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Abstract

This dissertation involves the development of three key components of advanced traffic

management information systems (ATMIS), i.e. real-time traffic surveillance, dynamic

traffic assignment with traffic volume (queue) control, and traffic management under de-

mand and supply uncertainties.

The traffic volume (or queue) control scheme is widely used in traffic control practice

and has been proven to be effective in managing congestion or gridlock. However, dynamic

traffic assignment (DTA) considering the effects of traffic volume control schemes has been

missing from literature. To fill this gap, this dissertation considers the analytical traffic

volume (queue) control for traffic networks under two route choice behavior assumptions,

i.e. dynamic user equilibrium (DUE) and dynamic system optimum (DSO). The traffic

volume controls are related to the desired temporal traffic volumes on certain links, which

can be set according to safety or environmental requirements. Both the DUE and DSO

traffic assignment with traffic volume control are analyzed utilizing the optimal control

theory. The existence of equilibrium to the DUE with traffic volume control is proven in

this thesis. The DSO analysis highlights the differences between the dynamic externalities

of the two vertical queue models, i.e. the whole link model and the deterministic queuing

model. The results obtained from the DSO analysis are applied to investigate the traffic

induced air pollution pricing.

For the surveillance part, this thesis concentrates on the development of a macroscopic

traffic flow model to capture traffic dynamics on networks influenced by demand and sup-

ply uncertainties that are suitable for real-time traffic monitoring and control applications.

To fulfill these objectives, a stochastic macroscopic dynamic traffic model, the stochastic

cell transmission model (SCTM), which is based on the modified cell transmission model

(MCTM) and the switching mode model (SMM), is proposed. The SCTM inherits the

advantages of the MCTM and the SMM. However, there are several key differences be-

tween them, e.g. the MCTM and the SMM admit deterministic demand and stationary

flow-density fundamental diagram while the SCTM accepts the random inflows (uncertain

demand) as well as random parameters of the fundamental flow-density diagram (uncertain

supply functions) with known means and variances of the freeway segment as exogenous

inputs. Under the SCTM framework, the uncertain wavefronts are captured by probabil-

ities of occurrence of operational modes which describe different congestion levels. The

SCTM is calibrated and validated by several empirical studies. We also compare the per-

formance of the SCTM with Monte Carlo Simulation of the MCTM (MCS-MCTM). The
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results confirm that the SCTM outperforms the MCS-MCTM. We apply the SCTM to es-

timate the queues and delays at signalized intersections and compare the results with some

well-known delay and queue estimation formulas, e.g., Webster, Beckmann, McNeil, and

Akcelik. The comparison results show a good consistency between the SCTM and these

formulas. In addition, the SCTM describes the temporal behavior of the queue and delay

distributions at signalized junctions with stochastic supply functions and (non-stationary)

arrivals.

In the traffic management part, optimal and robust decision making problems for

managing uncertain network traffic are investigated. The proposed SCTM is applied to

describe traffic dynamics on networks influenced by demand and supply uncertainties.

The traffic management problems are formulated as stochastic dynamic programming

problems. A closed form of optimal control law is derived in terms of a set of coupled

generalized recursive Riccati equations. The robust decision making problem, which aims

to act robustly with respect to the supply uncertainty and to attenuate the effect of

demand uncertainty, can be recognized as an equivalent optimal decision making problem.

Another implication of the proposed methodology is to make benefit from the inherent

uncertainties, which is achieved by extending the conventional LQ optimal control theory

to consider the indefinite terms of the state and input weighting matrices. The multiagent

system (MAS) approach to access the traffic management for a general traffic network is

discussed. The applications of the proposed methods to incident management are also

highlighted.

In conclusion, this thesis contributes to the literature on dynamic traffic assignment,

stochastic dynamic traffic modeling and management, and to support further analysis and

development in this area.
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Chapter 1

Introduction and objectives

1.1 Need of the study

Traffic congestion and environmental issues associated with vehicle use have been rec-

ognized as serious problems for their negative effects on productivity, health and living

conditions. Harmful side effects of such traffic congestion include reduction of safety, de-

terioration of air quality, wasteful fuel consumption, and reduction of productivity. For

example, in USA, 1992, traffic congestion accounted for 100 billion loss in national pro-

ductivity (Strategic Plan, U.S. Department of Transportation, 1992). The situation is

worsening with continuously increasing traffic volume worldwide. According to the 2009

Urban Mobility Report (Schrank and Lomax, 2009), congestion caused urban Americans

to travel 4.2 billion hours more and to purchase an extra 2.8 billion gallons of fuel for

a congestion cost of 87.2 billion USD1–an increase of more than 60% over the previous

decade, and an increase of more than 420% since 1982. Research has also indicated that

vehicles are responsible for at least 50 percent of the air pollution in urban areas. Only

about 20 % of the town residents enjoy good enough air quality according to the estimation

of the World Health Organization (WHO) in terms of the measured levels of emissions.

According to the white paper of European Commission (2001), transport is responsible for

28% of carbon dioxide emissions in Europe, of which road transport accounts for about

84%.

Traffic congestion can be classified as recurrent and non-recurrent. Recurrent conges-

tion is caused by the peak hour traffic demand exceeding the available roadway capacity.

1It is also reported that there was a decrease of 40 million hours and a decrease of 40 million gallons,

but an increase of over 100 million USD from 2006 due to an increase in the cost of fuel and truck delay.

Small traffic volume declines brought on by increases in fuel prices over the last half of 2007 caused a small

reduction in congestion from 2006 to 2007.
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Non-recurrent congestion is largely produced by traffic incidents and managements. In-

cidents vary widely in severity, from vehicles stranding on the roadway shoulder with a

flat tire to the closing of an entire highway section caused by vehicle crashes or hazardous

materials. Studies have shown that 60 percent of the urban freeway delay may be caused

by freeway incidents (Lindley, 1987). Research suggests that this may increase to approx-

imately 70 % by 2005 (Özbay and Kachroo, 1999). It is reported that there is a symbiotic

relationship between congestion and traffic incidents. Congested traffic condition is one of

the main reasons for traffic accidents. Incidents on freeways interrupt traffic flows unex-

pectedly. They can be the major cause of “unusual” bottlenecks and secondary accidents.

Those accidents cause more congestion, which in turn, causes more accidents (Özbay and

Kachroo, 1999). For instance, the incident on 9th May 2005 involved a heavy rainstorm

and incidents on three roads2 in Kowloon area in Hong Kong causing an extended and

wide traffic congestion problem (Cheng et al., 2005). It has been suggested that the risk of

secondary accidents can be significantly reduced by early detection and warning. For this

reason, real-time freeway incident detection and characterization is an important function

for freeway traffic management. Many of delays are caused by the capacity reduction due

to the lane blockage during the incident response and clearance. In most scenarios, if

proper traffic control and rerouting strategies can be implemented in time, travelers can

go through the congested segments efficiently and/or circumvent the congested segments

by traffic diversion control.

Hand in hand with the advances in computer science and technology, telecommunica-

tion, and control system engineering, Intelligent Transportation System (ITS)3 has become

an effective tool to alleviate traffic congestion, improve safety and efficiency, and reduce

vehicle emissions for urban traffic networks. Therefore, this thesis concentrates on three

aspects which aim to support ITS development. We depict the structure of an ITS and

the relationship between an ITS and this dissertation in a block diagram as demonstrated

in Figure 1.1. Detail objectives of this dissertation and their interconnection are discussed

in the forthcoming section.

1.2 Objectives

Figure 1.2 depicts a block diagram which illustrates the overall framework and the inter-

connection of different components of this dissertation. Traffic networks are exposed to

2They were a fallen tree across Waterloo Road, loose scaffolding at Argyle Street, and fallen scaffolding

at Prince Edward Road East.
3We will introduce ITS in detail in Chapter 2.
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Figure 1.1: The relationship between ITS and the study

both demand and supply uncertainties by their very nature. A traffic network is usually

equipped with measurement devices such as ultrasonic, microwave, and laser sensors, pro-

cessed video, and tube-type vehicle counters. These sensors are installed at fixed locations

and measure different combinations of speed, vehicle count, and occupancy. Travel time

can be measured using probe vehicles equipped with GPS devices or automatic vehicle

identification (AVI) data. All the detected data is transmitted to a central data collection

point, e.g. the traffic management center (TMC), and is displayed by a human-machine

interface. On the other hand, the traffic network is also equipped with control actuators,

e.g. traffic signals. The data obtained from measurement devices is used to feed the

surveillance tools so as to monitor the state of a traffic network and support traffic control

strategies design. Therefore, the major problems are how to make use of the detected data

and how to perform control design so as to better manage the road network and make

efficient use of the existing capacity, which are also typical objectives of an ITS.

As suggested by Figure 1.1, this dissertation concentrates on three key components of

an ITS, i.e. dynamic traffic assignment with traffic volume (or queue) control, real-time

traffic surveillance and decision making for traffic management/control under demand and

supply uncertainties. The above three functions are further grouped into two subsystems:

the DTA subsystem and the dynamic traffic surveillance and control subsystem. The D-

TA component, as a short-term planning strategy and a traffic state prediction method,

describes the idea performance of a traffic network under different user behavior assump-

tions, e.g. dynamic user equilibrium (DUE), dynamic user optimum (DUO), and dynamic

system optimum (DSO)4. Due to many unsolved technical issues regarding the application

4These user behavior assumptions and the corresponding equilibriums will be reviewed in Chapter 2.
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of DTA (especially regarding to the real time and large network applications) the dynamic

traffic surveillance and control subsystem aims at approximating the equilibrium(s) ob-

tained from DTA rather than achieving the exact DTA equilibrium(s). For instance, if the

objective of traffic control strategy design is to minimize the total travel time spent (TTS)

in the network, the traffic control strategy design aims to approximate a DSO equilibrium

of the network. Within the dynamic traffic surveillance and control subsystem, the data

detected by measurement devices feeds the surveillance tool to generate traffic states of

the underlying network. Traffic information generated by the surveillance tool is then

transmitted to support the design of control strategy and to feed necessary information to

the controller. The controller generates different control inputs corresponding to different

objectives prescribed. The control actuators adjust the traffic control strategies in terms

of control inputs, e.g. the green time of a signal, which in turn affects the network states.

The proposed methodologies can also be applied to detect incident and to support incident

management, which will be highlighted in the future work.

Traffic volume (queue) control or access control, which restricts the traffic to access the

congested (or controlled) locations, is essential for alleviating traffic congestion, especially

traffic congestion under incident scenarios. The traffic volume (queue) control scheme is
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widely used in traffic control practice and has been proven to be effective in preventing the

traffic network from spillback effect of congestion or gridlock. Controlling the traffic vol-

umes on critical infrastructures is also an easy and efficient approach to increase the safety

of these facilities. The first part of this dissertation aims to investigate two important yet

underdeveloped areas: the dynamic user equilibrium traffic assignment with traffic volume

(queue) control and the dynamic system optimal traffic assignment with access control.

It is important for us to look into the optimality state(s) of a traffic network under traf-

fic volume (queue) control strategies. These results provide us some guidelines on queue

control design, which in turn yields better implementations of the queue control strate-

gies. The results also give us some guidelines to design the rerouting strategies, wherein

the motorists can go through the congested segments (controlled segments or segments

with incidents) efficiently and/or circumvent the congested segments by traffic diversion

control. To be precise, we aim to address the following problems in this part:

1. Parallel to the static traffic assignment counterparts, we try to formulate the dynamic

user equilibrium (DUE) and system optimal (DSO) traffic assignment problems with

side constraints wherein the side constraints are regarded as link traffic controls.

2. We try to provide a rigorous mathematical analysis of dynamic traffic assignment

with traffic volume control, e.g. necessary conditions, existence of equilibriums.

3. By restricting the link traffic volumes to be equal to or less than the link storage

capacities, we try to capture the spillback effect of traffic congestion while avoiding

the drawbacks of physical queue models, e.g. discontinuous and non-differentiable

traffic dynamics and travel cost functions.

4. To satisfy some requirements of the DTA problems (e.g. first-in-first-out (FIFO)

condition), the link travel time function is always assumed to be separable (i.e.

depends on the link traffic volume only) in DTA literature. This assumption may

not be reasonable if there is spillback. We try to make this separable link travel time

function meaningful by controlling the traffic to access the saturated links such that

no spillback would happen.

5. We try to develop a benchmark for evaluating various transport policy measures

under different user behavior assumptions, e.g. optimal design of queue balancing

for ramp metering and traffic signal control, as well as optimal design of the rerouting

strategies.

5



6. To furnish the preceding objective, we attempt to perform the analysis of DSO with

access control to provide a bound on the best performance of a traffic network.

7. Furthermore, we attempt to analyze the dynamic marginal cost, dynamic externality

and the optimality condition under which the user surplus is maximized.

8. By the DSO analysis results, we attempt to internalize the external cost caused by

traffic congestion and traffic induced air pollution by the access pricing framework.

To be more specific, we will address the following subproblems:

(a) Which pricing scheme should be imposed on each link, the access control based

or the environmental traffic capacity based pricing scheme?

(b) Which is the dominant pricing scheme at a specific time instant?

(c) How to determine the boundaries under which a traveler on a link should pay

either an access toll or an extra pollution charge?

The second part of this dissertation attempts to address the traffic state surveillance

and control problems under stochastic environments. We emphasize the robustness in this

part. To this end, this study first aims to develop a real time traffic surveillance tool which

enables us to conduct robust real-time traffic state surveillance. When macroscopic traffic

flow models are applied to a specific freeway segment or a traffic network, appropriate

model parameters, such as free-flow speed, critical density etc., are needed. However,

these parameters are usually not precisely known before hand. They may be different

from site to site and even different within the same site for different time periods and

adverse weather conditions, etc. Therefore, before a macroscopic traffic model, such as

the Cell Transmission Model (CTM), can be applied to a specific site, a tedious model

calibration procedure has to be conducted off-line based on available traffic measurement

data to identify the corresponding values of the model parameters (regarded as supply

functions). Errors and uncertainties (or variations/variances) cannot be avoided in such

calibration and thus introduce uncertainties to the supply functions. For the demand

side, day-to-day fluctuation in travel demand and travelers’ responses to their information

about the traffic network are considered as the leading causes of the demand uncertainty.

The demand uncertainty is always regarded as recurrent uncertainty or disturbance to

traffic flow models. It is hoped that the proposed traffic surveillance tool can act robust

to these demand and supply uncertainties. Conventionally, variance is utilized to measure

the risk under uncertainties. It is preferable that the proposed traffic surveillance tool can

release the variance of traffic flow under demand and supply uncertainties to provide some
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risk measure for traffic state surveillance. To be more specific, we attempt to address the

following problems in this part:

1. We try to propose a stochastic macroscopic traffic flow model for traffic state mod-

eling under demand and supply uncertainties by extending the well-known CTM.

2. We aim to calculate the mean and variance of the stochastic traffic flow analytically.

3. We attempt to capture the stochastic dynamic flow propagation.

4. We would like to capture the stochastic queues and delays at signalized junctions.

5. We intend to propose a potential way to avoid discontinuity and non-differentiability

of the CTM, which can be viewed as making benefit from the uncertainties.

Despite the promising progress from DTA and integrated control models, development

of efficient integrated optimal control strategies for both urban arterials and freeways

remains challenging, especially regarding the following issues:

1. How to conduct optimal control design in presence of demand and supply uncertain-

ties?

2. To pursue the robustness:

(a) How to be aware of supply uncertainty?

(b) How to attenuate the effect of disturbances which are regarded as demand

uncertainty?

3. How to make benefit from uncertainties?

In the control (or traffic management) part of this dissertation, we aim to tackle these

issues in the traffic management (or control) part.

1.3 Thesis organization and contributions

As previously explained, the presentation of the dissertation is roughly divided into two

parts. After a brief introduction to the background materials and literature review, we

present two dynamic traffic assignment models with traffic volume (or queue) control.

Then we move to the second part which concentrates on stochastic traffic state model-

ing and control under demand and supply uncertainties. The reminder of this thesis is

organized as follows.
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Chapter 2 carries out a brief literature review on several related topics and provides a

background information on ITS.

Chapter 3 formulates and analyzes the existence of equilibrium as well as the necessary

condition to the dynamic user equilibrium with traffic volume (queue) control. Similar

to the static counterpart, this problem is formulated as a dynamic user equilibrium with

side constraints (DUE-SC) wherein the side constraints represent the restrictions on the

link traffic volumes. The DUE-SC is formulated as an infinite-dimensional variational

inequality (VI) problem. Based on this VI formulation, we discuss the existence of equi-

librium to the DUE-SC. To analyze the necessary condition of the DUE-SC, the DUE-SC

problem is further converted into an equivalent constrained optimal control problem for

dynamic systems with state dependent time shifts and constraints on controls and states.

We then derive the necessary condition by the Minimum Principle. An optimal control

based numerical algorithm is developed to solve the DUE-SC problem.

Chapter 4 formulates the dynamic system optimal with access control (DSO-AC) for

two vertical queue models: the whole link model and the deterministic queueing model.

The access control constraints represent the restrictions on the traffic volumes and/or

environmental constraints (e.g. vehicle emission). The dynamic externalities obtained

from these two models are compared. Different structures of the dynamic externalities

yield different tolling structures for these two vertical models to achieve DSO. The DSO-AC

analysis also reveals the variety of economic effect of a certain amount of road capacity with

respect to its spatial and temporal allocation, e.g. decide which links can be used and how

to use their available capacities as “holding” capacities for queues. As another application

of the dynamic system optimal with access control, an access pricing scheme (networks

operate in a competitive market for subscribers, and yet have a monopoly position for

providing access to these subscribers) is proposed to internalize the externalities caused by

the traffic congestion under traffic volume control and the traffic induced pollution. A set

of boundary conditions for the access pricing, i.e. whether we should charge the travelers

based on the traffic volume control or environmental capacity restriction, is derived.

Chapter 5 proposes a stochastic traffic model for traffic state surveillance. The pro-

posed dynamic traffic flow model, named as the stochastic cell transmission model (SCT-

M), which extends the CTM to consider stochastic supply functions as well as the s-

tochastic travel demand for a freeway corridor. In the SCTM, the supply uncertainties are

governed by the random parameters of the triangular fundamental flow-density diagrams,

e.g., free-flow speed, jam-density, and backward wave speed, etc. The stochastic demand

is also modeled as stochastic exogenous input to the SCTM. The model is calibrated and
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validated by an empirical study. Numerical simulation and empirical study results are

quite satisfactory and promising for us to conclude that SCTM is suitable for real-time

traffic monitoring and control applications.

Chapter 6 extends the SCTM to capture the traffic dynamics on traffic networks con-

sisting of freeways and arterials under demand and supply uncertainties, and to measure

the queues at signalized junctions by assuming any temporal distribution of arrivals for

a better implementation of traffic control strategies. By applying the proposed signalized

SCTM and the proposed stochastic dynamic travel time estimation method to a signalized

junction, the time average delays with respect to different levels of saturation are obtained

for both stationary and non-stationary arrivals. The results are then compared with the

delay estimations obtained from the traditional methods, e.g., Webster’s, McNeill’s and

Akcelik’s formulas. A comparison of the queue length is also carried out. The results show

good consistency between the SCTM and these formulas. In addition, the SCTM describes

the temporal behavior of the queue and delay distributions at signalized junctions with

stochastic supply functions and (non-stationary) arrivals.

Chapter 7 derives optimal and robust decision laws for traffic management under de-

mand and supply uncertainties. Stochastic dynamic programming is applied to design

these traffic management policies based on the stochastic traffic flow obtained from the

SCTM. For the control purpose, the SCTM is reformulated as a class of discrete time

stochastic bilinear systems with Markov switching. Optimal traffic management policy

for a freeway segment is derived based on this reformulation. A closed form of optimal

control law is derived in terms of a set of coupled generalized recursive Riccati equations.

The optimal control may be fragile with respect to the model miss-specifications. Further-

more, traffic manager would prefer a policy that would be robust for the uncertainties.

We further pursue a robust (optimal) decision making law which is aimed to act robust

with respect to the parameter miss-specifications in the traffic flow model, and to atten-

uate the effect of disturbance (which are regarded as travel demand). By extending the

conventional LQ control theory, the proposed methodology can address the problem of

making benefit from the inherent uncertainties, e.g. risk adjustment. Finally, we list some

practical issues in traffic management that can be addressed by extending the current

framework.

Chapter 8 gives a summary of this thesis. Some topics for the future research are also

highlighted in this chapter.

This thesis was typeset using LATEX.
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Chapter 2

Background and literature review

2.1 Background and the Intelligent Transportation Systems

(ITS)

Figure 2.1 shows the trend in delay, vehicle-miles traveled (VMT), and lane-miles of free-

way in the Los Angeles region between 1982 and 2000 (Chen, 2003). As shown in the figure,

the number of lane-miles increased about 30%, while vehicle-miles traveled increased by

70% with delay increased by 270%. Between 1982 and 2000, the average annual delay per

peak road traveler grew from 16 hours to 62 hours, a 288% increase. During the same

period, the total number of miles of freeway grew by only 35%. From the above statis-

tics, it is clear that the explosive growth in traffic volume and travel demand cannot be

handled solely by building and expanding highway facilities because of the prohibitively

high costs, as well as social, political, and environmental issues resulting from urban and

suburban infrastructure construction. The idea of using advanced technology to better

manage the road network infrastructure and make efficient use of the existing capacity

becomes more and more popular, which in turn motivates the development of Intelligent

Transportation Systems (ITS). Recent advances in telecommunications, electronics, com-

puting, networking, and control technologies have made it possible to build intelligent

transportation systems.

It is believed that the ITS is an effective tool to alleviate traffic congestion, which

may lead to more efficient travel demand and transportation network management, im-

prove safety and efficiency, and hence reduce vehicle emissions. Current research and flied

practices on ITS have been seeking to apply well established technologies in the areas of

telecommunications, electronics, computing, networking, and control to vehicles, roadway

networks and operational plans, to make it possible for vehicles and infrastructures to
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Figure 2.1: Congestion delay, vehicle-miles traveled (VMT), and lane-miles of freeway in

Los Angeles, normalized to 1982 levels (Source: Chen (2003)).

exchange vast amounts of data back and forth and finally increase the utility of the en-

tire transportation system. The development of ITS has brought many changes to traffic

planning, control, and management in recent years. In particular, advanced sensing and

surveillance technologies have made real-time traffic data available from various sources,

the GPS equipped vehicles, smart phones, infrastructure based traffic sensors (e.g. the

Freeway performance measurement system (PeMS) and Tools for Operational Planning

(TOPL) in California, USA) and electronic toll collection tags (e.g. Autotoll in Hong

Kong). These data sources provide rich information to better understand the congestion

phenomena, and can be used to plan and manage transportation networks efficiently.

As illustrated in Figure 1.1, there are six major areas that the ITS focus on: Advanced

Traveler Information System (ATIS), Advanced Traffic Management System (ATMS),

Advanced Vehicle Control System (AVCS), Commercial Vehicle Operations (CVO), Ad-

vanced Public Transportation System (APTS), and Advanced Rural Transportation Sys-

tem (ARTS). As explained in the previous chapter, in this thesis, we will mainly focus on

three key functions of ATIS and ATMS, which will be introduced in detail later, thus we

only give a brief description of the other four areas as follows (Peeta, 1994):

The AVCS is part of the “Smart Highway” initiative which aims at developing an

automated vehicle guidance system to better utilization of highway space and safety.
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The AVCS tries to maximize the usage of highway space by dramatically reducing

reaction times of divers and headways. The AVCS could be more precise than human

divers in controlling vehicle movements, e.g. lane changes, maintaining safe following

distances between vehicles, and thus require less space and improve safety. The

AVCS aims to comprehensively manage accident risk factors, e.g. lane keeping and

collision avoidance by lateral and longitudinal control. Different kinds of actuators

and sensors are utilized to manage human factors including driver fatigue.

The CVO intends to improve productivity, safety, and management of commercial

vehicle operations. Research on the CVO is close related to logistics.

The APTS utilizes technologies such as advanced navigation (e.g. GPS and auto-

matic vehicle location (AVL) system) computer and communication technologies to

public transportation system operations to improve the efficiency and effectiveness of

public transportation operations, vehicle maintenance, and administration, thereby

attract travelers to transit, and ride-sharing modes. As a result, traffic congestion

and air pollution caused by private vehicles can be reduced.

Finally, the ARTS involves the application of advanced technologies for travel in

rural areas, which mainly focuses on freeway safety.

2.1.1 Advanced traveler information system (ATIS)

The ATIS plays an important role in the ITS. The basic objectives of the ATIS are to

acquire, analyze, communicate, and present information to users to enhance personal

mobility and hence the efficiency of travel, safety and the productivity of transportation,

and reduce air pollution. The ATIS provides pre-trip and/or en-route travel information

concerning traffic conditions such as traffic flow, travel time, and speed, and route guidance

through various information media such as TV, radio, Internet, variable message signs

(VMS), smart phones (IPhone, Nexus One, etc.), and in-vehicle (GPS) navigation systems,

etc. The information is broadcasted in order to support travelers’ decision making which

in turn influences their travel choices and consequently reduce the (total/individual) travel

time and improves efficiency of the traffic network. The development of an ATIS can be

divided into three stages (Peeta, 1994; Zhou, 2002):

1. The information stage: In this stage, information is provided to the travelers to help

their pre-trip planning and en route decision making.
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2. The advisory stage: In the advisory stage, more real-time information, such as link

travel times, traffic incident information, weather information, are collected and

broadcasted by the ATIS to travelers. The in-vehicle information systems analyze

the received information and promote advices to travelers.

3. The coordination stage: In this stage, the ATIS integrates the feedback information

from in-vehicle information systems and other sources to predict traffic conditions.

Under some circumstances, optimization of traffic flows over the entire network is

possible. This enables some advanced functions such as coordinated routing, coor-

dinated ramp metering, coordinated traffic signal control, and transit dispatching.

In this stage, ATIS and ATMS will merge into an integrated system (ATMIS) to

optimize the performance of traffic networks.

However, one should be aware that providing traffic information to travelers may not

necessarily improve the traffic condition. Traffic information affects travelers’ behavior,

which in turn changes the traffic condition. A critical requirement and challenge for the

successful deployment of ATIS strategies is to explicitly encounter drivers’ behavior and

create consistent predictions that are valid when users modify their behavior based on

the information broadcasted to them. Information strategies developed based on the ap-

proaches that are behaviorally restrictive and limited in their ability to incorporate drivers’

response behavior can result in misleading control strategies, and potentially deteriorate

network performance (Paz, 2007; Paz and Peeta, 2009a,b).

2.1.2 Advanced traffic management system (ATMS)

In the meantime, another major component of the ITS, the ATMS also plays an important

role in collecting data from a variety of sources, such as loop detectors, probe vehicles, video

cameras, and other communication systems. The ATMS aims at managing and adjusting

the traffic control systems in the network to respond to dynamic traffic conditions through

real-time measurement, and communication to alleviate congestion and promote efficiency

in utilizing the traffic network. The ATMS aids in providing real-time route guidance

to travelers (drivers) through the ATIS. The ATMS is helpful in optimizing urban traffic

signals, ramp-metering control, variable speed limit (VSL) control, etc. The ATMS is

divided into three stages, i.e. the near term, middle term and longer term developments

(Peeta, 1994; Zhou, 2002):

The near term development which aims at conducting basic research in five primary

areas:
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1. Traffic surveillance and monitoring: As the sources of traffic information to the

ATMS, traffic surveillance techniques and (feedback) information from trav-

elers (e.g. feedback information from ATIS) are needed to be developed and

integrated within the ATMS.

2. Traffic control: Traffic control aims to regulate the traffic flows on urban trans-

portation networks to improve their efficiency. We briefly review traffic surveil-

lance and control in Section 2.4.

3. Traffic management: To develop models, algorithms and strategies to optimize

the performance of traffic networks. Several traffic management strategies are

discussed in this thesis, e.g. traffic volume (queue) control, dynamic road pric-

ing, hybrid of ramp metering control and dynamic road pricing.

4. Human factors: As explained in the previous section, the divers’ behavior is a

critical issue for ITS design. From an ATMS viewpoint, traveler behavior, e.g.

departure time choice, route choice, mode choice, en-route switching choice,

risk taking attitude, and compliance with the guidance, are critical for de-

veloping traffic management techniques. There is a need to understand how

travelers respond to the information provided by the ATMIS. Some advances

on behavior-consistent information-based network traffic control strategies have

been reported by Paz (2007); Paz and Peeta (2009a,b).

5. Integrated systems: Research on this area mainly concentrates on how to de-

sign and integrate different components of the system with respect to different

objectives and functional requirements.

The middle term development: In this stage, the ATMS emphasizes the implementa-

tion of the technologies developed in the near term development. Meanwhile, off-line

updates will be conducted to refine the performance of the technologies developed

in the previous stage based on field experiments.

The longer term development: The longer term consists of integrated, interactive,

and adaptive systems.

Since the ATIS and ATMS are interrelated, they are also known as advanced traffic

management information systems (ATMIS) as depicted in Figure 1.1. In terms of the

ATIS and ATMS, we can monitor and manage the transportation system more effective-

ly and efficiently in a systematic manner. Dynamic traffic surveillance, assignment, and

management (or control) of network traffic are three key components of the ATMIS. Both
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the ATIS and ATMS rely on real-time and/or predictive traffic states, especially traffic

density/volume/occupancy, travel time and speed. As a matter of fact, we try to develop

a systematic tool that enables us to conduct traffic surveillance, to be more specific, the

tool enables us to estimate/predict some basic traffic states, such as traffic density, under

supply and demand uncertainties. Many traffic control strategies, e.g. urban traffic signal

control and ramp metering control, could cause side effects if the queues induced by these

control mechanicians were not properly addressed (Papageorgiou and Kotsialos, 2002; Pa-

pageorgiou et al., 2003; Varaiya, 2008). Therefore, queue control is a very important and

has been proven to be efficient to prevent spillback effects of traffic congestion, either

normal recurrent congestion or non-recurrent, e.g. incident induced, congestion. However,

this important topic remains underdeveloped in DTA. In this study, we will formulate the

dynamic user equilibrium (DUE) and dynamic system optimal (DSO) traffic assignment

problems with queue control, which reveal the effect of queue control under the framework

of DTA. As mentioned in the DTA research literature that the DUE and DSO are too

idea to apply. Many technical issues regarding to the application of DTA results, such as

existence, convergence, uniqueness, and stability of equilibrium(s) of DTA under general

assumptions, estimation of real-time OD matrices, the driver behavior-consistent route

guidance, etc., are yet not clear. Usually, only approximation of DUE or DSO can be

achieved in practice by open-loop optimal control based approaches (see e.g. Kotsialos et

al. (2002); Kosmatopoulos et al. (2006b); Papageorgiou et al. (2003) and the references

therein), closed-loop feedback control based approaches (see Papageorgiou and Kotsialos

(2002); Papageorgiou et al. (2003) for a review), and some other intelligent learning frame-

work based approaches, (see e.g. Paz and Peeta (2008), Paz and Peeta (2009a), and Paz

and Peeta (2009b)). In this study, we try to develop optimal and robust control based

traffic control strategies which enable us to conduct traffic management under both supply

and demand uncertainties. We provide a brief literature review on these three aspects of

the ATMIS in this chapter.

2.2 Dynamic traffic assignment (DTA)

2.2.1 A brief overview of the DTA

As the last step of the well known four-step transportation planing procedure (trip gen-

eration, trip distribution, mode choice and traffic assignment), traffic assignment involves

allocating a set of origin-destination (OD) demands onto a traffic network, usually under

certain constraints that reflect some appropriate behavior of the travelers. If the traffic
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dynamics is not taken into account, i.e. the traffic is assumed to be operating in its steady

state, the corresponding traffic assignment problem reduces to a static traffic assignment

problem which was originally developed for long term transportation planning.

Dynamic traffic assignment (DTA), as one of the key functions of the ATMIS architec-

ture, has been recognized as a key component for network planning and transport policy

evaluation as well as for real-time traffic operation and management for the last three

decades. The readers can refer to two recent excellent review papers, i.e. Peeta and Zil-

iaskopoulos (2001) and Szeto and Lo (2006) for a comprehensive review of the history and

development of DTA. To our purpose, a brief overview of the DTA is given in the section.

For the sake of clarity, some general background of DTA, such as its relationship and

implication with different traffic flow models, will also be briefly reviewed. With respect

to the ITS, the DTA system provides the ability to model the time-varying dynamics of

traffic flows in a network, and serves mainly the following two functions:

1. The first one is the descriptive capability which estimates the current network traffic

states and predicts future network traffic states over time (mainly short-term traffic

state prediction), in terms of time-varying network traffic flows/densities, travel

times, and other performance characteristics on various components of the traffic

network1. These estimated/predicted states are used in the on-line generation and

real-time evaluation of a wide range of ATMS measures and ATIS messages.

2. The second one is the normative capability. This function aims to provide real-

time route guidance information to travelers to achieve some system-wide objectives

by taking into account the individual welfare of travelers and/or the system-wide

social welfare. The most common way of seeking this capability is to search for

path/route and/or departure time assignment. The normative capability involves

a traffic controller or a traffic management center, with historical and real-time

information on origin-destination (OD) matrices (demand information) and network

supply conditions (such as calibrated flow-density fundamental diagram (or link

performance function), incidents, weather conditions, etc.) for a given day (or a

time interval for which the ATMIS is applied), that seeks to guide the travelers

from their origins (or current positions) to their destinations so as to achieve certain

1DTA is not the only way for traffic state prediction. Another important approach for traffic prediction

is mainly based on the use of statistical techniques, such as smoothing, auto-regressive moving average

(ARMA), Kalman Filters, non-parametric regression, and neural networks (see e.g. Vlahogianni et al.

(2004) for an overview). Compared with the approaches based on DTA, these approaches could offer some

computational advantages. However, they do not make use of any behavioral rule.
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system-wide objectives (e.g. minimize the total travel time), subject to individual

routing constraints. Two different control architectures can be used for DTA: the

decentralized and the centralized architectures.

Depending on how the path departure rates are calculated, DTA can be implemented

in two ways: dynamic equilibrium assignment (wherein path flows are determined by the

dynamic equilibrium conditions) and dynamic en-route assignment (wherein path flows

are assigned according to a stochastic route choice model and the drivers can divert to

other routes with less cost).

Three route choice behavior assumptions are often used in dynamic traffic assignment.

The first states that each driver chooses a route/path at a specified departure time that

minimizes the travel cost of all vehicles traveling on the network during a certain time

period. The resulting traffic assignment problem is the so-called dynamic system optimal

assignment (DSO). The second behavior rule states that each driver chooses a route and

a departure time such that his/her own travel cost is minimized. If all the drivers behave

this way, the transportation system may reach a dynamic equilibrium status under which

no drivers could get better off by switching to another route and/or departure time. Traffic

assignment based on this assumption is known as predictive dynamic user optimal (PDUO)

assignment (also known as dynamic user equilibrium (DUE)). The third rule assumes that

all drivers seek to minimize their own travel time by continuously updating their route

choices according to the prevailing traffic conditions of the roadway network. This leads

to the reactive dynamic user-optimal (RDUO) assignment.

In terms of their methodologies, there are two distinctive approaches to access DTA:

one relies on analytical formulations and solutions algorithms, while the other is simulation

based model. We concentrate the analytical formulations in this thesis, the readers can

refer to Balakrishna (2006); Wen et al. (2006); Wen (2008) for overviews of the simulation

based DTA models. There are mainly several approaches to the analytical dynamic traffic

assignment problem2:

1. Mathematical programming (MP) approach: Dynamic traffic assignment problem-

s were first formulated as mathematical programming problems by Merchant and

Nemhauser (1978a,b) to study the DSO. Carey (1987) extended Merchant and

Nemhauser’s formulation to more general cases by utilizing convex nonlinear pro-

gramming such that the problem can then be solved using standard NLP solvers.

Drissi-Kaitouni and Hameda-Benchekroun (1992) first formulated the DUE problem

2See Boyce et al. (2001) for an overview.
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as an NLP program over the static temporal (or time) expanded network (STEN).

Smith (1993) proved that DUE has equivalent fixed-point, minimization, and VI

formulations. He also proved that, under some assumptions, the path travel time

is continuous with respect to path inflow, and hence showed the existence of DUE.

Ziliaskopoulos (2000) proposed a linear programming model for DSO with single

destination.

2. Optimal control approach: This approach was first proposed by Friesz et al. (1989)

to establish the instantaneous DUE model with multiple origins but only single

destination. This approach was followed by many researchers. However, at the early

stage of the optimal control approach, the proposed models treated the exit flow

as a function of the inflow, which introduces theoretical difficulty to the models

unless the function is linear. Later, a new whole link model (also known as the

link delay model) was introduced by Friesz et al. (2001). This model fully utilizes

the consistency between link travel time and cumulative inflow-outflow curves. The

outflow is defined as a function of the inflow with a time-shift that is equal to the

link travel time. Based on this model, the DUE problem was reformulated. Chow

(2007a, 2009a) applied this framework to study the DSO problem for a general traffic

network.

3. Variational inequality (VI) approach: The approach was first introduced to investi-

gate the DUE problem by Friesz et al. (1993). Later, link-based VI formulation was

introduced by Ran and Boyce (1996a,b). To capture the effect of physical queue,

Lo et al. (2001) investigated the DUE problem using the extended cell transmission

model (CTM) as network loading model based on the VI formulation. Due to the

powerful capability of VI to model various traffic dynamics and its rich literature

in mathematical society, the VI approach has been widely employed and become

a principal analytical method in the DTA literature, see, e.g. Friesz et al. (2001);

Peeta and Ziliaskopoulos (2001); Szeto and Lo (2006).

4. Differential VI (DVI) approach: The DUE problem was claimed to be equivalent to

a DVI problem in Friesz and Mookherjee (2006). Recently, Friesz (2010); Friesz et

al. (2011) proved this equivalence.

5. Quasi-VI (QVI) approach: It is claimed that most of the discrete-time DUE models

in terms of VI formulation proposed so far are actually QVI problems (see e.g. Ban

et al. (2008) and the reference therein).
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6. Game theory based approach: Wie (1993, 1995) and Wie and Tobin (1998) intro-

duced differential game theory into investigate the DUE. The author was trying to

establish the relationship between the Nash equilibrium and the dynamic user equi-

librium. To be more specific, to classify the DUE as a particular Nash game, i.e.

(differential) Nash non-cooperative game.

The analytical approaches are mathematically rigorous and attractive, however, they

suffer from many limitations such as oversimplified assumptions to capture the “real” dy-

namics, etc. (Peeta and Ziliaskopoulos, 2001). For many practical applications, a model

need to capture the stochastic characteristics of traffic dynamics, such as traffic flows, trav-

el times, queues and spill-backs. Those capabilities are beyond existing analytical models,

and thus simulation based model are more preferable for practical implementations. The

simulation-based approach has the merit of closely approximating the travel behavior of

individual drivers and easily incorporating traffic control measures. This approach has

been used widely in formulating DTA problems, see e.g. Wen (2008).

As mentioned in Friesz et al. (2008), DTA models tend to be comprised of four essential

sub-models:

1. a model of path delay,

2. flow dynamics,

3. flow propagation constraints,

4. a route/departure-time choice model.

With respect to the above prospects, we give an overview on some common requirements

for a proper DTA problem.

2.2.2 Requirements for dynamic traffic models

Dynamic traffic flow models for DTA are used to describe the link traffic dynamics, travel

time of the link, and flow propagation. Link travel time is the time consumption incurred

by vehicles entering the link according to the time of entry and the cumulative traffic

volume on the link at the same time. Dynamic traffic flow models describe time-varying

traffic flow characteristics on the links of a specific network which can be viewed as a

major difference from static traffic assignment, wherein the traffic network is assumed to

be running in a steady state all the time. Compared with static traffic assignment, flow

propagation as described by traffic flow models, is another important feature of DTA. For

19



the purposes of DTA such as route choice, we need to enforce some restrictions to describe

flow propagation and travel time in an appropriate manner. These requirements are:

Theoretically: non-negativity, flow conservation, flow propagation, the first in/first

out (FIFO) principle, causality, continuity.

Computational tractability is also an important requirement for application to large

networks (Mun, 2007).

In this section, we provide a brief review on these properties as follows. For the sake of

clarity, we first define the FIFO principle.

Definition 2.1. First-In-First-Out (FIFO) Principle3: Roughly speaking, the FIFO prin-

ciple requires that vehicles entering a link first must also exit from the link first. Mathe-

matically, this condition takes the form,

t′ > t′′ ⇒ t′ + τ(t′) > t′′ + τ(t′′), (2.1)

where τ(t) is the link travel time for vehicles entering the link at time t.

Readers can refer to Nie and Zhang (2005) for an overview on the role of FIFO principle

in modeling network traffic dynamics. As explained in Mun (2007), in the real world the

FIFO principle can not be always fulfilled and its violation is permitted through overtaking

in microscopic models because vehicles can be given different characteristics even though

they entered a link at the same time. Different from microscopic models, in macroscopic

(or aggregate) models vehicles are considered to take the same travel time to traverse a

link if they enter it at the same time since macroscopic (or aggregate) models describe

the average (statistical) behavior of vehicles. The FIFO principle is therefore should be

enforced in dynamic assignment models for the issue of equity (Mun, 2007). If the FIFO

principle is enforced for a traffic flow model, we have the following proposition.

Proposition 2.1. (Chow, 2007b) If a traffic model satisfies the FIFO principle and the

link travel time function τ(·) is differentiable, then the following condition will be satisfied

1 +
dτ(t)

dt
≥ 0, (2.2)

for all times of entry t to the link.

3As static assignment models do not consider traffic dynamics but are focused on network flows in

steady state, the time consumption to traverse a link is assumed to be the same for all the vehicles that are

assigned to the link irrespective of their origin, destination, and entry time. Therefore, the FIFO principle

is automatically fulfilled in static assignment framework.
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Figure 2.2: Flow conservation

Non-negativity: By definition, the inflow rate ha(t), the cumulative link traffic volume

xa(t) and link outflow rate ga(t), are required to be non-negative, i.e.

ha(t) ≥ 0, xa(t) ≥ 0 and ga(t) ≥ 0, ∀t. (2.3)

It can be shown that, if FIFO principle is enforced, the non-negativity of xa(t) and ga(t)

can be guaranteed by ha(t) ≥ 0 automatically.

Flow Conservation: The conservation of traffic flow is one of the most important re-

quirements that dynamic traffic flow models should possess. The conservation is enforced

to prevent the situations that travelers enter the network vanish before reaching the desti-

nation during the planning horizon, or the total outflow exceeds the total inflow to a link

at any time instance. As depicted in Figure 2.2, the flow conservation for a link a can be

expressed as follows:

Aa(t) = Da(t) + xa(t), (2.4)

where Aa(t) denotes the cumulative arrivals up to time t and Da[t] is the cumulative

departures up to time t, respectively. This equation states that cumulative traffic volume

on link a at time t is equal to the difference between cumulative arrivals and cumulative

departures up to time t from the initial time t0 with initial condition xa(t0) = 0. For the
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case that link a is not empty at the initial moment, we can revise (2.4) as

Aa(t) + xa(t0) = Da(t) + xa(t). (2.5)

Flow propagation: In DTA, flow should propagate through a link in a consistent man-

ner with the speed of vehicles under FIFO principle. The minimum time for a vehicle to

traverse a link should not be shorter than its free-flow travel time. The flow propagation

can be expressed according to the flow conservation equation.

Aa(t) = Da[t+ τ(t)], (2.6)

Differentiating this with respect to entry time t gives:

ha(t) = ga (t+ τ(t)) (1 + τ̇(t)) . (2.7)

(2.7) is referred to as a time-flow consistency equation because it ensures that inflow,

outflow and travel time are consistent with each other under FIFO principle.

As we can see from the flow propagation equation (2.7) that if the FIFO condition is

enforced, i.e. 1 + τ̇(t) ≥ 0, non-negative inflow rate yields non-negative outflow rate. The

consequence of FIFO violation can be seen in equation (2.7) where the outflow rate will be

negative whenever 1 + τ̇(t) is negative. Theoretically, the FIFO discipline is a necessary

and sufficient condition to ensure non-negativity of traffic and consistency between traffic

flows and corresponding travel times (Daganzo, 1995b; Astarita, 1996; Carey, 2004a).

Causality: The travel behavior of vehicles is affected by the vehicles already on the

link at the time of entry, but not by any future entering vehicles. Carey (2004b) referred

to this as “strict causality” and also introduces the term “partial causality” to describe

travel times affected by vehicles ahead as well as behind.

Computational efficiency should also be considered in addition to the aforementioned

requirements. This is because substantial computational effort is inherently required to

achieve dynamic equilibrium, especially when the size of the networks and the number of

origin-destination pairs are large.

2.3 Macroscopic traffic flow models

The macroscopic dynamic traffic flow models ignore the behavior of the individual driver

and attempt to replicate the aggregate response of a large number of vehicles. These

models represent traffic as a compressible fluid, in terms of traffic flow, density, and speed.

Almost all the analytical DTA approaches, nearly all model-based on-ramp metering con-

trol designs, and practical traffic engineering have applied macroscopic traffic flow models.
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As dynamic traffic flow models are essential for dynamic traffic surveillance, assignmen-

t, and control, we review some fundamental quantities and the evolution of macroscopic

traffic flow models related to this thesis. A comparative study of some macroscopic link

models used in DTA can be found in Nie and Zhang (2005).

According to the HCM (2000), the following quantities are defined.

Speed v(y, t) is defined as a rate of motion expressed as distance per unit of time,

where y, t represents position (measured in the direction of traffic flow) and time,

respectively. Depending on how it is measured, v(y, t) is referred to as either space

mean speed or time mean speed (HCM, 2000). The other speed concept used in

dynamic traffic flow models is the so-called free-flow speed, which is defined as the

average speed of traffic measured under light conditions so that vehicles can move

freely at their desired speed.

Flow f(y, t) is defined as the total number of vehicles that pass by the measure point

y during a given time interval including t, divided by the length of the time interval.

Density ρ(y, t) is the number of vehicles occupying a (unit) length of roadway around

the measure point y at time t. The term can be obtained by the flow-density rela-

tionship, i.e.

ρ(y, t) =
f(y, t)

v(y, t)
. (2.8)

The flow-density relationship of a freeway segment is often referred to as the funda-

mental diagram of the segment. Depending on the speed-density relationship, the

fundamental diagram can have different shapes. The Greenshields’ quadratic fun-

damental diagram and the Newell’s triangular fundamental diagram are two most

common used fundamental diagrams.

2.3.1 The Lighthill-Whitham-Richards (LWR) model

Among the macroscopic traffic flow models, Lighthill-Whitham-Richards (LWR) model

would be the most popular and most-cited one. In terms of fluid dynamics, the traffic

dynamics modeled by the LWR model is governed by the following two equations.

∂ρ(y, t)

∂t
+
∂f(y, t)

∂y
= 0,

f(y, t) = F (ρ(y, t)) . (2.9)

The first equation of (2.9) is the principle of conservation of vehicles, which is followed

from fluid mechanics. The second equation of (2.9) is a flow-density relationship which is
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also known as the “fundamental diagram”. As a “fluid-dynamic” traffic flow model, since

the LWR model does not contain a second-order derivative (such as a diffusion term), it

is classified into the category of first-order model. By substituting the second equation of

(2.9) into the first equation we have that

∂ρ(y, t)

∂t
+
∂F (ρ(y, t))

∂ρ(y, t)

∂ρ(y, t)

∂y
= 0. (2.10)

Detailed discussions on the LWR model can be found in Haberman (1977); Gomes (2004);

Schönhof and Helbing (2007). The LWR model is capable of reproducing many important

phenomena of freeway traffic. For instance, it captures the main difference between free-

flow and congested traffic, which is that they propagate small disturbances in opposite

directions and at different speeds. The LWR model also explains the formation and

dissipation of queues upstream of a bottleneck, the dynamics of deceleration shock waves,

and the absence of naturally forming acceleration shock waves (Gomes, 2004). However,

in the meantime, the model is criticized for predicting some unrealistic traffic behavior.

Criticisms of the LWR model can be summarized as (Gomes, 2004; Schönhof and Helbing,

2007):

1. It would not be able to describe unstable flow;

2. It would not describe spontaneous breakdowns of traffic flow;

3. It cannot incorporate any abrupt losses in capacity due to congestion (or capacity

drop, two-capacity phenomenon);

4. The hypothesis of a steady (or static) flow-density fundamental diagram fails in the

congested regime;

5. Field measurements suggest that flow-density fundamental diagram seem to be dif-

ferent with respect to time, depending on whether the traffic stream is decelerating

or accelerating

6. The model does not consider the distribution of driver behaviors and desired speeds.

2.3.2 The cell transmission model (CTM)

The cell transmission model (CTM) was proposed by Daganzo (1994, 1995a). The CTM

discretize the LWR model in both time and space. The CTM defines the flow propaga-

tion based on the intuitive concepts of sending and receiving flows. The model is shown

to be computationally efficient and easy to analyze yet capture many important traffic
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phenomena, such as queue build-up and dissipation, backward propagation of congestion

waves, etc. A freeway segment is divided into homogeneous, consecutively numbered cells

of length li, where i is a cell index. Time is discretized into uniform intervals of duration

∆t, such that vf,i∆t ≤ mini li in order to enforce a numerical stability condition and flow

conservation, where vf,i is the free-flow speed of cell i. The number of vehicles on cell i at

time k∆t is taken as the state variable for the cell. The dynamics is evaluated according

to the following flow conservation equation in conjunction with the fundamental diagram.

ni(k + 1) = ni(k) + qi,in(k)− qi,out(k), qi,out(k) = qi+1,in(k),

qi,in(k) = min

{
ni−1(k), Qi,

wc,i
vf,i

(Ni − ni(k))
}
, (2.11)

where vf,i and wc,i are the slopes of the free-flow and congested portions of the triangular

fundamental diagram of cell i (the free-flow speed and congestion backward wave speed).

Ni is the maximum number of vehicles that can be accommodated by cell i (related to jam

density). Qi is the maximum number of vehicles that can move from cell i−1 to cell i during

one time interval (related to capacity). qi,in(k) is the number of vehicles that actually move

from cell i−1 to i during time step k. The amount of qi,in(k) can be computed with (2.11)

or obtained by defining the sending and receiving functions: Si−1(k) = min {ni−1(k), Qi}

the maximum flow supplied by cell i − 1 under the free-flow condition, over the interval

[k, k+1), and Ri(k) = min
{
Qi,

wc,i

vf,i
(Ni − ni(k))

}
the maximum flow received by cell i

under the congested condition over the same time interval. The definitions of sending

and receiving functions are useful when the model is extended to tackle general network

topologies (Daganzo, 1995a). The CTM was further extended to track the path flows for

the purpose of dynamic traffic assignment by Lo (1999a); Lo et al. (2001). As a discrete

version of the LWR model, the CTM suffers from most of the drawbacks of the LWR

model.

2.3.3 Vertical (point) queue models

In this section, we review two vertical queue models4, i.e. the deterministic queueing

model and the whole link (or link delay) model.

2.3.3.1 The deterministic queueing model (DQM)

The deterministic queuing model, which is also known as the bottleneck model, was first

proposed by Vickrey (1969). The DQM is described by the following hybrid system who

4Vertical queue model is also referred to as point queue model.
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has a non-differentiable point.

dxa(t)

dt
=

 ha(t− τ)−Qa, xa(t) > 0;

0, otherwise.
(2.12)

In the DQM, the travel time is flow-invariant, i.e. τ , if it is in free-flow condition. Un-

der congested condition, a deterministic queue forms at its downstream end and being

discharged with a maximum service rate Qa, i.e. the link outflow is equal to the capaci-

ty. Under this circumstances, all travelers arriving before the queue dissipates will incur

travel delay. To simplify the analysis, the free-flow time is commonly ignored in the DTA

literature, i.e.

dxa(t)

dt
=

 ha(t)−Qa, xa(t) > 0;

0, otherwise.
(2.13)

The DQM may be the simplest dynamic traffic flow model satisfying all the requirements

for DTA models. It has been adopted by many authors in analyzing dynamic network

traffic and various control policies. However, the DQM has also been criticized for over-

simplifying real traffic behavior (Nie and Zhang, 2005; Mun, 2007). For example, the

DQM does not give any delay until the link has been over-saturated. In addition, the non-

differentiability in the state equation also causes analytical and computational difficulties.

2.3.3.2 The whole link (or link delay) model (WLM)

The whole link model is another vertical queue model, which aims to avoid the non-

differentiability of the DQM. As we will discuss the WLM in detail in the chapters related

to DTA, we refer the readers to the comparative studies of these two vertical queue models

by Nie and Zhang (2005); Mun (2007).

2.4 Real-time traffic surveillance and control

Real-time traffic control is always in conjunction with real-time traffic surveillance as

real-time traffic states are required in order to implement traffic control strategies. The

importance of real-time traffic state surveillance within a traffic control loop had been

recognized already in the 1970s (Papageorgiou, 1983).

2.4.1 Real-time traffic surveillance

Data of the ITS is usually generated by traffic surveillance. In this sense, traffic surveil-

lance forms the basis for the formation of information for an ITS. Comprehensive reviews
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on traffic surveillance and freeway performance measures can be found in Wang and Pa-

pageorgiou (2006b); Chen (2003); Kurzhanskiy (2007). In this section, we only provide

some aspects of the traffic surveillance related to this thesis.

Freeway networks are usually equipped with a number of measurement devices (such

as inductive loops, video cameras, radar detectors, etc.) which detect and deliver the

real-time traffic information (Wang and Papageorgiou, 2006b; Chen, 2003; Kurzhanskiy,

2007). As it is mentioned in Wang and Papageorgiou (2005), due to significant space

inhomogeneities of traffic flow the spatial resolution of the corresponding real-time traffic

measurements may not be sufficient for direct use or further exploitation of the measure-

ments. On the other hand, loop detector data sets are often incomplete or contain bad

samples. For instance, Chen (2003); Muñoz et al. (2003) pointed out that approximately

30 percent of the possible loop samples in California’s District 7, which contains over 30

freeways, were missing, on average, over the period from March 2002 to February 2003.

However, traffic control strategies, especially the optimal control based strategies, e.g.

the advanced motorway optimal control (AMOC) strategy , require accurate traffic state

information in order to effectively regulate the traffic flows on the freeways. Therefore,

besides the measurement devices installed, appropriate traffic flow models and/or traffic

state estimators are required to produce good traffic state information to support traffic

control strategies.

Traffic state estimation for a freeway network refers to estimating traffic conditions

(such as volume, density, levels of service, wave-fronts, etc.) of the network at the current

time instant based on the available real-time traffic measurements, to be more precise,

based on a limited amount of available measurement data from traffic detectors. Usu-

ally, the number of traffic variables to be estimated is much larger than the number of

traffic variables which can be directly measured. For example, we cannot install as many

detectors as we want due to many reasons such as cost, maintenance, privacy issue, and

geometric constraints. Even though we can install as many detectors as we want, we still

suffer from the incomplete and bad traffic data. These constraints emerge the essential

contribution of the freeway traffic state estimation (Chen, 2003; Wang and Papageorgiou,

2005, 2006b).

Besides the traffic state estimation, other advanced real-time traffic surveillance tasks

including short-term traffic state prediction, travel time estimation/prediction, queue es-

timation/prediction are of interest to ITS, which are useful to support the functions of

ITS. The short-term traffic state prediction attempts to forecast the traffic condition for a

freeway network over a future time horizon given the short-term historical and real-time
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traffic information. Most of the existing methods on short-term traffic state forecasting

focus on incorporating temporal and spatial traffic characteristics into the forecasting pro-

cess, e.g. using k-nearest neighbor algorithm (KNN) (Tam and Lam, 2008). A review

on the short-term traffic state prediction can be found in Vlahogianni et al. (2004). The

travel time estimation (prediction) refers to estimating (forecasting) the travel time along

any specified route inside a traffic network. Travel time estimation and prediction have

attracted much attention of researchers and traffic engineers, due to its fundamental sig-

nificance for DTA, traffic control, reliability analysis of traffic network, and ITS. Reviews

on the travel time estimation and prediction methods can be found in van Lint (2004);

Tu (2008). The queue length (sometimes we would further need information on its tail

and head) estimation/prediction aims at estimating (forecasting) the length and locations

of any queue tail and head along any specified route. The queue information is essential

for traffic signal control design, e.g. the traffic (or queue) response signal control, the

store-and-forward control. The information on traffic queue is also important for incident

management, e.g. traffic control centers wish to issue queue length information or queue

tail warnings to avoid secondary accidents and to design incident response strategies.

Queue length estimation methods are briefly reviewed in Liu et al. (2009).

2.4.2 Real-time traffic control

Some excellent review articles on real-time traffic control are available in literature, e.g.

Papageorgiou and Kotsialos (2002); Papageorgiou et al. (2003). To this end, we just give

some basic idea about real-time traffic control in this section.

In this thesis, we concentrate on a typical traffic control loop in conjunction with

a traffic surveillance tool as depicted in Figure 2.3. Demand and supply uncertainties

are considered as external quantities which feed the traffic network. Conventionally, the

supply uncertainty is taken as noise and/or parameter uncertainty of a traffic flow mod-

el/estimator, while the demand uncertainty is always regarded as disturbance. The con-

trol inputs are directly related to corresponding control actuators, such as traffic signals,

variable message signs, ramp metering etc. The control inputs may be selected from

an admissible control region subject to technical, physical, and operational constraints,

e.g. ramp metering rate, cycle time length, etc. The kernel of the control loop is the

control strategy, whose task is to produce the control inputs, based on available measure-

ments/estimations/predictions from the traffic surveillance tool. The control strategies

generate the control inputs to render the closed-loop system to achieve the pre-specified

objectives despite the influence of various disturbances and uncertainties. We have a
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Figure 2.3: A typical traffic control loop. Revised from Papageorgiou et al. (2003).

human-machine interface as the control objective is to be specified by a human operator

(or the traffic control center) and the control output is monitored by human. The rele-

vance and efficiency of the control strategy largely determines the efficiency of the overall

control system. Therefore, whenever possible, control strategies should be designed with

care, via application of powerful and systematic methods of optimization and automat-

ic control, rather than via questionable heuristics (Papageorgiou et al., 2003). Without

considering the uncertainties and disturbances, a considerable amount of literature has

been published on both the open-loop and closed-loop based control strategies for traffic

network operation. Traffic control strategies can be classified into two categories: control

strategies for urban roads, and control strategies for freeways.

Within an urban traffic network, traffic signals at the intersections are major control

measurements. Control strategies for urban road traffic may be classified as Papageorgiou

et al. (2003):

The earliest traffic signal control may be the fixed-time strategies. A fixed-time

scheme may not be “fixed” for a whole day but for a given time of day, e.g. the

morning peak. The fixed-time strategies are derived off-line by using appropriate op-

timization methods based on historical demands and turning rates for each stream of

the intersection (which are usually taken as constants). Some well known softwares,

29



such as MAXBAND, TRANSYT, etc., are based on the fixed-time traffic signal con-

trol strategies. By their very nature, fixed-time traffic signal control strategies are

applicable to under-saturated traffic conditions only.

When more and more real-time measurements on the traffic states are available in

accompany with the development of ITS, traffic-responsive strategies were proposed.

These strategies make use of these real-time measurements to calculate in real time

the suitable signal settings. Traffic response strategies are also extended to freeway

traffic control by researchers due to their feedback structure (Papamichail and Pa-

pageorgiou, 2008). Due to the fact that the queues at the signalized junctions are

stochastic and very difficult to estimate/predict, most of the existing signal control

strategies are only applicable to under-saturated5 traffic conditions. Very few strate-

gies are suitable also for over-saturated conditions with partially increasing queues

that reach the upstream intersections6 (Papageorgiou et al., 2003).

Isolated traffic signal strategies aim to handle single intersections while coordinat-

ed traffic signal strategies aim to tackle an urban zone or even a whole network

comprising many intersections.

Another category of control strategies is the freeway traffic control. The control mea-

sures that are typically employed in freeway networks are Papageorgiou et al. (2003):

Ramp metering, is implemented by installing traffic signals at on-ramps or freeway

interchanges. The ramp metering rate is designed to regulate the traffic flows to

access the freeways Papageorgiou and Kotsialos (2002); Gomes and Horowitz (2006);

Gomes et al. (2008).

Link control, mainly includes lane control, variable speed limits, congestion warning,

tidal flow, keep-lane instructions, etc.

