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Abstract

The purpose of this thesis is, to study optimality conditions for constrained optimiza-

tion problems in finite dimension spaces from the viewpoint of exact penalty functions.

The tools that we use are mainly from the modern variational analysis popularized by

Rockafellar and Wets’ classical book. The problem models that we focus on are nonlin-

ear programming and mathematical programs with complementarity constraints. We

aim at developing a unified framework and providing a detailed exposition of optimality

conditions from exactness of penalty functions. In this connection, we intend to answer

questions as to when penalty functions are exact and how optimality conditions of the

original constrained problems can be inherited from those of exact penalty functions.

We study sufficient conditions for penalty terms to possess local error bounds, which

guarantee exactness of penalty functions. We give characterizations for a stronger

version of the local error bound property in terms of strong slopes, subderivative and

regular subgradients for points outside the referenced set. In particular, we give full

characterizations of the local error bound property for the elementary max function of

a finite collection of smooth functions. With the aid of these characterizations, we show

that the quasinormality constraint qualification implies the existence of a local error

bound. We also study sufficient and necessary conditions for the existence of local error

bounds by virtue of various limits defined on the boundary of the referenced set.

We study first- and second-order necessary and sufficient conditions for penalty

functions to be exact. These conditions are expressed by subderivatives, second-order

subderivatives, and parabolic subderivatives, which are the notions that have been

utilized to formulate tight optimality conditions for optimization problems. In our in-

vestigation, the kernels of these derivatives, representing directions at which derivatives

vanish, play an key role. In particular, we show an interesting auxiliary result which
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asserts that, the polar cone of the subderivative kernel of an extended real-valued func-

tion at a local minimum is the same as the positive hull of its regular subgradients at

the same point.

We show how Karush-Kuhn-Tucker conditions and second-order necessary condi-

tions in nonlinear programming, and strong and Mordukhovich stationarities in math-

ematical programs with complementarity constraints, can be derived from exactness of

penalty functions under some additional conditions on constraint functions. In present-

ing these additional conditions, it turns out that the kernels of (parabolic) subderiva-

tives of penalty terms are very crucial. By virtue of these kernels and a variational

description of regular subgradients, we show necessity and sufficiency of these addi-

tional conditions. We also present conditions in terms of the original data by applying

(generalized) Taylor expansions to calculate these kernels.
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Chapter 1

Preview and Introduction

1.1 Review on Nonlinear Programming Problems

Consider the nonlinear programming problem

(NLP) min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,

where I = {1, 2, · · · ,m}, J = {m + 1,m + 2, · · · ,m + q}, and the functions f, gi, hj :

Rn → R are assumed to be continuously differentiable. Associated with (NLP), the

Lagrange function L : Rn ×Rm+q → R is defined by

L(x, λ) := f(x) +
∑
i∈I

λigi(x) +
∑
j∈J

λjhj(x),

and the generalized Lagrange function L̃ : Rn ×R×Rm+q → R is defined by

L̃(x, λ0, λ) := λ0f(x) +
∑
i∈I

λigi(x) +
∑
j∈J

λjhj(x).

In what follows, let C be the feasible set of (NLP) and let x̄ ∈ C be fixed. Note

that any point in C is called a feasible point of (NLP). If f(x̄) ≤ f(x) for all feasible

x 6= x̄ in some neighborhood of x̄, then x̄ is called a local minimum. If f(x̄) < f(x) for

all feasible x 6= x̄ in some neighborhood of x̄, then x̄ is called a strict local minimum.
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And if there exist some positive integer κ and some positive number τ such that

f(x̄) + τ‖x− x̄‖κ ≤ f(x)

for all feasible x in some neighborhood of x̄, then x̄ is called a strict local minimum of

order κ. It is clear that a strict local minimum of any order κ is a strict local minimum.

First-order necessary and sufficient conditions and constraint

qualifications

In what follows, let the index set of active inequality constraints at x̄ be defined by

I(x̄) := {i ∈ I | gi(x̄) = 0},

let the (Bouligand) tangent cone to C at x̄ be defined by

TC(x̄) := {w ∈ Rn | ∃tk → 0+, ∃wk → w, s.t. x̄+ tkwk ∈ C ∀k},

and let the (first-order) linearized tangent cone to C at x̄ be defined by

LC(x̄) =

{
w ∈ Rn

∣∣∣∣∣ ∇gi(x̄)Tw ≤ 0 ∀i ∈ I(x̄)

∇hj(x̄)Tw = 0 ∀j ∈ J

}
.

When x̄ is a local minimum of (NLP), the basic primal necessary condition for

(NLP) can be expressed as follows:

∇f(x̄)Tw ≥ 0 ∀w ∈ TC(x̄).

Conversely, if the first-order sufficient condition holds as follows:

∇f(x̄)Tw > 0 ∀w ∈ TC(x̄)\{0},

then x̄ is a strict local minimum of (NLP). Since TC(x̄) ⊂ LC(x̄) holds automatically,

a stronger version of the first-order sufficient condition can be expressed as follows:

∇f(x̄)Tw > 0 ∀w ∈ LC(x̄)\{0}. (1.1.1)

The Fritz John condition (also known as the FJ condition), named after Fritz John

[90], holds at x̄ if there exists a vector (λ0, λ) ∈ R × Rm+q such that λ0 ≥ 0, (λ0, λ) 6=
(0, 0),

∇xL̃(x̄, λ0, λ) = 0 λi ≥ 0, λigi(x̄) = 0 ∀i ∈ I.
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We call such a vector (λ0, λ) an FJ multiplier, and denote by FJ(x̄) the set of all FJ

multipliers of (NLP) at x̄. It is clear that FJ(x̄)∪{(0, 0)} is a polyhedral cone, and it is

well-known that FJ(x̄) 6= ∅ whenever x̄ is a local minimum of (NLP). The primal form

of the FJ condition at x̄ can be expressed as the inconsistency of the following system:

∇f(x̄)Tw < 0, ∇gi(x̄)Tw < 0 ∀i ∈ I(x̄), ∇hj(x̄)Tw = 0 ∀j ∈ J.

The Karush-Kuhn-Tucker condition (also known as the KKT condition) holds at x̄

if there exists a vector λ ∈ Rm+q such that

∇xL(x̄, λ) = 0, λi ≥ 0, λigi(x̄) = 0 ∀i ∈ I.

We call such a vector λ a KKT multiplier, and denote by KKT(x̄) the set of all KKT

multipliers of (NLP) at x̄. It is clear to see that KKT(x̄) is a polyhedral set and that

λ ∈ KKT(x̄) if and only if (1, λ) ∈ FJ(x̄). The KKT conditions were originally named

after Harold W. Kuhn and Albert W. Tucker, who first published the conditions in

[96]. Later scholars discovered that the necessary conditions for this problem had been

stated by William Karush in his master’s thesis [93]. The primal form of the KKT

condition at x̄ can be expressed as the inconsistency of the following system:

∇f(x̄)Tw < 0, ∇gi(x̄)Tw ≤ 0 ∀i ∈ I(x̄), ∇hj(x̄)Tw = 0 ∀j ∈ J.

It should be noticed that KKT conditions may not hold at local minima of (NLP) un-

less some regularity conditions are satisfied. By regularity conditions, we mean various

conditions imposed on the problem data, some of which may depend on the constraint

functions only, while some of which may depend on the objective function as well.

When regularity conditions are independent of the objective functions, they are more

often known as the constraint qualifications (CQs) in the literature. For various CQs

appeared in the literature, we refer to the survey papers by Peterson [127] and Bazaraa

et al. [15], and the text books [17, 16].

In the following, we list a number of CQs that are frequently used in the literature

or has been studied recently, and discuss their relationships.

The linear independence constraint qualification [50] (LICQ) holds at x̄ if the vectors

{∇gi(x̄), i ∈ I(x̄)} ∪ {∇hj(x̄), j ∈ J} are linearly independent. If x̄ is a local minimum

of (NLP), the LICQ at x̄ implies that KKT(x̄) is a singleton.
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The Mangasarian-Fromovitz constraint qualification [108] (MFCQ) holds at x̄ if the

gradients of the equality constraints are linearly independent at x̄, and there exists

w ∈ Rn such that ∇gi(x̄)Tw < 0 for all i ∈ I(x̄) and ∇hj(x̄)Tw = 0 for all j ∈ J .

Applying a theorem of alternatives [107], the equivalent dual form of MFCQ at x̄

asserts that the vector pair ({∇gi(x̄), i ∈ I(x̄)}, {∇hj(x̄), j ∈ J}) is positive-linearly

independent. Here, the vector pair ({a1, . . . , ak}, {ak+1, . . . , al}) is said to be positive-

linearly independent if

l∑
i=1

λiai = 0, λi ≥ 0 ∀i = 1, . . . , k =⇒ λ1 = . . . = λl = 0,

otherwise, it is positive-linearly dependent. If x̄ is a local minimum of (NLP), then

the MFCQ at x̄ amounts to the boundedness of KKT(x̄) [62], and also amounts to the

emptiness of the set (FJ(x̄) ∩ {0} ×Rm+q) according to the dual form of MFCQ.

The constant rank constraint qualification (CRCQ) holds at x̄ if the rank for each

subset of the gradients of the active inequality constraints and the equality constraints

at a neighborhood of x̄ is constant, or in other words for each I ′ ⊂ I(x̄) and J ′ ⊂ J , if

the vectors {∇gi(x̄), i ∈ I ′} ∪ {∇hj(x̄), j ∈ J ′} are linearly dependent, then the vectors

{∇gi(x), i ∈ I ′}∪{∇hj(x), j ∈ J ′} are linearly dependent for all x in some neighborhood

of x̄. The CRCQ was introduced by Janin [87], and its weaker version, called the relaxed

CRCQ, has been recently studied in [111]. If the constraints of (NLP) are all defined

by affine functions, the CRCQ is obviously satisfied at every feasible point. Moreover,

if the CRCQ holds at x̄ and some equality constraint hj(x) = 0 is replaced by two

inequality constraints: hj(x) ≤ 0 and −hj(x) ≤ 0, the CRCQ still holds at x̄ with the

new description of the feasible set. Note that the MFCQ does not enjoy this property.

The constant positive linear dependence constraint qualification (CPLD) holds at

x̄ if for each I ′ ⊂ I(x̄) and J ′ ⊂ J , the positive-linear dependence of the vector

pair ({∇gi(x̄), i ∈ I ′}, {∇hj(x̄), j ∈ J ′}) implies the linear dependence of the vectors

{∇gi(x), i ∈ I ′}∪{∇hj(x), j ∈ J ′} for all x in some neighborhood of x̄. The CPLD was

introduced for use in the analysis of SQP methods by Qi and Wei [131] who conjectured

that CPLD could be a constraint qualification. This conjecture is proved to be true in

[4].

The quasi-normality constraint qualification (QNCQ) holds at x̄ if there exist no
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nonzero vector λ ∈ Rm
+ ×Rq and no sequence xk → x̄ such that∑

i∈I

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄) = 0,

and for all k, λigi(xk) > 0 for all i with λi > 0, and λjhj(xk) > 0 for all j with λj 6= 0.

The QNCQ was introduced by Hestenes [75], and a slightly stronger CQ, called the

pseudo-normality constraint qualification (PNCQ) has been proposed and investigated

by Bertsekas and Ozdaglar [22] for constrained optimization problems with not only

equality and inequality constraints but an abstract set constraint. If the functions gi

are all concave and the functions hj are all linear, then the QNCQ holds at each feasible

point.

The Abadie constraint qualification [1] (ACQ) holds at x̄ if TC(x̄) = LC(x̄). Note

that the ACQ at x̄ was referred to as x̄ being a regular point in [75], and as x̄ being a

quasi-regularity point in [22].

The Guignard constraint qualification [65] (GCQ) holds at x̄ if TC(x̄)∗ = LC(x̄)∗,

where for a given subset A of Rn, A∗ := {v ∈ Rn | vTx ≤ 0 ∀x ∈ A} stands for the

polar cone of A.

If x̄ is a local minimum of (NLP), then the KKT condition holds at x̄ provided that

one of the CQs described previously is satisfied. The relationships among these CQs

are as follows:

LICQ =⇒ (MFCQ or CRCQ) =⇒ CPLD =⇒ QNCQ =⇒ ACQ =⇒ GCQ.

Most of the implications are straightforward. In particular, Andreani [4] showed the

implications MFCQ =⇒ CPLD, CRCQ =⇒ CPLD and CPLD =⇒ QNCQ, and demon-

strated by several examples that the reverse implications do not hold, see also Qi and

Wei [131]. Moreover, Hestenes [75] showed the implication QNCQ =⇒ ACQ, while

Janin [87] showed the implication CRCQ =⇒ ACQ. Note that the MFCQ is neither

weaker nor stronger than the CRCQ, see [87]. However, if the CRCQ holds, there exists

an alternative representation of the feasible set for which the MFCQ holds, see a recent

paper by Lu [103]. Among all CQs, the GCQ is the weakest one in the sense that

GCQ holds at x̄ if and only if the KKT condition holds at x̄ whenever a continuously

differentiable objective function f has a local minimum at x̄ relative to C, see Gould
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and Tolle [64] for the original version of this result, and Theorem 6.11 of Rockafellar

and Wets [141] for new features of this result.

It was established by Robinson [133] that the MFCQ holds at x̄ if and only if the

set-valued mapping M : Rm+q ⇒ Rn defined by

M(y) =

{
x ∈ Rn

∣∣∣∣∣ gi(x) ≤ yi, i ∈ I
hj(x) = yj, j ∈ J

}
, (1.1.2)

has the Aubin property [141] (also known as the pseudo-Lipschitz continuity [7]) at

ȳ = 0 for x̄ or equivalently the inverse mapping M−1 is metric regularity [85, 47] at x̄

for ȳ. This stability property highlights the special role of MFCQ among all the other

CQs. See Chapter 9 of Rockafellar and Wets [141] for extensive discussions on the

notion of metric regularity, the Aubin property, and the calmness variant of the Aubin

property.

Let dC(x) be the distance of the point x from C and let

S(x) :=
∑
i∈I

max{gi(x), 0}+
∑
j∈J

|hj(x)| ∀x ∈ Rn. (1.1.3)

We say that S is a local error bound for C at x̄ if there exist some τ > 0 and a

neighborhood V of x̄ such that

τdC(x) ≤ S(x) ∀x ∈ V. (1.1.4)

We say that S is a global error bound for C if the inequality (1.1.4) holds with V = Rn.

Since all the norms in a finite dimensional space are equivalent, the right-hand side of

the inequality (1.1.4) can be replaced by functions induced from other norms, such as

the function

max{0, gi(x), i ∈ I, |hj(x)|, j ∈ J}, (1.1.5)

which is induced from the `∞ norm and was considered in [112]. According to Henrion

and Outrata [73], and Dontchev and Rockafellar [47], S is a local error bound for C at

x̄, if and only if the set-valued mapping M given by (1.1.2) is calm at ȳ = 0 for x̄ or

equivalently the inverse mapping M−1 is metric subregularity at x̄ for ȳ. It should be

noticed that the metric subregularity, unlike the metric regularity, may not imply the

stability, as pointed out by Dontchev and Rockafellar [47].

It is well-known that the ACQ holds at x̄ if (1.1.4) is satisfied, and that the con-

verse is in general not true, see in particular Henrion and Outrata ([73], Proposition 1
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and Example 1). Since the Aubin property implies calmness, (1.1.4) holds under the

MFCQ. Janin [87] essentially showed that (1.1.4) holds if the CRCQ holds at x̄. Very

recently, Minchenko and Tarakanov [112] showed that if the QNCQ holds at x̄ and the

gradients of gi and hj are locally Lipschitz continuous, then the function defined by

(1.1.5) is a local error bound for C at x̄ or equivalently (1.1.4) holds. However, the as-

sumption on Lipschitz continuity of the gradients is not necessary, as will be seen from

a characterization of local error bounds presented in Chapter 2. As such, the existence

of local error bounds can be treated as a constraint qualification that takes a position

between the QNCQ and the ACQ. To sum up, we have

QNCQ =⇒ (1.1.4) =⇒ ACQ.

Originated from the practical implementation and numerical considerations of itera-

tive methods for solving optimization problems, the study of error bounds has received

increasing attention in many interesting areas such as sensitivity and stability anal-

ysis, subdifferential calculus, exact penalty functions, and optimality conditions, see

[36, 25, 84, 82, 91, 95, 132, 86] and especially the excellent survey papers by Lewis

and Pang [98], and Pang [124] for more details. It should be noticed that the notion of

error bound is closely related with the notions of weak sharp minima [49, 30], calmness

[141] and subregularity [47]. These notions are equivalent with each other in the sense

that each of them can be used to interpret the others. Sufficient conditions ensuring

local or global error bounds have been studied in [100, 148, 41, 42, 101, 153, 29, 118,

69, 170, 171, 172, 114] under the convexity assumption, in [104, 106, 43, 105] under

the analyticity assumption, and in [115, 116, 79, 156, 155, 158, 157, 10, 11, 119] for

general lower semi-continuous functions. With other particular structures being im-

posed, sufficient conditions ensuring local or global error bounds can also be found in

[151, 27, 28, 117, 174, 44, 173, 134, 71, 73, 70, 72].

Second-order necessary and sufficient conditions and constraint

qualifications

When second-order optimality conditions are discussed in this thesis, all the functions

in defining (NLP) are assumed to twice continuously differentiable. The critical cone
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of (NLP) at x̄ is defined by

V(x̄) :=

w ∈ Rn

∣∣∣∣∣∣∣∣
∇f(x̄)Tw ≤ 0

∇gi(x̄)Tw ≤ 0 ∀i ∈ I(x̄)

∇hj(x̄)Tw = 0 ∀j ∈ J

 .

If KKT(x̄) 6= ∅, then the inequality ∇f(x̄)Tw ≤ 0 in the definition of the critical cone

V(x̄) can be replaced by the equality ∇f(x̄)Tw = 0, and for any λ ∈ KKT(x̄), V(x̄) can

be reformulated as

V(x̄) =

w ∈ Rn

∣∣∣∣∣∣∣∣
∇gi(x̄)Tw ≤ 0 ∀i ∈ {i ∈ I(x̄) | λi = 0}
∇gi(x̄)Tw = 0 ∀i ∈ {i ∈ I(x̄) | λi > 0}
∇hj(x̄)Tw = 0 ∀j ∈ J

 ,

see [66, 20, 23]. The reduced critical cone of (NLP) at x̄ is defined by

Vr(x̄) :=

{
w ∈ Rn

∣∣∣∣∣ ∇gi(x̄)Tw = 0 ∀i ∈ I(x̄)

∇hj(x̄)Tw = 0 ∀j ∈ J

}
.

If KKT(x̄) 6= ∅, then Vr(x̄) ⊂ V(x̄), and if in addition, the strict complementarity

condition holds at x̄ with respect to some λ̄ ∈ KKT(x̄) (i.e., λ̄i > 0 for all i ∈ I(x̄)),

then Vr(x̄) = V(x̄), see [3, 23].

There can be found in the literature four different types of second-order necessary

conditions for a local minimum x̄ of (NLP). They are as follows.

There exists at least one λ̄ ∈ KKT(x̄) such that

(SON1) wT∇2
xxL(x̄, λ̄)w ≥ 0 ∀w ∈ V(x̄).

There exists at least one λ̄ ∈ KKT(x̄) such that

(SON1)r wT∇2
xxL(x̄, λ̄)w ≥ 0 ∀w ∈ Vr(x̄).

For each w ∈ V(x̄), there exists some λ ∈ KKT(x̄) such that

(SON2) wT∇2
xxL(x̄, λ)w ≥ 0. (1.1.6)

For each w ∈ V(x̄), there exists some (λ0, λ) ∈ FJ(x̄) such that

(SON3) wT∇2
xxL̃(x̄, λ0, λ)w ≥ 0.
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It is clear that (SON1) =⇒ (SON1)r and (SON1) =⇒ (SON2) =⇒ (SON3). The

(SON2) and (SON3) are distinguished by the use of the entire set of multipliers rather

than a single multiplier vector as is the case for the (SON1) and the (SON1)r. Since

the (SON3) relies on FJ multipliers, it holds without any constraint qualification, see

Proposition 5.48 of [23], Ben-Tal [19], and Ben-Tal and Zowe [20].

Under the LICQ at x̄, which implies that KKT(x̄) is a singleton, the (SON1)r was

first obtained by McCormick [109], see also [50]. McCormick [109] actually showed

the (SON1)r under a weaker condition: each w ∈ LC(x̄)\{0} is tangent to a once-

differentiable arc, emanating from x̄ and contained in the feasible set, and each nonzero

vector w ∈ Vr(x̄) is the tangent of an arc α(θ), twice differentiable, along which

gi(α(θ)) ≡ 0 for all i ∈ I(x̄) and hj(α(θ)) ≡ 0 for all j ∈ J , where θ ∈ [0, ε], ε > 0.

Under the LICQ, the (SON1), a slightly stronger condition than the (SON1)r, has also

been established in the text books [21, 60, 120, 16], and furthermore, even a stronger

condition than the (SON1) can be obtained which asserts that the unique KKT multi-

plier λ̄ satisfies

wT∇2
xxL(x̄, λ̄)w ≥ 0 ∀w ∈ LC(x̄),

see Theorem 3.3 of [19] and Theorem 4.4.3 in the text book by Bazaraa et al. [16].

Recently, Andreani et al.(2010) showed in Theorem 3.1 of [3] that the CRCQ implies

the (SON1). Note that KKT(x̄) may not be a singleton under the CRCQ. They actually

showed that for any λ̄ ∈ KKT(x̄), the (SON1) holds. Moreover, they showed that the

(SON1)r holds for any λ̄ ∈ KKT(x̄), under any CQ ensuring KKT(x̄) 6= ∅, and the

weak constant-rank (WCR) condition at x̄ (i.e., the rank of the vectors {∇gi(x), i ∈
I(x̄)} ∪ {∇hj(x), j ∈ J} does not change in some neighborhood of x̄). The WCR

condition, originated with Penot [126], implies the ACQ for (NLP) with only equality

constraints, see [126]. However, when inequality constraints are involved, the WCR

condition may not guarantee that KKT(x̄) 6= ∅, see [4] for an example.

The counterexamples given in [6, 5, 13] demonstrate that the MFCQ alone cannot

guarantee the (SON1) or the (SON1)r, i.e., there may not exist a fixed λ̄ ∈ KKT(x̄) such

that ∇2
xxL(x̄, λ̄) is positive semi-definite on V(x̄) or Vr(x̄), unless additional conditions

are imposed, see Baccari [12] and Baccari and Trad [13]. Therefore, any CQ weaker

than the MFCQ does not imply the (SON1) or the (SON1)r.
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Of particular note in derivation of the (SON1) is the work by Rockafellar [137]

who employed a perturbation method that does not require any CQ by estimating the

generalized subgradients of the optimal value function associated with a parameterized

nonlinear programming problem.

The (SON2), developed initially by Ioffe [83], has been extensively studied, see

[19, 20, 94, 138, 139, 26, 24, 18, 31]. In what follows, we shall recall some constraint

qualifications using the information of second-order derivatives, which can guarantee

the (SON2). Ben-Tal’s Constraint Qualification (BTCQ) [19, 20] holds at x̄ if the

vectors {∇hj(x̄), j ∈ J} are linearly independent, and for each w ∈ V(x̄), there exists

some z ∈ Rn such that

∇gi(x̄)T z + wT∇2gi(x̄)w < 0 ∀i ∈ I(x̄, w),

∇hj(x̄)T z + wT∇2hj(x̄)w = 0 ∀j ∈ J,

where I(x̄, w) := {i ∈ I(x̄) | ∇gi(x̄)Tw = 0} is the active index set of the inequality

constraints at x̄ in the direction w.

The second-order linearized tangent set to C at x̄ in the direction w ∈ LC(x̄) [94, 23]

is defined by

L2
C(x̄ | w) =

{
z ∈ Rn

∣∣∣∣∣ 〈∇gi(x̄), z〉+ 〈w,∇2gi(x̄)w〉 ≤ 0 ∀i ∈ I(x̄, w)

〈∇hj(x̄), z〉+ 〈w,∇2hj(x̄)w〉 = 0 ∀j ∈ J.

}
.

If w 6∈ LC(x̄), the set L2
C(x̄ | w) is interpreted as an empty set. The second-order

tangent set T 2
C(x̄ | w) [141] to C at x̄ for a vector w ∈ TC(x̄) consists of vectors z such

that there are sequences tk → 0+ and zk → z such that x̄ + tkw + 1
2
t2kzk ∈ C for all

k. If w 6∈ TC(x̄), T 2
C(x̄ | w) is interpreted as an empty set. The second-order Abadie

constraint qualification (SACQ) [94] holds at x̄ if

T 2
C(x̄ | w) = L2

C(x̄ | w) ∀w ∈ V(x̄),

and the second-order Guignard constraint (SGCQ) [94] holds at x̄ if

clconv[T 2
C(x̄ | w)] = L2

C(x̄ | w) ∀w ∈ V(x̄),

where the set clconvA stand for the closed convex hull of A. It was shown in [94] that

MFCQ =⇒ BTCQ =⇒ SACQ =⇒ SGCQ.
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If the local error bound property (1.1.4) holds at x̄, it is easy to check by definition

that the SACQ holds at x̄, see also He and Sun [68]. Therefore, any CQ, which implies

the local error bound property, can be used to derive the (SON2).

The feasible point x̄ is a strict local minimum of order 2 for (NLP), if one of the

following second-order sufficient conditions is satisfied:

There exists some λ̄ ∈ KKT(x̄) such that

(SOS1) wT∇2
xxL(x̄, λ̄)w > 0 ∀w ∈ V(x̄)\{0}.

For each w ∈ V(x̄)\{0}, there exists some λ ∈ KKT(x̄) such that

(SOS2) wT∇2
xxL(x̄, λ)w > 0.

For each w ∈ V(x̄)\{0}, there exists some (λ0, λ) ∈ FJ(x̄) such that

(SOS3) wT∇2
xxL̃(x̄, λ0, λ)w > 0.

It is clear that (SOS1) =⇒ (SOS2) =⇒ (SOS3). Note that the (SOSi) and the (SONi)

with i = 1, 2, 3 have no gap in the sense that the only change between them is between

a strict and non-strict inequality. The (SOS1) was first considered by McCormick [109]

who actually showed that x̄ is a strict local minimum under the (SOS1), see also the text

books [50, 21, 60, 16, 120]. The (SOS1) was slightly extended to an FJ-type condition

by Han and Mangasarian [66] who showed that if there exists some (λ̄0, λ̄) ∈ FJ(x̄) such

that

wT∇2
xxL̃(x̄, λ̄0, λ̄)w > 0 ∀w ∈ V(x̄)\{0},

then x̄ is a strict local minimum of (NLP). They demonstrated by an example that the

(SOS1) may not applied because KKT(x̄) = ∅, but the generalized result can be applied.

The (SOS2) was studied by Ioffe [83], Ben-Israel et al. [18], Rockafellar [138, 139], Burke

[26, 24], Burke and Poliquin [31]. The (SOS3) was given in Proposition 5.48 of [23], see

also [19, 20].

Optimality conditions and exact penalty functions

As pointed out by Rockafellar and Wets [141, p.35], penalty functions have some earlier

history in association with numerical methods, see e.g., [40, 2, 143, 32], but in opti-
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mization they were popularized by Fiacco and McCormick’s book [50]. Over the last

sixty years, penalty functions have been extensively investigated both theoretically and

practically. In the vast literature on penalty functions, much attention has been paid

to the notion of exact penalization. This notion can be well explained in the context

of nonlinear programming from the rich connections between optimality conditions of

(NLP) and exact penalty functions that are attached with (NLP).

There can be found in the literature many various penalty functions associated with

(NLP), most of which fall into a category of functions with the form

P (x, µ) := f(x) + µQ(‖v(x)‖), (1.1.7)

where µ, the penalty parameter, is a nonnegative real number,

v(x) := (max{0, g1(x)}, . . . ,max{0, gm(x)}, hm+1(x), . . . , hm+q(x))T ∀x ∈ Rn,

‖ · ‖ is a vector norm in Rm+q, and Q : R+ → R+ is a nonnegative function with the

property that Q(t) = 0 if and only if t = 0. By setting Q(t) = t2 and using the `2 norm,

we obtain from P (x, µ) the classical quadratic penalty function

f(x) + µ

(∑
i∈I

(gi(x)+)2 +
∑
j∈J

|hj(x)|2
)
,

which dates back to an idea of Courant (1943) [40, 50] and has been fully developed in

the book by Fiacco and McCormick [50]. By setting Q(t) = t and using the `1 norm,

we obtain from P (x, µ) the well-known l1 penalty function

f(x) + µ

(∑
i∈I

gi(x)+ +
∑
j∈J

|hj(x)|

)
, (1.1.8)

which was first introduced by Eremin [48] and at essentially the same time by Zangwill

[169], as pointed out by Burke [26]. Han and Mangasarian [66] employed the penalty

function P (x, µ) with an additional requirement on Q as follows:

0 < Q′(0+) := lim
t→0+

Q(t)−Q(0)

t
< +∞. (1.1.9)

The penalty function P (x, µ) is said to be exact at a local minimum x̄ of (NLP), if x̄

is an unconstrained local minimum of P (x, µ) for all sufficiently large but finite values of

µ. For short, this property is referred to as exact penalization. The question as to under
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what circumstances the penalty function P (x, µ) is exact at local minima of (NLP), is

the main concern of many research work. Note that exactness of P (x, µ) using a specific

norm implies exactness for all other norms as well. Moreover, Han and Mangasarian

([66], Theorem 4.2) showed that the exactness of P (x, µ) does not depend on the specific

form of Q as long as the property (1.1.9) is satisfied. Therefore, exactness of the classical

l1 penalty function amounts to exactness of many other penalty functions. The central

roles that the l1 penalty functions play in the theory of constrained optimization have

been comprehensively investigated by Burke [26] and many references therein.

Among various regularity conditions for exact penalization, the notion of calmness,

originally formulated by Rockafellar and first appearing in the paper by Clarke [35], can

be utilized to give some full characterizations of exact penalization. In general terms,

calmness can be described as a basic regularity condition under which we can study the

sensitive properties of certain variational systems. Since the appearance, the notion of

calmness has been extensively used in the literature, see [36, 136, 25, 154, 45, 152]. To

be precise, we consider the perturbed nonlinear programming problems

NLP(y) min f(x)

s.t. x ∈M(y),

where M is a set-valued mapping defined by (1.1.2). Let ȳ = 0 ∈ Rm+q. It is clear that

x̄ ∈ M(ȳ) = C and that NLP(ȳ) is exactly the same with (NLP). According to Burke

[25], the problem NLP(ȳ) is said to be calm at x̄ if there exist a number µ̄ ≥ 0 and a

neighborhood U of x̄ such that,

f(x) + µ̄‖y − ȳ‖ ≥ f(x̄) ∀x ∈M(y) ∩ U,

where ‖z‖ stands for the norm of z in Rm+q and we can specify the norm to be the

`1 norm without loss of generality. Note that this definition of calmness varies from

Definition 6.4.1 of Clarke [36] in that the variable y is not restricted to a neighborhood

of ȳ in order for the above inequality to hold. It was shown by [25] that the restriction on

the perturbation y is redundant when the functions gi and hj are continuous. Calmness

can also be defined independent of the existence of a local minimum of NLP(ȳ). The

problem NLP(y) is said to be calm at ȳ if

lim inf
y→ȳ

V (y)− V (ȳ)

‖y − ȳ‖
> −∞,
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where V : Rm+q → R ∪ {±∞} is the value function defined by

V (y) = inf{f(x) | x ∈M(y)}.

If M(y) is an empty set, then V (y) is assigned the value +∞. It is easy to see that

if the problem NLP(y) is said to be calm at ȳ, then for any global minimum x of

the problem NLP(y), the problem NLP(ȳ) is calm at x, see Proposition 6.4.2 [36] and

Proposition 2.2 of [25]. Clarke [36] showed that calmness of NLP(ȳ) implies exactness

of penalty functions, while the reverse implication was first established by Burke [25,

26]. Therefore, the notion of calmness is in a sense equivalent to the notion of exact

penalization.

Howe [76] showed that if there exists no nonzero w ∈ V(x̄) or equivalently the first-

order sufficient condition (1.1.1) for (NLP) holds at x̄, then x̄ is a strict local minimum

of the l1 penalty function for all µ sufficiently large. Rosenberg [142] extended Howe’s

result to the Lipschitzian case and provided a sharp lower bound for all exact penalty

parameters. Similar result can be found in [26, 14].

Note that the calmness property of the problem NLP(ȳ) and Howe’s result both

rely on the objective function f . Other regularity conditions for exact penalization

that are independent of the objective function f , can be found in the literature. Han

and Mangasarian [66] showed that, if x̄ is a strict local minimum of (NLP) and the

MFCQ holds at x̄, then x̄ is a local minimum of the l1 penalty function for all µ

sufficiently large. Pietrzykowski [128] obtained the same result by assuming the LICQ,

a stronger condition than the MFCQ. Lasserre [97] also employed the LICQ but provided

a slightly different result from the corresponding result of Han and Mangasarian, and

Pietrzykowski, since Lasserre did not assume that the local minimum x̄ is a strict one. It

follows from Clarke’s elementary exact penalty penalization theorem ([36], Proposition

2.4.3) that, the l1 penalty function is exact at x̄ provided that the local error property

(1.1.4) holds at x̄, see also Proposition 3.111 of [23] and Corollary 2.6 of [147]. This

fundamental result indicates that the QNCQ or any stronger CQ is sufficient for the

exactness of the l1 penalty function, since the QNCQ implies the local error property

(1.1.4).

Exactness of the l1 penalty function is also closely related to second-order sufficient

and necessary conditions of (NLP). Han and Mangasarian [66] essentially showed that,
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if the (SOS1) holds at a feasible point x̄ with respect to some ȳ ∈ KKT(x̄), then x̄ is a

strict local minimum of the l1 penalty function for all µ > ‖ȳ‖∞. This result subsumes

and sharpens the result by Charalambous [33] who considered the problem (NLP) with

inequality constraints only. Similar result can be found in Lasserre [97]. Parallel to the

results of Charalambous, Han and Mangasarian, and Lasserre, a more elegant result

obtained by Burke ([26], Theorem 4.7) asserts that for all µ > ‖ȳ‖∞, x̄ is a strict local

minimum of order 2 for the l1 penalty function.

It is well-known that if the l1 penalty function is exact at x̄, then both the KKT

condition and the (SON2) hold at x̄, see in particular Han and Mangasarian ([66],

Theorem 4.8) and Rockafellar ([139], Corollary 4.5). This indicates that the l1 penalty

function is qualified for detecting both the KKT condition and the (SON2) in the

sense that any condition ensuring the exactness of the l1 penalty function at some

local minimum of (NLP), guarantees the KKT condition and the (SON2) at this local

minimum.

