

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University

Department of Computing

Decision Support Queries on Graph Data: Answering

Which-Pair Queries

by

Ming-Hay Luk

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Philosophy

March 2011

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF

ORIGINATLITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written,

nor material that has been accepted for the award of any other degree or diploma,

except where due acknowledgement has been made in the text.

. .

Ming-Hay Luk

March 2011

i

ii

Abstract

Decision support systems are computer aided tools that support the deci-

sion making process of an organization. By analyzing enormous volumes of data,

decision support systems will provide insightful information to its users. The

success of a decision support system relies heavily on both the accuracy of the

information that it can provide and the time it requires to provide the infor-

mation. Conventionally, decision support systems operate using numeric data.

The prevalence of graph data has prompted decision support research to begin

researching techniques for supporting graph data. Thus far, only graph summa-

rizing and graph pattern mining has been addressed. However, these techniques

do not allow for changes in the underlying graph data.

When the underlying data is represented by graphs, what types of decision

support queries will users ask? This work presents “which” queries, a class

of decision support queries that are specific to graph data, and illustrate their

potential applications. When an organization makes a decision resulting in a

change to the underlying graph data, new edges may eventually be added to the

organization’s graph data model. The addition of a new edge to the graph will

affect how the objects, modeled in the graph, relate to each other. Determining

how the object relationships change is a crucial factor that the organization

needs to consider. However, determining object relationships is an expensive

operation. Furthermore, the solution space that an organization is considering

can be considerably large when using graph data; thus, efficient algorithms to

iii

iv

evaluate the fundamental “which” queries are also presented.

This work will develop a decision support system that effectively and ef-

ficiently answers the fundamental “which” queries. First, a model for “which”

queries will be developed. Then, algorithms for efficiently answering fundamental

“which” queries will be presented, which have been experimentally shown to be

orders of magnitude faster than basic solutions. The results of the experiments

on five real graph data sets will be presented. Finally, discussion of how the

proposed algorithms can be used to answer other types of “which” queries will

be presented.

Acknowledgements

I would like to thank all of my friends and family for their love and support

while I have been away from home. Thank you all for talking me through various

things and keeping me entertained, among many countless other things.

I would like to thank my academic supervisor, Dr. Eric Lo, for his help and

guidance during my studies. Not only has he shown me the ropes when it comes

to academic research in the computer science field, but he has also introduced

me to many incredible people and given me opportunities to dabble with various

projects, which I would have otherwise been unable to do.

Next, I would like to thank Dr. Ken Yiu for allowing me to work closely with

him on various research projects. Additionally, his help with optimizing code,

double checking ideas, and comments has been invaluable to the completion of

this work.

Lastly, the comments and critiques on this work that were received from

various other parties is also high appreciated. Thanks to Dr. Raymond Wong,

Dr. Hong Va Leong, Dr. Ben Kao, Duncan Yung, Andy Ho, et al. for their

comments and critiques on various parts of this work.

v

vi

Contents

Declaration i

Abstract iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xvii

1 Introduction 1

2 Related Work 7

2.1 Spatial Database Research . 8

2.2 Operations Research . 9

vii

viii CONTENTS

2.3 Network Maintenance . 10

3 Elements of “Which” Queries 11

4 “Which Edge-Add-SP-Min” Queries 15

4.1 Search Space Reduction . 20

4.2 Incremental Update Based Algorithm 22

4.2.1 Shortest Path Incremental Updates 23

4.2.2 Using SPI for “Which Edge-Add-SP-Min” Queries 25

4.3 Top-K Based Algorithms . 27

4.3.1 Threshold Pruning . 28

4.3.2 Insertion Free Benefit Calculations 30

4.3.3 Algorithms . 36

5 “Which k-Edge-Add-SP-Min” Queries 43

6 Experiments 47

6.1 Which Edge-Add-SP-Min Queries 48

6.1.1 LBD vs UBP in AA . 49

6.1.2 Results on Argentina Road Network 52

6.1.3 Scalability of ISPI, PA, and AA 57

6.1.4 Estimation Quality of PA on Argentina Road Network . . 57

CONTENTS ix

6.2 “Which k-Edge-Add-SP-Min” Queries 58

6.2.1 Sampled Edges . 59

6.2.2 Synthetic Edges . 59

6.3 Experimental Results on Other Data Sets 61

6.3.1 San Francisco Road Network 61

6.3.2 Facebook Social Network 64

6.3.3 CAIDA Internet Router Topology 67

6.3.4 WebGraph World Wide Web 70

7 San Francisco Bay Area – A Case Study 73

8 Discussing Other “Which” Queries 83

8.1 “Which Edge-Update-SP-Min” Queries 84

8.2 “Which Edge-Delete-SP-Min” Queries 85

8.3 “Which Edge-Add-MaxFlow-Max” Queries 87

8.4 “Which k-Edge-*-*-*” Queries 88

9 Conclusion 91

10 Appendix 95

10.1 APSP baseline algorithm . 95

x CONTENTS

Bibliography 97

List of Figures

4.1 Running Example . 19

(a) Input Graph G (bridging edges shown as dotted lines) . . 19

(b) Input Vertex-Pair Set P with ei and cei 19

(c) Input Query Workload Q 19

(d) The Search Space . 19

4.2 Search Space after Search Space Reduction and Bounds Initial-

ization (entries with “—” mean [0,0] benefits) 20

5.1 Which k-Edge-Add-SP-Min Query 43

6.1 LBD vs UBP—Varying |P | on the Argentina road network (sam-

pled edges) . 50

(a) Running time . 50

(b) Number of Vertices Visited 50

xi

xii LIST OF FIGURES

6.2 LBD vs UBP—Varying |Q| on the Argentina road network (sam-

pled edges) . 50

(a) Running time . 50

(b) Number of Vertices Visited 50

6.3 LBD vs UBP—Varying |P | on the Argentina road network (syn-

thetic edges) . 51

(a) Running time . 51

(b) Number of Vertices Visited 51

6.4 LBD vs UBP—Varying |Q| on the Argentina road network (syn-

thetic edges) . 51

(a) Running time . 51

(b) Number of Vertices Visited 51

6.5 Varying |P | on Argentina Road Network—sampled edges 53

(a) Running time . 53

(b) Number of Vertices Visited 53

6.6 Varying |Q| on Argentina Road Network—sampled edges 54

(a) Running time . 54

(b) Number of Vertices Visited 54

6.7 Varying |P | on Argentina Road Network–synthetic edges 56

(a) Running time . 56

LIST OF FIGURES xiii

(b) Number of Vertices Visited 56

6.8 Varying |Q| on Argentina Road Network–synthetic edges 56

(a) Running time . 56

(b) Number of Vertices Visited 56

6.9 Scalability of ISPI, PA, and AA 57

(a) Sampled Edges . 57

(b) Synthetic Edges . 57

6.10 Estimation Error of PA . 58

(a) Varying |P | . 58

(b) Varying |Q| . 58

6.11 “Which k-Edge-Add-SP-Min” Queries—Sampled Edges 60

(a) Solution Quality of TopK-HA and Greedy-HA 60

(b) Running Times . 60

6.12 “Which k-Edge-Add-SP-Min” Queries—Synthetic Edges 60

(a) Solution Quality of TopK-HA and Greedy-HA 60

(b) Running Times . 60

6.13 San Francisco—Sampled Edges 62

(a) Running time while varying |P | 62

(b) Vertices visited while varying |P | 62

xiv LIST OF FIGURES

(c) Running time while varying |Q| 62

(d) Vertices visited while varying |Q| 62

6.14 San Francisco—Synthetic Edges 63

(a) Running time while varying |P | 63

(b) Vertices visited while varying |P | 63

(c) Running time while varying |Q| 63

(d) Vertices visited while varying |Q| 63

6.15 Facebook—Sampled Edges . 65

(a) Running time while varying |P | 65

(b) Vertices visited while varying |P | 65

(c) Running time while varying |Q| 65

(d) Vertices visited while varying |Q| 65

6.16 Facebook—Synthetic Edges . 66

(a) Running time while varying |P | 66

(b) Vertices visited while varying |P | 66

(c) Running time while varying |Q| 66

(d) Vertices visited while varying |Q| 66

6.17 CAIDA—Sampled Edges . 68

(a) Running time while varying |P | 68

LIST OF FIGURES xv

(b) Vertices visited while varying |P | 68

(c) Running time while varying |Q| 68

(d) Vertices visited while varying |Q| 68

6.18 CAIDA—Synthetic Edges . 69

(a) Running time while varying |P | 69

(b) Vertices visited while varying |P | 69

(c) Running time while varying |Q| 69

(d) Vertices visited while varying |Q| 69

6.19 WebGraph—Sampled Edges . 71

(a) Running time while varying |P | 71

(b) Vertices visited while varying |P | 71

(c) Running time while varying |Q| 71

(d) Vertices visited while varying |Q| 71

6.20 WebGraph—Synthetic Edges . 72

(a) Running time while varying |P | 72

(b) Vertices visited while varying |P | 72

(c) Running time while varying |Q| 72

(d) Vertices visited while varying |Q| 72

7.1 San Francisco Bay Area Road Network 75

xvi LIST OF FIGURES

7.2 Most beneficial bridge location. 76

7.3 Second most beneficial calculated bridge location. 77

7.4 Third most beneficial calculated bridge location. 78

7.5 Fourth most beneficial calculated bridge location. 79

7.6 Top-4 calculated bridge locations. 80

7.7 Top-4 calculated bridge locations using TopK-HA. 81

7.8 Running Time . 81

List of Tables

1.1 Example “Which” Queries . 5

4.1 Table of Symbols . 18

6.1 Real Graph Data Set Properties 47

xvii

xviii LIST OF TABLES

List of Algorithms

1 ISPI . 25

2 SPI . 27

3 Function—Edge Oriented Expansion 33

4 Function—Query Oriented Expansion 36

5 Proactive Algorithm (PA) . 37

6 Function—Choosing EOE or QOE 39

7 Adaptive Algorithm (AA) . 41

8 TopK-HA . 45

9 Greedy-HA . 45

10 “Which Edge-Delete-SP-Min” . 86

11 “Which Edge-Add-MaxFlow-Max” 88

xix

xx LIST OF ALGORITHMS

Chapter 1

Introduction

Decision support systems are information systems that support the complex

decision-making process faced by businesses or organizations. When making

important decisions, a decision support system provides insightful suggestions to

its users. Decision support systems give suggestions by analyzing large volumes of

data. In the real world, data is often represented by graphs, and many decisions

are reflected as eventual changes to the graph data.

For example, consider an express mail company’s delivery network: a graph

with vertices representing locations (e.g., cities, warehouses) and edges repre-

senting connections (e.g., flights between cities). Subject to rapidly changing

business environments, the company may need to revise its resource allocation

policy regularly—with additional resources, the company can reduce its over-

all/average delivery time (increasing its competitive advantage) by establishing

a new connection between two indirectly connected locations. In the example

above, the company must decide “which two locations should be connected by

1

2

the new connection?” (Q1). In this situation, a decision support system that

gives insightful suggestions such as “among all the possible choices, the maximum

reduction in overall delivery time (55%) is achieved with a new connection between

X and Y,” will be very helpful in aiding the decision-making process. After said

decision is made operational, a new connection (edge) is added to the delivery

network (graph) reflecting the impact of the decision.

Alternatively, during tough economic times, the express mail company may

need to scale back on its existing services. When the company needs to scale

back, they may want to only temporarily cease operating certain routes. Fol-

lowing the above example, suppose that the express mail company wishes to

temporarily shut down certain flights within their delivery network. As such,

the compay may ask: “which flight, if cut, has the minimal impact on overall

delivery time?” (Q2). Because the company is temporarily cutting an existing

flight in their delivery network, this type of decision is eventually reflected by an

existing connection (edge) being removed from the delivery network (graph).

Many other domains also demand similar kinds of decision support queries.

For example, in urban planning the road network is often modeled as a graph,

where vertices are road intersections, and edges are the different stretches of

road themselves. Roadwork is constantly being performed to fix old sections of

roads in the network, add new stretches of road to improve coverage to different

places, stretches of road are expanded or rerouted to relieve traffic congestion,

etc. As we can see, urban planning is a highly dynamic domain because the

road network is constantly changing to support its traffic volume. To address

transit times between locations on the road network, we may ask “which stretch

of road (edge) should we expand such that average travel times can be maximally

CHAPTER 1. INTRODUCTION 3

reduced?” (Q3). Many other types of decision making queries are possible within

the realm of urban planning. As noted above, when maintenance roadwork needs

to be performed, certain stretches of road may need to be closed off to traffic

completely and detour routes need to be constructed; in which case, determining

short detour routes would benefit commuters.

Similar to urban planning, network planning is another field that can repre-

sent its communication network as a graph. For communication networks, graph

edges can represent physical linkages, such as fiber optic lines, between the ver-

tices, such as signal repeaters or access hubs. Because network maintenance is

critical, we may ask “which optic fibre, if broken (e.g., due to a natural disaster),

would have the largest negative impact on the network communcation through-

put?” (Q4). By asking the previous decision making query, network planners

can determine critical links in their network and take the proper actions to en-

sure these critical links are well maintained and proper backup solutions are in

place to avoid adverse effects should these critical links fail.

Finally, consider one last domain that can make use of decision support

queries when their underlying data can be represented as a graph. Within the

domain of manufacturing, the production workflow can be modeled as a graph

(a flow-graph with vertices as workstations, edges as conveyor-belts, and edge

weights as belt capacities). Management may want to ask “which two indi-

rectly linked workstations should be linked with a new conveyor-belt such that the

production rate increases the most?” (Q5).

Conventional decision support systems mostly focus on numeric data [6].

Furthermore, recent graph-related decision support system research still focuses

4

on summarizing, OLAP, or mining graph data (e.g., [8, 33, 7, 19, 24]) and has

not advanced to supporting the aforementioned types of “which” queries (Q1–

Q5) on graphs. Answering “which” queries on graphs is an interesting, yet

challenging, research topic: we can see from the above examples that real world

decision-making problems are diverse; thus, “which” queries are equally diverse.

For example, “which” query Q1 is related to edge addition and shortest path

distances; Q4, however, is related to edge deletion and network flows. Thus, it

is necessary to identify the core elements formulating “which” queries and also

devise corresponding evaluation algorithms. Regarding evaluation algorithms for

“which” queries, the challenge is that the solution spaces of “which” queries can

be very large—for Q1, any pair of indirectly connected locations can potentially

be the answer. Because efficiency is crucial to a decision support system’s success,

as users want to receive timely suggestions, straightforward algorithms (e.g.,

exhaustive search) are highly inapplicable.

Graph query processing is one of the most important topics in our field.

However, to the best of our knowledge, the issue of “which” queries on graphs

remains unaddressed. This work makes the following contributions:

1. We discuss the essential elements composing “which” queries and also pro-

vide the formulation of a “which” query (Chapter 3).