Driver information and guidance systems, which are functions of ITS. The informa-

tion and guidance can be broadcasted either by use of roadside variable message

signs or via ATIS.

As traffic networks are exposed to supply and demand uncertainties and disturbances,

we have to take them into account. Yet, when take into account these uncertainties and

disturbances, the existing traffic control strategies either perform not good or even become

5Queues are only created during the red phases and are dissolved during the green phases.
6One difficulty is we are unable to estimate the queues under these circumstances.
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unstable as the network is influenced by the demand and supply uncertainties. We will

discuss this issue in detail in Chapter 7, thus we omit them here for brevity.

2.4.3 DTA and dynamic traffic control

DTA and dynamic traffic control are two key functions of the ATMIS. They ought to

be interrelated. Research on these two topics seem to be parallel developed, although

dynamic traffic control aims to approximate the DTA. However, no systematic method

has been proposed in literature. Also there is no literature tells how close the designed

control law can converge to the DTA. Some early works, e.g. Wang et al. (2003), have been

done to combine DTA with dynamic traffic control by using the real-time prediction of

travel time. Model predictive control based approach has also been proposed to integrate

the dynamic route guidance and dynamic traffic control, see e.g. Hegyi (2004), Karimi et

al. (2004). Some disadvantages of these strategies are: too complex, too computational

expensive, precise model and precise disturbance prediction are necessary required, lack

of stability proof, and optimality is not guaranteed. Recently, in Paz (2007), Paz and

Peeta (2008), Paz and Peeta (2009a), and Paz and Peeta (2009b), the authors try to use

intelligent learning mechanism, the fuzzy based learning approach to be more specified,

to approximate the DTA by giving the travelers real-time route guidance. The proposed

method is designing a fuzzy based system to approximate the equilibrium(s) of DTA. The

guidance to a specific traveler is somehow the value of the corresponding defuzzification

function.

To tell how accurate the dynamic traffic control is approximating the equilibrium(s) of

DTA is not easy. We first need to address the uniqueness of the equilibrium of DTA. If a

DTA model, say DUE, admits multiple equilibriums, we need to first identify the stability

and its region of attraction for each equilibrium of the DUE, then answer the accuracy

we can achieve. All these jobs are not easy, and research works on the stability and

uniqueness analysis of the equilibriums of DTA by different researchers tell very different

stories. For example, the works by Mounce and Smith, see e.g. Mounce (2006), Mounce

(2007) and Mounce and Smith (2007), proposed that the uniqueness and stability of DUE

can be guaranteed only for network with single bottleneck per route case under various

assumptions, while the works by Peeta and Yang (2003) and Iryo (2008) proposed that

the DUE and DSO are unique and stable for general network under certain assumptions.

These topics are still open for research. Many issues are needed to be addressed before

the application of DTA results. We quote a Chinese proverb to end the chapter: “The

journey of a thousand miles begins with a single step”.
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Chapter 3

Dynamic user equilibrium with

side constraints for a traffic

network with traffic volume

(queue) control

This chapter investigates a traffic volume control scheme for a dynamic traffic network

model which aims to ensure that traffic volumes on specified links do not exceed preferred

levels. The problem is formulated as a dynamic user equilibrium problem with side con-

straints (DUE-SC) in which the side constraints represent the restrictions on the traffic

volumes. Travelers choose their departure times and routes to minimize their generalized

travel costs, which include early/late arrival penalties. An infinite-dimensional variational

inequality (VI) is formulated to model the DUE-SC. Based on this VI formulation, we

establish an existence result for the DUE-SC by showing that the VI admits at least one

solution. To analyze the necessary condition for the DUE-SC, we restate the VI as an

equivalent optimal control problem. The Lagrange multipliers associated with the side

constraints as derived from the optimality condition of the DUE-SC provide the traffic

volume control scheme. The control scheme can be interpreted as additional travel delays

(either tolls or access delays) imposed upon drivers for using the controlled links. This

additional delay term derived from the Lagrange multiplier is compared with its coun-

terpart in a static user equilibrium assignment model. If the side constraint is chosen as

the storage capacity of a link, the additional delay can be viewed as the effort needed

to prevent the link from spillback. Under this circumstance, it is found that the flow is

incompressible when the link traffic volume is equal to its storage capacity. An algorithm
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based on Euler’s discretization scheme and nonlinear programming is proposed to solve the

DUE-SC. Numerical examples are presented to illustrate the mechanism of the proposed

traffic volume control scheme.

3.1 Introduction

Various forms of traffic control scheme have been introduced to maintain or control the

level of service of a traffic network, such as traffic signals, ramp metering, and traffic volume

(or queue) control. These schemes mainly mitigate congestion or maximize capacity.

However, there is a need in some cases to ensure the safety or desired environmental

condition of an urban area or road section that may require a restriction on traffic volume.

This chapter focuses on that type of traffic volume control problem, wherein one aims to

derive an appropriate control scheme from a dynamic traffic network model.

Similar studies have been conducted in the context of side constrained static traffic

assignment problem (SC-TAP) or capacitated static traffic assignment problem (Larsson

and Patriksson, 1995, 1999; Larsson et al., 2004; Yang and Huang, 2005). Typically, the

side constraints impose restrictions on traffic volumes or maximum delays of certain links.

There are two types of side constraint in traffic assignment models: prescriptive (hard)

and descriptive (soft) side constraints. Prescriptive side constraints typically arise from

traffic management and control policies (e.g., link capacity constraint, traffic signal, access

control, and traffic volume control, etc.). With this type of constraint, the SC-TAP can

be used to model and evaluate necessary optimal control parameters (implemented as

access delay times or tolls). The validity of such controls depends on the assumption that

their effects are transferable to travelers’ perceptions as additional disutilities of travel.

Descriptive side constraints, in contrast, can be introduced to better represent the physical

restriction of highways or junctions (e.g., joint capacities of roundabouts), which may not

be fully represented by the standard flow-delay relationship (e.g., the BPR function). In

this chapter, we concentrate on the prescriptive side constraints for the purposes of access

control and traffic volume control.

Under the SC-TAP, Larsson and Patriksson (1995, 1999) show that the Lagrange

multiplier as derived from the optimality condition of the SC-TAP can be used as the

control parameter (equivalent delay or adjusted travel cost function) on that link. However,

the basic assumption of the static model is that the traffic system operates at its steady

state with constant demand and link traffic volume. This may not be suitable or plausible

for the analysis of urban traffic management, which involves temporal flow and congestion.
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We thus aim to extend the SC-TAP to the dynamic case and derive the dynamic control

parameter similar to the Lagrange multiplier of the SC-TAP, which can be adopted in the

dynamic traffic volume control scheme.

The dynamic user equilibrium (DUE) condition is a type of route/departure time

choice principle for dynamic traffic assignment (DTA) problems. Under the DUE, each

traveler chooses a route and/or departure time to minimize his generalized travel time/cost

(including early/late arrival penalties) (Carey, 2008). Several approaches have been pro-

posed to formulate and solve the DTA problem, e.g., Carey (2008); Friesz et al. (1993,

2001); Friesz and Mookherjee (2006); Friesz et al. (2008); Wie et al. (2002); Huang and

Lam (2002); Lindsey (2004), and Chow (2009a). The dynamical framework allows a rep-

resentation of temporal travel demand and traffic condition in which a time-varying traffic

control scheme can also be derived from the model.

The need for the dynamic traffic volume control scheme can be found in several prac-

tical cases. For example, in Hong Kong there are several cross harbor tunnels, with the

central tunnel the most congested due to its lower toll level. It is thus necessary to con-

trol the number of vehicles inside the tunnel to maintain sufficient reserve capacity/space

for handling any possible incident (e.g., car accident or disruption due to disaster). We

provide a sound theoretical analysis of the optimal design of dynamic traffic volume con-

trol scheme by exposing the DUE-SC condition and the additional travel cost induced by

side constraints. The introduction of the DUE-SC also provides a potential approach to

determining the DUE condition under a pre-specified level of service (LOS) for a traffic

network (Yang et al., 2000).

In this chapter, the DUE-SC is formulated as an infinite-dimensional variational in-

equality following Friesz et al. (1993); Friesz (2010). We adopt the whole-link linear travel

time model as proposed by Friesz et al. (1993) that guarantees the first-in-first-out (FI-

FO) discipline of dynamic flow. The existence of equilibrium to the DUE-SC is verified

by showing the VIP admits at least one solution. The Pontryagin minimum principle is

then applied to analyze the necessary condition of the DUE-SC for a general traffic net-

work by restating the VI as an equivalent optimal control problem. We then interpret

the physical meaning of the Lagrange multipliers, as in the static case. Based on the VI

formulation, a fixed point algorithm is developed for the DUE-SC. An algorithm based

on Euler’s discretization scheme and nonlinear programming is then proposed to solve the

DUE-SC. Numerical tests are conducted to illustrate the applicability and mechanism of

the proposed traffic volume control scheme.

The remainder of this chapter is organized as follows. In Section 3.2, the SC-TAP is
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briefly reviewed. The DUE-SC is formulated and analyzed in Section 3.3. The solution

algorithm for solving the DUE-SC problem is proposed in Section 3.4. Numerical examples

are then provided to demonstrate the proposed method in Section 3.5. Conclusions and

directions for future work are highlighted in Section 3.6. Companion materials are given

in the Appendix.

3.2 Static side-constrained traffic assignment problem

Before addressing the DUE-SC, it is necessary to review the formulation and properties

of the SC-TAP. An urban road transportation system can be described as a strongly

connected directed network G(N,A) where N and A denote the sets of nodes and links,

respectively. We assume that the network has n links in total. Let Ca be the capacity of

link a ∈ A. Let W be the set of OD pairs and Qw be the number of trips made between

OD pair w ∈ W . A path is defined as a connected sequence of links, Pw denotes the set

of all non-cyclic paths connecting OD pair w ∈W and P denotes the set of all non-cyclic

paths. fp denotes the flow on path p ∈ P and υa represents the traffic volume on link

a ∈ A. We presume that the SC-TAP has at least one feasible solution, which means that

link capacities are sufficiently large to allow all travel demands to traverse the network for

at least one assignment. The SC-TAP (Larsson and Patriksson, 1995) is formulated as

minZ(υ) =
∑
a∈A

∫ υa

0
ta(ω)dω, (3.1)

subject to

∑
p∈Pw

fp = Qw, w ∈W, (3.2)

∑
p∈P

fpδ
p
a = υa, a ∈ A, (3.3)

υa ≤ Ca, a ∈ A, (3.4)

fp ≥ 0, p ∈ P, (3.5)

where υ = (υa : ∀a ∈ A), (3.4) defines the capacity constraints, ta(υa) is the link travel

time on link a ∈ A when the traffic volume on link a is υa, and

δpa =

 1, if a ∈ p,

0, otherwise,

is the Kronecker Delta function. We have the following Lemma for the SC-TAP.
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Lemma 3.1. (Larsson and Patriksson, 1995) Let µw and λa be the Lagrange multipli-

ers associated with constraints (3.2) and (3.4), respectively. The first-order optimality

condition for UE with side constraints is given as follows:

fp(cp − µw) = 0, w ∈W, (3.6)

cp − µw ≥ 0, p ∈ Pw, w ∈W, (3.7)∑
p∈Pw

fp −Qw = 0, w ∈W, (3.8)

fp ≥ 0, p ∈ P, (3.9)

υa ≤ Ca, a ∈ A, (3.10)

λa(υa − Ca) = 0, a ∈ A, (3.11)

λa ≥ 0, a ∈ A, (3.12)

where cp, the generalized link travel time, is given by

cp =
∑
a∈A

t̂a(υa)δ
p
a, p ∈ P, (3.13)

t̂a(υa) = ta(υa) + λa, a ∈ A. (3.14)

The generalized link travel time comprises two components: ta(υa) is the normal travel

time on link a ∈ A, and λa is the Lagrange multiplier associated with constraint (3.4).

λa ≥ 0 only if υa = Ca, and λa = 0 if υa < Ca. We can regard this multiplier, λa, as an

additional time or cost penalty (besides the normal travel time) that users traveling on

this saturated link are willing to wait or pay for using the link.

3.3 Dynamic user equilibrium with side constraints

3.3.1 Preliminaries and dynamic user equilibrium

The dynamic user equilibrium formulation adopted here can be traced back to Friesz et

al. (1993), and is also discussed in detail by Friesz et al. (2001). According to Friesz and

Mookherjee (2006); Friesz (2010), DUE models tend to be comprised of four essential sub-

models: (i) a model of path delay; (ii) flow dynamics; (iii) flow propagation constraints;

and (iv) a route/departure-time choice model. We will consider a finite time planning

horizon T > 0 and regard time t ∈ [0, T ] ⊂ R1
+ as a continuous variable. Let P denote

the set of all paths and |P | denote the number of paths in a network. An arbitrary path

p ∈ P of the network of interest is defined by a sequence of the links used by that path

which is denoted by p
.
= {a1, a2, · · · , am(p)}, where m(p) is the number of links used by

path p.
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We denote the vector of path flows as h = (hp : p ∈ P ) and assume that h ∈ L+ =(
L2
+[0, T ]

)|P |
, where L+ denotes the nonnegative cone of the |P |-fold product of the Hilbert

space L2
+[0, T ] of square-integrable functions on [0, T ]. As argued in Friesz et al. (2011), the

most essential component of a dynamic user equilibrium model is the path delay operator

which is denoted as Dp(t,h), ∀p ∈ P . The path delay operator Dp(t,h) provides the travel

time needed to traverse path p for per unit of flow departing from the origin at time t.

When departure time choice is enabled, the schedule delay cost function (or early/late

arrival penalty) κ (χ) is employed, whereby χ is defined as the difference between actual

and preferred arrival time denoted by t∗ and t∗ < T : χ = t +Dp(t,h) − t∗. To this end,

we define effective path delay operator Ψp(t,h) by adding the schedule delay to Dp(t,h),

i.e.

Ψp(t,h) = Dp(t,h) + κ (χ) . (3.15)

Let Qw denote the fixed total travel demand for origin-destination (OD) pair w ∈

W and Pw denote the set of paths connecting OD pair w. We need to enforce flow

conservation, i.e.

∑
p∈Pw

∫ T

0
hp(t)dt = Qw, ∀w ∈W, (3.16)

where (3.16) is comprised of Lebesgue integrals. Thus, we define the feasible region for

the DUE problem as

Λ̌ =

h : h ∈ L+,
∑
p∈Pw

∫ T

0
hp(t)dt = Qw, ∀w ∈W

 , (3.17)

Definition 3.1. Dynamic user equilibrium (Friesz, 2010). For any h∗ ∈ Λ̌ and any

nonnegative vector ϱ = (ϱw : w ∈W ) ∈ R|W |
+ , the pair (h∗, ϱ) is a simultaneous departure-

time-and-path-choice dynamic user equilibrium if and only if the following two conditions

are satisfied for all p ∈ Pw and for all w ∈W :

h∗p(t) > 0 ⇒ Ψp(t,h
∗) = ϱw,

Ψp(t,h
∗) > ϱw ⇒ h∗p(t) = 0, (3.18)

where ϱw is the smallest travel time for the OD pair w, given by

ϱw = min{ϱp : p ∈ Pw} ≥ 0, and ϱp = ess inf{Ψp(t,h) : t ∈ [0 T ]} ≥ 0, (3.19)

where ess inf is essential infimum operator which defines the largest essential lower bound

for a given function f in which all inf f ≤ ess inf f .
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As shown by Friesz et al. (1993), any solution of the following variational inequality

is a solution of the DUE problem with simultaneous departure-time-and-path-choice: find

h∗ ∈ Λ̌ such that

⟨Ψ(t,h∗), (h− h∗)⟩ =
∑
p∈P

∫ T

0
Ψp(t,h

∗)
(
hp(t)− h∗p(t)

)
dt ≥ 0, (3.20)

for all h ∈ Λ̌, where Ψ(t,h) = (Ψp(t,h) : p ∈ P ) is the effective network delay operator.

In the above formulation of DUE problem, only two of the four essential sub-models

of DUE are considered, i.e. a path delay model and a route/departure-time choice model.

Since the path delay operator does not explicitly depend on the detailed analytical traffic

dynamics, i.e. flow dynamics and proper flow propagation constraints, this formulation is

reasonable

if the delays are assumed to be exogenous (Friesz, 2010), i.e. the path delay operators

are known in advance or represented by a simulation model, or

if one uses the link traffic dynamics to eliminate the vector of link traffic volumes

and recognizes that link exit flows are completely determined by path flows (i.e.

hp(t), ∀p ∈ P ) and link traffic volumes according to the flow propagation constraints

(Friesz et al., 1993; Friesz and Mookherjee, 2006).

To make the formulation self-contained and to investigate more analytical properties of

the DUE problem, we further introduce the other two sub-models, i.e. (ii)-(iii), which are

also known as network loading models. For a path p
.
= {a1, a2, · · · , am(p)}, the dynamics

of link ai is assumed to be described by the following equations:

dxpai(t)

dt
= gpai−1

(t)− gpai(t), ∀p ∈ P, i ∈ [1, m(p)], (3.21)

xai(t) =
∑
p∈P

xpai(t)δ
p
ai , ∀ai ∈ A, (3.22)

where xpai(t) denotes the traffic volume on path p traversing link ai at time t, gpai(t) is the

flow exiting link ai and g
p
ai−1(t) is the flow entering link ai of path p ∈ P at time t. The

total traffic volume xai(t) of link ai at time t is defined by (3.22). For i = 1, that is the

link connecting the origin of path p, we have

dxpa1(t)

dt
= hp(t)− gpa1(t), ∀p ∈ P, (3.23)

where gpa0(t) = hp(t), i.e. the departure rate from the origin of path p at time t. We

assume that xPa = (xpai : p ∈ [1, |P |], i = [1,m(p)]) ∈
(
H1[0, T ]

)n1 , where n1 =
∑|P |

p=1m(p)
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and H1[0, T ] denotes the Sobolev space1. Under this assumption, we can represent the

vector of link traffic volumes defined by (3.22), i.e. x = (xai : ai ∈ A), as a function of

time and path flows, i.e. x(t,h) : R1
+×L+ →

(
H1[0, T ]

)n
, where n = |A| is the number of

links in the network. Under certain conditions, e.g. strong FIFO (Theorem 3.3 of Zhu and

Marcotte (2000)), we can represent the link flow operator as x(h) = x(t,h) which is weakly

continuous on Λ̌. We assume also that g = (gpai : p ∈ [1, |P |], i = [1,m(p)]) ∈
(
L2
+[0, T ]

)n1 .

In addition, a link delay function (or link travel time function) Dai (xai(t)), which

defines the link travel time as a function of the link traffic volume at the entry time to the

link, is required to characterize travel time required to traverse a link, say link ai:

τpa1(t) = t+Da1 (xa1(t)) , ∀p ∈ P,

τpai(t) = τpai−1
(t) +Dai

(
xai(τ

p
ai−1

(t))
)
, ∀p ∈ P, i ∈ [2,m(p)], (3.24)

where τpai(t) is known as the exit time for vehicles entering link ai at time t. As noticed the

link delay function depends on its link traffic volume only, hence it is known as separable

link delay model. To proceed the analysis, we assume that all link delay functions are

differentiable with respect to their own arguments. By differentiating (3.24) and using the

link flow conservation, we can obtain the following proper flow propagation constraints

(Friesz et al., 2001):

gpa1 (t+Da1 (xa1(t)))
(
1 +D′

a1 (xa1(t)) ẋa1(t)
)
= hp(t), ∀p ∈ P, (3.25)

gpai (t+Dai (xai(t)))
(
1 +D′

ai (xai(t)) ẋai(t)
)
= gpai−1

(t), ∀p ∈ P, i ∈ [2,m(p)], (3.26)

the superscript “′” denotes differentiation with respect to the associated function argu-

ment, and the superscript “·” denotes differentiation with respect to time. It is clear that

we need

1 +D′
ai (xai(t)) ẋai(t) ≥ 0 (3.27)

to ensure the non-negativeness of traffic flows, i.e. given hp(t) ≥ 0, ∀p ∈ P , we have

gpai(t) ≥ 0, ∀p ∈ P, ∀ai ∈ A, and xai ≥ 0, ∀ai ∈ A. The condition (3.27) ensures

the FIFO queue discipline for the DTA problems. Without loss of generality, we assume

zero initial conditions, that is xai(0) = 0, ∀ai ∈ A, hp(0) = 0, ∀p ∈ P . When Dai(·) is

linear, Friesz et al. (1993) first showed that the model satisfies the FIFO for all continuous

inflow profiles and later Zhu and Marcotte (2000) showed the strong FIFO property for

1Suppose that u ∈ Lp(Ω), 1 ≤ p < ∞ and there exist weak derivatives ∂αu for any α with |α| < ℓ, ℓ ∈

Z+ (all derivatives up to order ℓ), such that ∂αu ∈ Lp(Ω), |α| < ℓ, Then we say that u ∈ W ℓ,p(Ω). We

denote H1[0, T ] = W 1,2[0, T ] as the Sobolev space, see e.g. Minoux (1986); Leoni (2009).
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all continuous and bounded inflow profiles. Xu et al. (1999) obtained fairly weakly FIFO

conditions for nonlinear Dai(·). In this chapter, the whole-link linear travel time model

proposed by Friesz et al. (1993) is adopted. The exit time of a vehicle entering the link at

time t can be calculated as:

τai(t) = t+ bai +
xai(t)

Rai
, (3.28)

where bai is a flow-invariant travel time (free-flow travel time) of link ai. A suitable

physical interpretation for the parameter Rai is the maximum feasible constant outflow

from the link (Carey and McCartney, 2002) and thus we state it here as the service rate

of link ai. To calculate the path delays in terms of link delays, the nested path delay

operators were proposed by Friesz et al. (1993) which are defined as:

Dp(t,x) :=

m(p)∑
i=1

δpaiΦai(t,x),∀p ∈ P, (3.29)

where

Φa1(t,x) = Da1 (xa1(t)) ,

Φai(t,x) = Dai

(
xai(t+Φa1 + · · ·+Φai−1)

)
= Dai

xai
t+ i−1∑

j=1

Φaj

 , ∀i ∈ [2,m(p)].

The value of path delay operatorDp(t,h) is calculated by identifyingDp(t,h) to the nested

path delay operator Dp(t,x), i.e. Dp(t,h) = Dp(t,x).

3.3.2 Existence of the DUE with simultaneous departure-time-and-path-

choice

The existence of equilibrium to the DUE without departure time choice is proven by Zhu

and Marcotte (2000), wherein Ψp(t,h) = Dp(t,h), i.e. no early/late penalty is considered,

and the feasible region is defined as:

Λ̂ =

h : h ∈ L+,
∑
p∈Pw

hp(t) = Qw(t), hp(t) ≤ Bp, ∀p ∈ Pw, ∀w ∈W, ∀t ∈ [0, T ]

 ,

where Bp is the upper bound of the path flow. The existence of the DUE without departure

time choice is proven by showing that the link traffic dynamics, link delay sub-model

and path delay operators under rather mild regularity conditions are continuous under

the assumption that departure rates are bounded from above. The existence result has

not been shown for the DUE with simultaneous departure-time-and-path-choice, i.e. the

variational inequality defined by (3.17) and (3.20) admits a least one solution. To prove the
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existence of the DUE-SC, we will first prove the existence of the DUE with simultaneous

route/departure time choice. In the discrete time framework, Wie et al. (2002) show the

existence result for the DUE with simultaneous departure-time-and-path-choice and elastic

demand under certain assumptions, e.g. the path delay operator Ψp(t,h) is continuous

and each integral constraint comprising (3.17) is a Riemann integral. As we consider the

integrals in (3.17) are comprised of Lebesgue integrals and the flow conservation constraints

themselves are interpreted as valid almost everywhere, the finiteness of each Qw is not

enough to assure bounded path flows, or the path flows may not be well defined. In this

case, we need to assume that the path flows are bounded as done by Zhu and Marcotte

(2000), i.e. the feasible region is further restricted as

Λ =

h : h ∈ L+,
∑
p∈Pw

∫ T

0
hp(t)dt = Qw, hp(t) ≤ Bp, ∀p ∈ Pw,∀w ∈W,∀t ∈ [0, T ]

 ,

whereBp is the upper bound of path flow hp(t). In the continuous time framework, we state

the following lemma for the proof of the existence result for the DUE with simultaneous

departure-time-and-path-choice:

Lemma 3.2. Assume that there is a finite instant T such that

(i) all path flow departure rates hp(t) are well defined over Λ;

(ii) all links satisfy the strong FIFO condition with a uniform constant over [0, T ];

(iii) the link travel time functions are nonnegative, nondecreasing, differentiable and

Lipschitz continuous over [0, T ];

(iv) the early/late penalty function κ : R→ R is continuous.

Then the effective network delay operator Ψ(h) is weakly continuous over Λ.

Proof of Lemma 3.2 If each integral constraint comprising (3.17) is assumed to be

a Lebesgue integral and hp(t) is finite, condition (i) holds. Because we apply the linear

link travel time function and link dynamics of Zhu and Marcotte (2000), conditions (ii)

and (iii) are satisfied. Since all links satisfy the strong FIFO condition, a similar condition

holds for all paths, i.e. Dp(tj ,h) > Dp(ti,h) whenever tj > ti. From Theorem 2.1 of Zhu

and Marcotte (2000), Dp(ti,h) is measurable and square integrable. Moreover, we can

represent the path delay operator as Dp(ti,h) = Dp(h). From Theorem 4.1 of Zhu and

Marcotte (2000), D(h) = (Dp(h) : ∀p ∈ P ) is weakly continuous over Λ. By definition,

i.e. (4.16), Ψp(h) = Dp(h) + κ (Dp(h)). Similar to the proof of Theorem 4.1 of Zhu

and Marcotte (2000) we have κ (Dp(h)) is weakly continuous over Λ as Dp(·) is weakly
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Figure 3.1: Fundamental diagram of an urban street

continuous over Λ and κ(·) is continuous over R. Thus Ψp(h) is weakly continuous. The

effective network delay operator Ψ(h) is weakly continuous over Λ as each of its components

is weakly continuous. �

Proposition 3.1. Suppose all the conditions in Lemma 3.2 hold. Then the solution set

of the infinite dimensional variational inequality (3.17) and (3.20) is nonempty.

Proof of Proposition 3.1 With Lemma 3.2, the existence of the DUE with simul-

taneous departure-time-and-path-choice can be shown by following the proof of Theorem

4.2 of Zhu and Marcotte (2000) for the feasible set Λ is closed, convex, bounded and Ψ(h)

is weakly continuous. �

In fact, condition (iv) in Lemma 3.2 is consistent with the existence result of the

DUE with simultaneous departure-time-and-path-choice for bottleneck model proposed

by Lindsey (2004). Lemma 3.2 proves the existence of equilibrium for the DUE with

simultaneous departure-time-and-path-choice problem. This result will be useful for us to

prove the existence result for dynamic user equilibrium with side constraints.

3.3.3 Problem formulation of dynamic user equilibrium with side con-

straint

To begin with, we first look into an illustrative example of traffic volume control and define

the side constraints for dynamic user equilibrium traffic assignment.

An illustrative example of access control by controlling link traffic volume.

Consider a two-lanes urban street with a length of 100 meters that admits a fundamental

diagram as depicted in Figure 3.1. The free-flow travel time of the street is then 0.1

minutes. The service rate is 60 veh/min. If the linear travel time function is adopted, the

travel time of this street is θ(t) = 0.1+ x(t)
60 minutes. If vertical queue models are adopted

to model the traffic dynamics and the link is assumed to be capable of accommodating
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arbitrary large number of vehicles, the congestion effect would be captured by the above

linear travel time function. However, there are physical storage capacities for links to

accommodate queuing vehicles. In this example, the street would be completely blocked if

the traffic volume on it equals to 24 vehicles, which may render the travel time of the link

be larger than 1 minute. However, it is unlikely for us to capture the spillback effect of

congestion by applying the linear travel time function in conjunction with vertical queue

models (since the link can accommodate 24 vehicles only, which implies the maximal travel

time for this link is 0.35 min).

In DTA literature, the side constraint is usually selected as the inflow rate to a link is

less than or equal to its service rate. By such kind of restriction, one can eliminate the

traffic congestion (or queues) (Carey and Ge, 2003). On the other hand, the effort needed

to prevent the congestion happening is captured by the Lagrange multiplier associated

with the side constraint, which can be viewed as an additional travel cost imposed on

the travelers. The travelers are then charged by this additional travel cost for using the

saturated bottleneck (Yang and Meng, 1998). However, this is not practical due to fact

that congestion is somehow inevitable. A practical method that is widely applied and

has been validated by traffic control engineering field applications is to control the link

traffic volumes to capture the potential spillback effects of traffic on ramps and queues in

store-and-forward based methods (see e.g. Papageorgiou et al. (2003); Aboudolas et al.

(2009) and the references therein). The traffic volume control can capture the potential

spillback effect in the sense that the effort needed to prevent the spillback happening

can be simulated by restricting the link traffic volume be less than or equal to its jam

traffic volume (i.e. storage capacity), e.g. xa(t) ≤ 24 vehicles in the previous example.

Therefore, we consider the traffic volume control as a kind of side constraints in this

chapter. Another possible way to capture the spillback effect by the WLM is to apply a

special piecewise linear exit-flow function and explicitly restrict the exit-flow according to

downstream conditions, which results in a relaxed cell transmission model (CTM) when

the restricted WLM is discretized (Nie, in press). The other way to capture the spillback

effect is to apply the physical queue models (Lo and Szeto, 2002; Gentile et al., 2005;

Nie and Zhang, 2010), e.g. the CTM. A critical drawback of these two approaches is the

physical queue models introduce discontinuous and non-differentiable traffic dynamics and

travel cost functions, e.g. path delay operator. This prevents us from solving the DTA

problems analytically. The non-monotone and non-differentiability properties also lead to

difficulties in finding numerical solutions, because the convergence of existing algorithms

rely on either monotonicity and/or differentiability (Szeto and Lo, 2006).
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Recent studies have revealed that these macroscopic link models (including vertical

queue models, e.g. WLM and bottleneck model; and physical queue models, e.g. CTM)

would produce almost the same traffic assignment result unless there is a spillback (shock-

wave) (Nie and Zhang, 2005; Mun, 2007; Nie and Zhang, 2010). By this result, another

way to capture the spillback effect is to adopt vertical queue models, to be precise the

WLM in this chapter, meanwhile to restrict the link traffic volumes to be less than or

equal to the link storage capacities on the network such that no spillback would happen.

The spillback effect is captured in terms of the effect needed to prevent the network from

spillback. By doing this, we can avoid the drawbacks of physical queue models while

capturing the spillback effect. Similar to the bottleneck case, we can regard this effect as

additional travel cost imposed on travelers for using the controlled links. The travel time

function adopted in DTA literature, i.e. Da(xa(t)), would be more meaningful under this

circumstance since if there is spillback the link travel time function would not be separable,

e.g. depends on the downstream traffic conditions like the case of physical queue model

(Szeto and Lo, 2006). Practically, the dynamic traffic volume control can also be used

to alleviate congestion spillback, avoid gridlock, and increase the safety of some critical

facilities.

From the previous example and the analysis above, the side constraint considered here

is the link traffic volume control or restriction on link traffic volume, i.e.

xai(t) ≤ Cai(t), ∀ai ∈ A, ∀t ∈ [0, T ]. (3.30)

(3.30) defines the side constraints imposed on the links of the network. Let us define

the following vector-valued function for the side constraints as C = (Cai : ai ∈ A) , where

C : [0, T ] → Σ ⊂ Rn+, with Σ being a prescribed compact subset of Rn+ with known

bounds. We assume that C ∈
(
W 1,∞[0, T ]

)n
, where W 1,∞[0, T ] denotes the space of

Lipschitz functions on [0, T ] (Leoni, 2009). We rewrite the side constraints in a compact

form as

x(t) ≤ C(t), ∀t ∈ [0, T ]. (3.31)

By construction, the set Σx , {x(t) : 0 ≤ x(t) ≤ C(t)} is compact.

The DUE-SC with simultaneous departure-time-and-path-choice can be formulated as:

find h∗ ∈ Λ̄ such that

⟨Ψ(t,h∗), (h− h∗)⟩ =
∑
p∈P

∫ T

0
Ψp(t,h

∗)
(
hp(t)− h∗p(t)

)
dt ≥ 0, (3.32)

for all h ∈ Λ̄, where

Λ̄ = Λ
∩

Λ̃, (3.33)
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and Λ̃ = {h : h ≥ 0, x(t) ≤ C(t)}.

3.3.4 Existence of the DUE-SC with simultaneous departure-time-and-

path-choice

Following the standard assumption of the SC-TAP, we need to presume that the feasible

set Λ̄ of the DUE-SC with simultaneous departure-time-and-path-choice is not empty. For

the DUE-SC with simultaneous departure-time-and-path-choice, we have the following

proposition:

Proposition 3.2. Suppose all the conditions in Lemma 3.2 hold. Then the infinite di-

mensional variational inequality (3.32)-(3.33) admits a least one solution.

Proof of Proposition 3.2 For the DUE-SC, as the side constraints are introduced,

the feasible region Λ of the original DUE problem is further restricted to Λ̄. To show the

variational inequality (3.32)-(3.33) admits at least one solution, we need to show that the

new feasible region Λ̄ restricted by the side constraints is bounded, convex and closed. As

shown by Zhu and Marcotte (2000), the flow operator x(h) as a function of the path flow

h is weakly continuous given that conditions (i)-(iii) of Lemma 3.2 hold. By following the

weak continuity of x(h) and the fact that the set Σx is constructed to be compact, the

set Λ̃ is closed (Noiri, 1974; Rose, 1984). Therefore, Λ̄ is a closed set. In conjunction with

the assumption that h ≥ 0 and is bounded from above, the set Λ̄ is bounded and convex.

If all the conditions in Lemma 3.2 hold, the weak continuity of the effective network

delay operator Ψ(h) can be shown. Thus, the variational inequality defined by (3.32) and

(3.33) admits at least one solution. The existence of equilibrium to the DUE-SC with

simultaneous departure-time-and-path-choice is established. �

3.3.5 Necessary condition of the DUE-SC with simultaneous departure-

time-and-path-choice

In the previous sections, we have studied the problem of existence of equilibriums to the

DUE and the DUE-SC with simultaneous departure-time-and-path-choice, wherein the

delay operators are exogenous. To analyze the necessary conditions for the DUE and DUE-

SC problems, we consider the circumstance where the delay operators are endogenous. An

equivalent form that facilitates derivation of necessary conditions for variational inequality

(3.32)-(3.33) is the following differential variational inequality (DVI) (Friesz et al., 2001;
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Friesz, 2010): find (x∗,h∗,g∗) ∈ Γ such that

⟨Ψ(t,x∗), (h− h∗)⟩ =
∑
p∈P

∫ T

0
Ψp(t,x

∗)
(
hp(t)− h∗p(t)

)
dt ≥ 0, (3.34)

for all (x,h,g) ∈ Γ, where Γ is the admissible set

Υ = {(x,h,g) ≥ 0 : (3.23), (3.21), (3.16), (3.25), (3.26), (3.30), and (3.36) hold} ,(3.35)

which incorporates zero initial conditions

xai(0) = 0, ∀ai ∈ A, hp(0) = 0, ∀p ∈ P, (3.36)

and the flow vectors x,h,g belong to some appropriate function spaces presumed in Section

3.3.1.

To facilitate the analysis of the necessary conditions for (3.34)-(3.35), it is helpful to

restate the DVI as the following optimal control problem:

min J =
∑
∀p∈P

∫ T

0
Ψp(t,x

∗)hp(t)dt, (3.37)

subject to,

dxpa1(t)

dt
= hp(t)− gpa1(t)

(
λpa1
)
∀p ∈ P,(3.38)

dxpai(t)

dt
= gpai−1

(t)− gpai(t),
(
λpai
)

∀p ∈ P, i ∈ [2, m(p)], (3.39)

gpa1 (t+Da1 (xa1(t)))
(
1 +D′

a1 (xa1(t)) ẋa1(t)
)

= hp(t),
(
γpa1
)
∀p ∈ P, (3.40)

gpai (t+Dai (xai(t)))
(
1 +D′

ai (xai(t)) ẋai(t)
)

= gpai−1
(t),

(
γpai
)

∀p ∈ P, i ∈ [2,m(p)], (3.41)

dEw(t)

dt
=

∑
p∈Pw

hp(t), (µw) ∀w ∈W, (3.42)

−hp(t) ≤ 0,
(
ρpa0
)
∀p ∈ P, (3.43)

−gpai(t) ≤ 0,
(
ρpai
)
∀p ∈ P, (3.44)

−xpai(t) ≤ 0,
(
ζpai
)
∀p ∈ P, (3.45)

Ew(T ) = Qw, (ϕw) ∀w ∈W, (3.46)

xai(t) ≤ Cai(t), (ηai) ∀ai ∈ A, (3.47)

xai(0) = 0, ∀ai ∈ A,Ew(0) = 0, ∀w ∈W, hp(0) = 0, ∀p ∈ P, (3.48)

where Equations (3.42) and (3.46) define the flow conservation constraints, where Ew(t)

is an extended state (Friesz et al., 2001; Friesz, 2010), which are equivalent to (3.16).
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(3.48) specifies the zero initial conditions, which mean that the network is empty at the

beginning. (3.47) is the side constraint imposed, which is known as pure state variable

inequality constraint in optimal control theory. The variables in brackets are Lagrange

multipliers associated with the corresponding constraints.

The following proposition states the necessary condition for the DUE-SC with simulta-

neous departure-time-and-path-choice, which can be recognized as the type of equilibrium

given by (3.18)-(3.19).

Proposition 3.3. Suppose an appropriate constraint qualification for the pure state con-

straint (3.47) is satisfied. The necessary condition for the DUE-SC with simultaneous

departure-time-and-path-choice can be stated as follows:

hp(t)

 > 0⇒ Ψp(t,x
∗) + lp(t) = ϕw,

= 0⇒ Ψp(t,x
∗) + lp(t) > ϕw,

∀p ∈ Pw, w ∈W, (3.49)

where ϕw is the travel cost of OD pair w under the DUE-SC condition, which is determined

by the fixed total travel demandQw of the OD pair. lp(t) :=
∑m(p)−1

i=0

∫ tpi+1

tpi
ηai+1(u)σ

p
ai+1du,

where ηai is the Lagrange multiplier associated with the side constraint imposed on link

ai which satisfies the following complementary slackness condition

ηai(t) ≥ 0, xai(t)− Cai(t) ≤ 0, ηai(t) (xai(t)− Cai(t)) = 0, ∀ai ∈ A,

and tpi is the entry time to link ai+1 for vehicles traveling by path p that departed from

the origin at time t , tp0.

Proof of Proposition 3.3 Our intent is to motivate why the DUE condition (3.49)

will be fulfilled when the postulated VI (3.32)-(3.33) or DVI (3.34)-(3.35) is solved. To

this end it is enough to assume that a constraint qualification for the side constraint or

the pure state variable inequality constraint (3.48) is satisfied and, therefore, the desired

dual variables (or adjoint functions (equations)) are available. However, in optimal con-

trol theory, the proper foundation for knowing that the dual variables of a large system

of multiple pure state constraints, like those dual variables needed to express the DUE

condition (3.49), is a computational one. The appropriate dual variables and their trajec-

tories are obtained when our computational approach based on the fixed point algorithm

converges. In this proof, we derive the necessary condition for the DUE-SC by applying

the Pontryagin Minimum Principle.
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The Lagrangian for the optimal control problem (4.1)- (3.48) can be defined as:

Z∗ =
∑
p∈P

∫ T

0

{
Ψp(t,x

∗)hp(t) + λpa1(t)

(
hp(t)− gpa1(t)−

dxpa1(t)

dt

)

+
∑

i∈[2,m(p)]

λpai(t)

(
gpai−1

(t)− gpai(t)−
dxpai(t)

dt

)
+ γpa1(t)

(
hp(t)− gpa1 (t+Da1 (xa1(t)))

(
1 +D′

a1 (xa1(t)) ẋa1(t)
))

+
∑

i∈[2,m(p)]

γpai(t)
(
gpai−1

(t)− gpai (t+Dai (xai(t)))
(
1 +D′

ai (xai(t)) ẋai(t)
))

+
∑

i∈[1,m(p)]

ηai(t) (xai(t)− Cai(t))− ρpa0(t)hp(t)

−
∑

i∈[1,m(p)]

ρpai(t)g
p
ai(t) +

∑
i∈[1,m(p)]

ζpai(t)x
p
ai(t)

}
dt

+
∑
w∈W

∫ T

0
µw(t)

∑
p∈Pw

hp(t)−
dEw(t)

dt

 dt

+
∑
w∈W

ϕw(T ) (Qw − Ew(T )) , (3.50)

where λpai(t) is the costate variable for the traffic dynamics of link ai contributed by path

p. µw(t), ηai(t) and γpai(t) are the Lagrange multipliers associated with the cumulative

inflow, the side constraint of link ai, and the proper flow propagation constraint, respec-

tively. ϕw(T ) is the multiplier associated with the total throughput for each OD pair w.

ρpa0(t), ρ
p
ai(t), and ζ

p
ai(t) are the Lagrange multipliers associated with the nonnegative flow

constraints. To simplify the notation and proceed to the analysis, let us define

g̃pai(t) = gpai (t+Dai(xai(t))) , ∀p ∈ P, i ∈ [1,m(p)].

By a simple calculation in conjunction with the zero initial condition assumption, the

Lagrangian can be specified as

Z∗ =
∑
p∈P

 ∑
i∈[1,m(p)]

(
−λpai(T )x

p
ai(T )

)
+

∑
w∈W

(−µw(T )Ew(T )) +
∑
w∈W

ϕw(T ) (Qw − Ew(T ))

+

∫ T

0

H(t) +
∑
w∈W

dµw(t)

dt
Ew(t) +

∑
p∈P

 ∑
i∈[1,m(p)]

dλpai(t)

dt
xpai(t)

 dt, (3.51)
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where we define the Hamiltonian function for the optimal control problem as

H(t) =
∑
p∈P

[
Ψp(t,x

∗)hp(t) + λpa1(t)
(
hp(t)− gpa1(t)

)
+

∑
i∈[2,m(p)]

λpai(t)
(
gpai−1

(t)− gpai(t)
)

+ γpa1(t)
(
hp(t)− g̃pa1(t)

(
1 +D′

a1 (xa1(t)) ẋa1(t)
))

+
∑

i∈[2,m(p)]

γpai(t)
(
gpai−1

(t)− g̃pai (t)
(
1 +D′

ai (xai(t)) ẋai(t)
))

+
∑

i∈[1,m(p)]

ηai(t) (xai(t)− Cai(t))− ρpa0(t)hp(t)

−
∑

i∈[1,m(p)]

ρpai(t)g
p
ai(t) +

∑
i∈[1,m(p)]

ζpai(t)x
p
ai(t)

]

+
∑
w∈W

µw(t)
∑
p∈Pw

hp(t)

 . (3.52)

The variation δZ∗ of Z∗ with respect to the control and state variables is given by

δZ∗ =
∑
p∈P

∑
i∈[1,m(p)]

(
−λpai(T )δx

p
ai(T )

)
+
∑
w∈W

(−µw(T )δEw(T ))

+
∑
w∈W

ϕw(T ) (−δEw(T )) +
∑
w∈W

∫ T

0

(
dµw(t)

dt
δEw(t)

)
dt

+
∑
p∈P

∫ T

0

(
∂H(t)

∂hp(t)
δhp(t)

)
dt

+
∑
p∈P

∑
i∈[1,m(p)]

∫ T

0

(
∂H(t)

∂xpai(t)
+
dλpai(t)

dt

)
δxpai(t)dt

+
∑
p∈P

∑
i∈[1,m(p)]

∫ T

0

(
∂H(t)

∂gpai(t)
δgpai(t) +

∂H(t)

∂g̃pai (t)
δg̃pai (t)

)
dt. (3.53)

To simplify the notation and proceed to the analysis, let us further define tpi = tpi−1 +

Dai

(
xpai(t

p
i−1)

)
, where tpi−1 is the time of the flow gpai−1 entering link ai ∈ P and tpi is the

time of the flow gpai exiting the link. The partial derivatives of the Hamiltonian function

are given as

∂H(t)

∂hp(t)
= Ψp(t,x

∗) + λpa1(t) + µw(t) + γpa1(t)− ρ
p
a0(t), ∀w ∈W, p ∈ Pw, (3.54)

∂H(t)

∂gpai(t)
= −λpai(t) + λpai+1

(t)− ρpai(t) + γpai+1
(t), ∀p ∈ P, i ∈ [1,m(p)− 1],(3.55)

∂H(t)

∂gpam(p)
(t)

= −λpam(p)
(t), ∀p ∈ P, (3.56)

∂H(t)

∂g̃pai(t)
= −γpai(t)

(
1 +D′

ai(xai)ẋai
)
, ∀p ∈ P, i ∈ [1,m(p)], (3.57)

∂H(t)

∂xpai(t)
= ζpai(t) + ηai(t)σ

p
ai , ∀p ∈ P, i ∈ [1,m(p)]. (3.58)

In addition, a set of complementary slackness conditions for the nonnegative flow con-
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straints and the side constraints can be obtained as:

hp(t) ≥ 0, ρpa0(t) ≥ 0, ρpa0(t)hp(t) = 0, ∀p ∈ P, (3.59)

gpai(t) ≥ 0, ρpai(t) ≥ 0, ρpai(t)g
p
ai(t) = 0, ∀p ∈ P, ∀i ∈ [1,m(p)], (3.60)

xpai(t) ≥ 0, ζpai(t) ≥ 0, ζpaix
p
ai(t) = 0, ∀p ∈ P, ∀i ∈ [1,m(p)], (3.61)

ηai(t) ≥ 0, xai(t)− Cai(t) ≤ 0, ηai(t) (xai(t)− Cai(t)) = 0, ∀ai ∈ A. (3.62)

For an open path p = {a1, a2, · · · , ai−1, ai, ai+1, · · · , am(p)} ∈ Pw, we have (Friesz et al.,

2001)

gpa0(t
p
0) = hp(t

p
0) > 0,

gpai(t
p
i−1) > 0, ∀i ∈ [1,m(p)],

gpai(t
p
i ) > 0, ∀i ∈ [1,m(p)],

xpai(t) > 0, ∀t ∈ [tpi−1, t
p
i ], i ∈ [1,m(p)].

The Lagrange multipliers of the complementary slackness conditions (3.59)-(3.61) are re-

laxed to

ρpa0(t
p
0) = 0,

ρpai(t
p
i−1) = ρpai(t

p
i ) = 0, ∀i ∈ [1,m(p)],

ζpai(t) = 0, ∀t ∈ [tpi−1, t
p
i ], i ∈ [1,m(p)].

With this in hand, we are ready to address the first order necessary condition for the

optimal control problem. First, the following stationary conditions hold

∂H

∂hp
|tp0 = 0, ∀w ∈W, p ∈ Pw, (3.63)

∂H

∂gpai
|tpi +

[
∂H

∂g̃pai

1

1 +D′
ai(xai)ẋai

]
tpi−1

= 0, ∀p ∈ P, i ∈ [1,m(p)]. (3.64)

The adjoint equations2 are given by

dλpai(t)

dt
= − ∂H(t)

∂xpai(t)
= −ηai(t)σpai − ζ

p
ai(t),∀p ∈ P, i ∈ [1,m(p)], (3.65)

dµw(t)

dt
= 0, ∀w ∈W. (3.66)

At terminal time T , the following boundary conditions hold:

λpai(T ) = 0, −µw(T )− ϕw(T ) = 0, ∀w ∈W, ∀p ∈ Pw, i ∈ [1,m(p)]. (3.67)

2In Friesz et al. (2001); Friesz (2010), the adjoint equations are given as
dλp

ai
(t)

dt
= − ∂H(t)

∂x
p
ai

(t)
+ d

dt
∂H(t)

∂ẋ
p
ai

(t)
.

It is proven by Friesz (2010) that the term d
dt

∂H(t)

∂ẋ
p
ai

(t)
= 0.
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Together with (3.66), the following equality is obtained:

µw(t) = −ϕw(T ) = µw, ∀w ∈W. (3.68)

Note that (3.63) is equal to

Ψp(t
p
0,x

∗) + λpa1(t
p
0) + µw + γpa1(t

p
0) = 0,∀w ∈W, p ∈ P, (3.69)

where we use the fact that µw(t) = µw, which is a constant and for an open path ρpa0(t
p
0) =

0. Now, by incorporating ρpai(t
p
i ) = 0, ∀i ∈ [1,m(p)], the stationary condition (3.64) gives

λpai+1
(tpi ) + γpai+1

(tpi ) = λpai(t
p
i ) + γ̃pai(t

p
i ), ∀p ∈ P, i ∈ [1,m(p)− 1],(3.70)

−λpam(p)
(tpm(p))− γ̃

p
am(p)

(
tpm(p)

)
= 0, ∀p ∈ P, (3.71)

where we adopt the following notation in line with Friesz et al. (2001); Friesz (2010):

γ̃pai(t
p
i )

.
= γpai(t

p
i−1), ∀p ∈ P, i ∈ [1, m(p)]. (3.72)

The adjoint equation (3.65) for an open path can then be given as

dλpai(t)

dt
= −ηai(t)σpai , ∀p ∈ P, i ∈ [1,m(p)], t ∈ [tpi−1, t

p
i ]. (3.73)

Evaluating the adjoint equation (3.73) backward in time and space yields the following.

To begin with, let us apply (3.73) to the last link of path p, i.e. link apm(p):

λpam(p)

(
tpm(p)−1

)
− λpam(p)

(
tpm(p)

)
=

∫ tp
m(p)

tp
m(p)−1

ηam(p)
(t)σpam(p)

dt. (3.74)

From (3.71) we have

γ̃pam(p)

(
tpm(p)

)
= γpam(p)

(
tpm(p)−1

)
= −λpam(p)

(tpm(p)). (3.75)

From (3.70), (3.73), and (3.75), the following relation is obtained

dm(p)−1 = λpam(p)

(
tpm(p)−1

)
+ γpam(p)

(
tpm(p)−1

)
= λpam(p)

(
tpm(p)−1

)
− λpam(p)

(
tpm(p)

)
=

∫ tp
m(p)

tp
m(p)−1

ηam(p)
(t)σpam(p)

dt = λpam(p)−1

(
tpm(p)−1

)
+ γ̃pam(p)−1

(
tpm(p)−1

)
. (3.76)

Similarly,

dm(p)−2 = λpam(p)−1

(
tpm(p)−2

)
+ γpam(p)−1

(
tpm(p)−2

)
= λpam(p)−2

(
tpm(p)−2

)
+ γ̃pam(p)−2

(
tpm(p)−2

)
. (3.77)

From (3.77) we have

dm(p)−1 − dm(p)−2 = λpam(p)−1

(
tpm(p)−1

)
− λpam(p)−1

(
tpm(p)−2

)
= −

∫ tp
m(p)−1

tp
m(p)−2

ηam(p)−1
(t)σpam(p)−1

dt. (3.78)
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By proceeding the induction, we have

di = di+1 +

∫ tpi+1

tpi

ηai+1(t)σ
p
ai+1

dt, ∀ i ∈ [1,m(p)− 1]. (3.79)

Finally, we have

d1 = λpa1 (t
p
1) + γpa1 (t

p
0) =

m(p)−1∑
i=1

∫ tpi+1

tpi

ηai+1(t)σ
p
ai+1

dt. (3.80)

Thus,

lp(t
p
0) = λpa1 (t

p
0)− λ

p
a1 (t

p
1) + λpa1 (t

p
1) + γpa1 (t

p
0) =

∫ tp1

tp0

ηa1(t)σ
p
a1dt+ d1

=

m(p)−1∑
i=0

∫ tpi+1

tpi

ηai+1(t)σ
p
ai+1

dt. (3.81)

The dynamic user equilibrium condition with side constraints is as follows: for an open

path p ∈ Pw, h∗p(t
p
0) > 0,

Ψp(t
p
0,x

∗) + lp(t
p
0) = ϕw(T ),

and if

Ψp(t
p
0,x

∗) + lp(t
p
0) > ϕw(T ), p ∈ Pw ⇒ h∗p(t

p
0) = 0. (3.82)

As tp0 is arbitrarily, without loss of generality, we represent (3.82) as

Ψp(t,x
∗) + lp(t) = ϕw(T ),

and if

Ψp(t,x
∗) + lp(t) > ϕw(T ), p ∈ Pw ⇒ h∗p(t) = 0, (3.83)

which is immediately recognized as the fundamental condition for the dynamic network

user equilibrium described by (3.18)-(3.19). We also have the following complementary

slackness conditions for the side constraints: (i) if xai(t) < Cai(t), the Lagrange multiplier

ηai(t) = 0, (ii) if xai(t) = Cai(t), the Lagrange multiplier ηai(t) ≥ 0. The value of ϕw(T )

is determined by the total amount of traffic Qw. As ϕw(T ) is a constant, we drop the time

script T to denote it as ϕw. Ψp(t,x
∗) is interpreted as the effective path delay at time t

on path p under travel condition x∗. �

Remark 3.1. To avoid the spillback effect of congestion, the side constraints Cai(t), ∀ai ∈

A are chosen as jam traffic volumes (i.e. storage capacities) of the links, e.g. the traffic

volume Ka that corresponds to the jam density ρJ in Figure 3.1. In this case, we have

that xai(t) ≤ Kai , ∀ai ∈ A. Clearly, when xai(t) < Kai , ∀ai ∈ A, t ∈ [0, T ], the problem
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reduces to normal DUE traffic assignment. For the case when xai(t) = Kai for some links

during several time intervals, we have the following interesting implication that

ẋai =
d

dt
xai =

d

dt
Kai = 0.

Under this circumstance, the flow propagation becomes

gpai (t+Dai(xai(t)))− gpai−1
(t) = 0,

which implies that traffic behaves like an incompressible fluid when its density (or volume)

approaches certain maximum, i.e. the flow is incompressible when traffic density (or

volume) is equal to the jam density (or volume). This phenomenon is consistent with the

findings in Ross (1988) where the LWR model was applied to describe the traffic dynamics.

3.3.6 Interpretation of DUE with side constraints

For a path p with hp(t) > 0, we have ρpa0(t) = 0. Furthermore, if there is no side constraint,

i.e. xai(t) < Cai(t), ∀ai ∈ A, ∀t ∈ [0, T ], we have ηai(t) = 0. The adjoint equation

(3.73), implies that,
dλpai (t)

dt = 0, i.e. λpai(t) is a constant with respect to time. This, in

conjunction with the boundary condition λpai(T ) = 0, implies that Ψp(t,x
∗) = ϕw(T ),

which is consistent with the normal DUE condition (Friesz et al., 2001).

We can also show that the DUE-SC can reduce to the SC-TAP. The system is operating

in a steady state in the static case, i.e. hp(t) = hp,
dxai (t)

dt = 0 ⇒ xai(t) = xai , ∀ai ∈ A,

and all of the side constraints are constant. By defining the performance index (3.37) to

be (3.1), the necessary condition for the DUE-SC reduce to the necessary condition for

the SC-TAP. From Lemma 3.1, the SC-TAP can be written as

fp

 > 0⇒ cp = µw,

= 0⇒ cp ≥ µw,
∀p ∈ Pw, w ∈W. (3.84)

The necessary conditions for the DUE-SC and the SC-TAP are similar. The term∫ tpi

tpi−1

ηai(u)σ
p
aidu,

can be regarded as an additional time penalty, or toll (access price) to be imposed on

travelers during their presence on the controlled link ai along their travel path p, which is

similar to the interpretation of the term λai in the SC-TAP. Note that the additional time

penalty λai in the static case is constant over time, whereas the additional time penalty in

the DUE-SC is time-varying and a cumulative effect of the associated Lagrange multiplier

over time.

53



3.4 Solution algorithm

3.4.1 The fixed point problem and its optimal control formulation

As Friesz et al. (2001) state the optimal control problem formulation cannot be used for

the computation of the DUE/DUE-SC because its articulation presumes the knowledge of

departure rates h∗p(t),∀p ∈ P , under the DUE/DUE-SC condition. The optimal control

problem formulation is a mathematical convenience for analyzing the necessary conditions

of the DUE/DUE-SC. There are several solution algorithms for the DUE without departure

time choice, such as a quasi-VI based approach (Ban et al., 2008) or an equivalent gap

function-based algorithm (Lu et al., 2009). However, only a few solution algorithms, such

as those proposed by Huang and Lam (2002), Friesz and Mookherjee (2006) and Friesz et

al. (2011), have been proposed for the DUE with simultaneous departure-time-and-path-

choice. The DUE with simultaneous departure-time-and-path-choice has been shown to

be equivalent to a fixed point problem. As explained in the previous section, the side

constraints can be viewed as a restriction on the feasible region of the VI formulation

of the DUE-SC, i.e. (3.32) and (3.33). Based on this VI formulation, the DUE-SC is

equivalent to the following fixed point problem:

Lemma 3.3. (Huang and Lam, 2002) (Fixed point problem) When the conditions in

Section 3.3.4, which guarantee the existence of the DUE-SC, hold, any solution of the

fixed point problem

h = PΛ̄ (h− αΨ(h)) , (3.85)

is also a solution of the DUE-SC, where PΛ̄(x) = argminz∈Λ̄∥x− z∥, i.e. the minimum

norm projection onto Λ̄ and α ∈ R1
+.

In line with Friesz and Mookherjee (2006), the fixed point problem (3.85) requires that

h = argmin
v

{
1

2
∥h− αΨ(h)− v∥2 : v ∈ Λ̄

}
, (3.86)

which is equivalent to seeking the solution of the following optimal control (infinite dimen-

sional mathematical programming) problem

min
v∈Λ̄

J(v) =
1

2

∫ T

0
[h− αΨ(h)− v]T [h− αΨ(h)− v] dt. (3.87)

The advantage of the VI formulation of the DUE/DUE-SC is that it includes almost all

DUE models regardless of the link traffic dynamics, flow propagation, and link travel

time function employed. However, in this formulation, the effective path delay operators
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Ψp(t,h), ∀p ∈ P , generally cannot be expressed in a closed form whereas Ψp(t,x), ∀p ∈ P

are well defined in a closed form by employing the link traffic dynamics (3.38)-(3.39), flow

propagation constraints (3.40)-(3.41), and certain travel time function. By Lemma 3.3

and (3.87), the fixed point algorithm can be formulated and solved as an iterative optimal

control problem as depicted in Figure 3.2. In the figure, the effective path delay operators

Ψp(t,x), ∀p ∈ P , in conjunction with (3.38)-(3.41) and (3.28) are applied to replace Ψ(h)

in (3.87), and to express the side constraints and the feasible region Λ̄ explicitly rather than

the abstract embedded formulation used in Section 3.3.4. In Figure 3.2, ẋ = f̃(·) denotes

the link traffic dynamics with the flow propagation constraints (3.38)-(3.41). We write ẋ

explicitly because the link traffic volumes are the state variables of the optimal control

problem. The flow propagation constraints (3.40)-(3.41) with travel time function defined

by (3.28) are substituted into (3.38)-(3.39) to update the state variables. The equality

constraintM1(·) denotes the flow conservation equations (3.42) and (3.46) with zero initial

condition (or (3.16)). The inequality constraint M2(·) denotes the side constraints defined

by (3.47). v ≥ 0 is a vector representation of (3.43). Detailed analysis of the convergence

of such a fixed point algorithm is given by Friesz and Mookherjee (2006) for an abstract

feasible region with certain properties. However, some conditions required to guarantee the

convergence of the algorithm, such as the strong monotone of F
(
xk,hk,v

)
, are unlikely to

be verified for general traffic networks. Thus, the convergence of this fixed point algorithm

is generally heuristic.

As Figure 3.2 indicates, the optimal control subproblem is what we need to solve. To

the best of our knowledge, no effective algorithm has been reported to solve the optimal

control subproblem with state dependent time lags and state constraints. However, sev-

eral effective algorithms have been proposed to solve the optimal control problem with

state and/or control constraints using nonlinear programming algorithms, such as sequen-

tial quadratic programming (SQP) (Buskens and Maurer, 2000). To solve this optimal

control problem by nonlinear programming algorithms, it is necessary to approximate the

functional differential equations (FDEs), which govern the traffic dynamics, by ordinary

differential equations (ODEs). We use a typical method for handling transportation delays

in control engineering to deal with these state dependent time lags. The idea is to use

polynomial approximation of the time lags. A similar idea has been proposed by Astarita

(1996) and Friesz and Mookherjee (2006). We use Padé approximation to approximate the

state dependent time lags, which can be easily implemented using Matlab and Simulink.

