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Abstract 

That the world contains a vast amount of digital information getting ever vaster 

ever more rapidly, there is a great need to reveal new insights which previously remain 

hidden from the data of mixed data types such that comprehensive information could be 

well structured, effectively organized and further applied to analysis, classification, 

interpretation, understanding and summarization. As most data from databases come 

from diverse sources, many of them are not necessarily provided with explicit class 

information. A pattern discovery method which automatically discovers pattern and 

knowledge from data without relying on prior classificatory knowledge is in great need. 

For a large database, how to discover statistically significant patterns and how to 

discretize its continuous data into interval events are still research and practical problems. 

Discovering patterns from a large mixed-mode database, where these data types may be a 

mixture of interval-scaled, symmetric binary, asymmetric binary, category, ordinal or 

ratio-scaled, is regarded as a classification problem when classes of the samples are given 

and solved as a discrete-data problem by discretizing the continuous data into intervals 

maximizing the interdependence between that attribute and the class labels. However, 

when class information is unavailable, discovering patterns becomes difficult. To tackle 

the aforementioned problems in an unsupervised manner, which is the problem of 



III 

 

unsupervised pattern discovery, one would search for statistically significant patterns by 

mining the database. The proposed approach adopts a probabilistic approach to detect 

statistically significant patterns and transform them into a relational table to represent the 

original data. Given a mixed-mode dataset, we partition it into a number of attribute 

clusters, each of which contains some sort of correlated relationship. This process is 

known as attribute clustering. Once all optimal attribute clusters are found, the most 

representative attribute so-called mode could be discovered in each attribute cluster. To 

deal with the discretization problem, a mode-driven discretization algorithm is introduced 

to treat the mode just like the class label to drive the discretization of other continuous 

attributes in the attribute group by maximizing the interdependence between the 

continuous attributes and the mode. Treating intervals as discrete events, association 

patterns can be discovered. If the attribute clusters obtained are crisp clusters, significant 

patterns overlapping different clusters cannot be found. A new method of “fuzzifying” 

the crisp attribute clusters is introduced to detect significant patterns which overlap 

different fuzzy clusters. 

In validating the premises proposed in the thesis, extensive experiments using a 

number of synthetic data sets, data sets from UCI machine learning archive and two large 

sets from real world databases were conducted to verify each of the questions conceived. 
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In particular to demonstrate the usefulness of the proposed approach, the two large sets of 

real world data are chosen to be analyzed: one is from a number of meteorological 

surface stations while another one is from a delay coking unit in a petrochemical refinery. 

The discovery of patterns from the data of weather stations reflects the local and global 

characteristics of the correlated meteorological parameters. The finding from the data of 

the delay coking reveals the relationship among the large number of sensors and 

controllers of the coking plant facilities. These findings provide significant evidences to 

support the usefulness and effectiveness of the proposed approaches in analyzing the data 

to extract significant patterns and knowledge for interpretation, understanding and 

summarization. 
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Chapter 1. Introduction 

In the recent years, with the progress of microelectronics, information 

technologies together with the ever broadening use of computers in a vast 

spectrum of business and industry, the volumes of databases have been growing 

from gigabytes to terabytes as well as to petabytes and the types of data in 

databases are becoming more and more diverse. Some databases contain either 

numeric, symbolic or categorical data. Others contain a mixture of the 

aforementioned types and are referred to as mixed-mode data. Such these data 

are commonly stored in a relational database with mixed-mode attributes. A 

sequence database, besides mixed-mode data, is a very significant type of data in 

many areas such as web log sequence, biological sequence, customer purchasing 

history, event sequences and so on. A vast amount of these types of data from 

different areas has been collected. The discovery of new interesting knowledge 

from them has important applications and creates great value in many sectors. 

Today, we are facing problems in handling large sequence and relational 

databases with mixed-mode attributes and sequence data. Often these sensed or 

documented data are acquired from different aspects or components of a complex 

system. Their use is not necessarily confined to classification and often they 

contain no specific class information, i.e. class labels. Nevertheless, there are 

great needs to discover patterns from these types of data for the comprehensive 

analysis, interpretation and understanding of the knowledge inherent in them. 

This thesis presents new methods for unsupervised pattern discovery that is to 

discover patterns from large sequence and mixed-mode databases where class 

information is non-existing or unavailable. 
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In the past, data mining techniques have been developed mostly for 

continuous or categorical data. In inductive machine learning, classification 

information is obtained from a collection of pre-labeled data samples, and thus 

classification rules or models could be built based on them. Nevertheless, in real 

world applications, most real databases may be composed of not only continuous 

data but also of mixed-mode (continuous and discrete). For a learning system to 

operate under a mixed-mode database, either these continuous attributes may 

need to be first discretized/quantized into a finite number of intervals, or these 

discrete attributes may need to be converted to continuous attributes. If the data 

attributes could be converted appropriately, the limitations of most inductive 

machine learning systems and algorithms may be solved by feeding in the 

transformed database instead of the original mixed-mode database. Indeed, in 

nowadays’ data mining, pattern discovery and machine learning development, 

classification tasks in mixed-mode database require the existence of class labels. 

With class labels, continuous data attributes could be discretized by the class-

dependent discretization, allowing the application of contemporary data mining 

methodologies. However, in case of class label unavailability, the continuous 

data could not be handled properly for both supervised learning and unsupervised 

learning. 

In sequential pattern mining, frequently occurring ordered events or 

subsequences are mined as patterns. Most studies concentrate on categorical 

patterns while time series analysis focuses on numerical curve analysis. Most 

relational databases may treat a sequence attribute as text (discrete event) or a 

sequence database itself contains no other mixed-mode attributes but only a set 

of tuples, each of which contains a sequence ID and a sequence. The discovered 
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patterns from sequences could further be used for classification and/or clustering. 

In classifying sequences, most existing algorithms require the sequences to be 

aligned first before their tasks. The alignment (substitutions, insertions, and 

deletions) process consists of placing proper space or removing some items from 

different sequences in columns to optimize a scoring function. However, this 

process may create errors as the scoring function may not reflect the true weight 

in each alignment operation. Without sequence alignment, sequence 

classification could be operated by making use of some probabilistic measures to 

determine whether an item is statistically significant to a particular class (i.e. 

relying on class information). However, unsupervised learning or, more precisely, 

sequence clustering is difficult to proceed when class information is unavailable. 

1.1 Motivations 

That the world contains a vast amount of digital information getting ever 

vaster ever more rapidly [Economist 2010], there is a great need to reveal new 

insights which previously remain hidden from the data of mixed data types such 

that comprehensive information could be well structured, effectively organized 

and further applied to analysis, classification, interpretation, understanding and 

summarization. 

As most data from databases come from diverse sources, many of them 

are not necessarily provided with explicit class information. A pattern discovery 

method which automatically discovers pattern and knowledge from sequence 

based and/or mixed-mode based data without relying on prior classificatory 

knowledge is in great need. Once such methods are developed, they could be 

applied to data mining tasks including data clustering [Wong and Wang 1979; 

Ma, Chan and Chiu 2005; Dias and Cortinhal 2008; Cadez et al. 2003; Alon et al. 



 

4 

 

1999; Baraldi and Blonda 1999; Jain, Murty and Flynn 1999; Wong, Chiu and 

Huang 2002; Jiang, Tang and Zhang 2004; Domany 2003; Smet et al. 2002; 

Zupan 1982; Parsons, Haque and Liu 2004; Berkhin 2002; Madeira and Oliveira 

2004; Fern and Brodley 2003; Cheng and Church 2000], pattern discovery 

[Wong and Wang 1997; Ma, Chan and Chiu 2005; Wong and Wang 2003, Chau 

and Wong 1999; Wong et al. 2010; Wang and Wong 2010], and other pattern 

post-processing such as pattern clustering [Wong and Li 2008; Wong and Li 

2010] and pattern summarization [Wong and Li 2008; Wong and Li 2010], 

aiming to discover previously hidden knowledge from data. 

In the past decade, pattern discovery methods have been used to obtain 

classification knowledge to build models for classification and prediction tasks. 

Later, it attempts to uncover the underlying principles and behaviors of systems 

or phenomena in the real world from acquired data so as to reason, infer and 

predict the behaviors. Nowadays, it still poses some challenges as follows. 

I. Regarding to the structures of sequence and mixed-mode data 

space and data subspace, it is becoming more and more 

complicated than ever before. The values of data could include 

lengthy sequences or mixed-mode (discrete or continuous) types 

and the data dimensionality is high. An attribute in a data 

subspace could be partially a member of other data subspaces. 

The data collection could be systematic or sometimes arbitrarily. 

II. Regarding to the quality of the data, for many reasons, a database 

might contain noisy data. For a pattern discovery method to be 

effective, it should be a probabilistic approach rather than a 

deterministic one. 
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III. Regarding to a priori knowledge, in some situations, it could be 

difficult to collect adequate correct domain knowledge for 

effective decision making. Some domain experts are able to 

support some examples and measurements to formulate a domain 

database for analysis but also would like to obtain some 

suggestions or evidences provided by the data analysis outcome 

for realizing the thoughts and ideas. This raises the focus on 

unsupervised learning. 

IV. Regarding to the application of discovered patterns, some kinds of 

interestingness measurements such as for pattern support and 

confidence should be taken into consideration for assisting 

decision making, interpretation and summarization. 

With these motivations in mind, it opens some research challenges and 

issues to be investigated to the data mining community in the recent years. 

Naturally, this thesis takes the mentioned issues as the research motivation 

essentially. 

1.2 Objectives 

The objectives of this thesis are motivated by the aforementioned 

practical needs derived from the real world application and are specifically listed 

as follows. 

I. To discover statistically significant sequential patterns from a 

sequence database: For a large sequence database, different 

sequences may contain common patterns and/or different patterns. 

Each pattern could represent a certain real world event. Whether 

sequences in the database are classified or clustered, statistically 
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significant sequential patterns must be discovered first in order for 

further pattern analysis. 

II. To transform a sequence database based on discovered patterns 

into a relational database for further analysis: Once the 

statistically significant sequential patterns are discovered, the 

original sequence database will be processed based on the 

discovered characteristics to construct the transformed database 

similar to a relational database with continuous attributes. 

III. To partition a large mixed-mode database into fuzzy sub-

databases (fuzzy attribute clusters) containing attributes with high 

interdependence with each other in the same data subspace and 

with fuzzy degrees of membership in the entire data space: For a 

very large mixed-mode database, different subgroups of the 

attributes may be governed by different underlying factors or 

models. These factors or models are defined as the representative 

attributes (the modes) of subgroups. Each cohesive subgroup in 

the mixed-mode database could represent a certain aspect of the 

real world system. With attribute clustering based on the 

interdependence redundancy measure, the mixed-mode database 

could be partitioned into some coherent subgroups with strong 

intra-group interdependence. If data subgroups are crisp clusters, 

significant patterns overlapping different clusters cannot be found. 

To close this gap, “fuzzifying” crisp attribute clusters to find 

patterns in overlapping or fuzzy clusters should be considered. 
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IV. To discretize continuous attributes in each fuzzy sub-database 

(fuzzy attribute cluster): Once the mixed-mode database is 

partitioned into attribute subgroups (clusters), each of which 

contains attributes with fuzzy degrees of membership to other 

subgroups, the data discretization of continuous variables in each 

subgroup will be processed based on the concept of mode-driven 

discretization. The mode of an attribute cluster is the 

representative attribute which is defined as the attribute with the 

highest total interdependence with others in the same group. Thus 

class-dependent discretization algorithm could be applied to 

achieve the task, if the mode is considered to be the implicit class 

attribute. 

V. To apply pattern discovery on a mixed-mode database: Once the 

continuous data in the mixed-mode database is transformed into 

discrete interval events, an effective pattern discovery method on 

categorical data could be applied to each sub-database or to the 

entire database after all sub-databases re-pool together so as to 

discover significant event association patterns. Without relying on 

class information, the patterns discovered in the general form of a 

subset of categorical, interval data or a combination of both will 

then become explicit and have a broader spanning coverage on the 

entire database.  

1.3 Organization of this Thesis 

This thesis consists of six chapters and is organized as follows: 
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Chapter 1 introduces the motivation, objective and organization of this 

work. 

Chapter 2 introduces the related knowledge, including the background to 

sequence clustering, class dependent discretization of continuous data, attribute 

clustering, pattern discovery and bioinformatics through a literature review.  

In Chapter 3, the problem definitions of mining patterns in sequence data 

and mixed-mode data are presented. The overview of the proposed mining 

approach is also given. This approach is composed of a collection of techniques, 

including an unaligned sequence clustering algorithm and an unsupervised 

pattern discovery algorithm for mixed-mode data. 

In Chapter 4, we propose a new approach to cluster sequence data based 

on the sequential pattern similarity. The proposed approach begins with data 

conversion based on the sliding window concept to transform the original 

sequence data. Instead of mining the original sequence data, we mine association 

patterns from the transformed data. From the patterns discovered in the 

transformed data, we find clusters involving attributes, which are the hidden 

patterns, not contained in the original sequence data. To evaluate the 

effectiveness, the proposed approach is first applied on a synthetic dataset, then 

on a real-world web log dataset and, finally on a yeast genome sequence dataset. 

The experimental results show that the proposed approach can produce 

meaningful clustering results and makes the hidden patterns explicit to build 

accurate classification/prediction models. 

In Chapter 5, we define the problem of unsupervised pattern discovery for 

mixed-mode data and introduce a methodology for solving it. The proposed 

method that optimizes some information measures, such as mutual information 
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and entropy, between attributes of mixed data types groups interdependent 

attributes into groups/clusters. By applying the proposed algorithm to the mixed-

mode database, meaningful grouping of attributes based on interdependence 

within group helps capture correlated relationship in each group. To reflect the 

overlapping relationship among attribute clusters, a fuzzy membership function 

is constructed for each attribute to help capture overlapping relationship in 

multiple groups. The mode, one with strongest interdependence to the others 

within group, is used to drive the discretization of continuous data. Combining 

the information from the fuzzy membership function of each attribute to each 

mode, patterns in overlapping attribute clusters could be discovered. To evaluate 

the performance, we applied them on 2 synthetic datasets and several real world 

datasets. The experimental results of the data mining tasks prove that they are 

capable of revealing interesting patterns and building very accurate 

classification/prediction models. 

Chapter 6 concludes the thesis, which summarizes its contributions in 

three aspects including theoretical, methodological and application, and suggests 

directions for the further research.  
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Chapter 2. Related Work 

In this chapter, the related work in the literature will be surveyed. It will 

first provide the state of the art of existing data mining techniques in related 

research areas. It will then present the work related to discretization, attribute 

clustering, pattern discovery and data mining in bioinformatics in subsequent 

sections. Different approaches will be discussed in these sections. 

2.1 Overview 

Knowledge discovery from data (KDD) or data mining, in general, is to 

extract interesting, nontrivial, implicit, previously unknown and potentially 

useful information from data [Han and Kamber 2001]. Nowadays, data are 

everywhere and thus this integrated process is applied in a wide range of sectors 

such as business, science and engineering. In bioinformatics, this integrated 

process plays a significant role to discover knowledge in the biological context 

such as finding motifs in sequences to predict folding patterns, discovering 

genetic mechanisms underlying a disease, summarizing clustering rules for 

multiple DNA or protein sequences and more and more. Due to the substantial 

growth of biological data, data mining or KDD is considered as an important 

research area in analyzing the data and in solving emerging problems. 

This chapter aims at introducing some of the best existing techniques for 

data mining in related research areas and their applications in bioinformatics in a 

way that the current research will build on them to make new discoveries. It 

provides an overview of the work in the literature and how the current work 

relates to one another. 
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2.2 Knowledge Discovery and Data Mining in Related 

Area 

According to [Smyth et al. 1996], knowledge discovery in databases or 

data mining is the nontrivial extraction of implicit, previously unknown, and 

potentially useful information from data. This implicit, previously unknown, and 

potentially useful information which we call knowledge is hidden in the 

databases and is usually in the form of relationships among data items. These 

relationships are possibly in the form of functional, or partial functional 

dependencies, their discovery analysis and characterization may involve the use 

of various techniques. The process of applying knowledge discovery in a 

particular situation consists of the following phases [Han and Kamber 2001]: 

1. Understanding the Application domain: This includes the understanding 

of the relevant prior knowledge and the goals of the application. 

2. Extracting the target data set: This includes the selection of a data set or 

focusing on a subset of variables. 

3. Data preprocessing and transformation: This phase improves the quality 

of the actual data for data mining. It also increases the efficiency of data 

mining by reducing the computational effort for mining the preprocessed 

data. Data preprocessing involves data cleaning, data transformation, data 

integration and data reduction or compression. Data cleaning consists of 

some basic operations such as normalization, noise removal, handling of 

missing data, reducing redundancy and etc. Data integration includes 

integrating multiple and heterogeneous data sets from different data 

sources. Data reduction finds useful features to represent the data by 
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means of dimensionality reduction, feature selection, discretization and 

etc. 

4. Data mining: This phase constitutes one or more of the following 

functions including classification and prediction, association analysis, 

cluster analysis and etc. 

5. Pattern interpretation and evaluation: This phase includes interpreting the 

discovered patterns and the possible visualization of them. Visualization 

is important that it increases understandability from the perspective of 

humans. The mined patterns can be evaluated automatically or semi-

automatically to identify the interestingness or usefulness of them. 

6. Using discovered knowledge: This phase incorporates the discovered 

knowledge into the expert system and actions can be taken based on this 

knowledge. 

Knowledge discovery or data mining techniques are used and applied in a 

wide spectrum of areas. This involves discovering patterns over the data set. 

Some of the common data mining algorithms will be discussed in the following 

subsection. 

2.2.1 Association, Classification and Clustering 

Association analysis mines or generates rules from the data. Association 

rule mining refers to discovering associations [Cheung et al. 1996; Agrawal and 

Srikant 1994] among different attributes. It tries to describe the relationship 

among data items. A population application of association rules mining is the 

analysis of supermarket transaction data, helping the planning of marketing 

strategies. Popular algorithms include AIS [Agrawal , Imielinski and Swami 
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1993], SETM [Houtsma and Swami 1993], and Apriori [Agrawal and Srikant 

1994]. 

Classification analysis classifies a data item into one of several 

predefined categorical classes. Based on the predefined classes in the training 

objects, the general approach involves a systematic search for minimal 

descriptions which can distinguish between members of different classes. In 

machine learning terminology, this is a type of supervised learning [Tou and 

Gonzalez 1974], i.e. learning is done with explicit training examples. Popular 

algorithms include k-nearest neighbor (k-NN) [Dasarathy 1991], decision-tree 

generators (ID3 [Quinlan 1987], C4.5 [Quinlan 1993], CART [Breiman et al. 

1984]), neural networks [Aleksander and Morton 1990; Beale and Jackson 1990] 

and genetic algorithms [Davis 1991; Goldberg 1989; Holland 1987]. 

Cluster analysis maps a data item into one of several clusters, where 

clusters are natural groupings of data items based on distance measure (as known 

as similarity measure). In general, the resulting clusters should exhibit high 

within-cluster homogeneity and high between-cluster heterogeneity. Clustering is 

dependent on the distance measure to be applied. In machine learning 

terminology, this is a type of unsupervised learning [Tou and Gonzalez 1974], i.e. 

learning is done without explicit training examples. Commonly, clustering 

algorithms can be classified into two categories: (1) hierarchical and (2) non-

hierarchical. Hierarchical clustering involves the construction of a hierarchy or 

tree structure. Popular hierarchical clustering algorithms include agglomerative 

[Milligan 1980], Chameleon [Karypis, Han and Kumar 1999], DIANA [Kaufman 

and Rousseeuw 1990], AGNES [Kaufman and Rousseeuw 1990] and BIRCH 

[Zhang, Ramakrishnan and Livny 1996]. Non-hierarchical clustering does not 
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involve the construction of the tree structure while it first selects a cluster center 

or seed and then all objects or data points within a pre-specified threshold 

distance are included in the resulting cluster. Popular non-hierarchical clustering 

algorithm includes k-means [Forgy 1965; MacQueen 1967], CLARA [Kaufman 

and Rousseeuw 1990], CLARANS [Ng and Han 1994], CLIQUE [Agrawal et al. 