Thanks to the efforts of many researchers, the equivalence of first- and second-

order optimality conditions for (NLP) and the l1 exact penalty function is now well

understood. But there is another type of exact penalty functions whose optimality

conditions have no direct connections with those of (NLP), such as the so-called lower

order lp (0 < p < 1) penalty function

f(x) + µ

(∑
i∈I

gi(x)+ +
∑
j∈J

|hj(x)|

)p

(1.1.10)

which is obtained from P (x, µ) by setting Q(t) = tp and using the `1 norm. Note that

when p = 1, the above function reduces to the l1 penalty function. This type of penalty

functions was first introduced in Luo et al. [105] for the study of mathematical programs

with equilibrium constraints, and has been studied extensively in [80, 145, 160, 161,

110, 162]. Note that the lp (0 < p < 1) penalty function is, in general, non-Lipschitz

because it is defined via the function tp : R+ → R+ which is non-Lipschitz at t = 0

relative to R+.

Similarly as the case for the l1 penalty function, it is easy to show that the lp penalty

function is exact at x̄ if and only if there exist a number µ̄ ≥ 0 and a neighborhood U

of x̄ such that,

f(x) + µ̄‖y − ȳ‖p ≥ f(x̄) ∀x ∈M(y) ∩ U.
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The latter property was referred to as the generalized calmness-type conditions by

Rubinov and Yang in their book [144], where the global version of the generalized

calmness-type conditions by virtue of value functions is also discussed. The general

exact penalty result for subanalytic systems ([105], Theorem 2.1.2) asserts that if all

functions in defining (NLP) are continuous subanalytic, then there exists some p ∈ (0, 1]

such that the lp penalty function is exact at x̄. If the lp penalty function is exact at x̄,

then for any 0 < p′ < p, the lp′ penalty function is also exact at x̄.

Although the lp penalty functions have a greater chance to be exact than the l1

penalty function, their exactness, however, does not in general imply the KKT condi-

tions. Consider the simple problem of minimizing −x subject to x2 ≤ 0, for which the

KKT condition does not hold at the local minimum x = 0. The l1 penalty function

for this problem is not exact at x = 0, but the lp (with p = 0.5) penalty function is

exact at x = 0. Therefore, not every lp exact penalty function is qualified for detecting

KKT conditions. Yang and Meng [161] showed that if a type of conditions in terms of

(generalized) second-order derivatives of the constraints is satisfied, then KKT condi-

tions can be derived from the lp exact penalty functions. Their technique is conducted

by first applying (generalized) Taylor expansions to estimate the Dini upper-directional

derivatives of the lp exact penalty functions, and then by using the Farkas’ Lemma.

We end this section by emphasizing that the terminology ‘exact penalization’ ap-

peared in the literature may be different from the one that we previously reviewed.

The exact penalty functions found in [46, 59, 67, 129, 39] are distinguished by their

differentiability, while exact penalty functions having the form P (x, µ) are commonly

believed to be non-differentiable. The exact penalty functions appeared in the context

of augmented Lagrangian theory are also different because the penalty terms associ-

ated with augmented Lagrangian functions could take negative values. The augmented

Lagrangian method was proposed by Hestenes [74] and Powell [130] for the equality

constrained problem, and extended to the inequality constrained problem by Rock-

afellar [135, 140]. The augmenting functions, referred to as additional penalty terms,

considered in these work are quadratic. Further developments have been done by Rock-

afellar and Wets [141] in connection with convex augmenting functions, by Huang and

Yang [80] in connection with level-boundedness augmenting functions, by Zhou and

Yang [175, 176] in connection with valley-at-0 augmenting functions. For an overview

16



of modified Lagrangians and their usage in numerical optimization, see Bertsekas [21]

and Nocedal and Wright [120].

1.2 Review on Mathematical Programs with Com-

plementarity Constraints

Consider the mathematical program with complementarity constraints

(MPCC) min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,
Gk(x) ≥ 0, Hk(x) ≥ 0, Gk(x)Hk(x) = 0, k ∈ K,

where f, I, J, gi, hj are given as in (NLP), K = {m+ q + 1, · · · ,m+ q + l}, and Gk, Hk

are all assumed to be continuously differentiable functions from Rn to R. Let x̄ be a

fixed feasible point of (MPCC). The index sets I(x̄), α, β, γ depending on x̄ are defined

as follows:
I(x̄) = {k ∈ I | gi(x̄) = 0},
α = {k ∈ K | 0 = Gk(x̄) < Hk(x̄)},
β = {k ∈ K |Gk(x̄) = Hk(x̄) = 0},
γ = {k ∈ K |Gk(x̄) > Hk(x̄) = 0}.

For a given set A, the set of all partitions of A is given by

P(A) = {(A1, A2) | A1 ∪ A2 = A, A1 ∩ A2 = ∅}.

It is clear to see that (MPCC) is essentially an (NLP) problem. Moreover, (MPCC)

is closely related to many other (NLP) problems with different various forms. First, we

can associate with (MPCC) two (NLPs) [146], the tightened NLP

(TNLP) min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,
Gk(x) = 0, Hk(x) ≥ 0 k ∈ α,
Gk(x) ≥ 0, Hk(x) = 0, k ∈ γ,
Gk(x) = 0, Hk(x) = 0, k ∈ β,
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and the relaxed NLP

(RNLP) min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,
Gk(x) = 0, Hk(x) ≥ 0 k ∈ α,
Gk(x) ≥ 0, Hk(x) = 0, k ∈ γ,
Gk(x) ≥ 0, Hk(x) ≥ 0, k ∈ β.

Then, for each partition (β1, β2) ∈ P(β), we can associate with (MPCC) an (NLP) as

follows [54, 165]:

NLP(β1, β2) min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,
Gk(x) = 0, Hk(x) ≥ 0 k ∈ α,
Gk(x) ≥ 0, Hk(x) = 0, k ∈ γ,
Gk(x) ≥ 0, Hk(x) = 0, k ∈ β1,

Gk(x) = 0, Hk(x) ≥ 0, k ∈ β2.

Next, by the so-called NCP-function [51] φ : R2 → R with the property that φ(a, b) = 0

if and only if a ≥ 0, b ≥ 0, ab = 0, we can reformulate (MPCC) as an (NLP) as follows

[146, 160]:

(MPCC)φ min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,
φ(Gk(x), Hk(x)) = 0 k ∈ K.

Note that the composition function φ(Gk(x), Hk(x)) may be non-differentiable even if

the functions Gk and Hk are sufficiently smooth, since the NCP-functions may be non-

differentiable at the origin, such as φ(a, b) := min(a, b) or φ(a, b) := a + b −
√
a2 + b2.

Finally, by introducing slack variables r and s, (MPCC) can be also reformulated as an

(NLP) with abstract constraints as follows [165]:

(MPCC)Ω min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,
Gk(x)− rk = 0, Hk(x)− sk = 0, k ∈ K,
(rk, sk) ∈ Ω, k ∈ K,
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where Ω = {(a, b) ∈ R2 | a ≥ 0, b ≥ 0, ab = 0}.

Denote by E, FTNLP, FRNLP, and FNLP(β1,β2) the feasible sets of the problems

(MPCC), (TNLP), (RNLP), and NLP(β1, β2), respectively. Then,

FTNLP =
⋂

(β1,β2)∈P(β)

FNLP(β1,β2)
⊂ FNLP(β1,β2)

⊂ E =
⋃

(β1,β2)∈P(β)

FNLP(β1,β2)
⊂ FRNLP.

(1.2.11)

holds on some neighborhood of x̄, see [146]. Based on these relations, x̄ is a local

minimum of (MPCC) if and only if it is a local minimum of program NLP(β1, β2) for

each (β1, β2) ∈ P(β). If x̄ is a local minimum of (RNLP) then it is a local minimum

of (MPCC), and if x̄ is a local minimum of (MPCC) then it is a local minimum of

(TNLP). The reverse implications hold in general only if strict complementarity holds

at x̄ (i.e., β = ∅), see [146]. In this case, P(β) = {(∅, ∅)}, the problems (TNLP),

(RNLP), and NLP(∅, ∅) are the same, and equality holds throughout (1.2.11) on some

neighborhood of x̄. In general, the (MPCC) with β 6= ∅ is more difficult to deal with

than the (MPCC) with β = ∅.

Since (MPCC) has close connections with different NLPs, many concepts and meth-

ods known from the nonlinear programming literature have been used to study (MPCC).

The various constraint qualifications ensuring the KKT conditions (also known as the

strong stationary conditions in the MPCC literature) have been studied, see [16, 146].

The sequential quadratic programming method for (MPCC) can be found in [89, 61],

and the sequential penalization approach has been investigated in [81]. More impor-

tantly and frequently, variants of these concepts and methods, which are tailored specif-

ically for (MPCC), have been used in the (MPCC) community. In what follows, we will

mainly focus on various constraint qualifications and stationarity concepts for (MPCC),

and survey briefly on penalty methods for (MPCC).

Standard CQs for (MPCC)

As mentioned earlier, the (MPCC) is essentially a nonlinear programming problem. But

it is a well-known fact that most of the familiar CQs known from nonlinear programming

literature do not hold, see [34, 167, 56]. In particular, the linear CQ is violated because

the constraints of (MPCC) cannot be all affine functions. The MFCQ is also violated

at every feasible point of (MPCC), see [167, 146] and Proposition 2.15 of [52] for a
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detailed proof. Thus, any CQ stronger than the MFCQ, including in particular the

LICQ, cannot be fulfilled at any feasible point of (MPCC). However, the LICQ and

the MFCQ for (TNLP) may have a great chance to be fulfilled because of the absence

of complementarity constraints, and they are respectively called the MPCC LICQ and

the MPCC MFCQ, and were first considered by Scheel and Scholtes [146] for deriving

optimality conditions for (MPCC). For various applications of the MPCC LICQ in

connection with numerical methods for (MPCC), see [77, 78, 160, 81, 102].

If there exist some k ∈ β and a sequence xν → x̄ such that Gk(xν)Hk(xν) 6= 0 for all

ν, then by definition the (QNCQ) does not hold at x̄. This indicates that the (QNCQ)

can be easily violated for (MPCC).

The ACQ holds at x̄ for (MPCC) if by definition TE(x̄) = T lin(x̄), where TE(x̄) is

the (Bouligand) tangent cone to E at x̄, and T lin(x̄) is the first-order linearized cone of

(MPCC) at x̄ which can be explicitly expressed as

T lin(x̄) =


u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x̄)Tu ≤ 0, i ∈ I(x̄)

∇hj(x̄)Tu = 0, j ∈ J
∇Gk(x̄)Tu = 0, k ∈ α
∇Hk(x̄)Tu = 0, k ∈ γ
∇Gk(x̄)Tu ≥ 0, k ∈ β
∇Hk(x̄)Tu ≥ 0, k ∈ β


.

One drawback of the ACQ is that it can never be satisfied when TE(x̄) is non-convex,

which is rather common for (MPCC) due to the existence of the complementarity

constraints.

The ACQ is closely related with the notion of piecewise ACQ first introduced by

Pang and Fukushima [125], which is satisfied at x̄ by definition if the ACQ holds at x̄

for each NLP(β1, β2) with (β1, β2) ∈ P(β). For each (β1, β2) ∈ P(β), let the first-order
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linearized cone of NLP(β1, β2) at x̄ be given by

T lin
(β1,β2)(x̄) =


u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x̄)Tu ≤ 0, i ∈ I(x̄)

∇hj(x̄)Tu = 0, j ∈ J
∇Gk(x̄)Tu = 0, k ∈ α ∪ β1

∇Hk(x̄)Tu = 0, k ∈ γ ∪ β2

∇Gk(x̄)Tu ≥ 0, k ∈ β2

∇Hk(x̄)Tu ≥ 0, k ∈ β1


.

Under the piecewise ACQ at x̄, the ACQ holds at x̄, if and only if, among all the subsets

T lin
(β1,β2)(x̄) of T lin(x̄) with (β1, β2) ∈ P(β), there exists at least one which is equal to

T lin(x̄) and hence the biggest one, see Flegel and Kanzow [56]. As can be easily seen

from the simple complementarity constraints: x1 ≥ 0, x2 ≥ 0, x1x2 = 0, the ACQ does

hold at x̄ := (0, 0)T though the piecewise ACQ is satisfied at x̄. Note that the piecewise

ACQ is a very weak assumption, because each NLP(β1, β2) with (β1, β2) ∈ P(β) is

merely an ordinary nonlinear programming for which the ACQ is commonly believed

[16] to be weak enough.

The ACQ is also closely related with the notion of nonsingularity for linear systems,

which is also introduced by Pang and Fukushima [125]. Consider the linear system

Ax ≤ b, Cx = d. (1.2.12)

The inequality Aix ≤ bi, where Ai is the i-th row of the matrix A and bi is the i-th

component of the vector b, is said to be nonsingular if there exists a feasible solution of

the system (1.2.12) which satisfies this inequality strictly. Denote by βG (respectively,

βH) the subset of β consisting of all indices k ∈ β such that the inequality∇Gk(x̄)Tu ≥ 0

(respectively, ∇Hk(x̄)Tu ≥ 0) is nonsingular in the system defining T lin(x̄). If βG∩βH =

∅ and the MPCC MFCQ holds at x̄, then the ACQ holds at x̄, see [125].

The GCQ holds at x̄ for (MPCC) if by definition TE(x̄)∗ = T lin(x̄)∗ or equivalently

T lin(x̄) = clconvTE(x̄). Due to the close convex hull operation, the GCQ has a greater

chance to be satisfied than the ACQ. Let the MPCC-linearized cone of (MPCC) at x̄
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be given by

T lin
MPCC(x̄) =


u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x̄)Tu ≤ 0, i ∈ I(x̄)

∇hj(x̄)Tu = 0, j ∈ J
∇Gk(x̄)Tu = 0, k ∈ α
∇Hk(x̄)Tu = 0, k ∈ γ
∇Gk(x̄)Tu ≥ 0, k ∈ β
∇Hk(x̄)Tu ≥ 0, k ∈ β
(∇Gk(x̄)Tu)(∇Hk(x̄)Tu) = 0, k ∈ β


.

This linearized cone was first introduced in [146, 125] and later studied extensively in

[54, 165, 57]. It is shown by Corollary 3.20 of [52] that the GCQ holds at x̄ if and only

if TE(x̄)∗ = T lin
MPCC(x̄)∗ and T lin

MPCC(x̄)∗ = T lin(x̄)∗. The latter equality was referred as

to the intersection property (IP) for (MPCC) at x̄ by Flegel in his PhD thesis [52], see

also [58]. It is shown by Lemma 3.22 of [52] that the IP is implied by the assumption

(A2) of [125], which is said to be satisfied at x̄ by definition if there exists a partition

(βGH1 , βGH2 ) ∈ P(βG ∩ βH) such that the equality∑
i∈I(x̄)

λgi∇gi(x̄) +
∑
j∈J

λhj∇hj(x̄)−
∑
k∈α∪β

λGk∇Gk(x̄)−
∑
k∈γ∪β

λHk ∇Hk(x̄) = 0

implies that λGk = 0 for all k ∈ βGH1 and λHk = 0 for all k ∈ βGH2 . The assumption (A2)

of [125] is clearly implied by a stronger condition, called the partial MPCC LICQ [165],

which is said to be satisfied at x̄ if by definition the equality∑
i∈I(x̄)

λgi∇gi(x̄) +
∑
j∈J

λhj∇hj(x̄)−
∑
k∈α∪β

λGk∇Gk(x̄)−
∑
k∈γ∪β

λHk ∇Hk(x̄) = 0

implies that λGk = λHk = 0 for every k ∈ β. It is shown by Theorem 4.6 of [56] that the

GCQ holds at x̄ if the MPCC LICQ holds at x̄.

MPCC tailored CQs

Having checked several CQs known from the nonlinear programming literature, we have

seen that most of the standard CQs including the LICQ and the MFCQ, are violated

for the (MPCC). Therefore, the CQs tailored specifically to (MPCC) are needed, some

of which are defined as follows.
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The piecewise MFCQ [165, 121] holds at x̄ if the MFCQ holds at x̄ for each NLP(β1, β2)

with (β1, β2) ∈ P(β).

The MPCC generalized MFCQ (MPCC GMFCQ) [165] holds at x̄ if there is no nonzero

vector λ = (λg, λh, λG, λH) ∈ Rm+q+2l such that∑
i∈I

λgi∇gi(x̄) +
∑
j∈J

λhj∇hj(x̄)−
∑
k∈K

[λGk∇Gk(x̄) + λHk ∇Hk(x̄)] = 0,

∀i ∈ I, λgi ≥ 0, λgi gi(x̄) = 0,

∀k ∈ γ, λGk = 0, ∀k ∈ α, λHk = 0,

∀k ∈ β, either λGk > 0, λHk > 0 or λGk λ
H
k = 0.

(1.2.13)

The MPCC generalized pseudonormality (MPCC GPNCQ)[92] holds at x̄ if there are

no nonzero vector λ = (λg, λh, λG, λH) ∈ Rm+q+2l and a sequence xν → x̄ such

that (1.2.13) holds and for all ν,∑
i∈I

λgi gi(xν) +
∑
j∈J

λhjhj(xν)−
∑
k∈K

[λGkGk(xν) + λHk Hk(xν)] > 0.

The MPCC generalized quasinormality (MPCC GQNCQ) [92] holds at x̄ if there are

no nonzero vector λ = (λg, λh, λG, λH) ∈ Rm+q+2l and a sequence xν → x̄ such

that (1.2.13) holds and for all ν, λgi gi(xν) > 0 for all i with λgi > 0, λhjhj(xν) > 0

for all j with λhj 6= 0, −λGkGk(xν) > 0 for all k with λGk 6= 0, and −λHk Hk(xν) > 0

for all k with λHk 6= 0.

The local MPPC error bound [55, 165] holds at x̄ if there exist some µ > 0, a neigh-

borhood W of the origin of Rm+q+2l and a neighborhood V of x̄ such that

d(x,E) ≤ µ‖(u, v, r, s)‖ ∀(u, v, r, s) ∈ W, ∀x ∈ Z(u, v, r, s) ∩ V,

where Z : Rm+q+2l ⇒ Rn is a set-valued mapping defined by

Z(u, v, r, s) :=

x ∈ Rn

∣∣∣∣∣∣∣∣
gi(x) ≤ ui, i ∈ I, hj(x) = vj, j ∈ J

Gk(x) + rk ≥ 0, Hk(x) + sk ≥ 0, k ∈ K
(Gk(x) + rk)(Hk(x) + sk) = 0, k ∈ K

 , (1.2.14)

which can be considered as a perturbation of the feasible set of the (MPCC) due

to Z(0, 0, 0, 0) = E.

The MPCC linear CQ [165, 54] holds if the functions gi, hj, Gk, Hk are all affine.
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The MPCC-ACQ [54, 165] holds at x̄ if TE(x̄) = T lin
MPCC(x̄).

The MPCC-GCQ [52, 57] holds at x̄ if TE(x̄)∗ = T lin
MPCC(x̄)∗.

The property of local MPCC error bound is actually defined via the calmness of the

set-valued mapping Z at (0, x̄), which in an alternative way [73] can be expressed as

the existence of some τ > 0 and a neighborhood V of x̄ such that

τdE(x) ≤

(
S(x) +

∑
k∈K

|min{Gk(x), Hk(x)}|

)
∀x ∈ V,

where dE(x) is the distance of the point x from E, and S is given by (1.1.3). Equiv-

alently, the right-hand side (induced from the `∞ norm in Rm+q+2l) of the above in-

equality can be replaced by many other functions, such as

S(x) +
∑
k∈K

max{−Gk(x),−Hk(x),−(Gk(x) +Hk(x)),min{Gk(x), Hk(x)}},

which is induced from the `1 norm in Rm+q+2l, see [92] for details.

The result that the local MPCC error bound holds at every feasible point of (MPCC)

under the MPCC linear CQ, can be obtained by applying Robinson’s well-known result

([134], Proposition 1) on a continuity property of polyhedral multifunctions, see Ye

[165] and Flegel and Kanzow [55]. It can also be obtained in a direct way by exploited

carefully the affine structure of (MPCC) under the MPCC linear CQ, see Lemma 3.1

of Meng and Yang [110]. It has been shown by Kanzow and Schwartz [92] that the

local MPCC error bound holds at x̄ if the MPCC GPNCQ holds at x̄. However, by

checking their proof ([92], Lemma 4.3), we find it that the local MPCC error bound

actually holds at x̄ under a weaker version of the MPCC GPNCQ, which happens to

be equivalent with the MPCC GQNCQ by taking Proposition 3.2 of Bertsekas and

Ozdaglar [22] into account. Therefore, the local MPCC error bound holds at x̄ if the

MPCC GQNCQ holds at x̄.

According to [52, 54, 56, 165, 92] and the previous discussion, we have the following

implications:

MPCC LICQ =⇒ MPCC MFCQ =⇒ Piecewise MFCQ

=⇒ MPCC GMFCQ =⇒ MPCC GPNCQ =⇒ MPCC GQNCQ

=⇒ local MPPC error bound =⇒ MPCC ACQ =⇒ MPCC GCQ
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and

MPCC linear CQ =⇒ local MPPC error bound.

Stationarity conditions for (MPCC)

Stationarity (or first-order optimality) conditions of (MPCC) have been the subject of

many recent papers and books, see [146, 125, 165, 105, 123] and references therein. Since

there are several different approaches for deriving these conditions, various stationarity

concepts arise, see a very recent PhD thesis [52] by Flegel for their definitions and

connections.

According to [54], we say that x̄ is a B-stationary point if −∇f(x̄) ∈ TE(x̄)∗, that

it is an MPCC-linearized B-stationary point if −∇f(x̄) ∈ T lin
MPCC(x̄)∗, and that it is a

linearized B-stationary point if −∇f(x̄) ∈ T lin(x̄)∗. We have

Linearized B-stationarity =⇒ MPCC-linearized B-stationarity =⇒ B-stationarity,

due to

T lin(x̄)∗ ⊂ T lin
MPCC(x̄)∗ ⊂ TE(x̄)∗,

see [54]. B-stationarity was first proposed in [106], and studied in depth in [105, 125].

MPCC-linearized B-stationarity was first defined in [146], and later developed by many

papers [165, 55]. Note that x̄ is an MPCC-linearized B-stationary point if and only if

the KKT condition holds at x̄ for each NLP(β1, β2) with (β1, β2) ∈ P(β), see [146]. The

notion of Linearized B-stationarity was introduced in [54] for the sake of completeness.

Besides these primal stationary conditions, there are several dual stationary condi-

tions or KKT-type conditions developed for (MPCC), such as strong stationarity [125],

M-stationarity [121], C-stationarity [146], A-stationarity [53, 54]), and weakly station-

arity [146]. Here, we mainly focus on strong stationarity and M-stationarity. We say

that x̄ is a strongly stationary point [146, 125, 56] (respectively, an M-stationary point
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[121, 122, 55, 165]) if, there is λ = (λg, λh, λG, λH) ∈ Rm+q+2l such that

∇f(x̄) +
∑
i∈I

λgi∇gi(x̄) +
∑
j∈J

λhj∇hj(x̄)−
∑
k∈K

[λGk∇Gk(x̄) + λHk ∇Hk(x̄)] = 0,

∀i ∈ I, λgi ≥ 0, λgi gi(x̄) = 0,

∀k ∈ γ, λGk = 0, ∀k ∈ α, λHk = 0,

∀k ∈ β, λGk ≥ 0, λHk ≥ 0

(respetively,∀k ∈ β, either λGk > 0, λHk > 0 or λGk λ
H
k = 0).

Clearly, strong stationarity implies Mordukhovich stationarity. Note that x̄ is a strongly

stationary point if and only if the KKT condition holds at x̄ for (MPCC) or (RNLP), see

[54] for details. M-stationary condition (with ‘M’ standing for ‘Mordukhovich’) was first

introduced in [166] for optimization problems with variational inequality constraints by

using Mordukhovich’s generalized differential calculus [113], and was further studied in

[164] and [121]. It was shown by Theorem 2.3 of [165] that M-stationary condition is

also sufficient for global or local optimality under certain MPCC generalized convexity

condition.

In what follows, we assume that x̄ is a local minimum of (MPCC). Then by the

basic first-order conditions for optimality ([141], Theorem 6.12), we have

−∇f(x̄) ∈ TE(x̄)∗.

Therefore, any local minimum of (MPCC) is by definition a B-stationary point. If the

GCQ holds at x̄, then we have

−∇f(x̄) ∈ T lin(x̄)∗,

which implies by definition that x̄ is a linearized B-stationary point, or equivalently a

strongly stationary point by Farkas’ lemma, see [54] for more details on this equivalence.

Note that the GCQ is the weakest CQ for strong stationarity, as is the case for (NLP),

see [64] and also Theorem 6.11 of [141].

To show the M-stationarity under the MPCC-GCQ, an MPCC variant of the notion

of calmness has been considered in [164, 55]. (MPCC) is said to be MPCC-calm at x̄

if there exist µ > 0, a neighborhood W of the origin of Rm+q+2l and a neighborhood V

of x̄ such that

f(x̄) ≤ f(x) + µ‖(u, v, r, s)‖ ∀(u, v, r, s) ∈ W, ∀x ∈ Z(u, v, r, s) ∩ V,
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where Z is the set-valued mapping defined by (1.2.14). If (MPCC) is MPCC-calm at x̄,

then x̄ is an M-stationary point, see [55] and also [165]. If the local MPCC-error bound

holds at a feasible point x of (MPCC), then the (MPCC) is MPCC-calm at x provided

that x is a local minimum of (MPCC). Recall that the MPCC linear CQ implies the

local MPCC-error bound.

If the MPCC-GCQ holds at x̄, then

−∇f(x̄) ∈ T lin
MPCC(x̄)∗, (1.2.15)

which implies by definition that x̄ is an MPCC-linearized B-stationary point. Note that

(1.2.15) holds if and only if u∗ = 0 is a local minimum of the problem

min
u∈Rn

∇f(x̄)Tu

s.t. u ∈ T lin
MPCC(x̄),

(1.2.16)

which satisfies the MPCC linear CQ because all functions in defining T lin
MPCC(x̄) are

affine. Thus, u∗ = 0 is an M-stationary point of (1.2.16), which amounts to that x̄ is

an M-stationary point of the original (MPCC). This explains how M-stationarity can

be derived from the MPCC-GCQ by means of MPCC-calmness, see [165, 57] for more

details on the original idea and the proof.

Note that MPCC-linearized B-stationarity implies M-stationarity but not vice versa,

as shown by the following MPCC instance with m = q = 0, n = l = 1, and x̄ = 0:

min f(x) = −x
s.t. G(x) = x ≥ 0, H(x) = x2 ≥ 0, G(x)H(x) = 0.

(1.2.17)

The MPCC instance (1.2.17) also indicates that the MPCC-GCQ is not the weakest CQ

for M-stationarity because it is violated at x̄ which, though, is an M-stationary point.

It was shown, though not explicitly, in Flegel and Kanzow [57] that, the weakest CQ for

M-stationarity in the sense that it is both sufficient and necessary for M-stationarity,

can be defined as follows:

TE(x̄)∗ × {0} × {0} ⊂ NΩ1(0, 0, 0) +NΩ2(0, 0, 0), (1.2.18)

where NA(y) stands for the normal cone [141] (also known as the Mordukhovich limiting

normal cone [113]) to A at y ∈ A, Ω1 and Ω2 are two cones defined respectively by

Ω1 =
{

(u, ξβ, ηβ) ∈ Rn+2|β| | ξk ≥ 0, ηk ≥ 0, ξkηk = 0, ∀k ∈ β
}
,
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and

Ω2 =


(u, ξβ, ηβ) ∈ Rn+2|β|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x̄)Tu ≤ 0, i ∈ I(x̄),

∇hj(x̄)Tu = 0, j ∈ J,
∇Gk(x̄)Tu = 0, k ∈ α,
∇Hk(x̄)Tu = 0, k ∈ γ,
∇Gk(x̄)Tu− ξk = 0, k ∈ β,
∇Hk(x̄)Tu− ηk = 0, k ∈ β.


Flegel and Kanzow [57] derived M-stationarity from the MPCC GCQ by actually show-

ing that the MPCC GCQ implies condition (1.2.18). Again, the MPCC instance (1.2.17)

can be used to demonstrate that the condition (1.2.18) may be strictly weaker than the

MPCC GCQ.

Exact penalization results for MPCC

Exact penalty results for (MPCC) are known in the literature [105, 106, 106, 147, 168,

55, 52]. In particular, Flegel and Kanzow [55] showed that the (MPCC) is MPCC-calm

at x̄ if and only if the penalty function for (MPCC) defined by

H(x) = f(x) + µ

(
S(x) +

∑
k∈K

|min{Gk(x), Hk(x)}|

)
has a local minimum at x̄ with some µ ≥ 0, where S is given by (1.1.3). This equivalence

indicates that any condition that can imply the MPCC-calmness will be sufficient for

the exactness of the penalty function H(x). Examples of such conditions are the local

MPCC-error bound property [55, 165], the MPCC linear CQ [55, 165], and the MPCC

GMFCQ [102]. If the penalty function H(x) is exact at x̄, then x̄ is an M-stationary

point, see [55, 165].

When the (MPCC) is treated as an ordinary (NLP), the classical l1 penalty function

for (MPCC) can be expressed as follows:

G(x) = f(x) + µ

(
S(x) +

∑
k∈K

{(−Gk(x))+ + (−Hk(x))+ + |Gk(x)Hk(x)|}

)
,

where S is given by (1.1.3). If the penalty function G(x) is exact at x̄, then x̄ is a strongly

stationary point or equivalently the KKT condition holds at x̄, see [36, 35, 26]. Note

that the MFCQ is invalid at every feasible point of (MPCC) and that local minima
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of (MPCC) may be merely M-stationary points but not strongly stationary points.

This indicates that the exactness of the penalty function G(x) may requires somewhat

stronger regularity conditions, such as the LICQ.

1.3 Notation

The notation that we employ in this thesis is for the most part borrowed from the book

[141] by Rockafellar and Wets. A partial list is provided for the reader’s convenience.

We denote by R the set of all real numbers, and set

R := R ∪ {±∞}, R+ := {t ∈ R | t ≥ 0}, R++ := {t ∈ R | t > 0}.

For a, b ∈ R with a ≤ b, we denote by [a, b] the closed interval between a and b, and

by [a, b) the half-closed and half-open interval between a and b, and by (a, b) the open

interval between a and b. For vectors x, y in Rn, we denote by xT the transpose of x,

by xTy or 〈x, y〉 the inner product of x and y, by x⊥ := {v | 〈v, x〉 = 0} the orthogonal

complement of x, and by ‖x‖ the Euclidean norm of x. For a given subset A of Rn, we

denote the closure of A, the interior of A, the boundary of A and the convex hull of A

respectively by clA, intA, bdA and convA. We say that the function f : Rn → R is Ck

with k being a positive integer if f is k times continuously differentiable, and that f

is C1,1 if f is differentiable with the gradient being locally Lipschitz. For a set-valued

mapping F : Rn ⇒ Rm, the graph of F can be identified as a subset of Rn×Rm, namely

gphF := {(x, y) | y ∈ F (x)}.

For a nonnegative function f : Rn → R+ ∪ {+∞} and a scalar p > 0, the p-th order

function of f is defined by

fp(x) := (f(x))p ∀x ∈ Rn, (1.3.19)

where the convention (+∞)p := +∞ is used. When p = 0, we interpret the function

fp as the indicator of the set {x ∈ Rn | f(x) = 0}.

In what follows, let A be a nonempty subset of Rn. We say that A is locally closed

at a point x̄ (not necessarily in A) if C ∩ V is closed for some closed neighborhood V
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of x̄. The polar cone of A is defined by

A∗ = {v ∈ Rn | 〈v, x〉 ≤ 0 ∀x ∈ A}.

The positive hull of A is defined by

posA = {λx | x ∈ A, λ ≥ 0}.

The horizon cone of A, representing the direction set of A, is defined by

A∞ = {x ∈ Rn | ∃xk ∈ A, ∃λk → 0 + with λkxk → x}.

The distance function to A, written as dA(·) or d(·, A), is defined by

dA(x) := inf
y∈A
‖x− y‖.

The projection mapping PA that assigns to each x ∈ Rn the point, or points, of A

nearest to x, is defined by

PA(x) := {y ∈ A | ‖y − x‖ = dA(x)}.

The indicator function of A is defined by

δA(x) :=

{
0 if x ∈ A,

+∞ otherwise.

If A is empty, we set by convention

A∗ = Rn, posA = {0}, A∞ = {0}, dA(·) = +∞, PA(·) = ∅, and δA(·) =∞.

Let x̄ ∈ A. Variational geometry of A at x̄ can be captured by a number of notions

that have been investigated in great details in Chapters 6 and 13 of Rockafellar and

Wets [141].

(i) A vector w ∈ Rn belongs to the tangent cone TA(x̄) to A at x̄, if there are sequences

tk → 0+ and wk → w such that x̄+ tkwk ∈ A for all k.

(ii) A vector v ∈ Rn belongs to the proximal normal cone NP
A (x̄) to A at x̄, if there

exists some τ > 0 such that x̄ ∈ PA(x̄+ τv).

(iii) The regular normal cone N̂A(x̄) to A at x̄ is the polar cone of TA(x̄).
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(iv) A vector v ∈ Rn belongs to the normal cone NA(x̄) to A at x̄, if there are sequences

xk → x̄ and vk → v with xk ∈ A and vk ∈ N̂A(xk) for all k.

(v) The set A is said to be regular at x̄ in the sense of Clarke if it is locally closed at

x̄ and N̂A(x̄) = NA(x̄).

(vi) A vector z ∈ Rn belongs to the second-order tangent set to A at x̄ for a vector

w ∈ TA(x̄), written as z ∈ T 2
A(x̄ | w), if there are sequences tk → 0+ and zk → z

such that x̄+ tkw+ 1
2
t2kzk ∈ A for all k. When w 6∈ TA(x̄), we interpret T 2

A(x̄ | w)

as an empty set.

In harmony with the general theory of set-valued mappings, it is convenient to think of

NP
A , N̂A and NA not just as mappings on C but of type Rn ⇒ Rn with

NP
A (x̄) = N̂A(x̄) = NA(x̄) := ∅ when x̄ 6∈ A.

In general, we have NP
A (x) ⊂ N̂A(x) ⊂ NA(x) for every x ∈ A and hence

gphNP
A ⊂ gphN̂A ⊂ gphNA. (1.3.20)

In what follows, let f : Rn → R be an extended real-valued function and let x̄ be a

point with f(x̄) finite. The effective domain of f is the set

domf := {x ∈ Rn | f(x) < +∞},

and the epigraph of f is the set

epif := {(x, α) ∈ Rn ×R | α ≥ f(x)}.

