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Abstract

This thesis studies the spatial regression models with lattice data, with emphasis on

models with spatially correlated errors. For the large scale variation of the data, the non-

parametric, additive nonparametric and semi-parametric structure are adopted; while for

the small scale variation, the errors are assumed to satisfy the torus, separable or unilat-

eral SGAR model. Following Martins-Filho & Yao (2009), we propose to estimate the

large scale variation with a two-step fitting procedure, which firstly forms a new process

with the same conditional mean as the original one and i.i.d. errors, and secondly applies

the estimation to the new process. Such approach takes both nonstationary mean/trend

effects and spatial dependencies into account, hence overmatches the traditional estima-

tions.

Asymptotic properties of both first- and second-step estimators are investigated. For the

first-step estimators of the unknown regression function, the convergence rate with all

three types of errors is considered, and when errors satisfy the separable or unilateral

SGAR model, the asymptotic normality is established. For the second-step estimators

of the unknown regression function, the asymptotic normality with three types of error

structures is established. In the semi-parametric model, we also establish the asymptotic

normality of the first- and second-step estimators of the linear parameters.

For all the models, simulations are conducted to assess the performance of our fitting.

Under the condition that spatially correlated errors exist, the results show that our esti-

mation works better than the traditional methods. The improvement of our estimation is

significant when the volatility of the errors is large. As an illustration of our approach,

a case study of the housing price in Hong Kong is given. It is shown that our approach

improves the estimation, especially when some key factor is absent in the modelling.

ii



Acknowledgements

I owe my supervisors, Dr. Wai-Cheung Ip, Dr. Heung Wong and Prof. Yuan Li, a debt

of gratitude for their enthusiastic guidance and support throughout my study of the Ph.D

degree. From the countless insightful discussions with them, I benefit greatly in both

aspects of academic research and thesis writing. Their warm encouragements as well as

constructive criticisms are precious for me.

I am grateful to Dr. Xianhua Luo and Dr. Quanxi Shao for their valuable suggestions

and helps to my work. I am also thankful to my fellow classmate Xingfa Zhang, who

always encourages me when I felt frustrated during the study.

I shall express my sincere thanks to all the staff in the Department of Applied Mathe-

matics at the Hong Kong Polytechnic University for their kind assistance, and I greatly

appreciate the financial support from The Hong Kong Polytechnic University, whose

research studentship supported me in the past three years.

At last, I will thank my parents and my wife, the ones love me and I love. Without the

cares, fun, encouragement and understanding that they give me for years, I will not be

able to finish my study.

iii



Contents

CERTIFICATION OF ORIGINALITY . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Spatial Data and Statistical Treatments . . . . . . . . . . . . . . . . . . 1

1.2 A Brief Introduction to Spatial Models . . . . . . . . . . . . . . . . . . 4

1.2.1 Geostatistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Spatial Gaussian Models on a Lattice . . . . . . . . . . . . . . 7

1.3 The Local Polynomial Fitting . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 The Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2 Local Linear Regression with SGAR-type Error . . . . . . . . 15

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Model and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Some Practical Considerations . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Bandwidth Selection . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Estimation of SGAR coefficients . . . . . . . . . . . . . . . . . 30

2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Summary and Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

iv



Chapter 3 Additive Model with SGAR-type Error . . . . . . . . . . . . . 58

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Model and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Summary and Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 4 Partially Linear Model with SGAR-type Error . . . . . . . . . 88

4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Model and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Summary and Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 5 Case Study with Hong Kong Real Estate Market Data . . . . . 110

5.1 The Hong Kong Real Estate Market Data . . . . . . . . . . . . . . . . . 111

5.2 Fitting with LLR-SCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Fitting with ADD-SCE . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Fitting with PLR-SCE . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Summary and Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

v



List of Figures

2.1 Simulation 2.1. Fitting with torus SGAR-type error. . . . . . . . . . . . 33

2.2 Simulation 2.1. Fitting with separable SGAR-type error. . . . . . . . . 33

2.3 Simulation 2.2. Fitting with torus SGAR-type error. . . . . . . . . . . . 36

2.4 Simulation 2.2. Fitting with separable SGAR-type error. . . . . . . . . 37

3.1 Simulation 3.1. The sin function fitting in the additive model with torus

SGAR-type error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Simulation 3.1. The cos function fitting in the additive model with torus

SGAR-type error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Simulation 3.1. The sin function fitting in the additive model with sep-

arable SGAR-type error. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Simulation 3.1. The cos function fitting in the additive model with sep-

arable SGAR-type error. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 The map for the Hong Kong real estate market data. . . . . . . . . . . . 111

5.2 Scattergrams of the Hong Kong real estate data. . . . . . . . . . . . . . 112

5.3 Case study. Graphs for part of the estimators with ADD-SCE fitting. . . 119

vi



List of Tables

2.1 Simulation for bandwidth selection methods. . . . . . . . . . . . . . . . 30

2.2 Simulation 2.1. MSE for the estimators of m(.). . . . . . . . . . . . . . 34

2.3 Simulation 2.1. Estimators of θ = (θ1, θ2). . . . . . . . . . . . . . . . . 34

2.4 Simulation 2.2. MSE for the estimators of m(.). . . . . . . . . . . . . . 37

2.5 Simulation 2.2. Estimators of θ = (θ1, θ2). . . . . . . . . . . . . . . . . 38

2.6 Simulation 2.3. MSE for the estimators of m(.). . . . . . . . . . . . . . 39

2.7 Simulation 2.3. Estimators of θ = (θ1, θ2). . . . . . . . . . . . . . . . . 39

3.1 Simulation 3.1. MSE for the estimators of m(.). . . . . . . . . . . . . . 69

3.2 Simulation 3.1. Estimators of θ = (θ1, θ2). . . . . . . . . . . . . . . . . 69

4.1 Simulation 4.1. MSE for the estimators of m(.). . . . . . . . . . . . . . 98

4.2 Simulation 4.1. Estimators of λ. . . . . . . . . . . . . . . . . . . . . . 99

4.3 Simulation 4.1. Estimators of θ = (θ1, θ2). . . . . . . . . . . . . . . . . 99

4.4 Simulation 4.2. MSE for the estimators of m(.). . . . . . . . . . . . . . 100

4.5 Simulation 4.2. Estimators of λ. . . . . . . . . . . . . . . . . . . . . . 101

4.6 Simulation 4.2. Estimators of θ = (θ1, θ2). . . . . . . . . . . . . . . . . 101

5.1 Case Study. MSE given by LLR-SCE. . . . . . . . . . . . . . . . . . . 114

5.2 Case Study. Estimators of θ= (θ1, θ2) given by LLR-SCE. . . . . . . . . 114

5.3 Case Study. MSE given by ADD-SCE. . . . . . . . . . . . . . . . . . . 118

5.4 Case Study. Estimators of θ= (θ1, θ2) given by ADD-SCE. . . . . . . . . 118

5.5 Case Study. MSE given by PLR-SCE. . . . . . . . . . . . . . . . . . . 122

5.6 Case Study. Estimators of λ given by PLR-SCE. . . . . . . . . . . . . . 123

5.7 Case Study. Estimators of θ= (θ1, θ2) given by PLR-SCE. . . . . . . . . 124

vii



Chapter 1

Introduction

1.1 Spatial Data and Statistical Treatments

Spatial data arise in various areas, including geology, ecology, environmental science,

mining engineering, epidemiology, image analysis, oceanography and econometrics.

As spatial data fill in almost every corner of our life, appropriate quantitative analyses

of the data always lead to meaningful results. Statistical treatment with such data first

appeared in the early 20th century, and have been broadly discussed in recent decades,

with great deal of literature found on this topic. For a systematic reading, we refer to

Cressie (1993) and Schabenberger & Gotway (2005).

Typically, spatial data can be decomposed into two components, the large-scale and

small-scale variation, and modeled generally as

Ys = µ (Xs) + εs, (1.1)

where s is the location index on a plain, Ys represents the spatial observation and is a
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scalar, and Xs is the explanatory random vector, which can be endogenetic or exoge-

nous. µ (Xs) denotes the large-scale variation, figuring the nonstationary mean(trend)

effect. The residual εs denotes the small-scale variation, figuring the stationary spatial

dependency of the data. According to past study, the spatial dependency contained in

the residuals should not be ignored in some application problems, see Watson (1972),

Russo & Bresler (1981) and Burrough (1983). Depending on the spatial distribution of

the data point, irregularly spaced or regularly spaced, εs can be modeled with different

types of spatial models. We will introduce these in details in Section 1.2.

In the early development of spatial statistics, the large-scale variation µ (Xs) is often

assumed to have some parametric structure, i.e., the linear structure with respect to

Xs. Many researchers contributed to such study, for instance, Martin (1982), Cressie &

Chan (1989), Basu & Reinsel (1994), among others. The linearity assumption makes

the analysis easy to handle and explainable, but it is usually too idealized for application

research. It may be more reasonable to model µ (Xs) with some nonparametric or semi-

parametric structures, which have been shown useful to capture the nonlinear trend of

the regression function in many applications. Nevertheless, although the nonparametric

and semi-parametric models have been greatly studied in the last 20 years, most of the

researches focused on the cases with i.i.d. and temporally correlated residuals. Only a

few scholars have considered the ones with spatially correlated errors, e.g., Liu(2001)

and Francisco-Fernandez & Opsomer (2005). Hence, much more problems on this topic

deserve further study.

In our thesis, we will focus on the nonlinear estimation of model (1.1) with spatially

correlated residuals. Besides the general structure defined in (1.1), the large-scale varia-

2



tion µ (Xs) is assumed to take another two special structures, and hence model (1.1) can

be separated into three sub-models as below:

Ys = m(Xs) + εs, (1.2)

Ys = µ +
d∑

i=1
mi(Xis) + εs, (1.3)

Ys = XT
1sλ + m (X2s) + εs, (1.4)

where µ is some constant, m(.) and mi(.) are some unknown functions, Xs and Xis are

random explanatory vectors, i = 1, · · · , d, and λ is a parameter vector. Models (1.2)-

(1.4) are well known as the nonparametric, additive and semi-parametric models respec-

tively. The residuals εs in each model is assumed to satisfy several types of simultaneous

Gaussian auto-regressive models. A two-step estimation introduced in Martins-Filho &

Yao (2009) will be applied, and the local linear fitting technique will be used in all

models.

This chapter will give a brief overview of the traditional spatial models and local polyno-

mial regression estimation. Two major groups of spatial models, the geostatistic models

and lattice models, will be addressed in Section 1.2, with emphasis on the lattice mod-

els. In Section 1.3, the local polynomial regression fitting will be introduced. In the last

section of this chapter, the organization of the whole thesis will be given.

3



1.2 A Brief Introduction to Spatial Models

1.2.1 Geostatistics

Geostatistics models is a group of spatial models, which were first introduced in Math-

eron (1962, 1963a & 1963b). Unlike the case in lattice models that we will review in

the next sub-section, the spatial index s in a geostatistics model can vary continuously

over the support. Such property makes geostatistics models suitable to deal with both

irregularly spaced and regularly spaced data.

Before we review the estimation and prediction methods in geostatistics, some back-

grounds should be considered. We first introduce two definitions, which are crucial

in geostatistics. Let s and t be spatial indexes, and {εs : s ∈ R2} be a spatial process.

Suppose

var
(
εs+t − εs

)
= 2γ (t), (1.5)

where 2γ (.) is a function only of the increment t, then 2γ (.) is called a variogram.

Similarly, if we have

cov
(
εs+t, εs

)
= C (t), (1.6)

then C (t) is called a covariogram.

The variogram has a vital property called conditional negative-definiteness, which can

be shown mathematically as

n∑

i=1

n∑

j=1

ai aj 2γ
(

si − sj
)≤ 0, (1.7)

for any finite number of spatial locations { si : i = 1, · · · , n } and real number {ai : i =

4



1, · · · , n } with
∑n

i=1 ai = 0. The covariogram also has an important property called

positive-definiteness, which can be stated as

n∑

i=1

n∑

j=1

ai aj C
(

si − sj
)≥ 0, (1.8)

where ai’s are real numbers.

Related to variogram and covariogram, two different types of stationarities can be de-

fined. A process {εs} is called intrinsic stationary if εs has constant mean and satisfies

(1.5), or second-order stationary if εs has constant mean, finite second moment and sat-

isfies (1.6). If {εs} is second-order stationary, by (1.5) and (1.6) we have

2γ (t) = 2
(
C(0) −C(t)

)
, (1.9)

which implies that {εs} is also intrinsic stationary. Therefore, there is a relationship

between the variogram and the covariogram if the second-order stationarity is given,

and on the other hand, the variogram can be defined when the covariogram is not. These

make the analysis of variogram preferable to that of covariogram.

Now, we will give a brief review of the estimation and prediction procedure in geo-

statistics. We only focus on the variogram in the following, while the analyses with

covariogram are similar and hence omitted here.

The main idea of the estimation of the variogram is to fit the spatial data to some para-

metric variogram model γ(t, θ), where θ is a parameter vector. For example, the simplest

variogram model may be the isotropic linear model that may be given by

γ(t, α, β) = α + β ||t||, if t , 0 and zero elsewhere. (1.10)

5



So the problem becomes one to estimating the parameters in the semi-variogram model,

say α and β in (1.10), by some general method such as the maximum likelihood estima-

tion, the least squared estimation, etc. Note that a valid variogram model must satisfy

the conditional negative-definiteness, which will constraint the models to be chosen.

For more appropriate variogram models, see Section 2.3.1 and Section 2.5 in Cressie

(1993), among other literature. We should also note two points for model (1.10). First,

this model is isotropic, because the variogram depends on the distance t only, but not

on the direction. Second, the variogram function is discontinuous at the origin, since

the so-called nugget effect α exists. See more details about the nugget effect in Section

2.3.1 of Cressie (1993).

The prediction problem in geostatistics is usually called kriging. We will give a review

of ordinary kriging below, which is one of the most commonly used kriging procedure.

Assume that the spatial data is modeled as Ys = µ + εs, where µ is some constant and εs

is intrinsic stationary with variogram 2γ(.). Then the variogram of Ys can be given by

2γ(t) = var
(
Ys+t−Ys

)
. Given that n observations are available, and we denote them as

Ys1 , · · ·,Ysn , respectively. We aim to give a predictor of Ys0 by a linear combination of

{Ys1 , · · · ,Ysn}, where s0 is some fixed location and n is the data size. The predictor can

be given by Ỹs0 =
n∑

i=1
ciYsi with

n∑
i=1

ci = 1. Hence, we may minimize

E
(

Ys0 −
n∑

i=1

ciYsi

)2 − 2λ
( n∑

i=1

ci − 1
)
,

over c1, · · · , cn and λ, the Lagrange multiplier. This turns out equivalently by minimiz-

ing

−
n∑

i=1

n∑

j=1

cic jγ(si − s j) + 2
n∑

i=1

ciγ(s0 − si) − 2λ
( n∑

i=1

ci − 1
)
,

6



where γ(.) can be given by the estimator of the variogram function.

1.2.2 Spatial Gaussian Models on a Lattice

A lattice Ω ⊆ Z2 is a rectangle grided region in which the nodes are equally spaced.

Unlike the geostatistics models, the spatial models concerning {εs : s ∈ Ω} has district

spatial indices. Such models may be considered as a generalization of the time series

models. However, some substantial gaps exist. Time series models are some so-called

unilateral or unidirectional models, as the random variable at any time point depends

only on its former values. Due to this property, the joint probability of the time series

can be expressed as a production of the conditional probabilities of the variables given

their neighbors. For example, consider a time series {δi : i = 1, ..., n} with N(δi) being

the neighborhood set of δi, i = 1, · · · , n. Then the joint probability of δi, i = 1, · · · , n

can be expressed as

Pr
(
δ1, · · · , δn

)
=

n∏

i=1

Pr
(
δi |N(δi)

)
. (1.11)

Such relationship, however, is not naturally satisfied by the spatial models on a lattice,

which are multilateral and the random variables depend on neighbors from all four di-

rections. This departure leads to two different types of spatial models. We will review

them later in this section.

The first model is called the simultaneous Gaussian autoregressive model (SGAR),

which is introduced in the fundamental paper of Whittle (1954). Assume that there are

n nodes on the lattice Ω, and they are denoted as s1, · · · , sn respectively. A simultaneous

7



autoregressive model with support on Ω can then be expressed as

Ysi = µi +

n∑

j=1

bij
(
Ysj − µj

)
+ τsi , (1.12)

where µi is some constant and τsi’ s are the residuals for i = 1, · · ·, n . Moreover, bii ≡ 0

and bij =0 unless Ysj is a neighbor of Ysi .

If we define Y= (Ys1 , · · ·,Ysn)
T , u= (µ1, · · ·, µn)T , Υ= (τs1 , · · ·, τsn)

T , I the unit matrix and

B a matrix with the ij-element being bij , model (1.12) can be written in an equivalent

matrix form:

(
I − B

)(
Y − u

)
= Υ. (1.13)

Assume that Υ ∼ Gau
(
0,Λ

)
, Λ is some diagonal matrix. Then by (1.13), the joint

distribution of Y is given by

Y ∼ Gau
(

u,
(
I − B

)−1
Λ

(
I − BT )−1

)
, (1.14)

provided that
(
I − B

)−1 exists. It should be emphasized that cov
(
Υ,Y

)
= Λ

(
I−BT )−1,

which is not diagonal. That means, unlike the time series models, the residuals in the

SGAR models are correlated with the autoregressive variables. This leads to the fact

that Ysi in (1.12) does not only depends on its neighbors, but also depends on other Ysj

whose coefficient bij are equal to zero. Hence, it implies that the relationship (1.11) does

not hold for SGAR models.

The model introduced above is the original SGAR model. Note that Ysi defined in

(1.12) has constant mean. If the mean of Ysi depends on some large-scale factors, such

as experimental treatments, spatial trend or exogenous regressors, model (1.12) may be

8



modified to

Ysi = µ (Xsi) +

n∑

j=1

bij
(
Ysj − µ(Xsj)

)
+ τsi , (1.15)

where Xsi is a vector of the large-scale factors, i = 1, · · ·, n, and µ (.) is some function.

As a special case, µ (Xsi) can be linear with respect to Xsi , i.e., µ (Xsi) = XT
si
β with β

being some parameter vector. Such case was considered in many literature, for example,

Martin (1982) and Basu & Reinsel (1994).

When Ysi has functional mean, (1.13) can also be rewritten as

(
I − B

)(
Y − U

)
= Υ, (1.16)

where U =
(
µ (Xs1), · · ·, µ (Xsn)

)T . If we further define a vector E as E = Y−U, then the

model becomes

Y = U + E, (I − B)E = Υ. (1.17)

Obviously, when µ(.) is some unknown function, (1.17) is the model that our thesis will

focus on.

The second lattice model we will review is usually called the conditional Gaussian

autoregressive model (CGAR), which is introduced in Besag (1974). Under the as-

sumption of ′pairwise-only dependence′, the model can be given as

Ysi = µi +

n∑

j=1

cij
(
Ysj − µj

)
+ νsi , (1.18)

where cii ≡ 0, cij = 0 unless there is pairwise dependence between Ysi and Ysj , and

νsi is some residual whose conditional mean given all Ysj , j, i, is zero and conditional

9



variance is denoted by r2
i . We can also rewrite (1.18) in the matrix form

(
I − C

)(
Y − u

)
= V, (1.19)

where V = (vs1 , · · ·, vsn)
T , C is a matrix with the ij-element being cij, and I, Y and u are

the same as defined in (1.13). Then, by the factorization theorem of Besag (1974), the

joint distribution of Y can be shown to be

Y ∼ Gau
(

u,
(

I− C
)−1R

)
, (1.20)

where R = diag (r2
1, · · ·, r2

n), provided that
(
I − C

)−1 exists and
(
I − C

)−1R is symmetric

and positive-definite.

From (1.19) and (1.20), we have E
(
VY

)
= R, which means the residuals are not cor-

related with the autoregressive variables. Therefore, the CGAR models satisfy the

Markovian property, and the relationship (1.11) holds. Another desirable property of

CGAR models is that the conditional mean of Ysi can be expressed as a linear combi-

nation of other Ys j , j , i. So the prediction of CGAR can be readily made, while the

problem is more complicated for SGAR models. However, we should also note that

var
(
V
)
= R

(
I−CT ), which is not diagonal, implying that the residuals νi, i = 1, · · ·, n,

are correlated. That is not a desirable property, especially for our study.

Comparing the SGAR models and CGAR models, we can see that they are equivalent

when their variance matrix are equal. Via (1.14) and (1.20), that is

(
I − B

)−1
Λ

(
I− BT )−1

=
(

I− C
)−1R. (1.21)

From this equation, we can see that any SGAR model can be expressed as a CGAR
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model, but the inverse may not be true. A typical example is given in Section 6.3.3 of

Cressie (1993), showing that a CGAR model with order less than three generally has no

equivalent SGAR model.

1.3 The Local Polynomial Fitting

The local polynomial fitting is a non-parametric method that has been studied widely,

such as Stone (1977,1980,1982), Cleveland (1979), Fan (1992, 1993), Fan & Gijbels

(1992) and Ruppert and Wand (1994). See also Fan & Gijbels (1996) for a systematic

reference. Such method is attractive since it has a lot of advantages. For example, it

is suitable for both fixed and random designs; the derivatives of the regression function

can be estimated; the boundary effects of the estimation do not occur; and the estimators

have nice minimax efficiency properties. The general model in interest can be given as

Yi = m(Xi) + εi, (1.22)

i = 1, · · ·, n, m(.) is some unknown regression function, Yi is the response variable, Xi

is the explanatory variable that may be random or fixed, and εi is the i.i.d. residual. In

this section we mainly review the estimation procedure of model (1.22), while the most

recent development of local polynomial regression will be reviewed in each first section

of Chapter 2 to Chapter 4.

Assume that the p-th derivative of m(.) at the position x0 exists. For some x close to x0,

m(x) can be approximated by a polynomial of order p with the Taylor expansion, that is

m(x) ≈ m(x0) + m′(x0)(x −x0) +
m′′(x0)

2!
(x −x0)2 + · · · + m(p)(x0)

p!
(x −x0)p.

11



Letting βj =m(j )(x0)/j ! and β= (β0, β1, · · ·, βn)T , then the polynomial above can be fitted

by the weighted least square method as

argmin
β ∈Rp+1

n∑

i=1

[
Yi −

p∑

j=0

βj
(
Xi − x0

)j
] 2

Kh(Xi − x0) , (1.23)

where h is a bandwidth and Kh(.) = K(./h)/h with K(.) being some kernel function. If

we denote

~X =



1 (X1 − x0) · · · (X1 − x0)p

...
...

. . .
...

1 (Xn − x0) · · · (Xn − x0)p



.

and Y = (Y1, · · ·,Yn)T , W = diag
{
Kh(Xi − x0)

}
, then (1.23) can be rewritten in the matrix

form as

argmin
β ∈Rp+1

(
Y − ~Xβ

)T
W

(
Y − ~Xβ

)
.

Therefore, the estimator of β is given by

β̂ =
(
~XT W~X

)−1
~XT WY. (1.24)

There are two special topics about the local linear fitting worth mentioned. The first one

is the choice of the bandwidth h. Obviously, h controls the size of the local neighbor-

hood, and so that the smoothness of the estimated function. When the sample size n

approaches infinity, h is always assumed to approach infinity, too. However, for a fixed

sample size, an appropriate bandwidth h should be chosen. If h is too large, the function

will be over-smoothly estimated, resulting in a large bias. If h is too small, the function

will be under-smoothly estimated, and that will lead to noisy estimates. Therefore, the

choice of h is crucial for local polynomial fitting. The second topic is about the choice
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of the order of the local polynomial. Typically, fitting the local polynomial with higher

order will reduce the bias of the estimators, but on the other hand will increase the vari-

ability. Thoroughly theoretical consideration of this topic can be found in Section 3.3 of

Fan & Gijbels (1996). In empirical application, however, multiple explanatory variables

are usually introduced into model (1.22). Then fitting the function with a high order of

polynomial will lead to an explosion of parameters. Generally the local linear fitting,

with only the first order of polynomial, is preferred.

1.4 The Organization of the Thesis

Aside from the Introduction Chapter and the Conclusion Chapter, there are four main

sections in our thesis. In Chapter 2 to Chapter 4, we will focus on the analysis of models

(1.2)-(1.4), where the errors are assumed to satisfy several types of SGAR models. In

Chapter 5, we will examine the house pricing problem in the Hong Kong real estate

market, using the models considered in Chapter 2 to Chapter 4. More details about the

outline of the thesis will be given below.

In Chapter 2, we will focus on nonparametric model (1.2), where the errors satisfy the

torus SGAR model, the separable SGAR model and the unilateral SGAR model re-

spectively. To estimate the unknown regression function m(.), we propose the two-step

estimation used in Martins-Filho & Yao (2009), who considered the local polynomial fit-

ting with some temporally correlated errors. For the first-step estimator, the consistency

with the three types of errors as well as the asymptotic normality with separable and

unilateral SGAR-type errors are investigated. For the second-step estimator, the asymp-

totic normality with all types of errors are established. Some practical technique about
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the selection of bandwidths and the estimation of the SGAR coefficients are discussed.

Simulations are conducted to show the performance of our estimation.

In Chapter 3, we will focus on the additive model (1.3), where the errors also satisfy the

three SGAR models mentioned above. The two-step estimation procedure is proposed,

and the local linear fitting and marginal integration technics are adopted. Similar theo-

retical analyses as the ones in Chapter 2 are considered. Simulation results are given,

accompanied by cross comparisons of our proposed fitting in Chapter 2, Chapter 3 and

the traditional estimation of additive model with marginal integration technique.

In Chapter 4, we will further consider the partially linear model (1.4). The errors are still

assumed to satisfy the three structures. The two-step estimation and local linear fitting

technic are used. For the first-step estimation, the consistency of the estimators of both

λ and m(.) function is shown, given that the errors satisfy all types of SGAR structure.

Moreover, the asymptotic normality of λ and m(.) is also established, given that the

errors satisfy the separable and unilateral SGAR model. For the second-step estimation,

the asymptotic normality of the estimators with all types of errors is considered. Several

simulations are conducted to assess our estimation.

In Chapter 5, a case study about the Hong Kong real estate market is shown. Data from

a 9×10 grided area in Kowloon is collected. Each data contain the information of the

average price per feet2 and five explanatory factors. It is our aim to identify the factors

that determine the price of houses. With consideration of the spatial dependency, we

apply all the models considered in our thesis to this empirical problem.

At last, a brief conclusion is given in Chapter 6.
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Chapter 2

Local Linear Regression with

SGAR-type Error

2.1 Literature Review

The local polynomial regression estimation is a nonparametric method that is widely

considered in recent years. The main idea of this kernel smoothing method is to obtain

the estimate of the regression function by locally fitting a p-th degree polynomial to the

data via weighted least square method. Such method is attractive because it presents

many advantages, such as its good boundary behavior and adaptation to estimate the

regression derivatives. A great amount of literature has focused on this topic, for ex-

ample, Stone (1977), Cleveland (1979), Tsybakov (1986), Muller (1988), Fan (1992,

1993), Fan & Gijbels (1992, 1995). See more reviews in Section 1.3 .

In the paper mentioned above, it is assumed that the observations are i.i.d.. Such as-

sumption is usually not satisfied in practical research. Masry & Fan (1997) studied the
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local polynomial regression estimation with the process {xi, yi} being strongly mixing or

ρ-mixing. They showed that the estimators remain consistent and asymptotically normal

when the independent assumption of the observation is relaxed. As a result, the local

polynomial regression becomes useful in nonlinear time series modeling. Hallin et al.

(2004) further generalized the method to the spatial process modeling. They considered

the estimation of the regression function m(.), which is a function of a d-dimensional

vector Xi with d ≥ 2 and i ∈ ZN , N > 1. Under the assumption of the random fields

{Xi,Yi} satisfying strict stationarity and some spatially mixing condition, they estab-

lished the asymptotic normality of the estimator. To avoid the number of parameters

exploding as the dimension of Xi increases, they performed the fitting only with the first

degree polynomial. Hence their approach belongs to one of the local linear fitting.

Some other scholars also consider the modified local polynomial regression estimation

without the i.i.d. assumption. For instance, Francisco-Fernandez & Vilar-Fernandez

(2001). However, unlike Masry & Fan (1997) and Hallin et al.(2004) who assumed

that the explanatory variables are autocorrelated, they assumed the error process {εi} to

be strongly mixing and xi’s fixed. An advantage of their idea is that when the specific

structure of the error term is known, one can make use of such additional informa-

tion to obtain some improvement in estimation. To illustrate this, Vilar-Fernandez &

Francisco-Fernandez (2002) assumed the errors to follow the AR(1) model, and ob-

tained a modified estimator by firstly transforming the whole model to get uncorrelated

errors and secondly applying the local polynomial fitting. A drawback of their method

is that it is only suitable for the case with fixedly designed and equally spaced explana-

tory variables. When the explanatory variables are random, their method does not work.
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Martins-Filho & Yao (2009) considered another modified local polynomial estimation

with general parametric error structure. In their approach, the explanatory variables are

assumed random and independent, and the residuals follow some general type of tem-

poral process. A new two-step fitting procedure is proposed, which firstly forms a new

process with the same conditional mean of the original one but uncorrelated residuals,

and secondly applies the local polynomial fitting to the new process. In the area of

spatial analysis, the local polynomial fitting with spatially correlated errors is also con-

sidered. For example, Francisco-Fernandez & Opsomer (2005) developed a bandwidth

selection method taking into account the effect of the spatially correlated errors. See

also the work of Liu (2001).

The local polynomial fitting with spatially correlated errors is a good idea to deal with

the spatially dependent data. However, this topic has not yet been thoroughly studied.

For instance, the asymptotic normality of the local polynomial estimator with spatially

correlated errors has not been established, especially when the errors satisfy some mul-

tilateral model on a lattice. Moreover, the two-step estimation in Martins-Filho & Yao

(2009) with spatially correlated errors has not been considered either. Both problems

are charming to us, and it is the initial motivation of our work in this chapter.

The outline of this chapter is as follow. In the second section, the nonparametric model

with three distinct SGAR-type errors is presented. The two-step estimation in Martins-

Filho & Yao (2009) will be adopted. In the third section, some theoretical results of

the estimators with distinct error structures are shown. In the fourth section, a two-step

bandwidth selection approach as well as the estimation of the coefficients in the SGAR

model are considered. In the fifth section, several simulations are conducted to assess
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the performance of our estimation. In the sixth section, the proofs of the mathematical

results in this chapter are given. And the last section is a summary conclusion.

2.2 Model and Estimation

We focus on the model

Ys = m(Xs) + εs, (2.1)

where s = (s1, s2) ∈ Z2 is the index of location from a n1×n2 rectangular lattice Ω,

m(.) is some unknown function, Ys is the response variable and Xs is a d-dimensional

explanatory random vector. Moreover, Xs for s ∈ Ω are assumed i.i.d., and εs satisfies

one of the following simultaneous Gaussian autoregressive (SGAR) models,

εs = θ1(ε∗(s1−1,s2) + ε∗(s1+1,s2)) + θ2(ε∗(s1,s2−1) + ε∗(s1,s2+1)) + τs , (2.2)

εs = θ1(ε(s1−1,s2) + ε(s1+1,s2)) + θ2(ε(s1,s2−1) + ε(s1,s2+1))

+ θ1θ2(ε(s1−1,s2−1) + ε(s1−1,s2+1) + ε(s1+1,s2−1) + ε(s1+1,s2+1)) + τs , (2.3)

εs = θ1 ε(s1−1,s2) + θ2 ε(s1,s2−1) + τs . (2.4)

where τs is normally distributed with zero mean and variance σ2
τ , {τs} is independent of

{Xs}, ε∗s = εu with u =
(
(s1−1 mod n1)+1, (s2−1 mod n2)+1

)
if s < Ω, and ε∗s = εs if

s ∈ Ω.