1998] and SOM [Kohonen 1989]. 

2.2.2 Discretization of Continuous Data 

Data discretization techniques can be used to reduce the number of 

values for a given continuous attribute by dividing the range of the attribute into 

intervals [Han and Kamber 2001]. Discretization is a technique to partition 

continuous attributes into a finite set of adjacent intervals in order to generate 

attributes with a small number of distinct values [Tsai, Lee and Yang 2008]. In 

short, a continuous variable can be discretized into a finite number of discrete 

intervals. Interval labels can be applied to replace actual value. There are several 

reasons to perform discretization as a data preprocessing step for data analysis. 

The obvious reason is it reduces and simplifies the original data, leading to a 

concise, easy-to-use, and knowledge-level representation of mining results. In 

data mining algorithms, some have been developed to handle categorical 

attributes such as AQ [Kaufman and Michalski 1999; Michalski et al. 1986], 

CLIP [Cios and Kurgan 2001; Cios and Kurgan 2004] and CN2 [Clark and 

Niblett 1989], while others can deal with continuous attributes but have better 

performance on categorical attributes [Wu et al. 2006]. Since continuous data can 

be discretized into a finite set of discrete intervals, discretization can be 

performed prior to the learning process [Chan, Ching and Wong 1992]. A good 



 

15 

 

discretization algorithm can produce a concise summarization of continuous 

attributes but also accounts for learning faster and accurate [Liu et al. 2002]. 

In some data sets, some of the attributes may be discrete and other 

attributes may be continuous. Dating back to 1990s, there was no fully integrated 

approach of inductive learning (IL) which can deal with mixed-mode continuous 

and discrete data simultaneously [Wong and Chiu 1987]. Ching, Wong and Chan 

[Ching, Wong and Chan 1995] have proposed a class attribute dependent 

discretization (CADD) method to deal with mixed-mode data. Two importance 

decisions must be made for discretization. Firstly, the number of discrete 

intervals must be selected. Secondly, the width of the intervals must be 

determined. Their method can automatically determine the most preferred 

number of intervals to tackle the first decision, and seeks to maximize the mutual 

dependence between the discrete intervals and class labels to tackle the second 

decision. 

According to [Liu et al. 2002], the discretization algorithms can be 

classified into five axes: supervised versus unsupervised, static versus dynamic, 

global versus local, top-down (splitting) versus bottom-up (merging), and direct 

versus incremental. 

1. Supervised methods discretize attributes with the consideration of 

class information, while unsupervised methods do not. 

2. Dynamic methods consider the interdependence among the 

features attributes and discretize continuous attributes when a classifier is being 

built. On the contrary, the static methods consider attributes in an isolated way 

and the discretization is completed prior to the learning task. 
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3. Global methods, which use total instances to generate the 

discretization scheme, are usually associated with static methods. On the contrary, 

local methods are usually associated with dynamic approaches in which only 

parts of instances are used for discretization. 

4. Bottom-up methods start with the complete list of all continuous 

values of the attribute as cut-points and remove some of them by merging 

intervals in each step. Top-down methods start with an empty list of cut-points 

and add new ones in each step. 

5. Direct methods, such as Equal Width and Equal Frequency [Chiu, 

Wong, and Cheung 1991], require users to decide on the number of intervals k 

and then discretize the continuous attributes into k intervals simultaneously. On 

the other hand, incremental methods begin with a simple discretization scheme 

and pass through a refinement process although some of them may require a 

stopping criterion to terminate the discretization. 

More detailed discussion about the five axes mentioned above can be 

found in [Liu et al. 2002]. In this section, the discussion of discretization 

algorithms will follow the axis of top-down versus bottom-up. 

Class-Attribute Contingency Coefficient (CACC) by [Tsai, Lee and Yang 

2008] is one of the latest top-down discretization algorithms. The main 

contribution of it is that it can generate a good discretization scheme and its 

discretization scheme can lead to the improvement of classifier accuracy like that 

of C5.0. The quality of a discretization scheme can be measured by Class-

Attribute Interdependence Redundancy (CAIR) proposed by [Ching, Wong and 

Chan 1995]. The general goal of a discretization to achieve is: 1) a high quality 

discretization scheme to help users understand the data easily, 2) the scheme 
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should lead to the improvement of accuracy and the efficiency of a learning 

algorithm which is the training time and the number of rules generated to reach 

the classification accuracy, and 3) the discretization process should be as fast as 

possible. Class-attribute Interdependence Maximization (CAIM) by [Kurgan and 

Cios 2004] is another top-down discretization algorithm with good performance 

in comparison with seven state-of-the-art top-down discretization algorithms. On 

average, experiments show that CAIM obtains high CAIR value, and using it as a 

preprocessor for classification algorithm, it produces the least number of rules 

and reach the highest classification accuracy [Kurgan and Cios 2004]. 

Top-down (splitting) and bottom-up (merging) discretization algorithms 

consists of unsupervised and supervised. Two typical unsupervised top-down 

algorithms are Equal Width and Equal Frequency by [Chiu, Wong, and Cheung 

1991]. Other the state-of-the-art supervised top-down algorithms are Paterson-

Niblett [Paterson and Niblett 1987], maximum entropy [Wong and Chiu 1987], 

Information Entropy Maximization [Fayyad and Irani 1993], Class-Attribute 

Dependent Discretizer (CADD) [Ching, Wong and Chan 1995], Class-Attribute 

Interdependence Maximization (CAIM) [Kurgan and Cios 2004], Fast Class-

Attribute Interdependence Maximization (FCAIM) [Kurgan and Cios 2003] and 

Class-Attribute Contingency Coefficient (CACC) [Tsai, Lee and Yang 2008]. 

FCAIM has been proposed as a faster version of CAIM extension. The 

discretization criterion, the stopping criterion and the time complexity between 

them are the same while the only difference is the initialization of the boundary 

point. FCAIM was faster than CAIM with similar C5.0 classification accuracy 

where CAIM obtained a slightly better CAIR value [Kurgan and Cios 2003]. 

Experiments in [Tsai, Lee and Yang 2008; Kurgan and Cios 2004] showed that 
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CAIM and CACC are superior to other top-down discretization algorithms as 

their discretization schemes can generally maintain higher interdependence 

between target class (also called class label) and discretized attributes, generate 

lesser number of rules to attain higher classification accuracy. That the 

abovementioned supervised discretization algorithms aim at seeking local 

optimal solution, optimal class dependent discretization (OCDD) [Liu, Wong and 

Wang 2004] searches for global optimum discretization scheme which is proven 

to be an effective approach experimentally. It is based on the concept of dynamic 

programming. The current work is adapted from OCDD which searches for the 

best partition from all possible settings for each iteration. 

Four famous bottom-up algorithms are ChiMerge [Kerber 1992], Chi2 

[Liu and Setiono 1997], Modified Chi2 [Tay and Shen 2002] and Extended Chi2 

[Su and Hsu 2005]. Since bottom-up (merging) algorithms start with all 

continuous values and recursively remove points by merging intervals, the 

computational complexity is generally higher than top-down (splitting) 

algorithms. To merge adjacent intervals, the significant test is performed to test 

whether or not two adjacent intervals should be merged. Another requirement is 

that some parameters need to be specified by users such as the significant level, 

maximal and minimal intervals and etc. Using these bottom-up approaches as 

preprocessors for C5.0 classification, experiments by [Su and Hsu 2005] showed 

that Extended Chi2 outperformed the other bottom-up discretization algorithms 

as its discretization scheme can reach the highest accuracy on average.  

In this thesis, we adopt the supervised versus unsupervised discretization 

category. Up until now to the best of our knowledge, supervised discretization 

algorithms are generally with better performance than unsupervised 
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discretization algorithms due to the reason that the supervised one benefits by a 

prior knowledge. 

2.2.3 Attribute Clustering 

Attribute clustering also known as feature subspace clustering is to 

partition a database into a number of sub-databases (attribute clusters) where 

attributes in the same sub-database have high interdependence or are more 

relevant while attributes in different sub-databases have low interdependence or 

are more irrelevant. Attribute is the raw input attribute and the terminology used 

in relational algebra and relational database while features are attributes 

constructed for the input attributes. In data mining context, both attributes and 

features refer to as columns in a dataset. We use without distinction the terms 

attribute and feature. When machine learning was first introduced, researchers 

targeted a relatively small set of attributes. As the size of databases and the 

diversity of attributes increased, data clustering began to break down though the 

classification problems were not seriously affected yet their effectiveness was 

diminishing. In supervised learning, the problems were partly solved through 

feature selection in which it selects a subset of features to represent the whole 

data. Later, as data mining and pattern discovery came into play, the 

dimensionality problems were a little relaxed yet the ultimate problem of it still 

prevailed. Even up to today, most of conventional clustering algorithms will 

often face the challenges related to the nature of large scale mixed-mode 

database with a large number of attributes.  

In unsupervised learning, attribute clustering was proposed to provide a 

partial solution as a remedy to the problems but in general, class-dependent 

discretization had to be used to convert the continuous data into interval data [Au 



 

20 

 

et al. 2005]. [Mitra et al. 2002] proposes an unsupervised feature selection 

algorithm based on measuring similarity between features whereby redundancy 

is removed. Although this method is unsupervised and fast in computation due to 

its similarity measure based on pair-wise feature, it can only deal with numeric 

features. To cluster or select attributes, the t-value method is widely used 

[Agrawal et al. 1992]. It is important to note that the t-value can only be used 

when the samples are pre-classified. If no class information is provided, it cannot 

be used for attribute selection. So the Attribute Clustering Algorithm, ACA [Au 

et al. 2005] was proposed to cluster attributes. In ACA, however, continuous data 

have to be converted into interval data before attribute clustering could be 

applied. To close this gap also, this thesis extends ACA so that it is able to deal 

with mixed-mode data by introducing attribute interdependence redundancy 

measures between attributes of various attribute types and a multiple 

interdependence measure [Alon et al. 1999; Wong, Chiu and Huang 2002] for 

selecting attributes with the highest correlation with the rest of attributes within 

an attribute cluster. After turning all the continuous data into categorical data, 

pattern discovery [Wong and Wang 2003], pattern clustering [Wong and Li 2008; 

Wong and Li 2010] and pattern summarization [Wong and Li 2008; Wong and 

Li 2010] can then be applied to each of the attribute groups or to the dataset 

obtained after their re-merging. 

2.2.4 Pattern Discovery 

Today, pattern discovery for intelligent decision support, knowledge-

based reasoning, and data analysis applies more and more to large scale 

complicated systems and problem domains [Chiu, Wong and Cheung 1991]. In 

most of the existing systems, data preprocessing, such as data cleansing, filtering, 
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attribute reduction, are included so as to remove noises, to bring out more 

relevant information from the data and to reduce the search space. However, they 

often depend on prior knowledge, such as parameters and preconceived 

classificatory framework. Thus, they could be very biased and usually involve 

long iterative search and examination process. To respond to these needs, a data-

driven pattern discovery approach has been advanced [Wang and Wong 1979]. It 

is able to discover, in an unbiased manner, statistically significant events 

automatically, and to generate decision rules for categorization and prediction. In 

general, pattern discovery [Wong and Wang 2003] extracts previously unknown 

regularities in the data and is a useful tool for categorical data analysis. 

In most real world problems, pattern discovery typically produces an 

overwhelming number of patterns, resulting in very difficult and time-consuming 

effort for problem comprehension and interpretation. To combine fragments of 

information from individual patterns to produce more generalized forms of 

information and to use them to further explore or analyze the data, pattern 

clustering [Wong and Li 2008; Wong and Li 2010] is developed to 

simultaneously cluster the discovered patterns and their associated data. Pattern 

summarization [Wong and Li 2008; Wong and Li 2010] can be applied as pattern 

post-processing method to select from the discovered patterns a most 

representative subset which could be considered as the summary of the pattern 

cluster. Once these steps are completed we know how patterns relate locally and 

how pattern groups are realized in data subspaces and related in the entire data 

space. 
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2.3 Data Mining in Bioinformatics 

This section will describe some basic concepts of molecular biology for 

bioinformatics. Then some related work of data mining to the biological domain 

will be described. 

2.3.1 Basic Concepts of Molecular Biology for 

Bioinformatics 

Bioinformatics is the computational branch of molecular biology. 

Molecular biology concerns itself with understanding the interactions between 

the various systems of a cell, including the interactions between DNA, RNA and 

protein biosynthesis as well as learning how these interactions are regulated. 

The central dogma of molecular biology was first enunciated by Francis 

Crick in 1958 and re-stated in a Nature paper published in 1970. The dogma is a 

framework for understanding the transfer of sequence information between 

sequential information-carrying biopolymers in living organisms. There are 3 

major classes of such biopolymers: DNA and RNA (both nucleic acids), and 

protein. The process is shown in Figure 2.1. 
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Figure 2.1. Central dogma of molecular biochemistry with enzymes 

Figure 2.1 briefly describes the sequential processes from DNA to RNA 

via a process called transcription and another process from RNA to Protein called 

translation. 

2.3.1.1 DNA 

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic 

instructions used in the development and functioning of all known living 

organisms and some viruses. The main role of DNA molecules is the long-term 

storage of information. DNA is often compared to a set of blueprints or a recipe, 

or a code, since it contains the instructions needed to construct other components 

of cells, such as proteins and RNA molecules. DNA is a double helix molecule, 

consisting of two strands of phosphate and deoxyribose sugar molecule. The 

building blocks of DNA are nitrogenous bases which are adenine (A), guanine 

(G), cytosine (C) and thymine (T). Each deoxyribose sugar molecule is attached 
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to one of the above bases. The whole stretch of DNA is called the genome of the 

organism. The DNA segments that carry this genetic information are called genes, 

but other DNA sequences have structural purposes, or are involved in regulating 

the use of this genetic information. 

2.3.1.2 RNA 

Ribonucleic acid (RNA) is a type of molecules that consists of a long 

chain of nucleotide units. RNA is very similar to DNA, but differs in a few 

important structural details: in the cell, RNA is usually single-stranded, while 

DNA is usually double-stranded; RNA nucleotides contain ribose while DNA 

contains deoxyribose; and RNA has the base uracil (U) rather than thymine (T) 

that is present in DNA. RNA is transcribed from DNA by enzymes called RNA 

polymerases as shown in Figure 2.1. A type of RNA called messenger RNA 

(mRNA) carries information from DNA to structures called ribosomes for 

protein synthesis. There are many RNAs with other roles – in particular 

regulating which genes are expressed, but also as the genomes of most viruses. 

2.3.1.3 Protein 

Proteins are essential parts of organisms and participate in every process 

within cells. Many proteins are enzymes that catalyze biochemical reactions and 

are vital to metabolism. Protein synthesis known as translation is a multi-step 

process, beginning with amino acid synthesis and transcription which are then 

used for translation. This uses an mRNA sequence as a template to guide the 

synthesis of a chain of amino acids that form a protein. 
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2.3.1.4 Gene Expression 

A gene is a sequence of DNA that codes for an RNA. In non-protein 

coding genes such as rRNA genes or tRNA genes, the product is a functional 

RNA. In protein coding genes, the RNA in turn codes for a protein. The process 

by which a gene gives rise to a protein is called gene expression [Lewin 2004]. 

Figure 2.1 shows this conversion. A gene, however, is not directly translated into 

protein, but is expressed via the production of an mRNA, a nucleic acid 

intermediate actually used to synthesize a protein. As the quantity of genes 

expressed in cells is relevant to the amount of mRNA produced in the process of 

transcription, measuring the amount of mRNA indirectly measures the 

expression levels of genes. 

2.3.1.5 DNA Microarray Technology 

DNA microarrays technology is introduced by [Schena et al. 1995] with 

the aim to study various molecular mechanisms caused by different genes in cells. 

It consists of an array of series of thousands of microscopic spots of DNA 

oligonucleotides, called features. This can be a short section of a gene or other 

DNA element that are used as probes, attached to a gene chip, to hybridize a 

cDNA or cRNA sample (called target) under high-stringency conditions. Probe-

target hybridization is usually detected and quantified by detection of 

fluorophore-, silver-, or chemiluminescence-labeled targets to determine relative 

abundance of nucleic acid sequences in the target. This technology can be used to 

measure changes in expression level, to detect single nucleotide polymorphisms 

(SNPs), in genotyping or in resequencing mutant genomes. 

To measure gene expression levels, there are two popular kinds of 

microarray technologies. They are spotted microarray and oligonucleotide 
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microarray. In spotted microarrays, the probes are oligonucleotides, cDNA or 

small fragments of polymerase chain reaction (PCR) products that correspond to 

mRNAs. The probes are synthesized prior to deposition on the array surface and 

are then spotted onto glass. In oligonucleotide microarrays, the probes are short 

sequences designed to match parts of the sequence of known or predicted open 

reading frames. One technique used to produce oligonucleotide arrays include 

photolithographic synthesis on a silica substrate where light and light-sensitive 

masking agents are used to build a sequence one nucleotide at a time across the 

entire array [Pease et al. 1994]. Each applicable probe is selectively "unmasked" 

prior to bathing the array in a solution of a single nucleotide, then a masking 

reaction takes place and the next set of probes are unmasked in preparation for a 

different nucleotide exposure. After many repetitions, the sequences of every 

probe become fully constructed. 

The above mentioned two microarray technologies use different criteria 

to measure gene expression levels, but they share similar experimental 

procedures. Figure 2.2 shows the procedures for DNA microarray experiment. 

The experiment begins by identifying a set of genes to be probed and extracting 

the corresponding mRNA from this pair of cells. It follows a number of steps 

including purification, reverse transcription (RT) and coupling to prepare for the 

labelled samples. The labelled samples are mixed with a hybridization solution 

and added to a gene chip. The gene chip is scanned in a special machine and a 

quantitative image is generated with match and mismatch probes. The image is 

normalized and the hybridization intensity value is converted to represent the 

gene expression levels in numerical values. 
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Figure 2.2. Procedures for DNA microarray experiment 

The experiment can be repeated under the same experimental condition 

with different samples from the same type of tissues, resulting in a data set for 

gene expression data under this experimental condition. Figure 2.3 shows the 

sample gene expression data set of yeast genome data in a spreadsheet format. 
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Figure 2.3. A sample gene expression data 

Figure 2.3 is a sample gene expression data for yeast genome in a 

spreadsheet format. It is represented as a gene expression matrix in which each of 

n rows consists of m-element expression vector for a single gene. 

2.3.2 Data Mining Process for Bioinformatics 

Data analysis and mining is a main issue in microarray transcription 

profiling with the focus on algorithms and database development [Cordero, Botta 

and Calogero 2008]. The analysis of biological data using clustering and 

classification techniques has been shown to be useful for predicting biological 

functions and discovering interesting knowledge [Han and Kamber 2001; Zhang 

2006]. The consequent extraction of biological knowledge is also important. 

