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Abstract 

Photonic crystal fibres (PCFs) show different elastic and optical properties from 

conventional silica fibres because they contain periodic transverse microstructures in 

their profiles. The responses of PCFs and conventional silica fibres to external 

measurands are also different, because of the same reason. With these special 

properties/responses, PCFs have the potential to be widely used in fibre-optic 

sensors and communication systems. However, to our knowledge, there is no explicit 

model so far that can simulate the responses of PCFs to axial strain, pressure and 

temperature. 

 

In this dissertation, the microstructure cladding of PCF is regarded as a honeycomb 

structure which has inhomogeneous elastic properties. Both Young’s modulus and 

Poisson’s ratio of this region are anisotropic, and are the functions of the air-filling 

ratio of the microstructure cladding. Based on this assumption, three theoretical 

models for three types of PCFs (solid-core PCF, hollow-core photonic bandgap fibre 

and hybrid PCF) are constructed. These theoretical models can not only be used to 

simulate the optical properties/responses of existing PCFs to different measurands, 

but also be used to predict the performance of PCFs with various fibre designs. Thus 

when PCFs are used in fibre-optic sensors or devices, these theoretical models are 

very useful to guide the designs of such sensors or devices. 

 

Using the theoretical models, the responses of PCFs to axial strain, acoustic pressure, 

temperature and lateral pressure are investigated respectively. The simulation results 

show that compared with conventional silica fibres, PCFs are predicted to have 

several novel or improved responses to external measurands, which can be used to 
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enhance the performance of the fibre sensors or construct new PCF-based devices. 

 

The responses of both solid-core PCF and hollow-core photonic bandgap fibre (PBF) 

to axial strain are investigated theoretically and experimentally. For the solid-core 

PCF, the length term of its phase sensitivity to axial strain can be normalized to unit, 

and the index term is mainly determined by the strain-optic effect of the silica core. 

The experimental results show that the NL-3.3 fibre (one type of solid-core PCF) has 

the phase sensitivity of 0.7813±0.006 (ε-1), which agree well with the theoretical 

prediction. For the hollow-core PBF in which most of light is confined in air, the 

index term of its phase sensitivity to axial strain is much smaller than the solid-core 

PCF, which is verified by the experimental results. In experiment, the phase 

sensitivity of HC-1550-02 fibre (one type of hollow-core PBF) is measured to be 

0.9815±0.004 (ε-1), which shows a good agreement with the theoretical prediction of 

~0.9797 (ε-1). 

 

The normalized responsivities (NR) of PCFs to acoustic pressure are studied 

theoretically and experimentally. The simulation results show that: 1) NR of PCF to 

acoustic pressure is mainly determined by the air-filling ratio of PCF’s profile. PCF 

with a higher percentage of air and lower percentage of silica in its profile is more 

flexible to acoustic pressure and thus has larger NR; 2) hollow-core PBFs tend to 

have higher NR than both conventional silica fibres and solid-core PCFs, because 

the index term of silica-core fibres has opposite sign with the length term, and this 

negative index term is greatly reduced in a hollow-core PBF in which most of the 

light is confined in air. In experiment, NR of HC-1550-02 fibre to acoustic pressure 

is measured to be ~-334.4 (dB re μPa-1), which is about 15 dB higher than 

conventional fibres. The simulation results show that NR of the hollow-core PBF can 

be improved further by both decreasing the thickness of its silica outer cladding and 
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increasing the air-filling ratio of its microstructure inner cladding. Using proper fibre 

parameters, NR of the hollow-core PBF can reach as high as ~310 (dB re μPa-1), 

which is about 35 dB higher than conventional fibres. The great improvement of NR 

is anticipated to have important practical benefits to simplify the sensor design of the 

fibre hydrophone, and increase the number of sensors that can be interrogated per 

optical source or the number of sensor channels that can be multiplexed onto a signal 

fibre. 

 

The simulation shows that the lateral pressure can result in deformation of the 

hollow-core PBF’s air core as well as its air-silica cladding, both of which induce 

linear birefringence of the hollow-core PBF. Applying pressures laterally to three 

segments of a HC-1550-02 fibre, a novel hollow-core PBF polarization controller 

(PC) can be constructed. By varying the magnitudes of the applied pressures in these 

three segments, the output state of polarization from the hollow-core PBF PC shows 

a good coverage of all the possible polarization states on the surface of the Poincare 

sphere, indicating a universal control of the polarization state can be achieved. 

Compared with former scheme for hollow-core PBF PC which makes use of the 

inherent birefringence of hollow-core PBF, the new scheme may be applicable to 

hollow-core PBFs with little or no inherent birefringence. Thus, a hollow-core PBF 

PC with broader bandwidth may be obtained by using this new scheme. 

 

Hybrid PCF guides light by a novel guiding mechanism, which is a combination of 

index-guiding and bandgap-guiding. Because the guiding mechanisms of the hybrid 

PCF are different in two orthogonal directions, high birefringence property is 

expected. To our knowledge, there is no theoretical model that can simulate the 

birefringence properties of hybrid PCFs. In this dissertation, a theoretical model for 

hybrid PCFs is constructed to simulate the birefringence property of hybrid PCFs 
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and the responses of hybrid fibres’ birefringence to axial strain and temperature. 

Using this theoretical model, the birefringence/responses of hybrid PCFs are 

predicted, as the functions of their design parameters. In experiment, the 

birefringence of one type of hybrid PCF and its responses to axial strain and 

temperature is measured. The experimental results agree well with the simulation 

results, which give us the confidence to use this theoretical model to guide the 

design of hybrid PCFs for many special applications.  
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Chapter 1 Introduction 
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CChhaapptteerr  11  

IInnttrroodduuccttiioonn  

1.1 Literature Review 

1.1.1 Conventional Silica Fibre Sensors and Devices 

The optical fibre sensor (OFS) is very diverse and employs many different 

techniques to sense a wide variety of measurands [1].  OFSs have certain advantages 

that include immunity to electromagnetic interference, lightweight, small size, high 

sensitivity, large bandwidth, and ease in implementing multiplexed or distributed 

sensors [2]. From its origin traceable to the mid 1970s, to today, diverse OFS 

techniques were developed, such as fibre interferometer, fibre grating, Faraday 

rotation, fibre scattering reflection, distributed sensing, and the multiplexing 

technique. OFSs can be used to monitor a wide range of measurands including strain, 

temperature, pressure, rotation, acoustic emission, humidity, vibration, 

current/voltage, specified chemicals or gases, and biomedical measurands. There 

have been excellent review books and articles on OFSs such as Refs. [3-10]. 

 

In the optical fibre sensor and communication systems, optical fibre devices (OFDs) 

are needed to provide specific functions. OFDs can be divided into passive and 

active OFDs. The passive devices are polarizers, directional couplers, filters and 

Faraday rotators, while active OFDs require external control or optical power and 

include modulators, polarization controllers, frequency shifters, and amplifers [10-

20]. 
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It is impossible to review all of the OFSs and OFDs in this chapter. In this part of the 

dissertation, only several types of OFSs and OFDs which are related to the research 

content of this dissertation are reviewed.  

1.1.1.1 Optical Fibre Interferometers 

There are several interferometric configurations that are commonly used in OFSs. 

Perhaps the simplest configuration is the Mach-Zehnder interferometer, shown in Fig. 

1.1, where the light propagates in one direction from the source through the 

interferometer to the detectors. The two arms of the fibre interferometer are typically 

named the sensing and the reference arms. In many transducers the reference arm is 

shielded from the environment, and only the sensing arm is subjected to different 

measurands. The difference between the two paths lengths is measured at the output 

port of the interferometer.  

 

 
Fig. 1.1 Configuration of the Mach-Zehnder fibre interferometer 

 

One application example of interferometric fibre sensors is the fibre interferometric 

acoustic sensor, which is widely used for military sonar systems, seismic and sonar 

systems for oil exploration, and inertial navigation systems [21]. The normalized 

responsivity (NR), which normalizes the sensor’s responsivity by the total optical 

phase shift in sensing fibre, is used to evaluate different interferometric fibre sensors. 
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Effectively, this is the same as normalizing by the length of fibre on the transducer. 

For example, a good fibre-optic hydrophone design might have an NR of -300 dB re 

1μPa-1. If the transducer is interrogated by a laser at λ=1300nm the total optical 

phase in 1m of fibre is given by φ=2πnL/λ=137 dB re rad. Therefore the responsivity 

of the transducer would also be equivalent to (-300+137=-163) dB re rad μPa-1 [21]. 

 

Many studies are conducted to improve the NR of the interferometric fibre sensors, 

because developing an acoustic fibre sensor with a higher NR can effectively 

increase the number of sensors that can be interrogated per optical source or the 

number of sensor channels that can be multiplexed onto a single fibre [21]. In the 

first interferometric fibre acoustic sensor, the acoustic field interacted directly with 

the conventional silica fibre [22]. This early interferometric acoustic sensor based on 

conventional silica fibre had the NR of ~-340dB re (1μPa-1), which was sufficient to 

prove the concept, but it was clear that the improvement of the NR was required. The 

first attempts to increase the NR of the interferometric acoustic sensors were made 

by wrapping the conventional silica fibre around solid plastic mandrels [23]. The NR 

of this configuration can achieve to ~-325dB, a 15dB improvement in the sensor 

response over the bare conventional fibre. But it does not provide enough NRs of the 

interferometric fibre acoustic sensors for supporting large multiplexing [21]. 

 

In the mid-1980s investigators started using air-backed structures to further increase 

the NRs of the fibre acoustic sensors. The new designs included flexural disc 

configurations and air-backed mandrels (initially of metal tubes) [24]. The NR of the 

air-backed cylinder structure may be modified by changing the wall thickness of the 

tubes [25] and can achieve to ~-300dB. But, unlike the solid mandrel or the bare 

conventional fibre sensor designs, air-backed structures are sensitive to being 

crushed by the hydrostatic pressure and must be designed with a maximum pressure 
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(or depth) in mind [21]. 

 

 

Fig. 1.2 Evolution of the NRs of the interferometric acoustic fibre sensors 

 

Some results for coated fibre acoustic sensors use compliant coatings directly 

applied to the conventional silica fibre to increase their NR. This represents the 

simplest and potentially lowest cost acoustic sensor design as no additional 

components are needed and the coating can be extruded onto the fibre. Coated fibre 

acoustic sensors have been investigated over the last 25 years [26-30], with little 

improvement in NR, until recently. Air-included polymer coatings have recently 

been shown to increase the NR by as much as 40dB over the previous coated fibre 

acoustic sensors [31, 32]. The evolution of the NRs of the interferometric acoustic 

fibre sensors is shown in Fig. 1.2 [21].  

1.1.1.2 High Birefringence Fibre sensors 
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The high-birefringence fibre (HBF) has been widely used in coherent optical-fibre 

communication systems and optical-fibre sensors [33]. In conventional HBFs, high-

birefringence may be induced by two effects: 1) the geometric effect, which comes 

from the geometric asymmetry of the fibre’s profile; 2) the built-in stress effect, 

which is induced by the doped regions near the fibre core. These doped regions have 

larger thermal expansion coefficients than the fibre’s silica background, which 

induces high asymmetric built-in stress of the fibre core in its manufacture process. 

Thus the general expression of the fibre birefringence (B) can be expressed as: 

g biB B B      (1.1) 

where Bg is the fibre birefringence induced by geometric asymmetry effect and Bbi is 

the contribution of built-in stress effect to the birefringence of the HBF. For 

conventional bow-tie and PANDA fibres [33], their doped regions in the fibre 

cladding cause both geometric asymmetries of the fibre’s profiles and the built-in 

stress in the fibre cores. Thus for those two kind of HBFs, their high birefringence 

comes from both two effects of Eq. (1.1). For high-birefringence elliptical fibres 

(HBEF) mentioned in Ref. [34], its birefringence is induced by the elliptical shapes 

of the fibre’s core and cladding. Thus the high-birefringence property of this HBEF 

comes mainly from the Bg, and the built-in stress in HBEF can be neglected. 

 

When the HBFs are used for optical fibre strain and temperature sensors, in order to 

improve the sensor performances, the birefringence responses of the HBF to axial 

strain and temperature need to be investigated [36-38]. When the HBF is subjected 

to an axial strain (ε), the change of the fibre birefringence (ΔB) can be expressed as: 

m

m

nB B G B

G n  
   

 
 

   (1.2) 

where ΔG is the geometric deformation of the fibre and Δnm is the index change of 

the fibre material induced by axial strain. In the right-hand side of Eq. (1.2), the first 
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term is a geometry-term that represents the contribution of strain-induced geometric 

deformation to the fibre birefringence. The second term is a material index-term that 

is associated only with the strain-induced index changes of the fibre materials. 

 

When the HBF is subjected to a temperature variation (ΔT), its birefringence change 

can be expressed as: 

m built in

m built in

nB B G B B

T G T n T T








     
  

      
  (1.3) 

where the first and second terms of the right-hand side of Eq. (1.3) represent the 

effects of temperature-induced geometric deformation of the fibre and contribution 

of the index changes of fibre materials to the fibre birefringence respectively. The 

third term is the built-in stress term, which represents the fact that the temperature 

variation releases part of the built-in stress in the fibre’s core. 

 

Table 1 Birefringence and birefringence sensitivities to axial strain and 

temperature variation for conventional PANDA fibre and HB-PCF at the 

wavelength of 1550 nm. 

 
Fibre 

 
PANDA fibre 

 
HB-PCF 

 
Birefringence (B) 

 
~5.11*10-4 

 
~8.7*10-4 

Birefringence sensitivity 
to axial strain (ΔB/ε) 

 
~8.3*10-3 (ε-1) 

 
~-7.4*10-4 (ε-1) 

Birefringence sensitivity 
to temperature (ΔB/ΔT) 

 
~-3.11*10-7 (K-1) 

 
~-5.2*10-10 (K-1) 

 

The birefringence and the birefringence sensitivities of high-birefringence PANDA 

fibre to axial strain and temperature, at the wavelength of 1550nm, are summarized 

in Table 1 [36]. It can be seen in Table 1 that the conventional PANDA fibre has 

large birefringence of ~10-4. And the birefringence sensitivities of such PANDA fibre 

to axial strain and temperature are about 8.3*10-3 (ε-1) and -3.11*10-7 (K-1) 
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respectively. 

1.1.1.3 In-fibre Polarization Controllers 

The optical polarization controller (PC) has been widely used in fibre sensors and 

communication systems. Compared with their bulk counterparts, all-fibre in-line PCs 

have the advantages of easier alignment, smaller insertion loss, and full 

compatibility with optical fibre systems. Several techniques have been reported for 

building in-fibre PCs in conventional single mode fibres (SMFs), including bending 

the fibre into loops to control the state of polarization (SOP) [41]; using three surface 

pressing components with 45º between each other to produce elastic-optically 

induced birefringence on the fibre [42]; and using micro-heaters deposited on short 

section of polarization maintaining fibre to thermally induce differential phase 

changes between orthogonal polarizations [43]. 

