISODATA method were set as: assumed classes 3, the most iteration times 3, the 

threshold of change 3% and the least pixel numbers 9. The classification result 

indicated that the index of the highly and moderately degraded land was more than 

60%. Figure 6.16 shows the distribution of land degradation classes based on the 

DSLI approach. 

 

Figure 6.14 Frequency distribution of  DSLI index 
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Figure 6.15 DSLI distribution map 

 

Figure 6.16 Distribution of land degradation classes based on the DSLI approach 

6.3.5 Comparison of classification accuracy 

6.3.5.1 Classification confusion matrices based on the GEOIC approach 

The accuracy of land degradation classification by the GEOIC method was tested by 

verified samples. The overall classification accuracy is relatively high, ranging from 

72.4% to 88.3% (Table 6.8). It can be seen that the classification result at scale level 

of 100 was effective for mapping land degradation than those at other scale levels, 
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with an overall accuracy of 88.3% and Kappa coefficients of 0.86. The classification 

accuracy at scale levels of 25, 50 and 100 was higher than that at the similar pixel 

level and scale level of 200 using the same training samples and test samples. On the 

other hand, the overall classification accuracy with the GEOIC method at the similar 

pixel level was not high, with an accuracy of 73.1% and Kappa coefficient of 0.69. 

The classes of land type at scale levels of 25, 50, and 100 appear more homogeneous 

than those at similar pixel level and represent a 9% to 15% increase in the overall 

accuracy. The detailed confusion matrices based on the GEOIC approach at similar 

pixel level and scale levels of 25, 50, 100 and 200 were summarized in a bar diagram 

for each type, enabling a graphical analysis of the classification accuracy of each 

type (Figure 6.17). According to the error matrix, all types except the sandy land 

have higher user’s (commission error) and producer’s accuracy at scale level of 100 

than at other scale levels, while the user’s and producer’s accuracy was lower at scale 

level of 100 for the sandy land.  

It was noted that from similar pixel level to scale level of 200, some bars are 

partitioned, especially for the dike field and Loess hilly slope land, indicating the 

emergence from another types. At the similar pixel level, all types except the dike 

field and Loess hilly slope land had higher user’s (commission error) and producer’s 

accuracy; but for the dike field and Loess hilly slope land, the user’s (commission 

error) and producer’s accuracy was lower. At scale level of 25, the producer’s 

accuracy is relatively high (more than 79%), except for the dike field and Loess hilly 

slope land. The Loess hilly slope land was mainly confused with the dike field. This 

is due to the fact that the Loess hilly slope land, sandy land and Loess hilly top land 

had similar sparse shrub/crop vegetation, combined with fragmentized pattern of land 

in the study site. This is also due to the coarse resolution of the DEM data. At the 

scale level of 100, the irrigated land was well classified. The dike field was also well 

classified with 10% misclassified as the Loess hilly slope land. The largest errors 

were observed for the Loess hilly slope land, with classification accuracy of 64%. 

The errors mainly come from the misclassification as the sandy land (21%) and the 

dike field (8%). In general, the results were better for all classes at scale level of 100 

than at other scale levels. 
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Table 6.8 Precision evaluation of land degradation classification at five scale levels 
land degradation 
class 

land type SPLa SP25 SP50 SP100 SP200 
Producer's accuracy 

Non-degraded 
land 

Irrigated land 0.800 0.828 0.939 0.999 0.999 
Dike field 0.293 0.525 0.583 0.789 0.107 

Moderately 
degraded Loess hilly top 0.841 0.909 0.940 0.999 0.999 

Highly degraded 
Loess hilly slope 0.435 0.651 0.663 0.956 0.622 
Sandy land 0.803 0.839 0.720 0.549 0.195 

Non-agricultural 
land 

Residential land 0.800 0.794 0.825 0.860 0.860 
Water 0.976 0.966 0.983 0.999 0.999 

  User's accuracy 
Non-degraded 
land 

Irrigated land 0.906 0.936 0.957 0.999 0.999 
Dike field 0.464 0.719 0.545 0.905 0.255 

Moderately 
degraded Loess-hilly Top 0.785 0.758 0.815 0.876 0.762 

Highly degraded 
Loess-hilly Slope 0.590 0.604 0.613 0.644 0.382 
Sandy land 0.931 0.996 0.999 0.999 0.999 