After approximating the FDEs by ODEs, we denote the traffic dynamics as ẋ(t) =
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Algorithm Fixed point algorithm for the DUE-SC

1: Initialization. Identify an initial feasible solution h1 ∈ Λ̄, α ∈ R+ and

set k = 1

2: k ← 2

3: while k ≤ Itermax and ∥hk+1 − hk∥ > ε, do

4: Optimal control subproblem. Solve

min
v
Jk(v) =

1

2

∫ T

0

[
hk − αΨ

(
x(hk)

)
− v

]T [
hk − αΨ

(
x(hk)

)
− v

]
dt

,
∫ T

0
F
(
xk,hk,v

)
dt,

subject to

ẋ = f̃(x,v, t), M1(v, t) = 0, M2(x, t) ≤ 0, −v ≤ 0, ∀t ∈ [0, T ], x(0) = 0

5: k ← k + 1, hk+1 = v∗

6: end while

7: return h∗ ≈ hk+1

where Itermax is the maximum iteration number, and ε ∈ R+ is the toler-

ance.

Figure 3.2: Fixed point algorithm for DUE-SC

f0(x,v, t). It is convenient for us to rewrite the optimal control subproblem as

min
v
Jk(v) =

∫ T

0
F
(
xk,hk,v

)
dt, (3.88)

subject to

ẋ(t) = f0(x,v, t), M1(v, t) = 0, M2(x, t) ≤ 0, −v ≤ 0, ∀t ∈ [0, T ],x(0) = 0. (3.89)

3.4.2 Solution algorithm for the DUE-SC

To apply an off-the-shelf nonlinear optimization algorithm to the optimal control prob-

lem (3.88)-(3.89), it is necessary to apply the time-discretization scheme to the problem.

Here we present the recursive discretization approach based on Euler’s method, which is

commonly used in the literature (Buskens and Maurer, 2000). The planning time interval

is divided into N − 1 segments uniformly, i.e. a fixed time step ∆t is defined in the dis-

cretization as ∆t = T
N−1 , tl = (l − 1)∆t, l = 1, 2, · · · , N. Applying Euler’s method to the

differential equation in (3.89) yields

xl+1 = xl +∆t · f0(xl,vl, tl), l = 1, 2, · · · , N − 1. (3.90)
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Define the optimization variable z = [v1, · · · , vN ]
T , and compute the state variables

from (3.90) recursively as xl = xl(z, t) = xl (v1,v2, · · · ,vl−1, tl−1) , l = 2, · · · , N , which

are functions of the control variables with initial condition x1 = x(1) = 0. The following

NLP is defined

min
z
y(z) ,

N−1∑
l=1

∆t · F
(
xk,hk,vl

)
, (3.91)

subject to

xl = xl (v1,v2, · · · ,vl−1, tl−1) , l = 2, · · · , N, x1 = 0,

M1(vl, tl) = 0, M2(xl, tl) ≤ 0, −vl ≤ 0, l = 1, 2, · · · , N. (3.92)

After the the optimal control subproblem is reformulated as an NLP problem, we can

apply nonlinear optimization algorithms to solve it. The overall solution algorithm is

summarized in Figure 3.3.

Step 1. Approximation of PDEs: Apply polynomial approximants (such as the Padé

approximant) to approximate the state dependent time delays, which converts the

original FDEs into ODEs.

Step 2. NLP formulation of the optimal control subproblem: Formulate a nonlinear

programming problem of the optimal control problem (3.88)-(3.89) using the Euler’s

discretization approach.

Step 3. Initialization: Set initial feasible solutions of state and inflow x1,h1 ∈ Λ̄, iteration

counter k = 1.

Step 4. Solution of the optimal control subproblem: Apply any off-the-shelf nonlinear

optimization algorithm to the equivalent NLP problem (e.g. SQP or GAUSS Pseudo

Spectral Method).

Step 5. Check the convergence of the optimal control subproblem: If the preset tolerance

ε1 or the maximum iteration number Iterm of the NLP is achieved, declare the

solution to be hk+1 and go to Step 6. Otherwise declare the solution to be the initial

condition of the NLP and go to Step 4.

Step 6. Stopping test: If ∥hk+1 − hk∥ ≤ ε, where ε ∈ R+ is a preset tolerance, stop and

declare h∗ ≈ hk+1. Otherwise, set k = k + 1 and go to Step 3.
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Algorithm Solution algorithm for the DUE-SC

1: Approximation of PDEs

2: NLP formulation of the optimal control subproblem

3: Initialization: Set initial feasible solution x1,h1 ∈ Λ̄, α ∈ R+ and k = 1

4: k ← 2

5: while k ≤ Itermax and ∥hk+1 − hk∥ > ε, do

6: Optimal control subproblem. Solve the following NLP:

6.1: Initialization of the NLP: Set zk,1 ∈ Λ̄, and j = 1

6.2: j ← 2

6.3: while j ≤ Iterm and ∥zk,j+1 − zk,j∥ > ε1, do

min
z
y(zk,j),

subject to

xk,jl = xk,jl

(
vk,j1 ,vk,j2 , · · · ,vk,jl−1, tl−1

)
, l = 2, · · · , N, xk,j1 = 0,

M1(v
k,j
l , tl) = 0, M2(x

k,j
l , tl) ≤ 0, −vk,jl ≤ 0, l = 1, 2, · · · , N

6.4: j ← j + 1

6.5: end while

6.6: declare zk,∗ ≈ zk,j+1

7: k ← k + 1, hk+1 ← zk,∗

8: end while

9: return h∗ ≈ hk+1

where Iterm is the maximum iteration number for the NLP, and ε1 ∈ R+ is the

tolerance for the NLP.

Figure 3.3: Solution algorithm for DUE-SC

3.5 Numerical examples

We have imposed upper bounds on path flows so as to prove the existence of equilibriums

to DUE and the DUE-SC. In this section, the numerical examples are solved with the

upper bounds on path flows set to +∞.

3.5.1 A simple network case

Consider a network with a single OD pair connected by two parallel links as shown in

Figure 3.4. The link delay functions are given by D(x1) = 0.27 + x1/70 unit-times and

D(x2) = 0.3+x2/140 unit-times, respectively. The overall travel demand is Jod = 75 units.
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O D

Figure 3.4: Network connected with parallel links

The planning time horizon is T = 5 unit-times. The desired arrival time is set as tda = 3

unit-time. We consider the following symmetric early/late arrival penalty function:

κ[χ] =


0.1 (t+D(x)− tde)2 , t < tde,

0, tde ≤ t ≤ tdl,

0.1 (t+D(x)− tdl)2 , t > tdl,

(3.93)

where tde = 2 unit-time and tdl = 4 unit-time. The effective delay is given by (3.93).

Without loss of generality, we assume zero initial conditions. α = 0.01 is chosen in the

fixed-point algorithm as represented in Figure 3.2, and the fixed point stopping criteria is

ε = 0.0001.

We first solve the DUE with simultaneous route/departure time choices of this network.

Figure 3.5 shows that at the very beginning of the departure stage, the travel cost of link

1 is less than that of link 2 and not greater than the minimum travel cost. Thus, travelers

all choose to use link 1. After some time, the costs of the two links tend to the same level,

i.e., the DUE cost. Travelers then select their departure times to maintain the equilibrium

state. Note that the inflows become zero whenever the travel times on the links are greater

than the minimum travel time, which is consistent with the DUE condition. Figure 3.5b

demonstrates the link traffic volumes of both links under the DUE condition.

Next, we restrict the traffic volume on link 1 to be less than or equals to 3 units

during the whole planning horizon, i.e., x1 ≤ 3. By applying the DUE-SC condition, we

obtain the results that are depicted in Figure 3.6. When there is no traffic volume control,

the traffic volume on link 1 exceeds the desired saturation, i.e., x1 = 3, after one unit-

time as demonstrated in Figure 3.5b. Figure 3.6b illustrates that the control parameter (or

additional travel cost induced by the side constraint) for link 1 becomes positive at around

one unit-time, which corresponds with the time that the side constraint is first violated.

Note that the control parameter or additional travel cost imposed on link 1 is calculated

following Equation (3.81). Figure 3.6a shows the travelers’ responses to the additional

travel cost imposed on link 1. The departure rate of link 1 suddenly decreases at around

one unit-time (when the additional travel cost is first imposed) and then remains at the

saturation level of around 9 units/time-steps (which is lower than the saturation level
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Figure 3.5: Inflow profiles, link traffic volumes and travel costs of both links under the

DUE with symmetric penalty

of around 12 of the uncontrolled case as shown in Figure 3.5a). Figure 3.6a also shows

an increase of the departure rate of link 2 as compared to the uncontrolled case (from

the maximum flow rate of 12 to more than 14 units). This illustrates the diversion of

traffic from link 1 to 2 to maintain the traffic volume of link 1 and the DUE-SC condition.

We can also observe a slightly larger travel time window for those traveling by link 2 as

compared to the uncontrolled case, which highlights the shift of travelers’ departure times

to maintain the DUE-SC condition. Figure 3.6b shows that the traffic volume of link 1

under DUE-SC condition satisfies the side constraint. The value of additional travel cost

induced by the side constraint varies from 2.5 percent to 8.1 percent of the minimum

effective travel time. Compared to the DUE case, the number of travelers using link 1

declines by about 23 percent during the planning horizon under the DUE-SC condition.

The constant traffic volume control scheme in this example will yield a steady state to the

departure rate of link 1 if the departure time window is long enough. As demonstrated

in Figure 3.6a, the departure rate of link 1 gradually approaches a steady state controlled

by the traffic volume control scheme. As we do not impose a side constraint on link 2, the

additional travel cost of link 2 is zero throughout the planning horizon.

For a congested roadway, different traffic volume control schemes can be implemented

to alleviate the congestion. For instance, the control may vary by time, or different

restrictions on traffic volumes may be adopted during different peak hours. In the second

test, we impose the traffic volume control function x1(t) ≤ 3 sin
(
(t+20)π

100

)
on link 1. This
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Figure 3.6: Inflow profiles, link traffic volumes and travel costs of both links under constant

traffic volume control

constraint represents a kind of control that adjusts its amplitude responding to the peak

hour traffic volume. In this example, the control has a small value at the beginning,

and gradually increases as the time approaches the peak hour. After the peak period, the

control then decreases. By applying the DUE-SC condition, we obtain the results depicted

in Figure 3.7. Compared with the previous constant traffic volume control scheme, the

travelers using link 1 are indirectly controlled to depart earlier to satisfy the new traffic

volume control scheme. The inflow of link 2 does not change significantly. The inflow of

the controlled link is shaped by the traffic volume control with some oscillations. This

verifies that the control adjusts the departure rate of the controlled link to maintain its

traffic volume and satisfy the time-varying traffic volume control scheme.

In the third test, a traffic volume control scheme with two step functions is tested.

In our continuous time formulation, the traffic volume controls (or side constraints) are

assumed to be continuously differentiable functions. This kind of discontinuous dynamic

traffic volume control cannot be tested under the continuous time DUE-SC framework.

However, due to the discretization scheme adopted in our solution algorithm, we can

construct the following traffic volume control scheme, i.e.,

x1(k) ≤ 2,∀k = 1, · · · , 19, and x1(k) ≤ 3,∀k = 20, · · · , 50. (3.94)

The simulation results are plotted in Figure 3.8. By comparing Figure 3.8 and Figure 3.6,

we can see that, some travelers who originally planned to use link 1 (see Figure 3.6) are

61



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

P
at

h 
flo

w

Time

a) Comparison of path flow and associated generalized travel cost

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

T
ra

ve
l c

os
t

Path flow of path 1
Path flow of path 2
Generalized travel cost of path 1
Generalized travel cost of path 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

T
ra

ffi
c 

vo
lu

m
e 

Time

b) Comparison of link traffic volume and additional travel cost

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

A
dd

iti
on

al
 tr

av
el

 c
os

t

Traffic volume of link 1
Traffic volume of link 2
Additional travel cost of link 1
Additional travel cost of link 2

Figure 3.7: Inflow profiles, link traffic volumes and travel costs of both links under time-

varying traffic volume control
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Figure 3.8: Inflow profiles, link traffic volumes and travel costs of both links under “step”

traffic volume control
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Figure 3.9: The Braess’ network

now diverted to link 2. Some of the travelers on link 1 also depart earlier to avoid the

additional travel cost. These effects arise because more stringent traffic volume control is

imposed on link 1 during the first stage. The additional travel cost will be higher if the

travelers persist in traveling during the same time period and on the same link. In the

second stage, the traffic volume control forces the departure rate of link 1 to the steady

state, which is determined by the side constraint. As demonstrated in Figure 3.8, the

control forces the traffic volume on link 1 to meet the restriction in a smooth manner

rather than a sudden switch, which is consistent with our assumption of continuity in the

traffic volume control. The additional travel cost increases during the switch of these two

traffic volume control strategies to depress the travel demand attracted by the relaxation

of the side constraint. After the switch of the traffic volume control strategies the cost

decreases, which in turn increases the travel demand on link 1. The control is then changed

to adjust the departure rate of the controlled link so that the side constraint is satisfied.

3.5.2 The Braess’ Network

Next, we will test the Braess’ network depicted in Figure 3.9. The forward star array

and link travel time functions of this network are summarized in Table 3.1. The planning

horizon is T = 6 unit-times. The time incremental step is 0.1 unit-times. The desired

arrival time is tda = 3 unit-time. The overall travel demand is J14 = 200 units. The

symmetric early/late arrival penalty function (3.93) is applied in this example with tde = 2

unit-time and tdl = 5 unit-time. We define the path set as P14 , {p1, p2, p3} with

p1 , {a1, a4}, p2 , {a1, a3, a5} and p3 , {a2, a5}. Without loss of generality, we

assume zero initial conditions. We choose α = 0.01 for the fixed point algorithm. The

fixed point stopping criteria is ε ∈ [0.00001, 0.0001].

First, the normal DUE with simultaneous route/departure time choices is solved. Fig-

ure 3.10 illustrates the path departure rates and the path travel costs under the DUE

63



Link name From node To node Link delay function, Da(xa(t))

a1

a2

a3

a4

a5

1

1

2

2

3

2

3

3

4

4

10.5
2000

a
x

!

20.71
2000

a
x

!

30.18
100

a
x

!

40.71
2000

a
x

!

50.5
2000

a
x

!

Table 3.1: Link configurations
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Figure 3.10: Path departure rates and travel costs of the Braess’ network under the DUE

condition
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Figure 3.11: Traffic volumes of the five links under the DUE condition

condition for comparison. From Figure 3.10, at the very beginning none of the path is

used because the travel costs are higher than the minimum travel cost. Path p2 becomes

active first due to its relatively lower free-flow travel cost. After a short time, the costs

of the other two paths tend to the DUE cost. All three paths then become active, and

these departure rates are adjusted to maintain the DUE condition. The path departure

rates become zero whenever the travel costs of the paths are greater than the minimum

travel cost, which is consistent with the DUE condition. Figure 3.11 demonstrates the

link traffic volumes of the five links under the DUE condition.

Next, the traffic volume on link a3 are controlled because it has a relatively smaller

capacity. In this example, we impose the side constraint xa3 ≤ 2 on link a3. By solving

the DUE-SC, we obtain the results depicted in Figure 3.12. Compared with the previous

DUE test, we note that the departure rate of the controlled path, i.e., path p2, decreases

throughout the departure time window. As demonstrated in Figure 3.12, this amount of

traffic is mainly diverted to path p1, whereas the departure rate of path p3 does not change

significantly. Travelers on all of these paths depart earlier to avoid the additional travel

cost. Figure 3.13 illustrates that the additional travel cost for link a3
3 becomes positive

at around one unit-time, which corresponds to the time that the side constraint is first

3Note from (3.47) and the proof of Proposition 3.3 that the side constraints and the associated link

additional travel costs (i.e., integrals of Lagrange multipliers associated with the side constraints over

time) are defined for the links on the network, i.e. they are link based. They are then converted to path

additional travel costs by Equation (3.81).
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Figure 3.12: Path departure rates and travel costs of the Braess’ network under constant

traffic volume control
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Figure 3.13: Traffic volumes of the five links and the additional travel cost under constant

traffic volume control
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Figure 3.14: Path departure rates and travel costs of the Braess’ network under time-

varying traffic volume control

violated. The departure rate of path p2 decreases sharply at the same time, compared

with the DUE case in Figure 3.10. This verifies that the control (i.e., the additional travel

cost) adjusts the departure rate to maintain the traffic volume of link a3 to satisfy the side

constraint. The amount of time-varying additional travel cost caused by the side constraint

varies from 0.5 percent to 12.5 percent of the travel time of link a3. The path flow of p2

under the DUE-SC condition is about 64 percent of that under the DUE condition. As in

the previous example, the departure rate of path p2 is shaped by the the side constraint

with some oscillations.

Finally, we test the DUE-SC for this network with time-varying side constraints on

different links. To be more specific, we impose the following side constraints on links a2

and a3:

xa2(t) ≤ 15 sin

(
(t+ 20)π

100

)
units, xa3(t) ≤ 2 sin

(
(t+ 20)π

100

)
units. (3.95)

Figure 3.14 depicts the path inflow rates of the three paths and the associated travel

costs. Because we impose the side constraint on link a2, paths p1, and p3 are no longer

symmetric. Consequently, travelers on path p3 depart earlier than in the case without

side constraint to avoid the additional travel cost. Meanwhile, the amplitude of the path

flow curve of p3 decreases to satisfy the side constraint imposed on link a2. The departure

rate of path p2 further deceases because the new side constraint imposed on link a3 has

relatively smaller values. Travelers switch to path p1 to avoid the penalty caused by the
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Figure 3.15: Traffic volumes of the five links under time-varying traffic volume control
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Figure 3.16: Link traffic volumes, time-varying side constraints and additional travel costs

of the Braess’ network under the DUE-SC condition
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Figure 3.17: Change in the convergence error with iteration for the Braess’ network

side constraints as illustrated in Figure 3.14. Figure 3.15 shows the traffic volumes of the

five links. The comparison of link traffic volume, time-varying side constraint and the

associated additional travel cost is depicted in Figure 3.16. The additional travel cost of

link a3 has larger value when xa3 first reach the level specified by the side constraint. As

a result, the traffic is diverted to other paths, which in turn decreases the traffic volume

on link a3. As indicated by Figure 3.16, the additional travel cost of link a3 is generally

larger than that of link a2, perhaps because path p3 has a larger free-flow time than path

p2. Travelers are more sensitive to the additional travel cost on that path. The path

flows of paths p2 and p3 in this case are about 56 and 97 percent of those under the DUE

condition, respectively. This verifies that the smaller the additional travel cost, the smaller

the control effect it yielded.

The convergence errors for these three test with respect to iterations are depicted in

Figure 3.17, where the error is defined as ek+1 = ∥hk+1−hk∥
∥hk∥ . As shown in the figure, the

proposed numerical solution algorithm converges sharply for this example, and the pro-

posed numerical solution method converges faster with the DUE-SC. This occurs because

the DUE-SC has a relatively smaller search region (or feasible region) for the algorithm if

it admits a solution.

One should note that the cumulative traffic volume on each link does not tend to

zero as time tends to the end of the planning horizon. This phenomenon is also observed
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by Friesz and Mookherjee (2006); Friesz et al. (2008). Numerical errors of the network

loading may be one of the reasons. However, this phenomenon occurs because of the

so-called double-counting-effect of the WLM Nie and Zhang (2002, 2005).

3.6 Conclusions

The traffic assignment with side constraint problem is extended to the dynamic case in

this chapter to allow the study of a traffic volume control scheme. The side constraints are

related to the desired temporal traffic volumes on certain links, which can be set according

to the safety or environmental requirements. The dynamic user equilibrium problem

with side constraints and simultaneous departure-time-and-path-choice is formulated as

an infinite-dimensional variational inequality. We show the existence of equilibrium to

the DUE-SC based on the VI formulation under certain assumptions. To analyze the

necessary condition, we restate the problem as an equivalent optimal control problem.

The optimality condition of the DUE-SC is obtained by applying the Pontryagin minimum

principle to the optimal control problem. The equilibrium dynamic travel cost under the

DUE-SC condition is shown to be the effective path delay function plus a term of additional

travel cost induced by the side constraints. This additional travel cost term is governed

by the accumulation of the Lagrange multipliers associated with the side constraints over

time (unlike the static case). This additional travel cost term also represents the control

parameter that allows the traffic volume control scheme to achieve the required link traffic

volumes. If the side constraints are chosen as the link storage capacities, the additional

cost can be viewed as the effect needed to prevent the network from spillback. In this

sense, the chapter proposes a novel analytical approach to access the DTA considering

the spillback effect while avoiding the drawbacks of physical queue models. Another

meaningful implication of imposing the arc storage capacity constraint is that the flow

is incompressible when the link traffic volume is equal to its storage capacity. This is

consistent with the findings in Ross (1988) where the LWR model was applied to describe

the traffic dynamics. The chapter has also highlighted the similarity between the additional

delay terms from the static and dynamic cases.

We propose a solution algorithm for solving the DUE-SC by using the nonlinear pro-

gramming approach with Euler’s discretization scheme. Numerical examples are presented

to illustrate the application of the theory. The numerical results confirm the solution al-

gorithm’s satisfactory performance against the small test networks. The results obtained

in the constant traffic volume control test verify that given a long enough departure time
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horizon, the inflow profile of the controlled link will converge to a steady state deter-

mined by the traffic volume control. This is consistent with the static case (Yang et al.,

2004). Tests are also provided to verify that the proposed method is applicable to the

time-varying traffic volume control scheme, which is one of the major contributions of

this chapter and is the key difference between the DUE-SC and SC-TAP. The dynamic

user equilibrium with strict capacity constraints, which has been intensively studied in

the simulation-based DTA models, can also be included as a special case of the current

DUE-SC framework by specifying the side constraints to be the link capacities.

As a Nash non-cooperative differential game, dynamic user equilibrium is used to

represent the distribution of traffic that arises when travelers do not have knowledge

about other travelers’ strategies and compete with each other to minimize their own travel

cost. Such distribution of traffic generally does not lead to the optimal usage of a traffic

network. In some situations, such as traffic diversion under incidents (wherein queue

control is always necessary to prevent the spillback effect), it would be more meaningful

for the system manager to look for the best usage of the network under queue control.

In the next chapter, we will address this issue and discuss some advanced issues can be

achieved by the framework of dynamic traffic assignment with traffic volume control.

Appendix

Constraint qualifications for the side constraints

For a constrained optimal control problem, the constraints in the form of (3.47) are called

pure state variable inequality constraints. Let us denote the side constraint imposed on

link ai as ϖi (x(t), t) , xai(t)− Cai(t) ≤ 0. In this appendix, we denote these pure state

variable inequality constraints in vector form as

ϖ (x(t), t) , x(t)−C(t) ≤ 0, ∀t ∈ [0, T ], (3.96)

where x(t) ∈ Rn is the vector of link traffic volumes at time t, which is defined in Section

3.3 and taken as the vector of state variables of the optimal control problem formulation

of the DUE-SC. By assumption, ϖ(·) is a continuously differentiable multi-function.

To better understand the dynamic network loading procedure, let us define the link

traffic dynamics, in line with Wie et al. (2002) and Friesz and Mookherjee (2006), as

follows:

dxai(t)

dt
= uai(t)− vai(t), (3.97)
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where uai(t) represents the inflow rate of link ai at time t, which is taken as the control

variable, and vai(t) the outflow rate of this link at the same time. We denote the control

vector as u = (uai : ∀ai ∈ A). The constraint ϖi (x(t), t) ≤ 0 is called a constraint of the

rth order if the rth time derivative of ϖi (x(t), t) is the first time in which a term in control

variable(s) uai appears. We denote the rth time derivative of ϖi (x(t), t) as ϖr
i (x(t), t).

With respect to the ith constraint ϖi (x(t), t) ≤ 0, an interval [π1i , π
2
i ] ⊂ [0, T ] is called

an interior or unconstrained interval if ϖi (x(t), t) < 0, ∀t ∈ [π1i , π
2
i ]. If the optimal

trajectory “hits the boundary,” i.e., ϖi (x(t), t) = 0, for a particular i and an interval

[ς1i , ς
2
i ] ⊂ [0, T ], then [ς1i , ς

2
i ] is called a boundary or constrained interval. An instant ς1i

is called an entry time if there is an interior interval ending at time ς1i and a boundary

interval starting at time ς1i . Correspondingly, ς
2
i is called an exit time if a boundary ends

and an interior interval starts at time ς2i . If the trajectory touches the boundary at time

ςi, i.e., ϖi (x(t), ςi) = 0 for a particular i and if the trajectory is in the interior just before

and just after ςi, then ςi is called a contact time. These entry, exit, and contact times are

called junction times.

It is easy for us to show that the pure state inequality constraints, which are the side

constraints, are of the 1st order. In fact, by evaluating the derivative of ϖi (x(t), t) with

respect to time once, we obtain

dϖi (x(t), t)

dt
=
dxai(t)

dt
− dCai(t)

dt
= uai(t)− vai(t)−

dCai(t)

dt
. (3.98)

We thus observe that the first time derivative of ϖi (x(t), t) depends explicitly on the

control uai(t). Therefore, the constraint is of the 1st order. The same reasoning can be

applied to other side constraints to conclude that all of the side constraints are of the 1st

order. In fact, the pure state constraints are of the 1st order for many economic optimal

control problems (Adida and Perakis, 2007; Hartl et al., 1995).

As for the pure state constraints (or the side constraints in the DUE-SC problem), the

following full rank condition must be fulfilled on any boundary interval [ς1j , ς
2
j ]:

rank


∂ϖ1

1
∂u
...

∂ϖ1
b̂

∂u

 = b̂, (3.99)

for t ∈ [ς1j , ς
2
j ], ϖi(x

∗(t), t) = 0, i = 1, · · · , b̂, ϖi(x
∗(t), t) < 0, i = b̂+1, · · · , n, where x∗(t)

denotes the optimal state trajectory. It can be easily shown that the full rank condition
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(3.99) holds for the DUE-SC problem. Let

Θ̂ =



∂ϖ1
1

∂u

∂ϖ1
2

∂u
...

∂ϖ1
b̂

∂u

 =


1

1

. . .

1

 , (3.100)

which clearly has rank b̂, i.e., rank(Θ̂) = b̂. We have thus shown that the constraint

qualifications introduced by the side constraints are fulfilled by the proposed DUE-SC

formulation.

As we have applied the direct adjoining approach4, the costate trajectory (or adjoint

function/adjoint equation) may have discontinuities for any time ς in a boundary interval

and for any contact time ς. These discontinuities are governed by some jump conditions,

which are determined by the pure state constraints (Hartl et al., 1995). However, as the

pure state constraints are of the 1st order, we have the following lemma.

Lemma A.1. (Hartl et al., 1995; Fattorini, 1999) Given that the pure state constraint

ϖ is of the 1st order, the adjoint function is continuous at junction time ς if the entry or

exit is non-tangential, i.e., ϖ1 (x∗(ς−), ς−) > 0 or ϖ1 (x∗(ς+), ς+) < 0, where ς+ and ς−

denote the left- and right- hand side limits, respectively.

The pure state constraints (or the proposed side constraints) satisfy the conditions in

Lemma A.1. in the following sense. First, as proven previously, the side constraint ϖi is

of the 1st order. Let ς be a junction time for link ai with the side constraint ϖi (x
∗(t), t),

then

x∗ai
(
ς−
)
< Cai(ς

−), ϖ1
i

(
x∗(ς−), ς−

)
= ẋ∗ai

(
ς−
)
− Ċai(ς−). (3.101)

Now we have the following two situations:

Suppose that Ċai(ς
−) ≤ 0; to hit the constraint at time ς, i.e., x∗ai (ς) = Cai(ς),

ẋ∗ai (ς
−) > Ċai(ς

−) must be satisfied, which implies that ϖ1
i (x

∗(ς−), ς−) > 0;

Suppose that Ċai(ς
−) > 0; to render x∗ai (ς) = Cai(ς), ẋ

∗
ai (ς

−) > Ċai(ς
−) must be

satisfied, which again implies that ϖ1
i (x

∗(ς−), ς−) > 0;

4The approach derives its name from the fact that the constraints are directly adjoined to the Hamil-

tonian.
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The same reasoning can be applied to other side constraints with boundary intervals.

Therefore, the conditions in Lemma A.1. are satisfied by the proposed side constraints.

The adjoint function, i.e., λpai in our DUE-SC case, is continuous at junction times.
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Chapter 4

Dynamic marginal cost, access

control, and pollution charge: a

comparison of bottleneck and

whole link models

In this chapter, we investigate theoretical constructions and properties of three interrelat-

ed travel demand management measures including marginal cost pricing, access control,

and pollution charge under dynamic traffic assignment framework. For congested traffic

networks modeled by the two vertical queue models, i.e. the whole link model (WLM)

and the deterministic queuing model (DQM), on which flows are controlled, we derive dy-

namic marginal costs for paths and users’ external costs for controlled links. As a strategy

to implement the access control, the access pricing is formulated as a dynamic system

optimal assignment with access (e.g. traffic volume, queue) control (DSO-AC) problem,

wherein the access constraints represent the restrictions on the traffic volumes and/or en-

vironmental constraints (e.g. vehicle emission). For the WLM case, an optimal control

problem formulation is adopted to investigate the dynamic traffic equilibrium. We derive

and discuss the necessary condition for operating the transportation system with capaci-

ty/environmental constraints optimally, i.e. the total system travel cost is minimized. The

Lagrange multipliers associated with the access constraints as derived from the optimality

condition provide part of the users’ external costs. For the DQM case, we utilize the for-

mulation adopted by Yang and Meng (1998). The inflow to a bottleneck is saturated such

that no queue would be formed. The access price is then given by the penalty associat-

ed with this constraint. Similar to the telecommunication network bandwidth allocation
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scheme, the DSO-AC analysis reveals the variety of economic effect of a certain amount of

road capacity with respect to its spatial and temporal allocation, e.g. decide which links

can be used and how to use their available capacities as “holding” capacities for queues.

The dynamic externalities of the two models are compared. It is found that different

externality structures of the two models result in different tolling structures to achieve

DSO. Based on this access pricing analysis and an “equivalent” environmental capacity

that converts the environmental constraint into traffic volume restriction, we investigate

the traffic induced air pollution pricing scheme. It is found that the traffic capacity based

access price and traffic induced air pollution price would not become effective simultane-

ously for the DQM case. However, for the WLM case, we have a circumstance that both

prices would be effective simultaneously. An algorithm based on Euler’s discretization

scheme and nonlinear programming is proposed to solve the WLM based optimal control

problem. Numerical example is presented to illustrate the proposed method as a dynamic

road pricing scheme.

4.1 Introduction

As explained in Chapter 1 that traffic congestion and environmental issues associated

with vehicle use have been recognized as serious problems faced by modern cities for their

negative effects on productivity, health and living conditions. Research has indicated that

vehicles are responsible for at least 50% of the air pollution in urban areas (The Economist,

1996). Only about 20% of the town residents enjoy good enough air quality according to

the estimation of the World Health Organization (WHO) in terms of the measured levels

of emissions (Nagurney, 2000).

Nowadays, many governments would like to improve or maintain the air quality of the

urban area by controlling the traffic volume in the network to achieve a more sustainable

mobility, e.g. the temporary plate-number-based traffic rationing in Beijing and some

long term implementations of road space rationing in Latin America, such as Mexico City,

Santiago, Säo Paulo (Han et al., 2010). As a result, there has been a growing interest in

the development of rigorous tools for both congestion and emission control management

(see, e.g. Nagurney (2000) and the references therein). It has also been argued in the

literature that pollution, especially the air pollution, caused by the traffic on the network

should be considered as a kind of external cost which can be internalized by road pricing.

Some economists and traffic engineers have advocated market-based approaches such as

road pricing and congestion derivative (Lindsey, 2006; Friesz et al., 2008; Yao et al., 2010)
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to reduce harmful traffic emissions. An extensive amount of research in road pricing for

(deterministic/stochastic) static traffic network have concluded that road pricing is an

efficient approach to internalize externalities such as congestion, air pollution, noise, and

accidents (Sumalee and Xu, 2010; Yang et al., 2010). Side constrained traffic assignment

is introduced to model the externality caused by link capacity constraint and the traffic

induced pollution (Yang et al., 2010).

Although (static) road pricing has been extensively studied in literature, there are

some drawbacks of the scheme, e.g. theoretically, the assumption of perfect information

on the traffic network (both supply and demand sides) (Akamatsu, 2007; Tsekeris and

Voß, 2009), and practically, despite advances in electronic tolling collection (ETC) tech-

nology, tolling is still costly (Tsekeris and Voß, 2009; Wang et al., 2010). The tradable

network permit scheme, which is another traffic control scheme introduced by Akamatsu

(2007) and Nagae and Sasaki (2009), uses an idea similar to road pricing. The scheme

ensures the goal that there is no congestion in the network (which is the dynamic system

optimum for deterministic queuing model) by imposing capacity (access) constraints on

the bottlenecks. Mathematically, the combined problem can be formulated as a dynamic

system optimal (DSO) assignment with access constraints on queues. The permit price to

access a bottleneck in the network can be determined by solving the Lagrange multipliers

associated with the bottleneck capacity constraints. This scheme can be interpreted as the

system manager issuing a certain amount of access tickets for drivers to use certain bot-

tlenecks. The drivers can then trade these tickets in an efficient and competitive market

to access the competitive bottlenecks. Such kind of scheme is similar to the access pricing

for competitive bottlenecks in the telecommunication and electricity networks, where net-

works operate in a competitive market for subscribers, and yet have a monopoly position

for providing access to these subscribers (Armstrong et al., 1996). The access pricing is

introduced to the nonlinear (static) road pricing by Wang et al. (2010) as a complementary

scheme of the marginal cost (usage) pricing.

The DSO assignment analyzes the dynamic marginal cost, dynamic externality and

the optimality condition under which the user surplus is maximized (Kuwahara, 2007;

Chow, 2009a). The DSO assignment provides a bound on the best performance of a traffic

network, which makes it as a benchmark for evaluating various transport policy measures,

e.g. time-dependent pricing (Yang and Meng, 1998; Chow, 2009a,b), network access con-

trol (Smith and Ghali, 1990; Lovell and Daganzo, 2000; Shen and Zhang, 2009; Zhang

and Shen, 2010), and road capacity allocation (Ghali and Smith, 1995). Therefore, in this

chapter, we will formulate the underlying problems by DSO with access constraints to si-
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multaneously consider dynamic congestion and environmental externalities. Two vertical

(or point) queue models, i.e. the whole link model (WLM) and the deterministic queueing

model (DQM) are applied as the network loading model to describe the traffic dynamic-

s. We adopt the whole-link linear travel time model that guarantees the first-in-first-out

(FIFO) discipline of dynamic flow. By using the WLM as network loading model, the

DSO-AC is formulated as an optimal control problem for a class of dynamic systems with

constraints on inputs and states. The Pontryagin minimum principle is then applied to

derive the necessary condition of the DSO-AC. Two terms are presented as the dynamic

external cost for usage pricing. One is the dynamic externality to a path, which is defined

as the change in the value of the total system travel cost with respect to a perturbation in

the path inflow profile (Kuwahara, 2007; Chow, 2009a). The other external cost is to be

imposed on travelers during their presence on each link along each of their travel route.

The Lagrange multipliers associated with the access constraints as derived from the opti-

mality condition of the DSO-AC contribute to the access price, which can be interpreted

as either the tolls or the permit prices imposed upon drivers for using the saturated links.

With the DQM as network loading model, we utilize the formulation adopted by Yang and

Meng (1998), wherein the inflow rates to bottlenecks are constrained to be less than or

equal to the bottleneck capacities. The access price to a bottleneck is obtained by solving

the Lagrange multiplier associated with the constraint. A comparison of the dynamic

externality obtained from the WLM with that from the DQM will also be conducted.

The time-dependent concentrations of the traffic induced air pollution are estimated

by the well known and widely applied traffic pollution model in environmental research

and engineering—the operational street pollution model (OSPM) (Berkowicz, 1998; Var-

doulakis et al., 2003, 2007). To analyze the effect of pollution control (or environmental

constraint) and traffic induced air pollution pricing scheme under the umbrella of the

access pricing analysis, we define an “equivalent” environmental traffic capacity that con-

verts the environmental constraint on a link into traffic volume restriction on that link.

Based on this effort, we investigate the traffic induced air pollution pricing scheme. To be

more specific, we will address the following problems:

1. Which pricing scheme should be imposed on each link, the access control based or

the environmental traffic capacity based pricing scheme?

2. Which is the dominant pricing scheme at a specific time instant?

3. How to determine the boundaries under which a traveler on a link should pay either

an access toll or an extra pollution charge?
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We will also include the dynamic pollution pricing as a special case of the access pricing.

Similar to the bandwidth allocation scheme developed in telecommunication network

(see, e.g. Lazar and Semret (1999); Dramitinos et al. (2007)), the DSO with access con-

straints analysis also reveals the variety of economic effect of a certain amount of road

capacity with respect to its spatial and temporal allocation. This provides a guideline

to the roadway capacity allocation, e.g. decide which links can be used and how to use

their available capacities (by imposing proper access constraints on them) as “holding”

capacities for queues.

The remainder of this chapter is organized as follows. By using the WLM as network

loading model, the DSO-AC is formulated and analyzed in Section 4.2. We study the

DSO-AC for the case with DQM as network loading model in Section 4.3. We compare

and discuss different results on the dynamic externality, dynamic marginal cost pricing,

and access pricing in Section 4.4. The traffic induced pollution pricing scheme and its

relationship between the access pricing scheme are discussed in Section 4.5. A solution

algorithm for solving the DSO-AC problem is proposed in Section 4.6. Numerical exam-

ples are then provided to demonstrate the proposed method in Section 4.7. Section 4.8

concludes the chapter.

4.2 Problem formulation of the DSO-AC and its solution—

the WLM case

As mentioned in the introduction and note that the road pricing is one of the means for

capacity allocation (Johnston et al., 1995), we propose a dynamic equilibrium model for

dynamic pricing in this chapter. The pricing scheme consists of a marginal cost (usage)

pricing plus an access pricing which reveals the economic effect of a certain amount of

road capacity with respect to its spatial and temporal allocation. In particular, the cost

to access a bottleneck (or restricted link) in the network can be collected as a part of

the toll (i.e. be implemented as a complementary scheme of the marginal cost (usage)

pricing). Mathematically, the problem can be formulated as a dynamic system optimal

(DSO) assignment with access constraints on link traffic volumes.

4.2.1 Problem formulation of the DSO-AC

The dynamic system optimal traffic assignment problem is initiated by Merchant and

Nemhauser (1978a,b). The problem is reinvestigated in Chow (2009a) by applying the

optimal control theory framework proposed by Friesz et al. (2001). In this chapter, we
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consider a finite time planning horizon T > 0 and regard time t ∈ [0, T ] as a continuous

variable. Let P denote the set of all paths in a network. An arbitrary path p ∈ P of

the network of interest is defined by a sequence of the links used by that path which is

denoted by p
.
= {a1, a2, · · · , am(p)}, where m(p) is the number of links used by path p. To

begin with, we list the problem formulation of dynamic system optimal assignment, which

is formulated as the following optimal control problem. It seeks an optimal route inflow

profile h∗p(t) to minimize the total system travel cost within the study period, T , given a

fixed total amount of traffic Qw to be served between each origin-destination (OD) pair

w:

min J =
∑
∀p∈P

∫ T

0
Ψp(t,x)hp(t)dt, (4.1)

subject to,

dxpa1(t)

dt
= hp(t)− gpa1(t), ∀p ∈ P, ∀t, (4.2)

dxpai(t)

dt
= gpai−1

(t)− gpai(t),

∀p ∈ P, i ∈ [2, m(p)], ∀t, (4.3)

gpa1 (t+Da1 (xa1(t)))
(
1 +D′

a1 (xa1(t)) ẋa1(t)
)

= hp(t), ∀p ∈ P, ∀t, (4.4)

gpai (t+Dai (xai(t)))
(
1 +D′

ai (xai(t)) ẋai(t)
)

= gpai−1
(t),

∀p ∈ P, i ∈ [2,m(p)], ∀t, (4.5)

dEw(t)

dt
=

∑
p∈Pw

hp(t), ∀w ∈W, ∀t, (4.6)

Ew(T ) = Qw, ∀w ∈W, (4.7)

hp(t) ≥ 0, ∀p ∈ P, ∀t, (4.8)

xai(t) ≤ Cai(t), ∀ai ∈ A, ∀t, (4.9)

xai(0) = 0, ∀ai ∈ A,Ew(0) = 0, ∀w ∈ W, hp(0) = 0, ∀p ∈ P, (4.10)

Equations (4.2)-(4.3) are the relevant link traffic dynamics, where xpai(t) is the traffic

volume on path p traversing link ai at time t, gpai(t) is the flow exiting link ai and g
p
ai−1(t)

is the flow entering link ai of path p ∈ P at time t. In addition, gpa0(t) is the flow exiting

the origin of path p at time t which is referred to as the departure rate of path p at time

t and is denoted by hp(t) = gpa0(t). The total traffic volume xai(t) of link ai at time t is

defined by

xai(t) =
∑
p∈P

xpai(t)δ
p
ai , ∀ai ∈ A, (4.11)
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and

δpai =

 1, if ai ∈ p,

0, otherwise,

is the Kronecker Delta function. Equations (4.4)-(4.5) define the proper flow propagation,

where Gpai (t) denotes the cumulative link outflow of link ai by path p up to time t, while

τpai(t) denotes the time of exit from link ai for vehicles that enter path p at its origin

at time t. The proper flow propagation conditions given by (4.4)-(4.5) are equivalent to

Equations (62) and (63) of Friesz et al. (2001). However, as we can see in the proof of the

DSO-AC, (4.4) and (4.5) are easier to handle in the analysis. Equations (4.6)-(4.7) define

the flow conservation constraints, which are equivalent to:∑
p∈Pw

∫ T

0
hp(t)dt = Qw, ∀w ∈W, (4.12)

where Qw is the fixed total travel demand for OD pair w ∈W , Pw denotes the set of paths

connecting OD pair w. (4.8) defines the nonnegative constraints of path flows. Each link

is characterized by a link travel time function, Dai (xai(t)), which defines the link travel

time as a function of the link traffic volume at the entry time to the link:

τpa1(t) = t+Da1 (xa1(t)) , ∀p ∈ P,

τpai(t) = τpai−1
(t) +Dai

(
xai(τ

p
ai−1

(t))
)
, ∀p ∈ P, i ∈ [2,m(p)].

The following condition ensures the FIFO queue discipline for the DTA problems:

1 +D′
ai(xai(t))ẋai(t) ≥ 0. (4.13)

Under the FIFO queue discipline and given (4.8) as well as nonnegative initial conditions,

the outflow gpai(t) and traffic volume (or queue) xpai(t) are nonnegative for all t. Without

loss of generality, we assume zero initial conditions, that is xai(0) = 0, hp(0) = 0 and

Ew(0) = 0. The dynamic link travel time model that we use is the whole-link linear travel

time model proposed by Friesz et al. (1993). The model considers the link travel time to

be a linear function of the traffic volume on the link. The exit time of a vehicle entering

the link at time t can be calculated as:

τa(t) = t+ ψa + xa(t)/Ra, (4.14)

where ψa is a flow-invariant travel time (free-flow travel time) of link a and Ra is the link

capacity. From (4.14), the definition of the whole link linear travel time model, the FIFO

queue discipline, i.e., dτa(t)dt > 0, holds, and the strong FIFO condition also holds (Zhu and

Marcotte, 2000).
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The nested path delay operators proposed by Friesz et al. (1993) are defined as:

Dp(t,x) :=

m(p)∑
i=1

δaipΦai(t,x), ∀p ∈ P, (4.15)

where x = (xai : ∀ai ∈ A) and

Φa1(t,x) = Da1 (xa1(t)) ,

Φai(t,x) = Dai

(
xai(t+Φa1 + · · ·+Φai−1)

)
= Dai

xai
t+ i−1∑

j=1

Φaj

 ,

∀i ∈ [2,m(p)].

For the departure time choice, the schedule delay cost function (or early/late arrival penal-

ty) κ (χ) is employed, whereby χ is defined as the difference between actual and preferred

arrival time denoted by t∗: χ = t+Dp(t,x)− t∗. The path delays and schedule delay cost

function are combined to obtain the effective path delay operators:

Ψp(t,x) = Dp(t,x) + κ (χ) , ∀p ∈ P. (4.16)

(4.9) defines the access constraints imposed on the links of the network. Let us define the

following vector-valued function for the access constraints as C = (Cai : ∀ai ∈ A) , where

C : [0, T ] → Σ ⊂ Rn+ is a continuously differentiable function, with Σ being a prescribed

compact subset of Rn+ with known bounds. We rewrite the access constraints in a compact

form as

x(t) ≤ C(t), ∀t ∈ [0, T ]. (4.17)

By construction, the set

Σx , {x(t) : 0 ≤ x(t) ≤ C(t)} ,

is a compact subset of Rn.

4.2.2 Property of the DSO-AC

Proposition 4.1. The necessary condition for the DSO-AC can be stated as follows:

hp(t)

 > 0⇒ Ψp(t,x
∗) +

∂Ψp(t,x∗)
∂hp(t)

hp(t) + lp(t) = ϕw,

= 0⇒ Ψp(t,x
∗) +

∂Ψp(t,x∗)
∂hp(t)

hp(t) + lp(t) > ϕw,
∀p ∈ Pw, w ∈W, (4.18)

where where x∗ is an optimal state of the DSO-AC problem, ϕw is the travel cost of OD

pair w under the DSO-AC condition, which is determined by the fixed total travel demand

Qw of the OD pair. The dynamic external cost consists of two parts, i.e.
∂Ψp(t,x∗)
∂hp(t)

hp(t),
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and lp(t). The first part
∂Ψp(t,x∗)
∂hp(t)

hp(t) is the sensitivity value of the total system travel

cost with respect to a perturbation in the path flow hp(t).

lp(t) =

m(p)−1∑
i=0

∫ tpi+1

tpi

(
ςpai+1

(t) + ηai+1(t)σ
p
ai+1

)
dt

is the other term of the dynamic external cost to be imposed on travelers during their

presence on each link along their travel path. ηai is the Lagrange multiplier associated

with the access constraint imposed on link ai,
∫ tpi
tpi−1

ηai(t)σ
p
aidt is the cost to access the

restricted link (bottleneck) ai.
∫ tpi
tpi−1

ςpai(t)dt represents part of the dynamic external cost

to be imposed on travelers during their presence on link ai along their travel path p, with

ςpai(t) = hp(t)
∂Ψp(t,x)
∂Dp(t,x)

∂Dp(t,x)
∂xpai (t)

. tpi is the entry time to link ai+1 for vehicles traveling by

path p that departs from the origin at time t , tp0.

Proof of Proposition 4.1. In this proof, we derive the necessary condition for the

DSO-AC by applying the Pontryagin Minimum Principle. The Lagrangian for the optimal

control problem (4.1)- (4.9) can be defined as:

Z∗ =
∑
p∈P

∫ T

0

{
Ψp(t,x)hp(t) + λpa1(t)

(
hp(t)− gpa1(t)−

dxpa1(t)

dt

)

+
∑

i∈[2,m(p)]

λpai(t)

(
gpai−1

(t)− gpai(t)−
dxpai(t)

dt

)
+ γpa1(t)

(
hp(t)− gpa1 (t+Da1 (xa1(t)))

(
1 +D′

a1 (xa1(t)) ẋa1(t)
))

+
∑

i∈[2,m(p)]

γpai(t)
(
gpai−1

(t)− gpai (t+Dai (xai(t)))
(
1 +D′

ai (xai(t)) ẋai(t)
))

+
∑

i∈[1,m(p)]

ηai(t) (xai(t)− Cai(t))− ρpa0(t)hp(t)
}
dt

+
∑
w∈W

∫ T

0
µw(t)

∑
p∈Pw

hp(t)−
dEw(t)

dt

 dt

+
∑
w∈W

ϕw(T ) (Qw − Ew(T )) , (4.19)

where λpai(t) is the costate variable for the traffic dynamics of link ai, i.e., (4.3). µw(t),

ρpa0(t), ηai(t) and γ
p
ai(t) are the Lagrange multipliers associated with the cumulative inflow,

the nonnegative flow constraint of path p, the access constraint of link ai, and the proper

flow propagation constraint, i.e., (4.5), respectively. ϕw(T ) is the multiplier associated

with the total throughput for each OD pair w. By a simple calculation in conjunction
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with the zero initial condition assumption, the Lagrangian can be specified as

Z∗ =
∑
p∈P

 ∑
i∈[1,m(p)]

(
−λpai(T )x

p
ai(T )

)
+

∑
w∈W

(−µw(T )Ew(T )) +
∑
w∈W

ϕw(T ) (Qw − Ew(T ))

+

∫ T

0

H(t) +
∑
w∈W

dµw(t)

dt
Ew(t) +

∑
p∈P

∑
i∈[1,m(p)]

dλpai(t)

dt
xpai(t)

 dt, (4.20)

where we define the Hamiltonian function for the optimal control problem as

H(t) =
∑
p∈P

[
Ψp(t,x)hp(t) + λpa1(t)

(
hp(t)− gpa1(t)

)
+

∑
i∈[2,m(p)]

λpai(t)
(
gpai−1

(t)− gpai(t)
)

+ γpa1(t)
(
hp(t)− gpa1 (t+Da1 (xa1(t)))

(
1 +D′

a1 (xa1(t)) ẋa1(t)
))

+
∑

i∈[2,m(p)]

γpai(t)
(
gpai−1

(t)− gpai (t+Dai (xai(t)))
(
1 +D′

ai (xai(t)) ẋai(t)
))

+
∑

i∈[1,m(p)]

ηai(t) (xai(t)− Cai(t))− ρpa0(t)hp(t)
]

+
∑
w∈W

µw(t)
∑
p∈Pw

hp(t)

 . (4.21)

The variation δZ∗ of Z∗ with respect to the control and state variables is given by

δZ∗ =
∑
p∈P

∑
i∈[1,m(p)]

(
−λpai(T )δx

p
ai(T )

)
+
∑
w∈W

(−µw(T )δEw(T ))

+
∑
w∈W

ϕw(T ) (−δEw(T )) +
∑
p∈P

∫ T

0

(
∂H(t)

∂hp(t)
δhp(t)

)
dt

+
∑
p∈P

∑
i∈[1,m(p)]

∫ T

0

(
∂H(t)

∂xpai(t)
+
dλpai(t)

dt

)
δxpai(t)dt

+
∑
p∈P

∑
i∈[1,m(p)]

∫ T

0

(
∂H(t)

∂gpai(t)
δgpai(t) +

∂H(t)

∂gpai (τ
p
ai(t))

δgpai
(
τpai(t)

))
dt

+
∑
w∈W

∫ T

0

(
dµw(t)

dt
δEw(t)

)
dt. (4.22)

To simplify the notation and proceed to the analysis, let us define

g̃pai(t) = gpai
(
τpai(t)

)
= gpai (t+Dai(xai(t))) , ∀p ∈ P, i ∈ [1,m(p)],

and tpi = tpi−1 + Dai

(
xpai(t

p
i−1)

)
, where tpi−1 is the time of the flow gpai−1 entering link

ai ∈ P and tpi is the time of the flow gpai exiting the link. The partial derivatives of the
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Hamiltonian function are given as

∂H(t)

∂hp(t)
= Ψp(t,x) +

∂Ψp(t,x)

∂hp(t)
hp(t) + λpa1(t) + µw(t) + γpa1(t)− ρ

p
a0(t),

∀w ∈W, p ∈ Pw, (4.23)

∂H(t)

∂gpai(t)
= −λpai(t) + λpai+1

(t) + γpai+1
(t), ∀p ∈ P, i ∈ [1,m(p)− 1], (4.24)

∂H(t)

∂gpam(p)
(t)

= −λpam(p)
(t), ∀p ∈ P, (4.25)

∂H(t)

∂g̃pai(t)
= −γpai(t)

(
1 +D′

ai(xai)ẋai
)
, ∀p ∈ P, i ∈ [1,m(p)], (4.26)

∂H(t)

∂xpai(t)
= ηai(t)σ

p
ai + ςpai(t), , ∀p ∈ P, i ∈ [1,m(p)], (4.27)

where

ςpai(t) = hp(t)
∂Ψp(t,x)

∂Dp(t,x)

∂Dp(t,x)

∂xpai(t)
.

In addition, a set of complementary slackness conditions for the nonnegative flow con-

straints and the access constraints can be obtained as:

hp(t) ≥ 0, ρpa0(t) ≥ 0, ρpa0(t)hp(t) = 0, ∀p ∈ P, (4.28)

ηai(t) ≥ 0, xai(t)− cai(t) ≤ 0, ηai(t) (xai(t)− cai(t)) = 0, ∀ai ∈ A. (4.29)

For an open path p (Friesz et al., 2001), the Lagrange multiplier of the complementary

slackness condition (4.28) is relaxed to ρpa0(t
p
0) = 0. At the optimality, the following sta-

tionary conditions hold

∂H

∂hp
|tp0 = 0, ∀w ∈W, p ∈ Pw, (4.30)

∂H

∂gpai
|tpi +

[
∂H

∂g̃pai

1

1 +D′
ai(xai)ẋai

]
tpi−1

= 0, ∀p ∈ P, i ∈ [1,m(p)]. (4.31)

The adjoint equations are given by

dλpai(t)

dt
= − ∂H(t)

∂xpai(t)
= −ηai(t)σpai , ∀p ∈ P, i ∈ [1,m(p)], (4.32)

dµw(t)

dt
= 0, ∀w ∈W. (4.33)

At terminal time T , the following boundary conditions hold:

λpai(T ) = 0, −µw(T )− ϕw(T ) = 0, ∀w ∈W, ∀p ∈ Pw, i ∈ [1,m(p)]. (4.34)

Together with (4.33), the following equality is obtained:

µw(t) = −ϕw(T ) = µw, ∀w ∈W. (4.35)
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Note that (4.30) is equal to

Ψp(t
p
0,x

∗) + λpa1(t
p
0) + µw + γpa1(t

p
0) = 0,∀w ∈W, p ∈ P, (4.36)

where we use the fact that µw(t) = µw, which is a constant and for an open path ρpa0(t
p
0) =

0. Now, the stationary condition (4.31) gives

λpai+1
(tpi ) + γpai+1

(tpi ) = λpai(t
p
i ) + γ̃pai(t

p
i ),

∀p ∈ P, i ∈ [1,m(p)− 1], (4.37)

−λpam(p)
(tpm(p))− γ̃

p
am(p)

(
tpm(p)

)
= 0, ∀p ∈ P, (4.38)

where we adopt the following notation in line with Friesz et al. (2001):

γ̃pai(t
p
i )

.
= γpai(t

p
i−1), ∀p ∈ P, i ∈ [1, m(p)]. (4.39)

The adjoint equation (4.32) for an open path can then be given as

dλpai(t)

dt
= −ηai(t)σpai − ς

p
ai(t), ∀p ∈ P, i ∈ [1,m(p)], t ∈ [tpi−1, t

p
i ]. (4.40)

Evaluating the adjoint equation (4.40) backward in time and space yields the following.

To begin with, let us apply (4.40) to the last link of path p, i.e., link apm(p):

λpam(p)

(
tpm(p)−1

)
− λpam(p)

(
tpm(p)

)
=

∫ tp
m(p)

tp
m(p)−1

(
ηam(p)

(t)σpam(p)
+ ςpam(p)

(t)
)
dt. (4.41)

From (4.38) we have

γ̃pam(p)

(
tpm(p)

)
= γpam(p)

(
tpm(p)−1

)
= −λpam(p)

(tpm(p)). (4.42)

From (4.37), (4.40), and (4.42), the following relation is obtained

dm(p)−1 = λpam(p)

(
tpm(p)−1

)
+ γpam(p)

(
tpm(p)−1

)
= λpam(p)

(
tpm(p)−1

)
− λpam(p)

(
tpm(p)

)
=

∫ tp
m(p)

tp
m(p)−1

(
ηam(p)

(t)σpam(p)
+ ςpam(p)

(t)
)
dt

= λpam(p)−1

(
tpm(p)−1

)
+ γ̃pam(p)−1

(
tpm(p)−1

)
. (4.43)

Similarly,

dm(p)−2 = λpam(p)−1

(
tpm(p)−2

)
+ γpam(p)−1

(
tpm(p)−2

)
= λpam(p)−2

(
tpm(p)−2

)
+ γ̃pam(p)−2

(
tpm(p)−2

)
. (4.44)

From (4.44) we have

dm(p)−1 − dm(p)−2 = λpam(p)−1

(
tpm(p)−1

)
− λpam(p)−1

(
tpm(p)−2

)
= −

∫ tp
m(p)−1

tp
m(p)−2

(
ηam(p)−1

(t)σpam(p)−1
+ ςpam(p)−1

(t)
)
dt. (4.45)
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By proceeding the induction, we have

di = di+1 +

∫ tpi+1

tpi

(
ηai+1(t)σ

p
ai+1

+ ςpai+1
(t)
)
dt, ∀ i ∈ [1,m(p)− 1]. (4.46)

Finally, we have

d1 = λpa1 (t
p
1) + γpa1 (t

p
0) =

m(p)−1∑
i=1

∫ tpi+1

tpi

(
ηai+1(t)σ

p
ai+1

+ ςpai+1
(t)
)
dt. (4.47)

Thus,

lp(t
p
0) = λpa1 (t

p
0)− λ

p
a1 (t

p
1) + λpa1 (t

p
1) + γpa1 (t

p
0) =

∫ tp1

tp0

(
ηa1(t)σ

p
a1 + ςpa1(t)

)
dt+ d1

=

m(p)−1∑
i=0

∫ tpi+1

tpi

(
ηai+1(t)σ

p
ai+1

+ ςpai+1
(t)
)
dt. (4.48)

The dynamic system optimal equilibrium condition with access constraints is as follows:

for an open path p ∈ Pw, h∗p(t
p
0) > 0,

Ψp(t
p
0,x

∗) +
∂Ψp(t

p
0,x

∗)

∂hp(t
p
0)

hp(t
p
0) + lp(t

p
0) = ϕw(T ), and if

Ψp(t
p
0,x

∗) +
∂Ψp(t

p
0,x

∗)

∂hp(t
p
0)

hp(t
p
0) + lp(t

p
0) > ϕw(T ), p ∈ Pw ⇒ h∗p(t

p
0) = 0. (4.49)

As tp0 is arbitrarily and ϕw(T ) is constant, without loss of generality, we write (4.49) as

Ψp(t,x
∗) +

∂Ψp(t,x
∗)

∂hp(t)
hp(t) + lp(t) = ϕw, and if

Ψp(t,x
∗) +

∂Ψp(t,x
∗)

∂hp(t)
hp(t) + lp(t) > ϕw, p ∈ Pw ⇒ h∗p(t) = 0, (4.50)

which is immediately recognized as the fundamental condition for the dynamic network

system optimal equilibrium (Chow, 2009a). We also have the following complementary s-

lackness conditions for the access constraints: (i) if xai(t) < Cai(t), the Lagrange multiplier

ηai(t) = 0, (ii) if xai(t) = Cai(t), the Lagrange multiplier ηai(t) ≥ 0. 2

4.3 Problem formulation of the DSO-AC and its solution—

the DQM case

To investigate the DSO-AC with the DQM as network loading model, we follow the prob-

lem formulation proposed by Akamatsu (2007) based on the following proposition (see e.g.

