
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 
 

THE HONG KONG POLYTECHNIC UNIVERSITY 

DEPARTMENT OF ELECTRONIC AND INFORMATION ENGINEERING 

 

 

 

Adaptive Integer Kernels and Dyadic Approximation 

Error Analysis for State-of-the-Art Video Codecs 

 

 

 

 

 

 

 

 

 

 

 
Wang Qiuwei 

 
 A thesis submitted in partial fulfilment of the requirements for 

the degree of Master of Philosophy 

 

July 2010 

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.



 
 

DECLARATION 

The author of this thesis is officially registered with the name Wang Qiuwei at the Hong 

Kong Polytechnic University, and he publishes research papers under the name Wong Chau 

Wai. 

Wang Qiuwei and Wong Chau Wai are equivalent, and both of them are romanisated from 

the author’s official Chinese name 王秋韡  with Hanyu Pinyin and the Hong Kong 

Government Cantonese Romanisation, respectively. 



 
 

CERTIFICATION OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my knowledge and 

belief, it reproduces no material previously published or written, nor material that has been 

accepted for the award of any other degree or diploma, except where due acknowledgement 

has been made in the text. 

 
 

WANG QIUWEI 
 

 



 
 

DEDICATION 

 

 

 

 

 

 

 

 

To my parents 

 

 



 

i 
 

ABSTRACT 

In this thesis, new integer kernels are found and adaptive transform coding techniques are 

proposed to improve the coding efficiency of state-of-the-art video codecs with detailed 

analyses. The nonorthogonality error analysis is extended and improved. An error caused by 

the dyadic fraction approximation due to the integerization of transform coding is defined and 

followed by deep investigation. 

The desire for the removal of the mismatch between encoder and decoder has been ever 

increasing. In the state-of-the-art video coding standard—the H.264/AVC—the transform 

coding stage was thus integerized to cope with this desire. One of our objectives is to improve 

the coding efficiency of video codec based on this “integer framework”. We propose a new 

DCT-like integer kernel IK(5,7,3) and revitalize another DCT-like integer kernel IK(13,17,7) 

for the transform coding process of hybrid video coding. Making use one of these kernels 

together with the H.264/AVC Kernel IK(1,2,1), we are able to design new multiple-kernel 

schemes which give better coding performance over that of the conventional approaches. All 

these schemes make use of the Adaptive Kernel Mechanism (AKM) at macroblock level, 

which requires heavy computation during the encoding process. We subsequently discovered 

that a rate-distortion feature extracted from a pair of kernels gives an intrinsic property that 

can be used to select a better kernel for a two-kernel macroblock-level AKM system. This is a 

power tool with theoretical interest and practical uses. In order to reduce computation 

substantially, we make use of this tool to make an analysis and design of a frame-level AKM 

and come up with a simple solution that the kernel IK(1,2,1) be used for I- and P-Frames and 

the kernel IK(5,7,3) be used for B-Frames coding. This proposed frame-level AKM is similar, 

or even better, than the proposed macroblock-level AKM. Furthermore it substantially 

reduces computation and certainly gives a good improvement in terms of the PSNR and 

bitrate compared to those obtained from the H.264/AVC default arrangement and other 

macroblock-level AKM schemes available in the literature. 

Nowadays, the demand for large-size (e.g. 16×16) integer transform kernels is increasing 

due to the explosive increase of resolution of videos. However, the orthogonality constraint 

for designing 16×16 integer kernels is much stronger than that for designing 4×4 kernels. 

Hence, several kernel designs violating the constraint in a controllable manner which roughly 

ensures the orthogonality have been proposed. An error analysis by Dong et al. showed that 

the well-controlled nonorthogonality noise is approximately negligible as compared to the 

quantization noise. In this thesis, we enhance the original analysis by pointing out three 
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problems found in derivations and also giving two comments. Nevertheless, the problems are 

defects only, hence do not affect the overall justifications to the nonorthogonality analysis. 

Although the integerization of transform coding process ensures no mismatch between 

encoder and decoder, it also introduces a by-product and we define it as the “dyadic 

approximation error” which can largely affect the visual quality of a reconstructed video 

sequence. We derive the analytical forms of the dyadic approximation error, and compare the 

significances among possible error terms (i.e. the quantization error, nonorthogonality error, 

and dyadic approximation error) using various transform kernels. We conclude that the dyadic 

approximation error is much larger than the nonorthogonality error, and it is comparable to 

the quantization error for fine quantization. We point out that the existence of this error is 

equivalent to scaling each frequency component by a position dependent scalar which is 

slightly larger or smaller than the unity, and also quantizing them with different stepsizes. 

Hence in the reconstruction process, many distorted frequency components are used, and 

eventually a reconstructed frame with frequency artifacts is generated. The conditions to 

eliminate the effect of dyadic approximation error for 16×16 transform kernels are found by 

experimental work. 

On the whole, inspired by the establishment of the “integer framework” since the 

emergence of the H.264/AVC, we carry out a comprehensive investigation on the old 

problems under the new constraint, starting from the optimization of coding performance to 

the analyses of errors. 
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STATEMENTS OF ORIGINALITY 

The following contributions reported in this thesis are claimed to be original. 

 

1. We have proposed a new DCT-like integer kernel IK(5,7,3) and revitalized another DCT-

like integer kernel IK(13,17,7) for the transform coding process of hybrid video coding. 

Making use one of these kernels together with the H.264/AVC Kernel IK(1,2,1), we have 

designed new multiple-kernel schemes which give better coding performance over that of 

the conventional approaches. 

 

2. We have discovered that a rate-distortion feature extracted from a pair of kernels gives an 

intrinsic property that can be used to select a better kernel for a two-kernel macroblock-

level Adaptive Kernel Mechanism (AKM) system. It is a power tool with theoretical 

interest and practical uses. In order to reduce computation substantially, we have made use 

of this tool to make an analysis and design of a frame-level AKM and come up with a 

simple solution that the kernel IK(1,2,1) be used for I- and P-Frames and the kernel 

IK(5,7,3) be used for B-Frames coding. 

 

3. We have enhanced the error analysis of nonorthogonality of transform coding by pointing 

out three problems found in derivations of a recent paper and also giving two comments. 

 

4. A “dyadic approximation error” which can largely affect the visual quality of 

reconstructed video sequence has been defined by us. We have derived the analytical 

forms of the dyadic approximation error, and have compared the significances among 

possible error terms (i.e. the quantization error, nonorthogonality error, and dyadic 

approximation error) using various transform kernels. We have concluded that the dyadic 

approximation error is much larger than the nonorthogonality error, and it is comparable to 

the quantization error for fine quantization. We have pointed out that the existence of this 

error is equivalent to scaling each frequency component by a position dependent scalar 

which is slightly larger or smaller than the unity, and also quantizing them with different 

stepsizes. Hence in the reconstruction process, many distorted frequency components are 

used, and eventually a reconstructed frame with frequency artifacts is generated. The 

conditions to eliminate the effect of dyadic approximation error for 16×16 transform 

kernels have been found by experimental work. 
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Chapter 1. Introduction 

With the development of the information and communication technology, the processing 

of video on commercial products (i.e. the personal computers) has become available since 

1990s. From then on, the digital video application has a more and more important role in our 

everyday work and life. For example, the videoconferencing allows people separated by the 

Atlantic Ocean to communicate effectively as if they were in one place. Or, people may watch 

high-quality films at home with the support of DVD (Digital Versatile Disc) players. The 

digital video application thrives after entering the new millennium, and it has significantly 

changed the way of our life in recent years. Shooting a video and uploading it to the Internet 

instantly has become a popular trend, thanks to the wide spread of the digital cameras (DC) 

and the mobiles phones with the DC function. It is also a brand new life experience to watch 

three-dimensional (3-d) movies and football matches in cinemas, at the time of writing. And 

in the promising future, 3-d television will be a new entertainment for families. 

The sketch of the digital video application that we have described reveals its trace of 

evolution: from low-resolution to high-resolution, and from 2-d video to 3-d video. From the 

technological perspective, the main challenge that the researchers face is to compress the 

video data more severely. In the jargon of video professionals, the coding efficiency of videos 

has to be increased. This is supported by the fact that the increase of the size of the raw video 

contents is much faster than the increase of the channel capacity for transmission. For 

example, an upgrade of user experience of online video streaming from CIF (352×288) to 

720p (1280×720) needs a bandwidth increase of 809% without the consideration of 

improvement of the compression technique. Hence it is essential to develop a new video 

codec with higher compression ability than the conventional ones by optimizing each 

functional block of the codec, and therefore a significant improvement in coding efficiency 

can be achieved. 

Since the emergence of the first video coding standard twenty year ago, there have been 

many standards, i.e. H.261 [1], MPEG-1 [2], H.262/MPEG-2 [3], H.263 [4], MPEG-4 [5], and 

H.264/AVC [6], trying to reach higher coding efficiency based on previous ones. One thing in 

common is that all of them are hybrid video coding standard which makes use of the motion 

compensation, transform coding, quantization, entropy coding and so on to encode videos. In 

this thesis, we focus on the algorithms and techniques of the transform coding and 

quantization of the state-of-the-art video coding standard—the H.264/AVC, to improve the 

coding efficiency and investigate the theories behind. 
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1.1. Literature Review 

1.1.1. Optimal Transforms for Image and Video Coding 

A video is a three-dimensional (3-d) signal with one in the temporal domain (time domain) 

and the other two in the spatial domain. Generally, the motion compensation is used to 

remove the temporal redundancy in the time axis, and the transform coding is used to remove 

the spatial redundancy in the Cartesian coordinate system. The transform coding for videos 

deals with the two-dimensional (2-d) signals. There are two approaches to deal with the 2-d 

signals—one is to do a raster scan so that the 2-d signal is re-ordered into a 1-d signal hence 

1-d transform coding techniques can be applied; the other is to apply the 1-d transform coding 

techniques to the horizontal and vertical directions of the 2-d signal independently. In practice, 

the second approach is more popular due to its low computational complexity. Up to now, all 

the video coding standards have adopted the second approach to code the 2-d residual signals. 

In this thesis, the second approach is assumed unless specified otherwise. 

Starting from the first international video coding standard the H.261, the discrete cosine 

transform (DCT) [7-9] has been adopted for data compaction and decorrelation at the 

transform coding stage. Researchers have provided results on various studies of the DCT 

since its invention [8-9]. Some of them concentrated on different applications and fast 

algorithms of the DCT [10-12], whilst others made further investigation on various forms of 

DCTs. Until the most recent standard the H.264/AVC, it is replaced by the integer transform 

which also belongs to the family of DCT-like transforms. The DCT has been widely accepted 

as the most suitable transform due to its balance between coding efficiency and computational 

complexity. However, the limitations of the DCT have triggered numerous proposals, either 

to improve or replace it with a better algorithm. 

1.1.1.1. Karhunen–Loève Transform (KLT) 

To improve the coding efficiency of a video codec within the transform coding stage, the 

most intuitive idea is to adapt the transform kernel to the statistics of the input data fed for the 

transform coding process. The Karhunen–Loève (KL) Transform [13-14] can provide the 

optimal transform kernel which adapts to the statistics of input data, and thus the obtained 

kernel has the best decorrelation and energy compaction properties. Effros and Chou [15], 

Dony and Haykin [16], and Archer and Leen [17] proposed using the KL Transform (KLT) to 

replace the DCT in order to achieve higher coding efficiency with the cost of increasing the 

computational complexity. Dapena and Ahalt [18] tackled the problem by allowing the switch 

between the KLT and DCT, which can reduce the computational complexity to some extent. 

However, this family of algorithms by using the KLT requires rather high computational 

power hence it is seldom used for video coding. 
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1.1.1.2. Auto-Covariance Modeling 

Another direction is to represent the collective behavior (up to 2nd order statistics) of the 

input data by the auto-covariance model, and then a transform kernel which has comparable 

computational complexity with respect to the DCT Kernel can be easily obtained. Chen [19-

20] first analytically derived the auto-covariance model making use of the translational 

motion in the motion compensation. Niehsen [21] improves the model by taking the 

overlapped block motion compensation into account. Hui and Siu [22-23] further improve 

Chen’s model using a deformation model by assuming both the deformation vectors of 

different pixels and the mean of deformation vectors are Gaussian distributed. The 

subsequently derived model can fit the real data better than the previous models. The auto-

covariance model can provides better transforms which fit the data better than the DCT. 

1.1.1.3. Directional Transforms 

However, one may argue that the statistics of all blocks represented by the auto-covariance 

model still cannot well represent the detailed features of all blocks. One of these features is 

the directional edges, which cannot be fully characterized by the conventional auto-

covariance model since it can only fully represent the horizontal and vertical statistics. 

Kamisli and Lim [24] had given an in-depth analysis by using the generalized separable auto-

covariance model in which the information of edge direction has been incorporated, and 

subsequently shown that the correlation is strong along the edge directions and weak 

perpendicular to edge directions. This is a good justification to various directional schemes. 

Helsingius, Kuosmanen, and Astola [25] improved the coding efficiency by using a set of 

non-separable directional transforms which were trained from artificial edges of various 

orientations. Robert, Amonou and Pesquet-Popescu [26-28], and Kamisli and Lim [24, 29] 

proposed using the circular shifts which align the pixels of a slanted edge into a horizontal or 

vertical edge before taking the conventional horizontal or vertical DCT.  Zeng and Fu [30-33] 

developed a framework that the first transform is performed along a direction rather than the 

horizontal or vertical direction and the second transform is applied to the resultant DCT 

coefficients of the first transform. Drémeau et al. [34] extends the idea from square blocks to 

rectangular blocks. Chang and Girod [35] refined Zeng’s algorithm by modifying some 

transform directions, zigzag scanning pattern, and block partitioning. Xu, Xu and Wu [36] 

argued that Zeng and Fu’s algorithm does not exploit the correlation among neighboring 

blocks with the similar direction, and does not consider the directions at fractional pixels. 

They therefore proposed a directional DCT-like transform based on the lifting structure of the 

DCT by incorporating the care for the directional edges into the so-called “primary 

operations” of the lifting steps. Xu, Wu, Liang and Zhang [37-38] further combined this idea 

with the lapped transforms and proposed the so called “directional lapped transforms.” 
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1.1.1.4. Engineering Approach 

While continuous efforts have been dedicated to the improvement of the directional 

approach based upon theoretical analyses, practitioners are seeking for schemes with higher 

coding efficiency yet reasonable computational complexity comparing to the H.264/AVC. Ye 

and Karczewicz [39-41] proposed a set of separable directional transforms (which is 

commonly referred to as the mode dependent directional transform (MDDT)) for each intra-

prediction mode of the H.264/AVC, and certain improvement has been reported. However, 

the MDDT neither use the circular shifts nor perform a transform along a particular direction; 

instead, the 1-d transforms of the separable MDDT are applied horizontally and vertically in a 

fashion similar to the conventional 2-d DCT, and the transform kernels for each intra-mode 

are obtained empirically by the KLT of the residual data of that particular mode. To be frank, 

this method is not a truly directional approach, since it does not directly exploit the pixels in 

the most correlated directions but indirectly exploits the pixels in horizontal and vertical 

directions. Nevertheless, this method is easy to understand and implement, and requires low 

computation power; hence it has been adopted into the evaluation software of the next 

generation video codec, the Key Technical Area (KTA) [42], and may proposals (e.g. TI [43], 

Media Tek [44], LG [45], Huawei [46], SK telecom [47], Toshiba [48], ETRI [49], and etc.) 

for the new standards has employed it or its variation. Samsung and BBC [50] proposed a 

rotational transform (ROT) which rotates the basis of the DCT Kernel so that directional 

structure can be better caught by the rotated kernel. However, we believe that this algorithm 

also cannot fully exploit the directional information. At the time of writing, both MDDT and 

ROT were included in the document named “Test model under consideration” [51], which 

made them a closer step to the adoption in a test model for the development of the future 

video coding standard. 

1.1.1.5. Multiple Candidate Kernels 

Most algorithms mainly employ a single transform kernel which suits the feature of most 

input data, leaving the remaining data not well coded. To remedy this drawback, researchers 

propose multiple candidate kernels instead of a single kernel. Amongst the multiple-kernel 

scheme, three subclasses can be defined. The first subclass is the directional transforms we 

have mentioned before, since each orientation implies a different transform kernel. The 

second subclass uses self-organizing method to classify input data into different classes, and 

then find the KLT for each class. Wornell and Staelin [52] proposed an iterative Maximum 

Likelihood algorithm to find several kernels that are fit to input data sets with various 

characteristics. Dony and Haykin [16] investigated the best adaption criterion, and input data 

can be classified into appropriate classes by the subspace classifier. Recently, Zhao et al. [46, 

53] proposed using multiple kernels for each intra-prediction mode to further improve the 
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coding efficiency. The third subclass, which focuses more on the transform kernels, uses 

kernels with known characteristics (e.g. DCT, DST, etc.) to code input data. Rose, Heiman, 

and Dinstein [54], considered an segmented image as an chessboard pattern, and proposed the 

KLT/DCT for the “black” blocks and the DST for the residues of “white” blocks. The residue 

of a “white” block is obtained by subtracting the predicted signal using the information 

provided by the surrounding “black” blocks from its original value. The use of the DST to 

code the residues is justified by Jain [55] that a class of signal with boundary information is 

best coded with the sine transform. Recently, Han, Saxena, and Rose [56] theoretically 

analyzed the intra-prediction residue of H.264/AVC, and subsequently proved the optimality 

of the sine transform for the DC mode, horizontal mode, and vertical mode, which is not 

surprising since the residues of intra-prediction is a class of signal with boundary information. 

Lim et al. [57-59] proposed using DCT or DST to code intra- and inter-blocks, and some 

performance gain was achieved. In a recent response to CfP for the future standard, NHK [60] 

proposed using DST for residues of chroma components. Besides the popularity of the DST, 

Helsingius, Kuosmanen, and Astola [25] also tried the Walsh–Hadamard transform (WHT) as 

an alternative kernel in addition to the DCT. However, the performance is even worse since 

extra bits are needed to indicate the selected kernel. 

A graph showing the various transform strategies is summarized in Fig. 1-1. 

 
Fig. 1-1. Various transform strategies to improve the coding efficiency. 

1.1.2. Drift-Free Transforms 

1.1.2.1. Drift Controlling  

For the video coding standards prior to the H.264/AVC, there exists a problem called the 

“drift” which leads to the reconstructed video deviates from the expected video that the 

encoder side generates. It is caused by the mismatch—the different implementations of the 

inverse DCT—between the encoder side and decoder side. In the early days, video people 
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tends bound the mismatch error within an acceptable range. The IEEE standard 1180 [61] is a 

detailed description on this by defining the statistical upper bounds of the peak error, overall 

mean square error, mean error, and overall mean error. It was started and its amendments 

were evolved from the H.261, and they have subsequently served as the mismatch-controlling 

standards for the later video coding standards, i.e. the MPEG-1, H.262/MPEG-2, H.263, and 

MPEG-4. The various mismatch-controlling standards were later centralized by MPEG-C Part 

1 and its first amendment [62-64] due to the withdrawal of IEEE standard 1180. However, the 

mismatch was not totally eliminated by the controlling algorithms such as the oddification [1-

2, 4, 61] and LSB toggling [3, 6, 65]. Meanwhile, the high-quality video applications worsen 

the drift problem. Hence, the intrinsic drift-free transforms are demanding. 

1.1.2.2. Drift Elimination via Integer Approximations of Transforms 

The most intuitive way to avoid drift is to replace the floating-point arithmetic with the 

integer arithmetic, and many algorithms have been proposed accordingly. Jones, Hein, and 

Knauer [66] found the integer approximation of the conversion matrix (which can be viewed 

as the transform kernel) of the order-8 C-matrix transform (CMT) by trial and error. 

Srinivasan, Rao, and Kwak subsequently found the integer approximations of order-16 CMT 

[67] and order-32 CMT [68]. The CMT approach has two major drawbacks: i) the input signal 

needs to be preprocessed by the WHT before the transformation using the conversion matrix, 

and ii) the computational complexity increases significantly as the order of the transform goes 

larger due to the fact that the conversion matrix becomes less and less sparse. Cham and Chan 

[69-71] proposed another integer approximation of the DCT called the integer cosine 

transform (ICT). The ICT replaces the floating-point coefficients of a DCT Kernel with 

integers, while it maintains the orthogonality of the kernel and its relative ratios among the 

coefficients. The principle of dyadic symmetry (which is equivalent to the property of the 

recursive factorization of the DCT Kernel [72]) is utilized to simplify the formulations of the 

constraints. This approach is straightforward and can be implemented with fast algorithms 

[73-74]. However, the similarity of the ICT kernel to the DCT Kernel is mainly restricted by 

the number of bits representing the integer coefficients of the ICT kernel. Allen and Blonstein 

[75] proposed a similar algorithm named the generalized Chen transform (GCT), which also 

makes the use of the recursive factorization of the DCT Kernel but parameterizes the 

coefficients of the DCT Kernel differently. Liang and Tran [76-77] proposed a binary 

arithmetic DCT (binDCT), which fully makes the use of the recursive factorization that the 

transform kernel is completely decomposed into 2×2 rotation matrices, and is flexible that 

perfect reconstruction can be achieved with different levels of finite-bit precision. The perfect 

reconstruction is ensured by the fact that any rotation matrix and its inverse can be 
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decomposed into a pair of similar lifting matrices. Chen, Oraintara, and Nguyen [78] 

proposed a similar design to the binDCT called the Integer DCT (IntDCT). 

In the standardization community, Bjontegaard [79] proposed an integer cosine transform 

kernel by rounding the up-scaled DCT Kernel (which is similar to Cham’s ICT) for the video 

codec aiming to totally remove the “IDCT mismatch”. The design of the ICT was gradually 

improved and one of the ICTs was finally adopted [80-82] as the transform kernel of the 

H.264/AVC due to its simplicity and drift-free characteristic. Other video coding standards 

developed later, such as the Audio Video Standard (AVS) [83] and the SMPTE 421M (VC-1) 

[84], also make use of integer approximations of DCT instead of the conventional floating-

point DCT. 

1.1.3. Coping with High Resolution Video Applications with Large-Size Transforms 

1.1.3.1. Need for Large-Size Kernels 

As the video technology evolves, the demand for video contents of higher definition can 

be gradually fulfilled. The development of the state-of-the-art H.264/AVC was focused on 

increasing the compression ratio through using a combination of various coding tools, hence 

the H.264/AVC can exploit the inter-frame redundancy excellently by varying its motion 

estimation (ME) unit from block-size of 4×4 to 16×16. However, during the development of 

this standard, not much consideration on higher definition contents (e.g. 720p, 1080p, and etc.) 

were taken, hence the performance of the H.264/AVC for higher definition contents is not so 

good as for lower definition contents (e.g. QCIF, CIF, and etc.) This is because the size of the 

ME unit comparing to the size of the video objects becomes smaller as the definition of 

videos increases. Experimental work [85-86] proved that an enlargement of the ME unit can 

help to improve the coding efficiency. Simultaneously, larger-size (e.g. 16×16) transform 

kernels are also needed to cope with the enlargement of the ME unit. 