From the studies of [Cordero, Botta and Calogero 2008], the microarray 

data analysis, which is a process, can be generalized into four steps with different 

computational tools applied in each step. The first step is quality control. It deals 

Description of genes 

Gene annotation 
Gene expression level Sample types 
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with the microarray platform chosen to use and the evaluation of the 

homogeneity of experimental groups. Following by that, it is the data pre-

processing. It is the process to transform the raw fluorescence signal detected by 

microarray technologies into normalized data. Thirdly, it is differential 

expression detection. This step requires appropriate statistical methods and 

algorithms to detect and highlight the useful subset of data to further investigate. 

Much work has been done on this scope in computing community and is the 

focus of this study. The final step is biological knowledge extraction. Even 

though the development of techniques for accurate identification of differentially 

expressed genes, the main difficulty task is in interpretation of them. Recent 

efforts have shifted from the discovery of gene functions to that of biological 

pathways, providing a more comprehensive view of the gene expression. 

2.3.3 Sequence Clustering 

Sequence analysis models sequential patterns, like DNA and protein 

sequences. Its goal is to model the states of the process generating the sequence. 

In bioinformatics, sequence clustering algorithms attempts to group related 

sequences. It is believed that DNA sequence clusters are often synonymous but 

not identical to biological functional units. In gene expression regulations, 

understanding the genome sequence is the fundamental step to understand the 

complex mechanism of gene expression. In clustering biological sequences, a 

distance measure (as known as similarity score) is often based on sequence 

alignment. Once the distance measure is chosen, most clustering algorithms such 

as partitional based approaches and hierarchical based approaches can be adopted. 

Sequence alignment is a process to properly place conserved residues from 

different sequences in common derived from common ancestral residues. The 
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procedure is a hypothetical model of mutations including substitutions, insertions 

and deletions that had occurred during evolution. However, since the probability 

of occurrence of different types of mutation is still questionable [Eidhammer 

2004], even the best alignment cannot be established unambiguously [Pevsner 

2003]. In this regard, the sequence alignment is an error-prone process [Ma and 

Chan 2008]. To deal with this issue, [Ma and Chan 2008] proposes a 

classification algorithm UPSEC which is able to compute the similarity score 

between protein sequences without the need for the alignment of sequences. The 

hidden patterns of protein classes can be discovered using a probabilistic 

measure which can determine whether or not a residue is useful for the 

characterization of a particular class. However, this algorithm is a supervised one 

which requires the sequences to be pre-labeled classes first before the pattern 

discovery can begin. In our study, we aim at defining a new technique to cluster 

biological sequences without a prior knowledge. 

2.3.4 Gene Expression Data Analysis 

Most living organism contains trillions of cells, each of which carries the 

same genome. In any given cell, only parts of the genes coded by genome are 

active. These active genes are “expressed” for the function of a gene. Gene 

expression is normally referred to as the transcription of mRNA (see Figure 2.1). 

Gene expression level changes over time in accordance with environmental 

stimuli. Understanding the expression levels of mRNA under different conditions 

and over time, it is possible to infer extensive information about gene functions, 

gene regulations, and gene interactions. DNA microarrays are currently the most 

popular technology used to measure gene expression level (see 2.3.1.5 for 

details). The microarray dataset is often represented as gene expression table 
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                       , where       is the measured expression 

level of gene    in sample   , containing rows of genes and columns of samples 

(see Figure 2.3). The expression values of a gene across different samples are 

called the gene expression profiles while these of a sample across different genes 

are called the sample expression profiles. 

Two major tasks of gene expression data analysis are classification and 

clustering. Classification of this type of data is to assign memberships to 

samples/genes based on expression patterns/profiles while clustering is to find 

new biological classes/labels and refine existing ones [Piatetsky, Khabaza and 

Ramaswamy 2003]. In clustering of gene expression data, a typical problem is to 

handle the high dimensionality space since gene expression data sets normally 

consists of a large number of genes but a small number of samples. 

Due to the characteristic of the high dimensionality of gene expression 

data, one would cluster both genes and samples [Jiang, Tang and Zhang 2004]. 

Using conventional clustering methods, the genes/samples are considered as the 

tuples and the samples/genes as the attribute. Therefore, it is able to identify 

genes/samples with similar expression patterns (i.e. co-expressed genes/new 

biological classes). In this way, various existing clustering algorithms could be 

applied to gene expression data. Popular clustering algorithms are k-means 

[MacQueen 1967], Kohonen’s self-organizing maps [Tamayo et al. 1999], and 

hierarchical based clustering algorithms [Alon et al. 1999; Eisen et al. 1998]. 

Biclustering algorithms [Madeira and Oliveira 2004; Cheng and Church 2000] 

have been proposed to cluster both genes and samples simultaneously, besides 

clustering genes and samples separately. These biclustering algorithms group a 
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subset of genes and a subset of samples into a bicluster in which the genes and 

samples exhibit similar behavior. 

In analyzing the gene expression dataset, one would measure the 

similarity between two expression profiles. The similarity measure/distance 

measure is the critical component in this analysis. Two common similarity 

measures for gene expression data are Pearson correlation coefficient and 

Euclidean distance. The Pearson correlation coefficient between two gene 

expression profiles gx and gy can be calculated as: 
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  is the total number of experimental conditions (columns) and     is the gene 

expression value of gene x under experimental condition j. The Euclidean 

distance between two gene expression profiles gx and gy can be calculated as: 

                     

 

   

  

However, an empirical study [Heyer, Kruglyak and Yooseph 1999] has shown 

that Pearson correlation coefficient is not robust to outliers and it may assign 

high similarity score to a pair of dissimilar genes. Euclidean distance is the most 

utilized measure for comparing expression profiles for both genes and samples. It 

assumes that the gene profiles are uncorrelated so it leads to spherical shaped 

clusters. Therefore, it is used as a distance measure for many clustering 

algorithms (hierarchical and partitional) of gene expression data. In biclustering, 
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a popular measure of the coherence of genes and samples is the mean squared 

residue [Cheng and Church 2000]. Let           and          . The 

mean squared residue of a bicluster                   is defined as: 

        
 

      
                  

 
       , 

where     is the mean of    ,    ,     is the mean of    ,    , and     is the 

mean of    ,    ,    . If the mean squared residue is less than or equal to a 

user-defined threshold, a bicluster is formed. 

Another important analysis of gene expression data is gene selection. 

Gene selection is used to further narrow down the number of attributes prior to 

data mining. In the literature [Piatetsky, Khabaza and Ramaswamy 2003], t-value 

is widely used for this purpose. Suppose we are given a gene expression data set 

with 2 classes of samples, the t-value for a gene gx is given by: 

      
     

 
  

 

  
 

  
 

   

  

where    and    are the mean and the standard deviation of the expression levels 

of gene gx for class r, respectively, and    is the number of samples in class r for 

r = 1, 2. The genes ranked high can be selected for data mining. When the 

number of classes is greater than 2, the t-value is typically computed for one 

class versus all the other classes. This method is weak to deal with redundant 

genes [Ding and Peng 2003]. To handle the redundancy, [Ding and Peng 2003; 

Yu and Liu 2004] have proposed methods that can handle both gene-class 

relevance and gene-gene redundancy, using some metrics to measure the gene-

class relevance and gene-gene redundancy such as mutual information and 

information gain. [Au et al. 2005] has proposed an attribute clustering algorithm 

for optimally selecting genes using an interdependence redundancy measure. 
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However, the aforementioned methods require domain knowledge or class 

information to select subsets of genes. In our study, we aim at selecting attributes 

without requiring the use of class information but it will not scarify a lot of the 

quality of results. 

Overall, there are some challenges in dealing with gene expression data: 1) 

The dataset is normally in high dimensional space. 2) The presence of both 

biological and technical noise inherent in the data. 3) The clustering structure is 

usually unknown. 4) Most distance measures only locally compare pair-wise 

distances of two genes/samples. 5) The clustering results could be difficult to 

interpret. Although hierarchical based clustering algorithms return tree structure 

clusters, users are required to decide the number of clusters based on their 

domain knowledge to distinguish various clusters. For k-means based algorithms, 

users need to specify the number of clusters initially. Also, the clustering results 

of genes/samples need to be further analyzed for uncovering the underlying 

patterns of items in the clusters. 

2.3.4.1 Application of Fuzzy Logic in Gene Expression 

Data Analysis 

To mine and analyze unlabeled data with uncertain grouping is fuzzy 

clustering, that search for natural structure of data with uncertain assignment of 

clusters. A partition of n data samples into C clusters is defined by a partition 

matrix        , where         is the degree of data sample    belonging 

to a cluster i subject to a constraint that the total degree of a sample belonging to 

all clusters being one which is 
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We also call     the degree of membership of sample    in cluster i. In crisp 

clustering case, each    is assigned to one and only one cluster i. That is, for 

each k = 1, …, n,     = 1 for some i between 1 and C and,    = 0 for all other 

cluster indices j. 

Fuzzy C-means clustering algorithm has been employed for gene 

expression data analysis extensively [Gasch and Eisen 2002; Wang et al. 2003; 

Belacel et al. 2004; Asyali and Alci 2005]. The use of fuzzy clustering of gene 

expression data for extracting biological insights is to identify overlapping 

clusters of genes to observe the response of cells to environmental changes. It has 

an advantage over crisp clustering due to the fact that gene expression data 

contains great amount of imprecision and uncertainty. To successfully employ 

this technique to gene expression data clustering, some issues have to be tackled 

including algorithm initialization, sensitiveness to noise and outliers, 

convergence often to a local minimum, and choosing the fuzzy parameter. 

The Fuzzy C-means [Bezdek et al. 1999], which is a fuzzy version of k-

means, is a scheme used to partition a set of data into a predefined number of 

clusters considering the uncertainty of cluster assignment. It allows for sharing of 

objects between clusters. Each cluster is represented by a cluster center. 

Assuming that the data set contains C cluster centers and n samples. The 

membership values of a sample    to a certain cluster   is 

    
 

 

        
 

 

   

  
 

        
 

 

    
   

  

where        ,    is the center of cluster i,          is the distance between the 

sample    and   , m is the fuzzy parameter called the fuzzifier in which a large 
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value of it favors more fuzzy partitions. Different choices of distance function 

provide alternate definitions of closeness of objects for clustering approaches. 
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Chapter 3. The Proposed Approach 

In this chapter, the problems of unsupervised mining of patterns in 

sequence data and mixed-mode data are defined. A new mining approach is 

proposed to solving them. The proposed approach consists of a collection of 

techniques for 1) discovering statistically significant patterns from sequence data 

automatically; 2) using the discovered patterns to construct a transformed 

relational database to represent the original sequence database for further 

analysis; 3) grouping, selecting and fuzzifying a subset of attributes of a mixed-

mode database for data mining; and 4) enabling pattern discovery involving 

attributes that are not originally in event level. This chapter will also describe 

how these techniques integrating into the proposed approach. 

3.1 A Formal Problem Description 

Suppose that there is a set of unlabelled N sequences of varying length in 

a sequence database  . Each sequence is represented as    = {   , …,    , …, 

    
}, where       is an item, element, or ordered event, i = 1, …, N, l = 1, …, 

  , and   is the set of alphabets that an item in a sequence can take on. Thus, Li is 

the length of sequence   . A sequence    with length Li is called a Li -sequence. 

A subsequence β = {b1, b2, …, bn} of a sequence                     
  is 

denoted as β     , if there exist integers 1 ≤ j1 < j2 < … < jn ≤ Li such that b1   

    
, b2       

, …, bn       
.For example, if β = {“keyboard”, “mouse”} and    = 

{“keyboard”, “mouse”, “speaker”}, then β is a subsequence of    and    is a 

supersequence of β. 

3.1.1 Unsupervised Mining of Patterns in Sequence Data 
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From   , …,   , …,   , we aim at mining a set of sequential patterns that 

are statistically significant to reveal the underlying regularities hidden in the 

sequence database. For instance, in a customer purchase database, an example of 

a sequential pattern is β = {“keyboard”, “mouse”} which could be interpreted as 

“Customers who buy a keyboard are likely to buy a mouse in a transaction.” A 

sequence or subsequence is said to be a sequential pattern (or simply a pattern) if 

it is associated with one or more interestingness measures. A popular kind of 

interestingness measures is the minimum support threshold [Agrawal , Imielinski 

and Swami 1993]. The support of a sequence β in a sequence database   is the 

number of sequences in the database containing β, that is,             

                  . Given a positive integer min_sup as the minimum 

support threshold, a sequence β is frequent in a sequence database   if 

            > min_sup. A frequent sequence is called a sequential pattern (or 

simply a pattern) based on the minimum support threshold. A pattern with length 

l is called an l-pattern. There are also other types of interestingness measures 

such as Dempster-Shafer measure [Dempster 1967], conviction [Brin et al. 1997], 

J-measure [Smyth and Goodman 1992], chi-squared measure [Brin, Motwani and 

Silverstein 1997], the adjusted residual and weight of evidence [Chan and Wong 

1990, Chan and Wong 1991], etc. On the other hand, the discovered patterns 

should make the characteristics of sequences explicit. Rather than listing the 

patterns, a transformed relational database with attributes of patterns and tuples 

of sequence characteristics should be constructed for further data analysis, which 

is the first goal. Another goal of the problem, unaligned sequence clustering, is to 

partition these sequences,   , …,   , …,   , into clusters,   = {  , …,   }, 

according to their sequence similarities. 
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3.1.2 Unsupervised Mining of Patterns in Mixed-Mode 

Data 

We are also concerned with mining a set of mixed-mode data to reveal 

patterns in vertical and horizontal data space. Consider a data set D containing a 

set of N-tuples of mixed-mode data. Every tuple is described by N attributes, 

some assuming discrete values and others continuous values. Let X = {X1, …, XN} 

represent this attribute set. For convenience, let us permute the attributes 

(without affecting the analysis) that the first M attributes { Xi| 1≤ i≤ M} are 

discrete valued and the remaining {Xi’| M+1≤ i’≤ N} are continuous valued. 

Then, each Xi, 1≤ i≤ M can be seen as a discrete random variable taking on 

values from its alphabet       
      

    , where mi is the cardinality of the 

alphabet of the i
th

 attribute. Each Xi, M +1≤ i≤ N can then be seen as a continuous 

random variable. Thus, a realization of X can be denoted by xk = {x1k,… xik… xMk, 

x(M+1)k , … xi’k … xNk} where { xik| 1≤ i≤ M} can assume any value in    and { xi’k| 

M+1 ≤ i’ ≤ N} can assume any value in { Mi’k  ≤  ≤ Ni’k} where  is the real 

number. Thus, each tuple in the data set is a realization of X. Based on the 

problems introduced by Wong et. al. [Wong and Liu 1975; Wong and Wang 

1979; Wong and Chiu 1987], database partitioning, by which a database is 

clustered into interdependent attribute groups first, and data clustering is then 

applied to each attribute group which contains interdependent attributes only, is 

extended to study overlapping relationship among attribute groups. Thus, 

patterns which may overlap crisp attribute clusters could be found within 

overlapping or fuzzy clusters. This challenging problem, unsupervised pattern 

discovery for mixed-mode data, will be taken into serious consideration. 
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Another important problem encountered during pattern discovery or data 

mining is the discretization of continuous data in the mixed-mode data space. 

This problem will be addressed in detail in the latter section of the thesis. 

3.2 The Solution 

Given a dataset of sequence based or mixed-mode based, we propose to 

use a new data mining approach for the discovery of patterns. To solve the 

problems: I) unaligned sequence clustering, and II) unsupervised pattern 

discovery for mixed-mode data, the proposed approach comprises of a collection 

of techniques for: 1) sequence conversion, 2) interesting association pattern 

discovery on sequences, 3) clustering and re-clustering, 4) mixed-mode attribute 

clustering, 5) attribute cluster fuzzification, 6) discretization of continuous data, 

and 7) pattern discovery. Figure 3.1 shows the proposed data mining approach 

and how these techniques integrate together. 
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Figure 3.1. The proposed data mining approach. 

The proposed data mining approach is able to deal with data of various 

types - sequence, symbolic, continuous, categorical, discrete and interval. A 

schematic diagram is shown below to illustrate the approach. 
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Figure 3.2. A schematic diagram for solving the problem. 

The algorithms firstly perform attribute clustering to partition a database 

into a number of sub-databases (attribute clusters) based on the interdependence 

of attributes. Each attribute cluster is detected the representative attribute/feature 

(mode). In crisp attribute cluster case, an attribute belongs to 1 and only 1 

attribute cluster. In fuzzy attribute cluster case, an attribute is able to belong to 

multiple attribute clusters, each with a degree of membership. Discretization is 

then performed to transform the continuous attributes to discretized attributes for 

further analysis. The discretization is conducted in every attribute cluster, each 

time using the mode of the attribute cluster to drive the discretization of other 

continuous attributes. Once all the continuous attributes are transformed into 

discrete attributes, pattern discovery can begin to extract patterns inherent in the 

data. The discovered patterns can be further clustered by pattern clustering for 

summarizing the numerous discovered patterns. Also, the discovered patterns can 
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be taken as rules to build a classifier if the class label is pull back or the clustered 

label is regarded as the class. When new data of various types arrive, the 

classifier can automatically classify/predict it into the pre-labeled class. 
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Chapter 4. Unaligned Sequence Clustering 

Given a set of sequence data containing a number of sequences with 

varying length, our goal is to 1) discover interesting sequential patterns and 2) 

identify groups of sequences based on their sequence similarity. The proposed 

approach on sequence data consists of two main components as shown in Figure 

4.1. In the first component, it makes use of residual analysis [Wong and Wang 

1997] in statistics to test the significance of the occurrence of a sequential pattern 

against its expectation. The discovered patterns are then represented in the form 

of a relational table. It achieves the first goal. In the second component, the 

discovered interesting sequential patterns are then used for the clustering of 

sequences, adapting a two-phase clustering algorithm [Ma, Chan and Chiu 2005] 

which utilizes both local and global information. It tackles the second problem. 

Each component will be described in more detail in the following subsections. 

To demonstrate the effectiveness and validity of the proposed approach, 

extensive experiments, which contain a synthetic sequential data set, a web log 

sequence data set and a yeast genome data set, are conducted with comparisons 

to famous approaches including C5.0 decision tree, support vector machine and 

k-means clustering algorithm. 
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Figure 4.1. The architecture of the proposed approach on sequence data. 

The rest of this chapter is organized as follows. In section 4.1, the 

problem of sequential pattern mining and clustering will be formally introduced. 

In section 4.2, the techniques to discover interesting sequential patterns and to 

cluster the sequences will be discussed. 

4.1 The Unsupervised Sequential Pattern Mining 

Problem 

Let us suppose that there is a set of unlabelled N sequences with varying 

length as shown in Table 4.1. Each sequence is represented as    = {   , …, 

   , …,     
}, where       is an item, element, or ordered event, i = 1, …, N, l = 

1, …,   , and   is the set of alphabets that an item in a sequence can take on. 

Thus    is the length of sequence   . A sequence    with length Li is called a Li -

sequence. A subsequence β = {b1, b2, …, bn} of a sequence 
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  is denoted as β     , if there exist integers 1 ≤ j1 < j2 

< … < jn ≤ Li such that b1       
, b2       

, …, bn       
.For example, if β = 

{“keyboard”, “mouse”} and    = {“keyboard”, “mouse”, “speaker”}, then β is a 

subsequence of    and    is a supersequence of β. The first goal of the problem is 

to discover statistically significant high-order sequential patterns. A sequence or 

subsequence is said to be a sequential pattern (or simply a pattern) if it is 

associated with one or more interestingness measures. In our proposed approach, 

we generalize the residual analysis [Haberman 1973] in statistics as the 

interestingness measure to detect the statistically significant high-order 

sequential patterns. A pattern with length l is called an l
th

 order pattern or simply 

an l-pattern. On the other hand, the discovered patterns should make the 

characteristics of sequences explicit. This leads to the second goal which is to 

partition these sequences,   , …,   , …,   , into clusters,   = {  , …,   }, 

according to their sequence similarities. 