Yang and Meng (1998); Akamatsu (2007); Kuwahara (2007); Chow (2009a,b); Varaiya

(2008); Shen and Zhang (2009), and the references therein):

Proposition 4.2. At dynamic system optimum with departure time choice, there is no

queue in the system.
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By this proposition, a possible way to achieve DSO for network modeled by the DQMs

(or an alternative way to obtain optimal tolls from bottleneck models) is to constrain the

inflow rates to the bottlenecks such that no queue will be formed. To be more specific,

we restrict xa(t) = 0, ∀a ∈ A, ∀t, which is equivalent to ha(t) ≤ Ra, ∀a ∈ A, ∀t. In

Akamatsu (2007), the author showed that by designing a network permit system, wherein

the permit prices are defined as the penalties associated with the constraints on the inflow

rates, the equilibrium resource allocation is efficient (i.e. Pareto optimal) in the sense

that the total transportation cost in a network is minimized. The author proved the

proposed approach by formulating an equivalent constrained dynamic system optimal

traffic assignment problem. He also showed that the feasibility of the constrained dynamic

optimal assignment can be easily achieved by constructing a time-space extended network

(Yang and Meng, 1998; Akamatsu, 2007). The DSO-AC with DQM as network loading

model can be formulated as

min J =
∑
w∈W

∫ T

0
qw(t)κB(t)dt+

∑
a∈A

∫ T

0
ψaha(t)dt, (4.51)

subject to

dEBw (t)

dt
= qw(t), qw(t) ≥ 0, ∀w ∈W, ∀t, (4.52)

EBw (T ) = Qw, ∀w ∈W, (4.53)∑
k∈NI(i)

hk,i (t− ψk,i)−
∑

j∈NO(i)

hi,j (t) =
∑
w∈W

qw(t)δi,w, (4.54)

0 ≤ ha(t) ≤ Ra, ∀a ∈ A, ∀t. (4.55)

The above DSO-AC with DQM as network loading model is a link-node formulation. The

schedule cost function κB(t) is defined similar to κ (χ) but is directly related to the arrival

time t at destination. qw(t) is the arrival rate to the destination of OD pair w at time

t. ha(t) is the inflow rate to link a. ψa is the free-flow travel time of link a. (4.52)-

(4.53) are flow conservation for OD pair w. Equation (4.54) is introduced to ensure the

flow conservation for a node 1, say node i, where NI(i) is the set of upstream nodes

1Some of the authors, see e.g. Yang and Meng (1998); Nagurney et al. (2007), would ignore (4.54)

in their formulations based on the argument that queues will be generally removed or replaced by the

time-dependent tolls or network permits. As explained in Yang and Meng (1998), the reason is that in the

case of constant exit capacities for all bottlenecks and (4.55), the system throughput is determined by the

bottleneck capacities. If a queue was formed on a bottleneck, we could always replace (or remove) it by

implementing a tolling or network permit scheme (Akamatsu, 2007) to affect commuters’ departure times,

thereby reducing the objective value at the system optimum. And hence, queuing is not socially-optimal.

Under such circumstances and certain assumptions, the FIFO is satisfied (but may not hold in some

special situations (Arnott et al., 1995)) and only flow conservation of OD pairs needs to be considered, i.e.

(4.52)-(4.53).
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of the links incident to node i and NO(i) is the set of downstream nodes of the links

incident from node i. Equation (4.54) is introduced also to ensure the FIFO principle

(Akamatsu, 2007). δi,w = 1 if node i is the destination of OD pair w, δi,w = −1 if node

i is the origin of OD pair w, and zero otherwise. (4.55) is the constraint proposed to

restrict the inflow rate to access link a. The optimality condition for (4.51)-(4.55) has

been studied by many authors, e.g. Yang and Meng (1998); Akamatsu (2007); Nagae

and Sasaki (2009) in terms of mathematical (linear) programming, Nagurney et al. (2007)

in terms of evolutionary variational inequality. Hence, we will not derive the optimality

condition for this problem in this chapter. The optimal toll to access a bottleneck is

obtained by solving the Lagrange multiplier associated with the access constraint imposed

on the bottleneck (Yang and Meng, 1998). Rather than implementing the above penalty

as toll, the authors identify it as the price for purchasing a permit to access the bottleneck

(Akamatsu, 2007; Nagae and Sasaki, 2009), and as the access control (Shen and Zhang,

2009; Zhang and Shen, 2010). The equilibrium resource allocation is efficient (i.e. Pareto

optimal) in the sense that the total transportation cost in a network is minimized.

4.4 DSO with access constraints, dynamic externality, and

dynamic road pricing

In this section, we will further discuss the results obtained in the previous section. To be

specific, we investigate the relations between the dynamic externality, road pricing, and

the DSO-AC. We highlight the difference between the dynamic externality obtained from

the whole link model and that obtained from the deterministic queuing model rather than

their similarity as done in literature, e.g. (Chow, 2007a, 2009a) and the references therein.

We also comment on the features of pricing schemes based on the dynamic externalities

of these two models.

4.4.1 Consistency between the results on the sensitivity value of the

total system travel cost

The first term of the dynamic external cost, i.e. Ξ1
p(t) =

∂Ψp(t,x∗)
∂hp(t)

hp(t), is interpreted as

the change in the value of the total system travel cost with respect to a perturbation in

the path inflow profile hp at time t. This term is obtained according to the definition of

sensitivity in variational calculus (Friesz et al., 2007). This term has a different expression

as defined in Chow (2009a), which is stated as Ξ2
p(t) =

∫ T
0

(
∂Ψp(s,x∗)

∂ut
|s hp(s)

)
ds. The
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term ut is the perturbation in the inflow profile of path p, which is defined as

dhp(s)

dut
=

 1, if s ∈ [t, t+ dt);

0, otherwise.
(4.56)

Ξ2
p(t) is interpreted as the change in the value of the total system travel cost with respect

to a perturbation in the path inflow profile hp during the time interval [t, t+ dt).

To show the consistency between Ξ1
p(t) and Ξ2

p(t), we expand Ξ2
p(t) as

Ξ2
p(t) =

∫ T

0

(
∂Ψp(s,x

∗)

∂hp(s)

∂hp(s)

∂ut
|s hp(s)

)
ds. (4.57)

According to (4.56),
dhp(s)
dut

= 1, only if s = t and dt → 0, the right hand side of (4.57)

equals to
∂Ψp(t,x∗)
∂hp(t)

hp(t). The consistency between Ξ1
p(t) and Ξ2

p(t) is then shown. A method

to evaluate this term in presence of nested delay operator is first proposed by Balijepalli

and Watling (2005), and adopted by Chow (2009a).

4.4.2 Difference between the dynamic externalities of the whole link

model and the deterministic queuing model

In this section, we will compare the dynamic externalities of the whole link model and the

deterministic queuing model for one link only. The evaluation of the dynamic marginal

cost for the deterministic queuing model is depicted in Figure 4.1. Zero free flow time, and

constant service rate Ra (in congested condition) are presumed for the bottleneck. The

bottleneck inflow rate at time t is denoted as ha(t). t1 is the time when a queue is first

formed and tf1 corresponds to the time when this queue is dispersed. Figure 4.1 shows the

arrival of an additional unit vehicle at time t2, whose presence induces an additional delay

to the overall queuing delay on this bottleneck. The time tfn1 is the time when the queue

is dispersed in presence of the inflow perturbation at time t2. In Ghali and Smith (1995),

this dynamic marginal delay (where the travel cost is the delay) is defined as the blue

solid area in Figure 4.1, which is claimed (without a rigorously mathematical proof) to be

equal to the green horizontal area in the same figure, i.e. tfn1 − t2. The dynamic marginal

cost is then obtained by tfn1 − t2, i.e. the horizontal distance (t
fn
1 − t2)×1, where 1 denotes

the unit vehicle size. But te2 − t2 is the link travel time encountered by individual vehicle.

Thus the dynamic externality imposed on others is tfn1 − te2
In Kuwahara (2007), based on the sensitivity analysis, he obtain the dynamic marginal

cost for the bottleneck as:

fa (θa(t2)) +

∫ tfn1

t2

dfa (θa(s))

dθa(s)

ha(s)

Ra
ds, (4.58)
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Figure 4.1: Dynamic marginal cost for the deterministic queuing model

where fa is the travel cost function of the link, θa(t2) is the queuing (travel) time of a user

arriving at the bottleneck at time t2, i.e. θa(t2) = te2 − t2.

When there is no access constraint, the dynamic marginal cost of the whole link model

for one link at time t2 is given by

Ψa(t2, xa) +
∂Ψa(t2, xa)

∂ha(t2)
ha(t2) +

∫ τa(t2)

t2

∂Ψa(s, xa)

∂θa(s)

∂θa(s)

∂xa(s)
ha(s)ds, (4.59)

where θa(t) = τa(t) − t is the link travel time function. If we adopt linear travel time

function, ∂θa(s)∂xa(s)
= 1/Ra. (4.59) can be evaluated as

Ψa(t2, xa) +
∂Ψa(t2, xa)

∂ha(t2)
ha(t2) +

∫ τa(t2)

t2

∂Ψa(s, xa)

∂θa(s)

ha(s)

Ra
ds (4.60)

To compare the two dynamic marginal cost, we define the following correspondence

Ψa(t2, xa) , fa (θa(t2)) , (4.61)∫ tfn1

t2

dfa (θa(s))

dθa(s)

ha(s)

Ra
ds ,

∫ τa(t2)

t2

∂Ψa(s, xa)

∂θa(s)

ha(s)

Ra
ds. (4.62)

The terms given by (4.61) are the link travel costs for the two models, which are physically

equivalent. Comparing (4.58) and (4.60), we notice that one more term ∂Ψa(t2,xa)
∂ha(t2)

ha(t2) is

introduced in the whole link model. The other difference lies in the upper bounds of the

integrals in (4.62). For the bottleneck model, the integral is up to the time the queue is

dispersed, while for the whole link model, the integral is up to the time when the vehicle

exists from the link. To see the first difference, we write the dynamics of the deterministic

queuing model as

ẋa(t) =

 ha(t)−Ra, if xa(t) ≥ 0;

0, otherwise.
(4.63)
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The dynamics of the whole link model is

ẋa(t) = ha(t)−
ha (ϱa(t))

τ̇a (ϱa(t))
, (4.64)

where ϱa(t) is the inverse function of τa(t), which denotes the entry time to link a that

leads to exit from the link at time t (Ban et al., 2008; Chow, 2009a). The dynamics of

the deterministic queuing model (4.63) depends on the current system state xa(t) and the

inflow rate ha(t) only, while the dynamics of the whole link model depends on the current

inflow rate ha(t), the historical inflow rate ha (ϱa(t)) and historical system state which

is included in τ̇a (ϱa(t)). That is to say the term ∂Ψa(t,xa)
∂ha(t)

ha(t) in the whole link model

is introduced by the historical inflow (traced back to time ϱa(t)) that affects the current

system state xa(t). To be more specific, we expand the term as

∂Ψa(t, xa)

∂ha(t)
ha(t) =

∂Ψa(t, xa)

∂θa(t)

∂θa(t)

∂xa(t)

∂xa(t)

∂ha(t)
ha(t). (4.65)

The term ∂Ψa(t,xa)
∂θa(t)

depends on the detailed mapping of the cost function, which can be

evaluated easily, and ∂θa(u)
∂xa(u)

= 1/Ra. The historical information involves the term ∂xa(t)
∂ha(t)

.

To see this, we expand the system state as xa(t) =
∫ t
ϱa(t)

ha(s)ds. Thus,

∂xa(t)

∂ha(t)
=

∂

∂ha(t)

∫ t

ϱa(t)
ha(s)ds, (4.66)

which depends on the historical inflow pattern during the time interval [ϱa(t), t]. A detailed

analysis on this term is discussed by Chow (2007a, 2009a).

Remark 4.1. Chow (2007a) showed that the sensitivity of link travel time with respect

to the perturbation in the inflow rate can be derived as

∂θa(t)

∂us
|t =

∂θa(t)

∂xa(t)

∂xa(t)

∂us
|t

=
dθa(t)

dxa(t)
·

(∫ t

ϱa(t)

dha(v)

dus
dv + ga(t)

∂θa(t)

∂us
|ϱa(t)

)
.

In fact, the term ga(t)
∂θa(t)
∂us

|ϱa(t) should be zero, otherwise this equation will be recursively

traced back to origin (i.e. t = 0) in order to calculate the sensitivity value ∂θa(t)
∂us

|t. To

show this, we refer to the proof of this statement in Chow (2007a):

∂θa(t)

∂us
|t=

∂θa(t)

∂xa(t)
·

(∫ t

ϱa(t)

dha(v)

dus
dv − ha (ϱa(t))

∂ϱa(t)

∂us

)
.

We can show that the term ha (ϱa(t))
∂ϱa(t)
∂us

= 0. To show this, we derive ha (ϱa(t))
dϱa(t)
dt =

ga(t), i.e. ha (ϱa(t)) = ga(t)
(
dϱa(t)
dt

)−1
from the definition of ϱa(t). Since ϱa(·) is the

inverse function of τa(·), we have(
∂ϱa(t)

∂t

)−1

=
∂τa (ϱa(t))

∂ϱa(t)
.
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Thus,

ha (ϱa(t))
∂ϱa(t)

∂us
= ga(t)

∂τa (ϱa(t))

∂ϱa(t)

∂ϱa(t)

∂us
.

Since τa (ϱa(t)) = t, the above equation is then ha (ϱa(t))
∂ϱa(t)
∂us

= ga(t)
∂t
∂us

. We conclude

ha (ϱa(t))
∂ϱa(t)
∂us

= 0 from dt
dus

= 0. Thus

∂θa(t)

∂us
|t=

dθa(t)

dxa(t)
·

(∫ t

ϱa(t)

dha(v)

dus
dv

)
.

Next, we will investigate the difference between the upper bounds of integrals in (4.62).

Note from Figure 4.1 that the cumulative outflow curve will not change even if the inflow

rate has been changed when the bottleneck is congested. This is due to the assumption on

the constant service rate when the bottleneck is congested. The additional cost caused by

the perturbation in the inflow actually lasts till the time the queue is dispersed as shown

in Figure 4.1. However, this is not the case for the whole link model. For comparison, we

depict the cumulative inflow and outflow curves for the whole link model, from the time

when the perturbation occurred and onward, in Figure 4.2.

From the flow propagation equation of the whole link model, we have

ga (τa(t)) + δga (τa(t)) =
ha(t) + δha(t)

τ̇a(t)
. (4.67)

A change in the inflow rate at time t, i.e. δha(t), results in a change in the outflow rate at

time τa(t), i.e. δga (τa(t)). This implies that a perturbation in the cumulative inflow curve

will cause a perturbation in the cumulative outflow curve automatically, see e.g. Figure

4.2. The amount of change in the cumulative outflow curve is given by (4.67). The effect

of this perturbation is cumulated up to the time it exits from the link, i.e. τa(t). In this

sense, we define it as the dynamic external cost imposed on travelers during their presence

on the link.

4.4.3 Marginal cost pricing, access pricing, and the access constraint

Congestion pricing and network permits are recognized as qualitative and quantitative

regulations for bottleneck traffic flow control, respectively. For dynamic congestion pricing,

the optimal toll is the difference between the dynamic marginal cost imposed on everyone

in the system and individual travel cost, i.e.
∂Ψp(t,x∗)
∂hp(t)

hp(t) +
∑m(p)−1

i=0

∫ tpi+1

tpi
ςpai+1(t)dt +∑m(p)−1

i=0

∫ tpi+1

tpi
ηai+1(t)σ

p
ai+1dt for the whole link model. In the preceding analysis, we have

defined the term

∂Ψp(t,x
∗)

∂hp(t)
hp(t) +

m(p)−1∑
i=0

∫ tpi+1

tpi

ςpai+1
(t)dt (4.68)
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Figure 4.2: Comparison of the dynamic marginal costs for the two models

as the toll for dynamic marginal cost pricing, see e.g. (Chow, 2009a), and the term

m(p)−1∑
i=0

∫ tpi+1

tpi

ηai+1(t)σ
p
ai+1

dt (4.69)

as the toll for access pricing.

4.4.3.1 Different toll structures for the whole link model and the determin-

istic queuing model

By the analysis in Section 4.4.2, the toll structures can be also different for these two

models. For the whole link model, the toll for dynamic marginal cost pricing, i.e. (4.68),

is nonnegative as long as the path inflow hp is positive, while the toll for access pricing, i.e.

(4.69), can be positive or zero depending on whether the access constraints are activated

or not. However, this is not the case for the deterministic queuing model wherein both

tolls for the marginal cost pricing and access pricing can be zeros. To see this, note from

(4.58) that the toll for marginal cost pricing is zero if there is no queue on the bottleneck.

The access price is zero if the access constraint is not activated.

Based on Proposition 4.2, we can apply dynamic marginal cost (usage) pricing only, or

access pricing only, or both usage and access pricing to achieve a dynamic system optimal

for networks modeled by the DQM. Different methods have been proposed to make a

traffic network operating under its system optimum, e.g. dynamic marginal cost pricing

(Arnott et al., 1993; Kuwahara, 2007; Chow, 2009a), tradable network permit (Akamatsu,

2007; Nagae and Sasaki, 2009), access control (Shen and Zhang, 2009), and congestion
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derivative (Yao et al., 2010).

4.4.3.2 Some advanced issues

Theoretically, the optimal toll is to impose an dynamic toll that is equivalent to the queue-

ing cost such that the queueing delay is completely eliminated. The temporal equilibrium

can be maintained after the implementation of this toll, since users pay the same amount

of additional cost as the queueing cost (Arnott et al., 1993; Kuwahara, 2007). However,

the optimal toll is difficult to obtain in general. It is claimed that, the evaluation of (4.68)

is difficult in both computational and analytical aspects (Balijepalli and Watling, 2005;

Chow, 2009a). Similar viewpoint has been reported by Kuwahara (2007) for the evaluation

of the second term of (4.58) for the deterministic queuing model. Closed-form solutions

can be obtained for some special cases only, e.g. for signal bottleneck case (Arnott et al.,

1993; Kuwahara, 2007; Yao et al., 2010). Note that when the WLM is applied as the net-

work loading model, the toll for marginal cost pricing is path based, i.e. (4.68). Another

difficulty in evaluating (4.68) is introduced by the flow propagation and the nested delay

operator for dynamic traffic assignment. On the contrary, the toll for access pricing is

obtained in a link based manner, e.g. (4.69). Compared with the marginal cost pricing,

it is much easier to manipulate.

In static nonlinear pricing, the access pricing is found to be profitable to implement

regardless of the severity of congestion. The profits from marginal cost (usage) only

pricing and access-only pricing cannot be ranked in general. Access-only pricing may be

more profitable if congestion is not too severe and demand is not too elastic. If access

pricing is implemented, and congestion is moderately severe, it may be profitable to set

the access fee high enough to exclude some travel demand in order to provide a better

quality of service by reducing congestion (Wang et al., 2010).

As the toll for marginal cost pricing is positive whenever the inflow is positive, the

dynamic pricing problem is more complex for the whole link model than the bottleneck

model. For the WLM case, applying access pricing (4.69) only may not yield a DSO

state. However, if the system planner specify a preferred (target DSO) state, i.e. x∗, in

advance, the problem reduces to a dynamic user equilibrium with side constraint (DUE-

SC) problem proposed by Zhong et al. (2010). The tolls for access pricing to achieve this

preferred (target DSO) state can be obtained by solving the DUE-SC problem. As the tolls

for access pricing are link based, it is easy to manipulate. Since the optimal traffic state x∗

is known in advance, for each departure time, the schedule delay cost can be calculated.

For a given path and departure time, the entry time and exit time of a certain link can
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also be obtained. The “tolls” obtained from solving the DUE-SC can be also traded in a

competitive market similar to the tradable network permit case. This scheme maybe more

efficient than on-line real-time pricing for achieving the preferred (target DSO) state x∗.

4.5 Traffic induced air pollution pricing as a special case of

the access pricing

As previously explained, to achieve a more sustainable mobility for urban areas, many

governments would like to improve or maintain the air quality of the urban area by con-

trolling the traffic volume in the network. Road pricing, as proposed to internalize various

externalities caused by vehicle use in terms of tolling, should include the external cost

caused by traffic induced air pollution as it has also been argued in the literature. An

extensive amount of research on road pricing for (deterministic/stochastic) static traffic

network have concluded that road pricing is an efficient approach to internalize externali-

ties such as congestion, air pollution, noise, and accidents (Sumalee and Xu, 2010; Yang

et al., 2010). In this section, based on the “equivalent” environmental traffic capacity con-

cept, that converts the environmental constraints into restrictions on link traffic volumes,

and a dynamic (time-dependent) traffic induced air pollution dispersion models, we will

derive the dynamic pollution pricing as a special case of the access pricing. To be precise,

we will address the following problems summarized at the end of Section 4.1 and repeated

here for convenience:

Which pricing scheme should be imposed on each link, the access control based or

the environmental traffic capacity based pricing scheme?

Which is the dominant pricing scheme at a specific time instant?

How to determine the boundaries under which a traveler on a link should pay either

an access toll or an extra pollution charge?

To begin with, let us review the two capacity concepts.

4.5.1 The traffic capacity and the environmental traffic capacity

The traffic capacity (HCM, 2000) as defined in transportation engineering means the

capacity of a facility, which is the maximum hourly rate at which persons or vehicles can

be reasonably expected to traverse a point or a uniform section of a lane or roadway during

a given time period under the prevailing roadway, traffic, and control conditions. The
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concept of environmental traffic capacity was first introduced by Buchanan (1963) wherein

the capacity of a street (or an area) to accommodate vehicles under certain restrictions of

environmental standards is defined as the environmental traffic capacity. Holdsworth and

Singleton (1979, 1980) refined this definition as: “the maximum number of vehicles that

may pass along a street in a certain period of time, under fixed physical conditions, without

causing environmental detriment.” Shiran (1997) further extended the above definition

to an area wide environmental traffic capacity which can be stated as “the maximum

amount of traffic activities that may occur in a given area during a certain period of

time, under fixed physical conditions, without causing environmental detriment.” Despite

the difference between the microscopic (street level) and macroscopic (area wide level)

environmental traffic capacity concepts, what they have in common is to control the traffic

volume to restrict the traffic induced air pollution to an appropriate level defined by some

physical and social economic conditions during certain time periods in some particular

areas.

A review on various definitions of the two traffic capacity concepts is given by Li et

al. (2009). In that paper, the authors try to find a connection between them and to

utilize them to study the control of traffic induced air pollution. The authors combine the

two concepts to study the relationship between transportation systems and the natural

environment system. To control the traffic induced pollution, they first define the traffic-

related environmental capacity (TREC) which is a limit to the traffic induced air pollution

in a certain time under the physical and social economic conditions in a particular area.

Based on the TREC, they calculate the maximum traffic volume can be accommodated

by the network. The resulting maximum traffic volume is defined as the environmental

traffic capacity (ETC). Rather than combining the two concepts, we try to sperate them

for the dynamic road pricing purpose. We show in this chapter that the environmental

traffic capacity restriction can be regarded as a special case of the access control. The

traffic induced pollution pricing can be then included by the access pricing.

4.5.2 A brief review of the dynamic traffic pollution dispersion models

The study on the wind flow and air pollutant dispersion inside and over urban street

canyons has attracted great concern during the past two decades mainly due to the increas-

ing emission of air pollutants in urban areas and their adverse impacts on human health

as mentioned in the introduction and Nagurney (2000). With the economic development,

there are more and more high-rise buildings surrounding streets in urban areas, making the

environment more and more unfavorable for traffic emissions to disperse. It is known that
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both the flow and air pollutant dispersion inside street canyons are dominated by turbulent

processes (Li, 2008). There are three main approaches to street-canyon-pollution research

including field observations and measurements, and two kinds of numerical pollutant dis-

persion models, i.e. operational models, and computational fluid dynamics (CFD) models.

Two reviews of these models are given by Vardoulakis et al. (2003, 2007). The dispersion

of pollutants on street canyons depends on the following street canyon characteristics:

1. Street-canyon geometry;

2. Ambient wind flow;

3. Traffic-induced turbulence;

4. Pollutant transformation;

5. Population exposure.

To our purpose, we concentrate on the first three aspects in this brief review.

4.5.2.1 Street-canyon geometry

The wind flow pattern inside street canyons depends on their geometry, in particular the

building-height-to-street-width (aspect) ratio (or AR) (h/b, where h is the building height

and b is the street width). Based on the aspect ratio, a street canyon can be classified

into three main categories: (i) regular street canyon with 0.7 < AR < 1.5 (some authors

proposed this to be 0.7 < AR < 2), (ii) deep (or narrow) street canyon with AR > 1.5,

(or AR > 2) and (iii) low-rise street canyon with AR < 0.7. The length L of the canyon

is usually defined as the road distance between two major intersections. Similar to the

AR, we can define street canyons into short L/h ≈ 3; medium L/h ≈ 5; and long canyons

L/h ≈ 7. Urban streets might be also classified in symmetric (or even) canyons, if the

buildings flanking the street have approximately the same height, or asymmetric, if there

are significant differences in building height (Vardoulakis et al., 2003).

4.5.2.2 Ambient wind flow

As indicated in Figure 4.3, the street canyon wind flow is determined by a wind vortex

which is an interaction between the above roof-top wind conditions and the local wind

flow within the cavity of the canyon. In the case of perpendicular flow, the up-wind

side of the canyon is usually called leeward, and the downwind windward. Based on field

measurements and mathematical modeling results, Oke (1988) identified three flow regimes
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Figure 4.3: Schematic illustration of flow and dispersion conditions in street canyons

(Berkowicz et al., 2008)

for wind direction perpendicular to the street axis, see e.g. Figure 4.4. For wide canyons

(AR < 0.3), the flow fields associated with the buildings do not interact, which results

in the isolated roughness flow (IRF) regime. As buildings become more closely spaced

(0.3 < AR < 0.7), the disturbed wind flow behind the upwind building is disturbed by

the recirculation created in front of the windward building. This is the wake interference

flow (WIF) regime. By further reducing the spare space between buildings (AR > 0.7),

the bulk of the synoptic flow skims over the canyon which results in the skimming flow

(SF) regime. In this case a stable recirculation is developed inside the canyon and the

ambient flow is decoupled from the street flow. Under this circumstance, the vehicular

pollutants at the street level could not be easily ventilated and would accumulate, resulting

in high pollutant concentration and poor air quality. The strength of the wind-induced

recirculations inside street canyons mainly depends on the strength of roof-level wind and

is also influenced mildly by the mechanical turbulence induced by moving vehicles.

The strength of the wind vortices inside the canyon mainly depends on wind speed at

roof-top level. The local wind flow is also affected by the mechanical turbulence induced by

moving vehicles and the roughness elements within the street, e.g. trees, kiosks, balconies,

slanted building roofs, etc. (Vardoulakis et al., 2007). In relatively deep canyons AR ≈ 1.3,

the main wind vortex is usually displaced towards the upper part of the cavity. As the

aspect ratio increases AR ≈ 2, a weak counter-rotating secondary vortex maybe observed

at street level. For even higher aspect ratios AR ≈ 3, a third weak vortex might be also

formed.

99



Figure 4.4: Three flow regimes associated with different building-height-to-street-width

ratios h/b (Oke, 1988)

4.5.2.3 Numerical traffic-induced pollution dispersion models–CFD based mod-

els

As mentioned, there are mainly two categories of numerical traffic dispersion models, i.e.

the CFD based models and operational models. In the current section, we give a brief

review on the CFD based models. A CFD based traffic-induced pollution dispersion model

consists of two functional blocks: a numerical wind field model, and a numerical pollutant

transport model.

Regarding to the wind field model, Reynolds-averaged Navier-Stokes (RANS) models,

e.g. the k− ϵ turbulence closure schemes, are extensively employed to simulate turbulence

in urban street canyons. However, these models have some inherent limitations, e.g.

they cannot handle the unsteadiness and intermittency of the street-canyon flow and air

pollutant dispersion, as the nature of RANS models is a steady-state methodology (Li,

2008). Therefore, RANS models cannot accurately predict the transient wind field and

hence are unable to precisely model the turbulent pollutant transport processes. The

empirical evidence reveals that there are complicated processes beyond the reach of RANS

models. To this end, large-eddy simulation (LES) has been recently proposed and become

a popular approach to investigate the turbulence inside street canyons hand in hand with

advances in computer science and technology. Compared with the RANS modes, the major

advantages of LES are its capabilities of handling the unsteadiness and intermittency of the

flow as well as providing detailed information on the turbulence structure. The accuracies

of the LES technique are, however, greatly affected by the negligence of transport processes
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in the spanwise direction. Moreover, calculations of the LES were solely numerical without

support from empirical validation.

CFD based dispersion models mainly employ two approaches: Lagrangian approach

and Eulerian approach. The main difference of these two approaches is the choice of

coordinate (Li, 2008). The concentration of a pollutant is described for a particular fluid

element as it travels with the flow in the Lagrangian approach. In this approach, the

coordinates are dependent variables, and the fluid element is identified by its position in

the field relative to that at some arbitrary time. However, in the Eulerian approach, the

concentration of a pollutant is described at a given position and time, with the coordinates

fixed in space and time. Therefore, in the Eulerian approach, the coordinate position and

time are independent variables. Conventionally, the Lagrangian approach employs particle

tracking methods to simulate the dispersion characteristics of pollutants in a variety of fluid

flow fields. Such kind of models are further refereed as the Lagrangian particle dispersion

(LPD) models which are also known as random walk models, random flight models, or

Lagrangian Monte Carlo models. In the LPD approach, the turbulent transport is modeled

by tracing the trajectories of a large number of particles as they are transporting with

the air flow (or driven by the wind field), which is generated in-prior by a numerical wind

field model. The release of particles may be either sequential (as a plume) or simultaneous

(as a puff). Concentration fields are determined from the spatial distribution of particles.

Note that the LPD models are useful when the time dependent wind field data can be

obtained.

Compared with the Lagrangian approach, the Eulerian models are more appropri-

ate for describing long-range transport with chemical reactions and transformations. To

simulate the pollutant dispersion these models solves an advection-diffusion equation of

conserved scalars (e.g. mean concentration or mass fraction) for a set of receptors in

2D or 3D computational domains. Eulerian models can also address the production and

loss terms, which may include exchanges with the surrounding grid elements, emissions,

chemical transformations, and dry and wet deposition (Li, 2008). Despite the expensively

computational effort, the CFD based models contain numerous empirical parameters that

may lead to uncertainties in the modeling accuracy. The comparisons did not always in-

dicate that results from CFD are more accurate than those from the simpler operational

models, e.g. the Operational Street Pollution Model (OSPM).
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4.5.2.4 Numerical traffic-induced pollution dispersion models–operational mod-

els

The operational models include box models, Gaussian plume models, operational street

pollution model, and Lagrangian puff models, etc. Operational models usually need some

empirical or semi-empirical parameters from observation and make several crude simplifi-

cations. Despite their inaccuracy, they are very useful for environmental monitoring and

air quality assessment, where a quick and reasonable estimation of pollutant concentra-

tion is required. Reviews on the performances of the operational models are given by

Vardoulakis et al. (2003, 2007). Among the various operational models, the OSPM is

one of the most popular traffic-induced pollution dispersion models. An huge amount of

research works has been dedicated to calibrate and validate this model. It is claimed that

when the aspect ratio AR < 3, there is no direct evidence that the CFD based models

performs better than the OSPM (Li, 2008)2. To this end, in this chapter we apply the

OSPM to model the concentration of traffic induced pollution.

The OSPM is a semi empirical dispersion model which combines Gaussian plume theory

with empirical box model techniques to calculate concentration of gas pollutants in a street

canyon say link a. The model assumes three different contributions to the concentration

of pollutants on link i at time t: the direct impact of pollutants from the source to the

receptor Ci,d(t) at time t, the recirculation component Ci,r(t) due to the flow of pollutants

around the horizontal vortex generated within the recirculation zone of the canyon, and

the urban background contribution Ci,b(t). The overall concentration of pollutants on link

i at time t is given by

Ci(t) = Ci,d(t) + Ci,r(t) + Ci,b(t). (4.70)

The emission density for a line source3 is

dQi(t) =
Qi(t)
bi

dy,

where the emission field is treated as a number of infinitesimal line sources aligned perpen-

dicular to the wind direction at the street level and with thickness dy, bi is the width of

2Some authors also claim that the OSPM only performs well when AR < 2 or even when AR ≈ 1.

However, the performance of such kind of model depends on the calibration (or modification of the model

to adapt the study area) and the climate (mainly the wind speed and direction) of the study area. For

example the wind speed in Hong Kong is faster than those of some inland cities in mainland China or

some Mediterranean dense cities. The aspect ratios for the well performance of the OSPM would be quite

different.
3A line source is a source of roadway air pollution that emanates from a linear (one-dimensional)

geometry, e.g. a link.
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the canyon, and Qi(t) is the emissions from vehicles on link i at time t. The contribution

to the concentration at a point located at a distance y from the line source is given by,

dCi,d(t) =
√

2

π

dQi(t)
riσz,i(y)

, (4.71)

where ri is the street-level wind speed, σz,i(y) is the vertical dispersion parameter at a

downwind distance y. To evaluate the concentration of the pollutants induced by the

traffic, (4.71) is integrated along the wind path at the street level. The integration path

depends on wind direction, extension of the recirculation zone and the street length. Con-

ventionally, under some assumptions, the integration can be approximated by a Gaussian

plume model

Ci,d(t) =
√

2

π

Qi(t)
biσw,i

ϖi,1 , Qi(t)ϖ̃i,1, (4.72)

where σw,i is the standard deviation of the vortex plume velocity (also refereed to as the

vertical velocity fluctuation due to mechanical turbulence generated by wind and vehicle

traffic in the street) which is thus defined

σw,i =
√

(αri)2 + σ2wo,i, (4.73)

where α is a proportionality constant (given the empirically value as 0.1), and σwo,i is the

traffic-induced turbulence defined as

σwo,i = ϑ

(
Niv̄iS

2

bi

)1/2

,

where ϑ is an aerodynamic drag coefficient (given empirically the value of 0.3), Ni the

number of vehicles using the street per time unit, v̄i the average vehicle speed, S2 the

road surface occupied by a single vehicle. ϖi,1 is a parameter to be calibrated, which

depends on the (average) height of the roadside buildings, the street-level wind speed, the

(average) height of vehicle exhaust, the standard deviation of velocity at vortex roof level,

the correction factor for low wind, the angle between street and wind, etc. The reader can

refer to Berkowicz (1998) for the details on how to calibrate this parameter.

The contribution from the recirculation is calculated using a simple box model, which

assumes that the pollutants are well mixed inside the box:

Ci,r(t) =
Qi(t)
bi

ϖi,2 , Qi(t)ϖ̃i,2, (4.74)

where ϖi,2 is another parameter to be calibrated, which depends on the geometry of the

canyon, the ventilation velocity of the canyon, the roof-level wind speed, the extension

of the recirculation zone, the relation between street and roof-level winds, etc. Detailed

description on these parameters can be found in Berkowicz (1998, 2000a,b); Vardoulakis

et al. (2002, 2003).
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Remark 4.2. Strictly speaking (Vardoulakis et al., 2002), concentrations should be cal-

culated as the sum of the direct and recirculation contributions on the leeward side of

the street, while on the windward side only the direct contribution of emissions generated

outside the recirculation zone need to be taken into account. If the recirculation zone

extends throughout the whole canyon, then the windward concentrations are calculated

from only the recirculation component. For near parallel flow, emissions from outside the

recirculation zone may contribute to the leeward concentrations. When the wind speed

is near zero or parallel to the street axis, the concentrations on both sides of the canyon

become equal. In all cases, the background contribution should be added to obtain the

final result.

Remark 4.3. The OSPM is designed to produce time series of pollutant concentrations

within street canyons, which requires calibration of several model parameters, an amount

of input information and computational resources. On the other hand, they are based on a

number of empirical assumptions and parameters that might not be applicable to all urban

environments, e.g. very deep street canyons with high wind speed. In the introduction

of OSPM, we implicitly assume the model parameters are constant, i.e. the time-average

values. Nevertheless, these model parameters can be also calibrated as time-dependent

values, e.g. with respect to different time-of-day.

4.5.3 Environmental traffic capacity constraint and pollution charge

Since we have applied the whole link model and the deterministic queueing model, which do

not distinguish the leeward side and the windward side, we just calculate the concentration

of the pollutants by (4.70). Moreover, since we consider the traffic-induced air pollution

only, we assume in this chapter that the restriction on the maximal concentration (Cei ) of

pollutants that can be afforded by link i is separated from the background contribution,

i.e. Ci,d(t)+ Ci,r(t) ≤ Cei . Given the number of vehicles Vi(t) on link i at time t, the length

of the link li, and the weighted mean of vehicular emission factors Ē, the rate of release

of emissions from vehicles on link i at time t can be obtained by

Qi(t) ≈
v̄i(t)

li
Vi(t)Ē.

The constraint Ci,d(t) + Ci,r(t) ≤ Cei implies

Vi(t) ≤
Cei

Ē (ϖ̃i,1 + ϖ̃i,2)

li
v̄i(t)

. (4.75)

Definition 4.1. The environmental traffic capacity of link i, i.e. κei , is defined as

κei =
Cei

Ē (ϖ̃i,1 + ϖ̃i,2)
.
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4.5.3.1 The whole link model case

For the whole link model, the number of vehicles Vi(t) on link i at time t is the link traffic

volume at time t, i.e. xi(t). (4.75) is equivalent to

xi(t) ≤ κei
li

v̄i(t)
.

By approximating li
v̄i(t)

by the link travel time θi(t), the above equation is then

xi(t) ≤ κei θi(t).

As we have adopted the linear travel time function θi(t) = ψi+xi(t)/Ri, the above equation

can be further represented as

xi(t) ≤
κeiψi(
1− κei

Ri

) . (4.76)

By the access control, we have

xi(t) ≤ Ci(t). (4.77)

Now we are ready to state the following proposition:

Proposition 4.3. If κei ≥ Ri, no pollution charge should be implemented. Otherwise, we

have the following scenarios:

If

κeiψi

1− κei
Ri

> Ci(t), (4.78)

the constraint for the access control, i.e. (4.77), will be violated before the violation of

(4.76), which implies that the Lagrange multiplier associated with the environmental

constraint (4.76) is zero. If (4.78) hold ∀t ∈ [0, T ], then we do not need to charge

pollution price.

If

κeiψi

1− κei
Ri

≤ Ci(t), (4.79)

the constraint (4.76) for the pollution charge will be violated before the violation of

access constraint (4.77), which implies that the Lagrange multiplier associated with

the access control constraint is zero. If (4.79) hold ∀t ∈ [0, T ], then no access price

will be charged.
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In any case, the Lagrange multipliers associated with (4.76) and (4.77) will not be positive

simultaneously for any time instance t ∈ [0, T ].

Proof of Proposition 4.3. The proof of this proposition is straightforward. If

κei ≥ Ri, we have 1− κei
Ri
≤ 0. No violation of (4.76) will be observed, which implies that

the pollution charge is not required. The other two scenarios can be proven by comparing

the amplitudes of the two constraints, i.e. the right hand sides of (4.76) and (4.77). 2

Remark 4.4. Although the Lagrange multipliers associated with (4.76) and (4.77) cannot

be positive simultaneously, the integration of either of them over a time interval can.

Therefore, the access price and pollution price, defined by∫ τi(t)

t
(ηaci (s) + ηapi (s)) ds,

where ηaci (s) denotes the Lagrange multiplier associated with the access control constraint

(4.77) and ηapi (s) the Lagrange multiplier associated with the pollution constraint (4.76),

can exist simultaneously.

4.5.3.2 The deterministic queueing model case

In the formulation for access control for the network with deterministic queueing model,

we restrict the inflow to the bottleneck to be less or equal to its capacity, i.e.

hi(t) ≤ Ri. (4.80)

We restrict the concentration of traffic induced pollutants on link i to be less than or equal

to the environmental constraint, i.e. (4.75). As we impose (4.80), no queue will be formed

on the link. The traffic volume on the link can be evaluated as Vi(t) = hi(t)ψi. (4.75) can

be then represented as

hi(t) ≤ κei . (4.81)

Similar to the whole link model case, we have the following proposition:

Proposition 4.4. For the deterministic queueing model case, we have the following two

scenarios:

If κei ≥ Ri, the constraint for the access control, i.e. (4.80), will be violated before the

violation of (4.81), which implies that the Lagrange multiplier associated with the

environmental constraint (4.81) is zero. In this case, we do not need to implement

pollution charge.
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If κei < Ri, the constraint (4.81) for the pollution pricing will be violated before the

violation of (4.80), which implies that the Lagrange multiplier associated with the

access control constraint is zero. In this case, no access price should be charged.

In any case, the pollution charge and the access charge will not be activated simultaneously.

For both the WLM and DQM cases, if the link environmental capacity κei is greater

than or equal to the corresponding traffic capacity Ri, then no pollution pricing should

be implemented. The boundary of the two pricing schemes is given by min(Ri, κ
e
i ) for

the DQM case. For the WLM case, another boundary is defined by min

{
κeiψi

1−
κe
i

Ri

, Ci(t)

}
,

that determines which Lagrange multiplier is the positive. From (4.76) and (4.81), we can

conclude that the pollution based pricing is, in fact, a special case of the access control.

4.6 Solution algorithm for the DSO-AC with the WLM as

network loading model

As explained in Section 4.3, when the DQM is applied as the network loading model, the

DSO-AC has been studied by several authors. Several solution algorithms are available

to access the problem, e.g. linear programming, evolutionary variational inequality, etc.

Therefore, in this section, we study the solution algorithm for the DSO-AC with the WLM

as network loading model case only.

4.6.1 Reformulation of the optimal control problem and functional ap-

proximation

We represent the optimal control formulation of the DSO-AC in Section 4.2 in a compact

form as depicted in Figure 4.5. In the figure, Ψ(t,x(h)) = (Ψp(t,x) : ∀p ∈ P ) is the effec-

tive network delay operator, which is a column vector. In Figure 4.5, ẋ = f̃(·) denotes the

link traffic dynamics with the flow propagation constraints (4.2)-(4.5). We write ẋ explic-

itly because the link traffic volumes are the state variables of the optimal control problem.

The flow propagation constraints (4.4)-(4.5) with travel time function defined by (4.14) are

substituted into (4.2)-(4.3) to update the state variables. The equality constraint M1(·)

denotes the flow conservation equations (4.6)-(4.7) or (4.12). The inequality constraint

M2(·) denotes the access constraints defined by (4.9). v ≥ 0 is a vector representation of

(4.8).
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The optimal control problem for the DSO-AC

Solve

min
h
J =

∫ T

0
Ψ(t,x(h))T h(t)dt ,

∫ T

0
F (x,h) dt,

subject to

ẋ = f̃(x,h, t), M1(h, t) = 0, M2(x, t) ≤ 0, −h ≤ 0, ∀t ∈ [0, T ], x(0) = 0

Figure 4.5: optimal control formulation of the DSO-AC in a compact form

To obtain the necessary condition of the DSO-AC, we need to solve the optimal control

problem. To the best of our knowledge, no effective algorithm has been reported to solve

the optimal control problem with state dependent time lags and state constraints. How-

ever, several effective algorithms have been proposed to solve the optimal control problem

with state and/or control constraints using nonlinear programming algorithms, such as se-

quential quadratic programming (SQP) (Buskens and Maurer, 2000; Betts, 2010; Subchan

and Żbikowski, 2009). To solve this optimal control problem by nonlinear programming

algorithms, it is necessary to approximate the functional differential equations (FDEs),

which govern the traffic dynamics, by ordinary differential equations (ODEs). We use a

typical method for handling transportation delays in control engineering to deal with these

state dependent time lags. The idea is to use polynomial approximation of the time lags.

A similar idea has been proposed by Astarita (1996) and Friesz and Mookherjee (2006).

We use Padé approximation to approximate the state dependent time lags, which can be

easily implemented using Matlab and Simulink.

After approximating the FDEs by ODEs, we denote the traffic dynamics as ẋ(t) =

f0(x,v, t). It is convenient for us to rewrite the optimal control problem as

min
h
J =

∫ T

0
F (x,h) dt, (4.82)

subject to

ẋ(t) = f0(x,h, t), M1(h, t) = 0, M2(x, t) ≤ 0, −h ≤ 0, ∀t ∈ [0, T ],x(0) = 0. (4.83)

4.6.2 Solution algorithm for the DSO-AC

To apply an off-the-shelf nonlinear optimization algorithm to the optimal control prob-

lem (4.82)-(4.83), it is necessary to apply the time-discretization scheme to the problem.

Here we present the recursive discretization approach based on Euler’s method, which is

commonly used in the literature (Buskens and Maurer, 2000; Betts, 2010; Subchan and
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Żbikowski, 2009). The planning time interval is divided into N − 1 segments uniformly,

i.e., a fixed time step ∆t is defined in the discretization as ∆t = T
N−1 , tl = (l− 1)∆t, l =

1, 2, · · · , N. Applying Euler’s method to the differential equation in (4.83) yields

xl+1 = xl +∆t · f0(xl,hl, tl), l = 1, 2, · · · , N − 1. (4.84)

Define the optimization variable z = [h1, · · · , hN ]
T , and compute the state variables

from (4.84) recursively as xl = xl(z, t) = xl (h1,h2, · · · ,hl−1, tl−1) , l = 2, · · · , N , which

are functions of the control variables with initial condition x1 = x(1) = 0. The following

NLP is defined

min
z
y(z) ,

N−1∑
l=1

∆t · F (x,hl) , (4.85)

subject to

xl = xl (h1,h2, · · · ,hl−1, tl−1) , l = 2, · · · , N, x1 = 0,

M1(hl, tl) = 0, M2(xl, tl) ≤ 0, −hl ≤ 0, l = 1, 2, · · · , N. (4.86)

After the the optimal control problem is reformulated as an NLP problem, we can

apply nonlinear optimization algorithms to solve it (Buskens and Maurer, 2000; Betts,

2010; Subchan and Żbikowski, 2009).

4.7 Numerical example

Consider a network with a single OD pair connected by two parallel links as shown in

Figure 4.6. The link delay functions are given by D(x1) = 0.28 + x1/70 unit-times and

D(x2) = 0.3 + x2/140 unit-times, respectively. The overall travel demand is Jod = 100

units. The planning horizon is 6 unit-times. The desired arrival time is set as tda = 3

unit-time. We consider the following early/late arrival penalty function:

κ[χ] =


0.1 (t+D(x)− tde)2 , t < tde,

0, tde ≤ t ≤ tdl,

0.1 (t+D(x)− tdl)2 , t > tdl,

(4.87)

where tde = 2 unit-time and tdl = 5 unit-time. The effective delay is given by (4.16).

We first solve the DSO for this network. Figure 4.7(a) depicts the path (link) inflow

against the corresponding travel cost over time. By internalizing the dynamic externality

to the dynamic marginal cost, the DSO can be represented as a generalized DUE condi-

tion (4.18) in which, for each origin-destination pair, all travelers have the same dynamic
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marginal cost for all routes and departure time windows. The figure shows that the dynam-

ic marginal costs are the same for the two paths during their departure time windows, the

DSO is well achieved in this example. Travelers select their departure times to maintain

the equilibrium state. The inflows are zero whenever the dynamic marginal costs on the

links are greater than the equilibrium cost. Figure 4.7(b) depicts the link traffic volumes

of both links against the additional travel costs (introduced by the access constraints)

under the DSO condition. As we do not impose access constraint on the links in the

case, the additional travel costs are zero as shown in Figure 4.7(b). Figure 4.8 depicts the

dynamic externalities for the two paths, i.e. ∂Ψa(t,xa)
∂ha(t)

ha(t) +
∫ τa(t)
t

∂Ψa(s,xa)
∂θa(s)

∂θa(s)
∂xa(s)

ha(s)ds.

The dynamic externality of link 1 is generally larger than that of link 2. This is because

the capacity of link 2 is much larger than link 1. The dynamic externality of link 1 is

about 13 % of its travel cost, while it is about 10 % for link 2.

Next, we impose the following time-varying access constraints on the two links, i.e.

x1(t) ≤ 3.5 sin

(
(t+ 15)π

100

)
units, x2(t) ≤ 4.5 sin

(
(t+ 15)π

100

)
units.

These constraints represent a kind of access control that adjusts its amplitude responding

to the peak hour traffic volume. In this example, the control has a relative small value at

the beginning, and gradually increases as the time approaches the peak hour. After the

peak period, the control then decreases.

Meanwhile, we assume that the environmental capacities of the two links are

κe1 = 10, and κe2 = 20,

respectively. By (4.76), we obtain the correspondingly equivalent restrictions on link traffic

volumes as

x1(t) ≤ 3.15 units, and x2(t) ≤ 7 units.

Figure 4.9(a) shows the travelers’ responses to the additional travel costs imposed on the

two links. Compared with the DSO case, the departure rates of the two links decrease.

The departure time windows become wider for both links under the DSO-AC condition as

compared to the uncontrolled case. These illustrate the shift of travelers’ departure times

to fulfill the access constraints and to maintain the new equilibrium condition under the

access control.

Figure 4.9(b) shows that the traffic volumes on both links under DSO-AC condition

satisfies the constraints. As explained in Section 4.2, the additional travel cost imposed

on link 1 is calculated following the first part of Equation (4.48), to be more specific,
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Figure 4.6: Network connected with parallel links
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Figure 4.7: Inflow profiles, link traffic volumes and dynamic marginal costs of both links

under the DSO condition
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Figure 4.8: The externalities of the two links
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Figure 4.9: Inflow profiles, link traffic volumes, dynamic marginal costs, and additional

costs of both links under the DSO-AC condition
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Figure 4.10: The externalities of the two links
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the integral
∫ τa(t)
t ηa(s)ds in this example. As the environmental capacity constraint is

greater than the access control restriction for link 2, ∀t ∈ [0, T ], no pollution pricing should

be implemented on this link, which is reflected by Figure 4.9(b)4 wherein the additional

travel cost (integral of the corresponding Lagrange multiplier) caused by the environmental

capacity constraint is zero throughout the entire planing horizon. As the access control

is activated, an amount of access price is charged to maintain the traffic volume on the

link. For link 1, the access pricing is first activated because the access control constraint

is smaller than the environmental capacity constraint at the initial stage. In this stage,

no pollution pricing is implemented. After a time, the access control constraint becomes

larger than the environmental capacity constraint. The pollution pricing is then activated.

During the transition period, both access pricing and pollution pricing are activated as

depicted in Figure 4.9(b). To be more specific, we assume the first transition time to be

Ts in this example. For a time instant t1 satisfying t1 < Ts < τ1(t1), the overall access

price is given by

ACP (t1) =

∫ τ1(t1)

t1

(ηac1 (s) + ηap1 (s)) ds =

∫ Ts

t1

ηac1 (s)ds+

∫ τ1(t1)

Ts

ηap1 (s)ds.

The first part is contributed by the Lagrange multiplier associated with access control

constraint while the second part is contributed by the Lagrange multiplier associated with

environmental capacity constraint. Similar reasoning can be applied to the second transi-

tion period. The overall access pricing structure of this link is (by their time sequence):

1. access pricing only,

2. mixture of access pricing and pollution pricing;

3. pollution pricing only;

4. mixture of pollution pricing and access pricing;

5. access pricing only.

The dynamic externalities of the two links under DSO-AC condition are depicted in Figure

4.10. The values of additional travel costs induced by the access constraints vary from 5

% to 19.3 % of the dynamic externalities of the links.

4.8 Conclusions

We study the dynamic marginal cost pricing and the access pricing in this chapter. We de-

rive dynamic system marginal costs for paths and dynamic access costs for controlled links

4In the legend of this figure, “AC” means the access control while “AP” means the air-pollution control.
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for the two point queue models, i.e. the DQM and WLM. The problem is formulated as a

dynamic system optimal traffic assignment problem with access constraints, wherein the

access constraints represent the restrictions on the traffic volumes and/or environmental

constraints (e.g. vehicle emission). We discuss the necessary condition for operating the

transportation system with capacity/environmental constraints optimally. The Lagrange

multipliers associated with the access constraints as derived from the optimality condi-

tions provide the tolls for access pricing. We compare the difference between the dynamic

externalities obtained from the whole link model and the deterministic queuing model.

This difference results in different toll structures for these two models to achieve DSO. To

be more specific, the queue can be constrained to zero in the DQM such that no dynamic

externality will be introduced for marginal cost (usage) pricing. In this case, only access

pricing exists, wherein the tolls are obtained from the access constraints. For the WLM,

the link traffic volume is not zero as there is a positive inflow rate to the link. In this sense,

we cannot constrain the link traffic volume (as queue in the bottleneck model) to zero to

avoid the dynamic marginal cost (usage) pricing and to obtain the access price only. In

other words, when we apply the WLM, the pricing scheme consists of both marginal cost

(usage) pricing and access pricing (if the access constraint is activated) so as to achieve

DSO. Compared with the dynamic marginal cost pricing, the access pricing is found to be

much easier to manipulate.

By defining an environmental traffic capacity that converts the environmental con-

straint into traffic volume restriction, we show that the traffic induced air pollution pricing

can be included as a special case of the access pricing. It is found that the traffic capacity

based access price and traffic induced air pollution price would not become effective simul-

taneously for the DQM case. The boundary to determine the dominant price is defined by

the minimum of the two capacities. However, for the WLM case, we have a circumstance

that both prices would be effective simultaneously.

By far, we have considered the traffic volume (queue) control for traffic networks under

two route choice behavior assumptions, i.e. the DUE and the DSO. The queue control

is important especially under over-saturated conditions. Meanwhile, there are some im-

portant issues we have not yet considered. For instance, during an incident with lane

blockage, congestion forms when the time-varying travel demand exceeds the reduced

roadway capacity. Meanwhile, the growing incident induced lane changes and queue spill-

backs significant interrupt the traffic flows among the adjacent lanes and exacerbate the

incident induced congestion. Usually, traffic information is provided to drivers by ATMIS

through various information media. The information is broadcasted in order to support
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traveler’s decision making which in turn influences their travel choices and consequent-

ly reduce the (total/individual) travel time and improve efficiency of the traffic network.

However, divers behave in a very different way in face of the information provided to them

due to their different degrees of risk aversion and perception errors on travel times, which

in turn affects their routing decisions and the travel demand. Because of these unexpected

events, traffic flows and travel times on the roadways are uncertain. Stochastic models are

urgently needed to predict the traffic flows and travels time under these uncertain demand

and supply conditions. In the forthcoming two chapters, we will develop a macroscopic

stochastic dynamic traffic flow model to describe traffic flows on networks influenced by

both demand and supply uncertainties.
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Chapter 5

Stochastic cell transmission model

(SCTM): a stochastic dynamic

traffic model for freeway corridor

traffic state surveillance

The chapter proposes a first-order macroscopic stochastic dynamic traffic model, namely

the Stochastic Cell Transmission Model (SCTM), to model traffic flow density on freeway

segments with stochastic demand and supply. The SCTM consists of five modes of traf-

fic states on the freeway segment. Each mode is formulated as a discrete time bilinear

stochastic system. A set of probabilistic conditions is proposed to characterize the proba-

bility of occurrence of each mode. The overall effect of the five modes is estimated by the

joint traffic density which is derived from the theory of finite mixture distribution. The

proposed model possesses the Markovian property which allows a practical implementa-

tion. The SCTM captures not only the mean and standard deviation (SD) of density of

the traffic flow, but also the propagation of SD over time and space. The SCTM is tested

with a hypothetical highway corridor simulation and an empirical study. The simulation

results are compared against the means and SDs of traffic densities obtained from the

Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An

approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles,

Southern California, is chosen for the empirical study. Traffic data is obtained from the

Performance Measurement System (PeMS). The stochastic parameters of the SCTM are

calibrated against the flow-density empirical data of I-210W. Both the SCTM and the

MCS of the MCTM are tested. A discussion of the computational efficiency and the ac-
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curacy issues of the two methods is provided based on the empirical results. Both the

numerical simulation results and the empirical results confirm that the SCTM is capable

of accurately estimating the means and SDs of the highway densities as compared to the

MCS.

5.1 Introduction and motivation

Dynamic traffic flow models are one of the key components of dynamic traffic assignment

(DTA) as well as real-time traffic control and management. To model the complex freeway

traffic, many efforts have been made to establish and validate both microscopic (e.g. car-

following) and macroscopic (e.g. hydro-dynamics based) models. However, many of these

models are too computationally demanding for online estimation of traffic states for a

large-scale road network. A comparative study of the four macroscopic link models that

are widely used in DTA is given by Nie and Zhang (2005). It is found in the paper that

these macroscopic link models would produce the same traffic assignment result unless

there is a shockwave.

Among the macroscopic traffic flow models, Lighthill-Whitham-Richards (LWR) model

would be the most popular and most-cited one. In terms of fluid dynamics, the traffic

dynamics of a freeway segment modeled by the LWR model is governed by the following

two equations.

∂ρ(x, t)

∂t
+
∂f(x, t)

∂x
= ν+(x, t)− ν−(x, t),

f(x, t) = F (ρ(x, t)) , (5.1)

where x, t represents position (measured in the direction of traffic flow) and time, respec-

tively. ρ(x, t) and f(x, t) denote the traffic density and the traffic flow (as functions of

location x and time t), respectively. ν±(x, t) are the source terms which may be due to

ramp flows with the plus sign denotes on-ramps and the minus sign denotes off-ramps

(Schönhof and Helbing, 2007). The first equation of (5.1) is the principle of conservation

of vehicles, which is followed from fluid mechanics. The second equation of (5.1) is a

flow-density relationship which is also known as the “fundamental diagram”. There are

several ways to introduce stochastic elements to the LWR modeling framework, e.g.

1. stochastic initial and boundary conditions,

2. stochastic source terms, and

3. stochastic speed-density relationship or fundamental diagram.
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Some dynamic traffic flow models (e.g. the Cell Transmission Model (CTM) proposed

by Daganzo (1994, 1995a), the Modified Cell Transmission Model (MCTM) proposed by

Muñoz et al. (2003), and the Enhanced Lagged CTM proposed by Szeto (2008)), which

discretize the LWR model (or its simplified version) in both time and space, were shown

to be computationally efficient and easy to analyze yet capture many important traffic

phenomena, such as queue build-up and dissipation, backward propagation of congestion

waves, etc. In general, the original LWR model and other first-order macroscopic traf-

fic flow models derived from it, e.g. CTM, have a common assumption of a steady-state

speed-density relationship which does not allow fluctuations around the equilibrium (nom-

inal) fundamental flow-density diagram, or these models adopt a number of deterministic

parameters (e.g. free-flow speed, jam-density, capacity, etc.).

However, research and empirical studies on the fundamental flow-density diagram have

revealed that the fundamental flow-density diagram admits large variations (see Figure

5.1) due to the congestion, driving behavior, etc. (e.g. Kim and Zhang (2008); Wang

et al. (2009); Li et al. (2009) and the references therein). Microscopic and macroscopic

modeling approaches have been proposed to model and interpret this phenomenon. In

the microscopic approach, this phenomenon has been interpreted as the effects of antic-

ipation, strong correlations in the vehicle motion on different lanes, delay in the driving

adaptation or safe time-gap variations (e.g. Ngoduy (2009) and the references therein).

In the macroscopic approach, the phenomenon has been modeled as a diffusion coefficient

to reproduce significant elements of the synchronized traffic flow, the interactions between

several vehicle classes (e.g. trucks and cars), randomness in driving behavior, and adverse

weather conditions, etc., (Chen et al., 2001; Ngoduy, 2009). As mentioned by Geistefeldt

and Brilon (2009), the stochastic features of freeway capacity can be revealed by analyzing

the transition of traffic flow from free flow to congested conditions, which is referred to as

a traffic breakdown. A traffic breakdown indicates that the traffic demand has exceeded

the capacity, the variability of these breakdown volumes indicates the randomness of free-

way capacity. Therefore, “stochastic” traffic flow models, e.g. Boel and Mihaylova (2006);

Kim and Zhang (2008) and Li et al. (2009), were developed to capture random traffic

states of freeways. This can be considered as attempts to introduce the stochasticity into

the speed-density relationship (or fundamental diagram) which corresponds to the third

component of the stochastic LWR modeling discussed earlier.

In fact, the other kind of uncertainty is travel demand variability, which is always

regarded as recurrent uncertainty or disturbance in traffic flow dynamics. Corresponding

to the LWR model, the demand uncertainty would represent the stochastic boundary
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Figure 5.1: A fundamental flow-density diagram of traffic flow

conditions and source terms (this corresponds to the first and second components of the

stochastic LWR modeling discussed earlier). By allowing the stochastic demand input,

the dynamic link model can better capture the possible future uncertainty of the travel

demand which can enhance the application of the model with short and medium term

operation/planning. Therefore, this chapter aims to extend the CTM to estimate the

stochastic freeway traffic states under stochastic fundamental flow-density diagrams as

well as the stochastic travel demand, wherein the deterministic LWR and its extensions

fail.

