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Abstract

In this thesis we study new retrieval models which simulate the "local”
relevance decision-making for every term location in a document, these
local relevance decisions are then combined as the “document-wide”
relevance decision for the document. Local relevance decision for a term t
occurred at the k-th location in a document is made by considering the
document-context which is the window of terms centred at the term t at the
k-th location. Therefore, different relevance scores (preferences) are
obtained for the same term t at different locations in a document depending
on its document-contexts. This differs from traditional models which term t

receives the same score disregard of its locations in a document.

Particularly, a hybrid document-context model is studied which is the
combination of various existing effective models and techniques. It
estimates the relevance decision preference of document-contexts as the log-
odds and uses smoothing techniques as found in language models to solve
the problem of zero probabilities. It combines the estimated preferences of
document-contexts using different types of aggregation operators that
comply with the relevance decision principles. The model is evaluated using
retrospective experiments with full relevance information to reveal the
potential of the model. The model obtained a mean average precision of
60% - 80% in retrospective experiments using different TREC ad hoc
English collections and the NTCIR-5 ad hoc Chinese collection. The
experiments showed that the operators that are consistent with aggregate
relevance principle were effective in combining the estimated preferences of
document-contexts. Besides retrospective experiments, we also use top 20
documents from the initial ranked list to perform relevance feedback
experiments with a probabilistic document-context model and the results are

promising.

We also showed that when the size of the document-contexts is shrunk to

unity, the document-context model is simplified to a basic ranking formula



that directly corresponds to the TF-IDF term weights. Thus TF-IDF term
weights can be interpreted as making relevance decisions. This helps to
establish a unifying perspective about information retrieval as relevance
decision-making and to develop advance TF-IDF-related term weights for
future elaborate retrieval models. Empirically, we show that, using four
TREC ad hoc retrieval data collections, the IDF of a term t is related to the

probability of randomly picking a non-relevant usage of the term t.

Lastly, we apply the notion of document-context to develop a new relevance
feedback algorithm. Instead of letting user to judge the documents from the
top in the ranked document list, we split the ranked document list into
multiple lists of document-contexts. Therefore, the judgement of relevance
of the documents is not done sequentially. This is called active feedback and
we show that in the experiments with various TREC data collections, our
new relevance feedback algorithm using document-contexts obtained better
results than the conventional relevance feedback algorithm and this is done
more reliably than a maximal marginal relevance (MMR) method which
does not use document-contexts. The experimental results suggest that using

document-contexts can improve retrieval effectiveness.
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Chapter 1

Introduction

In Information Retrieval (IR), the ultimate goal is to find relevant
information effectively and efficiently. Examples of earlier IR tasks include
finding library records and scientific publications. The target users of IR
systems were limited to professionals such as scientists and journalists.
However, the situation changed with the invention of the World Wide Web
in the 1990s. Since then the size of the Web grows exponentially, and
begins the era of electronic information. Nowadays, the number of web
pages on the Web is in terms of billions and they are readily reached by
most of the people in the world. With the vast amount and variety of
information, the problem of finding relevant information becomes essential

to people’s everyday lives.

Usually, when using an IR system, user’s information need is transformed to
a query which consists of one or more keywords and then entered to the
system. The IR system then matches those input keywords with the contents
of documents in the indexed collection. Matched documents are ranked
using certain methods and finally a list of documents as an output is
presented to the user. Lexical problems may arrive during the process which
could cause difficulties in finding relevant documents for the user. First, the
transformation from user’s information need to the query terms may be
inaccurate. That is, incorrect keywords are used to represent the information
need. Second, the problem of polysemy causes ambiguity when matching
query terms with document terms. A polysemy is a word or phrase with
multiple meanings. For example, the keyword “bank” exists in a query may
refer to a “commercial bank” or a “river bank”. The existence of polysemy
in natural language may cause non-relevant documents to be retrieved.
Third, the term mismatch problem in which the same concept is referred to
by different words. As a result, relevant documents that do not contain

query terms are not retrieved.



During the course of IR research in the last decades, many retrieval models
have been developed and investigated. Generally speaking, a retrieval model
defines:

(1) the representation of documents,

(2) the representation of queries, and

(3) the ranking function.

For example, the vector space models [Salton et al., 1975; Wong et al., 1985]
use vectors of features (e.g., index terms) for representing documents and
queries. The ranking function is calculating the deviation of angles (i.e., the
cosine similarity measure) between each of the document vectors and the
query vector. A document vector with a smaller angle of deviation is
considered more similar to the query and therefore the document would be
ranked higher. Many of the retrieval models are based on a variety of
mathematical frameworks [Dominich, 2000]. These models provide a
system point of view of how to retrieve documents that are sufficiently

relevant such that they satisfy a user’s information need.

A retrieval model can also be thought of as simulating the human user when
making relevance decisions in the retrieval process [Bollmann and Wong,
1987]. In this case, the ranking of the relevance of the documents to the

user’s information need is in terms of preferences [Yao and Wong, 1991].

In this thesis, we investigate retrieval models that use “document-contexts”
to simulate a human user making “local” relevance decisions. A document-
context is essentially a concordance or a keyword in context (KWIC)
[Kupiec et al., 1995]. Figure 1.1 shows some example document contexts
containing a query term in the title query, “Hubble Telescope
Achievements”. By using “document-contexts”, we try to deal with the
problem caused by polysemy which mentioned above. The meaning of a
single term could be ambiguous while a term with context should have
definite meaning. For example, in Figure 1.1, we see several contexts for the

term “Hubble” which is a query term. In some contexts the term “Hubble”



refers to the person Edwin P. Hubble while it refers to the Hubble telescope
in other contexts. It is intuitive that keyword in context (KWIC) is important
for users to make local relevance judgments, as a result we do not perform

user research on this.

Local relevance decisions Context of the keyword or middle term {query term)

" After vears of measurements by the Hubble Space  Telescope  astronom ers think they have finally established a
o 4 " expansion rate by using the Earth-orbiting Hubble  Telescope  in measuring distances to 800 stars of known

x Hawe sought ever since 192% when Edwin P. Hubkle discovered that the galazies are flying outward at
gl of the expansion rate also known as the Hubble constant are fundamental to all theenes of cosmic
Jr"ﬁ‘ TUnderlying these age estimates The number of the Hubble constant they concludedis 70 plus or minus
) the expansion rate by using the Earth-orbiting Hubble  telescope in measuring distances to 800 stars of
abig step forward Freedman's adversary in the Hubble constant wars has been Allan B Sandage also

Human evaluator
Keyword or middle term of the context (query term)

Figure 1.1: Example contexts extracted from a relevant document (NYT19990525.0358)
in the TREC-2005 robust-track data collection. The query is “Hubble Telescope

Achievements” with query id = 303. Contexts with (¥) are judged relevant after human
examination of the contexts.

1.1 Research Problems and Motivations

An important element in retrieval models is how to weight the terms in a
document. That is, the terms in a document are weighted using different
factors. The score of a document is then the combination of the individual
term weights. The term-weighting function of a document usually depends
on three main factors [Salton and Buckley, 1988]: (1) the term frequency
(TF) of the term, (2) the inverse document frequency (IDF) of the term, and
(3) the document length. Using the 3 main factors, a well-know and
common term weighting method is the TF-IDF. In general, the TF-IDF
weight of a term t in document d is the same no matter where term t occurs
in d. In our study, we believe that the locations of a term in a document play
an important role in determining the relevance of the document to a query.
Since different locations of a term in a document reveal different contexts

which would individually affect the relevance of the document.

By considering the locations of terms in a document, we develop document-
context based retrieval models which simulates human user when making
relevance decisions. The document-context based retrieval models provide a

relevance score for every location in a document (i.e., the local relevance



decisions). The relevance scores of each of the locations are then combined
to form the document score (i.e., the document-wide relevance decision).
We investigated different methods of combining the local relevance
decisions by following the relevance decision principles [Kong et al., 2004],
namely the Disjunctive Relevance Decision (DRD) principle, the Aggregate
Relevance Decision (ARD) principle and the Conjunctive Relevance

Decision (CRD) principle.

While developing new retrieval models, we are motivated to justify
theoretically and empirically that the document-context based retrieval
models are compatible with the common TF-IDF term weighting models.
Specifically, by making the Minimal Context assumption which shrinks the
context size to unity such that the local relevance decisions no longer
depend on locations, we show that the TF-IDF term weight models are
actually a special case in our proposed document-context based retrieval
models. The significance of this justification is that potentially there is a
unifying perspective about information retrieval (IR) as relevance decision-

making.

We are also motivated by enhancing retrieval effectiveness using the
document-context based retrieval models. We perform relevance feedback
experiments and compare our models with the stat-of-the-art retrieval model.
Lastly, by using the notion of document-contexts, we are motivated to
investigate new relevance feedback algorithm such that user’s satisfaction
during the relevance feedback can be enhanced by judging less non-relevant

documents.

1.2 Contributions and their Significance

In this section we briefly state the main contributions of our work and their

significance.



1. Interpreting TF-IDF as making relevance decisions

We show that theoretically and empirically, TF-IDF term weights can be the
outcome of modeling relevance decision-making. The significance of this
justification is that potentially there is a unifying perspective about
information retrieval (IR) as relevance decision-making. Many past retrieval
models are already related to relevance decision-making; for example, the
binary independence retrieval (BIR) model [Robertson and Sparck Jones,
1976], the logistic regression model [Cooper et al., 1992], the vector space
model [Salton et al., 1975], the Boolean model [Wong et al., 1986], and the
extended Boolean model [Salton et al., 1983]. However, it is not known
whether TF-IDF term weights are related to relevance decision-making
because they were originally not conceived in this way. Instead, the term
frequency factor was originally thought to be indicative of document topic
[Luhn, 1958], and the inverse document frequency (IDF) is reasoned
[Sparck Jones, 1972] on the basis of Zipf law.

2. By using two language models to model relevance and irrelevance
independently, the Binary Independence Language Model is developed
and it shows improvement in retrieval effectiveness using various
TREC data collections

We have investigated the probabilistic document-context based retrieval
model. The model uses the log-odds ratio that combines two relevance
decision component models which are designed to mimic human relevance
decision-making. They simulate what a human evaluator does and make
local relevance decisions at each document location. These local relevance
decisions of a document are combined to produce the final document-wide
relevance decision for the document. Retrospective experiments with our
models have produced mean average precisions between 70% and 80%
using various reference TREC ad hoc retrieval test collections. For
relevance feedback using the top 20 ranked, judged documents, our model
using fixed parameter values performs statistically significantly better than

support vector machines and the highly effective, modified Markov random



field model with a 90% confidence interval across different TREC
collections. These results show that the proposed theory and its retrieval

model are promising.

3. The split-list approach to relevance feedback is proposed which is
new and the experiment results show that the new approach results in

enhancement in user’s satisfaction during relevance feedback

We have proposed a new algorithm for relevance feedback in information
retrieval which uses document-contexts by splitting the retrieval list into
sub-lists according to the query term patterns exist in the top ranked
documents. Query term patterns include single query term, a pair of query
terms occur in a phrase and in proximity. By considering the document-
contexts of the query patterns, more relevance documents can be found

during relevance feedback which can enhance user’s satisfaction.

1.3 Outline

The rest of this thesis is organized as follows

Chapter 2 Literature review: In this chapter we describe information
retrieval models in the literature which are related to our work. In particular
the binary independence retrieval (BIR) model [Robertson and Sparck Jones,
1976]. Other models which also use the concept of document-contexts are

also reviewed.

Chapter 3 A retrospective study of a hybrid document-context based
retrieval model: This chapter describes our novel retrieval model that is
based on contexts of query terms in documents (i.e., document-contexts).
The model explicitly takes into account of the document-contexts instead of
implicitly using the document-contexts to find query expansion terms. The
model is a hybrid of various existing effective models and techniques. We
tested the model retrospectively (i.e., with the presence of relevance



information) to show its potential and have a better understanding of the

model.

Chapter 4 Interpreting TF-IDF Term weights as making relevance
decisions: In this chapter we investigate a probabilistic non-relevance
decision model. By assuming the Minimal Context assumption, it forms a

basis to interpret the TF-IDF term weights as making relevance decisions.

Chapter 5 Probabilistic document-context based retrieval model: By no
longer assuming the Minimal Context assumption, in this chapter, we
develop a binary independence language model and experiment it in using
relevance feedback experiments.

Chapter 6 A split-list approach to relevance feedback in information
retrieval: We describe a new algorithm for relevance feedback which
applied the document-contexts. The objectives are to (a) find more
relevance documents and (b) find documents with higher diversity, hence

enhancing user’s satisfaction during relevance feedback.

Chapter 7 Conclusion and future work: This chapter summarize the

thesis and describe some items for possible future work.



Chapter 2

Literature Review

In this chapter we describe information retrieval models in the literature
which are related to our work. The main focus of our work is to investigate
the use of document-context in information retrieval. A term t having
multiple meanings is called a polyseme. With the existence of polysemes, a
non-relevant document may be retrieved even that it contains the same term
as in the query. We believe that using the context of the term t in the
document can alleviate the problem caused by polysemes, since the meaning
of the term t can be clarified by its neighbouring terms (i.e., the document-
context of the term t). Therefore, the location of a term in a document plays
an important role in determining the meaning of the term. As a result, we
incorporate positional information of terms in the retrieval model which
traditional models do not. In Chapter 3 (A Retrospective Study of a Hybrid
Document-context Based Retrieval Model), we develop a hybrid document-
context model based on the well-known Binary Independence Retrieval
(BIR) model [Robertson and Sparck Jones, 1976]. In Chapter 4 (Interpreting
TF-IDF term weights as making relevance decision), we show that when we
shrink the context size to unity, our document-context model can be
interpreted as using TF-IDF term weights which are similar to the term
weights used in the empirically successful BM25 model by Robertson and
Walker [1994]. The BM25 model is an approximation to the 2-Poisson
model [Harter 1974, 1975a, 1975b; Bookstein and Swanson, 1974;
Robertson et al., 1980] while the 2-Poisson model is related to the BIR
model. We briefly describe these traditional probabilistic retrieval models in

section 2.1.

There are other works in the literature which use document-context similar
to ours. Some of these works include the integration of collocation statistics
into probabilistic retrieval model by Vechtomova and Robertson [2000],

modeling term dependence using Markov random field by Metzler and



Croft [2005], the use of term context models for information retrieval by
Pickens and Macfarlane [2006] and the use of lexical cohesion between
query terms by Vechtomova et al. [2006]. These related works are described
in section 2.2.

When considering document-contexts, we divide a document into smaller
pieces using a sliding window. A window of terms with a centre term t is
said to be the context of the term t. This is similar to passage-based retrieval
which considers passages instead of the whole document. In section 2.3, we

briefly review passage-based retrieval.

Most of our experiments are done in a relevance feedback environment, that
is, some or full relevance information is available to the retrieval model.
Therefore, we briefly review works on relevance feedback in information

retrieval in section 2.4.

2.1 The Traditional Probabilistic Retrieval Models

The probabilistic approach to retrieval was first presented by Maron and
Kuhns [1960] in 1960. The idea of using probability theory in information
retrieval has generated the development of a variety of probabilistic retrieval
models which differ by the estimation of probabilities in the ranking
functions. For examples, the Binary Independence Retrieval (BIR) model by
Robertson and Sparck Jones [1976], the logistic regression model by Cooper
et al. [1992, 1993], the TF-IDF term weights in the BM25 model by
Robertson and Walker [1994] which is based on the 2-Poisson model
[Harter 1974, 1975a, 1975b; Bookstein and Swanson, 1974; Robertson, Van
Rijsbergen and Porter, 1981], the language model by Ponte and Croft [1998],
Zhai and Lafferty [2004] and Lavrenko and Croft [2001,2003], and more
recently the divergence models by Amati and Van Rijsbergen [2002]. These
models either minimize the (Bayesian) risks (e.g., the BIR model and
language model [Zhai and Lafferty, 2006]), or they accept the Probabilistic
Ranking Principle (PRP) [Robertson, 1977] as the best way to rank



documents or maximize the information gain [Amati and Van Rijsbergen,

2002] or optimize the cross-entropy [Lavrenko and Croft, 2003].

The Probability Ranking Principle (PRP) [Robertson, 1977] states that the
greatest retrieval effectiveness is achieved when documents are ranked in
the decreasing order of probabilities of relevance to the query, while the
probabilities are estimated on all data available to the retrieval system. In
Chapter 3 (A Retrospective Study of a Hybrid Document-context Based
Retrieval Model), we show that our document-context model follows the
PRP by experimenting the model with different amount of relevance

information presence to the model.

2.1.1 The Binary Independence Retrieval (BIR) Model

In the BIR model [Robertson and Sparck Jones, 1976], the basic question to

ask for each document and each query is:
What is the probability that this document is relevant to this query?

Denote a binary relevance variable Re{0, 1}which models the relevance of
documents, R equals to 1 means relevant while R equals to 0 means non-
relevant. For a term t belongs to the vocabulary V (i.e., teV), the BIR model
considers only the presence or absence of the term t in a query g and a
document d. Hence, a query g is represented by a set of binary term
occurrence variables g:e{0, 1}where g; equals to 1 if g contains t and q;
equals to 0 if g does not contain t (i.e., qe{0, 1}")). Similarly, a document d
is represented by a set of term occurrence variables die{0, 1} where d;
equals to 1 if d contains t and d; equals to O if d does not contain t (i.e., d
{0, 1}"). To rank the documents, the BIR model tries to estimate the

probability of relevance of a given document d:

P(R=1]d,q)

10



Using Bayes’ Theorem,

P(d|R=1q)P(R=1[q)
P(d|q)

P(R=1|d,q) = (2.1)

In order to avoid the estimation of P(d | g), the odds is used while preserving

rank

the ranking order of documents ( = is a binary relation called rank
equivalence [Lafferty and Zhai, 2001] that preserves the ranking of both

sides of the relation by some monotonic transformation):

P(R:lld,q)rikxi—m
_ P(|R=19)P(R=1]|q)
P(d|R=0,q)P(R=0]q)
T P(d[R=1q) (2.2)
P(d|R=0,0)

By asserting the independence assumption that the occurrence of terms in a
document is conditionally independent given a relevance class, P(d | R, Q)
can be expanded by the multiplication of the conditional probabilities of

individual term occurrence variables d;:

anp(d, | R=10)
PR=1|d,q) = [[—lR=10)
R=11d.9) = [ 1547 =0.0)

1 P(d, =1|R=10) 1 P(d =0|R=10) (3
teva,-1 P(d, =1|R=0,0) 1o/,-0P(d, =0[R=0,0)

For simplicity, define p; to be the probability that d contains t given d is
relevant and u; to be the probability that d contains t given d is non-relevant:

P = P(dt :1| R :1,Q) (2-4)
u, =P(d, =1|R=0,0) (2.5)

Further assume that terms that do not occur in the query q are equally likely
to occur in relevant and non-relevant documents, (i.e., p; = U if g; = 0). The

ranking function becomes:

11



PR-11d.9)= [] e 7 0

teV:d,=qg,=1 Ut teV:d,=0,q,=1 1- Ut
_ H pt(l_ut)x H 1- Py
teV:d,=q,=1 Ut (1_ pt) teVig, =1 1- Ut
rik P (1_ ut)
teV:d,=q,=1 ut (1_ pt)

rank _
teV:d,=qg,=1 Ut (l_ pt)

teV:d,=q;=1
where
pt(l_ut)
W, = log———== 2.7
) @7)

and the remaining concern is to estimate p; and ux.
With some or full relevance information, p; and u; can be estimated by

counting the number of documents containing term t in the sets of relevant

and non-relevant documents:

(2.8)

(2.9)

where ry is the number of relevant documents containing the term t, R is the
number of relevant documents for a given query q, df; is the number of
documents containing the term t and D is the total number of documents in
the collection. Putting Equations 2.7, 2.8 and 2.9 together:

w, = log

(2.10)

df, —r,
D-R-df +r,

12



In order to avoid zero values which would cause undefined result in the
calculation, 0.5 is added to each of the quantities in Equation 2.10 for

smoothing:

rL+0.5
(R—q+05}
df,—r.+0.5
[D—R—dft+rt+0.5j

In the presence of relevance information, the above quantity is called the w,

w, = log (2.11)

weight in the literature [Robertson and Sparck Jones, 1976]. Obviously, the
w, weight measures the importance of a term in a document without
considering the position of the term in the document. In [Wu et al., 2005], a
document-context model which incorporates the positional information of
the terms for measuring importance of terms is compared with the w, weight
in a retrospective experiment, that is, full relevance information is presence
to the retrieval models. The results show that using document-context in

calculating the term weights can improve retrieval effectiveness.

In practice, relevance information is difficult to obtain. Without any
relevance information, it is assumed that for a given query g, the number of
relevant documents is very small when compared to the total number of
documents in the whole collection. In other words, a very large percentage
of documents in the collection are non-relevant. This assumption is valid for
large collections. As a result, ry and R are set to zero (i.e., r = R = 0) in

Equation 2.11 and w; becomes:

D —df,+0.5
W, =log————

t df, +0.5 (2.12)

The above quantity is the well-known Inverse Document Frequency (IDF)
which measures the importance of a term in a collection without any
relevance information. When there are a lot of documents containing the
term t, df; is large and hence w; is small which means that the term t is of

13



less importance. Stop words such as prepositions are examples of these less
important terms. These terms occur in almost every document in the
collection so they do not have much discriminative power when they appear
in a query. On the other hand, if only a limited number of documents
containing the term t, df; is small and hence w; is large which means the term
t is of high importance to identify the documents containing term t. The IDF
weight has been used in many information retrieval systems since its

introduction.

In Chapter 3 (A Retrospective Study of a Hybrid Document-context Based
Retrieval Model), we develop a hybrid document-context model based on
the BIR model. Instead of considering the probability of relevance of a
document, P(R=1| d, g), we try to calculate the probability of relevance of a
context in a document, P(R=1 | c(d, k), q) where c(d, k) is the context at the
k-th position in the document d. As a result, a term weight which depends

on the document-context is proposed.

2.1.2 The TF-IDF Term Weight

In [Luhn, 1958], term frequency was introduced as an indicator for the
significance of a term t in a document. Intuitively, the higher the term
frequency of t in d, the more the importance of t in d. In the BIR model,
documents are represented by the set of term occurrence variables which
only reveals the presence or absence of terms (i.e., die{0,1}), information
such as term frequencies is lost in the BIR modeling. In order to overcome
this problem, the 2-Poisson model was developed [Harter 1974, 1975a,
1975b; Bookstein and Swanson, 1974; Robertson, Van Rijsbergen and
Porter, 1981]. In the 2-Poisson model, queries and documents are
represented by the set of occurrence variables which are natural numbers
(i.e., d;eN) showing the term frequencies of each term occurring in a query
or document, (i.e., geNM and deNV). This differs from the BIR model

which uses binary occurrence variables.
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Given a query g and a document d, define p; 1 to be the probability that the
term t occurs f times in the document d given that d is relevant to g, and u
to be the probability that the term t occurs f times in the document d given
that d is non-relevant to q:

pr =P, =f|R=10) (2.13)
U, =P, =f|R=00) (2.14)

Using pt ¢ and Uy ¢, the ranking formula of the 2-Poisson model is derived

analogously to Equation 2.6:

P(R:lld,q)ra:nk I1 Por I1 Pro

tev:d,>0,6,50 Ut f  tevid,=0,q,50 Ut o

_ H pt,f ><ut,o % H pt,o

tev:d,>0,q,>0 ut,f X pt,o teV:q, >0 ut,o

rank Pi¢ XUio

tev:d;>0,q,>0 ut,f X pt,o

= H Wt,Z— Poisson (2 . 15)
tev:d;>0,q,>0
and
Pe¢ XU
Wt,Z—Poisson = (216)
Ut X Pro

To estimate p s and u 1, the 2-Poisson model uses a mixture of two Poisson
distributions, one from an elite source and the other one from a non-elite
source. Eliteness is a hidden variable shows whether a term t is “about” a
document d and it is difficult to define in practice. Therefore, the 2-Poisson
model faces a problem of difficult parameter estimation.

In 1994, Robertson and Walker presented some simple and effective

approximations to the 2-Poisson model [Robertson and Walker, 1994] in the
form of TF-IDF which is the multiplication of the term frequency (TF)
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factor and the inverse document frequency (IDF) factor. This is called the

BM25 model in the literature and the ranking formula is:

P(R=1|d q)ra:nk Z tf tft,d x (k, +1) o D —df, +0.5
& Id | df, +05  (2.17)
tf, o + Kk, x 1—b+be

where tf;  is the occurrence frequency of the term t in query q, tf; 4 is the
occurrence frequency of the term t in document d, |d| is the length of the
document d, A is the average document length in the collection, D is the
number of documents in the collection, df; is the number of documents

containing term t, finally, k; and b are model parameters.

While the BM25 model is simple to implement, it continues to achieve
state-of-the-art retrieval effectiveness. Besides the BM25 model, there are
other retrieval models which combine the variants of the TF and IDF
components. Salton and Buckley [1988] identified three main components
for effective retrieval, they are (1) the term frequency (TF) factor, (2) the
inverse document frequency (IDF) factor, and (3) the document length
factor. The document length factor is used to normalize the term frequency
factor in most cases, this is to avoid the bias to long documents since longer
documents tend to contain more query terms. Note that the three
components can take different forms in different retrieval models, while the
BM25 model being one of them. In Chapter 4 (Interpreting TF-IDF term
weights as making relevance decision), we show that when we shrink the
context size to unity, our document-context model can be interpreted as
using TF-IDF term weights which is similar to the various retrieval models
in the literature including the BM25 model and the variants presented in
[Salton and Buckley, 1988].

2.2 Models with Document-Context

The probabilistic retrieval models described in the previous section are built

with a strong assumption that the attributes (terms) describing the
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documents are independent to each other. Generally, a document is treated
as bag-of-terms which means the terms exist independently. In reality, this
kind of bag-of-terms modelling is obviously over simplified since terms are
inter-related with each other. As a result, there are attempts to overcome the
limitation of the traditional bag-of-terms models by modelling the
relationship among terms in a document. Some of the work in the literature
use document-context similar to ours. In this section, we briefly describe

these works.

In 2000, Vechtomova and Robertson [2000] presented a method of
combining corpus-derived data on word co-occurrences using collocations
with the traditional probabilistic model of information retrieval. Significant
collocates are selected using a window-based technique around the
interested (node) terms. Given a query g, for every query term t € g, top
collocates for the term t are selected using collection statistics, which are
mutual information (MI) and Z statistic specifically. After extracting the top
collocates for every query term, the query is expanded using the extracted

collocates.

Standard mutual information score between a pair of terms measures the
mutual dependence of the two terms. If two terms always co-occur with
each other, they have a high mutual information score. On the other hand, if
two terms co-occur mainly due to chance, their mutual information score
will be close to zero. Below shows the formula for calculating standard

mutual information score of two terms x and y:

P(x,Y)

1(x,y) = IOQZW

(2.18)
where P(X, y) is the probability that the terms x and y occur together, P(X)
and P(y) are the probabilities that the terms x and y occur individually. In
order to allow for terms co-occur within a distance (i.e., within a window of

terms), a modified M1 score was used in [Vechtomova and Robertson, 2000]:
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(f(x.wJ

R(xy) _, L xw,

POOP(Y) ( f(x)f(y))
L2

l,(X,y) = log, (2.19)

where Py(X, y) is the probability of occurrence of y in the windows around X,
f(x, y) is the frequency of co-occurrence of x and vy, f(x) and f(y) are the
individual frequencies of occurrence of x and y respectively, L is the
collection length which is the sum of document lengths for all documents in
the collection and wy is the average window size for x. The window size
used was 201 with 100 terms for each side of the centre term. Besides Ml, Z
statistic was also used to measure the degree of confidence that the pair of

terms x and y are associated:

Cw f(x)f(y)
Z(x,y) = el L (2.20)
’ \/vvxf(x) f(y) '
L

where f(x, y), f(x), f(y), wx and L are defined the same as those in Equation

2.19 when computing M.

The notion of context in our proposed model is very similar to the window-
based technique used by Vechtomova and Robertson However, unlike
[Vechtomova and Robertson, 2000], our model does not extract collocates
for query expansion. The statistics may not be reliable when the frequency
of occurrence of the term is low. Therefore, undesired terms which will
degrade retrieval effectiveness may be extracted using the statistics. Instead,
we consider all possible occurrences of terms in the context and use log-
odds to rank them. Moreover, we derive our model using the notion of
document-context at the very beginning (see Chapter 3 (A Retrospective

Study of a Hybrid Document-context Based Retrieval Model)).

In 2005, Metzler and Croft [2005] developed a novel retrieval model based

on Markov random field (MRF). Their model assigns different weights to
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different types of query term occurrence patterns in the documents.
Specifically, the MRF approach models the joint distribution P,(q, d) over
queries and documents by three classes of lexical features, they are (1)
individual terms, (2) contiguous phrases, and (3) terms with proximity. It is
the third class (terms with proximity) which document-context is employed.
This class of lexical features models a pair of query terms occur in a
document within a distance. The MRF model considers the mixture of the

three classes of lexical features:

P.(d,q) < A4, f; + A, fo + A4, T, (2.21)

where fr is the feature function for individual terms, fo is the feature
function for contiguous phrases, fy is the feature function for proximity, and
A1, Ao and Ay are the corresponding weights such that Ar + 1o + Ay = 1.
Note that when Ar = 1 and Ao = Ay = 0, the MRF model is equivalent to the
query likelihood model [Ponte and Croft, 1998] which ranks the documents
according to the probability of generating the query q by the language model
of document d (i.e., P(q| d)).

In the MRF model the scores of different types of query term occurrence
patterns are combined together as the document score for ranking. Although
Metzler and Croft [2005] used document- contexts, their model did not use
the non-query terms in the contexts for document ranking. Since only query
terms are considered, the proximity is within a small distance (less than 10
terms) when compared to the context sizes used in our document-context
model (51-101 terms). Also, their model was not motivated by modeling or
simulating relevance decision making while we do that in Chapter 4

(Interpreting TF-IDF term weights as making relevance decision).

