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ABSTRACT  

  This thesis addresses the problems of vibration-isolated machines and the 

structure-borne sound transmission in coupling building structures.  

  It first presents a study of the comprehensive assessment of the stability as well as 

the power transmissibility on the use of inertia blocks for vibration-isolated systems. 

The results indicate that the primary use of an inertia block does not affect the isolation 

performance, but it decreases the vibration velocity of the isolated vibratory machine 

and in turn increase the stability especially for a source machine of highly uneven mass 

distribution. An insight into the selection of the inertia block for the comprehensive 

performance of a vibration-isolated system is also provided.  

  Secondly, a theoretical research of the flexural and longitudinal wave motion in a 

semi-infinite coupling periodic dual-layered beam structure is presented. A new 

transfer matrix method is derived for the fully coupled flexural and longitudinal waves, 

and the numerical calculation is performed to investigate the propagation of 

characteristic wave types in the structure. It is found that three symmetric and three 

antisymmetric types of characteristic coupled wave motion in a periodic structure, and 

the energy contribution of the wave motion depends on both of the pass-forbidden band 

of the characteristic wave types and the combination of the excited wave types.  

  Thirdly, the experimental research for the flexural-longitudinal motions in a finite 

coupling dual-layered beam structure is conducted to validate the developed method. 

The results of measurement agree well with the numerical results from the developed 

method. The analysis using the validated method shows that the longitudinal energy 

transmitted in the cross-layer can be enhanced not only at the longitudinal resonant 

modes of the finite beam but also at the flexural resonant modes of the beam branches. 
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Moreover, a simulation of vibration control design implies that the cross-layer 

transmitted vibration can be decreased by the attached cantilevers with mass. 

  Fourthly, the power flow transmission through a finite coupling dual-layered beam 

structure with a boundary condition is studied. The model considering the 

mono-coupling of flexural wave only is compared with the model considering the 

multi-coupling of flexural and longitudinal waves. The simulation suggests that the 

transmission of power flow through the structure largely depends on the characteristic 

of the periodic coupling elements and the exciting position. The multi-coupling model 

is similar to the mono-coupling model mainly in the relatively low frequency.  

  Finally, the coupling effect on the vibration control of two coherent vibratory 

machines placed on a dual-layered floor plate is investigated. The total power of 

structure-borne sound transmitted from two coherent sources to a coupling floor 

structure is found to be different from that transmitted from the independent source on 

a plate without coupling, especially at some strong coupling modes. It is suggested that 

the power transmissibility method should consider the interactions of the mounting 

points of coherent machine sources on a coupling floor structure as well as the effective 

floor mobility for the independent machine source. The whole study promotes the 

fundamental understanding and prediction method of structure-borne sound control for 

vibratory machines on the coupling multi-layered structures.  
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CHAPTER 1. LITERATURE REVIEW 

1.1 RESEARCH WORK CONTRIBUTED TO THE SOURCE-RECEIVER 

CHARACTERIZATION 

  The problems of machine-induced noise or vibration are of increasing concern in 

modern buildings. They are generally divided into two categories as airborne sound 

transmission and structure-borne sound transmission. The problems mainly due to 

airborne noise are generally well understood, and a series of methods and procedures 

have been established for the measurement, analysis, prediction, rating and control of 

airborne sound in building engineering [1, 2]. Therefore for acoustics engineers, a 

problem of airborne noise such as the mechanical noise of a chiller or pump radiated 

from a plant room into a building usually is not difficult to be worked out. However, 

the noise re-radiated from the vibration of building structures (floor, wall, ceiling, etc) 

often results in a number of serious problems that are difficult to be resolved, because 

commonly structure-borne sound transmission from a vibrating machine to the building 

structure is more difficult to be estimated and controlled properly. In view of this 

difficulty, the methods for the prediction of structure-borne sound transmission and 

vibration isolation effect are of importance in the research field of noise control in 

building engineering.   

  To meet the requirement for control of structure-borne noise, a suitable definition of 

a source-receiver system is needed for the analysis of its ability to impart vibrational 

energy into the passive structure with connection (including path). One essential 

difficulty for working out the problems about structure-borne sound is that the 

transmission of structure-borne sound is dependent on both of vibratory sources and 

receiver structures. The assumption for air-borne sound that a source is constant in its 
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strength and the impedance of a receiver is insensitive to its relative location to source 

does not apply for structure-borne sound. It has taken time for researchers to build 

reasonable characterization of sources independent of receivers, so as to develop 

effective prediction methods of structure-borne sound transmission in case of the 

complex interactions between a given source machine and varied supporting structures. 

So far in engineering, the assumption has been of a simple source as a single mass point 

and a translational excitation and motion in a single degree of freedom [1-4]. However 

such an ideal case scarcely happens. There are six components corresponding to six 

degrees of freedom required for the general description of actions and motions at each 

contact point Apart from the direct interaction on same components at each point, an 

interaction may take place between different components at the same point and 

between different components at different points. All factors of the interactions 

involved in the transmission process can be characterized by two 6N×6N matrices of 

source mobility and receiver mobility for a source with N contact points [5, 6]. The 

elements of complex matrix commonly are complicated functions of frequency but the 

formulation does not often provide a distinct characterization of source in practice. In 

order to simplify the situation practically, the concept of effective mobility is 

introduced which is defined as the ratio of the actual velocity at a point and in one 

direction, to the contributions of the excitations from all components and points [6-8].  

  For structure-borne sound sources, a number of possible characterizations were 

suggested by some researchers. Wolde and Gadefelt [9] sought to be able to 

characterize the source's ability to deliver structure-borne sound power as an 

independent property so that the power transmission could be estimated directly. The 

term “free velocity” used is independent as a characteristic of the source activity. 

However, it cannot often be concluded to a significant single value for different 

vibratory sources. Because their motions in different dimensions would be 
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incompatible if multiple translational and rotational velocities are present. The 

development of the source descriptor, and the associated coupling function proposed by 

Mondot and Petersson [5] was possible as a result of two postulates. The first is that 

structure-borne sound and vibration transmission is properly described in terms of 

energy flow between sources and receivers rather than acting force or response velocity. 

Secondly, a liner network theory can be invoked in describing the transmission process. 

The source descriptor requires knowledge of source characteristics only but allows 

subsequent estimates of emission when additional information on the characteristics of 

receiver is available. It has the units of power and can be interpreted as that requires to 

achieve the free velocity at the contact point as being fed to the source structure. An 

advantage of the source descriptor concept is that the excitation components, including 

translational and rotational forces, usually become dimensionally compatible. The 

influence of multiple contact points and multiple components of excitation and motion 

on the structure-borne sound source descriptor was experimentally studied by Petersson 

and Gibbs [10]. The influence of point cross-coupling is different from that of transfer 

and transfer-cross coupling on the transmission of power. For a source, the moment can 

be expressed as a product of a force and a ‘lever’ that is inversely proportional to wave 

number, and moment-induced rotations can be no less or even more important than the 

translational components for structure-borne sound power transmission. As a result of 

the relevant studies for different types of structure [11,12], understanding of the 

significant role of moment excitation has been improved. Whilst, it is pointed that 

rotational excitations and responses will likely be more difficult to handle 

experimentally than forces. A comparison between a force and a moment of excitation 

directly is meaningless, but their relative importance in exciting a structure can be 

properly compared on a power basis. The characterization approach for various types of 

sources was developed in a series of studies [13-15] to include multi-point connected 
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vibratory systems. Owing to insufficient information available in practical installation 

conditions, simplifying assumptions are necessary for force distribution. Simple 

estimates of force ratios were conducted by Fulford and Gibbs to calculate the 

transmitted power into beam structures in comparison with the exact transmitted power 

[13]. It was suggested that, in regard to the source descriptor and coupling function 

formulation, a view of generalizing their forms, the mobilities of sources and 

supporting structures together with the free velocities of sources should be considered. 

Latterly it was undertaken in an attempt to establish generalized relationships amongst 

the parameters for each of the mass, stiffness, and resonant-controlled regions that can 

be expected for a structure [14]. The sequent methods of estimating the force ratios in 

multi-point connected source-receiver systems were analytically studied and followed 

by a statistical study [15]. Through the developed methodology, statistical estimates of 

the force ratios in multi-point connected source-receiver systems can be obtained for 

different controlled regions of source with different types of, e.g., plate-like or 

frame-like bases. A dimensionless form of the mobility matrix was developed by 

Moorhouse [16], of which the off-diagonal elements can quantify the coupling between 

two excitations of whatever dimensions (forces and moments).  

  The source descriptor is based on the knowledge of source characteristics, but for 

available estimates of power transmission quite a lot of additional information on the 

characteristics of receiver is required [17]. In the light of the usefulness of knowing the 

overall level of structure-borne sound power, an alternative approach often may be 

more appropriate for the real application of methodologies based on characterization of 

source. The way to approximate the main properties of dynamic behavior of a vibratory 

system (simplified mobility formulations of sources and structures) for frequency 

average power is more convenient in engineering. Some methods have been developed 

to approximate the power transmitted from machines to flexible receivers [18-20]. The 
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dynamic range of the structure-borne sound power transmission may be estimated by 

representing the mobility matrix of a receiver structure as a single upper and lower 

bounds in combination with the source descriptor [19]. The power mode approach 

suggested in [19] was further extended and approximations are developed for the 

maximum and minimum possible values and the mean value of the transmitted power 

[20]. The concept of characteristic power was presented as a development of the source 

descriptor [21]. It provides an equivalent single-point model for multiple-point 

connected sources and receivers, which makes it possible to superimpose the coupling 

factor for realistic source-receiver combinations on the frame for single point contact. 

Moreover, a reception plate method was introduced as a practical structure-borne sound 

source characterization for mechanical installations in buildings [22]. According to this 

method, laboratory data of source activity and mobility over all contact points are 

yielded in the forms of single equivalent magnitudes. Such quantities of machines can 

be applied for the estimation of installed structure-borne power in various structural 

mounts, by reference to a high source mobility, a low source mobility condition, or to a 

matched mobility condition. These studies provide a series of steps towards 

overcoming the practical problem of source descriptor and coupling function 

formulation for vibratory systems in engineering.  

  For an effective prediction of structure-borne sound transmission that is based on the 

characterization of sources and receivers of vibratory systems, the measurements of 

free velocity of sources and mobilities at contacts are of importance in engineering. The 

development has been the introduction of a standard for measurement of the velocity of 

resiliently mounted machines [23], which in practice can be taken as equal to their free 

velocity. However, direct measurement of free velocity and other source characteristics 

usually requires the source to be removed from the installation while operating in 

normal conditions. The methods based on the reciprocity principle have been in 
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application on measurements for acoustic and mechanical systems for a long time [24]. 

An indirect method, including the use of laser velocimetry together with the reciprocity 

principle, can give a reasonable estimation of the transfer functions and strength 

(velocity) of an tructure-borne sound source in situ [25]. For structural vibration, the 

model function was shown to be not contradictory to the reciprocity principle, based on 

which a vibro-acoustical modal analysis can be carried out with combined frequency 

response function measurements [26]. Recently reciprocal methods were also used to 

indirectly obtain the contact forces at the interface of a single and multi-point 

source-receiver system such as a fan base on a concrete floor [27], and the power 

transmission induced by force and moment was acquired from the reciprocity principle 

[28]. Moments may be less important than perpendicular forces as the source is away 

from structural discontinuities such as floor edges, but they tend to be more important 

in the proximity of structural discontinuities and have an increasing contribution with 

increased frequency irrespective of excitation location [28]. Although rotational 

excitations and responses often may likely be more difficult to handle experimentally 

than forces, the rotational components, e.g., moment mobility is required as well as 

translational components. A special moment exciter made of magneto-strictive rods 

initially was used by Petersson [29] for acquiring moment mobility in use of a large 

moment excitation. A twin shaker moment exciter was constructed by Sanderson et al. 

[30, 31] to measure beam moment mobility. Recently more studies have been 

conducted by Su, Mak and Gibbs [32, 33] on the measurement in case of considering 

cross mobility.  Besides, the measurements based on modal test methods are applied 

to acquire the characteristics of vibration modes of structures as beams or thin plates in 

different boundary conditions [34-36]. By analyzing the coupled modes from the data 

in approximation with noise, it is possible to predict the dynamic characteristics of a 

structure such as a beam or plate in a real condition with a reasonable accuracy. The 
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method of state-space models for frequency response function data was used to handle 

arbitrary input signals and transients in frequency domain without introducing 

systematic errors [37]. The measurements can reduce both the data set and the noise 

levels without introducing bias errors caused by leakage. The developed modal test 

method improves the parameter estimates such as the damping ratio of a structure in 

practice. Concerning test methods for mechanical installations in heavyweight 

buildings, the approach proposed stems from recent work based on the reception plate 

method [38]. Moreover, the consideration was given to the application of reception 

plate method for source test method [39]. According to such method, a machine under 

test is attached to a simple plate, then under otherwise normal operating conditions, the 

total structure-borne power transmitted can be obtained from the spatial average of the 

mean square plate velocity. 

  There are still few reliable practical methodologies for engineers to accurately 

predict the real radiation of structure-borne sound in connected space that is resulted 

from vibratory machines. Regardless of this problem, commonly in building services 

engineering resilient isolators are widely used for mounting machines, and most 

isolators can effectively reduce the structure-borne sound that is transmitted from 

machines e.g. pumps, standby generators and chillers into building structures [1-4]. The 

“force transmissibility” method is commonly adopted in industry to assess the 

performance of vibration isolation [1-4]. In such an assessment, “isolation efficiency” 

is the criterion commonly obtained to estimate the function of selected isolators in a 

vibratory system. However, its accuracy has been criticized, since it is based on the 

vibratory force transmitted through a single contact point of a simple vibratory system, 

usually the dynamic actions and interactions between the supporting points of a 

multi-point vibratory equipment and the flexible floor are neglected. The active power 

(the real part of the complex power transmission) is included mostly as an indicator of 
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structure-borne sound considering that most excitations from vibrating machines will 

involve dissipation of power. Whilst the reactive power (imaginary part) is by 

definition stored during one half of an oscillation, and fully returned to the exciting 

source in the other half of the cycle [40]. In many situations such temporary exchanges 

are of no interest since they play no part in far field radiation from the structure, or 

transmission to the far field. Methods based on total active power to evaluate the 

performance of vibration isolation appear to be more reasonable because the 

interactions between different sources and receivers including magnitude and phase 

difference can be compared by single values.  

A method based on the estimation of active power was therefore proposed to assess the 

performance of vibration isolation system [41], in which the models of a multi-point 

rectangular machine and a cylindrical machine were used for simulation. In another 

parallel study the “power transmissibility” method was proposed for an isolated 

multi-point vibratory system on a movable foundation [42]. This criterion can singly 

evaluate the performance of an isolated vibration system by use of the ratio of the 

totally transmitted active powers of a vibratory system with and without isolators. The 

extended research on the damping effect on power transmissibility was later conducted 

[43]. As theoretically increasing the damping of isolators would reduce the vibration 

level of vibratory machines, normally the low damping isolators as metal springs are 

preferred for large building services equipments. Despite the advantage in terms of 

reducing the structure-borne sound, the use of vibration isolators may lead to excessive 

rocking motions of the vibratory equipment in some region so that influence the 

running of machines. In this sense, the “vibratory velocity level” is taken as an 

indicator of the vibration status of a machine and is used to compare the stability of 

different mounting systems with isolators [44]. Such criterion is defined for general 

purpose that a machine is always excited by frequency-independent forces, the largest 
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amplitude of vibration motion at the natural frequency of mounted machine is used for 

reference to evaluate the intensity of a isolated vibratory system. It is clarified that 

increasing the damping of isolators also decreases the vibration intensity of a isolated 

source. As a result of comprehensive consideration, in some conditions the viscoelastic 

structural elements are used to design frequency-dependent damping of springs for 

vibration isolation system [45], of which the high damping can limit the vibration 

amplitude in low frequencies near resonances and the decreased damping values at high 

frequencies can achieve effective isolation. 
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1.2 RESEARCH WORK CONTRIBUTED TO THE CHARACTERISTICS OF 

STRUCTURES IN BUILDINGS 

  Apart from the source characteristics, the dynamic characteristics of connecting 

structures also play an essential role in the estimation of structure-borne sound 

transmission. In building engineering a lot of structures such as multi-storey buildings, 

multi-support beams, stiffened plates and other layered composite structures can be 

treated as periodic coupling structures. The vibration motions and transmitted 

structure-borne sound power in the structures should be estimated accurately by taking 

account of the coupling of wave motions. A coupling structure in buildings usually is 

treated as a combined group of identical or similar fundamental elements, which are 

spatially joined together regularly to form the whole structure. From the early time of 

20th century, a group of mathematical techniques were increasingly developed for 

analyzing the electromagnetic waves in complicated crystal lattice structures and 

periodic electrical circuits, and the studies of such periodic waveguides as crystal solids 

[46] were largely enhanced. Many of these valuable techniques have been utilized in 

subsequent studies of the acoustic waves in periodic structures. Firstly the studies were 

conducted for a single type wave motion along a one-dimensional periodic beam either 

with simple supports or with point masses at regular intervals. Miles [47] sought the 

natural frequencies of a finite periodic mono-coupled beam system resting on an 

arbitrary number of simple supports. Heckl investigated a two-dimensional periodic 

structure consisting of a rectangular grillage of interconnected uniform beams which 

had both flexural and torsional stiffness [48]. In his high frequency analysis he 

considered the multiple reflection and transmission processes as flexural waves in one 

beam element impinge on the junctions with adjacent beams. An equation for the 

propagation constants was established in terms of the reflection and transmission 
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coefficients which relate to a single wave in just one infinite beam when it impinges on 

the junction with just one other infinite beam. Fundamentally the control of acoustic 

wave transmission in one-dimensional periodic (or nearly periodic) structures can be 

tackled in a solution based on the band structure resulted from transfer matrix method 

[49]. The comprehensive theoretical computations of band structures have also been 

well-documented for acoustic waves in periodic structures by Kushwaha and Mod [50]. 

The influence of heavy damping has been investigated as a means of reducing stress 

levels [51], it was found structure theory was well suited to lightly damped as well as to 

heavily damped finite periodic structures. Large areas of periodic building structures 

consist of uniform plates and shells with identical stiffeners at regular intervals, and 

research into their natural frequencies, modes and random response levels was required 

with a view to predicting stress levels and fatigue endurance. The fundamental or 

central ideas of structure characterization used in these areas were introduced by Mead 

[52]. In his context, a quadratic and well-posed spectral problem was studied to 

determine the wave propagation constants of a periodic system. This work was 

extended by proposing a second order matrix equation leading to the propagation 

constants of a periodic system [53]. Four different methods of calculating the 

structure-borne sound propagation in beams with many non-resonant discontinuities 

were demonstrated by Heckl [54], and most of these methods took the coupling 

between longitudinal and flexural waves into account. Later a mathematical model for 

the coupling of waves that propagate in a periodically supported Timoshenko beam was 

presented for the calculation of coupled wave transmission in such structures [55]. 