The CTM proposed by Daganzo (1994, 1995a) defines piecewise affine sending and

receiving functions of traffic flow to describe interactions between adjacent freeway cells

as well as shockwaves. For the purposes of developing surveillance, assignment and control

strategies on freeways, it is also important to explicitly model the randomness of the traffic

state evolution (e.g. Peeta and Zhou (2006), and Friesz et al. (2008) and the references

therein). This randomness can be reflected in the model via some stochastic process of the

parameters governing the sending and receiving functions (Boel and Mihaylova, 2006). To

extend the CTM to deal with the stochastic elements, the simplest approach is to apply

the Monte Carlo Simulation method to the CTM. Based on the switching-mode model

(SMM) (i.e. a simplified version of MCTM distinguishing between the free-flow mode and

the congestion mode) and a sequential Monte Carlo algorithm (i.e. the so-called mixture

Kalman filtering), Sun et al. (2003) proposed a freeway traffic estimator. As a drawback of

the Monte Carlo Simulation (MCS), the model may suffer from high computational cost.

A stochastic compositional model for freeway traffic flows was proposed by Boel and

Mihaylova (2006). This model extends the CTM by defining sending and receiving func-
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tions as random variables, and specifying the dynamics of the average speed in each cell.

In this model, the traffic states are divided into two extreme cases: very light traffic con-

ditions and extremely congested conditions where the sending functions are assumed to

follow Binomial and Gaussian distributions respectively. However, the intermediate cases

between very light traffic and very dense traffic are not well defined. Based on the above

dynamic traffic model, a particle filtering (PF) framework was proposed to estimate both

traffic density and speed (Mihaylova et al., 2007). The implemented PF performs well

with a small number of particles (which can be regarded as samples in the MCS) in the

case of the light traffic condition. However, obtaining a good estimation in the case of the

dense traffic condition can be computational expensive. It is also difficult to character-

ize in general the PF accuracy and complexity because they highly depend on the road

structure and the traffic conditions (Mihaylova et al., 2007).

In this chapter, we develop a stochastic cell transmission model (SCTM) to describe

the macroscopic dynamics of the traffic flow under demand and supply uncertainties. The

SCTM extends the CTM by defining the parameters governing the sending and receiving

functions explicitly as random variables. The stochascities of the sending and receiving

functions are governed by the random parameters of the piecewise flow-density diagram,

i.e. free-flow speed, jam-density, and backward wave speed. In addition, the SCTM also

allows the inflow demand to be stochastic. The stochastic elements in our framework are

described by some wide sense stationary, second-order processes consisting of uncorrelated

random vectors with known mean and variance. These elements can vary with time

depending on the availability of on-line measurements and the locations of the cells.

The proposed model avoids the non-linearities in the original CTM by using the SMM1

with five possible traffic modes (or states) previously proposed by Muñoz et al. (2003), and

Sun et al. (2003). The SMM is a simplified version of the MCTM and will be described

in detail later. Each of the traffic modes (or states) of the SCTM is then redefined as a

discrete time stochastic bilinear system (e.g. Mohler (1973) and Tuan (1985)). Since the

SCTM operates under a stochastic environment, all five modes are possible at each time

step. This will cause a problem of the curses of dimensionality, i.e. the dimension of the

problem increases exponentially with respect to time, if we track all the modes at each

time step. To this end, a set of probabilistic conditions is defined for approximating the

joint traffic density following the theory of finite mixture distribution to avoid the curses

1A simpler version of the SMM was first proposed by Zhang et al. (1996) from a traffic control context.

In that paper, the traffic flow were modeled by different modes without specifying the various types of

waves systematically.
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of dimensionality.

Freeway traffic data is often available in the form of occupancy and volume measure-

ments collected from loop detectors embedded in the pavement. In conjunction with effec-

tive vehicle length data, these measurements can be converted into macroscopic quantities

such as traffic density and speed. Loop detector data sets are often incomplete, or contain

bad samples. However, for the purpose of dynamic traffic assignment (DTA) and ramp

metering control strategies, such as ALINEA (e.g. Gomes and Horowitz (2006)), accurate

traffic OD information and density information are required in order to effectively direct

traffic and regulate on-ramp inflows to the freeway. It is thus essential to reconstruct the

missing traffic measurement data. The SCTM provides us a tool to reconstruct the traffic

data which is adaptive to changing stochastic external conditions (supply and demand un-

certainties) such as: weather and lighting conditions, percentage of trucks, variable speed

limits applied, and variation of travel demand, etc. Numerical and empirical tests involve

comparing the means and standard deviations (SDs) of the dynamic traffic densities as

approximated by the SCTM and the Monte Carlo simulation with the density-based e-

quivalent of CTM. In addition, a numerical test is also conducted to illustrate the feature

of the proposed model in capturing the propagation of the uncertainty through space and

time. All the tests give satisfactory results which prove that the SCTM is computationally

efficient and is suitable for real-time traffic monitoring and control applications.

The outline of the chapter is as follows: Section 5.2 gives a brief review on the MCTM

and the SMM. The SCTM is formulated in Section 5.3. Numerical tests of the SCTM

are conducted in Section 5.4. The empirical study is provided in Section 5.5. Lastly,

conclusions are presented in Section 5.6.

5.2 The MCTM and the SMM

The modified cell transmission model (MCTM) was developed by Muñoz et al. (2003).

This model uses cell densities instead of cell occupancies which permits the CTM to adopt

non-uniform cell lengths and leads to greater flexibility in partitioning freeways. In the

MCTM, the density of cell i evolves according to the conservation of vehicles:

ρi(k + 1) = ρi(k) +
Ts
li

(qi,in(k)− qi,out(k)) , (5.2)

where ρi(k) is the vehicle density of cell i at time index k, qi,in(k) and qi,out(k) are the

total flows (in vehicles per unit time) entering and leaving cell i during the time interval

[kTs, (k + 1)Ts) respectively, Ts is the sampling duration, and li is the length of cell i.

The model parameters, including the free-flow speed vf , the backward congestion wave
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Figure 5.2: A trapezoidal fundamental diagram for the modified cell transmission model

speed wc, the maximum allowable flow QM , the jam density ρJ , and the critical density

ρc, are depicted in the trapezoidal fundamental diagram of Figure 5.2. These parameters

can vary from cell to cell over time.

Following Daganzo (1994, 1995a), qi(k) is determined by taking the minimum of two

quantities:

qi,in(k) = min(Si−1(k), Ri(k)), (5.3)

where

Si−1(k) = min (vf,i−1(k)ρi−1(k), QM,i−1(k)) ,

is the maximum flow supplied by cell i− 1 under the free-flow condition, over the interval

[k, k+1), and

Ri(k) = min (QM,i(k), wc,i(k)(ρJ,i(k)− ρi(k))) ,

is the maximum flow received by cell i under the congested condition over the same time

interval. (5.2) and (5.3) are the density-based equivalents of those described in Daganzo

(1994).

Although the MCTM is much simpler than many other higher order hydrodynamics-

based partial differential models, the nonlinear nature of the flow-density relationship due

to (5.3) still makes the MCTM difficult to be analyzed and used as a basis for the design of

traffic controllers (Muñoz et al., 2003; Gomes et al., 2008). To avoid the nonlinearity, the

switching mode model (SMM) was proposed by Muñoz et al. (2003). The SMM is a hybrid

system (or switched linear system) that switches among different sets of linear difference

equations (representing different traffic states of the freeway), depending on the mainline

boundary data and the congestion status of the cells in a freeway segment. The SMM

formulation avoids the nonlinearity of the CTM at the cost of using the same triangular
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Figure 5.3: Five traffic operational modes for a freeway segment with p cells
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flow-density relationship for all the cells along the whole freeway segment, and introducing

the switching condition based on the following atmost-one-wavefront assumption:

Assumption 5.1. (Muñoz et al., 2003) There is at most one wavefront in the freeway

segment.

Based on the above assumption, five modes are defined in the state space representation

(see Figure 5.3):

1. “Free flow-Free flow (FF)” (Figure 5.3a),

2. “Congestion - Congestion (CC)” (Figure 5.3b),

3. “Congestion - Free flow (CF)” (Figure 5.3c),

4. “Free flow-Congestion 1 (FC1)” (Figure 5.3d),

5. “Free flow - Congestion 2 (FC2)” (Figure 5.3e).

A wavefront is assumed to be located at the boundary between the two cells at time k.

Among these five modes, the FF and CC modes are steady-state modes while the others

are transient modes. The two modes of “Free flow - Congestion” are determined by the

relative magnitudes of the supplied flow of the last uncongested cell upstream of the wave-

front and the receiving flow of the first congested cell downstream of the wave-front. If

the former is smaller, the SMM is in the FC1 mode, otherwise it is in the FC2 mode. In

the SMM, the mode of the model is determined following a set of traffic density based

switching criteria in which only one mode is activated at each time step.

5.3 The stochastic cell transmission model

5.3.1 The overall framework of the SCTM

As previously described, in Muñoz et al. (2003); Sun et al. (2003), the MCTM has been

piecewise-linearized to obtain the SMM with five operational modes for a freeway segment

based on Assumption 5.1. From the traffic control context, the linear structure of the SMM

lends the advantage of simplifying control analysis, control design, and data-estimation

design methods. From the traffic flow simulation context, Assumption 5.1 simplifies the

traffic state of the freeway segment which increases the computational efficiency. We follow

the concept of operational modes used in the SMM. However, due to the stochastic supply

and demand, the wavefront is uncertain, which implies that within one subsystem all the

five modes are possible (hence five probabilistic events) but with different probabilities
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Figure 5.4: The overall framework of the stochastic cell transmission model

of occurrence. We denote these probabilities as: PFF (k) , PCC (k) , PCF (k) , PFC1 (k) ,

and PFC2 (k), where Ps(k) is the probability of mode s ∈ {FF, CC, CF, FC1, FC2} to

occur at time index k. To this end, we update the dynamics of the SCTM as depicted in

Figure 5.4, where the overall effect of the five modes is defined as the joint (or “actual”)

traffic density. The probabilities of occurrence in conjunction with the density vectors

of the five modes are used to define the probabilistic density function (PDF) of the joint

traffic density vector ρ̄(k), which is approximated by a finite mixture approximation of the

probabilistic density functions of the five modes. Its mean E (ρ̄(k) |θ(k)) and covariance

matrix V ar (ρ̄(k) |θ(k)) can be obtained by the theory of finite mixture distribution which

will be explained in Section 5.3.3, where θ(k) = {θs(k)}, θs(k) = (ρs(k), Ps(k)), and ρs(k)

denotes the vector of cell densities of mode s.

To sum up, the SCTM accepts the random inflows (uncertain demand) as well as

random parameters of the fundamental flow-density diagram (uncertain supply functions)

with known means and variances of the freeway segment as exogenous inputs, and then

calculates the means and variances of the joint traffic densities, outflow of the freeway

segment, and probabilities of its operational modes. With respect to the above framework,

five key issues are needed to be addressed. The fist issue is to define the demand and

supply uncertainties. The second issue is to define the probabilities of occurrence of the
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five operational modes and to approximate the PDF of the joint traffic density vector by

a finite mixture distribution of the PDFs of the five operational modes. The third issue is

to model the dynamics of the five operational modes. The means and auto-correlations of

the dynamics of the five operational modes are needed to be evaluated. Finally, we need

to define the implementation of the SCTM for traffic state estimation.

5.3.2 Formulation of demand and supply uncertainties

From the analysis in the previous subsection, to evaluate the stochastic traffic dynamics, we

need to define the probabilities and the traffic flow dynamics for the five modes. To begin

with, let’s first specify the demand and supply uncertainties considered in this chapter.

Consider a freeway segment consisting of p cells and one on-ramp and one off-ramp2 as

depicted in Figure 5.3. We denote the traffic state at time index k ≥ 0 as the traffic density

ρ (k) = (ρ1 (k) , . . . , ρp (k))
T , and u (k) = (qu (k) , rb (k) , fe (k) , qd (k))

T is comprised of

system inflow and outflow at time index k. ri (k) and fj (k) are the measured on-ramp and

off-ramp flows entering cell i and leaving cell j at time index k respectively. qu (k) and

qd (k) are respectively the (measured) upstream and downstream boundary flows at time

index k, and ρu(k), and ρd(k) are densities defined correspondingly. To save notations,

the notations for the five parameters in Figure 5.2 are also used for representing the

corresponding five vectors in the SCTM when there is no ambiguity. To be more specific,

vf = (vf,1, . . . , vf,p)
T is the vector of free-flow speeds, ρc = (ρc,1, . . . , ρc,p)

T is the vector of

critical densities, wc = (wc,1, . . . , wc,p)
T is the vector of backward congestion wave speeds,

ρJ = (ρJ,1, . . . , ρJ,p)
T is the vector of jam densities, and QM = (QM,1, . . . , QM,p)

T is the

vector of maximum flow rates. According to the triangular fundamental diagram of a given

cell, only three among the five system parameters are independent variables. We denote

an independent set of the system parameters in a compact form as Γ = (vf , wc, QM )T .

In the real world, the system parameter vector Γ admits uncertainties. We assume that

the system parameter vector is perturbed by certain noise sequence as follows:

Γ(k) = Γ0 + ξΓ(k), (5.4)

where Γ(k) is the system parameter vector for time k, Γ0 is the nominal value of the system

parameters, and ξΓ(k) is the noise vector for system parameters at time index k. Note

2In this chapter, we do not consider the dynamics of the on-/off- ramps, i.e. we do not consider the

merge and diverge operations. The on-/off- ramp flows considered here are the measured on-/off- ramp

flows.

126



that {ξΓ(k)}k∈N is a second-order wide-sense stationary (WSS) process3 to be specified

later. Also, we assume the travel demand to be a random vector in the form

ud(k) = u0(k) + ξu(k), (5.5)

where ud(k) = (qu(k), rb(k))
T , u0(k) is the nominal calibrated travel demand vector for

time index k, and ξu(k) is the demand noise at time index k. {ξu(k)}k∈N is a second-order

WSS process to be specified later. Without loss of generality, all the noise sequences and

initial conditions are assumed to follow Gaussian (white-noise) processes.

For the demand side, we assume the noise sequence {ξu(k)}k∈N in the control input

to be a zero-mean Gaussian random process:

E(ξu(k)) = 0, E
(
ξu(k)ξ

T
u (t)

)
=

 Ωu, if k = t;

0, otherwise,
(5.6)

where k and t are time indices. Similarly, for the supply side we assume that the noise

ξΓ(k) and the initial state ρ(0) of the system satisfy the following conditions:

1. The noise ξΓ(k) can be described by a zero-mean Gaussian random process. For any

k ≥ 0 and t ≥ 0, the following equations are satisfied:

E(ξΓ(k)) = 0, E
(
ξΓ(k)

(
ξΓ(t)

)T)
=

 ΩΓ, if k = t;

0, otherwise.
(5.7)

We also assume that, the components of the vector ξΓ(k) are mutually independent

for any k ≥ 0, or the matrix ΩΓ is a diagonal semi-positive definite matrix.

2. The components of the initial traffic density vector ρ(0) are mutually independent

and normally distributed.

3. ρ(0) and ξΓ(k) are uncorrelated to each other for any k ∈ N .

Remark 5.1. As mentioned before, only three among the five system parameters are

independent. For illustration purposes, consider cell i with a triangular flow-density rela-

tionship and let (vf,i, wc,i, QM,i) be the independent set of the parameters for cell i. ρc,i

and ρJ,i can then be determined by vf,i, wc,i, and QM,i. Let xi = (vf,i, wc,i, QM,i)
T , then

ρc,i = g(xi) =
QM,i

vf,i
. Applying Taylor expansion to g(xi) at x0 yields

ρc,i = g(xi) = g(x0) + (xi − x0)T∇g(x0) +
1

2
(xi − x0)TH(x0)(xi − x0) + · · · ,

3A random process x(k) is said to be wide-sense stationary (WSS) if E(x(k)) = c and E
(
x(l)xT (k)

)
=

Ωx(k − l) = Ωx(τ), where c is a constant vector and Ωx(·) is the correlation matrix of the process, and

τ = k − l is the time lag.
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where ∇g(x0) is the gradient of g at x0 and H(x0) is the corresponding Hessian matrix.

Take

g(xi) ≈ g(x0) + (xi − x0)T∇g(x0) +
1

2
(xi − x0)TH(x0)(xi − x0). (5.8)

Since xi is a vector with its components mutually independent and its mean and variance

are given in the above assumptions, we can approximate the mean of ρc,i by taking expec-

tation on both sides of (5.8), and the variance can be obtained respectively. Notice that if

the first-order approximation is used in (5.8), ρc,i is normally distributed if we assume xi is

governed by a normal distribution. Similarly, we can approximate the mean and variance

for ρJ,i =
QM,i

wc,i
+

QM,i

vf,i
.

In what follows, we denote the vector of system parameters as

Φ(k) = col (vf (k), wc(k), QM (k), ρc(k), ρJ(k)) .

5.3.3 Dynamic process of the SCTM and probabilistic conditions

As mentioned, we need to specify the probabilities of the five modes at each time step to

evaluate the stochastic traffic flow. The probabilities of the FF, and CC modes to occur

can be determined as follows: FF mode:

PFF (k) , Pr
(
ρu(k) < ρc,1(k)

∩
ρd(k) < ρc,p(k)

)
, and (5.9)

CC mode:

PCC(k) , Pr
(
ρu(k) ≥ ρc,1(k)

∩
ρd(k) ≥ ρc,p(k)

)
. (5.10)

CF mode: As mentioned before, the shockwave exists only in the three transient modes:

CF, FC1, and FC2. Due to the stochastic environment, the location of wavefront is

uncertain. Thus we define the following probability to capture the probability of the CF

mode to occur with the wavefront located at a specific location:

PCF,L(k) , Pr

 (ρu(k) ≥ ρc,1(k))
∩(∩L−1

i=2 ρ̄i(k) ≥ ρc,i(k)
)

∩(∩p−1
j=L ρ̄j(k) < ρc,j(k)

)∩
(ρd(k) < ρc,p(k))

 , (5.11)

where PCF,L(k) denotes the probability of the CF mode occurring at time step k with the

wavefront located at the boundary between cells L − 1 and L. To this end, we have the

probability of the CF mode to occur for the whole freeway segment:

PCF (k) =

p∑
L=2

PCF,L(k). (5.12)
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Let PFC(k) be the probability of the FC mode occurring at time k. Then,

PFC(k) , 1− (PFF (k) + PCC(k) + PCF (k)) . (5.13)

Assume the probability that the wavefront is located at the boundary between cells

L− 1 and L, and is moving downstream (event D) as

PD|FC,L(k) , Pr


(ρu(k) < ρc,1(k))

∩(∩L−1
i=2 ρ̄i(k) < ρc,i(k)

)
∩(∩p−1

j=L ρ̄j(k) ≥ ρc,j(k)
)∩

(ρd(k) ≥ ρc,p(k))∩
(vf,L−1(k)ρ̄L−1(k) ≤ wL(k) (ρJ,L(k)− ρ̄L(k)))

 . (5.14)

The notation FC1 is now restricted as the whole freeway segment is in the FC mode and

the wavefront is moving downstream, and FC2 is similarly defined. In this sense, we define

PFC1(k) , PD|FC(k) =

p∑
L=2

PD|FC,L(k), and (5.15)

PFC2(k) , PFC(k)− PFC,1(k). (5.16)

With the above definitions of probabilities of occurrence of the five operational modes,

we need to address the problem that how to estimate (or approximate) the overall effect of

the five possible operational modes (or the joint traffic density) given their PDFs. In this

chapter, we provide a finite mixture distribution approach to solve the above question, i.e.

the overall effect of the five possible operational modes is estimated (or approximated) by

a finite sum of known PDFs. The probability density function (PDF) of the joint traffic

density f (ρ̄(k) |θ(k)) can be approximated by the following finite mixture distribution

(Frühwirth-Schnatter, 2006):

f (ρ̄(k) |θ(k)) =
∑
s

Ps(k)f (ρ̄(k) |θs(k)) , (5.17)

where f is the PDF of the joint traffic density ρ̄(k), the parameter set is defined as∑
s Ps(k) = 1, {θ(k)} = {θs(k)}, θs(k) = (Ps(k), ρs(k)), ρs(k) denotes the vector of cell

densities of mode s at time k, and Ps(k) is defined by (5.9)-(5.16).

Under the mixture model (5.17), the expectation E (ρ̄(k) |θ(k)) is obviously given by

E (ρ̄(k)|θ(k)) =
∑
s

Ps(k)E (ρ̄(k)|θs(k)) =
∑
s

Ps(k)E (ρs(k)) . (5.18)

Let µs(k) = E (ρs(k)) and µ(k) = E (ρ̄(k) |θ(k)). Then we have µ(k) =
∑

s Ps(k)µs(k). To

evaluate the covariance matrix V ar (ρ̄(k)|θ(k)), we define the covariance matrix of ρs(k)

as

ψs(k) = E
(
(ρs(k)− µs(k)) (ρs(k)− µs(k))T

)
.
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Then the covariance matrix V ar (ρ̄(k)|θ(k)) can be evaluated as:

V ar (ρ̄(k) |θ(k)) =
∑
s

Ps(k)
(
ψs(k) + µs(k)µ

T
s (k)

)
− µ(k)µT (k). (5.19)

If the mean and covariance matrix are defined, the “joint traffic density” is well defined for

a second-order random process. As the probabilities of the five modes are already defined,

we need to obtain the mean of the cell traffic density vector µs(k) and the covariance

matrix ψs(k) for each mode s at each time step k.

To end this section, we would like to give some comments on the wavefront concept,

at-most one wavefront assumption, and their relations with the SCTM. To utilize the

SMM, we need to ensure that the traffic dynamics of a freeway segment can be accurately

described by the five modes. However, Assumption 5.1 cannot be fulfilled for general

freeway segments except some special cases. We emphasize here that:

First, the current framework does not rely on Assumption 5.1. This assumption is

only used to define the operational modes for the SCTM. We will provide a simple

solution to the case that there are several uncertain wavefronts on a freeway corridor

in Chapter 6.

Second, the uncertain wavefront concept is converted into several probabilistic op-

erational modes in the current framework. The uncertain wavefront is described by

the probabilities of occurrence of these operational modes.

5.3.4 The SCTM as a class of stochastic bilinear system

To allow the analysis to be more systematic and compact, we define the density update

equations of each mode in the form of a dynamic system. Due to the multiplicative effect

of the system parameters in the SCTM, such as vf , wc, and ρJ , our system is no longer

a linear system. Nevertheless, the SCTM can be reformulated as a class of discrete time

stochastic bilinear system in the form of (5.20) below. However, instead of specifying the

system parameter vector Φ(k) of the freeway segment as internal dynamics (or system

matrices) as what has been done in Muñoz et al. (2003), we take the system parameter

vector as an exogenous input to the system together with the inflow vector u(k).

ρ(k + 1) =

(
A0 +

p∑
i=1

Aiωi(k)

)
ρ(k) +

(
B0 +

p∑
i=1

Biωi(k)

)
λ(k) +Bu(k), (5.20)

whereB, Ai, Bi, i = 0, 1, · · · , p are constant matrices to be defined later, ωi(k), ∀k ∈ N are

p second-order processes consisting of mutually uncorrelated real-valued random variables.

For fixed k ∈ N , the random variables ω1(k), . . . , ωp(k) are not necessarily independent.
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The sequence of random vectors λ(k), ∀k ∈ N in (5.20) is viewed as a disturbance signal.

The disturbance of the system equations in (5.20) consists of two parts, B0λ(k) and∑p
i=1Biωi(k)λ(k). We call the first term the drift component and the second the diffusion

component of the disturbance. The presence of both types of multiplicative disturbances in

(5.20) (i.e., the drift and the diffusion terms) is an essential feature of our SCTM. As to be

shown later, it allows for parameter excitations in both the state and the disturbance input

matrices. The actual formulation of (5.20) under each mode of the SCTM is presented

next.

In the FF mode, we set ωi(k) to be the free flow speed vf,i(k) in (5.20), and the state

equation can be defined as:

ρ(k + 1) =

(
I +

p∑
i=1

Aivf,i(k)

)
ρ(k) +Bu(k), (5.21)

where

A1 =



−Ts
l1

0 · · · 0

Ts
l2

0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


p×p

, Ai =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · −Ts
li
· · · 0

0 · · · Ts
li+1

· · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


p×p

, ∀i ∈ Z ∩ [2, p− 1] ,

Ap =


0 · · · 0
...

. . .
...

0 · · · −Ts
lp


p×p

, B =



Ts
l1

0 0 0
...

...
...

...

0 Ts
lb

0 0
...

...
...

...

0 0 − Ts
le+1

0
...

...
...

...

0 0 0 0


p×4

.

Equation (6.1) is a special case of (5.20) with Bi be a null matrix and λ(k) be a null vector.

Notice that in (6.1), the free-flow speed vf,i(k) is no longer the internal dynamics but the

exogenous noise sequence. Similarly, we can define the other four modes as follows.

In the CC mode, we define ωi(k) = wc,i(k) and λ(k) = (ρJ,1(k), . . . , ρJ,p(k))
T . The

state equation is then

ρ(k + 1) =

(
I +

p∑
i=1

Aiwc,i(k)

)
ρ(k) +

p∑
i=1

Biwc,i(k)λ(k) +Bu(k), (5.22)

131



where

A1 =


−Ts
l1

0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 0 0


p×p

, Ai =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Ts
li−1

· · · 0

0 · · · −Ts
li
· · · 0

...
. . .

...
. . .

...

0 0 0 0 0


p×p

∀i ∈ Z ∩ [2, p] ,

B =



0 0 0 0
...

...
...

...

0 Ts
lb−1

0 0
...

...
...

...

0 0 −Ts
le

0
...

...
...

...

0 0 0 −Ts
lp


p×4

, Bi = −Ai, ∀i ∈ Z ∩ [1, p] .

In the definition of the three transient modes, we are concerned with the case that the

wavefront is located at the boundary between cells L − 1 and L at time k. In the CF

mode, we can define ωi(k) = wc,i(k), ∀i ∈ Z ∩ [1, L− 1], ωj(k) = vf,j(k),∀j ∈ Z ∩ [L, p]

and the vector λ(k) = (ρJ,1(k), · · · , ρJ,L−1(k), QM,L(k), 0, · · · , 0)T . The state equation is

then

ρ(k + 1) =

(
I +

p∑
i=1

Aiωi(k)

)
ρ(k) +

(
B0 +

p∑
i=1

Biωi(k)

)
λ(k) +Bu(k), (5.23)

where

A1 =


−Ts
l1

0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 0 0


p×p

, Ai =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Ts
li−1

· · · 0

0 · · · −Ts
li
· · · 0

...
. . .

...
. . .

...

0 0 0 0 0


p×p

,

∀i ∈ Z ∩ [2, L− 1] ,
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Aj =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · −Ts
lj
· · · 0

0 · · · Ts
lj+1

· · · 0
...

. . .
...

. . .
...

0 0 0 0 0


p×p

, ∀j ∈ Z ∩ [L, p− 1] ,

Ap =


0 · · · 0
...

. . .
...

0 · · · −Ts
lp


p×p

, B0 =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · − Ts
lL−1

· · · 0

0 · · · Ts
lL

· · · 0
...

. . .
...

. . .
...

0 0 0 0 0


p×p

,

Bi =

 −Ai, ∀i ∈ Z ∩ [1, L− 1]

0, ∀j ∈ Z ∩ [L, p]
, B =



0 0 0 0
...

...
...

...

0 Ts
lb−1

0 0
...

...
...

...

0 0 − Ts
le+1

0
...

...
...

...

0 0 0 0


p×4

.

In the FC1 mode, we define ωi(k) = vf,i(k), ∀i ∈ Z ∩ [1, L− 1], ωj(k) = wc,j+1(k),

∀j ∈ Z ∩ [L, p− 1] and λ(k) = (ρJ,L+1(k), · · · , ρJ,p)T . The state equation is then

ρ(k + 1) =

(
I +

p−1∑
i=1

Aiωi(k)

)
ρ(k) +

p∑
j=L+1

Bjwc,j(k)λ(k) +Bu(k), (5.24)

where

A1 =



−Ts
l1

0 · · · 0

Ts
l2

0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


p×p

Ai =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · −Ts
li
· · · 0

0 · · · Ts
li+1

· · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


p×p

,

∀i ∈ Z ∩ [2, L− 1] ,
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Aj =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Ts
lj−1

· · · 0

0 · · · −Ts
lj
· · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · 0


p×p

, ∀j ∈ Z ∩ [L, p− 1] ,

BL+1 =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

−Ts
lL
· · · 0 · · · 0

Ts
lL+1

· · · 0 · · · 0
...

. . .
...

. . .
...

0 0 0 0 0


p×(p−L)

, Bj =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · − Ts
lj−1

· · · 0

0 · · · Ts
lj

· · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


p×(p−L)

,

∀j ∈ Z ∩ [L+ 2, p] , B =



Ts
l1

0 0 0
...

...
...

...

0 Ts
lb

0 0
...

...
...

...

0 0 −Ts
le

0
...

...
...

...

0 0 0 −Ts
lp


p×4

.

In the FC2 mode, we define ωi(k) = vf,i(k), ∀i ∈ Z ∩ [1, L− 2], ωj(k) = wc,j+1(k),

∀j ∈ Z ∩ [L− 1, p− 1] and λ(k) = (ρJ,L(k), · · · , ρJ,p(k))T . The state equation is

ρ(k + 1) =

(
I +

p−1∑
i=1

Aiωi(k)

)
ρ(k) +

p∑
j=L

Bjwc,j(k)λ(k) +Bu(k), (5.25)

where

A1 =



−Ts
l1

0 · · · 0

Ts
l2

0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0


p×p

, Ai =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · −Ts
li
· · · 0

0 · · · Ts
li+1

· · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


p×p

,

∀i ∈ Z ∩ [2, L− 2] ,
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Aj =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · Ts
lj−1

· · · 0

0 · · · −Ts
lj
· · · 0

...
. . .

...
. . .

...

0 · · · 0 · · · 0


p×p

, ∀j ∈ [L− 1, p− 1] ,

BL =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

− Ts
lL−1

· · · 0 · · · 0

Ts
lL

· · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


p×(p−L+1)

, Bj =



0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · − Ts
lj−1

· · · 0

0 · · · Ts
lj

· · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0


p×(p−L+1)

,

∀j ∈ Z ∩ [L+ 1, p] , B =



Ts
l1

0 0 0
...

...
...

...

0 Ts
lb

0 0
...

...
...

...

0 0 −Ts
le

0
...

...
...

...

0 0 0 −Ts
lp


p×4

.

Notice that L is an arbitrary integer in [2, p]. The case that the wavefront is located

at other places can be similarly defined by changing the value of L. Thus far, we have

represented all the five modes as discrete time bilinear stochastic systems. Since these

systems are influenced by second-order random processes, we need to find the means and

variance matrices to characterize the traffic density vectors. Each of these state equation

systems is associated with each mode of the SCTM as shown in Figure 5.4. In order to

obtain an analytical approximation of the mean and variance of the mixture distribution of

the traffic density at each time step, it is necessary to investigate the statistical properties

of the cell density under each mode which will be discussed next.

5.3.5 Mean and auto-correlation of stochastic traffic densities

The dynamics of ρ(k) can be represented by a discrete time bilinear stochastic system of the

form (5.20), which can be further simplified into the following Markovian representation
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(Tuan, 1985):

ρ(k + 1) = (A0 +W (k)) ρ(k) +D(k)λ(k) +Bu(k), (5.26)

where the following notations are adopted:

W (k) =

p∑
i=1

Aiωi(k), D(k) = B0 +

p∑
i=1

Biωi(k),

where p represents the number of cells within one SCTM subsystem. Equation (5.26)

exhibits the Markovian property. Thus we can represent the state vector as:

ρ(k) = Φw(k, 0)ρ (0) +

k−1∑
t=0

Φw(k, t+ 1) (Bu(t) +D(t)λ(t)) , (5.27)

for every k ≥ 1, with Φw(k, k) = I and Φw(τ, t) = [A0 +W (τ − 1)] . . . [A0 +W (t)] for

τ > t. Consider the state sequence generated by (5.26), and define the mean and the

auto-correlation matrix for each k ≥ 0:

φ(k) = E{ρ(k)}, Ω(k) = E{ρ(k)ρT (k)}.

The existence of φ(k) and Ω(k) for each k ≥ 0 can then be guaranteed by the independence

and second-order assumptions. Therefore, by Equation (5.27) we obtain the mean as:

φ(k) = E (Φw(k, 0))φ (0)

+
k−1∑
t=0

E (Φw(k, t+ 1)) (BE (u(t)) + E (D(t))E (λ(t))) , ∀k ≥ 1, (5.28)

where E (Φw(k, 0)) = [A0 +
∑p

i=1E (ωi(0))Ai] . . . [A0 +
∑p

i=1E (ωi(k − 1))Ai], and the

term E (Φw(k, t+ 1)) can be similarly defined. Regarding the mixed terms involving both

disturbances and states, for each k ≥ 0, by using the independent assumptions, we have:

G1(k) = E
(
[A0 +W (k)]φ(k)uT (k)BT

)
=

[
A0φ(k) (E (u(k)))T +

p∑
i=1

Aiφ(k) (E (ωi(k)u(k)))
T

]
BT , (5.29)

G2(k) = E
(
D(k)λ(k)uT (k)BT

)
=

[
B0 +

p∑
i=1

E (ωi(k))Bi

]
(E (λ(k))) (E (u(k)))T BT , (5.30)

G3(k) = E
(
[A0 +W (k)]φ(k)λT (k)DT (k)

)
=

[
A0φ(k) +

p∑
i=1

E (ωi(k))Aiφ(k)

]
(E (λ(k)))T ·

[
B0 +

p∑
i=1

E (ωi(k))Bi

]T
+

p∑
i=1

γiAiφ(k) (E (λ(k)))T BT
i , (5.31)

136



where γi = E (ωi(k)ωi(k))−(E (ωi(k)))
2. Furthermore, let G(k) = G1(k)+G2(k)+G3(k),

and

V (k) = G(k) +GT (k) +B
(
E
(
u(k)uT (k)

))
BT

+

[
B0 +

p∑
i=1

E (ωi(k))Bi

] (
E
(
λ(k)λT (k)

)) [
B0 +

p∑
i=1

E (ωi(k))Bi

]T

+

p∑
i=1

γiBi
(
E
(
λ(k)λT (k)

))
BT
i .

It can be verified by the independent argument that

Ω(k + 1) = E
(
[A0 +W (k)] ρ(k)ρT (k) [A0 +W (k)]T

)
+ V (k),

=

[
A0 +

p∑
i=1

E (ωi(k))Ai

]
Ω(k)

[
A0 +

p∑
i=1

E (ωi(k))Ai

]T

+

p∑
i=1

γiAiΩ(k)A
T
i + V (k), ∀k ≥ 0, (5.32)

If we define F0 = [A0 +
∑p

i=1E (ωi(k))Ai], and Fi =
√
γiAi, then (5.32) is equivalent to

Ω(k + 1) =

p∑
i=0

FiΩ(k)F
T
i + V (k), ∀k ≥ 0. (5.33)

The solution of (5.33) can be obtained by induction as:

Ω(k) = Lk[Ω(0)] +

k−1∑
t=0

Lk−t−1[V (t)], ∀k ≥ 1, (5.34)

where the operator L[.] is defined as

L[X] =

p∑
i=0

FiXF
T
i , and L

t[X] =

p∑
it=0

. . .

p∑
i1=0

Fit . . . Fi1XF
T
it . . . F

T
i1 . (5.35)

To illustrate the mean and variance update of traffic density by the SCTM, we provide

a small analytical numerical example in the Appendix of the chapter.

5.3.6 The one wavefront assumption, an interconnected SCTM approach

to model a freeway corridor, and its implementation

The definitions of probabilities and the corresponding state space equations of the five

modes developed in Section 5.3.3 and 5.3.4 are somehow complicated. Nevertheless, even

if we use only the five modes, it is hard for us to cover the whole probabilistic space

by defining the probabilities of different modes in terms of equations (5.9)-(5.12). To

render the overall probability equal to 1, we define the probability of FC mode by (5.13).

This definition may over-estimate the probability of the FC mode to occur, which in turn
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renders the traffic state estimation inaccurate for the transient modes. Also, as pointed out

in Section 5.3.3, the uncertain multiple wavefronts case is not perfectly addressed due to

the complexity of the transient modes and the corresponding definitions of probabilities

of occurrence. Remind that the uncertain wavefront concept has been converted into

probabilistic operational modes of the freeway. To handle the above problems, we need

to ensure that the traffic dynamics of a freeway segment can be accurately described by

the five modes and the probabilities of occurrence of the five modes are properly defined.

A simple solution is to divide a freeway corridor into several short segments wherein

each of these segments is modeled by one SCTM subsystem consisting of two cells. The

traffic state of each subsystem then can be covered by the five modes (i.e., the at-most

one wavefront assumption is satisfied under the deterministic environment). The freeway

corridor is then modeled by cascading these SCTM subsystems. We will discuss this in

detail in the next chapter. In the empirical study of this chapter, we will compare the

performances of the “simplified” SCTM proposed in this chapter and the interconnected

SCTM subsystems approach to be introduced in the next chapter.

Figure 5.5 depicts a flow chart for implementation of the SCTM for freeway traffic

state estimation. As mentioned previously in the section, we first divide a freeway corridor

into several segments with each of the segments modeled by one SCTM subsystem with

appropriate cells4. Then a calibration of the model is conducted, which gives the statistics

of the boundary variables5 with respect to time. After initializing the SCTM, we are ready

to run the simulation by specifying the statistics of boundary variables as inputs to the

SCTM.

5.4 Numerical example

To demonstrate the proposed method, we conduct the following numerical example. Con-

sider a freeway segment consisting of four cells with neither on- nor off-ramp as depicted

in Figure 5.6. We assume that the first three cells of this freeway segment are of 4 lanes

and the last cell consists of only 3 lanes. The cell length is set to be 100 meters, and the

time interval is T=5 seconds.

It is assumed that the nominal flow-density relationships of all the four cells are char-

acterized by triangular fundamental diagrams. The nominal fundamental diagrams of

the first three cells and the last cell are shown in Figures 5.7(a) and 5.7(b), respective-

4Please refer to Figure 6.3(b) of Chapter 6.
5Please refer to Section 5.3.2 of this chapter and Section 6.3.1 of Chapter 6 for the definition of boundary

variables.
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Figure 5.5: The flow chart for implementation of the SCTM for a freeway segment

Cell 1 Cell 2 Cell 3 Cell 4

Figure 5.6: Freeway segment consisting of 4 cells

ly. To illustrate the properties of the SCTM, the noise vector of the supply parameters

{ξP (k), k ∈ N} is as follows:

ξP (k) =


vf (k)

wc(k)

ρJ(k)

 =


vf

wc

ρJ

+


ξ1(k)

ξ2(k)

ξ3(k)

 , (5.36)

where {ξi(k)}, i = 1, 2, 3 are mutually independent Normal distributed random sequences,

and vf (k), wc(k) and ρJ(k) are respectively the vectors of the free-flow speed, the back-

ward wave speed, and the jam density of all cells at time index k. The standard deviation

of the uncertainties are assumed to be 10 percent of their nominal values. The sequences

of QM (k) and ρc(k) can then be obtained by using the method given in Remark 5.1.

To test the build-up of congestion, we consider the following deterministic inflow profile:

qu(k) =

 3000 vph, k ≤ 50 time increment;

8000 vph, k ≥ 50 time increment.
(5.37)

This inflow profile yields two steady states: the first one is a free-flow state with ρ=50
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Figure 5.7: The nominal fundamental diagrams

veh/km for all four cells while the second one is a congestion state with ρ=300 veh/km

for the first three cells and ρ=100 veh/km for the last cell.

By applying the SCTM to this example, the means and SDs of the traffic densities on

all four cells over time can be obtained as shown in Figure 5.8. This figure plots the mean

of the traffic density and the values of mean density plus and minus the SD. From the

result, the traffic states during the low demand period (i.e., time interval [0, 50T ]) in the

first three cells have relatively low variability. However, during the same time interval,

there is a high variability of the traffic density in cell 4. In fact, the SD in this time

interval increases as the flow moves to downstream cells. The gradual increase in SD and

the high SD in cell 4 during this early period is due to the accumulation effect of the supply

uncertainty. The downstream cells will therefore experience a higher level of uncertainties

compared to the upstream cells. For the period with a higher probability of the occurrence

of the congestion mode (i.e. k > 50), the variabilities of the traffic states, in the contrary,

do not seem to increase as the flow moves downstream. On the other hand, in this case we

can observe the propagation of the uncertainty in the reverse direction of the traffic flow.

Under the congested condition, the bottleneck cell (cell 4) has a high probability to be

congested due to the significant undersupply condition. Thus, the stochastic element of

the backward wave becomes influential in which the uncertainty also propagates backward

with the end of the queue (or backward wave).

For comparison, the Monte Carlo Simulation (MCS) with 5000 trials is also applied to

the modified cell transmission model. The results in terms of the means and SDs of traffic

densities are shown in Figure 5.9. By comparing Figures 5.8 and 5.9, we observe that the

two methods provide similar results in terms of the mean traffic densities. However, the

SDs of the densities in cells 1-3 for k > 50 as computed by the SCTM are significantly
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Figure 5.8: Traffic density generated by the SCTM for the test case

lower than those calculated from the MCS. The SDs from the MCS have smooth trends

and transition particularly between the two steady states of the traffic condition (at k

= 50). On the contrary, the SDs from the SCTM particularly in the last cell increases

suddenly at the transition state.

Nevertheless, the trends of the SDs and means of the traffic densities in both cases are

similar. It is not clear why the SD from the SCTM is lower than that from the MCS. How-

ever, it is noteworthy that the MCS is subject to the sampling error, which normally over-

approximates the variance (or similarly SD). Various techniques for variance-reduction

sampling have thus been proposed in the literature. On the other hand, the SCTM does

not face this random sampling error. For the computational time, the SCTM only requires

around 1 percent of the time taken by the MCS. In addition, the computer memory used

by the SCTM is significantly less than that of the MCS.

The second test is set up to illustrate the propagation of SD over time and space. In

this test, the same freeway corridor as shown in Figure 5.6 is adopted but we assume that

only the first cell admits uncertainties (and other three downstream cells have no supply

uncertainties). The same inflow demand pattern as in (5.37) is adopted. The results are

shown in Figure 5.10. Despite the deterministic inflow pattern and supply characteristics of

the last three cells, we can observe some uncertainties in the traffic densities in these three

cells during the free-flow and transition states. When the traffic is in the free-flow steady

state (i.e., flow moving downstream), the SD of traffic density in the first cell propagates
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Figure 5.9: Traffic density generated by the Monte Carlo Simulation of MCTM
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Figure 5.10: Propagation of SD of the traffic density

142



downstream to the following three cells. The traffic densities during the transition period

between the free-flow and congested states also have certain levels of uncertainties (SD).

This is due to the influence of the supply variability of the first cell which determines the

time period that the downstream cells will become congested. However, once the freeway

enters the state with a high probability of having congestion, the queue from the last cell

builds up, spills backward and causes the last three cells to be in the definite congested

state. The SDs of the last three cells during the congestion state are zero since there is

no supply uncertainty and the cells are fully occupied by the vehicles.

5.5 An empirical study

In this section, we will validate the SCTM by two scenarios with empirical traffic data.

To compare their performance, two SCTM approaches, i.e. the SCTM based on the one

wavefront assumption proposed in this chapter (which will be denoted as the “simpli-

fied” SCTM in this test) and the interconnected SCTM subsystems approach proposed in

Chapter 6, are utilized in this empirical study.

The first scenario is to test the proposed model against the supply uncertainty, i.e.

only uncertain supply functions are considered. In this case, the demand pattern

is chosen from a particular day. The utilized traffic flow data of 24 hours were

collected on April 22, 2008 from the Performance measurement system (PeMS)6. In

this study, we will compare the performance of the SCTM against those obtained

from the MCTM and MCS of the MCTM to validate the proposed model.

The second scenario is to validate the SCTM against both demand and supply

uncertainties. In this case, the demand pattern is obtained from a statistical analysis

of the historical data. Traffic flow data of 7 hours (4:00 am-11:00 am) collected on

Tuesday, Wednesday and Thursday of April 2008 and April 2009 from the PeMS is

utilized in this test.

5.5.1 Test site description and model parameters calibration

The region of interest is a section of Interstate 210 West, approximately two miles in

length, as shown in Figure 5.11. This section, located in Los Angeles, stretches from S

6The Freeway Performance Measurement System (PeMS: https://pems.eecs.berkeley.edu/) is conducted

by the Department of Electrical Engineering and Computer Sciences at the University of California, at

Berkeley, with the cooperation of the California Department of Transportation, California Partners for

Advanced Transit and Highways, and Berkeley Transportation Systems.
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Figure 5.11: Map of the test site (Source: Google map)
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Figure 5.12: A section of I210-W divided into 4 cells and its detector configuration

Myrtle Ave (A) through W. Huntington Dr(B) to N Santa Anita Ave(C), and contains

2 on-ramps and 2 off-ramps. The section is instrumented with single-loop inductance

detectors, which are embedded in the pavement along the mainline, HOV lane, on-ramps,

and off-ramps. Typically, on I-210, mainline loop detectors are situated slightly upstream

of on-ramp merge points. This segment of freeway is chosen here for the following reasons:

1. The high level of recurrent congestion within the section can be observed in the early

morning period (6 am-10 am).

2. The segment possesses necessary infrastructure and traffic detectors embedded in

the on-ramps and mainline lanes for data collection.

Figure 5.12 depicts the test section partitioned into four cells with lengths range from

0.45 to 0.5 miles. The green points along the freeway segment denote where and how many

loop detectors are installed. Each loop detector group is assigned a signature of six digital

numbers. qu denotes the inflow profile of the freeway segment while qo is the outflow

profile. r1 and r2 denote the two on-ramps while f1 and f2 denote the two off-ramps. qm

denotes the flow detected by the detector installed on the boundary between cells 2 and 3.
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Table 5.1: Calibration results of the four cells against the traffic flow data collected on

April 22, 2008
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Figure 5.13: The fundamental diagrams of the four cells calibrated from the traffic flow

data collected on April 22, 2008
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Each loop detector gives volume (veh/time-step) and occupancy measurements every 30

seconds. Densities could then be computed for each lane using the occupancy divided by

the g-factor, where the g-factor is the effective vehicle length, in miles, for the detector.

A necessary condition for the numerical stability of CTM is that vehicles traveling at the

maximum speed may not cross multiple cells in one time step, that is, vf,i ·Ts ≤ li. This in

conjunction with the aforementioned cell lengths prohibits a simulation time step as large

as 30 seconds. Thus a zeroth-order interpolation is applied to the PeMS data to yield data

with Ts = 5 sec in order to make vf,i · Ts ≤ li holds for almost all the time.7 As it was

mentioned in Muñoz et al. (2003), one difficulty in selecting a test section is that it is rare

for all the loop detectors in a section to be functioning properly at the same time. In the

cases where detectors were not functional, the data was corrected using information from

neighboring sensors or data from similar days. The interpolated, filtered, and corrected

data sets were used as simulation inputs. As shown in Figure 5.13, by assuming that all

the parameters must satisfy the triangular fundamental relationship and using the least

square method, calibration was conducted for the four cells. Calibration results are listed

in Table 5.1. The notations with hats denote the mean values of the parameters. As for

example, v̂f denotes the mean values of free flow speeds for the four cells. The notations σ

with the mean notations as subscripts denote the standard deviations of the corresponding

parameters. Compared with previous studies, such as Muñoz et al. (2003), we can verify

that our calibration results are reasonable.

5.5.2 Test results against the supply uncertainty

In this subsection, three models, namely the MCTM, the Monte Carlo Simulation of

MCTM and the SCTM, are used to simulate the traffic flow pattern for the calibrated

section, between 4 am-12 am, during some of which the morning rush-hour congestion

normally occurs. This time interval is chosen also for the reason that all the five modes

would be active during this time interval. First, the MCTM is applied to the test site

with the PeMS data and the calibration results. The measured and simulated mainline

densities are depicted in Figure 5.14. As it was a normal day with a good calibration, the

MCTM gives a quite satisfactory result. However, as we can see from the figure, good

results are obtained for cells 1 and 3 only under the free flow condition. The congestion

7In fact, the FIFO condition, i.e., vf ·Ts ≤ li, proposed in the CTM to ensure numerical stability can not

be always satisfied in our formulation, since the free-flow speed vf can be anything along its distribution.

The concept we used here is the probabilistic FIFO which can be roughly defined as Pr(vf,i ·Ts ≤ li) ≥ χ,

where χ is a positive real number which satisfies 1− ϵ < χ ≤ 1 for a small real number ϵ > 0.
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Figure 5.14: Measured densities and the MCTM’s estimated densities for a segment of

I-210W on April 22, 2008

states for these two cells are not well estimated by the MCTM. This may be due to the fact

that congestion state introduces more supply uncertainties to our fundamental diagram

than the free flow state, as demonstrated in Figure 5.13. To verify this, the Monte Carlo

Simulation (MCS) of MCTM is conducted. By assuming the uncertainties obey normal

distribution with means and standard deviations given in Table 5.1, the MCS of MCTM is

conducted with 500 samples. The mean values of the simulated traffic densities are plotted

against the measured traffic densities in Figure 5.15. As expected, some improvement is

achieved by the MCS of MCTM, but not very significant. Figure 5.168 depicts the mean

values of the simulated densities and its 68 percent confidence interval, i.e. [ρ̄−σρ̄, ρ̄+σρ̄],

generated by the MCS of MCTM against the measured traffic densities. Almost all the

measured traffic densities including the sharp impulse points fall in this interval. We

can conclude from Figure 5.16 that the MCS of MCTM with 500 samples over-estimates

the means and variances of the traffic densities (the 68 percent confidence interval covers

almost all the data), which is consistent with our previous simulation results. Regardless

of the accuracy, this MCS of MCTM is already computational and memory demanding.

Next, the SCTM is applied to this test case. We first apply equations (5.9)-(5.16) to

the definitions of probabilities of the five modes. Simulation results are depicted in Figures

8In the figures involving SDs, we plot the PEMS raw data every 15 minutes to reduce the resolution to

make the figure clearer and more readable, while the simulated results are plotted every 5 minutes.
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Estimated mean density PeMS data
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Figure 5.15: Measured densities, simulated mean densities obtained by the MCS of MCTM

for a segment of I-210W on April 22, 2008
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Figure 5.16: Measured densities, simulated mean densities, and the 68 percent confidence

interval obtained by the MCS of MCTM for a segment of I-210W on April 22, 2008
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Figure 5.17: Measured densities and the SCTM’s estimated mean densities for a segment

of I-210W on April 22, 2008

5.17-5.19. By comparing Figure 5.17 with Figure 5.15, the SCTM produces more accurate

estimated mean values than the MCS of MCTM. Figure 5.18 depicts the mean values

of the simulated densities and its 68 percent confidence interval generated by the SCTM

against the measured traffic densities. One can conclude from this figure that the SCTM

produces more reasonable variances when compared with the MCS of MCTM. However, as

the freeway segment has two pairs of on-/off- ramps, the five modes would not be enough

to capture the traffic dynamics. Note that the error of the mean density is propagating

upstream (or backward) in congested state. This is because the queue spills backward in

congested state, which is consistent with the numerical simulation. Figure 5.19 shows the

probability distributions of the five modes over time. As pointed out in Section 5.3.6, since

we assign the probability of the FC mode to be the difference between 1 and the sum of

the probabilities of the FF, CC, and CF modes, we may suffer from the over-estimation of

the probability of the FC mode. A direct consequence of this over-estimation is that the

estimated traffic densities will approach to the FF state rapidly, as illustrated in Figure

5.17.

To solve the above problem, we apply the interconnected SCTM approach proposed in

Section 5.3.6. We further divide the segment into two interconnected subsystems with each

subsystem having two cells. The results are shown in Figures 5.20-5.22. The mean values
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Figure 5.18: Measured densities, the SCTM’s estimated mean densities and the 68 percent

confidence interval for a segment of I-210W on April 22, 2008
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Figure 5.19: Probability distributions of different modes in the “simplified” SCTM ap-

proach over time
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of the simulated traffic densities generated by the SCTM are plotted against the measured

traffic densities in Figure 5.20. The figure demonstrates that the SCTM outperforms the

other three techniques, i.e. the MCTM, the MCS of MCTM, and the previous “simplified”

SCTM, in this test example. The mean values generated by the SCTM follow the measured

data closely but in a smoother way, especially in the morning peak. Figure 5.21 depicts

the mean values of the simulated densities and its 68 percent confidence interval generated

by the SCTM against the measured traffic densities. About 60 percent of the measured

traffic density data falls in the interval excluding almost all the sharp impulse points. All

these sharp impulse points are taken as noise in the PeMS 30-sec data. To counteract the

noise, a 1st-order Butterworth low-pass filter was applied to the data using a zero-phase

forward-and-reverse filtering technique, see Muñoz et al. (2003). From this example, the

SCTM is found to be adaptive to the noise. The probability distributions for all five modes

over time are depicted in Figure 5.22. At the beginning, i.e., from 4:00 am to 5:30 am,

the FF mode dominates the stochastic traffic states. After the traffic densities increase

to the critical densities, the transient modes become active. The CC mode dominates

the states after the transient modes. Due to the fast varying measured traffic data, all

the three transient modes are active, without one dominating the simulation. From 10:30

am onward, the measured traffic densities are sliding near to the critical densities. The

FF mode and its transient modes become active again. The better performance of this

approach is also due to the fact that in the two-cell subsystem approach, the definitions of

the probabilities of the five modes cover the whole probability space, while the “simplified”

four-cell version only assigns the probability of the FC mode to be the difference between

1 and the sum of the probabilities of the other modes.

5.5.2.1 Reproducing missing data

It is assumed that the upstream and downstream mainline data (qu, qd), as well as the

ramp flow data, are known, whereas the middle density, ρm, is considered to be “missing”,

which must be estimated. The purpose of this test is to determine whether the models

can accurately reproduce ρm. By applying the PeMS data to the SCTM, the following

simulation result is obtained. The flow data, qm, which is assumed to be missing is

reproduced by the SCTM and plotted against the measured data in Figure 5.23. From

the results, the missing flow and density data is reproduced in a satisfactory manner.
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Figure 5.20: Measured densities and estimated mean densities by the interconnected SCT-

M for a segment of I-210W on April 22, 2008
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Figure 5.21: Measured densities, estimated mean densities and the 68 percent confidence

interval by the interconnected SCTM for a segment of I-210W on April 22, 2008
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Figure 5.22: Probability distributions of different modes in the interconnected SCTM

approach over time
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Figure 5.23: The measured “missing” flow qm and its estimated value
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v̂f σv̂f ŵc σŵc ρ̂c σρ̂c ρ̂J σρ̂J Q̂m σQ̂m

Cell 1 63.6 8.95 25.72 9.12 149.36 21 518.68 149.83 9500 1336.5

Cell 2 62.46 6.69 21.69 7.16 137.68 14.75 534.22 146.80 8600 921.46

Cell 3 62.46 6.69 23.25 7.87 140.88 15.09 519.30 144.67 8800 942.89

Cell 4 63.29 7.01 20.30 6.31 127.97 14.17 526.96 137.20 8100 897.06

Table 5.2: Calibration results of the four cells against the the historical data over the

selected days

Cell 1 Cell 2 Cell 3 Cell 4 Average

MAPE 7.47 % 6.12 % 7.77 % 10.2 % 7.89 %

Table 5.3: The mean absolute percent errors of the four cells

5.5.3 Test results against both demand and supply uncertainties

This test aims to validate the SCTM against both demand and supply uncertainties. We

use the traffic flow data of 7 hours (4:00 am-11:00 am) collected on Tuesday, Wednesday

and Thursday of April 2008 and April 2009 from the PeMS in this test. The calibration

of the stochastic triangular fundamental diagram is conducted for the four cells by using

the historical data over the selected days. The results are shown in Table 5.2 and Figure

5.24. As illustrated in Table 5.2 and Figure 5.24, the supply functions admit significant

uncertainties. The calibrated variances of the supply functions are lager than those shown

in Table 5.1 in the previous test. Statistical analysis on the collected traffic data is also

conducted for the demand side. The observed raw data of the inflow to the upstream of the

segment, its mean and standard deviation with respect to time are depicted in Figure 5.25.

From this figure, we can observe that the inflow profile admits significant uncertainty. In

a word, both the demand9 and supply sides admit significant uncertainties.

We input the calibrated means and variances to simulate the SCTM. The estimated

traffic densities are depicted against the the historical data over the selected days in Figures

5.26-5.27. The corresponding mean absolute percent error (MAPE) between estimated

mean traffic densities and the observed mean traffic densities of the four cells are reported

in Table 5.3. It can be seen from Figure 5.26 that the SCTM produces an accurate

estimation of mean traffic densities. The corresponding average MAPE of the four cells is

about 7.9% as indicated in Table 5.3. We can observe from Figure 5.27 that the estimated

variances are smaller than the observed ones especially when it approaches to the tail

9As we utilize the measured traffic flow data, the demand here is the statistics of historical detected

inflow(s) to the segment.
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Figure 5.24: The fundamental diagrams of the four cells calibrated from the historical

data over the selected days
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Figure 5.26: The estimated mean densities against the historical mean densities
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Figure 5.27: The estimated mean densities and the 68 percent confidence against the

historical data over the selected days
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end of the simulation horizon. Besides the error introduced by the LWR model (and its

discretized version—the CTM) to approximate the traffic dynamics, this under-estimation

of variance may be due to the following two reasons:

First, as illustrated in the numerical example, the SCTM itself under-estimates the

variance of traffic density. This may be caused by the finite mixture (Gaussian sum)

approach we utilized to approximate any possible random distribution of the traffic

density.

The second reason would be the noises and errors introduced by the data detection

and conversion of PeMS. The overall average error is reported to be about 16%

(Chen, 2003; Chen et al., 2003).

5.6 Conclusion

In this chapter, a stochastic cell transmission model (SCTM) is proposed for simulating

the traffic density of a freeway section under stochastic demand and supply. The uncer-

tainty terms are assumed to be wide sense stationary, second-order processes consisting

of uncorrelated random vectors with known means and variances. The stochasticities of

the sending and receiving functions in the SCTM are governed by the random parame-

ters of the fundamental flow-density diagrams, including the capacities, backward wave

speeds, and the free-flow speeds. The model also permits random demand inflow pat-

terns. The switching mode model of the CTM is adopted to avoid the nonlinearity of

the original CTM caused by the “min” operator. The SCTM is formulated as a class

of discrete time stochastic bilinear systems. A set of probabilistic switching conditions

between different traffic modes for the SCTM is introduced. The chapter then provides

analytical approximations of the means and SDs of the traffic densities. Numerical ex-

amples and an empirical study are carried out to illustrate the advantages of the SCTM

over the Monte Carlo Simulation approach in terms of computation time and memory

requirement. The illustration of the propagation of uncertainties of traffic states over time

and space is also provided. However, there are some discrepancies between the SDs of

traffic densities from the SCTM and Monte-Carlo simulation which may be due to the

sampling error of the Monte-Carlo simulation. Empirical results from I-210W freeway

case in Southern California conclude that the MCS of MCTM overestimates the SDs of

the traffic densities while the SCTM underestimates the SDs a bit. The empirical study

confirms that the SCTM performs well for all traffic conditions ranging from light to very

dense traffic conditions. This is an advantage of the proposed model over the previous
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proposed macroscopic stochastic dynamic traffic models, (e.g. Boel and Mihaylova (2006);

Kim and Zhang (2008)). The empirical study also reveals that the SCTM outperforms

the MCTM, and the MCS of MCTM. The SCTM proposed in this chapter can only apply

to the freeway segment case. To capture the uncertain traffic flows on a general traffic

network, we have to extend the model to consider the traffic merge and diverge as well

as the interrupted infrastructures. In the next chapter, we will address these problems by

connecting certain simplified SCTM subsystems.

Appendix: a small analytical numerical example

In this Appendix, we give a small analytical numerical example to illustrate the implemen-

tation of the SCTM. We consider a freeway segment consisting of two cells without on-

nor off-ramp. The simulation time step is 5 seconds. The two cells are 100 meters long.

