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ABSTRACT 

Super-resolution image reconstruction is an image fusion issue in which 

multiple low resolution images are fused into a higher resolution image. Among the 

various approaches proposed to realize super-resolution image reconstruction, the 

approach proposed by Hardie in 2007 is one of the efficient approaches as it is based 

on adaptive Wiener filtering (AWF) in which only weighted summation of the 

observed low resolution pixels is required in the core process of the estimation of the 

high resolution pixels.  

In Hardie’s AWF algorithm, the weights are derived with an isotropic covariance 

model based on (1) the geometric distance between two samples and (2) the local 

variance of the observed low resolution pixels in the region of interest. Though this 

simple model reflects the correlation of two pixels in the general situation to a certain 

extent, it is not appropriate to describe the pixel correlation in a local region with 

presence of edge or texture. Obviously, the covariance model adopted in AWF plays a 

significant role to the success of the algorithm. In this work, we devote our effort to 

improve the covariance model so as to improve the performance of AWF and 

investigate the impact of the covariance model to the performance of AWF. 

Hardie’s covariance model adapts to the local sample variance only and does not 

take the edge characteristics into account. In practice, pixels are more correlated in a 

non-edge region than an edge region as an edge breaks the correlation between the 

pixels in different sides of the edge. A simple trick is exploited in our first attempt to 

improve the model. In particular, separate covariance models are trained for edge 

regions and non-edge regions. To process an image, local regions are classified into 

either edge regions or non-edge regions, and then corresponding covariance models 

are used to derive the weights for individual regions. 

The success of the simple trick exploited in our first attempt confirms the 

direction of improvement. The idea is further extended to improve the covariance 



 

model. Obviously, pixels along an edge should be more correlated than those pixels in 

different sides of the edge. As a result, the covariance model function should be 

anisotropic according to the edge orientation in a local region. In our second attempt, 

we evaluate the sample variances along various directions in a local region and, based 

on the evaluation result, adjust the shape of covariance model function. By doing so, 

the orientation of the covariance model function and the extent of its asymmetricity 

are fully adaptive to the local characteristics. Unlike the approach adopted in our first 

attempt, no explicit region classification is required.  

Though a visible improvement in the super-resolution image reconstruction 

performance can be achieved with the aforementioned improved covariance models, 

there is still room for further improvement. To a certain extent, our second attempt 

tries to detect the edges and then rectify the covariance model according to the 

detected edge direction. This is not always an easy task. For example, it is not easy to 

detect a complicated edge especially when it is in a texture or noisy region. Besides, 

since the high resolution image is not available, the detection has to be based on the 

available low resolution images and hence the detection may not be accurate. To solve 

this problem, in the third proposed solution we add an additional element to the 

covariance model to take care of the edge characteristics implicitly such that no 

explicit edge detection is required. 

In general, the more two pixel’s intensity values are different, the more likely 

that the two pixels are separated by an edge or corrupted by noise. Based on this 

observation, a new covariance model is defined to be a function of both the intensity 

difference and the geometric distance of two pixels. Without any explicit edge 

detection, the model automatically deemphasizes the correlation between two pixels 

which are not in the same side of an edge. Accordingly, the weights of the pixels for 

estimating the high resolution pixels can be determined more reliably with the 

covariance model, and a better super-resolution image reconstruction result can be 

obtained at the end. 
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STATEMENT OF ORIGINALITY 
 

The following contributions reported in this thesis are claimed to be original. 

 

1. An adaptive Wiener filtering algorithm which classifies local regions and then 

applies corresponding covariance models to derive the filter weights for individual 

regions. 

2. An adaptive Wiener filtering algorithm which exploits a directional intensity 

covariance model to make the filter weights adaptive to the dominant edge 

orientation in a region.  

3. An adaptive Wiener filtering algorithm which rectifies the spatial intensity 

covariance of each pair of pixels in a local region with their observed or estimated 

low resolution samples such that the Wiener filter in the region can fully adapt to 

the local context of the region without explicit edge detection.  
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Chapter 1 

INTRODUCTION 

1.1 Super Resolution Problem 

Images of high resolution are normally desired and even required in many 

electronic imaging applications such as remote sensing, medical imaging and remote 

monitoring. They are desired as they can offer more details that may be critical to the 

applications. For example, in remote sensing applications, high resolution aerial 

images can help scientists to gather more detail information from the earth ground 

such that an accurate analysis on the ground activities can be made.  

Nowadays CCD and CMOS image sensors are widely used to capture digital 

images. The recent advance in sensor technology has already made a digital camera 

capable of supporting a resolution of 4096×2304. However, as compared with the 

resolution supported by an analog 35 mm film, it is still far from the ideal. Hence, 

there is always a need to increase the current resolution level.   

The most direct solution to increase spatial resolution is to increase the number 

of pixels in a unit area of the sensor array of a camera by sensor manufacturing 

techniques. This can be achieved by reducing the size of the sensors in the sensor 

array. However, the amount of light that a sensor can sense also decreases and it is 

easier for the sensors to suffer from noise. As a matter of fact, there is a limitation of 
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sensor size reduction and the current image sensor technology has almost reached this 

level. 

Another possible approach to increase spatial resolution is to increase the 

number of sensors in a sensor array. This increases the chip size and, in turns, the 

capacitance of the sensors. Accordingly, the response time of the sensor array slows 

down and the camera performance is degraded. This solution does not end up with a 

high performance camera. 

After all, the success of the aforementioned solutions rely on the advance of 

optical and sensor technologies. The high cost for high precision optics and image 

sensors may not be affordable in many commercial applications. A low-cost solution 

is required to increase the spatial resolution under the limitations of current sensors 

and optics manufacturing technology. 

Under this consideration, perhaps a more practical solution is to use multiple 

images of lower resolution to reconstruct a high resolution image by making use of 

some signal processing techniques. This approach is called super-resolution image 

reconstruction or simply super-resolution, and has become an active research area. 

The major advantage of this signal processing approach is that it costs less and the 

existing imaging systems can still be utilized.  

In many practical cases, it is possible for one to obtain multiple images of the 

same scene under a controlled manner. For example, in satellite imaging applications, 

several images of the same area can be captured from different positions in the orbit. 

The relative positions that the satellite captures the images can be precisely controlled 

by the time it takes the photos. The displacement of the satellite, and its camera, 

introduces a relative global motion of the captured area in successive images. One can 

shift the captured images according to their relative motion vectors and mount them to 

a predefined two-dimensional reference space. This process is referred to as 

registration. As long as there are some sub-pixel relative scene motions from image to 

image, the number of samples in the reference space is more than the number of 
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samples in a single low resolution image, and hence extra information is available for 

one to construct the high resolution image. This explains why super-resolution is 

feasible to increase the spatial resolution with the existing imaging systems at a low 

cost.     

The previous example shows the case when the low resolution images are 

obtained by the same camera at different instants. It is also possible that the low 

resolution images are obtained by different cameras positioned under a controlled 

manner at the same time. It is also possible that the images are captured by different 

cameras at different instants. Figure 1.1 shows the various scenarios that a 

super-resolution is done.   

 

Figure 1.1  Basic premise for super-resolution image reconstruction 

After registration, we have a number of samples mounted to a reference 

two-dimensional space. In general, their positions do not align with a uniform grid of 

the desirable resolution and their total number is still smaller than the required 

number of samples needed to fill up the desirable resolution grid. Besides, in the 

process of recording a digital image, there are natural distortions caused by the optical 

distortion, motion blur and sensor noise as shown in Figure 1.2. In other words, every 

available sample in the reference space is actually a corrupted sample of a low 

resolution version of the desirable high resolution image. From that point of view, the 
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reconstruction of the high resolution image from the collection of low resolution 

image samples can be treated as an image restoration problem.  

 

 

 

Figure 1.2  Illustration of a simple physical image formation process. Ideal signal is 

blurred by lens and then corrupted with sensor noise before 

down-sampling. 
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Various image restoration techniques can be applied to realize super-resolution 

image reconstruction, which results in a number of super-resolution algorithms. These 

algorithms can be roughly categorized into four groups. The first category tackles the 

problem in the frequency domain based on the connection between the frequency 

spectra of a high resolution image and its low resolution images. The second category 

tries to establish a correspondence between a high resolution image and its low 

resolution versions based on some training data through a machine learning technique, 

and then use the machine to realize super-resolution in the future. The third category 

models the conversion process that turns a high resolution image into a low resolution 

image, makes an initial estimate of the high resolution image, and then repeatedly 

refines its estimate until the refined estimate equals to the observed low resolution 

image after undergoing the modeled conversion process. The final category is based 

on interpolation. Registered low resolution samples in a local region are weighted and 

summed to estimate a high resolution sample in the same region. Consequently, the 

estimation is locally adaptive to the image content. This category of algorithms is 

simple yet effective in providing a good super-resolution result, and hence arouses our 

interest to carry out a study on it.  

The adaptive Wiener filtering algorithm proposed by Hardie[Hardie07] is a 

typical example of this interesting category of algorithms. In this algorithm, the 

weights of the low resolution samples in a local region are adjusted according to (i) 

the local characteristic of the region and (ii) the spatial distance of the low resolution 

samples from the estimated high resolution sample. To achieve this, the algorithm 

models the intensity covariance between two high resolution pixels in a local region 

as a function of (i) the variance of the observed low resolution samples registered in 

the region and (ii) the geometric distance between the two high resolution pixels, and 

then derives the weights based on this covariance model. Hardie’s adaptive filtering 

approach [Hardie07] has been proven to be an effective approach to realize 

super-resolution. In the work presented in this thesis, it is used as a vehicle to study 

the potential of interpolation-based algorithms.  
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Obviously, the spatial intensity covariance model adopted in Hardie’s adaptive 

Wiener filtering algorithm [Hardie07] plays a significant role to the success of the 

algorithm. Though this model is helpful to derive a locally adaptive Wiener filter for 

estimating the high resolution samples, there is still room for improvement as it does 

not take the edge characteristics into account. In this work, we devote our effort to 

improve the covariance model so as to improve the performance of adaptive Wiener 

filtering in super-resolution image reconstruction. 

Three major improvements were made in our study and they are reported in this 

thesis. They are proposed based on the following three beliefs. First, pixels are more 

correlated in a non-edge region than an edge region in practice as an edge breaks the 

correlation between the pixels in different sides of an edge. The covariance model for 

regions having an edge should be different from the covariance model for regions 

without an edge.  

Second, pixels along an edge are more correlated then pixels in different sides of 

the edge. As a result, the covariance model should not be formulated as an isotropic 

function as the one proposed in Hardie’s approach. Instead, it should be anisotropic 

according to the edge orientation in a local region.  

Any pairs of pixels in the same region follow the same covariance model in 

Hardie’s algorithm when deriving the weights of the Wiener filter for the region. In 

fact, each pair of pixels should have its own covariance model as intensity correlation 

is different from pair to pair.   

Three corresponding modifications to the covariance model used in Hardie’s 

algorithm are suggested in this work. These modifications result in three adaptive 

Wiener filtering algorithms for super-resolution image reconstruction. 
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1.2  Organization of thesis 

This thesis comprises six chapters in total. Apart from this chapter, the reminder 

of this thesis is organized as follows. 

Chapter 2 presents a brief review on the background knowledge related to 

super-resolution image reconstruction. In particular, a common observation model of 

images that formulates the connection among a scene, its low resolution images and 

its high resolution image is introduced. Various conventional approaches for tackling 

super-resolution image reconstruction are briefly discussed. Our focus is on the 

interpolation-based approach. As a typical example of the kind, the adaptive Wiener 

filtering algorithm [Hardie07] recently proposed by Hardie is comprehensively 

elaborated in this chapter. This algorithm is used as the vehicle in our study presented 

in this work. 

Chapter 3 presents our first modification to improve the performance of 

adaptive Wiener filtering in super-resolution image reconstruction. Local regions are 

classified as either edge regions or smooth regions such that the spatial intensity 

covariance model used for deriving the Wiener filter coefficients can be adaptive to 

the local characteristics of a local region. This results in a new adaptive Wiener 

filtering algorithm for super-resolution image reconstruction. Its performance is 

evaluated and reported in this chapter. 

To extend the idea exploited in the development of the algorithm proposed in 

Chapter 3, one can further adjust the spatial intensity covariance model based on the 

dominant orientation of the edges in a local region. Based on this idea, Chapter 4 

presents a new directional anisotropic covariance model. This model formulates the 

intensity correlation among pixels in a local region according to the regional context. 

It results in another new adaptive Wiener filtering algorithm to do super-resolution 

image reconstruction. Simulation results are reported to show the improvement of this 

algorithm as compared with the original adaptive Wiener filtering algorithm 

[Hardie07] in terms of various performance criteria.  
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In Chapter 5, a further improved adaptive Wiener filtering algorithm is proposed. 

In this algorithm, each pair of pixels in a local region has its spatial intensity 

covariance model rectified by their known observed low resolution samples. In other 

words, every single pair of pixels has its own covariance model. As a result, a 

covariance model and accordingly a local Wiener filter are possible to fully adapt to 

the local context. Unlike the algorithm proposed in Chapter 4, no explicit edge 

detection is required. Simulation results show that this proposed adaptive Wiener 

filtering algorithm is able to provide the best performance among the suggested 

improvements to the original adaptive Wiener filtering algorithm [Hardie07].    