1.1.3.2. Proposed Order-16 Kernels 

Since the H.264/AVC uses 4×4 and 8×8 transform kernels, 16×16 (order-16) and even 

larger kernels are of interest. Cham and Chan [70] proposed a family of order-16 ICT kernels 

that has a higher efficiency than the Walsh–Hadamard transform (WHT) and C-matrix 

transform (CMT). Dong, Ngan, Fong, and Cham [73-74, 87] proposed a universal approach to 

develop fast algorithm for this family of ICT kernels so that these kernels can be incorporated 

into the video codec, and experimental results show that the order-16 kernels can improve the 

efficiency of video coding. Wien, Mayer, and Ohm [88] proposed a CMT kernel for the WHT 

domain implementation. Ma and Kuo [89] proposed a quasi–DCT-like kernel with non-

smooth even-row basic vectors which trades for a low computational complexity. 
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1.1.3.3. Nonorthogonality Issue 

Recently, Chen, Ye, and Karczewicz [90] proposed using an up-scaled order-16 integer 

kernel, and the kernel was adopted together with other proposed algorithms into the 

evaluation software KTA due to the overall performance improvement. However, this kernel 

is a nonorthogonal one (note that only order-4 DCT Kernel remains orthogonal after up-

scaling and rounding) hence additional error will be introduced when it is used for video 

coding. Lee et al. [91] pointed out its nonorthogonality, and subsequently proposed an 

orthogonal one. Joshi, Reznik, and Karczewicz [92-93] also proposed one with a simple 

recursive factorization structure leading to fast implementation. Dong, Ngan, Fong, and Cham 

[74] analytically proved that the nonorthogonality error caused by up-scaling and rounding is 

insignificant in terms of the variance measurement, hence one of the kernel search criteria—

the orthogonality—can be released a little bit so that much more nonorthogonal kernels that 

resembles the DCT Kernel well can also be used for video coding. They subsequently 

proposed a family of nonorthogonal ICT (NICT) kernels for video coding, and experimental 

results show that the NICT kernels perform better than the conventional ICT kernels. 

1.2. Organization of Thesis 

The rest of the thesis is organized as follows. In Chapter 2, we make a technical review 

from the basic fundamentals on image modeling to the state-of-the-art video coding 

technology, the H.264/AVC. In Chapter 3, we proposed a set of new ICT kernels and 

developed a kernel selection strategy according to a newly-found rate-distortion feature in 

order to improve the coding efficiency. Chapter 4 extends and improves a recent error 

analysis on the nonorthogonality of the transform coding process. In Chapter 5, we propose a 

novel analysis on the dyadic approximation error introduced by the integerization of 

transform coding. We pointed out that the dyadic approximation error is much larger than the 

nonorthogonality error, and it is comparable to the quantization error for fine quantization. In 

Chapter 6, the whole thesis is concluded and future research directions are discussed. 
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Chapter 2. Technical Review 

2.1. Basic Theories 

The natural images have many geometric characteristics which not only help human 

“imagining” the parts that are covered or removed but also enable coding tools to achieve 

higher compression ratio by exploiting the characteristics. One of the well accepted 

characterizing methods is to describe regions of images by the following three categories, 

namely, the smooth region, edge, and texture (See Fig. 2-1). Amongst those characteristics, 

the smooth region is the easiest one to be “understood” by machines, and was indeed well 

exploited by the image codecs with the help of the discrete cosine transform (DCT). 

  
(a) (b) 

Fig. 2-1. Standard gray-level test images: (a) Peppers and (b) Lake. 

 

To understand why the DCT is efficient for the smooth region, a careful observation and a 

statistical mindset are needed. Let us look at the smooth regions of various images carefully. 

It is not difficult to observe that the intensities of the images do not vary significantly, or at 

least the intensities of neighboring pixels do not differ significantly from one to another. 

Converting the above observation to a computer understandable form, researcher describe the 

“smoothness” using a statistical tool called the first-order autoregressive model (AR(1)) or 

first-order Markov process. The details of the AR(1) are described in the following. 

2.1.1. First-Order Autoregressive Model (AR(1)) 

Although the image is a 2-d signal, it still can be segmented properly into a set of 1-d 

signals (e.g. segmenting horizontally or vertically). Let us model a collection of 1×N smooth 

regions using a random vector  

 P = [P(0) P(1) P(2) … P(N−1)],  (2-1) 

where N can be any integer value (radix-2 integers are preferable) and P(n)’s are N successive 

random variables corresponding to N horizontal positions. Each observation of the random 
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vector P represents an example of how the model describes one of the 1×N regions of the real 

images. Let us call an example by extracting ten 1×8 vectors from the bottom-left region of 

Fig. 2-1(a). As is shown in Fig. 2-2(b), each row can be viewed as an observation of the 

random vector P, and each column can be viewed as a random variable comprising P. In our 

example, there are total 10 observations. 

The random process {P(n)} fulfills a condition called the wide-sense stationary under 

which i) all variables have a same mean value, and ii) autocorrelation between any two 

variables only depends on their distance. Hence we can subtract the mean from P and 

construct a new random vector  

 X = [X(0) X(1) X(2) … X(N−1)],  (2-2) 

where X(n)’s are called the centered random variables, and their observations have been 

shown in Fig. 2-2(c). Note that the removal of mean can simplify the subsequent analysis 

without affect the correctness. 

 

137 137 133 133 155 172 172 152 

155 128 133 133 141 155 155 170 

137 137 120 120 141 172 174 170 

147 121 118 121 133 170 155 152 

128 121  93 108 133 172 166 152 

128 109  98  91 121 141 172 166 

136 109  98  93 111 133 155 176 

136 121 111  98 114 121 152 174 

137 109 111  93  93 121 141 172 

109 121 108  98  93 108 121 155 
(a) (b) 

  3.5   3.5  -0.5  -0.5  21.6  38.6  38.6  18.6 

 21.6  -5.5  -0.5  -0.5   7.5  21.6  21.6  36.6 

  3.5   3.5 -13.5 -13.5   7.5  38.6  40.6  36.6 

 13.6 -12.5 -15.5 -12.5  -0.5  36.6  21.6  18.6 

 -5.5 -12.5 -40.5 -25.5  -0.5  38.6  32.6  18.6 

 -5.5 -24.5 -35.5 -42.5 -12.5   7.5  38.6  32.6 

  2.5 -24.5 -35.5 -40.5 -22.5  -0.5  21.6  42.6 

  2.5 -12.5 -22.5 -35.5 -19.5 -12.5  18.6  40.6 

  3.5 -24.5 -22.5 -40.5 -40.5 -12.5   7.5  38.6 

-24.5 -12.5 -25.5 -35.5 -40.5 -25.5 -12.5  21.6 

(c)

Fig. 2-2. (a) Bottom-left region of test image Peppers, (b) pixel values of (a), and (c) centered pixels 

values of (a). 

 

Taking any of the centered vectors as an example, we observe that the adjacent values do 

not differ significantly, which is called the smoothness. In mathematics, the smoothness is 

modeled such that the random variables fulfills the wide-sense stationary AR(1) process as 

shown below  

 X(n) = ρX(n−1) + ε(n) and |ρ∈| [0,1], (2-3) 

One Observation

One Random Variable
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where X(n) and X(n−1) are two adjacent random variables, ρ is the correlation coefficient with 

a large absolute value, and ε(n) is a white noise process with zero mean. The ρ measures the 

correlation between two adjacent positions: for smooth images, the correlation coefficient is 

usually high hence the absolute value of ρ approaches 1; for non-smooth images, correlation 

between adjacent positions are low hence the absolute value of ρ can be as small as 0.  

The autocorrelation of the AR(1) process can be thus calculated as follow 
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where ε(i) and x(j) are independent since {ε(n)} is a white noise process. Hence the 

expectation operator can be applied separately on ε(i) and x(j) such that 
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For arbitrary i and j, the normalized autocorrelation is  

 ( ), i jr i j ρ −= . (2-6) 

Hence the autocorrelation matrix of the AR(1) process can be written as 
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Numerous experimental works have proved that using the data from smooth regions to fit 

this autocorrelation matrix, the values of ρ are always of high values, which justifies the 

effectiveness of modeling the smoothness using the wide-sense stationary AR(1) model with a 

large value of correlation coefficient ρ. 

2.1.2. Karhunen–Loève Transform (KLT) 

Modeling the smooth regions of images using AR(1) with a high correlation coefficient is 

one of the ways to describe how the human “imagines” the unknown smooth regions in a 

mathematical model that machine understands. The machines can use the “imagine” ability to 

remove the redundancies of images, hence image compression can be achieved. 
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One of the metrics for measuring the redundancies is the autocorrelation. If the positions 

separated by a distance of any value are not correlated, it means no estimation can be carried 

out hence the redundancies do not exist. Hence the objective becomes: alternating the input 

signals so that the autocorrelation values (except the center points) of resultant signals are 

zero or equivalently, the autocorrelation matrix is diagonal. If the AR(1) is used for modeling 

the input, the correlation coefficient ρ shall equals zero after the alternation of the input 

signals. 

This problem has been tackled by the Karhunen–Loève transform [13-14], named after K. 

Karhunen and M. Loève, which can remove the redundancies of signals in terms of the 

decorrelation and energy compaction. The idea of the KLT is simple—rotate the coordinate of 

the input data set so that the input data concentrate along a single axis, so that the data 

represented by the rotated coordinate are weakly correlated. The rotation is carried out by 

multiplying the input random N×1 vector by an N×N matrix H as shown below 

 y = H x, (2-8) 

where y represents the transformed (rotated) random vector. The autocovariance matrix can 

be obtained by carrying out expectation on the autocovariance of the transformed random 

vector as shown below 

 Cy = E[yyT], (2-9) 

where Cy is the autocovariance matrix of transform signal, E[·] is the expectation operation, 

and T is the transpose operation. The objective of the KLT is to diagonalize the Cy matrix 

such that only the diagonal terms are non-zero. Let us substitute (2-8) into (2-9), and we 

obtain 

 Cy = E[(Hx)(Hx)T] = E[H (xxT) HT] = H E[xxT] HT = H Cx HT, (2-10) 

where Cx = E[xxT] is the autocovariance matrix of input signal. The problem is further 

simplified to the eigenvalue problem—find a proper matrix (transform kernel, rotational 

matrix) H containing all eigenvectors such that Cx is diagonalized. 

It is clear that the KLT is data dependent—each class of data has its optimal transform 

kernel. In 0, we have reviewed a number of algorithms which adaptively generate the optimal 

KLTs for data of different characteristics, and we have pointed out the heavy computational 

load is the burden of its wide-spread applications. Hence it is logical to find a transform 

kernel that performs well most of time so that there is no need to carry out KLT each time, 

and fortunately the discrete cosine transform (DCT) fulfills such requirement. 

2.1.3. Discrete Cosine Transform (DCT) 

The AR(1) signal is a common signal that can be found in natural images and other 

applications. Its autocovariance matrix Cx is represented as shown in (2-7). Hence the optimal 

kernel for AR(1) signal can be obtained by the diagonalization. By skipping the detailed 
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mathematics involved, we obtain the representation of the nth element of the kth basis vector of 

the optimal kernel for AR(1) as shown below 
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k

kNh n n
N

π
ω

μ
⎡ + ⎤+⎛ ⎞= + − +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

, (2-11) 

where N is the dimensionality of input signal, μk’s are the eigenvalues of (2-7) and 
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where ωk’s are the real non-negative roots of the transcendental equation 
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As we have mentioned in 2.1.1, the AR(1) with a large value of ρ can effectively model the 

smooth regions. Hence let ρ approximate infinitively to 1, we obtain 

 for 0k
k k
N
πω = ≥ , and (2-14) 

 μk = 0. (2-15) 

By substituting (2-14) and (2-15) into (2-11), we obtain 

 ( ) ( )2 12 cos
2k

n k
h n

N N
π⎡ + ⎤

= ⎢ ⎥
⎣ ⎦

, (2-16) 

which is the transform kernel of the DCT-II, and commonly known as the DCT [7]. This is 

why the DCT is a good kernel for image coding—it is the KLT of the AR(1) signal. 

2.1.4. Integer Cosine Transform (ICT) 

2.1.4.1. Importance of ICT 

As we have mentioned in Subsection 1.1.2, the employment of floating-point DCT 

introduces the drift problem for video coding. The latest video coding standard the 

H.264/AVC solves the problem by employing one of the drift-free transforms—the order-4 

integer cosine transform (ICT). As the reference software of the emerging video coding 

standard, the KTA, added an order-16 integer cosine transform to cope with high definition 

video contents, the details of the construction of the ICT will be explained using the order-16 

ICT as an example. 

The initial objective of the development of the ICT kernel is to remove the floating-point 

arithmetic so as to reduce the computational complexity. The removal of the floating-point 

arithmetic also has a by-product that different devices generates exact the same results if the 

algorithms are properly designed, which eventually solve the notorious mismatch problem for 

video coding. 

 



 

14 
 

2.1.4.2. Recursive Structure of DCT 

Before a direct investigation into the details of the construction of the order-16 ICT, let us 

first examining the characteristic of its floating-point counterpart—the order-16 DCT Kernel, 

which can help to reduce the design complexity of integer kernels. One important 

characteristic is the relationship between the DCT Kernel and its half-length version, that is, 

the relationship between the DCT Kernels of order-N and order-(N/2), where N is a radix-2 

value. According to the recursive spare matrix factorization algorithm [72], the order-N DCT-

II kernel can be constructed by the order-(N/2) DCT-II kernel and order-(N/2) DCT-IV kernel 

as shown below 

 2 2 2

2 22 2

II

II

IV

ˆ 01
ˆ2 0

N N N

N NN N

N N

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ −⎢ ⎥⎣ ⎦⎣ ⎦

C I J
C B

J IC J
, (2-17) 

where II
NC  is the order-N DCT-II kernel, 

2

IV
NC  is the order-(N/2) DCT-IV kernel, 

2
NI  is the 

N×N diagonal matrix with 1’s along the southeast direction and 0’s in other positions, 
2
NJ  is 

the N/2×N/2 anti-diagonal matrix which is a horizontal flipped version of 
2
NI , “^” is the bit-

reversal operator which permutes the row vectors into a bit-reversed order, and BN is used to 

permute the bit-reversed ordered vectors back into natural order. The bit-reversal operation 

maps the indices of all vectors from {m(i) | m(i) = ib and i = 0, 1, …, N−1} to {n(i) | n(i) = 

bitReverse(ib) and i = 0, 1, …, N−1}, where the integer with subscript “b” is in the binary 

form and the function bitReverse(·) reverses the order of its input binary sequence. For 

example, when N = 16, the index of a vector is mapped from m = 310 = 00112 to n = 12 = 

11002, since 0011 and 1100 are opposite ordered. 

Let us explain physical meaning of (2-17) by temporarily ignoring the minor effects 

caused by the bit-reversal–related operations (i.e. the BN and operator “^”) with the help of a 

few illustrations. The DCT-II kernel is mainly constructed by two matrices—the half-length 

kernel matrix 

 2

2 2

II

IV

ˆ 0

ˆ0

N

N N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

C

C J
, and (2-18) 

the hybrid-diagonal matrix 

 2 2

2 2

N N

N N

⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦

I J

J I
. (2-19) 

For the half-length kernel matrix (2-18), its northwest region is filled by the order-(N/2) DCT-

II kernel, whereas its southeast region is filled by the horizontally flipped DCT-IV kernel (the 

anti-diagonal matrix has the effect of horizontal flipping when it is multiplied to the RHS of a 
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matrix). Let us illustrate (2-18) with a more intuitive way as shown in Fig. 2-3(a), i.e. directly 

flipping the symbol 
2

IVˆ
NC  to indicate the flip operation. The hybrid-diagonal matrix (2-19) can 

be split into two parts are shown below 

 2 2 2 2

2 2 2 2

0 0

0 0

N N N N

N N N N

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +

− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

I J I J

J I I J
. (2-20) 

When (2-19) is multiplied to the RHS of (2-18), it is equivalent to multiplying the above two 

parts to (2-18) independently and then adding the results together. The first part has the effect 

of changing the sign of all elements of the right-half matrix of (2-18), which is shown by the 

change from Fig. 2-3(a) to Fig. 2-3(b). Similarly, the second part has the effect of flipping all 

elements of (2-18) horizontally, which is shown by the change from Fig. 2-3(a) to Fig. 2-3(c). 

Hence, by adding up Fig. 2-3(b) and Fig. 2-3(c), the result of the multiplication between (2-18) 

and (2-19) is represented in Fig. 2-3(d). It has explained the physical meaning of (2-17) that 

the full-length DCT-II kernel is constructed by arranging the half-length DCT-II kernel in the 

even symmetric structure and the half-length DCT-IV kernel in the odd symmetric structure. 

  
(a) (b) 

  
(c) (d) 

Fig. 2-3. Intuitive representation for flipped sub-matricesa: (a) the half-length kernel matrix, (b) the 

result obtained by multiplying the first part of (2-20) to the RHS of (2-18), (c) the result obtained by 

multiplying the second part of (2-20) to the RHS of (2-18), and (d) the result obtained by multiplying 

(2-20) to the RHS of (2-19). Note that the large symbols used in this figure are to imply that the size of 

the matrices is usually larger than 2×2. 

                                                      
a A horizontally flipped matrix symbol represents the result obtained by applying a horizontal 

flipping operation on the original matrix. 
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More generally, a radix-2 DCT-II kernel of the size N×N can be recursively decomposed into 

lower-order DCT-II and DCT-IV kernels. For example, the order-16 DCT-II kernel can be 

decomposed into an order-8 DCT-IV kernel, an order-4 DCT-IV kernel, and an order-4 DCT-

II kernel. This can significantly simplify the design of ICT kernels. There is no need to start 

directly from the high-order ICT kernel; instead, with the recursive spare matrix factorization 

algorithm, one can decide the lowest level to which the recursive algorithm will decompose, 

and then design the lower-order ICT kernels one by one, so as to reduce the design 

complexities. 

2.1.4.3. Design of ICT Kernels 

Let us make use of the design of an order-16 ICT kernel as an example, and discuss the 

design criteria and technical details of designing integer kernels. We first decompose the 

matrix recursively (the lowest level is order 4) and insert the normalization factors, i.e. 2 and 

√2. The decomposed order-16 kernel is shown below 

 

II
4 4 4

8 8II IV
4 416 4 4

8 8
IV
8 8

ˆ 2 0
0

ˆ0 2
ˆ0 2

N

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ⎥−= ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

C I J
I JJ IC B C J J I

C J

. (2-21) 

where IV
8C  is the order-8 DCT-IV kernel, IV

4C  is the order-4 DCT-IV kernel, and II
4C  is the 

order-4 DCT-II kernel, and they are all orthonormal kernels. The design of the order-16 ICT 

is equivalent to designing integer versions of the floating-point kernels IV
8C , IV

4C , and II
4C . 

The floating-point kernels are shown in (2-22)–(2-24). 

The design criteria are: 

a) all elements are represented with non-negative integer numbers; 

b) the bases (row vectors) are orthogonal to each other;  

c) all row vectors should be normalized, either with independent norms or with a same 

norm for the whole matrix, and the norms are preferred to be radix-2 integers; and 

d) the integer matrix after normalization should be as close as the floating-point matrix, 

which indicates that the relative magnitude among the elements in each basis should 

be kept. 

 IV
8

0.498 0.478 0.441 0.387 0.317 0.236 0.145 0.049
0.478 0.317 0.049 0.236 0.441 0.498 0.387 0.145
0.441 0.049 0.387 0.478 0.145 0.317 0.498 0.236
0.387 0.236 0.478 0.049 0.498 0.145 0.441 0.317
0.317 0.441 0.145 0.498

− − − − −
− − −

− − − −
− − −

=C
0.049 0.478 0.236 0.387

0.236 0.498 0.317 0.145 0.478 0.387 0.049 0.441
0.145 0.387 0.498 0.441 0.236 0.049 0.317 0.478
0.049 0.145 0.236 0.317 0.387 0.441 0.478 0.498

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
− − −
− − −
− − − −

 (2-22) 
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 IV
4

0.694 0.588 0.393 0.138
0.588 0.138 0.694 0.393
0.393 0.694 0.138 0.588
0.138 0.393 0.588 0.694

⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−
⎢ ⎥− −

=

⎣ ⎦

C  (2-23) 

 II
4

0.500 0.500 0.500 0.500
0.653 0.271 0.271 0.653
0.500 0.500 0.500 0.500
0.271 0.653 0.653 0.271

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

=C  (2-24) 

Let us replace the floating-point numbers in (2-22)–(2-24) with variables as shown below 

 IV
8

a b c d e f g h
b e h f c a d g
c h d b g e a f
d f b h a g c e
e c g a h b f d
f a e g b d h c
g d a c f h e b
h g f e d c b a

⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥− − − −⎢ ⎥
⎢ ⎥− − − −
⎢ ⎥

− − −⎢ ⎥
⎢ ⎥− − −⎢ ⎥

− − − −⎢⎣ ⎦

=

⎥

IK , (2-25) 

 IV
4

i j k l
j l i k
k i l j
l k j i

⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥−
⎢ ⎥− −⎣ ⎦

=IK , and (2-26) 

 II
4

γ β
α α

α α α α
β γ
α

β γ
α

γ β

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

=IK , (2-27) 

where IK is the symbol for an integer cosine kernel with the subscript denoting its order and 

superscript denoting its family number, and variables a, b, c, d, e, f, g, h, i, j, k, l, α, β, and γ 

are non-negative integers. 