(2.2) is a torus SGAR model, which is considered in Kashyap (1979, 1980) and Kashyap

& Chellappa (1983). Although the torus assumption is quite artificial, it has an important

advantage that all the neighbors of the random variables at the boundary can be well de-

fined. Therefore, such assumption is usually used in spatial analysis. (2.3) is a separable
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SGAR model, and same as (2.2), it is bilateral. This model is named after its property

that the transfer function can be presented as the product of two one-dimensional poly-

nomial. See more about the separable models in Martin (1979), Basawa et al.(1992) and

Basawa (1995). (2.4) is a unilateral SGAR model, which is also known as the causal-

type or quadrant-type model. The random variable in this model depends only on the

neighbors on a quadrant plain, which may be too idealized for practice. However, such

model can be seen as a straight generalization of the AR model in time series, and the

Markovian property is naturally held. That release the difficulty in the theoretical anal-

ysis, and hence this model is broadly used. For more details, see the work of Tjøstheim

(1978, 1983). Note that (2.2)-(2.4) are all the first-order SGAR models, however, our

analysis can be generalized to the cases with any other order straightforwardly. We only

consider the errors with the first-order SGAR models in this thesis, because these mod-

els are the most practical ones in spatial analysis. In time series, 100 observations is

usually adequate for the estimation of a multi-order model. Nevertheless, observations

from a 10×10 squared area are not quite sufficient for the estimation of a multi-order

spatial model, as there are only 10 points on each edge. This kind of reason makes the

first-order SGAR model the most feasible choice in practice.

If function m(.) in (2.1) is differentiable at x with gradient m′(x), we can approximate

m(.) in the neighborhood of x by

m(Xs) ≈ m(x) + (m′(x))T (Xs − x) =̂ β0(x) +

d∑

i=1

βi(x)
(Xs − x)i

hi
, (2.5)

where βi(x)=hi
∂m(x)
∂xi

, (δ)i denotes the i-th element of the vector δ, and hi is a sequence

of bandwidth tending to zero as n = (n1, n2) tends to infinity. Here, we write n → ∞ as
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min{n1, n2} → ∞. So locally, estimating m(Xs) is approximately equivalent to estimating

(
β0(x), β1(x), . . . , βd(x)

)
, and the estimates can be obtained from

argmin
(β0 , ..., βd )∈Rd+1

(nhπ)−1
∑

s∈Ω

Ys − β0(x) −
d∑

i=1

βi(x)
(Xs−x)i

hi


2

Kπ

(
ζ1(Xs−x)

)
, (2.6)

where n=n1× n2, hπ=
∏d

i=1hi, ζ1(Xs−x)=
(
(Xs−x)�(1/h)

)T, h= (h1, · · ·, hd)T , � denotes

the element-wise product of two matrix, Kπ(δ)=
∏d

i=1K(δi) with K(.) being some kernel.

Arrange the points s ∈ Ω in arbitrary order and denote them by s1, · · · , sn respectively.

Throughout this thesis, we use s as an arbitrary location index in Ω, while si, i = 1, · · ·, n,

as the arranged indexes whenever necessary. With the arrangement of the locations,

(2.6) can be written equivalently in the matrix form:

argmin
β∈R d+1

(
Y − ~X(x)β(x)

)T
W(x)

(
Y − ~X(x)β(x)

)
, (2.7)

where Y = (Ys1 , · · · ,Ysn)
T , W(x) = (nhπ)−1diag

(
Kπ

(
ζ1(Xs1 − x)

)
, · · · ,Kπ (ζ1(Xsn − x)

))
,

β(x) =
(
β0(x), β1(x), · · ·, βd(x)

)T
and ~X(x) is a n×(d+1) matrix with the i-th row being

ζ(Xsi−x) =
(
1, ζ1(Xsi−x)

)
. It follows that the local linear estimator of β(x) is given by

β̂(x) =
(
~XT(x)W(x)~X(x)

)−1 (
~XT(x)W(x)Y

)
, (2.8)

and the estimator of m(x), denoted as m̂(x), is given by the first element of β̂(x).

When observations satisfy some spatially mixing condition, the asymptotic properties

of β̂(x) have been considered in Hallin et al.(2004). However, with our different setup

where the error term εs is spatially correlated, for example, as modeled in (2.2)-(2.4),

the problem has not been completely studied. Moreover, β̂(x) in (2.8) does not make

use of the information of spatial dependency contained in εs. Hence some improvement
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of the estimation can be pursued.

Rewrite (2.1) into the matrix form as

Y = M + E, (2.9)

where M =
(
m(Xs1), · · · ,m(Xsn)

)T , E = (εs1 , · · · , εsn)
T . Similarly, rewrite (2.2)-(2.4) as

(
I − B(θ)

)
E = Υ, (2.10)

where I is a unit matrix, Υ = (τs1 , · · · , τsn)
T , θ = (θ1, θ2), B(θ) is a n × n matrix with the

(i, j)th element being the corresponding coefficient defined in (2.2)-(2.4) if εsi depends

on εsj and zero otherwise. If we can form a new process {Ps} (in the matrix form) as

P = M +
(
I − B(θ)

)
E, (2.11)

it is readily to see that Ps has the same conditional mean as Ys does, but the new error

terms in (2.11) are i.i.d.. Therefore, we can apply the local linear fitting to the new

process Ps to obtain an improved estimator of the m(.) function.

However, the process Ps cannot be formed directly, as M, B(θ) and E in (2.11) are all

unknown. Thus, we need to replace the unknown terms by some estimators. Rewrite

(2.11) equivalently as

P =
(
I − B(θ)

)
Y + B(θ)M. (2.12)

If we can obtain some consistent estimator of M, i.e. by the local linear fitting in

(2.8), as well as some appropiate estimator of the matrix B(θ), we then can form

P̂ = (P̂s1 , · · ·, P̂sn)
T as

P̂ =
(
I − B(θ̂)

)
Y + B(θ̂)M̂. (2.13)
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As we need some new bandwidths for the improved estimators, let g= (g1, · · ·, gd)T be a

bandwidth vector distinct from h, and consequently gπ=
∏d

i=1 gi. Substitute h and hπ by

g and gπ in the expression of ~X(x) and W(x) below, then our modified estimator of the

m(.) function is given by

m̃(x) = ηT
(
~XT(x)W(x)~X(x)

)−1 (
~XT(x)W(x)P̂

)
, (2.14)

where η is a d+1 vector with the first element being 1 and 0 elsewise. Now let us sum

up the full process. Our estimation runs in two steps.

Step 1. Obtain an initial estimator of β(x) by (2.8) with bandwidth h. As we will

show in the next section, β̂ (x) in (2.8) is consistent. So m(.) and εs can be

estimated consistently.

Step 2. Estimate θ1 and θ2 with the estimate of εs, so that P̂ in (2.13) can be formed.

Then, with bandwidth g, we apply the local linear fitting to P̂ to get the

improved estimator m̃(x).

We denote this estimation procedure by LLR-SCE through this thesis, and call m̂(x) and

m̃(x) as the first- and second-step estimator of m(x).

Remark 2.1 The SGAR model is quite suitable for the two-step estimation shown

above. This is because the variance matrix of {εs} can be decomposed as the square

of I−B(θ) naturally. By contrast, the CGAR model is less appropriate. From (1.20),

we can see that we need to decompose (I − C)−1R. However, there is no guaranty that

its estimator is positive-definiteness. Hence, the decomposition may not be executed

successfully. Moreover, as we have mentioned in Section 1.2.2, the residuals in the
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CGAR models are correlated, which does not fit our purpose to form a new process

with i.i.d. errors. One may also replace the SGAR model by some geostatistics models,

see Section 1.2.1. Nonetheless, some spatially mixing condition will be necessary for

the establishment of asymptotic normality of the estimators, making the analysis more

complicated.

Remark 2.2 One may run the two-step estimation procedure iteratively to earn a more

accurate estimate. However, according to the simulation results given in section 2.5,

this may not be necessary in practice, as the estimators given by the two-step estimation

are usually accurate enough.

2.3 Theoretical Results

We will study the asymptotic properties of both β̂ (x) and m̃(x) in this section. A set of

assumptions should be given in advance.

(A1) The random vectors Xs, s ∈ Ω, are i.i.d. with joint density f (x), 0< | f (x)|<

∞. Moreover, {Xs} is independent of {εs} and {τs}.

(A2) All the second derivatives of m(.) exist and are continuous at all x.

(A3) The random field {εs, s∈Z2} is strictly stationary; εs has zero mean and finite

variance.

(A3a) The coefficients in (2.2) satisfy |θ1|+|θ2|<1/2.

(A3b) The coefficients in (2.3) satisfy |θ1|<1/2, |θ2|<1/2.

(A3c) The coefficients in (2.4) satisfy |θ1|+|θ2|<1.

(A4) The kernel function K(.) is symmetric, with bounded support, and Lipschitz

continuous.
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(A5) hi>0, hi→0 as n→∞; moreover, denote hL the bandwidth with the slowest

convergence rate, such as hL ∈ {h1,· · ·, hd}, hL = O
(
hC

k

)
for 0 < C ≤ 1 and

k=1,· · ·, d, then h converges to zero in the manner that n = O
(
(hπh4

L )−1) and

h2
L /hi→0 for i=1,· · ·, d.

(A6) gi > 0, gi → 0 as n → ∞; denote gL the bandwidth with the slowest con-

vergence rate, such as gL ∈ {g1,· · ·, gd}, gL = O
(
gC

k

)
for 0 < C ≤ 1 and

k = 1,· · ·, d; g converges to zero in the manner that n = O
(
(gπg4

L )−1); more-

over, lim
n→∞

hL/gL→0.

(A7) There exist some sequences as: l1→∞, l2→∞ and m → ∞ as n → ∞;

m/li → 0 and li/ni → 0 for i = 1, 2, as n→ ∞.

For the sake of convenience, denote Un(x) = ~XT(x)W(x)~X(x), Vn(x) = ~XT(x)W(x)Y and

V∗n(x) as the centered vector of Vn(x). Then, Un(x) is a (d+1)×(d+1) matrix with the

(j, k)-th element being

(
Un(x)

)
jk
= (nhπ)−1

∑

s∈Ω

(
ζ(Xs−x)

)
j

(
ζ(Xs−x)

)
k
Kπ

(
ζ1(Xs−x)

)
, (2.15)

j, k=1, · · ·, d+1; Vn(x) and V∗n(x) are d+1 vectors with the j-th element being

(
Vn(x)

)
j
= (nhπ)−1

∑

s∈Ω
Ys

(
ζ(Xs−x)

)
j
Kπ

(
ζ1(Xs−x)

)
,

(
V∗n(x)

)
j
= (nhπ)−1

∑

s∈Ω

(
Ys−m(Xs)

)(
ζ(Xs−x)

)
j
Kπ

(
ζ1(Xs−x)

)
, (2.16)

j=1,· · ·, d. The following theorem shows the convergence rate of β̂ , which ensures the

first-step estimators are consistent.
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Theorem 2.1 If εs follows any of the models in (2.2)-(2.4), with coefficients satisfying

assumptions (A3a)- (A3c) respectively, and assumptions (A1)-(A5) hold, we have

β̂ (x) − β(x) − 1
2

U−1(x)T(x) = U−1
n (x)V∗n(x) + op(h2

L ), (2.17)

where (δ is some d-dimensional vector)

U(x) = f (x)



r
Kπ(δ) dδ

r
δTKπ(δ) dδ

r
δKπ(δ) dδ

r
δδTKπ(δ) dδ


,

and T(x) is a d+1 dimensional vector with the ith element being (δ0≡1)

(
T(x)

)
i
= f (x) tr

[
m′′(x)

w
δi−1(δδT)�(hhT)Kπ(δ)dδ

]
.

Moreover, we have Un(x) = U(x) +op(1), V∗n(x) = Op
(
(nhπ)−1/2), and it is clearly that

U−1(x)T(x)=O(h2
L ), therefore

β̂ (x) − β(x) = Op(h2
L ) .

When εs satisfies model (2.3) or (2.4), we can also establish the asymptotic normality

of β̂ . Since the analyses with εs satisfying (2.3) are more involved, we omit the other

ones in the following. In the literature about the local polynomial fitting with dependent

data, some mixing conditions are usually adopted, for example, Masry & Fan (1997)

and Hallin, Lu & Tran (2004). In our research, however, as the residuals satisfy some

SGAR model, we may make good use of these special structures rather than applying

the mixing assumptions. Therefore, we firstly transform (2.3) into an equivalent 2-

dimensional moving average model, and then apply the ’large and small block’ method

with the truncated MA model. The theorem below then follows.
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Theorem 2.2 If εs follows model (2.3) with coefficients satisfying (A3b), and assump-

tions (A1)-(A5), (A7) hold, then

(nhπ)1/2
[
β̂ (x) − β(x) − 1

2
U−1(x)T(x)

] D−→ N
(

0,U−1(x) Σ(x) U−1(x)
)
, (2.18)

where U(x) and T(x) are defined in Theorem 2.1, and (δ is some d-dimensional vector)

Σ(x) = σ2
ε f (x)



r
K2
π(δ)dδ

r
δT K2

π(δ)dδ

r
δK2

π(δ)dδ
r
δδT K2

π(δ)dδ


.

At last, we consider the asymptotic normality of m̃(x). Note that m̃(x) depends on

the estimator of θ, which is the parameter vector in the SGAR model. Therefore, the

asymptotic properties of m̃(x) are affected by the convergency of θ̂ . Following Martins-

Filho & Yao (2009), we assume that some consistent estimator θ̂ is available, say θ̂ =

θ+op(1), then the following theorem can be established.

Theorem 2.3 If the conditions in Theorem 2.1 as well as assumption (A6) are satisfied,

and some consistent estimator θ̂ of θ is available, then

(ngπ)1/2
(
m̃(x) − m(x) − Bias(x)

) D−→ N
(

0, σ2
)
, (2.19)

where Bias(x)= tr
[
m′′(x)

r
(δδT )�(ggT ) Kπ(δ) dδ

]
and σ2= f −1(x)σ2

τ

r
K2
π (δ) dδ.

Remark 2.3 We do not consider the asymptotic normality of β̂ when εs satisfies model

(2.2). Due to the periodicity property of the torus SGAR model, the covariance of two

random variables will not always decrease as their distance increase. Hence, it is not ap-

propriate to use the ’large and small block’ method to establish the asymptotic normality

of β̂ , making the analysis difficult. In spite of this, we can establish the asymptotic nor-
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mality of the second-step estimator m̃(x). This is because the asymptotic normality of

m̃(x) does not depend on the asymptotic distribution of β̂ , but on its convergence rate

only.

2.4 Some Practical Considerations

2.4.1 Bandwidth Selection

Bandwidth selection is always an important problem in kernel estimation. Theoretically,

the optimal bandwidth is usually defined to be one that minimizes the squared bias plus

variance of the estimator, see Masry & Fan (1997) and Cai & Fan (2000). From the

proofs of Theorem 2.1, we have

Bias
(
m̂(x)

)
= 1

2

d∑

i=1

[
h2

i mii(x)
w
δ2

i Kπ(δ) dδ
]
, (2.20)

Var
(
m̂(x)

)
= (nhπ)−1σ2

ε f −1(x)
r

K2
π (δ) dδ . (2.21)

Therefore, define

Q =
1
4

{ d∑

i=1

[
h2

i mii(x)
w
δ2

i Kπ(δ)dδ
]}2

+ (nhπ)−1σ2
ε f −1(x)

w
K2
π(δ)dδ. (2.22)

The optimal bandwidth can be obtained by minimizing Q with respect to h =

(h1, · · ·, hd). However, the second derivatives of m(x) and f (x) are usually unknown,

in practice, we may determine the optimal bandwidth via some data driven methods,

i.e., the cross-validation(CV) method.

Note that our method runs in two steps, hence, distinct bandwidth should be used in

each step. Recall that h and g are the bandwidths in the first and second step respec-
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tively. We claim that the optimal h and g should be obtained ’simultaneously’ rather

than ’separatively’. What we call ’separatively’ here means to obtain the optimal h via

the CV method first and give an initial estimator of m(.) function so that the new process

{P̂s} can be formed, then obtain the optimal g via the CV method again with {P̂s}. We

will explain more about the idea below. Define

Cv1 =
1
n

∑

s∈Ω

(
Ys − ḿ(Xs)

)2
,

where ḿ(Xs) is the predictor of m(Xs) in Step one, which is obtained by local linear

fitting with observations not including the one at s. By the CV method, the optimal h

can be obtained by minimizing Cv1. Such method, however, may perform badly in our

two step estimation. Actually, what we need in Step one is to get an initial estimator of

m(.). So the optimal h should be the one minimizing

Cv2 =
1
n

∑

s∈Ω

(
m(Xs)−ḿ(Xs)

)2
,

rather than that minimizing Cv1. Obviously, the CV method tends to gain bandwidth

which will fit m(Xs) closer to the observation Ys, but this is not our purpose.

Now define Ṕs similar to P̂s but with m̂(Xs) substituted by ḿ(Xs), and

Cv3 =
1
n

∑

s∈Ω

(
Ys−m̀(Xs)−ὲs

)2
,

where m̀(Xs) is the predictor of m(Xs) in Step two, which is obtained by local linear

fitting with Źs but not including the one at s, and ὲs is the estimate of εs based on

Ys − m̀(Xs). Therefore, by minimizing Cv3, the optimal h and g can be determined

simultaneously.

28



Obviously, it is a better approach to determine the optimal h and g simultaneously.

Unfortunately, it always leads to large amount of calculations. Therefore, we propose

an alternative method, and main steps are described below.

Step I. Obtain an initial h via the CV method.

Step II. With h given in Step I, determine optimal g by minimizing Cv3.

Step III. With g given in Step II, determine optimal h by minimizing Cv3, then repeat

Step II and III until h and g become stable.

In this manner the optimal bandwidths are determined ’iteratively’. We can see that the

bandwidth obtained in each iteration keep approaching ’optimal’ in the sense that Cv3

decreases monotonically. Although there is no guarantee the bandwidth determined

iteratively will converge to the one determined simultaneously, the proposed iterative

method is still meaningful, as it works better than the one determining the distinct band-

width separately, while the amount of calculations involved is practically acceptable.

We shall conduct below a simulation to show the performance of the proposed band-

width selection method. Consider

Y(s1,s2) = sin
(
πX(s1,s2)

)
+ ε(s1,s2) ,

ε(s1,s2) = 0.39
(
ε(s1−1,s2) + ε(s1+1,s2)

)
− 0.1

(
ε(s1,s2−1) + ε(s1,s2+1)

)
+ τ(s1,s2) ,

where τ(s1,s2) ∼ N(0, 1). Observations are drawn from a 10 × 10 area, and torus setup

is adopted to ensure all neighbors of the variables at the boundary are well defined.

We run the simulation 100 times with the optimal bandwidth determined separately and
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iteratively. Define

MSE1 =
1
n

∑

s∈Ω

(
m(Xs) − m̆(Xs)

)2
,

MSE2 =
1
n

∑

s∈Ω

(
Ys−m̆(Xs)−ε̆s

)2
,

where m̆(Xs) is the estimate of m(Xs) obtained by (2.14), and ε̆s is the estimate of εs

based on Ys−m̆(Xs). The simulation results are presented in Table 2.1. We can see that

the means and variance of MSE1 and MSE2 of the bandwidth selected iteratively are

smaller than those of the bandwidth selected separatively. Moreover, in the 100 simu-

lations, there are 94 times that the bandwidths selected iteratively are coincident with

those selected simultaneously. That means the iterative method of selecting bandwidth

performs well and with an acceptable calculational speed.

.
Table 2.1: Simulation for bandwidth selection methods

Separatively Iteratively

mean of MSE1 0.2245 0.1951
mean of MSE2 0.8205 0.7620
var of MSE1 0.0278 0.0213
var of MSE2 0.0491 0.0344

2.4.2 Estimation of SGAR coefficients

In our method, we need to estimate the SGAR coefficients in (2.2)-(2.4). Note that the

model in (2.4) is unilateral, while the others are bilateral. By Tjøstheim (1978), we

see that the Yule-Walker type estimators for the unilateral SGAR models are consistent,

however, such estimators are not consistent for the multilateral SGAR models, see Whit-

tle (1954). For the maximum likelihood estimation, the case is also complicated. The
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main difficulty is how to evaluate the determinant | I−B(θ) | in the likelihood function.

As it is hard to give a simple expression to this determinant, approximations are used

in the estimation, see Whittle (1954), Guyon (1982), Robinson & Vidal Sanz (2006),

Kashyap & Chellappa (1983) and Ali (1979). In our thesis, we apply the method in

Kashyap & Chellappa (1983) to estimate the coefficients in (2.2), and a modified ap-

proach which generalizes the work of Ali (1979) to estimate the coefficients in (2.3).

The main procedure will be presented below.

Let Ic be the c × c unit matrix, Γc be a c × c matrix with the (i, j)th element being 1 if

j = i − 1 and 0 elsewise. By (2.3) we have

I−B(θ)=In1⊗ In2− θ1
(
Γn1+ Γ′n1

)⊗ In2− θ2 In1⊗
(
Γn2+ Γ′n2

)− θ1θ2
(
Γn1+ Γ′n1

)⊗( Γn2+ Γ′n2

)
.

where ⊗ denotes the Kronecker product of matrices. As
(
Γn1+ Γ′n1

)⊗ In2 , In1⊗
(
Γn2+ Γ′n2

)

and
(
Γn1+ Γ′n1

)⊗( Γn2+ Γ′n2

)
commute mutually, they can be diagonalized simultaneously

by an orthogonal transformation. Denote D1i, i = 1, · · ·, n1, the characteristic roots of

(
Γn1+ Γ′n1

)
and D2j, j = 1, · · ·, n2, the characteristic roots of

(
Γn2+ Γ′n2

)
. Then

| I − B(θ)| =
∏

i, j

(
1 − θ1D1i − θ2D2j − θ1θ2D1iD2j

)
. (2.23)

By Ord (1975), D1i and D2j can be given approximately by

D1i = 2cos
{
πi/(n1+1)

}
and D2j = 2cos

{
π j/(n2+1)

}
.

Recall that the log-likelihood function can be given as

logl = − 1
2

n logσ2
τ + log |I−B(θ)| − ET( I−B(θ)

)T ( I−B(θ)
)

E/(2σ2
τ ). (2.24)
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It is easy to see that the ML estimators of σ2
τ can be given by

σ̂2
τ =

1
n

ET( I−B(θ)
)T( I−B(θ)

)
E,

and θ̂ can be obtained by minimizing σ̂2
τ |I−B(θ)|−2/n. Then, with (2.23), the ML esti-

mators are available.

2.5 Simulations

In this section, we shall conduct several simulations to asses the performance of our

method. Observations {Ys,Xs} will be generated with errors {εs} satisfying (2.2)-(2.4).

We will conduct the simulations with 3 different sample sizes, namely 10×10, 15×15 and

20× 20, and will replicate 100 times for each sample size. The results of our estimation

will be compared with those given by local linear fitting.

Simulation 2.1 The testing model is

Ys = sin
(
πXs

)
+ εs, (2.25)

where Xs ∼ U(0, 4), εs is modeled as (2.2) -(2.4) with τs ∼ N(0, 1) and coefficients

θ = (θ1, θ2) being (0.38,−0.1), (0.3,−0.2) and (0.4, 0.3) respectively.

First, we consider Figure 2.3 and Figure 2.4, which present two typical fittings with

errors satisfying (2.2) and (2.3) respectively. The dots refer to the observations and the

solid line refers to the curve of the true function sin(πXs). The estimate of m(.) given by

the local linear fitting and our estimate are also shown. It can be seen that the estimates

obtained by local linear fitting depart from the true values greatly. Comparatively, the
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Figure 2.1: Simulation 2.1. Fitting with torus SGAR-type error. Solid line refers to
true values of the m(.) function; dashed line refers to estimates given by LLR-SCE; and
dash-dot line refers to estimates given by local linear fitting. Sample size: 20 × 20.
Note: as our estimates are too close to the true values, the dashed line may not be shown
clearly in a black and white graph.
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Figure 2.2: Simulation 2.1. Fitting with separable SGAR-type error. Solid line refers to
the true values of the m(.) function; dashed line refers to the estimators given by LLR-
SCE; and dash-dot line refers to those given by local linear fitting. Sample size: 20×20.
Note: as our estimates are too close to the true values, the dashed line may not be shown
clearly in a black and white graph.

33



.
Table 2.2: Simulation 2.1. MSE for the estimators of m(.).

Sample Size 10×10 15×15 20×20

Torus(a)

mean of MSE(d)
o 0.6418 0.3692 0.2122

mean of MSE(e)
m 0.1517 0.0613 0.0393

var of MSEo 0.1941 0.0501 0.0143
var of MSEm 0.0084 0.0011 0.0003

Separable(b)

mean of MSEo 3.5894 7.2986 1.2509
mean of MSEm 0.1270 0.0755 0.0350
var of MSEo 34.1649 268.7327 1.0319
var of MSEm 0.0049 0.0045 0.0002

Unilateral(c)

mean of MSEo 0.1938 0.0953 0.0518
mean of MSEm 0.1719 0.0835 0.0463
var of MSEo 0.0160 0.0037 0.0006
var of MSEm 0.0139 0.0034 0.0006

(a) Torus: εs generated by (2.2).
(b) Separable: εs generated by (2.3).
(c) Unilateral: εs generated by (2.4).
(d) MSEo refers to the MSE given by local linear fitting.
(e) MSEm refers to the MSE given by LLR-SCE.

.
Table 2.3: Simulation 2.1. Estimators of θ= (θ1, θ2).

Sample Size 10×10 15×15 20×20

Torus(∗)

mean of θ̂1 0.3630 0.3819 0.3906
mean of θ̂2 -0.1295 -0.1220 -0.1163

Separable(∗)

mean of θ̂1 0.2874 0.2917 0.2889
mean of θ̂2 -0.2140 -0.2052 -0.2084

Unilateral(∗)

mean of θ̂1 0.3284 0.3506 0.3403
mean of θ̂2 0.2372 0.2608 0.2640

(∗) Torus, Separable and Unilateral are same defined as the ones in Table 2.2.
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estimates given by LLR-SCE are much closer to the true. Furthermore, the curve given

by LLR-SCE is smoother. More results are given in Table 2.2 and Table 2.3.

From Table 2.2, we can see that almost all the MSE of the estimates given by both the

local linear fitting and LLR-SCE decrease as the sample size increases. These certify

the consistency of β̂ (x) and m̃(x). The only exception is the case given by local linear

fitting with εs satisfying (2.3) and sample size 15×15. For the Separable case in Table

2.2, we can see that the mean of MSE given by local linear fitting are 3.5894, 7.2986

and 1.2509, for sample sizes 10×10, 15×15 and 20×20 respectively. The reason for

this is that the dependence memory of εs generated by (2.3) is relatively long. The first

sample size 10×10 is not large enough to ensure the variance of εs to reach it stable value.

As sample size increases from 10×10 to 15×15, the empirical variance of εs increases,

too. This leads to the increment of the MSEo. As sample size keeps on increasing, the

variance of εs becomes stable gradually, so MSEo turns to decrease. See also (2.21) that

the variance of m̂(x) depends on the variance of εs. We can further find that, as different

from MSEo, MSEm keeps decreasing all the time. This is because the variance of m̃(x)

depends on the variance of τs instead, see Theorem 2.3.

Table 2.2 also shows that the MSE obtained by LLR-SCE are small than those given

by local linear fitting uniformly, indicating that LLR-SCE is preferable. Another phe-

nomenon drawing our attentions is that our method makes large improvements over the

local linear fitting, when εs satisfies (2.2) and (2.3). However, when εs satisfies (2.4),

the improvement is less significant. This is due to the special structure of the errors

chosen. Model (2.4) is unilateral, while (2.2) and (2.3) are bilateral. The volatility of

errors generated from the former is small, in contrast to those from the later. Obviously,
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our method is more meaningful when the volatility of errors is large.

Table 2.3 shows the simulation results of θ̂ . Note that the estimation of θ is based on the

first-step estimator m̂(x), so the accuracy of θ̂ is affected by the estimation of the m(.)

function. In practice, one may obtain a better estimate of θ basing on the second-step

estimator m̃(x), which has a small variance than m̂(x).

Simulation 2.2 The testing model is

Ys = 2 + log(Xs) − 2Xs/2 + εs, (2.26)

where Xs∼U(0.01, 4). Other settings are same as the ones in Simulation 2.1.

In Simulation 2.2, we consider another testing model with single explanatory variable.

Fitting results are shown in Figure 2.3, Figure 2.4 and Table 2.4, Table 2.5. According

to these results, similar comments as those in Simulation 2.1 can be given.
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Figure 2.3: Simulation 2.2. Fitting with torus SGAR-type error. Solid line refers to
true values of the m(.) function; dashed line refers to estimates given by LLR-SCE; and
dash-dot line refers to estimates given by local linear fitting. Sample size: 20 × 20.
Note: as our estimates are too close to the true values, the dashed line may not be shown
clearly in a black and white graph.
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Figure 2.4: Simulation 2.2. Fitting with separable SGAR-type error. Solid line refers to
the true values of the m(.) function; dashed line refers to the estimators given by LLR-
SCE; and dash-dot line refers to those given by local linear fitting. Sample size: 20×20.
Note: as our estimates are too close to the true values, the dashed line may not be shown
clearly in a black and white graph.

.
Table 2.4: Simulation 2.2. MSE for the estimators of m(.).

Sample Size 10×10 15×15 20×20

Torus(a)

mean of MSE(d)
o 0.5522 0.2769 0.1765

mean of MSE(e)
m 0.1379 0.0783 0.0564

var of MSEo 0.2914 0.0353 0.0075
var of MSEm 0.0109 0.0023 0.0010

Separable(b)

mean of MSEo 4.5963 7.4921 1.3215
mean of MSEm 0.1205 0.0788 0.0436
var of MSEo 93.9917 160.4989 3.4335
var of MSEm 0.0067 0.0027 0.0006

Unilateral(c)

mean of MSEo 0.1689 0.0912 0.0736
mean of MSEm 0.1597 0.0871 0.0716
var of MSEo 0.0144 0.0037 0.0026
var of MSEm 0.0151 0.0039 0.0036

(a) Torus: εs generated by (2.2).
(b) Separable: εs generated by (2.3).
(c) Unilateral: εs generated by (2.4).
(d) MSEo refers to the MSE given by local linear fitting.
(e) MSEm refers to the MSE given by LLR-SCE.
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.
Table 2.5: Simulation 2.2. Estimators of θ= (θ1, θ2).

Sample Size 10×10 15×15 20×20

Torus(∗)

mean of θ̂1 0.3707 0.3940 0.4004
mean of θ̂2 -0.1281 -0.1134 -0.1087

Separable(∗)

mean of θ̂1 0.2910 0.2888 0.2914
mean of θ̂2 -0.2084 -0.2082 -0.2066

Unilateral(∗)

mean of θ̂1 0.3207 0.3498 0.3660
mean of θ̂2 0.2510 0.2608 0.2685

(∗) Torus, Separable and Unilateral are same defined as the ones in Table 2.2.

Simulation 2.3 The testing model is

Ys = sin
(
πX1,s

)
+ cos

(
πX2,s

)
+ εs, (2.27)

where Xi,s∼U(0, 4), i = 1, 2. Other settings are same as the ones in Simulation 2.1.

In Simulation 2.3, we consider a model with two explanatory variables. The results

are shown in Table 2.6 and Table 2.7. We can see that our estimation still performs

much better than the local linear fitting. The improvement is especially significant in

the Torus and Separable cases. However, comparing with results of Simulation 1, the

ones of Simulation 2 are obviously worse. This is because there are more explanatory

variables in Simulation 2, and therefore the fitting suffers from the so-called curse of

dimensionality.
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.
Table 2.6: Simulation 2.3. MSE for the estimators of m(.).