The thesis is concluded in Chapter 6 with a summary of the work that has been 

done in this project. Possible future work and potential extension of the present work 

are discussed in this chapter as well. 
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Chapter 2 

BACKGROUND OF SUPER-RESOLUTION IMAGE 

RECONSTRUCTION 

2.1 Introduction 

This chapter provides reviews on some existing work that is relevant to our 

work. In particular, a popular observation model shared by many super-resolution 

image reconstruction algorithms is first presented in Section 2.2. This observation 

model is critical to super-resolution image reconstruction as it describes the 

relationship between the target high resolution image and the available distorted 

low-resolution versions of the image. In Section 2.3, conventional super-resolution 

image reconstruction methods are categorized and some of their examples are briefly 

introduced. Among these various methods, the one based on adaptive Wiener 

filtering[Hardie07] arouses our interest due to its simplicity and effectiveness in 

providing a good super-resolution image reconstruction performance. In the final 

section of this chapter, this adaptive Wiener filtering algorithm is discussed in depth 

as it is used as a vehicle for us to carry out the study reported in this thesis. 

 

2.2 Observation Model 

Super-resolution image reconstruction aims to enhance the spatial resolution of 
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an image with the fusion of multiple low resolution images. Super-resolution image 

reconstruction algorithms are built based on an observation model which models the 

physical imaging process. This observation model plays a critical role in the 

development of a super-resolution image reconstruction algorithm.  

 

(a) 

 

(b) 

Figure 2.1 (a) The classic model of how an observed LR frame is generated from a 

continuous 2D signal, and (b) an alternative model of (a) when the blurring 

function is linear spatially invariant and circularly symmetric  

Figure 2.1 (a) shows an observation model that is commonly adopted in many 

super-resolution image reconstruction algorithms nowadays. This model is derived 

from the real physical process of image formation. To produce a high resolution (HR) 

image, the original continuous signal x should be sampled at or above Nyquist 

frequency to get the desired discrete samples of x.  

Due to some practical constraints, multiple low resolution (LR) images of X are 

obtained instead. Theoretically, multiple LR images provide more information of 
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signal X than a single LR image such that one can construct the HR image based on 

the LR images. There could be a relative motion of the camera with respect to X 

between two capturing processes, so any LR image is considered to be an image of a 

geometrically transformed version of signal x. Note that here we assume that x is 

time-invariant. If it is not, the process could be too complicated to be formulated with 

a simple observation model. Even so, the involved motion can result in a combined 

rotation and translation or even an affine transformation of x. In this work, we put our 

focus on aerial image and video applications in which the involved motion is basically 

translation. 

The image capturing process of a camera converts the geometrically 

transformed continuous signal x into a LR image. Due to the optical distortions caused 

by the camera, the motion blur introduced by the slow shutter speed, sensor noise, and 

insufficient sensor density, the geometrically transformed x, x’, is blurred and 

corrupted with noise before being sampled below the Nyquist frequency. In 

formulation, we have 

n))x(*b(y  GD                         (2.1) 

where   is the convolution operator, D is an sampling operator, G is a geometrical 

transformation operator, b is a blurring function and n is a random noise. In general, b 

is assumed to be a Gaussian low pass filter. Thus, y is a discrete signal after sampling 

from continuous signal x. 

When the blurring function is linear spatially invariant and circularly symmetric, 

the observation model can be simplified as the one shown in Fig.1(b). All the work 

reported in this thesis is based on this observation model.  

 

2.3 Conventional Approaches  

Various conventional super-resolution image reconstruction algorithms have 
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been proposed. They can be approximately classified into four categories including 

transform-domain algorithms [Bose93, Huang84, Kim90, Kim93], machine 

learning-based algorithms  [Freeman02, Jiji06], iterative reconstruction algorithms 

[Baboulaz09, Costa08, Chiang00, Dai09, Elad97, Farsiu04, Farsiu06, Fransens07, 

Fan06, He07, Hardie98, He09, Irani91, Keren88, Li10, Nguyen01, Protter09A, 

Protter09B, Segall04, Shen07, Tuinstra99, Takeda09, Takeda07, Tian10, Zomet01, 

Zhang10] and interpolation-based algorithms [Goldberg03, Hardie07, Naray07, 

Nguyen00, Pham06, Sanchez08]. They are briefly introduced in this section. For more 

details, one can refer to individual papers and the tutorial papers about conventional 

super-resolution image reconstruction algorithms [Borman98, Kang03, Ng06]. 

2.3.1  Transform-domain approaches  

The super-resolution image reconstruction problem is initially addressed in the 

frequency-domain by Tsai and Huang [Huang84]. This frequency domain approach is 

based on three major principles: i) the shifting property of Fourier transform, ii) the 

relationship between the continuous Fourier transform of the original signal and the 

discrete Fourier transform of the observed signal, and iii) the assumption that the 

original signal is band-limited. 

Let ),( nmx  be the original continuous signal and ),( vuX  be its continuous 

Fourier transform result. Suppose we have N shifted versions of ),( nmx  and the kth 

shifted image is expressed as ),(),( nnmmxnmxk  . According to the shifting 

property of Fourier transform, the Fourier transform of kx  is  

)(2),(),( vnumj
k evuXvuX                     (2.2) 

The kth observed LR image ),( nmyk  is obtained by sampling ),( nmxk  with 
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horizontal and vertical sampling period T1 and T2. By making use of the aliasing 

relationship and a bandlimitedness assumption, one can formulate ),( vuYk , the 

discrete Fourier transform of ),( nmyk , as a function of ),( vuX .  

The relationship between ),( vuYk  and ),( vuX  can be reformulated as a 

matrix equation in a form as Y , where Y is a column vector containing the 

transformed coefficients of all N observed signal, X is a column vector containing the 

transformed coefficients of the unknown original signal, and   is a matrix which is 

the operator that maps X to Y. By finding  , ),( nmx  can be recovered through the 

inverse transformation of X. 

Bose et. al. [Bose93] proposed to use recursive total least square to minimize the 

registration error. Kim et.al [Kim90, Kim93] further extended the work in [Huang84] 

with a recursive least square approach for motion blurred and noisy conditions. 

Although the frequency-domain approach is computationally inexpensive and 

intuitively simple, it is sensitive to modeling error [Kang03] and hence its use is 

limited.  

2.3.2  Machine learning-based approaches 

Machine learning-based approaches [Freeman02, Jiji06] are technically based 

on the establishment of a correspondence between LR image and HR image through 

different machine learning techniques. The learning process is to estimate the joint 

probability of random variables, where all missing pixel values are considered as 

random variables. Calculating joint probability ),( yxP  directly is a NP-hard 

problem and hence approximation is required.  

Maximum Likelihood (ML) and Maximum a posteriori (MAP) are two 

conventional estimators for predicting a random variable x. Both of them are based on 

Bayes’ theorem, )(/)()|()|( yPxPxyPyxP  . Random variable x is estimated as 
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)}|(max{arg xyPx   and )}()|(max{arg yPyxPx   respectively when ML and 

MAP are used. It is normally to take the corresponding logarithmic function and 

optimize it with respect to unknown variable x. 

Prior knowledge is critical for estimating x. Freeman et al. [Freeman02] proposed 

to use Markov Random Field to model the relationship between a patch of LR 

samples and a patch of HR samples as prior. Jiji et. al. [Jiji06] proposed to use an 

off-line training based algorithm. It concentrates on edge patterns by learning edge 

patterns from extensive training. This sort of methods generally produces stable and 

good results in dedicated applications such as super-resolution for face recognition. 

However, as the performance heavily relies on the training result and a huge amount 

of effort is required in the training stage, it is comparatively not as flexible as other 

conventional methods. The focus of this thesis is mainly on the non-iterative 

optimization methods. Machine-learning approaches are hence out of the scope of this 

thesis. 

2.3.3 Iterative reconstruction methods 

Iterative reconstruction methods [Baboulaz09, Costa08, Chiang00, Dai09, 

Elad97, Farsiu04, Farsiu06, Fransens07, Fan06, He07, Hardie98, He09, Irani91, 

Keren88, Li10, Nguyen01, Protter09A, Protter09B, Segall04, Shen07, Tuinstra99, 

Takeda09, Takeda07, Tian10, Zomet01, Zhang10] iteratively refine an initial 

estimated HR image until the refinement converges. Three popular approaches are 

briefly discussed here as examples. 

Deterministic Regularization  

Deterministic regularization [Costa08, Farsiu04, Farsiu06, He07, Hardie98, 

Li10, Protter09A, Protter0B, Segall04, Takeda09, Takeda07, Vand07] is one of the 

major techniques used to solve super-resolution image reconstruction problem. The 

estimation of HR pixels from a set of LR samples is an inverse problem and it can be 
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solved with regularization by using some deterministic prior information about the 

possible solution. The prior information can possibly make inverse problem 

well-posed. For example, a possible solution can be obtained by minimizing the 

following objective function  

                    
22

αΨJ Cxxy      (2.3) 

where the first term is the mean square error (MSE) related to the estimation and the 

second term is known as prior which provides a smooth constraint to the optimization 

process so as to find the solution.   is a Lagrange multiplier which makes a balance 

between the fidelity (MSE) and the smoothness (prior) criteria. If the objective 

function J is convex and differentiable, a unique solution of x  can be found by 

minimizing function J with respect to x . Otherwise, there can be a lot of solutions 

which can only achieve local minima. The minimization of cost function J can be 

realized with iterative algorithms such as the gradient descent method in which the 

solution is iteratively estimated with   

kxx
kk x

J
xx


 


 1                       (2.4) 

where      yxCC
x

J T
k

TT

xx k






2)(2     (2.5) 

is the gradient at x=x
k
,   is a positive convergence parameter that controls the 

convergence and k is the iteration number.  

Iterative Back Projection (IBP)  



16 
 

Imaging
Process

Original
HR Image

X

Reconstructed
HR Image

x

Simulated
Imaging
Process

Observed
LR Image Y

Simulated
LR Image y

Minimize 
Difference
Min { Y-y }

Back-Projection Difference

 

Fig 2.2 Illustration of Iterative Back Projection (IBP) program flow 

IBP [Irani91, Keren88] is another class of methods to solve super-resolution 

image reconstruction problem. An observed LR image is formed as the result of a real 

imaging process. The iterative back projection technique simulates the imaging 

formation process to form a LR image from an initial estimated HR image and, based 

on the difference between the observed LR image and the simulated LR image, refine 

the estimated HR image.  

Suppose that there are some LR images and the imaging processing operator for 

producing the kth LR image from a HR image tx  is Ik as 

nxy t
k

t
k  )(I                        (2.6) 

where n is an additive noise. If tx  is the real original image and operator Ik is valid, 

t
ky  should be identical to the kth observed image kY . Otherwise, there is an error 

between t
ky  and kY . 

The target of IBP is to iteratively minimize 

 
k

t
kk yYe 2||||                        (2.7) 
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by back projecting the error plane through a reversion process to tx  to generate 1tx . 

Since there are more than one LR images and each one of them can make a 

contribution to the refinement, the error contributed by different LR pixels of different 

LR images are weighted as follows. 

 


 
k nm

nmkt
kk

tt

jik
c

h
nmynmYjixjix

),(),(

),(1 )),(),((),(),(      (2.8) 

where ),( jik  is a set of coordinates defining the locations of the LR samples in kY  

that is influenced by x(i,j), ),( nmkh  is a coefficient of the back projection kernel, and 

c is a normalization factor. The closer t
ky  gets to kY , the more tx  tends to be x.  

The key to recover a better HR image is to define a proper back projection 

kernel, which significantly affects error back projection and indirectly influences the 

reconstruction performance. 

Projection Onto Convex Set (POCS)  

0x̂

0P

1P

2P

3P

001231 ˆˆ xPPPPx 

1x̂

 
Figure 2.3 Illustration of POCS 
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POCS [Fan06] is an alternating iterative approach to find a solution satisfying a 

set of pre-defined constraints which are defined based on some prior information. 

This set of priors constrain the process to find the solution. In fact, if we have N priors 

and each of them is interpreted as a non-empty and closed convex set iC , the solution 

will belong to the intersection set  


N

i is CC
1

                        (2.9) 

The intersection set sC  is a convex set as well.  

To get the solution, an initial solution 0x  should be estimated and successive 

estimates are iteratively projected onto each of convex sets (prior) as follows. 

t
N

i
i

t xPx 




1

1    (2.10) 

where tx  is the estimate obtained at the tth iteration and iP  is the projection 

operator which projects an intermediate estimate of the solution to convex set 

iC .  

The major advantages of POCS are that it is simple and it is possible to 

incorporate various types of prior information. However, POCS does not provide a 

unique solution and the convergence is generally slow. 

2.3.4 Interpolation-based approaches 

Interpolation-based approaches[Goldberg03, Hardie07, Naray07, Nguyen00, 

Pham06, Sanchez08] are intuitively simple and computationally efficient to estimate 

missing HR pixels. Relative displacement vectors of the available LR images with 

respect to the target HR image are first estimated by using sub-pixel motion 
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estimation techniques such that the LR images can be registered onto the HR grid for 

later interpolation. These displacement vectors are generally floating point vectors 

and hence a non-uniform interpolation is required to predict the pixels on the HR grid 

based on the registered LR pixels. A restoration process is generally followed to 

de-blur and denoise the interpolation result.  