For IV
8IK , the orthogonality constraint yields the following set of equations 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0
0
0

a b f e b c d f g h c g
a c g e f g d b c h b f
a d e b f c g f c h d e

⎧ − + − − + + − =
⎪ + + − − + + + =⎨
⎪ + − + + − + − =⎩

. (2-28) 

They should also fulfill inequity corresponding to the floating-point DCT-IV kernel so as to 

preserve the DCT-IV property 

 a > b > c > d > e > f > g > h > 0. (2-29) 

A computer search for integers that fulfills (2-28) and (2-29) can be carried out, and each 

kernel can be denoted as ( )IV
8IK , , , , , , ,a b c d e f g h . Since each row has the same norm 
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 s1 = (a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2)½, (2-30) 

the relationship between the floating-point and integer kernels can be denoted as 

 IV IV
8 8

1

1
s=C IK . (2-31) 

For IV
4IK , the orthogonality constraint yields only one equations as shown below 

 j ( i − l ) − k ( i + l ) = 0, (2-32) 

They should also fulfill inequity corresponding to the DCT-IV kernel so as to preserve the 

DCT-IV property 

 i > j > k > l > 0. (2-33) 

Another computer search can be carried out so that proper integers can be found. Each kernel 

can be denoted as ( )IV
4IK , , ,i j k l .  Similar to the order-8 DCT-IV kernel, the order-4 DCT-IV 

kernel also has equal norms for all rows 

 s2 = (i2 + j2 + k2 + l2)½, (2-34) 

hence the floating-point kernel can be obtained by normalizing the integer DCT-IV kernel by 

s2: 

 IV IV
4 4

2

1
s=C IK . (2-35) 

For II
4IK , it is a natively orthogonal kernel. However, its norms of row vectors are not 

necessarily equal. If we assume a single norm, the constraint is shown as below 

 s3 = 2α = [2(β2 + γ2)]½. (2-36) 

Similarly, the integer kernel can be normalized to  

 II II
4 4

3

1
s=C IK . (2-37) 

In addition, the inequity relationship should also be fulfilled as shown below 

 β > α > γ > 0. (2-38) 

A third computer search should be carried out to find the proper integers, and each kernel can 

be denoted as ( )II
4IK , ,α β γ . 

With the above newly obtained kernels, the design of a set of order-16 ICT kernels has 

been finished, and each kernel can be subsequently denoted as II
16IK (a, b, c, d, e, f, g, h; i, j, k, 

l; α, β, γ). 

Several points relating to the design of integer kernels are to be stressed: 

a) the recursive decomposition is not a must, but it does simplify the design process; 

b) the relative relationships among kernel elements have been taken care of by the 

inequalities (i.e. (2-29), (2-33), and (2-38)), however, to obtain better approximations 

toward the original DCT Kernel, a tighter constraint (e.g. the ratios among different 

elements being bounded in a small range) should be applied; and 
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c) in applications that are very sensible to computational complexity, the DCT-IV 

kernels can be further decomposed into sparse matrices [72-73] to lower the 

computational power. 

2.1.4.4. Possible Design of Order-4 ICT Kernel for H.264/AVC 

The H.264/AVC is the first video coding standard to employ the integer transform. Since 

the order of the required kernel is 4, the some design procedures described in 2.1.4.3 can be 

skipped, e.g., the recursive decomposition is not needed since kernel structure is already very 

simple, and the orthogonality condition is natively fulfilled, so that simple methods such as 

the up-scaling and rounding [94-95], which will be used in Chapter 3, can be applied to 

design new kernels. 

The up-scaling and rounding method can be described using the following equation 

 II II
4 4u⎡ ⎤= ⋅⎣ ⎦IK C , (2-39) 

where u is a non-negative floating-point number served as the up-scaling factor, and [·] is the 

round-to-nearest-integer operation. 

However, as we have mentioned in point b) of 2.1.4.3, to obtain better approximations 

toward the DCT Kernel, a tighter constraint on relative relationships among kernel elements 

should be applied. In detail, we make use of the ratios among matrix elements of the 

normalized version of a candidate order-4 ICT kernel to measure how far it deviates from the 

DCT Kernel, and only candidate kernels with small deviations are retained. 

This measurement is mathematically defined by the kernel percentage error (KPE). Let us 

normalize the kernel template of II
4IK  as shown in (2-27), and the result is shown as below 

 

A A A A
B C C B
A A A A
C B B C

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

H , (2-40) 

where A = 0.5, B = β / [2(β2+γ2)]½, C = γ / [2(β2+γ2)]½. Coefficients β and γ are the non-

negative integers. The two ratios A/B and C/B can be regarded as features extracted from the 

template of integer kernel. They can be represented in terms of β and γ as shown below 

 
( )2

1
21 1

2

Aratio
B
Cratio
B

γ
β

γ
β

⎧ ⎡ ⎤= = +⎪ ⎢ ⎥⎣ ⎦⎪
⎨
⎪ = =
⎪⎩

. (2-41)  

Similarly, we can also derive the ratios for the DCT Kernel 
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( )DCT

DCT

2
DCT 1

DCT 2
DCT

DCT DCT
DCT

DCT DCT

1 1

2

Aratio
B
Cratio
B

γ
β

γ
β

⎧ ⎡ ⎤= = +⎪ ⎢ ⎥⎣ ⎦⎪
⎨
⎪ = =⎪⎩

. (2-42) 

The KPE can thus be calculated as follow 

 DCT DCT

DCT DCT

1 1 2 2
1 2

ratio ratio ratio ratio
KPE

ratio ratio
− + −

=
+

. (2-43) 

By substituting (2-41) and (2-42) into (2-43), we obtain the KPE as shown below 

 
( )

( )DCT DCT

DCT DCT

2
1
2

2
1
2

1
1

1
KPE

γ γ
β β

γ γ
β β

⎡ ⎤+ +⎢ ⎥⎣ ⎦= −
⎡ ⎤+ +⎢ ⎥⎣ ⎦

, (2-44) 

where βDCT and γDCT are the corresponding coefficients of the DCT Kernel. The smaller the 

KPE is, the closer an ICT kernel resembles the DCT Kernel. The KPE indirectly measures the 

similarity between a newly-found ICT kernel and the DCT Kernel, and it will be employed 

hereafter for designing order-4 ICT kernels. 

2.2. Hybrid Video Coding 

2.2.1. Overview 

The objective of video coding is to encode a video into a small-size representation so that 

it can be transmitted through a bandwidth-limited channel, and reconstruct the video at the 

decoder side. The video is comprised of a series of images called frames, which can be 

denoted as {Ft} where t is the time instance and t ≥ 0. Rather than encoding the video frame 

by frame, a typical video encoder, which works in analogues to the differential pulse-code 

modulation (DPCM), mainly codes the differences between frames—called the “residues”—

due to the high similarities among consecutive frames. The DPCM model is shown in Fig. 2-4 

and codec of the H.264/AVC is shown in Fig. 2-5, and the major DPCM loops are shaded 

respectively. One of the advantages by employing the DPCM structure is that the encoder side 

also contains the decoder, which allows the encoder side to simulate the decoding process 

exactly and thus control the quality of the reconstructed video. 

One of the major differences between video coding and image coding is: the former one 

deals with residual signals whereas the latter one deals with raw image signals. It is well 

known that the spatial correlation coefficient ρ of images is usually higher than that of the 

residues. However, the DCT or its integer variation which intends for highly correlated 

signals was still used as the only or major transform kernel for all the video coding standards, 

due to its good performance. 
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Since the resolutions of videos vary from one to another, the frames must be separated 

into a smaller unit called the “macroblock” which is the basic processing unit in Fig. 2-5, and 

all macroblocks are coded separately. 

Let us explain how a typical video codec works by using the H.264/AVC as an example. 

A set of symbols and notations are defined for the sake of a clear presentation: 

a) the consecutive frames of an original video are denoted by F0, F1, …, Ft−1, Ft, Ft+1, …; 

b) each macroblock is denoted by MBt(n), where n is index of the macroblock; 

c) any symbol with a superscript “p” indicates that it is a predicted signal, e.g. MBt
p(n) 

is a predicted version of MBt(n); and 

d) any symbol with a superscript “r” indicates that it is a reconstructed signal, e.g. rt
r(n) 

is a reconstructed version of  rt(n). 

 

  
 (a) (b) 

Fig. 2-4. Block diagram for DPCM codec: (a) encoder, and (b) decoder. 
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(b) 

Fig. 2-5. Block diagram for H.264/AVC codec: (a) encoder, and (b) decoder. 
 

When the encoding starts, the input signal MBt(n) subtract the predicted signal MBt
p(n), 

and then the residual signal rt(n) is obtained. Since the predicted signal resembles the input 

signal, the redundancy in the time domain has been partially removed. However, since the 

prediction cannot be ideal, the redundancy in the spatial domain still exists. Hence the 

transform coding “T” and the quantization “Q” need to be carried out to compressed the data. 

On one hand, the transformed-and-quantized data need to be losslessly coded with entropy 

encoder for output; on the other hand, they should be decoded via dequantization “Q−1” and 

inverse transform coding “T−1” instantly in order to simulate what the decoder side can obtain. 

The thus obtained reconstructed signals MBt
r(n) are stored in the buffer and will be used with 

other reconstructed signals to construct predict signals for later usage. 

There are two kinds of prediction in the H.264/AVC, namely, the inter-prediction and the 

intra-prediction. Suppose the time instance is t, and the predicted signal MBt
p(n) of the current 

frame Ft
r is needed. For inter-prediction, inter-frame correlation is exploited to reduce the 
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r(n), for the 

construction of the MBt
p(n). Secondly, the motion estimation (ME) process together with the 

motion compensation process will search for a macroblock within the search range input that 
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(MV) for output. For intra-prediction, intra-frame correlation is exploited to reduce the spatial 

redundancy. The intra-prediction is carried out inside the frame in which the unknown signal 

MBt
p(n) resides. Firstly, the reconstructed upper, upper-left and left macroblocks MBt

r(α), 

MBt
r(β) and MBt

r(γ) are needed to be available. Secondly, the pixels that are at the boundary 

of the MBt
p(n) (blue-shaded pixels) are used for intra-prediction and all intra-modes are tried 

one by one to obtain the best predicted signal MBt
p(n). And finally, the selected intra-mode 

will be coded for output. 

For the decoder, it can be constructed by taking the decoder-in-encoder out and changing 

the signal flow direction of MV, intra-mode, and entropy-coded data from output to input. 

The flowchart of H.264/AVC decoder is shown in Fig. 2-5(b). 

2.2.2. Drift Problem 

In order to ensure that the reconstructed signals at the decoder side are exactly the same as 

those in the buffer of the encoder side, the corresponding functional blocks must be the same. 

However, the implementations of the transform coding process, i.e. the floating-point DCT, 

usually vary from one to another, which leads to the serious drift problem, as we have 

mentioned in Subsection 1.1.2. The drift problem can significantly lower the visual quality of 

reconstructed videos: the error accumulates as more and more inter-predictive frames are 

generated. The drift is caused by the mismatch of between the implementations of the inverse 

DCT (IDCT) at the encoder side and the decoder side. Intuitively, the IDCT shall be 

implemented as closely as the arithmetic that the formula of the IDCT specifies. However, in 

practical implementations, there are mainly two factors leading to the implementations of the 

IDCT deviate from the ideal one: first, every bit is expensive in some applications, e.g. the 

embedded systems running on batteries, only a small number of bits can be afforded; second, 

different fast IDCT algorithms produce slightly different results. To tackle this problem, 

various approaches were proposed, either partially controlling or totally eliminating the 

mismatch error. In the early days, the video people tended to follow the first approach. They 

argued that totally eliminating the mismatch error requires a stringent definition on the 

implementation of the IDCT and may also hinder creative ideas of future implementations 

[61], hence agreed to bound the mismatch error in a reasonable small range as defined in the 

IEEE standard 1180 and later the MPEG-C Part 1, and carry out constant intra-refresh to 

discard the accumulated error. However, the mismatch was not totally eliminated for all video 

coding standards. As the technology develops, the computational power grows significantly, 

which means that there is a higher degree of flexibility in choosing the implementation 

structure of the IDCT. Meanwhile, the demand for better visual quality implementation is 

ever increasing, so that finer quantization for video coding is more popular. It was observed 

that the drift is more severe at finer quantization [65, 96] even though measures suppressing 
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the mismatch such as the oddification and LSB toggling are employed. Hence, the intrinsic 

drift-free transforms are demanding and therefore the H.264/AVC employs the integer 

transforms to tackle this problem. 

2.2.3. Quantization Error 

The quantization is a general operation, which is carried out by a quantizer, uses less 

number of bits to represent the quantizer input. It is widely used in data compression 

applications, e.g. image coding, video coding and etc., since it allows the control on bitrate of 

output by tuning its quantization step. From the information theory point of view, it is a lossy 

operation hence the signals bypass the quantizer will have a reduction in their information 

contained. 

Let us explain how a uniform quantizer works. The quantization model is shown in Fig. 

2-6(a), in which x denotes the input signal, x’ denotes the quantized signal, and q denotes the 

quantization step. As the input signal bypass the quantizer, the output signal is rounded to 

nearest number that equals an integer multiples of q. In mathematics, it can be written as 

shown below 

 Quantizerq(x) = x’, (2-45) 

 x = nq + e,  (2-46) 

 x’ = nq, for n∈ , (2-47) 

where e∈½[−q, q]. The output-input relationship of quantization process has been illustrated 

in Fig. 2-6(b), in which the solid line represents the mapping caused by the quantizer whereas 

the dash line is the extreme mapping for q = 0. 

 

(a) (b) (c) 
Fig. 2-6. (a) Quantization model, (b) output-input relationship, and (c) error-input relationship. 

 

Let us calculate the error caused by quantization. Let us define the quantization error as 

shown below 

 e(x) = x − x’, (2-48)  

and the relationship between the error and the input signal has been depicted in Fig. 2-6(c). 

Hence the average power of error can be formulated as 

x 

e(x)=x−x’ 

q 3q −q −3q −2q −q/2 
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Quantizerq(·) x x’ 



 

25 
 

 ( ) ( )2p x e x dx⋅∫ , (2-49) 

where p(x) is the probability density function (pdf) of the input signal. For the sake of the 

simplicity, we assume that the input signal is uniformly distributed. By skipping the 

calculation steps, we obtain the average power equals q2/12, which is well-known in the field.   

In video coding applications, the quantizer input is the transform coded signal which 

fulfills the Laplacian distribution hence the pdf has to be changed accordingly. However, our 

experimental works show that by using the pdf obtained from the real data, the value of the 

average power thus calculated is in the same order with respect to the value of the average 

power by assuming a uniform distribution. This implies that the uniformly distributed model 

is effective under certain circumstances. 

2.3. Transform Coding and Quantization in H.264/AVC 

2.3.1. Integer Transform and Scaling 

As we have mentioned in Subsection 2.2.2, all video coding standards prior to the 

H.264/AVC suffer from the drift problem. Various algorithms that can totally eliminate the 

drift problem have been reviewed in Subsection 1.1.2. Amongst those algorithms, the integer 

cosine transform (ICT) was adopted into the H.264/AVC due to its low complexity, resource 

saving, ease for understanding, and etc. 

For the H.264/AVC baseline profile, only order-4 ICT is employed, which is different for 

previous standards in which order-8 DCT is employed. This is mainly because the 

H.264/AVC uses much finer block segmentations comparing to the previous standards, which 

allows the motion estimation unit to be as small as 4×4 so that features within small blocks 

can be well captured. Let us review how the H.264/AVC designs the transform coding and 

quantization processes by employing the integer transform. The order-4 integer transform 

kernel is given as follow 

 

1 1 1 1
2 1 1 2
1 1 1 1
1 2 2 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

H , (2-50) 

which can be obtained by the up-scaling and rounding method as we have mentioned in 

2.1.4.4. This is the simplest DCT-like kernel that can be obtained using this approach. Its 

normalization matrix can subsequently be obtained as shown below 

 

1
2

1
10

1
2

1
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0 0 0
0 0 0
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⎢ ⎥
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⎢ ⎥⎣ ⎦

S , (2-51) 
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hence the orthonormal kernel can be represented as T = SH. By applying T to the horizontal 

and vertical directions of a 4×4 input matrix x, we obtain the transformed matrix as shown 

below 

 X = TxTT = (SH) x (SH)T = S(HxHT)ST = SCST, (2-52) 

where  

 C = HxHT (2-53) 

is only transformed by the integer kernel hence we define it as the integer-transformed matrix. 

Since S is a diagonal matrix, (2-52) can be further simplified to 

 f= ⊗X C S , (2-54) 

where ⊗  denotes the term-by-term multiplication operation between C and Sf, and  

 

1 1 1 1 1
2 4 42 10 2 10

1 1 1 1 1
10 1010 2 10 2 101 1 1 1

2 2f 10 101 1 1 1 1
2 4 42 10 2 10

1 1 1 1 1
10 1010 2 10 2 10

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤= =⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

S  (2-55) 

in which three different values of normalization factors exist. 

The quantization can be subsequently carried out on the transformed matrix X. Suppose 

the quantization step is denoted as q, hence the quantized-and-transformed coefficient at 

position (i,j) can be represented as 

 Xq(i,j) = X(i,j) / q = C(i,j) × Sf(i,j) / q. (2-56) 

Since the multiplication of Sf(i,j) and the division of q involve floating-point arithmetic that 

causes mismatch, they should not be carried out directly. Instead, terms Sf(i,j) and q should be 

grouped together, and implemented without floating-point arithmetic. The H.264/AVC uses 

the “dyadic rational (fraction) approximation” to tackle this problem, and let us explain how it 

works. Suppose an integer m is multiplied by a floating-point number s, and we want to 

remove the floating-point arithmetic. The floating-point number s can be approximated by 

k/2n as shown below 

 s ≈ k / 2n, (2-57) 

where k is an integer and n is a natural number. Hence the floating-point multiplication can be 

changed to the integer multiplication of m and k followed by a division of 2n 

 m × s → m × k / 2n. (2-58) 

And the division by 2n is easily implemented by an n-bit right-shifting operation in binary 

machines as shown below 

 m × s → (m × k) >> n, (2-59) 

where “>>” denotes the right-shifting operation. Hence, we can approximate the floating-

point number Sf(i,j) / q with the dyadic approximation as shown below 

 Sf(i,j) / q ≈ k(i,j) / 2n, (2-60) 
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and we call k(i,j) the multiplication factor (MF). Hence (2-56) can be modified into 

 Xq(i,j) ≈ C(i,j) × k(i,j) / 2n = [C(i,j) × k(i,j)] >> n. (2-61) 

The transform coding and quantization are thus equivalently regrouped into two machine-

friendly operations: 

a) the 2-d integer transform, as shown in (2-53), and 

b) the scaling, as shown in (2-61). 

 

As we have mentioned in Subsection 2.2.3, quantization can control the bitrate and the 

quality of reconstructed videos by tuning the quantization step (QStep). For the H.264/AVC, a 

uniform quantizer is employed and various QSteps are allowed for different requirements of 

visual qualities from finest to coarsest. A total number of 52 QSteps are allowed, which arises 

a problem that a large table has to be prepared for 

 52 QSteps × 3 MFs/QSteps = 156 MFs.  (2-62) 

Note that for one particular quantization step q, 3 different values of MF exist by referring 

back (2-55). To solve this problem, the design of the H.264/AVC incorporates the idea of 

periodicity into selection of QSteps. TABLE 2-1 has shown the allowed values of QSteps and 

corresponding quantization parameters (QPs). As defined, for each increase of 6 in QP, the 

QStep doubles. Or equivalently, the increase between two successive QPs equals 

21/6−1≈12.5%. For example, when QP is 4, QStep is 1; when QP is increased to 10, QStep is 

doubled to 1×2 = 2.  
TABLE 2-1 

QUANTIZATION STEPS AND CORRESPONDING QUANTIZATION PARAMETERS 
QP QStep 

 

QP QStep 

… 

QP QStep 
0 0.6250 6 1.250 48 160 
1 0.6875 7 1.375 49 176 
2 0.8125 8 1.625 50 208 
3 0.8750 9 1.750 51 224 
4 1.0000 10 2.000  5 1.1250 11 2.250 

 

With the above design, it is only needed to calculate and store the MFs for QPs range from 0 

to 5, with a total number reduced to  

 6 QSteps × 3 MFs/QSteps = 18 MFs.  (2-63) 

For QP larger than 5, the scaling using corresponding QP within the range 0 to 5 can be 

carried out first, and then followed by a right-shifting of n bits depending on the distance 

between the real QP and corresponding QP. In mathematics,  

 corresponding QP = rem(QP,6), and (2-64) 

 distance between the real QP = floor(QP/6), (2-65) 
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where the former one finds the remainder of QP/6 and the latter one rounds to result of QP/6 

to integer towards 0. To conclude, the scaling after incorporating the periodicity into the 

selection of QSteps is achieved as shown below 

 ( ) ( ) ( )( ){ } ( )q , , , , , ,6 / 6X i j QP C i j k i j rem QP n floor QP⎡ ⎤= ⋅ >> >>⎣ ⎦ , (2-66) 

where the reference software of the H.264/AVC recommends n = 15. Taking care of the sign 

of C(i,j) and rounding issues, we obtain 

 
( ) ( ) ( )( )

( )( ) ( )( )
q

q

, , , , , ,6

, , ,

X i j QP C i j k i j rem QP f qbits

sign X i j QP sign C i j

⎧ ⎡ ⎤= ⋅ + >>⎪ ⎣ ⎦
⎨

=⎪⎩
, (2-67) 

where qbits = 15 + floor(QP/6), and f = 2qbits/6 for inter-prediction and f = 2qbits/3 for intra-

prediction. The values of MFs can be calculated by 

 k(i, j, QP) = rounding( 215 × Sf(i,j) / q(QP) ) for QP∈[0,5], (2-68) 

where rounding(·) is the round-to-nearest-integer operation. The values of MFs for QP from 0 

to 51 calculated from (2-68) are shown in TABLE 2-2. Note that the values in brackets are the 

modified values adapted to the decoder according to (2-71), since the standard only defines 

the decoder side. 
TABLE 2-2 

MULTIPLICATION FACTORS k(i, j, rem(QP,6)) FOR QP RANGES FROM 0 TO 51 

rem(QP,6) {(i,j) | 0 ≤ i ≤ 3 or 0 ≤ j ≤ 3} 
(0,0) (2,0) (2,2) (0,2) (1,1) (1,3) (3,1) (3,3) Others 

0 13107 5243 8290 (8066) 
1 11916 4766 (4660) 7536 (7490) 
2 10082 4033 (4194) 6377 (6554) 
3 9362 3745 (3647) 5921 (5825) 
4 8192 3277 (3355) 5181 (5243) 
5 7282 2913 (2893) 4605 (4559) 

 

Similarly, the dequantization and inverse transform are also regrouped into two machine-

friendly operations: 

a) the inverse scaling (rescaling), as shown in (2-72), and 

b) the 2-d integer inverse transform, as shown in (2-73). 