 

Table 4.1. The definition of a sequence dataset. 

Sequences Items Length 

      , …,    , …,     
    

      

      , …,    , …,     
    

      

      , …,    , …,     
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4.2 The Solution to the Unsupervised Sequential 

Pattern Mining Problem 

4.2.1 Sequence Conversion 

In the first component of the proposed algorithm, it converts input 

sequences into subsequences. Based on the concept of sliding window, we slide a 

window of width w, which is the window size, across a sequence   . Then the 

sequence can be converted into        subsequences,    , …,    , …, 

          , so that     = {   ,     ,…,    }, … ,     = {   ,         , … , 

         }, … ,            = {          ,           , …,     
} [Ma and Chan 

2008]. Each such a subsequence has the same length, w, and in our method, the 

item in the last position,          , of each subsequence,    , represents the class, 

  , this sequence belongs to in order for detecting associations between items. 

Thus, all subsequences are classified into one of P classes,   , p = 1, …, P. w is a 

user input parameter, which could be decided by the rule of thumb or adjusted by 

experimentally assessing the performance so as to obtain the local optimum. 

After the conversion of each sequence into a number of subsequences, the data 

mining procedure can be performed. 

4.2.2 Interesting Association Pattern Discovery 

Interesting association relationships are discovered by detecting 

statistically significant associations between sequences and each class label. To 

begin this task, we let obspq denote the observed number of subsequences that 

belongs to a class, Cp, and is characterized by the same item,   
   

, where 

  
   

  , j = 1, …, w - 1, q = 1, …, Q, Q ≤    , and Q is the total number of 
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distinct items at position j of all the subsequences. Let exppq = 
          

  
, where 

obsp+ =       
 
    and obs+q =       

 
    and   =           

    is the 

total number of subsequences formed by sliding a window of size w through all 

N sequences, be the expected total number of subsequences that belongs to a 

class,   , under the assumption that having a class label    is independent of 

whether or not a subsequence in this class has the characteristic   
   

 [Ma and 

Chan 2008]. Table 4.2 shows the definition of the notations. 

 

Table 4.2. The definition of the notations. 

         Item 

Class 
  

   
     

   
     

   
           

                               

           

                               

           

                               

                                

 

Given       and      , an association is then determined if       is 

significantly different from      . We apply the adjusted residual     [Wong 

and Wang 1997] to detect the association and it is defined in Equation (3.1): 

    
   

    
, 

where     is the standardized residual [Haberman 1973] given by Equation (3.2): 

    
           

      
, 
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and     is the maximum likelihood estimate of its asymptotic variance 

[Haberman 1973] given by Equation (3.3): 

       
     

      
     

   . 

If     > 1.96 (with 95% confidence level), an association is considered to 

be interesting. Therefore it is concluded that the item   
   

 at position j is 

associated with    and is useful for determining if a subsequence should be 

classified into   . This association between   
   

 and    is statistically significant 

and such an association is referred to an interesting pattern of order    . This 

interesting first-order association pattern is statistically significant between one 

single item and a class label. 

Based on the described approach to determine a first-order pattern, it is 

able to determine if there is an interesting second-order association pattern 

involving the association between two items and a class label. The association 

between two items,   
   

 and   
   

, at positions   and   and the class label    is 

tested to detect whether or not it is statistically significant by joining the 2 items 

to form   
   

, where      ,   ,    {1, …,     1},   ≠  . To avoid exhaustive 

search,   
   

 and   
   

 are chosen to join for forming   
   

 only if both association 

patterns of first-order which are   
   

 and   , and,   
   

 and    are interesting. In 

this way, the algorithm continues to search for interesting third-order association 

patterns involving the association between three items and a class label when all 

combinations of second-order patterns are interesting. Generally, this procedure 

tests whether or not a pattern of order n is interesting when all its sub-patterns of 

order (n – 1) are also interesting. Using this technique to search for higher-order 
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patterns can effectively avoid evaluating of all possible combinations of items 

exhaustively. 

4.2.3 Sequential Pattern Table Construction 

After all interesting patterns of different orders,   = {  , …,     }, are 

discovered, these are used to represent the sequences in terms of a relational table, 

  = {    |   = 1, …,  ,   = 1, …,    } where     is the count of the occurrence of 

sequential pattern    in sequence    and is normalized by Equation (3.4): 

    
   

      
  

, 

where    is the length of sequence    and    
 is the length of sequential pattern 

  . 

Each row in the table   corresponds to one particular sequence and each 

column to a sequential pattern. Such a table uses the discovered sequential 

patterns to represent the sequences and is the output of the first component of the 

proposed approach on sequence data. It can be further used for data analysis, 

grouping and selecting the sequences and interesting patterns. 

4.2.4 Clustering and Re-clustering 

In the second component, the proposed approach partitions the sequences 

by clustering the sequential pattern table   using a two-phase clustering 

algorithm [Ma, Chan and Chiu 2005]. The input of this component is indeed the 

features discovered in the previous component. The initial phase utilizing a local 

pair-wise distance between two sequences groups similar sequences into clusters. 

The second phase is to re-cluster the data which regards the assigned sequences 

with cluster labels as training data to construct a classifier based on a global 

probabilistic measure of interestingness. The classifier which distinguishes 
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between relevant and irrelevant interesting patterns classifies sequences into the 

same cluster or a different one. 

The initial phase (clustering) can be performed by any clustering 

algorithms. In our study, the popular clustering k-means clustering algorithm 

[MacQueen 1967] is adopted. This algorithm, when applying in clustering data in 

a table, iteratively assigns the rows of table   into k clusters where the similarity 

between the assigning row and the mean (centre) of the cluster is highest. The 

mean of the cluster is recalculated when a sequence is assigned to that cluster. 

For the similarity function, the Euclidean distance is used. For any two sequences, 

   and   , which are characterized by a set of     sequential patterns, the 

measure is defined in Equation (3.5): 

                        
   . 

The second phase (re-clustering) consists of a learning step and a re-

evaluation step. In the learning step, the sequential pattern table   is discretized 

based on a popular technique Optimal Class Dependent Discretization, OCDD, 

which minimizes the loss of information during the process [Liu, Wong and 

Wang 2004]. Thus, for a particular sequential pattern   , the occurrence of it in 

all sequences,    , …,    , …,    , are partitioned into intervals   
    

, where    = 

1, …,    and    is the total number of distinct data intervals of   . After 

discretization, interesting association relationships are discovered in each initial 

cluster by detecting the associations between the occurrences of sequential 

patterns in sequences that belong to a particular cluster and the cluster label itself. 

To being this task, let         denote the observed total number of sequences, 

  , …,   , …  , where   ≤  , in the data that belong to a given cluster,    , where 
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   = 1, …, k and k is the total number of initial clusters discovered, and are 

characterized by the occurrences of sequential patterns in sequences that are 

within the interval of   
    

. Let         = 
            

   , be the expected total under 

the assumption that being a member of     is independent of whether or not a 

sequence has the characteristic   
    

, where obsp’+ =         
  
    , obs+q’ = 

        
 
    , and                  . An association is considered interesting 

if         is significantly different from        . To determine if this is the case, 

the adjusted residual       is used. The calculation of       is the same as 

Equation (3.1) by substituting    into   and    into  . An association is 

considered to be interesting if it is statistically significant. With the adjusted 

residual      , it is able to determine if   
    

, of   , is associated with a cluster, 

   , say a 95% confidence level (     >1.96). If so, it can be utilized to construct 

a characteristic description of    . This description is represented as follows. If 

the occurrence of    in a sequence is within the interval of   
    

, then it is with 

certainty                             
      that the sequence belongs to 

   , where  , weight of evidence measure [Wang and Wong 2003; Osteyee and 

Good 1974], is defined in terms of the mutual information         
      as 

Equation (3.6): 

          
   

       
       

    
  

         
               

     , 

where 

        
         

          
    

 

        
. 
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Weight of evidence measures the amount of positive or negative evidence 

that is provided by characteristic   
    

, supporting or refuting the labeling of a 

sequence as    . It is a probabilistic interestingness measure, being effective to 

deal with incomplete, missing or erroneous data. If the characteristic is relevant 

in determining the cluster membership, it is reflected by the interestingness 

measure.  

In the re-evaluation step, the cluster membership of a sequence,   , 

characterized by   , …,   , …,     , can be matched against the discovered 

associations. If the occurrence of the sequential pattern,    , of    satisfies the 

associations (i.e.,     of    is within the interval of   
    

) that implies    , then we 

can conclude that the description of    partially matches that of    . By repeating 

the procedure, which is by matching each    ,   = 1, …,    , of    against the 

discovered associations, total weight of evidence of assigning    to     can be 

computed. Suppose that of the     characteristics which describe   , only  ,   

     , of them are found to match with the discovered associations. Then, total 

weight of evidence supporting the labeling of    as     is defined in Equation 

(3.7): 

                                 
         

         
      

                              
     

 
   . 

Then    is assigned to     if: 

   

          
                              

    

 

   

   

The re-clustering phase described above allows for probabilistic 

associations to be detected. It is done by distinguishing between relevant and 
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irrelevant occurrences of sequential patterns in sequences and taking into 

consideration global information contained in a specific cluster arrangement by 

evaluating the importance of different occurrences of sequential patterns in 

sequences in determining cluster memberships. This feature makes the proposed 

algorithm more robust in treating noisy data compared to those algorithms 

relying only on local pair-wise similarity measures. 

4.3 Experiments and Results 

In order to evaluate the performance of the proposed method, 

experiments are conducted on a synthetic dataset, then on a well-known 

msnbc.com anonymous web log dataset, and on a yeast genome sequence dataset. 

Here we indicate that the novelty of the proposed method is not the clustering 

method, but a unified framework for the discovery of appropriate pattern 

information from sequence data which considers both local and global 

characteristics of the data. 

4.3.1 Synthetic Dataset 

To evaluate the clusters and patterns of sequences formed by the 

proposed method, we first applied it to a synthetic dataset. Each sequence in the 

synthetic dataset is composed of an arbitrary number of items, from 50 items to 

100 items, by a pseudorandom number generator and is preclassified into one of 

the three classes: C1, C2, and C3. Each item can take on one of the three alphabets: 

A, B and C. In the designed experiment, each sequence is implanted a sequential 

pattern which can determine the class membership. This class membership is 

taken as the ground truth for the problem. We would like to see if the proposed 

method can detect high-order patterns and cluster sequences according to their 

pattern similarities. The sequential patterns A*AAA, B*B*B, and CCCC are 
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statistically significant patterns which belong to C1, C2, and C3, respectively, 

where * is a special alphabet, i.e. “don’t care” symbol, simply meaning that it can 

be any alphabet of A, B or C. All these artificially implanted statistically 

significant sequential patterns are put into sequences in random positions. For a 

clustering algorithm of unaligned sequential data to be effective, it should be able 

to reveal such patterns and group sequences exhibiting similar ones into the same 

cluster. In our experiment, we generated 15,000 sequences in the synthetic 

dataset and each class contains 5,000 sequences. Noises were added to the 

dataset by replacing the sequential patterns in 25 percent of the sequences with 

alphabets randomly drawn from A, B or C. 

For the purpose of comparison, we calculate Recall and Precision values 

of the clustering result to the synthetic dataset. Recall specifies the probability of 

correctly predicting a classifier and it is defined in Equation (3.8): 

Recall = TP / (TP + FN), 

and Precision specifies the probability that the provided prediction is correct and 

it is defined in Equation (3.9): 

Precision = TP / (TP + FP), 

where TP (True Positives) is the number of correctly identified true pairs, FN 

(False Negative) is the number of not identified true pairs and FP (False Positive) 

is the number of false pairs predicted to be true pairs. A pair of sequence is 

considered to be a true pair if both are in the same cluster. F-measure combines 

the precision and recall values. The F-measure is defined in Equation (3.10): 

 -        
                       

                  
  

In (3.10),   is a positive constant that specifies the relative importance of 

Precision and Recall values. When    , the importance of precision and recall 
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values is equal and F-measure is the harmonic mean of them. We set     in 

our experiment. A higher F-measure implies a better quality of the clustering 

result where F-measure = 1 means the perfect cluster. 

To evaluate the performance, we first discovered interesting sequential 

patterns from the synthetic dataset by the first component of the proposed 

method and investigated the output of it before the second component began. 

This experiment illustrates how it reveals high order sequential patterns in the 

initial stage. We set the sliding window size w to 5 here since in the synthetic 

dataset, the length of artificially embedded patterns is 5. The first component 

outputs the sequential pattern table which contains 37 interesting sequential 

patterns, including 11 first-order patterns, 15 second-order patterns, 9 third-order 

patterns and 2 fourth-order patterns. Among the interesting sequential patterns, 

all previously implanted patterns (A*AAA, B*B*B and CCCC) are identified 

and ranked top 3 strong patterns according to their adjusted residue values. In the 

second component of proposed method, we then applied k-means algorithm 

[MacQueen 1967] and, afterwards, the two-phase clustering algorithm to the 

sequential pattern table. The optimal number of cluster k was found to be 3 in k-

means algorithm by comparing the F-measure of different clustering results 

generated by different values of k. After a number of experimentations, we 

selected the best clustering result obtained by k-means algorithm and put it into 

the second phase clustering. As reported by the experiment, the Recall, Precision 

and F-measure values of the clustering result generated by k-means algorithm is 

76.65%, 69.76% and 73.04% respectively and these by the two- phase clustering 

algorithm are 91.98%, 83.71% and 87.38% respectively. It is clear that the 

sequential pattern table generated by the first component of the proposed method 



 

57 

 

enables k-means algorithm (phase 1 of the second component) to produce 

acceptable clustering results. We attribute this to the residual analysis in 

searching for interesting patterns of sequences. It also shows that the addition of 

the two-phase clustering algorithm in the framework boosts the clustering quality 

eventually. Overall, the proposed approach can identify useful patterns from a 

collection of discovered patterns and these useful patterns are used to reclassify 

the sequences into clusters by weight of evidence measure. Weight of evidence 

measure has the capability of taking partial information from useful sequential 

patterns into account and combining the global information of them to identify 

non-linear patterns. 

4.3.2 Web Log Dataset 

The msnbc.com anonymous web data, a real-life dataset, is obtained from 

Internet Information Server (IIS) logs for msnbc.com through UCI site of 

machine learning archive [Asuncion and Newman 2007]. This dataset describes 

the page visits of users who visited msnbc.com on September 28, 1999. Each 

sequence in the dataset corresponds to page views of a user during that twenty-

four hour period. Each event in the sequence corresponds to a user's request for 

one of the 17 page categories, including frontpage, news, tech, local, opinion, on-

air, misc, weather, health, living, business, sports, summary, bbs (bulletin board 

service), travel, msn-news, and msn-sports. The number of sequences is 989,818 

with an average number of visited pages per user (an average length of a 

sequence) 5.7. This dataset has been used by others [Dias and Cortinhal 2008; 

Cadez et al. 2003; Dias and Vermunt 2007] to extract interesting browsing 

patterns to study the user browsing behaviors. 



 

58 

 

In our study, we selected samples with different length to create 6 

sampled datasets to perform a number of experiments to justify the effect of 

different window sizes in the proposed algorithm. We set the number of clusters 

to 2 consistent with [Dias and Cortinhal 2008; Cadez et al. 2003; Dias and 

Vermunt 2007]. Specifically, in our experiments, we tried using different 

window sizes (i.e. w = 2, 3, 5, 10, 15, 20) to the corresponding sampled datasets. 

The sampled datasets are generated in the following manner. For an experiment 

with window size w, the users with a sequence of length lesser than or equal to 

w – 1 were filtered so that in the sampled datasets, each user is associated with a 

sequence of length at least w. 

Table 4.3. Window sizes, filtered length of sequences, sample sizes, cluster sizes 

and number of patterns. 

WS FL SS C1 (%) C2 (%) P # 

2 1 704,747 69.27 30.73 48 

3 2 524,948 79.53 20.47 103 

5 4 363,358 73.47 26.5 187 

10 9 169,051 65.35 34.65 456 

15 14 88,592 67.75 32.25 522 

20 19 52,347 64.44 35.56 636 

Key: WS – Window size. FL – Filtered length. SS – Sample size. C1 – Cluster 1. 

C2 – Cluster 2. P # – Number of patterns. 

Table 4.3 provides a summary of the best results obtained by the 

proposed algorithm. Cluster 1 is the largest cluster with an average 69.97% of 

users while cluster 2 is with 30.03%. The number of patterns increases when the 

window sizes increases due to more high order patterns discovered. Among all 
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sampled datasets, there are some distinguishable sequential patterns to separate 

users into 2 groups. For instance, users in cluster 1 have no pattern of browsing 

frontpage for 2 times consecutively while all users in cluster 2 exhibit this 

browsing pattern. This founding is consistent with those reported by [Dias and 

Cortinhal 2008]. In the transition matrix as shown in Figure 4.2, it is obvious that 

the transition probability of “frontpage to frontpage” is very high in cluster 2 

while it is close to 0 in cluster 1. There are also other discovered patterns which 

conform to those discussed in [Dias and Cortinhal 2008; Dias and Vermunt 

2007]. In addition to first-order patterns, the proposed algorithm also discovered 

other high-order browsing patterns which are potentially important to understand 

more about the user browsing behaviors. These patterns are such as [frontpage  

*  *  news], [frontpage  *  *  frontpage], [news  *  *  *  

summary] and [news  *  *  *  tech], where * is a “don’t care” symbol, 

meaning that could be any of pages. 

 

Figure 4.2. Transition matrix within each cluster [Dias and Cortinhal 2008].  

 
The transition probability, prob, is represented by white (prob = 0), gray (0 < prob < 1) and black 

(prob = 1) color. The transition reads from rows (original states) to columns (destination states). 

Note that the circled cell is one of the strong distinguishable features to differentiate the clusters. 
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To examine our approach in terms of the quality of clusters, for each 

clustering result of a sampled dataset, we randomly selected 30% of labeled 

samples as training data to build classification models. The cluster label is 

regarded as the class label. For building classification models, all 6 sampled 

datasets were fed into C5.0 (a commercial version of C4.5 [Quinlan 1993]) and 

mySVM (a Java implementation of Support Vector Machine [Ruping 2000]), 

which are both popular classification algorithms. After building the classification 

models, the 6 sampled datasets were unlabelled and were put into the models to 

obtain the classification accuracy. Figure 4.3 summarizes the classification 

results. Among 6 sampled datasets, all 2 trained classification models attain 

satisfactory results with an average accuracy of 94.6%. The experimental results 

demonstrates the usefulness of the proposed algorithm in real world data analysis 

that it is a practical and effective technique to group web users into clusters based 

on their browsing patterns’ similarities and to allow classification algorithms to 

build accurate classification models. 
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Figure 4.3. The plot of classification accuracy values against w, window size of 

sampled dataset. 

4.3.3 Yeast Genome Sequence Dataset 

This experiment is to examine the capability of the proposed algorithm in 

discovering biological functional units. In gene expression regulations, 

understanding the genome sequence is the fundamental step to understand the 

complex mechanism of gene expression. The proposed algorithm is applied on a 

set of yeast genome sequence data in order to identify the functional and 

regulatory groupings governed by the transcription factor binding sites. The 

reason to choose the yeast dataset, especially Saccharomyces cerevisiae, is due to 

its well studies and known transcription factors along with their regulated genes. 

