

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

THE HONG KONG POLYTECHNIC UNIVERSITY
DEPARTMENT OF COMPUTING

TOWARDS UNDERSTANDING, IMPROVING AND

SECURING BITTORRENT PROTOCOL AND SYSTEM

By
Jiaqing LUO

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
June, 2011

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

ii

CERTIFICATE OF ORIGINALITY

Date: June, 2011

Author: Jiaqing LUO

Title: Towards Understanding, Improving and Securing

BitTorrent Protocol and System

Department: Department of Computing

Degree: Ph.D. Convocation: July 20 Year: 2011

I hereby declare that this thesis is my own work and that, to the

best of my knowledge and belief, it reproduces no material previously

published or written, nor material that has been accepted for the award

of any other degree or diploma, except where due acknowledgement has

been made in the text.

Signature of Author Jiaqing LUO

iii

iv

Abstract

BitTorrent (BT) is one of the most common Peer-to-Peer (P2P) file sharing pro-

tocols. It was reported that the BT system has on average a day 20 millions users

from 120 countries. The study of BT protocol and system has become an important

aspect of P2P computing.

Towards understanding, improving and securing BT protocol and system, we ad-

dress several issues including modeling, algorithms and worms. 1) Modeling work

provides insights into the BT system performance and the BT protocol improvement.

Existing BT models are limited to a certain level – peer level, cluster level, or swarm

level. We build a bottom-up probabilistic model to analyze the BT system from the

individual peer behavior to the overall system performance. 2) Piece-related algo-

rithms play an inherently crucial role in the BT protocol, because the BT system

relies upon peers to cooperatively trade their pieces with one another. Although ex-

isting algorithms were long believed to be good enough, our understanding of them

is still far from complete. We propose a distributed credit method to prevent under-

reporting, a utility-driven strategy to balance piece supply and demand, and a possible

fix to address the conflict between piece selection and piece queuing. 3) P2P worms

have become a serious threat to the Internet security, due to their fast and large-scale

propagation in P2P systems. We present a novel Adaptive BitTorrent worm (A-BT

i

worm) to discuss potential ways to design a powerful P2P worm. We then propose a

hybrid model to estimate the worm damage, a statistical method to detect the worm

behavior, and a safe strategy to slow down the worm propagation.

ii

Publications

1. Jiaqing Luo, Bin Xiao, Zirong Yang and Shijie Zhou, ”A Clone of Social Net-

works to Decentralized Bootstrapping P2P Networks”, in Proc. of the 18th IEEE

International Workshop on Quality of Service (IWQoS 2010) (poster paper), pp.

1-2, Beijing China, June 2010.

2. Jiaqing Luo, Bin Xiao, Qingjun Xiao, Jiannong Cao and Minyi Guo, ”Mod-

eling and Defending Against Adaptive BitTorrent Worms in Peer-to-Peer Net-

works”, accepted in ACM Transactions on Autonomous and Adaptive Systems

(ACM TAAS).

3. Jiaqing Luo, Bin Xiao, Guobin Liu, Qingjun Xiao, Shijie Zhou, ”Modeling and

analysis of self-stopping BTWorms using dynamic hit list in P2P networks”, in

Proceedings of IPDPS 2009 IEEE International Symposium on Parallel and

Distributed Processing (SSN2009), pp.1-8, Rome - Italy, May 2009.

4. Guobing Liu, Jiaqing Luo, Qingjun Xiao and Bin Xiao, ”EDJam: Effective

Dynamic Jamming Against IEEE 802.15.4-Compliant Wireless Personal Area

Networks”, in Proc. of the IEEE International Conference on Communications

(ICC 2011), Kyoto Japan, June 2011.

iii

5. Yong Tang, Jiaqing Luo, Bin Xiao and Guiyi Wei, ”Concept, Characteristics

and Defending Mechanism of Worms”, IEICE Transactions on Information and

Systems, Vol. E92-D, No.5, pp. 799-809, May 2009.

6. Qingjun Xiao, Bin Xiao, Jiaqing Luo and Guobin Liu, ”Reliable Navigation

of Mobile Sensors in Wireless Sensor Networks without Localization Service”,

in Proceedings of the 17th IEEE International Workshop on Quality of Service

(IWQoS 2009), pp. 1-9, Charleston, South Carolina, July 13-15, 2009.

iv

Acknowledgements

I would like to thank my supervisor Dr. Bin Xiao, who is a really nice person. He

treats me like a friend, and provides the freedom to pursue my own ideas. He shares

the same interests as me on traveling and photography. I will remember our nice

trip in the North of China. I am also grateful to Prof. Keith C.C. Chan and Prof.

Jiannong Cao for their kind support during my 3-year Ph.D study. Many thanks to

my colleagues Qingjun Xiao, Guobin Liu, Kai Bu and Xuan Liu.

Hong Kong S.A.R., China Jiaqing LUO

August 9, 2011

v

vi

Table of Contents

Abstract i

Publications iii

Acknowledgements v

Table of Contents vii

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Background . 1
1.2 Research gaps . 2
1.3 Contributions . 4
1.4 Thesis roadmap . 5

2 A Bottom-up Probabilistic Model for the Heterogenous BitTorrent
System 7
2.1 Overview . 7
2.2 Related work and assumptions . 9

2.2.1 Related work . 9
2.2.2 Assumptions and events . 11

2.3 BT’s bottom model . 13
2.3.1 Neighbor set in the BT protocol 13
2.3.2 Unchoking in the BT protocol 15

2.4 BT’s top model . 21
2.4.1 Free-riding in the BT system 21
2.4.2 Neighbor interest in the BT protocol 24

vii

2.4.3 Churn of the BT system . 26
2.4.4 Overall system performance 28

2.5 Model validation and insights . 29
2.5.1 Simulation verification . 30
2.5.2 Experiment comparison . 36

3 Understanding and Improving Piece-related Algorithms in the Bit-
Torrent Protocol 41
3.1 Overview . 41
3.2 Goals and assumptions . 43
3.3 Study of piece revelation . 44

3.3.1 Piece revelation strategies . 45
3.3.2 Under-reporting in heterogenous swarms 46
3.3.3 Under-reporting in large swarms 49

3.4 A distributed credit method . 51
3.4.1 Method design and limitation 51
3.4.2 Method improvement and configuration 53

3.5 Study of piece selection . 55
3.5.1 Piece selection strategies . 55
3.5.2 Effect of download cost . 56
3.5.3 Effect of neighbor surplus . 57
3.5.4 Effect of piece rarity . 58

3.6 A utility-driven strategy . 59
3.6.1 Design of the utility-driven strategy 59
3.6.2 Rules for choosing utility functions 63
3.6.3 Analysis of existing strategies 64

3.7 Study of piece queuing . 65
3.7.1 A conflict in piece queuing . 65
3.7.2 A revised queuing algorithm 66

3.8 Performance evaluation . 67
3.8.1 Experimental setup . 67
3.8.2 Effectiveness of the distributed credit method 68
3.8.3 Performance of the utility-driven strategy 69
3.8.4 Performance of the revised queuing algorithm 72

4 Modeling and Containing the Adaptive BitTorrent Worm in BitTorrent-
like Systems 77
4.1 Overview . 77
4.2 Related work and protocol details . 79

4.2.1 Related work . 79

viii

4.2.2 Peer-to-tracker communication 81
4.3 A-BT worm design . 82

4.3.1 Target finding strategy . 83
4.3.2 Adaptive speed control . 84

4.4 A-BT worm modeling . 86
4.4.1 Terminology and notations . 86
4.4.2 A hybrid A-BT worm model 88

4.5 A-BT worm detection and containment 92
4.6 Simulation results . 95

4.6.1 Simulation environment and settings 95
4.6.2 Verification of the hybrid model 96
4.6.3 Evaluation of the worm damage 98
4.6.4 Effectiveness of the detection method 100

5 Conclusions and Future Work 105
5.1 Conclusions . 105
5.2 Future work . 107

Bibliography 109

ix

x

List of Tables

2.1 Assumptions used in the BT model 12

2.2 Probabilistic events defined in the BT model 12

4.1 Parameters used in the A-BT worm model 89

4.2 Simulation settings of the A-BT worm 97

xi

xii

List of Figures

2.1 An example of calculation of P (Bij | Aij). 18

2.2 Details in the case for k = 4 and h = 2. 19

2.3 Effect of swarm size on neighbor set size. 32

2.4 Effect of number of returned peers on neighbor set size. 33

2.5 Effect of neighbor set size on download time of a peer. 34

2.6 Effect of bandwidth distributions on download time of peer. 35

2.7 Effect of average seeding time on download time of a peer. 36

2.8 The effect of the free-rider ratio on the download time of free-riders. . 37

2.9 Effect of neighbor set size on download time of free-riders. 38

2.10 Comparison between bottom-up model and heterogenous model. . . . 39

2.11 Comparison between bottom-up model and fluid model. 40

3.1 An upload processes, showing that a and b upload to `. 46

3.2 The payoffs of Case A where b is equal to a in the upload speed. . . . 47

3.3 The payoffs of Case B where b is half the upload speed of a. 48

3.4 The two-player illustration of Peer’s Dilemma. 51

3.5 A credit process, showing that a and b work together to credit c. . . . 52

xiii

3.6 The improvement for the credit method, showing that a, b and c form

a basic component. 54

3.7 Example A: ` will lose all neighbors’ interest if it selects the rarest

piece 3. 56

3.8 Example B: ` will lose a’s interest if it selects the rarest piece 4. . . . 58

3.9 The queuing process, showing that ` can reduce memory consumption

by queuing piece 1. 67

3.10 Download time of under-reporters. 69

3.11 Number of overhead messages. 70

3.12 Comparison of individual performance in the swarm where majority of

peers use the rarest-first strategy. 71

3.13 Comparison of individual performance in the swarm where all peers

use the same strategy. 72

3.14 Comparison of overall performance. 73

3.15 Effect of strategy ratio on overall performance. 74

3.16 Effect of threshold on overall performance. 74

3.17 Comparison of memory consumption. 75

4.1 An example of the HTTP GET request. 81

4.2 The A-BT worm propagation in swarm A. 84

4.3 The adaptive speed control for the A-BT worm. 85

4.4 The classification tree of vulnerable peers. 87

4.5 The transition diagram of peers. 88

4.6 An example of the sample sequence. 93

4.7 Model validation using parameters obtained from the fluid model. . . 98

xiv

4.8 Mean upload bandwidth utilization of peers. 99

4.9 Model validation using parameters obtained from simulations. 100

4.10 Comparison between topological P2P worm and A-BT worm. 101

4.11 Comparison between R-BT worm and A-BT worm. 102

4.12 Number of forged requests generated by worms. 102

4.13 Effect of time window size on worm detection. 103

4.14 Effect of vulnerability density on worm detection. 103

xv

xvi

Chapter 1

Introduction

1.1 Background

BitTorrent (BT) is one of the most common Peer-to-Peer (P2P) file sharing pro-

tocols, and it has been estimated that it accounts for more than roughly 27%-55%

of all Internet traffic as of February 2009 [Ernesto, 2009]. Programmer Bram Cohen

designed the BT protocol in April 2001 and released a first implementation on July

2, 2001. The protocol distributes a large file without the heavy load on the source

computer and network. Rather than downloading a file from a single source, the

protocol allows users to join a swarm of peers to download and upload from each

other simultaneously. The protocol can also work as an alternative method to dis-

tribute data and can work over systems with low bandwidth so even small computers,

like mobile phones, are able to distribute files to many recipients. There have been

numerous BT clients available for a variety of computing platforms.

A BT system commonly consists of trackers, seeders and leechers. A tracker keeps

track of peers who are participating in the process of downloading and/or uploading a

1

2

particular file, and makes this information available to others who want to download

the file. Peers in the BT system are either seeders who have a complete file and are

willing to serve it to others, or leechers who are still downloading the file and are

willing to serve the pieces that they already have to others. Before joining a swarm

which is a set of peers sharing a particular file, a peer firstly downloads a .torrent

file from a web server, which contains a URL list of trackers and other information

related to the sharing file. After that, the peer makes an HTTP GET request to a

tracker known from the URL list. Upon receiving the request, the tracker randomly

returns a subset of peers sharing the file. Finally, the peer attempts to initiate TCP

connections with the returned peers, which then become its neighbors. Files in the

BT system consists of pieces (32-256KB in size) which in turn consist of blocks (16KB

in size). A block is a portion of data that a peer requests from neighbors.

1.2 Research gaps

This thesis addresses several issues in BT protocol and system, including modeling,

algorithms and worms. The existing research on these issues is limited in some way.

Modeling: the challenge of accurate BT modeling lies in that the BT system is

highly heterogenous and dynamic, where peers with different bandwidths join or leave

the system frequently. Previous BT models can be roughly grouped into three levels:

peer level, cluster level, and swarm level. Peer-level models [Levin et al., 2008, Rai

et al., 2007] aim to model the download process of an individual peer. Although they

perceive protocol functions in detail, these models are unable to describe what kind of

neighbors a peer has. They may fail to evaluate the performance of the whole system.

Cluster-level models [Chow et al., 2009, Liao et al., 2007] assume clusters of peers, and

3

measure the download rate of each cluster. Despite the fact that these models firstly

discuss system heterogeneity, their assumption of peer clustering may not be real.

There is a lot of random variation in peer interactions (e.g., neighbor bootstrapping

and optimistic unchoking). Moreover, their description of system heterogeneity is not

complete. They assume homogeneous bandwidth in each peer cluster. Swarm-level

models [Guo et al., 2005, Qiu and Srikant, 2004, Yang and de Veciana, 2004] attempt

to study system performance and stability. While they evaluate the evolution of peers,

these models discard protocol details and assume homogeneous peer bandwidths.

They may not really help in understanding individual peer decision, system dynamics,

and system heterogeneity.

Algorithms: when exchanging pieces, peers need three algorithms for different

tasks. First, they tell neighbors which pieces they have, called piece revelation. After

that, they decide what pieces to download, called piece selection. Finally, they scatter

requests on multiple neighbors, called piece queuing. Our understanding of these

algorithms is still far from complete, because some fairly basic questions have, to

date, gone unanswered: Why is the piece revelation strategy vulnerable to selfish

gaming? Are existing piece selection strategies really good enough? Why is the

design of piece queueing algorithm still under dispute?

Worms: P2P worms have the potential to compromise hosts in a large scale,

which propagate quickly by exploiting the P2P topology. The study of P2P worms

includes three major aspects: 1) worm behavior investigation, 2) worm propagation

modeling, and 3) worm detection and containment. Worm behavior investigation

tries to understand the strategies adopted by worms for target finding and detection

evasion. Nowadays, the high penetration of P2P protocols and implementations has

4

provided the worm writers chances to design some powerful worms that are previ-

ously unknown. Worm propagation modeling is to study the effect of system/worm

parameters on the worm propagation. P2P worms behave differently in different P2P

systems. There is no completely universal model for all P2P worms. Worm detection

and containment aim to find worm activities and minimize worm damage. Although

existing methods can efficiently detect random scanning worms, they may fail to dis-

cover P2P worms because P2P worms can blend their traffic into the normal P2P

traffic.

1.3 Contributions

This thesis makes the following contributions towards understanding, improving,

and securing BT protocol and system.

A bottom-up probabilistic BT model: we propose a bottom-up probabilistic

BT model to simplify the performance analysis and increase the modeling accuracy,

in which local transitions of the system lead to global macroscopic descriptions by

integration. To be specific, we evaluate the download rate of each individual peer by

estimating the probability of a connection being made, and the probability of a peer

being unchoked, and then later, integrate the analysis of each individual peer into

the description of the whole system. Such a model characterizes both core parts of

the BT protocol and main features of the BT system, and requires far less restrictive

assumptions than that used before. By using the model, we provide some interesting

insights into the setting of parameters, the power of free-riding, the effect of bandwidth

distribution, and the effectiveness of unchoking.

The understanding and improving of piece-related algorithms: previous

5

study has shown that the piece revelation strategy is vulnerable to under-reporting.

We provide a game theoretic analysis for this selfish gaming, and propose a distributed

credit method to prevent it. Existing piece selection strategies, though long believed

to be good enough, may fail to balance piece supply and demand. We propose a

unified strategy to fasten the download time of peers by applying the utility theory.

The design of piece queuing algorithm has a conflict with that of piece selection

strategy, because it is not possible to assume that the queued requests for a selected

piece can always be available on multiple neighbors. We give a possible fix to address

the conflict by allowing peers to dynamically manage their unfulfilled requests.

The modeling and containment of the BT worm: we present a novel Adap-

tive BitTorrent worm (A-BT worm), which locates next victims by sending forged

requests to a tracker in the BT system. Such a worm can adaptively adjust its speed

to evade detection according to the sensed fraction of infected peers. To evaluate

the worm damage, we build a hybrid model which combines the fluid model with the

epidemic model. To detect the worm behavior, we propose a statistical method which

measures the variance in the time intervals of requests. To slow down the worm prop-

agation, we describe a safe strategy which returns a biased set of peers in response

to a request.

1.4 Thesis roadmap

Chapter 2 builds a bottom-up probabilistic BT model. Chapter 3 analyzes piece-

related algorithms and proposes some improvements to them. Chapter 4 models,

detects and contains a new BT worm. Chapter 5 concludes this work and describes

our future work.

