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Optimal Advertising and Pricing Strategies 

for Luxury Fashion Brands with Social 

Influences1 
 

Abstract 

In the fashion industry, it is well-known that social needs play an important role in the 

purchase of conspicuous products such as high-end fashion labels. In this thesis, 

motivated by various industrial cases, we analytically study the optimal advertising 

and pricing decisions for fashion brands in a market consisting of two groups of 

consumers with opposite social needs for fashion products, namely the Leader Group 

(LG) and the Follower Group (FG). We consider the situation when the LG consumers 

have a desire to distinguish themselves from the FG consumers whereas the FG 

consumers would like to assimilate themselves with the LG consumers. Thus, social 

influences exist between the two groups of consumers. Based on this market feature, 

we first develop an optimization model which is original and has not been proposed in 

the literature before for this problem and we call it the basic model. We explore the 

solution scheme for identifying the optimal strategy by investigating different tactics. 

We conduct extensive sensitivity analysis and reveal that the optimal strategies follow 

different scenarios and it can be optimal for a brand of conspicuous product to (1) 

advertise to only one group while sell to the whole market, (2) advertise and sell to 

FG only, or (3) advertise and sell to LG only, depending on the situation. We also 

derive the analytical conditions for the existence of the Veblen effect, which refers to 

the phenomenon that a higher selling price can lead to a higher demand for a specific 

consumer group. After that, we extend the model to the case when there are linear-loss 

penalties owing to insufficient resource allocation to each consumer group. This 

extension leads to a much more complicated model with a lot more possible scenarios. 
                                                 
1 A part of this thesis has been accepted for publication in Zheng et al. (2011). 
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Similar to the basic model, we derive the detailed mechanism to solve this extended 

model and conduct in-depth analysis. Important new insights are then generated. This 

thesis contributes to the literature not only by developing innovative optimization 

models for the research problem, but also deriving significant findings and managerial 

insights with real world relevance.  

 

Keywords: optimal pricing, optimization, optimal advertising, social influences, 

fashion marketing. 
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Chapter 1 Introduction 

Consumer goods marketers have long recognized a correlation between advertising 

and pricing strategies (Farris and Reibstein 1979). As a special category of consumer 

goods, luxury fashion products provide not just physical function but also symbolic 

function. Undoubtedly, the consumption of luxury products is strongly influenced by 

social reference. This thesis explores the relationship between social influence in 

conspicuous consumption, and optimal advertising and pricing decisions with 

price-dependent demands. It also analytically investigates the occurrence of the 

Veblen effect with luxury fashion brands. This thesis falls in the operations 

management and marketing interfaces and provides important academic and 

managerial insights. In the subsequent sections of this chapter, the industry 

background, motivational cases and research objectives will be discussed.  

 

1.1 Industry background 
The luxury industry is important in terms of both its sales volume (more than 

$100 billion annually) and its influence in creating the best design, using the best 

materials, developing the best merchandising and packaging methods, and hence, 

driving both aspiration for the genuine article and the numerous mass-market 

imitators (Keller 2009). While enjoying opportunities from fast-growing business 

development and wealth, the greatest challenge faced by a luxury fashion brand 

nowadays is devising an optimal strategy that can cope with the extremes of the 

modern luxury marketplace, with a product range that may extend from $20 socks to 

$20,000 couture pieces which may be targeted to both Shanghai secretaries and Park 

Avenue Princesses (Bruce and Daly 2011). 

The luxury goods market is made up of apparel, accessories (including handbags 

and shoes), perfume and cosmetics and hard luxury (including watches and jewellery). 

The global market of the textile-and-clothing-related luxury sector, which has grown 

on average by 7% per annum over the past four years, is estimated to worth 



10 

 

approximately £145 billion. Despite current headwinds associated with the global 

economic environment, several fundamental long-term drivers of growth in the luxury 

market still remain. These drivers include (Amaldoss and Jain 2002; Cachon and 

Swinney 2009):  

 

1. Strong economic growth in the luxury market which is generally double 

or triple the rate of the global economy; 

2. Up-rising consumption associated with the rapid expansion of emerging 

economies including China and Russia; 

3. Significant growth in high-net-worth individuals (HNWIs) in both the 

core and emerging markets, where HNWIs are defined as consumers who 

possess financial assets (not including their primary residence) in excess 

of US$1 million. HNWIs have a higher propensity to purchase luxury 

goods than other consumers; 

4. Increasing demand for luxury brands as driven by higher consumer 

aspirations; 

5. More international travel and tourism activities; 

6. Continuous product innovation by luxury brands which creates 

substantial demand for new products. 

 

It is well-agreed that a luxury fashion brand needs to reconcile the potential trade-offs 

between (i) exclusivity, which makes a brand out of ordinary as well as project a 

positive brand association of user profiles, and (ii) accessibility, which provides 

sufficient sales and profits (Fionda and Moore 2009; Keller 2009). In many cases, it is 

difficult for a luxury brand company to manage its optimal advertising and pricing 

strategies because there are different market segments whereas their respective 

consumptions interact with each other. For example, the brand Lacoste, being famous 

for its crocodile logo and a symbol of the modern sporting lifestyle, was adopted by 

many young people of African and North African origins (in the poorer outer suburbs 

of most French cities). This expanded market segment unfortunately has turned out to 

have negative impacts on the company because the brand value is lowered and many 

original customers no longer purchase from this brand (Chevalier and Mazzalovo 

2008). To avoid such problem from occurring, many companies have imposed 
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restriction on the availability of their products by using exclusive distribution 

channels and even legal action. For example, the designer-label Christian Dior once 

sued supermarkets for carrying and selling its products because it fears that wide 

availability would hurt its exclusive high-end brand image (Week 1997). As 

commented in the China Daily (Chang 2010) by Denis Morisset, a director at Ecole 

Superieure des Sciences Economiques et Commerciales (ESSEC): “For traditional 

luxury goods brands, there are two directions. One is the elite path. The other seeks 

popularity among ordinary consumers. At present, no obvious barrier exists between 

two directions.” As a result, how a brand should choose the optimal “path” and the 

subsequent optimal pricing and advertising decisions are paramount but still 

under-explored.  

 

1.2 Motivational cases 
It is a common practice in the operations management and management science 

(OR/MS) literature to include motivational cases in addition to the mathematical 

modeling analysis (Fisher and Raman 1996; Iyer and Bergen 1997). To demonstrate 

the motivation of our model formulation as well as the relevance of the generated 

research insights in advancing the practice, this thesis includes several real cases. 

These cases come from industrial reports. 

The purpose of the case studies is to examine the current practices of the 

practitioners in the fashion industry regarding how they cope with socially interacted 

market segments. Essentially, the following details will be covered: 

1. To explore the current practice of the luxury fashion brands in terms of 

the targeted markets, advertising and pricing strategy;  

2. To collect industry’s opinions on selling, advertising and pricing strategy; 

and 

3. To obtain real world inputs to verify the findings we derived from the 

mathematical models and analysis. 

 

By doing so, it is hoped that cross-reference can be obtained and more empirical 

insights be generated to enrich our investigation by analytical modelling. 
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Case 1 (Lacoste): As we have mentioned briefly earlier, Lacoste, a well-established 

French high-end apparel brand, was once adopted by many young people of African 

and North African origins in the poorer outer suburbs. The expanded market segment 

of Lacoste contradicted with the values that the brand promotes. (Chevalier and 

Mazzalovo 2008) report how the company’s advertising manager Didier Calon 

viewed the phenomenon during an interview with Press Magazine in 2005: 

It obviously had negative effects on the brand image. Certain of our 

customers were upset that we could pursue this target, when in fact we have no 

control over it. Our sales decreased for three or four years. However, as well as 

the negative impact on the brand image, some customers have found that it 

positioned the brand in a more modern trend. It is difficult to fully assess the 

phenomenon. 

This well-reported case explains: (i) the possible negative effect on the brand caused 

by a certain segment of customers (such as the “lower class” consumers), and (ii) the 

potential “conflict” between the demands of the leader group and the follower group 

consumers for luxury fashion brands, which are usually related to the consumers’ 

social classes.  

 

 

Case 2 (Burberry): During the 1970s, the classic high-end British brand Burberry 

became popular with the British football casual cult, leading it to be associated with 

chavs, hooligans and members of football companies by the 1990s. The brand became 

something of a “national joke”, particularly when actress Danniella Westbrook was 

photographed with her young daughter wearing matching Burberry outfits. Even 

Burberry admitted that "Burberry is now synonymous with Chavs and thugs" at that 

time (Jerath et al. 2010). To revitalize the brand, Burberry spent a huge amount of 

resources (e.g. in hiring advertising agency Baron& Baron and celebrity photographer 

Mario Testino, using models Kate Moss and Stella Tennant) in the advertising 

campaign (Moore and Birtwistle 2004). Burberry also increased its market presence 

by launching seasonal brochures and a company web site, as well as focusing on 

leading lifestyle and fashion publications for its bi-annually advertising campaigns 

(Reed 1999). The brand also held its own fashion shows in Milan, targeting at the 
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fashion leaders. Besides, Burberry changed its distribution policies to reflect the 

company's new exclusivity, including stock withdrawal from all European stores that 

were deemed “unprofitable” or “non-core”, and discontinuance of some of license 

agreements to retained overall control (Kibazo 2000). Nowadays, to strengthen the 

social interaction and utilize the social influence for brand development, Burberry has 

established a leading presence across social media platforms, creating new 

communities of interest. For instance, Burberry is now the leading luxury brand on 

Facebook with over one million fans. In fall 2009, Burberry launched “The Art of the 

Trench”, a social site which invites users to upload photos with their wearing trench 

coats, and to rate and comment on the photos on the site 

(www.facebook.com/burberry, www.artofthetrench.com). At the same time, the brand 

also developed client services team to look after VIP customers globally (Source: 

www.burberry.com). 

The sudden drop of Burberry’s business and brand image in the past is an 

example of the negative effect brought about by social influence. In order to revitalize 

the brand and re-establish the proper brand positioning and equity, Burberry has spent 

a huge amount of effort and resources to focus on the fashion leader group.  

 

 

 

1.3 Research objectives 
As motivated by the above cases and based on the related literature, this thesis 

has several major objectives, namely: 

• To develop original and innovative analytical model that captures the effects 

of social influence on the demand functions. 

• To investigate the optimal advertising and pricing strategies in luxury 

fashion brands with social influence considerations; 

• To examine the effects of social influence, advertising sensitivity, price 

sensitivity and product cost, on optimal advertising and pricing decision under the 

advertising and price-demand model; 

• To explore the conditions that give rises to the Veblen effects. 

• To examine and generate insights on the extended model that considers 
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more general settings with penalty on insufficiency of resource allocation to each 

consumer group. 

• To generate significant academic and managerial insights on optimal 

advertising and pricing strategies for luxury fashion goods and to demonstrate the real 

world relevance of the findings. 

 

 

1.4  Outline of the thesis 
The organization of this thesis is as follows. Chapter 2 presents the literature 

review on the related fields that forms the theoretical base for this thesis research.  

Chapter 3 presents the basic model and the respective analysis. Chapter 4 studies the 

extended model and reveals the challenging structural properties of the problem. 

Chapter 5 discusses the managerial insights and findings from the analysis and the 

empirical cases. Chapter 6 concludes the research and Chapter 7 presents future 

research direction.  
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Chapter 2 Literature Review 

2.1 Rational expectations framework 
At the heart of our model is the concept of rational expectations (REs), which assumes 

that all players think rationally and strategically (Muth 1961; Stokey 1981). 

Consequently, consumers should instantaneously be able to arrive at the equilibrium 

solution (Sunder and Administration 1992). Since the model developed in this thesis 

is partially inspired by REs, we would first review some representative papers related 

to the concept in this section.  

The REs framework has been widely employed in the marketing and operations 

management literature over the past decade (Amaldoss and Jain 2005; Amaldoss and 

Jain 2005; Su 2007; Jerath et al. 2010; Tereyagoglu and Veeraraghavan 2010). Using 

the REs framework, Amaldoss and Jain (2005) analyze the pricing and production 

decisions of a monopolist firm that sells a product to a market with uncertain demand 

from conspicuous consumers. The authors show that, in equilibrium, firms may offer 

high availability of goods despite the presence of conspicuous consumption. They 

further show that scarcity strategies are harder to adopt as demand variability 

increases, and provide conditions under which scarcity strategies could be 

successfully adopted to enhance profitability. Afterwards, the authors further  study 

the pricing decisions of a firm facing deterministic price-dependent demand in 

Amaldoss and Jain (2005), and show that snobs may exhibit an upward-sloping 

demand curve only in a heterogeneous market. They conduct laboratory experiments 

to confirm the existence of the equilibrium price that is theoretically derived from the 

model. The pricing problem in Amaldoss and Jain (2005) is also is extended and 

analyzed under a duopoly setting in Amaldoss and Jain (2005) and new insights are 

derived. In Amaldoss and Jain (2008), a market with two groups of consumers who 

enter the market sequentially are considered. Using a game-theoretic model, the 

authors explore how a firm can potentially manage the social forces between these 

two groups of consumers by appropriately selecting its target consumers, designing its 

product, setting its prices, and limiting the availability of its goods. They show that 

the presence of reference group effects can motivate firms to add costly features, yet 



16 

 

such features may only provide limited or no functional benefit to consumers. 

Furthermore, reference group effects can also induce product proliferation and 

motivate firms to offer products with “limited editions”. Most recently, Amaldoss and 

Jain (2010) develop a discrete version of their prior works in Amaldoss and Jain 

(2008) that is amenable to further experimental analysis. Empirically, the authors 

explore the behavior of consumers in a controlled laboratory setting where they can 

focus on the reference group effects after controlling for the contextual and correlated 

effects. In Kuksov and Xie (2010), two status products are competing for demand 

from the “high-class” consumers who would like to signal their identity to each other 

through the use of a status-reflecting product. They reveal that the consumer value of 

a status product would increase when the proportion of the high-class consumers in 

the total customer base of that product increases. They also derive an interesting 

finding that price reduction of one product could lead to an increase in the demand for 

the competing product. Caulkins et al. (2010) study the pricing problem of a 

conspicuous product when the economy is under a recession that disrupts capital 

markets. The authors model the conspicuous product as a luxury good for which 

demand is increasing in brand image, which is built up when the good is priced high 

enough to make it exclusive, and is eroded if the good is discounted. In their paper, 

recession is modeled as having two effects: one reducing demand and the freezing 

capital markets such that borrowing is not possible. They reveal that at an 

intermediate recession level, the optimal pricing solution is history-dependent. Other 

related works include Stock and Balachander (2005), and Balachander and Stock 

(2009). The former investigate a signaling strategy to explain product shortages in 

order to sell `hot' products in a market with quality uncertainty, whilst the latter 

provide strategic directions on the timing to offer “limited products” as a part of the 

product line under the REs framework. 

Apart from the above reviewed works, there is also literature examining how the 

behaviours of customers affect branding strategies under the REs framework. In fact, 

empirical research has indicated that consumers tend to pay more for “brand-name 

products” than they do for essentially identical products that lack brand identity. 

Sometimes the concept of a brand as a signal of quality is an important factor that 

affects the decision making mechanism of rational consumers. However, brand-name 

markups are particularly pronounced in the fashion industry where functionality is 
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less important than the brand’s signal of style and exclusivity. A brand’s capacity to 

command higher prices is like a capital asset whose magnitude varies over time and 

thus deserves to be managed carefully. In a special Fashion Survey issue of The 

Economist (March 6-12, 2004, p.7), the term "brand integrity" is employed rather than 

"brand image". “Like everyone else in the luxury goods market, all three (Richemont, 

Gucci, Pinault-Printemps-Redoute) face the challenge of maintaining “brand 

integrity”- analyst-speak for that indefinable aura that convinces a consumer to pay a 

lot of money for something he, or more likely she, could buy much more cheaply 

elsewhere....The destroyer of brand integrity is “brand dilution”, which is the 

perverse reward for popularity. If too many people have a supposedly exclusive Fendi 

handbag or Hermès scarf, it is no longer exclusive, and therefore, in the customer’s 

view, no longer worth its vertiginous price.” Obviously, brand image is highly related 

to consumer behaviors and so a central decision for a fashion house is sales volume: 

Selling too few forfeits product opportunities; selling too many dilutes brand image.  

Strategic consumer behavior (under different settings) is another area that 

receives much attention from the operations management researchers. For instance, 

the operational impacts of forward-looking or strategic customers have been 

considered under a large variety of contexts such as seasonal goods (Aviv and Pazgal 

2008), commitment in supply chain performance (Su and Zhang 2008), triggering 

early purchases (Liu and van Ryzin 2008), price-match guarantees (Lai et al. 2010), 

reservations (Cil and Lariviere 2009) and quick response strategy (Cachon and 

Swinney 2009). Netessine and Tang (2009) provide an excellent overview of the 

various strategic consumer behavior literature. 

Inspired by the above works, this thesis develops economics models under the 

REs framework that are related to the rational consumer’s behaviors and conducts 

further analysis. 
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2.2. Social  influence  in consumption 

psychology and economic studies 
In addition to REs, economists point out how consumption could be beset with 

positive externalities that are due to: (1) social conformity and influences (Becker 

1991), (2) network effects in the context of technology (Katz and Shapiro 1985), (3) 

market frenzies (Degraba 1995), or (4) herd behavior (Bikhchandani et al. 1992). In 

this section, we focus on reviewing representative works related to social influence. 

In the literature, the notion of conspicuous goods dates back to Veblen (1899) 

who, in “The Theory of the Leisure Class”, explains how individuals consumed 

highly conspicuous goods and services in order to advertise their wealth or social 

status. After that, Leibenstein (1950) emphasizes the significance of social factors in 

consumption, and argues that price by itself might enhance utility of consumers. 

Corneo and Jeanne (1997) establish that conspicuous consumption might emerge as a 

tool to signal wealth.  

It is well-argued that consumers may purchase goods with a goal of not just 

satisfying their material needs but also social needs such as prestige and image (Grubb 

and Grathwohl 1967; Belk 1988). In particular, these social needs influence the 

purchase of conspicuous products, such as jewelry, perfumes, and watches. One can 

easily argue that the value of precious stone and metal jewelry, designer handbags 

(e.g., Louis Vuitton, Prada or Gucci), and fine watches (e.g., Rolex), mainly comes 

from the perception that using these products would elevate the person in the eyes of 

the onlookers.  

Prior research has provided empirical evidence of social influences on 

consumption (Bearden and Etzel 1982; Childers and Rao 1992). For example, 

Grinblatt et al. (2008) analyze the purchase behavior of the residents of two Finnish 

provinces over several years and find that the purchases of neighbors, particularly in 

the recent past and by those who are geographically most proximate, influence a 

consumer's purchases of luxury products. Han et al. (2010) demonstrate with field 

experiments and market data that the preference of a market segment for 

conspicuously (or inconspicuously) branded luxury goods corresponds predictably 
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with their desire to associate (or dissociate) with members of their own and other 

segments. Prior studies have also identified the existence of two competing social 

needs among consumers, namely: a need for uniqueness, and a countervailing need 

for conformity (Brewer 1991; Tian et al. 2001). How these needs influence consumer 

choice processes are also explored (e.g. Lynn 1991; Snyder 1992; Simonson and 

Nowlis 2000). Research with related construct includes studies on reference groups. 

For example, consumers from the elite group would like to distinguish themselves 

from the masses in consumption, but the masses seek to emulate the choices of the 

elites (see Bourdieu & Nice, 1984; Bryson, 1996 for some details). 

Conspicuous consumption is also widely discussed under the economics context. 

From  the macroeconomic perspective, Yamada (2008) presents a dynamic general 

equilibrium model of capital accumulation in which consumers have status preference. 

As claimed by the author, such an attempt is the first to investigate the 

macroeconomic implications of conspicuous consumption. From the microeconomic 

perspective, on the other hand, Becker (1991) uses conformism to show why similar 

retailers might eventually experience vastly different sales patterns. According to his 

model, it is found that at equilibrium, the demand curve for followers could be 

upward-sloping but the equilibrium is not stable. Pesendorfer (1995) and Bagwell and 

Bernheim (1996) also consider implications of such product used by consumers. In 

particular, Pesendorfer (1995) considers the implications of status goods of a 

durable-good monopoly in a dynamic model and finds that innovation cycles would 

endogenously occur, while Bagwell and Bernheim (1996) derive general conditions 

under which a market for status goods may exist.  

While probing the sociological and psychological intricacies of potential 

consumer interdependencies, scholars may have overlooked the effects of mundane 

product advertising and promotions. To take into consideration of  the effect of 

advertising, Krahmer (2006) considers a model with advertising that  informs the 

public of brand names and creates the possibility of conspicuous consumption by 

rendering brands as a signaling device. In a price competition framework, the author 

shows that advertising increases consumers’ willingness to pay and thus provides a 

foundation, based on optimization behavior, for persuasive approaches to advertising. 

However, the subjects of optimization in the model are assumed to be just the 

customers, while the company did not conduct optimization decisions intentionally. 
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As a breakthrough, McClure and Kumcu (2008) are the first to attempt to formally 

incorporate individual product promotions into a theory of luxury good pricing. 

Specifically, they formulate the relationship between the optimal price/quantity 

combination and the thoroughness of product promotions, in a monopoly setting. In 

their model, a monopolistic seller of a luxury product with imperfect information 

traces out a backward bending price/ quantity locus as he iterates toward the optimal 

combination of quantity, price and promotional thoroughness. More works on optimal 

decisions will be discussed in Section 2.4.  

Notice that even though the above literature works that are related to social 

influence have provided a solid ground and empirical evidence on the importance of 

the topic, they have not considered the optimal strategies by taking into accounts of 

social influences and reference groups. This thesis research would aim at filling this 

important gap.  
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2.3. Network effect 
Network effect (NE) (also called network externalities) refers to the market 

phenomenon in which the value of a product or service to consumers depends on the 

number of users of that product or service (for a detailed discussion, see Katz and 

Shapiro 1985). With rapid advances in information technology and the digital 

revolution, NE has become an important characteristic for an increasing number of 

industries and product/service categories (e.g., computers, communications, consumer 

electronics, software, financial exchanges, online auctions, home networking, social 

networking Web sites, etc). In conspicuous consumption, NE has long been regarded 

as an important factor in affecting purchasing decision (Leibenstein 1950). Marketing 

decision characterized by NE is a topic that has recently been attracting considerable 

amount of interests from researchers in the field of both marketing and economics for 

digital products and fashion products (see, e.g., Wang et al., 2010; Dube et al., 2010; 

Trusov et al., 2009; Friedman and Ostrov, 2008; Chien and Chu, 2008).  

Literature on static pricing under NE focuses on the importance of consumer 

expectations and concerns the multiple equilibria problem. One commonly proposed 

restriction to be placed on expectations is that they will be fulfilled in the sense that 

consumer expectations are consistent with the actual outcome in the market (see, e.g., 

Leibenstein, 1950; Rohlfs, 1974; Katz and Shapiro, 1985; Economides, 1996). That is, 

on the induced fulfilled-expectations demand curve, each price p corresponds to those 

quantity q such that, when consumers expect quantity q, there will be just q 

consumers purchasing at a price p. Leibenstein (1950) derives such a demand curve 

from fixed-expectations demand curves. He argues that, under condition of perfect 

knowledge (or accurate expectations), any point on the demand curve, for any given 

price, will be at that total quantity demanded where the marginal external 

consumption effect for all consumers but one, is equal to zero. Rohlfs (1974) provides 

an early treatment of such issues in the context of a communication network, although 

the fulfilled-expectations demand curve has been discussed in Leibenstein (1950). He 

discovers that there are typically multiple equilibria at any given price, and which 

equilibrium is attained depends partly on the static mode, partly on the initial 

disequilibrium conditions, and partly on the disequilibrium adjustment process. Some 
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general properties of the equilibrium user sets are derived. Sundararajan (2004) 

presents a static model of nonlinear pricing in a monopoly market with fulfilled 

expectations. He shows that the optimal pricing decision includes discounts that 

increase with quantity, and may also involve a two-part tariff. While NE generally 

raises prices, consumption may or may not rise. 

As the social influence that we model is affected by and related to NE, the above 

reviewed works in economics will serve as the foundation for the development of our 

demand model.  
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2.4.  Studies  on  optimal  advertising 

and  pricing,  especially  for 

conspicuous product 
In marketing science and operations management, there are a considerable 

amount of studies that examine optimization of analytical models with pricing and/or 

advertising decisions under different settings. We will examine some of the related 

works before proceeding to explore those that are most closely related to the topic on 

conspicuous products. 

Optimization methods such as control theories have been well-established in 

exploring optimal advertising problems. In particular, several authors have used 

optimal control theory in diffusion of innovation framework to derive normative 

optimal policies (Kamien and Schwartz 1991; Sethi and Thompson 2005). In a 

popular paper, Narasimhan et al. (1993) combine the effects of manufacturing quality 

with advertising and pricing, and investigate the respective optimal decisions in a 

control theory framework. Feichtinger et al. (1994) provide an excellent review of for 

the development of this well-established field, and we refer the readers to it. A stream 

of modeling research in interactive advertising and pricing scheme can be found in the 

literature regarding selling to interacted segmented markets. In this area, Buratto et 

al.(2006a) is the first piece of work that brings the market segmentation concepts into 

optimal advertising model analysis.  Specifically, the authors consider that there are 

two scenarios for new product introduction, namely: one case when the advertising 

process can reach all individual selective target groups and the other case when only 

one advertising channel with an effectiveness segment-spectrum is available. Later on, 

Buratto et al. (2006b) consider a market with a finite number of segments and assume 

that several advertising channels, with different diffusion spectra and efficiencies, are 

available.  

Optimal advertising/pricing models can also be classified into monopoly setting 

and duopoly setting. Under the monopoly setting, Mesak and Zhang (2001) formulate 

and solve an optimal advertising pulsation problem for a monopolistic firm using 
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dynamic programming (DP). In their work, the firm aims at maximizing its own profit 

through an optimal allocation of the advertising budget in terms of rectangular pulses 

over a finite planning horizon. Aggregate sales response to the advertising effort is 

assumed to be governed by a modified version of the Vidale-Wolfe model in 

continuous time. Using a numerical example in which a planning horizon of one year 

is divided into ten equal time periods, they develop efficient computing routines. 

Computational results show, among other findings, that the performance yielded by 

the DP policy dominates the uniform advertising policy (constant spending) for a 

concave advertising response function. Similarly, Amaldoss and Jain (2005) examine 

a continuous-time optimal advertising under an S-shaped response function. Later on, 

Feinberg (2005) explores extensions along three dimensions: an S-shaped response 

function, the value of the discount rate, and the possibility of diffusion-like response. 

He formulates a flexible class of S-shaped response models and derives a set of 

conditions on the optimal advertising response function that extend the results of a 

pioneering work by Sasieni (1971). Collectively, these results all suggest a set of 

baseline properties that reasonable analytical models should possess. In another 

setting, Lambertini (2005) characterizes the dynamics of optimal advertising 

investment in a spatial monopoly, contrasting the socially optimal behavior of a 

planner against that of a profit-seeking monopolist. It is found that in steady state, the 

monopolist always distorts both output and advertising decisions as compared to the 

social optimum. Later on, Grosset & Viscolani (2009) propose a model of a firm that 

advertises a product in a homogeneous market, where a constant exogenous 

interference is present. They consider the scenario that the interference acts additively. 

They model the problem with a piecewise linear demand function and formulate a 

non-smooth optimal-control problem with an infinite horizon. By solving the 

respective optimal control problem, they obtain an optimal advertising policy. They 

also reveal that the optimal policy takes one of two forms: either a positive and 

constant advertising effort, or a decreasing effort starting from a positive level and 

eventually reaching the zero value at a finite exit time.  

Under the duopoly setting, game-theoretic analysis is usually employed in the 

literature. For instance, Viscolani & Zaccour (2003) consider a duopolistic market 

where the current sales of each firm is proportional to its goodwill stock. The 

evolution of the latter depends positively on a company’s own advertising effort and 
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negatively on competitor's advertising. By relaxing the standard assumption in the 

literature in differential games of advertising that the players remain active throughout 

the whole (infinite) duration of the game, they characterize the situations under which 

a firm finds it optimal to remain or exit the market. They also analytically show that 

when both players are powerful, then the unique Nash equilibrium is the same as the 

one obtained in the absence of interference from the competitor's advertising effort. 

Ghosh & Stock (2003) use a model of informative advertising to study the effect of 

penetration on competing advertisers' strategies and profits. Conditions under which 

an increase in penetration counter-intuitively leads firms to increase advertising levels 

and enjoy higher profits are identified. Bass et al (2005) examine whether, when, and 

how much brand advertising versus generic advertising should be done. Using 

differential game theory, they derive the optimal advertising decisions for a dynamic 

duopoly with symmetric or asymmetric competitors. They show how advertising 

depends on the cost and effectiveness of the type of advertising strategies for each 

firm, the allocation of market expansion benefits, and the profit margins determined 

endogenously from price competition. They find that generic advertising is 

proportionally more important in the short term and that there are free-riding effects 

leading to sub-optimal industry expenditure on generic advertising that worsen as 

firms become more symmetric. Afterwards, Amaldoss & He (2009) propose and test a 

competitive model of advertising. They find that the brand specificity of advertising 

can have an inverted U-shaped relationship with profits. Most recently, Chen et al. 

(2009) show that depending on the nature of consumer response, combative 

advertising (CA) can reduce price competition to benefit competing firms by 

game-theoretic analysis. They also find that CA can also lead to a pro-competitive 

outcome where individual firms advertise to increase their own profitability, but 

collectively become worse off. They argue that the result is intuitive because CA can 

intensify price competition such that an "advertising war" leads to a "price war." Thus, 

similar to price competition, advertising competition can result in a prisoner's 

dilemma where all competing firms make less profit even when the effect of each 

firm's advertising is to enhance consumer preferences in its favor.  

 There are discussions in the literature on optimal advertising/pricing decisions 

from the supply chain perspective. Neslin et al. (1995) explore how retailer and 

consumer responses influence a manufacturer's optimal advertising and trade 
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promotion plans. They develop a dynamic optimization model that considers the 

actions of the manufacturer, retailers, and consumers. In their setting, the 

manufacturer attempts to maximize its profits by advertising directly to consumers 

and offering periodic trade deal discounts to the retailer in the hope that the retailer 

will in turn ''pass through'' a retailer promotion to the consumer. They analytically 

show how the manufacturer's optimal allocation depends on consumer response to 

advertising, consumer response to retailer promotions, retailer inventory carrying cost, 

and retailer’s pass-through behavior. After that, Jorgensen & Zaccour (1999) examine 

the conflict and channel coordination issue in a two-echelon supply chain. They 

propose a differential game model that includes carryover effects of advertising and 

identify pricing and advertising strategies for both firms under channel conflict as 

well as coordination. Optimal dynamic advertising policies are designed. In a 

symmetric case, they show that these strategies can be determined in closed form, 

taking into consideration explicitly the non-negativity constraints on advertising rates. 

Jorgensen et al. (2003) examine dynamic advertising and promotion strategies in a 

supply chain where the retailer promotes the manufacturer’s product and the 

manufacturer spends on advertising to build a stock of goodwill. Assuming that sales 

amount depends on goodwill and promotion activities, they consider two scenarios, 

namely: 1. the manufacturer and retailer determine non-cooperatively their respective 

strategies; and 2. the game is played with the manufacturer as the leader. They find 

that whether or not the goodwill stock has a decreasing marginal effect on sales, the 

cooperative advertising program can help achieve channel coordination and Pareto 

improvement. Jorgensen et al. (2007) study a two-member channel in which a 

manufacturer and an exclusive retailer can make advertising expenditures that have 

both short and long term impacts on the retailer's sales. They assume that the 

manufacturer can support the retailer's advertising efforts through a cooperative 

advertising program. Different scenarios are considered and their analysis indicates 

that both types of retailer’s advertising strategies provide more profit to both channel 

members than any of the two cases of partial support. Sethuraman (2009) develops an 

analytical model and shows that the relationship between manufacturer advertising 

and retail price promotion depends on the role of advertising. If advertising 

differentiates brands and suppresses consumer response to retail promotion, then the 

relationship is negative. On the contrary, if advertising is informative enough to 
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increase consumer response to retail promotions, then the relationship is positive. 

Szmerekovsky & Zhang (2009) consider the pricing decisions and two-tier advertising 

levels between a manufacturer and a retailer in a two-echelon supply chain where 

customer demand depends on the retail price and advertisement by the manufacturer 

and the retailer. They solve a Stackelberg game with the manufacturer as the leader 

and the retailer as the follower. With price sensitive customer demand and a linear 

wholesale pricing contract, they derive the optimal decisions by the manufacturer and 

the optimal responses by the retailer. Their analytical results interestingly show that 

cost sharing of local advertising does not work well and it is better for the 

manufacturer to advertise nationally and offer the retailer a lower wholesale price. 

Later on, Zhang (2009) argues that convenience of home shopping and easy access to 

information have important implications on the retailers' channel and advertising 

decisions. He addresses two major research questions, namely: when a conventional 

bricks-and-mortar retailer should adopt a multichannel strategy, and when a 

multichannel retailer should use its website to advertise offline prices. His analysis 

shows that the answers hinge on the nature of the product, the retailer's costs, and the 

competitors' strategies as well as the competitiveness of the market. Recently, Buratto 

& Zaccour (2009) study the cooperative and non-cooperative advertising strategies of 

a licensor and licensee involved in a licensing contract in the fashion business. The 

licensing practice that they considered is the process of leasing a legally protected 

entity (brand, name, logo, etc.) in conjunction with a product or product line. They 

analytically show that if the licensor (who is the leader) uses an incentive strategy that 

depends on the licensee advertising, then it can reach the jointly optimal solution in a 

decentralized way. Most recently, Swami and Dutta (2009) develop the optimal 

advertising strategies for a firm which has a new product with demand  in an 

emerging market. They consider the case when primary channels for distribution of 

the firm's product do not exist (because the market has not been opened up or the firm 

has not entered the market). Therefore, in their model, the consumers can only employ 

secondary channels in other markets. They reveal insights on the optimal timing that 

is beneficial to advertise for the product before the market opens and how various 

parameters (such as the likelihood of product adoption for the primary and secondary 

channels, market potential and coefficient of innovation and imitation) affect the 

optimal advertising policies. 
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 Targeted advertising is another important area that is related to this thesis study. 

In practice, most of the time, advertising is targeted (Anand and Shachar 2009). For 

example, advertising for handheld devices is targeted towards young professionals, 

and for rock climbing equipment towards outdoor enthusiasts. Targeting is ubiquitous 

even in product categories that cater to far broader customer segments, like apparel 

(e.g., Liz Claiborne, Tommy Hilfiger), and entertainment (rap versus country music). 

The perceived benefit of targeting is that it can reduce wasted advertising by ensuring 

that advertisements reach the most appropriate consumers for the firm’s product. At 

the same time, fragmented media and new technologies make it easier to reach the 

individuals desired. Motivated by the significance of targeted advertising decision, 

Anand and Shachar (2009) study a model in which firms can target their 

advertisements to particular groups of consumers, and advertising is noisy. In their 

model, products are differentiated and consumers are heterogeneous in their tastes for 

product attributes. In other words, they consider the case that a particular product has 

a better fit with the tastes of some consumers than those of the others, and 

consumer-utility depends on the resulting “match” between product attributes and 

their tastes. They assume that the firms know the tastes of consumers whereas the 

consumers are uncertain about product attributes. Thus, in their model, firms can send 

advertisements through different media channels. However, advertising content is a 

noisy message on product attributes and consumer preferences over product attributes 

are correlated with their choice of media channel, creating a role for targeting. In this 

setup, they propose that advertising allows a consumer to learn about her match with 

the characteristics of the product. They proceed to prove the existence of a perfect 

Bayesian equilibrium. Most recently, Raghavan and Iyer (2010) examine advertising 

strategy when competing firms can target their advertising effort to different groups of 

consumers within a market. With targeted advertising, they find that firms advertise 

more to consumers who have a strong preference for their product than to comparison 

shoppers who can be attracted to the competition. They argue that advertising less to 

comparison shoppers can be seen as a way for firms to endogenously increase 

differentiation in the market.  Interestingly, they also find that target advertising 

leads to higher profits, regardless of the firms’ ability to set targeted prices. In addition, 

they prove that advertising targeting can be more valuable to firms in a competitive 

environment than the ability to pricing targeting. 
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There are some other related analytical modeling researches on exploring optimal 

advertising decisions and its impacts from different perspectives. For instance, 

Danaher and Rust (1996) adopt the point of view that advertising is an investment, 

and propose a simple formula for calculating the level of media spending which 

maximizes the return on investment. Bass et al. (2007) evaluate the dynamic effects of 

different themes of advertising and develop a model that jointly considers the effects 

of wearout as well as that of forgetting in the context of an advertising campaign that 

employs five different advertising themes. They quantify differential wearout effects 

across the different themes of advertising, and examine the interaction effects between 

the different themes using a Bayesian dynamic linear model (DLM). They establish a 

model to show how the response model parameters can be used to improve the 

effectiveness of advertising budget allocation across different themes. Baye and 

Morgan (2009) model an environment where e-retailers sell similar products and 

endogenously engage in both brand advertising (to create loyal customers) and price 

advertising (to attract "shoppers"). In contrast to models under which loyalty is 

exogenous, they consider the endogenizing strategy that helps create loyal customers. 

By game-theoretic analysis, they find several significant findings and conduct analysis 

based on data from a leading price comparison site to verify the analytical findings. 

Profits from generic advertising by the producer group often come partly at the 

expense of the producers of closely related commodities. The resulting tendency 

towards excessive advertising is exacerbated by check-off funding. Most recently, to 

analyze this beggar-thy-neighbor behavior, Alston et al. (2010) compare a scenario 

where different producer groups cooperate and choose their advertising expenditures 

jointly to maximize the sum of profits across the groups, and a scenario where they 

optimize independently.  

Now, focusing on the conspicuous products, Krahmer (2006) formalizes the 

intuition that brands are consumed for image reasons and that advertising creates a 

brand's image. He argues that advertising informs the public of brand names and 

creates the possibility of conspicuous consumption. In a price-competition framework, 

he shows that advertising increases consumers' willingness to pay and thus provides a 

foundation for determining the optimal advertising strategy. Moreover, he finds from 

his analysis that an incumbent might strategically over-invest in advertising to deter 

entry and competition might be socially undesirable. McClure and Kumcu (2008) 
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formalize the relationship between the optimal price/quantity combination and the 

thoroughness of conspicuous product promotions. They reveal that iterating towards 

the profit maximizing thoroughness of product promotion will lead to a backward 

bending price/quantity locus. In terms of pricing of conspicuous products, Yao and Li 

(2005) discuss the pricing of a superior good based on its 'signalling value' and offer a 

different reason why in China and some other Asian countries the prices of luxury 

goods are extremely expensive when they are first marketed, then fall dramatically 

and discontinuously afterwards, when marginal costs decline to below the critical 

point and the goods become more popular.  

 As we can see from the reviewed literature above, there exists a gap in the 

literature to provide a decision set regarding the targeted market segment, targeted 

advertising segment and non-discriminant price, under the situation of two socially 

interacted segments with interdependent demands. Our research hence aims to fill 

such gap. 
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2.5. Veblen effects 
The “Veblen effect” is a very important phenomenon in the marketing science 

literature. It is said to occur “when individuals increase their demand for a good 

simply because it has a higher price” or in another word, “when consumers exhibit a 

willingness to pay a higher price for a functionally equivalent good” (Bagwell and 

Bernheim 1996). This effect may actually look a bit counterintuitive because it is 

different from the conventional wisdom in which demand is a decreasing function of 

price. In the literature, Bagwell and Bernheim (1996) argue that the relationship 

between price and demand should emerge in equilibrium and not the simple 

“take-for-granted” relationship as what the classical price-demand economics model 

shows. They also find the conditions for such “Veblen effects” to arise in equilibrium. 

Despite the variety of theories in the economic literature about Veblen effects; not all 

explicitly admit either backward bending or upward sloping demand curves as a 

theoretical possibility. Although Leibenstein (1950)’s derivation of a backward 

bending demand curve from a Veblen effect is generally considered to be a pioneering 

work, a much earlier appearance of a backward bending demand explanation of 

conspicuous consumption is found in a textbook published by Fairchild et al. (1939). 

Leibenstein (p.207) distinguishes the “Veblen effect” from “bandwagon” and “snob” 

effects as follows: 

If the Veblen effect is the predominant effect, the demand curve is less elastic 

than otherwise, and some portions of it may even be positively inclined; whereas 

if the Veblen effect is absent, the curve will be negatively inclined regardless of 

the importance of the snob effect in the market. 

Leibenstein (1950)’s analysis of the “Veblen effect” gives rise to “demand” curves 

that can be backward bending. In prior research, evidence of the Veblen effects has 

been presented in a variety of ways. For example, empirical studies on the Veblen 

effect include a study of durable goods by Basmann et al. (1988), and an investigation 

of women’s cosmetics by Chao and Schor’s (1998). Although none of these articles 

attempt to establish the existence of a backward bending demand curve, they show the 

case that the prices of conspicuously consumed goods lead to Veblen effect and this 

effect is absent in the less conspicuous products particular to their studies. For 
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example, Chao and Shor explain that while the law of demand is verified for less 

conspicuous products, “for lipstick, price is not even a significant negative 

determinant of quantity demanded”. Moreover, there are vivid anecdotes about Veblen 

effects, such as those presented by Bagwell and Bernheim (1996), who suggest that 

“Veblen effects may be empirically significant in marketing for luxury goods”. In 

addition, Creedy et al. (1991), and Bagwell and Bernheim (1996) argue that: 

“Econometric evidence also corroborates the existence of Veblen effects”. The above 

works have explored the existence of Veblen effects under various market settings. 

However, they have not explored analytically the conditions for the occurrence of the 

Veblen effects. As a consequence, this thesis research, via its analytical model, tries to 

reveal the analytical closed-form conditions for the occurrence of this important 

Veblen effect. 
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Chapter 3 Basic model 

Mathematical modeling, supplemented by real world cases, is employed to study the 

proposed topic stated in this thesis. In this chapter we start by introducing the 

background and notation for the modeling employed in multiple sections in this thesis.  

 

3.1 Notation 
Table 3-1 Notation list A 

xL and xF 

a and α 
b and β 

 

g and γ 

λ  
e  

p 

c 

basic demands of LG and FG 

sensitivity coefficients of advertising efforts of LG & FG 

sensitivity coefficients of norm of LG and FG (effects of social 

influence). 

sensitivity coefficients of price of LG and FG 

the proportion of advertising effort spent on LG (a decision variable) 

total advertising effort (a decision variable) 

product retail price (a decision variable) 

production cost 

 

3.2 Model and assumption 
Consider a company which sells a fashion product to the market. The unit product 

cost is c , and the unit retail price is p , where 0>> cp . We consider the case 

when c  is exogenous and p  is decided by the company. There are two groups of 

customers, namely the leader-group (LG) customers and the follower-group (FG) 

customers. The demands of these two groups are inter-dependent. LG customers seek 

for a unique personal style, and they dislike a product that is owned by too many FG 

whereas FG customers take the purchasing decisions of LG as their references in 

deciding whether to buy a product or not. As a result, a higher demand of LG induces 

a higher demand of FG, but a higher demand of FG implies a lower demand of LG. 



34 

 

Therefore, mathematically, the demand of FG is increasing with the demand of LG, 

and the demand of LG is decreasing with the demand of FG. Both groups are 

price-sensitive, and demands of both groups are strictly decreasing in p (Chiu et al., 

2009). In order to increase the sales volume of the product, the company can 

implement some advertising campaigns on LG and FG. The total advertising resource 

and effort of the company spent on the advertising campaigns is denoted by e. This 

total advertising effort is divided into two proportions by the company: A λ  

proportion of the effort is spent on LG and the rest )1( λ−  proportion is spent on FG, 

where λ  is bounded between 0 and 1. The advertising and price sensitive demand 

model with social influence is depicted in Fig. 3.1. The advertising cost function 

( )C e  is strictly increasing in e and the marginal cost of the total advertising effort is 

strictly increasing in e, i.e., ( ) / 0dC e de >  and 2 2( ) / 0d C e de > . In order to obtain 

more close-form analytical insights, we consider 2)( eeC =  (P.S.: the analysis 

procedure will remain the same if we assume another format of this effort function). 

We denote the advertising and pricing strategy of the company by ),,( pe λω = . We 

only focus on the set of finiteω , i.e., {0 ,0 1, }e c pω λ∈Ω= ≤ < +∞ ≤ ≤ < < +∞ . 

Based on the luxury fashion market we considered, we adopt the following additive 

demand functions of LG and FG, respectively, 

( ) [ ( )]L LD Vω ω +=  and ( ) [ ( )]F FD Vω ω += , 

where [ ] max{0, }Y Y+ = , , , , , , , ,L Fx x a b gα β γ  are all non-negative, and 

( ) ( )L L FV x a e bD gpω λ ω= + − −  and ( ) (1 ) ( )F F LV x e D pω α λ β ω γ= + − + −  are the 

value functions of the fashion product of LG and FG, respectively, for any given 

ω∈Ω .  

The demand model above indicates that no consumer is willing to buy the 

fashion product if its value is zero or negative. However, more consumers are willing 

to buy the fashion product if its value to customers is higher. 
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Positive 
effect:

Negative 
effect:

e

p

+

λTotal Demand

S.I

S.I

Notation：
S.I: Social influence

( )LD ω ( )FD ω

 
Fig.3-1 Advertising and price-demand model with social influence (S.I.). 

 

To ensure the validity of the above demand model, we have the following assumption: 

Assumption 3.2.1 (a) gcxL >  and (b) Fx cγ>  

Notice that Assumption 3.2.1 ensures the demands of LG and FG are positive 

when the company sells the product to either group at cost c when there is no social 

influence. This assumption helps avoid trivial and un-reasonable cases. 

For any given feasible ω , the total demand of the product and the company’s 

profit are given as follows respectively, 

)()()( ωωω FL DDD += , and  
2( ) ( ) ( )p c D eπ ω ω= − − . 

The profit maximization model of the luxury brand (company) is given as follows, 

(P1) )(max ωπ
ω Ω∈

 . 

For a notational purpose, we represent the optimal advertising and pricing strategy of 

problem (P1) by ),,( **** pe λω = .  
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3.3 Results 
To obtain the optimal pricing and advertising strategies, notice that we need to explore 

the problem by investigating different cases. First, we prove the existence of feasible 

solutions to the optimization Problem (P1).  

Proposition 3.3.1 There always exist multiple ω  with which ( ) 0π ω >  . 

Proof: All proofs appear in the Appendix (A1). 

Proposition 3.3.1 asserts that there always exist some (feasible) ω  which 

ensures ( ) 0π ω >  for any given market parameters, and hence *( ) 0π ω >  always 

exists, given that Assumption 3.2.1 is valid. According to the demand models of LG 

and FG, there are three mutually exclusive cases, and these three cases represent three 

different selling tactics for the company: 

• Tactic I: 0)( >ωLD  and 0)( >ωFD , the company sells the product to both FG 

and LG; 

• Tactic II: 0)( =ωLD  and 0)( >ωFD , the company targets at FG and sells the 

product to FG only; 

• Tactic III: 0)( >ωLD  and 0)( =ωFD , the company targets at LG and sells the 

product to LG only. 

In the following, we analyze the “local” optimal solution for each tactic. The “global” 

optimal solution of Problem (P1) can finally be found by choosing the best one 

among the three “local” optimal solutions. 

 

3.3.1 Tactic I: Selling to both LG and FG 

Define IΩ  as the set of ω  that satisfies the conditions for Tactic I: ( ) 0LD ω >  and 

( ) 0FD ω > . The total demand of the product and the profit of the company are derived 

as follows, 

[ (1 ) ]( )
1

IX e b N GpD
b

α λω
β

+ − + −
=

+
, and 

2( ) { [ (1 ) ] }
1 I
p c X e b N Gp e

b
π ω α λ

β
−

= + − + − −
+

, respectively, where 
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(1 ) (1 )L FX x b xβ= + + − , (1 ) (1 )G g bβ γ= + + − , and IN  = (1 ) (1 )a bβ α+ − − . 

A closer examination of / (1 )X bβ+  reveals that it combines two parts, LG’s basic 

demand with adjustment of the social influence (i.e., (1 ) / (1 )Lx bβ β+ + ) and FG’s 

basic demand with adjustment of the social influence (i.e., (1 ) / (1 )Fx b bβ− + ). 

Moreover, / (1 )X bβ+  represents the total basic demand under Tactic I as it is not a 

coefficient of e and p. Similarly, / (1 )G bβ+  also combines with two parts: LG’s 

price sensitivity of demand with adjustment of the social influence (i.e., 

(1 ) / (1 )g bβ β+ + ) and FG’s price sensitivity of demand with adjustment of the social 

influence to LG (i.e., (1 ) / (1 )b bγ β− + ). In addition, / (1 )G bβ− +  represents the 

price sensitivity of demand under Tactic I as it is the coefficient of p. Moreover, 

(1 )
1

Ib N
b

α λ
β

− +
+

 is the coefficient of e in ( )D ω . Thus, (1 )
1

Ib N
b

α λ
β

− +
+

 represents the 

advertising sensitivity of total demand under Tactic I. The particular term INλ  of 

(1 )
1

Ib N
b

α λ
β

− +
+

 links up the advertising sensitivity of total demand under Tactic I 

with λ . Under Tactic I, ( )D ω  is increasing (decreasing) in λ  if 0IN >  ( 0IN < ). 

Moreover, ( )D ω  is more sensitive to λ  if the absolute value of IN  is bigger. 

Therefore, IN  represents the advertising allocation sensitivity of the total demand. 

Proposition 3.3.2 Suppose that Tactic I is adopted with e > 0. (a) There exists a 

unique optimal λ  if 0IN ≠ : * 1λ =  if 0IN >  and * 0λ =  if 0IN < . (b) Any 

[0,1]λ∈  can be optimal solution of Problem (P1) if 0IN = . 

Notice that in Proposition 3.3.2, we focus on the non-trivial case with e > 0; 

when e = 0, λ  can be ignored (as there is no advertising campaign/effort). 

Proposition 3.3.2 shows that under Tactic I, the company should focus only on the two 

extreme values of λ  if 0IN ≠ . Specifically, when 0IN ≠ , the company should 

either put all the advertising effort to LG, i.e., * 1λ = , or put all the advertising effort 

to FG, i.e., * 0λ = . On the other hand, if 0IN = , then the value of λ  is trivial, and 

the allocation of advertising effort between LG and FG does not affect the profit of 

the company. Proposition 3.3.2 shows that the company should allocate all the 

advertising effort to LG (FG) if 0IN >  ( 0IN < ). Moreover, it is interesting to find 
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that *λ  under Tactic I depends on the market parameters only, and is independent of 

p and e. In addition, based on Proposition 3.3.2, the profit of the company can be 

further decomposed into the following mutually exclusive sub-cases: 

• Tactic (IA): When 0IN > ; 

• Tactic (IB): When 0IN ≤ . 

 

3.3.2 Tactic II: Selling to FG only 

Under Tactic II, 0)( =ωLD  and ( ) 0FD ω > . Since ( ) 0LV ω <  and  ( ) 0LV ω =  

together implies 0)( =ωLD , we further consider two sub-tactics under Tactic II: 

• Tactic IIA: ( ) 0LV ω <  and ( ) 0FD ω > . 

• Tactic IIB: ( ) 0LV ω =  and ( ) 0FD ω > .  

For Tactic IIA, we have: 

( ) ( ) (1 ) 0F FD D x e pω ω α λ γ= = + − − > , and (3.1) 

2( ) ( )( (1 ) )Fp c x e p eπ ω α λ γ= − + − − − . (3.2) 

For Tactic IIB, we have: 

[( ) ] ( )L Fx bx a b b e b g pα λ α γ= − + − − − . 

We summarize the optimal advertising allocation rule in Proposition 3.3.3. 

Proposition 3.3.3 For any fixed 0e > , it is optimal to allocate all the advertising 

effort to FG under Tactic II, i.e., * 0λ = . 

 

3.3.3 Tactic III: Selling to LG only 

Under Tactic III, ( ) 0FD ω =  and 0)( >ωLD . Similar to Tactic II, since ( ) 0FV ω <  

and  ( ) 0FV ω =  together implies ( ) 0FD ω = , we further consider two sub-cases 

under Tactic III:   

Tactic IIIA: ( ) 0FV ω <  and 0)( >ωLD . 

Tactic IIIB: ( ) 0FV ω =  and 0)( >ωLD .  

For Tactic IIIA, we have the following, 

( ) ( ) 0L LD V x ae gpω ω λ= = + − > , and (3.3) 

2( ) ( )( )Lp c x ae gp eπ ω λ= − + − − . (3.4) 
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For Tactic IIIB, the following holds, 

0 [ (1 ) ] ( )F Lx x a e g pβ α λ βλ β γ= + + − + − + . 

Proposition 3.3.4 For any fixed 0e > , it is optimal to allocate all the advertising 

effort to LG under Tactic III, i.e., * 1λ = . 
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3.4  Optimal  advertising  and  pricing 

strategies 
In the above section, we have proposed the basic structure of the three different tactics. 

Notice that the analytical results indicate that the structures of )(ωD  and )(ωπ  

under different tactics are substantially different. In this section, we proceed to 

explore the optimal advertising and pricing strategies for each tactic one by one. In 

addition, we investigate the optimality conditions for each tactic. With the optimality 

conditions of each tactic, we derive the rules for the company to determine the 

optimal tactic among Tactics I, II and III. There are two steps for the company to 

determine the optimal tactic and the corresponding optimal advertising and pricing 

strategy *ω : 

• Step I: Find the local optimal ω  of each tactic (Tactics I, II and III); 

• Step II: Find the globally optimal tactic by comparing the company’s profits at all 

local optimums of Tactics I, II and III. The tactic is globally optimal if it induces 

the highest company’s profit. 

In the following, we investigate the local optimal advertising and pricing strategy 

for each tactic. 