1.1.2 Photonic Crystal Fibres and Their Applications 

Photonic crystal fibres, fibres with a periodic transverse microstructure, have been in 

practical existence as low-loss waveguides since early 1996 [53]. It is now possible 

to manufacture the microstructure in air-glass PCF to accuracies of 10 nm on the 

scale of 1 μm, which allows remarkable control of key optical properties such as 

dispersion, birefringence, nonlinearity, and position and width of the photonic band 

gaps in the periodic cladding. The original motivation for developing PCFs was the 

creation of a new kind of dielectric waveguide, which guides light by means of two-

dimensional photonic band gap. The first successful air-silica PCF structure was 

made by stacking 217 silica capillaries (eight layers outside the central capillary), 

and it had a solid central core surrounded by 216 air channels [54, and 55]. This led 

to the discovery of endless single-mode PCF, which led rapidly to a whole series of 

new types of PCFs: larger mode area PCF [56], dispersion controlled PCF [57], 
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hollow core PBF [58], high-birefringence PCF [59], and multi-core PCF [60]. 

 

Photonic crystal fibres come in two main classes, distinguished by their guiding 

mechanism. The first class is referred to as index-guiding PCFs, which includes 

solid-core PCF. These fibres guide light through a modified version of total internal 

reflection and behave very much like a step-index conventional fibre for single 

frequencies, but when considering wide-band applications, the highly dispersive 

cladding can produce optical properties not available from conventional silica fibre, 

such as endlessly single-mode operation. The second class of PCFs is referred to as 

photonic bandgap fibres, which includes hollow-core photonic bandgap fibre 

(hollow-core PBF). These fibres guide light by creating a band gap in their air-silica 

cladding surrounding a hollow core. The band gap structure acts as a reflective 

assembly that confines light to the hollow core of the fibre, which offers the potential 

for reduced scattering [61], lower nonlinearity [62], and potentially lower loss [63] 

than conventional silica fibres. 

 

The diversity of new or improved features beyond conventional silica fibres means 

that PCFs are finding an increasing number of applications in many areas of science 

and technology. As for fibre-optical sensors and devices based on PCFs, the unique 

light-guiding mechanism and the holey geometry let PCFs explore many fields of 

applications including: 1) Fibre lasers based on PCFs [64, 65 and 66]; 2) PCF cutting 

and joining [67 and 68]; 3) PCF mode transformers [69]; 4) PCF polarizer [70 and 

71]; 5) PCF wavelength filters [72, 73 and 74]; 6) Laser tweezers in hollow-core 

PCF [75, 76 and 77]; 7) Biomedical sensing based on PCF [78]; 8) Multi-core PCF 

for bend and shape sensing [79]; 9) Double-clad PCF in multi-photon fluorescence 

measurements [80]; 10) Solid-core PCF for hydrostatic pressure sensing [81]; 11) 

Hollow-core PBF gyroscope [82, 83]; and 12) Hollow-core PBF acoustic sensor [84]. 
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1.1.2.1 High-birefringence Photonic Crystal Fibres 

The high-birefringence photonic crystal fibre (HB-PCF) was demonstrated in 2001 

[35]. The high birefringence of such fibre is induced by varying diameter of one pair 

of the cladding air-holes and there is no doped region in the fibre’s profile, thus the 

high-birefringence of such fibre comes mainly from Bg, and the built-in stress term 

of equation (1.1) can be neglected. 

 

The birefringence sensitivity of this HB-PCF to temperature (ΔB/ΔT) is much 

smaller than the value of conventional PANDA fibre. This is because in the cladding 

of the HB-PCF there is no doped region [35], and therefore no built-in stress 

generated during its manufacturing process. It can also been seen in Table 1 that the 

birefringence sensitivity (ΔB/ε) to axial strain for the HB-PCF, is about ten times 

smaller than the value of PANDA fibre. This is because for the HC-PCF, the high-

birefringence comes from varying the diameters of two cladding air-holes, thus the 

material index-term of Eq. (1.2) for this HB-PCF is much smaller than that of the 

conventional PANDA fibre, of which the high-birefringence is induced by two high-

index doped regions in its cladding. 

 

In recent years, a hybrid PCF guiding light by both index-guiding and bandgap-

guiding simultaneously was demonstrated [39]. This hybrid PCF was composed of 

air-holes (arranged in a hexagonal pattern) and Ge-doped silica rods (replaced a 

single row of air holes along one of the hybrid PCF axes). Because the guiding 

mechanisms of the hybrid PCF are different in two orthogonal directions, high 

birefringence is expected [40].  However, the birefringence sensitivities of this 

hybrid PCF to strain and temperature are not investigated. 

1.1.2.2 Hollow-core PBF Polarization Controller 
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Hollow-core photonic bandgap fibres (HC-PBFs), since their first demonstration of 

single-mode light guidance in 1999 [44], have been a subject of continuing interest 

over the past ten years. To realize the full potential of HC-PBFs, it is often necessary 

to splice HC-PBFs with conventional fibre components to form functional circuits or 

sub-systems. To this end, low loss and robust splicing between these fibres is 

important and has been a topic of considerable interest [45, 46, and 47]. Alternatively, 

in-line components may be built directly on the HC-PBF and this avoids the 

problems associated with splicing different types of optical fibres. There are active 

researchers along this line, HC-PBF based fibre polarizer [48], wavelength filter [49], 

and coupler [50 and 51] are demonstrated or proposed. 

 

Terrel et al. reported a HC-PBF PC made by twisting three sections of a HC-PBF 

[52]. This PC makes use of the inherent birefringence of the HB-PBF and the lengths 

of the twisted sections are chosen to be the beat length of the HC-PBF. For the HC-

PBF, it should be noted that the inherent birefringence is a residual effect due to 

manufacturing imperfection, and the HC-PBF is not intended to have any 

birefringence. The inherent birefringence of the fibre causes wavelength dependent 

delay between the two orthogonal SOPs, and for the same SOP at the input, lights 

out of the PC may have different SOPs for different wavelengths, and this narrows 

down the bandwidth of the PC.  

1.2 Motivation and Significance of This Work 

Because of the differences between PCFs and conventional silica fibres in both 

elastic structure and light-guiding mechanism, comparing with conventional silica 

fibres, PCFs show different responses to external measurands. Recently, more and 

more cases that use PCFs as the sensing elements to detect external measurands are 

reported or proposed. However, to our knowledge, general theoretical models for 
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analysing the responses of PCFs to strain, pressure and temperature have not been 

investigated. 

 

In this dissertation, we construct general models for three types of PCFs, which can 

be used to simulate responses of those PCFs to different measurands, such as axial 

strain, acoustic pressure, lateral pressure, and temperature. The simulation results 

show that compared with conventional silica fibre, PCFs show some novel or 

improved responses to the external measurands, and those responses can be 

adjustable for different applications because the fibre parameters of PCFs are 

flexible. Those advantages give rise to several new PCF applications for sensors and 

devices. 

1.3 Dissertation Outline 

Chapter 2 We construct the elastic model for the solid-core PCF in Section 2.1. The 

deformations of the solid-core PCF due to axial strain, acoustic pressure and 

temperature are simulated with this elastic model in Section 2.2. In Section 2.3, the 

phase sensitivities of the solid-core PCF to axial strain, acoustic pressure and 

temperature are simulated respectively. Finally, a summary of Chapter 2 is presented 

in Section 2.4. 

 

Chapter 3 We construct the elastic mode for the hollow-core PBF in Section 3.1. 

The deformations of the hollow-core PBF due to axial strain, acoustic pressure, 

temperature and lateral pressure are simulated with this elastic model in Section 3.2. 

In Section 3.3, the phase sensitivities of the hollow-core PBF to axial strain, acoustic 

pressure and temperature are calculated respectively. In Section 3.4, the 

birefringence change of the hollow-core PBF due to lateral pressure is simulated 

theoretically. Finally, a summary of Chapter 3 is presented in Section 3.5. 
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Chapter 4 We construct the elastic mode for the hybrid PCF in Section 4.1. The 

birefringence property of the hybrid PCF is simulated by using the theoretical model 

in Section 4.2. In Section 4.3, the birefringence responses of the hybrid PCF to axial 

strain and temperature are calculated respectively. Finally, a summary of Chapter 4 is 

presented in Section 4.4. 

 

Chapter 5 The phase sensitivities of two types of PCFs, one type of solid-core PCF 

and one type of hollow-core PBF to axial strain are measured and the results are 

shown in Section 5.1. The phase sensitivity of one type of hollow-core PBF to 

acoustic pressure is measured experimentally and the results are shown in Section 

5.2. Finally, a summary of Chapter 5 is presented in Section 5.3. 

 

Chapter 6 The experimental setup and the working principle of a hollow-core PBF 

polarization controller based on lateral pressures are demonstrated in Section 6.1. 

The experimental results of this hollow-core PBF PC measured in Section 6.2. 

Finally, a summary of Chapter 6 is presented in Section 6.3. 

 

Chapter 7 The experimental setup for the measurements of the birefringence 

properties of the hybrid PCF is demonstrated in Section 7.1.  The birefringence 

responses of the hybrid PCF to axial strain and temperature are measured 

respectively in Section 7.2 and 7.3. In Section 7.4, a design of hybrid PCF and its 

applications are proposed. Finally, a summary of Chapter 7 is presented in Section 

7.5. 

 

Chapter 8 In the last chapter, we summarize the research work accomplished in this 

dissertation.  
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TThheeoorreettiiccaall  MMooddeelllliinngg  ffoorr  SSoolliidd--ccoorree  PPCCFFss  

2.1 Elastic Model of Solid-core PCFs 

The model for simulating the conventional silica fibres were well described by 

Hocker, Lagakos and Budiansky [27, 28 and 29]. Unlike conventional silica which 

has only two regions (the silica region and the polymer jacket region) in its profile, 

the solid-core PCFs have a solid silica core, an air-silica microstructure inner 

cladding, a solid silica outer cladding, and an acrylete or other polymer jacket. The 

elastic model of solid-core PCFs may be modelled as a structure with four circular 

regions: Region 1 is the solid core with radius of a; Region 2 is the air-silica inner 

cladding with thickness of b-a; Region 3 is the silica outer cladding with the 

thickness of c-b; and finally they are coated with the Region 4: polymer jacket, to the 

radius of d; The cross-section of the solid-core PCF is shown in Fig. 2.1.  

 

Each region in Fig. 2.1 is characterized by a certain elastic modulus E and Poisson’s 

ratio of ν. The materials of silica core, silica outer cladding and polymer jacket are 

homogeneous, and their Young’s modulus and Poisson’s ratios can be expressed as 

E1, E3, E4, ν1, ν3, and ν4 respectively. The air-silica inner cladding of the solid-core 

PCF is an exception in that it is not a homogeneous material but behaves 

mechanically like a honeycomb [85, 86 and 87]. The Young’s modulus and Poisson’s 

ratio of this honeycomb cladding are anisotropic and are the function of its air-filling 

ratio η. For a hexagonal pattern of air holes in the air-silica cladding, their Young’s 

modulus and Poisson’s ratio can be expressed as Eqs. (2.1) and (2.2) [85]. 
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In Eqs (2.1) and (2.2), E0 is the Young’s modulus of the silica material, ν0 is its 

Poisson’s ratio. Er, Eθ, and Ez are the Young’s modulus of the air-silica honeycomb 

cladding in the three directions, and νr-θ, νθ-r, νz-θ, νθ-z, νr-z, and νz-r are the six 

Poisson’s ratios of the honeycomb cladding. 

 

 
Fig. 2.1  Cross-section of a solid-core PCF with a solid silica core, an air-silica inner cladding, a silica 

outer cladding and a polymer jacket. 

 

For discussing strains, stresses and displacements in all regions of the solid-core 

PBF due to external measurands, it is advantageous to use polar coordinates. Using 

the knowledge of the of elasticity [88], the stress equilibrium equations in each 

region of the solid-core PCF can be expressed as: 
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where σr
i is the normal stress component of region i in the radial direction, σθ

i is the 

normal stress component of region i in the tangential direction, and τrθ
i is the 

shearing stress component of region i. 

 

When the external measurands are symmetrical about the z-axis of the solid-core 

PCF and well-proportioned along the z-direction, the stress distribution of each 

region depends on r only, on this condition the solutions of Eq. (2.3) are shown as Eq. 

(2.4), where Ai, Bi, Ci, and Di (i=1, 2, 3 and 4) are constants. 
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For region 1 of the solid-core PCF, there is no hole at the origin, thus both A1 and B1 

are zero [88]. The stress expressions of the first region can be written as Eq. (2.5). 

1
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


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
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     (2.5) 

 

For regions 2, 3, and 4, there are holes at their origins, thus in Eq. (2.4) only Bi are 

zeros [88]. The normal stress equation of those regions can be expressed as Eq (2.6). 
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Using Hooke’s law, the strain tensors of different regions can be obtained. For the 

solid silica core region, the Young’s modulus and Poisson’s ratio are E1 and ν1 

respectively. The strain expression of this region can be written as Eq. (2.7). 
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For the region of air-silica inner cladding, its Young’s modulus and Poisson’s ratio 

are shown in Eqs. (2.1) and (2.2). Using Hooke’s law, the strain expression of the 

air-silica cladding can be written as Eqs. (2.8). 
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For the two regions, the silica outer cladding and the polymer jacket of the solid-core 

PCF, their Young’s modulus and Poisson’s ratio can be written as E3, E4, ν3, and ν3 

respectively. Using Hooke’s law, the strain expression of those two regions can be 

obtained as Eq. (2.9). 
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2.2 Deformations of Solid-core PCFs Due to 

Different Measurands 

In Section 2.1, we construct the elastic model for the solid-core PCF. The elastic 

model gives general stress and strain expressions of each region of the solid-core 

fibre, when the fibre is subjected to symmetrical and z-direction well-proportioned 

measurands. In this section, we will discuss the deformations of the solid-core PCF, 

when the fibre is subjected to axial strain, acoustic pressure and temperature. 

Because all of those three measurands are symmetrical and they are all well-

proportioned along the z-direction, the stress and strain expressions discussed in 

Section 2.1 can be used to simulate the deformations of the solid-core PCF for those 

three types of measurands. 

2.2.1 Axial Strain 

In order to get deformations of the solid-core fibre due to axial strain (ε), the 

constants shown in Equation (2.4) should be determined by the boundary conditions 

and the stress and displacement continuities across the boundaries between different 

regions of the solid-core PCF. Under the plane approximation the boundary 

conditions due to axial strain and the expressions of the stress and displacement 

continuities may be expressed as Eq. (2.10). 



Chapter 2 Theoretical modelling for solid-core PCFs 

 18  

1 2

2 3

3 4

1 2

2 3

3 4

4

1 2 3 4

( )

( )

( )

( )

( )

( )

0 ( )

( )

r r

r r

r r

r r

r r

r r

r

r a r a

r b r b

r c r c

r a r a

r b r b

r c r c

r d

z z z z

a

b

c

u u d

u u e

u u f

g

h

 

 

 



    

 

 

 

 

 

 

















   

   (2.10) 

 

In Eq. (2.10), ur
i is the radial displacement in region i, which is related to radial 

strain by Eq. (2.11). Eqs. (2.10a), (2.10b) and (2.10c) describe radial stress 

continuity across the boundaries of the regions; Eqs. (2.10d), (2.10e) and (2.10f) 

describe the radial displacement continuity across the boundaries of the regions; Eq. 