Non-agricultural 
land 

Residential land 0.971 0.990 0.999 0.999 0.999 
Water 0.966 0.983 0.997 0.999 0.999 

Overall accuracy 0.731 0.823 0.833 0.883 0.724 
Kappa coefficient 0.685 0.789 0.802 0.861 0.670 

a: similar pixel level. 
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Figure 6.17 User’s accuracy of major land types at different scale levels 

A comparison of the results with the GEOIC approach with the ground truth 

indicates that land degradation can be reliably classified with an integration of 

Hyperion images and multi-source data through the segmentation of DSRUs at an 

appropriate scale parameter. The classified results at scale level of 100 were 

validated by 26 field soil samples in the study area. The validation results indicated 

that the irrigated land and dike field have high content of SOM and the Loess-hilly 

top land, Loess-hilly slope land and sandy land have low content of SOM. This was 

consistent with the field survey result, which showed that the content of SOM 

decreased in the sequence of the irrigated land, dike field, terrace, Loess-hilly top 

land, Loess-hilly slope land and sandy land. In addition, the map of land degradation 

at scale level of 100 is closely related to the physico-chemical characteristics of the 

different classes. Table 6.9 shows that highly degraded land was associated with low 

SOM, TN, and AN, soil moisture content, and the percentage of small size particles, 

and high slope gradient. It can clearly be seen that non-degraded land was 
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characterized by slightly more SOM, TN, and AN, soil moisture content, and the 

percentage of small size particles. 

Table 6.9 Soil parameters statistics of various classes of land degradation at scale 

level of 100 

Lang degradation Average Particle Particle SOM TN AN Soil 
type slope <10 um <2 um    moisture 
    %   % % mg/kg % 

Non- degraded 20.4  9.61  0.06  0.59  0.05  115.45  9.46  
Moderately degraded 25.2  8.75  0.05  0.44  0.04  92.07  6.18  
Highly degraded 29.0  7.89  0.03  0.43  0.03  63.66  4.29  
Average 26.6  8.65  0.05  0.49  0.04  88.87  7.07  

 

6.3.5.2 Classification confusion matrices based on the SAM and DSLI methods 

The samples of slightly, moderately, and highly degraded land for accuracy 

assessment were collected in color compound images by the field investigation and 

the visual interpretation. The results of classification accuracy for the SAM method 

and DSLI method are presented in Table 6.10. It can be seen that the DSLI method 

seems to provide more accurate result for mapping land degradation than that with 

the SAM method, with an overall accuracy of 80.8% for the DSLI and 67.2% for the 

SAM. According to the error matrix, the slightly degraded land were mapped using 

the DSLI method with higher user’s (commission error) and producer’s accuracy 

than using SAM method, but for highly degraded land with lower user’s 

(commission error) and producer’s accuracy than using the SAM method.  
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Table 6.10 Confusion matrix of classification based on SAM and DSLI methods 

 

The validation of the result obtained with the DSLI index was carried out by using 

additional 12 soil samples. Table 6.11 shows that highly degraded class is associated 

with low SOM and AP, and high slope gradient and sand particle percentage. It 

indicated that the non-degraded and slightly degraded classes are characterized by a 

low percentage of sand particles and more SOM.  

Table 6.11 Soil parameter statistics of various degradation types based on the DSLI 

method 
Land degradation type Average slope Clay Silt Sand SOM TP AP 

   % % % % mg/kg mg/kg 
Slightly degraded 15 0.046 54.563 45.391 0.699 814.44 16.4 
Moderately degraded 19 0.047 49.479 50.474 0.765 1152.7 8.46 
Highly degraded 23 0.047 42.314 57.639 0.214 1291.3 3.45 

 

There is a relationship between land degradation classes and soil reflectance. Non-

degraded land generally appears dusty black compared with shiny white of highly 

degraded land in visibility. This phenomenon indicates that rich SOM content is in 

negative correlation with spectral reflectance. The reflectance curves of different 

classes of land degradation also support this point (see Figure 6.18). The highly 

Types Number of pixels 
Slightly 
degraded 

Moderately 
degraded 

Highly 
degraded 

Unclassified  Total Short (%) 

SAM  Slightly degraded 469 18 11 102 636 20.6 
Moderately degraded 175 413 44 4 600 37.17 
Highly degraded 0 0 603 0 603 0 
Unclassified 0 128 0 956 1084 11.81 