 

3.4.1  Optimal  advertising  and  pricing  strategies 

for Tactic I   
The optimal retail price and advertising effort are different between Tactic (IA) and 

Tactic (IB). Therefore, we consider the two sub-cases separately. Before we proceed, 

we define the following three advertising and pricing strategies:  

*
,AIω =(1, 22 )1()1(4

))(1(
ββ

β
+−+

−+
aGb

GcXa , 22

22

)1()1(4
)1())(1(2

ββ
ββ

+−+
+−++

aGb
caGcXb ), 

*
,BIω =( 0 , 22 )1()1(4

))(1(
bGb

GcXb
−−+

−−
αβ

α , 22

22

)1()1(4
)1())(1(2

bGb
bcGcXb

−−+
−−++

αβ
αβ ), and 
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*
,BIω =(any 10 ≤≤ λ , 22 )1()1(4

))(1(
bGb

GcXb
−−+

−−
αβ

α , 22

22

)1()1(4
)1())(1(2

bGb
bcGcXb

−−+
−−++

αβ
αβ ). 

We further define the following for the sake of notational simplicity: 

22

222

,, )1()1(4
])1())(1(2)[())(1(

ββ
ββγββ

+−+
+−++−+−+

+−=
aGb

caGcXbgbGcXabxxE FLLAI ,  

22

222

,, )1()1(4
])1())(1(2)[())(1(

ββ
βββγβββ

+−+
+−+++−−+

++=
aGb

caGcXbgGcXaxxE LFFAI  

22

222

,, )1()1(4
])1())(1(2)[())(1(

bGb
bcGcXbgbGcXbbbxxE FLLBI −−+

−−++−−−−
−−=

αβ
αβγα , 

22

222

,, )1()1(4
])1())(1(2)[())(1(

bGb
bcGcXbgGcXbxxE LFFBI −−+

−−+++−−−
++=

αβ
αββγαβ . 

Proposition 3.4.1 (a) *
,AIω  is feasible if (i) )1(4)1( 22 ββ bGa +<+  and GcX > ; 

(b) *
,BIω  and *

,BIω  are feasible if (ii) 1<b , Bbb )1(4)1( 22 βα +<−  and BcA > . 

 

Case 1: 0>IN  

According to Proposition 3.3.2, 1* =λ  if 0>IN . Let LI ,ω  be any ω  with 1=λ , 

,I L Iω ∈Ω  and satisfies 0)( , >LIωπ . Then  

β
βω

b
GpeaXD LI +

−++
=

1
)1()( , , and 

2
, ])1([

1
)( eGpeaX

b
cp

LI −−++
+
−

= β
β

ωπ . 

Proposition 3.4.2 For 0>IN  and given any fixed cp > , the optimal advertising 

effort is given by 0)(
)1(2
)1()(*

, >−
+
+

= cp
b

ape AI β
β  under Tactic I. 

Proposition 3.4.2 asserts that )(*
, pe AI  is positive and strictly increasing in p for 

all cp > . In words, a higher advertising supports a higher selling price under Tactic 

(IA). Let *( ) (1, ( ), )A Ap e p pω = . We have 

)(
1

)(
)1(4

)1(4)1())(( 2
2

22

cp
b
GcXcp

b
bGapA −

+
−

+−
+

+−+
=

ββ
ββωπ . 

Proposition 3.4.3 For 0>IN , if *
Iω ∈Ω  and *( )π ω < +∞ , then (i) 0,, >LAIE , (ii) 
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, , 0I A FE >  and (iii) )1(4)1( 22 ββ bGa +<+  (iv) GcX > . Moreover, *ω  is unique 

and given by *
,AIω . 

Proposition 3.4.3 shows that for the case 0>IN , *
,AIω  is the unique local 

optimal ω  of Tactic I. As shown in Proposition 3.3.2, 1* =λ  if 0>IN . Therefore, 

*ω = *
,AIω  (which is consistent to Proposition 3.3.2). There are four necessary 

optimality conditions for *
,AIω . As we mentioned in Proposition 3.4.1, Conditions (iii) 

and (iv) of Proposition 3.4.3 ensure that *
,AIω  is feasible. Conditions (i) and (ii) of 

Proposition 3.4.3 guarantee that *
I,A Iω ∈Ω , respectively. Therefore, if any condition of 

Proposition 3.4.3 is not satisfied, then *
,AIω  is either infeasible or *

I,A Iω ∉Ω , and 

hence it is not optimal. Therefore, these conditions can be used for the company to 

check whether Tactic I should be rejected or not if 0>IN . Specifically, if 0>IN  

and any condition of Proposition 3.4.3 is not fulfilled, then Tactic I is never optimal 

and should thus be rejected, and the company should choose from Tactics II and III 

which means selling the product to either LG or FG. 

 

Case 2: 0≤IN  

According to Proposition 3.3.2, 0* =λ  if 0<IN , and *λ  can take any value 

between 0 and 1 if 0=IN  (because the resulting profit remains the same). Therefore, 

we take 0=λ  for 0=IN  for simplicity and combine it with 0<IN  as Case 2 

here. Let FI ,ω  be any ω  with 0=λ , *
I,F Iω ∈Ω  and satisfies 0)( , >FIωπ . Then 

we have: 

β
αω

b
GpbeXD FI +

−−+
=

1
)1()( , , and 2

, ])1([
1

)( eGpbeX
b

cp
FI −−−+

+
−

= α
β

ωπ .  

Proposition 3.4.4 For 0≤IN  and any fixed cp > , the optimal advertising effort is 

given by 0)(
)1(2

)1()(*
, >−

+
−

= cp
b
bpe BI β

α  under Tactic I. 

Proposition 3.4.4 asserts that )(*
, pe BI  is positive and strictly increasing in p for 

all cp > , which means that a higher selling price would lead to a higher optimal 

advertising effort. Let *
.( ) (1, ( ), )B I Bp e p pω = . We have 
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)(
1

)(
)1(4

)1(4)1())(( 2
2

22

cp
b
GcXcp

b
bGbpB −

+
−

+−
+

+−−
=

ββ
βαωπ . 

Proposition 3.4.5 Suppose that 0≤IN , i.e., 0* =λ . If *
Iω ∈Ω  and *( )π ω < +∞ , 

then (i) 01,, >BIE , (ii) 02,, >BIE , and (iii) )1(4)1( 22 ββ bGa +<+ , (iv) GcX > . 

Moreover, *
,

*
BIωω =  is unique if 0<IN , and  *ω = *

,BIω  if 0=IN . 

The interpretation of Proposition 3.4.5 is similar to the interpretation of 

Proposition 3.4.3. Specifically, Proposition 3.4.5 shows that *
,BIω  is the unique local 

optimal ω  of Tactic I, for 0<IN . As shown in Proposition 3.3.2, 0* =λ  if 

0<Ν I , and *λ  can be any value between 0 and 1 if 0=IN . Therefore, we have 

*ω = *
,AIω  and *ω = *

,BIω , for the corresponding situations. These results are 

consistent with the findings of Proposition 3.3.2. There are four necessary optimality 

conditions of *
,BIω  and *

,BIω . As we mentioned in Proposition 3.4.1, Conditions (iii) 

and (iv) of Proposition 3.4.5 ensure that *
,BIω  is feasible. For 0<IN , Conditions (i) 

and (ii) of Proposition 3.4.5 guarantee that *
I,B Iω ∈Ω . Therefore, if any condition of 

Proposition 3.4.5 is not satisfied, then either *
,BIω  is infeasible, or *

,BIω  does not 

satisfy *
I,B Iω ∈Ω , and hence *

,BIω  is never the optimal solution. Similarly, for 

0=IN , Conditions (i) to (iv) can be used to check the feasibility of *
,BIω , and the 

conditions for *
I,B Iω ∈Ω . Therefore, these conditions can be used for the company to 

check whether Tactic I should be rejected or not if 0≤IN . Lastly, Proposition 3.4.5 

shows that *
,BIω  is the unique local optimal ω  of Tactic I for 0<IN , and there 

exist multiple local optimal ω  of Tactic I for 0=IN . 

 

3.4.2  Optimal  advertising  and  pricing  strategies 

for Tactic II   
For Tactic II, we consider the following three advertising and pricing strategies: 

*
1,IIω =( 0 , *

1,IIe , *
1,IIp ), *

2,IIω =( 0 , *
2,IIe , *

2,IIp ) *
3,IIω = ( 0 ,0, *

3,IIp ),  

where 
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*
,1 2

( )
4

F
II

x ce α γ
γ α

−
=

−
, *

,2 2 2

[2 ( ) 2 ( ) ( ) ]
2[ ( ) ]

L F
II

b x gc bg x c b g ce
bg b g

α γ γ γ
α γ

− − − + −
=

+ −
, 

2
*

,1 2

2 (2 )
4

F
II

x cp γ α
γ α

+ −
=

−
, 

2 2
*

,2 2 2

[ 2( )] 2 ( )
2[ ( ) ]

L F
II

b b g x b b g x bgcp
bg b g

α γ γ α
α γ

− − + − +
=

+ −
,  

*
,3

F L
II

bx xp
b gγ

−
=

−
. 

Proposition 3.4.6 (a) *
1,IIω  is feasible if and only if 24 αγ > . (b) *

2,IIω  is feasible if 

only if either of the following conditions holds:  

(b.1) 2[ 2( )]( ) 2 ( )( ) 0L Fb b g x gc b b g x cα γ γ γ− − − + − − >  and  

(b.2) 2 ( ) 2 ( ) ( ) 0L Fb x gc bg x c b g cγ γ γ− − − + − ≥ , 

(c) *
3,IIω  is feasible if and only if either of the following condition holds:  

(c.1) ( )F Lb x c x gcγ− > −  and gb ≥γ , or  

(c.2) ( )F Lb x c x gcγ− < −  and gb <γ . 

Proposition 3.4.7 If *ω  satisfies *( ) 0LV ω < , *( ) 0FD ω >  and *( )π ω < +∞ , then 

(i) γα 42 < , and (ii) 0<IIE . Moreover, *ω = *
1,IIω  is unique, where 

2 2 2(4 ) 2( ) (2 2 )II L FE x b g x c b g gγ α γ γ γ α= − − + + − + . 

Observe that if any condition of Proposition 3.4.6 is not satisfied, then Tactic II 

(with ( ) 0LV ω < ) is never optimal and thus should not be adopted. As shown in 

Proposition 3.4.6, γα 42 <  is the necessary and sufficient condition for *
1,IIω  to be 

feasible, and Condition (ii) of Proposition 3.4.7 guarantees that *
,1( ) 0L IIV ω < . 

Moreover, Proposition 3.4.7 shows that *
1,IIω  is the unique local optimal ω  of 

Tactic IIA. The optimal advertising effort under Tactic IIA is strictly increasing in p. 

Therefore, a higher price will lead to a bigger optimal advertising effort under Tactic 

II with ( ) 0FD ω >  and ( ) 0LV ω < . 

Proposition 3.4.8 If *ω  satisfies *( ) 0LV ω = , *( ) 0FD ω >  and *( )π ω < +∞ , then 

either (i) *
2,IIω  is feasible, *

,2( ) 0F IID ω >  and *
2,

*
IIωω = ; or (ii) *

3,IIω  is feasible, 

*
,3( ) 0F IID ω >  and *

3,
*

IIωω = . 

Proposition 3.4.8 shows that there are two local optimums ω  for Tactic IIB. 
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Moreover, the necessary conditions for *
,

*
iIIωω = , 3,2=i , under Tactic IIB include 

the feasibility conditions of *
,iIIω  and the condition *

,( ) 0F II iD ω > , 3,2=i . 

3.4.3  Optimal  advertising  and  pricing  strategies 

for Tactic III   
Similar to Tactic II, for Tactic III, we consider the following two advertising and 

pricing strategies: 
*

1,IIIω =(1, *
1,IIIe , *

1,IIIp ), *
2,IIIω  =(1,0, *

2,IIIp ), where 

2
*

1, 4
)(

ag
gcxae L

III −
−

= , 2

2
*

1, 4
)2(2

ag
agcxp L

III −
−+

= ,  *
,2

F L
III

x xp
g

β
β γ
+

=
+

. 

Proposition 3.4.9 (a) *
1,IIIω  is feasible if and only if 24 ag > . (b) *

2,IIIω  is feasible. 

Proposition 3.4.9 (a) shows the necessary and sufficient conditions that *
1,IIIω  is 

feasible. Moreover, Proposition 3.4.9 (b) shows that *
2,IIIω  is always feasible. 

Proposition 3.4.10 If *ω  satisfies *( ) 0FV ω < , 0)( * >ωLD  and *( )π ω < +∞ , then 

(i) 24 ag > , and (ii) 0, >AIIIE , where 

2 2 2(4 ) 2( ) ( 2 2 )III F FE g a x g x c a g gβ γ γ γ β= − + − + − − . 

Moreover, *ω = *
,1IIIω  is unique. 

If any condition of Proposition 3.4.10 is not satisfied, Tactic IIIA is not optimal 

and thus should not be adopted. As mentioned in Proposition 3.4.9, 24 ag >  is the 

necessary and sufficient condition for having feasible *
1,IIIω , and Condition (ii) of 

Proposition 3.4.10 guarantees that 0)( *
1, >IIILD ω . Moreover, Proposition 3.4.10 

shows that *
1,IIIω  is the unique local optimal ω  of Tactic IIIA. The optimal 

advertising effort under Tactic IIIA is strictly increasing in p.  

Proposition 3.4.11 If *ω  satisfies *( ) 0FV ω = , 0)( * >ωLD  and *( )π ω < +∞ , then 

*
2,IIIω  is feasible, 0)( *

2, >IIILD ω  and *
2,

*
IIIωω = . 

Proposition 3.4.11 shows that there is a unique local optimum ω  of Tactic IIIB. 

The necessary conditions for *
2,

*
IIIωω =  under Tactic IIIB include the feasibility 

conditions of *
2,IIIω  and the condition 0)( *

2, >IIILD ω . 
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3.5 The Veblen effects 

3.5.1 The Veblen effect for Case I.A 

We denote )( pAω  as any feasible ω  with 1=λ , )(*
, pee AI=  and cp > , and 

satisfies 0))(( >pD AL ω  and ( ( )) 0F AD pω > . Then 

2 21 (1 ) (1 )( ( ))
1 2(1 ) 2(1 )L A L F

a c aD p x bx b g p
b b b

β βω γ
β β β
⎧ ⎫⎡ ⎤+ +⎪ ⎪= − − + + −⎨ ⎬⎢ ⎥+ + +⎪ ⎪⎣ ⎦⎩ ⎭

, and 

2 21 (1 ) (1 )( ( ))
1 2(1 ) 2(1 )F A F L

a c aD p x x g p
b b b

β β β βω β γ β
β β β
⎧ ⎫⎡ ⎤+ +⎪ ⎪= + − + − −⎨ ⎬⎢ ⎥+ + +⎪ ⎪⎣ ⎦⎩ ⎭

. 

 Clearly, ))(( pD AL ω  is strictly increasing in p if and only if 
2 (1 )

2(1 )
a g b

b
β γ
β

+
> −

+
, and 

( ( ))F AD pω  is strictly increasing in p if and only if
 

2 (1 )
2(1 )
a g

b
β γ
β β

+
> +

+
. Let 0

,LAp  

and 0
,A Fp , respectively, satisfy 0))(( 0

, =LAAL pD ω  and 0
,( ( )) 0F A A FD pω = . 

For 0IN ≥ , the Veblen effect takes place to both LG and FG if 

2 (1 )
2(1 )
a g

b
β γ
β β

+
> +

+
. Moreover, ))(( pD Aω  is increasing in p , and 

∞→−= ))(()())(( pDcpp AA ωωπ  as ∞→p , if 
2 (1 )

2(1 )
a g

b
β γ
β β

+
> +

+
. Moreover, the 

feasible region of p for 0))(( >pD AL ω  and ( ( )) 0F AD pω >  is given by  
0 0

, ,max{ , }A F A Lp p p≥ . Noting that )(*
, pe AI  is strictly increasing in p: A bigger p thus 

implies a higher advertising effort by the company. In addition, a higher advertising 

effort pushes up the demand of the product. Therefore, the company can increase the 

demand by putting more advertising efforts. When the gain in demand due to a higher 

advertising effort by the company is bigger than the loss in demand due to a higher 

price, the Veblen effect takes place. This happens especially when the sensitivity of 

the advertising efforts to the demand of LG is big, i.e., a  is big.  

For 
2 (1 )

2(1 )
ag g b

b
γ β γ
β β

+
+ ≥ > −

+
, ))(( pD AL ω  is strictly increasing in p and 
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( ( ))F AD pω  is decreasing in p. Veblen effect takes place to LG only for this case. 

Moreover, the feasible region of p for 0))(( >pD AL ω  and ( ( )) 0F AD pω >  is given 

by 0 0
, ,A L A Fp p p≤ ≤ . 

For 
2 (1 )

2(1 )
a g b

b
β γ
β

+
≤ −

+
, both ))(( pD AL ω  and ( ( ))F AD pω  are decreasing in p. 

Veblen effect does not take place to both LG and FG for this case because a is small. 

Moreover, the feasible region of p for 0))(( >pD AL ω  and ( ( )) 0F AD pω >  is given 

by 0 0
, ,min{ , }A F A Lp p p≤ .  

It is impossible for the occurrence of both (i) ))(( pD AL ω  is decreasing in p, and 

(ii) ( ( ))F AD pω  is increasing in p (because 
2 (1 )

2(1 )
ag b g

b
β γγ
β β

+
− ≥ > +

+
 contradicts 

to /g b gγ γ β− < + ). Therefore, for 0IN ≥ , the Veblen effect does not occur in 

both LG and FG.   

Proposition 3.5.1 Under Tactic I and for 0IN ≥ , (a) if 
2 (1 )

2(1 )
a g

b
β γ
β β

+
> +

+
, then the 

Veblen effect occurs in both LG and FG, and the feasible region of p is given by 

0 0
, ,max{ , }A F A Lp p p≥ ; (b) if 

2 (1 )
2(1 )
ag g b

b
γ β γ
β β

+
+ ≥ > −

+
, then the Veblen effect occurs 

in LG only, and the feasible region of p is given by 0 0
, ,A L A Fp p p≤ ≤ ; and (c) if 

2 (1 )
2(1 )
a g b

b
β γ
β

+
≤ −

+
, then the Veblen effect does not occur in both LG and FG, and the 

feasible region of p is given by 0 0
, ,min{ , }A F A Lp p p≤ . 

 Proposition 3.5.1 shows the conditions of the occurrence of the Veblen effect and 

associated feasible regions of p under Tactic I and for 0IN ≥  (see also Table 3-2). 

The feasible region of p for 0))(( >pD AL ω  and ( ( )) 0F AD pω >  may not exist in 

some cases, and it depends on the values of market parameters. 

Table 3-2 The Veblen effect and the feasible region of p under Tactic I for 0IN ≥  

Conditions Veblen effect occurs in Feasible region of p 
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2 (1 )
2(1 )
a g

b
β γ
β β

+
> +

+
 

Both LG and FG 0 0
, ,max{ , }A F A Lp p p≥  

2 (1 )
2(1 )
ag g b

b
γ β γ
β β

+
+ ≥ > −

+

LG only 0 0
, ,A L A Fp p p≤ ≤  

2 (1 )
2(1 )
a g b

b
β γ
β

+
≤ −

+
 

No Veblen effect 0 0
, ,min{ , }A F A Lp p p≤  

 

 Next, we investigate how the social influence affects the Veblen effect. First we 

consider the social influence of LG to FG. For 0β = , 0IN ≥  implies (1 )a bα≥ − , 

and we have  
2 2

( ( ))
2 2L A L F

a c aD p x bx b g pω γ
⎡ ⎤

= − − + + −⎢ ⎥
⎣ ⎦

, and  

2

( ( ))
2F A F

a cD p x pβω γ= − − . 

Since 0γ > , ( ( ))F AD pω  is strictly decreasing in p. Hence the Veblen effect never 

occurs in FG under Tactic I for 0β =  and 0IN ≥ ; essentially, if the social influence 

is excluded, then the Veblen effect will never occur in LG and FG simultaneously 

under Tactic I  for 0IN ≥ . 

Proposition 3.5.2 Under Tactic I and for 0β =  and 0IN ≥ , if 
2

2
a g bγ> − , then 

the Veblen effect occurs in LG. 

 If 1b >  , then 
2 2 (1 )

2 2(1 )
a a

b
β
β

+
>

+
 for any 0β > . Therefore, Proposition 3.5.2 

asserts that, for 1b > , the social influence of LG to FG loosens the constraint on the 

occurrence of the Veblen effect in LG under Tactic I. However, for 1b < , the social 

influence of LG to FG tightens the constraint on the occurrence of the Veblen effect in 

LG under Tactic I.  

For 0b = , 0IN ≥  implies (1 )a β α+ ≥ , and we have 

2 2(1 ) (1 )( ( ))
2 2L A L

a c aD p x g pβ βω
⎡ ⎤+ +

= − + −⎢ ⎥
⎣ ⎦

, and  
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2 2(1 ) (1 )( ( ))
2 2F A F L

a c aD p x x g pβ β β βω β γ β
⎡ ⎤+ +

= + − + − −⎢ ⎥
⎣ ⎦

. 

 By examining the demand functions ( ( ))L AD pω  and ( ( ))F AD pω , we can find 

the condition for the occurrence of the Veblen effect under Tactic I for 0b =  and 

0IN ≥ . 

Proposition 3.5.3 Under Tactic I and for 0b =  and 0IN ≥ , (a) if 

2 (1 )
2

a gβ γ
β

+
> + , then the Veblen effect occurs in both LG and FG; (b) if 

2 (1 )
2

ag gγ β
β

+
+ ≥ > , then the Veblen effect occurs in LG only; and (c) if 

2 (1 )
2

a gβ+
≤ , then the Veblen effect does not occur in both LG and FG. 

Because 
2 2(1 ) (1 )

2 2(1 )
a a

b
β β

β
+ +

>
+

, Proposition 3.5.1 and Proposition 3.5.3 show 

that the social influence of FG to LG loosens the conditions of the occurrence of the 

Veblen effect in both FG and LG. Moreover, for gb β γ
βγ
−

< , we have 

( )(1 )g b b gγ β− + > . Therefore, the social influence of FG to LG increases the chance 

for the Veblen not to take place in neither LG nor FG for gb β γ
βγ
−

< . 

 

3.5.2 The Veblen effect for Case I.B 

 Denote )( pBω  as any feasible ω  with * 0λ = , )(*
, pee BI=  and cp > , and 

satisfies 0))(( >pD BL ω  and ( ( )) 0F BD pω > . Then 

2 21 (1 ) (1 )( ( ))
1 2(1 ) 2(1 )L B L F

b b c b bD p x bx b g p
b b b

α αω γ
β β β
⎧ ⎫⎡ ⎤− −⎪ ⎪= − + − − +⎨ ⎬⎢ ⎥+ + +⎪ ⎪⎣ ⎦⎩ ⎭

, and 

2 21 (1 ) (1 )( ( ))
1 2(1 ) 2(1 )F B F L

b c bD p x x g p
b b b

α αω β γ β
β β β
⎧ ⎫⎡ ⎤− −⎪ ⎪= + − + − −⎨ ⎬⎢ ⎥+ + +⎪ ⎪⎣ ⎦⎩ ⎭

. 

 Clearly, ))(( pD BL ω  is strictly increasing in p if and only if 
2 (1 )

2(1 )
g b
b b

αγ
β

−
− >

+
, 
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and ( ( ))F BD pω  is strictly increasing in p if and only if 
2 (1 )

2(1 )
b g

b
α γ β

β
−

> +
+

. Let 

0
,LBp  and 0

,B Fp , respectively, satisfy 0))(( 0
, =LBBL pD ω  and 0

,( ( )) 0F B B FD pω = . 

For 0IN ≤ , 1b <  and it is impossible to have both ))(( pD BL ω  and 

( ( ))F BD pω  being increasing in p (cf: the mutually exclusive condition for 

occurrence). Therefore, for 0IN ≤ , the Veblen effect does not take place to LG and 

FG simultaneously. 

 For 
2 (1 )

2(1 )
b g

b b
α γ

β
−

< −
+

, ))(( pD BL ω  is strictly increasing in p and ( ( ))F BD pω  

is strictly decreasing in p. The Veblen effect occurs in LG only for this case. Moreover, 

the feasible region of p for 0))(( >pD BL ω  and ( ( )) 0F BD pω >  is given by 

0 0
, ,B L B Fp p p≤ ≤ . 

For 
2 (1 )

2(1 )
g b g
b b

αγ γ β
β

−
− ≤ ≤ +

+
, ))(( pD BL ω  and ( ( ))F BD pω  are decreasing in 

p. Therefore, the Veblen effect does occur in both LG and FG for this case. Moreover, 

the feasible region of p for 0))(( >pD BL ω  and ( ( )) 0F BD pω >  is given by 

0 0
, ,min{ , }B L B Fp p p≤ . 

 For g
b

b βγ
β

α
+>

+
−

)1(2
)1(2

, ))(( pD BL ω  is decreasing in p and ( ( ))F BD pω  is 

strictly increasing in p. The Veblen effect takes place to FG only for this case. 

Moreover, the feasible region of p for 0))(( >pD BL ω  and ( ( )) 0F BD pω >  is given 

by 0 0
, ,B F B Lp p p≤ ≤ . 

Proposition 3.5.4 Under Tactic I and for 0IN < , (a) the Veblen effect does not occur 

in both LG and FG simultaneously; (b) if 
2 (1 )

2(1 )
b g

b b
α γ

β
−

< −
+

, then the Veblen effect 

occurs in LG, and the feasible region of p is given by 0 0
, ,B L B Fp p p≤ ≤ ; (c) if 

2 (1 )
2(1 )

g b g
b b

αγ γ β
β

−
− ≤ ≤ +

+
, then the Veblen effect does not occur in both LG and FG, 

and the feasible region of p is given by 0 0
, ,min{ , }B L B Fp p p≤ ; and (d) if 
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g
b

b βγ
β

α
+>

+
−

)1(2
)1(2

, then the Veblen effect occurs in FG, and the feasible region of p is 

given by 0 0
, ,B F B Lp p p≤ ≤ . 

 Proposition 3.5.4 shows the conditions of the occurrence of the Veblen effect and 

associated feasible regions of p under Tactic I and for 0IN <  (see also Table 4.2). As 

a remark, the feasible region of p for 0))(( >pD AL ω  and ( ( )) 0F AD pω >  may not 

exist in some cases, and it depends on the values of market parameters. 

Table 3-3 The Veblen effect and the feasible region of p under Tactic I for 0IN <  

Conditions Veblen effect occurs in Feasible region of p 
2 (1 )

2(1 )
b g

b b
α γ

β
−

< −
+

 LG only 0 0
, ,B L B Fp p p≤ ≤  

2 (1 )
2(1 )

g b g
b b

αγ γ β
β

−
− ≤ ≤ +

+
 No Veblen effect 0 0

, ,min{ , }B L B Fp p p≤  

g
b

b βγ
β

α
+>

+
−

)1(2
)1(2

 FG only 0 0
, ,B F B Lp p p≤ ≤  

 

 Next, we investigate how the social influence affects the Veblen effect. First we 

consider the social influence of LG to FG. For 0β = , 0IN <  implies (1 )a bα< − , 

and we have. 
2 2(1 ) (1 )( ( ))

2 2L B L F
b b c b bD p x bx b g pα αω γ

⎡ ⎤− −
= − + − − +⎢ ⎥

⎣ ⎦
, and  

2 2(1 ) (1 )( ( ))
2 2F B F

b c bD p x pα αω γ
⎡ ⎤− −

= − + −⎢ ⎥
⎣ ⎦

. 

By examining the demand functions ( ( ))L BD pω  and ( ( ))F BD pω , we find the 

condition of the occurrence of the Veblen effect under Tactic I for 0β =  and 

0IN < . 

Proposition 3.5.5 Under Tactic I and for 0β =  and 0IN < , (a) if 

2 (1 )
2

b g
b

α γ−
< − , then the Veblen effect occurs in LG; (b) if 

2 (1 )
2

g b
b

αγ γ−
− ≤ ≤ , 

then the Veblen effect does not occur in both LG and FG; and (c) if 
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g
b

b βγ
β

α
+>

+
−

)1(2
)1(2

, then the Veblen effect occurs in FG. 

Because 
2 2(1 ) (1 )

2 2(1 )
b b

b
α α

β
− −

>
+

, Proposition 3.5.5 shows that the social influence 

of FG to LG loosens the constraint on the occurrence of the Veblen effect in LG under 

Tactic I with 0IN < . On the other hand, the social influence of FG to LG tightens the 

constraints on the occurrence of the Veblen effect in FG under Tactic I with 0IN < . 

For 0b = , 0IN <  implies (1 )a β α+ < , and we have 

( ( ))L B LD p x gpω = − , and 
2 2

( ( ))
2 2F B F L

cD p x x g pα αω β γ β
⎡ ⎤

= + − + − −⎢ ⎥
⎣ ⎦

. 

Because 0g > , ( ( ))L BD pω  is strictly decreasing in p. Hence the Veblen effect 

never take place in LG under Tactic I for 0b =  and 0IN < . Therefore, if the social 

influence is excluded, then the Veblen effect can never take place in LG under Tactic I, 

for 0IN < . 

Proposition 3.5.6 Under Tactic I and for 0b =  and 0IN < , if 
2

2
gα β γ> + , then 

the Veblen effect occurs in FG only. 

In summary, under Tactic I, the Veblen effect occurs in LG and FG 

simultaneously only if 0IN ≥ . If 0IN < , the Veblen effect only occurs in either LG 

or FG. Moreover, the social influence of LG to FG loosen the constraint on the 

occurrence of the Veblen effect for 0IN ≥ . 

3.5.3 Veblen effect for Case IIA 
Proposition 3.5.7 Under Tactic IIA, the optimal advertising effort for any fixed cp >  

is given by * ( ) ( ) / 2IIAe p p cα= − . 

 The optimal advertising effort under Tactic IIA is strictly increasing in p. 

Therefore, a higher price needs a bigger advertising effort to support under Tactic II 

with ( ) 0FD ω >  and 0)( <ωLD .  

Let )(, pAIIω  be any feasible ω  with 0=λ  and * ( )IIAe e p= , and satisfies 

( ( )) 0F IIAD pω >  and ( ( )) 0L IIAD pω < . Then 
2 22( ( ))

2 2IIA F
cD p x pα γ αω −

= + − . 
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Therefore, Veblen effect occurs in FG under Tactic IIA if γα 22 > . 

 

3.5.4 Veblen effect for Case IIIA 
Proposition 3.5.8 Under Tactic IIIA, the optimal advertising effort for any fixed 

cp >  is given by * ( ) ( ) / 2IIIAe p a p c= − . 

The optimal advertising effort under Tactic IIIA is strictly increasing in p. 

Therefore, a higher price needs a bigger advertising effort to support under Tactic 

IIIA.  

Let ( )IIIA pω  be any feasible ω  with 1=λ  and * ( )IIIAe e p= , and satisfies 

( ( )) 0L IIIAD pω >  and ( ( )) 0F IIIAD pω < . Then 

2 22( ( ))
2 2IIIA L

a g a cD p x pω −
= + − . 

Therefore, Veblen effect occurs in LG under Tactic IIIA if ga 22 > . 
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3.6 Numerical analysis 
In this section, we carry out numerical analysis to illustrate the steps to identify the 

local and global optimal decisions. To be specific, we consider the basic set of 

parameters as shown in Table 3-42  

 
Table 3-4 Parameters for the numerical analysis 

 
100LX = , 300FX = , 0.1a = , 1α = , 0.5b = , 10β = , 0.05g = , 0.5γ = ,

200c = . 

 

As we mentioned earlier, we need to examine each local optimal solution for 

each tactic before we can determine the global optimal solution for the problem. In the 

following, we examine the local optimal profit under each tactic. For each tactic 

(including the sub-tactic), we have the respective local optimal solution listed in Table 

N.2. By comparing the profits under all the local optimal solutions, we can obtain the 

global optimal solution (shown in bold, in Table 3-5). For this case, the global optimal 

solution is achieved under Tactic IA.  

 
Table 3-5 Local optimal solution under each tactic 

 
Tactic λ  e  p LD FD π  Feasibility

IA 1 66.7 927.1 24 73 66042.3 Feasible
IB 0 28.8 890.2 19 73 62696.6 Feasible
IIA 0 200.0 600.0 0 200 40000.0 Feasible
IIB1 0 130.8 576.9 0 142 36538.5 Feasible
IIB2 0 0 0 0 175 8750.0 Feasible
IIIA 1 47.4 1147.4 47 0 42631.6 Infeasible
IIIB 1 0 1300.0 35 0 38500.0 Feasible

 

 

 

 

 
                                                 
2 Notice that these parameters satisfy the model requirements and assumptions. The qualitative results 
of the analysis do not depend on the specific choice of the parameters, as shown in our analytical 
results in the preceding sections. 
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In the following, we conduct a sensitivity analysis to explore how the change of 

parameters affects the optimal decision: 

 

A. Varying LX  and FX  

 

Table 3-6 shows the optimal tactic with the cases of different LX  and FX . Tactic IA 

is optimal when (i) FX  and LX  are both high, or (ii) FX  is low (regardless the 

size of LX ). The result suggests that in those market situations, it is optimal for the 

company to sell to both market segments with the respective optimal price and 

allocation of advertising effort. 

 

Table 3-6 Optimal tactic with changing XL and XF 

 

 
LX  (level) FX  (level) Tactic λ e p LD FD  π  

50  (low) 150  (low) IA 1 28.4 510.2 13 28 12019.2 
50  (low) 450  (high) IIA 0 350 900.0 0 350 122500.0 
150 (high) 150  (low) IA 1 95.7 1243.9 56 84 136143.7 
150 (high) 450  (high) IA 1 104.9 1344.0 34 118 163492.2 
 

For the case when LX  is low, if FX  increases, the optimal tactic will shift 

from Tactic IA to Tactic IIA which means it is optimal for the company to target only 

at FG. This suggests that when FX  is large enough to compensate for the potential 

problem involved with losing the revenue from LG, it is globally optimal for the 

company to sell and advertise to FG exclusively. However, it is interesting to note that 

when LX  is high: (i) The product price will go up, and (ii) the optimal tactic will 

still be Tactic IA no matter whether FX  is high or low. This is a rather surprising 

finding and the relative effects brought by LX  and FX  are not “symmetric”. 

 

LX  

FX  
Low High 

Low IA IA 

High IIA IA 
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B. Varying a  and α  

 

Table 3-7 shows that the optimal tactics with cases of varied a  and α . The results 

show that the company would advertise to a segment which is more responsive to the 

advertising efforts. Plus, if a  and α  increase, the respective optimal profits will 

increase because (i) the corresponding advertising efforts and (ii) the effectiveness of 

advertisement will both increase. 

 

Table 3-7 Optimal tactics with changing a and α 

 

 
a  (level) α (level) Tactic λ  e p LD FD  π  
0.01 (low) 0.5 (low) IB 0 14.2 883.5  21  71  62082.3  
0.01 (low) 1  (high) IB 0 28.8 890.2 19 73 62696.6 
0.1 (high) 0.5 (low) IA 1 66.6 927.1 24 73 66042.3 
0.1 (high) 1  (high) IA 1 66.6 927.1 24 73 66042.3 
 

 

C. Varying b  and β  

 

Table 3-8 shows the optimal tactics with cases of varied b  and β . From the results, 

we can see that as b  increases, the company’s optimal tactic shifts from selling to 

both segments to only one segment and the company earns less. While as β  

increases, it is optimal for the company to shift from selling to only one segment to both 

segments and the company can earn more only for the case with a small b. These 

results are interesting and show the asymmetry of the social influences of the two 

groups of consumers. Moreover, these results demonstrate the significant impacts 

brought upon by the sensitivities of norms (and hence the influences by social groups) 

on the optimal tactic choice and optimal resulting benefits. 

 

 

a  

α  
Low High 

Low IB IA 

High IB IA 
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Table 3-8 Optimal tactics and associated company’s profits with changing b and β 

 b=0 0.4 0.8 1.2 1.6 

Optimal Tactic 

β =0 IB IIIA IIIA IIIA IIIA 

4 IB IB IA IIIA IIIA 

8 IB IA IA IIA IIA 

12 IA IA IA IIA IIA 

16 IA IA IA IIA IIA 

Expected Profit 

β =0 70083 42632 42632 42632 42632 

4 211250 60616 42647 42632 42632  

8 364321  73359 42703 40000 40000 

12 644983 81774 48625 40000 40000 

16 1192390 87400 49746 40000 40000 

 

D. Varying g  and γ  
 

Table 3-9 shows that the tactic with the cases of varied g  and γ . The results 

suggest that the company would like to sell to the market segment with the low price 

elasticity. It is also interesting to note that when the price sensitivity of LG (g) is low, 

Tactic IIIA which focuses on selling to LG becomes the dominating strategy. 

 

Table 3-9 Optimal tactics with changing g and γ 

g  

γ  
Low High 

Low IIIA IIA 

High IIIA IA 

 
g   (level) γ  (level) Tactic λ e p LD FD  π  
0.01  (low) 0.5 (low) IIIA 1 326.7 6733.3 65 0 320133.3 
0.01  (low) 1  (high) IIIA 1 326. 7 6733.3 65 0 320133.3 
0.1  (high) 0.5 (low) IIA 0 200.0 600.0 0 200 40000.0 
0.1  (high) 1  (high) IA 1 27.5 500.1 25 55 23256.3 
 

E. Changing c  
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Table 3-10 shows the details of optimal tactic in each case with varied c . When c  is 

comparably low, the company would focus on FG as it has a big basic demand. As c  

increases, the company has to target at the whole market to include LG as they can 

afford a higher price. When c  is comparably high, the company would focus on LG 

as the product with that high price is not so attractive to FG. We can observe that the 

company can earn more when c  goes down. This suggests that despite selling luxury 

products, a good cost control is still essential for the success of luxury goods company. 

Furthermore, it is interesting to observe that if c increases, (i) the optimal advertising 

effort will decrease, and (ii) price will increase. The further implication is that the 

consumers in the market will also be benefited when c is smaller because the retail 

selling price is smaller.  

 

Table 3- 10 Optimal tactics with changing c 

c  Tactic λ  e  p  LD  FD  π  

10 IIA 0 295.0 600.0 0 295 87025.0 
50 IA 1 74.0 857.1 21 86 81384.1 
100 IA 1 71.5 880.4 22 82 76092.3 
200 IA 1 66.6 927.1 24 73 66042.3 
500 IA 1 52.0 1067.0 28 47 40161.2 
1000 IIIA 1 26.3 1526.3 26 0 13157.9 
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Chapter 4 Extended model 

Advertising not only influences “immediate” purchase but also the long-term 

brand-equity of the luxury brand and products. Advertising, along with personal 

experience, is an undeniable force in creating brand equity (Aaker and Bie, 1993). 

One mechanism of creating brand equity via advertising is by creating and enhancing 

brand image. With high symbolic value, instead of solely physical vale, luxury fashion 

brands are considered to rely more on advertising in building brand salience. 

In the basic model we explored in Chapter 3, we focus on the operational optimal 

decisions with respect to the effects of advertising in enhancing buying intention. It is 

worthwhile to consider advertising’s influences to the luxury brand in the long run. 

Specifically, it would be worth investigating a luxury brand’s optimal decision in 

advertising and pricing, given that a brand has concern on its budget allocation for 

sustaining the respective brand’s role/positioning in the market with respect to both 

groups of consumers (P.S.: follower group (FG) and leader group (LG)).  

In this chapter, we consider the scenario that a certain “basic amount” of 

advertising effort is taken as desirable for each market segment (FG, LG) in order to 

maintain the brand strength; otherwise the brand would suffer in the long run due to 

loss of goodwill of a group of consumers. In particular, in our proposed model below, 

any advertising effort lower than this basic amount for each market segment will be 

penalized by the respective linear loss function. 
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4.1  Model  construction,  assumption 

and notation 
 

4.1.1 Model construction 
Similar to Section 3.2, in this section, we consider a company which sells a fashion 

product to two market segments which demands are inter-dependent. Specifically, 

there are two groups of customer in the market: the leader group (LG) and the 

follower group (FG). Demands of LG and FG are 

( ) [ ( )]L LD Vω ω +=  and ( ) [ ( )]F FD Vω ω += , 

where ( ) ( )L L FV x a e bD gpω λ ω= + − − ,  

( ) (1 ) ( )F F LV x e D pω α λ β ω γ= + − + − ,  

[ ] max{0, }Y Y+ = ,  

and , , , , , , ,L Fx x a b gα β γ  are all non-negative. 

 

4.1.2 Assumptions 
Assumption 4.1 Lx gc>  and Fx cγ> . 

 Similar to Chapter 3’s basic model, we employ Assumption 4.1 to make sure that 

there are positive product demands in both market segments when the product is sold 

at production cost and the social influences are not considered.  

In this chapter, we consider that certain amount of advertising is needed for each 

market segment in order to maintain the brand strength; otherwise the brand would 

suffer in the long run due to loss of goodwill of a group of consumers. We hence 

consider the following linear loss functions which are related to the insufficient 

advertising for LG and FG, 

( ) [ ]L e m T e +Λ = −  and ( ) [ (1 ) ]F e eμ τ λ +Λ = − − , respectively,  

where 0T ≥  and 0τ ≥  are the minimum advertising efforts/resources for LG and 

FG, respectively; and, 0m ≥  and 0μ ≥  are the marginal losses due to insufficient 
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advertising efforts/resources that are assigned for LG and FG, respectively. Moreover, 

in this section, we consider a more general cost function of advertising effort which is 

given by  
2( )C e he= , 

where 0h > . Therefore, the profit of the company becomes 

( ) ( ) ( ) ( ) ( ) ( )LL L Fp c D C e e eπ ω ω= − − −Λ −Λ , 

 2( ) ( ) [ ] [ (1 ) ]p c D he m T e eω λ μ τ λ+ += − − − − − − − .  (4.1) 

 In this section, our objective is to derive the optimal advertising and pricing 

strategy for the social influence model with linear loss function for insufficient 

advertising. Mathematically, we consider the following optimization model 

 (P-SILL)3 max ( ) ( ) ( ) ( ) ( ) ( )LL L Fp c D C e e e
ω

π ω ω
∈Ω

= − − −Λ −Λ , 

where { 0,0 1, }e p cλΩ = ≥ ≤ ≤ > .  

 Denoted by * * * *{ , , }e pω λ=  the optimal solution of (P-SILL). To avoid trivial 

cases, we have Assumption 4.2 below which ensures that there exists at least one 

profitable optimal decision for (P-SILL)  

Assumption 4.2 There exists at least one ω  such that ( ) 0LLπ ω >  for any given 

market parameters.  

Moreover, we ignore all the cases for which ( ) 0LLπ ω < . Notice that since 

( )L eΛ  and ( )F eΛ  are non-differentiable at e Tλ =  and (1 )eλ τ− = , respectively, 

( )LLπ ω  is non-differentiable at /e T λ=  and / (1 )e τ λ= − .  

 

4.1.3 Notation 
To facilitate the reading, notation and the respective meanings are listed in Table 4-1. 

 

 

 

 

 

 
                                                 
3 SILL stands for (S)ocial (I)nfluence with (L)inear (L)oss penalty for insufficient advertising. 
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Table4-1 Notations list B 

(1 ) (1 )f LX b x xβ= − + +  

(1 ) (1 )G b gγ β= − + +  

(1 ) (1 )IN a bβ α= + − −  

B X Gc= −

/ (1 )X X bβ= +  

/ (1 )G G bβ= +  

/ (1 )IN N bβ= +  

/ (1 )B B bβ= +  

2 24 (1 ) (1 )Y hG b aβ β= + − +  

2 24 (1 ) (1 )Z hG b bβ α= + − −  

4 (1 ) (1 )(1 )hG b a bβ α βΘ = + − + −  
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4.2 Extended model analysis 

4.2.1 Cases summary 

To deal with the non-differentiable property of ( )LLπ ω , we consider the 

following four exclusive cases in determining the optimal advertising and pricing 

strategy: 

Case 1: Advertising efforts assigned to both market segments are sufficient, i.e., 

e Tλ ≥  and (1 )eλ τ− ≥ . For this case, we have e T τ≥ + . 

Case 2: Advertising efforts assigned to LG is sufficient but to FG is insufficient, i.e., 

e Tλ ≥  and (1 )eλ τ− < . For this case, we have e T≥ . 

Case 3: Advertising efforts assigned to LG is insufficient but to FG is sufficient, i.e., 

e Tλ <  and (1 )eλ τ− ≥ . For this case, we have e τ≥ . 

Case 4: Advertising efforts assigned to both market segments are insufficient, i.e., 

e Tλ <  and (1 )eλ τ− < . For this case, we have e T τ< + . 

Moreover, similar to Section 3.3, we consider the following three marketing tactics: 

• Tactic I: 0)( >ωLD  and 0)( >ωFD , the company sells the product to both FG 

and LG; 

• Tactic II: 0)( =ωLD  and 0)( >ωFD , the company targets at FG and sells the 

product to FG only; 

• Tactic III: 0)( >ωLD  and 0)( =ωFD , the company tar targets at LG and sells the 

product to LG only; 

As there are four exclusive cases for each marketing tactic, we need to handle 12 

mutually exclusive cases in the analysis for this extended model. To facilitate the 

presentation, we use Tactic i.j, for i = I, II and III, and j = 1, 2, 3, 4 to represent Case j 

of Tactic i. The basic conditions for each tactic are listed in Table 4-2. 
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Table 4-2 Basic conditions for each tactic 

Basic conditions e Tλ ≥ ,  

(1 )eλ τ− ≥  

and e T τ≥ +

e Tλ ≥ , 

(1 )eλ τ− < . 

and e T≥  

e Tλ < , 

(1 )eλ τ− ≥ , 

and e τ≥  

e Tλ < , 

(1 )eλ τ− < , 

and e T τ< +

0)( >ωLD  and 

0)( >ωFD  

Tactic I.1 Tactic I.2 Tactic I.3 Tactic I.4 

0)( =ωLD  and 

0)( >ωFD  

Tactic II.1 Tactic II.2 Tactic II.3 Tactic II.4 

0)( >ωLD  and 

0)( =ωFD  

Tactic III.1 Tactic III.2 Tactic III.3 Tactic III.4 

 

Similar to Section 3.3, in this section, we investigate the local optimal advertising 

and pricing strategy of each tactic individually. Moreover, we also explore the 

associated necessary conditions for optimality of each tactic4. The company can use 

the necessary conditions to screen out the tactics which are not possible to be the 

global optimal advertising and pricing strategy. For those tactics which satisfy the 

necessary conditions, the company needs to calculate the company’s profit for this 

tactic. By comparing the company’s profit of each tactic that satisfies the necessary 

condition, the global optimal tactic is obtained. Specifically, the local optimal 

advertising and pricing strategy which induces the highest company’s profit is the 

global optimal advertising and pricing strategy. In the following, we explore the local 

optimal solution of each tactic individually. 

                                                 
4 Due to the complexity of the problem, it is very difficult to obtain the necessary and sufficient 
conditions for optimality. Therefore, we explore only the necessary conditions for optimality. 
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4.2.2 Tactic I: Selling to both LG and FG 

For Tactic I, product demands of LG and FG satisfy ( ) 0LD ω >  and ( ) 0FD ω > , 

respectively. Moreover, the total demand of the product is 

( ) ( ( ) (1 ) ) / (1 )ID B G p c b e N e bω α λ β= − − + − + +  

and the associated company’s profit is 
2

2

( ) { ( ) ( )[ (1 ) ]} / (1 )

[ ] [ (1 ) ] .
LL IG p c p c B b e N e b

he m T e e

π ω α λ β

λ μ τ λ+ +

= − − + − + − + +

− − − − − −
 

Tactic I.1:  

Basic conditions: 0)( >ωLD , 0)( >ωFD , e Tλ ≥ , (1 )eλ τ− ≥  and e T τ≥ + .  

The company’s profit for Tactic I.1 is 
2

2( ) ( )[ (1 ) ]( )
1

I
LL

G p c p c B b e N e he
b

α λπ ω
β

− − + − + − +
= −

+
.  (4.2) 

We first study the optimal λ  for Tactic I.1. 

Proposition 4.2.1 For Tactic I.1, (a) * / ( )T Tλ τ= +  if e T τ= + ; (b) * 1 / eλ τ= −  

if 0IN ≥  and e T τ> + ; and (c) * /T eλ =  if 0IN ≤  and e T τ> + . 

Proposition 4.2.1 shows that the value of *λ  takes different forms under various 

situations. Specifically, if the company wants to assign the advertising efforts such 

that e T τ= + , then * / ( )T Tλ τ= +  and hence *e Tλ =  and *(1 )eλ τ− = . In words, 

the optimal advertising efforts assigned to both market segments are just sufficient for 

e T τ= + . On the other hand, if the company wants to assign the advertising efforts 

such that e T τ> + , then the company should check the value of IN  first. If 0IN ≥ , 

then * 1 / eλ τ= −  and *e Tλ > , namely, the advertising efforts assigned to LG is 

higher than the minimum requirement but the advertising efforts assigned to FG is just 

sufficient for e T τ> +  and 0IN ≥ . If 0IN ≤ , then *e Tλ =  and *(1 )eλ τ− > , 

namely, the advertising efforts assigned to FG is higher than the minimum 

requirement but the advertising effort assigned to LG is just sufficient. As a remark, 

IN  represents the sensitivity of λ  to product demand. Therefore, a bigger λ  

advances product demand as well as company’s profit if IN  is positive, a smaller λ  

advances product demand as well as company’s profit if IN  is negative, and the 
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value of λ  does not affect product demand and company’s profit if 0IN = . 

By following Proposition 4.2.1, we further consider three sub-tactics of Tactic 

I.1: 

(Tactic I.1.a) * / ( )T Tλ τ= +  and *e T τ= + ; 

(Tactic I.1.b) * *1 / eλ τ= − , 0IN ≥  and *e T τ> + ; and  

(Tactic I.1.c) * */T eλ = , 0IN ≤  and *e T τ> + . 

Notice that the above mentioned conditions are specific for the associated sub-tactics. 

In particular, the basic conditions of Tactic I.1, e Tλ ≥ , (1 )eλ τ− ≥  and e T τ≥ + , 

are covered by individual’s specific conditions of each sub-tactic. Therefore, we need 

to consider the remaining basic conditions of Tactic I.1, 0)( >ωLD  and 0)( >ωFD  
for all sub-tactics of Tactic I.1.  

Denoted by *
.1.I iω  the local optimal advertising and pricing strategy for Tactic 

I.1.i, where i = a, b, c. Next, we explore the local optimal advertising and pricing 

strategies for each sub-tactic of Tactic I.1. 

 Tactic I.1.a  

Specific conditions: ( ) 0LD ω > , 0)( >ωFD , * / ( )T Tλ τ= +  and *e T τ= + . 

By putting *e T τ= +  and * / ( )T Tλ τ= +  into (2), the company’s profit for 

Tactic I.1.a becomes 
2

2( ) ( )[ (1 ) (1 ) ]( ) ( )
1LL

G p c p c B a T b h T
b

β α τπ ω τ
β

− − + − + + + −
= − +

+
. (4.3) 

Notice that right hand side of (4.2) depends on p only. 

Proposition 4.2.2 For Tactic I.1.a, the local optimal advertising and pricing strategy 

exists only if (i) *
.1.( ) 0L I aD ω >  and *

.1.( ) 0F I aD ω > ; (ii) 0G > ; and (iii) 

(1 ) (1 ) 0B a T bβ α τ+ + + − > . Moreover, if the local optimal advertising and pricing 

strategy for Tactic I.1.a exists, then it is unique and is given by 

* * * *
.1. .1. .1. .1.

(1 ) (1 ), / ( ),
2I a I a I a I a

B a T be T T T p c
G

β α τω τ λ τ + + + −⎧ ⎫= = + = + = +⎨ ⎬
⎩ ⎭

, and

 (4.4) 
2

* 2
.1.

[ (1 ) (1 ) ]( ) ( )
4 (1 )LL I a

B a T b h T
G b
β α τπ ω τ

β
+ + + −

= − +
+

. (4.5) 

 The necessary conditions for the existence of *
.1.I aω  are shown in Proposition 
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4.2.2. Specifically, conditions in item (i) of Proposition 4.2.2 are the basic conditions 

for any sub-tactic of Tactic I.1. Conditions in item (ii) of Proposition 4.2.2 ensure that 

the company’s profit function is concave in p. Item (iii) of Proposition 4.2.2 ensures 

that the constraint p>c is satisfied. Moreover, Proposition 4.2.2 shows the explicit 

formulas of the local optimal advertising and pricing strategy (if it exists), and the 

associated company’s profit for Tactic I.1.a. Furthermore, by considering the 

sensitivity of T to *
.1.I ae , *

.1.I aλ  and *
.1.I ap , we find that *

.1.I ae , *
.1.I aλ  and *

.1.I ap  are 

all strictly increasing in T (because *
.1. / 1 0I ade dT = > , * 2

.1. / / ( ) 0I ad dT Tλ τ τ= + >  

and 
*
.1. / (1 ) / (2 ) 0I adp dT a Gβ= + > ). In other words, a bigger T induces a higher 

advertising effort, a bigger portion of advertising efforts is allocated to LG, and a 

higher local optimal retail price of the product appears in the local optimum of Tactic 

I.1.a. On the other hand, *
.1.I ae  is strictly increasing in τ , *

.1.I aλ  is strictly decreasing 

in τ  and *
.1.I ap  is strictly increasing in τ  for 1b <  and *

.1.I ap  is strictly 

decreasing in τ  for 1b > . This shows that T and τ  affect *
.1.I aω  differently. 

Interestingly, the value of m and μ  do not affect *
.1.I aω  and *

.1.( )LL I aπ ω . The 

intuitive reason for it is that the advertising effort assigned to both market segments 

are sufficient, so the penalties m and μ  for insufficient advertisings can be ignored. 

 Tactic I.1.b 

Specific conditions: ( ) 0LD ω > , 0)( >ωFD , * *1 / eλ τ= − , 0IN ≥  and *e T τ> + . 