6

Chapter 2

A Bottom-up Probabilistic Model

for the Heterogenous BitTorrent

System

2.1 Overview

In this Chapter, we propose a bottom-up probabilistic model to analyze the per-

formance of the BT system. We begin our model from BT’s bottom – an individual

peer. The download rate of an individual peer is mainly affected by two factors:

connectivity and unchoking. Connectivity is productivity in the system, which helps

peers exchange pieces with one another. Rather than assuming fully connected peers,

we consider both outgoing and incoming connections of a peer to calculate the proba-

bility of a connection being made. Unchoking is a key strategy in the protocol, in the

sense that a peer has a chance to get pieces from a neighbor, which is related to its

upload. Assuming neither homogeneous bandwidth nor peer clustering, we sort peers

7

8

according to their upload bandwidth and calculate the probability of a peer being

unchoked based on the bandwidth ranking of the peer. To fully characterize system

heterogeneity, we specify different upload bandwidths for different peers. We then

enhance our model to include some additional factors, such as free-riding, churn and

neighbor interest. To precisely describe system dynamics, we configure peer arrival

and seeding times based on real-world measurements. At last, we extend our model

to BT’s top – the whole system. We integrate the analysis of each individual peer

into the evaluation of the overall performance.

Our model increases the accuracy of the performance analysis for the following

reasons: 1) it firstly relates individual to the whole system; 2) it requires far less

restrictive assumptions than that used before; 3) it captures the core parts of the BT

protocol, including neighbor bootstrapping, peer unchoking and piece exchanging; 4)

it characterizes main features of the BT system, such as heterogeneity and dynamics.

Using our model, we provide some new insights that may be helpful for the im-

provements of the BT protocol design. First, the theoretical number of peers returned

by the tracker can be set as a half of the maximum size of the neighbor set. Second,

it is possible for a free-rider with the large view exploit to download faster than a

large fraction of peers. To the best of our knowledge, this is the first analytical model

that can quantify the gain of an individual free-rider. Third, long-time seeding is

significantly beneficial for low-bandwidth peers, but it has a limited impact on high-

bandwidth ones. Fourth, high-bandwidth peers take advantages of a large neighbor

set, while low-bandwidth ones may not benefit from it. Assume that peers stay in

the swarm for a short time after finishing their download. There might be an overall

performance loss, if all peers enlarge their neighbor set. Fifth, unchoking can ensure

9

BT’s fairness to some extent, which means that peers who upload more download

faster. However, that does not necessarily mean that it is effective to motivate users

to contribute their upload bandwidth.

We validate our model through both simulations and experiments. We implement

a java-based BT client, and run several experiments in a live swarm consisting of 120

peers. The preliminary results show that our model is significantly more accurate

than both heterogenous model [Chow et al., 2009] and fluid model [Qiu and Srikant,

2004].

The rest of the Chapter is organized as follows. Section 2.2 summarizes assump-

tions used in our model. Section 2.3 builds a probabilistic model to measure the

download rate of an individual peer. Section 2.4 enhances the model to include more

factors, and extends it to evaluate the overall performance. Section 2.5 validates the

model through simulations and experiments, and gives some insights into the BT

protocol design.

2.2 Related work and assumptions

In this section, we review previous models, and describe some assumptions and

probabilistic events used in our model.

2.2.1 Related work

Modeling the BT system plays an important role in understanding the system

performance and improving the protocol design. Existing models can be roughly

classified into three levels: peer level, cluster level and swarm level.

10

Peer-level models aim to provide insights into the behavior of an individual peer.

A Markov model [Rai et al., 2007] is proposed to capture three phases in the download

process of a peer: bootstrap, efficient download and last download. In such a model,

peers are assumed to use regular unchoking only, and have homogeneous upload

bandwidth. An auction-based model [Levin et al., 2008] is given to study unchoking

in the BT protocol. In this model, each peer places bids in the form of bandwidth to

its neighbors, who in return give bandwidth to the highest bidders from the previous

time slot. Though these models can evaluate individual peer decision, they may fail

to characterize system performance due to their limited scope of analysis. Our model

measures the connectivity among peer pairs, which makes it to be extendable.

Cluster-level models assume that peers form into clusters according to upload

bandwidth and share data within the peers in the cluster. Some heterogenous models

[Chow et al., 2009, Liao et al., 2007] are proposed to describe the average download

rate of each cluster in unchoking. While they characterize system heterogeneity to

some extent, these models have the following limitations. First, the assumptions of

clustering behavior of peers and homogeneous bandwidth of each cluster are not real-

istic [Chow et al., 2009, Liao et al., 2007]. It is not possible to assume that peers only

share data with those who have similar upload bandwidth with them, because ran-

domization occurs in both neighbor bootstrapping and optimistic unchoking. Even

in the explicitly-configured experiments [Legout et al., 2007] (e.g., a single initial

seeder, two-cluster or three-cluster leechers), clusters are no longer formed if the ini-

tial seeder has a limited bandwidth, because high-bandwidth peers will assist the

seeder in disseminating data to low-bandwidth ones. Second, the description of sys-

tem heterogeneity is incomplete. To relax restrictive assumptions, Liao et al. [Liao

11

et al., 2007] include imperfect clustering in their model. However, the discussion of

imperfect clustering dramatically increases model complexity, which causes the anal-

ysis of more than three clusters to become very difficult. Our model does not assume

peer clustering, and can accept any upload bandwidth distribution.

Swarm-level models attempt to understand stability and performance of the

BT system. Fluid models [Guo et al., 2005, Qiu and Srikant, 2004, Yang and de Ve-

ciana, 2004] are used to describe the evolution of peers (changes in the numbers of

seeders and leechers) by using aggregate parameters, such as utilization of bandwidth,

arrival/departure rate. These models may not really help in understanding system

dynamics and heterogeneity, because they discard protocol details and assume ho-

mogeneous peer bandwidth. To study unchoking, Qiu et.al [Qiu and Srikant, 2004]

assume that all peers are fully connected and have demands from each other. However,

in the BT system, each peer makes its own decision regarding neighbors and pieces

based on a limited view of the complete swarm. Our model assumes neither fully

connected swarm nor homogeneous bandwidth, and evaluates system performance

based on aggregate peer behaviors rather than aggregate parameters.

2.2.2 Assumptions and events

To model the BT system, we need to ignore some trivial details and make some

reasonable assumptions, because peers behave in a very complicated way in the het-

erogenous and dynamic system. The assumptions used in our model in Table 2.1:

For the ease of presentation, we list some probabilistic events before using them.

Given two peers i and j, we define revelent events in Table 2.2:

12

Table 2.1: Assumptions used in the BT model
a There is no limitation to the neighbor set size. In other

words, there is always enough room for both outgoing and
incoming connections. This assumption enables us to study
the effect of some parameters on the neighbor set size.

b Upload bandwidth is the bottleneck. This is a fairly typical
assumption in the literature (e.g., it is also made in [Chow
et al., 2009, Fan et al., 2006]).

c A peer updates the neighbor set at the beginning of each
time slot. In the real-world BT system, this happens when
a peer does not have enough neighbors.

d Peers join a swarm in a flash crowd scenario, and do not
leave the swarm until completing the download. We will
relax this assumption in Section 2.4.3.

Table 2.2: Probabilistic events defined in the BT model
Aij i is a neighbor of j.
Bij i ranks in the top 4 for upload bandwidth among leechers

in the neighbor set of j (both i and j are leechers).
Cij i is selected by j in optimistic unchoking (both i and j are

leechers).
Dij i is selected by j in seeder unchoking (i is a leecher and j

is a seeder).
Eij i has all pieces that j has (i is not interested in j) at the

beginning of a time slot.

13

2.3 BT’s bottom model

In this section, we construct a probabilistic model to describe BT’s bottom – an

individual peer. In particular, we measure the download rate of an individual peer by

considering both neighbor set and unchoking. To avoid the repetition or omission of

peers in the probability calculation process, we sort peers by their upload bandwidth

such that the first peer has the highest upload bandwidth in the whole system. If

two or more peers have the same upload bandwidth, they are randomly ordered.

We distinguish peers using their bandwidth ranking, namely, we choose bandwidth

ranking as the peer ID. For example, peer i denotes the peer who has the ith highest

bandwidth in the swarm.

2.3.1 Neighbor set in the BT protocol

Background of neighbor set: the set of peers to which a peer is connected

is called its neighbor set (or peer set). While joining the swarm, a peer initiates

outgoing connections with random peers obtained from the tracker, and then, waits

for incoming connections from newly arriving peers. As specified in the BT protocol,

the connection between each peer pair is bidirectional. That means, given two peers i

and j, if i is in the neighbor set of j, then j is in the neighbor set of i. The maximum

neighbor set size is 80, the maximum number of outgoing connections is 40, and the

minimum number of neighbors is 20. A peer will contact to the tracker again to

collect a list of additional peers for more connections, if the size of its neighbor set is

below 20. The default number of random peers returned by the tracker is 50. Note

that the number will be smaller if there are fewer peers in the swarm, and can be

changed by a client-side parameter numwant, which is the number of other peers that

14

a peer would like to receive from the tracker.

Modeling of neighbor set: let S be the total number of peers in a swarm, we

describe the number of peers returned by a tracker, R, as:

R = min{50, S}

Given two peers i and j, there are two ways for i to become a neighbor of j. One is

that j establishes an outgoing connection to i. If j knows i from the tracker, i will

be an outgoing neighbor of j. The probability is R
S

. The other is that j waits for an

incoming connection from i. If j doesn’t know i from the tracker, but i knows j from

the tracker, i will be an incoming neighbor of j. The probability is (1− R
S

)R
S

. Given

above two probabilities, we describe the probability of Aij, P (Aij), as:

P (Aij) =
R

S
+ (1− R

S
)
R

S
=

2RS −R2

S2
(2.1)

Then, we write the neighbor set size of a peer, N , as:

N = P (Aij)S =
2RS −R2

S
(2.2)

By Equation 2.2, we can study the effect of parameters R and S on N .

Setting of parameter: as mentioned earlier, the maximum value of N is 80,

and the default value of R is 50. Both of them are empirical values. A question is

15

raised here: if we expect N to be smaller than 80, can we explain why R should be

50? Suppose S is infinite, we have:

lim
S→∞

N = lim
S→∞

2RS −R2

S
= 2R (2.3)

From Equation 2.3, we know that, if we address the raised question, R should be 40

rather than 50. Theoretically, the default number of returned peers can be set as a

half of the maximum size of neighbor set.

2.3.2 Unchoking in the BT protocol

Background of unchoking: uploading in the BT protocol is called unchoking

which dictates to whom and how many to unchoke. Every 10 seconds, a leecher

unchokes only 4 neighbors which have the highest upload rates and are interested in

downloading from it, called regular unchoking. This maximizes the leecher’s download

rate. To try out unused connections, at least 1 random neighbor is optimistically

unchoked by a leecher regardless of that neighbor’s contribution, called optimistic

unchoking. A seeder sorts neighbors according to their download rates, and uploads

to the top 5 neighbors, called seeder unchoking.

Modeling of unchoking: the amount of download of a peer in a time slot is

equal to the total amount of upload from all its neighbors. Roughly speaking, the

core idea of unchoking can be represented as “4 + 1”. To be specific, a peer usually

unchokes 4 best leechers and 1 random leecher in its neighbor set according to the

upload/download rate. As neighbors of a peer can be either leechers or seeders, we

study regular, optimistic and seeder unchokings.

16

Regular unchoking : given two leecher i and j, i can download from j due to

regular unchoking, if the two events Aij and Bij occur together. Let Uj be the upload

bandwidth of j (in terms of pieces). Because j uniformly assigns its upload bandwidth

to 5 unchoked leechers (4 best neighbors and 1 random neighbor), i can download
Uj
5

pieces from j if it is regularly unchoked by j. We describe the amount of download

of i from j in time slot n due to regular unchoking, ∆Dr
j→i[n], as:

∆Dr
j→i[n] =

Uj
5
P (AijBij) =

Uj
5
P (Aij)P (Bij | Aij) (2.4)

The calculation of P (Aij) has been shown in Equation 2.1. In the following discus-

sion, we will describe the calculation of P (Bij | Aij). Let Dx[n] be the total amount of

download of a peer x till time slot n (in terms of pieces), and Q be the total number

of pieces in the shared file. We can determine whether x is a seeder or not at time

slot n by an indicator variable αx[n]:

αx[n] =

 1 if bDx[n]
Q
c = 0

0 otherwise

If αx[n] = 1, x is a leecher. Otherwise, x is a seeder. For a given leecher i (it

ranks ith in all peers for upload bandwidth), we describe the bandwidth ranking of i

in all leechers (not including seeders) at the beginning of time slot n, Bi[n], as:

17

Bi[n] =
i∑

x=1

αx[n]

There areBi[n]−1 leechers having higher upload bandwidth than i, called preferred

leechers. If i ranks kth for upload bandwidth among leechers in the neighbor set of

j, there will be exactly k − 1 preferred leechers to become j’s neighbors. Note that,

i will be regularly unchoked by j, only if 1 ≤ k ≤ 4. These k − 1 neighbors can be

either outgoing or incoming. Assume that h (0 ≤ h ≤ k − 1) of them are outgoing.

The probability that j knows h preferred leechers from the tracker is
(Bi[n]−1

h)(S−Bi[n]R−1−h)
(S−1
R−1)

,

which is a classical probabilistic formula. The rest k−1−h of them must be incoming.

There are Bi[n] − 1 − h remaining preferred leechers, and each of them can know j

from the tracker with a probability R
S

. The probability that k − 1 − h remaining

preferred leechers know j from the tracker is
(
Bi[n]−1−h
k−1−h

)
(R
S

)k−1−h(1− R
S

)Bi[n]−k, which

is a binomial probabilistic formula. Through the above analysis, we describe the

conditional probability of Bij, given Aij, P (Bij | Aij), as:

P (Bij | Aij) =
4∑

k=1

k−1∑
h=0

(
Bi[n]−1

h

)(
S−Bi[n]
R−1−h

)(
S−1
R−1

)(
Bi[n]−1−h
k−1−h

)
(
R

S
)k−1−h(1−R

S
)Bi[n]−k (2.5)

Equation 2.5 is valid for the case that Bi[n] > 4. If Bi[n] ≤ 4, P (Bij | Aij) = 1.

Figure 2.1 illustrates an example of the calculation of P (Bij | Aij), when R = 50,

S = 100, i = 5, and Bi[n] = i (all peers are leechers). Let’s consider the case for

k = 4 and h = 2. Figure 2.2 shows details in the case. When i = 5, there are totally 4

18

(Bi[n]− 1 = 4) leechers who have higher bandwidth than i. When h = 2, j initializes

outgoing connections with 2 of them. Each of the remaining 2 (Bi[n] − 1 − h = 2)

leechers still has a probability 0.5 (R
S

= 0.5) of being a neighbor of j. When k = 4,

j accepts only 1 (k − h − 1 = 1) incoming connection from the remaining leechers.

Corresponding to the case (k = 4 and h = 2), we have a probability 0.1913. By

considering all the cases (1 ≤ k ≤ 4 and 0 ≤ h ≤ k− 1), we have P (Bij | Aij) = 0.69.

Fig. 2.1: An example of calculation of P (Bij | Aij).

Optimistic unchoking : if i ranks below 4th for upload bandwidth among leechers

in the neighbor set of j, i has a chance to be optimistically unchoked. The number

of leechers in the swarm at the beginning of time slot n, L[n], is:

L[n] =
S∑
x=1

αx[n]

There are L[n]P (Aij) leechers in the neighbor set of j, and 4 of them with the highest

19

Fig. 2.2: Details in the case for k = 4 and h = 2.

bandwidths have already been regularly unchoked. The probability of Cij, P (Cij), is:

P (Cij) =
1

L[n]P (Aij)− 4
(2.6)

We describe the amount of download of i from j in time slot n due to optimistic

unchoking, ∆Do
j→i[n], as:

∆Do
j→i[n] =

Uj
5
P (Aij)

(
1− P (Bij | Aij)

)
P (Cij) (2.7)

Seeder unchoking : under assumption b, seeder unchoking is unbiased, because

unchoked leechers download from a seeder at an equal rate. In other words, if j is

a seeder, j uploads to 5 random leechers in its neighbor set. Given a leecher i, the

20

probability of Dij, P (Dij), can be calculated as:

P (Dij) =
5

L[n]P (Aij)
(2.8)

The amount of download of i from j in time slot n due to seeder unchoking, ∆Ds
j→i[n],

can be given by:

∆Ds
j→i[n] =

Uj
5
P (Aij)P (Dij) =

Uj
L[n]

(2.9)

From Equation 2.9, we can see that a seeder uploads uniformly to all leechers. This is

an approximation to the protocol [Chow et al., 2009]. By Equations 2.4, 2.7 and 2.9,

we can describe the amount of download of i in time slot n due to regular, optimistic

and seeder unchokings, ∆Dr
i [n], ∆Ds

i [n], and ∆Do
i [n], as follows:

∆Dr
i [n] = αi[n]

S∑
j=1,j 6=i

αj[n]∆Dr
j→i[n]

∆Do
i [n] = αi[n]

S∑
j=1,j 6=i

αj[n]∆Do
j→i[n]

∆Ds
i [n] = αi[n]

S∑
j=1,j 6=i

(1− αj[n])∆Ds
j→i[n]

Parameters αi[n] and αj[n] determine whether i and j are leechers or seeders. We

need to count i’s download rate only when i is a leecher. If i is a seeder, it won’t

download from others. We also need to know j’s type of unchokings. If j is a seeder,

21

it will use seeder unchoking. Otherwise, it will use regular and optimistic unchokings.

We then can state the amount of download of i in time slot n, ∆Di[n] = ∆Dr
i [n]+

∆Do
i [n] + ∆Ds

i [n]. Finally, we begin an iterative procedure to calculate the total

amount of download of peer i till time slot n+1. In particular, we add the incremental

variable and get Di[n+1] = Di[n]+∆Di[n]. The boundary condition for the equation

above is Di[0] = 0.

2.4 BT’s top model

In this section, we enhance our model to include some additional factors (e.g.,

free-riding, neighbor interest and churn), and extend it to describe BT’s top – the

whole system.