Narayanan et. al. [Naray07] proposed a computationally efficient 

super-resolution image reconstruction algorithm based on partition-based filter (PWS). 

For each local image region, this algorithm selects a filter from a set of pre-defined 

filters to do the interpolation. The filters are trained with some training images with 

vector quantization such that they can adapt to the local characteristic of a given 

region. Since the number of the filters in the set is finite, the adaptation capability of 

the filters is limited and there exists quantization error.  

To solve this problem, Hardie [Hardie07] proposed a super-resolution image 

reconstruction algorithm by using adaptive Wiener filtering. An adaptive Wiener filter 

is used to estimate the missing HR pixels with the available LR pixels in the same 

local region. The filter adaptively adjusts its filter coefficients according to the local 

variance of the registered LR pixels, the local noise variance and the spatial 

correlation of the pixels in a local region. This provides a higher degree of flexibility 

in the adaptation and hence it is able to remove the noise effectively and produce a 

better reconstruction performance.  

Interpolation-based approaches are generally noted for their simplicity and their 

relatively good super-resolution image reconstruction performance. This arouses our 

interest in exploring if it is possible to further improve their performance. As Hardie’s 

adaptive filtering approach [Hardie07] has been proven to be a simple yet effective 

approach to realize super-resolution image reconstruction, it will be used as a vehicle 

for us to carry out our exploration study. In the following section, a brief summary of 

Hardie’s adaptive Wiener filtering algorithm is provided as a basis for us to elaborate 

our work reported in this thesis.  
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2.4 Adaptive Wiener Filtering  

Adaptive Wiener filtering is one of the efficient techniques for realizing 

super-resolution image reconstruction as only weighted summation of the observed 

low resolution pixels is required in the core process of the estimation of the high 

resolution pixels. The conventional adaptive Wiener filtering algorithm was proposed 

in [Hardie07] by Hardie. It derives the weights with a covariance model based on the 

geometric distance between two samples. 

Super-resolution image reconstruction aims to enhance the spatial resolution of 

an image with the fusion of multiple LR images. As shown in Figure. 2.1(a), observed 

LR pixels in each LR image are generally considered as noisy samples of a blurred 

and geometrically transformed version of the original HR image. When the blurring 

function is linear spatially invariant and circularly symmetric, the observation model 

can be simplified as the one shown in Figure.2.1(b). Hardie’s adaptive Wiener 

filtering algorithm [Hardie07] estimates the HR samples based on this model.  

To start the process, all LR pixels in successive LR images are registered onto a 

plane on which there is a higher resolution grid defining the positions of the HR 

pixels to be estimated. Note that this high resolution grid also defines the coordinate 

system we used in this paper. Through a spatial sliding window covering a 3d×3d 

region of the high resolution grid, where d is the ratio of the target resolution of the 

reconstructed HR image to the resolution of a LR image for each dimension, Hardie’s 

algorithm collects all LR pixels registered in the window to estimate the d×d HR 

pixels in the center of the window. Without losing the generality, we assume that the 

number of registered LR pixels in the window is L and the total number of HR pixels 

to be estimated with these L LR pixels is N. As an example, Figure. 2.4 shows the 

case when a HR image is constructed with 2 LR images and the ratio of their spatial 

resolutions is 3 for each dimension. In such a case, we have d=3, L=18 and N=9. For 

reference purpose, l  and h  are, respectively, used to denote the set of the 

locations of the observed LR pixels and the set of the locations of the HR pixels to be 
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estimated. In Figure 2.4, positions in l  and h  are, respectively, marked with 

crosses and circles. 

 

Figure.2.4  An example showing how LR pixels are involved in the estimation of the 

HR pixels in a patch 

In Hardie’s algorithm, the N HR pixels, denoted as T
Nxxx ],[x 2,1 


  in vector 

form, are estimated as 







L

k mk

L

k kmk
m

y
x

1

1ˆ



  for m=1,2…N             (2.11)  

where T
Lyyy ],[y 2,1 

   are the registered LR pixels, mx̂  is the estimate of the mth 

HR pixel and  
L

n mkmk 1
/   is the normalized weight of the kth LR pixel when 

estimating mx̂ . Weights mk  is a particular coefficient of matrix W which is 

defined as 
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     (2.12) 

where R is the auto-covariance matrix of { ky |k=1,… L} and P is the cross-covariance 

matrix of { ky |k=1,… L} and { mx |m=1,...N}.   

By considering that the observed LR pixel ky  is corrupted with an additive 

zero mean random noise n and its noise-free version is kkk nyf  , where kn  is 

the noise value sampled at the position of LR pixel ky , we have 
 

 2}{}{ n
TT ffEyyER 


           (2.13) 

and            }{}{ TT xfExyEP
               (2.14) 

where T
Lffff ],[ 2,1 


 , E{} is the expectation operator and 2

n  is the local 

variance of the noise.  

In theory, kf  are samples of {f(i,j)}, a blurred version of the original HR image 

{x(i,j)}. In formulation, we have ),(*),(),( jibjixjif  , where b  is the blurring 

function. Accordingly, the cross-covariance of ),( jix  and ),( jif  and the 

auto-covariance of ),( jif  can be, respectively, determined by  

),(),(),( jibjirjir xxfx               (2.15) 

and   ),(),(),(),( jibjibjirjir xxff      (2.16) 
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In Hardie’s algorithm, it is assumed that the covariance between two x samples 

can be modeled as  

222),( ji
xxx jir                     (2.17) 

where (i,j) is the distance of the two x samples,  (=0.75) is a tuning parameter that 

controls the decay of the auto-covariance with spatial distance and 2
x  is the local 

variance of x. In particular, 2
x  is estimated as 

 0,/)(max 222 Cnyx                      (2.18) 

where  2
y  is the local variance of { ky |k=1,… L} and 

 








 
i j

ji djdijibjibC )),(),((
22

            (2.19) 

Elements of }{ TffE


  and }{ TxfE

  in eqns. (2.13) and (2.14) and hence 

W can then be determined with ),( jir ff    and ),( jir fx  , where (i,j) is the 

distance of the two involved pixels.  

Figure 2.5 shows the overall workflow of the algorithm. As mentioned earlier, 

this algorithm is simple yet effective in providing a good super-resolution image 

reconstruction performance, and hence is used in our study as a vehicle to explore the 

potential of interpolation-based super-resolution image reconstruction algorithms. To 

a certain extent, this algorithm is just a raw application of adaptive Wiener filtering 

and leaves much room for further improvement. In fact, the approach exploited in this 

algorithm forms a solution framework to handle super-resolution image 

reconstruction. Our contributions reported in this work are all developed based on this 

framework. In the following chapters, they will be discussed one by one.  
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For reference purpose, the algorithm presented in this section is considered as 

the conventional adaptive Wiener filtering algorithm for super-resolution image 

reconstruction and is referred to as AWFc hereafter in this thesis. Unless specifically 

specified, the interpretation of all variable notations appeared in Chapters 3, 4 and 5 

follows the convention used in this section. All assumptions and conditions used in 

AWFc also apply to the algorithms presented in these chapters unless specifically 

specified.  
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Figure 2.5  Overall workflow of conventional adaptive Wiener filtering [Hardie07] 

for super-resolution image reconstruction  
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Chapter 3 

ADAPTIVE WIENER FILTERING WITH CLASSIFIED 

INTENSITY COVARIANCE MODELS  

3.1  Introduction 

In AWFc[Hardie07], a HR pixel is estimated to be a weighted sum of the 

registered LR pixels in its local region. From Section 2.4, one can see that the weight 

for each involved registered LR pixel is a function of (i) its distance from the HR 

pixel to be estimated and (ii) the local sample variance in the local region. The model 

of ),( jirxx   specified in eqn. (2.7) plays a significant role to determine the value of 

the weight. 

AWFc’s covariance model ),( jirxx   adapts to the local sample variance only 

and does not take the edge characteristics into account. Obviously, pixels are more 

correlated in a non-edge region than an edge region. An edge breaks the correlation 

between the pixels in different sides of the edge. AWFc may be able to handle a 

region containing a sharp edge to a certain extent as a sharp edge produces large local 

variance. However, for regions containing edges which introduce small intensity 

difference, its local variance may not be large enough to make AWFc’s covariance 
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model reflect the real covariance among the pixels. 

By considering the aforementioned factor, we suggest using two individual 

intensity covariance models for edge and smooth regions separately when deriving the 

weights of the registered LR pixels. Every local region in an image is classified as 

either an edge or non-edge region. A corresponding intensity covariance model is then 

used to derive the weights of the LR pixels in the region. 

This chapter is organized as follows. In section 3.2, we show that, as compared 

with the original covariance model function used in AWFc[Hardie07], an exponential 

function can provide a better performance in modeling the local intensity covariance 

of an image. In Section 3.3, a classification scheme is proposed to classify local 

regions of a HR image to be estimated into edge regions or non-edge regions. When 

adaptive Wiener filtering technique is used, this allows one to exploit a more proper 

local covariance model to derive the weights of the available LR pixels for estimating 

the HR pixels in a local region. Two dedicated local intensity covariance models for 

regions of different nature are also derived in this section. In Section 3.4, simulation 

results are provided for comparing the performance of the proposed algorithm with 

the other state-of-the-art super-resolution image reconstruction algorithm. Finally, a 

brief summary is given in Section 3.5. 

3.2  Exponential Covariance Function 

In AWFc[Hardie07], the intensity covariance between two HR pixels are 

modeled as  

222),( ji
xxx jir                     (3.1) 

where (Δi,Δj) is the distance vector between two HR pixels,  is a tuning parameter 

that controls the decay of the autocorrelation with distance and 2
x  is the local 

variance of the HR image. This model is based on the assumption that the intensity 
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values of the samples along a particular direction can be modeled as a 1st order 

stationary Markov sequence with correlation coefficient . In practice, due to the 

existence of edges and local textures, the assumption may not always be valid. In this 

section, we will show that the correlation between two pixels in an image is better to 

be modeled with an exponential function. 

The idea of using an exponential function instead of eqn.(3.1) to model the 

intensity covariance between two HR pixels comes from the fact that an exponential 

function is more general. The classical central limit theorem states that the properly 

normed sum of a set of independent and identically distributed (i.i.d.) random 

variables will tend towards a normal distribution as the number of variables increases 

if each of these random variables is of finite variance. Without the finite variance 

assumption it becomes a stable distribution.  

The characteristic function of a uni-variate stable distribution is given as 
[Levy87]. 

)]),( )( 1[exp()(  
ttsignjtjbtt             (3.2) 

where                b(-,), >0, (0,2], [-1,1], 
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Parameter  is called characteristic exponent which controls the heaviness of the tail 

of the stable distribution. As shown in Figure 3.1, the smaller the value of , the 
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heavier the tail is. Parameter  determines the dispersion of the stable distribution. 

Parameters  and b are, respectively, the symmetric parameter and the shift parameter. 

For a symmetric stable distribution without shift, we have =b=0. Accordingly, its 

characteristic function becomes an exponential function given as  

)exp()(
 tt   where >0 and (0,2]           (3.3) 

The intensity correlation of the pixels in a local region of a HR image can be 

modeled with a symmetric stable distribution function as )( 22 ji    = 

))(exp( 2/22  ji  , where 22 ji   is the distance between two HR pixels. 

In such a case, the intensity covariance of the pixels in the region can be modeled as  

 2/222 )(exp),(  jijir xxx    for 0  2], (0,     (3.4) 

where 2
x  is the local intensity variance of the region. 

 

 

Figure 3.1  Characteristic functions of a stable distribution with =1. 
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 In order to investigate whether model function (3.4) is better than model 

function (3.1) to model the intensity covariance between two HR pixels, a simulation 

was carried out to evaluate the modeling performance of the two models. In particular, 

a set of testing images shown in Appendix A were partitioned into a number of local 

regions to form a set of patch data for evaluation. With the evaluation data set, model 

functions (3.4) and (3.1) were then, respectively, used as the target model function to 

obtain the corresponding optimal model parameters using a regression analysis. 

Specifically, the following cost function was minimized in the optimization. 

  
 


k ji

kxxkxx jirjirJ
|||,|

2
)()( ),(ˆ),(   for all patch k   (3.5) 

where )(kxxr  is the covariance matrix derived with (i) a particular target model 

function and (ii) the variance of the kth patch in the evaluation data set , and )(ˆ kxxr  

is the covariance matrix computed with the real data in the patch.   is the range of 

signal to be considered in the measure. For example, a 5×5 image block containing 

totally 25 pixels is involved in the computation when 5 . 

When model function (3.4) was used as the target model function, its optimized 

parameters  and  were obtained by solving the following equations. 
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where 
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  (3.8) 

It is not easy to solve eqns. (3.7) and (3.8) directly and hence the gradient 

descent method was exploited to solve the equations iteratively as follows.  
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                 (3.9) 

where t and t, respectively, denote the estimates of  and  obtained at the tth 

iteration. Parameter  is a positive step size which controls the speed of convergence. 