(2.10g) means the region outside of the fibre is air; Eq. (2.10h) is for the plane 

approximation [88], which ignores the end effect. 

r

i i
ru dr      (2.11) 

 

Substituting Eqs. (2.5), (2.6), (2.7), (2.8), (2.9), and (2.11) into the boundary 

conditions, the constants Ai, Ci and Di (i=1, 2, 3, and 4), when the solid-core PCF 

subjected to axial strain, can be determined by the matrix equation (2.12). Solving 

this equation, the constants can be obtained, and thus the stress, strain and 

displacement distributions of each region of the solid-core PCF, when subjected to 

axial strain can be obtained. 
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The theoretical model is applied to calculate the deformation of one type of solid-

core PCF (NL-3.3 fibre) [89], when it is subjected to axial strain. This fibre has a 

solid core and an air-silica cladding with air-filling ratio of ~84%. The air-silica 

cladding can be approximately considered as uniform honeycomb structure. The 

SEM photograph of NL-3.3 is shown in Fig. 2.2 and its physical parameters are 

listed in Table 2.1.  

 

Table 2.1 Physical parameters of NL-3.3 

Pitch η a b c  
Fibre 3 (μm) 84% 1.65(μm) 15(μm) 75(μm) 

d E0=E1=E3 E4 υ0=υ1=υ3 υ4  
NL-3.3 125(μm) 72(GPa) 0.5(GPa) 0.17 0.37 
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Fig 2.2 SEM photograph of one type of solid-core PCF (NL-3.3) 

 

Using the physical parameters shown in Table 2.1, the deformation of the solid-core 

PCF (NL-3.3) due to axial strain can be calculated by using the theoretical model. 

For example, we plotted the radial displacements ur
i of each region of the NL-3.3 

fibre as the function of distance from the fibre centre in Fig. 2.3, when the fibre is 

subjected to axial strain of -10-3 (ε).  
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Fig. 2.3  Radial displacement as the function of distance from the fibre centre for the NL-3.3 fibre, 

when the fibre is subjected to axial strain of -10-3 (ε). 

 

It can be seen in Fig. 2.3 that the radial displacements of the inner three regions 

increase linearly with the increasing of the distance from the fibre centre. It can be 

explained that the regions of solid silica core, air-silica inner cladding and silica 

outer cladding have the same material of silica. Thus when the fibre is subjected to 

axial strain, the radial strains of those three inner regions keep similar value. 

Compared with silica material, the material of the jacket is one type of polymer 

much more flexible than the silica, thus in this polymer jacket region the radial strain 

is larger than the other three regions. 

2.2.2 Acoustic Pressure 

The constants shown in Equation (2.4), when the solid-core PCF is subjected to 

acoustic pressure (-dP), are also determined by the boundary conditions and the 

stress and displacement continuities across the boundaries between different regions 



Chapter 2 Theoretical modelling for solid-core PCFs 

 22  

of the solid-core PCF. Under the plane approximation the boundary conditions due to 

acoustic pressure and the expressions of the stress and displacement continuities may 

be expressed as Eq. (2.13). 
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  (2.13) 

 

Eqs. (2.13a), (2.13b) and (2.13c) describe radial stress continuity across the 

boundaries of the regions; Eqs. (2.13d), (2.13e) and (2.13f) describe the radial 

displacement continuity across the boundaries of the regions; Eq. (2.13g) and (2.13i) 

are the hydrostatic condition, and Eq. (2.13h) is for the plane approximation [88]. 

 

Substituting Eqs. (2.5), (2.6), (2.7), (2.8), (2.9), and (2.11) into the boundary 

conditions, the constants Ai, Ci and Di (i=1, 2, 3, and 4), when the solid-core PCF 

subjected to acoustic pressure, can be determined by the matrix equation (2.14). 

Solving this equation, the constants can be obtained, and thus the stress, strain and 

displacement distributions of each region of the solid-core PCF, when subjected to 

acoustic pressure can be obtained. 
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The deformations of the solid-core PCF (NL-3.3), when it is subjected to acoustic 

pressure, are calculated [89]. The parameters and the SEM photograph of this NL-

3.3 fibre are shown in Table 2.1 and Fig. 2.2 respectively. 

  

The radial displacements ur
i of each region of the NL-3.3 as the function of distance 

from the fibre centre are shown in Fig. 2.4, when the fibre is subjected to acoustic 

pressure of -1 (Pa). It can be seen in Fig. 2.4 that the radial displacements of the 

inner three regions are much smaller than the displacement of the polymer jacket. 

This is because, comparing with silica material, the polymer is much more flexible. 
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Fig. 2.4  Radial displacement as the function of distance from the fibre centre for the NL-3.3 fibre, 

when the fibre is subjected to acoustic pressure of -1Pa. 

2.2.3 Temperature 

When the solid-core PCF is subjected to temperature variation of (ΔT), the stress 

expressions of regions are also shown as Eqs. (2.5) and (2.6). However, the strain 

expressions of the solid-core PCF due to temperature variation are different with the 

strain equations due to axial strain or acoustic pressure. The thermal expansion terms 

(αiΔT) should be added into the strain expressions of each region as expressed as Eq. 

(2.15), where αi (i=1, 2, 3 and 4) are the thermal expansion coefficients of the four 

regions.  
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  (2.16) 

 

The constants are also determined by the boundary conditions and the stress and 

displacement continuities across the boundaries between different regions of the 

solid-core PCF. Under the plane approximation, the boundary conditions due to 

temperature variation and the expressions of the stress and displacement continuities 

may be expressed as Eq. (2.16). 

 

Eqs. (2.16a), (2.16b) and (2.16c) describe radial stress continuity across the 
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boundaries of the regions; Eqs. (2.16d), (2.16e) and (2.16f) describe the radial 

displacement continuity across the boundaries of the regions; Eq. (2.16g) and (2.16i) 

mean the pressure out of the fibre is zero, and Eq. (2.16h) is for the plane 

approximation [88]. 

 

Substituting Eqs. (2.5), (2.6), (2.15) and (2.11) into the boundary conditions, the 

constants Ai, Ci and Di (i=1, 2, 3, and 4), when the solid-core PCF subjected to 

temperature variation of ΔT, can be determined by the matrix equation (2.17). 

Solving this equation, the constants can be obtained, and thus the stress, strain and 

displacement distributions of each region of the solid-core PCF, when subjected to 

temperature variation can be obtained. 
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 (2.17) 

 

The deformations of the solid-core PCF (NL-3.3), when it is subjected to 

temperature variation, are simulated by using this theoretical model. The parameters 

and the SEM photograph of this NL-3.3 fibre are shown in Table 2.1 and Fig. 2.2 

respectively. The thermal expansion coefficients of silica material and polymer 
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material are 0.55*10-6 (ε/K) and 8*10-5 (ε/K) respectively. 

  

The radial displacements ur
i of each region of the NL-3.3 as the function of distance 

from the fibre centre are shown in Fig. 2.5, when the fibre is subjected to 

temperature variation of 1 (K). It can be seen in Fig. 2.5 that the radial displacement 

of the polymer jacket region is much larger than the displacements of the other three 

regions of the fibre. This is because the thermal expansion coefficient of the polymer 

material is much larger than that of the silica material.   

 

Fig. 2.5  Radial displacement as the function of distance from the fibre centre for the NL-3.3 fibre, 

when the fibre is subjected to temperature variation of 1 (K). 

2.3 Phase Sensitivities of Solid-core PCFs to 

Different Measurands 

In the fibre interferometric sensors, the external measurands result in the phase 
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differences between the sensing arm and the reference arm, which are measured in 

the output port of the interferometer. Assuming that the sensing fibre has a length of 

L, the effective index of fundamental mode is neff, and the operating light wavelength 

in vacuum is λ, the phase (φ) accumulated by the fundamental mode travelling 

through the sensing fibre is given by Eq. (2.18). 

2
effn L




     (2.18) 

 

The normalized phase sensitivity of the fundamental mode to a measurand “X” may 

be generally expressed as: 

1 1 1 eff
L n

eff

dnd dL
S S S

dX L dX n dX




       (2.19) 

where “X” can be axial strain, acoustic pressure, and temperature. In the right-hand 

side of Eq. (2.19), the first term (SL) is a length-term that represents the measurand-

induced physical change of the fibre length, and the second term (Sn) is an index 

term representing the measurand-induced change of the effective refractive index of 

the fundamental mode. 

 

For the solid-core PCF, the length-term of Eq. (2.19) can be obtained from the z-

direction strain of the sensing solid-core fibre. The index-term of Eq. (2.19) is 

mainly induced by the strain-optic effect of the solid core, because most of light in 

the solid-core fibre travels through the solid silica core of the fibre. 

2.3.1 Axial Strain 

The normalized phase sensitivity of the solid-core PCF to axial strain may be 

expressed as Eq. (2.20). 
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1 1
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For the normalized phase sensitivity to axial strain, the length term of Eq. (2.20) is 

one, and the index term of Eq. (2.20) is determined by the strain-optic effect of the 

solid silica core. The index change of the core material can be expressed as Eq. 

(2.21), where n0 is the initial material index of the silica core, p11 and p12 are the 

elements of the strain-optic tensors of silica. 
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  (2.21) 

 

Then the index term of the phase sensitivity of the solid-core PCF to axial strain can 

be expressed as Eq. (2.22). 

1

0

1 eff r
n

eff

dn n
S

n n 


     (2.22) 

 

For the NL3.3 fibre, the initial material index of the silica core is n0=1.444, and its 

p11 and p12 are 0.121 and 0.27 respectively. The Sn of this solid-core PCF (NL-3.3) to 

axial strain can be calculated to be ~-0.2119. And thus the normalized phase 

sensitivity of NL-3.3 to axial strain can be predicted to be S = ~0.7881. 

2.3.2 Acoustic Pressure 

The normalized phase sensitivity of the solid-core PCF to acoustic pressure may be 

expressed as Eq. (2.23). 



Chapter 2 Theoretical modelling for solid-core PCFs 

 30  

1 1 1 1eff eff
L n

eff eff
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 


        (2.23) 

 

For the normalized phase sensitivity to acoustic pressure, the length term of Eq. 

(2.23) can be calculated by using the z-direction strain (εr
1) discussed in Section 

2.2.2, and the index term of Eq. (2.23) is mainly caused by the strain-optic effect of 

the solid silica core. The index change of the core material can be expressed as Eq. 

(2.21) and the index term of the phase sensitivity of solid-core PCF to axial strain 

can be expressed as Eq. (2.24). 

1

0

1 eff r
n

eff
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S
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
     (2.24) 

 

For the NL-3.3 fibre, SL to acoustic pressure can be calculated to be ~-1.683*10-11 

(ε/Pa) and Sn to acoustic pressure can be calculated to be ~1.168*10-11 (1/Pa). And 

thus the normalized phase sensitivity of NL-3.3 fibre to acoustic pressure can be 

predicted to be S = -5.15*10-12 (1/Pa). 

2.3.3 Temperature 

The normalized phase sensitivity of the solid-core PCF to temperature may be 

expressed as Eq. (2.25). 

1 1 1 1eff eff
L n

eff eff

dn dnd dL
S S S

dT L dT n dT dT n dT

 


        (2.25) 

 

For the normalized phase sensitivity to temperature, the length term of Eq. (2.20) can 

be calculated by using the z-direction strain (εr
1) discussed in Section 2.2.3, and the 

index term of Eq. (2.25) is determined by two effects: 1) the thermal-optic effect of 

the fibre core, which is shown in Eq. (2.26), and 2) the strain-optic effect of the fibre 
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core, as shown in Eq. (2.21), where γ is the thermo-optic coefficient of the core 

material. 

1 | Tn T        (2.26) 

 

Thus the index term of the phase sensitivity of solid-core PCF to temperature can be 

expressed as Eq. (2.27). 

1 1

0

1 reff T
n

eff

n ndn
S

n dT n dT


  
     (2.27) 

 

For the NL-3.3 fibre, γ of the silica material is 7.8*10-6 (K-1). The SL of this solid-

core PCF (NL-3.3) to temperature variation can be calculated to be ~1.14*10-6 (K-1), 

and Sn of the NL-3.3 fibre to temperature variation can be calculated to be 

~4.998*10-6 (K-1). And thus the normalized phase sensitivity of NL-3.3 fibre to 

temperature can be predicted to be S = 6.138*10-6 (K-1). 

2.4 Summary 

We have constructed the theoretical model for solid-core PCFs. This model can be 

used to simulate the physical deformations and the effective index changes of the 

solid-core PCF, when the fibre is subjected to different measurands. One type of 

solid-core PCF (NL-3.3 fibre) is simulated by using this general model for solid-core 

PCF. The simulation results show that the NL-3.3 fibre has the normalized phase 

sensitivity to axial strain of ~0.7881, normalized phase sensitivity to acoustic 

pressure of ~-5.15*10-12 (Pa-1), and normalized phase sensitivity to temperature of 

~6.138*10-6 (K-1). 
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CChhaapptteerr  33  

TThheeoorreettiiccaall  MMooddeelllliinngg  ffoorr  HHoollllooww--ccoorree  

PPBBFFss  

3.1 Elastic Model of hollow-core PBFs 

Unlike the solid-core PCF which has a solid core in its profile, the core of the 

hollow-core PBF is air, and thus the elastic model of the hollow-core PBF may be 

modelled as a structure with four circular regions: Region 1 is the air core with 

radius of a; Region 2 is the honeycomb inner cladding with thickness of b-a; Region 

3 is the silica outer cladding with the thickness of c-b; and finally they are coated 

with the Region 4: polymer jacket, to the radius of d; The cross-section of the 

hollow-core PBF is shown in Fig. 3.1.  

 

 
Fig. 3.1  Cross-section of a hollow-core PBF with an air core, an air-silica inner cladding, a silica 

outer cladding and a polymer jacket. 
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Regions 2, 3, and 4 in Fig. 3.1 can be characterized by a certain elastic modulus E 

and Poisson’s ratio of ν. The materials of silica outer cladding and polymer jacket are 

homogeneous, and their Young’s modulus and Poisson’s ratios can be expressed as 

E3, E4, ν3, and ν4 respectively. The air-silica inner cladding of the solid-core PCF is 

an exception in that it is not a homogeneous material but behaves mechanically like 

a honeycomb [85, 86 and 87]. The Young’s modulus and Poisson’s ratio of this 

honeycomb cladding are anisotropic and are thus the function of its air-filling ratio η. 

For a hexagonal pattern of air holes in the air-silica cladding, their Young’s modulus 

and Poisson’s ratio can be expressed as Eqs. (2.1) and (2.2) [85]. 

 

As discussion in Chapter 2, all of the air-silica inner cladding, silica outer cladding 

and the polymer jacket have holes at their origins. When the fibre is subjected to 

symmetric measurands, such as axial strain, acoustic pressure and temperature 

variation, the stress expressions of those regions 2, 3 and 4 can be written as Eq. 

(3.1). 
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Using Hooke’s law, the strain tensors of those three regions can be obtained and 

shown in Eq. (3.2). 
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Fig. 3.2 Hollow-core PBF subjected to asymmetric lateral pressure 

 

When the fibre is subjected to the lateral pressure, which is an asymmetric 

measurand, as shown in Fig. 3.2, using the knowledge of theory of elasticity, the 

stress expressions of the regions 2, 3 and 4 of the hollow-core PBF in the polar 

coordinates can be written as Eq. (3.3) [88]. 
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 (3.3) 

 

In Eq. (3.3), Fi, Gi, Ai, Bi, Ci and Di are constants which are determined by the 

boundary conditions and stress and displacement continuities across the boundaries 

between different regions. Using the Hooke’s law, we obtain the strain tensors and 
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displacements of the three regions given as Eq. (3.4), where ur
i and vθ

i represent the 

radial and tangential components of displacements in region i. 
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 (3.4) 

3.2 Deformations of Hollow-core PBFs Due to 

Different Measurands 

In Section 3.1, we construct a elastic model for the hollow-core PBF. This elastic 

model gives general stress and strain expressions of each region of the solid-core 

fibre, when the fibre is subjected to symmetrical and asymmetrical measurands. In 

this section, we will discuss the physical deformations of the hollow-core PBF, when 

the fibre is subjected to different measurands such as axial strain, acoustic pressure, 

temperature and lateral pressure. In the four types of measurands, axial strain, 

acoustic pressure, and temperature variation are symmetrical measurands and they 

are all well-proportioned along the z-direction, while lateral pressure is an 

asymmetrical measurand but is also well-proportioned along the z-direction. 