The MRF model [Metzler and Croft, 2005] and its modified version [Lease,
2008] have shown to be very effective in text retrieval at TREC [Metzler et
al., 2005; Lease, 2008]. In Chapter 5 (Probabilistic Document-Context
Based Retrieval Model), we compare results from our document-context
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model with those from the MRF model as in [Lease, 2008] in a relevance

feedback environment.

In 2006, Pickens and MacFlane [2006] proposed the term context model for
information retrieval. For a query g, instead of just looking at the occurrence
of the query terms t € g in a document, the term context model considers a
set of non-independent supporting terms which was said to be the “context”
of a query term. That is relationships among context terms are also
considered. The model makes use of the maximum-entropy framework to
compute the relationships among terms. They have shown that related terms
found using the term context model are different from those found using co-

occurrence statistics.

Other work has also been done on exploiting word co-occurrence statistics
using windowing techniques. For examples, Lv and Zhai [2009] proposed
the positional language model (PLM) which defines a language model for
each position of a document. The PLM is estimated based on propagated
counts of words within a document through a proximity-based density
function, which captures both proximity heuristics and achieves an effect of
“soft” passage retrieval. De Kretser and Moffat [1999] introduced the shape,
height and spread factors to measure the influence of query terms at
difference locations. Vechtomova et al. [2006] empirically investigated
whether the degree of lexical cohesion between the contexts of query terms’
occurrences in a document is related to its relevance to the query. By
contrast, we concentrate on individual contexts of the query terms in a
document to test whether a particular context is relevant. Xu and Croft
[2000] implicitly assumed that query terms and expansion terms are related
within some context windows using the local context analysis (LCA) in the
local collection (i.e., the top ranked documents). However, we do not
perform query expansion but utilize the term distributions in relevant and
irrelevant documents. In [Lund and Burgess, 1996; Burgess and Lund, 1997;
Burgess et al., 1998], the researchers developed the Hyperspace Analogue to

Language (HAL) model to automatically construct the dependencies of a
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term with other terms using their co-occurrences [Bruza and Song, 2003]
inside a context in a sufficiently large corpus. For a given term, a vector is
created which elements are the probabilities of the term co-occurring with
other terms. Song and Bruza [2003] proposed an information inference
mechanism in information retrieval for making inferences via computations
of information flow in a high dimensional context-sensitive vector space
constructed using the HAL model. Gao et al. [2004] extended the language
modeling approach by incorporating dependencies between terms in the
model using term co-occurrence statistics which showed that using the co-
occurrence information in language modeling benefits the retrieval
effectiveness. Bai et al. [2005] proposed the context-dependent query
expansion technique in language modeling approach using extended
inference model with information flow. All the studies provided evidence
that exploiting the term co-occurrence information is crucial for increasing
retrieval effectiveness. In our model, by considering the document-contexts
of the query terms in documents, it simulates relevance-decision making for
the document-contexts. This extends the usage of term co-occurrence
information to match the conceptual meaning of the query terms and

document terms.

Our document-context model simulates “local” relevance-decision making
for every term location in a document. We believe that term locations play
an important role in determining relevance of documents to queries. There
are works which do not explicitly take into account term locations in a
document even though term locations have been acknowledged as an
important component in determining relevance. For instance, passage
retrieval [Kaszkiel et al., 1999; Liu and Croft, 2002] implicitly assumes that
the influence of the query term is limited within a passage and local context
analysis [Xu and Croft, 2000] implicitly assumes that query terms and
expansion terms are related within some context windows. Language
models [Ponte and Croft, 1998] used locations to define location frequencies
of term occurrences [Roelleke and Wang, 2006], but they have not used
locations in a more elaborate manner than frequency counting. The

question-and-answering (QA) tasks explicitly requested the retrieved results
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to include term locations but many retrieval models for QA tasks are
extensions of existing retrieval models without explicit consideration of
term locations in the model. Instead of adding term locations in the retrieval
model as a post-processing module, we develop our probabilistic retrieval
model with term locations at the beginning. The local relevance at a certain

location is thought to depend on the document-context at that location.

2.3 Passage-based Retrieval Models

In passage-based retrieval, e.g., [Salton et al., 1993; Callan, 1994; Kaszkiel
et al., 1999; Liu and Croft, 2002], a document is divided into passages and
each of the passages is evaluated individually by the retrieval model. Xi et al.
[2001] investigated a window-based passage retrieval technique but they did
not require the centre term of a window to be a query term. The passage-
based retrieval implicitly agrees that the query term is related to other terms
in limited distances but not in large distances. Our model shares the same
intuition. However, passage-based retrieval divides a document exhaustively
without regard to query term locations (e.g., number of terms, passage tags).
By contrast, our model divides a document based on the occurrences of

query terms in the document (i.e., terms around query term).

A main concern in passage-based retrieval is how to combine the passage
scores to from the final document score, since the final ranked list produced
from a retrieval system usually consists of documents rather than passages.
Some models use the maximum passage score to be the document score
while others may average the passage scores. Our document-context model
also has the same concern as we divide a document into document-contexts.
Kong et al. [2004] showed that different relevance decision principles
(namely the Disjunctive Relevance Decision (DRD) principle, the
Aggregate Relevance Decision (ARD) principle and the Conjunctive
Relevance Decision (CRD) principle) can be applied to passage-based
retrieval in different scenarios when simulating the human user in making

relevance decisions:
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@ the Disjunctive Relevance Decision (DRD) principle which states
that a document is relevant to a topic if a particular document part is
relevant to the topic;

(b) the Aggregate Relevance Decision (ARD) principle which states that
a document is more relevant to a topic if more occurrences of the
concepts related to the topic are found in the document; and

(©) the Conjunctive Relevance Decision (CRD) principle which states
that a document is relevant to a topic if all the document parts are

relevant to the topic.

In Chapter 3 (A Retrospective Study of a Hybrid Document-context Based
Retrieval Model), we examine different methods of combining the context
scores in our document-context model following the relevance decision

principles.

2.4 Relevance Feedback in Information Retrieval

Relevance feedback (RF) can be used to enhance retrieval effectiveness
[Rocchio, 1971; Salton and Buckley, 1990; Harman, 1992]. In this thesis,
most experiments are performed in a relevance feedback environment. That
is some or full relevance information is presence to the retrieval model. In a
standard relevance feedback procedure, an initial ranked list of documents is
produced by the retrieval model using no relevance information, then the
user scan through the ranked list from the top ranked document and
provides feedback for relevance of documents to the retrieval model. After a
certain number of top ranked documents are judged by the user, a second
ranked list of documents is produced using the relevance information

obtained from the user.

In some cases, the top ranked documents are very similar to each other or
even identical. Judging the relevance of the nearly identical documents
would waste user efforts and provide no additional useful information to the
retrieval model. Therefore, the set of documents used for relevance feedback
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may not be the top ranked ones. This is called active feedback [Shen and
Zhai, 2005] in which the retrieval system actively chooses suitable
documents for the user to judge for relevance. In Chapter 6 (A Split-List
Approach for Relevance Feedback in Information Retrieval), we propose a
new active feedback algorithm which uses document-contexts and compare
it with another active feedback algorithm, namely the maximal marginal
relevance (MMR) algorithm [Carbonell and Goldstein, 1998].

Relevance feedback serves two main purposes, they are (1) query expansion
and (2) parameters estimation. Rocchio [1971] was the first to formulate
query expansion using relevance feedback, it was implemented in the
Vector Space Model (VSM) which queries and documents are modelled as
|V|-dimensional vectors where |V| is the size of the vocabulary V. In
Rocchio’s formulation, all terms from the judged relevant and non-relevant

documents are added to the original query using:

(2.22)

Q_l Q—l
D—1 Q.l

ﬁ _ 1 1
SRR IPORT IR IPRT (Y

l

where § is the original query vector, G, is the expanded query vector,
dreLq IS the set of judged documents relevant to g, dir.q is the set of judged
documents non-relevant to q and | d |1 is the city-block length of the

document vector d . Later, Harman [1992] showed that retrieval
effectiveness can be enhanced by selecting terms for expansion rather than

using all the terms in the judged documents.
Besides query expansion, model parameters such as b and k; of the BM25

model in Equation 2.17 can be estimated more accurately for better

performance with the help of relevance information.
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2.4.1 Evaluation in Relevance Feedback

The mean average precision (MAP) is the most commonly used measure to
evaluate the performance of a retrieval model. It is the arithmetic mean of

the average precision (AP) across the set of all tested queries Q:

MAP(Q) = — 3" AP(n,q) (2.23)
qeQ

where n is the number of documents returned by the retrieval model for a
particular query g. In TREC, usually, top 1000 documents are considered
(i.e., n = 1000). The average precision AP(n, q) is the average of the
precisions at the point of each relevant documents in the ranked list:

AP(n,q) =%Zn: Prec(r,q) x Rel(r,q) (2.24)

r=1

where R is the number of relevant documents for g and,

number of relevant documents ranked <r

Prec(r,q) = ; (2.25)
1 if the document ranked at r is relevant to q
Rel(r,q) = ) . (2.26)
0 if the document ranked at r is non- relevant to g

In relevance feedback environment, a question to ask is whether we should
include the judged documents in the final ranked list for computing the
MAP. In 1971, Chang et al. [1971] studied various evaluation methods of
relevance feedback including modified rank freezing, residual collection and
test and control group.

Rank freezing refers to assigning the ranks of judged documents in the final
ranked list according to the order of the documents being judged. For
example, if the top 20 documents in the initial ranked list are judged by the
user, the ranks of those 20 documents are frozen in the final ranked list such

that they are the same as those in the initial ranked list. Therefore, the
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retrieval model can only utilize the relevance feedback information by
changing the ranks of documents from rank number 21 onwards. That is
Prec(r, q) (Equation 2.25) and Rel(r, q) (Equation 2.26) will be the same in
the initial and final ranked list for r < 20. In modified freezing [Chang et al.,
1971], instead of freezing all the ranks of judged documents (relevant and
non-relevant), the ranks of judged non-relevant documents ranked below the
last relevant one are not frozen. In [Chang et al., 1971], it showed that

modified freezing may be better for individual query comparisons.

The residual collection [Ide, 1969] evaluation attempts to measure the
effectiveness of relevance feedback by the number of newly retrieved
relevant documents. The judged documents during relevance feedback are
discarded from the final ranked list. Note that when evaluating the final
ranked list using residual collection, the number of relevant documents R
(Equation 2.24) should be changed accordingly by eliminating the judged
relevant documents during relevance feedback. In Chapter 5 (Probabilistic
Document-Context Based Retrieval Model), we use residual collection to

evaluate our document-context model for relevance feedback.

In the test and control method [Chang et al., 1971], a given document
collection is split into two halves randomly. One half is used for performing
the initial retrieval and outputting the initial ranked list for feedback (i.e.,
the test group). The other half is used for the final retrieval and performing

evaluation (i.e., the control group).

2.4.2 Relevance Feedback in Practice

In practice, relevance information is difficult to obtain because users are
unwilling to make relevance judgements. Therefore, methods are introduced
to perform relevance feedback without direct user involvement including
pseudo-relevance feedback (PRF) [Croft and Harper, 1979; Buckley, 1995]
and implicit feedback [Joachimes et al., 2005]. In pseudo-relevance

feedback, top ranked documents are assumed to be relevant and contain
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useful terms for query expansion. The terms in the top ranked documents
are weighted using a certain metric (e.g., TF-IDF term weights) and terms
with highest weights are selected to combine with the original query. The
selected terms are called PRF terms. Usually, a mixture parameter is used to
control the weight of original query terms and the PRF terms in order to

avoid query drift which can decrease retrieval effectiveness.

In web search, implicit feedback [Joachimes et al., 2005] can be done by
analyzing the clickthrough data of users instead of directly asking them for
giving feedback. When a user clicks on a document (web page) link, it is
interpreted as an endorsement to the document relating to the query.
Therefore there is a higher chance of the document being relevant. On the
other hand, if a user bypasses a document link, there is a higher chance of
the document being non-relevant. Since web search engines keep a huge
amount of clickthrough data from all users, implicit feedback may be

feasible in web search environment.
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Chapter 3

A Retrospective Study of a Hybrid
Document-Context Based Retrieval
Model

This chapter describes our novel retrieval model that is based on contexts of
query terms in documents (i.e., document contexts). Our model is novel
because it explicitly takes into account of the document contexts instead of
implicitly using the document contexts to find query expansion terms. Our
model is based on simulating a user making relevance decisions, and it is a
hybrid of various existing effective models and techniques. It estimates the
relevance decision preference of a document context as the log-odds and
uses smoothing techniques as found in language models to solve the
problem of zero probabilities. It combines these estimated preferences of
document contexts using different types of aggregation operators that
comply with different relevance decision principles (e.g., aggregate
relevance principle). Our model is evaluated wusing retrospective
experiments (i.e., with full relevance information), because such
experiments can (a) reveal the potential of our model, (b) isolate the
problems of the model from those of the parameter estimation, (c) provide
information about the major factors affecting the retrieval effectiveness of
the model, and (d) show that whether the model obeys the probability
ranking principle. Our model is promising as its mean average precision is
60%- 80% in our retrospective experiments using different TREC ad hoc
English collections and the NTCIR-5 ad hoc Chinese collection. Our
experiments showed that (a) the operators that are consistent with aggregate
relevance principle were effective in combining the estimated preferences,
and (b) that estimating probabilities using the contexts in the relevant
documents can produce better retrieval effectiveness than using the entire

relevant documents.
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3.1 Introduction

Various retrieval models have been developed and investigated over the past
several decades based on a variety of mathematical frameworks [Dominich,
2000]. For example, Salton et al. [1975] and Wong et al. [1985] worked on
retrieval models based on vector spaces. The Binary Independence Retrieval
(BIR) model [Robertson and Sparck-Jones, 1976], the logistic regression
model [Cooper et al. 1992], the 2-Poisson model [Harter, 1975] and its later
practical approximation [Robertson and Walker, 1994] and the language
modelling approach [Ponte and Croft, 1998; Lafferty and Zhai, 2001;
Lavrenko and Croft, 2001] are based on the probability theory. The fuzzy
retrieval model [e.g., Miyamoto, 1990] and the extended Boolean model
[Salton et al., 1983] are based on the fuzzy set theory [Zadeh, 1965]. These
models provide a system point of view of how to retrieve documents that are
sufficiently relevant that they satisfy a user’s information need. On the other
hand, an information retrieval system can be thought of as simulating the
human user when making relevance decisions in the retrieval process
[Bollmann and Wong, 1987]. In this case, the ranking of the relevance of the
documents to the user’s information need is in terms of preferences [Yao
and Wong, 1991].

In this work, we simulate human relevance decision making in the
development of a novel retrieval model that explicitly models a human
relevance decision at each location in a document. The relevance decision at
the specified location in the document is based on the context at that
location so that the relevance decision preference (or context score) at the
specified location is estimated using the context at that location. Although
using contexts in documents to explore term co-occurrence relationships for
query expansion is not new, to the best of our knowledge, it is new to model
the contexts/windows features explicitly in the retrieval model by
incorporating the locations of terms inside a document for re-weighting the

query terms. By re-weighting the query terms using the contexts of the
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query terms in documents, the model assigns context dependent term

weights which are aggregated together as the final document similarity score.

A document-context is essentially a concordance or a keyword in context
(KWIC) [Kupiec et al., 1995]. Figure 1.1 shows some example document
contexts containing a query term in the title query, “Hubble Telescope
Achievements”. The contexts were extracted from a raw (un-processed)
document. During retrieval, unlike Figure 1.1, all the terms are stemmed and
the stop words are removed. From Figure 1.1, it should be noted that even

for a relevant document, not all contexts in the document are relevant.

Our model uses current successful retrieval models and techniques to
estimate the relevance decision preferences (or context scores) of document
contexts containing a query term in the center. The relevance decision
preferences are defined as the log-odds estimated using smoothing
techniques and they are combined using aggregation operators. More
specifically, we used the technique of smoothing [Chen and Goodman, 1996;
Zhai and Lafferty, 2004] to solve the problem of zero probabilities [Ponte
and Croft, 1998] in estimating the term distributions in relevant documents
similar to the language models [Ponte and Croft, 1998; Lafferty and Zhai,
2001; Lavrenko and Croft, 2001]. We calculated the probability of the
relevance of a particular document context similar to that of the BIR model
[Robertson and Sparck-Jones, 1976]. In order to calculate the document
score for ranking, the document-context log-odds are combined using
different evidence aggregation operators based on the extended Boolean
model [Salton et al., 1983] and some fuzzy (aggregation) operators [Dombi,
1982; Yager, 1988; Paice, 1984]. Therefore, our proposed retrieval model is
a hybrid of various past successful retrieval models and techniques.

In predictive experiments, a major source of difficulty in developing novel
retrieval models is in determining whether the effectiveness performance is
limited by the underlying model or by the poor parameter estimation
techniques used. Instead of predictive experiments, we propose to evaluate

our novel retrieval model based on retrospective experiments that are
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performed using relevance information (e.g., the TREC relevance

judgments), similar to the retrospective experiments in [Robertson and

Sparck-Jones, 1976; Sparck-Jones et al., 2000; Hiemstra and Robertson,

2001]. The purpose of the retrospective experiments is to:

@ evaluate the potential of the underlying novel retrieval model by
observing the best effectiveness that can be attained by the model,;

(b) reveal the (near) optimal performance of the model and provide a
yardstick for future (predictive) experiments. In the probability
ranking principle [Robertson, 1977], full relevance information can
enable the model obtain optimal performance [Hiemstra and
Robertson, 2001];

(©) focus on gathering crucial factors (e.g., the size of the context)
affecting the performance of the model when using the context of
query terms in a document. We gather statistical data on these
factors for analysing and designing the model to operate in
predictive experiments;

(d) show whether the model obeys the probability ranking principle
[Robertson, 1977]; and

e examine the relevance decision principles in [Kong et al., 2004] and
determine which is the most suitable in simulating the human user

when making relevance decisions.

The problem of estimating parameters with limited or no relevance
information is left for future work since it is not known whether the
proposed model is worth further investigation. When considering the terms
in relevant documents, we discard those terms with document frequency
equals to one. This avoids finding identifiers (e.g., document id) that
uniquely identify relevant documents, thereby guaranteeing to obtain high
precision when the relevance information is present. By contrast, we would
like to utilize the term distributions in relevant and irrelevant documents for

retrieval.

We emphasize that our document-context based model is a descriptive

model in this chapter even though it could become a normative model. A
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descriptive model describes how the decision is made while a normative
model specifies how the (optimal) decision should be made. Our document-
context based model is descriptive in this chapter because it does not
feedback any effectiveness performance information (e.g., MAP) to the
system for performance optimization (e.g., query optimization [Buckley and
Harman, 2003] or model parameter optimization). For instance, our retrieval
model directly estimates the probabilities without any effectiveness
feedback about the estimation being good or not for document ranking. Also,
the retrieval process of our model is a one-pass re-ranking process using the
proposed ranking formula (discussed in details in Section 3.2) that describes

how the relevance decision is made.

One may argue that if we know the relevance information, then the retrieval
effectiveness performance must be good and it is pointless to do the
experiments. However, as mentioned above, we are not finding identifiers of
relevant documents (terms with document frequency equals to one are
ignored). The descriptive model does not optimize the query or the model
parameters using effectiveness performance results from previous runs.
Moreover, the retrieval performance is not guaranteed to be good even when
we know the relevance information. (e.g., in [Hiemstra and Robertson,
2001], the performances of the retrospective experiments are similar to
those in the predictive experiments [Robertson and Walk, 1999]). This is
because the terms in the relevant documents may also appear in the
irrelevant documents. By using the relevance information, we are not
manipulating or restricting the term distributions/occurrences in the
documents but using existing probabilistic methods to estimate the term
distributions/occurrences in the documents. Furthermore, we tested our
model with different document collections (TREC-2, TREC-6, TREC-7,
TREC-2005 and NTCIR-5) to show that the model is reliable. Finally, doing
the retrospective experiments also provides us with an important clue about
the potential of the retrieval model because an applicable model should
perform well in the presence of relevance information. The use of relevance

information can reveal the (near) optimal performance and the estimation of
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the relevance information is possible using various techniques such as

pseudo relevance feedback.

The index structure used in our experiments does not contain the positional
information of terms in a document, as a result we have to access the disk to
read the document and extract the contexts of query terms. This will greatly
increase the time needed for the experiments. The problem can be eased by
including the positional information of terms in the index structure similar

to the index used in the Indri retrieval system [Strohman et al., 2004].

However, including the positional information of term in the index structure

will increase the storage requirement of the index. In this thesis, we do not

examine the time-efficiency of our retrieval model or retrieval system
because:

@ it is already very challenging to design and develop a highly
effective retrieval model;

(b) once the effective retrieval model is developed, then we have enough
information to design and develop (novel) index structures to
support such an effective model;

(©) the time-efficiency problem may reduce its significance in time as
computers are continually becoming more and more powerful.

We leave how to make our retrieval model more time-efficient to our future

investigation.

The rest of the chapter is organized as follows. Section 3.2 presents the
details of our hybrid document-context based retrieval model. Section 3.3
shows the results of the model-oriented experiments which test the model
extensively using one data collection, TREC-6. Section 3.4 shows the
results of the scope-oriented experiments which test the model across
different data collections and with another language. Section 3.5 concludes

the chapter.
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3.2 Document-Context Based Retrieval Model

In this section, we introduce our document-context based retrieval model
that ranks documents on the basis of the contexts of the query terms in
documents (i.e., document contexts). A document-context is uniquely
identified by the location where the query term occurs in the document.
Therefore, assigning different term weights to the same query term in
different contexts can be thought of as assigning different term weights to
the same query term in different locations in the document. Hence, we can
explicitly incorporate the (query) term locations in a document in our
retrieval model as reflecting the relevance of the corresponding contexts to
the query. We believe that the term distributions of the contexts are similar
for query terms having the same meaning, while the term distributions of the
contexts are different when the same query term refers to different meanings
in different contexts in documents. By incorporating the document-context
information for weighting the query terms, we are trying to solve the
problem of polysemy (i.e., a term with multiple meanings) in natural
language because the meaning of terms without contexts can be ambiguous

while terms with contexts should have definite meanings.

Given that each context has a score reflecting its relevance to a particular
topic, some methods or bases are needed to combine the scores in a
principle manner. Kong et al. [2004] showed that different relevance
decision principles (namely the Disjunctive Relevance Decision (DRD)
principle, the Aggregate Relevance Decision (ARD) principle and the
Conjunctive Relevance Decision (CRD) principle) can be applied to
passage-based retrieval in different scenarios when simulating the human
user in making relevance decisions. In this chapter, we extend their work by
applying the relevance decision principles to guide the selection of
aggregation operators to combine the context scores of query terms in a

document (e.g., Figure 1.1), instead of passages.
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Our model allows the probability of making relevance decision at each
location in a document to be different. Our initial study [Wu et al., 2005]
showed that the model could achieve high retrieval effectiveness (i.e., about
36% mean average precision in TREC-6 using retrospective experiments).
In here, we further improve our model in order to investigate whether our

retrieval model can be more effective than before.

The rest of this section is divided into four parts. First, we define the
document context. Second, we develop the context score that reflects the
relevance preference of the context to a given topic. Third, we discuss
different techniques to solve the zero probability problems. Finally, we
describe various context score combination methods that are consistent with
different relevance decision principles [Kong et al., 2004]. For convenience,

the symbols used in the rest of this chapter are shown in Table 3.1.

Table 3.1: Symbols used in this chapter and their descriptions.

Symbol Description
t A particular term
D The collection of documents
card(D) The cardinality of D (i.e., the number of documents in D)
|D| The collection length (i.e., the sum of all document lengths in D)
d; The i-th document where ie[1, card(D)]
|d; The length (total number of terms) of d;
dilK] The k-th term in the i-th document where ke[1, |di[]
q A particular query
[al The length (total number of terms) of q
qlil The j-th term in the query g where je[1, |q]]
c(d;, k) The context of the k-th term in the i-th document with size 2n+1

c(d;, K)[1] The I-th term in c(d;, k) where le[1, 2n+1]
R The binary random variable of relevance
(R =1 means relevant, R = 0 means irrelevant)
M(R=1, q) The relevance model for g
M(R=0, q) The irrelevance model for g
M(D, q) The collection model for g

Oa The parameter in additive smoothing
Sim The parameter in Jelinek-Mercer smoothing
S The parameter in absolute discounting
weight(d;, k) The context score at the k-th location in the i-th document
w (d;, k) The normalized context score at the k-th location in the i-th document

sim(d;, q) The similarity score of d; for g

35



3.2.1 Context Definition

The context c(d;, k) of a term di[k] appears at the k-th location in the i-th
document with size 2n+1 is defined by the set of terms surrounding and
including the term inside the document (we use c(d;, k) instead of c(d;, k, n)
in this chapter because we want to distinguish the context size parameter n

from d; and k which are input variables, as a result, n is specified implicitly):

c(di, k) = {di[k-n] , ..., di[k-1], di[K], di[k+1], ..., di[k+n]}.

We are interested in the contexts that with a query term at the center
position (i.e., di[k]eq). Other contexts that have non-query terms at the
center are considered irrelevant. This is equivalent to making the following

assumption in our model:

Query-Centric Assumption: For a particular query g and a document d;
relevant to g, the relevant information for q locates only in the contexts
{c(d;, k)} for ke[1, |di|]] where di[k]<q. (i.e., the relevant information locates

around query terms.)

The query-centric assumption states that if one can find relevant information
in a document, then the relevant information must locate around the query
terms inside the document. Note that the query-centric assumption does not
require all contexts {c(d;, k)} for ke[1, |di]] where di[k]eq to be relevant,
and it only requires that the relevant information locates in the contexts {c(d;,
k)} for ke[l, |di]] where di[k]eg. The query-centric assumption may be
invalid because some of the relevant documents found in the TREC and
NTCIR collections for some queries do not contain any of the query terms.
In order to show that the query-centric assumption is not entirely unrealistic,
we have to know the number of relevant documents which do not contain
any query terms. Table 3.2 shows that the average proportions of relevant
documents without any query terms per topic using title queries across

different data collections (including the Chinese collections in NTCIR-5)
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are less than 13%. Although Table 3.2 does not directly validating the
query-centric assumption, the purpose of Table 3.2 is to show that the

query-centric assumption is not entirely unrealistic.

Table 3.2: Statistics on No. of relevant documents without query terms.

TREC-2 TREC-6 TREC-7 TREC-2005 _ NICIRS.
Relax  Rigid

Topics (Title query) ~ 101-150 301-350 351-400 20 fjsitczard 001-050
dNO'Ofre'e"a”t 11,645 4611 4674 6,561 3,052 1,885
ocuments
No. of relevant
documents without any 644 354 634 385 202 63
stemmed query terms
Average % of relevant
document withoutany 5 oo, 9705 19994 7.0% 6.2%  4.7%

stemmed query terms
per topic

The context size (i.e., defined as 2n+1) is determined empirically. It should
not be too large or too small to include irrelevant information or exclude
relevant information respectively. This issue is addressed in our model-

oriented experiments (see Section 3.3.1).

3.2.2 Context Score

Each interested context c(d;, k) with size 2n+1 has a query term q[j] where
jel[1, |g|] appears in the center of the context. The context c(d;, k) contains
the set of terms {di[k+p]} where the term di[k+p] occurs at the p-th location
relative to di[k] in the i-th document, and pe[-n, n]. In other words, a

context c(d;, k) is the set of terms surrounding and including d;[K].

In the BIR model [Robertson and Sparck-Jones, 1976], the basic question to

ask for each document and each query is:

What is the probability that this document is relevant to this query?

Although there are actually implicit assumptions behind the above basic

question, we try to extend it and use it as the starting point to develop our
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document-context based model. Upon defining the notion of context, we can
now ask another similar question for each context in each document and

each query:

What is the probability that this context in this document is relevant to this query?

By query, we actually mean the topic or the user information need in the
above question. However, since such questions were framed in this way
before and these are well entrenched in the literature [Sparck-Jones et al.,
20001, we followed the existing formulation. For a particular query ¢, we
define a binary random variable R for the outcome of the relevance decision.
R = 1 means relevant to q and R = 0 means irrelevant to g. That is, our
model is currently designed for binary relevance (although it can be
extended to graded relevance later). For each context, there are two possible
outcomes (events):

@) The context is relevant, i.e., R = 1.

(b) The context is irrelevant, i.e., R = 0.

Similar to the BIR model [Robertson and Sparck-Jones, 1976], given a
particular context c(d;, k), we want to calculate its probability of relevance
and irrelevance by the log-odds:

P(R=1]c(d,,k),q)
P(R=0]c(d; k),q)

P(R=1|c(d; k),q) = log 3.0)

rank

where = is the binary operator of rank equivalence as defined in [Lafferty
and Zhai, 2003]. The log-odds reflects the relevance decision preference of

the concerned context. Using Bayse’ rule, we have:

P(R=1/c(d,,K.0) _,_P(E(d, KIR=10)  P(R=1]q)
P(R=0/c(d, k).q) ~ P(c(d, ) [R=0,0) ~ P(R=0]g)

(3.2)

The second term of Equation 3.2 is a constant and will be eliminated by the

linear normalization [Lee, 1997] when combining the context scores of a
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document (see Section 3.2.4), it can be ignored for ranking the contexts as

follows:

o PR=11c(d,.6), ) |og[ P(c(d; k)[R :l’q)J (3.3)

P(R=0]c(d;,k),q) | P(c(d;,k)|R=0,q)

In order to calculate the above probabilities by the individual document
terms found in the contexts, our model makes the same assumption as

proposed in Cooper [1995]:

Linked-Dependence Assumption [Cooper, 1995]: The degree of statistical
dependence between the terms in the relevant set is associated with their

degree of statistical dependence in the irrelevant set.