The rescaling factor (RF) can be obtained by combining the dequantization [×q(QP)] and the 

normalization of inverse transform [×Si(i,j)] together as shown below 

 k'(i, j, QP) = rounding( 26 × Si(i,j) × q(QP) ) for QP∈[0,5]. (2-69) 

The values of RFs for QP from 0 to 51 calculated from (2-69) have been shown in TABLE 

2-3, and the values in the brackets (if any) are the finalized values defined in the H.264/AVC 

standard. 
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TABLE 2-3 
RESCALING FACTORS k'(i, j, rem(QP,6)) FOR QP RANGES FROM 0 TO 51 

rem(QP,6) {(i,j) | 0 ≤ i ≤ 3 or 0 ≤ j ≤ 3} 
(0,0) (2,0) (2,2) (0,2) (1,1) (1,3) (3,1) (3,3) Others 

0 10 16 13 
1 11 18 14 
2 13 21 (20) 16 
3 14 22 (23) 18 
4 16 26 (25) 20 
5 18 29 23 

The relationship between MF and RF can be obtained by the multiplication of (2-68) and 

(2-69) as show below 

 k(i, j, QP) × k' (i, j, QP)  = 221 × Sf(i,j) × Si(i,j), (2-70) 

hence the modified values in TABLE 2-2 can be calculated by 

 k(i, j, QP)  = rounding( 221 × Sf(i,j) × Si(i,j) / k' (i, j, QP) ). (2-71) 

The rescaling can be carried out as shown below 

 
( ) ( ) ( )( )

( )( ) ( )( )
r q

r q

, , , , , ,6

, , ,

C i j X i j QP k' i j rem QP deqbits

sign C i j sign X i j QP
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⎨

=⎪⎩
. (2-72) 

Finally, the inverse integer transform is carried out as shown below 

 C = Hi
T x Hi, (2-73) 

where 

 T
i

1 1 1 1
1 1
1 1 1 1

½ ½

½ ½1 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

H . (2-74) 

is obtained by dividing the 2nd and 4th basic vectors of (2-50) by 2 to avoid the increase of 

dynamic range at the decoder side. 

2.3.2. Nonorthogonality Error 

The demand for large-size (e.g. 16×16) integer transform kernels is ever increasing due to 

the explosive increase of resolution of videos. In 2.1.4.3, we reviewed how order-16 ICT 

kernels can be found through a computer search, with the constraints of the orthogonality 

conditions (2-28), (2-30), (2-32), (2-34) and (2-36), and inequalities (2-29), (2-33) and (2-38). 

However, these constraints are too strong for those low-complexity kernels with small integer 

values. The kernel designs violating the constraints with varying degrees have been reviewed 

in Subsection 1.1.3. The basic idea is to compromise the similarity to the DCT Kernel with 

the easy-to-implement property, and is practically achieved by relaxing the condition of 

orthogonality of transform kernel in a controllable manner which roughly ensures the 
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orthogonality. The error analysis [74] showed that the well-controlled nonorthogonality noise 

is approximately negligible as compared to the quantization noise. 

Let us review the error analysis of nonorthogonality presented in [74]. Although there are 

some defects in the original analysis and we thus point them out in Chapter 4, the framework 

is correct and those defects do not affect the overall justifications to the results of the analysis. 

The derivation starts by assuming an input signal as a 1-d, zero-mean, unit-variance first-

order Markov Process. It is denoted as an N×1 vector x, and the correlation between two 

adjacent elements is ρ. The nonorthogonal transform coding process is applied to the input 

signal by using the nonorthogonal transform kernel T. Note that the perfect reconstruction is 

no longer preserved after the forward transform (2-75) and inverse transform (2-76), and the 

reconstruction error is shown in (2-77). 

 θ = Tx (2-75) 

 y = TTθ (2-76) 

 y − x = TTθ − x = (TTT − I) x = Er x (2-77) 

where θ is the vector of transform coefficients, superscript T is the matrix transpose operation, 

y is the reconstructed vector, I is the identity matrix and  

 Er = TTT − I. (2-78) 

Then the average variance of the reconstruction error without the consideration of 

quantization can be formulated as 
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where E is the expectation operator, M(k,j) is the element of T
r r=M E E  at the position (k,j), 

and R(k,j) is the element of the autocorrelation matrix of x at the position (k,j). By assuming 

the input signal as wide-sense stationary, (2-79) can be further simplified to 

 ( ) ( )1 12 1
r0 0 0

,N N
N k j

M k j R j kσ − −

= =
= −∑ ∑ . (2-80) 

The relationship that the autocorrelation is less than or equal to the variance was used by [74], 

hence [74] obtained an upper bound of 2
r0σ  for a given NICT as shown below 

 1 1 1 12 2 21 1
r0 0 0 0 0

( , ) ( , )N N N N
x xN Nk j k j

M k j M k jσ σ σ− − − −

= = = =
≤ ⋅ =∑ ∑ ∑ ∑ . (2-81) 

Note that in the real coding environment, the transform coding is always followed by the 

quantization. Hence, considering the noise introduced by the nonorthogonal transform coding 

alone is not sufficiently to model the real scenario with the existence of quantization. The 

relationship between the reconstruction error 2
rσ  and the quantization error 2

qσ  is also 

examined by the authors. Recall that the quantized-and-dequantized version of θ is denoted as 
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u, the reconstructed vector with the consideration of quantization is denoted as yr, and the 

quantization error θ − u is denoted as q. Hence the average variance of the reconstruction can 

be formulated as 
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where Ter = TT − T−1. By replacing TTT with Er + I, [74] obtained 
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Reference [74] argued that the third and fourth terms in (2-83) can be eliminated because “the 

autocorrelation of q and the crosscorrelation of q and θ are both zero as shown by Widrow et 

al. [97]”. Hence the relationship is simplified to 

 2 2 2
r q r0σ σ σ= +  (2-84) 

which means that the reconstruction error is simply the addition of the quantization noise and 

the nonorthogonal noise. The upper bounds of various NICT kernels were then evaluated by 

assuming that the variance of the input signal 2 1xσ = . Subsequently experimental works 

carried out for a set of nonorthogonal order-16 ICT kernels showed that the nonorthogonality 

error is negligible compared to the quantization error. 

2.3.3. Dyadic Approximation Error 

In an ideal hybrid video codec model, the only error source is the quantization process. 

However, practical implementations can introduce other errors, for example, the error 

introduced by the nonorthogonal transform kernels. Besides the quantization error and the 

nonorthogonality error, the H.264/AVC also suffers from a new kind of error called the 

“dyadic approximation error” due to the integerization of transform coding. Let us use Fig. 

2-7 to explain the source of this error and the way to model it. Recall that the main idea of 

integerization of the transform coding is to split the transform into the integer transform and 

the normalization (see Fig. 2-7(a) and Fig. 2-7(b)), and then combine the normalization and 

quantization together with a new name “post-scaling” (see Fig. 2-7(b) and Fig. 2-7(c)). In 

spite of different forms the processes in Fig. 2-7(a), Fig. 2-7(b), and Fig. 2-7(c), they are 

totally equivalent, and do not suffer from any error except the nonorthogonality and the 

quantization. The multiplication between an integer m and a floating-point number s in the 

post-scaling of Fig. 2-7(c) is implemented by the integer multiplication between m and k 



 

32 
 

followed by an n-bit right-shifting operation, where the integer k and natural number n are 

defined in the dyadic fraction representation of s, k/2n. The operations needed are so 

fundamental that the ALUs of different processors are able to produce exactly the same 

results if the number of shifting bits n (more specifically, n1 for the post-scaling stage and n2 

for the pre-scaling stage) is properly specified hence the potential mismatch between the 

encoder side and decoder side can be avoided. Nevertheless, a dyadic fraction is only an 

approximation of the exact value of a real number (usually irrational), hence the dyadic 

approximation also introduces errors. Fig. 2-7(c) is a part of the implementation block 

diagram of the H.264/AVC for the ideal case by assuming the shifting bits n1, n2 → ∞, 

whereas Fig. 2-7(d) shows the practical case when the number of shifting bits is not infinitely 

large. The error introduced by the dyadic approximation can be measured in terms of the ratio 

between the approximated value and the actual value, which is (k/2n)/s. The dyadic 

approximation error is implicitly shown by the “Finite Precision” in blocks 2 and 3 of Fig. 

2-7(d), which is not traced by any block and thus inconvenient for mathematical analysis. 

Hence it is beneficial to explicitly trace the errors in the post-scaling and the pre-scaling block 

by the 2nd and 5th blocks in Fig. 2-7(e), in which all aforementioned errors are explicitly 

modeled. The reason that the transform block and the quantization block are used instead of 

the integer transform block and the post-scaling block is due to their equivalence which has 

been shown in Fig. 2-7(a) to Fig. 2-7(c). We can thus derive the MSE between the 

reconstructed signal and the input signal taking the dyadic approximation as well as the 

quantization and the nonorthogonality into the consideration. Let us first denote 

1) an input signal as an N×1 vector x, 

2) the normalized nonorthogonal transform kernel as an N×N matrix H, 

3) the transformed vector as z,  

4) the matrix which models the error introduced by the dyadic approximation at the 

post-scaling stage as S1 (which is a diagonal matrix with diagonal elements slightly 

larger or smaller than 1), 

5) the distorted vector due to the dyadic approximation as v, 

6) the quantized vector as u, 

7) the vector modeling the quantization error as nq,  

8) the matrix which models the error introduced by the dyadic approximation at the 

pre-scaling stage as S2 (which is a diagonal matrix with diagonal elements slightly 

larger or smaller than 1), 

9) the output vector as yr, and 

10) the output obtained by omitting the quantization as y. 
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Note that throughout this thesis, we use a letter in bold to represent a matrix or a vector (for 

example H or x), whereas a letter in italic with index term(s) to represent one particular 

element in that matrix or vector (for example, H(i,j) or x(i)). Let us also define the following 

symbols and equivalences for the clarity of presentation 

 N1 = N1
T = S1

−1 − I (2-85) 

 N2 = N2
T = S2

    − I (2-86) 

 Er = ErT = HHT − I (2-87) 

Note that the transpose relationship in (2-85) and (2-86) is obvious since the off-diagonal 

elements of Si for i = 1 or 2 are all zero. Let us represent the operation from the forward 

transform to inverse transform in Fig. 2-7(f) by the following set of equations 

 z = Hx (2-88) 

 v = S1z (2-89) 

 u = quant −1[quant(v)] = v − nq  (2-90) 

 yr = (S2H)Tu (2-91) 
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Fig. 2-7. Each block diagram describes the stages that convert the original signal into the reconstructed signal. Each row 
presents a variation: (a), (b), and (c) the ideal cases; (d) the practical case which includes the dyadic approximation error 
implicitly; (e) the practical case which models all error factors explicitly; and (f) the analytical expression of (e). Note that i) for 
each block in (a)–(e), the bottom part indicates whether this block causes error; and ii) “DA” stands for “Dyadic 
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The reconstruction error can be calculated by using the average MSE between the input x and 

output yr as shown below 

 ( ) ( )T2 1
r r rENσ ⎡ ⎤= − −⎣ ⎦x y x y  (2-92) 

The difference between x and yr can be expanded into 
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 (2-93) 

where Her = HT − H−1. Let us define 

 T 1
2 q er 1

−= −A H S n H S v  (2-94) 

 ( )T 1
1 2
−= −B H S S v  (2-95) 

Hence (2-92) can be represented by 
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The first term of (2-96) can be written as 
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  (2-97) 

where ( ) ( )T2 1
r0 ENσ ⎡ ⎤= − −⎣ ⎦y x y x . It can be observed that 2

r0σ  is the average MSE between 

the input and output without quantization. It has been shown in [74] that  

 1 12 2 1
r0 x 0 0

( , )N N
N j k

M k jσ σ − −

= =
⎡ ⎤≤ ⎣ ⎦∑ ∑ , (2-98) 

where  

 M = (HTH − I)T(HTH − I). (2-99) 

For the second term of (2-96), we have 
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where E[nqS2HHT(S1
−1 − S2)v] = 0 since  

 E[nq(i)v(j)] = 0 for all i, j ∈[0, N−1]. 
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This can be proved by considering the cases for i = j and i ≠ j. For i = j, E[nq(i)v(j)] measures 

the correlation between a quantizer input and its quantization noise. As is shown in [97], these 

two signals are uncorrelated provided that the quantizer input is “band-limited in the CF 

domain” of which general cases approximately fulfills the condition. For i ≠ j, E[nq(i)v(j)] 

measures the correlation between a quantizer input and the quantization noise of another 

quantizer. By assuming that the DCT coefficients are independent of each other (which means 

that each DCT coefficient can be regarded as an independent quantizer input), nq(i) and v(j) 

are obviously uncorrelated. Hence 

 ( )( )T T T2 2
2 1E EN N

⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦A B x H Er S S I H x . (2-101) 

For the third term of (2-96) 
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Hence we obtain 

 { }2 2 2 T T1 1
r q r0 q qE EN Nσ σ σ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦Ωn n x Ψx  (2-103) 

where 2
qσ  is the average MSE of the quantization error, 2

r0σ is the average MSE of the 

nonorthogonality error, 

 T T
2 2 2 2 2 22 2= + + + +Ω N ErN N N Er ErN N , and (2-104) 

 ( ) ( )T
1 1 2 1 2 1 2 12= ⎡ − − + + ⎤ −⎣ ⎦Ψ H S N N N N I Er N N S H . (2-105) 

Let us continue to simplify the third term of (2-103) as shown below 
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For quantization noise nq, elements of its autocorrelation matrix are zero except the diagonal 

terms, hence 
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Similarly, the fourth term of (2-103) can be simplified as shown below 
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The correlation coefficient ρ(i,j) ranges from −1 to 1, hence the maximum value of E[xTΨx] 

can be reached if a) |ρ(i,j)| → 1, and b) ρ(i,j) has the same sign with Ψ(i,j). Condition a) is 

easily fulfilled by setting the absolute value of all correlation coefficients to 1. Condition b) 

can only be fulfilled for some positions. It is because the number of sign patterns of Ψ(i,j) is 

( )21 22 N− , whereas the number of sign patterns of ρ(i,j) is only 2N−1. Although condition b) 

cannot be really achieved, our experimental works show that b) can lead to a good 

approximation to the real upper bound. Hence the fourth term of (2-103) can be written as 

 ( )1 1T 2
x 0 0

E ,N N

j i
i jσ Ψ− −

= =
⎡ ⎤ ≤⎣ ⎦ ∑ ∑x Ψx  (2-109) 

Let us also modify (2-98) by using the above idea,  

 1 12 2 1
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Hence the upper bound of the average variance of reconstruction can be written as follow 
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where M, Ω and Ψ are defined by (2-99), (2-104) and (2-105) respectively. The first, second 

and third terms are caused by the quantization term, the nonorthogonality term and the dyadic 

approximation term, respectively. By examining (2-104) and (2-105) carefully, we observe 

that the dyadic approximation term depends also on the nonorthogonality of transform kernel, 

however, the nonorthogonality term only depends on itself. 
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Chapter 3. Transform Kernel Selection Strategy for H.264/AVC and Future 

Video Coding Standards 

3.1. Introduction 

As we have mentioned in Section 2.3, the H.264/AVC heavily makes use of the simplest 

order-4 integer cosine transform (ICT) kernel for the transform coding processb.On a careful 

examination, it is not difficult to find that the normalized ICT kernel of the H.264/AVC is not 

too close to the discrete cosine transform (DCT) kernel. Hence the desirable properties 

measured such as decorrelation property, energy compaction property and compression ability 

which are available in DCT are limited. However, experimental results show that its 

performance is comparable to the case of employing the DCT Kernel [98]. This has arisen the 

curiosity of many of us on why the supposed-to-be-deteriorated kernel can have similar 

performance as the DCT Kernel. One explanation is that some signals are better compressed 

by the DCT Kernel while others are better compressed by the ICT kernel. In this chapter, we 

have designed a whole set of experiments and the theoretical works that possibly lead to some 

answers. 

Under the framework of the H.264/AVC, the transform kernel must be integer, which is a 

mandatory requirement in order to avoid the drift problem. Hence for a practical realization, 

kernels must be provided with integer versions which may have different characteristics 

compared to the integerized versions of original floating-point kernels due to scaling and 

rounding. Some researchers focused on the existing kernels with various known 

characteristics and used various combinations of them to see if the coding efficiency can be 

improved and the reason behind. We also follow this approach. In this chapter, all new 

kernels are directly-derived integer kernels (they can be normalized to orthonormal kernels 

easily), so the characteristics between integer version and orthonormal version are exactly the 

same, which is an advantage. We have also tried to search for integer kernels with simple 

integers for the ease of decoding, while the orthonormal kernels (i.e. kernels derived directly 

from the Karhunen–Loève (KL) Transform) mainly have irrational floating numbers, hence it 

is often that their simple integer version cannot be found satisfactorily. 

In Subsection 3.2.1, the notations used in this chapter are defined. In Subsection 3.2.2, we 

review the multiple-kernel scheme and suggest kernels that can be used. In Subsection 3.2.3, 

we propose one DCT-like integer kernel and revitalize another DCT-like integer kernel. 

Subsequently in Subsection 3.2.4, we show that a dual-kernel system comprising of the 

H.264/AVC Kernel and any one of the proposed kernels has a higher coding efficiency. In 

                                                      
b To some extent, Walsh–Hadamard Transform (WHT) has also been used. 



 

38 
 

Subsection 3.3.1, we discuss our discovery of the kernel selection tendencies when a dual-

kernel system is employed. In Subsection 3.3.2, before exploring the kernel selection 

tendencies, we visualize the kernel selection process using a graphical approach. In 

Subsection 3.3.3, we propose the newly-found rate-distortion feature that has a crucial effect 

to the kernel selection tendencies. In Subsection 3.3.4, we analyze the theory behind this 

feature. In Subsection 3.3.5, we propose a fast kernel selection algorithm which uses one 

kernel for each type of frame in the H.264/AVC. In Subsection 3.3.6, we generalize the rate-

distortion feature from two kernels to more kernels. In Subsection 3.3.7, we further generalize 

the algorithm to adapt different choices of compromises on quality and bitrate. In Section 3.4, 

we give how a video coding standard and the relative codec should change by employing our 

proposed algorithms. In Section 3.5, conclusions are drawn and further directions are 

discussed. 

3.2. Macroblock-Level Adaptive Kernel Mechanism 

3.2.1. Notations 

Recall that the integer transform and scaling process used in the H.264/AVC can be 

denoted as 

 T= ⋅ ⋅ ⊗Y H X H E  (3-1) 

where X denotes the 4×4 input residual signal, Y denotes the transformed-and-quantized 

signal, H denotes that integer transform kernel, E denotes the multiplication matrix, “T” 

means the matrix transpose operation and the “⊗ ” denotes term-by-term multiplication. 

The integer version of a DCT-like kernel mentioned in this chapter is denoted as IK(a,b,c) 

and its complete form is 

 DCT-like

a a a a
b c c b
a a a a
c b b c

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

H  (3-2) 

where a, b and c are all non-negative integer values. It can also be denoted as (a,b,c) for the 

sake of simplicity if no ambiguity is found (such as those in TABLE 3-5). For example, the 

H.264/AVC default integer kernel (H.264/AVC Kernel) is denoted as IK(1,2,1) , i.e. a = 1, b 

= 2 and c = 1 [6]. 

Recall also that the integer version of a DST-like kernel was employed as an alternative 

kernel for less correlated signals together with the H.264/AVC Kernel as the main kernel for 

the codec in [57-58]. This particular integer version of DST-like kernel is referred to as the 

IST Kernel as shown in (3-3). 
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 DST-like

1 2 2 1
1 1 1 1
2 1 1 2
1 1 1 1

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎣ ⎦

H  (3-3) 

Note that these kernels can be normalized to obtain their orthonormal kernels which allow 

perfect reconstruction for signals fed for a pure transform process. Also, the H.264/AVC 

combines the normalizations of the integer kernels and the quantization / dequantization 

process together to form the corresponding scaling matrices (called the “multiplication 

matrix” and the “rescaling matrix”) which can be easily deduced by following a set of 

standard formulas in Subsection 2.3.1. 

3.2.2. Multiple-Kernel Scheme 

Let us also simplify the representation of multiple-kernel scheme in the transform coding 

process, and name it as the Adaptive Kernel Mechanism (AKM). Conventionally, the AKM is 

applied at the macroblock level, hence we name it as “MacroBlock-level AKM”—MB-AKM. 

It is adaptive because the encoder adaptively chooses the best kernel for each macroblock. 

The MB-AKM aims at achieving higher coding efficiency by selecting the most suitable 

kernel from a group of candidates at the transform coding stage. It employs the coding cost 

calculated by the Rate-Distortion Optimization (RDO) [99-100] as the kernel selection 

criterion. After kernel selection, with the extra information given by two relative flags: the 

MB Mode (Macroblock Mode) flag and the CBP (Coded Block Pattern) flag [6], a sequence 

of signaling bits is generated by the encoder to indicate the selected kernel for every 

macroblock. At the decoder side, each macroblock can be inversely transformed using the 

kernel indicated by the signaling bit directly. In Section 3.3, we will apply the AKM to a 

higher level – the frame level. Hence we name the algorithm as a Frame-level AKM (FM-

AKM). 

In this chapter, we employ the AKM to improve the coding efficiency of the H.264/AVC, 

and make analyses on the questions raised at the end of the first paragraphs in Section 3.1. In 

order to improve the coding efficiency, kernels which lead to high compression ratio should 

be considered. It is thus intuitively to find kernels with good decorrelation and energy 

compaction properties, since these characteristics are closely related the compression ability 

of the encoder. Besides, the structure of a kernel should be simple, and this is an important 

factor for improving the computational efficiency. 

In Ref. [57-58], it appears that the IST Kernel is suitable for the decorrelation of less 

correlated signals, and this leaves the H.264/AVC Kernel to decorrelate highly correlated 

signals. However, we would like to point out that the decorrelation property of the 

H.264/AVC Kernel is limited compared to the DCT Kernel. In other words, the DCT Kernel 
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has better performance in decorrelating the highly correlated signals (such as residual signals 

found around edges of objects) than the H.264/AVC Kernel. Hence beyond the H.264/AVC 

and IST Kernels, it is good to employ a third kernel which is even closer to the DCT Kernel 

than the H.264/AVC Kernel for the highly correlated signals. For the sake of ease of 

presentation, we name the third kernel as the “DCT-like kernel”. In the strict sense, the 

H.264/AVC Kernel is also DCT-like. However, since its similarity to the DCT Kernel is not 

high comparing to other DCT-like kernels and it has simple structure, we use the term 

“H.264/AVC Kernel” to imply its uniqueness. 