Sample Size 10×10 15×15 20×20

Torus(a)

mean of MSE(d)
o 1.6022 1.0910 0.7169

mean of MSE(e)
m 0.6055 0.2985 0.1968

var of MSEo 1.5741 0.1970 0.0243
var of MSEm 0.0298 0.0065 0.0019

Separable(b)

mean of MSEo 10.3038 24.4096 2.7245
mean of MSEm 0.7344 0.5233 0.1944
var of MSEo 234.7356 2.80 × 103 4.2181
var of MSEm 0.2645 0.1793 0.0016

Unilateral(c)

mean of MSEo 0.5180 0.2729 0.2081
mean of MSEm 0.4885 0.2485 0.1816
var of MSEo 0.0172 0.0044 0.0020
var of MSEm 0.0188 0.0045 0.0017

(a) Torus: εs generated by (2.2).
(b) Separable: with εs generated by (2.3).
(c) Unilateral: with εs generated by (2.4).
(d) MSEo refers to the MSE given by local linear fitting.
(e) MSEm refers to the MSE given by LLR-SCE.

.
Table 2.7: Simulation 2.3. Estimators of θ= (θ1, θ2).

Sample Size 10×10 15×15 20×20

Torus(∗)

mean of θ̂1 0.3142 0.3400 0.3573
mean of θ̂2 -0.1440 -0.1428 -0.1318

Separable(∗)

mean of θ̂1 0.2814 0.2823 0.2829
mean of θ̂2 -0.2187 -0.2117 -0.2127

Unilateral(∗)

mean of θ̂1 0.2455 0.3100 0.3067
mean of θ̂2 0.1903 0.2324 0.2540

(∗) Torus, Separable and Unilateral are same defined as the ones in Table 2.6.
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2.6 Proofs

In the following, we will omit the notation ′(x)′ in all the expressions wherever no

confusion occurs. We first present several lemmas needed in the proof of Theorem 2.1.

The first lemma is quite standard in the literature of local polynomial fitting, and the

proofs can be given similarly as those of Lemma 2.2, hence we present it directly with

proofs skipped.

Lemma 2.1 Under assumptions (A1), (A4) and (A5), we have

Un − U = op(1), (2.28)

where

U = f (x)



r
Kπ(δ) dδ

r
δTKπ(δ) dδ

r
δKπ(δ) dδ

r
δδTKπ(δ) dδ


, (2.29)

and δ is some d dimensional vector.

Let R(k) =̂ Cov(εs, εs+k), where k = (k1, k2) ∈ Z2. The lemma below is crucial for Theo-

rem 2.1.

Lemma 2.2 Given the condition that

∞∑

k1=−∞

∞∑

k2=−∞

|R(k1, k2)| < ∞ (2.30)

and assumptions (A1), (A3)-(A5) hold, then

nhπVar(V∗n ) = Σ + o(1), (2.31)

where Σ is defined in Theorem 2.2.
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Proof of Lemma 2.2: For j, k = 1, . . . , d+1, we have

Cov
(
(V∗n)j , (V∗n)k

)

= (nhπ)−2
∑

s∈Ω
Cov

[(
Ys−m(Xs)

)(
ζ(Xs−x)

)
j
Kπ

(
ζ1(Xs−x)

)
,
(
Ys−m(Xs)

)(
ζ(Xs−x)

)
k
Kπ

(
ζ1(Xs−x)

)]

+(nhπ)−2
∑
s′,s′′

s′,s′′∈Ω

Cov
[(

Ys′−m(Xs′)
)(
ζ(Xs′−x)

)
j
Kπ

(
ζ1(Xs′−x)

)
,
(
Ys′′−m(Xs′′)

)(
ζ(Xs′′−x)

)
k
Kπ

(
ζ1(Xs′′−x)

)]

=̂ Q1 + Q2 .

Let δ = (δ1, · · · , δd)T and δ0 ≡ 1, then

Q1 = (nhπ)−2
∑

s∈Ω
E

[
(Ys−m(Xs))2 (ζ(Xs−x))j (ζ(Xs−x))k K2

π

(
ζ1(Xs−x)

)]

= (nh2
π)
−1σ2

ε

w
(ζ(r − x))j (ζ(r − x))k K2

π

(
ζ1(rs−x)

)
f (r) dr

= (nhπ)−1σ2
ε

w
δ j−1δk−1K2

π(δ) f (δ � h + x) dδ

= (nhπ)−1σ2
ε f (x)

w
δj−1δk−1K2

π(δ) dδ + o((nhπ)−1).

|Q2| ≤ (nhπ)−2
∑
s′,s′′

s′,s′′∈Ω

∣∣∣∣∣ Cov(εs′, εs′′)E
[(
ζ(Xs′−x)

)
j
Kπ

(
ζ1(Xs′−x)

)]
E
[(
ζ(Xs′′−x)

)
k
Kπ

(
ζ1(Xs′′−x)

)]∣∣∣∣∣

= n−2
∑
s′,s′′

s′,s′′∈Ω

∣∣∣∣∣ Cov(εs′, εs′′)
w
δj−1Kπ(δ) f ( δ�h+x) dδ

w
δk−1Kπ(δ) f ( δ�h+x) dδ

∣∣∣∣∣

≤ Cn−2
[ ∞∑

k1=−∞

∞∑

k2=−∞

( n1−|k1| )( n2−|k2| )
∣∣∣ R( k1, k2 )

∣∣∣−nR(0, 0)
]

≤ Cn−1
∞∑

k1=−∞

∞∑

k2=−∞

|R(k1, k2)|,

which is equal to O(n−1). Thus we have

Cov
(
(V∗n) j, (V∗n)k

)
= (nhπ)−1

[
σ2
ε f (x)

w
δj−1δk−1K2

π(δ)dδ + o(1)
]
.

The proof is completed. �
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To ensure Lemma 2.2 is valid for our analysis, we need to verify that the SGAR models

in (2.2)-(2.4) satisfy condition (2.30). Consider model (2.2), we need the following

lemma.

Lemma 2.3 If εs satisfies model (2.2) and assumptions (A3), (A3a) hold, then condition

(2.30) is valid.

Proof of Lemma 2.3: We first consider model (2.2), the torus SGAR model, on a finite

lattice Ω. The structure of the covariance function will be given. Then, by letting n1 and

n2 tend to infinity, the covariance function for the torus SGAR model on infinity lattice

will be available. The covariance matrix of E can be given by

Λ = σ2
τ

((
I−B(θ)

)T (I−B(θ)
))−1

.

Define the fourier vectors fpq, p = 1, . . . , n1, q = 1, . . . , n2,

fpq =
(

t T
q , φpt T

q , . . . , φ
n1−1
p t T

q
)T
,

tq = ( 1, ϕq, ϕ
2
q, . . . , ϕ

n2−1
q )T ,

ξp = exp(
√
−1 2πp/n1), ϕq = exp(

√
−1 2πq/n2).

By Kashyap(1980), we can see that the eigenvectors of Λ are fpq, p = 1, · · · , n1, q =

1, · · · , n2, and the eigenvalue associated with fpq is ρ2|upq|−2,

upq = 1 −
∑

t∈ω
θtξ

t1
pϕ

t2
q ,

where w is the neighborhood set defined in (2.2), say w = {(−1, 0), (1, 0), (0,−1), (0, 1)},

and θt is the coefficient for εs+t in (2.2). Therefore, Λ can be expressed as
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Λ =
1

n1n2

n1∑

p=1

n2∑

q=1

fpq( f ∗pq)Tσ2
τ |upq|−2,

and the covariance between εs and εs+(k1,k2) can be given as

R(k1, k2) =
1

n1n2

n1∑

p=1

n2∑

q=1

ξk1
p ϕ

k2
q σ

2
τ |upq|−2. (2.32)

Now let n1 and n2 tend to infinity, and write z1 = ξp and z2 = ϕq, then

R(k1, k2) =
−1
4π2

w

|z1 |=1

w

|z2 |=1

zk1−1
1 zk2−1

2 σ2
τ

∣∣∣∣∣1 −
∑

t∈ω
θtz

t1
1 zt2

2

∣∣∣∣∣
−2

dz1dz2. (2.33)

The integration above converges with (A3a), and R(k, l) depends only on k and l. By the

Laurent series, we have

∞∑

k1=−∞

∞∑

k2=−∞

zk1
1 zk2

2 R(k1, k2) = σ2
τ

∣∣∣∣∣1−
∑

t∈ω
θtz

t1
1 zt2

2

∣∣∣∣∣
−2

. (2.34)

By (A3a), the series converges for any 1 − C ≤ |z1|, |z2| ≤ 1 + C, C is some positive

constant. Simply let z1 = z2 = 1 in the last equation above, and note that R(k1, k2) is

always positive if both θ1 and θ2 are positive, the absolutely convergence of the series is

obviously satisfied. So for any θ satisfying (A3a), condition (2.30) hold. �

To show that εs in model (2.3) and (2.4) satisfy condition (2.30), we first need to transfer

them into the equivalent 2-dimensional moving average models.

Lemma 2.4 Under assumption (A3b), model (2.3) can be transferred as

ε(s1, s2) =

∞∑

k1=−∞

∞∑

k2=−∞
ψ(k1, k2)τ(s1−k1, s2−k2), (2.35)
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where ψ(k1, k2) =φ
(1)

k1
φ(2)

k2
with φ(i)

u =
∞∑

v=0
θ |u|+2v

i

(
|u|+2v

v

)
, i=1, 2.

Remark 2.4 By some simple calculation, we can see that the coefficient ψk in (2.35)

satisfies

|ψk| ≤ C||k||−α, (2.36)

for α =3 + δ, δ is some positive value. Moreover, as mentioned in Hallin, Lu & Tran

(2001), model (2.4) under assumption (A3c) can also be transformed to a moving aver-

age model with the same structure as (2.35) but distinct coefficient ψk =

(
k1+k2

k1

)
θ k1

1 θ
k2
2 ,

k1>0, k2>0. Clearly, such coefficient ψk also satisfies condition (2.36).

Proof of Lemma 2.4: Let B1 and B2 be the transformation factors for εs, such as

B1ε(s1,s2) =ε(s1−1,s2) and B2ε(s1,s2) =ε(s1,s2−1) . Then (2.3) can be rewritten as

ε(s1,s2)

(
1−(B1+B−1

1 ) θ1

) (
1−(B2+B−1

2 ) θ2

)
= τ(s1,s2) . (2.37)

To obtain the corresponding MA model, we may apply the power series expansion to
(
1−(Bi+B−1

i ) θ1

)−1
, i = 1, 2, separatively. If |θi| < 1/2, when 1− C ≤ |Bi| ≤ 1+ C for

some C >0, we have

(
1−(Bi+B−1

i ) θ1

)−1

=

∞∑

k=0

θk
i

(
Bi + B−1

i

)k

=

∞∑

k=0

k∑

j=0

θk
i

(
k
j

)
B j

i B−(k− j)
i ( letting p= j , q=k−j )

=

∞∑

p=0

∞∑

q=0

θ
p+q
i

(
p + q

q

)
Bp−q

i I{p ≤ q} +

∞∑

p=0

∞∑

q=0

θ
p+q
i

(
p + q

q

)
Bp−q

i I{p > q}

=̂ I1 + I2. (2.38)
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Let u = p − q and v = q, we then have

I1 =

0∑

u=−∞

∞∑

v=−u

θ u+2v
i

(
u+2v

v

)
B u

i ,

while letting u = q −p and v = p, we have

I2 =

−1∑

u=−∞

∞∑

v=−u

θ u+2v
i

(
u+2v

v

)
B−u

i .

Thus, (2.38) can be written as

(
1−(Bi+B−1

i ) θi

)−1
=

∞∑

u=−∞
φ(i)

u B u
i , (2.39)

where φ(i)
u = φ(i)

−u with φ(i)
u =

∞∑
v=|u|

θ−| u|+2v
i

(
−|u|+2v

v

)
, or, which can be further rewritten as

φ(i)
u =

∞∑

v=0

θ| u|+2v
i

(
|u|+2v

v

)
. (2.40)

By (2.37), (2.39) and (2.40), Lemma 2.4 follows. �

From Lemma 2.4, we can see that εs has infinite dependency. For some m that m→∞

as n→∞, we define a truncated MA model as

εm
s =

∑
|ki |<m
i=1,2

ψkτs−k & ε̃s = εm
s + ηs,

where ηs is i.i.d. with zero mean and finite variance. {ηs} is independent of {τs} and {Xs}.

Moreover, ηs v εs − εm
s where v denote equality in distribution. Hence, εs and ε̃s have

same distribution, and each pair of ε̃s, say ε̃s′ and ε̃s′′ , are independent if |s′i − s′′i | ≥ m

for i = 1, 2. Now with Remark 2.4 and the process {ε̃}, we can establish the following

lemma, which ensures models (2.3) and (2.4) satisfy condition (2.30).
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Lemma 2.5 If εs satisfies the 2-dimensional moving average model (2.35), and the co-

efficients ψk satisfying (2.36), then condition (2.30) is valid.

Proof of Lemma 2.5: Define R̃(k) = Cov(ε̃s, ε̃s+k), where k = (k1, k2) and k1 ≥ 0, k2 ≥ 0.

We can obtain

∣∣∣R̃(k)
∣∣∣≤ Cσ2

τ

m∑

t1=k1−m

m∑

t2=k2−m

∣∣∣ψt
∣∣∣∣∣∣ψt−k

∣∣∣= Cσ2
τ


m∑

t1=k1−m

∣∣∣ φ(1)
t1

∣∣∣∣∣∣ φ(1)

t1−k1

∣∣∣



m∑

t2=k2−m

∣∣∣ φ(2)
t2

∣∣∣∣∣∣ φ(2)

t2−k2

∣∣∣
 .

Note that φ(i)
u is an even function. When ki ≤ m, by Remark 2.4 we have

m∑

ti=ki−m

∣∣∣ φ(i)
ti

∣∣∣∣∣∣ φ(i)

ti−ki

∣∣∣ ≤ C
m∑

t1=0

∣∣∣ φ(i)
ti

∣∣∣∣∣∣ φ(i)

ti−ki

∣∣∣

≤ C


m∑

ti=ki

∣∣∣ φ(i)
ti

∣∣∣∣∣∣ φ(i)

ti−ki

∣∣∣ + 2
ki∑

ti=[ki/2]+1

∣∣∣ φ(i)
ti

∣∣∣∣∣∣ φ(i)

ti−ki

∣∣∣


≤ C

 k−αi

m∑

ti=ki

∣∣∣ φ(i)

ti−ki

∣∣∣ + (ki/2)−α
ki∑

ti=[ki/2]+1

∣∣∣ φ(i)

ti−ki

∣∣∣
 ,

which is bounded by Ck−αi , i = 1, 2. When m < k1 ≤ 2m, we also have

m∑

ti=ki−m

∣∣∣ φ(i)
ti

∣∣∣∣∣∣ φ(i)

ti−ki

∣∣∣ ≤ C
m∑

ti=[ki/2]+1

∣∣∣ φ(i)
ti

∣∣∣∣∣∣ φ(i)

ti−ki

∣∣∣≤ Ck−αi . (2.41)

i = 1, 2. Hence,
∣∣∣R̃(k)

∣∣∣ is bounded by C(k1k2)−α, an amount not dependent on m. Let m

tend to infinity, we can then conclude that

∞∑

k1=0

∞∑

k2=0

∣∣∣ R(k)
∣∣∣≤ C

∞∑

k1=0

∞∑

k2=0

( k1k2)−α < ∞. �

At last we present a lemma relative to the asymptotic bias of β̂ . Denote m′′(x) as the

matrix of second derivatives at x, and the (j, k)-th element by ∂2m(x)/∂xj ∂xk. Let H(x)

being a n dimensional vector with the i-th element being Hi(x) = tr[m′′(x)(Xsi−x)(Xsi−
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x)T ]. Moreover, define Tn = ~XT WH (omitting ′(x)′), and then we have

(Tn)j = (nhπ)−1
n∑

i=1

Hi(x)
(
ζ(Xsi−x)

)
j Kπ

(
ζ1(Xsi−x)

)
, (2.42)

for i = 1, · · · , d + 1.

Lemma 2.6 Assume that (A1), (A2) and (A5) hold, then

E
(
(Tn)j

)
= f (x)tr

[
m′′(x)

r
δj−1(δδT )�(hhT )Kπ(δ)dδ

]
+ o(h2

L), (2.43)

Var
(
(Tn)j

)
= (nhπ)−1

{
f (x)

r
tr2

[
m′′(x)(δδT )�(hhT )

]
δ2

j−1K2
π(δ)dδ + o(h4

L)
}
, (2.44)

for j = 1, · · · , d + 1, δ0 ≡ 1.

Proof of Lemma 2.6: For j = 1, . . . , d+1, we have

E
(
(Tn)j

)
= h−1

π

w
tr

[
m′′(x)(r − x)(r − x)T

]
(ζ(r − x))j Kπ

(
ζ1(r − x)

)
f (r) dr

=
w

tr
[

m′′(x)(δδT ) � (hhT )
]
δ j−1Kπ(δ) f (δ � h + x) dδ

= f (x) tr
[

m′′(x)
w
δi−1(δδT ) � (hhT )Kπ(δ) dδ

]
+ o(h2

L) ,

Var
(
(Tn)j

)
= (nhπ)−2

n∑

i=1

Var
[
Hi(x) (ζ(r − x))j Kπ

(
ζ1(r − x)

)]

≤ (nh2
π)
−1
w

tr2
[
m′′(x)(r−x)(r−x)T

]
(ζ(r−x))2

j K2
π

(
ζ1(r−x)

)
f (r) dr

= (nhπ)−1
w

tr2
[

m′′(x)(δδT ) � (hhT )
]
δ2

j−1K2
π(δ) f (δ � h + x) dδ

= (nhπ)−1 f (x)
w

tr2
[

m′′(x)(δδT ) � (hhT )
]
δ2

j−1K2
π(δ) dδ + o

(
(nhπh−4

L )−1
)
. �

Proof of Theorem 2.1: As the local linear fitting is always conducted in the neighbor-

hood
{
Xs : |(Xs−x)i| ≤ cihi, i = 1, . . . , d

}
, where c′i s are some constants, we can expand

47



m(Xs) as

m(Xs) = m(x) + (m′(x))T (Xs−x) +
1
2

(Xs−x)T m′′(x)(Xs−x) + op(h2
L) . (2.45)

Rewrite (2.45) into the matrix form, we get

M = ~Xβ +
1
2

H + op(h2
L). (2.46)

Substitute this expression into the following equation, then

β̂ = U−1
n

(
V∗n + ~XT WM

)
= β + U−1

n V∗n +
1
2

U−1
n
~XT W

(
H + op(h2

L)
)
. (2.47)

By Lemma 2.1 and Lemma 2.2, we have U−1
n V∗n = Op

(
(nhπ)−1/2). By Lemma 2.6, we

can see that

(Tn)j = f (x) tr
[
m′′(x)

w
δj−1(δδT )�(hhT )Kπ(δ)dδ

]
+ op(h2

L), (2.48)

where the first term on the right hand side of the equation is equal to O(h2
L ). Hence, we

have U−1
n
~XT WH = Op(h2

L ). It is also easy to show that ~XT W1 = Op(1), where 1 is a

vector with all elements being 1. Now let us turn back to (2.47),

h−2
L

(
β̂ − β) = h−2

L

(
Op

(
(nhπ)−1/2) + Op(h2

L) + op(h2
L)
)
, (2.49)

which is equal to Op(1) via assumption (A5). This concludes the proof. �

Next, we shall present the proof of Theorem 2.2. Recall (2.17) and the fact that Un =

U + op(1), then Theorem 2.2 can be established by showing (nhπ)1/2V∗n is asymptotically
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normal. By the Cramer-Wold device, this is equivalent for us to prove

An = (nhπ)1/2aT V∗n = (nhπ)−1/2
∑

s∈Ω
εsKa

{
ζ1(Xs−x)

}
,

is asymptotically normal, where a = (a0, aT
1 )T ∈ Rd+1 is an arbitrary constant vector, and

Ka(δ)= (a0+aT
1 δ)Kπ(δ). Define

Ãn = (nhπ)−1/2
∑

s∈Ω
ε̃sKa

{
ζ1(Xs− x)

}
.

Then Theorem 2.2 can be established directly with (2.17) and the two lemmas below.

Lemma 2.7 If εs can be expressed in the form of (2.35) with coefficient ψk satisfying

(2.36), and assumptions (A1), (A3) and (A5) hold, then

|An − Ãn| = op(1) .

Proof of Lemma 2.7:

Pr
[
|An−Ãn|>γ

]
= Pr

[ ∣∣∣∣
∑

s∈Ω
(εs−ε̃s) Ka

(
ζ1(Xs−x)

) ∣∣∣∣> (nhπ)1/2γ
]

≤
∑

s∈Ω
Pr

[ ∣∣∣(εs−ε̃s) Ka
(
ζ1(Xs−x)

) |> (n−1hπ)1/2γ
]

≤ n2h−1
π γ2 Var

[
(εs−ε̃s)Ka

(
ζ1(Xs−x)

) ]
(2.50)

Note that εs− ε̃s =
∑
k∈Γ

ψkτs−k +ηs, where Γ =
{
k = (k1, k2) : ki ≥ m for any i = 1, 2

}
,

therefore {Xs} is independent of {εs− ε̃s}. Then, (2.50) is bounded by Cn2h−1
π E

[
(εs−

ε̃s)2]E[
K2

a
(
ζ1(Xs−x)

) ]
. It is easy to show that

E
[

K2
a
(
ζ1(Xs−x)

) ]
=

(
1+o(1)

)
hπ f (x)

w
K2

a(δ)dδ.
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For any k ∈ Γ we have ||k|| ≥ m, hence by (2.36)

E
[
(εs−ε̃s)2

]
≤ Cσ2

τ

∑

k∈Ω
ψ2

k ≤ Cnm−2α,

α = 3+ δ, δ > 0. Now (2.50) is bounded by Cn3m−2α. Let m = [n(hπh4
L )c1]1/2 for some

constant c1, 0<c1< δ/(3 + δ). By assumption (A5), we have m→∞ and n3m−2α→ 0 as

n→ ∞. This conclude the proof. �

Lemma 2.8 If εs can be expressed in the form of (2.35) with coefficient ψk satisfying

(2.36), and assumptions (A1), (A3), (A5) and (A7) hold, then we have

Ãn
D−→ N

(
0, aT Σa

)
,

where Σ is defined in Theorem 2.2.

Proof of Lemma 2.8: We shall establish the asymptotic normality of Ãn, then the proof

can be completed with Lemma 2.7. Let (l1, l2) be the length of the large blocks, satisfy-

ing ni = ri(2m + li), li/m→∞ as n → ∞, and ri is some integer also tending to infinity.

The consideration with ri taking non-integer value is similar to that presented in the fol-

lowing, and hence is omitted. As we let m = [n(hπh4
L )c1]1/2 in the proof of Lemma 2.7,

we may further let li = [n(hπh4
L )c2]1/2, where 0< c2 < c1 and c2 can take different values

with distinct li, i = 1, 2. Now denote j = ( j1, j2) and

U
(
1,n, j

)
=

ji(li+2m)+li∑
si= ji(li+2m)+1

i=1,2

(nhπ)−1/2∆s,

where ∆s = ε̃sKa
(
ζ1(Xs−x)

)
. Then U

(
1,n, j

)
is the sum of random variables over the

j-th large block. To sum up the random variables over all large blocks, we may define
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T
(
n, 1

)
=

∑
0≤ ji≤ri−1

i=1,2

U
(
1,n, j

)
.

Also define that

U(2,n, j)=
j1(l1+2m)+l1∑

s1= j1(l1+2m)+1

( j2+1)(l2+2m)∑

s2= j2(l2+2m)+l2+1

(nhπ)−1/2∆s,

U(3,n, j)=
( j1+1)(l1+2m)∑

s1= j1(l1+2m)+l1+1

j2(l2+2m)+l2∑

s2= j2(l2+2m)+1

(nhπ)−1/2∆s,

U(4,n, j)=
( ji+1)(li+2m)∑
si= ji(li+2m)+li+1

i=1,2

(nhπ)−1/2∆s,

which are the sum of random variables over different types of small blocks. More-

over, T (n, k) for 2 ≤ k ≤ 4 can be defined similarly as T (n, 1). Hence we have

Ãn =
4∑

k=1
T (n, k). Similar to the proof of Lemma 2.2, we can show that Var(Ãn) = aT Σa

and
∑

s′, s′′∈Ω
s′,s′′

Cov
(
∆s′ ,∆s′′

)
=O(n). To show Lemma 2.8, we may process to prove

(a1) T (n, k) = op(1), for 2 ≤ k ≤ 4,

(a2) Var
[
T( n,1)

]
=̂ S 2

n → aT Σa, as n→ ∞,

(a3) T( n,1)/Sn
D−→ N( 0, 1).

Proof of (a1): Without loss of generality, we only prove T (n, 2) = op(1), while the

proofs for the rest are similar. It is sufficient for us to show the variance of T (n, 2) tends

to zero. Define

S( 2, j ) = { s : j1(l1+2m)+1≤ s1≤ j1(l1+2m)+l1, j2(l2+2m)+l2 +1≤ s2≤ ( j2+1)(l2+2m) },
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which is the location set of the random variables in U(2,n, j), and it contains l1m ele-

ments . Notice that all U(2,n, j) are independent, thus we have

Var
[
T (n, 2)

]
=

∑
0≤ ji≤ri−1

i=1,2

Var
[
U(2,n, j)

]

= (nhπ)−1
∑

0≤ ji≤ri−1
i=1,2


∑

s∈S (2,j)

Var(∆s) +
∑

s′, s′′∈S (2,j)

Cov
(
∆s′ ,∆s′′

)


≤ (nhπ)−1( 2l1m × r1 × r2
)
Var(∆s) + (nhπ)−1

∑
s′ ,s′′∈Ω
s′,s′′

Cov
(
∆s′ ,∆s′′

)
.

The second term on the right hand side of the last inequality tends to zero, while the first

term also tends to zero, due to the fact that h−1
π Var(∆s) is bounded and m/l2 → 0. (a1)

then follows.

Proof of (a2): By the proof of (a1), we can see that the variance of T (n, i), i = 2, 3, 4,

tends to zero, so (a2) follows straightforwardly.

Proof of (a3): Notice that all U(1,n, j) are independent. By the Linderberg central limit

theorem, (a3) is held if we can show

∑

0≤ ji≤ri−1
i=1,2

E
[(

U(1,n, j)
)2 I

{
|U(1,n, j)| > εSn

}]
−→ 0, (2.51)

for any ε > 0. As ε̃s may not be bounded, we define the truncated variables ε̃L
s = ε̃sI

{ |ε̃s|≤

L
}
, L is some positive constant. Similarly, define ∆L

s = ε̃L
s Ka

(
ζ1(Xs−x)

)
, UL(1,n, j) =

∑
s∈S (1,j)

(nhπ)−1/2∆L
s and T L(n, 1) =

∑
0≤ ji≤ri−1

i=1,2

UL(1,n, j), where S(1, j ) = { s : ji( li + 2m) + 1 ≤ si ≤

ji( li+2m)+ li, i=1, 2 } . Denote SL
n as the asymptotic standard deviation of T L(n, 1). Now

we first show T L(n,1)
/
SL

n
D−→N( 0,1), or equivalently

J =̂
∑

0≤ ji≤ri−1
i=1,2

E
[(

UL(1,n, j)
)2 I

{
|UL(1,n, j)| > εSL

n

}]
−→ 0 , (2.52)
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and then generalize the result to (a3). As |ε̃L
s | < L , we have

J ≤ CL2(nhπ)−1l 2
1 l 2

2

∑

0≤ ji≤ri−1
i=1,2

Pr
[
|UL(1,n, j)| > ε SL

n

]

≤ CL2(nhπ)−1l 2
1 l 2

2

∑

0≤ ji≤ri−1
i=1,2

(
ε SL

n
)−2E

[(
UL(1,n, j)

)2
]
. (2.53)

Examine the last expectation, we get

E
[(

UL(1,n, j)
)2
]
≤ C(nhπ)−1E

{[ ∑

s∈S (1,j)

Ka
(
ζ1(Xs−x)

) ]2
}

≤ C(nhπ)−1
{

l1 l2 E
[
K2

a
(
ζ1(Xs−x)

) ]
+ l 2

1 l 2
2 E2[Ka

(
ζ1(Xs−x)

) ]}

≤ C
(

n−1l1l2 (1+ hπl1l2 )
)
.

Substitute this into J and rewrite n, l1 and l2 in terms of hπ and hL, we then have

J ≤ C
(
(nhπ)−1l 2

1 l 2
2 + n−1l 3

1 l 3
2

)
= C

(
(hc2−1

π h4c2−2
L )2 + (hπh4

L)3c2−2
)
. (2.54)

Hence, for some c2 which is close enough to 1, we can obtain J→0. Now we come to

show (a3). Define T L∗(n,1) = T (n,1)−TL(n,1), then

∣∣∣∣∣
∣∣∣∣∣E

[
exp

(
iλT (n, 1)

)− exp
(−λ2S 2

n/2
) ]∣∣∣∣∣

∣∣∣∣∣

≤
∣∣∣∣∣
∣∣∣∣∣E

[
exp

(
iλTL(n, 1)

)− exp
(−λ2(SL

n)2/2
)]∣∣∣∣∣

∣∣∣∣∣+E
∣∣∣∣∣
∣∣∣∣∣ exp

(
iλTL∗(n, 1)

)−1
∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣ exp
(−λ2(SL

n)2/2
)− exp

(−λ2S 2
n/2

) ∣∣∣∣∣

=̂ E1 + E2 + E3.

E1 tends to zero by (2.54), while E3 also tends to zero by dominated convergence theo-

rem. It remains for us to show E2 converges, and this is held if Var
[
T L∗(n, 1)

]→ 0. We
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can show that

lim
n→∞

Var
[
T L∗(n, 1)

]
= Var

(
ε̃sI{|ε̃s| > L}

)
f (x)

w
K2

a(δ) dδ ,

which converges to zero as L→∞ by dominated convergence theorem. The proof is

completed. �

Proof of Theorem 2.3: Note that P̂ in (2.13) can also be expressed as P̂ =
(
I−B(θ̂)

)
Ê +

M̂. Substitute θ̂ by θ, we form another process as P̌ =
(
I − B(θ)

)
Ê + M̂. Furthermore,

define m̌(x) = ηT U−1
n
~XT WP̌, then we have m̃(x)−m(x) =

(
m̃(x)−m̌(x)

)
+

(
m̌(x)−m(x)

)
. To

establish the theorem, we should show that m̃(x)−m̌(x) = op
(
(ngπ)−1/2) and (ngπ)1/2

(
m̌(x)−

m(x)
)

is asymptotically normal.

We consider the former term first. By Theorem 2.1, we can see that Ê = E+Op(h2
L ). By

the symmetry property of K(.) and Lemma 2.1, we have

Un = f (x)


1 0

0
r
δδT Kπ(δ)dδ


+ op(1). (2.55)

Hence, ηT U−1
n = ηT ( f −1(x) + op(1)

)
. Define G as a vector with the i-th element being

Gi =
∑

j ∈N(si)
εsj , where N(si) is the neighborhood set of εsi . Also note that there are finite

nonzero elements in each row of B(θ) and B(θ̂ ). Therefore, we have

m̃(x) − m̌(x) = ηT U−1
n
~XT W

(
B(θ)−B(θ̂)

)
Ê

= ηT
(

f −1(x)+op(1)
)
~XW

(
G + Op(h2

L )
)
· op(1)

= ηT f −1(x) ~XT WG · op(1) + ηT f −1(x) ~XT W1 · op(h2
L )

=̂ I11 · op(1) + I12 · op(h2
L ). (2.56)
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It is easy to show that I12 = Op(1). For I11, we have

I11 = (ngπ)−1f −1(x)
∑

s∈Ω
Kπ

(
ζ1(Xs−x)

)
Gs = (ngπ)−1f −1(x)

∑

s∈Ω

∑

t∈N(s)

Kπ
(
ζ1(Xs−x)

)
εt . (2.57)

It is clear that I11 has zero mean, and its variance can be given as

Var (I11) = (ngπ)−2 f −2(x)
∑

s∈Ω

∑

t′∈N(s)

∑

t′′∈N(s)

Cov
[

Kπ
(
ζ1(Xs−x)

)
εt′ , Kπ

(
ζ1(Xs−x)

)
εt′′

]

+(ngπ)−2 f −2(x)
∑
s′, s′′

s′, s′′∈Ω

∑

t′∈N(s′)

∑

t′′∈N(s′′)

Cov
[

Kπ
(
ζ1(Xs′−x)

)
εt′ , Kπ

(
ζ1(Xs′′−x)

)
εt′′

]

=̂ IV1 + IV2. (2.58)

As there are finite elements in each N(s) set, we can obtain that

IV1 ≤ C(ngπ)−1 f −1(x)σ2
ε

w
K2
π (δ) dδ, (2.59)

IV2 ≤ Cn−1σ2
ε + Cn−1

∞∑

k1=−∞

∞∑

k2=−∞

∣∣∣∣R(k1, k2)
∣∣∣∣. (2.60)

Therefore, via (2.58)-(2.60), we have I11 =Op

(
(ngπ)−1/2

)
. Turn back to (2.56), it then can

be seen that m̃(x)−m̌(x)=op

(
(ngπ)−1/2

)
+op(h2

L ), which is equal to op
(
(ngπ)−1/2) by (A6).

