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Abstract 

Positron emission tomography (PET) technology provides a sensitive, 

informative and quantitative approach for non-invasively visualization of biological 

processes with specific molecular probes. Although PET has been widely used in 

clinical and preclinical studies, there are still some challenges for quantification 

techniques to provide more reliable information about the underlying biological 

processes from PET imaging. This thesis is thus devoted to advance appropriate 

quantification techniques in order to improve the reliability of quantification and to 

facilitate image analysis, emphasizing on the PET imaging with [18F]Fluoro-2-

deoxy-2-D-glucose (FDG-PET) in small-animal studies and dual-time scans for 

human. 

The investigations of this thesis began with the improvements in the reliability 

of quantification for PET imaging. An automatic image-based method with 

improved standard uptake values (SUVs) was developed to reduce the influences of 

the error measurements and the excreted tracer by renal function. The improved 

SUVs, an image-derived SUV (iSUV) and a modified SUV (mSUV), were proposed 

and then demonstrated in a set of static mouse FDG-PET studies. For the selected 

targets, the iSUV and mSUV were compared against their corresponding SUVs. The 

results indicated that the automatic image-based method could derive the iSUV to 

replace SUV when the actual measurements were missing or unreliable. Meanwhile, 

the estimated mSUV can reduce the inter-subject variability and enhance the tumor-

to-background separation.  
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In addition to the improvements in the calculation of SUV, a simulation 

framework was designed to derive generalized optimal quantitative index (QI) and 

its associated flexible dual-time imaging protocol for accurately differentiating the 

malignancy from benign lesions in FDG-PET for lung cancer diagnosis. In computer 

simulations, the generalized optimal QI can provide the higher accuracy in 

differentiating malignancy from benign lesions under each noise level than 

traditional RI for lung cancer diagnosis. The corresponding optimal dual-time 

imaging protocol was suggested to be flexible, which could be valuable for the high-

throughput clinical applications.  

Furthermore, the frequent invasive arterial blood sampling to obtain input 

function poses many challenges and inconvenience for tracer kinetic modeling with 

dynamic PET imaging. Non-invasive approaches were proposed to address this issue. 

A simple non-invasive quantification method based on Patlak graphic analysis (PGA) 

that uses a reference region to obtain the relative influx rate without an input 

function has recently been proposed. This non-invasive Patlak (nPGA) method was 

extended to whole-body FDG-PET studies and systematically investigated using a 

set of mouse studies and computer simulations. In the mouse studies, a high linearity 

of relative influx rates was observed between the nPGA and PGA for most pairs of 

reference and target regions, when an appropriate underlying kinetic model was used. 

The simulation results demonstrated that the accuracy of the nPGA method was 

similar to that of the PGA method, with a higher reliability for most pairs of 

reference and target regions. The results proved that the nPGA method could 

provide a non-invasive and indirect way of quantifying the FDG kinetics in the 

tissues where the k4 and vascular effect were negligible. 
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The automatic non-invasive approach can further facilitate the analysis of 

dynamic PET imaging. A novel hybrid clustering method (HCM) was proposed to 

objectively delineate the regions of interest (ROIs) in dynamic PET images for the 

automatic estimation of image-derived input function (IDIF) and was demonstrated 

the application to the mouse FDG-PET studies. The results showed that the HCM 

achieved accurate ROIs delineation in both computer simulations and experimental 

mouse studies. In the mouse studies the predicted IDIF had a high correlation with 

the gold standard, the PTAC derived from invasive blood sampling. The results 

indicate that the proposed HCM has a great potential in ROI delineation for 

automatic estimation of IDIF in dynamic FDG-PET studies.  

In summary, this thesis has significantly contributed to the improvement of 

several critical quantification approaches for preclinical small-animal studies and 

clinical patient examinations. 
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Chapter 1  
 
Introduction 

1.1 Overview of Positron Emission Tomography 

The past few decades have witnessed rapid developments of molecular imaging 

to non-invasively visualize, characterize and measure the biological processes within 

living systems by the molecular probes or interactions with molecules [1, 2]. 

Molecular imaging techniques, such as magnetic resonance imaging (MRI) and 

functional nuclear medicine imaging, have not only improved the diagnosis and 

treatment of diseases at a molecular level, but also provided a unique way to 

understand the fundamental biological and pathological processes inside organisms 

[2-5]. Table 1-1 lists the abstracted general characteristics of some currently 

available molecular imaging techniques in [6]. The original table in [6] with more 

details are also given in Appendix A.  

In the field of molecular imaging, PET is a nuclear imaging technique which 

use radioisotope labeled compounds as molecular probes to image and measure 

biochemical processes of mammalian biology in vivo [1]. The molecular probes are 

usually called tracer in the field of nuclear medicine, which can be administered to a 
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subject and ‘trace’ specific biological process. The temporal and spatial information 

of tracer is detected and stored then as functional images by the PET system. The 

radioisotope of fluorine (18F) is frequently used in labeling tracers, while there are 

others radioisotopes used in tracer developments such as oxygen (15O), nitrogen 

(13N), and carbon (11C). The most attractive advantage of PET is the availability of a 

large number of tracers specific for different biological processes. Up to now, “Over 

500 molecular imaging probes have been developed and consist of various labeled 

enzyme and transporter substrates, ligands for receptor systems, hormones, 

antibodies, peptides, drugs (medical and illicit), and oligonucleotides” [1]. The 

limitations of PET imaging are relatively low spatial resolution and low signal-to-

noise ratio (SNR) due to imaging nature of nuclear medicine. To address the issues 

of lacking accurate anatomical information and prolonged transmission-based 

attenuation correction in traditional PET imaging, multimodality hybrid imaging 

systems have been developed such as the integrated scanner of PET/CT [7] or 

PET/MRI [8, 9]. Several commercial healthcare manufactories have provided the 

dedicated PET systems with optimal strategies, such as Siemens BiographTM 

TruePointTM PET/CT used in clinical routines and Siemens microPET Focus 220 for 

preclinical studies. Figure 1-1 shows these two commercial PET scanners and their 

corresponding static images. 

With the dedicated high-performance system and the multi-disciplinary 

cooperation, PET imaging has been applied in amount of areas because of its high 

sensitivity to the biological processes. It is reported that PET imaging can provide 

the early diagnosis of neurological disorders and evaluate the treatment effects [10]. 

One example is that early Alzheimer’s detections and relevant cause classifications 

could benefit from the new methods adopted PET imaging [11-13]. Furthermore, 
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PET imaging can serve the purpose for measuring metabolic viability of cardiac 

tissue. As a result, PET imaging has been used to detect the coronary artery disease 

and guide the cardiovascular therapy [14, 15]. Metabolic information from PET 

images also shows the advantages in cancer studies even in cancer drug 

developments [5, 16, 17]. The most frequently used PET tracer especially for 

oncologic imaging (>90% of all cancer-related scans) is [18F]Fluoro-2-deoxy-2-D-

glucose (FDG). PET with FDG (FDG-PET) has been widely used for detecting and 

staging of colorectal cancer, esophageal cancer, head and neck cancer, non-small 

cell lung cancers, melanoma, and lymphoma [16, 18-20]. With the other more 

tracers, the versatility of PET in oncologic imaging can help the cancer biologists to 

measure and understand cancer [21]. PET imaging is also valuable for predicting the 

tumor response to the therapy and patient survival [22, 23]. In addition, PET can 

visualize gene expressions in vivo [24, 25]. In a word, both in clinical and preclinical 

environments, PET imaging is a powerful molecular imaging technique in neurology, 

cardiology, oncology, and genetics etc. 

Table 1-1 Characteristics of some molecular image techniques 

Imaging 
Technique 

Role Spatial 
Resolution 

Sensitivity Quantitative 
degree 

MRI anatomy, function 25 - 100 um low/medium ++ 

CT anatomy 50 - 200 um 
not well 

characterized 
not 

applicable 

PET function, biology 1 - 2 mm very high +++ 

SPECT function, biology 1 - 2 mm high ++ 

Optical function, biology 2 - 5mm very high + to ++ 

Ultrasound anatomy 50-500 um 
not well 

characterized 
+ 

MRI: magnetic resonance imaging; CT: computed tomography; PET: positron 

emission tomography; SPECT: single photon emission computed tomography. 
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Figure 1-1 Two commercial scanners and their corresponding static images in 

clinical and preclinical environments. (a) Siemens BiographTM TruePointTM PET/CT 

( reproduced from http://www.medical.siemens.com/); (b) coronal PET/CT fusion 

image of colon cancer patient acquired using FDG (reproduced from 

http://www.medical.siemens.com/, data courtesy of cancer imaging and tracer 

development program, University of Tennessee, Dr. David Townsend ); (c) Siemens 

microPET Focus 220 (reproduced from http://www.medical.siemens.com/); (d) 

coronal micoPET image of a tumor-planted mouse acquired using FDG in Crump 

institute for molecular imaging, UCLA.  

1.2 Motivation 

Facing with these diverse applications with PET, how to efficiently and 

objectively derive the biological information from PET images becomes a 

significant issue for designing an appropriate PET assay. Many quantification 

techniques have been developed to serve this purpose of estimating the biological 

parameters [26], including the semi-quantitative approaches and tracer kinetic 

modeling methods. The semi-quantitative approaches are usually simple by 

neglecting many factors and avoiding prolonged dynamic scans. Invasive blood 

sampling which is frequently required by the approaches based on tracer kinetic 

modeling is inconvenient and can induce the harmful effects to subjects and 

operators. Moreover, the invasive approach is often considered as a challenge in 

http://www.medical.siemens.com/�
http://www.medical.siemens.com/�
http://www.medical.siemens.com/�
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preclinical studies. On the other hand, the quantification techniques are often 

conducted based on the operators’ experience. These subjective, labor-intensive and 

time-consuming processes cannot meet the demands of high-throughput PET centers 

and inter-institute investigations.  

In recent years, the development of information technology has inspired more 

innovative strategies to address the issues in quantitative PET imaging. For example, 

some approaches based on theory of signal processing have been proposed to 

explore non-invasive methods and automate the analysis processes based on 

objective criteria. Nevertheless, more and more preclinical studies related with PET 

imaging are innovated and applied to explore diverse disorders with new tracers. 

The utility of the small-animal models enable the preclinical studies to perform in 

vivo testing and revealing the biological processes. The small-animal PET imaging 

is thriving with the booming developments of biological technologies. The 

requirements of methodologies to address the specific issues then are increasing 

along with such the new trend. This motivates my research interest in advancing 

quantification techniques for achieving better performance of PET imaging 

especially for small-animal studies, which includes two aims: to improve the 

reliability of quantification and to facilitate image analysis. Investigations in this 

topic will enhance the PET image analysis and deliver more benefits to preclinical 

and clinical studies by using FDG-PET. 

1.3 Literature Review  

The semi-quantitative approach is applied to quantify the biological processes 

in a simple way. Standard uptake value (SUV), as the most frequently used semi-
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quantitative parameter, is widely applied to measure the tracer uptake in static PET 

images [27]. It is simple in calculation without the requirement of the invasive blood 

sampling and suitable for high-throughput imaging centers. However, its variability 

can be influenced by many factors including the length of uptake period, plasma 

glucose level, recovery coefficient, partial volume effects [28, 29] and the subject’s 

preparations [30]. In addition, considering the lower concentration in body fat for 

some tracers, the body weight may not be the best normalization factor in SUV 

calculation, and the lean body weight or surface area has been proposed as a 

substitute [31, 32]. SUV can be calculated with the correction of partial volume 

effects by using the recovery coefficients of the system [33] or a model-based 

method [34]. In addition to these modifications in SUV calculation, the changes of 

SUV with imaging time are also studied for improving the quality of quantification 

in PET studies [35-37]. For applications in the cancer diagnosis, the sole 

measurement of SUV may not allow optimal differentiation of malignancy from 

benign lesions [38]. To reduce false positive of benign lesions, dual-time imaging 

protocol with one early and one delayed static scan has been proposed to classify 

malignancy from benign lesions using the change of SUVs as the criterion [39]. The 

dual-time imaging protocol can provide more information than static protocol and 

higher subject throughput than dynamic protocol. It has already been adopted in 

clinical cancer diagnosis [40-43]. The optimizations of the imaging protocol and 

diagnosis criterion are also coming into the focus of researches to improve the 

diagnostic performance of dual-time PET imaging [44, 45].  

Being different from static approaches, tracer kinetic modeling is proposed to 

analyze the dynamic PET images which visualize spatial and temporal information 

of the tracer distribution inside the living systems. By assuming an underlying 
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kinetic model for the tracer, this method uses a tracer plasma time-activity curve 

(PTAC) as a input function to fit the output function, the target tissue time-activity 

curve (TTAC), through adjusting kinetic parameters which may be related to 

physiological/biochemical processes [26]. Although frequent invasive arterial blood 

sampling is the gold standard for obtaining PTACs in the kinetic quantification, it is 

harmful to subjects and may expose operators to extra radiation. The invasive blood 

sampling is also a challenge in preclinical studies with small-animal because of the 

subject’s small size of blood vessels and limited volume of blood. A non-invasive 

method that eliminates blood sampling has been proposed for simultaneously 

estimating the input function and physiological parameters from multiple ROIs with 

distinct TTACs [46, 47]. Without using ROIs, the method based on factor analysis 

has been developed to extract the input function from the dynamic PET studies for 

several different tracers [48, 49]. Population-based method [50, 51] and image-

derived input function (IDIF) [52, 53] have also been introduced to avoid the 

invasive approach in clinical environments. The IDIF methods, which rely on a 

sufficiently large vascular structure in the imaging field of view (FOV), are more 

direct and convenient to be applied than population-based methods without extra 

information. Moreover, the reference tissue model has also provided a non-invasive 

approach to address the problem of invasive blood sampling in neuroreceptor study 

for the graphical analysis methods [54, 55]. 

In most quantitative analysis, the tracer time-activity of static images and the 

time-activity curve (TAC) of dynamic images are usually derived from a predefined 

ROI placed in the target organ/tissue/lesion. The quality of the ROI delineation 

depends upon the experience of the operator. The manual approach is subjective, 

labor-intensive, and time-consuming, and as such semi- or fully-automatic ROI 
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delineation methods that utilize some objective criterion are necessary in order to 

overcome these disadvantages and to benefit the development of automatic high-

throughput analysis. One approach is to register PET image with the high spatial 

resolution anatomical image, such as CT or MRI, then to delineate the ROI or 

segment PET images based on the spatial information from the aligned images [56]. 

Furthermore, a template-based method has been developed to automatically 

delineate the ROIs in PET images using the anatomical image and supplementary 

predefined template [57]. Because these methods are relying on image registration 

algorithms, they usually perform well in rigid structures that have the stable and 

similar shape among subjects, such as the brain. Another approach is to directly 

delineate ROIs in PET images using the techniques of image segmentation. In 

dynamic PET images, every pixel has a corresponding TAC which reflects the 

temporal information of tracer distribution. Many pixel-clustering methods have 

successfully used the temporal information for image segmentation by assuming that 

the TACs of pixels in the same tissue or organ have similar shapes and magnitudes. 

By assuming the TACs as the feature vectors of pixels, the K-means clustering 

method has been proposed in the segmentation of major organs from dynamic PET 

images [58]. This method was later extended to 3D segmentation of white and gray 

matters in the brain by integrating the kinetic features [59]. K-means clustering has 

also been used to segment PET images of the brain with principle component 

analysis (PCA) [60]. An unsupervised method, called local means analysis (LMA), 

has been introduced for tissue segmentation in dynamic rodent whole-body PET 

images, without guidance from anatomical image [61]. Clustering methods have also 

been used to obtain non-invasive arterial input functions from human brain studies 

[62, 63] and small-animal cardiac images [64]. In addition to these clustering 
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methods for the segmentations of reconstructed images, a clustering method with 

iterative coordinate descent has been adopted to directly segment dynamic PET 

images in the projection domain [65, 66]. 

Despite the significant efforts that have gone into attempting to develop and 

improve quantification techniques, there are still many issues that need to be 

addressed in order to achieve better performance of PET imaging with the high 

quantification quality and convenient processes. 

1.4 Organization of the Thesis 

This thesis is composed of seven chapters, which are organized as follows. 

Chapter 1 introduces the role of PET in molecular imaging, especially for its 

versatility in quantitative analysis. A comprehensive literature review of 

quantification techniques in PET is then provided to emphasize the motivation of 

this thesis. This thesis focuses on the studies of improved quantification techniques 

for achieving better performance of PET imaging. Finally, the organization of this 

thesis is represented.  

After reviewing the principles of PET imaging, Chapter 2 introduces the basics 

of quantification techniques for analysis PET images, including the tracer kinetic 

modeling for dynamic imaging, the semi-quantitative parameters for static imaging 

as well as the non-invasive methods. These fundamental methods are going to be 

used and discussed in the further investigations of this thesis. 

Chapter 3 explores an automatic image-based method to derive SUV and a 

modified SUV for oncologic FDG-PET studies with small-animal. The image-
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derived SUV can replace SUV when actual measurements are missing or unreliable. 

This is valuable for multidisciplinary and inter-institution large-scale database in 

education and scientific research. The modified SUV can reduce the inter-subject 

variability and enhance the tumor-to-background separation, which has the potential 

to increase the accuracy of cancer detection. 

Chapter 4 explores a framework for simultaneously optimizing quantitative 

indexes and dual-time imaging protocol for FDG-PET imaging and demonstrates its 

potential in clinical lung cancer diagnosis. A generalized optimal quantitative index 

with its corresponding dual-time imaging protocol is derived by computer 

simulations and achieves the highest accuracy of the differentiation of malignancy 

and benign lesions.   

Chapter 5 introduces a non-invasive Patlak graphic analysis method to measure 

the glucose metabolism using relative influx rates and then extends this method to 

whole-body small-animal studies. The systematic investigations using computer 

simulations and experimental FDG-PET studies both demonstrate that high linearity 

of relative influx rates are achieved between non-invasive Patlak graphic analysis 

method and common Patlak graphic analysis method for most target and reference 

regions when using the appropriate kinetic model. 

Chapter 6 proposes a novel hybrid clustering method that objectively delineates 

ROIs in dynamic PET images for the automatic estimation of image-derived input 

functions for small-animal studies. This method can achieve accurate ROI 

delineations in both computer simulations and experimental mouse FDG-PET 

studies. In the mouse studies, the predicted image-derived input function has a high 

correlation with the referenced method. The results indicate that this proposed 
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method has a great potential in ROI delineation for automatic estimation of image-

derived input functions for dynamic PET studies.  

Chapter 7 concludes the investigations described in the previous chapters. After 

summarizing the major work and contributions of this thesis, some suggestions of 

the future work are given out. 
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Chapter 2  
 
Positron Emission Tomography and 
Quantification Techniques 

2.1 Principles of PET  

PET imaging relies on detecting photons originated from injected tracer to 

visualize biochemical processes in living systems. A radioisotope (such as 18F) 

labeled tracer is injected into the subject (usually into the blood circulation). The 

instable radioisotope in the injected tracer undergoes radioactive decay by 

transforming atom to more stable state with positron emitted. The positron travels a 

very short distance and then collides with an electron in surrounding tissues, which 

leads to an annihilation with two 511-keV photons travelling 180º apart. These two 

photons are detected as a coincident event when they simultaneously strike two 

small detectors in opposite directions. The source of these photons (the location of 

annihilation) can be localized along the line connecting these two detectors, which is 

called the line of response (LOR). In general, there are about 6-70 million detector 

pair combinations for recording coincident events from many different angles 

around the subject. All the recorded coincident events are transformed into sinogram 
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or listmode data and then reconstructed to tomographic images. Figure 2-1 shows 

the principles of PET. Under ideal circumstances, only true coincident events, where 

two detected annihilation photons originate from the same radioactive decay and 

have not changed direction or lost any energy before detecting, are recorded in PET 

system. However, due to the limitations of the detectors, a number of undesirable 

events are “accidentally” recorded in actual condition. The measurements of 

coincident evens are contaminated with these undesirable events, which includes 

random, scattered and multiple coincidences [67, 68]. Figure 2-2 shows the four 

main coincident event types for a full-ring PET system diagrammatically.  

 
Figure 2-1 Principles of PET: starting with the annihilation process through 

registering the photons at the scanner ring until the final image reconstruction 

(reproduced from Dr. Jens Langner’s thesis, http://en.wikipedia.org/wiki/File:PET-

schema.png ). 

http://en.wikipedia.org/wiki/File:PET-schema.png�
http://en.wikipedia.org/wiki/File:PET-schema.png�
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Figure 2-2 Illustration of the four main types of coincidence event. The black dot 

indicates the source of positron annihilation. (a) a true coincidence; (b) a scattered 

event where one or both of the photons undergo a Compton interaction (indicated by 

the open arrow); (c) a random or accidental coincidence arising from two positrons 

in which one of the photons from each positron annihilation is counted; (d) a 

multiple coincidence arising from two positron annihilations in which three events 

are counted. In the case of (b) and (c), the mis-assigned line of response is indicated 

by the dashed line (reproduced from [68]). 

For an actual PET scan, true coincidences and the undesirable events (about 

total 106 to 109 events) are all detected. This has a degrading effect on the 

measurement, so these undesirable events are corrected for a number of factors in 

order to represent as closely as possible the true condition of positron emission. The 

final output of the PET imaging is a three-dimensional image, where the signal 

intensity in any particular image voxel is proportional to the amount of the tracer in 

that voxel. The voxel value would be converted to true amount of the tracer in the 

voxel through cross calibration. Hence, PET images allow feasible visualization of 

three-dimensional spatial quantitative distribution of the tracer in a living subject. If 

the PET scan is conducted with a dynamic imaging protocol, a time sequence of 
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image frames can extract the tissue concentration of tracer as a function of time. The 

time-activity curve (TAC) can be derived from a region of interest (ROI) that can be 

as small as a voxel, which is demonstrated in Figure 2-3. The open circle denotes the 

measured tracer time-activity from each frame of the dynamic PET image. The 

frame reference time is often set to the midpoint of the actual frame duration. In this 

case, the acquisition time point for each time-activity sample of TAC notes as mid-

scan time.  

After obtaining the TACs from the dynamic PET images, the use of methods 

based on kinetic modeling can further derive simple kinetic parameters abstractly 

describing complicated biological processes in vivo.  

 
Figure 2-3 A tracer time-activity curve obtained from the dynamic PET images. 

2.2 Kinetic Modeling 

Kinetic modeling, which originates from pharmacokinetics and uses modeling 

technique to describe complicated kinetic process, is a highly versatile tool for 

estimating biological parameters for an underlying model in functional imaging. The 

kinetic model is established according to physiological and biochemical processes 

for a dedicated tracer in an abstracted matter. The derived simple kinetic parameters 

can be directly used in the objective evaluation of physiological processes. 
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According to mathematical characteristics, the tracer kinetic models can be 

classified into non-compartmental model [69], compartmental model [70], and 

distributive model [71]. The models can also be categorized into linear and nonlinear 

models. Among these models, the linear compartment model is more popular in 

practice, because of its attractive mathematical properties in deriving parameter 

estimations. The major principle of compartment models is using a series of 

interconnected homogeneous pools to describe the kinetics of a specific tracer. In the 

following contents, all the models are linear compartmental models. 

 [18F]Fluoro-2-deoxy-2-D-glucose (FDG), a radioactive analog of glucose, is 

one widely used PET tracer. FDG-PET has been widely used in clinical diagnosis 

according to the changes of glucose metabolism in main areas, such as cancer, 

cardiovascular diseases, neurodegenerative disorders and other central nervous 

system disorders, and infectious, autoimmune, and inflammatory diseases [72-75]. 

Due to its popularity, FDG-PET is chosen to as an example to introduce kinetic 

modeling techniques in PET imaging in this thesis. 

2.2.1 Compartmental Model 

 

Figure 2-4 The three-compartment four-parameter FDG model. The first 

compartment is for the FDG in plasma; the second one is for the FDG in tissue; the 

third one is for the phosphorylated FDG-6-PO4 in tissue. 

The FDG distribution in the living system is frequently analyzed by the three-

compartment and four-parameter model, which is originally proposed by Sokoloff et 
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al [76], then further extended by other researchers [77, 78]. The three-compartment 

four-parameter FDG model is shown in Figure 2-4. 

This general FDG model can be described by the differential equations as in 

(2-1).  

�

𝑑𝐶e(𝑡)
𝑑𝑡

= 𝐾1𝐶p(𝑡) − (𝑘2 + 𝑘3)𝐶e(𝑡) + 𝑘4𝐶m(𝑡)

𝑑𝐶m(𝑡)
𝑑𝑡

= 𝑘3𝐶e(𝑡) − 𝑘4𝐶m(𝑡)
� (2-1) 

where 𝐶e(𝑡) and 𝐶m(𝑡) are the TACs respectively for FDG and FDG-6-PO4 in tissue; 

𝐶p(𝑡) denotes the PTAC of FDG, which is used as a input function in tracer kinetic 

modeling. 𝐾1, 𝑘2, 𝑘3, and 𝑘4 are the rate constants of the compartment model, which 

describe the exchanges of tracer between compartments. The units of 𝐾1 is usually 

set to as ml/min/g, while the units of  𝑘2, 𝑘3, and 𝑘4 is 1/min. The total TTAC of 

FDG, 𝐶t(𝑡), can be simply described as the sum of 𝐶e(𝑡) and 𝐶𝑚(𝑡), i.e. 𝐶t(𝑡) =

𝐶e(𝑡) + 𝐶m(𝑡). 

By solving the differential equations in (2-1), the relationships between the 

TAC of each compartment and input function can be expressed by (2-2). 

⎩
⎪
⎨

⎪
⎧𝐶e(𝑡) =

𝐾1

𝛼2 − 𝛼1
[(𝑘4 − 𝛼1)𝑒−𝛼1𝑡 + (𝛼2 − 𝑘4)𝑒−𝛼2𝑡] ⊗ 𝐶p(𝑡)

𝐶m(𝑡) =
𝐾1𝑘3

𝛼2 − 𝛼1
(𝑒−𝛼1𝑡 − 𝑒−𝛼2𝑡) ⊗ 𝐶p(𝑡)

� (2-2) 

where 𝛼1and 𝛼2are macro parameters derived from the combination of the rate 

constants 𝑘1, 𝑘2, 𝑘3, and 𝑘4, as shown in (2-3).  