The linked-dependence assumption (a) simplifies the mathematical
calculations and (b) avoids the problem of data inconsistency pointed out by
Cooper [1995] when assuming conditional independence of terms in
relevant set and irrelevant set individually. Using the linked-dependence

assumption, we have:

2n+1

P(c(d; k), q|R=1) l;lp(c(dnk)[l]l R=10)

P(e(d; k).q1R=0) TP, kIR =0.9)

TTP@k+ pl=t|R=10)
= 2= (3.4)
TTP@.[k+ pl=t[R=0,q)

p=-n

The question now is to calculate the probabilities:

P(t|R=10) (3.5)
P(t|R =0,q) (3.6)

where t € c(d, k).
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In order to calculate Probabilities 3.5 and 3.6, we have to obtain the term
distributions (i.e., the probability of seeing a particular term in a set of terms)
in the relevant set and the irrelevant set. For a particular query g, let
M(R=1, q) be the relevance model defining the term distribution in the
relevant set, M(R=0, q) be the irrelevance model defining the term
distribution in the irrelevant set and M(D, q) be the collection model
defining the term distribution in the collection. In general, Probabilities 3.5

and 3.6 are equal to:

f(t,M(R=10))
> f(w,M(R=10)) 3.7)

weM (R=1,q)
f(t,M(R=0,0))
> f(w,M(R=0,0)) (3.8)

weM (R=0,q)

Pt|R=10)=Pyraq) =

Pt|R=0,q) = PM(R:O,q) ®=

where f(t, M(R=1, q)) is the raw frequency count of t in M(R=1, q) and
similarly for f(t, M(R=0, q)). So Equations 3.7 and 3.8 are the relative

frequency estimates of Pumr=1, g)(t) and Pumr=o, g)(t) respectively.

Next, we use the collection model to substitute the irrelevance model
because almost all of the documents are irrelevant for a query in a

sufficiently large collection:

Collection-Irrelevance Assumption: For a sufficiently large collection and
a query q, the irrelevance model M(R=0, g) and the collection model M(D, q)

are similar to each other.
Hence,

f(t,M(D,q))
> f(w,M(D,q)) (3.9)

weM (D,q)

PM(R:O,q) t) = PM(D,q) =
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where f(t, M(D, q)) is the raw frequency count of t in the collection model
M(D, q). The validity of the collection-irrelevance assumption will be

addressed in the model-oriented experiments (see Section 3.3.5).

The remaining concern goes to calculating the formula shown in Equation
3.7. There are various methods to calculate Equation 3.7 depending on the
training method used where training here refers to estimating the probability
distribution of the terms in the relevant set (i.e., the relevance model M(R=1,
g)) using the training data. Training includes defining what terms should be
included in the relevance model M(R=1, g), and how much should each of
the terms weight (i.e., what is the probability of seeing a term in the model).
In this chapter, we explored two training methods (namely document-
training and context-training) based on different assumptions and
depending on what are the terms that should be included in the relevance
model M(R=1, q).

In document-training, we use the whole document (i.e., all terms inside the

document) for training the model, based on the following assumption.

Document-Training Assumption: For a particular query q, the entire
relevant document d; is considered relevant so that the terms di[k] for

ke[1, |di|]] are included in the relevance model M(R=1, q).

The document-training assumption contradicts with our query-centric
assumption for the relevant documents. However, the query-centric
assumption is used in the ranking process while the document-training
assumption is used in this particular training method. We provide this
method to show that inconsistent assumptions in training and retrieval using
the proposed model may degrade the retrieval effectiveness and the
document-training method was used in our previous study [Wu et al., 2005].

Based on the document-training assumption, f(t, M(R=1, q)) is:
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ft,MR=1q)= Y f(td) (3.10)

dedREL‘q

which is the occurrence frequency of the term t in the set of relevant
documents (dreq), f(t, d) is the occurrence frequency of t in d. Hence,
Pmr=1, g)(t) is the relative frequency estimate of the probability of seeing t in

the relevance model M(R=1, q).

In context-training, we use the contexts {c(d;, k)} inside a document d; for
ke[l, |di]] where di[k]le q (i.e., only the terms inside the contexts are
included in the relevance model M(R=1, q)) for training the model, based on

the following assumption.

Context-Training Assumption: For a particular query g, only the contexts
in the relevant documents are relevant so that for a document d; relevant to q,
the terms in the contexts {c(d;, k)} for ke[1, |di|]] where di[k]eq are included

in the relevance model M(R=1, q).

The context-training assumption is consistent with the query-centric
assumption but these two assumptions are different. The query-centric
assumption does not assume that all contexts {c(d;, k)} for ke[1, |di[] where
di[k]eq in the relevant document d; to be relevant. By contrast, the context-
training assumption assumes that all contexts {c(d;, k)} for ke[1, |di|]] where

di[k]q in the relevant document d; are relevant.

Based on the context-training assumption, f(t, M(R=1, q)) is:

fFEMR=19)= > > f(tc(d k) (3.11)

dedpe o k:dIkleg

which is the occurrence frequency of the term t in the contexts {c(d,k)} of
relevant documents (dreq) Where dedrerq and d[k]eq, f(t, c(d, k)) is the
occurrence frequency of t in c(d, k). Hence, Pugr=1, ¢(t) is the relative

frequency estimate of the probability of seeing t in the relevance model
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M(R=1, q). We believe that the context-training assumption is more realistic
than the document-training assumption because most of the time only a part
of the document contains relevant information (e.g., Figure 1.1), especially

for long documents.

3.2.3 Estimation Issue

The probability of seeing a term t in the relevance model M(R=1, q) may
equal to zero, if f(t, M(R=1, q)) = 0. This is the problem of zero probability
in estimating Pmr=1, q(t) similar to the language modelling approach [Ponte
and Croft, 1998]. As the term t does not appear in M(R=1, q) (whether a
term is included in M(R=1, q) depends on the training method, if t does not
appear during training, it will become an unseen term during retrieval), it
will be assigned a zero probability. Note that the problem of zero probability
does not occur when estimating Pur=o, q)(t) as we are using the collection
model M(D, q) to substitute the irrelevance model M(R=0, q) (Equation 3.9).
The collection model M(D, qg) contains all the terms in the collection, so
unseen terms do not exist. The zero probability will set Equation 3.4 to zero

and it can cause anomalies in ranking.

Smoothing [Chen and Goodman, 1996; Zhai and Lafferty, 2004] of the term
distribution is a solution to the zero probability problem. The basic idea of
smoothing is to adjust the term distribution so that zero probability will not
assign to unseen terms. In this section, we describe different commonly
used interpolation-based smoothing techniques [see Zhai and Lafferty, 2004]
(namely additive smoothing, Jelinek-Mercer smoothing and absolute
discounting) which we will apply them for investigating the effect of

smoothing to our model.

Additive smoothing [Lidstone, 1920; Johnson, 1932; Jeffreys, 1948] adds a
constant &, to all terms which make unseen terms to have uniform, non-zero

probabilities:
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f(t,M(R=1,0))+5,
> f(w,M(R=10))+5,|M(R=10) (3.12)

weM (R=1,q)

PM (R=1,9) (t) =

where [M(R=1, q)| is the number of unique terms in the relevance model and
0.€[0, 1]. Laplace smoothing is a special case of additive smoothing (i.e.,
0,=1). Additive smoothing is relatively simpler than the other two
smoothing techniques because it does not require the information from the

collection model.

The Jelinek-Mercer smoothing [Jelinek and Mercer, 1980; Zhai and Lafferty,
2004] is the linear interpolation of the relevance model M(R=1, q) and the

collection mode M(D, q):

f(t, M(RL ) L A-5) f(t,M(D,q))
> (w, M (R, q)) "y f(w,M(D,q)  (313)

weM (R=1,q) weM (C,q)

PM(R:l,q) (t) = 5jm

where dne[0, 1] is the mixture control parameter of the interpolation. For
an unseen term t, f(t, M(R=1, q)) = 0, the probability Pmr=1, o(t) will become
(1-Gm) x Pwm, o(t) which depends on both &mn and the collection model
M(D, q).

In absolute discounting [Ney et al., 1994; Zhai and Lafferty, 2004], the raw

counts of the seen terms are decreased by a constant:

PM(R:l,q) =
max(f (t, M(R=1,4))=6,.0) _ M (R-L, q)| ft,M(D,q) |(3.14)
> F(w,M (R, q)) Y fWMERL) | D f(w,M(D,q))
weM (R<1,q) weM (R<1,q) weM (D,q)

where [M(R=1, q)| is the number of unique terms in the relevance model and

04€[0, 1] is a constant.
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3.2.4 Combining Context Scores

The score of a context (i.e., context score) c(d;, k) is calculated using
Equation 3.3 and it is the weight of the query term di[k] €q (i.e., weight(d;, k))

at location k in the document d;:

(3.15)

weight(d., k) = Iog( P(c(di.k)IR=1 q)]

P(c(d;, k)[R =0,0)

For combining context scores, we need weight(d;, k) to be between zero and
one. So we normalize weight(d;, k) by the linear normalization [Lee, 1997]

across documents:

weight(d,, k) — min(weight)

w(d,,k) =
(d:.k) max(weight) — min(weight)

(3.16)

where min(weight) is the minimum context score obtained among all the
retrieved documents and max(weight) is the maximum context score
obtained among all the retrieved document. Using the linear normalization,

the second term of Equation 3.2 can be eliminated.

A document may contain more than one contexts (i.e., when the query terms
occur more then once in the document). Hence, we need to aggregate the
context scores for obtaining the document score for ranking. This is similar
to combining passage scores in passage-based retrieval [Callan, 1994;
Kaszkiel and Zobel, 1997]. Previously, passage scores are combined using

arithmetic mean, as well as taking the maximum [Callan, 1994].

Kong et al. [2004] proposed three principles regarding how to make the

relevance decision for a document about a particular topic by combining

relevance of document parts, as follows:

@ the Disjunctive Relevance Decision (DRD) principle which states
that a document is relevant to a topic if a particular document part is

relevant to the topic;
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(b) the Aggregate Relevance Decision (ARD) principle which states that
a document is more relevant to a topic if more occurrences of the
concepts related to the topic are found in the document; and

(©) the Conjunctive Relevance Decision (CRD) principle which states
that a document is relevant to a topic if all the document parts are

relevant to the topic.

According to Harman [2004], the TREC ad hoc evaluation is recall-oriented
and if any part of the document is relevant, the TREC evaluator considers
that the entire document is relevant for ad hoc retrieval. Therefore, the DRD
principle seems to be consistent with the TREC evaluation policy for ad hoc

retrieval.

3.2.4.1 Extended Boolean Operators

We used the extended Boolean conjunction and disjunction [Fox et al., 1992]
(i.e., the p Norm) to test different methods (i.e., AND and OR) for
combining the context scores in a document d;. The combined score is the
document score, sim(d;, q) (Table 3.3). The parameter p in the extended
Boolean conjunction or disjunction is the soft/hard decision parameter and
p > 1. The parameter m in Table 3.3 is the total number of occurrences of

the query terms in d; (i.e., the number of interested contexts found in d;).

Table 3.3: Formula of extended Boolean conjunction and disjunction.

Extended Boolean conjunction (AND) Extended Boolean disjunction (OR)
sim(d,,q) =1—»p 1 > (L-w(d;,k))" sim(d;,q) = 1 > w(d;, k)P
k:d;[kleq k:di[kleq

For the extended Boolean operators, when p = 1, the extended Boolean
conjunction and the disjunction are the same which is the arithmetic mean
of the context scores in a document. When p = oo, the extended Boolean
conjunction (AND) returns the minimum context score in the document
while the extended Boolean disjunction (OR) returns the maximum context

score in the document. Note that the extended Boolean disjunction is the
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same as the generalized mean function [Dyckhoff and Pedrycz, 1984] which

complies with the ARD principle [Kong et al., 2004].
3.2.4.2 Dombi Operators

Besides the extended Boolean operators, we also used the fuzzy operators
for combining the context scores in a document. In the framework of fuzzy
set theory [Zadeh, 1965], the fuzzy conjunction operator complies with the
CRD principle while the fuzzy disjunction operator complies with the DRD
principle [Kong et al., 2004]. We used the Dombi’s [Dombi, 1982] fuzzy
operators to experiment the two principles (Table 3.4) where p is again the
soft/hard decision parameter and p > 1. For the Dombi’s operators, when
p = oo, similar to the extended Boolean operators, the Dombi’s conjunction
(AND) returns the minimum context score in the document while the
Dombi’s disjunction (OR) returns the maximum context score in the
document [Dombi, 1982].

Table 3.4: Formula of Dombi’s conjunction and disjunction.
Dombi’s conjunction (AND) Dombi’s disjunction(OR)

L sim(d,  q) = L

1 P 1 -
1 1 1+4-p S |
+i/k%eq[w<di,k> ) +\/kzd%€q(w<di,k> j

3.2.4.3 Ordered Weighted Averaging (OWA) Operators

sim(d,, q) =

Apart from the extended Boolean operators and Dombi’s operators, there
are also other aggregation operators in multi-criteria decision making such
as the ordered weighted averaging (OWA) operators proposed by [Yager,
1988]. OWA operators have been used in applications of decision making,
expert system, neural networks and etc. An OWA operator with dimension
m is a mapping F: R™ >R that has an associated weighting vector

Y = (Y1, ..., Ym)" having the properties (a) y1 + --- +ym =1 and (b) 0 < yi<1

for j=1, ..., m,such that:
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F(a,,....a,) =D Y;b; (3.17)

where b; is the j-th largest element of the collection of the aggregated

objects {ay, ..., am}-
For our proposed model, let (ay, ..., an) be the vector of the m context scores

of d; and (by, ..., by) be the ordered (descending) vector of the m context

scores of d;. Then,

sim(d;,q) =F(a,,...,a,) = Y.y, (3.18)
j=1
is the aggregated score (i.e., document score) of d; for the query g.
An important issue of the theory of OWA operators is to determine the

weighting elements y;, j = 1, ..., m of the weighting vector Y. There are

some special cases of defining Y, for examples:

@ Taking the maximum: y; =1,y, = --- =y, =0.
(b)  Taking the minimum:y; = -+ =yn1 =0, yn = 1.
(©) Taking the arithmetic mean: y; =+ =y, =1/m.

From the above examples, it should be clear that different ways of defining
the weighting vector Y yield different OWA operators. We investigated two
previous retrieval models (namely the MMM model [Waller and Kraft, 1979]
and the Paice model [Paice, 1984]) that can be considered to be using OWA
operators.

The MMM model considers only the minimum and maximum context

scores in a document using the coefficients Cande[0, 1] and Core[0, 1] for

AND and OR operations respectively:
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The MMM model (AND):
sim(d,,q) = Cand x min (w(d,,k))+ (- Cand)x max (w(d,,k)) (3.19)
k:d;[k]eq k:di[k]leq
The MMM model (OR):
im(d. . q) = _ - i . 2
sim(d,, q) CorxkgﬁéJMKd“k»+(l COQXKQRQJW@LJO) (3.20)

When applying the MMM model in our aggregation of context scores, we
only need one equation because Cor = 1 — Cand. Therefore, we use a single

parameter a0, 1] in the weighting vector Y suchthaty; = a, Y2 = +** = Ym1

=0,ym=1-a:

Y=(,0,...,01-a)" (3.21)

and use Equation 3.18 for ranking the documents.

The Paice model [Paice, 1984] uses a normalized geometric series with a
parameter re[0, 1] for weighting the criteria. Assume that we have m
criteria for making decisions (e.g. the dimension of the OWA operator is m)

and let S be the geometric sum:

S=1+r+r®+...4r™* (3.22)

The weighting vector Y of the Paice model for AND and OR operators are
the normalized geometric series in Table 3.5. The ranking formula is using
Equation 3.18 like the MMM model with the corresponding weighting
vector Y. For the Paice model, the weighting vectors for AND and OR
operators are the reverse of each other.

Table 3.5: The weighting vector W for the Paice model AND and OR operator.
The Paice model AND The Paice model OR

m-1 m-2 T m-2 m-1 T
yo[rtm yo(Lr o
S S S S S S S S
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Both the MMM model and the OR operator of the Paice model comply with
the ARD principle. In Table 3.6, we group the aggregation operators
described above using the three principles in [Kong et al., 2004] by their
consistency with the axioms of the different relevance decision principles.
The grouping in Table 3.6 is not exclusive because any operators which
comply with the CRD/DRD principle also comply with the ARD principle.
However, the opposite may or may not be true.

Table 3.6: Grouping of the aggregation operators using the three principles.
CRD principle ARD principle DRD principle
Dombi’s AND Extended Boolean OR Dombi’s OR
The MMM model
The Paice model OR

3.3 Model-Oriented Experiments

In this section, we present the results of the model-oriented experiments
which extensively investigate the factors affecting the effectiveness of the
model using the TREC-6 ad-hoc collection. This collection contains
556,077 English documents. We use the TREC-6 title (short) queries 301-
350 in the experiments. Title queries are used because they have few (one to
four) query terms which are similar to the lengths of web queries. All the
terms in the documents and queries are stemmed using the Porter stemming
algorithm [Porter, 1980]. Stop words are removed in both the documents
and queries. Terms with document frequency equals to one are also removed
in the documents. This is because we do not want document-identifying
terms such as document ids to be included in the training and retrieval
process. For statistical inference, we performed various non-parametric
(Wilcoxon) statistical significance tests. Non-parametric tests are used
because we do not know the underlying distributions of the mean average
precision (MAP) performances of the retrieval systems. We also report the
precision of the top 10 documents (i.e., P@10) and the R-precision in the

experiments. The top 10 document precision is a precision-oriented measure
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which complements the recall-oriented measures like MAP. R-precision is

provided for reference.

3.3.1 Document-Training V.S. Context-Training

In this section, we compare the performances of using document-training
and context-training with different context sizes (defined as 2n+1). The
objectives of the experiments in this section are to determine:

(@) whether document-training or context-training is better; and

(b) the most suitable n empirically (i.e., the context size).

The smoothing technique used in all the experiments in this section is the
Laplace smoothing (i.e., setting &, = 1 in Equation 3.12) for simplicity and
the document score is the maximum context score found in the document
(i.e., setting p = o in the extended Boolean OR in Table 3.3) similar to some

passage-based retrieval [Callan, 1994].

First, we performed a predictive retrieval using the BM25 term weight of
the 2-Poisson model [Robertson and Walker, 1994] using the standard
parameter setting [Walker et al., 1997] (i.e., k;=1.2 and b=0.75) with
passage-based retrieval and pseudo relevance feedback (PRF). The result in
Table 3.7 is our baseline performance. The top 3000 retrieved documents
using the 2-Poisson model are re-ranked by our model for later evaluations.
Next, we experimented with the document-training (Doc-T) and context-
training (Con-T) training methods and compare them with different context
sizes 2n+1 (Table 3.8).

Table 3.7: Our predictive baseline performance using the BM25 of 2-Poisson Model with
passage-based retrieval and pseudo relevance feedback (PRF).
P@10 MAP R-Precision
TREC-6 4540 2791 .3051

In Table 3.8, the differences between the MAP of context-training over
document-training are statistically significant with 99.9% confidence

interval (C.1.) for all tested n. This is expected based on our earlier argument

51



that the context-training assumption is more realistic than the document-
training assumption. Thus, context-training has a higher MAP performance.
The results also suggest that using contexts is a viable method in
information retrieval. It should be noted that the highest MAP of document-
training is obtained when n = 35 (i.e., context size of 71) and the highest
MAP of context-training is obtained when n = 50 (i.e., context size of 101).
This suggests that document-training favours smaller contexts while
context-training favours larger contexts. This may due to the fact that
document-training has more terms to match than context-training. Based on
the results of the experiments in this section (Table 3.8), we find out that,
for TREC-6 ad-hoc collection, context-training is preferred over document-
training and n should be set to 50 (i.e., context size of 101) to obtain a
balance of good effectiveness and efficiency, as increasing n also increases
the processing time. Note that the purpose of Table 3.8 is to show an
example that context-training is preferred because it is compatible with the

query-centric assumption.

Table 3.8: Comparison between Document-Training (Doc-T) and Context-Training
(Con-T) with different context sizes 2n+1 in TREC-6.

n P@10 MAP R-Precision
Doc-T Con-T Doc-T Con-T Doc-T Con-T
5 .3700 4240 2372 .2843* 2724 3181
15 .3600 4520 .2687 .3429* 3135 3794
25 .3460 4720 .2682 .3726* 3174 4218
35 .3540 .5160 2711 .3881* 3197 4433
50 .3600 .5600 2572 .3913* .3228 4559
75 .3560 5720 .2308 .3678* .2983 4320
100 .3520 .5800 2120 .3469* .2812 4094
150 .3640 .5760 1738 2977* 2511 .3580

(*) — indicates that the difference in MAP between Con-T and Doc-T is statistically
significant using the Wilcoxon matched-pairs signed-ranks test with 99.9% confidence
interval (C. L.).

3.3.2 Smoothing

The experiments in this section aim to discover the effects of smoothing to
our proposed model. We tested the model with different smoothing
techniques (namely additive smoothing (A), Jelinek-Mercer smoothing (JM)
and absolute discounting (D)) in estimating Pmr=1, g)(t) to avoid the problem
of zero probabilities (Section 3.2.3).
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From the results of previous experiments (Section 3.3.1), we are using
context-training and context size of 101 (i.e., n = 50) in all the experimental
runs in this section (Table 3.9). The document score is the maximum
context score found in the document [Callan, 1994]. In Table 3.9, 6 can be
the parameter o,, gm and ¢y of additive smoothing (Equation 3.12), Jelinek-
Mercer smoothing (Equation 3.13) and absolute discounting (Equation 3.14),

respectively, depending on the columns in the table.

Table 3.9: Results of using additive smoothing (A), Jelinek-Mercer smoothing (JM) and
absolute discounting (D) with different values of & (8, &n and &).
P@10 MAP R-Precision
S A M D A M D A M D
0.1  .866 .888 .898 .651 .705 707 .651 .694 .697
03 .79 .884 .898 .588 702 .706 595 .692 .697
05 .726 .886 .896 515 702 .703 540 .694 .696
0.7 .656 .890 .894 461 704 .700 499 .695 .690
09 .594 .896 .892 412 .706 .695 469 .696 .680

For additive smoothing (A), we can see that from Table 3.9 when the value
of o, increases, the performance decreases. The best performance is
obtained when &, (Equation 3.12) is equal to 0.1. We believe that the reason
is due to the important effect of the presence or absence of the terms in the
relevance model M(R=1, q), while setting a larger value of &, would lower
this effect (i.e., unseen terms are given a value of higher probabilities than
they should be).

For Jelinek-Mercer smoothing (JM) and absolute discounting (D), we can
see that from Table 3.9 the performances are quite stable over the ranges of
dm (Equation 3.13) and & (Equation 3.14) from 0.1 to 0.9. From Table 3.9,
the best performances (MAP) for each of the smoothing techniques are
highlighted (62 = 0.1, gm = 0.9 and & = 0.1 in additive smoothing, Jelinek-
Mercer smoothing and absolute discounting respectively). The best
performances for each of the smoothing techniques are similar to each other.
The best MAP obtained among all the runs in this section is 0.7078 which is
absolute discounting with &3 = 0.1 (Table 3.9). We believe that the effect of

smoothing of using different smoothing techniques is not very different
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when the optimal values of the parameters ., dm and Jy are determined. In
the subsequent experiments, absolute discounting with &3 = 0.1 is used. We
do not evaluate with parameter values which less than 0.1 or greater than 0.9
because the purpose of Table 3.9 is for comparison but not finding the
optimal parameter values. In practice, the optimal parameter values can be
determined using cross-fold validation. Note that the objective of the
experiments in this section is not to find the optimal parameter values but to
reveal the performance of the document-context based model in TREC-6.

As a result, we do not perform sensitivity studies on the parameters.

3.3.3 Context Scores Aggregation

The experiments in this section try to discover the best aggregation operator
discussed in Section 3.2.4 for combining the context scores in a document,
and find out which of the 3 decision principles (i.e., the CRD, the ARD and
the DRD principles) [Kong et al., 2004] performs better. From the results of
the previous experiments, we used context-training as the training method,
the context size of 101 (i.e., n = 50) and absolute discounting with 63 = 0.1
(Equation 3.14). First, we test the extended Boolean operators (Table 3.3)
and the Dombi’s fuzzy operators (Table 3.4). The results are shown in
Tables 3.10 and 3.11.

Table 3.10: Results of using the extended Boolean operators with different values of p.

P@10 MAP R-Precision
P AND OR AND OR AND OR
1 8940 18940 7105 7105 7072 7072
5 8800 8980 6854 7139* 6842 7107
10 8660 8980 6605 7157* 6584 7110
20 8600 8980 6432 7163* 6407 7123
40 8520 19000 6342 7141% 6293 7054
o 8500 8980 6235 7078* 6199 6972

(*) — indicates that the difference in MAP between extended Boolean AND and OR
operators is statistically significant using the Wilcoxon matched-pairs signed-ranks test
with 99.9% C. .

From Table 3.10, when p = 1, the results of extended Boolean AND is the
same as that of extended Boolean OR as the formulae for the two operators

when p = 1 are the same. As p increases, the performance difference
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between extended Boolean AND and extended Boolean OR becomes
apparent. From p = 5 onwards, the differences are statistically significant
with 99.9% C. I. using the Wilcoxon matched-pairs signed-ranks test. When
p = oo, the extended Boolean AND is the same as using minimum context
score as the document score and the extended Boolean OR is the same as
using maximum context score as the document score. In general, the results
in Table 3.10 suggest that extended Boolean OR is better than extended
Boolean AND when combining the context scores.

Table 3.11: Results of using the Dombi’s operators with different values of p.

P@10 MAP R-Precision
P AND OR AND OR AND OR
1 15940 5840 3349 3937 3474 4305
5 8360 8940 6172 6951* 6144 6839
10 8520 8980 6244 7061* 6206 6967
20 8500 8980 6245 7077* 6200 6977
40 8500 8860 6239 7055* 6195 6972
0 8500 8980 6235 7078* 6199 6972

(*) — indicates that the difference in MAP between Dombi’s AND and OR operators is
statistically significant using the Wilcoxon matched-pairs signed-ranks test with 99.9%
C. L

From Table 3.11, we can see that Dombi’s OR operator performs better than
Dombi’s AND operator in all cases of p when aggregating the context
scores. This suggests that Disjunctive Relevance Decision (DRD) principle
is preferred over Conjunctive Relevance Decision (CRD) principle. The
reason is that in the TREC relevance judgements, if a part of a document is
judged relevant, then the whole document is judged relevant. This in fact
favours the DRD principle. The results also confirm with that in [Kong et al.,
2004] in which DRD principle is preferred over CRD principle.

Next, we test the Ordered Weighted Averaging (OWA) operators (Equation
3.18). Table 3.12 shows the results of using the MMM model (Equation
3.21) with different values of a. When « increases from 0.1 to 0.9, the
MMM model behaves from AND operator to OR operator. We can see that
the OR operator is better than the AND operator using the MMM model as
the performance (MAP) increases while the value of « goes from 0.1 to 0.9.
We obtain the best MAP with o= 0.7 (highlighted in Table 3.12).
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Table 3.12: Results of using the MMM model with different values of o.

a P@10 MAP R-Precision
0.1 0.8560 0.6400 0.6364
0.3 0.8680 0.6728 0.6702
0.5 0.8860 0.6965 0.6959
0.7 0.8940 0.7104 0.7079
0.9 0.9000 0.7112 0.7007

Table 3.13 shows the results of using the Paice model operators (Table 3.5)
with different values of r. From Table 3.13, the performance difference in
the AND and OR operators of the Paice model is larger for small r (i.e., r <
0.5) but not for large r (i.e.,, r > 0.5). Both the performance of the Paice
model AND and OR operators increases with r from 0.1 to 0.9. The best
MAP (highlighted) for both operators are obtained when r = 0.9.

Table 3.13: Results of using the Paice model with different values of r.

. P@10 MAP R-Precision
AND OR AND OR AND OR
0.1 .8520 .8980 .6287 .7083* .6250 .6980
0.3 .8560 .8980 .6416 .7089* .6382 .6985
0.5 .8620 .9000 .6585 .7090* .6565 .7003
0.7 .8700 .8980 .6800 .7091 6797 .6993
0.9 .8800 .8960 .7015 .7103 .6998 7057

(*) — indicates that the difference in MAP between the Paice AND and OR operators is
statistically significant using the Wilcoxon matched-pairs signed-ranks test with 99.9%
C. I

From Tables 3.10 — 3.13, the performance of OR operators is better than
that of corresponding AND operators. While OR operators behave like DRD
principle and AND operators behave like CRD principle, all the results
suggest that DRD principle is preferred because on average the MAP
performance is higher. In Table 3.6, we grouped different operators using
the relevance decision principles [Kong et al., 2004], and we compare the
results between each of the groups. Table 3.14 shows the best result
obtained using the aggregation operators, which grouped the contexts scores
according to the relevance decision principles in Table 3.6. Using the best
result in each of the operators, we pair-wise compare them with statistical
tests in Table 3.15.
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Table 3.14: Best results obtained from different aggregation operators which are grouped
by the relevance principles in Table 3.6.

Operator P@10 MAP R-Precision
..CRD_______ Dombi’sAND 08500 06245 06200
Extended Boolean OR 0.8980 0.7163 0.7123
ARD The MMM model 0.9000 0.7112 0.7007
_________________ The Paice model OR 08960 07103 07057
DRD Dombi’s OR 0.8980 0.7078 0.6972

Table 3.15: Comparisons between the relevance decision principles using best MAP
performance of the aggregation operators.

CRD | ARD i DRD

Dombi’s | Extended The MMM The Paice | Dombi’s

p value AND | Boolean OR  model model OR! OR
_CRD | Dombi's AND | - | <.0010*  <.0010* <.0010* | <.0010%
Extended : - : *
Boolean OR - ; - <.0010 .0128 i < .0010
ARD | The MMM - - - 8876 | <.0010*
model ;

The Paice model
OR |

DRD Dombi’s OR - | - - - ! -
(*) — indicates that the difference in the best MAP performance between the 2 operators is

statistically significant using the Wilcoxon matched-pairs signed-ranks test with 99.9% C.
l.