2. We present new algorithms that can efficiently evaluate the most funda-

mental type of “which” queries—those related to shortest path distances

(Chapters 4 and 5) because they are useful in many applications (e.g., Q1)

and also because their solutions can serve as a very good foundation for

solving other types of “which” queries (in other types of “which” queries,

CHAPTER 1. INTRODUCTION 5

such as Q5, we know that the shortest path distances are directly related to

the maximum flow value; thus, the algorithms proposed in Chapter 4 can

be used to solve “which” queries such as Q5. Furthermore, “which” queries

like Q2 and Q4 can be solved using the techniques proposed in Chapter 5).

3. The efficiency of our proposed methods is extensively evaluated using five

real graph data sets and our experiments show that our methods are orders

of magnitude faster than straightforward solutions (Chapter 6).

4. A case study of how the “which” query processing techniques proposed can

be applied to the Bay Area.

5. A discussion of how our proposed techniques can be useful for solving other

types of “which” queries (Chapter 8).

In Chapter 2, we discuss work in various domains related to “which” queries.

Chapter 9 concludes this work.

Query Number Query Description

Q1 Which two locations should be connected by the new con-
nection?

Q2 Which flight, if cut, has the minimal impact on overall de-
livery time?

Q3 Which stretch of road should we expand such that average
travel times can be maximally reduced?

Q4 Which optic fibre, if broken, would have the largest negative
impact on the network communcation throughput?

Q5 Which two indirectly linked workstations should be linked
with a new conveyor-belt such that the production rate in-
creases the most?

Table 1.1. Example “Which” Queries

6

Chapter 2

Related Work

Graph query processing is one of the most important topics in the field of

computer science [12]. Recently, the database community started to research

efficient methods of managing and querying vast volumes of extremely large

graphs. Important research topics include graph query algebra and languages

(e.g., [2]) and indices for graph query processing (e.g., [3, 4, 9, 11, 16, 17, 18,

25, 26, 27, 28, 34, 35]). Conventional decision support systems mostly focus on

numeric data, and only recently has started to address graph data. The decision

support systems research related to graphs, which mainly focus in summarizing

(e.g., [24]), OLAP (e.g., [8, 33]), or mining graph data (e.g., [7, 19]), does not

address how to answer “which” queries.

To the best of our knowledge, supporting “which” queries on graphs is a

novel topic that has not been addressed in the database and data mining fields.

Nonetheless, the broad applications of “which” queries can be related to spatial

database research, operations research, and network topology maintenance.

7

8 2.1. SPATIAL DATABASE RESEARCH

2.1 Spatial Database Research

Spatial database research focuses on numerical data with spatial relationship

information attached to the data. Recently, spatial database research has begun

to address graph data with certain embedded spatial relationships. Although

graph data is starting to be addressed, query types similar to “which” queries

remain largely unaddressed.

From spatial database research, optimal-location queries [13, 15] are the

most similar type of queries to “which” queries. Optimal-location queries are a

class of spatial decision support queries where users look for the best location,

l, for a new facility such that the greatest benefit is obtained. The notion of

benefit in an optimal-location query is defined by the user, and varies depending

on the application and the context in which the query is posed. For example,

[15] considers the benefit of a location as the total weight of its reverse nearest

neighbors (i.e., the total weight of objects that are closer to l than to any other

data point in the dataset).

Optimal-location queries are helpful in finding ideal locations for a new

shop to attract the largest number of customers. However, “which” queries

(e.g., Q1–Q5) that work on graphs are much more diverse than optimal-location

queries, which only ask “where to add a new point?” Optimal-location queries

are restricted to queries that have an answer that is just a single point, whereas

“which” queries support queries where the answer can be sets of points and other

more complicated component sets.

CHAPTER 2. RELATED WORK 9

2.2 Operations Research

From operations research, optimizations to an existing system are the prin-

ciple focus. We can see that “which” queries can also suggest how an existing

system can be modified to become more efficient (e.g., Q3). Other types of

“which” queries, such as Q5, have not been addressed by the operations field,

to the best of our knowledge. In operations research, two types of problems are

relevant to “which” queries: inverse optimization problems [29, 32] and reverse

optimization problems [30, 31].

For an inverse optimization problem, users specify a feasible solution x as

input. Then the problem’s parameters are tuned, with as low of a cost as possible,

such that x becomes the optimal solution. For example, in an inverse maximum

flow problem [29], users must first specify a feasible flow, f , and then a set of

edge weight adjustments are returned to the user. The edge weight adjustments

that are returned are adjustments that will make f become the maximum flow.

In reverse optimization problems, a user inputs a target value v for a partic-

ular problem instance. Then the problem instance’s parameters are tuned, again

with as low of a cost as possible, such that the input target value v becomes

either the optimal value for the problem instance, or if v cannot become the op-

timal value for the problem instance, v becomes an upper bound of the optimal

value for the problem instance. For example, in reverse shortest path problems

[30], an input of the desired shortest path distance d to a shortest path query q

yields an output of a set of edge weight adjustments that make the shortest path

distance of q shorter than d.

10 2.3. NETWORK MAINTENANCE

These existing operations research problems require the user to explicitly

state the target that is to be tuned (e.g., a feasible maximum flow f or the

desired shortest path distance d). In contrast, “which” queries do not require

the user to specify the particular target. “Which” queries are given a set of

targets, because the actual optimal target may be completely unknown to the

user. As such, “which” queries will tell the user the target’s identity and also the

target’s optimized value. So long as the user includes the actual optimal target

within their best guess set of targets, the “which” query will find the optimal

target and value.

2.3 Network Maintenance

Finally, networking research also has certain overlaps with “which” queries.

Existing networking research mostly focuses on designing network topologies

(e.g., [21, 10]) and localizing faulty links after some links break (e.g., [23]).

“Which” queries, like Q4, are useful for network maintenance. For network

maintenance, “which” queries can be used to help determine critical links in a

network. By locating critical links, effective preventive maintenance measures

can be implemented before any critical link fails.

Furthermore, for designing network topologies, “which” queries, not unlike

Q1, can also help during the design stages. The design stages are an iterative

process. As such, during each iterative step, the current design is analyzed and

then modified in preparation for the next step. The quality of the current design

can be analyzed with “which” queries, and “which” queries can help the designers

decide how to modify the current network design for the next iterative step.

Chapter 3

Elements of “Which” Queries

“Which” queries are diverse and have many applications in different fields.

Nonetheless, we can formulate a “which” query from four constituent parts:

Graph Component: Specifies the quantity and type (e.g., vertex or edge) of an

object considered in the query. For example, Q1 and Q5 consider “which non-

adjacent vertices” and Q2–Q4 consider “which existing edge.” Other possible

queries may include “which vertex,” or “which k-edges,” etc.

Operation: Specifies how the graph component will eventually affect the graph.

For Q1 and Q5, a new edge is eventually added ; for Q2 and Q4, an existing

edge is eventually deleted ; and for Q3, an existing edge’s weight is eventually

updated.

Measurement: Specifies the graph measurement involved in the decision pro-

cess, such as the distance sum of a set of shortest path (SP) queries (e.g.,

Q1–Q3) or the maximum flow value (e.g., Q4 and Q5). Other graph measures,

11

12

such as betweenness [22] and multi-commodity flow [1], can also be used.

Optimization Goal: Specifies the optimization goal of the query. For Q1, the

optimization goal is to find the pair of non-adjacent vertices (ui, vi) that can

minimize the distance sum of a set of shortest path queries if vertices ui and

vi are connected with an edge. In Q5, the optimization goal is to find the pair

of non-adjacent vertices (ui, vi) that can maximally increase the maximum flow

value if vertices ui and vi are connected with an edge.

In this work, we specify a “which” query in the general form of [Component]-

[Operation]-[Measurement]-[Goal]. In fact, “which” queries for specific applica-

tions may demand its own specific formulation. For example, Q1 and Q5 consider

connecting non-adjacent vertices with new edges, but the weights and capacities

of the new edges are actually application-specific. Furthermore, the “real cost”

of each operation should be considered, too. For example, the real cost (e.g.,

administration cost, operation cost) of adding a flight between locations X and

Y would be different than a flight between locations A and B.

As the first work to look into this new type of query, we focus on two

specific “which” queries, namely the “Which Edge-Add-SP-Min” and “Which

k-Edges-Add-SP-Min” queries, and present efficient algorithms to answer them.

Both queries aim to minimize (goal) the distance sum of a set of shortest path

queries (measurement) by adding edges (operation and graph component). The

first query considers adding one edge and it can solve decision-support problems

like Q1 (Chapter 4). The second query considers adding multiple,k (where k >

1), new edges that can connect k pairs of non-adjacent vertices (Chapter 5).

Although “Which Edge-Add-SP-Min” and “Which k-Edge-Add-SP-Min” queries

CHAPTER 3. ELEMENTS OF “WHICH” QUERIES 13

are the same for k = 1, when k > 1, the two are entirely different types of

queries. For k > 1, the solution space of “Which k-Edge-Add-SP-Min” queries is

exponential and finding an optimal solution requires exhaustively checking the

entire solution space. These two queries are fundamental “which” query types,

and solutions for evaluating them efficiently can serve as a good foundation for

the other “which” queries (Chapter 8). Although the two “which” queries look

similar, their problem complexities differ a lot; furthermore, these queries are

good examples illustrating how an evaluation algorithm of one “which” query

type helps in evaluating other “which” query types.

14

Chapter 4

“Which Edge-Add-SP-Min”

Queries

In this chapter, we will present a possible formulation and efficient solu-

tions for “Which Edge-Add-SP-Min” queries. Given a positively weighted graph

G = (V,E), there are potentially many non-adjacent vertices in G; however, the

number of non-adjacent vertex-pairs to be considered is application-dependent

in practice. In the delivery network example (Q1), if we consider only adding

a new flight, only locations with airports need to be considered. So, we model

the set of non-adjacent vertex-pairs P as user-given. Each vertex-pair (ui, vi)

in P is associated with an implied bridging edge ei (where ei connects ui to vi,

and ‖ei‖ is the edge length). In addition to the edge length, each bridging edge

ei(ui, vi) is also associated with a given cost cei , which models the real-world cost

of connecting ui to vi by ei in G (e.g., the operational cost of that flight). In

what follows, we use the term “non-adjacent vertex-pairs” and “bridging edge”

15

16

interchangeably.

The measurement of “Which Edge-Add-SP-Min” queries is the distance sum

of a workload of shortest path queries Q. Each query qj(sj , tj) ∈ Q is a distinct

shortest path query with source sj and destination tj . In one extreme, Q may

contain all-pairs shortest path queries.

Each query qj is associated with an importance factor mqj—using urban

planning as an example, assuming that only one resident makes a 100 mile trip

from s1 to t1, q1(s1, t1), and 50 residents make a 5 mile trip from s2 to t2,

q2(s2, t2), we may set mq1 = 1 and mq2 = 50. Thus, query importances can

model the number of beneficiaries of a bridging edge. For instance, the bridging

edge e1(u1, v1), which reduces the shortest path distance of q1 from 100 to 40

miles, is not as beneficial as the bridging edge e2(u2, v2), which reduces the

shortest path distance of q2 from 5 to 1 mile, because only one resident makes

the trip q1. More precisely, let spGqj be the shortest path distance of query qj

on the graph G, and let G{ei} = (V,E ∪ {ei}). Then the benefit of connecting

ui and vi by ei on a query qj(sj , tj), or simply the benefit of bridging edge ei on

query qj , b
ei
qj , is the reduction in shortest path distance of qj in G{ei} versus G,

accounting for the query’s importance factor mqj , i.e.,

beiqj = mqj × (spGqj − sp
G{ei}
qj) (4.1)

In the example above, the bridging edge e1, which shortens q1 from 100 to 40

miles, has a benefit be1q1 = 1 × (100 − 40) = 60; whereas the bridging edge e2,

which shortens q2 from 5 miles to 1 mile, has a benefit be2q2 = 50× (5− 1) = 200.

Recall that a “Which Edge-Add-SP-Min” query minimizes the weighted dis-

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 17

tance sum of the query workload Q (i.e., finds ei ∈ P that has the maximum

benefit on Q). We define the benefit Bei of a bridging edge ei on a query work-

load Q, or simply the benefit of ei, as the sum of ei’s benefits with respect to

each query qi ∈ Q, i.e.,

Bei =

|Q|∑
j=1

beiqj (4.2)

Problem Formulation. Given a graph G, a set P of non-adjacent vertex

pairs (ui, vi), their associated bridging edge ei and edge cost cei, and a workload

of shortest path queries Q, find a vertex-pair (ui, vi) ∈ P so that if they are

connected by ei, they have the maximum benefit to workload Q, inclusive of the

cost of adding ei to G, i.e., arg max(ui,vi)∈P (Bei − cei).

In this formulation, we assume the cost cei of a bridging edge ei (e.g., 1

million USD) has been normalized to match the unit of distance reduction (e.g.,

10 miles), as in any ranking function in database query processing. In fact, the

relationship between the edge benefit Bei and the edge cost cei is flexible; in

some applications we can consider a different formulation, for example, using

another function arg max(ui,vi)∈P
Bei

cei . The techniques that we propose efficiently

calculate the benefit of an edge, Bei . As such, if the function that we are inter-

ested in is arg max(ui,vi)∈P
Bei

cei , our techniques remain unchanged. A summary

of frequently used symbols is given in Table 4.1.

To find the vertex-pair (ui, vi) ∈ P with the highest benefit (on a query

workload Q), we first examine a brute-force solution using Figure 4.1 as a running

example.1 The brute-force solution can be viewed as the process of calculating

1For ease of illustration, we assume query importance values of 1 and bridging edge costs of 0 in
Figure 4.1. In fact, our solutions can deal with arbitrary values of mqj and cei .

18

Symbol Definition

P Set of vertex-pairs

ei Bridging edge

‖ei‖ Length of ei
cei Cost of adding ei to the graph G

beiqj Benefit of ei with respect to qj
Bei Total benefit of ei with respect to Q

UBei Upper bound benefit of ei with respect to Q

LBei Lower bound benefit of ei with respect to Q

Q Workload of queries

qj Shortest path query

spqj Original shortest path distance for query qj
mqj Importance weighting for query qj
UBqj Upper bound benefit of qj with respect to P

LBqj Lower bound benefit of qj with respect to P

G Original input graph

θ Threshold-pruning threshold value

Table 4.1. Table of Symbols

all the beiqj values in a search space of size |Q| × |P | (Figure 4.1(d)) and then

returning the vertex-pair with the highest benefit Bei . To calculate the beiqj values,

the brute-force solution temporarily bridges the vertex-pair (ui, vi) ∈ P with ei

creating a new graph G{ei}. Then a shortest path algorithm SP (e.g., Dijkstra’s

algorithm) is used to compute the new shortest path distance of each query

qj ∈ Q on G{ei}. After calculating ei’s benefit Bei , ei is removed from G{ei} to

obtain the original graph G. This brute-force solution iteratively calculates the

benefits of all edges and is not efficient because it invokes SP |Q| × |P | times.