Total  644 559 658 1062 2923  
Error (%) 37.31 35.35 8.36 9.98   
Producer’s accuracy (%) 67.17 53.22 91.64    
User’s accuracy (%) 74.96 63.36 100    
Overall  accuracy (%) 67.16      
Kappa 0.6109      
       
DSLI  Slightly degraded 432 16 2 12 462 6.49 

Moderately degraded 200 379 65 14 658 42.4 
Highly degraded 12 100 517 37 666 22.37 
Unclassified 0 0 0 595 595 0 

Total  644 495 584 658 2381  
Error (%) 32.92 23.43 11.47 9.57   
Producer’s accuracy 67.08 76.57 88.53    
User’s accuracy 93.51 57.6 77.63    
Overall accuracy (%) 80.76      
Kappa 0.7443      
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degraded land with little content of SOM has the sharpest reflectance while the 

slightly degraded land has not. 

 

Figure 6.18 Spectral characteristics of different classes of land degradation 

6.3.5.3 A comparison of different approaches 

From the above accuracy evaluation, it can be seen that the results obtained with 

three methods are different. The difference between the DSLI and SAM methods is 

significant. The potential of the DSLI index method for land degradation mapping 

was revealed. This can be explained by the fact that different degradation types to 

some extents have different spectral responses. The SAM method has a tendency 

sometimes to classify the slightly and the moderately degraded classes into one class. 

The DSLI algorithm is simple and useful for land degradation mapping using 

hyperspectral remote sensing data. It is easy to carry out and has a potential for 

evaluating soil degradation and soil surface conditions. However, one should note 

that the DSLI index calculated from bare soil spectral reflectance is sensitive to the 

vegetation cover. The method is therefore suitable for the areas of arid to semi-arid 

environments especially in non-growing season. Although the application of DSLI 

approach to other regions is feasible if there is a clear contrast between slightly and 

highly degraded land in the regions, its limitations and uncertainties are obvious. 

Moreover, the method neglected the other information related to land degradation, i.e. 
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without integrating remote sensing information and other geographic information and 

knowledge in the process of land degradation classification.  

The test results showed the classification accuracy at scale levels of 25, 50 and 100 

was not only higher than that at similar pixel level using the GEOIC approach, but 

also higher than that of the DSLI method and the SAM method, which are based on 

pixel by pixel classifiers. Moreover, the GEOIC approach can provide the detail 

classification of land types compared with the methods of SAM and DSLI. This can 

be explained by the fact that the approach integrated the information of remote 

sensing images with the information on vegetation and soil, and physiognomy related 

to land degradation. However, the overall accuracy and Kappa coefficients at similar 

pixel level and at scale level of 200 using the GEOIC approach were higher than that 

with the SAM method, but lower than that with the DSLI method. This is because the 

GEOIC approach provided the detailed classification of land types corresponding to 

land degradation classes, while the methods of SAM and DSLI only provided the 

four classes of land degradation. In spite of that, the problem of “salt and pepper” 

effect was not solved in the pixel by pixel classification. 

The above results showed that the classification accuracy at an appropriate scale 

level was higher than that with methods based on the pixel by pixel. Wu et al. (2006) 

achieved the overall accuracies of 76.6%, 63.3% and 68.9% and the Kappa 

coefficients of 0.71, 0.54 and 0.60 for land degradation mapping in the same study 

area, using the mixed classification method, the spectral angle matching method, and 

the method of mixture–tuned matching filtering, respectively. Our study not only 

further validated that the GEOIC approach has great ability for land degradation 

mapping, but also give the best accuracy.  

Furthermore, the GEOIC approach is of advantage over the others for the extraction 

of land degradation information, because the method can overcome within-class 

spectral variation and eliminate “salt and pepper” effect in the pixel by pixel 

classified images, but also can be used to emulate a human interpreter’s ability in 

image interpretation (Yu et al., 2006). The advantage is also due to integrating 

different types of geo-data into an object-based classification process and a fuzzy-
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logic-based rule set applied in the classification process. Much higher classification 

accuracy can be reached with additional data. The heterogeneity of a complex system 

at different scales is problematic for traditional pixel-based classification techniques. 