In our evaluation study,  is empirically chosen to be 0.1. The initial estimate of  

and  are 0 =2 and 0 =1 respectively, which makes the initial estimate of the model 

function as the conventional Gaussian function. This makes sure that the final 

estimate of the model function obtained with the gradient descent method does not 

deviate from the conventional Gaussian function too much and at the same time it is 

locally optimal. 

When model function (3.1) was used as the target model function, its optimized 

parameter  was obtained by solving 
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Again, it is not easy to solve eqn. (3.11) directly and the gradient descent 

method was exploited to solve the equations iteratively as follows.  

1
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

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J
tt


                 (3.12) 

where t denotes the estimate of  obtained at the tth iteration. The initial estimate of  

is 0 =0.95 which is tentatively picked and it does not affect the final optimal 

estimate in our study. 

From the regression results, it was found that the optimal model parameter value 

for model (3.1) was =0.9 while the optimal model parameters for model (3.4) were     

=1.4 and =0.46. Table 3.1 shows the cost associated with the two optimized models 

for the testing data. The cost is computed based on the cost function (3.5). The result 

shown in the table justifies that the model based on function (3.4) is better as 

compared with the model based on function (3.1) to describe the local intensity 

covariance between two pixels in an image having the characteristics similar to the 

images shown in Appendix A. 

),( jirxx   model  7.0222 )(46.0exp jix  22

)9.0(2 ji
x

  

Cost in terms of J 0.0624 1.0244 

Table 3.1  Fitting performance of different covariance models of pixel intensity 
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values in a local region of an image based on a set of testing images. 

Since model function (3.4) is better to describe the intensity covariance between 

two pixels in an image, hereafter we will use it as the default model function 

framework instead of the one proposed in AWFc[Hardie07] in our subsequent study 

unless it is specified otherwise. 

3.3  Classified intensity covariance models 

AWFc exploits a covariance model which adapts to the local sample variance 

only. It does not take the edge characteristics into account. In practice, pixels are more 

correlated in a non-edge region than an edge region as an edge breaks the correlation 

between the pixels in different sides of the edge. In view of this, a simple trick is 

proposed to improve the model in this section. In particular, by making use of a 

simple edge-sensing detector, we classify a local patch as either an edge patch or not, 

and then apply a corresponding covariance model to derive the correlation between 

the HR pixels in the patch.   

The classification of patches is implemented with a classifier referred to as local 

context classifier (LCC) in this work. First of all, the LR image whose grid aligns 

with the grid of the target HR image is selected to be the reference LR image. The 

intensity gradient magnitude of the reference image at each pixel is estimated by 

convolving the image with a Sobel operator. As a result, a gradient map of the image 

is formed. A binary edge map is then obtained by thresholding the resultant gradient 

map. Accordingly, based on the portion of the edge map associated with a particular 

local patch, any pixel in the patch is classified as either an edge pixel or not. If more 

than half of the pixels in a patch are edge pixels, the patch is considered as an edge 

patch or else it is not. 

For each type of patches, a dedicated intensity covariance model is required. A 

set of testing images shown in Appendix B were partitioned into a number of local 
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regions to form a set of patch data for parameter evaluation. All patches in the set 

were classified with LCC. During the classification, the original images were all 

treated as LR images.  

To determine the optimal  and  for edge patches, all edge patches in the set 

were collected to form a subset, which is denoted as e , and the following cost 

function was minimized with respect to  and  respectively.     

   
 


ek ji

kxxkx jirjiJ
5|||,|

2
)(

2/222
)( ),(ˆ)(exp    (3.14) 

where k is the index value of the kth patch in set e , 2
)(kx  is the intensity variance 

of the patch, and )(ˆ kxxr  is the covariance matrix computed with the real data in the 

patch. It was found that the optimal model parameter values for edge patches are 

=1.454 and =0.450. 

Similarly, the optimal model parameter values for non-edge patches were also 

determined with all non-edge patches in the evaluation set. In particular, they were 

found to be =1.12 and =0.474. One can see that the  value for non-edge patches is 

smaller than that for edge patches. This implies that there is a stronger correlation 

between two pixels which are considerably far apart in a non-edge region. 

After all, the two local intensity covariance models for different regions are 

given as 
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 (3.15) 

where 2
x  is the local intensity variance of the unknown HR image. Figure 3.2 

shows the intensity covariance models used in AWFc and the ones used in our 
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proposed algorithm for comparison. They are all normalized such that )0,0(xxr =1. 

In practice, 2
x  has to be estimated with the LR pixels in a particular local 

region. In our realization, 2
x  is estimated as 

 0,/)(max 222 Cnyx                       (3.16) 

where 2
y  is the intensity variance of all LR pixels registered in the region, 2

n  is 

the local noise variance and 

djdijibjibeC ji    )),(),(()( 22                (3.17) 

where b(i,j) is the blurring function discussed in Section 2.4. By following the steps 

detailed in Section 2.4, the weights of all LR pixels used to estimate a HR pixel in the 

region can be determined and, accordingly, the HR image can be obtained by adaptive 

Wiener filtering.  

 

  (a)                    (b)                    (c)  
Figure 3.2 Normalized local intensity covariance models of HR patches: (a) 

AWFc[Hardie07] (b) ours for edge region, and (c) ours for non-edge 
region 

The modification presented in this chapter to AWFc results in a new algorithm. 

This algorithm classifies a local region to be either an edge region or not and then 

selects a corresponding spatial intensity covariance model to adaptively adjust the 

weights of the LR pixels when estimating the HR pixels in the region. Hereafter, this 

algorithm is referred to as AWFcs for reference.  
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3.4  Simulation results 

Simulations were carried out to evaluate the improvement of the proposed 

algorithm with respect to AWFc and some other super-resolution image reconstruction 

methods. A set of twenty 8-bit gray level aerial images shown in Appendix A were 

used as original HR images in the simulation. All of them are of original size 500×500 

pixels. For each one of them, a sequence of 10 LR images was generated as follows.  

First of all, a sequence of real value displacement vectors was randomly 

generated in a way that the value of each of their elements was bounded by 2. The 

HR image was then translationally shifted by sub-pixel spacing using bicubic 

interpolation, blurred with a Gaussian filter of size 55, down-sampled by 5 in both 

horizontal and vertical directions, and finally corrupted with additive zero-mean 

random noise of variance 2
n . The translational shift for the kth image in the sequence 

was set to be the accumulated sum of the first k-1 aforementioned displacement 

vectors. In the simulation, the original HR images were estimated with their 

corresponding LR sequences. In other words, the ratio of the target resolution of the 

reconstructed HR image to the resolution of a LR image for each dimension is 5. A 

sliding window of size 1515 pixels moves over the HR grid to reconstruct the 55 

HR pixels in the center region of the window. The initial sub-pixel registration step 

was carried out with the algorithm proposed in [Keren88]. 

Tables 3.2 and 3.3 show the performance achieved with different 

super-resolution image reconstruction algorithms in terms of PSNR under noise 

conditions 2
n =25 and 2

n =50 respectively. In particular, PSNR is defined as 

 


),(
21

2

10
)),(ˆ),((

255
log10

0 jiN
jixjix

PSNR  in dB        (3.18) 

where x and x̂  are, respectively, the original HR image and its estimate, and 0N  is 

the total number of image pixels involved in the comparison. 
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Noise 2
n =25 

Image Bicubic Elad97 Farsiu04 AWFc Pham06 AWFcs AWFcs* 

P
S

N
R

 (
dB

) 

1 19.00  20.49  21.30  25.42 25.42  26.02  25.59  

2 18.66  20.15  20.93  24.80 24.77  25.35  25.06  

3 21.01  23.32  23.99  29.24 29.25  29.74  29.27  

4 17.62  19.35  18.24  22.49 22.50  22.98  22.68  

5 18.93  20.92  21.21  25.08 25.07  25.44  25.13  

6 22.42  22.79  23.98  27.64 27.72  27.47  27.52  

7 17.86  18.81  19.88  22.34 22.35  22.51  22.46  

8 17.95  19.95  20.66  25.28 25.29  25.99  25.44  

9 17.28  18.83  19.53  23.63 23.64  24.56  23.54  

10 17.71  18.97  19.87  24.17 24.12  24.53  24.14  

11 16.60  17.92  18.72  22.76 22.75  22.93  22.53  

12 18.22  20.41  21.02  26.17 26.16  27.03  25.21  

13 18.17  20.47  21.13  26.65 26.66  27.54  26.86  

14 19.34  20.95  21.83  25.94 25.95  26.63  25.31  

15 18.65  20.11  20.89  24.89 24.89  25.08  25.14  

16 17.90  19.70  20.32  23.84 23.85  24.52  24.17  

17 18.48  19.71  20.54  23.80 23.79  24.16  23.98  

18 20.11  21.81  22.61  26.32 26.31  26.42  26.63  

19 17.82  19.16  20.00  23.41 23.43  23.86  23.61  

20 17.29  18.75  19.47  23.25 23.23  23.11  23.15  

Average: 18.55  20.13  20.81  24.86 24.86  25.29  24.87  

Average Time: 0.02s  15.74s 45.16s  25.15s 29.21s  25.54s  25.80s  

 

 

 

 

 

 

 

Table 3.2  PSNR performance (in dB) and computation time of various 

super-resolution image reconstruction algorithms under noise condition 

2
n

 
= 25  
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Noise 2
n =50 

Image Bicubic Elad97 Farsiu04 AWFc Pham06 AWFcs AWFcs* 

P
S

N
R

 (
dB

) 

1 18.94  20.33  21.29  25.11 25.12  25.67  25.25  

2 18.61  20.00  20.91  24.59 24.57  25.07  24.68  

3 20.92  23.03  23.92  28.71 28.19  28.96  28.50  

4 17.58  18.16  19.38  22.25 22.28  22.75  22.46  

5 18.86  20.34  21.21  24.86 24.81  25.16  24.69  

6 22.27  22.55  23.96  27.52 27.08  27.10  26.22  

7 17.80  18.73  19.88  22.21 22.18  22.02  22.27  

8 17.90  19.82  20.64  25.05 25.02  25.66  24.84  

9 17.24  18.85  19.65  23.13 23.42  24.31  23.12  

10 17.66  18.86  19.86  23.91 23.93  24.27  23.67  

11 16.57  17.84  18.71  22.54 22.57  23.02  22.21  

12 18.18  20.30  21.02  25.78 25.85  26.64  24.50  

13 18.10  20.32  21.12  26.10 26.32  27.01  26.33  

14 19.29  20.80  21.79  25.69 25.66  25.87  23.97  

15 18.58  20.30  21.08  24.74 24.69  24.89  24.83  

16 17.84  19.59  20.00  23.64 23.69  24.26  23.79  

17 18.42  19.59  20.54  23.58 23.58  23.13  23.58  

18 20.04  21.62  22.60  26.05 26.12  26.69  26.16  

19 17.78  19.06  20.00  23.24 23.20  22.91  23.29  

20 17.26  18.65  19.48  23.04 23.05  22.46  22.80  

Average: 18.49  19.94  20.85  24.59 24.57  24.89  24.36  

Average Time: 0.02s  15.74s 45.16s  25.15s 29.21s  25.54s  25.80s  

 

Table 3.3  PSNR performance (in dB) and computation time of various 
super-resolution image reconstruction algorithms under noise condition 

2
n

 
= 50. 

In AWFcs, the two covariance models exploited for regions of different nature 

are derived based on model function (3.4). In fact, the two models can also be derived 

based on model function (3.1). In our simulation, we also derived two optimized 

models based on model function (3.1) with the images shown in Appendix B and used 

them instead in AWFcs to realize super-resolution image reconstruction. This version 
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of AWFcs is referred to as AWFcs* and its performance is also shown in Tables 3.2 

and 3.3 for comparison. One can see that AWFcs* is inferior to AWFcs. Once again, it 

verifies that function (3.4) is better than function (3.1) in modeling the local intensity 

covariance of an image. 

 

Noise 2
n =100 

Image Bicubic Elad97 Farsiu04 AWFc Pham06 AWFcs AWFcs* 

P
S

N
R

 (
dB

) 

1 18.82  20.05  21.26  23.99 23.93  24.97  24.70  

2 18.46  19.76  20.89  24.23 24.20  24.30  24.03  

3 20.73  22.53  23.84  27.14 27.18  27.80  27.78  

4 17.49  17.98  19.34  21.93 22.02  22.34  22.12  

5 18.75  20.03  21.17  24.41 24.40  23.95  24.12  

6 22.00  22.23  24.10  26.84 26.99  26.43  25.06  

7 17.73  18.50  19.84  21.91 21.94  21.96  21.95  

8 17.81  19.57  20.62  24.30 24.67  25.00  24.39  

9 17.16  18.69  19.67  23.08 23.03  22.77  23.29  

10 17.58  18.67  19.85  23.56 23.17  23.18  22.85  

11 16.51  17.71  18.72  22.26 22.19  21.81  21.84  

12 18.09  20.07  21.00  25.30 25.30  22.98  23.64  

13 17.99  20.02  21.10  25.17 25.10  26.19  25.76  

14 19.15  20.52  21.78  25.25 25.23  23.82  22.44  

15 18.48  20.02  21.06  24.37 24.36  24.43  24.34  

16 17.75  19.35  20.30  23.37 23.42  23.19  23.38  

17 18.33  19.37  20.54  23.28 23.27  23.17  23.27  

18 19.89  21.28  22.58  25.78 25.77  25.29  25.15  

19 17.68  19.62  19.66  22.21 22.29  22.97  22.34  

20 17.20  18.50  19.47  22.17 22.10  22.13  22.19  

Average: 18.38  19.72  20.84  24.03 24.03  23.93  23.73  

Average Time: 0.02s  15.74s 45.16s  25.15s 29.21s  25.54s  25.80s  

 

 

 

 

 

 

Table 3.4  PSNR performance (in dB) and computation time of various 
super-resolution image reconstruction algorithms under noise condition 

2
n

 
= 100. 