If the all-pairs shortest path distances are available, the benefit of each

bridging edge can be easily determined (details of this baseline solution are given

in Chapter 10.1). However, maintaining the all-pairs shortest path distances

requires O(|V |2) space, which is enormous2 (this method ran out of memory in

2Of course, we can store all shortest path distances on disk, but doing so will result in excessive I/Os

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 19

12

1

8

6

3

14

10
e2

7
e3

4

9

6

7

6

1

4

13
e4

5
e1

4
e5

23

7

l

w

x

k

n

h

ya

b

c

d

z

f

g

(a) Input Graph G (bridging edges shown as dotted lines)

ei : (ui, vi) ‖ei‖ cei

e1 : (c, x) 5 0

e2 : (b, k) 10 0

e3 : (y, l) 7 0

e4 : (w, n) 13 0

e5 : (d, y) 4 0

e6 : (z, g) 21 0

(b) Input Vertex-Pair
Set P with ei and
cei

Query qj spqj mqj

q1 : sp(a, d) 15 1

q2 : sp(z, g) 20 1

q3 : sp(h, y) 10 1

q4 : sp(x,w) 5 1

q5 : sp(k, c) 3 1

(c) Input Query Work-
load Q

P

Q e1 : (c, x) = 5 e2 : (b, k) = 10 e3 : (y, l) = 7 e4 : (w, n) = 13 e5 : (d, y) = 4 e6 : (z, g) = 21

q1 : sp(a, d)=15 b
(c,x)
q1 =? b

(b,k)
q1 =? b

(y,l)
q1 =? b

(w,n)
q1 =? b

(d,y)
q1 =? b

(z,g)
q1 =?

q2 : sp(z, g)=20 b
(c,x)
q2 =? b

(b,k)
q2 =? b

(y,l)
q2 =? b

(w,n)
q2 =? b

(d,y)
q2 =? b

(z,g)
q2 =?

q3 : sp(h, y)=10 b
(c,x)
q3 =? b

(b,k)
q3 =? b

(y,l)
q3 =? b

(w,n)
q3 =? b

(d,y)
q3 =? b

(z,g)
q3 =?

q4 : sp(x,w)=5 b
(c,x)
q4 =? b

(b,k)
q4 =? b

(y,l)
q4 =? b

(w,n)
q4 =? b

(d,y)
q4 =? b

(z,g)
q4 =?

q5 : sp(k, c)=3 b
(c,x)
q5 =? b

(b,k)
q5 =? b

(y,l)
q5 =? b

(w,n)
q5 =? b

(d,y)
q5 =? b

(z,g)
q5 =?

Bei
∑5

j=1 b
(c,x)
qj

∑5
j=1 b

(b,k)
qj

∑5
j=1 b

(y,l)
qj

∑5
j=1 b

(w,n)
qj

∑5
j=1 b

(d,y)
qj

∑5
j=1 b

(z,g)
qj

(d) The Search Space

Figure 4.1. Running Example

20 4.1. SEARCH SPACE REDUCTION

P
Q e1: (c, x)=5 e2: (b, k)=10 e3: (y, l)=7 e4: (w, n)=13 e5: (d, y)=4 Bqj

q1 : sp(a, d)=15 b
(c,x)
q1 =[0,10] b

(b,k)
q1 =[0,5] b

(y,l)
q1 =[0,8] b

(w,n)
q1 =[0,2] b

(d,y)
q1 =[0,11]

∑5
i=1 b

ei
q1=[0,36]

q2 : sp(z, g)=20 b
(c,x)
q2 =[0,15] b

(b,k)
q2 =[0,10] b

(y,l)
q2 =[0,13] b

(w,n)
q2 =[0,7] b

(d,y)
q2 =[0,16]

∑5
i=1 b

ei
q2=[0,61]

q3 : sp(h, y)=10 b
(c,x)
q3 =[0,5] — b

(y,l)
q3 =[0,3] — b

(d,y)
q3 =[0,6]

∑5
i=1 b

ei
q3=[0,14]

q4 : sp(x,w)=5 — — — — b
(d,y)
q4 =[0,1]

∑5
i=1 b

ei
q4=[0,1]

Bei
∑4

j=1 b
(c,x)
qj =[0,30]

∑4
j=1 b

(b,k)
qj =[0,15]

∑4
j=1 b

(y,l)
qj =[0,24]

∑4
j=1 b

(w,n)
qj =[0,9]

∑4
j=1 b

(d,y)
qj =[0,34]

Figure 4.2. Search Space after Search Space Reduction and Bounds Initialization
(entries with “—” mean [0,0] benefits)

all of our experiments with 8GB of RAM).

In the remainder of this chapter, we will present our solutions, which our

experiments have shown to be orders of magnitudes faster than the basic solu-

tions discussed above and maintaining a linear, to V , consumption of memory.

In Chapter 4.1, we present some simple pruning rules to reduce the search space.

In Chapter 4.3.1, we describe how to use thresholding, a classic top-k query pro-

cessing technique, as the solution framework for this type of “which” queries. In

Chapter 4.3.2, we present two techniques for calculating the benefits of bridging

edges without adding each edge to the graph G. Finally, in Chapter 4.3.3, we

present two algorithms that exploit the aforementioned techniques.

4.1 Search Space Reduction

In some applications (e.g., Q1), the size of P can be very large since any

pair of indirectly connected vertices of the input graph G can potentially be the

answer. As such, Search Space Reduction uses the following lemma to reduce

the number of vertex-pairs in P that need to be considered:

instead.

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 21

Lemma 1 A vertex-pair (ui, vi) with bridging edge ei can be removed from con-

sideration if

‖ei‖ ≥ max(spq1 , . . . , spq|Q|)

Proof. Let λ = max(spq1 , . . . , spq|Q|) be the shortest path distance of the longest

query qj ∈ Q. If ‖ei‖ > λ, it is straightforward to see that ei cannot reduce the

shortest path distance for any query in Q and can be removed from consideration.

If ‖ei‖ = λ and λ = spqj , then even if ui and vi are the same vertices as sj and

tj , respectively, the shortest path distance of qj would remain unchanged; thus,

the bridging edge ei also has no benefit to any of the queries in Q and can be

removed from consideration.

The intuition of this lemma is very simple: if edge ei is already longer than

all query lengths, then no queries would include it in their shortest paths. Thus,

Bei must be 0 and can be safely removed. Similarly, the following lemma removes

some queries from consideration:

Lemma 2 A query, qj, can be removed from consideration if

spqj ≤ min(‖e1‖, . . . , ‖e|P |‖)

Proof. Let λ = min(‖e1‖, . . . , ‖e|P |‖) be length of the shortest bridging edge

ei ∈ P . It is straightforward to see that if all bridging edges ei ∈ P are not

shorter than the length of a shortest path query qj , ei cannot reduce the shortest

path distance for the query qj . Thus, the qj can be removed from consideration.

22 4.2. INCREMENTAL UPDATE BASED ALGORITHM

In our running example, Lemmas 1 and 2 respectively remove bridging edge

e6(z, g) and query q5(k, c) from consideration.

4.2 Incremental Update Based Algorithm

The basic solutions mentioned above require temporarily modifying the

graph data in order to calculate the benefit of a bridging edge. Only the all-

pairs shortest path method mentioned above is free from the graph modification;

however, the all-pairs shortest path method requires and exorbitant amount of

space to store the shortest-path distances.

In this section, we will present an algorithm that does not require modifying

the underlying graph data to calculate a bridging edge’s benefit. In order to

calculate the benefit of a bridging edge, we use a shortest path incremental

update (SPI) algorithm [14] to determine how the addition of the bridging edge

affects the shortest path distance of a given query. Thus, we will first discuss

how a shortest path incremental update algorithm can be used to answer “Which

Edge-Add-SP-Min” queries.

To begin, we first need to understand how the shortest path incremental

update algorithm works. After understanding how the shortest path incremental

update algorithm works, we will discuss how we can use it, incrementally, to

answer “Which Edge-Add-SP-Min” queries.

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 23

4.2.1 Shortest Path Incremental Updates

A shortest path incremental update algorithm, as its name clearly indicates,

is an algorithm that will efficiently update the shortest path distances of a single-

source shortest path query. A shortest path incremental algorithm maintains a

copy of the shortest path distances of all vertices from a specific source vertex.

Then, when an edge is inserted into the graph, the shortest path incremental

update algorithm is triggered to update the shortest path distances of all vertices

affected by the inserted edge.

Given a newly inserted edge e, the shortest path incremental algorithm must

determine which vertices need to have their shortest path distances updated. The

shortest path distances from the source vertex s to the vertices of the edge e,

vertices u and v, are already known. Furthermore, by inserting the edge e into

the graph G, only vertices with a shortest path distance greater than v and

u can be affected by the insertion of e. Thus, all vertices with shortest path

distances less than v and u do not need to have their shortest path distances

updated. Additionally, at most one vertex, either u or v, will have its shortest

path distance affected by adding e to the graph G, which consequently affects

all vertices with a shortest path passing through said vertex.

Three cases arise for determining whether u or v is affected by the inserted

edge e. The first case is that u is affected by the new edge e. The second case is

that v is the affected vertex, rather than u. The last case is that neither u or v

is affected by the insertion of edge e.

First, let’s examine the first case of u being affected by inserting e. For u

to be affected by the edge e, this means that the shortest path distance from s

24 4.2. INCREMENTAL UPDATE BASED ALGORITHM

to v must be shorter than the shortest path distance from s to u. Furthermore,

because e connects vertices u and v together, the shortest path distance from s

to u must be larger than the shortest path distance from s to v plus the edge

length of e. Thus, all vertices with a shortest path passing through u must also

have their shortest path distances updated. The SPI algorithm will then invoke

Dijkstra’s algorithm to calculate the new shortest path distances for all affected

vertices. This Dijkstra’s invocation is done with the following conditions:

1. Dijkstra’s algorithm is modified to initialize the shortest path distances of

all the vertices with their shortest path distances from s.

2. The source vertex for this Dijkstra’s expansion is set to u, because u is the

first vertex affected by the inclusion of edge e.

3. The shortest path distance of u is set to the shortest path distance from s

to v plus the edge length of e.

In the case of v being affected by the insertion of e, we can see that the same

conditions hold for v as it did for u, in the first case. As such, the new shortest

path distance of v is set to the shortest path distance from s to u plus the length

of edge e, and the source vertex for the resulting Dijkstra’s expansion is set to

vertex v.

Now, the last case, where neither u or v are affected by e, means that no

other vertices are affected by e as well. As such, the shortest path incremental

update algorithm does not need to invoke Dijkstra’s algorithm and can return

immediately.

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 25

4.2.2 Using SPI for “Which Edge-Add-SP-Min” Queries

Now we will present how to modify SPI to answer “Which Edge-Add-SP-

Min” queries. We propose an iterative shortest path incremental update algo-

rithm (ISPI), which iteratively uses a shortest path incremental update algorithm

instead of a shortest path algorithm to compute the benefit values. If an edge ei

is added to a graph G, the new shortest path distance between two query vertices

sj and tj in G{ei} can be calculated more efficiently using a SPI algorithm, which

caches the shortest path tree obtained from a shortest path calculation on G.

ISPI works as follows: for each query qj , we first compute its shortest path

distance on G using any shortest path algorithm, then, the benefit of each bridg-

ing edge ei on qj is computed using the SPI algorithm. Compared with the

brute-force solution, ISPI invokes a shortest path algorithm |Q| times and a SPI

algorithm |Q| × |P | times, which reduces the total execution time of ISPI. The

pseudocode for ISPI can be found in Algorithm 1

Algorithm 1 ISPI

1: function ISPI(G, Q, P)
2: SearchSpaceReduction(Q,P) . Chapter 4.1
3: for q ∈ Q do
4: Dijkstra(s, t)
5: cache shortest path tree
6: for e ∈ P do
7: Bei += SPI(G, q, e) . Algorithm 2
8: restore updated shortest path distances . Chapter 4.2.2.1
9: end for

10: end for
11: return most beneficial edge
12: end function

26 4.2. INCREMENTAL UPDATE BASED ALGORITHM

4.2.2.1 Optimizations

We note that the shortest path incremental algorithm is defined for a single-

source shortest path query. Because “Which Edge-Add-SP-Min” queries are

single-pair shortest path queries, we modify the shortest path incremental algo-

rithm to work under the constraints of a “Which Edge-Add-SP-Min” query.

Because SPI works on a single-source shortest path query, we need to impose

extra conditions for determining which vertices require their shortest path dis-

tances to be updated. First, if Dijkstra’s algorithm, as used in the update phase

of SPI, visits the destination vertex t of the single-pair shortest path query, then

all relevant vertices have had their shortest path distances updated. Because

we are evaluating a single-pair shortest path query, once the new shortest path

distance to t has been found, we can terminate updating other vertex distances.

We note that Dijkstra’s algorithm may not be able to reach vertex t from

either vertex u or v after the insertion of edge e into G, during the update phase

of SPI. Thus, we can determine that e does not affect the shortest path distance

from s to t if we update a vertex with a shortest path distance greater than the

original shortest path distance from s to t. We can see the modified version of

SPI, for use in answering “Which Edge-Add-SP-Min” queries, in Algorithm 2.

ISPI iteratively calls SPI to determine the benefit of each bridging edge in

P . The updated shortest path distances calculated by SPI are only temporary

for ISPI’s usage. Thus, before each subsequent call to SPI, ISPI needs to restore

the shortest path distances of any updated vertex to the cached shortest path

distances.

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 27

Algorithm 2 SPI

1: function SPI(G, q, e)
2: if sps,u + ‖e‖ < sps,v then
3: root = u
4: else if sps,v + ‖e‖ < sps,u then
5: root = v
6: else
7: return spq
8: end if
9: initialize shortest path distances from cached values

10: Dijkstra(root, t, spq)
11: return shortest path distance to t
12: end function

If SPI immediately returns, because no vertices require their shortest path

distances to be updated, we can immediately go to the next iteration. However,

if some vertices have had their shortest path distances updated by SPI, then only

those vertices need to be restored with the cached shortest path distances. As

such, during each SPI call to Dijkstra’s algorithm, we maintain a list of vertices

that have been visited by Dijkstra’s algorithm (i.e., the list of vertices that have

had their shortest path distances updated by SPI). Then, before the next iterative

call to SPI by ISPI, we restore the shortest path distances of all vertices in the

list with their cached shortest path distances.

4.3 Top-K Based Algorithms

Using ISPI to incrementally compute the effects of a bridging edge can at

times be rather expensive. As we can see from the SPI algorithm, the location of

the bridging edge within the shortest path tree determines the number of vertices

that are affected by inserting the selected bridging edge. Thus, if many bridging

28 4.3. TOP-K BASED ALGORITHMS

edges are located very close to the source vertex of a query, and the bridging

edge vertices only offer a marginal reduction in shortest path distances, the cost

of the shortest path incremental update becomes high. Furthermore, because

the incremental update is now more expensive due to more vertices having their

shortest path distances updated, ISPI also becomes more expensive because more

vertices have been touched and need to have their shortest path distances reset

from the cached values for the next iteration.