When the AKM with these three kernels are used, each kernel has a role of itself: 1) The 

decorrelation and energy compaction properties of the DCT-like kernel is comparable to those 

of the DCT Kernel, hence the DCT-like kernel is used for highly correlated signal. 2) The 

H.264/AVC Kernel IK(1,2,1) preserves the DCT properties to some extent, and it often can be 

used as a substitution of the DCT-like kernel. The main reason of employing this kernel is its 

simplicity (for this transform can be realized by only add and shift operations). 3) The IST 

Kernel is be used for low correlated signal. However, some researchers have shown that the 

performance difference between the DST and the DCT for low correlation signals is small 

[20]. This is one of the reasons triggering us to look into this problem in details and to set up a 

new combination, which eliminates the IST Kernel and uses the IK(1,2,1) together with 

another DCT-like kernel for possible improvement. 

3.2.3. Proposed DCT-Like Kernels 

Since the AKM includes several kernels and the H.264/AVC and IST Kernels are 

available, we need to see if there are DCT-like kernels which have closer property with the 

DCT Kernel. One possible way is to scale up the floating-point DCT Kernel by a scalar u and 

then round the scaled result so as to preserve the characteristics of DCT, as we have reviewed 

in 2.1.4.4. This is a systematical approach to find DCT-like kernels. During the kernel 

searching process, the similarity between the newly-found kernel and the DCT Kernel was 

indirectly measured by the kernel percentage error (KPE) as shown below 

 
( )

( )DCT DCT

DCT DCT

2
1
2

2
1
2

1
1

1
KPE

γ γ
β β

γ γ
β β

⎡ ⎤+ +⎢ ⎥⎣ ⎦= −
⎡ ⎤+ +⎢ ⎥⎣ ⎦

 (3-4) 

where βDCT and γDCT are the corresponding coefficients of the DCT Kernel. Detailed 

derivation of KPE can be found in 2.1.4.4. The smaller the KPE value is, the closer a newly-

found DCT-like kernel resembles the DCT Kernel. 

It should be emphasized that a kernel must be simple so that they lead to small dynamic 

ranges of intermediate results, in order to keep the computational complexity at a reasonable 
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level. Through a computer search by setting u from 1.00 to 50.00 with step 0.01, we have 

found a number of integer kernels which have relatively small KPE as shown in TABLE 3-1. 

There are some new kernels as a result of our search, while others were proposed in the 

literature before. The first few small-scale kernels have the advantage of simplicity, while as 

the scale of kernel increases the similarity also increases. We have found that when u is 

around 26.00, the similarity measure of the scaled kernel IK(13,17,7) reaches the maximum. 

It is also the most famous DCT-like kernel once adopted during the H.264/AVC 

standardization process proposed by Bjontegaard [94]. The multiplication factors and 

rescaling factors are subsequently calculated according to Subsection 2.3.1 and the results are 

shown in TABLE 3-2. 
TABLE 3-1 

THE DCT-LIKE KERNELS FOUND BY THE UP-SCALING METHOD 
Kernel KPE Description 
IK(2,3,1) 8.55% Adopted by AVS-M [83] c 
IK(3,4,2) 9.41% New Kernel 
IK(4,5,2) 1.53% Adopted by AVS-M 
IK(5,6,2) 8.55% New Kernel 
IK(5,7,3) 1.55% New Kernel 
IK(6,8,3) 4.19% New Kernel 
IK(7,9,4) 3.28% Adopted by AVS-M 
… 

IK(13,17,7) 0.26% 
Proposed by Bjontegaard [94], 
once adopted by the H.26L TML-1 
[101] 

… 
 

TABLE 3-2 
MULTIPLICATION FACTORS AND RESCALING FACTORS OF IK(13,17,7) FOR H.264/AVCd 

QP mod 6 Multiplication Factor (MF) Rescaling Factor (RF) 
Pos1 Pos2 Pos3 Pos1 Pos2 Pos3 

0 4699 4699 4699 4 4 4 
1 4699 4699 4699 4 4 4 
2 3759 3759 3759 5 5 5 
3 3759 3759 3759 5 5 5 
4 3133 3133 3133 6 6 6 
5 2685 2685 2685 7 7 7 

 

However, the kernel IK(13,17,7) also poses a problem that the dynamic range of 

intermediate step variables increases significantly [98]. The additional bits of the dynamic 

                                                      
c The AVS stands for the Audio Video Standard. It is an audio-video coding standard initiated by 

the government of P. R. China. AVS-M is a part of the AVS which mainly targets at the application of 

mobile video. 
d “Pos1” refers to positions (0,0), (0,2), (2,0) and (2,2); “Pos2” refers to positions (1,1), (1,3), (3,1) 

and (3,3) and “Pos3” refers to the remaining positions. 
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range required for a new integer kernel with respect to the H.264/AVC Kernel, ∆BITS, can be 

calculated by 

 
[ ]

3

2
0 max, 0,3

2log 6ij
j i

BITS k
= ∀ ∈

⎡ ⎤⎛ ⎞
⎢ ⎥Δ = ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑  (3-5) 

where kij is the element of integer kernel at ith row and jth column. For IK(13,17,7), it needs an 

addition of 6 bits for the integer transform coefficients compared to the H.264/AVC Kernel, 

which requires a 32-bit multiplication in general computer realization. There are two 

approaches to reduce this problem, one is to implement the codec by dedicated hardware, and 

the other is to choose a kernel with smaller ∆BITS. 

With the latter idea, we propose the newly-found kernel IK(5,7,3) to serve as an 

alternative kernel. This kernel has two main properties. 1) The ratios among the kernel 

elements a, b and c are similar to the DCT Kernel so as to preserve the decorrelation property, 

however, it is not so close as that of the IK(13,17,7). 2) The kernel IK(5,7,3) can be 

represented by only 3 bits (710=1112), and the ∆BITS is also 3. Hence we can see that IK(5,7,3) 

is a compromise between the decorrelation property (represented by IK(13,17,7)) and the 

computational complexity (represented by IK(1,2,1)). The multiplication factors and rescaling 

factors are subsequently calculated according to Subsection 2.3.1 and the results are shown in 

TABLE 3-3. 

TABLE 3-3 
MULTIPLICATION FACTORS AND RESCALING FACTORS OF IK(5,7,3) FOR H.264/AVC 

QP mod 6 Multiplication Factor (MF) Rescaling Factor (RF) 
Pos1 Pos2 Pos3 Pos1 Pos2 Pos3 

0 4474 3325 3857 3 3 3 
1 3355 3325 3857 4 3 3 
2 3355 2494 2893 4 4 4 
3 3355 2494 2893 4 4 4 
4 2684 2494 2314 5 4 5 
5 2237 1995 2314 6 5 5 

 

3.2.4. Experimental Results of MB-AKM 

In this subsection, we evaluate the MB-AKM with different alternative kernels. We 

implemented the MB-AKM in Joint Model (JM) 12.2 [102], and our evaluation is in-line with 

the “Recommended Simulation Common Conditions” suggested by VCEG [103], but we have 

made some slightly changes: 

• For the QCIF and CIF sequences, we encoded the first 300 frames; for HD sequences, 
we encoded the first 100 frames. 

• The prediction structure selected was IBBP. 
• The video sequences were coded using High Profile. 
• The frame rate is 15 Hz for the first 4 sequences and 30 Hz for other sequences. 



 

43 
 

• The quantization parameter (QP) values are 22, 27, 32 and 37. The QP values are 
incremented by 1 for each level of reference. 

• The search range is 32 for QCIF/CIF and is 64 for HD sequences. 
• The entropy coding scheme is CABAC. 
• The RDO was on. 
• The 8×8 transform was off. 
The evaluation results are shown in the TABLE 3-4. We tested the performances of MB-

AKM by employing IK(13,17,7), IK(5,7,3) and the IST Kernel, respectively. We used the 

Bjontegaard Metric [104] to measure both bitrate change (∆Bitrate) and PSNR change 

(∆PSNR). Note that all the results listed in the table are the changes of bitrates and PSNR of 

new schemes with respect to the H.264/AVC’s default arrangement (using the single kernel 

IK(1,2,1)). Either a negative ∆Bitrate or a positive ∆PSNR means an improvement in coding 

efficiency over the H.264/AVC Kernel. The sub-averages are listed to show the impact of 

MB-AKM to videos of different sizes. The signaling bits which are the overhead introduced 

by the MB-AKM are not included in the TABLE 3-4 due to the limited space and also for the 

sake of simplicity, without affecting the comparison since all combinations require more or 

less the same among of signaling bits. However, we do include the signaling bits in the 

TABLE 3-5 for MB-AKM{(1,2,1)&(13,17,7)} and MB-AKM{(1,2,1)&(5,7,3)}. According to 

the test results, the signaling bits will increase the overall bitrate by around 0.4%. 

The column “Complexity” representing the complexity of a video sequence is a loosely 

defined term which were resulted from the observers’ subjective opinions within the range of 

frames set by the simulation condition. The higher the value is, the more complex the video 

sequence is regarded. 

From TABLE 3-4, we can see that both MB-AKM{(1,2,1)&(13,17,7)} and MB-

AKM{(1,2,1)&(5,7,3)} outperform the MB-AKM{(1,2,1)&IST} in almost all cases. The 

average bitrate saving of MB-AKM{(1,2,1)&(13,17,7)}, MB-AKM{(1,2,1)&(5,7,3)} and 

MB-AKM{(1,2,1)&IST} without the costs of signaling bits are 3.18%, 2.52% and 0.70%, 

respectively. 

When only IK(13,17,7) or IK(5,7,3) is used instead of the H.264/AVC Kernel, the 

performance is even worse in most cases, which complies with the results in [98]. The result 

may give some of us a surprise but it is reasonable, and will be explained in details in 

Subsection 3.3.4. 

If we add the IST Kernel as the third candidate kernel in parallel with IK(13,17,7) or 

IK(5,7,3), the improvement is very small, indicating that the DCT-like kernels are superior to 

the IST Kernel serving as alternative kernel. It is also indicated by our further experimental 

work that the MB-AKM with more than two kernels cannot improve the coding efficiency 

significantly. (Results are not included here since the improvements are not significant.) 
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TABLE 3-4 
EVALUATION RESULTS—THE COMPARISON AGAINST THE H.264/AVC’S DEFAULT SCHEME USING 

IK(1,2,1) 
Sequence Results Relate to IK(13,17,7) Results Relate to IK(5,7,3) IST 

MB-
AKM{(1,2,1)&(

13,17,7)} 

MB-
AKM{(1,2,1)&(
13,17,7)&IST}

IK(13,17,7) MB-
AKM{(1,2,1)&(

5,7,3)} 

MB-
AKM{(1,2,1)&(

5,7,3)&IST} 

IK(5,7,3) MB-
AKM{(1,2,1)&I

ST} 
Size Name Comple

xity 
∆Bitrate 

(%) 
∆PSNR 

(dB) 
∆Bitrate 

(%) 
∆PSNR 

(dB) 
∆Bitrate 

(%) 
∆PSNR 

(dB) 
∆Bitrate 

(%) 
∆PSNR 

(dB) 
∆Bitrate 

(%) 
∆PSNR 

(dB) 
∆Bitrate 

(%) 
∆PSNR 

(dB) 
∆Bitrate 

(%) 
∆PSNR 

(dB) 

QCIF 
Container 1 -1.30 0.0624 -0.84 0.0382 14.72 -0.6379 -1.02 0.0467 -1.10 0.0527 12.79 -0.5600 -0.24 0.0160
Foreman 3 -3.49 0.1713 -3.89 0.1913 1.92 -0.0946 -2.82 0.1378 -3.42 0.1677 2.49 -0.1212 -1.19 0.0579
Silent 2 -4.52 0.2488 -4.69 0.2591 14.90 -0.7460 -3.45 0.1940 -3.89 0.2148 13.95 -0.6990 -0.84 0.0443

QCIF Average -3.10 0.1608 -3.14 0.1629 10.51 -0.4929 -2.43 0.1262 -2.80 0.1451 9.74 -0.4601 -0.76 0.0394

CIF 

Paris 1 -4.57 0.2510 -4.87 0.2686 5.40 -0.3136 -3.68 0.2038 -3.68 0.2044 6.21 -0.3503 -0.72 0.0398
Foreman 2 -2.83 0.1243 -3.25 0.1426 3.89 -0.1669 -2.18 0.0956 -2.64 0.1154 3.93 -0.1668 -0.87 0.0383
Mobile 4 -5.23 0.2384 -5.48 0.2492 -2.82 0.1217 -4.25 0.1934 -4.33 0.1969 -1.80 0.0748 -0.75 0.0360
Tempete 3 -6.13 0.2532 -6.26 0.2576 -3.08 0.1178 -5.23 0.2159 -5.26 0.2169 -2.43 0.0916 -0.66 0.0279

CIF Average -4.69 0.2167 -4.96 0.2295 0.85 -0.0603 -3.84 0.1772 -3.98 0.1834 1.48 -0.0877 -0.75 0.0355

HD 
(720p) 

BigShips 2 -0.67 0.0177 -0.51 0.0134 10.47 -0.2702 -0.35 0.0092 -0.60 0.0157 9.00 -0.2331 -0.28 0.0073
City 4 -1.57 0.0480 -1.35 0.0407 9.28 -0.2712 -1.23 0.0376 -1.38 0.0420 8.26 -0.2449 -0.44 0.0136
Crew 3 -3.68 0.0984 -3.95 0.1049 4.06 -0.1050 -3.38 0.0882 -3.93 0.1023 2.96 -0.0769 -1.21 0.0298
Night 5 -2.53 0.0928 -2.71 0.0982 6.32 -0.2200 -2.24 0.0791 -2.33 0.0820 6.06 -0.2093 -0.55 0.0200
ShuttleStart 1 -0.30 0.0042 -0.01 -0.0046 13.51 -0.3522 0.71 -0.0188 0.58 -0.0133 12.57 -0.3254 -0.48 0.0089

HD Average -1.75 0.0522 -1.71 0.0505 8.73 -0.2437 -1.30 0.0391 -1.53 0.0457 7.77 -0.2179 -0.59 0.0159
Total Average -3.18 0.1433 -3.27 0.1476 6.70 -0.2656 -2.52 0.1141 -2.77 0.1247 6.33 -0.2552 -0.70 0.0303

TABLE 3-5 
COMPARISON BETWEEN MB-AKM{(1,2,1)&(13,17,7)} AND MB-AKM{(1,2,1)&(5,7,3)} (SIGNALING 

BITS INCLUDED) 
Sequence Improvement over the H.264/AVC Default Scheme with Signaling Bits 

MB-AKM{(1,2,1)&(13,17,7)} MB-AKM{(1,2,1)&(5,7,3)} 

Size Name Actual Bits 
Saving (%) 

Signaling 
Bits (%) 

∆Bitrate 
(%) 

∆PSNR 
(dB) 

Actual Bits 
Saving (%) 

Signaling 
Bits (%) 

∆Bitrate 
(%) 

∆PSNR 
(dB) 

QCIF 
Container -0.83 0.47 -1.30 0.0624 -0.56 0.46 -1.02 0.0467 
Foreman -3.07 0.42 -3.49 0.1713 -2.39 0.43 -2.82 0.1378 
Silent -3.97 0.55 -4.52 0.2488 -2.88 0.57 -3.45 0.1940 

QCIF Average -2.62 0.48 -3.10 0.1608 -1.94 0.49 -2.43 0.1262 

CIF 

Paris -4.35 0.22 -4.57 0.2510 -3.45 0.23 -3.68 0.2038 
Foreman -2.41 0.42 -2.83 0.1243 -1.77 0.41 -2.18 0.0956 
Mobile -5.03 0.20 -5.23 0.2384 -4.05 0.20 -4.25 0.1934 
Tempete -5.89 0.24 -6.13 0.2532 -5.00 0.23 -5.23 0.2159 

CIF Average -4.42 0.27 -4.69 0.2167 -3.57 0.27 -3.84 0.1772 

HD 
(720p) 

BigShips -0.29 0.38 -0.67 0.0177 0.04 0.39 -0.35 0.0092 
City -1.27 0.30 -1.57 0.0480 -0.94 0.29 -1.23 0.0376 
Crew -3.04 0.64 -3.68 0.0984 -2.76 0.62 -3.38 0.0882 
Night -2.10 0.43 -2.53 0.0928 -1.81 0.43 -2.24 0.0791 
ShuttleStart 0.11 0.41 -0.30 0.0042 1.14 0.43 0.71 -0.0188 
HD Average -1.32 0.43 -1.75 0.0522 -0.87 0.43 -1.30 0.0391 

Total Average -2.79 0.39 -3.18 0.1433 -2.13 0.40 -2.52 0.1141 

We also find that the employment of MB-AKM has the most impact to the CIF sequences 

but the least impact to the HD sequences. (The HD sequences may need the help of larger-

size transforms which are outside of the scope of this thesis, to achieve higher coding 
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efficiency improvement.) We also note that for high complexity videos, the bitrate reduction 

caused by employing the MB-AKM is higher in most cases. 

For each sequence, we can draw a Rate-Distortion graph for various coding schemes (such 

as MB-AKM{(1,2,1)&(5,7,3)}, MB-AKM{(1,2,1)&IST}, etc.) to visualize the performance 

differences. Fig. 3-1 shows the case for the CIF Sequence Tempete which has an average 

bitrate reduction of 5.23% and PSNR gain of 0.22 dB. Specifically, at point (38.84 dB, 

1937.63 kbits/s), the MB-AKM has a bitrate reduction of 4.7% and a PSNR gain of 0.31 dB. 

From this graph, we can see that the MB-AKM has a much better performance in the high 

bitrate region (the RHS of the RD graph) covered roughly by the right most two points 

generated by the QP values equal 27 and 22 respectively. Other RD graphs also have similar 

situations. This means that the MB-AKM is more useful when the quantization is not so 

coarse. It is reasonable because a fine quantization requires more accurate quantized signals 

of which the MSE and the number of bits required by using various kernels can be very 

different. The above finding indicates that the MB-AKM is suitable for high fidelity video 

coding applications (with small values of QP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-1. Rate-distortion graph for CIF sequence Tempete relating to IK(5,7,3). 

Note that the costs of signaling bits can be easily covered by the improvement made by 

the MB-AKM with IK(13,17,7) and IK(5,7,3). However, the improvement of MB-
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AKM{(1,2,1)&IST} with the consideration of signaling bits is just marginal (with a bitrate 

reduction of just 0.70%). 

The coding performance of MB-AKM{(1,2,1)&(5,7,3)} is close to the MB-

AKM{(1,2,1)&(13,17,7)}. However, since the former one is a compromise between the 

complexity and the coding efficiency, its coding efficiency is slightly less efficient. With 

these two schemes proposed by us, one can improve the coding efficiency with the cost of 

raising the computational complexity. A detailed comparison of the schemes is shown in 

TABLE 3-6. 

Roughly speaking the IK(5,7,3) requires word-lengths of 3 more bits as compared to 

IK(1,2,1) and the IK(13,17,7) also requires word-lengths of 3 more bits as compared to 

IK(5,7,3) for a practical realization, even though the coding efficiency is improved by 2.52% 

for employing the dual-kernel MB-AKM{(1,2,1)&(5,7,3)} and improved by 3.18% for 

employing the dual-kernel MB-AKM{(1,2,1)&(13,17,7)}. Computational complexity is not 

an issue at all if we use software with sufficiently large word-lengths and/or registers in the 

CPU. However, for dedicated hardware realization, every bit is expensive. This will make 

MB-AKM{(1,2,1)&(5,7,3)} be a better choice compared with the MB-

AKM{(1,2,1)&(13,17,7)}. This point is very much application specific, and we would leave it 

to readers/users for making their appropriate choice. 
TABLE 3-6 

COMPARISONS OF SCHEMES—∆BITS IS DEFINED IN (3-5) AND AVE-∆BITRATE IS EXTRACTED FROM 
TABLE 3-4 

Scheme Complexity (∆BITS in 
(3-5)) 

Change of Coding Efficiency  
(Ave-∆Bitrate) 

IK(1,2,1) only 0 0 
IK(5,7,3) only 3 6.33% 
IK(13,17,7) only 6 6.70% 
MB-AKM{(1,2,1)&(5,7,3)} 0 and 3 -2.52% 
MB-AKM{(1,2,1)&(13,17,7)} 0 and 6 -3.18% 
MB-AKM{(1,2,1)&IST} 0 and 0 -0.70% 
 

3.3. Fast Kernel Selection Strategy / Frame-Level Adaptive Kernel Mechanism 

3.3.1. Kernel Selection Tendencies for Different Types of Frames 

After employing the MB-AKM, we further examined the results by the types of frames, 

and found that there exist different kernel selection tendencies for different types of frames. 

As it is shown in TABLE 3-7, most macroblocks of I- and P-Frames are selected to be coded 

with the IK(1,2,1), while most macroblocks of B-Frames are selected to be coded with the 

IK(5,7,3). The statistics of the overwhelming kernels are shown in TABLE 3-7 and their 

counterparts are omitted since they can obviously be deduced. We can observe that the 

tendency for using the IK(1,2,1) is not so strong for P-Frames as the QP goes larger. It can be 

explained that as QP goes larger, the difference between the transformed-and-quantized 
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signals by using different kernels is small, hence other random factors in the encoder can 

lower the tendency towards the IK(1,2,1). The drop of the tendency towards IK(5,7,3) is even 

faster for the B-Frames since the smaller residuals of B-Frame will give smaller differences 

between the results of IK(1,2,1) and IK(5,7,3). However, the tendency towards the IK(1,2,1) 

is not affected much for the I-Frame, since the residuals are the largest amongst all three types 

of frames. Fig. 3-2 further demonstrates that, for all sequences, the results are essentially 

consistent. 

The above observation cannot be explained using our “common understanding” on the 

properties of a transform kernel. The “common understanding” refers to the general belief of 

most researchers in the area that the decorrelation and energy compaction properties of 

transform kernels are the key factors affecting the compression ratio. The following paragraph 

gives an explanation on the contradiction between the observation of our experimental results 

and the “common understanding”.  
TABLE 3-7 

KERNEL SELECTION TENDENCIES FOR I-, P- AND B-FRAMES 
Sequence Percentage (%) 

Size Name QP I-Frame coded 
with IK(1,2,1) 

P-Frame coded 
with IK(1,2,1) 

B-Frame coded 
with IK(5,7,3) 

QCIF 

Container 27 80.5 96.1 85.0 
32 98.5 94.0 78.9 

Foreman 27 92.7 94.3 97.2 
32 94.5 93.4 90.1 

Silent 27 97.9 95.0 96.3 
32 95.8 93.2 92.6 

CIF 

Paris 27 93.6 88.2 99.4 
32 95.8 93.2 92.6 

Foreman 27 85.3 94.3 95.5 
32 89.0 92.0 82.1 

Mobile 27 98.2 97.0 99.8 
32 100.0 91.9 99.3 

Tempete 27 98.2 95.1 99.5 
32 95.8 92.7 95.1 

HD 
(720p) 

BigShips 27 87.8 97.3 73.4 
32 86.5 93.0 25.9 

City 27 93.5 97.8 85.0 
32 91.5 94.3 69.1 

Crew 27 73.0 90.5 89.1 
32 81.6 87.4 70.0 

Night 27 87.3 92.3 98.8 
32 86.7 89.0 84.7 

ShuttleStart 27 85.4 97.3 74.1 
32 82.5 95.0 47.8 

As the prediction level increases (from I to P then B), the input data fed to the DCT 

process become less and less correlated. The DCT-like kernel has a strong decorrelation 

property compared to that of the H.264/AVC Kernel. Hence, for input data with strong 

correlation (I-Frame data) the IK(5,7,3) is preferred (i.e. with a popularity of pI%), while for 
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input data with less correlation (B-Frame data) either IK(5,7,3) or IK(1,2,1) may be chosen. It 

is because no matter how the less correlated data are compressed with a kernel of high or low 

decorrelation property, the compressed results tend to be as random as the original data. 