By putting * *1 / eλ τ= −  into (4.2), the profit of the company for Tactic I.1.b 

becomes 
2

2( ) ( )[ (1 ) ]( )
1

I
LL

G p c p c B a e N he
b

β τπ ω
β

− − + − + + −
= −

+
. (4.6) 

Proposition 4.2.3 For Tactic I.1.b, the local optimal advertising efforts (as a function 

of p) is given by 

*
.1.

(1 )( ) ( )
2 (1 )I b
ae p p c
h b

β
β

+
= −

+
, (4.7) 

and *
.1. ( )I be p  is strictly increasing in p 

 Proposition 4.2.3 asserts that, for Tactic I.1.b, a higher retail price induces a high 

optimal advertising effort. Results of Proposition 4.2.3 are not surprising especially 
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for luxury products. Advertising usually will provide surpluses to luxury products, 

and the surpluses of the luxury product are reflected by a higher retail price of the 

luxury product. 

Proposition 4.2.4 For Tactic I.1.b, the local optimal advertising and pricing strategy 

exists only if (i) 0IN ≥ , *
.1.( ) 0L I bD ω >  and *

.1.( ) 0F I bD ω > ; (ii) 0Y > ; (iii) 

( ) / [ (1 )] IB Y T a Nτ β τ> + + + . Moreover, if the local optimal advertising and pricing 

strategy for Tactic I.1.b exists, then it is unique and is given by 

{ }* * * *
.1. .1. .1. .1., , ,I b I b I b I be pω λ=  and (4.8) 

* 2
.1.( ) ( ) /LL I b Ih B N Yπ ω τ= − , (4.9) 

where *
.1. (1 )( ) /I b Ie a B N Yβ τ= + − , * *

.1. .1.1 /I b I beλ τ= − , and 

*
. . 2 ( )(1 ) /I i b Ip c h B N b Yτ β= + − + .  

The necessary conditions for *
.1.I bω  being finite are shown in Proposition 4.2.4. 

Specifically, conditions in item (i) of Proposition 4.2.4 are the specific conditions of 

Tactic I.1.b. The condition in item (ii) of Proposition 4.2.4 ensures that the profit 

function of the company for Tactic I.1.b is concave in p. The condition in item (iii) of 

Proposition 4.2.4 ensures e T τ> +  which is another basic condition for Tactic I.1.b. 

Notice that *
.1.I bp c>  if and only if IB N τ> . Because ( ) / [ (1 )] IB Y T a Nτ β τ> + + +  

implies IB N τ> , the condition in item (iii) of Proposition 4.2.4 does cover the 

constraint p>c. Moreover, Proposition 4.2.4 provides the explicit formulas of the local 

optimal advertising and pricing strategy (if it exists), and the associated company’s 

profit for Tactic I.1.b. 

According to Proposition 4.2.4, *
.1.I ae , *

.1.I aλ , *
.1.I ap  and *

.1.( )LL I bπ ω  are 

decreasing in τ  ( *
.1. 2/ 0

(1 )( )I a
I

YBd dT
a B N

λ
β τ

= − <
+ −

 and the other derivatives are 

trivial), but independent of T. In words, for Tactic I.1.b, a bigger τ  induces a lower 

advertising effort, a smaller portion of advertising efforts is allocated to LG, and a 

lower optimal retail price of the product. However, T  does not affect *
.1.I ae , *

.1.I aλ , 

*
.1.I ap  and *

.1.( )LL I bπ ω .  

Finally, similar to Tactic I.1.a, the value of m and μ  do not affect *
.1.I bω  and 

*
.1.( )LL I bπ ω , as the advertising budgets assigned to both market segments are sufficient 
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and hence the penalties m and μ  for insufficient advertisings can be ignored for 

Tactic I.1.b. 

 Tactic I.1.c 

Specific conditions: ( ) 0LD ω > , 0)( >ωFD , 0IN ≤ , *e T τ> +  and * */T eλ = . 

First of all,  0IN ≤  is equivalent to (1 ) (1 )a bβ α+ ≤ −  which implies 1b <  as 

(1 ) 0a β+ > . Then, by putting * */T eλ =  into (4.2), the profit of the company for 

Tactic I.1.c becomes 
2

2( ) ( )[ (1 ) ]( )
1

I
LL

G p c p c B b e TN he
b

απ ω
β

− − + − + − +
= −

+
. (4.10) 

Proposition 4.2.5 For Tactic I.1.c, the local optimal advertising effort (as a function 

of p ) is given by 

*
.1.

(1 )( ) ( )
2 (1 )I c

be p p c
h b
α

β
−

= −
+

, (4.11) 

and *
.1. ( )I ce p  is strictly increasing in p. 

 Similar to Proposition 4.2.3, Proposition 4.2.5 shows that the optimal advertising 

effort is increasing in the optimal retail price for Tactic I.1.c. 

Proposition 4.2.6 For Tactic I.1.c, the local optimal advertising and pricing strategy 

exists only if (i) 0IN ≤ , *
.1.( ) 0L I cD ω >  and *

.1.( ) 0F I cD ω > ; (ii) 0Z > ; (iii) 

( ) / [ (1 )] IB Z T b N Tτ α> + − − . Moreover, if the local optimal advertising and pricing 

strategy for Tactic I.1.c exists, then it is unique and is given by 

{ }* * * *
.1. .1. .1. .1., , ,I c I c I c I ce pω λ=  and (4.12) 

* 2
.1.( ) ( ) /LL I c Ih B N T Zπ ω = + , (4.13) 

where *
.1.

(1 )( )I
I c

b B N Te
Z

α − +
= , *

.1. (1 )( )I c
I

TZ
b B N T

λ
α

=
− +

, and 

*
.1.

2 ( )(1 )I
I c

h B N T bp c
Z

β+ +
= + . 

Similar to Proposition 4.2.4, the necessary conditions for *
.1.I cω  being finite are 

shown in Proposition 4.2.6. Specifically, conditions of item (i) of Proposition 4.2.6 are 

the specific conditions of Tactic I1.c. Condition in item (ii) of Proposition 4.2.6 

ensures that the profit function of the company for Tactic I.1.c is concave in p. 

Condition in item (iii) of Proposition 4.2.6 ensures e T τ> +  which is another basic 
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condition for Tactic I.1.c. Notice that *
. .I i cp c>  if ( ) / [ (1 )] IB Z T b N Tτ α> + − − . 

Moreover, Proposition 4.2.6 provides the explicit formulas of the local optimal 

advertising and pricing strategy (if it exists), and the associated company’s profit for 

Tactic I.1.c. 

According to Proposition 4.2.4, *
.1.( )LL I cπ ω , *

.1.I ce  and *
.1.I cp  are decreasing in 

T , while *
.1.I cλ  is increasing in T . This shows that the company will spend less on 

advertising, will be more focused on LG, and will set a lower retail price of the 

product when T  increases. Although there is less expenditure spent on advertising, 

the company still loses some profit due to a lower retail price of the product is offered 

to the customers. On the other hand, *
.1.I ce , *

.1.I cλ  and *
.1.I cp  are independent of τ . 

Similarly, these findings are caused by the technical issue, as T  does not include in 

any specific condition of Tactic I.1.c. 

Finally, similar to Tactic I.1.a and Tactic I.1.b, the values of m and μ  do not 

affect *
.1.I cω  and *

.1.( )LL I cπ ω , as the advertising efforts assigned to both market 

segments are sufficient and hence the penalties m and μ  for insufficient advertisings 

can be ignored for Tactic I.1.c. 

 

Tactic I.2 

Basic conditions: 0)( >ωLD , ( ) 0FD ω > , e Tλ ≥ , (1 )eλ τ− <  and e T≥ . 

The company’s profit for Tactic I.2 is 
2

2( ) ( )[ (1 ) ]( ) [ (1 ) ]
1

I
LL

G p c p c B b e N e he e
b

α λπ ω μ τ λ
β

− − + − + − +
= − − − −

+
.  (4.14) 

Proposition 4.2.7 For Tactic I.2, (a) the local optimal advertising and pricing 

strategy does not satisfy ( ) (1 )IN p c bμ β− < +  and e T τ≥ + . (b) * 1λ =  if e T= ; 

(c) * 1λ =  if ( ) (1 )IN p c bμ β− > +  and e T> ; (d) * /T eλ =  if 

( ) (1 )IN p c bμ β− < +  and T e T τ< < + ; and (e) multiple *λ  exist if 

( ) (1 )IN p c bμ β− = +  and e T> . 

Proposition 4.2.7 asserts that we can ignore all the cases for which 

( ) (1 )IN p c bμ β− < +  and e T τ≥ + , under Tactic I.2. Proposition 4.2.7 shows that 

the value of *λ  varies under different situations. Specifically, if the company wants 
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to assign the advertising efforts such that e T= , we have * 1λ = . However, if the 

company wants to assign the advertising efforts such that e T> , then the company 

should take into account of the values of ( )IN p c−  and  (1 )bμ β+ . Specifically, if 

( ) (1 )IN p c bμ β− > + , then * 1λ = ; else if ( ) (1 )IN p c bμ β− < + , then * /T eλ = ; else 

if ( ) (1 )IN p c bμ β− = + , then for any given e T> , any λ  that satisfies (1 )eλ τ− <  

and e Tλ ≥  is optimal for Tactic I.2. In words, if ( ) (1 )IN p c bμ β− > + , then the 

company should assign the advertising efforts to LG only. However, if 

( ) (1 )IN p c bμ β− < + , then the company should assign to LG the advertising effort 

which just covers T , and the company should assign to FG the advertising effort 

which is less τ . Lastly, if ( ) (1 )IN p c bμ β− = + , then the company can select any λ  

that satisfies (1 )eλ τ− <  and e Tλ ≥ . As 1λ =  satisfies  (1 )eλ τ− <  and 

e Tλ ≥  for any given e T> , we take * 1λ =  for ( ) (1 )IN p c bμ β− = + . According to 

the above discussions, we further consider four sub-tactics of Tactic I.2: 

(Tactic I.2.a) e T= , * 1λ = ; 

(Tactic I.2.b) ( ) (1 )IN p c bμ β− > + , e T> , * 1λ = ; 

(Tactic I.2.c) ( ) (1 )IN p c bμ β− = + , e T> , * 1λ = ; and 

(Tactic I.2.d) ( ) (1 )IN p c bμ β− < +  and T e T τ< < + , * /T eλ = . 

The above mentioned conditions are specific for the associated sub-tactics. In 

particular, the basic conditions of Tactic I.2, e Tλ ≥ , (1 )eλ τ− <  and e T≥ , are 

covered by individual’s specific conditions of each sub-tactic. Therefore, we need to 

consider the remaining basic conditions of Tactic I.2, 0)( >ωLD  and 0)( >ωFD  
for all sub-tactics of Tactic I.2.  

Denoted by *
.2.I iω , for i=a, b, c, d, the local optimal advertising and price strategy 

for Tactic I.2.i. Next, we explore the local optimal advertising and pricing strategies 

for each sub-tactic individually. 

 Tactic I.2.a 

Specific condition: 0)( >ωLD , 0)( >ωFD , e T=  and * 1λ = . 

By putting e T=  and * 1λ =  into (4.14), the profit of the company for Tactic I.2.a 

becomes 



73 

 

2
2( ) ( )[ (1 ) ]( )

1LL
G p c p c B a T hT

b
βπ ω μτ

β
− − + − + +

= − −
+

.  (4.15) 

Proposition 4.2.8 For Tactic I.2.a, the local optimal advertising and pricing strategy 

exists only if (i) *
.2.( ) 0L I aD ω >  and *

.2.( ) 0F I aD ω > ; (ii) 0G > ; and (iii) 

(1 ) 0B a Tβ+ + > . Moreover, if the local optimal advertising and pricing strategy for 

Tactic I.2.a exists, then it is unique and is given by 

{ }* * * *
.2. .2. .2. .2., 1, [ (1 ) ] / (2 )I a I a I a I ae T p c B a T Gω λ β= = = = + + + , and (4.16) 

2 2
*
.2.

2 (1 )( )
4 (1 )LL I a

B Ba T YT
G b

βπ ω μτ
β

+ + −
= −

+
. (4.17) 

The necessary conditions for *
.2.I aω  being finite are shown in Proposition 4.2.8. 

Specifically, conditions in item (i) of Proposition 4.2.8 are the basic conditions of 

Tactic I.2. Condition in item (ii) of Proposition 4.2.8 ensures that the profit function of 

the company for Tactic I.2.a is concave in p. Condition in item (iii) of Proposition 

4.2.8 ensures that *
.2.I ap c> . Moreover, Proposition 4.2.8 provides the explicit 

formulas of the local optimal advertising and pricing strategy, and the associated 

company’s profit for Tactic I.2.a. Furthermore, *
.2.I ae  and *

.2.I ap  are strictly 

increasing in T. In other words, for Tactic I.2.a, a bigger T induces a higher optimal 

advertising effort and a higher retail price of the product. However, according to 

Proposition 4.2.8, we know that *
.2.I ae  and *

.2.I ap  are independent of τ . 

 Tactic I.2.b 

Specific conditions: 0)( >ωLD , 0)( >ωFD , ( ) (1 )IN p c bμ β− > + , e T>  and 

* 1λ = .  

By putting * 1λ =  into (4.14), the profit of the company for Tactic I.2.b becomes 
2

2( ) ( )[ (1 ) ]( )
1LL

G p c p c B a e he
b

βπ ω μτ
β

− − + − + +
= − −

+
. (4.18) 

As p c>  and (1 ) 0bμ β+ > , ( ) (1 )IN p c bμ β− > +  implies 0IN > . 

Proposition 4.2.9 For Tactic I.2.b, the local optimal advertising effort is given by 
* *
.2. .1.( ) ( ) (1 )( ) / [2 (1 )]I b I be p e p a p c h bβ β= = + − + , (4.19) 

and *
.2. ( )I be p  is strictly increasing in p. 

Proposition 4.2.9 shows that, for Tactic I.2.b, high retail price should be 

supported by high advertising effort of the company. Results of Proposition 4.2.9 are 
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similar to Proposition 4.2.3 and Proposition 4.2.5. 

Proposition 4.2.10 For Tactic I.2.b, the local optimal advertising and pricing strategy 

exists only if (i) 0IN > , *
.2.( ) 0L I bD ω >  and *

.2.( ) 0F I bD ω > ; (ii) 0Y > ; (iii) 

/ [ (1 )]B TY a β> + ; and (iv) / (2 )IB Y hNμ≥ . Moreover, if the local optimal 

advertising and pricing strategy for Tactic I.2.b exists, then it is unique and is given 

by 

{ }* * * *
.2. .2. .2. .2., , ,I b I b I b I be pω λ=  and (4.20) 

* 2
.2.( ) /LL I b hB Yπ ω μτ= − , (4.21) 

where *
.2. (1 ) /I be a B Yβ= + , *

.2. 1I bλ =  and *
.2. 2 (1 ) /I bp hB b Y cβ= + + . 

The necessary conditions for *
.2.I bω  being finite are shown in Proposition 4.2.10. 

Specifically, conditions in item (i) of Proposition 4.2.10 are the specific conditions of 

Tactic I.2.b. Item (ii) of Proposition 4.2.10 ensures that the profit function of the 

company for Tactic I.2.b is concave in p. Item (iii) of Proposition 4.2.10 ensures 

e T>  which is the basic condition for Tactic I.2.b. Item (iv) of Proposition 4.2.10 

ensures that ( ) (1 )IN p c bμ β− > +  which is another basic condition for Tactic I.2.b. 

Noting that Item (iii) of Proposition 4.2.10 already covers the constraint *
.2.I bp c> . 

Moreover, Proposition 4.2.10 provides the explicit formulas of the local optimal 

advertising and pricing strategy and the associated company’s profit for Tactic I.2.b. 

Furthermore, *
.2.( )LL I bπ ω  is strictly decreasing in τ  and μ , but is independent of T 

and m. 

Interestingly, as shown by Proposition 4.2.10, *
.2.I be , *

.2.I bλ  and *
.2.I bp  are 

independent of τ  and T. These findings are different from many previous findings in 

which both the optimal advertising effort and the optimal retail price depend on either 

τ  or T.  On the other hand *
.2.I be , *

.2.I bλ  and *
.2.I bp  are independent of μ  and m. 

 Tactic I.2.c 

Specific conditions: 0)( >ωLD , 0)( >ωFD , ( ) (1 )IN p c bμ β− = + , e T>  and * 1λ = . 

 As p c>  and (1 ) 0bμ β+ > , ( ) (1 )IN p c bμ β− = +  implies 0IN > . 

Proposition 4.2.11 For Tactic I.2.c the local optimal advertising effort as a function 

of p is given by 
* *
.2. .2.( ) ( ) (1 )( ) / [2 (1 )]I c I be p e p a p c h bβ β= = + − + , (4.22) 
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and *
.2. ( )I ce p  is strictly increasing in p. 

Proposition 4.2.11 asserts that, for Tactic I.2.c, a high retail price should be 

supported by a high advertising effort of the brand. Results of Proposition 4.2.11 are 

similar to Proposition 4.2.9. 

Proposition 4.2.12 For Tactic I.1.a, the local optimal advertising and pricing strategy 

exists only if (i) 0IN > , *
.2.( ) 0L I cD ω >  and *

.2.( ) 0F I cD ω > ; (ii) (1 ) 2 Ia hN Tμ β+ > . 

Moreover, if the local optimal advertising and pricing strategy for Tactic I.2.c exists, 

then it is unique and is given by 

{ }* * * *
.2. .2. .2. .2., , ,I c I c I c I ce pω λ=  and (4.23) 

2
*
.2. 2( )

4LL I c
I I

B Y
N hN
μ μπ ω μτ= − − , (4.24) 

where *
.2. (1 ) / (2 )I c Ie a hNμ β= + , *

.2. 1I cλ =  and *
.2. (1 ) /I c Ip c b Nμ β= + + . 

The necessary conditions for *
.2.I cω  being finite are shown in Proposition 4.2.12. 

Specifically, conditions in item (i) of Proposition 4.2.12 are the specific conditions of 

Tactic I.2.c. Item (ii) of Proposition 4.2.10 ensures e T>  which is the specific 

condition for Tactic I.2.c. Moreover, Proposition 4.2.12 provides the explicit formulas 

of the local optimal advertising and pricing strategy and the associated company’s 

profit for Tactic I.2.c. Furthermore, *
.2.( )LL I cπ ω  is strictly decreasing in τ  and 

independent of T and m. 

As shown in Proposition 4.2.12, *
.2.I ce , *

.2.I cλ  and *
.2.I cp  are independent of τ  

and T. These findings are similar to Tactic I.2.b. On the other hand *
.2.I ce  and *

.2.I cp  

are increasing in μ  but are independent of m. Moreover, *
.2.I cλ  is independent of μ  

and m. 

 Tactic I.2.d 

Specific conditions: 0)( >ωLD , ( ) 0FD ω > , ( ) (1 )IN p c bμ β− < + , T e T τ< < +  

and * /T eλ = . 

By putting * /T eλ =  into (4.14), the profit of the company for Tactic I.2.d 

becomes 
2

2( ) ( )[ (1 ) ]( ) [ ]
1

I
LL

G p c p c B b e TN he T e
b

απ ω μ τ
β

− − + − + − +
= − − + −

+
. (4.25) 
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Proposition 4.2.13 For Tactic I.2.d, the local optimal advertising efforts in the 

function of retail price p is given by 
*
.2. ( ) ( )(1 ) / [2 (1 )]I de p p c b h bα β μ= − − + + . (4.26) 

 Noting that *
.2. ( )I de p  is strictly increasing in p only if 1b < . If 1b > , then 

*
.2. ( )I de p  is strictly decreasing in p. Therefore, Proposition 4.2.13 asserts that a high 

advertising effort of the company does not always support a high retail price, and it 

does happen if 1b >  for Tactic I.2.d. 

Proposition 4.2.14 For Tactic I.2.d, the local optimal advertising and pricing strategy 

exists only if (i) *
.2.( ) 0L I dD ω >  and *

.2.( ) 0F I dD ω > ; (ii) 0Z > ; (iii) *
.2.I dT e T τ< < + ; 

(iv) 2 ( ) (1 ) 0Ih B N T bαμ+ + − > ; and (v) [2 ( ) (1 )]I IN h B N T b Zαμ μ+ + − ≤ . 

Moreover, if the local optimal advertising and pricing strategy for Tactic I.2.d exists, 

then it is unique and is given by 

{ }* * * *
.2. .2. .2. .2., , ,I d I d I d I de pω λ=  and (4.27) 

2 2
*
.2.

[2 2 (1 )]( ) ( )
4

I
LL I d

hB hN T b Z T
hZ
αμ μπ ω μ τ+ + − +

= − + , (4.28) 

where *
.2.

(1 )[2 ( ) (1 )]
2 2

I
I d

b h B N T be
hZ h

α αμ μ− + + −
= + , * *

.2. .2./I d I dT eλ = , and 

*
.2.

(1 )[2 ( ) (1 )]I
I d

b h B N T bp c
Z

β αμ+ + + −
= + . 

2
2( ) ( )[ (1 ) ]( ) [ ]

1
I

LL
G p c p c B b e TN h T

b
απ ω μ μ τ μ

β
− − + − + − +

= − − + −
+

 

 

The necessary conditions for *
.2.I dω  being finite are shown in Proposition 4.2.14. 

Specifically, conditions in item (i) of Proposition 4.2.14 are the basic conditions of 

Tactic I.2. Item (ii) of Proposition 4.2.14 ensures that the profit function of the 

company for Tactic I.2.d is concave in p. Item (iii) of Proposition 4.2.14 ensures 

T e T τ< < +  which is one of the specific conditions of Tactic I.2.d. Item (iv) of 

Proposition 4.2.14 ensures that *
.2.I dp c>  and Item (v) of Proposition 4.2.14 ensures 

that ( ) (1 )IN p c bμ β− < +  which is another specific condition of Tactic I.2.d. 

Moreover, Proposition 4.2.14 provides the explicit formulas of the local optimal 

advertising and pricing strategy, and the associated company’s profit for Tactic I.2.d. 
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Proposition 4.2.15 (a) If 0IN > , then *
.2.I de  and *

.2.I dp  are increasing in T . (b) If 

0IN < , then *
.2.I de  and *

.2.I dp  are decreasing in T . (c) If 0IN = , then *
.2.I de  and 

*
.2.I dp  are independent of τ . 

 Proposition 4.2.15 shows the sensitivities of T with respect to *
.2.I de  and *

.2.I dp . 

Specifically, the sensitivities of T to *
.2.I de  and *

.2.I dp  depend on IN . A bigger T 

induces bigger optimal advertising effort as well as optimal retail price for Tactic I.2.d 

if IN  is positive. However, a bigger T induces smaller optimal advertising effort as 

well as optimal retail price for Tactic I.2.d if IN  is negative. For the sensitivities of 

τ  to *
.2.I de , *

.2.I dλ  and *
.2.I dp , from Proposition 4.2.14, it is obvious that *

.2.I de , *
.2.I dλ  

and *
.2.I dp  are independent of τ . 

Tactic I.3  

Basic conditions: ( ) 0LD ω > , ( ) 0FD ω > , e Tλ < , (1 )eλ τ− ≥  and e τ≥ . 

The company’s profit for Tactic I.3 is 
2

2( ) ( )[ (1 ) ]( ) ( )
1

I
LL

G p c p c B b e N e he m T e
b

α λπ ω λ
β

− − + − + − +
= − − −

+
. (4.29) 

We first study the optimal solution of λ  for Tactic I.3. 

Proposition 4.2.16 For Tactic I.3, (a) the local optimal advertising and pricing 

strategy does not satisfy ( ) (1 )IN p c m bβ− > − +  and e T τ≥ + ; (b) if e τ= , then 

* 0λ = ; (c) if ( ) (1 )IN p c m bβ− > − +  and e Tτ τ< < + , then * 1 / eλ τ= − ; (d) if 

( ) (1 )IN p c m bβ− < − +  and e τ> , then * 0λ = ; (e) multiple *λ  exist if 

( ) (1 )IN p c m bβ− = − +  and e T> . 

Proposition 4.2.16 asserts that we can ignore all the cases for which 

( ) (1 )IN p c m bβ− > − +  and e T τ≥ + , under Tactic I.3. Moreover, Proposition 4.2.16 

shows that the value of *λ  varies under different situations. Specifically, if the 

company wants to assign the advertising efforts such that e τ= , then the company 

should only assign advertising effort to FG, i.e., * 0λ = . However, if the company 

wants to assign advertising effort requirement such that e τ> , then the company 

should check the value of ( ) (1 )IN p c m bβ− + + . If ( ) (1 )IN p c m bβ− > − + , then 

* (1 ) / eλ λ= − . If ( ) (1 )IN p c m bβ− < − + , then * 0λ = . If ( ) (1 )IN p c m bβ− = − + , 



78 

 

then there exist multiple *λ . In words, if ( ) (1 )IN p c m bβ− < − + , then the company 

should assign the advertising effort to FG only. However, if ( ) (1 )IN p c m bβ− > − + , 

then the company should assign to FG the advertising effort which just covers τ , and 

the company should assign to LG the advertising effort which is less than T .  

As p c>  and (1 ) 0m bβ+ > , ( ) (1 )IN p c m bβ− ≤ − +  implies that 0IN <  and 

hence 1b < . Furthermore, for ( ) (1 )IN p c bμ β− = + , the company can select any λ  

that satisfies (1 )eλ τ− <  and e Tλ ≥ . As 0λ =  satisfies (1 )eλ τ− ≥  and e Tλ <  

for any given e T> , we take * 0λ =  for ( ) (1 )IN p c m bβ− = − + . According to the 

above discussions, we further consider four sub-tactics of Tactic I.3: 

(Tactic I.3.a) e τ=  and * 0λ = ; 

(Tactic I.3.b) ( ) (1 )IN p c m bβ− > − + , e Tτ τ< < +  and * 1 / eλ τ= − ; 

(Tactic I.3.c) 1b < , 0IN < , ( ) (1 )IN p c m bβ− < − + , e τ>  and * 0λ = ; 

(Tactic I.3.d) 1b < , 0IN < , ( ) (1 )IN p c m bβ− = − + , e τ>  and * 0λ = . 

The above mentioned conditions are specific to the associated sub-tactics. In 

particular, the basic conditions of Tactic I.3, e Tλ < , (1 )eλ τ− ≥  and e τ≥ , are 

covered by individual’s specific conditions of each sub-tactic, and we still need to 

consider the remaining basic conditions of Tactic I.3., 0)( >ωLD  and ( ) 0FD ω > , 
for all sub-tactics of Tactic I.3.  

 We denote by *
.3.I iω , for i= a, b, c, d, the local optimal advertising and price 

strategy for Tactic I.3.i. We now proceed to explore the local optimal advertising and 

pricing strategies for each sub-tactic individually. 

 Tactic I.3.a  

Specific conditions: 0)( >ωLD  and ( ) 0FD ω > , e τ=  and * 0λ = . 

By putting e τ=  and * 0λ =  into (4.14), the profit of the company for Tactic 

I.3.a becomes 
2

2( )[ (1 ) ] ( )( )
1LL

p c B G p c hT mT
b

α β τπ ω
β

− + − − −
= − −

+
. (4.30) 

Proposition 4.2.17 For Tactic I.3.a, the local optimal advertising and pricing strategy 

exists only if (i) *
.3.( ) 0L I aD ω >  and *

.3.( ) 0F I aD ω > ; (ii) 0G > ; and (iii) 

(1 ) 0B bα τ+ − > . Moreover, if the local optimal advertising and pricing strategy for 
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Tactic I.3.a exists, then it is unique and is given by 

{ }* * * *
.3. .3. .3. .3., 0, [ (1 ) ] / (2 )I a I a I a I ae p c B b Gω τ λ α β τ= = = = + + − , and (4.31) 

2 2
*
.3.

2 (1 )( )
4 (1 )LL I a

B B b Z mT
G b
α τ τπ ω

β
+ − −

= −
+

. (4.32) 

The necessary conditions for *
.3.I aω  being finite are shown in Proposition 4.2.17. 

Specifically, conditions in item (i) of Proposition 4.2.17 are the basic conditions of 

Tactic I.3. Item (ii) of Proposition 4.2.17 ensures that the profit function of the 

company for Tactic I.3.a is concave in p. Item (iii) of Proposition 4.2.17 ensures that 
*
.3.I ap c> . Moreover, Proposition 4.2.17 shows the explicit formulas of the local 

optimal advertising and pricing strategy, as well as the associated company’s profit for 

Tactic I.3.a. 

 For the sensitivity of τ  to *
.3.I ae  and *

.3.I ap , from Proposition 4.2.17, we find 

that  *
.3.I ae  is always strictly increasing in τ , while *

.3.I ap  is strictly increasing in 

τ  only if 1b < . If 1b > , then *
.3.I ap  is strictly decreasing in τ . In other words, for 

Tactic I.3.a, a bigger τ , always induces a higher advertising efforts. On the other 

hand, a bigger τ  induces a higher retail price of the product if 1b > , but, a big τ  

induces a low retail price of the product if 1b < .  

 Tactic I.3.b:  

Specific conditions: 0)( >ωLD , ( ) 0FD ω > , ( ) (1 )IN p c m bβ− > − + , e Tτ τ< < +  

and * 1 / eλ τ= − . 

By putting * 1 / eλ τ= −  into (4.29), the profit of the company for Tactic I.3.b 

becomes 
2

2( ) ( )[ (1 ) ]( ) ( )
1

I
LL

G p c p c B a e N he m T e
b

β τπ ω τ
β

− − + − + + −
= − − − +

+
. (4.33) 

Proposition 4.2.18 For Tactic I.3.b, the local optimal advertising effort as a function 

of retail price p is given by 

*
.3.

(1 )( ) ( )
2 (1 ) 2I b
a me p p c
h b h

β
β

+
= − +

+
. (4.34) 

Moreover, *
.3. ( )I be p  is strictly increasing in p. 

Proposition 4.2.18 implies that, for Tactic I.3.b, a high optimal retail price results 

a high optimal advertising efforts. 
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Proposition 4.2.19 For Tactic I.3.b, the local optimal advertising and pricing strategy 

exists only if (i) *
.3.( ) 0L I bD ω >  and *

.3.( ) 0F I bD ω > ; (ii) 0Y > ; (iii) 

(1 ) / (2 )IB N am hτ β> − + ; (iv) 2 (1 ) 2 (1 )
(1 ) (1 )
mG b YT mG bB

a a
τ β τ β

β β
Θ − + +Θ − +

< <
+ +

; and 

(v) [2 ( ) (1 )]I Ih B N am N mYτ β− + + > − . Moreover, if the local optimal advertising and 

pricing strategy for Tactic I.3.b exists, then it is unique and is given by 

{ }* * * *
.3. .3. .3. .3., , ,I b I b I b I be pω λ=  and (4.35) 

2 2
*
.3. 2

[2 ( ) (1 )]( ) ( )
4 4

I
LL I b

h B N am mm T
h Y h

τ βπ ω τ− + +
= − + + , (4.36) 

where *
.3.

(1 )[2 ( ) (1 )]
2 2

I
I b

a h B N am me
hY h

β τ β+ − + +
= + , * *

.3. .3.1 /I b I beλ τ= − , and 

*
.3. (1 )[2 ( ) (1 )] /I b Ip c b h B N am Yβ τ β= + + − + + . 

Proposition 4.2.19 shows the explicit formulas of the local optimal advertising and 

pricing strategy, and the associated company’s profit for Tactic I.3.b. Moreover, 

conditions in item (i) of Proposition 4.2.19 are the basic conditions of Tactic I.3. Item 

(ii) of Proposition 4.2.19 ensures that the profit function of the company for Tactic 

I.3.b is concave in p. Item (iii) of Proposition 4.2.19 ensures p c> . Item (iv) of 

Proposition 4.2.19 ensures that e Tτ τ< < +  which is the specific condition of Tactic 

I.3.b. Item (v) of Proposition 4.2.19 ensures that ( ) (1 )IN p c m bβ− > − +  which is also 

the specific condition for Tactic I.3.b. 

Proposition 4.2.20 (a) If 0IN > , then *
.3.I be , *

.3.I bλ  and *
.3.I bp  are decreasing in T . 

(b) If 0IN < , then *
.3.I be  and *

.3.I bp  are increasing in T . (c) If 0IN = , then *
.3.I bλ  

is decreasing in T . 

Proposition 4.2.20 shows the sensitivities of T  with respect to *
.3.I be , *

.3.I bλ  and 

*
.3.I bp . Specifically, the sensitivities of T to *

.3.I be , *
.3.I bλ  and *

.3.I bp  depend on IN . A 

bigger T induces smaller optimal advertising effort as well as optimal retail price for 

Tactic I.3.b if IN  is positive. However, a bigger T induces bigger optimal 

advertising effort as well as optimal retail price for Tactic I.3.b if IN  is negative. 

Finally, a bigger T induces a smaller *
.3.I bλ  if 0IN = . 

 Tactic I.3.c: 
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Specific conditions: ( ) 0LD ω > , ( ) 0FD ω > , 0IN < , ( ) (1 )IN p c m bβ− < − + , e τ>  

and * 0λ = . 

By putting * 0λ =  into (4.29), the profit of the company for Tactic I.3.c 

becomes 
2

2( ) ( )[ (1 ) ]( )
1LL

G p c p c B b e he mT
b

απ ω
β

− − + − + −
= − −

+
. (4.37) 

Proposition 4.2.21 For Tactic I.3.c, the local optimal advertising effort as a function 

of retail price p is given by 

*
.3.

(1 )( )( )
2 (1 )I c

b p ce p
h b

α
β

− −
=

+
, (4.38) 

and *
.3. ( )I ce p  is strictly increasing in p. 

 Proposition 4.2.21 shows that, for Tactic I.3.c, higher retail price induces higher 

optimal advertising effort of the brand. 

Proposition 4.2.22 For Tactic I.3.c, the local optimal advertising and pricing strategy 

exists only if (i) 0IN < , *
.3.( ) 0L I cD ω >  and *

.3.( ) 0F I cD ω > ; (ii) 0Z > ; (iii) 

Z/[ (1 )]B bτ α> − ; and (iv) / (2 )IB mZ hN> − . Moreover, if the local optimal 

advertising and pricing strategy for Tactic I.3.c exists, then it is unique and is given by 

{ }* * * *
.3. .3. .3. .3.(1 ) / Z, 0, 2 (1 ) / ,I c I c I c I ce B b p c hB b Zω α λ β= = − = = + +  and (4.39) 

* 2
.3.( ) /LL I c hB Z mTπ ω = − . (4.40) 

Proposition 4.2.22 shows the explicit formulas of the local optimal advertising and 

pricing strategy, and the associated company’s profit for Tactic I.3.c. Moreover, it also 

shows the necessary conditions for having a finite *
.3.I cω . Plus, according to 

Proposition 4.2.22, *
.3.I ce , *

.3.I cλ , and *
.3.I cp  are all independent of T  τ , m, and μ . 

 Tactic I.3.d  

Specific conditions: 0)( >ωLD  and ( ) 0FD ω > , 1b < , 0IN < , 

( ) (1 )IN p c m bβ− = − + , e τ>  and * 0λ = . 

Proposition 4.2.23 For Tactic I.2.c, the local optimal advertising efforts in the 

function of p is given by 

* *
.3. .3.

(1 )( )( ) ( )
2 (1 )I d I c

b p ce p e p
h b

α
β

− −
= =

+
, (4.41) 
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and *
.2. ( )I ce p  is strictly increasing in p. 

Proposition 4.2.23 asserts that, for Tactic I.3.d, a high retail price induces a high 

optimal advertising efforts of the brand. Moreover, results of Proposition 4.2.23 are 

similar to Proposition 4.2.21. 

Proposition 4.2.24 For Tactic I.3.d, the local optimal advertising and pricing strategy 

exists only if (i) 0IN < , *
.3.( ) 0L I dD ω >  and *

.3.( ) 0F I dD ω > ; and (ii) 

( 1) 2 Im b hNα τ− < . Moreover, if the local optimal advertising and pricing strategy for 

Tactic I.3.d exists, then it is unique and is given by 

{ }* * * *
.3. .3. .3. .3.( 1) / (2 ), 0, (1 ) / ,I d I d I I d I d Ie m b hN p c m b Nω α λ β= = − = = − +  and (4.42) 

2 2 2
*
.3. 2

(1 ) 4 [ (1 ) ]( )
4

I
LL I d

I

m b hm Gm b BN mT
hN

α βπ ω − − + +
= − . (4.43) 

 Proposition 4.2.24 provides the explicit formulas of the local optimal advertising 

and pricing strategy and the associated company’s profit for Tactic I.3.d. Moreover, 

the necessary conditions for having a finite *
.3.I dω  are shown in Proposition 4.2.24. 

Specifically, conditions in item (i) of Proposition 4.2.24 are the specific conditions of 

Tactic I.3.d. Item (ii) of Proposition 4.2.10 ensures e τ>  which is also the specific 

condition for Tactic I.3.d. As shown in Proposition 4.2.24, *
.3.I de , *

.3.I dλ  and *
.3.I dp  

are independent of τ , T, and μ . However, *
.3.I de  and *

.3.I dp  are increasing in m.  

Tactic I.4:  

Basic conditions: 0)( >ωLD , ( ) 0FD ω > , e Tλ < , (1 )eλ τ− <  and e T τ< + . 

The company’s profit for Tactic I.4 is 
2

2( )[ (1 ) ] ( )( ) ( )
1

I
LL

p c B b e N e G p c he mT m e
b

α λπ ω μτ λ μ μλ
β

− + − + − −
= − − − + + −

+
. 

 (4.44) 

Proposition 4.2.25 For Tactic I.4, (a) if 0e = , then λ  is ignorable. (b) if  

( ) ( )(1 )IN p c m bμ β− > − +  and 0 e T< < , then * 1λ =  (c) If 

( ) ( )(1 )IN p c m bμ β− < − +  and 0 e τ< < , then * 0λ = ; and (d) If 

( ) ( )(1 )IN p c m bμ β− = − +  and 0 e T τ< < + , then there exist multiple *λ . 

 Proposition 4.2.25 shows that the value of *λ  differs under different situations.  

Specifically, the value of λ  can be ignored if the company does not assign any 
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advertising effort, i.e., 0e = . However, if the company wants to assign advertising 

effort requirement such that 0e > , then the company should check the value of e and 

( ) (1 )IN p c m bβ− + + . If ( ) ( )(1 )IN p c m bμ β− > − +  and 0 e T< < , then the company 

should assign the advertising effort to LG only. If ( ) ( )(1 )IN p c m bμ β− < − +  and 

0 e τ< < , then the company should assign the advertising effort to FG only. If 

( ) ( )(1 )IN p c m bμ β− = − +  and 0 e T τ< < + , then there exist multiple *λ . 

Proposition 4.2.26 For Tactic I.4, the local optimal advertising and pricing strategy 

does not satisfy (a) ( ) ( )(1 )IN p c m bμ β− > − +  and T e T τ≤ < + ; (b) 

( ) ( )(1 )IN p c m bμ β− < − +  and e Tτ τ≤ < + ; or (c) ( ) ( )(1 )IN p c m bμ β− = − + . 

 Proposition 4.2.26 shows the two cases for which the optimal advertising and 

pricing strategy does not belong to Tactic I.4. Specifically, for 

( ) ( )(1 )IN p c m bμ β− > − +  and T e T τ≤ < + , Tactic I.2 dominates Tactic I.4. For 

( ) ( )(1 )IN p c m bμ β− < − +  and e Tτ τ≤ < + , Tactic I.3 dominates Tactic I.4. For 

( ) ( )(1 )IN p c m bμ β− = − + , at least one of Tactic I.2 and Tactic I.3 dominates Tactic 

I.4.  

 According to Proposition 4.2.25 and Proposition 4.2.26, we further consider 

three sub-tactics of Tactic I.4: 

(Tactic I.4.a) * 0e = ; 

(Tactic I.4.b) ( ) ( )(1 )IN p c m bμ β− > − + , 0 e T< <  and * 1λ = ; and 

(Tactic I.4.c) ( ) ( )(1 )IN p c m bμ β− < − + , 0 e τ< <  and * 0λ = . 

The above mentioned conditions are specific for the associated sub-tactics. In 

particular, the basic conditions of Tactic I.4, e Tλ < , (1 )eλ τ− <  and 0 e T τ≤ < + , 

are covered by individual’s specific conditions of each sub-tactic, and we still need to 

consider the remaining basic conditions of Tactic I.4., 0)( >ωLD  and ( ) 0FD ω > , 
for all sub-tactics of Tactic I.4.  

Denoted by *
.4.I iω , for i=a, b, c, the local optimal advertising and price strategy 

for Tactic I.3.i. We can explore the local optimal advertising and pricing strategies for 

each sub-tactic individually. 

 Tactic I.4.a 

Specific conditions: * 0e = . 
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By putting * 0e =  into (4.44), the profit of the company for Tactic I.4.a becomes 
2

2( ) ( )( )
1LL

G p c p c B he mT
b

π ω μτ
β

− − + −
= − − −

+
.  (4.45) 

Proposition 4.2.27 For Tactic I.4.a, the local optimal advertising and pricing strategy 

exists only if (i) *
.4.( ) 0L I aD ω >  and *

.4.( ) 0F I aD ω > ; (ii) 0G > ; and (iii) 0B > . 

Moreover, if the local optimal advertising and pricing strategy exists, then it is unique 

and is given by 

{ }* * * *
.4. .4. .4. .4.0, 0, / (2 )I a I a I a I ae p B G cω λ= = = = + , and (4.46) 

2
*
.4.( )

4 (1 )LL I a
B mT

G b
π ω μτ

β
= − −

+
. (4.47) 

Similar to the other tactics, the necessary conditions for having a finite *
.4.I aω  

are shown in Proposition 4.2.27.   

Tactic I.4.b  

Specific conditions: ( ) ( )(1 )IN p c m bμ β− > − + , 0 e T< <  and * 1λ = . 

By putting * 1λ =  into (4.44), the profit of the company for Tactic I.4.b becomes 
2

2( ) ( )[ (1 ) ]( )
1LL

G p c p c B a e he mT me
b

βπ ω μτ
β

− − + − + +
= − − − +

+
.  (4.48) 

Proposition 4.2.28 For Tactic I.4.b, the local optimal advertising efforts in the 

function of retail price p is given by 

* *
.4. .3.

(1 )( ) ( ) ( )
2 (1 ) 2I b I b
a me p p c e p
h b h

β
β

+
= − + =

+
. (4.49) 

Moreover, *
.4. ( )I be p  is strictly increasing in p. 

Proposition 4.2.28 shows that for Tactic I.4.b, a higher retail price induces higher 

advertising efforts of the company. 

Proposition 4.2.29 For Tactic I.4.b, the local optimal advertising and pricing strategy 

exists only if (i) *
.4.( ) 0L I bD ω >  and *

.4.( ) 0F I bD ω > ; (ii) 0Y > ; (iii) 

(1 ) / (2 )B am hβ> − +  (condition for p c> ); (iii) 

2 (1 ) 2 (1 )
(1 ) (1 )

mG b TY mG bB
a a

β β
β β

− + − +
< <

+ +
; and (iv) 2 IhN B Y mμ> − Θ . Moreover, if the 

local optimal advertising and pricing strategy for Tactic I.4.b exists, then it is unique 

and is given by 
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{ }* * * *
.4. .4. .4. .4., , ,I b I b I b I be pω λ=  and (4.50) 

2 2
*
.4.

(1 ) (1 )( )LL I b
hB Bam m G b mT

Y
β βπ ω μτ− + + +

= − − , (4.51) 

where *
.4.

(1 ) 2 (1 )
I b

a B mG be
Y

β β+ + +
= , *

.4. 1I bλ = , and 

*
.4.

[2 (1 )](1 )
I b

hB am bp c
Y
β β+ + +

= + . 

Specifically, conditions in item (i) of Proposition 4.2.29 are the basic conditions 

for Tactic I.4.b. Item (ii) of Proposition 4.2.29 ensures that the profit function of the 

company for Tactic I.4.b is concave in p. Item (iii) of Proposition 4.2.29 ensures 

p c> . Item (iv) and Item (v) of Proposition 4.2.29 ensure that 0 e T< <  and 

( ) ( )(1 )IN p c m bμ β− > − + , respectively, which are the specific conditions for Tactic 

I.4.b. Moreover, Proposition 4.2.29 shows the explicit formulas of the local optimal 

advertising and pricing strategy, and the associated company’s profit for Tactic I.4.b. 

The necessary conditions for having a finite *
.4.I bω  are shown in Proposition 4.2.29. 

Noting that *
.4.I be , *

.4.I bλ  and *
.4.I bp  are independent of T  and τ . 

 Tactic I.4.c 

Specific conditions: ( ) ( )(1 )IN p c m bμ β− < − + , 0 e τ< <  and * 0λ = . 

By putting * 0λ =  into (4.44), the profit of the company for Tactic I.4.c 

becomes 
2

2( ) ( )[ (1 ) ]( )
1LL

G p c p c B b e he mT e
b

απ ω μτ μ
β

− − + − + −
= − − − +

+
. (4.52) 

Proposition 4.2.30 For Tactic I.4.c, the local optimal advertising efforts in the 

function of retail price p is given by 

*
.4.

(1 )( )( )
2 (1 ) 2I c

b p ce p
h b h

α μ
β

− −
= +

+
. (4.53) 

 Noting that *
.4. ( )I ce p  is strictly increasing in p only if 1b < . If 1b > , then 

*
.4. ( )I ce p  is strictly decreasing in p. Therefore, similar to Proposition 4.2.13, 

Proposition 4.2.30 asserts that a high advertising effort may not support a high retail 

price, and it does happen if 1b >  for Tactic I.4.c.  

Proposition 4.2.31 For Tactic I.4.c, the local optimal advertising and pricing strategy 
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exists only if (i) *
.4.( ) 0L I cD ω >  and *

.4.( ) 0F I cD ω > ; (ii) 0Z > ; (iii) 

2 (1 ) 0hB bαμ+ − > ; (iv) 0 2 (1 ) (1 )G b b B Zμ β α τ< + + − < ; and (v) 

2 IhBN Zmμ< Θ − . Moreover, if the local optimal advertising and pricing strategy for 

Tactic I.4.c exists, then it is unique and is given by 

{ }* * * *
.4. .4. .4. .4., ,I c I c I c I ce pω λ=  and (4.54) 

* 2
.4.( ) /LL I c hB Z mTπ ω = − , (4.55) 

where *
.4. [2 (1 ) (1 ) ] /I ce G b b B Zμ β α= + + − , *

.4. 0I cλ = , and  

*
.4. (1 )[2 (1 )] /I cp b hB b Z cβ αμ= + + − + . 

The necessary conditions for having a finite *
.4.I cω  are shown in Proposition 

4.2.31. Specifically, conditions in item (i) of Proposition 4.2.31 are the basic 

conditions for Tactic I.4. Item (ii) of Proposition 4.2.31 ensures that the profit function 

of the company for Tactic I.4.c is concave in p. Item (iii) of Proposition 4.2.31 ensures 

that p c> . Items (iv) and (v) of Proposition 4.2.31 ensure that 0 e τ< <  and 

( ) ( )(1 )IN p c m bμ β− < − +  which are the specific conditions for Tactic I.4.c. 

Moreover, Proposition 4.2.31 shows the explicit formulas of the local optimal 

advertising and pricing strategy, and the associated company’s profit for Tactic 

I.4.c.Notice that *
.4.I ce , *

.4.I cλ , and *
.4.I cp  are all independent of T  and τ .  

This completes the derivation of all the local optimums for Tactic I. Before we 

go to the analysis for Tactic II and Tactic III, we summarize the major findings for 

Tactic I. 

1. When there is no penalty for insufficient advertising, the optimal allocation of 

advertising effort is either i) allocates all the advertising efforts to LG or ii) 

allocates all the advertising efforts to FG.. When there is a penalty for insufficient 

advertising, the optimal allocation of advertising effort will more likely be 

allocated to both LG and FG.. This implies that when there is penalty for 

insufficient advertising, the company should take a balance between allocating the 

advertising effort between the two groups and avoid being “polarized”. 

2. The optimal advertising effort is never decreasing with the optimal retail price 

when there is no penalty for insufficient advertising. However, this can happen 

(for Tactic I.2.d with b > 1 and Tactic I.4.c with b > 1) when there is penalty for 

insufficient advertising.  
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There are totally 14 sub-tactics of Tactic I. By checking carefully the necessary 

conditions of each sub-tactic of Tactic I, we observe that by checking the value of IN , 

some sub-tactics of Tactic I can already be screened out. In specific, Tactic I.2.b, 

Tactic I.2.c, Tactic I.3.c, Tactic I.3.d can be screened out for 0IN ≥ ;  and Tactic I.1.b, 

Tactic I.2.b and Tactic I.2.c can be screened out for 0IN < . Therefore, in determining 

the global optimal advertising and pricing strategy, the company should check the 

value of IN  first and then screen out the non-optimal sub-tactics. This rule can 

significantly reduce the computational effort required to solve the problem. 
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4.2.3 Tactic II: Selling to FG only 
 
Under Tactic II, the demand of the product of LG and FG satisfy ( ) 0LD ω =  and 

( ) 0FD ω > , respectively. Therefore, the total demand of the product is  

( ) ( ) (1 )F FD D x e pω ω α λ γ= = + − −  

and the associated company’s profit is 
2( ) [ (1 ) ]( ) [ ] [ (1 ) ]LL Fx e p p c he m T e eπ ω α λ γ λ μ τ λ+ += + − − − − − − − − − . 

Now, we explore the optimal advertising and pricing strategy for each sub-tactic of 

Tactic II. 

Tactic II.1:  

Basic conditions: ( ) 0LD ω = , ( ) 0FD ω > , e Tλ ≥ , (1 )eλ τ− ≥  and e T τ≥ + . 

The company’s profit for Tactic II.1 is 
2( ) [ (1 ) ]( )LL Fx e p p c heπ ω α λ γ= + − − − − . (4.56) 

Proposition 4.2.32 If the optimal adverting and pricing strategy belongs to Tactic II.1, 

then ( ) 0LV ω < . 

The interpretation of Proposition 4.2.32 is that the company should totally ignore 

the LG market under Tactic II.1 as *( ) 0LV ω < , i.e., the LG’s value function is 

negative. Next, we study the optimal solutions of λ  under Tactic II.1. As 
*( ) 0LV ω <  is necessary for Tactic II.1 and ( ) 0LV ω <  implies ( ) 0LD ω = , we 

replace the basic condition ( ) 0LD ω =  by ( ) 0LV ω < . 

Proposition 4.2.33 For Tactic II.1, (a) if e T τ= + , then * / ( )T Tλ τ= + ; and (b) if 

e T τ> + , then * /T eλ = . 

 Proposition 4.2.33 shows that if the company wants to assign the advertising 

effort such that e T τ= + , then we have * / ( )T Tλ τ= + . However, if the company 

wants to assign the advertising efforts such that e T τ> + , then the company should 

set *e Tλ = . Moreover, according to Proposition 4.2.33, we further consider two 

sub-tactics for Tactic I.2: 

(Tactic II.1.a) e T τ= +  and * / ( )T Tλ τ= + ; and 

(Tactic II.1.b) e T τ> +  and * /T eλ = . 
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Notice that the above mentioned conditions are specific for the associated sub-tactics. 

In particular, the basic conditions of Tactic II.1, e Tλ ≥ , (1 )eλ τ− ≥  and e T τ≥ + , 

are covered by individual’s specific conditions of each sub-tactic. Therefore, we need 

to consider the remaining basic conditions of Tactic II.1, ( ) 0LV ω <  and 0)( >ωFD  
for all sub-tactics of Tactic II.1. Next, we explore the local optimal advertising and 

pricing strategies for each sub-tactic of Tactic II.1.  

Denoted by *
.1.II iω , for i=a, b, the local optimal advertising and price strategy for 

Tactic II.1.i. We proceed to explore the local optimal advertising and pricing strategies 

for Tactic II.1.a, and Tactic II.1.b individually. 

 Tactic II.1.a  

Specific conditions: ( ) 0LV ω < , ( ) 0FD ω > , e T τ= +  and * / ( )T Tλ τ= + . 

 By putting e T τ= +  and * / ( )T Tλ τ= +  into (4.56), the profit of the company 

for Tactic II.1.a becomes 
2 2( ) ( ) ( ) ( )LL Fx c p c h Tπ ω γ ατ γ τ= − + − − − + , (4.57) 

Proposition 4.2.34 For Tactic II.1.a, the local optimal advertising and pricing 

strategy exists only if *
.1.( ) 0L II aV ω <  and *

.1.( ) 0F II aD ω > . Moreover, if the local 

optimal advertising and pricing strategy exists, then it is unique and is given by 

{ }* * * *
.1. .1. .1. .1., / ( ), ( ) / (2 )II a II a II a II a Fe T T T p x cω τ λ τ ατ γ γ= = + = + = + + , and (4.58) 

* 2 2
.1.( ) ( ) / (4 ) ( )LL II a Fx c h Tπ ω γ ατ γ τ= − + − + . (4.59) 

 The necessary conditions for having a finite *
.1.II aω  are shown in Proposition 

4.2.34. Specifically, only the basic conditions for Tactic II.1, *
.1.( ) 0L II aV ω <  and 

*
.1.( ) 0F II aD ω >  are required. Moreover, Proposition 4.2.34 gives the explicit formulas 

of the local optimal advertising and pricing strategy and the associated company’s 

profit for Tactic II.1.a if *
.1.II aω  exists. According to Proposition 4.2.34, *

.1.II ae  is 

strictly increasing in T and τ , *
.1.II aλ  is strictly decreasing in T and τ , and *

.1.II ap  is 

strictly increasing in τ  but independent of T. 

 Tactic II.1.b 

Specific conditions: ( ) 0LV ω < , ( ) 0FD ω > , e T τ> +  and * /T eλ = . 

By putting * /T eλ =  into (4.56), the company’s profit for Tactic II.1.b becomes 
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2 2( ) [ ( )] ( )LL Fx c e T p c heπ ω γ α γ= − + − − − − . (4.60) 

Proposition 4.2.35 For Tactic II.1.b, the local optimal advertising effort is given by 
*

.1. ( ) ( ) / (2 )II be p p c hα= − . (4.61) 

Moreover, *
.1. ( )II be p  is strictly increasing in p. 