For each α ∈ R, we will find it useful to have the notation for the lower level set

lev≤αf := {x ∈ Rn | f(x) ≤ α}.

The function f is said to be lower semicontinuous if, epif is closed in Rn × R or

equivalently the level sets of type lev≤αf are all closed in Rn; it is said to be upper

semicontinuous if the function −f is lower semicontinuous; and it is said to be locally

lower semicontinuous at x̄ if, epif is locally closed at (x̄, f(x̄)).

The notions related with generalized differential and subdifferential that we need

throughout the thesis are summarized as follows. They have been extensively studied

in Chapters 8 and 13 of Rockafellar and Wets [141].
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(i) The vector v ∈ Rn is a regular subgradient of f at x̄, written v ∈ ∂̂f(x̄), if

f(x) ≥ f(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖).

(ii) The vector v ∈ Rn is a (general) subgradient of f at x̄, written v ∈ ∂f(x̄), if there

are sequences xk → x̄ and vk → v with f(xk)→ f(x̄) and vk ∈ ∂̂f(xk).

(iii) The function f is said to be regular at x̄ if epif is regular in the sense of Clarke

at (x̄, f(x̄)) as a subset of Rn ×R.

(iv) The subderivative function df(x̄) : Rn → R is defined by

df(x̄)(w) := lim inf
τ→0+, w′→w

f(x̄+ τw′)− f(x̄)

τ
.

(v) For any v ∈ Rn, the second subderivative at x̄ for v and w is

d2f(x̄ | v)(w) := lim inf
τ→0+, w′→w

f(x̄+ τw′)− f(x̄)− τ〈v, w′〉
1
2
τ 2

.

(vi) For any vector w with df(x̄)(w) finite, the parabolic subderivative at x̄ for w with

respect to z is

d2f(x̄)(w | z) := lim inf
τ→0+, z′→z

f(x̄+ τw + 1
2
τ 2z′)− f(x̄)− τdf(x̄)(w)

1
2
τ 2

.

(vii) The function f is said to be parabolically regular at x̄ for a vector v ∈ Rn

(Definition 13.65 of [141]) if the equality

d2f(x̄ | v)(w) = inf
z∈Rn

{
d2f(x̄)(w | z)− 〈v, z〉

}
holds for every w having df(x̄)(w) = 〈v, w〉, or in other words if for such w with

d2f(x̄ | v)(w) <∞ there exist, among the sequences τ k → 0+ and wk → w with

f(x̄+ τ kwk)− f(x̄)− τ k〈v, wk〉
1
2
(τ k)2

→ d2f(x̄ | v)(w),

ones with the additional property that lim supv ‖wk − w‖/τ k <∞.

(viii) The function f is said to be calm at x̄ from below with modulus τ ∈ R+ if there

exists a neighborhood V of x̄ such that

f(x) ≥ f(x̄)− τ‖x− x̄‖ ∀x ∈ V.
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It should be noted that the notion of calmness from below is closely related with the

notion of strong slope introduced by De Giorgi et al. in [63], where the strong slope of

f at x̄ is defined by

|∇f |(x̄) := lim sup
x→x̄, x 6=x̄

(f(x̄)− f(x))+

‖x− x̄‖
.

1.4 Motivation and Outline of the Thesis

The study of exact penalty functions has grown and proliferated in many interesting

areas within mathematical optimization society. In the literature, exact penalty func-

tions have been employed to derive optimality conditions for constrained optimization

problems, see [35, 36, 66, 105] and the milestone paper by Burke [26]. The technique

used in these work is by first transforming constrained optimization problems into un-

constrained ones via exact penalty functions, and then establishing the equivalence of

optimality conditions for the constrained and unconstrained optimization problems. It

should be noticed that not all exact penalty functions are qualified for deriving optimal-

ity conditions in this direct way by establishing such equivalences, as can be seen from

Yang and Meng [161]. In this connection, a natural question arises as to whether and

how general exact penalty functions can be employed to derive optimality conditions for

constrained optimization problems. To a great extent, this thesis is motivated by Yang

and Meng’s work [161], and can be regarded as a further development of the idea hidden

in [161]. In this thesis we aim to study the theory of deriving optimality conditions

for constrained optimization problems from very general exact penalty functions, and

intend to develop a unified theory from a modern perspective of variational analysis

popularized by Rockafellar and Wets’ book [141].

For simplicity in the present discussion, we proceed formally to sketch the main

work of this thesis. Let C be a subset of Rn and let φ : Rn → R+ ∪ {+∞} be a

lower semicontinuous function with the property that x ∈ C if and only if φ(x) = 0.

Moreover, let x̄ ∈ C be a fixed point and let the function f0 : Rn → R be at least

continuously differentiable.

Consider the constrained optimization problem

(P) min f0(x) s.t. x ∈ C,
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and the unconstrained optimization problem

min f0(x) + µφ(x) s.t. x ∈ Rn,

where µ is a nonnegative real number. In harmony with the general theory of penalty

functions, it is convenient to think of µ as a penalty parameter, φ as a penalty term,

and f0 + µφ as a penalty function. Note that when C is assumed to be the feasible

set of (NLP) and f0 is assumed to be the objective function of (NLP), the penalty

function f0 +µφ includes penalty functions of the form (1.1.7) and correspondingly the

lp (0 ≤ p ≤ 1) penalty function as special cases.

We say that the penalty function f0 +µφ is exact at x̄ if it has an unconstrained local

minimum at x̄ for a finite penalty parameter (and hence for all finite and larger values of

the penalty parameter). It is to be note that if f0 +µφ is exact at x̄, then by definition,

(P) has a local minimum at x̄. When φ happens to be the indicator function δC of C, it

is clear to see that f0 +µφ is exact at x̄ if and only if (P) has a local minimum at x̄. In

general, however, f0+µφ may not be exact at x̄ even if (P) has a local minimum at x̄. In

this thesis, we intend to address two basic questions concerning optimality conditions

and exact penalty functions as to when penalty functions are exact at local minima

of constrained optimization problems, and how optimality conditions of constrained

optimization problems can be derived from exactness of penalty functions. Chapter 2

and part of Chapter 3 are devoted to the first question, while Chapters 4, 5 and part

of Chapter 3 are devoted to the second one.

The outline of the thesis is as follow.

In Chapter 2, we study sufficient conditions for penalty terms to possess local error

bounds. To be precise, we say that φ is a local error bound at x̄ for C, if there exist

some τ > 0 and ε > 0 such that for all x ∈ Rn with ‖x− x̄‖ < ε,

τdC(x) ≤ φ(x). (1.4.21)

A stronger version of (1.4.21) asserts that there exist some τ > 0 and ε > 0 such that

for every α ≥ 0 and every x ∈ Rn with ‖x− x̄‖ ≤ ε, it follows that

τd (x, lev≤αφ) ≤ (φ(x)− α)+. (1.4.22)

Note that lev≤αφ = C when α = 0. Conditions of the type (1.4.22) were first studied

by Azé and Corvellec [11]. A similar result can be found in ([37], Theorem 3.1).
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In the first part of Chapter 2, we establish equivalent conditions for the stronger

version (1.4.22) of the local error bound (1.4.21). These conditions are expressed in

terms of the strong slopes, the subderivatives and regular subgradients of φ at points

outside C. We observe that (1.4.21) not necessarily implies (1.4.22) even if φ is locally

Lipschitz continuous. However, if φ is the max function for a finite collection of contin-

uously differentiable functions, we show that (1.4.21) and (1.4.22) are equivalent. As

a consequence of this equivalence, we show that the quasi-normality constraint qualifi-

cation introduced by Hestenes [75] is sufficient for the existence of local error bounds.

Moreover, we use an example to illustrate how to apply our result to identify when

exactly local error bounds occur for a parameterized system.

In the second part of Chapter 2, we study sufficient conditions for (1.4.21) in a

systematic way by checking limits defined on the boundary of C in the following way:

lim
k→+∞

φ(xk + tkvk)

tk
, (1.4.23)

where {(xk, vk, tk)} ⊂ bdC×Rn×R++ and (xk, vk, tk)→ (x̄, v, 0) with v ∈ NC(x̄)\{0}.
Studniarski and Ward ([151], Theorem 2.5) showed that (1.4.21) holds if all limits of the

form (1.4.23) are positive. Ioffe and Outrata ([86], Theorem 2.1 (b)) obtained the same

result under a weaker condition which requires positiveness of all limits of the form

(1.4.23) but with an additional requirement that vk ∈ N̂C(xk) for all k. A similar result

to that of Ioffe and Outrata has been given by Henrion and Outrata ([73], Theorem

1). In addition, we show under what circumstances on C these sufficient conditions are

also necessary by considering limits of the kind (1.4.23) for the distance function dC .

We end this chapter by using an example to illustrate that the second class of sufficient

conditions is applied when criteria studied in the first part fail.

In Chapter 3, we study first- and second-order necessary and sufficient conditions

for f0 +µφ to be exact at x̄. We present our conditions in terms of three epi-derivatives:

subderivatives, second-order subderivatives, and parabolic second-order subderivatives.

These notions have been successfully utilized to formulate very tight first- and second-

order optimality conditions for an extended real-valued function to attain a local min-

imum, see in particular Theorems 10.1, 13.24 and 13.66 of Rockafellar and Wets [141].

We study some basic properties of the subderivative, the second subderivative and the

parabolic subderivative of φ, and pay our attention to derivative kernels consisting of

directions at which these subderivatives vanish. Because of the differentiability as-
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sumption on f0, the subderivative, the second-order subderivative, and the parabolic

second-order subderivatives of the function f0 + µφ can be expressed respectively by

that of f0 and φ, which makes it possible for us to apply Theorems 10.1, 13.24 and

13.66 of [141] in a straightforward way.

In Chapter 4, we study KKT conditions and second-order necessary conditions of

the form (1.1.6) for the nonlinear programming problem (NLP) via exactness of penalty

functions associated with (NLP). By setting C to be the feasible set of (NLP), we have

a general penalty function f +µφ for (NLP), which includes the lp (0 ≤ p ≤ 1) penalty

functions as special cases. Beside the penalty term φ, we mainly focus on the penalty

term Sp of the lp penalty function. Explicitly, we have

Sp(x) =

(∑
i∈I

gi(x)+ +
∑
j∈J

|hj(x)|

)p

∀x ∈ Rn.

It is well known that both the KKT condition and the second-order necessary con-

dition (1.1.6) holds at x̄ if the l1 penalty function is exact at x̄, see in particular Han

and Mangasarian ([66], Theorem 4.8) and Rockafellar ([139], Corollary 4.5). But for

0 < p < 1, the KKT condition may not hold at x̄ even if the lp penalty function is exact

at x̄. This can be seen from the simple example: min−x s.t. x2 ≤ 0. However, Yang

and Meng [161] showed that it is still possible to derive KKT conditions from lower or-

der exact penalty functions, by requiring that the constraint functions of (NLP) satisfy

some additional conditions in terms of (generalized) second-order derivatives. Yang and

Meng formulated these conditions by applying Farkas’ Lemma and by estimating Dini

upper-directional derivatives of the lp penalty function using the tools of (generalized)

Taylor expansions.

We say that the penalty term φ is of KKT-type at x̄ if the KKT condition holds

at x̄ whenever there is a continuously differentiable function f such that f + µφ is

exact at x̄. In Section 4.2, we study conditions under which penalty terms are of

KKT-type. These conditions allow us to derive KKT conditions from exactness of

penalty functions. The main results that we rely are Theorems 3.2.1 and 3.3.1, and the

variational description of regular subgradients (Rockafellar and Wets [141], Proposition

8.5). In subsection 4.2.1, we give equivalent conditions for penalty terms φ and Sp to be

of KKT-type. These equivalent conditions are expressed by either subderivative kernels

or regular subgradients of φ and Sp. In subsection 4.2.2, we present several conditions
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in terms of the original data of (NLP), which are sufficient for Sp to be of KKT-type. In

particular when (NLP) has one inequality only, we give full characterizations in terms

of the original data for Sp to be of KKT-type. We end Section 4.2 by giving a class

of parameterized problems to illustrate that our result can be applied to derive KKT

conditions when all existing methods fail.

In Section 4.3, by applying the second-order necessary conditions presented in The-

orem 3.3.3 and the duality theorem of linear programming, we derive second-order

necessary conditions of the type (1.1.6) for (NLP) from exactness of f +µφ under some

additional conditions in terms of the kernel of the parabolic subderivative of φ. When

φ = Sp, we give sufficient conditions for these conditions in terms of the original data of

(NLP). We end this chapter by using an example to illustrate that even if neither the

GCQ nor the SGCQ holds, our result obtained in this section can be applied to derive

the second-order necessary condition (1.1.6).

In Chapter 5, we study strong stationarity and Mordukhovich stationarity for the

mathematical program with complementarity constraints (MPCC) via exactness of

penalty functions associated with (MPCC). Let 0 ≤ p ≤ 1. We consider two lp penalty

functions for (MPCC) as follows:

Hp(x) = f(x) + µ

(
S(x) +

∑
k∈K

|min{Gk(x), Hk(x)}|

)p

and

Gp(x) = f(x) + µ

(
S(x) +

∑
k∈K

{(−Gk(x))+ + (−Hk(x))+ + |Gk(x)Hk(x)|}

)p

,

where S is given by (1.1.3). By setting C to be the feasible set of (MPCC), we have a

general penalty function f + µφ for (MPCC), which includes the lp penalty functions

Gp and Hp as special cases. We say that the penalty term φ is of S-type (resp., M-type)

at x̄ if strong stationarity (resp., Mordukhovich stationarity) holds at x̄ whenever there

is a continuously differentiable function f such that f + µφ is exact at x̄. In Section

5.2, we establish equivalent conditions for φ to be of S-type or M-type. In Section 5.3,

we consider the lp penalty functions Gp and Hp. We give sufficient conditions in terms

of the original data of (MPCC) for these two penalty functions to be of S-type and

M-type. We also establish some relationships between these two penalty functions.

In Chapter 6, we conclude the thesis and give directions for future work.
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Chapter 2

Characterizations of Local Error

Bounds

2.1 Introduction

Throughout this chapter, let C be a subset of Rn, let x̄ ∈ C be a fixed point, and let

φ : Rn → R+∪{+∞} be a lower semicontinuous function with the property that x ∈ C
if and only if φ(x) = 0.

We say that φ is a local error bound at x̄ for C, if there exist some τ > 0 and ε > 0

such that for all x ∈ Rn with ‖x− x̄‖ < ε,

τdC(x) ≤ φ(x). (2.1.1)

Suppose that there is a function f0 : Rn → R which is locally Lipschitz at x̄ and has a

local minimum at x̄ relative to C. It follows from Clarke’s elementary exact penalization

principle ([36], Proposition 2.4.3) that if φ is a local error bound at x̄ for C, then there

exists some µ ≥ 0 such that f0 + µφ has a local minimum at x̄, see also Proposition

3.111 of [23] or Corollary 2.6 of [147]. That is, the local error bound (2.1.1) allows us

to reduce the constrained problem of minimizing f0 over C, in a local sense to that of

minimizing f0 + µφ over Rn. This fundamental result motivates us to study local error

bounds and their characterizations in this chapter.

In general, there can be found in the literature two classes of sufficient conditions
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for (2.1.1). The first one is expressed in terms of various derivative-like objects defined

for points outside C. Such a condition in terms of the Clarke subdifferential was first

investigated by Ioffe [84], who used Ekeland’s variational principle and the sum rule

to provide a global error bound for a Lipschitz continuous equality system, under the

assumption that the norm of any element in the Clarke subdifferential of the constraint

function at each point outside the solution set is bounded away from zero. Ioffe’s main

idea has been developed in many aspects. One aspect of development is made by us-

ing other derivative-like objects, such as the limiting subdifferential (also known as the

Mordukhovich subdifferential) [163, 151], a partial subdifferential in a general Banach

space [91], the proximal subdifferential ([37], Theorem 3.1), the so-called abstract subd-

ifferential [156], the lower Dini-directional derivatives [115, 116, 155], the subderivative

(also known as the Hadamard directional derivative) [79, 157], and the strong slope

[11, 10, 86, 119], a notion introduced by De Giorgi et al.[63]. Of particular note are

conditions expressed by strong slopes, which are not only sufficient for (2.1.1), but also

necessary if there exist some τ > 0 and ε > 0 such that for every α ≥ 0 and every

x ∈ Rn with ‖x− x̄‖ ≤ ε, it follows that

τd (x, lev≤αφ) ≤ (φ(x)− α)+. (2.1.2)

Note that lev≤αφ = C when α = 0. We confirm that (2.1.2) is a stronger version of

(2.1.1). Conditions of the type (2.1.2) were first studied by Azé and Corvellec [11]. A

similar result can be found in ([37], Theorem 3.1).

The second class of sufficient conditions for (2.1.1), which seems to attract less

attention than the first one, relies on limits defined on the boundary of C in the following

way:

lim
k→+∞

φ(xk + tkvk)

tk
, (2.1.3)

where {(xk, vk, tk)} ⊂ bdC×Rn×R++ and (xk, vk, tk)→ (x̄, v, 0) with v ∈ NC(x̄)\{0}.
Studniarski and Ward ([151], Theorem 2.5) showed that (2.1.1) holds if all limits of the

form (2.1.3) are positive. Ioffe and Outrata ([86], Theorem 2.1 (b)) obtained the same

result under a weaker condition which requires positiveness of all limits of the form

(2.1.3) but with an additional requirement that vk ∈ N̂C(xk) for all k. A similar result

to that of Ioffe and Outrata has been given by Henrion and Outrata ([73], Theorem 1).

The outline of this chapter is as follows. In Section 2.2, we study the first class

of sufficient conditions for local error bounds, and establish equivalent conditions for
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the stronger version (2.1.2) of the local error bound (2.1.1). These conditions are

expressed in terms of the strong slopes, the subderivatives and regular subgradients of

φ at points outside C. We observe that (2.1.1) not necessarily implies (2.1.2) even if φ

is locally Lipschitz continuous. However, if φ is the max function for a finite collection

of continuously differentiable functions, we show that (2.1.1) and (2.1.2) are equivalent.

As a consequence of this equivalence, we show that the quasi-normality constraint

qualification introduced by Hestenes [75] is sufficient for the existence of local error

bounds. We end Section 2.2 by using an example to illustrate how to apply our result

to identify when exactly local error bounds occur for a parameterized system.

In Section 2.3, we study the second class of sufficient conditions for (2.1.1) in a

systematic way, and show under what circumstances on C these sufficient conditions

are also necessary by considering limits of the kind (2.1.3) for the distance function dC .

We end Section 2.3 by using an example to illustrate that the second class of sufficient

conditions is applied when criteria obtained in Section 2.2 fail.

2.2 On Subdifferential, Subderivative and Strong

Slope for Outside Points

In this section, we establish equivalent conditions for the stronger version (2.1.2) of the

local error bound (2.1.1). These conditions are expressed in terms of the strong slopes,

the subderivatives and regular subgradients of φ at points outside C. We observe

that (2.1.1) not necessarily implies (2.1.2) even if φ is locally Lipschitz continuous.

However, if φ is the max function for a finite collection of continuously differentiable

functions, we show that (2.1.1) and (2.1.2) are equivalent. As a consequence of this

equivalence, we show that the quasi-normality constraint qualification introduced by

Hestenes [75] is sufficient for the existence of local error bounds. Finally, by an example,

we illustrate how to apply our result to identify when exactly local error bounds occur

for a parameterized system.

To begin with, we review a few results that are needed in the sequel.

Lemma 2.2.1 (Ekeland variational principle). Let f : Rn → R be lower semicontinu-
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ous with infx∈Rn f(x) finite, and let x̄ ∈ Rn be such that

f(x̄) ≤ inf
x∈Rn

f(x) + ε,

where ε > 0. Then, for any δ > 0, there exists a point x̃ ∈ Rn such that ‖x̃− x̄‖ ≤ ε

δ
,

f(x̃) ≤ f(x̄), and x̃ is the unique minimum of the function f(x) + δ‖x− x̃‖ over Rn.

Below are some basic results concerning the relations among strong slopes, sub-

derivatives, and (regular) subgradients.

Lemma 2.2.2 Consider a function f : Rn → R and a point x̄ with f(x̄) finite. The

following properties are equivalent:

(i) f is calm at x̄ from below.

(ii) df(x̄)(0) = 0, or equivalently, df(x̄)(w) > −∞ for all w 6= 0.

(iii) |∇f |(x̄) < +∞.

Moreover, the following statements are true:

(i′) |∇f |(x̄) = − min
‖w‖=1

df(x̄)(w) = inf{τ ∈ R+ | f is calm at x̄ from below with modulus τ}.

(ii′) |∇f |(x̄) ≤ d(0, ∂̂f(x̄)), and if f is locally lower semicontinuous at x̄, then

d(0, ∂f(x̄)) ≤ |∇f |(x̄).

(iii′) If f is regular at x̄, then d(0, ∂f(x̄)) = |∇f |(x̄), and

∂f(x̄) 6= ∅ ⇐⇒ f is calm at x̄ from below .

Proof. In view of Proposition 8.32 of [141] and the definition of strong slope, all the

results follow readily. 2

The following two examples demonstrate that the inequalities in statement (ii′) of

Lemma 2.2.2 can be strict when f is not regular at x̄.
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Example 2.2.1 Let f(x) = −|x| and let x̄ = 0. f is clearly locally lower semicontin-

uous at x̄ since f is lower semicontinuous. We have ∂̂f(x̄) = ∅, ∂f(x̄) = {±1}, and

|∇f |(x̄) = 1. Therefore, f is not regular at x̄, and

1 = d(0, ∂f(x̄)) = |∇f |(x̄) < d(0, ∂̂f(x̄)) = +∞.

Example 2.2.2 Let f(x) = −√x+ and let x̄ = 0. f is clearly locally lower semicon-

tinuous at x̄ since f is lower semicontinuous. We have ∂̂f(x̄) = ∅, ∂f(x̄) = −1, and

|∇f |(x̄) = +∞. Therefore, f is not regular at x̄, and

1 = d(0, ∂f(x̄)) < |∇f |(x̄) = d(0, ∂̂f(x̄)) = +∞.

Now, we give characterizations for the stronger version (2.1.2) of the local error

bound (2.1.1).

Theorem 2.2.1 Consider the following conditions:

(i) There exist ε > 0 and τ > 0 such that for every x 6∈ C with ‖x − x̄‖ ≤ ε and

φ(x) < +∞, it holds that

d(0, ∂φ(x)) ≥ τ.

(ii) There exist ε > 0 and τ > 0 such that for every x 6∈ C with ‖x − x̄‖ ≤ ε and

φ(x) < +∞, it holds that

|∇φ|(x) ≥ τ.

(iii) There exist ε > 0 and τ > 0 such that for every x 6∈ C with ‖x − x̄‖ ≤ ε and

φ(x) < +∞, it holds that

dφ(x)(w) ≤ −τ

for some w ∈ Rn with ‖w‖ = 1.

(iv) There exist ε > 0 and τ > 0 such that for every α ≥ 0 and every x ∈ Rn with

‖x− x̄‖ ≤ ε, it holds that

τd (x, lev≤αφ) ≤ (φ(x)− α)+.
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We have (i) =⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv). If, in addition, φ is regular at every point

x 6∈ C with φ(x) < +∞ and ‖x− x̄‖ ≤ ε for some ε > 0, we have (ii) =⇒ (i).

Proof. In view of Lemma 2.2.2, it remains to show (ii) ⇐⇒ (iv). First, we show

(ii) =⇒ (iv). Suppose that ε and τ are the constants satisfying condition (ii). Let

α ≥ 0 and ‖x− x̄‖ ≤ ε′ with 0 < ε′ ≤ ε

2
. To show condition (iv), it suffices to show

τd(x, lev≤αφ) ≤ (φ(x)− α)+. (2.2.4)

If x ∈ lev≤αφ or φ(x) = +∞, (2.2.4) holds trivially. In what follows, we assume that

α < φ(x) < +∞. In view of the lower semicontinuity of φ, the lower level set lev≤αφ is

closed and we have

0 < d(x, lev≤αφ) ≤ ‖x− x̄‖, (2.2.5)

where the second inequality follows because x̄ ∈ lev≤αφ. Suppose by contradiction that

(2.2.4) does not hold, i.e.,

(φ(x)− α)+ < τd(x, lev≤αφ).

Due to (2.2.5), we can find two constants τ̄ , ρ̄ with 0 < τ̄ < τ and 0 < ρ̄ < d(x, lev≤αφ)

satisfying (φ(x)− α)+ ≤ τ̄ ρ̄. Let f(y) = (φ(y)− α)+ for all y ∈ Rn. It is easy to check

that f is lower semicontinuous with infy∈Rn f(y) = f(x̄) = 0. Thus, we have

f(x) ≤ inf
y∈Rn

f(y) + τ̄ ρ̄.

It follows from Lemma 2.2.1 that, there exists a point x̃ ∈ Rn such that ‖x̃ − x‖ ≤ ρ̄,

f(x̃) ≤ f(x), and, for all y ∈ Rn with y 6= x̃,

f(x̃) < f(y) + τ̄‖y − x̃‖.

This implies, by the definition of the strong slope, that

|∇f |(x̃) ≤ τ̄ .

We claim that f(x̃) > 0 or equivalently x̃ 6∈ C, because otherwise we have x̃ ∈ lev≤αφ,

implying that d(x, lev≤αφ) ≤ ‖x̃− x‖ ≤ ρ̄ < d(x, lev≤αφ), which is impossible. By the

lower semicontinuity of f , we have for all y close to x̃,

f(y) = φ(y)− α > 0,
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which implies that |∇φ|(x̃) = |∇f |(x̃) ≤ τ̄ . In view of (2.2.5), we have

‖x̃− x̄‖ ≤ ‖x̃− x‖+ ‖x− x̄‖ ≤ ρ̄+ ‖x− x̄‖ ≤ d(x, lev≤αφ) + ‖x− x̄‖ ≤ 2‖x− x̄‖ ≤ ε.

Therefore, we have found a point x̃ 6∈ C satisfying ‖x̃− x̄‖ ≤ ε, φ(x̃) = f(x̃)+α < +∞,

and |∇φ|(x̃) ≤ τ̄ < τ . This contradicts to condition (ii). Thus, (2.2.4) holds and the

proof for (ii) =⇒ (iv) is completed.

Now, we show (iv) =⇒ (ii). Suppose that ε and τ are the constants satisfying

condition (iv). Let 0 < ε′ ≤ ε and x 6∈ C with ‖x− x̄‖ ≤ ε′ and φ(x) < +∞. To show

condition (ii), it suffices to show

|∇φ|(x) ≥ τ. (2.2.6)

Let αk := φ(x)− 1
k

for all positive integers k. Due to x 6∈ C, we have φ(x) > 0 and hence

there exists some k̄ such that αk > 0 for all k ≥ k̄. Since φ is lower semicontinuous,

lev≤αkφ is closed for all k. By condition (ii), we can find some xk ∈ lev≤αkφ such that

τ‖x− xk‖ = τd(x, lev≤αkφ) ≤ φ(x)− αk ∀k ≥ k̄.

We have xk 6= x for all k ≥ k̄, because otherwise φ(x) = φ(xk) ≤ αk = φ(x)− 1
k
, which

is impossible. Therefore, we have

0 < ‖x− xk‖ ≤
φ(x)− αk

τ
=

1

kτ
∀k ≥ k̄.

This implies that xk → x as k →∞, and that x is not a local minimum of φ because

φ(xk) ≤ αk = φ(x)− 1

k
< φ(x) ∀k ≥ k̄.

By the definition of the strong slope, we have

|∇φ|(x) ≥ lim sup
k→∞

φ(x)− φ(xk)

‖x− xk‖
≥ lim sup

k→∞

φ(x)− αk
‖x− xk‖

≥ τ,

which shows (2.2.6). The proof is completed. 2

Remark 2.2.1 The equivalence of conditions (ii) and (iv) can be easily derived from

Proposition 2.1 and Theorem 5.1 in [11]. Here, for completeness, we have given a direct

proof in the context of finite dimensional spaces. Condition (iv) implies that φ is a local

error bound for C at x̄, but not vice versa even when φ is Lipschitzian continuous as

shown by Example 2.2.3.
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Example 2.2.3 (Example 5.2 of [151]) Let C = −R+ and let φ : R → R+ be defined

by

φ(x) =


0 if x ≤ 0,

2−n if 2−n−1 ≤ x ≤ 2−n with n being an odd integer,

3x− 2−n if 2−n−1 ≤ x ≤ 2−n with n being an even integer,

x otherwise.

It is clear to see that φ is Lipschitzian continuous and that φ(x) = 0 if and only if

x ∈ C. Consider a point x̄ = 0 ∈ C. It is easy to check that φ is a local error bound for

C at x̄, since φ(x) ≥ x+ for all x ∈ R and the function x+ is a local error bound for C

at x̄. However, for 2−n−1 < x < 2−n with n being any odd integer, we have |∇φ|(x) = 0.

Therefore, by Theorem 2.2.1, there exist no ε > 0 and τ > 0 such that, for every α ≥ 0

and every x ∈ R with |x− x̄| ≤ ε, it holds that

τd (x, lev≤αφ) ≤ (φ(x)− α)+. (2.2.7)

To see that in a direct way, let xk = 2−k and αk = 2−k − 2−2k for each odd integer k.

Then, we have
(φ(xk)− αk)+

d (x, lev≤αkφ)
≤ 2−2k

2−k − 2−k−1
,

where the right-hand side term tends to 0 as k → +∞. Therefore, we cannot find ε > 0

and τ > 0 such that (2.2.7) holds for every α ≥ 0 and every x ∈ R with |x− x̄| ≤ ε.

Let I = {1, · · · ,m} and let fi : Rn → R be continuously differentiable for all i ∈ I.

Consider the function defined by

φ(x) = (max
i∈I

fi(x))+ ∀x ∈ Rn, (2.2.8)

and the set defined by

C = {x ∈ Rn | fi(x) ≤ 0 ∀i ∈ I}. (2.2.9)

The following proposition identifies exactly when φ is a local error bound for C at some

x̄ ∈ C. In particular, we show that φ is a local error bound for C at x̄ if and only if

condition (iv) of Theorem 2.2.1 holds.

Proposition 2.2.1 Let x̄ ∈ C and let

I(x) := {i ∈ I | fi(x) = φ(x)} ∀x ∈ Rn, (2.2.10)
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where C is given by (2.2.9) and φ is given by (2.2.8). Then, the following conditions

are equivalent:

(i) φ is a local error bound for C at x̄.

(ii) There exists τ > 0 such that, for any sequences {xk} ⊂ Rn\C and {pk} ⊂ C with

I(pk) ≡ I ′, pk ∈ PC(xk), xk → x̄, and xk−pk
‖xk−pk‖

→ v̄, it holds for some i ∈ I ′ that

〈∇fi(x̄), v̄〉 ≥ τ.

(iii) There exists τ > 0 such that, for any I ′ ∈ I(x̄), there exists v̄ ∈ Rn with ‖v̄‖ = 1

such that

〈∇fi(x̄), v̄〉 ≥ τ ∀i ∈ I ′,

where

I(x̄) := {I ′ ⊂ I(x̄) | ∃ {xk} ⊂ Rn\C with xk → x̄ and I(xk) ≡ I ′}. (2.2.11)

(iv) There exist ε > 0 and τ > 0 such that, for every x 6∈ C with ‖x−x̄‖ ≤ ε, one of the

following equivalent conditions is satisfied: (a) d(0, ∂φ(x)) ≥ τ ; (b) |∇φ|(x) ≥ τ ;

(c) dφ(x)(w) ≤ −τ for some w ∈ Rn with ‖w‖ = 1.

(v) There exist ε > 0 and τ > 0 such that, for every α ≥ 0 and every x ∈ Rn with

‖x− x̄‖ ≤ ε, it holds that

τd (x, lev≤αφ) ≤ (φ(x)− α)+.

Proof. In what follows, we show step by step:

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (vi) =⇒ (v) =⇒ (i).

[(i) =⇒ (ii)]: Since φ is a local error bound for C at x̄, there exist ε > 0 and τ > 0

such that for every x ∈ Rn with ‖x− x̄‖ ≤ ε,

τd(x,C) ≤ φ(x). (2.2.12)

We will show that this constant τ satisfies condition (ii). Suppose by contradiction

that, there exist sequences {xk} ⊂ Rn\C and {pk} ⊂ C with I(pk) ≡ I ′, pk ∈ PC(xk),

xk → x̄, and xk−pk
‖xk−pk‖

→ v̄, but it follows that

〈∇fi(x̄), v̄〉 < τ ∀i ∈ I ′.
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Since all functions fi are continuous, there exists ρk ∈ (0, 1] such that x̃k = pk+ρk(xk−
pk) and I(x̃k) ⊂ I(pk). By taking a subsequence if necessary, we can assume that

I(x̃k) ≡ I ′′. It is easy to check that pk ∈ PC(x̃k), x̃k → x̄ and x̃k−pk
‖x̃k−pk‖

→ v̄. Since

I ′′ ⊂ I ′, we have, for every i ∈ I ′′

lim
k→+∞

φ(x̃k)

d(x̃k, C)
= lim

k→+∞

φ(x̃k)− φ(pk)

‖x̃k − pk‖
= lim

k→+∞

fi(x̃k)− fi(pk)
‖x̃k − pk‖

= 〈∇fi(x̄), v̄〉 < τ,

which contradicts to (2.2.12).

[(ii) =⇒ (iii)]: Assume that condition (ii) holds with some constant τ > 0. Let

{xk} ⊂ Rn\C be such that xk → x̄ and I(xk) ≡ I ′. It is clear that I ′ ∈ I(x̄). Since

C is closed, we have PC(xk) 6= ∅ for all k. Let pk ∈ PC(xk) for each k. By taking a

subsequence if necessary, we can assume that I(pk) ≡ I ′′ and that xk−pk
‖xk−pk‖

→ v̄ with

‖v̄‖ = 1. It follows from condition (ii) that, for some j ∈ I ′′,

〈∇fj(x̄), v̄〉 ≥ τ.

Thus, we have for every i ∈ I ′,

〈∇fi(x̄), v̄〉 = lim
k→+∞

fi(xk)− fi(pk)
‖xk − pk‖

≥ lim inf
k→+∞

φ(xk)− φ(pk)

‖xk − pk‖
≥ lim inf

k→+∞

fj(xk)− fj(pk)
‖xk − pk‖

= 〈∇fj(x̄), v̄〉
≥ τ.

Therefore, condition (iii) holds with the same constant τ as that in condition (ii).