 The Table 3.4 shows the performance of various algorithms under noise 

condition 2
n =100. It is found that AWFcs is more sensitive than AWFc to the noise. 
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When noise condition is very poor, its performance is even lower than that of AWFc.  

Figures 3.3-3.5 show parts of the simulation results of different super-resolution 

image reconstruction algorithms for visual comparison. The input LR sequences are 

corrupted with random Gaussian noise of 2
n =50. In particular, Figures 3.3(a), 3.4(a) 

and 3.5(a) show the first LR frames of the LR sequences. They are interpolated by 

duplication for display. In general, the proposed algorithm provides sharper and more 

robust interpolation results than the other evaluated algorithms. By taking the 

classification result into account when deriving the covariance model among pixels, 

the proposed algorithm handles regions of different nature separately and provides 

better processing results. This can be verified from the outputs shown in Figures 

3.3(f), 3.4(f) and 3.5(f). The algorithms were also evaluated with the real LR images 

shown in Appendix C to investigate their performance in real situation. Figure 3.6 

shows the reconstruction results of the 5th image. The zooming factor is 5. Similar 

observations can be found.  
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Figure 3.3  Parts of the super-resolution image reconstruction results of Image 3: (a) 
interpolation by duplication, (b) Bicubic, (c) Elad97, (d) Farsiu04, (e)  
AWFc, (f) AWFcs, (g) Pham06 and (h) the original 
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Figure 3.4  Parts of the super-resolution image reconstruction results of Image 7: (a) 

interpolation by duplication, (b) Bicubic, (c) Elad97, (d) Farsiu04, (e) 
AWFc, (f) AWFcs, (g) Pham06 and (h) the original 
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Figure 3.5  Parts of the super-resolution image reconstruction results of Image 8: (a) 
interpolation by duplication, (b) Bicubic, (c) Elad97, (d) Farsiu04, (e) 
AWFc, (f) AWFcs, (g) Pham06 and (h) the original 
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Figure 3.6  Parts of the super-resolution image reconstruction results obtained with 

real captured images: (a) interpolation by duplication, (b)Bicubic, (c) 
Elad97, (d) Farsiu04, (e) AWFc, (f) AWFcs and (g) Pham06 
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3.5  Summary 

The proposed modification to AWFc [Hardie07] classifies image regions and 

accordingly adapts the covariance model of HR pixels to reflect the real situation 

when determining the weights of the involved LR pixels to estimate a HR pixel. As a 

consequence, the improved algorithm adapts the estimation of HR pixels to both the 

local sample variance and the local edge characteristics. Simulation results show that 

the modification improves the super-resolution image reconstruction performance 

both objectively and subjectively. 

However, this binary classification scheme may still be too simple to handle 

regions with various contexts well. For example, the edge orientation in an edge 

region should also affect the intensity covariance model in the region. In the following 

chapter, this issue is addressed and a solution is proposed accordingly to take this into 

account. 
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Chapter 4 

ADAPTIVE WIENER FILTERING WITH A DIRECTIONAL 

INTENSITY COVARIANCE MODEL 

4.1 Introduction  

As shown in Chapter 3, the success of the simple trick exploited in our first 

attempt to improve the performance of AWFc confirms the direction of improvement. 

As a matter of fact, the idea can be further extended to improve the intensity 

covariance model. Obviously, pixels along an edge should be more correlated than 

those pixels in different sides of the edge. As a result, the covariance model function 

should be anisotropic according to the edge orientation in a local region. In our 

second attempt, we evaluate the sample variances along various directions in a local 

region and, based on the evaluation result, adjust the shape of covariance model 

function. By doing so, the orientation of the covariance model function and the extent 

of its asymmetricity are fully adaptive to the local characteristics. Unlike the approach 

adopted in our first attempt, no explicit region classification is required.  

This chapter is organized as follows. In section 4.2, an adaptive directional 

intensity covariance model is introduced and its difference to the conventional 

isotropic covariance model is contrasted. Replacing the original covariance model 
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used in AWFc[Hardie07] with this directional intensity covariance model results in a 

new version of adaptive Wiener filtering algorithm for super-resolution image 

reconstruction.  In Section 4.3, some simulation results are presented for 

performance evaluation. Finally, a brief summary is given in the last section. 

 

4.2  Directional covariance model 

As shown in eqns. (3.1) and (3.4), the covariance model exploited in AWFc and 

those exploited in AWFcs are all isotropic models. In practice, covariances among 

samples in a local region are probably not isotropic due to the presence of edges or 

texture. Hence, a directional anisotropic covariance model would be better to describe 

the actual situation. The subsequent question is how to estimate the edge direction and 

the anisotropic characteristic in a local region.  

 

Figure 4.1 A preliminarily interpolated 5x5 image patch for estimating local 

anisotropic characteristic 

Here, we propose to initially interpolate the observed signal to a higher 

resolution before estimating the direction and anisotropic characteristic. As an 

example, when the enlargement factor equals 2, every 3×3 local patch in the LR 
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image is first preliminarily interpolated to a 5x5 HR image patch by bicubic 

interpolation before estimating the anisotropic characteristic of the region. Figure 4.1 

shows the pixel arrangement of the enlarged image patch with its center served as the 

center of the interested region. 

After the interpolation, the mean square gradient value along each of the 8 

possible directions shown in Figure 4.1 is estimated by using the pair of pixels 

marked with the corresponding direction index value and the center pixel. For 

instance, for direction 3, the corresponding mean square gradient value is computed as 

  


2
22

3 ),(),(
m oooo jigmjmig            (4.1) 

where g(i,j) is the known (either by estimation or observation) sample value at 

position (i,j) of the 5x5 HR image patch, and  ),( oo ji  are the coordinates of the 

center. 

The direction t that provides the minimum mean square gradient value, denoted 

as  majort , is regarded as the major axis of the correlation model while its 

perpendicular direction is the minor axis denoted as t
minor

. In formulation, we have 

}{minarg 2

8...2,1
t

t
majort 


                      (4.2) 

where 2
t  is the mean square gradient value along direction t. 

The eccentricity ratio defined as  

22 /
majorminor tt                          (4.3) 

is then used to describe the anisotropic characteristic of the region. To avoid extreme 

values, clipping is used to bound the value of  between 0 and 1.  
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With parameter , the proposed directional anisotropic covariance model is 

defined as 

 ))j cosi (sin)j sin (cos (2 22

),(  i
xxx ejir        (4.4) 

where  is the angle from direction 1 to direction majort .  

By controlling , one can adjust the correlation model to be anisotropic for an 

edge region or isotropic for a smooth region adaptively according to the nature of the 

local region. Figure 4.2 shows the shapes of model function (4.4) of different values 

of  when (, )=(1.4, 0.46) and majort =3. Here, (, ) is selected to be (1.4, 0.46) 

based on the simulation result presented in Section 3.2. In that study, all patches 

generated with the images shown in Appendix A were used without classification to 

derive the optimal values of  and . The optimization result is (, )=(1.4, 0.46). 

 An empirical study was carried out to demonstrate the appropriateness of the 

anisotropic model proposed in this chapter in modeling the local spatial covariance of 

an image. In this study, the local intensity covariance of patches with various context 

were modeled with function (4.4) and function (3.4) respectively. The resultant 

models were than evaluated to see if they could reflect the reality.  

Figure 4.3 shows a typical image and Figure 4.4(a) shows 4 marked regions of 

the image shown in Figure 4.1. The 4 regions are of different local spatial content. 

The intensity covariance between any pixel in a paricular region and the center pixel 

of the region is modeled with functions (3.4) and (4.4) respectively. Figure 4.4(b) and 

Figure 4.4(c), respectively, show the normalized contour plot of the two resultant 

models. One can see that the proposed family of anisotropic models is more 

appropriate than the isotropic models to describe the local intensity covariance of the 

regions.   
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Figure 4.2  Normalized directional covariance model function with different  
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Figure 4.3  A typical image with four marked local regions 

 

(a) 

(b) 

(c) 

Figure 4.4  Covariance models derived for regions of different nature based on 

different approaches: (a) spatial content of local regions, (b) normalized 

isotropic model function derived based on function (3.4) and (c) 

normalized directional model function derived based on function (4.4) 
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As discussed in Section 2.5, the model used to describe the covariance between 

two HR pixels are critical to the performance of adaptive Wiener filtering in super 

–resolution image reconstruction. When directional covariance model function (4.4) is 

used instead of function (3.1) to model the local intensity covariance of an HR image, 

2
x  is the local variance of the unknown HR image and it has to be estimated with 

the LR pixels in the local region. In our realization, 2
x  is estimated as 

 

 0,/)(max 222 Cnyx                        (4.5) 

 

where 2
y  is the variance of all LR pixels registered in the region, 2

n  is the local 

noise variance and 

djdijibjibeC jiji    )),(),(())cossin()sin cos(( 22     (4.6) 

Function b(i,j) is the blurring function discussed in Section 2.5. By following the steps 

detailed in Section 2.5, the weights of all LR pixels used to estimate a HR pixel in the 

region can be determined and, accordingly, the HR image can be obtained by adaptive 

Wiener filtering. 

The modification presented in this chapter to AWFc results in a new algorithm. 

This algorithm estimates the edge or texture orientation in a local region and then 

adjusts the shape of the spatial intensity covariance model for the region. The weights 

of the LR pixels used to estimate the HR pixels in the region can hence be adaptively 

adjusted accordingly. As the local intensity model used in this algorithm can be 

anisotropic, this algorithm is referred to as AWFa for reference hereafter. 
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4.3 Simulation results 

Simulations were carried out to evaluate the improvement of the proposed 

algorithm with respect to AWFc. The set of twenty 8-bit gray level aerial images 

shown in Appendix A were used as original HR images in the simulation. All of them 

are of original size 500×500 pixels. For each one of them, a sequence of 10 LR 

images was generated as follows.  

First of all, a sequence of real value displacement vectors was randomly 

generated in a way that the value of each of their elements was bounded by 2. The 

HR image was then translationally shifted by sub-pixel spacing using bicubic 

interpolation, blurred with a Gaussian filter of size 55, down-sampled by 5 in both 

horizontal and vertical directions, and finally corrupted with additive zero-mean 

random noise of variance 2
n . The translational shift for the kth image in the sequence 

was set to be the accumulated sum of the first k-1 aforementioned displacement 

vectors.  

The original HR images were estimated with their corresponding LR sequences 

in the simulation. The ratio of the target resolution of the reconstructed HR image to 

the resolution of a LR image for each dimension is 5. A sliding window of size 1515 

pixels moves over the HR grid to reconstruct the 55 HR pixels in the center region of 

the window. The initial sub-pixel registration step was carried out with the algorithm 

proposed in [Keren88]. 