Furthermore, the propagation characteristics of coupled longitudinal and flexural waves 

in beam-type transmission paths with asymmetric loads in the form of resonant 

columns were theoretically analyzed and experimentally examined by Friss and Ohlrich 
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[56, 57]. The developments of this area enlighten the approach for the transmission of 

multi-coupled coupled waves in multi-layered strutures.  

 

1.3 OBJECTIVES 

 

  The objectives of this thesis are: 

 to propose the indices for assessing the stability of a vibration-isolated building 

services system and provide an insight into the selection of the inertia block for the 

vibratory system; 

 to propose the transfer matrix method to investigate the characteristic wavetypes 

that propagate in a infinite or semi-infinite periodic coupling beam structure;  

 to conduct experiment studies to analyze the structure-borne sound energy 

transmission in a finite dual-layered beam structure with connection branches; 

 to study the structure-borne sound power transmission under the mono-coupling 

condition and multi-coupling condition at the pconnection branches of a finite 

periodic dual-layered beam structure; and investigate the approach to control the 

power transmission in the periodic structures; 

 to study the effect of the interaction between two coherent vibratory machines on 

he power transmitted to a coupling dual-layered floor plate and the level of power 

transmissibility for isolation. 
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CHAPTER 2. PERFORMANCE OF A VIBRATION- 

ISOLATED SYSTEM WITH AN INERTIA BLOCK 

2.1  INTRODUCTION  
 

Structure-borne noise problem in modern buildings usually come from some 

vibratory building services equipments. Vibration control of the building services 

equipments is of engineering importance. There are basically two major tasks involved 

in the control of vibratory machines: one is to reduce significantly the overall 

structure-borne sound power transmitted from the vibratory equipment to the floor, and 

the other is to ensure the stability of the isolated vibratory system.  

In engineering, resilient isolators are widely used in buildings to isolate vibratory 

equipment, such as water pumps, standby generators, and chillers, and the “force 

transmissibility” method is commonly adopted in industry to assess the performance of 

vibration isolation [5, 1, 58]. In this method, “isolation efficiency” is the criterion used 

to assess the performance of vibration isolation. However, its accuracy has been 

criticized, since it is based on the vibratory force transmitted through a single contact 

point of a simple vibratory system, usually the dynamic actions and interactions 

between the supporting points of a multi-point vibratory equipment and the flexible 

floor is neglected. Using the method based on multi-point source mobility descriptor 

and total power to describe structure-borne sound transmission appears more viable, 

because the interaction and phase difference of motions between the complex source 

and the receiver structure have to be considered [6]. In the light of the usefulness of 

knowing the overall structure-borne sound power emission, the source descriptor, 

together with the coupling function, was proposed by Mondot, Petersson and Plunt 

[6-8], and then further developed by Fulford and Gibbs [13-15] to establish the 

structure-borne sound power delivered by a multi-point connected system. The effect of 
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floor mobility on structure-borne sound power transmitted from multi-point sources to 

the floor structure [59] was later clarified, and for movable foundation structures such 

effect in the conditions without and isolators was evaluated by Mak and Su [41]. The 

further method of “power transmissibility” was developed by Mak et al. [42, 43]. In 

this method, power transmissibility was proposed as the criterion for use in evaluating 

the performance of vibration isolators for building services equipment mounted on a 

floor. 

Despite the advantage in terms of the reduction in structure-borne sound power 

transmitted to the floor, the use of vibration isolators may lead to excessive rocking 

motions of the vibratory equipment in some region, which would influence the running 

of machines. Although large vibration motions are common in the efficient use of 

isolators to reduce the vibratory action transmitted on mounting structures, a significant 

increase in the vibration and rocking motions of isolated machines is an unwanted 

problem. The vibratory velocity level is often taken as an indicator of the vibration 

status of a machine and is used to compare the stability of different mounting systems 

for general purpose machines excited by frequency-independent forces [44]. Increasing 

the damping of isolators would reduce the vibration level of vibratory machines. As 

increasing the damping of isolators reduces the performance of vibrator isolators [43], 

in some conditions the viscoelastic structural elements are used to design 

frequency-dependent damping of springs for vibration isolation system [45], of which 

the high damping can limit the vibration amplitude in low frequencies near resonances 

and the decreased damping values at high frequencies can achieve effective isolation. 

In building engineering, lightly-damped isolators, such as coil metal springs, are 

usually used to isolate vibratory building services equipment, so an inertia block is 

commonly used to enhance the stability of the isolated vibratory machine.  
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Although inertia blocks are widely used in conjunction with vibration isolators, the 

selection of an inertia block is commonly based on some crude methods or the 

experiences of individual engineers. No comprehensive guidelines for the selection of 

inertia blocks or indices for assessing the effect of inertia blocks on the stability of a 

vibratory system are available. Apart from vibration isolation, the purpose of 

maintaining “stability” of the mounted vibratory system is to control the vibration 

velocity and rotational velocity of mounted machines so that the vibrating and rocking 

motions will not adversely affect the mounting and the normal operation of machines.  

To assess the effect of inertial blocks on the stability of the isolated system, a vibratory 

machine model, with four mounting points and in which the mass distribution is uneven 

and the exciting force is eccentric, is used. The structure-borne sound power 

transmitted from the multi-point machine to the structure and the levels of the vertical 

and rotational motions of the vibratory system mounted with different inertia blocks are 

investigated analytically. The mounted vibration velocity level and the rotational 

velocity level are proposed and used to assess the stability of the isolated vibratory 

system in different mounting conditions.  

 



 

 16

2.2 THEORETICAL MODELS OF VIBRATION-ISOLATED SYSTEMS 

2.2.1 THE SYMMETRICALLY PLACED EVEN MASS SYSTEM    

A vibratory machine model of even mass distribution M0 with four symmetrical 

contact points as shown in Fig. 2.1(a) is placed symmetrically on a square concrete 

floor.  

 

Fig. 2.1 (a) Vibratory machine of even mass distribution with four symmetrical contact 
points placed symmetrically on the simply-supported square concrete floor plate; (b) 
vibratory machine of even mass distribution attached to an inertia block with four 
symmetrical contact points placed symmetrically on the floor plate. 

 

It is assumed that the machine is effectively driven by a source vibratory inherent force 

0F  at the center of gravity. The free velocity vector of the source is given by 

      11110
T

SO VV                      (2.1) 

0

0
0 

Mj

F
V


                     (2.2) 

where 0V  is the effective free velocity of the source. It should be noted that each 

component of the free velocity vector expresses the degree of vertical vibration velocity 

at the corresponding contact point, the ‘vector’ does not indicate a kind of multi-degree 
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vibratory motion. Since the components of force and velocity at all contact points are 

equal, the machine can be thought of as an effective simple source driven by the 

vertical vibratory force as shown in Fig. 2.2(a).  

 

Fig. 2.2 (a) Equivalent circuit diagram of the simple model of a vibrating machine 
mounted on the flexible floor; (b) equivalent circuit diagram of the simple model of the 
isolated machine with inertia block.  
 
The transmitted force through every spring isolator is therefore given by:   

r0
2

0

0

r0

0
T )/(1

4/

//1 pp Ymj

F

Ykjmj

V
F

 



           (2.3) 

where 4321 pipipipipr YYYYY   for 4321 ,,,i   is the effective floor mobility [43] 

at each contact point with the spring isolator, where Ypii  is the point mobility of pi, and 

Ypik is the transfer mobility between the contact point pk and pi, 4/00 Mm  is the 

effective mass distributed on each mounting point, 1j and 0  is the natural 

frequency of system that is given by     

00
0 

 g

m

k
                         (2.4) 

where k is the axial spring stiffness, g is the gravitational acceleration, and 0 is the 

static deflection. As the machine model is placed on an inertia block of mass bM  as 

shown in Fig. 2.1(b) and 2.2(b), new springs are selected to maintain the same static 

deflection (Section 6.5.4, Chapter 6 of Ref. [1]): 
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where 4/bb Mm   is the effective mass of the inertia block distributed on each 

mounting point. Note that the parameter with apostrophe (’) means the parameter is for 

the system with the inertia block. 

The free velocity vector of the source with the inertia block is: 

   T0 1111'VVSO                            (2.6) 
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0
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'                             (2.7) 

The transmitted force through an isolating spring to the floor is given by 

r
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where 4321 qiqiqiqiqr YYYYY   for 4321 ,,,i  , which is the effective floor mobility 

at the new contact points on which the inertia block is placed as shown in Fig. 2.1 (b).  

  To assess the performance of vibration isolation, the active structure-borne sound 

power that is transmitted to the floor must be obtained [42]. For the machine that is 

symmetrically placed on the floor without isolators, the transmitted active power is   

 r
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For the machine spring with isolators, the total transmitted power )(sP  is  
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For the source being placed on an inertia block with isolators, the transmitted power is  
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For the machine with spring isolators, the vibration velocity is defined as the velocity 

of the machine at the contact point with the spring isolator, and is given by  

0
0

2
0

2
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Ymj
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
                  (2.12) 

For the machine that is placed on the inertia block with isolators, the vibration velocity 

is defined as the velocity of the machine and the inertia block at the contact point with 

the spring isolator, and is given by  
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               (2.13) 

These values represent of vibration motion of a resiliently mounted vibratory system 

related to the free velocity of source. The smaller average vibration velocity, the less 

active is the vibratory motion of the isolated system. 

2.2.2 4-POINT UNEVEN MASS MACHINE ISOLATED WITHOUT AND WITH 

INERTIA BLOCK  

  For the model of the vibratory system with N contact points which is described by 

the source characteristics, the free velocity can be defined as N×1 vector [VS] and 

source mobility can be defined as N×N matrix [YS]. As described in Ref. [6, 10], 

retaining the basic model of a single-point vertical excitation and motion structure, 

while incorporating the interactions of N contact points, the relation between the 

components of vibration velocity and that of transmitted force can be expressed as Vpi = 

Ypi1Fp1 +…YpiiFpi + …+YpiNFpN . Here Ypik are the transfer mobility components from the 

mounting point pk to pi, and Vpi is the actual velocity at point pi due to all excitation 

components of the system. The items of Ypii represent the direct path between the 

components of force and velocity at a same point, and the other items of Ypik (i = k) 

represent the coupling paths between different contact points for the components of 

dynamic force and velocity under study. 
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Fig. 2.3 (a) Model of the machine of even mass and its dimensions; (b) the model of the 
machine placed on the inertia block and its dimensions.  
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Fig. 2.4 (a) Plan view of the structure and dimension parameters of the uneven-mass 
machine. (b) plan view of the balanced setting with the inertia block.  
 

As the model shown in Fig. 2.3(a) and the plan view shown in Fig. 2.4(a), the 

machine, which is assumed to be a rigid body in the interested low frequency region, 

consists of two parts – one is the symmetrical hollow rectangular part with four 

mounting points on the midpoints of every external side, and the other is an embedded 

rectangular engine part in uneven mass distribution. The whole mass of machine is 

02010   MMM                                    (2.14) 

where 01M = the mass of the hollow rectangular part of which L = the each external 

side length, 2l  = the internal side length, H = the height, and 02M = the mass of the 
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embedded rectangular engine part, of which 2l = the long side length, H = the height, 

w = the width, c = the distance between the even mass embedded part and the external 

side of p3. There is a transverse distance between the center of gravity and the 

geometrical center, the location of the gravity center, and the moments of inertia around 

the axes throughout its center of gravity are given by 
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In this case, to describe the source mobility including the multi interactions among the 

mounting points p1- p4 of the machine, a matrix form is used for the estimation of 

structure-borne sound by mobility method, which is given by  
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where the coefficients of the matrix are given by 
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In the section, assuming that the source machine is effectively driven the inherent 

force 0F  at the center of the embedded engine part, the free velocity vector of the 

source machine is given by  

     43210
T

SSSSS VVVVV                      (2.19) 
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in which SiV (i =1, 2, 3, 4) are the vibratory free velocities of four mounting points, 

which can be given by 
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As the machine is directly mounted on the floor, the dynamic force vector and 

structure-borne power transmitted to the floor are given by  

        0

1

SrsSTns VYYF


                      (2.20) 

      (ns)rsr(ns) FYV                         (2.21) 

     TnsrsTns(ns) FYFP ReT*

2

1
                                (2.22) 

the floor mobility matrix for the contact points on the floor that support the ma

chine, and the components Vri(ns) of  )(nsrV  (i =1…N) are the corresponding vibr

ation velocities at the points on the floor, as shown in Fig. 2.5(a).   

 

Fig. 2.5 (a) Definition of the vibration velocities of a multi-point vibratory machine that is 
mounted without vibration isolators or inertia block, and the velocities of the supporting 
flexible floor, (b) definition of the vibration velocities of the vibratory machine that is 
mounted with inertia block and vibration isolators, and the vibration velocities of the 
supporting floor. 
 



 

 23

  When the isolated machine is combined with the inertia block as shown in Fig. 2.3(b) 

and Fig. 2.4(b), the center of gravity of the machine is located on the center of inertia 

block so that mass distribution of the combined system is balanced. The moments of 

inertia around the two horizontal axial throughout the gravity center of the combined 

vibratory source with the inertia block can be expressed as:  

   2
0

0

0
22

011 4
 

12
  b

b

bb
bSb HH

MM

MMHB
MII 





                   (2.23) 

   2
0

0

0
22

022 4
 

12
  b

b

bb
bSb HH

MM

MMHB
MII 





                   (2.24) 

for the combined source of the machine with inertia block, the source mobility matrix is 

given by  
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where the coefficients of the matrix of combined source mobility are derived by 
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Driven by the same inherent force of the machine, the new free velocity vector for the 

combined source with inertia block is given by 

   T4321 SbSbSbSbSb VVVVV                       (2.26) 
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where SbiV (i =1, 2, 3, 4) are the free vibratory velocities of four mounting points on the 

combined inertia block. Herein,  'SV =  SbV  is the new free velocity and  'SY =  SbY  
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is the new source mobility corresponding to the new mounting points of the source 

combined with inertia block. With the installation of the spring isolators, the vector of 

the dynamic forces and the active power transmitted to the floor can be calculated by  
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Where  '
rsY  is the floor mobility matrix for the new contact points qi (i =1, 2, 3, 4) on 

the floor that support the combined source with inertia block. The vibration velocity 

vectors of the supporting floor and the isolated machine are given by 

      Tsrssr FYV '                                 (2.29) 
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where  msT  is the transfer matrix of source vibration velocity between the mounting 

points of the inertia block and the points of the machine (if there is no inertia block, 

 msT  will be an identity matrix). In the form of    T)()(1)( ... smNsmsm VVV  , the 

vector  )(smV  expresses the corresponding velocities at the mounting points of the 

isolated machine, and    T)()(1)( ... srNsrsr VVV   expresses the vibration velocities at 

the N contact points supporting the vibration-isolated system on the floor, which are 

defined as shown in Fig. 2.5(b). (Eq. 2.31 for floor mobility) 
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2.2.3. THE ASSESSMENT INDICES FOR ISOLATED VIBRATORY SYSTEMS 

For the multi-point vibratory machine mounted on a flexible floor, to accurately 

assess the vibration isolation system for structure-borne sound attenuation, the level of 

power transmissibility is used to evaluate the performance of vibration isolators, which 

is defined as 

)(

)(log10
ns

s
s P

P
                          (2.32) 

To estimate the stability of the multi-point vibratory system mounted on a real floor, the effect 

of floor mobility should not be neglected as it will affect the vibratory motion of the supporting 

floor structure, particularly, at frequencies near resonance modes of the floor. The level of 

vibration velocity transmissibility is adopted herein to evaluate the isolation effect on 

the vibration response of the supporting foundation, which is given by  
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where Vri(ns) (i=1…N) is the vibration velocity at the ith contact point on the flexible 

floor supporting a vibratory machine that is directly mounted without the inertia block 

and vibration isolators, while Vri(s) is the velocity at the ith contact point on the floor 

supporting the machine that is mounted with isolators. Also, based on the free velocity 

of the source characteristics for multi-point machines excited by frequency-dependent 

forces, the mounted vibration velocity level of the vibratory machine is proposed to 

evaluate the stability of the isolated vibratory machine, which is defined by  
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where VSi is the free velocity at the ith contact point on the source machine and Vmi(s) is 

the velocity at the ith contact point of the vibratory machine that is mounted with the 

inertia block and vibration isolators. Moreover, the mounted rotational velocity level is 

proposed to evaluate the rocking motion of the vibratory multi-point machine mounted 

with the inertia block and vibration isolators, which is given by 
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where Vm0 is the vibration velocity at the center of gravity of the machine. Thus, the 

influence of isolating equipments on the vibrating and rocking motion of a vibratory 

machine can be analyzed as a normalized level.  
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2.3 ANALYSIS OF THE VIBRATION-ISOLATED SYSTEMS WITH 

VARIOUS INERTIA BLOCKS 

2.3.1 THE PARAMETERS OF VIBRATORY SYSTEM AND THE SETTING 

CONDITIONS FOR ANALYZED CASES 

In the first case study, the machine with four supporting springs is placed 

symmetrically on the square concrete floor, as shown in Fig. 2.6(a). The same machine 

mounted on the concrete inertia block with four supporting is shown in Fig. 2.6(b).  

 

Fig. 2.6 (a) The plan view of the machine with uneven mass symmetrically mounted with 
four vibration isolators on the simply-supported floor plate. (b) The plane view of the 
machine mounted on the inertia block with four vibration isolators placed symmetrically 
on the floor.   
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Fig. 2.7 (a) The plan view of the machine with uneven mass asymmetrically mounted with 
four vibration isolators on the simply-supported floor plate. (b) The plane view of the 
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machine mounted on the inertia block with four vibration isolators placed asymmetrically 
on the floor. 