Next, we will establish the asymptotic normality of m̌(x). Define F =
(
m(x),

(
m′(x) �

g
)T

)T
. Since ηT U−1

n
~XT W~X = (1, 0), we can obtain that

m̌(x) − m(x)

= ηT U−1
n
~XW

(
P̌ − ~XF

)

= (ngπ)−1f −1(x)
(
1+op(1)

)∑

s∈Ω
Kπ

(
ζ1(Xs−x)

)[ 1
2

(Xs−x)T m′′(x)(Xs−x)

+ τs + Op(h2
L ) + op(g2

L )
]

=
(
I21 + I22 + I23

(
Op(h2

L )+op(g2
L )

))(
1 + op(1)

)
, (2.61)
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where

I21 = (ngπ)−1 f −1(x)
∑

s∈Ω
Kπ

(
ζ1(Xs−x)

)
τs, (2.62)

I22 = (ngπ)−1 f −1(x)
∑

s∈Ω
Kπ

(
ζ1(Xs−x)

)
Hs(x), (2.63)

I23 = (ngπ)−1 f −1(x)
∑

s∈Ω
Kπ

(
ζ1(Xs−x)

)
. (2.64)

It is clear that I23 = Op(1), and similar to Lemma 2.6, we can show

I22 = tr
[
m′′(x)

w
(δδT )�(ggT ) Kπ(δ) dδ

]
+ op

(
(ngπ)−1/2). (2.65)

Hence, via (A6) and (2.61), we have

(
(ngπ)1/2)(m̌(x)−m(x)−Bias(x)

)
= (ngπ)−1/2 f −1(x)

∑

s∈Ω
Kπ

(
ζ1(Xs−x)

)
τs

(
1+op(1)

)
+op(1).

(2.66)

It remains for us to show the first term on the right hand side of the equation above is

asymptotically normal with zero mean and variance σ2. Note that both {Xs} and {τs}

are i.i.d., and mutually independent, therefore, the asymptotic normality is obviously

satisfied. The proof is completed.

2.7 Summary and Remark

In this chapter, we focus on the nonparametric model with SGAR-type errors. For our

study, we assume that residual εs satisfies the torus, separable and unilateral SGAR

model. The two-step estimation in Martins-Filho & Yao (2009) is adopted, which firstly

forms a new process with the same conditional mean as the original one but i.i.d. errors,

and then apply the local linear fitting to the new process to achieve an improved estima-
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tor of the regression function. For the first-step estimator, we show its convergence rate

with the three types of error structures, and establish the asymptotic normality when

εs satisfies the separable and unilateral SGAR model. For the second-step estimator,

the asymptotic normality with all three error structures is established. For practice, we

propose an iterative method to determine the bandwidth for the first- and second-step

estimation. Some technique for the estimation of the SGAR coefficients is also consid-

ered. Simulations are conducted, showing that our estimation performs better than the

local linear fitting when spatially correlated errors exist.
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Chapter 3

Additive Model with SGAR-type Error

3.1 Literature Review

The nonparametric additive models were first introduced in the statistical literature in the

early 1980’s, and have drawn a great deal of attentions since then. Comparing with the

general nonparametric models, the additive models are charming since it naturally gen-

eralize the linear regression models and allow interpretation of marginal changes, such

as the effect of single explanatory variable on the conditional mean of the regression

function. Moreover, it was shown in Stone (1985, 1986) that each additive component

in the model can be estimated with the one-dimensional rate of convergence. Therefore,

the additive models avoid the so-called ’curse of dimensionality’ that affects the gen-

eral nonparametric models seriously. In the early development of additive models, the

estimation of the additive components are based on the back-fitting technique, whose

main idea is to project the data onto the space of additive functions via the least squares

method. Some iterative algorithms must be used in this procedure, and although calcu-

lations usually converge quickly, no closed form of the estimators are available. This
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makes the analysis of asymptotic properties very difficult. No breakthrough on this

topic had been made until late 1990’s, see the work of Opsomer & Ruppert (1997) and

Mammen et al. (1999). Lu et al. (2007) further generalized the analysis to the spa-

tial problems. However, many problems are still unclear, such as how to estimate the

derivatives of the function, how to identify the significant regressors, among others.

To get round the difficulty of the iterative procedure, Linton & Nielsen (1994) propose

another method to estimate the additive component based on marginal integration of the

regression function. The key point of the marginal integration approach is to estimate the

whole surface of the regression function by local polynomial fitting first, and then take

marginal average of the estimators of the regression function to obtain the estimators of

the additive components. As this method provides the closed form of the estimators, the

asymptotic properties can be investigated easily, and hence it attracts many researches.

Some important literature will be mentioned here. Chen & Härdle (1995) considered the

same method with the Nadaraya-watson estimator. Severance-Lossin & Sperlich (1999)

extended to estimate both the regression function and its derivatives simultaneously with

the local polynomial fitting. Cai & Fan (2000) considered the problem with dependent

data, different from the i.i.d. assumption of observations used in the above paper. Some

weights were also used when averaging the regression surface in their research. Fan &

Li (2003) considered an additive partially linear model, which was further generalized

to the spatial case in Gao et al.(2006).

In this chapter, we will consider the additive model with spatially correlated errors. Few

attention has ever been paid on this problem before. The marginal integration procedure

and the two-step estimation in Martins-Filho & Yao (2009) will be adopted. Note that
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each additive function can contain one or multiple variables, and in both cases the addi-

tive model considered here can be seem as a special case of the general nonparametric

model considered in Chapter 2. Therefore, some results obtained in Chapter 2 can be

referred in the following analysis.

The outline of this chapter is as follow. In section 2, we will present the model as

well as the estimation procedure. In section 3, some theoretical results of the estima-

tors are given. Simulations will be shown in section 4 to assess the performance of our

estimation, together with a cross comparison between the fitting with the methods con-

sidered in Chapter 2 and this chapter under the situation that some additive structure of

the regression function really exists. Proofs will be presented in section 5, and a brief

conclusion is given in the last section.

3.2 Model and Estimation

Consider the model

Ys = m(Xs) + εs, (3.1)

where m(Xs) has some additive structure as

m(Xs) = µ +

d∑

i=1

mi(Xis), (3.2)

and εs satisfying the SGAR models defined in (2.2)-(2.4). Here, s ∈ Z2 is the index

of position from a n1× n2 rectangular lattice Ω, µ is some constant, Ys is the response

variable, Xs =
(
XT

1s, . . . ,X
T
ds
)T is the explanatory vector with Xis being bi- dimensional,

and mi(.), i = 1, . . . , d, are some unknown functions. We denote the joint density of Xs
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by f (x), x =
(
xT

1 , · · ·, xT
d

)T , and the marginal density of the i-th random vector by fi(xi).

Moreover, we assumee mi(Xis) has zero expectation, say
r

mi(xi) fi(xi) dxi = 0.

Without taking the spatial dependency of εs into account, the estimation of mk(.) can be

conducted with the marginal integration technique and local linear fitting as follows. For

some fixed vector xk, define X(k)
s =

(
XT

1s, · · ·,XT
(k−1)s, xT

k , XT
(k+1)s, · · ·,XT

ds
)T . Obviously,

X(k)
s is a vector specified by xs, but we use the notation X(k)

s only when no confusion

occurs. Furthermore, throughout this chapter, we always use k for the fixed index of

the random vector while other indices for the arbitrary ones. We also defined X(−k)
s =

(
XT

1s, · · ·,XT
(k−1)s,X

T
(k+1)s, · · ·,XT

ds
)T with density denoted by f−k(X(−k)

s ). From (3.2) we can

see that E
(
m
(
X(k)

s
))

= µ + mk
(
xk

)
. Therefore, the estimator of mk(xk) is given by

m̂k(xk) =
1
n

∑

s∈Ω
m̂
(
X(k)

s
)−Y , (3.3)

where n = n1×n2, Y is the empirical mean of Ys, and m̂
(
X(k)

s
)

is the local linear estimator

of m
(
X(k)

s
)
.

To show the expression of m̂
(
X(k)

s
)
, more notations should be introduced first. Arrange

the position s ∈ Ω in arbitrary order, and denote them by s1, · · ·, sn respectively. Let

D =
d∑

i=1
bi, hi = (hi1, · · ·, hibi)

T be some bandwidth vector and h = (hT
1 , · · ·,hT

d )T . Define

hπi =
bi∏
j=1

hij, hπ =
d∏

i=1
hπi and Kπ(δ) =

∏
Ki(δi), where δ is some vector with the i-th

element being δi and Ki(.) is some kernel function. Moreover, ζ1(δ) =
(
δ � (1/hδ)

)T
,

where � denotes the element-wise product of two matrix or vectors with same size.

Especially, we will use ζ1(Xs − xs) =
(
(Xs − xs) � (1/h)

)T
frequently below.

Now the local linear estimators m̂k(X(k)
s ) can be expressed as

m̂
(
X(k)

s
)
= ηT

[
~XT(X(k)

s
)

W
(
X(k)

s
) ~XT(X(k)

s
)]−1

~XT(X(k)
s
)

W
(
X(k)

s
)

Y, (3.4)
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where η is a vector with the first element valued 1 and 0 elsewhere, ~X
(
X(k)

s
)

is a n×(D+1)

matrix function concerning the vector X(k)
s , with the i-th row being

(
1, ζ1

(
Xsi −X(k)

s
))

,

W(X(k)
s ) = (nhπ)−1diag

(
Kπ

(
ζ1(Xs1−X(k)

s )
)
, . . . ,Kπ

(
ζ1(Xsn−X(k)

s )
) )

and Y =
(
Ys1 , · · · ,Ysn

)T.

Some researches have studied estimators similar to m̂k(xk) given in (3.3), for example,

Severance-Lossin & Sperlich (1999) and Cai & Fan (2000). However, few literature

considered the case where the errors are spatially correlated. In the following, we first

rewrite models (3.1)-(3.2) into the matrix form as

Y = µ +

d∑

i=1

Mi + E, (3.5)

where Mi =
(
mi(Xis1), · · · ,mi(Xisn)

)T , i = 1, · · · , d, and E =
(
εs1 , · · · , εsn

)T . We consider

a new process similar to {Ys} but with E in (3.5) substituted by
(
I − B(θ)

)
E, where B(θ)

is defined in Chapter 2. That is

P =
(
I − B(θ)

)
Y + B(θ)

(
µ +

d∑

i=1

Mi

)
, (3.6)

P =
(
Ps1 , · · · , Psn

)T. Then P has the same conditional mean as Y does, but with i.i.d.

error term. Hence, by substitute Y and Ys by P and Ps in (3.3)-(3.4), we can obtain

an improved estimator of mk(xk). However, B(θ) and Mi, i = 1, · · ·, d, in (3.6) are all

unknown, so some estimators of them should be used instead. Then, we may found the

new process as

P̂ =
(
I − B(θ̂)

)
Y + B(θ̂)

(
µ̂ +

d∑

i=1

M̂i

)
, (3.7)

where µ̂ = Y , M̂i, i = 1, · · ·, d, are obtained by (3.3) and B̂(θ) are obtained by some

general SGAR estimation methods. Let g be a bandwidth vector distinct from h as

g = (gT
1 , · · · , gT

d )T , gi = (gi1, · · · , gibi)
T , and consequently gπi =

bi∏
j=1

gij and gπ =
d∏

i=1
gπi.
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Substitute h and hπ by g and gπ in the expression of ~X(X(k)
s ) and W(X(k)

s ) below, then an

improved estimator of mk(xk) can be given as

m̃k(xk) =
1
n

∑

s∈Ω
m̃
(
X(k)

s
) − 1

n

∑

s∈Ω
P̂s , (3.8)

m̃
(
X(k)

s
)
= η

[
~XT(X(k)

s
)

W
(
X(k)

s
) ~X(

X(k)
s
)]−1

~XT(X(k)
s
)

W
(
X(k)

s
)

P̂ . (3.9)

We sum up the full estimation procedure below, which we denote as ADD-SCE through

the thesis.

Step 1. Obtain an initial estimator of mk(.), k = 1, . . . , d, by (3.3) with bandwidth h.

Consequently, the estimates of εs are available.

Step 2. Estimate θ1 and θ2 with the estimates of εs, so that P̂ in (3.7) can be formed.

Then, with bandwidth g, we can obtain the improved estimator of mk(.) by

(3.8).

3.3 Theoretical Results

In this section, we will examine the asymptotical property of m̂k(xk) and m̃k(xk) given in

(3.3) and (3.8). The following assumptions are needed in the analysis.

(B1) The D-dimensional random vectors Xs, s ∈ Ω, are i.i.d. with joint density

f (x), 0 < | f (x)| < ∞. Moreover, {Xs} is independent of {εs} and {τs}, where

τs is defined in (2.2)-(2.4).

(B2) The marginal density f−k(x) is uniformly bounded.
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(B3) All the second derivatives of m(.) exist and are continuous at any x, x is

some D-dimensional vector; for j = 1, · · · , d, mj(xj) has zero mean and

bounded second moment.

(B4) The random field {εs, s ∈ Z2} is strictly stationary; εs has zero mean and

finite variance.

(B4a) The coefficients in (2.2) satisfy |θ1| + |θ2| < 1/2.

(B4b) The coefficients in (2.3) satisfy |θ1| < 1/2, |θ2| < 1/2.

(B4c) The coefficients in (2.4) satisfy |θ1| + |θ2| < 1.

(B5) The kernel function K(.) is symmetric, with bounded support, and Lipschitz

continuous.

(B6) There exist some sequences such that: l1 → ∞, l2 → ∞ and m → ∞ as

n→ ∞, n = (n1, n2); m/li → 0 and li/ni → 0 for i = 1, 2, as n→ ∞.

For the bandwidth h, some assumptions should be made. Note that we need to estimate

d unknown functions mi(.), i = 1, · · ·, d, and the correlated bandwidths are denoted by hi

respectively. When estimating mk(.), we will assume that some element in hk, denoted

by hkL, tends to zero slower than any other hij, i = 1, · · ·, d, j = 1, · · · , bi. Therefore, for

each k=1, · · ·, d, we need a separate set of bandwidths h(k) =
(
h(k)

1 , · · · ,h(k)
d

)
that satisfy

h(k)
kL

has the slowest convergent rate in h(k). Such idea also appears in Gao et al.(2006),

who considered a partially linear model with additive nonparametric components and

with non i.i.d. explanatory variables. For the sake of simplifying notations, we omit the

superscript (k) in the following analysis whenever no confusion may occur.
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(B7) All hij > 0, hij → 0 and nhπ → ∞ as n → ∞; moreover, when estimating

mk(.), hk tends to zero in the manner as n = O
((

hπkh4
kL

)−1
)
, where hkL is an

element in hk satisfying that hij/hkL→0 as n→ ∞ for all hij , hkL.

We first consider the asymptotic properties of the first-step estimator m̂k(xk) in (3.3).

The following theorem gives the convergent rate of m̂k(xk).

Theorem 3.1 When assumptions (B1)-(B5), (B7) hold, and εs satisfies one of the model

defined in (2.2)-(2.4) and the corresponding assumptions (B4a)-(B4c), then we have

m̂k(xk)−mk(xk)−Bias(xk,hk)= (nhπk)−1
∑

s∈Ω
f −1(X(k)

s ) f−k(X(−k)
s ) Kπ

(
ζ1(Xks−xk)

)
εs + op(h2

kL) ,

(3.10)

where Bias(xk,hk)=
1
2

tr
[
m′′k (xk)

r
Kπ(δ)(δkδ

T
k )�(hkhT

k ) dδ
]
, δ = (δT

1 , · · ·, δT
d )T , δi is some

bi-dimensional random vector . Obviously, Bias(xk)=O(h2
kL

), and it can be seen that the

first term on the right hand side of (3.10) is equal to Op

(
(nhπk)−1/2

)
. Therefore, we have

m̂k(xk)−mk(xk)=Op(h2
kL). (3.11)

Remark 3.1 From Theorem 3.1 and assumption (B7), we can see that m̂k(xk) converge

to its true value at the speed of (nhπk)−1/2. However, in Theorem 2.1 where the general

nonparametric regression model is proposed, the convergence speed of the regression

function is shown to be (nhπ)−1/2. It is clear that the former converges in a higher speed

than the later, and hence the curse of dimensionality is partly avoided. Moreover, when

there is only one explanatory variable in the mk(.) function, this additive component

can be estimated with the one-dimensional rate of convergence. Hence, our result is
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coincident with the prior research.

When εs satisfies the non-torus SGAR models defined in (2.3) or (2.4), we can further

establish the asymptotic normality of m̂k(xk). As the analysis with εs modeled by (2.3)

is more involved, we focus on that below. Same as in Chapter 2, we first transform (2.3)

into an equivalent 2-dimensional moving average model, and then adopt the ′large and

small block′ method with the truncated MA model to settle the problem. The theorem

below can then be established.

Theorem 3.2 If εs satisfies model (2.3) and the assumptions (B1)-(B7), (B4b) hold,

then we have

(nhπk)1/2
(
m̂k(xk)−mk(xk)−Bias(xk,hk)

) D−→ N
(

0, Σε(xk)
)
, (3.12)

where Σε(xk) = σ2
ε fk(xk)

w
K2
π (δ)dδ E

[
f 2
−k(X

(−k)
s ) f −2(Xs) |Xks = xk

]
, Bias(xk,hk) is defined

in Theorem 3.1, δ is a bk-dimensional random vector, and Bias(xk) is defined in Theorem

3.1.

Finally, we will consider the asymptotic normality of the second-step estimator m̃k(xk)

in (3.8). More statement about hkL defined in (B7) should be given. Recall that, for

j = 1, · · · , d, hjL is the bandwidth with the slowest convergence rate in the estimation

of the single component mj(.). Now, we need to define a bandwidth with the slowest

convergence rate in the estimation of the whole regression function m(.). Among all hjL,

j = 1, · · · , d, define hL as hL ∈ {h1L, · · · , hdL} and hL = O
(
hC

jL

)
for 0 < C ≤ 1. Then,

in the asymptotic analysis of the second-step estimator m̃k(xk), we need the following

assumption of the bandwidth vector g.
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(B8) All gij > 0, gij → 0 and ngπ → ∞ as n → ∞; moreover, when estimating

mk(.), gk tends to zero in the manner as n = O
((

gπkg4
kL

)−1
)
, where gkL is an

element in gk satisfying that gij/gkL → 0 as n → ∞ for all gij , gkL ; at last,

hL/gkL → 0.

Theorem 3.3 If the conditions in Theorem 3.1 and (B8) are satisfied, moreover, some

consistent estimator of θ is available, then

(ngπk)1/2
(
m̃k(xk) − m(xk) − Bias(xk, gk)

) D−→ N
(

0, Στ(xk)
)
, (3.13)

where Στ(xk) = σ2
τ fk(xk)

w
K2
π (δ)dδ E

[
f 2
−k(X

(−k)
s ) f −2(Xs) |Xks = xk

]
, and Bias(xk, gk) =

1
2

tr
[
m′′k (xk)

r
Kπ(δ)(δkδ

T
k )�(gkgT

k ) dδ
]
.

3.4 Simulations

To evaluate our method, a simulation will be conducted in this section. We choose

the same testing model in Simulation 2.2, which has additive structure, so that some

cross comparison between the fitting results in this chapter and those in Chapter 2 can

be executed. Observations will be generated in 3 different sample sizes, say 10 × 10,

15 × 15 and 20 × 20, with error terms satisfying model (2.2) -(2.4). For each sample

size, we will replicate 100 times.

Simulation 3.1

Ys = sin
(
πX1, s

)
+ cos

(
πX2, s

)
+ εs , (3.14)

where Xi, s ∼U(0, 4), i = 1, 2, εs is modeled as (2.2) -(2.4) with τs ∼ N(0, 1) and coeffi-

cients θ = (θ1, θ2) being (0.38,−0.1), (0.3,−0.2) and (0.4, 0.3) respectively.
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To estimate mk(xk) in the additive model via the marginal integration technic, one need

to fit the whole trend surface of the function m(.) first and then sum up all the estimated

values m̂(X(k)
s ) with xk keeping unchanged. When the number of explanatory variables

is large, the fitting of the trend surface may suffer from the curse of dimensionality.

Moreover, the calculation amount will be much larger than that of the nonparametric

model considered in Chapter 2. To reduce the calculation expense to an acceptable

level, we adopt some simplification in the bandwidth selection. First, we use a single

bandwidth for both explanatory variables in the testing model. The reasons for this are

that X1, s and X2, s have identical distribution, and their functions are similar in the sense

of function type. Hence, the optimal bandwidth for X1, s and X2, s should be close in

value, and it is appropriate to use a single bandwidth instead. Second, we determine the

optimal bandwidths in the two steps separatively. This means, in each replication of the

simulation, we first determine the optimal bandwidth for the first-step estimator in (3.3),

then form the new process in (3.7), and at last determine the optimal bandwidth for the

second-step estimator in (3.8). More details can be seen in Section 2.4.1. Although

these simplifications of bandwidth selection need to be applied, we can see from the

simulation results that our method still performs pretty good.

The main results of the simulation are shown in Table 3.1 and Table 3.2. We can see

that our two-step estimation performs much better than the traditional estimation with

marginal integration technique. All the values of MSE obtained from our method are

much smaller, and the differences are outstanding in the cases with torus SGAR-type and

separable SGAR-type errors. We also present the results of two typical fitting graphi-

cally in Figure 3.1 to Figure 3.4, where the error terms satisfy the torus SGAR model
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.
Table 3.1: Simulation 3.1. MSE for the estimators of m(.).

Sample Size 10×10 15×15 20×20

Torus(a)

mean of MSE(d)
o 1.3007 0.6986 0.4108

mean of MSE(e)
m 0.4144 0.1673 0.1016

var of MSEo 1.4508 0.1156 0.0318
var of MSEm 0.0376 0.0060 0.0031

Separable(b)

mean of MSEo 5.2749 22.2180 2.1208
mean of MSEm 0.4393 0.3991 0.0952
var of MSEo 47.0274 3.36×103 1.8404
var of MSEm 0.0443 0.3356 0.0021

Unilateral(c)

mean of MSEo 0.3417 0.1559 0.1049
mean of MSEm 0.3385 0.1428 0.1035
var of MSEo 0.0263 0.0052 0.0022
var of MSEm 0.0335 0.0055 0.0028

(a) Torus: εs generated by (2.2).
(b) Separable: with εs generated by (2.3).
(c) Unilateral: with εs generated by (2.4).
(d) MSEo: MSE given by the traditional estimation with marginal integration

technique.
(e) MSEm: MSE given by our proposed method.

.
Table 3.2: Simulation 3.1. Estimators of θ= (θ1, θ2).

Sample Size 10×10 15×15 20×20

Torus(∗)

mean of θ̂1 0.3307 0.3675 0.3852
mean of θ̂2 -0.1472 -0.1262 -0.1161

Separable(∗)

mean of θ̂1 0.2939 0.2902 0.2853
mean of θ̂2 -0.2088 -0.2041 -0.2101

Unilateral(∗)

mean of θ̂1 0.2891 0.3673 0.3522
mean of θ̂2 0.2067 0.2721 0.3082

(∗) Torus, Separable and Unilateral are same defined as the ones in Table 3.1.
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Figure 3.1: Simulation 3.1. The sin function fitting in the additive model with torus
SGAR-type error. Solid line refers to the true values of the sin function; dashed line
refers to the estimates given by our proposed method; and dash-dot line refers to those
given by the traditional estimation with marginal integration technique. Sample size:
20 × 20. Note: as our estimates are too close to the true values, the dashed line may not
be shown clearly in a black and white graph.
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Figure 3.2: Simulation 3.1. The cos function fitting in the additive model with torus
SGAR-type error. Solid line refers to the true values of the cos function; dashed line
refers to the estimates given by our proposed method; and dash-dot line refers to those
given by the traditional estimation with marginal integration technique. Sample size:
20 × 20. Note: as our estimates are too close to the true values, the dashed line may not
be shown clearly in a black and white graph.
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Figure 3.3: Simulation 3.1. The sin function fitting in the additive model with separable
SGAR-type error. Solid line refers to the true values of the sin function; dashed line
refers to the estimates given by our proposed method; and dash-dot line refers to those
given by the traditional estimation with marginal integration technique. Sample size:
20 × 20. Note: as our estimates are too close to the true values, the dashed line may not
be shown clearly in a black and white graph.
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Figure 3.4: Simulation 3.1. The cos function fitting in the additive model with separable
SGAR-type error. Solid line refers to the true values of the cos function; dashed line
refers to the estimates given by our proposed method; and dash-dot line refers to those
given by the traditional estimation with marginal integration technique. Sample size:
20 × 20. Note: as our estimates are too close to the true values, the dashed line may not
be shown clearly in a black and white graph.
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(2.2) and the separable SGAR model (2.3) respectively. From the figures, it is easy to

see that the estimated curves obtain by our method are closer to the true curves than the

one obtained by the traditional method.

In this simulation, we use the same testing model as the one in Simulation 2.3. For

the later, the two-step estimation introduced in Chapter 2 is used. Therefore, we can

compare the performance of the methods in Chapter 2 and in this chapter, given that the

testing model does have additive structure. From Table 2.6 and Table 3.1, we can find

that the MSE values obtained by the method in this chapter are smaller than the other.

The results imply that the method considered in this chapter is more suitable for the case

that additive structure of the regression function exists.

3.5 Proofs

Proof of Theorem 3.1: Let F(X(k)
s ) =

(
Y + m(X(k)

s ),
(
m′(X(k)

s ) � h
)T

)T
. Note that we

have ηT
(
~XT(x)W(x)~X(x)

)−1
~XT(x)W(x)~X(x) = (1, 0 ), then

m̂k(xk)−mk(xk) =
1
n

∑

s∈Ω
ηT

(
~XT(X(k)

s )W(X(k)
s )~X(X(k)

s )
)−1
~XT(X(k)

s )W(X(k)
s )

[
Y−~X(X(k)

s )F(X(k)
s )

]

+ Op(n−1/2) . (3.15)

By Lemma 2.1 and the symmetry property of K(.),

~XT(X(k)
s )W(X(k)

s )~X(X(k)
s ) = f (X(k)

s )
(

1 0

0
r
δδTKπ(δ)dδ

)
+ op(1) , (3.16)

72



where δ is a D-dimensional vector. Then,

ηT
(
~XT(X(k)

s )W(X(k)
s )~X(X(k)

s )
)−1

= ηT
(

f −1(Xk
s)+op(1)

)
. (3.17)

Substitute this into (3.15), then

m̂k(xk)−mk(xk) =
1
n

∑

s∈Ω

∑

t∈Ω
(nhπ)−1 f −1(Xk

s)
(
1+op(1)

)
Kπ

(
ζ1

(
Xt−X(k)

s
))

(µ−Y )

+
1
n

∑

s∈Ω

∑

t∈Ω
(nhπ)−1 f −1(Xk

s)
(
1+op(1)

)
Kπ

(
ζ1

(
Xt−X(k)

s
))

Rt

+
1
n

∑

s∈Ω

∑

t∈Ω
(nhπ)−1 f −1(Xk

s)
(
1+op(1)

)
Kπ

(
ζ1

(
Xt−X(k)

s
))
εt + Op(n−1/2)

=̂ Q1 + Q2 + Q3 + Op(n−1/2), (3.18)

where Rt =
1
2

tr
(
m′′k (xk)(Xkt−xk)(Xkt−xk)T

)
+

1
2
∑
j,k

tr
(
m′′j (xj)(Xj t−Xj s)(Xj t−Xj s)T

)
, and

m′′j (xj) is the second derivative matrix of mj(.) at xj .

With assumption (B7), it is sufficient for us to establish (3.10) by showing

Q1 = Op(n−1/2) , (3.19)

Q2 =
1
2

tr
[
m′′k (xk)

w
Kπ(δ)(δkδ

T
k) � (hkhT

k) dδ
]
+ op(h2

kL) , (3.20)

Q3 = (nhπk)−1
∑

t∈Ω
f −1(X(k)

t ) f−k(X(−k)
t ) Kπ

(
ζ1(Xkt−xk)

)
εt + op

(
(nh−1/2

πk )
)
. (3.21)

First, we consider Q1. It is easy to show that (nhπ)−1∑
t∈Ω

Kπ
(
ζ1(Xt−X(k)

s )
)
= f (X(k)

s ) + Op(hkL)

and µ−Y = Op(n−1/2). Therefore, (3.19) follows directly.

Next, let us focus on Q2. Define

Hk = (nhπ)−1
∑

t∈Ω
Kπ

(
ζ1(Xt−X(k)

s )
)

tr
[
m′′k (xk)(Xkt−xk)(Xkt−xk)T

]
, (3.22)
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and for j , k, we define Hj similar to Hk but with xk substituted by Xj s.

Then, same as Lemma 2.6, we can show that

E(Hk) = f (X(k)
s ) tr

[
m′′k (xk)

w
Kπ(δ)(δkδ

T
k )�(hkhT

k ) dδ
]
+ o(h2

kL), (3.23)

Var(Hk) ≤ (nhπ)−1
[
f (X(k)

s )
w

tr2
(
m′′k (xk)(δkδ

T
k )�(hkhT

k )
)

K2
π (δ) dδ + o(h4

kL)
]
, (3.24)

where δ = (δT
1 , · · ·, δT

d )T , δi is a bi-dimensional vector, i = 1, · · ·, d. Hence, we have

Hk = f (X(k)
s ) tr

[
m′′k (xk)

w
Kπ(δ)(δkδ

T
k) � (hkhT

k) dδ
]
+ op(h2

kL) . (3.25)

which is equal to Op(h2
kL

). With the same procedure above, we get

Hj = f (X(k)
s ) tr

[
m′′j (Xj s)

w
Kπ(δ)(δj δ

T
j )�(hjhT

j ) dδ
]
+ op(h2

kL) , (3.26)

for j , k. Due to the assumption that hj/hkL = o(1), we can see H j = op(h2
kL

) for any

j , k. This, together with (3.25), is sufficient for us to show (3.20).

At last, we turn to Q3. Define

Ctk = (nhπ(−k))−1
∑

s∈Ω
f −1(X(k)

s ) Kπ
(
ζ1(X(−k)

t −X(−k)
s )

)
, (3.27)

where hπ(−k) =
∏
j,k

hπj. Then Q3 can be expressed as

Q3 = (nhπk)−1(1+op(1)
)∑

t∈Ω
Kπ

(
ζ1(Xkt − xk)

)
Ctk εt. (3.28)
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It is easy to show that Ctk = f −1(X(k)
t ) f−k(X(−k)

t ) + op(hkL), then we have

Q3 =
[
(nhπk)−1

∑

t∈Ω
f −1(X(k)

t ) f−k(X(−k)
t ) Kπ

(
ζ1(Xkt−xk)

)
εt
]
· (1+op(1)

)

+
[
(nhπk)−1

∑

t∈Ω
Kπ

(
ζ1(Xkt−xk)

)
εt
]
· op(hkL)

=̂ Q31 · (1+op(1)
)

+ Q32 · op(hkL). (3.29)

Obviously Q31 has zero mean, while its variance is given as follows.