𝛼1,𝛼2 = �𝑘2 + 𝑘3 + 𝑘4 ∓ �(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4� /2 (2-3) 

A fifth parameter, 𝑉p , fractional plasma volume in vascular space, is often 

included to address vascular effects from surrounding vascular systems [79, 80]. In 
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this case, the total TTAC, 𝐶t(𝑡), can be modified as the sum of 𝐶𝑒(𝑡) and 𝐶𝑚(𝑡) plus 

a fraction of the PTAC, 𝐶p(𝑡), which is given by (2-4). 

𝐶t(𝑡) = �𝐶e(𝑡) + 𝐶m(𝑡)� + 𝑉p𝐶p(𝑡)

=
𝐾1

𝛼2 − 𝛼1
[(𝑘3 + 𝑘4 − 𝛼1)𝑒−𝛼1𝑡

+ (𝛼2 − 𝑘3 − 𝑘4)𝑒−𝛼2𝑡] ⊗𝐶p(𝑡) + 𝑉p𝐶p(𝑡) 

(2-4) 

Once the rate constants of the FDG model are estimated, the metabolic rate of 

glucose (MRGlc) of the tissue, which is an important macro biological parameter in 

analysing glucose metabolism, can be estimated using (2-5). 

𝑀𝑅𝐺𝑙𝑐 =
𝐶glc
𝐿𝐶

𝐾1𝑘2
𝑘2 + 𝑘3

 (2-5) 

where, 𝐶glc is the plasma glucose concentration in blood; 𝐿𝐶 is the lumped constant 

accounting for the differences in the transport and phosphorylation between FDG 

and glucose; 𝐾1𝑘2
𝑘2+𝑘3

 is usually referred to the influx rate, 𝐾i. 

2.2.2 Parameter Estimation 

With the measurements from PET images and blood samples, the appropriate 

tracer kinetic model allows for estimating the specific biological parameter, e.g. 

MRGlc given by (2-5). The parametric image can be generated by the predicted 

biological parameters covering the three-dimensional image volume. Figure 2-5 

illuminates the data flow to construct parametric image, taking an example of the 

estimation cerebral metabolic rate of glucose (CMRGlc) in FDG-PET studies. Firstly, 

the kinetic of FDG uptake in the brain is recorded in a series of frames of dynamic 

PET images. During the dynamic PET imaging, the arterial blood samples are 

collected from the blood vessels. The PTAC is then derived from the blood samples 
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and used as an input function in tracer kinetic modeling. A ROI of a certain tissue is 

placed in PET images to obtain a TTAC that usually is the average of the TACs of 

the voxles within the ROI. Based on the general FDG model, the micro-parameters, 

𝐾1, 𝑘2, 𝑘3, and 𝑘4, are estimated by fitting the model outputs to the measured TTAC. 

Finally, CMRGlc can be estimated using the rate constants, the endogenous glucose 

concentration and the lump constant. If the ROI is as small as voxel in the PET 

images, CMRGlc can be calculated voxel by voxel to generate the corresponding 

three-dimensional parametric image.  

 

Figure 2-5 The data flow to construct the parametric image of CMRGLc 

(reproduced from [26]). 

To obtain the parametric image relies on not only the available dynamic 

information from measurements of blood samples and PET images but also the 

suitable curve fitting algorithm for the parameter estimation. As the solution of 

differential equations is nonlinear, it is required a nonlinear fitting routine to 

estimate the parameters from the measured data. The most direct curve fitting 

method is the nonlinear least squares method, which is going to be introduced with 

other kinetic analysis methods in the following sections. 
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2.3 Kinetic Analysis Methods 

2.3.1 Nonlinear Least Squares Method 

Nonlinear least squares (NLS) method is attempting to fit a given TTAC 

through nonlinear iterative process, which is referred to provide “optimal estimates” 

of rate constants due to its statistical reliability, as shown in Figure 2-6 [26].  

 
Figure 2-6 The iterative process for fitting model outputs to measurements 

(reproduced from [26]). 

The core of NLS is to minimize an objective function defined as the sum of 

squared differences between estimated and measured TTACs, which is given by 

(2-6). 

Φ(𝜃𝑖) = ��𝐶tE�𝑡𝑗� − 𝐶tM�𝑡𝑗��
2

𝑁

𝑗=1

 (2-6) 

where θi is the vector of estimated parameters in the ith iteration; N is the number of 

frames in PET images; CtE�𝑡𝑗� and CtM�𝑡𝑗� are the estimated and measured time-

activities at the mid-scan time 𝑡𝑗. 
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In each iteration, the estimated parameters𝜃𝑖 are adjusted to 𝜃𝑖+1  using the 

multidimensional optimization methods, such as Newton-Gauss or Levenberg-

Marguardt algorithms. The entire process is terminated when the objective function 

reaches its minimum. The final estimated parameters are regarded as the result of 

NLS method. Because random statistical noise exits in the measurements of PET 

images and shorter frame duration would induce low signal to noise ratio (SNR), an 

appropriate weighted term is usually included in the objective function as given by 

(2-7). These weights can be chosen to be proportional to the imaging durations or to 

the inverse of variance of the measurements [26]. This approach could be referred to 

as weighted nonlinear least squares (WNLS) method. 

Φw(𝜃𝑖) = �𝑤𝑗�𝐶tE�𝑡𝑗� − 𝐶tM�𝑡𝑗��
2

𝑁

𝑗=1

 (2-7) 

where 𝑤𝑗 is the relative weight for each imaging frame. 

WNLS method can provide statistically reliable results for parameter 

estimations in tracer kinetic analysis. Meanwhile, WNLS method has been 

integrated and improved in many quantification software packages, such as Kinetic 

Imaging System (KIS) [81], COMKAT [82], and SAAM II [83], et al. However, 

WNLS has the disadvantage that the estimated results are relying on the initial guess 

of parameters given at the beginning. WNLS process may be trapped in local 

minima for inappropriate initial parameters. Furthermore, the choice of initials and 

iterative processes of WNLS cause a heavy computational expense. Thus, WNLS is 

impractical for the construction of parametric images. 
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2.3.2 Linear Least Squares Method 

To address the shortcoming of initialization in WNLS method, the linear least 

squares (LLS) method has been developed for the computational efficient parameter 

estimation without requirement of initial guess [84]. According to the differential 

equations derived from the three-compartment four-parameter FDG model given by 

(2-1), the differential equation for 𝐶t(𝑡) can be converted into (2-8). 

𝑑2𝐶t(𝑡)
𝑑𝑡2

= 𝐾1
𝑑𝐶p(𝑡)
𝑑𝑡

+ 𝐾1(𝑘3 + 𝑘4)𝐶p(𝑡) − (𝑘2 + 𝑘3 + 𝑘4)
𝑑𝐶t(𝑡)
𝑑𝑡

− 𝑘2𝑘4𝐶t(𝑡) 
(2-8) 

This differential equation can be expressed by the second-order integration for 

𝑁-frame imaging protocol with the measurement noise terms, as shown in (2-9).  

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝐶t(𝑡1) = 𝑃1 � 𝐶p(𝜏)𝑑𝜏

𝑡1

0
+ 𝑃2 � � 𝐶p(𝜏)𝑑𝜏2

𝑡

0

𝑡1

0
+ 𝑃3 � 𝐶t(𝜏)𝑑𝜏

𝑡1

0

+𝑃4 � � 𝐶t(𝜏)𝑑𝜏2
𝑡

0

𝑡1

0
+ 𝜀1

Ct(𝑡2) = 𝑃1 � 𝐶p(𝜏)𝑑𝜏
𝑡2

0
+ 𝑃2 � � 𝐶p(𝜏)𝑑𝜏2

𝑡

0

𝑡2

0
+ 𝑃3 � 𝐶t(𝜏)𝑑𝜏

𝑡2

0

+𝑃4 � � 𝐶t(𝜏)𝑑𝜏2
𝑡

0

𝑡2

0
+ 𝜀2

⋮

𝐶t(𝑡N) = 𝑃1 � 𝐶p(𝜏)𝑑𝜏
𝑡N

0
+ 𝑃2 � � 𝐶p(𝜏)𝑑𝜏2

𝑡

0

𝑡N

0
+ 𝑃3 � 𝐶t(𝜏)𝑑𝜏

𝑡N

0

+𝑃4 � � 𝐶t(𝜏)𝑑𝜏2
𝑡

0

𝑡N

0
+ 𝜀N

� (2-9) 

where 𝑃1 = 𝐾1 , 𝑃2 = 𝐾1(𝑘3 + 𝑘4) , 𝑃3 = −(𝑘2 + 𝑘3 + 𝑘4) , and 𝑃4 = −𝑘2𝑘4 ; 

𝑡𝑖(𝑖 = 1,2, …𝑁) denotes the mid-scan time for ith imaging frame; 𝜀𝑖 (𝑖 = 1,2, …𝑁) 

is the corresponding measurement noise.  

These equations can be rearranged into the matrix form expressed by (2-10). 

y = 𝑋𝜃LLS + 𝜀 (2-10) 
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where y = [𝐶t(𝑡1),𝐶t(𝑡2), …𝐶t(𝑡N)]T , 𝜃LLS = [𝑃1,𝑃2,𝑃3,𝑃4]T , 𝜀 = [𝜀1, 𝜀2, … 𝜀N]T , 

and X =

⎣
⎢
⎢
⎢
⎡ ∫ 𝐶p(𝜏)𝑑𝜏𝑡1

0 ∫ ∫ 𝐶p(𝜏)𝑑𝜏2𝑡1
0

𝑡1
0

∫ 𝐶p(𝜏)𝑑𝜏𝑡2
0 ∫ ∫ 𝐶p(𝜏)𝑑𝜏2𝑡2

0
𝑡2
0

∫ 𝐶t(𝜏)𝑑𝜏𝑡1
0 ∫ ∫ 𝐶t(𝜏)𝑑𝜏2𝑡1

0
𝑡1
0

∫ 𝐶t(𝜏)𝑑𝜏𝑡2
0 ∫ ∫ 𝐶t(𝜏)𝑑𝜏2𝑡2

0
𝑡2
0

⋮ ⋮
∫ 𝐶p(𝜏)𝑑𝜏𝑡N
0 ∫ ∫ 𝐶p(𝜏)𝑑𝜏2𝑡N

0
𝑡N
0

⋮ ⋮
∫ 𝐶t(𝜏)𝑑𝜏𝑡N
0 ∫ ∫ 𝐶t(𝜏)𝑑𝜏2𝑡N

0
𝑡N
0 ⎦

⎥
⎥
⎥
⎤

. 

Hence, the estimation of 𝜃LLS can be derived using (2-11). 

𝜃�LLS = (𝑋T𝑋)−1𝑋T𝑌 (2-11) 

After getting 𝜃�LLS , the micro-parameters of the model can be estimated to 

derive the biological parameter of interest (e.g. MRGlc). 

The LLS method does not require any optimization or prior initial parameters. 

However, statistically dependent error terms result in the potentially biased 

estimation of the LLS method. As a result, generalized linear least squares (GLLS) 

method has been proposed to deal with the influence of error terms in LLS method 

by applying the auto-regressive filter [85, 86]. The detail process of GLLS method 

has been expressed in the references [85, 86]. Finally, the GLLS method 

accompanying with LLS can provide a computationally efficient approach to 

generate the parametric images. 

2.3.3 Graphic Analysis 

The graphic analysis techniques employ simple linear regression to derive the 

relevant biological parameters without iterative process. The biological parameter of 

interest is usually proportional to the slope or intercept of the linear regression. The 

graphic analysis techniques have the advantages of computational efficiency, 

feasibility, and high reliability. They are playing an important role in the quantitative 

analysis of PET images [87].   
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A. Patlak Graphic Analysis 

Patlak graphical analysis (PGA) is the first proposed graphic analysis 

techniques with the assumption of 𝑘4 = 0 for a three-compartment four-parameter 

FDG model [88]. Thus, the differential equations in (2-1) can be transformed into 

the new expressions in (2-12). 

⎩
⎪
⎨

⎪
⎧
𝑑𝐶e(𝑡)
𝑑𝑡

= 𝐾1𝐶p(𝑡) − (𝑘2 + 𝑘3)𝐶e(𝑡)

𝑑𝐶m(𝑡)
𝑑𝑡

= 𝑘3𝐶e(𝑡)

𝐶t(𝑡) = 𝐶e(𝑡) + 𝐶m(𝑡)

� (2-12) 

The TTAC, 𝐶t(𝑡), which is the sum of 𝐶e(𝑡) and 𝐶m(𝑡), can be expressed by 

(2-13). 

𝑑𝐶t(𝑡)
𝑑𝑡

=
𝐾1𝑘3
𝑘2 + 𝑘3

𝐶p(𝑡) +
𝑘2

𝑘2 + 𝑘3
𝑑𝐶e(𝑡)
𝑑𝑡

 (2-13) 

After performing the integration and dividing by 𝐶p(𝑡) in both sides, (2-13) 

could be reformed as (2-14). 

𝐶t(𝑡)
𝐶p(𝑡)

=
𝐾1𝑘3
𝑘2 + 𝑘3

∫ 𝐶p(𝜏)𝑑𝜏𝑡
0
𝐶p(𝑡)

+
𝑘2

𝑘2 + 𝑘3
𝐶e(𝑡)
𝐶p(𝑡)

 (2-14) 

If there is a sufficient long time post tracer administration (𝑡 > 𝑡∗), it can be 

assumed that equilibrium has been reached between tracer concentrations in the 

plasma and the free tissue. That is, 𝐶e(𝑡) 𝐶p(𝑡)⁄  tends to be a constant when 𝑡 > 𝑡∗. 

The simple relationship between PTAC and TTAC can be expressed by (2-15). 

𝐶t(𝑡)
𝐶p(𝑡)

= 𝐾𝑖
∫ 𝐶p(𝜏)𝑑𝜏𝑡
0
𝐶p(𝑡)

+ 𝐼, 𝑡 > 𝑡∗ (2-15) 

where the slope 𝐾i = 𝐾1𝑘3
𝑘2+𝑘3

 is the influx rate; 𝐼 is the constant intercept, which could 

equal with the sum of distribution volume of 𝐶𝑒(𝑡) and the fractional plasma volume 
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𝑉𝑝  if considering the vascular effects from surrounding vascular systems; 𝑡∗  is 

sufficient long time when the equilibrium is reached between tracer concentrations 

in the plasma and the free tissue.  

In this case, the estimate of 𝐾i can be simply derived by the slope of the linear 

plot of ∫
𝐶p(𝜏)𝑑𝜏𝑡

0
𝐶p(𝑡)

 vs. 𝐶t(𝑡)
𝐶p(𝑡)

. The process of PGA is shown in Figure 2-7. In clinical 

applications, the value of 𝑡 usually ranges from approximately 15 to 60 minutes post 

tracer administration in FDG-PET studies [89]. In some small-animal studies the 

range of 𝑡 has been suggested as 3-22 minute after tracer injection [90]. 

 
Figure 2-7 The process of Patlak graphic analysis (from Turku PET Center, 

http://www.turkupetcentre.net/modelling/guide/patlak_plot.html). In the largest 

figure, the y-axis contains apparent distribution volumes, i.e. the ratio of tracer 

concentrations in tissue and in plasma. On x-axis is normalized plasma integral, i.e. 

the ratio of the integral of plasma concentration and the plasma concentration.  

http://www.turkupetcentre.net/modelling/guide/patlak_plot.html�
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B. Logan Graphic Analysis 

The Logan graphic analysis (LGA) has been proposed by taking account of 

reversible compartment [91, 92]. Based on the differential equations in (2-1), the 

total TTAC can be expressed by (2-16). 

𝐶t(𝑡) =
𝐾1
𝑘2
𝑘3 + 𝑘4
𝑘4

𝐶p(𝑡) −
𝑘3 + 𝑘4
𝑘2𝑘4

𝑑𝐶t(𝑡)
𝑑𝑡

−
1
𝑘4
𝑑𝐶m(𝑡)
𝑑𝑡

 (2-16) 

After performing the integration and dividing by 𝐶t(𝑡) in the both sides, (2-16) 

could be rewritten as (2-17). 

∫ 𝐶t(𝜏)𝑡
0 𝑑𝜏
𝐶t(𝑡)

=
𝐾1
𝑘2
𝑘3 + 𝑘4
𝑘4

∫ 𝐶p(𝜏)𝑡
0 𝑑𝜏
𝐶t(𝑡)

−
𝑘3 + 𝑘4
𝑘2𝑘4

−
1
𝑘4
𝐶m(𝑡)
𝐶t(𝑡)

 (2-17) 

Similar with the assumption in PGA method, the ratio between 𝐶m(𝑡)  and 

𝐶t(𝑡) can be a constant after reaching the equilibrium ( 𝑡 > 𝑡∗). The linear equation 

is given by (2-18). 

∫ 𝐶t(𝜏)𝑡
0 𝑑𝜏
𝐶t(𝑡)

= 𝑉𝑑
∫ 𝐶p(𝜏)𝑡
0 𝑑𝜏
𝐶t(𝑡)

+ 𝐼 (2-18) 

where the slope 𝑉𝑑  denotes the volume of distribution and the intercept 𝐼  is a 

constant. If  𝐶m(𝑡) is far less than 𝐶t(𝑡) after the equilibrium is reached, the 𝐾1 can 

be calculated by 𝐾1 ≈ −𝑉d 𝐼⁄ . 

When there is a reference tissue model available, LGA can be extended to non-

invasive LGA (see 2.5.2) for deriving binding potential (BP) in neuroreceptor 

studies. Furthermore, the prior knowledge of underlying tracer kinetics is not 

necessary for applying LGA for deriving the volume of distribution (𝑉d) [93]. 
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2.4 Semi-Quantitative Parameters  

In addition to the dynamic PET imaging, static imaging protocol that only 

collects one image frame is widely applied in PET studies. Static PET imaging is 

especially attractive to conduct whole-body scans for human in a short period. For 

example, it takes about 16 minutes for a modern PET/CT scanner to perform the 

whole-body scan of human with 8 beds. The static PET imaging is quite simple, and 

also increases the subject throughput both in clinical examinations and pre-clinical 

studies. However, due to only one frame is available, the static-imaging related 

parameters, including standard uptake value (SUV), fraction uptake rate (FUR), and 

percent injected-dose per gram of tissue (%ID/g), are referred to as semi-quantitative 

parameters. 

SUV is a widely used semi-quantitative parameter in clinical applications 

especially for FDG-PET because of its computational efficiency and clinical 

practicality. It can be calculated by (2-19). However, the accuracy of SUV could be 

affected by many factors such as patient size, standardized measurement time, 

plasma glucose level and partial volume effects etc [28, 94]. 

𝑆𝑈𝑉 =
𝐶t(𝑇)
𝐼𝐷 𝐵𝑊⁄  (2-19) 

where 𝐶t(𝑇) is the tracer time-activity of a given ROI at time 𝑇, 𝐼𝐷 is the injected 

dose of tracer, and 𝐵𝑊 is the bodyweight of the subject. 

Another simple semi-quantitative index is FUR, which is calculated by (2-20) 

[95, 96]. It is similar with SUV but requires a continuous blood sampling in the 

period from the injection to the imaging time. The application of FUR may suffer 

from the problems caused by the invasive approach to get blood samples. 
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𝐹𝑈𝑅 =
𝐶t(𝑇)

∫ 𝐶p(𝜏)𝑑𝜏𝑇
0

 (2-20) 

where 𝐶t(𝑇) is the tissue-time activity at time 𝑇; 𝐶p(𝑡) is the tracer PTAC obtained 

from the blood sampling.  

The relationship between FUR and SUV is deduced and shown in (2-21) [97]. 

It is found that the estimated result of FUR is highly related with SUV if the PTAC 

is known. 

𝐹𝑈𝑅 = 𝑆𝑈𝑉 ∙ 𝑘p(𝑇) ∙ 𝑉0, 𝑘𝑝(𝑇) =
𝐶p(0)

∫ 𝐶p(𝜏)𝑑𝜏𝑇
0

 (2-21) 

where 𝑘p(𝑇)  is the average plasma clearance rate at time 𝑇 ; 𝐶p(0) is the initial 

tracer time-activity in plasma; and 𝑉0 is the initial distribution volume of tracer.  

One more useful semi-parameter is % ID g⁄ , which is a way of normalizing the 

single frame at a given location for the amount of tracer injected into the subject 

with an assumption that the injected dose is available for the entire area of the 

subject [70]. It is calculated according to (2-22).  

% ID g⁄ = 𝐶t(𝑇) ∙
𝑉
𝑊
∙

1
𝐼𝐷

∙ 100% (2-22) 

where 𝐶t(𝑇) is the tissue time-activity at time 𝑇, 𝐼𝐷 is the injected dose. 𝑊 and 𝑉 

are the weight and volume of the tissue. The density of tissue is usually assumed as 

~1g/ml. 

The relationship between % ID g⁄  and SUV can be expressed by (2-23). 

% ID g⁄ =
𝑆𝑈𝑉
𝐵𝑊

∙ 100% (2-23) 

Because the static PET images only have one frame and neglect the dynamic 

information of tracer kinetics, these semi-quantitative parameters don’t reflect the 
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changes of tracer delivery, uptake, trapping, competition with other molecules and 

routs of clearance [70]. 

2.5 Noninvasive Methods 

 Generally, frequent invasive arterial blood sampling is required to derive 

PTAC in tracer kinetic modeling. However, the procedure of invasive arterial blood 

sampling may discomfort patients even though the arterialized-venous method is 

used to avoid the harmful arterial puncture [77]. Moreover, the invasive blood 

sampling induces extra radiations and risks associated with handling blood samples 

to the operators. Many challenges exist for invasive blood sampling in small-animal 

investigations due to the small-size blood vessel and limited blood volume of the 

subjects. Thus, efforts have been paid to develop non-invasive methods in 

quantifications of dynamic PET images, to avoid or use less blood samples.  

2.5.1 Image-Derived Input Function 

The image-derived input function (IDIF) method relies on placing a 

sufficiently large vascular structure in the imaging FOV. It is direct and convenient 

without extra supporting information. The blood TAC can be obtained from a ROI 

simply placed on the large blood cavity such as the left ventricle of heart [98]. The 

blood TAC can be transferred into PTAC using several methods [90, 99, 100]. 

However, the measured blood TAC from one predefined ROI is usually affected by 

the spillover effects from the adjacent structures due to the limited spatial resolution 

of PET. Especially for the FDG PET studies using the ROI of left ventricle, the 

spillover from the myocardium can introduce a large bias to the estimated IDIF. 
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Hence, the IDIF with correction of the spillover effects has been well established by 

using a supplemental ROI in the myocardium [52, 53]. 

The FDG dynamic behavior in myocardium has been characterized by the 

three-compartment four-parameter FDG model whose corresponding differential 

equations are given in (2-1) [101]. Two ROIs are carefully delineated in the blood 

cavity (e.g. left ventricle) and the myocardium to get the measured TACs. The TAC 

measured from the ROI of the myocardium is a combination of the TTAC of 

myocardium and the spillover from blood cavity. Similarly, the TAC measured from 

the ROI of blood contains the spillover from myocardium and PTAC. These 

relationships can be described by (2-24). 

�
𝐶̃t(t)=𝐶t(𝑡) + 𝑓mb𝐶p(𝑡)
𝐶̃b(t)=𝑓bm𝐶t(𝑡) + 𝐶p(𝑡)

� (2-24) 

where 𝐶̃t(t)  and 𝐶̃b(t)  are the measured TACs of myocardium and blood, 

respectively. 𝐶t(𝑡) is the TTAC and 𝐶p(𝑡) is the PTAC. 𝑓mb and 𝑓bm are the mixing 

coefficients reflected the spillover effects between blood and myocardium. 

By introducing (2-24), the model in (2-1) can be represented by the measured 

TACs, as shown in (2-25) [10]. 

⎩
⎪
⎨

⎪
⎧
𝑑𝐶e(𝑡)
𝑑𝑡

= −[(𝑘2 + 𝑘3) + 𝐾1𝑓bm]𝐶e(𝑡) + (𝑘4 − 𝐾1𝑓bm)𝐶m(𝑡) + 𝐾1𝐶̃b(𝑡)

𝑑𝐶m(𝑡)
𝑑𝑡

= 𝑘3𝐶e(𝑡) − 𝑘4𝐶m(𝑡)

𝐶̃t(𝑡) = �1 − 𝑓bm𝑓mb�𝐶t(𝑡) + 𝑓𝑚b𝐶̃b(𝑡)

� (2-25) 

The input function with spillover correction can then be expressed by (2-26). 

𝐶p(𝑡) =
𝐶̃b(𝑡) − 𝑓bm𝐶̃t(𝑡)

1 − 𝑓bm𝑓mb
 (2-26) 
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By considering (2-25) and (2-26) together, 𝐶̃𝑏(t) was used as the new input for 

the represented model with the dual outputs of 𝐶̃𝑡(t) and  𝐶𝑝(𝑡). There were six 

unknown parameters in this represented model: four rate constants (𝑘1, 𝑘2, 𝑘3, and 

𝑘4) and two spillover factors (𝑓𝑚𝑏 and 𝑓𝑏𝑚). These parameters can be estimated using 

WNLS method. 

This non-invasive approach is appropriate to estimate the IDIF for the thoracic 

PET imaging or whole-body PET imaging which includes the heart in FOV. 

Otherwise, the ROI can be placed on the other sufficiently large vessels for deriving 

blood TAC, such as the intracranial vessels [102, 103], the hepatic arteries as well as 

the portal vein [104, 105], carotid artery [106] and so on. In some small-animal 

studies, the liver TAC derived from the PET images has been used as a surrogate 

input function based on the assumption that the liver is a large blood pool and has 

relatively low tracer uptakes [107, 108]. 