The dataset is available in SCPD database, the Promoter Database of 

Saccharomyces cerevisiae [SCPD 2010]. The binding sites for the DNA 

sequences are determined experimentally in the database. This genome sequence 
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dataset is composed of the regulated genes from the upstream (promoter) regions. 

Each DNA sequence is associated with one or more transcription factors. The 

genes are believed to be co-regulated by specific transcription factors. A set of 

genes associated with the same transcription factor is called a regulon. In our 

dataset, there are totally 109 yeast genome sequence classified into 18 regulons 

including CAR1, CPF1, CSRE, GCN4, GCR1, MATalpha2, MCB, MIG1, PDR3, 

PHO4, RAP1, REB1, ROX1, SCB, SFF, STE12, TBP and UASPHR. Among the 

regulons, each of them has at least 3 genes with all consensus binding sites 

available. For each regulon of the transcription factors, DNA sequences are 

extracted from the upstream (promoter) regions from position -800 to +1 that is 

relative to the ORF (translation start site) so that all sequences have the same 

length of 801. 

In our experiments, we input the 109 sequences into the proposed 

sequence clustering algorithm. These sequences are labeled and are classified 

into 18 regulons so we take this class information as the ground truth of the 

problem. We hide the class labels before the analysis. To study the sensitivity, 

we set window sizes from 2 to 10 in this set of experiments. In our proposed 

algorithm, it first detects the sequential patterns from the yeast genome 

sequences and then uses the discovered patterns for clustering. Table 4.4 and 

Figure 4.4 shows the experimental results. 
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Table 4.4. Performance of the propose algorithm on regulons of yeast genome 

sequences from SCPD. 

Window Size 

Discovered 

Pattern # 

Clustering Accuracy 

k-means Proposed 

2 5 84.08% 86.92% 

3 18 82.72% 86.00% 

4 56 84.05% 86.15% 

5 145 82.08% 85.85% 

6 241 83.47% 85.73% 

7 492 78.34% 85.56% 

8 902 76.16% 85.24% 

9 1878 77.81% 83.81% 

10 4171 57.76% 84.15% 

 

 

Figure 4.4. The plot of clustering accuracy values against w, window size of 

yeast genome sequences. 
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From the experimental results, it is reported that the discovered patterns 

do effectively describe the characteristics (transcription factor binding sites) of 

the yeast genome sequences for the cluster analysis to separate the sequences into 

18 regulons based on their characteristics. As expected, the number of patterns 

increases as the window size increases. It is interesting to note that for window 

size from 2 to 9, both k-means clustering and the proposed two-phase clustering 

achieve high rates of accuracy. This conforms to the fact that in DNA sequences, 

tandem repeats are common. For instance, in a sequence “GGGAAAAAAA”, the 

pattern “AAAA” occurs at position 4, 5, 6 and 7 which overlap multiple times. In 

setting large window size, many those patterns will be discovered and further 

filtering step needs to be taken. To avoid these, using small window size (i.e. 2, 3, 

and 4) is already a possible way which is fair enough to extract the information 

to characterize the sequences. The effect of it is obvious as shown in Figure 4.4, 

small window size facilitates good clustering performance. Nevertheless, the 

proposed two-phase clustering is able to handle noisy information by distinguish 

between relevant and irrelevant patterns even though large window size leads to 

duplicated patterns while k-means is not (see the case when window size is set to 

10 with 4,171 discovered patterns). It is attributed to the weight of evidence 

measure in the proposed algorithm that irrelevant information (patterns) are 

given lesser weights in supporting the labeling of a sequence to the correct 

cluster and relevant information are concerned. 

4.4 Summary 

In this chapter, we have introduced the proposed approach that supports 

the discovery of useful sequential patterns and clusters in a sequence database. 

Its capability has been demonstrated by 3 sets of experiments with large datasets. 
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It is first applied to a synthetic dataset to verify its effectiveness. Then applying it 

to a web log dataset to discover patterns of browsed pages that could be used to 

characterize web users and distinguish them from each other as well as group 

them together. The experimental results using a synthetic dataset and a real-life 

web log dataset show that the proposed approach produces meaningful clustering 

results and makes the hidden interesting sequential patterns explicit. Applying it 

to a real-life web log dataset, we found that groups of web users exhibit similar 

browsing patterns and how these patterns supports or refutes the labeling of a 

particular web user to a group. This work as illustrated in the experiment is 

focused on effective clustering of web users based on detected browsing patterns. 

The results from the yeast transcription factor experiments demonstrate that 

relevant functional information can be extracted and further calibrated for 

meaningful clustering of regulated genes. All these results confirm the algorithm 

has the ability to acquire interesting and unknown information inherent in the 

sequences. The proposed algorithm can be further applied as a generic sequence 

data analysis tool in many application domains.  
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Chapter 5. Unsupervised Pattern Discovery for 

Mixed-Mode Data 

Let us begin with the definitions, terminologies and conventions before 

we introduce the detail of the unsupervised pattern discovery framework for a 

mixed-mode data space. All of the definitions, terminologies and conventions 

provided here will be used within this entire chapter. 

Consider a data set D containing a set of N-tuples of mixed-mode data. 

Every tuple is described by N attributes, some assuming discrete values and 

others continuous values. Let X = {X1, …, XN} represent this attribute set. For 

convenience, let us permute the attributes (without affecting the analysis) that the 

first M attributes { Xi| 1 ≤ i ≤ M} are discrete valued and the remaining {Xi’| 

M+1≤ i’≤ N} are continuous valued. Then, each Xi, 1≤ i≤ M can be seen as a 

discrete random variable taking on values from its alphabet       
      

    , 

where mi is the cardinality of the alphabet of the i
th

 attribute. Each Xi, M +1≤ i≤ 

N can then be seen as a continuous random variable. Thus, a realization of X can 

be denoted by xk = {x1k,… xik… xMk, x(M+1)k , … xi’k … xNk} where { xik| 1≤ i≤ M} 

can assume any value in    and { xi’k| M+1 ≤ i’ ≤ N} can assume any value in 

{ Mi’k  ≤  ≤ Ni’k} where  is the real number. Thus, each tuple in the data set is 

a realization of X. 

In this chapter, we will address three problems: 1) whether the dataset 

contains attributes which characterize different subgroups within the attribute set; 

2) whether the dataset contains various attribute subsets, each of which contain 

subgroups characterized by their attributes; 3) whether the dataset contains 

attributes which may have strong correlation to more than one subgroup, or may 
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associate with patterns which might overlap different subgroups. Among these 

problems, class labels are not available in the dataset or not used in the analysis. 

We will propose a new approach to tackle them. 

To handle problem 1) and 2), attribute clustering is conducted to obtain 

attribute subgroups (clusters) so that attribute within an attribute cluster should 

have high correlation with or high interdependence to each other, whereas 

attributes in different attribute clusters are less correlated or more independent. 

We then identify the most representative attribute (referred to as the mode) in 

each attribute cluster as one with strongest interdependence with all other 

attributes in the subgroup. To handle problem 3), we fuzzify each of the crisp 

attribute clusters by drawing in attributes which share the fuzzy membership into 

the original crisp clusters. Unlike others’ work in data mining / pattern discovery, 

our work is dealing with attributes which could take on categorical (discrete) 

and/or continuous values, which is a mixed-mode space. 

As mentioned in the previous chapters, 2 major inter-related challenges in 

the current pattern discovery algorithms on mixed-mode databases are, firstly, 

large attribute size and, secondly, the discretization of the continuous data. The 

first challenge is tackled when mixed-mode attribute clustering proposed in this 

chapter is applied. To tackle the second challenge effectively, class dependent 

discretization algorithms, which maximize the interdependence between the 

interval values derived from the discretization of the continuous attributes and 

the given class labels [Liu, Wong and Wang 2004; Ching, Wong and Chan 1995], 

could be applied. For years, most effective classification algorithms in machine 

learning can only be applied to nominal (categorical) database or database with 

continuous values separately [Wong and Wang 1997] but are unable to deal with 
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mixed-mode database directly. Recently, researchers also found that even if some 

systems are explicitly designed for continuous attributes, they can attain a higher 

accuracy if continuous data are appropriately discretized. Through discretizing 

the continuous data, most of the inductive learning algorithms can accommodate 

continuous and mixed-mode data more effectively [Wang and Wong 2003; Chau 

and Wong 1999; Chiu, Wong and Cheung 1991]. However, in our problem, the 

class labels are not available and in fact, most real world problems are without 

prior knowledge. Therefore, the concept of maximizing class-attribute 

dependence is not readily and easily applied for discretizing the continuous data 

space. To solve this, we take the mode of each attribute cluster functioning like 

the class label to drive the discretization. We will adopt an optimum iterative 

dynamic programming algorithm known as OCDD (Optimal Class-Dependent 

Discretization Algorithm) [Liu, Wong and Wang 2004] for discretization once 

the mode or representative attribute is chosen for an attribute cluster. Such a 

process could be viewed as partitioning of the outcome values of a continuous-

valued attribute into a number of discrete intervals that maximize its 

interdependence with the mode. 

Once a mixed-mode database is transformed into one containing only 

categorical events, pattern discovery [Wong and Wang 2003] methodology could 

be readily applied to the transformed database to constitute a unified pattern 

discovery framework such that all the definitions for events, event associations 

and patterns will be based on discrete variables. 

Our proposed methodology is composed of 4 phases: mixed mode 

attribute clustering, attribute cluster fuzzification, continuous data discretization 

and discovery of statistically significant patterns. 
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To demonstrate the effectiveness and validity of the proposed approach, 

extensive experiments, which contain 2 sets of synthetic mixed mode data, a 

collection of data sets from UCI machine learning archive and 2 real world large 

data sets, are conducted with comparisons to famous approaches including C5.0 

decision tree, optimal class dependent discretization (OCDD) algorithm and k-

modes attribute clustering algorithm. 

5.1 Mixed-Mode Attribute Clustering 

Mixed-Mode Attribute Clustering Algorithm (MACA) [Wong et al. 2010] 

to cluster attributes based on the interdependence among their attribute values is 

evolved from the Attribute Clustering Algorithm (ACA) [Au et al. 2005] which 

requires continuous valued data to be discretized using class information. Unlike 

ACA, MACA can effectively operate without data discretization and class 

information. Meaningful attribute clusters (groups) could be found by MACA 

such that attributes within an attribute cluster have high interdependence with 

each other, whereas attributes in different attribute clusters are less correlated. 

MACA uses a normalized interdependence redundancy measure 

         
        

        
                          (5.1) 

to account for interdependence between attributes where          is the mutual 

information between    and    , and           is the joint entropy of    and   . 

Let us denote  as the SELECT operation from relational algebra and     

as the cardinality of set S. To calculate          and          between discrete-

valued data, we first define the probability of a tuple in D having   = 

  
                           as: 
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and the joint probability of a record in D having   =   
  and    =   

 , 
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Once we have         
    and         

         
   defined, we can define 
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and          is defined as: 

                    
         

             
         

  

  

   

  

   

  

         measures the average reduction in uncertainty about    that 

results from learning the value of   . Since its value increases with the number of 

attribute values,          should be normalized by         , yielding the 

interdependence redundancy measure         .          reflects the degree of 

deviation from independence between          . If          = 1,           are 

strictly dependent. If          = 0,           are statistically independent. If 0 < 

         < 1,           are partially dependent. If two attributes are dependent 

on each other, they are more correlated with each other when compared to two 

independent attributes. Therefore, it is able to use it to detect the interdependence 

or correlation of attributes. If          >                         , 

the dependence between    and    is greater than that between    and   . 
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To compute R between continuous valued data, we use a contingency 

table with as many bins as possible. Let |T| be the sample size of the dataset, m 

be the number of bins and α be the least number of data points in a cell. In 

practice, α is the parameter chosen in the rule of thumb manner (say 2 or 3), 

ensuring that each cell in the contingency table will have at least α data points. 

Thus, the number of bins is calculated as: 

   
   

 
  

Once   is set for Ai , 1 ≤ i ≤ N , the attribute values can be treated as 

discrete valued attributes and I, H and R can be computed for attribute clustering. 

To compute R between a discrete attribute and a continuous attribute, we 

first use the discrete attribute to drive the discretization of the continuous 

attribute by OCDD. Then the discretized continuous attribute is treated as 

discrete valued attributes and I, H and R can be computed then. If we would like 

to discretize the continuous attribute without considering the dependence 

between it and the discrete attribute, we could use entropy maximization [Wong 

and Chiu 1987] to discretize the continuous attribute before computing I, H and 

R for attribute clustering. 

MACA is based on the k-mode attribute clustering algorithm that finds 

disjoint attribute clusters. Evolved from the k-means algorithm, it uses the mode 

instead of the means for samples to represent the center of the attribute cluster 

and clusters attributes instead of samples using interdependence redundancy 

measure R between attributes instead of the Euclidean distance between samples 

in the k-means algorithm. The mode denoted by   is the most representative 

attribute in cluster r found by: 



 

72 

 

              for all          ,    , 

where  

                

 

   

 

is the multiple interdependence redundancy measure [Au et al. 2005] of    

within the attribute cluster   with   attributes. 

In MACA, we use the k-mode attribute clustering algorithm to obtain k 

clusters iteratively until the sum of the multiple interdependence redundancy 

measure [Au et al. 2005] of all the representative attributes denoted by SR is 

maximized. SR is defined as: 

             

     

 

 

   

 

MACA then determines the optimal number of clusters by optimizing the 

intra-group attribute interdependence over different k. k is selected such that 

                           

     

 

 

   

 

The output yields a local optimal configuration of attribute clusters each 

of which contains a mode. 

5.2 Attribute Cluster Fuzzification 

Now from the attribute clusters obtained, each cluster            

contains a mode   and every attribute             , is assigned to only 1 

attribute cluster             , where the attribute clusters are disjoint, i.e. 

        for all              . However, if situations arise that an 

attribute may have strong correlation to more than one attribute cluster, or may 

associate with patterns which might overlap different attribute clusters, they may 
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not be found by our method at this stage. Hence we move to the second phase of 

our method to fuzzify the crisp attribute clusters obtained by assigning attributes 

to multiple attribute clusters with varying degrees of fuzzy membership such that 

overlapping relationship such as high order patterns among disjoint attribute 

clusters could be considered. This extends Mixed-Mode Attribute Clustering 

Algorithm (MACA) to Fuzzy Mixed-Mode Attribute Clustering Algorithm 

(FMACA). 

To construct the fuzzy membership, the interdependence redundancy 

measure R (Equation (5.1)) is used to derive a fuzzy interdependence redundancy. 

Given that each attribute is with a certain R value to the mode of each attribute 

cluster, we calculate a degree of fuzzy membership of an attribute as the 

fractional part of the total possible membership assigned to the current attribute 

cluster. It is defined as below. 

       
 

  
        

        
 

 

    
   

    

is the fuzzy membership function that returns the degree of membership of 

attribute i in attribute cluster r, where k is the optimal number of attribute clusters, 

m is the fuzzification parameter,          is the interdependence redundancy 

between attribute i and the mode of attribute cluster c, and          is the 

interdependence redundancy between attribute i and the mode of attribute cluster 

r. It has been shown that the following property (Equation 5.7) is desirable for 

the stability of fuzzy logic controllers [Pedrycz and Gomide 1998; Yen and 

Langari 1999]. 
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The fuzzification parameter m is a real number > 1 for normalizing and 

fuzzifying the measure. For m close to 1, the attribute closest to the mode 

(representative attribute) is given more weight than others. The bigger the m is 

the fuzzier the membership values of the attributes are. 

With the fuzzy membership function defined, we can consider the 

correlation of each attribute with different attribute clusters among the entire data 

space. 

5.3 Discretization of Continuous Data 

To make use of the information extracted by attribute clustering and 

attribute fuzzification for classification and visualization, this phase involves 

discretizing the domains of continuous attribute values into interval events by 

maximizing the interdependence between the continuous attribute values and the 

mode (the representative attribute) using Optimal Class-Dependence 

Discretization (OCDD) [Liu, Wong and Wang 2004].  

For completeness of the thesis, we briefly include the definition of OCDD. 

OCDD uses the class-attribute dependence information as the criterion for 

optimal discretization. Given a labeled dataset with M’ training instances each of 

which has been preclassified into one of the K classes ck (k = 1, …, K), we could 

calculate the interdependence redundancy measure R between class label C and 

attribute A. Therefore, the discretization problem can be formulated as find the 

partition of attribute A such that the class-attribute interdependence redundancy 

measure R(C : A) is maximized. Let   represent the set of all possible finite 

partition schemes. Given class-attribute pair, one needs to find a        such 

that: 
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OCDD adopts an iterative dynamic programming algorithm, which 

superlinearly converges to its optimal solutions, with the objective function to 

maximize R(C : A) = I(C : A) / H(C : A). 

We first employ OCDD to partition continuous attribute values into a 

finite number of intervals. From the feature-class dependence argument, we 

regard the mode as the class attribute in each attribute group. To begin with 

OCDD, the mode should be a discrete attribute. In case the mode is a continuous 

attribute, it should be discretized first. In general, if the number of intervals is not 

decided, in view of no prior information, entropy maximization [Wong and Chiu 

1987] is used for the discretization. Once all the modes are discretized, other 

attributes follow using OCDD. 

For each attribute other than the modes, it is partitioned by OCDD 

multiple times ─ each time with a different attribute group while treating the 

mode of that group as the class label to drive the discretization. For each 

partitioning, the partition result is associated with a degree of membership to an 

attribute group. After all continuous attribute values are discretized into a finite 

number of intervals, we can consider that the mixed-mode dataset contains only 

categorical data and the pattern discovery phase can be conducted. 

5.4 Pattern Discovery 

In this phase, pattern discovery [Wong and Wang 2003] method for 

categorical data could be applied readily. In an unsupervised manner, it detects 

high order patterns defined as statistically significant associations of 2 or more 

primary events from different attributes using the adjusted residuals d to test the 

significance of its occurrence against the independence assumption [Wong and 

Wang 2003]. The adjusted residue is a normalized statistical measure that 
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accounts for the deviation of the observed frequency of an association (order >2) 

from its expected default model of independence [Wong and Wang 2003]. If the 

association pattern is conditioned by the class attribute, it can be used as 

classification rule [Wang and Wong 2003]. The weight of evidence in 

information theory [Wang and Wong 2003] is used to quantify the evidence of 

the joined significant association rules to support or against a certain class 

membership. The definition of adjusted residue and weight of evidence measures 

have been given in section 4.2.2 in detail. 

5.5 Experiments and Results 

To verify the premises of how realistic the proposed approach tackles the 

discovery of patterns when applying to various types of mixed-mode data, 

appropriate experiments should be designed. In this section, we attempt to design 

a set of experiments with selected datasets of various types to test our premises. 

First, we will design two comprehensive synthetic experiments with 2 

sets of stochastically data generated to test each of the premises proposed. 

Experimental results are analyzed and compared to see whether our pattern 

discovery is consistent to the patterns we artificially implanted into the synthetic 

data. 

Second, we will apply our pattern discovery method to various sets of 

UCI machine learning archive data [Asuncion and Newman 2007] to test the 

premises. Most selected datasets for these experiments are quite familiar to the 

data mining community. Since our method is unsupervised, the class labels 

contained in the selected datasets will be removed but regarded as the ground 

truth, though not absolute, for the examination of the performance of the 

proposed method. In this way, we could observe whether our method is able to 
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perform the pattern discovery tasks as anticipated and returns reasonable results 

even though the class labels of the datasets are excluded in our analysis. 