Tables 4.1 and 4.2 show the performance achieved with different SR algorithms 

in terms of PSNR under noise conditions 2
n =25 and 2

n =50. One can see that the 

average performance of AWFa is better than other conventional super-resolution 

image reconstruction algorithms in terms of PSNR. As compared with AWFcs, on 

average there is a slight PSNR improvement. 
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Noise 2
n =25 

Image Bicubic Elad97 Farsi04 AWFc Pham06 AWFcs AWFa  AWFa* 

P
S

N
R

 (
dB

) 

1 19.00  20.49 21.30 25.42 25.42  26.02  26.06  25.42 

2 18.66  20.15 20.93 24.80 24.77  25.35  25.44  24.86 

3 21.01  23.32 23.99 29.24 29.25  29.74  29.89  28.89 

4 17.62  19.35 18.24 22.49 22.50  22.98  23.08  22.59 

5 18.93  20.92 21.21 25.08 25.07  25.44  25.51  24.87 

6 22.42  22.79 23.98 27.64 27.72  27.47  28.18  27.19 

7 17.86  18.81 19.88 22.34 22.35  22.51  22.37  22.31 

8 17.95  19.95 20.66 25.28 25.29  25.99  26.27  25.30 

9 17.28  18.83 19.53 23.63 23.64  24.56  24.58  23.59 

10 17.71  18.97 19.87 24.17 24.12  24.53  24.57  23.97 

11 16.6.0 17.92 18.72 22.76 22.75  22.93  23.25  22.39 

12 18.22  20.41 21.02 26.17 26.16  27.03  27.25  24.98 

13 18.17  20.47 21.13 26.65 26.66  27.54  27.76  26.49 

14 19.34  20.95 21.83 25.94 25.95  26.63  26.94  25.23 

15 18.65  20.11 20.89 24.89 24.89  25.08  25.36  24.93 

16 17.90  19.70 20.32 23.84 23.85  24.52  24.53  23.75 

17 18.48  19.71 20.54 23.80 23.79  24.16  24.04  23.77 

18 20.11  21.81 22.61 26.32 26.31  26.42  27.06  26.47 

19 17.82  19.16 20.00 23.41 23.43  23.86  23.88  23.45 

20 17.29  18.75 19.47 23.25 23.23  23.11  23.66  22.91 

Average: 18.55  20.13 20.81 24.86 24.86  25.29  25.48  24.67 

Average Time: 0.02s  15.74s 45.16s 25.15s 29.21s 25.54s  39.78s 39.75s 

 

 

 

 

 

 

Table 4.1  PSNR performance (in dB) and computation time of various 
super-resolution image reconstruction algorithms under noise condition 

2
n

 
= 25. 
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Noise 2
n =50 

Image Bicubic Elad97 Farsiu04 AWFc Pham06 AWFcs AWFa AWFa*

P
S

N
R

 (
dB

) 

1 18.94  20.33 21.29  25.11 25.12  25.67  25.66  25.05 

2 18.61  20.00 20.91  24.59 24.57  25.07  25.12  24.55 

3 20.92  23.03 23.92  28.71 28.19  28.96  29.08  28.25 

4 17.58  18.16 19.38  22.25 22.28  22.75  22.83  22.37 

5 18.86  20.34 21.21  24.86 24.81  25.16  25.17  24.52 

6 22.27  22.55 23.96  27.52 27.08  27.10  27.37  26.09 

7 17.80  18.73 19.88  22.21 22.18  22.02  22.18  22.09 

8 17.90  19.82 20.64  25.05 25.02  25.66  25.92  24.95 

9 17.24  18.85 19.65  23.13 23.42  24.31  24.27  23.29 

10 17.66  18.86 19.86  23.91 23.93  24.27  24.26  23.52 

11 16.57  17.84 18.71  22.54 22.57  23.02  23.02  22.09 

12 18.18  20.30 21.02  25.78 25.85  26.64  26.80  23.72 

13 18.10  20.32 21.12  26.10 26.32  27.01  27.16  26.03 

14 19.29  20.80 21.79  25.69 25.66  25.87  26.53  24.08 

15 18.58  20.30 21.08  24.74 24.69  24.89  25.02  24.67 

16 17.84  19.59 20.00  23.64 23.69  24.26  24.24  23.44 

17 18.42  19.59 20.54  23.58 23.58  23.13  23.78  23.49 

18 20.04  21.62 22.60  26.05 26.12  26.69  26.68  25.84 

19 17.78  19.06 20.00  23.24 23.20  22.91  23.31  23.17 

20 17.26  18.65 19.48  23.04 23.05  22.46  23.42  22.43 

Average: 18.49  19.94 20.85  24.59 24.57  24.89  25.09  24.18 

Average Time: 0.02s  15.74s 45.16s  25.15s 29.21s 25.54s  39.78s 39.75s 

Table 4.2  PSNR performance (in dB) and computation time of various 

super-resolution image reconstruction algorithms under noise condition 

2
n

 
= 50. 
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Noise 2
n =100 

Image Bicubic Elad97 Farsiu04 AWFc Pham06 AWFcs AWFa AWFa* 

1 18.82 20.05 21.26 23.99 23.93 24.97 24.97 24.46 

2 18.46 19.76 20.89 24.23 24.20 24.30 24.53 24.10 

3 20.73 22.53 23.84 27.14 27.18 27.80 28.15 27.35 

4 17.49 17.98 19.34 21.93 22.02 22.34 22.22 22.01 

5 18.75 20.03 21.17 24.41 24.40 23.95 23.85 23.89 

6 22.00 22.23 24.10 26.84 26.99 26.43 25.64 24.85 

7 17.73 18.50 19.84 21.91 21.94 21.96 21.72 21.86 

8 17.81 19.57 20.62 24.30 24.67 25.00 25.21 24.14 

9 17.16 18.69 19.67 23.08 23.03 22.77 23.15 22.38 

10 17.58 18.67 19.85 23.56 23.17 23.18 23.32 22.84 

11 16.51 17.71 18.72 22.26 22.19 21.81 21.56 21.57 

12 18.09 20.07 21.00 25.30 25.30 22.98 22.92 22.61 

13 17.99 20.02 21.10 25.17 25.10 26.19 26.29 25.44 

14 19.15 20.52 21.78 25.25 25.23 23.82 23.86 22.60 

15 18.48 20.02 21.06 24.37 24.36 24.43 24.28 23.95 

16 17.75 19.35 20.30 23.37 23.42 23.19 23.32 23.01 

17 18.33 19.37 20.54 23.28 23.27 23.17 22.88 23.02 

18 19.89 21.28 22.58 25.78 25.77 25.29 25.27 24.51 

19 17.68 19.62 19.66 22.21 22.29 22.97 22.86 22.42 

20 17.20 18.50 19.47 22.17 22.10 22.13 21.72 21.91 

Average: 18.38 19.72 20.84 24.03 24.03 23.93 23.89 23.45 

Time: 0.02 15.74 45.16 25.15 29.21 25.54 39.78 39.75 

Table 4.3  PSNR performance (in dB) of various super-resolution image 

reconstruction algorithms under noise condition 
2
n

 
= 100. 

Table 4.3 shows the performance of various algorithms under noise condition 2
n =50. 

Like AWFcs, AWFa is sensitive to noise when the noise condition is poor, the 

estimation of edge direction is not reliable and hence it results in a inaccurate 

covariance model. In such a case, AWFa is even poorer than AWFc. 
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Figures 4.5-4.7 show parts of the simulation results of different super-resolution 

image reconstruction algorithms for visual comparison. The input LR sequences are 

corrupted with random Gaussian noise of 
2
n =50. In particular, Figures 4.5(a), 4.6(a) 

and 4.7(a) show the first LR frames of the LR sequences. They are interpolated by 

duplication for display. In general, the proposed algorithm provides sharper and more 

robust interpolation results than the other evaluated algorithms. By taking the edge 

and texture orientation in a local region into account when deriving the intensity 

covariance model among pixels, the proposed algorithm handles regions of different 

nature separately and provides better processing results. This can be verified from the 

outputs shown in Figures 4.5(f), 4.6(f) and 4.7(f). 

Though from Tables 4.1 and 4.2 one can only see a slight difference between 

AWFcs and AWFa in their PSNR performance, AWFa can actually provide a 

subjectively better processing result than AWFa as a more flexible model is used in 

AWFa to handle more different scenarios in super resolution. Figure 4.8 serves as an 

example to show such a case. This justifies the usefulness of the anisotropic intensity 

covariance model proposed in this chapter. 

The algorithms were also evaluated with the real LR images shown in Appendix 

C to investigate their performance in real situation. Figure 4.9 shows the 

reconstruction results of the 5th image. Similar observations can be found. 

In AWFa, the directional covariance model is derived based on model function 

(3.4). In fact, the directional model can also be derived based on model function (3.1). 

We also derived such models and replaced the models used in AWFa with them to 

realize super-resolution image reconstruction. This version of AWFa is referred to as 

AWFa* and its PSNR performance is also included in Tables 4.1 and 4.2 for 

comparison. One can see that AWFa* is inferior to AWFa. It shows that a model in the 

form of function (3.1) is inferior to a model in the form of function (3.4) in this 

scenario as well.  
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Figure 4.5   Parts of the super-resolution image reconstruction results of Image 8: 

(a) Bicubic, (b) Elad97, (c) Farsiu04, (d) AWFc, (e) AWFcs, (f) AWFa 

(g) Pham 06 and (h) the original 
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Figure 4.6  Parts of the super-resolution image reconstruction results of Image 4: (a) 

Bicubic, (b) Elad97, (c) Farsiu04, (d) AWFc, (e) AWFcs, (f) AWFa (g) 

Pham 06 and (h) the original 
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Figure 4.7  Parts of the super-resolution image reconstruction results of Image 3: (a) 

Bicubic, (b) Elad97, (c) Farsiu04, (d) AWFc, (e) AWFcs, (f) AWFa (g) 

Pham 06 and (h) the original 
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Figure 4.8  Enlarged super-resolution image reconstruction results of Image 8 for 

illustrating the effectiveness of AWFa. (a) AWFcs (b) AWFa (c) Original, 

with 502 n  
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Figure 4.9  Parts of the super-resolution image reconstruction results obtained with 

real captured images: (a) interpolation by duplication, (b)Bicubic, (c) 

Elad97, (d) Farsiu04, (e) AWFc, (f) AWFcs, (g) AWFa and (h) Pham 06 
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4.4 Summary 

In this chapter, a directional covariance model is proposed to model the local 

intensity covariance of a HR image based on the available LR pixels in the region. 

Specifically, we evaluate the sample variances of the LR pixels along various 

directions in the region and, based on the evaluation result, adjust the shape of 

covariance model function. Accordingly, the resultant anisotropic model can handle 

regions of directional features properly, which is impossible for conventional isotropic 

covariance models. With this directional intensity covariance model, an adaptive 

Wiener filtering algorithm can effectively improve the super-resolution image 

reconstruction performance as the algorithm can now adapt the estimation of HR 

pixels to both the local sample variance and the local edge characteristics. Simulation 

results show that the modification improves the super-resolution image reconstruction 

performance both objectively and subjectively.   

The proposed directional covariance model relies on the detection of the edge 

orientation in a local region. For regions which have complicated textures or edges of 

different orientations, the model may not be able to handle it well. In that case, the 

model becomes isotropic to play safe. Another potential problem of the model is that 

the edge detection has to be based on the LR pixels as the HR image is unknown in 

practice. A wrongly detected the edge direction misguides the interpolation and hence 

introduces unexpected artifacts. These factors limit the performance of AWFa in the 

end. In the following chapter, this issue is addressed and an even better covariance 

model is proposed to tackle these potential problems. 
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Chapter 5 

ADAPTIVE WIENER FILTERING WITH INTENSITY 

COVARIANCE MODELS RECTIFIED WITH LOW RESOLUTION 

SAMPLES 

5.1 Introduction 

Though a visible improvement in the super-resolution image reconstruction 

performance can be achieved with the directional covariance models introduced in 

Chapter 4, there is still room for further improvement. To a certain extent, AWFa tries 

to detect the edges and then rectify the covariance model according to the detected 

edge direction. This is not always easy to achieve. For example, it is not easy to detect 

a complicated edge especially when it is in a texture or noisy region. Besides, since 

the high resolution image is not available, the detection has to be based on the 

available low resolution images and hence the detection may not be accurate. To solve 

this problem, in this chapter we add an additional element to the intensity covariance 

model to take care of the edge characteristics implicitly such that no explicit edge 

detection is required. 

In general, the more two pixel’s intensity values are different, the more likely 

that the two pixels are separated by an edge or corrupted by noise. Based on this 
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observation, a new covariance model is defined to be a function of both the intensity 

difference and the geometric distance of two pixels. Without any explicit edge 

detection, the model automatically deemphasizes the correlation between two pixels 

which are not in the same side of an edge. Accordingly, the weights of the pixels for 

estimating the high resolution pixels can be determined more reliably with the 

covariance model, and a better super-resolution image reconstruction result can be 

obtained at the end. 

This chapter is organized as follows. In Section 5.2, two covariance models are 

separately proposed. Both models use the intensity difference of the available LR 

samples in a local region to rectify an isotropic geometric-distance-based covariance 

model, which makes them automatically adapt to sophisticated local textures. Based 

on these two new models, a better adaptive Wiener filtering algorithm is then 

proposed. Some simulation results are reported in Section 5.3 to show the 

performance of the newly proposed adaptive Wiener filtering algorithm as compared 

with the conventional super-resolution image reconstruction algorithms. In the final 

section of this chapter, a brief summary is provided. 

 

5.2 Rectified covariance model 

In adaptive Wiener filtering, a HR pixel is estimated as a weighted sum of the 

registered LR pixels in its local region. The local intensity covariance of HR pixels, 

),( jirxx  , plays a significant role to determine the value of the weight. No matter 

AWFc[Hardie07], AWFsc or AWFa is used, ),( jirxx   is modeled as a function of 

the geometric distance between two HR pixels as given in eqn. (3.1), (3.4) or (4.4). 

In general, two pixels are more correlated when they are closer to each other. 

However, this stationary spatial covariance model simplifies the real situation as it 

does not take the regional edge characteristics into account. Obviously, an edge breaks 

the correlation between the pixels in different sides of the edge and hence the 
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covariance model should be directional and non-stationary.  

A remedial solution is to detect the edges and then rectify the covariance model 

according to the detected edge direction as shown in Chapter 4. However, this 

approach does not always work properly. First, it is not easy to detect an edge when 

there is noise. Second, the HR image is not available and hence the detection has to be 

based on the available LR images. It is difficult to locate an edge accurately in the HR 

image to be estimated as a lot of HR samples are missing at the moment. Third, 

available edge detection schemes may not be able to handle complicated curves well 

especially in a texture region.  

To solve this problem, in our proposed solution we add an additional element to 

the covariance model to take care of the edge characteristics implicitly such that no 

explicit edge detection is required. 