[(iii) =⇒ (iv)]: Assume that condition (iii) holds with some constant τ > 0. By

Example 7.28 and Exercise 8.31 of [141], φ is regular at every x ∈ Rn\C with

dφ(x)(w) = max
i∈I(x)

〈∇fi(x), w〉 ∀w ∈ Rn.

Let 0 < τ ′ < τ . Since all functions fi are smooth, there exists ε1 > 0 such that, for all

i ∈ I, x ∈ Rn with ‖x− x̄‖ ≤ ε1, and v ∈ Rn with ‖v‖ = 1, it holds that

|〈∇fi(x)−∇fi(x̄), v〉| ≤ max
i∈I
‖∇fi(x)−∇fi(x̄)‖ ≤ τ − τ ′. (2.2.13)

We claim that there exists ε2 > 0 such that I(x) ∈ I(x̄) for all x 6∈ C with ‖x− x̄‖ ≤ ε2.

Otherwise, there exists a sequence {xk} ⊂ Rn\C such that xk → x̄ and I(xk) 6∈ I(x̄)
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for all k. By taking a subsequence if necessary, we can assume that I(xk) ≡ I ′. Since

I(xk) ⊂ I(x̄) for all sufficiently large k, we have I ′ ⊂ I(x̄) and hence I ′ ∈ I(x̄),

contradicting to the assumption that I(xk) 6∈ I(x̄) for all k. Let ε = min{ε1, ε2} and

let x 6∈ C with ‖x− x̄‖ ≤ ε. We have I(x) ∈ I(x̄). Thus, by condition (iii), there exists

w ∈ Rn with ‖w‖ = 1 such that

〈∇fi(x̄), w〉 ≥ τ ∀i ∈ I(x). (2.2.14)

By (2.2.13) and (2.2.14), we have, for every i ∈ I(x),

〈∇fi(x), w〉 ≥ τ ′ + 〈∇fi(x̄), w〉 − τ ≥ τ ′.

Thus, we have

dφ(x)(−w) ≤ −τ ′.

In view of Theorem 2.2.1 and Lemma 2.2.2, condition (iv) follows readily.

[(iv) =⇒ (v)]: This implication follows directly from Theorem 2.2.1.

[(v) =⇒ (i)]: This implication is trivial. 2

Remark 2.2.2 Condition (ii) was considered by Studniarski [150]. It follows from

Lemma 2.2.2 and Rockafellar and Wets ([141], Example 7.28 and Exercise 8.31) that

φ is regular at every x ∈ Rn\C, at which the subdifferential, the subderivative, and the

strong slope appeared in condition (iv) can be calculated as follows:

∂φ(x) = conv{∇fi(x) | i ∈ I(x)},
dφ(x)(w) = max

i∈I(x)
〈∇fi(x), w〉 ∀w ∈ Rn,

|∇φ|(x) = min
‖w‖=1

max
i∈I(x)

〈∇fi(x), w〉 = min{‖y‖ | y ∈ conv{∇fi(x) | i ∈ I(x)}}.

Condition (iii) holds if and only if one of the following equivalent conditions is satisfied:

(a) 0 6∈ conv{∇fi(x̄) | i ∈ I ′} ∀I ′ ∈ I(x̄).

(b) For any I ′ ∈ I(x̄), the inequality system fi(x) ≤ 0 with i ∈ I ′ satisfies the MFCQ

at x̄, i.e., there exists v ∈ Rn such that

〈∇fi(x̄), v〉 < 0 ∀i ∈ I ′.
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(c) For any I ′ ∈ I(x̄), it follows that∑
i∈I′

λi∇fi(x̄) = 0 and λi ≥ 0 ∀i ∈ I ′ =⇒ λi = 0 ∀i ∈ I ′. (2.2.15)

In applying the criteria (a), (b), and (c), the main difficulty lies in the identification

of the index collection I(x̄) defined by (2.2.11). Incidentally, we are not certain at

this time how to identify I(x̄) in an easier way. It is worth mentioning that the index

collection I(x̄) is in spirit of the following index collection:

J (x̄) := {I ′ ⊂ I(x̄) | ∃ {xk} ⊂ bdC\{x̄} with xk → x̄ and I(xk) ≡ I ′},

which was introduced by Henrion and Outrata, who essentially showed in Theorem 3 of

[73] that if, the ACQ holds at x̄, i.e.,

TC(x̄) = {w ∈ Rn | 〈∇fi(x̄), w〉 ≤ 0 ∀i ∈ I(x̄)}), (2.2.16)

and

0 6∈ conv{∇fi(x̄) | i ∈ I ′} ∀I ′ ∈ J (x̄), (2.2.17)

then φ is a local error bound for C at x̄. Note that Henrion and Outrata’s result provides

in general only sufficient conditions for local error bounds, as can be demonstrated by

a simple example where f1(x) := x1 − x2, f2(x) := x2 − x1 and x̄ = (0, 0)T . For

this example, φ is clearly a local error bound for C at x̄, and we have by definition

J (x̄) = {{1, 2}} and I(x̄) = {{1}, {2}}. Therefore, the criteria (a) is fulfilled but

condition (2.2.17) is not satisfied. Another thing worth a mention is that if φ is a local

error bound for C at x̄, then necessarily the ACQ holds at x̄, i.e., the equality (2.2.16)

holds.

Let φ and C be given respectively by (2.2.8) and (2.2.9). Recall that the quasi-

normality constraint qualification (QNCQ), introduced by Hestenes [75], is satisfied for

C at some x̄ ∈ C, if there exist no nonzero vector λ ∈ Rm
+ and no sequence xk → x̄

such that ∑
i∈I

λi∇fi(x̄) = 0,

and for all k, λifi(xk) > 0 for all i with λi > 0. Very recently, Minchenko and Tarakanov

([112], Theorem 2.1) showed that if the QNCQ holds at x̄ and the gradients of fi are

locally Lipschitz continuous, then φ is a local error bound for C at x̄. By applying
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the criteria (2.2.15), the assumption on Lipschitz continuity of the gradients can be

dropped as shown in the following corollary.

Corollary 2.2.1 Let φ and C be given respectively by (2.2.8) and (2.2.9). Suppose

that the (QNCQ) holds at some x̄ ∈ C. Then, φ is a local error bound for C at x̄.

Proof. Suppose by contradiction that φ is not a local error bound for C at x̄. By

applying the criteria (2.2.15), we can find some I ′ ∈ I(x̄) and a vector λ ∈ Rm
+\{0}

such that λi = 0 for all i 6∈ I ′, and
∑
i∈I

λi∇fi(x̄) = 0. By the definition of I(x̄) given

by (2.2.11), we can find a sequence xk → x̄ satisfying I(xk) = I ′ and xk 6∈ C for all k,

where I(xk) is defined by (2.2.10). Thus, for all k and all i ∈ I ′ with λi > 0, we have

λifi(xk) > 0. This indicates by definition that the (QNCQ) is not satisfied at x̄. The

proof is completed. 2

We end this chapter by demonstrating in the following example how to apply the

criteria (2.2.15) to identify when exactly local error bounds occur for a parameterized

system.

Example 2.2.4 Consider a subset of R3 defined by

C :=

x ∈ R3

∣∣∣∣∣∣∣∣
f1(x) := aTx+ a4x

4
3 ≤ 0

f2(x) := bTx+ b4x
4
3 ≤ 0

f3(x) := cTx+ c4x
4
3 ≤ 0

 , (2.2.18)

and a function defined by

φ(x) := (max{f1(x), f2(x), f3(x)})+ ∀x ∈ R3,

where a = (a1, a2, a3)T , b = (b1, b2, b3)T , c = (c1, c2, c3)T ∈ R3 and a4, b4, c4 ∈ R. It

is clear that C is closed and nonempty (since 0 ∈ C), and that x ∈ C if and only if

φ(x) = 0.

In what follows, let x̄ = (0, 0, 0)T ∈ R3 and let e3 = (0, 0, 1)T ∈ R3. To identify

when φ is a local error bound for C at x̄ by applying the criteria (2.2.15), we consider

all possible data settings except for those that can be treated symmetrically as follows:

(A) The vectors a, b and c are linearly independent.
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(B) The vectors a and b are linearly independent, and

(B1) c = −k1a− k2b with either k1 < 0 or k2 < 0.

(B2) c = −k1a− k2b with k1 ≥ 0, k2 ≥ 0, and k1a4 + k2b4 + c4 ≤ 0.

(B3) c = −k1a− k2b with k1 ≥ 0, k2 ≥ 0, k1k2 = 0, and k1a4 + k2b4 + c4 > 0.

(B4) c = −k1a− k2b with k1 > 0, k2 > 0, k1a4 + k2b4 + c4 > 0, and

(B4-1) the vectors a, b, and e3 are linearly dependent.

(B4-2) the vectors a, b, and e3 are linearly independent.

(C) a 6= 0, and

(C1) b = ρ1a and c = ρ2a with ρ1 > 0 and ρ2 > 0.

(C2) b = ρ1a and c = ρ2a with ρ1 ≤ 0, ρ2 < 0, b4 − ρ1a4 ≤ 0, and c4 − ρ2a4 ≤ 0.

(C3) b = ρ1a and c = ρ2a with ρ1 ≤ 0, ρ2 < 0, either b4−ρ1a4 > 0 or c4−ρ2a4 > 0,

and

(C3-1) the vectors a and e3 are linearly dependent.

(C3-2) the vectors a and e3 are linearly independent.

(C4) b = ρ1a and c = ρ2a with ρ1 > 0, ρ2 ≤ 0, and c4 − ρ2a4 ≤ 0.

(C5) b = ρ1a and c = ρ2a with ρ1 > 0, ρ2 ≤ 0, c4 − ρ2a4 > 0, and

(C5-1) the vectors a and e3 are linearly dependent.

(C5-2) the vectors a and e3 are linearly independent.

(C6) b = 0, c = 0, b4 ≤ 0, and c4 ≤ 0.

(C7) b = 0, c = 0, either b4 > 0 or c4 > 0.

(D) a = b = c = 0, and

(D1) a4 ≤ 0, b4 ≤ 0, and c4 ≤ 0.

(D2) one of the numbers a4, b4, and c4 is positive.

We confirm that for cases (A), (B1), (B2), (B4-1), (C1), (C2), (C3-1), (C4), (C5-1),

(C6), and (D1), φ is a local error bound for C at x̄. But for the rest cases, φ is not a

local error bound for C at x̄ because in each of these cases, we have

TC(x̄) = clconvTC(x̄) ( {w ∈ R3 | aTw ≤ 0, bTw ≤ 0, cTw ≤ 0}, (2.2.19)
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i.e., neither the ACQ nor the GCQ is satisfied at x̄. Recall that the ACQ at x̄ is defined

by the equality (2.2.16). While the GCQ at x̄ is by definition the equality (2.2.16) with

the left-hand side being replaced by its closed convex hull.

In what follows, we give details on how to apply the criteria (2.2.15) to cases (B2),

(B3), and (B4-1), which are relatively more complicated cases than others. To begin

with, we recall that the index collection I(x̄) defined by (2.2.11) has the property that

I ′ ∈ I(x̄) if and only if I ′ ⊂ {1, 2, 3} and there exists a sequence xk → x̄ such that for

each k, fi(xk) = fj(xk) > 0 for all i, j ∈ I ′, and fi(xk) > fl(xk) for all i ∈ I ′ and l 6∈ I ′.

[(B2)]: We further assume that k1 > 0 and k2 > 0 as the other cases can be investi-

gated in a similar way. For any I ′ ⊂ {1, 2, 3}, it is easy to check that (2.2.15) holds if

and only if I ′ 6= {1, 2, 3}. Suppose by contradiction that {1, 2, 3} ∈ I(x̄). Then we can

find a sequence xk → x̄ such that for each k, f1(xk) = f2(xk) = f3(xk) > 0. Thus,

k1f1(xk) + k2f2(xk) + f3(xk) = (k1a4 + k2b4 + c4)x4
3k > 0,

which is impossible because k1a4 + k2b4 + c4 ≤ 0. This indicates that {1, 2, 3} 6∈ I(x̄).

Therefore, φ is a local error bound for C at x̄.

[(B3)]: For any x ∈ C, we have

k1f1(x) + k2f2(x) + f3(x) = (k1a4 + k2b4 + c4)x4
3,

which implies that x3 = 0 because k1a4 + k2b4 + c4 > 0. Thus, we have

C =


x ∈ R3

∣∣∣∣∣∣∣∣∣∣∣

aTx ≤ 0

bTx ≤ 0

cTx ≤ 0

x3 = 0


.

That is, C is a polyhedral cone in R3. We thus have C = TC(x̄) = clconvTC(x̄).

Moreover, it is not hard to check that

C ( {w ∈ R3 | aTw ≤ 0, bTw ≤ 0, cTw ≤ 0},

when k1 ≥ 0, k2 ≥ 0, k1k2 = 0, c = −k1a − k2b and the vectors a and b are linearly

independent.

[(B4-1)]: Let e3 = λ1a + λ2b for some λ1, λ2 ∈ R. For any I ′ ⊂ {1, 2, 3}, it is

easy to check that (2.2.15) holds if and only if I ′ 6= {1, 2, 3}. Suppose by contradiction
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that {1, 2, 3} ∈ I(x̄). Then we can find a sequence xk → x̄ such that for each k,

f1(xk) = f2(xk) = f3(xk) > 0. Set βk = f1(xk) for each k. Then we have

k1βk + k2βk + βk = (k1a4 + k2b4 + c4)x4
3k,

and hence

βk =
k1a4 + k2b4 + c4

k1 + k2 + 1
x4

3k > 0.

This shows that x3k 6= 0 for all k. However, we have

x3k = eT3 xk = (λ1a+ λ2b)
Txk = λ1(βk − a4x

4
3k) + λ2(βk − b4x

4
3k),

and hence

x3k =

[
(λ1 + λ2)

k1a4 + k2b4 + c4

k1 + k2 + 1
− (λ1a4 + λ2b4)

]
x4

3k,

which is impossible because x3k → 0 and x3k 6= 0 for all k. This indicates that {1, 2, 3} 6∈
I(x̄). Therefore, φ is a local error bound for C at x̄.

2.3 On Some Limits Defined on Boundary

It has been shown by Studniarski and Ward ([151], Theorem 2.5) that φ is a local

error bound at x̄ for C if, for any sequence {(xk, vk, tk)} ⊂ bdC ×Rn ×R++ such that

(xk, vk, tk)→ (x̄, v, 0) with v ∈ NC(x̄)\{0}, it follows that

lim inf
k→+∞

φ(xk + tkvk)

tk
> 0. (2.3.20)

This result motivates us to study similar sufficient conditions in this section. Moreover,

we also study conditions under which these sufficient conditions become necessary.

Theorem 2.3.1 Consider the following conditions:

(i) For any sequence {(xk, vk, tk)} ⊂ (bdC ×Rn ×R++ ∪ intC × {0} ×R++) such that

(xk, vk, tk)→ (x̄, v, 0) with v ∈ NC(x̄)\{0}, the inequality (2.3.20) holds.

(ii) For any sequence {(xk, vk, tk)} ⊂ gphNC × R++ such that (xk, vk, tk) → (x̄, v, 0)

with v 6= 0, the inequality (2.3.20) holds.
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(iii) For any sequence {(xk, vk, tk)} ⊂ gphN̂C × R++ such that (xk, vk, tk) → (x̄, v, 0)

with v 6= 0, the inequality (2.3.20) holds.

(iv) For any sequence {(xk, vk, tk)} ⊂ gphNP
C × R++ such that (xk, vk, tk) → (x̄, v, 0)

with v 6= 0, the inequality (2.3.20) holds.

(v) For any sequence {(xk, vk, tk)} ⊂ Ω0 := {(x, v, t) ∈ Rn×Rn×R++ | x ∈ PC(x+tv)}
such that (xk, vk, tk)→ (x̄, v, 0) with v 6= 0, the inequality (2.3.20) holds.

(vi) φ is a local error bound at x̄ for C.

Then, we have

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v)⇐⇒ (vi).

If, in addition, φ is continuous, then

(ii)⇐⇒ (iii)⇐⇒ (iv).

Proof. Note that any v appeared in conditions (ii)−(v) is an element in the set NC(x̄).

Since

Ω0 ⊂ gphNP
C ×R++ ⊂ gphN̂C ×R++ ⊂ gphNC ×R++

and

gphNC ×R++ ⊂ (bdC ×Rn ×R++ ∪ intC × {0} ×R++),

we have

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v).

By definition, φ is a local error bound at x̄ for C, if and only if,

lim inf
x→x̄,x 6∈C

φ(x)

d(x,C)
> 0. (2.3.21)

Let {(xk, vk, tk)} ⊂ Ω0 be a sequence such that (xk, vk, tk)→ (x̄, v, 0) with v 6= 0. By the

definition of Ω0, we have xk ∈ PC(xk + tkvk), implying that d(xk + tkvk, C) = tk‖vk‖.
Since v 6= 0, we have d(xk + tkvk, C) > 0 or equivalently xk + tkvk 6∈ C for all k

sufficiently large. Thus, from the inequalities (2.3.20) and (2.3.21), we can easily show

that (v)⇐⇒ (vi).
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By assuming that φ is continuous, we now show (iv) =⇒ (ii). Let {(xk, vk, tk)} ⊂
gphNC × R++ be a sequence such that (xk, vk, tk) → (x̄, v, 0) with v 6= 0. Since φ is

continuous and

NC(x) = lim sup
y→x, y∈C

NP
C (y) ∀x ∈ C,

there exists a sequence {(x̄k, v̄k)} ⊂ gphNP
C such that (x̄k, v̄k)→ (x̄, v) and

|φ(xk + tkvk)− φ(x̄k + tkv̄k)| ≤ (tk)
2. (2.3.22)

By condition (iv), we have

lim inf
k→+∞

φ(x̄k + tkv̄k)

tk
> 0. (2.3.23)

From (2.3.22) and (2.3.23), we have

lim inf
k→+∞

φ(xk + tkvk)

tk
≥ lim inf

k→+∞
(
φ(x̄k + tkv̄k)

tk
− tk) > 0.

This shows that (iv) =⇒ (ii) and hence (ii)⇐⇒ (iii)⇐⇒ (iv). 2

Remark 2.3.1 Condition (i) is identical to the condition used in Theorem 2.5 of [151].

Theorem 2.3.2 Consider the following conditions:

(R1) For any sequence {(xk, vk, tk)} ⊂ (bdC × Rn × R++ ∪ intC × {0} × R++) such

that (xk, vk, tk)→ (x̄, v, 0) with v ∈ NC(x̄)\{0}, it holds that

lim inf
k→+∞

d(xk + tkvk, C)

tk
> 0. (2.3.24)

(R2) For any sequence {(xk, vk, tk)} ⊂ gphNP
C × R++ such that (xk, vk, tk) → (x̄, v, 0)

with v 6= 0, the inequality (2.3.24) holds.

The following statements are true:

(a) If condition (R1) holds or C is convex, then condition (R2) holds.

(b) Condition (R1) implies that any condition from (i) to (iv) of Theorem 2.3.1 is not

only sufficient but also necessary for φ to be a local error bound for C at x̄.
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(c) Condition (R2) implies that any condition from (ii) to (iv) of Theorem 2.3.1 is not

only sufficient but also necessary for φ to be a local error bound for C at x̄.

(d) If condition (R1) holds, then there exists ε > 0 such that

TC(x) ∩NC(x̄) = {0} ∀x ∈ bdC with ‖x− x̄‖ ≤ ε. (2.3.25)

(e) If condition (R2) holds, then there exists ε > 0 such that

TC(x) ∩NC(x) = {0} ∀x ∈ bdC with ‖x− x̄‖ ≤ ε. (2.3.26)

Proof. Since v ∈ NC(x̄) for any v in condition (R2), and

gphNP
C ×R++ ⊂ (bdC ×Rn ×R++ ∪ intC × {0} ×R++),

we have (R1) =⇒ (R2). Let {(xk, vk, tk)} ⊂ gphNP
C × R++ be a sequence such that

(xk, vk, tk) → (x̄, v, 0) with v 6= 0. Suppose that C is convex. By Proposition 6.17 of

[141], we have for any (x, v) ∈ gphNP
C ,

x ∈ PC(x+ tv) ∀t ≥ 0.

Thus, we have

lim inf
k→+∞

d(xk + tkvk, C)

tk
= lim inf

k→+∞

‖xk + tkvk − xk‖
tk

= ‖v‖ > 0,

implying that condition (R2) holds. Thus, statement (a) is true. We now show state-

ment (b) is true. Let {(xk, vk, tk)} ⊂ (bdC × Rn × R++ ∪ intC × {0} × R++) be a

sequence such that (xk, vk, tk) → (x̄, v, 0) with v ∈ NC(x̄)\{0}. If φ is a local error

bound for C at x̄, then there exists some τ > 0 such that

lim inf
k→+∞

φ(xk + tkvk)

tk
≥ τ lim inf

k→+∞

d(xk + tkvk, C)

tk
. (2.3.27)

In view of Theorem 2.3.1, it follows easily from (2.3.27) that statement (b) is true. We

can show statement (c) in a similar way by noticing the fact that condition (R2) remains

the same when gphNP
C in this condition is replaced by gphN̂C or gphNC , see Theorem

2.3.1.

Suppose by contradiction that (2.3.25) does not hold, i.e., there exist some sequences

{xk} ⊂ bdC and {vk} ⊂ Rn such that xk → x̄, vk ∈ TC(xk) ∩ NC(x̄), and ‖vk‖ = 1.
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Without loss of generality, we can assume that vk → v. It is clear that v ∈ NC(x̄) and

‖v‖ = 1. By definition, vk ∈ TC(xk) if and only if

lim inf
t→0+

d(xk + tvk, C)

t
= 0. (2.3.28)

Let εk → 0+. Due to (2.3.28), we can find a sequence {tk} ⊂ R++ such that tk → 0

and for each k,
d(xk + tkvk, C)

tk
≤ εk.

Since εk → 0+, we have

lim inf
k→+∞

d(xk + tkvk, C)

tk
= 0,

contradicting to condition (R1). Therefore, statement (d) is true. Similarly, we can

show that statement (e) is true. This completes the proof. 2

Example 2.2.3 can be used to illustrate that when criteria obtained in Section 2.2

fail, Theorem 2.3.1 can be utilized to verify the existence of local error bounds. Below

is another example.

Example 2.3.1 Let p > 0 be a constant and let φ : R→ R+ be defined by

φ(x) =

{
((x3 sin 1

x
)+)p if x > 0,

0 otherwise.

Set C := {x ∈ R | φ(x) = 0}. Explicitly we have

C = −R+ ∪ (∪∞k=1[ak, bk])

and

bdC = {0} ∪ (∪∞k=1{ak, bk}) ,

where ak =
1

2kπ
and bk =

1

(2k − 1)π
. Let x̄ = 0 ∈ C. Since φ is continuously

differentiable on R\C, each open interval (bk+1, ak) contains at least one local maximizer

ck, at which it is necessary that |∇φ|(ck) = 0. Since ak → 0 and bk → 0 as k → +∞,

we have ck → 0 as k → +∞. Therefore, no condition in Theorem 2.2.1 can be applied

to check whether or not φ is a local error bound for C at x̄ = 0.

In what follows, we apply condition (v) in Theorem 2.3.1 to verify that φ is a local

error bound for C at x̄ if and only if p ≤ 2
3
. By direct calculation, we have NC(x̄) = R

and

{(x, v, t) ∈ Rn ×Rn ×R++ | x ∈ PC(x+ tv)} = A1 ∪ A2 ∪ A3,
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where A1 = C × {0} × R++, A2 = ∪∞k=1{(ak, v,
β

−4kπv(2k+1)
) | v < 0, 0 < β ≤ 1}, and

A3 = {(b1, v, t) | v > 0, t > 0}
⋃
∪∞k=2{(bk, v,

β
4πv(k−1)(2k−1)

) | v > 0, 0 < β ≤ 1}. Let

{(xk, vk, tk)} ⊂ A1 ∪ A2 ∪ A3 be a sequence such that (xk, vk, tk)→ (x̄, v, 0) with v 6= 0.

Without loss of generality, we can assume in the case of v = −1 that,

xk = ak, vk < 0, tk =
βk

−4kπvk(2k + 1)
with some βk ∈ (0, 1].

Thus, we have in the case of p = 2
3
,

lim inf
k→+∞

φ(xk + tkvk)

tk

= lim inf
k→+∞

(
1

2kπ
− βk

4kπ(2k + 1)

)2

sin
1

1

2kπ
− βk

4kπ(2k + 1)


2
3

βk
−4kπvk(2k + 1)

= lim inf
k→+∞

1

(4kπ)2
(2− βk

2k + 1
)2 sin

2
3

(
2kπ +

2βkπ

4 + 2−βk
k

)
1

−8vkπ

1

k

1

k + 1
2

βk

= lim inf
k→+∞

2

π

sin
2
3

(
2βkπ

4 + 2−βk
k

)
βk

≥ 2

π
.

If v = 1, we can similarly obtain that in the case of p = 2
3
, lim inf
k→+∞

φ(xk + tkvk)

tk
≥ 2

π
.

Thus, by Theorem 2.2.1, φ is a local error bound for C at x̄ when p ≤ 2
3
. When p > 2

3

and xk =
1

2kπ + π
2

, we have

φ(xk)

d(xk, C)
=

x3p−2
k x2

k

xk − bk+1

= x3p−2
k

1
4π2

1
(k+ 1

4
)2

1
8π

1
k+ 1

2

1
k+ 1

4

→ 0,

indicating that φ cannot be a local error bound for C at x̄.
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Chapter 3

Necessary and Sufficient Conditions

for Exact Penalty Functions

3.1 Introduction

Throughout this chapter, let C be a subset of Rn and let φ : Rn → R+ ∪ {+∞} be a

lower semicontinuous function with the property that x ∈ C if and only if φ(x) = 0.

Moreover, let x̄ ∈ C be a fixed point and let f0 : Rn → R be at least continuously

differentiable.

Consider the constrained optimization problem

(P) min f0(x) s.t. x ∈ C,

and the unconstrained optimization problem

min f0(x) + µφ(x) s.t. x ∈ Rn,

where µ is a nonnegative real number. In harmony with the general theory of penalty

functions, it is convenient to think of µ as a penalty parameter, φ as a penalty term,

and f0 +µφ as a penalty function. It is worth mentioning that penalty functions of the

form f0 + µφ include many penalty functions in the context of nonlinear programming

as special cases, such as the classical l1 penalty functions originated with Zangwill [169]

and Eremin [48], and the lower order lp (0 < p < 1) penalty functions introduced by

Luo et al. [105] and further studied in [80, 144, 145, 160, 161, 110, 162].
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We say that the penalty function f0 + µφ is exact at x̄ if it has an unconstrained

local minimum at x̄ for a finite penalty parameter (and hence for all finite and larger

values of the penalty parameter). It is to be note that if f0 + µφ is exact at x̄, then

by definition, (P) has a local minimum at x̄. When φ happens to be the indicator

function δC of C, it is clear to see that f0 + µφ is exact at x̄ if and only if (P) has a

local minimum at x̄. In general, however, f0 +µφ may not be exact at x̄ even if (P) has

a local minimum at x̄, unless some conditions are satisfied. Conditions ensuring that φ

is a local error bound for C are such conditions, which do not depend on the objective

function f0 and have been investigated in last chapter.

In this chapter, we focus on another type of conditions ensuring exactness of penalty

functions, which relies not only on φ but also on the objective function f0. More pre-

cisely, we study first- and second-order necessary as well as sufficient conditions for

f0 + µφ to be exact at x̄. When φ can be formulated as the composition of a lower

semicontinuous convex function and a continuously differentiable function, this problem

has been extensively studied under the framework of convex composition optimization,

see, e.g., Ioffe [83], Fletcher [60], Jeyakumar and Yang [88], Burke [24, 26], Burke and

Poliquin [31]. By way of epi-derivatives, this problem has been also studied by Rockafel-

lar [139, 138] who considered the case where φ is the composition of a piecewise linear-

quadratic function and a continuously differentiable function. Because epi-derivatives

relies on epigraphs and epigraphical convergence, they have a stronger basis in geomet-

ric approximation and correspondingly a greater potential of stability and robustness

than classical derivatives relying on graphs and graphical convergence, as pointed out

by Rockafellar [139]. Note that the classical l1 penalty functions are covered by the

mentioned references, but the lower order lp (0 < p < 1) penalty functions cannot be

covered by any of the mentioned references because in these functions, φ is formulated

as the composition of a non-Lipschitzian and non-convex function and a continuously

differentiable function.

To cover at least the lower order lp (0 < p < 1) penalty functions in our consider-

ation, we merely require that φ is a non-negative lower semi-continuous function. We

present our conditions in terms of three epi-derivatives: subderivatives, second-order

subderivatives, and parabolic second-order subderivatives. These notions have been

successfully utilized to formulate very tight first- and second-order optimality condi-
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tions for an extended real-valued function to attain a local minimum, see in particular

Theorems 10.1, 13.24 and 13.66 of Rockafellar and Wets [141].

The outline of this chapter is as follows. In Section 3.2, we study some basic prop-

erties of subderivatives, second subderivatives and parabolic subderivatives of φ, and

pay our attention to derivative kernels consisting of directions at which these deriva-

tives vanish. In Section 3.3, we give a number of first- and second-order necessary and

sufficient conditions for f0 + µφ to be exact at x̄.

3.2 Derivative Kernels

In this section, we study subderivatives, second subderivatives, and parabolic subderiva-

tives of the penalty terms for (NLP).

To begin with, we give some basic properties on these derivatives of φ as follows.

Lemma 3.2.1 The following statements are true:

(i) Let v ∈ Rn and let w ∈ domdφ(x̄). The functions

dφ(x̄)(·), d2φ(x̄ | v)(·), d2φ(x̄ | v)(·) : Rn → R

are lower semi-continuous.

(ii) Let τ > 0, let v, z ∈ Rn, and let w ∈ domdφ(x̄). Then

d(τφ)(x̄) = τdφ(x̄);

d2(τφ)(x̄ | v) = τd2φ(x̄ | v
τ
);

d2(τφ)(x̄)(w | ·) = τd2φ(x̄)(w | ·);
dφ(x̄)(τz) = τdφ(x̄)(z);

d2φ(x̄ | v)(τz) = τ 2d2φ(x̄ | v)(z);

d2φ(x̄ | 0)(z) = 2[dφ
1
2 (x̄)(z)]2.

Proof. Recall that the notation φ
1
2 has been defined by (1.3.19). All the results are

easily obtained from the definitions of subderivative, second-order subderivative, and
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parabolic subderivative, if Propositions 13.5 and 13.64 in [141] are taken into account.

This completes the proof. 2

It is clear to see that x̄ is a global minimum of φ. Therefore, the necessary optimality

conditions in Theorems 10.1, 13.24 and 13.66 of Rockafellar and Wets [141] can be

applied immediately, which give the following lemma.

Lemma 3.2.2 The following statements are true:

(i) dφ(x̄)(w) ≥ 0 for all w ∈ Rn.

(ii) d2φ(x̄ | 0)(w) ≥ 0 for all w ∈ Rn.

(iii) d2φ(x̄)(w | z) ≥ 0 for all w with dφ(x̄)(w) = 0, and all z ∈ Rn.

As can be seen from our latter developments, the subderivative kernels, consisting

of the vanishing directions of subderivatives of φ at x̄, will play a key role. We formally

give their definitions as follows.

Definition 3.2.1 (i) The kernel of the subderivative of φ at x̄ is defined by

kerdφ(x̄) := {w ∈ Rn | dφ(x̄)(w) = 0}.

(ii) The kernel of the parabolic subderivative of φ at x̄ for the vector w ∈ kerdφ(x̄) is

defined by

kerd2φ(x̄)(w | ·) := {z ∈ Rn | d2φ(x̄)(w | z) = 0}.

For convenience, we set kerd2φ(x̄)(w | ·) = ∅ when w 6∈ kerdφ(x̄).

(iii) The kernel of the second subderivative of φ at x̄ for the vector 0 is defined by

kerd2φ(x̄ | 0) := {w ∈ Rn | d2φ(x̄ | 0)(w) = 0}.

Remark 3.2.1 Since d2φ(x̄ | 0)(w) = 2[dφ
1
2 (x̄)(w)]2 for all w ∈ Rn (see Lemma 3.2.1

(i)), we have

kerd2φ(x̄ | 0) = kerdφ
1
2 (x̄). (3.2.1)

As such, the first two kernels in Definition 3.2.1 seem to be enough for applications.

But the notation kerdφ
1
2 (x̄) itself does not indicate any connection with the second

subderivative, so we insist on using the notation kerd2φ(x̄ | 0).
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Let 0 ≤ p ≤ 1. Recall that the p-th order function φp with p > 0 has been defined

by (1.3.19), and that φp is interpreted as the indicator function δC when p = 0. Some

basic results on kerdφp(x̄) and kerd2φp(x̄)(w | ·) are summarized respectively in the

next two propositions.

Proposition 3.2.1 The following statements are true:

(i) kerdφ(x̄) is a nonempty closed cone in Rn with the property that w ∈ kerdφ(x̄) if

and only if there exist tk → 0+ and wk → w such that

φ(x̄+ tkwk)

tk
→ 0. (3.2.2)

(ii) TC(x̄) ⊂ kerdφ(x̄). The equality holds if φ is a local error bound for C at x̄.

(iii) Let p ≥ 0 and let p′ > p. Then

kerdφp(x̄) ⊂ domdφp(x̄) ⊂ kerdφp
′
(x̄).

Proof. Since the subderivative function dφ(x̄) is lower semi-continuous and positively

homogenous (see Lemma 3.2.1), ker dφ(x̄) is clearly a nonempty closed cone in Rn.

From the definition of subderivative, it is easy to verify that w ∈ ker dφ(x̄) if and only

if there exist tk → 0+ and wk → w such that (3.2.2) holds. From statement (i) and the

definition of the tangent cone, we can easily get

TC(x̄) ⊂ ker dφ(x̄).

To get the converse inclusion, we suppose that φ is a local error bound for C at x̄, i.e.,

there exist τ > 0 and δ > 0 such that for all x ∈ Rn with ‖x− x̄‖ ≤ δ,

τdC(x) ≤ φ(x). (3.2.3)

Let w ∈ ker dφ(x̄). It follows from statement (i) and (3.2.3) that, there exist tk → 0+

and wk → w such that
dC(x̄+ tkwk)

tk
→ 0.

Since C is closed, there exists yk ∈ C for each k such that x̄ + tkwk − yk = o(tk).