Hence by considering other random factors in the encoder, either kernel may be selected. Let 

us denote the popularity of IK(5,7,3) for B-Frame data as pB%, and it easy to reach the 

conclusion that pI% > pB% which means IK(5,7,3) has a higher popularity in I-Frames. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3-2. Stacked bar charts showing the kernel selection tendencies of (a) I-Frame, (b) P-Frame and (c) 

B-Frame at QP = 27. 
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3.3.2. Kernel Selection Process Using a Graphical Approach 

The “common understanding” is not sufficient to explain the observations in TABLE 3-7, 

so let us be less prescriptive on our belief that the decorrelation and energy compaction 

properties be the key factors affecting the compression ratio, and make an investigation on the 

criteria of kernel selection. In order to explain why only one of the two kernels is 

overwhelmingly selected, we must investigate the kernel selection process – the Rate-

Distortion Optimization by minimizing the Lagrangian Cost Function as shown below, 

 J = D + λ · R (3-6) 

where J is the “cost”, D denotes the “distortion”, R denotes the “rate” and the scalar λ is the 

Lagrange Multiplier. As we can see from (3-6), a large λ means a more emphasis on the issue 

of “rate”, while a small λ means a more emphasis on the issue of “distortion”. 

The kernel selection process using RDO can be explained by an example as shown in Fig. 

3-3. Labels P1, P2 and P3 are three possible operation points that can be selected. When the 

criterion of selection is determined (which means that λ is a fixed value), we draw a family of 

parallel lines with slope −λ passing through these operation points. The operation point, 

through which the line passes with the smallest intersection (J1) on the D-axis, is the best one 

that we are searching for. Hence in Fig. 3-3, P1 is the best operation point. 

 
Fig. 3-3. Visualizing the kernel selection process. 

By employing the MB-AKM for the H.264/AVC, each macroblock will be coded using 

IK(1,2,1) and IK(5,7,3), and then the best one is selected by the RDO. The operation points 

for a macroblock using IK(1,2,1) and IK(5,7,3) are usually at different locations on the RD 

plane. In order to avoid confusion when more than one macroblock are simultaneously shown 

on the same RD plane, we deliberately connect the operation points of the same macroblock 

coded by two kernels by a line segment. As it will be shown later, for two kernels with not so 

large performance gap, the slope of the line segment is usually a negative value. For 

convenience, we denote the negation of the slope of the line segment by k. For different 

kernel selection criteria, the relationship between λ and k differs hence the optimal operation 

point differs (the shaded J represents the optimal cost), which is shown in Fig. 3-4(a) and Fig. 

D 

R P1 

P2 
P3 

A family of lines 
with different J’s

D = – λ · R + J 

J1 

J2 
J3 
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3-4(b). More specifically, the relationship between λ and k and the subsequent selection of 

optimal point is concluded in TABLE 3-8. 

 
 (a) (b) 

Fig. 3-4. The selection of the optimal operation point: (a) when λ > k, the optimal operation point is 

IK(5,7,3); and (b) when λ < k, the optimal operation point is IK(1,2,1). 

TABLE 3-8 
CRITERION OF OPTIMAL OPERATION POINT SELECTION 

Relationship Smallest 
Intersection 

Optimal Operation Point 

λ > k J2 Upper-left point – IK(5,7,3) 
λ < k J1 Lower-right point – IK(1,2,1) 

3.3.3. Rate-Distortion Feature Extracted from a Pair of Kernels 

In the H.264/AVC reference software JM, the RDO for kernel selection is employed in 

macroblock level, and the MSE of a macroblock is the “distortion” and the number of bits of 

the macroblock is the “rate”. The value of λ in the H.264/AVC reference software JM is 

defined as 

 λ = s · 2 (QP–12)/3 (3-7) 

where s is the value of lambda weight and QP is the value of quantization parameter. 

For the H.264/AVC, the prediction structure mainly contains three levels – I (no 

prediction), P (1st order prediction) and B (2nd order prediction). According to [105], in order 

to obtain an encoded video sequence with higher coding efficiency, under the same QP, the I-

Frame should focus more on quality, while the B-Frame should focus more on using less 

number of bits. The actual implementation is in accordance with the above idea in the sense 

that the value of s usually differs from one frame type to another. A common selection 

suggested by the reference software JMe may be s = sI-Frame = 0.65, s = sP-Frame = 0.68 and s = 

sB-Frame = 2.00, which shows the trend of a more emphasis on bitrate saving as the prediction 

                                                      
e Note the choice of λ and even of RDO is only an encoder issue and has nothing to do with the 

H.264/AVC Standard. However, the coding efficiency does rely intensively on the RDO and a precise 

model/formulation on the Lagrange multiplier which balance the quality PSNR and the bitrate. We 

have carried out experiments with different values of lambda weight and found the suggested values of 

lambda weight can roughly give optimized performances for all sequences. 

D 

R
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J2 
J1 

     −k 

−λ 

R 

J1

J2 

−λ −k
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level increases. Even if macroblocks of all types of frames have exactly the same contents, 

different λ’s may select different kernels for each type of frame. 

Let us visualize the performances of kernels of all macroblocks for I-, P- and B-Frames in 

Fig. 3-5(a), Fig. 3-5(c) and Fig. 3-5(e), respectively. In Fig. 3-5(a), each line segment 

represents a pair of operation points of a macroblock. In each line segment, the top-left one is 

the operation point of IK(5,7,3), and the bottom-right one is the operation point of IK(1,2,1). 

Since the contents of macroblocks differ from one to another, the line segments may span 

across the whole RD plane. As we can see from the graph, the line segments are almost 

pointing to the same direction. Note that the operation points of kernel IK(1,2,1) sit at the 

bottom-right and the operation points of kernel IK(5,7,3) sit at the top-left of the graphs. 

Let us use Fig. 3-5(a) as an example. A red line segment with a slope of –λI-Frame showing 

at the up-right region is used to determine the optimal kernel. We can do this by moving the 

line segment in parallel within the RD plane, to each pair of operation points. It is obvious to 

conclude that the bottom-right point in each pair is optimal, since a red line with a slope of –

λI-Frame passing through the bottom-right point can give a smaller intersection J on the y-axis 

(hence smaller RD cost). The optimality of the bottom-right point can also be verified in Fig. 

3-5(b) which shows the distribution of the negation of slopes concentrating at k = 31.61. Note 

that 96.95% of the negation of slopes of the line segments of the I-Frame are larger than λI-

Frame, which implies that 96.95% macroblocks be better coded with the IK(1,2,1) for the I-

Frame. The steps of interpretation are also similar and valid for P- and B-Frames, and we can 

conclude that most macroblocks of the P- and B-Frames are better coded with the IK(1,2,1) 

and IK(5,7,3), respectively. 

Fig. 3-6 shows the results of the MB-AKM{(1,2,1)&(13,17,7)}. We can observe that the 

results are similar – the default IK(1,2,1) gives better results for I- and P-Frames, and 

IK(13,17,7) gives better results for B-Frames. Note that the lengths of line segments in Fig. 

3-6 are longer than that those in Fig. 3-5, mostly, which supports the finding in TABLE 3-4 

that the MB-AKM{(1,2,1)&(13,17,7)} outperforms the MB-AKM{(1,2,1)&(5,7,3)} to some 

extent. Hence, with respect to TABLE 3-7, a comparison between Fig. 3-5 and Fig. 3-6 

further confirm the existence of kernel selection tendency in the AKM with a pair of 

homogeneous DCT-like kernels. 

However, Fig. 3-7 shows that the line segments formed by the operation points of the 

IK(1,2,1) and the IST Kernel are not pointing to one particular direction. Many operation 

points of the IST Kernel can be found sitting far away from those of the IK(1,2,1). Some of 

them have huge MSE values and there is one order magnitude higher than the MSE values of 

operation points of the IK(1,2,1). Hence Fig. 3-7 reveals that the kernel selection tendency 

does not exist in the MB-AKM{(1,2,1)&IST}. 
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Fig. 3-5. Visualizing the performances of MB-AKM{(1,2,1)&(5,7,3)} for Sequence Tempete at QP = 24. Note that 
the λ’s for kernel selections are shown using red color. (a) Line segments of all macroblock of I-Frame, (b) the 
distribution of the slopes of line segments of I-Frame, (c) line segments of all macroblock of P-Frame, (d) the 
distribution of the slopes of line segments of P-Frame, (e) line segments of all macroblock of B-Frame, and (f) the 
distribution of the slopes of line segments of B-Frame. 
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Fig. 3-6. Visualizing the performances of MB-AKM{(1,2,1)&(13,17,7)} for Sequence Tempete at QP = 24. Note 
that the λ’s for kernel selections are shown using red color. (a) Line segments of all macroblock of I-Frame, (b) the 
distribution of the slopes of line segments of I-Frame, (c) line segments of all macroblock of P-Frame, (d) the 
distribution of the slopes of line segments of P-Frame, (e) line segments of all macroblock of B-Frame, and (f) the 
distribution of the slopes of line segments of B-Frame. 
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Fig. 3-7. Visualizing the performances of MB-AKM{(1,2,1)&IST} for Sequence Tempete at QP = 24. Note that 
the λ’s for kernel selections are shown using red color and there is no particular direction which line segments are 
pointing to. (a) Line segments of all macroblock of I-Frame, (b) the distribution of the slopes of line segments of I-
Frame, (c) line segments of all macroblock of P-Frame, (d) the distribution of the slopes of line segments of P-
Frame, (e) line segments of all macroblock of B-Frame, and (f) the distribution of the slopes of line segments of B-
Frame. 

 

According to our testing, as QP increases (resulted in an increase in λ), k also increases, 

which continues to preserve the kernel selection tendencies. Using a third-order curve fitting 

algorithm for different video sequences and QPs, we have found the relationship between k 

and QP as shown below 

 3
0 2QPk k= ⋅  (3-8) 

where k0 is a scalar. Subtracting (3-8) from (3-7), we obtain 

 ( )3 4
02 2QPk s kλ −− = ⋅ − . (3-9) 

We thus arrive at a crucial conclusion that whether λ > k or λ < k is independent of the value 

of QP. Hence we propose to adopt k0 as the feature that can be extracted from a pair of 

kernels, only if (3-8) is fulfilled. According to a large amount of experiments we have carried 

out, we found that the rate-distortion feature exists when both kernels are homogeneous DCT-

like kernels. 

This rate-distortion feature k0 is important because 1) it exists widely in pairs of DCT-like 

kernels; and 2) it is independent of QP. It can serve as a theoretical support for us to propose a 

scheme better than the MB-AKM for the H.264/AVC, and suggest that only one appropriate 

kernel be used for each type of frame, which has a unique criterion described by the value of λ. 
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3.3.4. Theory Behind RD Feature k0 

In this subsection, we analyze quantitatively why the rate-distortion feature k0 exists. We 

also make use of Fig. 3-5 and Fig. 3-6 to justify some important observations in TABLE 3-4. 

The flowchart in Fig. 3-8 illustrates the integer transform and the scaling stages of the 

H.264/AVC encoder. The maximum increase/decrease in the number of bits for each block 

has been shown using round brackets, while the number of additional bits (q bits) (see (3-5)) 

calculated with respect to IK(1,2,1) is shown in the square brackets. One may argue that the 

additional bits shift can be combined with the up scaling process so as to reduce the dynamic 

range during for the ease of implementation. However, we have to point out that combining q-

bits shift with the up scaling stage will lead to a dyadic fraction approximation differed from 

its actual value as compared to our approach. This eventually leads to larger reconstruction 

errors, and thus lower the coding efficiency. 

It is obvious to see that, at the final stage of scaling, a (15+└QP/6┘)-bit right-shift [102] 

has to be donef to obtain the transformed-and-quantized DCT coefficients for the IK(1,2,1), 

and in our modification, a (15+└QP/6┘+q)-bit right-shift has to be done to obtain the 

transformed-and-quantized DCT coefficients for a kernel with larger integers. Kernels with 

larger integers suffer from longer bit-shift (the additional q bits) operations since they 

embrace more non-information (larger ICT coefficients which actually bear no information) 

at the integer transform stage, and this arrangement implies more information will be lost for 

using kernels with larger integers. Hence the IK(5,7,3) coded macroblocks may have larger 

MSE values, which leads it to operate in a region with smaller PSNR and thus requires less 

bits. In other words, by choosing any line segment in Fig. 3-5(a) or Fig. 3-6(a) as an example, 

the operation point of IK(5,7,3) or IK(13,17,7) is situated at to the upper-left side of operation 

point of IK(1,2,1). It is also reasonable that the length of line segment formed by IK(1,2,1) 

and IK(13,17,7) is longer than that formed by IK(1,2,1) and IK(5,7,3), since a macroblock 

coded by a kernel with larger integers suffers more from information loss.  

With the help of Fig. 3-5 and Fig. 3-6, we can also explain why the performance of a 

single kernel IK(5,7,3) or IK(13,17,7) performs worse than the performance of the default 

kernel IK(1,2,1). As we can see from Fig. 3-5, IK(5,7,3) is a good kernel for B-Frames, but is 

a bad kernel for I- and P-Frames. We also know that for the IBBPBBP… coding structure, the 

bits required for P-Frames dominants the size of the bitstream. (It is because that residuals of 

P-Frames are much larger than that of the B-Frames.) Hence, by using IK(5,7,3) only, 

although the B-Frames are efficiently encoded, the P-Frames require a large amount of bits 
                                                      
f The (15+└QP/6┘)-bit right-shift is suggested by the evaluation software JM and has been widely 

used by the community, but it is not specified in the standard since it defines the items for decoding 

only. 
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(P-Frames are not efficiently encoded with the IK(5,7,3)), which means that the overall 

bitstream is not efficiently encoded. In other words, the drop of coding efficiency is mainly 

caused by the wrong selection of kernel for P-Frames. Hence, for using a single kernel, 

IK(1,2,1) outperforms IK(5,7,3) and IK(13,17,7) respectively, which is not a surprising result. 

 
Fig. 3-8. Flowchart for transform coding and quantization. Note that └ · ┘ is the round-towards-zero 

operation. 

 

According to the observations in Fig. 3-5 and Fig. 3-6 and the analysis in the third 

paragraph of this subsection, it is reasonable that the MB-AKM{(1,2,1)&(13,17,7)} 

outperforms MB-AKM{(1,2,1)&(5,7,3)}. However, under the single kernel arrangement, the 

performance of IK(5,7,3) (with a bitrate expansion of 6.33%) is better than IK(13,17,7) (with 

a bitrate expansion of 6.70%). Recall that the operation points of IK(13,17,7) on the RD plane 

are further away from the operation points of the IK(1,2,1) compared with those of the 

IK(5,7,3), which can be observed from a comparison between Fig. 3-5 and Fig. 3-6, it implies 

that the potential gain/loss over the IK(1,2,1) by using the IK(13,17,7) is larger than that of 

the IK(5,7,3). Hence, given the fact that both IK(5,7,3) and IK(13,17,7) cause loss in coding 

efficiency, we can deduce that the drop of coding efficiency by using the IK(13,17,7) is larger. 

We may also conclude that a kernel which can make a large improvement under the MB-

AKM scheme with another alternative kernel (such as IK(1,2,1)), can possibly have a huge 

performance drop under the single kernel arrangement. 

Our finding also implies that, when we are using homogeneous DCT-like kernels, the 

dominant factor that affects the coding efficiency is the Lagrange Multiplier λ. 
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3.3.5. Fast Kernel Selection Algorithm for H.264/AVC 

Let us now turn to examine a special case – the H.264/AVC. We can now have a clear 

conclusion on its kernel selection. Because most kernels of the MB-AKM we used before are 

DCT-like kernels, one pair of kernels often has a feature which leads the encoder to select one 

particular kernel for most macroblocks for that type of frames as indicated in Fig. 3-5. Given 

that for most macroblocks the best kernel is predetermined by its frame type, it is reasonable 

to propose using only one particular kernel for all macroblocks of each type of frame since the 

computational complexity is much lowered and the overhead is removed by using a single 

kernel for each type of frames when the coding efficiency can mainly be maintained. 

Hence, we propose a Frame-level AKM (FM-AKM) using IK(1,2,1) for I- and P-Frames, 

and IK(5,7,3) for B-Frames. This can be considered as a fast algorithm for the MB-AKM. We 

also evaluate the performance of MB-AKM{(1,2,1)&(5,7,3)} as a comparison, since this 

arrangement has a better performance than the MB-AKM{(1,2,1)&IST}. We again 

implemented our proposed FM-AKM and the MB-AKM (for reference) in JM 12.2, and our 

evaluation conditions were the same as those in Subsection 3.2.4 with Bjontegaard Metric 

employed for the measurement of both changes of Bitrate and PSNR. The evaluation results 

are shown in TABLE 3-9. 

As we can see from the table, our MB-AKM already outperforms the H.264/AVC Default 

Scheme, and our proposed FM-AKM is even better for most cases. When the overheads (the 

signaling bits) is not taken into the consideration, the proposed method has an average PSNR 

increase of 0.1092 dB, while the MB-AKM has an average PSNR increase of 0.1141 dB. The 

bitrate saving for the proposed FM-AKM can achieve 2.40% on average, comparing to 2.52% 

for the MB-AKM, which shows that the performance improvement of the FM-AKM is 

slightly less than that of the MB-AKMg. However, the employment of MB-AKM introduces 

overheads (although it takes only about 0.40% of the overall bits of the encoded video 

sequence), hence the actual improvement of coding efficiency is reduced to 2.13%. So we can 

observe that the overall increase of coding efficiency by employing the FM-AKM is higher 

than the increase of coding efficiency by employing the MB-AKM, with reduced 

computational complexity. The MB-AKM uses IK(1,2,1) and IK(5,7,3) for each macroblock 

                                                      
g Although the overall tendency shows that the performance of the MB-AKM is better than that of 

the FM-AKM if signaling bits are not counted, some sequences (i.e. Foreman, Silent and ShuttleStart) 

are not so consistent with this tendency. In theory, the PSNR improvement of the FM-AKM cannot 

exceed that of the MB-AKM. However, we used the RDO as the kernel selection criterion for the MB-

AKM, which may not accurately optimize the coding efficiency. Due to this uncertainty, and in a 

straight sense, we can only conclude that the FM-AKM outperforms the MB-AKM for most of the 

sequences. However, the FM-AKM still has the advantage of not requiring the signaling bits.  
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iteratively, while the proposed FM-AKM uses IK(1,2,1) or IK(5,7,3) for each macroblock 

depending on the frame type. An overall comparison of the schemes is shown in TABLE 3-10. 
TABLE 3-9 

COMPARISON BETWEEN PROPOSED FM-AKM AND MB-AKM 
Sequence Improvement over the H.264/AVC Default Scheme 

FM-AKM{(1,2,1)&(5,7,3)} (Proposed) MB-AKM{(1,2,1)&(5,7,3)} 
Size Name Actual Bits 

Saving (%) 
Signaling 
Bits (%) 

∆Bitrate 
(%) 

∆PSNR 
(dB) 

Actual Bits 
Saving (%) 

Signaling 
Bits (%) 

∆Bitrate 
(%) 

∆PSNR 
(dB) 

QCIF 
Container -0.63  0.00  -0.63 0.0307 -0.56  0.46 -1.02 0.0467 
Foreman -2.93  0.00  -2.93 0.1430 -2.39  0.43 -2.82 0.1378 
Silent -3.65  0.00  -3.65 0.2002 -2.88  0.57 -3.45 0.1940 

QCIF Average -2.40  0.00  -2.40 0.1246 -1.94  0.49 -2.43 0.1262 

CIF 

Paris -3.57  0.00  -3.57 0.1984 -3.45  0.23 -3.68 0.2038 
Foreman -1.81  0.00  -1.81 0.0782 -1.77  0.41 -2.18 0.0956 
Mobile -3.92  0.00  -3.92 0.1779 -4.05  0.20 -4.25 0.1934 
Tempete -5.08  0.00  -5.08 0.2092 -5.00  0.23 -5.23 0.2159 

CIF Average -3.60  0.00  -3.60 0.1659 -3.57  0.27 -3.84 0.1772 

HD 
(720p) 

BigShips -0.34  0.00  -0.34 0.0088 0.04  0.39 -0.35 0.0092 
City -0.89  0.00  -0.89 0.0309 -0.94  0.29 -1.23 0.0376 
Crew -2.16  0.00  -2.16 0.0561 -2.76  0.62 -3.38 0.0882 
Night -2.02  0.00  -2.02 0.0722 -1.81  0.43 -2.24 0.0791 
ShuttleStart -0.60  0.00  -0.60 0.0170 1.14  0.43 0.71 -0.0188 
HD Average -1.20  0.00  -1.20 0.0370 -0.87  0.43 -1.30 0.0391 

Total Average -2.40  0.00  -2.40 0.1092 -2.13  0.40 -2.52 0.1141 
 

TABLE 3-10 
COMPARISONS OF SCHEMES—∆BITS IS DEFINED IN (3-5) AND AVE-∆BITRATE 

IS EXTRACTED FROM TABLE 3-4 
Scheme Complexity (∆BITS in (3-5)) Change of Coding 

Efficiency (Ave-∆Bitrate) 
IK(1,2,1) only 0 0 
MB-AKM{(1,2,1)&(5,7,3)} 0 or 3 for each macroblock -2.13% 
FM-AKM{(1,2,1)&(5,7,3)} (Proposed) 0 or 3 for each frame -2.40% 

  

3.3.6. Generalizing Rate-Distortion Feature to More Kernels 

In Subsection 3.3.5, we successfully enhanced the coding efficiency by the FM-AKM with 

two candidate kernels. The success of raising the level of the algorithm from macroblock 

level to frame level is justified by the kernel selection tendencies and ultimately by the newly 

found rate-distortion feature k0 between two kernels. Hence it is intuitively to make an 

investigation on the possibility of extracting features from even more kernels. We thus carried 

out experiments by plotting and examining the operation points that belong to different 

candidate kernels for each macroblock. Fig. 3-9 contains nine plots of operation points for 

different macroblocks of the I-Frame of the Sequence Tempete, at QP = 24. For each plot, it 

contains four operation points representing the performances of four kernels when encoding 

one particular macroblock using the MB-AKM. The result is very attractive as is shown in Fig. 