The GEOIC approach, however, produces an accurate representation through the 

segmentation of DSRUs for the extraction of land degradation information. It 

extracts land degradation information from the spatial feature perception to spatial 

object cognition and spatial pattern cognition under the cognition mode of feature-

object-pattern. By segmenting DSRUs and grouping homogeneous objects together 

at different scales, contextual and hierarchical information can be incorporated into 

the classification process. The segmentation of DSRUs was not only based on spatial 

patterns of topography, soil and vegetation, but also remote sensing image 

information related to the features of land degradation. DSRUs have their 

geographical meanings and are thought to be the result of hydrological and erosion 

processes related to land degradation. It indicated that the GEOIC approach is of 

significance for monitoring and assessment on land degradation. 

However, the diagnostic indicators of land degradation must be properly selected 

when the GEOIC approach is applied in other areas. It is extremely important to 

select the appropriate diagnostic indicators for the assessment of land degradation 

according to local situation. In this study, some knowledge and the survey results 

from the local farmers were considered in the selection of diagnostic indicators and 

the classification of land degradation. These knowledge and results can also be 

obtained through detailed field surveys and by a reference to local cultivation system, 

land use history and agricultural history. Another problem must be recognized that 

the appropriate size of image objects is of importance for the quality of the 

segmentation and the accuracy of the classification. The determination of scale 

parameters is very important and challenging in the GEOIC approach. The research 

on the proper selection of diagnostic indicators and scale parameters should be 

further conducted in the future.   
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6.3.6 Scale effects on DSRUs 

From Figure 6.9 to Figure 6.12, one can see that the classified images appear very 

similar at scale level of 50 and scale level of 100. Their visual patterns considerably 

change compared with that at scale level of 25, which has more textures in Loess 

hilly slope land and Loess hilly top land, but an increase in the area of dike field in 

the underside of the scene. The Loess hilly slope land and Loess hilly top land at the 

underside right of the image changed to dike field and irrigated land. But water and 

residential land do not change. Moreover, there was a small change in the 

proportions of different classes. A general trend is that neighboring units tend to be 

combined into large units, with the larger DSRUs persisting through scale levels at 

the expense of smaller DSRUs. In addition, a number of DSRUs tend to persist 

within one or two scale domains, and then suddenly disappear at the next domain. 

This is apparent in the images at scale levels of 25 and 50 where dike field 

dispersedly distributed along valley floor in the underside right of the image abruptly 

mostly appears and is concentrated along valley floor at scale level of 100. Some 

types of structures emerge at specific scale domains where they did not exist before. 

This is similar to the results of Turner (1989) that any land cover presenting in less 

than 50% would ultimately be lost at coarser resolutions by using a larger range of 

grid cell sizes for testing grain size effects. It suggests that these results related to the 

sudden shifts in the entire image structure at certain scale domain might correspond 

to the detection of critical landscape thresholds. 

To better understand an appropriate scale parameter and a critical landscape 

threshold, the accuracy assessment results were analyzed further. The results show 

that accuracy does vary spatially in relation to these types and their features at 

different scale levels. It has been proven to be effective for regional land degradation 

classification with overall accuracy 88.3% and KIA 0.86 at scale level of 100. It 

implied that the appropriate size of image objects of DSRUs for land degradation 

mapping in study area was scale parameter 100. The results of the total scene 

variance from the individual DSRU at different scale levels show that it increased 

from scale level of 25 to scale level of 200. At scale level of 200, the total scene 

variance is high, indicating that each DSRU is more heterogeneity. From an object-
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specific perspective, a minimum variance threshold has not been reached. Hay et al. 

(2003) demonstrated that the representation at different scale levels corresponds to 

the objects of interests rather than only referring to statistical measures in an image 

(Lang and Blaschke, 2003). It is difficult to determine the ‘optimal’ scales to 

evaluate the varying sized, shaped, and spectrally distributed image-objects within a 

scene. As pointed out by Hay et al. (2003), there are many optimal scales that are 

specific to the image-objects that exist/emerge within a scene. 