That is, x̄ + tk(wk − o(tk)/tk) = yk ∈ C for all k. This implies by definition that

w ∈ TC(x̄). Thus, statement (ii) is true. We now show statement (iii). Let p ≥ 0 and
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let p′ ≥ p. It is clear to see that kerdφp(x̄) ⊂ domdφp(x̄). Let w ∈ domdφp(x̄). We

have 0 ≤ dφp(x̄)(w) < +∞. By the definition of subderivative, we can find sequences

tk → 0+ and wk → w such that

φp(x̄+ tkwk)− φp(x̄)

tk
=
φp(x̄+ tkwk)

tk
→ dφp(x̄)(w),

which implies that φ(x̄+ tkwk)→ 0. Due to p′− p > 0 and the finiteness of dφp(x̄)(w),

we have
φp
′
(x̄+ tkwk)

tk
=
φp(x̄+ tkwk)φ

p′−p(x̄+ tkwk)

tk
→ 0,

implying by statement (i) that w ∈ ker dφp
′
(x̄). This completes the proof. 2

Proposition 3.2.2 The following statements are true:

(i) Let w ∈ kerdφ(x̄). The set kerd2φ(x̄)(w | ·) is a closed (possibly empty) subset of

Rn with the property that z ∈ kerd2φ(x̄)(w | ·) if and only if there exist tk → 0+

and zk → z such that
φ(x̄+ tkw + 1

2
t2kzk)

t2k
→ 0. (3.2.4)

(ii) kerd2φ(x̄)(w | ·) = kerdφ(x̄) when w = 0.

(iii) kerd2φ(x̄)(w | ·) = ∅ when w ∈ kerdφ(x̄)\kerdφ
1
2 (x̄).

(iv) For any w ∈ TC(x̄), T 2
C(x̄ | w) ⊂ kerd2φ(x̄)(w | ·). The equality holds if φ is a

local error bound for C at x̄.

(v) Let p ≥ 0 and let p′ > p. Then for any w ∈ kerdφp(x̄),

kerd2φp(x̄)(w | ·) ⊂ domd2φp(x̄)(w | ·) ⊂ kerd2φp
′
(x̄)(w | ·).

Proof. Let w ∈ kerdφ(x̄). Since the function d2φ(x̄)(w | ·) : Rn → R is lower semi-

continuous (see Lemma 3.2.1), the set kerd2φ(x̄)(w | ·), though possibly empty, is a

closed subset of Rn. By the definition of parabolic subderivative, it is easy to verify

that z ∈ kerd2φ(x̄)(w | ·) if and only if there exist tk → 0+ and zk → z such that (3.2.4)

holds. In view of this characterization, the rest results can be obtained in a similar way

as we have done in the proof of Proposition 3.2.1. So the details are omitted. 2
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It is interesting to establish the equivalence of the polar cone of kerdf(x̄) with the

positive hull of the regular subgradient set ∂̂f(x̄) under the circumstance that the

function f : Rn → R has a local minimum at x̄ with f(x̄) finite, where

kerdf(x̄) := {w ∈ Rn | df(x̄)(w) = 0}.

Theorem 3.2.1 Suppose that f : Rn → R has a local minimum at x̄ with f(x̄) finite.

Then we have

(i) [kerdf(x̄)]∗ = pos(∂̂f(x̄)).

(ii) ∂̂f(x̄) is a cone if and only if [domdf(x̄)]∗ = [kerdf(x̄)]∗.

Proof. It follows from Theorem 10.1 of [141] that df(x̄) ≥ 0 or equivalently 0 ∈ ∂̂f(x̄).

By Theorem 8.9 of [141], we have

v ∈ ∂̂f(x̄)⇐⇒ (v,−1) ∈ N̂epif (x̄, f(x̄)) = Tepif (x̄, f(x̄))∗. (3.2.5)

According to Theorem 8.2 of [141], we have

epi df(x̄) = Tepif (x̄, f(x̄)), (3.2.6)

which implies that

ker df(x̄)× {0} ⊂ Tepif (x̄, f(x̄)). (3.2.7)

It follows from (3.2.5) and (3.2.7) that, if v ∈ ∂̂f(x̄), then v ∈ [kerdf(x̄)]∗ because

〈v, u〉 = 〈(v,−1), (u, 0)〉 ≤ 0 for all u ∈ kerdf(x̄). This implies that ∂̂f(x̄) ⊂ [kerdf(x̄)]∗.

Since [kerdf(x̄)]∗ is a cone, we have pos(∂̂f(x̄)) ⊂ [kerdf(x̄)]∗.

To show the converse inclusion, let A = {u ∈ Rn | df(x̄)(u) ≤ 1} and E = {u ∈
Rn | 0 < df(x̄)(u) ≤ 1}. It is clear that kerdf(x̄) ∩ E = ∅. Since df(x̄) ≥ 0, we have

A = kerdf(x̄)∪E. It is easy to see from (3.2.6) that df(x̄) is lower semicontinuous and

positively homogeneous. This implies that kerdf(x̄) and A are closed sets in Rn with

kerdf(x̄) being a cone, and together with (3.2.6) also implies that

Tepif (x̄, f(x̄)) = {λ(u, 1) | u ∈ A, λ > 0} ∪ {(u, 0) | u ∈ kerdf(x̄)}. (3.2.8)

If there exists some τ > 0 such that for all v ∈ [kerdf(x̄)]∗ and u ∈ E,

〈v, u〉 ≤ τ‖v‖, (3.2.9)
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then by (3.2.5) and (3.2.8), we have [kerdf(x̄)]∗ ⊂ pos(∂̂f(x̄)), because for every v ∈
[kerdf(x̄)]∗\{0}, we have

〈( v

τ‖v‖
,−1), (u, 0)〉 = 〈 v

τ‖v‖
, u〉 ≤ 0 ∀ u ∈ kerdf(x̄),

and by (3.2.9), we also have

〈( v

τ‖v‖
,−1), λ(u, 1)〉 = λ[〈 v

τ‖v‖
, u〉 − 1] ≤ 0 ∀ u ∈ A, ∀ λ > 0.

Now, it remains to show the existence of some τ > 0 such that (3.2.9) holds. Without

loss of generality, we can assume that E is unbounded, otherwise (3.2.9) holds auto-

matically when τ > 0 is large enough. We claim that there exist two positive numbers

ρ and σ such that for all x ∈ E with ‖x‖ > ρ,

d(x, kerdf(x̄)) ≤ σ. (3.2.10)

Suppose by contradiction that (3.2.10) does not hold. Then, we can find a sequence

xν ∈ E such that ‖xν‖ → +∞ and dkerdf(x̄)(xν)→ +∞. Without loss of generality, we

can assume that xν
‖xν‖ → u for some u ∈ Rn with ‖u‖ = 1. Since df(x̄) is positively

homogeneous, E is a subset of Rn with the properties that λx ∈ E for all 0 < λ ≤ 1

and x ∈ E, and that for every x ∈ Rn, there exists some λ0 > 0 such that λx 6∈ E for

all λ ≥ λ0. Therefore, for any positive number λ, we have λ xν
‖xν‖ ∈ E for all sufficiently

large ν, implying that λu ∈ clE. Since E ⊂ A and A is closed, we have λu ∈ A for all

λ > 0. Observing that λu 6∈ E when λ ≥ λ0 for some λ0 > 0, we have λu ∈ kerdf(x̄) for

all λ ≥ λ0 because kerdf(x̄) ∩E = ∅ and kerdf(x̄) ∪E = A. This implies that ‖xν‖u ∈
ker df(x̄) since ker df(x̄) is a cone. Thus, we have dkerdf(x̄)(xν) ≤ ‖xν − ‖xν‖u‖ → 0

which contradicts to the assumption that dkerdf(x̄)(xν) → +∞. Let τ = max{ρ, σ},
where ρ > 0 and σ > 0 are such that (3.2.10) holds. Fix a point v in [kerdf(x̄)]∗ and a

point u in E. If ‖u‖ ≤ ρ, we have

〈v, u〉 ≤ ‖v‖‖u‖ ≤ ρ‖v‖ ≤ τ‖v‖.

Alternatively, if ‖u‖ > ρ, then by the closedness of kerdf(x̄), there exists ū ∈ kerdf(x̄)

such that dkerdf(x̄)(u) = ‖u− ū‖, and by using the inequality (3.2.10), we also have

〈v, u〉 ≤ 〈v, u〉 − 〈v, ū〉 = 〈v, u− ū〉 ≤ ‖v‖‖u− ū‖ ≤ σ‖v‖ ≤ τ‖v‖,

where the first inequality follows from the fact that v ∈ [kerdf(x̄)]∗ and ū ∈ kerdf(x̄).

By now, we have shown the existence of some τ > 0 such that (3.2.9) holds. Therefore,

statement (i) is true.
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We now show statement (ii). According to Theorem 8.9 of [141] and its proof

therein, we have

∂̂f(x̄)∞ = [domdf(x̄)]∗. (3.2.11)

Observing that ∂̂f(x̄) a closed and convex set containing the origin (see Theorem 8.6

of [141]), we get from Theorem 3.6 of [141],

∂̂f(x̄)∞ ⊂ ∂̂f(x̄). (3.2.12)

If [domdf(x̄)]∗ = [kerdf(x̄)]∗, it then follows from statement (i), (3.2.11), and (3.2.12)

that pos(∂̂f(x̄)) ⊂ ∂̂f(x̄), implying that ∂̂f(x̄) is a cone. Conversely, if ∂̂f(x̄) is a cone,

then ∂̂f(x̄)∞ = ∂̂f(x̄) = pos(∂̂f(x̄)), which together with (3.2.11) and statement (i)

implies that [domdf(x̄)]∗ = [kerdf(x̄)]∗. This completes the proof. 2

3.3 Necessary and Sufficient Conditions

In this section, we study first- and second-order necessary and sufficient conditions for

f0 + µφ to be exact at x̄. When second-order conditions are discussed, we assume

that f0 is twice continuously differentiable. Our conditions are presented in terms of

subderivatives, second-order subderivatives, and parabolic subderivatives. Because of

the differentiability assumption on f0, the subderivative, the second-order subderivative,

and the parabolic subderivatives of f0 + µφ can be expressed respectively by that of

f0 and φ, which makes it possible for us to apply Theorems 10.1, 13.24 and 13.66 of

Rockafellar and Wets [141] in a straightforward way.

Theorem 3.3.1 (a) (necessity) If f0 + µφ is exact at x̄, then

〈∇f0(x̄), w〉 ≥ 0 ∀w ∈ kerdφ(x̄). (3.3.13)

(b) (sufficiency) Conversely, if the inequality (3.3.13) is strict when w 6= 0, then f0+µφ

is exact at x̄.

Proof. Applying the definition of subderivative, we can easily verify that

d(f0 + µφ)(x̄)(w) = 〈∇f0(x̄), w〉+ µdφ(x̄)(w) ∀µ ≥ 0, ∀w ∈ Rn. (3.3.14)
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[(necessity)]: By assumption, there exists some µ0 ≥ 0 such that the function f0 + µ0φ

has a local minimum at x̄. By Theorem 10.1 of [141], we have

d(f0 + µ0φ)(x̄)(w) ≥ 0 ∀w ∈ Rn.

In view of (3.3.14), we have 〈∇f0(x̄), w〉 ≥ 0 for all w ∈ kerdφ(x̄).

[(sufficiency)]: Suppose that the inequality (3.3.13) is strict when w 6= 0, which

clearly implies that −∇f0(x̄) ∈ [kerdφ(x̄)]∗. By Theorem 3.2.1, we have

−∇f0(x̄) ∈ pos(∂̂φ(x̄)).

Thus, we can find some τ > 0 such that −1

τ
∇f0(x̄) ∈ ∂̂φ(x̄). It follows from Exercise

8.4 of [141] that

〈−1

τ
∇f0(x̄), w〉 ≤ dφ(x̄)(w) ∀w ∈ Rn.

Let µ̄ > τ . Since the inequality (3.3.13) is strict when w 6= 0, we thus have

〈∇f0(x̄), w〉+ µ̄dφ(x̄)(w) > 0 ∀w 6= 0.

In view of (3.3.14), we have

d(f0 + µ̄φ)(x̄)(w) > 0 ∀w 6= 0.

This implies that f0 + µ̄φ admits an unconstrained local minimum at x̄. Thus, f0 + µφ

is exact at x̄. This completes the proof. 2

Theorem 3.3.2 Suppose that f0 is twice continuously differentiable.

(a) (necessity) If f0 + µφ is exact at x̄, then

−∇f0(x̄) ∈ [kerdφ(x̄)]∗, (3.3.15)

and there exists τ > 0 such that for all w ∈ kerdφ(x̄) ∩∇f0(x̄)⊥,

〈w,∇2f0(x̄)w〉+ τd2φ(x̄ | −∇f0(x̄)

τ
)(w) ≥ 0. (3.3.16)

(b) (sufficiency) Conversely, if (3.3.15) holds and (3.3.16) holds with a strict inequality

when w 6= 0, then there exist µ ≥ 0, ε > 0 and δ > 0 such that for all x ∈ Rn

with ‖x− x̄‖ ≤ δ,

f0(x) + µφ(x) ≥ f0(x̄) + ε‖x− x̄‖2.

68



Proof. Applying the definition of second-order subderivative, we can easily verify that

for any µ > 0 and any w ∈ Rn,

d2(f0 + µφ)(x̄ | 0)(w) = 〈w,∇2f0(x̄)w〉+ µd2φ(x̄ | −∇f0(x̄)

µ
)(w). (3.3.17)

[(necessity)]: Let τ > 0 be such that f0 + τφ has a local minimum at x̄. Theorem 3.3.1

gives that −∇f0(x̄) ∈ [kerdφ(x̄)]∗. From Theorem 13.24 of [141], we have

d2(f0 + τφ)(x̄ | 0)(w) ≥ 0 ∀w ∈ Rn.

This together with (3.3.17) implies that the inequality (3.3.16) holds not only for w in

the set kerdφ(x̄) ∩∇f0(x̄)⊥, but for all w ∈ Rn.

[(sufficiency)]: Suppose that −∇f0(x̄) ∈ [kerdφ(x̄)]∗ and that there exists τ > 0

such that for all w ∈ kerdφ(x̄) ∩∇f0(x̄)⊥ with w 6= 0,

〈w,∇2f0(x̄)w〉+ τd2φ(x̄ | −∇f0(x̄)

τ
)(w) > 0. (3.3.18)

By Theorem 3.2.1, we have −∇f0(x̄) ∈ pos(∂̂φ(x̄)). It then follows from Exercise 8.4

of [141] that, there exists τ0 > 0 such that

〈∇f0(x̄), w〉+ τ0dφ(x̄)(w) ≥ 0 ∀w ∈ Rn. (3.3.19)

Let µ > max{τ, τ0} and let w ∈ Rn\{0}. Since µ > τ0 and dφ(x̄) ≥ 0, it follows from

(3.3.14) and (3.3.19) that

d(f0 + µφ)(x̄)(z) ≥ 0 ∀z ∈ Rn. (3.3.20)

If w 6∈ kerdφ(x̄) ∩∇f0(x̄)⊥, then, from (3.3.14) and (3.3.19), we have

d(f0 + µφ)(x̄)(w) = 〈∇f0(x̄), w〉+ µdφ(x̄)(w) > 0,

which implies by Proposition 13.5 of [141] that

d2φ(x̄ | −∇f0(x̄)

µ
)(w) = +∞.

This together with (3.3.17) implies that

d2(f0 + µφ)(x̄ | 0)(w) = +∞ > 0 ∀w 6∈ kerdφ(x̄) ∩∇f0(x̄)⊥.

Since µ > τ , by applying the definition of second-order subderivative, we have

µd2φ(x̄ | −∇f0(x̄)

µ
) = d2(µφ)(x̄ | −∇f0(x̄)) ≥ d2(τφ)(x̄ | −∇f0(x̄)) = τd2φ(x̄ | −∇f0(x̄)

τ
).
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Thus, it follows from (3.3.17) and (3.3.18) that

d2(f0 + µφ)(x̄ | 0)(w) > 0 ∀w ∈ (kerdφ(x̄) ∩∇f0(x̄)⊥)\{0}.

Therefore, we have

d2(f0 + µφ)(x̄ | 0)(w) > 0 ∀w 6= 0. (3.3.21)

In view of (3.3.20) and (3.3.21), all results now follow readily from Theorem 13.24 of

[141]. This completes the proof. 2

Corollary 3.3.1 Suppose that f0 is twice continuously differentiable with ∇f0(x̄) = 0.

(a) (necessity) If f0 + µφ is exact at x̄, then there exists τ > 0 such that for all

w ∈ kerdφ(x̄),

〈w,∇2f0(x̄)w〉+ τd2φ(x̄ | 0)(w) ≥ 0. (3.3.22)

(b) (sufficiency) Conversely, if (3.3.22) holds with a strict inequality when w 6= 0, then

there exist µ ≥ 0, ε > 0 and δ > 0 such that for all x ∈ Rn with ‖x− x̄‖ ≤ δ,

f0(x) + µφ(x) ≥ f0(x̄) + ε‖x− x̄‖2.

Remark 3.3.1 In view of (3.2.1), the necessary condition in Corollary 3.3.1 (a) can

be weakened as each of the following equivalent conditions:

(a1) 〈w,∇2f0(x̄)w〉 ≥ 0 ∀w ∈ kerd2φ(x̄ | 0).

(a2) 〈w,∇2f0(x̄)w〉 ≥ 0 ∀w ∈ kerd
1
2φ(x̄).

Theorem 3.3.3 Suppose that f0 is twice continuously differentiable.

(a) (necessity) If f0 + µφ is exact at x̄, then

−∇f0(x̄) ∈ [kerdφ(x̄)]∗, (3.3.23)

and there exists τ > 0 such that for all w ∈ kerdφ(x̄) ∩∇f0(x̄)⊥,

〈w,∇2f0(x̄)w〉+ inf
z

{
〈∇f0(x̄), z〉+ τd2φ(x̄)(w | z)

}
≥ 0. (3.3.24)
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(b) (sufficiency) Suppose that (3.3.23) holds and (3.3.24) holds with a strict inequality

when w 6= 0. If there exists τ0 ≥ τ such that φ is parabolically regular at x̄ for

the vector − 1
τ0
∇f0(x̄), then there exist µ ≥ 0, ε > 0 and δ > 0 such that for all

x ∈ Rn with ‖x− x̄‖ ≤ δ,

f0(x) + µφ(x) ≥ f0(x̄) + ε‖x− x̄‖2.

Proof.[(necessity)]: It follows from Proposition 13.64 of [141] that for any µ > 0 and

any w ∈ kerdφ(x̄) ∩∇f0(x̄)⊥,

inf
z

{
〈∇f0(x̄), z〉+ µd2φ(x̄)(w | z)

}
≥ µd2φ(x̄ | −∇f0(x̄)

µ
)(w).

In view of this inequality and Theorem 3.3.2, the results in (a) follow readily.

[(sufficiency)]: Suppose that −∇f0(x̄) ∈ [kerdφ(x̄)]∗, and that there exists τ > 0

such that for all w ∈ kerdφ(x̄) ∩∇f0(x̄)⊥ with w 6= 0,

〈w,∇2f0(x̄)w〉+ inf
z

{
〈∇f0(x̄), z〉+ τd2φ(x̄)(w | z)

}
> 0. (3.3.25)

Let τ0 ≥ τ be such that φ is parabolically regular at x̄ for the vector − 1
τ0
∇f0(x̄). Then

for any w ∈ kerdφ(x̄) ∩∇f0(x̄)⊥, the equality

inf
z

{
〈∇f0(x̄), z〉+ τ0d

2φ(x̄)(w | z)
}

= τ0d
2φ(x̄ | −∇f0(x̄)

τ0

)(w) (3.3.26)

holds. Let w ∈ (kerdφ(x̄) ∩∇f0(x̄)⊥)\{0}. From the definition of parabolic subderiva-

tive, we have

d2φ(x̄)(w | z) ≥ 0 ∀z ∈ Rn.

In view of (3.3.25) and τ0 ≥ τ , we thus have

〈w,∇2f0(x̄)w〉+ inf
z

{
〈∇f0(x̄), z〉+ τ0d

2φ(x̄)(w | z)
}
> 0,

which, together with (3.3.26), implies that

〈w,∇2f0(x̄)w〉+ τ0d
2φ(x̄ | −∇f0(x̄)

τ0

)(w) > 0.

Since w ∈ (kerdφ(x̄)∩∇f0(x̄)⊥)\{0} is arbitrarily chosen, the results now follow readily

from Theorem 3.3.2 (b). This completes the proof. 2
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Remark 3.3.2 The necessary conditions in Theorem 3.3.3 (a) can be weakened as

follows:

〈∇f0(x̄), w〉 = 0

z ∈ kerd2φ(x̄)(w | ·)

}
=⇒ 〈∇f0(x̄), z〉+ 〈w,∇2f0(x̄)w〉 ≥ 0,

or equivalently

〈∇f0(x̄), w〉 = 0

z ∈ clconv[kerd2φ(x̄)(w | ·)]

}
=⇒ 〈∇f0(x̄), z〉+ 〈w,∇2f0(x̄)w〉 ≥ 0. (3.3.27)

We end this chapter by mentioning that the kernels of subderivatives and parabolic

subderivatives appeared in Theorems 3.2.1 and 3.3.1, and Remark 3.3.2, will be used

very often in the next two chapters.
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Chapter 4

First- and Second-order Necessary

Conditions in Nonlinear

Programming via Exact Penalty

Functions

4.1 Introduction

In this chapter, we consider first- and second-order necessary condition for the nonlinear

programming problem

(NLP) min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,

where I = {1, 2, · · · ,m}, J = {m + 1,m + 2, · · · ,m + q}, and the functions f, gi, hj :

Rn → R are assumed to be at least continuously differentiable. In particular when

second-order conditions are discussed in this chapter, all functions in defining (NLP) are

assumed to be twice continuously differentiable. Associated with (NLP), the Lagrange

function L : Rn ×Rm+q → R is given by

L(x, λ) = f(x) +
∑
i∈I

λigi(x) +
∑
j∈J

λjhj(x).
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Throughout this chapter, let C be the feasible set of (NLP) and let x̄ ∈ C. The following

index sets are useful in the sequel:

I(x̄) := {i ∈ I | gi(x̄) = 0},
I(x̄, w) := {i ∈ I(x̄) | 〈w,∇gi(x̄)〉 = 0} ∀w ∈ Rn,

I(x̄, w, z) := {i ∈ I(x̄, w) | 〈z,∇gi(x̄)〉+ 〈w,∇2gi(x̄)w〉 = 0} ∀w, z ∈ Rn.

The first-order linearized tangent cone to C at x̄ is given by

LC(x̄) =

{
w ∈ Rn

∣∣∣∣∣ 〈w,∇gi(x̄)〉 ≤ 0 ∀i ∈ I(x̄)

〈w,∇hj(x̄)〉 = 0 ∀j ∈ J

}
,

while the second-order linearized tangent set to C at x̄ in the direction w ∈ LC(x̄) is

given by

L2
C(x̄ | w) :=

{
z ∈ Rn

∣∣∣∣∣ 〈∇gi(x̄), z〉+ 〈w,∇2gi(x̄)w〉 ≤ 0 ∀i ∈ I(x̄, w)

〈∇hj(x̄), z〉+ 〈w,∇2hj(x̄)w〉 = 0 ∀j ∈ J

}
.

When w 6∈ LC(x̄), we interpret L2
C(x̄ | w) as an empty set. The critical cone of (NLP)

at x̄ is defined by

V(x̄) :=

w ∈ Rn

∣∣∣∣∣∣∣∣
〈w,∇f(x̄)〉 ≤ 0

〈w,∇gi(x̄)〉 ≤ 0 ∀i ∈ I(x̄)

〈w,∇hj(x̄)〉 = 0 ∀j ∈ J

 .

The first-order necessary conditions for (NLP) that we shall study in this chapter

are the well-known Karush-Kuhn-Tucker conditions (also known as KKT conditions).

We say that the KKT condition holds at x̄ if there exists a vector λ ∈ Rm+q such that

∇xL(x̄, λ) = 0 λi ≥ 0, λigi(x̄) = 0 ∀i ∈ I.

We call such a vector λ a KKT multiplier, and denote by KKT(x̄) the set of all KKT

multipliers of (NLP) at x̄. By Farkas’ lemma, KKT(x̄) 6= ∅ if and only if

−∇f(x̄) ∈ LC(x̄)∗.

As can be seen from Chapter 1, there are several classes of second-order necessary

conditions for (NLP). In this chapter, we focus our attention on the ones depending the

entire KKT multiplier set. Explicitly, we say that the second-order necessary condition

holds at x̄ if

sup
λ∈KKT(x̄)

〈w,∇2
xxL(x̄, λ)w〉 ≥ 0 ∀w ∈ V(x̄). (4.1.1)
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It should be noticed that if (4.1.1) holds, then necessarily KKT(x̄) 6= ∅. Note that

(4.1.1) is exactly the same as the (SON2) described in Chapter 1. This class of second-

order necessary conditions was initially studied by Ioffe [83], and has been extensively

studied in [19, 20, 94, 138, 139, 140, 18, 31]. It is well-known that KKT conditions or

second-order necessary conditions of the type (4.1.1) do not necessarily hold at local

minima of (NLP) unless some conditions are satisfied.

One type of such conditions, often referred to as constraint qualifications (for short,

CQs), relies on the constraints of (NLP) only, or in other words, is independent of the

objective function of (NLP). We refer to the literature review presented in Chapter 1 for

various CQs ensuring KKT conditions or second-order necessary conditions of the type

(4.1.1). Among all possible CQs, Guignard constraint qualification (for short, GCQ) is

the weakest one in the sense that it is both necessary and sufficient for KKT conditions

to hold at local minima of (NLP), see [64]. The GCQ holds at x̄ if by definition

TC(x̄)∗ = LC(x̄)∗

or equivalently,

clconvTC(x̄) = LC(x̄).

As for the CQs ensuring second-order necessary conditions of the type (4.1.1), it is worth

mentioning the so-called second-order Guignard constraint [94] (for short, SGCQ),

which is defined in spirit of the GCQ as follows:

clconvT 2
C(x̄ | w) = L2

C(x̄ | w) ∀w ∈ V(x̄).

Note that the GCQ can always be recovered from the SGCQ by taking w = 0.

Another type of conditions, which in contrast relies on both the constraints and the

objective function of (NLP), is often expressed by virtue of exact penalty functions.

See the survey paper by Burke [26] for a comprehensive investigation on the central

roles that the classical l1 exact penalty functions play in connection with optimality

conditions. To be precise, we consider the lp (0 ≤ p ≤ 1) penalty function for (NLP)

defined as follows:

Fp(x) := f(x) + µSp(x) ∀x ∈ Rn,

where µ ≥ 0 is the penalty parameter and the function S is defined by

S(x) :=
∑
i∈I

(gi(x))+ +
∑
j∈J

|hj(x)| ∀x ∈ Rn. (4.1.2)
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When p = 0, we interpret Sp as the indicator function δC , and thus have F0 = f + δC .

From this construction, it follows that x̄ is a local minimum of (NLP) if and only if

F0 has a local minimum at x̄. When p = 1, Fp(x) reduces to the classical l1 penalty

function, which dates back to Eremin [48] and Zangwill [169], and has been investigated

by many researchers, e.g., Pietrzykowski [128], Howe [76], Han and Mangasarian [66],

Burke [25, 26], and Rockafellar [139]. When 0 < p < 1, Fp(x) is often referred to as

the lower order lp penalty function, which was introduced by Luo et al. [105] for the

study of mathematical programs with equilibrium constraints, and has been studied

extensively in [80, 144, 145, 160, 161, 110, 162].

It is well known that both the KKT condition and the second-order necessary con-

dition (4.1.1) hold at x̄ if the l1 penalty function is exact at x̄, see in particular Han

and Mangasarian ([66], Theorem 4.8) and Rockafellar ([139], Corollary 4.5). But for

0 < p < 1, the KKT condition may not hold at x̄ even if the lp penalty function is

exact at x̄. This can be seen from the simple example: min−x s.t. x2 ≤ 0. How-

ever, Yang and Meng [161] showed that it is still possible to derive KKT conditions

from lower order exact penalty functions by requiring that the constraint functions of

(NLP) satisfy some additional conditions in terms of (generalized) second-order deriva-

tives. Yang and Meng formulated these conditions by applying Farkas’ Lemma and by

estimating Dini upper-directional derivatives of Fp(x) using the tools of (generalized)

Taylor expansions.

In what follows, let φ : Rn → R+ ∪ {+∞} be a lower semicontinuous function with

the property that φ(x) = 0 if and only if x ∈ C. To a great extent, φ plays the role

as a general penalty term for (NLP). Note that the functions Sp with 0 ≤ p ≤ 1 are

particular instances of φ. We say that φ is a KKT-type penalty term if it has the ability

of detecting KKT conditions in the sense as described in the following definition.

Definition 4.1.1 We say that φ is of KKT-type at x̄ if the KKT condition holds at

x̄ whenever there is a continuously differentiable function f : Rn → R such that the

penalty function f +µφ is exact at x̄ (i.e., for some finite penalty parameter µ ≥ 0, this

penalty function admits an unconstrained local minimum at x̄).

According to the previous literature review, S is of KKT-type at x̄, and S0 is of KKT-

type at x̄ if and only if the GCQ holds at x̄.
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The outline of this chapter is as follows. In Section 4.2, we study conditions under

which penalty terms are of KKT-type. These conditions allow us to derive KKT condi-

tions from exactness of penalty functions. The main results that we rely are Theorems

3.2.1 and 3.3.1, and the variational description of regular subgradients (Rockafellar and

Wets [141], Proposition 8.5). In subsection 4.2.1, we give equivalent conditions for

penalty terms φ and Sp to be of KKT-type. These equivalent conditions are expressed

by either subderivative kernels or regular subgradients of φ and Sp. In subsection 4.2.2,

we present several conditions in terms of the original data of (NLP), which are sufficient

for Sp to be of KKT-type. In particular when (NLP) has one inequality only, we give

full characterizations in terms of the original data for Sp to be of KKT-type. We end

Section 4.2 by giving a class of parameterized problems to illustrate that our result can

be applied to derive KKT conditions when all existing methods fail.

In Section 4.3, by applying the second-order necessary conditions presented in The-

orem 3.3.3 and the duality theorem of linear programming, we derive second-order

necessary conditions of the type (4.1.1) for (NLP) from exactness of f +µφ under some

additional conditions in terms of the kernel of the parabolic subderivative of φ. When

φ = Sp, we give sufficient conditions for these conditions by virtue of the original data

of (NLP). We end this chapter by using an example to illustrate that even if neither the

GCQ nor the SGCQ holds, our result obtained in this section can be applied to derive

second-order necessary conditions of the type (4.1.1) for (NLP).

4.2 First-order Necessary Conditions via Exact Penalty

Functions

In this section, we study conditions under which penalty terms are of KKT-type. These

conditions allow us to derive KKT conditions from exactness of penalty functions. In

subsection 4.2.1, we give equivalent conditions for penalty functions φ and Sp to be of

KKT-type. These equivalent conditions are expressed by either subderivative kernels

or regular subgradients of φ and Sp . In subsection 4.2.2, we present several conditions

in terms of the original data of (NLP), which are sufficient for the equivalent conditions

obtained in Section 4.2.1.
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4.2.1 Equivalent Conditions for KKT-type Penalty Terms

In this subsection, we apply Theorems 3.2.1 and 3.3.1, and the variational description

of regular subgradients (Rockafellar and Wets [141], Proposition 8.5) to establish some

equivalent conditions for penalty terms to be of KKT-type.

We begin with a review of the variational description of regular subgradients.

Lemma 4.2.1 (Rockafellar and Wets [141], Proposition 8.5). Consider a function

f : Rn → R and a point x̄ with f(x̄) finite. A vector v belongs to ∂̂f(x̄) if and only

if, on some neighborhood of x̄, there is a function h ≤ f with h(x̄) = f(x̄) such that

h is differentiable at x̄ with ∇h(x̄) = v. Moreover h can be taken to be continuously

differentiable with h(x) < f(x) for all x 6= x̄ near x̄.

Now we give equivalent conditions for φ to be of KKT-type at x̄.

Theorem 4.2.1 The following conditions are equivalent:

(i) [kerdφ(x̄)]∗ ⊂ LC(x̄)∗.

(ii) pos(∂̂φ(x̄)) ⊂ LC(x̄)∗.

(iii) φ is a KKT-type penalty term at x̄.

Proof. [(i) ⇐⇒ (ii)]: Observing that x̄ is a global minimum of φ, the equivalence

follows immediately from Theorem 3.2.1.

[(i) =⇒ (iii)]: Suppose that there is a continuously differentiable function f : Rn →
R such that the penalty function

f(x) + µφ(x)

has a local minimum at x̄ for some finite penalty parameter µ ≥ 0. It follows from

Theorem 3.3.1 that

−∇f(x̄) ∈ [kerdφ(x̄)]∗.

By condition (i), we have

−∇f(x̄) ∈ LC(x̄)∗.
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This implies by Farkas’ Lemma that the KKT condition holds at x̄. Thus, by Definition

4.1.1, φ is a KKT-type penalty term at x̄.

[(iii) =⇒ (ii)]: Let v ∈ ∂̂φ(x̄). According to the variational description of regular

subgradients in Lemma 4.2.1, there exist a neighborhood V of x̄ and a continuously

differentiable function ψ : Rn → R with ψ(x̄) = φ(x̄) = 0 and ∇ψ(x̄) = v such that

ψ(x) ≤ φ(x) ∀x ∈ V.

Set f = −ψ. It is clear to see that

f(x) + φ(x) = −ψ(x) + φ(x) ≥ 0 = f(x̄) + φ(x̄) ∀x ∈ V.

That is, the function f + φ has a local minimum at x̄. Since φ is a KKT-type penalty

term at x̄, we have the KKT condition at x̄. By Farkas’ Lemma again, we have

−∇f(x̄) ∈ LC(x̄)∗.

Since ∇f(x̄) = −∇ψ(x̄) = −v, we have

v ∈ LC(x̄)∗.

Therefore, we have shown ∂̂φ(x̄) ⊂ LC(x̄)∗ and hence

pos(∂̂φ(x̄)) ⊂ LC(x̄)∗.

This completes the proof. 2

In what follows, we establish equivalent conditions for Sp with 0 ≤ p ≤ 1 to be

a KKT-type penalty term at x̄. We begin with the calculation of the subderivative

(kernel) and the subdifferential of S at x̄.

Lemma 4.2.2 Let S be given by (4.1.2). Then

dS(x̄)(w) =
∑
i∈I(x̄)

(〈∇gi(x̄), w〉)+ +
∑
j∈J

|〈∇hj(x̄), w〉| ∀w ∈ Rn, (4.2.3)

and

∂̂S(x̄) = ∂S(x̄)

=

∑
i∈I(x̄)

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄) | 0 ≤ λi ≤ 1 ∀i ∈ I(x̄),−1 ≤ λj ≤ 1 ∀j ∈ J

 .