2.5.2 Reference Tissue Model 

The reference tissue model has been introduced to estimate binding potential 

for quantifying the neuroreceptor study without measuring arterial input function [54, 

55]. Its principle is the assumption that there is a reference tissue without specific 

binding of the ligand while the levels of nonspecific binding are the same in the 

reference and target tissues. The neuroreceptor kinetic in target tissue can be 

described by three-compartment model while the two-compartment model is used in 

the reference tissue. These models are depicted in Figure 2-8. 
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Figure 2-8 The three-compartment model for the target tissue and two-compartment 

model for the reference tissue in neuroreceptor study (reproduced from [26]). 

The corresponding differential equations are given in (2-27).   

⎩
⎪
⎨

⎪
⎧

𝑑𝐶ref(𝑡)
𝑑𝑡

= 𝐾1′𝐶p(𝑡) − 𝑘2′ 𝐶ref(𝑡)

𝑑𝐶f(𝑡)
𝑑𝑡

= 𝐾1𝐶p(𝑡) − (𝑘2 + 𝑘3)𝐶f(𝑡) + 𝑘4𝐶b(𝑡)

𝑑𝐶b(𝑡)
𝑑𝑡

= 𝑘3𝐶f(𝑡) − 𝑘4𝐶b(𝑡)

� (2-27) 

where 𝐶p(𝑡) is the PTAC;  𝐶ref(𝑡) is the TTAC of the reference tissue; 𝐶f(𝑡) is the 

TAC of free ligand; and 𝐶b(𝑡) is the TAC of specially bound ligand. 𝐾1′, 𝑘2′ , 𝐾1, 𝑘2, 

𝑘3 and 𝑘4 are the rate constants for the models. The total TTAC in target tissue is 

the sum of 𝐶f(𝑡) and 𝐶b(𝑡), namely 𝐶tg(𝑡) = 𝐶f(𝑡) + 𝐶b(𝑡). 

According to the first equation in (2-27), 𝐶p(𝑡) can be described by 𝐶ref(𝑡). 

The relationship between 𝐶tg(𝑡)  and 𝐶p(𝑡)  can be obtained from the rest two 

equations. The relationship between 𝐶t(𝑡)  and 𝐶ref(𝑡)  can then be derived. This 

relationship is an equation contains six parameters. Assuming that the volumes of 

distribution of the nonspecifically bound tracer in reference and target tissues are the 

same, that is 𝐾1′ 𝑘2′⁄ = 𝐾1 𝑘2⁄ , the relationship between 𝐶tg(𝑡) and 𝐶ref(𝑡) can be 

simplified as an equation with four parameters (𝑅I, 𝑘2, 𝑘3, and 𝐵𝑃). 𝑅I denotes the 
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relative rate of delivery as the ratio of 𝐾1 and 𝐾1′, 𝑅I = 𝐾1 𝐾1′⁄ . 𝐵𝑃 is the binding 

potential calculated as 𝐵𝑃 = 𝑘3 𝑘4⁄ . 

If the tracer kinetic of the target tissue is simply described by the two-

compartment model instead of the three-compartment model, the second and third 

equations in (2-27) can be replaced by a single equation as (2-28). 

𝑑𝐶tg(𝑡)
𝑑𝑡

= 𝐾1𝐶p(𝑡) − 𝑘2a𝐶tg(𝑡) (2-28) 

where 𝑘2a is the apparent rate constant for transfer from specific compartment to 

plasma. Because the total tracer volume of distribution should be the same as that 

described by three-compartment model, 𝑘2a has a relationship with 𝐵𝑃as𝐾1 𝑘2a⁄ =

(𝐾1 𝑘2⁄ ) ∙ (1 + 𝐵𝑃). 

Based on this simplification, the simplified reference tissue model is derived 

and the relationship between 𝐶tg(𝑡) and 𝐶ref(𝑡) can be rewritten as an equation with 

three parameters in (2-29). 

𝐶tg(𝑡) = 𝑅I𝐶ref(𝑡) + �𝑘2 −
𝑅I𝑘2

1 + 𝐵𝑃�
𝐶ref(𝑡) ⊗𝑒−

𝑘2𝑡
1+𝐵𝑃 (2-29) 

These three parameters of simplified reference tissue model can be estimated 

by WNLS method. In most cases, the three-parameter simplified reference tissue 

model can produce the stable results compared with the four-parameter reference 

tissue model [109].   

The noninvasive LGA method based on the reference tissue model is proposed 

for estimating the distribution volume ratios, which can be expressed by (2-30) [93].  

∫ 𝐶tg(𝜏)𝑑𝜏𝑡
0
𝐶tg(𝑡)

= 𝐷𝑉𝑅 ∙
∫ 𝐶ref(𝜏)𝑑𝜏𝑡
0
𝐶tg(𝑡)

+ 𝐼 (2-30) 
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where 𝐷𝑉𝑅 denotes distribution volume ratios, which is equal to 1 + 𝐵𝑃 when the 

reference tissue and target tissue have the same degrees of nonspecific binding. 𝐼 is 

constant when 𝐶ref(𝑡) 𝐶tg(𝑡)⁄  reaches equilibrium (𝑡 > 𝑡∗).   

2.6 Summary 

In this chapter, a brief review has been given for the principles of PET imaging 

as well as the basics of quantification techniques for PET images, including the 

tracer kinetic modeling and the semi-quantitative parameters. The non-invasive 

methods are also introduced in this chapter as a notable quantification technique for 

dynamic PET imaging. These fundamental approaches are going to be used, 

improved and discussed in the further investigations of this thesis.  
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Chapter 3  
 
Automatic Image-Based Method 
with Improved SUVs for Static 
Small-Animal PET Imaging 

3.1 Introduction 

SUV is usually used to measure the tracer uptake in the quantitative analysis for 

static FDG-PET images. However, many factors can influence the variability of 

SUV as reviewed in 1.3. Recently the impact of renal function variation has been 

studied for FDG-PET studies [110, 111], since SUV is regularly defined as the local 

target concentration normalized by injected dose per unit body weight without 

taking the differences in plasma FDG clearance into account [112]. As a result, 

changing the amount of excreted FDG by renal function could affect the estimation 

of SUV, even if the glucose utilization in the rest of the body stays unchanged.  

On the other hand, the subject’s body weight and the injected dose, which are 

necessary in SUV calculation, are measured separately from PET imaging. 

Generally, the body weight is measured by a scale, while the injected dose is 
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measured by a dosimeter. Because it is difficult to redo the measurement of injected 

dose, any missing records of injected dose would lead to the failure in the 

calculation of SUV. This is a notable issue in the data reutilization especially for 

multidisciplinary and inter-institution sharing in education and scientific research, 

when the data were stored in a shared database such as Mouse Quantitation Program 

[113]. The tumor-to-background ratio (TBR), which is calculated as the ratio of the 

tracer time-activity in tumor over that in normal tissue, is sometimes used as an 

index to quantify the tracer uptake without measurements of body weight and 

injected dose [114, 115]. However, to find a suitable normal tissue as background 

may be difficult for some oncologic images [116].    

This chapter aims to develop an automatic image-based method to estimate 

SUV and, further, to find a way to reduce SUV variability that will eventually assist 

SUV for differentiation of malignancy from benign lesions. Two improved SUVs, 

image-derived SUV (iSUV) and modified SUV (mSUV), are evaluated in a set of 

mouse FDG-PET studies. 

3.2 Theory of Image-Based Method with Improved 
SUVs 

3.2.1 Automatic Image-Based Method  

To conveniently derive the iSUV and mSUV, an automatic image-based 

method was developed to obtain the whole-body mask (composed of the bone mask, 

body mask and lung mask) and bladder mask based on the microCT and microPET 

images. These masks were used to locate the corresponding targets in the microPET 

and microCT images, and then to get the parameters for calculating iSUV and 
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mSUV. Figure 3-1 shows the flow chart of this method. The entire process was 

described as follows. 

 

Figure 3-1 The flow chart of automatic image-based method for the estimation of 

iSUV and mSUV. 

In the reconstructed microCT image (in Hounsfield units, HU), the threshold 

method was firstly utilized to segment the mouse body from background using an 

empirical threshold window of [-250, 4000] HU. That is, the voxels with intensity 

values higher than -250 HU and lower than 4000 HU were considered as belonging 

to the rough body mask. Within the rough body mask, the bone tissue was further 

segmented using another empirical threshold window of [400, 4000] HU, so that the 

voxels with intensity values higher than 400 HU and lower than 4000 HU were set 

to as the rough bone mask. These two rough masks were saved as two binary images 

in the same matrix dimension as the microCT image.  
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Secondly, the “morphological opening” operation was applied to smooth the 

boundary of the rough body mask and bone mask. The voxels within the body part 

that have low density (i.e., lung, trachea and the gas in the alimentary system) were 

excluded in the rough body mask at the first step. The “morphological fill” operation 

was then applied to fill the holes in the body mask to obtain a whole-body mask that 

included all the voxles within the body. The lung mask was then derived by 

subtracting the whole-body mask from the rough whole-body mask in the upper 

body. The lung mask was then refined by using the “morphological opening” 

operation to remove the artifacts of the trachea. Using these masks, the microCT 

image of the mouse body was separated into three regions, namely soft tissue, lung 

and bone. The details of morphological operations were expressed in Appendix B.  

Next, the total numbers of voxels of the body, bone and lung regions were 

counted, and then the volumes were calculated by multiplying the voxel number 

with the voxel volume (0.008mm3). The volumes of these different regions derived 

from microCT image were used to estimate the body weight of the subject. The 

whole-body mask was resampled into the image matrix of the microPET in order to 

define the whole-body region in the microPET image and estimate the injected dose. 

The estimated body weight was calculated as the sum of weights of the soft tissue, 

bone and lung regions, which is shown in (3-1). The specific densities of soft tissue, 

bone and lung parts were assumed as 1, 1.14 and 0.28 g/ml, respectively [117, 118].  

𝐵𝑊e = 𝑉nb × 𝐷nb + 𝑉b × 𝐷b + 𝑉l × 𝐷l (3-1) 

where 𝐵𝑊e  is the estimated body weight; 𝑉nb  is the soft tissue volume; 𝑉b  is the 

bone volume; 𝑉l is the lung volume; 𝐷nb, 𝐷b and 𝐷l are the specific densities of the 

soft tissue, bone and lung, respectively.   
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The estimated injected dose was calculated as the sum of the time-activity 

within the whole-body. Since the FOV of microPET is smaller than that of the 

microCT, some parts of the animal were not imaged by the microPET. The average 

voxel time-activity of the part outside the microPET image was assumed to be equal 

to the average voxel time-activity of the part inside the microPET image. Thus, the 

injected dose was calculated by (3-2). 

𝐼𝐷e = (𝐴in + 𝐴out) × 𝐶𝐹 = �
𝐴in
𝑉wb_in

× 𝑉wb� × 𝐶𝐹 (3-2) 

where 𝐼𝐷e denotes the estimated inject dose, 𝐴in is the total time-activity of the body 

within microPET image, and 𝐴out  is the time-activity of the part outside the 

microPET image (but inside the corresponding microCT image). 𝑉wb_in is the body 

volume in microPET image. 𝑉wb is the whole-body volume in microCT image, and 

𝐶𝐹  is the calibration factor that converts radioactivity unit from PET units to 

MBq/ml. 

In the static microPET image, the bladder had a high time-activity, which was 

different from the surrounding tissues, so the max gradient searching method was 

applied to derive the bladder mask automatically. This method consisted of four 

steps. 

Step 1: Define the bottom region of the microPET image which contained bladder; 

Step 2: Calculate the gradient at each voxel within the predefined bottom region 

using the equation in (3-3). 

𝐺(𝑥, 𝑦, 𝑧) = ��
𝜕𝐶(𝑥,𝑦, 𝑧)

𝜕𝑥 �
2

+ �
𝜕𝐶(𝑥,𝑦, 𝑧)

𝜕𝑦 �
2

+ �
𝜕𝐶(𝑥, 𝑦, 𝑧)

𝜕𝑧 �
2

 
(3-3) 

where 𝐶(𝑥, 𝑦, 𝑧) is the value of tracer time-activity at the voxel (𝑥, 𝑦, 𝑧). 
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Step 3: Any voxel with gradient greater than 90% of the maximal gradient within the 

bottom region would be marked as the bladder boundary. All voxels within the 

bottom region with image values above the minimal value of bladder boundary 

voxels were used to form the bladder mask image.  

Step 4: Apply the “morphological opening” and “morphological fill” operations to 

the bladder mask image to remove residual artifacts. 

The total bladder volume was calculated by multiplying the voxel number of 

the bladder mask by the microPET voxel volume (0.4×0.4×0.796 mm3). The total 

time- activity of the bladder was calculated as the sum of the time-activities of 

voxels within the bladder mask multiplied with the microPET voxel volume.     

3.2.2 Image-Derived SUV and Modified SUV 

A. Image-Derived SUV (iSUV) 

Similar with the formula of SUV in (2-13), iSUV can be calculated by (3-4), 

where the body weight and injected dose were estimated from microPET/CT images 

by the automatic imaged-based method described in 3.2.1.  

𝑖𝑆𝑈𝑉 =
𝐶i

𝐼𝐷e 𝐵𝑊e⁄  (3-4) 

where 𝐼𝐷e and 𝐵𝑊e are the estimated injected dose and body weight obtained by the 

automatic imaged-based method. The term in the denominator is referred to as the 

iSUV factor; 𝐶i is the tracer time-activity within the target ROI.  

B. Modified SUV (mSUV) 

Because the amount of the extracted tracer by renal function varied among 

subjects, the variability of SUV can be influenced by the tracer excretion. In order to 

reduce the variability of SUV, mSUV was calculated based on the target 
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concentration normalized by the total uptake of the whole-body excluding the 

amount excreted into the bladder. If the average body density was assumed to be 1 

g/cm3, the body volume could be used instead of body weight in the calculation. 

Thus, mSUV can be calculated by (3-5). The term in the denominator of (3-5) will 

be referred to as the mSUV factor.  

𝑚𝑆𝑈𝑉 =
𝐶i

(𝐴wb − 𝐴bl) (𝑉wb − 𝑉bl)⁄  (3-5) 

where 𝐶i is the tracer time-activity within the target ROI (in PET units); 𝐴wb and  

𝐴bl are the total time-activity in the whole-body and the bladder;  𝑉wb and  𝑉bl  are 

the volumes of the whole-body and the bladder, respectively.   

3.3 Experiments 

3.3.1 Small-Animal Studies 

All animal experiments were conducted in compliance with the Animal Care 

and Use Program established by the Chancellor’s Animal Research Committee of 

UCLA. Thirty-one SCID mice (20-33g) were implanted with U251 tumor in the left 

flank at least one week before the investigation with tumor volumes reaching 100 

mm3. All the mice were fasted overnight (about 15 hours) before microPET and 

microCT studies. For each mouse, the body weight was measured using a standard 

lab weighting scale. The injected dose was measured by a dosimeter and corrected 

for the residue of dose remained in the syringe. At 60 minutes post intraperitoneal 

injection of FDG (4.81-5.92 MBq), a 10 minutes static PET imaging was performed 

on a microPET Focus 220 tomography (Siemens Preclinical Solutions, Knoxville, 

TN), whose imaging field of view (FOV) is 51.2 mm diameter in transverse by 75.6 
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mm in axial. The spatial resolution at the center of FOV was 1.7 mm full width at 

half maximum (FWHM). The microPET images were reconstructed using 2D 

filtered back-projection with a voxel size of 0.4×0.4×0.796 mm3 in a 128×128×95 

matrix. The PET image was corrected for scatter radiation, random coincidence, 

dead time and physical decay. After static PET imaging, a 7-10 minutes microCT 

scan was acquired on a MicroCAT II tomography (Siemens Preclinical Solutions, 

Knoxville, TN), which has an imaging field of 51.2 mm in diameter in transverse by 

99.2 mm in the axial direction. The microCT image had a voxel size of 0.2×0.2×0.2 

mm3 in 256×256×496 matrix. These mice were anesthetized (~2% isoflurane) and 

placed in an imaging chamber with a heating bed during the scans [119]. The 

imaging chamber was compatible with the microPET and microCT systems [120, 

121]. The microCT image was aligned to the mircoPET image using a 

predetermined, geometric transformation matrix [122]. The aligned microCT image 

was used in PET image reconstruction for attenuation correction [123].   

In the image analysis, AMIDE software [124] was used to manually remove 

the imaging chamber and nose cone in the microCT image. In every mouse study, 

ellipsoidal ROIs were drawn for major organs (brain, heart, lung, liver, kidney and 

muscle) in microPET images with the guide of aligned microCT images. To reduce 

the effects of ROI delineation, the ellipsoidal ROIs for the same major organ were of 

the same size and were placed in the core part of the organ for all mouse studies. 

The tumor volume for each mouse was large enough for manually delineating the 

ellipsoidal ROI on the left flank where the implanted tumor was. The size of the 

tumor ROI depended on the shape of the lesions in the microPET/CT images. The 

ROI of the bladder was also manually delineated with the visual guide from 

microCT and microPET images by an experienced operator for each mouse study. 
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The volumes of the manually drawn bladder ROIs were used as the standard for 

validation of the bladder volumes derived from the automatic image-based method. 

3.3.2 Estimation of iSUV and mSUV  

The average and maximum tracer time-activity of the delineated ROIs were 

calculated for calculating iSUV and mSUV. When using average tracer time-activity 

to calculate the iSUV and mSUV, the improved SUVs were noted as iSUVmean and 

mSUVmean. Otherwise, the improved SUVs estimated by the maximum tracer time-

activity were recorded as iSUVmax and mSUVmax. Similarly, the SUV can also be 

estimated used the average and maximum tracer time-activity and noted as SUVmean 

and SUVmax respectively. The predicted iSUV and mSUV were validated by the 

corresponding SUV. 

3.3.3 Statistical Analysis 

A. iSUV Validation 

The estimated body weight and injected dose were compared with the actual 

measurements of body weight and injected dose. The percent errors of the estimated 

body weight and injected dose compared with the actual measurements were 

calculated. The iSUV factor, which is defined as the ratio between the estimated 

body weight and injected dose, was compared with the SUV factor calculated by the 

actual measurements. To evaluate iSUV, the percent errors of the 1/(iSUV factor) to 

1/(SUV factor) were calculated for the comparison. In addition, the linear regression 

between iSUV factor and SUV factor were performed to evaluate their 

correspondence. The significant difference between the iSUV factor and SUV factor 
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was evaluated by paired t-test. A p-value <0.05 was considered statistically 

significant. 

Moreover, iSUVmean was validated by SUVmean, and iSUVmax was validated by 

SUVmax. The average and standard deviation (SD) of these two sets of SUV and 

iSUV were compared, and linear regressions were performed both for iSUVmean vs. 

SUVmean and iSUVmax vs SUVmax for all target ROIs (major organs and tumor). 

Paired t-test was also performed to detect the significant difference between the 

iSUV and SUV for each target ROI.   

B. mSUV Evaluation 

mSUVmean was compared with iSUVmean and SUVmean, while mSUVmax was 

compared with iSUVmax and SUVmax. The average and SD of the two sets of mSUV, 

iSUV and SUV were calculated for all target ROIs. The coefficient of variation (CV) 

was used as a measure to evaluate the inter-subject variability. The tumor-to-

background separations for these two sets of mSUV, iSUV and SUV were 

quantified by the Mahalanobis distance that is defined in mathematical classification 

theory as in (3-6). 

𝐷 =
|𝑚𝑒𝑎𝑛t − 𝑚𝑒𝑎𝑛b|

�𝑆𝐷t2 + 𝑆𝐷b2
 (3-6) 

where 𝐷  is Mahalanobis distance; 𝑚𝑒𝑎𝑛t  is the population average value of 

SUV/iSUV/mSUV for tumor while 𝑚𝑒𝑎𝑛b  is that for background; 𝑆𝐷t  is the 

standard deviation of SUV/iSUV/mSUV for tumor while 𝑆𝐷b is that for background. 
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3.4 Results 

3.4.1 iSUV vs. SUV 

In the statistical analysis, average percent errors of the estimated body weight 

and injected dose to their actual measurements were -9.5±7.3% and -8.5±11.5%. 

The comparisons are shown in Figure 3-2 by box-and-whisker diagrams. 

Considering the reciprocal of iSUV factor, its average percent error to the reciprocal 

of SUV factor was about -0.7±14.3%. Figure 3-3 shows the linear regression for 31 

pairs of iSUV factor and SUV factor. The corresponding regression equation was 

y=0.83x+0.037 with R2=0.44. Paired t-test did not show significant difference 

between SUV factor and iSUV factor. 

The iSUVmean and iSUVmax for each major organ were validated by their 

corresponding SUVmean and SUVmax. Figure 3-4 shows the comparisons using box-

and-whisker diagrams. The average and standard deviation of SUVmean and iSUVmean 

for each defined major organ and tumor are listed in Table 3-1, and those for 

SUVmax, and iSUVmax are listed in Table 3-2. The average of iSUV was quite close 

with that of SUV for all major organs, while the values of their SD were also similar. 

Meanwhile, Figure 3-5 (a) shows the linear regression between SUVmean and 

iSUVmean of all the major organs for all mouse studies. The linear regression line 

was y=0.99x+0.018 with R2 =0.95. Similarly, Figure 3-5 (b) shows the plot of 

SUVmax vs. iSUVmax. The linear regression line was y=0.99x+0.027 with R2 =0.95. 

For each major organ, the paired t-test did not detect any significant difference 

between SUVmean and iSUVmean. The same results were found between SUVmax and 

iSUVmax. This indicated that the automatic image-based method is able provide the 
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method to estimate SUV when the measurements of body weight and inject dose 

were not available. 

 
Figure 3-2 Box-and whisker diagrams of estimated error percentage of body weight 

(BW), injected dose (ID) and 1/iSUVfactor. Box height shows inter-quartile range. 

The line in the box is for the median. Whiskers indicate the largest observation 

(minimum to maximum). 

 

 
Figure 3-3 The linear regression performed for all 31 pairs of SUV factor and iSUV 

factor. The open circle symbols note the scatter plot of the 31 pairs of iSUV factor 

and SUV factor. The red solid line is the regression line. 
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Table 3-1 The comparison of SUVmean, iSUVmean and mSUVmean by average, 

standard deviation and coefficient of variance. 

N=31 
SUVmean iSUVmean mSUVmean 

Avg. SD CV Avg. SD CV Avg. SD CV 

brain 4.14 1.00 24% 4.14 1.09 26% 5.14 1.11 22% 

heart 0.71 0.26 37% 0.70 0.24 35% 0.88 0.32 36% 

lung 0.41 0.06 15% 0.40 0.06 14% 0.50 0.05 10% 

liver 0.51 0.08 16% 0.50 0.08 15% 0.63 0.09 15% 

kidney 1.76 0.42 24% 1.77 0.51 29% 2.21 0.58 26% 

muscle 0.29 0.08 27% 0.29 0.09 31% 0.36 0.10 27% 

tumor 2.05 0.55 27% 2.06 0.63 30% 2.55 0.65 25% 
* For each ROI, the lowest CV% among SUV, iSUV, and mSUV is shaded. 

 

Table 3-2 The comparison of SUVmax, iSUVmax and mSUVmax by average, standard 

deviation and coefficient of variance. 

N=31 
SUVmax iSUVmax mSUVmax 

Avg. SD CV Avg. SD CV Avg. SD CV 

brain 5.67 1.31 23% 5.67 1.44 25% 6.90 1.41 20% 

heart 1.10 0.42 39% 1.08 0.38 36% 1.32 0.48 36% 

lung 0.58 0.09 15% 0.58 0.08 14% 0.71 0.08 11% 

liver 0.67 0.13 19% 0.67 0.14 21% 0.82 0.15 18% 

kidney 2.35 0.62 27% 2.37 0.73 31% 2.90 0.83 29% 

muscle 0.70 0.18 26% 0.70 0.18 25% 0.85 0.21 24% 

tumor 2.48 0.64 26% 2.48 0.68 27% 3.02 0.70 23% 
* For each ROI, the lowest CV% among SUV, iSUV, and mSUV is shaded. 
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Figure 3-4 The comparisons between two sets of SUV and iSUV, SUVmean vs. 

iSUVmean and SUVmax vs. iSUVmax, for (a) brain, (b) heart, (c) lung, (d) liver, (e) 

kidney, (f) muscle, and (g) tumor shown by box-and-whisker diagram. In each sub-

figure, box height shows inter-quartile range. The line in the box is for the median. 

Whiskers indicate the largest observation (minimum to maximum). 
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Figure 3-5 The linear regression plots between SUV and iSUV. (a) Linear 

regression is performed for 217 (7×31, 7 major organs for 31 mice studies) pairs of 

iSUVmean and SUVmean. (b) Linear regression is performed for 217 (7×31, 7 major 

organs for 31 mice studies) pairs of iSUVmax and SUVmax. The black dot symbols 

note the scatter plot of pairs of iSUV and SUV. The red solid line is the regression 

line. 

3.4.2 mSUV vs. SUV 

The bladder volumes estimated from the automatic image-based method were 

compared with that obtained from manual definitions. Figure 3-6 shows the linear 

regression between the two estimates of bladder volumes. The linear regression line 

was expressed as y=1.10x-4.25. The regression slope was close to 1 with R2=0.97.  

The averages, SDs and CVs for SUVmean, iSUVmean and mSUVmean in each 

defined ROI of major organ are shown in Table 3-1. Those metrics for SUVmax, 

iSUVmax and mSUVmax are given in Table 3-2. From the results, the CV of 

mSUVmean decreased by about 1-5% in the brain, heart, lung and liver compared to 

those of SUVmean, while the CV of mSUVmax decreased by about 1-4% in the 

comparison with SUVmax. For the tumor ROI, the CV of mSUVmean was 2% lower 

than that of SUVmean and the CV of mSUVmax was 3% lower than that of SUVmax. 