3.2.1 Axial Strain 

In order to get deformations of the hollow-core PBF due to axial strain (ε), the 

constants shown in equations (3.1) and (3.2) should be determined by the boundary 

conditions and the stress and displacement continuities across the boundaries 

between different regions of the hollow-core PBF. Under the plane approximation 
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the boundary conditions due to axial strain and the expressions of the stress and 

displacement continuities may be expressed as Eq. (3.5). 
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   (3.5) 

 

In Eq. (3.5), ur
i is the radial displacement in region i, which is related to strain by Eq. 

(2.11). Eqs. (3.5a) and (3.5b) describe radial stress continuity across the boundaries 

of the regions; Eqs. (3.5c) and (3.5d) describe the radial displacement continuity 

across the boundaries of the regions; Eq. (3.5e) and (3.5f) mean the regions both in 

the fibre core and out of the fibre are air; Eq. (3.5g) is for the plane approximation 

[88], which ignores the end effect. 

 

Substituting Eqs. (3.1) and (3.2) into Eq. (3.5), the constants Ai, Ci and Di (i=2, 3, 

and 4), when the hollow-core PBF subjected to axial strain, can be determined by the 

matrix equation (3.6). By solving this equation, the constants can be obtained, and 

thus the stress, strain and displacement distributions of each region of the solid-core 

PCF, when subjected to axial strain, can be obtained. 
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  (3.6) 

 

We simulate one type of hollow-core PBF (HC-1550-02 fibre [89]) and calculate the 

deformation of this HC-1550-02 fibre to axial strain. This fibre has air core and an 

air-silica cladding with air-filling ratio of ~94%. The air-silica cladding can be 

approximately considered as uniform honeycomb structure. The SEM photograph of 

HC-1550-02 fibre is shown in Fig. 3.3 and its physical parameters are listed in Table 

3.1.  

 

Table 3.1 Physical parameters of HC-1550-02 fibre 

Pitch η a b c  
Fibre 3.8 (μm) 94% 5.45(μm) 35(μm) 60(μm) 

d E0=E3 E4 υ0=υ3 υ4  
HC-1550-02 110(μm) 72(GPa) 0.5(GPa) 0.17 0.37 

 



Chapter 3 Theoretical modelling for hollow-core PBFs 

 38  

 
Fig 3.3  SEM photograph of one type of hollow-core PBF (HC-1550-02). 

 

Using the physical parameters shown in Table 3.1, the deformation of hollow-core 

PBF (HC-1550-02) due to axial strain can be calculated by using this theoretical 

model. For example, we plotted the radial displacements ur
i of each region of the 

HC-1550-02 as the function of distance from the fibre centre in Fig. 3.4, when the 

fibre is subjected to axial strain of -10-3 (ε).  
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Fig. 3.4  Radial displacement as the function of distance from the fibre centre for the HC-1550-02 

fibre, when the fibre is subjected to axial strain of -10-3 (ε). 

 

It can be seen in Fig. 3.4 that the radial displacements of the fibre’s air-silica inner 

cladding and silica outer cladding increase linearly with the increasing of the 

distance from the fibre centre. This is because those two regions have the same 

material of silica. Thus when the fibre is subjected to axial strain, the radial strains of 

the two regions keep a similar value. Compared with silica material, the material of 

the jacket is one type of polymers which is much more flexible than the silica, thus 

in this region of polymer jacket, the radial strain is larger than the other two regions. 

3.2.2 Acoustic Pressure 

The constants shown in Equations (3.1) and (3.2), when the fibre is subjected to 

acoustic pressure (-dP), are also determined by the boundary conditions and the 

stress and displacement continuities across the boundaries between different regions 

of the hollow-core PBF. Under the plane approximation the boundary conditions due 
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to acoustic pressure and the expressions of the stress and displacement continuities 

may be expressed as Eq. (3.7). 
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  (3.7) 

 

Eqs. (3.7a) and (3.7b) describe radial stress continuity across the boundaries of the 

regions; Eqs. (3.7c) and (3.7d) describe the radial displacement continuity across the 

boundaries of the regions; Eq. (3.7e) means the core of the fibre is air, Eqs. (3.7f) 

and (3.7h) are the hydrostatic conditions, and Eq. (3.7g) is for the plane 

approximation [88]. 

 

Substituting Eqs. (3.1), (3.2) and (2.11) into the boundary conditions, the constants 

Ai, Ci and Di (i=2, 3, and 4), when the hollow-core PBF subjected to acoustic 

pressure, can be determined by the matrix equation (3.8). By solving this equation, 

the constants can be obtained, and thus the stress, strain and displacement 

distributions of each region of the hollow-core PBF, when subjected to acoustic 

pressure, can be obtained. 
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 (3.8) 

 

The deformations of one type of hollow-core PBF (HC-1550-02 fibre), when it is 

subjected to acoustic pressure, are calculated. The parameters and the SEM 

photograph of this HC-1550-02 fibre are shown in Table 2.1 and Fig. 3.3 respectively. 

  

The radial displacements ur
i of each region of the HC-1550-02 as the function of 

distance from the fibre centre are shown in Fig. 3.5, when the fibre is subjected to 

acoustic pressure of -1 (Pa). It can be seen in Fig. 3.5 that the radial displacements of 

the air-silica inner cladding and the silica outer cladding are much smaller than the 

displacement of the polymer jacket. This is because, compared with silica material, 

polymer is much more flexible. 
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Fig. 3.5  Radial displacement as the function of distance from the fibre centre for the HC-1550-02 

fibre, when the fibre is subjected to acoustic pressure of -1 (Pa). 

3.2.3 Temperature 

When the hollow-core PBF is subjected to temperature variations of (ΔT), the stress 

expressions of regions are also shown as Eqs. (3.1). However, the strain expressions 

of the hollow-core PBF due to temperature variations are different with the strain 

equations due to axial strain or acoustic pressure. The thermal expansion terms (αiΔT) 

should be added into the strain expression of each region as expressed as Eq. (3.9), 

where αi (i=2, 3 and 4) are the thermal expansion coefficients of the three regions.  
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  (3.10) 

 

The constants are also determined by the boundary conditions and the stress and the 

displacement continuities across the boundaries among different regions of the 

hollow-core PBF. Under the plane approximation, the boundary conditions due to 

temperature variations and the expressions of the stress and displacement 

continuities may be expressed as Eq. (3.10). 

 

Eqs. (3.10a) and (3.10b) describe radial stress continuity across the boundaries of the 

regions; Eqs. (3.10c) and (3.10d) describe the radial displacement continuity across 
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the boundaries of the regions; Eq. (3.10e) expresses the core of the fibre is air, Eqs. 

(3.10f) and (3.10h) means the pressure outside the fibre is zero, and Eq. (2.10g) is for 

the plane approximation [88]. 

 

Substituting Eqs. (3.1), (3.9), and (2.11) into the boundary conditions, the constants 

Ai, Ci and Di (i=2, 3, and 4), when the hollow-core PBF subjected to temperature 

variations of ΔT, can be determined by the matrix equation (3.11). By solving this 

equation, the constants can be obtained, and thus the stress, strain and displacement 

distributions of each region of the hollow-core PBF, when subjected to temperature 

variations, can be obtained. 
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 (3.11) 

 

The deformations of the hollow-core PBF (HC-1550-02), when it is subjected to 

temperature variation, are simulated by using this theoretical model. The parameters 

and the SEM photograph of this HC-1550-02 fibre are shown in Table 3.1 and Fig. 

3.3 respectively. The thermal expansion coefficients of silica material and polymer 

material of HC-1550-02 fibre are 0.55*10-6 and 8*10-5 (ε/K) respectively. 
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The radial displacements ur
i of each region of the HC-1550-02 as the function of 

distance from the fibre centre are shown in Fig. 3.6, when the fibre is subjected to 

temperature variation of 1 (K). It can be seen in Fig. 3.6 that the radial displacement 

of the polymer jacket region are much larger than the displacements of the other 

three regions of the fibre. This is because the thermal expansion coefficient of 

polymer material is much larger than silica material.   

 
Fig. 3.6  Radial displacement as the function of distance from the fibre centre for the HC-1550-02 

fibre, when the fibre is subjected to temperature variation of 1 (K). 

3.2.4 Lateral Pressure 

Unlike axial strain, acoustic pressure, and temperature, lateral pressure is an 

asymmetric measurand. Thus the stress and strain expressions of each region of the 

hollow-core PBF, when subjected to lateral pressure, can be written as equations (3.3) 

and (3.4).  



Chapter 3 Theoretical modelling for hollow-core PBFs 

 46  

 

The constants in equations (3.3) and (3.4) are also determined by the boundary 

conditions and the stress and the displacement continuities across the boundaries 

among different regions of the hollow-core PBF. Under the plane approximation, the 

boundary conditions due to lateral pressure and the expressions of the stress and 

displacement continuities may be expressed as Eq. (3.12), where νθ
i is the tangential 

displacement of region i as shown in Eq. (3.11m) [88]. 
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    (3.12) 

 

Eqs. (3.12a) and (3.12b) mean the fibre is subjected to lateral pressure; Eqs. (3.12c) 

and (3.12d) mean the core of the fibre is air; Eqs. (3.12e), (3.12f), (3.12g) and (3.12h) 

describe the radial and shear stress continuities across boundaries of the regions; and 

Eqs. (3.12i), (3.12j), (3.12k) and (3.12l) describe the radial and tangential 

displacement continuities across the boundaries of the regions. 
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Substituting Eqs. (3.3), (3.4), (2.11), and (3.11m) into the boundary conditions, the 

constants Ai, Bi, Ci, Di, Fi, Gi (i=2, 3, and 4), when the hollow-core PBF subjected to 

lateral pressure, can be determined, thus the stress, strain and displacement 

distributions of each region of the hollow-core PBF, when subjected to lateral 

pressure, can be obtained. 

3.3 Phase Sensitivities of hollow-core PCFs to 

Different Measurands 

As discussed in Section 2.3, the phase sensitivities of the fibre to different 

measurands come from two terms: the first term (SL) is a length-term that represents 

the measurand-induced physical change of the fibre length, and the second term (Sn) 

is an index term representing the measurand-induced change of the effective 

refractive index of the fundamental mode. 

 

For the hollow-core PBF, the length term of Eq. (2.19) due to different measurands, 

can be calculated directly by using the z-direction stress of the fibre. Unlike the 

solid-core PCF, the index-term of hollow-core PBF can not be determined by the 

strain-optic effect of the fibre core, because in the hollow-core PBF most of light 

travels in air. However, the measurands applied to the hollow-core PBF will induce 

the deformation of the hollow-core PBF’s air-silica cladding and thus modify the 

index of the fibre material, which affects the fundamental-mode effective index. 

 

In Section 3.2, the strain, stress and displacement distributions of each region of the 

hollow-core PBF due to different measurands, can be obtained. In this section, we 

will calculate the detail deformation in the transverse profile of the microstructure 
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cladding and the change of the fibre material index by using the stress, strain, and 

displacement distributions obtained in Section 3.2. The profile and material index 

changes modify the waveguide structure and hence the effective index of 

fundamental mode of the hollow-core PBF. 

 

Consider an arbitrary cell centred at (r, θ), as shown in Fig 3.7(1), the in-profile 

stresses acting on this cell may be written as σr
2, σθ

2 and τrθ
2, as shown in Fig. 3.7(2), 

Fig. 3.7(3) and Fig. 3.7(4) respectively. Using the knowledge of theory of elasticity, 

the stresses σr
2, σθ

2 and τrθ
2 in the polar coordinates may be composed into three 

stress components in the rectangular coordinates σ2|x, σ
2|y, and τ2|xy as given by Eq. 

(3.13) [88]. 
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  (3.13) 

 

 
Fig. 3.7 (1) Profile configuration of the hollow-core PBF’s air-silica inner cladding; (2) In-profile 

stress σr
2, on a cell of the microstructure cladding; (3) In-profile stress σθ

2 on a cell of the 

microstructure cladding; (4) In-profile shear stress τrθ
2 on a cell of the microstructure cladding 
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The deformation of the cell under the loads σr
2, σθ

2 and τrθ
2 is the sum of the 

deformations under loads σ2|x, σ
2|y, and τ2|xy, which can be calculated by using the 

knowledge of cellular solids [85]. The deformations of the cell walls (1~6) due to 

each of the load component are calculated respectively as follow [85]: 

 

A. Deformation due to σ2|x 

 

As Fig. 3.8 shows, when the cell under the load of σ2|x deforms in a linear-elastic 

way, the cell walls 1 and 4 keep straight and the walls 2, 3, 5, and 6 bend by 

following a similar pattern. In the new set of coordinates {x’, y’}, the moment of the 

wall 2 may be written as Eq. (3.14), where W=(√3/2)elσ2|x , l is the length of the cell 

wall and e is the unit depth in z-direction. The subscript “x” means the moment is 

caused by σ2|x. Then the deformation of cell wall 2 along the y’ direction as the 

function of x’ can then be obtained by double integration of Eq.(10) with respective 

to x’ and with proper boundary conditions and expressed  as Eq. (3.15) 

3
'

2xM Wx      (3.14) 

3 2 3

',
0

3 ( ' / 2) ( ' / 2)
[ ]

2 6 4 24y x

W x l l x l l
V

E I

 
      (3.15) 

 

In equation (3.15), I=et3/12, t is the thickness of the wall which is determined by the 

pitch and air-silica ratio of the microstructure cladding as shown in Eq. (3.16). The 

subscripts “y’, x” means the displacement is along y’-direction and is caused by σ2|x. 

(1 )t pitch        (3.16) 
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Fig. 3.8  Deformation of the cell under load σ2|x. 

 

B. Deformation due to σ2|y 

 

In Fig. 3.9, when the cell under the load of σ2|y deforms in a linear-elastic way, the 

cell walls 1 and 4 keep straight and walls 2, 3, 5 and 6 bend in the similar pattern. In 

the new set of coordinates {x’, y’}, the moment of the wall 2 can be written as Eq. 

(3.17), where P=(3/2)elσ2|y. The subscript “y” means the moment is caused by σ2|y. 

The deformation of cell wall 2 as the function of x’ can be obtained from Eq. (3.17) 

and expressed as Eq. (3.18). In Eq. (3.18), the subscripts “y’, y” means the 

deformation is along y’-direction and is caused by σ2|y. 
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Fig. 3.9  Deformation of the cell under load σ2|y. 

 

C. Deformation due to τ2|xy 

 

The deformation of the cell under shear τ2|xy is shown in Fig. 3.10. According to 

knowledge of cellular solids [85], when the honeycomb cell is sheared, all of cell 

walls bend, and walls 2, 3, 5, 6 will rotate compared with their original positions. 