(4.2.4)
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In particular, one has

kerdS(x̄) = LC(x̄) (4.2.5)

and

[kerdS(x̄)]∗ = [LC(x̄)]∗ = pos(∂̂S(x̄)) = pos(∂S(x̄))

=

∑
i∈I(x̄)

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄) | λi ≥ 0 ∀i ∈ I(x̄), λj ∈ R ∀j ∈ J

 .
(4.2.6)

Proof. Applying the basic chain rule and the sum rule given respectively in Theorem

10.6 and Corollary 10.9 of [141], we can easily get (4.2.3) and (4.2.4). Once these

formulas are obtained, (4.2.5) and (4.2.6) follow readily. This completes the proof. 2

Theorem 4.2.2 Let S be given by (4.1.2). Then S is a KKT-type penalty term at x̄,

and for any 0 ≤ p < 1, the following conditions are equivalent:

(i) [kerdSp(x̄)]∗ = LC(x̄)∗.

(ii) ∂̂Sp(x̄) = LC(x̄)∗.

(iii) Sp is a KKT-type penalty term at x̄.

Proof. Let 0 ≤ p < 1. It follows from (4.2.5) and Proposition 3.2.1 (iii) that

kerdSp(x̄) ⊂ domdSp(x̄) ⊂ kerdS(x̄) = LC(x̄), (4.2.7)

which implies that

LC(x̄)∗ ⊂ [kerdSp(x̄)]∗.

In view of Lemma 4.2.2 and Theorem 4.2.1, it suffices to show that the regular subdif-

ferential ∂̂Sp(x̄) of Sp at x̄ is a cone when condition (i) is satisfied. In fact, it follows

from condition (i) and (4.2.7) that

[kerdSp(x̄)]∗ = [domdSp(x̄)]∗.

Observing that the function Sp has a global minimum at x̄, we get from Theorem 3.2.1

that ∂̂Sp(x̄) is a cone. This completes the proof. 2
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Remark 4.2.1 Theorem 4.2.2 includes two existing results as special cases:

(i) The GCQ is the weakest CQs in the sense that it is both necessary and sufficient

for local minima of (NLP) to possess KKT conditions. To see that, we observe

that every local minimum of (NLP) is a local minimum of the l0 penalty function

F0, and that condition (i) in Theorem 4.2.2 holds with p = 0 if and only if the

GCQ holds.

(ii) The KKT condition holds at x̄ if the l1 penalty function is exact at x̄. This is

because S is a KKT-type penalty function at x̄ without any other condition.

It should be noticed that a similar condition to condition (i) of Theorem 4.2.2 has

been given by Meng and Yang ([110], Theorem 2.5). This condition is expressed by

the notion of contingent derivatives of set-valued mappings, see [8] for more details

on various derivatives for set-valued mappings. The contingent derivative of a set-

valued mapping M : Rn ⇒ Rm at (x, y) ∈ gphM is defined by the set-valued map

DM(x, y) : Rn ⇒ Rs such that

gph(DM(x, y)) = TgphM(x, y).

In particular, when M is single-valued at x, i.e., M(x) = {y}, we use DM(x) to denote

DM(x, y) for simplicity, and define the kernel of DM(x) by

KerDM(x) = {u ∈ Rn | 0 ∈ DM(x)(u)}.

Let 0 ≤ p ≤ 1. The kernel of the contingent derivative of Sp at (x̄, 0) is then given by

kerDSp(x̄) := {u ∈ Rn | 0 ∈ DSp(x̄)(u)}.

By virtue of this kernel set, we obtain a sufficient condition for Sp to be a KKT-type

penalty term as follows, which is a reformulation of Theorem 2.5 of Meng and Yang

[110].

Theorem 4.2.3 ([110], Theorem 2.5). Let 0 ≤ p ≤ 1 and let S be given by (4.1.2). If

[kerDSp(x̄)]∗ = LC(x̄)∗, (4.2.8)

then Sp is a KKT-type penalty term at x̄.
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Proof. Let f be a continuously differentiable function such that the penalty function

Fp(x) has a local minimum at x̄ with a finite penalty parameter µ ≥ 0. By the definition

of contingent derivative, we thus have

DFp(x̄)(w) ⊂ R+ ∀w ∈ Rn.

Noting that f is assumed to be continuously differentiable, it follows easily from the

sum rule of contingent derivative (see [8] and [99]) that

DFp(x̄)(w) = ∇f(x̄)Tw + µDSp(x̄)(w).

Therefore, we have

−∇f(x̄)Tw ≤ 0 ∀w ∈ kerDSp(x̄),

that is, −∇f(x̄) ∈ kerDSp(x̄)∗. In view of (4.2.8), we have −∇f(x̄) ∈ LC(x̄)∗, which

by Farkas’ lemma amounts to the KKT condition at x̄. This completes the proof. 2

Remark 4.2.2 By definition, it is straightforward to verify that

kerdSp(x̄) = kerDSp(x̄).

In view of this equality and Theorem 4.2.2, we confirm that condition (4.2.8) is not only

sufficient but also necessary for Sp to be a KKT-type penalty term. Incidentally, we are

not aware of the necessity at the time when our paper [110] got published. We emphasize

that this equivalence cannot be easily obtained without the help of Theorem 3.2.1 and

the variational description of regular subgradients (Rockafellar and Wets [141], Propo-

sition 8.5), both of which are closely related with the notion of subderivative instead of

contingent derivative. This is why we do not use contingent derivatives in this thesis

anymore as we have done in the paper [110]. The same reason applies in next chapter.

4.2.2 Sufficient Conditions by Original Data

In this subsection, in terms of the original data of (NLP), we give several conditions

which are sufficient for the equality

kerdSp(x̄) = LC(x̄). (4.2.9)
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According to Theorem 4.2.2, if (4.2.9) is satisfied, then Sp is clearly a KKT-type penalty

term at x̄ .

To begin with, we consider the implications of condition (4.2.9) when p varies. In

view of Proposition 3.2.1 and (4.2.5), we have

Lemma 4.2.3 Concerning condition (4.2.9) with different values of p, we have

(i) kerdS1(x̄) = LC(x̄).

(ii) kerdS0(x̄) = LC(x̄) if and only if TC(x̄) = LC(x̄) (i.e., the ACQ holds at x̄).

(iii) If kerdSp(x̄) = LC(x̄) for some 0 ≤ p ≤ 1, then

kerdSp
′
(x̄) = LC(x̄) ∀p′ ∈ [p, 1].

Proposition 4.2.1 For 0 < p ≤ 1, (4.2.9) holds if and only if, for every u ∈ LC(x),

there exist tk → 0+ and uk → u such that

max{gi(x̄+ tkuk)

t
1/p
k

, 0} → 0 ∀i ∈ I(x̄, u), (4.2.10)

and
hj(x̄+ tkuk)

t
1/p
k

→ 0 ∀j ∈ J. (4.2.11)

Proof. Let 0 < p ≤ 1. In view of Lemma 4.2.3, the relation kerdSp(x̄) ⊂ LC(x̄) holds

automatically. It follows from Proposition 3.2.1 (i) that, u ∈ kerdSp(x̄) if and only if

there exist tk → 0+ and uk → u such that

Sp(x̄+ tkuk)

tk
→ 0. (4.2.12)

By the definition of Sp, (4.2.12) can be reformulated as follows:

max{gi(x̄+ tkuk)

t
1/p
k

, 0} → 0 ∀i ∈ I, (4.2.13)

and

|hj(x̄+ tkuk)

t
1/p
k

| → 0 ∀j ∈ J. (4.2.14)
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Clearly, (4.2.11) is equivalent to (4.2.14). To show the equivalence of (4.2.10) and

(4.2.13), it suffices to show that, for any u ∈ LC(x̄) with any sequences tk → 0+ and

uk → u,

max{gi(x̄+ tkuk)

t
1/p
k

, 0} → 0 ∀i 6∈ I(x̄, u). (4.2.15)

If i 6∈ I(x̄), (4.2.15) follows easily from the continuity of gi at x̄. If i ∈ I(x̄) but

i 6∈ I(x̄, u), we then have ∇gi(x̄)Tu < 0 since u ∈ LC(x̄). Observing that gi is assumed

to be continuously differentiable, we have by the first-order Taylor expansion

gi(x̄+ tkuk) = tk∇gi(x̄)Tuk + o(tk),

and by noticing that ∇gi(x̄)Tu < 0 and 1/p− 1 > 0, we further have

lim inf
k→+∞

gi(x̄+ tkuk)

t
1/p
k

= lim inf
k→+∞

∇gi(x̄)Tuk + o(tk)
tk

t
1/p−1
k

= −∞.

Therefore, we have shown (4.2.15). This completes the proof. 2

The following generalized lower and upper second-order directional derivatives for

a continuously differentiable function can be found in [38] and [159].

Definition 4.2.1 Let f : Rn → R be a continuously differentiable function. The gen-

eralized lower and upper second-order directional derivatives for f at x ∈ Rn in the

direction u ∈ Rn are defined, respectively, by

foo(x;u) = lim inf
y→x, t→0+

∇f(y + tu)Tu−∇f(y)Tu

t
,

and

f oo(x;u) = lim sup
y→x, t→0+

∇f(y + tu)Tu−∇f(y)Tu

t
.

The following results on the generalized lower and upper second-order directional

derivatives can be found in [38].

Lemma 4.2.4 Let f : Rn → R be a continuously differentiable function. The following

statements are true:

(a) foo(x;u) and f oo(x;u) are positively homogeneous of degree 2 in the second argument

u, i.e., for t ≥ 0,

foo(x; tu) = t2foo(x;u), f oo(x; tu) = t2f oo(x;u);
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(b) The function (x, u) → foo(x;u) is lower semicontinuous and the function (x, u) →
f oo(x;u) is upper semicontinuous;

(c) Let x, y ∈ Rn. The following generalized Taylor expansions hold (β1, β2 ∈ (0, 1)):

f(y) ≥ f(x) +∇f(x)T (y − x) +
1

2
foo(x+ β1(y − x); y − x), (4.2.16)

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
f oo(x+ β2(y − x); y − x). (4.2.17)

The following proposition is originally due to Yang and Meng [161]. For the sake of

completeness, we give its detailed proof from a slightly different perspective.

Proposition 4.2.2 Each of the following conditions is sufficient for (4.2.9) by fulfilling

(4.2.10) and (4.2.11) for each u ∈ LC(x̄) with an arbitrary sequence tk → 0+ and a

constant sequence uk ≡ u.

(i)
1

2
< p < 1 and the functions gi, i ∈ I(x̄) and hj, j ∈ J are C1,1.

(ii) p =
1

2
, and for every u ∈ LC(x̄), it follows that

gooi (x̄;u) ≤ 0 ∀i ∈ I(x̄, u), hooj (x̄;u) = hjoo(x̄;u) = 0 ∀j ∈ J.

(iii) p =
1

2
, the functions gi, i ∈ I(x̄) and hj, j ∈ J are assumed to be twice continu-

ously differentiable, and for every u ∈ LC(x̄), it follows that

〈u,∇2gi(x̄)u〉 ≤ 0 ∀i ∈ I(x̄, u), 〈u,∇2hj(x̄)u〉 = 0 ∀j ∈ J. (4.2.18)

(iv) p = 0, q = 0 (i.e., there is no equality constraint), and for every u ∈ LC(x̄)\{0},
it follows that

gooi (x̄;u) < 0 ∀i ∈ I(x̄, u).

Proof. Fix arbitrarily u ∈ LC(x̄), i ∈ I(x̄, u), and j ∈ J . Let {tk} be an arbitrary se-

quence such that tk → 0+. To show conditions (i) to (iii), it suffices to show (according

to Proposition 4.2.1)

max{gi(x̄+ tku)

t
1/p
k

, 0} → 0, (4.2.19)
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and
hj(x̄+ tku)

t
1/p
k

→ 0. (4.2.20)

[condition (i)]: It follows from the generalized Taylor expansion (4.2.17) that,

gi(x̄+ tku)

t
1/p
k

≤
gi(x̄) + tk∇gi(x̄)Tu+ 1

2
gooi (x̄+ β2tku; tku)

t
1/p
k

=
1
2
gooi (x̄+ β2tku; tku)

t
1/p
k

= 1
2
gooi (x̄+ β2tku;u)t

2−1/p
k ,

(4.2.21)

where β2 ∈ (0, 1), and the second equality follows from the fact that gooi (x;u) is posi-

tively homogeneous of degree 2 in the second argument u. Since gi is assumed to be C1,1,

gooi (x̄;u) is clearly finite. Thus, by the upper semicontinuity of (x, u) → gooi (x;u) and

by noticing that 2− 1/p > 0 because 1
2
< p < 1, we have 1

2
gooi (x̄+ β2tku;u)t

2−1/p
k → 0.

This together with (4.2.21) implies (4.2.19). Along the same line of deriving (4.2.21)

and by applying the generalized Taylor expansions (4.2.16) and (4.2.17), we have

1

2
hjoo(x̄+ β1tku;u)t

2−1/p
k ≤ hj(x̄+ tku)

t
1/p
k

≤ 1

2
hooj (x̄+ β2tku;u)t

2−1/p
k , (4.2.22)

where β1, β2 ∈ (0, 1). Since hj is assumed to be C1,1, both hjoo(x̄;u) and hooj (x̄;u)

are finite. Thus, by the lower semicontinuity of (x, u) → hjoo(x;u) and the upper

semicontinuity of (x, u) → hooj (x;u) and by noticing again that 2 − 1/p > 0, (4.2.20)

can be easily obtained from (4.2.22).

[condition (ii)]: Along the same line of deriving (4.2.21), we have

gi(x̄+ tku)

t2k
≤ 1

2
gooi (x̄+ β2tku;u) (4.2.23)

where β2 ∈ (0, 1). Since gooi (x̄;u) ≤ 0, (4.2.19) with p = 1
2

follows readily from (4.2.23)

and the upper semicontinuity of (x, u) → gooi (x;u). Along the same line of deriving

(4.2.22), we have

1

2
hjoo(x̄+ β1tku;u) ≤ hj(x̄+ tku)

t2k
≤ 1

2
hooj (x̄+ β2tku;u), (4.2.24)

where β1, β2 ∈ (0, 1). Since hooj (x̄;u) = hjoo(x̄;u) = 0, (4.2.20) with p = 1
2

follows

easily from (4.2.24), the lower semicontinuity of (x, u) → hjoo(x;u) and the upper

semicontinuity of (x, u)→ hooj (x;u).
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[condition (iii)]: It follows from the second-order Taylor expansion for twice contin-

uously differentiable functions that,

gi(x̄+ tku)

t2k
=

gi(x̄) + tk∇gi(x̄)Tu+ 1
2
t2k〈u,∇2gi(x̄)u〉+ o(t2k)

t2k
= 1

2
〈u,∇2gi(x̄)u〉+

o(t2k)

t2k
→ 1

2
〈u,∇2gi(x̄)u〉,

which implies (4.2.19). Similarly, we can obtain (4.2.20).

[condition (iv)]: By Lemma 4.2.3, it suffices to show TC(x̄) = LC(x̄) or equivalently

LC(x̄) ⊂ TC(x̄). Let w ∈ LC(x̄)\{0} and let i ∈ I(x̄). It follows from the generalized

Taylor expansion (4.2.17) that for any tk → 0+,

gi(x̄+ tkw) ≤ tk∇gi(x̄)Tw +
1

2
gooi (x̄+ β2tkw; tkw) (4.2.25)

If ∇gi(x̄)Tw < 0, then (4.2.25) implies that gi(x̄ + tkw) ≤ 0 for sufficiently large

k. If ∇gi(x̄)Tw = 0, condition (iv) implies that gooi (x;w) < 0. Due to the upper

semicontinuity of (x,w) → gooi (x;w), we get from (4.2.25) that gi(x̄ + tkw) ≤ 0 for

sufficiently large k. Therefore, we actually have gi(x̄+ tkw) ≤ 0 for sufficiently large k

and for all i ∈ I. This shows that w ∈ TC(x̄). Thus, we have shown LC(x̄) ⊂ TC(x̄).

This completes the proof. 2

The following proposition gives another sufficient condition for kerdS
1
2 (x̄) = LC(x̄),

which is strictly weaker than (4.2.18) as can be seen soon.

Proposition 4.2.3 Assume that gi, i ∈ I and hj, j ∈ J are twice continuously differ-

entiable functions. Set

KKT0(x̄) :=

λ ∈ Rm+q

∣∣∣∣∣∣∣
∑
i∈I

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄) = 0

λi ≥ 0 ∀i ∈ I(x̄), λi = 0 ∀i ∈ I\I(x̄)

 .

If for every u ∈ LC(x̄), it follows that

max
λ∈KKT0(x̄)

{∑
i∈I

λi〈u,∇2gi(x̄)u〉+
∑
j∈J

λj〈u,∇2hj(x̄)u〉

}
= 0, (4.2.26)

then kerdS
1
2 (x̄) = LC(x̄).

Proof. Let u ∈ LC(x̄). It is easy to verify that

KKT0(x̄) =

λ ∈ Rm+q

∣∣∣∣∣∣∣
∑
i∈I

λi∇gi(x̄) +
∑
j∈J

λj∇hj(x̄) = 0

λi ≥ 0 ∀i ∈ I(x̄, u), λi = 0 ∀i ∈ I\I(x̄, u)

 . (4.2.27)

87



Thus, by a nonhomogeneous Farkas’ Lemma (see p.32 of [107] or Lemma 4.2 of [149]),

(4.2.26) holds if and only if there exists w ∈ Rn such that

∇gi(x̄)Tw + 〈u,∇2gi(x̄)u〉 ≤ 0 ∀i ∈ I(x̄, u),

∇hj(x̄)Tw + 〈u,∇2hj(x̄)u〉 = 0 ∀j ∈ J.
(4.2.28)

For any tk → 0+ and wk → w, it is not hard to verify that

max{
gi(x̄+ tku+ 1

2
t2kwk)

t2k
, 0} → 0 ∀i ∈ I(x̄, u), (4.2.29)

and
hj(x̄+ tku+ 1

2
t2kwk)

t2k
→ 0 ∀j ∈ J. (4.2.30)

In fact, by the second order Taylor expansion, we have for each i ∈ I(x̄, u)

gi(x̄+ tku+
1

2
t2kwk) =

1

2
t2k

[
∇gi(x̄)Twk + 〈u+

1

2
tkwk,∇2gi(x̄)(u+

1

2
tkwk)〉

]
+ o(t2k),

which, together with (4.2.28), implies (4.2.29). (4.2.30) can be verified in the same way.

It follows from (4.2.29) and (4.2.30) that the sequences {tk} and {uk := u + 1
2
tkwk}

fulfill (4.2.10) and (4.2.11). By Proposition 4.2.1, we thus have kerdS
1
2 (x̄) = LC(x̄).

This completes the proof. 2

It is well-known that the MFCQ holds at x̄ if and only if KKT0(x̄) = {0}. Thus,

(4.2.26) holds automatically when the MFCQ holds at x̄. However, even if the LICQ

holds at x̄, the condition (4.2.18) may not hold. Take the feasible set of the form

C = {x ∈ R2 | x2
2 − x1 ≤ 0}

and x̄ = 0 for example. Therefore, condition (4.2.26) is in general strictly weaker than

condition (4.2.18).

Below is another example which illustrates that condition (4.2.26) can be strictly

weaker than condition (4.2.18) when the GCQ does not hold at x̄.

Example 4.2.1 In (NLP), let n = m = 2, q = 0, g1(x) = x2
1x2, g2(x) = x2

2 − x1, and

let x̄ = 0. Condition (4.2.18) is not satisfied, because for any u = (0, u2)T with u2 6= 0,

we have u ∈ LC(x̄) = R+ ×R and I(x̄, u) = {1, 2}, but

〈u,∇2g2(x̄)u〉 = 2u2
2 > 0.
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However, we can show that condition (4.2.26) is satisfied. By definition, we have

KKT0(x̄) = {λ ∈ R2
+ | λ1∇g1(x̄) + λ2∇g2(x̄) = 0} = R+ × {0}.

Then, for each u ∈ LC(x̄), we have

max
λ∈KKT0(x̄)

{
λ1〈u,∇2g1(x̄)u〉+ λ2〈u,∇2g2(x̄)u〉

}
= 0.

Therefore, condition (4.2.26) is satisfied and hence kerdS
1
2 (x̄) = LC(x̄). In fact, by

Lemma 4.2.3 and the criterion in Proposition 4.2.1, we can calculate kerdSp(x̄) for all

p ∈ [0, 1], which gives that

kerdSp(x̄) =



R+ × (−R+) if 0 ≤ p ≤ 1

5
,

R+ × (−R+) ∪ {0} ×R+ if
1

5
< p ≤ 1

3
,

R+ ×R if
1

3
< p ≤ 1.

Thus, we have

kerdSp(x̄) = LC(x̄) ∀p ∈ (
1

3
, 1],

[kerdSp(x̄)]∗ = LC(x̄)∗ ∀p ∈ (
1

5
,
1

3
],

and

[kerdSp(x̄)]∗ 6= LC(x̄)∗ ∀p ∈ [0,
1

5
].

In particular, the GCQ does not hold at x̄, and the function Sp with p ∈ (1
5
, 1] cannot

be a local error bound for C at x̄.

When the feasible set of (NLP) is defined by one single inequality, the question as

to whether Sp with any 0 ≤ p ≤ 1 is a KKT-type penalty term is quite clear as shown

by the following proposition.

Proposition 4.2.4 Let g : Rn → R be a twice continuously differentiable function.

Assume that (NLP) has only one inequality constraint g(x) ≤ 0. In this case, we have

S(x) = max{g(x), 0} and C = {x ∈ Rn | g(x) ≤ 0}. Let x̄ ∈ Rn be such that g(x̄) ≤ 0.

The following statements are true:

(a) If g(x̄) < 0 or g(x̄) = 0 with ∇g(x̄) 6= 0, then

kerdSp(x̄) = LC(x̄) ∀p ∈ [0, 1].
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(b) If g(x̄) = 0, ∇g(x̄) = 0 and ∇2g(x̄) is negative semi-definite with ∇2g(x̄) 6= 0, then

kerdSp(x̄) = LC(x̄) ∀p ∈ [0, 1].

(c) If g(x̄) = 0, ∇g(x̄) = 0 and ∇2g(x̄) is positive semi-definite with ∇2g(x̄) 6= 0, then

[kerdSp(x̄)]∗ 6= LC(x̄)∗ ∀p ∈ [0,
1

2
], (4.2.31)

and

kerdSp(x̄) = LC(x̄) ∀p ∈ (
1

2
, 1]. (4.2.32)

(d) If g(x̄) = 0, ∇g(x̄) = 0 and ∇2g(x̄) = 0, then

kerdSp(x̄) = LC(x̄) ∀p ∈ [
1

2
, 1].

(e) If g(x̄) = 0, ∇g(x̄) = 0 and ∇2g(x̄) is indefinite, then

[kerdSp(x̄)]∗ = LC(x̄)∗ ∀p ∈ [0,
1

2
], (4.2.33)

and

kerdSp(x̄) = LC(x̄) ∀p ∈ (
1

2
, 1]. (4.2.34)

Proof. Statement (a) holds trivially. In what follows, we assume that x̄ ∈ C is such

that g(x̄) = 0 and ∇g(x̄) = 0. By applying the spectral decomposition theorem for real

symmetric matrices, we can find an orthogonal matrix P such that

∇2g(x̄) = PΛP T , (4.2.35)

where Λ is a diagonal matrix with diagonal entries being the eigenvalues of ∇2g(x̄).

Moreover, from a direct calculation, we have LC(x̄) = Rn, LC(x̄)∗ = {0} and

O ⊂ kerdS0(x̄) ⊂ kerdS
1
2 (x̄) = Q, (4.2.36)

where O := {w ∈ Rn | 〈w,∇2g(x̄)w〉 < 0} and Q := {w ∈ Rn | 〈w,∇2g(x̄)w〉 ≤ 0}.
In fact, from the second-order Taylor expansion, we have for any tk → 0+ and any

wk → w,

g(x̄+ tkwk) = t2k[
1

2
〈wk,∇2g(x̄)wk〉+

o(t2k)

t2k
],

by virtue of which, we can easily show (4.2.36).
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[(b)]: Since ∇2g(x̄) is negative semi-definite with ∇2g(x̄) 6= 0, we can find w̃ ∈ O,

i.e., 〈w̃,∇2g(x̄)w̃〉 < 0. Let w ∈ Q\O. We have 〈w,∇g(x̄)w〉 = 0. Since ∇2g(x̄) is

negative semi-definite, we have

〈w + τw̃,∇2g(x̄)(w + τw̃)〉 < 0 ∀τ > 0.

Therefore, w+ τw̃ ∈ O for τ > 0. This implies that w ∈ clO and hence clO = Q. Since

LC(x̄) = Rn and Q = Rn, we get from (4.2.36) that kerdS0(x̄) = LC(x̄). In view of

Lemma 4.2.2, statement (b) follows readily.

[(c)]: It follows from Proposition 4.2.2 (i) that (4.2.32) holds. Let Q̃ = {y ∈ Rn |
yTΛy ≤ 0}. In view of (4.2.35), we have Q = PQ̃ and Q∗ = PQ̃∗. Since ∇2g(x̄) is

positive semi-definite with ∇2g(x̄) 6= 0, we can assume without loss of generality that,

there exists a positive integer n1 such that Λ(i, i) > 0 with 1 ≤ i ≤ n1, and Λ(i, i) = 0

with n1+1 ≤ i ≤ n. Then, we have Q̃ = {0Rn1}×Rn−n1 and hence Q̃∗ = Rn1×{0Rn−n1}.
Since Q∗ = PQ̃∗ and P is an orthogonal matrix, we have Q∗ 6= {0}. Since LC(x̄)∗ = {0},
it follows from (4.2.36) that

[kerdS
1
2 (x̄)]∗ 6= LC(x̄)∗.

In view of Proposition 3.2.1 (iii), (4.2.31) holds.

[(d)]: The result follows directly from (4.2.36) and Lemma 4.2.2.

[(e)]: It follows from Proposition 4.2.2 (i) that (4.2.34) holds. Let Õ = {y ∈ Rn |
yTΛy < 0}. In view of (4.2.35), we have O = PÕ and O∗ = PÕ∗. Since ∇2g(x̄) is

indefinite, we can assume without loss of generality that, there exist positive integers

n1 and n2 with n1 + n2 ≤ n such that Λ(i, i) > 0 with 1 ≤ i ≤ n1, Λ(i, i) < 0 with

n1 + 1 ≤ i ≤ n1 + n2 and Λ(i, i) = 0 with n1 + n2 + 1 ≤ i ≤ n. Then we have

Õ = Õ1 ×Rn−n1−n2 , where

Õ1 =

{
y ∈ Rn1+n2 |

n1∑
i=1

Λ(i, i)y2
i −

n1+n2∑
i=n1+1

|Λ(i, i)|y2
i < 0

}
.

For every n1 + 1 ≤ i ≤ n1 + n2, let y(i) ∈ Rn1+n2 be such that y
(i)
i = 1 and y

(i)
j = 0

for all j 6= i. For every 1 ≤ i ≤ n1, let y(i) ∈ Rn1+n2 be such that y
(i)
j = 1 for all

n1 + 1 ≤ j ≤ n1 + n2, y
(i)
i =

√
∆

2Λ(i,i)
, and y

(i)
j = 0 for all 1 ≤ j ≤ n1 but j 6= i, where

∆ =

n1+n2∑
i=n1+1

|Λ(i, i)|. It is straightforward to check that ±y(i) ∈ Õ1 for all 1 ≤ i ≤ n1+n2,
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and that the n1 + n2 vectors y(i) with 1 ≤ i ≤ n1 + n2 are linearly independent. Thus,

we have Õ∗1 = {0} and Õ∗ = {0}. Since O∗ = PÕ∗, we have O∗ = {0}. Since

LC(x̄∗) = {0}, we have O∗ = LC(x̄)∗ = {0}. In view of (4.2.36), (4.2.33) follows readily.

This completes the proof. 2

We end this section by giving a class of parameterized problems to illustrate the

application of Theorem 4.2.2. We identify exactly when KKT conditions can be verified

by one of the existing constraint qualifications, and when they can be verified only by

applying Theorem 4.2.2.

Example 4.2.2 Consider the (NLP) defined as follows:

min f(x)

s.t. x ∈ C,
(4.2.37)

where

C =

x ∈ R3

∣∣∣∣∣∣∣∣
g1(x) := aTx+ a4x

4
3 ≤ 0

g2(x) := bTx+ b4x
4
3 ≤ 0

g3(x) := cTx+ c4x
4
3 ≤ 0


is given as in Example 2.2.4. Let x̄ = 0 ∈ R3 and let

S(x) := max{g1(x), 0}+ max{g2(x), 0}+ max{g2(x), 0} ∀x ∈ R3.

Consider all the cases for the data on C as specified in Example 2.2.4. For the cases

(A), (B1), (B2), (B4-1), (C1), (C2), (C3-1), (C4), (C5-1), (C6), and (D1), it follows

from Example 2.2.4 that S is a local error bound for C at x̄ indicating that the ACQ

holds at x̄. Therefore, in these cases, the KKT condition holds at x̄ whenever x̄ is a

local minimum of (4.2.37).

But in the remaining cases, it follows from the discussion given in Example 2.2.4

that the GCQ does not hold at x̄. That is, the KKT condition may or may not hold at

x̄ even if x̄ is a local minimum of (4.2.37).

Fortunately, we observe from Proposition 4.2.2 (iii) that Sp with 0.5 ≤ p ≤ 1 is a

KKT-type penalty term at x̄. As a result, if we can show that the lp penalty function

Fp(x) = f(x) + µSp(x)
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is exact at x̄ for some p ∈ [0.5, 1], then we can obtain the KKT condition at x̄.

In what follows, we consider in particular the case (B3) for the feasible set C. That

is, the vectors a and b are linearly independent, and the vector c = −k1a − k2b with

k1 ≥ 0, k2 ≥ 0, k1k2 = 0 and k1a4 + k2b4 + c4 > 0. In addition, we assume that the

vectors a, b and e3 = (0, 0, 1)T are linearly independent. Suppose that the objective

function f takes the form

f(x) = wTx+ w4x
2
3 ∀x ∈ R3, (4.2.38)

where w = −ρ1a− ρ2b with ρ1 ≥ 0, ρ2 ≥ 0 and w4 < 0.

First, we show that the lp penalty function cannot be exact at x̄ when p > 0.5.

Since the vectors a, b and e3 are linearly independent, we can find a sequence xk =

(x1k, x2k, x3k)
T ∈ R3 such that xk → x̄, x3k 6≡ 0, aTxk = 0 and bTxk = 0. For such a

sequence, it is easy to check that for any µ > 0 and p > 0.5, there exists k0 such that

the inequality

Fp(xk) = w4x
2
3k + µ

[
(a4x

4
3k)+ + (b4x

4
3k)+ + (c4x

4
3k)+

]p
< 0 = Fp(x̄)

holds for all k ≥ k0. Thus, the lp penalty function is not exact at x̄ when p > 0.5.

Next, we show that the l0.5 penalty function is exact at x̄. It is easy to see that

F0.5(x) := [w4 + (ρ1a4 + ρ2b4)x2
3]x2

3 − ρ1(aTx+ a4x
4
3)− ρ2(bTx+ b4x

4
3)

+µ
√

(aTx+ a4x4
3)+ + (bTx+ b4x4

3)+ + (cTx+ c4x4
3)+.

Let δ = min{1, 1
‖a‖+|a4| ,

1
‖b‖+|b4|} and

µ̃ = 2 max

2ρ1, 2ρ2,
|ρ1a4 + ρ2b4| − w4√

min{ 1
k1
, 1
k2
, 1}(k1a4 + k2b4 + c4)

 ,

where the convention 1
0

:= ∞ is used when k1 = 0 or k2 = 0. Let µ ≥ µ̃ and ‖x‖ ≤ δ.

By the definition of δ, we have

(ρ1a4 + ρ2b4)x2
3 ≥ −|ρ1a4 + ρ2b4|δ2 ≥ −|ρ1a4 + ρ2b4|, (4.2.39)

and

|aTx+ a4x
4
3| ≤ ‖a‖‖x‖+ |a4|x4

3 ≤ ‖a‖δ + |a4|δ4 ≤ (‖a‖+ |a4|)δ ≤ 1, (4.2.40)
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and similarly,

|bTx+ b4x
4
3| ≤ 1. (4.2.41)

Thus, we obtain from (4.2.40) and (4.2.41)√
(aTx+ a4x4

3)+ + (bTx+ b4x4
3)+ + (cTx+ c4x4

3)+

≥
√

(aTx+ a4x4
3)+ + (bTx+ b4x4

3)+

≥ 1
2

√
(aTx+ a4x4

3)+ + 1
2

√
(bTx+ b4x4

3)+

≥ 1
2
(aTx+ a4x

4
3)+ + 1

2
(bTx+ b4x

4
3)+,

(4.2.42)

where the second inequality follows from Lemma 4.1 in [80]. Since k1a4 +k2b4 + c4 > 0,

we have√
(aTx+ a4x4

3)+ + (bTx+ b4x4
3)+ + (cTx+ c4x4

3)+

≥
√

min{ 1
k1
, 1
k2
, 1}
√
k1(aTx+ a4x4

3)+ + k2(bTx+ b4x4
3)+ + (cTx+ c4x4

3)+

≥
√

min{ 1
k1
, 1
k2
, 1}
√

[k1(aTx+ a4x4
3) + k2(bTx+ b4x4

3) + (cTx+ c4x4
3)]+

=
(√

min{ 1
k1
, 1
k2
, 1}
√
k1a4 + k2b4 + c4

)
x2

3.

(4.2.43)

In view of (4.2.39), (4.2.42), (4.2.43), and the definition of µ̃, we have

F0.5(x) ≥ (w4 − |ρ1a4 + ρ2b4|)x2
3 − ρ1(aTx+ a4x

4
3)− ρ2(bTx+ b4x

4
3)

+µ
4
(aTx+ a4x

4
3)+ + µ

4
(bTx+ b4x

4
3)+ + µ

2

(√
min{ 1

k1
, 1
k2
, 1}
√
k1a4 + k2b4 + c4

)
x2

3

≥ 0,

which implies that the l0.5 penalty function is exact at x̄.

4.3 Second-order Necessary Conditions via Exact

Penalty Functions

In this section, by applying the second-order necessary conditions presented in The-

orem 3.3.3 for exact penalty functions and by applying the duality theorem of linear

programming, we derive second-order necessary conditions of the type (4.1.1) for (NLP)

from exactness of f + µφ under some additional condition in terms of the kernel of the

parabolic subderivative of φ. By applying the third order Taylor expansions and in

terms of the original data of (NLP), we give some sufficient conditions for these condi-

tions when the lp penalty functions are involved.
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To begin with, we establish a condition which allows us to derive the second-order

necessary condition (4.1.1) for (NLP) from exactness of f + µφ.