Third, the proposed method is applied to a colon cancer gene expression 

dataset with its known class label removed. To calibrate the effectiveness of our 

method, after fuzzy attribute clustering and data discretization that optimizes the 

intra-group interdependence, we bring back the class labels to the gene 

expression dataset and assess the strength of the association patterns discovered 

through the classification performance using the patterns/rules discovered from 

the discretized events. 

Fourth, two sets of large real world data of mixed-mode nature are 

analyzed through the proposed approach. The first set is a meteorological data 

collected from 6 stations located over a wide area for a relatively long period of 

time. The second set is taken from an operational database related to the 

processing of coke and gasoline from a delay coking plant. This mixed-mode 

dataset contains data gathered from site sensors, regulators and controllers. These 

2 datasets were collected and provided by Sinocan Intellitech Ltd [Wu 2010] 

with the help of domain experts. Though these 2 sets of data are complex and not 

containing class labels, they are backed by adequate domain knowledge for 

affirmation of the analytical results to see whether the subtle operational patterns 

could be discovered by the proposed approach which does not require any prior 

knowledge. 

These designed experiments are going to answer the following questions. 

1) Is it possible to optimally cluster a large mixed-mode database 

containing attribute of categorical and continuous values? 
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2) Within a correlated dataset, does the existence of certain attributes 

(modes) reflect the characteristic of attribute groups (clusters) and 

these certain attributes act like class labels? 

3) Within an overlapping dataset, does the existence of certain 

attributes have strong correlation to more than one attribute group, 

or associate with patterns which might overlap different attribute 

groups? 

4) Could the proposed method be able to obtain such groups and 

attributes addressed in 1) attribute clustering, 2) mode 

identification and, 3) attribute cluster fuzzification? 

5) If the attribute clustering, mode identification and attribute cluster 

fuzzification are operated, how effective is the discretization of 

the continuous data driven by such information (i.e. optimizing 

the interdependence between the modes and the continuous 

attributes)? 

6) Once the mixed-mode dataset is transformed into one containing 

only discrete valued events, how effective is the pattern discovery 

and data mining methods when applying to it? 

In answering these questions through the application of our proposed 

approach in the experiments, we hope new light could be shed to those difficult 

and not yet properly solved problems. 

5.5.1 Experiments on Synthetic Datasets 

This set of experiments is designed to verify the applicability of the 

proposed approach to mixed-mode datasets. It attempts to answer questions 1) to 

6). It tries to demonstrate the role of the representative attribute (mode) in 
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inducing discretization of the continuous data just like the class attribute would 

even when the class label is absent and also how significant patterns overlapping 

different clusters cannot be found in crisp clusters but could be found in 

overlapping or fuzzy clusters. 

5.5.1.1 Synthetic Dataset I 

 
Figure 5.1. Imposition of intrinsic classes by adjusting the attribute values of 

certain attributes. 

The synthetic data set I is composed of 20 attributes in which 5 of them 

are discrete and 15 of them are continuous. Each tuple is pre-classified into one 

of the five classes: C1, C2, C3, C4 and C5 by imposing the values of A1 and A13 

among the tuples as shown in Figure 5.1. Let us denote the attributes as A1, …, 

A20. A1 and A2 are discrete attributes which can take on a value from alphabets 

{“T”, “F”}. A3, A4 and A5 are discrete attributes which can take on a value from 

alphabets {“X”, “Y”, “Z”}. A6, …, A20 are continuous attributes which can take 

on values in {0 ≤   ≤ 1} where  is a real number. As in our designed 

experiment, attribute values A1 and A13 of each tuple are able to determine the 

class membership. For values of other attributes including A2, …, A12 and A14, …, 

A20, they are generated randomly in the following manner: 
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 A2: “T” if A13 < 0.5; “F”, otherwise. 

 A3: “X” if A13 < 0.5; “Y” if 0.5 ≤ A13 < 0.75; “Z”, otherwise. 

 A4: “X” if A6 < 0.3; “Y” if 0.3 ≤ A6 < 0.6; “Z”, otherwise. 

 A5: “Y” if A6 < 0.3; “Z” if 0.3 ≤ A6 < 0.6; “X”, otherwise. 

 A6-A7: uniformly distributed within [0, 0.5] if A1 = “T”; uniformly 

distributed within (0.5, 1], otherwise. 

 A8-A12: uniformly distributed within [0, 0.5] if A1 = “F”; uniformly 

distributed within (0.5, 1], otherwise. 

 A14-A17: uniformly distributed within [0, 0.3) if A13 < 0.3; uniformly 

distributed within [0.3, 0.6) if 0.3 ≤ A13 < 0.6; uniformly distributed 

within [0.6, 1], otherwise. 

 A18-A20: uniformly distributed within [0.3, 0.6) if A13 < 0.3; uniformly 

distributed within [0.6, 1] if 0.3 ≤ A13 < 0.6; uniformly distributed within 

[0, 0.3), otherwise. 

Using this scheme to generate the synthetic data set, it is clear that A1 and 

A13 are two representative attributes (modes) correlating with the attribute groups 

(clusters) of {A4-A12} and {A2, A3, A14-A20} respectively. Regardless of the class 

membership of each tuple, if such correlation can be revealed, one should seek 

the most representative attribute of each attribute group to drive the discretization 

of the continuous attributes. In our experiment, we generated 250 tuples where 

each class contains 50 tuples in the synthetic data set. Noises are then added by 

replacing 25 percent of the tuples with randomly generated values within the 

range of the corresponding attributes. 
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Firstly, the interdependence redundancy measure R as defined in 

definition 3-1 between each pair of discrete attributes, each pair of continuous 

attributes and each pair of discrete and continuous attributes is calculated. 

 
Figure 5.2. The total interdependence redundancy measure across the clusters 

found in synthetic dataset I. 

As shown in Figure 5.2, the optimal attribute cluster configuration (no. of 

attribute clusters) obtained by MACA is two (k =2). MACA identifies two 

attribute clusters: {A1, A4, …, A12} and {A2, A3, A13, …, A20}. It shows that the 

proposed discretization algorithm is able to correctly compute the mutual 

information between a pair of continuous attributes, and between a discrete 

attribute and a continuous attribute for MACA to reveal the correlation between 

the mixed-mode attributes embedded in the synthetic dataset. It was found that 

A1 is the mode of the first attribute cluster whereas A13 is the mode of the second 

attribute cluster. It indicates that the attributes with the most intrinsic governing 

or classificatory characteristics as reflected via their statistical inter-dependence 

with other attributes in their group are found as the modes. 

To evaluate the effectiveness of the generated discretization schemes on 

the performance of the classification algorithm, we used the discretized synthetic 
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data set with 25% noise to train a C5.0 decision tree algorithm. 30% of samples 

are randomly selected from the data set as the training data to build a decision 

tree and the rest of samples are treated as the testing data. In comparison, the 

synthetic data set was also discretized by OCDD making use of the class label 

information. OCDD is experimentally proven to be a very effective discretizer 

when comparing with other unsupervised discretization algorithms like Equal 

Width, Equal Frequency and Maximum Entropy [Wong and Chiu 1987] and 

supervised discretization like CADD [Ching, Wong and Chan 1995]. The 

classification accuracy of C5.0, which is an existing class dependent algorithm, 

on data discretized by OCDD and that of our proposed method, which does not 

require any a priori knowledge, on the same data is 74% and 83.67% respectively. 

The comparison results show that the proposed method surprisingly reached 

higher classification accuracy. It is worth noting that the discretization scheme 

generated by the proposed method can improve classification accuracy even 

when the class label is excluded. As regards to the number of generated 

rules/nodes, the proposed method also achieves better performance (13 leaf 

nodes and 10 non leaf nodes) while C5.0 produced significantly more nodes (17 

leaf nodes and 10 non leaf nodes) when using the discretization scheme of 

OCDD which makes use of class label. 

5.5.1.2 Synthetic Dataset II 

This experiment is designed to calibrate the proposed approach in 

verifying the premise that some significant patterns may overlap different crisp 

clusters and the proposed approach allows overlapping relationship to be found 

among attribute groups. Thus, patterns which may overlap crisp attribute clusters 

could be found. The synthetic data set II is composed of 20 attributes: 5 discrete 
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and 15 continuous (Figure 5.3). Let us denote the attributes as A1, …, A20. A1 and 

A2 are discrete attributes which can take on a value from alphabets {“T”, “F”}. 

A3, A4 and A5 are discrete attributes which can take on a value from alphabets 

{“X”, “Y”, “Z”}. A6, …, A20 are continuous attributes which can take on values 

in {0 ≤   ≤ 1} where   is a real number. 

 

Figure 5.3. Attributes of the synthetic data II. 

 

Figure 5.4. Imposition of intrinsic classes by adjusting the attribute values of 

certain attributes. 
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Each tuple is pre-classified into one of the five classes: C1, C2, C3, C4 and 

C5 by imposing the values of A1, A6 and A13 among the tuples (Figure 5.4). As in 

our designed experiment, attribute values A1, A6 and A13 of each tuple are able to 

determine the class membership. For overlapping attribute cluster relationship, 

A4-6 are associated with both attribute cluster 1 and attribute cluster 3 with 

different degrees of membership. From Figure 5.3, we observe that A6 is the 

mode of attribute cluster 3,    , and     
     >     

    . A1 and A13 is the 

mode of attribute cluster 1,    , and attribute cluster 2,    , respectively. For 

values of other attributes including A2, …, A12 and A14, …, A20, they are 

generated in the following manner. 

 A2: “T” if A13 < 0.2; “F”, otherwise. 

 A3: “X” if A13 < 0.2; “Y” if 0.2 ≤ A13 < 0.4; “Z”, otherwise. 

 A4: “X” if A6 < 0.3; “Y” if 0.3 ≤ A6 < 0.6; “Z”, otherwise. 

 A5: “Y” if A6 < 0.2; “Z” if 0.2 ≤ A6 < 0.4; “X”, otherwise. 

   : uniformly distributed within [0, 0.7] if A1 = “T” and A13 < 0.5; 

uniformly distributed within (0.3, 0.8] if A1 = “T” and A13 >= 0.5; 

uniformly distributed within [0, 1], otherwise. 

 A7: uniformly distributed within [0, 0.5] if A1 = “T”; uniformly 

distributed within (0.5, 1], otherwise.  

 A8-12: uniformly distributed within [0, 0.5] if A1 = “F”; uniformly 

distributed within (0.5, 1], otherwise.  

 A14-17: uniformly distributed within [0, 0.3) if A13 < 0.3; uniformly 

distributed within [0.3, 0.6) if 0.3 ≤ A13 < 0.6; uniformly 

distributed within [0.6, 1], otherwise.  
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 A18-20: uniformly distributed within [0.3, 0.6) if A13 < 0.3; 

uniformly distributed within [0.6, 1] if 0.3 ≤ A13 < 0.6; uniformly 

distributed within [0, 0.3), otherwise. 

In our experiment, 1800 tuples of mixed mode attributes are generated. 

C1, C2, C3, C4 and C5 contain 500, 300, 300, 400 and 300 tuples respectively. For 

practicality, 25% noise is added to the data by replacing 450 tuples with random 

values. We first use Mixed Mode ACA (MACA) to obtain attribute clusters, 

modes and optimal cluster configuration (k) in order to reveal the correlated 

relationship. Then we use Fuzzy Mixed Mode ACA (FMACA), with 

fuzzification parameter m = 1.5, to obtain the degree of membership of each 

attribute Ai to each attribute cluster, ACj,, to reveal the overlapping relationship. 

Table 5.1. Attribute clusters discovered by MACA 

AC M SR Item 

1 A1 1.7159 A1, A8, A7, A11, A12, A10, 

A9 

2 A13 1.0494 A13, A2, A3, A16, A15, A17, 

A14, A18, A20, A19 

3 A6 0.5978 A6, A4, A5 

Key: AC – Attribute Cluster. M – Mode / Representative Attribute. SR - Sum 

of the Multiple Interdependence Measure. 

 

Table 5.2. Degree of membership of attribute in attribute cluster 

Attribute AC1 AC2 AC3 

A4 8.9602% 0.0005% 91.0393% 

A5 2.4429% 0.0031% 97.5540% 

*A6 0.3961% 0.0001% 99.6037% 

Key: *A6 is the mode of this attribute cluster. AC – Attribute Cluster. 
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As shown in Table 5.1, MACA reveals the attribute grouping without 

prior knowledge (with class label excluded). It is worth to note that without 

fuzzification, however, it cannot show how some attributes are related among 

different attribute clusters since an attribute is a member of only one cluster. By 

FMACA, it shows that 3 attributes are indeed overlapping with AC1, AC2 and 

AC3 with different degrees of membership as shown in Table 5.2. 
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5.5.2 Experiments on UCI Machine Learning Archive 

Datasets 

5.5.2.1 Iris Plants 

The objective of this experiment is to show how the proposed method is 

able to be applied to continuous data where the class labels are missing and how 

the experimental results are related to the ground truth provided by the removed 

class labels. It attempts to answer questions 2), 4), 5) and 6). Because of the 

transparency characteristics of pattern discovery, new light could be shed to 

reveal how the representative attributes are related to the correlated aspects of the 

attributes and also with the class labels. The Iris data set [Asuncion and Newman 

2007] with 150 samples and 4 numeric attributes contains 3 classes (Setosa, 

Versicolour and Virginica) of 50 instances each, where each class refers to a type 

of iris plant. The 4 numeric attributes are sepal length, sepal width, petal length 

and petal width. 

We first use the class attribute to discretize the rest of the attributes and 

obtain the classification rate by discover*e, a commercial tool for pattern 

discovery [Wang and Wong 2010]. The classification rate for the class labels 

from the data set with labels retained is 96%. 

We then remove the class labels from the data set and assume that each of 

the remaining four as the class attributes (representative attributes) in turn to 

drive the discretization of all the continuous data and conduct the classification 

afterward. The classification rate obtained by considering sepal length, sepal 

width, petal length and petal width as the governing ones is 76.67%, 64.67%, 

92% and 92% respectively. 
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From the classificatory results obtained, it is clear that the last two 

attributes, petal length and petal width, could be considered as the representative 

attributes as they both yield the highest classification rate even without the class 

labels. To reveal how the representative attribute relates to the correlated aspects 

of the other attributes, we discretize the four attribute a) driven by the class label 

and b) driven by the representative attribute, which is the last attribute, when the 

class label is taken from the data set. To our surprise the discretization results 

driven by the last attribute is identical to those driven by the class labels. 

After converting all the data into discrete valued events, pattern discovery 

methods can then be applied. Some examples of patterns discovered after the Iris 

data is discretized include a) if sepal width is within [1, 3] and petal length is 

within [0.1, 3], then it is classified as Setosa, b) if sepal width is within [3, 4.9] 

and petal length is within [0.1, 1], then it is classified as Versicolour and c) if 

petal width is within [6.3, 7.9] and sepal width is within [4.9, 6.9], then it is 

classified as Virginica. 

5.5.2.2 Mushroom 

The mushroom data is a dataset with categorical data only. It is composed 

of 8,214 samples with 23 attributes. This dataset includes descriptions of 

hypothetical samples corresponding to 23 species of gilled mushrooms in the 

Agaricus and Lepiota Family. Each species is identified as definitely edible, 

definitely poisonous, or of unknown edibility and not recommended. This latter 

class was combined with the poisonous one. Thus, the dataset contains 2 classes 

(edibility e and poisonous p). Containing only 2 classes, which is relatively small, 

this dataset is used to explore the possibility of the existence of attribute 

subgroups, each of which may govern a certain aspect of the characteristics of 
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the mushrooms. We attempt to use this experiment to answer questions related to 

1), 2), 4) and 6). In particular, the objectives of this experiment are: a) to explore 

the ranking of the attributes according to their normalized significant 

interdependent redundancy, normalized SR, in the dataset with class label 

included; b) to compare the ranking of the attributes in the dataset with class 

label excluded with the ranking listed in (a); c) to compare the attributes with 

highest normalized SR with the class attributes; d) to show that in a normal 

setting the attribute with highest normalized SR value is also the attribute that 

renders high classification rate if it is considered as a class label instead; e) to 

show the classificatory characteristics of various attributes; e) to show that 

significant attribute subgroups exist which can be found by the proposed 

algorithm; f) to find the mode of each subgroup and compare it with the class 

attributes to see how representative it is with other attributes in the group. 

Table 5.3 shows the ranking of the attributes in the dataset where the 

class label attribute is included. Here we observe that the ring-type is the mode. 

Surprisingly, the class attribute is ranked 9
th

 based on the normalized SR. This 

implies that some of the attributes chosen are not necessarily closely related to 

the class attribute proposed by the biologists. 
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Table 5.3. Attributes from mushroom data (with class label included) ranked 

according to normalized SR. Note that the class label is not ranked top. 

Ranking Attributes R  Normalized SR 

1 ring-type 0.3389 0.136 

2 Odor 0.2683 0.1325 

3 spore-print-color 0.305 0.124 

4 stalk-root 0.2149 0.1198 

5 gill-color 0.1547 0.1035 

6 stalk-color-above-ring 0.389 0.1034 

7 stalk-color-below-ring 0.376 0.1003 

8 Population 0.225 0.0857 

9 Classes 0.0009 0.0845 

10 Habitat 0.1897 0.0839 

11 stalk-surface-below-

ring 

0.3004 0.0838 

12 stalk-surface-above-

ring 

0.3893 0.0816 

13 Bruises 0.0207 0.0726 

14 cap-color 0.2444 0.0644 

15 gill-size 0.1077 0.0613 

16 veil-color 0.9019 0.0561 

17 gill-attachment 0.8269 0.0552 

18 stalk-shape 0.0131 0.0526 

19 gill-spacing 0.3621 0.0425 

20 ring-number 0.7346 0.0351 

21 cap-surface 0.2123 0.0316 

22 cap-shape 0.3606 0.03 

23 veil-type 1 0 
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Table 5.4 Ranking of attributes in mushroom data when the class labels are 

excluded. 

Ranking Attributes R1 Normalized SR2 

1 ring-type 0.3389 0.1357 

2 stalk-root 0.2149 0.1231 

3 spore-print-color 0.305 0.1215 

4 Odor 0.2683 0.1209 

5 stalk-color-above-ring 0.389 0.1039 

6 gill-color 0.1547 0.1029 

7 stalk-color-below-ring 0.376 0.1009 

8 Population 0.225 0.0863 

9 Habitat 0.1897 0.0855 

10 stalk-surface-below-

ring 

0.3004 0.0817 

11 stalk-surface-above-

ring 

0.3893 0.0784 

12 Bruises 0.0207 0.0709 

13 cap-color 0.2444 0.067 

14 veil-color 0.9019 0.0578 

15 gill-size 0.1077 0.0576 

16 gill-attachment 0.8269 0.0572 

17 stalk-shape 0.0131 0.0549 

18 gill-spacing 0.3621 0.0414 

19 ring-number 0.7346 0.0354 

20 cap-surface 0.2123 0.0326 

21 cap-shape 0.3606 0.0305 

22 veil-type 1 0 

 

Table 5.4 shows the ranking of the attributes according to normalized SR 

from mushroom data after the class label is excluded. Note that the top one 

remains the same as that in the ranking when class label is included. The second 
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one “stalk root” in Table 5.4 is ranked fourth in Table 5.3. The top eight ones in 

Table 5.4 remain the same as those in Table 5.3 indicating the consistence of the 

governing attributes in relation with the class label attribute. 

