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Abstract 

 
 
  

Unit commitment (UC) represents an important optimization problem in power 

systems. The UC problem is to schedule the on and off statuses of the generating 

units over a time horizon such that the production cost is minimized and all 

operation constraints are satisfied. The UC problem is characterized by being 

large-scale, mixed-integer, complicated and highly constrained. These 

characteristics make the UC problem one of the most difficult optimization 

problems in power systems.  

 

Coal-fired thermal plants account for a significant percentage of emissions from 

generation plants. With the increasing environmental awareness, emission 

performance becomes an important part to power utilities. With regards to 

environmental protection, emissions from thermal plants can be included into the 

UC problem to form a bi-objective UC problem considering both cost and 

emission objective functions. The two objective functions are conflicting in nature. 

The bi-objective UC gives a set of Pareto-optimal or compromise solutions, and 

these solutions facilitate the decision making of power system operators on plant 

scheduling. Nevertheless, the bi-objective UC problem involves binary and 
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continuous control variables, non-linearity, bi-objectives and a lot of operating 

constraints. It is highly difficult to handle the bi-objective UC. 

 

In the literature, a lot of optimization techniques have been proposed to solve 

the UC problem. These techniques consist of deterministic approaches and 

computational intelligence algorithms. Deterministic methods include the priority 

list, dynamic programming, the branch-and-bound method, Lagrangian relaxation 

and mixed-integer programming. These methods may suffer from convergence 

problems. For example, the priority list approach is simple and fast, but it usually 

yields high production cost. The dynamic programming is flexible but suffers 

from the problem of high dimensionality. The Lagrangian relaxation method 

offers a faster solution; it may encounter numerical convergence problems. 

Recently, computational intelligence algorithms (CIAs) have been applied to cope 

with the UC problem, such as genetic algorithm (GA), simulated annealing (SA), 

evolutionary programming (EP), particle swarm optimization (PSO). CIAs are 

general-purpose stochastic optimization algorithms, and they offer great potential 

to attain global convergence, easy implementation and solution of complicated 

optimization problems. Nevertheless, CIAs are parameter-sensitive and 

computationally expensive. They often consume a considerable amount of 

computational time when dealing with large-scale UC problems.  

 

The UC problem is characterized by numerous operating constraints. These 
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constraints make the problem difficult to solve. As a result, constraint handling 

also represents a vital part in the UC problem. Currently, constraint handling on 

UC can be divided into penalty-based method and feasibility-based method. The 

penalty-based constraint handling method is used to help generating feasible unit 

schedules, and it does not guarantee feasible unit schedules in UC problems. In 

addition, the penalty approach needs to set an appropriate penalty factor. In 

different UC problems, the penalty factor is needed to be fine tuned again. The 

feasibility-based method always creates feasible solutions. However, the 

feasibility-based technique may require a large computational time.  

 

This thesis presents a novel method for solving the UC problem based on 

quantum-inspired evolutionary algorithm (QEA). The proposed method applies 

QEA to handle the unit-scheduling problem and the Lambda-iteration technique 

to solve the economic dispatch problem. The QEA method is based on the concept 

and principles of quantum computing, such as quantum bits, quantum gates and 

superposition of states. QEA employs quantum bit representation, which has 

better population diversity compared with other representations used in 

evolutionary algorithms, and uses quantum gate to drive the population towards 

the best solution. The mechanism of QEA can inherently treat the balance 

between exploration and exploitation and also achieve better quality of solutions, 

even with a small population. In addition, an effective constraint handling 

technique is developed to ensure that feasible and potential UC solutions are 
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produced in the optimization process.   

 

The proposed QEA-UC method is applied to systems with the number of 

generating units in the range of 10 to 100 in a 24-hour scheduling horizon and is 

compared to conventional methods in the literatures. Moreover, the proposed 

method is extended to solve a large-scale UC problem in which 100 units are 

scheduled over a 7-day horizon with unit ramp-rate limits considered. The 

application studies have demonstrated the superior performance and feasibility of 

the proposed algorithm. Furthermore, the proposed QEA-UC is modified to solve 

the bi-objective UC considering two conflicting objective functions, 24-hour 

horizon and 10 generating units. The simulation results have shown the potential 

of QEA-UC to solve bi-objective UC problem.  
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Chapter 1 Introduction 
 
 
 

1.1. Background and Motivation 
 

Unit commitment (UC) is an important optimization problem in power system 

operation. Its objective is to schedule the generating units online or offline over a 

scheduling horizon such that the power production cost is minimized with the load 

demand fully met and the operation constraints satisfied. In solving this problem, 

generator schedules are first found and their costs are evaluated through the 

economic dispatch calculation. The UC problem is highly difficult and 

combinatorial in nature, and it consists of many hard constraints. To show the 

complexity of the problem, different unit commitment scales are considered in 

Table 1.1. 

Table 1.1 Problem complexity vs. problem scales 

No. of Units Time Horizon Total Possible Combinations 

1 24 16,777,216 or 21x24 
3 24 4.72237E+21 
5 24 1.32923E+36 
7 24 3.74144E+50 
9 24 1.05312E+65 
10 24 1.76685E+72 
20 24 3.1217E+144 
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Therefore, the problem complexity exponentially rises as the problem scale 

increases.  

 

Coal-fired thermal plants give a significant percentage of emissions from 

generation plants. Nowadays, emission performance becomes increasingly 

important to power companies. To take emissions from power plants into account, 

emissions from thermal plants can be formulated into a bi-objective UC problem 

considering cost and emission objective functions. These two objective functions 

are conflicting in nature. The bi-objective UC gives a set of compromise solutions, 

which help power system operators on plant scheduling considering emissions. 

Because of the complicated problem features, such as mixed integer, bi-objectives 

and numerous operating constraints, the bi-objective UC is very difficult to solve.  
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1.2. Deterministic Approaches to Solving UC 
 

Conventionally, deterministic techniques are applied to deal with the UC 

problem. These techniques consist of the priority list [1], dynamic programming 

[2-4], Lagrangian relaxation [5, 6], mixed-integer programming [7] and the 

branch-and-bound method [8]. The priority list approach is simple and fast, but it 

usually yields high production cost. The dynamic programming is flexible but 

suffers from the problem of high dimensionality. The branch-and-bound method 

uses a linear function to represent the fuel consumption and time-dependent 

start-up cost and obtains the required lower and upper bounds. However, its 

computational time increases exponentially with the increment of the dimension 

of the UC problem. The mixed-integer programming method employs linear 

programming technique to solve and check for an integer solution. But it also 

suffers from an excessive computational time requirement. While the Lagrangian 

relaxation method offers a faster solution, it may encounter numerical 

convergence problems. Articifial intelligence method based on heuristic 

depth-first search method [9, 10] was also developed but it can be limited in its 

application to large-scale UC problem. 
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1.3. Computational Intelligence Algorithms for Solving 

UC 
 

Recently, computational intelligence algorithms (CIAs) have been successfully 

applied to solve the UC problem, such as genetic algorithm (GA) [11, 12], 

simulated annealing (SA) [13, 14, 15, 16], evolutionary programming (EP) [17], 

particle swarm optimization (PSO) [18], and hybrid methods [19]-[26]. These 

approaches are general-purpose stochastic optimization techniques, and they 

operate on a group of candidate solutions with different search mechanisms. 

These techniques have been reported to be capable of attaining global/near-global 

solution search. They have attracted much attention, owing to their great potential 

to escape from local convergence, easy implementation and accommodation of 

complex problem characteristics. Nevertheless, CIAs are parameter-sensitive and 

computationally expensive. They often require a considerable amount of 

computational time when solving the UC problem.  

 

In the following sections, an overview of some CIA-based techniques for 

coping with the UC problem is presented. 
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1.3.1. Particle Swarm Optimization 
 

PSO was introduced by Eberhart and Kennedy. It is an efficient, stochastic and 

population-based computational method [18, 35]. PSO starts by randomly 

initializing a group of candidate solutions, called particles. Each particle is 

evaluated by its fitness value and is governed by its velocity and position update 

equations. In PSO, particles converge under the influence of the global best 

particle and their best personal record. The PSO process stops when the 

pre-defined condition is met. On the other hand, the conventional PSO method 

may suffer from pre-mature convergence. 

 

A PSO approach [18] to solving the UC problem has been proposed to apply the 

discrete PSO to solve the binary unit scheduling and real-coded PSO to calculate 

the economic load dispatch problem. The effectiveness of this approach has been 

tested in a small UC test system of 10-unit and a scheduling period of 24-hour. 

The results obtained have been shown to be better than some conventional 

methods, like GA, EP, DP, and LR. The effectiveness of this approach, however, 

has not been demonstrated to handle large-scale UC problems. 
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1.3.2. Evolutionary Programming 
 

EP is a stochastic and population-based optimization algorithm based natural 

evolution [17, 36]. It starts by randomly initializing a population of candidate 

solutions or parents. Parents are evaluated by their fitness values. Off-springs are 

generated by mutating or altering their parents with respect to a Gaussian 

distribution. The population is evaluated and evolved through mutation, 

competition, and selection. The EP process terminates if the pre-set conditions are 

satisfied. 