Theorem 4.3.1 Suppose that f + µφ is exact at x̄. If

L2
C(x̄ | w) ⊂ clconv[kerd2φ(x̄)(w | ·)] ∀w ∈ V(x̄), (4.3.44)

then

sup
λ∈KKT(x̄)

〈w,∇2
xxL(x̄, λ)w〉 ≥ 0 ∀w ∈ V(x̄). (4.3.45)

In particular when L2
C(x̄ | w) = ∅, the supremum in (4.3.45) is +∞.

Proof. Observe that 0 ∈ V(x̄). It follows from the definition of L2
C(x̄ | 0) and Propo-

sition 3.2.2 (ii) that, (4.3.44) holds with w = 0 if and only if

LC(x̄) ⊂ clconv[kerdφ(x̄)],

or equivalently

[kerdφ(x̄)]∗ ⊂ LC(x̄)∗.

This implies by Theorem 4.2.1 that KKT(x̄) 6= ∅. By the definition of V(x̄), it is easy

to verify that for any w ∈ V(x̄),

KKT(x̄) =

λ ∈ Rm+q

∣∣∣∣∣∣∣∣
∇xL(x̄, λ) = 0

λi ≥ 0 ∀i ∈ I(x̄, w)

λi = 0 ∀i ∈ I\I(x̄, w)

 . (4.3.46)

According to Theorem 3.3.3 or the weakened necessary condition (3.3.27) in Remark

3.3.2, there exists no vector (w, z) ∈ Rn ×Rn such that

〈∇f(x̄), w〉 = 0, 〈∇f(x̄), z〉+〈w,∇2f(x̄)w〉 < 0, z ∈ clconv[kerd2φ(x̄)(w | ·)]. (4.3.47)

Let w ∈ V(x̄). First we assume that L2
C(x̄ | w) 6= ∅. It follows from (4.3.44), the

definition of L2
C(x̄ | w), and the inconsistency of the system (4.3.47) that, the optimal

value of the linear program

min
z∈Rn

〈∇f(x̄), z〉+ 〈w,∇2f(x̄)w〉

s.t. 〈∇gi(x̄), z〉+ 〈w,∇2gi(x̄)w〉 ≤ 0 ∀i ∈ I(x̄, w),

〈∇hj(x̄), z〉+ 〈w,∇2hj(x̄)w〉 = 0 ∀j ∈ J,

(4.3.48)
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is nonnegative. Applying the duality theorem of linear programming (see [107]), we

confirm that the optimal value of the linear program

max
λ∈Rm+q

〈w,∇2
xxL(x̄, λ)w〉

s.t. ∇xL(x̄, λ) = 0,

λi ≥ 0 ∀i ∈ I(x̄, w),

λi = 0 ∀i ∈ I\I(x̄, w),

is also nonnegative. This together with (4.3.46) implies that KKT(x̄) 6= ∅ and

max
λ∈KKT(x̄)

〈w,∇2
xxL(x̄, λ)w〉 ≥ 0.

Next we assume that L2
C(x̄ | w) = ∅. Since V(x̄) ⊂ LC(x̄), we have w ∈ LC(x̄). It

follows from the definition of L2
C(x̄ | w) that, there exists no z ∈ Rn such that

〈∇gi(x̄), z〉+ 〈w,∇2gi(x̄)w〉 ≤ 0 ∀i ∈ I(x̄, u),

〈∇hj(x̄), z〉+ 〈w,∇2hj(x̄)w〉 = 0 ∀j ∈ J.

The duality theorem of linear programming (see [107]) guarantees the existence of some

λ̃ ∈ Rm+q with λ̃i ≥ 0 for all i ∈ I(x̄, w) and λ̃i = 0 for all i ∈ I\I(x̄, w) such that∑
i∈I

λ̃i∇gi(x̄) +
∑
j∈J

λ̃j∇hj(x̄) = 0, (4.3.49)

and ∑
i∈I

λ̃i〈w,∇2gi(x̄)w〉+
∑
j∈J

λ̃j〈w,∇2hj(x̄)w〉 > 0. (4.3.50)

Let λ̄ ∈ KKT(x̄) and let λt = λ̄ + tλ̃ for all t ≥ 0. It follows from (4.3.46), (4.3.49),

and (4.3.50) that λt ∈ KKT(x̄) for all t ≥ 0, and that

sup
λ∈KKT(x̄)

〈w,∇2
xxL(x̄, λ)w〉 ≥ sup

t≥0
〈w,∇2

xxL(x̄, λt)w〉 = +∞.

This completes the proof. 2

Let 0 ≤ p ≤ 1 and let S be given by (4.1.2). Since all functions in defining (NLP)

are assumed to be twice continuously differentiable, it is easy to verify by applying the

second-order Taylor expansion that

L2
C(x̄ | w) = clconv[kerd2S(x̄)(w | ·)] ∀w ∈ V(x̄),
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which indicates that condition (4.3.44) holds automatically when φ happens to be the

function S. This recovers a well-known result that the second-order necessary condition

(4.3.45) holds when the l1 penalty function is exact at x̄, see Corollary 4.5 of Rockafellar

[139]. Moreover, in view of Proposition 3.2.2 (v) and the fact that L2
C(x̄ | w) is closed

and convex due to being a polyhedron by definition, condition (4.3.44) holds when

φ = Sp with 0 ≤ p < 1 if and only if

L2
C(x̄ | w) = clconv[kerd2Sp(x̄)(w | ·)] ∀w ∈ V(x̄). (4.3.51)

Note that when p = 0, we interpret Sp as the indicator function δC of the feasible

set C of (NLP). Thus, in view of Proposition 3.2.2 (iv), condition (4.3.51) with p = 0

reduces to the SGCQ. Therefore, Theorem 4.3.1 also recovers a known result that, under

the SGCQ, any local minimum of (NLP) satisfies the second-order necessary condition

(4.3.45), see Kawasaki [94].

In what follows, by assuming that all functions in defining (NLP) are three times

continuously differentiable, we shall given sufficient conditions in terms of the original

data for

L2
C(x̄ | w) = kerd2Sp(x̄)(w | ·) ∀w ∈ LC(x̄),

which is slightly stronger than (4.3.51).

Assume that ψ : Rn → R is a three times continuously differentiable function. Let

{tk} ⊂ R+ be a sequence such that tk → 0+, and let (x, u) ∈ Rn × Rn be such that

ψ(x) = 0 and 〈∇ψ(x), w〉 = 0. For each z ∈ Rn, it follows from the third order Taylor
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expansion that,

ψ(x+ tkw +
1

2
t2kz)

= ψ(x) + tk〈∇ψ(x), w〉+
1

2
t2k〈∇ψ(x), z〉+

1

2
t2k〈w +

1

2
tkz,∇2ψ(x)(w +

1

2
tkz)〉

+
1

6
t3kψ

(3)(x)(w +
1

2
tkz, w +

1

2
tkz, w +

1

2
tkz) + o(t3k)

=
1

2
t2k〈∇ψ(x), z〉+

1

2
t2k〈w +

1

2
tkz,∇2ψ(x)(w +

1

2
tkz)〉

+
1

6
t3kψ

(3)(x)(w +
1

2
tkz, w +

1

2
tkz, w +

1

2
tkz) + o(t3k)

=
1

2
t2k[〈∇ψ(x), z〉+ 〈w,∇2ψ(x)w〉] +

1

2
t3k〈w,∇2ψ(x)z〉+

1

8
t4k〈z,∇2ψ(x)z〉

+
1

6
t3kψ

(3)(x)(w +
1

2
tkz, w +

1

2
tkz, w +

1

2
tkz) + o(t3k).

(4.3.52)

Proposition 4.3.1 Let S be given by (4.1.2). Assume that all the functions gi with

i ∈ I and hj with j ∈ J are three times continuously differentiable. For each w ∈ LC(x̄),

the following statements are true:

(i) kerd2Sp(x̄)(w | ·) = L2
C(x̄ | w) ∀p ∈ (2

3
, 1].

(ii) kerd2S
2
3 (x̄)(w | ·) = L2

C(x̄ | w) if for every z ∈ L2
C(x̄ | w), it follows that

〈w,∇2gi(x̄)z〉+
1

3
g

(3)
i (x̄)(w,w,w) ≤ 0 ∀ i ∈ I(x̄, w, z),

〈w,∇2hj(x̄)z〉+
1

3
h

(3)
j (x̄)(w,w,w) = 0 ∀ j ∈ J.

(4.3.53)

(iii) If q = 0 (i.e., there is no equality constraint), and for every z ∈ L2
C(x̄ | w) with

(w, z) 6= 0, it follows that

〈w,∇2gi(x̄)z〉+
1

3
g

(3)
i (x̄)(w,w,w) < 0 ∀ i ∈ I(x̄, w, z), (4.3.54)

then kerd2Sp(x̄)(w | ·) = L2
C(x̄ | w) for all p ∈ [0, 1].

Proof. If L2
C(x̄ | w) = ∅, we have by Lemma 3.2.2 (v)

kerd2Sp(x̄)(w | ·) = L2
C(x̄ | w) = ∅ ∀p ∈ [0, 1].
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In what follows, we assume that L2
C(x̄ | w) 6= ∅. Let z ∈ L2

C(x̄ | w) and let tk → 0+.

For any i ∈ I\I(x̄, w), we have either gi(x̄) < 0 or gi(x̄) = 0 with 〈∇gi(x̄), w〉 < 0. In

either case, it is easy to verify that for all sufficiently large k,

gi(x̄+ tku+
1

2
t2kw) ≤ 0 ∀i ∈ I\I(x̄, w). (4.3.55)

By (4.3.52) and the definition of L2
C(x̄ | w), we have for every α ∈ (0, 3)

max

{
gi(x̄+ tkw + 1

2
t2kz)

tαk
, 0

}
→ 0 ∀i ∈ I(x̄ | w), (4.3.56)

and
hj(x̄+ tkw + 1

2
t2kz)

tαk
→ 0 ∀j ∈ J. (4.3.57)

Combining (4.3.55), (4.3.56), and (4.3.57), we have for every p ∈ (2
3
, 1],

Sp(x̄+ tkw + 1
2
t2kz)

t2k

=

(∑
i∈I

max

{
gi(x̄+ tkw + 1

2
t2kz)

t
2/p
k

, 0

}
+
∑
j∈J

|
hj(x̄+ tkw + 1

2
t2kz)

t
2/p
k

|

)p

→ 0.

This implies by Lemma 3.2.2 (i) that L2
C(x̄ | w) ⊂ kerd2Sp(x̄)(w | ·) for any p ∈ (2

3
, 1].

In view of Lemma 3.2.2 (v), statement (i) is true.

Now we show that statement (ii) is true. It follows from (4.3.52), condition (4.3.54),

and the definition of L2
C(x̄ | w) that (4.3.56) and (4.3.57) hold with α = 3. Thus,

together with (4.3.55), we have

S
2
3 (x̄+ tkw + 1

2
t2kz)

t2k
→ 0.

This implies by Lemma 3.2.2 (i) that L2
C(x̄, u) ⊂ kerd2S

2
3 (x̄)(w | ·). In view of Lemma

3.2.2 (v), statement (ii) is true.

Finally, we show that statement (iii) is true. It follows from (4.3.52) and condition

(4.3.54) that, for all sufficiently large k,

gi(x̄+ tkw +
1

2
t2kz) ≤ 0 ∀i ∈ I(x̄, w). (4.3.58)

Combining (4.3.55) and (4.3.58), we have for all sufficiently large k,

x̄+ tkw +
1

2
t2kz ∈ C.
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This implies by definition that z ∈ T 2
C(x̄ | w). Thus, we have L2

C(x̄ | w) ⊂ T 2
C(x̄ | w).

In view of Lemma 3.2.2 (v), statement (iii) is true. This completes the proof. 2

In the following example, we demonstrate that condition (4.3.53) may not hold even

if the LICQ holds.

Example 4.3.1 In (NLP), let n = 2, m = 1, q = 0, and g1(x) = x3
1 − x2. Consider a

feasible point x̄ = (0, 0)T . Since ∇g(x̄) = (0,−1)T , the LICQ holds at x̄. This implies

that S is a local error bound for C at x̄. By Lemma 3.2.2, we have for any p ∈ [0, 1]

and any w ∈ LC(x̄) = R×R+,

T 2
C(x̄ | w) = kerd2Sp(x̄)(w | ·) = L2

C(x̄ | w) =

{
R×R+ if w2 = 0,

R2 otherwise.

Let w ∈ LC(x̄) with w2 = 0 and let z ∈ L2
C(x̄ | w) with z2 = 0. By definition, we have

I(x̄, w, z) = {1}. Now it is easy to check that condition (4.3.53) is invalid when w1 > 0

because

〈w,∇2g(x̄)z〉+
1

3
g(3)(x̄)(w,w,w) = 2w3

1 > 0.

In the following example, we illustrate that even if neither the GCQ nor the SGCQ

holds, Theorem 4.3.1 can be applied to derive the second-order necessary condition.

Example 4.3.2 In (NLP), let n = 2, m = 3, q = 0, f(x) = −x4
1 + x2, g1(x) = −x2,

g2(x) = x6
1 + x3

2, g3(x) = −x2
1 + x2

2, and let x̄ = 0. By a direct calculation, we have

TC(x̄) = {0}, LC(x̄) = {w ∈ R2 | w2 ≥ 0}, and V(x̄) = {w ∈ R2 | w2 = 0}. Moreover,

we have

T 2
C(x̄ | w) =

{
{0} if w = 0,

∅ otherwise,

and

L2
C(x̄ | w) =


R×R+ if w2 = 0,

R2 if w2 > 0,

∅ otherwise.

Thus, for any w ∈ V(x̄), we have

L2
C(x̄ | w) 6= clconv[T 2

C(x̄ | w)].
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By definition or by checking condition (4.3.53), we have for any w ∈ V(x̄),

L2
C(x̄ | w) = kerd2S

2
3 (x̄)(w | ·).

In what follows, we will show that the lp penalty function is exact at x̄ for p = 2
3

but

not for p > 2
3
. Let δ ∈ (0, 1) and µ̃ =

2

(1− δ2)
2
3

. Clearly, µ̃ > 2. Let µ ≥ µ̃ and let

x ∈ R2 be such that |x1| ≤ δ and |x2| ≤ δ. We consider two cases for x:

Case 1: x2 ≥ 0. We have

F 2
3
(x) = −x4

1 + x2 + µ
[
(−x2)+ + (x6

1 + x3
2)+ + (−x2

1 + x2
2)+

] 2
3 (4.3.59)

≥ −x4
1 + µ(x6

1)
2
3

= (µ− 1)x4
1

≥ 0.

Case 2: x2 < 0. We have from (4.3.59)

F 2
3
(x) ≥ −x4

1 + x2 + µ[(−x2 + x6
1 + x3

2)+]
2
3

= −x4
1 + x2 + µ[−x2(1− x2

2) + x6
1]

2
3

≥ −x4
1 + x2 +

1

2
µ[−x2(1− x2

2)]
2
3 +

1

2
µ(x6

1)
2
3

≥ (
1

2
µ− 1)x4

1 + (−x2)[
µ

2
(1− δ2)

2
3 − 1]

≥ 0,

where the second inequality follows from Lemma 4.1 in [80].

To show that the lp penalty function is not exact at x̄ when p > 2
3
, we consider a

sequence xk := (x1k, 0) ∈ R2 with x1k → 0+. It is easy to check that for any µ > 0 and

p > 2
3
, the following condition holds for all sufficiently large k:

Fp(xk) = −x4
1k + µx6p

1k < Fp(x̄) = 0.

Now Theorem 4.3.1 can be applied to derive the second-order necessary condition at x̄.

In fact, by a direct calculation, we have

KKT(x̄) = {λ ∈ R3 | λ1 = 1, λ2 ≥ 0, λ3 ≥ 0}.

101



Thus, for each w ∈ V(x̄), we have

sup
λ∈KKT(x̄)

〈w,∇2
xxL(x̄, λ)w〉 = sup

λ3≥0
(−2λ3w

2
1) = 0.
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Chapter 5

First-order Necessary Conditions

for MPCC via Exact Penalty

Functions

5.1 Introduction

In this chapter, we study first-order necessary conditions for a mathematical program

with complementarity constraints as follows:

(MPCC) min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ J,
Gk(x) ≥ 0, Hk(x) ≥ 0, Gk(x)Hk(x) = 0, k ∈ K,

where f, gi, i ∈ I, hj, j ∈ J are given as in (NLP), and Gk, Hk : Rn → R, k ∈ K :=

{m + q + 1,m + q + 2, · · · ,m + q + l} are assumed to be continuously differentiable.

Throughout this chapter, we denote by E the feasible set of (MPCC) and by x̄ a fixed

point in E.

Stationarity (or first-order necessary) conditions for (MPCC) have been the sub-

ject of many recent papers and books, see [146, 147, 105, 106, 165, 125, 54, 55, 57].

Since there are several different approaches for deriving optimality conditions, various
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stationarity conditions arise, see a recent PhD thesis by Flegel [52] for their definitions

and connections.

In this chapter, we focus on strong stationarity and Mordukhovich stationarity only.

Specifically, we say that x̄ is a strongly (resp. an Mordukhovich) stationary point of

(MPCC) if, there is λ = (λg, λh, λG, λH) ∈ Rm+q+2l such that

∇f(x̄) +
∑
i∈I

λgi∇gi(x̄) +
∑
j∈J

λhj∇hj(x̄)−
∑
k∈K

[λGk∇Gk(x̄) + λHk ∇Hk(x̄)] = 0,

∀i ∈ I(x̄), λgi ≥ 0, ∀i ∈ I\I(x̄), λgi = 0,

∀k ∈ γ, λGk = 0, ∀k ∈ α, λHk = 0,

∀k ∈ β, λGk ≥ 0, λHk ≥ 0

(resp. ∀k ∈ β, either λGk > 0, λHk > 0 or λGk λ
H
k = 0),

where I(x̄), α, β, γ are useful index sets in the sequel:

I(x̄) = {i ∈ I | gi(x̄) = 0},
α := α(x̄) = {k ∈ K | 0 = Gk(x̄) < Hk(x̄)},
β := β(x̄) = {k ∈ K |Gk(x̄) = Hk(x̄) = 0},
γ := γ(x̄) = {k ∈ K |Gk(x̄) > Hk(x̄) = 0}.

Clearly, strong stationarity implies Mordukhovich stationarity. Note that x̄ is a strongly

stationary point if and only if the KKT condition holds at x̄, see [56] for details. As

for various standard CQs and MPCC tailored CQs for strong stationarity and Mor-

dukhovich stationarity, we refer to the literature review in Chapter 1. Of particular

note is that, as in the context of nonlinear programming, the GCQ is the weakest CQ

for strong stationarity in the sense that it is both sufficient and necessary for local

minima of (MPCC) to possess strong stationarity. There can be found in Flegel and

Kanzow [57] the weakest CQ for Mordukhovich stationarity, though the authors did

not formulate it explicitly. Its detailed formulation is presented at the very beginning

of next section.

Strong stationarity and Mordukhovich stationarity can also be derived from exact

penalty functions of (MPCC). Results on exact penalization for (MPCC) are known in

the literature, see [105, 106, 106, 147, 168, 55, 52, 92, 102] for example.

Let 0 ≤ p ≤ 1 and let the function S be given by (4.1.2). When treated as an

ordinary nonlinear programming problem, (MPCC) can be associated with an lp penalty
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function defined in the spirit of the penalty function Fp in Chapter 4 as follows:

Gp(x) = f(x) + µUp(x),

where µ ≥ 0 is the penalty parameter, and

U(x) := S(x) +
∑
k∈K

((−Gk(x))+ + (−Hk(x))+ + |Gk(x)Hk(x)|) ∀x ∈ Rn.

With the aid of the NCP function φmin(a, b) := min{a, b}, (MPCC) can be associated

with another lp penalty function as follows:

Hp(x) = f(x) + µV p(x),

where µ ≥ 0 is the penalty parameter, and

V (x) = S(x) +
∑
k∈K

|φmin(Gk(x), Hk(x))| ∀x ∈ Rn.

Note that in the case of p = 0, we interpret both Up and V p as the indicator function

δE of the feasible set E of (MPCC). When p = 1, the penalty function Hp(x) reduces

to the l1 penalty function considered in [55, 165, 92]. It is well-known that the strong

stationarity holds at x̄ or equivalently the KKT condition holds at x̄ if the l1 penalty

function G(x) has a local minimum at x̄ for some µ ≥ 0, see in particular Han and

Mangasarian ([66], Theorem 4.8). In contrast with this result, the Mordukhovich sta-

tionarity holds at x̄ if the l1 penalty function H(x) has a local minimum at x̄ for some

µ ≥ 0, see [55, 165, 92, 102]. But for 0 < p < 1, the question as to whether and

how strong stationarity or Mordukhovich stationarity can be derived from the lp exact

penalty function Gp or Hp has not been addressed in the literature.

In what follows, let φ : Rn → R+ ∪ {+∞} be a lower semicontinuous function with

the property that φ(x) = 0 if and only if x ∈ E. Note that φ plays the role as a general

penalty term for the feasible set E of (MPCC), and that the functions Up and V p with

0 ≤ p ≤ 1 are particular instances of φ. We say that φ is an S-type (resp., M-type)

penalty term if it has the ability to detect strong stationarity (resp., Mordukhovich

stationarity) for (MPCC) in the sense as described in the following definition.

Definition 5.1.1 We say that φ is an S-type (resp., M-type) penalty term at x̄ if the

strong stationarity (resp., the Mordukhovich stationarity) holds at x̄ whenever there is
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a continuously differentiable function f : Rn → R such that the penalty function f +µφ

is exact at x̄ (i.e., for some finite penalty parameter µ ≥ 0, this penalty function admits

an unconstrained local minimum at x̄).

By definition, S-type penalty terms are necessarily M-type. According to the previous

literature review, U is of S-type and V is of M-type.

The outline of this chapter is as follows. In Section 5.2, we establish equivalent

conditions for penalty terms of (MPCC) to be of S-type or M-type. In Section 5.3,

we consider two lp penalty functions: Gp and Hp, and in terms of the original data of

(MPCC), we give sufficient conditions for Up and V p to be of S-type and/or M-type. We

end this chapter by establishing some relationships between these two penalty functions.

5.2 S-type and M-type Penalty Terms for MPCC

In this section, by applying the same technique as in Section 4.2.1, we establish equiv-

alent conditions for penalty terms of (MPCC) to be of S-type or M-type.

To begin with, we introduce two cones first appeared in Flegel and Kanzow [57] as

follows:

Ω1 =
{

(u, ξβ, ηβ) ∈ Rn+2|β| | ξk ≥ 0, ηk ≥ 0, ξkηk = 0, ∀k ∈ β
}

and

Ω2 =


(u, ξβ, ηβ) ∈ Rn+2|β|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x̄)Tu ≤ 0, i ∈ I(x̄)

∇hj(x̄)Tu = 0, j ∈ J
∇Gk(x̄)Tu = 0, k ∈ α
∇Hk(x̄)Tu = 0, k ∈ γ
∇Gk(x̄)Tu− ξk = 0, k ∈ β
∇Hk(x̄)Tu− ηk = 0, k ∈ β


.

The strong stationarity and Mordukhovich stationarity can be characterized in a unified

way in terms of (regular) normal cones to Ω1 and Ω2 as shown by Proposition 5.2.1

below. This idea is borrowed from [57], where a direct proof was given to show that

local minima of (MPCC) posses Mordukhovich stationarity under the MPCC-GCQ. By

definition, the MPCC-GCQ holds at x̄ if TE(x̄)∗ = T lin
MPCC(x̄)∗, where T lin

MPCC(x̄) is the
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MPCC-linearized cone of (MPCC) at x̄ defined by

T lin
MPCC(x̄) :=


u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x̄)Tu ≤ 0, i ∈ I(x̄)

∇hj(x̄)Tu = 0, j ∈ J
∇Gk(x̄)Tu = 0, k ∈ α
∇Hk(x̄)Tu = 0, k ∈ γ
∇Gk(x̄)Tu ≥ 0, k ∈ β
∇Hk(x̄)Tu ≥ 0, k ∈ β
(∇Gk(x̄)Tu)(∇Hk(x̄)Tu) = 0, k ∈ β


.

This linearized cone, though not necessarily convex as the terminology suggests, was

first introduced in [146, 125] and later studied extensively in [54, 165, 57]. In contrast

with T lin
MPCC(x̄), the first-order linearized cone T lin(x̄) of (MPCC) at x̄ defined by

T lin(x̄) :=


u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∇gi(x̄)Tu ≤ 0, i ∈ I(x̄)

∇hj(x̄)Tu = 0, j ∈ J
∇Gk(x̄)Tu = 0, k ∈ α
∇Hk(x̄)Tu = 0, k ∈ γ
∇Gk(x̄)Tu ≥ 0, k ∈ β
∇Hk(x̄)Tu ≥ 0, k ∈ β


is always convex and in particular polyhedral.

Proposition 5.2.1 The following statements are true:

(i) x̄ is a strongly stationary point of (MPCC) if and only if

−∇f(x̄) ∈ {v ∈ Rn | (v, 0, 0) ∈ N̂Ω1(0, 0, 0) + N̂Ω2(0, 0, 0)}.

(ii) x̄ is an Mordukhovich stationary point of (MPCC) if and only if

−∇f(x̄) ∈ {v ∈ Rn | (v, 0, 0) ∈ NΩ1(0, 0, 0) +NΩ2(0, 0, 0)}.

(iii) T lin(x̄)∗ = {v ∈ Rn | (v, 0, 0) ∈ N̂Ω1(0, 0, 0) + N̂Ω2(0, 0, 0)}.

(iv) T lin
MPCC(x̄)∗ = {v ∈ Rn | (v, 0, 0) ∈ N̂Ω1∩Ω2(0, 0, 0)}.

(v) NΩ1∩Ω2(0, 0, 0) ⊂ NΩ1(0, 0, 0) +NΩ2(0, 0, 0).
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Proof. By formulas of N̂Ω1(0, 0, 0), N̂Ω2(0, 0, 0), NΩ1(0, 0, 0), NΩ2(0, 0, 0) given in

Proposition 2.2 of [102], statements (i) to (iii) follow directly from Farkas’ lemma

and the definitions of strong stationarity and Mordukhovich stationarity. Note that

(u, ξβ, ηβ) ∈ Ω1 ∩ Ω2 if and only if u ∈ T lin
MPCC(x̄) and for every k ∈ β, ξk = ∇Gk(x̄)Tu,

ηk = ∇Hk(x̄)Tu, and that N̂Ω1∩Ω2(0, 0, 0) = TΩ1∩Ω2(0, 0, 0)∗ = (Ω1 ∩ Ω2)∗. Thus,

(v, 0, 0) ∈ N̂Ω1∩Ω2(0, 0, 0) if and only if

〈(v, 0, 0), (u,∇Gβ(x̄)Tu,Hβ(x̄)Tu)〉 = 〈v, u〉 ≤ 0, ∀u ∈ T lin
MPCC(x̄),

which amounts to v ∈ T lin
MPCC(x̄)∗. Thus, statement (iv) is true. Statement (v) has been

shown in [57]. This completes the proof. 2

Remark 5.2.1 According to [64], any v ∈ TE(x̄)∗ corresponds to a continuously dif-

ferentiable objective function f such that x̄ is a local minimum of (MPCC) and v =

−∇f(x̄). Therefore, by statement (ii), the constraint qualification

TE(x̄)∗ × {0} × {0} ⊂ NΩ1(0, 0, 0) +NΩ2(0, 0, 0) (5.2.1)

is the weakest one for Mordukhovich stationarity. It follows from statements (iv) and

(v), and N̂Ω1∩Ω2(0, 0, 0) ⊂ NΩ1∩Ω2(0, 0, 0) that,

T lin
MPCC(x̄)∗ × {0} × {0} ⊂ NΩ1(0, 0, 0) +NΩ2(0, 0, 0). (5.2.2)

It follows from (5.2.1) and (5.2.2) that x̄ is an Mordukhovich stationary point if the

MPCC-GCQ holds at x̄. This result has been shown by [165] and [52]). Example

5.2.1 below illustrates that MPCC-GCQ can be strictly stronger than the CQ defined by

(5.2.1).

Example 5.2.1 In (MPCC), let n = 1, m = q = 0, l = 1, G(x) = x, H(x) = x2, and

x̄ = 0. Then TE(x̄) = {0}, T lin
MPCC(x̄) = T lin(x̄) = R+, and

{v ∈ R | (v, 0, 0) ∈ NΩ1(0, 0, 0) +NΩ2(0, 0, 0)} = R.

Thus, MPCC-GCQ does not hold at x̄ but (5.2.1) holds.

Now we give equivalent conditions for φ to be of S-type or M-type at x̄.
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Theorem 5.2.1 Concerning strong stationarity, we have the following equivalent con-

ditions:

(i) [kerdφ(x̄)]∗ ⊂ {v ∈ Rn | (v, 0, 0) ∈ N̂Ω1(0, 0, 0) + N̂Ω2(0, 0, 0)}.

(ii) pos(∂̂φ(x̄)) ⊂ {v ∈ Rn | (v, 0, 0) ∈ N̂Ω1(0, 0, 0) + N̂Ω2(0, 0, 0)}.

(iii) φ is an S-type penalty term at x̄.

Concerning Mordukhovich stationarity, we have the following equivalent conditions:

(i′) [kerdφ(x̄)]∗ ⊂ {v ∈ Rn | (v, 0, 0) ∈ NΩ1(0, 0, 0) +NΩ2(0, 0, 0)}.

(ii′) pos(∂̂φ(x̄)) ⊂ {v ∈ Rn | (v, 0, 0) ∈ NΩ1(0, 0, 0) +NΩ2(0, 0, 0)}.

(iii′) φ is an M-type penalty term at x̄.

Proof. In view of Proposition 5.2.1, we can get all results by applying the same

technique as in the proof of Theorem 4.2.1. 2

Remark 5.2.2 Due to Proposition 5.2.1 (iii), the right-hand sides in conditions (i)

and (ii) are exactly the set T lin(x̄)∗. But if we replace the right-hand sides in conditions

(i′) and (ii′) by T lin
MPCC(x̄)∗, we can get only the sufficient conditions for φ being an

M-type penalty term at x̄. This is because the set T lin
MPCC(x̄)∗ may be merely a proper

subset of {v ∈ Rn | (v, 0, 0) ∈ NΩ1(0, 0, 0) +NΩ2(0, 0, 0)}, as can be seen from Example

5.2.1.

5.3 On Two Particular Penalty Functions for MPCC

In this section, we consider the lp penalty functions Gp and Hp, which have been defined

in the Introduction section. By applying Theorem 5.2.1 obtained in last section, we give

sufficient conditions in terms of the original data of (MPCC) for Up and V p to be S-type

and/or M-type penalty terms. We end this chapter by establishing the relationships

between exactness of Gp and Hp, and between kerdUp(x̄) and kerdV p(x̄).
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Recall that in defining Gp, we use the function

U(x) = S(x) +
∑
k∈K

{(−Gk(x))+ + (−Hk(x))+ + |Gk(x)Hk(x)|} , (5.3.3)

where S is given by (4.1.2).

Lemma 5.3.1 kerdU0.5(x̄) ⊂ T lin
MPCC(x̄) ⊂ kerdU(x̄) = T lin(x̄).

Proof. By Proposition 3.2.1 (i), it is easy to verify that

kerdU1(x̄) = T lin(x̄).

Let u ∈ kerdU0.5(x̄) and let k ∈ β. To show kerdU0.5(x̄) ⊂ T lin
MPCC(x̄), it suffices to show

(∇Gk(x̄)Tu)(∇Hk(x̄)Tu) = 0. (5.3.4)

By Proposition 3.2.1 (i) again, there exist tν → 0+ and uν → u such that

Gk(x̄+ tνuν)Hk(x̄+ tνuν)

(tν)2
→ 0.

Since Gk and Hk are continuously differentiable, we have by Taylor expansion rule

Gk(x̄+ tνuν)Hk(x̄+ tνuν)

(tν)2
= (∇Gk(x̄)Tuν +

o(‖tνuν‖)
tν

)(∇Hk(x̄)Tuν +
o(‖tνuν‖)

tν
).

Thus, (5.3.4) holds. This completes the proof. 2

Theorem 5.3.1 Let U be given by (5.3.3). Then, U is an S-type penalty term at x̄,

and for any 0 ≤ p < 1, the following condition are equivalent:

(i) [kerdUp(x̄)]∗ = T lin(x̄)∗.

(ii) ∂̂Up(x̄) = T lin(x̄)∗.

(iii) Up is an S-type penalty term at x̄.

Moreover, U is an M-type penalty term at x̄, and Up with 0 ≤ p < 1 is an M-type

penalty term at x̄ if one of the following equivalent conditions is satisfied:

(i′) [kerdUp(x̄)]∗ = T lin
MPCC(x̄)∗.
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(ii′) pos(∂̂Up(x̄)) = T lin
MPCC(x̄)∗.

In particular, condition (ii′) can be refined as ∂̂Up(x̄) = T lin
MPCC(x̄)∗ when 0 ≤ p ≤ 0.5.

Proof. In view of Theorem 5.2.1, Remark 5.2.2, and Lemma 5.3.1, we can show the

results in a similar way as in the proof of Theorem 4.2.2. 2

In terms of the original data of (MPCC), we give sufficient conditions for Up to be

an S-type (M-type) penalty term at x̄.

Proposition 5.3.1 The following statements are true:

(a) If the functions gi, i ∈ I(x̄), hj, j ∈ J , Gk and Hk, k ∈ K are C1,1, then

kerdUp(x̄) = T lin(x̄) ∀p ∈ (0.5, 1],

which implies that Up with 0.5 < p ≤ 1 is an S-type penalty term at x̄.