3-9. It is observed that the set of operation points can form an essentially stable topology. For 

example, the encircled operation points are more likely to sit lower than other points and 

between the left two and right one. Hence, we may regard the stable topology formed by a set 
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of operation points as a new feature which can be extracted from a set of DCT-like kernels. 

This feature is a generalization of the rate-distortion feature from a pair of kernels to a group 

of kernels. The feature is now generalized. It means that the kernel selection tendencies also 

exist when the MB-AKM with more than two candidate kernels is used. Hence the FM-AKM 

with n candidate kernels is a possible scheme provided that the kernels are DCT-like. 
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Fig. 3-9. Plots of operation points for nine different macroblocks of the I-Frame of Sequence Tempete 

at QP = 24. 

 

3.3.7. Generalizing FM-AKM for Any Value of Lambda Weight 

In the above subsection, we have proposed using the FM-AKM – IK(1,2,1) for I- and P-

Frames and IK(5,7,3) for B-Frames. We have to stress that the proposed method is effective if 

users follow the suggested value of lambda weight. Although we have carried out experiments 

to show that the optimal value of lambda weight is in the range of 0.45–0.65 for the best 

overall coding efficiency, users can have the freedom to choose other values of lambda 

weight to cope with specific coding requirement. The FM-AKM can be generalized to the 

Generalized FM-AKM (GFM-AKM), so that it can adapt freely any value of the lambda 

weight. The feature (stable topology) is a good justification for the determination of the best 

kernel for each type of frames. The steps are shown as follow: 

1. encode the first frame of each type using n candidate kernels by the RDO, and record 

the most popular kernel for each frame type, and  

2. encode the remaining frames of each type by the most popular kernel of that frame 

type. 
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In the proposed algorithm, the preferred kernel for each frame type will only be 

determined by the statistics of the first frame of that frame type. This is due to the existence of 

the kernel selection tendency among all possible kernels, or to be justified by the feature 

(stable topology) of a group of operation points.  

3.4. Further Remarks 

We have proposed an AKM with four different alternatives. In order to apply various 

alternatives, we would like to make two suggestions.  

3.4.1. Changes on Standard 

Since the standard gives no provision on using the AKM, we suggest it allowing more 

kernels by reserving flag bits and adding data structures for this purpose. 

The possible bits are as follows: 

AKM_FLAG (1-bit): to be defined in the header of a video sequence. 0 means AKM is 

not used but default kernel is used. 1 means AKM is used and the decoder has to fetch the 

candidate kernel definitions from the header. 

CANDIDATE_KERNEL_NO (8-bit): to be defined in the header of a video sequence. 

This is to signal how many candidate kernels have been included in the header. 

CANDIDATE_KERNEL_DEFI (at most 456 bits): to be defined in the header of a video 

sequence. All information describes a transform coding-quantization process, including three 

integer kernel coefficients (one byte each), the eighteen multiplication factors (two bytes each) 

and eighteen rescaling factors (one byte each). 

LEVEL_OF_ADAPTATION (1-bit): to be defined in the header of video sequence. 1 

means the AKM has been applied to macroblock-level, so each macroblock has a 

SINGALING_BIT. 0 means the AKM has been applied to the frame-level, so each frame has 

a SINGALING_BIT. 

SINGALING_BIT: to be defined in the header of each GOP/frame. This is to indicate 

which kernel has to be used for a frame/macroblock. The signaling bits have been entropy-

coded before inserting them into the header. 

TABLE 3-11 shows the values of flag bits for various AKMs we have proposed and used 

in this chapter. 
TABLE 3-11 

PROPOSED FLAG BITS FOR VARIOUS AKMS 
Coding Scheme Flags to be added to video coding standard 

AKM_FLAG CANDIDATE_
KERNEL_NO 

LEVEL_OF_ 
ADAPTATION 

Default Coding Scheme 0 - - 
MB-AKM (2 Kernels) 1 2 1 
FM-AKM (2 Kernels) 1 2 0 
FM-AKM (n Kernels) 1 n 0 
GFM-AKM (n Kernels) 1 n 0 
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3.4.2. Encoder Changes 

 
Fig. 3-10. Flowchart by fusing all proposed AKMs. 

 

This is to change the encoder to fuse four AKMs with the help of the flag bits and the data 

structures defined in the last subsection. Details of the possible changes are shown in the Fig. 

3-10. At a start a user has to initiate whether the AKM should be used. If it is not used, the 

default transform coding scheme which employs the IK(1,2,1) will be used. If the AKM is 

used, the user should specify whether the Fast Kernel Selection Algorithm (FM-AKM/GFM-

AKM) or the MB-AKM should be used. If the MB-AKM is used, the encoder just encodes 

each macroblock n times (depending upon the number of candidate kernels available) and 

select the kernel with the smallest cost J. Note that the MB-AKM is a time consuming process 

since no prior knowledge has been applied to speed up the kernel selection process. If the Fast 

Kernel Selection Algorithm is used, the user has to decide whether to use the default values of 

lambda weight or other values for a specific coding requirement. If the user decides to use the 

default values of lambda weight, the default arrangement is used, i.e. to use the IK(1,2,1) for 

I- and P-Frames and to use the IK(5,7,3) for B-Frames. If this default is not selected, the user 

has to provide a list of DCT-like kernels and to let the encoder perform RD selection in the 

first frame of each type. After performing the kernel selection of the first frames, the preferred 

kernel for each type of the frames can be determined and the encoder can then code each type 

of the frames by a preferred kernel. 
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3.5. Conclusions 

In this chapter, we have proposed a new DCT-like kernel IK(5,7,3) and revitalized another 

DCT-like kernel IK(13,17,7) to effect adaptive kernel mechanism in hybrid video coding. We 

have found that the macroblock-level AKM using either one of these two kernels with the 

H.264/AVC default kernel IK(1,2,1) outperforms the H.264/AVC’s default arrangement and 

the MB-AKM{(1,2,1)&IST}. This is especially true for high fidelity video coding 

applications, i.e. with small values of QP, and the MB-AKM{(1,2,1)&(5,7,3)} which is a 

dual-kernel gives the best performance as compared with other single or dual-kernel 

approaches in the literature. However, due to the trial-and-error characteristic of the MB-

AKM, the computational complexity is high. Hence, further investigations were carried out to 

exploit the kernel selection tendencies, aiming at the development of a fast approach for the 

AKM. We have found that the slope of a pair of DCT-like kernels forms an important rate-

distortion feature for kernel selection. This feature is due to the differences in length of 

shifting bits of kernels. With the help of the rate-distortion feature analysis, we are able to 

propose a fast frame-level kernel selection algorithm (FM-AKM) using the IK(1,2,1) for I- 

and P-Frames and the IK(5,7,3) for B-Frames for the H.264/AVC. This fast approach gives 

comparable or even better results in terms of PSNR and bitrate compared with the new dual 

kernel MB-AKM{(1,2,1)&(5,7,3)}. We have also generalized the rate-distortion feature 

extracted from a pair of kernels to a feature extracted from a group of many kernels, which is 

justified by an essentially stable topology formed by operation points. We further generalize 

the FM-AKM to let the algorithm adapt to any value of the lambda weight to cope with 

specific coding requirement. 

A possible future work is to expand our research into the quantitative analyses on how the 

lengths of shifting bits affect the rate-distortion feature (i.e. to see how the information be 

distributed in each word, to study more exactly the information lost due to bit-shift, etc.). 

Recently, researchers have shown that it is beneficial to include larger block-size transforms 

(such as 8×8 or 16×16 transforms) in the future standards to cope with the High Definition 

video contents. It is a good idea to expand our research into larger block-size transforms, and 

it appears to have some positive results for the 16×16 block-size transforms from our 

preliminary investigation. Hopefully the newly-found features can also be proved more 

quantitatively, which can thus benefit the kernel selection strategy for video encoding and 

kernel determination for future standards. 
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Chapter 4. Comments on “2-D Order-16 Integer Transforms for HD Video 

Coding” 

4.1. Introduction 

In Dong et al.’s paper [74], the authors proposed the order-16 Nonorthogonal Integer 

Cosine Transform (NICT) which makes a trade-off between the preservation of the 

characteristics of the DCT and the orthogonality property of the transform. It was proved that 

the reconstruction error caused by the nonorthogonality is negligible as compared to the error 

caused by the quantization process through a set of enlightening derivations as we have 

reviewed in Subsection 2.3.2. However, some problems in the derivations need to be pointed 

out. We also give comments on the assumption of the variance of input signals and the worse-

case scenario of the upper bound of the error caused by the nonorthogonality. 

4.2. Corrections 

A brief review on the error analysis of the nonorthogonality of transform coding appeared 

in [74] is given in Subsection 2.3.2. Let us point out three problems. First, TTT should not be 

replaced with Er + I in (2-83) since TTT does not equal TTT. Instead, we define 

 Er' = TTT − I, (4-1) 

hence the results in (2-83) can be revised to (equivalent to Eqn. 14 in [74]) 

 2 2 2 T T1 2
r q r0 r r' ' N Nσ σ σ ⎡ ⎤ ⎡ ⎤= + + Ε − Ε⎣ ⎦ ⎣ ⎦q E q q E θ . (4-2) 

This correction does not affect the final result of derivations shown in (2-84), but it does 

affect the intermediate steps as shown as below. 

The second problem is about the derivations related to E[qTEr'q] = 0 and E[qTEr'θ] = 0. 

Let us quote a few words from the original paper [74], “because the autocorrelation of q and 

the crosscorrelation of q and θ are both zero as shown by Widrow et al.” Recall that in 

Widrow et al.’s work [97], they only worked on the 1-d case and proved that the 

crosscorrelation between the quantizer input θ and its quantization noise q (a uniform 

independent noise) equals 0 provided that the quantizer input is “band-limited”. This result is 

important, yet it only exploits the crosscorrelation in 1-d case. The idea that “the 

autocorrelation of q equals zero” stated by the authors is not fully correct since  

a) in 1-d case (a random variable q) the autocorrelation equals σq
2 at the origin and 0 

elsewhere, or 

b) in N-d case (a vector q composed of N random variables) the diagonal elements of 

autocorrelation matrix are the variances of random variables and the offdiagonal 

elements are all 0. 
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Ref. [74] deals with the N-d case, hence the result from Widrow et al. is not sufficient. To 

begin with, we convert the third and fourth terms of (4-2) into (4-3) and (4-4) respectively, 

because the original form is not an algebraically convenient form for analysis. 

 ( ) ( ) ( ) ( ) ( )1 1 1 1T
r r r0 0 0 0
' ' , ' , ,N N N N

qqn m n m
E m n q m q n E m n R m n− − − −

= = = =
⎡ ⎤Ε = Ε⎡ ⎤ =⎣ ⎦⎣ ⎦ ∑ ∑ ∑ ∑q E q  (4-3) 

 ( ) ( ) ( ) ( ) ( )1 1 1 1T
r r r0 0 0 0
' ' , ' , ,N N N N

qn m n m
E m n q m n E m n R m nθθ− − − −

= = = =
⎡ ⎤Ε = Ε⎡ ⎤ =⎣ ⎦⎣ ⎦ ∑ ∑ ∑ ∑q E θ  (4-4) 

Note that Rqq(m,n) is the (m,n)th element of the autocorrelation matrix of vector q which is 

composed of N random variables. The nth diagonal element is the variance of the nth random 

variable, whereas elements are zero elsewhere since each of them is the crosscorrelation of 

two different random variables (for example, q(1) and q(4) are two uniform independent noise 

processes). Hence (4-3) can be reduced to  

 E[qTEr'q] = σq
2 ∑i

 Er'(i,i). (4-5) 

By a careful examination on (4-1), it is observed that all diagonal terms (Er'(i,i) for all i) are 

strictly zero, since T is an orthogonal matrix. Hence (4-3) is reduced to E[qTEr'q] = 0. 

Similarly, Rqθ(m,n) is the (m,n)th element of the matrix of the crosscorrelation between q and θ. 

The nth diagonal element is the crosscorrelation between quantization noise q(n) and relative 

quantizer input θ(n). As we have mentioned before, by Widrow et al.’s work, E[q(n)θ(n)] = 0 

in 1-d case. Hence we can approximate the diagonal elements to zero. The offdiagonal 

elements can also be approximated to zero. Each of them measures the crosscorrelation 

between the quantization noise of one quantizer q(m) and the input of another quantizer θ(n). 

It is widely accepted that the DCT coefficients can be treated as uncorrelated random 

variables. Now that the inputs of two quantizers are not correlated, the input of one quantizer 

is also uncorrelated with the quantization noise of another quantizer. Hence the offdiagonal 

entries are also zero, and (4-4) can be further reduced to 

 E[qTEr'θ] = 0. (4-6) 

We can thus conclude that the average variance of the reconstruction (4-2) is reduced to 

 σr
2 = σq

2 + σr0
2, (4-7) 

as stated in (2-84). 

Third, it is inappropriate to conclude that the nonorthogonal order-16 kernels listed in 

TABLE III of [74] has negligible nonorthogonality error by simply evaluating the upper 

bound of σr0
2 for their submatrices (T8o’s), instead, the upper bound for the order-16 kernels 

(T16’s) themselves should to be directly measured and then compared with the quantization 

error to show whether the former one can be neglected. By using the same settings as in [74], 

i.e. σx
2 = 1, we have obtained the results for T16’s as shown in column “Corrected” of TABLE 

I. It is observed that the errors measured for the order-16 kernels (T16’s) are much smaller 

than that for their submatrices (T8o’s). It is reasonable since the other submatrix (T8e) is 
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orthogonal comparing to the nonorthogonal submatrix (T8o) hence the error can be diluted 

significantly. 
TABLE 4-1 

UPPER BOUND OF AVERAGE VARIANCE OF RECONSTRUCTION ERROR WITHOUT THE CONSIDERATION OF 
QUANTIZATION 

NICT Matrix Elements 
Upper Bound of a) σr0

2 by setting σx
2 = 1, or b) σr0

2 / σx
2 

For T8o For T16 

x1 x3 x5 x7 x9 x11 x13 x15 Dong et al. Correctedh Proposed_wc 
28 27 23 21 17 14 8 2 1.0849×10−6 0 (−2.7967×10−23) 2.3868×10−6 
29 28 26 22 20 13 10 2 8.3628×10−7 0 (−3.1019×10−23) 9.1990×10−7 
38 36 35 29 25 18 9 3 7.6103×10−7 0 (−1.1410×10−23) 3.3368×10−6 
39 37 35 29 26 18 11 2 7.0311×10−7 2.0913×10−23 1.4603×10−6 
40 39 33 31 24 19 14 4 1.8527×10−6 8.3438×10−23 2.6789×10−6 
40 38 35 31 24 19 11 4 6.5425×10−7 1.9439×10−23 1.0820×10−6 
 

4.3. Comments 

Besides, let us give two more comments. First, the assumption of the input signal as a 

unit-variance Markov Process is inappropriate. It is worth to recall that residual signals of the 

H.264/AVC encoder are being modeled, and these real data can hardly have a unit-variance. 

Actually, even if the variance of the input signal is not unit, the representation of the upper 

bound in (2-81) derived in [74] is still valid. We carried out a set of experiments to find the 

variances of input signals. It is found that the variances are of the order 102 to 103. By 

substituting these variances into (2-81) making the use of column “Corrected” in TABLE 4-1, 

we found that the errors caused by the nonorthogonal transform are in the order of 10−21 to 

10−20 which are still much smaller than that caused by the quantization. This conclusion can 

be made safely by using the real variance of input signals. 

Second, let us propose a better method compared to the method as shown in (2-81) to find 

the upper bound. In (2-81), one contributing factor of the upper bound is obtained by 

summing up all M(k,j)’s which may be a positive or negative number. Hence, the cancellation 

effect occurs and one may wonder whether the assumption can reach the real worse-case 

scenario. What is the result if R(k,j) approximates infinitely close to σx
2 and has the same sign 

with M(k,j)? This leads to the largest upper bound. To exploit this possibility, we do not make 

the assumption of wide-sense stationary (i.e. M(k,j) ≠ M(k − j, 0)), which can give a flexible 

selection of the values of M(k,j), and make the analysis using the Markov Model. 

It is well-known that a zero-mean AR(1)-process can be denoted as x(n) = ρ(n)x(n−1) + 

ε(n) (|ρ(n)| < 1) where x(n) and x(n−1) are two adjacent random variables, ρ(n) is the 

correlation coefficient between x(n) and x(n−1) and ε(n) is a white noise process with zero 

                                                      
h  The upper bounds of variance are set to zero for any negative value generated by the 

oversimplified and imprecise model as shown in (2-81). 
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mean. By removing the assumption of wide-sense stationary, the correlation between two 

variables x(i) and x(j) (i<j) can be calculated as 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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L
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  (4-8) 

where σi
2 is the variance of x(i). It is seen that R(i,j) is determined by a set of correlation 

coefficients. Let us denote ρ(j)·ρ(j−1)·…·ρ(i+1) by ρ(i,j). The worse-case scenario can be 

reached when 1) |ρ(i,j)|→1, and 2) sign[ρ(i,j)] = sign[M(i,j)]. The first condition is easily 

fulfilled by setting the absolute value of all correlation coefficients to 1. The second condition 

can only be fulfilled for some positions. It is because the number of sign patterns of M(i,j) is 

( )21 22 N− , whereas the number of sign patterns of ρ(i,j) is only 2N−1. Hence a computer search 

for all sign patterns of ρ(i,j) can be carried out to find the best one which leads to the worst-

case scenario. When the variance of noise approximates zero, we can use σx
2 instead of σi

2 for 

i∈[1,n]. The proof is shown below 

( ){ } ( ) ( ) ( ){ }
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σ σ σ σ
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Ε ⎡ ⎤ = Ε ⎡ − + ⎤⎣ ⎦ ⎣ ⎦

= Ε ⎡ − ⎤ + − + ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ⎡ ⎤ Ε ⎡ − ⎤ + Ε⎡ ⎤Ε ⎡ − ⎤ + Ε ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⇒ = ⎡ ⎤ + ≈⎣ ⎦
⇒ = = = =L

. (4-9) 

Hence the autocovariance matrix can be written as 
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  (4-10) 

Actually the worst-case scenario is reached when any two of random variable x(n)’s have 

exactly the same observation (ρ = 1) or neighboring observations have exactly the opposite 

signs (ρ = −1). This can be infinitively approximated, but cannot be reached. Through 

computer searches for various kernels, we obtained new results as shown in the column 
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“Proposed_wc” of TABLE 4-1 in this chapter. The best sign patterns of ρ(i,j)’s considered are 

not shown here for the sake of simplicity. Although the number of computer search is small 

compared to the possible number of sign patterns, it still needs 215 different sign patterns for a 

length-16 input signal. 

4.4. Conclusion 

Dong et al.’s paper is a comprehensive and instructive work on integer transform kernel 

design for the HD video coding. In spite of some minor (but yet useful) problems pointed out 

by us, the paper is a piece of excellent work that can give readers inspiration, and for 

reference of future work. We have also proposed an improved method for the evaluation of 

the upper bound of the reconstruction error. Hence, this makes the original more complete and 

a more real worst-case scenario can be attained. 
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Chapter 5. Analysis on Dyadic Approximation Error for Hybrid Video Codecs 

with Integer Transforms 

5.1. Introduction 

In the latest video coding standard, the H.264/AVC [6], one of the integer variations of the 

DCT constructed using the up-scaling and rounding method is adopted to solve the possible 

mismatch between encoder and decoder by removing the floating-point arithmetic, as we have 

mentioned in Subsection 2.3.1. However, when using this method to design an integer kernel 

of the size 16×16 (or an order-16 integer kernel), the similarity to the original DCT Kernel 

and the easy-to-implement property need always to be compromised—one way to achieve 

both merits is to relax the condition of orthogonality of transform kernel in a controllable 

manner which roughly ensures the orthogonality, and the error analysis showed that the well-

controlled nonorthogonality noise is approximately negligible as compared to the quantization 

noise, as we have mentioned in Subsection 2.3.2. 

However, the adoption of integer transform kernel introduces another problem. The 

removed floating-point arithmetic is actually incorporated into the quantization / 

dequantization, and the combined process is called the post-scaling / pre-scaling [106]. The 

floating-point numbers in the scaling stages are approximated by dyadic fractions, and the 

floating-point multiplications are replaced with integer multiplications followed by bit-wise 

right-shifting operations. The dyadic approximation thus introduces a new kind of error 

beyond the quantization error [97, 107] and nonorthogonality error [74, 91], which has not 

been quantitatively investigated. Let us call it the “dyadic approximation error”. It exists at 

both the encoder side and the decoder side and has a value of several orders higher than the 

nonorthogonality error in terms of variance measurement. The impact of this error is position 

dependent in the compressed domain (DCT domain) which eventually affects the visual 

quality in the spatial domain. The dyadic approximation also introduces a system error 

between raw residual signal and the reconstructed residual signal regardless of the 

quantization effect. Even for some cases when the system error is compensated due to a 

perfect match between the dyadic fractions of the encoder side and the decoder side, our 

finding suggests that it is just quasi–error-free. It is equivalent to tune the quantizer step for 

DCT coefficients of each position up/down slightly, which results in an undesired effect that 

the DCT coefficients are quantized by a non-uniform quantization matrix. Fortunately, the 

dyadic approximation error can be avoided by using more shifting bits. 

Before this chapter in Subsection 2.3.3, the analysis of dyadic approximation error in one-

dimension is carried out, and analytical representations of different kinds of errors are also 

given. In Section 5.2, we extent the analysis into two-dimension, evaluate and compare the 
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significances of different error terms using a set of available kernels. In Section 5.3, the 

characteristics of the dyadic approximation error are explored and the lower bound of number 

of shifting bits to avoid this error is obtained. Finally, Section 5.4 concludes this chapter. 