Var(Q31)= (nhπk)−2σ2
ε

∑

t∈Ω
E
[
f −2(X(k)

t ) f 2
−k(X

(−k)
t ) K2

π

(
ζ1(Xkt−xk)

)]

+ (nhπk)−2
∑
t′,t′′

t′, t′′∈Ω

Cov
(
εt′ , εt′′

)
E2

[
f −1(X(k)

t ) f−k(X(−k)
t )Kπ

(
ζ1(Xkt−xk)

)]

(3.30)

Let u =
(
uT

k , (u
(−k))T

)T
, where uk is a bk dimensional random vector and u(−k) is a D−bk

dimensional random vector . Then

E
[
f −2(X(k)

t ) f 2
−k(X

(−k)
t ) K2

π

(
ζ1(Xkt−xk)

)]

=
w

f −2(xk,u(−k)) f 2
−k(u

(−k)) K2
π

(
ζ1(uk−xk)

)
f (u) du

= hπk

w
f −2(xk,u(−k)) f 2

−k(u
(−k))

[w
K2
π (δ) f

(
δ�hk+xk,u(−k)) dδ

]
du(−k)

= hπk

[w
K2
π (δ) dδ

w
f −1(xk,u(−k)) f 2

−k(u
(−k)) du(−k) + o(1)

]
, (3.31)

which is equal to O(hπk). Similarly, we can show

E
[
f −1(X(k)

t ) f−k(X(−k)
t )Kπ

(
ζ1(Xkt−xk)

)]
= O(hπk). (3.32)
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Moreover, via Lemma 2.3 or Lemma 2.5, we have

∑
t′,t′′

t′, t′′∈Ω

Cov
(
εt′ , εt′′

)
=

∑

|l1|<n1

∑

|l2|<n2

(n1−|l1|)(n2−|l2|)
∣∣∣R(l1, l2)

∣∣∣− nσ2
ε

≤ Cn
n1∑

l1=0

n2∑

l2=0

∣∣∣R(l1, l2)
∣∣∣ = O(n). (3.33)

Substitute (3.31) - (3.33) into (3.30), we can show Var(Q31) = O
(
(nhπk)−1

)
, and hence

Q31 = Op

(
(nhπk)−1/2

)
. By the similar procedure as (3.30)-(3.33), we can also show that

Q32 =Op

(
(nhπk)−1/2

)
. Via (3.29), (3.21) can then be shown, with the first term on its right

hand side being Op

(
(nhπk)−1/2

)
. The proof of Theorem 3.1 is completed. �

Theorem 3.2 can be established directly with the two lemma below. We define

An = (nhπk)−1/2
∑

s∈Ω
f −1(X(k)

s ) f−k(X(−k)
s ) Kπ

(
ζ1(Xks − xk)

)
εs. (3.34)

From equation (3.10), we can see that it suffices for us establish the asymptotic nor-

mality of m̂k(xk) by showing An is asymptotically normal. To get this, we may use the

technique of truncated MA model. By Lemma 2.4, we can transform (2.3) into some 2-

dimensional moving average model, where the coefficients satisfy |ψt|≤C||t||−α, α=3+δ,

δ is some positive constant and t= (t1, t2)∈Z2. Define

εm
s =

∑

|t1 |,|t2 |<m

ψtτs−t and ε̃s = εm
s + ηs,

where m is some amount satisfying m → ∞ as n → ∞, and ηs is independent random

variable with zero mean and finite variance. Furthermore, we assume that {ηs} is inde-

pendent of {τs} and {Xs}, and ηsv εs − εm
s where v denote equality in distribution. Now
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define Ãn similar to An, but with εs in (3.34) substituted by ε̃s, that is

Ãn = (nhπk)−1/2
∑

s∈Ω
f −1(X(k)

s ) f−k(X(−k)
s ) Kπ

(
ζ1(Xks − xk)

)
ε̃s. (3.35)

Then following lemma shows the equivalence of the asymptotic normality of An and Ãn.

Lemma 3.1 If εs can be expressed in the form of (2.35) with coefficient ψk satisfying

(2.36), and assumptions (B1), (B2), (B4), (B5) and (B7) hold, then

|An − Ãn| = op(1) . (3.36)

Proof of Lemma 3.1:

Pr
[
|An−Ãn|>η

]
= Pr

[ ∣∣∣
∑

s∈Ω
(εs−ε̃s) f −1(X(k)

s ) f−k(X(−k)
s ) Kπ

(
ζ1(Xks−xk)

)∣∣∣> (nhπk)1/2η
]

≤
∑

s∈Ω
Pr

[ ∣∣∣(εs−ε̃s) f −1(X(k)
s ) f−k(X(−k)

s ) Kπ
(
ζ1(Xks−xk)

)∣∣∣> n−1/2h1/2
πk η

]

≤ n2h−1
πk η

2 Var
[
(εs−ε̃s) f −1(X(k)

s ) f−k(X(−k)
s ) Kπ

(
ζ1(Xks−xk)

)]
. (3.37)

Define Γ= {t= (t1, t2) : |ti| ≥ m for at least one i, i = 1, 2}, then εs − ε̃s =
∑
t∈Γ
ψtτs−t + ηs. As

{Xs} is independent of {τs} and {ηs}, by (3.37) we have

Pr
[
|An−Ãn|>η

]
≤ Cn2h−1

πk E
[
(εs − ε̃s)2]E

[
f −2(X(k)

s ) f 2
−k(X

(−k)
s ) K2

π

(
ζ1(Xks−xk)

)]
.

From (3.31), we can see that h−1
πk E

[
f −2(X(k)

s ) f 2
−k(X

(−k)
s ) K2

π

(
ζ1(Xks−xk)

)]
is bounded. By

the proof of Lemma 2.7, we also get E
[
(εs − ε̃s)2]≤ Cnm−2α, where m → ∞ as n → ∞

and α = 3 + δ, δ is some positive constant. So (3.37) is finally bounded by Cn3m−2α.

Let m =
(
n(hπkh4

kL
)c1

)1/2
, c1 is some constant and 0 < c1 < δ/(3 + δ), we can ensure that

m→ ∞ and n3m−2α → 0 as n→ ∞. The proof is then completed. �
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Lemma 3.2 If εs can be expressed in the form of (2.35) with coefficient ψk satisfying

(2.36), and assumptions (B1), (B3), (B4)-(B7) hold, then we have

Ãn
D−→ N

(
0, Σε(xk)

)
,

where Σε(xk) is defined in Theorem 3.2.

Proof of Lemma 3.2: Let ∆s = f −1(X(k)
s ) f−k(X(−k)

s ) Kπ
(
ζ1(Xks−xk)

)
ε̃s, and therefore Ãn =

∑
s∈Ω

(nhπk)−1/2∆s. Due to the fact that m → ∞ as n → ∞, we have ε̃s → εs as n → ∞.

Hence, similar to (3.30) - (3.33), the asymptotical variance of Ãs can be given as

lim
n→∞

Var
(
Ãn

)
= σ2

ε fk(xk)
w

K2
π (δ)dδ E

[
f 2
−k(X

(−k)
s ) f −2(Xs)

∣∣∣ Xks =xk
]
=̂ Σε(xk). (3.38)

We decompose Ãn into pieces involving ”large” and ”small” blocks. Let (l1, l2) be the

length of the large blocks, satisfying ni =ri(2m + li), li/m→∞ as n→ ∞, and ri is some

integer tending to infinity as well. When ri cannot take integer value, some remaining

block will exist. However, the consideration of such case is similar to that presented in

the following, and hence is omitted here. We let li = [n(hπkh4
kL

)c2]1/2, where 0 < c2 < c1,

c1 is used in the proof of Lemma 3.1, and c2 can take different values with distinct

li, i = 1, 2. Now denote j = ( j1, j2) and

U
(
1,n, j

)
=

ji(li+2m)+li∑
si= ji(li+2m)+1

i=1,2

(nhπk)−1/2∆s,

which is the sum of random variables over the j-th large block. To sum up the random

variables over all large blocks, we define

T
(
n, 1

)
=

∑
0≤ ji≤ri−1

i=1,2

U
(
1,n, j

)
.
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We also define

U(2,n, j)=
j1(l1+2m)+l1∑

s1= j1(l1+2m)+1

( j2+1)(l2+2m)∑

s2= j2(l2+2m)+l2+1

(nhπk)−1/2∆s,

U(3,n, j)=
( j1+1)(l1+2m)∑

s1= j1(l1+2m)+l1+1

j2(l2+2m)+l2∑

s2= j2(l2+2m)+1

(nhπk)−1/2∆s,

U(4,n, j)=
( ji+1)(li+2m)∑
si= ji(li+2m)+li+1

i=1,2

(nhπk)−1/2∆s,

which are the sum of random variables over different types of small blocks. Then

T (n, k), 2 ≤ k ≤ 4, can be defined similarly as T (n, 1). Hence we have Ãn =
4∑

k=1
T (n, k).

We then process to show

(b1) T (n, k) = op(1), for 2 ≤ k ≤ 4,

(b2) Var
[
T (n,1)

]
=̂ S 2

n → Σε(xk), as n→ ∞,

(b3) T( n,1)/Sn
D−→ N( 0, 1).

Proof of (b1): Without loss of generality, we only prove T (n, 2) = op(1), while the

proofs for the rest are similar. It is sufficient for us to show the variance of T (n, 2) tends

to zero. Define

S (2, j ) = { s : j1(l1+2m)+1≤ s1≤ j1(l1+2m)+l1, j2(l2+2m)+l2+1≤ s2≤ ( j2+1)(l2+2m)},

which is the location set of the random variables in U(2,n, j), and it contains 2l1m
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elements . Notice that distinct U(2,n, j), respecting to j, are independent, thus we have

Var
[
T( n, 2)

]
=

∑
0≤ ji≤ri−1

i=1,2

Var
[
U(2,n, j)

]

= (nhπk)−1
∑

0≤ ji≤ri−1
i=1,2


∑

s∈S (2,j)

Var(∆s) +
∑

s′, s′′∈S (2,j)

Cov
(
∆s′ ,∆s′′

)


≤ (nhπk)−1( 2l1m × r1 × r2
)
Var(∆s) + (nhπk)−1

∑
s′, s′′∈Ω
s′,s′′

Cov
(
∆s′ ,∆s′′

)
.

It is easy to show h−1
πk Var(∆s) is bounded, then with the fact that m/l2 → 0, the first

term on the right hand side of the last inequality tends to zero. Similar to the proof of

(3.30)-(3.33), we can show that the second term is equal to O(hπk). So we complete the

proof of (b1).

Proof of (b2): By (b1) and (3.38), (b2) follows straightforwardly.

Proof of (b3): Notice that all U(1,n, j) are independent. By the Linderbery central limit

theorem, (b3) is held if we can show

∑

0≤ ji≤ri−1
i=1,2

E
[(

U(1,n, j)
)2 I

{
|U(1,n, j)| > εSn

}]
−→ 0, (3.39)

for any ε > 0. As ε̃s is not bounded, we define the truncated variables ε̃L
s = ε̃sI

{ |ε̃s| ≤ L
}
,

L is some positive constant. Similarly, let ∆L
s = f −1(X(k)

s ) f−k(X(−k)
s ) Kπ

(
ζ1(Xks−xk)

)
ε̃L

s and

UL(1,n, j) =
∑

s∈S (1,j)
(nhπk)−1/2∆L

s ,

TL(n, 1) =
∑

0≤ ji≤ri−1
i=1,2

UL(1,n, j) ,

where S(1, j ) = { s : ji(li+2m)+1≤ si≤ ji(li+2m)+li, i =1, 2 } . As the asymptotic variance

of T (n, 1) exists, the one of TL(n, 1) also exists. We denote SL
n as the asymptotic standard
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deviation of TL(n, 1). Now we first show that TL(n,1)
/
SL

n
D−→ N( 0,1), or equivalently

J =̂
∑

0≤ ji≤ri−1
i=1,2

E
[(

UL(1,n, j)
)2 I

{
|UL(1,n, j)| > εSL

n

}]
−→ 0 , (3.40)

and then generalize the result to (b3).

J ≤ CL2(nhπk)−1l2
1l2

2

∑

0≤ ji≤ri−1
i=1,2

Pr
[
|UL(1,n, j)| > ε SL

n

]

≤ C(nhπk)−1l2
1l2

2

∑

0≤ ji≤ri−1
i=1,2

(
ε SL

n
)−2E

[(
UL(1,n, j)

)2
]
. (3.41)

Examine the following expectation,

E
[(

UL(1,n, j)
)2
]
= (nhπk)−1E

{[ ∑

s∈S (1,j)

∆L
s

]2
}
≤ C(nhπk)−1

{
l1l2 E

[
(∆L

s )2] + l 2
1 l 2

2 E2[∆L
s
]}
.

Since E
[
(∆L

s )2]= O(hπk) and E
[
∆L

s
]
= O(hπk), we have

E
[(

UL(1,n, j)
)2
]
≤ C

(
n−1l1l2(1 + hπkl1l2)

)
.

Substitute this into the expression of J, and rewrite n, l1 and l2 in terms of hπ and hL, we

then have

J ≤ C
(
(hc2−1

πk h4c2−2
kL )2 + (hπkh4

kL)3c2−2
)
,

which will tend to zero with some c2 close enough to 1.
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Now define TL∗(n,1) = T (n,1)−TL(n,1), then

∣∣∣∣∣
∣∣∣∣∣E

[
exp

(
iλT (n, 1)

)− exp
(−λ2S 2

n/2
) ]∣∣∣∣∣

∣∣∣∣∣

≤
∣∣∣∣∣
∣∣∣∣∣E

[
exp

(
iλTL(n, 1)

)− exp
(−λ2(SL

n)2/2
)]∣∣∣∣∣

∣∣∣∣∣+E
∣∣∣∣∣
∣∣∣∣∣ exp

(
iλTL∗(n, 1)

)−1
∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣ exp
(−λ2(SL

n)2/2
)− exp

(−λ2S 2
n/2

) ∣∣∣∣∣

=̂ E1 + E2 + E3.

As we have shown TL(n,1)
/
SL

n
D−→ N( 0,1) above, therefore, E1 tends to zero. E3 also

tends to zero by dominated convergence theorem. It remains for us to show E2 con-

verges, and this is held if Var
[
TL∗(n, 1)

]→ 0. Similar to establishing the asymptotic

variance of T (n, 1), we have

lim
n→∞

Var
[
TL∗(n, 1)

]
= Var

(
ε̃sI{|ε̃s|>L}

)
fk(xk)

w
K2
π (δ)dδ E

[
f 2
−k(X

(−k)
s ) f −2(Xs)

∣∣∣ Xks =xk

]

which converges to zero as L → ∞ by dominated convergence theorem. The proof is

then completed. �

Proof of Theorem 3.3: Recall that P̂ can be expressed as P̂ = µ̂ +
d∑

i=1
M̂k +

(
I−B(θ̂)

)
Ê.

If we substitute θ̂ by θ, we can form another process as P̌ = µ̂ +
d∑

i=1
M̂k +

(
I − B(θ)

)
Ê.

Moreover, denote the elements in P̌ by P̌s, s ∈ Ω, and define

m̌k(xk) =
1
n

∑

s∈Ω
m̌
(
X(k)

s
) − 1

n

∑

s∈Ω
P̌s ,

m̌
(
X(k)

s
)
= ηT

[
~XT(X(k)

s
)

W
(
X(k)

s
) ~X(

X(k)
s
)]−1

~XT(X(k)
s
)

W
(
X(k)

s
)

P̌ .

Then, we see that m̌k(xk)−mk(xk) =
(
m̃k(xk)−m̌k(xk)

)
+

(
m̌k(xk)−mk(xk)

)
. To establish

Theorem 3.3, we will show that m̃k(xk) − m̌k(xk) = op
(
(ngπk)−1/2) and (ngπk)−1/2(m̌k(xk) −
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mk(xk)
)

is asymptotically normal.

We first consider the former. From Theorem 3.1 we have M̂k = Mk + Op(h2
kL

), together

with µ̂ = µ + Op(n−1/2) and assumption (B8), we have Ê = E + Op(h2
L ). Define G as a

vector with the i-th element being Gi =
∑

j ∈N(si)
εsj , where N(si) is the neighborhood set of

εsi . Also note that there are finite nonzero elements in each row of B(θ) and B(θ̂). Then

m̃k(xk) − m̌k(xk)

=
1
n

∑

s∈Ω

[
m̃
(
X(k)

s
)−m̌k

(
X(k)

s
)]− 1

n
1T (P̂ − P̌)

=
1
n

∑

s∈Ω
ηT

[
~XT(X(k)

s
)

W
(
X(k)

s
) ~X(

X(k)
s
)]−1

~XT(X(k)
s
)

W
(
X(k)

s
)(

B(θ)−B(θ̂)
)
Ê − 1

n
1T (B(θ)−B(θ̂)

)
Ê

=
1
n
ηT

(
f −1(X(k)

s )+op(1)
)
~XT(X(k)

s
)

W
(
X(k)

s
)(

G + Op(h2
L )

)
· op(1) − 1

n
1T

(
G + Op(h2

L )
)
· op(1)

=
1
n

∑

s∈Ω
ηT f −1(X(k)

s )~XT(X(k)
s
)

W
(
X(k)

s
)
G · op(1) +

1
n

∑

s∈Ω
ηT f −1(X(k)

s )~XT(X(k)
s
)

W
(
X(k)

s
)
1 · op(h2

L )

−1
n

1T G · op(1) + op(h2
L )

=̂ I11 · op(1) + I12 · op(h2
L ) − I13 · op(1) + op(h2

L ). (3.42)

Via assumption (B8) and the equation above, it is sufficient for us to show m̃k(xk) −

m̌k(xk) = op
(
(ngπk)−1/2) by proving I11 = Op

(
(ngπk)−1/2

)
, I12 = Op

(
(ngπk)−1/2

)
and I13 =

Op(n−1/2). As the proof about I11 is most involved, we will omit the proofs for the others

in the following. Recall Ctk defined in (3.27), and Ctk = f −1(X(k)
t ) f−k(X(−k)

t ) + op(gkL), we
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then have

I11 =
1
n

∑

s∈Ω

∑

t∈Ω
(ngπ)−1f −1(X(k)

s ) Kπ
(
ζ1

(
Xt−X(k)

s
))

Gt

= (ngπk)−1
∑

t∈Ω
Kπ

(
ζ1(Xkt−xk)

)
Ctk Gt

= (ngπk)−1
∑

t∈Ω
f −1(X(k)

t ) f−k(X(−k)
t )Kπ

(
ζ1(Xkt−xk)

)
Gt

+(ngπk)−1
∑

t∈Ω
Kπ

(
ζ1(Xkt−xk)

)
Gt · op(gkL)

=̂ I111 + I112 · op(gkL). (3.43)

Clearly,

I111 = (ngπk)−1
∑

t∈Ω

∑

r∈N(t)

f −1(X(k)
t ) f−k(X(−k)

t )Kπ
(
ζ1(Xkt−xk)

)
εr (3.44)

has zero mean, and its variance can be given as

Var(I111)= (ngπk)−2
∑

t∈Ω

∑

r′∈N(t)

∑

r′′∈N(t)

E
[
f −2(X(k)

t ) f 2
−k(X

(−k)
t )K2

π

(
ζ1(Xkt−xk)

)]
Cov(εr′, εr′′)

+ (ngπk)−2E2
[
f −1(X(k)

t ) f−k(X(−k)
t )Kπ

(
ζ1(Xkt−xk)

)]∑
t′,t′′

t′, t′′∈Ω

∑

r′∈N(t′)

∑

r′′∈N(t′′)

Cov(εr′, εr′′).

(3.45)

Let u =
(
uT

k , (u
(−k))T

)T
, where uk is a bk dimensional random vector and u(−k) is a D−bk

dimensional random vector . We can show that

E
[
f −2(X(k)

t ) f 2
−k(X

(−k)
t ) K2

π

(
ζ1(Xkt−xk)

)]

=
w

f −2(xk,u(−k)) f 2
−k

(
u(−k)) K2

π

(
ζ1(uk−xk)

)
f (u) du

= gπk

w
f −2(xk,u(−k)) f 2

−k
(
u(−k))w K2

π (δ) f
(
xk+δ � gk,u(−k)) dδ du(−k)

= gπk

w
f −1(u(k)) f 2

−k(u
(−k)) du(−k)

w
K2
π (δ) dδ + o(gπk), (3.46)

which is equal to O(gπk). Similarly, we have E
[
f −1(X(k)

t ) f−k(X(−k)
t )Kπ

(
ζ1(Xkt − xk)

)]
=
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O(gπk). Therefore, due to the fact that there are finite elements in each set N(t), we

obtain

Var(I111)≤Cn−2g−1
πk

∑

t∈Ω

∑

r′∈N(t)

∑

r′′∈N(t)

Cov(εr′, εr′′) + Cn−2
∑
t′,t′′

t′, t′′∈Ω

∑

r′∈N(t′)

∑

r′′∈N(t′′)

Cov(εr′, εr′′)

≤C(ngπk)−1σ2
ε + Cn−1

∞∑

k1=−∞

∞∑

k2=−∞

∣∣∣R (k1, k2)
∣∣∣, (3.47)

where R(k) = Cov(εs, εs+k) for k = (k1, k2) ∈ Z2. By Lemma 2.3 or Lemma 2.5, we

obtain Var(I111) = O
(
(ngπk)−1

)
, and consequently I111 = Op

(
(ngπk)−1/2

)
.

With the same procedure as (3.45)-(3.47), we can also show I112 = Op

(
(ngπk)−1/2

)
. Then,

by (3.43), we can conclude I11 = Op

(
(ngπk)−1/2

)
. With similar technique and procedure,

we can show I12 = Op

(
(ngπk)−1/2

)
and I13 = Op(n−1/2). The proof of m̃k(xk) − m̌k(xk) =

op
(
(ngπk)−1/2) is then completed.

We go on to consider the asymptotic normality of m̌k(xk). Define F̌(X(k)
s ) =

( 1
n

∑
r∈Ω

P̌r + m(X(k)
s ),

(
m′(X(k)

s ) � g
)T

)T
, then

m̌k(xk)−mk(xk)

=
1
n

∑

s∈Ω
ηT

(
~XT(X(k)

s ) W(X(k)
s ) ~X(X(k)

s )
)−1
~XT(X(k)

s ) W(X(k)
s )

[
P̌ − ~X(X(k)

s )F̌(X(k)
s )

]
+ Op(n−1/2)

=
1
n

∑

s∈Ω
ηT

(
f −1(X(k)

s )+op(1)
)
~XT(X(k)

s ) W(X(k)
s )

[
P̌ − ~X(X(k)

s )F̌(X(k)
s )

]
+ Op(n−1/2)

=

[ 1
n

∑

s∈Ω

∑

t∈Ω
(ngπ)−1 f −1(X(k)

s )Kπ
(
ζ1(Xt − X(k)

s )
)
·Op(h2

L )

+
1
n

∑

s∈Ω

∑

t∈Ω
(ngπ)−1 f −1(X(k)

s )Kπ
(
ζ1(Xt − X(k)

s )
)
Rt

+
1
n

∑

s∈Ω

∑

t∈Ω
(ngπ)−1 f −1(X(k)

s )Kπ
(
ζ1(Xt − X(k)

s )
)
τt

] (
1 + op(1)

)
+ Op(n−1/2)

=̂
[
I21 · Op(h2

L ) + I22 + I23

] (
1 + op(1)

)
+ Op(n−1/2), (3.48)
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where Rt is defined in (3.18). As (ngπ)−1∑
t∈Ω

Kπ
(
ζ1(Xt − X(k)

s )
)
= f (X(k)

s ) + Op(gkL), it is

readily to see that I21 = Op(1). By (3.20) and (3.22)-(3.26), we can show

I22 =
1
2

tr
[
m′′k (xk)

w
Kπ(δ)(δkδ

T
k) � (gkgT

k) dδ
]
+ op(g2

kL). (3.49)

Then, by (3.48) and assumption (B8), it remains for us to show that (ngπk)1/2I23
D−→

N
(

0, Στ(xk)
)
. Consider that

I23 = (ngπk)−1
∑

t∈Ω
Kπ

(
ζ1(Xkt − xk)

)
Ctkτt

= (ngπk)−1
∑

t∈Ω
f −1(X(k)

t ) f−k(X(−k)
t )Kπ

(
ζ1(Xkt−xk)

)
τt

+
[
(ngπk)−1

∑

t∈Ω
Kπ

(
ζ1(Xkt−xk)

)
τt
]
·op(gkL)

=̂ I231 + I232 · op(gkL) (3.50)

It is easy to show that the variance of I232 is equal to O
(
(ngπk)−1

)
, and its mean is zero.

This indicates I232 = Op

(
(ngπk)−1/2

)
. Moreover, since {Xs} and {τs} are i.i.d., and mutually

independent, the asymptotic normality of I231 obviously hold. We can show that I231 has

zero mean, and

Var(I231) = (ngπk)−1σ2
τ

w
f −1(u(k)) f 2

−k(u
(−k)) du(−k)

w
K2
π (δ)dδ + o

(
(ngπk)−1

)
,

where δ is a bk- dimensional vector. This conclude the proof of Theorem 3.3. �

3.6 Summary and Remark

In this chapter, we focus on the nonparametric additive model, where the errors are as-

sumed to satisfy the torus SGAR model, separable SGAR model and unilateral SGAR
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model. The two-step estimation procedure introduced in Martins-Filho & Yao (2009) is

adopted. For the first-step estimator, we show its convergence rate with the three types

of error structures, and establish the asymptotic normality when εs satisfies the separable

and unilateral SGAR model. For the second-step estimator, the asymptotic normality

with all three error structures is established. Simulations are conducted to assess the

performance of our estimation. It can be seen that our two-step estimation performs

better than the original estimation of additive model with the marginal integration tech-

nique. Furthermore, comparing the fitting results presented in Chapter 2 and Chapter 3,

we find that the two-step estimation with additive model achieves better results than the

one with general nonparametric model in Chapter 2, given that the testing model has

additive structure.
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Chapter 4

Partially Linear Model with

SGAR-type Error

4.1 Literature Review

Nonparametric methods are powerful tools for nonlinear regression and nonlinear time

series analysis. However, such methods always face a serious problem, the curse of

dimensionality. Because of this, only a few explanatory variables can be introduced

into the model, unless the amount of the observations is extremely large. On the other

hand, although the parametric models do not suffer the curse of dimensionality, the

assumption of linearity is usually unreasonable in practical research. Therefore, as a

combination of nonparametric and parametric models, the partially linear model has

been broadly considered in recent years. A great deal of literature focuses on this type

of model, for instance, Heckman (1986), Rice (1986), Chen (1988), Robinson (1988),

Speckman (1988), Chen & Shiau (1991, 1994) and Hamilton (1997). Several kinds of
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methods are used in these literature, such as the spline method, the kernel method and

the local polynomial estimation.

The i.i.d. assumption of the errors is usually applied in the partially linear model, in-

cluding the literature mentioned above. However, this assumption is not always appro-

priate, especially with financial data where serial dependency of errors usually exists.

So in some literature the partially linear model with correlated errors is also studied.

For example, Engle et al.(1986) and Schick (1994, 1996, 1998) considered the models

with AR-type errors; Sun et al. (2002) investigated the convergence rates of both the

parametric and nonparametric estimators with MA(∞) errors and fixedly designed re-

gressors; Lu & Gijbels (2001) studied the consistency of the estimators in the partially

linear regression model with dependent observations and ARCH-type errors, and local

polynomial fitting was applied.

In the area of spatial process analysis, the nonparametric methods are less considered.

As mentioned in Gao et al. (2006), this is mainly due to the curse of dimensionality.

On a lattice, a nonparametric fitting of spatial data given its closest neighbors requires

a four-dimensional model. Obviously, the amount of spatial data is seldomly adequate

enough for such study. Therefore, Gao et al. (2006) considered an estimation of the

partially linear model by combining the marginal integration technic with local linear

fitting. They assumed additive structure for the nonparametric function in the model, so

that the problem of the curse of dimensionality becomes less severe. Different from the

model with correlated errors mentioned above, they considered the case with dependent

observations instead. Under some spatially mixing condition, the asymptotic normality

of the estimator was established.
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In this chapter, we also consider the partially linear model with spatial data. Different

from the idea of Gao et al. (2006), we consider the model with spatially correlated

errors. By treating the spatial dependency with a parametric model for the errors, we

can greatly avoid the curse of dimensionality. The two-step estimation idea will be used

again.

The outline of this chapter is as follow. The proposed model as well as the estimation

procedure are introduced in the second section. Asymptotic properties of the estimators

are given in the third section. Simulations are conducted to show the performance of

our method, and the results are shown in section four. Proofs of the theoretical results

are given thereafter, and at last is a short conclusion.

4.2 Model and Estimation

The model with interest is

Ys = ZT
s λ + m(Xs) + εs, (4.1)

where s = (s1, s2) ∈ Z2 is the index of position from a n1× n2 rectangular lattice Ω, m(.)

is some unknown function, λ is a b-dimensional parameter vector, Ys is the response

variable, Zs and Xs are the explanatory vectors being b-dimensional and d-dimensional

respectively, {Xs} is independent of {εs}, and εs satisfy the torus, separable and unilateral

SGAR models defined in (2.2)-(2.4).

Arrange the points s ∈ Ω in arbitrage order and denote them by s1, · · · , sn respectively.

Then our model can be expressed in the matrix form as

Y = ~Zλ + M + E, (4.2)
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(
I − B(θ)

)
E = Υ, (4.3)

where Y =
(
Ys1 , · · ·,Ysn

)
, ~Z =

(
Zs1 , · · ·,Zsn

)T , M =
(
m(Xs1), · · ·,m(Xsn)

)
, E =

(
εs1 , · · ·, εsn

)
,

B(θ) is the matrix made up of the SGAR coefficients, and is defined in the same manner

as in Chapter 2.

The purpose of our method is to estimate λ and m(.), given that εs is spatially correlated.

Following the previous research, we first assume that λ is known. Let h=
(
h1, · · · , hd

)T,

hi is some bandwidth, and β(x) =
(
m(x),

(
h � m′(x)

)T
)T

. Then, by local linear fitting,

β(x) can be estimated as

β̂ (x, λ) =
(
~XT(x)W(x)~X(x)

)−1 (
~XT(x)W(x)Yλ

)
. (4.4)

Here, Yλ is a n-dimensional vector with the i-th element being Ysi−ZT
si
λ, ~X(x) is a

n × (d+1) matrix with the i-th row being ζ(Xsi−x) =
(
1, ζ1(Xsi− x)

)
and ζ1(Xsi−x) =

(
(Xsi−x) � (1/h)

)T , W= (nhπ)−1diag
(
Kπ

(
ζ1(Xs1−x)

)
, · · · ,Kπ

(
ζ1(Xsn−x)

))
with hπ=

d∏
i=1

hi

and Kπ(δ)=
d∏

i=1
K(δi), δ = (δ1, · · · , δd)T .

As we can express Yλ as Yλ=Y−~Zλ, an estimator of m(x) can then be given by

m̂(x,λ) = ηT
(
~XT(x)W(x)~X(x)

)−1(
~XT(x)W(x)Y

)
− ηT

(
~XT(x)W(x)~X(x)

)−1(
~XT(x)W(x)~Z

)
λ

=̂ Q̂Y(x) − Q̂T
Z(x) λ, (4.5)

where η is a (d+1)-dimensional vector with the first element being 1 and 0 otherwise.

Note that if we take conditional expectation of model (4.1), given Xs = x, we have

E(Ys |Xs = x) = E(ZT
s |Xs = x)λ + m(x). (4.6)
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Marching (4.5) with (4.6), we can see that Q̂Y(x) is the local linear estimator of

E
(
Ys |Xs =x

)
, and Q̂Z(x) is the local linear estimator of E

(
Zs |Xs =x

)
. For convenience,

denote QY(x) = E
(
Ys |Xs =x

)
and QZ(x) = E

(
Zs |Xs =x

)
.