In Table 3.15, the smaller the p value obtained in the statistical test, the
larger the confidence interval in MAP performance between the two
operators. We can see that the MAP performance of ARD principle is
statistically significantly different (i.e., higher, see Table 3.14) from that
using the operator based on the CRD principle. The MAP performance of
DRD principle is also statistically significantly different (i.e., higher, see
Table 3.14) from that using the operator based on the CRD principle. This
suggests that the ARD principle is robust.

In Table 3.14, the MAP performance using the DRD principle is similar to
the ARD principle. However, in Table 3.15, there is a statistical significant
difference between the MAP using operators based on the ARD principle
and the MAP using the operators based on the DRD principle. This
difference might be due to the difference between the DRD and ARD
principles where the DRD assert the additional boundary condition. That is,
if any single document part is relevant, then the entire document is

considered relevant. In practice, this occurs only for the top ranked context
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affecting only one document because all the other contexts are assigned
normalized scores that are less than one by the linear normalization [Lee,
1997]. Since there is statistical significant difference, it seemed that the top
ranked context may have a noticeable impact on the effectiveness because
subsequent recall and precision values at different locations in the retrieval
list are affected by it. When the top ranked context is assigned a value of
one by the linear transformation [Lee, 1997], the document ranking score is
one by the boundary condition of the DRD principle, thereby loosing the
differentiability of relevance scores in the context of that document.
However, for the AP principle, the document that contains the top ranked
context does not necessarily have the highest document relevance score of
one, because the other context scores in the document may affect the final
document relevance score. Also, in practice, many relevant documents
require multiple contexts to make relevance judgments and the likelihood of
making a relevance judgment on the basis of a single context in a relevant
document is not high. These mitigating factors suggest why the operators
based on the ARD principle appeared to be performing slightly better than
the operators based on the DRD principle, even though the DRD principle is
consistent with the TREC ad hoc evaluation policy.

3.3.4 Probability Ranking Principle

The probability ranking principle [Robertson, 1977] states that for a
particular query q, if a retrieval model ranks the documents in the collection
in the order of decreasing probability of relevance to g, then the best overall
effectiveness of the model will be achieved with respect to the data available
to the model. The probability ranking principle assumes that the relevance
of a document d; to a query q is independent to all other documents {d; :
je[l, card(D)] and j # i} in the collection (card(D) is the number of
documents in the collection D). If a retrieval model obeys the probability
ranking principle, with more and more relevance information for q available
to the model, we expect that the model will never decrease the performance

for g. Because if the model’s performance is degraded when it has more
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relevance information, this means that the best overall effectiveness is not
achieved for having more relevance information and this violates the
probability ranking principle. In this section, we provide the experimental
results to show that our proposed model obeys the probability ranking
principle for TREC-6 data.
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Figure 3.1: Performance of our model using different % of relevant documents for
training. The bars show the maximum and minimum MAP of the five retrievals.

Using context-training with context size of 101 (i.e., n = 50), additive
smoothing with & = 0.1 (Equation 3.14) and the extended Boolean OR
operator with p = 20 (Table 3.3) for combining the context scores in a
document, we tested the model using different percentage of relevant
documents to train the model. More specifically, we randomly sample x%
of the relevant documents (where x = 0, 20, 40, 60, 80 and 100) for a query
g and use the randomly sampled relevant documents for training the model
(i.e., for constructing M(R=1, q) using context-training). Then, we perform a
retrieval for g using the trained model. The procedure is repeated five times
for every query of TREC-6 (i.e., for every query, we perform five retrievals
using five sets of randomly sampled relevant documents for training). When
x = 0 or x = 100, the performances of the five retrievals are the same. After
the experiments, we discovered that for all 50 queries of TREC-6, the
performance (MAP) increases monotonically when x goes from 0 to 100. In
Figure 3.1, we show the average MAP for all 50 queries in the five

retrievals while the maximum and minimum MAP of the five retrievals at
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each level of x are also shown. The results suggest that our model obeys the
probability ranking principle for the TREC-6 data set. The best performance
is obtained when 100% of the relevant documents are used for training the
model.

3.3.5 Validation of the Collection-Irrelevance Assumption

When calculating the context score, we used the collection model M(D, q) to
substitute/estimate the irrelevance model M(R=0, q) by the collection-
irrelevance assumption (Equation 3.9 in Section 3.2.2). As the assumption
states that the collection model and the irrelevance model are similar to each
other in a sufficiently large collection, it is expected that the MAP
performance of using the two models are similar as well. In this section, we
validate the collection-irrelevance assumption. When using the irrelevance
model, smoothing should be applied to the model similar to that in the
relevance model. From the results of smoothing of the relevance model
(Table 3.9), we are using absolute discounting with 6; = 0.1 (Equation 3.14).
Table 3.16 shows the performance difference when using the collection

model and the irrelevance model.

Table 3.16: Difference in results of using the collection model (col) and the irrelevance
model (irrel).
P@10 MAP R-Precision
col irrel col irrel col irrel
.8980 .9100 7163 T472* 7123 7423
(*) — indicates that the difference in MAP between the two results is statistically
significant using the Wilcoxon matched-pairs signed-ranks test with 99.9% C. I.

From Table 3.16, although the MAP performance when using the
irrelevance model is statistically significantly higher than that when using
the collection model, the difference is only about 3%. This shows that, in
doing retrospective experiments, using the irrelevance model can improve
the MAP performance for most of the queries (to obtain the statistical
significant difference) but the improvement is not large for each query. This
confirms to our claim that the irrelevance model and the collection model

are similar to each other. In order to reveal the optimal results, we are using
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the irrelevance model instead of the collection model in the subsequent

experiments in this chapter.

3.4. Scope-Oriented Experiments

In this last set of experiments, we test the reliability of the proposed model
by experimenting it with different data collections (the ad-hoc retrieval of
TREC-2, TREC-6, TREC-7 and the robust-track retrieval of TREC-2005)
and another language (Chinese NTCIR-5). Similar to the experiments in
Section 3.3, title (short) queries in each of collections are used as they are
commonly found in web search. The performance of TREC-6 has been
evaluated in the previous section (Section 3.3) and the TREC-7 data
collection is a subset of the TREC-6 data collection.

Table 3.17: Statistics of the collections used in the experiments.

TREC-2 TREC-6 TREC-7 TREC-2005 NTCIR-5
Language English English English English Chinese
Topics 101-150 301-350  351-400 50 past hard topics ~ 001-050
No. of 714,858 556,077 528,155 1,033,461 901,447
documents
No. of relevant 3,052 (Relax)
documents 11,645 4,611 4,674 6,561 1885 (Rigid)
Storage (GB) 3.9 3.3 3.0 5.3 3.5

Table 3.17 shows some collection statistics of the data collections for the
experiments reported in this section. Based on the results of the experiments
in Section 3.3, we use context-training with context size 2n+1 = 101 (i.e.,, n
= 50), absolute discounting with &3 = 0.1 (Equation 3.14) and the extended
Boolean OR operator with p = 20 (Table 3.3) for combining the context
scores in a document for all the data collections tested in the scope-oriented

experiments.

3.4.1 Different English Data Collections

Table 3.18 shows the results of the predictive baseline experiments using
BM25 term weight of the 2-Poisson model [Robertson and Walker, 1994]
with passage-based retrieval and pseudo relevance feedback (PRF) and our
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retrospective experiments. The purpose of this comparison is to show that
we have used state-of-the-art retrieval models (based on our implementation)
and to show that our novel retrieval model is worth further investigation.
For the latter, we provide the results of the statistical tests in Table 3.18 for
completeness. We caution that comparing the results of retrospective
experiments dryly with the predictive baseline experiments is unfair, as the

former has relevance information while the latter does not.

Table 3.18: Our predictive baseline performance (predictive) using BM25 2-Poisson
Model with passage-based retrieval and pseudo relevance feedback and our retrospective
performance (retro) in different TREC data collections.

P@10 MAP R-Precision
predictive retro predictive retro predictive retro
TREC-2 .5020 .9860 .2534 7197* .3096 .7010
TREC-6 4540 .9100 2791 T472* .3051 7423
TREC-7 4360 .9460 .2295 .7150* .2662 .7065
TREC-2005 .4900 .9580 .2730 T744* .3147 .7613

(*) - indicates that the MAP difference between the retrospective and predictive
experiments is statistically significant using the Wilcoxon matched-pairs signed-ranks
test with 99.9% C. I.

In Table 3.18, the predictive performance of TREC-7 is not as good as the
others. This is probably due to many of the relevant documents in TREC-7
do not contain any of the title query terms (i.e., about 12.9% of the relevant
documents per TREC-7 topic do not contain any of the query terms in Table
3.2).

In order to test the robustness of our model in different TREC data
collections, we test the results of the experiments using the Wilcoxon two
sample test (results shown in Table 3.19). Wilcoxon matched-pairs signed-
ranks test is not used here because different queries are used in different
data collections and we cannot pair the retrieval effectiveness performance
on the basis of the same topics. The Wilcoxon two sample test compare the
MAP of two sets of topics in two collections and used the pooled variance
that is estimated by summing the standard errors of MAPs of each set of
topics. The null hypothesis is that the MAPs of two sets of topics in two
different collections are the same.
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Table 3.19: Comparisons between English data collections using Wilcoxon two sample test.

p value TREC-2 TREC-6 TREC-7 TREC-2005
TREC-2 - .2995 .5884 .0617
TREC-6 - - .6003 7123
TREC-7 - - - 4100
TREC-2005 - - - -

From Table 3.19, the smaller the p value, the larger the confidence interval
of the MAP performance of the two collections. We cannot conclude that
the results in different TREC data collections are statistically significantly
different with 94% confidence interval (C. 1.) as all the p values are not
smaller than 0.06 (i.e., the null hypothesis is not rejected at 94% C. 1.). The
results suggest that our model performs similarly over different TREC
English data collections which show that the proposed model is not

unreliable.

3.4.2 Different Language

We also test the proposed model using the Chinese collection, NTCIR-5
[Kishida et al., 2005], for showing that the model can operate with more
than one language. Table 3.20 shows the results of the predictive baseline
experiments which were obtained using BM25 of the 2-Poisson model
based on bigram indexing with pseudo relevance feedback [Luk and Kwok,
2002]. As the NTCIR-5 has two sets of relevance judgments, relax and rigid,
we have two results for the same run where Relax-E means evaluated using
the relax relevance judgments and Rigid-E means evaluated using the rigid

relevance judgments.

Table 3.20: Our predictive baseline performance using passage-based 2-Poisson Model
with pseudo relevance feedback (PRF) based on bigram indexing.

P@10 MAP R-Precision
Relax-E .5460 .3750 .3694
Rigid-E 4340 .3398 .3443

In the retrospective experiments of NTCIR-5 using our model, we used
bigram indexing to collect terms in contexts so as to be consistent with our
Chinese indexing strategy for the initial retrieval. The NTCIR-5 data set has

two sets of relevance judgements, Relax and Rigid, we can train the model
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using context-training based on one set of relevance judgements and then
evaluate the result using the same or another set of relevance judgments.
This yields four combinations of training and evaluation results as shown in
Table 3.21 (Relax-T means training using the relax judgments, Relax-E
means evaluation using the relax judgments, Rigid-T means training using
the rigid judgments and Rigid-E means evaluation using the rigid

judgments).

Table 3.21: Our retrospective performance using the proposed model in NTCIR-5.

P@10 MAP R-Precision
Relax-T Rigid-T Relax-T Rigid-T Relax-T Rigid-T
Relax-E .8940 .8680 .8834 7185 .8807 6674
Rigid-E .5980 .8600 .6490 .8897 6414 .8888

Table 3.22: Comparisons between using relax judgments for training (Relax-T) and
evaluation (Relax-E) and using rigid judgments for training (Rigid-T) and evaluation

(Rigid-E).

p value Relax-T, Relax-E Rigid-T, Relax-E Relax-T, Rigid-E Rigid-T, Rigid-E
Relax-T, Relax-E - <.0010* <.0010* 2418
Rigid-T, Relax-E - - .0051 <.0010*
Relax-T, Rigid-E - - - <.0010*
Rigid-T, Rigid-E - - - -

(*) — indicates that the difference in MAP between the two experimental runs is statistically
significant using the Wilcoxon matched-pairs signed-ranks test with 99.9% C. I.

From Table 3.21, we see that the performance is higher when using the
same relevance judgments for training and evaluation (i.e., “Relax-T, Relax-
E” and “Rigid-T, Rigid-E”). When using relax judgments for training and
rigid judgments for evaluation (i.e., “Relax-T, Rigid-E”), the relevance
model M(R=1, ) may contain noise for the rigid judgments. When using
rigid judgments for training and relax judgments for evaluation (i.e., “Rigid-
T, Relax-E”), the relevance model M(R=1, q) may contain insufficient
information for the relax judgments. Therefore, the results in Table 3.21 are
not unexpected. In Table 3.22, we can see that the difference of using the
same judgment for training and for evaluation compared with using
different judgments for training and for evaluation is statistically

significantly different.

In Table 3.23, we compare our retrospective results of the English TREC

data collections (Table 3.18) and our retrospective results of the Chinese
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NTCIR-5 collections (Table 3.21) using the Wilcoxon two sample test (as

the queries used in different collections are different).

Table 3.23: Cross-language comparisons in different data collections using Wilcoxon two

sample test.

p value TREC-2 TREC-6 TREC-7 TREC-2005
Relax-T, Relax-E <.0010* <.0010* <.0010* <.0010*
Rigid-T, Relax-E .9588 .3738 .5037 .0646
Relax-T, Rigid-E .2034 .0402 1276 .0043
Rigid-T, Rigid-E <.0010* <.0010* <.0010* <.0010*

(*) — indicates that the difference in MAP between the two cross-language experimental
runs is statistically significant using the Wilcoxon two sample test with 99.9% C. I.

In Table 3.23, we see that the results in NTCIR-5 using the same judgment
for training and evaluation (i.e., “Relax-T, Relax-E” and “Rigid-T, Rigid-E”)
are statistically different to all the results in the TREC collections based on
99.9% C.1. (i.e., p < 0.001). For other combinations, the differences are not
significant at 99.9% C.I. The result of TREC-2 is the most similar to that of
using rigid judgment for training and relax judgment for evaluation in
NTCIR-5 (p < 0.9588).

3.5 Chapter Summary

In summary, we proposed a novel hybrid document-context retrieval model
which uses existing successful techniques to explore the effectiveness of
incorporating term locations inside a document into our retrieval model. We
used the log-odds as based on by the well known BIR model [Robertson and
Sparck-Jones, 1976] as the starting point for deriving our document-context
based model. We extended the existing probabilistic model from the
document level to the document-context level, in which relevant information
are located using contexts in a document. For probability estimation, we use
smoothing techniques [Chen and Goodman, 1996; Zhai and Lafferty, 2004]
similar to that of the language modeling approach to information retrieval.
When combining the context scores (i.e., combining the evidence of
relevant information), we tried different aggregation operators (Section
3.2.4) including the extended Boolean operators, the Dombi’s fuzzy

operators and the ordered weighted averaging (OWA) operators (the MMM
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model, the Paice model AND and OR operators) to aggregate the context
scores. Following the work of Kong et al. [2004], we have not tried the
probabilistic combination approaches such as the operators used in the
Inquery/Indri [Strohman et al., 2004] systems. The probabilistic alternatives

are interesting to try in future studies.

We tested the model extensively using the TREC-6 data collection with
different context sizes, training methods, smoothing methods and context
scores aggregation methods. We found out that context-training is preferred
over document-training as the training method (Table 3.8). The context size
2n+1 should be around 101 (i.e., n = 50) for balanced effectiveness and
efficiency. We also compared different smoothing techniques (Table 3.9)
for solving the problem of zero probability in the estimation step and found
out the different smoothing techniques produce similar results when the
optimal parameter is determined. From Table 3.9, we used the absolute
discounting with & = 0.1 (Equation 3.14). After comparing different
aggregation methods, the extended Boolean OR operator produced the best

result in our model-oriented experiments.

We also tested the model with different data collections. The experiments in
this chapter showed that the model is effective for the different reference
data collections with various sizes and languages (i.e., TREC-2, TREC-6,
TREC-7, TREC-2005 and NTCIR-5). The main remaining problem in the
model is to estimate the relevance model M(R=1, q) which defines the
relevant term set and its probability distribution. In Chapters 5 and 6, we are
testing document-context models with less relevance information (e.g.,
relevance feedback with limited top N retrieved relevance information) in

order to make them operate effectively in predictive experiments.
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Chapter 4

Interpreting TF-1DF Term Weights
as Making Relevance Decisions

In this chapter a novel probabilistic retrieval model is presented. It forms a
basis to interpret the TF-IDF term weights as making relevance decisions. It
simulates the "local" relevance decision-making for every document
location of a document, and combines all of these local relevance decisions
as the "document-wide" relevance decision for the document. The
significance of interpreting TF-IDF in this way is the potential: (1) to
establish a unifying perspective about information retrieval as relevance
decision-making; and (2) to develop advanced TF-IDF-related term weights
for future elaborate retrieval models. Our novel retrieval model is simplified
to a basic ranking formula that directly corresponds to the TF-IDF term
weights. In general, we show that the term frequency factor of the ranking
formula can become different term-frequency factors of existing retrieval
systems. In the basic ranking formula, the remaining quantity,
—logP(R=0]|ted), is interpreted as the probability of randomly picking a
non-relevant usage (denoted by R = 0) of term t. Theoretically, we show that
this quantity can be approximated by the inverse document frequency (IDF).
Empirically, we show that this quantity is related to IDF using four

reference TREC ad hoc retrieval data collections.
4.1 Introduction

This chapter presents a basis to interpret the well-known TF-IDF term
weights [Robertson and Sparck Jones, 1976; Yu and Salton, 1976] as
making relevance decisions. This basis is our novel probabilistic retrieval
model that simulates human relevance decision-making for two types of
relevance. One new type is the "local” relevance that only applies to a

specific document-location, and the other common type is the "document-
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wide" relevance that applies to the entire document. The model combines
the local relevance for every document location of a document to form the
document-wide relevance decision of the document. The local relevance at
location k is the outcome of the local relevance decision, which is made on
the basis of the available information in the document-context centered at k.
If the document is locally relevant at any document location, then the entire
document is deemed document-wide relevant to the query. This way of
combining local relevance at different document locations to arrive at a
document-wide relevance decision is consistent with the TREC ad hoc

evaluation policy [Harman, 2004] as described in Section 4.2.4.

We are motivated to justify theoretically and empirically that TF-IDF term
weights can be the outcome of modeling relevance decision-making. The
significance of this justification is that potentially there is a unifying
perspective about information retrieval (IR) as relevance decision-making.
Many past retrieval models are already related to relevance decision-making;
for example, the binary independence retrieval (BIR) model [Robertson and
Sparck Jones, 1976], the logistic regression model [Cooper et al., 1992], the
vector space model [Salton et al., 1975], the Boolean model [Wong et al.,
1986], and the extended Boolean model [Salton et al., 1983]. However, it is
not known whether TF-IDF term weights are related to relevance decision-
making because they were originally not conceived in this way. Instead, the
term frequency factor was originally thought to be indicative of document
topic [Luhn, 1958], and the inverse document frequency (IDF) is reasoned
[Sparck Jones, 1972] on the basis of Zipf law.

The original TF-IDF term weights are thought to be attribute values of
documents that are treated as an indivisible object in many IR models. From
our novel perspective, TF-IDF term weights are treated as the outcome of
local relevance decision-making at different document locations. This novel
perspective is a new avenue to develop more novel retrieval models, and it
extends the original TF-IDF term weights to model microscopic phenomena
at the document location level, rather than the macroscopic phenomena at

the document level. This new perspective also demands a new
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representation of a document as a string of words instead of the common
vector representation, because the string representation of a document
exposes information in the document for the purpose of mathematical
modeling.

The simplified basic ranking formula of our probabilistic retrieval model
that provides a basis to interpret TF-IDF term weight is the probability of
relevance P(Rq4=1) that is rank equivalent (i.e., denoted by o) to the sum of

products:

P(Ryq =D oc > f(t,d)x[-logP(R=0]ted)] (4.1)

teqnd

where f(t, d) is the occurrence frequency of term t in document d and the

quantity —log(R =0t e d) corresponds to IDF. Details of the symbols and

their descriptions of the previous formula are listed in Table 4.1.

The previous basic ranking formula is consistent with the probability
ranking principle [Robertson, 1977] because it ranks documents by the
probability of relevance. The term frequency factor of the basic ranking
formula is f(t, d), and the remaining quantity —log(R=0|ted) is
theoretically  approximated by IDF. This approximation of
—log(R=0]|ted) is also supported empirically, using four reference
TREC ad hoc test collections. For generality of modeling, the quantity,
—log(R=0]|ted), can also be approximated by the inverse collection term
frequency (ICTF) [Kwok, 1995], which has been found to correlate with
IDF using those reference ad hoc test collections. An independent, empirical
approach, using clustering to estimate the quantity, —log(R=0|ted),

illustrates the explanatory power of the above basic ranking formula.

The rest of this chapter is organized as follows. Section 4.2 describes our
novel probabilistic retrieval model that forms a basis to interpret the TF-IDF
term weights. The ranking formula of this model is simplified to the basic

ranking formula that directly corresponds to the TF-IDF term weights.
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Section 4.3 shows that the term frequency factor f(t, d) can be rendered into
different term-frequency factors in the literature [Salton and Buckley, 1988;
Robertson and Walker, 1994] by normalizing the document length. Section

4.4 interprets the quantity P(R=0|t ed) of the basic ranking formula as

the probability of randomly picking a non-relevant usage of term t. We

show that —log(R=0|ted) can be approximated by IDF. Another
independent, empirical approach directly estimates P(R=0|t e d) using a

novel clustering algorithm. Section 4.5 reports on the experiments relating
to this approach. Section 4.6 describes related works. Section 4.7 concludes

this chapter.

Table 4.1: Mathematical symbols used and their descriptions

Symbols  Description

D A collection of documents
R A relevance variable (R=1 means relevant, R=0 means irrelevant)
Raq Document-wide relevance variable for document d and query q
Raka Local relevance variable at location k of document d for query q
card(.) The cardinality of its argument
d A document (which is typically considered as a string or a set of words)
d] The length (total number of terms) of the document d
d[k] The term located at the k-th logical position in document d
c(d, k) A context of size 2n+1 terms located at position k in document d
q A query
oc Rank-equivalence binary relation

v(d, q) Document-wide relevance decision function for document d and query q
dgx(c(d, k), q) Local relevance decision function at location k in document d for query ¢

C() The generic function that combines the outcome of the local relevance decisions
f(t, d) The occurrence frequency of term t in document d
f(t, D) The total occurrence frequency of term t in all the documents

dreLg The set of documents relevant to q

f(t, dreLq)  The total occurrence frequency of t in documents relevant to g
Loc(t,d)  The set of location of term t in document d

df(t) The document frequency of t
IDF(t) Inverse document frequency of term t

v(.) The vector representation of its argument

o Two way implication

A Conjunction operator
m(t) The total number of usage of the term t
A(t) The arrival rate of the new usages of t per document
n(t) The number of new usages of t

. The dot product of two vectors

WE(t) The expectation weight of term t
E(.) The expectation operator

4.2 Probabilistic Non-relevance Decision Model

We formulate our probabilistic model as follows. Section 4.2.1 specifies the
general model using document-context ranking, and it justifies the use of
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document-contexts. Section 4.2.2 develops our probabilistic model and
derives the context-based ranking formula (Equation 4.6). In Section 4.2.3,
this formula is simplified to the basic ranking formula that directly
corresponds to the TF-IDF term weights.

4.2.1 General Model

In Chapter 3 (A retrospective study of a hybrid document-context based
retrieval model), we implicitly distinguish two types of relevance: the
common document-wide relevance, Rq g, that applies to the entire document
d for query g, and the new local relevance, Rqyq, that applies only at the
document location k in d for q. Both local and document-wide relevance can
be binary values (i.e., 0 or 1), or real values representing the degrees of local
and document-wide relevance to the query g, respectively. Typically, these

real values are normalized between zero and one, without loss of generality.

We simulate a human evaluator who scans the document for local relevance
information (Figure 1.1). Scanning involves iterating through every
document location, and deciding for each whether local relevance
information is found. The local relevance for each document location is
combined to form the document-wide relevance of the entire document.
Mathematically, the document-wide relevance is specified by the following

general equation:

Riq =C{RyyqkelL]d [k eN}) (4.2)

where N is the set of positive integers, [d| is the length of document d, and
C(.) is the general mathematical function that combines the local relevance.

We assume that the first location of any document starts at 1.
According to the previous chapter, the outcome of a local relevance decision

at location k of document d is determined by the information in the context

that is denoted by c(d, k). This context has n terms on the left, and another n
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terms on the right from location k in d (i.e., n is an implicit parameter in the
context c(d, k)). Figure 1.1 shows some examples of information extracted
as contexts from a document for the query “Hubble Telescope
Achievements”. The keyword or middle term of the context is the term
being scanned at present, and the human evaluator decides whether the
information in the context of the middle term is locally relevant at that

location.

The use of document-context assumes that document information that is far
away from location k has negligible impact on the local relevance decision
at location k. This is supported by past studies which found that: (1) the n-
dependence entropy asymptotically approaches towards the entropy of a
random model of character sequences [Wong and Ghahraman, 1975]; and (2)
the mutual information of English text [Lucassen and Mercer, 1984] and
Chinese text [Hung et al., 2001] decreases as the distance increases between
the term in the middle of the context and the other term in the context. In
local context analysis (LCA) [Xu and Croft, 2000] or lexical cohesion
[Vechtomova et al., 2006], it is implicitly assumed that terms far away from
the terms in the middle of the context have negligible impact, and thus such
terms are ignored in the LCA and lexical cohesion. Moreover, the results of
the previous chapter directly support the use of document-contexts for local

relevance decision-making.

After defining document-contexts and supporting their use in information
retrieval, we assume the following to simplify the modeling of local

relevance decision-making:

Context-based Local Relevance Decision Assumption: A local relevance
decision at any location k in any document d for any query g is made on the
basis of the information in the context that is centered at k in d for some

minimal context size n.
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To model relevance decisions, we denote dqk(.) as the local relevance
decision at location k of document d. It is location based because local
relevance is location dependent. According to the previous assumption, the
input of local relevance decisions consists of the context c(d, k) and the
query g. Its output is the decision preference (as in Yao et al. [1991]) of the
local relevance assigned by the human evaluator. According to the ordinal
value theory [Chapter 3 in French, 1986], this decision preference can be
transformed into a real value in [0,1]. For notation simplicity, we assume
that d4x(.) produces such an ordinal value that represents the local relevance
decision preference. Therefore, the local relevance, Rqykq, at k in d for q is
the outcome of the corresponding local relevance decision at k in d as

follows:

Rd,k,q = ad,k (C(dvk)vq) (43)

If O4k(.) only returns O for local non-relevance and 1 for local relevance,
then Rqkq Will be a binary variable for local relevance. Although Jqx(.) can
be a real value in [0,1], we restrict our discussion in the thesis to binary
variables for simplicity and clarity of representation. Similar to the local
relevance variable, we assign the document-wide relevance variable Ry q

with V(d, q) that contains the binary, document-wide relevance.

Ry, =V(d,q) (4.4)

Using the definitions of local- and document-wide relevance, Equation 4.2

is specified in terms of making relevance decisions as follows:

V(d,q) =C({9,,(c(d,k),q) -k e[L[d ]k € N}) (4.5)

The previous equation provides a direct, general mathematical description of
the human evaluator making relevance decision, using a document-context
based model for local relevance decision-making. It generalizes the work in
Chapter 3 (A retrospective study of a hybrid document-context based
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retrieval model) which models the set of local relevance, {Rqkq}, as local
decision preferences that are defined as the normalized log-odds [Robertson
and Sparck Jones, 1976] of the local relevance of the corresponding
document-contexts, {c(d, k)}. The previous chapter experimented with
several different implementation of the combining function, C(.) (e.g., the
extended Boolean disjunction [Salton et al., 1983], fuzzy disjunction
[Dombi, 1982], or order weighted averaging operators [Waller and Kraft,
1979; Paice, 1984]). In contrast, Rqq and Rqxq in this chapter are formulated
as (random) binary variables in our probabilistic formulation for binary
relevance. Instead of determining the output of the local relevance decisions,
our probabilistic formulation combines the probability of local relevance
decisions with the desirable outcomes to estimate the probability of

document-wide relevance.

We denote the probability of document-wide relevance as Py(Rqq), Where
the subscript, V, specifies that the relevance value of Ry is produced by the
document-wide relevance decision, V(.). Detailed arguments for V(.) are not
necessary because they are completely specified by Rqyq according to its
definition. Similarly, the probability of local relevance is denoted by
Pon(Rakg), Where O specifies that the local relevance value of Rgyq is
produced by the local relevance decision, o(.), with context size 2n+1.
Detailed subscripts and arguments for o(.) are not necessary because they
are completely specified by Ry q according to its definition, apart from the

context size, n.

4.2.2 Context-based Ranking Formula

We model the relevance decision with non-relevance outcomes (similar to
Calado et al. [2003]), and we rank documents by the probability of non-
relevance in reverse order. For binary relevance, Py(Rqq=1) can be
expressed as:

Pe(Ry=1) =1-P;(Ry,=0) (4.6)
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The probability of document-wide non-relevance in Equation 4.6 can be
expressed in terms of the probability of local non-relevance by using the
TREC evaluation policy for ad hoc retrieval tasks. According to Harman
[2004], if any part of a document is judged relevant to the topic, then the
entire document is considered as relevant in a TREC ad hoc retrieval task.
Such an evaluation policy for ad hoc retrieval is used because the ad hoc
retrieval tasks. Such an evaluation policy for ad hoc retrieval is used
because ad hoc retrieval tasks are supposed to be recall oriented, and
because such an inclusive policy enables later research on more specific
relevance judgments [Harman, 2004]. Given this understanding of the
evaluation policy and that we are dealing with binary relevance, a document
d will be deemed document-wide not relevant to a query if every local

relevance decision in the document is not relevant.