A series of experimental runs were conducted next treating each of the 

attribute as the governing one in turn and obtain the classification rate (CR) 

accordingly. The attributes are then ranked according to the classification rates 

and the ranking results were compared with those ranked according to the 

normalized SR values obtained for the attributes in that group (Table 5.5). 

In Table 5.5, we observe from the normalized SR ranking that the two 

attributes, the ring-type and stalk-root, rank top all other attributes. They are 

ranked first and fourth in Table 5.3 when the class labels are present. That the 

ranking of the Class Attribute is not ranked top according to normalized SR 

indicates that its interdependence with all the other attributes in the group may 

not be the highest. Rather, the two other attributes, the ring-type and stalk-root 

are governing more in the sense that they have higher interdependence with other 

attributes in the group. 
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Table 5.5. Comparison of classification rate (CR) and normalized SR ranking of 

attributes in mushroom data. 

CR 

Ranking 

SR 

Ranking 

Attributes Interval # Distribution CR 

(DT) 

CR 

(PD) 

Normalized 

SR 

1 1 ring-type 5 uneven 100 98.15 0.1357 

2 2 stalk-root 5 Even 100 85.28 0.1231 

3 12 Bruises 2 Even 100 100 0.0709 

4 15 gill-size 2 Skew 100 98.38 0.0576 

5 17 stalk-shape 2 Even 100 98.38 0.0549 

6 19 ring-number 3 Biased 100 92.17 0.0354 

7 16 gill-attachment 2 Biased 99.78 97.54 0.0572 

8 14 veil-color 4 Biased 98.92 97.54 0.0578 

9 18 gill-spacing 2 Skew 98.82 97.42 0.0414 

10 4 Odor 9 uneven 80.9 67.26 0.1209 

11 10 stalk-surface-

below-ring 

4 normal 80.8 74.35 0.0817 

12 11 stalk-surface-

above-ring 

4 Even 80.8 79.22 0.0784 

13 3 spore-print-

color 

5 uneven 74.59 61.88 0.1215 

14 9 Habitat 6 uneven 66.96 51.65 0.0855 

15 8 Population 6 uneven 63.76 55.15 0.0863 

16 5 stalk-color-

above-ring 

9 uneven 63.37 58.2 0.1039 

17 7 stalk-color-

below-ring 

9 uneven 63.17 57.21 0.1009 

18 20 cap-surface 4 uneven 55.29 52.72 0.0326 

19 21 cap-shape 6 uneven 45.49 31.02 0.0305 

20 6 gill-color 12 uneven 45.42 26.98 0.1029 

21 13 cap-color 10 uneven 44.26 39.03 0.067 

22 22 veil-type NA NA NA NA 0 
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Classification experiments were then conducted on these two sets of data 

(one with class labels and the other without class labels). We first conducted 

supervised learning of the data according to the class labels given and as 

expected, obtained 100% rate of correct classification. Then, we moved on to 

classify the same set of data with the class label removed. In the first 

classification run, we assume that the ring-type would serve as the representative 

attribute, i.e. it is treated as the class label in the supervised classification run, 

and again a 100% of the classification rate is obtained. We next took “stalk root” 

as the representative attribute and again obtain 100% classification rate. Though 

the two sets of the classification details may not be exactly the same, their strong 

correlation with rest of attributes indicates they both have some 

governing/representative characteristics as reflected by their high classification 

(i.e. feature-class dependence) rate. 

To address the issues that the class label is not ranked top according to its 

normalized SR value, the following observations are made. As pointed in the 

reference source [Asuncion and Newman 2007], the Guide clearly states that 

there is no simple rule for determining the edibility of a mushroom. Furthermore, 

the biologists also place the last two classes of unknown edibility and not 

recommended into the poisonous category. This means that there could be more 

subtle attributes that govern the intrinsic classes. To explore the characteristic of 

the proposed classification scheme, we will conduct the MACA on the set of 23 

attributes and see whether or not they might be better grouped into subgroups, 

each of which might characterize certain aspects of the mushroom characteristics.  

In our attribute clustering experiments, we will first apply MACA to the 

dataset with class labels and then with that without class labels. We will compare 
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the results so as to gain insight into the class labels and the intrinsic governing 

attribute issues. 

Table 5.6 gives the attribute groups discovered in the experiment where 

class labels are included. This is the result of the local optimal solution. In the 

first cluster we observe that the class labels are more closely related to the odor, 

gill-size, cap-color and the ring-number of mushrooms. Note that apart from odor 

which is ranked 4th, the normalized SR ranking of the rest of the three attributes 

in the group are not too high (cap-color ranked 13
th

, gill size 15
th

 and ring-

number 19
th

). It shows that as far as the “edibility” and “poisonous” properties 

are concerned, these four attributes are most relevant. The others may have 

various interdependence characteristics to pull them together into more 

correlated groups. This is an important aspect we should seriously consider if 

there are no obvious class labels available. Unless we have full knowledge ahead 

of time, for a given data we should explore its internal association before a 

meaningful analysis could be sorted out. This is also an important objective for 

the proposed methodology, especially designed for situations when class 

information is lacking. 
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Table 5.6. Attribute clusters of mushroom data with class label included. 

Attributes R  Normalized SR 

Odor 0.2683 0.1823 

Classes 0.0009 0.1381 

gill-size 0.1077 0.0993 

cap-color 0.2444 0.0571 

ring-number 0.7346 0.0356 

 

Attributes R  Normalized SR 

ring-type 0.3389 0.2157 

spore-print-color 0.305 0.1596 

stalk-color-above-ring 0.389 0.1417 

stalk-surface-above-ring 0.3893 0.1407 

stalk-surface-below-ring 0.3004 0.1406 

stalk-color-below-ring 0.376 0.1382 

gill-color 0.1547 0.1284 

Bruises 0.0207 0.1184 

stalk-shape 0.0131 0.0758 

 

Attributes R  Normalized SR 

stalk-root 0.2149 0.1359 

population 0.225 0.1265 

Habitat 0.1897 0.1086 

gill-spacing 0.3621 0.0667 

cap-surface 0.2123 0.05 

cap-shape 0.3606 0.0422 

 

Three cluster configurations are the optimal. They are tabulated with the 

attributes in each cluster ranked according to the normalized SR value of the 

attribute of the group. 
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Table 5.7 shows the results of the experiment of the dataset without class 

labels. It is worth to note that the optimal attribute cluster configuration consists 

of two clusters, one headed by the mode - ring-type and the other by the mode - 

stalk-root. When we look into the characteristics of these two representative 

attributes, we observe in Table 5.5 that although the normalized SR value for 

ring-type is a little higher (0.1357 > 0.1231), yet the distribution of the categories 

it encompassed is less even (uneven distribution vs. even distribution) when 

comparing the classification rate of their categories. Hence as far as the 

representative characteristic of these two attributes in the attribute groups is 

concerned, the latter seems to offer a better candidate. This will be explored by 

our future research. 
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Table 5.7. Attribute clusters of mushroom data with class label excluded. 

Attributes R  Normalized SR 

ring-type 0.3389 0.2157 

spore-print-color 0.305 0.1596 

stalk-color-above-ring 0.389 0.1417 

stalk-surface-above-ring 0.3893 0.1407 

stalk-surface-below-ring 0.3004 0.1406 

stalk-color-below-ring 0.376 0.1382 

gill-color 0.1547 0.1284 

Bruises 0.0207 0.1184 

stalk-shape 0.0131 0.0758 

 

Attributes R  Normalized SR 

stalk-root 0.2149 0.1352 

Odor 0.2683 0.1113 

population 0.225 0.1087 

Habitat 0.1897 0.1007 

cap-color 0.2444 0.0695 

gill-size 0.1077 0.067 

gill-spacing 0.3621 0.0527 

cap-surface 0.2123 0.0395 

cap-shape 0.3606 0.0382 

ring-number 0.7346 0.0377 

 

Two clusters is the optimal attribute cluster configuration. They are tabulated 

with the attributes in each cluster ranked according to the normalized value of the 

attribute of the group. 
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When we look closer at the attributes forming these two correlated groups 

as shown in Table 5.7, it is observed that all the attributes associated with the 

class label (Table 5.6) reside in the second group headed by the mode of stalk-

root in Table 5.7. That means that this group should provide better correlated 

attributes with the classes of edibility and poisonous. This kind of insights for the 

analysis and the understanding of a large database with no or little class 

information could be effectively provided by our proposed attribute clustering 

algorithm, our proposed mode identification algorithm, our proposed mode 

driven discretization algorithm and classification procedure presented in this 

chapter. 

The experimental results show that in order to have an in-depth 

understanding of a large dataset, it is beneficial to go through the attribute 

clustering process. The attribute clustering as well as the identification of modes 

(or other top ranked attributes) in the original dataset and the clustered attribute 

groups render considerable insights into the inherent make-up of the data and the 

problems they reflect. In the situation when no class label is available, the mode 

in the dataset and in each of the attribute cluster can be considered as the most 

representative or the governing one. 

5.5.2.3 Adult 

This data set obtained by UCI Machine Learning Archive [Asuncion and 

Newman 2007] was extracted from US Census Bureau database. It contains 

48,842 instances of a mix of continuous and discrete data with 14 attributes. It 

has been used for prediction task whether a person makes over 50K a year or not. 

This experiment is used: a) to demonstrate the existence of attribute subgroups in 

the mixed-mode data set; b) to illustrate the attainment of attribute cluster 
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configuration and the grouping of cluster items in situations with or without class 

label; c) to show the classification characteristics of various attributes in different 

attribute groups found by MACA; and d) to show that the attribute with highest 

normalized MR, or simply the mode, in the attribute group is usually with high 

classification rate if it is assumed to take the role of a class label. It attempts to 

answer questions 1), 2), 4), 5) and 6). The experiment results do show that the 

mode in each attribute group/cluster can be considered as the most representative 

attribute to drive the discretization of continuous attributes in the attribute 

group/cluster. 

In order to demonstrate the effectiveness of the proposed method in 

extracting the same intrinsic information inherent in the classes, we 

experimented on the dataset with class label excluded and those with class label 

included. Based on SR values, ACA found the optimal cluster configurations that 

3 attribute clusters and 5 attribute clusters are local optimal for the data with the 

class label excluded and those with the class label included respectively. In our 

proposed method, no class information is required; nevertheless, the results 

reported in Table 5.8 show that even without class information, our proposed 

method and ACA are able to group interdependent attributes together. 
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Table 5.8. The attribute clusters and their corresponding modes obtained by ACA 

Attribute 

Group 

Dropped Class Label Included Class Label 

1 *native-country, race, fnlwgt *native-country, race, 

fnlwgt 

2 *education, workclass, 

occupation, education-num 

*education-num, education 

3 *relationship, marital-status, sex, 

age, capital-gain, capital-loss, 

hours-per-week 

*relationship, marital-

status, sex, age 

4 - *workclass, occupation 

5 - *income (class), capital-

gain, capital-loss, hours-

per-week 

Key: *- The mode of the attribute group. A mode is with the highest MR in the 

attribute group. 
 

To further investigate the attributes resided in each attribute group, we 

study the classificatory aspect of them to show that, in a normal setting, the mode 

is also the attribute that renders good enough classification rate if it is regarded as 

a class label. The attribute clusters, the MR values and the classification 

performance of their attributes are tabulated in Table 5.9. 
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Table 5.9. Attribute clusters of with class label excluded 

AG A T MR CA (%) 

1 * native-country D 0.0952 89.59 

Race C 0.0898 84.43 

Fnlwgt C 0.0083 5.41 

2 * education D 0.8263 71.09 

Workclass D 0.8218 57.69 

Occupation D 0.2051 20.94 

education-num C 0.1173 - 

3 * relationship D 0.6251 72 

# marital-status D 0.5525 74.78 

Sex D 0.2465 68.95 

Age C 0.2229 - 

^ capital-gain C 0.1100 99.51 

^ capital-loss C 0.0495 95.33 

hours-per-week C 0.0313 14.54 

Key: *- The attribute marked with “*” is the mode of the attribute group. ^- The 

attribute marked with “^” implies the data is sparse. #- The attribute marked with 

“#” holds the highest classification accuracy, even higher than the mode. AG- 

Attribute Group. A- Attribute. T- Type. MR- Multiple Interdependency 

Redundancy Measure. CA- Classification Accuracy. D- Discrete. C- Continuous. 

 

Once the mixed-mode Adult data set is transformed into one containing 

only categorical events using the proposed method, pattern discovery 

methodology could be readily applied to the transformed data set. Some 

examples of patterns discovered after the Adult data is discretized include a) if 

education is “HS-grad” and education-num is within [9, 10], then income is 

“<=50K” b) if marital-status is “Married-civ-spouse” and relationship is 



 

103 

 

“Husband”, then income is “>50K” and c) if marital-status is “Married-civ-

spouse” and hours-per-week is within [40, 99], then income is “>50K”. 

5.5.3 Experiment on Colon Cancer Gene Expression 

Dataset 

The colon-cancer gene expression dataset [Alon et al. 1999] is chosen for 

analysis due to its public availability. In this experiment, we attempt to use it to 

answer questions 1) to 6). The dataset is composed of 62 samples and 2,000 

genes and is represented by a 62 tuples x 2000 gene expression table. Each 

sample (tuple) is pre-classified into either normal or cancerous. 

Since our method is unsupervised, we remove the tissue class label in the 

initial experimental phase. We first cluster the genes to obtain the gene clusters. 

As our FMACA supports mixed mode data type, it is unnecessary to discretize 

the continuous data in the first place. As expected, FMACA found 7 optimal 

gene clusters as same as the result reported by [Au et al. 2005]. The experimental 

result shows that our pattern discovery methodology is able to uncover the 

correlated genes (attributes) and patterns without making use of class information. 

The top 5 genes of each cluster as shown in Table 5.10 are selected for 

classification in the second experimental phase. 
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Table 5.10. Top 5 genes in each of the 7 clusters found in the colon-cancer 

dataset [Au et al. 2005] 
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In the second experimental phase, we first discretize the continuous gene 

expression levels by the proposed discretization strategy and then put back the 

tissue class label as an attribute to the discretized dataset. Since modes of all 

attribute clusters are continuous, we need to first discretize them first and then 

use them to drive the discretization of other attributes. To discretize continuous 

modes unsupervisedly, we employ entropy maximization algorithm. Due to the 

relatively small sample size, we consider partitioning the modes into 3 states: 

highly expressed (H), normally expressed (N) or lowly expressed (L). This set of 

preprocessed data is trained by popular classification methods for building 

classifiers. We compare our classification results with those reported in [Au et al. 

2005]. 

The classification accuracy of C5.0 and our pattern discovery using data 

preprocessed by our proposed method is 85.48% and 91.94% respectively while 

those using the data preprocessed by ACA as reported by [Au et al. 2005] is 

91.9% and 100% respectively. From the results, it shows that the proposed 

method is comparable to that requiring prior class information whereas ours does 

not. The significance of this experiment is that, even without using class labels, 

the intrinsic interdependence gene expression levels are brought out 1) to reveal 

the inherent relationship of gene groups, 2) to select the most representative 

genes in each group, 3) to use their combined relationship to relate back to the 

class relation and achieve a high rate of classification and, 4) to use a fuzzy 

membership function to weigh the overlapping attributes for optimal 

discretization. As a consequence, the discretized data returned by the proposed 

method obtaining high classification rate after putting back the class labels is a 
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realization of the meaningfulness and effectiveness of the proposed method. The 

top 5 patterns and rules are shown in Table 5.11 for reference. 
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Table 5.11. Top 5 patterns and rules discovered in colon-cancer gene expression 

dataset 

Pattern Adjusted 

Residual 

T69446 = H, T73092 = H, Cancer 6.43 

U34252 = H, T92451 = H, Normal 5.87 

M27749 = L, M26383 = L, T92451 = H, Normal 5.39 

M27749 = L, T63133 = L, T92451 = H, Normal 5.38 

H22579 = H, H05814 = H, Cancer 5.36 

Rule Condition Result WOE 

X02874 = H and U33429 = H and M26383 = H Cancer 6.43 

X02874 = H and U33429 = H and T92451 = L Cancer 5.87 

X02874 = H and U33429 = H and X74795 = H Cancer 5.39 

X02874 = H and H25940 = H and T63133 = H Cancer 5.38 

X02874 = H and R26146 = H and T59162 = L Cancer 5.36 

Key: WOE – Weight of evidence. 
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5.5.4 Experiments on Real World Datasets 

After examining the performance of the proposed method, it is applied to 

2 sets of large real world data of mixed-mode nature. The data was collected by 

the Sinocan Intellitech Ltd [Wu 2010] with the help of domain experts. In the 

meantime, additional domain knowledge was acquired to see whether or not the 

subtle operational patterns could be discovered by the proposed system without 

relying on prior knowledge before the analysis. 

5.5.4.1 Meteorological Database 

The meteorological (MET) database is a large database consisting of 

8,784 samples and 43 attributes of which 18 are categorical and 25 are 

continuous. The MET data was taken from 5 different surface stations over a 

one-year-long period (8760 records) in the great urban region of Guangzhou City, 

Guangdong province, China. The types of the meteorological parameters 

(attributes) collected from each surface station include 6 discrete attributes and 5 

continuous attributes. All those parameters have their internal relationship based 

on the geographic location of the surface stations and might be governed by local 

terrain and land use. The five surface stations denoted by the alphabets S = {A, B, 

C, D, E} are stations as listed in Figure 5.5. Station A, B, C, D and E is 

Guangzhou metropolis, Foshan city, Shenzhen city, Dongguan city and 

Zhongshan city respectively. The description of data collected by each station is 

listed in Table 5.12. 

We applied the proposed approach on this set of meteorological data. The 

sum of significant multiple redundancy of the clustering process for various 

attribute cluster configurations is plotted on figure 5.6. It is obvious that a local 
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optimal attribute cluster configuration would consist of 5 clusters of MET 

parameters. 

 

Figure 5.5. Guangzhou urban region (GGA). 
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Table 5.12. Attribute description of the MET database. 

Attribute Name Types Notes 

MM Month Discrete Month 

DD Day Discrete Day 

HH Hour Discrete Hour 

S1 TC Discrete Total Cloudiness 

S2 LC Discrete Lower Cloudiness 

S3 DBT Continuous Dry Bulb Temperature 

S4 DPT Continuous Dew Point Temperature 

S5 RH Continuous Relative Humidity 

S6 SP Continuous Site Pressure 

S7 WD Discrete Wind Direction 

S8 WS Continuous Wind Speed 

where S = {A, B, C, D, E} corresponds to a set of 5 surface stations. 

 

 

Figure 5.6. The plot of the sum of significant MR of MET. 

Table 5.13 displays that after filtering 9 redundant attributes, the mixed-

mode meteorological database with 34 attributes has been clustered into 5 sub-

groups. These clusters have been labeled by domain experts. The first 4 of 5 

clusters are grouped based on the interdependence among the similar 
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characteristics (types) of the attributes within each cluster formed. This implies 

that those attributes within cluster are highly dependent upon each other or they 

are very “close” to each other or one “followed” by the others. We then study the 

mode and the characteristics of each of the clustered parameter groups. 

Table 5.13. Attributes in the attribute clusters of the optimal cluster configuration. 

AG Attribute Cluster Items 

1 C *B5, A5, C5, D5, E5   -- RH (Relative Humidity) 

2 C *C7, A7, B7, D7, E7  --WD (Wind Direction) 

3 D *C1, A1, B1, D1, E1 -- TC (Total Cloudiness) 

4 C *A6, B6, D6, E6, MM -- AP (Site Pressure) 

5 M *A3, A4, C6, B3, C3, D3, E3, A8, B8, C8, D8, E8, DD, HH 

(Dry Bulb Temperature & Wind Speed) 

Key: *- The attribute marked with “*” is the mode of the attribute group. 