 
The dimensions and parameters of the steel machine model with uneven mass 

distribution are as follows: l0 =1.294m; l2 =1.185m; H = 0.32m; steel density 

3310857 kg/m.s  ; the mass of the exterior body part of the machine kg70001 M  

and of the internal engine part kg55002 M ; m.w 270 ; and c = 0.575m. The four 

springs of the same stiffness are selected for the ideal natural frequency in vertical 

direction Hz 12
4
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 with a low damping ratio ζ= 0.005, correspondingly 

for the two degrees of motions around two horizontal axes the natural frequencies are 
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 =15 Hz. The inertia block, as a concrete 

cuboid body, is selected with a density 33 kg/m108.2 c  and a side length of its 

square plane area LB = 2.0m, the thickness (Hb) of which is varied for the different mass 

of the inertia block Mb (from 1-5.5 times the total machine mass M0). To evaluate the 

influence of additional inertia blocks on the inertia of isolated sources, the ratio of the 

combined inertia of source is defined as
)(

)(

02010

020121

IIM

IIIIM sbsbb




 . The physical 

parameters of the concrete floor are primarily based on the values given in [8], of 

which the density 33 kg/m108.2 c , Young’s modulus 210 N/m101.2 E , loss 

factor 2102  , Poisson’s Ratio 2.0 , and thickness m26.0d . The boundaries 

of the square plate are simply supported, with the side length m6aL , so that the 

floor mobility matrix, including the point mobility and transfer mobility for the multi 

supporting points, can be calculated using the developed analytical equations (whose 

mathematical functions are derived as in Ref. [61] and [40] p.322-327). The typical 

value of loss factor used in the thesis is based on the work of ref. [62]. 
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  The springs that support the machine with the inertia block are chosen to maintain 

the same static deflection [1, 58] with a same damping ratio ζ= 0.005 so that the ideal 

natural frequency in vertical direction is also 12 Hz. Then the different natural 

frequencies in two degrees of rocking motion around two horizontal axes 

correspondingly are 
1

1 2

1

sb

Bb

I

Lk
f


  and 

2
2 2

1

sb

Bb

I

Lk
f


 . The details of the 

different natural frequencies corresponding to the vibratory systems in various ratios of 

the combined inertia of source are shown in Table. 2.1. In this case, the major working 

frequency region of the machine is assumed to be from 50 to 200 Hz that is larger than 

3.3 times of f0 for typical engineering design, and the frequency range interested by our 

study is 5 to 200 Hz in the figures for the analysis. 

 Lightly uneven mass distribution Heavy uneven mass distribution 

 f 0 Hz f 1 Hz f 2 Hz f 0 Hz f 1 Hz f 2 Hz 

without 
inertia block 12 15.4 15 12 17.2 15 

with inertia 
block β1 12 9.14 9.08 12 9.50 9.08 

with inertia 
block β2 12 6.46 6.44 12 6.59 6.44 

with inertia 
block β3 12 4.41 4.4 12 4.45 4.4 

 
Table. 2.1 The natural frequencies in 3-degrees of freedom for the isolated vibratory 
systems without and with the inertia blocks in various ratios of the combined inertia of 
source β. 

 
In the second case study, the vibratory machine with highly uneven mass distribution 

(c = 0.235m) is both asymmetrically mounted on the floor plate with springs only, as 

shown in Fig. 2.7(a), and isolated with the springs and inertia blocks, as shown in Fig. 

2.7(b). Similar to the first case, the four springs of same stiffness supporting the 
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machine are selected for the ideal natural frequency in vertical direction f0 = 12 Hz, and 

the natural frequencies in two degrees of motion around two horizontal axes 

correspondingly are f1 = 17.2 Hz and f2 = 15 Hz. The inertia block and springs that 

support the machine of heavy uneven mass distribution with the various inertia blocks 

are also chosen same as in the first case. The details of the different natural frequencies 

corresponding to the vibratory systems in various ratios of the combined inertia of 

source are also listed in the Table. 2.1. 

 

2.3.2 COMPARISON AND ANALYSIS OF DIFFERENT VIBRATION-ISOLATED 

SYSTEMS  

For a symmetrically placed machine with slightly uneven mass distribution that is 

driven by a force acting on the engine part M02, the three thickness of the additional 

inertia block is selected corresponding to the ratios of the combined inertia of source 

are about β1 = 2.4, β2 = 4.4 and β3 = 8.8. It can be seen from Fig. 2.8(a) that, at the 

frequency range 160Hz > f > 40Hz, the levels of power transmissibility ( s ) for the 

system with the different inertia blocks are similar and do not, when compared to those 

for the system without the inertia block, change significantly at most frequencies. The 

slight differences at various frequencies are due to the change in floor mobility at the 

different supporting points on the floor. When the frequency increases to f > 160Hz, all 

the levels are quite small so the difference is not considerable. It is noted that the peak 

of power transmissibility at the frequency around 15Hz, which is corresponding to the 

resonance of rocking motion of the isolated uneven machine without inertia block, is 

cancelled after the insertion of inertia block, because the natural frequency of rocking 

motion f1 of the isolated machine with inertia block is decreased by the combination 

with the inertia blocks (as shown in Table. 2.1). Besides, the peak at the frequencies 
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around 20Hz (which is in the ideal vibration isolation region > 02 f ) would move to a 

little higher range of frequency after the installation of bigger inertia block. Basically, 

the use of the inertia block or the additional mass of the inertia block does not change 

the performance of vibration isolation.  

It can be seen from Fig. 2.8(b) that the curves of the level of vibration velocity 

transmissibility ( rs ) at various ratios of the combined inertia of source are nearly the 

same in the whole studied region. This means that the change in the inertia of attached 

inertia block does not significantly change the excited vibration of the receiver floor. 

Compared to systems with the inertia block, the level of vibration velocity 

transmissibility for the system without the inertia block fluctuates at higher levels at 

most of the frequency range from 65 to 200 Hz except the narrow regions of two 

resonance peaks, but it is lower than the levels of. vibration velocity transmissibility for 

the systems with inertia blocks at the frequencies from 40 to 65 Hz. The mounted 

rotational velocity levels ( m ) of the isolated vibratory machine, without and with the 

inertia blocks at various ratios of the combined inertia of source, are plotted in Fig. 

2.8(c). It is found that the values of the mounted rotational velocity level of the isolated 

machine gradually decrease from -12 dB to -26 dB in the working region of machine (f 

> 50Hz) as β increases from β1 = 2.4 to β3 = 8.8. This means that the rotational velocity 

of the vibration system caused by the uneven mass distribution can be reduced by the 

additional inertia of the inertia block. Therefore, the use of or the additional mass of the 

inertia block improves the stability of the vibration isolation system while maintaining 

the performance of the vibration isolators in the working region. The mounted vibration 

velocity levels ( vm ) of the isolated vibratory machine, without and with the inertia 

blocks at various ratios of the combined inertia of source, are plotted in Fig. 2.8(d). It is 

found that the values of the mounted vibration velocity level of the isolated machine 
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gradually decrease from 0 to -18 dB in the isolation region as β increases from 0 (i.e., 

without the inertia block) to β3 = 8.8. This means that the vibration velocity of the 

isolated machine is near to the free velocity of the machine at most frequencies in the 

isolation region. The additional mass of the inertia block does reduce the vibration 

velocity of the isolated machine, so that the stability of the system is improved.  

For good vibration isolation, it is necessary to reduce more than 99% of the 

structure-borne sound power transmitted from the source to the receiving structure and 

to reduce more than 90% of the transmitted vibration amplitude of the floor directly 

supporting the machine. The selected vibration isolators, together with the inertia block, 

should ensure that the level of power transmissibility of s ≤ -20(dB) and the level of 

vibration velocity transmissibility of rs ≤ -20(dB) can be satisfied in the vibration 

isolation region. The purpose of using additional inertia blocks is to control the rocking 

motion of the isolated machine. The average amplitude of the vibratory velocity of the 

isolated machine should be less than one-third of its free velocity, and the average 

amplitude of the rolling motion of the isolated machine should be less than 6% of the 

pure rolling motion, at the same amplitude, of its free velocity. Therefore, the suitable 

mass of the inertia block should be about two times the mass of the machine, as the 

ratio of the combined inertia of source of β1 can satisfy the requirements of vm < -10 

dB and m < -20 dB in the mounting condition. 
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Fig. 2.8 Performance indices for the vibration isolation systems for the symmetrically 
placed machine of light uneven mass distribution, in the cases without and with the 
inertia blocks in various ratios of the combined inertia of source β. (a) The level of 
power transmissibility; (b) the level of vibration velocity transmissibility; (c) the mounted 
vibration velocity level of the vibratory machine; (d) the mounted rotational velocity level 
of the machine.  
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In the case of the machine with highly uneven mass distribution asymmetrically 

mounted on the floor plate without and with the inertia blocks, it can be seen from Fig. 

2.9(a) that s  for the system with the inertia block with different β does not, when 

compared with s  for the system without the inertia block, change significantly in the 

isolation region at most frequencies (f >50 Hz). It can be seen from Fig. 2.9(b) that the 

curves of rs  at various ratios of the combined inertia of source are almost the same in 

the isolation region at most frequencies. This again indicates that the change in the 

mass of the inertia block does not significantly change the excited vibration of the 

receiver floor. It can be seen from Fig. 2.9(d) that the effect of inertia blocks on the 

vm  for the machine with highly uneven mass distribution is also very similar to the 

effect of inertia blocks on the vm  for the machine with slightly uneven mass 

distribution. Fig. 2.9(c) shows that, under the same mounting conditions, the values of 

m  for the machine with highly uneven mass distribution are significantly higher than 

those of the machine with slightly uneven mass distribution. The values of the m  for 

the isolated machine gradually decrease from -6 dB to -25 dB in the isolation region as 

β increases from 2.4 to 8.8. In order to meet the same requirements (i.e., vm < -10 dB 

and m < -20 dB) as those in the first case study, the suitable mass of the inertia block 

should be >β3. This again indicates that, basically, the use of the inertia block or the 

additional mass of the inertia block does not change the performance of vibration 

isolation but can improve the stability of the isolated vibratory system. The results 

reveal that, in order to enhance the stability of the vibration isolation system in 

machines with highly uneven mass distribution, an inertia block with a larger mass is 

required for a mounted vibratory machine.  
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Fig. 2.9 The performance indices for the vibration isolation systems for the 
asymmetrically placed machine of heavy uneven mass distribution, in the cases without 
and with the inertia blocks in various ratios of the combined inertia of source β. (a) The 
level of power transmissibility; (b) the level of vibration velocity transmissibility; (c) the 
mounted vibration velocity level of the vibratory machine; (d) the mounted rotational 
velocity level of the machine.  
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2. 4. CONTRIBUTION AND SUMMARY  

The fundamental source-receiver model of a vibration-isolated system is represented 

by an electrical analogy, and the complex model is applied to a multi-point source 

machine that vibrates in three degrees of freedom and asymmetrically mounted on a 

flexible floor with isolators in vertical direction. Furthermore, the developed model is 

used to estimate the isolation performance for an isolated uneven vibratory machine 

with an inertia block.  

In the analysis of this chapter, the level of power transmissibility, the level of 

vibration velocity transmissibility, the mounted vibration velocity level, and the 

mounted rotational velocity level of the vibratory machine are proposed in order to 

assess the performance of vibration isolation and the stability of isolated multi-point 

vibratory building services equipment. The results primarily indicate that the use of an 

inertia block does not mainly affect the performance of vibration isolation. Instead, it 

decreases the vibration velocity and rotational velocity of the isolated vibratory 

machine, so that it can increase the stability of the vibratory system, regardless of 

whether the machine has slightly or highly uneven mass distribution. It is also found 

that, for the machine with slightly uneven mass distribution placed symmetrically on a 

floor plate, the suitable inertia block of which the ratio of the combined inertia of 

source is about 4. For the machine with highly uneven mass distribution placed 

asymmetrically on the floor, the ratio of the combined inertia of source of the additional 

inertia block should be larger than 8. The results reveal that, for the mounted vibratory 

machine, an inertia block with a larger mass can reduce the vibration and rotation of the 

isolated vibratory machine. As a result, it enhances the stability of the isolated vibratory 

system of machines with highly uneven mass distribution in 3 degrees of freedom. 

Therefore, in addition to proposing indices for assessing the stability of the vibratory 
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building services system, this chapter provides an insight into the selection of inertia 

blocks based on the mass distribution of an isolated vibratory machine.  
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CHAPTER 3. CHARACTERISTIC WAVETYPES OF THE 

FLEXURAL-LONGITUDINAL MOTION IN PERIODIC 

COUPLING DUAL-LAYERED BEAM STRUCTURES  

3.1  INTRODUCTION 
 

A number of building structures, bridges, container ship structures, and 

steel-reinforced concrete constructions are built from an assembly of a number of same 

or similar structure elements, of which the frames are typically coupled in a spatially 

identical manner to form a so-called “periodic structure.” The excited vibration and 

transmission of the mechanical waves in these structures—from side to side in a bridge 

or layer to layer in a building—often give rise to structure-borne noise problems in the 

connected spaces and can sometimes even be harmful to the stability of the entire 

structure. When they propagate through frame structures that contain many connection 

branches, these structure-borne sound waves are coupled and reflected by each 

connector. The reflected and transmitted waves are then coupled and reflected again by 

other connectors. This process is physically repeated and sets off infinite 

multi-interactions between the coupling connections and propagating waves in a 

periodic structure, which forms the dispersion bands of structure-borne sound waves.   

Early on, the dispersion bands of waves in periodic waveguides were studied for the 

electro-magnetic waves in solids [46], thus promoting our basic understanding of the 

properties of conductors, semi-conductors, and the like. Since the late 1980s, the 

optical wave bands in media with periodical modulation have been extensively studied, 

and these studies have led to a number of practical applications, including the advanced 

design of photonic crystals [63] and waveguide devices [64]. All of these studies have 

brought researchers deeper insight into the dispersion properties of periodic structures 

and have helped them to develop methods for the theoretical calculation of wave 
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propagation. In acoustics, the classical problem of plane sound wave transmission in 

one-dimensional periodic media can be tackled in an exact manner via the transfer 

matrix method [49]. The theoretical computations of band structures have also been 

well-documented for sound waves in periodic acoustic structures by Kushwaha and 

Mod [50]. Enhanced wave transmission was modeled in rib-reinforced floors about 50 

years ago by using a beam that was periodically loaded with eccentric attachments 

because of wave coupling [65]. Four different methods of calculating the 

structure-borne sound propagation in beams with many non-resonant discontinuities 

were demonstrated by Manfred Heckl [54] and three of these methods took the 

coupling between longitudinal and flexural waves into account. The fundamental 

concept for the characterization of a periodic structure with multi-coupling was 

introduced by Mead [52]. In this context, a quadratic and well-posed spectral problem 

was studied to determine the propagation constants of coupled waves for a periodic 

system. The continued work was extended by Mead [53], which developed a second 

order matrix equation leading to the propagation and natural modes of the 

multi-coupled wave motion a damped periodic structure. Several years ago, a 

mathematical model for the coupling of waves that propagate in a periodically 

supported Timoshenko beam was presented by Maria Heckl [55]. Furthermore, the 

propagation characteristics of coupled longitudinal and flexural waves in beam-type 

transmission paths with asymmetric loads in the form of resonant columns were 

theoretically analyzed [56] and experimentally examined [57] by Friss and Ohlrich. 

However, little understanding of the fundamental physical propagation characteristics 

of the coupling acoustic waves in multi-layered structures has been gained from these 

studies. It is because they are commonly concerned with models of a single-channel 

waveguide that comprises the independent beam-type components or uncoupled wave 

transmission path in the structure. Therefore, the analytical study reported in this article 
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investigated the characteristics of the multi-coupling flexural and longitudinal waves 

that propagate in a periodic dual-beam type waveguide with structural connection 

branches. The transfer matrix method is developed by using the concept based on the 

propagation constants [52, 53] of the waves in a periodic structure so that it avoids the 

problems from inversion of ill-conditioned matrices and the cumulative errors. The 

developed method is therefore explicit and appropriate for the calculation of the 

coupled waves in the coupling beam structure. 

 

3.2  THEORETICAL MODEL  
 
3.2.1 SIMPLE MODEL OF A PERIODIC DUAL-BEAM STRUCTURE WITH A 

TRANSVERSE CONNECTION 

  The research of this chapter examines the band structure of flexural-longitudinal 

wave propagation in a dual-beam coupling structure that is periodically connected with 

transverse branches. A simplified model is shown in Fig. 3.1. The structure-borne 

sound consists of the flexural waves and longitudinal waves that propagate in two 

horizontal beams—A and B are coupled at each connection with a vertical branch Ci. 

The beams and branches discussed theoretically are even, straight, isotropic, and 

homogeneous, and the following physical parameters are assumed. ρ(1,2,3)= the density 

of beams A and B and branch Ci, B(a,b,c)0= the bending stiffness of beams A and B and 

branch Ci, E(A,B,C)= the Young’s modulus of beams A and B and branch Ci, k(A,B,C)f = 

the flexural wave numbers of beams A and B and branch Ci, k(A,B,C)l = the longitudinal 

wave numbers corresponding to the acoustic speeds of the longitudinal wave c(1,2,3) of 

beams A and B and branch Ci. The characteristics of the wave types and the energy 

transmission of the coupled flexural-longitudinal waves in a semi-infinite periodic 

dual-beam structure is calculated for analysis in a case study. 
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Fig. 3.1 Scheme of the semi-infinite periodic dual-beam structure and the 
excitations on the structure 
 
 

3.2.2. WAVE TRANSFER MATRIX AND PROPAGATION CONSTANTS OF THE 

CHARACTERISTIC WAVE TYPES  

In the analytical model of this research, the coupled wave components of the 

complex velocity (horizontal, vertical, and rotational) and force (horizontal, vertical, 

and moment) vectors are used for describing the coupled wave motions and response in 

the dual-beam structure. For the mathematical derivation based on the theoretical 

fundamentals of the propagation and coupling of structure-borne sound waves in thin 

beam structures [40], all of the analytical equations of this study are based on the 

harmonic wave of separate frequency ωn with time dependence suppressed. Normally 

the longitudinal and flexural waves in a beam can be expressed in the form of the 

independent wave velocity components. In addition, the longitudinal-flexural waves 

can be described by the beam velocities and the corresponding forces caused by the 

wave motions. At the connections of every periodic element, the vector consisting of 

velocity and force components can be related to the vector of the flexural-longitudinal 

waves that propagate through the beams in a matrix form as follows. 
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where the velocity vectors of the flexural and longitudinal wave components are 

expressed as 

   T            AlAlAfjAfAfjAfwA vvvvvvv ,    T            BlBlBfjBfBfjBfwB vvvvvvv , 

of which “+” donates the wave components propagating in the positive x-direction, “-” 

donates the components going in the negative x-direction, “f”, “fj” and “l” donate the 

propagating flexural, nearfield flexural and longitudinal wave components respectively. 

The vectors of the velocities and forces of the two beam channels – indicated by the 

subscripts “a” and “b”, are expressed as  

   T          V xbxabaybyan VVVV  ,    T
 

           F xbxabaybyan FFMMFF .  