Now we turn back to estimate λ. Define Cs = Ys − Q̂Y(Xs) and Ds = Zs − Q̂Z(Xs). As

m̂(x,λ) is linear in λ, an estimator of λ can then be given by

argmin
λ∈Rb

∑

s∈Ω

(
Ys − ZT

s λ − m̂(Xs, λ)
)2

= argmin
λ∈Rb

∑

s∈Ω

(
Cs − DT

sλ
)2
.

Therefore, we have

λ̂ =
(~DT ~D

)−1(~DT C
)
, (4.7)

where ~D =
(
Ds1 , . . . ,Dsn

)T and C =
(
Cs1 , . . . ,Csn

)T . Then the estimator of m(x) can be

given by

m̂(x) = Q̂Y(x) − Q̂T
Z(x)λ̂. (4.8)

So far what we have done is the standard estimation procedure for partially linear model.

Notice that the error {εs} is not i.i.d. but spatially correlated. However, we have not made

use of the information of such spatial dependency. Comparing with (4.2), if we form a

new process {Ps} as

P = ~Zλ + M +
(
I − B(θ)

)
E , (4.9)

where P =
(
Ps1 , · · · , Psn

)T , then P has the same conditional mean as Y, but P has i.i.d.

errors instead. Therefore, we can apply the partially linear estimation demonstrated

above to P to obtain some improved estimators of λ and m(x). However, as λ, M, B(θ)

and E are all unknown, we may substitute some consistent estimators for them. It will

be shown in the next section that λ̂ and m̂(x) given in (4.7) and (4.8) are consistent,
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consequently εs may be estimated consistently as well. Therefore, with some proper

estimator of B(θ), we can form

P̂ =
(
I − B(θ̂)

)
Y + B(θ̂)

(~Zλ̂ + M̂
)
. (4.10)

P̂ = (P̂s1 , . . . , P̂sn)
T . It then remains for us to conduct the partially linear fitting to P̂.

Let Ls = P̂s − Q̂P(Xs), where Q̂P(Xs) = ηT (~XT(x)W(x)~X(x)
)−1(~XT (x)W(x)P̂

)
, and L =

(Ls1 , . . . , Lsn)
T . Moreover, let g = (g1, · · ·, gd)T be the bandwidth vector for the second-

step estimation, and consequently gπ =
∏d

i=1 gi. Substitute h and hπ by g and gπ in the

expression of ~X(x) and W(x), then the improved estimators of λ and m(x) are given by

λ̃ = (~DT ~D)−1~DT L, (4.11)

m̃(x) = Q̂P(x) − Q̂T
Z(x)λ̃. (4.12)

Now let us sum up the whole estimation procedure, which we denote as PLR-SCE

throughout this thesis.

Step 1. Obtain the initial estimators of λ and m(x) by (4.7) and (4.8). As such

estimators are consistent, εs may be estimated consistently, too. Hence some

appropriate estimator of B(θ) is also available.

Step 2. Form P̂ defined in (4.10), then apply the partially linear fitting to the new

process, so that the improved estimators given in (4.11) and (4.12) can be

obtained.
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4.3 Theoretical Results

In this section we mainly study the asymptotic properties of the first- and second-step

estimators of λ and m(x), which are given in (4.7)-(4.8) and (4.11)-(4.12) respectively.

Several assumptions are in order.

(C1) The random vectors Xs, s ∈ Ω, are i.i.d. with joint density f (x), | f (x)| < ∞.

Moreover, {Xs} is independent of {εs} and {τs}, where τs is defined in (2.2)-

(2.4).

(C2) The second derivatives of m(.) exist and are continuous at all x.

(C3) Zs = QZ(Xs) + σZ es, where QZ(.) =
(
Q1(.), . . . ,Qb(.)

)
, es is a i.i.d. random

vector with zero mean and unit covariance matrix, {es} is independent of

{Xs}, {εs} and {τs}.

(C4) The second derivatives of Qi(.), i = 1, · · ·, b, exist and continuous at all x.

(C5) The kernel function K(.) is symmetric, with bounded support, and Lipschitz

continuous.

(C6) The random field {εs, s ∈ Z2} is strictly stationary; εs has zero mean and

finite variance.

(C6a) The coefficients in (2.2) satisfy |θ1|+|θ2|<1/2.

(C6b) The coefficients in (2.3) satisfy |θ1|<1/2, |θ2|<1/2.

(C6c) The coefficients in (2.4) satisfy |θ1|+|θ2|<1.

(C7) hi > 0, hi → 0 as n → ∞; moreover, denote hL as the bandwidth with

the slowest convergence rate, such as hL ∈ {h1, · · ·, hd}, hL = O
(
hC

k

)
for

0 < C ≤ 1 and k = 1, · · · , d, then h converges to zero in the manner that

n = O
(
(hπh4

L)−1).
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(C8) gi > 0, gi → 0 as n → ∞; denote gL the bandwidth with the slowest con-

vergence rate, such as gL ∈ {g1,· · ·, gd}, gL = O
(
gC

k

)
for 0 < C ≤ 1 and

k = 1,· · ·, d; g converges to zero in the manner that n = O
(
(gπg4

L )−1); more-

over, lim
n→∞

hL/gL→0.

(C9) There exist some sequences as: l1→∞, l2→∞ and m → ∞ as n → ∞;

m/li → 0 and li/ni → 0 for i = 1, 2, as n→ ∞.

We first consider the asymptotic properties of the first-step estimators λ̂ and m̂(x).

Theorem 4.1 If εs follows any model in (2.2)-(2.4), with coefficients satisfying assump-

tions (C6a)-(C6c) respectively, and assumptions (C1)-(C7) hold, then

n1/2( λ̂ − λ ) D−→ N
(

0, σ2
ε

(
σZσ

T
Z
)−1

)
.

Recall Un(x) and V∗n(x) defined in (2.15)-(2.16), and then the following theorem can be

founded.

Theorem 4.2 If the conditions in Theorem 4.1 hold, then

m̂(x) − m(x) − Bias(x,h) = ηT U−1
n (x)V∗n(x) + op(h2

L ), (4.13)

where Bias(x,h) = 1
2 tr

[
m′′(x)

r
(δδT ) � (hhT ) Kπ(δ) dδ

]
, η is a vector with the first ele-

ment valued 1 and 0 elsewise. Furthermore, as Bias(x,h) = O(h2
L ) and U−1

n (x)V∗n(x) =

Op
(
(nhπ)−1/2), we have

m̂(x) − m(x) = Op(h2
L ). (4.14)

When εs satisfies model (2.3) or (2.4), we can also establish the asymptotic normality

of m̂(x). We only focus on the case with εs satisfying (2.3), whose analyses are more
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involved.

Theorem 4.3 If εs follows model (2.3), and assumptions (C1)-(C7), (C6b) and (C9)

hold, then

(nhπ)1/2
(
m̂(x) − m(x) − Bias(x,h)

) D−→ N
(
0,Σε(x)

)
, (4.15)

where Bias(x,h) is defined in Theorem 4.2, and Σε(x) = f −1(x)σ2
ε

r
K2
π (δ) dδ.

Next, we shall establish the asymptotic normality of the second-step estimators λ̃ and

m̃(x). Given some consistent estimator of the SGAR coefficient θ, the following two

theorems can be founded.

Theorem 4.4 If εs follows any model in (2.2)-(2.4) with coefficients satisfying assump-

tions (C6a)-(C6c) respectively, assumptions (C1)-(C8) hold, and some consistent esti-

mator of θ is available, then

n1/2( λ̃ − λ ) D−→ N
(

0, σ2
τ

(
σZσ

T
Z
)−1

)
. (4.16)

Theorem 4.5 If the conditions in Theorem 4.4 are satisfied, then we have

(ngπ)1/2
(
m̃(x) − m(x) − Bias(x, g)

) D−→ N
(
0,Στ(x)

)
, (4.17)

where Bias(x, g)= 1
2 tr

[
m′′(x)

r
(δδT ) � (ggT ) Kπ(δ) dδ

]
and Στ(x) = f −1(x)σ2

τ

r
K2
π (δ) dδ.

4.4 Simulations

To assess the performance of our approach considered in this chapter, we will conduct

some simulations below. Observations {Ys,Zs,Xs} will be generated with errors {εs} sat-

isfying (2.2)-(2.4). Simulations will be conducted with 3 different sample sizes, namely
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10 ×10, 15 ×15 and 20 × 20, and with 100 replication each. Results will be compared

with those obtained by traditional partially linear fitting. For the bandwidth determina-

tion, we choose the first- and second-step bandwidth h and g iteratively. See more about

the methods of bandwidth selection in Section 2.4.1.

Simulation 4.1 The testing model is

Ys = 0.5Zs + sin
(
πXs

)
+ εs, (4.18)

where Zs∼U(0, 8), Xs∼U(0, 4), εs is modeled as (2.2) -(2.4) with τs∼N(0, 1) and coeffi-

cients θ= (θ1, θ2) being ( 0.38,−0.1), ( 0.3,−0.2) and ( 0.4, 0.3) respectively.

From Table 4.1 we can see that as the sample size increases, most of the MSE of the

estimators given by both the partially linear fitting and PLR-SCE decrease. This is

coincident with the results that the estimators of m(.) in both steps are consistent. Due to

the fact that taking the spatial dependency of the errors into account, the MSE obtained

by PLR-SCE are smaller, indicating that our method gains an improvement over the

traditional method. Table 4.2 presents the fitting results of λ. It shows that the estimators

of λ given by partially linear fitting as well as PLR-SCE are close to the true values,

and the results converge as the sample size increase. In Table 4.3, the estimators of

θ = (θ1, θ2) obtained in Step 2 of the estimation are given. It can be seen that the results

are reasonably good.

We are also interested to compare the results of Simulation 2.1 and 4.1. One can find

that the results given in Table 2.2 and Table 4.1 are quite close. That means the addi-

tional parametric component in Simulation 4.1 does not affect the fitting results of the

nonparametric section.
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Table 4.1: Simulation 4.1. MSE for the estimators of m(.).

Sample Size 10×10 15×15 20×20

Torus(a)

mean of MSE(d)
o 0.5493 0.3509 0.1750

mean of MSE(e)
m 0.0937 0.0481 0.0320

var of MSEo 0.1208 0.0306 0.0091
var of MSEm 0.0022 0.0005 0.0002

Separable(b)

mean of MSEo 3.6804 5.8272 1.0422
mean of MSEm 0.1580 0.0861 0.0353
var of MSEo 30.1403 262.9937 0.7275
var of MSEm 0.0131 0.0145 0.0003

Unilateral(c)

mean of MSEo 0.1087 0.0571 0.0370
mean of MSEm 0.0943 0.0457 0.0299
var of MSEo 0.0026 0.0007 0.0003
var of MSEm 0.0026 0.0004 0.0001

(a) Torus: εs generated by (2.2).
(b) Separable: εs generated by (2.3).
(c) Unilateral: εs generated by (2.4).
(d) MSEo refers to the MSE given by partially linear fitting.
(e) MSEm refers to the MSE given by PLR-SCE.
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Table 4.2: Simulation 4.1. Estimators of λ.

Sample Size 10×10 15×15 20×20

Torus(a)

mean of λ̂ (b)
o 0.4735 0.4832 0.4897

mean of λ̂ (c)
m 0.4548 0.4813 0.4919

var of λ̂o 0.0284 0.0120 0.0050
var of λ̂m 0.0024 0.0010 0.0005

Separable(a)

mean of λ̂o 0.5298 0.5309 0.4612
mean of λ̂m 0.4681 0.4833 0.4918
var of λ̂o 0.2721 0.4114 0.0486
var of λ̂m 0.0051 0.0030 0.0007

Unilateral(a)

mean of λ̂o 0.4635 0.4829 0.4907
mean of λ̂m 0.4637 0.4815 0.4905
var of λ̂o 0.0026 0.0008 0.0007
var of λ̂m 0.0024 0.0006 0.0005

(a) Torus, Separable and Unilateral are same defined as those in Table 4.1.
(b) λ̂o refers to the estimators of λ obtained by the partially linear fitting.
(c) λ̂m refers to the estimators of λ obtained by PLR-SCE.

.
Table 4.3: Simulation 4.1. Estimators of θ= (θ1, θ2).

Sample Size 10×10 15×15 20×20

Torus(∗)

mean of θ̂1 0.3589 0.3857 0.3947
mean of θ̂2 -0.1315 -0.1157 -0.1103

Separable(∗)

mean of θ̂1 0.2855 0.2891 0.2894
mean of θ̂2 -0.2155 -0.2072 -0.2079

Unilateral(∗)

mean of θ̂1 0.3109 0.3665 0.3710
mean of θ̂2 0.2309 0.2670 0.2893

(∗) Torus, Separable and Unilateral are same defined as those in Table 4.1
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Simulation 4.2 The testing model is

Ys = 0.5Zs + sin
(
πX1,s

)
+ cos

(
πX2,s

)
+εs, (4.19)

where Xi, s ∼U(0, 4), i = 1, 2, and other settings are the same as those in Simulation 4.1.

.
Table 4.4: Simulation 4.2. MSE for the estimators of m(.).

Sample Size 10×10 15×15 20×20

Torus(a)

mean of MSE(d)
o 1.6181 1.0743 0.7219

mean of MSE(e)
m 0.6835 0.3048 0.1890

var of MSEo 1.3553 0.1313 0.0231
var of MSEm 0.1276 0.0111 0.0011

Separable(b)

mean of MSEo 17.411 26.4761 2.8441
mean of MSEm 0.9200 0.5619 0.2093
var of MSEo 1.35 × 103 3.60 × 103 3.2634
var of MSEm 0.4560 0.1048 0.0029

Unilateral(c)

mean of MSEo 0.4977 0.2898 0.1813
mean of MSEm 0.4473 0.2410 0.1567
var of MSEo 0.0196 0.0067 0.0014
var of MSEm 0.0132 0.0023 0.0009

(a) Torus: εs generated by (2.2).
(b) Separable: εs generated by (2.3).
(c) Unilateral: εs generated by (2.4).
(d) MSEo refers to the MSE given by partially linear fitting.
(e) MSEm refers to the MSE given by PLR-SCE.

In Simulation 4.2, we consider a model with two explanatory variables in the nonpara-

metric part. The results are shown in Table 4.4 to Table 4.6. Similar to the results of

Simulation 4.1, we can find that PLR-SCE gains a better performance than the tradi-

tional estimation approach. By a cross comparison between the results presented in

Table 4.1 and Table 4.4, we also see that the MSE of the estimators increase as the

number of the nonparametric components increase. This is because of the curse of the
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Table 4.5: Simulation 4.2. Estimators of λ.

Sample Size 10×10 15×15 20×20

Torus(a)

mean of λ̂ (b)
o 0.4481 0.4622 0.4670

mean of λ̂ (c)
m 0.3762 0.4151 0.4353

var of λ̂o 0.0276 0.0122 0.0053
var of λ̂m 0.0084 0.0016 0.0009

Separable(a)

mean of λ̂o 0.4314 0.4898 0.4756
mean of λ̂m 0.3924 0.4360 0.4380
var of λ̂o 0.4609 0.8071 0.0535
var of λ̂m 0.0330 0.0080 0.0011

Unilateral(a)

mean of λ̂o 0.3670 0.4181 0.4377
mean of λ̂m 0.3587 0.4113 0.4339
var of λ̂o 0.0062 0.0013 0.0007
var of λ̂m 0.0051 0.0011 0.0005

(a) Torus, Separable and Unilateral are same defined as those in Table 4.4.
(b) λ̂o refers to the estimators of λ obtained by the partially linear fitting.
(c) λ̂m refers to the estimators of λ obtained by PLR-SCE.

.
Table 4.6: Simulation 4.2. Estimators of θ= (θ1, θ2).

Sample Size 10×10 15×15 20×20

Torus(∗)

mean of θ̂1 0.3036 0.3439 0.3559
mean of θ̂2 -0.1346 -0.1362 -0.1300

Separable(∗)

mean of θ̂1 0.2856 0.2806 0.2808
mean of θ̂2 -0.2187 -0.2123 -0.2139

Unilateral(∗)

mean of θ̂1 0.2368 0.3103 0.3093
mean of θ̂2 0.1651 0.2305 0.2598

(∗) Torus, Separable and Unilateral are same defined as those in Table 4.4.
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dimensionality. Moreover, the estimation of the parametric coefficient λ is also less

satisfied than that in Simulation 4.1. Hence, to increase the estimation performance in

practice, we may remain only the primary factors in the nonparametric function, while

considered the secondary factors as some parametric components.

4.5 Proofs

Before presenting the proof of Theorem 4.1, we need to establish two lemma in advance.

Lemma 4.1 If assumptions (C1), (C3)-(C5) and (C7) are satisfied, then

Q̂i(x) − Qi(x) = Op(h2
L ), (4.20)

i = 1, . . . , b.

Proof of Lemma 4.1: Lemma 4.1 can be seen as a special case of Theorem 2.1, with

i.i.d. errors. Therefore, the proof of Lemma 4.1 can be given similarly as those of the

later. �

For the sake of convenience, define Jn(x) = ηT (~XT (x)W(x)~X(x)
)−1~XT (x)W(x).

Lemma 4.2 If assumptions (C1), (C2), (C5) and (C7) hold, then for any x,

m(x) − Jn(x)M = Op(h2
L ). (4.21)

Proof of Lemma 4.2: Recall that M = ~X(x)β(x) + Op(h2
L ), hence Lemma 4.2 can be

established by simply showing Jn(x) 1 = Op(1). By Lemma 2.1 and the systematic
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property of K(.), we have

ηT (~XT (x)W(x)~X(x)
)−1

= ηT ( f −1(x) + op(1)
)
.

Therefore,

Jn(x) 1 = (nhπ)−1
∑

s∈Ω

(
f −1(x) + op(1)

)
Kπ

(
ζ1(Xs − x)

)
.

It is easy to show (nhπ)−1∑
s∈Ω

f −1(x)Kπ

(
ζ1(Xs − x)

)
= Op(1), then Lemma 4.2 follows. �

Proof of Theorem 4.1: Define ~J =
(
JT

n(Xs1), . . . , JT
n(Xsn)

)T
, then we have

C =
(

I − ~J)Y =
(
I − ~J)(~Zλ + M + E

)
= ~Dλ +

(
I − ~J)(M + E

)
. (4.22)

Substitute it into (4.7), then

λ̂ =
(~DT ~D

)−1(~DT C
)
= λ +

(~DT ~D
)−1

[
~DT (I − ~J)(M + E

)]
. (4.23)

Hence, to show Theorem 4.1, we will prove

(c1) n−1~DT ~D P−→ σZσ
T
Z ,

(c2) n−1/2 ~DT(I − ~J)(M + E
) D−→ N

(
0, σ2

ε σZσ
T
Z
)
.

Proof of (c1):

n−1~DT ~D = n−1
∑

s∈Ω

(
Zs−Q̂Z

(
Xs

))(
Zs−Q̂Z

(
Xs

))T

= n−1
∑

s∈Ω

(
Zs−QZ

(
Xs

))(
Zs−QZ

(
Xs

))T
+ n−1

∑

s∈Ω

(
Zs−QZ

(
Xs

))(
QZ

(
Xs

)−Q̂Z
(
Xs

))T

+ n−1
∑

s∈Ω

(
QZ

(
Xs

)−Q̂Z
(
Xs

))(
Zs−QZ

(
Xs

))T

+ n−1
∑

s∈Ω

(
QZ

(
Xs

)−Q̂Z
(
Xs

))(
QZ

(
Xs

)−Q̂Z
(
Xs

))T
.
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By Lemma 4.1, we have QZ(Xs) − Q̂Z(Xs) = Op
(
h2

L

)
. Together with assumptions (C3)

and (C7), we can see that the last 3 summands on the right hand side of the last equality

are all equal to op(1). (c1) then follows straightforwardly.

To show (c2), it suffices to show

q1 = n−1/2~DT (I − ~J)M = op(1),

q2 = n−1/2~DT~J E = op(1),

q3 = n−1/2~DT E D−→ N
(

0, σ2
ε σZσ

T
Z

)
.

First, we have

q1 = n−1/2
∑

s∈Ω
Ds

(
m(Xs) − Jn(Xs)M

)
≤ n−1/2γ1

∑

s∈Ω
Ds ,

where γ1 = sup
s∈Ω

{|m(Xs) − Jn(Xs)M |}. By Lemma 4.2, we have γ1 = Op(h2
L ). Moreover,

∑

s∈Ω
Ds =

∑

s∈Ω

(
Zs − QZ(Xs)

)
+

∑

s∈Ω

(
QZ(Xs) − Q̂Z(Xs)

)

≤
∑

s∈Ω
σZes +

(∑

s∈Ω

(
QZ(Xs) − Q̂Z(Xs)

)
�
(
QZ(Xs) − Q̂Z(Xs)

))1/2

. (4.24)

The first term on the right hand side of the last inequality is obviously equal to Op(n1/2),

while the second term is equal to Op(n1/2h2
L ) by Lemma 4.1. Hence, with assumption

(C7), we can obtain that q1 =op(1).

Consider q2, we have

q2 = n−1/2
∑

s∈Ω
Ds Jn(Xs) E ≤ n−1/2γ2

∑

s∈Ω
Ds,

where γ2 = sup
s∈Ω

{| Jn(x) E |}. By Lemma 2.1 and Lemma 2.2, we can show that γ2 =

Op
(
(nhπ)−1/2). Therefore, together with (4.24) and assumption (C7), we have q2 =op(1).
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At last, we focus on q3.

q3 = n−1/2
∑

s∈Ω

(
Zs−QZ(Xs)

)
εs + n−1/2

∑

s∈Ω

(
QZ

(
Xs

)−Q̂Z
(
Xs

))
εs =̂ q31 + q32.

Let γ3 = sup
s∈Ω

{|QZ(Xs) − Q̂Z(Xs)|}, then q32 ≤ n−1/2γ3
∑
s∈Ω
εs. By Lemma 4.1, we have

γ3 = Op(h2
L ). So if we can prove

∑
s∈Ω
εsi = Op(n1/2), we then have q32 = op(1). For this

purpose, we only need to consider the variance of
∑
s∈Ω
εsi . Recall that R(k) = Cov(εs, εs+k),

k = (k1, k2), then

Var
(∑

s∈Ω
εs
)
=

∑

|k1 |<n1

∑

|k2 |<n2

(
n1−|k1| )( n2−|k2| )

∣∣∣R(k1, k2)
∣∣∣≤ Cn

n1∑

k1=0

n2∑

k2=0

∣∣∣R(k1, k2)
∣∣∣.

With Lemma 2.3 or Lemma 2.5, we obtain Var
( n∑

i=1
εsi

)
= O(n), hence

∑
s∈Ω
εs = Op(n1/2).

Now it remains for us to show q31 = n−1/2 ∑
s∈Ω

σZesεs is asymptotically normal. This is

naturally satisfied, since both {es} and {εs} are i.i.d. and mutually independent. At last, it

is easy to show Var(q31)→ σ2
ε σZσ

T
Z . That conclude the proof of Theorem 4.1. �

Proof of Theorem 4.2: Consider

m̂(x) − m(x) =
(
Q̂Y(x) − Q̂T

Z(x)λ − m(x)
)
+ (λ − λ̂)Q̂Z(x)

=
(
Jn(x)(M + E) − m(x)

)
+ (λ − λ̂)Q̂Z(x). (4.25)

By Theorem 4.1, we have λ − λ̂ = Op(n−1/2). By Lemma 4.1, we have Q̂Z(x) = Op(1).

Hence, together with (4.25) and assumption (C7), Theorem 4.2 can be established by

showing that

Jn(x)(M + E) − m(x) − Bias(x,h) = ηT U−1
n (x)V∗n(x) + op(h2

L ),
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which is proved in Theorem 2.1. The proof of Theorem 4.2 is completed. �

Proof of Theorem 4.3: From (4.25) and assumption (C7), we can see that the asymp-

totic normality of m̂(x) can be established by showing

(nhπ)1/2
(

Jn(x)(M + E) − m(x) − Bias(x,h)
) D−→ N

(
0,Σε(x)

)
. (4.26)

Such result is satisfied by Theorem 2.2. �

Proof of Theorem 4.4: Recall that P̂ can be expressed as P̂ = ~Zλ̂ + M̂ +
(
I − B(θ̂)

)
Ê.

Similar to P̂, we defined a n-dimensional vector P̌ = (P̌s1 , · · · , P̌sn)
T as P̌ = ~Zλ̂ +

M̂ +
(
I − B(θ)

)
Ê. Moreover, denote Q̌P(x) = ηT

(
~XT (x)W(x)~X(x)

)−1
~XT (x)W(x)P̌, and

Ľs = P̌s − Q̌P(Xs) for s ∈ Ω. Then, like (4.11), we let

λ̌ = (~DT ~D)−1~DT Ľ, (4.27)

where Ľ = (Ľs1 , . . . , Ľsn)
T . As we have λ̃ − λ = (λ̃ − λ̌ ) + (λ̌ − λ), Theorem 4.4 can be

established by proving

(c3) λ̃ − λ̌ = op(n−1/2),

(c4) n1/2(λ̌ − λ) D−→ N
(

0, σ2
τ

(
σZσ

T
Z
)−1

)
.

Proof of (c3):

λ̃ − λ̌ = (~DT ~D)−1~DT (I − ~J)(P̂ − P̌) = (~DT ~D)−1~DT (I − ~J)
(
B(θ) − B(θ̂)

)
Ê.
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From (c1), we have ~DT ~D = Op(n). So to prove (c3), it suffices to show

I1 = ~DT (I − ~J)
(
B(θ) − B(θ̂)

)
Ê = op(n1/2).

Define G = (Gs1 , . . . ,Gsn)
T with the i-th element being Gsi =

∑
t∈N(si)

εt , N(s) is the neigh-

borhood set of εs. By Theorem 4.1 and Theorem 4.2, we have Ê = E + Op(h2
L ). Note that

there are finite nonzero elements in B(θ), therefore

I1 = ~DT (I − ~J)
(
G + Op(h2

L )
) · op(1)

=
(
~DT G + ~DT~JG

)
· op(1) + ~DT (I − ~J)1 · op(h2

L )

= (I11 + I12) · op(1) + I13 · op(h2
L ). (4.28)

For I11, we have

I11 =
∑

s∈Ω
DsGs =

∑

s∈Ω

(
Zs − Q̂Z(Xs)

)
Gs

=
∑

s∈Ω

(
Zs − QZ(Xs)

)
Gs +

∑

s∈Ω

(
QZ(Xs) − Q̂Z(Xs)

)
Gs

=̂ I111 + I112. (4.29)

Due to the fact that {es} is independent of {Gs} and e is i.i.d., we can show that var(I111) =

O(n), and hence I111 = Op(n1/2). By Lemma 4.1, we have QZ(Xs) − Q̂Z(Xs) = Op(g2
L ),

and by the same procedure of (2.57)-(2.60), we can show var (
∑
s∈Ω

Gs) = O(n). These will

leads to the result that I112 = op(n1/2). Therefore, we have I11 = Op(n1/2).

For I12, it can be presented that

I12 =
∑

s∈Ω
DsJn(Xs)G ≤ γ4

∑

s∈Ω
Ds,
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where γ4 = sup
s∈Ω

{ |Jn(Xs)G| }. By the same procedure of (2.57)-(2.60) again, we can show

that γ4 = Op
(
(ngπ)−1/2). Moreover, by (4.24) and assumption (C8), we have

∑
s∈Ω

Ds =

Op(n1/2) + Op(g−1/2
π ). Hence, we can conclude that I12 = Op(g−1/2

π ).

Similar to the proof of I11 and I12, we can show I13 = Op(n1/2). So by (4.28), we can

finally get I1 = op(n1/2), which conclude the proof of (c3).

Proof of (c4): By Theorem 4.1 and Theorem 4.2, we have

Ľ = (I − ~J)P̌ = (I − ~J)
[
~Zλ̂ + M̂ +

(
I − B(θ)

)
Ê
]

= (I − ~J)
(
~Zλ + M + Υ + Op(h2

L )
)

= ~Dλ + (I − ~J)(M + Υ) + (I − ~J)1 · Op(h2
L ). (4.30)

Substitute this into (4.27), then

λ̌ − λ = (~DT ~D)−1~D(I − ~J)(M + Υ) + (~DT ~D)−1~D(I − ~J)1 · Op(h2
L ). (4.31)

As we have shown ~D(I − ~J)1 = Op(n−1/2) and (c1), hence the second term on the right

hand side of the equation above is equal to op(n−1/2). Then with (c1) again, it remains

for us to show

(c5) n1/2~D(I − ~J)(M + Υ) D−→ N
(

0, σ2
τσZσ

T
Z

)
,

which can be proved similarly as (c2). Theorem 4.4 follows. �

Proof of Theorem 4.5: Recall that P̂ = ~Zλ̂ + M̂ +
(
I − B(θ̂)

)
Ê, hence

(ngπ)1/2
(
m̃(x) − m(x)

)
= (ngπ)1/2

(
Q̂P(x) − Q̂Z(x)λ̂ − m(x) + (λ̂ − λ̃)Q̂Z(x)

)

= (ngπ)1/2
[

Jn(x)
(
M̂ +

(
I − B(θ̂)

)
Ê
)
−m(x)

]
+ (ngπ)1/2(λ̂ − λ̃)Q̂Z(x).
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By Theorem 4.1 and Theorem 4.4, we have λ̂ −λ = Op(n−1/2) and λ̃−λ = Op(n−1/2).

Therefore, λ̂ − λ̃ = (λ̂ − λ) − (λ̃ − λ) = Op(n−1/2). Moreover, by Lemma 4.1 we have

Q̂Z(x) = Op(1). Hence, the second term on the right hand side of the last equality is

equal to op(1). Now, it remains to show the first term is asymptotically normal, which

has been proved in Theorem 2.3. The proof of Theorem 4.5 is completed. �

4.6 Summary and Remark

This chapter is another extended research of Chapter 2. The partially linear model is

considered, where the errors are assumed to satisfy the torus, separable or unilateral

SGAR model. The two-step estimation approach is proposed again. We establish the

asymptotic normality of the first- and second-step estimators of the parametric coef-

ficients. For the first-step estimator of the m(.) function, we present the convergence

rate with all three types of error structures and the asymptotic normality with separable

and unilateral SGAR-type errors. For the second-step estimator of the m(.) function,

we establish the asymptotic normality when errors satisfy the three types of structures.

Simulations are conducted, showing that our method obtains great improvement in esti-

mation when spatially dependent errors exist. Comparing with the approach in Chapter

2, the method considered here partly avoid the curse of dimensionality. Hence, more

regressors can be introduced into the nonparametric component, leading the estimation

more feasible and flexible in practice.
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Chapter 5

Case Study with Hong Kong Real

Estate Market Data

The assessment of prices of house is an important problem in the real estate market.

There are two groups of factors that largely determine square-unit-price of a house. The

first one contains the basic properties of the house, such as the area of the house, the

age of the house, etc. The other one reflect the influences from the nearby blocks. It is

natural that a luxurious house in the suburbs may not be quite expensive, while an old

house in the business district or at the center of a city can be of astonishingly high price.

Therefore, with the consideration of the effects of both the exogenous variables and

spatial dependency, our models considered in Chapter 2 to Chapter 4 may be appropriate

for the house pricing analysis. In this chapter, we will examine the Hong Kong real

estate market, and the organization is as follow. In the first section, we give a brief

introduction to the target problem as well as the data. In the three sections following,

we apply the two-step fitting considered in Chapter 2 to Chapter 4 to the case study
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respectively. In the last section, a short summary is given.

5.1 The Hong Kong Real Estate Market Data

Figure 5.1: The map for the Hong Kong real estate market data.

Kowloon is a main district in Hong Kong. As a large and regular residential area can

be found in this district, we choose it for our study. We consider observations from

a 9× 10 regular grid, see Figure 5.1. All the positions are equally spaced in area.