2.4.1 Free-riding in the BT system

Background of free-riding: the behavior of optimistic unchoking can be abused

by a free-rider. Normally, there is a time slot of 30 seconds granted to a neighbor

who is being optimistically unchoked. This time slot is enough for a free-rider to rely

on for completing a download without ever having to upload a piece [Locher et al.,

2006, Sirivianos et al., 2007]. To increase its chances to be unchoked, a free-rider can

obtain a larger than normal view of the swarm by requesting the tracker frequently,

or setting the parameter numwant to be a large value (much larger than the default

value 50), called the large view exploit [Sirivianos et al., 2007].

Modeling of free-riding: our model can model free-riding with the large view

22

exploit by making some modifications. Free-riders always rank at bottom for up-

load bandwidth, because they download without contributing uploads. Let F be the

number of free-riders. The number of normal leechers, Ln[n], and that of free-riders,

Lf [n], can be computed as:

Ln[n] =
S−F∑
x=1

αx[n]

Lf [n] =
S∑

x=S−F+1

αx[n]

Assume that each free-rider can obtain a full peer list from the tracker (the best case

for a free-rider). Given two peers i and j, P (Cij) and P (Dij) need to be rewritten as:

P (Cij) =
1

Ln[n]P (Aij) + Lf [n]− 4
(2.10)

P (Dij) =
5

Ln[n]P (Aij) + Lf [n]
(2.11)

Equations 2.10 and 2.11 indicate that the statement [Chow et al., 2009] that the

download rate of a free-rider increases linearly with its neighbor set size may not be

true, because, when the free-rider makes more outgoing connections, the neighbor

set of other peers also increases (peer connection is bidirectional), which results in a

smaller probability of being unchoked (both optimistic and seeder unchokings).

Suppose i is a free-rider (i > S − F , Ui = 0 and P (Aij) = 1), the bandwidth

ranking of i in all free-riders, Bf
i [n], is:

23

Bf
i [n] =

i∑
x=S−F+1

αx[n]

In such a case, P (Bij | Aij) can be computed as:

P (Bij | Aij) =
4∑

k=Bfi [n]

k−Bfi [n]∑
h=0

(
Bi[n]−Bfi [n]

h

)(
S−Bi[n]−Bfi [n]+1

R−1−h

)(
S−1
R−1

)
(
Bi[n]−Bf

i [n]− h
k − 1− h

)
(
R

S
)k−1−h(1− R

S
)Bi[n]−k+1 (2.12)

Equation 2.12 is valid for the case that Bi[n] − Bf
i [n] ≥ 4 and i > S − F . If

Bi[n]−Bf
i [n] < 4, P (Bij | Aij) = 1. If i ≤ S − F , P (Bij | Aij) is the same as that in

Equation 2.5.

Power of free-riding: we are interested in how many peers download slower

than a free-rider. Assume that all peers are leechers (L[n] = S and Bi[n] = i);

there is only 1 free-rider in the swarm (F = 1); normal peers have similar upload

bandwidths. Under above assumptions, the download of the free-rider (i = S) only

relies on optimistic unchoking, while that of normal peers (i 6= S) depends on either

regular or optimistic unchoking. Then, we have:

24

∆Di[n] < ∆DS[n] for i 6= S, j 6= S

⇒ (S−2)
(

∆Dr
j→i[n] + ∆Do

j→i[n]
)
< (S−1)∆Do

j→S[n]

⇒ (S−2)P (Aij)
[
P (Bij |Aij)+

(
1−P (Bij |Aij)

)
P (Cij)

]
< (S−1)P (Cij)

⇒ P (Bij |Aij) <
(S−1)P (Cij)−(S−2)P (Aij)P (Cij)

(S−2)P (Aij)(1−P (Cij))
(2.13)

In Inequality 2.13, P (Bij | Aij) can be viewed as a function of i (i 6= S). Given

R and S, we can find out a set of i that makes ∆Di[n] < ∆DS[n]. For example,

if we set R = 10 and S = 100, we obtain P (Aij) = 0.19 and P (Cij) = 0.06 by

solving Equations 2.1 and 2.10 respectively. Surprisingly, Inequality 2.13 is satisfied

for i ≥ 27. That means, the free-rider, who has an unusually large neighbor set, can

download faster than over 70% peers under given conditions. Free-riding is really

very cheap in the BT system.

2.4.2 Neighbor interest in the BT protocol

Background of neighbor interest: a peer sends pieces only to those interested

in it, and equivalently, receives pieces only from those in whom it is interested. Ac-

cording to the BT protocol, a peer keeps an initial bitfield, which is a bit array of

its pieces, from each neighbor, and updates it with every have message. To keep

neighbor interested, two kinds of strategies are used to determine which pieces to

download based on these bitfields. One is the rarest-first strategy in which peers

download pieces in a rarest first order. The download of the rarest piece would make

a peer more attractive to its neighbors. The other is the random strategy in which

25

peers choose to download pieces in a random order. The rarest piece might only be

available from few peers making it slower to download. In some cases (e.g., in the

pieceless mode [Lilja Fjeldsted, 2005]), it is essential for a peer to quickly get as many

complete pieces as possible in order to make itself interesting to neighbors.

Modeling of neighbor interest: in our model, we only discuss random for the

following two reasons. First, the adoption of random simplifies our analysis. Second,

the updated official BT protocol [Cohen, 2008] suggests using random rather than

rarest-first. We will analyze both random and rarest-first in Chapter 3.

Let bDi[n]c and bDj[n]c be the number of complete pieces that peers i and j have

at the beginning of time slot n, respectively. The probability of Eij, P (Eij), is:

P (Eij) =

(bDi[n]c
bDj [n]c

)(
Q

bDj [n]c

) (2.14)

From Equation 2.14, we can see that P (Eij) is close to 0 when Q is large. This

indicates that a peer is very easy to attract neighbors and keep them attracted so

that it can trade pieces using unchoking. In other words, the BT system is very

efficient in sharing files. We then rewrite ∆Dr
j→i[n] and ∆Do

j→i[n] as follows:

∆Dr
j→i[n]=

Uj
5

(
1−P (Eij)

)
P (Aij)P (Bij |Aij)

∆Do
j→i[n]=

Uj
5

(
1−P (Eij)

)
P (Aij)

(
1−P (Bij |Aij)

)
P (Cij)

If j is a seeder, we have P (Eij) = 0, because i is always interested in j. As a result,

∆Ds
j→i[n] is the same as that in Equation 2.9.

26

2.4.3 Churn of the BT system

Background of churn: the dynamics of peer participation, or churn, are an

inherent property of the BT system. Accurately characterizing churn requires some

information about the arrival and departure of peers, which is challenging to acquire.

Previous measurement studies on churn [Guo et al., 2005, Stutzbach and Rejaie, 2006]

illustrate that the distribution of peer arrival times follows the Exponential or Weibull

distribution. The study [Stutzbach and Rejaie, 2006] also concludes that session

lengths are Weibull or Log-normal distributions rather than Exponential, which are

lengths of join-participate-leave cycles of peers. An interesting finding is that many

peers linger for a few hours after their download is complete, and a few peers linger

for days or weeks. Hence, download time (completion time in [Stutzbach and Rejaie,

2006]) and seeding time (lingering time in [Stutzbach and Rejaie, 2006]) are further

investigated. The first one is the time to completely download the file. The second

one is the additional time that a peer lingers in the swarm. The traces show that

seeding time distribution can be also modeled by a Weibull distribution.

Churn in our model: since churn in the BT system is related to users’ behav-

iors, churn modeling is beyond the scope of this work. Rather than making some

assumptions of churn, we allow our model to configure peer arrival and seeding times

based on real traces, so as to study in detail the effect of churn on the download

rate of each individual peer. For a peer x, we set arrival time, nax, and seeding time,

T sx , according to the measurement results. After that, we run the iterative procedure

described in Section 2.3.2, and determine the time when x becomes a seeder, nsx, by

using the following conditions: αx[n
s
x− 1] = 1 and αx[n

s
x] = 0. Finally, we are able to

describe download time, T dx , departure time, ndx, and session length, T lx, as follows:

27

T dx = nsx − nax

ndx = nsx + T sx

T lx = ndx − nax = T dx + T sx

In short, we input nax and T sx into the model using distributions suggested by mea-

surements, and output T dx , ndx and T lx from the model after determining nsx through

the iterative procedure.

To include churn in our model, we need to modify the model slightly. We define

a indicator variable βx[n] to illustrate whether x is active or not at the beginning of

time slot n:

βx[n] =

 1 if nax ≤ n < ndx

0 otherwise

If βx[n] = 1, x is active. Otherwise, x does not participate in the file sharing. At the

beginning of time slot n, we compute number of active peers, S[n], that of returned

peers, R[n], that of active leechers, L[n], and bandwidth ranking of i in active leechers,

Bi[n], as follows:

28

S[n] =
S∑
x=1

βx[n]

R[n] = min{50, S[n]}

L[n] =
S∑
x=1

βx[n]αx[n]

Bi[n] =
i∑

x=1

βx[n]αx[n]

We simply set these four variables in Equations 2.1, 2.5, 2.6 and 2.8 (S[n] and R[n]

replace S and R, respectively), and rewrite ∆Dr
i [n], ∆Do

i [n], and ∆Ds
i [n], as follows:

∆Dr
i [n] = βi[n]αi[n]

S∑
j=1,j 6=i

βj[n]αj[n]∆Dr
j→i[n]

∆Do
i [n] = βi[n]αi[n]

S∑
j=1,j 6=i

βj[n]αj[n]∆Do
j→i[n]

∆Ds
i [n] = βi[n]αi[n]

S∑
j=1,j 6=i

βj[n](1− αj[n])∆Ds
j→i[n]

2.4.4 Overall system performance

We integrate the analysis of each peer into the evaluation of the overall perfor-

mance. From the system point of view, we are care about the average download rate

and time of all peers.

The average download rate of peers in time slot n, ∆D[n], can be calculated as:

29

∆D[n] =

∑S
x=1 ∆Dx[n]∑S
x=1 βx[n]

The average download rate of all peers, D, can be represented as:

D =

∑S
x=1

∑nsx
n=nax

∆Dx[n]∑S
x=1 T

d
x

The average download time of peers, T d, can be given by:

T d =

∑S
x=1 T

d
x

S

After defining ∆D[n], D, and T d, we successfully extend our model from bottom to

top.

2.5 Model validation and insights

In this section, we validate our model using simulations and experiments. We also

illustrate how our model can be used to obtain insights into the BT system. Before

starting this section, we would like to point out that the real-world BT system is very

complex, the attempt of this work is only to increase the accuracy of analysis of the

system.

30

2.5.1 Simulation verification

We develop a time-based simulator to simulate piece exchanging in the BT system.

In each time slot, each peer randomly connects to a subset of peers in the swarm,

and uniformly assigns its upload bandwidth to 5 neighbors according to unchoking

in the BT protocol. Unless specified otherwise, we use the following settings in our

simulations. The shared file consists of 5000 pieces. The system starts with 1 initial

seeder that uploads at 20 pieces/time slot, which is the average upload bandwidth

of all peers. The initial seeder stays throughout the duration of the simulation.

The swarm size is 150. The maximum neighbor set size of a peer is 60. We assign

an Exponential distribution to their arrival time and seeding time with a rate of λ

(λ = 0.05). The upload bandwidth of peers follows a Pareto distribution. We generate

a random variable from a given distribution using the following methods.

Exponential distribution: to obtain an exponential random variable x with rate λ,

we generated a uniform random number r ∈ [0, 1] and set x = − ln r
λ

. The coefficient

of variation of x, cv, is 1.

Pareto distribution: a random variable x following the Pareto distribution has the

following cumulative distribution function:

F (x) = 1−
(xm
x

)α
for xm, α > 0

After drawing a uniform random number r ∈ [0, 1], we can generate a Pareto

random variable x by setting x = xm

(1−r)
1
α

. In our simulations, we set xm = 1
λ

√
2

1+
√
2

and

α = 1 +
√

2 in order to keep the rate at λ and cv = 1.

31

Uniform distribution: after drawing a uniform random number r ∈ [0, 1], a uni-

form random variable x with rate λ can be obtained by setting x = 2r
λ

. We have

cv = 1√
3
.

Neighbor set size: we begin to study the effect of parameters on the neighbor

set size. We set R = 50. Figure 2.3 depicts the the neighbor set size as a function

of the swarm size. We can observe that, when S increases, N increases rapidly and

then levels off. For example, when S increases from 100 to 150, N increases by 11%.

However, when S goes up from 500 to 550, N only increases by 0.5%. According to

our analysis in Section 2.3.1, if R = 50, N will not excess 100, no matter how large S

is. Theoretically, we can use parameter R alone to limit the N to a reasonable size.

But, in the real-world system, it is necessary to set a maximum value for N , because

some peers may request the tracker multiple times, when they do not have enough

neighbors (due to connection failures). We then set S = 500. Figure 2.4 illustrates

the neighbor set size as a function of the number of returned peers. We can see that

N increases along with R increases. For example, when R increases 20, N increases

by 14%. Note that the curve in Figure 2.4 is close to linear but not exactly it.

We then show the effect of the neighbor set size on the download time of a peer. We

set N = {10, 15, 30}. Figure 2.5 depicts that high-bandwidth peers can benefit from a

large neighbor set. For example, T d20 decreases by almost 24%, when N increases from

10 to 15. The reason is that high-bandwidth peers are more likely to be unchoked by

others. The more neighbors they have, the faster they can download. On the other

hand, if all peers choose a large neighbor set, performance degradation happens on

low-bandwidth peers. As we can see that T d120 increases by 16% when N increases

from 10 to 15. The early departure of high-bandwidth peers is the main reason for

32

Fig. 2.3: Effect of swarm size on neighbor set size.

the performance degradation. Besides that, a large neighbor set may not be helpful

to low-bandwidth peers, because it reduces the probability of being unchoked (both

optimistic and seeder unchokings). We also observe that the average download time

increases by 8% when N increases from 10 to 15. A larger neighbor set may not

lead to a better overall performance. As real-world measurements [Isdal et al., 2007,

Pouwelse et al., 2005] suggest that majority of peers (70%) are low-bandwidth ones,

it is worthwhile to consider some schemes on tracker to balance the download rates of

peers. For example, the tracker can determine the number of returned peers according

to some system parameters, such as swarm size, departure rate and download rate,

etc. In order to rationally utilize the bandwidths of peers, it can also return high-

bandwidth peers or seeders to some pieceless or low-bandwidth peers. (the tracker

can simply assume that peers who download at high rate are high-bandwidth ones).

Upload bandwidth: we measure the effect of different bandwidth distributions

33

Fig. 2.4: Effect of number of returned peers on neighbor set size.

on the download time of a peer. From Figure 2.6, we can see that the Pareto distri-

bution (Power-law distribution) is more efficient than other two distributions for file

sharing. The average download time for the Pareto distribution is only 37% of that

for the Exponential distribution, and 59% of that for the Uniform distribution, re-

spectively. The possible reason is that majority peers have similar upload bandwidths

in the Pareto distribution, while some peers have very low upload bandwidths in the

other two distributions (their mean values are the same). Low-bandwidth peers usu-

ally need a long time to complete their download, because, after high-bandwidth peers

leave the swarm, they have to share pieces with those who have similar bandwidths

with them.

Seeding time: we study the effect of the average seeding time on the download

time of a peer. We set the average seeding time to be {20, 40, 80}. From Figure

2.7, we can see that long-time seeding is significantly beneficial for low-bandwidth

peers. For example, T d120 decreases by almost 20%, when the average seeding time

34

Fig. 2.5: Effect of neighbor set size on download time of a peer.

increases from 40 to 80. On the other hand, the download time of high-bandwidth

peers seems to change little when seeders stay more time in the swarm. After a peer

becomes a seeder, low-bandwidth peers are more likely to be unchoked by that peer,

because the probability of a seeder unchoking is higher than that of an optimistic

unchoking. On the contrary, high-bandwidth peers usually have less chance of being

unchoked, because the probability of a seeder unchoking may be lower than that of

a regular unchoking. Another observation is that overall performance increases when

the average seeding time increases. Not surprisingly, T d decreases by 11% when the

seeding time increases from 20 to 40. To improve overall performance, it is essential

to encourage seeders to stay in the swarm as long as possible.

Free-riding: we firstly study the effect of free-rider ratio on the download time

of free-riders. We set the ratio of free-riders to be {0.1, 0.2, 0.3 ,0.4 ,0.5}. Figure 2.8

shows that the average download time increases along with the ratio of free-riders.

For example, when the ratio of free-riders increases from 0.1 to 0.2, the download

35

Fig. 2.6: Effect of bandwidth distributions on download time of peer.

time of normal peers and free-riders increase by 10% and 15%, respectively. Note

that the performance degradation of free-riders is more serous than that of normal

peers. That means, free-riders cannot benefit from the large view exploit when they

hold majority.

We then evaluate the effect of the neighbor set size on the download time of free-

riders. We set the ratio of free-riders to be 0.2, all peers have similar upload bandwidth

about 20 pieces/time slot, and N = {20, 40, 60, 80, 100}. Figure 2.9 shows that free-

riders download slower when N increases. For example, free-rider’s download time

increases by 7%, when N increases from 20 to 40. The reason is that, when N is

smaller, free-riders have a higher probability of being optimistically unchoked. On

the other hand, normal peers download faster when N becomes larger. As we can

see that, when N increases from 20 to 40, normal peer’s download time decreases by

10%.

36

Fig. 2.7: Effect of average seeding time on download time of a peer.