6.4 Conclusions of the GEOIC application 

Under the cognition mode of feature-object-pattern, the approach of GEOIC is 

applied in the extraction of land degradation information through the segmentation of 

DSRUs with Hyperion images. The GEOIC approach was used in this study with 

different combinations of input layers for the determination of diagnostic indicators 

related to land degradation. The method of determining the diagnostic indicators by 

the comparison of different combinations of the diagnostic indicators and from the 

local farmer’s perception was devised and also validated. The overall classification 

accuracy and Kappa coefficients showed that the classification accuracy is higher 

with ancillary information than with the Hyperion images only. The overall accuracy 

increased when new diagnostic indicators related to land degradation are used. It 

increased by 11.5% with additional data. With the combination of 

Hyperion+Elevation+Slope+MCARI+SOM, the classification accuracy reached the 

highest, with the overall accuracy of 88.3% and Kappa coefficient of 0.86 at the scale 

level of 100 compared with that of the combination of four indicators and three 

indicators. The results of the farmers’ survey supported the above chosen diagnostic 

indicators. The topographic factors including slope and elevation, vegetation, SOM, 

and remote sensing images were determined as the diagnostic indicators for 

extracting land degradation information in the study area. 

In this study, the developed GEOIC approach was compared with the methods of 

SAM and DSLI. The classification results obtained with the three methods are 

different. The difference between the GEOIC method and the methods of DSLI and 

SAM is significant. The potential of the DSLI index method for land degradation 
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mapping was revealed. The results showed that the DSLI method provided more 

accurate results for mapping land degradation than those with the SAM method, with 

an overall accuracy of 80.8% for the DSLI and 67.2% for the SAM. But the DSLI 

method is suitable for the areas of arid to semi-arid environments especially in non-

growing season, and its limitations and uncertainties are obvious. The method 

neglected the other information related to land degradation, i.e. without integrating 

remote sensing information and other geographic information and knowledge in the 

process of land degradation classification. Moreover, the results also indicated that 

the application of the GEOIC approach is of advantage for the extraction of land 

degradation information, although the knowledge on land degradation is often 

expressed ambiguously. The accuracy of the approach at appropriate scale level was 

much higher than that of the pixel by pixel method. The classification accuracy was 

higher with the GEOIC approach at all scale levels (72% to 88%), and was lower at 

the similar pixel level and also with the methods of DSLI and SAM. The 

classification at scale level of 100 was effective for mapping land degradation with 

an overall accuracy of 88.3% and Kappa coefficients of 0.86. The user’s and 

producer’s accuracy was generally higher at scale level of 100 than at other scale 

levels. The GEOIC approach with hyperspectral images can be used to study and 

characterize the state of land degradation without the “salt and pepper” effect. 

However, the map of land degradation classes is closely related to the physico-

chemical characteristics of the different classes.  

The developed GEOIC approach also provided a reliable method of integrating the 

diagnostic indicators related to land degradation through the segmentation of DSRUs. 

The GEOIC approach can emulate a human interpreter’s ability in image 

interpretation (Yu et al., 2006), and integrate different types of geo-data into an 

object-based classification process and apply a fuzzy-logic-based rule set in the 

classification process. Much higher classification accuracy can be reached with 

ancillary information. The developed GEOIC approach combines remote sensing 

images with multi-source information and geoscience knowledge, e.g. combining 

spectral information and texture information with physiognomy, soil characteristics, 

vegetation, land use information, and information from field surveys and local 

farmers. The results indicated that the segmentation of DSRUs by integrating SOM, 
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vegetation index, slope gradient, elevation and Hyperion image information is of 

significance and advantages. A DSRU is an ecologically and geographically and 

spectrally homogeneous area with similar characteristics of physiognomy, vegetation, 

and soil and image spectral information. The size of DSRUs influences the accuracy 

of the classification of land degradation. The classified images at scale levels of 25, 

50, 100 and 200 indicated that larger structure forms at the expense of smaller 

structure. A general trend is that neighboring units tend to be combined into large 

units, with the larger DSRUs persisting through scales at the expense of their smaller 

DSRUs. Scale parameter 100 was observed to be appropriate and effective for 

regional land degradation classification in this study.  

The GEOIC approach based on DSRUs is an attempt for the extraction of land 

degradation information by integrating remote sensing technique and field survey 

methods. Meanwhile, it realized the image cognition mode from only the spatial 

feature perception to comprehensive spatial object cognition and spatial pattern 

cognition in the process of image cognition on land degradation. This approach is of 

significance for monitoring and evaluation of land degradation with hyperspectral 

images, and also for land use management in Loess Plateau areas by providing a tool 

for remote assessment of land degradation. 