Due to the aforementioned drawbacks of the ISPI algorithm, in this section

we will present a set of algorithms that are independent on the number of vertices

a bridging edge affects. The proposed algorithms below draw on Top-k query

processing principles to efficiently compute a bridging edge’s benefit.

4.3.1 Threshold Pruning

Notice that, currently, we are actually looking for only one vertex-pair that

has the highest benefit. Our search space is only of size |P |; however, since

the benefit of a vertex-pair is the amount reduced in the shortest-path distance

sum, we still need to compute |Q| × |P | benefit entries, beiqj . So, a question that

naturally arises is whether it is possible to stop early and/or skip some of the

|Q| × |P | benefit entries?

In fact, we can. Here, we propose to maintain the upper and lower benefit

bounds of each vertex-pair throughout the search process. The value of the

largest lower bound benefit of a vertex-pair achieved thus far is set as a threshold

θ. During execution of the query, all vertex-pairs with an upper bound benefit

less than θ are guaranteed to not be the answer and are pruned. Finally, we can

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 29

terminate the search if no vertex-pair has an upper bound benefit value greater

than θ.

Take Figure 4.1 as an example. If bridging c and x by e1 can shorten the

shortest path of q1(a, d), e1 at most reduces q1’s shortest path distance to 5,

which is e1’s length. In this case, the benefit b
(c,x)
q1 would be mq1 × (spGq1 −

‖e1‖) = 1 × (15 − 5) = 10. On the other hand, it is possible that e1(c, x)

cannot shorten q1(a, d) at all. In this case, b
(c,x)
q1 = 0. So, after search space

reduction (Chapter 4.1), we can initialize the upper and lower bound benefits

of any bridging edge ei to any query qj as mqj × max
(
(spGqj − ‖ei‖), 0

)
and

0, respectively. Note that the benefit bounds of a bridging edge Bei can be

derived from the benefit bounds of the corresponding column in the search space.

Figure 4.2 shows the reduced search space of the running example after search

space reduction and bounds initialization, which has been reduced to 14 entries

from an original of |Q|×|P | = 5×6 = 30 entries. Throughout the search process,

the benefit bound of a bridging edge can be dynamically tightened after a SP

execution.3

In our example, assume that there is a bridging edge e7(a, d) with length

‖e7‖ = 5, and that a Dijkstra’s expansion has been executed for q1(a, d) on G{e7},

yielding be7q1 = 10. In this case, the lower benefit bound LBe7 of e7 is updated to

10, the upper benefit bound UBe7 of e7 remains as 30, and θ = 10. Since θ is

greater than e4’s upper bound benefit (Figure 4.2), e4 can be pruned.

Our two proposed algorithms follow the thresholding framework detailed

3In this work, we use Dijkstra’s algorithm to compute shortest path distances. If a shortest path
index is available, our algorithms can call such an index instead. In any case, the key point is that
our algorithms are designed to minimize those calls. As another example, if the input graphs are too
large to fit in memory, we can use any disk-based shortest path algorithm (e.g., [5]) instead. Again, our
algorithms are able to reduce those calls.

30 4.3. TOP-K BASED ALGORITHMS

above and use the execution strategies below to calculate benefit values for bridg-

ing edges without the need to modify the underlying graph G. The first algorithm

(Chapter 4.3.3.1) sticks to using the same strategy after it has determined the

best strategy, based on the input information. The second algorithm (Chap-

ter 4.3.3.2), adaptively changes the execution strategy based on the information

collected during runtime. Both algorithms dynamically prune non-answers and

stop early once the stopping condition is met.

4.3.2 Insertion Free Benefit Calculations

A basic solution is inefficient because it requires that each bridging edge

ei be temporarily inserted into the graph G followed by computing the benefit

(distance reduction) for the inserted edge—requiring at most |Q|×|P | invocations

of a shortest path to compute the benefit of bridging edges. Alternatively, a basic

solution that uses the all-pairs shortest path distances would require an enormous

amount of space to maintain the all-pairs shortest path distances.

In the following, we show how to use at most two Dijkstra’s executions,

without modifying G, to calculate (i) the benefit of a bridging edge with respect

to the entire workload Q (Chapter 4.3.2.1) or (ii) the benefits of every bridging

edge in P with respect to a particular query (Chapter 4.3.2.2). Mapping back

to the search space illustrated in Figure 4.2, each invocation of the two methods

can respectively determine the benefits of an entire column (Bei) or an entire

row (Bqj).

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 31

4.3.2.1 Edge Oriented Expansion (EOE)

We now introduce the Edge Oriented Expansion (EOE) method to calculate

the benefit Bei of a bridging edge ei using at most two Dijkstra’s expansions,

instead of |Q|. First, let us consider the following lemma:

Lemma 3 Given a bridging edge ei(ui, vi), let T be the set of destination vertices

of all queries qj ∈ Q. Then, from a single Dijkstra’s expansion, with source vertex

vi, we can confine the expansion distance to

rei = max(spq1 , . . . , spq|Q|)− ‖ei‖

to obtain all necessary shortest path distances for calculating Bei. Furthermore,

let the set of vertices visited by the expansion be N . If T ∩N = ∅, then Bei ≤ 0.

Proof. For a bridging edge ei to benefit a query qj ∈ Q, we must have spqj >

disteiqj . We then substitute the detour distance disteiqj with Equation 4.4. Noting

that sp(sj ,ui) ≥ 0 always holds, we arrive at spqj > ‖ei‖ + sp(vi,tj) and thus

obtain sp(vi,tj) < spqj − ‖ei‖. Because max(spq1 , . . . , spq|Q|) − ‖ei‖ = rei and

spqj ≤ max(spq1 , . . . , spq|Q|), we derive that sp(vi,tj) < rei . Thus, rei is the

minimum distance that Dijkstra’s expansion must traverse before being able to

determine that ei cannot have any benefit to the longest query in Q. As N is the

set of vertices visited by a Dijkstra’s expansion sourced from vi and of distance

rei , T ∩N = ∅ implies that ei cannot shorten any queries in Q. Extensions to the

undirected graph case is straightforward. We use Equation 4.3 to calculate the

disteiqj values. Furthermore, because G is undirected, T contains all the source

and destination vertices for queries qj ∈ Q.

32 4.3. TOP-K BASED ALGORITHMS

Lemma 3 confines the expansion distance. Furthermore, given a bridging

edge ei(ui, vi), after executing the confined Dijkstra’s expansion, if we determine

that Bei ≤ 0 by Lemma 3, then no further calculations are needed for ei and

another bridging edge can be examined. However, if we cannot conclusively

determine Bei ≤ 0 (i.e., T ∩ N 6= ∅) in the first Dijkstra’s expansion, another

expansion is required to determine the true benefit of a bridging edge ei. If

tj ∈ T ∩ N , then it is possible that ei has some benefit to qj from the current

information at hand. To determine the benefit of ei to qj , we can compute the

shortest path distance for the query qj(sj , tj) using a detour path that includes

the edge ei(ui, vi) as:

disteiqj = min
(
sp(sj ,ui) + ‖ei‖+ sp(vi,tj),

sp(sj ,vi) + ‖ei‖+ sp(ui,tj)

) (4.3)

for an undirected graph, or for a directed graph:

disteiqj = sp(sj ,ui) + ‖ei‖+ sp(vi,tj) (4.4)

The shortest path distances from ui are unknown and must be obtained from

a Dijkstra’s expansion using ui as the source vertex and a distance of rei (in an

undirected graph). If G is a directed graph, then the shortest path distances

from ui are obtained by a reverse Dijkstra’s expansion, which reverses all the

edge directions in the graph, with source vertex ui and distance rei .

Note that the detour path distance disteiqj may be longer than the origi-

nal shortest path distance spqj because it deliberately passes through ei. As

such, the shortest path distance of qj on the graph G{ei} is given as spG
{ei}

qj =

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 33

min
(
disteiqj , sp

G
qj

)
and the benefit of ei on query qj can be determined using Equa-

tion 4.1. From at most two Dijkstra’s expansions,

disteiqj of all queries qj in Q can be obtained; thus, an entire column in the

search space, or Bei , can be obtained using Equation 4.2.

A naive way of using EOE is to invoke EOE once for each vertex-pair in

P and then identify the edge with the highest benefit. Despite Search Space

Reduction and Threshold Pruning, this naive use of EOE finds the answer using

at most 2|P | Dijkstra’s expansions (independent of Q), without actually inserting

each bridging edge to the graph G one-by-one. The pseudocode for EOE can be

found in Algorithm 3. An invocation of EOE finds the exact benefit Bei of a

bridging edge and only requires O(|V |) memory to hold the necessary shortest

path distances from each Dijkstra’s expansion.

Algorithm 3 Function—Edge Oriented Expansion

1: function EOE(ei(ui, vi), Q)
2: rei = max(spq1 , . . . , spq|Q|) - ‖ei‖ . Lemma 3

3: Dijkstra
(
vi, r

ei
)

4: if T ∩N 6= ∅ then . Lemma 3
5: ReverseDijkstra

(
ui, r

ei
)

6: end if
7: for all qj ∈ Q do
8: Calculate benefit beiqj . Equation 4.1
9: LBei += beiqj

10: UBei = LBei

11: end for
12: return average number of vertices visited
13: end function

34 4.3. TOP-K BASED ALGORITHMS

4.3.2.2 Query Oriented Expansion (QOE)

Now, we present a counterpart of EOE, Query Oriented Expansion, which

calculates the upper and lower bounds on the benefits of a query with respect

to each bridging edge in P (an entire row in the search space, Bqj) using at

most two Dijkstra’s expansions. QOE is important because when |Q| � |P |,

we can fill the entire search space by calling the QOE procedure for each query,

which requires at most 2|Q| Dijkstra’s expansions (versus EOE’s 2|P | Dijkstra’s

expansions).

QOE is similar to EOE, except that we carry out one Dijkstra’s expansion

using sj as the source vertex (instead of vi) and, if needed, a Dijkstra’s expansion

using tj (instead of ui) as the source making use of the following lemma:

Lemma 4 Given a query qj(sj , tj), let U be the set of head vertices of ei ∈ P .

Then, from a single Dijkstra’s expansion, with source vertex sj we can confine

the expansion distance to

rqj = spqj −min
(
‖e1‖, . . . , ‖e|P |‖

)
and obtain all necessary shortest path distances for calculating Bqj . Furthermore,

let the set of vertices visited by the expansion be N . If U ∩N = ∅, then Bqj ≤ 0.

Proof. For a query qj to be benefited by a bridging edge ei, we must have spqj >

disteiqj . We then substitute the detour distance disteiqj with Equation 4.4. Also,

note that sp(vi,tj) ≥ 0 must hold. We then derive spqj > sp(sj ,ui) + ‖ei‖ and thus

obtain sp(sj ,ui) < spqj − ‖ei‖. Since spqj − ‖ei‖ ≤ spqj −min
(
‖e1‖, . . . , ‖e|P |‖

)
=

rqj , we derive that sp(sj ,ui) < rqj . Thus, rqj is the minimum distance that a

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 35

Dijkstra’s expansion sourced at sj must traverse before all bridging edges ei ∈ P

can be determined to not have a benefit to qj . Furthermore, U ∩N = ∅ implies

that all bridging edges are of a distance no shorter than rqj from sj , thus no

bridging edges in P can reduce the shortest path distance of query qj . Extension

to the undirected graph case is straightforward. We use Equation 4.3 to calculate

the disteiqj values. Furthermore, because ei is undirected, U contains both vertices

u and v for each ei ∈ P .

From a Dijkstra’s expansion sourced at sj and constrained to a maximum

expansion distance rqj , if U ∩N 6= ∅, then a reverse Dijkstra’s expansion sourced

at tj of distance rqj is required. The shortest path detour distances of query qj

that pass through each bridging edge ei is calculated using Equation 4.3 for

undirected graphs or Equation 4.4 for directed graphs. Finally, the benefit of

each bridging edge ei on query qj (Bqj) can be calculated using Equation 4.1

where spG
{ei}

qj = min
(
disteiqj , sp

G
qj

)
. The upper and lower benefit bounds for ei,

UBei and LBei , are respectively updated.

The pseudocode for QOE can be found in Algorithm 4. A QOE invocation

finds the benefits of |P | bridging edges with respect to the same query. So, a

naive way of using QOE is to invoke QOE once for each query in Q. After

that, we can identify the edge with the highest benefit. Similar to the naive use

of EOE, this naive method can find the answer using at most 2|Q| Dijkstra’s

expansions (independent of |P |) and only requires O(|V |) memory space to hold

the necessary shortest path distances from each Dijkstra’s expansion.

36 4.3. TOP-K BASED ALGORITHMS

Algorithm 4 Function—Query Oriented Expansion

1: function QOE(qj(sj , tj), P)
2: rqj = spqj - min

(
‖e1‖, . . . , ‖e|P |‖

)
. Lemma 4

3: Dijkstra
(
sj , r

qj
)

4: if T ∩N 6= ∅ then . Lemma 4
5: ReverseDijkstra

(
tj , r

qj
)

6: end if
7: for all ei ∈ P do
8: Calculate benefits beiqj . Equation 4.1
9: LBei += beiqj

10: UBei -= mqj ×
(
spqj - ‖ei‖

)
11: end for
12: return average number of vertices visited
13: end function

4.3.3 Algorithms

We now present two algorithms that exploit the aforementioned techniques

of search space reduction (Chapter 4.1), threshold pruning (Chapter 4.3.1), and

insertion free benefit calculations (Chapter 4.3.2). While it is clear that both al-

gorithms will follow the Threshold Pruning framework (Chapter 4.3.1) to prune

non-answer entries and use search space reduction (Chapter 4.1) to reduce the

search space, whether the algorithms should use EOE, QOE, or both, to perform

insertion free benefit calculations has not yet been discussed. In fact, whether

EOE or QOE is more efficient depends on many factors including the sizes of Q

and P (search space size); and the characteristics of the input graph G, query

workload Q, and bridging edges (which affect Dijkstra’s execution times). There-

fore, our first algorithm goes for a proactive approach that first invests two calls

to QOE to estimate whether EOE or QOE has better efficiency for the current

input, and then uses the lower cost option to finish processing the query. Our

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 37

second algorithm uses an adaptive approach to switch between EOE and QOE

to answer the query.

4.3.3.1 Proactive Algorithm (PA)

The Proactive Algorithm operates in three phases. The first phase reduces

the search space (Chapter 4.1). The second phase determines whether using

EOE or QOE is more efficient on the input parameters. In the third phase, PA

processes the “which” query and returns the final result. Algorithm 5 shows the

pseudocode for PA.