We assume that the two cells admit the same nominal fundamental diagram as depicted in

Figure 5.7(b). The SDs of the parameters are assumed to be 10 percent of their nominal

values. The SCTM has an constant inflow rate of 5000 veh/h. Then the system matrices

for the FF mode, i.e. Equation (6.1), are given as

A1 =

 −0.0139 0

0.0139 0

 , A2 =

 0 0

0 −0.0139

 , B =

 0.0139 0

0 0

 . (5.38)

The system matrices for the CC mode, i.e. Equation (5.22), are obtained as

A1 =

 −0.0139 0

0 0

 , A2 =

 0 0.0139

0 −0.0139

 ,
B1 = −A1, B2 = −A2, B =

 0 0

0 −0.0139

 . (5.39)

The system matrices for the CF mode, i.e. Equation (5.23), are obtained as

A1 =

 −0.0139 0

0 0

 , A2 =

 0 0

0 −0.0139

 ,
B0 =

 0 −0.0139

0 0.0139

 , B1 =

 0.0139 0

0 0

 , B2 = 0. (5.40)

The system matrices for the FC1 mode, i.e. Equation (5.24), are:

A1 =

 −0.0139 0

0.0139 0

 , B =

 0.0139 0

0 −0.0139

 . (5.41)
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The system matrices for the FC2 mode, i.e. Equation (5.25), are:

A2 =

 0 0.0139

0 −0.0139

 , B2 =

 0 −0.0139

0 0.0139

 , B =

 0.0139 0

0 −0.0139

 . (5.42)

Other matrices which are not specified here are null matrices. To illustrate the evolution,

the mean traffic densities of the two cells at time step k = 30 equal to 83.2870 and

83.0789 veh/km are obtained from the SCTM. The corresponding SDs are 10.3376 and

15.2070 veh/km for the two cells, respectively. The auto-correlation matrix is Q(30) = 7043.6 6876.4

6876.4 7133.4

. Then we can obtain the probabilities of occurrence of the five modes

as PFF (30) = 0.7225, PCC(30) = 0.0217, PCF (30) = 0.1011, PFC1(30) = 0.1278, and

PFC2(30) = 0.0270 according to the method proposed in Section 5.3.3. The means and

auto-correlation matrices of traffic densities of the five modes at k = 31 can be calculated

according to the dynamics proposed in Section 5.3.4 and the corresponding evaluations

developed in Section 5.3.5. For example, the mean and auto-correlation matrix of the FF

mode are thus calculated:

ρFF (31) = (I + 60A1 + 60A2)

 83.2870

83.0789

+B

 5000

0

 =

 83.3256

83.2523

 ,

QFF (31) = (I + 60A1 + 60A2)Q(30) (I + 60A1 + 60A2)
T

+ 36A1Q(30)AT1 + 36A2Q(30)AT2

+ G1(30) +GT1 (30) +B

 5000

0

 5000

0

T

BT =

 6995.0 6901.8

6901.8 7098.1

 ,

where

G1(30) =

I ×
 83.2870

83.0789

 [5000 0] + (A1 +A2)×

 83.2870

83.0789

 [300000 0]

BT

=

 964 0

5781.4 0

 .

The means and auto-correlation matrices of other modes can be similarly obtained, we

list them here as

ρCC =

 83.2292

87.7792

 , QCC =

 7388 7127.4

7127.4 8028.2

 , ρCF =

 87.9295

97.1798

 ,

QCF =

 8059 8470.3

8470.3 9569.3

 , ρFC1 =

 83.3256

69.1514

 , QFC1 =

 6995 5720.8

5720.8 5064.6

 ,

ρFC2 =

 64.6978

87.7792

 , QFC2 =

 4489 5492.1

5492.1 8028.2

 .
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By substituting these means and auto-correlation matrices into Equations (5.18)-(5.19),

we obtain the means of the joint traffic densities for k = 31 as

µ(31) =
∑
s

Ps(30)ρs(31) =

 83.2870

83.0789

 ,

diag {V ar (ρ̄(31) | θ(31))} = diag

{∑
s

Ps(30)Qs(31)− µ(31)µT (31)

}

=

 106.865 0

0 231.2515

 .

The corresponding SDs are 10.3376 and 15.2070 veh/km.
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Chapter 6

Stochastic cell transmission model

for traffic networks with demand

and supply uncertainties

This chapter extends the stochastic cell transmission model (SCTM) to simulate traffic

flows on networks with stochastic demand and supply. The SCTM divides a roadway

segment into cells and accepts the means and variances of the stochastic travel demand

and supply functions as exogenous inputs, and produces the corresponding cell traffic

densities over time. This chapter defines the rules of flow propagation for freeway corridors;

traffic merges/diverges; and signalized junctions. In the numerical studies, we simulate

the network SCTM with a hypothetical network. We apply the SCTM to estimate the

queues and delays at signalized intersections. Compared with some well-known delay and

queue estimation formulas, e.g., Webster, Beckmann, McNeil, and Akcelik, the results

show good consistency between the SCTM and these formulas. In addition, the SCTM

describes the temporal behavior of the queue and delay distributions at signalized junctions

with stochastic supply functions and (non-stationary) arrivals.

6.1 Introduction

Due to stochastic queues at signalized junctions (or interrupted facilities) and traffic states

of uninterrupted facilities, predicting traffic congestion for an urban traffic network is

a difficult and complex task. To capture the randomness in both demand and supply

sides of the traffic network, we extend the SMM to consider stochastic parameters of the

fundamental flow-density diagram as well as the stochastic travel demand. The proposed
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model is entitled “the stochastic cell transmission model (SCTM)”. In the SCTM, the

supply uncertainties are governed by the random parameters of the triangular fundamental

flow-density diagram, e.g., free-flow speed, jam-density, and backward wave speed, etc.

The stochastic demand is also modeled as stochastic exogenous input to the SCTM. The

empirical studies in Chapter 5 and Sumalee et al. (2010b) validate the performance of

the SCTM in estimating and predicting the stochastic traffic densities and dynamic travel

time distribution against empirical freeway traffic data. However, the SCTM proposed in

the previous chapter can only represent a single highway corridor without any interrupted

facility.

Estimation and/or prediction of traffic densities on freeways and arterials are critical

to traffic control and management. Most of the existing traffic control strategies, e.g. the

generic advanced motorway optimal control (AMOC) tool (Kotsialos et al., 2002; Kotsia-

los and Papageorgiou, 2004), assumes a perfect model calibration of the traffic flow model

applied. However, inaccurate calibration may occur if the underlying spatial-temporal

traffic flow phenomena are not appropriately considered. In particular, the area around

the capacity flow of a fundamental diagram is properly visible in real data only at active

bottleneck locations (Carlson et al., 2010). These in turn introduce supply uncertainty to

the traffic flow model. Perfect information of the future disturbances, i.e. travel demand,

turning ratios, and exit-rate profiles of the network, are also required in the AMOC.

However, due to demand and supply uncertainties, these approaches become moderate

(suboptimal) when directly applied to the freeway traffic network. The efficiency of the

optimal control based strategies deteriorates with increasing disturbance prediction and

modeling errors. For instance, in view of the uncertain roadway capacity, any optimal

control based ramp metering strategy attempting to achieve a pre-specified capacity flow

value, will either lead to overload and congestion or to under utilization of the infrastruc-

ture.

Perfect model calibration and disturbance prediction are also required in the signal

control strategies, e.g. traffic-responsive urban control (TUC) (Kosmatopoulos et al.,

2006a). Moreover, such kind of signal control strategies requires the queue lengths (or

traffic densities) of the signalized arterials to be accurately estimated or modeled. The

estimation and prediction of queue overflows and delays at signalized junctions also has

long been recognized as an important issue to signal performance measures and optimiza-

tion in transportation engineering and operations research. Nevertheless, a general theory

for such queue and delay estimation/prediction problem is still insufficient (Viti and Van

Zuylen, 2009, 2010).
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For better implementation of traffic control strategies, a method is needed to capture

the traffic dynamics on the freeways and arterials under demand and supply uncertainties,

and to measure the queues at signalized junctions by assuming any temporal distribution

of the arrivals. The objective of this chapter is to extend the SCTM to network case for

the purposes of traffic state surveillance, prediction and control. Specifically, this chapter

proposes a SCTM framework to simulate the stochastic dynamics of a traffic network with

mixed freeways and urban arterials. Detailed objectives are:

1. To model the stochastic traffic dynamics of freeways;

2. To model the on-/off- ramps of freeways or traffic merge/diverge operations;

3. To model the signal effects and the turning movements of urban arterials.

Parallel to Daganzo (1995a) and to meet our purpose, we extend the SCTM for networks

by assuming that a temporal OD table (with mean and variance for each element) is given

and the statistics of the temporal turning ratios are known for every junction.

After the theoretical development, we conduct simulations to demonstrate the appli-

cation of the model. The first simulation illustrates the feasibility to apply the model as

a stochastic dynamic traffic network model. We demonstrate the stochastic flow prop-

agation along the links by calculating the means and variances of traffic densities. As

we have converted the possible wave-fronts to the probabilities of occurrence of different

operational modes of the SCTM, the possible wave-fronts are captured by tracing these

probabilities. In the second simulation, we focus on estimating the stochastic delays and

queues at signalized junctions. By applying the proposed signalized SCTM and the s-

tochastic dynamic travel time estimation method proposed by Sumalee et al. (2010b) to

a signalized junction, we obtain the time average delays with respect to different levels of

saturation. The results are then compared with the delay estimations obtained from the

traditional methods, e.g., Webster’s, McNeill’s and Akcelik’s formulas. A comparison of

the queue length is also carried out.

The rest of the chapter is organized as follows: The next section introduces a general

structure of a traffic network and basic functional blocks which are required for represent-

ing the network. The dynamics of a basic SCTM subsystem is presented in Section 6.2 for

completeness. The third and fourth sections illustrate the modifications of the SCTM to

represent the four basic functional blocks of a traffic network. Numerical simulations are

then carried out in Section 6.5 to illustrate the application of the model. The final section

concludes the chapter.
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6.2 Descriptions of a traffic network and the basic SCTM

A traffic network is usually composed of freeways and urban arterials. Freeways interact

with urban arterials through on-ramps and/or off-ramps. On-ramp flows from urban

arterials to freeways are usually controlled by the on-ramp metering, while off-ramp flows

from freeways to urban arterials are usually controlled by the signals installed on arterials.

We identify four basic functional blocks of a traffic network, i.e. (i) a freeway corridor, (ii)

a traffic diverge (off-ramp), (iii) a traffic merge (on-ramp), and (iv) a signalized junction.

Blocks (i)-(iii) can be further recognized as uninterrupted facilities and block (iv) be

considered as interrupted facility. In what follows, we will model these basic functional

blocks by using the basic SCTM subsystem. A SCTM representation of a typical traffic

network can then be defined by connecting these basic functional blocks.

As mentioned in Chapter 5, to utilize the SMM, we need to ensure that the traffic

dynamics of a freeway segment can be accurately described by the five modes (i.e. the at-

most one wavefront assumption is satisfied under the deterministic environment) and the

probabilities of occurrence of the five modes are properly defined. However, Assumption

5.1 cannot be fulfilled for general freeway segments except some special cases. A simple

solution is to divide a freeway corridor into several short segments wherein each of these

segments is modeled by one SCTM subsystem consisting of two cells. In this chapter,

we will build up an SCTM representation of a traffic network by connecting these basic

SCTM subsystems. Therefore, it is necessary for us to refine the dynamics of a basic

SCTM subsystem.

Figure 6.1 shows the application of the basic SCTM to represent a freeway segment

without on-/off- ramps, which is divided into two cells. This basic SCTM consisting of

two cells is defined as a basic subsystem of a traffic network as depicted in Figure 6.2. The

basic SCTM accepts the random inflows (uncertain demand) as well as random parameters

of the fundamental flow-density diagram (uncertain supply functions) with known means

and variances of the freeway segment as exogenous inputs, and then calculates the means

and variances of the traffic densities, outflow of the freeway segment, and probabilities of

its operational modes. We specify the dynamics of each mode of the SCTM by the bilinear

system formulation of (5.20) as:

In the FF mode, we set ωi(k) to be the free flow speed vf,i(k) in (5.20), and the state

equation can be represented as:

ρ(k + 1) =

(
I +

2∑
i=1

Aivf,i(k)

)
ρ(k) +Bu(k), (6.1)

164



uq
dq

!

a). Free-flow-Free-flow (FF) mode 

uq 21

    b). Congestion to Congestion (CC) mode 

uq dq
c). Congestion to Free-flow (CF) mode 

uq
dq

d). Free-flow to Congestion (FC 1) mode 

uq

e). Free-flow to Congestion (FC 2) mode 

Figure 6.1: Five traffic operational modes for a freeway segment with 2 cells

SCTM

( )A k ( )D k

Figure 6.2: A block diagram of the basic SCTM subsystem

where

A1 =

 −Ts
l1

0

Ts
l2

0

 , A2 =

 0 0

0 −Ts
l2

 , B =

 Ts
l1

0

0 0

 .
Equation (6.1) is a special case of (5.20) with Bi, i = 1, 2 be null matrices and λ(k) be a

null vector.

In the CC mode, we define ωi(k) = wc,i(k) and the vector λ(k) = (ρJ,1(k), ρJ,2(k))
T .

The state equation is then

ρ(k + 1) =

(
I +

2∑
i=1

Aiwc,i(k)

)
ρ(k) +

2∑
i=1

Biwc,i(k)λ(k) +Bu(k), (6.2)

where

A1 =

 −Ts
l1

0

0 0

 , A2 =

 0 Ts
l1

0 −Ts
l2

 , B =

 0 0

0 −Ts
l2

 , Bi = −Ai, i = 1, 2.

In the CF mode, we can define ω1(k) = wc,1(k), ω2(k) = vf,2(k), and the vector λ(k) =

(ρJ,1(k), QM (k))T . The state equation is then

ρ(k + 1) =

(
I +

2∑
i=1

Aiωi(k)

)
ρ(k) +

(
B0 +

2∑
i=1

Biωi(k)

)
λ(k) +Bu(k), (6.3)

where

A1 =

 −Ts
l1

0

0 0

 , A2 =

 0 0

0 −Ts
l2

 , B0 =

 0 −Ts
l1

0 Ts
l2

 , B1 = −A1, B2 = 0, B = 0.
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In the FC1 mode, we define ω1(k) = vf,1(k), ω2(k) = 0, and λ(k) as a null vector. The

state equation is then

ρ(k + 1) = (I +A1ω1(k)) ρ(k) +Bu(k), (6.4)

where

A1 =

 −Ts
l1

0

Ts
l2

0

 , B =

 Ts
l1

0

0 −Ts
l2

 .
In the FC2 mode, we define ω1(k) = 0, ω2(k) = wc,2(k), and λ(k) = (0, ρJ,2(k))

T . The

state equation is

ρ(k + 1) = (I +A2ω2(k)) ρ(k) +B2ω2(k)λ(k) +Bu(k), (6.5)

where

A1 = 0, A2 =

 0 Ts
l1

0 −Ts
l2

 , B1 = 0, B2 =

 0 −Ts
l1

0 Ts
l2

 , B =

 Ts
l1

0

0 −Ts
l2

 .
The corresponding probabilities of occurrence of the five operational modes can be

defined as:

FF mode: PFF (k) , Pr (ρu(k − 1) < ρc,1(k − 1) ∩ ρd(k − 1) < ρc,2(k − 1)) ,

CC mode: PCC(k) , Pr (ρu(k − 1) ≥ ρc,1(k − 1) ∩ ρd(k − 1) ≥ ρc,2(k − 1)) ,

CF mode: PCF (k) , Pr (ρu(k − 1) ≥ ρc,1(k − 1) ∩ ρd(k − 1) < ρc,2(k − 1)) , and

FC mode: PFC(k) , 1− (PFF (k) + PCC(k) + PCF (k)),

with the wave-front, which is located at the boundary between cells 1 and 2, moving

downstream (event D) as

PD|FC(k) , Pr (vf,1(k − 1)ρ̄1(k − 1) ≤ w2(k − 1)(ρJ,2(k − 1)− ρ̄2(k − 1))) ,

and the wave-front moving upstream (event U) as PU |FC(k) = 1 − PD|FC(k). Then the

probabilities of the FC1 and FC2 to occur at time step k are: FC1 mode: PFC1(k) ,

PD|FC(k)PFC(k), and FC2 mode: PFC2(k) , PU |FC(k)PFC(k), where ρc,i is the critical

density, wi the backward congestion wave speed, ρJ,i the jam density of cell i, respectively.

ρ̄i is the joint density of cell i, which is defined as a finite mixture distribution of the five

modes. The joint traffic density vector, its mean and covariance matrix can be defined

and evaluated according to (5.17)-(5.19).
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6.3 Uninterrupted facilities

In the CTM, flow propagation is defined by solving the flow cross two adjacent cells, i.e.

the minimum of the sending and receiving function of the two cells. The basic elements

of the CTM, i.e. the cells and wave-fronts, are now the cells, basic SCTM subsystems

and the probabilities of operational modes in the SCTM framework. It is validated by the

empirical study of Chapter 5 that a simple way obtain an accurate traffic state estimation

for a long freeway corridor with possible multiple wavefronts by the SCTM framework

is to divide the corridor into several short segments with each segment modeled by one

SCTM subsystem. The long freeway corridor under consideration is then represented by

connecting these basic SCTM subsystems as demonstrated in Figure 6.3. In this section,

we will discuss this interconnected basic SCTM subsystems approach in detail and extend

it to model the uninterrupted facilities including the freeway corridor, traffic merge and

diverge.

6.3.1 Freeway corridor

As previously explained, we model a long freeway corridor by cascading several SCTM

subsystems as depicted in Figure 6.3(b). Each SCTM subsystem admits several exogenous

inputs as shown in Figure 6.2 and Figure 6.3(a). To furnish the modeling, we need to

define a number of boundary variables to simulate the stretch SCTM system for a freeway

corridor:

1. flow at the stretch origin qu,1,

2. flow at the stretch destination qd,y,

3. measured on-ramp flows ron,j (if any), and measured off-ramp flows roff,j (if any),

4. the uncertain supply functions of each cells.

Similar idea has been adopted in Wang et al. (2007). Inside the stretch SCTM system,

each of these subsystems accepts the outflow from the upstream segment as inflow.

To capture the stochastic flow propagation, we need to define the flow propagation

law between two neighboring SCTM subsystems besides the above flow propagation law

within one SCTM subsystem. Note that the concept of wavefront in the original CTM

framework is converted into five operational modes (or five probabilistic events) and their

probabilities of occurrence in the SCTM framework. The calculation of flow between two

neighboring SCTM subsystems is similar to the calculation of flow between two adjacent
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Figure 6.3: An interconnected SCTM approach to model a freeway corridor: (a) a short

segment as one SCTM subsystem, segment variables, and segment inputs; (b) a freeway

corridor as interconnected SCTM subsystems.

cells without wavefront that can be represented by a finite mixture distribution similar to

(5.17). As depicted in Figure 6.4, let subsystems j − 1 and j are two neighboring SCTM

subsystems with two adjacent cells i − 1 and i. Let Sj−1(k) denote the sending function

of subsystem j − 1 (which is one of the outputs of the SCTM subsystem). Then

Sj−1(k) = mix (vf,i−1(k)ρ̄i−1(k), Qi−1(k)) , (6.6)

wheremix denotes the finite mixture distribution defined similar to (5.17). The finite mix-

ture distribution definition of the sending function (6.6) means that: if the last cell of sub-

system j−1, is free flowing at time k, the amount of traffic to be sent out is vf,i−1(k)ρ̄i−1(k),

if the last cell of subsystem j − 1 is congested, the amount to be sent out is Qi−1(k).

The probabilities for these two events are PS1 (k) = (PFF,j−1(k) + PCF,j−1(k)) , P
S
2 (k) =

(PFC,j−1(k) + PCC,j−1(k)), respectively. The mean and variance of (6.6) can be evaluated

by (5.18)-(5.19). To determine the flow received by the downstream SCTM subsystem,

we compare this flow profile with the receiving flow of the downstream SCTM subsystem

and define the following four events:

1. The first cell of the downstream SCTM subsystem is free-flow (FFi) and the sending

function Sj−1(k) is less than its capacity. In this case, Sj−1(k) will be loaded onto

the first cell of subsystem j. The corresponding probability is defined as: P1(k) =
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Figure 6.4: The interconnected SCTM subsystems approach as paired up two neighboring

cells

Pr (FFi(k) ∩ (Sj−1(k) < Qi(k))), where Qi(k) is the capacity of the first cell of the

downstream SCTM subsystem;

2. The first cell of the downstream SCTM subsystem is free-flow (FFi) and the sending

function Sj−1(k) is not less than its capacity. In this case, an amount of vehicles

equals to Qi(k) will be loaded. The probability for this event is defined as: P2(k) =

Pr (FFi(k) ∩ (Sj−1(k) ≥ Qi(k)));

3. The first cell of the downstream SCTM subsystem is congested (CCi) and the

sending function Sj−1(k) is less than its available space wi(k)
(
ρJ,i(k)− ρ̄i(k)

)
.

Then, Sj−1(k) will be loaded onto the first cell of subsystem j. The probability is

P3(k) = Pr (CCi(k) ∩ (Sj−1(k) < wi(k) (ρJ,i(k)− ρ̄i(k)))), where wi, ρJ,i, ρ̄i are the

backward wave speed, the jam density, and the density of the first cell of subsystem

j, respectively;

4. The first cell of the downstream SCTM subsystem is congested (CCi) and the

sending function Sj−1(k) is not less than its available space. In this case, an

amount of vehicles which equals to the available space of the first cell of sub-

system j will be loaded, The probability for this event is thus defined: P4(k) =

Pr (CCi(k) ∩ (Sj−1(k) ≥ wi(k) (ρJ,i(k)− ρ̄i(k)))).

According to the definitions of probabilities of occurrence of the five modes, FFi(k)

and CCi(k) are determined by the the traffic condition of the subsystem j at time

k -1. To simplify the calculation, we assume FFi(k) and CCi(k) are independent of

the events (Sj−1(k) < Qi(k)), (Sj−1(k) < wi(k) (ρJ,i(k)− ρ̄i(k))), (Sj−1(k) ≥ Qi(k)), and(
Sj−1(k) ≥ wi(k)

(
ρJ,i(k)− ρ̄i(k)

))
. Then the probabilities can be calculated as:

P1(k) = (PFF,j(k) + PFC,j(k)) Pr (Sj−1(k) < Qi(k)) ,

P2(k) = (PFF,j(k) + PFC,j(k)) Pr (Sj−1(k) ≥ Qi(k)) ,

P3(k) = (PCC,j(k) + PCF,j(k)) Pr (Sj−1(k) < wi(k) (ρJ,i(k)− ρ̄i(k))) ,

P4(k) = (PCC,j(k) + PCF,j(k)) Pr (Sj−1(k) ≥ wi(k) (ρJ,i(k)− ρ̄i(k))) ,
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with
∑

y Py(k) = 1. We thus define the PDF for the traffic flow received by subsystem j,

Raj (k) as a finite mixture of the four probabilistic events:

gR
(
Raj (k)|λ(k)

)
=
∑
y

Py(k)gR
(
Raj (k)|λy(k)

)
, (6.7)

where λ(k) = {λy(k)} , λy(k) =
(
Py(k), Ry(k)

)
. The set λ contains the four events

defined previously, with Py, Ry(k), y = 1, 2, 3, 4, the probabilities and receiving flows of

the four events. The mean and variance of the joint receiving flow (6.7) can be evaluated

according to (5.18) and (5.19), respectively.

The interconnected SCTM approach calculates the flow propagation by pairing up

two neighboring cells, which can be viewed as an extension of the approach used in the

CTM. Consider the example depicted in Figure 6.4. First, two cells are chosen to form a

basic SCTM subsystem. By the basic SCTM subsystem, random traffic state (including

the traffic density and the possible wavefront in terms of probabilities of occurrence of

operational modes) of the segment is calculated. Then, the last cell of the upstream

subsystem and the first cell of the downstream subsystem is paired up to calculate the

flow across these two subsystems.

6.3.2 On-/off- ramps, traffic merge and diverge

Assume that the freeway segment with on-/off- ramps can be represented by a link-node

formulation as depicted in Figure 6.5(a)1. Denote the on-ramp as onj , and the off-ramp

as offj , where the subscript j represents the node of the freeway segment (or SCTM sub-

system) to which the ramps are connected. We consider the ramps as SCTM subsystems

as depicted in Figure 6.5(b). The on-/off- ramp flows depend on the states of the freeway

and the ramps.

To calculate the stochastic on-ramp flow, we first explain the CTM representation

of the ramp under the deterministic case. The actual on-ramp flow rj(k) is determined

by the state of the freeway segment to which the on-ramp merges (Kurzhanskiy, 2007;

1 This kind of link-node CTM representation of freeway segment, introduced by Kurzhanskiy (2007)

and Muralidharan and Horowitz (2009), calculates the traffic flows in traffic networks (by flow conservation

of a node) in a simpler manner. The simulation software Aurora, a simulation tool developed by the Tools

for Operations Planning (TOPL) in University of California Berkeley, is based on this CTM implementa-

tion. A critical overview of macroscopic node models is provided by Tampère et al. (2011), wherein some

shortcomings of state-of-the-art node models are summarized. It would be interesting for us to further

extend our model following the generic class of first order macroscopic node models proposed by Tampère

et al. (2011).
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(a) A link-node model of a freeway segment                      (b) On-/off- ramps as SCTM subsystems

Figure 6.5: A link-node model of a freeway segment

Muralidharan and Horowitz, 2009), i.e.,

rj(k) =
min (cj(k), wj+1(k) (ρJ,j+1 − ρj+1(k)))

cj(k)
dj(k). (6.8)

To calculate rj(k), we first have to obtain the total demand for cell j+1, cj(k). Assume

the off-ramp demand fj(k) is a fraction of the flow on the freeway segment, the travel

demand cj(k) of node j at time k is given as (see Figure 6.5(a)):

cj(k) = ej(k) + dj(k)− fj(k) = (1− βj(k)) ej(k) + dj(k), (6.9)

where βj(k) denotes the turning fraction, ej(k) is the outflow of cell j. For the stochastic

case, we assume that the nominal function of βj(k) is known and perturbed by a Gaussian

noise process with zero mean and known variance. βj(k)ej(k) is taken as the sending

function to the off-ramp (off-ramp demand). Whether this amount of flow can be received

by the off-ramp depends on the traffic condition of the off-ramp. This “actual” off-ramp

flow can be defined as joint off-ramp flow similar to (6.7). To this end, we define the four

events following the flow propagation logic defined in Section 6.3.1:

1. The first cell of the off-ramp is in free-flow condition (Fj) and the off-ramp demand

is less than its capacity. In this case, the off-ramp demand fj(k) will be loaded onto

the off-ramp. The corresponding probability is defined as:

P
fj
1 (k) = Pr

(
Fj(k) ∩

(
fj(k) < Q

fj
1 (k)

))
;

2. The first cell of the off-ramp is in free-flow condition (Fj) and the off-ramp demand

is greater than or equal to than the capacity of the off-ramp. In this case, an amount

of vehicles equals to the off-ramp capacity will be loaded onto the off-ramp. The

probability for this event is defined as:

P
fj
2 (k) = Pr

(
Fj(k) ∩

(
fj(k) ≥ Q

fj
1 (k)

))
;
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3. The first cell of the off-ramp is in congested condition (Cj) and the off-ramp demand

is less than its available space. In this case, the off-ramp demand fj(k) will be loaded

onto the off-ramp. This probability is:

P
fj
3 (k) = Pr

(
Cj(k) ∩

(
fj(k) < w

fj
1 (k)

(
ρ
fj
J,1(k)− ρ

fj
1 (k)

)))
;

4. The first cell of the off-ramp is in congested condition (Cj) and the off-ramp de-

mand is greater than or equal to the available space of the off-ramp. In this

case, an amount of vehicles which equals to the available space of the off-ramp

w
fj
1 (k)

(
ρ
fj
J,1(k)− ρ

fj
1 (k)

)
will be loaded onto the off-ramp, The probability for this

event is defined as:

P
fj
4 (k) = Pr

(
Cj(k) ∩

(
fj(k) ≥ w

fj
1 (k)

(
ρ
fj
J,1(k)− ρ

fj
1 (k)

)))
.

By applying the independent argument similar to that in Section 6.3.1, the probabilities

of these events can be defined as:

P
fj
1 (k) =

(
P
fj
FF (k) + P

fj
FC(k)

)
Pr
(
fj(k) < Q

fj
1 (k)

)
,

P
fj
2 (k) =

(
P
fj
FF (k) + P

fj
FC(k)

)
Pr
(
fj(k) ≥ Q

fj
1 (k)

)
,

P
fj
3 (k) =

(
P
fj
CC(k) + P

fj
CF (k)

)
Pr
(
fj(k) < w

fj
1 (k)

(
ρ
fj
J,1(k)− ρ

fj
1 (k)

))
,

P
fj
4 (k) =

(
P
fj
CC(k) + P

fj
CF (k)

)
Pr
(
fj(k) ≥ w

fj
1 (k)

(
ρ
fj
J,1(k)− ρ

fj
1 (k)

))
,

with
∑

y P
fj
y (k) = 1. We define the PDF for the joint off-ramp flow (“actual” stochastic

off-ramp flow) faj (k) as a finite mixture of the four probabilistic events:

gf
(
faj (k)|ϕ(k)

)
=
∑
y

P
fj
y (k)gf

(
faj (k)|ϕy(k)

)
, (6.10)

where ϕ(k) = {ϕy(k)} , ϕy(k) =
(
P
fj
y (k), f

fj
y (k)

)
.

Next we will address the on-ramp case (or merge operation). This on-ramp flow pattern

depends on the freeway traffic state to which the on-ramp belongs. From the link-node

formulation, we define the total travel demand to cell j+1, i.e. cj(k), as the sending

function of cell j. Then the “actual” on-ramp flow can be determined by comparing this

flow pattern with the receiving flow function of cell j+1, following the rules defined in

Section 6.3.1. Similar to the off-ramp case, we define the PDF of the joint on-ramp flow

(the “actual” stochastic on-ramp flow) as:

gr (rj(k)|φ(k)) =
∑
x

P
rj
x (k)gr (rj(k)|φx(k)) , (6.11)
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where φ(k) = {φx(k)} , φx(k) =
(
P
rj
x (k), d

rj
x (k)

)
, with φ contains four events, which

can be defined in line with those in Section 6.3.1 by replacing Sj−1(k) and the receiving

functions of cell i with cj(k) and the receiving functions of cell j+1, respectively. We omit

the details here for brevity. The on-ramp flows of the first and third events are the same

since the total travel demand to cell j+1, i.e. cj(k) can be received by the cell implies the

freeway can accommodate the on-ramp demand dj(k). Since cj(k) cannot be received by

cell j+1 for the second and the fourth events, the available space of cell j+1 is assigned

to the on-ramp flow according to its proportion to the total demand cj(k). To be more

specific, the on-ramp flows for the four events are:

d
rj
1 (k) = dj(k), d

rj
2 (k) =

dj(k)

cj(k)
Qj+1(k), d

rj
3 (k) = dj(k), and

d
rj
4 (k) =

dj(k)

cj(k)
wj+1(k) (ρJ,j+1(k)− ρj+1(k)) ,

where Qj+1(k), wj+1(k), and ρJ,j+1(k) are capacity, backward wave speed and jam density

of cell j+1, respectively. The probabilities for these four events can be defined in line with

those in Section 6.3.1. The mean and variance of d
rj
2 (k), d

rj
4 (k) can be approximated

by Taylor series given the means and variances of its definitional variables are known as

explained in Chapter 5. The mean and variance of the joint on-ramp flow (6.11) can be

calculated by utilizing (5.18)-(5.19) with the total travel demand cj(k) for cell j+1 given

by (6.9). Daganzo (1995a) pointed out that a merge can be in one of the following three

possible causality regimes:

1. Forward: if the flow on both approaches is dictated by conditions upstream (i.e.

waves move forward);

2. Backward: if the flow on both approaches is dictated by conditions downstream (i.e.

waves move backward);

3. Mixed: if the flow is dictated by conditions upstream for one approach and down-

stream for the other.

The first two cases are common and well addressed by the SCTM. Case 3 is not common,

and arises when one approach has higher priority than the other approach under congested

condition. This case can be handled by the current SCTM framework by assigning priority

ratios to the receiving function of the downstream cell as done by Daganzo (1995a). We

will also investigate this case in the numerical simulation.

The “actual” inflow to the on-ramp is saturated by the on-ramp SCTM subsystem

and can be similarly evaluated as the actual on-ramp flow, i.e. (6.11). The flows which
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divert to the arterials through the off-ramp depend on the states of arterials and can be

similarly calculated using (6.10). Since the basic SCTM accepts the mean and variance of

the inflow as inputs, we need to obtain them in advance to simulate the basic SCTM. If

detected flow data is available, it can also be used as input to the basic SCTM.

6.4 Model of signalized junctions

In this section, we will model the the signalized intersections by the interconnected SCTM

subsystem approach. We start with the SCTM model of a signalized cell depicted in

Figure 6.6. When the signal is green, the sending function of cell 1 is given by

S1(k) = mix (vf,1(k)ρ1(k), Q1(k)) ,

where mix denotes the finite mixture distribution defined similar to (5.17) (see Section

6.3.1). Whether this amount of flow can be received by cell 2 can be determined by

(6.7). When the signal is red, cell 1 should send out nothing. The two cells update

their traffic states independently. As pointed out by Lo (1999b) and Lo et al. (2001), the

congested situation in Hong Kong renders virtually all turnings to have protected, rather

than permitted, signals, see e.g. Figure 6.7. Due to the signalization, the flows from cell

C and cell B do not flow into cell E at the same time. This simplification yields:

1. either cell C or cell B is flowing;

2. neither cell C nor cell B is flowing.

A common signalized junction in Hong Kong is depicted in Figure 6.8. To represent the

signalized junction by the link-node model, we assume that the junction area is covered

by a node. Figure 6.9 depicts a link-node representation of the junction in green and
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(a) A link-node representation of the green phase for one direction             (b) A link-node representation of the green phase for one direction 

Figure 6.9: A link-node representation of the junction in green and red phases for one

direction

red phases for one direction. When the signal is red for this direction, no flow should be

sent out from the sending cell. In this case, the sending cell has no connection with the

downstream receiving cells. When the signal is green, the sending cell is connected to a

diverging node. The diverge logic is applied to this case, i.e. the sending cell sends out

the flows, whether these flows can be received by the downstream cells depends on the

traffic conditions of the receiving cells. By the above observation, we model the turning

movements by “virtual” merge and diverge operations (or on-/off- ramps). By the word

of “virtual”, we mean that the length of the ramp is zero. To simplify and proceed to the

analysis, we make the following assumptions:
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Assumption 6.1. The queue will build up at the cell sending out the turning vehicles if

the receiving cell does not have available space, i.e. no vehicles will queue up at the node

(or the “virtual” ramps).

Assumption 6.2. Assume that the nominal value functions of left-/right- turning ratios,

denoted as γL(k), γR(k), are known, and the noise terms of γL(k), γR(k) are known Gaus-

sian white noises. The nominal value functions γL(k), γR(k) will be 0 if the signal is in

the red phase.

Assumption 6.3. Assume that the signal phases are known and there is no amber time

between red and green phases.

With these assumptions, we are ready to specify the dynamics of this signalized junc-

tion. Firstly, the signalized junction is divided into four SCTM subsystems as depicted in

Figure 6.10. Due to the protected signal assumption and Assumption 6.1, the four SCTM

subsystems do not overlap each other. Each subsystem has three phases corresponding to

the signal phases as demonstrated in Figure 6.11(a). When subsystem 1 is in green phase,

it can be modeled as a normal SCTM subsystem with two off-ramps which correspond

to the two turning movements. This phase is named as PH1. When subsystem 2 is in

green phase, the right turning movement of subsystem 2 can be modeled as an on-ramp of

subsystem 1. Since subsystem 1 is in red phase under this condition, there is no straight

movement for subsystem 1, i.e. there is no connection between the two cells of subsys-

tem 1. Similar analysis can be applied when subsystem 3 is in green phase. Since in the

SCTM, we do not distinguish the detailed locations of the ramps inside one cell, these two

cases are grouped into one phase, i.e. PH2. When subsystem 4 is in green phase, neither

turning movement nor straight movement is valid for subsystem 1. The two cells of this

subsystem update their states independently, which is denoted as PH3. Notice that PH3

is in fact a special case of PH2 when the on-ramp flow equals to 0, these two phases are

further grouped into one.

Detailed interconnection between two SCTM subsystems is depicted in Figure 6.11(b).

The upstream cell of subsystem 1 sends out the vehicles that want to turn right via a

“virtual” off-ramp (or diverge), while the downstream cell of subsystem 2 receives the

flow via a “virtual” on-ramp (or merge). Dynamics of PH1 can be described by the basic

SCTM subsystem in which a virtual off-ramp flow is defined as the summation of the two
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Figure 6.12: The SCTM subsystems representation under permitted signal
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off-ramp flows. The dynamic equations for PH1 of subsystem 1 are:FF mode:

ρ1 (k + 1) = ρ1 (k) +
T

l1
(qu (k)− vf,1 (k) ρ1 (k)) ,

ρ2 (k + 1) = ρ2 (k) +
T

l2
(vf,1 (k) ρ1 (k)− (f1 (k) + f2 (k))− vf,2 (k) ρ2 (k)) ;

CC mode:

ρ1 (k + 1) = ρ1 (k) +
T

l1
(wc,1 (k) (ρJ,1 (k)− ρ1 (k))− (f1 (k) + f2 (k))

−wc,2 (k) (ρJ,2 (k)− ρ2 (k))) ,

ρ2 (k + 1) = ρ2 (k) +
T

l2
(wc,2 (k) (ρJ,2 (k)− ρ2 (k))− qd (k)) ;

CF mode:

ρ1 (k + 1) = ρ1 (k) +
T

l1
(wc,1 (k) (ρJ,1 (k)− ρ1 (k))−Q2 (k)) ,

ρ2 (k + 1) = ρ2 (k) +
T

l2
(Q2 (k)− (f1 (k) + f2 (k))− vf,2 (k) ρ2 (k)) ;

FC1 mode:

ρ1 (k + 1) = ρ1 (k) +
T

l1
(qu (k)− vf,1 (k) ρ1 (k))

ρ2 (k + 1) = ρ2 (k) +
T

l2
(vf,1 (k) ρ1 (k)− (f1 (k) + f2 (k))− qd (k)) ;

FC2 mode:

ρ1 (k + 1) = ρ1 (k) +
T

l1
(qu (k)− wc,2 (k) (ρJ,2 (k)− ρ2 (k))− (f1 (k) + f2 (k))),

ρ2 (k + 1) = ρ2 (k) +
T

l2
(wc,2 (k) (ρJ,2 (k)− ρ2 (k))− qd (k));

where the triangular fundamental diagram is presumed, f1(k) and f2(k) are the off-ramp

flows of the segment, respectively. One can easily convert the above equations into bilinear

system representation in the form of (5.20).

Note that there is no interconnection between the two cells in PH2, the probability for

each mode should be revised accordingly. To be more specific, the definitions of the steady

states are retained, whereas the transient modes need to be revised. The case that the

upstream cell is in free-flow condition and the downstream cell is in congested condition

is taken as FC mode since there is no connection between the two cells, which implies no

wave-front would exist at the boundary of the two cells in this phase. The same logic is

applicable to CF mode. The state space equations for PH2 are:

FF mode: ρ1 (k + 1)

ρ2 (k + 1)

 =

 ρ1 (k)

ρ2 (k)

+

 T
l1
qu (k)

T
l2
[r1 (k)− vf,2 (k) ρ2 (k)]

 ;
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CC mode: ρ1 (k + 1)

ρ2 (k + 1)

 =

 ρ1 (k)

ρ2 (k)

+

 T
l1
[wc,1 (k) (ρJ,1 (k)− ρ1 (k))]

T
l2
[r1 (k)− qd (k)]

 ;

CF mode: ρ1 (k + 1)

ρ2 (k + 1)

 =

 ρ1 (k)

ρ2 (k)

+

 T
l1
[wc,1 (k) (ρJ,1 (k)− ρ1 (k))]
T
l2
[r1 (k)− vf,2 (k) ρ2 (k)]

 ;

FC mode:  ρ1 (k + 1)

ρ2 (k + 1)

 =

 ρ1 (k)

ρ2 (k)

+

 T
l1
qu (k)

T
l2
[r1 (k)− qd (k)]

 ;

where r1(k) is the on-ramp flow of the segment. The dynamics of PH3 is a special case of

PH2 by specifying r1(k) = 0, we omit it here for brevity.

Figure 6.10 is not the unique representation of the signalized junction depicted in

Figure 6.8. Generally speaking, a signalized junction can be represented by different means

of connecting the SCTM subsystems. In the case that the protected signal assumption does

not hold, we need more SCTM subsystems to represent the signalized junction depicted

in Figure 6.8 based on the link-node formulation. A feasible representation is illustrated

in Figure 6.12. Analysis of the dynamics and phases of the SCTM subsystems can be

conducted similar to those of protected signal case.

6.5 Numerical examples

6.5.1 An application of the network SCTM as a stochastic dynamic

traffic network model

A simple hypothetical network with 8 links, one OD pair, 6 paths is depicted in Figure

6.13. All links are one mile long and admit the same nominal fundamental flow-density

diagram as depicted in Figure 6.14. There is a signalized junction at the center of the

network. The turning movements and the corresponding turning ratios are shown in the

figure. The turning ratios are assumed to be constant. We choose 5 sec as the simulation

time increment and divide each link into two cells such that each link can be modeled by

one basic SCTM subsystem. We apply priority turning ratios for link M if it is operating

under the critical condition, i.e. the traffic density of the link is close to its critical density.

Under this situation, 1/3 and 2/3 of the available space of the first cell of link M will be

assigned to the flows from links Y and T, respectively. The means of the parameter
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Figure 6.13: Specification of the test network

uncertainties of the fundamental flow-density diagrams are assumed to be 0, and the SDs

of the parameter uncertainties are assumed to be 5% of their nominal values. The signal

has a cycle time of 2 min, which is equally assigned to the green and the red phases. Zero

initial condition is presumed. There is one inflow profile qu(k) enters the network from

the source. The nominal function of the inflow is given by

qu(k) =


6000 veh/h, 0 ≤ t ≤ 20min;

21000 veh/h, 20 < t ≤ 40min;

0 veh/h, 40 < t ≤ 60min .

We assume that the SD of the inflow profile is 5% of its nominal value. The inflow is

chosen such that all the states ranging from free-flow to congested can be activated. The

network operates under the free-flow condition in the first stage of the inflow, i.e. from

0 to 20 min. Congestion onset for some links will be observed when the inflow switches

to the second stage. Then the traffic will tend to a steady-state of congestion for some

links. Some time after the inflow switches to 0, congestion dissolve will be observed for

the congested links. Finally, all the traffic will be clear from the network. By applying

the proposed SCTM to the network with uncertainties, we obtain the following results as

depicted in Figures 6.15 to 6.22.

The traffic densities of links R and S are shown in Figure 6.15. Since links R and S

do not involve the signal (strictly, not affected by the signalization), the obtained results

are similar to a freeway corridor test. At the first stage of the inflow profile, i.e. from 0

to 20 min, link R is operating under the free-flow condition as depicted in Figures 6.15

and 6.16 as the inflow rate to link R has a mean value of 2000 veh/h, which is far from

the saturated flow of the link. The variance of the traffic density in this stage is small.

We are quite certain about the estimation when the variance of the inflow and the traffic

density is low (the supply uncertainty under free-flow condition is small). The inflow to
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Figure 6.14: Nominal fundamental diagram
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Figure 6.15: Traffic densities of links R and S, and the 68% confidence interval
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Figure 6.16: Probabilities of occurrence of the five modes of links R and S
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Figure 6.17: Traffic densities of links V and W, and the 68% confidence interval
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Figure 6.18: Probabilities of occurrence of the five modes of links V and W

link R at the second stage of the network inflow has a mean value of 7100 veh/hr, which

is close to its link capacity. Therefore at this stage, link R is operating close to the critical

condition, which is verified by the part circled in Figure 6.16. Compared with the first

stage, the variance increases because the supply uncertainties under the critical condition

and congested condition are much larger than that under free-flow condition, and the

variance of the inflow also increases in this stage. Since there is no congestion spillback,

the variance is propagating downstream as shown by Figure 6.15. The gradual increase

in SD and the high SD in cell 2 of link R during this period is due to the accumulation

effect of the uncertainties. The downstream cells will therefore experience a higher level

of uncertainties compared to the upstream cells. Note that the variance of link S circled

is much smaller than that of link R. This is because: First, there is a turning movement,

link S receives only a part of the outflow from link R, therefore the variance of the inflow

to link S reduces. Second, at the second stage, link R is operating close to the critical

condition while link S is almost operating under free-flow condition. As we know, traffic

states under critical and/or congested condition are much more uncertain than those under

free-flow condition. By definition, the summation of the probabilities of occurrence of the

five modes is equal to 1. In the figures involving the probabilities, we plot 1.2 times of the

summation to distinguish the summation from the probability of an individual mode that

equals to 1.

Next, we will go through the results for the upstream links of the signal, i.e. links W
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Figure 6.19: Traffic densities of links X and Y, and the 68% confidence interval

and V. Due to the light traffic condition, link V does not have congestion. The first cell

of the link will not be affected by the signal as demonstrated in Figure 6.17. On the other

hand, due to the heavy traffic condition and the signal, congestion is first formed on the

second cell of link W at the second stage and then spills back to its first cell as illustrated

in Figure 6.17. Different from the variance propagation of link R, the variability of the

traffic states does not seem to increase as the flow moves downstream. On the other hand,

we can observe the propagation of the uncertainty in the reverse direction of the traffic

flow (or propagates backward). The cell densities of link W are shaped by the signal cycle.

The corresponding probability diagram is shown in Figure 6.18.

The results for the downstream links of the signal are depicted in Figures 6.19-6.20.

Figure 6.19 illustrates that these two links are operating under free-flow condition most

of the time. The variance of cell 2 of link Y at the second stage is larger as shown in

Figure 6.19. Besides the variance propagation, it is due to also the fact that the priority

turning ratios are activated because the saturated traffic condition on link M. The variance

is largely affected by the traffic condition (to be more specific, the variance of uncertain

available space) of link M, which causes large variance to the traffic density of the second

cell of link Y. Figure 6.20 depicts the corresponding probabilities of the five operational

modes.

Finally, we will go through the results for links T and M. Since at the first stage the

links are in free-flow conditions, we concentrate our analysis on the second stage of the
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Figure 6.20: Probabilities of occurrence of the five modes of links X and Y
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Figure 6.21: Traffic densities of links T and M, and the 68% confidence interval
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Figure 6.22: Probabilities of occurrence of the five modes of links T and M

inflow. Unlike links R and S, these two links involve heavy traffic conditions during this

time period as depicted in Figure 6.22. However, as link M is connected to the sink,

no congestion will be formed on this link. The variance is propagating downstream as

demonstrated in Figure 6.21. The critical traffic condition on link M activates the priority

turning ratios, which in conjunction with the heavy traffic condition on link T creates

congestion on link T. The congestion then spillback to the first cell of link T. Figure 6.21

shows both the mean and variance of link T at the second stage is propagating backward.

6.5.2 Queues and delays at a signalized junction

6.5.2.1 Background

In this section, we will compare the delays and queues obtained by the SCTM with those

obtained by the following formulas. Webster (1958) proposed the following approximate

expression for delay estimation at a signalized junction:

E (W ) =
τc

(
1− τg

τc

)2
2
(
1− τg

τc
x
) +

x2

2qa (1− x)
− 0.65

(
τc
q2a

) 1
3

x2+5
τg
τc , (6.12)

where τg and τr are the effective green time and red time, respectively. τc is the cycle

time. qa is the average arrival rate (veh/s). x = qa
Qc

is the degree of saturation. Qc is

average signal capacity which is defined by Qc = Q
τg
τc
, where Q is average service rate

(or saturation flow rate (veh/s). The first term represents the analytical expression of the

uniform delay, while the second is a characterization of the random delay, which is derived

by assuming Poisson arrivals and deterministic service rate. The last term is introduced
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to reduce the discrepancy with results observed from simulations and is assumed to be

about 10% of the sum of the first two terms (Viti and Van Zuylen, 2010).

McNeill (1968) proposed a formula for the expected signal delay for a general arrival

process, under the assumption of constant departure time. The average delay E (W ) is

calculated as:

E (W ) =
τr

2τc

(
1− qa

Q

) (τr + 2

qa
E (Q0) +

1

Q

(
1 +

I

1− qa
Q

))
, (6.13)

where E(Q0) is the expected overflow queue from previous cycles, I = σ(qa)
qa

τc indicates the

index of dispersion for the arrivals. For a binomial arrival process, I = 1− qa
Q . Regarding

the computation of delays at signalized junctions, Akcelik proposed another formula:

E (W ) =


τc
(
1− τg

τc

)2

2
(
1− qa

Q

) + E(Q0)
Qc

, x < 1;

τc−τg
2 + E(Q0)

Qc
, x ≥ 1;

(6.14)

To calculate the expected value of the overflow queue, Miller’s (1968) formula represents

one of the most popular expressions:

E (Q0) =
exp

(
−1.33

√
Q τg

1−x
x

)
2 (1− x)

(6.15)

Akcelik (1980) further simplified this expression with the following expression:

E (Q0) =
1.5 (x− x0)

1− x
, (6.16)

where x0 = 0.67 +
Qτg
600 represents the value above which overflow queues become non-

negligible. This expression is valid for x0 < x < 1, while E[Q0] = 0 for x ≤ x0. Both

Miller’s and Akcelik’s formulas assume the expectation value for the overflow to be in

equilibrium state. However, the equilibrium state may take a long time to be reached

when the demand is close to the signal capacity. This time can be so long that the arrival

distribution is unlikely to remain stationary. For this reason, static models are often

not consistent with real observations and their application is restricted to planning and

design of uncongested traffic systems. Akcelik (1980) formulated an expression that is

widely utilized for the estimation of expectation value of the temporal overflow queue. He

evaluated the temporal queue evolution by using the coordinate transformation technique:

E (Q0) =


QcT
4

(
x− 1 +

√
(x− 1)2 + 12(x−x0)

QcT

)
, x > x0;

0, x ≤ x0;
(6.17)

This model gives time dependency to the expectation of the overflow queue in a fixed time

period T in both under-saturated and over-saturated conditions.
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Figure 6.23: Delay and queue evaluation scenario

6.5.2.2 Test scenario

To evaluate the consistency of delay and queue estimations from the various models pre-

sented in this chapter, we carry out the delay and queue evaluations in this section for a

roadway segment consisting of one lane as depicted in Figure 6.23. There is a fixed-time

traffic signal with a 120 seconds cycle length and a 30 seconds effective green interval on

the segment. The roadway segment admits a nominal fundamental diagram as illustrated

in Figure 6.24. We assume that the SDs of the parameters are 10% of their nominal val-

ues. For each model, delay and queue evaluations are carried out for different degrees of

saturation ratios x varying from 0.2 to 1.5. This allows evaluations to be carried out for a

range of traffic conditions extending from highly under-saturated to highly over-saturated

conditions. For each scenario, vehicle arrivals are further assumed to follow a random

process with a constant average arrival rate. As the SCTM provides the time-dependent

queues and delays, to compare with the results obtained by the above formulas, we will e-

valuate the expected queue lengths and delays for 15 minutes time interval for all degree of

saturation ratios x considered, which has been frequently adopted by the time-dependent

models (Viti and Van Zuylen, 2009, 2010).

As we have applied the CTM based model, the condition vfTs ≤ li is required to

ensure the issue of numerical stability. This condition cannot always be satisfied in our

formulation, since the free-flow speed vf can be anything along its distribution. The

probabilistic version of the above condition is roughly defined as Pr (vfTs ≤ li) ≥ χ, where

χ is a positive real number which satisfies 1− ϵ < χ < 1 for a small real number ϵ > 0. For

physical consideration, the simulation time increment Ts and the cell length cannot be too

small. For example, if the average length of vehicles is assumed to be 8.33 meters long, then

the cell length has to be longer than 8.33 meters, and with the settings of this numerical

example, Ts cannot be smaller than 0.5 seconds. In this simulation, the simulation time

increment is 1 second, the cell length is 60 meters. We extend the stochastic version of

inflow to outflow mapping method (with FIFO queuing principle) to calculate the travel

time (Sumalee et al., 2010b). The detailed methodology will be explained in the Section

6.5.2.4.
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Figure 6.24: Nominal fundamental diagram of the segment

6.5.2.3 Simulation results

It has been reported in Dion et al. (2004) and illustrated in Figure 6.25 that there is a gen-

eral consistency between the analytical delay models when they are applied to the analysis

of signalized intersections with low saturation ratios. In addition, the agreement tends to

decrease with increasing saturation ratios. The delays obtained from these formulas are

compared against those of the SCTM approach and Monte Carlo Simulation (MCS) of

MCTM approach with 1000 samples in Figure 6.25. As suggested by Figure 6.25, the

delays obtained from the SCTM approach are close to those obtained from the MCS of

the MCTM approach. The delays obtained from the SCTM are close to those obtained

from the formulas considered when the degree of saturation is below 0.8. Note also that

the SCTM and the MCS of the MCTM produce the lowest estimations when the degree of

saturation is close to one. Similar observation can also be found in Dion et al. (2004) for

the deterministic queuing and shockwave models. There is also a great difference between

the probabilistic model proposed by Viti and Van Zuylen (2010) and the traditional delay

formulas when the degree of saturation is close to one. A common reason for all these

inconsistent results may be due to the fact that the concept of a time-dependent delay

model is based on the coordinate transformation technique which transforms the equation

defining a steady-state stochastic delay model such that it becomes asymptotic (tangent)

to the deterministic over-saturation model as illustrated in Figure 6.26 (Dion et al., 2004).

Errors and over-estimation would be introduced due to this continuous approximation.

Two more reasons may be due to the CTM/SCTM: First error source, which may not

be significant, would be the choice of cell length of the CTM/SCTM, which affects the

transient response of the traffic dynamics. Second, the summary statistics such as the

mean and standard deviation can be deceptive when applied to arbitrary signal delay

distribution. We will discuss this issue in detail in the next section.
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The consistency between the SCTM and these formulas appears again when the degree

of saturation is above 1.2. However, compared with the delay formulas listed in Section

6.5.2.1, the SCTM approach has wider application opportunities, since it can describe the

temporal evolution of the queue length distribution at signalized junctions with uncertain

supply functions while assuming any arrival distribution that can be non-stationary. The

applicability of the SCTM is not limited by a fixed evaluation period as we have shown in

the previous simulation and will be further discussed later on.

The traffic shockwave based model estimates queue lengths at signalized junctions

by tracing the trajectories of shockwaves. This kind of model successfully describes the

complex queuing process in both temporal and spatial dimensions. Nevertheless, such kind

of model has limitations in the practical applications since “perfect” inflow information is

required as input to the model. However, vehicles arrive at the signalized junction in a

stochastic dynamic manner, the above perfect information assumption cannot be satisfied

for most situations. The model proposed here can be viewed as an extension of the

existing shockwave models to estimate intersection queue lengths with stochastic dynamic

arrivals. Figure 6.27 depicts the simulation result for the estimation of average queue

length. Comparison between the result obtained by the time-dependent queue formula of

Akcelik (1980) and that obtained by the SCTM is demonstrated in Figure 6.27. The result

shows also good consistency between these two methods. The Akcelik’s queue model gives

zero queue length when x ≤ 0.67. However, the SCTM gives a nonzero but small queue

length when the degree of saturation increases to a certain level. This is because some

vehicles have to wait if they happen to arrive at the junction just before or during red

phase. When the degree of saturation is small enough, the average queue length is also

small (close to zero) but increases with respect to the increasing inflow rate.

6.5.2.4 A discussion on different kinds of probabilistic distributions of the

signal delay and the case of non-stationary inflow

In this chapter, we extend the sampling approach proposed by Sumalee et al. (2010b) to

estimate the probabilistic distribution of traffic delay (or travel time) at the signalized

junction. Their approach is a stochastic extension of the deterministic cumulative inflow

to outflow matching method under the first in first out (FIFO) principle. The probabilistic

travel time of a link is defined by the likelihood between the stochastic cumulative inflow

and outflow according to the following definition:

Definition 6.1. For a vehicle enters link a at time index k (ET = k), the proba-

bility of k′ to be the time that the vehicle exit from the link is defined as P ′
k′|k =
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Figure 6.25: Comparison of delay estimations for different degrees of saturation

Figure 6.26: Concept of the stochastic time-dependent delay model
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Figure 6.27: Comparison of the average queue lengths obtained by the SCTM with those

of Akcelik’s formula

Pr (−ε ≤ Caout(k′)− Cain(k) ≤ ε|ET = k), with a prescribed small positive number ε ∈ R+.

The matching error ek(k
′) = Caout(k

′) − Cain(k) represents the difference between the

stochastic cumulative link inflow Cain(k) and outflow Caout(k
′). The physical meaning of the

P ′
k′|k is the probability that the absolute value of the mapping error to be no greater than

ε vehicles. Detailed choice of mapping interval k′ ∈ [klb, kub] can be found in Sumalee et al.

(2010b), we omit it here for brevity. Note that the summation of the probabilities
∑

k′ P
′
k′|k

may not equal to one, which introduces the following definition of relative frequency:

Definition 6.2. For a vehicle entering link a at time k, the relative frequencyPk′|k is

defined as:

Pk′|k =
P ′
k′|k∑kub

klb
P ′
k′|k

, ∀k′ ∈ [klb, kub]. (6.18)

By definitions 6.1-6.2, we can construct the probability mass function (PMF) and the

corresponding cumulative mass function (CMF) of the link travel time for traffic entering

the link at time index k (strictly speaking k is an interval). To illustrate the methodology,

we depict a collection of cumulative inflow and outflow distributions in Figure 6.28. As we

can observe from the figure, there would be two kinds of stochastic travel time distributions

for a signalized link. In the figure, the travel time distribution for the vehicle enters the
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Figure 6.28: An illustration of choice of the “sampling” process

link at time k that would exit from the link almost before the red phase, i.e. the sample

region [klb, kub] falls in the green phase, is a skew normal distribution as illustrated in

Figure 6.29. The other kind of travel time distribution happens when the vehicle enters

the link at time l that has a chance to exit from the link before or after the red phase of

the signal. As expected, this kind of distribution would be bimodal like distribution (or

a skew normal distribution truncated by the red signal phase) as demonstrated in Figure

6.30.

As illustrated in Figure 6.30, the PMF of the signal delay is defined to be zero in

the red phase since the traffic is not allowed to outflow in the red phase of the signal.

Most of the existing methods, including what we have applied to estimate the signal

delay in Section 6.5.2.3, model the dynamic signal delay by a uni-modal distribution, e.g.

Figure 6.29. However, it would be somehow unjustified when a uni-modal distribution is

applied to estimate the bimodal like distribution depicted in Figure 6.302. For example,

the distribution in Figure 6.30, the mean and median would fall in the red phase, even

though the traffic cannot leave the link at that time. The standard deviation would

be also unreasonably large, which does not reflect the true variance of the signal delay.

Therefore, it is interesting for us to provide the travelers with the most optimistic and/or

pessimistic delays that would be encountered from investigating this kind of distribution

for the purpose of real time applications, e.g. route guidance and traffic control.

In the following test, we specify the non-stationary inflow to the roadway segment as

uin(k) = A sin

(
(k + 30)π

NT

)
, ∀ k ∈ [1, NT ] , (6.19)

2 Bimodal distributions are a commonly used example of how summary statistics such as the mean and

standard deviation can be deceptive when applied to an arbitrary distribution.
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Figure 6.31: Estimated queue length and its 68% confidence interval

where A=700, and NT denotes the simulation horizon, which is chosen to be 30 min (or

1800 steps) in this example. We assume the SD of the inflow at each time is 5% of its

nominal value. The estimated queue length is depicted in Figure 6.31.

We calculate the average delay for non-stationary inflow traffic volumes. We assume

the inflow is given by (6.19) with different amplitudes and define the time average inflow

as the average arrival rate, that is,∫ T
0 A sin (ωt+ φ0) dt

T
= qa.