 Proposition 4.2.35 shows that for Tactic II.1.b, a higher retail price induces 

higher advertising effort of the company. 

Proposition 4.2.36 For Tactic II.1.b, the local optimal advertising and pricing 

strategy exists only if (i) *
.1.( ) 0L II bV ω <  and *

.1.( ) 0F II bD ω > ; (ii) 24hγ α> ; and (iii) 

2[4 ( ) ] /Fx c h Tγ γ τ α τ α− > + − . Moreover, if the local optimal advertising and pricing 

strategy exists then it is unique and is given by 

{ }* * * *
.1. .1. .1. .1., , ,II b II b II b II be pω λ=  and (4.62) 

2
*

.1. 2

( )( )
4

F
LL II b

h x c T
h
γ απ ω
γ α
− −

=
−

, (4.63) 

where *
.1. 2

( )
4
F

II b
x c Te

h
α γ α

γ α
− −

=
−

, 
2

*
.1.

(4 )
( )II b

F

T h
x c T

γ αλ
α γ α

−
=

− −
, and 

*
.1. 2

2 ( )
4
F

II b
h x c Tp c

h
γ α

γ α
− −

= +
−

. 

The necessary conditions for having a finite *
.1.II bω  are shown in Proposition 

4.2.36.  Specifically, conditions in item (i) of Proposition 4.2.36 are the basic 

conditions for Tactic II.1. Item (ii) of Proposition 4.2.36 ensures that the local optimal 

advertising and pricing strategy is finite. Item (iii) of Proposition 4.2.36 ensures 

e T τ> +  which is the specific condition for Tactic II.1.b. Notice that the feasibility 

constraint p>c is covered by item (iii) of Proposition 4.2.29. Moreover, Proposition 

4.2.36 gives the explicit formulas of the local optimal advertising and pricing strategy 

(if it exists), and the associated company’s profit for Tactic II.1.b. Furthermore, from 

Proposition 4.2.36, we find that * 2
.1. / / (4 ) 0II bde d hτ α γ α= − − < , 

2
*

.1. 2

(4 )( )/ 0
( )

F
II b

F

h x cd dT
x c T
γ α γλ

α γ α
− −

= >
− −

 and *
.1. 2

2/ 0
4II b

hdp d
h

ατ
γ α
−

= <
−

, because 

24hγ α>  for Tactic II.1.b. Therefore, *
.1.II be  and *

.1.II bp  are decreasing in T , while 

*
.1.II bλ  is increasing in T . On the other hand, *

.1.II be , *
.1.II bλ  and *

.1.II bp  are 

independent of τ . 
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Tactic II.2  

Basic condition ( ) 0LD ω = , ( ) 0FD ω > , e Tλ ≥ , (1 )eλ τ− <  and e T≥ . 

The company’s profit for Tactic II.2 is 
2( ) [ (1 ) ]( ) [ (1 ) ]LL Fx e p p c he eπ ω α λ γ μ τ λ= + − − − − − − − .  (4.64) 

Proposition 4.2.37 If the optimal adverting and pricing strategy belongs to Tactic II.2, 

then *( ) 0LV ω < . 

The interpretation of Proposition 4.2.37 is similar to Proposition 4.2.32. 

Specifically, Proposition 4.2.37 suggests that, for Tactic II.2, the company should 

totally ignore the market segment of LG as *( ) 0LV ω < . As *( ) 0LV ω <  is necessary 

for Tactic II.2 and ( ) 0LV ω <  implies ( ) 0LD ω = , we can replace the basic condition 

( ) 0LD ω =  by ( ) 0LV ω < . 

Proposition 4.2.38 For Tactic II.2, (a) if e T= , then * 1λ = ; and (b) if T e T τ< < + , 

then * /T eλ = . Moreover, Tactic II.1 dominates Tactic II.2 if e T τ≥ + . 

Proposition 4.2.38 shows that we can ignore the case for e T τ≥ +  under Tactic 

II.2. Moreover, Proposition 4.2.38 shows that if the company wants to assign the 

advertising efforts such that e T= , then the company should allocate all the 

advertising efforts to LG. However, if the company wants to assign the advertising 

efforts such that e T> , then the company should set *e Tλ = . Moreover, according 

to Proposition 4.2.38, we further consider two sub-tactics for Tactic II.2: 

(Tactic II.2.a) e T=  and * 1λ = ; and 

(Tactic II.2.b) T e T τ< < +  and * /T eλ = . 

Similarly, the above mentioned conditions are specific for the associated sub-tactics. 

In particular, the basic conditions of Tactic II.2, e Tλ ≥ , (1 )eλ τ− <  and e T≥ , are 

covered by individual’s specific conditions of each sub-tactic. Apart from the specific 

conditions, we still need to consider the remaining basic conditions of Tactic II.2, 

( ) 0LV ω <  and 0)( >ωFD  for all sub-tactics of Tactic II.2.  

Denoted by *
.2.II iω , for i=a, b, the local optimal advertising and price strategy for 

Tactic II.2.i. we can investigate the local optimal advertising and pricing strategies for 

each sub-tactic of Tactic II.2. 

 Tactic II.2.a 
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Specific conditions: ( ) 0LV ω < , 0)( >ωFD , e T=  and * 1λ = : 

By putting e T=  and * 1λ =  into (4.58), the profit of the company for Tactic 

II.2.a becomes 
2( ) ( )( )LL Fx p p c hTπ ω γ μτ= − − − − .  (4.65) 

Proposition 4.2.39 For Tactic II.2.a, the local optimal advertising and pricing 

strategy exists only if *
.2.( ) 0L II aV ω <  and *

.2.( ) 0F II aD ω > . Moreover, if *
.2.II aω  exists, 

then *
.2.II aω  is unique and  

{ }* * * *
.2. .2. .2. .2., 1, ( ) / (2 )II a II a II a II a Fe T p c x cω λ γ γ= = = = + − , and (4.66) 

* 2 2
.2.( ) ( ) / (4 )LL II a Fx c hTπ ω γ γ μτ= − − − . (4.67) 

The necessary conditions for having a unique *
.2.II aω  are shown in Proposition 

4.2.39. Specifically, only the basic conditions for Tactic II.2, *
.2.( ) 0L II aV ω <  and 

*
.2.( ) 0F II aD ω >  are required. Moreover, Proposition 4.2.39 gives the explicit formulas 

of the local optimal advertising and pricing strategy and the associated company’s 

profit for Tactic II.2.a. Notice that according to Proposition 4.2.32, *
.2.II ae  is strictly 

increasing in T , while *
.2.II aλ  and *

.2.II ap  are independent of T . Furthermore, *
.2.II ae , 

*
.2.II aλ  and *

.2.II ap  are independent of τ . 

 Tactic II.2.b 

Specific conditions: ( ) 0LV ω < , 0)( >ωFD , T e T τ< < +  and * /T eλ = . 

By putting * /T eλ =  into (4.64), the profit of the company for Tactic II.2.b 

becomes 
2 2( ) [ ( )] ( ) ( )LL Fx c e T p c he T eπ ω γ α γ μ τ= − + − − − − − + − . (4.68) 

Proposition 4.2.40 For Tactic II.2.b, the optimal advertising effort in the function of 

retail price p is given by 
*

.2. ( ) [ ( ) ] / (2 )II be p p c hα μ= − + . (4.69) 

Moreover, *
.2. ( )II be p  is strictly increasing in p. 

 Proposition 4.2.40 shows that for Tactic II.2.b, the optimal advertising effort is 

increasing in the optimal retail price. 

Proposition 4.2.41 For Tactic II.2.b, the local optimal advertising and pricing 
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strategy exists only if (i) *
.2.( ) 0L II bV ω <  and *

.2.( ) 0F II bD ω > ; (ii) 24hγ α> ; and (iii) 

22 (2 ) / [4 ( ) 2 ] /FhT x c h Tγ μ α γ γ τ α τ γμ α− < − < + − − . Moreover, if the local optimal 

advertising and pricing strategy for Tactic II.2.b exists, then it is unique and is given 

by 

{ }* * * *
.2. .2. .2. .2., ,II b II b II b II be pω λ=  and (4.70) 

2 2
*

.2. 2

( ) ( )( ) ( )
4

F F
LL II b

h x c T x c T T
h

γ α αμ γ α γμπ ω μ τ
γ α

− − + − − +
= − +

−
, (4.71) 

where *
.2. 2

2 ( )
4

F
II b

x c Te
h

γμ α γ α
γ α

+ − −
=

−
, 

2
*

.2.
(4 )

2 ( )II b
F

T h
x c T
γ αλ

γμ α γ α
−

=
+ − −

, and 

*
.2. 2

2 ( )
4

F
II b

h x c Tp c
h
γ α αμ
γ α

− − +
= +

−
. 

The necessary conditions for having a finite *
.2.II bω  are shown in Proposition 

4.2.41. Specifically, conditions in item (i) of Proposition 4.2.41 are the basic 

conditions for Tactic II.2. Item (ii) of Proposition 4.2.31 ensures that the profit 

function of the company for Tactic II.2.b is concave in p. Item (iii) of Proposition 

4.2.41 ensures T e T τ< < +  which is the specific condition for Tactic II.2.b. 

Moreover, Proposition 4.2.41 gives the explicit formulas of the local optimal 

advertising and pricing strategy and the associated company’s profit for Tactic II.2.b. 

Furthermore, according to Proposition 4.2.41, we find that *
.2.II be  and *

.2.II bp  are 

decreasing in T , while *
.2.II bλ  is increasing in T . On the other hand, *

.2.II be , *
.2.II bλ  

and *
.2.II bp  are independent of τ . 

Tactic II.3 

Basic conditions: ( ) 0LD ω = , ( ) 0FD ω > , e Tλ < , (1 )eλ τ− ≥  and e τ≥ . 

The company’s profit for Tactic II.2 is 
2( ) [ (1 ) ]( ) ( )LL Fx e p p c he m T eπ ω α λ γ λ= + − − − − − − .  (4.72) 

Proposition 4.2.42 For Tactic II.3, (a) if /p m cα< +  and e τ= , then * 0λ =  and 
*( ) 0LV ω = ; (b) if /p m cα< +  and e Tτ τ< < + , then 1 / eλ τ= −  and 

*( ) 0LV ω = ; (c) if /p m cα> +  and e τ= , then * 0λ =  and *( ) 0LV ω < ; (d) if 

/p m cα> +  and e τ> , then * 0λ =  and *( ) 0LV ω < ; (e) if /p m cα= +  and 

e τ> , then there are multiple *λ ; and (f) Tactic II.1 dominates Tactic II.3 if 
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e T τ≥ +  and /p m cα< + . 

Proposition 4.2.42 shows that, for Tactic II.3, if the optimal retail price is greater 

than the threshold /m cα + , then the company should totally ignore the LG market as 
*( ) 0L LLV ω < . However, if the optimal retail price is less than the threshold /m cα + , 

then the company should set the optimal advertising and pricing strategy such that 
*( ) 0L LLV ω = . Moreover, according to Proposition 4.2.42, we further consider five 

sub-tactics for Tactic II.3: 

(Tactic II.3.a) /p m cα< + , e τ= , * 0λ =  and *( ) 0LV ω = ;  

(Tactic II.3.b) /p m cα< + , e Tτ τ< < + , * 1 / eλ τ= −  and *( ) 0LV ω = ; 

(Tactic II.3.c) /p m cα> + , e τ= , * 0λ = , *( ) 0LV ω < ; and 

(Tactic II.3.d) /p m cα> + , e τ> , * 0λ = , *( ) 0LV ω < . 

(Tactic II.3.e) /p m cα= + , e τ> , * 0λ = . 

Notice that, according to Proposition 4.2.42, there are multiple *λ  for /p m cα= + . 

For e τ> , 0λ =  satisfies (1 )eλ τ− ≥  and e Tλ < . Therefore, we only consider 
* 0λ =  for /p m cα= + . Similar results can also been obtained if we consider other 

values of *λ  for /p m cα= + . Moreover, the above mentioned conditions are 

specific for the associated sub-tactics. In particular, the basic conditions of Tactic II.3, 

e Tλ < , (1 )eλ τ− ≥  and e τ≥ , are covered by individual’s specific conditions of 

each sub-tactic, and 0)( >ωFD  is covered by individual’s specific conditions of 

each sub-tactic except Tactic II.3.e. Apart from the specific conditions, we still need to 

consider the remaining basic conditions of Tactic II.3, 0)( >ωFD  for all sub-tactics 

of Tactic II.3. 

We represent by *
.3.II iω , for i=a, b, c, d, e, the local optimal advertising and price 

strategy for Tactic II.3.i. The local optimal advertising and pricing strategies for each 

sub-tactic of Tactic II.3 are explored as follows. 

 Tactic II.3.a 

Specific conditions: 0)( >ωFD , /p m cα< + , e τ= , * 0λ =  and *( ) 0LV ω = . 

Proposition 4.2.43 For Tactic II.3.a, the local optimal advertising and pricing 

strategy exists only if (i) *
.3.( ) 0F II aD ω > ; and (ii) ( )0 L Fx gc b x c b m

g b
γ α τ

γ α
− − − −

< <
−

. 
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Moreover, 

if the optimal advertising and pricing strategy for Tactic II.3.a exists, then it is unique 

and is given by 

* * * *
.3. .3. .3. .3., 0, L F

II a II a II a II a
x bx be p

g b
α τω τ λ
γ

⎧ ⎫− −
= = = =⎨ ⎬−⎩ ⎭

, and (4.73) 

* * * 2 2
.3. .3. .3.( ) [ ]( ) ( )LL II a F II a II ax c p c p c h mTπ ω ατ γ γ τ= + − − − − − −  (4.74) 

The necessary conditions for having a finite *
.3.II aω  are shown in Proposition 

4.2.43. Specifically, there are two necessary conditions for *
.3.II aω  being optimal. 

Condition (i) of Proposition 4.2.43 is the basic condition for Tactic II.3. Item (ii) of 

Proposition 4.2.43 ensures that *
.3. /II ac p m cα< ≤ + . Moreover, Proposition 4.2.43 

provides an explicit formula of the local optimal advertising and pricing strategy for 

Tactic II.3.a (if it exists), and an associated company’s profit. Furthermore, from 

Proposition 4.2.43, we find that *
.3.II ae  is increasing in τ , *

.3.II ap  is decreasing in τ  

and *
.3.II aλ  is independent of τ . On the other hand, *

.3.II ae , *
.3.II aλ  and *

.3.II ap  are 

independent of T . 

 Tactic II.3.b 

Specific conditions: 0)( >ωFD , /p m cα< + , e τ> , 1 / eλ τ= −  and *( ) 0LV ω = . 

By putting * 1 / eλ τ= −  into (4.72), we obtain 
2 2( ) ( )( ) ( ) ( )LL Fx c p c p c he m T eπ ω γ ατ γ τ= − + − − − − − + − , and (4.75) 

Proposition 4.2.44 For Tactic II.3.b, the local optimal advertising effort as a function 

of retail price p is given by 

{ }*
.3. ( ) ( ) ( ) /II b F Le p bx x a b b g p aα τ γ= − + + − − . (4.76) 

Proposition 4.2.44 shows the relationship between optimal e and optimal p for 

Tactic II.3.b. Noting that *
.3. ( )II be p  is increasing in p if g bγ≥ , and *

.3. ( )II be p  is 

decreasing in p if g bγ≤ , as *
.3. ( ) / ( ) /II bde p dp g b aγ= − . 

Proposition 4.2.45 For Tactic II.3.b, the local optimal advertising and pricing 

strategy exists only if (i) *
.3.( ) 0F II bD ω > ; (ii) 2 2( )a h b gγ γ> − ;  

(iii) 2( )( ) 2 ( ) (2 )( )F La b g x c a x gc h m b gγ γ ατ γ τ γ+ − + > − + − − ;  

(iv) 2[ 2 ]( ) 2 ( ) ( )F La hb x c h x gc a am b gγ ατ τ γ+ − + − − − > − ; and  
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(v) 2 2 2[ 2 ]( ) 2 ( ) [2 2 ( ) ( )] /F La hb x c h x gc a m a h b g a b gγ ατ τ γ γ α γ α+ − + − − − < − − − − . 

Moreover, if the local optimal advertising and pricing strategy for Tactic II.3.b exists, 

then it is unique and is given by 

{ }* * * *
.3. .3. .3. .3., ,II b II b II b II be pω λ= , and (4.77) 

* * * * 2 *
.3. .3. .3. .3. .3.( ) ( )( ) ( ) ( )LL II b F II b II b II b II bx p p c h e m T eπ ω γ ατ τ= − + − − − + − , (4.78) 

where 
2

*
.3. 2 2

( )( ) ( ) ( 2 ) 2 ( )
2[ ( ) ]

F L
II b

a b g x c m b g a g a b a x gce
a h b g

γ γ γ τ α γ α γ γ
γ γ

+ − + − + + + − −
=

+ −
, 

* *
.3. .3.1 /II b II beλ τ= − , and 

2
*

.3. 2 2

[ 2 ]( ) 2 ( ) ( ) .
2[ ( ) ]

F L
II b

a hb x c h x gc a am b gp c
a h b g

γ ατ τ γ
γ γ

+ − + − − − − −
= +

− −
 

The necessary conditions for having a finite *
.3.II bω  are shown in Proposition 

4.2.38. Specifically, item (i) of Proposition 4.2.45 is the basic condition for Tactic II.3. 

Item (ii) of Proposition 4.2.45 ensures that the company’s profit for Tactic II.3.b is 

strictly concave in p. Items (iii), (iv) and (v) of Proposition 4.2.45 ensure that 
*

.3.II be τ>  and *
.3. /II bc p m cα< ≤ +  respectively, which are the specific conditions for 

Tactic II.3.b. Moreover, Proposition 4.2.45 provides the explicit formulas of the local 

optimal advertising and pricing strategy for Tactic II.3.b (if it exists), and an 

associated company’s profit. 

 Tactic II.3.c  

Specific conditions: 0)( >ωFD , /p m cα> + , e τ= , 0λ =  and *( ) 0LV ω < . 

By putting * 0λ =  into (4.66), we obtain 
2( ) [ ]( )LL Fx e p p c he mTπ ω α γ= + − − − − .  (4.79) 

Proposition 4.2.46 For Tactic II.3.c, the local optimal advertising and pricing 

strategy exists only if (i) *
.3.( ) 0L II cV ω <  and *

.3.( ) 0F II cD ω > ; and (ii) 

2 /Fx c mγ γ α ατ− > − . Moreover, if the optimal advertising and pricing strategy for 

Tactic II.3.c exists, then it is unique and is given by 

{ }* * * *
.3. .3. .3. .3., 0, ( ) / (2 ) ,II c II c II c II c Fe p c x cω τ λ γ ατ γ= = = = + − +  and (4.80) 

* 2 2
.3.( ) ( ) / (4 )LL II c Fx c h mTπ ω γ ατ γ τ= − + − − , (4.81) 

The necessary conditions for the existence of local optimal advertising and 

pricing strategy for Tactic II.3.c are shown in Proposition 4.2.46. Specifically, item (i) 
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of Proposition 4.2.46 is the basic condition for Tactic II.3. Item (ii) of Proposition 

4.2.46 ensures that *
.3. /II cp m cα≥ + , which is the specific conditions for Tactic II.3.c.  

Moreover, Proposition 4.2.46 shows the explicit formula of the local optimal 

advertising and pricing strategies for Tactic II.3.c, and the associated company’s profit. 

Noting that *
.3.II ce  and *

.3.II cp  are increasing in τ . In words, a bigger τ  induces a 

higher total advertising effort assigned by the company and a higher retail price of the 

product for Tactic II.3.c. On the other hand, *
.3.II ce , *

.3.II cλ  and *
.3.II cp  are independent 

of T. 

 Tactic II.3.d  

Specific conditions: 0)( >ωFD , /p m cα> + , e τ> , * 0λ =  and *( ) 0LV ω < . 

Proposition 4.2.47 For Tactic II.3.d, the local optimal advertising effort as a function 

of retail price p is given by 
*

.3. ( ) ( ) / (2 )II de p p c hα= − . (4.82) 

Moreover, *
.3. ( )II de p  is strictly increasing in p. 

Proposition 4.2.47 shows that the optimal advertising effort is increasing in the 

optimal retail price for Tactic II.3.d, namely, a higher advertising effort induces a 

higher retail price of the product for Tactic II.3.d. 

Proposition 4.2.48 For Tactic II.3.d, the local optimal advertising and pricing 

strategy exists only if (i) *
.3.( ) 0L II dV ω <  and *

.3.( ) 0F II dD ω > ; (ii) 24hγ α> ; (iii) 

2(4 ) /Fx c hγ τ γ α α− > − ; and (iv) 2(4 ) / (2 )Fx c m h hγ γ α α− > − . Moreover, if the 

optimal advertising and pricing strategy for Tactic II.3.d exists, then it is unique and 

is given by 

{ }* * * *
.3. .3. .3. .3., ,II d II d II d II de pω λ= , and (4.83) 

* 2 2
.3.( ) ( ) / (4 )LL II d Fh x c h mTπ ω γ γ α= − − − , (4.84) 

where * 2
.3. ( ) / (4 )II d Fe x c hα γ γ α= − − , *

.3. 0II dλ = , and  

* 2
.3. 2 ( ) / (4 )II d Fp h x c h cγ γ α= − − + . 

The necessary conditions for the existence of local optimal advertising and 

pricing strategy for Tactic II.3.d are shown in Proposition 4.2.48. Specifically, item (i) 

of Proposition 4.2.48 is the basic condition for Tactic II.3. Item (ii) of Proposition 

4.2.48 ensures that the company’s profit for Tactic II.3.d is strictly concave in p. Items 
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(iii) and (iv) of Proposition 4.2.48 ensure that *
.3.II de τ>  and *

.3. /II dp m cα≥ + , 

respectively, which are the specific conditions for Tactic II.3.d. Moreover, Proposition 

4.2.48 shows the explicit formula of the local optimal advertising and pricing 

strategies for Tactic II.3.d, and the associated company’s profit. Noting that *
.3.II de , 

*
.3.II dλ  and *

.3.II dp  are independent of τ  and T . 

 Tactic II.3.e 

Specific conditions: 0)( >ωFD  0)( >ωFD , /p m cα= + , e τ>  and * 0λ = . 

Proposition 4.2.49 For Tactic II.3.e, the local optimal advertising and pricing 

strategy exists only if (i) *
.3.( ) 0F II eD ω > ; (ii) 2h mτ < ; and 

(iii) 2( ) ( ) [ 2 (1 )] / (2 )L Fx gc b x c m b h b hα α γ α− − − ≤ + − . Moreover, if the optimal 

advertising and pricing strategy for Tactic II.3.e exists, then it is unique and is given 

by 

{ }* * * *
.3. .3. .3. .3./ (2 ), 0, /II e II e II e II ee m h p m cω λ α= = = = + , and (4.85) 

* 2 2
.3.( ) ( ) / (4 )LL II e Fh x c h mTπ ω γ γ α= − − − . (4.86) 

The necessary conditions for the existence of local optimal advertising and 

pricing strategy for Tactic II.3.e are shown in Proposition 4.2.49. Specifically, item (i) 

of Proposition 4.2.49 is the basic condition for Tactic II.3. Items (ii) and (iii) of 

Proposition 4.2.49 ensure that *
.3.II ee τ>  and *

.3.( ) 0L II eV ω ≤ , respectively which are 

also the basic conditions for Tactic II.3. Moreover, Proposition 4.2.49 shows the 

explicit formula of the local optimal advertising and pricing strategies for Tactic II.3.e, 

and the associated company’s profit. 

Tactic II.4  

Basic conditions: ( ) 0LD ω = , ( ) 0FD ω > , e Tλ < , (1 )eλ τ− <  and 0 e T τ≤ < + . 

The company’s profit for Tactic II.4 is 
2( ) [ (1 ) ]( ) ( ) ( (1 ) )LL Fx e p p c he m T e eπ ω α λ γ λ μ τ λ= + − − − − − − − − − .  (4.87) 

Proposition 4.2.50 For Tactic II.4, (a) if ( ) /p m cμ α< − +  and 0e = , then 

*( ) 0LV ω = ; (b) if ( ) /p m cμ α< − +  and 0 e T< < , then * 1λ =  and *( ) 0LV ω = ; 

(c) if ( ) /p m cμ α> − +  and 0e = , then *( ) 0LV ω < ; (d) if ( ) /p m cμ α> − +  and 

0 e τ< < , then * 0λ =  and *( ) 0LV ω < ; (e) if ( ) /p m cμ α= − + , then there are 
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multiple *λ ; (f) if ( ) /p m cμ α< − +  and T e T τ≤ < + , then Tactic II.2 dominates 

Tactic II.4; and (g) if ( ) /p m cμ α> − +  and e Tτ τ≤ < + , Tactic II.3 dominates 

Tactic II.4. 

Proposition 4.2.50 shows that, for Tactic II.4, if the optimal retail price is bigger than 

the threshold ( ) /m cμ α− + , then the company should set the optimal advertising and 

pricing strategy such that *( ) 0LV ω = . If the optimal retail price is greater than the 

threshold ( ) /m cμ α− + , then the company should totally ignore the LG market as 

*( ) 0LV ω < . Moreover, if ( ) /p m cμ α= − + , then there are multiple *λ . Furthermore, 

Proposition 4.2.50 shows that Tactic II.4 is dominated by Tactic II.3 for 

( ) /p m cμ α< − +  and T e T τ≤ < + , and is dominated by Tactic II.3 for 

( ) /p m cμ α> − +  and e Tτ τ≤ < + . Therefore, we can ignore these cases when we 

investigate the local optimal advertising and pricing strategies for Tactic II.4. 

According to Proposition 4.2.50, we further consider five sub-tactics for Tactic 

II.4: 

(Tactic II.4.a) ( ) /p m cμ α< − + , 0e =  and *( ) 0LV ω = ;  

(Tactic II.4.b) ( ) /p m cμ α< − + , 0 e T< < , * 1λ =  and *( ) 0LV ω = ; 

(Tactic II.4.c) ( ) /p m cμ α> − + , 0e =  and *( ) 0LV ω < ; 

(Tactic II.4.d) ( ) /p m cμ α> − + , 0 e τ< < , * 0λ =  and *( ) 0LV ω < ; and  

(Tactic II.4.e) ( ) /p m cμ α= − + , 0 e τ< < , * 0λ = . 

Notice that, according to Proposition 4.2.50, there are multiple *λ  for 

( ) /p m cμ α= − + . As 0 e τ< <  and 0λ =  satisfy (1 )eλ τ− ≥  and e Tλ < , we 

consider * 0λ =  for ( ) /p m cμ α= − + . Similar results can also been obtained if we 

consider other values of *λ  and 0 e T τ< < + , for ( ) /p m cμ α= − + . Notice that we 

still need to take care of the basic conditions for Tactic II.4 which are not covered by 

the above mentioned specific conditions for each sub-tactic. 

Denoted by *
.4.II iω , for i=a, b, c, d, e, the local optimal advertising and price 

strategy for Tactic II.4.i. We proceed to explore the local optimal advertising and 

pricing strategies for each sub-tactic of Tactic II.4 in the following. 

 Tactic II.4.a  
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Specific conditions: *( ) 0FD ω > , ( ) /p m cμ α< − + , * 0e =  and *( ) 0LV ω = . 

Proposition 4.2.51 For Tactic II.4.a, the local optimal advertising and pricing 

strategy exists only if (i) *
.4.( ) 0F II aD ω > ; and (ii) F Lbx x mc c

b g
μ

γ α
− −

< < +
−

. Moreover, 

if the optimal advertising and pricing strategy for Tactic II.4.a exists, then it is unique 

and is given by 

{ }* * * *
.4. .4. .4. .4.0, 0, ( ) / ( )II a II a II a II a F Le p bx x b gω λ γ= = = = − − , and (4.88) 

* * *
.4. .4. .4.( ) ( )( )LL II a F II a II ax p p c mTπ ω γ μτ= − − − − . (4.89) 

The necessary conditions for having a finite local optimal advertising and pricing 

strategy for Tactic II.4.a are shown in Proposition 4.2.51. Moreover, Proposition 

4.2.51 shows the explicit formula of the optimal advertising and pricing strategies and 

the associated company’s profit for Tactic II.4.a. Furthermore, the optimal advertising 

and pricing strategy for Tactic II.4.a is independent of T and τ . 

 Tactic II.4.b  

Specific conditions: *( ) 0FD ω > , ( ) /p m cμ α< − + , 0 e T< < , * 1λ =  and 

*( ) 0LV ω = : 

By putting * 1λ =  into (4.87), we obtain 
2( ) ( )( ) ( )LL Fx p p c he m T eπ ω γ μτ= − − − − − − .  (4.90) 

Proposition 4.2.52 For Tactic II.4.b, the local optimal advertising effort as a function 

of retail price p is given by 

{ }*
.4. ( ) ( ) /II b F Le p bx x g b p aγ= − + − . (4.91) 

Proposition 4.2.52 shows the relationship between optimal e and optimal p for 

Tactic II.4.b. Noting that *
.4. ( )II be p  is increasing in p if g bγ≥ , and *

.4. ( )II be p  is 

decreasing in p if g bγ≤ , which is similar as *
.3. ( )II be p  for Tactic II.3.b. 

Proposition 4.2.53 For Tactic II.4.b, the local optimal advertising and pricing 

strategy exists only if (i) *
.4.( ) 0F II bD ω > ;  

(ii) 20 ( )( ) ( ) 2 ( )F La b g x c m b g a x gc Tγ γ γ γ< − − + − − − < ; and 

(iii) 
2

2 2

[ 2 ( )]( ) [2 ( ) ]( )0
2[ ( ) ]

F La hb b g x c h x gc am b g m
a h b g

γ γ γ μ
γ γ α

+ − − − − + − −
< <

+ −
. Moreover, if 

the local optimal advertising and pricing strategy for Tactic II.4.b, then it is unique 
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and is given by 

{ }* * * *
.4. .4. .4. .4., , ,II b II b II b II be pω λ=  and (4.92) 

* * * * 2 *
.4. .4. .4. .4. .4.( ) ( )( ) ( ) ( )LL II b F II b II b II b II bx p p c h e m T eπ ω γ τ= − − − − + − , (4.93) 

where 
2

*
.4. 2 2

( )( ) ( ) 2 ( )
2[ ( ) ]

F L
II b

a b g x c m b g a x gce
a h b g

γ γ γ γ
γ γ

− − + − − −
=

+ −
, *

.4. 1II bλ = , and 

2
*

.4. 2 2

[ 2 ( )]( ) [2 ( ) ]( )
2[ ( ) ]

F L
II b

a hb b g x c h x gc am b gp c
a h b g

γ γ γ
γ γ

+ − − − − + −
= +

+ −
. 

The necessary conditions for having a finite *
.4.II bω  are shown in Proposition 

4.2.53. Specifically, condition in item (i) of Proposition 4.2.53 is the basic condition 

for Tactic II.4. Items (ii) and (iii) of Proposition 4.2.53 ensure that *
.4.0 II be T< <  and 

*
.4. ( ) /II bc p m cμ α< ≤ − +  respectively, which are the specific conditions for Tactic 

II.4.b. Moreover, Proposition 4.2.53 shows the explicit formula of the optimal 

advertising and pricing strategies, and the associated company’s profit for Tactic 

II.4.b. 

 Tactic II.4.c 

Specific conditions: *( ) 0FD ω > , * ( ) /p m cμ α> − + , * 0e =  and *( ) 0LV ω <  

Proposition 4.2.54 For Tactic II.4.c, the local optimal advertising and pricing 

strategy exists only if (i) *
.4.( ) 0L II cV ω <  and *

.4.( ) 0F II cD ω > ; and (ii) 

2 ( ) /Fx c mγ γ μ α− > − . Moreover, if the local optimal advertising and pricing 

strategy for Tactic II.4.c, then it is unique and is given by 

{ }* * * *
.4. .4. .4. .4.0, 0, ( ) / (2 ) ,II c II c II c II c Fe p c x cω λ γ γ= = = = + −  and (4.94) 

* 2
.4.( ) ( ) / (4 )LL II c Fx c mTπ ω γ γ μτ= − − − . (4.95) 

The necessary conditions for having a finite local optimal advertising and pricing 

strategy for Tactic II.4.c are shown in Proposition 4.2.54. Moreover, Proposition 

4.2.54 shows the explicit formula of the optimal advertising and pricing strategy, and 

the associated company’s profit for Tactic II.4.c. Furthermore, *
.4.II ce ,  *

.4.II ce and 

*
.4.II cp  are independent of T and τ . 

 Tactic II.4.d  

Specific conditions: *( ) 0FD ω > , ( ) /p m cμ α> − + , 0 e τ< < , * 0λ =  and 

*( ) 0LV ω < : 



102 

 

By putting * 0λ =  into (4.79), we obtain 
2( ) [ ]( ) ( )LL Fx e p p c he mT eπ ω α γ μ τ= + − − − − − − .  (4.96) 

Proposition 4.2.55 For Tactic II.4.d, the local optimal advertising efforts in the 

function of retail price p is given by 
*

.4. ( ) [ ( ) ] / (2 )II de p p c hα μ= − + . (4.97) 

Moreover, *
.4. ( )II de p  is strictly increasing in p. 

Proposition 4.2.55 implies that, for Tactic II.4.d, a higher advertising effort 

induces a higher retail price of the product. 

Proposition 4.2.56 For Tactic II.4.d, the local optimal advertising and pricing 

strategy exists only if (i) *
.4.( ) 0L II dV ω <  and *

.4.( ) 0F II dD ω > ; (ii) 24hγ α> ; (iii) 

2(4 ) /Fx c hγ τ γ α α− > − ; and (iv) 2[ (4 ) 4 ] / (2 )Fx c m h h hγ γ α γμ α− > − − . Moreover, if 

the local optimal advertising and pricing strategy for Tactic II.4.d exists, then it is 

unique and is given by 

{ }* * * *
.4. .4. .4. .4., , ,II d II d II d II de pω λ=  and (4.98) 

2 2
*

.4. 2

[2 ( ) ]( )
4 (4 ) 4

F
LL II d

h x c mT
h h h

γ αμ μπ ω μτ
γ α

− +
= + − −

−
, (4.99) 

where *
.4. 2

( ) 2
4
F

II d
x ce

h
α γ γμ

γ α
− +

=
−

, *
.4. 0II dλ = , and *

.4. 2

2 ( )
4
F

II d
h x cp c

h
γ αμ

γ α
− +

= +
−

. 

The necessary conditions for having a finite local optimal advertising and pricing 

strategy for Tactic II.4.d are shown in Proposition 4.2.56. Moreover, Proposition 

4.2.56 shows the explicit formula of the local optimal advertising and pricing 

strategies, and the associated company’s profit for Tactic II.4.d. Furthermore, *
.4.II de , 

*
.4.II dλ  and *

.4.II dp  are independent of τ  and T . 

 Tactic II.4.e  

Specific conditions: *( ) 0FD ω > , *( ) 0LD ω = , ( ) /p m cμ α= − + , 0 e τ≤ < , and 

* 0λ = . 

Proposition 4.2.56b For Tactic II.4.e, the local optimal advertising and pricing 

strategy exists only if (i) *
.4.( ) 0F II eD ω > ; (ii) 2m hμ τ< < ; and 

(iii) ( ) ( ) [ 2 ( )( )] / (2 )L Fx gc b x c bm h b g m hγ α γ μ α− − − ≤ + − − . Moreover, if the 

optimal advertising and pricing strategy for Tactic II.4.e exists, then it is unique and 
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is given by 

{ }* * * *
.4. .4. .4. .4./ (2 ), 0, ( ) /II e II e II e II ee m h p m cω λ μ α= = = = − + , and (4.100) 

2 2 2
*

.4. 2

( )[2 ( ) ] ( ) (4 )( )
2 4 4

F
LL II e

m h x c m h mT
h h h

μ γ αμ μ γ α μπ ω μτ
α α

− − + − −
= − − − + . (4.101) 

 The necessary conditions for the existence of local optimal advertising and 

pricing strategy for Tactic II.4.e are shown in Proposition 4.2.56b. Specifically, item (i) 

of Proposition 4.2.56b is the basic condition for Tactic II.4. Item (ii) of Proposition 

4.2.56b ensures that *
.4.II ep c>  and *

.4.II ee τ> . Item (iii) of Proposition 4.2.56b 

ensures that *
.4.( ) 0L II eV ω ≤  which is the basic condition for Tactic II.4. Moreover, 

Proposition 4.2.56b shows the explicit formula of the local optimal advertising and 

pricing strategies for Tactic II.4.e, and the associated company’s profit. 

This completes the derivation of all the local optimums for Tactic II. Similarly, 

we summarize the major findings for Tactic II. 

1. When there is no penalty for insufficient advertising, it is always optimal to 

allocate all the advertising effort to FG under Tactic II. When there is penalty for 

insufficient advertising, the optimal allocation of advertising effort could also be 

allocated to both LG and FG., and even only be allocated to LG (for Tactic II.2.a 

and Tactic II.4.b). This shows that when there is penalty for insufficient 

advertising, the company should strike a balance between allocating the 

advertising efforts to LG and FG. If the penalty for insufficient advertising to LG 

is very heavy, then it is optimal to advertise to LG even the company targets of the 

market segment of FG.. 

2. For Tactic II.3.b and Tactic II.4.b, the optimal advertising effort could be 

decreasing with the optimal retail price.  
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4.2.4 Tactic III: Selling to LG only 

Under Tactic III, the demand of the product of LG and FG satisfy ( ) 0LD ω >  and 

( ) 0FD ω = , respectively. Therefore, the total demand of the product is  

( ) ( )L LD D x a e gpω ω λ= = + − , 

and the associated company’s profit is 
2( ) ( )( ) ( ,0) ( (1 ) ,0) .LL Lx a e gp p c he m T e eπ ω λ λ μ τ λ+ += + − − − − − − − −  

Next, we explore the optimal advertising and pricing strategy for each sub-tactic of 

Tactic II. 

Tactic III.1 

Basic conditions: ( ) 0LD ω > , ( ) 0FD ω = , e Tλ ≥ , (1 )eλ τ− ≥  and e T τ≥ + . 

The company’s profit for Tactic III.1 is 
2( ) ( )( )LL Fx a e gp p c heπ ω λ= + − − − . (4.102) 

Proposition 4.2.57 For Tactic III.1, (a) if aβ α< , then *( ) 0FV ω < ; (b) if aβ α= , 

then *( )FV ω  is independent of λ ; and (c) if aβ α> , then *( ) 0FV ω = . 

 Proposition 4.2.57 shows that, for Tactic III.1, if aβ α≠ , then we can 

immediately know whether *( )FV ω  is negative or not. Specifically, if aβ α< , then 

*( ) 0FV ω < , namely, the company should totally ignore the LG market. On the other 

hand, if aβ α> , then the company should set the optimal advertising and pricing 

strategy such that *( ) 0FV ω = . However, if aβ α= , it is not sure that which one of 

*( ) 0FV ω <  and *( ) 0FV ω =  is true. Therefore, for aβ α= , we need to consider 

both *( ) 0FV ω <  and *( ) 0FV ω =  in the later analysis. Next, we investigate the rules 

for determining the optimal allocation of the advertising efforts for Tactic III.1. 

Proposition 4.2.58 For Tactic III.1, (a) If e T τ= + , then * / ( )T Tλ τ= + ; and (b) if 

e T τ> + , then * 1 / eλ τ= − . 

According to Proposition 4.2.57 and Proposition 4.2.58, we consider four 

sub-tactics for Tactic III.1: 

(Tactic III.1.a) aβ α≤ , *e T τ= + , * / ( )T Tλ τ= +  and *( ) 0FV ω < ;  
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(Tactic III.1.b) aβ α≤ , *e T τ> + , * 1 / eλ τ= −  and *( ) 0FV ω < ; 

(Tactic III.1.c) aβ α≥ , *e T τ= + , * / ( )T Tλ τ= +  and *( ) 0FV ω = ; and 

(Tactic III.1.d) aβ α≥ , *e T τ> + , * 1 / eλ τ= −  and *( ) 0FV ω = . 

Similarly, we need to take care of the basic conditions for Tactic III.1 which are 

not covered by the specific conditions for each sub-tactic. Denoted by *
.1.III iω , for i=a, 

b, c, d, the local optimal advertising and price strategy for Tactic III.1.i. We explore 

the local optimal advertising and pricing strategies for each sub-tactic of Tactic III.1 in 

the following. 

 Tactic III.1.a 

Specific conditions: ( ) 0LD ω > , aβ α≤ , *e T τ= + , * / ( )T Tλ τ= +  and 

*( ) 0FV ω < : 

By putting * / ( )T Tλ τ= +  into (4.102), we obtain 
2 2( ) ( )( ) ( ) ( )LL Lx gc aT p c g p c h Tπ ω τ= − + − − − − + .  (4.103) 

Proposition 4.2.59 For Tactic III.1.a, the local optimal advertising and pricing 

strategy exists only if aβ α≤ , *
.1.( ) 0F III aV ω <  and *

.1.( ) 0L III aD ω > . Moreover, if the 

local optimal advertising and pricing strategy for Tactic III.1.a exists, then it is unique 

and is given by 

{ }* * * *
.3. .3. .3. .3., / ( ), ( ) / (2 )III a III a III a III a Le T T T p x gc aT g cω τ λ τ= = + = + = − + + , and

 (4.104) 
* 2 2

.1.( ) ( ) / (4 ) ( )LL III a Lx gc aT g h Tπ ω τ= − + − + , (4.105) 

The necessary conditions for having a finite local optimal advertising and pricing 

strategy for Tactic III.1.a are shown in Proposition 4.2.59. Moreover, Proposition 

4.2.59 shows the explicit formula of the optimal advertising and pricing strategies and 

the associated company’s profit for Tactic III.1.a. Furthermore, *
.1.III ae , *

.1.III aλ  and 

*
.1.III ap  are increasing in T . In words, for Tactic III.1.a, a bigger T induces a higher 

total advertising effort assigned by the company, a bigger proportion of advertising 

effort is allocated to LG, and a higher retail price of the product. On the other hand, 
*

.1.III ae  is increasing in τ , *
.1.III aλ  is decreasing in τ , and *

.1.III ap  is independent of 

τ . In words, for Tactic III.1.a, a bigger τ  induces a higher total advertising efforts 
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assigned by the company and a smaller proportion of advertising effort is allocated to 

LG. 

 Tactic III.1.b: 

Specific conditions: ( ) 0LD ω > , aβ α≤ , e T τ> + , * 1 / eλ τ= −  and *( ) 0FV ω < : 

By putting * 1 / eλ τ= −  into (4.102), we obtain 
2 2( ) ( )( ) ( )LL Lx gc ae a p c g p c heπ ω τ= − + − − − − − .  (4.106) 

Proposition 4.2.60 For Tactic III.1.b, the local optimal advertising effort as a 

function of retail price p is given by 
*

.1. ( ) ( ) / (2 )III be p a p c h= − . (4.107) 

Moreover, *
.1. ( )III be p  is strictly increasing in p. 

Proposition 4.2.60 asserts that, for Tactic III.1.b, a higher retail price induces a 

higher local optimal advertising effort. 

Proposition 4.2.61 For Tactic III.1.b, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤ , *
.1.( ) 0F III bV ω <  and *

.1.( ) 0L III bD ω > ; (ii) 24hg a> ; 

(iii) 2(4 ) 4Lx gc T hg a hgτ− ≥ − + ; and (iv) Lx gc aτ− > . Moreover, if the local optimal 

advertising and pricing strategy for Tactic III.1.b exists, it is unique and *
LLω  is given 

by 

{ }* * * *
.1. .1. .1. .1., ,III b III b III b III be pω λ= , and (4.108) 

* 2 2
.1.( ) ( ) / (4 )LL III b Lh x gc a hg aπ ω τ= − − − , (4.109) 

where * 2
.1. ( ) / (4 )III b Le a x gc a hg aτ= − − − , *

.1.
( ) 4

( )
L

III b
L

a x gc hg
a x gc a

τλ
τ

− −
=

− −
, and  

* 2
.1. 2 ( ) / (4 )III b Lp c h x gc a hg aτ= + − − − . 

The necessary conditions for having a finite local optimal advertising and pricing 

strategy for Tactic III.1.b are shown in Proposition 4.2.61. Specifically, conditions in 

item (ii) of Proposition 4.2.61 ensure that concavity of ( )LLπ ω . Items (iii) and (iv) of 

Proposition 4.2.61 ensure that constraints of *
.1.III be T τ≥ +  and *

.1.III bp c≥ are satisified, 

respectively. Moreover, Proposition 4.2.61 shows the explicit formula of the local 

optimal advertising and pricing strategies, and the associated company’s profit for 

Tactic III.1.b. Furthermore, for Tactic III.1.b, *
.1.III be , *

.1.III bλ  and *
.1.III bp  are 

decreasing in τ , namely, a bigger τ  induces a lower total advertising efforts 
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assigned by the company, a lower proportion of advertising effort is allocated to LG, 

and a lower retail price of the product. On the other hand, *
.1.III be , *

.1.III bλ  and *
.1.III bp  

are independent of T. 

 Tactic III.1.c: 

Specific conditions: ( ) 0LD ω > , aβ α≥ , *e T τ= + , * / ( )T Tλ τ= +  and 

*( ) 0FV ω = . 

Proposition 4.2.62 For Tactic III.1.c, the local optimal advertising and pricing 

strategy exists only if aβ α≥  and *
.1.( ) 0L III cD ω > . Moreover, if the local optimal 

advertising and pricing strategy for Tactic III.1.c exists, then it is unique and is given 

by 

* * * *
.1. .1. .1. .1., / ( ), F L

III c III c III c III c
x x a Te T T T p

g
β ατ βω τ λ τ
γ β

⎧ ⎫+ + +
= = + = + =⎨ ⎬+⎩ ⎭

, and (4.110) 

* * * 2
.1. .1. .1.( ) ( )( ) ( )LL III c L III c III cx gp aT p c h Tπ ω τ= − + − − +  (4.111) 

The necessary conditions for having a finite local optimal advertising and pricing 

strategy for Tactic III.1.c are shown in Proposition 4.2.62. Moreover, Proposition 

4.2.61 shows the explicit formula of the local optimal advertising and pricing 

strategies, and the associated company’s profit for Tactic III.1.c. Furthermore, from 

Proposition 4.2.62, we find that *
.1.III ce  is increasing in T and τ , *

.1.III cλ  is increasing 

in T but decreasing in τ , and *
.1.III cp  is increasing in T but independent of τ . In 

words, for Tactic III.1.c, a bigger T induces a higher local optimal advertising effort, a 

higher proportion of advertising effort to be allocated to LG, and a higher local 

optimal retail price of the product. On the other hand, for Tactic III.1.c, a bigger τ  

induces a higher total advertising effort, and a higher proportion of advertising effort 

to be allocated to FG. 

 Tactic III.1.d 

Specific conditions: ( ) 0LD ω > , aβ α≥ , e T τ> + , * 1 / eλ τ= −  and *( ) 0FV ω = . 

Proposition 4.2.63 For Tactic III.1.d, the local optimal advertising effort as a 

function of retail price p is given by 
*

.1. ( ) [( ) ( ) ] / ( )III d L Fe p a x x g p aβ α τ β γ β β= − − − + + . (4.112) 

Moreover, *
.1. ( )III de p  is strictly increasing in p. 
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Proposition 4.2.63 shows that, for Tactic III.1.d, a higher retail price of the 

product induces a higher local optimal of advertising effort. 

Proposition 4.2.64 For Tactic III.1.d, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥  and *
.1.( ) 0L III dD ω > ; (ii) 2 2( )h g aγ β βγ+ > ;  

(iii) 2 22 ( ) ( )( ) 2( )[ ( ) ]L Fa x gc a a g x c T h g aβγ τ γ β γ ατ τ γ β βγ− − − + − + > + + − ; 

(iv) 22 ( )( ) [ 2 ( )]( )L Fh g x gc a a h g x cβ γ β τ β γ β γ ατ+ − − > − + − + . Moreover, if the 

optimal advertising and pricing strategy for Tactic III.1.d exists, then it is unique and 

is given by 

{ }* * * *
.1. .1. .1. .1., , ,III d III d III d III de pω λ=  and (4.113) 

* * * * 2
.1. .1. .1. .1.( ) ( )( ) ( )LL III d L III d III d III dx gp ae a p c h eπ ω τ= − + − − − , (4.114) 

where *
.1. 2 2

2 ( ) ( )( )
2[ ( ) ]

L F
III d

a x gc a a g x ce
h g a

βγ τ γ β γ ατ
γ β βγ

− − − + − +
=

+ −
, * *

.1. .1.1 /III d III deλ τ= − , and 

2
*

.1. 2 2

2 ( )( ) [ 2 ( )]( )
2[ ( ) ]

L F
III d

h g x gc a a h g x cp c
h g a

β γ β τ β γ β γ ατ
γ β βγ

+ − − − − + − +
= +

+ −
. 

The necessary conditions for having a finite local optimal advertising and pricing 

strategy for Tactic III.1.d are shown in Proposition 4.2.64. Moreover, Proposition 

4.2.64 shows the explicit formula of the optimal advertising and pricing strategies and 

the associated company’s profit for Tactic III.1.d. Specifically, conditions in item (i) 

of Proposition 4.2.64 are the specific conditions for Tactic III.1.d. Item (ii) of 

Proposition 4.2.64 ensures that, for Tactic III.1.d, ( )LLπ ω  is strictly concave in p. 

Items (iii) and (iv) of Proposition 4.2.64 ensure that *
.1.III de T τ> +  and *

.1.III dp c> , 

respectively, which are also specific conditions for Tactic III.1.d. 

Tactic III.2  

Basic conditions: ( ) 0LD ω > , ( ) 0FD ω = , e Tλ ≥ , (1 )eλ τ− <  and e T≥ . 

The profit of the company for Tactic III.2 is 
2( ) ( )( ) [ (1 ) ]LL Fx a e gp p c he eπ ω λ μ τ λ= + − − − − − − . (4.115) 

Proposition 4.2.65 Suppose that *ω  belongs to Tactic III.2: (a) If * /p a cμ> + , then 

* 1λ = . If * /p a cμ= + , then there are multiple *λ . If * /p a cμ< + , then 

* */T eλ = .  

 Proposition 4.2.65 shows that, for Tactic III.2, the local optimal allocations of the 
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advertising effort are different for different cases.  

Proposition 4.2.66 Suppose that *ω  belongs to Tactic III.2, (a) *( ) 0FV ω <   if 

*[ ( ) ]( ) 0a p c aμ β α− − − < ; *( ) 0FV ω =  if *[ ( ) ]( ) 0a p c aμ β α− − − > . 

Proposition 4.2.66 shows the rules for company to determine the value of 
*( )FV ω  for Tactic III.2. According Proposition 4.2.65 and Proposition 4.2.66, we 

further consider nine sub-tactics for Tactic III.2, which cover all possible cases of 

Tactic III.2. 

(Tactic III.2.a) aβ α≤ , /p a cμ> + , *e T= , * 1λ =  and ( ) 0FV ω < ;  

(Tactic III.2.b) aβ α≤ , /p a cμ> + , e T> , * 1λ =  and ( ) 0FV ω < ; 

(Tactic III.2.c) aβ α≤ , /p a cμ< + , *e T= , * 1λ =  and ( ) 0FV ω = ; 

(Tactic III.2.d) aβ α≤ , /p a cμ< + , e T> , * /T eλ =  and ( ) 0FV ω = . 

(Tactic III.2.e) aβ α≥ , /p a cμ> + , *e T= , * 1λ =  and ( ) 0FV ω = ; 

(Tactic III.2.f) aβ α≥ , /p a cμ> + , e T> , * 1λ =  and ( ) 0FV ω = ; 

(Tactic III.2.g) aβ α≥ , /p a cμ< + , *e T= , * 1λ =  and ( ) 0FV ω < ; 

(Tactic III.2.h) aβ α≥ , /p a cμ< + , e T> , * /T eλ =  and ( ) 0FV ω < ; and 

(Tactic III.2.k) * /p a cμ= + , * 1λ = , *e T≥ , ( ) 0FV ω ≤ . 

Notice that, for *[ ( ) ]( ) 0a p c aμ β α− − − = , we either have aβ α=  or * /p a cμ= + . 

For aβ α= , the value of *( )FV ω  is still undetermined. Therefore, we study both 

cases of  *( ) 0FV ω =  and *( ) 0FV ω <  for aβ α=  in the paper. For * /p a cμ= + , 

by Proposition 4.2.65, there are multiple *λ  for Tactic III.2. For simplicity, we only 

consider *λ  in Tactic III.2.k. Similar results can be obtained if we consider other 

values of *λ  for Tactic III.2.k.  

Similarly, we need to consider the basic conditions for Tactic III.2 which are not 

covered by the specific conditions for each sub-tactic. Denoted by *
.2.III iω , for i=a, b, c, 

d, e, f, g, h, k, the local optimal advertising and price strategy for Tactic III.2.i. Next, 

we explore the local optimal advertising and pricing strategies for each sub-tactic of 

Tactic III.2. 

 Tactic III.2.a 

Specific conditions: ( ) 0LD ω > , aβ α≤ , * /p a cμ≥ + , *e T= , * 1λ =  and 
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( ) 0FV ω < : 

Proposition 4.2.67 For Tactic III.2.a, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤ , *
.2.( ) 0F III aV ω <  and *

.2.( ) 0L III aD ω > ; and 

(ii) 2 /Lx gc g a aTμ− > − . Moreover, if the local optimal advertising and pricing 

strategy for Tactic III.2.a exists, then it is unique and is given by 

{ }* * * *
.2. .2. .2. .2., 1, ( ) / (2 )III a III a III a III a Le T p x gc aT gω λ= = = = + + , and (4.116) 

* 2
.2.( ) ( ) / (4 )LL III a Lx gc aT g hTπ ω μτ= − + − −  (4.117) 

The necessary conditions for having a finite local optimal advertising and pricing 

strategy for Tactic III.2.a are shown in Proposition 4.2.67. Moreover, Proposition 

4.2.67 shows the explicit formula of the optimal advertising and pricing strategies and 

the associated company’s profit for Tactic III.2.a. Specifically, conditions in item (i) of 

Proposition 4.2.67 are the specific conditions for Tactic III.2.a. Item (ii) of Proposition 

4.2.67 ensures that *
.2. /III ap a cμ> +  which is the specific condition for Tactic III.2.a. 