The GEOIC approach is capable of land degradation classification. The 

determination of the diagnostic indicators for land degradation evaluation and 

selection of suitable function models are important in the process of classification, 

for they significantly affect the classification accuracy. This approach seems 

promising, but the accuracy for classifying some land types should be further 

improved. However, the implementation of automated methods for land degradation 

classification seems complicated in areas where physical geographic situation is very 

complex and fragmentized. A potential solution might be coupling of the current 

approach using hyperspectal images with high spatial resolution and DEM at a scale 

of 1:10 000.  

A further improvement of this study can be obtained by a careful analysis of the 

dependence of accuracy on natural site conditions, integration of other additional 
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data (such as LIDAR data), and a more efficient usage of geographic information and 

local knowledge. The GEOIC approach presented here should be tested in other areas 

with different soil types and forest types to validate its applicability and reliability. It 

is also necessary to improve its automated process, so that large areas could be 

processed cost-effectively and in a timely manner. Moreover, a comparison of 

different techniques of integrating multi-source data in classification, such as the 

neural network technique, will be useful for a quality assessment of integration 

techniques (Baltsavias, 2004). 
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Chapter 7                                                      

Conclusions and Recommendations 

7.1 Conclusions 

Land degradation is a major problem world-wide. It is estimated that more than 

one-third of terrestrial land area in China is threatened by land degradation. Land 

degradation coupled with the population growth has a negative impact on the living 

conditions for Chinese people. Therefore monitoring and assessment of land 

degradation is of particular importance, which provides the crucial information for 

the policy and decision making in terms of sustainable development. The 

development of hyperspectral remote sensing technique makes possible regularly 

updating land degradation information by the analysis of precise spectral features 

and the quantitative retrieval of spectral reflectance of surface features. To improve 

the accuracy and reliability of land degradation mapping this research has 

developed the approach of GEOIC for monitoring and assessment on land 

degradation by integrating remote sensing information, land information and 

geoscience knowledge. It significantly enriches the theory and methodology in land 

degradation research. The main conclusions derived from this research are 

summarized below.  

1. This research has developed the approach of GEOIC and determined its 

conception, connotation, and framework on land degradation based on the 

methodology of OBIA. The GEOIC is the objectification cognition on remote 

sensing images and multi-source information using geo-knowledge. It is an extension 

of the OBIA. The GEOIC approach can not only extract thematic information, but 

more importantly can mine the information and quantify ambiguously expressed 
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knowledge. The key objective of GEOIC on studying land degradation is to simulate 

the functions and processes of the visual interpretation by experts, and extract spatial 

features, spatial objects and spatial patterns of land degradation under a cognition 

mode of feature-object-pattern from remote sensing images and multi-source 

information. It describes the methodology for developing automated methods to 

partition remote sensing images and multi-source data into DSRUs and assessing 

their spatial, spectral, geographic and temporal characteristics. It can be employed in 

wide areas, like land use and land cover classification, vegetation classification, land 

degradation evaluation, land quality evaluation, soil parameter mapping, and forest 

development monitoring, etc.  

The approach of GEOIC is realized through the segmentation of geo-objects or 

meaningful image objects using remote sensing information, geographic information, 

vegetation, soil, and other ancillary information with geoscience knowledge and 

intelligence. It can emulate a human interpreter’s ability in image interpretation, and 

integrate different types of geo-data in an object-based analysis process with a set of 

fuzzy-logic-based rules. The approach provides a unified framework for the 

extraction of land degradation information.  

In this research, some issues concerning the approach of GEOIC on studying land 

degradation, especially the factors affecting human’s visual cognition, were 

discussed, because human’s visual cognition on images appears in the whole process 

of GEOIC. The quantitative analysis of these factors is of significance for the 

determination and selection of the diagnostic indicators in the application of the 

GEOIC approach for the evaluation of land degradation. The results of a 

questionnaire survey showed that the experience, age and gender of a user have 

influence on the visual cognitive abilities on remote sensing images. The experience 

affected the cognition abilities on feature images of land use types, while gender did 

make difference in cognition on vegetation cover, vegetation growth and the 

percentage of barren land. The effects of the experience, age and gender on cognitive 

abilities on remote sensing images were different. Therefore, the diagnostic 

indicators and their threshold values should be chosen and determined by 

experienced experts if the GEOIC is applied in the extraction of land degradation 
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information. Moreover, local farmers know well the land degradation situation, and 

should participate in the process of the selection and determination of the indicators. 