The degree of saturation is then defined in line with Section 6.5.2.3. In line with the

previous test, we evaluate the average delay for 15 minutes time interval. To accommodate

the overflow queues at high arrival rates, we lengthen each of the cells to 100 meters long.

Figure 6.32 depicts the average delays obtained by the SCTM against the approxima-

tion formulas for non-stationary inflow traffic volumes and the MCS of the MCTM with

{50, 1000} samples. As expected, when the arrival rates are low, the results are consisten-

t. Different from the test in Section 6.5.2.3, i.e. Figure 6.25, the SCTM estimates larger

delays than the coordinate transformation based methods does when degree of saturation

is larger than 0.8, e.g. the Akcelik’s formula. Note also that the MCS of the MCTM

approach produces even larger delays than the SCTM approach. Generally, the delays

obtained by these two approaches get closer as the sample size of the MCS approach be-

comes larger. The computational time of the SCTM approach is almost the same with
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Figure 6.32: Comparison of delay estimations for different degrees of saturation (non-

stationary inflows

that of the MCS of the MCTM approach with 50 samples. However, the computational

time of the MCS approach does not increase linearly with respect to the sample size. The

coordinate transformation based methods, e.g. the Akcelik’s formula, underestimate the

delays for non-stationary inflow traffic volumes when the degree of saturation is larger

than 0.8 (Akcelik and Rouphail, 1993; Rouphail et al., 2000; Brilon and Wu, 1990). As

explained in Figure 6.26, when the degree of saturation is high (above 1.2), the delays tend

to those obtained by the deterministic queuing model. The results show good consistent

again.

6.6 Conclusions

The SCTM is extended to model the stochastic traffic dynamics of a traffic network with

stochastic demand and supply in this chapter. The original SCTM for one freeway seg-

ment consisting of two cells is defined as one basic subsystem of a traffic network. Four

basic functional blocks of a traffic network, i.e. freeway corridor, on-/off- ramps (traffic

merge/diverge), signalized junction, are identified. A long freeway corridor is represented

as a system connected by several basic SCTM subsystems. For ramps with heavy traffic,

we consider the ramps as SCTM subsystems. An isolated signalized junction is divided

into several SCTM subsystems. Each of these subsystems consists of several phases ac-
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cording to the signal phase under certain assumptions. A traffic network is modeled by

all these basic functional blocks. The SCTM subsystems accept the means and variances

of the stochastic travel demand and supply functions as exogenous inputs, which in turn

produce cell traffic densities and outflow of the roadway segment in terms of mean and

variance as well as the probabilities of occurrence of different operational modes. In the

first numerical example, we demonstrate that the proposed network SCTM can be used

as a stochastic dynamic traffic network model for traffic control and management. The

uncertain traffic dynamics and probabilistic wave-fronts are captured. In the second test,

the model is applied to estimate queues and delays at signalized intersections. Comparison

with some traditional delay and queue estimation formulas is conducted. The numerical

results show good consistency between the SCTM and these formulas. However, compared

with these delay and queue formulas the SCTM approach has wider application oppor-

tunities, since it can describe the temporal evolution of the queue length distribution at

signalized junctions with uncertain supply functions by assuming any arrival distribution,

which can be non-stationary. Two kinds of dynamic delay distributions are found, i.e.

skew normal distribution and bimodal like distribution. The summary statistics such as

the mean and variance can be deceptive when applied to the second kind of distribution.

These are several potential applications of the SCTM. For the surveillance purpose,

the SCTM can be utilized to provide a short-term prediction using the historical and

on-line data of travel demand and traffic state. The prediction (in terms of travel time

and traffic state) under the SCTM considers both demand and supply uncertainties in

the future time-step. This allows traffic operators to monitor and devise robust control

strategies for freeways. For the dynamic traffic assignment and control, we will extend

the SCTM framework to model traffic flows on a general network. The key operational

benefit of the SCTM for traffic assignment purpose is the potential continuity of the delay

operator which is not the case for the deterministic CTM (due to the potential blocking

back condition of an arterial). This is due to the introduction of the stochastic delay

in the SCTM which can also be considered as a better paradigm for a long-term traffic

prediction. In the next chapter, we will discuss the decision making problem for traffic

management under the demand and supply uncertainties.
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Appendix: notations adopted in this chapter

Notations

mix Finite mixture distribution

Pr(·) Probability evaluation

qu,j Inflow to the upstream boundary of subsystem j,

with ρu,j the corresponding density

qd,j Outflow from the downstream boundary of subsystem j,

with ρd,j the corresponding density

ron,j Measured on-ramp flow to subsystem j

roff,j Measured off-ramp flow from subsystem j

s Operational mode of the SCTM, s = FF,CC,CF, FC1, FC2

ρc,i Critical density of cell i

ρJ,i Jam density of cell i

wJ,i Backward wave speed of cell i

vf,i Free-flow speed of cell i

QM,i Capacity of cell i

Ps(k) Probability of occurrence of mode s at time k

ρ̄(k) Vector of joint traffic density at time

k with µ(k) the corresponding mean

θs(k) Extended state of mode s

Sj(k) Sending function of subsystem j

Raj (k) Receiving function of subsystem j

gR(·) Probability density function of receiving function

dj(k) On-ramp demand to node (or subsystem) j at time k

fj(k) Off-ramp demand from node (or subsystem) j at time k

rj(k) Actual on-ramp flow to node (or subsystem) j at time k

faj (k) Actual off-ramp flow from node (or subsystem) j at time k

Q
fj
1 Capacity of the first cell of off-ramp connected to node j

w
fj
1 Backward wave speed of the first cell of off-ramp connected to node j

ρ
fj
J,1 Jam density of the first cell of off-ramp connected to node j

ρ
fj
1 Density of the first cell of off-ramp connected to node j

P
fj
y (k) Probability of occurrence of off-ramp event y at time k

f
fj
y (k) Off-ramp flow of off-ramp event y at time k

P
rj
x (k) Probability of occurrence of on-ramp event x at time k

d
rj
x (k) On-ramp flow of on-ramp event x at time k
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Chapter 7

Traffic management under demand

and supply uncertainties

This chapter investigates the decision making for traffic management under demand and

supply uncertainties. The problem is formulated as a stochastic dynamic programming

problem. The stochastic traffic flow under demand and supply uncertainties is described by

the proposed SCTM. To be more specific, we represent the SCTM as a class of discrete time

stochastic bilinear systems with Markov switching. Based on this model, we investigate

the optimal decision making for traffic management of a freeway segment. A closed form

of optimal control law is derived in terms of a set of coupled generalized recursive Riccati

equations. As the optimal control laws may be fragile with respect to the model miss-

specifications, we further pursue a robust (optimal) decision making law which is aimed

to act robust with respect to the parameter miss-specifications in the traffic flow model

(which can be originated from the calibration process), and to attenuate the effect of

disturbances in the freeway network (where demand uncertainty is usually taken as a

kind of disturbance). This robust decision making problem can be also recognized as an

equivalent optimal decision making problem. Finally, we list some practical issues in traffic

management that can be addressed by extending the current framework.

7.1 Motivation and introduction

There are several categories of traffic management schemes to alleviate traffic congestion.

Among these schemes, road pricing, ramp metering, and urban traffic signal control are

frequently applied to regulate the traffic flows on urban transportation networks to improve

their efficiency. Road pricing has also been shown to be an efficient approach to traffic

demand management and control (see e.g. Lindsey (2006); Tsekeris and Voß (2009) and
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the references therein). The ramp metering and urban traffic signal control schemes are,

however, concentrated on regulating the supply side of a transportation network. Ramp

metering aims to improve the freeway traffic conditions by regulating ramp flows to the

freeway mainstream and flows at freeway-to-freeway intersections. As commented by

Papageorgiou and Kotsialos (2002), the objective of ramp metering schemes is to operate

the freeways at their capacities (capacity flows on the freeways during the peak hours) at

the price of introducing short delays at the on-ramps and freeway-to-freeway intersections,

which leads to substantial savings of travel time for each individual road user. Urban traffic

signal control strategies intend to optimize the (network-wide) traffic signal timing of an

urban arterial road network to reduce the total travel time and delay experienced by

vehicles (Papageorgiou et al., 2003).

In literature, these three major categories of traffic management schemes are developed

independently. However, in practice a traffic network would have all these traffic manage-

ment schemes simultaneously or at least a hybrid of them. It would be interesting for us

to look into the performance of hybrid combinations of these traffic management schemes.

By using the cell transmission model (CTM) as the network loading model, Varaiya (2008)

compared the performance of four congestion-reducing schemes for a freeway with three

lanes (where the case with uncontrolled ramps and no tolls was considered as the base

case): (R) ramp control only; (T) one lane is tolled and ramps are uncontrolled; (B)

bottlenecks are tolled and ramps are uncontrolled; and (RB) ramps are controlled and

bottlenecks are tolled. It was found that

1. Scheme (T) is inefficient and may leave all travelers worse off in the following sense.

As explained in Chapter 4, the tolled travelers should experience no congestion delay

when traveling on the tolled lane. Demand on the two free lanes will increase which in

turn yields the traffic on the free lanes be settled to the most congested equilibrium.

These lanes will become congested throughout their length. As a consequence, the

tolled lane must extend all along the freeway, which is a waste of the freeway capacity.

All travelers (except for those with a very high value of travel time or tolled travelers)

will be worse off.

2. Schemes (R), (B) and (RB) can achieve efficient freeway use to different levels:

Scheme (R) can achieve efficient use of the freeway by keeping traffic flow on the

freeway strictly below its capacity. Further more, a ramp metering strategy

can achieve an uncongested equilibrium at a small capacity loss while causing

a deadweight welfare loss from queuing delays at the metered ramps.
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Scheme (B) can eliminate queues, but has adverse spatial and equity side effects.

When the bottlenecks are tolled, as discussed in Chapter 4, the queues will be

eliminated. In this sense, the bottleneck toll achieves both efficient use of the

freeway and eliminates the deadweight loss of queuing delay at ramps. However,

as commented by Varaiya (2008) implementation difficulties and adverse spatial

and equity side effects reduce the attractiveness of bottleneck tolls. For the

implementation aspect, for example, a freeway would have several bottlenecks

and imposing a toll on each of them will render the travelers try to avoid the

bottleneck tolls by exiting the freeway before the tolled sections. The bottleneck

could be moved upstream or a new bottleneck would be created. “Furthermore,

the streets leading from these exits will carry more traffic, which may create

new congestion and public opposition.” as claimed by Varaiya (2008). The

analysis of equity side effect is more complex, and discussing this issue is out

of the scope of this chapter.

Scheme (RB) minimizes the adverse spatial and equity side effects of the pure bot-

tleneck toll scheme and is likely to be least costly to implement and maintain.

Roughly speaking, this scheme imposes ramp metering control to ensure that

traffic flows on the freeways are free-flowing. The consequence of doing this is

creating queues at ramps. The bottleneck tolls are implemented to eliminate

these queues. As a matter of fact, the RB scheme can be viewed as a com-

bination of the demand (i.e. tolling) and supply (i.e. ramp metering control)

management schemes.

Ramp metering control strategies can be classified as fixed-time scheme or traffic-

responsive scheme1 (see Papageorgiou and Kotsialos (2002); Papageorgiou et al. (2003) for

an overview of the ramp metering control strategies). Fixed-time strategies are derived

off-line for particular times of the day, based on simple static models and the available

historical data on the demand and supply sides. Due to the absence of real-time mea-

surements and their static nature (derived from static models and cannot respond to the

real-time traffic condition), fixed-time strategies may lead either to overload of the main-

stream flow (and thus cause congestion) or under-utilization of the freeway (Papageorgiou

and Kotsialos, 2002; Gomes, 2004). Owning to the drawback of fixed-time strategies,

1Some authors categorized ramp metering control strategies into predictive and reactive strategies.

The reactive type is corresponding to the traffic-responsive or feedback scheme, while predictive type

is corresponding to the fixed-time scheme. A detailed review on predictive on-ramp metering control

strategies can be found in Gomes (2004).
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traffic-responsive ramp metering strategies are preferred. Based on real-time measure-

ments from sensors (or other intelligent transportation system infrastructures) installed,

traffic-responsive ramp metering strategies are developed by adjusting the control to react

to the real-time traffic condition. In terms of control method and information used, it

can be further classified as reactive strategies or proactive strategies. The former aims

at maintaining the freeway traffic conditions close to pre-specified (or desired) values by

adjusting the metering rates (or control) using real-time measurements, while the later

aims at specifying optimal traffic conditions for a freeway or a freeway network based

on demand and model predictions over a sufficiently long time horizon (Smaragdis et al.,

2004).

In terms of network topology, ramp metering strategies can be further classified as

local or coordinated schemes. Local strategies make use of traffic measurements of the

current ramp and its adjacent ramps to adjust the corresponding individual ramp me-

tering rates while coordinated strategies make use of all traffic measurements from the

freeway network (or part of the network to coordinate). Compared with the coordinated

ramp metering strategies, local strategies are far more easy to design and implement. It

has been proved that, under recurrent traffic congestion conditions, the performance of

local ramp metering, e.g. the ALINEA—a local traffic-responsive ramp metering algorith-

m, is close to that of the coordinated approach, e.g. the METALINE—the coordinated

version of ALINEA (Papageorgiou and Kotsialos, 2002; Papageorgiou et al., 2003). For

the purpose of freeway management, the control efficiency of local ramp metering with

unlimited (or sufficiently high) ramp storage could would be very high (Papageorgiou

and Kotsialos, 2002; Papageorgiou et al., 2003). However, attentions should be paid to

the concomitant side effects, e.g. unfairly long waiting times at that particular ramp.

Ramp queues must also be restricted to avoid interference with adjacent street traffic

when we apply local ramp metering. For these reasons, coordinated ramp metering is

proposed to address these issues (Papageorgiou and Kotsialos, 2002; Papageorgiou et al.,

2003; Papamichail and Papageorgiou, 2008; Papageorgiou et al., 2008b). Despite their

complex structure and implementation issues, the coordinated ramp-metering strategies,

e.g. the METALINE and SWARM (System Wide Adaptive Ramp Metering), are more

efficient than the local ramp-metering strategies when there are multiple bottlenecks on

the freeway, restricted ramp storage spaces, and non-recurrent congestions Papageorgiou

and Kotsialos (2002); Papageorgiou et al. (2003); Papamichail and Papageorgiou (2008);

Papageorgiou et al. (2008b). The optimal on-ramp flows is obtained through minimizing

objective functions such as total time spent (TTS) under limited ramp storage space re-
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striction. The problem can be converted to a model-based optimal control formulation

which can be solved and implemented in the generic Advanced Motorway Optimal Control

(AMOC) tool (Kotsialos et al., 2002; Kotsialos and Papageorgiou, 2004). As required by

optimal control theory, this approach requires a perfect model calibration and a perfect

information with respect to the future disturbances (i.e., demand and exit-rate profiles).

However, freeways are exposed to various demand and supply uncertainties. Due to var-

ious inherent uncertainties (including the capacity uncertainty), the open-loop optimal

solution delivered by optimal control theory becomes suboptimal when directly applied to

the freeway traffic process. The efficiency of optimal control based strategies increasingly

deteriorate with increasing disturbance-prediction and modeling errors. For example, in

view of the uncertainty of highway capacity, any ramp metering strategy attempting to

achieve a pre-specified capacity flow value, will either lead to overload and congestion or

to under utilization of the infrastructure. However, as it is widely recognized in control

theory and application (see e.g. Kotsialos et al. (2002)), as a control law, the applied

traffic control strategy should be intelligent and robust enough to the uncertainties, and

if possible, be optimal. When the network size becomes large, it is unlikely for us to con-

sider it as a single system to optimize its performance due to the sophisticated network

dynamics and interactions between the actuators, sensors, and the traffic control center

and/or commercial constraints. Due to their geographically distributed and uncertainty in

a dynamic environment, traffic networks are well suited for the concept of multiagent sys-

tem (MAS). Applications of MAS to transportation networks were reviewed by Schleiffer

(2002); Chen and Cheng (2010).

In this chapter, we will develop some policies to support decision making for traffic

management under demand and supply uncertainties. The proposed policies can be ram-

p metering control and/or (flow-dependent) dynamic congestion pricing. The uncertain

demand profiles are modeled as external disturbances. With respect to this demand un-

certainty, the controller aims to achieve disturbance attenuation, that is to minimize the

effect of the disturbances. With respect to the supply uncertainty, the controller aims

at the robust property. The optimal decision problem is formulated as a stochastic opti-

mal control problem based on stochastic dynamic programming problem. The stochastic

traffic flow under demand and supply uncertainties is described by the SCTM proposed

in Chapter 5. We investigate the optimal decision making for traffic management of a

freeway segment. As the optimal control may be fragile with respect to the model miss-

specifications, we further pursue a robust (optimal) decision making law which is aimed

to act robust with respect to the parameter miss-specifications in the traffic flow model
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(which can be originated from the calibration process), and to attenuate the effect of dis-

turbances in the freeway network (where demand uncertainty is usually taken as a kind

of disturbance). Finally, we list some practical issues in traffic management that can be

addressed by extending the current framework, e.g. the MAS approach to access the traffic

management for general traffic networks.

7.2 The SCTM as a Markov switching state space model

Following the previous chapters, the dynamics of the SCTM is propagated by a class of

discrete time bilinear systems in conjunction with a finite mixture distribution of five

Gaussian random vectors corresponding to the five events (or the five operational modes

of the freeway segment). Actually, as explained in Chapter 5, we can divide one SCTM

system into three functional blocks, i.e. the five operational modes represented by a class

of stochastic bilinear systems, the probabilities of occurrence of the five modes, and a finite

mixture distribution. The finite mixture distribution is employed based on the justification

that, based on the Wiener approximation theorem, any non-Gaussian distribution can be

expressed as, or approximated sufficiently well by, a finite sum of known Gaussian densities,

which is summarized by Anderson and Moore (1979) in their book “Optimal Filtering” in

the following lemma:

Lemma 7.1. Any probabilistic density p(x) associated with an n-dimensional vector x

can be approximated as closely as desired by a density of the form

pA(x) =
k∑
i=1

aiN (x̄i,Σi) , (7.1)

for some integer k, and positive scalars ai with
∑k

i=1 ai = 1.

The finite mixture distribution is also widely employed to approximate/estimate the

“overall” effect of the switching state space models, e.g. the mixture Kalman filtering,

particle filtering with finite mixture, etc, which have wide application in bioinformatics,

biology, economics, finance, hydrology, marketing, medicine, and engineering (Frühwirth-

Schnatter, 2006; Costa et al., 2005). Due to the Markovian property of the model, the

dynamic process of the SCTM with finite mixture distribution can be classified as a finite

Markov mixture distribution process which is a special case of the Markov switching state

space models (Harrison and Stevens, 1976; Timmermann, 2000; Frühwirth-Schnatter, 2006;

Costa et al., 2005).

Remark 7.1. In fact, such kind of models belong to the basic Markov switching state

space models based on hidden Markov chains. Various terminologies have been adopted
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to denote such models. The term finite Markov mixture models is preferred by biologists.

Finite Markov mixture models are usually called hidden Markov models in engineering

applications. The terms Markov switching models or regime-switching models are pre-

ferred by economists who used Markov switching models to analyze stock market returns,

interest rates, etc. The kind of process is also known as Markov jump system (or stochas-

tic hybrid systems, hybrid dynamic Bayesian networks) in control and telecommunication

engineering.

Before we classify the dynamics of SCTM into such kind of Markov switching state

space models, we first give some intuitive justification on doing this. The basic idea of a

Markov switching state space model is that a priori no single model is expected to hold for

all time indices, rather the possibilities that different modes hold at different time points

are explicitly recognized by modeling the hidden model indicator and the corresponding

transition matrices as being dynamic over time. This basic idea coincides with the starting

point of the SCTM, wherein the five possible operational modes with different probabilities

of occurrence already written in state space form. If we identify the operational modes

as different models in the Markov switching state space model and the (time-varying)

probabilities of occurrence as the dynamic hidden model, we can recognize the SCTM as

a special case of the Markov switching state space model. The operational modes jump

between possible values following a discrete-time Markov chain with certain transition

probabilities.

A switching nonlinear Gaussian state space model is based on the state space form,

however, the detailed dynamics (or the system matrices of the SCTM, each mode has dif-

ferent system matrices) are driven by a hidden model indicator θ(k). To better understand

this dynamics, we represent the SCTM in a compact form as the following discrete-time

Markov jump bilinear dynamic system driven by white noises which represent the demand

and supply uncertainties:

ρ(k + 1) =

(
Aθ(k) +

v∑
s=1

Aθ(k),sωs(k)

)
ρ(k) +

(
v∑
s=1

Bθ(k),sωs(k)

)
λ(k) +Bθ(k)u(k),

ρ(0) = ρ0, θ(0) = θ0, (7.2)

where u(k) denotes the uncertain demand and ω(k) and λ(k) denote the uncertain sup-

ply to the freeway segment, and θ(k) indicates the five operational modes, respective-

ly. {θ(k), k = 1, · · · , N} is a sequence of random variables, allowed to take values

in the discrete space. In the SCTM case, this space is the five operational modes, i.e.

θ(k) = {1, 2, 3, 4, 5}, where 1 represents the FF mode and 2 represents the CC mode, 3

denotes the CF mode, 4 denotes the FC1 mode, and 5 represents the FC2 mode. The

205



corresponding system matrices are specified in Chapter 5. To complete the model specifi-

cation without introducing too many mathematical jargons, we impose some probabilistic

structure on the transition probability matrix ξ(k) = [pi,j(k)], where pi,j(k) is thus defined

pi,j(k) = Pr (θ(k) = j|θ(k − 1) = i) . (7.3)

To explain the physical meaning of this probability, for example, we denote i the FF mode

and j the CC mode. Then pi,j(k) denotes the probability that the freeway segment would

transfer to CC mode at the next time step k given the current free-flowing condition. By

definition, all elements of ξ are nonnegative and the elements of each row sum to 1:

pi,j(k) ≥ 0,
5∑
j=1

pi,j(k) = 1.

Note that, in Chapter 5, we only define the probabilities of occurrence of the five opera-

tional modes without specifying the transition probabilities between modes. Actually, this

renders the SCTM (finite mixture distribution) as a special case of the Markov switching

state space models with the following transition matrix:

ξ(k) =



PrFF (k) PrCC(k) PrCF (k) PrFC1(k) PrFC2(k)

PrFF (k) PrCC(k) PrCF (k) PrFC1(k) PrFC2(k)

PrFF (k) PrCC(k) PrCF (k) PrFC1(k) PrFC2(k)

PrFF (k) PrCC(k) PrCF (k) PrFC1(k) PrFC2(k)

PrFF (k) PrCC(k) PrCF (k) PrFC1(k) PrFC2(k)


. (7.4)

7.2.1 A model reduction of the SCTM for control and filtering

As shown in the previous section, the whole transition matrix is not well defined in the

SCTM when it is taken as a Markov switching state space model. One way to approach

the control problem of the SCTM is to consider it as a Markov jump system with partly

unknown transition probabilities, e.g. rather than consider it as PrFF (k), we take the

transition probability from CC mode to FF mode as an unknown transition probability.

The transition matrix is then

ξ(k) =



PrFF (k) ? ? ? ?

? PrCC(k) ? ? ?

? ? PrCF (k) ? ?

? ? ? PrFC1(k) ?

? ? ? ? PrFC2(k)


. (7.5)

The elements of each row sum to 1. However, the control problem would be too compli-

cated and computationally expensive. We refer the readers to some pioneer works, e.g.

Zhang and Boukas (2009a,b), on this subject.
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Another way to access the control and filtering problems is to reduce the modes of

the SCTM similar to Sun et al. (2003); Sun (2005), where only the two-steady modes, i.e.

FF and CC modes, are retained while the other three transient modes are ignored. This

approach has been validated by some empirical studies and interfaced with various data

sources and traffic simulators (Sun et al., 2003; Sun, 2005). Under such circumstance, the

transition matrix can be defined as

ξ(k) =

 PrFF (k) 1− PrFF (k)

1− PrCC(k) PrCC(k)

 . (7.6)

7.2.2 A refinement of the control variables

As for decision making under different purposes, we have different control variables. For

example, in ramp metering control, we usually do not control the mainstream flows of

freeways, instead, we control the on-/off- ramp flows2 to achieve the prescribed objective.

However, in the derivation of the SCTM, we include the mainstream flows in the control

vector. When road pricing scheme is used to optimize the performance of a freeway

corridor, we can charge the drivers at the mainstream and on-ramps of the freeway but

not at the off-ramps. Therefore, it is necessary for us to refine the control variables for

different purposes.

For the freeway ramp metering control, the mainstream flows are now taken as dis-

turbance ω(k) =

 qu(k)

qd(k)

 . The weighting matrices for this disturbance vector are

C1(k) =



Ts
l1

0

0 0
...

...

0 0


p×2

for the FF mode and C2(k) =


0 0
...

...

0 −Ts
lp


p×2

for the CC mod-

e. The control variables are the on-/off- ramp flows u(k) =

 re(k)

fe(k)

. The weighting

2Most of the time only the on-ramps are metered. Recently, Li et al. (2009) proposed a mixed integer

model for an integrated control between off-ramp and arterial traffic flows. The off-ramps are controlled

to minimize the queue spillback from off-ramps to the freeway mainline that may significantly degrade

the performance quality of the entire freeway system. Here we choose off-ramps as control variables to

optimize the performance of freeway-to-arterial intersections. This could be important when we go to the

multiagent settings as depicted in Figure 7.3, i.e. to coordinate the performance of freeway systems and

urban arterials.
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Figure 7.1: Different on-ramp metering control structures for different congestion modes

of the SMM. Source: Sun (2005)

matrices for this control vector are B1(k) =



0 0
...

...

Ts
lb

0
...

...

0 − Ts
le+1

...
...

0 0


p×2

for the FF mode and

B2(k) =



0 0
...

...

Ts
lb−1

0
...

...

0 −Ts
le

...
...

0 0


p×2

for the CC mode.

To demonstrate the application of SCTM to ramp metering control for a freeway

segment, let’s consider a freeway segment consisting of two cells and one on-ramp. As

depicted in Figure 7.1, in the SMM different on-ramp metering control structures are

applied for different congestion modes (Sun, 2005). For the FF mode, the downstream

traffic density is required for feedback on-ramp metering control design while the upstream

traffic density is required for the CC mode. In the SCTM, due to the the Markov switching

model, these two modes are possible but with different probabilities of occurrence. Both

the upstream and downstream traffic densities are required for the on-ramp metering

control design as shown in Figure 7.2. As it will be shown in the forthcoming section, the

control actually depends on these probabilities of occurrence.
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Figure 7.2: A unified on-ramp metering control structure for the SCTM

7.3 A stochastic optimal control framework for the SCTM

7.3.1 The problem formulation and basic assumptions

The optimal control problem for such kind of discrete-time stochastic bilinear system with

Markov switching has been studied in several articles in control theory recently (Costa

and Wanderlei, 2007; Hou et al., 2010). However, due to the fact that the SCTM is not

in the same form of systems studied in the cited papers, we cannot apply their results

directly. Instead, we have to extend their results for the SCTM. In this chapter, we will

develop an optimal control framework for the SCTM based on the stochastic dynamic

programming3, i.e. (7.62). In most situations, a quadratic objective function is chosen for

control engineering practice and traffic flow control practice (Papageorgiou and Kotsialos,

2002; Papageorgiou et al., 2003; Sun, 2005; de Oliveira and Camponogara, 2010). The

objective function aims to minimize the total time spent and the risk of over saturation

and the spillback of link queues. This approach is referred to as the LQ4 (Linear Quadratic

control) in control theory and was used to design a coordinated ramp-metering control

(Papageorgiou and Kotsialos, 2002; Papageorgiou et al., 2003). Therefore, in this chapter,

we formulate the optimal control problem for the SCTM as

min
u
V (ρ0, θ0, u0) =

N∑
k=0

E
(
ρT (k)Qθ(k)(k)ρ(k) + Lθ(k)(k)ρ(k)

)
+

N−1∑
k=0

E
(
uT (k)Mθ(k)(k)u(k) +Hθ(k)(k)u(k)

)
, (7.7)

3A brief introduction to the stochastic dynamic programming is given in the appendix of this chapter.
4The linear objective function case which aims to minimize the total travel time (TTT) or total time

spent (TTS) can be regarded as a special case.
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subject to

ρ(k + 1) =

(
Aθ(k) +

v∑
s=1

Aθ(k),sωs(k)

)
ρ(k) +

(
v∑
s=1

Bθ(k),sωs(k)

)
λ(k)

+ Cθ(k)ω(k) +Bθ(k)u(k), ρ(0) = ρ0, θ(0) = θ0, (7.8)

where Qθ(k), Lθ(k)(k), Mθ(k)(k), Hθ(k)(k) are weighting matrices to be specified according

to different design purposes, see e.g. Papageorgiou and Kotsialos (2002); Kotsialos et al.

(2002,b); Kotsialos and Papageorgiou (2004); Papageorgiou et al. (2003); Sun (2005);

Papamichail and Papageorgiou (2008); Carlson et al. (2010) and the references therein.

To apply the stochastic dynamic programming framework (or Bellman’s optimality

condition), we define the following intermediate problem

min
u
V (ρ(τ), θ(τ), τ) =

N∑
k=τ

E
{(
ρT (k)Qθ(k)(k)ρ(k) + Lθ(k)(k)ρ(k)

)
|Bτ

}
+

N−1∑
k=τ

E
{(
uT (k)Mθ(k)(k)u(k) +Hθ(k)(k)ρ(k)

)
|Bτ

}
, (7.9)

subject to (7.8), where Bτ is the σ-field
5 generated by the random variables {ρ(t), θ(t); t =

0, · · · , τ}, so that Bk ⊂ Bk+1 ⊂ F with F denotes the set of F-measurable random

variables. The problem (7.9)-(7.8) need to be well posed, which is defined as follows (Ait

Rami et al., 2002):

Definition 7.1. The problem (7.9)-(7.8) is well posed if

V (ρ0) = inf
u
V (ρ0, u0, · · · , uN−1) > −∞,

for any random variable ρ0 which is independent of the noises ωs(k), ω(k), λ(k), k =

0, 1, · · · , N − 1.

The well-posedness of the intermediate problem can be similarly defined, see e.g. Costa

and Wanderlei (2007).

To simplify the analysis, we impose the following assumption (Costa et al., 2005):

Assumption 7.1. Assume that for any measurable functions f and g,

E (f (ν(k)) g (θ(k + 1)) |Bk) = E (f (ν(k)|Bk))

r∑
j=1

pθ(k),j(k)g(j). (7.10)

Assumption 7.1 is somehow “abstract”, to explain its mathematical and physical mean-

ings we provide an intuitive example as:

5Several rigorous definitions and basic results from probability theory which are used in the develop-

ments of this chapter can be found in Costa et al. (2005); Dragan et al. (2010).
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Example 7.1. Consider a simple discrete-time bilinear stochastic system with Markov

switching

x(k + 1) = Aθ(k)x(k) +Bθ(k)x(k)ωe(k), (7.11)

where ωe(k) is a scalar white noise sequence satisfying E(ωe(k)) = 0, and E
(
ω2
e(k)

)
= 1.

Let Ve (x(k), θ(k), k) = xT (k)Pθ(k)x(k) be an scalar objective function with Pθ(k) = Pi

when θ(k) = i, ∀i = 1, 2, · · · , r, and r is the number of possible modes. Given a realization

of the state xk at time k and possible mode θ(k) = i, we have

E (Ve (x(k + 1), θ(k + 1), k + 1|Bk))

, E (Ve (x(k + 1), θ(k + 1), k + 1|xk, θ(k) = i))

=

r∑
j=1

Pr{θ(k + 1) = j|θ(k) = i}xTk
(
ATi PjAi +BT

i PjBi
)
xk

=
r∑
j=1

Pi,j(k)x
T
k

(
ATi PjAi +BT

i PjBi
)
xk

= xTk
(
ATi Ei(P, k)Ai +BT

i Ei(P, k)Bi
)
xk, (7.12)

where Ei(P, k) is defined by (7.13).

7.3.2 Definitions of operators

In this chapter, we define the following notations

E(ωs(k)) = ω̄s(k), E(ωs(k)ωs(k)) = σs(k), E(ωs1(k)ωs2(k)) = σs1,s2(k),

for the noise sequences. Instead of dealing directly with the system state, we express the

system in the Markovian framework via the augmented state (ρ(k), θ(k)), and define the

following operators:

Ei(X, k) =

r∑
j=1

pi,j(k)Xj , (7.13)

Ai(X, k) = Qi(k) +ATi Ei(X, k)Ai + 2ATi Ei(X, k)
v∑
s=1

ω̄s(k)Ai,s

+

v∑
s1=1

v∑
s2=1

σs1,s2(k)A
T
i,s1Ei(X, k)Ai,s2 , (7.14)

G1i (X, k) = ATi Ei(X, k)
v∑
s=1

ω̄s(k)Bi,s +

v∑
s1=1

v∑
s2=1

σs1,s2(k)A
T
i,s1Ei(X, k)Bi,s2 , (7.15)

G2i (X, k) = ATi Ei(X, k)Ci +
v∑
s=1

ω̄s(k)A
T
i,s1Ei(X, k)Ci, (7.16)

G3i (X, k) =

(
ATi Ei(X, k)Bi +

v∑
s=1

ω̄s(k)A
T
i,sEi(X, k)Bi

)T
, (7.17)
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Ri(X, k) = BT
i Ei(X, k)Bi +Mi(k), (7.18)

Zi(X, k) =
v∑

s1=1

v∑
s2=1

σs1,s2(k)B
T
i,s1Ei(X, k)Bi,s2 , (7.19)

Ti(J, k) =

(
Li(k) + Ei(J, k)

(
Ai +

v∑
s=1

ω̄s(k)Ai,s

))T
, (7.20)

H1
i (J, k) = (Hi(k) + Ei(J, k)Bi)T , (7.21)

H2
i (J, k) = Ei(J, k)

(
v∑
s=1

ω̄s(k)Bi,s

)
, (7.22)

H3
i (J, k) = Ei(J, k)Ci. (7.23)

7.3.3 Derivation of an optimal strategy

For the case in which the state ρ(k) is available to the controller, the solution of the

quadratic optimal control problem has been solved in the literature. In terms of Bellman’s

optimality principle, the optimal control is given by solving a set of recursive coupled

Riccati difference equations. Before we prove the Bellman’s optimality condition for this

optimal control problem, we first prove the following proposition in line with Costa and

Wanderlei (2007); Costa and Okimura (2009).

Proposition 7.1. Let P = (P1, · · · , Pr), J = (J1, · · · , Jr) be matrix functions of appro-

priate dimension whose elements are real valued function of θ(k) and γ is a scalar real

valued function of θ(k). For any admissible control, u(k) = u6, ρ(k) = ρ, and θ(k) = i, we

have that

ρTQi(k)ρ+ Li(k)ρ+ uTMi(k)u+Hi(k)u

+ E
(
ρT (k + 1)Pθ(k+1)ρ(k + 1) + Jθ(k+1)ρ(k + 1) + γθ(k+1)|Bk

)
= ρTAi(P, k)ρ+ uTRi(P, k)u+ λTZi(P, k)λ+ σ(k) · tr

(
CTi CiEi(P, k)

)
+ 2ρTG1i (P, k)λ+ 2ρTG2i (P, k)ω̄(k) + 2ρT

(
G3i (P, k)

)T
u+ T Ti (J, k)ρ

+
(
H1
i (J, k)

)T
u+H2

i (J, k)λ+H3
i (J, k)ω̄(k) + Ei(γ, k). (7.24)

Proof. By Assumption 7.1 and proceeding the calculation as shown in Example 7.1,

we have that

E
(
ρT (k + 1)Pθ(k+1)ρ(k + 1) + Jθ(k+1)ρ(k + 1) + γθ(k+1)|Bk

)
= E

(
ρT (k + 1)Pθ(k+1)ρ(k + 1)|Bk

)
+ E

(
Jθ(k+1)ρ(k + 1)|Bk

)
+ E

(
γθ(k+1)|Bk

)
. (7.25)

6This means that u(k) has a mean value of u or a realization of u.
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E
(
ρT (k + 1)Pθ(k+1)ρ(k + 1)|Bk

)
= ρT

(
ATi Ei(P, k)Ai + 2ATi Ei(P, k)

v∑
s=1

ω̄s(k)Ai,s

+

v∑
s1=1

v∑
s2=1

σs1,s2(k)A
T
i,s1Ei(P, k)Ai,s2

)
ρ

+ uT
(
BT
i Ei(P, k)Bi

)
u+ λT

(
v∑

s1=1

v∑
s2=1

σs1,s2(k)B
T
i,s1Ei(P, k)Bi,s2

)
λ

+ 2ρT

(
ATi Ei(P, k)

v∑
s=1

ω̄(k)s(k)Bi,s +

v∑
s1=1

v∑
s2=1

σs1,s2(k)A
T
i,s1Ei(P, k)Bi,s2

)
λ

+ 2ρT

(
ATi Ei(P, k)Ci +

v∑
s=1

ω̄s(k)A
T
i,s1Ei(P, k)Ci

)
ω̄(k)

+ 2ρT

(
ATi Ei(P, k)Bi +

v∑
s=1

ω̄s(k)A
T
i,sEi(P, k)Bi

)
u

+ σ(k) · tr
(
CTi CiEi(P, k)

)
; (7.26)

E
(
Jθ(k+1)ρ(k + 1)|Bk

)
= Ei(J, k) ((Ai +

∑v
s=1 ω̄s(k)Ai,s) ρ+ (

∑v
s=1 ω̄s(k)Bi,s)λ+ Ciω̄(k) +Biu) ; (7.27)

E
(
γθ(k+1)|Bk

)
= Ei(γ, k). (7.28)

Adding (7.26)-(7.28) to ρTQi(k)ρ+Li(k)ρ+ uTMi(k)u+Hi(k)u and using the operators

defined in (7.13), we can obtain (7.24) by rearranging the terms. 2

We cannot use the noise sequences to design the control. Based on our assumption that

the state ρ(k) is available for control, the control input has the form of u(k) = κ(ρ(k)).

For our purpose, we are designing a control law to minimize the objective function (7.9) in

terms of Bellman’s optimality condition (7.62). As the objective function is in a quadratic

form, we would like to achieve a minimum by considering the cross terms of the state

and control, i.e. uTRi(P, k)u+2ρT
(
G3i (P, k)

)T
u+

(
H1
i (J, k)

)T
u. To make this quadratic

function more clear, we rewrite this term as

uTRi(P, k)u+ 2ρT
(
G3i (P, k)

)T
u+

(
H1
i (J, k)

)T
u

= uTRi(P, k)u+ 2

(
ρT
(
G3i (P, k)

)T
+

1

2

(
H1
i (J, k)

)T)
u

= uTRi(P, k)u+ 2

(
ρT
(
G3i (P, k)

)T
+

1

2

(
H1
i (J, k)

)T)R†
i (P, k)Ri(P, k)u. (7.29)

Define the control function as

κ (ρ(k)) = R†
i (P, k)

(
G3i (P, k)ρ+

1

2
H1
i (J, k)

)
, (7.30)
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then

uTRi(P, k)u+ 2ρT
(
G3i (P, k)

)T
u+

(
H1
i (J, k)

)T
u

= uTRi(P, k)u+ 2κT (ρ(k))Ri(P, k)u

= (u+ κ (ρ(k)))T Ri(P, k) (u+ κ (ρ(k)))− κT (ρ(k))Ri(P, k)κ (ρ(k)) . (7.31)

By utilizing the property of Moore-Penrose inverse, we have that

κT (ρ(k))Ri(P, k)κ (ρ(k)) =
(
G3i (P, k)ρ

)T R†
i (P, k)G

3
i (P, k)ρ

+
(
H1
i (J, k)

)T R†
i (P, k)G

3
i (P, k)ρ

+
1

4

(
H1
i (J, k)

)T R†
i (P, k)H

1
i (J, k). (7.32)

Define

Pi(P, k) = Ai(P, k)−
(
G3i (P, k)

)T R†
i (P, k)G

3
i (P, k),

Di(J, P, k) = T Ti (J, k)−
(
H1
i (J, k)

)T R†
i (P, k)G

3
i (P, k),

Ki(J, P, γ, k) = λTZi(P, k)λ+ 2ρTG1i (P, k)λ+ 2ρTG2i (P, k)ω̄(k)

+ H2
i (J, k)λ+H3

i (J, k)ω̄(k) + Ei(γ, k)

− 1

4

(
H1
i (J, k)

)T R†
i (P, k)H

1
i (J, k) + σ(k) · tr

(
CTi CiEi(P, k)

)
.

ρTQi(k)ρ+ Li(k)ρ+ uTMi(k)u+Hi(k)u

+ E
(
ρT (k + 1)Pθ(k+1)ρ(k + 1) + Jθ(k+1)ρ(k + 1) + γθ(k+1)|Bk

)
= ρTPi(P, k)ρ+ (u+ κ (ρ(k)))T Ri(P, k) (u+ κ (ρ(k)))

+ DTi (J, P, k)ρ+Ki(J, P, γ, k). (7.33)

Now we are ready to state the optimal control law for problem (7.7)-(7.8). The Bellman’s

optimality condition and the optimal control law of the problem can be written in terms

of a set of coupled generalized algebraic Riccati difference equations in conjunction with

a set of coupled linear recursive equations, which is similar to the LQG case.

Proposition 7.2. For each time index N − 1, · · · , 0, an optimal control law for problem

(7.7)-(7.8) can be obtained by

u(k) = −R†
θ(k) (P (k + 1), k)

(
G3θ(k) (P (k + 1), k) ρ(k) +

1

2
H1
θ(k) (J(k + 1), k)

)
, (7.34)

where for θ(k) = i, we have

Ri (P (k + 1), k) ≽ 0, (7.35)
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(
G3i (P (k + 1), k)

)T
=
(
G3i (P (k + 1), k)

)T R†
i (P (k + 1), k)Ri (P (k + 1), k) , (7.36)

(
H1
i (J(k + 1), k)

)T
=
(
H1
i (J(k + 1), k)

)T R†
i (P (k + 1), k)Ri (P (k + 1), k) , (7.37)

and

P (N + 1) = 0, J(N + 1) = 0,Pθ(N) (P (N + 1), N) = Qθ(N)(N),

Tθ(N)(J(N + 1), N) = Lθ(N)(N), γ(N) = 0.

For each time step k the payoff function is given by

V (ρ(k), θ(k), k) = E
(
ρ(k)TPθ(k) (P (k + 1), k) ρ(k) +DTθ(k) (J(k + 1), P (k + 1), k) ρ(k)

)
+E

(
Kθ(k) (J(k + 1), P (k + 1), γ(k + 1), k)

)
. (7.38)

Proof. We will prove this proposition by induction on time step k based on the fact

that the stochastic dynamic programming is established in a recursive (backward) manner.

At the terminal time, i.e. k = N , there is no control input which implies that

V (ρ(N), θ(N), N) = E
(
ρT (N)Qθ(N)(N)ρ(N) + Lθ(N)(N)ρ(N)

)
. (7.39)

By definition P (N + 1) = 0, J(N + 1) = 0, and γ(N + 1) = 0, we have that

Pθ(N) (P (N + 1), N) = Qθ(N)(N), Tθ(N)(J(N + 1), N) = Lθ(N)(N),

and

γ(N) = E
(
Kθ(N) (J(N + 1), P (N + 1), γ(N + 1), k)

)
= 0,

which is consistent with (7.38). Suppose from the induction hypothesis that (7.34)-(7.38)

hold for time step k + 1. By the recursive equation for stochastic dynamic programming

and Proposition 7.1, we have that for ρ(k) = ρ, θ(k) = i,

V (ρ, i, k) = min
u

(
ρTQi(k)ρ+ Li(k)ρ+ uTMi(k)u+Hi(k)u

+E (V (ρ(k + 1), θ(k + 1), k + 1|Bk))) ,

= min
u

(
ρTQi(k)ρ+ Li(k)ρ+ uTMi(k)u+Hi(k)u

+E
(
ρT (k + 1)Pθ(k+1)ρ(k + 1) + Jθ(k+1)ρ(k + 1) + γθ(k+1)|Bk

))
.(7.40)
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V (ρ, i, k) can be evaluated according to Proposition 7.1,

V (ρ, i, k) = min
u

(
ρTAi (P (k + 1), k) ρ+ uTRi (P (k + 1), k)u

+ λTZi (P (k + 1), k)λ+ σ(k) · tr
(
CTi CiEi (P (k + 1), k)

)
+ 2ρTG1i (P (k + 1), k)λ+ 2ρTG2i (P (k + 1), k) ω̄(k)

+ 2ρT
(
G3i (P (k + 1), k)

)T
u+ T Ti (J(k + 1), k) ρ+

(
H1
i (J(k + 1), k)

)T
u

+ H2
i (P (k + 1), k)λ+H3

i (P (k + 1), k) ω̄(k) + Ei (γ(k + 1), k)
)

= min
u

(
ρTPi(P (k + 1), k)ρ+ (u+ κ (ρ(k)))T Ri(P (k + 1), k) (u+ κ (ρ(k)))

+ DTi (J(k + 1), P (k + 1), k)ρ+Ki(J(k + 1), P (k + 1), γ(k + 1), k)
)
. (7.41)

(7.41) achieves its minimum when u = −κ (ρ(k)) with the minimum of the payoff function

given by (7.38), which completes the proof of the proposition. 2

Remark 7.2. We give an intuitive interpretation to the generalized recursive Riccati

equations (7.36)-(7.37) in this remark. To begin with, we first introduce the following

lemma:

Lemma 7.2. (Ait Rami et al., 2002) Let be given matrices G = GT and H with appro-

priate sizes. Then the following conditions are equivalent

(a). H(I −GG†) = 0

(b). Ker(G) ⊆ Ker(H),

where Ker(G) denotes the null space of matrix G7.

By this lemma, we have that (7.36) is equivalent to

Ker (Ri (P (k + 1), k)) ⊆ ker
((
G3i (P (k + 1), k)

)T)
and similarly, (7.37) is equivalent to Ker (Ri (P (k + 1), k)) ⊆ ker

((
H1
i (J(k + 1), k)

)T)
.

These conditions ensure the optimal control is well-posed for all time step k (and hence

admits solution). A rigorous mathematical proof can be found in Ait Rami et al. (2002);

Costa and Wanderlei (2007). As for another aspect, these two conditions implies that

multiplying (7.29) with R†
i (P, k)Ri(P, k) will not change the solution space of the original

optimal control problem.

Under some circumstance, the feasibility of linear matrix inequality (LMI) and the

solvability of the Riccati equation are equivalent (Boyd et al., 1994; Ait Rami and Zhou,

7In linear algebra, the null (or kernel) space of a matrix G is the set of all vectors x for which Gx = 0,

i.e. Ker(G) = {x : Gx = 0}.
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2000) and the appendix of this chapter. LMI conditions can be also established as alterna-

tive sufficient conditions for the optimal control problem to solve the generalized recursive

Riccati equations. Since the LMIs can be solved numerically very efficiently using the

interior-point methods, the LMIs can be viewed as an efficient numerical algorithm to the

symmetric solutions of the ARE. Examples can be found in Ait Rami and Zhou (2000);

Ait Rami et al. (2002).

Remark 7.3. Note that, we do not require the weighting matrices Qθ(k)(k) and Mθ(k)(k)

to be positive (or semi-positive) definite, while the assumption that the control weighting

matrix, i.e. Mθ(k)(k), must be positive definite and/or the state weighting matrix, i.e.

Qθ(k)(k), must at least be semi-positive definite (for almost all the time), inherited from

the deterministic case, have been taken for granted in both control and traffic engineering

literature. To be precise, if Mθ(k)(k) is negative (which means a benefit rather than a

cost), then the optimal control u can be shown to be such that ∥u(k)∥ = +∞, namely,

“the larger the better”. However, there are some cases that the control weight Mθ(k)(k)

is negative definite and the “the-larger-the-better” policy no longer applies. Let us take a

more concrete example to illustrate the above argument.

An example. Many highways in China are built and operated by private companies.

A company may wish more people to use their highways to maximize their benefit which

is proportional to u, i.e. the price level and the traffic volume entering the network.

However, the impacts are supervised and monitored by the government so that the price

can not be set to too expensive, the pollution level and LOS cannot deviate too much from

an allowable level. The objective of the company is on one hand to maximize the total

expected return, and on the other hand to minimize the expected negative impacts. This

multi-objective optimization problem may be converted into a single-objective problem by

putting weights on the different objectives (i.e. a trade-off between these two objectives).

Thus the following function is to be minimized:

min J = E

N∑
k=0

(
λ1||ρ(k)− ρ̂||2 − λ2~||u(k)||2

)
,

where λ1, λ2 ∈ (0, 1), λ1+λ2 = 1, represent the weights. Generally, as commented by Chen

and Zhou (1998, 2000), such kind of phenomenon can happen in the following situation:

“Suppose, in a deterministic (minimizing) optimization problem, that the cost decreases

as the level of activity the decision maker carries out increases (a typical example of such

situations is an investment that would be “guaranteed” to be profitable if the risk were to

be excluded from consideration). Then it is not really an optimization problem because

there is no trade-off in it, and the optimal decision is simply to take the maximum possible
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activity level. So the problem is trivial or ill-posed. However, in a stochastic environment,

suppose that the uncertainty increases with increasing magnitude of the activity level

and that the uncertainty results in certain additional cost (called risk adjustment in the

terminology of economics); then there is a trade-off between the activity level and the

uncertainty, and the decision maker has to carefully balance the two to achieve an optimal

solution.” The indefinite terms can be compensated by taking advantage of the underlying

uncertainties (e.g. risk adjustment (economics); Congestion derivatives).

7.4 A robust consideration

7.4.1 An introduction to robust control

In single agent problems with incomplete information, optimal decision rules depend on a

decision maker’s posterior distribution over hidden state8 variables, e.g. the distribution

of possible traffic operational modes in our setting (which includes the dynamics of modes

and their transition probabilities), and an objective function that summarizes the pertinent

history of observations, e.g. the detected traffic flow information. In control theory and

economics, a decision maker expresses faith in his model when he uses Bayes’ rule to

deduce the transition law, e.g. the generalized algebraic Reccati equations in the previous

section. As shown in the derivation of the optimal control law, the optimal decision

actually depends on the transition probabilities and the calibration of the model. When

a decision maker doubts his/her model and wants a decision rule that is robust to the

mis-specifications of the model, how should he/she proceed? Robust control provides us

a way to address this kind of problems. Robust control considers the design of decision or

control rules that explicitly acknowledges decision makers’ fear of model mis-specification.

Robust control is inherently about model uncertainty, to be more specific, focusing on the

implications of model uncertainty for decisions. It has been verified that robust control

can be formulated as a two-person zero-sum game wherein a minimizing player helps a

maximizing player to design decision rules that satisfy bounds on the value of an objective

function over a set of stochastic models (Basar and Bernhard, 1995; Hansen and Sargent,

2008). Robust control has widely applied in control theory Basar and Bernhard (1995)

and economics (Hansen and Sargent, 2001, 2008; Hansen et al., 2010).

Example 7.2. (Robust control as a two-person zero-sum game–a linear system example):

The following two-person (quadratic) dynamic game is proposed to represent a preference

8Hidden states can include unknown parameters, dummy variables indexing different models, e.g. θ(k),

hidden information variables, capital stocks, and effort levels (Hansen et al., 2010).
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for robustness:

−1

2
x(k)TQx(k)

= max
u(k)

min
ωe(k)

−1

2
z(k)T z(k) +

αn
2
ωe(k)

Tωe(k)−
αs
2
x(k + 1)TQx(k + 1), (7.42)

subject to

x(k + 1) = Ax(k) +Bu(k) + Cωe(k), (7.43)

where ωe has zero mean and covariance matrix I, αn > 0 is a parameter measuring a

preference for robustness, and z is a controlled output to be specified. Compared with

the optimal control law, wherein only u is the decision maker, we note that another

person aiming to minimize the payoff function has entered the game. He/she achieves

his/her objective by penalizing a term on the noise sequence ωe(k) which is added to

the payoff function as αn
2 ωe(k)

Tωe(k). Thus, the theory of dynamic games (e.g. the

dynamic programming routine in the previous section) can be applied to study robust

decision-making (Basar and Bernhard, 1995). As explained by Hansen and Sargent (2008),

the fictitious person, i.e. ωe, puts context specific pessimism into the control law. The

robustness parameter or multiplier αn restrains the magnitude of the pessimistic distortion.

Large values of αn keep the degree of pessimism (the magnitude of ωe) small. By making

αn arbitrarily large, we approximate the certainty-equivalent solution to the single-agent

decision problem, i.e. the original optimal control problem.

7.4.2 A robust control formulation

From previous sections, we can see that the uncertainties for decision making mainly

come from calibration and the definition of transition probability matrix rather than the

parameters of the system matrices (as the system matrices depend on the sample time

Ts and cell length li only, which are certain). Recall the specification of noise sequences

in the SCTM that an uncertain supply function is calibrated as a nominal function plus

a Gaussian white noise term, e.g. ωs(k) = ωs,0(k) + ωns (k), where ωs,0(k) is the nominal

function (which is usually regarded as the mean) of ωs(k), and ω
n
s (k) is a Gaussian white

noise term from the calibration. To this end, we expand Aθ(k),sωs(k) as

Aθ(k),sωs(k) = Aθ(k),s (ωs,0(k) + ωns (k)) , As (θ(k), k)ω
n
s (k). (7.44)

It is easy for us to mis-specify the nominal supply function, e.g. the calibration of freeway

capacity in Figure 5.1, due to the fact that it is generally very difficult to calibrate a nom-

inal freeway capacity in practice. In this example, what is the nominal freeway capacity,
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7500 veh/h or 8000 veh/h? It is hope that our decision can act robust to this kind of

mis-specifications, e.g. the designed control law is robust to the nominal freeway capacity

within the interval [7000, 8500] veh/h. Therefore, we decompose As (θ(k), k) into

As (θ(k), k) = As (θ(k)) + ∆As (θ(k)) .

Similar reasoning is applied to the pure noise terms to obtain Bs (θ(k), s). We rewrite the

SCTM as

ρ(k + 1) =

(
Aθ(k) +

v∑
s=1

As (θ(k), k)ω
n
s (k)

)
ρ(k) +

(
v∑
s=1

Bs (θ(k), s)ω
n
s (k)

)
λn(k)

+Cθ(k)ω(k) +Bθ(k)u(k), ρ(0) = ρ0, θ(0) = θ0, (7.45)

where ωns (k) and λn(k) are now Gaussian white noise sequences. A controlled output is

defined to be a linear function of the state and control as

z(k) = Sθ(k)ρ(k) +Rθ(k)u(k). (7.46)

In this section, we define the following objective function for the robust control problem

as

V0(ρ0, θ0, u0, ω) = max
u

min
ω

N∑
k=0

E
(
α2∥ω(k)∥2 − ∥z(k)∥2

)
, (7.47)

which is equivalent to

Vr(ρ0, θ0, u0, ω) = min
u

max
ω

N∑
k=0

E
(
∥z(k)∥2 − α2∥ω(k)∥2

)
. (7.48)

Note that the uncertain supply functions ωns (k), λ
n(k) are not explicitly included in the

objective function while the uncertain demand ω(k) is explicitly considered. The objective

function (7.48) is chosen in this form for the following two reasons:

1. The uncertain supply functions ωns (k), λ
n(k) are regarded as model mis-specifications.

The design purpose to these terms is to enable the control law to act robust to these

uncertainties. This is implicitly included in the term involving the output function,

i.e. ∥z(k)∥2.

2. As explained, the uncertain demand ω(k) is always taken as disturbance in traffic

control literature. The design purpose to this term is to attenuate the effect of this

disturbance to the output.

Compared with (7.47), (7.48) is more consistent with the context of Section 7.3 wherein

the control aims to minimize the cost function. If the signal ω maximize Vr(0, θ0, u0, ω),
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we call it the worst-case disturbance. From the engineering view of point, the worst-

case disturbance ω∗ achieves the maximum possible energy gain from the disturbance ω

to the output z. This worst-case paradigm underlies a number of robust control design

methodologies. In terms of a two-person dynamic zero-sum game, the uncertainty is

regarded as the “maximizing” player who attempts to impair the performance of the

closed-loop system. In contrast, the designer is trying his/her best to achieve a best

guaranteed level of the closed-loop performance in the face of uncertainties. In terms of

control methodology, this kind of robust control is also referred to as robust H∞ control or

minimax optimal control. The robust control problem (7.48)-(7.45) can be solved by the

stochastic optimal control routine by converting the problem into an equivalent optimal

control formulation and following the development in Section 7.3. One can refer to Yoon

et al. (2005); Haddad and Chellaboina (2008); Hou et al. (2010) on how to convert the

problem into an equivalent optimal control formulation. An LMI based solution can be

obtained by extending the results by Xu and Chen (2005).

7.5 Multiple agent settings

There are several reasons for us to consider a traffic network as a multi-agent system.

First, in traffic control engineering, freeway control schemes and dynamic urban traffic

signal control strategies are developed independently. This may be due to the differences

in the objectives and controls. Ramp metering and variable speed limit (VSL) are two

major control strategies for freeway systems, while tuning the green times of traffic sig-

nals is the major control strategy for urban arterials. The objective function is always

chosen as the total time spent (TTS) by all vehicles in the network (including the waiting

time experienced in the ramp queues) (linear terms) plus the penalty terms to suppress

high-frequency oscillations of the optimal control trajectories and to enforce the maximum

ramp queue constraints (quadratic terms). For dynamic urban traffic signal control with

store-and-forward modeling of traffic dynamics (e.g. TUC), the objective is always chosen

as an energy function of the queue lengths and controls. To this end, we should mod-

el these two different components of traffic networks by different agents (with different

objectives and control structures). Second, when the network size becomes large, it is

unlikely for us to consider it as a single system to optimize its performance due to the

sophisticated network dynamics and interactions between the actuators and sensors. Cen-

tralized control of such kind of systems from a single control agent is often not possible due

to technical or commercial constraints. Communication delays, coding and transmission
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Figure 7.3: A network with a hierarchy of agents and their responsibilities

errors from the sensors (or detectors) to the control center, from the control center to

actuators, extremely large amount of data, and expensively computational cost are major

technical constraints. Some commercial issues may arise from privacy issues, information

is not shared by different network operators, and budget constraints, etc. Moreover, the

robustness and reliability may be fragile for single-agent (or centralized) control. Third,

due to their geographically distributed and uncertainty in a dynamic environment, traffic

networks are well suited for the concept of multiagent system (MAS), i.e. distributed

structure and parallel computation (Schleiffer, 2002; Chen and Cheng, 2010). For these

reasons, transportation networks typically have to be operated using a multi-agent (or

distributed) system (MAS) approach.

Multi-agent techniques have been used in several stages of transportation systems

which can be classified into three levels (Schleiffer, 2002): integration of traffic management

systems (Adler et al., 2005; Chen et al., 2009), dynamic urban traffic signal control (see

e.g. de Oliveira and Camponogara (2010), and the references therein), and traffic guidance

(Adler et al., 2005). The papers on traffic management and guidance mainly concentrate

on deterministic static environment while the papers on traffic signal control consider the

traffic network operating under deterministic dynamic environment with simplified traffic
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dynamics. These approaches cannot be applied to our situation. An example of a traffic

network with mixed freeways and urban arterials represented by a multi-agent system

is depicted in Figure 7.3. The traffic network (system) to be controlled is divided into

subsystems, and that each subsystem has been assigned an agent. Each agent detects

the current state of its subsystem, and receives information from other agents. Each of

the agents determines its actions (local traffic management policy). On the above level,

a coordination of these agents is preferred to optimize the performance of the network.

How to coordinate and thus optimize the performance of a multi-agent system is a difficult

question in general which has attracted attention from various research communities with

a rapidly expanding literature. Research on this field has employed techniques from game

theory (GT) (especially evolutionary GT), artificial intelligence (AI) and MAS by trying

to synergizing them (see e.g. Busoniu et al. (2008); Shoham and Leyton-Brown (2009),

and the references therein). We will investigate this problem in the future work.