5.2. 2-D Analysis on Dyadic Approximation Error 

In Subsection 2.3.3, we have derived the analytical representation of reconstruction error 

by considering quantization, nonorthogonality and dyadic approximation in one-dimension 

(1-d). In this section, we extend the analysis into two-dimensional (2-d) case such as image 

and video coding, and we will give examples on the latter one. We use different order-16 

nonorthogonal integer transform kernels ([74, 90]) as well as orthogonal integer transform 

kernels ([74, 88-89, 108]) for evaluation. Due to the limitation of space, only the experimental 

results obtained by using the following order-16 nonorthogonal kernel [74] are presented 

                          

  32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
  40 38 35 31 24 19 11 4 −4 −11 −19 −24 −31 −35 −38 −40
  40 36 24 8 −8 −24 −36 −40 −40 −36 −24 −8 8 24 36 40
  38 24 4 −19 −35 −40 −31 −11 11 31 40 35 19 −4 −24 −38
  40 16 −16 −40 −40 −16 16 40 40 16 −16 −40 −40 −16 16 40
  35 4 −31 −38 −11 24 40 19 −19 −40 −24 11 38 31 −4 −35

H =  36 −8 −40 −24 24 40 8 −36 −36 8 40 24 −24 −40 −8 36
31 −19 −38 4 40 11 −35 −24 24 35 −11 −40 −4 38 19 −31

  32 −32 −32 32 32 −32 −32 32 32 −32 −32 32 32 −32 −32 32
  24 −35 −11 40 −4 −38 19 31 −31 −19 38 4 −40 11 35 −24
  24 −40 8 36 −36 −8 40 −24 −24 40 −8 −36 36 8 −40 24
  19 −40 24 11 −38 31 4 −35 35 −4 −31 38 −11 −24 40 −19
  16 −40 40 −16 −16 40 −40 16 16 −40 40 −16 −16 40 −40 16
  11 −31 40 −35 19 4 −24 38 −38 24 −4 −19 35 −40 31 −11
  8 −24 36 −40 40 −36 24 −8 −8 24 −36 40 −40 36 −24 8
  4 −11 19 −24 31 −35 38 −40 40 −38 35 −31 24 −19 11 −4

                          

As we will discover soon, the experimental results for different kernels are similar. Note that 

Hint’s normalized form H, which is needed for the following analysis, can be obtained by 

normalizing each row vector. 

To begin with, let us define the input signal as an N×N matrix X, hence the transformed 

matrix is Z = HXHT. In order to simplify the derivation, matrices X and Z can be 

lexicographically ordered into column vectors x and z of length N2, where x(i + jN) = X(i,j) 

and z(i + jN) = Z(i,j) for i, j ∈[0, N−1]. We convert the 2-d transform into the lexicographical 

form z = Hx where H is the Kronecker product of H with itself, i.e. = ⊗H HH  [109]. By 

considering the dyadic approximation error at the forward transform stage, we multiply the 

transform kernel H by the scalar matrix S1. Hence, the distorted transformed signal v in 

lexicographical form can be formulated as v = ( ) ( )1 1⎡ ⊗ ⎤⎣ ⎦S S HH x  = ( )1 1⊗S S  ( )⊗H H  x  
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= 1SHx  where 1 1 1= ⊗S SS . It can be seen that 1=v SHx  shares exactly the same form with 

the combination of (2-88) and (2-89) except that the order has been raised from N to N2. 

Hence, we rewrite (2-85)–(2-91) for the 2-d case by simply changing the variables from the 

typewritten form into the script form, as shown below 

 z = Hx (5-1) 

 v = S1z (5-2) 

 u = quant−1[quant(v)] = v − q  (5-3) 

 yr = (S2H)Tu (5-4) 

 N1 = N1
T = S1

−1 − I (5-5)  

 N2 = N2
T = S2

    − I (5-6) 

 Er = ErT = HHT − I (5-7) 

where the definitions of symbols are exactly the same w.r.t. their 1-d counterparts, hence we 

can omit the definitions for the sake of simplicity. By going through the derivations in 

Subsection 2.3.3 once again, we obtain similar representation of the average variance of 

reconstructed signal, as shown below 

 ( ) ( ) ( )
2 2 2 2 2

2 2 2

1 1 1 1 1
2 2 2 21 1 1

0 0 0 0 0

, , ,
N N N N N

N N N
j i i j i

i j i i i jσ σ σ σ
− − − −

=

−

= = = =

⎧ ⎫⎡ ⎤ ⎡⎪ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣

⎪+ + +⎨ ⎬
⎪ ⎪⎩ ⎦ ⎭⎦ ⎣ ⎣ ⎦

∑ ∑ ∑ ∑ ∑q x q xM W Y  (5-8) 

where 

 M = (HTH − I)T(HTH − I), (5-9) 

 T T
2 2 2 2 2 22 2= + + + +W N ErN N N Er ErN N , and (5-10) 

 ( ) ( )T
1 1 2 1 2 1 2 12= ⎡ − − + + ⎤ −⎣ ⎦IY H S N N N N Er N N SH . (5-11) 

Equation (5-8) is composed of the quantization term, the nonorthogonality term, and the 

dyadic approximation term. To examine the significance of each term (i.e. the importance of 

each term in percentage), we need to find out the variables affecting each term for one 

particular transform kernel. For example, the quantizer step q directly affects 2σ q  where 

2 2 /12qσ =q  for uniformly distributed quantizer input i . The average variances 2σ x ’s are 

measured at different q’s and from sequences of different resolutions. The value of 2σ x  is in 

the order of 101 to 102 which closely depends on the motion complexity of a video sequence. 

Let us use the measurement results of a 720p (1280×720) video sequence City as shown in 

TABLE 5-1. Note that the input signal x is actually the residual signal rather than the original 

                                                      
i Although the quantizer input (i.e. the DCT coefficients) obeys the Laplacian Distribution, we have 

verified that the quantization noise power in variance form can be approximated by using a uniformly 

distributed noise process. The true and approximated values are basically in the same order. 
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signal of a frame, hence its value depends on the feedback loop of the hybrid video coding 

and thus is effectively affected by the quantizer step q. Hence quantizer step q is the variable 

of both 2σ q  and 2σ x . Matrix M is independent of all variables since we use one particular 

transform kernel. W and Y depend very much on the dyadic approximation error matrices S1 

and S2 which are the models created to reflect the dyadic approximation errors at the encoder 

side and decoder side. Recall that the number of shifting bits n and the quantizer step q are 

closely related to the dyadic approximation error equivalent model, hence n and q are the 

variables of W and Y. The significances of the three terms in (5-8) are affected by the 

quantizer step and the number of shifting bits, and the latter one relates to the question on the 

number of shifting bits should be used for a 16×16 integer transform kernel so that the impact 

of the dyadic approximation error can be omitted. We thus calculated the value of three terms 

by varying the quantizer step and the number of shifting bits. The smallest possible number of 

shifting bits at the encoder side and decoder side are n1 = 19 and n2 = 13 respectively, 

according to our experiments, and they were increased to n1 = 25 and n2 = 19 with stepsize 1 

to achieve more accurate dyadic approximations. The results are shown in TABLE 5-2. We 

can see that the nonorthogonality error has the lowest weight (0–0.1%) in all cases, hence it 

needs no further consideration in the following analysis. The remaining two kinds of errors—

the quantization error and the dyadic approximation error—are comparable when the 

quantizer step is small or the number of shifting bits is small. Fig. 5-1 shows the dyadic 

approximation error over the reconstruction error in percentage w.r.t. the quantizer step q and 

the number of additional shifting bits ∆n (by assuming that the number of additional shifting 

bits for the encoder and decoder sides are the same). It is observed that when ∆n reaches a 

certain level (i.e. 5), the impact of the dyadic approximation error can be omitted. Similar 

results were obtained for other order-16 orthogonal/nonorthogonal integer kernels, however, 

they are not shown here due to the limitation of space. 

 
TABLE 5-1 

AVERAGE VARIANCES OF INPUT SIGNAL x 
Quantization Parameter in the 

H.264/AVC Reference Software q σx
2 

4 1 16.0 
18 5 16.3 
24 10 19.1 
36 40 52.1 
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Fig. 5-1. Dyadic approximation error over the reconstruction error in percentage w.r.t. the quantizer 

step q and number of additional shifting bits Δn. 

 

 

                                                      
j The negative sign appears confusing. By recalling (5-8), we find that the only term which can 

introduce negative value is ( )
2

2

12 1
q 0

,N

iN
i iσ −

=
⎡ ⎤
⎢ ⎥⎣ ⎦∑ W . In some cases, the dyadic approximation even 

helps to compensate the error caused by the quantization, which are not common but somehow 

reasonable. 

TABLE 5-2 
THE SIGNIFICANCES OF DIFFERENT KINDS OF ERRORS 

Quantizer Step Average Variances No of Shifting Bits  Quantization Error Nonorthogonality Error Dyadic Approximation 
Error 

Reconstruction Error 
(Total Error) 

Q σx
2 σq

2 Encoder 
Side n1 

Decoder Side 
n2 

Value (×10-

2) 
Weight Value (×10-5) Weight Value (×10-

4) 
Weight Value (×10-2) 

1 16.0 0.08 

19 13 8.3 33.1% 12.9 0.1% 1680.0 66.8% 25.1 
20 14 8.3 139.0% 12.9 0.2% -234.9 j 39.2% 6.0 
21 15 8.3 111.4% 12.9 0.2% -86.6 11.6% 7.5 
22 16 8.3 95.9% 12.9 0.1% 33.9 3.9% 8.7 
23 17 8.3 99.9% 12.9 0.2% -0.3 0.0% 8.3 
24 18 8.3 98.6% 12.9 0.2% 10.4 1.2% 8.5 
25 19 8.3 100.4% 12.9 0.2% -4.3 0.5% 8.3 

                        

5 16.3 2.08 

19 13 208.3 93.1% 13.1 0.0% 1537.6 6.9% 223.7 
20 14 208.3 101.9% 13.1 0.0% -388.4 1.9% 204.5 
21 15 208.3 100.7% 13.1 0.0% -145.6 0.7% 206.9 
22 16 208.3 98.2% 13.1 0.0% 371.0 1.7% 212.1 
23 17 208.3 99.9% 13.1 0.0% 16.0 0.1% 208.5 
24 18 208.3 100.1% 13.1 0.0% -18.7 0.1% 208.2 
25 19 208.3 100.1% 13.1 0.0% -16.0 0.1% 208.2 

                        

10 19.1 8.33 

19 13 833.3 92.0% 15.4 0.0% 7195.7 7.9% 905.3 
20 14 833.3 98.9% 15.4 0.0% 921.9 1.1% 842.6 
21 15 833.3 97.7% 15.4 0.0% 1950.6 2.3% 852.9 
22 16 833.3 99.8% 15.4 0.0% 186.9 0.2% 835.2 
23 17 833.3 100.0% 15.4 0.0% -37.6 0.0% 833.0 
24 18 833.3 100.1% 15.4 0.0% -61.5 0.1% 832.7 
25 19 833.3 99.9% 15.4 0.0% 62.7 0.1% 834.0 

                        

40 52.1 133.33 

19 13 13333.3 95.9% 42.0 0.0% 56771.1 4.1% 13901.1 
20 14 13333.3 97.6% 42.0 0.0% 33451.2 2.4% 13667.9 
21 15 13333.3 98.8% 42.0 0.0% 16009.6 1.2% 13493.5 
22 16 13333.3 99.8% 42.0 0.0% 2468.5 0.2% 13358.1 
23 17 13333.3 99.8% 42.0 0.0% 2272.8 0.2% 13356.1 
24 18 13333.3 100.0% 42.0 0.0% 522.8 0.0% 13338.6 
25 19 13333.3 100.0% 42.0 0.0% -125.4 0.0% 13332.1 

 

Additional Shifting Bits ∆n 

Weight of Dyadic Approxi- 
mation Error 

Quantizer 
Step q 
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5.3. Characteristics of Dyadic Approximation Error 

5.3.1. Position Dependency in Compressed Domain 

Let us investigate the characteristics of the dyadic approximation error. First of all, let us 

recall (5-1)–(5-4) by focusing on the dyadic approximation error equivalent model–the N2×1 

vectors S1 and S2. For a dyadic approximation error scalar S1(i) (or S2(i), we use one of them 

for explanation) at position i, it can be calculated by dividing the real floating-point number 

by its dyadic approximation. Since the real floating-point number depends on the norm of the 

basic vector of the integer transform kernel at position i, the values of S1(i)’s for different i’s 

are obviously different. In other words, the value of dyadic approximation error scalar S1(i) is 

position dependent. Since S1(i)’s measure the error of dyadic approximation, their values are 

around unity. TABLE 5-3 gives an example of S1 and S2 when the quantizer step q = 5, the 

number of forward shifting bits n1 = 21, and the number of inverse shifting bits n2 = 15.  
TABLE 5-3 

DYADIC APPROXIMATION ERROR SCALARS 
Pos Idx S1 S2 S1×S2 

0 1.0156 1.0000 1.0156 
1 1.0280 0.9650 0.9920 
2 0.9799 1.0220 1.0015 
3 1.0280 0.9650 0.9920 
4 0.9668 1.0472 1.0125 
5 1.0280 0.9650 0.9920 
6 0.9799 1.0220 1.0015 
7 1.0280 0.9650 0.9920 
 : :  : :  

252 1.0113 1.0021 1.0134 
253 0.9920 1.0004 0.9924 
254 1.0188 0.9781 0.9965 
255 0.9920 1.0004 0.9924 

Note that the position dependency property is only valid in the compressed domain (the 

DCT domain) and does not exist in the spatial domain of the reconstructed signal, since the 

error term of an element in the spatial domain is a weighted sum of all error terms in the 

compressed domain. 

5.3.2. System Error and Equivalent Quantizer Step 

Video coding standards only defines the decoder, hence only the pre-scaling factors are 

defined for the H.264/AVC. As a result, their counterparts, the post-scaling factors, have to be 

found by the designer of the encoder to best suit the values of pre-scaling factors. A clever 

recommendation was made by VCEG [80] 

 scalar(i,j) = 2total number of shifting bits × norm[basis(i)] × norm[basis(j)] / rescalar(i,j) (5-12) 

which implies that an increase in scalar(i,j) means an decrease in rescalar(i,j), or vice versa. 

It is also inheritably true for the dyadic approximation error terms S1(i) and S2(i). Their 

product [S1(i)×S2(i)], which measures the dyadic approximation error of the whole system, is 
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definitely closer to unity compared to any of them. If the dyadic approximation error of the 

whole system is not unity, the perfect reconstruction property of the transform cannot be 

preserved even though the quantization is bypassed. This causes a drift between the raw 

residual signal and the reconstructed residual signal, which lowers the coding efficiency and 

the visual quality. If the dyadic approximation error of the whole system is unity, another 

problem also exists. Let us name it as “quasi–error-free”. Recall in Fig. 2-7(e), the blocks 

“DA Error Equivalent Model” and “Quantization” are next to each other. We can create an 

equivalent scenario by deliberately setting the dyadic approximation error to zero and moving 

the errors into the quantization stage. That is, setting quantizer step q = 5, S1(k) = 1.1 and S2(k) 

= 0.9091 is equivalent to setting q = 5/1.1 = 4.545 and S1(k) = S2(k) = 1. For the general case, 

even though the dyadic approximation error of the whole system is unity, transformed 

coefficients of different positions are quantized with different quantizer steps, equivalently. 

This means that components of certain “frequencies” levels are attenuated whereas others are 

amplified, which causes artifacts for the reconstructed images. 

The “quasi–error-free” phenomenon can also be explained in a more theoretical fashion. 

Let us assume that perfect match between encoder side and decoder side S1(i)×S2(i) = 1 has 

been achieved. By a careful examination on (5-8), we find that the one of the two terms 

contributing to the dyadic approximation error, ( )
2 2

2

1 12 1
0 0

,N N

j iN
i jσ − −

= =
⎡ ⎤
⎢ ⎥⎣ ⎦∑ ∑x Y , vanishes since 

(N1 − N2) in (5-11) equals to zero. Hence the dyadic approximation error is simplified to 

( )
2

2

12 1
0

,N

iN
i iσ −

=
⎡ ⎤
⎢ ⎥⎣ ⎦∑q W  which is non-zero whenever the decoder side has approximation errors. 

5.3.3. Effect of Dyadic Approximation Error 

In this part, we are going to see exactly the effect of dyadic approximation error. This is 

achieved by comparing the dyadic approximation error contained output and the dyadic 

approximation error compensated output. The latter one can be obtained by adding two blocks 

S1
−1 and S2

−1 onto Fig. 2-7(f), as shown in Fig. 5-2. We synthesized input signal according to 

the empirical data (we assume an AR(1)-process with ρ = 0.6 and 2σ x  = 52.1), selected the 

order-16 transform kernel that we have mentioned in Section 5.2, and then obtained the output 

by varying the number of additional shifting bits Δn and quantizer step q. The MSE values are 

calculated as the results are shown in Fig. 5-3. It is observed that with the dyadic 

approximation error compensation, the effect of dyadic approximation error has been fully 

removed and the MSE values are close to the theoretical value q2/12 (see the horizontal solid 

blue line in each of the subplots). On the other hand, the MSE caused by the dyadic 

approximation error is huge when the number of additional shifting bits is small (see the left 

part of the dotted black line in each of the subplots). Unless 5 or more additional bits are used, 
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the effect of the dyadic approximation error cannot be eliminated—which matches well with 

the results we obtained in Section 5.2. Let us examine one practical example in which the 

dyadic approximation error gives noticeable artifacts, or equivalently the cases fulfilling the 

condition that Δn < 5. Let us examine the case when Δn = 1. Fig. 5-4 shows the difference 

images of the reconstructed Lena images with and without dyadic approximation error 

compensation at different quantizer steps. It is observed that the error caused by the dyadic 

approximation is more and more noticeable as q goes larger, the observation of which is 

supported by Fig. 5-3 that the absolute MSE value grows larger as q increases for a certain Δn. 

The experiments were repeated for other order-16 kernels and the results are similar. 

 
Fig. 5-2. Block diagram of the case that the dyadic approximation error is compensated. 

 
Fig. 5-3. Comparison of MSE values between output results with and without dyadic approximation 

error compensation for quantizer steps: (a) q = 1, (b) q = 5, (c) q = 10, and (d) q = 40. 

 
Fig. 5-4. Difference images of the reconstructed images with and without dyadic approximation error 

compensation for quantizer steps: (a) q = 10, and (b) q = 40. Results for q = 1 and q = 5 are not shown 

here since the details can hardly be noticed. The original image is shown in (c). 
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5.4. Conclusions 

In this chapter, we have derived the analytical representation of the reconstruction error 

with the consideration of the dyadic approximation, as well as the quantization and the 

nonorthogonal transform. The dyadic approximation can cause two effects: the DCT 

coefficients are equivalently quantized with different stepsizes, and different “frequency” 

components are attenuated or amplified differently, which introduce visual artifacts. This 

problem is more serious as comparing to those caused by other factors, such as the 

nonorthogonality error. We have also suggested the least number of shifting bits for a set of 

order-16 transform kernels by both theoretical derivation and experimental results. We 

recommend that similar tests should be carried out to ensure the transform kernels being free 

from the dyadic approximation error for the future standards, such as the H.NGVC/HVC 

[110]. 
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Chapter 6. Conclusions and Future Work 

6.1. Conclusions 

In this thesis, we have focused on the following topics inherited from the integerization of 

the transform coding process: the integer kernel design problem, the kernel selection 

strategies, the nonorthogonality error analysis, and the dyadic approximation error analysis. 

In Chapter 3, we have proposed a new DCT-like kernel IK(5,7,3) and revitalized another 

DCT-like kernel IK(13,17,7) to effect adaptive kernel mechanism in hybrid video coding. We 

have found that the macroblock-level AKM using either one of these two kernels with the 

H.264/AVC default kernel IK(1,2,1) outperforms the H.264/AVC’s default arrangement and 

the MB-AKM{(1,2,1)&IST}. This is especially true for high fidelity video coding 

applications, i.e. with small values of QP, and the MB-AKM{(1,2,1)&(5,7,3)} which is a 

dual-kernel gives the best performance as compared with other single or dual-kernel 

approaches in the literature. However, due to the trial-and-error characteristic of the MB-

AKM, the computational complexity is high. Hence, further investigations were carried out to 

exploit the kernel selection tendencies, aiming at the development of a fast approach for the 

AKM. We have found that the slope of a pair of DCT-like kernels forms an important rate-

distortion feature for kernel selection. This feature is due to the differences in length of 

shifting bits of kernels. With the help of the rate-distortion feature analysis, we are able to 

propose a fast frame-level kernel selection algorithm (FM-AKM) using the IK(1,2,1) for I- 

and P-Frames and the IK(5,7,3) for B-Frames for the H.264/AVC. This fast approach gives 

comparable or even better results in terms of PSNR and bitrate compared with the new dual 

kernel MB-AKM{(1,2,1)&(5,7,3)}. We have also generalized the rate-distortion feature 

extracted from a pair of kernels to a feature extracted from a group of many kernels, which is 

justified by an essentially stable topology formed by operation points. We further generalize 

the FM-AKM to let the algorithm adapt to any value of the lambda weight to cope with 

specific coding requirement. 

In a recent paper [74], a comprehensive and instructive work on integer transform kernel 

design for the HD video coding was presented. However, we pointed out some minor (but yet 

useful) problems in Chapter 4, but the paper is really a piece of excellent work that can give 

readers inspiration, and for reference of future work. We have also proposed an improved 

method for the evaluation of the upper bound of the reconstruction error. Hence, this makes 

the original more complete and a more real worst-case scenario can be attained. 

In Chapter 5, we have derived the analytical representation of the reconstruction error with 

the consideration of the dyadic approximation, as well as the quantization and the 

nonorthogonal transform. The dyadic approximation can cause two effects: the DCT 



 

77 
 

coefficients are equivalently quantized with different stepsizes, and different “frequency” 

components are attenuated or amplified differently, which introduce visual artifacts. This 

problem is more serious as comparing to those caused by other factors, such as the 

nonorthogonality error. We have also suggested the least number of shifting bits for a set of 

order-16 transform kernels by both theoretical derivation and experimental results. We 

recommend that similar tests should be carried out to ensure the transform kernels being free 

from the dyadic approximation error for the future standards, such as the H.NGVC/HVC. 

6.2. Future Research Directions 

A possible future work is to expand the research of Chapter 3 into the quantitative 

analyses on how the lengths of shifting bits affect the rate-distortion feature (i.e. to see how 

the information be distributed in each word, to study more exactly the information lost due to 

bit-shift, etc.). Recently, researchers have shown that it is beneficial to include larger block-

size transforms (such as 8×8 or 16×16 transforms) in the future standards to cope with the 

High Definition video contents. It is a good idea to expand integer kernel design and the 

investigation of kernel selection strategies into larger block-size transforms, and it appears to 

have some positive results for the 16×16 block-size transforms from our preliminary 

investigation. Hopefully the rate-distortion features in larger blocks can also be proved 

quantitatively, which can thus benefit the kernel selection strategy for video encoding and 

kernel determination for future standards. 
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