2.5.2 Experiment comparison

We implement a java-based BT client referring to [Lilja Fjeldsted, 2005, Theory-

Org, 2004], which is now available at FTP [Luo, 2010] for the research and testing

purpose. We decide to implement a client rather than use an existing one for the

following reasons: 1) we want to know more about the BT protocol and technical

details, which helps a lot in our modeling. 2) our client only contains some basic

functions, which makes setup and configuration easy. We run all our experiments in

a controlled environment consisting of 4 hosts. Each host has 1.86GHz Intel Core 2

CPU, 2 GB RAM, and 1 GigE connection. One host installs a local tracker. Each

host runs 4 BitComet clients [BitComet, 2009] and 30 java-based clients. The Bit-

Comet clients act as initial seeders. Peers join the swarm in a flush crowd scenario,

and leave the swarm as soon as they have the complete file. Upload bandwidths of

peers follow a uniform distribution between 32KB/s and 304KB/s. The shared file is

37

Fig. 2.8: The effect of the free-rider ratio on the download time of free-riders.

20MB, which is fragmented into 128KB pieces. The maximum number of neighbors

for each peer is 80. The maximum number of queued pieces is 10, namely, 80 blocks

to be requested. Each point in the figures that follow represents the average over at

least 10 runs, and error bars denote 95% confidence intervals.

Comparison with the heterogenous model: we compare our model with the

heterogenous model [Chow et al., 2009]. We measure the download time of each peer

through experiments, and compare it with that generated by models. As it is unclear

how to classify peers in a fully heterogeneous system, we uniformly divide peers into

three clusters: high-bandwidth, middle-bandwidth and low-bandwidth. From Figure

2.10, we can see that the average download time of the real trace is closer to that of the

bottom-up model than it is to that of the heterogeneous model. Although there is an

obvious error, the bottom-up model is significantly accurate than the heterogeneous

one, as it can better reflect the trend of download time variation. These results also

indicate that unchoking can to some extent ensure that the peers who upload more

38

Fig. 2.9: Effect of neighbor set size on download time of free-riders.

download faster.

Interestingly, many real measurements [Isdal et al., 2007], [Pouwelse et al., 2005]

show that unchoking is ineffective in motivating most users to contribute their band-

width. The possible reason for this lies in our incomplete understanding and inap-

propriate assumptions of users [Feldman and Chuang, 2005]. There is clearly a need

for learning about the factors that may affect users’ decisions. Download rate is an

important factor, but it is not all. Unchoking does not completely understand what

users care (e.g., the credit gained from uploading). It is also important to qualify

the potential outcomes of users. According to the expectancy valence theory [Vroom

and MacCrimmon, 1968], the strength of motivation equals the perceived value of the

outcome times the perceived probability of the behavior resulting in the outcome. Un-

choking is short in providing some useful information for users (e.g., how much time

users could save by contributing more upload bandwidth). The further discussion of

incentives in the BT protocol could be our future work.

39

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

Do
wn

loa
d t

im
e (

se
co

nd
)

B a n d w i d t h r a n k i n g o f p e e r s

 r e a l t r a c e (i n d i v i d u a l)
 b o t t o m - u p m o d e l (i n d i v i d u a l)
 h e t e r o g e n o u s m o d e l (i n d i v i d u a l)
 r e a l t r a c e (m e a n)
 b o t t o m - u p m o d e l (m e a n)
 h e t e r o g e n o u s m o d e l (m e a n)

Fig. 2.10: Comparison between bottom-up model and heterogenous model.

Comparison with the fluid model: we also compare our model with the fluid

model [Qiu and Srikant, 2004]. Since the fluid model cannot evaluate the download

time of each peer, we count the number of peers in the swarm every second. According

to our experimental settings, we describe the fluid model as the following:

ds(t)

dt
= −us(t)⇒ s(t) = e−ut + c

, where s(t) is the normalized number of peers in the swarm at time t, and u is the

average upload bandwidth of all peers, c is a constant. Figure 2.11 shows that the

real trace curve is closer to that of our model than it is to that of the fluid model.

For example, at the 500th second, the number of peers in the real trace is 27% and

40

77.8% higher than that in our model and that in the fluid model, respectively.

Fig. 2.11: Comparison between bottom-up model and fluid model.

Chapter 3

Understanding and Improving

Piece-related Algorithms in the

BitTorrent Protocol

3.1 Overview

In this Chapter, we borrow some ideas from economics to understand and improve

piece-related algorithms, including piece revelation, piece selection and piece queuing,

in order for both individual good – fast download time of an individual peer, and social

good – fast average download time of all peers.

We provide a game theoretic analysis for piece revelation, and propose a distributed

credit method to prevent strategic manipulations. Experimental results [Levin et al.,

2008] have shown that under-reporting, where peers do not disclose the pieces they

truly have, may degrade overall performance. However, there is no clear explanation

for the performance degradation. Our study finds that under-reporting can enhance

41

42

peer’s competitiveness in non-cooperative games. In particular, a peer who under-

reports its pieces can gain some extra interest from its neighbors, because it is able

to upload some pieces that should be uploaded by its opponents. However, when

all peers under-report their pieces to others, there may be an overall performance

degradation, because each peer will spend more time on downloading from low-speed

neighbors. To encourage neighbors to reveal as many pieces as they truly have, we

suggest that peers work cooperatively to credit their neighbors by examining have

messages.

We apply the utility theory to piece selection, and design a unified strategy to

balance piece supply and demand. Nowadays, two strategies are well known in piece

selection. One is random in which peers choose to download pieces in a random order.

While it can enrich the diversity of piece supply, a random piece might not meet the

needs of neighbors. The other is rarest-first in which peers download pieces in a

rarest first order. Though it can make a peer more attractive to others, a rarest piece

may only be available from very few neighbors, which makes it slow to download.

Moreover, it might not fulfill emergent needs of some neighbors despite the fact that

it is in a high demand. To improve the efficiency of piece sharing, we propose a

utility-driven strategy, which covers both rarest-first and random, by constructing

two utility functions – neighbor’s utility and peer’s utility. Rather than selecting a

random or rarest piece, we suggest that a peer selects the one that can maximize its

utility.

We address the conflict in piece queueing, and give a possible fix to dynami-

cally mange unfulfilled requests. As pointed out by some BT protocol specifications

43

[Lilja Fjeldsted, 2005, TheoryOrg, 2004], there exists a conflict between piece selec-

tion and piece queuing. On the one hand, a peer tends to select a rarest piece to

make itself more attractive to others [Lilja Fjeldsted, 2005]. On the other hand, it ex-

pects to queue the requests for a selected piece at each neighbor to fully utilize others’

bandwidth [TheoryOrg, 2004]. Unfortunately, the requests for a selected piece are not

always spread over multiple neighbors. For the sake of low memory consumption and

efficient bandwidth usage, we suggest that a peer separates queued pieces into two

groups – rational and sub-rational, and keeps a ratio between them to dynamically

control the size of request queue.

Our primary experimental results show that the proposed algorithms can achieve

both individual good and social good. The download time of an under-reporter will

increases 21.8%, if it is credited and punished by 20% neighbors. Compared with

rarest-first and random strategies, the utility-driven strategy decreases the average

download time by 41.8% and 35%, respectively. The revised queuing algorithm out-

performs the scatter algorithm [Lilja Fjeldsted, 2005] by saving 62.3% average down-

load time.

The rest of the Chapter is organized as follows. Section 3.2 describes the goals

of this work. Section 3.3 provides a new insight into under-reporting. Section 3.4

designs a distributed credit method to prevent under-reporting. Section 3.5 considers

various factors in piece selection, and shows rarest-first may fail to achieve its design

goal. Section 3.6 proposes a utility-driven strategy to shorten the download time of

peers. Section 3.7 revises the scatter algorithm to resolve the dispute in piece queuing.

Section 3.8 presents experimental results of the proposed algorithms.

44

3.2 Goals and assumptions

In this section, we describe the goals – individual good and social good, and make

some reasonable assumptions – rational peers and a fair BT protocol.

The BT system can be viewed as a market where peers exchange their pieces with

one another. A peer is interested in a neighbor, if the neighbor has at least one piece

that it does not have. A peer’s interest in one of its neighbors is based solely on

what pieces that neighbor claims to have. Since a peer sends only to those interested

in it, and equivalently, receives only from those in whom it is interested, the term

interest reflects piece supply vs. piece demand. The probability of piece sharing will

increase, if all peers can maximize the number of neighbors who are interested in

them. We decompose our goal of this work into two subgoals. Our preliminary goal

is to maximize neighbor interest. Our ultimate goal is to achieve both individual

good and social good.

We assume that all peers are rational, that is, they are smart enough to predict

others’ decisions, and behave to garner maximum neighbor interest in a unit cost.

We further assume that the BT protocol is fair, where the incentive mechanism is

well designed, such that peers can get more if they upload more. Though the current

incentive mechanism – unchoking, is not perfectly fair [Levin et al., 2008], some of

our discussions are still based on it, because it is widely deployed. We do not assume

cooperative peers, that means, peers can choose either cooperative or noncooperative

strategies. Yet, we would like to point out that individual maximization may not lead

to socially optimal outcome [Fudenberg and Tirole, 1992]. To achieve social good,

peers should cooperate instead of compete.

45

3.3 Study of piece revelation

In this section, we describe possible strategies that can be used for piece revelation,

and provide a game-theoretical analysis to explain why the BT system is vulnerable

to under-reporting.

3.3.1 Piece revelation strategies

Generally, a peer has three strategies to reveal pieces to neighbors: over-reporting,

full-reporting and under-reporting (including non-reporting). According to the BT

protocol, a peer should honestly disclose all its pieces so as to make others clearly know

the rarity of pieces, called fully-reporting. However, a selfish peer has incentive to

strategically manipulate others into helping it download faster. To prolong neighbor

interest or keep neighbors interested in it, a selfish peer can exaggerate the pieces

it has, called over-reporting, or hide some pieces it has, called under-reporting. In

economics and contract theory, these strategic manipulations can be characterized

by information asymmetry where some parties have an information advantage over

others [Fudenberg and Tirole, 1992].

Over-reporting can be easily detected, because a peer cannot respond to the re-

quests for the pieces that it falsely claimed. Compared with over-reporting, under-

reporting works more stealthily. A selfish peer only reveals a piece to a neighbor

when the neighbor is going to lose interest. As providing a neighbor with a rare piece

would make the neighbor potentially removing some interest from it, it reveals the

most common piece it has that the neighbor does not. Experimental results [Levin

et al., 2008] have shown that under-reporting will cause 12% overall performance loss

when it becomes widespread.

46

Although previous work [Levin et al., 2008] has revealed that under-reporting is

a potential threat to BT’s fairness and performance, some questions are left unan-

swered: Why is under-reporting degrading overall performance? What kind of swarms

are more vulnerable to under-reporting? In the following sections, we provide some

answers to above questions through a game-theoretical analysis.

3.3.2 Under-reporting in heterogenous swarms

We design a two-player game to show that under-reporting causes more overall

performance degradation in the heterogenous swarm than in a homogeneous swarm.

In such a game, players (peers) a and b upload their pieces to another peer `. Each

player has two strategies Fully report and Under-report. If a player plays Fully report,

it reveals all its pieces to `. One the other hand, if the player plays Under-report,

it won’t reveal the rarest piece until ` has completed the most common piece. Both

players want to maximize their payoffs in terms of `’s interest measured in time slots.

As shown in Figure 3.1, a has pieces 1 and 3, b has pieces 2 and 3. If a and b play

Under-report, they will reveal the most common piece 3 first.

Without loss of generality, we consider two cases. In Case A, b has the same upload

speed as a. Assume that the upload speed for each player is one piece per time slot, we

show players’ payoffs of Case A in Figure 3.2. We then have three observations. 1) For

both players, Under-report strictly dominates Fully report, called dominant strategy.

Therefore, (Under-report, Under-report) is a strict Dominant Strategy Equilibrium

which is a set of strategies in which every player is playing a dominant strategy.

2) Under-report could make a player gain some extra interest from `, because the

player is possible to upload some pieces that should be uploaded by its opponent. For

47

Fig. 3.1: An upload processes, showing that a and b upload to `.

example, if both a and b play Fully report, a can upload a half of piece 3. However,

if b changes its strategy to Under-report, a has no chance to upload that piece. 3)

The outcome of (Under-report, Under-report) is the same as that of (Fully report,

Fully report). This implies that the Under-report strategy may have a limited effect

on overall performance in homogeneous swarm where players have similar upload

speeds.

In Case B, b has a lower upload speed than a. Assume that b is half of a, we

illustrate players’ payoffs of Case B in Figure 3.3. We then have two observations.

1) Under-report is a weakly dominant strategy for a, while it is a strictly dominant

strategy for b. As we can see that if b plays Fully report, a is indifferent between

playing Under-report and playing Fully report. But, a never plays Fully report because

it is rational and knows that b will never play Fully report. 2) The outcome of (Under-

report, Under-report) is not good for the high-speed player, which could result in a

48

Fig. 3.2: The payoffs of Case A where b is equal to a in the upload speed.

degradation of overall performance, because each peer would spend more time on

downloading from the low-speed players. For example, `’s download time increases

from 2 to 8
3
.

Fig. 3.3: The payoffs of Case B where b is half the upload speed of a.

Within the game theoretic analysis, we can draw some useful conclusions. 1)

a rational player always plays Under-report. 2) Under-report is a non-cooperative

strategy that could enhance peer’s competitiveness. However, the non-cooperative

49

equilibrium does not necessarily mean the best payoff for each player. 3) Under-

report may degrade overall performance in a heterogeneous swarm where peers have

different upload speeds.

3.3.3 Under-reporting in large swarms

We use an n-player game to illustrate that peers are more likely to adopt under-

reporting (or non-reporting) when swarm size becomes larger. In this game, n players

know each other in a swarm (a fully connected swarm of n peers). Each player has

some pieces that others do not have, and would like to share pieces with others but

prefers that someone else reports its pieces. Suppose each player attaches the value

v to a piece being reported (thereby the piece being shared), and bears a cost c of

reporting the piece. The value v could represent the prolonged interest for the reporter

(it uploads to others), or a newly complete piece for others (they download from the

reporter). The cost c could state the bandwidth consumption of broadcasting have

messages and the potential risk of losing others’ interest. We assume v > c > 0.

Player i has two strategies, Report and Not Report, where ∀i ∈ {1, 2, ..., n}. The

payoff of player i, ui, is defined as follows:

• ui(Report) = v − c

• ui(Not Report, at least one other player reports) = v

• ui(Not Report, none of the other players report) = 0

Figure 3.4 illustrates players’ payoffs of a two-player game. We have two pure-

strategy Nash equilibria, where one player plays Report and the other plays Not report.

Both of them are asymmetric, where different players play different strategies. For the

50

n-player game, we have n pure-strategy Nash equilibria, where a player i plays Report,

and the remaining n − 1 players play Not report. But again these are asymmetric,

and hence, do not resolve the issue of which of the players play Report. For the

symmetric equilibrium, we look for the one involving mixed strategies. Let pi be the

probability that player i plays Report. Since we are trying to find the symmetric

equilibrium, it must be true that at equilibrium all players will be reporting with the

same probability. Let that be p∗. Without lose of generality, we use the indifference

condition for player i.

ui(Reports) = ui(Not Report)

⇒ v − c = 0·Prob(no one reports) + v·Prob(someone reports)

⇒ v − c = v
(
1− Prob(no one else reports)

)
⇒ v − c = v

(
1− (1− p∗)n−1

)
⇒ p∗ = 1−

(c
v

) 1
n−1

Suppose that p∗ is a continuous function on n, the first derivative of p∗ with respect

to n is:

(p∗)′ = −
(
(
c

v
)

1
n−1 ln(

c

v
)
)
(

1

n− 1
)′

= (
c

v
)

1
n−1 ln(

c

v
)

1

(n− 1)2

51

Since v > c > 0, we have (p∗)′ < 0. This indicates that p∗ decreases when n increases.

If n is large, players tend to play Not report, because they are more likely to believe

that someone else will play Report.

Fig. 3.4: The two-player illustration of Peer’s Dilemma.

3.4 A distributed credit method

In this section, we design a distributed credit method to detect and punish under-

reporters, and propose some improvements to make the method more practical.

3.4.1 Method design and limitation

The basic idea of the distributed credit method is that three fully connected peers,

called a basic component, work together to credit each other. According to the BT

protocol, a peer will broadcast a have message to all neighbors once it has a new

piece, which contains the index of that piece. Thus, it is possible for us to detect

under-reporters by examining have messages. Figure 3.5 shows a credit process.

52

Peers a, b and c are fully connected. By exchanging neighborhood information, a

and b knows that c is an overlapping neighbor. To test whether c is honest or not, a

informs b of a recent piece that c requested from it. Upon receiving the have from c,

b relays it to a immediately. If the have arrives within a short time, a will increase

c’s credit. Assuming peers who are honest can earn credits more easily than peers

who are dishonest, by earning credits peers can signal their honesty to others. If a

peer has “ bad credit”, it will be punished by others. A similar idea can be found

in the signaling game [Fudenberg and Tirole, 1992], which is a non-cooperative game

with incomplete information. In the job market, new employee signal their capacity

for learning to prospective employers by finishing college.

Fig. 3.5: A credit process, showing that a and b work together to credit c.

The limitation of the credit method is that a basic component may not be formed

in a large swarm. Assume that there are n peers in the swarm, and each of them

has r random neighbors. According to the BT protocol, the connection between each

peer pair is bidirectional. In other words, given any two peers i and j, if i is in

the neighbor set of j, then j is in the neighbor set of i. While joining the swarm, a

53

peer initiates outgoing connections with random peers obtained from the tracker, and

then, waits for incoming connections from newly arriving peers. Suppose that there

are n peers in the swarm, and each peer has r outgoing neighbors. If j knows i from

the tracker, i will become an outgoing neighbor of j. The probability is r
n
. On the

other hand, if i knows j from the tracker, i will be an incoming neighbor of j. The

probability is (1 − r
n
) r
n
. Considering these two cases, the probability that there is a

connection between any two peers, p
, is r
n

+ (1 − r
n
) r
n
. Since peer connections are

independent from each other, the probability that any three peers are fully connected,

p4, is
(
r
n

+ (1 − r
n
) r
n

)3
. In most cases, p4 is higher than 0.084, because r is 50 by

default [Cohen, 2008, TheoryOrg, 2004], and n is less than 300 for more than 95%

swarms [Wang et al., 2009].