Compared with iSUVmean, the CV of mSUVmean was decreased by about 1-5% for 
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the selected major organs and tumor, except in the heart the CV of mSUVmean was 

increased by about 1%. Similar results were observed in the comparisons between 

mSUVmax and iSUVmax. 

 
Figure 3-6 The validation of bladder volume. The estimated bladder volume 

obtained by the automatic image-based method is compared to the value obtained by 

manual method with visual support from microCT image. The open circle symbols 

denote the scatter plot of the pairs of automatic and manual results. The red solid 

line denotes the linear regression line.  

Tumor-to-background separation was increased by using mSUV because of the 

decrease in the variances of the mSUV values in the tumor and background regions. 

In this study, lung, liver and muscle were chosen as the background. The 

Mahalanobis distance was used to quantify the tumor-to-background separation. 

From the values of Mahalanobis distance listed in Table 3-3, among SUVmean, 

iSUVmean, and mSUVmean the highest values were obtained for mSUVmean regardless 

of the background used, which was about 5% and 20% higher than those of SUVmean 

and iSUVmean. Figure 3-7(a) shows the tumor-to-background separation distribution 

of SUVmean, iSUVmean and mSUVmean. The result indicated that mSUVmean had the 

largest separation between the tumor and the background. Similar results were 

obtained when comparing the tumor-to-background separations among SUVmax, 
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iSUVmax and mSUVmax (shown in Table 3-3). It is clear that mSUVmax had the 

largest separation which is about 8% and 17% higher in Mahalanobis distance than 

SUVmax and iSUVmax. Figure 3-7(b) shows the tumor-to-background separation 

distribution of SUVmax, iSUVmax and mSUVmax. In this figure, a threshold of 1 (gray 

dash line) is given as an example to separate tumor form background. From the 

example, it was found that using SUVmax and iSUVmax could both yield some false 

positives, while mSUVmax could separate tumor from background without error.   

The automatic image-based method was run in Matlab 7.0. It took ~38 seconds 

to do all the calculations for one animal using a Mac with OS X 10.5.5 (2.4GHz 

Intel Core 2 Duo, 4GB SDRAM). 

Table 3-3 Comparison of Mahalanobis distance to evaluate SUV, iSUV and mSUV 

for tumor-to-background separation. 

 Mahalanobis distance* 

 tumor to lung tumor to liver tumor to muscle 

SUVmean 2.99 2.80 3.18 

iSUVmean 2.61 2.44 2.77 

mSUVmean 3.15 2.94 3.34 

SUVmax 2.95 2.78 2.69 

iSUVmax 2.77 2.60 2.53 

mSUVmax 3.27 3.06 2.96 
* The higher value of Mahalanobis distance means more separation between tumor 

and background. The highest values for each background reference are shaded. 
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Figure 3-7 Plot of tumor and background (lung, liver and muscle) SUVs, iSUVs and 

mSUVs. The values for tumor (square), lung (circle), liver (triangle) and muscle 

(cross) are grouped for SUV, iSUV and mSUV to compare the tumor-to-background 

separations (quantitative measurements of the separation are listed in Table 3-3). (a) 

This figure shows that the tumor-to-background separation is increased using 

mSUVmean compared with using SUVmean and iSUVmean. A threshold of 1 (gray dash 

line) is given as an example to separate tumor from background in this figure. (b) 

This figure shows that the tumor-to-background separation is increased using 

mSUVmax compared with using SUVmax and iSUVmax. A threshold of 1 (gray dash 

line) is given as an example to separate tumor from background in this figure. 
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3.5 Discussion 

This study developed a robust and automatic image-based method for 

calculating iSUV which can be used as a substitute of the regular SUV in mouse 

FDG-PET studies, when the body weight or injected dose is not available or 

unreliable. Based on this image-based method, a modification of SUV was applied 

to reduce the inter-subject variability with regards of the tracer excretion variability 

among subjects. The microPET/CT images used in the image-based method were 

obtained in separate scanners. In this condition, a hardware registration method was 

applied to minimize the error in the alignment of two modalities images [122]. 

Moreover, the scans were performed when the implanted tumors had relatively large 

volumes (>100 mm3). This also allowed the reliable PET-to-CT alignment for the 

tumor lesions.  

The results from the present mouse studies indicated that the average percent 

error of estimated body weight was about -9.5% and that of estimated injected dose 

was about -8.5%. The worst case percentage errors of the estimated body weight and 

injected dose were -22.5% and -35.1%, respectively. The underestimations of the 

body weight and the injected dose, however, occurred together, thus resulted in 

much less error in the ratio (e.g., the iSUV factor). 

There are several error sources that might have affected the accuracy of the 

estimations using the image-based method in this study. First is the incomplete 

coverage of the whole body in the microCT and the microPET images, as shown in 

Figure 3-8 (a) and (b) respectively. In this case, part of the tail and the hind legs 

were missing because of the limited FOV in microCT. The missing parts are 

manually sketched out in Figure 3-8(c). In addition, the tracer time-activity outside 
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the FOV of the microPET would introduce out-of-field scatter and affected the 

quantitative accuracy of the image values [125]. The accuracy of the injected dose 

estimate also relied on that of the PET data correction, including the normalization, 

attenuation correction, scatters correction, random correction, dead-time corrections 

and the calibration. Urine leakage from the bladder during the microPET scan can 

also impact the injected dose estimation. Another source of error is in the assumed 

values of specific density for various tissues. The densities used in the body weight 

estimation were assumed uniform in each type of tissue, which were grouped into 

soft tissue, bone and lung. The lung has only a small impact on the body weight 

estimation, and its density could be assumed to be zero without much effect to the 

estimated body weight. 

 
Figure 3-8 The microCT and microPET images and the missing body parts in the 

images. (a) the microCT image has a field of view of 51.2mm×51.2mm×99.2mm. 

The microCT image voxel size is 0.2mm×0.2mm×0.2mm in a 256×256×496 matrix.  

(b) The microPET image has a field of view of 51.2mm×51.2mm×75.6mm. The 

microPET image voxel size is 0.4mm×0.4mm×0.796mm in a 128×128×95 matrix. (c) 

The fused mircoPET/CT image. In this figure, the contour of the whole body, 

included the missing parts of the mouse body, is sketched out by red solid line. 
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It is expected that the major improvement in the accuracy of estimation is to 

position more consistently the mouse in the imaging chamber during the scans, and 

to fit the entire body in the FOV. This may reduce the influence from the missing 

regions in the estimation of body weight and injected dose by the image-based 

method. Newer microPET scanners (e.g., Inveon Dedicated PET System) have 

larger FOVs, and studies using these scanners are expected to have less variability 

due to this problem of not covering the entire animal within the FOV. Also, the 

conversion of the attenuation coefficient from microCT images to that of microPET 

for attenuation correction could also be improved to give a better estimate of the 

injected dose.  

However, the correlated underestimations of body weight and injected dose 

didn’t introduce a large estimation error to the iSUV factor, of which the percent 

error was about -0.7% in average compared with SUV factor. Including all 217 pairs 

of iSUV and SUV (7 major organs for 31 mice studies) in linear regression, the 

results in Figure 3-5(a) and (b) indicated that iSUV closely match the SUV 

(R2=0.95), either for iSUVmean vs. SUVmean or iSUVmax vs. SUVmax. These data 

demonstrated the validity of the iSUV from the automatic image-based method in 

this study. 

In future work, the body surface area could be obtained directly from the 

microCT image (e.g., by a marching cubes algorithm [126]), and it could be used as 

the normalization factor instead of body weight. To use of body surface area has 

been reported in some studies to be preferable in SUV calculation [31], e.g. for 

obese subjects with increased fraction of body fat. 
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On the other hand, mSUV was proposed to improve SUV reliability for 

accurate diagnosis of tumor malignancy by removing the tracer excretion variability 

among subjects. To a certain extent, mSUV could be considered as the SUV with 

FDG excretion correction. Bladder voiding performed immediately before a FDG-

PET scan as part of the animal preparation procedure can achieve the same objective, 

and can be considered to be equivalent to replacing the image processing procedures 

for calculating the accumulated bladder radioactivity. However, the renal pelvis 

beside bladder usually also contained urine. This could influence the mSUV in the 

kidney ROI. As a result, CV of mSUV in kidney was found to be 2% higher than 

that of SUV both for mSUVmean vs. SUVmean and mSUVmax vs. SUVmax. It is 

assumed in this study that the amount of FDG in renal pelvis is much less than that 

in bladder, and mSUV mainly considered the influence of the FDG excreted into 

bladder. The influence from the renal pelvis could be expected to remove in the 

calculation of mSUV by defining kidney ROIs to exclude the renal pelvis in future.  

In common practical application, a predefined threshold of SUV is usually set 

for determining malignancy. That is, the lesion would be regarded as malignant 

when its SUV is higher than the predefined threshold. Therefore, to enlarge the 

separation between the tumor and background is expected to be helpful for defining 

a threshold in the malignancy detection and improving the accuracy of classification. 

The mSUV is shown to increase the separation between the tumor and background 

in Figure 3-7. Especially, mSUVmax showed its advantage in eliminating the false 

positive compared with SUVmax and iSUVmax. The Mahalanobis distance was 

adopted to measure the separation and the results indicated that the tumor to the 

background (liver, lung or muscle) separation all increased by using mSUV 

compared with using SUV.  
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The amount of reduction in CV of tumor mSUV shown in this study is not very 

large, since all the animals studied were quite uniform in size, in their preparations, 

and in the study procedure. When the physiological condition of the animals is more 

variable and the study condition is less uniform, the amount of improvement in 

mSUV is expected to be increased. Also, other body tissues that have large 

population variability in FDG extraction could also be excluded, just like the bladder 

that are addressed in this study. That is, the tracer time-activities in these tissues and 

the corresponding volume/weight could be taken out of the injected dose and the 

body weight, respectively, in the calculation of mSUV. The reliability of the 

predicted mSUV is expected to be further improved, though further work is needed 

to demonstrate the amount of improvement in practical situations. 

The present study is focused on mouse FDG-PET study to improve the 

reliability of SUV. The underlying concept of mSUV can be extended to whole-

body human FDG-PET studies. It is impractical for iSUV in clinical studies, because 

the partial body imaging is usually performed for clinical routines. However, the 

methodology to obtain iSUV can be transformed to quantify the partial body tracer 

uptake value instead of the SUV for whole-body. Although the effectiveness of the 

approach for improving SUV reliability in the human studies needs more 

investigations, results from the present study clearly indicated its feasibility and 

potentials.  

3.6 Summary 

In this chapter, an automatic image-based method was developed to derive the 

improved SUVs for static mouse FDG-PET imaging. Firstly, iSUV is feasibly 
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calculated based on the information of microCT and microPET images for mouse 

studies. It is demonstrated that iSUV could be used as a semi-quantitative index to 

substitute for SUV when directly measured body weight and/or injected dose are 

missing or unreliable. Secondly, the mSUV is shown to reduce the inter-subject 

variability of SUV and increase the tumor-to-background separation. Therefore, with 

further investigations mSUV has the potential to be useful for increasing the 

accuracy to separate malignancy from benign lesions in FDG PET studies. 
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Chapter 4  
 
Generalized Optimal Quantitative 
Index for Dual-Time PET Imaging  

4.1 Introduction 

FDG-PET imaging has been widely used in clinical environment for cancer 

diagnosis because “hot” spot of lesions can be easily visualized on FDG-PET 

images due to higher glucose metabolism in tumors than that in normal tissues. In 

addition to visual evaluation, SUV is a popular semi-quantitative index for cancer 

diagnosis using static PET imaging, although it has a number of limitations. For 

example, the lesion with SUV>2.5 in the lung is usually regarded as malignancy. 

Nevertheless, benign lesion and inflammation tissue may also demonstrate similar 

evaluated uptake of FDG for general static FDG-PET imaging. This gives rise to 

false positive in the diagnosis of cancer, resulting in inaccurate cancer staging and 

inappropriate choice of therapies [127, 128]. Dynamic imaging has shown its 

efficiency in providing distinct physiological parameter in differentiating 

malignancy from benign or inflammation lesions. However, it is impractical for the 

clinical routine due to the substantially longer imaging time required and lower 
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patient throughput. Hence, dual-time imaging protocol with one early scan and one 

delayed scan has been proposed to address this dilemma by using the change of 

SUVs to classify lesions [39]. Usually, the change of SUVs is referred as retention 

index (RI). Recently some reports have been published for doubting dual-time FDG-

PET imaging about its usefulness or necessary in the differentiation of malignancy 

from benign lesions [115, 129]. In these published studies, the empirical dual-time 

imaging protocols and RI, which relied on the experience of operators, were adopted 

for the differentiation, which might be the reason for the low accuracy in cancer 

diagnosis.  

A simulation framework has been proposed to evaluate dual time protocols, 

where RI was used to optimize dual-time imaging protocol resulting a rigid optimal 

dual-time protocol [44]. Recently, a generalized quantitative index (QI) was 

proposed to add an exponential weight into the traditional RI for increasing 

diagnostic accuracy of malignancy detection [45]. However, the optimization for the 

weight of QI was based on a fixed dual-time imaging protocol. The suitable 

threshold for differentiating malignancy from benign lesions and the noise effects 

have not been discussed yet in this pioneer study.  

This chapter aims to develop a framework for simultaneously optimizing the 

weight of QI and the dual-time imaging protocol of FDG-PET in lung cancer 

diagnosis. Meanwhile, the performance of the optimal QI and the corresponding 

imaging protocol are investigated and compared with the traditional RI approach at 

various noise levels by computer simulations.  
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4.2 Methods 

4.2.1 Optimization of Quantitative Index 

As mentioned in 2.4, SUV can be calculated using (2-13) for a lesion in static 

PET image. For dual-time imaging, 𝑆𝑈𝑉E and 𝑆𝑈𝑉D were respectively obtained at 

the early and delayed scans, and then the percent change between the SUVs was 

often referred as to RI. In some cases, 𝑆𝑈𝑉D 𝑆𝑈𝑉E⁄  can be also referred as to RI, 

which was used in this study. Generally a predefined threshold of RI was adopted to 

classify malignancy in dual-time FDG-PET imaging. That is, the lesion was 

regarded as malignancy when its RI was higher than the given threshold. 

QI was proposed based on RI with an exponential weight, 𝑛, which added to 

the dominator of RI, as shown in (4-1) [45]. In this case, RI is a special case of QI 

when 𝑛 = 1.  

𝑄𝐼 =
𝑆𝑈𝑉D
𝑆𝑈𝑉E𝑛

 (4-1) 

The process of separating the malignancy from benign lesions could be 

regarded as a two-class classification problem using QI as the feature. Suppose the 

lesions which might be malignant or benign were examined by a given dual-time 

imaging protocol, the optimal weight 𝑛 in (4-1) was derived according to the Fisher 

discriminant given in (4-2).  

𝑓 =
𝑑𝑒𝑡(𝑆b)
𝑑𝑒𝑡(𝑆w) (4-2) 

where 𝑆b  and 𝑆w  are the between-class and within-class scatter matrixes of two 

classes,  𝑑𝑒𝑡 denotes the operation of matrix determinant. 
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The prior probabilities of malignant and benign lesions were both assumed as 

50%. Thus, between-class scatter matrix was calculated by (4-3) while within-class 

scatter matrix was expressed as (4-4). 

𝑆b = �
1
2

𝑖=1,2

[(𝑄𝐼���𝑖 − 𝑄𝐼���)(𝑄𝐼���𝑖 − 𝑄𝐼���)𝑇] (4-3) 

where, 𝑄𝐼��� is the average of all samples in malignant and benign classes, 𝑄𝐼���𝑖 is the 

average of samples in either class of benign and malignancy. 

𝑆𝑤 = �
1
2

𝑖=1,2

𝐸 ��𝑄𝐼𝑗 − 𝑄𝐼���𝑖��𝑄𝐼𝑗 − 𝑄𝐼���𝑖�
𝑇�𝑄𝐼𝑗 ∈ 𝐶𝑖 �� (4-4) 

where, 𝑄𝐼𝑗 is the jth sample in the ith class; 𝐸 denotes expectation operation; 𝐶𝑖 is the 

class of benign or malignancy. 

When the mid-scan time points of early and delayed scans were varied within 

given ranges, the optimal 𝑛 for each dual-time imaging protocol can be searched by 

maximizing the Fisher discriminant. The maximum values of the cost function for 

each dual-time imaging protocol were then transformed into point intensity, 

followed by plotting a two-dimensional map with early imaging time as x axial and 

delayed imaging time as y axial. This map was named as cost map. Similarly, the 

values of optimal 𝑛 corresponding to the maximum values of the cost function are 

plotted in a two-dimensional map, which was named as optimal 𝑛 map. 

According to the optimal 𝑛 map, if the value of optimal weight 𝑛 was keeping 

unchanged along with varying imaging protocols, it indicated that the appropriate 

value of optimal 𝑛  was insensitive with imaging protocol. Thus, the generalized 

optimal QI can be obtained by this optimal 𝑛. Meanwhile the corresponding flexible 

optimal dual-time imaging protocol can also be fixed on.  
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4.2.2 Computer Simulations 

The general FDG model introduced in 2.2.1 was used to simulate TTACs of 

malignant and benign lesions based on its corresponding differential equations in 

(2-1). The rate constants of the general FDG model for malignant and benign lesions 

used in the computer simulation are listed in Table 4-1, which were obtained from 

[44]. The PTAC was defined by the Feng’s input function model given in (4-5) with 

the parameters derived from population studies [130]. 

𝐶p(𝑡)

= �[𝐴1(t − 𝜏) − 𝐴2 − 𝐴3]𝑒𝜆1(𝑡−𝜏) + 𝐴2𝑒𝜆2(𝑡−𝜏) + 𝐴3𝑒𝜆3(𝑡−𝜏), t > 𝜏
0, t ≤ 𝜏

� 
(4-5) 

where A1= 851.123μCi/mL/min, A2=21.880μCi/mL, A3= 20.811μCi/mL, λ1= -

4.134/min, λ2= -0.119/min, λ3= -0.0104/min and τ =0 min.  

Table 4-1 Rate constants of malignant and benign lesions in lung 

Lesions 
K1 

(mL/min/mL) 
k2 

(/min) 
k3 

(/min) 
k4 

(/min) 

Stage III non-small-cell lung cancer (M1) 0.084 0.021 0.072 0 

Lung carcinoma (M2) 0.139 0.296 0.164 0 

Lung aspergillosis infection (B1) 0.199 0.978 0.240 0.010 

Lung coccidiomycosis infection (B2) 0.181 0.869 0.039 0.0007 

Gaussian noise was then added to the simulated TTACs as the measurement 

error with the consideration of the influences from decay time, scan duration, noise 

level and uptake activities [44, 131]. The variance can be described by (4-6).  

𝜎2 =
𝑐 × 𝑒𝜆𝑡 × 𝐶𝑡(𝑡)

∆𝑡
 (4-6) 

where, 𝑐 is proportional to noise level; 𝜆 = ln(2) /𝑇ℎ𝑎𝑙𝑓, 𝑇ℎ𝑎𝑙𝑓 is the half life time of 

isotope Fluorine-18 (18F), and ∆𝑡 is the imaging duration. 
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The time-activities at the early and delayed scans (𝐶E and 𝐶D) were obtained 

from the simulated TTACs. 𝑆𝑈𝑉E and 𝑆𝑈𝑉D were calculated by multiplying 𝐶E and 

𝐶D with the mean scale factor of 0.1795 [44]. It was supposed that the range of early 

imaging time (𝑡E) should be varied from 30 to 100 minute post tracer injections, and 

the delayed imaging time (𝑡D) should be changed from 40 to 160 min with the 

constraint of  𝑡E < 𝑡D, while the duration of each scan was simply set as 5 min. For 

each type of lesions given in Table 4-1, 1000 sets of SUVs were simulated under the 

noise level of 0.5 ( 𝑐 = 0.5). In total, there were 4000 pairs of SUV as training 

samples to figure out the generalized optimal QI and its corresponding flexible 

optimal dual-time imaging protocol. 

4.2.3 Performance Evaluation 

To evaluate the performance, the approach using the generalized optimal QI 

and the corresponding flexible dual-time imaging protocol (QI_flexible) was 

compared with the other two previous approaches: one used the RI with the flexible 

dual-time imaging protocol (RI_flexible), and the other one adopted the RI with 

fixed dual-time imaging protocol (RI_fixed). Here, the flexible dual-time imaging 

protocol is obtained in 4.2.1. The fixed dual-time imaging protocol is derived from 

our previous investigation [44], whose early and delayed scans are performed at 45 

min and 120 min post tracer injection. 

Under the noise level of 0.5, 1000 pairs of SUVs were then regenerated for 

each approach according to fixed or flexible imaging protocol. The optimal 

classification thresholds were searched for all the simulated samples in order to 

achieve the maximum accuracy of the classification. Meanwhile, the effect of noise 

was also investigated for these three approaches. Five noise levels (𝑐 = 0.5, 1.0, 2.0, 
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3.0 and 4.0) were used in the computer simulations to generate 4000 pairs of SUVs 

(1000 for each lesion) per noise level. 

4.3 Results 

4.3.1 Generalized Optimal Quantitative Index  

Figure 4-1 plots the cost map of maximum cost function and optimal n map. 

For the simplicity, top 50% maximum values of cost function are illuminated with 

colors while the others are marked by white in Figure 4-1a. 

 
Figure 4-1 (a) the obtained cost map and (b) the optimal n map. 

As the definition of cost map, the higher value of intensity meant higher result 

from cost function with better performance of separation between two classes for the 

investigated dual-time imaging protocols. By taking two maps into account, a 

plateau (optimal 𝑛 =0.6) was observed in the optimal n map (Figure 4-1(b)) while 

the corresponding values of this region in cost map (Figure 4-1(a)) were still 

relatively high (top 50%). This implied that this optimal 𝑛 could achieve relatively 

stable classification in the region of 30 < 𝑡E < 70  and 90 < 𝑡D < 140 . So the 

generalized optimal QI were suggested setting as (4-7). 
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𝑄𝐼𝑜𝑝 =
𝑆𝑈𝑉𝐷
𝑆𝑈𝑉𝐸0.6 (4-7) 

Thus, the corresponding flexible dual-time imaging protocol was suggested as 

that 𝑡E can vary from 30min to 70min and 𝑡D can change in the range of from 90min 

to 140min. The interval between two scans was advised as no more than 70min. 

4.3.2 Threshold and Accuracy 

The distributions of the criteria’s values for three approaches (RI_flexible, 

RI_fixed and QI_flexible) are respectively plotted in Figure 4-2. From the figures, it 

was obvious that QI_flexible achieved the largest separation between malignant and 

benign classes.  

 
Figure 4-2 The distributions of quantitative measures of three different approaches: 

(a) RI_flexible, (b) RI_fixed, and (c) QI_flexible. In each subfigure, the red circle 

denotes the malignant class and blue star denotes the benign class. 
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Figure 4-3 Plots of classification accuracies for three approaches. (a) RI_flexible; (b) 

RI_fixed; (c) QI_flexible. The best threshold with greatest accuracy for each 

approach is illuminated by red circle. The values of the optimum thresholds and 

greatest accuracies are given in the legends. 

4.3.3 Effect of Noise 

Three approaches (RI_flexible, RI_fixed, and QI_flexible) with their optimum 

thresholds obtained in 4.3.2 were also investigated for their performances in 

separating malignancy from benign lesions under five noise levels (0.5, 1.0, 2.0, 3.0, 

and 4.0). And the accuracies for three approaches under five noise levels are listed in 

Table 4-2. From this table, the results demonstrated the application of generalized 

optimal QI with flexible imaging protocol achieved substantially high accuracy, 

which seemed to be less sensitive to the noise levels. On the contrary, the other two 
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approaches suffered from the noisy condition with decreasing accuracy when noise 

tended to be higher. 

Table 4-2 Accuracy of classification at different noise levels 

Noise Level 
Accuracy of Classification 

RI _flexible RI _fixed (tE=45, tD=120) QI_flexible 

0.5 0.771 0.926 0.998 

1.0 0.756 0.847 0.992 

2.0 0.727 0.785 0.973 

3.0 0.700 0.736 0.951 

4.0 0.676 0.721 0.935 

4.4 Discussion 

Due to the limited availability of kinetics for lung lesions including 

inflammation, only four sets of kinetics were obtained from literature review. This is 

the reason why the classification accuracy was so “perfect” for the approach 

QI_flexible. In addition, the approach QI_flexible was evaluated by a set of 

published data of dual-time FDG-PET in lung [40]. As a result, the generalized 

optimal QI increased the highest accuracy of differentiation to 89%, comparing with 

that of RI about 84%. Despite the small improvement in this application, it still 

demonstrated that the application of generalized optimal QI is helpful to improve the 

performance of dual-time FDG-PET in differentiating malignancy from benign 

lesions with a flexible imaging protocol that was suitable in high-throughput clinical 

environments.   
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In the future, further data analysis including full Monte Carlo simulations and 

validation on clinical data would be warranted to derive more convincing protocol 

including differentiating criterion for clinical dual-time FDG PET imaging. 

4.5 Summary 

In this chapter, a simulation framework has been developed for search better 

solution for dual-time FDG-PET imaging in the diagnosis of lung cancer using 

generalized optimal quantitative index (QI). The results demonstrated that 

generalized optimal QI (𝑄𝐼𝑜𝑝 = 𝑆𝑈𝑉𝐷
𝑆𝑈𝑉𝐸

0.6 ) with the threshold of 2.9 provided the 

highest accuracy in differentiating malignancy from benign lesions for lung cancer 

under varied noise levels. The corresponding optimal range of dual-time imaging 

protocol was suggested that early and delayed scans commenced at 30~70 minutes 

and 90~140 minutes post tracer injection, and the interval was no more than 70 

minutes.  
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Chapter 5  
 
Non-Invasive Patlak Quantification 
Method for Dynamic Small-Animal 
PET Imaging 

5.1 Introduction 

As is known to us, PTAC is usually required as input function in the 

quantitative analysis for dynamic PET images regardless of using tracer kinetic 

modeling with WNLS method or graphic analysis (GA) method. However, the 

invasive arterial blood sampling to obtain PTAC is relatively inconvenient and 

harmful. It also tends to be much challenging for preclinical studies with small-

animal. In this condition, great efforts have been made to develop non-invasive 

methods for the reduction or elimination of the invasive blood samples, which have 

been reviewed in 1.3.  