7.6 Conclusion

We investigate traffic management schemes for freeway networks with demand and supply

uncertainties modeled by the SCTM proposed in Chapters 5-6. As ramp metering control

can only be applied to not too dense traffic conditions and may cause some side effects

if the induced queues are not properly addressed, the traffic management schemes can be

ramp metering control and/or (flow-dependent) dynamic road pricing. The road pricing

aims at regulating travel demand. The optimal policy is established utilizing the stochastic

dynamic programming.

To develop a stochastic optimal control framework, we reformulate the SCTM as a class

of discrete time stochastic bilinear systems with Markov switching and further simplify the

model. Based on this reformulation and simplification, we investigate the optimal decision

making problem for traffic management of a freeway segment. A closed form of optimal

policy is derived in terms of a set of coupled generalized recursive Riccati equations. As

the optimal control may be fragile with respect to the model miss-specifications, we further

pursued the robust (optimal) decision policy, which would act robust with respect to the

parameter miss-specifications in the traffic flow model (which can be originated from the

calibration process), and to attenuate the effect of disturbances in the freeway network

(where demand uncertainty is usually taken as a kind of disturbance). The robust policy

would further release the best performance of the traffic network under control. For the

network traffic case, we propose a multiagent based approach to address the problem.
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Another implication of the proposed methodology is to make benefit from the inherent

uncertainties, which is achieved by extending the conventional LQ optimal control theory

to consider the indefinite terms of the state and input weighting matrices. The indefinite

terms can be compensated by taking advantage of the underlying uncertainties, e.g. risk

adjustment (i.e. the decision maker has to balance the activity level against the uncertainty

to achieve an optimal solution).

Appendix

Preliminaries

Definition 7.2. For a matrix A of appropriate dimension (no need to be invertible), the

generalized inverse (or Moore-Penrose inverse) of A is defined to be the unique matrix A†

of appropriate dimension such that

1. AA†A = A

2. A†AA† = A†

3.
(
AA†)T = AA†

4.
(
A†A

)T
= A†A.

Definition 7.3. (Linear Matrix Inequality) A linear matrix inequality (LMI) is an in-

equality

F (x) , F0 +

m∑
i=1

xiFi ≺ 0, (7.49)

where xi ∈ Rm is the variable, Fi, ∀i = 1, 2, · · · ,m are given symmetric matrices, and the

inequality ≺ 0 means “negative definite”.

Definition 7.4. (System of LMIs) A system of linear matrix inequalities is a finite set of

linear matrix inequalities (LMIs)

F (1)(x) ≺ 0, · · · , F (p)(x) ≺ 0. (7.50)

For a system of LMIs, we have the fact that the intersection of the feasible sets of each

of the inequalities is convex. In other words, the set of all x that satisfy (7.50) is convex.
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Thus the system of LMIs (7.50) can be expressed as a single LMI
F (1)(x) 0 · · · 0

0 F (1)(x) · · · 0
...

...
. . .

...

0 0 · · · F (p)(x)

 ≺ 0. (7.51)

The above definitions can be also extended to the positive definite case F (x) ≻ 0, semi-

definite case (or non-strict LMI), e.g. F (x) ≼ 0 or F (x) ≽ 0. It turns out that any

feasible non-strict LMI can be reduced to an equivalent LMI that is strictly feasible, by

eliminating implicit equality constraints and then reducing the resulting LMI by removing

any constant nulls pace.

Proposition 7.3. (Schur’s Complement) Let F (x) be an affine function which can be

partitioned as

F (x) =

 F11(x) F12(x)

F T12(x) F22(x)

 . (7.52)

The following affirmatives are equivalent:

Then F (x) ≼ 0.

F11(x) ≼ 0, F12(x) = F11(x)F
†
11(x)F12(x), and F22(x)− F T12(x)F

†
11(x)F12(x) ≼ 0.

F22(x) ≼ 0, F12(x) = F12(x)F
†
22(x)F22(x), and F11(x)− F12(x)F

†
22(x)F

T
12(x) ≼ 0.

A very wide variety of problems arising in system and control theory, e.g. the stability

in sense of Lyapunov, LQR, LQG, optimal and robust control problems, can be reduced to

a few standard convex or quasi-convex optimization problems involving LMIs. The LMIs

and the algebraic Riccati equation (ARE) has a closed relationship. In particular, the

LMI can be viewed as an efficient numerical algorithm to the symmetric solutions of the

ARE, since the LMIs can be solved numerically very efficiently using the interior-point

methods. An example is shown in the following lemma.

Lemma 7.3. (Boyd et al., 1994) The symmetric solutions of the following ARE

S(k) = ATP + PA−
(
PB + CT

)
R−1

(
BTP + C

)
+Q = 0, (7.53)

can be obtained by solving the following LMI ATP + PA+Q PB + CT

BTP + C R

 ≽ 0. (7.54)
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A more detailed discussion on the materials presented in this section can be found in

Boyd et al. (1994).

A brief introduction to stochastic dynamic programming

The equation of motion for a nonlinear control system with a disturbance acting with the

dynamics is given by

ρk+1 = f(ρk, uk, wk, k), (7.55)

where ρk is the system state, wk is the disturbance of the model uk is a control input. It is

commonly assumed that the probability density function of the initial state ρ0 is given, wk

is independent of {ρ0, · · · , ρk, w0, · · · , wk−1}. For such kind of optimal control action in

presence of stochastic elements, an objective function associated with the control problem

becomes a random variable. Conventionally, the quantity to be minimized is the expected

value of the objective function. An appropriate problem formulation can be described as

min
u
E

(
G(ρN ) +

N−1∑
k=0

g(ρk, uk, k)

)
, (7.56)

subject to

ρk+1 = f(ρk, uk, wk, k), ρ(0) = ρ0, uk ∈ A(ρk, k), (7.57)

where the function g(·) is called the running cost function and G(·) is the terminal cost

function, u = {u0, u1, · · · , uN−1}, and A(·) represents a set of admissible controls depend-

ing on the system state and time. To solve the above stochastic optimal control problem

by stochastic dynamic programming, we further define a value function known as cost-to-

go, payoff function, or optimal value function by the notation V (ρk, k), which is defined

by

V (ρk, k) = min
uk,··· ,uN−1

E

G(ρN ) + N−1∑
j=k

g(ρj , uj , j)

 . (7.58)

With this terminology, the principle of optimality can be stated as

Lemma 7.4. Principle of Optimality (Bertsekas, 2007) Let u∗ = {u∗0, u∗1, · · · , u∗N−1}

be an optimal control policy for problem (7.56)-(7.57). Assume that when using the

optimal control policy u∗, a given state ρ(k) occurs with positive probability. Consider

the subproblem where the environment is in state ρk at time k, and suppose we wish to

minimize the cost-to-go function (7.58) for k = 0, 1, · · · , N−1. Then the truncated control

policy {u∗k, · · · , u∗N−1} is optimal for the subproblem.
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When we derive the stochastic dynamic programming optimality condition in terms

of Bellman’s backward recursion rule, we need to interchange the expectation and the

minimization operations. The foundation for this exchange is stated in the following

lemma.

Lemma 7.5. (Fundamental Lemma for Stochastic Control) (Speyer and Chung,

2008) Suppose that the minimum to minu∈U g(ρ, u) exists and U is a class of functions for

which E (g(ρ, u)) exists. Then,

min
u∈U

E (g (ρ, u(ρ))) = E

(
min
u∈U

g (ρ, u(ρ))

)
. (7.59)

To release the iterative representation for dynamic programming, we expand the payoff

function as

V (ρk, k) = min
uk,··· ,uN−1

E

g(ρk, uk, k) +
G(ρN ) + N−1∑

j=k+1

g(ρj , uj , j)

 . (7.60)

By causality, the control and state at time k do not depend on the control and disturbance

at future time indices, i.e. from k + 1, · · · , N − 1. Therefore, the payoff function can be

further written as

V (ρk, k) = min
uk

E

g(ρk, uk, k) + min
uk+1,··· ,uN−1

G(ρN ) + N−1∑
j=k+1

g(ρj , uj , j)

 . (7.61)

Let V ∗(ρ∗k, k) denotes the optimality of the payoff function, and note that

V ∗(ρ∗k+1, k + 1) = min
uk+1,··· ,uN−1

G(ρN ) + N−1∑
j=k+1

g(ρj , uj , j)

 .

The Bellman’s optimality principle can be recognized as

V ∗(ρ∗k, k) = min
uk

E
(
g(ρk, uk, k) + V ∗(ρ∗k+1, k + 1)

)
. (7.62)
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Chapter 8

Summary of the thesis and future

research topics

8.1 Summary of thesis

The main objectives of this dissertation were to develop three key components of ITS, i.e.

dynamic traffic assignment with traffic volume (queue) control, real-time traffic surveil-

lance, and decision making for traffic management under demand and supply uncertainties.

The traffic volume (or queue) control scheme is widely used in traffic control practice

and has been proven to be effective to prevent the traffic network from spillback effect

of congestion or gridlock. Theoretically, in the context of static traffic assignment, side

constraints (or capacity constraints) are imposed to model the effects of traffic volume

control schemes and link flow capacity constraints. Practically, the optimal state(s) of a

traffic network operating under queue control strategies would provide us some guidelines

on queue control design, which in turn yields better implementation of these queue control

strategies. The traffic volume control can also be used to prevent the traffic network

from spillback effect of congestion or gridlock. Controlling the traffic volumes on critical

infrastructures is also an easy and efficient approach to increase the safety of such facilities.

However, dynamic traffic assignment (DTA) considering the effects of traffic volume control

schemes has been missing from literature. Toward these ends, we extended the dynamic

user equilibrium (DUE) and dynamic system optimal (DSO) concepts to investigate the

optimal design of dynamic traffic volume control scheme.

The static user equilibrium (UE) traffic assignment with side constraints was extended

to the dynamic case in Chapter 3 to investigate dynamic user equilibrium under traffic

volume control scheme with both route and departure time choices. The side constraints
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are related to the desired temporal traffic volumes on certain links, which can be set ac-

cording to the congestion levels, safety or environmental requirements. The dynamic user

equilibrium problem with side constraints and departure time choice was formulated as

an infinite-dimensional variational inequality (VI) problem in line with the DUE problem

formulated by Friesz et al. (1993). We proved the existence of the DUE with simultaneous

route and departure time choices by extending the results of Zhu and Marcotte (2000)

based on the VI formulation of the DUE problem. Based on this existence result of the

DUE problem and the VI formulation of the DUE-SC, we proved the existence of equi-

librium to the DUE-SC problem under certain assumptions. To analyze the necessary

condition, we represented the DUE-SC as an optimal control problem for a class of dy-

namical systems with input and state constraints. The necessary condition of the DUE-SC

was shown to satisfy a generalized DUE condition wherein the equilibrium dynamic travel

cost of a given OD pair equals to the effective path delay plus a term of additional travel

cost induced by the side constraints. The additional travel cost term is governed by the

accumulation of the Lagrange multipliers associated with the side constraints over time

(unlike the static case). This additional travel cost term represents the control to be im-

posed to achieve the link traffic volume restrictions. The similarity between the additional

delay terms from the static and dynamic cases was highlighted in the chapter.

As a Nash non-cooperative differential game, dynamic user equilibrium is used to

represent the distribution of traffic that arises when travelers do not have knowledge about

other travelers’ strategies and compete with each other to minimize their own travel cost.

In some situations, such as traffic diversion under incidents (wherein queue control is

always necessary to prevent the spillback effect), it is necessary for the system manager to

look for the best usage of the network under queue control. The dynamic system optimal

assignment, as a Monopoly game in which the system manager can control all decision

variables and thus achieves the system optimum, may be not a realistic representation of

traffic. However, it provides a bound on the best performance of a traffic network, which

makes it as a benchmark for evaluating various transport policy measures, e.g. time-

dependent pricing (Yang and Meng, 1998; Chow, 2009a), network access control (Smith

and Ghali, 1990; Lovell and Daganzo, 2000; Shen and Zhang, 2009; Zhang and Shen, 2010),

and road capacity allocation (Ghali and Smith, 1995). Therefore, we further explored the

dynamic system optimal traffic assignment with access control (DSO-AC) problem for

general networks modeled by the two vertical queue models, i.e. the whole link model

(WLM) and the deterministic queueing model (DQM) in Chapter 4. We derived dynamic

marginal costs for paths and users’ external costs for controlled links under the DSO-AC.
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Road pricing, as a traffic management and bottleneck capacity allocation scheme, is

frequently applied to regulate the traffic flows on urban transportation networks. In the

static road pricing framework, it has been shown to be an efficient approach to traffic

demand management and control (see e.g. Lindsey (2006); Tsekeris and Voß (2009) and

the references therein). However, only few studies have been conducted on its dynamic

counterpart. Chapter 4 provided a sound theoretical discussion to fill this gap. As a strat-

egy to implement the access control, the dynamic access pricing problem was formulated

as a DSO-AC problem, wherein the access constraints represent the restrictions on the

traffic volumes and/or environmental constraints (e.g. vehicle emission). For the WLM

case, we derived and discussed the necessary condition for operating the transportation

system with capacity/environmental constraints optimally, i.e. the total system travel cost

is minimized. For the DQM case, we utilized the formulation adopted by Akamatsu (2007)

wherein the inflow to a bottleneck is saturated such that no queue would be formed. The

access price is then given by the penalty associated with this constraint. Similar to the t-

elecommunication network bandwidth allocation scheme, the DSO-AC analysis reveals the

variety of economic effect of a certain amount of road capacity with respect to its spatial

and temporal allocation, e.g. decide which links can be used and how to use their available

capacities as “holding” capacities for queues. By comparing the dynamic externalities for

the two vertical queue models, we showed that their different externality structures result

in different tolling structures to achieve DSO. Based on this access pricing analysis and

an “equivalent” environmental capacity that converts the environmental constraint into

traffic volume restriction, we studied the traffic induced air pollution pricing scheme for

networks modeled by the two point queue models. It was found that the traffic capacity

based access price and traffic induced air pollution price would not become effective simul-

taneously for the DQM case. The boundary to determine the dominant price is defined by

the minimum of the two capacities. However, for the WLM case, there is a circumstance

that both prices would be effective simultaneously.

The analysis on dynamic traffic assignment with traffic volume control problems con-

tributes to DTA literature also in the following prospects:

1. By restricting the link traffic volumes to be equal to or less than the link storage

capacities on the network such that no spillback would happen, we can capture the

spillback effect of traffic congestion while avoiding the drawbacks, e.g. discontinuous

and non-differentiable traffic dynamics and travel cost functions, of physical queue

models, see e.g. Szeto and Lo (2006); Lo and Szeto (2002); Gentile et al. (2005);

Nie and Zhang (2010), and the restricted piecewise linear link exit-flow function
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approach, see e.g. Nie (in press), which enables us to solve the DTA problems

analytically. This was motivated by some recent comparison studies which have

revealed that the macroscopic link models (including vertical queue models, e.g.

WLM and bottleneck model; and physical queue models, e.g. CTM) would produce

almost the same traffic assignment result unless there is a spillback (shockwave) Mun

(2007); Nie and Zhang (2005, 2010). The spillback effect is captured in terms of the

effect needed to prevent the network from spillback. Similar to the bottleneck case,

we can regard this effect as additional travel cost imposed on travelers for using the

controlled links.

2. The separable link travel time function adopted in DTA literature, i.e. Da(xa(t)),

would be more meaningful under this circumstance since if there is spillback the link

travel time function would not be separable, e.g. depends on the downstream traffic

conditions like the case of physical queue model (Szeto and Lo, 2006).

Traffic networks are exposed to extensive demand and supply uncertainties, especial-

ly under incident and adverse weather circumstances. For instance, the rainfall on 17

September 2010 in Beijing caused a network-wide traffic congestion. Some other impor-

tant scenarios would also introduce inherent uncertainties. For instance, as explained in

Chapter 2, traffic information is provided to drivers by the ATMIS through various infor-

mation media to support traveler’s decision making which in turn influences their travel

choices and consequently reduce the (total/individual) travel time and improve efficiency

of the traffic network. However, divers behave in a very different way in face of the in-

formation provided to them due to their different degrees of risk aversion and perception

errors on travel times, which in turn affects their routing decisions and the travel demand.

Because of these unexpected events, traffic flows and travel times on the roadways are un-

certain. Stochastic traffic flow models are urgently needed to estimate/predict the traffic

flows and travels time under these uncertain demand and supply conditions. Therefore,

in the surveillance part, we proposed the stochastic cell transmission model (SCTM) to

capture traffic density and possible wavefronts on a freeway segment under supply and

demand uncertainties in Chapter 5. In the SCTM, demand and supply functions are as-

sumed to be perturbed by some wide sense stationary, second-order processes consisting of

uncorrelated random vectors with known means and variances. The stochasticities of the

sending and receiving functions in the SCTM are governed by the random parameters of

the fundamental flow-density diagrams, including the capacities, backward wave speeds,

and the free-flow speeds. Operational modes and the corresponding probabilities of occur-
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rence have been introduced to replace the wavefront concept in the original CTM and to

avoid the dis-continuity introduced by the “min” operator and the wavefront. The SCTM

was formulated as a class of discrete time stochastic bilinear systems with finite mixture

which can be recognized as a finite Markov mixture model. We derived the analytical

approximations of the means and SDs of the traffic densities. Numerical examples and an

empirical study were then carried out to illustrate the advantages of the SCTM over the

Monte Carlo Simulation approach in terms of computation time and memory requirement.

The propagation of uncertainties of traffic states over time and space was illustrated. The

empirical study confirmed that the SCTM performs well for all traffic conditions ranging

from light to very dense traffic conditions. This can be regarded as an advantage of the

proposed model over the previous proposed macroscopic stochastic dynamic traffic mod-

els, (e.g. Boel and Mihaylova (2006); Kim and Zhang (2008)). The empirical study also

revealed that the SCTM outperforms the MCTM, and the MCS of MCTM.

The SCTM was extended to model the stochastic traffic dynamics on a network with

uncertain demand and supply in Chapter 6. We identified four basic functional blocks for

modeling a traffic network, i.e. freeway corridor, on-/off- ramps (traffic merge/diverge),

signalized junction. To increase the accuracy, the original SCTM for one freeway segment

consisting of two cells was defined as one basic subsystem. A long freeway corridor was

represented as a stretch system connected by several basic SCTM subsystems. Link-node

formulation of CTM has been utilized to represent traffic merge, diverge, and signalized

junctions. We considered the ramps as SCTM subsystems for ramps with heavy traffic.

The flow propagation for uninterrupted facilities was defined as a finite mixture distribu-

tion of the four probabilistic events governed by the sending and receiving flows based on a

link-node formulation. Similar logic was applied to model an isolated signalized junction.

The junction was represented by several SCTM subsystems. Each of these subsystems

consists of several phases according to the signal phase under certain assumptions. A traf-

fic network was then modeled by all these basic functional blocks. The SCTM subsystems

accept the means and variances of the stochastic travel demand and supply functions as

exogenous inputs, which in turn produce cell traffic densities and outflow of the roadway

segment in terms of mean and variance as well as the probabilities of occurrence of different

operational modes. We demonstrated the proposed network SCTM as a stochastic dynam-

ic traffic network model for traffic control and management in the numerical examples. As

shown in the simulation, the uncertain traffic dynamics and probabilistic wave-fronts could

be captured by the proposed model. In the second test, the proposed network SCTM was

applied to estimate queues and delays at signalized intersections. Comparison with some
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traditional delay and queue estimation formulas was conducted. The numerical results

showed good consistency between the SCTM and these formulas. However, compared

with these delay and queue formulas the SCTM approach has wider application oppor-

tunities, since it can describe the temporal evolution of the queue length distribution at

signalized junctions with uncertain supply functions by assuming any arrival distribution,

which can be non-stationary. Two kinds of dynamic travel time distributions were found,

i.e. skew normal distribution and bimodal like distribution. The summary statistics such

as the mean and variance can be deceptive when applied to the second kind of distribution.

For the surveillance purpose, the SCTM can be utilized to provide a short-term predic-

tion using the historical and on-line data of travel demand and traffic state. The prediction

(in terms of travel time and traffic state) under the SCTM considers both demand and

supply uncertainties in the future time-step. This allows traffic operators to monitor and

devise robust control strategies for freeways. For the dynamic traffic assignment and con-

trol, the key operational benefit of the SCTM for traffic assignment purpose is the potential

continuity of the delay operator which is not the case for the deterministic CTM (due to

the potential blocking back condition of an arterial). This is due to the introduction of

the stochastic delay in the SCTM which can also be considered as a better paradigm for

a long-term traffic prediction.

In Chapter 7, we investigated traffic management schemes for freeway networks in-

fluenced by demand and supply uncertainties. The traffic management schemes could

be ramp metering control and/or (flow-dependent) dynamic road pricing. The problem

was established utilizing the stochastic dynamic programming. The stochastic traffic flow

under demand and supply uncertainties is described by the proposed SCTM. To be more

specific, we represented the SCTM as a class of discrete time stochastic bilinear systems

with Markov switching. Based on this reformulation, we investigated the optimal decision

making for traffic management of a freeway segment. A closed form of optimal policy was

derived in terms of a set of coupled generalized recursive Riccati equations. As the optimal

control might be fragile with respect to the model miss-specifications, we further pursued

the robust (optimal) decision policy, which would act robust with respect to the parameter

miss-specifications in the traffic flow model (which can be originated from the calibration

process and some other exogenous conditions), and to attenuate the effect of disturbances

in the freeway network (where demand uncertainty is usually taken as a kind of distur-

bance). The robust policy would be useful under incident conditions in the following sense:

As mentioned in Wang et al. (2008), Wang et al. (2009a), and Wang and Papageorgiou

(2009b), in case of incidents, the traffic flow characteristics along the concerned freeway
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stretch may change substantially, this may also be reflected in correspondingly drastic

changes of some model parameter values. If these changed model parameter values still

falls in the admissible uncertainty intervals, the robust policy can be applied even under

the presence of incidents. The robust policy would further release the best performance

of the traffic network under control. For the network traffic case, a multiagent system

(MAS) based approach was proposed to address the problem. Another implication of the

proposed methodology is to make benefit from the inherent uncertainties. This is due to

the essential difference between the optimal control formulation applied in Chapter 7 of

this dissertation and the one utilized in the conventional LQ optimal control theory, i.e.

the indefinite terms of the state and input weighting matrices. The indefinite terms can

be compensated by taking advantage of the underlying uncertainties, e.g. risk adjustment

(i.e. the decision maker has to balance the activity level against the uncertainty to achieve

an optimal solution).

8.2 Future works

The future works will concentrate on the following aspects with special attention be paid

to incident management applications.

8.2.1 On the DTA aspect

With respect to the DTA aspect, the following problems should be addressed in the future

works.

1. To apply the proposed DUE-SC scheme, we will develop a more efficient numerical

algorithm to solve it. However, developing such an algorithm for the DUE-SC or

even for the standard DUE is still an open problem. A scheme to use a system

of ordinary differential equations (ODEs) to approximate the differential algebraic

equation (DAE) system for network loading based on the whole link model is pro-

posed by Friesz et al. (2011). It is verified that this approximation scheme increase

the computational efficiency of the traditional numerical methods for solving DUE

problems. Our next step is to develop an efficient solution algorithm for DUE-SC

but with a trade-off between the tractability and theoretical property of the algo-

rithm, e.g. extending the heuristic solution algorithms of DUE to solve the DUE-SC

(Tong and Wong, 2009). Possibly, by applying the approximate network loading

developed by Friesz et al. (2011) and the cell-based discretized model proposed by

Nie and Zhang (2010).
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2. By Proposition 4.2, the dynamic traffic assignment with access constraints can be

applied as an alterative way to obtain the optimal toll (or permit price) for networks

modeled by deterministic queuing models with time-varying bottleneck capacities.

The optimal toll (or permit price) can be obtained by solving the penalty associated

with the access constraint. The extension to the heterogeneous user case and elastic

demand is also worth while to look into. The network auction approach to access

the capacity allocation would be also interesting. In the future work, we will formu-

late this problem in detail, and discuss the existence, uniqueness, convergence, and

stability issues for such kind of problem.

3. Revisit the stability and uniqueness analysis of the equilibriums of DTA in sense of

Lyapunov theory, passivity/dissipativity, and input-to-output and/or input-to-state

stability (ISS): Uniqueness and stability of the equilibriums of DTA are essential for

the applications of DTA. However, the works on the stability and uniqueness anal-

ysis of the equilibriums of DTA by different researchers tell very different stories.

For example, the works by Mounce and Smith, see Mounce (2006) and Mounce and

Smith (2007), proposed that the uniqueness and stability of DUE can be guaranteed

only for network with single bottleneck per route case under various assumptions,

while the works by Peeta and Yang (Peeta and Yang, 2003) and Iryo (Iryo, 2008)

proposed that the DUE and DSO are unique and stable for general network under

certain assumptions. The stability analysis in Peeta and Yang (2003) was for a time

dependent network rather than for a dynamic traffic network since the requirements

for a DTA model listed in Chapter 2 were barely fulfilled. However, it worth while

to mention that the Lyapunov functions V (x) proposed in Peeta and Yang (2003),

where x represents the vector of cumulative link traffic volumes, for the SO and UE

objectives are their corresponding objective functions in DTA problems. This over-

comes the key difficulty of constructing a physically meaningful Lyapunov function

for traffic systems. While the Lyapunov function lacks intuitive physical meaning in

Smith (1982), Mounce (2006), Mounce and Smith (2007), and Iryo (2008). Also, it

is wise for us to choose the vector of cumulative link volumes as state vector rather

than reconstructing a dynamic system with route-flow vector as state vector.

4. Introducing control and/or closed-loop structure to DTA problems: The analysis in

Chapter 7, to be more specific the dynamic programming approach, provides a po-

tential way to introduce feedback (closed-loop) control (e.g. road pricing) structure

to the dynamic traffic assignment problems. Other approaches are also possible, e.g.
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nonlinear H∞ feedback control theoretic approach is applied to real-time user equi-

librium and system optimal dynamic traffic routing problems (Kachroo and Özbay,

2005, 2006). Note that the nonlinear H∞ feedback control theoretic approach is

also applied in Chapter 7 to design the robust traffic management schemes. The

closed-loop feedback structure of DTA problems may be enabled by combining these

two approaches.

5. Travelers behavior: During an incident with lane blockage, congestion forms when

the time-varying travel demand exceeds the reduced roadway capacity. In the mean-

while, the growing incident induced lane changes and queue spillbacks significant

interrupt the traffic flows among the adjacent lanes and exacerbate the incident in-

duced congestion. Usually, traffic information is provided to drivers by Advanced

Traveler Information Systems (ATIS) through various information media. The in-

formation are broadcasted in order to support traveler’s decision making which in

turn influence their travel choices and consequently reduce the (total/individual)

travel time and improve efficiency of the traffic network. However, divers behave in

a very different way in face of the information provided to them due to their dif-

ferent degrees of risk aversion and perception errors on travel times, which in turn

affects their routing decisions and the travel demand. Drivers’ decision on route

choice is a major determinant of network performance. Traffic management strate-

gies developed without considering the driver behavior (or being very behaviorally

restrictive) can result in misleading control strategies, and thus potentially deteri-

orate network performance. Therefore, in the development of traffic management

schemes, the driver behavior should be explicitly considered (or reasonable driver

behavior should be assumed).

8.2.2 On the traffic surveillance and control aspects

Note that there are several assumptions which were made to simplify the construction and

analysis of the SCTM. Several key future research issues are envisaged including:

1. investigation of theoretical relationship between the SCTM and the LWR model with

stochastic components;

2. the study of the existence and property of the dynamic user equilibrium (DUE)

solution based on the SCTM framework should also be carried out;

3. Enable the SCTM to estimate/predict stochastic travel time distribution. Travel

time is one important element in dynamic traffic assignment. It is also one important
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factor for the travelers to make their route choices. This function would provide a

model for stochastic dynamic traffic assignment. In the traffic control aspect, travel

time, such as Total Time Spent (TTS), is also an important performance index for

optimal design. This work would contribute to the real time traffic control design

under uncertainties and disturbances as well.

4. Enable the surveillance tool the function of incident alarms: As explained in Chapter

2 and Özbay and Kachroo (1999), timely incident detection and incident alarm

is essential to prevent secondary incidents. As previously mentioned, in case of

incidents, the traffic flow characteristics along the related freeway stretch may change

substantially. By the online estimating/predicting the supply functions, such abrupt

changes may be identified in real time, and hence the incident occurrence may be

recognized, leading to corresponding incident alarms (Wang et al., 2008, 2009a; Wang

and Papageorgiou, 2009b). By identifying the abrupt changes of supply functions

may be not sufficient for some scenarios especially for the urban arterials. Another

potential approach would be inspired by the incident detection algorithms which use

different combinations of the traffic measurements: measured traffic speed, measured

traffic volume (or density), and measured occupancy (Adeli and Jiang, 2009) and

the travel time (Lam et al., 2008). Occupancy can be always obtained from the

detectors, which can be applied directly. Other indexes can be estimated/predicted

by different components of the SCTM. For instance, traffic speed as one of the

supply functions can be estimated/predicted by adding a best linear predictor to the

SCTM. Traffic density (or volume) and travel time can be estimated/predicted by

the SCTM. Criteria combining these traffic states for incident detection algorithms

will be defined in this research and incident alarms will be enabled to the SCTM

framework.

5. Enable the function of traffic state prediction under abnormal scenarios such as

incidents, adverse weather conditions: Due to high traffic density and congestion (e-

specially under abnormal circumstances) in the network as well as the interaction of

the demand and supply uncertainties along with the dynamic nature of traffic flow,

the demand and supply uncertainties are correlated in both space and time domains.

For example, the free-flow speeds are spatial correlated (cell-to-cell, lane-to-lane cor-

related); the demand profiles are temporal correlated. By considering these spatial

and temporal correlations along with the traffic dynamics bring significant potential

advantages for development of efficient traffic state estimation/prediction for the
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SCTM paradigm.

Ramp metering is often insufficient for traffic management under incidents during the

lane blockages and over-saturated traffic conditions. Implementing the incident pricing

is also not practical. To this end, we need to extend our control strategies to consider

possible scenarios.

1. Enable the traffic controller(s) to control the queue lengths: As explained, queue

control is essential to curve the spillback effect or even the girdlock of congestion. It

is important for us to explicitly incorporate the queue constraints when developing

traffic management policies especially under incident scenarios with saturated traffic

conditions.

2. Other traffic management strategies for incident management: Refer to a typical

fundamental diagram of a freeway lane, the region can be covered by ramp metering

is on the stable (left) side of the fundamental diagram, see Figure 8.1, and close to

the top where a breakdown can happen Hegyi et al. (2005a) and Hegyi et al. (2005b).

Ramp metering is only useful when traffic is not too light (otherwise ramp metering is

not needed) and not too dense (otherwise traffic breakdown will happen anyway). In

this sense, ramp metering control is only applicable to not severe incidents (including

lane blocking incidents, lane closures for maintenance) under the assumption that

the traffic is not too dense.

However, in the case of saturated traffic conditions, what can we do in case of

these not serve incidents? Obviously by ramp metering only is no enough for our

purpose. Detouring (or equally rerouting) the traffic is one choice for us. But this

approach may involve some issues, one key issue among them is the time-varying

OD matrices. How can we obtain this time-varying OD matrices? How can we

reroute the traffic back to its destination based paths? What is the criteria for

this rerouting? As mentioned by Özbay and Kachroo (1999), only 1 percent to 1.5

percent of the recorded incidents are categorized as major (or severe) accidents and

only few of those major accidents will cause major traffic disruptions both locally

and regionally. Most of the time we do not need to do such complex rerouting (or

detouring) works in case of incidents. Most of the time, proper control of the traffic

flows is enough especially in the case that the traffic is not too dense, in which case

the proposed robust ramp metering plus queue control is enough. To handle the high

density traffic flow, a potential approach is to impose speed limit control. In Hegyi

et al. (2005a,b), and Carlson et al. (2010) speed limits were imposed on the main-
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stream traffic while the on-ramps were metered. The main idea of the limited speed

in conjunction with ramp metering approach is that when ramp metering is unable

to prevent congestion, the application of variable speed limits (VSL) upstream of a

(temporary) bottleneck, that is close to become active, could prevent a breakdown

by limiting the inflow into the area where the traffic breakdown starts (or decrease

the mainstream flow arriving the bottleneck area, thus retarding the bottleneck

activation and the resulting congestion). By referring to the fundamental diagram,

see e.g. Figure 8.2, the effect of the speed limit is to change the shape of the

fundamental diagram and reduce the outflow of the controlled segment. Suppose

the traffic state on the freeway is A. When a speed limit is applied, the speed drops

and the density increases, so the traffic state will be somewhere between B and C.

However, because of the high traffic demand the traffic state will approach to state

C, the capacity of the new fundamental diagram. The critical density (or occupancy)

under VSL control is higher than the original uncontrolled one. Since this flow is

lower than the capacity of the freeway without speed limit, there will be some space

left to accommodate the traffic from the on-ramp and a breakdown is prevented.

As stated in Hegyi et al. (2005a): “This effect can be explained by the fact that

the number of vehicles in the network is equal to the accumulated net inflow of the

network (where the net inflow is the difference between the inflow and the outflow).

However, the outflow is lower when there is congestion, so the queue grows faster,

and consequently congestion will last longer, and the outflow will be low for a longer

time (the time that the queue needs to dissolve). This is why one should try to

prevent or postpone a breakdown as much as possible.” Roughly speaking, we would

benefit from VSL in terms of:

(a) increase of throughput, and

(b) retarding of congestion at overcritical occupancies.

Besides the reduction of mean speed at under-critical occupancies, another criti-

cism of the VSL scheme could be that the approach keeps the controlled network

congestion free, but at the cost of creating congestion at the entrances of the con-

trolled network (or causing the side effects discussion in Chapter 7). Similar to ramp

metering control, which induces delays to vehicles queuing on the ramp, the VSL

introduces some delays to vehicles traveling on the mainstream. However, delays

caused by bottleneck congestion may be much more than the vehicle delays induced
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Figure 8.1: A typical fundamental diagram of a freeway lane (Source: Hegyi (2004))

by VSL Hegyi et al. (2005a); Carlson et al. (2010)1. To solve the side effect caused

by the VSL, Hegyi et al. (2005a) proposed the following methodology: “A remedy

could be to extend size of the network with as many (uncontrolled) upstream sections

as necessary to cover the congested area. In this way the congestion caused by the

speed limits will not spill back to the mainstream origin queue and the congestion

dynamics can be taken into account by the controller. Second, the network that is

considered (i.e., evaluated and controlled) can be chosen larger, because the traffic

is apparently so dense that the effects of the control reach beyond the bounds of the

actual network.” As we can see that the side (spillback) effects caused by the VSL

control were not properly addressed. The approaches recommended by Hegyi et al.

(2005a) do not benefit the problem but somehow introduce the problem of the curses

of dimensionality of the optimal control problem by expending a local problem to a

regional or global problem. However, thanks to the queue control and access pricing

schemes proposed in this study, we can properly address this problem as discussed

in Chapter 7. To sum up, the control we proposed in this study, will be a scheme

combines the proposed robust ramp metering with queue control and the speed limit

control and access pricing to reduce travel demand if necessary.

3. To control the traffic flow in case of (severe) incidents: As mentioned previously,

only tiny part of the recorded incidents are major accidents will cause major traffic

disruptions both locally and regionally Özbay and Kachroo (1999). In the case of

1More detailed discussion on the ramp metering and VSL control can be found in Carlson et al. (2010).
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Figure 8.2: A typical fundamental diagram of a freeway lane with speed limit control

severe incidents, the freeway maybe completely blocked. The microscopic based

stochastic optimal control approach developed by Sheu (2007), Sheu and Chang

(2007) etc., and the above proposed macroscopic based robust ramp metering and

the speed limit control schemes which are developed for lane blocking incidents, may

be no longer feasible. New traffic management schemes are needed. It is found that

a large proportion (about 30 percent) of recorded incidents are secondary incidents

caused by the primary incidents, this happens especially when the primary incident

is a severe one and lasts long; at the mean while, the duration of primary incident

would be longer if a secondary incident occurs (Khattak et al., 2009). Enabling the

traffic incident alarm in time is essential to prevent a secondary incident and helps

the local authority to response quickly to clear the incident (Özbay and Kachroo,

1999), which in turn reduce the severity of the incident. In this sense, timely incident

alarm can be viewed as a kind of efficient control in the case of (severe) incident.

Besides to the incident alarm, and the above proposed robust ramp metering with

queue control in conjunction with speed limit control, diversion of the traffic through

adjunct and parallel arterials is essential in this situation. A heuristic optimal free-

way traffic diversion control has been proposed in Liu et al. (2009) in the case of

incidents. As to the traffic diversion control, we introduce similar idea to Liu et al.

(2009) with extensions and combinations of the methodology we proposed to handle

not severe traffic incidents.

(a) Traffic is diverted to the arterial through the off-ramp just upstream to the
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Figure 8.3: The traffic diversion control in case of incident (Source: Liu et al. (2009))

incident section, and guided back to the on-ramp right after the incident sec-

tion. This is presumed to avoid the technical difficulties on OD matrices. A

constant compliance rate for drivers is assumed for drivers in the control area.

This assumption would be accomplished by the on-line calibration of behavior

parameters for behavior-consistent route guidance proposed in Paz and Peeta

(2009a). This assumption can be further relaxed by the framework proposed

in Paz (2007) and Paz and Peeta (2009b). Methods proposed in Wang et al.

(2003) and Karimi et al. (2004), which integrate the predicted travel times

based dynamic route guidance and the advantages of feedback based freeway

ramp metering approach (relatively simple, robust, fast) would be helpful to

this study too.

(b) Normal traffic patterns, including off-ramp exit rates and arterial intersection

turning proportions, are assumed to be stable and not impacted by the diverse

traffic. This assumption is proposed to simplify the problem.

(c) The ramp metering rates (or traffic signals) are activated by the queue lengths

on the corresponding signalized junctions. This is proposed to enable queue

control. The robust ramp metering and speed limit control will be adopted.

More detailed discussion on the traffic diversion strategies can be found in Özbay

and Kachroo (1999). To sum up, the overall picture of the incident detection and

traffic control framework is depicted in Figure 8.4.
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Figure 8.4: Sequence of the incident detection and traffic management
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8.2.3 An approximate dynamic programming (ADP) approach to over-

come the curse of dimensionality of dynamic programming

Traffic management aims to optimize the performance of the related traffic network un-

der incident circumstances. As incidents introduce significant uncertainties to the related

traffic network, the underlying optimization problem belongs to stochastic (dynamic) op-

timization. The challenge arises in stochastic (dynamic) optimization is that decisions are

made sequentially. A decision is first made, and then information that we did not know

when we made the first decision is observed. We then proceed to make another decision,

after which we can observe more information. The decisions are made over time so as

to minimize the objective function. Conventionally, the total travel time (TTT) or the

total time spent (TTS) (Papageorgiou et al., 2003) is chosen as the objective function in

traffic engineering. Several ways to model these problems as proposed by different com-

munities have evolved modeling and algorithmic strategies to deal with specific problem

classes. The most popular way to establish the optimal policy (analytically) would be the

(stochastic) dynamic programming (DP) approach, wherein the optimal policy is obtained

by solving Bellman’s optimality equation (which requires stepping backward through time

and can be shown as a fixed point equation). We adopted this approach to investigate the

optimal and robust traffic management schemes for traffic networks influenced by demand

and supply uncertainties which are modeled by the SCTM in Chapter 7. The DP approach

is theoretically elegant and admits several powerful solution algorithms. However, they

require enumerating the set of potential states. The method breaks down when the state

space consists of a vector of elements (the number of states to be enumerated grows expo-

nentially with the number of dimensions) which is common in traffic engineering involving

a network more than one link. This phenomenon is the well-known curse of dimensionality

of (stochastic) DP. This phenomenon renders dynamic programming intractable when the

scale of problem is large.

The approximate dynamic programming ADP overcomes the above problem and pro-

vides an extremely flexible framework for modeling and solving stochastic optimization

problems by combining the strengths of simulation with the intelligence of optimization.

A series of stories of empirical success of ADP in applications of practical scale proved the

ADP as a powerful tool for solving large-scale stochastic optimization problems (Powell,

2007; Bertsekas, 2007). Three perspectives on the ADP were argued in Powell (2007):

1. a method for large-scale optimization;

2. a method to solve complex (stochastic) dynamic programs;
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Figure 8.5: An illustration of the five fundamental dimensions of a stochastic (dynamic)

optimization and the basic idea of implementation of ADP to incident management

3. a method for making simulations intelligent.

There are several distinctions between the ADP and DP. First, rather than evaluating

the true value of the objective function, the ADP replaces it with some sort of statistical

(or stochastic) approximation. Second, instead of conducting the optimization backward

through time, the ADP steps forward in time. The other difference would be the assump-

tions on traveler behavior: the DP would enforce full rationality while the ADP assumes

bounded rationality.

The structure of the ADP approach to determine the (optimal) traffic management

policy is depicted in Figure 8.5. To begin with, we identify the following five fundamental

spaces for a dynamic stochastic optimization problem i.e.

1. states (which are the traffic states of the network that can be simulated by the

SCTM),

2. decisions/actions/controls (which are the traffic management policies),

3. exogenous information/random processes (which can be the demand and supply

uncertainties as well as the field observations),

4. transient function/dynamics (which is the traffic dynamics modeled by the SCTM),

5. objective function/critic.

ADP offers a powerful framework for calculating the impact of a decision on the fu-

ture, and using this measurement to make better decisions. A traffic management policy is

designed based on the perceived traffic states of the network (or environment) and imple-

mented to control the traffic dynamics on the network, which causes the environment to
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transit into a new state. After the implementation, we observe the resulting behavior and

reward from the traffic network by real-time observations and evaluation of the objective

function, which reflects the quality of the applied traffic management policy and can be

viewed as feedback. We then utilize the difference between the predicted performance and

the observed reward (real performance) and the (short-term) prediction of traffic states

based on the current observation to adjust the policy for the next time step. The ad-

justment is designed to make the difference between the predicted performance and the

observed reward smaller, which can be captured formally in the Bellman Equation.

Several solution routines for ADP can be found in encyclopedic references on the topic

(Powell, 2007; Bertsekas, 2007). The central challenge with any ADP algorithm is to

find a value functional approximation which can be represented using the fewest possible

number of parameters. The problem of finding the best value function approximation is

closest to value iteration of DP. Detailed discussion on finding a functional approximation

to the original objective function can be found in Powell (2007) and Cao (2007), which

would fall into the category of stochastic approximation. It should be pointed out that

before designing the value function approximation, it is extremely important for us to

understand the properties of our problem, and the behavior we expect to achieve with

the approximation. Then we design an approximation which captures the shape of the

original function, and which will give us the desired behavior. For example, if only the

TTS is taken us the objective function, then the widely applied linearly parameterized

function class would be enough (Cao, 2007; de Fariasand and Roy, 2003; Powell, 2007).

The other important issue of the ADP is to find the approximate policy optimization.

The problem of finding the best approximation of a policy is closest to policy iteration

of DP. Several methods to address this problem are proposed by the artificial intelligence

(AI) community. It is out of the scope of this chapter to review and discuss these methods.

We refer the readers to the encyclopedic references on the topic (Powell, 2007; Bertsekas,

2007; Si et al., 2004). We emphasize here that different learning algorithms should be

used for different purposes based on different data sets. For instance, the calibration of

SCTM and its application to traffic state prediction require sufficient large amount of data

(historical traffic flow data and incident records). In the case when we are sort of histori-

cal traffic flow data and incident records especially at the initial stage of the project, we

cannot rely on the traffic states estimated/predicted by the SCTM. Under such circum-

stances, model-free ADP approach (e.g. Q-learning) is preferred to develop the incident

management strategies. When the historical data and incident records are cumulated to

a rather sufficient level, we would like to apply the model-based ADP approach for de-
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veloping incident management strategies to reduce the learning time and thus to increase

the efficiency of the incident management policy by making full usage of the traffic state

prediction from the SCTM.

8.2.4 Multiagent reinforcement learning to coordinate the performance

of agents

In Chapter 7, we applied the multiagent system (MAS) approach to solve the traffic

management problem for a traffic network. But how to coordinate and thus optimize the

performance of a multi-agent system is a difficult question. Multi-agent reinforcement

learning (MARL) may be the most popular method to address this problem. In the future

work, we will extend methods in multiagent reinforcement learning (MARL) to address

this problem. We choose MARL for it well fits the distributed structure of MAS and

the parallel computation. Information and experience sharing in the MARL also promote

agents with similar tasks to learn faster and better. A MAS with MARL is robust in

sense that when one or more agents fail, other agents can take over some of their tasks.

Meanwhile, several challenges arise in the MARL. Generally difficult to define a good

common learning goal for the multiple agents may be the foremost challenge. Others

include the nonstationarity of the learning problem, the need for coordination and those

inherited from single-agent reinforcement learning, including the curse of dimensionality

and the exploration-exploitation tradeoff.

The curse of dimensionality could be addressed by the ADP approach. The exploration-

exploitation tradeoff would not be a significant issue in our case, as the SCTM has been

validated as a powerful tool to estimate/predict traffic states which can be used to support

the decision making. The need for coordination is obviously. Coordination is typically

required in cooperative settings. Due to the fact that the agents’ returns are correlated

and thus cannot be maximized independently, it is difficult to specify a good MARL goal

in the general stochastic game. Nonstationarity arises because all the agents are learn-

ing simultaneously due to the distributed structure and possible parallel computation.

The best policy of an agent changes as the other agents’ policies change. The above two

questions are related, i.e. we cannot specify a MARL goal without considering the non-

stationarity and vice versa. Two typical goals are desired in the literature, i.e. stability

and the adaptation. Different from the concept in control literature, stability essential-

ly means the convergence to a stationary policy in MARL, whereas adaptation aims to

maintain/improve the performance as the other agents change their policies. These two

concepts fit the concepts of stability and rationality in evolutionary game theory (EGT)
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(or learning in games) pretty well. Methodologies on convergence usually under some ra-

tionality assumptions of learning in games can be used to address the underlying problems.

Regarding to the EGT, the ADP or RL is also used to explain how equilibrium may arise

under bounded rationality.

248



Bibliography

Aboudolas, K., Papageorgiou, M., Kosmatopoulos, E., 2009. Store-and-forward based

methods for the signal control problem in large-scale congested urban road network-

s. Transportation Research Part C, 17 (2), 163-174.

Aboudolas, K., Papageorgiou, M., Kouvelas, A., Kosmatopoulos, E., 2010. A rolling-

horizon quadratic-programming approach to the signal control problem in large-scale

congested urban road networks. Transportation Research Part C, 18 (5), 680-694.

Adeli, H., Jiang, X., 2009. Intelligent infrastructure: neural networks, wavelets, and chaos

theory for intelligent transportation systems and smart structures, Boca Raton: CRC

Press.

Adida, E., Perakis, G., 2007. A nonlinear continuous time optimal control model of dy-

namic pricing and inventory control with no backorders. Naval Research Logistics, 54,

767-795.

Adler, J., Satapathy, G., Manikonda, V., Bowles, B., Blue, V., 2005. A multi-agent ap-

proach to cooperative traffic management and route guidance. Transportation Research

Part B, 39 (4), 297-318.

Ait Rami, M., Zhou, X., 2000. Linear matrix inequalities, Riccati equations, and indefinite

stochastic linear quadratic controls. IEEE Transactions on Automatic Control, 45 (6),

1131-1143.

Ait Rami, M., Chen, X., Zhou, X., 2002. Discrete-time indefinite LQ control with state

and control dependent noises. Journal of Global Optimization, 23, 245-265.

Akamatsu, T., 2007. Tradable network permits: A new scheme for the most efficient use

of network capacity. submitted to Transportation Science.

Akcelik, R., 1980. Time-dependent expressions for delay, stop rate and queue length at

traffic signals. Australian Road Research Board. Internal Report AIR 367-1.

249



Akcelik, R., Rouphail, N., 1993. Estimation of delays at traffic signals for variable demand

conditions. Transportation Research Part B, 27(2), 109-131.

Anderson B., Moore, J., 1979. Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall.

Armstrong, M., Doyle, C., Vickers, J., 1996. The access pricing problem: A synthesis. The

Journal of Industrial Economics, 44 (2), 131-150.

Arnott, R., Palma, A., Lindsey, R., 1993. A Structural Model of Peak-Period Congestion:

A Traffic Bottleneck with Elastic Demand. The American Economic Review, 83 (1),

161-179.

Arnott, R., de Palma, A., Lindsey, R., 1995. Recent developments in the bottleneck model.

Research paper No. 95-11, Department of Economics, University of Alberta, Canada.

Arutyunov, A., Aseev, S., 1997. Investigation of the degeneracy phenomenon of the max-

imum principle for optimal control problems with state constraints. SIAM Journal on

Control and Optimization, 35 (3), 930-952.

Astarita, V., 1996. A continuous time link model for dynamic network loading based on

travel time function. In Proceedings of 13th International Symposium on Transportation

and Traffic Theory, 79-102.

Balakrishna, R., 2006. Off-line calibration of dynamic traffic assignment models. PhD

thesis, Massachusetts Institute of Technology.

Balijepalli, N.C., Watling, D.P., 2005. Doubly dynamic equilibrium distribution approxi-

mation model for dynamic traffic assignment. In: Mahmassani, H. (Ed.), Transportation

and Traffic Theory. Pergamon, Oxford, UK, 741-760.

Ban, X., Liu, X., Ferris, M., Ran, B., 2008. A link-node complementarity model and solu-

tion algorithm for dynamic user equilibria with exact flow propagations. Transportation

Research Part B, 42 (9), 823-842.

Basar, T., Bernhard, P., 1995. H∞ Optimal control and related minimax design problems,

Basel: Birkhauser.

Basar, T., Olsder, G., 1999. Dynamic noncooperative game theory, SIAM.

Becerra, V.M., 2004. Solving optimal control problems with state constraints using nonlin-

ear programming and simulation tools. IEEE Transactions on Education, 47, 377-384.

250



Berkowicz, R., 1998. Street Scale Models. In: Fenger, J., Hertel, O., Palmgren, F. (Eds.),

Urban Air Pollution-European Aspects, Kluwer Academic Publishers. 223-251.

Berkowicz, R., 2000a. OSPM-A parameterised street pollution model. Environmental Mon-

itoring and Assessment. 65, 323-331.

Berkowicz, R., 2000b. A simple model for urban background pollution. Environmental

Monitoring and Assessment. 65, 259-267.

Berkowicz, R., Ketzel, M., Jensen, S., Hvidberg, M., Raaschou-Nielsen, O., 2008. Eval-

uation and application of OSPM for traffic pollution assessment for a large number of

street locations. Environmental Modelling & Software, 23 (3), 296-303.

Bertsekas, D., 2007. Dynamic programming and optimal control, 3rd Edition Vol. II,

Athena Scientific.

Betts, J., 2010. Practical methods for optimal control and estimation using nonlinear

programming. Philadelphia, Society for Industrial and Applied Mathematics.

Boel, R., Mihaylova, L., 2006. A compositional stochastic model for real time freeway

traffic simulation, Transportation Research Part B, 40, 319-334.

Boyce, D., Lee, D., Ran, B., 2001. Analytical models of the dynamic traffic assignment

problem. 2001, 1 (3-4), 377-390.

Boyd, S., Ghaoui, L., Feron, E., Balakrishnan, V., 1994. Linear matrix inequalities in sys-

tem and control theory. Society for Industrial and Applied Mathematics, Philadelphia.

Brilon, W., Wu, N., 1990. Delays at fixed-time traffic signals under time dependent traffic

conditions. Traffic Engineering and Control, 31(12), 623-631.

Bristow, D., Tharayil, M., Alleyne, A., 2006. A survey of iterative learning control. IEEE

Control System Magazine, 26 (23), 96-114.

Bulirsch, R., and Kraft, D., 1994. Computational optimal control, Basel, Boston:
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intersections. Boca Raton, CRC Press.

Haberman, R., 1977. Mathematical models, mechanical vibrations, population dynamics

and traffic flow. Prentice-Hall, Englewood Cliffs, NJ.

Harrison, P., Stevens, C., 1976. Bayesian forecasting (with discussion). Journal of the

Royal Statistical Society, Ser. B, 38, 205-247.

Haddad, W., Chellaboina, V., 2008. Nonlinear dynamical systems and control : a

Lyapunov-based approach, Princeton University Press.

Hansen, L.P., Sargent, T.J., 2001. Robust control and model uncertainty. American Eco-

nomic Review, 91(2), 60-66.

Hansen, L.P., Sargent, T.J., 2005. Robust estimation and control under commitment.

Journal of Economic Theory, 124(2), 258-301.

Hansen, L.P., Sargent, T.J., 2007. Recursive robust estimation and control without com-

mitment. Journal of Economic Theory, 136, 1-27.

Hansen, L.P., Sargent, T.J., 2008. Robustness. Princeton University Press, Princeton, NJ.

Hansen, L.P., Mayer, R., Sargent, T.J., 2010. Robust hidden Markov LQG problems.

Journal of Economic Dynamics and Control, doi:10.1016/j.jedc.2010.05.004.

Han, D., Yang, H., Wang, X., 2010. Efficiency of the plate-number-based traffic rationing

in general networks. Transportation Research Part E, 46 (6), 1095-1110.

Hartl, R., Sethi, S., Vickson, R., 1995. A Survey of the Maximum Principles for Optimal

Control Problems with State Constraints, SIAM Review, 37 (2), 181-218.

256



Transportation Research Board, 2000. Highway capacity manual 2000. National Research

Council, Washington, D.C.

Hegyi, A., 2004. Model predictive control for integrating traffic control measures. PhD

disertation, TRAIL Thesis Series, The Netherlands.

Hegyi, A., Schutter, B., Hellendoorn, H., 2005. Model predictive control for optimal coor-

dination of ramp metering and variable speed limits, Transportation Research Part C,

13, 185-209.

Hegyi, A., Schutter, B., Hellendoorn, H., 2005. Optimal coordination of variable speed lim-

its to suppress shock waves. IEEE Transactions on Intelligent Transportation Systems,

6, 102-112.

Heydecker, B., Addison, J., 2005. Analysis of Dynamic Traffic Equilibrium with Departure

Time Choice. Transportation Science, 39 (1), 39-57.

Holdsworth, J., and Singleton, D., 1979. Environmental capacity of roads. Proceedings of

the 5th Australian Transport Research Forum, Australian Government Pub. Service,

Canberra, Australia, 219-238.

Holdsworth, J., Singleton, D., 1980. Environmental capacity as a basis for traffic manage-

ment at local government level. Proceedings of the 10th ARRB Conference, Melbourne,

Australia, 165-173.

Hou, T., Zhang, W., Ma, H., 2010. Finite horizon control for discrete-time stochastic sys-

tems with markovian jumps and multiplicative noise. IEEE Transaction on Automatic

Control, 55 (5), 1185-1191.

Huang, H., Lam, W., 2002. Modeling and solving the dynamic user equilibrium route and

departure time choice problem in network with queues. Transportation Research Part

B, 36, 253-273.

Iryo, T., 2008. An analysis of instability in a departure time choice problem, Journal of

Advanced Transportation, 42, 333-356.

Johnston, R., Lund, J., Craig, P., 1995. Capacity-Allocation Methods for Reducing Urban

Traffic Congestion. Journal of Transportation Engineering, 121 (1), 27-39.
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Kachroo, P., Özbay, K., 2006. Feedback control solutions to network level system optimal

real-time dynamic traffic assignment problems. Journal of Intelligent Transportation

Systems, 10 (4), 159-171.

Karimi, A., Hegyi, A., Schutter, B., Hellendoorn, H., and Middelham, F., 2004. Integration

of dynamic route guidance and freeway ramp metering using model predictive control,

Proceedings of the 2004 American Control Conference, Boston, Massachusetts, 5533-

5538.

Katwijk, R., 2008. Multi-agent look-ahead traffic adaptive control. PhD dissertation, Delft

University of Technology.

Khalil, H., 2002. Nonlinear systems, Prentice Hall.

Khattak, A., Wang, X., Zhang, H., 2009. Are incident durations and secondary incidents

interdependent? Pre-print CD-ROM, the 88th Transportation Research Board (TRB)

Annual Meeting, Washington, D.C.

Kuwahara, M., 2007. A theory and implications on dynamic marginal cost. Transportation

Research Part A, 41 (7), 627-643.

Kim, T., Zhang, H., 2008. A stochastic wave propagation model, Transportation Research

Part B, 42, 619-634.

Kosmatopoulos, E., Papageorgiou, M., Bielefeldt, C., Dinopoulou, V., Morris, R., Mueck,

J., Richards, A., and Weichenmeier, F., 2006. International comparative field evaluation

of a traffic-responsive signal control strategy in three cities. Transportation Research

Part A, 40(5), 399-413.

Kosmatopoulos, E., Papageorgiou, M., Manolis, D., Hayden, J., Higginson, R., McCabe,

K., Rayman, N., 2006. Real-time estimation of critical occupancy for maximum motor-

way throughput. Transportation Research Record, No. 1959, 65-76.

258



Kosmatopoulos, E., Papageorgiou, M., Vakouli, A., Kouvelas, A., 2007. Adaptive fine-

tuning of nonlinear control systems with application to the urban traffic control strategy

TUC. IEEE Transactions on Control Systems Technology, 15 (6) , 991-1002.

Kotsialos, A., Papageorgiou, M., Mangeas, M, Haj-Salem, H., 2002. Coordinated and

integrated control of motorway networks via nonlinear optimal control. Transportation

Research Part C, 10(1), 65-84.

Kotsialos, A., Papageorgiou, M., Diakaki, C., Pavlis, Y., Middelham, F., 2002. Traffic

flow modeling of large-scale motorway networks using the macroscopic modeling tool

METANET. IEEE Transactions on Intelligent Transportation Systems, 3 (4), 282-292.

Kotsialos, A., Papageorgiou, M., 2004. Efficiency and equity properties of freeway network

wide ramp metering with AMOC, Transportation Research, Part C, 12(6), 401-420.

Kurzhanskiy, A., 2007. Modeling and Software Tools for Freeway Operational Planning.

PhD thesis, University of California, Berkeley.

Lam. W.H.K., Tam, M.L., Sumalee, A., Li, C.L., Chen, W., Kwok, S.K., Li, Z.L., Ngai,

E.W.T., 2008. Incident detection based on short-term travel time forecasting. Proceed-

ings of the 13th International Conference of Hong Kong Society for Transportation

Studies, 13-15 December 2008, Hong Kong, 83-92.

Larsson, T., Patriksson, M., 1995. An augmented lagrangean dual algorithm for link ca-

pacity side constrained traffic assignment problems, Transportation Research Part B,

29 (6), 433-455.

Larsson, T., Patriksson, M., 1999. Side constrained traffic equilibrium models-analysis,

computation and applications. Transportation Research Part B, 33 (4), 233-264.

Larsson, T., Patriksson, M., Rydergren, C., 2004. A column generation procedure for the

side constrained traffic equilibrium problem, Transportation Research Part B, 38 (1),

17-38.

Lazar, A., Semret, N., 1999. Design, analysis and simulation of the progressive second price

auction for network bandwidth sharing. Telecommunications Systems-Special Issue on

Network Economics.

Lebacque, J. P., 1996. The Godunov Scheme and what it means for first order traffic flow

models. In Lesort (Ed.), Transportation and Traffic Theory, Pergamon-Elservier, New

York, 647-677.

259
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Subchan, S., Żbikowski, R., 2009. Computational optimal control: tools and practice.

Chichester, Wiley.

Sumalee, A., Xu, W., 2010. First-best marginal cost toll for a traffic network with stochas-

tic demand. Transportation Research Part B. In press.

Sumalee, A., Zhong, R. X., Pan, T. L., Szeto, W. Y., 2010a. Stochastic cell transmission

model (SCTM): a stochastic dynamic traffic model for traffic state surveillance and

assignment, Transportation Research Part B, accepted.

Sumalee, A., Pan, T., Zhong, R., Uno, N., 2010b. Dynamic stochastic journey time esti-

mation and reliability analysis using stochastic cell transmission model: algorithm and

case studies. Submitted to Transportation Research Part C.

Smith, M., 1979. The existence, uniqueness and stability of traffic equilibria. Transporta-

tion Research Part B, 13 (4), 295-304.

Speyer, J., Chung, W., 2008. Stochastic processes, estimation, and control. Society for

Industrial and Applied Mathematics, Philadelphia.
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