Algorithm 5 Proactive Algorithm (PA)

1: function PA(G, Q, P)
2: SearchSpaceReduction(Q,P) . Chapter 4.1
3: ChooseEOEorQOE(G,Q,P) . Algorithm 6
4: if EstVertexVisit EOE ≤ EstVertexVisit QOE then . Use EOE
5: InitialBounds(Q,P) . Chapter 4.3.1
6: while θ < maxUB do
7: e = arg maxei∈P (UBe1 , . . . UBe|E|)
8: EOE(e,Q) . Algorithm 3
9: maxUB = max(UBe1 , . . . , UBe|E|)

10: θ = max(LBe1 , . . . , LBe|E|)
11: end while
12: else . Use QOE
13: InitialBounds(Q, P) . Chapter 4.3.1
14: while θ < maxUB do
15: q = arg maxqj∈Q(UBq1 , . . . UBq|Q|)
16: QOE(q, P) . Algorithm 4
17: maxUB = max(UBe1 , . . . , UBe|E|)
18: θ = max(LBe1 , . . . , LBe|E|)
19: end while
20: end if
21: return highest benefit vertex-pair
22: end function

38 4.3. TOP-K BASED ALGORITHMS

The second phase of PA determines whether using EOE or QOE is more

efficient based on the input parameters. The pseudocode of the estimation pro-

cedure (ChooseEOEorQOE) is found in Algorithm 6. The idea of the procedure is

to formulate a power law equation v = αdβ that can roughly estimate the num-

ber of vertices visited v by Dijkstra’s algorithm for a given expansion distance

d. Since the running time of Dijkstra’s algorithm is proportional to the number

of vertices visited, the power-law equation can be used to estimate the running

times of EOE and QOE. We can determine the values of α and β by running some

queries in Q to obtain some values of v and d. Noting that log v is linear to log d,

we can select ε queries in Q to solve for α and β—consequently, we do not have to

perform QOE for said queries if QOE is later chosen to be used. We apply linear

regression to estimate the values α and β for the best-fit line. Because QOE may

not be more efficient than EOE for the input instance, we only allocate a small

cost for this sampling step (i.e., ε = 2). For ε = 2, we pick the longest and the

shortest queries in Q for the estimation because these endpoints of the regression

line are far apart. Using the derived power-law equation,PA estimates the worst

case cost of EOE as the number of vertices visited by the longest query times

2|P | (because the expansion distance of EOE is bounded by the longest query

(Lemma 3)). Similarly, PA estimates the worst case cost of QOE as the sum of

the vertex visits of each remaining query in Q (i.e., substituting the query length

of each remaining query as d).

After choosing the benefit calculation method (Line 3), the benefit bounds

of the bridging edges and the queries are initialized (Line 5 or 13) according

to Chapter 4.3.1 (N.B. it is not necessary to store the benefit bound of each

individual entry, only Bei). The while loop Lines 6–11 for EOE and Lines 14–19

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 39

Algorithm 6 Function—Choosing EOE or QOE

1: function ChooseEOEorQOE(P , Q)
2: VerticesVisitedLQ = QOE

(
arg maxqj∈Q(spq1 , . . . , spq|Q|)

)
3: VerticesVisitedSQ = QOE

(
arg minqj∈Q(spq1 , . . . , spq|Q|)

)
4: β =

(
log VerticesVisitedLQ

VerticesVisitedSQ

)
/
(
log

max(spq1 ,...,spq|Q|)

min(spq1 ,...,spq|Q|)

)
5: α = VerticesVisitedLQ /

(
max(spq1 , . . . , spq|Q|)

)β
6: EstVertexVisit EOE = 2 ∗ |P |∗ VerticesVisitedLQ
7: for all qj ∈ Q do
8: EstVertexVisit QOE += 2 ∗ α ∗ (spqj)

β

9: end for
10: return EstVertexVisit QOE and EstVerticesVisit EOE
11: end function

for QOE and the threshold θ are the realization of the thresholding framework

(Chapter 4.3.1). One remaining consideration that needs to be addressed is which

edge (for EOE) or which query (for QOE) should be carried out first? Note that

the order of carrying out EOE and QOE has a performance impact because if

the final answer is able to be examined early in the process, its high LB value

will give a high value to θ, effectively pruning more EOE or QOE operations. In

this regard, we notice that we should use the upper bound principle (UBP) [20]

here. Specifically, in our context, UBP tells us that we should carry out EOE

or QOE on edges or queries that have a larger upper bound first. For example,

if EOE is used, and if there is a bridging edge e1, with benefit bounds [0, 30],

and another bridging edge e2 with benefit bounds [0, 15], carrying out EOE on

e2 first requires carrying out EOE on e1 later, because e1’s benefit is possibly

better than e2’s. Following UBP, PA is designed to choose the (unconsidered)

edge/query with the highest upper benefit bounds (Lines 7/15).

If QOE is chosen, PA requires 2|Q| Dijkstra’s executions in the worst case; if

EOE is chosen, PA requires 2+2|P | Dijkstra’s executions in the worst case. Com-

40 4.3. TOP-K BASED ALGORITHMS

pared with the algorithm that we present next, the performance of PA slightly

depends on the estimation accuracy but it has a better worst case performance

(in terms of number of Dijkstra’s executions). PA’s slight dependence on estima-

tion accuracy is due to the fact that as long as PA is able to correctly determine

whether EOE or QOE is more efficient, how accurate the cost estimation was

is not critical. Nonetheless, our experiments show that the two proposed algo-

rithms are nearly indistinguishable (because based on the input parameters, both

algorithms converge to the same execution plan) in performance and both are

orders of magnitude better than basic solutions.

4.3.3.2 Adaptive Algorithm (AA)

Our second proposed algorithm, Adaptive Algorithm, dynamically switches

between using EOE and QOE based on the updated benefit bounds after each

iteration. See Algorithm 7 for AA’s pseudocode. Like PA, the search space is

first reduced with SearchSpaceReduction (Line 2). Then, the benefit bounds

of the bridging edges and queries are initialized (Line 3). For each iteration

(Lines 4 to 16), either EOE or QOE is used to calculate exact benefit values of a

bridging edge with respect to all queries (a column) or the benefit of all bridging

edges with respect to a query qj (a row). The decision of choosing whether EOE

or QOE is used depends on the benefit bounds of a bridging edge (Bei) and a

query (Bqj) at run-time. If the upper bond principle (UBP) is used here, for

each iteration, EOE is carried out on ei if its upper bound benefit UBei is the

highest, otherwise QOE is carried out on qj if its upper bound benefit UBqj is

the highest. After an iteration, either a column (if EOE is used) or a row (if

QOE is used) of entries in the search space is filled up and the benefit bounds of

CHAPTER 4. “WHICH EDGE-ADD-SP-MIN” QUERIES 41

all Bqj (if EOE is used) or Bei (if QOE is used) are updated; iteration continues

until the best vertex-pair is identified.

Algorithm 7 Adaptive Algorithm (AA)

1: function AA(G, Q, P)
2: SearchSpaceReduction(Q,P) . Chapter 4.1
3: InitialBounds(Q,P) . Chapter 4.3.1
4: while θ < maxUB do
5: qUB = max(UBq1 , . . . UBq|Q|)
6: eUB = max(UBe1 , . . . UBe|P |)
7: if qUB ≤ eUB then . Use EOE
8: e = arg max(UBe1 , . . . UBe|P |)
9: EOE(e,Q) . Algorithm 3

10: else . Use QOE
11: q = arg max(UBq1 , . . . UBq|Q|)
12: QOE(q, P) . Algorithm 4
13: end if
14: maxUB = max(UBe1 , . . . , UBe|P |)
15: θ = max(LBe1 , . . . , LBe|P |)
16: end while
17: return highest benefit vertex-pair
18: end function

Note that in AA, there are options other than UBP for choosing bridging

edges or queries. To illustrate, using Figure 4.2 assume that QOE is chosen and

carried out on q1 and q2 in the first two iterations; further assume that after the

two iterations, Bq1 = 36 and Bq2 = 61, and the benefit bounds of bridging edges

are tightened to: Be1 = [25, 30], Be2 = [15, 15], Be3 = [21, 24], Be4 = [9, 9], and

Be5 = [27, 34]. In the third iteration, if UBP is used, EOE should be carried

out on e5 next because e5’s upper bound benefit, which is 34, is the highest.

However, if the lower bound benefits are non-zero, we can consider other options

such as choosing the one with the largest bound difference (LBD), hoping that an

EOE or QOE on that edge or query could reduce the uncertainty the most. In

42 4.3. TOP-K BASED ALGORITHMS

the example, if LBD is used, then QOE on q3 (with the largest bound difference

of 14) is carried out instead of an EOE on e5 (with a bound difference of 7).

Note that LBD is not applicable to PA because the lower benefit bounds of an

edge/query is always 0 or same as its upper benefit bound in PA.

AA requires at most 2
(
|Q|+ |P | − 1

)
Dijkstra’s executions, which is higher

than PA in the worst case. Nonetheless, AA is not subject to any estimation

error, and its decisions are made based on richer information (bounds are updated

at every iteration). So, we regard AA as a competitive alternative to PA worth

considering.

Chapter 5

“Which k-Edge-Add-SP-Min”

Queries

The previous chapter focused on answering “Which Edge-Add-SP-Min” queries,

which find the best vertex-pair in P . In some applications, we may want to find

the best k (where k > 1) vertex-pairs in P , resulting in “Which k-Edges-Add-SP-

Min” queries. In this case, we need an efficient way to determine the k bridging

edges that have the maximum total benefit B∗k on workload Q. Note that the

a b
5

c
5

g

1

d

5

i

1

e
5

k

1

f

5h
2

1

j
3

1l
1

1

Figure 5.1. Which k-Edge-Add-SP-Min Query

43

44

search space of this type of “which” query consists of |Q|×
(|P |
k

)
entries, which is

exponential to k. We propose two heuristic algorithms that return approximate

solutions.

The first heuristic algorithm (HA) is very straightforward—it returns the

top-k vertex-pairs found by AA (or PA). Thus, we refer to it as TopK-HA. As

a heuristic algorithm, there are cases where TopK-HA cannot return optimal

solutions. Consider the example in Figure 5.1 with one shortest path query

q(a, f). The individual benefits of bridging edges (i, j), (k, l), and (g, h) on G are

10, 2, and 1 respectively (e.g., running q on G{(k,l)} has a distance reduction of

2). When k = 2, TopK-HA returns bridging edges (i, j) and (k, l) as the answer.

However, the total benefit of (i, j) and (k, l) on G (i.e., running q on G{(i,j),(k,l)})

is the same as the benefit of the top-1 bridging edge (i, j) (i.e., a benefit of

25− 15 = 10). The optimal solution, however, are bridging edges (i, j) (rank 1)

and (g, h) (rank 3), whose total combined benefit is 25 − 14 = 11. Pseudocode

for TopK-HA can be found in Algorithm 8.

The second heuristic algorithm tries to avoid the above situation by using

greedy heuristics. This algorithm, referred to as Greedy-HA, invokes AA (or

PA) in k rounds. In each round, the best vertex-pair from the previous round is

added to G. The example in Figure 5.1, Greedy-HA is able to find the optimal

solution: first, it uses AA to find the best vertex-pair, (i, j) in G; then, i and j are

connected by adding their bridging edge to G. In the second round, Greedy-HA

uses AA to find the next best vertex-pair in G{(i,j)}, which is (g, h). Pseudocode

for Greedy-HA can be found in Algorithm 9.

CHAPTER 5. “WHICH K-EDGE-ADD-SP-MIN” QUERIES 45

Algorithm 8 TopK-HA

1: function TopK-HA(G, Q, P , k)
2: SearchSpaceReduction(Q,P) . Chapter 4.1
3: InitialBounds(Q,P) . Chapter 4.3.1
4: while θ < kmaxUB do
5: qUB = max(UBq1 , . . . UBq|Q|)
6: eUB = max(UBe1 , . . . UBe|P |)
7: if qUB ≤ eUB then . Use EOE
8: e = arg max(UBe1 , . . . UBe|P |)
9: EOE(e,Q) . Algorithm 3

10: else . Use QOE
11: q = arg max(UBq1 , . . . UBq|Q|)
12: QOE(q, P) . Algorithm 4
13: end if
14: kmaxUB = k-th largest UBei

15: θ = k-th largest LBei

16: end while
17: return k highest benefit vertex-pairs
18: end function

Algorithm 9 Greedy-HA

1: function Greedy-HA(G, Q, P , k)
2: while k > 0 do
3: e = AA(G, Q, P) . Algorithm 7
4: G = G + e
5: P = P - e
6: Update shortest path distances of Q
7: k = k - 1
8: end while
9: return k highest benefit vertex-pairs

10: end function

46

In our experiments, both Greedy-HA and TopK-HA run in less than one

minute with Greedy-HA being k times slower than TopK-HA but yielding very

high quality solutions. From our experiments, we can see that for sampled edges,

Greedy-HA find the optimal solution for all tested values of k, k = 2 to k = 4.

For using synthetic edges, Greedy-HA finds solutions that approach the optimal

solution as the value of k increases from k = 2 to k = 4. As part of our future

work, we plan to derive the approximation ratio of both heuristic algorithms.

We note that there are other techniques for evaluating the best combination

of k edges can be evaluated as well. These other techniques include hill climbing,

simulated annealing, genetic algorithms, etc. Similar to the approximation ratio

for the heuristic algorithms of TopK-HA and Greedy-HA, we leave the explo-

ration and evaluation of hill climbing solutions, simulated annealing solutions,

and other solutions as future work.

Chapter 6

Experiments

We evaluated our proposed solutions by running experiments on five real

graphs (Table 6.1) of different sizes and types. Our real graph data sets can be

obtained from the following locations. For the Argentina and San Francisco road

networks, please visit http://www.maproom.psu.edu/dcw/. For the Facebook data

set, please visit http://socialnetworks.mpi-sws.mpg.de/data/facebook-links.

txt.gz. For the CAIDA data set, please visit http://www.caida.org/tools/

measurement/skitter/router_topology/. And for the WebGraph data set, please

visit http://law.dsi.unimi.it/webdata/eu-2005/.

Graph Name Graph Type Vertex Count Edge Count Average Fanout

Argentina Road Network 85,287 88,357 2.072

San Francisco Road Network 174,956 223,001 2.536

Facebook Small World 63,731 817,090 25.642

CAIDA Router Topology 190,914 607,609 6.365

WebGraph World Wide Web 862,664 19,235,140 22.297

Table 6.1. Real Graph Data Set Properties

47

http://www.maproom.psu.edu/dcw/
http://socialnetworks.mpi-sws.mpg.de/data/facebook-links.txt.gz
http://socialnetworks.mpi-sws.mpg.de/data/facebook-links.txt.gz
http://www.caida.org/tools/measurement/skitter/router_topology/
http://www.caida.org/tools/measurement/skitter/router_topology/
http://law.dsi.unimi.it/webdata/eu-2005/

48 6.1. WHICH EDGE-ADD-SP-MIN QUERIES

The query workloads were generated by randomly selecting source and desti-

nation vertices in the graph as queries. We used two methods to generate the in-

put vertex-pair set P . The first is a synthetic method—non-adjacent vertex-pairs

are randomly selected from the graph, and bridging edge lengths are randomly

generated and do not exceed the longest edge length in the original graph. The

second is a sampling method—bridging edges are randomly sampled from the

real edges of the original graph, and the input graph is the reduced graph with-

out the sampled edges. The synthetic method has the advantage that the size

and property of the input graph are preserved, but the bridging edge lengths are

synthesized. The sampling method has the advantage that the lengths of bridg-

ing edges are real, but the input graph have fewer edges than the original real

graph. We have carried out experiments using both methods. All experiments

were run on a 2.5 GHz Intel PC running Ubuntu with 8 GB of RAM.