AG- Attribute Group. C- Continuous Attribute Group. D-Discrete Attribute 

Group. M- Mixed-Mode Attribute Group 
 

From the patterns discovered by our method, significant features within 

the data collected from the surface stations have been found, complying with the 

domain knowledge. Attributes in each of the first 4 clusters reflect the regional 

(global) characteristics of the correlated meteorological parameters. The mode 

found in each group has been treated as the reference parameters for those of the 

same type taken from the 5 stations. Regarding the last cluster group, all of the 

attributes therein reflect local characteristics which are significantly influenced 

by the local geographical feature such as land use and land coverage. 

After the investigation of the correlated behaviors of the 5 stations, we 

look into the overlapping relationship among them. Table 5.14 reports the fuzzy 

degree of membership of each attribute to each attribute cluster. The first 4 of 5 

groups have very strong modes with the highest degrees of member (rank top in 

each group) to their own groups. This implies that even though these clusters are 

overlapped, each mode is intrinsically representing a subspace (group). All 
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modes have small values of degrees of memberships to other attribute clusters, 

indicating that the modes discovered are well separated in the entire data space. It 

is not difficult to observe that some attributes are actually dependent on multiple 

attribute groups. Figure 5.7 visualizes the overlapping effects of the result.  
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Table 5.14. Fuzzy degree of membership of each attribute to each attribute cluster of 

MET 

AG A 
1) Relative 
Humidity 

2) Wind 
Direction 

3) Total 
Cloudiness 

4) Site 
Pressure 

5) Dry Bulb 
Temperature & Wind 

Speed 

AG1 

*B5 99.8025% 0.0428% 0.0986% 0.0539% 0.0022% 

C5 98.7661% 0.2262% 0.5955% 0.3996% 0.0127% 

D5 98.5978% 0.3334% 0.6847% 0.3693% 0.0148% 

E5 98.4846% 0.5831% 0.4948% 0.4054% 0.0321% 

A5 97.9425% 1.2015% 0.4999% 0.3219% 0.0343% 

AG2 

*C7 0.0428% 99.8375% 0.0189% 0.0997% 0.0011% 

B7 2.8136% 90.4941% 1.2994% 5.3328% 0.0601% 

E7 2.9959% 85.5852% 1.3667% 9.8518% 0.2004% 

D7 4.1159% 83.8774% 0.2116% 11.7334% 0.0617% 

A7 8.7221% 75.9601% 0.8284% 14.2256% 0.2638% 

AG3 

*C1 0.0985% 0.0189% 99.6229% 0.0654% 0.1944% 

B1 0.6279% 0.8304% 91.9044% 2.0611% 4.5762% 

D1 1.4897% 0.5674% 91.2329% 1.7118% 4.9981% 

A1 1.0673% 0.8718% 90.7600% 1.9930% 5.3080% 

E1 6.6258% 0.7811% 81.2527% 2.6565% 8.6839% 

AG4 

*A6 0.0531% 0.0982% 0.0646% 98.3570% 1.4271% 

D6 0.1027% 0.3227% 0.1503% 96.2184% 3.2059% 

E6 0.0938% 0.3366% 0.1511% 96.1615% 3.2570% 

B6 0.1589% 0.2501% 0.1647% 95.7533% 3.6730% 

MM 1.8872% 6.2018% 7.7794% 59.1474% 24.9843% 

AG5 

C8 0.0001% 0.0000% 0.0066% 0.0542% 99.9390% 

B8 0.0001% 0.0000% 0.0115% 0.0850% 99.9033% 

D8 0.0001% 0.0000% 0.0103% 0.1141% 99.8755% 

A8 0.0001% 0.0000% 0.0104% 0.1169% 99.8725% 

E8 0.0001% 0.0000% 0.0098% 0.1803% 99.8097% 

E3 0.0022% 0.0011% 0.2037% 1.3461% 98.4469% 

C3 0.0022% 0.0011% 0.2281% 1.3738% 98.3948% 

B3 0.0022% 0.0011% 0.2239% 1.3884% 98.3844% 

*A3 0.0022% 0.0011% 0.1920% 1.4274% 98.3773% 

D3 0.0022% 0.0011% 0.2304% 1.4048% 98.3616% 

HH 18.1598% 0.2721% 0.4443% 1.3180% 79.8057% 

DD 0.6152% 0.3747% 9.4124% 13.4738% 76.1240% 

C6 0.1971% 0.4737% 4.5769% 32.9393% 61.8129% 

A4 -1.#IND00% -1.#IND00% -1.#IND00% -1.#IND00% -1.#IND00% 

 

Key: A – Attribute; AG – Attribute Group; The attribute marked with "*" represents 

the mode of the attribute group; The cell highlighted in gray color indicates 
relatively high degree of membership to the other group. 
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Figure 5.7. Semantic diagram of fuzzy / overlapping attribute clusters of MET. 

From Figure 5.7, it is not difficult to discover the overlapping relationship 

of some attributes to several attribute groups. For instance, “A7” sensor for 

detecting wind direction in Guangzhou station is related to also “A6” - site 

pressure of Guangzhou and “B5” - relative humidity of Foshan. Geographically, 

these 3 sensors are located in close-by areas. Climatically, the difference in air 

pressure results in wind and wind effects mixing of the air mass. Strong winds 

promote better mixing and can bring either drier air or more moist air down to 

the surface. Therefore, the air pressure, the wind direction and the resulting 

moisture content of the free air are related to the surface relative humidity. 

The discovered modes in these attribute clusters cover only 3 stations, 

namely A, B and C. This finding indicates that the remaining 2 stations, namely 

D and E, are in very weak position for the weather condition analysis. 
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5.5.4.2 Delay Coking Database 

The dataset is taken from the delay coking unit (DCU) of the Sinopec SJZ 

Petro-Chemical refinery for about 5-month-long period. It consists of 22,096 

samples and 47 attributes out of which 11 of them are discrete valued data and 36 

are continuous valued data. It was acquired directly from the ABB DCS sensors 

by which the temperatures, the levels, the flow rates and the pressures as well as 

the control actions of PLCs were collected. It is a semi-continuous thermal 

cracking process in which a heavy hydrocarbon feedstock is converted to lighter 

and more valuable products and coke. Its mechanism of coking can be broken 

down to three distinct stages as shown in Figure 5.8. The feed undergoes partial 

vaporization and mild cracking as it passes through a specially designed coking 

furnace. Since this is a set of very complex data taken directly from the delay 

cooking plant, there is no specific class information labeling the samples and it is 

relatively a large database. Provided that we have a certain degree of partial 

domain knowledge concerning DCU, this set of data will be ideal to challenge 

the usefulness and effectiveness of the proposed approach. 

We applied the proposed attribute clustering method to cluster the 

database into sub-database containing subgroups of attributes. Figure 5.9 shows 

the plot of the sum of the significant MR values for different attribute cluster 

configurations. It is found that k = 5 would render a local optimal attribute cluster 

configuration. We next proceeded to discretize the continuous data for each 

cluster based on the mode discovered. The result of each attribute group 

revealing subtle operations is included in Figure 5.8. 

Based on the five clusters discovered from our developed method for the 

patterns, the most important relationships with the sensors and controllers of the 
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coking facilities have been found: including the temperature-oriented groups, 

pressure-oriented groups and flow-oriented groups. Figure 5.8 displays the 5 

clusters associated with the 3 stages of DCU. The number of attributes and 

distribution of the largest group, i.e. attribute group 1, indicates that its mode acts 

as a control factor for the entire processing system and has globally influenced 

almost all of the process parameters for the facility. 

From the parameter grouping, the discovered results indicate that attribute 

group 2 and 4 control the output distributions of the two internal units, 

fractionator and coke drum. They are very important groups for the local 

performances of the processing usually referred to as performance factor. 

The last discovered group, attribute group 5, is exactly associated with 

the critical safety mechanism designed for this pressure-temperature-mixed 

processing facility. Its mode actually controls the temperature condition as a 

triggering factor to activate the emergency release response. 
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Figure 5.8. The schematic of delay coking unit. 
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Figure 5.9. The plot of the sum of significant MR values against k, the number of 

attribute clusters. 

 

Figure 5.10. A schematic diagram of fuzzy / overlapping attribute clusters of DCU. 
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Table 5.15. Fuzzy degree of membership of each attribute to each attribute cluster of 

DCU.  



 

120 

 

In investigating the overlapping relationship among the discovered 5 attribute 

clusters, we look at the results of attribute cluster fuzzification as shown in Figure 5.10 

and Table 5.15. It is obvious that some attributes are related to multiple attribute clusters 

with significant high fuzzy degrees of memberships. Attribute group 1, which is the 

largest group, has the strongest overlapping relationship with the other 4 groups 

according to a high number of attributes having high degrees of memberships to other 

groups. This complies with the setting that attribute group 1 is a control unit for the entire 

processing system and has globally influenced almost all of the process parameters for 

the facility. 

All of the 5 cluster groups with the patterns and mode attributes discovered 

provided us the strong pattern discovery and analysis evidence in revealing the 

underlying control principle in industrial systems. 

5.6 Summary 

In this chapter, we have introduced the proposed unsupervised pattern discovery 

approach for mixed-mode data that supports the discovery of useful data subspaces from 

the entire data space and how each individual attribute relates to each subspace. Its 

capability has been demonstrated by 9 sets of experiments with large datasets. It is first 

applied to 2 sets of synthetic data to verify its effectiveness in revealing correlated and 

overlapping behaviors of a database. Then applying it to 3 sets of popular data from UCI 

Machine Learning Archive demonstrates its effectiveness by uncovering the intrinsic 

class information inherent in their data attributes without relying on the given class 

information. To show its ability to obtain biological meaningful information from the 

gene expression data, a colon cancer microarray dataset is analyzed with positive results 
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reported. To challenge the proposed approach, 2 large sets of real data without class 

information are chosen to be analyzed. The discovered operational patterns and 

relationship are consistent with the domain knowledge acquired by domain experts. All 

these results confirm the pattern discovery algorithm has the ability to capture interesting 

and unknown information inherent in the mixed-mode database. The proposed approach 

can be regarded as a general framework for an operating platform that will not only help 

data management but also bring out the subtle knowledge trapped in the collected data in 

science, business and industry. 
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Chapter 6. Conclusions and Suggestions for Future 

Research 

The research presented in this thesis was motivated by the real world challenges 

we are facing today. These challenges include but are not limited to: (1) an increasingly 

huge amount of raw mixed-mode type data from different areas which requires effective 

pattern discovery methods to unveil inherent subtle information for better understanding; 

(2) the pressing need to develop intelligent systems which are able to support KDD and 

decision support from overwhelming volume of discovered patterns; (3) the increasing 

demand of applications for discovering patterns in scientific, business and industry; and 

(4) limitations from most of the existing systems which are not general enough to solve 

problems on mixed-mode type databases with numerous real-world applications. 

The research works presented in this thesis have provided an integrated, flexible 

and generic framework for pattern discovery and analysis of large mixed-mode databases. 

Its applications cover databases with sequence, continuous, categorical and mixed-mode 

data. With the well defined problems and research objectives stated in Chapter 1, the 

developed proposed methods presented in Chapter 3, 4 as well as 5, and the broad 

applications on real world and industrial problems presented in Chapter 5, the 

contribution of the thesis research in theoretical and methodological perspectives as well 

as in real world applications have been conveyed. Through experimenting a series of 

computational experiments, the successful experimental results have supported the 

validity and the effectiveness of the proposed methods. The usefulness of the proposed 

methods in real world applications has been demonstrated by the intriguing and revealing 
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results obtained when applying to two large mixed-mode databases – the former one 

consists of a large set of meteorological data taken from a geographic area in Southern 

China and the later one is a set of massive multi-senor data taken from a delay coking 

plant. 

6.1 Summary of Contributions 

6.1.1 Theoretical Contributions 

The theoretical contributions of the defined problems and the proposed methods 

could be summarized as follows. 

1. Development of a theoretical framework for pattern discovery for sequence and 

mixed mode data at event level. 

A theoretical framework has been developed for the discovery of high order 

patterns of sequence and mixed mode data at event level. By converting the 

sequence data into a relational table, this type of data can be treated under a 

general pattern discovery framework. In this unified pattern discovery framework, 

association patterns are defined as event associations which generalize the data 

mining method to cover special mixed mode type data. The experimental results 

of several synthetic data, famous UCI machine learning achieve data and two sets 

of real world industry data obtained show that under this theoretical framework, 

the discovered patterns could be organized, interpreted and easily understood. A 

merit of it is that the generated patterns/rules are presented in a form of high order 

patterns of event associations which cover various levels of event subspaces of 

lower dimensions. 
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2. Demonstrations of the necessity of fuzzy attribute clustering in large databases of 

mixed mode data and sequence data. 

From experimental results on extensive experiments on several data sets, the 

thesis provides supportive evidences that in large database, strong correlation 

among attributes do exist to form attribute clusters. This leads to our thought to 

make use of the information of how attributes/features of the data/samples are 

naturally associated to perform unsupervised data analysis. The revealed 

correlated group of attributes in the mixed mode database redefines the class-

attribute relationship by introducing the concept of mode and thus enhances the 

discretization performance to optimize interdependence between modes and 

attributes in the group. The fuzzification concept introduced in additional to crisp 

attribute clustering furnishes the framework to detect patterns hidden in 

overlapping attribute clusters. This not only contributes a new problem to be 

stated but also create room for an algorithmic solution to tackle the task. 

6.1.2 Methodological Contributions 

1. A probabilistic approach to extract patterns in sequences without sequence 

alignment in an unsupervised manner. 

Based on the concept of sliding windows, an unlabelled sequence is divided into 

subsequences and then these subsequences are analyzed by an association 

discovery technique to detect statistical significant sequential patterns with gap 

allowance. The discovered patterns are summarized in a relational table for 

further analysis under the unified pattern discovery framework. 
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2. An algorithmic approach to compute interdependence redundancy measure 

(normalized mutual information) between mixed-mode attributes. 

In practice, one is always blocked by the obstacle to compute mutual information 

between continuous attributes due to the expensive computation to approximate 

the integration of two continuous attributes. In this thesis, an implementable 

algorithmic approach is defined for the computation of the normalized mutual 

information not only between a pair of discrete attributes but also between a pair 

of continuous attributes as well as between a discrete and a continuous attribute. 

Being tested over a number of data set from synthetic, UCI machine learning 

achieve and real world, the proposed measure is proven to be effective in finding 

correlated attribute clusters by k-mode ACA, the representative attribute (mode) 

of an attribute cluster and overlapping attribute clusters. 

3. Modes discovery for attribute clustering and fuzzification. 

Using the interdependence redundancy measure, the mode can be obtained by 

searching for one with the highest sum of the measure with all other attributes in 

the same attribute cluster. The discovered mode holds the strongest 

interdependence to all other attributes in the group, can then be treated as a 

representative of the group and use it just like a class label to drive the 

discretization of other continuous attributes. The modes are also important to the 

fuzzy attribute clustering for the calculation of the degree of membership of an 

attribute to an attribute cluster. 

4. Discretization of continuous attributes. 
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One major challenge in discretization is that when the class information is 

unavailable, there is a no effective way to partition the continuous attribute. The 

contribution of this work towards this challenge is the mode finding which 

facilitates the discretization of a continuous attribute by maximizing the 

interdependence between the continuous attribute and the mode. Since the mode 

is one with the strongest interdependence to the all attributes, it could be 

functioned as the class label of the attribute clusters. Based on this idea, the 

proposed mode-driven discretization in which the effectiveness is proven in some 

of the experiments done transforms the continuous attributes to discrete attributes 

in a reasonable and systematic manner for further pattern analysis. 

6.1.3 Application Contributions 

1. Unsupervised discovery of fuzzy pattern of gene expression data [Wu et al. 2010]. 

Discovering patterns from gene expression levels is regarded as a classification 

problem when tissue classes of the samples are given and solved as a discrete-data 

problem by discretizing the expression levels of each gene into intervals 

maximizing the interdependence between that gene and the class labels. However, 

when class information is unavailable, discovering gene expression patterns 

becomes difficult. For a gene pool with a large number of genes, we first cluster 

the genes into smaller groups. In each group, we use the representative gene, one 

with highest interdependence with others in the group, to drive the discretization 

of the gene expression levels of other genes. Treating intervals as discrete events, 

association patterns can be discovered. If the gene groups obtained are crisp 

clusters, significant patterns overlapping different clusters cannot be found. Based 
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on the concept of “fuzzifying” the crisp attribute clusters, we detect patterns 

overlapping different gene groups. In our experiment using a gene expression 

dataset with known class labels, we analyze it without relying on the class labels 

but used later as the ground truth in a classificatory problem for assessing the 

algorithm’s effectiveness in fuzzy gene clustering and discretization. The results 

show the efficacy of the proposed method. 

2. Discovery and grouping of meteorological patterns from surface stations over a 

large area rendering subtle information for regional weather monitoring [Wong et 

al. 2010]. 

The discovery and grouping of meteorological measurement patterns from data 

taken from various surface stations in a wide area reflect the regional and global 

characteristics of the correlated meteorological parameters. The consistency and 

the representative characteristics of each of the meteorological modes discovered 

suggest that certain modes could serve as reference parameters as they renders 

much more precise assessment of the weather monitoring system. Other subtle 

patterns may reveal the impact of land use and land coverage. Its significance 

requires further analysis. 

3. Discovery and grouping of parameter patterns in delay coking process revealing 

system function and operational characteristics [Wong et al. 2010]. 

The pattern discovery and grouping experiment on a large set of sensed and 

control data set taken from a delay coking plant yields most important 

relationships among sensors and controllers of the coking facilities. From the 

attribute number and distribution of the largest correlated group, the most 
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significant control factor which has global influence over almost all of the process 

parameters in the facility is located and its interactive patterns with others have 

been discovered. From the parameter grouping, the discovered results indicate 

that the other two groups control the output distributions of the two internal units 

like coke drum and fractionators. It is surprising to find that a two parameter 

group discovered is associated exactly with the critical safety mechanism 

designed for this pressure-temperature-mixed processing facility. Its mode is 

actually controls the temperature condition and serves as a trigging factor to 

activate the emergency release response. Such findings show the usefulness and 

effectiveness of the proposed method in revealing subtle operation patterns for 

system monitoring, control and optimization. 

6.2 Suggestions for Further Research 

This thesis has developed a unified framework for discovering patterns for 

sequence and mixed-mode data. In the future, we are going to generalize our 

method to handle more types of to arrive at an integrated prototype for researchers 

and general users. Some suggested future research is as follows. 

1) After solving the problem of a) the class labels unavailability and b) 

unsupervised discretization problem, the related technology developed for pattern 

clustering can now be on categorical data only, which is not able to apply to 

sequence, continuous and mixed-mode data. Thus, as a natural extension work of 

this research, it is in need to integrate the proposed system with the related 

technology including pattern clustering, summarization and visualization. 
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2) The successful experiments to produce insightful patterns and solutions to 

two difficult real world problems with large databases encourage the current work 

to apply to other large mixed-mode database for pattern discovery and data 

mining. By investigating both the attribute subgroups and the patterns in the 

perspective of the application domain, it is anticipated that the next step is to 

generate models and knowledge for further exploration of the new data.  

3) Being an ultimate goal, the development of an integrated data mining 

system for pattern discovery, pattern clustering, summarization and visualization 

system for generic data with/without class information using possible alternatives 

is worth to explore. 
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