Furthermore, from Proposition 4.2.67, we find that a bigger T induces a higher total 

advertising effort assigned by the company and a higher retail price of the product. On 

the other hand, *
.2.III ae  and *

.2.III ap  are independent of τ , and *
.2.III aλ  is independent 

of T and τ . 

 Tactic III.2.b  

Specific conditions: ( ) 0LD ω > , aβ α≤ , /p a cμ> + , e T> , * 1λ =  and 

( ) 0FV ω < . 

By putting * 1λ =  into (4.115), we obtain 
2( ) ( )( )LL Fx ae gp p c heπ ω μτ= + − − − − . (4.118) 

Proposition 4.2.68 For Tactic III.2.b, the local optimal advertising effort as a 

function of retail price p is given by 
*

.3. ( ) ( ) / (2 )II be p a p c h= − . (4.119) 

As a > 0, *
.3. ( )II be p  is increasing in p, namely, a higher retail price of the product 

induces a higher advertising effort for Tactic III.2.b. 

Proposition 4.2.69 For Tactic III.2.b, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤ , *
.2.( ) 0F III bV ω <  and *

.2.( ) 0L III bD ω > ; (ii) 24hg a> ; 

(iii) 2(4 ) /Lx gc T hg a a− > − ; and (iv) 2(4 ) / (2 )Lx gc hg a ahμ− > − . Moreover, if the 
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local optimal advertising and pricing strategy for Tactic III.2.b exists, then it is and is 

given by 

{ }* * * *
.2. .2. .2. .2., ,III b III b III b III be pω λ= , and (4.120) 

* 2 2
.2.( ) ( ) / (4 )LL III b Lh x gc hg aπ ω μτ= − − − , (4.121) 

where * 2
.2. ( ) / (4 )III b Le a x gc hg a= − − , *

.2. 1III bλ = , and 

* 2
.2. 2 ( ) / (4 )III b Lp c h x gc hg a= + − − . 

The necessary conditions for having a finite *
.2.III bω  are shown in Proposition 

4.2.69.  

Tactic III.2.c  

Specific conditions: ( ) 0LD ω > , aβ α≤ , /p a cμ< + , *e T= , * 1λ =  and 

( ) 0FV ω = . 

Proposition 4.2.70 For Tactic III.2.c, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤  and *
.2.( ) 0L III cD ω > ; and  

(ii) ( ) ( ) /F Lx c x gc g a a Tγ β μ γ β β− + − < + − . Moreover, if the local optimal 

advertising and pricing strategy for Tactic III.2.c exists, then it is unique and is given 

by 

* * * *
.2. .2. .2. .2., 1, F L

III c III c III c III c
x x a Te T p

g
β βω λ
γ β

⎧ ⎫+ +
= = = =⎨ ⎬+⎩ ⎭

, and (4.122) 

* * * 2
.2. .2. .2.( ) ( )( )LL III c L III c III cx gp aT p c hTπ ω μτ= − + − − − . (4.123) 

Proposition 4.2.70 shows the explicit formula of the local optimal advertising 

and pricing strategy (if it is finite), and the associated company’s profit Tactic III.2.c. 

Moreover, the necessary conditions for having a finite *
.2.III cω  are shown in 

Proposition 4.2.70.  

 Tactic III.2.d  

Specific conditions: ( ) 0LD ω > , aβ α≤ , /p a cμ< + , e T> , * /T eλ =  and 

( ) 0FV ω = . 

By putting * /T eλ =  into (4.115) we obtain 
2( ) ( )( ) ( )LL Fx aT gp p c he T eπ ω μ τ= + − − − − + − .  (4.124) 

Moreover, as * *(1 )eλ τ− <  and * *e Tλ =  for Tactic III.2.d, we have the condition 
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*T e T τ< < +  for Tactic III.2.d. 

Proposition 4.2.71 For Tactic III.2.d, then the local optimal advertising efforts in the 

function of retail price p is given by 
*

.2. ( ) [( ) ( ) ] /III d L Fe p a T x x g pα β β γ β α= − − − + + . (4.125) 

Proposition 4.2.71 shows the relationship of optimal e and optimal p for Tactic 

III.2.d. As 0gγ β+ >  and 0a > , the *
.2. ( )III de p  is increasing in p, namely, a higher 

advertising effort is induced by a higher retail price of the product for Tactic III.2.d. 

Proposition 4.2.72 For Tactic III.2.d, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤  and *
.2.( ) 0L III dD ω > ; (ii) *

.2.III dT e T τ< < + ; and (iii) 

*
.2. /III dp a cμ> + . Moreover, if the local optimal advertising and pricing strategy for 

Tactic III.2.d exists, then it is unique and is given by 

{ }* * * *
.2. .2. .2. .2., ,III d III d III d III de pω λ= , and (4.126) 

* * * 2 *
.2. .2. .2. .2.( ) ( )( ) ( )LL III d F III d III d III dx aT gp p c he T eπ ω μ τ= + − − − − + − , (4.127) 

where 
2

*
.2. 2 2

( )( ) ( ) 2 ( )
2[ ( ) ]

L F
III d

g x gc aT g g x c Te
h g g

α γ β μ γ β α γ α
γ β α

− − + + + − − −
=

+ +
, 

* *
.2. .2./III d III dT eλ = , and 

2
*

.2. 2 2

[ 2 ( )]( ) 2 ( )( ) ( )
2[ ( ) ]

L F
III d

h g x gc aT h g x c T gp c
h g g

α β γ β γ β γ α αμ γ β
γ β α

+ + − + + + − − + +
= +

+ +
.  

Proposition 4.2.72 provides the explicit formula of the local optimal advertising 

and pricing strategy for Tactic III.2.d, and an associated company’s profit. Moreover, 

the necessary conditions for having a finite local optimum for Tactic III.2.d are shown 

in Proposition 4.2.72. 

 Tactic III.2.e 

Specific conditions: ( ) 0LD ω > , aβ α≥ , /p a cμ> + , *e T= , * 1λ =  and 

( ) 0FV ω = . 

Proposition 4.2.73 For Tactic III.2.e, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥  and *
.2.( ) 0L III eD ω > ; and 

(ii) ( ) ( ) /F Lx c x gc g a a Tγ β μ γ β β− + − > + − . Moreover, if the optimal advertising 

and pricing strategy for Tactic III.2.e, then it is unique and is given by 
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* * * *
.2. .2. .2. .2., 1, F L

III e III e III e III e
x x a Te T p

g
β βω λ
γ β

⎧ ⎫+ +
= = = =⎨ ⎬+⎩ ⎭

, and (4.128) 

* * * 2
.2. .2. .2.( ) ( )( )LL III e L III e III ex gp aT p c hTπ ω μτ= − + − − −  (4.129) 

Proposition 4.2.71 provides the explicit formula of the local optimal solution of 

for Tactic III.2.e (if it exists), and the associated company’s profit. Moreover, the 

necessary conditions for having a finite *
.2.III eω  are shown in Proposition 4.2.73. 

Specifically, conditions in item (i) of Proposition 4.2.73 are the specific conditions for 

Tactic III.2.e. Item (ii) of Proposition 4.2.73 ensures that *
.2. /III ep a cμ≥ + , which is 

also the specific condition for Tactic III.2.e. Furthermore, from Proposition 4.2.73, we 

observe that *
.2.III ee  and *

.2.III ep  are increasing in T but independent of τ , and *
.2.III eλ  

is independent of T and τ . In words, for Tactic III.2.e, a bigger T induces a higher 

total advertising effort and a higher retail price of the product. 

 By noting that, *
.2.III eω  = *

.2.III cω  and hence * *
.2. .2.( ) ( )LL III e LL III cπ ω π ω= . In words 

the optimal advertising and pricing strategies for Tactic III.2.e and Tactic III.2.c, the 

associated company’s profits, are the same. However, according to Proposition 4.2.69 

and Proposition 4.2.73, Tactic III.2.e and Tactic III.2.c have different necessary 

conditions for the existence of the local optimum. 

 Tactic III.2.f. 

Specific conditions: ( ) 0LD ω > , aβ α≥ , /p a cμ> + , e T> , * 1λ =  and 

( ) 0FV ω = . 

By putting * 1λ =  into (4.115), we obtain 
2( ) ( )( )LL Fx ae gp p c heπ ω μτ= + − − − − .  (4.130) 

Proposition 4.2.74 For Tactic III.2.f, the local optimal advertising effort as a function 

of retail price p is given by 
*

.2. ( ) [( ) ] / ( )III f L Fe p g p x x aγ β β β= + − − . (4.131) 

Proposition 4.2.74 shows the relationship of optimal e and optimal p for Tactic 

III.2.f. As 0gγ β+ >  and 0aβ > , *
.2. ( )III fe p  is increasing in p, namely, a higher 

advertising effort is induced by a higher retail price of the product for Tactic III.2.f. 

Proposition 4.2.75 For Tactic III.2.f, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥  and *
.2.( ) 0L III fD ω > ; (ii) 2( )h g aγ β β+ > ;  
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(ii) 2( ) 2 [ ( )] /F Lx c x gc T a h g aγ β β γ β− + − > − + ;  

(iii) 
2

2

[ 2 ( )]( ) 2 ( )( )

2 ( )[ ( )] / .
F La h g x c h g x gc

g a h g a

β γ β γ β γ β

μ γ β β γ β

− + − − + −

> + − +
. 

Moreover, if the local optimal advertising and pricing strategy for Tactic III.2.f exists, 

then it is unique and is given by 

{ }* * * *
.2. .2. .2. .2., ,III f III f III f III fe pω λ= , and (4.132) 

* * * * * 2
.2. .2. .2. .2. .2.( ) ( )( ) ( )LL III f F III f III f III f III fx ae gp p c h eπ ω μτ= + − − − − , (4.133) 

where *
.2. 2

[ ( )]
2[ ( )]

F L
III f

a x c x gce
a h g
γ β
β γ β
− + −

=
− +

, *
.2. 1III fλ = , and 

2
*

.2. 2

[ 2 ( )]( ) 2 ( )( )
2( )[ ( )]

F L
III f

a h g x c h g x gcp c
g a h g

β γ β γ β γ β
γ β β γ β

− + − − + −
= +

+ − +
. 

Proposition 4.2.75 provides the formula of the local optimal advertising and 

pricing strategy for Tactic III.2.f (if it exists), and the associated company’s profit. 

Moreover, the necessary conditions for a finite *
.2.III f Tω >  are shown in Proposition 

4.2.75. Specifically, conditions in item (i) of Proposition 4.2.75 are the specific 

conditions for Tactic III.2.f. Condition in item (ii) of Proposition 4.2.75 ensures that 

the profit function of the company for Tactic III.2.f is concave in p. Conditions in 

items (iii) and (iv) of Proposition 4.2.75 ensure that *
.2.III fe T>  and *

.2. /III fp a cμ> + , 

respectively, which are also the specific conditions for Tactic III.2.f. 

 Tactic III.2.g  

Specific conditions: ( ) 0LD ω > , aβ α≥ , /p a cμ< + , *e T= , * 1λ =  and 

( ) 0FV ω < . 

Proposition 4.2.76 For Tactic III.2.g, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥ , *
.2.( ) 0F III gV ω <  and *

.2.( ) 0L III gD ω > ; and 

(ii) 2 /Lgc aT x gc g a aTμ− < − < − . Moreover, if the local optimal advertising and 

pricing strategy for Tactic III.2.g exists, then it is unique and is given by 

{ }* * * *
.2. .2. .2. .2., 1, ( ) / (2 )III g III g III g III g Le T p x gc aT gω λ= = = = + + , and (4.134) 

* 2
.2.( ) ( ) / (4 )LL III g Lx gc aT g hTπ ω μτ= − + − −  (4.135) 

Proposition 4.2.76 provides the explicit formula of the local optimal advertising 

and pricing strategy for Tactic III.2.f (if it exists), and the associated company’s profit. 
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Moreover, the necessary conditions for a finite *
.2.III gω  are shown in Proposition 

4.2.76. Specifically, conditions in item (i) of Proposition 4.2.76 are directly obtained 

from the specific conditions for Tactic III.2.f. Item (ii) of Proposition 4.2.76 ensures 

that *
.2. /III gc p a cμ< < + , which is also the special condition for Tactic III.2.f. 

Furthermore, from Proposition 4.2.76, we find that *
.2.III ge  and *

.2.III gp  are increasing 

in T, but independent of τ . On the other hand *
.2.III gλ  is independent of T and τ . In 

other words, for Tactic III.2.g, a bigger T induces a higher local optimal advertising 

effort and a higher local optimal retail price of the product. 

Notice that *
.2.III gω  = *

.2.III aω  and hence * *
.2. .2.( ) ( )LL III g LL III aπ ω π ω= . In words the 

local optimal advertising and pricing strategies for Tactic III.2.f and Tactic III.2.a, and 

the associated company’s profits, are the same. However, according to Proposition 

4.2.76 and Proposition 4.2.67, Tactic III.2.g and Tactic III.2.a have different necessary 

conditions for the finite local optimum. 

 Tactic III.2.h 

Specific conditions: ( ) 0LD ω > , aβ α≥ , /p a cμ< + , e T> , * /T eλ =  and 

( ) 0FV ω < . 

By putting * */T eλ =  into (4.105), we obtain 
2( ) ( )( ) ( )LL Fx aT gp p c he T eπ ω μ τ= + − − − − + − . (4.136) 

Moreover, as * *(1 )eλ τ− <  and * *e Tλ =  for Tactic III.2.h, we have the condition 
*T e T τ< < +  for Tactic III.2.h. 

Proposition 4.2.77 For Tactic III.2.h, the local optimal advertising effort is given by 
*

.2. / (2 )III he hμ= . (4.137) 

Proposition 4.2.77 shows that, for Tactic III.2.h, the optimal advertising effort 

assigned by the company is independent of p. Noting that, for all the sub-tactics that 

we considered previously, the optimal advertising effort assigned by the company 

does not depend on p. Proposition 4.2.77 implies that the positive correlation between 

the optimal e and the optimal p is not always true. 

Proposition 4.2.78 For Tactic III.2.h, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥ , *
.2.( ) 0F III hV ω <  and *

.2.( ) 0L III hD ω > ; (ii) 

2 2 ( )hT h Tμ τ< < + ; and (iii) 2Lx gc g aTμ− < − . Moreover, if the local optimal 
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advertising and pricing strategy for Tactic III.2.h exists, then it is unique and is given 

by 

{ }* * * *
.2. .2. .2. .2.(2 ), 2 / , ( ) / (2 ) ,III h III h III h III h Le h hT p x gc aT gω μ λ μ= = = = + +  and (4.138) 

2 2
*

.2.
( )( ) ( )

4 4
L

LL III h
x gc aT T

g h
μπ ω μ τ− +

= + − + . (4.139) 

Proposition 4.2.78 shows the explicit formula of the local optimal advertising 

and pricing strategies for Tactic III.2.h (if it exists), and the associated company’s 

profit. Moreover, the necessary conditions for a finite *
.2.III hω  are shown in 

Proposition 4.2.78. All the necessary conditions are derived from the specific 

conditions for Tactic III.2.h. Furthermore, for Tactic III.2.h, *
.2.III he , *

.2.III hλ  and 

*
.2.III hp  are independent τ . On the other hand, *

.2.III hλ  and *
.2.III hp  are increasing in T 

but *
.2.III he  is independent of T. In other words, for Tactic III.2.h, the local optimal 

advertising effort is independent of T and τ . However, a bigger T induces a bigger 

proportion of advertising effort to be allocated to LG and a higher local optimal retail 

price of the product. 

 Tactic III.2.k  

Specific conditions: ( ) 0LD ω > , * /p a cμ= + , * 1λ = , *e T≥ , ( ) 0FV ω ≤ . 

Proposition 4.2.79 For Tactic III.2.k, the local optimal advertising and pricing 

strategy exists only if (i) *
.2.( ) 0L III kD ω > ; (ii) 2hT μ≤ ; and 

(iii) 2( ) [2 ( ) ] / (2 )F Lx c x gc h g a ahγ β μ γ β β− + − ≤ + − . Moreover, if the optimal 

advertising and pricing strategy for Tactic III.2.k exists, then it is unique and is given 

by 

{ }* * * *
.2. .2. .2. .2./ (2 ), 0, /III k III k III k III ke h p a cω μ λ μ= = = = + , and (4.140) 

2 2
*

.2. 2

( ) (4 )( )
4

F
LL III k

x gc hg a
a ha

μ μπ ω μτ− −
= − − . (4.141) 

The necessary conditions for the existence of local optimal advertising and 

pricing strategy for Tactic III.2.k are shown in Proposition 4.2.79. Moreover, 

Proposition 4.2.79 shows the explicit formula of the local optimal advertising and 

pricing strategies for Tactic III.2.k, and the associated company’s profit. 

Tactic III.3  
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Basic conditions: ( ) 0LD ω > , ( ) 0FD ω = , e Tλ < , (1 )eλ τ− ≥  and e τ≥ . 

The company’s profit for Tactic III.3 is 
2( ) ( )( ) ( )LL Lx a e gp p c he m T eπ ω λ λ= + − − − − − .  (4.142) 

Proposition 4.2.80 Suppose that the global optimal advertising and pricing strategy 

belongs to Tactic III.3, *( ) 0FV ω <  if aβ α≤ , and *( ) 0FV ω =  if aβ α≥ . Moreover, 

* 0λ =  if *e τ= , and * *1 / eλ τ= −  if *e τ> . 

 Proposition 4.2.80 shows that, for Tactic III.3, the company should set 
*( ) 0FV ω <  if aβ α≤ , and the company should set *( ) 0FV ω =  if aβ α≥ . Notice 

that both *( ) 0FV ω <  and *( ) 0FV ω =  are possible for aβ α= . According to 

Proposition 4.2.80, we further consider four sub-tactics of Tactic III.3. 

(Tactic III.3.a) aβ α≤ , *e τ= , * 0λ =  and *( ) 0FV ω < ;  

(Tactic III.3.b) aβ α≤ , *e τ> , * *1 / eλ τ= −  and *( ) 0FV ω < ; 

(Tactic III.3.c) aβ α≥ , *e τ= , * 0λ =  and *( ) 0FV ω = ; and 

(Tactic III.3.d) aβ α≥ , *e τ> , * *1 / eλ τ= −  and *( ) 0FV ω = . 

Similarly, we still need to consider the basic conditions for Tactic III.3 which are 

not covered by the specific conditions for the sub-tactics. Denoted by *
.3.III iω , for i=a, 

b, c, d, the local optimal advertising and price strategy for Tactic III.3.i. We now 

examine the local optimal advertising and pricing strategies for each sub-tactic of 

Tactic III.3. 

 Tactic III.3.a  

Specific conditions: *( ) 0LD ω > , aβ α≤ , *e τ= , * 0λ =  and *( ) 0FV ω < . 

By putting * 0λ =  and *e τ=  into (4.130), we obtain 
2( ) ( )( )LL Lx gp p c h mTπ ω τ= − − − − .  (4.143) 

Proposition 4.2.81 For Tactic III.3.a, the local optimal advertising and pricing 

strategy exists only if aβ α≤ , *
.3.( ) 0F III aV ω <  and *

.3.( ) 0L III aD ω > . Moreover, if the 

local optimal advertising and pricing strategy for Tactic III.3.a exists, then it is unique 

and is given by 

{ }* * * *
.3. .3. .3. .3., 0, ( ) / (2 ) ,III a III a III a III a Le p x gc g cω τ λ= = = = − +  and (4.144) 

* 2 2
.3.( ) ( ) / (4 )LL III a Lx gc g h mTπ ω τ= − − − , (4.145) 
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Proposition 4.2.81 shows the explicit formula of the optimal advertising and 

pricing strategies (if it exists), and the associated company’s profit for Tactic III.3.a. 

Moreover, the necessary conditions for a finite *
.3.III aω  are shown in Proposition 

4.2.81. Furthermore, *
.3.III ae  is increasing in τ  and independent of T. Moreover, 

*
.3.III aλ  and *

.3.III ap  are independent of T and τ . In words, for Tactic III.3.a., a bigger 

τ  only induces a higher local optimal advertising effort. 

 Tactic III.3.b  

Specific conditions: *( ) 0LD ω > , , *e τ> , * *1 / eλ τ= −  and *( ) 0FV ω < : 

By putting * *1 / eλ τ= −  into (4.130), we obtain 
2( ) [ ( ) ]( ) ( )LL Lx a e gp p c he m T eπ ω τ τ= + − − − − − + − . (4.146) 

Moreover, as * *(1 )eλ τ− <  and * *e Tλ =  for Tactic III.3.b, we have the condition 
*e Tτ τ< < +  for Tactic III.3.b. 

Proposition 4.2.82 ForTacticIII.3.b, the optimal advertising effort in a function of p is 

given by 
*

.3. ( ) [ ( ) ] / (2 )III be p a p c m h= − + . (4.147) 

Moreover, *
.3. ( )III be p  is increasing in p. 

Proposition 4.2.82 shows that, for Tactic III.3.b, the local optimal advertising 

effort is increasing in p.  

Proposition 4.2.83 For Tactic III.3.b, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤ , *
.3.( ) 0F III bV ω <  and *

.3.( ) 0L III bD ω > ; (ii) 24hg a> ;  

(iii) 2(4 2 ) / [(4 ) 4 2 ] /Lhg gm a x gc hg a T hg gm aτ τ− < − < − + − ; and  

(iv) / (2 )Lx gc a am hτ− > − . Moreover, if the local optimal advertising and pricing 

strategy for Tactic III.3.b exists, then it is unique and is given by 

{ }* * * *
.3. .3. .3. .3., ,III b III b III b III be pω λ= , and (4.148) 

2 2
*

.3. 2

[2 ( ) ]( ) ( )
4 (4 ) 4
L

LL III b
h x gc a am m m T

h hg a h
τπ ω τ− − +

= + − +
−

, (4.149) 

where *
.3. 2

2 ( )
4

L
III b

gm a x gc ae
hg a

τ+ − −
=

−
, * *

.3. .3.1 /III b III beλ τ= − , and 

*
.3. 2

2 ( )
4

L
III b

h x gc a amp c
hg a

τ− − +
= +

−
. 
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Proposition 4.2.83 shows the explicit formula of the optimal advertising and 

pricing strategies (if it exists), and the associated company’s profit for Tactic III.3.b. 

Moreover, the corresponding necessary conditions for *
.3.III bω  being global optimal 

are shown in Proposition 4.2.83. In particular, item (ii) of Proposition 4.2.83 ensures 

that the profit function is strictly concave in p and hence *
.3.III bω  is unique. For other 

conditions, they are all directly derived from the specific conditions of Tactic III.3.b. 

Furthermore, for Tactic III.3.b, *
.3.III be , *

.3.III bλ  and *
.3.III bp  are decreasing in τ  and 

independent of T. In words, for Tactic III.3.b, a bigger τ  induces a bigger optimal 

advertising effort, a higher proportion of advertising effort which is allocated to LG, 

and a higher retailer price of the product. 

 Tactic III.3.c  

Specific conditions: *( ) 0LD ω > , aβ α≥ , *e τ= , * 0λ =  and *( ) 0FV ω = : 

Proposition 4.2.84 For Tactic III.3.c, the local optimal advertising and pricing 

strategy exists only if aβ α≥  and *
.3.( ) 0L III cD ω > . If the local optimal advertising 

and pricing strategy for Tactic III.3.c exists, then it is unique and is given by 

* * * *
.3. .3. .3. .3., 0, F L

III c III c III c III c
x xe p

g
β ατω τ λ

γ β
⎧ ⎫+ +

= = = =⎨ ⎬+⎩ ⎭
, and (4.150) 

* * * 2
.3. .3. .3.( ) ( )( )LL III c L III c III cx gp p c h mTπ ω τ= − − − −  (4.151) 

Proposition 4.2.84 shows the explicit formula of the local optimal advertising 

and pricing strategy for Tactic II.3.c (if it exists), and the associated company’s profit. 

Moreover, the necessary conditions for having a finite *
.3.III cω  are shown in 

Proposition 4.2.84. Moreover, from Proposition 4.2.84, we find that *
.3.III ce  and 

*
.3.III cp  are increasing in τ  but independent of T, and *

.3.III cλ  is independent of T and 

τ . In words, for Tactic III.3.c, a bigger τ  induces a higher local optimal advertising 

efforts and a higher local optimal retail price of the product. 

 Tactic III.3.d  

Specific conditions: *( ) 0LD ω > , aβ α≥  and *e τ> , then * *1 / eλ τ= −  and 

*( ) 0FV ω = : 

By putting 1 / eλ τ= −  into (4.142), we obtain 
2( ) [ ( ) ]( ) ( )LL Lx a e gp p c he m T eπ ω τ τ= + − − − − − + − .  (4.152) 
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Proposition 4.2.85 For Tactic III.3.d, the local optimal advertising effort as a 

function of retail price p is given by 
*

.3. ( ) [( ) ( ) ] / ( )III d L Fe p g p x x a aγ β β β α τ β= + − − + − . (4.153) 

Proposition 4.2.85 shows the relationship of optimal e and optimal p for Tactic 

III.3.d. As 0gγ β+ >  and 0aβ > , *
.3. ( )III de p  is increasing in p, namely, for Tactic 

III.3.d, a higher local optimal advertising effort is induced by a higher local optimal 

retail price of the product. 

Proposition 4.2.86 For Tactic III.3.d, the local optimal advertising and pricing 

strategy exists only if (i) 0aβ >  and *
.3.( ) 0L III dD ω > ; (ii) 2 2( )h g aγ β βγ+ > ; (iii) 

*
.3.III de Tτ τ< < + ; and (iv) *

.3.III dp c> . Moreover, if the local optimal advertising and 

pricing strategy for Tactic III.3.d exists, then it is unique and is given by 

{ }* * * *
.3. .3. .3. .3., ,III d III d III d III de pω λ= , and (4.154) 

* * * * * 2 *
.3. .3. .3. .3. .3. .3.( ) [ ( ) ]( ) ( ) ( )LL III d F III d III d III d III d III dx a e gp p c h e m T eπ ω τ τ= + − − − − − + − ,

 (4.155) 

where *
.3. 2 2

( )( ) ( ) ( )
2[ ( ) ]

F L
III d

a g x c a x gc a m ge
h g a

γ β γ ατ γ τ γ β
γ β βγ

− − + + − − + +
=

+ −
, 

* *
.3. .3.1 /III d III deλ τ= − , and 

2
*

.3. 2 2

[2 ( ) ]( ) 2 ( )( )
2[ ( ) ]

F L
III d

h g a x c h g x gc ap c
h g a

γ β β γ ατ β γ β τ
γ β βγ

+ − − + + + − −
= +

+ −
. 

Proposition 4.2.86 provides the explicit formula of the local optimal advertising 

and pricing strategy for Tactic III.3.d (if it exists), and the associated company’s profit. 

Moreover, the necessary conditions for a finite local optimum for Tactic III.3.d are 

shown in Proposition 4.2.86. In particular, item (ii) of Proposition 4.2.86 ensures that 

the profit functions is strictly concave in p and hence *
.3.III dω  is unique. For other 

conditions, they are all directly derived from the specific conditions of Tactic III.3.d. 

 

Tactic III.4: 

Basic conditions: ( ) 0LD ω > , ( ) 0FD ω >  e Tλ < , (1 )eλ τ− <  and 0 e T τ≤ < + . 

The company’s profit for Tactic III.4 is 
2( ) ( )( ) [ (1 ) ] ( )LL Lx a e gp p c he e m T eπ ω λ μ τ λ λ= + − − − − − − − − . (4.156) 

Proposition 4.2.87 Suppose that *ω  belongs to Tactic III.4, (a) * 1λ =  and 
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*0 e T≤ <  if * ( ) /p m a cμ> − +  and *0 e T≤ < , (b) * 0λ =  and *0 e τ≤ <  if 

* ( ) /p m a cμ< − + ; and (c) there exist multiple *λ  and *0 e T τ≤ < +  if 

* ( ) /p m a cμ= − + . 

 Proposition 4.2.87 shows that if *ω  belongs to Tactic III.4. In particular, if the 

local optimal retail price is higher than the threshold ( ) /m a cμ − +  then * 1λ =  and 
*0 e T≤ < . while * 0λ =  and *0 e τ≤ <  if the local optimal retail price is less than 

the threshold ( ) /m a cμ − + . Next, we have the following result for the value of 

*( )FV ω  if *ω  belongs to Tactic III.4. 

Proposition 4.2.88 Suppose that *ω  belongs to Tactic III.4, (a) if *( ) 0FV ω < , then 

*[ ( ) ]( ) 0a p c m aμ β α− − + − ≤ , (b) if *( ) 0FV ω =  then *[ ( ) ]( ) 0a p c m aμ β α− − + − ≥ .

 According to Proposition 4.2.87 and Proposition 4.2.88, we consider nine 

sub-tactics for Tactic III.4: 

(Tactic III.4.a) aβ α≤ , * ( ) /p m a cμ> − + , * 0e =  and *( ) 0FV ω < ;  

(Tactic III.4.b) aβ α≤ , * ( ) /p m a cμ> − + , *0 e T< < , * 1λ =  and *( ) 0FV ω < ; 

(Tactic III.4.c) aβ α≤ , * ( ) /p m a cμ< − + , * 0e = , * 0λ =  and *( ) 0FV ω = ; 

(Tactic III.4.d) aβ α≤ , * ( ) /p m a cμ< − + , *0 e τ< < , * 0λ =  and *( ) 0FV ω = . 

(Tactic III.4.e) aβ α≥ , * ( ) /p m a cμ> − + , * 0e = , * 1λ =  and *( ) 0FV ω = ; 

(Tactic III.4.f) aβ α≥ , * ( ) /p m a cμ> − + , *0 e T< < , * 1λ =  and *( ) 0FV ω = ; 

(Tactic III.4.g) aβ α≥ , * ( ) /p m a cμ< − + , * 0e = , * 0λ =  and *( ) 0FV ω < ; 

(Tactic III.4.h) aβ α≥ , * ( ) /p m a cμ< − + , *0 e τ< < , * 0λ = , and *( ) 0FV ω < ; 

(Tactic III.4.k) * ( ) /p m a cμ= − + , *0 e τ≤ <  and * 0λ = . 

Notice that, for * ( ) /p m a cμ= − + , there exists multiple *λ . For simplicity, we only 

consider the pair of * 0λ =  and *0 e τ≤ <  ( * 0λ =  and *0 e τ≤ <  satisfy e Tλ <  

and (1 )eλ τ− < ), for * ( ) /p m a cμ= − + . Similar results can be obtained if we 

consider other pairs of *λ  and *e  which satisfy the basic condition for Tactic III.4. 

Similarly, we still need to consider of the basic conditions for Tactic III.4 that are 

not covered by the specific conditions for the sub-tactics. Denoted by *
.4.III iω , for i=a, 

b, c, d, e, f, g, h and k, the local optimal advertising and price strategy for Tactic III.4.i. 
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We now study the local optimal advertising and pricing strategies for each sub-tactic 

of Tactic III.4. 

 Tactic III.4.a 

Specific conditions: *( ) 0LD ω > , aβ α≤ , * ( ) /p m a cμ> − + , * 0e =  and 

*( ) 0FV ω < . 

Proposition 4.2.89 For Tactic III.4.a, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤ , *
.4.( ) 0F III aV ω <  and *

.4.( ) 0L III aD ω > ; and (ii) 

2 ( ) /Lx gc g m aμ− > − . Moreover, If the local optimal advertising and pricing strategy 

for Tactic III.4.a exists, then it is unique and is given by 

{ }* * * *
.4. .4. .4. .4.0, 0, ( )(2g)III a III a III a III a Le p x gcω λ= = = = + , and (4.157) 

* 2
.4.( ) ( ) / (4 )LL III a Lx gc g mTπ ω μτ= − − − . (4.158) 

The local optimal advertising and pricing strategy for Tactic III.4.a (if it exists), 

and the associated company’s profit are shown in Proposition 4.2.89. Moreover, the 

necessary conditions for a finite *
.4.III aω  are shown in Proposition 4.2.89. Moreover, 

from Proposition 4.2.89, we find that *
.4.III ae , *

.4.III aλ  and *
.4.III ap  are independent of T 

and τ . In other words, for Tactic III.4.a, the values of T and τ  do not affect the 

values of the optimal advertising effort and the optimal retail price of the product. 

 Tactic III.4.b  

Specific conditions: *( ) 0LD ω > , aβ α≤ , * ( ) /p m a cμ> − + , *0 e T< < , * 1λ =  

and *( ) 0FV ω < . 

By putting * 1λ =  into (4.156), we obtain 
2( ) ( )( )LL Fx ae gp p c heπ ω μτ= + − − − − . (4.159) 

Proposition 4.2.90 For Tactic III.4.b, then the optimal advertising effort in the 

function of retail price p is given by 
*

.4. ( ) [ ( ) ] / (2 )III be p a p c m h= − + . (4.160) 

Moreover, *
.4. ( )III be p  is increasing in p. 

Proposition 4.2.90 shows that *
.4. ( )III be p  is increasing in p. 

Proposition 4.2.91 For Tactic III.4.b, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤ , *
.4.( ) 0F III bV ω <  and *

.4.( ) 0L III bD ω > ; (ii) 24hg a> ; 
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(iii) 2[ (4 ) 2 ] /Lx gc T hg a gm a− < − − ; and (iv) 

2 2[( )(4 ) ] / (2 )Lx gc m hg a a m ahμ− > − − − . 

Moreover, if the optimal advertising and pricing strategy for Tactic III.4.b exists, then 

it is unique and is given by 

{ }* * * *
.4. .4. .4. .4., ,III b III b III b III be pω λ= , and (4.161) 

2 2
*

.4. 2

[2 ( ) ]( )
4 (4 ) 4

L
LL III b

h x gc am m mT
h hg a h

π ω μτ− +
= + − −

−
, (4.162) 

where * 2
.4. [2 ( )] / (4 )III b Le gm a x gc hg a= + − − , *

.4. 1III bλ = , and  

* 2
.4. [2 ( ) ] / (4 )III b Lp h x gc am hg a c= − + − + . 

The local optimal advertising and pricing strategy (if it exists), and the associated 

company’s profit for Tactic III.4.b are shown in Proposition 4.2.91. Moreover, the 

necessary conditions for *
.4.III bω  being global optimal are provided in Proposition 

4.2.91. In particular, item (ii) of Proposition 4.2.91 ensures that the profit function of 

the company is a strictly concave function of ω  and hence there exists a unique local 

optimum for Tactic III.4.b. Other conditions in Proposition 4.2.91 are directly derived 

from the specific conditions for Tactic III.4.b. Furthermore, for Tactic III.4.b, *
.4.III be , 

*
.4.III bλ  and *

.4.III bp  are independent of T and τ . In other words, the values of T and 

τ  do not affect the values of the optimal advertising and pricing strategy for Tactic 

III.4.b. 

 Tactic III.4.c  

Specific conditions: *( ) 0LD ω > , aβ α≤ , * ( ) /p m a cμ< − + , * 0e = , * 0λ =  and 

*( ) 0FV ω = ; 

Proposition 4.2.92 For Tactic III.4.c, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤  and *
.4.( ) 0L III cD ω > ;  

(ii) ( ) ( )( ) /F Lx c x gc g m aγ β γ β μ− + − < + − . Moreover, if the local optimal 

advertising and pricing strategy for Tactic III.4.c exists, then it is unique and is given 

by 

* * * *
.4. .4. .4. .4.0, 0, F L

III c III c III c III c
x xe p

g
βω λ

γ β
⎧ ⎫+

= = =⎨ ⎬+⎩ ⎭
, and (4.163) 
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*
.4. 2

[ ( )]( )( )
( )

F L L F
LL III c

x c x gc x x g mT
g

γ β γπ ω μτ
γ β

− + − −
= − −

+
 (4.164) 

The local optimal advertising and pricing strategy (if it exists), and the associated 

company’s profit for Tactic III.4.c is shown in Proposition 4.2.91. Moreover, the 

necessary conditions for a finite *
.4.III cω  are also shown in Proposition 4.2.91. All the 

conditions are derived from the specific conditions for Tactic III.4.c. Furthermore, 

from Proposition 4.2.92, we can observe that *
.4.III ce , *

.4.III cλ  and *
.4.III cp  are 

independent of T and τ . 

 Tactic III.4.d  

Specific conditions: *( ) 0LD ω > , aβ α≤ , * ( ) /p m a cμ< − + , *0 e τ< < , * 0λ =  

and *( ) 0FV ω = . 

By putting * 0λ =  into (4.144) we obtain 
2( ) ( )( ) ( )LL Lx gp p c he e mTπ ω μ τ= − − − − − − .  (4.165) 

Proposition 4.2.93 For Tactic III.4.d, the local optimal advertising effort as a 

function of retail price p is given by 
*

.4. ( ) [( ) ] /III d L Fe p g p x xγ β β α= + − − ,  (4.166) 

and *
.4. ( )III de p  is increasing in p. 

Proposition 4.2.93 shows that, for Tactic III.4.d, a higher local optimal 

advertising effort is induced by a higher local optimal retail price of the product. 

Proposition 4.2.94 For Tactic III.4.d, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≤  and *
.4.( ) 0L III dD ω > ; (ii) *

.4.0 III de τ< < ; and 

(iii) *
.4. ( ) /III dp m a cμ< − + . Moreover, if the local optimal advertising and pricing 

strategy for Tactic III.4.d exists, then it is unique and is given by 

{ }* * * *
.4. .4. .4. .4., ,III d III d III d III de pω λ= , and (4.167) 

* * * * 2 *
.4. .4. .4. .4. .4.( ) ( )( ) ( ) ( )LL III d L III d III d III d III dx gp p c h e e mTπ ω μ τ= − − − − − − , (4.168) 

where 
2

*
.4. 2 2

( )( ) ( ) 2 ( )
2[ ( ) ]

L F
III d

g x gc g g x ce
h g g

α γ β μ γ β α γ
γ β α

− − + + − −
=

+ +
, *

.4. 0III dλ = , and 

2
*

.4. 2 2

[ 2 ( )]( ) 2 ( )( ) ( )
2[ ( ) ]

L F
III d

h g x gc h g x c gp c
h g g

α β γ β γ β γ αμ γ β
γ β α

+ + − + + − + +
= +

+ +
. 

Proposition 4.2.94 shows the explicit formula of the local optimal advertising and 
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pricing strategy for Tactic III.4.d (if it exists), and the associated company’s profit. 

Moreover, the necessary conditions for a finite and unique *
.4.III dω  are shown in 

Proposition 4.2.94. In particular, item (ii) of Proposition 4.2.94 ensures that the profit 

functions is strictly concave in p and hence *
.4.III dω  is unique. For other necessary 

conditions, they are all directly derived from the specific conditions of Tactic III.4.d. 

 Tactic III.4.e  

Specific conditions: *( ) 0LD ω > , aβ α≥ , * ( ) /p m a cμ> − + , * 0e = , * 1λ =  and 

*( ) 0FV ω = . 

Proposition 4.2.95 For Tactic III.4.e, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥  and *
.4.( ) 0L III eD ω > ; and 

(ii) ( ) ( )( ) /F Lx c x gc m g aγ β μ γ β− + − > − + . Moreover, if the local optimal 

advertising and pricing strategy for Tactic III.4.e exists, then it is unique and is given 

by 

* * * *
.4. .4. .4. .4.0, 0, F L

III e III e III e III e
x xe p

g
βω λ

γ β
⎧ ⎫+

= = = =⎨ ⎬+⎩ ⎭
, and (4.169) 

*
.4. 2

[ ( )]( )( )
( )

F L L F
LL III e

x c x gc x x g mT
g

γ β γπ ω μτ
γ β

− + − −
= − −

+
 (4.170) 

 Proposition 4.2.95 shows the explicit formula of the local optimal advertising 

and pricing strategy for Tactic III.4.e (if it exists), and the associated company’s profit. 

Moreover, the necessary conditions for a finite and unique *
.4.III eω  are shown in 

Proposition 4.2.95. All the necessary conditions are directly derived from the specific 

conditions of Tactic III.3.b. Furthermore, from Proposition 4.2.95, we find that *
.4.III ee , 

*
.4.III eλ  and *

.4.III ep  independent of T and τ . 

 Tactic III.4.f 

Specific conditions: *( ) 0LD ω > , aβ α≥ , * ( ) /p m a cμ> − + , *0 e T< < , * 1λ =  

and *( ) 0FV ω = . 

By putting * 1λ =  into (4.156), we obtain 
2( ) ( )( ) ( )LL Lx ae gp p c he m T eπ ω μτ= + − − − − − − .  (4.171) 

Proposition 4.2.96 For Tactic III.4.f, the local optimal advertising effort is given by 
*

.4. ( ) [( ) ] / ( )III f L Fe p g p x x aγ β β β= + − − , (4.172) 
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and *
.4. ( )III fe p  is strictly increasing in p. 

Proposition 4.2.96 shows that, for Tactic III.4.f, a high local optimal advertising 

effort is induced by a high local optimal retail price of the product. 

Proposition 4.2.97 For Tactic III.4.f, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥  and *
.4.( ) 0L III fD ω > ; (ii) 2 2( )h g aγ β βγ+ > ; (iii) 

*
.4.0 III fe T< < ; (iv) *

.4. ( ) /III fp m a cμ> − + . Moreover, if the local optimal advertising 

and pricing strategy for Tactic III.4.f, then it is unique and is given by 

{ }* * * *
.4. .4. .4. .4., ,III f III f III f III fe pω λ= , and (4.173) 

* * * * * 2 *
.4. .4. .4. .4. .4. .4.( ) ( )( ) ( ) ( )LL III f L III f III f III f III f III fx ae gp p c h e m T eπ ω μτ= + − − − − − − ,

 (4.174) 

where *
.4. 2 2

2 ( ) ( )[ ( ) ]
2[ ( ) ]

L F
III f

a x gc g a x c me
h g

βγ γ β γ
γ β α βγ

− − + − +
=

+ +
, *

.4. 1III fλ = , and 

2
*

.4. 2 2

( )[2 ( ) ] [2 ( ) ]( )
2[ ( ) ]

L F
III f

g h x gc am h g a x cp c
h g a

β γ β γ β β γ
γ β βγ

+ − + + + − −
= +

+ −
. 

Proposition 4.2.97 shows the explicit formula of the local optimal advertising and 

pricing strategy for Tactic III.4.f (if it exists), and the associated company’s profit. 

Moreover, the necessary conditions for a finite and unique *
.4.III fω  are shown in 

Proposition 4.2.97. In particular, item (ii) of Proposition 4.2.97 ensures that the profit 

function is strictly concave in p and hence *
.4.III fω  is unique. For other conditions, 

they are all directly derived from the specific conditions of Tactic III.4.f. Furthermore, 

from Proposition 4.2.97, we can easily find that *
.4.III fe , *

.4.III fλ  and *
.4.III fp  are 

independent of T and τ . 

 Tactic III.4.g  

Specific conditions: *( ) 0LD ω > , aβ α≥ , * ( ) /p m a cμ< − + , * 0e = , * 0λ =  and 

*( ) 0FV ω < . 

Proposition 4.2.98 For Tactic III.4.g, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥ , *
.4.( ) 0F III gV ω <  and *

.4.( ) 0L III gD ω > ; (ii) 

2 ( ) /Lx gc g m aμ− < − . Moreover, if the local optimal advertising and pricing strategy 

for Tactic III.4.g exists, then it is unique and is given by 
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{ }* * * *
.4. .4. .4. .4.0, 0, ( ) / (2 )III g III g III g III g Le p x gc gω λ= = = = + , and (4.175) 

* 2
.4.( ) ( ) / (4 )LL III g Lx gc g mTπ ω μτ= − − − . (4.176) 

The local optimal advertising and pricing strategy for Tactic III.4.g (if it exists), and 

the associated company’s profit are shown in Proposition 4.2.98. Moreover, the 

necessary conditions for a finite and unique *
.4.III gω  are also shown in Proposition 

4.2.98. All the necessary conditions are directly derived from the specific conditions 

of Tactic III.4.g.  Furthermore, for Tactic III.4.g, *
.4.III ge , *

.4.III gλ  and *
.4.III gp  are 

independent of T and τ . 

Notice that * *
.4. .4.III g III aω ω= . In other words, the local optimal advertising and 

pricing strategy for Tactic III.4.g is the same as Tactic III.4.a. However, according to 

Proposition 4.2.89 and Proposition 4.2.98, the necessary conditions for a finite *
.4.III gω  

and a finite *
.4.III aω  are different. 

 Tactic III.4.h 

Specific conditions: *( ) 0LD ω > , aβ α≥ , * ( ) /p m a cμ< − + , *0 e τ< <  * 0λ = , 

and *( ) 0FV ω < . 

By putting * 0λ =  into (4.144), we obtain 
2( ) ( )( ) ( )LL Fx gp p c e mT heπ ω μ τ= − − − − − − . (4.177) 

Proposition 4.2.99 For Tactic III.4.h, the local optimal advertising effort as a 

function of retail price p is given by 
*

.4. / (2 ) 0III he hμ= > . (4.178) 

Proposition 4.2.9 shows that the local optimal advertising effort for Tactic III.4.h 

is a positive constant. 

Proposition 4.2.100 For Tactic III.4.h, the local optimal advertising and pricing 

strategy exists only if (i) aβ α≥ , *
.4.( ) 0F III hV ω <  and *

.4.( ) 0L III hD ω > ; (ii) 2gμ τ< ; 

and 

(iii) 2 ( ) /Lx gc g m aμ− > − . Moreover, if the local optimal advertising and pricing 

strategy for Tactic III.4.h exists, then it is unique and is given by 

{ }* * * *
.4. .4. .4. .4./ (2 ), 0, ( ) / (2 )III h III h III h III h Le h p x gc gω μ λ= = = = + , and (4.179) 
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2 2
*

.4.
( )( )

4 4
L

LL III h
x gc mT

g h
μπ ω μτ−

= + − − , (4.180) 

The local optimal advertising and pricing strategy for Tactic III.4.h (if it exists), 

and the associated company’s profit are shown in Proposition 4.2.100. Moreover, the 

necessary conditions for a finite and unique *
.4.III hω  are provided in Proposition 4.2.99. 

All the necessary conditions are directly derived from the specific conditions of Tactic 

III.4.h. Furthermore, for Tactic III.4.h, *
.4.III he , *

.4.III hλ  and *
.4.III hp  are independent of 

T and τ . 

 Tactic III.4.k  

Specific conditions: *( ) 0LD ω > , *( ) 0FD ω =  * ( ) /p m a cμ= − + , *0 e τ≤ <  and 

* 0λ = . 

Proposition 4.2.101 For Tactic III.4.k, the local optimal advertising and pricing 

strategy exists only if (i ) *
.4.( ) 0L III kD ω > ; (ii) 2hτ μ> ; (iii) mμ > ; and 

(iv) ( ) ( )( ) / / (2 )F Lx c x gc g m a hγ β γ β μ αμ− + − ≤ + − − . Moreover, if the optimal 

advertising and pricing strategy for Tactic III.4.k exists, then it is unique and is given 

by 

{ }* * * *
.4. .4. .4. .4./ (2 ), 0, ( ) /III k III k III k III ke h p m a cω μ λ μ= = = = − + , and (4.181) 

2
*

.4. 2

( )[ ( ) ( )]( )
4

F
LL III k

m a x gc g m mT
a h

μ μ μπ ω μτ− − − −
= + − − . (4.182) 

The necessary conditions for the existence of local optimal advertising and 

pricing strategy for Tactic III.4.k are shown in Proposition 4.2.101. Moreover, 

Proposition 4.2.101 shows the explicit formula of the local optimal advertising and 

pricing strategies for Tactic III.4.k, and the associated company’s profit. 

This completes the derivation of all the local optimums for Tactic III. Similarly, 

we summarize the major findings for Tactic III. 

1. When there is no penalty for insufficient advertising, it is always optimal to 

allocate all the advertising effort to LG. When there is penalty for insufficient 

advertising, the optimal allocation of advertising effort could also be allocated to 

both LG and FG., and even be solely allocated to FG (for Tactic III.2.k, Tactic 

III.3.a, Tactic III.c, Tactic III.4.h and Tactic III.4.k). This shows that when there is 

penalty for insufficient advertising, it is optimal for the company to achieve a 
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balance between allocating the advertising efforts to the two groups. If the penalty 

for insufficient advertising in FG is very heavy, then it is still optimal to advertise 

to FG even the company mainly targets at the market segment of LG. 

2. Tactic III includes the largest number of sub-tactics (totally 26 sub-tactics, and 

nearly half number of sub-tactics) among Tactic I, Tactic II and Tactic III. This 

shows that although both Tactic II and Tactic III target only at one market segment, 

as the two customers groups react differently under the mutual social influences, 

the complexities of Tactic II and Tactic III are very different. When there is 

penalty for insufficient advertising, Tactic III is indeed much more complicated 

than Tactic II. 
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4.3 Numerical Analysis 
 

In this section, we carry out a numerical analysis to illustrate the steps to identify the 

local and global optimal decisions with penalties for insufficient advertising. We 

consider the same set of parameters which are considered the numerical analysis 

without penalties for insufficient advertising in the basic model (Section 3.6), i.e., 

1h = , 100LX = , 300FX = , 0.1a = , 1α = , 0.5b = , 10β = , 0.05g = , 
0.5γ = , and 200c = . In addition, for the extended model we explored in this chapter, 

we need to consider the following additional set of parameters5 which are specific for 

the penalties for insufficient advertising, 100m = , 100μ = , 50T = , 5τ = . All 

these parameters are the base parameters we set for the numerical analysis. As we 

mentioned in Section 3.6, we need to examine each local optimal solution for each 

tactic before we can determine the global optimal solution for the problem. In the 

following, we will examine the local optimal profit under each tactic. For each tactic 

(including the sub-tactic), we have the respective local optimal solution listed in Table 

4-3. As shown in Table 4-3, not all the sub-tactics satisfy all the associated necessary 

conditions for a finite local optimum. By comparing the profits under all the local 

optimal solutions which satisfy all the necessary conditions for a finite local optimum, 

we can obtain the global optimal solution (shown in bold, in Table 4-3(a)). For this 

case, the global optimal solution is achieved under Tactic I.1.b. 

 

 

 

 

 

 

 

 

                                                 
5 Notice that these parameters satisfy the model requirements and assumptions. The qualitative results 
of the analysis do not depend on the specific choice of the parameters, as shown in our analytical 
results in the previous sections. 
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Table 4-3(a) Local optimal solutions for Tactic I 

Tactic e λ  p ( )LD ω ( )FD ω ( )π ωΛ  e for LG e for FG 

Necessary 

conditions 

fulfilled?

I.1.a 55.0 0.9 917.2 23 73 65556.1 50.0 5.0 Yes 

I.1.b 66.5 0.9 925.1 23 74 65679.2 61.5 5.0 Yes 

I.1.c 29.6 1.7 909.2 25 70 0.0 50.0 -20.4 No 

I.2.a 50.0 1.0 915.6 23 72 65282.6 50.0 0.0 Yes 

I.2.b 66.6 1.0 927.1 24 73 0.0 66.6 0.0 No 

I.2.c 91.7 1.0 1200.0 33 32 56236.1 91.7 0.0 Yes 

I.2.d 80.2 0.6 925.1 21 76 0.0 50.0 30.2 No 

I.3.a 5.0 0.0 868.8 20 73 57113.0 0.0 5.0 Yes 

I.3.b 119.8 1.0 961.8 25 76 0.0 114.8 5.0 119.8 

I.3.c 28.8 0.0 890.2 19 73 0.0 0.0 28.8 No 

I.3.d -41.7 0.0 -800.0 -32 343 0.0 0.0 -41.7 No 

I.4.a 0.0 0.0 881.3 21 70 56380.2 0.0 0.0 Yes 

I.4.b 120.0 1.0 963.8 26 76 0.0 120.0 0.0 No 

I.4.c 79.4 0.0 216.1 -8 194 0.0 0.0 79.4 No 
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Table 4-3(b) Local optimal solutions for Tactic II 

Tactic e λ  p ( )LD ω ( )FD ω ( )π ωΛ  e for LG e for FG 

Necessary 

conditions 

fulfilled?

II.1.a 55.0 0.9 405.0 0 103 0.0 50.0 5.0 No 

II.1.b 150.0 0.3 500.0 0 150 0.0 50.0 100.0 No 

II.2.a 50.0 1.0 400.0 0 100 0.0 50.0 0.0 No 

II.2.b 250.0 0.2 400.0 0 300 0.0 50.0 200.0 No 

II.3.a 5.0 0.0 262.5 0 174 5834.4 0.0 5.0 Yes 

II.3.b 13.3 0.6 489.4 0 60 0.0 8.3 5.0 No 

II.3.c 5.0 0.0 405.0 0 103 0.0 0.0 5.0 No 

II.3.d 200.0 0.0 600.0 0 200 54500.0 0.0 200.0 Yes 

II.3.e 50.0 0.0 300.0 0 200 17000.0 0.0 50.0 Yes 

II.4.a 0.0 0.0 250.0 0 175 0.0 0.0 0.0 No 

II.4.b -11.1 1.0 44.4 0 278 0.0 -11.1 0.0 No 

II.4.c 50.0 0.0 200.0 0 250 0.0 0.0 50.0 No 
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Table 4-3(c) Local optimal solutions for Tactic III 

Tactic e λ  p ( )LD ω ( )FD ω ( )π ωΛ  e for LG e for FG 

Necessary 

conditions 

fulfilled?