3.4.2 Method improvement and configuration

A possible improvement for the credit method is to allow peers construct a basic

component by the shallow flooding. If a peer, called creditor, wants to credit one of its

neighbors, called creditee, it will broadcast a query message with a small TTL (time

to live) and the creditee’s IP. The query will then propagate through the swarm hop

by hop till TTL has expired. When receiving a query, a peer, called intermediator,

will check whether the creditee exists in its neighbor list. If not, it will decrease TTL

by 1 and forward the query to all its neighbors. Otherwise, it will respond a queryhit

message which contains its own IP. The queryhit will route back to the creditor along

the inverse of the query path. With such a message, the creditor can communicate

with the intermediator, and then create a basic component. As shown in Figure 3.6,

a tries to credit c, and sends a query to d. Since d doesn’t know c, it forwards the

54

query to b. As b is a neighbor of c, it returns a queryhit. After receiving the queryhit,

a contacts b and starts the credit process. For fast and low-overhead transmissions,

a connects to b using UDP instead of TCP.

Fig. 3.6: The improvement for the credit method, showing that a, b and c form a
basic component.

We discuss the setting of TTL to reduce the overhead caused by the query flood.

We compute the number of peers hit by query at each hop by using the epidemic

model [Luo et al., 2009], and then determine the smallest value of TTL. The number

of peers hit by query at hop 1, h1, is p
N . The probability that a peer is not hit at hop

2 is (1−p
)h1 . Thus, the number of peers hit at hop 2, h2, is
(
1−(1−p
)h1

)
(n−h1).

By analogy, the number of peers hit at hop TTL, hTTL, can be written as:

55

hTTL =
(
1− (1− p
)hTTL−1

)
(n−

TTL−1∑
i=1

hi) (3.1)

Suppose that the query aims to hit at least nhit peers, the smallest value of TTL,

TTLmin, can be determined by the following inequalities:

nhit >

TTLmin−1∑
i=1

hi, nhit ≤
TTLmin∑
i=1

hi

3.5 Study of piece selection

In this section, we describe existing strategies that are used for piece selection.

We then consider various factors affecting piece supply and demand to explain why

rarest-first may fail to achieve its design goal of maximizing neighbor interest.

3.5.1 Piece selection strategies

There are two strategies that are commonly used in the BT protocol – random

and rarest-first. In a pieceless mode, a peer selects pieces in a random order, called

the random strategy, to quickly get as many complete pieces as possible so as to make

others have interest in it. In a normal mode, a peer selects pieces in a rarest-first order,

called the rarest-first strategy, to keep neighbors interested in it so that it can trade

pieces using unchoking. Our discussions will mainly focus on rarest-first, because

most of time for a peer to download is spent in the normal mode [Lilja Fjeldsted,

2005].

56

In marketing, a firm needs to increase its stock to meet the market demand.

Similarly, the primary goal of piece selection is to maximize neighbor interest in

order to make the piece supply meet the demand. Intuitively, the rarer the piece

that a peer selects, the more interest it can gain. A question is raised here: Can

rarest-first maximize neighbor interest? In the following sections, we show rarest-first

is not good enough for piece selection by considering various factors influenced piece

supply and demand.

3.5.2 Effect of download cost

Piece demand means not just how many peers download a given piece, but how

many peers download that piece at its cost, and how many peers would download

that piece if its cost changed. We give a simple example in Figure 3.7 to illustrate the

effect of download cost on neighbor interest. For simplicity, we assume that neighbors

are stable during the time period to select and download a piece, and, in each time

slot, a peer only downloads one piece from one of its neighbors. In Example A, peer `

downloads slowly from its neighbor a (a half piece per time slot), and the rarest pieces

are 1 and 3. ` prefers to select piece 3. Suppose all its neighbors select piece 1, ` will

lose all neighbors’ interest at the second time slot, because it cannot complete piece

3 before its neighbors complete piece 1. A rational choice for ` is piece 4 rather than

piece 1, because a complete piece can make it more attractive to others. Choosing

piece 4, ` can prolong a’s interest.

57

Fig. 3.7: Example A: ` will lose all neighbors’ interest if it selects the rarest piece 3.

3.5.3 Effect of neighbor surplus

Neighbor surplus, occurring when quantity supplied is more than quantity de-

manded, is an important factor for peers to consider when entertaining thoughts

about changing services that they offer. We give another example in Figure 3.8 to

show the effect of surplus pieces on neighbor interest. In Example B, we see that

pieces 3 and 4 are rarest. ` would like to choose piece 4. Suppose all its neighbors se-

lect piece 3, ` will lose a’s interest at the second time slot. An interesting observation

is that, if ` chooses piece 5 rather than 4, it will maintain mutual interest with all its

neighbors. The reason is that either b or c has 2 surplus pieces from ` (` can provide

2 pieces to either b or c), while a only has 1. For a further explanation, we quantity

a neighbor’s interest to ` by a utility function on the number of surplus pieces from

`. If ` selects piece 5, it will prolong a’s interest. The number of surplus pieces for a

will increase from 1 to 2. If ` chooses 4, it will garner interest from both b and c. For

58

each of them, the number of surplus pieces will go up from 2 to 3. The total utility

increases along with the number of surplus pieces. Usually, we do not look at the

total utility but at the marginal utility which denotes the increase in utility for one

more surplus piece. Following the law of diminishing marginal utility [Merton, 1990],

the marginal utility usually decreases as the number of surplus pieces increases. In

other words, the utility of selecting piece 5 may be higher than that of selecting piece

4. We will give a more detailed discussion in Section 3.6.1, after we define the utility

functions.

Fig. 3.8: Example B: ` will lose a’s interest if it selects the rarest piece 4.

3.5.4 Effect of piece rarity

One of the biggest advantages of rarest-first might be the “high” data availability

that avoids local rare pieces from appearing. Here’s an interesting question: why peers

should not emphasize too much on piece rarity when selecting a piece? We provide

some answers to this question as follows. From the protocol perspective, maximizing

59

interest, which depends on several factors (e.g., download cost, neighbor surplus and

piece rarity), could make unchoking work more effectively as well. Piece rarity is just

one factor – not all of them. From the bandwidth usage perspective, rarest-first may

waste limited upload bandwidths, because a rarest piece might not be available on a

majority of neighbors who have ability to serve. From the measurement perspective,

data availability might not be a critical problem in the BT system, though the system

could be highly dynamic. Many real-word measurements [Guo et al., 2005, Legout

et al., 2006, Yang and de Veciana, 2004] suggest that, in most swarms, there exists a

significant number of seeders. Many peers stay for a few hours after their download

is complete, and some peers even stay for days or weeks [Stutzbach and Rejaie,

2006]. From the overhead perspective, it is very costly to let each peer to have global

knowledge of others. To be practical, each peer makes its own decision based on a

limited view of the whole system. There is no guarantee that the local rarest piece

will be the global rarest one. Overall, piece rarity has an important role in piece

selection, but it might not be as important as what we used to believe. Rather than

always selecting the rarest pieces, we suggest that a peer selects them only if needed.

3.6 A utility-driven strategy

In this section, we propose a utility-driven strategy to maximize neighbor interest

based on the factors analyzed in the above section (e.g., download cost, neighbor

surplus and piece rarity). We also discuss rules for choosing utility functions, and

give some analysis of existing strategies.

60

3.6.1 Design of the utility-driven strategy

We assume that peer ` has N neighbors, and the file shared contains P pieces.

We use ni and pj to represent the i-th neighbor and j-th piece respectively, where

∀i ∈ {1, 2, .., N}, ∀j ∈ {1, 2, ..., P}. If ` is not choked by ni, ` will select and download

a piece pj if necessary. We use three terms, utility, cost and preference, to describe

how a utility-driven strategy is made.

Neighbor’s utility: as mentioned before, if ni does not have pj, ` can potentially

prolong ni’s interest by downloading pj. To determine whether ni has pj or not, we

define an indicator variable αi(pj):

αi(pj) =

 0 if ni does not have pj

1 if ni has pj

(3.2)

From the viewpoint of ni, there are two parameters, di and ei, that may affect ni’s

interest to `. 1) di is ni’s full download speed. The larger di is, the sooner ni loses

its interest in `. By observing the rate of have messages sent by ni, ` can roughly

estimate di. 2) ei stands for the number of surplus pieces for ni. The less ei is, the

more likely ni becomes uninterested in `. By considering these two parameters, we

simply define ni’s utility function on ei as a power function.

Ui(ei) = −di
ei

(3.3)

By Equation 3.3, we can measure ni’s interest to `. We stress that this utility function

61

can be re-defined according to different application requirements. We will discuss the

rules for choosing them in Section 3.6.2. Suppose that ni does not have pj, namely,

αi(pj) = 0, ei will increase by 1, if ` downloads pj. The marginal utility MUi(ei) can

be calculated as:

MUi(ei) =
di

ei(ei + 1)
(3.4)

From Equation 3.4, we see that an additional ei provides smaller and smaller increases

in utility (diminishing marginal utility).

Download cost: once ` selects pj, it will split the piece into Sp
Sb

blocks, where Sp

and Sb represents the size of piece and that of block, respectively. Then, ` requests

blocks from the neighbors who have pj and unchoke it. Here, we define another

indicator variable βi.

βi =

 0 if ni chokes `

1 if ni does not choke `
(3.5)

As blocks can be queued and downloaded in parallel, it is difficult to estimate the time

cost to download pj, denoted as C(pj). Roughly speaking, there are three parameters,

bi(·), bi(pj), and ui, that may have some effects on C(pj). 1) bi(·) is the number

of blocks queued at ni. Before getting a new block from a neighbor, ` needs to wait

responses for all blocks queued at that neighbor. 2) bi(pj) denotes the number of

blocks from pj assigned to ni. 3) ui represents ni’s upload speed to `. We capture

the minimum C(pj) as follows:

62

C(pj) = min
(
max

{
αi(pj)βiSb

bi(·) + bi(pj)

ui

})
s.t.

N∑
i=1

bi(pj) =
Sp
Sb

and ∀i : bi(·) ≤
Sp
Sb
P (3.6)

This is a parallel scheduling problem which is known as a NP problem [Fogel, 1993].

In this work, we simplify the calculation of C(pj) in order for easy implementation

and real-time piece selection. In particular, we ignore the queued pieces, and assume

uniform block assignment, namely, bi(·) = 0, and bi(pj) = Sp

Sb
∑N
i=1 αi(pj)βi

. Then, we

let C(pj) to be the average download cost:

C(pj) =
Sp∑N

i=1 uiαi(pj)βi
(3.7)

Peer’s preference: a peer’s utility is associated with utility functions of all its

neighbors, as interest from each individual neighbor is the basic unit for aggregating

to its utility. This is very close to the concept of social welfare in welfare economics.

We define `’s utility U`(pj) as:

U`(pj) =

∑N
i=1

(
1− αi(pj)

)
MUi(ei)

C(pj)
(3.8)

In Equation 3.8, we consider both download cost and neighbor surplus. By considering

the download cost, we can speed up piece completion time. Note that the most

common piece may not be the one with the lowest cost, if peers upload at different

63

speeds. By considering the neighbor surplus, we can achieve a win-win cooperation

between a peer and its neighbors. For the peer, it is less likely to be choked, because

it can continuously contribute its upload. For the neighbors, most of them can find

what they need from the peer. Thus, all peers can benefit from selecting the piece

that maximizes U`(pj).

Given any two pieces pj and pk for j 6= k, if U`(pj) > U`(pk), ` prefers pj to pk,

denoted as pj � pk. If U`(pj) = U`(pk), ` is indifferent between pj and pk, denoted as

pj ∼ pk. In such a case, ` can select either of them.

Examples: we use examples discussed in Section 3.5 to show that a peer could

make a rational choice if it employs the utility-driven strategy.

In Example A, we know that ua = 1
2
, and ub = uc = 1. Assume ` only downloads

from one of its neighbors, we have C(p3) = 2 and C(p4) = 1. If ` selects p3, it will

gain interest from b and c. We get U`(p3) =
2

1 · 2
2

. If ` chooses p4, it will attract a’s

attention. We have U`(p4) = 1
1 · 2 . Thus, U`(p3) = U`(p4), and p3 ∼ p4. That means `

can choose either of them. But, ` will definitely choose p3, if it employs rarest-first.

In Example B, we can see that ` has two pieces, p2 and p3. Since it already has

p2, a needs p3 only. Other two neighbors need both p2 and p3. Thus, we have ea = 1,

eb = ec = 2. Suppose C(p4) = C(p5) = 1, if ` selects p4, it will become more attractive

to b and c. Then, we have U`(p4) = 2 1
2 · 3 . If ` selects p5, it will keep a interested. We

get U`(p5) = 1
1 · 2 . Therefore, U`(p5) > U`(p4), and p5 � p4. ` will select p5, which is

the result expected.

64

3.6.2 Rules for choosing utility functions

We provide a guide to choosing utility functions based on function properties.

When a peer cares more about data availability, it can set Ui(ei) to be a function

with slowly diminishing MUi(ei) (e.g., Ui(ei) = ei). In this way, αi(pj) will play an

important role in U`(pj), which reflects the rarity of pieces. The selected pieces will

tend to be those that appear least frequently in bitfields. When the peer cares more

about neighbor interest, it can set Ui(ei) to be a function with rapidly diminishing

MUi(ei) (e.g., Ui(ei) = −e−1i or Ui(ei) = −e−2i). In doing so, ei will become a main

parameter in U`(pj), which is the quantity of surplus pieces. The selected pieces will

be biased to those that are likely to be requested in the future. To balance the two, a

peer can choose a function with moderately diminishing MUi(ei) (e.g., Ui(ei) = e0.5i

or Ui(ei) = log(ei)). As mentioned earlier, we should emphasize more on neighbor

interest, because maximizing interest is the prime goal of piece selection.

3.6.3 Analysis of existing strategies

We firstly look at the utility functions chosen by rarest-first and random, re-

spectively. Assume that the download cost for each piece is constant. The rarest-

first strategy always selects the least common piece. Therefore, we have U`(pj) =∑N
i=1(1− αi(pj)), namely, MUi(ei) = 1. We can simply set Ui(ei) = ei. The random

strategy treats all pieces equally. Hence, we get U`(pj) = 0, that means, MUi(ei) = 0.

We can let Ui(ei) = 0. Observing these utility functions, we find that both rarest-

first and random pay little attention to neighbor surplus, because their MUi(ei) is

constant rather than diminishing. We also note that random rarely considers piece

rarity, because its U`(pj) is also constant.

65

We then discuss the download cost to a selected piece in the two strategies. Assume

that ` has no piece; all neighbors unchoke `, and upload with an equal speed. The

download cost of the rarest piece is max
{ Sp∑N

i=1 αi(pj)

}
, while that of a random one is∑P

j=1
Sp

P
∑N
i=1 αi(pj)

. Compared with the rarest piece, the random one may have a lower

download cost.

Through the above analysis, we show that the utility-driven strategy covers both

rarest-first and random, which can make the protocol more clear and flexible.

3.7 Study of piece queuing

In this section, we describe the conflict in piece queuing, and give a possible fix

to address the conflict.

3.7.1 A conflict in piece queuing

The design of piece queuing algorithm is still under dispute [TheoryOrg, 2004]. A

peer tends to select a least common piece for more interest from neighbors, while it

expects to queue the requests for a selected piece at each neighbor for the better use

of bandwidth. If the number of queued requests is configurable, it is not possible to

assume that requests for a selected piece are always spread over multiple neighbors.

The scatter algorithm suggests that a peer maintains a queue of blocks to be requested.

Such an algorithm is simply a matter of going through the following steps:

1. When a neighbor connection needs to queue a new request, a peer will first

search through the request queue for the requests that can be satisfied by the

neighbor.

66

2. If none can be found, it will select a piece using random or rarest-first, and

then, divide the selected piece into requests and add them to the request queue

and finally select one of the newly added requests from the request queue.

A flaw in the algorithm is that a peer may still fail to find a request that can

be satisfied by the certain neighbor after step 2. Even though it can finally find one

(assume the size of request queue is very large), the peer cannot predict how many

piece will be added into the request queue. Figure 3.9 shows an example of how the

scatter works. We see that b and c are uploading piece 3 to `, while a is waiting for

the requests from `. If ` uses rarest-first, it will queue rarest pieces 2 and 4 before

piece 1, which are not available on a. We believe that it is not reasonable to insert

too many pieces at a time, because, as time goes by, the queued pieces may become

suboptimal to download. Besides that, the more pieces are queued for downloading,

the more memory is allocated to incomplete pieces.

3.7.2 A revised queuing algorithm

We revise the scatter algorithm to address the conflict in piece queuing. We

suggest that, in step 2, a peer directly selects a piece that the neighbor has. Then,

no matter what piece selection strategy is used, we can classify queued pieces into

two groups: rational and sub-rational. Rational pieces are selected from those are

available on at least one neighbors, while sub-rational pieces are selected from those

are available on the certain neighbor. By adjusting the ratio between the two, a peer

can dynamically control the number of queued pieces. In particular, it can scan the

request queue before step 1, and add several rational pieces if needed. Note that

the maximum number of queued pieces is bounded by that of unchoked neighbors.

67

For example, if the ratio is set to 1, the maximum number of queued pieces will not

excess two times that of unchoked neighbors. Figure 3.9 illustrates how the revised

algorithm works. We can see that, if piece 3 is rational, ` will only queue piece 1

which is available on a.