The angle of rotation (Δψ) can be written as Eq. (3.19) 

2

024

Fl

E I
      (3.19) 

 

In Eq. (3.19), F=√3leτ2|xy. Because of symmetry, the cell walls 4 and 1, 5 and 2, 3 

and 6 have similar bending patterns respectively. In their own new set of coordinates, 

the moments of walls 1, 2 and 6 can be written as Eq. (3.20). 
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Fig. 3.10  Deformation of the cell under load τ2|xy. 
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    (3.20) 

 

The deformations of walls 1, 2 and 6 in the y’-direction as the function of x’ can be 

calculated from Eq. (3.20) and expressed as Eq. (3.21). The subscripts “y’, τi” means 

the deformation is along y’-direction and is caused by the shear τ2|xy acting on the 

“ith” wall. It should be emphasized that the coordinates {x’, y’} for different walls are 

different and the deformation for a particular wall is expressed in the coordinates of 

that wall. 
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  (3.21) 

 

Using Eqs. (3.15), (3.18) and (3.21), we can obtain the deformations of one single 

cell due to the loads σ2|x, σ
2|y, and τ2|xy. The total deformation of this cell to the 

measurand is the sum of those deformations, and the deformations of all the cells in 

the hollow-core PBF’s microstructure cladding can be obtained by following a 

similar process. By using the displacement expressions of the air-silica cladding, the 

position of each cell centre can be obtained. With the deformations and centre 

positions of all the cells in the hollow-core PBF’s microstructure cladding, we can 

plot the new transverse profile of the deformed fibre. 

 

As shown in Fig. 3.7(1), all cells in the fibre’s microstructure cladding, except the 

ones in the innermost ring, are regarded as ideal honeycomb hexagons. For the 12 

cells near the core surround, 6 of them keep the original hexagonal shape while the 

other 6 are modified with the two sides of the hexagons are replaced by a straight 

line that connects the two corners of the original hexagons [90]. The core surround is 

approximated from the actual core shape shown in Fig. 3.3 and is formed by silica 

sandwiched in-between the sides of the innermost cells and a circle centered at the 

fibre axis and with a radius of r=a+ur
2|r=a. The strain and displacement of the core 

surround are calculated directly from Eqs. (3.1), (3.2), (3.3), (3.4), (2.11) and (3.12); 

while Eqs. (3.15), (3.18), and (3.21) are also needed to obtain the deformations of 

the cell walls. 
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In addition to the change of the hollow-core PBF’s transverse geometry profile, the 

refractive index distribution of the material is also modified by the measurand 

through strain-optic effect. The strain distribution within the wall cross-section is 

complex due to the compression (elongation) and the bending of walls. For 

simplicity, we approximately regard the strain distribution is uniform along the 

direction normal to the wall (i.e., y’-axis) and equal to the strain along the centre-line 

of the wall (i.e., along x’-axis). The walls that form the core-surround are treated in 

the same way as the walls of a uniform hexagon in the air-silica cladding. The strain-

optic effect appears as a change in the optical indicatrix of the silica material as 

shown in Eq. (3.22) [91]. 
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In Eq. (3.22), pij is the strain-optic tensor, the subscripts are in the standard 

contracted notation, and n0 is the original reflection index of the material. Silica 

material is a homogeneous isotropic medium and has only two numerical values p11 

and p12, thus the changes in the optical indices in the r, θ and z directions can be 

written as Eq. (3.23). 
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 (3.23) 

 

Now, we have obtained the in-profile structure and material index distribution of the 

hollow-core PBF under difference measurands. The deformed profile and material 

index distribution are then imported into the finite element analysis solver to 

compute the fundamental mode profile and effective index of the hollow-core PBF 

[93 and 94]. 

3.3.1 Axial Strain 

The normalized phase sensitivity of the hollow-core PCF to axial strain may be 

expressed as Eq. (2.20). For the normalized phase sensitivity to axial strain, the 

length term is one, and the index term of Eq. (2.20) is mainly caused by the 

geometric deformation of the air-silica cladding and the change of the silica material. 

The index term, when the hollow-core PBF is subjected to axial strain, can be 

written as Eq. (3.24). 

1 eff
n

eff

dn
S

n 
    (3.24) 

 

We simulated the effective index variation of the HC-1550-02 fibre when it is 

subjected to axial strain. Table 3.1 and Fig. 3.3 shows the physical parameters and 

the SEM photograph of the HC-1550-02 fibre respectively. We applied the model 

described in Section 3.2 and 3.3 to simulate the HC-1550-02 fibre, when it is 

subjected to axial strain of ε=0.3. The deformed transverse profile of the hollow-core 
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PBF is calculated and plotted in Fig. 3.11. In Fig. 3.11, the black pattern shows the 

deformed profile, while the red one shows the original profile of the hollow-core 

PBF. 

 

 
Fig. 3.11 Deformed profile (black) of the hollow-core PBF, when the fibre is under the axial strain of 

ε=0.3. For comparison, the original profile is shown in red. 

 

Fig. 3.12 shows the calculated intensity profiles and refractive indices of the 

fundamental modes of HC-1550-02 under three different axial strain levels. The 

results shown in Fig. 3.12 are obtained from a model with four rings of air-silica 

cladding cells. No significant difference is found in the results from three and five 

rings models, because most of the light intensity is confined in the hollow-core and 

the cells near the core [92]. 
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Fig. 3.12  Calculated intensity profiles and effective refractive indices of the fundamental mode of 

HC-1550-02 fibre under different axial strains. 

 

The change of the fundamental mode index is attributed to two factors: 1) the 

contribution of the hollow-core PBF geometry deformation (dneff/dε)D; 2) the 

contribution of the hollow-core PBF material index modification (dneff/dε)N, as 

expressed in Eq. (3.25). Importing the model discussed in Section 3.2 and 3.3 into 

the finite element solver, the variation of the refractive index neff due to geometry 

deformation, material index, and their combination as the functions of the axial 

strain can be obtained. The results are shown in Fig. 3.13. 
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Fig. 3.13 Hollow-core PBF’s fundamental mode effective index (neff) as the function of axial strain. 

 

From Fig. 3.13, the slopes of the curves, i.e., (dneff/dε)D, (dneff/dε)N, and dneff/dε, are 

calculated to be ~-0.0039 (ε-1), ~-0.0162 (ε-1), and -0.0202 (ε-1), respectively. 

Obviously when the hollow-core PBF is subjected to axial strain, the material index 

contribution is dominant factor and (dneff/dε)N is about 4 times larger than (dneff/dε)D. 

This is because the hollow-core PBF’s in-profile deformation due to axial strain is 

considerable smaller than its axial deformation. The material index change is mainly 

due to the relatively large strain along the axial direction of the fibre. Fig. 3.14 

shows the calculated εr
2 of the hollow-core PBF as the function of r, when the fibre 

is subjected to axial strain of 10-3 (ε). 
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Fig. 3.14  Radial strain εr

2 in the hollow-core PBF microstructure cladding, when the fibre is 

subjected to axial strain of 10-3 (ε). 

 

Substituting the calculated dneff/dε into Eq. (2.20), the SL, Sn and S of HC-1550-02 

fibre to axial strain can be estimated to be 1 (ε-1), -0.0203 (ε-1), and 0.9797 (ε-1) 

respectively. 

3.3.2 Acoustic Pressure 

The normalized phase sensitivity of the hollow-core PCF to acoustic pressure may 

be expressed as Eq. (2.23). For the normalized phase sensitivity to axial strain, the 

length term of Eq. (2.23) can be calcualted directly by using the acoustic pressure-

induced z-direction stress εz
2, which is obtained in Section 3.2.2. For the HC-1550-

02 fibre, the length term can be obtained as SL = -2.68*10-11 (Pa-1). The index term of 

Eq. (2.23) is mainly caused by the geometric deformation of the air-silica cladding 

and the change of the silica material. The index term, when the hollow-core PBF is 

subjected to acoustic pressure, can be written as Eq. (3.26). 
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1 eff
n

eff

dn
S

n dP
     (3.26) 

 

We simulated the phase sensitivity of the HC-1550-02 fibre when it was subjected to 

acoustic pressure. Table 3.1 and Fig. 3.3 shows the physical parameters and the SEM 

photograph of the HC-1550-02 fibre respectively. We applied the model described in 

Section 3.2 and 3.3 to simulate the HC-1550-02 fibre, when it was subjected to 

acoustic pressure of dP = 108 (Pa). The transverse profile of the hollow-core PBF 

was calculated and plotted in Fig. 3.15. In Fig. 3.15, the black pattern shows the 

deformed profile, while the red one shows the original profile of the hollow-core 

PBF. 

 

 
Fig. 3.15 Deformed profile (black) of the hollow-core PBF, when the fibre is under the acoustic 

pressure of dP = 108 (Pa). For comparison, the original profile is shown in red. 

 

When subjected to acoustic pressure, the change of the fundamental mode index of 

the hollow-core PBF is attributed to two factors: 1) the contribution of the hollow-

core PBF geometry deformation (dneff/dP)D; 2) the contribution of the hollow-core 
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PBF material index modification (dneff/dP)N, as expressed in Eq. (3.27). Importing 

the model discussed in Section 3.2 and 3.3 into the finite element solver, the 

variation of the refractive index neff due to geometry deformation, material index, 

and their combination as the functions of the acoustic pressure (dP) can be obtained. 

The results are shown in Fig. 3.16. 

( / ) ( / )eff
eff D eff N

eff

dn
dn dP dn dP

n dP
    (3.27) 

 

 
Fig. 3.16 Hollow-core PBF’s fundamental mode effective index (neff) as the function of acoustic 

pressure (dP). 

 

From Fig. 3.16, (dneff/dP)D, (dneff/dP)N and dneff/(neffdP) for HC-1550-02 fibre are 

estimated to be ~3.97*10-12 (Pa-1), ~6.66*10-13 (Pa-1) and ~4.64*10-12 (Pa-1), 

respectively. The geometry deformation contribution (dneff/dP)D is dominant and is 

about 6 times larger than material index contribution (dneff/dP)N. This is because that 

the acoustic pressure is applied to both axial and radial directions, and the simulation 
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shows that in the fibre’s air-silica inner cladding, the radial strain (εr
2) increases as r 

decreases and reaches its maximum when approaching to the core-cladding interface. 

Fig. 3.17 shows εr
2 as function of r when the hollow-core PBF is subjected to 

acoustic pressure of dP = 103 (Pa). The large deformation near the core region of air-

silica cladding makes the fibre have a high (dneff/dP)D. And as discussed in Section 

3.3, this large deformation in the fibre’s air-silica inner cladding mainly comes from 

the bending of the honeycomb walls, but not the silica material strain. S, SL and Sn 

can be calculated from Eq. (2.23) to be -2.216*10-11 (Pa-1), -2.68*10-11 (Pa-1) and 

4.64*10-12 (Pa-1), respectively. 

 

 
Fig. 3.17  Radial strain εr

2 in the hollow-core PBF microstructure cladding, when the fibre is 

subjected to axial strain of 10-3 (ε). 

 

We further calculated the normalized phase responsivity (NR) to acoustic pressure 

and the relative contribution of SL and Sn for the hollow-core PBF with the same 

outer diameter (including jacket), core size and air-filling ratio of 70 - 94% but with 
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the thickness of the outer silica cladding (c-b) increased from 1 to 30 (μm). The 

results are shown in Fig. 3.18 and Fig. 3.19 respectively. The results show that the 

NR of HC-PBF to acoustic pressure can be improved by optimizing the thickness of 

the fibre’s silica cladding and the air-filling ratio; however the relative contribution 

of the refractive index, as compared to physical change of the fibre length, Sn/SL 

remains around -15%. 

 

 

Fig. 3.18  NRs of the hollow-core PBF as function of the thickness of the silica cladding (c-b) for 

different air filling ratios. 
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Fig. 3.19  Calculated Sn/SL of the hollow-core PBF as the function of (c-b), while other parameters are 

fixed at a=5.45 (μm), b=35 (μm), d=110 (μm), and η=94%. 

3.3.3 Temperature 

The normalized phase sensitivity of the hollow-core PBF to temperature may be 

expressed as Eq. (2.24). For the normalized phase sensitivity to temperature, the 

length term of Eq. (2.24) can be calculated by using the z-direction strain (εr
2) 

discussed in Section 3.2.3. The index term of Eq. (2.24) is mainly caused by three 

effects as shown in Eq. (3.28): 1) the thermal-optic effect (Snto) of the fibre’s silica 

material. The relationship between the material index change of the silica and the 

temperature variation is shown in Eq. (3.29), where γ is the thermo-optic coefficient 

of the silica material; 2) the thermal-strain effect (Sntd), which represents the physical 

deformation of the fibre’s structure induced by the temperature variation; and 3) the 

strain-optic effect (Sntdo), which represents the thermal-induced strain may modify 

the index of the silica material by strain-optic effect.  

1 eff
n nto ntd ntdo

eff

dn
S S S S

n dT
      (3.28) 
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| Tn T        (3.29) 

 

We simulated the phase sensitivity of the HC-1550-02 fibre when it is subjected to 

temperature variation. Table 3.1 and Fig. 3.3 show the physical parameters and the 

SEM photograph of the HC-1550-02 fibre respectively. For temperature variation, 

the length term of the HC-1550-02 fibre can be calculated to be ~2.1155*10-6 (1/K).  

 

Importing the model discussed in Section 3.2 and 3.3 into the finite element solver, 

the variations of the refractive index neff due to the three effects: Snto, Sntd, and Sntdo as 

the functions of the temperature variation (ΔT) can be obtained. The results are 

shown in Fig. 3.20. 

 

 

Fig. 3.20  Variations of the refractive index neff due to the three effects (Snto, Sntd, and Sntdo) as the 

functions of the temperature variation (ΔT).  

 

From Fig. 3.20, Snto, Sntd, and Sntdo for HC-1550-02 fibre are estimated to be 
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~3.827*10-7 (K-1), ~4.277*10-7 (K-1) and ~-3.7*10-8 (K-1), respectively. Thus the 

index term of the HC-1550-02 fibre is the sum of those three effects, and can be 

calculated to be Sn = 7.734*10-7 (K-1). Thus as shown in Eq. (2.24), the phase 

sensitivity of the HC-1550-02 fibre is the sum of its length term and index term, and 

can be calculated to be S = ~2.89*10-6 (K-1). 

3.4 Birefringence of Hollow-core PBFs Due to 

Lateral Pressure 

In Section 3.2 of this chapter, the deformations of the three regions in the hollow-

core PBF, when the fibre is subjected to lateral pressure, are calculated. Using the 

same model discussed in Section 3.3, we can obtain the deformation of in-profile 

structure of the hollow-core PBF, when the fibre is subjected to lateral pressure. The 

simulation shows that the lateral pressure can result in deformation of the fibre’s 

hollow core as well as the cells in the fibre’s air-silica cladding, both of which may 

induce linear birefringence to the hollow-core PBF. 

 

According the knowledge of cellular solids [85], most of the deformations of the 

core and air-silica cladding of the hollow-core PBF, when the fibre is subjected to 

lateral pressure, come from the bending of the cells in the fibre’s air-silica cladding. 

Thus, when simulating the fibre birefringence induced by lateral pressure, we neglect 

the index change of the silica material due to lateral pressure. 