In general, the intensity values of the samples in the same side of an edge are 

more or less the same while those in different sides are very different. The more two 

pixel’s intensity values are different, the more likely that the two pixels are separated 

by an edge or corrupted by noise. In other words, they are likely to be more 

uncorrelated. 

Based on this idea, two new covariance models are proposed in this chapter. One 

describes the covariance between two x samples located at positions of the observed 

LR pixels. These positions are marked with crosses in the example shown in Figure 

2.4. The other one describes the covariance between a x sample located at the position 

of an observed LR pixel and a x sample located at the position of a HR pixel to be 

estimated. The position of the former x sample is marked with a red cross in the 

example shown in Figure 2.4 while that of the latter x sample is marked with a blue 

circle.  

The former covariance models are used to estimate auto-covariance matrix R 

while the latter is used to estimate cross-covariance matrix P. As discussed in Section 

2.5, these two matrices play a critical role in determining the weights of the available 
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LR pixels when estimating the HR pixels in the same local region. For reference, 

these two new covariance models are, respectively, referred to as homogeneous model 

and heterogeneous model hereafter. Besides, as in Section 2.4, the set of the locations 

of the observed LR pixels and the set of the locations of the HR pixels to be estimated 

are, respectively, referred to as l  and h . 

Homogeneous model: 

Let (i,j) and (i+i,j+j) be the positions of any two x samples of interest in this 

model. As both (i,j) and (i+i,j+j) belong to l , y(i,j) and y(i+i,j+j) are known 

because of prior registration. The covariance model for this situation is proposed as 

follows.    
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where 2
x  is the local variance of the HR image and 2

n  is the noise variance.  

There are two components, namely,  

)/)(exp(),( 22
.. jijir dg 

            (5.2) 

and  

)2/),(),(exp(),(.. ndi jjiiyjiyjir       (5.3) 

in this proposed model function. The first one takes the geometric distance between 

two pixels into account while the second one takes the observed intensity difference 
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of the two pixels into account. This covariance model reflects the fact that two pixels 

are highly uncorrelated when the intensity values of their noisy blurred versions are 

very different even though they are close in geometric distance. By considering that   

y(i,j) = f(i,j)+n(i,j)  and f(i+i,j+j))  f(i,j) = x(i,j)b(i,j) in a smooth local region,  

we have E{(y(i,j)- y(i+i,j+j))2}   E{(n(i,j)-n(i+i,j+j))2} = 22 n . Hence, 

|(y(i,j)-y(i+i,j+j))| is scaled with 1/ n2  to tolerate the noise in ),(.. jir di  . 

n is assumed to be known. 

Parameters γ is used to control the effect of the two components and weight 

their contribution to the model. They can be determined with some training video 

sequences via an empirical study. In our study, γ is selected to be 5. 

Figure 5.1 shows how ),(.. jir dg 
 
and ),(.. jir di 

 
contribute to the intensity 

correlation between two HR pixels in regions of different natures. In particular, Figure 

5.1 (a) shows four noisy blurred regions which contain complicated edges, smooth 

intensity transition, texture and a straight edge respectively. By using Figure 5.1 (a) as 

the observed LR images, the intensity correlation between any pixel in a particular 

region and the center pixel of the region is derived with eqn. (5.1), and its normalized 

contour plot is plotted in Figure 5.1 (d). The proposed model adapts to the local 

characteristics of a region. Without any explicit edge detection, it automatically 

rejects or deemphasizes the pixels which are not in the same side of an edge with the 

pixel of interest. Accordingly, the weights of the pixels for estimating the HR pixels 

can be determined more reliably with the covariance model, and a better 

super-resolution image reconstruction result can be obtained at the end. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.1   Normalized covariance models for regions of various nature: (a) 

Observed noisy LR images (SNR=40dB); (b) contribution of 

),(.. jir dg   to the proposed model; (c) contribution of ),(.. jir di   to 

the proposed model; and (d) proposed model   

Heterogeneous model: 

This covariance model describes the covariance between a x sample located at 

the position of an observed LR pixel and a x sample located at the position of a HR 

pixel to be estimated. Let (i+i,j+j)  l   and (i,j) h  be, respectively, the 

positions of these two x samples of interest. In such a case, y(i+i,j+j) is known. 

However, as neither y(i,j) nor x(i,j) is known, estimation has to be carried out and the 

covariance model is modified from the one suggested in eqn. (5.1) as 
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where ),(ˆ jif  is an estimate of ),(*),(),( jibjixjif  . In a smooth local region, we 

should have f(i+i,j+j))  f(i,j) ),(ˆ jif  when i and j are small. Accordingly, we 

have E{( ),(ˆ jif  - y(i+i,j+j))2}  E{(n(i+i,j+j))2} = 2
n  and hence  | ),(ˆ jif - 

),( jjiiy  | is scaled with 1/ n  to tolerate the noise when it is used to rectify 

the covariance model. 

In either covariance model shown in eqn (5.1) or (5.4), 2
x  is the local variance 

of the unknown HR pixels and it has to be estimated with the LR pixels in the local 

region. In our realization, 2
x  is estimated as   

 0,/)(max 222
onyx C                   (5.5) 

where 2
y  is the variance of all LR pixels registered in the region, 2

n  is the noise 

variance and 
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where b(i,j) is the blurring function discussed in Section 2.5. By following the steps 

detailed in Section 2.5, the weights of all LR pixels used to estimate a HR pixel in the 

region can be determined and, accordingly, the HR image can be obtained by adaptive 

Wiener filtering. 

 

Estimation of ),(ˆ jif : 
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As mentioned earlier, estimates of ),(ˆ jif  for (i,j) h  are required to derive 

the covariance model defined in eqn. (5.4). As we have f(i,j) = x(i,j)b(i,j) and b(i,j) is 

known, ),(ˆ jif  can be determined as long as x(i,j) is known. Hence, a preliminary 

estimate of x(i,j) is required.  

Various approaches such as a bilinear interpolation of the available LR pixels 

can be used to estimate x(i,j). In our approach, we replace covariance models shown 

in eqns. (5.1) and (5.4) with 
 

   )/)(exp(),( 222  jijir xxx              (5.7) 

and then use the same proposed algorithm with covariance model shown in eqn. (5.7) 

to get the preliminary estimate of x(i,j).  

Figure 5.2 summaries the overall workflow of the proposed super-resolution 

image reconstruction algorithm. 

The modification presented in this chapter to AWFc results in another new 

adaptive Wiener filtering algorithm. This algorithm derives the correlation between 

two pixels in a local region based on (i) their geometric distance and (ii) the known or 

estimated intensity difference between their LR samples. Based on the derivation 

results, it adaptively adjusts the weights of the involved LR pixels when estimating 

the HR pixels in a region. As the derivation of the intensity covariance model 

exploited in the algorithm can be viewed as a process of rectifying a conventional 

geometric-distance-based intensity covariance model with the intensity difference of 

the available local LR pixels , this algorithm is referred to as AWFr for reference 

hereafter. 

 



71 
 

 
 

Figure 5.2  Flow of the proposed super-resolution image reconstruction algorithm 
 

 

5.3  Simulation results 

Simulations were carried out to evaluate the performance of the proposed 

algorithm. The set of twenty 8-bit gray level aerial images shown in Appendix A were 

used as original HR images in the simulation. All of them are of original size 500×500 

pixels. For each one of them, a sequence of 10 LR images was generated as follows.  

First of all, a sequence of real value displacement vectors was randomly 

generated in a way that the value of each of their elements was bounded by 2. The 

HR image was then translationally shifted by sub-pixel spacing using bicubic 

interpolation, blurred with a Gaussian filter of size 55, down-sampled by 5 in both 

horizontal and vertical directions, and finally corrupted with additive zero-mean 

random noise of variance 2
n . The translational shift for the kth image in the sequence 

was set to be the accumulated sum of the first k-1 aforementioned displacement 

vectors.  

The original HR images were estimated with their corresponding LR sequences 

in the simulation. The ratio of the target resolution of the reconstructed HR image to 

the resolution of a LR image for each dimension is 5. A sliding window of size 1515 

pixels moves over the HR grid to reconstruct the 55 HR pixels in the center region of 

the window. The initial sub-pixel registration step was carried out with the algorithm 

proposed in [Keren88]. 
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Tables 5.1 and 5.2 show the performance achieved with different 

super-resolution image reconstruction algorithms in terms of PSNR under noise 

conditions 2
n =25 and 2

n =50. One can see that the average performance of AWFr 

is better than other conventional SR algorithms in terms of PSNR. Another interesting 

observation is that AWFr’s PSNR improvement with respect to AWFc[Hardie07] is 

remarkably larger than AWFa’s and AWFcs’s.  

Table 5.3 shows the performance of various algorithms under noise condition 

2
n =100. One can see that AWFr is not sensitive to the noise as AWFcs, AWFa and 

AWFc. It is still able to provide better results than the others. 

In AWFa, the intensity values of local LR pixels are used to rectify a 

geometric-distance-based model which is in a form of function (5.2). Actually one can 

also apply the same idea presented in this chapter to rectify a 

geometric-distance-based model in the form of function (3.1). This version of AWFr 

is referred to as AWFr* and its performance is also shown in Tables 5.1 and 5.2 for 

comparison. One can see that AWFr* is inferior to AWFr. This shows that a 

geometric-distance-based covariance model in the form of function (3.1) does not 

work properly with the idea presented in this chapter. 

Figures 5.3-5.5 show parts of the simulation results of different super-resolution 

image reconstruction algorithms for visual comparison. The input LR sequences are 

corrupted with random Gaussian noise of 2
n =25 and 2

n =50. In general, the 

proposed algorithm provides sharper and more robust interpolation results than the 

other evaluated algorithms. By rectifying a conventional geometric-distance-based 

intensity covariance model with the intensity difference of the available local LR 

pixels, the proposed algorithm takes good care of the noise and the local edge 

characteristics implicitly and provides a good super-resolution image reconstruction 

result. 
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Noise 2
n =25 

Image Bicubic Elad97 Farsi04 AWFc Pham06 AWFcs AWFa  AWFr AWFr*

P
S

N
R

 (
dB

) 

1 19.00  20.49  21.30 25.42 25.42  26.02 26.06  26.17  25.42 

2 18.66  20.15  20.93 24.80 24.77  25.35 25.44  25.28  24.77 

3 21.01  23.32  23.99 29.24 29.25  29.74 29.89  30.48  29.25 

4 17.62  19.35  18.24 22.49 22.50  22.98 23.08  23.21  22.47 

5 18.93  20.92  21.21 25.08 25.07  25.44 25.51  25.26  25.07 

6 22.42  22.79  23.98 27.64 27.72  27.47 28.18  27.42  27.65 

7 17.86  18.81  19.88 22.34 22.35  22.51 22.37  22.47  22.35 

8 17.95  19.95  20.66 25.28 25.29  25.99 26.27  27.35  25.27 

9 17.28  18.83  19.53 23.63 23.64  24.56 24.58  24.97  23.62 

10 17.71  18.97  19.87 24.17 24.12  24.53 24.57  24.64  24.17 

11 16.6.0 17.92  18.72 22.76 22.75  22.93 23.25  23.24  22.75 

12 18.22  20.41  21.02 26.17 26.16  27.03 27.25  29.05  26.17 

13 18.17  20.47  21.13 26.65 26.66  27.54 27.76  29.00  26.67 

14 19.34  20.95  21.83 25.94 25.95  26.63 26.94  27.70  25.94 

15 18.65  20.11  20.89 24.89 24.89  25.08 25.36  25.21  24.86 

16 17.90  19.70  20.32 23.84 23.85  24.52 24.53  24.22  23.83 

17 18.48  19.71  20.54 23.80 23.79  24.16 24.04  23.48  23.81 

18 20.11  21.81  22.61 26.32 26.31  26.42 27.06  26.52  26.31 

19 17.82  19.16  20.00 23.41 23.43  23.86 23.88  23.35  23.39 

20 17.29  18.75  19.47 23.25 23.23  23.11 23.66  23.36  23.21 

Average: 18.55  20.13  20.81 24.86 24.86  25.29 25.48  25.62  24.85 

Average Time: 0.02s  15.74s  45.16s 25.15s 29.21s 25.54s 39.78s  35.75s  26.82s 

Table 5.1  PSNR performance (in dB) and computation time of various 

super-resolution image reconstruction algorithms under noise condition 

2
n

 
= 25. 
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Noise 2
n =50 

Image Bicubic Elad97 Farsiu04 AWFc Pham06 AWFcs AWFa AWFr AWFr*

P
S

N
R

 (
dB

) 