III.1.a 55.0 0.9 1150.0 48 0 0.0 50.0 5.0 No 

III.1.b 47.1 0.9 1142.1 47 0 0.0 42.1 5.0 No 

III.1.c 55.0 0.9 1355.0 37 0 39998.8 50.0 5.0 Yes 

III.1.d 36.3 0.9 499.2 78 0 0.0 31.3 5.0 No 

III.2.a 50.0 1.0 1401.0 35 0 0.0 50.0 0.0 No 

III.2.b 47.4 1.0 1147.4 47 0 0.0 47.4 0.0 No 

III.2.c 50.0 1.0 1350.0 38 0 0.0 50.0 0.0 No 

III.2.d 40.5 1.2 1340.5 38 0 0.0 50.0 -9.5 No 

III.2.e 50.0 1.0 1350.0 38 0 40125.0 50.0 0.0 Yes 

III.2.f -61.1 1.0 2433.3 -28 0 0.0 -61.1 0.0 No 

III.2.g 50.0 1.0 950.0 58 0 0.0 50.0 0.0 No 

III.2.h 50.0 1.0 1150.0 48 0 0.0 50.0 0.0 No 

III.2.k 50.0 0.0 1200.0 40 0 0.0 0.0 50.0 No 

III.3.a 5.0 0.0 1100.0 45 0 0.0 0.0 5.0 No 

III.3.b 99.7 0.9 1194.7 50 0 0.0 94.7 5.0 No 

III.3.c 5.0 0.0 1305.0 35 0 33373.8 0.0 5.0 Yes 

III.3.d 55.0 0.9 1347.1 38 0 0.0 50.0 5.0 No 

III.4.a 0.0 0.0 1100.0 45 0 0.0 0.0 0.0 No 

III.4.b 100.0 1.0 1200.0 50 0 0.0 100.0 0.0 No 

III.4.c 0.0 0.0 1300.0 35 0 0.0 0.0 0.0 No 

III.4.d 38.1 0.0 1338.1 33 0 0.0 0.0 38.1 No 

III.4.e 0.0 0.0 1300.0 35 0 33000.0 0.0 0.0 Yes 

III.4.f -15.8 1.0 1400.0 28 0 0.0 -15.8 0.0 No 

III.4.g 0.0 0.0 1100.0 45 0 0.0 0.0 0.0 No 

III.4.h 50.0 0.0 1100.0 45 0 0.0 0.0 50.0 No 

III.4.k 50.0 0.0 200.0 90 0 0.0 0.0 50.0 No 
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Comparing the global optimums between the situations with and without 

penalties for insufficient advertising (shown in Table 3-5, and please refer to Section 

3.6 for the details of the situation without penalties for insufficient advertising), we 

observe that the global optimal advertising and pricing strategies with penalties for 

insufficient advertising has lower e and p, and the advertising efforts are allocated to 

both LG and FG instead of allocated only to LG or FG. The results suggest that the 

optimal advertising and pricing strategy can be very different between the situations 

with and without penalties for insufficient advertising, especially for the optimal value 

of λ . In particular, the case without penalty for insufficient advertising favors 

polarized decisions whereas the case with penalty naturally allows for more variety of 

optimal allocations.  

 

Table 4-4(a) Global optimum without penalties for insufficient advertising 

Tactic e  λ  p LD  FD ( )π ω  

IA 66.7 1 927.1 24 73 66042.3 

 

Table 4-4(b) Global optimum with penalties for insufficient advertising 

Tactic e λ  p ( )LD ω ( )FD ω ( )π ωΛ  e for LG e for FG 

I.1.b 66.5 0.9 925.1 23 74 65679.2 61.5 5.0 

 

In the following, we conduct a sensitivity analysis to explore how a change of the 

penalties for insufficient advertising related parameters affects the optimal decision. 
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F. Varying T  and τ  

Table 4-5 shows the optimal tactics with cases of different T  and τ . Tactic I.1.b 

(sufficient advertising on both LG and FG) is optimal when T  is low regardless of 

the value of τ . The optimal tactic switches from Tactic I.1.b to Tactic I.4.b 

(insufficient advertising to both LG and FG) when T  becomes high regardless of the 

value of τ . The result suggests that in such market situations, there is a tradeoff for 

the company between the cost of advertising and the penalties for insufficient 

advertising. To be specific, the company should try to avoid the penalties when T  is 

low. However, when T  becomes high, it is better for the company to pay some 

penalties for insufficient advertising instead of paying a high advertising cost to avoid 

the penalties. 

Table 4-5(a) Optimal tactic with changing T  and τ  

τ  \ T  Low High 

Low I.1.b I.4.b

High I.1.b I.4.b

 

Table 4-5(b) Optimal tactic (in details) with changing T  and τ  

T  τ  Tactic e λ  p ( )LD ω ( )FD ω ( )π ωΛ  e for LG e for FG

25(low) 2.5(low) I.1.b 66.6 0.96 926.1 23 73 65860.6 64.1 2.5 

25(low) 15(high) I.1.b 66.1 0.8 921.1 22 74 64956.1 51.1 15.0 

150(high) 2.5(low) I.4.b 120.0 1.0 963.8 26 76 60125.2 120.0 0.0 

150(high) 15(high) I.4.b 120.0 1.0 963.8 26 76 58875.2 120.0 0.0 
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G. Varying m  and μ  

Table 4-6 shows the optimal tactics with cases of different m  and μ . The optimal 

tactic is Tactic I.2.b (sufficient advertising to LG but insufficient to FG) when μ  is 

low. The optimal tactic switches from Tactic I.2.b to Tactic I.1.b (sufficient advertising 

to both LG and FG) when μ  becomes high. The result suggests that in such market 

situations, the decision of advertising target, LG or FG, depends on m. In particular, 

the company should try to avoid the penalties for having insufficient advertising to FG 

when μ  is low. However, when μ  becomes high, it is optimal for the company to 

avoid the penalties for insufficient advertising to LG. 

Table 4-6(a) Optimal tactic with changing m  and μ  

μ  \ m  Low High 

Low I.2.b I.2.b

High I.1.b I.1.b

 

Table 4-6(b) Optimal tactic (in details) with changing m  and μ  

m  μ  Tactic e λ  p ( )LD ω ( )FD ω ( )π ωΛ  e for LG e for FG

50(low) 50(low) I.2.b 66.6 1.0 927.1 24 73 65792.2 66.6 0.0 

50(low) 150(high) I.1.b 66.5 0.92 925.1 23 74 65679.2 61.5 5.0 

150(high) 50(low) I.2.b 66.6 1.0 927.1 24 73 65792.2 66.6 0.0 

150(high)150(high) I.1.b 66.5 0.92 925.1 23 74 65679.2 61.5 5.0 
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H. Varying T  and m for 0τ =  

Table 4-7 shows the optimal tactics with cases of different T  and m with 0τ = . 

Tactic I.1.b is optimal when T  is low regardless of the value of m. The optimal tactic 

switches from Tactic I.1.b to Tactic I.3.b when T  becomes high regardless of the 

value of m. The result suggests that in such market situations, the value of T  affects 

more than the value of m on the optimal choice of tactic. 

 

Table 4-7(a) Optimal tactic with changing m  and T  for 0τ =  

T  \ m  Low High 

Low I.1.b I.1.b

High I.3.b I.3.b

 

Table 4-7(b) Optimal tactic (in details) with changing m  and T  for 0τ =  

m  T  Tactic e λ  p ( )LD ω ( )FD ω ( )π ωΛ  e for LG e for FG

50(low) 25(low) I.1.b 66.6 1.00 927.1 24 73 66042.2 66.6 0.0 

50(low) 150(high) I.3.b 93.3 1.0 945.4 25 75 62541.7 93.3 0.0 

150(high) 25(low) I.1.b 66.6 1.00 927.1 24 73 66042.2 66.6 0.0 

150(high)150(high) I.3.b 146.7 1.0 982.1 27 77 59542.8 146.7 0.0 
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I. Varying τ  and μ  for 0T =  

Table 4-8 shows the optimal tactics with cases of different τ  and μ  with 0T = . 

Tactic I.2.b is optimal when μ  is low regardless of the value of τ . The optimal 

tactic switches from Tactic I.2.b to Tactic I.1.b when μ  becomes high regardless of 

the value of τ . The result suggests that in such market situations, the value of μ  

affects more than the value of τ  on the choice of the optimal tactic. Notice that this 

case is different from the situation when 0τ = . 

 

Table 4-8(a) Optimal tactic with changing τ  and μ  for 0T =  

τ \ μ  Low High 

Low I.2.b II.1.b

High I.2.b II.1.b

 

Table 4-8(b) Optimal tactic (in details) with changing τ  and μ  for 0T =  

μ  τ  Tactic e λ  p ( )LD ω ( )FD ω ( )π ωΛ  e for LG e for FG

50(low) 2.5(low) I.2.b 66.6 1.0 927.1 24 73 65917.2 66.6 0.0 

50(low) 15(high) I.2.b 66.6 1.0 927.1 24 73 65292.2 66.6 0.0 

150(high) 2.5(low) II.1.b 200.0 0.0 600.0 0 200 69625.0 0.0 200.0 

150(high) 15(high) II.1.b 200.0 0.0 600.0 0 200 67750.0 0.0 200.0 
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Chapter 5 Discussion 

5.1 Findings and managerial  insights 

in basic model 
We have found that the optimal strategies follow different scenarios under different 

settings. Interestingly, we have analytically shown that it can be optimal to (1) 

advertise to only one group (either follower group (FG) or leader group (LG)) while 

sell to the whole market, (2) advertise and sell to the FG only, and (3) advertise and 

sell to the LG only. The specific choice depends on the given parameters which 

include the sensitivity coefficients on price, advertising efforts, and social influences. 

In particular, the impacts brought upon by the sensitivity coefficients on social 

influences are very significant in affecting the optimal tactic choice and decisions. 

This suggests that the impacts brought upon by social influences are so significant that 

they should not be neglected in making a scientifically sound optimal decision. 

For the social influence, both mathematical and numerical analyses show that the 

values of b  and β  significantly shape the optimal strategy. We find that as b  

increases, the company shifts from selling to both segments to only one segment and 

earns less. While as β  increases, the company shifts from selling to only one 

segment to both segments and earns more only for the case when b has a small value. 

These findings show the interesting asymmetry of the social influences of the two 

groups of consumers which call for careful considerations when the luxury brands 

make their optimal tactic and decisions. These results also demonstrate the significant 

impacts brought upon by the sensitivities of norms (and hence the influences by social 

groups). Furthermore, the analysis of b  and β  answers a question that has long 

been discussed in international business and associated with transferring image-based 

values developed in the country of origin to foreign markets: “does a retail brand 

mean the same to a group of customers in one country as it does to customers in 

another?” Brown and Burt (1992) wrote in their conclusion to a special issue in the 

European Journal of Marketing on ``Retail Marketing: International Perspectives'' that 
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“one view of internationalisation is that based on the transfer of a retail brand, with 

its associated image for consumers, across national borders'' (p. 81). Moore et 

al.(2000) considered that the marketing of designer fashion ensures that this shared 

international understanding of brand identity and meaning is developed and preserved 

through the standardization of communications strategies, and by the exercising of 

tight controls over merchandising, distribution and pricing strategies.  

However, our analysis offers alternative answer here. As shown in our model, for 

a specific designer label or luxury brand product, because different social influence 

leads to varied optimal advertising and pricing strategy in different countries/societies, 

the buyer group combination could be very different, and thus the user-image might 

be very different. Otherwise, to convey the same image and sell for same type of 

consumers, the internationalized brand owner might not be able to maximize its own 

profit. Thus, our analysis gives deeper insights to the existing proposals in the 

literature. 
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5.2 Findings and managerial  insights 

in extended model 
For the extended model with linear loss functions, we find that under Tactic I: 

3. When there is no penalty for insufficient advertising, the optimal allocation of 

advertising effort is either to i) allocate all the advertising effort to LG or ii) 

allocate all the advertising effort to FG.. When there is a penalty for insufficient 

advertising, the optimal allocation of advertising effort will more likely be 

allocated to both LG and FG. This implies that when there is penalty for 

insufficient advertising, the company should take a balance between allocating the 

advertising effort between the two groups and avoid being “polarized”. 

4. The optimal advertising effort is never decreasing with the optimal retail price 

when there is no penalty for insufficient advertising. However, this can happen 

(for Tactic I.2.d with b > 1 and Tactic I.4.c with b > 1) when there is penalty for 

insufficient advertising.  

For Tactic II of the extended model, we find that, 

3. When there is no penalty for insufficient advertising, it is always optimal to 

allocate all the advertising effort to FG under Tactic II. When there is penalty for 

insufficient advertising, the optimal allocation of advertising effort could also be 

allocated to both LG and FG, and even be allocated only to LG (for Tactic II.2.a 

and Tactic II.4.b). This shows that when there is penalty for insufficient 

advertising, the company should strike a balance between allocating the 

advertising effort to LG and FG. If the penalty for insufficient advertising to LG is 

very heavy, then it is optimal to advertise to LG even when the company targets of 

the market segment of FG. 

4. For Tactic II.3.b and Tactic II.4.b, the optimal advertising effort could be 

decreasing with the optimal retail price.  
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For Tactic III of the extended model, we find that, 

3. When there is no penalty for insufficient advertising, it is always optimal to 

allocate all the advertising effort to LG. When there is penalty for insufficient 

advertising, the optimal allocation of advertising effort could also be allocated to 

both LG and FG., and even be solely allocated to FG (for Tactic III.2.k, Tactic 

III.3.a, Tactic III.3.c, Tactic III.4.h and Tactic III.4.k). This shows that when there 

is penalty for insufficient advertising, it is optimal for the company to achieve a 

balance between allocating the advertising effort to the two groups. If the penalty 

for insufficient advertising in FG is very heavy, then it is still optimal to advertise 

to FG even the company mainly targets at the market segment of LG. 

4. Tactic III includes the largest number of sub-tactics (totally 26 sub-tactics, and 

nearly half number of sub-tactics) among Tactic I, Tactic II and Tactic III. This 

shows that although both Tactic II and Tactic III target only at one market segment, 

as the two customers groups react differently under the mutual social influences, 

the complexities of Tactic II and Tactic III are very different. When there is 

penalty for insufficient advertising, Tactic III is indeed much more complicated 

than Tactic II in terms of the analysis.  

 

Comparing the global optimums between the situations with and without penalties for 

insufficient advertising (shown in Table 3-5, and please refer to Section 3.6 for the 

details of the situation without penalties for insufficient advertising), we observe that 

the global optimal advertising and pricing strategies with penalties for insufficient 

advertising has lower e and p, and the advertising efforts are allocated to both LG and 

FG instead of allocated only to LG or FG.  

The results suggest that the optimal advertising and pricing strategy can be very 

different between the situations with and without penalties for insufficient advertising, 

especially for the optimal value of λ . In particular, the case without penalty for 

insufficient advertising favors polarized decisions whereas the case with penalty 

naturally allows for more variety of optimal allocations.  
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5.3 Findings and managerial  insights 

about Veblen effects 
Just as Adam Smith says that “with the greater part of rich people, the chief 

enjoyment of riches consists in the parade of riches, which in their eyes in never so 

complete as when they appear to possess those decisive marks of opulence which 

nobody can possess but themselves (c.f. Heilbroner 1986, p. 190). One potential 

sociological explanation for the upward slope in the demand curve for prestige goods 

is that consumers could use these goods to impress others of their relative wealth 

(Coleman 1990). However, Corneo and Jeanne (1997a) show that under a signaling 

framework the desire for exclusivity always leads to a downward-sloping curve. 

Interestingly, their analysis reveals that an upward-sloping demand curve can be 

observed only if the consumers are followers. Followers are consumers who prefer to 

conform with the society and derive more utility from a product if it is purchased by 

more people (Ross, Bierbrauer and Hoffman 1976, Jones 1984). Conformism is seen 

in products such as garments. Besides, in the literature, there are two other 

explanations which could explain the presence of an upward-sloping demand curve. 

The first reason is that consumers use price to infer quality, especially when it is 

difficult to determine quality by inspection (Zikmund and d’Amico 2000, p.624). The 

second reason is that certain goods (called “Giffen Goods”) are so inferior that the 

income effect is larger than the substitution effect. In reality, the likelihood of such 

goods is viewed with skepticism as the share of expenditure on a good in comparison 

to total spending is likely to be so small that income effect would be negligible (Hicks 

1946, Heiner 1974). The above mentioned results are popular findings related to the 

Veblen effect as developed in the literature. In contrast to these approaches, we also 

explore the Veblen effect while our focus is on social influences. 
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Under the model we developed in Chapter 3, we have explored the conditions for the 

Veblen effect to happen under each tactic.  

Tactic Conditions Veblen effect occurs in Feasible region of p
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+
−

)1(2
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 FG only 0 0
, ,B F B Lp p p≤ ≤  

IIA γα 22 > FG only p>c 

IIIA ga 22 > LG only p>c 

 

We now try to generate some new insights by comparing our results with those in 

Amaldoss and Jain (2002) which uses similar setting with utility model but does not 

include advertising effect. Amaldoss and Jain (2002) suggests that if the market is 

comprised of only snobs (similar to Tactic III) then the demand curve is downward 

slopping, and firm’s profits decline as snobbish behavior increases. If the market is 

comprised of only followers (similar to Tactic II), again the stable demand curve is 

downward sloping, but firm’s profits increase as the degree of conformity increases. 

They find that if the market includes both snobs and followers (similar to Tactic I), 

then it is possible for the snobs to have an upward-sloping demand curve. One could 

see that, under our model with advertising effects, Veblen effect happens if γα 22 >  

in Tactic II or ga 22 >  in Tactic III. This result is implied by the setting of 

advertising response function, and advertising cost and effort relationship. What we 

want to emphasize is that, under Tactic I, no matter which group is the advertising 



145 

 

target, there is a chance for the Veblen effect to happen in the other group. What’s 

more, in some situation, the Veblen effect only happens in the group that is not 

advertised to. Here, our explanations for the existence Veblen effect are (1) high price 

supports the advertising effort for LG and thus produces stronger social effect for FG 

to buy; or (2) high price reduces buyers in FG, and thus produces stronger social effect 

for LG to buy. 

We argue that this phenomenon manifests indirect effect of advertising through 

social influence which is an essential practice in luxury fashion brand marketing. 

Numerous investment is spent on getting the attention of a very limited number of 

“leading” people, e.g., bloggers, fashion editors, status persons, etc, while the general 

public generate the major sales. This is actually efficient and has been practiced since 

long time ago when luxury brands were born, while our model suggests that it can be 

the optimal tactic for the company, which is basically to use the social effects wisely 

and generate the maximized profit. 
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Chapter 6 Conclusion 

In many situations, the outcomes of one’s choices depend on the choices made 

by others. This strategic interdependence raises many fundamental research questions 

that are absent in individual choice literature (Cachon and Swinney 2009; Jerath et al. 

2010). Moreover, results on individual decision making may not hold in the contexts 

with strategic interactions among a group of decision makers (such as consumers). 

Motivated by the importance of social influences in affecting consumer demand 

of luxury fashion goods and based on a monopoly setting in the context of luxury 

fashion brand market, we have first developed an original analytical optimization 

model for analysis (the basic model). To be specific, we have explored the optimal 

advertising and pricing decisions for a luxury fashion brand in a market consisting of 

two groups of consumers with opposite social needs for fashion products, namely the 

leader group (LG) and the follower group (FG). There are three tactics (that determine 

the respective optimal advertising and pricing decisions) for the luxury fashion brand 

to choose from, namely: Tactic I is to sell the product to both groups; Tactic II is to 

sell the product to FG only; and Tactic III is to sell to the LG only.  

From this basic model, we have found that the optimal strategies follow different 

scenarios. Interestingly, we have analytically shown that it can be optimal to advertise 

to only one group while selling to the whole market (e.g., Tactic I is adopted by the 

brand) under certain situations. Specifically, under Tactic I, the brand should advertise 

only to LG when the advertising allocation sensitivity of the total demand, IN , is 

positive, while the brand should advertise to only FG when IN  is negative. 

Moreover, it can also be optimal for the brand to advertise and sell to FG only, or 

advertise and sell to LG only.  

To extend the model by considering the double function of advertising on (i) 

buying intention enhancement and (ii) long-term brand equity building, we develop an 

extended model in which a company will suffer a loss when the advertising effort to 

each group is not up to a certain level. This setting is supported by empirical evidence 

that advertising creates brand image, builds brand equity and prevents brand dilution. 
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For this extended model, similar to the basic model, we have developed the 

mechanism to identify the optimal tactic and decisions. 

For both models, we have analytically found that the specific choice of target 

consumer and advertising strategy  a company should adopt depend on the following 

given parameters: (i) the sensitivity coefficients on price, (ii) advertising effort, (iii) 

social influences, and (iv) loss due to insufficient advertising (Remark:  (iv) is 

related to the extended model only). In particular, the impacts brought about by the 

sensitivity coefficients on social influences are very significant in affecting the 

optimal tactic choice and the corresponding optimal advertising and pricing decisions. 

This suggests that: (i) It can be optimal for a luxury company to focus on only one 

group of consumers, and (ii) the impacts brought by social influences are so 

significant that they should never be neglected.  

Besides, we have also investigated the conditions of the Veblen effect, which is 

considered as a special phenomenon in luxury brand consumption, to take place under 

the first model setting. We have found that the Veblen effect takes place in both LG 

and FG only if (1) Tactic I is adopted; (2) the advertising allocation sensitivity of the 

total demand 0IN ≥ ; and (3) the social influence from LG to FG exists, i.e., β>0. 

For other cases, the Veblen effect may only take place in either group or simply do not 

exist. 

In this thesis research, we contribute by filling the gap of literature in 

investigating simultaneously the strategic consumer behavior under the rational 

expectation framework and the strategic marketing behavior (including segmented 

advertising, non-discriminant pricing and) in luxury brand industry. We also establish 

the original analytical optimization models and derive the solution schemes in solving 

them. We believe that the results attained from our analytical findings and numerical 

analyses provide important academic and managerial insights for the management of 

luxury fashion brands as well as explanations to many real-world phenomena. Future 

research directions will be proposed and discussed in the following chapter.  
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Chapter 7 Limitations and Future 

Research 

Similar to other mathematical modeling research in economics and business studies, 

this piece of research has a few limitations. First, the model assumes that the demand 

function is known for sure and is explicitly given by the linear structure. Second, the 

quadratic advertising cost function and the linear loss penalty functions are also 

assumed to be valid in order to get more findings and insights. For all these 

assumptions, despite the fact that they are well-supported by many prior literature 

studies, it is important to notice that the corresponding analytical results do depend on 

the specific functional forms. For future research, there are two important directions: 

1) In the real world, branding decisions and consumer purchasing happen in more 

than one single period. In fact, there is ample literature studying the dynamics of 

consumer action in this setting. An obvious extension is to combine a dynamical 

version of consumer behavior with the optimization framework in this model. A 

simple two-period set-up should help to capture the leader/follow dynamics and 

help further explore the associated pricing and advertising implications. 

2) In the real world, demand is uncertain, and even the key parameters are 

unobservable. Thus, another reasonable extension is to introduce stochastic 

elements into the two-stage model. In this case, one important issue which 

deserves deep investigation would be to explore how a firm can learn in the first 

stage, and exploits the learning in the second stage. This line of thinking would 

further enrich the tactical space the firm considers, from an optimization paradigm 

to an adaptive learning one. In addition, by considering the stochastic version of 

the problem, important analysis on the associated level of risk can be conducted. 

This will be a challenging and promising direction for future research. Last but 

not least, it will be interesting to explore the optimal pricing and inventory 

decisions of the extended problem with respect to some risk related objectives 

such as VaR (Chiu et al. 2011) and CVaR. 
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Appendix 1: Proofs in Chapter 3 

Proof of Proposition 3.3.1 Let /Fy x γ= . Since 0Fx cγ− > , we have cy > . 

Therefore, there exist multiple feasible ω  with ),( ycp∈  such that 

( ) 0F FD x pω γ≥ − >  and ( ) ( )( ) 0Fp c x pπ ω γ≥ − − > . (Q.E.D.) 

 

Proof of Proposition 3.3.2 When Tactic I is adopted, ( ) 0LD ω >  and ( ) 0FD ω > , 

and  

[ (1 ) ]( )
1

IX e b N GpD
b

α λω
β

+ − + −
=

+
. Consider the first-order partial derivative of 

( )D ω  with respect to λ , we obtain ( )
1

IeND
b

ω
λ β

∂
=

∂ +
. Observe that ( )D ω

λ
∂
∂

 is 

independent of p. For any given e > 0, ( )D ω  is strictly increasing in λ  if 0IN > , 

is strictly decreasing in λ  if 0IN <  and remains unchanged if 0IN = . Therefore, 

for any given p > c and e > 0, * 1λ =  if 0IN > , * 0λ =  if 0IN < , and any feasible 

[0,1]λ∈  is an optimal solution of problem (P1) if 0IN = .  (Q.E.D.) 

 

Proof of Proposition 3.3.3 Since ( ) / ( ) 0ae p cπ ω λ∂ ∂ = − − <  (because p c> ), 
* 0λ =  under Tactic IIA. For Tactic IIB, consider ' { ', ', ')e pω λ= , where 'ω ∈Ω , 

' 0λ > , ( ') 0LV ω =  and ( ') 0FD ω > . There always exists '' { ',0, ')e pω = , where 

''ω ∈Ω ,  ( '') 0LV ω <  and ( '') 0FD ω >  such that ( ') ( '')π ω π ω< . Therefore, 

* 0λ =  under Tactic II. (Q.E.D.) 

 

Proof of Proposition 3.3.4 Since ( ) / ( ) 0ae p cπ ω λ∂ ∂ = − > , * 0λ =  under Tactic 

IIIA. For Tactic IIIB, consider ' { ', ', ')e pω λ= , where 'ω ∈Ω ,  ' 0λ > , ( ') 0FV ω =  

and ( ') 0LD ω > . There always exists '' { '',1, ')e pω = , where ''ω ∈Ω ,  '' 'e e< , 

( '') 0FV ω <  and ( '') ( ')L LD Dω ω=  such that ( ') ( '')π ω π ω< . Therefore, * 1λ =  

under Tactic III. (Q.E.D.) 
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Proof of Proposition 3.4.1 First of all, λ  of  *
,AIω , *

,BIω  and *
,BIω , are always 

feasible, so we focus only on the feasibility of p  and e . 

Part (a): If Bbb )1(4)1( 22 βα +<−  and GcX > , then *
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Therefore, *
,AIω  is feasible if  )1(4)1( 22 ββ bGa +≤+  and GcX > . 

Part (b): If 1<b , Gbb )1(4)1( 22 βα +<−  and GcX > , then *
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Therefore, *
,BIω  and *

,BIω  are feasible if 1<b , )1(4)1( 22 ββ bGa +≤+  and 

GcX > . (Q.E.D.) 

 

Proof of Proposition 3.4.2 The first- and second-order partial derivatives of )( ,LIωπ  

with respect to e  are ecp
b
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, 

respectively. Therefore, for any fixed p , )( ,LIωπ  is concave in e . By considering 

,( ) / 0I L eπ ω∂ ∂ = , the unique optimal advertising effort for any fixed p  is given by 

)(
)1(2
)1()(*

, cp
b

ape AI −
+
+

=
β
β . (Q.E.D.) 

 

Proof of Proposition 3.4.3 In this proof, at the boundary means that 0)( =ωLD  

or/and ( ) 0FD ω =  for any given ω . According to Proposition 3.4.1(a), *
,AIω  is 

feasible if Conditions (iii) and (iv) of Proposition 3.4.3 hold. The first- and 

second-order derivatives of ))(( pAωπ  with respect to p are 
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))(( pAωπ  is maximized at the boundary or is maximized at ∞→p , if BcA > ; 2) 

))(( pAωπ  is strictly decreasing in p and 0))(( ≤pAωπ  for all cp >  if GcX < ; 

and 3) 0))(( =pAωπ  for all cp >  if GcX = . Therefore, *ω  satisfies 

0)( * ≤ωLD  and/or *( ) 0FD ω ≤ , if Condition (iii) of Proposition 3.4.3 does not hold. 

If Condition (iii) of Proposition 3.4.3 holds, then ))(( pAωπ  is concave in p . 
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the case considered in Proposition 3.4.3. It remains to find the conditions such that 
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Proof of Proposition 3.4.4 The first- and second- order partial derivatives of 
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By considering ,( ) / 0I F eπ ω∂ ∂ = , the optimal advertising effort for any fixed p  is 

given by )(
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Proof of Proposition 3.4.5 In this proof, at the boundary means that 0)( =ωLD  

or/and ( ) 0FD ω =  for any considered ω . Next, (1 ) (1 )a bβ α+ ≤ −  implies 1<b . 

Then according to Proposition 3.3.2(b), *
,BIω  and *
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for all cp >  if GcX = . Therefore, *ω  satisfies 0)( * ≤ωLD  and/or *( ) 0FD ω ≤ , 

if Condition (iii) of Proposition 3.4.5 does not hold. If Condition (iii) of Proposition 
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0,, >LAIE  and , , 0I A FE > . This completes the proof for (1 ) (1 )a bβ α+ < − .The proof 

for (1 ) (1 )a bβ α+ < −  and (1 ) (1 )a bβ α+ = −  are similar. For (1 ) (1 )a bβ α+ < − , 

we consider 0=λ  and *
,BIω . For (1 ) (1 )a bβ α+ = − , we consider any 10 ≤≤ λ  

and *
,BIω . So, we omit the detail of the proof for (1 ) (1 )a bβ α+ = −  here.  (Q.E.D.) 

 

Proof of Proposition 3.4.6 Part (a): Clearly, 0=λ  is feasible. Because cxF γ> ,  
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3,  if and only if condition (c.1) or 

(c.2) of Proposition 3.4.6 holds. (Q.E.D.) 

 

Proof of Proposition 3.4.7 In this proof, at the boundary means that 0)( =ωLD  
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and 0)( *
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is feasible if and only if γα 42 < . The first- and second-order derivatives of 
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Proof of Proposition 3.4.8 Because 0* =λ  for Tactic II, we only consider 0=λ  in 
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and ,( ) 0F II BD ω > . Then 2
, , , ,( ) ( )( )II B F II B II B II Bp c x e p eπ ω α γ= − + − − . and 

, ,( )L F II B II Bx bx b e b g pα γ= + + − . (A.1) 
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concave in BIIp , , and )( ,BIIωπ  is maximized at *
2,, IIBII pp = . By putting 

*
2,, IIBII pp =  into (A.1), we obtain *

2,, IIBII ee = . Hence, )( ,BIIωπ  is maximized at 

*
2,, IIBII ωω = , if *

2,IIω  is feasible and satisfies *
,2( ) 0F IID ω >  ( BII ,ω  is bounded by 

( ) 0FD ω > , cp BII >,  and 0, ≥BIIe ). If *
2,IIω  is infeasible and/or *

,2( ) 0F IID ω >  

does not hold, then )( ,BIIωπ  is maximized at one of the boundary ,( ) 0F II BD ω = , 

cp BII =, , and 0, =BIIe . Because 0)( , ≤BIIωπ  if ,( ) 0F II BD ω =  and/or cp BII =, , 

the two boundaries ,( ) 0F II BD ω =  and cp BII =,  can be ignored. This remains the 

boundary  0, =BIIe . Putting 0, =BIIe , we obtain *
3,, IIBII pp = . Therefore, 

*
3,, IIBII ωω =  is the boundary that maximizes )( ,BIIωπ . Similarly, we require *

3,IIω  is 

feasible and satisfies *
,3( ) 0F IID ω > . (Q.E.D.) 

 

Proof of Proposition 3.4.9 Part (a): Clearly, 1=λ  is feasible. Because gcxL > , 
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c
ag
gcxae L

III >
−
−

= 2
*

1, 4
)(  if and only if 24 ag > . Lastly, 0

4
)(2

2
*

1, >
−
−

=−
ag
gcxcp L

III  if 

and only if 24 ag > . 

Part (b): Clearly, 1=λ  and 0=e  are feasible. Moreover, 

*
,2

( ) 0F L
III

x c x gcp c
g

γ β
β γ

− + −
− = >

+
. Therefore, *

2,IIIω  is feasible.  (Q.E.D.) 

 

Proof of Proposition 3.4.10 In this proof, at the boundary means that ( ) 0FD ω =  

or/and 0)( =ωLD  for any considered ω . First of all, 0
4

)(2)( 2
*

1, >
−
−

=
ag

gcxgD L
IIIL ω  

and *
,1( ) 0F IIID ω <  if ga 42 <  and 0, >AIIIE . According to Proposition 3.3.10, 

*
1,IIIω  if and only if ga 42 < . The first- and second-order derivatives of ))(( , pAIIIωπ  

with respect to p  are gcxcpgadppd LAIII −+−
−

= )(
2

4/))((
2

,ωπ , and 

2
4/))((

2
2

,
2 gadppd AIII

−
=ωπ , respectively. 0|/))(( , >−== gcxdppd LcpAIIIωπ , 

))(( , pAIIIωπ  is convex in p , and ))(( , pAIIIωπ  is maximized at the boundary or 

∞→p  if ga ≥2 .  Therefore, *ω  satisfies *( ) 0FD ω ≤  and/or 0)( * ≤ωLD , if 

ga 42 ≥ . If ga 42 < , then ))(( , pAIIIωπ  is uniquely maximized at 

cc
ag
gcxp L >+

−
−

= 24
)(2 , i.e. =)( *

, pAIIIω  *
1,IIω . (Q.E.D.) 

 

Proof of Proposition 3.4.11 Because 1* =λ  for Tactic II, we only consider 1=λ  

in this proof. Let BIII ,ω =(1, BIIIe , , BIIIp , ) be any feasible ω  that satisfies  

,( ) 0F III BD ω =  and 0)( , >BIIILD ω . Then  

2
,,,, ))(()( BIIIBIIIBIIILBIII egpaexcp −−+−=ωπ . and 

, ,0 ( )L F III B III Bx x a e g pβ β β γ= + + − + . (A.2) 

By taking the derivative on the both sides of (A.2), we obtain 

βγβ agdpde BIIIBIII /)(/ ,, +=  
The first- and second- derivatives of )( ,BIIIωπ  with respect to ,III Bp  are 
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,
, ,2 2

,

( ) 1 2( )[2 ] [( ) ]III B
III B L III B F L

III B

d gg p x c g p x x
dp
π ω β γβ γ β γ β

β α β
− +

= + + − + − − , 

and 0])([2)(2 222
222

,

, <++
−

= γββα
βα

ωπ
gg

dp
d

BIII

BIII , respectively. Therefore, )( ,BIIIωπ  

is concave in BIIIp , , and )( ,BIIIωπ  is maximized at  

2 2

, 2 2 2

[2( ) ] 2 ( )
2[ ( ) ]

F L
III B

b g x b g x cp
g b g

β α β β β α βγ
α β β

+ − + + −
=

+ +
. 

However, by putting BIIIp ,  into (A.4), we obtain 

2

, 2 2 2

[2 (1 ) 2 2 ( )] 0
2[ ( ) ]

F L
III B

x g gx c ge
g g

α β β γ γ β
α β γ β

− + + + +
= <

+ +
. 

Therefore, )( ,BIIIωπ  is maximized at one of the boundary 0)( , =BIIILD ω , cp BIII =, , 

and 0, =BIIIe . Because 0)( , ≤BIIIωπ  if 0)( , =BIIILD ω  and/or cp BIII =, , the two 

boundaries 0)( , =BIIILD ω  and cp BIII =,  can be ignored. This remains the boundary 

0, =BIIIe . Putting 0, =BIIIe , we obtain *
3,, IIIBIII pp = . Therefore, *

3,, IIIBIII ωω =  is the 

boundary that maximizes )( ,BIIIωπ . Finally, we require *
3,IIIω  is feasible and satisfies 

0)( *
3, >IIILD ω . (Q.E.D.) 

 

Proof of Proposition 3.4.12 As we mentioned before, 0* =λ  for Tactic II. Let IIω~  

be a feasible ω  with 0=λ  and satisfies 0)~( >IIFD ω  and 0)~( <IILD ω . Then 
2))(()~( epexcp FII −−+−= γαωπ . Taking the first- and second-order partial 

derivative of )~( IIωπ  with respect to e , we obtain ecpeII 2)(/)~( −−=∂∂ αωπ  and 

2/)~( 22 −=∂∂ eIIωπ . Therefore, for any given cp > , )~( IIωπ  is strictly concave in 

e  and maximized at 2/)( cpe −=α . (Q.E.D.) 

 

Proof of Proposition 3.4.13 As we mentioned before, 1* =λ  for Tactic III. Let IIIω~  

be a feasible ω  with 1=λ  and satisfies 0)~( >IIILD ω  and 0)~( <IIIFD ω . Then 
2))(()~( egpaexcp LIII −−+−=ωπ . Taking the first- and second-order partial 

derivative of )~( IIIωπ  with respect to e , we obtain ecpaeIII 2)(/)~( −−=∂∂ ωπ  and 



168 

 

2/)~( 22 −=∂∂ eIIIωπ . Therefore, for any given cp > , )~( IIIωπ  is strictly concave in 

e  and maximized at 2/)( cpae −= .  (Q.E.D.) 

Proof of Proposition 3.4.14 to Proposition 3.4.19: For Proposition 3.4.14 to 

Proposition 3.4.19, the results are directly obtained by following discussions which 

are reported before the respective propositions in the main content.  (Q.E.D.) 
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Appendix 2: Proofs in Chapter 4 

Proof of Proposition 4.2.1: First of all, e T τ≥ +  holds under Tactic I.1. For 

e T τ= + , / ( )T Tλ τ= +  is the only feasible solution for Tactic I.1. Therefore, 
* / ( )T Tλ τ= +  for e T τ= +  under Tactic I.1. For e T τ> + , by taking the first 

order partial derivative of (2) with respect to λ , we have 

( ) / ( ) / (1 )LL IeN p c bπ ω λ β∂ ∂ = − + . Therefore, for any given p c>  and e T τ> + , if 

0IN ≥ , then ( )LLπ ω  is increasing in λ . Because e Tλ ≥  and (1 )eλ τ− ≥  hold 

under Tactic I.1, we have *(1 )eλ τ− =  for 0IN ≥ . On the other hand, if 0IN ≤ , 

then ( )LLπ ω  is decreasing in λ . Hence, *e Tλ =  for 0IN ≤ . Noting that *λ  can 

take any value which satisfies *(1 )eλ τ− ≥  and *e Tλ ≥  if 0IN = . However, for 

simplicity, we only demonstrate here the two special cases: *λ  satisfies *(1 )eλ τ− = , 

and *λ  satisfies *e Tλ = , for 0IN = . Similar results can also be obtained if *λ  

takes any value that satisfy *(1 )eλ τ− ≥  and *e Tλ ≥ .  (Q.E.D.) 

 

Proof of Proposition 4.2.2: As the feasible set of ω  for Tactic I.1.a is an open set, 

the local optimum for Tactic I.1.a is an interior point, if it exists. Clearly, conditions 
*
.1.( ) 0L I aD ω >  and *

.1.( ) 0F I aD ω >  are basic for Tactic I.1. By taking the first and 

second order partial derivatives of (3) with respect to p, we have 

( ) 2 ( ) [ (1 ) (1 ) ]
1

LL G p c B a T b
p b

π ω β α τ
β

∂ − − + + + + −
=

∂ +
 and 2 2( ) / 2LL p Gπ ω∂ ∂ = − . If 0G ≤ , 

then ( )LLπ ω  is convex in p, and hence the local optimal solution is infinite or 

2( ) ( )LL h Tπ ω τ= − +  which is always negative and we ignore this case. Therefore, 

0G >  is the necessary condition for having a finite local optimum for Tactic I.1.a. If 

0G > , then ( )LLπ ω  is strictly concave in p, and then by the first optimality condition, 

( )LLπ ω  is uniquely maximized at *
.1.I ap . By considering *

.1.I ap c> , we obtain 

(1 ) (1 ) 0B a T bβ α τ+ + + − > . Finally, by putting *
.1.I aω  into (3), we obtain (5). (Q.E.D.) 
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Proof of Proposition 4.2.3: By taking the first order and second order partial 

derivatives of (6) with respect to e, we obtain 

( ) / ( )(1 ) / (1 ) 2LL e a p c b heπ ω β β∂ ∂ = − + + − , and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < , for Tactic 

I.1.b. Therefore, for Tactic I.1.b, ( )LLπ ω∂  is a concave function of e. Then by 

considering ( ) / 0LL eπ ω∂ ∂ = , we obtain (7). As (1 ) / [2 (1 )] 0a h bβ β+ + > , *
.1. ( )I be p  

is strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.4: As the feasible set of ω  for Tactic I.1.b is an open set, 

the local optimum for Tactic I.1.b is an interior point solution, if it exists. Condition 

0IN ≥ , *
. .( ) 0L I i bD ω >  and *

. .( ) 0F I i bD ω >  are the basic conditions for Tactic I.1.b. 

By putting (7) into (6), we obtain 
2

2

( )( )( )( )
4 (1 ) 1

I
LL

B N p cY p c
h b b

τπ ω
β β

− −− −
= +

+ +
, and, for 

Tactic I.1.b, we have 
2

( ) ( )( )
2 (1 ) 1

LL IB NY p c
p h b b

π ω τ
β β

∂ −− −
= +

∂ + +
 and 

2 2
2( ) /

2 (1 )LL
Yp

h b
π ω

β
−

∂ ∂ =
+

. If 0Y ≤ , then ( )LLπ ω  is convex in p, and hence the 

local optimal solution for Tactic I.1.b is infinite, or ( )LLπ ω  is always negative and 

we ignore this case. Therefore, 0Y >  is the necessary condition for having a finite 

local optimum of Tactic I.1.b. For 0Y > , ( )LLπ ω  is strictly concave in p, and then 

by the first-order optimality condition, ( )LLπ ω  is uniquely maximized at *
.1.I bp . By 

considering *
.1.I bp c> , we obtain IB N τ> . Then by putting *

.1.I bp  into (7), we obtain 

*
.1.I be . By considering *

.1.I be T τ> +  and by 0Y > , we obtain item (iii) of Proposition 

4.2.4. Notice that item (iii) of Proposition 4.2.4 covers the case for IB N τ> . Lastly, 

by putting *
.1.I bω  into (6), we obtain (9). (Q.E.D.) 

 

Proof of Proposition 4.2.5: By taking the first order and second order partial 

derivatives of (10) with respect to e, we obtain 

( ) / ( )(1 ) / (1 ) 2LL e p c b b heπ ω α β∂ ∂ = − − + − , and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, 

for Tactic I.1.c, ( )LLπ ω  is a concave function of e, and hence the optimal advertising 
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efforts in the function of retail price p is given by (11). As (1 ) / [2 (1 )] 0b h bα β− + > , 
*
.1. ( )I ce p  is strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.6: As the feasible set of ω  for Tactic I.1.c is an open set, 

the local optimum for Tactic I.1.c is an interior point solution, if it exists. Condition 

0IN ≤ , *
. .( ) 0L I i cD ω >  and *

. .( ) 0F I i cD ω >  are basic conditions for Tactic I.1.c. By 

putting (11) into (10), we obtain 
2

2

( )( )( )( )
4 (1 ) 1

I
LL

B TN p cZ p c
h b b

π ω
β β

+ −− −
= +

+ +
, and we have 

2

( ) ( )( )
2 (1 ) 1

LL IB TNZ p c
p h b b

π ω
β β

∂ +− −
= +

∂ + +
 and 2 2

2( ) /
2 (1 )LL

Zp
h b

π ω
β

−
∂ ∂ =

+
. 

If 0Z ≤ , then ( )LLπ ω  is convex in p, and hence the local optimum is infinite, or 

( )LLπ ω  is always non-positive and we ignore this case. Therefore, 0Z >  is the 

necessary condition for having a finite local optimum of Tactic I.1.c. For 0Z > , 

( )LLπ ω  is strictly concave in p, and then by the first optimality condition, ( )LLπ ω  is 

uniquely maximized at *
.1.I cp . By considering *

.1.I cp c> , as 0Z > , we have 

IB N T> − . Then by putting *
.1.I cp  into (11), we obtain *

.1.I ce . By considering 

*
.1.I ce T τ> + , we obtain item (iii) of Proposition 4.2.6, and the condition in item (iii) 

covers IB N T> − . Finally, by putting *
.1.I cω  into (10), we obtain (13). (Q.E.D.) 

 

Proof of Proposition 4.2.7: First of all, e T≥  for tactic I.2. For e T= , 1λ =  is the 

only feasible solution for Tactic I.2. Therefore, the optimal * 1λ =  for Tactic I.2 with 

e T= . For e T> , by taking the first order partial derivative of (14) with respect to 

λ , we have ( ) / ( ) / (1 )LL IN e p c b eπ ω λ β μ∂ ∂ = − + −  for Tactic I.2. Therefore, for any 

given p c>  and e T> , if ( ) (1 )IN p c bμ β− > + , then ( )LLπ ω  is increasing in λ . 

As 1λ =  satisfies  e Tλ ≥  and (1 )eλ τ− < , * 1λ =  for ( ) (1 )IN p c bμ β− > + . If 

( ) (1 )IN p c bμ β− < + , then ( )LLπ ω  is decreasing in λ . Therefore, for T e T τ< < +  

and ( ) (1 )IN p c bμ β− < + , the optimal *λ  for Tactic I.2 satisfies *e Tλ = . Next, 

consider ' ( , ', )e pω λ=  and '' ( , '', )e pω λ= , where e T τ≥ + , p>c, 

( ) (1 )IN p c bμ β− < + , 0 '' ' 1λ λ≤ < ≤ , ( ') 0LD ω > , ( ') 0FD ω > , ( '') 0LD ω > , 



172 

 

( '') 0FD ω > , 'e Tλ ≥ , ''e Tλ ≥ , (1 ')eλ τ− < , (1 '')λ τ− = .  We have 

( ') ( '').LL LLπ ω π ω<  Therefore, Tactic I.1 dominates Tactic I.2 for e T τ≥ +  and 

( ) (1 )IN p c bμ β− < + . If ( ) (1 )IN p c bμ β− = + , then ( )LLπ ω  keeps constant for varied 

λ . Therefore any λ  that satisfy (1 )eλ τ− <  and e Tλ ≥  is optimal solution of λ . 

As there exist multiple λ  which satisfy (1 )eλ τ− <  and e Tλ ≥ , there exist 

multiple *λ  if ( ) (1 )IN p c bμ β− = + .  (Q.E.D.) 

 

Proof of Proposition 4.2.8: Similarly, the local optimum for Tactic I.2.a is an interior 

point solution if it exists. Conditions *
.2.( ) 0L I aD ω >  and *

.2.( ) 0F I aD ω >  are the basic 

conditions for Tactic I.2, so it is necessary for Tactic I.2.a too. By taking the first and 

second order partial derivatives of (15) with respect to p, we have 

( ) 2 ( ) [ (1 ) ]
1

LL G p c B a T
p b

π ω β
β

∂ − − + + +
=

∂ +
 and 2 2( ) / 2LL p Gπ ω∂ ∂ = − . If 0G ≤ , then 

( )LLπ ω  is convex in p or strictly increasing in p, and hence the local optimum for 

Tactic I.2.a is infinite, i.e., p→∞ . Therefore, 0G >  is the necessary condition for 

Tactic I.2.a such that the local optimum is finite. For 0G > , ( )LLπ ω  is strictly 

concave in p, and then by the first order optimality condition, ( )LLπ ω  is uniquely 

maximized at *
.2.I ap . By considering *

.2.I ap c> , we obtain item (iii) of Proposition 

4.2.8. Lastly, by putting *
.2.I aω  into (15), we obtain (17). (Q.E.D.) 

 

Proof of Proposition 4.2.9: By taking the first order and second order partial 

derivatives of (18) with respect to e, we obtain 

( )(1 )( ) / 2
1LL

a p ce he
b

βπ ω
β

− +
∂ ∂ = −

+
, and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . 

Therefore, ( )LLπ ω∂  is a concave function of e for Tactic I.2.b. Hence the optimal 

advertising efforts in the function of retail price p are given by (19). *
.2. ( )I be p  is 

strictly increasing in p as *
.2. ( )I be p  is strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.10: Similarly, the local optimum for Tactic I.2.b is an 

interior point, if it exists. Clearly, conditions 0IN > , *
.2.( ) 0L I bD ω >  and 
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*
.2.( ) 0F I bD ω >  are necessary for Tactic I.2.b. By putting (19) into (18), we obtain 

2

2

( ) ( )( )
4 (1 ) 1LL

Y p c B p c
h b b

π ω μτ
β β

− − −
= + −

+ +
, and we have 

2

( ) ( )
2 (1 ) 1

LL Y p c B
p h b b

π ω
β β

∂ − −
= +

∂ + +
 and 2 2

2( ) /
2 (1 )LL

Yp
h b

π ω
β

−
∂ ∂ =

+
. 

If 0Y ≤ , then ( )LLπ ω  is convex in p, or is strictly increasing in p, and hence the 

local optimum of Tactic I.2.b is infinite Therefore, 0Y >  is the necessary for Tactic 

I.2.b. For 0Y > , ( )LLπ ω  is strictly concave in p, and then by the first optimality 

condition, ( )LLπ ω  is uniquely maximized at *
.2.I bp . As p c> , we obtain 0B > . By 

putting *
.2.I bp  into (19), we obtain *

.2.I be . As e T>  for Tactic I.2.b, we need 

/ [ (1 )] 0B YT a β> + > , which covers the condition for p c> , By considering 
*
.2.( ) (1 )I I bN p c bμ β− > + , we obtain item (iv) of Proposition 10. Lastly, by putting 

*
.2.I bω  into (18), we obtain (21). (Q.E.D.) 

 

Proof of Proposition 4.2.11: Similar to Proposition 4.2.9. 

 

Proof of Proposition 4.2.12: Similarly, the local optimum for Tactic I.1.c is an 

interior point, if it exists. Condition 0IN > , *
.2.( ) 0L I cD ω >  and *

.2.( ) 0F I cD ω >  are 

necessary for Tactic I.2.c. As ( ) (1 )IN p c bμ β− = +  for Tactic I.2.c, we obtain 

*
.2. (1 ) /I c Ip c b N cμ β= + + > . According to Proposition 4.2.11, we obtain 

* * *
.2. .2. .2.( ) (1 ) / (2 )I c I c I c Ie e p a hNμ β= = + . By putting *

.2.I cω  to ( )LLπ ω , we obtain (24). 

Finally, by considering *
.2.I ce T> , we obtain item (ii) of Proposition 4.2.12. (Q.E.D.) 

 

Proof of Proposition 4.2.13: By taking the first order and second order partial 

derivatives of (25) with respect to e, we obtain ( )(1 )( ) / 2
1LL

p c be he
b

απ ω μ
β

− −
∂ ∂ = − +

+
, 

and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a concave function of e for 

Tactic I.2.d and for any given p >c, and the optimal advertising efforts in the function 

of retail price p is given by (22). (Q.E.D.) 

 



174 

 

Proof of Proposition 4.2.14: Similarly, the local optimum for Tactic I.1.d is an 

interior point, if it exists. *
.2.( ) 0L I dD ω >  and *

.2.( ) 0F I dD ω >  are basic conditions of 

Tactic I.2. By putting (26) into (25), we obtain 
2

2
2

[2 ( ) (1 )]( )( )( ) [ ]
4 (1 ) 2 (1 )

I
LL

h B TN b p cZ p c h T
h b h b

αμπ ω μ μ τ μ
β β

+ + − −− −
= + − − + −

+ +
, and we have 

2

( ) 2 ( ) (1 )( )
2 (1 ) 2 (1 )

LL Ih B TN bZ p c
p h b h b

π ω αμ
β β

∂ + + −− −
= +

∂ + +
 and 2 2

2( ) /
2 (1 )LL

Zp
h b

π ω
β

−
∂ ∂ =

+
. 

If 0Z ≤ , then ( )LLπ ω  is convex in p, and hence the local optimum is infinite, or 

( )LLπ ω  is always non-positive (and we ignore this case). Therefore, 0Z >  is the 

necessary condition for the local optimum of Tactic I.2.d being finite. If 0Z > , then 

( )LLπ ω  is strictly concave in p, and then by the first optimality condition, ( )LLπ ω  is 

uniquely maximized at *
.2.I dp . By considering *

.2.I dT e T τ< < + , we obtain item (iii) of 

Proposition 4.2.14. By considering *
.2.I dp c> , we obtain item (iv) of Proposition 

4.2.14. Then by considering *
.2.( ) (1 )I I dN p c bμ β− < + , we obtain item (v) of 

Proposition 4.2.14. Then by putting *
.2.I dp  into (26), we obtain  *

.2.I de . Finally, by 

putting *
.2.I dω  into (25), we obtain (28). (Q.E.D.) 

 

Proof of Proposition 4.2.15: By considering *
.2. / (1 ) /I d Ide dT b N Zα= −  and 

*
.2. / 2 (1 ) /I d Idp d hN b Zτ β= + . We obtain the results of Proposition 4.2.15. (Q.E.D.) 

 

Proof of Proposition 4.2.16: First of all, e τ≥  for tactic I.3. For e τ= , 0λ =  is 

the only feasible solution for Tactic I.3. Therefore, the optimal * 0λ =  for Tactic I.3 

when e τ= . For e τ> , by taking the first order partial derivative of (29) with respect 

to λ , we have ( ) / ( ) / (1 )LL IN e p c b meπ ω λ β∂ ∂ = − + + . 

Therefore, for any given p c>  and e τ> , if ( ) (1 )IN p c m bβ− > − + , then ( )LLπ ω  

is strictly increasing in λ . For e Tτ τ< < + , 1 / eλ τ= −  is the biggest that satisfies 

e Tλ <  and (1 )eλ τ− ≥ . Therefore, * 1 / eλ τ= −  for Tactic I.3 if 

( ) (1 )IN p c m bβ− > − +  and e Tτ τ< < + . Next, consider ' ( , ', )e pω λ=  and 

'' ( , '', )e pω λ= , where e T τ≥ + , p>c, ( ) (1 )IN p c m bβ− > − + , 0 ' '' 1λ λ≤ < ≤ , 

( ') 0LD ω > , ( ') 0FD ω > , ( '') 0LD ω > , ( '') 0FD ω > , 'e Tλ < , ''e Tλ = , 
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(1 ')eλ τ− ≥ , (1 '')λ τ− ≥ . We have ( ') ( '').LL LLπ ω π ω<  Therefore, Tactic I.1 

dominates Tactic I.3 for e T τ≥ +  and ( ) (1 )IN p c m bβ− > − + . If 

( ) (1 )IN p c m bβ− < − + , then ( )LLπ ω  is strictly decreasing in λ . As 0λ =  satisfies 

e Tλ <  and (1 )eλ τ− ≥ , * 0λ =  for Tactic I.3 if ( ) (1 )IN p c m bβ− < − + . If 

( ) (1 )IN p c m bβ− = − + , then ( )LLπ ω  is independent of  λ  for Tactic I.3. As there 

are multiple λ  which satisfy *(1 )eλ τ− <  and *e Tλ ≥ , there exist multiple *λ  if 

( ) (1 )IN p c m bβ− = − + .  (Q.E.D.) 

 

Proof of Proposition 4.2.17: Similarly, the local optimum for Tactic I.3.a is an 

interior point, if it exists. *
.3.( ) 0L I aD ω >  and *

.3.( ) 0F I aD ω >  are necessary for any 

sub-tactics of Tactic I.3. By taking the first and second order partial derivatives of (30) 

with respect to p, we have ( ) 2 ( ) [ (1 ) ]
1

LL G p c B b
p b

π ω α τ
β

∂ − − + + −
=

∂ +
 and 

2 2( ) / 2LL p Gπ ω∂ ∂ = − . If 0G ≤ , then ( )LLπ ω  is convex in p, and hence the local 

optimum for Tactic I.3.c is infinite, or ( )LLπ ω  is always non-positive (and we ignore 

this case). Therefore, 0G >  is necessary for having a finite *
.3.I aω . If 0G > , then 

( )LLπ ω  is strictly concave in p. By the first optimality condition, ( )LLπ ω  is uniquely 

maximized at *
.3.I ap . As p c> , we obtain item (iii) of Proposition 17. Finally, by 

putting *
.3.I aω  into (30), we obtain (31). (Q.E.D.) 

 

Proof of Proposition 4.2.18: By taking the first order and second order partial 

derivatives of (33) with respect to e, we obtain ( )(1 )( ) / 2
1LL

a p ce he m
b

βπ ω
β

− +
∂ ∂ = − +

+
, 

and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a concave function of e for 

Tactic I.3.b and for any given p >c. Hence, the optimal advertising efforts in the 

function of retail price p  is given by (34). Next, as (1 ) / [2 (1 )] 0a h bβ β+ + > . 

Therefore, *
.3. ( )I be p  is strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.19: Similarly, the local optimum for Tactic I.1.a is an 
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interior point, if it exists. *
.3.( ) 0L I bD ω >  and *

.3.( ) 0F I bD ω >  are the basic conditions 

of Tactic I.3. By putting (34) into (33), we obtain 
2 2

2

[2 ( ) (1 )]( )( )( ) ( )
4 (1 ) 2 (1 ) 4

I
LL

h B N am p cY p c mm T
h b h b h

τ βπ ω τ
β β

− + + −− −
= + − + +

+ +
, and we have 

2

( ) [2 ( ) (1 )]( )
2 (1 ) 2 (1 )

LL Ih B N amY p c
p h b h b

π ω τ β
β β

∂ − + +− −
= +

∂ + +
 and 2 2

2( ) /
2 (1 )LL

Yp
h b

π ω
β

−
∂ ∂ =

+
. 

If 0Y ≤ , then ( )LLπ ω  is convex in p, and hence the local optimum for Tactic I.3.b is 

infinite, or ( )LLπ ω  is always non-positive (and we ignore this case). Therefore, 

0Y >  is the necessary condition for having a finite *
.3.I bω . If 0Y > , then ( )LLπ ω  is 

strictly concave in p, and then by the first optimality condition, ( )LLπ ω  is uniquely 

maximized at *
.3.I bp . By considering *

.3.I bp c> , we obtain item (iii) of Proposition 

4.2.18. Similarly, by considering *
.3.I be Tτ τ< < +  and *

.3.( ) (1 )I I bN p c m bβ− > − + , we 

obtain items (iv) and (v) of Proposition 18, respectively. By putting *
.3.I bp  into (34), 

we obtain *
.3.I be . Finally, by putting (35) into (33). we obtain (36). (Q.E.D.) 

 

Proof of Proposition 4.2.20: By considering *
.3. / (1 ) /I b Ide d aN Yτ β= − + ,  

* * * 2
. . .3. .3./ [ (1 )] / [ ( ) ]I iii b I b I I bd d e aN Y eλ τ τ β= − + +  and *

. . / 2 (1 ) /I i b Idp d N h b Yτ β= − + . We 

obtain the results of Proposition 4.2.20. (Q.E.D.) 

 

Proof of Proposition 4.2.21: By taking the first order and second order partial 

derivatives of (37) with respect to e, we obtain (1 )( )( ) / 2
1LL

b p ce he
b

απ ω
β

− −
∂ ∂ = −

+
, 

and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, for any given p>c, ( )LLπ ω  is a concave 

function of p under Tactic I.3.c. Therefore, the optimal advertising efforts in the 

function of retail price p are given by (38). As (1 ) / [2 (1 )] 0b h bα β− + > , *
.3. ( )I ce p  is 

strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.22: Similarly, the local optimum for Tactic I.3.c is an 

interior point, if it exists. 0IN < , *
.3.( ) 0L I cD ω >  and *

.3.( ) 0F I cD ω >  are basic 

conditions for Tactic I.3. By putting (38) into (37), we obtain 
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2

2

( ) ( )( )
4 (1 ) (1 )LL

Z p c B p c mT
h b b

π ω
β β

− − −
= + −

+ +
, and we have 

2

( ) ( )
2 (1 ) (1 )

LL Z p c B
p h b b

π ω
β β

∂ − −
= +

∂ + +
 

and 2 2
2( ) /

2 (1 )LL
Zp

h b
π ω

β
−

∂ ∂ =
+

. If 0Z ≤ , then ( )LLπ ω  is convex in p, and hence 

the local optimum for Tactic I.3.c is infinite, or ( )LLπ ω  is always non-positive (and 

we ignore this case). Therefore, 0Z >  is the necessary condition for having a finite 
*
.3.I cω . If 0Z > , then ( )LLπ ω  is strictly concave in p, and then by the first optimality 

condition, ( )LLπ ω  is uniquely maximized at *
.3.I cp . By considering *

.3.I cp c> , we 

obtain 0B > . By considering *
.3.I ce τ> , we obtain item (iii) of  Proposition 4.2.22. 

By considering *
.3.( ) (1 )I I cN p c m bβ− < − + , we obtain / (2 ) 0IB mZ hN≥ − > . Finally, 

by putting *
.3.I cω  into (37), we obtain (40). (Q.E.D.) 

 

Proof of Proposition 4.2.23: Similar to Proposition 4.2.21. 

 

Proof of Proposition 4.2.24: Similarly, the local optimum for Tactic I.3.da is an 

interior point, if it exists. Condition 0IN < , *
.3.( ) 0L I dD ω >  and *

.3.( ) 0F I dD ω >  are 

specific conditions of Tactic I.3.d. As ( ) (1 )IN p c m bβ− = − +  for Tactic I.3.d, we 

obtain *
.3.I dp , and *

.3. 0I dp >  as 0IN <  for Tactic I.3.d. According to Proposition 

4.2.23, we obtain * * *
.3. .3. .3.( )I d I d I de e p= . By putting *

.3.I dω  to (14), we obtain (43). 

Finally, by considering *
.3.I de τ> , we obtain item (ii) of Proposition 4.2.24. (Q.E.D.) 

 

Proof of Proposition 4.2.25: First of all, e T τ< +  for tactic I.4. If 0e = , then λ  

can be ignored. For 0 e T τ< < + , by taking the first order partial derivative of (44) 

with respect to λ , we have ( ) / ( ) / (1 ) ( )LL IN e p c b m eπ ω λ β μ∂ ∂ = − + + − . Therefore, 

for any fixed p c>  and 0 e T< < , if ( ) ( )(1 )IN p c m bμ β− > − + , then ( )LLπ ω  is 

increasing in λ . Hence  * 1λ =  ( * 1λ =  satisfies e Tλ <  and (1 )eλ τ− <  for 

0 e T< < ). Moreover, for any fixed p c>  and 0 e τ< < , If 

( ) ( )(1 )IN p c m bμ β− < − + , then ( )LLπ ω  is decreasing in λ . Hence * 0λ =  ( * 0λ =  

satisfies e Tλ <  and (1 )eλ τ− <  for 0 e τ< < ). If ( ) ( )(1 )IN p c m bμ β− = − + , then 
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( )LLπ ω  is independent of λ . As there are multiple λ  which satisfy *(1 )eλ τ− <  

and *e Tλ < , for 0 e T τ< < + , there exists multiple *λ  for 

( ) ( )(1 )IN p c m bμ β− = − + .  (Q.E.D.) 

 

Proof of Proposition 4.2.26: Consider ' ( ', ', ')e pω λ=  and '' ( ', '', ')e pω λ= , where  

0 ' '' 1λ λ< < < , 'T e T τ≤ < + , ( ' ) ( )(1 )IN p c m bμ β− > − + , ( ') 0LD ω > , ( '') 0LD ω >  

( ') 0FD ω >  and ( '') 0FD ω > . By following the proof of Proposition 4.2.25, for any 

fixed p c>  and T e T τ≤ < + , ( )LLπ ω  is strictly increasing in λ . Therefore, 

( '') ( ')LL LLπ ω π ω> . However, for 'T e T τ≤ < + ,  '' 1λ →  does not belong to Tactic 

I.4 (which belongs to Tactic I.2), as ''e Tλ >  when '' 1λ → . Hence, the optimal *λ  

for Tactic I.4 does not exist (and Tactic I.2 dominates Tactic I.4). This completes the 

proof of part (a). The proof of part (b) and part (c) are similar to the proof of part (a).

  (Q.E.D.) 

 

Proof of Proposition 4.2.27: Similarly, the local optimum for Tactic I.4.a is an 

interior point, if it exists. Conditions *
.4.( ) 0L I aD ω >  and *

.4.( ) 0F I aD ω >  are necessary 

for any sub-tactics of Tactic I.4. By taking the first and second order partial 

derivatives of (45) with respect to p, we have ( ) 2 ( )
1

LL G p c B
p b

π ω
β

∂ − − +
=

∂ +
 and 

2 2( ) / 2LL p Gπ ω∂ ∂ = − . If 0G ≤ , then ( )LLπ ω  is convex in p, and hence the local 

optimum for Tactic I.4.a is infinite, or ( )LLπ ω  is always non-positive. Therefore, 

0G >  is necessary for having a finite *
.4.I aω . If 0G > , then ( )LLπ ω  is strictly 

concave in p, and then by the first order optimality condition, ( )LLπ ω  is uniquely 

maximized at *
.4.I ap . By considering *

.4.I ap c> , we obtain 0B > , By putting *
.4.I aω  

into (45), we obtain (47). (Q.E.D.) 

 

Proof of Proposition 4.2.28: By taking the first order and second order partial 

derivatives of (48) with respect to e, we obtain ( )(1 )( ) / 2
1LL

a p ce he m
b

βπ ω
β

− +
∂ ∂ = − +

+
, 

and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a concave function of e for 
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Tactic I.4.b and for any given p >c, and the optimal advertising efforts in the function 

of retail price p is given by (49).According to Proposition 15, *
.3. ( )I be p  is strictly 

increasing in p. Therefore *
.4. ( )I be p  is strictly increasing in p  (Q.E.D.) 

 

Proof of Proposition 4.2.29: Similarly, the local optimum for Tactic I.4.b is an 

interior point, if it exists. Conditions *
.4.( ) 0L I bD ω >  and *

.4.( ) 0F I bD ω >  are necessary 

for Tactic I.4.b. By putting (49) into (48), we obtain 
2 2

2

( ) [2 (1 )]( )( )
4 (1 ) 2 (1 ) 4LL

Y p c hB am p c mmT
h b h b h

βπ ω μτ
β β

− − + + −
= + − − +

+ +
, and we have 

2

( ) ( ) 2 (1 )
2 (1 ) 2 (1 )

LL Y p c hB am
p h b h b

π ω β
β β

∂ − − + +
= +

∂ + +
 and 2 2

2( ) /
2 (1 )LL

Yp
h b

π ω
β

−
∂ ∂ =

+
. 

If 0Y ≤ , then ( )LLπ ω  is convex in p, and hence the local optimum for Tactic I.4.b is 

infinite, or ( )LLπ ω  is always non-positive. Therefore, 0Y >  is necessary for having 

a finite *
.4.I bω . If 0Y > , then ( )LLπ ω  is strictly concave in p, and then by the first 

order optimality condition, ( )LLπ ω  is uniquely maximized at *
.4.I bp . By considering 

*
.4.I bp c> , we obtain 2 (1 ) 0hB am β+ + > . Then by putting *

.4.I bp  into (49), we obtain 

*
.4.I be . By considering *

.4.( ) ( )(1 )I I bN p c m bμ β− > − +  and *
.4.0 I be T< < , we obtain item 

(iv) and item (v) of Proposition 4.2.29 respectively. Finally, by putting *
.4.I bω  into 

(48), we obtain (51)  (Q.E.D.) 

 

Proof of Proposition 4.2.30: By taking the first order and second order partial 

derivatives of (52) with respect to e, we obtain (1 )( )( ) / 2
1LL

b p ce he
b

απ ω μ
β

− −
∂ ∂ = − +

+
, 

and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a concave function of e for 

Tactic I.4.c and for any given p >c, and the optimal advertising efforts in the function 

of retail price p is given by (47). (Q.E.D.) 

 

Proof of Proposition 4.2.31: Similarly, the local optimum for Tactic I.1.a is an 

interior point, if it exists. Conditions *
.4.( ) 0L I cD ω >  and *

.4.( ) 0F I cD ω >  are necessary 

for Tactic I.4.c. By putting (53) into (52), we obtain 
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2 2

2

( ) [2 (1 )]( )( )
4 (1 ) 2 (1 ) 4LL

Z p c hB b p c mT
h b h b h

αμ μπ ω μτ
β β

− − + − −
= + − − +

+ +
, and we have 

2

( ) ( ) 2 (1 )
2 (1 ) 2 (1 )

LL Z p c hB b
p h b h b

π ω αμ
β β

∂ − − + −
= +

∂ + +
 and 2 2

2( ) /
2 (1 )LL

Zp
h b

π ω
β

−
∂ ∂ =

+
. 

If 0Z ≤ , then ( )LLπ ω  is convex in p, and hence *p →∞  and the local optimum for 

Tactic I.4.c is infinite, or ( )LLπ ω  is always non-positive. Therefore, 0Z >  is 

necessary for having a finite *
.4.I cω . If 0Z > , then ( )LLπ ω  is strictly concave in p, 

and then by the first order optimality condition, ( )LLπ ω  is uniquely maximized at 

*
.4.I cp . By considering *

.4.I cp c> , we obtain item (ii) of Proposition 4.2.31. By 

considering *
.4.0 I ce τ< <  and *

.4.( ) ( )(1 )I I cN p c m bμ β− < − + , we obtain Item (iv) and 

Item (v) of Proposition 4.2.31, respectively. Finally, by putting *
.4.I cω  into (52), we 

obtain (53). (Q.E.D.) 

 

Proof of Proposition 4.2.32: Consider two specific ω ,  ' ( , ', )e pω λ=  and 

" ( , ", )e pω λ= , where, p c> , 0e > , 0 ', " 1λ λ≤ ≤  ( ') 0FD ω > , ( ") 0FD ω > , 

( ') 0LV ω =  and ( ") 0LV ω < . By taking the first order partial derivative of (56) with 

respect to λ , we have ( ) / ( )LL e p cπ ω λ α∂ ∂ = − − . Therefore, for any given p c>  

and 0e > , ( )LLπ ω  is decreasing in λ . Moreover, 

( ) ( ) ( )L L FV x bx be a b e b g pω α α λ γ= − − + + + − . Therefore, for any given 0e > ,  

( )LV ω  is increasing in λ  as 0a bα+ > . Hence, 0 " ' 1λ λ≤ < ≤  and 

( ") ( ')LL LLπ ω π ω> . Therefore, 'ω  is not optimal for Tactic II.1. (Q.E.D.) 

 

Proof of Proposition 4.2.33: First of all, e T τ≥ +  for Tactic II.1. For e T τ= + , 

/ ( )T Tλ τ= +  is the only feasible solution which satisfies e Tλ ≥ , (1 )eλ τ− ≥  and 

e T τ≥ + . Therefore, the optimal * / ( )T Tλ τ= +  for Tactic II.1 with e T τ= + . For 

e T τ> + , by taking the first order partial derivative of (56) with respect to λ , we 

have ( ) / ( )LL e p cπ ω λ α∂ ∂ = − − . For any given p c>  and 0e T τ> + > , ( )LLπ ω  is 

decreasing in λ . Moreover, as e Tλ ≥  for Tactic II.1, the optimal *λ  satisfies 
*e Tλ = .  (Q.E.D.) 
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Proof of Proposition 4.2.34: Similarly, the local optimum for Tactic II.1.a is an 

interior point solution, if it exists. Conditions *
.1.( ) 0L II aV ω <  and *

.1.( ) 0F II aD ω >  are 

necessary for Tactic II.1.a. By taking the first and second order partial derivatives of 

(57) with respect to p, we have ( ) / 2 ( )LL Fp x c p cπ ω γ γ∂ ∂ = − − −  and 

2 2( ) / 2 0LL pπ ω γ∂ ∂ = − < . Therefore ( )LLπ ω  is strictly concave in p for Tactic II.1.a, 

and hence ( )LLπ ω  is maximized at *
.1. ( ) / (2 )II a Fp x c cατ γ γ= + + >  (because 

Fx cγ> ). Finally, by putting *
.1.II aω  into (57), we obtain (59). (Q.E.D.) 

 

Proof of Proposition 4.2.35: By taking the first order and second order partial 

derivatives of (60) with respect to e, we obtain ( ) / ( ) 2LL e p c heπ ω α∂ ∂ = − − , and 

2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a strictly concave function of e for 

Tactic II.1.b and for any given p >c, and we obtain (61). As 0α > . *
.1. ( )II be p  is 

strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.36: Similarly, the local optimum for Tactic II.1.b is an 

interior point solution, if it exists. Conditions *
.1.( ) 0L II bV ω <  and *

.1.( ) 0F II bD ω >  are 

necessary for Tactic II.1.b. By putting (61) into (60), we obtain 
2

24( ) ( )( ) ( )
4LL F

hx c T p c p c
h

γ απ ω γ α −
= − − − − − , and we have 

2( ) 4 ( )
2

LL
F

hx c T p c
p h

π ω γ αγ α∂ −
= − − − −

∂
 and 

2
2 2 4( ) /

2LL
hp

h
γ απ ω −

∂ ∂ = − . 

If 24hγ α≤ , then ( )LLπ ω  is convex in p, and hence the local optimum for Tactic 

II.1.b is infinite, or ( )LLπ ω  is always non-positive. Therefore, 24hγ α>  is the 

necessary condition for *ω  belongs to Tactic II.1.b. If 24hγ α> , then ( )LLπ ω  is 

strictly concave in p. By the first order optimality condition, ( )LLπ ω  is maximized at 

*
.1.II bp . By considering *

.1.II bp c> , we obtain Fx c Tγ α− > . Then by putting *
.1.II bp  into 

(61), we obtain  *
.1.II be . By considering *

.1.II be T τ> + , we obtain item (iii) of 

Proposition 4.2.36. As  Fx c Tγ α− > , 2[4 ( ) ] /Fx c h Tγ γ τ α τ α− > + −  implies 

Fx c Tγ α− > . Hence, *
.1.II bp c> . Finally, by putting *

.1.II bω  into (60), we obtain (63).

 (Q.E.D.) 
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Proof of Proposition 4.2.37: Consider two specific ω ,  ' ( , ', )e pω λ=  and 

" ( , ", )e pω λ= , where, p c> , 0e > , 0 ', " 1λ λ≤ ≤  ( ') 0FD ω > , ( ") 0FD ω > , 

( ') 0LV ω =  and ( ") 0LV ω < . By taking the first order partial derivative of (64) with 

respect to λ , we have ( ) / [ ( ) ]LL p c eπ ω λ α μ∂ ∂ = − − + . Therefore, for any given 

p c>  and 0e > , ( )LLπ ω  is strictly decreasing in λ . Moreover, as shown in the 

proof of Proposition 4.2.32, 0 " ' 1λ λ≤ < ≤  and hence ( ") ( ')LL LLπ ω π ω> . Therefore, 

'ω  is not optimal for Tactic II.2. (Q.E.D.) 

 

Proof of Proposition 4.2.38: First of all, e T≥  for tactic II.2. For e T= , 1λ =  is 

the only possible solution for Tactic II.2. For T e T τ< < + , we have 

( ) / [ ( ) ]LL p c eπ ω λ α μ∂ ∂ = − − +  under Tactic II.2. For any given p c>  and e T> , 

( )LLπ ω  under Tactic II.2 is decreasing in λ . Moreover, as e Tλ ≥  for Tactic II.2, 

the optimal *λ  satisfies *e Tλ = . For any fixed e T τ≥ +  and p>c, consider 

' ( , ', )e pω λ=  and '' ( , '', )e pω λ= , where 0 '' ' 1λ λ≤ < ≤ , ( ') 0LD ω = , ( ') 0FD ω > , 

( '') 0LD ω = , ( '') 0FD ω > , 'e Tλ ≥ , ''e Tλ ≥ , (1 ')eλ τ− <  and (1 '')eλ τ− = .   

( ') ( '').LL LLπ ω π ω<  Therefore, Tactic II.1 dominates Tactic II.2 for e T τ≥ + .

 (Q.E.D.) 

 

Proof of Proposition 4.2.39: Similarly, the local optimum for Tactic I.1.a is an 

interior point solution, if it exists. Conditions *
.2.( ) 0L II aV ω <  and *

.2.( ) 0F II aD ω >  are 

necessary for Tactic II.2.a. By taking the first and second order partial derivatives of 

(65) with respect to p, we have ( ) / 2 ( )LL Fp x c p cπ ω γ γ∂ ∂ = − − −  and 

2 2( ) / 2 0LL pπ ω γ∂ ∂ = − < . Therefore ( )LLπ ω  is concave in p for Tactic II.2.a, and 

hence  ( )LLπ ω  is maximized at *
.2.II ap . As Fx cγ> , *

.2.II ap c> . Finally, by putting 

*
.2.II aω  into (65), we obtain (67). (Q.E.D.) 

 

Proof of Proposition 4.2.40: By taking the first order and second order partial 

derivatives of (68) with respect to e, we obtain ( ) / ( ) 2LL e p c heπ ω α μ∂ ∂ = − + −  and 
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2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a concave function of e for Tactic 

II.2.b, and the optimal advertising efforts in the function of retail price p is given by 

(69). As / (2 )hα , *
.2. ( )II be p  is strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.41: Similarly, the local optimum for Tactic I.1.a is an 

interior point solution, if it exists. Conditions *
.2.( ) 0L II bV ω <  and *

.2.( ) 0F II bD ω >  are 

necessary for Tactic II.2.b. By putting (69) into (68), we obtain 
2 2

24( ) [ ]( ) ( ) ( )
2 4 4LL F

hx c T p c p c T
h h h

αμ γ α μπ ω γ α μ τ−
= − − + − − − + − + , and we have 

2( ) 4 ( )
2 2

LL
F

hx c T p c
p h h

π ω αμ γ αγ α∂ −
= − − + − −

∂
 and 

2
2 2 4( ) /

2LL
hp

h
γ απ ω −

∂ ∂ = − . 

If 24hγ α≤ , then ( )LLπ ω  is convex in p, and hence the local optimum for Tactic 

II.2.b is infinite or ( )LLπ ω  is always non-positive. Therefore, 24hγ α>  is the 

necessary for *
LLω  belongs to Tactic II.2.b. If 24hγ α> , then ( )LLπ ω  is concave in 

p, and then by the first order optimality condition, ( )LLπ ω  is maximized at *
.2.II bp . By 

considering *
.2.II bp c> , we obtain / (2 )Fx c T hγ α αμ− > − . Then by putting *

.2.II bp  

into (69), we obtain  *
.2.II be . By considering *

.2.II bT e T τ< < + , we obtain item (iii) of 

Proposition 4.2.41. As 24hγ α> , / (2 ) 2 (2 ) /T h hTα αμ γ μ α− < − . Hence, the first 

inequality of item (iii) of Proposition 4.2.41 implies *
.2.II bp c> . Finally, by putting 

*
.2.II bω  into (68), we obtain (71). (Q.E.D.) 

 

Proof of Proposition 4.2.42: Consider two specific ω , ' ( , ', )e pω λ=  and 

" ( , ", )e pω λ= , where, p c> , 0e > , 0 ', " 1λ λ≤ ≤  ( ') 0FD ω > , ( ") 0FD ω > , 

( ') 0LV ω =  and ( ") 0LV ω < . By taking the first order partial derivative of (72) with 

respect to λ , we have ( ) / [ ( )]LL m p c eπ ω λ α∂ ∂ = − − . Therefore, for any given p c>  

and 0e > , ( )LLπ ω  is strictly increasing in λ  if /p m cα< + , ( )LLπ ω  is strictly 

decreasing in λ  if /p m cα> + , and ( )LLπ ω  is independent of λ  if /p m cα= + . 

Moreover, according to the proof of Proposition 4.2.32, ( )LV ω  is increasing in λ . 

Hence, 0 " ' 1λ λ≤ < ≤ . Therefore, if /p m cα< + , then ( ') ( ")LL LLπ ω π ω>  and 'ω  
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is not optimal for Tactic II.3. if /p m cα> + , then ( ") ( ')LL LLπ ω π ω>  and "ω  is 

not optimal for Tactic II.3, if /p m cα= + , then ( ") ( ')LL LLπ ω π ω= . Next, we 

investigate the optimal solution of λ . If e τ= , then the only solution of λ  which 

satisfies (1 )eλ τ− ≥  and e Tλ < , is 0λ = . For /p m cα< +  and e Tτ τ< < + , 

the biggest λ  that satisfies (1 )eλ τ− ≥  and e Tλ <  is 1 / eλ τ= − . For 

/p m cα< +  and e T τ≥ + , re-consider ' ( , ', )e pω λ=  and '' ( , '', )e pω λ= , where  

0 ' '' 1λ λ≤ < ≤ , ( ') 0LD ω = , ( ') 0FD ω > , ( '') 0LD ω = , ( '') 0FD ω > , 'e Tλ < , 

''e Tλ = , (1 ')eλ τ− ≥ , (1 '')λ τ− ≥ . We have ( ') ( '').LL LLπ ω π ω<  Therefore, Tactic 

II.1 dominates Tactic II.3 for e T τ≥ +  and /p m cα< + . For /p m cα> + , a 

smaller λ  is better, so * 0λ = . For /p m cα= + , there exists multiple *λ  as there 

are multiple λ  which satisfies (1 )eλ τ− ≥  and e Tλ < .  (Q.E.D.) 

 

Proof of Proposition 4.2.43: By putting *e τ=  and * 0λ =  into *( ) 0L LLV ω = , we 

obtain (73). Then by putting (73) into (72), we obtain (74). Condition (i) of 

Proposition 4.2.43 is the basic condition for Tactic II.3.a. By considering 
*

.3. /II ac p m cα< ≤ + , we obtain item (ii) of Proposition 4.2.43.  (Q.E.D.) 

 

Proof of Proposition 4.2.44: By putting * 1 / eλ τ= −  into ( ) 0LV ω = , we obtain 

(76). 

 (Q.E.D.) 

 

Proof of Proposition 4.2.45: Consider the first order optimality condition of ( )LLπ ω , 

we obtain *
.3.II bp . For the second order optimality condition, we have 

2 2 2 2( ) / 2[ ( ) ]LL p a h b gπ ω γ γ∂ ∂ = − − − . Therefore, we require item (ii) of Proposition 

4.2.45 to ensure that ( )LLπ ω  is strictly concave in p. Otherwise, ( )LLπ ω  is convex 

in p or ( )LLπ ω  is strictly increasing in p, and hence *
.3.II bω  is infinite. If 

2 2( )a h b gγ γ> − , then the first order optimality condition is necessary and sufficient. 

Condition (i) of Proposition 4.2.45 is the basic condition for Tactic II.3. By 

considering e τ>  and /c p m cα< ≤ + , we obtain items (iii), (iv) and (v) of 
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Proposition 4.2.45, respectively. (Q.E.D.) 

 

Proof of Proposition 4.2.46: Similarly, the local optimum for Tactic I.1.a is an 

interior point solution, if it exists. Conditions *
.3.( ) 0L II cV ω <  and *

.3.( ) 0F II cD ω >  are 

necessary for Tactic II.3.c. For Tactic II.3.c, the company’s profit is  
2 2( ) ( )( ) ( )LL Fx c p c p c h mTπ ω γ ατ γ τ= − + − − − − − , and we have 

( ) / 2 ( )LL Fp x c p cπ ω γ ατ γ∂ ∂ = − + − −  and 2 2( ) / 2 0LL pπ ω γ∂ ∂ = − < . 

Therefore, ( )LLπ ω  is strictly concave in p. Then by the first optimality condition, 

( )LLπ ω  is maximized at *
.3.II cp . As Fx cγ> , *

. .II iii cp c>  which satisfies the constraint 

p c> . By considering *
.3. /II cp m cα≥ + , we obtain item (ii) of Proposition 4.2.46. 

Lastly, by putting *
.3.II cω  into (79), we obtain (81). (Q.E.D.) 

 

Proof of Proposition 4.2.47: By taking the first order and second order partial 

derivatives of (79) with respect to e, we obtain  

( ) / ( ) 2LL e p c heπ ω α∂ ∂ = − −  and 2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a 

concave function of e for Tactic II.3.d and for any given p >c. Then by considering 

( ) / 0LL eπ ω∂ ∂ = , we obtain ( ) / (2 )e p c hα= − . As / (2 ) 0hα > , *
.3. ( )II de p  is strictly 

increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.48: Similarly, the local optimum for Tactic II.3.d is an 

interior point solution, if it exists. Conditions *
.3.( ) 0L II dV ω <  and *

.3.( ) 0F II dD ω >  are 

necessary for Tactic II.3.d. By putting (82) into (79), we obtain 
2

24( ) ( )( ) ( )
4LL F

hx c p c p c mT
h

γ απ ω γ −
= − − − − − , and we have 

2( ) 4 ( )
2

LL
F

hx c p c
p h

π ω γ αγ∂ −
= − − −

∂
 and 

2
2 2 4( ) /

2LL
hp

h
γ απ ω −

∂ ∂ = − . 

If 24hγ α< , then ( )LLπ ω  is strictly convex in p. If 24hγ α= , then ( )LLπ ω  is 

strictly increasing in p. Hence, the local optimum for Tactic II.3.d does not exist if 
24hγ α≤ . Therefore, 24hγ α>  is necessary for having a finite local optimum for 

Tactic II.3.d. If 24hγ α> , then ( )LLπ ω  is strictly concave in p, and then by the first 
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optimality condition, ( )LLπ ω  is uniquely maximized at *
.3.II dp  if all the specific 

conditions for Tactic II.3.d are met. As Fx cγ> , *
.3.II dp c> . By putting *

.3.II dp  into 

(82), we obtain *
.3.II de . By considering *

.3.II de τ>  and *
.3. /II dp m cα> + , we obtain 

items (iii) and (iv) of Proposition 4.2.48. Finally, by putting *
.3.II dω  into (79), we 

obtain (84). (Q.E.D.) 

 

Proof of Proposition 4.2.49: Clearly, *
.3. 0II eλ =  and *

.3. /II ep m cα= + . As * 0λ =  

for Tactic II.3.e, which is the same as Tactic II.3.d, Proposition 4.2.47 is valid for 

Tactic II.3.e too. By putting *
.3.II ep  into (82), we obtain *

.3. / (2 )II ee m h= . By 

considering *
.3.II ee τ> , we obtain item (ii) of Proposition 4.2.49. Then by considering 

( ) 0LD ω = , or equivalently ( ) 0LV ω ≤ , we obtain item (iii) of Proposition 4.2.49. 

Finally, by putting (85) into (72), we obtain (86).  (Q.E.D.) 

 

Proof of Proposition 4.2.50: Consider two specific ω , ' ( , ', )e pω λ=  and 

" ( , ", )e pω λ= , where, p c> , 0e > , 0 ', " 1λ λ≤ ≤  ( ') 0FD ω > , ( ") 0FD ω > , 

( ') 0LV ω =  and ( ") 0LV ω < . By taking the first order partial derivative of (79) with 

respect to λ , we have ( ) / [ ( )]LL m p c eπ ω λ μ α∂ ∂ = − − − . Therefore, for any given 

p c>  and 0e > , ( )LLπ ω  is strictly increasing in λ  if ( ) /p m cμ α< − + , is strictly 

decreasing in λ  if ( ) /p m cμ α> − + , and is independent of λ  if 

( ) /p m cμ α= − + . Moreover, according to the proof of Proposition 4.2.32, ( )LV ω  is 

increasing in λ . Hence, 0 " ' 1λ λ≤ < ≤ . Therefore, if ( ) /p m cμ α< − + , then 

( ') ( ")LL LLπ ω π ω>  and 'ω  is not optimal for Tactic II.4. If ( ) /p m cμ α> − + , then 

( ") ( ')LL LLπ ω π ω>  and "ω  is not optimal for Tactic II.4. Next, we investigate the 

optimal solution of λ . If * 0e = , then the value of λ  can be ignored. For 

( ) /p m cμ α< − + , a bigger λ  is better, and the biggest λ  that satisfies e Tλ <  

(1 )eλ τ− <  for 0 e T≤ <  is 1λ = . For ( ) /p m cμ α> − + , a smaller λ  is better, 

so * 0λ = , for 0 e τ≤ < . As ( )LLπ ω  is independent of λ  if ( ) /p m cμ α= − + , and 

there exist multiple λ  which satisfy e Tλ <  (1 )eλ τ− <  for 0 e T τ≤ < + , the 

exist multiple *λ  if ( ) /p m cμ α= − + . These complete the proofs of parts (a) to (e)  
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For the proofs part (f) and (g), they are similar to the proof of part (f) of 

Proposition 4.2.42. (Q.E.D.) 

 

Proof of Proposition 4.2.51: Similarly, the local optimum for Tactic II.4.a is an 

interior point solution, if it exists. Condition *
.4.( ) 0F II aD ω >  are the basic condition 

for Tactic II.4. By putting 0e =  into ( ) 0LV ω = , we obtain *
.4.II ap . By considering 

*
.4. ( ) /II ac p m cμ α< < − + , we obtain item (ii) of Proposition 4.2.51. Finally, by putting 

*
.4.II aω  into (87), we obtain (89). (Q.E.D.) 

 

Proof of Proposition 4.2.52: By putting 1λ =  into ( ) 0LV ω = , we obtain (91). 

 (Q.E.D.) 

 

Proof of Proposition 4.2.53: Similarly, the local optimum for Tactic I.1.a is an 

interior point solution, if it exists. Consider the first order optimality condition of 

( )LLπ ω , we obtain *
.4.II bp . For the second order optimality condition, we have 

2 2 2 2( ) / 2[ ( ) ] 0LL p a h b gπ ω γ γ∂ ∂ = − + − < . Therefore, the first order optimality condition 

is necessary and sufficient. Item (i) of Proposition 4.2.53 is the basic condition for 

Tactic II.4, and by considering *
.4.0 II be T< <  and *

.4. ( ) /II bc p m cμ α< < − + , we obtain 

items  (ii) and (iii) of Proposition 4.2.53, respectively.  (Q.E.D.) 

 

Proof of Proposition 4.2.54: Similarly, the local optimum for Tactic II.4.c is an 

interior point solution, if it exists. Conditions *
.4.( ) 0L II cV ω <  and *

.4.( ) 0F II cD ω >  are 

the specific conditions for Tactic II.4.c. For Tactic II.4.c, the company’s profit is  
2( ) ( )( ) ( )LL Fx c p c p c mTπ ω γ γ μτ= − − − − − − , and we have 

( ) / 2 ( )LL Fp x c p cπ ω γ γ∂ ∂ = − − −  and 2 2( ) / 2 0LL pπ ω γ∂ ∂ = − < . 

Therefore, ( )LLπ ω  is strictly concave in p. Then by the first optimality condition, 

( )LLπ ω  is uniquely maximized at *
.4.II cp . As Fx cγ> , *

.4.II cp c> . By considering 

*
.4. ( ) /II cp m cμ α> − + , we obtain item (ii) of Proposition 4.2.54. Finally, by putting 

*
.4.II cω  into (87), we obtain (95). (Q.E.D.) 
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Proof of Proposition 4.2.55: By taking the first order and second order partial 

derivatives of (96) with respect to e, we obtain ( ) / ( ) 2LL e p c heπ ω α μ∂ ∂ = − − +  and 

2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a concave function of e for Tactic 

II.4.d and for any given p >c. Then by considering ( ) / 0LL eπ ω∂ ∂ = , we obtain (97). 

As / (2 ) 0hα > , *
.4. ( )II ce p  is increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.56: Similarly, the local optimum for Tactic II.4.d is an 

interior point solution, if it exists. Conditions *
.4.( ) 0L II dV ω <  and *

.4.( ) 0F II dD ω >  are 

the basic conditions for Tactic II.4. By putting (97) into (96), we obtain 
2 2

24( ) [ ]( ) ( )
2 4 4LL F

hx c p c p c mT
h h h

αμ γ α μπ ω γ μτ−
= − + − − − − − + , and we have 

2( ) 4 ( )
2 2

LL
F

hx c p c
p h h

π ω αμ γ αγ∂ −
= − + − −

∂
 and 

2
2 2 4( ) /

2LL
hp

h
γ απ ω −

∂ ∂ = − . 

If 24hγ α≤ , then ( )LLπ ω  is convex in p and hence *
.4.II dp  is infinite, or ( )LLπ ω  is 

always non-positive. Therefore, 24hγ α>  is the necessary condition for Tactic II.4.d. 

If 24hγ α> , then ( )LLπ ω  is strictly concave in p, and then by the first optimality 

condition, ( )LLπ ω  is uniquely maximized at *
.4.II dp . By putting *

.4.II dp  into (97), we 

obtain *
.4.II de . As Fx cγ> , *

.4. 0II de >  and *
.4.II dp c> . By considering *

.4.II de τ<  and 

*
.4. ( ) /II dp m cμ α> − + , we obtain items (iii) and (iv) of Proposition 4.2.56, respectively. 

Finally, by putting *
.4.II dω  into (97), we obtain (99). (Q.E.D.) 

 

Proof of Proposition 4.2.56b: Clearly, *
.4. 0II eλ =  and *

.4. ( ) /II ep m cμ α= − +  by the 

specific conditions of Tactic II.4.e. As * 0λ =  for Tactic II.4.e, which is the same as 

Tactic II.4.d, Proposition 4.2.56 is valid for Tactic II.4.e too. By putting *
.4.II ep  into 

(97), we obtain *
.4. / (2 )II ee m h= . By considering *

.4.II ee τ>  and *
.4.II ep c> , we obtain 

item (ii) of Proposition 4.2.56. Then by considering *
.4.( ) 0L II eD ω = , or equivalently 

*
.4.( ) 0L II eV ω ≤ , we obtain item (iii) of Proposition 4.2.56. Finally, by putting (100) 

into (87), we obtain (101).  (Q.E.D.) 
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Proof of Proposition 4.2.57: Consider two specific ω , ' ( , ', )e pω λ=  and 

" ( , ", )e pω λ= , where, p c> , 0e > , 0 ', " 1λ λ≤ ≤  ( ') 0LD ω > , ( ") 0LD ω > , 

( ') 0FV ω =  and ( ") 0FV ω < . By taking the first order partial derivative of (92) with 

respect to λ , we have ( ) / ( ) 0LL ae p cπ ω λ∂ ∂ = − > , for e > 0 and p > c. Therefore, for 

any given p c>  and 0e > , ( )LLπ ω  is increasing in λ . Next,  

( ) [ ( ) ] ( )F F LV x x a e g pω β α β α λ γ β= + + + − − + . If aβ α= , then ( )FV ω  is 

independent of λ . If aβ α< , then ( )FV ω  is decreasing in λ . If aβ α> , then 

( )FV ω  is increasing in λ . Therefore, if aβ α< , then 0 ' " 1λ λ≤ < ≤ , and hence 

( ") ( ')LL LLπ ω π ω> . As *( ) 0FV ω ≤  for Tactic III, we have *( ) 0FV ω <  for aβ α< . 

If aβ α> , then 0 " ' 1λ λ≤ < ≤ , and hence ( ') ( ")LL LLπ ω π ω> . As *( ) 0FV ω ≤  for 

Tactic III, we have *( ) 0FV ω =  for aβ α> .  (Q.E.D.) 

 

Proof of Proposition 4.2.58: If *e T τ= + , then the only solution of λ  which 

satisfies (1 )eλ τ− ≥  and e Tλ ≥ , is / ( )T Tλ τ= + . For *e T τ> + , as ( )LLπ ω  is 

increasing in λ  (according to the proof of Proposition 4.2.57), and the biggest λ  

that satisfies (1 )eλ τ− ≥  and e Tλ ≥  is 1 / eλ τ= − , we obtain * / ( )T Tλ τ= + .

 (Q.E.D.) 

 

Proof of Proposition 4.2.59: Conditions aβ α≤ , *( ) 0F LLV ω <  and *( ) 0L LLD ω >  

are the specific condition for Tactic III.1. Therefore, they are necessary. For Tactic 

III.1.a, the company’s profit is 2 2( ) ( )( ) ( ) ( )LL Lx gc aT p c g p c h Tπ ω τ= − + − − − − + , 

and we have ( ) / 2 ( )LL Lp x gc aT g p cπ ω∂ ∂ = − + − −  and 2 2( ) / 2 0LL p gπ ω∂ ∂ = − < . 

Therefore, ( )LLπ ω  is strictly concave in p. Then by the first optimality condition, 

( )LLπ ω  is uniquely maximized at *
.1.III ap . As Lx gc> , *

.1.III ap c>  which satisfies the 

constraint p c> . Finally, by putting *
.1.III aω  into (103), we obtain (105). (Q.E.D.) 

 

Proof of Proposition 4.2.60: By taking the first order and second order partial 

derivatives of (106) with respect to e, we obtain ( ) / ( ) 2LL e a p c heπ ω∂ ∂ = − −  and 

2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω  is a strictly concave function of e for 



190 

 

Tactic III.1.b. Then by considering ( ) / 0LL eπ ω∂ ∂ = , we obtain (107). As a > 0, 

*
.1. ( )III be p  is increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.61: Similarly, the local optimum for Tactic III.1.b is an 

interior point solution, if it exists. Conditions aβ α≤ , *
.1.( ) 0F III bV ω <  and 

*
.1.( ) 0L III bD ω >  are necessary for Tactic III.1.b. By putting (107) into (106), we obtain 

2
24( ) ( )( ) ( )

4LL L
hg ax gc a p c p c

h
π ω τ −

= − − − − − , and we have 

2( ) (4 )( ) / (2 )LL
Lx gc a hg a p c h

p
π ω τ∂

= − − − − −
∂

 and 2 2 2( ) / (4 ) / (2 )LL p hg a hπ ω∂ ∂ = − − . 

If 24hg a≤ , then ( )LLπ ω  is either 1) convex/linear in p and hence *
.1.III bω  is infinite, 

or 2) always non-positive Therefore, 24hg a>  is the necessary condition for Tactic 

III.1.b. If 24hg a> , then ( )LLπ ω  is strictly concave in p, and then by the first 

optimality condition, ( )LLπ ω  is uniquely maximized at *
.1.III bp . By putting *

.1.III bp  

into (107), we obtain *
.1.III be . By considering *

.1.III be T τ≥ +  and *
.1.III bp c≥ , we obtain 

items (iii) and (iv) of Proposition 4.2.61, respectively. Finally, by putting *
.1.III bω  into 

(106), we obtain (109). (Q.E.D.) 

 

Proof of Proposition 4.2.62: Conditions aβ α≥  and *
. .( ) 0L III i cD ω >  are the 

specific conditions for Tactic III.1.c. By putting *
.1.III ce T τ= +  and 

*
.1. / ( )III c T Tλ τ= +  into ( ) 0FV ω = , we obtain *

.1.III cp . Finally, by putting (110) into 

(102), we obtain (111). (Q.E.D.) 

 

Proof of Proposition 4.2.63: By putting * 1 / eλ τ= −  into ( ) 0FV ω = , we obtain 

(112). As 0gγ β+ >  and 0aβ > , the *
.1. ( )III de p  is strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.64: Similarly, the local optimum for Tactic III.1.d is an 

interior point solution, if it exists. Consider the first order optimality condition of 

( )LLπ ω , we obtain *
.1.III dp . For the second order optimality condition, we have 

2 2 2 2( ) / 2[ ( ) ]LL p h g aπ ω γ β βγ∂ ∂ = − + − . Therefore, we require item (ii) of Proposition 
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4.2.64 to ensure that ( )LLπ ω  is strictly concave in p. Otherwise, *
.1.III dω  does not 

exist. If 2 2( )h g aγ β βγ+ > , then the first order optimality condition is necessary and 

sufficient. Item (i) of Proposition 4.2.64 are the specific conditions for Tactic III.1.d. 

By considering *
.1.III de T τ> +  and *

.1.III dp c> , we obtain items (iii) and (iv) of 

Proposition 4.2.64, respectively.  (Q.E.D.) 

 

Proof of Proposition 4.2.65: Consider two specific ω , ' ( , ', )e pω λ=  and 

" ( , ", )e pω λ= , where, p c> , 0e > , 0 ', " 1λ λ≤ ≤  ( ') 0FD ω > , ( ") 0FD ω > , 

( ') 0LV ω =  and ( ") 0LV ω < . By taking the first order partial derivative of (115) with 

respect to λ , we have ( ) / [ ( ) ]LL a p c eπ ω λ μ∂ ∂ = − −  for Tactic III.2. For Tactic III.2 

and any given e T≥ , 1) if /p a cμ> + , then ( )LLπ ω  is strictly increasing in λ ; 2) 

if /p a cμ< + , then ( )LLπ ω  is strictly decreasing in λ ; and 3) if /p a cμ= + , then 

( )LLπ ω  is independent of λ . The biggest λ  that satisfies e Tλ ≥  and (1 )eλ τ− <  

is 1λ = , and the smallest λ  that satisfies e Tλ ≥  and (1 )eλ τ− <  is /T eλ = ,  

Therefore, * 1λ =  if * /p a cμ> + , * */T eλ =  if * /p a cμ< + , and there are 

multiple *λ  if * /p a cμ= + .  (Q.E.D.) 

 

Proof of Proposition 4.2.66: For Tactic III.2 

( ) [ ( ) ] ( )F F LV x x a e g pω β α β α λ γ β= + + + − − + . If aβ α< , then ( )FV ω  is strictly 

decreasing in λ  and 0 ' " 1λ λ≤ < ≤ . On the other hand, if aβ α> , then ( )FV ω  is 

strictly increasing in λ  and hence 0 " ' 1λ λ≤ < ≤ . Moreover, according to the proof 

of Proposition 4.2.65, for Tactic III.2 and any given e T≥ , 1) if /p a cμ> + , then 

( )LLπ ω  is strictly increasing in λ ; 2) if /p a cμ< + , then ( )LLπ ω  is strictly 

decreasing in λ ; and 3) if /p a cμ= + , then ( )LLπ ω  is independent of λ . 

Therefore, ( ") ( ')LL LLπ ω π ω>  if *[ ( ) ]( ) 0a p c aμ β α− − − < , and ( ') ( ")LL LLπ ω π ω>  

if *[ ( ) ]( ) 0a p c aμ β α− − − > . As *( ) 0F LLV ω ≤  for Tactic III.2, we have  *( ) 0F LLV ω <  

if *[ ( ) ]( ) 0a p c aμ β α− − − < , and *( ) 0F LLV ω =  if *[ ( ) ]( ) 0a p c aμ β α− − − > .(Q.E.D.) 

 

Proof of Proposition 4.2.67: Similarly, the local optimum for Tactic III.2.a is an 
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interior point solution, if it exists. Conditions, aβ α≤ , *
.2.( ) 0F III aV ω <  and 

*
.2.( ) 0L III aD ω >  is the specific conditions for Tactic III.2.a. By putting *e T=  and 

* 1λ =  into (115), we obtain 2( ) ( )( )LL Fx aT gp p c hTπ ω μτ= + − − − − . By 

considering the first and second order derivatives of ( )LLπ ω  with respect to p, we 

have  

( ) / 2 ( )LL Fd dp x gc aT g p cπ ω = − + − −  and 2 2( ) / 2LLd dp gπ ω = − . Therefore 

( )LLπ ω  is strictly concave in p, and the optimal p for Tactic III.2.a is *
.2.III ap . Next, 

by considering *
.2. /III ap a cμ> + , we obtain item (ii) of Proposition 4.2.67. Finally, by 

putting (116) into ( )LLπ ω , we obtain (117)  (Q.E.D.) 

 

Proof of Proposition 4.2.68: By taking the first order and second order partial 

derivatives of (118) with respect to e, we obtain ( ) / ( ) 2LL e a p c heπ ω∂ ∂ = − −  and 

2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω∂  is a strictly concave function of e for 

Tactic III.2.b. Then by considering ( ) / 0LL eπ ω∂ ∂ = , we obtain (119). (Q.E.D.) 

 

Proof of Proposition 4.2.69: Conditions aβ α≤ , *
.2.( ) 0F III bV ω <  and 

*
.2.( ) 0L III bD ω >  are the specific conditions for Tactic III.2.b, and hence they are 

necessary. By putting (119) into (118), we obtain 
2

24( ) ( )( ) ( )
4LL L

hg ax gc p c p c
h

π ω μτ−
= − − − − − , and we have 

2( ) / (4 )( ) / (2 )LL Lp x gc hg a p c hπ ω∂ ∂ = − − − −  and 

2 2 2( ) / (4 ) / (2 )LL p hg a hπ ω∂ ∂ = − − . If 24hg a≤ , then ( )LLπ ω  is either convex in p and 

hence p →∞ , or is always negative. Therefore, 24hg a>  is necessary for having a 

finite *
.2.III bω . If 24hg a> , then ( )LLπ ω  is strictly concave in p, and then by the first 

optimality condition, ( )LLπ ω  is uniquely maximized at *
.2.III bp . By putting *

.2.III bp  

into (119), we obtain *
.2.III be . By considering *

.2.III be T>  and *
.2. /III bp a cμ≥ + , we 

obtain items (iii) and (iv) of Proposition 4.2.69. Finally, by putting *
.2.III bω  into (118), 

we obtain (121). (Q.E.D.) 
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Proof of Proposition 4.2.70: By putting *e T=  and * 1λ =  into *( ) 0F LLV ω = , we 

obtain *
.2.III cp . Then by putting (122) into (115), we obtain (123). Conditions aβ α≤  

and *
.2.( ) 0L III cD ω >  are the specific conditions for Tactic III.2.c. Then, by considering 

*
.2. /III cp a cμ≤ + , we obtain Condition (ii) of Proposition 4.2.70.   (Q.E.D.) 

 

Proof of Proposition 4.2.71: By putting * */T eλ =  into ( ) 0FV ω = , we obtain 

(125). (Q.E.D.) 

 

Proof of Proposition 4.2.72: Similarly, the local optimum for Tactic III.2.d is an 

interior point solution, if it exists. Consider the first order optimality condition of 

(127), we obtain *
.2.III dp . For the second order optimality condition, we have 

2 2 2 2( ) / 2[ ( ) ]LL p h g gπ ω γ β α∂ ∂ = − + + . Therefore, ( )LLπ ω  is strictly concave in p for 

Tactic III.2.d. Items (i), (ii) and (iii) of Proposition 4.2.72 are the specific conditions 

for Tactic III.2.d. Therefore, they are necessary.  (Q.E.D.) 

 

Proof of Proposition 4.2.73: By putting *e T=  and * 1λ =  into *( ) 0F LLV ω = , we 

obtain *
.2.III ep . Then by putting (128) into (115), we obtain (129). Conditions aβ α≥  

and *
.2.( ) 0L III eD ω >  are the specific conditions for Tactic III.2.e. Finally, by 

considering *
.2. /III ep a cμ≥ + , we obtain item (ii) of Proposition 4.2.73.   (Q.E.D.) 

 

Proof of Proposition 4.2.74: By putting * 1λ =  into ( ) 0FV ω = , we obtain (130).

 (Q.E.D.) 

 

Proof of Proposition 4.2.75: Consider the first order optimality condition of (130), 

we obtain *
.2.III fp . For the second order optimality condition, we have 

2 2 2 2( ) / 2( )[ ( ) ] / ( )LL p g h g a aπ ω γ β γ β β β∂ ∂ = − + + − . Therefore, for Tactic III.2.d, 

( )LLπ ω  is strictly concave in p if 2( )h g aγ β β+ > . If 2( )h g aγ β β+ ≤ , then 

( )LLπ ω  is either 1) convex in p, and the optimal p is infinite, or 2) ( )LLπ ω  is always 

non-positive. Therefore, 2( )h g aγ β β+ >  is necessary for the existence of the local 
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optimal solution of Tactic.2.f. Conditions in item (i) of Proposition 4.2.75 are the 

specific conditions for Tactic III.2.f. By considering *
.2.III fe T>  and *

.2. /III fp a cμ> + , 

we obtain items (iii) and item (iv) of Proposition 4.2.75, respectively.  (Q.E.D.) 

 

Proof of Proposition 4.2.76: By putting *e T=  and * 1λ =  into (115), we obtain  
2( ) ( )( )LL Fx aT gp p c hTπ ω μτ= + − − − − . By considering the first and second order 

derivatives of ( )LLπ ω  with respect to p, we have  

( ) / 2 ( )LL Fd dp x gc aT g p cπ ω = − + − −  and 2 2( ) / 2LLd dp gπ ω = − . Therefore 

( )LLπ ω  is strictly concave in p, and the optimal p for Tactic III.2.f is *
.2.III fp . 

Conditions aβ α≥ , *
.2.( ) 0F III gV ω <  and *

.2.( ) 0L III gD ω >  are the specific conditions 

for Tactic III.2.g. Next, by considering *
.2. /III gc p a cμ< < + , we obtain item (ii) of 

Proposition 4.2.76. Finally, by putting (134) into (115), we obtain (135)  (Q.E.D.) 

 

Proof of Proposition 4.2.77: By taking the first order and second order partial 

derivatives of (137) with respect to e, we obtain ( ) / 2LL e heπ ω μ∂ ∂ = − +  and 

2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, for Tactic III.2.h, ( )LLπ ω∂  is a concave function 

of e. Then by considering ( ) / 0LL eπ ω∂ ∂ = , we obtain (137). (Q.E.D.) 

 

Proof of Proposition 4.2.78: By putting (137) into (136), we obtain 
2 2( ) ( )( ) ( ) / (4 ) ( )LL Lx gc aT p c g p c h Tπ ω μ μ τ= − + − − − + − + , and we have 

( ) / 2 ( )LL Lp x gc aT g p cπ ω∂ ∂ = − + − −  and 2 2( ) / 2LL p gπ ω∂ ∂ = − . Therefore, ( )LLπ ω  

is strictly concave in p for Tactic III.2.h. Then by the first optimality condition, 

( )LLπ ω  is uniquely maximized at *
.2.III hp . Conditions aβ α≥ , *

.2.( ) 0F III hV ω <  and 

*
.2.( ) 0L III hD ω >  are the specific condition for Tactic III.2.h. Therefore, they are 

necessary for *
.2.III hω . By considering *

.2.III hT e T τ< < +  and *
.2. /III hc p a cμ< < + , we 

obtain items (ii) and (iii) of Proposition 4.2.78. Finally, by putting *
.2.III hω  into (136), 

we obtain (139). (Q.E.D.) 

 

Proof of Proposition 4.2.79: Clearly, *
.2. 1III kλ =  and *

.2. /III kp a cμ= + . As * 1λ =  
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for Tactic III.2.k, which is the same as Tactic III.2.b, the local optimal advertising 

effort in the function of p is given by *
.2. ( ) ( ) / (2 )III ke p a p c h= − . By putting *

.2.III kp  

into *
.2. ( )III ke p , we obtain *

.2.III ke . By considering *
.2.III ke T≥ , we obtain item (ii) of 

Proposition 4.2.79. Then by considering *
.2.( ) 0F III kD ω = , or equivalently 

*
.2.( ) 0F III kV ω ≤ , we obtain item (iii) of Proposition 4.2.79. Finally, by putting (140) 

into (115), we obtain (141).  (Q.E.D.) 

 

Proof of Proposition 4.2.80: Consider two specific ω , ' ( , ', )e pω λ=  and 

" ( , ", )e pω λ= , where, p c> , 0e ≥ , 0 ', " 1λ λ≤ ≤  ( ') 0LD ω > , ( ") 0LD ω > , 

( ') 0FV ω =  and ( ") 0FV ω < . By taking the first order partial derivative of (142) with 

respect to λ , we have ( ) / [ ( ) ] 0LL a p c m eπ ω λ∂ ∂ = − + ≥ . Therefore, for any given 

p c>  and 0e ≥ , ( )LLπ ω  is increasing in λ  for Tactic III.3. Moreover, according 

to the proof of Proposition 4.2.57, ( )FV ω  is decreasing in λ  if aβ α≤ , but  

( )FV ω  is increasing in λ  if aβ α≥ . Hence, if aβ α≤  then 0 ' " 1λ λ≤ < ≤ , and  

( ") ( ')LL LLπ ω π ω>  and 'ω  is not optimal for Tactic III.3. On the other hand, if  

aβ α≥  then 0 " ' 1λ λ≤ < ≤ , and  ( ') ( ")LL LLπ ω π ω>  and "ω  is not the local 

optimum for Tactic III.3. Next, we investigate the optimal solution of λ . If *e τ= , 

then the only solution of λ  which satisfies (1 )eλ τ− ≥ , is 0λ = . ( )LLπ ω  is 

increasing in λ  for Tactic III.3, a bigger λ  is better. The biggest λ  that satisfies 

(1 )eλ τ− ≥  is 1 / eλ τ= − . Therefore * *1 / eλ τ= −  for *e τ> . (Q.E.D.) 

 

Proof of Proposition 4.2.81: Similarly, the local optimum for Tactic III.1.a is an 

interior point solution, if it exists. Conditions aβ α≤ , *
.3.( ) 0F III aV ω <  and 

*
.3.( ) 0L III aD ω >  are directly derived from the specific conditions for Tactic III.3.a. By 

taking the first and second order derivatives of (143) with respect to p, we obtain 

( ) / 2 ( )LL Lp x gc g p cπ ω∂ ∂ = − − −  and 2 2( ) / 2 0LL p gπ ω∂ ∂ = − < . Therefore, ( )LLπ ω  is 

strictly concave in p. Then by the first optimality condition, ( )LLπ ω  is uniquely 

maximized at *
.3.III ap . As Lx gc> , *

.3.III ap c> . Finally, by putting *
.3.III aω  into (143), 

we obtain (145). (Q.E.D.) 
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Proof of Proposition 4.2.82: By taking the first order and second order partial 

derivatives of (146) with respect to e, we obtain ( ) / ( ) 2LL e a p c he mπ ω∂ ∂ = − − +  and 

2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, for Tactic III.3.b, ( )LLπ ω∂  is a strictly concave 

function of e. Then by considering ( ) / 0LL eπ ω∂ ∂ = , we obtain (147). As a > 0, 

*
.3. ( )III be p  is increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.83: Similarly, the local optimum for Tactic III.3.b is an 

interior point solution, if it exists. By putting (147) into (146), and then consider the 

first and second order derivatives of we obtain ( )LLπ ω  with respect to p, we have 

2( ) / {2 ( ) (4 )( )} / (2 )LL Lp h x gc a am hg a p c hπ ω τ∂ ∂ = − − + − − −  and 

2 2 2( ) / (4 )LL p hg aπ ω∂ ∂ = − − . Therefore, if 24hg a≤ , then ( )LLπ ω  is either 1) convex 

in p, and hence there does not exist a finite local optimal solution for Tactic III.3.b., or 

2) is always non-positive. If 24hg a> , then ( )LLπ ω  is strictly concave in p, and by 

the first order optimality condition, ( )LLπ ω  is uniquely maximized at *
.3.III bp . 

Conditions aβ α≤ , *
.3.( ) 0F III bV ω <  and *

.3.( ) 0L III bD ω >  are necessary for Tactic 

III.3.b. By considering *
.3.III bT e T τ< < + , we obtain item (iii) of Proposition 4.2.83. 

By considering *
.3.III bp c> , we obtain item (iv) of Proposition 4.2.83. Lastly, by 

putting *
. .III iii bω  into (146), we obtain (149). (Q.E.D.) 

 

Proof of Proposition 4.2.84: First of all, conditions aβ α≥  and *
.3.( ) 0L III cD ω >  are 

essential for Tactic III.3.c. By putting *e τ=  and * 0λ =  into *( ) 0FV ω = , we 

obtain *
.3.III cp . As Fx cγ>  and Lx gc> , *

.3.III cp c> . Then by putting (150) into 

(142), we obtain (151).   (Q.E.D.) 

 

Proof of Proposition 4.2.85: By putting 1 / eλ τ= −  into ( ) 0FV ω = , we obtain 

(153). (Q.E.D.) 

 

Proof of Proposition 4.2.86: By putting (153) into (152) and then by considering the 
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first order optimality condition of (152), we obtain *
.3.III dp . For the second order 

optimality condition, we have 2 2 2 2 2( ) / 2[ ( ) ] / ( )LL p h g a aπ ω γ β βγ β∂ ∂ = − + − . 

Therefore, for Tactic III.3.d, ( )LLπ ω  is strictly concave in p if 2 2( )h g aγ β βγ+ > . 

Otherwise, if 2 2( )h g aγ β βγ+ ≤ , then ( )LLπ ω  is either 1) convex in p, and hence 

Tactic III.3.d does not have a finite optimum, or always non-positive. Therefore, 
2 2( )h g aγ β βγ+ >  is necessary for the existence of the local optimal solution for 

Tactic.3.d. Conditions in item (i) of Proposition 4.2.63 are the specific conditions for 

Tactic III.3.d. Then by considering *
.3.III de Tτ τ< < +  and *

.3.III dp c≥ , we obtain the 

necessary conditions in items (iii) and (iv) of Proposition 4.2.86, respectively.(Q.E.D.) 

 

Proof of Proposition 4.2.87: Consider two specific ω , ' ( , ', )e pω λ=  and 

" ( , ", )e pω λ= , where, p c> , 0e > , 0 ', " 1λ λ≤ ≤  ( ') 0LD ω > , ( ") 0LD ω > , 

( ') 0FV ω =  and ( ") 0FV ω < . By taking the first order partial derivative of (144) with 

respect to λ , we have ( ) / [ ( ) ]LL a p c m eπ ω λ μ∂ ∂ = − − + . For any given e > 0 and p > 

c, if * ( ) /p m a cμ> − + , then ( )LLπ ω  is increasing in λ . If * ( ) /p m a cμ< − + , 

( )LLπ ω  is decreasing in λ . If * ( ) /p m a cμ= − +  ( )LLπ ω  is independent of λ . 

Therefore, * 1λ =  if * ( ) /p m a cμ> − +  and * 0λ =  if * ( ) /p m a cμ> − + . As there 

are multiple λ  satisfy e Tλ <  and (1 )eλ τ− < , there exist multiple *λ  and 

*0 e T τ≤ < + . As * *e Tλ <  and * *(1 )eλ τ− <  for Tactic III.4, *0 e T≤ <  for 

* ( ) /p m a cμ< − + . Similarly, we have *0 e τ≤ <  for * ( ) /p m a cμ< − + . (Q.E.D.) 

 

Proof of Proposition 4.2.88: ( ) [ ( ) ] ( )F F LV x x a e g pω β α β α λ γ β= + + + − − + . If 

aβ α≤ , then ( )FV ω  is decreasing in λ  and 0 ' " 1λ λ≤ < ≤ . On the other hand, if 

aβ α≥ , then ( )FV ω  is increasing in λ  and 0 " ' 1λ λ≤ < ≤ . Therefore, if 

*[ ( ) ]( ) 0a p c m aμ β α− − + − ≤ , then ( ") ( ')LL LLπ ω π ω> . Else ( ') ( ")LL LLπ ω π ω> . As 

*( ) 0FV ω ≤  for Tactic III.4, we have *( ) 0FV ω <  for aβ α≤ . On the other hand, if 

aβ α≥ , then 0 " ' 1λ λ≤ < ≤ , and hence ( ') ( ")LL LLπ ω π ω> . As *( ) 0FV ω ≤  for 

Tactic III.4, if *( ) 0FV ω < , then *[ ( ) ]( ) 0a p c m aμ β α− − + − ≤ , and if *( ) 0FV ω =  
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then *[ ( ) ]( ) 0a p c m aμ β α− − + − ≥ . (Q.E.D.) 

 

Proof of Proposition 4.2.89: By putting * 0e =  into (144), we obtain  

( ) ( )( )LL Lx gp p c mTπ ω μτ= − − − − . By considering the first and second order 

derivatives of ( )LLπ ω  with respect to p, we have  

( ) / 2 ( )LL Ld dp x gc g p cπ ω = − − −  and 2 2( ) / 2LLd dp gπ ω = − . Therefore ( )LLπ ω  is 

strictly concave in p, and the optimal p for Tactic III.4.a is *
.4.III ap . Conditions aβ α≤ , 

*
.4.( ) 0F III aV ω <  and *

.4.( ) 0L III aD ω >  are necessary for Tactic III.4.a. As Lx gc> , 

*
.4.III ap c> . Then by considering * ( ) /p m a cμ> − + , we obtain item (ii) of 

Proposition 4.2.89. Finally, by putting (157) into (156), we obtain (158)  (Q.E.D.) 

 

Proof of Proposition 4.2.90: By taking the first order and second order partial 

derivatives of (159) with respect to e, we obtain ( ) / ( ) 2LL e a p c m heπ ω∂ ∂ = − + −  and 

2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, for Tactic III.4.b, ( )LLπ ω∂  is a strictly concave 

function of e. Then by considering ( ) / 0LL eπ ω∂ ∂ = , we obtain (160). (Q.E.D.) 

 

Proof of Proposition 4.2.91: Similarly, the local optimum for Tactic III.4.b is an 

interior point solution, if it exists. Conditions aβ α≤ , *
.4.( ) 0F III bV ω <  and 

*
.4.( ) 0L III bD ω >  are the specific conditions for Tactic III.4.b. By putting (160) into 

(159), and then by considering the first and second order derivatives of ( )LLπ ω  with 

respect to p, we obtain 2( ) / {2 ( } (4 )( )} / (2 )LL Lp h x gc am hg a p c hπ ω∂ ∂ = − + − − −  and 

2 2 2( ) / (4 ) / (2 )LL p hg a hπ ω∂ ∂ = − − . If 24hg a≤ , then ( )LLπ ω  is either 1) convex in p 

and hence the local optimum for Tactic III.4.b is infinite, or 2) always non-positive. If 
24hg a> , ( )LLπ ω  is strictly concave in p. Therefore, 24hg a>  is necessary for 

having a local optimum for Tactic III.4.b being finite. By the first order optimality 

condition, ( )LLπ ω  is uniquely maximized at *
.4.III bp . By putting *

.4.III bp  into (159), 

we obtain *
.4.III be . By considering *

.4.III be T<  and *
.4. ( ) /III bp m a cμ> − + , we obtain 

items (iii) and (iv) of Proposition 4.2.91, respectively. Finally, by putting *
.4.III bω  into 

(156), we obtain (162). (Q.E.D.) 
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Proof of Proposition 4.2.92: By putting * 0e =  into ( ) 0FV ω = , we obtain *
.4.III cp . 

Then by putting (163) into (156), we obtain (164). Conditions aβ α≤  and 
*

.4.( ) 0L III cD ω >  are the specific conditions for Tactic III.4.c. Finally, by considering 

*
.4. ( ) /III cp m a cμ< − + , we obtain item (ii) of Proposition 4.2.92.   (Q.E.D.) 

 

Proof of Proposition 4.2.93: By putting * 0λ =  into ( ) 0FV ω = , we obtain (166). 

As 0gγ β+ >  and cα > , *
.4. ( )III de p  is increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.94: Consider the first order optimality condition of (165), 

we obtain *
.4.III dp . For the second order optimality condition, we have 

2 2 2 2 2( ) / 2[ ( ) ] /LL p h g gπ ω γ β α α∂ ∂ = − + + . Therefore, ( )LLπ ω  is strictly concave in p 

for Tactic III.4.d, and *
.4.III dp  is the unique local optimum for Tactic III.4.d. 

Conditions in item (i) of Proposition 94and item (iii) of Proposition 94 are the specific 

conditions for Tactic III.4.d. As Lx gc>  and Fx cγ> , *
.4.III dp c> . By considering 

*
.4.0 III de τ< < , we obtain item (ii) of Proposition 80.  (Q.E.D.) 

 

Proof of Proposition 4.2.95: By putting *
.4. 0III ee =  into ( ) 0FV ω = , we obtain 

*
.4.III ep . Then by putting (157) into (144), we obtain (158). Conditions aβ α≥  and 

*
.4.( ) 0L III eD ω >  are the basic conditions for Tactic III.4.e. As Lx gc>  and Fx cγ> , 

*
.4.III ep c> . Finally, by considering * ( ) /p m a cμ> − + , we obtain item (ii) of 

Proposition 95.   (Q.E.D.) 

 

Proof of Proposition 4.2.96: By putting * 1λ =  into ( ) 0FV ω = , we obtain (172). As 

0gγ β+ >  and 0aβ > , *
.4. ( )III fe p  is strictly increasing in p. (Q.E.D.) 

 

Proof of Proposition 4.2.97: Consider the first order optimality condition of (171), 

we obtain *
.4.III fp . For the second order optimality condition, we have 

2 2 2 2( ) / 2[ ( ) ] / ( )LL p h g a aπ ω γ β βγ β∂ ∂ = − + − . Therefore, for Tactic III.4.f, ( )LLπ ω  is 
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strictly concave in p if 2( )h g aγ β β+ > . Otherwise, if 2( )h g aγ β β+ ≤ , then 

( )LLπ ω  is either 1) convex in p and Tactic III.4.f does not have a finite optimum, or 2) 

is always non-positive. Therefore, 2( )h g aγ β β+ >  is necessary for a finite *
.4.III fω  

which satisfies *
.4.( ) 0LL III fπ ω > . Conditions in item (i) and item (iv) of Proposition 97 

are the specific conditions for Tactic III.4.f. Then by considering *
.4.0 III fe T< < , we 

obtain items (iii) of Proposition 97. Finally, by putting (173) into (171), we obtain 

(174). (Q.E.D.) 

 

Proof of Proposition 4.2.98: By putting *
.4. 0III ge =  into (156), we obtain  

( ) ( )( )LL Lx gp p c mTπ ω μτ= − − − − . By considering the first and second order 

derivatives of ( )LLπ ω  with respect to p, we have ( ) / 2 ( )LL Ld dp x gc g p cπ ω = − − −  

and 2 2( ) / 2LLd dp gπ ω = − . Therefore ( )LLπ ω  is strictly concave in p, and the 

optimal p for Tactic III.4.g is *
.4.III gp . Conditions aβ α≥ , *

.4.( ) 0F III gV ω <  and 

*
.4.( ) 0L III gD ω >  are basic condition for Tactic III.4.g. As Lx gc> , *

.4.III gp c> . Then 

by considering * ( ) /p m a cμ< − + , we obtain item (ii) of Proposition 98. Finally, by 

putting (175) into (156), we obtain (176).  (Q.E.D.) 

 

Proof of Proposition 4.2.99: By taking the first order and second order partial 

derivatives of (159) with respect to e, we obtain ( ) / 2LL e heπ ω μ∂ ∂ = −  and 

2 2( ) / 2 0LL e hπ ω∂ ∂ = − < . Therefore, ( )LLπ ω  is a strictly concave function of e for 

Tactic III.4.h. Then by considering ( ) / 0LL eπ ω∂ ∂ = , we obtain (178). (Q.E.D.) 

 

Proof of Proposition 4.2.100: By putting (178) into (177), and then by considering 

the first and second order derivatives of ( )LLπ ω  with respect to p, we obtain 

( ) / 2 ( )LL Lp x gc g p cπ ω∂ ∂ = − − −  and 2 2( ) / 2 0LL p gπ ω∂ ∂ = − < . Therefore, for Tactic 

III.4.h, ( )LLπ ω  is a strictly concave function of p. By the first order optimality 

condition, ( )LLπ ω  is uniquely maximized at *
.4.III hp . Conditions aβ α≥ , 

*
.4.( ) 0F III hV ω <  and *

.4.( ) 0L III hD ω >  are the specific conditions for Tactic III.4.h. Then 
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by considering *
.4.III he T<  and *

.4. ( ) /III hp m a cμ> − + , we obtain items (ii) and (iii) of 

Proposition 4.2.99, respectively. Finally, by putting *
.4.III hω  into (156), we obtain 

(180). (Q.E.D.) 

 

Proof of Proposition 4.2.101: Clearly, *
.4. 0III kλ =  and *

.4. ( ) /III kp m a cμ= − + . As 

*
.4. 0III kλ = , which is the same as Tactic III.4.h, the local optimal advertising effort is 

given by *
.4. / (2 ) 0III ke hμ= > . By considering *

.4.III ke τ< , we obtain item (ii) of 

Proposition 4.2.101. By considering *
.4.III kp c> , we obtain item (iii) of Proposition 

4.2.101. By considering *
.4.( ) 0F III kD ω = , or equivalently *

.4.( ) 0F III kV ω ≤ , we obtain 

item (iv) of Proposition 4.2.101. Finally, by putting (181) into (156), we obtain (182).

 (Q.E.D.)
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Appendix 3: Extended model’s results (summary) 

Table A-1 Summary of the local optimal advertising and pricing strategies with double linear loss for Tactic I 
 
Tactic Local optimal advertising and pricing 

strategy 

Necessary conditions for the existence of the local 

optimum 

Profit of the company 

I.1.a *
.1.I ae T τ= +  

*
.1. / ( )I a T Tλ τ= +  

*
.1.

(1 ) (1 )
2I a

B a T bp c
G

β α τ+ + + −
= +  

(i) *
.1.( ) 0L I aD ω >  and *

.1.( ) 0F I aD ω > ;  

(ii) 0G > ; and  

(iii) (1 ) (1 ) 0B a T bβ α τ+ + + − > . 

2
2[ (1 ) (1 ) ] ( )

4 (1 )
B a T b h T

G b
β α τ τ

β
+ + + −

− +
+

 

I.1.b *
.1. (1 )( ) /I b Ie a B N Yβ τ= + −  

* *
.1. .1.1 /I b I beλ τ= −  

*
. . 2 ( )(1 ) /I i b Ip c h B N b Yτ β= + − +  

(i) 0IN ≥ , *
.1.( ) 0L I bD ω >  and *

.1.( ) 0F I bD ω > ;  

(ii) 0Y > ; and 

(iii) ( ) / [ (1 )] IB Y T a Nτ β τ> + + + . 

2( ) /Ih B N Yτ−  
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I.1.c *
.1.

(1 )( )I
I c

b B N Te
Z

α − +
= , 

*
.1. (1 )( )I c

I

TZ
b B N T

λ
α

=
− +

 

*
.1.

2 ( )(1 )I
I c

h B N T bp c
Z

β+ +
= +  

(i) 0IN ≤ , *
.1.( ) 0L I cD ω >  and *

.1.( ) 0F I cD ω > ;  

(ii) 0Z > ; and 

(iii) ( ) / [ (1 )] IB Z T b N Tτ α> + − − . 

2( ) /Ih B N T Z+  

I.2.a *
.2.I ae T=  

*
.2. 1I aλ =   

*
.2. [ (1 ) ] / (2 )I ap c B a T Gβ= + + +  

(i) *
.2.( ) 0L I aD ω >  and *

.2.( ) 0F I aD ω > ;  

(ii) 0G > ; and  

(iii) (1 ) 0B a Tβ+ + > . 

2 22 (1 )
4 (1 )

B Ba T YT
G b

β μτ
β

+ + −
−

+
 

I.2.b *
.2. (1 ) /I be a B Yβ= +  

*
.2. 1I bλ =   

*
.2. 2 (1 ) /I bp hB b Y cβ= + +  

(i) 0IN > , *
.2.( ) 0L I bD ω >  and *

.2.( ) 0F I bD ω > ;  

(ii) 0Y > ; (iii) / [ (1 )]B TY a β> + ; and  

(iv) / (2 )IB Y hNμ≥ . 

2 /hB Y μτ−  

I.2.c *
.2. (1 ) / (2 )I c Ie a hNμ β= +  

*
.2. 1I cλ =  

*
.2. (1 ) /I c Ip c b Nμ β= + +  

(i) 0IN > , *
.2.( ) 0L I cD ω >  and *

.2.( ) 0F I cD ω > ;  

(ii) (1 ) 2 Ia hN Tμ β+ > . 

2

24I I

B Y
N hN
μ μ μτ− −  
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I.2.d *
.2.

(1 )[2 ( ) (1 )]
2 2

I
I d

b h B N T be
hZ h

α αμ μ− + + −
= +

* *
.2. .2./I d I dT eλ =  

*
.2.

(1 )[2 ( ) (1 )]I
I d

b h B N T bp c
Z

β αμ+ + + −
= +  

(i) *
.2.( ) 0L I dD ω >  and *

.2.( ) 0F I dD ω > ; (ii) 0Z > ; 

(iii) *
.2.I dT e T τ< < + ;(iv) 

2 ( ) (1 ) 0Ih B N T bαμ+ + − > ; and (v) 

[2 ( ) (1 )]I IN h B N T b Zαμ μ+ + − ≤ . 

2
2( ) ( )[ (1 ) ] [ ]

1
IG p c p c B b e TN h T

b
α μ μ τ μ

β
− − + − + − +

− − + −
+

 

I.3.a *
.3.I ae τ=  

*
.3. 0I aλ =  

*
.3. [ (1 ) ] / (2 )I ap c B b Gα β τ= + + −  

(i) *
.3.( ) 0L I aD ω >  and *

.3.( ) 0F I aD ω > ; (ii) 0G > ; 

and (iii) (1 ) 0B bα τ+ − > . 

2 22 (1 )
4 (1 )

B B b Z mT
G b
α τ τ

β
+ − −

−
+

 

I.3.b *
.3.

(1 )[2 ( ) (1 )]
2 4

I
I b

a h B N am me
hY h

β τ β+ − + +
= +

* *
.3. .3.1 /I b I beλ τ= −  

*
.3. (1 )[2 ( ) (1 )] /I b Ip c b h B N am Yβ τ β= + + − + +  

(i) *
.3.( ) 0L I bD ω >  and *

.3.( ) 0F I bD ω > ; (ii) 0Y > ; 

(iii) (1 ) / (2 )IB N am hτ β> − + ; (iv) 

2 (1 ) 2 (1 )
(1 ) (1 )
mG b YT mG bB

a a
τ β τ β

β β
Θ − + +Θ − +

< <
+ +

; and (v) 

[2 ( ) (1 )]I Ih B N am N mYτ β− + + > − . 

2 2

2

[2 ( ) (1 )] ( )
4 4

Ih B N am mm T
h Y h

τ β τ− + +
− + +  

I.3.c *
.3. (1 ) / ZI ce B bα= −  

*
.3. 0I cλ =  

*
.3. 2 (1 ) /I cp c hB b Zβ= + +  

(i) 0IN < , *
.3.( ) 0L I cD ω >  and *

.3.( ) 0F I cD ω > ; (ii) 

0Z > ; (iii) Z/[ (1 )]B bτ α> − ; and (iv) 

/ (2 )IB mZ hN> − . 

2 /hB Z mT−  
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I.3.d *
.3. ( 1) / (2 )I d Ie m b hNα= −  

*
.3. 0I dλ =  

*
.3. (1 ) /I d Ip c m b Nβ= − +  

(i) 0IN < , *
.3.( ) 0L I dD ω >  and *

.3.( ) 0F I dD ω > ; and 

(ii) ( 1) 2 Im b hNα τ− < . 

2 2 2

2

(1 ) 4 [ (1 ) ]
4

I

I

m b hm Gm b BN mT
hN

α β− − + +
−  

I.4.a *
.4. 0I ae =  

*
.4. 0I aλ =  

*
.4. / (2 )I ap B G c= +  

(i) *
.4.( ) 0L I aD ω >  and *

.4.( ) 0F I aD ω > ; (ii) 0G > ; 

and (iii) 0B > . 

2

4 (1 )
B mT

G b
μτ

β
− −

+
 

I.4.b *
.4.

(1 ) 2 (1 )
I b

a B mG be
Y

β β+ + +
=  

*
.4. 1I bλ =  

*
.4.

[2 (1 )](1 )
I b

hB am bp c
Y
β β+ + +

= +  

(i) *
.4.( ) 0L I bD ω >  and *

.4.( ) 0F I bD ω > ; (ii) 0Y > ; 

(iii) (1 ) / (2 )B am hβ> − +  (condition for p c> ); 

(iii) 2 (1 ) 2 (1 )
(1 ) (1 )

mG b TY mG bB
a a

β β
β β

− + − +
< <

+ +
; and (iv) 

2 IhN B Y mμ> − Θ . 

2 2(1 ) (1 )hB Bam m G b mT
Y
β β μτ− + + +

− −  

I.4.c *
.4. [2 (1 ) (1 ) ] /I ce G b b B Zμ β α= + + −

*
.4. 0I cλ =  

*
.4. (1 )[2 (1 )] /I cp b hB b Z cβ αμ= + + − +  

(i) *
.4.( ) 0L I cD ω >  and *

.4.( ) 0F I cD ω > ; (ii) 0Z > ; 

(iii) 2 (1 ) 0hB bαμ+ − > ; (iv) 

0 2 (1 ) (1 )G b b B Zμ β α τ< + + − < ; and (v) 

2 IhBN Zmμ< Θ − . 

2 /hB Z mT−  
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Table A-2 Summary of the local optimal advertising and pricing strategies for Tactic II 

Tactic Local optimal advertising and pricing strategy Necessary conditions for the existence of the local optimum 

II.1.a *
.1.II ae T τ= + , *

.1. / ( )II a T Tλ τ= + , and *
.1. ( ) / (2 )II a Fp x cατ γ γ= + + . 

* 2 2
.1.( ) ( ) / (4 ) ( )LL II a Fx c h Tπ ω γ ατ γ τ= − + − +  

*
.1.( ) 0L II aV ω <  and *

.1.( ) 0F II aD ω > . 

II.1.b *
.1. 2

( )
4
F

II b
x c Te

h
α γ α

γ α
− −

=
−

, 
2

*
.1.

(4 )
( )II b

F

T h
x c T

γ αλ
α γ α

−
=

− −

and *
.1. 2

2 ( )
4
F

II b
h x c Tp c

h
γ α

γ α
− −

= +
−

. 

2
*

.1. 2

( )( )
4

F
LL II b

h x c T
h
γ απ ω
γ α
− −

=
−

 

(i) *
.1.( ) 0L II bV ω <  and *

.1.( ) 0F II bD ω > ; (ii) 24hγ α> ; and (iii) 

2[4 ( ) ] /Fx c h Tγ γ τ α τ α− > + − . 

II.2.a *
.2.II ae T= , *

.2. 1II aλ = , and *
.2. ( ) / (2 )II a Fp c x cγ γ= + − . 

* 2 2
.2.( ) ( ) / (4 )LL II a Fx c hTπ ω γ γ μτ= − − −  

*
.2.( ) 0L II aV ω <  and *

.2.( ) 0F II aD ω > . 

II.2.b *
.2. 2

2 ( )
4

F
II b

x c Te
h

γμ α γ α
γ α

+ − −
=

−
, 

2
*

.2.
(4 )

2 ( )II b
F

T h
x c T
γ αλ

γμ α γ α
−

=
+ − −

, and 

*
.2. 2

2 ( )
4

F
II b

h x c Tp c
h
γ α αμ
γ α

− − +
= +

−
. 

2 2
*

.2. 2

( ) ( )( ) ( )
4

F F
LL II b

h x c T x c T T
h

γ α αμ γ α γμπ ω μ τ
γ α

− − + − − +
= − +

−
 

(i) *
.2.( ) 0L II bV ω <  and *

.2.( ) 0F II bD ω > ; (ii) 24hγ α> ; and (iii) 

22 (2 ) 4 ( ) 2
F

hT h Tx cγ μ γ τ α τ γμγ
α α

− + − −
< − < . 
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II.3.a *
.3.II ae τ= , *

.3. 0II aλ = , and *
.3.

L F
II a

x bx bp
g b

α τ
γ

− −
=

−
. 

* * * 2 2
.3. .3. .3.( ) [ ]( ) ( )LL II a F II a II ax c p c p c h mTπ ω ατ γ γ τ= + − − − − − −  

(i) *
. .( ) 0F II iii aD ω > ; and (ii) ( )0 L Fx gc b x c b m

g b
γ α τ

γ α
− − − −

< <
−

. 

II.3.b 2
*

.3. 2 2

( )( ) ( ) ( 2 ) 2 ( )
2[ ( ) ]

F L
II b

a b g x c m b g a g a b a x gce
a h b g

γ γ γ τ α γ α γ γ
γ γ

+ − + − + + + − −
=

+ −
,

* *
.3. .3.1 /II b II beλ τ= − , and 

2
*

.3. 2 2

[ 2 ]( ) 2 ( ) ( )
2[ ( ) ]

F L
II b

a hb x c h x gc a am b gp c
a h b g

γ ατ τ γ
γ γ

+ − + − − − − −
= +

− −
. 

* * * * 2 *
.3. .3. .3. .3. .3.( ) ( )( ) ( ) ( )LL II b F II b II b II b II bx p p c h e m T eπ ω γ ατ τ= − + − − − + −  

(i) *
.3.( ) 0F II bD ω > ; (ii) 2 2( )a h b gγ γ> − ;  

(iii) 2( )( ) 2 ( ) (2 )( )F La b g x c a x gc h m b gγ γ ατ γ τ γ+ − + > − + − − ;  

(iv) 2[ 2 ]( ) 2 ( ) ( )F La hb x c h x gc a am b gγ ατ τ γ+ − + − − − > − ; and  

(v) 
2 2

2 [2 2 ( ) ( )][ 2 ]( ) 2 ( )F L
m a h b g a b ga hb x c h x gc a γ γ α γγ ατ τ

α
− − − −

+ − + − − − < . 

II.3.c *
.3.II ce τ= , *

.3. 0II cλ = , and *
.3. ( ) / (2 )II c Fp c x cγ ατ γ= + − + . 

* 2 2
.3.( ) ( ) / (4 )LL II c Fx c h mTπ ω γ ατ γ τ= − + − −  

(i) *
.3.( ) 0L II cV ω <  and *

.3.( ) 0F II cD ω > ; and (ii) 

2 /Fx c mγ γ α ατ− > − . 

II.3.d * 2
.3. ( ) / (4 )II d Fe x c hα γ γ α= − − , *

.3. 0II dλ = , and  

* 2
.3. 2 ( ) / (4 )II d Fp h x c h cγ γ α= − − + . 

* 2 2
.3.( ) ( ) / (4 )LL II d Fh x c h mTπ ω γ γ α= − − −  

(i) *
.3.( ) 0L II dV ω <  and *

.3.( ) 0F II dD ω > ; (ii) 24hγ α> ; (iii) 

2(4 ) /Fx c hγ τ γ α α− > − ; and (iv) 2(4 ) / (2 )Fx c m h hγ γ α α− > − . 

II.3.e *
.3. / (2 )II ee m h= , *

.3. 0II eλ = , and *
.3. /II ep m cα= + . 

* 2 2
.3.( ) ( ) / (4 )LL II e Fh x c h mTπ ω γ γ α= − − −  

(i) *
.3.( ) 0F II eD ω > ; (ii) 2h mτ < ; and 

(iii) 2( ) ( ) [ 2 (1 )] / (2 )L Fx gc b x c m b h b hα α γ α− − − ≤ + − . 
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II.4.a *
.4. 0II ae = , *

.4. 0II aλ = , and *
.4. ( ) / ( )II a F Lp bx x b gγ= − − . 

* * *
.4. .4. .4.( ) ( )( )LL II a F II a II ax p p c mTπ ω γ μτ= − − − −  

(i) *
.4.( ) 0F II aD ω > ; and (ii) F Lbx x mc c

b g
μ

γ α
− −

< < +
−

. 

II.4.b 2
*

.4. 2 2

( )( ) ( ) 2 ( )
2[ ( ) ]

F L
II b

a b g x c m b g a x gce
a h b g

γ γ γ γ
γ γ

− − + − − −
=

+ −
, *

.4. 1II bλ = , and 

2
*

.4. 2 2

[ 2 ( )]( ) [2 ( ) ]( )
2[ ( ) ]

F L
II b

a hb b g x c h x gc am b gp c
a h b g

γ γ γ
γ γ

+ − − − − + −
= +

+ −
. 

* * * * 2 *
.4. .4. .4. .4. .4.( ) ( )( ) ( ) ( )LL II b F II b II b II b II bx p p c h e m T eπ ω γ τ= − − − − + −  

(i) *
.4.( ) 0F II bD ω > ;  

(ii) 20 ( )( ) ( ) 2 ( )F La b g x c m b g a x gc Tγ γ γ γ< − − + − − − < ; and 

(iii) 
2

2 2

[ 2 ( )]( ) [2 ( ) ]( )0
2[ ( ) ]

F La hb b g x c h x gc am b g m
a h b g

γ γ γ μ
γ γ α

+ − − − − + − −
< <

+ −
. 

II.4.c *
.4. 0II ce = , *

.4. 0II cλ = , and *
.4. ( ) / (2 )II c Fp c x cγ γ= + − . 

* 2
.4.( ) ( ) / (4 )LL II c Fx c mTπ ω γ γ μτ= − − −  

(i) *
.4.( ) 0L II cV ω <  and *

.4.( ) 0F II cD ω > ; and (ii) 

2 ( ) /Fx c mγ γ μ α− > − . 

II.4.d *
.4. 2

( ) 2
4
F

II d
x ce

h
α γ γμ

γ α
− +

=
−

, *
.4. 0II dλ = , and *

.4. 2

2 ( )
4
F

II d
h x cp c

h
γ αμ

γ α
− +

= +
−

. 

2 2
*

.4. 2

[2 ( ) ]( )
4 (4 ) 4

F
LL II d

h x c mT
h h h

γ αμ μπ ω μτ
γ α

− +
= + − −

−
. 

 

(i) *
.4.( ) 0L II dV ω <  and *

.4.( ) 0F II dD ω > ; (ii) 24hγ α> ; (iii) 

2(4 ) /Fx c hγ τ γ α α− > − ; and (iv) 

2[ (4 ) 4 ] / (2 )Fx c m h h hγ γ α γμ α− > − − . 

II.4.e *
.4. / (2 )II ee m h= , *

.4. 0II eλ = , and *
.4. ( ) /II ep m cμ α= − + . 

2 2 2
*

.4. 2

( )[2 ( ) ] ( ) (4 )( )
2 4 4

F
LL II e

m h x c m h mT
h h h

μ γ αμ μ γ α μπ ω μτ
α α

− − + − −
= − − − +  

(i) *
.4.( ) 0F II eD ω > ; (ii) 2m hμ τ< < ; and 

(iii) ( ) ( ) [ 2 ( )( )] / (2 )L Fx gc b x c bm h b g m hγ α γ μ α− − − ≤ + − − . 
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Table A-3 Summary of the local optimal advertising and pricing strategies for Tactic III 

 
Tactic Local optimal advertising and pricing strategy Necessary conditions for the existence of the local optimum 

III.1.a *
.3.III ae T τ= + , *

.3. / ( )III a T Tλ τ= + , and 

*
.3. ( ) / (2 )III a Lp x gc aT g c= − + + . 

* 2 2
.1.( ) ( ) / (4 ) ( )LL III a Lx gc aT g h Tπ ω τ= − + − +  

aβ α≤ , *
.1.( ) 0F III aV ω <  and *

.1.( ) 0L III aD ω > . 

III.1.b * 2
.1. ( ) / (4 )III b Le a x gc a hg aτ= − − − , *

.1.
( ) 4

( )
L

III b
L

a x gc hg
a x gc a

τλ
τ

− −
=

− −
, and  

* 2
.1. 2 ( ) / (4 )III b Lp c h x gc a hg aτ= + − − − . 

* 2 2
.1.( ) ( ) / (4 )LL III b Lh x gc a hg aπ ω τ= − − −  

(i) aβ α≤ , *
.1.( ) 0F III bV ω <  and *

.1.( ) 0L III bD ω > ; (ii) 24hg a> ; (iii) 

2(4 ) 4Lx gc T hg a hgτ− ≥ − + ; and (iv) Lx gc aτ− > . 

III.1.c *
.1.III ce T τ= + , *

.1. / ( )III c T Tλ τ= + , and 

*
.1.

F L
III c

x x a Tp
g

β ατ β
γ β

+ + +
=

+
. 

* * * 2
.1. .1. .1.( ) ( )( ) ( )LL III c L III c III cx gp aT p c h Tπ ω τ= − + − − +  

aβ α≥  and *
.1.( ) 0L III cD ω > . 
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III.1.d *
.1. 2 2

2 ( ) ( )( )
2[ ( ) ]

L F
III d

a x gc a a g x ce
h g a

βγ τ γ β γ ατ
γ β βγ

− − − + − +
=

+ −
, 

* *
.1. .1.1 /III d III deλ τ= − , and 

2
*

.1. 2 2

2 ( )( ) [ 2 ( )]( )
2[ ( ) ]

L F
III d

h g x gc a a h g x cp c
h g a

β γ β τ β γ β γ ατ
γ β βγ

+ − − − − + − +
= +

+ −
. 

* * * * 2
.1. .1. .1. .1.( ) ( )( ) ( )LL III d L III d III d III dx gp ae a p c h eπ ω τ= − + − − −  

(i) aβ α≥  and *
.1.( ) 0L III dD ω > ; (ii) 2 2( )h g aγ β βγ+ > ;  

(iii) 
2 22 ( ) ( )( ) 2( )[ ( ) ]L Fa x gc a a g x c T h g aβγ τ γ β γ ατ τ γ β βγ− − − + − + > + + − ; 

(iv) 22 ( )( ) [ 2 ( )]( )L Fh g x gc a a h g x cβ γ β τ β γ β γ ατ+ − − > − + − + . 

III.2.a *
.2.III ae T= , *

.2. 1III aλ = , and *
.2. ( ) / (2 )III a Lp x gc aT g= + + . 

* 2
.2.( ) ( ) / (4 )LL III a Lx gc aT g hTπ ω μτ= − + − −  

(i) aβ α≤ , *
.2.( ) 0F III aV ω <  and *

.2.( ) 0L III aD ω > ; and 

(ii) 2 /Lx gc g a aTμ− > − . 

III.2.b * 2
.2. ( ) / (4 )III b Le a x gc hg a= − − , *

.2. 1III bλ = , and 

* 2
.2. 2 ( ) / (4 )III b Lp c h x gc hg a= + − − . 

* 2 2
.2.( ) ( ) / (4 )LL III b Lh x gc hg aπ ω μτ= − − −  

(i) aβ α≤ , *
.2.( ) 0F III bV ω <  and *

.2.( ) 0L III bD ω > ; (ii) 24hg a> ; 

(iii) 2(4 ) /Lx gc T hg a a− > − ; and (iv) 2(4 ) / (2 )Lx gc hg a ahμ− > − . 

III.2.c *
.2.III ce T= , *

.2. 1III cλ = , and *
.2.

F L
III c

x x a Tp
g

β β
γ β
+ +

=
+

. 

* * * 2
.2. .2. .2.( ) ( )( )LL III c L III c III cx gp aT p c hTπ ω μτ= − + − − −  

(i) aβ α≤  and *
.2.( ) 0L III cD ω > ; and  

(ii) ( ) ( ) /F Lx c x gc g a a Tγ β μ γ β β− + − < + − . 
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III.2.d 2
*

.2. 2 2

( )( ) ( ) 2 ( )
2[ ( ) ]

L F
III d

g x gc aT g g x c Te
h g g

α γ β μ γ β α γ α
γ β α

− − + + + − − −
=

+ +
, 

* *
.2. .2./III d III dT eλ = , and 

2
*

.2. 2 2

[ 2 ( )]( ) 2 ( )( ) ( )
2[ ( ) ]

L F
III d

h g x gc aT h g x c T gp c
h g g

α β γ β γ β γ α αμ γ β
γ β α

+ + − + + + − − + +
= +

+ +
.

* * * 2 *
.2. .2. .2. .2.( ) ( )( ) ( )LL III d F III d III d III dx aT gp p c he T eπ ω μ τ= + − − − − + −

(i) aβ α≤  and *
.2.( ) 0L III dD ω > ; (ii) *

.2.III dT e T τ< < + ; and (iii) 

*
.2. /III dp a cμ> + . 

III.2.e *
.2.III ee T= , *

.2. 1III eλ = , and *
.2.

F L
III e

x x a Tp
g

β β
γ β
+ +

=
+

. 

* * * 2
.2. .2. .2.( ) ( )( )LL III e L III e III ex gp aT p c hTπ ω μτ= − + − − −  

(i) aβ α≥  and *
. .( ) 0L III ii eD ω > ; and 

(ii) ( ) ( ) /F Lx c x gc g a a Tγ β μ γ β β− + − > + − . 

III.2.f *
.2. 2

[ ( )]
2[ ( )]

F L
III f

a x c x gce
a h g
γ β
β γ β
− + −

=
− +

, *
.2. 1III fλ = , and 

2
*

.2. 2

[ 2 ( )]( ) 2 ( )( )
2( )[ ( )]

F L
III f

a h g x c h g x gcp c
g a h g

β γ β γ β γ β
γ β β γ β

− + − − + −
= +

+ − +
. 

* * * * * 2
.2. .2. .2. .2. .2.( ) ( )( ) ( )LL III f F III f III f III f III fx ae gp p c h eπ ω μτ= + − − − −  

(i) aβ α≥  and *
.2.( ) 0L III fD ω > ; (ii) 2( )h g aγ β β+ > ;  

(ii) 2( ) 2 [ ( )] /F Lx c x gc T a h g aγ β β γ β− + − > − + ;  

(iii) 
2

2

[ 2 ( )]( ) 2 ( )( )

2 ( )[ ( )] / .
F La h g x c h g x gc

g a h g a

β γ β γ β γ β

μ γ β β γ β

− + − − + −

> + − +
 

III.2.g *
.2.III ge T= , *

.2. 1III gλ = , and *
.2. ( ) / (2 )III g Lp x gc aT g= + + . 

* 2
.2.( ) ( ) / (4 )LL III g Lx gc aT g hTπ ω μτ= − + − −  

(i) aβ α≥ , *
.2.( ) 0F III gV ω <  and *

.2.( ) 0L III gD ω > ; and 

(ii) 2 /Lgc aT x gc g a aTμ− < − < − . 
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III.2.h *
.2. (2 )III he hμ= , *

.2. 2 /III h hTλ μ= , *
.2. ( ) / (2 )III h Lp x gc aT g= + + . 

2 2
*

.2.
( )( ) ( )

4 4
L

LL III h
x gc aT T

g h
μπ ω μ τ− +

= + − +  

(i) aβ α≥ , *
.2.( ) 0F III hV ω <  and *

.2.( ) 0L III hD ω > ; (ii) 

2 2 ( )hT h Tμ τ< < + ; and (iii) 2Lx gc g aTμ− < − . 

III.2.k *
.2. / (2 )III ke hμ= , *

.2. 0III kλ = , *
.2. /III kp a cμ= + . 

2 2
*

.2. 2

( ) (4 )( )
4

F
LL III k

x gc hg a
a ha

μ μπ ω μτ− −
= − −  

(i) *
.2.( ) 0L III kD ω > ; (ii) 2hT μ≤ ; and 

(iii) 2( ) [2 ( ) ] / (2 )F Lx c x gc h g a ahγ β μ γ β β− + − ≤ + − . 

III.3.a *
.3.III ae τ= , *

.3. 0III aλ = , and *
.3. ( ) / (2 )III a Lp x gc g c= − + . 

* 2 2
.3.( ) ( ) / (4 )LL III a Lx gc g h mTπ ω τ= − − −  

aβ α≤ , *
.3.( ) 0F III aV ω <  and *

.3.( ) 0L III aD ω > . 

III.3.b *
.3. 2

2 ( )
4

L
III b

gm a x gc ae
hg a

τ+ − −
=

−
, * *

.3. .3.1 /III b III beλ τ= − , and 

*
.3. 2

2 ( )
4

L
III b

h x gc a amp c
hg a

τ− − +
= +

−
. 

2 2
*

.3. 2

[2 ( ) ]( ) ( )
4 (4 ) 4
L

LL III b
h x gc a am m m T

h hg a h
τπ ω τ− − +

= + − +
−

 

(i) aβ α≤ , *
.3.( ) 0F III bV ω <  and *

.3.( ) 0L III bD ω > ; (ii) 24hg a> ;  

(iii) 2(4 2 ) / [(4 ) 4 2 ] /Lhg gm a x gc hg a T hg gm aτ τ− < − < − + − ; 

and  (iv) / (2 )Lx gc a am hτ− > − . 

III.3.c *
.3.III ce τ= , *

.3. 0III cλ = , and *
.3.

F L
III c

x xp
g

β ατ
γ β
+ +

=
+

. 

* * * 2
.3. .3. .3.( ) ( )( )LL III c L III c III cx gp p c h mTπ ω τ= − − − −  

aβ α≥  and *
.3.( ) 0L III cD ω > . 
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III.3.d *
.3. 2 2

( )( ) ( ) ( )
2[ ( ) ]

F L
III d

a g x c a x gc a m ge
h g a

γ β γ ατ γ τ γ β
γ β βγ

− − + + − − + +
=

+ −
, 

* *
.3. .3.1 /III d III deλ τ= − , and 

2
*

.3. 2 2

[2 ( ) ]( ) 2 ( )( )
2[ ( ) ]

F L
III d

h g a x c h g x gc ap c
h g a

γ β β γ ατ β γ β τ
γ β βγ

+ − − + + + − −
= +

+ −
. 

* * * * * 2 *
.3. .3. .3. .3. .3. .3.( ) [ ( ) ]( ) ( ) ( )LL III d F III d III d III d III d III dx a e gp p c h e m T eπ ω τ τ= + − − − − − + −  

(i) 0aβ >  and *
.3.( ) 0L III dD ω > ; (ii) 2 2( )h g aγ β βγ+ > ; (iii) 

*
.3.III de Tτ τ< < + ; and (iv) *

.3.III dp c> . 

III.4.a *
.4. 0III ae = , *

.4. 0III aλ = , and *
.4. ( )(2g)III a Lp x gc= + . 

* 2
.4.( ) ( ) / (4 )LL III a Lx gc g mTπ ω μτ= − − −  

(i) aβ α≤ , *
.4.( ) 0F III aV ω <  and *

.4.( ) 0L III aD ω > ; and (ii) 

2 ( ) /Lx gc g m aμ− > − . 

III.4.b * 2
.4. [2 ( )] / (4 )III b Le gm a x gc hg a= + − − , *

.4. 1III bλ = , and  

* 2
.4. [2 ( ) ] / (4 )III b Lp h x gc am hg a c= − + − + . 

2 2
*

.4. 2

[2 ( ) ]( )
4 (4 ) 4

L
LL III b

h x gc am m mT
h hg a h

π ω μτ− +
= + − −

−
 

(i) aβ α≤ , *
.4.( ) 0F III bV ω <  and *

.4.( ) 0L III bD ω > ; (ii) 24hg a> ; 

(iii) 2[ (4 ) 2 ] /Lx gc T hg a gm a− < − − ; and (iv) 

2 2[( )(4 ) ] / (2 )Lx gc m hg a a m ahμ− > − − − . 

III.4.c *
.4. 0III ce = , *

.4. 0III cλ = , and *
.4.

F L
III c

x xp
g

β
γ β
+
+

. 

*
.4. 2

[ ( )]( )( )
( )

F L L F
LL III c

x c x gc x x g mT
g

γ β γπ ω μτ
γ β

− + − −
= − −

+
 

(i) aβ α≤  and *
.4.( ) 0L III cD ω > ;  

(ii) ( ) ( )( ) /F Lx c x gc g m aγ β γ β μ− + − < + − . 



214 

 

III.4.d 2
*

.4. 2 2

( )( ) ( ) 2 ( )
2[ ( ) ]

L F
III d

g x gc g g x ce
h g g

α γ β μ γ β α γ
γ β α

− − + + − −
=

+ +
, *

.4. 0III dλ = , 

and 
2

*
.4. 2 2

[ 2 ( )]( ) 2 ( )( ) ( )
2[ ( ) ]

L F
III d

h g x gc h g x c gp c
h g g

α β γ β γ β γ αμ γ β
γ β α

+ + − + + − + +
= +

+ +
.

* * * * 2 *
.4. .4. .4. .4. .4.( ) ( )( ) ( ) ( )LL III d L III d III d III d III dx gp p c h e e mTπ ω μ τ= − − − − − −

(i) aβ α≤  and *
.4.( ) 0L III dD ω > ; (ii) *

.4.0 III de τ< < ; and 

(iii) *
.4. ( ) /III dp m a cμ< − + . 

III.4.e *
.4. 0III ee = , *

.4. 0III eλ = , and *
.4.

F L
III e

x xp
g

β
γ β
+

=
+

. 

*
.4. 2

[ ( )]( )( )
( )

F L L F
LL III e

x c x gc x x g mT
g

γ β γπ ω μτ
γ β

− + − −
= − −

+
 

(i) aβ α≥  and *
.4.( ) 0L III eD ω > ; and 

(ii) ( ) ( )( ) /F Lx c x gc m g aγ β μ γ β− + − > − + . 

III.4.f *
.4. 2 2

2 ( ) ( )[ ( ) ]
2[ ( ) ]

L F
III f

a x gc g a x c me
h g

βγ γ β γ
γ β α βγ

− − + − +
=

+ +
, *

.4. 1III fλ = , and 

2
*

.4. 2 2

( )[2 ( ) ] [2 ( ) ]( )
2[ ( ) ]

L F
III f

g h x gc am h g a x cp c
h g a

β γ β γ β β γ
γ β βγ

+ − + + + − −
= +

+ −
.

* * * * * 2 *
.4. .4. .4. .4. .4. .4.( ) ( )( ) ( ) ( )LL III f L III f III f III f III f III fx ae gp p c h e m T eπ ω μτ= + − − − − − −  

(i) aβ α≥  and *
.4.( ) 0L III fD ω > ; (ii) 2 2( )h g aγ β βγ+ > ; (iii) 

*
.4.0 III fe T< < ; (iv) *

.4. ( ) /III fp m a cμ> − + . 

III.4.g *
.4. 0III ge =  *

.4. 0III gλ = , and *
.4. ( ) / (2 )III g Lp x gc g= + . 

* 2
.4.( ) ( ) / (4 )LL III g Lx gc g mTπ ω μτ= − − −  

(i) aβ α≥ , *
.4.( ) 0F III gV ω <  and *

.4.( ) 0L III gD ω > ; (ii) 

2 ( ) /Lx gc g m aμ− < − . 
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III.4.h *
.4. / (2 )III he hμ= , *

.4. 0III hλ = , and *
.4. ( ) / (2 )III h Lp x gc g= + . 

2 2
*

.4.
( )( )

4 4
L

LL III h
x gc mT

g h
μπ ω μτ−

= + − −  

(i) aβ α≥ , *
.4.( ) 0F III hV ω <  and *

.4.( ) 0L III hD ω > ; (ii) 2gμ τ< ; 

and (iii) 2 ( ) /Lx gc g m aμ− > − . 

III.4.k *
.4. / (2 )III ke hμ= , *

.4. 0III kλ = , and *
.4. ( ) /III kp m a cμ= − + . 

2
*

.4. 2

( )[ ( ) ( )]( )
4

F
LL III k

m a x gc g m mT
a h

μ μ μπ ω μτ− − − −
= + − −  

(I ) *
.4.( ) 0L III kD ω > ; (ii) 2hτ μ> ; (iii) mμ > ; and 

(iv) ( ) ( )( ) / / (2 )F Lx c x gc g m a hγ β γ β μ αμ− + − ≤ + − − . 
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