 

We simulated the birefringence of the HC-1550-02 fibre when it was subjected to 

different lateral pressures. Table 3.1 and Fig. 3.3 shows the physical parameters and 

the SEM photograph of the HC-1550-02 fibre respectively. We applied the model 

described in Section 3.2 and 3.3 to simulate the HC-1550-02 fibre, when it was 
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subjected to lateral pressure of LP = 108 (Pa). The deformed transverse profile of the 

hollow-core PBF is calculated and plotted in Fig. 3.21. In Fig. 3.21, the red pattern 

shows the deformed profile, while the black one shows the original profile of the 

hollow-core PBF. 

 

 

Fig. 3.21 Deformed profile (red) of the hollow-core PBF, when the fibre is under the lateral pressure 

of LP = 108 (Pa). For comparison, the original profile is shown in black. 

 

With the elasticity model, the deformations of the HC-1550-02 fibre under different 

lateral pressures were obtained. The deformed profiles were then imported into the 

finite element analysis solver to compute the birefringence and the mode field profile 

of the orthogonal polarization of the fundamental mode. We calculated the pressure-

induced birefringence of the HC-1550-02 fibre as the function of the applied lateral 

pressure at the wavelength of 1550 nm, and the results are shown as the blue (▼) 

curve in Fig. 3.22. The results for the hollow-core PBFs, which have the same core 

and air-silica inner cladding but different thickness of the silica outer cladding (c-b) 
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with the HC-1550-02 fibre, are also calculated and shown in Fig. 3.22. It can be seen 

in Fig. 3.22 that the pressure-induced birefringence increases with the applied lateral 

pressure, and the hollow-core PBF with thinner silica outer cladding has higher 

birefringence sensitivity to lateral pressure. 

 

 
Fig. 3.22 Induced birefringence of the hollow-core PBF as the function of the applied lateral pressure 

for different thickness of the outer silica cladding (c-b). 

3.5 Summary 

We have constructed the theoretical model for the hollow-core PBF. This model can 

be used to simulate the physical deformations and the effective index changes of the 

hollow-core PBF, when the fibre is subjected to different measurands. One type of 

hollow-core PBF (HC-1550-02 fibre) is simulated by using this general model for 

the hollow-core PBF, and the phase sensitivities of the HC-1550-2 fibre to axial 

strain, temperature and acoustic pressure, and its birefringence sensitivity to lateral 

pressure are predicted respectively. The simulations results show that the normalized 
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phase sensitivity of the HC-1550-02 fibre to axial strain is ~0.9797 (ε-1); its 

normalized phase sensitivity to temperature is ~-2.89*10-6 (K-1); and its normalized 

phase sensitivity to acoustic pressure is ~-333.1 (dB re μPa-1), which is about 15 dB 

higher than that of conventional silica fibre. 
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CChhaapptteerr  44  

TThheeoorreettiiccaall  MMooddeelllliinngg  ffoorr  HHyybbrriidd  PPCCFFss  

One type of PCF - hybrid PCF guiding light by both index-guiding and bandgap-

guiding simultaneously was demonstrated [39]. The hybrid PCF was composed of 

air-holes (arranged in a hexagonal pattern) and Ge-doped silica rods (replaced a 

single row of air holes along one of the hybrid PCF axes). The SEM photograph of 

the hybrid PCF is shown in Fig. 4.1. Because the guiding mechanisms of the hybrid 

PCF are different in two orthogonal directions, high birefringence is expected [40].  

However, to our knowledge, the birefringence responses of the hybrid PCF to axial 

strain and temperature were not investigated. 

 

 
Fig. 4.1 SEM photograph of the hybrid PCF. 
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4.1 Elastic Model of hybrid PCFs 

The structure of the hybrid PCF, as shown in Fig. 4.2, is a modified PCF structure 

which is obtained by replacing one longitudinal set of air holes of an air-silica index-

guiding PCF by high index Ge-doped silica rods. The PCF has 7 rings of holes with 

a pitch of Λ; the diameters of the fibre’s silica cladding, air holes and Ge-doped rods 

are D, d0 and d1 respectively. Thus we can make an assumption that the light can be 

confined in the core by index-guiding in one direction and bandgap-guiding in the 

other transverse direction, even if the bandgap structure is not a full two dimensional 

photonic crystal structure [39 and 40]. 

 

 
Fig. 4.2 Schematics of cross-section of the hybrid PCF. 
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4.2 Birefringence of hybrid PCFs 

4.2.1 Model for A Single Rod 

The model for a single doped rod in a hybrid PCF is shown in Fig. 4.3. Region 0 is 

the pure silica background with the refractive index of n0; Region 1 is a Ge-doped 

rod with the molar concentration of η. The relationship between the rod’s molar 

concentration (η) and its refractive index (n1) can be written as Eq. (4.1) [95]. 

4
1 0

104.6
6.63 10

104.6 60(1 )
n n


 

   
    (4.1) 

 

 
Fig. 4.3 Model for a single doped rod in a hybrid PCF. 

 

The thermal expansion coefficient of pure silica background is α0. The thermal 

expansion coefficient of the doped rod (α1) is the function of its doped molar 

concentration, and can be expressed as Eq. (4.2), where αg is the thermal coefficient 

of GeO2 material [96]. 
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1 0 (1 ) g          (4.2) 

Because of the difference between α1 and α0, built-in strains are introduced when the 

hybrid PCF is drawn and cooled in the manufacturing process [96]. The elastic 

properties for silica glass do not depend strongly on its doped composition, so the 

Young’s modulus and Poisson’s ratios of both regions 0 and 1 can be approximately 

expressed as E0 and v0. Because the pure silica background has much larger area than 

the doped rod, the doped rod in the axial direction will be strained to match the 

length of pure silica background [96]. Hence, for the plane approximation the strain 

in axial (z) directions of the doped rods and silica background can be written as Eq. 

(4.3), where Tf is the final room temperature and Ti is the high initial temperature in 

the fibre manufacture process. For GeO2 doped silica, Tf –Ti is approximately 

regarded as -1000 ºC [96]. 

0

1
0 1

0

( )( )

z

z f iT T



  



      (4.3) 

 

Assuming the pure silica background has infinite area for simplicity, using the theory 

of elasticity the in-profile stress expressions of region 0 and 1 may be expressed as 

Eq. (4.4) [85], where A and C are constants.  Using Hooke’s law, we obtain the strain 

tensors of regions 0 and 1 shown as Eq. (4.5). 
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To determine the constants, the boundary condition of this model can be written as 

Eq. (4.6), where μr
i is the radial displacement in the region i, which is related to 

radial strain by Eq. (4.7). Eqs. (4.6a) and (4.6b) describe radial stress and 

displacement continuities across the boundary of regions, respectively. 

1 1

1 1

0 1
/2 /2

0 1
/2 /2

| | ( )

| | ( )

r r d r r d

r r d r r d

a

b

 

 
 

 

 



   (4.6) 

i i
r rdr        (4.7) 

 

Substituting Eqs. (4.4), (4.5) and (4.7) into the boundary conditions, the constants A 

and C can be determined. Hence the stress, strain and displacement distributions of 

the doped rod can be obtained. According to the theory of elasticity [88], the stress 

distributions of doped rods in the rectangular and polar coordinates can be written as 

Eq. (4.8). 

1 1 1 1
0 0 1

1
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The index distributions of the doped rods will be modified through strain-optic effect 

and this effect appears as a change in the optical indicatrix of the silica material [91]. 

Silica material is a homogeneous isotropic medium and only two elements of the 

strain-optic tensor, p11 and p12, have their values, thus the changes in the optical 

indices can be written as Eq. (4.9). 
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4.2.2 Build-in Stress in Hybrid PCF Core 

Because the distribution of the doped rods in the profile of the hybrid PCF is 

asymmetric as shown in Fig. 4.1, the stresses of the doped rods, introduced in the 

manufacturing process of the fibre, induce asymmetric built-in strain distribution in 

the fibre core, which induces high birefringence of the hybrid PCF. So when 

calculating the birefringence property of the hybrid PCF, it is necessary to take these 

asymmetric strain distributions of the fibre core into consideration as follows: 

 

A. x-direction built-in stress distribution of the fibre core area 

 

As Fig. 4.4 shows, assuming the fibre core has the diameter of dcore=2*Λ-d1, for 

simplicity we assume that the x-direction stress of the core (σx
core) is uniform along 

the x-direction and can be written as Eq. (4.10), where I is constant. Using the theory 

of elasticity [85], we sum up forces of element FF’G’H’MHG in the x-direction as 

shown in Fig. 4.4, and obtain the equation of equilibrium shown as Eq. (11). 

cos( )core
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Substituting Eq. (4.10) into Eq. (4.11), we obtain the constant I = πd1σx
1/(2dcore). 
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Fig. 4.4 x-direction built-in stress distributions of the hybrid PCF core area. 

 

B. y-direction built-in stress distribution of the fibre core area 

 

As shown in Fig.4.5, we assume that the y-direction stress distribution of fibre’s core 

area (σy
core) is uniform along the x-direction and is only the function of y. In Fig. 4.5, 

a line (JJ’) parallel with x coordinate is used to cut element JKJ’ out from the hybrid 

PCF’s profile. The equilibrium equation of element JKJ’ in y direction may be 

derived as Eq. (4.12), where the term 12 is due to the fact that there are twelve doped 

rods in the profile of hybrid PCF. Thus the stress distribution of fibre core in the y-

direction can be written as Eq. (4.13). 

1 2 2 2 21 112 2 ( ) ( 12 2 ( ) ) 0
2 2

core
y y

d d
y D y           (4.12) 
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Fig. 4.5 y-direction built-in stress distributions of the hybrid PCF core area. 
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Using Hooke’s law, the asymmetric strain distributions induced by built-in stress can 

be written as Eq. (4.14). 
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Now using the strain-optic effect of the silica material, the asymmetric index 

modulation in the core of the hybrid PCF due to the built-in stress can be obtained as 

Eq. (4.15). 
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4.2.3 Simulation Results 

We applied the theoretical mode for the hybrid PCF to calculate the birefringence 

property of the hybrid PCF. Table 4.1 shows the physical parameters of the 

HYBRID2007_2PBG_OD151 fibre manufactured by University of Bath [39]. The 

SEM photograph of this fibre is shown in Fig. 4.1. 

 

Table 4.1 Physical parameters of HYBRID2007_2PBG_OD151 

D Λ d0 d1 v0 E0  
Fibre 160 (μm) 8 (μm) 3(μm) 5.58(μm) 0.17 72(GPa) 

α0 αg η n0 p11 p12 HYBRID
2007_2P
BG 

5.5*10-7 

(K-1) 
7*10-6 

(K-1) 
0.35 1.444 0.121 0.27 

 

Using parameters shown in Table 4.1, we can obtain the in-profile structure of the 

hybrid PCF. And by using Eq. (4.9) and Eq. (4.15), the index distributions of the 

fibre’s doped rods, silica background and core are also obtained respectively. All of 

them are then imported into the finite element analysis solver to compute the 

fundamental mode profiles and birefringence of the hybrid PCF. Fig. 4.6 shows the 

calculated intensity profiles of HYBRID2007_2PBG fibre and its effective indices 

(Neff) of the fundamental modes in the two orthogonal polarization directions. The 
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simulation results show that the hybrid PCF has the birefringence of B = ~2.374*10-4 

at the wavelength of 1550 nm. 

 

 

Fig. 4.6  Calculated intensity profile and effective refractive indices of the fundamental mode of the 

hybrid PCF in two orthogonal polarization directions. 

 

We further calculated the birefringence of the hybrid PCF as the function of the 

molar concentration and diameter of the doped rods at the wavelength of 1550 nm, 

when other parameters are fixed as Table 4.1. The simulation results are shown in 

Fig. 4.7 and Fig. 4.8 respectively. As Fig. 4.7 shows, when the diameter of the doped 

rods is fixed at 5.58 (μm), the birefringence of the hybrid PCF increases as the molar 

concentration of doped rods increases from 0.23 to 0.4. This is because that the 

higher molar concentration will cause larger difference of the thermal expansion 

coefficient between pure silica background and doped rods, and thus larger built-in 

stress of the fibre core. As shown in Fig. 4.8, the birefringence of the hybrid PCF can 

also be improved by increasing the diameter of the doped rods in the range of 4.4 to 

5.8 (μm), when its molar concentration is fixed at 0.35. This is because the larger 

doped rods can enhance the built-in stress of the fibre core. 
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Fig. 4.7  Birefringence of the hybrid PCF as the function of the molar concentration of the doped rods. 

 

 
Fig. 4.8  Birefringence of the hybrid PCF as the function of the diameter of the doped rods at the 

wavelength of 1550 nm. 
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4.3 Birefringence responses of Hybrid PCFs to 

Different Measurands 

4.3.1 Axial Strain 

When the hybrid PCF is subjected to axial stress of ε, the induced changing of 

birefringence is due to two factors: 1) the axial stress will cause the deformation of 

the fibre’s profile by changing the dimensions of the hybrid fibre; 2) the axial stress 

will modulate the silica material index by strain-optic effect. For the first factor, 

because the hybrid PCF is composed of two silica materials which have the same 

elasticity property of E0 and v0, for simplicity, the change of fibre dimensions can be 

written as Eq. (4.16), where ΔΛ|ε, ΔD|ε, Δd0|ε and Δd1|ε are the change of the fibre’s 

pitch, diameter changes of the fibre’s silica cladding, air holes and doped rods 

respectively, when the fibre is subjected to axial strain. 
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For the index modulation due to axial strain, the pure silica background and doped 

rods of the hybrid PCF have the same index variations shown as Eq. (4.17). 
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In Eq. (4.17), Δnx
0|ε, Δny

0|ε, Δnz
0|ε, Δnx

1|ε, Δny
1|ε and Δnz

1|ε are index variations of the 
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fibre’s silica background and doped rods due to axial strain in three directions 

respectively. 

 

The birefringence response of the hybrid PCF to axial strain is simulated by using 

this theoretical model. Table 4.1 shows the physical parameters of the 

HYBRID2007_2PBG_OD151 fibre manufactured by University of Bath [39]. The 

SEM photograph of this fibre is shown in Fig. 4.1. When the hybrid PCF is subjected 

to axial strain, two factors of the fibre are changed: 1) the physical dimensions of the 

fibre shown as Eq. (4.16); 2) the material indices of silica by strain-optic effect 

shown as Eq. (4.17). Importing both of them into the finite element solver, the 

variations of the birefringence of the HYBRID2007_2PBG fibre as the function of 

axial strain can be obtained. The results are shown in Fig. 4.9 and the slopes of the 

curve (ΔB/ε) is calculated to be ~5.663*10-4 (ε-1). 

 

 
Fig. 4.9  Birefringence of the HYBRID2007_2PBG fibre as the function of the axial strain. 
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Further we calculated the responses of the hybrid PCF’s birefringence to axial strain 

(ΔB/ε), as the function of the molar concentration and the diameter of Ge-doped rods. 

The results are shown in Fig. 4.10 and 4.11 respectively. It is shown that the curves 

of ΔB/ε as the molar concentration and the diameter of the doped rods have a similar 

pattern. When the molar concentration of the doped rods is more than 0.28 and its 

diameter is more than 4.9μm, ΔB/ε of the hybrid PCF increases with the increasing 

of η and d1. This is because that both higher molar concentration and larger diameter 

of the doped rods can induce more asymmetry for the hybrid fibre’s profile. The 

ΔB/ε of hybrid PCF reaches its minimum at the molar concentration of ~0.28 and the 

diameter of ~4.9μm, and as the η and d1 decrease further, the ΔB/ε increases. This is 

because that when η and d1 decrease to some extent, the effective mode area of the 

hybrid PCF’s fundamental modes will increase and thus more light of the 

fundamental mode will travel in the doped rods. This will induce the increasing of 

the fibre’s ΔB/ε. 