Logically, the TREC ad hoc evaluation policy for ad hoc retrieval tasks is

specified as a two-way implication as:

(Ryq=0) & A(Ry, (=0) (4.7)

where = is the equality test that returns true if the values are the same, and
false otherwise. The previous logical relationship is a Boolean logic version
of Equation 4.2, where C(.) in Equation 4.2 is specified as a conjunction in
Boolean logic. Based on this logical relationship and Equation 4.5, the
probability that the document is not relevant can be assigned as the joint
probability that all local relevance of individual document locations is not

relevant:

Pv (Rd,q= 0) = Pa,n ((Rd,l,q: O)’-”!(Rd,|d|,q= 0)) (4.8)

Note that the event spaces on the left hand side (LHS) and on the right hand
side (RHS) of the previous equation are different. This is because the

equation relates the two types of relevance, the document-wide- and local
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relevance. From the perspective of mathematical modeling, the joint
probability on the RHS of the previous equation simulates the local
relevance decision-making with non-relevance outcome for the document d.
The estimated joint probability is assigned to the probability of document-
wide non-relevance on the LHS. It is expected in mathematical modeling
that this probability assignment (on the RHS) is unlikely to be exactly the
same as the true probability (on the LHS), because we do not expect perfect
retrieval effectiveness performance. The question is whether the error of this
probability assignment will have some impact on the retrieval effectiveness.
To reduce this impact of error and yet without loss of generality, the
assigned probability (on the RHS) is made rank equivalent with the true
probability (on the LHS). Using this rank equivalence relation, Equation 4.6

becomes:

Pv (Rd,q= 1) o = IOg Pa,n ((Rd,l,q: 0)!'-"(Rd,|d|,q= 0)) (4.9)

In order to simplify the previous equation, we assume that the local
relevance decisions with non-relevance outcomes are independent.

Specifically, we give the next assumption.

Non-Relevance Independence Assumption: For any document d and any

query q, Pa,n(Rd,k,q= 0] Rik1q=0io s Ry 1= 0) = Pa,n(Rd,k,q: 0) for ke[1,
|d[].

Although we do not believe the previous assumption to be true in practice
because the contexts for making local relevance decisions overlap, this
assumption, together with the chain rule, simplifies the joint probability,

P.q((Ry1q =0)...s(Ryjqq =0)) in Equation 4.9 into the sum of the

logarithm of the probability of its individual event. This is as follows:

|d|

P (Ryq=1) o« - 10gP, , (R, = 0) (4.10)
k=1
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For occurrences of document terms that are not query terms, we assume that
the outcomes of the local relevance decisions for these occurrences are not
locally relevant. Using the common string notation that denotes d[k] as the
term at the k-th location in document d, the Query-Centric Assumption in

the previous chapter states:

Query-Centric Assumption: For any query q and any relevant document d,
the relevant information for g locates only in the contexts {c(d, k)} for ke[1, |d[]

where d[k] € q. (i.e., the relevant information locates around query terms).

The preceding assumption is similar to that assumed by the binary
independence model [Robertson and Sparck Jones, 1976] where non-query
terms in the document are assumed not relevant. The query-centric
assumption was corroborated using various TREC ad hoc retrieval test

collections in the previous chapter.

The query-centric assumption implies thatP, (R, , =0) =1 when d[K] is
not a query term. This means that logP, (R,,, =0) =0 if d[k] is not a

query term, so Equation 4.10 can be simplified by ignoring all locations
where the query terms do not occur. Using the query-centric assumption and
the notation that Loc(t, d) is the set of document locations given that term t

occurred in document d (i.e., t € d), Equation 4.10 is simplified as follows:

Py(Rig=Dxc—> D 10gP,, (R, 4=0) (4.11)

teqnd keloc(t,d)

4.2.3 TF-IDF Correspondence

Our non-relevance decision model in Section 4.2.2 can be shown to
correspond to the TF-IDF term weights as follows. We shrink the context

size to unity (i.e., set n = 0) based on the following assumption:
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Minimal Context Assumption: For any query, the local relevance at a

location k in a document d is determined only by the single term d[k].

That is when n = 0, c(d, k) = d[k]. This assumption is not realistic because
the local relevance at location k in document d is not decided by the context,
but by the term d[k]. From another perspective, such an unrealistic
assumption may explain the performance limitations of TF-IDF term
weights. Another assumption is that the evaluator makes the same relevance

decisions at different locations if the corresponding contexts are the same.

Location-Invariant Decision Assumption: If c(d, j) = c(e, k), then

daj(c(d, j), 9) = Gex(c(d, k), q) for any query g.

This assumption is used by the document-context model in the previous
chapter and was not considered unrealistic. Including the previous two
assumptions implies that the probabilities of local non-relevance for the
same query are the same for different locations, provided that the same term
t occurs at these locations. Mathematically, the previous two assumptions
imply that if d[j] = e[k] = t, then P50(Rqq=0) = Ps0(Rekq=0). Consequently,
we are no longer concerned with the locations of local non-relevance, but
with the presence of query terms in the document. For presentation clarity,

we simplify our notation to reflect this as follows.

When the context size is unity (i.e., n = 0), the probability of local non-

relevance is:

Pa,o (Rd,k,q: 0) = Pa,o (ad,k (C(d ) k),q) = O) = Pa,o (ad,k (t' q) = 0) (4'12)

where c(d, k, 0) = d[Kk] = t. For presentation clarity, we simplify our notation

of the previous probability as:

P,o(R=0[ted,q)=P,,(0,,(t.q)=0) (4.13)
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where the term t occurred in d. The new notation only retains the input and
output of the local relevance decision, d4x(.), because it is only based on the
term t occurring in d and the query q after the context size is reduced to
unity (i.e., n = 0). The new notation hides the random variable, Rgxg,
because d and q already appeared in the condition part of the probability,
Ps0o(R=0 | ted, q). It also hides the location, k, because we are no longer
concerned with the specific location k of the local non-relevance, but only
with the presence of t in d. The new notation hides the local relevance
decision, since this decision is neither directly dependent on the document
nor on the location because of the minimal context assumption. Note that
the probability using the new notation is not marginal, because it is the
probability of local non-relevance at certain hidden location k where t
occurred in d. The location-invariant decision assumption implies that if a
term t has an occurrence frequency f(t, d), then there will be an f(t, d)
number of times that the same probability P;o(R=0 | ted, q) appears in

Equation 4.11. Using this simpler notation, we can rewrite Equation 4.11 as:

P, (Ryy =1) oc— > f(t,d)logP,,(R=0|ted,q) (4.14)

teqnd

where P,o(R=0 | ted, q) is always defined since t is in g n d. If Equation
4.14 is interpreted as the TF-IDF term weight, then f(t, d) will be the term

frequency factor. The remaining term —logP,,(R=0|ted,q) is called the

query-dependent IDF (QIDF):
QIDF(t,q) =—logP,,(R=0|ted,q) (4.15)
The following assumption makes the QIDF independent of the query.

Query-Independent Non-Relevance Probability (QINRP) Assumption:
The conditional probability of non-relevance, given seeing a term t, is the

same for all queries (i.e, P,;(R=0|ted)=P,;(R=0|ted,q)

=P,,(R=0|ted,q")) for all possible query pairs, g and g’.
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Note that P, ,(R=0|ted) is not a marginal probability. Section 4.5.2

examines the validity of the previous assumption and assesses its impact on

retrieval effectiveness.

Assuming that the QINRP assumption is valid, we simplify Equation 4.14 to:

P,(Ryq =1 oc— > f(t,d)logP,,(R=0|ted) (4.16)

teqnd

For Equation 4.16 to correspond to TF-IDF term weights, the remaining
quantity (given that t is in the document) after taking f(t, d) away should be
the IDF, that is,

~logP,,(R=0|t e d) = IDF(t) (4.17)

We do not have to consider the case when t is not in d, because: (1) f(t, d) is
zero, and (2) t must have appeared in d according to Equation 4.16. Section
4.4.3 derives the previous equation and, therefore, establishes Equation 4.17.
Section 4.3 has details about the derivation of the term-frequency factor in
the literature.

4.3 Term Frequency Correspondence

This section shows that our term frequency factor in Equation 4.16 can be
rendered into different term frequency factors in the literature [Salton and
Buckley, 1988; Robertson and Walker, 1994] by normalizing the document
length. Using the normalized version A(d) of document d, the probability of

relevance in Equation 4.16 becomes:

Py (Rygyq=1) o Y. f(t,A(d))x IDF(t) (4.18)

teqnd
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4.3.1 Proportion Approach

The weighted Minkowski p-norm length [Klir and Folger, 1988] of d is

defined as:

|d |p=§/Z[W(w)x f (w,d)]° (4.19)

with weight W(w) for term w. This weighted p-norm length is related to the
weighted generalized mean [Dykchoff and Pedrycz, 1984] that is used as the
extended Boolean disjunction [Salton et al., 1983]. The vector space model
[Salton et al., 1975] uses the weighted Euclidean (i.e., p = 2) length and the
weight of a term is its IDF. For the unweighted p-norm length, W(w) is set

to 1 for all w.

The p-norm length of the normalized document A(d) is denoted by |A(d)|p,
which is a constant independent of d. In the literature, |A(d)|, is the average
document length A, for p = 1. Since |A(d)|, is a constant, we can deduce the

following property of normalized documents:

Constant Length Property: For any two normalized documents, their

weighted p-norm lengths are the same, given a particular weighted p-norm.
We define the p-norm proportion gy(t, d) of term tin d as:

f(t,d)

,d) =
g,(td) d]

(4.20)

p

so that we specify the following assumption:

Constant p-Norm Proportion Assumption: Given a particular weighted

p-norm, g, (t,A(d)) = g,(t,d) forall terms and for all documents.

Based on the previous assumption, we can deduce that:
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|A() |, xf(t,d)

f(tA(d)) = d]

(4.21)

Subsituting Equation 4.21 into 4.18, our basic ranking formula becomes:

PV(RA(d),q:]')OC Z CL)

tegnd |d |p

x IDF(t) (4.22)

It is possible to normalize the query term frequency as well as using the

query length but we have not pursued this aspect for clarity of presentation.

When p = 1, [d|; is the number of terms in the document d. The quantity
f(t, d) /|d|; is the relative frequency estimate of the occurrence probability of
term t in document d. When p tends to infinity (i.e., «), |d|., = max,{W(w) x
f(w, d)} [Dykchoff and Pedrycz, 1984]. According to the constant length
property, the maximum term frequency (say, fmax = |A(d)|..) of all normalized
documents is the same (i.e., a constant). When p tends to infinity, the

previous ranking formula becomes:

e f(t,d) y
PV(RA(d),q_l) tz mVZViX{VV(W)Xf(W,d)} IDF(t) (4.23)

eqnd
When W(w) = 1 for all w, the term frequency factor of the previous equation

appears in [Baeza-Yates and Ribeiro-Neto, 1999].

We generalize the p-norm proportion approach by linearly interpolating the
term frequency of the normalized document and the normalized document

length as:

f(t,A(d)) = A(d) |, xliax flg,d)

+(1- a)} (4.24)

p
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where « is the mixture parameter. This interpolation captures the intuition
that a document without any query terms has small chance of being relevant
to the query. This small chance is controlled by «. When « = 1.0, the
previous equation becomes the normalized term frequency in Equation 4.21
as specified by the p-norm proportion approach. When p tends to infinity
and « = 0.5, then the previous equation becomes the normalized term

frequency factor reported by Salton and Buckley [1988].

4.3.2 Weighted Term Frequency Approach

Similar to the work by Amati and van Rijsbergen [2002], this approach uses
the Laplace law of succession [Feller, 1968] to derive the weighted term
frequency (e.g., [Huang et al., 2003]) as the term frequency factor of BM
term weights of the Okapi system [Robertson, 1997]. This approach derives
the BM term weights in a way different from their original conception
[Robertson and Walker, 1994].

The basic idea is that the term frequency is weighted by a factor,
P(f(t,d)| R=0) that takes into account the probability that all occurrences
of term t in document d are locally non-relevant to a query. This probability
is only a weight, and it is defined in another event space. Since each
occurrence of a term has a weight P(f (t,d)| R=0), the term t that occurred
f(t,d) times in d has a weighted term frequency «(t,d) of
f(t,d)xP(f(t,d)|R=0).

The weight P(f(t,d)|R=0) is a probability that is determined by the
Laplace law of succession, as follows. We assume that terms are either
locally relevant (R=1) or non-relevant (R=0), corresponding to two
outcomes in the Laplace law of succession [Feller, 1968]. In this way,
P(f(t,d)|R=0) is the probability that all the outcomes of f(t,d)

occurrences of t are non-relevant.
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P(f(t,d)|R=0) zﬁ (4.25)

The weighted term frequency «(t, d) of tin d is:

f(t,d)

o(t,d) = f(t,d)xP(f(t,d)|R=O)zm

(4.26)

Similarly, the weighted normalized term frequency w(t, A(d)) of t in the

normalized-length document A(d) is:

f(t,A(d))

ot A =+ @y 11

(4.27)

Assuming that the constant p-norm proportion assumption is true, Equation
4.21 is substituted into the previous equation as follows:

f(t,d)
f(t,d)+ ld], (428)

[A(d)],

o(t,A(d)) =

Replacing f(t,A(d)) in Equation 4.18 with the previous approximation of
o(t,A(d)) yields the BM11-like [Robertson and Walker, 1994] formula as

follows:s

Py (Rygyq=1) o D of(t,A(d))x IDF(t)

teqnd
f(t,d)x IDF(t)

z il
e TEd)+

(4.29)

The previous formula is similar to the BM11 term weight [Robertson and
Walker, 1994]. First, the original BM11 uses p = 1 for measuring document
lengths [Robertson and Walker, 1994]. Second, the original BM11 has an
additive factor, but the highest average precision of the Okapi system is
obtained when this additive factor is eliminated (i.e., k. = 0 in [Robertson

and Walker, 1994]). Hence, the additive factor is treated as non-existent in
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the original BM11 term weight. Third, we do not derive the query term
frequency factor in the original BM11 term weight, for clarity of
presentation. Finally, the IDF factor of the original BM25 term weight is wy
[Robertson and Sparck Jones, 1976] for retrospective experiments and it

becomes IDFgy for predictive experiments as follows.

card(D)—df (t)+0.5
df (t)+0.5

IDF,, (t) =log (4.30)
where card(D) is the cardinality of the collection D (i.e., the number of

documents in D) and df(t) is the number of document containing termt (i.e.,
document frequency of term t).

The BM25-like term weight [Robertson et al., 1995] is derived by linearly
interpolating the original p-norm- and normalized p-norm document lengths

with a mixture parameter «, as [Sparck Jones et al., 2000]:

|A() [, xf(t,d)x

FLAED =A@ lp +ald],

(4.31)

where k > 0 is a constant for scaling. Substituting the previous equation into
a(t, A(d)), we have:

f(t,d)
f(t,d)+kx|(1-a)+a o)

[Ad)l,

o(t,A(d)) =

(4.32)

The BM25-like formula is obtained by substituting the previous equation
into our basic ranking formula of Equation 4.18.

Py (Ryg)q=1) Za)(t,A(d))x IDF(t)

f(t,d)x IDF(t) (4.33)
dl,

G f (L) +kxll-a+a o]

[A(d)lp

~
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The previous formula is similar to the original BM25 term weight
[Robertson et al., 1995] (Equation 2.17). First, the original BM25 has an
additive factor, but it was set to zero (i.e., ko = 0) [Robertson et al., 1995].
Second, the original BM25 term weight includes some multiplicative
constants (e.g., (ky + 1) and (ks + 1)) in [Robertson et al., 1995]) that do not
affect ranking because the additive factor in the original BM25 term weight
has disappeared. Third, we do not derive the query term frequency factor in
the original BM25 term weight, for clarity of presentation. Finally, the IDF
factor of the original BM25 term weight is w4 [Robertson and Sparck Jones,
1976] for retrospective experiments and it becomes IDFgy (Equation 4.30)

for predictive experiments.

4.4 Inverse Document Frequency Correspondence

This section shows that the quantity, —logP,,(R=0|ted), in Equation

4.10 can be approximated by the inverse document frequency (IDF) [Sparck
Jones, 1972]:

card(D)
df (t)

IDF(t) = log (4.34)
where card(D) is the cardinality of the collection D (i.e., the number of
documents in D) and df(t) is the document frequency of the term t. This
approximation simplifies our ranking formula to the TF-IDF term weights.
We carried out an experiment using four TREC ad hoc retrieval collections
and found almost no mean average precision differences between ranking
using IDF (Equation 4.34) and using IDFgy (Equation 4.30).

4.4.1 Basic Random Match Model
Our approach in this section regards —logP, (R =0t e d) as a measure of

the non-specificity of term usage of t found in the collection D. Non-

specificity refers to the number of alternatives that one needs to select.
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Usage refers to the meaning of the term t and the use of t in the context. If
the term t occurs at two different document locations with different
meanings, then the two usages of t are different. However, the term t at
different document locations can have the same meaning but its usages are
still different because the way the terms are used can affect the relevance of
the usage. For example, the term “telescope” found in two different
locations can refer to the same Hubble telescope, but one usage can be about
how to repair it and the other usage can be about what it has discovered.
Therefore, the number of usages of a term is at least the number of

meanings that term has in the collection.

The probability P, (R=0[|ted) is assigned by our basic random match

model of term usages. This model specifies that matching the usage of the
query term and the matched document term is done in a random manner,
similar to drawing a color ball from an urn [Feller, 1968] at random. In
general, more than one usage can be locally relevant to the query, but we
make the following assumption to simplify our modeling:

Single Locally Relevant Usage Assumption: A term t has one locally

relevant usage for any query out of a set of possible usages of t.

Although this simplifying assumption is not likely to be realistic, it
simplifies our basic random match model so that there is only a single
parameter to estimate. If the total number of usages of term t is m(t), then
our basic random match model specifies the probability of non-relevance,

givent, as:

m(t) -1

P,o(R=0|ted)= m(®

(4.35)

Our basic random match model is similar to and inspired by, but not the
same as, the probabilistic models based on divergence from randomness
[Amati and Van Rijsbergen, 2002]. To estimate m(t), we estimate the arrival

rate A(t), which is discussed next.

87



4.4.2 New-Usage Arrival-Rate Estimation

Consider a hypothetical human evaluator looking up the contexts of our
query term t, as in Figure 1.1, and deciding the relevance of each context to
this query. The middle term t in the context is a query term according to the
query-centric assumption because contexts of non-query terms are assumed
not locally relevant. The evaluator scans through the set of contexts and
collects a set B(t) of unique usages of t from the contexts. Hence, card(B(t))
= m(t). A new usage of t is collected if it is different from the set of usages

found in B(t) so far. For simplicity, we assume the following:

Poisson Distributed New Term-Usage Assumption: The number of
arrivals of new usages of any term in a unit-time interval follows a Poisson

distribution.

It follows from the previous assumption that the arrival rate A(t) of new
usages of a term t is a constant. Note that different terms have different

arrival rates of new usages.

The conventional estimation of A(t) counts the number of arrivals of unique
usages divided for t by the number of intervals. This estimation is known to
be a maximum-likelihood estimator. However, the number of unique usages
of a term is not the same as the total number of occurrences of this term,
since occurrences of the same term with the same usage are counted only
once. Therefore, someone is needed to collect the set of unique usages of a
term in the collection, and this collection process is labor intensive and error
prone. In addition, the manual identification of similar contexts representing

similar term usages can be subjective.
To estimate A(t) automatically, we regard each document as a constant unit-

time interval (which suggests that document lengths should be normalized).

If a term is absent in the document, then there will be no new term-usage
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arrivals in the document. Therefore, we estimate A(t) by equating the
probability that no new term-usage arrived in the document, according to the
Poisson distribution with the proportion of documents that do not contain

termt as:

card(D) —df (t)

C N aA)
Pogisan(ay (7(1) = 0) =& = card(D)

(4.36)

where 7(t) is the number of new term-usages of t, and Ppoisson(a()(.) 1S the
probabililty based on the Poisson model of new-usage arrival. After some

algebraic manipulation, we have an estimate of A(t):

card(D)
card (D) —df (t)

A(t)=In (4.37)
We call the previous equation the zero occurrence estimate of A(t). This
estimate of A(t) has a number of problems. First, A(t) may be a biased
estimate. Second, as df(t) approaches card(D), A(t) tends to infinity. This is
because the small relative-frequency counts are not reliable estimates of
probabilities. Having indicated the problems with this estimate of A(t), we
are not aware of any theoretical alternative to estimate A(t) without
manually identifying the specific usage of each term occurrence. Therefore,
we use this estimate of A(t) assuming that df(t) is not close to card(D) in

order to avoid singularities.

4.4.3 Expectation Approach

Let E(.) be the expectation operator and 7(t) be the number of unique usages
of term t. The expectation approach uses the conditional expected number
E(n(t)| n(t) > 0) of unique usages of term t in document d, given that t
occurred in d, as an estimate of the number m(t) of colored balls in an urn in
our basic random match model. The conditional expectation is used because

the probability, P,,(R=0|ted) , in Equation 4.35 is a conditional
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probability where t is present in d. According to the Poisson distributed new
term-usage assumption, the number of unique usages follows a Poisson

distribution, so the conditional expectation E(7(t)|7(t)>0) is calculated as:

m@® = EGO170) > 0) = 0 (4.38)

by averaging all possible numbers of new term-usage arrivals in the entire
population. Although the number of new term-usage arrivals is bounded by
the number of term occurrences in the given document in practice, this
bound is not used because the calculated expected number of new-usage
arrivals is for the population, and not for a particular document. This
treatment is consistent with our minimal context assumption, where

P,o(R=0|ted) depends only on the term and its presence in the

document, but not on the particular document d in which t occurred.

Using the previous calculation of E(7(t)|7(t)>0), the usages of a term are
considered as colored balls drawn from an urn in our basic random match
model. Such an urn has E(7(t)|n(t)>0) unique usages, where one of the
unique usages is assumed the desired usage according to the single locally
relevant usage assumption. If the usage of the term in the document is the
desired usage matching the usage of t, then the document will be locally
relevant to the query. This single local relevance occurrence becomes the
document-wide relevance according to the TREC ad hoc evaluation policy
[Harman, 2004]. Likewise, if the usage of the term t is not the usage of the
matched query term, then the document location, where the query term
occurred in the document, will be locally not relevant to the query.
Assuming that each usage of the term t has equal likelihood of occurrence
and using the zero occurrence estimate of A(t) in Equation 4.37, the
probability of local non-relevance for a document location where the query

term t occurred is assigned:
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. (R=0|ted)=7®n®)>0)-1
E(() | 7(t) > 0)
_a df (t)
=1 card (D) In[_-=® ] (4.39)

card (D)—df (t)

Using the aforesaid result, we define the expectation weight Wg(.) as a

replacement of the IDF for document ranking:

) df ()
card(D) In[--294®)__]

card (D)—df (t)

WE (t) ==

(4.40)

In Figure 4.1, the dotted curve shows the expectation weight given a
specific IDF value. This curve shows the deviation of the IDF value from
the expectation weight, since herein the IDF value is supposed to be
approximating the expectation weight. In Figure 4.1, a solid straight line is
drawn to serve as a reference for highlighting the deviation of IDF from the
expectation weight (i.e., the circles). Notice that the IDF value begins to
differ from the expectation weight when the former rises above 0.3 (using a
logarithm of base 10). Later, this can be explained by deriving the IDF
based on a Taylor series expansion of the expectation weight, and will be

discussed later.
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Figure 4.1: Relationship between IDF and the expectation weight. Each circle is the IDF
and the corresponding expectation weight of a query term in the 200 TREC title queries
(see Section 4.5.1 for details).
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The circles in Figure 4.1 represent the IDF values and their corresponding
expectation weights of query terms found in the set of 200 TREC title
queries in TREC-2, TREC-6, TREC-7 and TREC-2005 ad hoc test
collections. Notice that the spread of the expectation weights and the
corresponding IDF values of these query terms are from 0.3 and above 5.0
so that most of the expectation weights are almost the same as their
corresponding IDF values. We observe the difference between the
expectation weight and corresponding IDF to slowly increases from 0.2 to

0.3 as the IDF value increases.

We carried out an experiment to observe if there is any impact on retrieval
effectiveness using IDF as an approximation to the expectation weight
(Equation 4.40). We used the title queries of TREC-2, TREC-6, TREC-7
and TREC-2005 ad hoc retrieval test collections. The details of these
collections can be found in Section 4.5.1. In this experiment, the term
frequency factor is based on BM11 [Robertson and Walker, 1994] which is
multiplied by the IDF, or by the expectation weights, to form the term
weights for ranking. We have tested the IDFgy factor used in the BM11
term weight and the IDF here. Since we could not find any performance

differences between them, we did not report their results here.

We measured the retrieval effectiveness of ranking based on IDF and on
expectation weights using data from TREC-2, TREC-6, TREC-7 and
TREC-2005 ad hoc retrieval tasks. For all test collections used in this
experiment, all the performances are almost the same for ranking based on
IDF and on the expectation weights, so numerical details are omitted here.
The similar performance may be due to the fact that there are an equal
numbers of good and bad queries to balance out the performance differences.
However, we found that the MAPs of individual queries using ranking
based on IDF and the corresponding expectation weights are almost the
same. This is substantiated by fitting a linear regression line to the data in

Figure 4.1 where the correlation is 1.00 (almost perfect regression), the
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gradient is 0.9999 (which is approximately 1.0) and the regression curve

crosses over the y-axis at 0.00003 (which is close to zero).

We suspect that there are at least two reasons why the retrieval effectiveness
of individual queries are similar between ranking based on IDF and the
corresponding expectation weights. First, there is almost a constant
difference between the expectation weights and the IDF values. This
difference is about 0.3, small compared with those large expectation weights
that usually contribute most in document ranking. Second, if this
approximation error of the expectation weight by the IDF value affects all
the documents, this error has no impact on ranking. Such approximation
errors occur when the document frequency of the query term is large. This
implies that almost all the retrieved documents have this query term so that
the approximation errors have little impact on ranking the retrieved

documents.

In our previous experiment, the IDF is found to be a good approximation of
the expectation weights in practice. This good approximation can be shown
to hold mathematically. More specifically, the expectation weight in
Equation 4.40 is simplified to IDF using the Taylor series:

2 X3 X4

In(1+x):x—X—+———+-~- for-1<x<1 (4.41)
2 3 4

by taking only the first term in the Taylor series expansion:

df (1)
card(D) In[.. oM 1..]

card (D)—df (t)
B df ()
card(D) -2

card (D)—df (t)

P, (R=0[ted)=1-

__dro (4.42)
card(D)

Note that the above approximation (=) and equality (=) are not distributive

over each other and therefore can only be interpreted as related to the
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previous derivation. The aforesaid approximation of P, (R=0[ted)

becomes the IDF if we take the negative logarithm of this approximation.
The approximation is valid for -1 < df(t)/[card(D) - df(t)] < 1. Therefore, we
can simplify the condition for the valid approximation to df(t) < card(D) / 2.
Although the major error potentially occurs at the singularity when df(t) =

card(D), the quantity P, ,(R=0]|t ed) tends to 1. Consequently, the minus
logarithm of P,,(R=0|ted) tends to zero which is the same as the

inverse document frequency (IDF) value for this particular case (i.e., log
[card(D)/card(D)] for df(t) = card(D)). In practice, the previous experiment
shows that the approximation errors (Figure 4.1) to have little impact on
retrieval effectiveness performance, and this previous condition explains
why IDF deviates from the expectation weight when the IDF value is larger
than 0.3.

4.4.4 Clustering Approach

The expectation approach in the previous subsection shows that

P,o,(R=0]|ted)can be approximated by IDF, after assuming a random

match model of picking a non-relevant usage and that the new usage of a
term is generated by a Poisson process. In this subsection, the clustering
approach still assumes the validity of using the random match model, but
does not assume that the new usages are generated by a Poisson process. In
addition, it assumes that the number of new usages of t is equal to the
number of clusters of similar contexts of t. These clusters are found by a
novel clustering algorithm that is described first. Next we present a more
general form of the random match model. Details of the experiments
concerning the clustering approach are described in Section 4.5.

4.4.4.1 Context Clustering

Previous research [Lau and Luk, 1999] has identified different usage of a

term by clustering the contexts where the term occurred. Results of finding
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different usages of a term are encouraging, as the performance of identifying
different usages is similar to human identification of various usages. This
method of finding different usages of a term is based on the following

assumption:

Similar-Context Similar-Usage Assumption: Terms that have similar

usages tend to occur in similar document contexts.

This assumption is similar to the clustering hypothesis [Van Rijsbergen,
1975] because similar contexts have similar usages and some usages are

relevant to a query.

While the results in [Lau and Luk, 1999] are obtained for Chinese data, we
believe that the previous assumption is also valid to the same extent in
written languages other than Chinese. This is because word sense
disambiguation algorithms (e.g., [Gale et al, 1992]) also assign similar
senses to a term that is in similar contexts. So, we can treat the problem of
estimating the number of usages of a term as the problem of estimating the
number of clusters of contexts of a term, where each cluster is assumed to
correspond to a unique usage of the term, as in the previous assumption.
Using the notation that v(.) returns the vector representation of its argument,
|.|]2 returns the Euclidean distance of its arguments, and e is the dot product
of two vectors, the (cosine) similarity between contexts is computed as

follows:

v(c(d, k)) e v(c(d", k"))

[ d,k)),v(c(d', k")) =
SmUEEL D EE XD =t s, < vie(@ k)1,

(4.43)

The weight of term t in the vector v(c(d, k)) is the standard TF-IDF term
weight (i.e., f(t, d) x IDF(t)).