6.1 Which Edge-Add-SP-Min Queries

We evaluated our proposed algorithms, ISPI, PA, and AA, against the two

baseline solutions mentioned in the beginning of Chapter 4:

1. the brute-force solution (BF), and

2. the solution that calculates benefits by first computing the all-pairs-shortest-

paths (APSP).

We implemented all algorithms in C++. APSP ran out of memory in all

experiments; thus, we have omitted it from all the experimental results. In the

CHAPTER 6. EXPERIMENTS 49

following, we present results that show the performance of the different algo-

rithms under different sizes of input:

1. vertex-pair set P ,

2. queries in the workload Q, and

3. different graph sizes.

The default sizes of P and Q are 500.

6.1.1 LBD vs UBP in AA

First, we will take a look at how the Largest Bound Difference compares

with the Upper Bound Property when used in AA. We have experimented on the

Argentina road network using both sampled and synthetic edges. Furthermore,

we have also varied the sizes of P and Q. As we can see in Figure 6.1, Figure 6.2,

Figure 6.3, and Figure 6.4, the use of LBD and UBP in AA are nearly identical.

In fact, UBP has a very slight performance gain in terms of actual running times

when compared with LBD because the UBP is simpler to implement.

50 6.1. WHICH EDGE-ADD-SP-MIN QUERIES

10

30

45

50 100 500 1000 3000
Number of Edges

T
im

e
in

S
ec

on
d

s

LBD UBP

(a) Running time

107

107.5

50 100 500 1000 3000
Number of Edges

V
er

te
x

V
is

it
s

LBD UBP

(b) Number of Vertices Visited

Figure 6.1. LBD vs UBP—Varying |P | on the Argentina road network (sampled
edges)

10

30

60

90

50 100 5001000 3000

1 minute

Number of Queries

T
im

e
in

S
ec

on
d

s

LBD UBP

(a) Running time

107

108

50 100 5001000 3000
Number of Queries

V
er

te
x

V
is

it
s

LBD UBP

(b) Number of Vertices Visited

Figure 6.2. LBD vs UBP—Varying |Q| on the Argentina road network (sampled
edges)

CHAPTER 6. EXPERIMENTS 51

10

30

45

50 100 5001000 5000
Number of Edges

T
im

e
in

S
ec

on
d

s

LBD UBP

(a) Running time

107

107.5

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

LBD UBP

(b) Number of Vertices Visited

Figure 6.3. LBD vs UBP—Varying |P | on the Argentina road network (synthetic
edges)

10

30

60
90

50 100 5001000 5000

1 minute

Number of Queries

T
im

e
in

S
ec

on
d

s

LBD UBP

(a) Running time

107

108

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

LBD UBP

(b) Number of Vertices Visited

Figure 6.4. LBD vs UBP—Varying |Q| on the Argentina road network (synthetic
edges)

52 6.1. WHICH EDGE-ADD-SP-MIN QUERIES

6.1.2 Results on Argentina Road Network

Since our experimental results in Chapter 6.1.1 show that the performance

of AA is nearly identical when using UBP and LBD heuristics, the remaining

experimental results of AA below use UBP.

6.1.2.1 Sampled Edges

Figure 6.5 shows the running times and number of vertices visited of all

methods when varying the size of P on the Argentina Road Network. We can

see that ISPI is approximately one and a half magnitudes times faster than BF in

running. Furthermore, ISPI also visits approximately one and a half magnitudes

less vertices than BF.

PA and AA have comparable performance and they are about two to three

orders of magnitude faster than BF and about half to one order of magnitude

faster than ISPI. We can see that starting from |P | = 500, PA plateaus with a

constant running time as the size of P increases to 1000 and 3000. We can see

that based on the input parameters, PA accurately estimates when using EOE or

QOE is more efficient. Similarly, AA is able to determine that it is more efficient

to use QOE when the input size of P exceeds 500.

Figure 6.6 shows the running times and number of vertices visited of all

methods when varying the size of Q on the Argentina Road Network. Again,

PA and AA have comparable performance and they are one to three orders of

magnitudes faster than the baseline methods. With the default value of |P | =

500, the running times of PA and AA plateau when |Q| = 1000. The presence of

CHAPTER 6. EXPERIMENTS 53

101

102

103

104

105

50 100 5001000 3000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

on
d

s

PA AA

ISPI BF

(a) Running time

107

108

109

1010

1011

50 100 5001000 3000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI BF

(b) Number of Vertices Visited

Figure 6.5. Varying |P | on Argentina Road Network—sampled edges

the plateau is due to PA estimating that when |Q| < 1000, using QOE is more

efficient on the input, but for |Q| ≥ 1000, EOE becomes more efficient than

QOE. Again, AA is able to come to the same conclusion without the need to

estimate the number of vertex visits as PA does.

54 6.1. WHICH EDGE-ADD-SP-MIN QUERIES

101

102

103

104

105

50 100 5001000 3000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI BF

(a) Running time

107

108

109

1010

1011

50 100 5001000 3000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI BF

(b) Number of Vertices Visited

Figure 6.6. Varying |Q| on Argentina Road Network—sampled edges

CHAPTER 6. EXPERIMENTS 55

6.1.2.2 Synthetic Edges

With synthetic edges, we see that ISPI does not perform as well. With

sampled edges, ISPI outperforms BF by about 1.5 orders of magnitude; however,

with synthetic edges, ISPI is only able to outperform BF by about one order

of magnitude. The degraded performance of ISPI on synthetic edges is due

to ISPI requiring many more invocations of the SPI algorithm to calculate an

updated shortest path distance when compared to using sampled edges. As such,

ISPI visits more vertices when synthetic edges are used, which also increases the

running time of ISPI.

PA and AA both outperform ISPI and BF by at least one order of magnitude.

Similar to the use of sampled edges, PA and AA are both able to determine an

efficient strategy for answering the query (the plateau occurring at |P | = 500

when varying the size of P , and at |Q| = 1000 when varying the size of Q). In

Figure 6.7 and Figure 6.8, we can see that AA actually runs faster than PA. This

difference is due to AA being able to switch between using EOE and QOE during

execution, thus AA is able to visit less vertices, which also effectively reduces the

total running time needed.

56 6.1. WHICH EDGE-ADD-SP-MIN QUERIES

101

102

103

104

105

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

o
n

d
s

PA AA

ISPI BF

(a) Running time

107

108

109

1010

1011

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI BF

(b) Number of Vertices Visited

Figure 6.7. Varying |P | on Argentina Road Network–synthetic edges

101

102

103

104

105

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI BF

(a) Running time

107

108

109

1010

1011

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI BF

(b) Number of Vertices Visited

Figure 6.8. Varying |Q| on Argentina Road Network–synthetic edges

CHAPTER 6. EXPERIMENTS 57

FB CAIDA WebGraph

102

103

Arg SF

1 minute

Avg Dijkstra Time

T
im

e
in

S
ec

on
d

s

PA AA ISPI

(a) Sampled Edges

FB Arg WebGraph
101

102

103

104

SF CAIDA

1 minute

Avg Dijkstra Time

T
im

e
in

S
ec

on
d

s

PA AA ISPI

(b) Synthetic Edges

Figure 6.9. Scalability of ISPI, PA, and AA

6.1.3 Scalability of ISPI, PA, and AA

Figure 6.9 shows the scalability of ISPI, PA and AA on all five real data

sets. As the graphs are different in sizes and density, we arrange the five data

sets on the x-axis based on their average Dijkstra’s running times. The results

show that PA and AA are scalable to graphs of different sizes and densities. As

for ISPI, ISPI does not scale according to graph sizes and densities.

6.1.4 Estimation Quality of PA on Argentina Road Network

In Figure 6.10, we see PA’s quality in estimating the worst case number

of vertices visited of the selected expansion method (EOE or QOE). Here, the

absolute error is measured as the error between the estimated total number

of vertices visited versus the actual number of vertices visited. We can see that

PA’s estimation error remains low with a maximum value of 0.51 and a minimum

58 6.2. “WHICH K-EDGE-ADD-SP-MIN” QUERIES

50 100 500 1000 3000
0

.2

.4

.6

.8

1

.03 .02

.44 .44 .44

.04 .03

.49 .49 .49

Number of Edges

R
el

at
iv

e
E

rr
o
r

Sampled Edges Synthetic Edges

(a) Varying |P |

50 100 500 1000 3000
0

.2

.4

.6

.8

1

.39 .41 .44 .44

.01

.47 .45 .49 .51

.01

Number of Queries

R
el

a
ti

ve
E

rr
o
r

Sampled Edges Synthetic Edges

(b) Varying |Q|

Figure 6.10. Estimation Error of PA

value of 0.01. The estimated number of vertices visited for using EOE is highly

dependent on the longest query length, as such, PA’s estimation quality is high

when EOE is selected to be used (PA selects to use EOE when |P | = 50 and 100

in Figure 6.10(a) and |Q| = 3000 in Figure 6.10(b)). Although QOE estimations

are more variable, because we need to sum up the estimated number of vertices

visited for each query, we can see that the estimation error for QOE is still low,

ranging from 0.39 to 0.51.

6.2 “Which k-Edge-Add-SP-Min” Queries

To evaluate the efficiency and the solution quality of TopK-HA and Greedy-

HA in answering “Which k-Edge-Add-SP-Min” queries, we implemented a brute-

force solution (BF-OPT) that exhaustively enumerates all possible combinations

of k bridging edges to find the optimal solution. We compare the approximate

CHAPTER 6. EXPERIMENTS 59

solutions returned by TopK-HA and Greedy-HA with BF-OPT. Since BF-OPT

is extremely time-consuming, we performed our experiments on the Argentina

road network and varied k from 2 to 4 with |P | = |Q| = 50 (BF-OPT was too

slow on the other larger graphs).

6.2.1 Sampled Edges

Figure 6.11 shows the quality of our algorithms compared with BF-OPT

and the running times of all algorithms. Greedy-HA returns optimal solutions

for all three values of k. For k = 2, 3, 4, TopK-HA finds a solution that is 99%,

90%, and 82% of the optimal solution. Finally, TopK-HA maintains a constant

running time, whereas Greedy-HA runs k times slower than TopK-HA.

6.2.2 Synthetic Edges

Figure 6.12 shows the results of the experiments on “Which k-Edge-Add-

Min-SP” queries. We see that both Greedy-HA and TopK-HA provide answers

of at least 58% of the optimal benefit, and in orders of magnitude shorter time.

With Greedy-HA, as k increases, we can see that Greedy-HA’s benefit increases.

This is because Greedy-HA is able to find a large subset of the optimal edges

(for k = 2, Greedy-HA finds one optimal edge, for k = 3, 2 optimal edges are

found, and for k = 4, 3 optimal edges are found). In terms of running times

between TopK-HA and Greedy-HA, again, TopK-HA runs in constant time, and

Greedy-HA is only k times slower than TopK-HA.

60 6.2. “WHICH K-EDGE-ADD-SP-MIN” QUERIES

2 3 4
0

50

100
100 100 10099

90.3
82.2

k Value

S
o
lu

ti
o
n

Q
u

al
it

y

Greedy-HA TopK-HA

(a) Solution Quality of TopK-HA
and Greedy-HA

2 3 4

101

103

105

107

1 minute

1 hour

1 day

1 week

k Value

T
im

e
in

S
ec

on
d

s

TopK-HA BF-OPT

Greedy-HA

(b) Running Times

Figure 6.11. “Which k-Edge-Add-SP-Min” Queries—Sampled Edges

2 3 4
0

50

100
82

91.7 93.8

69.7
62.7 58.7

k Value

S
ol

u
ti

o
n

Q
u

a
li

ty

Greedy-HA TopK-HA

(a) Solution Quality of TopK-HA
and Greedy-HA

2 3 4

101

103

105

107

1 minute

1 hour

1 day

1 week

k Value

T
im

e
in

S
ec

on
d

s

TopK-HA BF

Greedy-HA

(b) Running Times

Figure 6.12. “Which k-Edge-Add-SP-Min” Queries—Synthetic Edges

CHAPTER 6. EXPERIMENTS 61

6.3 Experimental Results on Other Data Sets

Here, we present the experimental results (sampled edges and synthetic

edges) on the remaining real data sets. We see that usually PA and AA have very

similar performance curves and outperform ISPI. Our experiments show that AA

generally performs better than PA because AA adaptively chooses between using

EOE and QOE. However, occasionally PA performs better than AA because PA

is able to estimate that using QOE, even though |Q| > |P |, is more efficient.

6.3.1 San Francisco Road Network

For the San Francisco road network data set, we can see in Figure 6.13

and Figure 6.14 that PA and AA maintain a performance that is very similar

to their performance on the Argentina road network data set (Chapter 6.1.2).

Furthermore, AA performs as well as, if not better, than PA throughout all of

the experiments.

For ISPI, we can see that as we vary the size of |P |, using sampled edges,

ISPI generally performs worse than PA and AA; however, when we vary the size

of |Q|, again using sampled edges, ISPI typically outperforms PA and AA. We

note again that ISPI is heavily dependent on the number of invocations to SPI.

As we can see in Figure 6.13, when the number of SPI invocations is high, then

ISPI will tend to perform worse than PA and AA; however, if the number of SPI

invocations is low, as in Figure 6.14, then ISPI can perform better than PA and

AA, because in the worst case PA and AA require 2 Dijkstra’s expansion for a

call to QOE or EOE.

62 6.3. EXPERIMENTAL RESULTS ON OTHER DATA SETS

102

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(a) Running time while varying |P |

108

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI

(b) Vertices visited while varying
|P |

101

102

103

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(c) Running time while varying |Q|

107

108

109

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI

(d) Vertices visited while varying
|Q|

Figure 6.13. San Francisco—Sampled Edges

CHAPTER 6. EXPERIMENTS 63

102

103

104

105

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(a) Running time while varying |P |

108

109

1010

1011

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI

(b) Vertices visited while varying |P |

101

102

103

104

105

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(c) Running time while varying |Q|

107

108

109

1010

1011

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI

(d) Vertices visited while varying |Q|

Figure 6.14. San Francisco—Synthetic Edges

64 6.3. EXPERIMENTAL RESULTS ON OTHER DATA SETS

6.3.2 Facebook Social Network

In the Facebook data set, we can see that PA and AA generally outperform

ISPI by about half an order of magnitude in running time and numbers of vertices

visited. Here, we can see that generally PA and AA have identical performance.

At times, PA actually performs better than AA. This improved performance

in PA is due, in part, to the fact that PA is able to estimate whether EOE or

QOE is more efficient for the input parameters. Furthermore, because AA does

not invest any effort into estimating EOE/QOE efficiency, AA may require extra

Dijkstra’s expansions when compared with EOE. We note again that AA does

have a higher worst case complexity, 2
(
|Q|+|P |−1

)
compared with PA’s 2+2|P |.