Where Vx, Vy and ω are the x-degree, y-degree and rotational velocities in the beam, 

and Fx, Fy and M are the x-degree force, y-degree force and moment acting on a beam. 

To describe the relationship between the independent flexural-longitudinal waves and 

the velocities-forces in two beams, the waves to motions-actions transfer matrix [SVF] 

takes on the matrix form:  

   T321321            FFFVVVVF SSSSSSS  ,                (3.3) 
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in which the matrix are derived by  
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It is clear that the y-degree velocities and forces, rotational velocities and moments in 

the beams A and B are resulted from the flexural wave motions, while the x-degree 

velocities and forces in two beams are resulted from the longitudinal wave motions. It 

should be noted that the wave-coupling effect in a periodic dual-beam structure is 

caused by the vertical connections. By introducing the dynamic continuity conditions at 

the interfaces that are vertically connected with the branch beams, the relationship 
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between the velocities and the forces of the coupled flexural and longitudinal waves at 

the connections of dual-beam structure can be characterized as a 12 x 12 coupling 

transfer matrix that can be expressed as  

 
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V
 denote the velocity and force vectors of the beam on the 

left and right side of the connection points on beam A-B with Ci. Based on the dynamic 

equilibrium on two sides of a branch Ci, the wave-coupling matrix  CW  is given by  
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in which the transfer elements are given by 
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The new flexural and longitudinal waves that are excited in the branch will result in the 

velocities and forces acting on the two connection sides of the branch with the beams A 
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and B, so that the flexural and longitudinal waves will be coupled there.  Moreover, 

the transfer matrix of the longitudinal and flexural waves propagating in the continuous 

beam period (whose length = d) is given by 

        1
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It is generally understood that the flexural and longitudal waves can propagate 

independently through the dual-beam part between the connnection branches without 

coupling. Therefore, the transfer relationship of the waves in the continuous beam part 

can be described by using the diagonal matrices. On the whole, the coupled wave 

transmission in the periodic structure can be expressed as 
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where the entire periodic transfer matrix is given 

         C
1 WSPSU VFwvVFe

 . 

  According to the Bloch wave theory [66], for a linear acoustic system, when the 

acoustic waves are propagating through a semi-infinite one-dimensional periodic 

structure, the wave motions can be described as the characteristic wave-types of Bloch 

waves. Then the relationship between velocity vector [Vn]i and force vector [Fn]i at the 

two periodic connection points nearby satisfies the form  
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This represents a problem on the eigen value vector for the transfer matrix  eU , where 

μj=±(μjR+j·μjI) are the pair of jth eigen values—the frequency-dependent complex 

propagation constants for the corresponding pair of the N characteristic wave types (N 

= 6 for this periodic structure). Correspondingly the characteristic wave types are 

formulated by the eigen vectors  Tjnjn    , which take on the form 

   T , , j
Vyb

j
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j
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j
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j
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j
Vxajn XXXXXX ,,,    and 

   T , , j
Fyb

j
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j
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j
Fxb

j
Fxajn XXXXXX ,,, .  

As the “attenuation constant” of the coupled wave type, the real part μjR expresses the 

exponential decay rate for the jth characteristic wave type that propagates through a 

periodic beam element, whereas the imaginary part μjI is defined as the “phase 

constant,” of which the cosine value describes the phase transfer of the jth 

characteristic wave type that propagates through each element. If the propagation 

constants of the positive-going wave types are defined as μj = μjR+j·μjI (0≤ |μjI|< 2π), 

then, correspondingly, the real and imaginary parts of the propagation constants ought 

to be negative. For the frequency-dependent wave propagation in a periodic structure, 

the frequency domain is classified into pass bands, i.e. frequencies at which the coupled 

waves travel through the periodic structure with little loss, and forbidden bands, i.e. 

frequencies at which the coupled waves propagating in the periodic structure are 

evanescent. In an ideal case as the damping factor is negligible, a pair (positive and 

negtive- going) of characteristic wave types yield up to a pair of pure imaginary 

propagation constants at any frequency within the pass bands, which indicates the 
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coupled waves propagating through the periodic structure will not decay. On the other 

side, the real parts of propagation constants are nonzero at the frequencies within the 

forbidden bands, which indicates the coupled waves will be attenuated as propagating 

through the periodic structure. The zone of larger attenuation constants, i.e. |μjR| means 

that the corresponding wave-type is in the stronger forbidden band of the periodic 

structure. In the semi-infinite structure, only the positive-going propagation constant μj 

= –|μjR| – j|μjI| is the resonable solution, because neither +|μjI| nor +|μjR| for a 

negtive-going wave type is physically possible for the phase retardation and energy 

decay in propagation. 

 

3.3 ANALYSIS FOR THE TRANSMISSION OF COUPLED WAVES  

3.3.1. SETTINGS AND PARAMETERS USED IN COMPUTATION  

  The numerical analysis and choice of the physical parameters for a semi-infinite 

periodic structure was designed to investigate and reveal the coupling effects of wave 

propagation. All of the computations and matrix manipulations were conducted using 

MATLAB. Aluminum was chosen as the beam material, of which the Young’s 

modulus is E0 = 6.9 × 1010 N/m2 with loss factor η = 0.002 and density ρ0 = 2700 

kg/m3. The two equal beams are semi-infinite along the x-direction and periodically 

connected by the transverse beams with a same rectangular cross-section. The thickness 

and width of the beam cross-section are h0 = 11 mm and d0 = 50mm respectively, the  

periodic element length is l0 = 550 mm and the length of transverse connection beam is 

lc = 500 mm. The results in the frequency domain computed for the analysis and the 

discussion herein of the characteristic coupled waves are normalized by using the 

non-dimensional frequency parameter Ωn as Ref. [56], which is given by  

      00
21

00
2

0 12 hlElk nfn // / ,               (3.10) 
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where kf  is the real wave number for the free flexural waves that are propagating in 

beams A and B.  

 

3.3.2 PROPAGATION CONSTANTS AND THE CHARACTERISTIC WAVE 

TYPES 

  Basically, there are six characteristic wave types for the coupled wave motions that 

propagate in the semi-infinite periodic coupling beam structure, which all contain both 

positive-going and negative-going longitudinal and flexural wave motions in the beams 

because of the multi-coupling at the beam connections. These characteristic wave types 

can be divided into two groups—symmetric and antisymmetric types—based on the 

different phase relationships of the wave motions between beams A and B. Herein the 

symmetric wave types are named because the phase differences of the y-degree 

velocities between beam A and beam B are π and the phase differences of the x-degree 

velocities between two beams are 0. They are like the mirror images from the 

symmetry axis of the dual-beam structure in x-direction. For the motions of 

antisymmetric wave types, the phase differences of the y-degree velocities between 

beam A and beam B are 0 and the phase differences of the x-degree velocities between 

two beams are π. They are like the inverted images from the symmetry axis of the 

dual-beam structure in x-direction. A further step to describe the propagation 

characteristics of the wave types is to use the dispersion of the propagation constants.  

 



 

 51

 

 
 



 

 52

 

Fig. 3.2 Propagation constants of characteristic wave-types. (a) μR and cos(μI)of 
the symmetric flexural-longitudinal wave types: α-I and α-II; (b) μR and cos(μI)of 
the antisymmetric flexural-longitudinal wave types: β -I and β –II; (c) μR and 
cos(μI) of the symmetric and antisymmetric predominantly near-field wave types. 
 

The computed results for the attenuation constants μR and cos(μI) for the 

characteristic wave types in the periodic beam structure are plotted in Figs. 3.2 (a), (b), 

and (c). It can be seen from Fig. 3.2(a) that the symmetric flexural-longitudinal wave 

motion is governed by two types: α-I and α-II. It is found that more attenuation zones 

belong to wave type α-I, and they fall off slowly and have broad forbidden bands. 

Those that belong to wave type α-II, which, for the most part, belong to the frequency 

region below Ωn = 330, have pass bands, but two strong forbidden bands from nearly 

Ωn = 25 to 47 and 133 to 177, where the attenuation constants of α-II fall off rapidly 

and have sharp peaks at around two significant symmetric resonant modes of the 

connecting beam branch. It should be noted that the values of cos(μI) are equal to 1 or 

-1 in most regions of the forbidden bands. As shown in Fig. 3.2(a), the two curves of 

cos(μI) for the two wave types overlap at certain normalized frequencies where the 

attenuation constant is non-zero. This implies that the propagation constants almost 
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become complex conjugates with the non-zero attenuation constant. Similarly, it can be 

seen from Fig. 3.2(b) that the antisymmetric flexural-longitudinal wave propagation is 

governed by two wave types: β-I and β-II. It is found that more attenuation zones that 

correspond to the forbidden bands of type β-I fall off slowly and have broad bands. 

Those of type β-II in most regions below Ωn = 310 have pass bands, but two significant 

forbidden bands from nearly 62 to 72 and 219 to 271, where the attenuation constants 

of β-II fall off rapidly and have two sharp peaks at around two strong antisymmetric 

resonant modes of the connecting beam branch.  

Strong wave coupling occurs in the forbidden band gaps of the coupled 

longitudinal-flexural waves, as they are strongly attenuated through the periodic 

structure. In Fig. 3.2(c), the attenuation constants and cos(μI) of the predominantly 

near-field wave types are plotted as symmetric and antisymmetric types. For the 

predominantly near-field waves, the attenuation constants are obviously larger than 

those for the other wave types, and all of the cos(μI) values are almost equal to 1 or -1, 

which indicates that the energy of predominantly near-field waves decays dramatically 

as the waves propagate. As these two wave types are in the strong forbidden band 

regions, they can be ignored in the consideration of structure-borne sound transmission 

through a periodic structure.   
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Fig. 3.3 Phase relationship of characteristic flexural-longitudinal wave vectors in 
normalized frequency Ωn = 150. 
 

Fig. 3.3 shows the indicative results of the phase behavior of force-velocity vectors 

and further illustrates the phase relationship of the motions and actions between two 

beams. The phase vectors of the coupled flexural-longitudinal waves at the connection 

between beams A and B are chosen in the normalized frequency Ωn = 150. Remarkably, 

it can be observed that for symmetric wave types α-I and II, the phases of y-degree 

velocity Vy and rotational velocity ω of beam A are the reverse of those of beam B, and 

the phase of longitudinal velocity Vx of beam A is the same as that of beam B. In 

contrast, for antisymmetric wave types β-I and II, it is found that the phases of y-degree 

velocity Vy and rotational velocity ω of beam A are the same as those of beam B, 

whereas the phase of longitudinal velocity Vx of beam A is the reverse of that of beam 

B. As the frequency is chosen from the pass bands of wave types α-I and β-II, the phase 

vectors of their forces and moments point in different directions from their velocities 

and rotational velocities, which, in total, results in the positive energy flow constantly 

propagating along the periodic beams. However, the frequency is in the forbidden 

bands of wave types α-I and β-II, and almost all of the phase vectors of their forces and 

moments are perpendicular to the phase vectors of their velocity fields, which indicates 
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that the energy flow cannot continuously propagate through the periodic structure 

because of energy losses.  

 

3.3.3 EXCITED MOTION AND ENERGY OF THE COUPLED WAVES IN A 

SEMI-INFINITE DUAL-LAYERED BEAM  

  In this section, the effect of wave coupling on the response of an ideal semi-infinite 

periodic structure to two synchronous point excitations is investigated via simulation 

using the analytical transfer matrix method. Two types of harmonic source excitations 

that synchronously act on the left side of the semi-infinite beams A and B (along the 

x-axis) are considered. They are defined as the standardized synchronous longitudinal 

(x-degree) forces of amplitude FS0 = E0S0 and the synchronous moments of amplitude 

MS0 = (E0I0)/ l0, where I0 is the second moment of area of the beam elements and S0 is 

its cross-sectional area. The normalized force/moment levels of the propagating wave 

types through the first to fifth beam elements are plotted in Figs. 3.4(a) and 3.5(a) in the 

conditions of being excited by the longitudinal forces and moments, which are defined 

as  excitji
j

in F,fˆ log20f  , where ji,f  corresponds to the normalized eigen vector 

jn  satisfying the condition that 1j
FxAX  is being excited by the synchronous 

longitudinal forces, and 1j
MAX  is the excitation of the synchronous moments. In 

addition, the variations in the total flexural and longitudinal energy levels of every 

beam element are plotted in Figs. 3.4(b) and 3.5(b) in the forms given by 
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Herein the energy unit – J is suppressed because of the use of standardized excitations.  
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Fig. 3.4 Amplitude and energy transmission of coupled waves in response to the excitation 
of synchronous longitudinal forces. (a) The normalized force levels of the symmetrical 
wave types α-I and α-II that propagate through the first to fifth beam elements; (b) the 
total longitudinal and flexural energy levels of the five beam elements for synchronous 
longitudinal force excitation.  
 

For a periodic structure that is being excited by the synchronous longitudinal forces 

FS0, the normalized force levels of the symmetrical wave types α-I and α-II that 
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propagate through the first to fifth beam elements are plotted and shown in Fig. 3.4(a). 

The near-field wave types are neglected, as they decay significantly after propagating 

through a few elements, and the antisymmetric waves are omitted because they cannot 

be excited in this case. Notably, it can be seen from Fig. 3.4(a) that wave type α-I is 

excited at a low level and is attenuated significantly within the frequency regions of 

about Ωn = 0 to 11, 65 to 90, 195 to 256, and Ωn = 285 to 320 (which belong to the main 

forbidden bands of α-I) as it propagates through the structure, whereas wave type α-II is 

excited at a high level (i.e., the excited forces are near to the source excitation forces) 

and propagates through the structure without significant attenuation at those frequency 

regions. Similarly, wave type α-II is excited at a low level and is attenuated 

significantly within the frequency regions of about Ωn = 25 to 48, 136 to 180, and Ωn = 

330 and above (which belong to the strong forbidden bands of α-II) as it propagates 

through the structure, whereas wave type α-I is excited at a high level and propagates 

through the structure without significant attenuation at those frequency regions. Fig. 

3.4(b) shows the total longitudinal and flexural energy levels of the five beam elements. 

It should be noted from this figure that the total longitudinal energy is excited at a 

considerable level (near to 73), and the waves propagate through the structure without 

significant energy loss at most frequency regions, except for certain narrow zones that 

belong to the small forbidden bands of wave type α-I or α-II. Two prominent gaps in 

the curves of the total flexural energy level at the frequency regions that correspond to 

the strong forbidden bands of wave type α-I can be observed, as the total flexural 

energy level is mainly due to the coupling effect of the structure. On the other hand the 

total longitudinal energy level holds relatively steady at most frequencies, as the total 

longitudinal energy level is mainly due to the direct effect of the longitudinal source 

exciting forces. In fact, these two prominent gaps indicate that wave type α-I 

contributes most of the energy to the total flexural energy level, compared with wave 
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type α-II, at those frequency regions. This means that the energy contribution of 

coupled waves with respect to source excitation depends not only on the forbidden 

band of the wave types, but also on the energy ratios and combination of wave types.  

 

 

 
Fig. 3.5 Amplitude and energy transmission of coupled waves in response to the excitation 
of synchronous moments. (a) The normalized force levels of symmetrical wave types β-I 
and β-II that propagate through the first to fifth beam elements; (b) the total longitudinal 
and flexural energy levels of the five beam elements for synchronous moment excitation. 
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For a structure that is being excited by synchronous longitudinal forces MS0, the 

normalized force levels of symmetrical wave types β-I and β-II that propagate through 

the first to fifth beam elements are plotted separately in Fig. 3.5(a). The near-field wave 

types and the antisymmetric waves are again neglected. Notably, it can be seen from 

Fig. 3.5(a) that the excited wave type β-I is excited at a low level and is attenuated 

significantly within the frequency regions of about Ωf = 5 to 10, 30 to 40, 72 to 99, 132 

to 164, and from 220 to 229, which belong to the main forbidden bands of β-I as it 

propagates through the structure. Besides, the wave type β-II is excited at a high level 

where the excited moments are near the source excitation moments and the wave type 

β-II propagates through the structure without significant attenuation at those frequency 

regions. Similarly, wave type β-II is excited significantly at a low level and is 

attenuated strongly within the frequency regions of about Ωf = 11 to 21, 218 to 270, and 

Ωf =311 and above (which belong to the strong forbidden bands of β-II) as it propagates 

through the structure, whereas wave type β-I is excited at a high level and propagates 

through the periodic structure without significant energy loss at those frequency regions. 

Fig. 3.5(b) shows the total longitudinal and flexural energy levels of the five beam 

elements for synchronous moment excitation. A comparison of the shapes of the curves 

of the total flexural energy level in Fig. 3.5(b) with those in Fig. 3.5(a) shows that the 

propagating flexural energy at frequencies approximately lower than 225 is mainly due 

to the transmission of wave type β-I, whereas the propagating flexural energy at 

frequencies approximately higher than 225 is mainly due to the transmission of wave 

type β-II. Fig. 3.5 again illustrates that the energy contribution of coupled waves with 

respect to source excitation depends on the forbidden band of the wave types and on the 

energy ratios and combination of wave types.  
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3.4  SUMMARY 

  A theoretical model based on a multi-coupling wave transfer matrix has been 

developed to study the phenomena of the coupled flexural-longitudinal wave motions 

that propagate in a tri-coupling dual-layered periodic beam structure. A lightly damped 

semi-infinite structure that consists of two equally thin semi-infinite beams connected 

with resonant branches has been numerically analyzed. The connection branches are 

the beams perpendicularly connected at regular intervals. This type of waveguide can 

simulate a one- to two-dimensional model of a column-beam frame for modern 

steel-concrete buildings or bridges simply. The computed results of the complex 

propagation constants that govern the transmission of wave types in periodic structures 

have clearly revealed the characteristics of pass and forbidden bands and the 

wave-coupling phenomena. It is found that there are six characteristic coupled wave 

types that propagate through such a structure, and these can be divided into symmetric 

and antisymmetric groups of flexural-longitudinal and predominantly near-field 

characteristic wave types. Their properties under different excitations are quantified 

from the computed transmission of the normalized amplitudes of the coupled wave 

types together with the maximum flexural and longitudinal energies along the 

wave-carrying components. It has been revealed that the structure-borne sound energy 

from the synchronous longitudinal excitations at two beams mainly propagate through 

the periodic structure in the form of one or two types of symmetric characteristic 

coupled flexural-longitudinal waves. In contrast, the structure-borne sound energy from 

the synchronous rotational sources that excite dual-channel beams mainly propagate 

along the periodic structure in the form of one or two types of antisymmetric 

characteristic coupled flexural-longitudinal waves. These results demonstrate that the 

energy contribution of coupled waves with respect to source excitation depends on the 
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forbidden band of the wave types and on the energy ratios and combination of wave 

types.  
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CHAPTER 4. EXPERIMENTAL STUDY OF VIBRATION 

TRANSMISSION THROUGH A FINITE COUPLING DUAL- 

LAYERED BEAM STRUCTURE  

 

4.1 INTRODUCTION OF THE FUNDAMENTAL RESEARCH WORKS  

  To be able to predict the propagation of structure-borne sound through such 

structures, it is essential to know how to model the built-up structure to describe 

correctly the characteristics associated with the wave propagation. This is the case 

when statistical descriptions of the vibration field are applied [67], as well as when 

applying analytical descriptions [68, 69]. For analytical solutions, the most common 

approaches are the wave approach [52, 53] and transfer matrix method [70, 71]. It was 

showed that the bounding frequencies of wave propagation zones of a periodic system 

can be determined from element receptance matrices of the system [52, 53]. The 

propagation wave approach associated with the development of the Bloch wave 

theorem in solid state physics [72], can be applied most efficiently to infinite or 

semi-infinite periodic systems. On the other hand, the transfer matrix method provides 

a more convenient approach to the analysis of finite periodic structures where boundary 

conditions can be incorporated into the transfer matrix with ease. Other methods, such 

as Z-transform method [73], and Fourier transform method [74] had also been 

developed. Furthermore, an analytical solution was provided to predict wave 

propagation in infinite periodic supported beams and infinite periodic plates by using 

phased array receptance functions [75]. 

  Most of the past research work on the coupling of wave motions is concerned with 

models of a single-layered structure made of independent structural coupling 

connections, and few studies have been conducted on the energy transmission of 
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coupled acoustic waves in multi-layer structures. The theoretical study [76] reported in 

the last chapter therefore investigated the fundamental characteristics of the 

multi-coupling flexural and longitudinal wave motions that propagate in an infinite 

structural coupling dual-layered beam with connection branches. The characteristics of 

a semi two-dimensional beam structure is considered because the coupling interaction 

between the waves at the connections and transmission paths through a 

three-dimensional structure is so complicated that the analytical predictions based on 

the series of approximations required can be very different from the experimental set 

up.  

 

4.2 THEORETICAL MODEL OF A FINITE DUAL-LAYERED BEAM  

4.2.1 FUNDAMENTALS FOR THE PERIODIC COUPLING DUAL-LAYERED 

BEAM STRUCTURE 

  A simplified model of a dual-layer beam structure that is periodically connected with 

transverse branches is shown in Fig. 4.1. The propagating longitudinal waves and 

flexural waves in two horizontal beams— A and B are coupled at two sides of each 

junction j= 1…N with connection branches Cj. The beams and branches analyzed in the 

theoretical model are even, straight, isotropic, and homogeneous, and the following 

physical parameters are assumed: ρ1= ρ2 is the density of beams A and B and ρ3 is the 

density of branch C, Bs1= Bs2 is the bending stiffness of beams A and B and Bs3 is the 

bending stiffness of C, E1= E2 is the Young’s modulus of beams A and B and E3 is the 

modulus of branch C, kf1= kf2 is the flexural wave number in beams A and B and kf3 is 

the flexural wave number in branch C, kl1= kl2 is the longitudinal wave number in 

beams A and B corresponding to the longitudinal wave speed c1, and kl3 is the 

longitudinal wave number in branch C corresponding to the longitudinal wave speed c3.   
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Fig. 4.1 Diagram and dimensional parameters of the finite periodic coupling dual-layered 
beam used in the research. 
 

4.2.2 COUPLED WAVE MOTION AND MOBILITY OF A FINITE 

DUAL-LAYERED BEAM   

  In every dual-layer beam part between the connection branches of the periodic 

structure shown in Fig. 4.1, the propagation of longitudinal-flexural waves can be 

expressed as a transfer matrix of velocity (horizontal, vertical, and rotational) and force 

(horizontal, vertical, and moment) vectors, (all of the analytical equations herein are 

based on a harmonic wave with frequency ωn with time dependence suppressed), as 

follows. 
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where the subscripts j- and j+ of the velocity  abV  vector and the force vector  abF  

denote the position on the left and right side of aj and bj (the connection points on 

beams A-B with Cj), and (j+1)- is defined as the right end of jth beam element. Based 

on the theory of structure-borne sound waves [74], the transfer matrix for the 

propagation of uncoupled longitudinal and flexural waves in the parallel dual beam part 
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can be derived by 

      1
0    VFwvVF SPS                         (4.2) 

where the transfer matrices for coupled wave transmission are the same as the terms of 

the equations in Chapter 4. Thus, the entire periodic transfer matrix of the coupling 

wave transmission can be given by 
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     0C  WU e  

According to the Bloch wave in an acoustic system, when the coupled waves are 

propagating one-directionally through an infinite periodic structure, the relationship 

between the velocities and forces in two adjacent periodic elements can be expressed 

as:   
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This represents a problem on the eigen-value vector for the transfer matrix  eU , 

where μn = ±(μR+j·μI)k, k = 1...6, is the kth pair of eigen values — the complex 

propagation constants, and correspondingly the 6 pairs of eigen vectors are the 

characteristic wave types, which take on the normalized form  
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As the “attenuation constant” of the coupled wave type, the real part μR expresses the 

exponential decay rate of the characteristic wave type that propagates through a 

periodic beam element, whereas the imaginary part μI is defined as the “phase 
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constant,” which describes the phase transfer of the characteristic wave type that 

propagates through each element. The propagation constants of the 6 positive-going 

wave types are defined as –(μR+μI)k, in which the real and imaginary parts of the 

propagation constants ought to be positive. Ideally, where the damping factor of the 

beam structure is negligible, a characteristic wave type at any given frequency within a 

pass band yields up a pair of pure imaginary propagation constants. Of these, μn= –j·μIk 

is the positive-going propagation constant and +μIk is that of the negative-going wave 

type. In the forbidden band, the larger value of the real part μRk means the stronger 

attenuation of the corresponding wave-type transmission in the periodic structure.  

Engineering structures are usually made of several periodic elements. This means 

that reflections resulting from the boundaries cannot be neglected, and the periodic 

structure should be treated as a finite element number. The input mobility matrix of the 

left subsystem from jth element can be expressed as  

         11  jLnnjRnnjRnnjnn YYIYY                  (4.6) 

Then the solution of those mobility matrices can be implemented numerically for the 

finite periodic structure. 
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4.3. EXPERIMENT AND ANALYSIS OF VIBRATIONAL MOTION AND 

ENERGY TRANSMISSION IN A FINITE DUAL-LAYERED BEAM 

4.3.1 CONDITIONS AND SETTINGS OF EXPERIMENT  

  The dimensions and physical parameters of the finite periodic structure were 

designed to allow comparisons of the results of the theoretical model with that of the 

experiment. The numerical calculations based on the theoretical model were conducted 

using MATLAB. The material of the two equal beam layers A and B is aluminum 

alloy, for which the Young’s modulus is E1,2 = 5.05 × 1010 N/m2 with an assumed loss 

factor η1,2 = 0.01 and density ρ1,2 = 3220 kg/m3. The dimensions of the two equal beams 

with a rectangular cross-section are periodic element length L0 = 50 mm, so its total 

length is 3.0 m, thickness h0 = 6.0 mm, and width d0 = 38.1 mm. The material of the 

connection branch is steel, for which the Young’s modulus is E3 = 1.15 × 1011 N/m2 

with assumed loss factor η3 = 0.011 and density ρ3 = 7690 kg/m.3 The dimensions of 

the branch are thickness hc = 1.54 mm, width dc = 38.2 mm, and length of its vertical 

beam component Lc = 320 mm. The attaching part on two sides of the connection 

branch, which has the same cross-section but a short length ls = 9.0 mm, is 

perpendicular to the vertical part of the branch. The attaching part of the connection 

branch is fixed on a horizontal beam layer by two steel screws with nuts of a diameter 

of 4 mm. The total number of periodic elements of this finite periodic structure is six (j 

= 1,...,N and N = 6). The end terminations of this periodic structure are also modeled as 

the mobility matrix  CY  of the same connection branch at the right boundary. 

  In the experiment, the dual-layer periodic beam structure was suspended on elastic 

strings so that it could ideally vibrate freely in all degrees (the model shown in Fig. 4.2). 

The structure was longitudinally excited at the left boundary of beam B by an 

electro-dynamic vibration exciter (LING Dynamic System Type V403), which was 
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driven by an amplifier (LING Dynamic PA300) that was fed with white noise. A force 

transducer (PCB ICP F-sensor) was set to measure the exciting force, and the 

vibrational responses of the beam structure were measured by two accelerometers 

(B&K Type 4394). The data acquisition and analysis were conducted with NI 

equipment (RIO-9233 and PXI-8187) using the LabVIEW program. 

 

Fig. 4.2 Diagram of the settings of the dual-layered beam and measuring equipments. 
 

 

4.3.2 TRANSFER MOBILITY UNDER A LONGITUDINAL FORCE EXCITATION    

  Being excited by the longitudinal force F0 at the left boundary (near the first junction 

b1) of the lower beam B, the experimental results of the longitudinal point and uni-layer 

transfer mobilities at the junctions, defined as Ylx,bi = Vx,bj /F0, are investigated in this 

section. The calculated and experimental results of the absolute value of Y lx,bi at the 

junctions b1, b3, b5, and b7 on beam B are shown in Figs. 4.3 (a)-(d) respectively.  
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Fig. 4.3 Absolute values of the predicted and measured longitudinal uni-layer point and 
transfer mobilities at the b1, b3, b5, and b7 junctions on beam B. (a) Point mobility at b1; 
(b) transfer mobility at b3; (c) transfer mobility at b5; (d) transfer mobility at b7. 
 

It can be observed that the predicted mobilities for the periodic beam structure agree 

well with the measured results. The derived theoretical model is therefore reliable and 

can be used to study the coupled wave transmission in the uni-layer of the periodic 

beam structure. Comparing with the predicted mobilities for the same positions of the 

same beam without the coupling connections, it can be seen in Fig. 4.3 that the 

uni-layer mobility curves of the coupling beam structure are similar to those of the 

single beam without coupling connection at most frequencies, though there are some 
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fluctuations at some frequencies. Notably, it can be seen from Figs. 4.3 (a)-(d) that at 

frequencies around 615, 1240, and 1870 Hz, three major peaks of the mobility curves 

for all junctions on beam B of the periodic beam structure are almost the same as the 

peaks for the corresponding positions on the single beam, which are at the longitudinal 

resonant modes of the finite single beam. Furthermore, unlike the mobility curves of 

the single beam, the point and uni-layer transfer mobility curves of the periodic 

coupling beam have some minor peaks at frequencies around 61, 104, 109, 121, 140, 

800, 1020, and 1050 Hz, which mainly result from the flexural resonance of the 

connection branches. The amplitudes of these minor peaks are different for the different 

junctions but they occur at the same frequencies. Moreover, it is noted that for the point 

and transfer mobilities at the junctions of the periodic beam structure, the major peaks 

at around 615 and 1240 Hz are decomposed into two sub-peaks, which is due to the 

co-resonance effect of the coupling connection branches. The coupling effect resulting 

from the flexural motion of branches becomes stronger as the frequency increases so 

that the region of the main peak around 1870 Hz is decomposed into three sub-peaks.  

 

4.3.3 THE CROSS-LAYER TRANSFER MOBILITY UNDER LONGITUDINAL 

FORCE EXCITATION         

  With the same excitation condition of the longitudinal force F0, the experimental 

results of the longitudinal cross-layer transfer mobility, defined as Ylx,ai = Vxaj /F0, are 

investigated in this section. The calculated and experimental results of the absolute 

value of Y lx,bi at the junctions a1, a3, a5, and a7 on beam B are plotted in Figs. 4.4 

(a)-(d) respectively.  
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Fig. 4.4 Absolute values of the longitudinal cross-layer transfer mobility at the junctions 
on beam A. (a) Transfer mobility at a1; (b) transfer mobility at a3; (c) transfer mobility at 
a5; (d) transfer mobility at a7.   
 

It can be seen from the figures that there is a general agreement between the curves of 

the predicted mobility and the measured mobility, especially for the peak frequency 
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regions that are of engineering interest. However, there are some deviations in some 

trough regions at relatively high frequencies because there are errors between the ideal 

coupling factors derived from lumped parameters in the theoretical model and the real 

frequency-dependent factors in the experiment. The derived theoretical model is 

therefore reliable and can be used to study the coupled wave transmission in the 

cross-layer of the periodic beam structure. 

  By comparing the results plotted in Figs. 4.4 with those in Figs. 4.3, it can be 

observed that the major peaks of the cross-layer transfer mobility curves are the same 

as those of the uni-layer mobility curves at the frequencies around 615, 1240, and 1870 

Hz, and the minor peaks of the cross-layer mobility curves are the same as those of the 

uni-layer mobility curves at the frequencies around 61, 104, 109, 121, 140, 800, 1020, 

and 1050 Hz. The fluctuating amplitudes of the peaks of the cross-layer transfer 

mobilities are similar for all junctions of the periodic beam structure. In addition, most 

of the minor peaks of the cross-layer transfer mobility curves are larger than those of 

the uni-layer transfer mobility curves at the same frequencies. It can be understood that 

the longitudinal-flexural motion of beam A is due to the cross-layer transmission from 

the coupling connection branches. Moreover, the major peaks of the cross-layer transfer 

mobilities at frequencies around 615 and 1240 Hz are divided into two sub-peaks, and 

the major peaks of the cross-layer transfer mobilities at a frequency around 1870 Hz are 

divided into three sub-peaks with a broader frequency band.  

 

4.3.4. THE CROSS-LAYER ENERGY TRANSMISSION  

  In this section, the effect of wave coupling on the cross-layer transmission of 

vibrational energy in the finite periodic structure is investigated using the transfer 

matrix method developed for the model. A standard longitudinal excitation acting on 
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the left side of b1, which is defined as the normalized force FS0 = E0S0, has been applied 

to study the levels of energy transmission of the coupled waves from the source 

through the junctions of periodic structure to the upper layer beam A. The levels of the 

cross-layer transmitted longitudinal  )()( kinlpotl EElog10   and the level of flexural 

energy density  )()( kinfpotf EElog10   at the beam junctions are plotted in Figs. 4.5, 

where )( potlE  and )(kinlE  are the longitudinal potential and kinetic energy densities 

respectively, and )( potfE  and )(kinfE  are the flexural potential and kinetic energy 

densities respectively. 

 

 

 



 

 74

 

Fig. 4.5 Normalized levels of the longitudinal and flexural energy density at the 
cross-layer junctions from a1 to a7, excited by a longitudinal force, for different η3. (a) 
longitudinal energy density at the cross-layer junctions, η3 = 0.011; (b) flexural energy 
density at the cross-layer junctions, η3 = 0.011; (c) longitudinal energy density at the 
cross-layer junctions, η3 = 0.1; (d) flexural energy density at the cross-layer junctions, η3 = 
0.1. 
 

  It can be seen in Fig. 4.5(a) that the levels of the longitudinal energy transmitted to 

the cross-layer of the beam structure are generally proportional to the longitudinal 

cross-layer transfer mobilities on beam A. It can also be seen that due to the wave 

coupling at the junctions, the longitudinal energy transmitted from the branches to the 

cross-layer of the finite periodic structure is most significant at the longitudinal 

resonant modes of the finite beam (the major peaks), and is also prominent at the 

flexural resonant modes of the connection branches (the minor peaks). Fig. 4.5(a) 

shows that the curves of the normalized level of longitudinal energy density at different 

junctions (a1, a2, a5, and a7) overlap at most frequencies, though there are exceptions 

at some gap frequency regions. This implies that the cross-layer transmitted 

longitudinal energy propagates through the periodic structure without significant 

attenuation at most frequencies, though not at those gap frequency regions. It can be 

seen in Fig. 4.5(b) that the cross-layer transmitted flexural energy resulting from wave 

coupling is comparable to the cross-layer transmitted longitudinal energy. Apart from 

the peaks occurring at around the same frequency regions as those major peaks of the 

cross-layer transmitted longitudinal energy, a number of relatively small peaks can be 
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observed that resulted from the flexural resonance of the finite beam. No major peaks 

occur in the curves of the normalized level of flexural energy density. Fig. 4.5(b) shows 

that owing to the strong wave coupling at some resonance modes of the connection 

branch, such as around 20, 155, and 195 Hz, the cross-layer transmitted flexural energy 

is even larger than the cross-layer transmitted longitudinal energy. To investigate the 

effect of the damping of the connection branches on the cross-layer energy 

transmission, the levels of the cross-layer transmitted longitudinal and flexural energy 

are plotted in Figs. 4.5(c) and 4.5(d) correspondingly for the increase of the loss factor 

to η3 = 0.1. It is observed that increasing the damping of the connection branch can 

only attenuate some peaks of the cross-layer transmitted energy at the flexural modes of 

the branch but cannot attenuate the peaks of the longitudinal resonance modes of the 

finite beams. This means that the cross-layer transmitted energy from wave coupling is 

mainly dominated by the modes of the finite beam rather than the modes of the 

connection branch. Changing the damping of branches, therefore, cannot control the 

structure-borne sound transmitted to the cross-layer in the major frequency regions.  

 
Fig. 4.6 The structure of periodic beam element with the attached cantilever on the 
connection branch.  
  A method designed to control the cross-layer transmission of vibration is shown in 

Fig. 4.6. A cantilever with symmetric mass at two boundaries is attached on the branch 

of every periodic element, in which the parameters used are width dc = 38.2 mm, length 

ls = 0.38 m, thickness hs = 1.4 hc, and ms = 0.3 kg. The corresponding levels of the 
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cross-layer transmitted longitudinal and flexural energy density are plotted in Figs. 4.7 

(a) and(b). 

 

 
Fig. 4.7 Normalized levels of the longitudinal and flexural energy density of beam A at the 
junctions from a1 to a7, excited by a longitudinal force, in the condition of η3 = 0.011, and 
the parameters of the attached cantilevers are ls = 0.38m, hs = 1.4 hc, and ms = 0.3kg. (a) 
The normalized levels of longitudinal energy density at the cross-layer junctions with the 
attached cantilevers; (b) the normalized levels of flexural energy density at the cross-layer 
junctions. 
 

In comparison with Figs. 4.5 (a) and (b), it can be observed in Figs. 4.7 (a) and (b) that 

the cross-layer transmitted longitudinal energy in the regions of major peaks around 

615 and 1870 Hz can be significantly attenuated by the proposed method. The 

cross-layer vibration motions from coupled waves in the branches are significantly 

controlled by the attached cantilevers with mass at the resonance modes. This method 

can therefore be used to control the structure-borne sound transmission in multi-layer 

beam structures. 
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4.4 SUMMARY 

  In this chapter, the model based on a coupling transfer matrix method of 

longitudinal-flexural wave has been developed to study the dynamic characteristics of 

the longitudinal-flexural motions and energy transmission in a finite dual-layered beam 

structure. Based on the analytical equations of the model, numerical calculation is 

performed to predict the coupled wave motion excited by a longitudinal force in a finite 

periodic structure and the predicted results are compared with the experimental results. 

In the experiment, a lightly damped finite structure consisted of two equally thin beams 

with multiple resonant branches in the form of thin beams that were connected 

perpendicularly at regular intervals. The numerical results from the theoretical model 

generally agree well with the experimental results at the frequencies from 10 to 2000 

Hz, which suggests that the developed model and solution method for a finite periodic 

coupling beam structure can be useful in most of the middle-low frequency region. 

Further, the cross-layer energy transmission of the coupled waves in the finite periodic 

dual-layered beam is then calculated and analyzed by using the verified model. The 

results reveal that the longitudinal energy transmitted in the cross-layer of finite 

periodic structure is enhanced not only at the longitudinal resonant modes but also the 

flexural resonant modes of the finite beam of connection branches due to the wave 

coupling of the structure. It is shown that the damping factor of the coupling connection 

could obviously influence most peaks of cross-layer transmitted energy of the coupled 

wave at the flexural resonant modes of connection branches, which suggests that some 

structure-borne sound control methods based on this model may be applied on the 

dual-layered beam structures.  
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CHAPTER 5. STRUCTURE-BORNE SOUND POWER 

TRANSMISSION THROUGH A SUPPORTED 

DUAL-LAYERED BEAM STRUCTURE  

 
 
5.1  INTRODUCTION 

Structures periodically consisting of similar elements are easy to be found in natural 

or manmade environments, of which a group of identical components are connected or 

coupled together at regular intervals to form a whole structure. The atomic lattices of 

pure crystals constitute perfect periodic coupling structures in nature, so the 

propagation of waves in periodic waveguides was studied for solids [46], thus 

promoting basic understanding of the electromagnetic properties of conductors or 

semi-conductors. The transmission of structure-borne sound excited by mechanical 

vibration in these similar structures—from side to side in a bridge or layer to layer in a 

building—often give rise to structure-borne noise problems in the connected spaces and 

can sometimes even be harmful to the stability of the entire structure.  

The classical problem of acoustic wave transmission in one-dimensional periodic 

media can be tackled in an exact manner via the transfer matrix method [49]. 

Commonly in very a few cases like such simple structure the power is transmitted by 

just one type of wave motion .i.e. pure longitudinal wave, but in most of other cases of 

coupling structures it is transmitted simultaneously in combinations of multiple types 

such as longitudinal, torsional and flexural waves. As the different types of wave 

motions are coupled in each periodic connection or discontinuity, the process of 

coupling effect takes an important part of the structure-borne sound transmission in 

building structures. Early to 50 years ago the enhanced wave transmission in a 
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rib-reinforced floor due to wave coupling was modeled by using a beam that was 

periodically loaded with eccentric attachments [65]. Four different methods of 

calculating the structure-borne sound propagation in beams with many non-resonant 

discontinuities were demonstrated by Manfred Heckl [54], and three of these methods 

took the coupling between longitudinal and flexural waves into account. A series of 

work on multi-coupling of waves in periodic structures had been done by Mead, in 

which the characteristic wave-types that can propagate along a periodic structure were 

predicted by using the method of propagation constant [52], and the 

flexural-longitudinal wave coupling in a simple multi-supported beam was studied with 

the effect of damping [78]. More studies providing valuable insight into multiple 

coupling of waves propagation on general periodic engineering structures was 

concluded in the extensive literature review [53]. Transfer matrices were used by Roy 

and Plunkett to examine attenuation of flexural waves in an undamped beam with 

flexible but non-resonant ribs [70]. More recently, the propagation characteristics of 

coupled longitudinal and flexural waves in beam-type transmission paths with 

asymmetric loads in the form of resonant columns were theoretically analyzed [56] and 

developed experimentally [57] by Ohlrich.  

Commonly the coupling of wave motions is concerned with the waveguide models 

of a single-layer beam that comprises independent beam-discontinuities, few studies 

about the structure-borne power transmission had been focused on the cross-layer 

power flow through a multi-layered beam structure in a flexible boundary supporting 

condition. Therefore the work in this chapter developed the analytical solution method 

for a finite dual-layer beam structure with periodic connection branches in the different 

conditions of simple coupling without longitudinal wave and multi-coupling of flexural 

and longitudinal waves. Based on the transfer matrix method, the propagation constants 

of the characteristic wave-types were derived and applied to analyze the structure-borne 
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sound transmission in a multi-coupling dual-layer beam structure [76] achieve the 

characteristics of a finite periodic dual-beam structure, and to investigate the 

structure-borne sound power transmitted through the periodic structure.  

 
 
5.2 DEVELOPED TRANSFER MATRIX METHOD  

5.2.1 PERIODIC DUAL-LAYERED BEAM STRUCTURE WITH TRANSVERSE 

CONNECTION 

  The research of this chapter is built on the model of a dual-layer beam structure that 

is periodically connected with transverse branches. A simplified model is shown in 

Fig.5.1. The structure-borne sound including flexural waves and longitudinal waves 

that propagate in two horizontal beams—A and B are coupled at two sides of each 

junction j=1…N with the connection branch C. Every side of two finite beams is 

vertically supported in y-direction on a long Timoshenko beam. The beams and 

branches analyzed in the theoretical model are even, straight, isotropic, and 

homogeneous, and the following physical parameters are assumed: ρ1= ρ2 is the 

density of beams A and B and ρ3 is the density of branch C, Bsa and Bsb are the bending 

stiffness of beams A and B, and Bsc is the bending stiffness of C, Ea= Eb is the Young’s 

modulus of beams A and B and Ec is the Young’s modulus of branch C, kfa, kfb and kfc 

are the flexural wave numbers in beams A, beam B and branch C, kla, klb and klc are the 

longitudinal wave numbers in beams A, B and branch C corresponding to the 

longitudinal wave speeds ca0, cb0 and cc0.  
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Fig. 5.1 Finite periodic coupling dual-beam structure and the supporting structure 

 

 

5.2.2 WAVE TRANSFER MATRIX FOR DIFFERENT COUPLING CONDITIONS  

In every dual-beam part between the connection branches of the periodic structure 

shown in Fig.5.1, the propagation of longitudinal-flexural waves can be expressed as 

the transfer matrix of velocity (horizontal, vertical, and rotational) and force 

(horizontal, vertical, and moment) vector  
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   T          V xbxabaybyan VVVV  ,    T
 

           F xbxabaybyan FFMMFF   

where aj-1, bj-1 is the left side position and aj, bj are the right side of jth periodic beam 

element, and branch Cj connects with the midpoints of jth beam element (all of the 

analytical equations in this chapter are based on the harmonic wave of separate 

frequency ωn with time dependence suppressed), as follows. Based on the theory about 

structure-borne sound waves as [76], the transfer matrix for the propagation of 
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uncoupled longitudinal and flexural waves in the independent dual beam part can be 

derived by 

      1
00    VFwVF SPS                           (5.2) 

where the transfer matrix for transforming wave components [SVF] takes on the form: 
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As the transfer matrix of all the wave components prapagating through each continous 

beam period (in the length of L0),  wvP  is given by  
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where 
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P  is that for flexural 

wave propagation. It is noted that the wave-coupling in a dual-layered beam structure is 

caused by the discontinuity of the connection with branches. By introducing the 

dynamic continuity conditions, the velocities are continuous and the forces are changed 

by the wave coupling at the vertical connection with the branch beams. The 

relationship between the velocities-forces of the coupled flexural and longitudinal 

waves can be characterized as a 12×12 coupling transfer matrix expressed as  
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 denote the velocity and force vectors of the beam on 

the left and right side of the connection points on beam A-B with Ci, whereas the 

wave-coupling matrix  CW  is given by  
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In the assumed condition of mono-coupling that there is only y-directional action 

considered for every connection with branch,  C  can be simplified as  
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where Cl  is the 2×2 y-longitudinal impendence matrix of branch C. While in the 

condition that the multi-coupling of longitudinal and flexural waves are considered, the 

transfer elements of  C  are given by  
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The entire periodic transfer matrix of the coupling wave transmission can be given by 
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where        0C0  WU e . 

Generally, according to the theory of Bloch wave, when the one-dimensional 

acoustic waves are propagating through a semi-infinite periodic structure, the 

amplitudes and phases of wave components are modulated periodically by the 

structure. Based on the derived wave transfer matrix and the linear transformation, to 

satisfy the continuity of the forces (moment actions) and the equilibrium of the volume 

velocities at the two ends of each periodic beam-branch element, the relationship 

between velocity vector [Vn]j and force vector [Fn]j at the two periodic connection 

points nearby can be expressed by 
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This represents a problem on the eigen value vector for the transfer matrix  eU . The 

pair of ith eigen values μj = ±(μjR+μjI) of transfer matrix are the frequency-dependent 

complex propagation constants for the corresponding N pairs of the characteristic wave 

types (N = 6 for the studied periodic structure). Correspondingly, the eigen vectors  

T







inin   are used to express the characteristic wave types, which take on the form 
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i
Ma

i
Fxb

i
Fxain XXXXXX ,,,,, . As the “attenuation constant” of the 

coupled wave type, the real part μjR expresses the exponential decay rate for the jth 

characteristic wave type that propagates through a periodic beam element, whereas the 

imaginary part μjI is defined as the “phase constant,” of which the cosine value 

describes the phase transfer of the jth characteristic wave type that propagates through 

each element. If the propagation constants of the positive-going waves are defined as 

+μj, then, correspondingly, the real and imaginary parts of the propagation constants 

ought to be negative. Ideally, in the case that the damping factor of the beam structure 

is negligible, a coupling wave type at any given frequency within a pass band yields up 

to a pair of pure imaginary propagation constants, of which μj =–μjI is the 

positive-directional propagation constant, and +μjI for negtive-going transmission is 

physically impossible in a semi-infinite structure. the larger attenuation zone of the real 

part μjR means that the corresponding wave-type is in the forbidden band of the periodic 

structure so that it will decay quickly as it is propagating in the periodic structure.  
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5.2.3 CHARACTERISTICS OF THE FINITE PERIODIC BEAM STRUCTURE AND 

STRUCTURE-BORNE SOUND POWER TRANSMISSION 

  Engineering structures usually are made of a few periodic elements, which means 

that reflections resulted from the extreme boundaries cannot be neglected so that the 

periodic structure ought to be treated as finite element number. The direct mobility 

matrixes of the left j-elements and the right N-j elements subsystem are expressed by  
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Where rL and rR are the left and right reflection matrix derived from the mobility of 

boundary condition,  ),(   and  ),(   correspondingly are the 6×6 normalized 

velocity and force matrix for the positive-going or negative-going characteristic wave 

types. Then the input mobility matrix of the total periodic beam at aj, bj is given by 

          11  jRnnjLnnjRnnjnn YYIYY                (5.12) 

While the mobility matrix at the boundary of the beam structure  NjnnY  is introduced, 

the structure-borne sound power transmitted into the structure can be given by 

         NtNj
T

NtNwt VYVP 1 *Re    

Where  NtV  is the velocity vector at the boundary sides of the two-layer beam 

mounted on the supporting structure, which can be calculated by the transfer matrix 

method of characteristic wave types in section 5.2.2.  
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5.3. ANALYSIS FOR STRUCTURE-BORNE SOUND TRANSMISSION IN THE 

FINITE PERIODIC DUAL-BEAM STRUCTURE   

5.3.1 CONDITIONS OF THE COMPUTATION FOR THE FINITE PERIODIC 

STRUCTURE  

An analysis based on the theoretical model was conducted to investigate the effects 

of flexural and longitudinal wave coupling in a dual-layer beam structure on the 

structure-borne sound transmission. All of the numerical calculations of the analyzed 

model were conducted using MATLAB. The dimensions and physical parameters of 

the finite periodic structure were designed according to a normal engineering structure 

as explained in the followings, and are shown in Fig. 5.1. Steel was chosen as the 

material for the two equal periodic beams A and B, the Young’s modulus of which was 

E0 = 2.16 × 1011 N/m2 with an assumed loss factor η = 0.01 and density ρ= 7790 

kg/m3. The beams A and B with a rectangular cross-section were assumed to be of a 

thickness h0= 3.0 cm, width d0 = 5.0 cm, There were three cases: Case I: LA = LB =14.4 

m (LA = 12×1.2m), Case II: element length L0 = 1.2m , and the whole length of a beam 

LA = LB =21.6 m (LA = 18×1.2m),and Case III: L0 =1.8m, LA = LB =12×1.8m= 21.6 m. 

The same steel was also elected as the material for the connection branch with a 

rectangular cross-section, the dimensions of which were a thickness hc = 2.6 cm, width 

dc = 5 cm, and the length of branch Lc = 2.5 m. The periodic elements were 

symmetrically distributed from the center of the finite beam structure. The total number 

was N and the distance D0 between a0-b0 and the left boundary of the beam structure 

was equal to the distance between aN-bN  and the right boundary of the beam structure. 

The four sides of this periodic dual-beam structure were ideally vertically supported at 

the centers of four long Timosheko beams as the outside structure (only y-directional 

force and velocity were taken into account. The material of those four same supporting 
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Timosheko beams also was the steel, and the dimensions of the square cross section 

were assumed to be hT = dT = 11 cm. The force acting on every contact point supporting 

one side of the periodic dual beams was assumed to have a single degree of freedom in 

y-direction. An ideal simple source driven by a y-directional inherent force was 

mounted on beam A. As the wave coupling at the periodic connection was treated by 

transfer matrix method with lumped parameters, herein the analysis was applied in a 

mid-low frequency region from 1 to 1000 Hz. The level of power flow transmissibility 

being defined as 







in

bat
pt P

P
L ),(

)( log10  was used for the analysis. Timoshenko 

beam in this study is defined as the thick beam with the shear stiffness taken into 

account, the point mobility at the center can be given by   
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where kT is the wave number of transverse wave in the beam, kI and kII are the complex 

waves numbers derived by  
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It is used to express the supporting structure into which structure-borne sound is going 

to transmitted in this chapter.  

 

5.3.2 STRUCTURE-BORNE SOUND POWER TRANSMITTED THROUGH A 

FINITE PERIODIC STRUCTURE  

The effect of wave coupling on the transmission of structure-borne sound through a 

finite periodic dual-beam structure was investigated by using the developed structure 
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model in the different conditions of connection. The levels of power flow 

transmissibility throughout beam A without connection branches to branch B are 

plotted in Fig. 5.2(a) , of which the structure-borne sound is transmitted from a source 

symmetrically placed on the middle a9 (x=10.8m) of beam A and asymmetrically 

placed on the point a6 (x=3.6m) of beam A. It can be seen that the level of power flow 

transmissibility of the beam A modulated on the similar small modes within the 

frequency range, and gradually decayed following a smooth trend. The modulation 

envelopes of the levels of power flow transmissibility were different for the different 

exciting positions. The amplitude of the modulation envelopes in the case of being 

excited at a6 is significantly larger than that in the case of being excited at a9, but they 

both decay with increasing frequencies.. It is because the structure-borne sound power 

of flexural wave in the beam was mainly attenuated by the decaying factor kf x of the 

evanescent part of flexural wave that becomes larger with increasing frequencies.  
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Fig. 5.2 levels of the structure-borne sound power flow transmissibility throughout the 
beams into the supporting structure (LA = LB =21.6 m). (a) Excited on the middle point of 
a singly supported beam A without coupling branches; (b) excited on the middle point a9 

of the dual-beam structure in condition of multi-coupling of longitudinal and flexural 
wave; (c) excited on the point a9 of the dual-beam structure in condition of mono-coupling 
without longitudinal motion.  
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Figs. 5.2(b) and 5.2(c) show the results when the dual-beam structure was 

periodically connected with B by 18 branches (N=18), of which the periodic element 

length L0 = 1.2 m, the positions of a0-b0 were just on the left boundary and aN-bN were 

just on the right boundary of the beam structure (D0 = 0). In the figures, for the 

structure-borne sound power that was transmitted from the source placed on a9(x 

=10.8m) through two layers of the periodic beam structure into the supporting 

structure, the levels of the structure-borne sound power flow transmissibility were 

plotted in the conditions of multi-coupling and mono-coupling connection. It can be 

observed that the power of the structure-borne sound transmitted throughout the 

dual-layer beam to the supporting structure was mainly modulated by the coupling 

structure and did not decay with increasing frequencies. The transmitted power 

throughout the beam structure was slightly attenuated at the peak regions, in which the 

level of power flow transmissibility for the beam structure with coupling branches was 

higher than that without coupling branches. On the other hand, the transmitted power 

for the beam with coupling branches was attenuated to the levels lower than that 

without coupling branches in most frequencies except peak frequencies. Especially in 

the gaps, the decreased levels of power flow transmissibilty could be more than 50 dB. 

It also can be observed that at most frequencies below 350 Hz, the predicted level of 

power flow transmissibility for the mono-coupling beam structure is similar to that for 

the multi-coupling beam structure, but they became to be quite unlike while the 

frequency increased above 350Hz. This indicates the fact that the action of longitudinal 

wave plays a dominant role on the wave coupling in the beam structure at low 

frequencies. However, the action of flexural wave plays a more important role on the 

wave coupling in the beam structure as frequency increases. A calculation method 

based on the multi-coupling model of flexural and longitudinal waves is therefore 
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required for the accurate prediction of structure-borne sound transmission in a 

dual-layer beam structure. 
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Fig. 5.3 levels of the structure-borne sound power flow transmissibility throughout the 
finite periodic dual-beam structure in condition of multi-coupling of longitudinal and 
flexural wave. (a) Excited on the a6 of the dual-beam structure of which L0 = 1.2m, LA= 
18L0; (b) excited on the a6 of the dual-beam structure of which L0 = 1.2m, LA= 12L0; (c) 
excited on the a6 of the dual-beam structure of which L0 = 1.8m, LA= 12L0. 
 
Fig. 5.3(a) and Fig. 5.3(b) show the results for the similar multi-coupling dual-beam 

structures (L0 = 1.2m) periodically connected by 18 branches and 12 branches, 

respectively. It can be seen that in the case of being excited on the same position a6, the 

band structures of the level of power flow transmissibility for the two beam structures 

of the same periodic elements were similar at most frequencies. It is believed that the 

transmitted power throughout the multi-coupling beam structure is less attenuated as 

there are fewer periodic elements in the beam structure. However, it can be seen from 

Fig. 5.3(a) and Fig. 5.3(b) that there were no significant difference in attenuation of 

power transmission between beam structure connected by 18 branches and 12 branches. 