We use a less popular clustering algorithm based on the idea of the
minimum spanning tree (MST) [Zahn, 1971; van Rijsbergen, 1975]. This

algorithm finds a forest, instead of a single tree, that connects all the nodes
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in the graph. In our case, each node is a context and the edge weight
between two nodes is the cosine similarity score between the contexts of

these two nodes.

Figure 4.2 shows the major steps in finding the number of clusters. First, the
similarity score of each pair of nodes is calculated. Second, these similarity
scores are sorted from large to small. Iteratively, the two nodes, say a and b,
of the current highest similarity score are checked as to whether they belong
to any existing trees formed by the algorithm. If both nodes a and b belong
to the same tree, then this tree structure will be destroyed if an edge
connecting a and b is added to the tree. Hence, the edge connecting a and b
is discarded. If either node a or b is connected to some existing tree, then the
existing tree will be extended, with a new edge connecting a and b. If there
are no trees that have nodes a or b, then a and b will form a new tree. This
iterative process repeats until all nodes are connected. At the end, the
algorithm returns the number of trees formed as the number of clusters

found using this modified MST algorithm.

Algorithm: Modified Minimum Spanning Tree (MST) Clustering

Step 1 Compute the similarity scores of each pair of nodes

(or contexts)
Step 2 Sort the similarity scores from large to small

Step 3 From the edge (a, b) with the largest similarity score to the
smallest do

Step 4 if there is a tree that has both node a and node b then

Step 5 goto step 3 {i.e., skip}

Step 6 if there is a tree that has node a or node b then

Step 7 add (a, b) to the tree

Step 8 else add a new tree with a single edge (a, b)

Step 9 if all the nodes in the graph are connected then goto step 10

Step 10 Count the number of trees as the number m of clusters
Step 11 return m

Figure 4.2: Algorithm for the modified minimum spanning tree clustering algorithm that
determines the number of clusters as the number of trees formed by the clustering
algorithm.

While other clustering algorithms may be used, the proposed algorithm is a
simple approach to estimate the number of clusters. Since the best estimate
of m(t) is difficult to obtain, the algorithm finds a simple estimate of m(t).
The terminating condition of this algorithm assumes that each node is
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connected with at least one other node. Such a constraint may not be the
case if some context (i.e., some node) of a term has a unique usage that no
other contexts have. Even if this constraint is not valid, this means that the
estimate of the number m(t) of usages of t is less accurate. This constraint
affects all terms, so errors due to violation of this constraint are
compensated for, to some extent. Since there are also other kinds of errors
introduced in the estimation (e.g., similarity score used), the impact of this
constraint may not be significant. Experiments detailed in Section 4.5
investigate whether this clustering algorithm can make good estimates
of P,,(R=0|ted).

4.4.4.2 General Random match model

The general random match model method is similar to the basic random
match model, except that the former does not make the single locally
relevant usage assumption (see Section 4.4.1). Assuming that the similar-
context similar-usage assumption is true, one cluster of similar contexts
corresponds to one unique usage, and for a given term t, the number of
different usages is the same as the number m(t) of clusters of similar

contexts to t.

For estimations, we have to make two further simplifying assumptions as

follows:

Equal Probability Cluster Assumption: Each cluster of similar contexts
(or each usage) is equally likely to occur.

Suppose that only h(t, q) number of unique usages (or clusters of similar
contexts) out of m(t) is relevant to query g. Also, suppose that the equal

probability cluster assumption is true. Then, P, (R=0|ted,q) is the

number of unique usages not relevant locally to the query g, divided by the

number of unique usages of term t:
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Po(R=0]ted,g= MO R (4.44)
because each unique usage, or each cluster of similar contexts, has an equal
likelihood of occurrence according to the equal probability cluster
assumption. Note that m(t) is independent of the query because it is the
number of possible usages. Given that Equation 4.44 is constrained by the
algebraic form of Equation 4.35 for the random match model, the only
variable in Equation 4.44 that needs to be dependent on the query is the

number h(t, q) of relevant usages to query g.

To estimate P, ,(R=0|ted), we need to change Equation 4.44 to be

independent of the query g. The variable m(t) in Equation 4.44 depends on
the term t, and not on g. The only variable left in Equation 4.44 is h(t, q)
which is dependent on q. Therefore, to make Equation 4.44 independent of q,

we parameterize h(t, q) by a(t):

Parameterized Number of Relevant Usage Assumption: For any term t,
only a(t) number of usages (or a(t) number of clusters of similar contexts)

is relevant to any query and «(t) is independent of the query.

While the preceding simplifying assumption may not be valid in practice,
the assumption implies the query-independent non-relevance probability

(QINRP) assumption, because Equation 4.44 becomes independent of the

query when h(t, q) is replaced by oft). Therefore, P, ;(R=0[ted) is

estimated as follows:

m(t) — a(t)

P, (R=0|ted)= O

(4.45)
Note that when oft) = 1, the estimation of p, , (7|t € d) using Equation 4.45

is the same as that of the basic random match model (Equation 4.35 in
Section 4.4.1).
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Intuitively, when a clustering algorithm only forms tight clusters, probably
more than one cluster is relevant to the query and the number of clusters not
relevant to the query may be scaled up accordingly. The parameter «(t) can
be used to scale back the number of relevant clusters to unity so that the
tight clustering effect of the clustering algorithm can be compensated for by

o(t). To appreciate this scaling effect, we rewrite Equation 4.45 as follows:

_(m@®)/a(t)) -1
(m®)/ (1)

P.o(R=0[ted) (4.46)

where m(t) is scaled down to m(t)/a(t), and the number of clusters relevant

to the query is always normalized to unity.
4.5 Clustering Approach Experiments

This section reports on the experiments of the clustering approach to

estimate the quantity —logP,,(R=0|ted) using the general random

match model. Several reference TREC ad hoc retrieval data collections are

used.

4.5.1 Set Up

We test our models with four TREC data collections (i.e., TREC-2, TERC-6,
TREC-7, TREC-2005). The TREC-7 documents belong to a subset of the
TREC-6 documents. Table 4.2 shows some statistics about the data
collections and the topics (queries) used for the data collections. Title (short)
queries are used in the experiments because they have few (i.e., one to four)
query terms, similar to the lengths of Web queries. For statistical inference,
we also performed various non-parametric (Wilcoxon) statistical

significance tests.
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Our retrieval system used the BM11 term weight [Robertson and Walker,
1994]. No pseudo-relevance feedback is used. All terms in the documents
and queries are stemmed using the Porter stemming algorithm [Porter, 1980].
Stop words are removed in both documents and queries.

Table 4.2: Statistics of the collections used in the experiments.

TREC-2 TREC-6 TREC-7 TREC-2005
Language English English English English
Topics 101-150 301-350 351-400 50 past hard topics
No. of documents 714,858 556,077 528,155 1,033,461
No. of relevant 11,645 4,611 4,674 6,561
documents
Storage (GB) 3.9 3.3 3.0 5.3

452 Query-Independent  Non-Relevance Probability

Assumption Validation

Section 4.2.3 makes three assumptions when the context-based ranking
formula in Section 4.2.2 is simplified to the basic ranking formula (Equation
4.16). One assumption, the location-invariant decision assumption, is
implied by the minimal context assumption when the local relevance
decision depends only on the context content, so there are only two
assumptions left to validate. In this subsection, we validate the remaining
assumption called query-independent non-relevance probability (QINRP)
assumption. It assumes that the non-relevant conditional probability

P,o,(R=0|ted,q) depends on the term t and not on the query g because

IDF is dependent on t and not on g. The significance of this assumption is

that is supports the following:

(1) The minimal context assumption is mainly responsible for the
performance degradation and modeling inaccuracies

(2) This assumption allows derivation of Equation 4.16 that forms the
basis of the TF-IDF term weights.

(3) It gives the parameterized number of relevant usages assumption of
the clustering approach (in Section 4.4.4.2), for the estimation of

P,,(R=0]|ted) using Equation 4.45.
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4) Finally, it is the focus of our subsequent experiments on Equations
4.35 and 4.45 instead of Equation 4.44.

To validate the QINRP assumption, we plot the IDF against the query-
dependent IDF, namely QIDF, which is based on an estimate of

P,o(R=0|ted,q) according to Equation 4.15. The conditional

probability’s relative-frequency estimate is the number of non-relevance
contexts divided by the total number of contexts of t. The total number of
contexts of t is the total occurrence frequency f(t, D) of term t in all the
documents of the collection D because one occurrence of t corresponds to
one context. The number of non-relevance contexts is deduced by
subtracting tf(t, D) from the number of relevant contexts of t for query g. To
simplify the estimation of the number of relevant contexts, we make the

following simplifying assumption by Chapter 3:

Context-Training Assumption: Given a query g, all contexts of all the

query terms of g in the relevant documents are relevant.

We make this simplifying assumption even though we know that not every
context of a query term in a relevant document is necessarily relevant (see
Figure 1.1 for instance). Using the previous assumption, the conditional

probability, P,,(R=0|ted,q) , is estimated by relative frequency

counting as follows:

f(t,D) - f(t,dge q)

P.o(R=0|ted,q)= f(t.D)

(4.47)

where f(t, dreLq) is the total occurrence frequency of t in all the documents
that are relevant to q (dreLq). Note that the above approximation of

P,,(R=0|ted,q) depends on the query because f(t, dreLq) depends on

the query g and this approximation is retrospective because we know which

document is relevant to facilitate relative frequency counting.
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Figure 4.3 plots the IDF and the corresponding estimated QIDF of all query
terms in the 200 TREC queries of TREC-2, TREC-6, TREC-7 and TREC-
2005 ad hoc data collections. It seems that IDF is positively correlated with
QIDF. We find that the exponential regression (the solid line in Figure 4.3)
fits the data points with a correlation of 71.1%, which is higher than the
correlations of other regression curves that we tried (i.e., linear, logarithmic
and power regression curves). The multiplicative constant in the exponential
regression has no impact on ranking because this multiplicative factor is
factored out in the basic ranking formula in Equation 4.16. However, the
exponential function cannot be factored out from Equation 4.16, so we
cannot replace QIDF by IDF directly. Consequently, we validate the QINRP
assumption by examining whether there are any statistically significant
differences in retrieval effectiveness using ranking based on QIDF and that
based on IDF for the four reference TREC data collections. In this

validation, the BM11 term frequency factor is used.
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Figure 4.3: Scatter diagram of IDF- and corresponding estimated QIDF values of title
query terms in the four reference TREC collections.

Table 4.3 shows the retrieval effectiveness of ranking using the basic
ranking formula with an estimate of QIDF and with IDF for the quantity,

—logP,,(R=0|ted,q) in Equation 4.14. The mean average precision

(MAP) differences between ranking using QIDF and using IDF are not
statistically significant, with a p-value of less than 0.5347 for all four TREC
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reference collections. This empirically supports the QINRP assumption, at

least for the four reference TREC data collections.

Table 4.3: Comparison of traditional IDF (IDF(t)) and query-dependent IDF (QIDF(t))
performance in different TREC data collections.

P@10 P@30 MAP R-Precision
TREC IDF QIDF IDF QIDF IDF QIDF IDF  QIDF
2 438 456 .399 404 193 193 (p=.6328)  .267 .263
6 .388 .386 .284 .281 218 207 (p=.9826) .266 .243
7 414 412 .300 .296 191 183 (p=.5347) .236 222

2005 .358 .342 312 .300 A75 175 (p=.7654)  .239 237

4.5.3 Estimating Number of Usages

This section examines whether the quantity —logP, ,(R=0][ted) is better

estimated using Equation 4.35, which is called the CLU-term weight in this
section. Using the modified minimum spanning tree clustering algorithm
described in Section 4.4.4, we obtain the value of m(t) (i.e., number of
clusters) for each of the query terms in TREC-6. However, we found that
there were too many contexts for clustering and the computational resources
ran out quickly. To estimate m(t) with less computational resources, we
systematically sampled the set of contexts of a term. If the number of
contexts is more than 1000, the systematic sampling ensures that we have a

sample of 1000 contexts. Otherwise, all the contexts are used.

An important parameter when clustering similar contexts is the context size,
which is 2n + 1 terms because there are n terms on each side of the term in
the middle of the context. Table 4.4 shows the retrieval effectiveness using
CLU weight (Equation 4.35) in comparison to IDF for TREC-6 data. The
parameter n controlling the context size varies between five and one
hundred, but the mean average precision (MAP) of ranking using the CLU
weight differed by no more than one percentage point except for n = 5. This
suggests that the clustering results are insensitive to context size. For

efficiency, our subsequent experiments use a context size of 31 (i.e., n = 15).
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Table 4.4: Performance of CLU(t) in TREC-6 with different context sizes used in the
clustering algorithm.

n P@10 P@30 MAP R-Precision
5 .3460 .2627 1727 .2086
15 .3560 .2687 .1836 2248
TREC-6 25 .3560 .2660 .1829 2191
50 .3520 .2640 .1842 .2210
100 .3540 .2647 .1835 2233

Table 4.5: Comparison of traditional IDF(t) and clustering approach (CLU(t)) performance
in different TREC data collections.

P@10 P@30 MAP R-Precision
TREC IDF CLU IDF CLU IDF CLU IDF CLU
2 438 .370 .399 .349 193 .165 (p=.0048) .267 .226
6 .388 .356 .284 .268 .218 .183 (p=.0090) .266 224
7 414 .362 .300 .252 191 .167 (p=.0205) .236 213

2005 .358 .288 312 272 175 153 (p=.0144) .239 211

We evaluated the CLU weights using other TREC collections (i.e., TREC-2,
TREC-7 and TREC-2005). The retrieval effectiveness of the CLU weights
is shown in Table 4.5. Compared with IDF, the MAPs of the system using
CLU-term weights are lower than MAPs of the same system using IDF for
all the reference TREC data collections. At 99.9% confidence level, none of
the collections showed significant difference between the MAP of the
system using CLU weights and that using IDF. However, at 99% confidence
level, TREC-2 and TREC-6 data showed a significant difference. It seems
that CLU is inferior compared with IDF for these cases.

4.5.4 Optimal Performance

We estimated the optimal CLU weight which is estimated by finding the
combination of machine enumerated CLU weights that produce the best
MAP for a query. These CLU weights are generated by feeding an integer
value between one and ten to m(t) in order to calculate CLU using Equation
4.35. Let us denote mop(t, g) to be the empirically identified optimal integer
value of m(t) for query g. The resulting estimated optimal CLU weight is

now defined as the OPT weight as follows:
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mopt (t’ q) -1

OPT (t,q) =-log
M, (t, )

(4.48)

If the best MAPs of the system using these machine generated OPT weights
are lower than the corresponding MAPs of the same system using IDF, then
we can conclude that the clustering approach to identify m(t) fails because

no other combination of CLU weights can produce better MAPs than IDF.

Table 4.6 shows the MAPs using the OPT weights (OPT columns) and the
MAPs using the IDF. For every reference TREC collection, the MAP using
the OPT weights is statistically significantly better than the MAP using the
IDF at 99.9% confidence level. This suggests that some method based on
the clustering approach may still have the potential to achieve MAPs as high
as, if not better than, the MAPs using IDF.

Table 4.6: Performance comparison of traditional IDF and OPT weights using different
TREC data collections.
P@10 P@30 MAP R-Precision

TREC IDF OPT IDF OPT IDF OPT IDF OPT
2 4240 4860 .3840 4426 1863  .2261* 2665 .2993

6 .3960 4340 .3080 .3346 2376 .2749* 2844 .3063

7 .3780 4780 .2820 .3439 711 2142* 2256 .2601
2005  .3380 4180 .3140 .3686 1673 .2104* 2365 .2807
(*) — indicates that the difference in MAP between IDF and OPT is statistically significant

using the Wilcoxon matched-pairs signed-ranks test with 99.9% C. I. (i.e., p < 0.001)

The MAP difference between the system using the OPT weights and IDF
for some queries are zero and these queries have single terms. This is
expected since OPT weight and IDF distinguish between terms. For single
term queries, both OPT weights and IDF have no document discrimination
capability. For multiple term queries, the MAP using OPT weights is higher
than the corresponding MAP using IDF, although the extent of MAP
improvement varies from one query to another. Therefore, we conclude that
the clustering approach has some potential in achieving retrieval

effectiveness as high as using IDF.
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4.6 Related Work

We believe that term locations play an important role in determining
relevance of documents to queries. The local relevance at certain location is
thought to depend on the document-context at that location. By shrinking
the context size to unity, we derive the well-known TF-IDF term weights
after making some further simplifying assumptions that are similar to the
derivations in the language model [Ponte and Croft, 1998], the binary
independence model [Robertson and Sparck Jones, 1976] and the logistic
regression model [Cooper et al., 1992; 1993]. From another perspective,
these document-context based models can be thought of as an extension of

existing TF-IDF term weights.

Inspired by the divergence model [Amati and van Rijsbergen, 2002] that
made use of random models, we derived the inverse document frequency as
the information content of the relevance decision

(ie,—logP,,(R=0|ted)) when a query term matches a document term.

This information content is interpreted as the non-specificity of term usage.
This non-specificity is derived by assuming a new usage of a term is
generated by a Poisson process or by counting clusters of similar contexts as

clusters of similar usages.

IDF was introduced by Sparck Jones [1972]. It is reasoned on the basis that
term occurrences follow a Zipf distribution. A more theoretically motivated
term weight w4 was introduced by Robertson and Sparck Jones [1976] as a
generalization of the IDF weights, and w, also appears in another context of
improving the coordination matching scheme by Yu and Salton [1976].
Since w, requires statistics about relevant documents, it is used in
retrospective experiments. Croft and Harper [1979] proposed the
Combination Match Model (CMM) that relates w, with IDF under specific
conditions. Later, Robertson and Walker [1997] stated a more general
formula (i.e., constant + IDF by Croft and Harper [1979]). IDF is still a

subject of current research [Joachims, 1997; Amati and Van Rijsbergen,
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1998; Hiemstra, 1998; Papineni, 2001; Aizawa, 2003; Roelleke, 2003]
where Robertson [2004] and Sparck Jones [2004] responded to recent
developments on interpreting IDF. More recent works (e.g., [de Vries and
Roelleke, 2005]) extend the TF-IDF term weights with more elaborate
variations. Given the many variations and improvements on the original IDF,

this chapter shows that the quantity, —logP,,(R=0|ted), of our basic

ranking formula (Equation 4.35) can be approximated by IDF [Sparck Jones,
1972] by assuming that the number of new term-usages follows a Poisson

distribution.

4.7 Chapter Summary

This chapter shows that TF-IDF term weights can be interpreted as making
relevance decisions. From this perspective, TF-IDF term weights are the
result of simplifying our novel probabilistic retrieval model that simulates
human relevance decision-making. This model distinguishes two types of
relevance: one common type is the document-wide relevance that applies to
the entire document, and the new type is the local relevance that only
applies to certain document locations. The model makes local relevance
decisions for every document location of a document and combines these
local relevance decisions into a document-wide relevance decision for the

document.

The significance of interpreting TF-IDF as making relevance decisions is its
potential as a catalyst for different retrieval models and term weights can be
interpreted by a unifying perspective: that information retrieval (IR) is about
relevance decision-making. Also, our novel probabilistic retrieval model
extends TF-IDF term weights to be dependent on the document locations
wherein the query terms occurred. These location-dependent TF-IDF term
weights (as in Equation 4.11) have the potential to form a basis for
developing more elaborate retrieval models for detailed simulation of

human relevance decision-making.
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Our probabilistic retrieval model ranks documents on the basis of the
probability of relevance. Hence, our model complies with the probability
ranking principle [Robertson, 1977]. When our model is simplified to the
basic ranking formula (Equation 4.16), it contains two major factors. The
term frequency factor is the occurrence frequency of the query terms in the

document. The remaining quantity, —logP,,(R=0|ted), is shown to be

IDF if we assume that: (a) a new usage of a term arrives at a constant rate
following a Poisson distribution; and (b) the probability of non-relevance
given term t is specified by our random match model of term usage. This
random match model assumes that: (a) the probability of selecting a
particular usage out of a set of possible usages is equally likely; and (b) a

term has at most one usage that is relevant to the query.

We experimented with another approach that estimates the quantity

—logP,,(R=0|ted) for validating our general random match model,

without assuming that the new usage of a term arrives at a constant rate
following a Poisson distribution. This approach groups similar contexts into
clusters and assumes that similar contexts in a cluster refer to similar usage
of the term. We propose a novel modified minimum spanning tree clustering
algorithm to find the number of clusters as the number of unique usages of a
term. Empirically, we found that the retrieval effectiveness of this approach
inferior to that using IDF. The problem is that our basic random match
model assumed that only one cluster is relevant to a query, but in reality

more than one cluster is relevant.

Recently, Lee et al. [2008] proposed a cluster-based re-sampling method
which is effective for pseudo-relevance feedback. In their approach, they
cluster the top-ranked documents and allow overlapping clusters while we
do not allow overlapping clusters. We can also try other clustering methods

which allow overlapping clusters in future studies.
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Chapter 5

Probabilistic Document-Context
Based Retrieval Model

In the previous chapter, we have shown that by assuming the minimal
context assumption (i.e., shrinking the context size to unity), the document-
context model can be interpreted as traditional TF-IDF term weighting
models. In this chapter, we no longer assert the minimal context assumption
and develop a probabilistic retrieval model based on the local relevance
decisions. The probabilistic model is based on the log-odds ratio that
combines two relevance decision component models which are designed to
mimic human relevance decision-making. They simulate what a human
evaluator does and make local relevance decisions at each document
location. These local relevance decisions of a document are combined to
produce the final document-wide relevance decision for the document.
Retrospective experiments with our models have produced mean average
precisions between 70% and 80% using various reference TREC ad hoc
retrieval test collections. For relevance feedback using the top 20 ranked,
judged documents, our model using fixed parameter values performs
statistically significantly better than support vector machines and the highly
effective, modified Markov random field model with a 90% confidence
interval across different TREC collections. These results show that the

proposed theory and its retrieval model are promising.
5.1 Introduction

In this chapter, we integrate the contextual information into our retrieval
model using a window, called a context, which is centered on a term in the
document. Essentially, a document-context is a concordance or a keyword in
context (KWIC) [Kupiec et al., 1995] (see Figure 1.1).
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We denote c(d, k) as the context in document d at location k. The context
size is specified implicitly because: (1) we want to formulate more general
models and make more general statements about contexts than committing
our models and statements to a particular form of a context (i.e., in this case
it is a string); and (2) we want to distinguish the context size n as a
parameter of the context c(d, k) from d and k, which are input variables. In

general, a context can be defined in many different ways.

Denote d[K] as the k-th term in document d, a context, c(d, k), at location k

in document d is a string of length 2n + 1 terms:

d[k-n].dlk-n+1] ... d[K] ... d[k + n - 1] d[k + n]

where the term d[Kk] is called the center or middle term of the context. In
general, the context size may not necessarily be defined by the number of
terms, and the left and right contexts do not need to have the same size. For
developing elementary models, we assume all contexts are of the above

form in this thesis.

Similar to Chapter 4, we make the context-based local relevance decision
(CLRD) assumption which limits the quantity of information within a
context of size n for making local relevance decisions. This is a simplifying
assumption for developing retrieval models, and it is not intended to be true
all the time. It is validated here by evaluating the retrieval effectiveness of
the retrieval models (see Section 5.3). The evaluator combines the local
relevance (Rqxgq) Of all valid document locations into a single document-

wide relevance (Rq,q). This can be defined mathematically as:

Riq =C{Ryyq kelLld]keN}) (5.1)

where N is the set of positive integers, |d| is the document length, and C(-) is
the general mathematical function that combines or aggregates the local

relevance.
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More specifically, d4x(-) denotes the local relevance decision at location k in
document d. According to the CLRD assumption, the input of local
relevance decisions is the context, c(d, k), and the query q. The local
relevance, Ry, at k in d for q is specified as follows:

Ryxq =04 (c(d,k),q) (5.2)

and the document-wide relevance, Rqq as in Chapter 4:

V(d,q) =R, =C({d,,(c(d,k),q) -k e[L]d ][],k e N}) (5.3)

by substituting Equation 5.2 into 5.1, where V(d, q) is the document-wide
relevance decision of document d for query g. For simplicity, local
relevance and document-wide relevance take values in the closed real

interval between zero and one [Robertson, 1976].

For occurrences of document terms that are not related to the query, we
assume that the outcomes of the user decision for these occurrences are not
locally relevant. Document terms that are related to the query may be the
synonyms, hypernyms or hyponyms of the query terms, as well as the query
terms themselves. Suppose that there is a function, G(q), that returns terms

related to g. We assume the following:

Generalized Query-Centric Assumption: For any query g and any
document d relevant to g, the relevant information for q locates only in the
contexts c(d, k) where ke[1, |d[], and d[k] € G(q). (i.e., the relevant information

locates around terms related to the topic).
When G(q) = g, the previous assumption is the same as the query-centric

assumption in Chapter 3 (A retrospective study of a hybrid document-

context based retrieval model).
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The query-centric assumption and its generalized version are simplifying
assumptions that are not intended to be true all the time. They substantially
simplify retrieval model construction, because they enable us to ignore all
the occurrences, where the documents terms are neither query terms nor
their related terms. Since the query-centric assumption has been validated
using various TREC ad hoc retrieval test collections in Chapter 3 that are
also used in this chapter, so it is not validated in this chapter. Assuming that
the generalized query-centric assumption is true, Rqxq IS Set to zero

whenever the term t = d[Kk] at location k in document d does not belong to
G(a) (i.e., {Raxq=0:d[K] & G(a)}).

For combining local relevance decisions, the DRD principle (see P. 45) in
[Kong et al., 2004] is based on TREC ad hoc retrieval evaluation policy
[Harman, 2004].

To interpret the DRD principle for our retrieval models, we need to specify
that a document part is a context. In order to express this principle using a
Boolean expression, the local or document-wide relevance is considered as
the value "true™ and the local or document-wide irrelevance is considered as
the value "false”. In this way, the document-wide relevance decision V(d, q)
for document d given g can be specified as a Boolean expression of local

relevance decisions as follows:

(d]

=V Ry, (5.4)

4 ka1

R

This is based on the DRD principle by disjoining the local relevance
decisions at each location of the document. The previous equation is a
realization of Equation 5.1 where C(-) in Equation 5.1 is realized as

disjunctions (i.e., v). According to the CLRD assumption, we have:

ld]

v(d,q) = v d(c(d,k),q) (5.5)
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The previous equation can be applied to describe the document context
model in Chapter 3 where Rqkq is the normalized log-odds value of the
document-context (i.e., w(d, k) in Equation 3.16), and the disjunction of the
previous equation is realized as the fuzzy disjunction [Dombi, 1982].

The ARD principle (see P. 45) in [Kong et al., 2004] captures the notion that
the user accumulates her or his evidence until at some point that the
evidence is overwhelming enough to enable her/him to make the document-
wide relevance decision. This principle is not directly based on TREC ad
hoc retrieval evaluation policy but intuitively it seems plausible that this

principle can be applied to ad hoc retrieval evaluation policy.

We formulate the ARD principle in terms of an arithmetic expression. In
this case, we need to define an aggregation operator, say denoted by @, that
aggregates the local relevance decision preferences at each location in the

document d as follows:

(d]

Roq = © Ryiq (5.6)

which is a realization of Equation 5.1 where C(-) in Equation 5.1 is realized
as the aggregation operator (i.e., @). According to the CLRD assumption,

the above becomes:

v(d,a) = ©2(c(d k). 9) )

The previous equation can be applied to describe the document context
model in Chapter 3, where Rqyq is the normalized log-odds value of the
document-context (i.e., w(d, k) in Equation 3.16), and the aggregation
operator is realized as the ordered-weighted aggregation (OWA) operators
(i.e., the PAICE [1984] model and the Waller and Kraft [1979]). Note that
these aggregation operators are n-ary rather than binary, and these operators

may not be associative.
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5.2 Probabilistic Relevance Decision Model

We can generate many different probabilistic models based on the notion of
(local) relevance decision-making. In this article, we have chosen to
combine two relevance decision component models into a log-odds ratio
that already forms the basis of existing probabilistic retrieval models (e.g.,
Binary Independence Model [Robertson and Sparck Jones, 1976]). The two
component models are the irrelevance decision model and the aggregate

relevance decision model.

Using our notation, the log-odds ratio [Fuhr, 1992] of the binary
independence model (BIM) by Robertson and Sparck-Jones [1976] is

PV (Rd,q = 1)

P(R=1]d,q) e« log——"——
PV(Rd,q = 0)

(5.8)

The probability of relevance in the numerator of Equation 5.8 is determined
by applying the ARD principle whereas the probability of nonrelevance in
the denominator of Equation 5.8 is determined by applying the DRD
principle as follows. Effectively, the log-odds ratio is pooling the aggregate

relevance decision principle and the disjunction relevance decision principle.

By the ARD principle, the aggregate relevance decision component model
aggregates the evidence found in events at each location in the document.
These pieces of evidence can be grouped into two types. One type, E;(d, ),
contains events, {(Rd,k,q =1):d[k] e G(q)}, of query term or query-related
term occurrences in the document, and these events are expected to be
locally relevant to the query g. Another type, Ex(d, g), consists of events,
{(Rd’k‘q =0):d[k] ¢ G(q)} , of non-query or non-query-related term
occurrences in the document, and these events are expected to be locally
non-relevant to g according to the generalized query-centric assumption.

Using these two types of events, the probability of relevance in Equation 5.8
based on the ARD principle is
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Py (Ryq=1)=P,,(E(d,q),E,(d,q))
:Pé,n(|: A A (Rdyk’q:l)}/\[ A A (Rd,k,qZO)D (5.9)

teG(q) kelLoc(t,d) teG(q) keLoc(t,d)
where Loc(t,d) returns the set of locations of t in d. We assume that the
events in the previous equation are all mutually independent in order to

simplify that equation as follows:

Pv(Rd,q:]-): H Hpa,n(Rd,k,qzl)XH Hpa,n(Rd,k,qzo) (5,10)

teG(q)nd kelLoc(t,d) teG(q) keLoc(t,d)

The above expression of combining relevance information can be
considered as aggregating evidence of relevance and non-relevance
information by conjunction, where the aggregation operator in Equation 5.6
is the multiplications in the previous equation. In addition, the ARD
principle effectively specifies the relevance values that the local non-
relevance variables can take in Equation 5.4 based on the two types of
events, E;(d, ) and Ex(d, q).