Although PA does outperform AA in certain cases on the Facebook data set,

we can see that AA can outperform PA in terms of running time (Figure 6.15(c)

and Figure 6.16(c)).

When AA performs worse than PA, we can see that only occasionally will

AA also perform worse than ISPI. We can see that ISPI has a performance curve

similar to PA on the Facebook data set. This is because PA uses QOE, much

in the same way that ISPI calculates all shortest path distance tree for each

query. However, we can see that ISPI is slower than PA and also visits more

vertices than PA. ISPI is slower than PA because of the required SPI invocations

to calculate the benefit values, in addition to the extra bookkeeping needed for

ISPI to cache the shortest path distances and restore the original shortest path

distances after each SPI invocation.

CHAPTER 6. EXPERIMENTS 65

101

102

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(a) Running time while varying |P |

107

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI

(b) Vertices visited while varying
|P |

101

102

103

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(c) Running time while varying |Q|

106

107

108

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI

(d) Vertices visited while varying
|Q|

Figure 6.15. Facebook—Sampled Edges

66 6.3. EXPERIMENTAL RESULTS ON OTHER DATA SETS

101

102

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(a) Running time while varying |P |

106.5

107

107.5

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI

(b) Vertices visited while varying |P |

101

102

103

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(c) Running time while varying |Q|

106

107

108

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI

(d) Vertices visited while varying
|Q|

Figure 6.16. Facebook—Synthetic Edges

CHAPTER 6. EXPERIMENTS 67

6.3.3 CAIDA Internet Router Topology

In the CAIDA data set, again, we can see that generally AA outperforms

PA, or at least maintains a nearly identical performance to PA. The times that

PA outperforms AA is due to AA’s estimation step accurately estimating that

QOE is more efficient than EOE on the input parameters. When AA outperforms

PA, PA has estimated that QOE is more efficient, but AA has adaptively chosen

a combination of EOE and QOE that is better than using QOE, as PA has

determined.

In the experiment varying the size of P using sampled edges, we can see

that ISPI is usually worse than PA and AA by approximately half an order of

magnitude in both running time and vertices visited. When we vary the size of

Q using sampled edges, ISPI performs slightly better. Again, we can see that

the extra bookkeeping and the extra vertices visited for SPI invocations in ISPI

leads to a performance curve similar to PA, only not as efficient as PA.

In the case of synthetic edges, we can see that ISPI can actually perform

better than PA because a majority of the bridging edges in P do not require a

SPI invocation. As such, ISPI is able to visit less vertices, and as a result, the

bookkeeping of the cached shortest path distances is reduced.

68 6.3. EXPERIMENTAL RESULTS ON OTHER DATA SETS

101.5

102

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

o
n

d
s

PA AA

ISPI

(a) Running time while varying |P |

107.5

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI

(b) Vertices visited while varying |P |

101

102

103

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(c) Running time while varying |Q|

107

108

109

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI

(d) Vertices visited while varying
|Q|

Figure 6.17. CAIDA—Sampled Edges

CHAPTER 6. EXPERIMENTS 69

102

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(a) Running time while varying |P |

107.5

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI

(b) Vertices visited while varying |P |

102

103

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(c) Running time while varying |Q|

107

108

109

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI

(d) Vertices visited while varying
|Q|

Figure 6.18. CAIDA—Synthetic Edges

70 6.3. EXPERIMENTAL RESULTS ON OTHER DATA SETS

6.3.4 WebGraph World Wide Web

Finally, in the WebGraph data set, we see that PA, AA, and ISPI have

similar performance curves as the CAIDA data set. We can see that ISPI is

typically outperformed by PA and AA by about half an order of magnitude in

running time and numbers of vertices visited on sampled edges. Furthermore,

we can see that only very occasionally has AA been outperformed by PA.

When AA outperforms PA, AA is able to adaptively find a combination of

EOE and QOE calls that are more efficient than PA selecting to only use QOE.

The times that PA performs better than AA are rare, and AA is only marginally

slower than PA.

In sampled edges, we see that ISPI has a similar performance curve as PA,

but is consistently outperformed by PA because ISPI requires extra bookkeeping

for the SPI invocations. Although ISPI is outperformed by PA, it is not signifi-

cantly worse than PA, only slightly. When we examine the impact of synthetic

edges, we can see that ISPI can even outperform PA when the number of SPI

invocations are low.

CHAPTER 6. EXPERIMENTS 71

102.5

103

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(a) Running time while varying |P |

108

108.5

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI

(b) Vertices visited while varying |P |

102

103

104

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(c) Running time while varying |Q|

107

108

109

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI

(d) Vertices visited while varying
|Q|

Figure 6.19. WebGraph—Sampled Edges

72 6.3. EXPERIMENTAL RESULTS ON OTHER DATA SETS

103

103.5

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Edges

T
im

e
in

S
ec

o
n

d
s

PA AA

ISPI

(a) Running time while varying |P |

108

109

50 100 5001000 5000
Number of Edges

V
er

te
x

V
is

it
s

PA AA

ISPI

(b) Vertices visited while varying
|P |

103

104

50 100 5001000 5000

1 minute

1 hour

1 day

Number of Queries

T
im

e
in

S
ec

on
d

s

PA AA

ISPI

(c) Running time while varying |Q|

108

109

50 100 5001000 5000
Number of Queries

V
er

te
x

V
is

it
s

PA AA

ISPI

(d) Vertices visited while varying
|Q|

Figure 6.20. WebGraph—Synthetic Edges

Chapter 7

San Francisco Bay Area – A

Case Study

Here we will present the findings of an intensive case study. In this case

study, we have applied our proposed solution to a real life scenario. For this

case study, we have used the San Francisco Bay area road network to determine

the best locations for constructing a new bridge spanning the San Francisco Bay

such that travel distances can be reduced the most.

In this case study, we concern ourselves only with the construction of new

bridges spanning the San Francisco Bay. We have identified a number of possible

locations for constructing new bridges, which resulted in 348 possible bridges to

consider constructing. For all 348 candidate bridges, we have assumed that their

construction costs are directly related to the bridge’s span length; thus, longer

bridges are more costly to construct, but may shorten travel distances more,

when compared with shorter bridges.

73

74

To determine important travel destinations, we have used San Francisco Bay

Area commuter statistics supplied by the Metropolitan Transportation Com-

mission. From the Metropolitan Transportation Commission, we have mapped

county to county commuter statistics back onto the San Francisco Bay Area

road network graph. After remapping the county to county commuter statis-

tics, we identified 377 queries to characterize the commuter data supplied from

the Metropolitan Transportation Commission. For each of these 377 commuter

queries, their relative importance to San Francisco Bay Area residents were com-

puted from census data, which has also been collected by the Metropolitan Trans-

portation Commission. The commuter census data can be found at http://www.

mtc.ca.gov/maps_and_data/datamart/census/county2county/table1coco.htm.

In Figure 7.1, we can see the original San Francisco Bay Area road network

that we have performed our case study on. Given the county to county commuter

data that has been transformed into 377 queries, our search space reduction

techniques (Chapter 4.1) are able to reduce search space by approximately 10%.

Using Greedy-HA, the most beneficial bridges to add into the San Francisco

Bay Area road network are as follows. In Figure 7.2, the single most benefi-

cial bridge is shown just south of the Dumbarton Bridge. This bridge would

help commuters traveling between the extreme ends of the Silicon Valley at the

southern end of Alameda County and the souther end of San Mateo County.

Figure 7.3 shows the second most beneficial bridge to construct. This bridge

connects south San Francisco to the mid to southern end of Alameda County.

The third most beneficial bridge, as seen in Figure 7.4, connects central San

Francisco to central Alameda County. Finally, the fourth most beneficial bridge

to construct connects Alameda County to San Mateo County (Figure 7.5).

http://www.mtc.ca.gov/maps_and_data/datamart/census/county2county/table1coco.htm
http://www.mtc.ca.gov/maps_and_data/datamart/census/county2county/table1coco.htm

CHAPTER 7. SAN FRANCISCO BAY AREA – A CASE STUDY 75

Figure 7.1. San Francisco Bay Area Road Network

In Figure 7.6, we can see how the San Francisco Bay Area road network

would be changed if all four bridges were constructed, as calculated using Greedy-

HA. We can see that TopK-HA selects to construct 3 bridges all south of the

Dumbarton Bridge in close proximity to each other (Figure 7.7). As we can

see, it makes more sense to construct the bridges suggested by Greedy-HA, even

though Greedy-HA requires more time to determine the bridges to construct.

Figure 7.8 shows the running times of the Greedy-HA and TopK-HA algorithms

on for this case study. We can see that TopK-HA has a constant execution time,

76

Figure 7.2. Most beneficial bridge location.

whereas Greedy-HA has a running tim that is linear to k. Even though Greedy-

HA requires more time to calculate the best 4 bridges to construct, the running

time of Greedy-HA is still highly reasonable. Furthermore, as we noted above,

the bridges that Greedy-HA suggest to construct are much more useful than the

bridges suggested by TopK-HA.

CHAPTER 7. SAN FRANCISCO BAY AREA – A CASE STUDY 77

Figure 7.3. Second most beneficial calculated bridge location.

78

Figure 7.4. Third most beneficial calculated bridge location.

CHAPTER 7. SAN FRANCISCO BAY AREA – A CASE STUDY 79

Figure 7.5. Fourth most beneficial calculated bridge location.

80

Figure 7.6. Top-4 calculated bridge locations.

CHAPTER 7. SAN FRANCISCO BAY AREA – A CASE STUDY 81

Figure 7.7. Top-4 calculated bridge locations using TopK-HA.

1 2 3 4
0

100

200

300

1 minute

5 minutes

k Value

T
im

e
in

S
ec

o
n

d
s

TopK-HA

Greedy-HA

Figure 7.8. Running Time

82

Chapter 8

Discussing Other “Which”

Queries

In this chapter, we briefly discuss how to support some other types of

“which” queries. As we have mentioned before, “which” queries are diverse

and have applications across many fields (such as urban planning or network

planning). Because the applications of “which” queries is vast, we will discuss a

few types of “which” queries below that we believe are highly useful across many

domains.

First, we will discuss “Which Edge-Update-SP-Min” queries. Then, we will

continue with a discussion of “Which Edge-Delete-SP-Min” queries. Finally, we

will discuss “Which Edge-Add-MaxFlow-Max” queries.

83

84 8.1. “WHICH EDGE-UPDATE-SP-MIN” QUERIES

8.1 “Which Edge-Update-SP-Min” Queries

“Which Edge-Update-SP-Min” queries (e.g., Q3) are very useful because

the graph structure itself does not undergo any changes (i.e., the set of vertices

V and set of edges E in the graph G remain unchanged). The only change is

in the weights of the edges. In applications where the actual graph structure

does not change, edge weight updates are the principle concern. For example,

suppose that we are considering an application with an express mail company

again. In certain situations, the express mail company may want to augment

the existing delivery routes, rather than adding new routes or removing existing

routes. In such a case, the express mail company is more concerned with how

the existing network can be augmented to improve their overall delivery times

(i.e., making a decision of adding more flights between certain cities because of

existing infrastructure and the company does not have enough capital to add a

completely new route).

Typically, edge weight update problems are solved by reducing the edge

weight update operation to a sequence of operations. The first operation removes

an edge e from the graph. Then, the second operation inserts a new edge, with the

desired edge weight update value, into the graph. For “Which Edge-Update-SP-

Min” queries, we can prove that our proposed framework above (the algorithms

PA and AA for answering “Which Edge-Add-SP-Min” queries) also solve “Which

Edge-Update-SP-Min” queries.

To answer “Which Edge-Update-SP-Min” queries, we model the “Which

Edge-Update-SP-Min” query as such:

CHAPTER 8. DISCUSSING OTHER “WHICH” QUERIES 85

1. Let G be the input graph.

2. Let Q be the set of shortest path queries that we want to optimize.

3. Let P be the set of existing edges that we want to have edge weight updates

performed on.

4. Let ‖ei‖ contains the desired updated edge weight value (contrast this with

“Which Edge-Add-SP-Min” queries where ‖ei‖ contains the length of a new

edge).

Now, we know that we want to update edge weights such that the distance sum

of the shortest path queries is minimized. This is very similar to the optimization

goal of “Which Edge-Add-SP-Min” queries. We note that without modifying the

underlying graph structure, such as removing an existing edge, we can determine

the benefit of an edge weight update by constructing a detour path using the

desired edge weight update. Thus, Equation 4.3 or Equation 4.4, depending on

what type of graph we are using, can be used in the same manner as “Which

Edge-Add-SP-Min” queries to perform insertion free calculations of an edge’s

benefit. In fact, “Which Edge-Add-SP-Min” queries are a special case of “Which

Edge-Update-SP-Min” queries.

8.2 “Which Edge-Delete-SP-Min” Queries

“Which Edge-Delete-SP-Min” queries (e.g., Q2) are more challenging to an-

swer than either “Which Edge-Add-SP-Min” queries and “Which Edge-Update-

SP-Min” queries. With edge removals from a graph, removing an edge that is

86 8.2. “WHICH EDGE-DELETE-SP-MIN” QUERIES

part of the shortest path of a query may result in the shortest path being longer;

however, it is also possible that removing an edge on the shortest path of a query

may not result in the shortest path distance changing due to the existence of an-

other shortest path of the same length. Thus, it is unclear how long the shortest

path distances are without removing the edges from the graph itself.

To answer “Which Edge-Delete-SP-Min” queries, we observe that one method

that we can consider using is to reduce this query to a “Which (|P |-1)-Edge-

Add-SP-Min” query. By reducing the “Which Edge-Delete-SP-Min” query to a

“Which (|P |-1)-Edge-Add-SP-Min” query, we can use our “Which k-Edge-Add-

SP-Min” framework to find an approximate answer to the query. First, we take

the input graph G and remove all P edges to obtain the graph G{E−ei:ei∈P}.

Then, we use the “Which k-Edge-Add-SP-Min” framework and set k = |P | − 1

to find the |P |−1 most beneficial edges. The least beneficial edge (the remaining

edge not found as the answer) is returned as being the edge, when removed from

G, with the least impact on the shortest path query workload Q. The pseudocode

for this proposed algorithm is outlined in Algorithm 10.

Algorithm 10 “Which Edge-Delete-SP-Min”

1: function Delete(G, Q, P)
2: k = |P |-1
3: for e ∈ P do
4: G = G - e
5: end for
6: for q(s, t) ∈ Q do
7: spq = Dijkstra(s, t)
8: end for
9: Greedy-HA(G, Q, P , k) . Algorithm 9

10: return remaining vertex-pair
11: end function

CHAPTER 8. DISCUSSING OTHER “WHICH” QUERIES 87

8.3 “Which Edge-Add-MaxFlow-Max” Queries

Many graph problems are more computationally expensive than the shortest-

path problem (e.g., the maximum flow problem can be solved by Edmonds-Karp’s

algorithm [1] in O(|V ||E|2) time). Thus, for “which” queries like Q4 and Q5, it is

critical to minimize the number of maximum flow algorithm calls, mirroring PA

and AA minimizing calls to Dijkstra’s algorithm. Note that certain maximum

flow algorithms require finding an augmenting path (i.e., a shortest path from the

source to the sink in the (residual) flow network). As such, we envision that the

evaluation algorithms for “Which *-*-MaxFlow-*” queries can reuse some ideas

presented in this work.