Given multiple regions of interest (ROIs) with distinct TTACs, complex 

biological systems can be modeled as a single-input-multi-output (SIMO) system 

[46, 47]. In this case, the kinetic parameters and the input function can be estimated 
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simultaneously [46]. Non-invasive GA methods have also been proposed to avoid 

the problems associated with invasive approaches. For example, if a reference region 

that reflects the non-specific binding in a neuroreceptor study is available, the Logan 

graphic analysis method can be transformed to a non-invasive Logan method 

(introduced in 2.5.2) in which the slope of the linear plot represents the ratio of the 

distribution volume between the target and the reference regions [93]. It is possible 

that the non-invasive estimation of the influx rate in FDG-PET studies may also 

benefit from the use of reference tissues. 

A non-invasive PGA (nPGA) method that used a reference region to derive the 

relative influx rate for FDG-PET studies was recently proposed and evaluated using 

simulated TTACs of the human brain [132]. This chapter aims to extend nPGA to 

provide a non-invasive quantification approach in small-animal studies. The 

performance of the nPGA method was systematically compared with that of the 

traditional PGA method by using computer simulations and mouse FDG-PET 

studies. The results of the WNLS method were also used in the evaluation of the 

estimated biases of nPGA. 

5.2 Theory of Non-Invasive Patlak Graphic Analysis 

The non-invasive PGA (nPGA) method was proposed for the derivation of a 

relative influx rate using a reference region in the quantification of MRGlc for 

human brain FDG-PET studies [132]. It can be assumed that the input functions for 

different ROIs are the same PTAC. The PGA equations for two distinct ROIs (one 

being the reference, the other being the target) are described by (5-1). 
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⎩
⎪
⎨

⎪
⎧𝐶ref(𝑡) = 𝐾ref � 𝐶p(𝜏)𝑑𝜏 + 𝐼ref

𝑡

0
𝐶p(𝑡)

𝐶tg(𝑡) = 𝐾tg � 𝐶p(𝜏)𝑑𝜏 + 𝐼tg
𝑡

0
𝐶p(𝑡)

� , 𝑡 > 𝑡∗  (5-1) 

where 𝐶ref(𝑡) and 𝐶tg(𝑡) are TTACs of the reference and target ROIs. 

Combining the equations for the two ROIs in (5-1) into (5-2) eliminates the 

contribution of the PTAC and derives the relative influx rate, i.e. the ratio of influx 

rates between the target and reference regions. The relative influx rate can also be 

referred to as the target to reference relative influx rate. See the Appendix C for 

more details on the derivation of (5-2). 

� 𝐶tg(𝜏)𝑑𝜏
𝑡

𝑡0
= 𝐾tr � 𝐶ref(𝜏)𝑑𝜏

𝑡

𝑡0
+ 𝐼tr[𝐶ref(𝑡) − 𝐶ref(𝑡0)]

− 𝐼rr�𝐶tg(𝑡) − 𝐶tg(𝑡0)�, 𝑡 > 𝑡0 > 𝑡∗    

(5-2) 

where, 𝑡0 is the first imaging frame whose mid-scan time is later than 𝑡∗; and 𝐾tr is 

the target to reference relative influx rate.  

For the mid-scan time of the TTAC, where 𝑡0, 𝑡1, 𝑡2,⋯ , 𝑡𝑛 > 𝑡∗, (5-2) can be 

expressed in matrix form as given by (5-3). 

𝑦 = 𝑋𝜃r + 𝜀 (5-3) 

where 𝜀  denotes the equation error term; For the mid-scan time 𝑡 > 𝑡∗ , 𝑦 =

�∫ 𝐶tg(𝜏)𝑑𝜏𝑡1
𝑡0

∫ 𝐶tg(𝜏)𝑑𝜏𝑡2
𝑡0

… ∫ 𝐶tg(𝜏)𝑑𝜏𝑡N
𝑡0 �

T
, 𝑋 =

⎣
⎢
⎢
⎢
⎢
⎡∫ 𝐶ref(𝜏)𝑑𝜏𝑡1
𝑡0

𝐶ref(𝑡1) − 𝐶ref(𝑡0) −𝐶tg(𝑡1) + 𝐶tg(𝑡0)

∫ 𝐶ref(𝜏)𝑑𝜏𝑡2
𝑡0

𝐶ref(𝑡2) − 𝐶ref(𝑡0) −𝐶tg(𝑡2) + 𝐶tg(𝑡0)
⋮

∫ 𝐶ref(𝜏)𝑑𝜏𝑡N
𝑡0

⋮
𝐶ref(𝑡N) − 𝐶ref(𝑡0)

⋮
−𝐶tg(𝑡𝑛) + 𝐶tg(𝑡0)⎦

⎥
⎥
⎥
⎥
⎤

, 𝜃𝑟 = �
𝐾tr
𝐼tr
𝐼rr
�, 𝜀 = �

𝜀1
𝜀2
⋮
𝜀N

�.  
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The target to reference relative influx rate, noted as 𝜃�r, can be solved using the 

linear least squares method as given by (5-4). 

𝜃�r = (XTX)−1XTy (5-4) 

5.3 Experiments 

5.3.1 Small-Animal Studies  

All small-animal experiments were conducted in compliance with the Animal 

Care and Use Program established by the Chancellor’s Animal Research Committee 

of UCLA. Fifteen C57BL/6 mice (~27g, non-fasting) were anesthetized with ~2% 

isoflurane and administered with FDG (~13 MBq, tail vein bolus). Five of these 

mice had been implanted with MCak tumors in both shoulders about one week prior 

to the FDG-PET studies. After FDG was administered, a 60-minute dynamic 

imaging study was performed for each mouse on a Focus 220 microPET scanner 

(Siemens Medical Solutions USA, Inc.). Sixteen blood samples were manually taken 

from a femoral catheter during the scan. Seven of these FDG-PET studies were 

conducted with a 31-frame imaging protocol: 15×0.5s, 1×2s, 1×4s, 1×6s, 1×15s, 

3×30s, 1×60s, 1×120s, 3×80s, and 4×900s frames. The other eight FDG-PET studies 

were conducted with a 26-frame imaging protocol: 1×1.2s, 10×0.4s, 1×1.7s, 2×5s, 

1×17.5s, 1×45s, 1×60s, 1×90s, 1×150s, 1×180s, 1×220s, 1×365s, and 4×550s frames. 

After PET imaging, a 10-minute CT scan was acquired for each mouse on a 

MicroCAT II. The CT image was then aligned to the PET images. The PET images 

were reconstructed using 2D filtered back-projection with CT-based attenuation 

correction. Each frame was reconstructed with an image resolution of 128×128×95 
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voxels with a voxel size of 0.4×0.4×0.796 mm3. Equation  (5-5) was used to derive 

the PTACs, as a means to obtain the plasma activity from the blood samples [90]. 

�
𝐶p(𝑡) = 𝐶b(𝑡) × 𝑅FDG(𝑡)

 𝑅FDG(𝑡) = 0.386𝑒−0.191𝑡 + 1.165
�  (5-5) 

where 𝑡  is the blood sampling time in minutes after FDG injection; 𝐶p(𝑡) is the 

PTAC, 𝐶b(𝑡) is the FDG TAC of whole-blood samples; and  𝑅FDG(𝑡) is a function 

for the ratio of plasma to whole blood. 

Using the AMIDE software [124], ellipsoidal ROIs were manually delineated 

on the reconstructed microPET images for the major organs, with the aligned CT 

images acting as a guide. For the whole-body PET imaging with small-animal, the 

ROIs can be delineated by covering whole organs, due to the comparably small 

volumes of the animals. The tumor ROI was also defined for the five tumour-

bearing mice. The brain, lungs, liver, muscle and tumor ROIs were numbered from 1 

to 5, respectively. The TTAC was derived by averaging the values of all the voxels 

within the ROI. 

5.3.2 Computer Simulations 

The PTAC, 𝐶p(𝑡) , was simulated based on a mathematical model with 4 

exponential components, as given by (5-6).  

𝐶p(𝑡) = 𝐴1𝑒𝜆1𝑡 + 𝐴2𝑒𝜆2𝑡 + 𝐴3𝑒𝜆3𝑡 − (𝐴1 + 𝐴2 + 𝐴3)𝑒𝜆4𝑡  (5-6) 

where 𝐴1 =63.01 MBq/mL, 𝐴2 =4.95 MBq/mL, 𝐴3 =1.105 MBq/mL, 𝜆1 =9.27/min, 

𝜆2=0.178/min, 𝜆3=0.0157/min, and 𝜆4=41/min. These parameters were assigned by 

the mean values given by Ferl et al [133]. An 18-point blood sampling protocol was 

used with time points at 0.07, 0.11, 0.14, 0.17, 0.21, 0.24, 0.27, 0.31, 0.59, 0.9, 1.5, 

4.5, 9.5, 15.5, 24.5, 34.5, 45.5 and 58.5 minutes post-injection. 



  

- 78 - 
 

A 26-frame 60-minute imaging protocol was used in the simulation with 

1×1.2s, 10×0.4s, 1×1.7s, 2×5s, 1×17.5s, 1×45s, 1×60s, 1×90s, 1×150s, 1×180s, 

1×220s, 1×365s, and 4×550s frames. The TTAC was then simulated based on the 

general FDG model described by (2-4) (introduced in 2.2.1). A Gaussian noise 𝜀(𝑡) 

was then added to obtain the measurement of the TTAC, as given by (5-7). 

𝐶̅t(𝑡) = 𝐶t(𝑡) + 𝜀(𝑡)

=
𝐾1

𝛼2 − 𝛼1
[(𝑘3 + 𝑘4 − 𝛼1)𝑒−𝛼1𝑡

+ (𝛼2 − 𝑘3 − 𝑘4)𝑒−𝛼2𝑡] ⊗𝐶p(𝑡) + 𝑉b𝐶p(𝑡) + 𝜀(𝑡)  

(5-7) 

where, 𝐶̅t(𝑡) is the measurement of the TTAC; and the macro parameters, 𝛼1 and 𝛼2, 

are the combination of the rate constants as given in (2-3), which can be obtained 

using the average rate constants of certain organ derived from fifteen FDG-PET 

mouse studies listed in Table 5-1. 𝜀(𝑡) is the PET measurement noise, which is 

assumed to be an additive, independent Gaussian noise with zero mean and variance 

as specified by (4-6). 

The square root of 𝑐 can range from 0.25 to 8 [131]. In this investigation, the 

values of c were set to as 0.1, 0.5, 1, 2 and 4, corresponding to noise levels ranging 

from 0.7% to 3% at the last measurement of TTAC. 100 TTACs were simulated for 

each noise level. One noise free TTAC with was also simulated. As such, five noise 

levels were used in the computer simulation. 

5.3.3 Performance Evaluation  

The target to reference relative influx rate in both the small animal studies and 

the computer simulations can be defined as the ratio of the influx rate between the 

target and reference ROIs, calculated as (5-8). 
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𝐾𝑡𝑟 =
𝐾tg
𝐾ref

    (5-8) 

where, t is the index number of the target ROI, and r is the index number of 

reference ROI. The target index number t can be set to 1, 2, 3, 4 or 5 for the brain, 

lungs, liver, muscle or tumor, respectively. For the reference ROI, the maximum 

index number is 4. The tumor ROI is not used as a reference ROI in this 

investigation. 

In small-animal studies, the WNLS method (introduced in 2.3.1) was applied to 

derive estimates for the rate constants of the general FDG model using the kinetic 

imaging system (KIS) [81]. The weights in WNLS method were chosen to be 

proportional to the ratio between the imaging duration and the measurement in each 

frame [26]. Influx rates for each ROI were calculated according to 𝐾𝑖 = 𝐾1𝑘2
𝑘2+𝑘3

, and 

the relative influx rate was then derived based on (5-8). This relative influx rate was 

referred to as 𝐾tr,WNLS. 

In the computer simulations, the mean rate constant for each ROI in the small-

animal studies were used to derive the true value of the relative influx rate. For a 

given pair of target and reference ROIs, the true value of the relative influx rate was 

also obtained by (5-8), and was referred to as 𝐾tr,true.  

The PGA and nPGA methods, respectively introduced in 2.3.3 and 5.2, were 

both used to calculate the relative influx rates for the computer simulations and the 

small-animal studies. For the PGA method, TTACs in the range of 3-22 minutes 

were used to estimate the influx rate for each ROI in order to minimize the influence 

of k4 [90], allowing the derivation of the relative influx rate, 𝐾tr,PGA. For the nPGA 

method, the relative influx rates could be directly obtained by using the TTACs of 
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the reference and target ROIs (excluded the data in the first 3 minutes). The relative 

influx rate as calculated by nPGA was referred to as 𝐾tr,nPGA. 

In the small-animal studies, for each pair of target and reference ROIs, the 

mean and standard deviation (SD) of 𝐾tr,WNLS, 𝐾tr,PGA and 𝐾tr,nPGA was calculated 

across the fifteen mice. Linear regression analysis was applied between 𝐾tr,WLNS and 

𝐾tr,nPGA to evaluate the performance of the nPGA method. The linear relationship 

between 𝐾tr,PGA  and 𝐾tr,nPGA  was also investigated. Similarly, the mean and SD 

values of 𝐾tr,PGA and 𝐾tr,nPGA were calculated to evaluate the estimated 𝐾tr,PGA and 

𝐾tr,nPGA in the computer simulations. The coefficient of variation (CV) was then 

calculated. Moreover, percent biases were calculated for the average 𝐾tr,PGA  and 

𝐾tr,nPGA compared with 𝐾tr,true under different noise levels in order to evaluate the 

performances of the nPGA and PGA methods.   

To further investigate the effect of the different kinetic models used in WNLS, 

new reference parameters were directly estimated by WNLS using different kinetic 

models for the comparisons. In addition to the general FDG model that is three-

compartment and four-parameter FDG kinetic model with vascular volume (3c4pVb) 

mentioned in 2.2.1, three additional models were used: the general FDG model with 

k4=0, Vb=0 (3c3p), the general FDG model with k4=0 (3c3pVb), and the general 

FDG model with Vb=0 (3c4p). The percent bias of 𝐾tr estimated by PGA and nPGA 

methods were calculated according to the true relative influx rate from these four 

models. 
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5.4 Results 

5.4.1 Estimated Parameters and Simulated TTACs 

The rate constants of the general FDG model were estimated for five main 

organs and tumor from a set of fifteen mouse FDG-PET studies. The average of the 

estimated rate constants for the brain, lungs, liver, muscle and tumor are listed in 

Table 5-1. They were used to derive the TTAC in the computer simulations for 

further evaluation of the nPGA method. Figure 5-1 plots the PTAC and TTACs 

obtained from one sample mouse study and its simulated noise-free PTAC and 

TTACs. 

Table 5-1 The rate constants derived by WNLS in mouse FDG-PET studies  

ROI # 1 2 3 4 5 

Parameter brain lung liver muscle tumor* 

K1 (ml/min/g) 0.217 0.139 0.84 0.036 0.221 

k2 (/min) 0.413 0.644 1.432 0.324 0.263 

k3 (/min) 0.113 0.104 0.02 0.074 0.712 

k4 (/min) 0.017 0.011 0.008 0.019 0.021 

Vb (ml/ml) 0.076 0.161 0.098 0.014 0.057 

* The results with tumor as target are derived from the five tumor-bearing mouse studies. 
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Figure 5-1 Measured and simulated PTAC and TTACs. (a) Measured PTAC of one 

sample mouse study; (b) Measured TTACs of one sample mouse study; (c) 

Simulated noise-free PTAC obtained using (5-6) ; (d) Simulated noise-free TTACs 

using the rates constants in Table 5-1. 

5.4.2 Effect of Relative Influx Rate in Small-Animal Studies 

Table 5-2 lists the relative influx rate derived by WNLS method (𝐾tr,WNLS), 

PGA method (𝐾tr,PGA) and nPGA method (𝐾tr,nPGA). When the brain was chosen as 

the reference ROI, comparably similar values of relative influx rates were observed 

by 𝐾tr,WNLS, 𝐾tr,nPGA and 𝐾tr,PGA for the targets of lungs, muscles and tumors. The 

results for the liver were the exception. Similar results were observed when the lung 

ROI was used as the reference. When the muscles were chosen as the reference ROI, 

similar results were observed between 𝐾tr,nPGA and 𝐾tr,PGA for the brain, lungs and 

tumors, with the liver results again being an exception. However, both 𝐾tr,nPGA and 
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𝐾tr,PGA were underestimates of the relative influx rate when compared to 𝐾tr,WNLS. 

The results were quite different when the liver was chosen as the reference ROI. 

Compared to 𝐾tr,WNLS , 𝐾tr,PGA  was an overestimate while 𝐾tr,nPGA  was an 

underestimate.  

Table 5-2 Relative influx rates for the studied pair of target and reference  

Reference Ktr 
Target  (mean ± SD) 

1 brain 2 lung 3 liver 4 muscle 5 tumor* 

1 brain 

𝑲𝐭𝐫,𝐖𝐍𝐋𝐒 

 

0.55±0.27 0.37±0.27 0.17±0.11 1.58±0.43 

𝑲𝐭𝐫,𝐏𝐆𝐀 0.55±0.26 0.24±0.26 0.20±0.11 1.69±0.40 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 0.62±0.24 0.57±0.29 0.19±0.09 1.76±0.44 

2 lung 

𝑲𝐭𝐫,𝐖𝐍𝐋𝐒 2.25±1.05 

 

0.64±0.22 0.32±0.19 5.07±0.84 

𝑲𝐭𝐫,𝐏𝐆𝐀 2.21±0.96 0.44±0.14 0.37±0.18 5.23±0.81 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 1.85±0.83 0.86±0.26 0.31±0.10 5.14±1.06 

3 liver 

𝑲𝐭𝐫,𝐖𝐍𝐋𝐒 4.04±2.45 1.72±0.51 

 

0.53±0.30 10.53±1.06 

𝑲𝐭𝐫,𝐏𝐆𝐀 5.72±3.10 2.61±1.12 0.95±0.63 13.81±4.15 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 2.35±1.53 1.24±0.39 0.35±0.14 8.68±1.88 

4 muscle 

𝑲𝐭𝐫,𝐖𝐍𝐋𝐒 9.89±9.44 4.25±2.61 2.6±1.60 

 

27.13±19.26 

𝑲𝐭𝐫,𝐏𝐆𝐀 7.96±6.37 3.37±1.70 1.46±0.92 23.39±11.69 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 7.10±6.23 3.58±1.55 3.22±1.59 26.15±18.49 

* The results with tumor as target are derived from the five tumor-bearing mouse 

studies. 

Table 5-3 lists the results of the linear regression analysis for  𝐾tr,nPGA vs. 𝐾tr,WNLS 

and 𝐾tr,nPGA vs. 𝐾tr,PGA for the same reference groups, where a and b are the calculated 

slope and intercept, respectively. From the results, high linear correlations (R2>0.9) 

were achieved in 𝐾tr,nPGAvs. 𝐾tr,WNLS and 𝐾tr,nPGA vs. 𝐾tr,PGAwhen the brain, lungs 

and muscle were used as reference. However, the results when using the liver as the 

reference region were not as good as expected especially in 𝐾tr,nPGA  vs. 𝐾tr,PGA , 
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where a was much lower than 1 and R2 was less than 0.9. For the fair comparison, 

Table 5-4 lists the results of linear regression analysis of the estimates of  𝐾tr,nPGA 

vs. 𝐾tr,WNLS and of  𝐾tr,nPGA vs. 𝐾tr,PGA for the same target groups. High correlation 

was still observed for 𝐾𝑡𝑟,𝑛𝑃𝐺𝐴 vs. 𝐾tr,WNLS and  𝐾tr,nPGA vs. 𝐾tr,PGA when the brain, 

lungs and tumor ROIs were chosen as targets. The worst correlation was observed 

when the muscle ROI was used as the target. However, the results when using the 

tumor ROI as the target indicated that the estimated 𝐾tr,nPGA were quite similar to 

𝐾tr,PGA and 𝐾tr,WNLS. Thus, nPGA potentially has a better capacity for malignant 

tumor detection. 

Table 5-3 A summary of linear regression for the same reference groups. 

Reference 
(y=ax+b) 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 vs. 𝑲𝐭𝐫,𝐖𝐍𝐋𝐒 𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 vs. 𝑲𝐭𝐫,𝐏𝐆𝐀 

a b R2 a b R2 

brain 1.01 0.102 0.953 0.944 0.151 0.923 

lung 0.918 0.0702 0.971 0.891 0.146 0.964 

liver 0.764 -0.197 0.959 0.525 -0.134 0.884 

muscle 1.11 -0.635 0.915 1.12 -0.036 0.939 

Table 5-4 A summary of linear regression for the same target groups. 

Target 
(y=ax+b) 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 vs. 𝑲𝐭𝐫,𝐖𝐍𝐋𝐒 𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 vs. 𝑲𝐭𝐫,𝐏𝐆𝐀 

a b R2 a b R2 

brain 0.663 0.185 0.979 0.824 -0.455 0.894 

lung 0.673 0.321 0.918 0.754 0.161 0.812 

liver 1.05 0.257 0.941 1.76 0.264 0.874 

muscle 0.480 0.114 0.708 0.174 0.194 0.317 

Tumor* 0.955 -0.155 0.994 1.18 -2.58 0.945 
* The results with tumor as target are derived from the five tumor-bearing mice 

studies. 
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5.4.3 Effect of Noise Levels 

Table 5-5 lists the mean and SD for the estimated relative influx rates obtained 

in the computer simulations across different noise levels. A certain pair of target and 

reference ROIs is specified by the subscripts in Table 5-5. For example, 𝐾12 

represents the relative influx rate when the brain (t=1) and lung (r=2) ROIs were 

adopted as the target and reference regions, respectively. It was observed that the 

mean 𝐾tr,PGA and mean 𝐾tr,nPGA both changed slightly with increasing noise levels. 

The percent bias of mean 𝐾tr,PGA  and 𝐾tr,nPGA  compared to 𝐾tr,true  were also 

calculated. The highest bias exceeded 50% when the liver and brain ROIs were 

chosen as the target and reference regions, respectively. The percent biases of the 

relative influx rates estimated by PGA and nPGA methods are plotted as a function 

of the noise levels in  

Figure 5-2 to show the changes of the percent bias as noise levels increase. It 

was demonstrated that the relative influx rate was insensitive to varied noise levels 

despite the high biases that were observed for the cases of liver ROI versus brain or 

lung ROIs (𝐾13, 𝐾23, 𝐾31 and 𝐾32). However, when tumor was chosen as target, the 

biases of 𝐾tr,nPGA  were around 10% comparing with 𝐾tr,true  at the various noise 

levels and those of  𝐾tr,PGA were no more than 20%. Figure 5-3 plots the CV of the 

relative influx rates as a function of the noise levels. The reliabilities of the 

estimated relative influx rates for both  𝐾tr,PGA  and 𝐾tr,nPGA  were degraded when 

noise levels increased. For example, the CV of 𝐾54 reached about 3.5% and CV of 

𝐾tr,PGA  was about 9.4% at a noise level of 4. Similar trends of CVs were also 

observed for other relative influx rates by using different target and reference ROIs. 

The CVs of most 𝐾tr,PGA were about as twice as those of 𝐾tr,nPGA. 