However, only data at 86 positions are available at last. Each observation contains 2

pieces of information. The first part is the information of the target house, includ-

ing the average price (AP) per feet2 of the house, the total area (Area) of the house

and the age of the building (AoB). The second part contains the information of the

community where the house locates, including the average household size (AHS), the
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Figure 5.2: Scattergrams of the Hong Kong real estate data.
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median of monthly income of active population (MMIAP) and the median of monthly

income of families (MMIF). The data of the first part comes from the trading record

during April 2009 to September 2009, while the data of the second part comes from the

Hong Kong census in 2006. All data is available on the website of Centaline Property

(http://hk.centanet.com/icms/template.aspx?series=1).

In Figure 5.2, we plot the scattergrams for the AP variable and each of the other five

variables separatively. From the second and fourth graphs of Figure 5.2, it is hard for us

to find any trend by eye. However, from the other three graphs, we can see that AP value

increases generally as the values of Area, AHS and MMIF increase, and such increment

may be linear. Note that some linear relationship may also exist between Area, AHS and

MMIF mutually, as it is quite natural that a family with more income will buy a bigger

house, which can accommodate more people. We may also note, in the first graph of

Figure 5.2, that there are two points isolated from the others. That may lead to a bad

result in kernel estimation.

5.2 Fitting with LLR-SCE

In this section, we will apply the estimation procedure LLR-SCE introduced in Chapter

2 to this case study. As the amount of observation is not quite adequate, we only consider

models with no more than two explanatory variables. Before the fitting, we should

conduct some preparation. Since there are 4 missing data in the study, we will give

some initial estimators to them as follow. We first obtain some estimates of the m(.)

function by the local linear fitting, and subsequently the estimates of the errors can be

given. Then the errors for the missing data can be estimated as the one-step predictor
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Table 5.1: Case Study. MSE given by LLR-SCE(a).

d = 1 LR-SCE(a) LLR(a) Torus(b) Separable(b) Unilateral(b)

Area 2.0979 × 106 1.6982 × 106 1.5298 × 106 1.6921 × 106 1.6928 × 106

AoB 3.3609 × 106 3.7014 × 106 2.1747 × 106 2.0037 × 106 2.1729 × 106

AHS 2.3258 × 106 1.7958 × 106 1.7646 × 106 1.7734 × 106 1.7742 × 106

MMIAP 3.6579 × 106 3.3427 × 106 2.4637 × 106 2.4085 × 106 2.4782 × 106

MMIF 1.0277 × 106 1.0595 × 106 1.0033 × 106 9.9356 × 105 9.9731 × 105

d = 2 LR-SCE(a) LLR Torus Separable Unilateral

Area & AoB 1.8862 × 106 7.7731 × 105 7.3859 × 105 7.4528 × 105 7.5133 × 105

Area & AHS 1.7558 × 106 1.0411 × 106 8.0838 × 105 8.7777 × 105 8.7068 × 105

Area & MMIAP 1.7887 × 106 1.1531 × 106 1.1052 × 106 1.1476 × 106 1.1496 × 106

Area & MMIF 9.5500 × 105 7.9500 × 105 5.9471 × 105 6.0350 × 105 6.5401 × 105

AoB & AHS 2.0077 × 106 1.4371 × 106 1.2468 × 106 1.2690 × 106 1.3024 × 106

AoB & MMIAP 3.4258 × 106 2.7509 × 106 1.8381 × 106 1.7897 × 106 1.9068 × 106

AoB & MMIF 1.0598 × 106 6.2371 × 105 5.6655 × 105 5.5781 × 105 5.5328 × 105

AHS & MMIAP 2.2917 × 106 1.1441 × 106 1.0793 × 106 1.0715 × 106 1.0940 × 106

AHS & MMIF 1.0433 × 106 9.9428 × 105 9.5270 × 105 9.4140 × 105 9.4406 × 105

MMIAP & MMIF 1.0444 × 106 4.8321 × 105 4.8336 × 105 4.6791 × 105 4.7162 × 105

All variables 9.8050 × 105

(a) LLR-SCE refers to the two-step estimation considered in Chapter 2. LR-SCE refers to the estimation of
linear regression model with unilateral SGAR-type errors. LLR refers to the local linear fitting.

(b) Torus: LLR-SCE with εs satisfying (2.2). Separable: LLR-SCE with εs satisfying (2.3). Unilateral: LLR-
SCE with εs satisfying (2.4).

Table 5.2: Case Study. Estimators of θ= (θ1, θ2) given by LLR-SCE(∗).

d = 1 Torus(∗) Separable(∗) Unilateral(∗)

Area 0.0484 -0.0157 0.0181 -0.0159 0.0404 -0.0303
AoB 0.2059 0.1907 0.1885 0.1556 0.3999 0.3203
AHS 0.0493 -0.0050 0.0431 0.0085 0.0837 0.0103
MMIAP 0.0373 0.2088 0.0572 0.2094 0.1177 0.4171
MMIF 0.0074 0.0812 0.0048 0.0928 0.0329 0.1792

d = 2 Torus Separable Unilateral

Area&AoB 0.0858 0.0659 0.0836 0.0542 0.1547 0.0888
Area&AHS 0.1127 -0.1037 0.0863 -0.0774 0.1825 -0.1816
Area&MMIAP 0.0588 -0.0061 0.0264 0.0083 0.0463 0.0085
Area&MMIF 0.1509 -0.0274 0.1410 -0.0061 0.2591 -0.0327
AoB&AHS 0.1062 0.0909 0.0898 0.0798 0.1740 0.1506
AoB&MMIAP 0.1406 0.2136 0.1161 0.2031 0.2326 0.4133
AoB&MMIF 0.0462 0.0327 0.0472 0.0591 0.1158 0.1256
AHS&MMIAP 0.0095 0.0668 0.0185 0.0793 0.0475 0.1525
AHS&MMIF 0.0184 0.0699 0.0162 0.0836 0.0528 0.1648
MMIAP&MMIF -0.0116 0.0215 -0.0143 0.0504 0.0090 0.0872

(∗) LLR-SCE, Torus, Separable and Unilateral are same defined as the ones in Table 5.1.

114



with the corresponding SGAR model, and the AP values for the missing data can be

roughly estimated as the estimators of m(x) plus the estimators of the errors.

Now we can begin the fitting. For comparison, two traditional models/methods are

also adopted in this case. The first one is the linear regression model with spatially

correlated errors. Such model is considered in many literature, for example, Basu &

Reinsel (1994). The second one is the non-parametric regression model where local

linear fitting is used. The estimation results are shown in Table 5.1 and Table 5.2. It is

readily to find that our fitting overmatch the one with linear regression model. Therefore,

we mainly compare the fitting results given by local linear fitting and our method in the

following.

We first focus on the results with single explanatory variable. From the upper section of

Table 5.1, we can see that the mean squared errors given by our proposed method are

smaller than those given by the local linear fitting. The differences are especially large

for the cases with AoB and MMIAP. For example, with single explanatory variable

AoB, the mean squared error given by local linear fitting is 3.7014 × 106, while those

given by our method are less that 2.2 × 106. In comparison, in the cases with Area,

AHS and MMIF, the differences are smaller. We may explain such phenomenon with

Figure 5.2. As we have mentioned above, linear trends can be seen in the graphs with

Area, AHS and MMIF in Figure 5.2. In such situation, the local linear fitting may

perform well enough, so that our modified fitting makes little improvement. In contrast,

when no obvious trend exists, our method performs much better than the local linear

fitting. Another explanation might be that AoB and MMIAP are not the key explanatory

variables, or at least they are not sufficient to determine the average price of houses.
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Hence, the spatial autoregression complements to improve the model. In Table 5.2, the

estimators of θ are shown. It can be seen that the estimated values, correlated with AoB

and MMIAP, are larger than the others. That means the errors in these two cases are

more likely to be spatially correlated, and therefore our method plays its role. This is

coincident with the results in Table 5.1.

We continue to examine the results with two explanatory variables. From the lower

section of Table 5.1, we have several findings. First, the greatest improvement of the

results made by our method, comparing with the local linear fitting, takes place in the

case with AoB & MMIAP. This is not surprising, as we have mentioned above that our

method also performs much better than local linear fitting with single AoB or MMIAP.

Second, our method also decreases the MSE greatly in the cases with Area & AHS and

Area & MMIF. Remember that our method does not make large improvement in the

cases with Area, AHS or MMIF alone. This shows that that Area, AHS and MMIF

is not able to determine the average price of houses alone, however, a combination of

them may do. Next, comparing the results with MMIF and AHS & MMIF, we can see

that the additional explanatory variable AHS does not lead to a significant decreasement

of the MSE. However, together with other explanatory variables, AHS does contribute

to an obvious decrease of the MSE. For instance, see the results with AoB and AoB

& AHS. Such phenomenon indicates that AHS and MMIF may be highly correlated.

This verifies our suspicion before, and AHS may be deleted from the model fitting.

Furthermore, we find that the mean squared error given by local linear fitting with AoB

& MMIAP is 2.7509×106, larger than the ones given by our method with single AoB

or MMIAP, which are around 2.1×106 and 2.4×106 respectively. Hence, our method is
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especially meaningful here. At last, we note that the MSE with MMIAP & MMIF is the

smallest one, and it is the best result so far.

5.3 Fitting with ADD-SCE

In the last section, we apply LLR-SCE considered in Chapter 2 to our empirical re-

search. Multiple regressors have been introduced into modeling. We may be curious

to know whether some additive structure exists for the explanatory variables. If the an-

swer is positive, then the additive model should be more appropriate to this case study

than the nonparametric model considered in the last section. This is due to the faster

convergent rate of the estimators in additive model, see Chapter 3. Therefore, in the fol-

lowing, we conduct the fitting with every pair of explanatory variables using the method

considered in Chapter 3.

In Table 5.3, the first column shows the MSE of the fitting with the method of marginal

integration technique. For comparison, the rest columns show the MSE obtained by

ADD-SCE. It can be seen that our method gets better results in all setup. On the other

hand, we may also compare the results in Table 5.3 with the ones in Table 5.1. By

matching line by line, we find that the MSE values given in Table 5.1 are smaller than

those given in Table 5.3. This may indicate that the assumption of additive structure is

not quite suitable in this empirical research. And therefore, the nonparametric model

fits the data better.

At last, we show part of the fitting results graphically in Figure 5.3. It can be found

clearly that the graphs of MMIF fit the observations very well. This indicates that MMIF

is an important regressor in our analysis. By contrast, we can see that the contribution
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of other variables are less significant.

Table 5.3: Case Study. MSE given by ADD-SCE(a).

ADD(b) Torus(c) Separable(d) Unilateral(e)

Area & AoB 1.2659 × 106 1.1965 × 106 1.2223 × 106 1.2218 × 106

Area & AHS 1.5673 × 106 1.5293 × 106 1.5385 × 106 1.5345 × 106

Area & MMIAP 1.5115 × 106 1.4605 × 106 1.4783 × 106 1.4733 × 106

Area & MMIF 1.2500 × 106 1.0954 × 106 1.0388 × 106 9.5106 × 105

AoB & AHS 1.8354 × 106 1.6932 × 106 1.7083 × 106 1.7155 × 106

AoB & MMIAP 3.5163 × 106 2.4779 × 106 2.3914 × 106 2.4826 × 106

AoB & MMIF 1.0769 × 106 9.7906 × 105 9.7614 × 105 9.7465 × 105

AHS & MMIAP 1.9140 × 106 1.8211 × 106 1.8081 × 106 1.7893 × 106

AHS & MMIF 1.2708 × 106 1.1088 × 106 1.0946 × 106 1.0751 × 106

MMIAP & MMIF 1.1207 × 106 1.0103 × 106 9.9022 × 105 9.8214 × 105

(a) ADD-SCE refers to two-step estimation considered in Chapter 3.
(b) ADD refers to the fitting of additive model with marginal integration technique.
(c) Torus: ADD-SCE with εs satisfying (2.2).
(d) Separable: ADD-SCE with εs satisfying (2.3).
(e) Unilateral: ADD-SCE with εs satisfying (2.4).

Table 5.4: Case Study. Estimators of θ= (θ1, θ2) given by ADD-SCE(∗).

Torus(∗) Separable(∗) Unilateral(∗)

Area&AoB 0.0870 0.0254 0.0709 0.0175 0.1534 0.0277
Area&AHS 0.0436 0.0054 0.0305 0.0220 0.0525 0.0069
Area&MMIAP 0.0584 -0.0032 0.0289 0.0079 0.0500 -0.0221
Area&MMIF 0.1373 0.1390 0.1147 0.1586 0.1101 0.1013
AoB&AHS 0.0674 0.0932 0.0643 0.0814 0.1335 0.1531
AoB&MMIAP 0.0977 0.2206 0.0970 0.2091 0.2141 0.3844
AoB&MMIF 0.0375 0.1051 0.0278 0.1152 0.0383 0.1617
AHS&MMIAP 0.0587 0.0739 0.0621 0.0702 0.0685 0.0989
AHS&MMIF 0.0561 0.1186 0.0514 0.1378 0.0524 0.1621
MMIAP&MMIF 0.0661 0.1159 0.0685 0.1166 0.0591 0.1629

(∗) ADD-SCE, Torus, Separable and Unilateral are same defined as the ones in Table 5.3.
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Figure 5.3: Case study. Graphs for part of the estimators with ADD-SCE fitting.
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5.4 Fitting with PLR-SCE

Suffering from the curse of dimensionality, we should avoid adding more explanatory

variables into the unknown regression function. Therefore, if we want to introduce

more explanatory variables into modelling, we may consider the partially linear regres-

sion model. As we have mentioned, the AP variable may increase with Area, AHS and

MMIF linearly or approximately linearly. Hence, we considered the models with one

explanatory variable in the linear part and two explanatory variables in the nonparamet-

ric function m(.). All the estimation results are given in Table 5.5, Table 5.6 and Table

5.7. In Table 5.5, the MSE of the fitting are given. The estimators of λ, which is the

coefficient of the linear variable, are given in Table 5.6. And the estimators of θ, which

contains the coefficients of the SGAR model, are given in Table 5.7. Each table is di-

vided into three sections according to different linear explanatory variables in the fitting.

From these tables, we have the following comments.

First, it is not a good choice to put MMIF as a linear variable. Comparing the lower

section of Table 5.1 and the last section of Table 5.5, we can see that the MSE given in

the later are even larger than the ones given in the former. For example, with explanatory

variables MMIAP & MMIF, the MSE given by local linear fitting is 4.8321 × 105, see

the last line of Table 5.1. However, in the last section of Table5.5 where MMIF is used

as a linear explanatory variable, we can see that the MSE with MMIAP, MMIF and any

one more other variable are much larger than 4.8321 × 105. This indicates that using

MMIF as a linear variable will greatly worsen the estimation results.

Second, the fitting results are improved by adding Area as a linear variable. This can be

seen by a quick comparison between the lower section of Table 5.1 and the first section
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of Table 5.5. Moreover, as we have mentioned, there are two isolated points for the Area

variable. This causes some trouble for the bandwidth selection in the kernel estimation.

So using Area as a linear variable may be a wise choice.

Third, when MMIF is used as a variable in the non-parametric part, adding AHS as

a linear variable will not reduce the MSE. In Table 5.1, the MSE given by local linear

fitting with AoB & MMIF is 6.2371×105, while in Table 5.5, the MSE given by partially

linear fitting with AHS being a linear explanatory variable and AoB & MMIF being the

non-parametric ones is 6.3841 × 105. The later is even larger. Such result also happens

in the case with MMIAP & MMIF.

Next, AoB and MMIAP contribute less than others to the fitting. This conclusion can

be drawn from Table 5.6. We can see that the estimates of λ are very large when AoB

& MMIAP are the explanatory variables in the non-parametric part. The large value of

λ indicates that the contribution of the linear explanatory variable to the fitting is large,

and therefore the contribution of variables in the non-parametric part is comparatively

small.

At last, we can see that our modified fitting performs better than the traditional fitting

of partially linear model in all cases. The best fitting is with Area, MMIAP and MMIF,

Area being the linear explanatory variable.
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Table 5.5: Case Study. MSE given by PLR-SCE(a).

Linear : Area PLR(b) Torus(c) Separable(d) Unilateral(e)

AoB & AHS 1.2350 × 106 1.1765 × 106 1.1817 × 106 1.1989 × 106

AoB & MMIAP 1.1039 × 106 1.0829 × 106 1.0814 × 106 1.0716 × 106

AoB & MMIF 6.5051 × 105 5.5511 × 105 5.4509 × 105 5.4622 × 105

AHS & MMIAP 8.8348 × 105 7.6977 × 105 7.6543 × 105 7.6059 × 105

AHS & MMIF 7.9095 × 105 7.2979 × 105 7.0057 × 105 6.0755 × 105

MMIAP & MMIF 4.5226 × 105 4.7097 × 105 4.1717 × 105 4.1440 × 105

Linear : AHS PLR Torus Separable Unilateral

Area & AoB 8.9588 × 105 8.1833 × 105 8.1856 × 105 8.1758 × 105

Area & MMIAP 1.0888 × 106 1.0387 × 106 1.0418 × 106 1.0612 × 106

Area & MMIF 6.7824 × 105 5.7568 × 105 5.8360 × 105 6.2828 × 105

AoB & MMIAP 1.3716 × 106 1.0100 × 106 1.0210 × 106 1.0401 × 106

AoB & MMIF 6.3841 × 105 6.2657 × 105 6.3014 × 105 6.2122 × 105

MMIAP & MMIF 5.0032 × 105 5.1220 × 105 4.3948 × 105 4.3292 × 105

Linear : MMIF PLR Torus Separable Unilateral

Area & AoB 8.6521 × 105 8.1427 × 105 8.2329 × 105 8.0463 × 105

Area & AHS 1.1729 × 106 1.1103 × 106 1.1115 × 106 1.1496 × 106

Area & MMIAP 1.1636 × 106 1.1168 × 106 1.1192 × 106 1.1468 × 106

AoB & AHS 1.2460 × 106 1.1329 × 106 1.1341 × 106 1.1382 × 106

AoB & MMIAP 1.2558 × 106 1.0284 × 106 1.0276 × 106 1.0289 × 106

AHS & MMIAP 7.7978 × 105 7.4317 × 105 7.4668 × 105 7.3826 × 105

(a) PLR-SCE refers to the two-step estimation considered in Chapter 4.
(b) PLR refers to the partially linear fitting.
(c) Torus: PLR-SCE with εs satisfying (2.2).
(d) Separable: PLR-SCE with εs satisfying (2.3).
(e) Unilateral: PLR-SCE with εs satisfying (2.4).
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Table 5.6: Case Study. Estimators of λ given by PLR-SCE(∗).

Linear : Area PLR(∗) Torus(∗) Separable(∗) Unilateral(∗)

AoB & AHS 0.6149 0.5004 0.5133 0.5083
AoB & MMIAP 2.0669 2.0106 2.0474 1.9957
AoB & MMIF 0.2094 0.1630 0.1599 0.1638
AHS & MMIAP 0.3064 0.2535 0.2509 0.2433
AHS & MMIF 0.1478 0.1397 0.1337 0.0956
MMIAP & MMIF 0.0358 0.0335 0.0357 0.0305

Linear : AHS PLR Torus Separable Unilateral

Area & AoB 356.8348 342.6098 346.8671 332.5619
Area & MMIAP 369.3316 368.4477 369.7063 367.1023
Area & MMIF 53.6007 37.4678 40.4183 32.6920
AoB & MMIAP 1501.4675 1274.5000 1266.0801 1269.5656
AoB & MMIF −6.5104 −7.6320 −6.2872 −11.7225
MMIAP & MMIF −33.2386 −38.0151 −53.5872 −55.0966

Linear : MMIF PLR Torus Separable Unilateral

Area & AoB 0.0136 0.0131 0.0133 0.0128
Area & AHS 0.0176 0.0164 0.0165 0.0166
Area & MMIAP 0.0184 0.0176 0.0176 0.0177
AoB & AHS 0.0151 0.0141 0.0141 0.0139
AoB & MMIAP 0.0468 0.0433 0.0432 0.0431
AHS & MMIAP 0.0121 0.0118 0.0117 0.0116

(∗) PLR-SCE, PLR, Torus, Separable and Unilateral are same defined as the ones in Table 5.5.
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Table 5.7: Case Study. Estimators of θ= (θ1, θ2) given by PLR-SCE(∗).

Linear : Area Torus(∗) Separable(∗) Unilateral(∗)

AoB & AHS 0.0827 0.0575 0.0741 0.0512 0.0691 0.0484
AoB & MMIAP 0.0643 0.0387 0.0567 0.0301 0.0820 0.0394
AoB & MMIF 0.0571 0.0408 0.0563 0.0435 0.0610 0.0588
AHS & MMIAP -0.0153 0.0526 -0.0216 0.0517 -0.0020 0.0713
AHS & MMIF 0.0451 0.0295 0.0480 0.0219 0.0635 0.0266
MMIAP & MMIF 0.0055 0.0223 -0.0567 0.0430 -0.0435 0.0699

Linear : AHS Torus Separable Unilateral

Area & AoB 0.0645 0.0577 0.0626 0.0558 0.0704 0.0502
Area & MMIAP 0.0565 -0.0151 0.0537 -0.0137 0.0291 -0.0006
Area & MMIF 0.1559 -0.0273 0.1517 -0.0218 0.1379 -0.0026
AoB & MMIAP 0.0943 0.1598 0.0943 0.1536 0.0783 0.1495
AoB & MMIF 0.0464 0.0285 0.0385 0.0263 0.0446 0.0472
MMIAP & MMIF 0.0134 0.0119 -0.0299 0.0395 -0.0213 0.0664

Linear : MMIF Torus Separable Unilateral

Area & AoB 0.0716 0.0467 0.0700 0.0473 0.0744 0.0450
Area & AHS 0.0593 -0.0327 0.0585 -0.0318 0.0445 -0.0203
Area & MMIAP 0.0511 -0.0122 0.0491 -0.0108 0.0238 -0.0003
AoB & AHS 0.0888 0.0925 0.0885 0.0891 0.0774 0.0847
AoB & MMIAP 0.0302 0.1944 0.0275 0.1949 0.0471 0.1898
AHS & MMIAP -0.0373 0.0708 -0.0344 0.0708 -0.0112 0.0972

(∗) PLR-SCE, Torus, Separable and Unilateral are same defined as the ones in Table 5.5.
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5.5 Summary and Remark

In this chapter, we examine the house pricing problem in the Hong Kong real estate

market. We aim to identify the main factors that affect the average price per feet2 of a

house from a group of variables. The nonparametric model, additive model and semi-

parametric model are adopted for analysis, and the two-step estimations introduced in

Chapter 2 to Chapter 4 are used. With the fitting results, we show that our proposed

methods perform better than the traditional estimations in all cases. Specially, when we

fail to select the key explanatory variables into the fitting, our methods can improve the

estimation results greatly. Hence, in the case that data of some key explanatory variable

are not available or the key explanatory variables are hard to be identified, our estima-

tion methods can play an important role. Moreover, the results also show that AoB

and MMIAP have minor contribution to the fitting, AHS may be highly correlated with

MMIF, and a combination of Area, MMIAP and MMIF with Area being a linear ex-

planatory variable and the others being non-parametric ones can determine the average

price of a house well.
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Chapter 6

Conclusion

In our thesis, we focus on the nonlinear regression estimation with spatial data. For the

large scale variation of the model, we adopt the nonparametric, additive nonparametric

and semi-parametric structure; for the small scale variation of the model, we assume the

errors satisfy the torus, separable or unilateral SGAR model. The former is applied to

figure the nonstationary mean (trend of factor) effect, while the later models the spatial

dependency. The explanatory variables, assumed to be exogenous, are independent of

the errors. By taking both exogenous influence and spatial dependency into account,

our proposed models overmatch two types of potential competitors: models with linear

structure and spatial correlated errors, and models with nonlinear structure and i.i.d.

errors.

The local linear estimation technique is applied in all of the three models. For the

additive model, the marginal integration approach is used. Moreover, throughout this

thesis, we adopt the two-step estimation procedure considered in Martins-Filho & Yao

(2009). This procedure firstly forms a new process with the same conditional mean
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as the original one and i.i.d. errors, and then applies the traditional fitting to the new

process. Martins-Filho & Yao (2009) considered such two-step estimation only in the

time series anaylsis, and it is meaningful for us to introduce the method into the spatial

area. Asymptotic properties of both first- and second-step estimators are considered in

our thesis. For the first-step estimators of the unknown regression function, the con-

vergence rate with all three types of errors is considered, and when errors satisfy the

separable or unilateral SGAR model, the asymptotic normality is established. For the

second-step estimators of the unknown regression function, the asymptotic normality

with three types of error structure is established. In the semi-parametric model, we also

establish the asymptotic normality of the first- and second-step estimators of the linear

parameters.

Simulations are conducted to assess the performance of our fitting. The results show that

our estimation works better than the traditional methods, given that spatially correlated

errors exist. The improvement of our estimation is significant when the volatility of the

errors is large. As an illustration of our approach, a case study of the housing price of

Hong Kong is given. It is shown that our approach improves the estimation, especially

when some key factor is absent in the modelling.
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Appendix

A.1 Matlab Code for the estimation of SGAR models

f u n c t i o n [ I B , P , Q, r2 ]= E s t i m a t e t o r u s I B ( da t a , n1 , n2 )
% E s t i m a t i n g t h e c o e f f i c i e n t s o f t h e t o r u s SGAR model
S d a t a ( n1 , n2 )=0 ;
f o r i =1: n1

f o r j =1: n2
S d a t a ( i , j )= d a t a ( ( i −1)∗ n2+ j ) ;

end
end
Y=d a t a ;
f o r i =1: n1

f o r j =1: n2
l =0;
i f i==1&&j ==1

X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i +n1−1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j +n2 −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j +1 ) ;
l =2;

end
i f i==1&&j ==n2

X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i +n1−1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j −n2 +1 ) ;
l =2;

end
i f i ==n1&&j ==1

X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i −1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j +n2 −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i −n1 +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j +1 ) ;
l =2;

end
i f i ==n1&&j ==n2

X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i −1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i −n1 +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j −n2 +1 ) ;
l =2;

end
i f l ˜=2

i f i ==1

128



X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i +n1−1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j +1 ) ;
l =1;

end
i f j ==1

X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i −1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j +n2 −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j +1 ) ;
l =1;

end
i f j ==n2

X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i −1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j −n2 +1 ) ;
l =1;

end
i f i ==n1

X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i −1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i −n1 +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j +1 ) ;
l =1;

end
end
i f l ==0

X( 1 , ( i −1)∗ n2+ j )= S d a t a ( i −1 , j ) ;
X( 2 , ( i −1)∗ n2+ j )= S d a t a ( i , j −1 ) ;
X( 3 , ( i −1)∗ n2+ j )= S d a t a ( i +1 , j ) ;
X( 4 , ( i −1)∗ n2+ j )= S d a t a ( i , j +1 ) ;

end
end

end
[ t h e t a , r2 ]= torus SAR ML f ( n1 , n2 , X,Y ) ;
P= t h e t a ( 1 ) ;
Q= t h e t a ( 2 ) ;
n=n1∗n2 ;
B=z e r o s ( n , n ) ;
f o r i =1: n

l =0;
i f i ==1

B( i , n+ i −n2 )=P ;
B( i , i +n2−1)=Q;
B( i , i +n2 )=P ;
B( i , i +1)=Q;
l =2;

end
i f i ==n2

B( i , n+ i −n2 )=P ;
B( i , i −1)=Q;
B( i , i +n2 )=P ;
B( i , i −n2+1)=Q;
l =2;
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end
i f i ==n−n2+1

B( i , i −n2 )=P ;
B( i , i +n2−1)=Q;
B( i , i −n+n2 )=P ;
B( i , i +1)=Q;
l =2;

end
i f i ==n

B( i , i −n2 )=P ;
B( i , i −1)=Q;
B( i , i −n+n2 )=P ;
B( i , i −n2+1)=Q;
l =2;

end
i f l ˜=2

i f i <n2
B( i , n+ i −n2 )=P ;
B( i , i −1)=Q;
B( i , i +n2 )=P ;
B( i , i +1)=Q;
l =1;

end
i f mod ( i , n2 )==1

B( i , i −n2 )=P ;
B( i , i +n2−1)=Q;
B( i , i +n2 )=P ;
B( i , i +1)=Q;
l =1;

end
i f i >n−n2

B( i , i −n2 )=P ;
B( i , i −1)=Q;
B( i , i −n+n2 )=P ;
B( i , i +1)=Q;
l =1;

end
i f mod ( i , n2 )==0

B( i , i −n2 )=P ;
B( i , i −1)=Q;
B( i , i +n2 )=P ;
B( i , i −n2+1)=Q;
l =1;

end
end
i f l ==0

B( i , i −n2 )=P ;
B( i , i −1)=Q;
B( i , i +n2 )=P ;
B( i , i +1)=Q;

end
end
I B=diag ( ones ( n , 1 ) ) −B ;

f u n c t i o n [ t h e t a , r o u l 2 ]= torus SAR ML f ( n1 , n2 , Z ,Y)
% Sub− f u n c t i o n o f ’ E s t i m a t e t o r u s I B ’ .
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n=n1∗n2 ;
N=[0 −1;−1 0 ; 0 1 ; 1 0 ] ’ ;
[ sz1 , sz2 ]= s i z e (N ) ;
C( sz2 , n )=0 ;
S ( sz2 , n )=0 ;
s ( : , n )= [0 0 ] ’ ;
k =1;
f o r i =1: n1

f o r j =1: n2
s ( : , k )= [ i j ] ’ ;
k=k +1;

end
end
f o r k =1: n

f o r i =1: sz2
C( i , k )= cos (2∗ pi ∗ s ( 1 , k )∗N( 2 , i ) / n1+2∗ pi ∗ s ( 2 , k )∗N( 1 , i ) / n2 ) ;
S ( i , k )= s i n (2∗ pi ∗ s ( 1 , k )∗N( 2 , i ) / n1+2∗ pi ∗ s ( 2 , k )∗N( 1 , i ) / n2 ) ;

end
end
V=0;R=0;
f o r k =1: n

V=V+C ( : , k ) ;
R=R+(S ( : , k ) ∗ ( S ( : , k ) ) ’ −C ( : , k ) ∗ ( C ( : , k ) ) ’ ) ;

end
X=0;U=0;
f o r k =1: n

X=X+Z ( : , k ) ∗ ( Z ( : , k ) ) ’ ;
U=U+Z ( : , k )∗Y( k ) ;

end
The ta=Xˆ( −1)∗U;
l =0;
whi le l ==0

r o u l 2 =0;
f o r k =1: n

r o u l 2= r o u l 2 +(Y( k)−Theta ’∗Z ( : , k ) ) ˆ 2 ;
end
r o u l 2= r o u l 2 / n ;
t h e t a =(R−X / r o u l 2 ) ˆ ( − 1 ) ∗ (V−U / r o u l 2 ) ;
i f sum ( abs ( t h e t a −The ta ) ) <0 .00000001

l =1;
e l s e

The ta= t h e t a ;
Roul2= r o u l 2 ;

end
end

f u n c t i o n [ I B , P , Q, r2 ]= E s t i m a t e b i l a t e r a l I B ( E , n1 , n2 , p , q )
% E s t i m a t i n g t h e c o e f f i c i e n t s o f t h e s e p a r a b l e SGAR model
n=n1∗n2 ;
I1=diag ( ones ( 1 , n1 ) ) ; I2=diag ( ones ( 1 , n2 ) ) ;
U1( n1 , n1 )=0 ;U2 ( n2 , n2 )=0 ;
f o r i =2: n1

U1( i , i −1)=1;
end
f o r i =2: n2

U2( i , i −1)=1;
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end
IB=@(C ) ( kron ( I1 , I2 )−C( 1 ) ∗ kron ( U1+U1 ’ , I2 )−C( 2 ) ∗ kron ( I1 , U2+U2’) −

C( 1 ) ∗C( 2 ) ∗ kron ( U1+U1 ’ , U2+U2 ’ ) ) ;
f o r i =1: n1

R1 ( i , 1 )=2∗ cos ( pi ∗ i / ( n1 + 1 ) ) ;
end
f o r i =1: n2

R2 ( i , 1 )=2∗ cos ( pi ∗ i / ( n2 + 1 ) ) ;
end
L=@(C ) ( E ’ ∗ ( kron ( I1 , I2 )−C( 1 ) ∗ kron ( U1+U1 ’ , I2 )−C( 2 ) ∗ kron ( I1 , U2+U2’) −

C( 1 ) ∗C( 2 ) ∗ kron ( U1+U1 ’ , U2+U2 ’ ) ) ’ ∗ ( kron ( I1 , I2 )−C( 1 ) ∗ kron ( U1+U1 ’ , I2 )−
C( 2 ) ∗ kron ( I1 , U2+U2’) −C( 1 ) ∗C( 2 ) ∗ kron ( U1+U1 ’ , U2+U2 ’ ) ) ∗E∗
( prod ( prod ( ones ( n1 , n2 )−C( 1 ) ∗R1∗ ones ( 1 , n2 )−C( 2 ) ∗ ones ( n1 , 1 ) ∗R2’−
C( 1 ) ∗C( 2 ) ∗R1∗R2 ’ ) ) ) ˆ ( − 2 / n ) ) ;

temp= f m i n s e a r c h ( L , [ p , q ] ) ;
P=temp ( 1 ) ; Q=temp ( 2 ) ;
I B=IB ( [ P ,Q ] ) ;
r2=E’∗ I B ’∗ I B ∗E / n ;

f u n c t i o n [ I B , P , Q, r2 ]= E s t i m a t e u n i l a t e r a l I B ( E , n1 , n2 )
% E s t i m a t i n g t h e c o e f f i c i e n t s o f t h e u n i l a t e r a l SGAR model
E=E−mean ( E ) ;
f o r i =1: n1

ES ( i , 1 : n2 )=E ( ( i −1)∗ n2 +1: i ∗n2 ) ;
end
C00=mean ( E . ˆ 2 ) ;
C10=mean ( mean ( ES ( 1 : n1 − 1 , : ) . ∗ES ( 2 : n1 , : ) ) ) ;
C01=mean ( mean ( ES ( : , 1 : n2 −1 ) .∗ES ( : , 2 : n2 ) ) ) ;
C11=mean ( mean ( ES ( 2 : n1 , 1 : n2 −1 ) .∗ES ( 1 : n1 −1 ,2 : n2 ) ) ) ;
P=(C10∗C00−C01∗C11 ) / ( C00ˆ2−C11 ˆ 2 ) ;
Q=(C10−P∗C00 ) / C11 ;
r2 =(1−Pˆ2−Qˆ 2 ) ∗C00−2∗P∗Q∗C11 ;
U1=z e r o s ( n1 , n1 ) ; U2=z e r o s ( n2 , n2 ) ;
I1=diag ( ones ( n1 , 1 ) ) ; I2=diag ( ones ( n2 , 1 ) ) ;
f o r i =2: n1

U1( i , i −1)=1;
end
f o r i =2: n2

U2( i , i −1)=1;
end
I B=kron ( I1 , I2 )−P∗kron ( U1 , I2 )−Q∗kron ( I1 , U2 ) ;

A.2 Matlab Code for LLR-SCE

f u n c t i o n [ Beta O , Beta M , P ,Q]= LLR SCE f (Y, X, n1 , n2 , d , h1 , h2 ,MD, p , q )
% Main f u n c t i o n f o r t h e LLR−SCE f i t t i n g c o n s i d e r e d i n Chp 2 .
n=n1∗n2 ;
Beta O=LLR f (Y, X, n , d , h1 ) ;
E=Y−Beta O ( : , 1 ) ;
s w i t c h MD

c a s e { 1 }
[ I B , P , Q, r2 ]= E s t i m a t e t o r u s I B ( E , n1 , n2 ) ;

c a s e { 2 }
[ I B , P , Q, r2 ]= E s t i m a t e b i l a t e r a l I B ( E , n1 , n2 , p , q ) ;
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c a s e { 3 }
[ I B , P , Q, r2 ]= E s t i m a t e u n i l a t e r a l I B ( E , n1 , n2 ) ;

end
Z=I B ∗Y+( diag ( ones ( 1 , n )) − I B )∗ Beta O ( : , 1 ) ;
Beta M=LLR f ( Z , X, n , d , h2 ) ;

f u n c t i o n Beta=LLR f (Y, X, n , d , h )
% Loca l l i n e a r f i t t i n g .
Beta=z e r o s ( n , d +1 ) ;
f o r l =1: n

x=X( l , : ) ;
Xh=[ ones ( n , 1 ) (X−ones ( n , 1 ) ∗ x ) . / ( ones ( n , 1 ) ∗ h ) ] ;
K=ones ( 1 , n ) ;
f o r i =1: n

f o r j =1: d
K( i )=K( i ) ∗ ( 2 ∗ pi ∗h ( j ) ˆ 2 ) ˆ ( − 1 / 2 ) ∗ exp ( −1 / 2 ∗ ( (X( i , j )−

x ( j ) ) / h ( j ) ) ˆ 2 ) ;
end

end
W=diag (K ) ;
Be ta t emp =(Xh’∗W∗Xh ) ˆ ( − 1 ) ∗ ( Xh’∗W∗Y ) ;
Beta ( l , 1 ) = Beta t emp ( 1 ) ;
Be ta ( l , 2 : d+1)= Beta t emp ( 2 : d + 1 ) . / h ’ ;

end

f u n c t i o n h=BS LLR f (Y, X, n , d )
% Bandwidth s e l e c t i o n f o r l o c a l l i n e a r f i t t i n g .
A=(max (X)−min (X ) ) / 4 0 ; % f o o t − s t e p o f bandwid th
B=(max (X)−min (X ) ) / 2 ;
A0=2∗A; % i n i t i a l v a l u e o f t h e bandwid th
C=(B−A0 ) . / A;
l ( d )=0 ;
j =1;
whi le l ( d)<=C( d )

f o r i =1: d
h ( i )=A0( i )+ l ( i )∗A( i ) ;

end
Cv ( j , 1 ) = CV LLR f (Y, X, n , d , h ) ;
Cv ( j , 2 : d+1)=h ;
j = j +1;
l (1 )= l ( 1 ) + 1 ; k =1;
i f l (1) >C( 1 )

f o r i =2: d−1
i f l ( i )==C( i )

k= i ;
e l s e

break
end

end
i f k+1<=d

l ( k+1)= l ( k +1)+1;
l ( 1 : k )= z e r o s ( 1 , k ) ;

end
end

end
MIN=min ( Cv ( : , 1 ) ) ;
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f o r i =1: j −1
i f Cv ( i ,1)==MIN

h=Cv ( i , 2 : d +1 ) ;
break

end
end

f u n c t i o n MSE=CV LLR f (Y, X, n , d , h )
% Sub− f u n c t i o n o f ’ BS LLR f ’ .
MSE=0;
f o r i =1: n

Yp=CV LLR pr e d i c t f (Y, X, n , i , d , h ) ;
MSE=MSE+(Y( i )−Yp ) ˆ 2 ;

end
MSE=MSE / n ;

f u n c t i o n [ h1 , h2 ]= B S L L R S C E i t e r a t i o n f (Y, X, d , h1 , n1 , n2 ,MD, p , q )
% Bandwidth s e l e c t i o n f o r LLR−SCE .
% Some i n i t i a l h1 s h o u l d be g i v e n .
A=(max (X)−min (X ) ) / 4 0 ; % f o o t − s t e p o f bandwid th
B=(max (X)−min (X ) ) / 2 ;
A0=2∗A; % i n i t i a l v a l u e o f bandwid th
C=(B−A0 ) . / A;
j =1;H1=0;H2=0;G= ’ j u s t go ’ ;
whi le G== ’ j u s t go ’

l =0; l ( d )=0 ; J= j ;
whi le l ( d)<=C( d )

f o r i =1: d
h2 ( i )=A0 ( i )+ l ( i )∗A( i ) ;

end
Cv ( j , 1 ) = DCV LLR SCE f (Y, X, n1 , n2 , d , h1 , h2 ,MD, p , q ) ;
Cv ( j , 2 : d+1)=h1 ;
Cv ( j , d +2:2∗ d+1)=h2 ;
j = j +1;
l (1 )= l ( 1 ) + 1 ; k =1;
i f l (1) >C( 1 )

f o r i =2: d−1
i f l ( i )==C( i )

k= i ;
e l s e

break
end

end
i f k+1<=d

l ( k+1)= l ( k +1)+1;
l ( 1 : k )= z e r o s ( 1 , k ) ;

end
end

end
MIN=min ( Cv ( J : j − 1 , 1 ) ) ;
f o r i =J : j −1

i f Cv ( i ,1)==MIN
h2=Cv ( i , d +2:2∗ d +1 ) ;
break

end
end
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i f H2==h2
FCv=Cv ( J : j − 1 , : ) ;
break

e l s e
H2=h2 ;

end
l =0; l ( d )=0 ; J= j ;
whi le l ( d)<=C( d )

f o r i =1: d
h1 ( i )=A0( i )+ l ( i )∗A( i ) ;

end
Cv ( j , 1 ) = DCV LLR SCE f (Y, X, n1 , n2 , d , h1 , h2 ,MD, p , q ) ;
Cv ( j , 2 : d+1)=h1 ;
Cv ( j , d +2:2∗ d+1)=h2 ;
j = j +1;
l (1 )= l ( 1 ) + 1 ; k =1;
i f l (1) >C( 1 )

f o r i =2: d−1
i f l ( i )==C( i )

k= i ;
e l s e

break
end

end
i f k+1<=d

l ( k+1)= l ( k +1)+1;
l ( 1 : k )= z e r o s ( 1 , k ) ;

end
end

end
MIN=min ( Cv ( J : j − 1 , 1 ) ) ;
f o r i =J : j −1

i f Cv ( i ,1)==MIN
h1=Cv ( i , 2 : d +1 ) ;
break

end
end
i f H1==h1

FCv=Cv ( J : j − 1 , : ) ;
break

e l s e
H1=h1 ;

end
end

f u n c t i o n MSE=DCV LLR SCE f (Y, X, n1 , n2 , d , h1 , h2 ,MD, p , q )
% Sub− f u n c t i o n o f ’ B S L L R S C E i t e r a t i o n f ’ .
n=n1∗n2 ;
f o r i =1: n

Y1( i , 1 ) = CV LLR pre d i c t f (Y, X, n , i , d , h1 ) ;
end
E1=Y−Y1 ;
s w i t c h MD

c a s e { 1 }
[ I B , P , Q, r2 ]= E s t i m a t e t o r u s I B ( E1 , n1 , n2 ) ;

c a s e { 2 }
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[ I B , P , Q, r2 ]= E s t i m a t e b i l a t e r a l I B ( E1 , n1 , n2 , p , q ) ;
c a s e { 3 }

[ I B , P , Q, r2 ]= E s t i m a t e u n i l a t e r a l I B ( E1 , n1 , n2 ) ;
end
Z=Y1+I B ∗E1 ;
f o r i =1: n

Y2( i , 1 ) = CV LLR pr e d i c t f ( Z , X, n , i , d , h2 ) ;
end
E2=Y−Y2 ;
s w i t c h MD

c a s e { 1 }
[ I B , P , Q, r2 ]= E s t i m a t e t o r u s I B ( E2 , n1 , n2 ) ;

c a s e { 2 }
[ I B , P , Q, r2 ]= E s t i m a t e b i l a t e r a l I B ( E2 , n1 , n2 , p , q ) ;

c a s e { 3 }
[ I B , P , Q, r2 ]= E s t i m a t e u n i l a t e r a l I B ( E2 , n1 , n2 ) ;

end
temp=I B ’∗ I B ;
tD =0; tD ( n , 1 ) = 0 ;
f o r i =1: n

tD ( i , 1 ) = temp ( i , i ) ;
end
C m=diag ( ones ( 1 , n )) − temp / mean ( tD ) ;
E3=mean ( E2)+C m∗ ( E2−mean ( E2 ) ) ;
MSE=mean ( ( Y−Y2−E3 ) . ˆ 2 ) ;

f u n c t i o n Beta=CV LLR pre d i c t f (Y, X, n , i , d , h )
% Sub− f u n c t i o n o f ’ CV LLR f ’ and ’ DCV LLR SCE f ’ .
U=0;V=0;
f o r j =1: n

i f j ˜= i
K=1;
f o r k =1: d

K=K∗ ( ( 2 ∗ pi ∗h ( k ) ˆ 2 ) ˆ ( − 1 / 2 ) ∗ exp ( −1 / 2 ∗ ( (X( j , k)−X( i , k ) ) / h ( k ) ) ˆ 2 ) ) ;
end
Xh=[1 (X( j , : ) −X( i , : ) ) . / h ] ;
U=U+K∗Xh’∗Xh ;
V=V+Y( j )∗Xh’∗K;

end
end
Beta =[1 z e r o s ( 1 , d ) ] ∗Uˆ( −1)∗V;

A.3 Matlab Code for ADD-SCE

f u n c t i o n [SM1, mu1 , M1, SM2, mu2 , M2, P ,Q]= A d d i t i v e S C E f (Y,
X, n1 , n2 , b , d , h1 , h2 ,MD, p , q )

% Main f u n c t i o n o f t h e ADD−SCE f i t t i n g c o n s i d e r e d i n Chp 3 .
n=n1∗n2 ;
[SM1, mu1 ,M1]= A d d i t i v e f (Y, X, n , d , b , h1 ) ;
E=Y−SM1;
s w i t c h MD

c a s e { 1 }
[ I B , P , Q, r2 ]= E s t i m a t e t o r u s I B ( E , n1 , n2 ) ;

c a s e { 2 }
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[ I B , P , Q, r2 ]= E s t i m a t e b i l a t e r a l I B ( E , n1 , n2 , p , q ) ;
c a s e { 3 }

[ I B , P , Q, r2 ]= E s t i m a t e u n i l a t e r a l I B ( E , n1 , n2 ) ;
end
Z=I B ∗Y+( diag ( ones ( 1 , n )) − I B )∗SM1;
[SM2, mu2 ,M2]= A d d i t i v e f ( Z , X, n , d , b , h2 ) ;

f u n c t i o n [SM, mu ,M]= A d d i t i v e f (Y, X, n , d , b , h )
% F i t t i n g o f a d d i t i v e models w i t h m a r g i n a l i n t e g r a t i o n .
mu=mean (Y ) ;
D=sum ( b ) ;
f o r i =1: d

low bound=sum ( b ( 1 : i −1) )+1 ;
up bound=sum ( b ( 1 : i ) ) ;
f o r j =1: n

MX=z e r o s ( n , 1 ) ;
f o r k =1: n

x=X( k , : ) ; x ( low bound : up bound )=X( j , low bound : up bound ) ;
Xh1=(X−ones ( n , 1 ) ∗ x ) . / ( ones ( n , 1 ) ∗ h ) ;
Xh=[ ones ( n , 1 ) Xh1 ] ;
K=prod ( ( ( 2 ∗ pi ) ˆ ( − 1 / 2 ) ∗ exp (−Xh1 . ˆ 2 / 2 ) . / ( ones ( n , 1 ) ∗ h ) ) ’ ) ;
W=diag (K ) ;
MX( k , 1 ) = [ 1 z e r o s ( 1 ,D ) ] ∗ ( Xh’∗W∗Xh ) ˆ ( − 1 ) ∗ ( Xh’∗W∗Y ) ;

end
M( j , i )=mean (MX)−mu ;

end
end
SM=mu+(sum (M’ ) ) ’ ;

f u n c t i o n h=B S A d d i t i v e f (Y, X, n , b , d )
% Bandwidth s e l e c t i o n o f t h e a d d i t i v e models .
D=sum ( b ) ;
A=(max (X)−min (X ) ) / 4 0 ; % f o o t − s t e p o f bandwid th
B=(max (X)−min (X ) ) / 2 ;
A0=2∗A; % A0 i s t h e i n i t i a l v a l u e o f t h e bandwid th
C=(B(1) −A0 ( 1 ) ) / A ( 1 ) ;
f o r i =1:C

h=A0+( i −1)∗A;
Cv ( i , 1 ) = C V A d d i t i v e f (Y, X, n , b , d , h ,D ) ;
Cv ( i , 2 : D+1)=h ;

end
MIN=min ( Cv ( : , 1 ) ) ;
f o r j =1:C

i f Cv ( j ,1)==MIN
h=Cv ( j , 2 : D+1 ) ;
break

end
end

f u n c t i o n MSE=C V A d d i t i v e f (Y, X, n , b , d , h ,D)
% Sub− f u n c t i o n o f ’ B S A d d i t i v e f ’ .
MSE=0;
f o r l =1: n

Yp= C V A d d i t i v e p r e d i c t f (Y, X, n , l , b , d , h ,D ) ;
MSE=MSE+(Y( l )−Yp ) ˆ 2 ;

end
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MSE=MSE / n ;

f u n c t i o n Yp= C V A d d i t i v e p r e d i c t f (Y, X, n , l , b , d , h ,D)
% Sub− f u n c t i o n o f ’ C V A d d i t i v e f ’ .
Yn=Y ( [ 1 : l −1 l +1: n ] , 1 ) ;
Xn=X ( [ 1 : l −1 l +1: n ] , : ) ;
mu=mean ( Yn ) ;
M=0;
f o r i =1: d

low bound=sum ( b ( 1 : i −1) )+1 ;
up bound=sum ( b ( 1 : i ) ) ;
MX=z e r o s ( n −1 , 1 ) ;
f o r k =1: n−1

x=Xn( k , : ) ; x ( low bound : up bound )=X( l , low bound : up bound ) ;
Xh1=(Xn−ones ( n−1 ,1)∗ x ) . / ( ones ( n−1 ,1)∗ h ) ;
Xh=[ ones ( n−1 ,1) Xh1 ] ;
K=prod ( ( ( 2 ∗ pi ) ˆ ( − 1 / 2 ) ∗ exp (−Xh1 . ˆ 2 / 2 ) . / ( ones ( n−1 ,1)∗ h ) ) ’ ) ;
W=diag (K ) ;
MX( k , 1 ) = [ 1 z e r o s ( 1 ,D) ] ∗ ( Xh’∗W∗Xh ) ˆ ( − 1 ) ∗ ( Xh’∗W∗Yn ) ;

end
M( i )=mean (MX)−mu ;

end
Yp=mu+sum (M) ;

A.4 Matlab Code for PLR-SCE

f u n c t i o n [ Beta O , Beta M , Mu M, L M , P ,Q]= Semi LLR SCE f (Y,
X1 , X2 , n1 , n2 , b , d , h1 , h2 ,MD, p , q )

% Main f u n c t i o n o f t h e PLR−SCE f i t t i n g c o n s i d e r e d i n Chp 4 .
n=n1∗n2 ;
[Mu O , L O , Beta O ]= Semi LLR f (Y, X1 , X2 , n , b , d , h1 ) ;
E=Y−Mu O−X1∗L O−Beta O ( : , 1 ) ;
s w i t c h MD

c a s e { 1 }
[ I B , P , Q, r2 ]= E s t i m a t e t o r u s I B ( E , n1 , n2 ) ;

c a s e { 2 }
[ I B , P , Q, r2 ]= E s t i m a t e b i l a t e r a l I B ( E , n1 , n2 , p , q ) ;

c a s e { 3 }
[ I B , P , Q, r2 ]= E s t i m a t e u n i l a t e r a l I B ( E , n1 , n2 ) ;

end
Z=I B ∗Y+( diag ( ones ( n , 1 ) ) − I B ) ∗ ( Mu O+X1∗L O+Beta O ( : , 1 ) ) ;
[Mu M, L M , Beta M ]= Semi LLR f ( Z , X1 , X2 , n , b , d , h2 ) ;

f u n c t i o n [Mu1 , L1 , Beta1 ]= Semi LLR f (Y, X1 , X2 , n , b , d , h )
% T r a d i t i o n a l f i t t i n g o f p a r t i a l l y l i n e a r models .
Yb=Y−mean (Y ) ;
X1b=X1−mean ( X1 ) ;
K=ones ( n , n ) ;
f o r j =1: n

f o r i =1: n
f o r k =1: d

K( i , j )=K( i , j ) ∗ ( ( 2 ∗ pi ∗h ( k ) ˆ 2 ) ˆ ( − 1 / 2 ) ∗ exp ( −1 / 2 ∗ ( ( X2( i , k)−
X2( j , k ) ) / h ( k ) ) ˆ 2 ) ) ;

end
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end
end
U( d +1 , d +1 , n )=0 ;
f o r j =1: n

Xh=[ ones ( n , 1 ) ( X2−ones ( n , 1 ) ∗X2 ( j , : ) ) . / ( ones ( n , 1 ) ∗ h ) ] ;
W=diag (K ( : , j ) ) ;
U ( : , : , j )=Xh’∗W∗Xh ;

end
V0( d +1 , n )=0 ;
f o r j =1: n

V0 ( 1 , j )=sum ( Yb . ∗K ( : , j ) ) ;
f o r k =1: d

V0( k +1 , j )=sum ( Yb . ∗ ( ( X2 ( : , k)−X2 ( j , k ) ) / h ( k ) ) . ∗K ( : , j ) ) ;
end

end
V( d +1 ,b , n )=0 ;
f o r j =1: n

f o r i =1: b
V( 1 , i , j )=mean ( X1b ( : , i ) . ∗K ( : , j ) ) ;
f o r k =1: d

V( k +1 , i , j )=mean ( X1b ( : , i ) . ∗ ( ( X2 ( : , k)−X2( j , k ) ) / h ( k ) ) . ∗K ( : , j ) ) ;
end

end
end
f o r j =1: n

D0( j , 1 ) = [ 1 z e r o s ( 1 , d ) ] ∗U ( : , : , j ) ˆ ( −1 )∗V0 ( : , j ) ;
D( j , : ) = [ 1 z e r o s ( 1 , d ) ] ∗U ( : , : , j ) ˆ ( −1 )∗V ( : , : , j ) ;

end
Yc=Yb−D0 ;
Xc=X1b−D;
L1=(Xc ’∗Xc ) ˆ ( − 1 ) ∗ ( Xc ’∗Yc ) ;
Yd=Yb−X1b∗L1 ;
f o r j =1: n

Xh=[ ones ( n , 1 ) ( X2−ones ( n , 1 ) ∗X2( j , : ) ) . / ( ones ( n , 1 ) ∗ h ) ] ;
W=diag (K ( : , j ) ) ;
Be ta t emp =(Xh’∗W∗Xh ) ˆ ( − 1 ) ∗ ( Xh’∗W∗Yd ) ;
Beta1 ( j , 1 ) = Beta t emp ( 1 ) ;
Beta1 ( j , 2 : d+1)= Beta t emp ( 2 : d + 1 ) . / h ’ ;

end
Mu1=mean (Y)−mean ( X1)∗L1 ;

f u n c t i o n h=BS Semi LLR f (Y, X1 , X2 , n , b , d )
% Bandwidth s e l e c t i o n f o r t r a d i t i o n a l p a r t i a l l y l i n e a r models .
A=(max ( X2)−min ( X2 ) ) / 4 0 ; % f o o t − s t e p o f bandwid th
B=(max ( X2)−min ( X2 ) ) / 2 ;
A0=2∗A; % A0 i s t h e i n i t i a l v a l u e o f t h e bandwid th
C=(B−A0 ) . / A;
l ( d )=0 ;
j =1;
whi le l ( d)<=C( d )

f o r i =1: d
h ( i )=A0 ( i )+ l ( i )∗A( i ) ;

end
Cv ( j , 1 ) = CV Semi LLR f (Y, X1 , X2 , n , b , d , h ) ;
Cv ( j , 2 : d+1)=h ;
j = j +1;
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l (1 )= l ( 1 ) + 1 ; k =1;
i f l (1) >C( 1 )

f o r i =2: d−1
i f l ( i )==C( i )

k= i ;
e l s e

break
end

end
i f k+1<=d

l ( k+1)= l ( k +1)+1;
l ( 1 : k )= z e r o s ( 1 , k ) ;

end
end

end
MIN=min ( Cv ( : , 1 ) ) ;
f o r i =1: j −1

i f Cv ( i ,1)==MIN
h=Cv ( i , 2 : d +1 ) ;
break

end
end

f u n c t i o n MSE=CV Semi LLR f (Y, X1 , X2 , n , b , d , h )
% Sub− f u n c t i o n o f ’ BS Semi LLR f ’
Yb=Y−mean (Y ) ;
X1b=X1−mean ( X1 ) ;
MSE=0;
f o r i =1: n

Yp=CV Semi LLR pred i c t f (Y, X1 , Yb , X1b , X2 , n , i , b , d , h ) ;
MSE=MSE+(Y( i )−Yp ) ˆ 2 ;

end
MSE=MSE / n ;

f u n c t i o n [ h1 , h2 ]= B S S e m i L L R S C E i t e r a t i o n f (Y,
X1 , X2 , b , d , h1 , n1 , n2 ,MD, p , q )

% Bandwidth s e l e c t i o n f o r PLR−SCE .
A=(max ( X2)−min ( X2 ) ) / 4 0 ; % f o o t − s t e p o f bandwid th
B=(max ( X2)−min ( X2 ) ) / 2 ;
A0=2∗A; % A0 i s t h e i n i t i a l v a l u e o f t h e bandwid th .
C=(B−A0 ) . / A;
j =1;H1=0;H2=0;G= ’ j u s t go ’ ;
whi le G== ’ j u s t go ’

l =0; l ( d )=0 ; J= j ;
whi le l ( d)<=C( d )

f o r i =1: d
h2 ( i )=A0 ( i )+ l ( i )∗A( i ) ;

end
Cv ( j , 1 ) = DCV Semi LLR SCE f (Y, X1 , X2 , n1 , n2 , b , d , h1 , h2 ,MD, p , q ) ;
v ( j , 2 : d+1)=h1 ;
Cv ( j , d +2:2∗ d+1)=h2 ;
j = j +1;
l (1 )= l ( 1 ) + 1 ; k =1;
i f l (1) >C( 1 )

f o r i =2: d−1
i f l ( i )==C( i )
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k= i ;
e l s e

break
end

end
i f k+1<=d

l ( k+1)= l ( k +1)+1;
l ( 1 : k )= z e r o s ( 1 , k ) ;

end
end

end
MIN=min ( Cv ( J : j − 1 , 1 ) ) ;
f o r i =J : j −1

i f Cv ( i ,1)==MIN
h2=Cv ( i , d +2:2∗ d +1 ) ;
break

end
end
i f H2==h2

FCv=Cv ( J : j − 1 , : ) ;
break

e l s e
H2=h2 ;

end
l =0; l ( d )=0 ; J= j ;
whi le l ( d)<=C( d )

f o r i =1: d
h1 ( i )=A0( i )+ l ( i )∗A( i ) ;

end
Cv ( j , 1 ) = DCV Semi LLR SCE f (Y, X1 , X2 , n1 , n2 , b , d , h1 , h2 ,MD, p , q ) ;
Cv ( j , 2 : d+1)=h1 ;
Cv ( j , d +2:2∗ d+1)=h2 ;
j = j +1;
l (1 )= l ( 1 ) + 1 ; k =1;
i f l (1) >C( 1 )

f o r i =2: d−1
i f l ( i )==C( i )

k= i ;
e l s e

break
end

end
i f k+1<=d

l ( k+1)= l ( k +1)+1;
l ( 1 : k )= z e r o s ( 1 , k ) ;

end
end

end
MIN=min ( Cv ( J : j − 1 , 1 ) ) ;
f o r i =J : j −1

i f Cv ( i ,1)==MIN
h1=Cv ( i , 2 : d +1 ) ;
break

end
end
i f H1==h1
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FCv=Cv ( J : j − 1 , : ) ;
break

e l s e
H1=h1 ;

end
end

f u n c t i o n MSE=DCV Semi LLR SCE f (Y, X1 , X2 , n1 , n2 , b , d , h1 , h2 ,MD, p , q )
% Sub− f u n c t i o n o f ’ B S S e m i L L R S C E i t e r a t i o n f ’ .
n=n1∗n2 ;
Yb=Y−mean (Y ) ;
X1b=X1−mean ( X1 ) ;
f o r i =1: n

Y1( i , 1 ) = CV Semi LLR pred i c t f (Y, X1 , Yb , X1b , X2 , n , i , b , d , h1 ) ;
end
E1=Y−Y1 ;
s w i t c h MD

c a s e { 1 }
[ I B , P , Q, r2 ]= E s t i m a t e t o r u s I B ( E1 , n1 , n2 ) ;

c a s e { 2 }
[ I B , P , Q, r2 ]= E s t i m a t e b i l a t e r a l I B ( E1 , n1 , n2 , p , q ) ;

c a s e { 3 }
[ I B , P , Q, r2 ]= E s t i m a t e u n i l a t e r a l I B ( E1 , n1 , n2 ) ;

end
Z=Y1+I B ∗E1 ;
Zb=Z−mean ( Z ) ;
f o r i =1: n

Y2( i , 1 ) = CV Semi LLR pred i c t f ( Z , X1 , Zb , X1b , X2 , n , i , b , d , h2 ) ;
end
E2=Y−Y2 ;
s w i t c h MD

c a s e { 1 }
[ I B , P , Q, r2 ]= E s t i m a t e t o r u s I B ( E1 , n1 , n2 ) ;

c a s e { 2 }
[ I B , P , Q, r2 ]= E s t i m a t e b i l a t e r a l I B ( E1 , n1 , n2 , p , q ) ;

c a s e { 3 }
[ I B , P , Q, r2 ]= E s t i m a t e u n i l a t e r a l I B ( E1 , n1 , n2 ) ;

end
temp=I B ’∗ I B ;
tD =0; tD ( n , 1 ) = 0 ;
f o r i =1: n

tD ( i , 1 ) = temp ( i , i ) ;
end
C m=diag ( ones ( 1 , n )) − temp / mean ( tD ) ;
E3=mean ( E2)+C m∗ ( E2−mean ( E2 ) ) ;
MSE=mean ( ( Y−Y2−E3 ) . ˆ 2 ) ;

f u n c t i o n Yp=CV Semi LLR pred i c t f (Y, X1 , Yb , X1b , X2 , n , i , b , d , h )
% Sub− f u n c t i o n o f ’ CV Semi LLR f ’ and ’ DCV Semi LLR SCE f ’ .
U=0;V0=0;V=z e r o s ( d +1 , b ) ; V1=0;
f o r j =1: n

i f j ˜= i
K=1;
f o r k =1: d

K=K∗ ( ( 2 ∗ pi ∗h ( k ) ˆ 2 ) ˆ ( − 1 / 2 ) ∗ exp ( −1 / 2 ∗ ( ( X2( j , k)−
X2( i , k ) ) / h ( k ) ) ˆ 2 ) ) ;
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end
Xh=[1 ( X2 ( j , : ) −X2( i , : ) ) . / h ] ;
U=U+K∗Xh’∗Xh ;
V0=V0+Yb( j )∗Xh’∗K;
f o r k =1: b

V ( : , k )=V ( : , k )+X1b ( j , k )∗Xh’∗K;
end

end
end
D0=[1 z e r o s ( 1 , d ) ] ∗Uˆ( −1)∗V0 ;
D=[1 z e r o s ( 1 , d ) ] ∗Uˆ( −1)∗V;
Yc=Yb−D0 ;
Xc=X1b−D;
L=(Xc ’∗Xc ) ˆ ( − 1 ) ∗ ( Xc ’∗Yc ) ;
Mu=mean (Y)−L’∗mean ( X1 ) ;
Yd=Yb−L’∗X1b ;
f o r j =1: n

i f j ˜= i
K=1;
f o r k =1: d

K=K∗ ( ( 2 ∗ pi ∗h ( k ) ˆ 2 ) ˆ ( − 1 / 2 ) ∗ exp ( −1 / 2 ∗ ( ( X2( j , k)−
X2( i , k ) ) / h ( k ) ) ˆ 2 ) ) ;

end
Xh=[1 ( X2 ( j , : ) −X2( i , : ) ) . / h ] ;
V1=V1+Yd( j )∗Xh’∗K;

end
end
Beta =[1 z e r o s ( 1 , d ) ] ∗Uˆ( −1)∗V1 ;
Yp=Mu+L’∗X1( i , : ) + Beta ;
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