It can also be seen that the levels of the power flow transmissibility were less negative 

at peak frequencies. It implies that the power of transmitted waves in the dual-layer 

beam structure can only be little attenuated in the peak frequencies. As a result, it is 
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easier to have structure-borne sound problem at peak frequencies. Besides, it can be 

seen that the levels of the power flow transmissibility became more negative in the gap 

regions as the number of periodic elements increased from 12 to 18. It is because the 

transmitted structure-borne sound waves are strongly attenuated by the periodic beam 

elements in the gap regions.   

  Case III shown in in Fig. 5.3(c) has same number of beam element (N) as Case I 

shown in Fig. 5.3(a) and has same beam length (LA) as Case II shown in Fig. 5.3(b). 

However, the band structure of the levels of the power flow transmissibility shown in 

Fig. 5.3(c) is different from that shown in Fig. 5.3(a) and Fig. 5.3(b). It means that the 

band structure is independent of the beam length or number of beam element. Besides, 

the band structure of the levels of the power flow transmissibility shown in Fig. 5.3(a) 

is similar to that shown in Fig. 5.3(b). It means that the band structure is dependent on 

the length of periodic element (L0). Moreover, it was notable that within the regions 

near several peaks, the level of the power flow transmitted into the second layer of 

supporting structure through beam B could be even higher than the level of the power 

transmitted into the first layer, so that "cross-layered" noise transmission would be 

considerable in these conditions.   
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5.4 SUMMARY 

In this chapter, a model based on the transfer matrix that considers the 

mono-coupling of flexural wave and the multi-coupling of flexural and longitudinal 

waves at each connection was developed to study the transmission of the 

structure-borne sound power flow through a periodic dual-layer beam structure. Using 

this model, numerical calculations were performed to analyze the structure-borne sound 

power transmitted through a finite periodic dual-layer beam into the supporting 

structure. The calculated results using the developed method and model .suggest that 

the power of the structure-borne sound transmitted through a dual-layer beam into the 

supporting building structure, but also on the attenuation caused by the periodic beam 

elements with coupling branches and the exciting position of source. The results also 

reveal that the model under mono-coupling condition to be similar to that under the 

multi-coupling in the relatively low frequency region. Further, the transmitted power 

was strongly attenuated in a number of frequency regions, and in several frequency 

regions the power was even transmitted into the second layer of the supporting 

structure to a considerable degree. The analysis indicated that this study is useful in 

understanding the structure-borne sound power flow transmission from the first layer 

into the second layer of the dual-layer beam structure. 
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Nomenclature of Chapter 3, 4 and 5 
 

 nV  velocity vector of the longitudinal-flexural waves in the dual-layer beam 

 nF  force vector of the longitudinal-flexural waves in the dual-layer beam 

 0Γ  transfer matrix of the uncoupled longitudinal and flexural waves propagation 

 VFS  transfer matrix for transforming wave components to velocity-force vector  

 0wP  transfer matrix of the wave components prapagating through the continous  

  beam part 
),( ba  express “in the beam A and B” 

 
i   express “right side of the ith beam connection with branch” 

 
i   express “left side of the ith beam connection with branch” 

 n  angular frequency of the excited wave in the beam structure 

 fk   longitudinal wave number in a beam  

 lk   flexural wave number in a beam 

 lR   longitudinal wave impendence factor 

 fR  flexural wave impendence factor 

    linear density of the beam 

 0c   longitudinal wave speed  

 mI   m× m identity matrix 

 CW  wave-coupling matrix at the connection of the beam structure 

 CΖ  coupling impendence matrix of the coupled waves at the connection of the  

  beam structure 

ClΖ   2×2 longitudinal coupling impendence matrix of branch 

CfΖ  4×4 flexural coupling impendence matrix of branch 

ClΜ  longitudinal propagation matrix of the coupled waves in the branch 

CfΜ  flexural propagation matrix of the coupled waves in the branch  

Cl   longitudinal propagation factor in the branch 

Cf   flexural propagation factor in the branch 

inς   normalized velocity vector of ith characteristic wave type 

inξ   normalized force vector of ith characteristic wave type 

 is   magnitude of ith characteristic wave type 

 μi   propagation constant of ith characteristic wave type  
j

d
e  6×6 diagonal matrix of 6 propagation constants μi 

 ),(ς   6×6 velocity matrix of the positive or negative-going characteristic wave types 

 ),(ξ   6×6 force matrix of the positive or negative-going characteristic wave types 

 rL  reflection matrix of the flexural-longitudinal waves at the left boundary 
 rR  reflection matrix of the flexural-longitudinal waves at the right boundary 

  jLnnY  direct mobility matrix of the left j-elements subsystem 

  jRnnY  direct mobility matrix of the right N-j elements subsystem 
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  jnnY  input mobility matrix of the total periodic beam system at aj, bj  

 NjnnY  mobility matrix at the boundary of the beam structure  

 NtV   velocity vector at the boundary sides of the two-layer beam 

 L0  element length of the periodic beam structure 
 LA,B  whole length of the beam A and B 
 h0   thickness of the beam A and B 
 d0  width of the beam A and B  
 hc   thickness of the branch beam 
 dc  width of the branch beam   
 Lc   length of the branch beam 
 E0  Young’s modulus of the beam 
 Bs  Bending stiffness of the beam  
 hT  side length of the square cross section of the supporting Timosheko beam  
 TbY  the point mobility at the supporting point of Timosheko beam  

kI ,II  complex waves numbers in the Timosheko beam  

)( ptL   level of power flow transmissibility 

 



 

 98

CHAPTER 6. POWER TRANSMISSION FROM TWO 

COHERENT MACHINES TO A DUAL-LAYER COUPLING 

FLOOR STRUCTURE 

 
6.1  INTRODUCTION 
  

  Vibration isolators are commonly adopted by engineers to reduce the amount of 

structure-borne sound transmitted from building services equipment to the floor 

structure [49, 80, 81]. Using total sound power as a way to describe such structure- 

borne sound transmission appears more viable than the concept of transmitted forces 

which is commonly used by building engineers. This is because it has a single value 

and is independent of the amplitude and phase differences of the complex forces and 

velocities transmitted between the contacts and receiver [6]. Some studies of the 

transmission of structure-borne sound power into supporting structures from 

multi-point or -component sources have been conducted by Pinnington, Koh, and 

White [82-84] and [61]. The influence of multiple contact points and components of 

excitation, and of the motion of the structure-borne sound source, on power 

transmission has been studied by Gibbs and Petersson [10, 85]. This work has provided 

us with a practical approach to the estimation of structure-borne sound power emission 

by using the characteristics of the source and receiver structures.  

  Many complicated vibration-isolated systems have been analyzed as a combination 

of several simple systems of power flowing through multiple isolators into a flexible 

structure [11, 82], in which the interaction due to the transfer mobility between the 

various contact points of the structure is important to the total power transmission. To 

simplify the description of the latter, it has often been assumed that only the vertical 

transmitted forces contribute to the total emission [83]. The power transmissibility 
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method, using the concepts of effective floor mobility and total structure-borne sound 

power transmission, has been proposed by Mak and Su [86, 41-42] as a means by 

which to assess the performance of different methods of vibration isolation. Their 

approach is based on a derived mobility matrix using a source model of a rigid machine 

and a simply supported ideal plate.  

The dynamic characteristics of the connecting structures in buildings play an 

essential role in structure-borne sound transmission, since many of them can be treated 

as coupling multi-layered structures with periodic connections [49] (for example, 

multi-storey buildings, multi-support beams, stiffened plates, and some layered 

composite constructions). To be able to predict the transmission of structure-borne 

sound through such coupling structures, it is essential to model the built-up structure to 

describe correctly the characteristics associated with the coupled wave propagation. 

This is the case when statistical descriptions are applied as well as when applying 

analytical descriptions, but it is quite difficult for those complex or irregular structures 

in the low frequency regime. The numerical technique is thus employed to validate the 

models for the built-up structure. The ideas underlying such numerical developments 

are related to finite element techniques with recent developments in computing ability 

[87]. Most numerical methods take advantage of finite element modeling of a 

representative part of the periodic coupling structure [88]. 

When considering the vibration control of coherent machines placed on coupling 

structures, the interaction of the structural vibrations caused by the forces needs to be 

taken into account. It is common to install several machines on different floors of a 

floor structure, such as two water pumps of the same type in two separate plant rooms. 

Inaccurate prediction of the performance of vibration isolation may cause excessive 

structure-borne sound power to be transmitted from the machines to the floor structure 

in such situations. This study therefore analyzes the effect of the interaction between 
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two coherent vibratory machine sources on a dual-layer plate structure. It is based on 

two rectangular machine models of even-mass distribution with four symmetrical 

supports, and the calculated mobility matrix of the supported, dual-layered, concrete 

floor. 

 

6.2 COHERENT, VIBRATION-ISOLATED SYSTEM ON A DUAL-LAYERED 

FLOOR STRUCTURE 

6.2.1 FINITE ELEMENT ANALYSIS FUNDAMENTALS  

This research is based on a structural model of a dual-layered plate that is connected 

at intervals, with transverse beams on two sides. A diagram of this structure is shown in 

Fig. 6.1. The vibration induced by the transmitted structure-borne sound includes both 

flexural and longitudinal motion in the two horizontal plates; it is also periodically 

connected at both sides of each junction with the 10 connection beams.  

 

 

 

Fig. 6.1 Finite periodic coupling dual-layered structure and the supporting structure. 

 
The points a1, a2, a3, and a4 are the four symmetric mounting points of a machine 

source located on the first layered plate; and b1, b2, b3, and b4 are the equivalent points 

for another machine source on the second such plate. 
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  The spectral element method (Nelson, 2004) has been successfully applied for finite 

element simulation of beam-type structures in frequency domain and it is also adopted 

in this paper. The spectral element for a segment of the beam-type waveguide between 

two nodes can be defined for a section of a long beam extending to infinity. 

Considering a short section of length Δ of a uniform beam, the dynamic equation of its 

motion can be expressed as  
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where the subscripts L and R donate the left and right side of the section. The spectral 

finite element method applied for the beam-type waveguide is formulated using the 

equation for the dynamic matrix 

 MCKD 2  j               (6.2) 

where K, C, M are the stiffness, damping and mass matrices, which may be formed 

using commercial finite element packages. For the uniform beam model, the following 

relationships holds: 

 ,DD T
LLLL   ,DD T

RRRR   
T
RLLR DD            (6.3) 

The transformed matrix for the whole element can be written as  

   EEIEIIEIEE fuD
~

D
~

D
~

D
~  1             (6.4) 

Herein it should be noted that the dynamically condensed element matrices become 

frequency dependent. The superscript ~ donates the section has internal nodes and is not 

condensed, and the subscript E or I represents that the degrees of freedom are 

associated with edge nodes or internal nodes of the section.  

In FEA, the plate elements are able to withstand both longitudinal and bending strain. 

For flat, thin-walled shell elements, the in-plane and bending forces cause independent 
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deformations and the corresponding expressions for the respective displacements are 

given by 

     0dy  2211
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where ρ1 is the mass density; h the thickness; u1, u2, and u3 the displacements in the x-, 

y-, and z-directions respectively of the temporal Fourier transforms; and the stiffness 

matrix D is expressed by   
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where E denotes Young’s modulus and ν the Poisson ratio. The functions and their 

derivatives of the displacements ui are viewed as independent from their complex 

conjugates (all the equations in this chapter are based on the harmonic wave of separate 

frequency ωn with time dependence suppressed), as follows. For the in-plane motion 

that assumes linear displacement functions and for the out of plane motion that assumes 

a combination of cubic Hermite polynomials, the displacement functions in the interior 

of an element are determined from the nodal displacements nearby. The displacement 

field of the cross-section of an element is in a local co-ordinate system given by 

  eip xyjyxu )(û)(N),( 11               (6.8) 
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  eip xyyxu )(û)(N),( 22                (6.9) 

  eb xyyxu )(û)(N),( 33                    (6.10) 

In the finite element method, the displacement field of the cross-section of a strip 

element is represented by simple polynomials according to standard procedures [89], of 

which the details were presented in Gavric’s notable work [87]. The boundary 

condition of this model assumes that the two short edges of every plate in the 

y-direction are simply supported, and the two edges in the x-direction are vertically 

connected with the thin beams, of which the longitudinal and bending motions are 

coupled at the connection points on two sides. Then the finite element model can be 

introduced to the computing tool ANSYS for simulation. 

6.2.2 STRUCTURE-BORNE SOUND POWER TRANSMISSION  

Three cases of vibratory systems on different floor structures can be described for the 

purposes of studying structure-borne sound power transmission and the performance of 

vibration isolation. In the first case, a machine with four symmetrical mounting points 

a1-a4 is placed both without and with vibration isolators on a single rectangular 

concrete plate that is simply supported at all edges as shown in Fig. 6.2(a). In the 

second, an identical independent machine with four symmetrical mounting points a1-a4 

is mounted on the first layer of the dual-layered plate structure; and in the third case, 

two coherent machines with four symmetrical points a1-a4 and b1-b4 (that is, exactly 

the same as the first and second cases) are mounted separately on two different layers 

as shown in Fig. 6.2(d), which considers the coupling of the floor structure. The two 

plates of the dual-layer floor structure are assumed to be same. 

It is assumed that the machine is driven effectively by an internal force 0F  at the 

center of gravity. While the difference of force and velocity at various contact points is 

negligible, for simplification, the machine is thought to be an effective simple source. 
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The vibratory systems for the single machine on the receiver floor and the two coherent 

sources on a coupling receiver structure can be described by the electrical analogy, as 

shown in Figs. 6.2(c) and 6.2(e) respectively.  
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Fig. 6.2 (a) Vibration-isolated system of a single source machine mounted on a flexible 
floor; (b) On a coupling floor structure (c) equivalent circuit diagram of the simple 
vibratory system for a single source machine mounted on the coupling floor; (d) Two 
coherent source machines mounted on a coupling floor structure A; (e) equivalent circuit 
diagram of the simple vibratory system for two coherent source machines on a coupling 
floor structure.  
 
  A vibratory source is usually a multi-point machine, so here we apply a source 

machine model with four symmetrical mounting points as shown in Fig. 6.3. The model 

is a hollow rectangular machine asymmetrically placed on a flexible floor plate, with an 

even mass m0, of which Lm is the length of its external square side, lm the length of the 

internal square side, H0 the hollow rectangular height, and
12

 
222

00
mmm

M

HlL
M


 , 

which is the moment of inertia around the horizontal axial throughout the center of 

gravity.  
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Fig. 6.3 Model of the rectangular source machine with 4 contact points.  

The source machine is driven by a vibratory inherent force at the center of gravity, of 

which the free velocity vector  0sV  is expressed as  

    T
0

0
0 1111

Mj

F
Vs 

                           (6.11)  

Here, the components of the velocity vector express the values of the vibration velocity 

in the vertical degree at the different contact points. When the source is placed directly 

on a floor, the transmitted forces and total transmitted power to the floor through the 

four contact points can be calculated by  

         0
1

srssTn VYYF                         (6.12) 

 
2
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10
VM

P
L T(ns)

PT(ns) 
log ,      Tn

)(
rsTnT(ns) FYFP 1T Re*            (6.13) 

where  rsY  is the floor mobility matrix of the contact points as given by 

  









rjjrij

rjirii
rs YY

YY
Y , i, j=a1, a2, a3, a4, of which Yrii or Yrii are the point mobilities of the 

ith or jth mounting points on the floor, Yrij = Yrji the transfer floor mobilities between 

the ith and jth mounting points, and  sY  the source mobility matrix of the machine 

with four mounting points. The source mobility matrix of an even mass system 
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mounted at four midpoints of the square sides, as shown in Fig. 6.3, can be expressed 

as follows    









ajjaij

ajiaii
Tn

)(
rs YY

YY
FY

...... 

 ... 
1  

    0
0

1
as Y

Mj
Y


                  (6.14) 
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As the machine is mounted with four spring isolators, the transmitted forces and the 

normalized level of total power transmitted from machine to floor are given by   

          0

1

4
0

srssTs VYI
k

j
YF














                (6.16) 
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where [I4] is a 4×4 identity matrix and k0 is the stiffness of the vibration isolator. Then 

the level of power transmissibility that is defined as 

  











T(ns)

T(s)
s P

P
log10                     (6.18) 

is used to assess the vibration isolation for an independent multi-point machine 

mounted on a flexible floor structure.  

  The transmitted forces and normalized level of total power transmitted to the 

coupling dual-layered structure from two coherent machines (as shown in Fig. 6. 2(d)), 

without and with spring isolators respectively, are given by 

     




























2

1

1

2

2

12

s

s)(
rs

s

s)(
Tn V

V
Y

YO

OY
F                   (6.19) 

      )(
Tn

)(
rs

)(
Tn

)(
T(ns) FYFP 22*T22 Re              (6.20) 



 

 108

 
2

00

2
2 log10

VM

P
L

)(
T(ns))(

PT(ns) 
                      (6.21) 

      











































2

1

1

2

1
24

1
14

2

12

s

s
rs

s

s)(
Ts V

V
Y

kIO

OkI
jω

YO

OY
F        (6.22) 

 
 

2
00

2
2 log10

VM

P
L T(s))(

PT(s) 
 , and         )(

Ts
)(

rs
)(

TsT(s) F YFP 22*T22 Re        (6.23) 

where for the source machines M-1 and M-2,  1sY  and  2sY  are their source 

mobility matrices given in the same form as  sY , and their free velocity vectors  1sV  

and  2sV  are in the same form as  0sV . For the eight mounting points on two layers 

of the coupling plate structure, the whole floor mobility matrix  )(2
rsY  takes the form 











rbrab

rabra
rs YY

YY
Y ][ )(2 , where  raY  and  rbY  are the co-layer mobility matrices of the 

mounting points a1,…a4 on plate A, and b1,…b4 on plate B, whilst    rbarab YY   are 

the cross-layer coupling mobility matrices between the mounting points a1,…a4 and 

b1,…b4. The level of power transmissibility, which is defined as  

 


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

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2
2 10 log                 (6.24) 

can be calculated for the coherent machines to estimate the performance of the 

vibration isolation on a coupling floor structure.  

 



 

 109

6.3. ANALYSIS OF THE STRUCTURE-BORNE SOUND TRANSMISSION  

6.3.1 CONDITIONS OF THE COMPUTATION FOR THE COUPLING PLATE 

STRUCTURE 

The source machine M-1 is placed at the center of the floor plate, in which the 

positions of the four mounting points in the X-Y coordinate as shown in Fig. 6.1 are 

a1(3.0, 0.9), a2(3.0, 2.1), a3(2.4, 1.5), and a3(3.6, 1.5), with the meter units omitted. 