1 18.94  20.33  21.29  25.11 25.12  25.67 25.66  25.75  25.10 

2 18.61  20.00  20.91  24.59 24.57  25.07 25.12  25.07  24.50 

3 20.92  23.03  23.92  28.71 28.19  28.96 29.08  29.64  28.69 

4 17.58  18.16  19.38  22.25 22.28  22.75 22.83  22.84  22.34 

5 18.86  20.34  21.21  24.86 24.81  25.16 25.17  25.00  24.82 

6 22.27  22.55  23.96  27.52 27.08  27.10 27.37  27.57  27.50 

7 17.80  18.73  19.88  22.21 22.18  22.02 22.18  22.03  22.17 

8 17.90  19.82  20.64  25.05 25.02  25.66 25.92  26.68  25.06 

9 17.24  18.85  19.65  23.13 23.42  24.31 24.27  24.86  23.39 

10 17.66  18.86  19.86  23.91 23.93  24.27 24.26  24.35  23.90 

11 16.57  17.84  18.71  22.54 22.57  23.02 23.02  23.07  22.59 

12 18.18  20.30  21.02  25.78 25.85  26.64 26.80  28.13  25.85 

13 18.10  20.32  21.12  26.10 26.32  27.01 27.16  28.24  26.33 

14 19.29  20.80  21.79  25.69 25.66  25.87 26.53  27.08  25.71 

15 18.58  20.30  21.08  24.74 24.69  24.89 25.02  24.94  24.70 

16 17.84  19.59  20.00  23.64 23.69  24.26 24.24  23.85  23.67 

17 18.42  19.59  20.54  23.58 23.58  23.13 23.78  23.39  23.58 

18 20.04  21.62  22.60  26.05 26.12  26.69 26.68  26.28  26.12 

19 17.78  19.06  20.00  23.24 23.20  22.91 23.31  23.20  23.18 

20 17.26  18.65  19.48  23.04 23.05  22.46 23.42  23.28  23.02 

Average: 18.49  19.94  20.85  24.59 24.57  24.89 25.09  25.26  24.61 

Average Time: 0.02s  15.74s  45.16s  25.15s 29.21s 25.54s 39.78s  35.75s  26.82s 

 
Table 5.2  PSNR performance (in dB) and computation time of various 

super-resolution image reconstruction algorithms under noise condition 
2
n

 
= 50. 
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Noise 2
n =100 

Image Bicubic Elad97 Farsiu04 AWFc Pham06 AWFcs AWFa AWFr AWFr*

P
S

N
R

 (
dB

) 

1 18.82  20.05  21.26  23.99 23.93  24.97 24.97  25.10  24.67 

2 18.46  19.76  20.89  24.23 24.20  24.30 24.53  24.66  24.23 

3 20.73  22.53  23.84  27.14 27.18  27.80 28.15  28.45  27.97 

4 17.49  17.98  19.34  21.93 22.02  22.34 22.22  22.41  21.95 

5 18.75  20.03  21.17  24.41 24.40  23.95 23.85  24.58  24.41 

6 22.00  22.23  24.10  26.84 26.99  26.43 25.64  27.47  27.09 

7 17.73  18.50  19.84  21.91 21.94  21.96 21.72  21.61  21.95 

8 17.81  19.57  20.62  24.30 24.67  25.00 25.21  25.96  24.59 

9 17.16  18.69  19.67  23.08 23.03  22.77 23.15  24.37  23.15 

10 17.58  18.67  19.85  23.56 23.17  23.18 23.32  23.86  23.56 

11 16.51  17.71  18.72  22.26 22.19  21.81 21.56  22.68  22.25 

12 18.09  20.07  21.00  25.30 25.30  22.98 22.92  27.11  25.36 

13 17.99  20.02  21.10  25.17 25.10  26.19 26.29  27.05  25.74 

14 19.15  20.52  21.78  25.25 25.23  23.82 23.86  26.15  25.25 

15 18.48  20.02  21.06  24.37 24.36  24.43 24.28  24.59  24.35 

16 17.75  19.35  20.30  23.37 23.42  23.19 23.32  23.64  23.38 

17 18.33  19.37  20.54  23.28 23.27  23.17 22.88  23.20  23.30 

18 19.89  21.28  22.58  25.78 25.77  25.29 25.27  25.95  25.82 

19 17.68  19.62  19.66  22.21 22.29  22.97 22.86  22.91  22.87 

20 17.20  18.50  19.47  22.17 22.10  22.13 21.72  22.87  22.79 

Average: 18.38  19.72  20.84  24.03 24.03  23.93 23.89  24.73  24.23 

Average Time: 0.02s  15.74s  45.16s  25.15s 29.21s 25.54s 39.78s  35.75s  26.82s 

 
Table 5.3  PSNR performance (in dB) and computation of various super-resolution 

image reconstruction algorithms under noise condition 
2
n

 
= 100. 
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Figure 5.3  Parts of the super-resolution image reconstruction results of Image 3: (a) 

Bicubic, (b) Elad97, (c) Farsiu04, (d) AWFcs, (e) AWFa, (f) AWFr, (g) 

AWFc, (h) Pham06 and (i) the original 

 

 

 

 



77 
 

 
Figure 5.4  Parts of the super-resolution image reconstruction results of Image 4: (a) 

Bicubic, (b) Elad97, (c) Farsiu04, (d) AWFcs, (e) AWFa, (f) AWFr, (g) 

AWFc, (h) Pham06 and (i) the original 
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Figure 5.5  Parts of the super-resolution image reconstruction results of Image 12: (a) 

Bicubic, (b) Elad97, (c) Farsiu04, (d) AWFcs, (e) AWFa, (f) AWFr, (g) 

AWFc, (h) Pham06 and (i) the original 
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Figure 5.6  Super-resolution image reconstruction results obtained with different 

adaptive Wiener filtering algorithms: (a) AWFa (b) AWFr and (c) 

Original.  

 

For a better visual comparison of the outputs of AWFa and AWFr, Figure 5.6 

shows the enlarged results of the outputs of AWFa and AWFr. The input LR 

sequences are corrupted with random Gaussian noise of 2
n =50. One can see that 

AWFr does not only produce finer edges and sharper texture, but remove more noise 

as well. 

The algorithms were also evaluated with the real LR images shown in Appendix 

C to investigate their performance in real situation. Figure 5.7 shows the 

reconstruction results of the 5th image. Similar observations can be found. 

In the proposed algorithm, a preliminary estimate of ),(ˆ jif  for (i,j) h  are 

required to derive the covariance model defined in eqn. (5.4) and its estimation is 

suggested in Section 5.2. A study was carried out to see if some other conventional 

approaches could also provide a good preliminary estimate for deriving the 

covariance model. The testing data was generated in the same way as presented earlier. 

Table 5.3 shows the performance of various approaches for comparison and it can be 

found that the suggested solution is an appropriate solution to achieve the goal.  
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Figure 5.7  Parts of the super-resolution image reconstruction results obtained with 

real captured images: (a) interpolation by duplication, (b)Bicubic, (c) 

Elad97, (d) Farsiu04, (e) AWFc, (f) AWFcs, (g) AWFa, (h)AWFr, and (i) 

Pham06 
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Method for 
obtaining 

preliminary 
estimates 

Noise condition
 

2
n =25 2

n =50 2
n =100

Bilinear 17.19 18.57 18.70 
Hardie07 25.11 24.85 24.46 

the proposed 25.62 25.26 24.73 

Table 5.4  Average PSNR performance (in dB) achieved by AWFr with different 

preliminary estimates of HR pixels obtained with different approaches  

 

5.4  Summary 

Two intensity covariance models are proposed in this chapter. One is for 

describing the covariance between two HR pixels located at positions of observed LR 

pixels while the other one is for describing the covariance between two HR pixels one 

of which is located at positions of observed LR pixels. Each model is in a form of a 

function of the geometric distance of two pixels and the intensity difference of the 

known or estimated LR samples of the pixels.  

In AWFc[Hardie07], AWFcs and AWFa, we have one model for each local 

region. The covariance of any pair of pixels in the same region is derived based on the 

same model. When the texture in the region is very complicated, one may not be able 

to use the shared covariance model to accurately estimate the covariance between a 

particular pair of pixels in the region. On the contrary, we have one dedicated model 

for each pair of pixels in AWFr. No compromise is required for the model to take care 

of all pixels in the region. Consequently, the proposed models can faithfully reflect 

the real covariance between two pixels in a region and fully adapt to the local 

characteristics of a region. Without any explicit edge detection, it automatically 
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rejects or deemphasizes the pixels which are not in the same side of an edge with the 

pixel of interest.  

 Based on the newly proposed covariance models, a better adaptive Wiener 

filtering algorithm (AWFr) for super-resolution image reconstruction is proposed. As 

the weights of the pixels for estimating the HR pixels can be determined more reliably 

with the covariance model, a better super-resolution image reconstruction result can 

be obtained with AWFr at the end. Simulation results show the effectiveness of this 

super-resolution image reconstruction algorithm in terms of both objective and 

subjective criteria. 
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Chapter 6 

CONCLUSTIONS AND FUTURE WORK 

6.1 Conclusions 

This dissertation addresses the issue of enhancing the performance of adaptive 

Wiener filtering in super-resolution image reconstruction. In particular, three 

modifications to the conventional adaptive Wiener filtering algorithm [Hardie07] are 

proposed in this work. All of them are based on the utilization of a better intensity 

covariance model in the derivation of the Wiener filter coefficients. 

In Hardie’s adaptive Wiener filtering algorithm [Hardie07], the intensity 

covariance model of two samples in a local region is formulated as an isotropic 

function of (i) the geometric distance between two samples and (ii) the local variance 

of the observed low resolution pixels in the region. Though this simple model reflects 

the correlation of two pixels in the general situation to a certain extent, it is not 

appropriate to describe the pixel correlation in a local region with presence of edge or 

texture. 

The first suggested modification to Hardie’s adaptive Wiener filtering algorithm 

is based on the fact that pixels are more correlated in a non-edge region than an edge 

region in practice. This is because an edge breaks the correlation between the pixels in 

different sides of an edge. Accordingly, the covariance model for regions having an 
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edge should be different from the covariance model for regions without an edge. In 

this first modified adaptive Wiener filtering algorithm, local regions are classified into 

either edge regions or non-edge regions, and then corresponding covariance models 

are used to derive the weights for individual regions. 

The idea is further extended in our second suggested modification to Hardie’s 

adaptive filtering algorithm. Obviously, pixels along an edge should be more 

correlated than those pixels in different sides of the edge, and hence the covariance 

model function should be anisotropic according to the dominant edge orientation in a 

local region. In our second modification proposal, we evaluate the sample variances 

along various directions in a local region and, based on the evaluation result, adjust 

the shape of covariance model function. By doing so, the orientation of the covariance 

model function and the extent of its asymmetricity are fully adaptive to the dominant 

orientation of the texture in the region of interest. Unlike the approach adopted in our 

first proposed modification, no explicit region classification is required.  

In all adaptive Wiener filtering algorithms so far discussed in this chapter, all 

pairs of pixels in the same region follow the same intensity covariance model. 

However, when one probes into the issue further, one can find that the intensity 

correlation between pixels in a region is actually different from pair to pair. In our 

final proposal, each pair of pixels in a local region has its spatial intensity covariance 

model rectified by their known observed or estimated low resolution samples. As a 

consequence, every single pair of pixels has its own covariance model which is in a 

form of a function of both (i) their geometric distance and (ii) the intensity difference 

of their low resolution samples. A local Wiener filter is then possible to fully adapt to 

the local context of a region. Unlike the approach suggested in our second 

modification to Hardie’s algorithm, no explicit edge detection is required. This is 

critical when the low resolution images are too noisy for one to detect the edges. 

Simulation results show that all three proposed modifications to Hardie’s 

algorithm are able to improve the performance of adaptive Wiener filtering in 
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super-resolution image reconstruction in terms of both subjective and objective 

criteria, and the last one provides the best performance among them.    

6.2 Future works 

In this work, we put our focus on the reconstruction of super-resolution images 

based on raw low resolution images. In practice, we might only have compressed low 

resolution images available for the reconstruction. Sometimes these compressed 

images may even be encoded with different lossy codecs such that the quality of the 

low resolution images varies from image to image. A lossy compression introduces 

extra distortion to the observed images, and hence the observation model has to be 

revised.  

In adaptive Wiener filtering, high resolution pixels in a local region are 

estimated as weighted sums of the low resolution samples in the same region. When 

the quality of the available compressed low resolution images is different, the 

contribution of the samples from different low resolution images to the estimation 

should also be weighted so as to take care of the situation. Accordingly, the cost 

function to be minimized when deriving the Wiener filter coefficients should be 

adjusted to take this factor into account. 

In all interpolation-based super-resolution image reconstruction algorithms, a 

registration process is required for registering each observed low resolution sample 

onto a two-dimensional reference space such that a subsequent non-uniform 

interpolation can be done accordingly. It is not always easy to register low resolution 

images accurately especially when the observed images are noisy and when deformed 

objects appear in the observed images. Empirically, the various adaptive Wiener 

filtering algorithms presented in this thesis work with the registration algorithm 

proposed by [Irani91] to provide a good super-resolution image reconstruction 

performance in our simulation results. However, it would be interesting to devote 

some more effort to investigate the impact of the registration to the performance of 
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adaptive Wiener filtering.  

In this work, our focus is on remote sensing applications. The data to be 

processed are aerial images in which there is only a global translation between images. 

This simplifies the situation a bit. For other applications such as high-definition 

television, there can be a number of objects in the scene and their motion is not 

limited to translation. The registration problem can become very complicated. It 

would be a meaningful direction for one to modify the proposed adaptive Wiener 

filtering algorithms to handle such a problem and hence support other applications. 
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Appendix B 
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