 

An EP method [17] has been applied to tackle the UC problem. In this method, a 

unit schedule or a solution is coded as a string of symbols. A population of 

candidate solutions are randomly initialized and evolved through applying EP 

operators, such as fitness evaluation, mutation, competition, and selection. This 

EP method has been validated in UC test systems of up to 100 units with a 

scheduling horizon of 24 hours. This method has performed better than other 

conventional techniques in terms of the quality of solutions and computational 

time.  
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1.3.3. Genetic Algorithm 
 

GA is also a powerful, population-based and general-purpose stochastic 

optimization algorithm based on natural evolution [17], [37].  GA contains four 

genetic-inspired operators, namely mutation, crossover, inversion, and selection. 

In GA, each candidate is represented as a chromosome or a string of genes. A 

group of chromosomes are initialized randomly, and the chromosomes are 

evolved to explore and exploit the solution space by applying mutation, crossover, 

selection and inversion.  

 

Various GA-based techniques have been proposed to solve the UC problem, 

including a GA solution to the UC problem [11], solving the UC problem with a 

GA through a constraint satisfaction technique [12], and a UC problem by using 

GA based on unit characteristic classification [20]. 
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1.3.4. Simulated Annealing 
 

SA is a powerful and population-based stochastic optimization algorithm 

simulated as an annealing process [24]-[26], [38]. SA simulates an annealing 

process that starts from a high energy state and transits to a low energy state.  In 

the SA process, initial solutions and a high temperature are firstly created. The 

solutions are evaluated, disturbed and accepted based on the Boltzman function 

throughout the optimization process. The SA process stops if the per-set criteria 

are reached. Theoretically, SA can converge to a global optimum, but it demands a 

large computational time. 

 

Many SA-based approaches to dealing with the UC problem have been reported 

in the literature [13]-[16], [19], [24]-[26]. These approaches consist of UC by SA 

[13], an SA algorithm for UC [14], SA for the UC problem [15], and UC by an 

enhanced SA algorithm [16]. Hybrid SA methods have also been suggested, such 

as thermal generator scheduling using hybrid GA/SA approach [24], combined 

GA/SA/fuzzy set approach to short-term generation scheduling with take-or-pay 

fuel contract [25], and hybrid GA/SA approach to short-term 

multiple-fuel-constrained generation scheduling [26]. 
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1.4. Quantum-inspired Evolutionary Algorithm for 

Solving UC 
 

Quantum-inspired evolutionary computing represents a combination of 

evolutionary computation and quantum computing. Quantum computing is a 

branch of study on evolutionary computation and employs the certain principles 

of quantum mechanics, such as superposition, interference and uncertainty [27, 

28, 29, 30]. Based on the concept and principles of quantum computing, such as 

quantum bits (Q-bits), quantum gates (Q-gates) and superposition of states, Han 

and Kim [30] developed a quantum-inspired evolutionary algorithm (QEA), 

which can achieve a better balance between exploration and exploitation of the 

solution space and also obtain better solutions, even with a small population, 

compared with the conventional CIAs. The superior performance of QEA for 

combinatorial optimization problems was demonstrated in [30, 31].  

 

By the development of QEA and its promising capability of for solving 

combinatorial optimization problem, this thesis was motivated to propose a novel 

QEA-based UC method (QEA-UC) to solve the UC problem. In QEA-UC, 

unit-scheduling problem is handled by QEA and a developed constraint handling 

technique. The economic dispatch problem is solved by the commonly-used 

method, Lambda-iteration technique.  
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1.5. Main Contributions 
 

The main contributions of this thesis are highlighted as follows: 

i ) Development of a novel QEA-UC 

QEA is naturally suitable for dealing with combinatorial optimization problems, 

like the UC problem. This thesis proposes a novel QEA-UC approach to solve the 

UC problem. In the QEA-UC technique, QEA is applied to produce unit schedules 

and Lambda iteration is used to solve the economic dispatch problem. The 

effectiveness and superior performance of QEA-UC are demonstrated by solving 

UC from small-scale to large-scale problems. Compared with those existing 

methods, QEA-UC performs much better in terms of the quality of solutions and 

computational efforts. 

 

It is noted that the application of quantum-inspired evolution in power systems 

is still very new, and this thesis has successfully developed a novel technique to 

tackle the UC problem. 

 

ii ) Development of an efficient constraint handling 

Constraint satisfaction is a vital part in the UC problem. To generate feasible 

unit schedules in the UC problem, an efficient constraint handling is developed. In 

the developed constraint handling technique, a heuristic method is firstly applied 

to satisfy spinning reserve constraints as well as minimum up/down time 
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constraints of unit schedules, and then the unit schedules are improved simply by 

repeating once the heuristic method for constraint satisfaction. 

 

iii ) Modified QEA-UC for solving bi-objective unit commitment 

In power system operation, the bi-objective unit commitment considering 

emission and cost minimization is one of the most difficult optimization problems. 

The bi-objective UC gives a trade-off curve between emission and cost, which is 

beneficial to the decision-making of system operators. The proposed QEA-UC is 

modified to solve the bi-objective UC problem by considering a weighted sum 

objective function combining emission and cost. Moreover, a random order list 

and cost-based priority list are proposed to construct the trade-off curve. 
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1.7. Thesis Layout 
 

Chapter 1 introduces the background and motivation of this thesis, different 

deterministic approaches to solving UC, various computational intelligence 

algorithms for solving the UC problem, main contributions and QEA. Main 

contributions, thesis layout and the list of publications are also presented in this 

Chapter.  

 

Chapter 2 shows the mathematical formulation of the UC problem, including 

formulation of objective function, constraints and control variables. 

 

Chapter 4 describes the basic principle and representation of QEA. The 

procedure of QEA is also described. 

 

Chapter 5 presents the proposed method to solving the UC problem and the 

approach to handling the constraints in the UC problem. 

 

Chapter 6 provides the introduction of bi-objective UC problem and the 

modification of the QEA-UC approach to solve the bi-objective UC problem with 

cost and emission objectives, 24-hour scheduling horizon and 10-unit. 
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Chapter 7 demonstrates the effectiveness of the QEA-UC method through the 

application studies of the proposed algorithm to UC test systems up to 100 units. 

A parameter sensitivity analysis and a performance comparison with other 

methods are also presented. Furthermore, the potential of QEA-UC to deal with 

bi-objective UC is shown and the results are discussed. 

 

Chapter 8 gives concluding remarks of this thesis and future work. 
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Chapter 2 Problem Formulation 
 
 
 

2.1. Introduction 
 

The UC problem represents an important part in power systems. The objective 

of the UC problem is to schedule the generating units over a scheduling horizon 

such that the production cost is minimized and the operation constraints are 

satisfied. The UC problem can be divided into two parts, namely unit scheduling 

and economic dispatch. The unit scheduling involves selecting units to be turn on 

and off in a time horizon. The complexity of the problem increases with the 

problem dimension. For instance, given a UC problem with 10 generating units 

and a scheduling time period of 24 hours, the total possible combinations are equal 

to 2 10x24 or approximately 1.7668 x 1072.  A large computational resource is 

required in order to completely solve the problem. The economic dispatch is to 

minimize the total production cost incurred from the power outputs of the 

scheduled units. Thus, the UC problem is combinatorial in nature and highly 

constrained.  

 

In the following sections, the problem formulation is presented, including the 

mathematical representation of the objective function, numerous constraints and 
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control variables. The list of symbols used in this Chapter is as follows:  

 

N Number of generating units 

  

H Number of hours 

  

k Index of unit (k = 1,2, …, N) 

  

h Index of time (h = 1,2, …, H) 

  

pkh Control variable for the generation of unit k at hour h 

  

ukh Control variable for the on/off status of unit k at hour h 

  

FH Total system production cost within H hours 

  

Fkh(pkh) Fuel cost function of unit k at hour h 

  

ak , bk , ck Cost function parameters of unit k 

  

STkh Start-up cost of unit k at hour h 

  

HSCk/ CSCk Hot/cold start-up cost of the k-th unit 
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MDTk/ MUTk Minimum down/up time of the k-th unit 

  

CSHk Cold start hours of unit k 

  

Tk
off Duration during which unit k is continuously OFF 

  

Tk
on Duration during which unit k is continuously ON 

  

Dh System peak demand at hour h 

  

Rh Spinning reserve at hour h 

  

pk(max) /pk(min) Maximum/minimum output limit of unit k 
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2.2. Objective Function 
 

The objective of UC problem is to minimize the total power production cost, 

comprising the fuel cost and the start-up cost, over a specified period of time or 

the scheduling horizon. The objective function can be expressed by:  

kh
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)1( )]1()([.min                                                     (1)       

where Fkh(pkh) and STkh
 are given by: 

   kkhkkhkkhkh apbpcpF ++= )()()( 2                                                                                (2) 
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2.3. Constraints 
 

In the UC problem, coupling constraints and local constraints are considered. 