Similarly, in the case of the dual-layered plate, the mounting points in the same 

positions for machine M-2 are placed on the second layer, with the positions in X-Y 

coordinates being the same as those of points a1-a4 in the first plate.  

The sources and spring isolators are assumed to be the same type, of which the mass 

is M0= 1.0×103 kg and the stiffness k0= 0.88×107 N/m with a small viscous damping 

factor (0.01). The physical parameters of the concrete floor are as follows; density ρc = 

2.8×103 kg/m3, Young’s modulus 210
0 N/m1012  .E , loss factor 2102  , and 

Poisson’s ratio 20. . The boundary of the square floor is simply supported, with 

sides of length m3m6  ba , LL , and thickness d0 = 0.24m. For the dual-layered plate 

structure, the connection branches are made from the same type of steel with a circular 

cross-section of diameter dc = 8 cm, and branch length Lc = 3.0 m. The periodic 

elements were symmetrically distributed along the two long side edges of the plate 

structure, with the total number N=10 at each side at regular intervals of l0 = 0.66m 

along the x-direction. The curves plotted in Fig. 6.7 show the predicted levels of the 

normalized transmitted power and power transmissibility versus the normalized 

frequency. The normalized frequency is given by 0fff n / , with the natural 

frequency for an ideal mass-spring system defined as Hz 15
2

1

0
0 

M

k
f


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6.3.2 THE COMPUTED FLOOR MOBILITY AND VIBRATION MODES  

In this section, the point and transfer mobility of a single point are investigated for 

the initial analysis of the multi-source coupling, and the effect of coupling structure on 

the floor mobility and vibration modes is illustrated.  

When excited by a vertical force F0 at point a1 of a single plate simply supported at 

every edge, the point mobility, defined as Yall = va1 /F0, is separately calculated by using 

the analytical equation as derived in Ref. [40] 
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and the finite element simulation. The results calculated using the different approaches 

are compared in Fig. 6.4(a). It can be observed that for the simply supported single 

plate, the calculated mobility curve obtained using finite element simulation agrees 

very well with that produced by using the analytical equation. The finite element model 

is therefore reliable and can be used to study the vibration of the coupling dual-layered 

plate structure.  

The curves of the point mobility of a1 and transfer mobility between a1 and b1 of the 

dual-layered plate structure are plotted in Fig. 6.4(b). Comparing the point mobility for 

the same excitation position a1, it can be seen that the cross-layered transfer mobility 

curves of the coupling structure are similar at most frequencies. Notably, it can be seen 

that at frequencies around 50-70 Hz, the level of transfer mobility for a1-b1 is 
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obviously larger than the point mobility for a1, which means the former has to be 

considered in the vibration systems of coherent sources on the coupling plate structure.  
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Fig. 6. 4 (a) The results of a1 point mobility from two approaches for a simply supported 
plate; (b) Comparison between point mobility Ya11 and transfer mobility Ya1b1 of the 
dual-layered plate structure. 
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Fig. 6.5 The field of vibration modes of the coupling dual-layer plate. (a) 8Hz around the 
0-1 resonant mode; (b) 40Hz around the 1-1 resonant mode; (c) 98Hz around the 3-1 
resonant mode; (d) 127 Hz between the 4-0 and 4-1 mode. 
 
 
 

 
Fig. 6.6 The Y-Z plane field views of the vibration modes of the coupling dual-layer plate. 
(a) symmetric mode around 98Hz; (b) anti-symmetric mode around 120Hz. 
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Fig. 6.5 shows the vibration velocity distributions of a dual-layered plate excited by a 

vertical force on point a1, with four frequencies around four different vibration modes 

being selected. It can be observed that the coupling effect between the two layers of the 

dual-layered plate is significant. Moreover, it can be seen that the mounting points on 

the dark areas have an obvious effect on the coupling effect of the coherent sources on 

the coupling structure and therefore should be avoided. As shown in Fig. 6.6, these 

vibration modes of a dual-layered plate can be divided into two groups, namely 

symmetric and antisymmetric, based on the different phase relationships of the bending 

motions between layers A and B. The symmetric vibration modes are named here 

because the phase differences of the z-degree vibration motions between the two plates 

are zero. They are like mirror images around the symmetry axis in the Y-Z plane of the 

dual-layered structure. For the motions of the antisymmetric modes, the phase 

differences of the z-degree velocities between the two plates are π. To attenuate the 

structure-borne sound from the coherent sources more efficiently, two machines should 

be placed on the undertone areas of two plates so that the final transmitted power will 

not be significantly influenced by cross-layer coupling. 

 

6.3.3 STRUCTURE-BORNE SOUND POWER TRANSMITION ON A SIMPLY 

SUPPORTED PLATE AND A COUPLING DUAL-LAYERED STRUCTURE  

In this section, the effect of wave coupling on the transmission of structure-borne 

sound power is investigated by using the model developed above with different 

conditions for the supporting structure. In the 3 cases where all machines are directly 

mounted without isolators, the normalized levels of transmitted power, which reveal the 

relative strengths of the active structure-borne sound power transmitted into the floor 

structures corresponding to the kinetic energy of the free source, are plotted in Fig. 

6.7(a) in the range of normalized frequencies 0/ fffn   from 0 to 10. In the three 



 

 114

cases where all machines are mounted with isolators, the power transmissibility for the 

vibratory systems are plotted in Fig. 6.7(b) in the same frequency range.  

 Fig. 6.7(a) shows that for the first and second cases, transmitted power at most 

frequencies is quite different because of the different floor mobilities. In the third case, 

the normalized transmitted power from the two coherent sources is larger than that 

from the independent source in most regions of normalized frequencies around 4 to 6 

and >8, while the level for coherent sources on the coupling structure is lower than that 

for the independent source in the normalized frequencies of around 1.8 to 3.3. This 

result means that the effect of structure coupling for the coherent sources would 

enhance structure-borne sound transmission in these frequency regions fn of around 4 to 

6 and >8. At the normalized frequencies of around 1.8 to 3.3 for the coherent sources, 

the transmitted force acting on the mounting point of a single such source reduces the 

magnitude of the in-phase part of the vibrating velocity with the transmitted force at the 

mounting point of the other source. As a result, the real part of the effective point 

mobility for the coherent source decreases, so that the transmitted power is reduced at 

these frequencies. The working region of fn around the enhanced area (that is, the 

increase in the normalized level of transmitted power) of the transmitted 

structure-borne sound power needs to be considered when predicting the performance 

of vibration isolation methods.  

It can be seen from Fig. 6.7(b) that the overall trend of power transmissibility for the 

first case is similar to that for the second and third at most of the isolation regions (that 

is, normalized frequencies > 2 ) except for some of the peak regions. It is notable that 

the level of power transmissibility for the two coherent sources increases significantly 

at the region of normalized frequencies around 5.2 to 6.0, and is smaller than that for 

the independent sources at normalized frequencies of around 6.1 to 6.7. The values for 

the two coherent sources indicate that the isolator performs well at the latter set of 
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normalized frequencies but does not attenuate the structure-borne sound power 

effectively at normalized frequencies of around 5.2 to 6.0. The result from the 

resonances excited at the mounting points of the machines implies that the coherence 

between the sources at the mounting positions on the floor can significantly affect the 

total transmitted power at some frequencies. When predicting the performance of 

vibration isolation for coherent machine sources, therefore, the interaction between the 

different machines mounted on the coupling floor structure needs to be considered. The 

region of good isolation, for example around the normalized frequency of 6.6, could 

include the major working frequency region of the machines; the region of the poor 

isolation effect could be considerably distant from such an area. 
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Fig. 6.7 (a) Normalized level of transmitted power for the vibratory systems without 
vibration isolators in the 3 cases; (b) Levels of structure-borne sound power 
transmissibility for the vibratory systems with vibration isolated in the 3 cases. 
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6.4. SUMMARY 

In this chapter, a model for coherent vibration systems on a dual-layered plate 

structure has been developed to study structure-borne sound transmission in such a 

coupling structure within a building. The analysis indicates that this study has been 

useful in understanding the structure-borne sound power flow transmission from the 

first into the second layer of such a dual-layer beam structure. 

In the common case, where a vibratory machine is mounted on a floor, the amount of 

power it transmits to a structure is significantly affected by the interaction of the 

contact points between it and the floor plate. A more accurate prediction for the 

performance of vibration isolation in a multi-layered building structure can only be 

obtained if the coupling between the two coherent sources is considered. The power 

transmissibility for the two sources will increase significantly at the normalized 

frequencies around some strong coupling modes and decrease considerably at other 

frequencies. The analysis has shown that the transmitted power from two coherent 

machines can be enhanced at some frequencies in the vibration isolation region.  

To predict the performance of isolation more accurately, the power transmissibility 

method should therefore consider not only the influence of effective floor mobility and 

the interactions of the mounting points of the independent sources, but also the 

interactions of the mounting points of different sources on the coupling floor structure. 

Future work is needed to explore the selection of optimum mounting positions for 

coherent machines on a multiple-layered floor structure so that the total structure-borne 

sound power transmitted from the machines to the building can be minimized in a 

region of major working frequencies.  
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CHAPTER 7. CONCLUSION AND FUTURE WORK   

 
This section includes conclusions on the whole work of this thesis and propose some 

suggestions for future work. 

First of all, the fundamental source-receiver model of a vibration-isolated system is 

represented by using electrical analogy, and the complex model is applied to a 

multi-point source machine that is vibrating in three degrees of freedom and 

asymmetrically mounted on a flexible floor with isolators in vertical direction. The 

analytical solution is developed for the model of a multi-point source machine with 

uneven mass distribution that is isolated with an inertia block. For this improved model 

of vibration-isolated system, the level of power transmissibility, the level of vibration 

velocity transmissibility, the mounted vibration velocity level, and the mounted 

rotational velocity level of the vibratory machine are proposed in order to assess the 

performance of vibration isolation and the stability of isolated multi-point vibratory 

building services equipment. The results primarily indicate that the use of an inertia 

block does not mainly affect the performance of vibration isolation. Instead, it 

decreases the vibration velocity and rotational velocity of the isolated vibratory 

machine, so that it can increase the stability of the vibratory system, regardless of 

whether the machine has slightly or highly uneven mass distribution. It is also obtained 

for the machine with uneven mass distribution placed asymmetrically on the floor, what 

the ratio of the combined inertia of the additional inertia block should be corresponding 

to the extent of uneven mass distribution. The analysis reveals that, for the mounted 

vibratory machine, an inertia block with a larger mass can reduce the vibration and 

rotation of the isolated vibratory machine. As a result, it enhances the stability of the 

isolated vibratory system of machines with highly uneven mass distribution in 3 

degrees of freedom. Therefore, in addition to proposing indices for assessing the 
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stability of the vibratory building services system, this work provides an insight into the 

selection of inertia blocks based on the mass distribution of an isolated vibratory 

machine. 

  Secondly, a new analytical method based on a multi-coupling wave transfer matrix 

has been developed to study the phenomena of the coupled flexural-longitudinal wave 

motions that propagate in a tri-coupling dual-layered periodic beam structure. A lightly 

damped semi-infinite structure that consists of two equally thin semi-infinite beams 

connected with resonant branches has been numerically analyzed. It is shown that the 

complex propagation constants govern the transmission of wave types in the structures, 

and the characteristics of pass and stop bands and the wave-coupling phenomena. It is 

found that there are six characteristic coupled wave types that propagate through such a 

structure, and these can be divided into symmetric and antisymmetric groups of 

flexural-longitudinal and predominantly near-field characteristic wave types. It is 

further revealed that the structure-borne sound energy from the synchronous 

longitudinal excitations at two beams mainly propagate through the periodic structure 

in the form of one or two types of symmetric characteristic coupled 

flexural-longitudinal waves. In contrast, the structure-borne sound energy from the 

synchronous rotational excitations mainly propagate along the structure in the form of 

one or two types of antisymmetric characteristic coupled flexural-longitudinal waves. 

This work gives an insight into the physical properties of wave motions and the 

vibrational energy contribution in such structures. 

Thirdly, the dynamic characteristics of the longitudinal-flexural motions and energy 

transmission in a finite dual-layered beam structure are studied for better vibration 

control in such a structure. Based on the developed model using the analytical wave 

coupling transfer matrix method derived in last chapter, numerical calculation was 

performed to predict the behavior of the coupled wave motion excited by a longitudinal 
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force in a finite periodic structure. The numerical results based on the theoretical model 

compared with the experimental results. In the experiment, a lightly damped finite 

structure consisted of two equally thin beams with multiple resonant branches in the 

form of thin beams that were connected perpendicularly at regular intervals. The 

numerical results of the theoretical model generally agree well with the experimental 

results at the frequencies from 10 to 2000 Hz, which suggests that the developed 

transfer matrix method for the finite periodic structure model could be useful in most 

middle-low frequency regions. Further, the cross-layer energy transmission of the 

coupled waves in the finite periodically-connected dual-beam waveguide was then 

calculated and analyzed by using the developed theoretical model. The results reveal 

that the longitudinal energy transmitted in the cross-layer of finite periodic structure is 

enhanced not only at the longitudinal resonant modes but also the flexural resonant 

modes of the finite beam of connection branches due to the wave coupling of the 

structure. It is shown that the damping factor of the coupling connection influences 

most peaks of cross-layer transmitted energy of the coupled wave at the flexural 

resonant modes of connection branches, which indicates that the structure-borne sound 

control method could be applied on those similar beam structures. 

Moreover, the model and method is developed to study the transmission of the 

structure-borne sound power flow through the finite dual-layered beam structure in a 

boundary supporting condition. Using the developed model for different coupling 

conditions, the calculation suggests that that the power flow transmission under 

mono-coupling condition to be similar to that under the multi-coupling condition 

mostly in the relatively low frequency. The structure-borne sound power flow 

transmitted throughout such a beam framework into the supporting structure would not 

just depend on the characteristics of source and receiver, but also on the attenuation 

determined by the coupling beam elements and the mounting position of source. In 
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several frequency regions, the power flow can be even transmitted into the second layer 

of the supporting structure to a considerable degree, which indicates the cross-layer 

power transmission need to be noted for the coupling beam structure.  

Finally, the model for the coherent vibration-isolated systems on a dual-layered plate 

structure is developed, and it is used to study the structure-borne sound transmission 

and isolation for the coherent source machines in such a coupling multi-layered 

structure of building. For the more accurate estimation of the isolation performance, the 

power transmissibility method should consider not only the effect of effective floor 

mobility and the interactions of the mounting points of the independent sources, but 

also the interactions of different mounting points of coherent sources on the coupling 

floor structure. This study also indicates that new method is needed for the selection of 

the optimum mounting positions of coherent machines on a coupling multi-layered 

floor to achieve better isolation performance. 

In future, further work will be conducted to develop a simplified model to effectively 

include moment actions at multiple contact points for complex vibration-isolated 

systems in multiple degrees of freedom. A method based on such model requires the 

available information about the characteristics of source machines and receiver 

structures in order to estimate the structure-borne sound power transmission and assess 

the performance of vibration isolation. The isolators such as spring is normally 

designed using the model of SDOF, with the source model based on the rigid-body 

source is just reasonable in relative low-frequency region. The advanced models of  

multi-degree isolators including moment actions together with stiffness-control and 

resonance-control sources will be considered in the future's work for higher frequency 

region. Moreover, the models for 3-dimensional coupling structures need to be further 

developed to efficiently analyze the structure-borne sound transmission with coupling 

effects in a multi-layered building structure. The model based on the equilibrium 
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equations of “self-consistent” method as developed in Ref. [90] will be used for the 

3-dimensional structures or disorder structures. 
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APPENDIX. DETAILS OF EXPERIMENT 

 

P1. The equipments used for this experiment: (1) the finite periodical coupling 

dual-layered beam suspended on elastic strings so that it could ideally vibrate freely in all 

degrees; (2) the amplifier of driving signal (LING Dynamic PA300) that was fed with a 

white noise source; (3) the electro-dynamic vibration exciter (LING Dynamic System 

Type V403); (4) the force transducer (PCB ICP F-sensor) that is set to measure the 

exciting force; (5) the conditioner of the force transducer; (6) the accelerometers (B&K 

Type 4394) to measure the vibration of the beam structure ; (7) the signal conditioner of 

the accelerometers; (8) NI equipment (RIO-9233) for the multi-channel data acquisition 

(9) the NI platform (PXI-8187) using the LabView program for the control of 

measurement and the data analysis.  

A photo is given to illustrate the details of the equipments and setting of the 

experiment that was conducted for the study of chapter 4. The material of the two equal 

beam layers A and B is aluminum alloy, for which the Young’s modulus is E1,2 = 5.05 

× 1010 N/m2 and density ρ1,2 = 3220 kg/m3 with an assumed loss factor η1,2 = 0.01. The 

dimensions of the two equal beams with a rectangular cross-section are periodic 

element length L0 = 50 mm, so its total length is 3.0 m, thickness h0 = 6.0 mm, and 

width d0 = 38.1 mm. The material of the connection branch is steel, for which the 

Young’s modulus is E3 = 1.15 × 1011 N/m2 with assumed loss factor η3 = 0.011 and 
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density ρ3 = 7690 kg/m.3 The dimensions of the branch are thickness hc = 1.54 mm, 

width dc = 38.2 mm, and length of its vertical beam component Lc = 320 mm. The 

attaching part on two sides of the connection branch, which has the same cross-section 

but a short length ls = 9.0 mm, is perpendicular to the vertical part of the branch. The 

attaching part of the connection branch is fixed on a horizontal beam layer by two steel 

screws with nuts of a diameter of 4 mm. The total number of periodic elements of this 

finite periodic structure is N = 6. In the experimental setting, the man-made dual-layer 

periodic beam structure was suspended by four elastic strings under the long tables so 

that it could ideally vibrate freely in all degrees (the model shown in Fig. 4.2). The 

structure was longitudinally excited at the left boundary of beam B by an 

electro-dynamic vibration exciter (LING Dynamic System Type V403). The vibration 

exciter was driven by an electrical current amplifier (LING Dynamic PA300) that was 

fed with the input signal from a white noise generator. A force transducer (PCB ICP 

F-sensor) was set to acquire the exciting force on the periodic beam structure, and the 

vibrational responses of the beam structure were measured by two accelerometers 

(B&K Type 4394). All of the acquired force and vibration signals were synchronously 

input into a NI module of 4-channel A-D signal transducer (NI RIO-9233). The data 

recording, processing and analysis were conducted with NI equipment (NI PXI-8187) 

using the LabVIEW program.  

 