It is necessary to integrate the results of experts’ and farmers’ cognition on land 

degradation for deriving the appropriate indicators. On the other hand, it is of 

importance to develop a standardized methodology of image cognition from visual 

cognition to automatic comprehensive cognition by integrating remote sensing image 

information, spatial information, geographic information and experience in computer 

environment. 

2. This research has developed a reliable method for determining the appropriate 

diagnostic indicators related to land degradation under the approach of GEOIC with 

an integration of hyperspectral data with multi-source information. In the cognition 

mode of feature-object-pattern, DSRUs were segmented with the support of an 

integration of Hyperion images with multi-source information on various diagnostic 

indicators based on geoscience knowledge and geographic information. DSRU is an 

ecologically and geographically and spectrally homogeneous area with similar 

characteristics of physiognomy, vegetation, soil and image spectral information. It 

related hydrological and erosion processes to the spectral response of land 

degradation. It is of significance for the extraction of land degradation information, 

and for integrating the various diagnostic indicators in land degradation assessment. 

The tests using the data in the study area validated the data integration techniques 

and related issues. 

The method of determining the diagnostic indicators from the local farmers’ 

perception was proposed and the comparison among various combinations of the 

diagnostic indicators was made. The test study with different combinations of the 

input layers for the determination of diagnostic indicators related to land degradation 

shows the overall classification accuracy was increased by 11.5% when additional 

data were used. Much higher classification accuracy can be reached if a new layer of 

diagnostic indicator related to land degradation is used. With the combination of 

Hyperion+Elevation+Slope+MCARI+SOM, the classification accuracy reached the 

highest. The results of the farmers’ survey supported the above chosen diagnostic 

indicators. Slope and elevation, vegetation, SOM, and remote sensing images were 
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determined as the diagnostic indicators for extracting land degradation information in 

the test area. The results also showed that the determination of the diagnostic 

indicators and selection of suitable function models are important in this study.  

Overall, the GEOIC approach can emulate a human interpreter’s ability in image 

interpretation and integrate different types of geo-data into an object-based 

classification process. Much higher classification accuracy can be reached with 

ancillary information. The developed GEOIC approach combines remote sensing 

images with multi-source information and geoscience knowledge, e.g. combining 

spectral information and texture information with physiognomy, soil characteristics, 

vegetation, land use information, and information from field surveys and local 

farmers.  

3. This research investigated the method for mapping soil parameters related to land 

degradation with hyperspectral images and soil spectral at a regional scale with the 

approach of the GEOIC. It solved the third key issue mentioned in Chapter 1. The 

results indicated that the in-situ estimation models based on the relationship between 

the SOM content and the spectral reflectance in bands R440, R560, R625, R740, R1336 

using multiple regression method and fuzzy set method were valid to estimate SOM 

of the soil samples. The five sensitive bands could be used for the SOM estimation 

using Hyperion images. Moreover, the results also indicated that the DSRU 

estimation models developed based on the relationship between the content of SOM 

and the spectral and regional variables of DSRUs were valid to estimate the SOM 

content using Hyperion images. The determinative coefficient (R2) of the model 

increased from 0.562 at scale level of 25, to 0.721 at scale level of 50, and to 0.722 at 

scale level of 100. The mean square of regression models at scale level of 100 was 

lowest. The DSRU estimation models considered not only some variables in the in-

situ model, but also some environmental variables to compensate for the change of 

scale. The mapping results of SOM based on DSRU estimation models using 

Hyperion images are comparable well with the results of field survey, and close to 

the results with the Kridge interpolation using soil samples. Mapping SOM could be 

processed cost-effectively and in a timely manner instead of collecting and 

measuring large amount of soil samples in large areas. The method provided a useful 
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tool for mapping soil features at a regional scale by combining field data, remote 

sensing images and regional variables.  

The DSRU modeling of soil parameters was an application of the GEOIC approach. 

The results obtained in this test study showed the potential and advantages of the 

GEOIC approach based on DSRU estimation models for soil parameter mapping. 