The coupling constraints are related to all generating units for scheduling, while 

the local constraints are associated with the operating limits of each generator. 

The minimization of the objective in the UC problem is subjected to the following 

coupling and local constraints. 

 

2.3.1. Power Balance Constraint 

 

The total generation outputs must be equal to the total load demands over a time 

horizon. 

h

N

k
khkh Dup =∑

=1
                                                                                                     (4) 

 

2.3.2. Spinning Reserve Constraint 

 

To provide reliable generation and sufficient on-line reserve power, the 

spinning reserve constraint is necessary to be met.  

hh

N

k
khk RDup +≥∑

=1
(max)                                                                                                     (5)      
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2.3.3. Unit Output Constraint 

 

The generation output of each generating unit is restricted to its maximum and 

minimum power outputs. 

(min)(max) kkhk ppp ≥≥                                                                                  (6)   

 

2.3.4. Minimum Up Time Limit 

 

Generating units are limited to a minimum up time. Once a generation unit is 

ON, it can not be shut down immediately.  

k
on

k MUTT ≥                                                                                                    (7) 

 

2.3.5. Minimum Down Time Limit 

 

Generators are also subjected to a minimum down time. Once a generation unit 

is OFF, it can not be started up immediately.  

k
off

k MDTT ≥                                                                                                  (8) 

 

2.3.6. Ramp Rate Limits 

 

Generating units cannot be adjusted to an output level instantaneously. They 

encounter ramp rate limits. When a unit is commanded to increase it output, it 

must not exceed its ramp-up power limit. On ramping down, each unit is required 
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to satisfy its ramp-down limit. 

 

2.3.7. Other Limits 

 

In the UC problem, except for the above-mentioned constraints, other practical 

limitations can be included, such as crew constraints, fuel consumption 

constraints, network security constraints, stability constraints, and emission 

constraints. 
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2.4. Control Variables 
 

The UC problem contains mixed-integer variables. These variables include the 

on or off states of each unit, and the power outputs of each generators. The state 

variables of each unit are discrete and usually represented as 1 or 0, whereas the 

power outputs are continuous variables.  
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Chapter 3 Quantum-inspired Evolutionary 
Algorithm 
 
 
 

3.1. Introduction 
 

Like other evolutionary algorithms (EAs), QEA [30] consists of the 

representation of individuals, evaluation functions as well as population 

dynamics. In quantum computing, a Q-bit is the smallest unit of information 

stored in a two-state quantum computer. QEA employs a Q-bit as a probabilistic 

representation, instead of binary, numeric or symbolic representation used in other 

EAs. A Q-bit individual is defined by a string of Q-bits and can represent a linear 

superposition of all the possible states in the search space. With this property, 

QEA requires only a small population size to provide good population diversity to 

effectively explore the solution space.  A Q-gate is defined as a variation operator 

of QEA to drive the probability of each Q-bit to either 1 or 0 and toward the best 

single state with a gradual diminishing diversity property in the optimization 

process. By using the concept of Q-bit representation and superposition principle, 

each Q-bit individual can represent and explore all possible states. Moreover, with 

Q-gate operation, each Q-bit is driven to exploit a single state. Thus, the 

mechanism of the QEA method can inherently treat the balance between 
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exploration and exploitation. In the following sections, the Q-bit representation 

and the principle and procedure of the QEA method are described. 
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3.2. Representation 
 

A Q-bit, which is defined as the smallest unit of information, can be represented 

as:  

⎥
⎦

⎤
⎢
⎣

⎡
β
α

                                                                                                              (9) 

where α and β  are a pair of numbers with 122 =+ βα . 2α and 2β  give the 

probabilities that the Q-bit will be found in the “0” and “1” states, respectively.  

 

The state of a Q-bit may be “0”, “1” or a linear superposition of the two and is 

expressed by:  

10 βαψ +=                                                                                                            (10) 

where 0  and 1 mean the states “0” and “1” respectively. 2α and 2β  

determine the probabilities of states 0  and 1  respectively.  Specifically, the 

larger the 
2α  value is, the higher the probability of the state 0  will be 

observed. 

 

A Q-bit individual with a string of m Q-bits is defined as: 

⎥
⎦

⎤
⎢
⎣

⎡

m

m

β
α

β
α

β
α

β
α

...

...

3

3

2

2

1

1                                                                                         (11) 

where 122 =+ ii βα  for i=1, 2, …, m. 

 

The merit of Q-bit representation is that a Q-bit individual can represent a linear 
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superposition of states. By adopting the concept of Q-bit representation and 

superposition principle, a system with m Q-bits can represent 2m states at the same 

time. When a Q-bit individual contains all α and β values equal to 1/√2, the linear 

superposition of all possible states with the same probability can be represented 

by: 

k
k

m
Xψ

m

∑
=

=
2

1 2
1                                                                                               (12) 

where Xk  is the k-th state and represented by the binary string )( 21 mxxx K  and ix  

is either 0 or 1. 

 

For instance, a Q-bit individual with two Q-bits is given by: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2
1
2

1

2
1
2

1

                                                                                                            (13) 

The states of the Q-bit individual can be represented as: 

11
2
110

2
101

2
100

2
1

+++                                                                                      (14) 

The results of (14) indicate that the probabilities of all states are 1/4, and the 

individual with two Q-bits holds the information of four states at the same time. 

 

 

 

 

 



 

27 

3.3. Quantum-inspired Evolution 
 

QEA is characterized by the Q-bit representation for the population diversity, 

the observation process for making binary solutions from Q-bit individuals, the 

update process for driving the individuals towards better solutions by the rotation 

Q-gate, and termination conditions. The detailed procedure and mechanism of 

QEA, for solving a minimization problem with the objective function )(Xf  and 

the binary control variables (X), are described as follows:  

 

Step 1) Set the generation counter t = 0. 

 

Step 2) Initialize Q(t):  

Q(t) represents a group of Q-bit individuals, which is initialized at t = 0, 

and ],...,,[)( 21
t
n

tt qqqtQ = , where subscript n is the total number of Q-bit 

individuals and t
jq  is the j-th Q-bit individual at generation t which is 

defined as:   

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= t

jm

t
jm

t
j

t
j

t
j

t
jt

jq
β
α

β
α

β
α

...

...

2

2

1

1                                                                           (15) 

where, j=1, 2, …, n and m is the string length. If all t
jiα and t

jiβ , for 

i=1,2,…,m , are initialized with 1/√2, then the probability of observing 

the state “1” or “0”of each Q-bit is the same. 

 

Step 3) Determine X(t) by observing Q(t):  
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X(t) is a group of binary solutions and are obtained by observing Q(t). 

],...,,[)( 21
t
n

tt XXXtX = , where t
jX  is a binary solution and obtained by 

observing t
jq . ],...,,[ 211

t
jn

t
j

t
j

t
j xxxX = , where t

jix is binary and 

determined by comparing 
2t

jiβ to a uniformly distributed random 

number in the range of 0 to 1. Here, t
jix  is set to 1 if random[0,1] 

<
2t

jiβ ; otherwise t
jix  is set to 0.  

 

Step 4) Evaluate X(t): 

The fitness or objective function values of the solutions in X(t) are  

    evaluated. 

 

Step 5) Store the best solution in X(t) into B(t): 

B(t) is a matrix that stores the best solution in the whole population. It 

should be noted that the local best solutions in subpopulations can also 

be considered. The details can be found in [30]. 

 

Step 6) Set t = t+1. 

 

Step 7) Determine X(t) by observing Q(t-1). 

 

Step 8) Evaluate X(t). 
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Step 9) Update Q(t) using Q-gates: 

Q-bit individuals are updated by using Q-gates. A Q-gate is a variation 

operator of QEA to update the Q-bits, and the updated Q-bit at 

generation t ),( t
ji

t
ji βα should meet the normalization condition, 

1
22
=+ t

ji
t
ji βα . Rotation gates are considered in QEA. The rotation 

gate )( t
jiU θΔ and the update operation are expressed as:  

            
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ
Δ−

Δ
Δ

=Δ
)cos(
)sin(

)sin(
)cos(

)( t
ji

t
ji

t
ji

t
jit

jiU
θ
θ

θ
θ

θ                                                          (16) 

 

            
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Δ=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−

1

1

)( t
ji

t
jit

jit
ji

t
ji U

β
α

θ
β
α

                                                                                   (17) 

where t
jiθΔ is a rotation angle which determines the magnitude and 

direction of rotation. Fig. 3.1 illustrates the polar plot of the rotation 

gate for Q-bit individuals. 