 

 
Fig. 4.10  Responses of the hybrid PCF’s birefringence to axial strain (ΔB/ε) as the function of the 

molar concentration of the doped rods 
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Fig. 4.11  Responses of the hybrid PCF’s birefringence to axial strain (ΔB/ε) as the function of the 

diameter of the doped rods. 

4.3.2 Temperature 

When the hybrid PCF is subjected to temperature variations of ΔT, the induced 

changes of the fibre’s birefringence are the sum of three effects. The first one is the 

thermal expansion of the fibre, which modifies the fibre’s dimensions. The second 

effect is the changes in material index induced by thermo-optic effect. The third 

effect is the changes of the built-in stresses in the fibre core due to temperature 

variations. 

 

For the first effect, it can be approximately assumed that the doped rods will be 

strained to match the deformation of the silica background, because the doped rod 

area in the fibre’s profile is much smaller than the area of the pure silica background.  

Hence the dimension changes of the fibre due to temperature variations can be 
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approximately written as Eq. (4.18), where ΔΛ|ΔT, ΔD| ΔT, Δd0| ΔT and Δd1| ΔT are the 

change of the fibre’s pitch, diameter changes of the fibre’s silica cladding, air holes 

and doped rods respectively, when the hybrid PCF is subjected to temperature 

variations. 
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    (4.18) 

 

For the second effect, the thermo-optic coefficient of silica is γ=7.8*10-6 (K-1), hence 

the index changes of silica background and doped rods (Δn0|ΔT, Δn1|ΔT) due to 

thermo-optic effect can be written as Eq. (4.19). 

0 1| |T Tn n T         (4.19) 

 

For the third effect, the asymmetric index modulation of fibre’s core due to the built-

in stress can be calculated by using the same method described in Section 4.2.2 and 

4.2.3, with different final temperatures (Tf). The new index distributions of fibre core 

can be calculated by replacing the Tf with (Tf+ΔT). 

 

The birefringence responses of the hybrid PCF to temperature variations are 

simulated by using this theoretical model. Table 4.1 shows the physical parameters 

of the HYBRID2007_2PBG_OD151 fibre manufactured by University of Bath. The 

SEM photograph of this fibre is shown in Fig. 4.1. A change of temperature (ΔT) to 

the hybrid PCF can modify the fibre’s dimensions and material indices by thermal 

expansion effect and thermal-optic effect respectively. And temperature variations 

can further modify the built-in stress in the fibre core. All of them will induce the 

birefringence variations of the hybrid PCF. In Fig. 4.12, we plotted the predicted 
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birefringence of the HYBRID2007_2PBG fibre as the function of temperature 

change. The results show that the slope of the curve (ΔB/ΔT) is ~-1.844*10-7 (K-1). 

 

 

Fig. 4.12  Birefringence of the HYBRID2007_2PBG fibre as the function of the temperature variation. 

 

We further calculated the response of the hybrid PCF’s birefringence to temperature 

variations, when the molar concentration of its doped rods varied from 0.23 to 0.35 

shown in Fig. 4.13 and the diameter of the doped rods varied from 4.55 to 5.5 shown 

in Fig. 4.14. The results show that the responses of hybrid PCF’s birefringence to 

temperature variations (|ΔB/ΔT|) increase as the molar concentration or diameter of 

the doped rods increases. This is because that higher molar concentration and larger 

diameter of the rods will induce higher built-in stress of the fibre core, which will 

induce higher birefringence responses of the hybrid PCF to temperature variations. 
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Fig. 4.13  Responses of the hybrid PCF’s birefringence to temperature variations (ΔB/ΔT) as the 

function of the molar concentration of the doped rods. 

 

 
Fig. 4.14  Responses of the hybrid PCF’s birefringence to temperature variations (ΔB/ΔT) as the 

function of the diameter of the doped rods. 
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4.4 Summary 

We have constructed the theoretical model for the hybrid PCF. This model can be 

used to simulate the birefringence property of the hybrid PCF, as well as the 

birefringence responses of the hybrid PCF to axial strain and temperature. The 

simulation results show that the predicted birefringence of the 

HYBIRD2007_2PBF_OD151 fibre is ~2.374*10-4 at the wavelength of 1550nm, and 

its birefringence sensitivities to axial strain and temperature are 5.663*10-4 (ε-1) and 

~-1.844*10-7 (K-1) respectively. Those values can be modified by varying the design 

parameters of the hybrid fibre. 
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CChhaapptteerr  55  

MMeeaassuurreemmeennttss  ooff  PPCCFFss  ttoo  DDiiffffeerreenntt  

MMeeaassuurraannddss  

1.1 Phase Sensitivities of PCFs to Axial Strain 

The phase sensitivities of both the solid-core PCF and the hollow-core PBF to axial 

strain were experimentally measured. The experimental setup is shown in Fig. 5.1.  A 

fibre-optic Michelson interferometer comprising of a 3-dB single mode fibre coupler, 

a sensing and a reference arm, was employed.  Faraday rotation mirrors (FRMs) 

were used at the distal ends of both arms to avoid polarization induced signal fading. 

The interferometer was illuminated by an external cavity laser with a center 

wavelength of 1550 (nm) and a line width of ~100 (kHz). The HC-1550-02/NL-3.3 

fibre was incorporated into the sensing arm of the interferometer, with one end 

spliced to one port of the 3-dB coupler and the other end to the pigtail of the FRM; 

the reference arm of the interferometer consisted of a similar length of SMF28 fibre 

was spliced to the second FRM. 

 

For the axial strain sensitivities measurement, a standard strain test-rail was used to 

provide the axial strain to the sensing fibre. The sensing PCFs were fixed on the test-

rail. The length of the sensing fibre is L. To measure phase sensitivity (S) to axial 

strain, one end of the rail was fixed, while the other end was computer controlled to 

move within a known distance (ΔL). The output power variation of the 

interferometer and the moving distance of the test-rail were simultaneously recorded 

by the computer. The axial strain acting on the sensing fibre can be calculated by 
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using ε=ΔL/L. 

 

 
Fig. 5.1  Experimental setup for the axial strain measurements. 

 

Table 5.1 Measured S and predicted S, SL, Sn of the HC-1550-02/NL-3.3 fibre to axial strain. 

fibre Parameters 

Predicted SL 1 (ε-1) 

Predicted Sn -0.0203 (ε-1) 

Predicted S 0.9797 (ε-1) 

 

HC-1550-02 

Measured S 0.9815±0.004 (ε-1) 

Predicted SL 1 (ε-1) 

Predicted Sn -0.2227 (ε-1) 

Predicted S 0.7773 (ε-1) 

 

NL-3.3 

Measured S 0.7813±0.006 (ε-1) 

 

The phase sensitivity of the sensing PCF to axial strain was then calculated from the 

measured number of fringes (Nf) for a given ΔL as shown in Eq. (5.1). The term (1/2) 

in Eq. (5.1) is due to the measurement which was taken with a Michelson 

interferometer, in which the light went through the sensing fibre twice. The 

experimental results agree well to the predicted values as summarized in Table 5.1. 

For sensitivity measurements of HC-1550-02 and NL-3.3 fibres, 258 and 129 fringes 

were respectively recorded with experimental inaccuracy of smaller than ±1 fringes, 
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corresponding to inaccuracy in S of ~ ±0.004 for HC-1550-02 fibre and ~ ±0.006 for 

NL-3.3 fibre. 

1 1
( )
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f

eff

N
S

n L


 


 


   (5.1) 

1.2 NR of Hollow-core PBF to Acoustic Pressure 

In general, the phase sensitivity of fibre to acoustic pressure is written in term of 

normalized responsivity (NR) to acoustic pressure. The relationship between NR and 

S can be expressed as Eq. (5.2). 

20 (| |)NR Log S    (5.2) 

 

The acoustic NRs of the conventional silica fibre (HNSM-155 fibre from Fasten 

Fiberoptics) and the hollow-core PBF (HC-1550-02 from Crystal Fiber) were 

measured experimentally. Measurements were carried out using a Michelson fibre 

interferometer made of conventional single mode fibres with Faraday rotation 

mirrors (FRM) employed at the distal ends of both the sensing fibre and reference 

fibre to avoid polarization induced signal fading. The interferometer was illuminated 

with a laser with the center wavelength of 1550 (nm) and the line width of 10 (kHz). 

The HC-1550-02 fibre was incorporated into the sensing arm of the interferometer, 

with one end spliced to one part of the 3-dB coupler and the other end to the pigtail 

of the FRM, as shown in Fig. 5.2. 
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Fig. 5.2  Experimental setup for the acoustic pressure measurements. 

 

A standard hydrophone test tank was used to provide a low-frequency 40~1000 (Hz) 

test environment. Due to calibrator geometry, the fibre was coiled to a radius of 7 

(cm) to fit within the calibrator acoustic field. A standard piezoelectrical hydrophone 

with the acoustic sensitivity (Sr) of -178 (dB re v/µPa) in the range of 10~10000 (Hz) 

was used as a reference to calibrate the fibre-optic hydrophone. 

 

 

Fig. 5.3 A typical experimental result (f=500Hz), the upper trace is the output from the fibre 

hydrophone for a peak-peak phase change of 2π; the lower is the standard piezoelectrical hydrophone 

corresponding to the 2π phase change. 
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For phase sensitivity measurement at a particular acoustic frequency, the applied 

acoustic pressure was increased until the induced peak-peak phase shift of the 

interferometer reached 2π, a value easily determined from waveform displaced in the 

oscilloscope. When the response of the interferometer reached 2π, the values of the 

standard reference hydrophone outputs (Vr) were recorded. Fig. 5.3 shows the typical 

results obtained from a sensing HC-1550-02 fibre of ~5.7 (m) at the acoustic 

frequency of 500 (Hz). 

20 log(2 / )m r rS S V     (5.3) 

 

The fibre’s acoustic phase sensitivity (Sm) was then calculated as Eq. (5.3). From Eq. 

(5.2) and (5.3) the acoustic NR of the fibre can thus be determined by Eq. (5.4), 

where the -6dB is due to the measurement which was taken with a Michelson 

interferometer, in which the light went through the sensing fibre twice. 

2
20 log( ) 6eff

m

n L
NR S




     (5.4) 

 

The experiment was repeated for different acoustic frequencies and the measured 

frequency responses for the hollow-core PBF is shown in Fig. 5.4.  For comparison, 

the frequency response of the conventional silica fibre was also measured with a 

similar experimental setup and was also shown in Fig. 5.4. The average value of NR 

over 200~1000 (Hz) for the HC-1550-02 fibre is -334.4 (dB re µPa-1), which is about 

15dB higher than that of the HNSM-155 fibre. These experimental results agree well 

to the theoretical ones as summarized in Table. 5.2. 
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Fig. 5.4  Measured NRs of conventional HNSM fibre and HC-1550-02  fibre as the function of 

frequency. 

 

Table 5.2 Measured NRs and predicted NRs of the conventional fibre and the hollow-core PBF 

 Conventional Fibre 

(HNSM-155) 

Hollow-core PBF 

(HC-1550-02) 

Predicted NRs 

( dB re 1/ μPa ) 

 

-348.5 

 

-333.1 

L 

( m ) 

 

9.5 

 

5.7 

 neff  1.46 0.997 

Measured NRs 

( dB re 1/ μPa ) 

 

-349.4 

 

-334.4 

 

1.3 Summary 

We measured the phase sensitivities of the NL-3.3 fibre and the HC-1550-02 fibre to 
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axial strain, and the normalized responsivity (NR) of the HC-1550-02 fibre to 

acoustic pressure in experiment. The experimental results show that the normalized 

phase sensitivities of HC-1550-02 and NL-3.3 fibre to axial strain are 0.9815±0.004 

(ε-1) and 0.7813±0.006 (ε-1) respectively, and the NR of HC-1550-02 fibre to 

acoustic pressure is -334.4 (dB re μPa-1). Those values agree well to the predicted 

values as shown in Chapter 2 and 3. 



Chapter 6 Hollow-core PBF polarization controller 

 96  

CChhaapptteerr  66 

HHoollllooww--ccoorree  PPBBFF  PPoollaarriizzaattiioonn  CCoonnttrroolllleerr  

In this chapter, we demonstrate a polarization controller (PC) made by applying 

pressures laterally to three segments of a hollow-core PBF. As discussed in Section 

3.4 of Chapter 3, the lateral pressures result in the asymmetric deformations of the 

fibre’s hollow core and air-silica cladding, and generate variable linear birefringence 

along the hollow-core PBF, which is adjustable by controlling the magnitude of the 

applied pressure.  

6.1 Experimental Setup and Principle of Hollow-

core PBF PC 

The experimental setup of the hollow-core PBF polarization controller is shown in 

Fig. 6.1. Light from a distributed feedback laser emitting at the wavelength of 1550 

(nm) was launched into a polarizer. The output from the polarizer was coupled into 

the hollow-core PC and the output end of the hollow-core PBF was spliced to a 

section of conventional SMF-28 fibre, which was further connected to  a commercial 

polarization analyzer that allows the state of polarization (SOP) of output  light to be 

traced on the Poincare sphere.  
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Fig. 6.1  Experimental setup of the hollow-core PBF PC. 

 

The PC was made on a section of hollow-core PBF (HC-1550-02 fibre) by applying 

lateral pressures to three segments of fibre, and the directions of pressurization 

change by 45º from one segment to another as shown in Fig. 6.1.  Each pressurized 

segment had a length of ~20 (mm) and was fixed between two plates to which 

variable pressure could be applied. 

 

As discussed in Section 3.4, the lateral pressure can result in deformations of the 

hollow-core PBF’s hollow core as well as the cells in the fibre’s air-silica cladding, 

both of which induce linear birefringence to the hollow-core PBF. Using the results 

shown in Fig. 3.22, it can be calculated that: for a pressurized segment length of ~20 

(mm), a phase delay (Δφ) of 2π between two orthogonal linear polarization can be 

achieved with an applied lateral pressure of ~7.5*106 (Pa) for the HC-1550-02 fibre 

and the required pressure will be reduced to ~1.25*106 (Pa) when the thickness of 

the outer silica cladding is reduced to 10 (μm). 
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Discussion of the light SOP out of the hollow-core PBF PC may be facilitated by a 

representation of the SOP on the surface of a Poincare sphere. As shown in Fig. 6.2, 

points P and Q on the Poincare sphere represent horizontal and vertical states of a 

fixed laboratory reference system, while points H and V represent ±45º states. R and 

L represent right- and left-handed circular states. The action of a variable linear 

birefringence segment is to rotate the SOP on the sphere surface about an axis of OA, 

where OA is in the equatorial plane and the angle between OA and PQ represents the 

direction of the applied lateral pressure in the reference system [42]. 

 

 

Fig. 6.2  Evolution of the state of polarization on the Poincare sphere surface. 