The GEOIC approach for SOM estimation combines spectral information and 

texture information with soil types, vegetation, land use information, and in-situ 

information from field surveys. This has significant implications for land quality 

management by providing a tool for monitoring soil parameters remotely at a 

regional scale.  

4. This research has demonstrated the approach of GEOIC was successfully applied 

in the extraction of land degradation information with Hyperion images and multi-

source information. It solved the fourth key issue mentioned in Chapter 1. The 

approach was tested in an agriculture-pasture mixed area in Loess Plateau in China. 

The developed GEOIC approach was compared with the methods of SAM and DSLI. 

The differences among the results with the GEOIC method and the methods of DSLI 

and SAM are significant. The GEOIC approach provided more accurate results at an 

appropriate scale level for mapping land degradation than those with the SAM 

method and DSLI method. The results showed that the accuracy with the DSLI 

method was much higher than that with the SAM method, with an overall accuracy 

of 80.8% for the DSLI and 67.2% for the SAM. But the DSLI method is suitable for 

the areas of arid to semi-arid environments especially in non-growing season, and its 

limitations and uncertainties are obvious. Moreover, the results indicated that the 

application of the GEOIC approach is of advantage for the extraction of land 

degradation information, although the knowledge on land degradation is often 

expressed ambiguously. The accuracy of the approach at an appropriate scale level 

was much higher than that of the pixel to pixel method. The classification accuracy 

was higher for the GEOIC approach at all scale levels (72% to 88%). The 

classification at scale level of 100 was effective for mapping land degradation with 

an overall accuracy of 88% and Kappa coefficients of 0.86. The user’s and 

producer’s accuracy was generally higher at scale level of 100 than at other scale 



                                                                                Chapter 7 Conclusions and Recommendations 

 152 

levels. The GEOIC approach with Hyperion images can be used to study and 

characterize the state of land degradation without the “salt and pepper” effect. 

However, the map of land degradation classes in the test area is closely related to the 

physico-chemical characteristics of the different classes. The GEOIC approach can 

significantly improve the accuracy of land degradation classification.  

The GEOIC approach realized the image cognition mode from the spatial feature 

perception to comprehensive spatial object cognition and spatial pattern cognition in 

the process of image cognition on land degradation. This approach is of significance 

for monitoring and evaluation of land degradation with hyperspectral images. This 

holds significant implications for land use management in Loess Plateau areas by 

providing a tool for remote assessment of land degradation. 

7.2 Recommendations for further study 

Although the developed GEOIC approach seems working well, the following 

aspects need further study.  

(1) It is important to select appropriate diagnostic indicators of land degradation, 

which should suit well local situation. The selection of appropriate diagnostic 

indicators should be done by a field detail survey and a reference to local cultivation 

system, land use history and agricultural history. This issue should be further studied. 

In addition, some factors such as the methods of DSRUs segmentation, and 

membership functions need further testing in different environments.  

(2) Hyperspectral data directly collected in the field or acquired from remote sensing 

techniques might be affected by natural soil surface conditions (e.g., roughness, 

moisture, stoniness, etc), the atmosphere, and the illumination conditions. Their 

effects should be further studied and corrected using different atmospheric 

correction methods and other methods on the basis of an extended spectral data set 

(i.e. larger number of soil samples) collected directly in the field together with 

ancillary data.  
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(3) The further improvement of the approach can be done by a careful analysis of the 

dependence of accuracy on natural site conditions, an integration with other 

additional data (such as LIDAR data), and more efficient use of geographic 

information data and local knowledge. The developed GEOIC approach should be 

applied to other areas, such as soil type classification and forest development 

monitoring, to test its reliability and applicability. It was also necessary to improve 

its automation level so that large areas can be processed cost-effectively and in a 

timely manner. Moreover, a comparison of different techniques for integrating multi-

source data for classification, such as neural networks and support vector machines, 

could be useful for a quality assessment of integrated techniques. 

(4) Although the approach of GEOIC on studying land degradation has a great 

potential, this study only investigated the GEOIC approach through the segmentation 

of DSRUs for the extraction of land degradation information. This study is the first 

comprehensive attempt to synthesize the approach of GEOIC and the extraction of 

land degradation information from an interdisciplinary perspective to a specific type 

of image processing. The GEOIC approach is an integrated methodology and also 

develops very rapidly. There are certainly many technical and theoretical 

issues/problems, which need further investigation.  
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