  

 
 

Table 5-5 Estimates of the relative influx rates (𝐾𝑡𝑟) under different noise levels. 
Ref. Brain (Mean±SD) Lung (Mean±SD) Liver (Mean±SD) Muscle (Mean±SD) 

Target lung liver muscle tumor brain liver muscle tumor brain lung muscle tumor brain lung liver tumor 

𝑲𝐭𝐫 K21 K31 K41 K51 K12 K32 K42 K52 K13 K23 K43 K53 K14 K24 K34 K54 

𝑲𝐭𝐫,𝐭𝐮𝐫𝐞 0.41 0.25 0.12 3.46 2.41 0.60 0.28 8.35 4.03 1.67 0.47 13.95 8.49 3.52 2.11 29.41 

(a) 1 run with noise level c = 0 

𝑲𝐭𝐫,𝐏𝐆𝐀 0.38 0.23 0.14 3.86 2.60 0.61 0.37 10.03 4.28 1.65 0.61 16.52 7.08 2.72 1.65 27.31 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 0.44 0.41 0.15 4.05 2.26 0.92 0.34 9.49 2.43 1.10 0.38 11.85 6.64 2.91 2.63 27.73 

(b) 100 runs with noise level c = 0.1 

𝑲𝐭𝐫,𝐏𝐆𝐀 0.38 
±0.0040 

0.23 
±0.0044 

0.14 
±0.0024 

3.86 
±0.023 

2.61 
±0.027 

0.61 
±0.013 

0.37 
±0.0068 

10.05 
±0.093 

4.30 
±0.082 

1.65 
±0.034 

0.61 
±0.015 

16.56 
±0.304 

7.08 
±0.123 

2.72 
±0.050 

1.65 
±0.041 

27.31 
±0.448 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 0.44 
±0.0013 

0.41 
±0.0027 

0.15 
±0.0010 

4.05 
±0.012 

2.26 
±0.0066 

0.91 
±0.0071 

0.34 
±0.0018 

9.49 
±0.041 

2.43 
±0.016 

1.10 
±0.010 

0.38 
±0.002 

11.84 
±0.130 

6.63 
±0.050 

2.90 
±0.015 

2.63 
±0.012 

27.65 
±0.182 

(c) 100 runs with noise level c = 0.5 

𝑲𝐭𝐫,𝐏𝐆𝐀 0.38 
±0.0093 

0.23 
±0.010 

0.14 
±0.0054 

3.85 
±0.047 

2.61 
±0.064 

0.60 
±0.028 

0.37 
±0.015 

10.07 
±0.231 

4.33 
±0.181 

1.66 
±0.077 

0.61 
±0.034 

16.68 
±0.684 

7.12 
±0.270 

2.73 
±0.115 

1.65 
±0.089 

27.43 
±1.00 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 0.44 
±0.0013 

0.41 
±0.0034 

0.15 
±0.0023 

4.05 
±0.027 

2.25 
±0.013 

0.91 
±0.012 

0.34 
±0.004 

9.47 
±0.081 

2.45 
±0.020 

1.10 
±0.014 

0.38 
±0.004 

11.71 
±0.238 

6.56 
±0.108 

2.89 
±0.036 

2.63 
±0.026 

27.69 
±0.424 

(d) 100 runs with noise level c = 1.0 

𝑲𝐭𝐫,𝐏𝐆𝐀 0.38 
±0.013 

0.23 
±0.014 

0.14 
±0.0075 

3.86 
±0.070 

2.60 
±0.087 

0.61 
±0.039 

0.37 
±0.020 

10.04 
±0.34 

4.27 
±0.246 

1.64 
±0.104 

0.60 
±0.045 

16.47 
±0.901 

7.12 
±0.379 

2.74 
±0.145 

1.67 
±0.124 

27.44 
±1.34 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 0.44 
±0.0037 

0.41 
±0.0040 

0.15 
±0.0035 

4.05 
±0.042 

2.25 
±0.019 

0.91 
±0.012 

0.34 
±0.004 

9.46 
±0.108 

2.45 
±0.024 

1.10 
±0.015 

0.38 
±0.005 

11.65 
±0.319 

6.51 
±0.162 

2.89 
±0.037 

2.63 
±0.035 

27.80 
±0.515 

(e) 100 runs with noise level c = 2.0 

𝑲𝐭𝐫,𝐏𝐆𝐀 0.38 
±0.018 

0.23 
±0.018 

0.14 
±0.0099 

3.87 
±0.102 

2.62 
±0.124 

0.61 
±0.054 

0.37 
±0.028 

10.12 
±0.413 

4.31 
±0.349 

1.65 
±0.149 

0.61 
±0.060 

16.67 
±1.34 

7.13 
±0.513 

2.73 
±0.213 

1.66 
±0.162 

27.56 
±2.01 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 0.44 
±0.0053 

0.41 
±0.0055 

0.16 
±0.0051 

4.05 
±0.058 

2.25 
±0.027 

0.91 
±0.015 

0.35 
±0.0070 

9.42 
±0.157 

2.46 
±0.034 

1.09 
±0.019 

0.38 
±0.007 

11.43 
±0.419 

6.41 
±0.217 

2.86 
±0.058 

2.63 
±0.049 

27.65 
±0.658 

(f) 100 runs with noise level c = 4.0 

𝑲𝐭𝐫,𝐏𝐆𝐀 0.39 
±0.025 

0.23 
±0.029 

0.14 
±0.014 

3.88 
±0.137 

2.60 
±0.165 

0.60 
±0.080 

0.37 
±0.045 

10.06 
±0.648 

4.41 
±0.589 

1.70 
±0.241 

0.62 
±0.092 

17.07 
±2.17 

7.13 
±0.680 

2.76 
±0.328 

1.64 
±0.233 

27.60 
±2.59 

𝑲𝐭𝐫,𝐧𝐏𝐆𝐀 0.44 
±0.0072 

0.41 
±0.0085 

0.16 
±0.0067 

4.05 
±0.067 

2.25 
±0.036 

0.92 
±0.021 

0.35 
±0.010 

9.41 
±0.277 

2.46 
±0.053 

1.09 
±0.025 

0.38 
±0.012 

11.26 
±0.531 

6.33 
±0.277 

2.85 
±0.076 

2.63 
±0.080 

27.84 
±0.978 



  

 
 

 

Figure 5-2 Plot of percentage bias of relative influx rates estimated by PGA and nPGA methods at different noise levels. In all the sub-figures, 

the vertical axis denotes the bias in percentage, and the horizontal axis notes the noise level c, which could be set to 0, 0.1, 0.5, 1, 2 and 4. The 

blue open circle markers indicate the bias values of 𝐾tr,PGA under different noise levels, while the magenta open triangle markers are for those of 

𝐾tr,nPGA. The solid lines reflect the change tendencies of bias with the rise of noise level. 



  

 
 

 
Figure 5-3 Plot of CVs of relative influx rate estimated by PGA and nPGA methods at different noise levels. In all the sub-figures, the vertical 

axis denotes the CV in percentage, and the horizontal axis denotes the noise level c, which could be set to 0, 0.1, 0.5, 1, 2 and 4. The blue open 

circle markers indicate the CV values of 𝐾tr,PGA under different noise levels, while the magenta open triangle markers are for those of 𝐾tr,nPGA. 

The solid lines reflect the change tendencies of CVs with the increase of the noise level.  
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5.4.4 Effect of Kinetic Model in Parameter Estimation 

The biases of the relative influx rates derived by PGA and nPGA methods 

were calculated comparing with their true values from the kinetic model. The four 

kinetic models that were used in the study of the effect of the kinetic model were 

the three-compartment four-parameter model with vascular volume (3c4pVb), the 

three-compartment four-parameter model without vascular volume (3c4p), the 

three-compartment three-parameter model (k4=0) with vascular volume (3c3pVb), 

and the three-compartment three-parameter model (k4=0) without vascular 

volume (3c3p). 𝐾tr was estimated using the PGA and nPGA methods. Table 5-6 

lists the percent bias of 𝐾12 and 𝐾52 derived by PGA and nPGA method compared 

with their true values for the simulated TTACs at a noise level of 0.  

Table 5-6 Percent bias of 𝐾12 and 𝐾52 of PGA and nPGA compared with true 

values for different model at noise level c=0. 

Models 3c4pVb 3c4p 3c3pVb 3c3p 

𝑲𝟏𝟐 
PGA 2.7% 11.6% 7.5% 2.0% 

nPGA 6.4% 6.1% 15.9% 1.2% 

𝑲𝟓𝟐 
PGA 30.7% 16.3% 23.5% 0.9% 

nPGA 13.6% 6.0% 11.6% 0.03% 

The lowest bias with the 3c3p model (≤2.0%) was achieved for both PGA 

and nPGA. The introduction of k4 in the 3c4p model led to the bias increasing to 

about 10% for PGA and 6% for nPGA. The addition of the vascular volume in the 

kinetic model led to another increase of at least 5% for PGA and nPGA. 
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5.5 Discussion 

From the results of the small-animal studies and computer simulations 

presented in this chapter, it can be determined that the nPGA method was not 

efficient when the liver was used as either the reference ROI or the target ROI. 

The PGA method is originally proposed for the simplified FDG model with one 

irreversible compartment for FDG-6-PO4 in tissue (k4=0). Since the nPGA 

method originates from the PGA method, nPGA should be efficient for tissues 

with a low value of k4. If k4 is sufficiently lower than the other rate constants, the 

tracer can be assumed to be irreversibly trapped and k4 can be neglected. However, 

this assumption of tracer kinetics is violated in the liver. The results of the 

estimated rate constants in Table 5-1 show that for the liver the average k4 was 

comparable with k3, whereas in the brain, where nPGA and PGA methods 

performed better, the average k4 was approximately 10% of k3. Furthermore, the 

use of a dual blood input has been proposed for tracer kinetic modeling of the 

liver [104, 134] in order to precisely reflect the FDG kinetics in this organ. 

However, it is impractical to delineate ROIs of the hepatic artery and portal vein 

of the liver in mice due to the small size of the vessels and the limited spatial 

resolution of the scanner.  

The FDG kinetics in muscle ROIs can be reflected by a four-compartment 

and five-parameter model [135]. The simplified kinetic models that underlie the 

PGA and nPGA methods might lead to errors during the estimation of parameters. 

However, high linear correlation of the relative influx was still observed when the 

muscle was chosen as the reference as shown in Table 5-3, while low linear 

correlation was achieved when the muscle was chosen as the target region. It 
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seems that the comparably lower K1 in the muscle may contribution to such the 

discrepancy for the muscle. 

The three-compartment and four-parameter FDG kinetic model with vascular 

volume (3c4pVb) was used in WNLS fitting for the experimental data and 

computer simulations. This was because, according to the Akaike Information 

Criteria (AIC) and Schwarz Criteria (SC), this model provides the best fit TTACs 

for the brain and lungs compared to other models. For the lungs, the 3c4pVb 

model has the lowest AIC and SC values (AIC3c4pVb= -304.8±45.7 and SC3c4pVb= -

297.3±45.7) compared with those of the 3c3pVb model (AIC3c3pVb= -259.2±30.4 

and SC3c3pVb= -253.2±30.4) and the 3c3p model (AIC3c3p= -235.8±31.2 and 

SC3c3p= -231.3±31.3). The 3c4pVb model was also chosen as golden standard to 

analyze the FDG kinetics in lungs [136]. Although the general FDG model 

(3c4pVb) was not the best model for the liver and muscles, it is reasonable to 

apply the general FDG model in the simulation and provide referenced parameters 

because the focus of this study was to evaluate the performance of nPGA 

compared with traditional PGA in whole-body mouse studies in order to avoid the 

requirement of invasive blood samples which is challenging in small animal 

studies. The use of the general FDG model provided a simple and practical 

approach in the investigation, which is also consistent with previous mice 

investigations in the literatures [108, 133, 137]. 

The computer simulations were performed under varied noise levels in order 

to evaluate the effects of noise on the PGA and nPGA methods. From the results, 

it was discovered that the average 𝐾tr,PGA and 𝐾tr,WNLS changed very slightly as 

the noise level increased. This demonstrated that the relative influx rate was 
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insensitive to varied noise levels. Moreover, the results of the CVs indicated that 

the reliability of 𝐾tr,PGA became worse than that of 𝐾tr,nPGA with increasing noise 

levels. This may imply that the use of a reference ROI somehow reduces the effect 

of noise in the generation of the relative influx rate of the target ROI. Hence, the 

nPGA method could be applied to PET images that have a low signal-to-noise 

ratio. 

It is not surprising to observe that different biases were obtained for nPGA 

and WNLS because different models were used in these two methods. When the 

3c3p model was used for WNLS fitting, biases that were ≤2% were observed for 

the PGA and nPGA methods. The addition of k4 in the model led to a 10% 

increase of the bias in the fitting. Comparing the 3c3p and 3c3pVb models shows 

that the introduction of vascular volume also resulted in a 10% increase in the bias. 

No significant increase of bias was observed for nPGA between the 3c3pVb and 

3c4pVb models. This may imply that the procedure for the estimation of the 

relative influx rate in the nPGA method somehow compensates for the bias during 

the calculation of the influx rates of the individual ROIs using PGA method.  

When the target ROI was placed on the tumor in the computer simulations, 

the accuracy of the relative influx rate achieved by the nPGA method was 

considerably higher than that obtained by the PGA method. A high linear 

correlation was also achieved between 𝐾tr,nPGA  vs. 𝐾tr,WNLS  and 𝐾tr,nPGA  vs. 

𝐾tr,PGA  for the tumor target in small animal studies. The relative influx rates 

derived by the nPGA method were reasonably close to the values of 𝐾tr,WNLS 

compared to those obtained via the PGA method in small animal studies. This 

implies that the nPGA method may be superior in the non-invasive quantification 
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of tumors when a suitable reference is available. Because the nPGA method is 

based upon the PGA method, a suitable reference could be a tissue with low k4 in 

the general FDG kinetic model, where the tracer can be assumed to be irreversibly 

trapped. The results of the mouse studies show that the values of k4 for the brain, 

lungs and muscle were relatively lower. Moreover, the results of linear 

regressions showed that the brain, lungs and muscle could be used as suitable 

references for the derivation of acceptable relative influx rates by the nPGA 

method. If the tracer kinetics of the target and reference regions are very distinct, 

the nPGA method would have a better performance. This may be the reason for 

the good results obtained for the tumor target, where the FDG kinetics are very 

different from other regions. 

The range of data used in the PGA method can have an impact the on the 

estimate of the slope in the linear plot. This causes a slight instability in the PGA 

method. In previous studies, the range of the data has been recommended as 3-22 

minutes in order to minimize the effect of k4 [90, 108]. The range of data used in 

the PGA method was adopted in order to obtain the target influx rates for ROIs of 

the selected major organs. The optimal range of the data used in nPGA cannot be 

derived from the processes that deduce the nPGA method. Thus, a range of  𝑡 >

3 minutes was used in the nPGA method presented in this paper. Finding the 

optimal range of the nPGA method warrants further investigation using a larger 

preclinical dataset.  

According to (2-5), MRGlc of the target region can be calculated as (5-9) 

using relative influx reate when the lump constant is assumed to be uniform in the 
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reference and target regions. This is allowed to quantify the MRGlc of target 

tissue when the appropriate reference chosen. 

𝑀𝑅𝐺𝑙𝑐tg = 𝑀𝑅𝐺𝑙𝑐ref
𝐾tg
𝐾ref

= 𝑀𝑅𝐺𝑙𝑐ref × 𝐾𝑡𝑟 (5-9) 

The performance of PGA method is often compared with the standard uptake 

value (SUV), a popular semi-quantitative index, in cancer diagnosis and therapy 

evaluation [138, 139]. In a future study, the performance of nPGA method will be 

investigated by comparing with SUV or target to background ratio (TBR) in 

accurate tumor detection and therapy monitoring. Further investigations could 

also show that the nPGA method is potentially useful for tumor quantification in 

human studies. 

5.6 Summary 

The performance of the nPGA method was systematically investigated by a 

set of whole-body FDG-PET studies of mice and corresponding computer 

simulations. The results of the computer simulations demonstrated that for most 

ROIs, the nPGA method was as accurate as and more reliable than the PGA 

method. The results of the mouse studies showed that a high linearity of relative 

influx rates was achieved between nPGA and PGA for most target and reference 

pairs, when an appropriate underlying kinetic model was used. Considering its 

simplicity in implementation and the benefits of being a non-invasive technique, 

the nPGA method could provide a practical solution for the non-invasive 

quantification of glucose metabolism based on proper selection of reference region in 

whole-body FDG-PET studies of small-animals, in cases where the contribution 



  

- 95 - 
 

of k4 and the vascular effect can be neglected. In particular, it could be 

recommended as a non-invasive and indirect method for quantifying the MRGlc 

of tumor in preclinical studies.  
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Chapter 6  
 
Automatic Estimation of Input 
Function for Dynamic Small-Animal 
PET Imaging 

6.1 Introduction 

Chapter 5 has introduced a non-invasive method, nPGA, to measure the 

MRGlc using the relative influx rate in the small-animal PET imaging. However, the 

image-derived input function (IDIF) methods referred in 2.5.1, which rely on a 

sufficiently large vascular structure in the imaging field of view (FOV), are more 

direct and convenient than reference region method and population-based method to 

precisely derive PTAC for estimations of the individual biological parameters. 

Especially for small-animal PET imaging, the entire body of the subject is often 

located in the FOV including the heart which could be assumed as a large blood pool. 

In the exiting IDIF methods, the PTAC can be obtained by simply placing a ROI on 

a large blood cavity such as left ventricle of the heart [98, 140]. TTACs can be 

obtained from other ROIs placed on the target tissues for the further quantitative 

analysis using tracer kinetic modeling. The quality of the ROI delineation depends 
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upon the experience of the operator. This manual approach is subjective, labor-

intensive, and time-consuming, and as such semi- or fully-automatic ROI 

delineation methods that utilize some objective criterion are necessary in order to 

overcome these disadvantages. 

Despite the significant efforts that have gone into attempting to achieve 

automatic delineation or segmentation in PET images as reviewed in 1.3, there are 

still issues that need to be addressed today. These previous clustering methods 

handled the TACs or the sinograms as sequences of discrete points in vector form 

and did not utilize the potentially valuable smoothness or continuous temporal 

information. Specific statistical techniques based on the regression mixtures 

framework have been introduced to directly address curve clustering. These 

techniques could be considered as model-based clustering [141]. Curve clustering 

using polynomial regression mixture models (PRMMs) is the most computationally 

efficient method among these statistical techniques. 

In this chapter, a novel hybrid clustering method (HCM) was developed based 

on the method of curve clustering with PRMMs for the automatic delineation of 

ROIs that will be used to estimate IDIF. 

6.2 Theory of Hybrid Clustering Method 

The proposed HCM for automatic ROI delineation consisted of three major 

steps: Step 1: background removal, Step 2: curve clustering with polynomial 

regression mixture models (PRMMs), and Step 3: classes merging, respectively. The 
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overall approach is depicted in Figure 6-1. The processes would be described in 

detail using an FDG-PET image as an example. 

 

Figure 6-1 Flowchart of the proposed HCM for ROI delineation 

6.2.1 Background Removal 

In this step, the heart was coarsely localized prior to delineating the 

myocardium ROI (ROImyo) and blood cavity ROI (ROIblc). The background that was 

removed included pixels outside the scanned subject, which contained only noise 

and reconstruction artifacts, and pixels of tissues with lower activities, such as 

muscles, fat and skin. In late frames, the pixels depicting the heart had higher time-

activities than their surroundings. However, it was possible that the bladder could 

also have high activities during the late frames. As such, only the thoracic part of the 

FDG-PET image was processed in this step, in order to exclude the bladder based on 

prior anatomical knowledge. K-means clustering was used to cluster all the pixels of 

the truncated thoracic FDG-PET image into several classes based on the different 

magnitudes of tracer activities in the last frame (~60min post tracer injection). This 

was achieved by minimizing the cost function given by (6-1). 

𝜃 = � � �𝐴𝑖
𝑗−𝐶𝑗�

2𝑛

𝑖=1

𝑘

𝑗=1
 (6-1) 
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where, 𝐴𝑖
𝑗 is the activity of the ith pixel assumed to be in the jth class, 𝐶𝑗 is the center 

of the jth class, which can be initialized as the equal distance center in dataset. 𝑘 is 

the cluster number, and 𝑛 is the number of pixels in the jth class, which can be 

updated in each iteration. 

The pixels in the class with the highest average activity were denoted as a 

coarse part of the heart. a binary mask was then created in which these pixels were 

set to be one; the remaining pixels were set to zero, as they were considered to be 

part of the background and would therefore be removed. In the next two steps, this 

heart mask was applied to individual temporal frames of the FDG-PET image in 

order to obtain the coarse heart localization, which included the entire heart as well 

as parts of surrounding tissues such as partial lungs and blood vessels. 

6.2.2 Curve Clustering with PRMMs  

Every pixel in a dynamic PET image has a corresponding TAC, which can be 

represented as a sequence of discrete activities. This sequence has a length of 𝑇. The 

imaging time points can be considered to be a vector 𝑥𝑖 . Let 𝑛 be the number of 

pixels in the preliminary heart mask obtained from Step 1. These pixels could then 

be represented as a set of 𝑛 TACs {𝑦1,𝑦2,⋯ , 𝑦𝑛}. A pth order polynomial regression 

relationship was assumed between each TAC 𝑦𝑖 and the imaging time points 𝑥𝑖 with 

additive Gaussian noise term 𝜀𝑖, as given by (6-2). 

𝑦𝑖 = 𝑋𝑖𝛽 + 𝜀𝑖 , 𝜀𝑖~𝒩(0,𝜎2𝐼) (6-2) 

where 𝑦𝑖 ∈ ℛ𝑇 is the TAC of the ith pixel, 𝛽 is the vector containing the p regression 

coefficients, and 𝑋𝑖  is the 𝑇 × 𝑝 Vandermonde regression matrix evaluated at the 

imaging time points 𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 … 𝑥𝑖T]𝑇, which is formulated as (6-3). 
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𝑋𝑖 =

⎣
⎢
⎢
⎢
⎡1 𝑥𝑖1 𝑥𝑖12 ⋯ 𝑥𝑖1

𝑝

1 𝑥𝑖2 𝑥𝑖22 … 𝑥𝑖2
𝑝

⋮   ⋮   ⋮  ⋱  ⋮
1 𝑥𝑖T 𝑥𝑖T2 … 𝑥𝑖T

𝑝 ⎦
⎥
⎥
⎥
⎤
 (6-3) 

Therefore, the conditional probability density function (PDF) of 𝑦𝑖  can be 

modeled in terms of the regression equation as a normal distribution 𝒩(𝑦𝑖|𝑋𝑖𝛽,𝜎2𝐼). 

This PDF represents a probabilistic curve model that is associated with a curve 

cluster. If the set of TACs was separated into 𝐾 distinct clusters in accordance to the 

similarity of the physiological kinetics, the density of a TAC 𝑦𝑖 could be described 

as a finite mixture model with a number of component PDFs whose densities were 

noted by the parameters {𝛽𝑘 ,𝜎𝑘2} as  𝒩(𝑦𝑖|𝑋𝑖𝛽𝑘,𝜎𝑘2𝐼). In other words, these cluster-

dependent PDFs were incorporated into a conditional mixture density model given 

by (6-4). This resulted in the definition of the PRMMs for curve clustering. 

𝑝(𝑦𝑖|𝑋𝑖 ,𝛩) = �𝛼𝑘

𝐾

𝑘=1

𝒩(𝑦𝑖|𝑋𝑖𝛽𝑘 ,𝜎𝑘2𝐼) (6-4) 

where 𝛼𝑘  denotes the probability that the ith TAC 𝑦𝑖  is assigned to cluster 𝑘. The 

mixture model parameters 𝛩 = (𝛽,𝜎2,𝛼) were estimated by maximizing the log-

likelihood function of 𝑛 observed TACs, as given by (6-5). 

𝐿(𝑌|𝛩) = � log��𝛼𝑘

𝐾

𝑘=1

𝒩(𝑦𝑖|𝑋𝑖𝛽𝑘 ,𝜎𝑘2𝐼)�  
𝑛

𝑖=1

 (6-5) 

An expectation-maximization (EM) algorithm was adopted to search the 

maximum log-likelihood estimates of the parameters for the probabilistic curve 

model. These parameters depended upon unobserved latent variables.  



  

- 101 - 
 

The latent variable 𝑧𝑖  was used to indicate the cluster membership for the 

TAC 𝑦𝑖. In the E-step, the posterior probability 𝑝(𝑧𝑖 = 𝑘|𝑦𝑖 ,𝑋𝑖), which indicates the 

probability of the TAC 𝑦𝑖 belonging to the cluster 𝑘, was calculated by (6-6).  

𝑤𝑖𝑘 = 𝑝(𝑧𝑖 = 𝑘|𝑦𝑖 ,𝑋𝑖) =
𝛼𝑘𝒩(𝑋𝑖𝛽𝑘 ,𝜎𝑘2𝐼)

∑ 𝛼𝑘𝐾
𝑘=1 𝒩(𝑋𝑖𝛽𝑘 ,𝜎𝑘2𝐼)

 (6-6) 

In the M-step, the expected value of the complete log-likelihood was 

maximized with respect to the parameters 𝛽𝑘 , 𝜎𝑘2  and 𝛼𝑘 . This allowed us to 

calculate updated solutions for mixture model parameters using (6-7). 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝛽̂𝑘 = ��𝑤𝑖𝑘𝑋𝑖′𝑋𝑖

𝑛

𝑖=1

�
−1

�𝑤𝑖𝑘𝑋𝑖′𝑦𝑖

𝑛

𝑖=1

𝜎�𝑘 =
∑ 𝑤𝑖𝑘‖𝑦𝑖 − 𝑋𝑖𝛽𝑘‖2𝑛
𝑖=1

∑ 𝑤𝑖𝑘𝑛
𝑖=1

𝛼�𝑘 =
∑ 𝑤𝑖𝑘𝑛
𝑖=1

𝑛

� (6-7) 

After the convergence of the EM algorithm, the polynomial regression function 

for each cluster could be expressed in terms of the regression coefficients 𝛽. The 

clusters of TACs were thus defined by obtaining the cluster membership from the 

model parameters. The 𝑛  pixels within the heart mask could be divided into 𝐾 

classes, based on their corresponding TACs. During the next step, the refined ROI 

delineations would be obtained by utilizing these 𝐾 classes. 

6.2.3 Classes Merging 

In dynamic FDG-PET studies, it is assumed that equilibrium will be reached 

between plasma and free tissue concentration after a sufficiently long time 

(approximately 30 minutes) post tracer administration. This process is recorded in 

the late frames. Moreover, the late frames of dynamic FDG-PET images usually 
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have a higher SNR than early frames as they have a relatively longer scanning 

duration. As a result, it is possible that the images of different tissues could be 

clearer and more stable in the late frames compared to the early frames. The activity 

information in the late frames was suitable for refining the ROI delineation. 

The heart, which is the indispensable organ for the blood circulation, is 

primarily composed of cardiac muscle tissue. This tissue forms the ventricles and 

atriums. The heart can be proposed to be divided into two structures: the 

myocardium and the blood cavity. The heart mask defined in 6.2.1 may include 

some surrounding tissues, such as partial lung tissue and large blood vessels. After 

considering the properties of dynamic PET images and the characteristics of the 

heart’s anatomy, the classes derived from 6.2.2 were merged into three major 

clusters using the activity information from the last three individual frames. This 

was achieved through hierarchical clustering. The complete linkage clustering 

algorithm was applied to iteratively merge the two classes with the smallest distance 

as calculated in (6-8). 

𝑑(𝐴𝑚,𝐴𝑛) = ‖𝐴𝑚 − 𝐴𝑛‖2 = �(𝐴𝑚𝑖 − 𝐴𝑛𝑖)2
3

i=1

 (6-8) 

where 𝐴𝑚  and 𝐴𝑛  represent the average time activities of the pixels within two 

distinct classes 𝑚 and 𝑛 for the last three individual frames.  

The pixels within the heart mask were finally separated into three distinct 

clusters: one is for the myocardium; another for the blood cavity, and a final cluster 

for the surrounding tissue. The ROIblc was defined to be the cluster whose mean 

TAC had the highest peak. The ROImyo was defined from the cluster that had a mean 

TAC with a high tail, i.e. higher myocardium activity was expected in the late 
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frames. ROImyo and ROIblc were then recorded as binary images and the ROI 

delineation was refined by a “morphological opening” operation (see Appendix B ) 

that used a diamond-shaped structuring element with distance of 1 to remove pixel-

size artifacts and noise. 

6.2.4 Parameters of the HCM  

The numbers of clusters for these three steps described before were set as the 

parameters of the proposed HCM. To achieve optimal performance in ROI 

delineation, the parameters used in the HCM were chosen empirically according to 

the properties of the FDG-PET image. The heart, lungs, and muscles were 

considered as the major organs observed in a thoracic PET image. The muscles often 

have relatively lower activities in the late frames of dynamic FDG-PET images. As 

such, they formed a cluster along with the parts outside the scanned subject. For 

background removal, we therefore set the number of clusters for the K-means 

clustering in Step 1 to 3. The number of clusters for curve clustering was empirically 

set to 5 for the detection of small structures. This setting was more stable than 

having 4 clusters and was less computationally expensive than 6. For Step 3, we set 

the number of clusters for hierarchical clustering to 3 because the typical properties 

of FDG concentrations in the heart could lead to the myocardium, the blood cavity 

and the surrounding tissue being produced as three distinct clusters. 

The proposed hybrid clustering method for the ROI delineation was evaluated 

by the simulation studies in the following sections, and then applied for automatic 

estimation of the IDIF in a set of mouse FDG-PET studies.  
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6.3 Estimation of Imaged-Derived Input Function 

The basic of the image-derived input function (IDIF) with spillover correction 

has been introduced in 2.5.1. By considering (2-25) and (2-26) together, the 𝐶̃b(t) 

was used as the new input for the represented model with the dual outputs of 𝐶̃t(t) 

and 𝐶p(𝑡). There were six unknown parameters in this represented model: four rate 

constants (𝑘1 , 𝑘2 , 𝑘3 , and 𝑘4 ) and two spillover factors (𝑓𝑚𝑏  and 𝑓𝑏𝑚 ). These 

parameters were given initial values empirically and were then estimated by fitting 

the outputs of the model to the measurements of the PET and one blood sample, 

using the WNLS method to minimize the objective function given in (6-9). 

𝛷(𝜃) = �𝑤𝑖

𝑁

𝑖=1

�𝐶̃t∗(𝑡𝑖) − 𝐶̃t(𝑡𝑖)�
2

+ 𝑤b �𝐶p(𝑡𝑠) − 𝑝(𝑡𝑠)�
2
 (6-9) 

where 𝜃  is the vector of parameters, which includes the rate constants for the 

compartment model and the mixing coefficients for the spillover effects. 𝐶̃𝑡∗(𝑡𝑖) and 

𝐶̃𝑡(𝑡𝑖) are the estimated and measured mean time activities of the myocardium at 

time 𝑡𝑖 (from the ith frame). 𝑤𝑖 is the weight that is calculated as the ratio between 

the duration of the ith frame and 𝐶̃𝑡(𝑡𝑖) [133]. 𝐶𝑝(𝑡𝑠) is the TAC of the spillover 

corrected input function at time 𝑡𝑠, and 𝑝(𝑡𝑠) is the plasma time-activity of blood 

sample at time 𝑡𝑠. 𝑤𝑏 is the weight for the blood sample, which is chosen to be a 

large value (e.g. 3) so that the measurement from this real blood sample is given 

more weight [53]. 

The dispersion and delay of the PTAC usually occur during the circulation of 

the tracer from heart to the either sampling site or target tissue. This could 

potentially induce an estimation error for the IDIF compared with the gold standard, 
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which is obtained by taking the blood samples from femoral catheter. In this case, 

the dispersion and delay corrections were applied to the IDIF that was already 

corrected for spillovers [142]. The corrected IDIF can be expressed by (6-10). 

𝐶IDIF(𝑡 + ∆) = 𝐶p(𝑡)⨂
𝑒−𝑡/𝜏

𝜏
 (6-10) 

where 𝐶𝐼𝐷𝐼𝐹(𝑡)  is the corrected input function based on the spillover corrected 

IDIF, 𝐶𝑝(𝑡), 𝜏 is the dispersion time constant which is set as 1 sec, and ∆ is the delay 

time usually measured in seconds [133], which is set as 2.5 sec.  

The automatic estimation of the IDIF were applied to a set of mouse FDG-PET 

studies. The predicted IDIF was compared with the gold standard, which was the 

PTAC derived from invasive blood samples.  

6.4 Computer Simulations  

6.4.1 Digimouse Phantom Simulations 

A number of dynamic FDG-PET studies were simulated to evaluate the 

performance of the proposed HCM for ROI delineation. The typical FDG TTACs 

for different thoracic tissues (myocardium, lungs and surrounding muscles) and 

blood TAC were generated using the Integrated Whole Body Kinetics 

Experimentation Lab of the virtual experimentation module in the Kinetic Imaging 

System (KIS) [81], following a routine 60-minute scanning protocol (1×2s, 10×0.4s, 

3×5s, 1×30s, 2×60s, 1×120s, 3×180s, and 5×550s) and a 13.5MBq bolus FDG 

injection. The parameters of the integrated whole body kinetics experimentation 

were set to the default values in KIS. The typical TAC of the blood cavity, derived 

from the blood TAC, included about 50% spillover from the myocardium. The four 
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typical TACs plotted in Figure 6-2 were assigned to the corresponding tissue regions 

in a single slice of the Digimouse phantom [143] for generating the homogeneous 

image without noise. A slice of the phantom included the heart (the myocardium and 

an added blood cavity), lungs, and surrounding muscles, as shown in Figure 6-3. 

 
Figure 6-2 The typical FDG TACs for the major thoracic tissues (myocardium, 

blood cavity, lungs and surrounding muscles) and blood TAC in 60 min. 

 

Figure 6-3 A transverse slice of the Digimouse phantom. An extra blood cavity was 

added inside the heart position, while the rest part of the heart was considered to be 

the myocardium. 

The generated noise-free image was forward projected to obtain a dynamic 

sequence of sinograms. A normally distributed background related to the scanning 

duration was added to the sinograms in order to simulate the random and scattering 

events. Poisson noise was added and amplified by a noise level (0.5, 1, and 2). The 

noisy sinograms were then used to reconstruct the dynamic PET image frame by 
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frame, using filtered back-projection with a Hann filter and a cutoff frequency based 

on the Nyquist frequency. A realistic PET measurement was then generated by 

applying the Gaussian blur function to the reconstructed noisy PET image. This 

allowed us to simulate the influences from partial volume effects and physiological 

movements. 

The proposed HCM was used to delineate the ROImyo and ROIblc in the 

simulated PET images. Generally, the entire measured TACs, each about 60 minutes 

in duration, were used in Step 2 of the HCM. This process was noted as HCM with 

entire TACs (HCM_60). Since the peak of the input function is mainly contained in 

the TACs of the first minute, partial TACs were considered to be sufficient for the 

detection of the blood cavity. When the partial TACs of the first minute were used in 

Step 2, the process was recorded as HCM with the first minute partial TACs 

(HCM_1). A standard clustering was introduced here in addition to these two HCM. 

After applying the same process of background removal of the HCM, the measured 

TACs in the heart mask could be considered as T-dimensional feature vectors. K-

means clustering was then used to classify these feature vectors. This method was 

noted as K-means clustering method (KCM) and compared with HCM in automatic 

ROI delineation. 

All three approaches (HCM_1, HCM_60 and KCM) were evaluated for the 

automatic ROI delineation under different noise levels. 

6.4.2 Evaluation of the ROI Delineation 

The ground truth for each ROI was defined according to the Digimouse 

phantom. Due to the limited spatial resolution, partial volume effects and the 

spillover of the PET image, the ROI was usually placed at the core part of the target 
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tissue or organ, where the TACs were representative of the target’s theoretical 

kinetics with the least impacts from local surroundings and physiological 

movements. The Digimouse phantom was processed with the same Gaussian blur 

function that was applied to the reconstructed noisy PET image. The ground truth 

was then obtained by excluding the blurred margin of the target in the phantom 

while retaining the stable parts.  

The automatically delineated ROImyo and ROIblc were compared with the 

ground truth, and evaluated using their sensitivity, specificity, and Dice Similarity 

Coefficient (DSC), which were calculated as given in (6-11) [144]. DSC measures 

the overlap between the areas of the estimated ROI and the ground truth. The 

automatically delineated ROI and the ground truth were respectively noted as 𝑅𝑂𝐼 

and 𝐺𝑇 in the calculations.  

⎩
⎪
⎨

⎪
⎧ Sens. =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Spec. =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

DSC = 2 ×
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃

� (6-11) 

where 𝑇𝑃 = 𝑅𝑂𝐼 ∩ 𝐺𝑇  is the number of  true positives, i.e. the count of pixels 

common to both 𝑅𝑂𝐼 and 𝐺𝑇; 𝑇𝑁 = 𝑅𝑂𝐼����� ∩ 𝐺𝑇���� is the number of true negatives, i.e. 

the count of pixels that were not labeled by neither 𝑅𝑂𝐼 nor 𝐺𝑇; 𝐹𝑁 = 𝑅𝑂𝐼����� ∩ 𝐺𝑇 is 

the number of false negatives, i.e. the count of pixels that were not labeled by 𝑅𝑂𝐼 

but were labeled by 𝐺𝑇; and 𝐹𝑃 = 𝑅𝑂𝐼 ∩ 𝐺𝑇���� is false positives, i.e. the count of 

pixels that were labeled by 𝑅𝑂𝐼 but were not labeled by 𝐺𝑇. 

The mean TACs were also derived from the automatically delineated ROImyo 

and ROIblc. They were compared with the mean TACs obtained from the ground 

truth by the root mean square (RMS) and correlation coefficient (ρ).  
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6.4.3 Results 

Figure 6-4 shows the five frames (3s, 6s, 36s, 561s, and 3306s after tracer 

injection) of the simulated dynamic FDG-PET image under a noise level of 1. The 

intensity of each pixel in the frames is noted as the magnitude of the time-activity in 

MBq/mL.  

 
Figure 6-4 Five frames of the simulated dynamic FDG-PET image under noise level 

of 1. (a) 3s post tracer injection. (b) 6s post tracer injection. (c) 36s post tracer 

injection. (d) 561s post tracer injection. (e) 3306s post tracer injection. 

100 runs were simulated for each noise level in order to compare the 

performance and reliability of the three proposed approaches (HCM_1, HCM_60 

and KCM) in ROI definition. As mentioned in 6.2.4, the parameters of the HCM 

were chosen empirically: the number of clusters for background removal was set to 

3, the number of curve clusters was set to 5, and the number of clusters for 

hierarchical clustering was set to 3. The number of K-means clusters for background 

removal in KCM was the same as HCM, when the number of K-means clusters in 

KCM was set to 3. 

Table 6-1 shows the performance of three approaches in ROI delineation. From 

our results, it is found that all the ROIs obtained automatically from the three 

approaches had high sensitivity and specificity (>0.9) when compared with the 

ground truth. The DSCs of the automatically delineated ROIs from HCM_1 and 

HCM_60 were around 10% higher than those from KCM. The correlation 

coefficient of the mean TACs were high for HCM (nearly 1.0). The RMS values for 
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HCM were about 2/3 lower than those for KCM. The results indicated that the HCM 

obtained more precise ROI delineation than KCM when compared with the ground 

truth.  

Table 6-1 The Mean Values of The Evaluation Metrics* 

Method 
ROI# Myocardium 

noise level DSC Sens. Spec. ρ RMS 

HCM_1 

0.5 0.936 0.913 0.999 0.999 0.264 

1 0.934 0.913 0.999 0.998 0.278 

2 0.930 0.914 0.998 0.998 0.293 

HCM_60 

0.5 0.950 0.948 0.999 0.999 0.192 

1 0.949 0.949 0.998 0.999 0.196 

2 0.948 0.949 0.998 1.000 0.193 

KCM 

0.5 0.837 0.990 0.999 0.994 1.061 

1 0.848 1.000 0.989 0.995 0.735 

2 0.830 0.980 0.989 0.995 1.383 

Method 
ROI# Blood Cavity 

noise level DSC Sens. Spec. ρ RMS 

HCM_1 

0.5 0.894 1.000 0.998 1.000 0.615 

1 0.894 1.000 0.998 1.000 0.626 

2 0.893 1.000 0.998 1.000 0.625 

HCM_60 

0.5 0.889 1.000 0.998 1.000 0.649 

1 0.889 1.000 0.998 1.000 0.651 

2 0.883 1.000 0.998 1.000 0.697 

KCM 

0.5 0.787 1.000 0.996 0.995 1.723 

1 0.791 1.000 0.996 0.999 1.640 

2 0.781 1.000 0.995 0.990 1.848 
* The evaluation metrics included Dice Similarity Coefficient (DSC), Sensitivity 

(Sens.), Specificity (Spec.), Root Mean Square (RMS), and the Correlation 

Coefficient (ρ). They were used to compare the automatic ROIs obtained by HCM_1, 

HCM_60 and KCM across three noise levels. 
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Figure 6-5 gives examples of ROI definitions obtained by the three approaches 

(HCM_1, HCM_60 and KCM) under a noise level of 2. In each sub-picture of 

Figure 6-5 the automatic ROImyo is sketched by a red solid line along its contour, 

while its ground truth is highlighted in green. The automatic ROIblc is shown with a 

blue solid line, while its ground truth is represented in magenta. The result shown in 

Figure 6-5(a) was obtained by HCM_1, whose corresponding DSCs were 

respectively 0.939 and 0.906 for ROImyo and ROIblc. The RMS values for the 

estimated mean TACs were about 0.211 and 0.488, while their correlation 

coefficients were both 0.999. The corresponding DSCs were 0.980 and 0.902 for 

HCM_60 as shown in Figure 6-5(b), and 0.863 and 0.785 for KCM as depicted in 

Figure 6-5(c). 

 
Figure 6-5 The delineations of the automatic ROImyo and ROIblc obtained by (a) 

HCM_1, (b) HCM_60, and (c) KCM. The contours of the automatic ROImyo and 

ROIblc are sketched by red and blue solid line, while the ground truths are 

respectively highlighted by green and magenta on the Digimouse phantom.  

During the complete 60 minutes scanning time, the peak that occurred in the 

first minute post tracer injection reflected the typical feature of the TACs from 

ROIblc. The tail part that appeared at 30 minutes after tracer injection represented the 

typical feature of the TACs from ROImyo. HCM_1 used partial TACs of the first 

minute for curve clustering with PRMMs. Thus, the cluster of TACs from ROIblc 

was accurately defined by HCM_1. HCM_60 used entire TACs for curve clustering 
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and as such the tail part led to the accurate clustering of TACs for ROImyo. As a 

result, HCM_1 performed better in the delineation of ROIb than HCM_60, while 

HCM_60 was better at delineating ROImyo.  

Early frames usually have a lower SNR than late frames as they have a shorter 

scanning duration. This could potentially impact the results of ROI delineation. 

Although small artifacts and noise could be removed by morphological processing, 

the contours of ROIs obtained by HCM_60 were smoother than those derived by 

HCM_1, as depicted in Figure 6-5. The blurred parts were included in the ROIs 

derived from KCM. However, the ground truth has been defined as the core part of 

the target neglected the burred margins. Hence, KCM had the higher sensitivity but 

the lower DSC than HCM. 

6.5 Small-Animal Studies 

6.5.1 Dynamic Mouse FDG-PET Studies 

Twelve dynamic FDG-PET studies of mouse were obtained from 

http://dragon.nuc.ucla.edu/mqp/index.html, which is a public domain for mouse 

FDG-PET image datasets originally collected at the Department of Molecular and 

Medical Pharmacology at UCLA [113]. The data were acquired from non-fasted 

C57BL/6 mice with an average weight of 28g. The mice were anesthetized with ~2% 

isoflurane. A 60 minute dynamic PET scan was performed for each mouse on a 

microPET Focus 220 scanner after a tail vein bolus injection of approximately 

13MBq FDG. For seven of these twelve studies, the dynamic PET image was 

reconstructed with a 29-frame imaging protocol: 1×3s, 10×0.5s, 1×2s, 1×4s, 6×5s, 

http://dragon.nuc.ucla.edu/mqp/index.html�
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1×10s, 2×30s, 2×120s, 1×180s, 2×600s, and 2×900s frames. Two of the remaining 

five datasets were conducted with a 26-frame imaging protocol: 1×2s, 10×0.4s, 3×5s, 

1×30s, 2×60s, 1×120s, 3×180s, and 5×550s frames. Two other studies followed a 

31-frame image protocol: 14×0.5s, 1×2s, 1×4s, 1×6s, 3×10s, 1×60s, 2×120s, 3×180s, 

and 5×550s. The final study had a 32-frame imaging protocol that was 15×0.4s, 

1×2s, 1×4s, 1×6s, 2×15s, 3×30s, 1×60s, 1×120s, 3×180s, and 3×900s. After 60-

minute PET imaging, a 10-minute computed tomography (CT) scan was acquired on 

a MicroCAT II. The CT image was aligned to PET image. The PET image was 

reconstructed using the filtered back-projection algorithm with CT-based attenuation 

correction [123]. The dead-time, scatter, and radiation-decay corrections were 

performed using software provided by the vendor. Around 16 blood samples were 

manually taken from a femoral catheter during the dynamic PET imaging. 

We adopted the proposed HCM and KCM to delineate the ROIs for the 

automatic estimation of the IDIF in the mouse FDG-PET studies. It is possible for 

the proposed HCM to work on 3D images as it utilizes only temporal information 

rather than spatial information. The HCM could be adapted to make use of spatial 

information if it was necessary to cluster contiguous regions. In this study, the HCM 

and KCM were performed independently on each transverse slice in order to reduce 

the computational complexity. In addition, the HCM_1 was selected for this 

evaluation, because the simulation study demonstrated that HCM_1 produced 

comparably accurate ROIs to HCM_60 while having a lower computational cost. 
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6.5.2 Evaluation of the ROI Delineation and IDIF Estimation 

ROIs were manually drawn in the myocardium and blood cavity by an 

experienced operator for the later evaluations. As the blood cavity has a very small 

size, the ROIs were defined in one transverse slice where there was a clearly defined 

blood cavity, e.g. left ventricle. The manually drawn ROIs were used as a standard 

to evaluate the ROIs obtained automatically by HCM or KM from the same 

transverse slice. In a similar manner to the evaluation of the computer simulation 

studies, the DSC of each automatic ROI and the correlation coefficient (ρ) of its 

mean TAC was calculated. 

To evaluate the predicted IDIF, the PTAC derived from the invasive blood 

samples using (6-12) (the same as given in (5-5)) [90] was used as the gold standard. 

�
𝐶GS(𝑡) = 𝐵(𝑡) × 𝑅FDG(𝑡)

𝑅FDG(𝑡) = 0.38𝑒−0.191𝑡 + 1.165
� (6-12) 

where 𝐶𝐺𝑆(𝑡)  is the gold standard derived from the whole blood samples 

𝐵(𝑡). 𝑅𝑃𝐵(𝑡) is the FDG concentration ratio of plasma to whole blood.  

This gold standard (GS) was used to evaluate the predicted IDIF, which was 

corrected for spillovers, delay and dispersion. The area under the curve (AUC), a 

commonly used criterion in the evaluation for the estimation of input functions [133, 

145, 146], was calculated by (6-13). The AUC for the predicted IDIF (AUCIDIF) and 

the gold standard (AUCGS) were calculated with an integral interval that ranged from 

0 to 60 minutes. 

𝐴𝑈𝐶 = � 𝐶IF(𝜏)
𝑡

0
𝑑𝜏 (6-13) 

where 𝐶IF(𝜏) is the predicted IDIF or the gold standard input function. 
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After re-sampling the predicted IDIF to the sampling time points of the blood 

samples, we used (6-14) to calculate the ratio of the non-overlapping area and 

AUCGS. This was used as a supplementary criterion for evaluating the estimation of 

the IDIF.  

𝑟 =
∑ |𝑒𝐼𝐹𝑖 − 𝐺𝑆𝑖| ∗ 𝑖𝑛𝑡𝑖𝑁
𝑖=1

𝐴𝑈𝐶𝐺𝑆
 (6-14) 

where 𝑒𝐼𝐹𝑖 is the re-sampled value from the predicted IDIF at the ith blood sampling 

time point, 𝐺𝑆𝑖 is the ith measured value of the gold standard, and 𝑖𝑛𝑡𝑖  is the ith blood 

sampling interval. 

The influx rate constant (𝐾i) was estimated for three selected target tissues 

(brain, myocardium, and muscle). This influx rate constant, which is an appropriate 

quantitative index for measuring glucose metabolism, can be estimated by the PGA 

method (introduced in 2.3.3) using the predicted IDIF or the gold standard as input 

function. For calculating the Patlak 𝐾i, the mean TTACs for the brain and muscles 

were obtained using the manually drawn ROIs. The mean TTAC of the myocardium 

was obtained from the automatic ROImyo. These influx rate constants estimated using 

the predicted IDIF and the gold standard were compared in pairs for each tissue in 

the evaluation. 

6.5.3 Results 

The means and standard deviances (SD) of evaluation metrics (the DSC and 

correlation coefficient (ρ) of the mean TACs) were calculated in order to compare 

the performance of HCM_1 and KCM in automatic ROI delineation. The results are 

listed in Table 6-2. The ROIs derived automatically by HCM_1 were highly 

congruent with the corresponding manually derived ROIs, while KCM failed to 
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delineate the ROImyo and ROIb for most cases in the mouse studies. The ROIs 

derived automatically by HCM_1 had a DSC about 0.670 and 0.762 on average for 

ROIb and ROImyo, respectively, when compared with the manually defined ROIs 

across the 12 mouse studies. The best ROI delineation was obtained using HCM_1, 

where the values of DSC were 0.747 and 0.871 for ROIb and ROImyo, respectively. 

The lowest DSC of the ROI derived automatically by HCM_1 was about 0.419. 

Much lower mean values with higher SD were observed in the results of the KCM 

method. For direct comparison, the best and worst cases of ROI delineation using 

HCM_1 and KCM are shown in Figure 6-6. The correlation coefficient (ρ) was used 

for the calculation and comparison of the mean TACs for the ROIs derived 

automatically and manually. For HCM_1, the mean values of ρ were about 0.99 for 

ROImyo and ROIb: these were higher than the ρ for the ROIs obtained by KCM. 

Table 6-2 The Mean and Standard Deviance (SD) of The Evaluation Metrics For 

The ROIs Derived By HCM_1 and KCM* 

Method 
ROI# Myocardium Blood Cavity 

Metrics DSC ρ DSC ρ 

HCM_1 
Mean 0.762 0.991 0.670 0.990 

SD 0.075 0.009 0.115 0.008 

KCM† 
Mean 0.269 0.465 0.362 0.786 

SD 0.321 0.491 0.358 0.225 
* The evaluation metrics included Dice Similarity Coefficient (DSC), and 

Correlation Coefficient (ρ). They were used to compare the automatic ROIs obtained 

by HCM_1 and KM across12 mice studies.  

† For KCM,the DSC and ρ of failed cases were recorded as 0 in the statistical 

computations. There were 6 cases failed to get ROImyo across 12 mice studies. In 

addition, other 3 cases lost the ROIb. 
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Figure 6-6 Illustrations of the best and worst cased of ROI delineation among the 12 

mice studies. The top row shows the best case (m17332) of ROI delineation using 

HCM_1 and the results from KCM for comparison. The bottom row depicts the 

worst case (m19019) using HCM_1 and the results from KCM for comparison. (a) 

and (d) show the original PET image frames at about 6s, 60s and ~3600s post 

injection. (b) and (e) exhibit the ROIs derived automatically from HCM_1 compared 

with the manual ROIs. (c) and (f) display the results from KCM. In (f), KCM failed 

to get ROImyo. In (b), (c), (e) and (f), the left sub-figure shows the results of 

automatic ROI delineation compared with the ground truth for myocardium, while 

the right sub-figure shows the same for the blood cavity. The contours of the 

automatically derived ROIs are sketched using a red solid line, while the manually 

defined ROIs are colored in green. 

 

Figure 6-7 The plot of the predicted IDIF for one mouse (m17332) comparing with 

gold standard obtained from invasive blood sampling. 

The mean TACs of the ROIs obtained automatically by HCM_1 were used to 

estimated the IDIF. The predicted IDIF was processed for spillover, dispersion, and 
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delay correction. Figure 6-7 shows one example comparison of the predicted IDIF 

and the gold standard. 

The IDIF estimation was evaluated by comparing AUCIDIF with AUCGS. The 

ratio between the non-overlapping area and AUCGS was calculated for the predicted 

IDIF. The Patlak 𝐾i  estimated using the predicted IDIF was compared with that 

derived using the gold standard for each selected target tissue. Linear regression was 

then performed to evaluate the results of the predicted IDIF.  

In Figure 6-8(a), the AUCIDIF is plotted against the AUCGS for all 12 mouse 

studies. The slope of liner regression was 0.990 and R2 was 0.974. The percentage of 

the absolute error between AUCIDIF and AUCGS was about 4.4%±3.0% on average. 

The Wilcoxon signed-rank test did not detect significant difference (P>0.05) 

between AUCIDIF and AUCGS. Furthermore, the average ratio between the non-

overlapping area and AUCGS across the 12 mouse studies was 0.18±0.04. The plots 

of the linear regression of the Patlak 𝐾i are shown in Figure 6-8(b) for the brain, 

Figure 6-8(c) for the myocardium, and Figure 6-8(d) for the muscles. The slope were 

all close to 1 with high R2 (>0.9). The percentage of the absolute error of the Patlak 

𝐾i was 5.3%±4.9% when considering all the results of three target tissues as a group. 