Assigning P, (R=1|c(d,k),t,q) to P, (R,,,=1) after assuming that the

CLRD assumption is true, the previous equation is re-arranged as follows.

Po(Ryg=D=TT [IP..(R=Ze(d.k)t.a)x]] []P..(R=0c(d.k).t,0)

teG(q) keLoc(t,d) teG(q) keLoc(t,d)

(5.11)

For the irrelevance decision component model, the probability of
nonrelevance in Equation 5.8 is derived according to the DRD principle
which is formulated according to TREC ad hoc evaluation policy [Harman,
2004]. The logical form of the DRD principle is Equation 5.4 which can be

rewritten as:

(5.12)
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Its probabilistic version is rank equivalent to:

|d|

Po(Ryq =1) o Y 10gP, (R, , =0) (5.13)

k=1

where each R,, . maps to P, (R,,,=0) . These probabilities of local

nonrelevance are partitioned into two groups by the generalized query
centric assumption: one group for terms in G(q) and the other group for

terms not in G(q):

—logPy (Ry,=0) =~ Z ZIOg Py n(Roxq=0)— Z ZIOQ P.n(Ryxq=0)

teG(q) keLoc(t,d) teG(q) keLoc(t,d)
(5.14)

Assigning P, (R=0]c(d,k),t,q) to P, (R, ,=0) after assuming that the

CLRD assumption is true, the previous equation becomes

_IOgPV(Rd,q:O):_ z Zlogpan(R:qC(drk)ltrq)_ Z zlogpﬁn(R:qC(d!k)vt!q)

teG(q) keLoc(t,d) teG(q) keLoc(t,d)
(5.15)

Substituting Equations 5.11 and 5.15 into the log-odds ratio in Equation 5.8,
this ratio is rank equivalent to:

P, (R=Lt, d,k)t,g,R=1
P(R=l|d,q)oc Z f(t,d)|ogM;_ Iog pa,n(c( )lt q )
teG(q) P,.(R=0,0) Glg)keloota)  Pon (C(d KL, q, R:O)

(5.16)

The above formula consists of two major components. The left component
may be considered as the product of the term frequency and the log-odds
that is similar to w, in [Sparck-Jones and Robertson, 1976]). In here, we
assign the probability of a half to both P;,(R=1 | t, q) and P;,(R=0 | t, Q)
since we are uncertain of the relevance given only the term t and the query q.
In this case, the left component in Equation 5.16 vanishes after taking the

logarithm. The right component is similar to the log-odds ratio of the
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document-context decision that appears in Chapter 3. The probabilities of
this component are computed similar to language models where they are the
product of the probabilities of the individual term occurrences. Therefore,
we call our model the Binary Independence Language Model (BILM).

In this article, the query terms and their related terms (i.e., G(q)) are the
union of (1) single query terms (i.e., S(q)), (2) coverage terms (i.e., C(q)),
and (3) expansion terms (i.e., E(q)). That is, G(q) = S(q)wC(q)wE(q). The
single query term (i.e., S(q)) refers to the original individual query terms of
the topic. The coverage term (i.e., C(q)) refers to the set of selected terms
according to their number of occurrences with the single query terms. That
is, terms occur frequently with query terms. For each topic, the coverage
terms are selected by the number of occurrences of the term in the contexts
of the original query terms in the relevant documents from the top X. In
other words, the coverage of a term means the number of contexts of query
terms containing the term. After the coverage of all terms occurred in the
relevant documents from the top X are calculated, top kco, terms are selected.
We believe that the higher the coverage of a term, the higher is the
correlation between the term and the query terms. Lastly, the expansion
query term (i.e., E(q)) are the terms obtained from the relevant documents
from the top X according to the relevance model (RM) [Lavrenko and Croft,
2001]. Top kexp expansion terms are selected. The main difference between
coverage terms and expansion terms is that coverage terms occur frequently

with query terms while expansion terms may not.

Given the three sets of terms which are believed to be highly related to the
topic, we define five types of contexts according to their middle term; they
are (1) contexts with a query term teS(q) in the middle, (2) contexts with a
query term teS(q) in the middle and there is another query term seS(q)
where s # t occurs within a window size W with t, (3) contexts with a query
term teS(q) in the middle and immediately followed by another query term
seS(q) where s # t, (4) contexts with a coverage term teC(q) in the middle

and (5) contexts with an expansion term teE(q) in the middle.
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The first three types of contexts have an original query term (i.e., S(q)) as
the middle term. The second type allows two different original query terms
occur within a distance W while the third type requires the two different
original query terms to occur as a phrase. To define the second and third
types of contexts, we define the locations where such contexts occur as
follows. Let Locy(t, g, d) returns the set of locations of term t in document d
such that there is another term seS(q) where s#t immediately follows t, that

is, a 2-term phrase t- s occurred in the locations:

Loc, (t,q,d) ={k :1<k <|d |,d[K] =t,d[k +1] € S(q), d[k +1] =t} (5.17)

Let Loc,(t, g, d) returns the set of locations of term t in document d such that there

is another term seS(qg) where s=t occurs with the term t within a distance of W:

Loc, (t,q,d) ={k:1<k <|d |,d[k] =t,d[k £ x] € S(q),d[k £ X] = t,x <W}
(5.18)

From Equation 5.16, the right component used in the rank function of BILM
is the log-odds ratio of the document-context decision. In practice, we can
only obtain an estimate of these probabilities, and we make a weaker
assumption that the estimates are only rank equivalent to the actual

probabilities as follows:

og LeaC@ I QR log (N CCASS R—1))WS“’

186 kelootd)  Pan (c(d,k)lt,q, R:O) teS(q) keLoc(t,d) ( cnS(C(d K)It,q, R=0))
log (B.,.u (c(d, k) It g, R)) "
te5(q) keLoc, (t.q.d) (ﬁanw C(d K|t g, R:O)

w,, (t)

B, (c(d, k)|t q,R= 1)"""

(c(d, k) |t, g, R=0) )W“
(1)

log (
teS(q) keLoc, (t,q,d) ( 5.n.P

g Prac (000110, R0)”
el (B, (e, 10, R))"
(FA’ME (c(d, k) |t,q, Rzl))we(t)

W (1)

log
teE(q) keLoc(t,d)T (d,k,E(q)) (Pa,n,E (C(d K [t,q, R:O))

(5.19)
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where T(d, k, E(q)) is the condition that the number of unique expansion
terms in c(d, k) is greater than two plus the context has a query term. When
the context of an expansion term has less than three different expansion
terms or does not have a query term, this context is assumed to be not
related to the query, so it is ignored. Equation 5.19 is used in retrieval for
ranking documents. There are 5 components on the right hand side as G(q)
= S(q)wC(q)wE(q). Components other that the mentioned 5 ones can also be
used but experiment results show that using the 5 components can produce a
better result. For S(q), it is further divided into single query term, query
terms occurs in proximity and query terms occurs in a phrase. As a result,
the log of the 10 probabilities (each log-odds has 2 probabilities) are
interpolated through the weights ws(t), ws(t), W (t), ww(t), wp(t), Wy (t), we(t),
W (1), We(t) and we-(t). In the following discussion, we only discuss ws(t) and
wg(t) as others are done similarly. We added the weights where ws(t) > 0
and wg(t) > 0 to the probabilities such that these weights can be calibrated to
enhance the retrieval performance. If wg(t) equals we(t), then the estimate
becomes the original maximum-likelihood estimate of the probabilities. ws(t)
and wg(t) control the weights of individual relevance model (i.e., the
numerator of the ratio) and irrelevance model (i.e., the denominator of the
ratio), respectively. We believe wg(t) and wg(t) are connected to the
frequency of term t in the training data such that the more occurrence of the
term t in the training data, the more the importance of the context having
term t as the middle term. This means that the weight is monotonically
increasing with respect to the term frequency. We express this in a form
similar to the BM term frequency factor [Robertson and Walker, 1994] as

follows:

freq, (t) + o,

w_(t) =w,

=+, +a, (5.20)
freg..(t) +o..

W, (1) = w,, x—1eds O+ (5.21)

freq, (t) + 9, + o,
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where ws > 0 and ws > 0 are constants which can be calibrated in the
experiments. The functions freqs(t) and fregs(t) are the normalized
frequencies of the term t according to the occurrences of t in relevant
documents and irrelevant documents respectively. The parameter & in (0,1)
is used for smoothing so that ws(t) does not equal to 0, and similarly for &.
The parameters o and o are used to control the corresponding curvatures
or bendings of the monotonic curves, respectively. We normalize the raw
frequencies fs(t) and fs(t) for term t occurring in relevant and irrelevant
documents, respectively, by dividing them by the corresponding maximum

frequencies scaled by the parameters, ¢s and cs, respectively, as follows:

o f(@®) y

freqs(t)——mtax{ f.O C, (5.22)
o fu® y

freqs'(t)_—mgx{fs.(t)} Cs: (5.23)

Note that the parameters, ¢ and ¢y, are greater than zero.

The context probabilities are the multiplication of the probabilities of

individual context terms:

1

P...s (c(d,K)t,q, R=1)=2ﬁ > s ((d, K] e[n+1]=t,q,R=1) (5.24)

P.s(c(d,k) [t,g,R=0)=]P,.s(c(d, k)| c[n+1] =t,q,R = 0) (5.25)

S J—
=}

similarly determined for the other four types of context probabilities (i.e.,

Poow (), Prap (), Ponc() and Py, () in Equation 5.19.

Using the notation that u refers to some context term c(d, K)[l], let f(u, c(d,
k)) be the raw frequency of the term u in the context c(d,k). Let Rx and Ix be
the top X relevant and irrelevant documents from the initial retrieval list,

respectively. The conditional relative frequency estimates of u are:
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i z Zf(u,c(d,k))
Pfreq S(u |t,q, R :1) = SRy ket Y (526)
' f(v,c(d,k
desz keLoc(t,d)ve;d,k) (V C( ))

3 Y f(ue(d k)

5 N dely keloc(t,d)
Pfreq,s (U |t’q1 R= O) - Z Z Z f (V,C(d,k)) (527)

dely keloc(t,d)vec(d k)

The conditional relative frequency estimates of a term u may be zero, when
the term u does not occur in the contexts of relevant or irrelevant documents,
during re-ranking. The zero values will propagate to the context
probabilities which can cause anomalies in ranking of the documents during
retrieval. This is the problem of zero probability similarly found in the
language modeling approach [Ponte and Croft, 1998], and smoothing [Chen
and Goodman, 1996; Zhai and Lafferty, 2004] of the distribution of terms is
a solution to this problem. The basic idea of smoothing is to adjust the
distribution of terms so that zero probability will not assign to unseen terms.
In Chapter 3, we have tested a similar model using three interpolation-based
smoothing techniques namely additive smoothing [Lidstone, 1920; Johnson,
1932; Jeffreys, 1948], Jelinek-Mercer smoothing [Jelinek and Mercer, 1980;
Zhai and Lafferty, 2004] and absolute discounting [Ney et al., 1994; Zhai
and Lafferty, 2004] and found that the performance of the three smoothing
techniques are close to each other when the parameters are set appropriately.

In this chapter, we used Jelinek-Mercer smoothing:

) >3 f(u.c(d k)
Pﬁ,n,s (U |t, qv R:l) = 5 | X ﬁfreq,s (U |t7 ql R:]-) + (1_5’m7re|) 1 stoeltd)

m.re mEAST ST (v, e(d, k)
d keloc(t,d) vec(d,k)
(5.28)
>3 f(ucd k)

Pa,n,s (U |tv qv RZO) = 5jm7ir| X ﬁfreq,s(u |t7 qv R:O) + (1_5jm7irl) R

2 2 2 flvedk)
d keloc(t,d) vec(d,k)
(5.29)

where dm_rer €[0, 1] and &m in €[0, 1] are the corresponding smoothing
parameters. The probabilities for the other four types of contexts are

determined similarly.
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Note that f’a’nls(ult,q,Rzl) and P, s(u|t,q,R=0) are computed

differently because of the different number of training data. When
estimating the irrelevance probability, we make use of the bottom end
documents. The IrlBotStart parameter controls the number of bottom end
documents used. For documents ranked below IrlBotStart, the contexts of
these documents are treated as irrelevant and add to the irrelevance model.
Since the number of contexts in bottom end documents is greater than the
number contexts in top X judged irrelevant documents, we weight the
frequency count of terms in the contexts of bottom end documents with
IrIBotWeight<[0,1] when used to estimate the irrelevance probability. As a
result, the number of training data for the irrelevance model will not be too
small. When the number of relevant contexts of a term teG(q) is too small,

the relative frequency estimate, ﬁﬂeqys(u |t,q,r), will be inaccurate. In order

to solve this problem, we bootstrap using the relevant contexts of term
seG(q) other than term t where such contexts are similar to the contexts of t.
The similarity of contexts is calculated using log-odds. This log-odds score

of other relevant contexts c(d, k) where deRy, d[k]eG(q) and d[K] =t is

log P(c(d, k) [t,q,R =1) —log P(c(d, k) [t,q, R = 0) (5.30)

These contexts are ranked by this log-odd score, and their top T% is also
considered as the contexts of t for raw frequency counting (i.e., f(u, c(d, k))
and f(v, c(d, k))) when the number of relevant contexts of a term teG(q) is

below a threshold, relCon.

When there is no relevant document in the top X ranked documents, the best
performing parameter values are quite different from the ones when there
are relevant documents. Therefore, we use two sets of parameter values: one
set calibrated when there is at least a relevant document in the top X and

another set calibrated when there is no relevant document in the top X.
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5.3 Experiments

We performed two sets of experiments. One set is relevance feedback (RF)
experiments which use the top 20, judged documents (i.e., X = 20) from the
initial retrieval for training. Another set is retrospective experiments which

uses all the judged documents for training.
5.3.1 Relevance Feedback Experiments

The proposed model is trained using the TREC-2005 ad-hoc retrieval text
collection and we perform experiments on TREC-6, -7, -8 and -2005
collections using fixed, calibrated parameter values. TREC-7 and TREC-8
use the same text collection which is a subset of the TREC-6 text collection.
Title queries are used in the initial retrieval which is performed using the
query likelihood (QL) model [Lafferty and Zhai, 2001] of the Indri retrieval
system [Strohman et al., 2004]. The results of the initial retrievals are shown
in Table 5.1. Top 20 documents from the initial retrieval list are used for
relevance feedback. The relevance judgements are from the TREC

judgement files for the corresponding collections.

Table 5.1: Baseline results using the query likelihood (QL) model of the Indri system

TREC P@10 MAP R-Precision
6 400 247 292
7 454 .200 .250
8 446 253 .300
2005 452 207 263

We compare our results with those produced by the support vector machine
(SVM) using the SVM_Light package [Joachims, 1999]. After testing on
TREC-2005, we use the radial basis kernel function for SVM. We also
compare our results with the combination of query expansion (RM3)
algorithm [Lavrenko and Croft, 2001] with Markov random field modeling
(MRF) [Metzler and Croft, 2005] as in [Lease, 2008] which produced the

123



best results in the relevance feedback track in TREC-2008. We produced the
residue result, of which the judged documents are removed from the
judgement list when calculating the performance measures such as the mean

average precision (MAP).

Table 5.2: RF results from our proposed model, SVM and the modified MRF
P@10 MAP R-Precision

TREC 5urs TSYM TMRFE | Ours | SYM | MRF | Ours | SYM | MRF
6 | 423 | 405 | 414 | 242°F | 216 | 229 | 278 | 259 | .264

7 A71 | 468 | 472 | 275%F | 236P | 247%| 295 | .291 | .295
8 482 | 475 | 480 | 267%F | 228° | 248% | 285 | .271 | .274
2005 | .579 | 566 | .576 | .340°P | .310 | .318 | .357 | .338 | .344

o - The result compared with SVM is statistically significantly different with a 90% C.I.
B - The result compared with RM3 is statistically significantly different with a 90% C.1.

Table 5.2 shows the results of our model, SVM and the modified MRF. All
the three methods use the same amount of relevance information which is
the top 20 judged documents from the initial retrieval list. For our model
and SVM, they use both relevant and irrelevance documents from the top 20
during training. However, for the modified MRF algorithm, only relevant
documents from the top 20 are considered. From the results, our model
performed significantly better than the effective SVM and the highly
effective, modified MRF model with a 90% confidence interval (C.I). This
is achieved for TREC-6, TREC-7 and TREC-8 test collections using fixed
parameter values that are calibrated by the TREC-2005 retrieval
performance. This demonstrates that our model is highly effective which is

not very sensitive to the calibrated parameter values.

5.3.2 Retrospective Experiments

In the retrospective experiments, we use the whole initial retrieval list
instead of using top 20 documents from the initial retrieval list for relevance
feedback. Similar to Chapter 3, retrospective experiments are used to

validate our retrieval models because: (a) the experiments can reveal the
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potential of the models; (b) they can isolate the problems of the models from
those of the parameter estimation; and (c) they can provide information
about the major factors affecting the retrieval effectiveness of the models.
Table 5.3 shows the results of the retrospective experiments using our
model, SVM and the modified MRF model.

From the results, we can see that SVM on average outperforms our model
and the MRF model in retrospective experiments for all the 4 collections
tested. SVM performs statistically significantly better than MRF in all
collections tested with 90% C.I. When compared with our model, only
TREC-7 is statistically significantly better for SVM. Good SVM
performance is probably due to the fact that SVM optimizes its performance
for each query in each of the collections whereas our model and the MRF
model are calibrated using TREC-2005 and are tested on the 4 collections
using the same parameter values. Our model outperforms the highly
effective MRF model statistically significantly in the 4 collections with a
90% C.1.

Table 5.3: Retrospective results from our proposed model, SVM and the modified MRF

P@10 MAP R-Precision

TREC Ours | SVM | MRF | Ours | SVM | MRF | Ours | SVM | MRF

6 |.922 | .930 | .816 | .796" | .813" | .501* | .846 | .887 | .549
7 | .896 | .986 | .863 | .774°P | 806" | .562* | .816 | .873 | .494
8 |.884 | .992 | .859 | 786" | .793" | 598 | .834 | .909 | .527
2005 | 912 | .992 | .875 | .793 | .812P | .621* | .868 | .924 | .548

o - The result compared with SVM is statistically significantly different with a 90% C.I.
B - The result compared with RM3 is statistically significantly different with a 90% C.1.

5.4 Chapter Summary

In this chapter, we have showed the development of the probabilistic
document-context based retrieval model and tested it with relevance
feedback experiments and retrospective experiments. Our qualitative

relevance decision model is developed into a probabilistic retrieval model
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based on the log-odds ratio. For retrospective experiments using a variety of
TREC English ad hoc retrieval test collections, the mean average precisions
(MAPs) of these probabilistic models are between 70% and 80%. For
relevance feedback using top 20 ranked, judged documents, our model is
statistically significantly better than the highly effective state-of-the-art
models at 90% confidence level. These provide empirical support for both
our retrieval model and the proposed theory. In addition, this qualitative
model is supported by the results in Chapter 3 that develops a hybrid
retrieval model combining the log-odds, the extended/fuzzy Boolean model
and the estimation methods in language models. In retrospective
experiments, this hybrid model achieves similar MAPs as the new
probabilistic retrieval model. This suggests that the qualitative model has

general significance.

The main difference between the probabilistic document-context model used
in this chapter and the hybrid document-context model used in Chapter 3 is
that the probabilistic model assumes the generalized query-centric
assumption while the hybrid model assumes the query-centric assumption.
From the retrospective experimental results, the probabilistic model
outperforms the hybrid model. This suggests that the generalized query-

centric assumption is preferred over the query-centric assumption.
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Chapter 6

A Split-List Approach for
Relevance Feedback in Information
Retrieval

In this chapter we present a new algorithm for relevance feedback in
information retrieval. The algorithm uses document-contexts by splitting the
retrieval list into sub-lists according to the query term patterns exist in the
top ranked documents. Query term patterns include single query term, a pair
of query terms occur in a phrase and in proximity. The document-contexts
of a particular query term pattern are extracted from each of the ranked
documents in the ranked retrieval list. Therefore, each sub-list contains the
document-contexts having the same query term pattern. The document-
contexts are then ranked in each of the sub-lists. The scores of the top
ranked document-contexts for the same document are summed together to
form the document score. The document with the highest score is used for
feedback. The algorithm is an iterative algorithm which takes one document
for feedback in each of the iterations. We experiment the algorithm using
the TREC-6, -7, -8 and -2005 data collections and we simulate user
feedback by the TREC relevance judgements. From the experimental results,
we show that our proposed split-list algorithm is reliably better than a
similar algorithm using maximal marginal relevance but without document-

contexts.
6.1 Introduction

Relevance feedback is known to be effective for improving retrieval
effectiveness [Rocchio, 1971; Salton and Buckley, 1990; Harman, 1992].
Relevance feedback requires user’s efforts and time to judge whether a
document is relevant to the user’s information need. When a user judges a

particular document to be irrelevant, in the user’s point of view, some
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efforts and time is wasted because the document provides no relevant
information to the user. As a result, users are more willing to judge relevant
documents than non-relevant document. In the relevance feedback process,
it is better to have more relevant documents to be judged by the user.
However, on the other hand, judging two very similar relevant documents
also wastes user’s effort and time because the information contained in the
two documents is nearly the same. Judging two very similar relevant
documents provides no additional relevant information to the user.
Therefore, two main factors would affect the user’s satisfaction in the
relevance feedback process:

@) the number of relevant documents (the more the better), and,

(b) the diversity of the documents (the more diverse the better).

In standard relevance feedback process, the user would judge documents
from the top ranked ones in the initial ranked list by assuming that the top
ranked documents contain more relevant information. In some cases, the top
ranked documents are very similar to each other or even identical. Judging
the relevance of the nearly identical documents provides no additional
useful information to both the user and the retrieval system. Therefore, the
set of documents used for relevance feedback may not be the top ranked
ones. This is called active feedback [Shen and Zhai, 2005] in which the
retrieval system actively chooses suitable documents for the user to judge

for relevance.

Our proposed algorithm uses document-contexts by splitting the retrieval
list into sub-lists according to the query term patterns exist in the top ranked
documents. Figure 6.1 shows an example of the lists of document-contexts
for the query “Hubble Telescope Achievements”. Note that only the lists of
document-context for single query terms are shown. By splitting the
retrieval list into sub-lists, we hope that the proportion of relevant
documents in a particular sub-list will be higher than that of the others.
Therefore the scores of document-contexts in the particular sub-list will be
higher. By that we can increase the number of relevant documents judged by

the user in the relevance feedback process. Also, the set of documents being
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judged by the user in the split-list approach is different from the set of top
ranked documents. Hence it can increase the diversity of the documents

being judged.

A document

query = { Hubble Telescope Achievements }

ol

. the expansion rate by using the Earth-orbiting Hubble telescope in measuring distances to 800 stars of "

/

A context for Hubble List of contexts

/
O O O

Figure 6.1: Ilustration of the lists of document-contexts.

Hubble

Telescope

Achievements

The rest of the chapter is organized as follows. In section 6.2, we outline the
standard relevance feedback used in our experiments. In section 6.3, we
describe some active feedback algorithms including the gapped method and
cluster method in [Shen and Zhai, 2005] and the maximal marginal
relevance method [Carbonell and Goldstein, 1998]. Section 6.4 describes
our split-list approach using document-contexts. We show the experiment

results in Section 6.5 and Section 6.6 concludes the chapter.

6.2 Standard Relevance Feedback

In this section, we outline the baseline relevance feedback algorithm used in
the experiments. We use the BM25 model [Robertson and Walker, 1994] as
the retrieval model throughout the relevance feedback process. Equation
2.16 shows the ranking equation of the BM25 model with k; and b being the
model parameters. For a query ¢, an initial retrieval is performed using the
BM25 model. In order to increase the number of top ranked relevant
documents for relevance feedback, pseudo-relevance feedback (PRF) is

performed after the initial retrieval.
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In the PRF, the top Ny documents from the initial ranked list are assumed
to be relevant, denote this set of top ranked documents to be dy (i.€., | dors |
= Npri). Terms are extracted from dys for query expansion. The terms in the

dprf are ranked using the following formula:

f(t,d,) « log 52 (D) — df (t) + 0.5

Score . (1) =
ot (1) f(t,d,,)+1 df (t) +0.5

(6.1)

where t is a particular term occurs in dys, f(t, dp) is the occurrence
frequency of t in the set of assumed relevant documents dys, D is the
collection of documents, card(D) is the cardinality of D which is the number
of documents in D and df(t) is the number of documents in D containing t.
The is actually the TF-IDF weight of term t.

After all the terms in dys are ranked using Equation 6.1, top Ky terms are
extracted. Denote the set of extracted terms to be ¢ i+ Such that | Qe prf | =
Kpri. The scores of the Ky terms are normalized so that they can combine
with the original query g to prevent shifting the topic. The combined query
Qprf 1S the union of g and ge_prt With the weight of each term being:

f(t,q) Score, (1)
Wtg, )= a, e (l-a,
(t,Gpr) = X Zf(U,CI) +(d-a,) ZSCOFEM ) (6.2)
ueq UEe_prf

where w(t, gurr) is the weight of the term t in the expanded query g, f(t, Q)
Is the occurrence frequency of t in the original query q and o €[0, 1]is a
mixture parameter controlling the weights of g and ge prr. When apee =1, it is

the same as the initial retrieval using the original query.

A second retrieval is performed using the BM25 model with the expanded
query gprir. Top Nis documents are judged by the user. In our experiments, we
simulate user relevance feedback using the TREC relevance judgement files.

Denote dis e t0 be the set of judged relevant documents with size Ny and
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“dyt in to be the set of judged non-relevant documents with size Niy such that

Nrel + Nirn = Nt Similar to PRF, terms in dis e and dis jr are scored using

r(t)+0.5
Score (t) _ f (t, drf_rel) o N rel r(t) +05 6.3
LT P P df (t) — r(t) + 0.5 (6:3)
card(D) - N, —df (t) +r(t)+0.5
( i(t)+0.5 j
Scorerf_i” (t) _ f (t1 drf_irl) lo NirI - I(t) +0.5 (64)

ftdy )il 0 df (t) —i(t) + 0.5
card(D) - N, —df (t) +i(t) + 0.5

respectively where f(t, dyt re) is the occurrence frequency of term t in the set
of judged relevant documents dys rel, r(t) is the number of documents in dys rel
containing t, f(t, dis i) is the occurrence frequency of term t in the set of
judged non-relevant documents dys i and i(t) is the number of documents in
di in containing t. The second term in Equation 6.3 is the w,; weight
[Robertson and Sparck Jones, 1976] in Equation 2.11. IDF is not used here

because we now have some relevance information.

Terms in the set of judged relevant documents (d ref) and judged non-
relevant documents (ds i) are ranked by Equations 6.3 and 6.4 respectively.
Top Kt rel terms are extracted from the judged relevant documents (Qe rf rel)
while top Ky i terms are extracted from the judged non-relevant documents
(Qe_rf in). Denote ge (f to be the union of the two sets of terms with the

weights of terms being:

SCorerf_rel (t) SCorerf_irl (t)

S score, @ P S scorey @) 69)

UEe rf rel UEle rf in

W(t! qe_rf ) = ﬂrf

where f €[0, 1] is the mixture parameter controlling the weights of
extracted relevant terms and non-relevant terms. Note that the range of w(t,
qr ) is between -1 and 1. If a term has a weight less than 0, it is used to

decrease the document score in the final retrieval.
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Finally, g is the union of the terms from the original query g and the

extracted terms ge s With the weights of the terms:

o
w(t,q,) = o WJF Q- )W(t, g, ) (6.6)

ueq

where ot €[0, 1]. A final retrieval is performed using the BM25 model with
Orr. Figure 6.2 describes the flow in our standard relevance feedback
experiment. In active feedback experiments, changes are made in the RF
block in Figure 6.2 such that the judged documents are not the top ranked

ones.

BM25( g, ky.b) }le'!:ialal
etriev

¥
1. Top Npzy documents are assumed to be relevant
2. Top Kprf terms are extracted (qe_mr)
3. Combine g and ge;mr (qmr) >_ PRF

BM25(q . kv.5)

¥
1. Top Ny documents are judged by the user
2. Top Ky rej terms are extracted from relevant documents (g, o ral)
3. Top Ky i/ terms are extracted from irrelevant documents (g, :Jr i)

4. Combine e rf rel and Qe rf ir (ge_rf)
5. Combine g and Gg pf (Q‘;_f) > RE

Y

J\

¥
BM25( gy . ky. &)
L
Final Retrieval List

Figure 6.2: The flow of standard relevance feedback in our experiments.

6.3 Related Work

In this section we review some active feedback algorithms which do not use
top Ny ranked documents for relevance feedback. By modelling active
feedback using the risk minimization framework for retrieval [Lafferty and
Zhai, 2001], Shen and Zhai [2005] formalized the active feedback problem
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as a decision making problem and experimented two active feedback
methods. One is Gapped-Top-Ns and the other one is NiCluster-Centroid
method. Maximal marginal relevance (MMR) [Carbonell and Goldstein,
1998] is also described in this section.

Gapped-Top-N

In the Gapped-Top-N,s method, instead of judging the top Ny ranked
documents, a gap of G documents is introduced between two judged
documents. As a result, the i-th judged document is ranked at i+(i-1)G. For
example, if G = 2, the set of judged documents will have rank numbers 1, 4,
7,..., Nt (Ni+-1)2 in the retrieval list. With G = 0, the Gapped-Top-Nys is
essentially the standard method using top N; ranked documents (Figure 6.2).
The Gapped-Top-N; method can be thought of clustering the top (G+1)N
ranked documents in the retrieval list based on their relevance scores such
that the first cluster contains the first G+1 documents, the second cluster
contains the next G+1 documents, etc. The document with the highest
relevance score in each of the clusters is used for relevance feedback. It tries
to capture diversity of documents by skipping documents with little
difference in their relevance scores. Figure 6.3 shows the flow of the

Gapped-Top-N, method used in our experiments.