(b) If the functions gi, i ∈ I(x̄), hj, j ∈ J , Gk and Hk, k ∈ K are twice continuously

differentiable, and the following conditions are satisfied:

(i) uT∇2gi(x̄)u ≤ 0 ∀i ∈ I(x̄), ∀u ∈ T lin
MPCC(x̄) ∩∇gi(x̄)⊥,

(ii) uT∇2hj(x̄)u = 0 ∀j ∈ J , ∀u ∈ T lin
MPCC(x̄),

(iii) uT∇2Gk(x̄)u = 0 ∀k ∈ α, ∀u ∈ T lin
MPCC(x̄),

(vi) uT∇2Hk(x̄)u = 0 ∀k ∈ γ, ∀u ∈ T lin
MPCC(x̄),

(v) uT∇2Gk(x̄)u ≥ 0 ∀k ∈ β, ∀u ∈ (T lin
MPCC(x̄) ∩∇Gk(x̄)⊥)\∇Hk(x̄)⊥,

(vi) uT∇2Hk(x̄)u ≥ 0 ∀k ∈ β, ∀u ∈ (T lin
MPCC(x̄) ∩∇Hk(x̄)⊥)\∇Gk(x̄)⊥,

(vii) uT∇2Gk(x̄)u ≥ 0 and uT∇2Hk(x̄)u ≥ 0 ∀k ∈ β,

∀u ∈ T lin
MPCC(x̄)

⋂
∇Gk(x̄)⊥ ∩∇Hk(x̄)⊥,

then

kerdU0.5(x̄) = T lin
MPCC(x̄),

which implies that Up with p = 0.5 is an M-type penalty term at x̄.
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Proof. Since U is defined in the same way as S in the sense that the complementarity

constraints Gk(x) ≥ 0, Hk(x) ≥ 0, and Gk(x)Hk(x) = 0 are treated as general inequality

and equality constraints, statement (a) follows immediately from Proposition 4.2.2 (i).

Now we show that statement (b) is true. In view of Lemma 5.3.1, it suffices to show

T lin
MPCC(x̄) ⊂ kerdU0.5(x̄).

To start with, it is easy to check that, for each 0 < p ≤ 1,

u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lim sup
t→0+

gi(x̄+ tu)

t1/p
≤ 0, i ∈ I(x̄),

lim
t→0+

hj(x̄+ tu)

t1/p
= 0, j ∈ J,

lim
t→0+

Gk(x̄+ tu)

t1/p
= 0, k ∈ α,

lim
t→0+

Hk(x̄+ tu)

t1/p
= 0, k ∈ γ,

lim inf
t→0+

Gk(x̄+ tu)

t1/p
≥ 0, k ∈ β,

lim inf
t→0+

Hk(x̄+ tu)

t1/p
≥ 0, k ∈ β,

lim
t→0+

Gk(x̄+ tu)Hk(x̄+ tu)

t1/p
= 0, k ∈ β.



⊂ kerdU0.5(x̄). (5.3.5)

Let ϕ, ψ : Rn → R be twice continuously differentiable functions. If ϕ(x) = 0 and

∇ϕ(x)Tu < 0, we have

ϕ(x+ tu)

t2
=
∇ϕ(x)Tu

t
+

1

2
uT∇2ϕ(x)u+

o(t2)

t2
→ −∞ as t→ 0 + . (5.3.6)

If ϕ(x) = 0 and ∇ϕ(x)Tu = 0, we have

ϕ(x+ tu)

t2
=

1

2
uT∇2ϕ(x)u+

o(t2)

t2
→ 1

2
uT∇2ϕ(x)u as t→ 0 + . (5.3.7)

If ϕ(x) = ψ(x) = 0 and ∇ϕ(x)Tu = 0, we have

ϕ(x+ tu)ψ(x+ tu)

t2
= (

1

2
uT∇2ϕ(x)u+

o(t2)

t2
)ψ(x+ tu)→ 0 as t→ 0 + . (5.3.8)

In view of the limits in (5.3.6), (5.3.7) and (5.3.8), we can easily show that the set

T lin
MPCC(x̄) is a subset of the left-hand said of (5.3.5) with p = 0.5. This completes the

proof. 2

Recall that in defining Hp, we use the function

V (x) := S(x) +
∑
k∈K

|φmin(Gk(x), Hk(x))| ∀x ∈ Rn. (5.3.9)

where φmin(a, b) = min{a, b} and S is given by (4.1.2).
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Lemma 5.3.2 kerdV (x̄) = T lin
MPCC(x̄).

Proof. Let u ∈ kerdV (x̄). By Proposition 3.2.1 (i), there exist tν → 0+ and uν → u

such that
max{gi(x̄+ tνuν), 0}

tν
→ 0 ∀i ∈ I(x̄), (5.3.10)

hj(x̄+ tνuν)

tν
→ 0 ∀j ∈ J, (5.3.11)

Gk(x̄+ tνuν)

tν
→ 0 ∀k ∈ α, (5.3.12)

Hk(x̄+ tνuν)

tν
→ 0 ∀k ∈ γ, (5.3.13)

and
min{Gk(x̄+ tνuν), Hk(x̄+ tνuν)}

tν
→ 0 ∀k ∈ β. (5.3.14)

By applying the Taylor expansion rule to (5.3.10), (5.3.11), (5.3.12), (5.3.13) and

(5.3.14) and noticing that min{∇Gk(x̄)Tu,∇Hk(x̄)Tu} = 0 if and only if

∇Gk(x̄)Tu ≥ 0,∇Hk(x̄)Tu ≥ 0, (Gk(x̄)Tu)(Hk(x̄)Tu) = 0,

we can easily get kerdV (x̄) ⊂ T lin
MPCC(x̄). Let tν → 0+ and let uν ≡ u with u ∈

T lin
MPCC(x̄). By applying again the Taylor expansion rule, we get (5.3.10), (5.3.11),

(5.3.12), (5.3.13) and (5.3.14). This implies that T lin
MPCC(x̄) ⊂ kerdV (x̄). This completes

the proof. 2

Theorem 5.3.2 Let V be given by (5.3.9). Then V is an M-type penalty term at x̄,

and V p with 0 ≤ p < 1 is an M-type penalty term at x̄ if one of the following equivalent

conditions is satisfied:

(i) [kerdV p(x̄)]∗ = T lin
MPCC(x̄)∗.

(ii) ∂̂V p(x̄) = T lin
MPCC(x̄)∗.

Proof. In view of Theorem 5.2.1, Remark 5.2.2, and Lemma 5.3.2, we can show the

results in a similar way as in the proof of Theorem 4.2.2. 2

In terms of the original data of (MPCC), we give sufficient conditions for V p to be

of M-type at x̄.
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Proposition 5.3.2 The following statements are true:

(a) If the functions gi, i ∈ I(x̄), hj, j ∈ J , Gk and Hk, k ∈ K are C1,1, then

kerdV p(x̄) = T lin
MPCC(x̄) ∀p ∈ (0.5, 1],

which implies that V p with 0.5 < p ≤ 1 is an M-type penalty term at x̄.

(b) If the functions gi, i ∈ I(x̄), hj, j ∈ J , Gk and Hk, k ∈ K are twice continuously

differentiable, and conditions (i) − (iv) in Proposition 5.3.1 and the following

conditions are satisfied:

(v′) uT∇2Gk(x̄)u = 0 ∀k ∈ β, ∀u ∈ (T lin
MPCC(x̄) ∩∇Gk(x̄)⊥)\∇Hk(x̄)⊥,

(vi′) uT∇2Hk(x̄)u = 0 ∀k ∈ β, ∀u ∈ (T lin
MPCC(x̄) ∩∇Hk(x̄)⊥)\∇Gk(x̄)⊥,

(vii′) φmin(uT∇2Gk(x̄)u, uT∇2Hk(x̄)u) = 0 ∀u ∈ T lin
MPCC(x̄)∩∇Gk(x̄)⊥∩∇Hk(x̄)⊥,

∀k ∈ β,

then

kerdV 0.5(x̄) = T lin
MPCC(x̄),

which implies that V 0.5 is an M-type penalty term at x̄.

Proof. To start with, it is easy to check that for every 0 < p ≤ 1,
u ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

lim sup
t→0+

gi(x̄+ tu)

t1/p
≤ 0, i ∈ I(x̄)

lim
t→0+

hj(x̄+ tu)

t1/p
= 0, j ∈ J

lim
t→0+

Gk(x̄+ tu)

t1/p
= 0, k ∈ α

lim
t→0+

Hk(x̄+ tu)

t1/p
= 0, k ∈ γ

lim
t→0+

min{Gk(x̄+ tu), Hk(x̄+ tu)}
t1/p

= 0, k ∈ β


⊂ kerdV p(x̄).

(5.3.15)

First we show that statement (a) is true. Let 0.5 < p ≤ 1 and let k ∈ β. In view

of Proposition 3.2.1 (iii) and Lemma 5.3.2, it suffices to show T lin
MPCC(x̄) ⊂ kerdV p(x̄).

This can be done by showing that T lin
MPCC(x̄) is a subset of the left-hand said of (5.3.15).

Let u ∈ T lin
MPCC(x̄). Then min{∇Gk(x̄)Tu,∇Hk(x̄)Tu} = 0. Following the proof of

Proposition 4.2.2 (i), it now remains to show

lim
t→0+

min{Gk(x̄+ tu), Hk(x̄+ tu)}
t1/p

= 0. (5.3.16)
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By a generalized Taylor expansion rule, see [38], we have

min{Gk(x̄+ tu), Hk(x̄+ tu)}
t

1
p

≤ t2−
1
p min

{
∇Gk(x̄)Tu

t
+

1

2
Goo
k (x̄+ tθu;u),

∇Hk(x̄)Tu

t
+

1

2
Hoo
k (x̄+ tωu;u)

}
,

(5.3.17)

where 0 < θ < 1 and 0 < ω < 1. Note that the functions x → Goo
k (x;u) and x →

Hoo
k (x;u) are upper semicontinuous with Goo

k (x;u) and Hoo
k (x;u) being finite when Gk

and Hk are C1,1. The min term on the right hand side of (5.3.17) must be finite for

sufficiently small t > 0. Since t2−
1
p → 0 as t → 0+, it then follows from (5.3.17) that

(5.3.16) holds.

Now we show that statement (b) is true. As in (a), it suffices to show that T lin
MPCC(x̄)

is a subset of the left-hand said of (5.3.15) with p = 0.5. To that end, we need not

only limits in (5.3.6), (5.3.7) and (5.3.8), but some more limits on twice continuously

differentiable functions ϕ : Rn → R and ψ : Rn → R. If ϕ(x) = ψ(x) = 0, ∇ϕ(x)Tu = 0

and ∇ψ(x)Tu > 0, we have

min{ϕ(x+ tu), ψ(x+ tu)}
t2

= min{1

2
uT∇2ϕ(x)u+

o(t2)

t2
,
∇ψ(x)Tu

t
+

1

2
uT∇2ψ(x)u+

o(t2)

t2
}

→ 1
2
uT∇2ϕ(x)u as t→ 0 + .

(5.3.18)

If ϕ(x) = ψ(x) = 0 and ∇ϕ(x)Tu = ∇ψ(x)Tu = 0, we have

min{ϕ(x+ tu), ψ(x+ tu)}
t2

= min{1

2
uT∇2ϕ(x)u+

o(t2)

t2
,
1

2
uT∇2ψ(x)u+

o(t2)

t2
}

→ min{1

2
uT∇2ϕ(x)u,

1

2
uT∇2ψ(x)u} as t→ 0 + .

(5.3.19)

In view of (5.3.15) with p = 0.5, and the limits in (5.3.6), (5.3.7), (5.3.8), (5.3.18),

(5.3.19), we can easily show that the set T lin
MPCC(x̄) is a subset of the left-hand said of

(5.3.15) with p = 0.5. This completes the proof. 2

The following lemma and proposition are helpful for establishing some relationships

between exactness of Gp and Hp, and between kerdUp(x̄) and kerdV p(x̄).
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Lemma 5.3.3 Let a, b ∈ R, σ1 ≥ max{a+1, b+1, 2−a, 2−b} and σ2 ≥ max{
√
|a|,
√
|b|, 1}.

Then,

(−a)+ + (−b)+ + |ab|
σ1

≤ |min{a, b}| ≤ σ2

√
(−a)+ + (−b)+ + |ab|. (5.3.20)

Proof. Noting that a and b are symmetrical, we only need to consider three cases: (i)

0 ≤ b ≤ a, (ii) b < 0 < a, (iii) b ≤ a ≤ 0. For case (i), we have

(−a)+ + (−b)+ + |ab| = ab ≤ (a+ 1)b ≤ σ1b = σ1|min{a, b}|,

and

|min{a, b}| = b =
√
b2 ≤

√
ab ≤ σ2

√
(−a)+ + (−b)+ + |ab|.

For case (ii), we have

(−a)+ + (−b)+ + |ab| = −b(a+ 1) = (a+ 1)|min{a, b}| ≤ σ1|min{a, b}|,

and

|min{a, b}| = −b ≤ −b
√
a+ 1 =

√
−b
√
−b(a+ 1) ≤ σ2

√
(−a)+ + (−b)+ + |ab|.

For case (iii), we have

(−a)+ + (−b)+ + |ab| = −a− b+ ab ≤ −2b+ ab = (2− a)|min{a, b}| ≤ σ1|min{a, b}|,

and

|min{a, b}| = −b ≤ −b
√
−a+ 1 ≤

√
−b
√
−a− b+ ab ≤ σ2

√
(−a)+ + (−b)+ + |ab|.

This completes the proof. 2

Proposition 5.3.3 Let δ > 0 and let y ∈ Rn. Then, there exist θ > 0 and η > 0 such

that
1

θ
U(x) ≤ V (x) ≤ η

√
U(x) ∀x ∈ Bδ(y), (5.3.21)

which implies that for any 0 ≤ p ≤ 1,

kerdU
p
2 (x̄) ⊂ kerdV p(x̄) ⊂ kerdUp(x̄). (5.3.22)
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Proof. We only need to show (5.3.21) since (5.3.22) follows from (5.3.21) readily. Let

θ = max
k∈K

θk where

θk = max
x∈Bδ(y)

max {Gk(x) + 1, Hk(x) + 1, 2−Gk(x), 2−Hk(x)} .

Clearly, θ ≥ 3

2
. By Lemma 5.3.3 and the definitions of U and V , we have

U(x) ≤ θV (x), ∀x ∈ Bδ(y),

which gives the first inequality in (5.3.21). Now, let η = (|K| + 1)η̃ where η̃ =

max{max
k∈K

ηk, Smax}, ηk = max
x∈Bδ(y)

max{
√
|Gk(x)|,

√
|Hk(x)|, 1}, and Smax = max

x∈Bδ(y)

√
S(x).

By Lemma 5.3.3 and the definition of ηk, we have, for each x ∈ Bδ(y) and each k ∈ K,

|min{Gk(x), Hk(x)}| ≤ ηk
√

(−Gk(x))+ + (−Hk(x))+ + |Gk(x)Hk(x)|. (5.3.23)

By the definition of Smax, we have, for each x ∈ Bδ(y)

S(x) ≤ Smax

√
S(x). (5.3.24)

Then, it follows from (5.3.23), (5.3.24) and the definitions of U and V that, for each

x ∈ Bδ(y),

V (x) ≤ η̃

{√
S(x) +

∑
k∈K

√
(−Gk(x))+ + (−Hk(x))+ + |Gk(x)Hk(x)|

}
≤ (|K|+ 1)η̃

√
S(x) +

∑
k∈K

[(−Gk(x))+ + (−Hk(x))+ + |Gk(x)Hk(x)|]

= η
√
U(x),

where the second inequality follows from Lemma 4.1 in [80]. Therefore, we have shown

that (5.3.21) holds. This completes the proof. 2

Remark 5.3.1 Let 0 ≤ p ≤ 1. It follows from (5.3.21) that, Hp is exact at x̄ if Gp is

exact at x̄, and G p
2

is exact at x̄ if Hp is exact at x̄.
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Chapter 6

Conclusion and Future Work

In this thesis, by means of modern variational analysis, we developed a unified frame-

work and provided a detailed exposition of optimality conditions from the viewpoint of

exact penalty functions. We studied sufficient conditions for penalty terms to possess

local error bounds which guarantee exactness of penalty functions. By using subderiva-

tives, second-order subderivatives, and parabolic subderivatives, we also studied first-

and second-order necessary and sufficient conditions for penalty functions to be exact.

The kernels of these derivatives, representing directions at which derivatives vanish,

played an key role in our investigation. In particular, we showed an interesting auxil-

iary result which asserts that, the polar cone of the subderivative kernel of an extended

real-valued function at a local minimum is the same as the positive hull of its regular

subgradients at the same point. We showed how KKT conditions and second-order

necessary conditions in nonlinear programming, and strong and Mordukhovich station-

arities in mathematical programs with complementarity constraints, can be derived

from exactness of penalty functions under some additional conditions on constraint

functions. In presenting these additional conditions, it turned out that the kernels of

(parabolic) subderivatives of penalty terms are very crucial. By virtue of these kernels

and a variational description of regular subgradients, we showed necessity and suffi-

ciency of these additional conditions. We also presented conditions in terms of the

original data by applying (generalized) Taylor expansions to calculate these kernels.

Beyond these positive results and contributions, there are many other issues that

are needed to deal with in the future work. We summarize three directions for future
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work as follows. (i) Avakov et al. [9] obtained new first-order necessary conditions

(unlike KKT conditions) for (NLP) by introducing a generalized Lagrangian function

and using the theory of 2-Regularity. It is still unknown at the current stage whether

these new first-order necessary conditions can be derived from the viewpoint of the l 1
2

exact penalty function. (ii) It is an open question as to whether our results are able to

find applications in the design of numerical methods, and this is definitely a challenging

research topic in the future. (iii) Most of our results do not rely on smooth data, but

some do. For those results that do depend on smooth data, is it possible to relax the

differentiability assumptions? This could be an interesting research topic in the future.
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[11] D. Azé and J.-N. Corvellec. Characterizations of error bounds for lower semicon-

tinuous functions on metric spaces. ESAIM: Control, Optimisation and Calculus

of Variations, 10:409–425, 2004.

[12] A. Baccari. On the classical necessary second-order optimality conditions. Journal

of Optimization Theory and Applications, 123:213–221, 2004.

[13] A. Baccari and A. Trad. On the classical necessary second-order optimality con-

ditions in the presence of equality and inequality constraints. SIAM Journal on

Optimization, 15:394–408, 2005.

[14] M. S. Bazaraa and J. J. Goode. Sufficient conditions for a globally exact penalty

function without convexity. In Optimality and Stability in Mathematical Pro-

gramming, volume 19 of Mathematical Programming Studies, pages 1–15. Springer

Berlin Heidelberg, 1982.

[15] M. S. Bazaraa, J. J. Goode, and C. M. Shetty. Constraint qualifications revisited.

Management Science, 18(9):567–573, 1972.

[16] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming. Wiley,

New York, 1993.

[17] M. S. Bazaraa and C.M. Shetty. Foundations of Optimization. Springer-Verlag,

Berlin, Heidelberg, New York, 1976.

[18] A. Ben-Israel, A. Ben-Tal, and S. Zlobec. Optimality in Nonlinear Programming

: A Feasible Directions Approach. Wiley, New York, 1981.

[19] A. Ben-Tal. Second-order and related extremality conditions in nonlinear pro-

gramming. Journal of Optimization Theory and Applications, 31(2):143–165,

1980.

[20] A. Ben-Tal and J. Zowe. A unified theory of first and second order conditions

for extremum problems in topological vector spaces. Mathematical Programming

Study, 19:39–76, 1982.

121



[21] D.P. Bertsekas. Constrained Optimization and Lagrangian Multiplier Methods.

Academic Press, New York, 1982.

[22] D.P. Bertsekas and A.E. Ozdaglar. Pseudonormality and a Lagrange multiplier

theory for constrained optimization. Journal of Optimization Theory and Appli-

cations, 114:287–343(57), 2002.

[23] J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization Problems.

Springer-Verlag, New York, 2000.

[24] J. Burke. Second order necessary and sufficient conditions for convex composite

NDO. Mathematical Programming, 38:287–302, 1987.

[25] J. V. Burke. Calmness and exact penalization. SIAM Journal on Control and

Optimization, 29(2):493–497, 1991.

[26] J. V. Burke. An exact penalization viewpoint of constrained optimization. SIAM

Journal on Control and Optimization, 29(4):968–998, 1991.

[27] J. V. Burke and S. Deng. Weak sharp minima revisited Part I: basic theory.

Control and Cybernetics, 31(3):439–469, 2002.

[28] J. V. Burke and S. Deng. Weak sharp minima revisited, Part II: application to

linear regularity and error bounds. Mathematical Programming, 104(2-3):235–261,

2005.

[29] J. V. Burke and S. Deng. Weak sharp minima revisited, Part III: error bounds

for differentiable convex inclusions. Mathematical Programming, 116(1-2):37–56,

2009.

[30] J. V. Burke and M. C. Ferris. Weak sharp minima in mathematical programming.

SIAM Journal on Control and Optimization, 31(5):1340–1359, 1993.

[31] J. V. Burke and R. A. Poliquin. Optimality conditions for non-finite valued convex

composite functions. Mathematical Programming, 57:103–120, 1992.

[32] C. W. Carroll. The created response surface technique for optimizing nonlinear,

restrained systems. Operations Research, 9(2):169–184, 1961.

122



[33] C. Charalambous. A lower bound for the controlling parameters of the exact

penalty functions. Mathematical Programming, 15:278–290, 1978.

[34] Y. Chen and M. Florian. The nonlinear bilevel programming problem: Formula-

tions, regularity and optimality conditions. Optimization, 32:193–209, 1995.

[35] F. H. Clarke. A new approach to Lagrange multipliers. Mathematics of Operations

Research, 1(2):165–174, 1976.

[36] F. H. Clarke. Optimzation and Nonsmooth Analysis. John Wieley, New York,

1983.

[37] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth Analysis

and Control Theory. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1998.

[38] R. Cominetti and R. Correa. A generalized second-order derivative in nonsmooth

optimization. SIAM Journal on Control and Optimization, 28(4):789–809, 1990.

[39] G. Contaldi, G. Di Pillo, and S. Lucidi. A continuously differentiable exact penalty

function for nonlinear programming problems with unbounded feasible set. Op-

erations Research Letters, 14(3):153 – 161, 1993.

[40] R. Courant. Variational methods for the solution of problems of equilibrium and

vibrations. Bulletin of the American Mathematical Society, 49, 1943.

[41] S. Deng. Computable error bounds for convex inequality systems in reflexive

Banach spaces. SIAM Journal on Optimization, 7(1):274–279, 1997.

[42] S. Deng. Global error bounds for convex inequality systems in Banach spaces.

SIAM Journal on Control and Optimization, 36(4):1240–1249, 1998.

[43] S. Deng. Perturbation analysis of a condition number for convex inequality sys-

tems and global error bounds for analytic systems. Mathematical Programming,

83(2):263–276, 1998.

[44] S. Deng and X. Q. Yang. Weak sharp minima in multicriteria linear programming.

SIAM Journal on Optimization, 15(2):456–460, 2004.

[45] S. Di and R. Poliquin. Calmness in optimization problems with equality con-

straints. Journal of Mathematical Analysis and Applications, 189(2):502 – 513,

1995.

123



[46] G. Di Pillo and L. Grippo. Exact penalty functions in constrained optimization.

SIAM Journal on Control and Optimization, 27:1333–1360, 1989.

[47] A. L. Dontchev and R. T. Rockafellar. Regularity and conditioning of solution

mappings in variational analysis. Set-Valued Analysis, 12(1):79–109, 2004.

[48] I. I. Eremin. The penalty method in convex programming. Cybernetics and

Systems Analysis, 3(4):53–56, 1967.

[49] M. C. Ferris. Weak Sharp Minima and Penalty Functions in Mathematical Pro-

gramming. PhD thesis, University of Cambridge, Cambridge, 1988.

[50] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. Wiley, New York., 1968.

[51] A. Fischer and H. Y. Jiang. Merit functions for complementarity and related

problems: A survey. Computational Optimization and Applications, 17(2):159–

182, 2000.

[52] M. L. Flegel. Constraint Qualifications and Stationarity Concepts for Mathemat-

ical Programs with Equilibrium Constraints. PhD thesis, University of Würzburg,

2005.

[53] M. L. Flegel and C. Kanzow. A Fritz John approach to first order optimality

conditions for mathematical programs with equilibrium constraints. Optimization,

52(3):277–286, 2003.

[54] M. L. Flegel and C. Kanzow. Abadie-type constraint qualification for mathemat-

ical programs with equilibrium constraints. Journal of Optimization Theory and

Applications, 124(3):595–614, 2005.

[55] M. L. Flegel and C. Kanzow. On M-stationary points for mathematical programs

with equilibrium constraints. Journal of Mathematical Analysis and Applications,

310(1):286–302, 2005.

[56] M. L. Flegel and C. Kanzow. On the Guignard constraint qualification for math-

ematical programs with equilibrium constraints. Optimization, 54(6):517–534,

2005.

124



[57] M. L. Flegel and C. Kanzow. A direct proof for M-stationarity under

MPEC-GCQ for mathematical programs with equilibrium constraints. Opti-

mization with Multivalued Mappings, pages 111–122, 2006.

[58] M. L. Flegel, C. Kanzow, and J. V. Outrata. Optimality conditions for dis-

junctive programs with application to mathematical programs with equilibrium

constraints. Set-Valued Analysis, 15(2):139–162, 2007.

[59] R. Fletcher. An exact penalty function for nonlinear programming with inequal-

ities. Mathematical Programming, 5:129–150, 1973.

[60] R. Fletcher. Practical Methods of Optimization. Wiley-Interscience, New York,

NY, USA, 1987.

[61] R. Fletcher and S. Leyffer. Solving mathematical programs with complementarity

constraints as nonlinear programs. Optimization Methods and Software, 19(1):15

– 40, 2004.

[62] J. Gauvin. A necessary and sufficient regularity condition to have bounded multi-

pliers in nonconvex programming. Mathematical Programming, 12:136–138, 1977.

[63] E. De Giorgi, A. Marino, and M. Tosques. Problemi di evoluzione in spazi metrici

e curve di massima pendenza (evolution problems in metric spaces and curves of

maximal slope). Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68:180–

187, 1980.

[64] F. J. Gould and Jon W. Tolle. A necessary and sufficient qualification for con-

strained optimization. SIAM Journal on Applied Mathematics, 20(2):164–172,

1971.

[65] M. Guignard. Generalized Kuhn-Tucker conditions for mathematical program-

ming problems in a Banach space. SIAM Journal on Control, 7(2):232–241, 1969.

[66] S.-P. Han and O. L. Mangasarian. Exact penalty functions in nonlinear program-

ming. Mathematical Programming, 17(1):251–269, 1979.

[67] S.-P. Han and O. L. Mangasarian. A dual differentiable exact penalty function.

Mathematical Programming, 25:293–306, 1983.

125



[68] Y. R. He and J. Sun. A new constraint qualification and a second-order necessary

optimality condition for mathematical programming problems. Pacific Journal

of Optimization, 7(1):9–28, 2011.

[69] R. Henrion and A. Jourani. Subdifferential conditions for calmness of convex con-

straints. SIAM Journal on Optimization on Optimization, 13(2):520–534, 2002.

[70] R. Henrion, A. Jourani, and J. Outrata. On the calmness of a class of multifunc-

tions. SIAM Journal on Optimization, 13(2):603–618, 2002.

[71] R. Henrion and J. Outrata. A subdifferential condition for calmness of multi-

functions. Journal of Mathematical Analysis and Applications , 258(1):110–130,

2001.

[72] R. Henrion and J. Outrata. A subdifferential condition for calmness of multi-

functions. Journal of Mathematical Analysis and Applications , 258(1):110–130,

2001.

[73] R. Henrion and J. Outrata. Calmness of constraint systems with applications.

Mathematical Programming, 104(2):437–464, 2005.

[74] M. R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory

and Applications, 4:303–320, 1969.

[75] M. R. Hestenes. Optimization Theory: The Finite-Dimensional Case. John Wiley

and Sons, New York, NY, 1975.

[76] S. Howe. New conditions for exactness of a simple penalty function. SIAM Journal

on Control, 11(2):378–381, 1973.

[77] X. M. Hu and D. Ralph. A note on sensitivity of value functions of mathemat-

ical programs with complementarity constraints. Mathematical Programming,

93(2):265–279, 2002.

[78] X. M. Hu and D. Ralph. Convergence of a penalty method for mathematical

programming with complementarity constraints. Journal of Optimization Theory

and Applications, 123(2):365–390, 2004.

[79] L. R. Huang and K. F. Ng. On first- and second-order conditions for error bounds.

SIAM Journal on Optimization, 14(4):1057–1073, 2004.

126



[80] X. X. Huang and X. Q. Yang. A unified augmented Lagrangian approach to

duality and exact penalization. Mathmatics of Operations Research, 28(3):533–

552, 2003.

[81] X. X. Huang, X. Q. Yang, and D. L. Zhu. A sequential smooth penalization

approach to mathematical programs with complementarity constraints. Numerical

Functional Analysis and Optimization, 27(1):71–98, 2006.

[82] A. D. Ioffe. Necessary and sufficient conditions for a local minimum. 1: A reduc-

tion theorem and first order conditions. SIAM Journal on Control and Optimiza-

tion, 17(2):245–250, 1979.

[83] A. D. Ioffe. Necessary and sufficient conditions for a local minimum. 3: Second

order conditions and augmented duality. SIAM Journal on Control and Opti-

mization, 17(2):266–288, 1979.

[84] A. D. Ioffe. Regular points of Lipschitz functions. Transactions of the American

Mathematical Society, 251:61–69, 1979.

[85] A. D. Ioffe. Metric regularity and subdifferential calculus. Russian Mathematical

Surveys, 55(3):501–558, 2000.

[86] A. D. Ioffe and J. V. Outrata. On metric and calmness qualification conditions

in subdifferential calculus. Set-Valued Analysis, 16(2):199–227, 2008.

[87] R. Janin. Directional derivative of the marginal function in nonlinear program-

ming. In Sensitivity, Stability and Parametric Analysis, volume 21 of Mathemat-

ical Programming Studies, pages 110–126. Springer Berlin Heidelberg, 1984.

[88] V. Jeyakumar and X. Q. Yang. Convex composite minimization with C1,1 func-

tions. Journal of Optimization Theory and Applications, 86:631–648, 1995.

[89] H. Y. Jiang and D. Ralph. Smooth SQP methods for mathematical programs

with nonlinear complementarity constraints. SIAM Journal on Optimization,

10(3):779–808, 1999.

[90] F. John. Extremum Problems with Inequalities as Subsidiary Conditions. In

K. O. Friedrichs, O. E. Neugebauer, and J. J. Stoker, editors, Studies and

127



Essays: Courant Anniversary Volume, pages 187–204. Wiley-Interscience, New

York, 1948.

[91] A. Jourani. Hoffman’s error bound, local controllability, and sensitivity analysis.

SIAM Journal on Control and Optimization, 38(3):947–970, 2000.

[92] C. Kanzow and A. Schwartz. Mathematical programs with equilibrium con-

straints: Enhanced Fritz John-conditions, new constraint qualifications, and im-

proved exact penalty results. SIAM Journal on Optimization, 20(5):2730–2753,

2010.

[93] W. Karush. Minima of functions of several variables with inequalities as side

constraints. Master’s thesis, Dept. of Mathematics, Univ. of Chicago, Chicago,

Illinois, 1939.

[94] H. Kawasaki. Second-order necessary conditions of the Kuhn-Tucker type under

new constraint qualifications. Journal of Optimization Theory and Applications,

57(2):253–264, 1988.

[95] D. Klatte and B. Kummer. Constrained minima and Lipschitzian penalties in

metric spaces. SIAM Journal on Optimization, 13(2):619–633, 2002.

[96] H. W. Kuhn and A. W. Tucker. Nonlinear programming. Proceedings of 2nd

Berkeley Symposium. Berkeley: University of California Press, pages 481–492,

1951.

[97] J.B. Lasserre. Exact penalty functions and Lagrange multipliers. RAIRO Au-

tomat./Systems Anal. Control, 14, 1980.

[98] A. S. Lewis and J. S. Pang. Error bounds for convex inequality systems. In

Crouzeix, J. P. and MartinezLegaz, J. E. and Volle, M., editor, Generalized Con-

vexity, Generalized Monotonicity: Recent Results, volume 27 of Nonconvex Opti-

mization and Its Applications, pages 75–110, 1998.

[99] S. J. Li, K. W. Meng, and J.-P. Penot. Calculus rules for derivatives of multimaps.

Set-Valued and Variational Analysis, 17(1):21–39, 2009.

[100] W. Li. Abadie’s constraint qualification, metric regularity, and error bounds for

differentiable convex inequalities. SIAM Journal on Optimization, 7(4):966–978,

1997.

128



[101] W. Li and I. Singer. Global error bounds for convex multifunctions and applica-

tions. Mathmatics of Operations Research, 23(2):443–462, 1998.

[102] G. S. Liu, J. J. Ye, and J. P. Zhu. Partial exact penalty for mathematical programs

with equilibrium constraints. Set-Valued Analysis, 16(5):785–804, 2008.

[103] S. Lu. Implications of the constant rank constraint qualification. Mathematical

Programming, 126:365–392, 2011.

[104] Z. Q. Luo and J. S. Pang. Error bounds for analytic systems and their applications.

Mathematical Programming, 67:1–28, 1994.

[105] Z. Q. Luo, J. S. Pang, and D. Ralph. Mathematical Pprograms with Equilibrium

Constraints. Cambridge University Press, Cambridge, 1996.

[106] Z. Q. Luo, J. S. Pang, D. Ralph, and S. Q. Wu. Exact penalization and stationarity

conditions of mathematical programs with equilibrium constraints. Mathematical

Programming, 75(1):19–76, 1996.

[107] O. L. Mangasarian. Nonlinear Programming. Mc Graw-Hill, New York, 1969.

[108] O. L. Mangasarian and S. Fromovitz. The Fritz John necessary optimality con-

ditions in the presence of equality and inequality constraints. Journal of Mathe-

matical Analysis and Applications, 17(1):37–47, 1967.

[109] G. P. McCormick. Second order conditions for constrained minima. SIAM Journal

on Applied Mathematics, 15(3):641–652, 1967.

[110] K. W. Meng and X. Q. Yang. Optimality conditions via penalty function. SIAM

Journal on Optimization, 20(6):3208–3231, 2010.

[111] L. Minchenko and S. Stakhovski. On relaxed constant rank regularity condition

in mathematical programming. Optimization, 2011(iFirst).

[112] L. Minchenko and A. Tarakanov. On error bounds for quasinormal programs.

Journal of Optimization Theory and Applications, 148:571–579, 2011.

[113] B. S. Mordukhovich. Generalized differential calculus for nonsmooth and set-

valued mappings. Journal of Mathematical Analysis and Applications, 183(1):250–

288, 1994.

129



[114] K. F. Ng and W. H. Yang. Error bounds for some convex functions and distance

composite functions. SIAM Journal on Optimization, 15(4):1042–1056, 2005.

[115] K. F. Ng and X. Y. Zheng. Global error bounds with fractional exponents. Math-

ematical Programming, 88(2):357–370, 2000.

[116] K. F. Ng and X. Y. Zheng. Error bounds for lower semicontinuous functions in

normed spaces. SIAM Journal on Optimization, 12(1):1–17, 2001.

[117] K. F. Ng and X. Y. Zheng. Global weak sharp minima on Banach spaces. SIAM

Journal on Control and Optimization, 41(6):1868–1885, 2003.
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