According to the Wilcoxon signed-rank test, the Patlak Ki estimated by the predicted 

IDIF was not significantly different (P>0.05) from that obtained by the gold 

standard for each target tissue. 
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Figure 6-8 Comparison of (a) the AUC of the predicted IDIF and the gold standard 

(GS), (b) the Patlak 𝐾i of the brain, (c) the Patlak 𝐾i of the myocardium, and (d) the 

Patlak 𝐾i of the muscles.The results of linear regression are shown in the legends. 

6.6 Discussion 

The results showed that the proposed hybrid clustering method (HCM) was 

effective in delineating ROIs for the myocardium and the blood cavity in the heart, 

using computer simulations and actual small-animal studies. In general PET studies, 

the pixels preferred for forming the ROI are the pixels within the region that are 

further from the border of the target organ, tissue or structure. When obtaining the 

theoretical kinetics, these pixels are less likely to be effected by the spillover and 

physiological movements that affect the pixels near the border. Therefore it is 

necessary for the automatic ROI delineation to also exclude the blurred borders in 
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the forming the ROIs. Furthermore, the limited spatial resolution and relatively 

higher noise of PET images usually hamper ROI definition in small structures, such 

as the blood cavity in the heart. HCM has demonstrated that it possesses an 

advantage over K-means clustering for these cases in simulated and experimental 

FDG-PET studies. The success of the HCM has a critical dependency on curve 

clustering with PRMMs as it is the key step of the HCM. It contributes to the 

extraction of the curve-specific memberships for clustering. In this step, the curve 

clustering employs a polynomial fit to restrain noise fluctuations and reduce the 

impact of clustering. On the other hand, curve clustering methods that represent the 

TACs by probabilistic curve models can be considered as curve modeling techniques 

that naturally allow for curves of variable lengths and missing measurements. As a 

particular type of modeling technique, curve clustering with PRMMs has proven to 

be more efficient in dealing with curves with missing measurements than non-curve-

based techniques, such as Gaussian mixtures models [141]. In dynamic PET 

imaging, the time-activities of the pixels in early frames may be recorded as 

negative values because of high noise. These negative activities can be considered as 

missing measurements for the TACs. Hence, curve clustering with PRMMs is quite 

appropriate for clustering the TACs of dynamic PET images. 

The results of the application of partial TACs from first minute were compared 

to that used entire TACs. One obvious effect of using partial TACs for curve 

clustering over entire TACs was a reduction in the computational expense, due to a 

smaller dataset being considered. The results of the computer simulation studies 

indicated that using partial TACs allowed us to obtain ROIs that were comparable to 

those obtained by using entire TACs. In addition, the use of partial TACs allowed us 

to derive more precise delineation of ROIblc. 
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The HCM with partial TACs (HCM_1) and KCM were applied to 

automatically delineate ROIs in mouse FDG-PET studies. The TTAC of the 

myocardium is similar to the TAC of the blood cavity because the myocardium has 

an ample blood supply for the delivery of oxygen and nutrients. Their similarity of 

the shape and magnitude could be further increased by the partial volume effects and 

spillovers between these two regions. These factors could be potential reasons for 

the failure of the KM in correctly delineating ROIs in most of the mouse studies. 

The proposed HCM modeled the TACs using PRMMs for curve clustering. This 

allowed the use of all the kinetic information available in the TACs. Under the HCM, 

the pixels whose corresponding TACs were curve-specific members of the blood 

TACs cluster could be counted as part of ROIblc. The ROIblc derived automatically 

by HCM included several structures that contained a large amount of blood, in 

addition to the left ventricle where the manual ROIblc was placed. This is the reason 

for the low DSC observed in some cases. The ROIs of blood cavity could also have 

been placed in these blood-filled structures, which include regions such as the right 

ventricle and the nearby aorta, for extraction of the reasonable input function [147, 

148]. 

A noninvasive methodology for obtaining an input function is still an attractive 

topic in the quantitative analysis of PET images. IDIFs are well established and have 

been improved with the addition spillover correction, allowing for the derivation of 

more accurate PTACs [52, 147, 149]. There has recently been an increase in the 

number of small animal studies using microPET-CT, mainly due to the advent of 

booming biological techniques. It is still necessary to develop IDIFs for these 

studies. However, most proposed methods still continue to rely upon the manual 

placement of ROIs within the heart [133, 137]. Our proposed HCM was explored for 



  

- 122 - 
 

the fully automatic estimation of the input function. In this study, the well-

established IDIF method with spillover, dispersion, and delay corrections was 

employed for the estimation of an IDIF using automatically derived ROIs. The 

results demonstrated that this technique was successful in deriving an IDIF that was 

comparable to the gold standard obtained from invasive blood samples. 

The manual initialization of the IDIF parameters is a drawback of this method 

as it is largely dependent on the experience of the person setting the values. The 

accuracy of the estimation could be improved by initializing the IDIF parameters 

from the mean and SD of invasive blood samples taken from a small sample 

population with Bayesian parameter constrains [133]. 

Finally, this proposed HCM only needs to rely on the temporal information 

available in dynamic PET images for ROI delineation. Therefore the HCM can be 

applied to other organs by defining an ROI in large vascular structures, such as the 

carotid artery in the brain, as well as the hepatic arteries and the portal vein in the 

liver. The HCM could also be practically and reliably used for ROI delineation in 

PET images using other tracers.  

6.7 Summary 

In this chapter, a novel hybrid clustering method (HCM) has been explored for 

the delineation of ROIs in dynamic PET images. These automatically derived ROIs 

were used for the estimation of image-derived input function for small animal FDG-

PET studies. The proposed HCM consisted of three steps: K-means clustering for 

background removal; curve clustering with PRMMs for the detection of classes; and 
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hierarchical clustering for merging classes. The high accuracy of ROI definitions 

were demonstrated in both computer simulations and small-animal studies. In the 

small-animal FDG-PET studies, the ROIs derived by the HCM were used for the 

automatic estimation of an IDIF with one blood sample. The predicted IDIF, which 

was corrected for spillovers, dispersion, and delay, had a high correlation with the 

gold standard, as calculated by the AUC and Patlak 𝐾i. We believe the proposed 

HCM has great potential for automatic ROI delineation in small-animal dynamic 

FDG-PET studies and may extend for the general dynamic PET studies using other 

tracers. 
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Chapter 7  
 
Conclusions and Future Work 

7.1 Conclusions 

As a powerful molecular imaging technique, PET provides unique approach to 

quantitatively study diverse biological processes in vivo with specific tracers and 

quantification techniques. The rapid development of information technology gives 

rise to opportunities for the accurate and convenient quantifications of PET studies. 

Hence, this thesis is devoted to develop the accurate and objective quantification 

techniques which aim to improve the reliability of quantification and facilitate the 

analysis of PET studies, particularly emphasising on the FDG-PET studies. The 

investigations in this thesis were concluded as follows:  

Firstly, the studies of quantitative indexes were performed to improve the 

quantification quality. In Chapter 3, SUV, a common semi-quantitative index, was 

estimated and modified based on an automatic image-based method for static FDG-

PET imaging. The imaged-derived SUV gave out a way to accurately quantify the 

tracer uptake in tissue when the actual measurement of body weight or injected dose 

was missing or unreliable. The modified SUV reduced the inter-subject variability 
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and enhance the tumor-to-background separation, which has the potential to increase 

the accuracy of malignancy detection. In addition to the improved SUVs, the 

imaging protocol was also studies for improving the quantification quality of PET 

imaging. A simulation framework was developed in Chapter 4 in order to improve 

the performance of dual-time FDG-PET imaging in lung cancer diagnosis. The 

generalized optimal quantitative index with its corresponding flexible dual-time 

imaging protocol was derived from the simulation framework and achieved the 

highest accuracy in differentiating malignancy from benign lesions for lung cancer 

diagnosis.   

Secondly, the non-invasive approaches were developed to eliminate or 

minimize the requirements of invasive blood samples. This can make the 

quantification process of dynamic PET imaging more convenient and harmless. In 

Chapter 5, a non-invasive Patlak graphic analysis method is extended and adopted to 

quantify the tracer uptake in target tissue by relative influx rates under the support of 

selected reference in whole-body PET imaging. The computer simulations and 

experimental FDG-PET studies both demonstrated that high linearity of relative 

influx rates was achieved between non-invasive Patlak graphic analysis method and 

common Patlak graphic analysis method for most pairs of target and reference with 

appropriate underlying kinetic model. In Chapter 6, the image-derived input function 

method was studied to directly obtain PTAC from PET images with the corrections 

of spillover, delay and dispersion. In the experimental mouse FDG-PET studies, the 

predicted image-derived input function had a high correlation with the gold standard, 

the PTAC derived from invasive blood sampling. 



  

- 126 - 
 

Finally, the automatic analysis processes were explored to increase the 

convenience of PET studies, especially for the investigation based on large-scale 

database. In Chapter 3, an automatic image-based method was developed to derive 

improved SUVs: imaged-derived SUV and modified SUV. This automatic approach 

may profit the quantification in an inter-institution sharing database. Moreover, in 

Chapter 6, a novel hybrid clustering method was explored to automatically delineate 

the ROIs based on the fully usage of the dynamic information of time-activity curves 

from dynamic PET images. This method showed its advantage in automatic ROI 

delineation both in computer simulations and experimental mouse FDG-PET studies. 

This method had a great potential in ROI delineation for automatic estimation of 

image-derived input function in dynamic FDG-PET studies.  

In a word, the major work of this thesis is to develop the accurate and 

convenient quantification techniques for the high quality quantitative PET imaging. 

The contributions in this thesis can be summarised as follows: 

1. An automatic image-based method was explored to extract more information 

from microPET and microCT images in the quantification of static FDG-PET 

image. The image-derived SUV (iSUV) has the capability to replace SUV 

when the actual measurements were mission or unreliable. The modified SUV 

(mSUV) can reduce the inter-subject variability of SUV and enhance the 

tumor-to-background separation by subtracting the tracer extracted in bladder. 

Using this image-based method, the estimated iSUV is valuable for 

multidisciplinary and inter-institution large-scale database in education and 

scientific research. Meanwhile, the predicted mSUV has the potential to 

improve the performance in accurate malignancy detection.  
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2. A simulation framework was set up to find out the better solution for dual-time 

FDG-PET imaging in the lung cancer diagnosis. The generalized optimal 

quantitative index and its corresponding flexible imaging protocol were 

suggested to achieve the optimum performance of dual-time FDG-PET 

imaging. 

3. A new non-invasive Patlak graphic analysis method was extended and applied 

in whole-body dynamic FDG-PET studies, where the relative influx rate is 

used to quantify the tracer uptake in certain tissue with the selected reference 

tissue. This non-invasive Patlak graphic analysis method brings not only the 

non-invasive benefit to quantification but also the simplicity in implementation 

with linear regression, so that it can provide a practical solution of non-invasive 

quantitative analysis for whole-body dynamic PET imaging.  

4. A novel hybrid clustering method (HCM) based on curve clustering was 

proposed to automatically delineate the ROIs in dynamic PET images. This 

novel method was adopted in dynamic mouse FDG-PET studies to avoid the 

manual placement of ROIs in the estimation of image-derived input function. 

Moreover, this automatic ROI delineation has the potential to benefit the 

quantitative analysis for the dynamic PET studies using other tracers. 

5. An automatic estimation of image-derived input function was developed based 

on the proposed HCM to avoid invasive blood sampling. The estimated image-

derived input function was processed by the corrections of spillover, delay and 

dispersion for obtaining the accurate input function. This automatic approach is 

successfully applied in a set of experimental FDG-PET studies. 
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7.2 Future Work 

This thesis has explored the effective methods to improve quantification 

techniques of PET studies especially for the FDG-PET imaging. Some of the 

proposed quantification techniques may also benefit the studies using other PET 

tracers or other applications. The more quantification techniques could be further 

developed based on the theory and results proposed in this thesis.  

Firstly, for the automatic image-based method, the more valuable anatomical or 

structural parameters can be derived from the microPET/CT images. For example, 

body surface area can be obtained directly from the microCT image (e.g., by a 

marching cubes algorithm [126]) in the future work. Because using of body surface 

area has been reported in some studies to be preferable in SUV calculation [31], e.g. 

for obese subjects with increased fraction of body fat, the estimated body surface 

area can be used as the normalization factor instead of body weight in the 

calculation of SUV.  

Secondly, because developing a suitable PET assay is a multi-discipline 

cooperation, an integrated system for quantitatively analyzing PET images needs to 

be developed to fill the gap in linking the knowledge among the varied disciplines 

including biology, physiology, pharmacology, physic, and mathematic et al. This 

integrated system can be able to assistant the operators in the simulation or the 

quantitative analysis for PET studies. The traditional quantification techniques as 

well as these novel approaches proposed in this thesis can be integrated as useful 

quantification modules for image-based or noninvasive analysis. In addition, the 

integrated system demands a notable module for Monte Carlo simulation, which can 

generate realistic PET data in different signals acquisition steps to assist the 
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developments of quantification techniques. Several software packages as well as the 

phantoms have been developed for the Monte Carlo simulation [150], such as PET-

SORTEO [151] and GATE [152], which could be helpful for the set up the computer 

simulation module of the integrated system in the future. 

Thirdly, while the computer aided detection/diagnosis (CAD) is widely studied 

for varied image modalities such as CT and MRI, the topic of automatic lesion 

detection becomes the attractive area. For PET imaging, the automatic lesion 

detection is much useful and urgently demanded for the CAD approaches in cancer 

diagnosis, staging even the therapy monitoring. However, there are many difficulties 

in using the routine image processing techniques to achieve the goals of CAD due to 

the low spatial resolutions and high noise levels in the PET images. In this case, the 

temporal information of dynamic PET image provides quite valuable features for 

lesion detection. Generally, the parametric image derived by tracer kinetic modeling 

can be used to detected disorder regions. However, the impacts of noise of single 

voxel kinetic can lead parametric imaging to a poor quality in small lesions detection, 

such as the metastasis lesion in oncology. In addition to the curve clustering 

approach described in this thesis, the matched subspace detector has the potential to 

automatically detect the lesions particularly the small lesions for dynamic PET 

images [153, 154]. There is still much room for refinement of the automatic lesion 

detection for PET imaging not only using the temporal information in the dynamic 

images but also using the spatial information in the aligned anatomical images. 

Finally, because the molecular imaging has been matured in quantifying the 

different physiological parameters with specific image modalities, these parameters 

can be integrated into the mathematic models to practically reflect the concerned 
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biological process. The mathematic model integrated with quantitative parameters 

obtained from PET and MRI has shown the predictive value in modeling and 

simulating the tumor growth and the treatment response [155]. This previous 

research only starts an initial stage of mathematic modeling with the quantitative 

parameters derived from molecular imaging. A number of assumptions and 

simplifications could limit the biological relevancy of model, so that many 

improvements will be done for adjusting the mathematic model. 

The outcomes of these continuing researches would have significant scientific 

and social impacts. 
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Appendix A 

Imaging Technique 

Portion of EM 
radiation 

spectrum used 
in image 

generation 

a Spatial 
resolutio

n 
Depth 

b Temporal 
resolution 

c Sensitivity 
d Type of 

molecular probe 

Amount of 
molecular 
probe used 

Quantitative 
degree 

Positron emission 
tomography (PET) 

high-energy 
gamma rays 1- 2 mm no limit 10 sec to 

minutes 10-11 -10-12 mole/L Radiolabeled 
direct or indirect nanograms +++ 

Single photon 
emission computed 

tomography (SPECT) 

low-energy 
gamma rays 1-2 mm no limit minutes 10-10 - 10-11 mole/L Radiolabeled 

direct or indirect nanograms ++ 

Optical 
bioluminescence 

imaging 
visible light f 3-5 mm 1-2 cm seconds to 

minutes 

not well -
characterized 

possibly 10-15 - 10-17 
mole/L 

i activatable 
indirect 

micrograms to 
milligrams + to ++ 

Optical fluorescence 
imaging 

visible light or 
near-infrared 

g 2-3 mm h <1 cm seconds to 
minutes 

not well -
characterized 

possibly 10-9 - 10-12 
mole/L 

activatable direct 
or indirect 

micrograms to 
milligrams + to ++ 

Magnetic resonance 
imaging (MRI) radiowaves 25-100 

μm no limit minutes to 
hours 10-3 - 10-5 mole/L activatable direct 

or indirect 
micrograms to 

milligrams ++ 

CT X-rays 50-200 
μm no limit minutes not well characterized may be possible  not applicable not applicable 

Ultrasound high-frequency 
sound 

50-500 
μm 

millimeters to 
centimeters 

seconds to 
minutes not well characterized limited 

activatable, direct 
micrograms to 

milligrams + 

a Spatial resolution is a measure of the accuracy or detail of graphic display in the image expressed in millimeters. It is the minimum distance between two independently 
measured objects that can be distinguished separately. It is a measure of how fine the image is. 
b Temporal resolution is the frequency at which the final interpretable version of images can be recorded/captured from the subject once the image process is initiated. 
This relates to the time required to collect enough events to form an image, and to the responsiveness of the imaging system to rates of any change induced by the 
operator or in the biological system at hand. 



  

 

Table continued 
Ability to scale to 
human imaging 

Perturbation of 
biological system Principal use Advantages Disadvantages e Cost 

yes no 
metabolic reporter/gene 

expression, receptor/ligand, 
enzyme targeting 

high sensitivity, isotopes can substitute 
naturally occurring atoms, quantitative 

translational research 

PET cyclotron or generator needed, 
relatively low spatial resolution, 

radiation to subject 
$$$$ 

yes no reporter/gene expression, 
receptor/ligand 

many molecular probes available, can 
image multiple probes simultaneously 

may be adapted to clinical imaging 
 

relatively low spatial resolution 
because of sensitivity, collimation, 

radiation 
$$$ 

yes but limited 
yes if necessary to give 

mass quantity of 
molecular probe 

reporter/gene expression, 
cell trafficking 

high sensitivity, quick, easy, low-cost, 
relative high-throughput 

low spatial resolution, current 2D 
imaging only, relatively surface-
weighted, limited translational 

research 

$$ 

yes but limited 
yes if necessary to give 

mass quantity of 
molecular probe 

reporter/gene expression, 
cell trafficking 

high sensitivity, detects fluorochrome in 
live and dead cells 

j relatively low spatial resolution, 
surface-weighted $ - $$ 

yes 
yes if necessary to give 

mass quantity of 
molecular probe 

morphological 
reporter/gene expression, 
receptor/ligand if many 

receptors 

highest spatial resolution, combines 
morphological and functional imaging 

relatively low sensitivity, long scan 
and postprocessing time, mass 

quantity of probe may be needed 
$$$$ 

yes 
as MRI, and also if 
excessive radiation 

dose 
morphological bone and tumor imaging, anatomical 

imaging 

limited "molecular" applications, 
limited soft tissue resolution, 

radiation 
$$ 

yes no morphological real-time, low cost limited spatial resolution, mostly 
morphological $$ 

c Sensitivity, the ability to detect a molecular probe when it is present, relative to the background, measured in moles per liter. 
d Type of molecular probe. See text in [6]. 
e This includes cost of equipment and cost per study. For details of instrumentation vendors, visit Web site www.mi-central.org. 
f Spatial resolution of bioluminescence and reflectance fluorescence is depth-dependent. For bioluminescence, the resolution is slightly worse or equal to the depth of the 
object, that is, an object 3-5 mm deep has an ~3-5 mm spatial resolution. 
g Use of fluorescence tomography is likely to result in better spatial resolution.  
h This depth applies to reflectance fluorescence. Fluorescence tomography can likely image objects at greater depths (2-6 cm). 
i Bioluminescence may also offer direct means of imaging through the use of the use of the Renilla luciferase protein. Feasibility studies are underway. 
j Except for fluorescence tomography, which has better spatial resolution and can image at greater depths.  

http://www.mi-central.org/�
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Appendix B 

Mathematical morphology, which stems from set theory, aims at analysing the 

shape and form of objects. In this thesis, the “morphological opening” and 

“morphological fill” operators were used to refine the results of image segmentation 

in Chapter 3 and Chapter 6.   

Morphological opening is defined based on the fundamental operations of 

erosion and dilation, which are normally applied to binary images. The erosion has 

two inputs: the original binary image and a set of coordinate points known as 

structuring element (SE). The erosion is defined as the locus of points that SE is 

included in the image set, as given in (A-1). 

𝜀S(𝑋) = {𝑥|𝑆𝑥 ⊆ 𝑋} (A-1) 

where 𝜀S(𝑋) denotes the erosion of an image set 𝑋 by a SE 𝑆.  

The dilation is defined as the locus of points where the SE hit the image set, as 

expressed by (A-2). 

𝛿S(𝑋) = {𝑥|𝑆𝑥⋂𝑋 ≠ ∅} (A-2) 

where 𝛿S(𝑋) denotes the dilation of an image set 𝑋 by a SE, 𝑆.   

Simply, opening is defined as erosion followed by a dilation using the same SE 

for both morphological operations. The expression of opening is shown in (A-3). 

𝛾S(𝑋) = �{𝑆𝑥|𝑆𝑥 ⊆ 𝑋}
𝑥

 (A-3) 

where 𝛾S(𝑋) denotes the opening operation. 
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The “morphological opening” can filter out the small blobs in binary images. 

This effect is adopted for removing the small size artifacts and noise in the results of 

image segmentation. In addition, the “morphological fill" aims to fill the holes in the 

binary images. It performs using an algorithm based on morphological 

reconstruction which can be thought of conceptually as repeated dilations of an 

image. 

The further information about the principles and applications of mathematic 

morphology in image analysis can be found in the reference [156]. 
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Appendix C 

The nPGA method proposed in Chapter 5 originates from the PGA method, 

assuming that the whole-body is a SIMO system. For the PGA method, the FDG 

concentration could be expressed as a relationship with the PTAC as given in (A-4). 

𝐶t(𝑡) = 𝐾i � 𝐶p(𝜏)𝑑𝜏 + 𝐼
𝑡

0
𝐶p(𝑡), 𝑡 > 𝑡∗ (A-4) 

The TTACs of two distinct ROIs (one as acting as the reference ROI, the other 

being the target ROI) can be described by (A-5). 

⎩
⎪
⎨

⎪
⎧𝐶ref(𝑡) = 𝐾ref � 𝐶p(𝜏)𝑑𝜏 + 𝐼ref

𝑡

0
𝐶p(𝑡)

𝐶tg(𝑡) = 𝐾tg � 𝐶p(𝜏)𝑑𝜏 + 𝐼tg
𝑡

0
𝐶p(𝑡)

� , 𝑡 > 𝑡∗ (A-5) 

According to (A-5), the PTAC can be presented by (A-6). 

⎩
⎪
⎨

⎪
⎧� 𝐶p(𝜏)𝑑𝜏 =

𝑡

0

𝐼tg𝐶ref(𝑡) − 𝐼ref𝐶tg(𝑡)
𝐷

𝐶p(𝑡) =
−𝐾tg𝐶ref(𝑡) + 𝐾ref𝐶tg(𝑡)

𝐷

� ,𝐷 = 𝐾ref𝐼tg − 𝐾tg𝐼ref, 𝑡 > 𝑡∗ (A-6) 

Equation (A-7) is obtained by integrating both sides of the second equation in 

(A-6). 

� 𝐶p(𝜏)𝑑𝜏
𝑡

𝑡0
= �

�−𝐾tg𝐶ref(𝜏) + 𝐾ref𝐶tg(𝜏)�
𝐷

𝑡

𝑡0
𝑑𝜏

=
−𝐾tg ∫ 𝐶ref(𝜏)𝑑𝜏𝑡

𝑡0
+ 𝐾ref ∫ 𝐶tg(𝜏)𝑑𝜏𝑡

𝑡0
𝐷

 

(A-7) 

Because ∫ 𝐶p(𝜏)𝑑𝜏 =𝑡
0 ∫ 𝐶p(𝜏)𝑑𝜏 + ∫ 𝐶p(𝜏)𝑑𝜏𝑡

𝑡0
𝑡0
0 , 𝑡 > 𝑡0 > 𝑡∗ and 

∫ 𝐶p(𝜏)𝑑𝜏𝑡0
0 = �𝐼tg𝐶ref(𝑡0) − 𝐼ref𝐶tg(𝑡0)� 𝐷⁄ , (A-8) can be obtained from (A-6) and 

(A-7).  
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𝐼tg𝐶ref(𝑡) − 𝐼ref𝐶tg(𝑡)
𝐷

=
𝐼tg𝐶ref(𝑡0) − 𝐼ref𝐶tg(𝑡0)

𝐷

+
−𝐾tg ∫ 𝐶ref(𝜏)𝑑𝜏𝑡

𝑡0
+ 𝐾ref ∫ 𝐶tg(𝜏)𝑑𝜏𝑡

𝑡0
𝐷

 

(A-8) 

To eliminate D in (A-8), a new equation expressing the relationship between two 

TTACs, is given by (A-9). 

𝐾ref � 𝐶tg(𝜏)𝑑𝜏
𝑡

𝑡0

= 𝐾tg � 𝐶ref(𝜏)𝑑𝜏
𝑡

𝑡0
+ 𝐼tg[𝐶ref(𝑡) − 𝐶ref(𝑡0)]

− 𝐼ref�𝐶tg(𝑡) − 𝐶tg(𝑡0)� 

(A-9) 

Finally, the nPGA method can be presented by the equation in (A-10). The 

relative influx rate can then be derived by liner least squares method. 

� 𝐶tg(𝜏)𝑑𝜏
𝑡

𝑡0
=
𝐾tg
𝐾ref

� 𝐶ref(𝜏)𝑑𝜏
𝑡

𝑡0
+

𝐼tg
𝐾ref

[𝐶ref(𝑡) − 𝐶ref(𝑡0)]

−
𝐼ref
𝐾ref

�𝐶tg(𝑡) − 𝐶tg(𝑡0)�

= 𝐾tr � 𝐶ref(𝜏)𝑑𝜏
𝑡

𝑡0
+ 𝐼tr[𝐶ref(𝑡) − 𝐶ref(𝑡0)]

− 𝐼rr�𝐶tg(𝑡) − 𝐶tg(𝑡0)�, 𝑡 > 𝑡0 > 𝑡∗ 

(A-10) 
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