For example, a “Which Edge-Add-MaxFlow-Max” query (e.g., Q5) aims to

increase the maximum flow value by connecting a vertex-pair with a new edge.

Among all the considered vertex-pairs, we observe that if a new edge does not

induce a residual flow, then the new edge cannot increase the maximum flow

value. This resembles detecting whether a new edge can shorten query (si, ti)’s

distance in a “Which Edge-Add-SP-Min” query with source si and sink ti in the

flow network.

For a “Which Edge-Add-MaxFlow-Max” query, we have another important

observation that allows us to reduce the search space. Specifically, among all

the considered vertex-pairs, we observe that only those vertex-pairs that span

the minimum-cut can increase the maximum flow value. This observation echos

Lemma 1, which can be used to significantly reduce the number of vertex-pairs

to be considered.

88 8.4. “WHICH K-EDGE-*-*-*” QUERIES

Furthermore, from the reduced search space, all remaining edges can increase

the maximum flow value (i.e., in the context of shortest path distances of an

augmenting path, all remaining edges can reduce the shortest path distance from

s to t). Intuitively, the augmenting path that is the shortest, in length, increases

the maximum flow value the most; thus, we can directly use the “Which Edge-

Add-SP-Min” algorithms to find the shortest augmenting path, among all the

possible augmenting paths remaining. The most beneficial edge of the “Which

Edge-Add-SP-Min” query equivalently finds the edge with the largest increase

in maximum flow value of the “Which Edge-Add-MaxFlow-Max” query. The

pseudocode for this proposed algorithm is outlined in Algorithm 11.

Algorithm 11 “Which Edge-Add-MaxFlow-Max”

1: function Edge-Add-Maxflow-Max(G, Q, P)
2: Reduce P to only contain edges spanning the minimum cut
3: AA(G, Q, P) . Algorithm 7
4: return most beneficial edge
5: end function

8.4 “Which k-Edge-*-*-*” Queries

As we have seen in the above sections of this chapter, there are many other

types of “which” queries that can be asked and solved using the “Which Edge-

Add-SP-Min” query. By the same token as the “Which Edge-Add-SP-Min”

query, the other types “which” queries mentioned in Chapter 8.1, Chapter 8.2,

and Chapter 8.3 can also account of the case of k edges, where k > 1.

Similar to what we saw in the “Which k-Edge-Add-SP-Min” query, when

k > 1, for the queries in Chapter 8.1, Chapter 8.2, and Chapter 8.3, we will

CHAPTER 8. DISCUSSING OTHER “WHICH” QUERIES 89

need to compute the optimal k edges from a set of |P |Ck possible edge combina-

tions. Again, to exhaustively check all |P |Ck possible edge combinations would

be woefully inefficient. As such, we can devise a plan similar to Top-K-HA

and Greedy-HA (as we have done for the case of “Which k-Edge-Add-SP-Min”

queries), to help solve the cases of k > 1 in the queries presented in Chapter 8.1,

Chapter 8.2, and Chapter 8.3.

90 8.4. “WHICH K-EDGE-*-*-*” QUERIES

Chapter 9

Conclusion

This work presents “which” queries, a new class of decision-support queries,

that are specific to graph data. In this work, we have presented various forms of

“which” queries and their potential applications are also discussed. In particular,

this work has discussed how to model “which” queries and has also identified a

fundamental “which” query that can be used as a building block to answering

other, more complicated, types of “which” queries.

In this work, we have specified a “which” query in the general form of

[Component]-[Operation]-[Measurement]-[Goal]. Because “which” queries lead

to eventual changes in the underlying graph data, we need to specify what graph

component will undergo the eventual change. Additionally, how the graph struc-

ture itself changes needs to be indicated as well. Some “which” queries will lead

to the graph structure changing (e.g., an addition or removal of an edge to the

graph), while other “which” queries will not change the graph structure, but

the attributes of the graph components themselves (e.g., edge weights are mod-

91

92

ified). Since “which” queries address a certain type of graph-based decision, we

specify the type of decision made within the “which” query and also what the

optimization goal of the decision is.

This work has identified the “Which Edge-Add-SP-Min” query as being the

fundamental type of “which” query. As with most graph queries, the shortest

path query is a fundamental type of query and also has uses in more complicated

types of graph queries, such as the maximum flow query. We have presented

one possible model for the query and also presented, in detail, algorithms that

efficiently evaluate the“Which Edge-Add-SP-Min” query.

For answering “Which Edge-Add-SP-Min” queries, various techniques have

been proposed to reduce the number of shortest path algorithm invocations,

because these shortest path invocations are expensive operations. Given the

input parameters, we first reduce the possible search space. After the search

space has been reduced, we make use of a thresholding framework that allows

us to terminate searching for the answer when the stopping criteria are met;

thus, not every possible search space entry needs to be examined before the

answer is returned to the user. This is a crucial component because decision

support systems need to return answers to its users quickly, and any savings in

the search is beneficial to a successful decision support system. Furthermore,

we have proposed techniques to efficiently calculate the benefits of the bridging

edges, without the need to modify the underlying graph data.

Our proposed algorithms for answering “Which Edge-Add-SP-Min” queries

have been experimentally shown to be orders of magnitude faster than other

basic solutions. Although both the proactive and adaptive algorithms generally

CHAPTER 9. CONCLUSION 93

have similar performance, under certain instances one or the other algorithm

performs better. Additionally, we have seen that the iterative shortest path in-

cremental update algorithm is also a possible candidate for good performance,

even though the iterative shortest path incremental update algorithm is sensitive

to many factors, such as the number of shortest path incremental update invo-

cations, and the number of vertices visited per shortest path incremental update

invocation. However, between our three proposed algorithms, we suggest using

the adaptive algorithm because it does not require a cost estimation step and in

general performs better than the proactive algorithm and the iterative shortest

path incremental update algorithm.

This work also discusses a possible solution to answering “Which k-Edge-

Add-SP-Min” queries, where the query is interested in looking for the best k > 1

edges. We have proposed two heuristic algorithms for answering “Which k-Edge-

Add-SP-Min” that are able to achieve high quality answers (either optimal or

near optimal), and are orders of magnitude faster than a brute-force solution

that checks every possible combination of k edges.

Finally, we have also discussed how other types of “which” queries can po-

tentially be answered using the techniques and algorithms proposed in this work.

We have discussed how “Which Edge-Update-SP-Min,” “Which Edge-Remove-

SP-Min,” and “Which Edge-Add-MaxFlow-Max” queries can potentially be an-

swered. We can see that, indeed, a number of techniques that have been proposed

in this work can be used to answer other types of “which” queries. In some in-

stances, the proposed algorithms in this work can be directly used to answer

certain types of “which” queries.

94

Chapter 10

Appendix

10.1 APSP baseline algorithm

The all-pairs shortest path (APSP) baseline method first calculates the

shortest path distances between all vertices v ∈ V in a graph G = (V,E).

After the all-pairs shortest path distances are obtained, we can calculate the

benefit of each bridging edge with respect to each query qj ∈ Q by using

Equation 4.3 or Equation 4.4. After the search space has been computed, the

most beneficial bridging edge ei is computed and returned as the answer. Note

that computing the all-pairs shortest path distances is very slow (O(|V |3), or

O(|V |2 log|V | + |V ||E|) in a sparse graph). Furthermore, the memory space re-

quired to maintain the all pairs shortest path distances is O(|V |2) (the Argentina

Road Network data set with |V | = 85, 287 requires about 27 GB).

We note that all-pairs shortest path distances can be stored on disk. In this

method, for each vertex, a single source Dijkstra’s expansion is computed, thus

95

96 10.1. APSP BASELINE ALGORITHM

requiring O(|V |) memory, and then these computed shortest path distances can

be stored on disk. However, retrieving these distances from disk incurs high I/O

cost.

Bibliography

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network

flows : theory, algorithms, and applications. Prentice Hall, 1993.

[2] Renzo Angles and Claudio Gutierrez. Survey of graph database models.

ACM Computing Survey, 40(1):1–39, 2008.

[3] R. Bramandia, Byron Choi, and W-K. Ng. On incremental maintenance of

2-hop labeling of graphs. In WWW 2008, pages 845–854.

[4] R. Bramandia, Byron Choi, and W-K. Ng. Incremental maintenance of 2-

hop labeling of large graphs. IEEE Transactions on Knowledge and Data

Engineering, 22:682–698, 2010.

[5] Edward Chan and Heechul Lim. Optimization and evaluation of shortest

path queries. The VLDB Journal, 16:343–369, 2007.

[6] Surajit Chaudhuri and Umeshwar Dayal. Data warehousing and olap for

decision support. In SIGMOD, pages 507–508, 1997.

97

98 BIBLIOGRAPHY

[7] Chen Chen, Cindy X. Lin, Matt Fredrikson, Mihai Christodorescu, Xifeng

Yan, and Jiawei Han. Mining graph patterns efficiently via randomized

summaries. PVLDB, 2(1):742–753, 2009.

[8] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and Philip S. Yu. Graph

OLAP: Towards Online Analytical Processing on Graphs. In ICDM, pages

103–112, 2008.

[9] James Cheng, Yiping Ke, Wilfred Ng, and An Lu. Fg-index: towards

verification-free query processing on graph databases. In SIGMOD, pages

857–872, 2007.

[10] Kaikai Chi, Xiaohong Jiang, Susumu Horiguchi, and Minyi Guo. Topology

design of network-coding-based multicast networks. IEEE TPDS, 19:627–

640, 2008.

[11] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability

and distance queries via 2-hop labels. SIAM J. Comput., 32(5):1338–1355,

2003.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press, 2001.

[13] Yang Du, Donghui Zhang, and Tian Xia. The optimal-location query. In

SSTD, pages 163–180, 2005.

[14] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Incre-

mental algorithms for the single-source shortest path problem. In Founda-

tion of Software Technology and Theoretical Computer Science, pages 113–

124. 1994.

BIBLIOGRAPHY 99

[15] Yunjun Gao, Baihua Zheng, Gencai Chen, and Qing Li. Optimal-location-

selection query processing in spatial databases. TKDE, 21:1162–1177, 2009.

[16] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. Com-

puting label-constraint reachability in graph databases. In SIGMOD, pages

123–134, 2010.

[17] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: a high-

compression indexing scheme for reachability query. In SIGMOD, pages

813–826, 2009.

[18] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently an-

swering reachability queries on very large directed graphs. In SIGMOD,

pages 595–608, 2008.

[19] Arijit Khan, Xifeng Yan, and Kun-Lung Wu. Towards proximity pattern

mining in large graphs. In SIGMOD, pages 867–878, 2010.

[20] Chengkai Li, Kevin Chen-chuan, Chang Ihab, and F. Ilyas. Supporting

ad-hoc ranking aggregates. In In SIGMOD, pages 61–72. ACM Press, 2006.

[21] Kok Yong Lim, Sieteng Soh, and S. Rai. Computer communication network

upgrade for optimal capacity related reliability. In Asia-Pacific Conference

on Communications, pages 1102 –1106, 5-5 2005.

[22] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in

weighted networks: Generalizing degree and shortest paths. Social Net-

works, 32(3):245 – 251, 2010.

100 BIBLIOGRAPHY

[23] A. Pal, A. Paul, A. Mukherjee, M. Naskar, and M. Nasipuri. Fault detection

and localization scheme for multiple failures in optical network. Distributed

Computing and Networking, pages 464–470, 2008.

[24] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient aggre-

gation for graph summarization. In SIGMOD, pages 567–580, 2008.

[25] Silke Trissl and Ulf Leser. Fast and practical indexing and querying of very

large graphs. In SIGMOD, pages 845–856, 2007.

[26] Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. Dual

labeling: Answering graph reachability queries in constant time. In ICDE,

page 75, 2006.

[27] Fang Wei. Tedi: efficient shortest path query answering on graphs. In

SIGMOD, pages 99–110, 2010.

[28] Yanghua Xiao, Wentao Wu, Jian Pei, Wei Wang, and Zhenying He. Effi-

ciently indexing shortest paths by exploiting symmetry in graphs. In EDBT,

pages 493–504, 2009.

[29] C. Yang and Jianzhong Zhang. Inverse maximum flow and minimum cut

problems. Optimization, 40:147–170, 1997.

[30] Jianzhong Zhang and Yixun Lin. Computation of reverse shortest-path

problem. Journal of Global Optimization, 25:243–261, 2003.

[31] Jianzhong Zhang, Zhenong Liu, and Zhongfan Ma. Some reverse location

problems. European Journal of Operation Research, 124:77–88, 2000.

BIBLIOGRAPHY 101

[32] Jianzhong Zhang, Zhongfan Ma, and Chao Yang. A column generation

method for inverse shortest path problems. Mathematical Methods of Oper-

ations Research, 41(3), 1995.

[33] Ning Zhang, Yuanyuan Tian, and Jignesh M. Patel. Discovery-driven graph

summarization. In ICDE, pages 880–891, 2010.

[34] Peixiang Zhao and Jiawei Han. On graph query optimization in large net-

works. PVLDB, 2010.

[35] Lei Zou, Lei Chen, and M. Tamer ˙Distance-join: Pattern match query in a

large graph database. PVLDB, 2(1):886–897, 2009.

	thesis
	Declaration
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Related Work
	Spatial Database Research
	Operations Research
	Network Maintenance

	Elements of ``Which'' Queries
	``Which Edge-Add-SP-Min'' Queries
	Search Space Reduction
	Incremental Update Based Algorithm
	Shortest Path Incremental Updates
	Using SPI for ``Which Edge-Add-SP-Min'' Queries

	Top-K Based Algorithms
	Threshold Pruning
	Insertion Free Benefit Calculations
	Algorithms

	``Which k-Edge-Add-SP-Min'' Queries
	Experiments
	Which Edge-Add-SP-Min Queries
	LBD vs UBP in AA
	Results on Argentina Road Network
	Scalability of ISPI, PA, and AA
	Estimation Quality of PA on Argentina Road Network

	``Which k-Edge-Add-SP-Min'' Queries
	Sampled Edges
	Synthetic Edges

	Experimental Results on Other Data Sets
	San Francisco Road Network
	Facebook Social Network
	CAIDA Internet Router Topology
	WebGraph World Wide Web

	San Francisco Bay Area – A Case Study
	Discussing Other ``Which'' Queries
	``Which Edge-Update-SP-Min'' Queries
	``Which Edge-Delete-SP-Min'' Queries
	``Which Edge-Add-MaxFlow-Max'' Queries
	``Which k-Edge-*-*-*'' Queries

	Conclusion
	Appendix
	APSP baseline algorithm

	Bibliography

	3623_001