 

For an arbitrary input SOP (S) on the surface of Poincare sphere shown in Fig. 6.2, 

the first pressure segment rotates S along the circle SS’, where S’ is the SOP of the 

output light from the first segment and it can be modified by the lateral pressure to 

any point in the circle. Then light S’ enters Segment 2, where another lateral pressure 

is applied with the direction of 45º differing from Segment 1. Thus the SOP (S’’) of 
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the light out of Segment 2 rotates on the sphere surface about the axis of OC, where 

OC is also in the equatorial plane of the sphere and vertical to OA. The third segment, 

again, rotates the S’’ on the sphere surface about the axis of OA. Fig. 6.2 gives a 

visualization of the evolution of the SOP through the three lateral pressure segments 

of the PC. It can be seen that the PC can transform a general input state S into any 

output state S’’’. 

6.2 Measurement and Results 

In experiment, a hollow-core PBF PC was constructed and tested. Fig. 6.3 shows the 

photograph of the PC based on HC-1550-02 fibre. 

 

 
Fig. 6.3  Photograph of the hollow-core PBF PC. 

 

To test the performance of the hollow-core PBF PC, the pressure applied to segment 

1 was firstly increased gradually, while the pressures to other two segments were 

kept constant. The output SOPs from the PC were plotted in Fig. 6.4 and the 



Chapter 6 Hollow-core PBF polarization controller 

 100  

evolution of the output SOP follows approximately a circle, which is in agreement 

with the theoretical predictions. The deviation from the ideal circular trajectory may 

be due to the inherent birefringence of the HC-PBF [41], which would be reduced 

largely by the advanced fibre manufacturing technology. 

 

 
Fig. 6.4 Test results of the hollow-core PBF PC when the pressure applied to the first segment was 

varied gradually. 

 

Furthermore, the deviation in Fig. 6.4 would have no detrimental effects on the 

performance of the hollow-core PC. This was verified by varying randomly the 

pressures applied to all the three segments, when the input light was kept at a fixed 

linearly polarized state. The output polarization states from the PC illustrated a good 

coverage of all the possible polarization states as shown in Fig. 6.5. Similar results 

were obtained for other input SOPs 
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Fig. 6.5  Test results of the hollow-core PBF PC the pressures applied to all the three segments were 

varying randomly. 

6.3 Summary 

In this chapter, we have demonstrated a hollow-core PBF polarization controller by 

pressurizing three segments of the fibre. This polarization controller was tested 

experimentally, and the polarization states of its output show a good coverage of all 

the possible states of polarization on the surface of the Poincare sphere, indicating 

that a universal control of the polarization state may be obtained. This scheme may 

be applicable to hollow-core PBF with little or no inherent birefringence.  
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CChhaapptteerr  77 

HHyybbrriidd  PPCCFF  SSeennssoorrss  aanndd  PPoossssiibbllee  

AApppplliiccaattiioonnss  

7.1 Experimental Setup 

In experiments, an optic fibre Sagnac interferometer (OFSI) was constructed to 

measure the birefringence of the hybrid PCF and its birefringence responses to axial 

strain and temperature variation. As shown in Fig. 7.1, a section of 

HYBRID2007_2PBG_OD151 fibre manufactured by University of Bath was used as 

the sensing element in OFSI. The two ends of the hybrid PCF were spliced to two 

ports of a 3-dB single mode fibre coupler. 

 

 
Fig. 7.1 Experimental setup for birefringence measurement. 
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Total insertion loss and fibre attenuation are about 10 dB and the extinction ratio of 

system nearly 20 dB. The Sagnac interferometer is illuminated by a broadband light 

source with the wavelength range from 600 - 1700 (nm), and the transmission 

spectrum of the OFSI, as shown in Fig. 7.2, is measured by an optical spectrum 

analyzer (OSA), which has the wavelength resolution of 10 (pm). 

 

 

Fig. 7.2  Transmission spectrum of the hybrid PCF Sagnac interferometer. 

 

The principle of operation of the OFSI has been described in Ref. [97] and [98]. The 

interference of the counter-propagating waves will happen in the coupler, and its 

interferometric fringe depends on the birefringence of the fibre loop. Thus the 

system transmission spectrum is wavelength dependent as shown in Fig. 7.2. 

Ignoring the insertion losses and attenuation of the fibre, the transmission spectrum 

of the Sagnac interferometer can be written as Eq. (7.1), where φ=2πLB/λ is the 
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phase difference between the fast and slow beams, L is the total length of the hybrid 

PCF, λ is the wavelength of light. Then the minimum of the transmission wavelength 

(λmin) can be written as Eq. (7.2), where k is an integer. 

 [1 cos( )] / 2T      (7.1) 

min /BL k      (7.2) 

 

It can be seen that the transmission spectrum is a periodic function of wavelength, 

and the distance (Dis) between the adjacent transmission minimums can be written 

as Eq. (7.3). 

2
min / ( )Dis BL     (7.3) 

 

In the experiments, the sensing element of hybrid PCF used for strain and 

temperature measurements has the length of Ls. The shift of minimum transmission 

wavelength (Δλmin) induced by the measureand “X” may be generally expressed as 

Eq. (7.4). 

min ( ) /sLB BL k        (7.4) 

 

In Eq. (7.4), ΔL is the variation of the fibre length, and ΔB is the change of 

birefringence of the hybrid PCF due to “X”. Substituting Eq. (7.2) into Eq. (7.4), the 

sensitivity of the hybrid PCF Sagnac interferometer to axial strain (ε=ΔL/Ls) and 

temperature variation can be written as equations (7.5) and (7.6) respectively. 
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7.2 Responses to Axial Strain 

In our experiments, we used a piece of hybrid PCF (HYBRID2007_2PBG_OD15) 

with the total length of L=1093 (mm) and sensing length of Ls=419 (mm). The 

parameters of this hybrid PCF is listed in Table 4.1. The transmission spectrum of 

this hybrid PCF OFSI is shown in Fig. 7.2, and the distance between the adjacent 

transmission minimums at the wavelength of ~1550 (nm) is measured to be ~8.79 

(nm). Using Eq. (7.2), the birefringence of this hybrid PCF at the wavelength of 

1550nm can be calculated to be ~2.498*10-4. This value agrees well with the 

predicted birefringence shown in Section 4.2. 

 

For the strain-sensitivity measurement, a standard strain test-rail was used to provide 

the axial strain to the hybrid PCF. One end of the sensing fibre was fixed on the rail, 

while the other end was computer controlled to move a known distance (ΔL), so the 

axial strain acting on the sensing fibre can be calculated as ε=ΔL/Ls. Fig. 7.3 shows 

several measured transmission spectrum around the minimum wavelength of 1550 

(nm). It can be seen that as the applied axial strain increases, the spectrum shifts to 

the longer wavelength. 
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Fig. 7.3  Measured transmission spectrum due to different applied axial strains. 

 

The measured spectrum minimums and their linear fitting are shown in Fig. 7.4. The 

experimental data show the hybrid PCF OFSI has the strain sensitivity of ~2.01 

(nm/mε). Substituting this value as well as the birefringence of this hybrid PCF into 

Eq. (7.5), ΔB/ε of such hybrid fibre can be calculated to be ~6.04*10-4 (ε-1) which 

agrees well with the predicted value of 5.663*10-4 (ε-1) discussed in Section 4.3.1. 

 

 
Fig. 7.4  Spectrum minimums of the OFSI as the function of the applied axial strain. 



Chapter 7 Hybrid PCF sensors and possible applications 

 107  

7.3 Responses to Temperature 

In the temperature-sensitivity measurement of such hybrid PCF OFSI, the sensing 

hybrid PCF was fitted within a temperature controlled container and the temperature 

was controlled and recorded by a digital thermograph. It shows when the 

temperature increased from 30 ºC to 90 ºC, the spectrum minimum wavelength 

(around 1550 nm) of the OFSI moved to a shorter wavelength. The measured shifts 

of the spectrum minimum wavelength as the function of the test temperature are 

shown in Fig. 7.5. The linear fitting of the experimental data gives a temperature 

sensitivity of ~-0.334 (nm/K). Using Eq. (7.6), ΔB/ΔT of this hybrid PCF can be 

calculated to be ~-1.406*10-7 (K-1), which agrees well with the predicted 

temperature-sensitivity of -1.844*10-7 (K-1) discussed in Section 4.3.2. 

 

 
Fig. 7.5  Shifts of the spectrum minimum as the function of test temperature. 

7.4 A Design of Hybrid PCF and its Applications 

In this section we show a proposed design for the hybrid PCF, which can generate 
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high birefringence sensitivity to temperature as well as low birefringence sensitivity 

to axial strain. Such proposed hybrid PCF may be used to replace the conventional 

HB-fibre in fibre-optic temperature sensors [37] or temperature modulated devices 

[43] to enhance the system performances. 

 

In the hybrid PCF, the response of birefringence to temperature is induced by three 

effects as shown in Section 4.2: 1) the temperature-induced geometry term, 2) 

material index term and 3) built-in stress term, while the birefringence response of 

this hybrid fibre to axial strain can only be induced by the geometry term and 

material index term. Thus a hybrid PCF design is proposed as Fig. 7.6, which has 

one row of its air holes Ge-doped, and another two rows of B-doped rods. The Ge-

doped and B-doped regions have the same diameters and high-indexes, and thus the 

profile of the hybrid PCF can be designed to be symmetric in both geometry and 

material index distribution. The birefringence of the hybrid PCF is mainly induced 

by the built-in stress, which is induced in the fibre manufacture process because of 

the difference of expansion coefficients between the Ge-doped and B-doped rods. 
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Fig. 7.6  Schematics of designed hybrid PCF. 

 

When the proposed hybrid PCF is subject to axial strain, the geometric deformation 

of the fibre is symmetric because the elastic properties of silica do not depend 

strongly on its doped composition, and the stain-induced index change of fibre 

materials is also symmetric because both the Ge-doped and B-doped rods have 

similar strain-optic coefficients with the pure silica background. Thus for this hybrid 

PCF, both of the two factors of the birefringence response to axial strain would be 

small and the proposed hybrid PCF would have low birefringence sensitivity to axial 

strain. When the fibre is subject to temperature variation, although the geometry and 

material index factor are small for the same reasons, the built-in stress factor for the 

birefringence response of this hybrid PCF has high value because of the difference of 

expansion coefficients between the Ge-doped and B-doped rods. So the proposed 

hybrid PCF will keep its high sensitivity to temperature. 
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7.5 Summary 

In this chapter, we have investigated experimentally the birefringence properties of 

hybrid PCF and the birefringence responses of this hybrid PCF to axial strain and 

temperature variations. The experimentally measured birefringence and 

birefringence responses to axial strain and temperature variation are: ~2.498*10-4, 

~6.04*10-4 (ε-1) and ~-1.406*10-7 (K-1) respectively. These values agree well with 

our theoretical predictions shown in Chapter 4. Using the flexibility of a novel 

hybrid PCF design, the proposed hybrid fibre may achieve high birefringence 

response to temperature as well as low response to axial strain, which make it have 

some applications in the fibre-optic sensors and devices.  
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CChhaapptteerr  88 

CCoonncclluussiioonn  aanndd  FFuurrtthheerr  WWoorrkk  

8.1 Conclusion 

In this dissertation, we have investigated theoretically and experimentally the 

responses of PCFs to external measurands, including axial strain, acoustic pressure, 

temperature, and lateral pressure. 

 

We constructed three theoretical models for solid-core PCFs, hollow-core PBFs and 

hybrid PCFs respectively. The theoretical models can be used to simulate the 

physical deformations and optical responses of exiting PCFs due to strain, pressure 

and temperature as well as to predict the deformations/responses of PCFs with 

proposed fibre designs. Therefore, they are very useful for the designs of PCF-based 

fibre sensors or devices. 

 

Using these theoretical models, we investigated the phase sensitivities of both solid-

core PCFs and hollow-core PBFs to axial strain. The simulation shows that: 1) the 

length term for both of these two types of PCFs can be normalized to unit; 2) the 

index term for solid-core PCFs is mostly determined by the strain-optic effect of the 

fibre silica core, while for hollow-core PBFs, the index term is much smaller because 

the core of the hollow-core PBF is air. The experimental measurements show the 

NL-3.3 fibre (one type of solid-core PCF) has the phase sensitivity of 0.7813±0.006 

(ε-1) to axial strain, whereas phase sensitivity of the HC-1550-02 fibre (one type of 

hollow-core PBF) is 0.9815±0.004 (ε-1). These experimental results agree well with 

the predictions, and are useful to guide the design of PCF-based strain sensors. 
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We studied the normalized responsivity (NR) of hollow-core PBFs to acoustic 

pressure. In experiment, measured NR of the HC-1550-02 fibre shows a ~15dB 

improvement as compared with conventional silica fibres. This NR improvement is 

because the air core and air-silica cladding of the hollow-core PBF decrease the 

silica percentage of the fibre’s profile, which makes the hollow-core PBF much more 

flexible than conventional silica fibres. The simulation results predicted that NR of 

hollow-core PBF can be enhanced further by decreasing the silica percentage of the 

fibre’s profile. To achieve this, two methods can be applied: one method is to 

decrease the thickness of the silica outer cladding of the hollow-core fibre, and the 

other is to increase the air-filling ratio of its air-silica inner cladding. By using these 

two methods, hollow-core PBF with high acoustic NR of ~280 (dB re μPa-1) is 

predicted. This great enhancement NR of hollow-core PBF can simplify the sensor 

configuration of fibre hydrophones, and also benefit hydrophone multiplexing. 

 

We investigated the birefringence of hollow-core PBFs due to lateral pressure. The 

simulation shows that the pressure-induced birefringence of hollow-core PBFs can 

be modified by the magnitude of the applied lateral pressure. Using this phenomenon, 

a new scheme for hollow-core PBF polarization controller (PC) is constructed by 

applying three segments of lateral pressures to a section of HC-1550-02 fibre. This 

new scheme for hollow-core PBF PC is verified by the experiments, and the hollow-

core PBF PC shows good performance of a universal PC. The difference between 

this new scheme and the former scheme for hollow-core PBF PC is that the new 

scheme is applicable to hollow-core PBF with little or no inherent birefringence, 

which may broaden the bandwidth of hollow-core PBF PCs. 

 

We constructed a theoretical model for hybrid PCFs, which can be used to simulate 
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the birefringence properties of hybrid PCFs, and their responses to external 

measurands, including axial strain and temperature. The measurement results from 

one type of hybrid PCF show good agreement with the simulation results. The 

theoretical model is useful for analyzing the birefringence properties of hybrid PCFs, 

and can be used to guide the design of strain or temperature sensors which use 

hybrid PCFs as the sensing elements.  

8.2 Further Work 

The NR of hollow-core PBF may be improved further by coating the fibre with air-

included polymer material. Air-included polymer material has much smaller Young’s 

modulus and Poisson’s ratio than silica material, which make the coated hollow-core 

PBF more flexible. According to the theoretical predictions, the NR of the hollow-

core PBF coated with air-included polymer is determined by the thickness of air-

included polymer coating and its air-included ratio. Predictions show that the NR of 

such coated hollow-core PBF can reach as high as ~280 (dB re μPa-1), which is about 

60 dB higher than conventional silica fibres. Such high NR may be useful for the 

simplicity and multiplexing of the fibre-optic hydrophone transducers. 

 

Other hollow-core PBF sensors and devices based on lateral pressures may be 

investigated further. For example, when a section of hollow-core PBF is subjected to 

a periodical lateral pressure, a pressure-induced long period grating (LPG) may be 

realized on the hollow-core PBF. This pressure-induced LPG may be used as strain 

or temperature sensor. And because the LPG can be modulated by the magnitude of 

the applied lateral pressure, an in-fibre hollow-core PBF switch may be constructed 

based on the pressure-induced LPG.  
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