The revised algorithm ensures fast piece completion time because of the efficient

use of neighbor bandwidths. In addition, it reduces the memory allocated to incom-

plete pieces, and satisfies the real time requirement in piece selection, because the

number of queued pieces is not only configurable but also controllable.

Fig. 3.9: The queuing process, showing that ` can reduce memory consumption by
queuing piece 1.

3.8 Performance evaluation

In this section, we evaluate the effectiveness and performance of the proposed

algorithms through experiments. Our experiment results show that the proposed

algorithms can achieve both individual good and social good when compared with

68

previous well-known ones (e.g., rarest-first, random and scatter).

3.8.1 Experimental setup

We implemented a java-based BT client referring to [Lilja Fjeldsted, 2005, The-

oryOrg, 2004], and modified it to realize the credit method, utility-driven strategy

and revised queuing algorithm. We decide to implement a client rather than use an

existing one for the following reasons: 1) We want to know more about both the

BT protocol and technical details. 2) Some algorithms in mainstream clients (e.g.,

CTorrent and Vuze) are different from what specified in the BT protocol, which may

affect the comparison results. We upload our source code to FTP at [Luo, 2010] for

research and testing purposes.

We run all our experiments in a controlled environment consisting of 4 hosts. Each

host has 1.86GHz Intel Core 2 CPU, 2 GB RAM, and 1 GigE connection. One host

installs a local tracker. Each host runs 4 BitComet clients [BitComet, 2009] and 30

java-based clients. The BitComet clients acted as initial seeders. Unless otherwise

specified, we use the following default parameters. Each peer has up to 10 neighbors,

and uploads at 128KB/s. Peers share a 20MB file which is fragmented into 128KB

pieces. The maximum size of the request queue is 10 pieces, namely, 80 blocks to be

requested. Each peer leaves the swarm as soon as it has completed its download. Each

point in the figures that follow represents the average over at least 10 runs, and error

bars denote 95% confidence intervals. When comparing with rarest-first or random,

we let Ui(ei) = −e−1i for utility-driven. Experiments on a large-scale platform or the

PlanetLab testbed will be our future work.

69

3.8.2 Effectiveness of the distributed credit method

We start to show that the credit method increases the download time of under-

reporters. We randomly choose a peer to under-report its pieces. Each peer randomly

selects a subset of neighbors to credit their honesty. Thus, each peer has a probability

of being credited by another peer. If a peer suspects that a neighbor under-reports its

pieces, the peer will choke that neighbor. Figure 3.10 shows that the download time

of the under-reporter increases with the probability of being credited. For example,

the download time increases by 21.8% when the probability increases from 0 to 0.2.

The under-reporter downloads slower, because it is more likely to be detected and

punished by others if the probability is higher.

Fig. 3.10: Download time of under-reporters.

We then measure the overhead of the credit method caused by the query flood.

We set the TTL to 2. By Equation 3.1, we know that the numbers of peers hit

at hop 1 and 2 are 10 and 73, respectively. In other words, the broadcast of query

70

covers 69% peers with TTL of 2. Figure 3.11 illustrates that the number of overhead

messages increases along with the probability of being credited. When the probability

increases from 0.2 to 0.4, the number of overhead messages per peer is doubled. To

punish under-reporters to the greatest extent while maintaining low overhead, a peer

should credit each neighbor with a high probability, and broadcast query with a small

TTL.

Fig. 3.11: Number of overhead messages.

3.8.3 Performance of the utility-driven strategy

We begin to show that the utility-driven strategy reduces the download time of

an individual peer. The first experiment runs in the system consisting predominately

of rarest-first. This experiment requires 6 runs. In each run, all but one peer start

at the same time and run rarest-first. The remaining peer starts 30 seconds after

all the other peers, and adopts either random or utility-driven. From Figure 3.12,

71

we can see that utility-driven performs better than the other two strategies. For

example, compared with rarest-first and random, utility-driven reduces 37.3% and

11.3% individual download time, respectively. The second experiment runs in the

swarm where all peers use the same strategy. This experiment also consists 6 runs.

In each run, all peers run the same strategy and start at the same time. After each run,

all peers change their strategy or utility function, and then, continue the experiment.

Figure 3.13 shows that there is an obvious decrease of individual download time, when

all peers adopt utility-driven. As we can see that the individual download time for

utility-driven is 41.8% and 35% lower than that for rarest-first and that for random,

respectively. The main reason is that neither rarest-first nor random considers the

download cost that may result in slow piece completion time and inefficient bandwidth

usage.

Fig. 3.12: Comparison of individual performance in the swarm where majority of
peers use the rarest-first strategy.

We then illustrate that the utility-driven strategy saves average download time

72

Fig. 3.13: Comparison of individual performance in the swarm where all peers use
the same strategy.

of all peers. In the first experiment, we assume all peers adopt the same strategy.

Figure 3.14 shows the power of maximizing neighbor interest. As we can see that

utility-driven saves 57% and 41.3% system-wide download time when compared with

the other two strategies. We also note that random outperforms rarest-first because

of the better randomization of available pieces and the faster completion time of

selected pieces. This is one possible reason why the updated official protocol [Cohen,

2008] suggests that peers generally download pieces in a random order. In the other

experiment, we vary the ratio between utility-driven and rarest-first. Figure 3.15

depicts that the trend of average download time is a clear downtrend when utility-

driven becomes more popular. When the ratio increases from 0.2 to 0.4, the average

download time for utility-driven and that for rarest-first decrease by 14.2% and 17.7%,

respectively. Another notable observation is that utility-driven is always better than

rarest-first. When the ratio is 0.2, the average download time for utility-driven is

73

almost a half of that for rarest-first.

Fig. 3.14: Comparison of overall performance.

We conclude that an individual peer can benefit from utility-driven. It is a nature

that a single peer who uses utility-driven can perform well in a rarest-first dominated

swarm. Moreover, the strategy is incrementally deployable. The more widely it

deployed, the better overall performance can be achieved.

3.8.4 Performance of the revised queuing algorithm

We firstly show that the revised queuing algorithm saves the average download

time of all peers. As mentioned before, the revised algorithm will add several rational

pieces to the request queue, if the ratio between rational and sub-rational pieces is

lower than a threshold. We vary the threshold ratio from 0 to 3. Figure 3.16 illustrates

that, no matter what piece selection strategy is used, the revised algorithm performs

better than scatter. When all peers employ rarest-first, the revised algorithm reduces

74

Fig. 3.15: Effect of strategy ratio on overall performance.

62.3% system-wide download time. Another interesting observation is that the overall

performance decreases when more rational pieces are selected. The reason is that

each peer scatters available neighbor bandwidths more widely on multiple pieces. To

benefit the whole system, it is necessary for each peer to queue several rational pieces.

We then depict that the revised queuing algorithm reduces memory allocated to

incomplete pieces. We check the request queue of each peer every second. Figure 3.17

shows that the revised algorithm significantly reduces the average number of queued

pieces. When the threshold ratio is 1 and all peers use rarest-first, the average number

of queued pieces decrease by 44.4%. We suggest that the threshold ratio can be 1 or

2, because a bigger threshold ratio may lead to higher memory consumption.

We conclude that the revised queueing algorithm improves overall performance

while ensuring low memory consumption.

75

Fig. 3.16: Effect of threshold on overall performance.

Fig. 3.17: Comparison of memory consumption.

76

Chapter 4

Modeling and Containing the

Adaptive BitTorrent Worm in

BitTorrent-like Systems

4.1 Overview

In this Chapter, we present a powerful BT worm, called Adaptive BitTorrent worm

(A-BT worm), to identify potential security problems in P2P systems. Such a worm

finds new victims by sending forged requests to a tracker. To reduce its abnormal

behavior, it sends out only one forged request within a defined time window. By

adjusting the time window size, it can adaptively control its propagation speed. The

A-BT worm is a potential threat to BT-like systems for it has the following properties:

• Timeliness: it has the ability to locate the most recent active peers even in a

highly dynamic BT system.

77

78

• Feasibility: it is easy to be implemented by taking advantages of the high

penetration of the BT protocol.

• Adaptivity: it can significantly reduce its abnormal behavior by adaptively

adjusting its propagation speed.

We build a hybrid model by combining the fluid model with the epidemic model

to estimate the damage caused by the worm. The fluid model evaluates the number

of peers that could be infected in a swarm. The epidemic model measures the number

of peers that have been infected. Our model shows the effect of system parameters

on the worm propagation.

We propose a statistical method to automatically detect the worm from the tracker

by estimating the variance of the time intervals of requests. A normal peer usually

requests at a stable interval, while an infected peer may request at a variable interval.

To slow down the spread of the worm, we design a strategy in which the tracker

returns a biased list of peers (e.g., more secured peers) when recieves a request.

Our simulation results show that our hybrid model precisely depicts the worm

damage (number of infected peers in a swarm). The A-BT worm can propagate as

fast as the topological P2P worm, more importantly, it is unaffected by the P2P

topology. Our statistical method is effective to detect the worm, though the worm

can minimize its abnormal behavior.

The rest of this Chapter is organized as follows. Section 4.2 reviews the related

work, and shows some protocol details. Section 4.3 describes how the A-BT worm

propagates itself and adaptively adjusts its propagation speed. Section 4.4 builds a

hybrid model to measure the worm damage. Section 4.5 proposes a statistical method

and a safe strategy to detect and contain the worm. Section 4.6 validates the hybrid

79

model through simulations, and compares the A-BT worm with the topological P2P

worm.

4.2 Related work and protocol details

In this section, we review the pervious work related to P2P worms, and show some

details of the peer-to-tracker communication in the BT protocol.

4.2.1 Related work

P2P worms find targets and propagate themselves in P2P systems. To throt-

tle against P2P worms, we need to investigate them in terms of: 1) target finding

strategies, 2) worm modeling, and 3) worm containment.

Target finding strategies: P2P worms have various ways to locate potential

victims in P2P systems. Three strategies are commonly used for target finding.

Passive : passive P2P worms, such as Gnuman worm [Vamosi, 2001] and Banjamin

worm [Singer, 2002], attach themselves to shared files and wait for potential victims

to discover and download them. Topological : topological P2P worms propagate

through P2P neighbors. These worms can be further classified into two categories:

reactive and proactive. 1) Reactive worms, also called contagion worms, propagate

parasitically along with normal communications. 2) Proactive worms achieve much

faster propagation speed by directly connecting to other peers, whose addresses were

cached after previous file requests and sharing. Hit list : some open source P2P

clients, such as Gnutella and BT, can be explored to generate a hit list. The modified

clients can crawl P2P systems actively to discover as many hosts as possible.

80

P2P worm modeling: modeling P2P worms can help us to understand factors

affecting the spread of P2P worms. Most existing models originate from the epidemic

model, but they have different focus. Propagation process : some models focus on

how a worm propagates itself. Two states, susceptible and infected, are considered in

a simple passive P2P worm model [Ma et al., 2006]. Two additional states, exposed

and recovery, are added in SEI and SEIR models [Yao et al., 2006]. TF-SEI (Two-

Factor-SEI) model considers a quarantine state for anti-worms. Both on-line and

off-line behavior are discussed in [Thommes and Coates, 2006]. Propagation envi-

ronment : other models focus on where a worm propagates itself. K. Ramachandran,

et al. [Ramachandran and Sikdar, 2006] argue that the assumption in [Thommes and

Coates, 2006] may not be true in Gnutella-like systems that a vulnerable peer can be

infected by any of infected ones. J. Luo, et al. [Luo et al., 2009] models a dynamic

hit list worm which only propagates in BT-like systems.

P2P worm containment: P2P worm containment methods aims to slow down

the worm propagation. There are three strategies for P2P worm containment. Self-

defense infrastructure : self-defense infrastructure is a secure P2P architecture

that can prevent or isolate P2P worms. Two methods are proposed to design such

architecture in P2P networks. 1) Guardian nodes can be set to automatically detect

P2P worms [Zhou et al., 2005]. Though simple it is, this method is hard to be imple-

mented because the wide scale deployment of guardian nodes is resource consuming.

2) Software diversity can also be used to slow down P2P worms. In Verme [Freitas

et al., 2007], all peers are divided into different groups, called islands, according to the

type of vulnerabilities. To help peers select neighbors, D. McIlwraith, et al. [Douglas

et al., 2008] employ a server, called di-jest server, to compute the distance of each

81

peer pair which corresponds to the infection probability of a worm. Y. Zhou et al.

[Zhou et al., 2006] give a model to study the effect of software diversity on P2P worm

propagation. However, these methods are not practical, because software developers

may not willing to provide several clients for the same protocol. Worm-anti-worm :

the anti-worm spreads itself using the same mechanism as the malicious worm [Yao

et al., 2008]. This method has some obvious limitations. One is that the spread of

anti-worm consumes a lot of bandwidth. The other is that most computer crime laws

do not distinguish “worms” from “anti-worms”. Feedback control : the feed back

scheme [Wu and Feng, 2006] slows down P2P worms by delaying a peer’s request

when the peer tries to make connections at a high rate. Unfortunately, in P2P sys-

tems, a normal peer may also attempt to connect a large number of peers for a high

download rate. It is difficult to distinguish the abnormal behavior from the normal

one.

4.2.2 Peer-to-tracker communication

To exploit the BT protocol for P2P worm design, we are interested in the details

of the communication between a peer and a tracker. The HTTP GET request sent by

a peer contains a tracker’s URL and some CGI parameters. URL and parameters are

separated by ”?”. Parameter and value are separated by ”=”. Different parameters

are separated by ”&”. Figure 4.1 illustrates an example of a request:

Note that only the first three parameters are indispensable. info hash, is the

hashed value of the information field in a .torrent file. A tracker can classify peers into

different swarms according to this parameter. peer id is the ID of a peer and param-

eter port defines its port used for file sharing. Another useful parameter, numwant,

82

Fig. 4.1: An example of the HTTP GET request.

indicates the number of peers to be returned from a tracker to a requesting peer. Its

default value is 50, but it could be much larger. For example, it is 200 in BitComet,

which is a popular BT client.

After receiving a request, the tracker sends back a response that includes: a list

of active peers (peer id, IP and port), number of seeders, number of leechers, and

time interval between two requests. The sum of seeders and leechers is the size of a

swarm, showing the total number of peers sharing a particular file. The time interval

between two requests is 20 minutes. If the tracker doesn’t receive a request from a

peer within 30 minutes, it will assume that the peer has left the swarm, and delete

the corresponding record.

An interesting observation is that the tracker distinguishes different peers depend-

ing on their IP and port rather than peer id. In other words, a tracker will add a new

record only if it receives a request containing a new pair of IP and port.

4.3 A-BT worm design

In this section, we describe the strategies used by the A-BT worm to find next

targets and reduce abnormal behavior.

83

4.3.1 Target finding strategy

An A-BT worm finds potential victims in a BT system by mimicking a normal

client requesting a tracker. Figure 4.2 shows that peers Pa, and Pb sharing file 1 are

in swarm A. Peers Pc and Pd sharing file 2 and 3 are in swarm B and C, respectively.

Assume that Pa and Pb are vulnerable. Figure 4.2 illustrates the propagation of the

A-BT worm in swarm A, which contains the following steps:

1. The peer who initiates the worm propagation, called initiator, downloads a

.torrent file from a web server (e.g., a .torrent file related to file 1), which

contains a URL list of trackers.

2. The initiator contacts with a tracker known from the list by sending an HTTP

GET request.

3. The tracker responds to the request by returning a list of active peers who are

sharing file 1. For example, it returns a list containing information of Pa, such

as IP, port, and peer id.

4. After obtaining Pa’s information, the initiator forwards a worm copy to Pa. The

payload of the worm copy contains an HTTP GET string including URL, port,

and peer id. Note that peer id can be randomly generated, but port should be

the same with the one used by Pa. The reason is that a different port may

create a new record on the tracker.

After infected, Pa generates a forged request by using the HTTP GET string in

the worm payload, and then attempts to infect Pb by repeating steps 2, 3 and 4.

84

Fig. 4.2: The A-BT worm propagation in swarm A.

4.3.2 Adaptive speed control

An A-BT worm has the ability to adaptively adjust its propagation speed, which

makes itself more stealthy. If an infected peer generates more forged requests to the

tracker, it will find more victims and propagate faster, but will take more risk to

be detected. The total number of requests is a time-varying quantity, which can be

regarded as a contiguous-time signal. To justify the burst of received requests, the

tracker can sample the signal at a fixed time interval, called sampling period. The

sequence of samples can be represented by a function of a time index n. The tracker

can easily detect the worm by measuring the request rate of peers, and slow down

the worm by simply shutting down itself for a while or blacklisting suspected peers.

To reduce abnormal behaviors while maintaining a reasonable speed to propagate

worms, the infected peer delays a certain amount of time before sending a forged

request. As shown in Figure 4.3, it setups a fixed time window and requests the

85

tracker at random time within the time window. We name the worm using a fixed

time window as the regular BitTorrent worm (R-BT worm). Assume that a time

window covers W sampling periods, called window size, the probability β that an

infected peer generates a forged request within a sampling period is 1
W

.

Fig. 4.3: The adaptive speed control for the A-BT worm.

By borrowing some ideas from the network congestion control, the infected peer

adaptively and contiguously adjusts the time window size to control the worm speed.

Instead of keeping a fixed time window, it determines the next time window size

Wnext depending on the rate of being accessed by other infected peers, denoted as

Apre, within the previous time window Wpre. A high Apre indicates that a large

fraction of peers has been infected in the swarm. If Apre is smaller than a threshold

Ath, the infected peer decreases the time window size linearly. Otherwise, it increases

the time window size exponentially. Thus, we have:

Wnext = Wpre − φTlife, if Apre < Ath (4.1)

Wnext = ϕWpre, if Apre ≥ Ath (4.2)

where Tlife is the swarm lifespan [Guo et al., 2005], which can be viewed as a constant

for a particular swarm. φTlife represents the decreasing amount of the time window

86

size for 0 ≤ φ ≤ Wpre

Tlife
. ϕ is an increasing ratio of the time window size for ϕ ≥ 1.