Nt-Cluster-Centroid

In order to directly capture diversity, explicit clustering is performed among
the top N¢. documents. The top N¢. ranked documents are clustered into Ny
clusters and a representative document in each of the clusters is selected to
be judged by the user. In [Shen and Zhai, 2005], the K-Medoid clustering
algorithm [Kaufman and Rousseeuw, 1990] is used to cluster the top N
documents and the distance function used is the J-Divergence [Lin, 1991].
The clustering algorithm tries to group the documents into clusters such that
documents within a cluster are similar to each other while documents belong
to different clusters are dissimilar to each other. Similar to K-Means

clustering algorithm [MacQueen, 1967], the K-Medoid clustering is a non-
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hierarchical clustering algorithm which minimizes the distance between

documents in the clusters. The K-Medoid clustering algorithm is less

sensitive to outliers to K-Means clustering algorithm. Figure 6.4 shows the

details of the K-Medoid clustering algorithm. Note that when N¢. = Ny, the

K-Medoid clustering is the same as the standard relevance feedback

algorithm (Figure 6.2).

BM25( g, k;.b) }Rhﬁﬁalal
etriev

v
_"\-\.\
1. Top Nprf documents are assumed to be relevant
2. Top Kprf terms are extracted (qe_wr)
3. Combine g and
q e prf (qlmj") } PRF
¥

BM25(q,,. k1. 5)

¥

J\

[—

. Documents with ranle numbers 1, 24+G, 3+2G. ..., ] §}.~+ ( "L:,}r -G
are judged by the user

TopKyf rei terms are extracted from relevant documents (g, ¢ o)

- Top Ky jr terms are extracted from irrelevant documents (g, 7 /)
- Combine g, 1 rel and e rfir (g, rj") > RE
. Combine g and g, of (q,f)

k2

'-J'i-lh'-.o-'l

v
BM25(g,r. ky.b)

¥ -/
Final Retrieval List

Figure 6.3: The flow of Gapped-Top-N; method in our experiments.

Algorlthm K-Medoid Clustering

. Randomly select N of the N, documents as the medoids

. Associate each non-medoid document to its closest medoid
. Compute total distance which is the sum of distances from

all documents to their medoids

. For each medoid document d,

For each non-medoid document d,
Swap d, and d, and compute the new total
distance

. Select the medoids with the smallest total distance
. Repeat Steps 4 to 8 until there is no change in the

medoids

Figure 6.4: Algorithm for K-Medoid clustering
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For a pair of documents d; and d;, the KL-Divergence [Kullback, 1968]
measures the difference between the two documents by considering their

underlying probability distributions:

P(t]6)
P(t]6))

]

Dy (d;11d;) = > P(t]6)log (6.7)

where & is the underlying language model for the document d; which is a

probability distribution defining the probability of seeing a certain term t:

f(t,d,)
di |

f (t, D)
|D]|

P(t]6)=0auy, +(—amg) (6.8)

where f(t, d;) is the occurrence frequency of term t in the document d;, |di| is
the length of d;, f (t, D) is the occurrence frequency of t in the collection D,
ID| is the collection length which is the sum of all document lengths and
oy €[01] is the smoothing parameter used for mixing the document

frequency with the collection frequency in order to avoid zero probability.

Dirichlet smoothing is a common method for smoothing:

Fimd Ty (6.9)

where g > 0 is a constant.
The KL-Divergence measure is non-symmetric (i.e., Dx.(di||d;) # Dkc(dj||d)).
To obtain a symmetric measure, the J-Divergence [Lin, 1991] is defined as

follows:

D, (d; 1d;) = Dy (d; [[d}) + Dy (d [ d5)

~ P(t]6,) P(t]9;)
_ZI:P(twi)logP(tlej)JrZP(tlHj)logP(tlei)

i i 1o P10

_Z(P(twi) P(t|6;))xlog h10) (6.10)
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The J-Divergence is used as the distance function in the K-Medoid
clustering algorithm. Figure 6.5 shows the flow of the NCluster Centroid

method used in our experiments.

BM25(g.ky.b) }—Rlniﬁalal
etriey
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1. Top Nprr documents are assumed to be relevant
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¥

. Cluster top N documents into Ny clusters by K-Medoid algorithm
. The Ny documents being the medoids are judged by the user

- TopKyf rej terms are extracted from relevant documents (g, ¢ o)

- Top Kyf i terms are extracted from irrelevant documents (g, ¢ ;1)

. Combine 9z rf rel and e rf irl (Qe_zj‘) >~ EF
-Combine g and g, ,r (g, )

v
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Figure 6.5: The flow of NCluster-Centroid method in our experiments.

Maximal Marginal Relevance (MMR)

In 1998, Carbonell and Goldstein [1998] introduced the maximal marginal
relevance. It is an iterative algorithm which selects a document d; in each of

the iterations by optimizing:

MMR(J, q) =

arg x| ST (,,6) - (- o) maxsim, (@,0,) | 1Y

where J is the set of currently judged documents in the relevance feedback

process, g is a query, Simy(d;, q) is a similarity measure (relevance score)
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given by a retrieval model, Simy(d;, d;) is a similarity measure between two
documents d; and d;, finally, Aumr € [0, 1] controls the weights of Sim; and
Sim,. The document selected by the MMR is said to have high “marginal
relevance” which means it is both relevant to the query q (Sim; is high) and
contains the minimal similarity to previously judged documents (max{Sim;}
is low). In our experiments, as we are using BM25 model for ranking the
documents, Simy(d;, q) is the score returned by the BM25 model (Equation
2.16):

f(t,q)x f(t,d;)x(k, +1) o card(D) —df (t) + 0.5

Siml(di’q): Z
e f(t,di)+klx[1—b+bx|1‘|J df (t) + 0.5 (6.12)

For Simy(d;, d;), in our experiments, we use the cosine similarity between the

two documents d; and d;:

. di od.
Slmz(dildj):—J (6.13)

], <[

where d; is the vector representation of d;, d; ed;is the dot-product of the

two document vectors, ‘Ji‘zis the Euclidean length of the document vector

d,, similarly for d;. The weight of a term t in the document vector d is

given by:

w(t,d) = f(t,d,) X\/Iogcard(D)—df(t)+0.5 (6.14)

Cf(t,d)+1 df (t)+ 0.5

This is similar to the standard TF-IDF term weight but using the square root
of the IDF factor. The square root of the IDF factor is used because it is
found to perform better [Dang et al., 2006] as it will multiply itself in the
cosine similarity in Equation 6.13.
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Figure 6.6 shows the flow of the MMR algorithm used in our experiments.
The MMR algorithm is an iterative algorithm which takes one document for
relevance judgement in each of the iterations. The first document to be
judged is always the one ranked the first in the retrieval list. Note that the
values of Sim; in Equation 6.11 are unchanged for all documents through-
out the iteration process. They are actually the scores from the BM25 model
using in the PRF process using the query . Therefore, when Aumr = 1, the
MMR algorithm is essentially the standard relevance feedback which N top
ranked documents are judged by the user (Figure 6.2).

We can also re-rank the top Nymr documents during each of the iterations
using the available relevance information. The re-rank is done using query
expansion from the judged relevant and non-relevant documents similar to
the Equations 6.3 — 6.6. Instead of using the parameters Kt rer, K iri, onf and
Pt (see Section 6.2), a different set of parameters (Kmmr_ret, Kmmr_irl, 0tmmr and
LSamr) 15 used. That is, a retrieval using the BM25 model is performed in
each of the iterations with a modified query and the retrieval is done on the
top Nmmr documents only (i.e., re-ranking top Nmmr documents). After the re-
rank of the top Nmmr documents in each of the iterations, the Sim; scores of
the documents in Equation 6.11 are changed. This is because we have more
relevance information (i.e., one judged document) after each of the
iterations such that the modified queries for each of iterations are different.
As a result, Aymr = 1 will not produce the same result as the standard
relevance feedback (Figure 6.2). Figure 6.7 shows the flow of the MMR-
Rerank algorithm which is very similar to Figure 6.6 but with a re-ranking
step in each of the iterations. Since our split-list approach is also an
algorithm with a re-ranking step, we mainly compare our results with those
from the MMR-Rerank algorithm.
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Figure 6.6: The flow of the MMR method in our experiments.
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Figure 6.7: The flow of the MMR-Rerank method in our experiments.
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6.4 Split-List Approach to Relevance Feedback

In this section we describe the algorithm of the proposed split-list approach
to relevance feedback. The algorithm uses document-contexts by splitting
the retrieval list into sub-lists according to the query term patterns exist in
the top ranked documents. Query term patterns include single query term, a
pair of query terms occur in a phrase and in proximity. The document-
contexts of a particular query term pattern are extracted from each of the
ranked documents in the ranked retrieval list. Therefore, each sub-list
contains the document-contexts having the same query term pattern. The
document-contexts are then ranked in each of the sub-lists. Figure 6.1 shows
an example of the lists of document-contexts for the query “Hubble
Telescope Achievement”, only the lists of single query term are shown. The
scores of the top ranked document-contexts for the same document are
summed together to form the document score. The document with the
highest score is used for feedback. Similar to the MMR-Rerank algorithm
discussed in the previous section, our split-list algorithm is an iterative one
which takes one document for relevance judgement in each of the iterations
until Ny documents are judged. Unlike MMR-Rerank, in each of the
iterations, we re-rank the document-contexts in each of the sub-lists instead
of re-ranking the documents.

Similar to previous chapters, define d[k] to be the term occurs at the k-th
position in the document d such that k € [1, |d], c(d, k) is the context of d[k]

such that it contains 2n+1 terms which are the terms surrounding d[K]:

c(d,k) = {d[k —n],...,d[k —1],d[k],d[K +1],...,d[Kk + n]} (6.15)

In the case where k < n (i.e., at the beginning of a document), we do not
have enough terms on the left hand side of d[k]. We then take (n-k+1) more
terms on the right hand side to make sure 2n+1 terms are considered in a

context. A similar trick is done when k > (|d|-n) (i.e., at the end of a
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document) which we take (n+k-|d]) more terms on the left hand side. Stop

words are removed from all the documents in our experiments.

For a query q with s distinct terms {gi, 02, ..., Qs}, we have s lists of
document-contexts which consider single query term occurrence, (s-1) lists
of document-contexts which consider a pair of query terms occur in a phrase
in the same order as the query and sC, lists of document-contexts which
consider a pair of query terms occur in proximity with a window size w. As
a result, there is a total number of (2s+,C,-1) lists of document-contexts for

a query having s distinct terms (Figure 6.8).

qg= {fj‘l L g.}  list of document-contexts

T T T T T
L L1 l L1 lists for single query term occurrence
g T T T T T
qe, T T T T 1
g9 L1 1 l [ T - lists for a pair of query terms
g g, C T T T T T - occur in phrase
gy T T T T 1
gp-gy L 1 1 | [ [ - lists for a pair of query terms
g g, 1T 1 I occur in proximity

Figure 6.8: The lists of document-contexts for a query with s terms.

We extract document-contexts from the top Ngpit ranked document in the
retrieval list. These Ngpix documents are scanned using a sliding window
with size 2n+1. The set of contexts {c(d, k) : d[K] = q;, 1 <i < s} are inserted
to the list of q; for single term occurrence. The set of contexts {c(d, k) : d[K]
= @i, d[k+1] = gi+1, 1 <i < s, } are inserted to the list of g; gi+1 for query
terms occur in a phrase. The set of contexts {c(d, k) : d[k] = i, d[k+p] = g;, 1
<i<s, 1<j<s, i #], p<w}areinserted to the list of g;...q; for query terms

occur in proximity with distance less than w.
After all the document-contexts are inserted to the corresponding lists, we

re-rank the contexts in each of the lists using the available relevance

information. We only discuss the ranking for the list of g; because the
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ranking for other lists are done similarly. We define the score of a context
c(d, k) in the list of g; being the probability of relevance of the context using

the log-odds:

P(R=1]q,,c(d,k)) s Eéi:cl)u le((c; i;))))
rank P(c(d,k) | R =1,q,)
~ P(c(d,k)[R=0,q,)
ank 201 p(e(d,k)[p]| R =1,q,)

= | 6.16
20 @ plR=0g) O

where R is the binary relevance variable which R=1 means relevant and R=0
means non-relevant, c(d, k)[p] is the term at the p-th position in the context
c(d, k). Denote dspiit_rel to be the set of judged relevant documents and dspjit_ir
to be the set of judged irrelevant documents. For a term t:

3 S (e k)

dedgpir_rel K:d[k]=0,

f (t,D)

P(tl R:]-'ql):as_rel Z z Z f(U,C(d,k))+(1_as_rel) | Dl (617)
u dedgyi o kid[k]=0,
f(t,c(d,k))
P(thzoq):a _ degpm_ink:d[;]—% +(l—0( _ )M (6 18)
1M1 s_irl Z Z Zf(U,C(d,k)) s_irl | Dl '

u dedgy iy k:d[k]=0,

where f(t, c(d,k)) is the occurrence frequency of the term t in the context
c(d,k), dspiit_rel 1S the set of judged relevant documents, dspiit iri IS the set of
judged non-relevant documents, os rei€[0, 1] and os in<[0, 1] are smoothing
parameters similar to a1 ¢i in Equation 6.8. After the scoring of the
contexts using Equation 6.16, they are ranked by the descending order of the

scores in the list. We rank the contexts in each of the lists.
After the contexts are ranked, the top N, ranked contexts in each of the lists

are used to form the document scores. It is intuitive to assign weights to

different lists, for example, the weight wy(q;) of the list of q; is:
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Zf(Q1ad)+a|

ded split_rel

zf(q11d)+a| +6

ded

W (q,) = (6.19)

split_rel

where o > 0 and & > 0 are constants. The weights for other lists are

computed similarly. Equations 6.16 and 6.19 are multiplied together when

combining context scores.

The top N ranked contexts in each of the lists are extracted and scores of
contexts are summed together for contexts belonging to the same document.
The document with the highest score is used for relevance feedback. If Ny
documents are judged, the iterative process ends. Figure 6.9 shows the flow

of the split-list approach algorithm in our experiments.

BM25(q. ky . b) }Rh;pialal
EUIEV

L] ™
. Top Npz documents are assumed to be relevant
. Top Kprf terms are extracted (qe_m,r)
. Combine g and 9o prf (qmn) >_ PRE
v

BM25(qpp. k1. b)

[

-
Judge the document
ranked the first in the|
Extract document contexts from the top Nipji ranked documents
and insert into corresponding lists

1. Delete judged contexts from the lists
(contexts from judged documents are not ranked)
2. Rank the contexts in each of the lists using Equation 6.16
3. A weight (similar to Equation 6.19) is assigned to each list
4. Top N, contexts from each of the lists are extracted
5. Scores of contexts belonging to the same document are summed together
6. The document with the highest score is judged by the user RF

I

1. TopKy rej terms are extracted from relevant documents (g, o el )
2 Top Kf i terms are extracted from irrelevant documents (g, ,} il

3.Combine q, ,r oy and g, e 11 (44 )
4. Combine g and Ge rf ( ar )]

v
BM25(qpr. ky . b) /
¥
Final Retrieval List

Figure 6.9: The flow of the split-list algorithm in our experiments.
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6.5 Experiments

In this section we report the experimental results of using various active
feedback algorithms described in previous sections. We use the TREC-2005
data collection for parameters calibration and we perform tests on TREC-6,
-7, -8 and -2005 data collections. Ny is set to 20 for all the active feedback
algorithms. That is 20 documents are judged by the user. The relevance
judgements are given by the TREC judgement files for the corresponding
collections. We report the precision at 20 documents (P@20) and the MAP
measures. Randomization test is used for testing statistical significance

between the MAP measures for different algorithms.

Unlike Chapter 5 (Probabilistic Document-Context Based Retrieval Model)
which residual collection is used for evaluation, we do not use residual
collection in this chapter because different active feedback algorithms have
a different set of judged documents. Therefore the residual collections are
different for different algorithms which make comparisons difficult. For
example, if a query has a small number of relevant documents in a
collection and an active feedback algorithm successfully chooses most of
the relevant documents for the user to judge, as a result the number of
residual relevant documents for the query is very limited and thus it is more
difficult for the query to perform better. Instead of residual collection, we
use the rank freezing technique (see Section 2.4.1 (Evaluation in Relevance
Feedback)) which the ranks of the judged documents in the final retrieval
list are assigned according to the order of judging the documents. For
example, the first judged document is assigned the rank number 1 in the
final retrieval list. An active feedback algorithm finding more relevant

documents for the user to judge will have a higher P@20.

Table 6.1 shows the values of the parameters used in the various algorithms.
The parameters are calibrated on TREC-2005 using grid search and the
same parameter values are used in all other collections. Since all collections

use the same parameter values, we are not picking the best results for each
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of the collections. Therefore, no sensitivity studies are performed. In
practice, the parameter values can be found using cross-fold validation. We
optimize the P@20 for the PRF in order to have more relevant documents
for the subsequent feedback experiments. The results of the initial retrieval
(BM25) and PRF in TREC-2005 are shown in Table 6.2. From the results,
the performance of BM25 can be greatly improved using the PRF.

Table 6.1: Parameter values in our experiments

Algorithm Parameters Values
BM25 ki, b 14,05
PRF Nprf, Kprf, aprf 40, 40, 01
Standard RF Net, Ket rel, Kot irt, oty Pr 20, 100, 40, 0.2, 0.8
Gapped-Top-N G 1
Nt-Cluster-Centroid Nee, 1 30, 2500
MMR AMMR 0.9
Nmmry Kmmr_rel, Kmmr_irl, 70, 30, 10,
MMR-Rerank
Clmmr, ﬂmmry AMMR 0.2,0.8,0.2
. . NSp"ty NC) ny W! loo) 50! 25! 8!
Split-List
as_reh as_iﬂ, a|, & 09, 09, Ol, 01

Table 6.2: Results of Initial Retrieval and PRF in TREC2005

P@20 MAP
Initial Retrieval .3890 .2050
PRF 4640 .2762

Table 6.3 shows the results of different algorithms using rank freezing in the
four tested TREC collections. For completeness and reference, the results
without rank freezing are also shown in Table 6.4. Note that we do not
perform direct comparisons on Table 6.4 because the results do not reflect
the real utility perceived by the user in the relevance feedback process (i.e.,
the ranking of the judged documents may not be the same as the order when
they are judged). In Tables 6.3 and 6.4, RF is the standard relevance
feedback algorithm (Figure 6.2), GAPPED is the Gapped-Top-N,s algorithm
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(Figure 6.3), CLUSTER is the Ny-Cluster-Centroid algorithm (Figure 6.5),
MMR is the maximal marginal relevance algorithm (Figure 6.6), MMR-
Rerank is the maximal marginal relevance algorithm with re-ranking of
documents (Figure 6.7) and SPLIT-LIST is our proposed split-list approach
(Figure 6.9) for relevance feedback. Since rank freezing is used in Table 6.3,
the P@20 of RF is the same as the P@20 of PRF in Table 6.2 for TREC-
2005. The best MAP values obtained for each of the TREC collections are
bolded. From the results in Table 6.3, SPLIT-LIST obtained the best MAP
in all the tested collections. MMR-Rerank and SPLIT-LIST are both having
a re-rank step in the relevance feedback process. We can see that the results
of the two “with re-rank” algorithms are better than those without re-ranking.
Particularly, in TREC-2005, MMR-Rerank on average chooses 7% more
relevant documents than RF and SPLIT-LIST on average chooses 13%
more relevant documents than RF. Generally the P@20 of MMR-Rerank
and SPLIT-LIST is also higher than that of RF on other collections.
Therefore, if we want the user to have more relevant documents for judging
during relevance feedback, an algorithm with a re-ranking step should be
used. The difference in P@20 between SPLIT-LIST and RF shows that
SPLIT-LIST can find documents that are different from the top N ranked
ones, hence increasing the diversity of the judged documents.

Note that the lower P@20 of GAPPED and CLUSTER in Table 6.3 is due
to the smaller number of relevant documents chosen by the algorithms
during relevance feedback. When looking at the results without rank
freezing (Table 6.4), GAPPED and CLUSTER actually perform better than
RF on different collections. This shows that GAPPED and CLUSTER can
find some relevant documents with high diversity although the number of

relevant documents is smaller.

We mainly compare our results (SPLIT-LIST) with those using MMR-
Rerank since both of them have a re-rank step. MMR-Rerank performs
significantly better than RF in TREC-6 and TREC-7 while SPLIT-LIST
performs significantly better than RF in all the four tested collections. This
shows that SPLIT-LIST is more reliable than MMR-Rerank on different sets
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of queries and collections. SPLIT-LIST performs significantly better than
MMR-Rerank in TREC-2005 with 90% C.I. using randomization test. Since
we are using TREC-2005 for calibration of parameters, the results show that
SPLIT-LIST can perform better than MMR-Rerank when the values of

parameters are set properly.

Table 6.3: Results of various algorithms with rank freezing

TREC-6 TREC-7 TREC-8 TREC-2005
Algorithm | P@20 | MAP | P@20 | MAP | P@20 | MAP | P@20 | MAP
RF 3370 .2580 | .3660 .2606 | .4240 .3032 | .4640 .3257

GAPPED | .3200 .2508 | .3030 .2375 | .3660 .2581 | .4230 .3226
CLUSTER | .3270 .2613 | .3460 .2567 | .3680 .2850 | .4190 .3269

MMR 3320 .2591 | .3730 .2617 | .4230 .2968 | .4620 .3255
MMR-Rerank| .3870 .2976% | .4290 .2796° | .4530 .3162 | .5410 .3410
SPLIT-LIST| .4310 .2996% | .4610 .2848%| .4880 .3209° | .6010 .3574%

¢ means the MAP is statistically significantly different with the MAP in RF with
90% C.1. using randomization test..

vy means the MAP is statistically significantly different with the MAP in MMR-
Rerank with 90% C.1I. using randomization test.

Table 6.4: Results of various algorithms without rank freezing

TREC-6 TREC-7 TREC-8 TREC-2005
Algorithm | P@20 | MAP | P@20 | MAP | P@20 | MAP | P@20 | MAP
RF 4870 .3474 | 5340 .3230 | .5630 .3658 | .6560 .3847

GAPPED | 4840 .3751 | 5420 .3307 | .5880 .3728 | .6790 .4026
CLUSTER | .5070 .3658 | .5360 .3323 | .5700 .3693 | .7090 .4193
MMR 4830 .3482 | 5340 .3280 | .5600 .3684 | .6510 .3827
MMR-Rerank| .5040 .3836 | .5490 .3381 | .5580 .3767 | .6980 .3894
SPLIT-LIST | .5280 .4099 | .5710 .3506 | .5890 .3853 | .7200 .4055

Depending on the specific tasks, different active feedback algorithms may
be used to increase user’s satisfaction during relevance feedback. If the user
has little concern of judging less relevant documents (e.g., in the case of
paid judges), GAPPED or CLUSTER can be used to choose documents with
a high diversity. On the other hand, if the user is more willing to judge

relevant documents than non-relevant ones and at the same time does not
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want to sacrifice the diversity of documents, SPLIT-LIST can be used to

provide more relevant documents.

6.6 Chapter Summary

To conclude, we have applied the notion of document-context using an
iterative process in relevance feedback. We split the retrieval list into sub-
lists of document-contexts for different query term patterns including single
query term occurrence, a pair of query terms occur in a phrase and a pair of
query terms occur in proximity. Our objectives are (a) finding more relevant
feedback documents and (b) increasing the diversity of the feedback
documents in order to enhance user’s satisfaction during relevance feedback.
We also implemented different active feedback algorithms including the
Gapped-Top-Ny, Ny-Cluster-Centroid and two versions of Maximal
Marginal Relevance (MMR). One is having a re-ranking step (MMR-
Rerank) and the other does not. From the experimental results, algorithms
with a re-ranking step (MMR-Rerank and SPLIT-LIST) can improve
performance by finding more relevant documents for the user to judge. We
also show that some active feedback algorithms (Gapped-Top-Ny and N
Cluster-Centroid) can find documents with high diversity such that they can
perform better than standard relevance feedback even with less relevant
documents. The results also show that our proposed algorithm (SPLIT-LIST)
can perform better than standard relevance feedback and more reliable than
MMR-Rerank on different TREC collections.

For future studies, we can use other retrieval models such as the language
modelling approach to information retrieval [Ponte and Croft, 1998] instead
of using the BM25 model as the baseline model throughout the relevance
feedback process. Also, instead of only using query term patterns, expansion
term patterns can also be used since the contexts of expansion terms can

also be relevant to the user’s information need.
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Chapter 7

Conclusion and Future Work

This section concludes the thesis and proposes some possible items for
future studies.

7.1 Conclusion

A hybrid document-context based retrieval model has been investigated and
extensively tested in retrospective experiments. We have tested the two
assumptions which are Document-Training assumption and Context-
Training assumption, and find that context-training performs better
document-training. Different smoothing methods are also experimented and
results show that different smoothing methods perform similarly when the
parameters are set properly. For combining the context scores, we have used
different operators including the extended Boolean operators, Dombi
operators and the ordered weighted average (OWA) operators. Results show
that operators following the Disjunctive Relevance Decision (DRD)
principle and Aggregation Relevance Decision (ARD) principle generally
performs better and operators following the Conjunctive Relevance
Decision (CRD) principle. The results are consistent with the TREC ad hoc
retrieval evaluation policy. We have also shown that the proposed model
obey the Probability Ranking Principle (PRP).

We also have shown that TF-IDF term weights can be interpreted as making
relevance decisions. Form the relevance decision-making perspective, TF-
IDF term weights are the result of simplifying out probabilistic non-
relevance decision model, when assuming the minimal context assumption.

We have shown that the quantity —logP, (R=0[|ted) to be IDF by

assuming that (a) a new usage of a term arrives at a constant rate following a
Poisson distribution and (b) the probability of non-relevance of term t is
specified by our random match model of term usage. We have also proposed
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a modified minimum spanning tree clustering algorithm to find the number

of clusters of a term as the number of usages of the term.

By no longer making the minimal context assumption, we have developed a
probabilistic document-context based model which is called the binary
independence language model (BILM). We have experimented the model in
relevance feedback and retrospective experiments and the results show that
the proposed model is effective across different TREC collections.

Lastly, we have applied the notion of document-contexts to a split-list
approach for relevance feedback. The algorithm aims to (a) find more
relevance documents, and (b) increase the diversity of the documents in the
relevance feedback process. Thereby enhances the user’s satisfaction during
relevance feedback. The results show that the algorithm is promising when

compared with other similar relevance feedback algorithms.

7.2 Future Work

Context definition

In this thesis, a context is defined as the set of terms surrounding a query
term within a given distance n. That is, a context only consists of terms
which having distance from query terms less than n. For terms having
distance from query terms greater than n, they are not considered to be part
of the context. This can be thought of having a sharp boundary in which
terms outside the boundary are not considered. On the other hand, we can
have a soft boundary by introducing a weight depending on the distance
from the query terms. The weight decreases as the distance from query
terms increases. This is used in the positional language models approach for
information retrieval [Lv and Zhi, 2009] which defines a language model for
each position of a document, and score a document based on the scores of
the individual positional language models. The positional language model is
estimated based on propagated counts of words within a document through a
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proximity-based density function. Experiment results show that the
positional language model outperforms other proximity-based retrieval

models.

N-gram models

Following the language modeling approach to information retrieval [Ponte
and Croft, 1998], a general language model [Song and Croft, 1999] was
developed based on a range of smoothing techniques and it can be extended
to incorporate probabilities of phrases such as term pairs and term triples.
The results in [Song and Croft, 1999] have shown that term pairs are useful
in improving retrieval performance. The unigram model makes a strong
assumption that each term occurs independently, while the bigram and
trigram models take into account the local context. For a bigram, the
probability of seeing a term depends on the probability of seeing the
previous term. For a trigram, the probability of seeing a term depends on the
probability of seeing the previous two terms. In this thesis, the unigram
model is used for calculating the probabilities of the terms inside each of the
document-contexts. As a result, the context score is the product of the
probabilities of individual terms. Similar to the general language model
[Song and Croft, 1999], n-gram models instead of the unigram model can be
used in the proposed document-context based models. When considering the
document context c(d, k) at the k-th location in document d, instead of just
using the 2n+1 single terms for making local relevance decision (i.e.,
dak(c(d, k), qg)), n-gram models can be considered. For example, the
probability of seeing the p-th term in the context c(d, k) where pe[1, 2n+1]
is equal to the probability of seeing the p-th term given the previous (p-1)-th

term.

Part-of-Speech (POS) tagging

Besides lexical features such as single query terms, a pair of query terms

occurred in a phrase and proximity, semantic features such as part-of-speech
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tags can also be used to identify better patterns in the document-contexts.
Accurate part-of-speech tagging of natural language data can improve the
effectiveness of information retrieval models. Recently, Lioma and Blanco
[2009] introduced a new type of term weight that is computed from part-of-
speech (POS) n-gram statistics. The POS-based term weight represents how
informative a term is in general, based on the ‘POS contexts’ in which it
generally occurs in language. Five different computations of the POS-based
term weights were proposed and experimental results shown that when
conventional retrieval models (e.g., BM25 model) is integrated with the
POS-based term weights, the effectiveness of the retrieval increases.
Therefore, besides only using terms, we can also use part-of-speech tags for
calculating the context scores.

Language modeling approach

The document-context based models in this thesis are mainly developed
using the log-odds similar to the binary independence retrieval (BIR) model
[Robertson and Sparck Jones, 1976]. Different document-context based
models can also be developed by considering the probability of generating
the query g by the document-context c(d, k) which is similar to the language

modeling approach to information retrieval [Ponte and Croft, 1998].
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