 

 
 

Fig. 3.1 Polar plot of the rotation gate for Q-bit individuals 



 

30 

Table 3.1 Lookup table of the rotation angle 

xt
ji bt

i Quadrant f (Xt
j)≦f(Bt) Δθt

ji 

I/ III false ＋θ 0 1 
II/ IV false －θ 
I/ III false  －θ 

1 0 
II/ IV false ＋θ 

0 1 × true 0 
1 0 × true 0 
0 0 × × 0 
1 1 × × 0 

     ‘x’ denotes ‘don’t care’. 

At generation t, the rotation angle t
jiθΔ is updated according to the 

criteria summarized in Table 3.1, where t
jix and t

ib are the binary 

control variables in solution t
jX and the best solution tB of )(tB , 

respectively. )( t
jXf and )( tBf represent the objective function values 

of t
jX and tB . For example, when t

jix  and t
ib  are 0 and 1, and )( t

jXf  

is larger than )( tBf , the rotation angle t
jiθΔ  is updated according to 

the following conditions: 

 

i) if the Q-bit is in the first or third quadrant in Fig. 3.1, the value of 

t
jiθΔ is set to a positive value or θ+ to increase the probability of the 

state “1”. 

 

ii) if the Q-bit is in the second or fourth quadrant, the value of t
jiθΔ is 

set to a negative value or θ−  to increase the probability of the state 



 

31 

“1”.  

It is noted that the same lookup table can be used for the maximization 

problem. The details can be found in [30]. 

 

Step 10) Store the best solution into B(t):  

   The best solution among X(t) and B(t-1) is stored to B(t). 

 

Step 11) Check whether the stopping conditions are met: 

   Terminate if the stopping conditions are met; else go to Step 6. 
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3.4. Application of Quantum-inspired Evolution 
 

Based on the concept and principles of quantum computing, Han and Kim [30] 

developed a QEA, which can better balance exploration and exploitation of the 

solution space and also obtain better solutions that the conventional EAs. The 

superior performance of QEA for combinatorial optimization problems was 

demonstrated in [30].  QEA for solving the classical knap-sack optimization 

problem [30] has been shown that QEA has outperformed conventional EAs in 

terms of the convergence speed and the quality of solutions. Even with a small 

population size, QEA can obtain better solutions than other EAs. 
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Chapter 4 Proposed Approach to the UC 
Problem 
 
 
 

4.1. Introduction 
 

The QEA method has been demonstrated to effectively solve combinatorial 

problems [30]. In this thesis, the QEA method is applied to handle the 

unit-scheduling problem. The economic dispatch of each UC schedule is 

calculated by the Lambda-iteration method to determine the optimal generation 

outputs of committed units. Representation for the UC problem, constraint 

handling, and the procedures of the QEA-UC method are described in the 

following sections.  
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4.2. Representation for the UC Problem 
 

4.2.1. Q-bit Individuals for the UC Problem 

 

A population of Q-bit individuals is initialized, ],...,,[)( 21
t
n

tt qqqtQ = , where 

t
jq is defined as the j-th Q-bit individual at generation or iteration t ; and j = 1, 2, …, 

n. Here ‘n’ is the population size. To adopt QEA to the UC problem, each Q-bit 

individual is given by a 2N-by-H matrix. N here is the total number of units and H 

is the total number of scheduling intervals in the scheduling horizon, k =1, 2, …, N 

and h =1, 2, …, H. Thus Q-bit individual t
jq is represented by: 
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4.2.2. Binary Solutions for Unit Schedules 

 

t
jU  is a group of unit schedules, ],...,,[)( 21

t
n

tt UUUtU = , and each schedule t
jU  is 

an N-by-H matrix. By observing qt
j, a binary solution or unit schedule t

jU  is 

formed as: 
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4.2.3. Variables for Unit Outputs 

 

For the unit schedules obtained in (2) in Section 2.2, the Lambda-iteration 

economic dispatch method is used to decide the optimal generation outputs of 

committed units, ],...,,[)( 21
t

n
tt PPPtP = , where P(t) represents the power 

generation of unit schedules at iteration t. The variables for the power generation 

of the j-th schedule t
jp are given by:   
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where jkhp represents the generation of unit k at time interval h of the j-th unit 

schedule. 
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4.2.4. Evaluation Function 

 

Since the minimization of the total operation cost is the objective of the UC 

problem, the objective function in (1) is used as the evaluation function of each 

unit schedule and the corresponding khp  is obtained the Lambda-iteration method.   
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4.3. Constraint and Over-commitment Handling 
 

In the UC problem, an optimum solution not only gives minimum production 

cost, but also it satisfies all operating constraints. Constraint satisfaction of unit 

scheduling solutions can be divided into penalty-based constraint handling and 

feasibility-based constraint handling [9]-[20], [24]-[26]. Compared with the 

feasibility-based constraint handling, the penalty-based constraint handling 

method has no guarantee that it will produce feasible unit schedules, especially in 

large-scale UC problems. Moreover, with the penalty approach, there is a need to 

find appropriate values for the penalty factors. For different problems, the penalty 

factors must be tuned again. However, the feasibility-based constraint handling 

approach can take a large computational time to produce feasible and potential 

solutions. 

 

This thesis proposes a simple constraint handling approach to ensure that any 

unit schedule generated by QEA-UC is feasible. In the proposed constraint 

handling method, all feasible unit schedules are also be improved to reduce the 

production cost associated with over-commitment. The procedure of the 

constraint handling method is described in the following steps. 
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Step 1) Satisfying the spinning reserve constraints:  

If the spinning reserve constraint at any scheduling interval is violated, 

further commitment in that interval is required and the start-up order is 

based on the full load average cost as in the priority list method [1]. 

De-committed unit with the highest priority are selected to be online 

first and the further commitment procedure stops immediately when the 

constraint is met. 

 

Step 2) Handling over-commitment:  

Excessive generation capacity may result in expensive production cost. 

When the total maximum generation capacity in a scheduling interval is 

higher than the summation of the load demand and spinning reserve, 

units are selected offline in the reverse order according to their priority 

orders until any further de-commitment will lead to deficiency in 

generation capacity. 

 

Step 3) Satisfying the minimum up/down time constraint:  

Extra units are committed over a period of time to observe the 

minimum up time constraint whenever the minimum up/down time 

constraint is dissatisfied.  
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Step 4) Improving unit schedules:  

Excessive commitment may be caused by the action of Step 3, but it can 

be efficiently solved by repeating Steps 1 to 3. In our experiments, one 

iteration should be sufficient to produce potential solutions that meet 

constraints (5), (7) and (8). 

 

Step 5) Examining unit schedules: 

For every schedule, examine whether or not the generation capacity in 

all scheduling intervals is adequate. If not, a new schedule is created by 

observing the corresponding Q-bit individual, and repeats the above 

steps until a feasible schedule is produced. 
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4.4. Procedure of the QEA-UC Method 
 

The procedure of the proposed QEA-UC approach is presented in the following 

steps and the corresponding flowchart is provided in Fig. 4.1.  

 

Step 1) Set the generation counter t = 0. 

 

Step 2)  Initialize a group of Q-bit individuals, ],...,,[)( 21
t
n

tt qqqtQ = , with all α 

and β values equal to 1/√2. Here t
jq is defined as the j-th candidate 

solution at generation or iteration t and n is the population size. 

Initializing all α and β to 1/√2 gives that all binary solutions are 

observed with the same probability, contributing to a good diversity at 

the initial stage.  

 

Step 3) Determine unit schedules U(t) by observing the states of Q-bit 

individuals, ],...,,[)( 21
t
n

tt UUUtU = . For Ut
j, ut

jNH is set to 1 if random [0, 

1] < |βt
jNH|2, else ut

jNH is set to 0. 

 

Step 4) Improve the obtained unit schedules by the proposed constraint 

handling method. According to the proposed constraint handling, all 

unit schedules generated in Step 3) are handled in the following steps. 
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Step 4.1) Satisfy the spinning reserve constraints 

 

Step 4.2) Handle over-commitment. 

 

Step 4.3) Satisfy the minimum up/down time constraint. 

 

Step 4.4) Improve unit schedules. 

 

Step 4.5) Examine unit schedules. 

 

Step 5) Determine the cost of the schedule by determining the optimal 

economic dispatch of the units in each schedule by the 

Lambda-iteration method. The cost of each unit schedule is directly 

used as its evaluation value. 

 

Step 6) If t = 0, then go to Step 8). 

 

Step 7) Update Q-bit individuals by using Q-gates according to the lookup table 

in Table 3.1. 

 

Step 8) Compare the costs of the schedules and store the best solution schedule.  
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Step 9) Set t = t + 1. 

 

Step 10) Terminate if t is larger than the maximum number of generations;    

              else go to Step 3). 
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Fig. 4.1 Flowchart of the QEA-UC method 
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Chapter 5  Modified QEA-UC to Solve 
Bi-Objective UC 
 
 
 

5.1. Introduction  
 

With the increasing environmental awareness, emission performance becomes 

an important part to power utilities. Although a lot of researchers have suggested 

bi-objective economic dispatch or environmental and economic dispatch (EED) to 

reduce emissions during power generation activities [39]-[58], the EED problems 

only consider power dispatch at one time interval. Compared with the EED 

calculation, the UC problem including environmental considerations is to 

schedule units over a spectrum of time intervals and thus contributes much more 

to emission mitigation. However, it has been found that only limited research has 

been conducted on the UC problem considering emission impacts [59], [60], [61] 

and 62].  

 

Emissions from thermal plants can be incorporated into the UC problem 

considering minimization of both cost and emission objective functions [59], [60]. 

The two objective functions are conflicting in nature. The bi-objective UC gives a 

set of compromise solutions, which benefit the decision making of power system 
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operators on plant scheduling considering emission control. This Chapter presents 

the formulation of the bi-objective UC problem and modification of QEA-UC for 

solving the problem. 
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5.2. Formulation of Bi-Objective UC 
 

Conventionally, the objective of the UC problem is to minimize the total power 

production cost, comprising the fuel cost and the start-up cost, over a specified 

period of time. Different from the conventional UC problem, the bi-objective UC 

problem considers minimization of two conflicting objective functions, namely 

emission and cost functions. The emission function can be approximated by a 

quadratic or exponential function [59]-[60]. In this thesis, a quadratic emission 

function is used for studying the bi-objective UC problem with the modified 

QEA-UC. The total emission function EH can be expressed by: 

 

min. EH = 
H

h

N

k
∑ ∑
= =1 1

 [ Ekh(pkh) ] ukh                                                                                                                      (21)    

 

Ekh(pkh) = e3k(pkh)2+    e2k(pkh)+    e1k                                                                                                                     (22)    

 

where Ekh(pkh) is the emission function of the k-th unit at hour h. e3k,  e2k and e1k are 

the emission function coefficients of the k-th unit. 
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5.3. Modified QEA-UC to Solve Bi-Objective UC  
 

5.3.1. Representation of Objective Function  

 

The bi-objective UC problem involves a set of compromise solutions. These 

solutions can be obtained by optimizing a weighted sum function [23], [59]-[60]. 

To demonstrate the performance of the modified QEA-UC, this thesis considers a 

weighted sum method to deal with the bi-objective problem. The weighted sum 

function F(c,e) can be formulated as: 

 

min. F(c,e) = w( FH ) + ( 1 - w )κ ( EH )                                                                                               (23)    

 

where FH and EH  represents the total cost function and total emission function, 

respectively. κ is a scaling factor.  w is a weighting factor between 1 and 0. If w is 

set to 1, only FH is considered as the weighted sum function. Only EH is regarded 

as the weighted sum function if w is equal to 0. By varying w between 1 and 0, a 

set of trade-off solutions of these two conflicting functions can be produced by 

optimizing the weighted sum function.  
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5.3.2. Cost-based Priority List and Random Order List  

 

5.3.2.1. Cost-based Priority List 

 

As presented in Chapter 4, the proposed QEA-UC considers scheduling units 

according to their full load average cost as in the priority list method [1], or called 

the cost-based priority list as described in Chapter 4.3. Intuitively, the modified 

QEA-UC approach with the cost-based priority list method gives cost-biased 

solutions and may not give a full picture of the trade-off curve. Nevertheless, the 

cost-based priority list can provide extra information for power system operators 

to deal with plant cost-consciousness or the cost objective function weighing 

higher than that of the emission function.  
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5.3.2.2. Random Order List 

 

In addition to the cost-based priority list, a random order list is also developed. 

Different form the cost-based priority list, the random order list randomly 

generate an order list to schedule the on or off state of generating units without any 

objective biasing. Thus, the random order list can provide power system operators 

with a full picture of the trade-off between emissions and cost. In Chapter 6.7, 

numerical simulation and comparison on the performance of these two lists are 

made. 
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5.3.3. Procedure of Modified QEA-UC for Bi-Objective UC  

 

The proposed QEA-UC is modified to adapt to the bi-objective UC problem. 

The modified QEA-UC involves finding a set of compromise solutions obtained 

after a number of separate optimization runs with different weighting factors. For 

each individual optimization run, the weighting factor, population size and 

maximum number of generations of QEA-UC are specified. The global control 

parameters of QEA-UC, the listing method and the weighting step size are firstly 

defined in the overall optimization program. The procedure of the modified 

QEA-UC method for coping with the bi-objective UC problem is given in the 

following steps.  

 

Step 1) Set the weighting factor w = 1 and select either cost-based priority list  

          or random order list. It is noted that w = 1 means only the cost objective  

          function is considered. 

 

Step 2) Set the generation counter t = 0. 

 

Step 3) Initialize a group of Q-bit individuals, ],...,,[)( 21
t
n

tt qqqtQ = , with all α    

          and β values equal to 1/√2.  

 

Step 4) Determine unit schedules by observing the states of Q-bit individuals. 
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Step 5) Improve the obtained unit schedules by the proposed constraint  

          handling technique. 

 

Step 5.1) Satisfy the spinning reserve constraints 

 

Step 5.2) Handle over-commitment. 

 

Step 5.3) Satisfy the minimum up/down time constraint. 

 

Step 5.4) Improve unit schedules. 

 

Step 5.5) Examine unit schedules. 

 

Step 6) Determine the evaluation value of each schedule by determining the  

          weighted sum value of each solution by the Lambda-iteration method.  

 

Step 7) If t = 0, then go to Step 9). 

 

Step 8) Update Q-bit individuals by using Q-gates according to the lookup  

          table in Table 3.1. 
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Step 9) Compare the evaluation values of the schedules and store the best   

          solution schedule.  

 

Step 10) Set t = t + 1. 

 

Step 11) Store the best compromise solution and go to Step 12) if t is larger  

             than the maximum number of generations; else go to Step 4). 

 

Step 12) Decrease w by Δw, where w is between 0 and 1. 

 

Step 13) Terminate if w is smaller than 0; else go to Step 2). 
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Chapter 6 Numerical Results and Discussions 
 
  
 

6.1. Introduction 
 

The proposed QEA-UC method is tested on systems with the number of units in 

the range of 10 to 100 and considering a 24-hour scheduling horizon. The 10-unit 

system data and load demands are given in [11] and shown in Tables 6.1 and 6.2. 

The 20-unit, 40-unit, 60-unit, 80-unit and 100-unit data are obtained by 

duplicating the 10-unit case and adjusting the load demands in proportion to the 

size of the system. The spinning reserve requirements are assumed to be 10% of 

the load demand. For each test case, totally 30 trial runs are performed to verify 

the robustness of the QEA-UC method. The proposed QEA-UC method has been 

developed based on MATLAB and executed on a computer with Intel Core of 

2.39 GHz and 1.99 GB RAM.  

 

In this Chapter, parameter sensitivity analysis is first performed. Case studies on 

the performance of the QEA-UC method on different test systems are then 

reported. The results obtained are compared with some published methods in the 

literatures.  Furthermore, the proposed method is extended to solve a large-scale 

UC problem in which 100 units are scheduled over a 7-day horizon with unit 
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ramp-rate limits considered. Finally, the proposed QEA-UC is modified to cope 

with bi-objective UC. The simulation results obtained are analyzed. 

 

Table 6.1.i) Coefficients of the test system [11] 

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 
Pmax (MW) 455 455 130 130 162 
Pmin (MW) 150 150 20 20 25 
c ($/MW2h) 0.00048 0.00031 0.002 0 0.00398 
b ($/MWh) 16.19 17.26 16.6 16.5 19.7 

a ($/h) 1000 970 700 680 450 
Min Up (h) 8 8 5 5 6 

Min Down (h) 8 8 5 5 6 
Hot start cost ($) 4500 5000 550 560 900 
Cold start cost ($) 9000 10000 1100 1120 1800 
Cold start hrs (h) 5 5 4 4 4 
Initial status (h) 8 8 -5 -5 -6 

 
 

Table 6.1.ii) Coefficients of the test system [11] 

 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 
Pmax (MW) 80 85 55 55 55 
Pmin (MW) 20 25 10 10 10 
c ($/MW2h) 0.007 0.00079 0.00413 0.00222 0.00173 
b ($/MWh) 22.26 27.74 25.92 27.27 27.79 

a ($/h) 370 480 660 665 670 
Min Up (h) 3 3 1 1 1 

Min Down (h) 3 3 1 1 1 
Hot start cost ($) 170 260 30 30 30 
Cold start cost ($) 340 520 60 60 60 
Cold start hrs (h) 2 2 0 0 0 
Initial status (h) -3 -3 -1 -1 -1 
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Table 6.2 Load demand of the test system [11] 

Hour Load (MW) Hour Load (MW) 
1 700 13 1400 
2 750 14 1300 
3 850 15 1200 
4 950 16 1050 
5 1000 17 1000 
6 1100 18 1100 
7 1150 19 1200 
8 1200 20 1400 
9 1300 21 1300 
10 1400 22 1100 
11 1450 23 900 
12 1500 24 800 
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6.2. Parameter Sensitivity Analysis 
 

The effects of the magnitude of rotation angle in radians and the population size 

are studied on the 10-unit test system. The maximum number of generations is set 

to 100 for the parameter sensitivity tests.  

 

6.2.1. Determination of the Rotation Angle 

 

The value of θ is problem-dependent [30, 32]. In this study, the population size 

is set to 4 and the values of θ from 0.005π to 0.05π with a step size of 0.005π are 

examined. The results are tabulated in Table 6.3. It can be observed that the 

QEA-UC method is sensitive to the magnitude of θ. Since large angles may cause 

premature convergence, small angles generally produce better solutions. The 

performance is the best when θ = 0.02π.  
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Table 6.3 Effects of the magnitude of rotation angle on cost results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

θ Cost ($) 
(×π radians) Best Mean Worst 

0.005 563,974 564,420 564,833 
0.010 563,938 564,304 564,917 
0.015 563,948 564,333 564,711 
0.020 563,938 564,268 564,711 
0.025 563,956 564,305 565,031 
0.030 563,938 564,331 565,067 
0.035 563,938 564,358 564,927 
0.040 563,938 564,413 565,093 
0.045 563,948 564,381 564,946 
0.050 563,977 564,454 565,031 
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6.2.2. Determination of the Population Size 

 

The effects of the population size are investigated by varying the size from 2 to 

30 with a step size of 2, and θ = 0.02π. The results are showed in Table 6.4 and 

Fig. 6.1.  

 

Noticeably, in Table 6.4, the best solutions are the same for the use of different 

population sizes. A large population size can slightly improve the mean value of 

the solutions, but it increases the computational time. From the size of 16 to 30, 

the improvement of the solutions is not pronounced, but the computational time 

increases linearly as shown in Fig. 6.1. Although the population size is 

problem-dependent, the size of 18 is the best choice in compromise between 

computational time and solutions. It is also agreed with the range of population 

size from 10 to 30 suggested in [32].  
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Table 6.4 Effects of the population size on mean time and cost 

Mean Time Cost ($) Population Size 
 (s) Best Mean Worst 
2 1.14 563,938 564,415 565,168 
4 2.22 563,938 564,289 564,714 
6 3.27 563,938 564,193 564,711 
8 4.31 563,938 564,128 564,672 
10 5.42 563,938 564,091 564,672 
12 6.46 563,938 564,115 564,711 
14 7.54 563,938 564,100 564,711 
16 8.59 563,938 564,032 564,729 
18 9.62 563,938 563,994 564,672 
20 10.93 563,938 564,020 564,672 
22 12.02 563,938 564,036 564,711 
24 12.93 563,938 564,023 564,711 
26 14.00 563,938 564,016 564,672 
28 15.06 563,938 564,008 564,672 
30 16.39 563,938 564,043 564,672 

 

 

Fig. 6.1 Effects of the population size on cost and computational time 
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6.3. Effectiveness of the Proposed Constraint Handling 

Technique 
 

In Chapter 4.3., the proposed constraint and over-commitment handling is 

presented. Over-commitment can be caused in the steps that satisfy the minimum 

up/down time constraint and generation capacity constraint. A simple technique is 

proposed to handle the over-commitment problem and improve unit schedules. 

Details can be referred to Chapter 4.3. 

 

The effectiveness of the proposed method with over-commitment handling and 

without over-commitment handling is shown in Fig. 6.2. Obviously, the average 

convergence curve obtained by the proposed method considering 

over-commitment handling is much better than the curve generated without 

considering over-commitment handling. This shows the effectiveness and 

efficiency of the proposed constraint handling technique. 
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Fig. 6.2 Average convergence curves of the proposed QEA-UC method 
with/without over-commitment handling 
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6.4. Case Studies 
 

The performance of the proposed QEA-UC method is tested on the system with 

the number of units from 10 to 100. Based on the selected settings in the previous 

Section,  the population size equal to 18, θ = 0.02π and the maximum number of 

generations equal to 100, the results of different case studies are obtained and 

tabulated in Table 6.5. The population size of 4 is also included for comparison.  

 

Obviously, the QEA-UC method with the population size of 18 outperforms the 

one with the size equal to 4 in terms of the best, mean as well as worst costs, and 

the standard deviation of the results on the systems with different problem scales. 

As shown in Table 6.6, when the maximum number of generations is set to 200, 

the better solutions can be obtained, especially for small population and large 

system sizes, but longer computation is needed.  

 

The average cost convergence curves of the QEA-UC method for different 

cases are presented in Figs. 6.3-6.8. It can be observed that the convergence 

behavior of the QEA-UC method is very smooth. For the 10-unit system, the 

convergence curves become nearly steady after 100 generations so the 

improvement of solutions are not significant for the use of higher maximum 

number of generation.  For 100-unit system, the solution can be further improved 

after 100 generations so higher number of generation can achieve a solution with 



 

64 

lower cost. However, the curve becomes nearly steady after 200 generations and 

further increment of the number of generation only improves the solution slightly. 

A compromise between them can be considered because of the linear relationship 

between the computational time and the number of generation.  
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Table 6.5 Results of Proposed method with maximum no. of generations set to 
100 

Mean Time Cost ($) No. of  
Units 

Population  
Size 

Maximum
Generation (s) Best Mean Worst 

4 2.18 563,938 564,289 564,714 10 
18 

100 
9.62 563,938 563,994 564,672 

4 3.05 1,124,244 1,125,777 1,126,67220 
18 

100 
13.71 1,123,933 1,125,048 1,125,926

4 4.42 2,247,036 2,248,207 2,249,70240 
18 

100 
19.83 2,246,381 2,247,154 2,249,242

4 5.82 3,369,351 3,371,039 3,373,06260 
18 

100 
26.23 3,367,186 3,369,203 3,370,699

4 7.30 4,491,896 4,494,710 4,497,27880 
18 

100 
32.78 4,490,537 4,491,903 4,494,269

4 8.75 5,615,242 5,618,308 5,622,678100 
18 

100 
39.24 5,611,696 5,614,434 5,616,478

 

Table 6.6 Results of Proposed method with maximum no. of generations set to 
200 

Mean Time Cost ($) No. of  
Units 

Population  
Size 

Maximum
Generation (s) Best Mean Worst 

4 4.22 563,938 564,212 564,711 10 
18 

200 
19.23 563,938 563,969 564,672 

4 6.14 1,123,824 1,125,387 1,126,57820 
18 

200 
27.69 1,123,607 1,124,689 1,125,715

4 9.00 2,246,601 2,247,798 2,249,73240 
18 

200 
43.13 2,245,557 2,246,728 2,248,296

4 11.81 3,367,278 3,369,357 3,372,18160 
18 

200 
54.34 3,366,676 3,368,220 3,372,007

4 14.78 4,489,324 4,491,819 4,494,78880 
18 

200 
66.42 4,488,470 4,490,128 4,492,839

4 17.90 5,611,344 5,614,397 5,616,847100 
18 

200 
79.98 5,609,550 5,611,797 5,613,220
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Fig. 6.3 Average convergence curves of the proposed QEA-UC method for the 
test systems with 10 units 

 

 

 

Fig. 6.4 Average convergence curves of the proposed QEA-UC method for the 
test systems with 20 units 
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Fig. 6.5 Average convergence curves of the proposed QEA-UC method for the 

test systems with 40 units 

 

 

 

Fig. 6.6 Average convergence curves of the proposed QEA-UC method for the 
test systems with 60 units 
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 Fig. 6.7 Average convergence curves of the proposed QEA-UC method for the 

test systems with 80 units 

 

 

 
 Fig. 6.8 Average convergence curves of the proposed QEA-UC method for the 

test systems with 100 units 
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6.5. Comparison of Results among Various Approaches 
 

Table 6.7 to Table 6.12 summarize the study results on the test systems in the 

last section above obtained by the proposed QEA-UC method and other methods 

including LR[34], GA[11], EP[17], HPSO[18], SA[16], and GAUC[20]. In 

Tables 6.7-6.12, for the QEA-UC method, the results obtained with both 

population size of 4 and 18 are tabulated to show further the effects of the 

population size. In addition, the results obtained for both the maximum number of 

generations of 100 and 200 are summarized for the same reason.  

 

In Tables 6.7-6.12, it can be observed that the solutions of the QEA-UC method 

are more attractive than those obtained by other techniques. Besides, it can be 

observed that the population size and maximum number of generations required 

by the QEA-UC method are much smaller than that of the other techniques in all 

the study cases. Although the mean times consumed by various approaches cannot 

be directly compared due to different computing machines used by other 

researchers, it can still be able to indicate that the computational time of the 

QEA-UC method increases linearly with the system size while that of other 

techniques increases dramatically. This efficient characteristic of the QEA-UC 

method indicates that QEA-UC has large capability in solving large-scale UC 

problems. Even for the case of population size of 4 and the maximum generation 

of 100, QEA-UC finds better solution than all the other methods considered and 
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with a very short computational time. As expected, with the population size of 18 

and maximum generation of 200, a much better solution is found by the proposed 

method. Owing to the linear relationship between the computational time and the 

system size, the superiority of the proposed QEA-UC method over the other 

methods considered in terms of solution quality and computation time is more 

significant in the 100-unit system.  
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Table 6.7 Comparison of QEA-UC with other methods in the test system with 
10 units 

No. of No. of Population Maximum Cost ($) 
Units 

Method 
Trials Size Generation Best Mean Worst

LR [34] - - - 566,107 - - 
GA [11] 20 50 500 565,825 - 570,032
EP [17] 20 50 500 564,551 565,352 566,231

HPSO [18] 50 20 1,000 563,942 564,772 565,785
SA [16] 10 - - 565,828 565,988 566,260

UCC-GA [20] 20 20 500 563,977 - 565,606
4 100 563,938 564,289 564,714

10 

QEA-UC 30 
18 200 563,938 563,969 564,672

 

 

Table 6.8 Comparison of QEA-UC with other methods in the test system with 
20 units 

No. of No. of Population Maximum Cost ($) 
Units 

Method 
Trials Size Generation Best Mean Worst 

LR [34] - - - 1,128,362 - - 
GA [11] 20 50 1,000 1,126,243 - 1,132,059
EP [17] 20 50 1,000 1,125,494 1,127,257 1,129,793
SA [16] 10 - - 1,126,251 1,127,955 1,129,112

UCC-GA [20] 20 20 1,000 1,125,516 - 1,128,790
4 100 1,124,244 1,125,777 1,126,672

20 

QEA-UC 30 
18 200 1,123,607 1,124,689 1,125,715

 

 

 

 

 

 



 

72 

Table 6.9 Comparison of QEA-UC with other methods in the test system with 
40 units 

No. of No. of Population Maximum Cost ($) 
Units 

Method 
Trials Size Generation Best Mean Worst 

LR [34] - - - 2,250,223 - - 
GA [11] 20 50 2,000 2,251,911 - 2,259,706
EP [17] 20 50 2,000 2,249,093 2,252,612 2,256,085
SA [16] 10 - - 2,250,063 2,252,125 2,254,539

UCC-GA [20] 20 20 2,000 2,249,715 - 2,256,824
4 100 2,247,036 2,248,207 2,249,702

40 

QEA-UC 30 
18 200 2,245,557 2,246,728 2,248,296

 

 

Table 6.10 Comparison of QEA-UC with other methods in the test system with 
60 units 

No. of No. of Population Maximum Cost ($) 
Units 

Method 
Trials Size Generation Best Mean Worst 

LR [34] - - - 3,374,994 - - 
GA [11] 20 50 3,000 3,376,625 - 3,384,252
EP [17] 20 50 3,000 3,371,611 3,376,255 3,381,012
SA [16] - - - - - - 

UCC-GA [20] 20 20 3,000 3,375,065 - 3,382,886
4 100 3,369,351 3,371,039 3,373,062

60 

QEA-UC 30 
18 200 3,366,676 3,368,220 3,372,007
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Table 6.11 Comparison of QEA-UC with other methods in the test system with 
80 units 

No. of No. of Population Maximum Cost ($) 
Units 

Method 
Trials Size Generation Best Mean Worst 

LR [34] - - - 4,496,729 - - 
GA [11] 20 50 4,000 4,504,933 - 4,510,129
EP [17] 20 50 4,000 4,498,479 4,505,536 4,512,739
SA [16] 10 - - 4,498,076 4,501,156 4,503,987

UCC-GA [20] 20 20 4,000 4,505,614 - 4,527,847
4 100 4,491,896 4,494,710 4,497,278

80 

QEA-UC 30 
18 200 4,488,470 4,490,128 4,492,839

 

 

Table 6.12 Comparison of QEA-UC with other methods in the test system with 
100 units 

No. of No. of Population Maximum Cost ($) 
Units 

Method 
Trials Size Generation Best Mean Worst 

LR [34] - - - 5,620,305 - - 
GA [11] 20 50 5,000 5,627,437 - 5,637,914
EP [17] 20 50 5,000 5,623,885 5,633,800 5,639,148
SA [16] 10 - - 5,617,876 5,624,301 5,628,506

UCC-GA [20] 20 20 5,000 5,626,514 - 5,646,529
4 100 5,615,242 5,618,308 5,622,678

100 

QEA-UC 30 
18 200 5,609,550 5,611,797 5,613,220
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For the 10-unit test case, the best UC schedule obtained by the QEA-UC method 

is given in Table 6.13. In Table 6.13, the power outputs of the scheduled-on 

generating units at a scheduling period of 24-hour are shown. The best UC 

schedule gives a total production cost of $563,938 and satisfies all operating 

constraints. The best cost obtained by QEA-UC is much better than those found by 

LR[34], GA[11], EP[17], HPSO[18], SA[16], and GAUC[20]. Although the 

global optimum solution is unknown yet, the best result ($563,938) obtained by 

the proposed QEA-UC approach has shown its high effectiveness and promising 

capability to solve the UC problem. 
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Table 6.13 Best UC schedule of the 10-unit test system on 24-hour scheduling 
horizon with one-hour interval 
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6.6. Large-Scale Unit Commitment Considering Ramp 

Rate Limits 
 

The QEA-UC method is now further extended to solve a UC problem with 

ramp-rate limits. The ramp-rate limits can be easily handled using the ramp-rate 

limit handling method in [33] by constraining all on-line units to operate within 

their feasible output limits. The details can be found in [33]. In this study, 100 

units are scheduled over a horizon of 7 days. The up-ramp/down-ramp limits of 

unit 1 to unit 10 of the 10-unit system [11] are set to 160, 160, 100, 100, 100, 60, 

60, 40, 40 and 40 in MW respectively. The same limiting values for the 

corresponding units are assumed in the 100-unit study case. The population size 

and maximum number of generations of the proposed method are 18 and 200.  

 

Table 6.14 and Fig. 6.9 present the scheduling results obtained either with or 

without unit ramp-rate limits. It is obvious that the generating cost is increased due 

to the incorporation of unit ramp-rate characteristics in the UC problem. The 

effectiveness of the proposed method is again observed in terms of the speed of 

convergence and the computational time. The results illustrate the effectiveness 

and the feasibility of the proposed QEA algorithm in solving large-scale UC 

problems with practical and complicated constraints. 
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Table 6.14 Results of UC with seven days and 100 units 

Mean 
Time Cost ($) Ramp-rate  

limits 
(s) Best 

 
Mean 

 
Worst 

 
S.D. 

 
Without  

ramp-rate limits 
 

582 39,294,084 39,309,631 39,318,478 9,155 

With  
ramp-rate limits 

 
610 39,296,686 39,313,231 39,324,428 10,111 

 

 

 
Fig. 6.9 Average cost convergence curves of the proposed QEA-UC method for 

the UC problem considering 7 days with/without ramp-rate limits 
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6.7. Bi-Objective Unit Commitment with Modified 

QEA-UC 
 

In this Section, the QEA-UC method is modified to solve the bi-objective UC. 

Two trade-off curves are constructed by the modified QEA-UC with random 

order list and cost-based priority order. The effectiveness of the modified 

QEA-UC with different order lists is compared and analyzed. Moreover, the 

effects on generator outputs considering best emission and best cost are given. 

 

The test system is derived from the 10-unit system [11] and the emission 

coefficients [59]. The emission coefficients of the test system are shown in Table 

6.15.  

 

Table 6.15-i) Emission coefficients of generating units 

Emission Coefficients of Generation Units  
1 2 3 4 5 

e1 
(kg) 25.8 26.9 30.1 25.3 30.1 

e2  
(kg/MW-h) -0.52 -0.54 -0.49 -0.56 -0.39 

e3 
(kg/MW2-h) 0.007 0.007 0.004 0.004 0.004 
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Table 6.15-ii) Emission coefficients of generating units 

Emission Coefficients of Generation Units  
6 7 8 9 10 

e1 
(kg) 25.3 23.9 23.9 31.6 34.3 

e2  
(kg/MW-h) -0.53 -0.4 -0.4 -0.63 -0.68 

e3 
(kg/MW2-h) 0.004 0.008 0.008 0.004 0.004 
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6.7.1. Bi-Objective UC by Modified QEA-UC with Random 

Order List 

 

In the UC solution, units are turned on or off based on a random order list 

instead of the cost-based priority list. A set of compromise solutions is obtained by 

varying the weighting factor from 1 to 0 with a step size of 0.02, totally 51 

optimization runs. κis set  1 because the numeric order between the emission and 

cost solutions obtained in the test bi-objective system are similar, 104 and 105 

respectively. For each optimization run, the maximum generation and population 

size are set to 100 and 20. The trade-off curve is presented in Fig. 6.10. 
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Fig. 6.10 Trade-off curve of the bi-objective UC with the modified QEA-UC 
considering the random order list 
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6.7.2. Bi-Objective UC by Modified QEA-UC with Cost-based 

Priority List 

 

In the modified QEA-UC, units are turned on or off according to the cost-based 

priority list. A set of compromise solutions is obtained by varying the weighting 

factor from 1 to 0 with a step size of 0.02, κ=1, totally 51 optimization runs. For 

each optimization run, the maximum generation and population size are set to 100 

and 20. Fig. 6.11 shows the trade-off curve. 
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Fig. 6.11 Trade-off curve of the bi-objective UC with the modified QEA-UC 
considering the cost-based priority order list 
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6.7.3. Comparison of Bi-objective UC with Different Order List  

 

6.7.3.1.  Comparison of the Trade-off Curves   

 

Fig. 6.12 presents a comparison of the two trade-off curves obtained by the 

modified QEA-UC approach with the cost-based priority list and random order 

list respectively. As shown in Fig. 6.12, the trade-off curve obtained by the 

random order list presents a cost range between $564,000 and $690,000 as well as 

an emission range between 19,000Kg and 55,000Kg, whereas the curve obtained 

by the cost-based priority list gives a cost range between $564,000 and $600,000 

as well as an emission range between 35,000Kg and 55,000Kg.  

 

Apparently, the bi-objective UC solution with the random order list gives a 

more widespread trade-off curve than that given by the cost-based priority list. 

The results show that the modified QEA-UC approach considering the cost-based 

priority list can only construct a partial coverage of the trade-off curve with a cost 

rang [$564,000, $600,000] and an emission range [35,000Kg, 55,000Kg], but it 

performs better than the random order list within this partial coverage for the same 

population size and maximum number of generations. If the emission range 

[35,000Kg, 55,000Kg] is acceptable to system operators when trading off 

emission and cost in the bi-objective UC problem, the cost-based priority list is 

more preferable than the random order list in terms of the quality of solutions and 
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total function evaluation. 
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6.7.3.2. Comparison of the Solution Convergence 

 

Fig. 6.12 compares the two performances given by the modified QEA-UC 

approach considering the cost-based priority list and random order list 

respectively. As compared to the trade-off curve given by the cost-based priority 

list, the trade-off curve obtained by the random order list presents a wider cost and 

emission ranges. Definitely, the bi-objective UC solution with the random order 

list gives a more widespread trade-off curve than that given by the cost-based 

priority list.  

 

Although the results show that the cost-based priority list can only construct a 

partial coverage of the trade-off curve with a narrower cost and emission ranges 

with a cost range [$564,000, $600,000] and an emission range [35,000Kg, 

55,000Kg], the cost-based priority list performs better than the random order list 

within this partial coverage for the parameter settings. In a cost-driven power 

system environment or the cost objective function with a higher weighting factor 

than that of the emission function, the cost-based priority list is more preferable 

than the random order list in terms of the quality of solutions and total function 

evaluation. 

 

Also given in Fig. 6.12, in the emission range [45,000Kg, 55,000Kg], the 

modified QEA-UC using the cost-based priority list find better solutions than the 
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one using the random order list. At weighting factors close to or equal to 1 and 

with the same population size and maximum iteration, the modified QEA-UC 

with the cost-based priority list converges to better solutions than that of the 

modified approach with the random order list.  

 

These two comparisons imply that the cost-based priority list facilitates a fast 

solution convergence but gives a partial coverage of the trade-off curve, while the 

random order list converge slowly but give a widespread coverage of the trade-off 

curve. 
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Fig. 6.12 Trade-off curves of obtained by the modified QEA-UC with the cost-based 
priority order list and random order list. 



 

89 

6.7.4. Discussions on Best Emission Solution and Best Cost 

Solution 

 

The best emission solution and best cost solution can be obtained by running the 

modified QEA-UC method considering w = 0 and w = 1 respectively. The best 

emission solution and the best cost solution are tabulated in Table 6.16 to Table 

6.17. In Tables 6.16 and 6.17, the two solutions present two different unit 

schedules and unit load dispatch. In the best emission solution, the generating 

units are scheduled and dispatched to produce a minimum emission so that units, 

such as Units 6, 9 and 10, giving cleaner outputs have higher priorities to be 

selected and loaded.  For the best cost solution, less expensive units, such as Units 

1 and 2, are preferred to be scheduled in order to minimize the total production 

cost. 

 

Fig. 6.13 and Fig. 6.14 illustrate the unit scheduling and unit outputs of the two 

best solutions in a graphical manner.  
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Table 6.16 Best emission solution 

Unit Output (MW) Hour 
1 2 3 4 5 6 7 8 9 10 

1 150 150 0 116 94 80 0 0 55 55 
2 150 150 106 115 94 80 0 0 55 0 
3 150 150 94 103 81 80 41 41 55 55 
4 150 150 119 128 106 80 54 54 55 55 
5 150 150 130 130 130 80 65 55 55 55 
6 173 175 130 130 162 80 85 55 55 55 
7 198 200 130 130 162 80 85 55 55 55 
8 223 225 130 130 162 80 85 55 55 55 
9 273 275 130 130 162 80 85 55 55 55 
10 323 325 130 130 162 80 85 55 55 55 
11 348 350 130 130 162 80 85 55 55 55 
12 373 375 130 130 162 80 85 55 55 55 
13 323 325 130 130 162 80 85 55 55 55 
14 273 275 130 130 162 80 85 55 55 55 
15 223 225 130 130 162 80 85 55 55 55 
16 150 150 130 130 162 80 83 55 55 55 
17 150 150 130 130 130 80 65 55 55 55 
18 173 175 130 130 162 80 85 55 55 55 
19 223 225 130 130 162 80 85 55 55 55 
20 323 325 130 130 162 80 85 55 55 55 
21 273 275 130 130 162 80 85 55 55 55 
22 173 175 130 130 162 80 85 55 55 55 
23 0 150 130 130 162 80 83 55 55 55 
24 0 150 119 128 106 80 54 54 55 55 
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Table 6.17 Best cost solution 
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Fig. 6.13 Generator outputs of the best emission solution 



 

93 

 

 

 

 

 

Fig. 6.14 Generator outputs of the best cost solution 
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Chapter 7 Conclusions and Future Work 
 
 
 

7.1. Conclusions 
 

This thesis has successfully introduced a novel optimization technique based on 

the quantum-inspired evolutionary algorithm for solving the unit commitment 

problem (QEA-UC). The effectiveness and feasibility of the QEA-UC algorithm 

have been demonstrated through its applications to test systems with the number 

of units from 10 to 100. It has been shown that the QEA-UC algorithm is very 

powerful and efficient and it outperforms many other existing methods. The 

QEA-UC algorithm can perform well even with a small population size, and it has 

been found to have a linear relationship between the scale of the UC problem and 

computational time. Moreover, the proposed algorithm has been successfully 

applied to solve a large-scale UC problem in which 100 units have been scheduled 

over a 7-day horizon with unit ramp-rate limits considered. The QEA-UC 

algorithm is therefore very promising to be applied to large-scale UC problems.  

 

The proposed QEA-UC has also been modified to solve the bi-objective UC 

problem considering both cost and emission objective functions, 24-hour horizon 

and 10 generating units. Two listing methods, namely cost-based priority list and 
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random order list, has been proposed and tested. The performances of these tow 

list methods have been discussed. The simulation results have demonstrated that 

the QEA-UC approach also is promising to deal with the bi-objective UC 

problem.  
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7.2. Future Work 
 

In this thesis, the proposed QEA-UC has given a very promising capability of 

solving the UC problem in terms of its effectiveness and efficiency. In the future, 

the QEA-UC can be adopted to deal with practical UC problems considering other 

problem features, including non-smooth fuel cost functions, network security 

constraints, stability constraints, and fuel consumption constraints. For instance, 

when the UC problem involves non-smooth cost functions, the economic dispatch 

problem cannot be simply calculated by the Lambda iteration method. 

 

Emission performance in power utilities becomes more and more significant. 

An efficient and effective optimization approach for solving multi-objective UC 

problems is useful for power system operators to trade off emission, cost and other 

objectives in real-time plant scheduling. The proposed method can be further 

extended to cope with real-time multi-objective UC problems. 

 

In power systems, the application of QEA is novel and very promising. Future 

work can also consider applications of QEA to handle other power system 

optimization problems, such as economic dispatch, reactive power dispatch, 

capacitor bank placement, optimal power flow, and power system planning. 
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