Note that there is no requirement for the synchronization between infected peers and

the tracker.

From Figure 4.3, we can see that the n-th sampling period is separated into two

parts ρ and (1 − ρ) for 0 ≤ ρ ≤ 1. The probability that the infected peer sends a

forged request within the n-th sampling period β is ρ
Wpre

+ 1−ρ
Wnext

. During the interval

[n+ 1, n+Wnext − 1], we have β = 1
Wnext

.

The A-BT worm is different from the R-BT worm in that the probability β for

A-BT worm is determined by Equations 4.1 and 4.2, rather than a constant. In fact,

the R-BT worm can be regarded as a special case of the A-BT worm with φ = 0 and

ϕ = 1.

4.4 A-BT worm modeling

In this section, we firstly describe some terminology and notations used in our

model. We then formulate a hybrid model to display the propagation of the A-BT

worm in a swarm.

4.4.1 Terminology and notations

Before describing our model, we define some basic terminology and notations.

Figure 4.4 shows a complete classification tree of vulnerable peers during an infection.

The vulnerable peers are classified into two categories: infected peers, which are

vulnerable and infected, and uninfected peers, which are vulnerable but not infected.

The infected peers can be further classified into two categories: effective peers,

87

Fig. 4.4: The classification tree of vulnerable peers.

which are active propagating worms, and ineffective peers, which stop propagating

worms. This classification is based on an assumption that infected peers who leave

the swarm are not effective any more. Such an assumption can make the swarm size

predictable, and thus, simplify our model. All effective peers will eventually leave the

swarm and become ineffective. Based on whether they have a completed file or not,

we further group effective peers into two subcategories: effective seeders and effective

leechers.

The uninfected peers can be classified into two categories according to whether or

not they have been returned in a request: returned peers and unreturned peers. A

returned peer can be either a seeder or a leecher, called returned seeder or returned

leecher, respectively.

Figure 4.5 shows the class transition diagram of peers. Assume that there is no

delay for state transition. An uninfected peer will instantly become infected when

an infected peer locates it through the tracker. Similarly, a returned seeder (leecher)

will directly become an effective seeder (leecher). We suppose that the increasing

88

number of forged requests within the n-th sampling period is only related to the

number of effective peers at time index n. This assumption could be approximately

satisfied, if each newly infected peer has a large time window size. Since effective

seeders (leechers) are a part of seeders (leechers), they are possible to leave the swarm

and become ineffective immediately (complete their download and become ineffective

seeders). The notations used in our model are listed in Table 4.1.

Fig. 4.5: The transition diagram of peers.

4.4.2 A hybrid A-BT worm model

The challenge of A-BT worm modeling lies in measuring the lifespan of infected

peers in the highly dynamic BT system where peers join and leave the system fre-

quently. Our model combines two models: 1) a fluid model, which is amenable to

evaluate the number of peers that could be affected, and 2) an epidemic model, which

is used to measure the number of peers that have been infected.

89

Table 4.1: Parameters used in the A-BT worm model
L(t) number of leechers at time index t
S(t) number of seeders at time index t
T length of a sampling period
J [n] number of leechers that join a swarm within the n-th sam-

pling period
B[n] number of leechers that become seeders within the n-th

sampling period
D[n] number of seeders that depart from a swarm within the

n-th sampling period
L[n] number of leechers in a swarm at time index n
S[n] number of seeders in a swarm at time index n
N [n] total number of peers in a swarm at time index n
RL[n] number of returned leechers within the n-th sampling pe-

riod
RS[n] number of returned seeders within the n-th sampling period
EL[n] number of effective leechers at time index n
ES[n] number of effective seeders at time index n
I[n] total number of infected peers at time index n
∆L[n] changes of leechers in a swarm within the n-th sampling

period
∆S[n] changes of seeders in a swarm within the n-th sampling

period
∆EL[n] changes of effective leechers within the n-th sampling pe-

riod
∆ES[n] changes of effective seeders within the n-th sampling period
∆I[n] increasing number of infected peers within the n-th sam-

pling period
n0 initial time index of worm attack
λ0 initial value of peer arrival rate
τ attenuation parameter of peer arrival rate
µ uploading bandwidth
η mean upload utilization of leechers
γ rate at which seeders leave a swarm
α probability that a peer to be vulnerable
ω number of returned peers in a request
βi probability that the i-th infected peer generates a forged

request within the n-th sampling period

90

Following the idea of the fluid model proposed in [Guo et al., 2005, Qiu and

Srikant, 2004], we have:

J [n] =

∫ (n+1)T

nT

λ0e
− t
τ dt (4.3)

B[n] =

∫ (n+1)T

nT

µ
(
ηL(t) + S(t)

)
dt (4.4)

D[n] =

∫ (n+1)T

nT

γS(t)dt (4.5)

∆L[n] = J [n]−B[n] (4.6)

∆S[n] = B[n]−D[n] (4.7)

By Equation 4.6 and 4.7, we can obtain the number of leechers L[n] and the number

seeders S[n]. We focus here on the physical meaning of each parameter. The detailed

resolution of the fluid model can be find in [Guo et al., 2005]. The total number of

peers at time index n is given by:

N [n] = L[n] + S[n] (4.8)

We now derive how EL[n], ES[n] and I[n] change over time index n. Below we

compute the amounts, ∆EL[n], ∆ES[n] and ∆I[n], by which they change respectively

over a small sampling period after time index n. This will give us a set of difference

equations that together characterize the A-BT worm propagation.

• ∆I[n]: The number of uninfected peers in a swarm at time index n is αN [n]−

EL[n] − ES[n]. Since each peer in the swarm, no matter infected or not, has

91

an equal chance to be returned in a request, the probability that an uninfected

peer is not returned to any infected peer within the n-th time period is
(
1 −

min{N [n],ω}
N [n]

)∑EL[n]+ES [n]
i=1 βi . Whenever an uninfected peer is returned, it will be

infected immediately. By the epidemic model, ∆I[n] =
(
αN [n] − EL[n] −

ES[n]
)(

1−
(
1− min{N [n],ω}

N [n]

)∑EL[n]+ES [n]
i=1 βi

)
.

• RL[n]: The fraction of returned uninfected leechers in all returned uninfected

peers is proportional to that of uninfected leechers in all uninfected peers.

Hence, RL[n] = αL[n]−EL[n]
αN [n]−EL[n]−ES [n]

∆I[n].

• RS[n]: The ratio of returned uninfected seeders in all returned uninfected peers

is αS[n]−ES [n]
αN [n]−EL[n]−ES [n]

. We have RS[n] = αS[n]−ES [n]
αN [n]−EL[n]−ES [n]

∆I[n].

• ∆EL[n]: Recall that all returned leechers directly become effective leechers.

This increases the number of effective leechers by RL[n]. On the other hand,

some effective leechers may complete their download and become effective seed-

ers instantly. There are totally B[n] leechers who become seeders, and the

fraction of effective leechers in all leechers is EL[n]+RL[n]
L[n]

. Hence, the reducing

number of effective leechers is EL[n]+RL[n]
L[n]

B[n]. Combining these two numbers

and representing the gross change, we have ∆EL[n] = RL(n)− EL(n)+RL(n)
L(n)

B[n].

• ∆ES[n]: RS[n] returned seeders instantly become effective seeders. As discussed

above, there are EL[n]+RL[n]
L[n]

B[n] effective leechers who become effective seeders.

Whenever an effective seeder leaves a swarm, it becomes ineffective. Within

the n-th sampling period, there are D[n] seeders that leave the swarm, and the

fraction of effective seeders is ES [n]+RS [n]
S[n]

. Thus, there are ES [n]+RS [n]
S[n]

D[n] newly

ineffective peers. Combining these three numbers to represent the gross change,

92

we have ∆ES[n] = RS[n] + EL[n]+RL[n]
L[n]

B[n]− ES [n]+RS [n]
S[n]

D[n].

Thus, we have the following equations:

∆I[n] =
(
αN [n]−EL[n]−ES[n]

)(
1−
(
1−min{N [n], ω}

N [n]

)∑EL[n]+ES [n]
i=1 βi

)
(4.9)

RL[n] =
αL[n]− EL[n]

αN [n]− EL[n]− ES[n]
∆I[n] (4.10)

RS[n] =
αS[n]− ES[n]

αN [n]− EL[n]− ES[n]
∆I[n] (4.11)

∆EL[n] = RL[n]− EL[n] +RL[n]

L[n]
B[n] (4.12)

∆ES[n] = RS[n] +
EL[n] +RL[n]

L[n]
B[n]− ES[n] +RS[n]

S[n]
D[n] (4.13)

We should note that, in Equation 4.9, the parameter βi is essential to the worm

speed, which has been discussed in section 4.3.2. Finally, we add the incremental

variables and get I[n+1] = I[n]+∆I[n], EL[n+1] = EL[n]+∆EL[n]. The boundary

conditions for the set of equations above are: L[0] = ES[n0] = 0, S[0] = N [0] =

EL[n0] = I[n0] = 1.

4.5 A-BT worm detection and containment

Most existing defense methods may fail to detect and contain the A-BT worm for

the following reasons. The self-defense infrastructure methods [Douglas et al., 2008,

Freitas et al., 2007, Zhou et al., 2005, 2006] cannot slow down the worm because the

worm is not affected by the P2P topology. The feedback control approach [Wu and

Feng, 2006] is unable to detect the worm since the worm can adaptively adjust its

93

speed. Thus, there is clearly a need for finding a new way to defend against the A-BT

worm. In this section, we employ a statistical method to automatically detect the

worm from the tracker by investigating the variance of time intervals of requests.

The variance analysis, including the sample mean analysis, can be used to measure

the spread of samples, which has been widely used in many areas, such as seismic de-

tection and investment management in business. To estimate the request generation

rate of a peer, which may be greatly affected by the worm, we sample time interval

between two consecutive requests of the peer. As shown in Figure 4.6, the samples

represented as a chronological sequence {X[n]} can be viewed as discrete-time sig-

nals. In normal cases, the amplitude of signals is stable, because regular requests are

generated at a regular time interval (20 minutes), and the “background noise” (e.g.,

network delay) has little effect on the signal to noise ratio (SNR). However, when a

peer is compromised by the worm, the amplitude of the signal varies a lot, because

the forged requests may divide regular time intervals into some irregular short time

intervals. By measuring the similarity of the signal on multiple peers, we can estimate

the damage caused by the worm.

Assume that we have obtained M signals, and the signal length is N . The sample

mean of M signals is defined by:

X[n] =
1

M

M−1∑
m=0

Xm[n] (4.14)

We use the sample mean X[n] to denote a “reference” signal. The sample variance is

given by:

94

Fig. 4.6: An example of the sample sequence.

V ar(X[n]) =
M−1∑
m=0

N−1∑
n=0

(
Xm[n]−X[n]

)2
=

M−1∑
m=0

N−1∑
n=0

Xm[n]−M
N−1∑
n=0

X
2
[n] (4.15)

We transform the sample variance V ar(X[n]) into the range of [0, 1]. Then, the

normalized sample variance V ar′(X[n]) can be written as:

V ar′(X[n]) =
V ar(X[n])∑M−1

m=0

∑N−1
n=0 X

2
m[n]

= 1− M
∑N−1

n=0 X
2
[n]∑M−1

m=0

∑N−1
n=0 X

2
m[n]

(4.16)

When no attack occurs, V ar′(X[n]) will be close to 0. When the worm is widespread,

V ar′(X[n]) will become bigger. Thus, we can set a threshold to detect the worm. We

95

should point out that, in real cases, peers will request the tracker frequently, if they

do not have sufficient neighbors. The threshold setting should be based on some sta-

tistical results. Some advanced techniques can also be applied for the worm detection,

such as data mining, Fourier analysis, coherence analysis and wavelet analysis. With

these techniques, we can identify not only worm activities but also infected peers.

For the worm containment, the tracker can collect some useful information on

peers, such as the number of OS vulnerabilities and the version of the antivirus

software installed. This information could be easily obtained, because most antivirus

softwares provide the function of the vulnerability scanning. The tracker employs a

safe strategy to returns a biased peer set, rather than a random peer set, in response

to a request. The biased peer set, where peers have less OS vulnerabilities or have an

up-to-date antivirus software, can reduce the probability that an uninfected peer is

returned in a request. We believe that the safe strategy will not seriously affect the

fairness of uploading/downloading strategy in the BT system, because it is used only

when a worm attack is detected.

4.6 Simulation results

In this section, we firstly describe the environment and settings of our simulations.

We then setup several simulations to verify our hybrid model and detection method.

4.6.1 Simulation environment and settings

The study of the worm propagation in a real-world BT system may cause some

legal issues. We deploy our simulations on a powerful simulation platform developed

96

by University of Electronic Science and Technology of China. This simulation plat-

form has three components: 1) tracker : on one host, we setup a real-world tracker by

using MyBT server 1.0, which is a software to setup a BT server. 2) initial seeder :

on the same host, we install BitComet 0.93, which is a well-known BT download

software, and use the software to create a .torrent file. 3) simulated peers : on another

host, we install PeerSim [Jesi and Patarin, 2005], which is a java-based discrete-event

engine that can simulate hundreds of peers and observe their activities (e.g., arrivals,

departures, pieces exchange), and implement the basic BT protocol (e.g., unchoking,

rarest-first). Each simulated peer can communicate with the tracker and share real

pieces with both initial seed and other simulated peers.

For simplicity, we do not consider free-ridering [Barbera et al., 2005] in our sim-

ulations. In other words, all peers are willing to contribute their upload bandwidth.

We also do not strictly follow unchoking specified in the BT protocol. A peer simply

chokes those neighbors who do not upload any data within a time interval. We believe

that this change may have a very little effect on the results.

Since the piece transmission is resource consuming, we limit the maximum scale

of our simulation to 200 peers. We define the sampling period (1 cycle in PeerSim)

as the unit of time. Unless otherwise specified, the default settings in our simulations

are shown in Table 4.1.

In our simulations, we evaluate the changes in number of leechers L[n], number of

seeds S[n], number of effective leechers EL[n], number of effective seeders ES[n], and

number of infected peers I[n].

97

Table 4.2: Simulation settings of the A-BT worm
File size 15.6MB (500 pieces)
Number of initial seeds S[0] 1
Normalized maximum upload bandwidth µ 0.01 (5 pieces)
Normalized maximum download bandwidth 0.03 (15 pieces)
Number of neighbors of each peer 10
Initial value of peer arrival rate λ0 0.6
Attenuation parameter of peer arrival rate τ 300
Initial time index of worm attack n0 150
Rate at which seeds leave a swarm γ 0.08
Probability that a peer to be vulnerable α 0.8
Number of returned peers in a request ω 10
Mean upload utilization of leechers η 1
Time interval between two normal requests 100
Time window size W 50

4.6.2 Verification of the hybrid model

We compare the results of EL[n], ES[n] and I[n] from Equations with that from

simulations. Figure 4.7 shows that there exists a small gap between numerical results

and simulation results. The peak of effective seeds in the simulation result is around

60, while that in the numerical result is less than 40. We guess that the gap is mainly

caused by the uncertainty in the measurement of the complicated peer behavior in the

BT system. We further measure the mean upload bandwidth utilization of leechers

and seeders. From Figure 4.8, we can see that the upload bandwidth of seeds is fully

utilized at the beginning, because the initial seed is called upon to do much of the

serving when the swarm size is small. However, when more peers join the system,

the upload bandwidth utilization of seeders drops dramatically from 1.0 to 0.27. On

the other hand, the upload bandwidth utilization of leechers increases and arrives at

its first peak 0.56 at time index 129, which indicates that P2P serving becomes very

effective. We input the simulation results of L[n] and S[n] into the hybrid model, and

98

recompute EL[n], ES[n] and I[n]. Figure 4.9 shows that the numerical results match

with the simulation results very well.

Fig. 4.7: Model validation using parameters obtained from the fluid model.

4.6.3 Evaluation of the worm damage

We compare the A-BT worm with the topological P2P worm. From Figure 4.10,

we can see that both topological P2P worm and A-BT worm can infect around 140

peers in a swarm. This result indicates that the A-BT worm is as efficient as the

topological P2P worm. Another interesting observation is that the increasing rate of

effective seeders in topological P2P worm is slower than that in A-BT worm. One

reason is that, before infecting a certain peer, the topological P2P worm needs to

infect at least one neighbors of that peer. The A-BT worm, however, can infect any

peer in the swarm with an equal probability. Another reason is that a few high-degree

peers play a significant role in speeding up the topological P2P worm. If these peer

99

Fig. 4.8: Mean upload bandwidth utilization of peers.

are patched or well protected, the topological P2P worm cannot spread very fast.

The A-BT worm, on the other hand, appears to be less affected by the P2P topology.

We also compare the A-BT worm with the R-BT worm. Figure 4.11 shows the

damage caused by the two worms. For the R-BT worm, we see that the number

of infected peers drops dramatically from 144 to 72, when the time window size W

increases from 5 to 500. One possible reason is that most infected peers who set a

large time window leave the swarm before they duplicate the worm to others. Another

reason might be that the swarm size shrinks when time goes by. The later the worm

attack is lunched, the less the vulnerable peers are infected. For the A-BT worm, we

set the initial time window size to 5, the threshold rate of being accessed Ath to 0.4,

and the increasing ratio of the time window size ϕ to 10. Recall that the time window

size will increase exponentially if Apre is larger than Ath. We then observe that the

A-BT worm can be as efficient as the R-BT worm. Figure 4.12 shows the abnormal

behavior of the two worms. We see that the forged requests generated by the A-BT

100

Fig. 4.9: Model validation using parameters obtained from simulations.

worm are far less than that generated by the R-BT worm.

4.6.4 Effectiveness of the detection method

We firstly study the impact of worm parameters on the detection method. We

set the time window size W to be one of {50, 100, 150, 200, 250}, the leaving rate γ

to 0.002. For the A-BT worm, we set the increasing ratio of the window size ϕ to 5.

We randomly select 20 peers from the swarm, and analyze the variance in the time

intervals of requests. Figure 4.13 shows that V ar′(X[n]) for R-BT worm drops from

0.273 to 0.201 when W increases from 50 to 100, and then goes up from 0.201 to

0.253. V ar′(X[n]) for A-BT worm decreases from 0.503 to 0.274 when W increases

from 50 to 100, and then increases to 0.359. When W increases, the forged request

generation rate decreases. If W becomes too large, it may result in large variations

in the time interval. That might be the reason why V ar′(X[n]) of A-BT worm drops

101

Fig. 4.10: Comparison between topological P2P worm and A-BT worm.

first and then goes up slightly. Even though the A-BT worm is “smart” enough to

request the tracker at a very low rate, we can detect it from the tracker by setting an

appropriate threshold for V ar′(X[n]).

We then show the impact of system parameters on the detection method. We select

the vulnerability density α from the set {0.1, 0.3, 0.5, 0.7, 0.9}. Other parameters are

the same as that in the previous simulation. From Figure 4.14, we see that V ar′(X[n])

increases when the vulnerability density increases. We can also see that V ar′(X[n]) for

A-BT worm is much higher that for R-BT worm, when α is large. These results show

that we can estimate the vulnerability density of the swarm by observing V ar′(X[n]).

We can take the safe strategy only when a large fraction peers are vulnerable for the

worm attack.

102

Fig. 4.11: Comparison between R-BT worm and A-BT worm.

Fig. 4.12: Number of forged requests generated by worms.

103

Fig. 4.13: Effect of time window size on worm detection.

Fig. 4.14: Effect of vulnerability density on worm detection.

104

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we explore several issues in BT protocol and system including

modeling, algorithms and worms, in order to understand, improve and secure protocol

and system design.

We look at the BT system from a new angle, and build a bottom-up probabilistic

model, which analyzes the system from the individual peer behavior to the overall

system performance. Our model increases the accuracy of performance analysis, be-

cause it captures many features of the system, including heterogeneity and dynamics,

and requires far less restrictive assumptions than ever before. Through the model,

we have some interesting observations. Based on these observations, we suggest that

the tracker decides who and how many peers to return according to some network

parameters, such as, swarm size, departure rate and download rate. The benefit of

doing so is two folds. First, it can prevent the system from the large view exploit.

If the number of returned peers is controllable, free-riders are unable to gain extra

105

106

benefits from the unusually large neighbor set. Second, it is helpful to rationally uti-

lize the bandwidth of high-bandwidth peers. The tracker would better not return too

many high quality peers to high-bandwidth ones, because they may leave earlier if

they download faster, which results in an unsatisfactory overall performance. We also

give some expiations for why unchoking fails to motivate most users to upload more,

and suggest reconsidering BT’s incentives from the management’s or psychological

perspective.

We dispel some myths about three piece-related algorithms, and propose some

remedies for them as well. We propose a credit method to evaluate peer honesty

by examining have messages which are already been included in the BT protocol.

The method is fully distributed, which requires no centralized sever to operate. We

propose a utility-driven strategy to maximize interest relying on two utility functions.

Such a strategy is unified, win-win, feasible, deployable. In particular, it covers

both rarest-first and random; all peers can benefit from it by serving others more

and being served more; it requires neither a modification to the wire protocol nor

a full deployment to benefit. We revise the scatter algorithm to manage the size of

request queue by dividing queued pieces into two groups: rational and sub-rational

and keeping a ratio between them. The revised algorithm is dynamic, real-time and

greedy. More specifically, the number of queued pieces is dynamically controlled

by a ratio; it decides when to add a new piece based on a controllable ratio that

meets the real-time requirement of piece selection; it fully utilizes every idle neighbor

connection. Our primary experiment results show that they can outperform existing

ones, and achieve both individual good and social good.

We present a novel P2P worm, called Adaptive BitTorrent worm (A-BT worm), in

107

BT-like systems, which propagates itself by requesting a tracker for vulnerable peers.

We believe that such a worm could pose a vital threat to the P2P security for the

following reasons: 1) it has the ability to locate most recent active peers; 2) it is

easy to be implemented; 3) it can adaptively adjust its speed to reduce its abnormal

behavior. By combining the fluid model with the epidemic model, we build a hybrid

model to measure the worm damage. We also discuss the possible strategies to detect

and contain the worm.

5.2 Future work

A number of areas for future work have been pointed out along the way. These

include the following:

A decentralized P2P bootstrapping: bootstrapping is a process in which a

new peer who intends to join a P2P system tries to discover contact information of

other peers that have already been in the system. Existing P2P systems [BitTorrent,

2011, Lilja Fjeldsted, 2005, T. Klingberg, 2002]use either centralized servers or static

peers for bootstrapping. Both of them have single point failure problem. In Dec.

2009, the Chinese government cracked down on the BT system by shutting down

more than 530 BT web severs [SARFT, 2009]. Without the help of these severs,

new peers cannot initialize their neighbors, and thus, fail to join the system. Some

resent work suggests using random address probing [Dinger and Waldhorst, 2009,

GauthierDickey and Grothoff, 2008] and existing P2P systems [David I. Wolinsky

and Figueiredo, 2010] for bootstrapping. However, these methods are impractical

and small-scale. We try to exploit social networks to design a fully decentralized

bootstrapping in which new peers grabs instant messaging (QQ or MSN) packets to

108

obtain pre-existing peer’s IPs. Such a bootstrapping can become an essential part of

the pure P2P system, where peers share their resources freely without the help of any

centralized server.

A user-oriented P2P incentive: the role of incentives is to motivate users

to contribute their resources to others so as to achieve fast download times for all

peers. Most existing P2P incentives are peer-oriented, which manage the neighbors

of a peer. These incentives may fail to motivate most users to contribute their upload

bandwidth, because they are short in providing some useful information for users.

We attempt to design a user-oriented P2P incentive, which manages the behaviors

of a user. The incentive design contains two steps. Qualitative analysis aims to

understand the factors that may affect users’ decisions, which requires some knowledge

of psychology. We will design a questionnaire, which consists of a series of questions

and responses, and distribute it a certain number of users. Quantitative analysis is

used to quantify the factors that users care. The user-oriented incentive should have

the ability to estimate the potential outcome of users, and reward or punish users

based on their decisions.

Bibliography

Barbera, M., Lombardo, A., Schembra, G., and Tribastone, M. (2005). A markov

model of a freerider in a bittorrent p2p network. In GLOBECOM ’05: Proceedings

of the IEEE Global Telecommunications Conference, volume 2, pages 985–989, St.

Louis, MO, USA.

BitComet (2009). http://www.bitcomet.com/doc/download-zh.htm.

BitTorrent (2011). http://www.bittorrent.com/.

Chow, A. L. H., Golubchik, L., and Misra, V. (2009). Bittorrent: An extensible

heterogeneous model. In INFOCOM’09: Proceedings of the 28th Conference of the

IEEE Computer and Communications Societies, pages 585–593, San Diego, CA,

USA.

Cohen, B. (2008). The bittorrent protocol specification. Technical report, BitTor-

rent.org.

David I. Wolinsky, Pierre St. Juste, P. O. B. and Figueiredo, R. J. O. (2010). Ad-

dressing the p2p bootstrap problem for small overlay networks. In P2P’2010: Pro-

ceedings of the Peer-to-peer Computing, pages 1–10.

109

110

Dinger, J. and Waldhorst, O. (2009). Decentralized bootstrapping of p2p systems:

A practical view. In NETWORKING ’09: Proceedings of the 8th International

IFIP-TC 6 Networking Conference.

Douglas, M., Micael, P., and Evangelos, K. (2008). di-jest: Autonomic neighbour

management for worm resilience in p2p systems. In WoWMoM’08: Proceedings of

the International Symposium World of Wireless, Mobile and Multimedia Networks,

pages 1–6.

Ernesto (2009). Bittorrent still king of p2p traffic.

Fan, B., Chiu, D.-m., and Lui, J. (2006). The delicate tradeoffs in bittorrent-like file

sharing protocol design. In ICNP ’06: Proceedings of the 14th IEEE International

Conference on Network Protocols, pages 239–248, Washington, DC, USA. IEEE

Computer Society.

Feldman, M. and Chuang, J. (2005). Overcoming free-riding behavior in peer-to-peer

systems. ACM Sigecom Exchanges, 6:2005.

Fogel, D. B. (1993). Applying evolutionary programming to selected traveling sales-

man problems. Cybernetics and Systems, 24(1):27–36.

Freitas, F., Rodrigues, R., Ribeiro, C., Ferreira, P., and Rodrigues, L. (2007). Verme:

Worm containment in peer-to-peer overlays. In IPTPS’07: Proceeding of the 6th

International Workshop on Peer-to-Peer Systems.

Fudenberg and Tirole (1992). Game Theory. MIT Press.

GauthierDickey, C. and Grothoff, C. (2008). Bootstrapping of peer-to-peer networks.

In SAINT, pages 205–208. IEEE Computer Society.

111

Guo, L., Chen, S., Xiao, Z., Tan, E., Ding, X., and Zhang, X. (2005). Measurements,

analysis, and modeling of bittorrent-like systems. In IMC ’05: Proceeding of the

Internet Measurement Conference, pages 35–48.

Isdal, T., Piatek, M., Krishnamurthy, A., and Anderson, T. (2007). Leveraging bittor-

rent for end host measurements. In PAM’07: Proceedings of the 8th international

conference on Passive and active network measurement, pages 32–41, Berlin, Hei-

delberg. Springer-Verlag.

Jesi, G. P. and Patarin, S. (2005). PeerSim HOWTO: Build a new protocol for the

PeerSim 1.0 simulator.

Legout, A., Liogkas, N., Kohler, E., and Zhang, L. (2007). Clustering and sharing

incentives in bittorrent systems. In SIGMETRICS ’07: Proceedings of the 2007

ACM SIGMETRICS international conference on Measurement and modeling of

computer systems, pages 301–312, New York, NY, USA. ACM.

Legout, A., Urvoy-Keller, G., and Michiardi, P. (2006). Rarest first and choke al-

gorithms are enough. In IMC ’06: Proceedings of the 6th ACM SIGCOMM on

Internet measurement, pages 203–216, New York, NY, USA.

Levin, D., Lacurts, K., Spring, N., and Bhattacharjee, B. (2008). Bittorrent is an

auction: analyzing and improving bittorrent’s incentives. In SIGCOMM ’08: Pro-

ceedings of the ACM SIGCOMM 2008 conference on Data communication, pages

243–254, New York, NY, USA.

Liao, W.-C., Papadopoulos, F., and Psounis, K. (2007). Performance analysis of

112

bittorrent-like systems with heterogeneous users. volume 64, pages 876–891, Ams-

terdam, The Netherlands, The Netherlands. Elsevier Science Publishers B. V.

Lilja Fjeldsted, Jonas Fonseca, B. R. (2005). Specification and implementation of the

bittorrent protocol. Technical report.

Locher, T., Moor, P., Schmid, S., and Wattenhofer, R. (2006). Free riding in bittor-

rent is cheap. In HotNets-V: Proceedings of the 5th Workshop on Hot Topics in

Networks, Irvine, California, USA.

Luo, J. (2010). The source code of the java-based bittorrent client.

Luo, J., Xiao, B., Liu, G., Xiao, Q., and Zhou, S. (2009). Modeling and analysis of self-

stopping bt worms using dynamic hit list in p2p networks. In SSN’09: Proceedings

of The 5th International Workshop on Security in Systems and Networks.

Ma, J., Chen, X., and Xiang, G. (2006). Modeling passive worm propagation in

peer-to-peer system. In CIS’06: Proceedings of the International Conference on

Computational Intelligence and Security, pages 1129–1132.

Merton, R. C. (1990). Continuous-time Finance. Blackwell.

Pouwelse, J. A., Garbacki, P., Epema, D. H. J., and Sips, H. J. (2005). The bittorrent

p2p file-sharing system: Measurements and analysis. In IPTPS’05: Proceedings of

the 4th International Workshop on Peer-to-Peer Systems.

Qiu, D. and Srikant, R. (2004). Modeling and performance analysis of bittorrent-

like peer-to-peer networks. In SIGCOMM’04: Proceedings of the ACM SIGCOMM

2004 conference on Data communication, pages 367–378.

113

Rai, V., Sivasubramanian, S., Bhulai, S., Garbacki, P., and van Steen, M. (2007).

A multiphased approach for modeling and analysis of the bittorrent protocol. In

ICDCS ’07: Proceedings of the 27th International Conference on Distributed Com-

puting Systems, page 10, Washington, DC, USA.

Ramachandran, K. and Sikdar, B. (2006). Modeling malware propagation in gnutella

type peer-to-peer networks. In IPDPS’06: Proceedings of Parallel and Distributed

Processing Symposium.

SARFT (2009). http://www.sarft.gov.cn/.

Singer, M. (2002). “benjamin” worm plagues kazaa. Technical report, siliconval-

ley.internet.com.

Sirivianos, M., Han, J., Rex, P., and Yang, C. X. (2007). Free-riding in bittorrent

networks with the large view exploit. In IPTPS ’07: Proceedings of the 6th Inter-

national workshop on Peer-To-Peer Systems.

Stutzbach, D. and Rejaie, R. (2006). Understanding churn in peer-to-peer networks.

In IMC ’06: Proceedings of the 6th ACM SIGCOMM conference on Internet mea-

surement, pages 189–202.

T. Klingberg, R. M. (2002). Gnutella protocol development. Technical report.

TheoryOrg (2004). Bittorrent protocol specification v 1.0. Technical report, Theory-

Org.

Thommes, R. and Coates, M. (2006). Epidemiological modeling of peer-to-peer

viruses and pollution. In INFOCOM’06.

114

Vamosi, R. (2001). Gnutella worm: How to deal with it.

Vroom, V. H. and MacCrimmon, K. R. (1968). Toward a stochastic model of man-

agerial careers. Administrative Science Quarterly, 13(1):26–46.

Wang, H., Liu, J., and Xu, K. (2009). On the locality of bittorrent-based video

file swarming. In IPTPS’09: Proceedings of the 8th international conference on

Peer-to-peer systems, pages 12–12. USENIX Association.

Wu, K. and Feng, Y. (2006). Proactive worm prevention based on p2p networks.

In IJCSNS’06: Proceedings of the International Journal of Computer Science and

Network Security.

Yang, X. and de Veciana, G. (2004). Service capacity in peer-to-peer networks. In

INFOCOM’04: Proceedings of the 23th Conference of the IEEE Computer and

Communications Societies, pages 2242– 2252.

Yao, Y., Luo, X., Gao, F., and Ai, S. (2006). Research of a potential worm propagation

model based on pure p2p principle. In ICCT ’06: Proceedings of the International

Conference on Communication Technology, pages 1–4.

Yao, Y., Wu, L., Gao, F., Yang, W., and Yu, G. (2008). A waw model of p2p-based

anti-worm. In ICNSC’08: Proceedings of the IEEE International Conference on

Networking, Sensing and Control, pages 1131 – 1136.

Zhou, L., Zhang, L., Mcsherry, F., Immorlica, N., Costa, M., and Chien, S. (2005). A

first look at peer-to-peer worms: Threats and defenses. In IPTPS’05: Proceeding

of the 4th International Workshop on Peer-to-Peer Systems.

115

Zhou, Y., Wu, Z., Wang, H., Zhong, J., Feng, Y., and Zhu, Z. (2006). Breaking

monocultures in p2p networks for worm prevention. In ICMLC’06: Proceedings of

the 5th International Conference on Machine Learning and Cybernetics.

	Abstract
	Publications
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Research gaps
	Contributions
	Thesis roadmap

	A Bottom-up Probabilistic Model for the Heterogenous BitTorrent System
	Overview
	Related work and assumptions
	Related work
	Assumptions and events

	BT's bottom model
	Neighbor set in the BT protocol
	Unchoking in the BT protocol

	BT's top model
	Free-riding in the BT system
	Neighbor interest in the BT protocol
	Churn of the BT system
	Overall system performance

	Model validation and insights
	Simulation verification
	Experiment comparison

	Understanding and Improving Piece-related Algorithms in the BitTorrent Protocol
	Overview
	Goals and assumptions
	Study of piece revelation
	Piece revelation strategies
	Under-reporting in heterogenous swarms
	Under-reporting in large swarms

	A distributed credit method
	Method design and limitation
	Method improvement and configuration

	Study of piece selection
	Piece selection strategies
	Effect of download cost
	Effect of neighbor surplus
	Effect of piece rarity

	A utility-driven strategy
	Design of the utility-driven strategy
	Rules for choosing utility functions
	Analysis of existing strategies

	Study of piece queuing
	A conflict in piece queuing
	A revised queuing algorithm

	Performance evaluation
	Experimental setup
	Effectiveness of the distributed credit method
	Performance of the utility-driven strategy
	Performance of the revised queuing algorithm

	Modeling and Containing the Adaptive BitTorrent Worm in BitTorrent-like Systems
	Overview
	Related work and protocol details
	Related work
	Peer-to-tracker communication

	A-BT worm design
	Target finding strategy
	Adaptive speed control

	A-BT worm modeling
	Terminology and notations
	A hybrid A-BT worm model

	A-BT worm detection and containment
	Simulation results
	Simulation environment and settings
	Verification of the hybrid model
	Evaluation of the worm damage
	Effectiveness of the detection method

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography

