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Abstract

In the study of survival data, one of the important problems is about competing risks

combined with the possible existence of long-term survivors (subjects that will never

experience the events under consideration, also referred to as “cured” or “immunes”).

Under this scenario, it is important to know the failure rates with respect to different

risks and the cured proportion. It is also useful to make inferences on the regression co-

efficients of the covariates that influence the failure. Further analysis of the significance

levels of the parameters plays an important role in the study. In particular, a major

attention is paid to the significance level of the cured rate which implies the existence

of immunes.

In this dissertation, three models are investigated for survival data with competing

risks, covariates and immunes: general mixture model, piecewise exponential mixture

model and proportional cause-specific hazards model.

In the general mixture setting, full maximum likelihood methods are employed to

draw statistical inferences on the model attributes and the asymptotic properties of

the estimators. Likelihood ratio tests are developed to test the significance levels of
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the parameters and the relationships among them. Under some regularity conditions

and mild assumptions, the estimators are proved to be consistent and asymptotically

normally distributed, and the tests are also consistent and follow different distributions

according to the underlying hypotheses. The performances of the estimators and tests

are assessed by a simulation study. It shows that the approach given in this part

provides a satisfactory way to investigate many practical problems.

The second part of the dissertation is the piecewise exponential mixture model for

competing risks data. The existence, consistency and asymptotic normality of the

estimators are rigorously derived under general sufficient conditions. Likelihood ratio

tests are investigated for various hypotheses of practical interest. A study of real life

data is conducted to illustrate the approach.

In addition, a semi-parametric approach is proposed to investigate the competing

risks data under the assumptions of independent censoring and proportional cause-

specific hazard functions among different risks and covariates. Partial likelihood meth-

ods are used to make inferences on the levels of the risks.
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Chapter 1

Introduction

The focus of survival analysis is the study of the time duration until the occurrence of

a certain event of interest, such as death of a patient or a life insurance policyholder,

recurrence or relapse of a disease, lodgment of an insurance claim, a natural disaster,

settlement of a liability law suit, malfunction of a consumer product, a failure of a

company, rearrest of a former prisoner, marriage breakdown, and so on.

The occurrence of the event of interest is often referred to as a failure (although it

may actually represent a positive outcome in some applications), and the time duration

until it occurs is called the failure time. Failure time, however, is not the only thing

of concern. Also of great interest in survival analysis are failure causes, referred to

as competing risks for there are often different types of risks that are “competing” to

cause the failure. Take an employee benefit plan for example, the present value of

the benefits to be paid depends on both the time and the cause of the termination of

employment (retirement, resignation, death, disability, etc.). Other examples include
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different causes of death, different types of losses under insurance coverage, and so on.

Another important issue in survival analysis is the possible presence of long-term

survivors (also known as immunes or cured individuals) in the sense that they are not

subject to the event of interest. This is natural in many real life situations, such as

patients cured of a life-threatening disease, or insured employees who never experience

disability. In such situations, not only the failure mechanism with respect to the risks

but also the proportion of long-term survivors (such as the cured rate of the patients

under a certain treatment) is of interest.

Furthermore, the failure time and failure cause of an individual are often influenced

by certain particular features associated with the individual, which are referred to as

covariates. In medical study, for example, covariate factors are often comprised of age,

gender, health condition, treatment method, etc. for a patient under observation. In

motor vehicle insurance, age and postal code are often taken as major indicators in

assessing the risk level of a driver. For the application of the models in real life, it

is important to consider covariate information as it usually exists and influences the

outcome of analysis.

Owing to the wide application of survival analysis, there have been many investi-

gations of survival data with competing risks or immunes in the presence of covariates.

However, the large sample analysis of survival data, which incorporate competing risks,

covariates and possible presence of immunes, has been limited to parametric models.

In addition, the cases where the “true” value of parameters may be on the boundary of

the parameter space, (e.g. the cured rate is not significant) have not been studied to-
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gether with covariates. In this study, we will attempt to narrow this gap with extensive

and thorough investigations to general mixture model and proportional cause-specific

hazards model for life time data mentioned above. Questions of interest are:

1. What is the probability of a subject to fail from a certain risk?

2. What is the cumulative distribution function of an individual conditional on a

given risk?

3. Is there any insignificant covariate factor that can be dropped from the analysis?

4. Are the baseline cause-specific hazard rates proportional to each other so that a

proportional hazards model is suitable?

5. Do immunes exist? If yes, what is their proportion in the population?

The remainder of this thesis is devoted to answer these five questions. In Chapter

2, the previous work of competing risks and immunes is reviewed and the differences

between our work and previous work are discussed. In Chapter 3, a series of general

mixture models are reported with answers developed for these five questions. It is

proved that the mixture model setting produces consistent and asymptotically normally

distributed estimators under some mild sufficient conditions when the true values of the

parameters lie on the parameter space (interior or boundary) and questions 1 and 2 are

answered consequently. For questions 3-4, the large sample properties of the likelihood

ratio statistics are investigated to test the significance levels of the parameters and

the relationships among them. The consistency of the tests are proved and their large

sample distributions are provided. In particular, the asymptotic distribution of the
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likelihood ratio statistic for the boundary hypothesis of the exhaustiveness of failure

causes (no cured individuals or immunes) is investigated. Question 5 is answered by

the result of the test.

An application of the general results on real life data is demonstrated in Chapter 4. A

piecewise exponential mixture model for competing risks data is proposed, which allows

censoring, covariates and immunes. The maximum likelihood estimators are shown to

be unique local to the true values of the parameters with probability approaching 1,

consistent and asymptotically normal. To assess the performances of our models, a set

of Bone Marrow Transplant Data is fitted by the proposed model.

In Chapter 5, we propose a semi-parametric approach to draw statistical inferences,

under the assumption that the cause-specific failure rates are proportional to each other.

The estimators are proved to be consistent, and the estimated coefficients of covariates

have asymptotic normal distributions whereas the estimated coefficients of risks have

asymptotic log-normal distributions in the interior of the parameter space. A simulation

is conducted to examine the proposed methods.

The main contributions of the thesis are summarized as follows:

(i) A general class of mixture models are developed, which account for competing

risks, possible presence of long-term survivors and covariates.

(ii) Maximum likelihood estimators of the model parameters as well as deviance tests

for the presence of long-term survivors and covariate effects are established, and

their large-sample properties are proved rigorously.
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(iii) A class of piecewise exponential mixture models is investigated with rigorous

derivation of statistical inference and application to real-life data.

(iv) A semi-parametric proportional hazards model is developed and the method of

partial likelihood is employed to draw statistical inference on competing risks,

proportions of long-term survivors and covariate effects.
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Chapter 2

Literature Review

The origin of the study on competing risks can be traced back to Daniel Bernoulli’s

(1760) attempt to separate the cause of death by smallpox from other causes. Since

then, research in this area has been developed quickly due to its wide applications

in many areas such as medical research, health science, actuarial science, economics,

finance, management, engineering reliability, criminology, social science, etc. The study

of competing risks has now become one of the issues of primary importance in the

analysis of survival data.

In the competing risks model, individuals are exposed to several distinct causes of

failures, but if a failure happens, it can only be due to one of the risks of interest.

Cox (1959) formulated the survival data with competing risks in terms of latent failure

times. The risks are assumed to be independent of each other. Although there are

various criticisms on the identifiability problems of this assumption, models with latent

variables have been commonly used in data analyses since then, especially in the areas
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of economics and finance. Literature on latent variables applied to various fields can be

found, for example, in Han and Hausman (1990) and references therein. An alternative

approach for survival data with competing risks is the cause-specific hazard rates setting

which is proposed by Prentice et al (1978). This framework allows for dependence

between competing risks. The survival analysis based on the hazard functions has been

popular, as they can approximate survival data more naturally than the latent failure

times setting. One of the most widely used models is the Cox’s proportional hazards

approach of Cox (1972), in which the hazard function is assumed to be

λ(t|Z) = λ0(t) exp(βTZ),

where λ0 is a baseline hazard function, β is a vector of regression parameters and λ(t|Z)

is the hazard function for an individual with a κ-dimensional covariate vector Z.

The concept of immunes or cured individuals has also been investigated for several

decades. Boag (1949) is among the first to study the cured proportion in cancer patients.

Since the cured rate cannot be estimated independently from the other parameters

of the model in the presence of censoring, a commonly used approach to solve this

problem is to formulate the model as a mixture of two populations, one for cured

individuals or immunes and the other for “susceptibles” (individuals suffering from

the risks of interest). An extensive discussion of popular methods of inference on this

model has been provided by Maller and Zhou (1996). Such mixture models have also

been investigated by many other authors. Among them Peng and Dear (2000) adopted

a non-parametric approach, Ghitany and Maller (1992) and Ghitany et al. (1994)

studied exponential mixture distributions and Vu et al. (1998) extended their work to
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survival distributions mixed by exponential family and cured rate of the population. In

addition, semi-parametric mixture models are discussed by Zhao and Zhou (2006).

Various models of different types have been proposed for survival data with immunes

and competing risks. Miyakawa (1984) gave parametric estimation for two failure causes

and allow possible missing causes, Kundu and Basu (2000) studied their large sample

properties. Larson and Dinse (1985) suggested a mixture model approach and computed

maximum likelihood estimators by replacing the right-censored failure times under un-

known causes with a set of suitably weighted hypothetical ones under known causes.

Maller and Zhou (2002) provided a rigorous analysis of the parametric mixture models

and derived useful large sample properties (consistency and asymptotic normality) of

the maximum likelihood estimators and the asymptotic distributions for the test statis-

tics under certain boundary hypotheses. However their work was restricted to the i.i.d.

case without covariates. As a complementarity, Choi and Zhou (2002) studied the large

sample properties of a class of parametric mixture models with covariates for competing

risks in the presence of immunes.

There are a number of similarities among the works of Larson and Dinse (1985),

Maller and Zhou (2002), Choi and Zhou (2002) and the present work. The current

approach extends the works of the above authors by relaxing their restrictions in several

ways.

Suppose that individuals are exposed to J causes and the failure time T of an
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individual with covariate Z has a mixture distribution as follows:

F (t|Z) = P{T ≤ t|Z} =
J∑
j=1

pj(Z)Fj(t|Z)

with
∑J

j=1 pj(Z) ≤ 1, where pj(Z) is the probability that this individual fails from

risk j and Fj(t|Z) is the failure distribution function for this individual, conditional on

the eventual failure from risk j. The approach proposed by Larson and Dinse (1985)

is restricted to the boundary case in the sense that
∑J

j=1 pj(Z) = 1, i.e. it does not

allow for immunes. The models of Maller and Zhou (2002) do allow for the existence

of immuned individuals by a possibly improper setting but not covariates. Finally,

Choi and Zhou (2002) attempted an improper mixture model with
∑J

j=1 pj(Z) < 1

for competing risks data with covariates and immunes included. Their work, however,

assumes the existence of immunes as a priori. This yields identifiability problems as it

is hard to identify such kind of information from the observations. For instance, if the

censoring is heavy, we can only consider the probable existence of immunes but cannot

claim that there must be immunes as censoring is also influenced by experimental design

and other reasons.

It is desirable and of practical interest to relax the restrictions of the above works

so that a more general approach can better model real life data. In this dissertation,

a general mixture model is developed to cover the models of Larson and Dinse (1985),

Maller and Zhou (2002) and Choi and Zhou (2002), with extensive and thorough in-

vestigations of the large sample properties of the estimators and various test statistics.

The model is more flexible than the previous models and can be readily applied to real

life problems. For the case when the data have good properties of proportional hazards,
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a semi-parametric approach is investigated, which is relatively more restrictive than the

general mixture model but much easier to use.
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Chapter 3

General Mixture models

3.1 Introduction

In this chapter, a general mixture model is introduced to make inferences on competing

risks data with covariates and possible immunes. In Section 3.2, the framework of the

model is explained. In Section 3.3, the large sample properties of the estimators and

test statistics are provided with the explanation of the applications. A simulation is

shown in Section 3.4 to assess the performance of the methods. Section 3.5 is devoted

to the discussions and future work. Finally, the proofs are collected in Section 3.6.
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3.2 Model Specification

Suppose there are n individuals who are exposed to J distinct failure causes and the

observation of an individual can be either censored or caused by one and only one of

these risks. Further assume that there may be individuals who are not susceptible to

the risks under consideration, i.e. immunes may exist. The competing risks data in

the presence of censoring consist of observations (ti, δij, zi), i = 1, . . . , n, where ti is the

observed failure time of individual i, zi is the covariate information for individual i,

which is also observable and for i = 1, . . . , n and j = 1, . . . , J ,

δij =


1 if individual i dies from cause j,

0 otherwise

are the indicators of the failure causes. For each individual i, the indicator of the

censoring status is defined as

δi =


1 if individual i is uncensored,

0 if individual i is censored.

Thus

δi =
J∑
j=1

δij, i = 1, 2, . . . , n.

Further suppose that the individuals under study are independent of each other and

pij = P{individual i will fail from cause j eventually}

for i = 1, . . . , n and j = 1, . . . , J . Thus

pi =
J∑
j=1

pij = P{ individual i is susceptible to the risks under consideration},
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where 0 < pi ≤ 1 and the existence of cured individuals or immunes is implied by

pi < 1.

For i = 1, . . . , n, let T ∗i be a nonnegative independent random variable representing

the true failure time (without censoring) of individual i, ui be the censoring time of

individual i and t∗i be the realization of T ∗i . It is obvious that

ti = ui ∧ t∗i .

Further associate each individual i a random variable Di with

Di =


j if individual i will fail from cause j eventually,

0 individual i is an immune subject

for i = 1, . . . , n and j = 1, . . . , J . Here we can treat Di as a discrete random variable

with the following proper distribution function:

P{Di = j} = pij, 1 ≤ j ≤ J and P{Di = 0} = 1− pi.

Thus Di can be interpreted as an indicator of the failure cause of individual i. It should

be pointed out that the value of Di is observed when δi = 1 and cannot be observed

when δi = 0. Throughout our study, an i.i.d. censoring mechanism is assumed, i.e. ui’s

are independent of each other and they are all independent of the t∗i ’s. Thus

δij = 1{t∗i≤ui,Di=j} and δi = 1{t∗i≤ui}

for i = 1, . . . , n and j = 1, . . . , J , where 1E is the indicator of event E which takes value

1 when E occurs and 0 otherwise. And the c.d.f. of the censoring time is assumed to

be non-informative. Let

Fij(t) = P{T ∗i ≤ t|Di = j} (3.2.1)
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represent the conditional c.d.f. of T ∗i conditional on the type j failure for i = 1, . . . , n

and j = 1, . . . , J . It is obvious that Fij(t) is proper. Also let

Fi(t) = P{T ∗i ≤ t} (3.2.2)

denote the unconditional c.d.f. of T ∗i . A fact to be noted is that

P{T ∗i =∞|Di = 0} = 1. (3.2.3)

Then Fi(t) can be given by

Fi(t) =
J∑
j=0

P{T ∗i ≤ t|Di = j}P{Di = j} =
J∑
j=1

pijFij(t). (3.2.4)

When pi =
∑J

j=1 pij < 1, Fi(t) is improper. We shall assume that Fij(t) and Fi(t) have

density functions fij(t) and fi(t) respectively throughout, this is not essential but it

simplifies the notations.

The above specifications provide a probabilistic foundation for a general mixture

model approach to accommodate competing risks data with possible immunes. Like

Maller and Zhou (2002), we further provide a cause-specific formulation approach which

is equivalent to the general mixture approach and also widely used in survival analy-

sis. For the details of the cause-specific formulations, see Prentice et al. (1978) and

Kalbfleisch and Prentice (1980, p. 167). The cause-specific hazard function associated

with individual i and risk j is defined by

λij(t)dt = P{T ∗i ∈ [t, t+ dt), Di = j|T ∗i ≥ t}. (3.2.5)

The hazard function for individual i is

λi(t)dt =
J∑
j=1

λijdt = P{T ∗i ∈ [t, t+ dt)|T ∗i ≥ t}. (3.2.6)
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The hazard functions can be expressed in terms of pij, fij(t) and Fi(t) as

λij(t) =
pijfij(t)

1− Fi(t)
(3.2.7)

and

λi(t) =
fi(t)

1− Fi(t)
(3.2.8)

for i = 1, . . . , n and j = 1, . . . , J . Conversely, pij and Fij(t) can be defined in terms of

λij and Fi(t) as:

pij = P{Di = j} =

∫ ∞
0

λij(t)(1− Fi(t))dt (3.2.9)

and

Fij(t) =
P{T ∗i ≤ t,Di = j}

P{Di = j}
=

1

pij

∫ t

0

λij(y)(1− Fi(y))dy. (3.2.10)

Thus for a fixed i ∈ {1, . . . , n} and 1 ≤ j ≤ J , λij(t)’s are proportional to each other if

and only if fij(t)’s are proportional to each other.

Apart from a multiplicative constant, the full likelihood of the n observations is

given by

Lf =
n∏
i=1

{
(
pij(i)fij(i)(ti)

)δi(1− Fi(ti))1−δi}

=
n∏
i=1

{
J∏
j=1

(
pijfij(ti)

)δij(1− Fi(ti))1−δi

}
,

(3.2.11)

where j(i) indicates the observed failure cause of individual i when a failure occurs.

And the log-likelihood function is

ln =
n∑
i=1

{
J∑
j=1

δij log
(
pijfij(ti)

)
+ (1− δi) log

(
1− Fi(ti)

)}
. (3.2.12)

Thus individual i contributes pijfij(ti) to the likelihood function if he/she experiences

a type j failure. Alternatively, the contribution to the likelihood function of individual

i with censored failure time observed should be Si(ti) = 1− Fi(ti).

15



Assume that

fij(t) = f(t;φij), t ≥ 0, (3.2.13)

where φij = [φij1,φij2, . . . , φijK ]T is a K-vector of parameters varying over an open subset

of RK , and T denotes the transpose of a matrix or vector. Suppose that for 1 ≤ i ≤ n,

1 ≤ j ≤ J and 1 ≤ k ≤ K, φijk’s are linked to the linear combinations of covariates by

φijk = η(κijk) with κijk = αTjkxi, (3.2.14)

where xi is a π1-dimensional sub-vector of zi, αjk is a π1-vector of parameters and η is

a differentiable function from R to the domain of φijk. Let

pij =
ζ(ξj + ρij)

ω(%i) +
∑J

l=1 ζ(ξl + ρil)
, with ρij = βTj yi and %i = γTwi,

where ζ is a link functions from R to R+ and ω is a real function. As above, yi and wi

are π2-dimensional and π3-dimensional sub-vectors of zi respectively with corresponding

regression coefficients βj and γ. Thus αjk, ξj, βj and γ, 1 ≤ j ≤ J , 1 ≤ k ≤ K

constitute parameters to be estimated from the data. Let θ be a vector that consists of

all parameters, thus

θ = (αT1 , . . . , α
T
J , β

T
1 , . . . , β

T
J , ξ1, . . . , ξJ , γ)T ∈ Rπ1JK+(π2+1)J+π3 ,

where αTj = (αTj1, . . . , α
T
jK) ∈ Rπ1K , βTj ∈ Rπ2 , ξj ∈ R and γT ∈ Rπ3 . The true value of

the parameter vector θ is

θ0 = (αT10, . . . , α
T
J0, β

T
10, . . . , β

T
J0, ξ

T
10, . . . , ξ

T
J0, γ

T
0 )

with γ0 constrained in

Γ = {γ | γ ∈ Rπ3 , ω(γTwi) ≥ 0, for all 1 ≤ i ≤ n}.
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Thus the parameter space Θ for θ is

Θ = {θ | θ ∈ Rπ1JK+(π2+1)J × Γ}.

In our model, the probability of failing from a risk j is given by a logistic model

(Cox, 1970, ch, 7.5). Two cases are considered:

The interior case: 0 < pi < 1, 1 ≤ i ≤ n.

In the interior case, the true value is restricted in the interior of the parameter

space Θ. Our work will only include one of the most commonly used cases that ω(%i)

is degenerated to 1 and ζ(ξj + ρij) = exp (ξj + ρij), i.e.

pij =
exp(ξj + βTj yi)

1 +
∑J

l=1 exp(ξl + βTl yi)
. (3.2.15)

The parameter space is Θ1 = Rπ1JK+(π2+1)J and the true value should be

θ0 = (αT10, . . . , α
T
J0, β

T
10, . . . , β

T
J0, ξ

T
10, . . . , ξ

T
J0).

The boundary case: pi = 1, 1 ≤ i ≤ n.

The boundary of the space is denoted by

Θ2 = {θ | θ ∈ Rπ1JK+(π2+1)J × Γ2},

with

Γ2 = {γ | γT ∈ Rπ3 , ω(γTwi) = 0, for all 1 ≤ i ≤ n},

so that
∑J

j=1 pij = 1. In this boundary case, let wi = 1 and ω(%i) = %i, 1 ≤ i ≤ n.

Further assume that ξJ0 and βJ0 are degenerated to 0. Hence pij can be formulated by

pij =
exp(ξj + βTj yi)

γ + 1 +
∑J−1

l=1 exp(ξl + βTl yi)
, 1 ≤ j ≤ J − 1 (3.2.16)
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and

piJ =
1

γ + 1 +
∑J−1

l=1 exp(ξl + βTl yi)
. (3.2.17)

The true value of the parameter vector is

θ0 = (αT10, . . . , α
T
J0, β

T
10, . . . , β

T
(J−1)0, ξ

T
10, . . . , ξ

T
(J−1)0, γ0),

which lies on

Θ3 = {θ | θ ∈ Rπ1JK+(π2+1)(J−1) × {0}}. (3.2.18)

And the parameter space under consideration should be

Θ4 = {θ | θ ∈ Rπ1JK+(π2+1)(J−1) × [0,∞)}. (3.2.19)

Assume that the following three regularity conditions are satisfied by f(t;φij) through-

out:

(R1) The support of f(t;φ) is not influenced by φ. It is assumed to be [0,∞) in our

analysis.

(R2) f(t;φ) is twice-differentiable.

(R3) ∂f(t;φ)/∂φ and ∂2f(t;φ)/∂φ∂φT are continuous and integrable for t > 0.

These regularity conditions are commonly required in survival analysis and it is easy

to check that most of the distributions, such as the exponential, Weibull and geometry

distributions, used in survival analysis satisfy these conditions.

Let ln(θ) =
∑n

i=1 lni(θ) with

lni(θ) =
J∑
j=1

δij log
(
pijfij(ti)

)
+ (1− δi) log

(
1− Fi(ti)

)
. (3.2.20)
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The first derivative of ln(θ) with respect to θ is

Sn(θ) =
∂ln(θ)

∂θ
=

n∑
i=1

∂lni(θ)

∂θ
,

which is a (π1JK+ (π2 + 1)J)×1-vector for the interior case and (π1JK+ (π2 + 1)(J −

1) + 1) × 1-vector for the boundary case. The negative second derivative matrix of ln

is denoted by

Fn(θ) = −∂
2ln(θ)

∂θ∂θT
= −

n∑
i=1

∂2lni(θ)

∂θ∂θT
, (3.2.21)

which is a (π1JK + (π2 + 1)J)× (π1JK + (π2 + 1)J) matrix for the interior case and a

(π1JK + (π2 + 1)(J − 1) + 1)× (π1JK + (π2 + 1)(J − 1) + 1) matrix for the boundary

case. Then the regularity conditions for f(t) and the link functions imply that

∂pij
∂ξl

=
∂pij
∂ξl

1, 1 ≤ i ≤ n, 1 ≤ j ≤ J, (3.2.22)

∂pij
∂βl

=
∂pij
∂ρil

yi, 1 ≤ i ≤ n, 1 ≤ j ≤ J, (3.2.23)

∂pij
∂γ

=
∂pij
∂%i

1, 1 ≤ i ≤ n, 1 ≤ j ≤ J, (3.2.24)

where 1 ≤ l ≤ J for the interior case and 1 ≤ l ≤ J − 1 for the boundary case. And

∂fij(t)

∂αjk
=

∂fij
∂κijk

xi, 1 ≤ i ≤ n, 1 ≤ j ≤ J, 1 ≤ k ≤ K, (3.2.25)

∂fij(t)

∂αlk
= 0, 1 ≤ i ≤ n, 1 ≤ j ≤ J, j 6= l. (3.2.26)

Thus

Sni(θ) =
∂lni(θ)

∂θ
= HiSi(θ) (3.2.27)

and

Fni(θ) = −∂
2lni(θ)

∂θ∂θT
= HiFi(θ)H

T
i (3.2.28)
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with

Hi =


IJK ⊗ xi 0 0

0 Ib ⊗ yi 0

0 0 IJ

 (3.2.29)

for 1 ≤ i ≤ n, where b = J for the interior case and b = J − 1 for the boundary case.

Hi is a (π1JK+π2b+J)× (JK+ b+J) non-stochastic matrix. It should also be noted

that Si and Fi are (JK + b+ J)× 1 random vector and (JK + b+ J)× (JK + b+ J)

symmetric random matrix respectively that vary over the interior case and boundary

case. As a result, Qn = E[Fn(θ0)], the expectation of Fn with respect to the true value

of the parameters, can be expressed by

Qn =
n∑
i=1

HiQiH
T
i , (3.2.30)

where Qi = E[Fi(θ0)], 1 ≤ i ≤ n, are (JK + b + J) × (JK + b + J) symmetric fixed

matrices that also vary over the interior case and boundary case. The elements of

Si(θ), Fi(θ) and Qi are denoted by sri (θ), f
rm
i (θ) and qrmi respectively for 1 ≤ i ≤ n,

1 ≤ r ≤ JK + b+ J and 1 ≤ m ≤ JK + b+ J , i.e

Si(θ) = [sri (θ)](JK+b+J)×1, (3.2.31)

Fi(θ) = [f rmi (θ)](JK+b+J)×(JK+b+J) (3.2.32)

and

Qi = [qrmi ](JK+b+J)×(JK+b+J). (3.2.33)

Our aim is to estimate the true value of the parameter vector θ0 by maximizing ln(θ)

over different subsets of the parameter space in different cases and to derive different test

statistics of practical interest. The large sample properties of the proposed estimators
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and test statistics also need to be verified. In the next section, we will show the

sufficient conditions under which a maximum likelihood estimator (MLE) exists local

to the true value, and provide its asymptotic distribution. We shall also discuss the

sufficient conditions and asymptotic properties of the test statistics.

3.3 Main Results and Examples

Throughout this chapter, Id denotes an identity matrix of d dimensions, and N(0, Is)

represents a standard normal random vector of s dimensions. For a symmetric matrix

C, let tr(C) denotes its trace and ‖ C ‖1 represents the sum of the absolute values of

the elements of C. For a positive definite matrix D, D1/2 represents the left Cholesky

square root (the lower triangular matrix) of D such that D1/2(D1/2)T = D.

For a fixed positive constant A, the neighborhood of θ0 is defined by

Nn(A) = {θ : (θ − θ0)TQn(θ − θ0) ≤ A2}, (3.3.34)

where Qn is defined by (3.2.30). To make inferences on our general mixture model, the

following assumptions about the covariates and the expectations of the score statistic

and information matrix are needed:

(B1) limn→∞
∑n

i=1

(
tr{HT

i Q−1
n Hi}

)3/2
= 0.

(B2) For all 1 ≤ i ≤ n, 1 ≤ r ≤ JK + b+ J and 1 ≤ m ≤ JK + b+ J , we have

V ar
(
{f rmi (θ0)}

)
≤ M, (3.3.35)

where f rmi are defined by (3.2.32) and M is a positive constant.
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(B3) For all 1 ≤ i ≤ n, 1 ≤ r ≤ JK + b+ J and 1 ≤ m ≤ JK + b+ J ,

E{ sup
θ∈Nn(A)

|f rmi (θ)− f rmi (θ0)|} ≤ M
′
A
(
tr{HT

i Q−1
n Hi}

)1/2
(3.3.36)

for all A > 0. Like (B2), f rmi here are defined by (3.2.32) and M
′
is also a positive

constant.

(B4) There exists M
′′
> 0 such that

E
[(
sri (θ0)

)4] ≤M
′′

for all 1 ≤ i ≤ n and 1 ≤ r ≤ JK + b+ J , where sri (θ) is given by (3.2.31).

Assumption (B1) implies thatQn is non-singular and also ensures that the covariates

do not degenerate to a lower dimensional subspace for n large enough. Assumption (B2)

- (B4) depend on specific models and can be checked by the usual calculus methods.

The assumptions are satisfied by most of the commonly used survival distributions,

such as exponential, Weibull and Gamma, under some mild assumptions.

The next theorem shows the existence of an MLE of the parameter vector local to

an interior true value, and provides its asymptotic distribution.

Theorem 3.3.1 Suppose that assumptions (B1)-(B4) hold. Then, with probability ap-

proaching 1 (WPA1), as n→∞ there exists an interior maximizer θ̂
(1)
n in Θ1 such

that:

(i) θ̂
(1)
n is unique in a neighborhood of θ0;

(ii) limn→∞ θ̂
(1)
n = θ0;
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(iii) as n→∞, we have

(Q1/2
n )T (θ̂(1)

n − θ0)
D−→ N(0, Iπ1JK+π2J+J) (3.3.37)

and (
F1/2
n (θ̂(1)

n )
)T

(θ̂(1)
n − θ0)

D−→ N(0, Iπ1JK+π2J+J), (3.3.38)

where Qn is defined by (3.2.30) and Fn is defined by (3.2.21).

Theorem 3.3.1 shows the existence and large sample properties of the maximum likeli-

hood estimator θ̂
(1)
n of the interior true point θ0 in the parameter space. In the theorem,

(ii) indicates that θ̂
(1)
n is a consistent estimator and (iii) means that if θ̂

(1)
n is normed

by the left Cholesky square root of sample information matrix, it has an asymptotic

standard normal distribution. Thus the covariance matrix of θ̂
(1)
n can be approximated

by the inverse of the estimated information matrix, which can be obtained directly by

Fn(θ̂
(1)
n ).

The next part is about the interior hypotheses testing.

Let Sr be an r-dimensional subspace of R(π1JK+π2J+J) with 0 ≤ r < π1JK+π2J+J ,

and let θ∗ be any specified point in the interior of Θ1. The null hypothesis of our interest

is

H
(1)
0 : θ0 ∈ Sr + θ∗. (3.3.39)

The alternative hypothesis with respect to H
(1)
0 is

H
(1)
1 : θ0 ∈ Θ1. (3.3.40)

Thus the restricted parameter space Ωr under H
(1)
0 is

Ωr = (Sr + θ∗) ∩Θ1 = (Sr + θ∗) ∩ R(π1JK+π2J+J), (3.3.41)
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while the parameter space under unrestricted interior alternative is still

Θ1 = R(π1JK+π2J+J).

We have the following theorems.

Theorem 3.3.2 Suppose that assumptions (B1)-(B4) hold. Then with probability ap-

proaching 1, there exists a maximizer θ̂
(2)
n over Ωr, which is unique and consistent in a

neighborhood of θ0 in Ωr.

Theorem 3.3.2 guarantees that there is a maximum likelihood estimator θ̂
(2)
n of θ0 in the

restricted parameter space Ωr under H
(1)
0 . The next theorem is about the asymptotic

distribution of the test statistic for H
(1)
0 .

Theorem 3.3.3 Suppose that assumptions (B1)-(B4) hold. Then the deviance statistic

follows an asymptotic Chi-square distribution with π1JK+π2J+J−r degrees of freedom,

i.e.

d(1)
n = −2

(
ln(θ̂(2)

n )− ln(θ̂(1)
n )
) D−→ χ2

π1JK+π2J+J−r, (3.3.42)

where θ
(1)
n is defined in Theorem 3.3.1 and θ

(2)
n is defined in Theorem 3.3.2.

Theorem 3.3.3 provides a likelihood ratio test not only for a hypothesis where there

are some specified parameters but also for hypotheses about relationships among the

parameters. For instance, problems 1, 3 and 4 proposed in Chapter 1 could be answered

via different null hypotheses according to specific problems. We list the tests below:
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1. Recall that problem 1 in Chapter 1 is about the value of pij. Consider the hy-

pothesis

H
(11)
0 : ξ1 = ξ∗1 , . . . , ξJ = ξ∗J , β1 = β∗1 , . . . , βJ = β∗J , (3.3.43)

where θ∗ = [ξ∗T1 , . . . , ξ∗TJ , β∗T1 , . . . , β∗TJ ]T is a (π2J+J)-dimensional constant vector

and Sr = R(π1JK). Thus the deviance statistic d
(11)
n asymptotically follows a Chi-

square distribution with π2J + J degrees of freedom. This test can be applied to

test whether the regression coefficients of the covariates equal to specific values.

Especially, by letting θ∗ = [0](π2J+J)×1, we are able to test whether the covariates

have influence on the failure rates with respect to the risks.

2. Problem 3 is related to the significance levels of the regression coefficients for the

covariates xi and yi. For instance, to test whether xi(1), . . . , xi(r1) and yi(1), . . . , yi(r2)

can be removed from the covariates under consideration, we should test

H
(12)
0 :αjk(1) = · · · = αjk(r1) = 0, βj(1) = · · · = βj(r2) = 0, (3.3.44)

where [xi(1), . . . , xi(r1)] is a subvector of xi and [yi(1), . . . , yi(r2)] is a subvector

of yi with 1 ≤ r1 ≤ π1 and 1 ≤ r2 ≤ π2. Thus H
(12)
0 implies that Sr =

R((π1−r1)JK+(π2−r2+1)J) and θ∗ = 0. According to Theorem 3.3.2, the asymptotic

distribution of d
(12)
n for this test is χ2

r1JK+r2J
.

3. Another type of questions of our interest is whether the hazard functions with

respect to different types of risks are proportional to each other. In other words,

are fij’s proportional to each other for fixed i? The mull hypotheses for such tests

depends on the formulations of fij’s. As a special case, the differences among the

c.d.f.’s conditional on the risks can be tested. The hypothesis can be formulated
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as

H
(13)
0 :αjk = 0, k = 1, . . . , K, j = 1, . . . , J. (3.3.45)

In this situation Sr = R(π2+1)J and θ∗ = 0. By Theorem 3.3.2, the asymptotic

distribution of d
(13)
n is χ2

π1JK
.

Theorems 3.3.1, 3.3.2 and 3.3.3 generalize the result of Maller and Zhou (2002),

which are about similar problems in the absence of covariates. The interior setting

indicates that there are individuals that are not susceptible to the risks {1, . . . , J}. In

other words, the failure causes under consideration are not exhaustive. This is reason-

able if the existence of immunes is previously known. In practice, however, it is difficult

to identify the existence of immunes from real life data because of censoring. Actually,

this issue has been of increasing interest recently. To investigate this problem, we may

wish to develop a test of the hypothesis that the J risks of interest are exhaustive, i.e. all

failure causes to which the individuals are susceptible are included in our investigation.

In the boundary setting, consider the hypothesis

H
(2)
0 : γ0 = 0. (3.3.46)

Thus the restricted parameter space under H
(2)
0 is Θ3 and the unrestricted parameter

space is Θ4. The following theorems are about the point estimation under the null

hypothesis of boundary.

Theorem 3.3.4 Suppose that assumptions (B1)-(B4) hold. Then

(i) With probability approaching 1, there exists a maximizer θ̂
(3)
n over Θ3, which is

unique and consistent in a neighborhood of θ0 in Θ3.

26



(ii) With probability approaching 1, there exists a maximizer θ̂
(4)
n over Θ4, which is

unique and consistent in a neighborhood of θ0 in Θ4.

Theorem 3.3.4 shows the existence, consistency, and asymptotic normality of the max-

imum likelihood estimators θ̂
(3)
n over Θ3 and θ̂

(4)
n over Θ4 for true point θ0. From the

work of Vu and Zhou (1997), the next theorem can be developed. It plays an important

role in our investigation because it provides a method to test the exhaustive of the

failure causes under consideration.

Theorem 3.3.5 Suppose that assumptions (B1)-(B4) hold. Then the deviance statistic

is asymptotically distributed as a mixture of a Chi-square distribution with 1 degree of

freedom and 0, i.e.

d(2)
n = −2

(
ln(θ̂(3)

n )− ln(θ̂(4)
n )
) D−→ N2I{N ≤ 0}, (3.3.47)

where N is the standard normal distribution and θ
(3)
n and θ

(4)
n are defined in Theorem

3.3.4.

Theorem 3.3.5 is an extension of the work of Maller and Zhou (2002) in which a bound-

ary hypothesis test is discussed in the absence of covariate information. This theorem

allows us to verify whether there are individuals who are immune to all of the causes

under consideration by comparing the deviance value to the critical value. We can

accommodate data with suitable models according to the testing results, i.e. the in-

terior models are reasonable if H
(2)
0 is rejected, otherwise the boundary model can be

used to fit the data. The limiting distribution of the deviance d
(2)
n is a 50-50 mixture

distribution of a Chi-square random variable with 1 degree of freedom and a point mass

27



at 0. As P{N2I{N ≤ 0} > c} = 0.5P{χ2 > c} for any non-negative constant c, the

critical value of N2I{N ≤ 0} can be easily calculated from χ2, i.e. its 95th percentile

is 2.71 and the 99.5th percentile is 6.635. For the details of the application of the 50-50

mixture Chi-square distribution and 0, see Zhou and Maller (1995) and Maller and

Zhou (1996).

An important issue to be emphasized is that if the boundary model is chosen by the

result of H
(2)
0 , we can still carry out the test H

(1)
0 . In boundary model, under H

(1)
0 the

deviance statistic asymptotically follows a Chi-square distribution with π1JK + (π2 +

1)(J − 1)− r degrees of freedom.

3.4 Simulations

A simulation is carried out to illustrate the performance of our approach. A commonly

used exponential mixture model is investigated in our study, where the survival time of

individual i given that Di = j is assumed to be exponentially distributed and P{Di =

j} = pij, i.e. for t > 0,

fij(t) = λij exp(−λijt), 1 ≤ i ≤ n, 1 ≤ j ≤ J (3.4.48)

and

Fi(t) =
J∑
j=1

pij
(
1− exp(−λijt)

)
, 1 ≤ i ≤ n,

where λij’s are linked to xi, the sub-vector of the covariates of individual i, by

λij = exp(αTj xi), 1 ≤ i ≤ n, 1 ≤ j ≤ J. (3.4.49)
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The failure rate with respect to a specific risk j of individual i is related to yi, another

sub-vector of the covariate vector of individual i, by (3.2.15) for the interior case and

by (3.2.16) and (3.2.17) with γ = 0 for boundary case. The covariates xi and yi are set

to be one dimensional in the simulation. As a result, the parameters to be estimated

for the interior case are

θ1 = (α1, α2, ξ1, ξ2, β1, β2)T

and the parameters to be estimated for the boundary case are

θ2 = (α1, α2, ξ, β)T

with true values

θ10 = (−1.0000, −2.0000, 0.9016, 0.8188, −0.3561, 0.1099)T

and

θ20 = (−1.0000, −2.0000, 0.9016, −0.3561)T

Both xi and yi are random variables with discrete uniform distributions. The value of

xi is set to be one of 0.4321 and 0.8588 and the value of yi is assumed to be one of

0.1398 and 0.3968. Thus the individuals are classified into four groups by the values of

(xi, yi). The censoring time ci for individual i is uniformly distributed in [20, 30].

Two sets of data for the interior case and boundary case are generated by Matlab

from the mixture exponential distributions specified above respectively. The sample

sizes are taken as N=100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000 with 100

repetitions. We fit each dataset with both models of interior case and boundary case

and compute the maximizer of the log-likelihood functions as the estimates of the
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parameters. Take the interior case as an example, we first fit the data generated by

the models defined by (3.2.4), (3.2.15), (3.4.48) and (3.4.49) to assess the performances

of the inference methods by comparing the estimates and the true value θ10. Then we

approximate the data by the models specified by (3.2.4), (3.2.16), (3.2.17), (3.4.48) and

(3.4.49) to assess the performances of the two models for the interior data by comparing

the fitted curves of the overall distribution function generated by both models with the

true c.d.f. curve. For the data of boundary case, simulation is conducted in a similar

way. Results of the point estimates and fitted c.d.f.’s are listed in Table 3.1 - 3.4 and

Figure 3.1 - 3.8 respectively.

In this simulation, the estimators are defined to be the mean of the maximum

likelihood estimates developed by all the replicates. Table 3.1 and Table 3.2 list the

results of the boundary data and Table 3.3 and Table 3.4 are for interior data, where

STD denotes the standard deviation and N represents the sample size. In addition,

we plot in Fig.3.1 - Fig.3.4 the overall c.d.f. curves of the boundary data based on

true parameters, estimates given by boundary model and estimates given by interior

model. Similarly, Fig.3.5 - Fig.3.8 are for the comparison of of the overall c.d.f. curves

of the interior data based on true parameters, estimates developed by interior model

and estimates developed by boundary model. The estimates used in the figures are

generated by one replicate with the sample size N=100.

From Table 3.1 and Table 3.3, we can see that the estimates are reasonably accurate

and the accuracy improves as N grows. A larger sample size may be required to achieve

reasonable accuracy when the number of parameters increases. It is not surprising to

30



see from Fig.3.1 - Fig.3.4 that the fitness of interior model applying to boundary data is

not bad as the interior model allows 1−
∑J

j=1 pij to be almost 0. But we cannot replace

the boundary model by interior model in applications because the standard deviations

of the estimates are extremely large when boundary data are fitted by interior model. In

contrary, Fig.3.5 - Fig.3.8 show that the fitness of boundary model applying to interior

data is poor as the boundary model ignores the existence of immunes. That explains

why it is important to identify the existence of immunes in survival analysis.
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Table 3.1: Results of Boundary Data Fitted by Boundary Model

Parameters α1 α2 ξ β

N True values −1.0000 −2.0000 0.9136 −0.3561

100 Estimate -0.9856 -1.9876 1.0303 -0.3733

STD 0.1911 0.2098 1.5352 0.4809

200 Estimate -0.9945 -2.0005 0.9284 -0.3484

STD 0.1279 0.1589 1.1136 0.3328

300 Estimate -0.9847 -2.0000 0.9056 -0.3459

STD 0.1141 0.1278 0.9166 0.2924

400 Estimate -0.9763 -1.9997 0.8999 -0.3486

STD 0.1015 0.1044 0.8250 0.2515

500 Estimate -0.9800 -2.0094 0.8991 -0.3509

STD 0.1024 0.0990 0.6782 0.2000

600 Estimate -0.9805 -2.0079 0.8904 -0.3480

STD 0.0851 0.0897 0.6812 0.2002

700 Estimate -0.9841 -2.0056 0.8900 -0.3494

STD 0.0803 0.0843 0.5256 0.1584

800 Estimate -0.9900 -2.0046 0.9257 -0.3638

STD 0.0828 0.0739 0.5251 0.1545

900 Estimate -0.9934 -2.0060 0.9180 -0.3606

STD 0.0664 0.0742 0.4697 0.1463

1000 Estimate -0.9976 -2.0110 0.9183 -0.3594

STD 0.0696 0.0804 0.4332 0.1395

32



Table 3.2: Results of Boundary Data Fitted by Interior Model

N Parameters α1 α2 ξ1 ξ2 β1 β2

100 Estimate -0.9853 -1.9644 125.9748 127.0195 15.1838 14.8031

STD 0.1908 0.2089 399.0192 399.0058 64.0790 64.0868

200 Estimate -0.9942 -1.9864 76.2962 77.2323 27.3727 27.0206

STD 0.1277 0.1584 340.1610 340.2234 94.7250 94.7439

300 Estimate -0.9847 -1.9877 58.3858 59.2943 34.6003 34.2522

STD 0.1140 0.1312 490.2110 490.0754 156.5305 156.4826

400 Estimate -0.9763 -1.9922 13.5408 14.4490 47.1526 46.8007

STD 0.1015 0.1079 445.9458 445.8482 159.4396 159.4045

500 Estimate -0.9798 -2.0034 59.4537 60.3564 31.4325 31.0799

STD 0.1024 0.1016 368.0414 368.0962 93.8851 93.8886

600 Estimate -0.9804 -2.0028 -42.4383 -41.5458 62.1624 61.8132

STD 0.0850 0.0896 471.6789 471.6527 175.1202 175.1130

700 Estimate -0.9841 -2.0019 21.9784 22.8692 37.6823 37.3323

STD 0.0803 0.0850 224.9419 224.9444 72.5659 72.5632

800 Estimate -0.9900 -2.0023 41.5852 42.5125 43.9957 43.6312

STD 0.0828 0.0753 455.3250 455.3576 120.8669 120.8682

900 Estimate -0.9934 -2.0032 -19.1711 -18.2484 62.9437 62.5812

STD 0.0664 0.0739 603.2434 603.2077 203.2201 203.1933

1000 Estimate -0.9976 -2.0088 -77.9795 -77.0613 102.4376 102.0778

STD 0.0696 0.0808 908.6678 908.6989 287.0666 287.0690
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Table 3.3: Results of Interior Data Fitted by Interior Model

Parameters α1 α2 ξ1 ξ2 β1 β2

N True values -1.0000 -2.0000 0.9016 0.8188 -0.3561 0.1099

100 Estimate -0.9382 -1.9837 0.9234 0.7867 -0.3499 0.1191

STD 0.2913 0.2505 2.2162 2.0976 0.6383 0.5843

200 Estimate -0.9682 -1.9807 0.7828 0.7483 -0.3071 0.1397

STD 0.1869 0.1797 1.5322 1.3359 0.4536 0.3718

300 Estimate -0.9858 -1.9865 0.9340 0.8805 -0.3611 0.0980

STD 0.1476 0.1460 1.2608 0.9118 0.3697 0.2349

400 Estimate -0.9929 -1.9834 0.9326 0.8737 -0.3711 0.0926

STD 0.1386 0.1177 1.1489 0.8232 0.3361 0.2384

500 Estimate -0.9971 -1.9830 0.8466 0.8528 -0.3421 0.0952

STD 0.1196 0.1178 1.0123 0.8095 0.2837 0.2296

600 Estimate -0.9997 -1.9771 0.8245 0.8310 -0.3457 0.0918

STD 0.1137 0.1056 0.8707 0.6632 0.2522 0.1965

700 Estimate -1.0038 -1.9765 0.8522 0.8429 -0.3512 0.0906

STD 0.0979 0.0970 0.8472 0.6449 0.2419 0.1802

800 Estimate -0.9948 -1.9816 0.8545 0.7989 -0.3503 0.1074

STD 0.0985 0.0868 0.8141 0.6275 0.2322 0.1853

900 Estimate -0.9979 -1.9834 0.8507 0.7782 -0.3505 0.1139

STD 0.0953 0.0782 0.7146 0.6074 0.2030 0.1702

1000 Estimate -1.0011 -1.9854 0.8110 0.7556 -0.3384 0.1203

STD 0.0856 0.0808 0.6586 0.5605 0.1930 0.1694
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Table 3.4: Results of Interior Data Fitted by Boundary Model

N Parameters α1 α2 ξ β

100 Estimate -0.9377 -5.0508 -0.4508 1.1124

STD 0.2906 0.4492 1.7760 0.5401

200 Estimate -0.9680 -5.0084 -0.3386 1.0737

STD 0.1866 0.2923 1.2745 0.3955

300 Estimate -0.9856 -5.0181 -0.4096 1.1003

STD 0.1474 0.2887 1.1142 0.3380

400 Estimate -0.9927 -5.0218 -0.4222 1.1089

STD 0.1383 0.2207 1.0398 0.2982

500 Estimate -0.9968 -5.0319 -0.3489 1.0811

STD 0.1195 0.2124 0.8547 0.2442

600 Estimate -0.9994 -5.0385 -0.3432 1.0830

STD 0.1136 0.1855 0.7578 0.2194

700 Estimate -1.0036 -5.0396 -0.3621 1.0870

STD 0.0977 0.1629 0.7046 0.2053

800 Estimate -0.9946 -5.0322 -0.3907 1.0959

STD 0.0984 0.1500 0.6816 0.1953

900 Estimate -0.9977 -5.0302 -0.3978 1.0992

STD 0.0951 0.1481 0.6061 0.1760

1000 Estimate -1.0009 -5.0308 -0.3731 1.0910

STD 0.0854 0.1313 0.5504 0.1662
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Figure 3.1: Comparison of C.d.f.’s for Boundary Data with x=0.4321 and y=0.1398

Figure 3.2: Comparison of C.d.f.’s for Boundary Data with x=0.4321 and y=0.3968
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Figure 3.3: Comparison of C.d.f.’s for Boundary Data with x=0.8588 and y=0.1398

Figure 3.4: Comparison of C.d.f.’s for Boundary Data with x=0.8588 and y=0.3968
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Figure 3.5: Comparison of C.d.f.’s for Interior Data with x=0.4321 and y=0.1398

Figure 3.6: Comparison of C.d.f.’s for Interior Data with x=0.4321 and y=0.3968
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Figure 3.7: Comparison of C.d.f.’s for Interior Data with x=0.8588 and y=0.1398

Figure 3.8: Comparison of C.d.f.’s for Interior Data with x=0.8588 and y=0.3968
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3.5 Concluding Remarks

In this chapter, a general mixture model is proposed to analyze competing risks data

with covariates and possible immunes. Our approach is based on the assumption of

independent censoring. The maximum likelihood estimators and their asymptotic prop-

erties are obtained and investigated under some fairly general conditions. The main

findings are the basic properties of consistency and asymptotic normality hold in both

interior and boundary cases and the large-sample 50-50 chi-square distribution for the

boundary hypothesis test that none of the population is immune to the causes under

consideration. The theoretical results provide the basic large sample foundations for

analysis of competing risks data using the mixture model.

The simulation study indicates that the proposed model and estimation procedures

produce efficient estimators for exponential mixture models. Further specific distribu-

tion functions that are commonly used in survival analysis could be investigated in a

similar way. The idea is to check the sufficient conditions required in (B1)-(B4) under

different assumptions for different models with some technical details.

The boundary hypothesis test proposed in this chapter is essentially a test for

whether the failure causes of interest include all causes of failure since there may be

unobserved potential causes. If the existence of extra causes are tested, an improper

mixture model should be accommodated to approximate the data. Otherwise, the

model should be restricted on the boundary of the parameter space.

The identifiability problem of immunes is related to the duration of follow-up. The-
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oretically, the ideal follow-up should be ∞, but this is impossible in practice. This

issue has been investigated by Maller and Zhou (1992; 1996, p.37). The conditions and

a suggested test for sufficiency of follow-up are developed in their work. We expect

that Maller and Zhou’s methods could be generalized to investigate the problems of

sufficient follow-up in competing risks data with possible immunes.

Future work also includes a study of nonparametric approach in the framework of

general mixture model. Many techniques have been discussed in the literature. For the

analysis of covariates, see Kalbfleisch and Prentice (1980, p.183), Cox and Oakes (1984,

p.143). For a discussion of competing risks data via non-parametric approaches, see

Lagakos, Sommer and Zelen (1978) and Andersen et al. (1993). The estimation and

testing methods could be developed based on the previous work in future.
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3.6 Proofs

Our proofs will mainly take advantage of the results in Vu and Zhou (1997). Here, the

deviance statistic is defined to be the difference of the values of an estimating function

evaluated at its local maximizer over two different subsets of the parameter space. The

large sample properties of the estimators and deviance are investigated under some

natural and fairly mild conditions. The regularity conditions of density functions with

respect to specific risks and link functions guarantee that the log likelihood functions are

second order differentiable. For more details, see conditions (A1), (A2), (A2
′
) and (A3)

of Vu and Zhou(1997) and the proof of Maller and Zhou (2002). Conditions (B1)-(B5)

of Vu and Zhou (1997) concern asymptotic behavior of the first and second derivatives

of log-likelihood functions and their expectations. We restate the conditions as follows:

(C1) E[Sn(θ0)] = 0 and E[Sn(θ0)Sn(θ0)T ] = E[Fn(θ0)] is finite.

(C2) λmin(Qn) → ∞ as n → ∞, i.e. Qn is positive definite as n large enough, where

λmin denotes the smallest eigenvalue of a matrix.

(C3) For any positive constant A, as n→∞

sup
θ∈Nn(A)

||Q−1/2
n Fn(θ)(Q−1/2

n )T − I||1 → 0.

(C4) Condition C2 holds and

Q−1/2
n Sn(θ0)

D−→ N(0, I).

It should be noted that in condition (C3) we take Qn = Gn and V = I in Vu and

Zhou’s original conditions (B1)-(B4) and thus make B4 redundant.
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For the proofs we need the formulations of Sn(θ) and Fn(θ).

Lemma 3.6.1 Assume that the regularity conditions (R1)-(R3) are satisfied by f(t;φij)

for 1 ≤ i ≤ n and 1 ≤ j ≤ J , then condition (C1) holds.

Proof. The first derivative of lni, the contribution to the log-likelihood function by

individual i is

∂lni(θ)

∂θ
=

J∑
j=1

δij
∂{pijfij(ti)}
pijfij(ti)∂θ

+ (1− δi)
∂Si(ti)

Si(ti)∂θ
.

Note that for any measurable function M(·) on R, we have

E[δijM(ti)] = E[δiM(ti))|Di = j]P (Di = j)

= pij0E[E[δiM(ti)|ui, Di = j)]]

= pij0E

{∫ ui

0

M(t)dFij0(t)

}
(3.6.50)

and

E[(1− δi)M(ti)] = E[E[(1− δi)M(ti)|ui]]

= E

{∫ ∞
t=ui

M(ui)dFi0(t)

}
= E {M(ui)Si0(ui)} . (3.6.51)
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Thus by the regularity conditions we get

E

{
∂lni(θ)

∂θ

}
θ=θ0

=
J∑
j=1

pij0E

{∫ ui

0

∂{pijfij(t)}
pijfij(t)∂θ

dFi0(t)

}
θ=θ0

+ E

{
Si0(ui)

∂Si(ui)

Si(ui)∂θ

}
θ=θ0

=
J∑
j=1

pij0E

{∫ ui

0

∂{pijfij(t)}
pij0fij0(t)∂θ

dFi0(t)

}
θ=θ0

+ E

{
Si0(ui)

∂Si(ui)

Si0(ui)∂θ

}
θ=θ0

=
J∑
j=1

E

{∫ ui

0

∂{pijfij(t)}
∂θ

dt

}
θ=θ0

+ E

{
∂Si(ui)

∂θ

}
θ=θ0

=E

{
∂

∂θ

(∫ ui

0

J∑
j=1

pijfij(t)dt+ Si(ui)

)}
θ=θ0

=E

{
∂

∂θ
(Fi(ui) + Si(ui))

}
θ=θ0

=0 (3.6.52)

for i = 1, . . . , n. As a result,

E{Sn(θ0)} =
n∑
i=1

E

{
∂lni(θ)

∂θ

}
θ=θ0

= 0. (3.6.53)

Similarly, the second derivative of lni is

∂2lni(θ)

∂θ∂θT
=

J∑
j=1

δij

{
∂2{pijfij(ti)}
pijfij(ti)∂θ∂θT

− 1

p2
ijf

2
ij(ti)

∂{pijfij(ti)}
∂θ

∂{pijfij(ti)}
∂θT

}

+ (1− δi)
{

∂2Si(ti)

Si(ti)∂θ∂θT
− 1

S2
i (ti)

∂Fi(ti)

∂θ

∂Fi(ti)

∂θT

}
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for i = 1, . . . , n. Hence

E

{
∂2lni(θ)

∂θ∂θT

}
θ=θ0

=
J∑
j=1

pij0E

{∫ ui

0

{
∂2{pijfij(t)}
pijfij(t)∂θ∂θT

− 1

p2
ijf

2
ij(t)

∂{pijfij(t)}
∂θ

∂{pijfij(t)}
∂θT

}
dFij0(t)

}
θ=θ0

+ E

{{
∂2Si(ui)

Si(ui)∂θ∂θT
− 1

S2
i (ui)

∂Fi(ui)

∂θ

∂Fi(ui)

∂θT

}
Si0(ui)

}
θ=θ0

=
J∑
j=1

pij0E

{∫ ui

0

{
∂2{pijfij(t)}

pij0fij0(t)∂θ∂θT
− 1

p2
ij0f

2
ij0(t)

∂{pijfij(t)}
∂θ

∂{pijfij(t)}
∂θT

}
fij0(t)dt

}
θ=θ0

+ E

{{
∂2Si(ui)

Si0(ui)∂θ∂θT
− 1

S2
i0(ui)

∂Fi(ui)

∂θ

∂Fi(ui)

∂θT

}
Si0(ui)

}
θ=θ0

=
J∑
j=1

E

{∫ ui

0

{
∂2{pijfij(t)}

∂θ∂θT
− 1

pij0fij0(t)

∂{pijfij(t)}
∂θ

∂{pijfij(t)}
∂θT

}
dt

}
θ=θ0

+ E

{{
∂2Si(ui)

∂θ∂θT
− 1

Si0(ui)

∂Si(ui)

∂θ

∂Si(ui)

∂θT

}}
θ=θ0

= E

{∫ ui

0

∑J
j=1 ∂

2{pijfij(t)}
∂θ∂θT

dt+
∂2Si(ui)

∂θ∂θT

}
θ=θ0

− E

{∫ ui

0

J∑
j=1

1

pij0fij0(t)

∂{pijfij(t)}
∂θ

∂{pijfij(t)}
∂θT

dt+
1

Si0(ui)

∂Si(ui)

∂θ

∂Si(ui)

∂θT

}

= −E

{∫ ui

0

J∑
j=1

1

pij0fij0(t)

∂{pijfij(t)}
∂θ

∂{pijfij(t)}
∂θT

dt+
1

Si0(ui)

∂Si(ui)

∂θ

∂Si(ui)

∂θT

}
.

Note that δ2
ij = δij, (1 − δi)2 = 1 − δi and δij(1 − δi) = 0 by their definition, we also

have

E

{
∂lni(θ)

∂θ

∂lni(θ)

∂θT

}
θ=θ0

= E

{
J∑
j=1

δij
p2
ijf

2
ij(ti)

∂{pijfij(ti)}
∂θ

∂{pijfij(ti)}
∂θT

+
1− δi
S2
i (ti)

∂Si(ti)

∂θ

∂Si(ti)

∂θT

}
θ=θ0

= E

{∫ ui

0

J∑
j=1

1

pij0fij0(t)

∂{pijfij(ti)}
∂θ

∂{pijfij(ti)}
∂θT

dt+
1

Si0(ui)

∂Si(ti)

∂θ

∂Si(ti)

∂θT

}
θ=θ0

= −E
{
∂2lni(θ)

∂θ∂θT

}
θ=θ0

.
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As the individuals are assumed to be independent of each other and (3.6.52) and (3.6.53)

holds, we get

E{Sn(θ)(Sn(θ))T}θ=θ0 =
n∑
i=1

var(Sn(θ))θ=θ0

=
n∑
i=1

var

(
∂lin(θ)

∂θ

)
θ=θ0

=
n∑
i=1

E

(
∂lin(θ)

∂θ

∂lin(θ)

∂θT

)
θ=θ0

= −
n∑
i=1

E

{
∂2lni(θ)

∂θ∂θT

}
θ=θ0

= E{Fn(θ0)}. (3.6.54)

Hence condition (C1) holds by (3.6.53), (3.6.54) and the regularity conditions (R2)-

(R3).

Lemma 3.6.2 Assume that conditions (B1) holds, then condition (C2) holds.

Proof. The results follow readily from the proof of Theorem 2 in Choi and zhou (2002).

Thus we omit the proof here.

Lemma 3.6.3 If (B1) and (B2) are satisfied, then as n→∞,

||Q−1/2
n {Fn(θ0)−Qn}(Q−1/2

n )T ||1
P−→ 0. (3.6.55)
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Proof. Let v be an arbitrary unit vector in RπiJK+(π2+1)J , thus by routine calculus we

have

vT{Q−1/2
n {Fn(θ0)−Qn}(Q−1/2

n )T}v

=
n∑
i=1

vT{Q−1/2
n {HiFi(θ0)HT

i −HiQi(θ0)HT
i }(Q−1/2

n )T}v

=
n∑
i=1

πiJK+(π2+1)J∑
r=1

πiJK+(π2+1)J∑
m=1

{f rmi (θ0)− qrmi }vT eireTimv, (3.6.56)

where eir is the rth column vector of Q−1/2
n Hi for r = 1, . . . , πiJK + (π2 + 1)J and

i = 1, . . . , n, i.e.

Q−1/2
n Hi = (ei1, . . . , ei,πiJK+(π2+1)J). (3.6.57)

Furthermore, as E[f rmi (θ0)] = qrmi , we have

E{vT{Q−1/2
n {Fn(θ0)−Qn}(Q−1/2

n )T}v} = 0.

Let Wirm = {f rmi (θ0)− qrmi }vT eireTimv, it is obvious that E[Wirm] = 0, thus

var(Wirm) = E{{f rmi (θ0)− qrmi }2(vT eire
T
imv)2} = (vT eire

T
imv)2var{f rmi }.

When (i1 − i2)2 + (r1 − r2)2 + (m1 −m2)2 > 0, we get

cov(Wi1r1m1 ,Wi2r2m2) = E[Wi1r1m1Wi2r2m2 ]

≤ E

{W2
i1r1m1

+W2
i2r2m2

2

}
=

1

2
{var(Wi1r1m1)}+

1

2
{var(Wi2r2m2)}.
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As a result of the Cauchy-Schwarz inequality,

lim
n→∞

var{vT{Q−1/2
n {Fn(θ0)−Qn}(Q−1/2

n )T}v}

≤ {πiJK + (π2 + 1)J}2 lim
n→∞

n∑
i=1

πiJK+(π2+1)J∑
r=1

πiJK+(π2+1)J∑
m=1

var{f rmi (θ0)}(vT eireTimv)2.

≤M{πiJK + (π2 + 1)J}2 lim
n→∞

n∑
i=1

πiJK+(π2+1)J∑
r=1

πiJK+(π2+1)J∑
m=1

(vT eire
T
imv)2

≤M{πiJK + (π2 + 1)J}2 lim
n→∞

n∑
i=1

πiJK+(π2+1)J∑
r=1

πiJK+(π2+1)J∑
m=1

|eir|2|eim|2

= M{πiJK + (π2 + 1)J}2 lim
n→∞

n∑
i=1

(

πiJK+(π2+1)J∑
r=1

|eir|2)2

= M{πiJK + (π2 + 1)J}2 lim
n→∞

n∑
i=1

(tr{HT
i Q−1

n Hi})2

= 0. (3.6.58)

Then (3.6.55) follows from Chebychev’s inequality.

Lemma 3.6.4 If (B1) and (B3) hold, then for each A > 0, as n→∞,

sup
θ∈Nn(A)

||Q−1/2
n {Fn(θ)−Fn(θ0)}(Q−1/2

n )T ||1
P−→ 0. (3.6.59)
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Proof. Let v be an arbitrary unit vector in RπiJK+(π2+1)J and eir be defined by (3.6.57),

then follows from (B1), (B3) and Cauchy-Schwarz inequality, we have

lim
n→∞

E

{
sup

θ∈Nn(A)

|vTQ−1/2
n {Fn(θ)−Fn(θ0)}(Q−1/2

n )Tv|

}

= lim
n→∞

n∑
i=1

πiJK+(π2+1)J∑
r=1

πiJK+(π2+1)J∑
m=1

E

{
sup

θ∈Nn(A)

|f rmi (θ)− f rmi (θ0)||vT eireTimv|

}

≤ M
′
A lim
n→∞

n∑
i=1

πiJK+(π2+1)J∑
r=1

πiJK+(π2+1)J∑
m=1

(tr{HT
i Q−1

n Hi})1/2|eir||eim|

= M
′
A lim
n→∞

n∑
i=1

(tr{HT
i Q−1

n Hi})1/2


πiJK+(π2+1)J∑

m=1

|eim|


2

≤ M
′
A(πiJK + (π2 + 1)J) lim

n→∞

n∑
i=1

(tr{HT
i Q−1

n Hi})1/2


πiJK+(π2+1)J∑

m=1

|eim|2


≤ M
′
A(πiJK + (π2 + 1)J) lim

n→∞

n∑
i=1

(tr{HT
i Q−1

n Hi})3/2

= 0.

Hence (3.6.55) is implied by Markov’s inequality.

Lemma 3.6.5 If (B1), (B2) and (B3) are satisfied, then (C3) holds.

Proof. Note that

Q−1/2
n {Fn(θ)}(Q−1/2

n )T

= Q−1/2
n {Fn(θ)−Fn(θ0) + Fn(θ0)−Qn +Qn}(Q−1/2

n )T

= Q−1/2
n {Fn(θ)−Fn(θ0)}(Q−1/2

n )T +Q−1/2
n {Fn(θ0)−Qn}(Q−1/2

n )T +Q−1/2
n {Qn}(Q−1/2

n )T

= I +Q−1/2
n {Fn(θ0)−Qn}(Q−1/2

n )T +Q−1/2
n {Fn(θ)−Fn(θ0)}(Q−1/2

n )T . (3.6.60)

The right side of (3.6.60) converges in probability towards I by (3.6.55) and (3.6.59)

and so does the left side. (C3) holds consequently.
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Lemma 3.6.6 If (B1) and (B4) are satisfied, then (C4) holds.

Proof. Note that the individuals under consideration are independent of each other.

This proof will appeal to the central limit theorem. Let v be an arbitrary unit vector,

thus

vTQ−1/2
n Sn(θ0) =

n∑
i=1

vTQ−1/2
n HiSi(θ0). (3.6.61)

By (3.6.52), we can get

E{vTQ−1/2
n Sn(θ0)} = E

{
vTQ−1/2

n HiSi(θ0)
}

= 0.

We still have

var{vTQ−1/2
n Sn(θ0)} = E

{
vTQ−1/2

n Sn(θ0)Sn(θ0)T (Q−1/2
n )Tv

}
= vTQ−1/2

n Qn(Q−1/2
n )Tv

= 1.

By condition (C1) and Cauchy-Schwarz inequalities, we have

E
{
vTQ−1/2

n HiSi(θ0)
}2

= E
{
vTQ−1/2

n HiSi(θ0)Si(θ0)THT
i (Q−1/2

n )Tv
}

= E{Si(θ0)Si(θ0)T}
{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}

≤ E|Si(θ0)|2λmax
{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}

≤ E|Si(θ0)|2tr
{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}

(3.6.62)
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and similarly,

E
{
vTQ−1/2

n HiSi(θ0)
}4

= E
{
vTQ−1/2

n HiSi(θ0)Si(θ0)THT
i (Q−1/2

n )Tv
}2

= E{Si(θ0)Si(θ0)T}2
{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}2

≤ E|Si(θ0)|4λmax
{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}2

≤ E|Si(θ0)|4tr
{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}2
.

(3.6.63)

Note that Cauchy-Schwarz inequalities in addition with condition (B4) imply that

E|Si(θ0)|4 = E


πiJK+(π2+1)J∑

r=1

[sri (θ0)]2


2

≤ {πiJK + (π2 + 1)J}


πiJK+(π2+1)J∑

r=1

E[sri (θ0)]4


≤ {πiJK + (π2 + 1)J}2M

′′

and that

E|Si(θ0)|2 =

∫
|Si(θ0)|2dP

≤
{∫
|Si(θ0)|4dP

} 1
2

=
{
E|Si(θ0)|4

} 1
2

≤
√
M ′′ ,

where P is the probability measure with which the expectation is respect to. As a result,

we have

E
{
vTQ−1/2

n HiSi(θ0)
}2 ≤

√
M ′′tr

{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}

(3.6.64)
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and

E
{
vTQ−1/2

n HiSi(θ0)
}4 ≤ {πiJK + (π2 + 1)J}2M

′′
tr
{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}2
.

Thus by condition (B1), Cauchy-Schwarz inequalities and Chebyshev’s inequalities, we

have, for any ε > 0,

0 ≤ lim
n→∞

n∑
i=1

∫
|vTQ−1/2

n HiSi(θ0)|≥ε
{vTQ−1/2

n HiSi(θ0)}2dP

= lim
n→∞

n∑
i=1

∫
1{|vTQ−1/2

n HiSi(θ0)|≥ε}{v
TQ−1/2

n HiSi(θ0)}2dP

≤ lim
n→∞

n∑
i=1

{∫
1{|vTQ−1/2

n HiSi(θ0)|≥ε}dP
} 1

2
{∫
{vTQ−1/2

n HiSi(θ0)}4dP
} 1

2

= lim
n→∞

n∑
i=1

P 1/2{|vTQ−1/2
n HiSi(θ0)| ≥ ε}

{∫
{vTQ−1/2

n HiSi(θ0)}4dP
} 1

2

≤ lim
n→∞

n∑
i=1

{
var{vTQ−1/2

n HiSi(θ0)}
ε2

} 1
2 {∫

{vTQ−1/2
n HiSi(θ0)}4dP

} 1
2

= lim
n→∞

1

ε

n∑
i=1

{
E{vTQ−1/2

n HiSi(θ0)}2
} 1

2
{
E{vTQ−1/2

n HiSi(θ0)}4
} 1

2

≤ lim
n→∞

1

ε

n∑
i=1

M
′′ 34
{
tr
{
vTQ−1/2

n HiH
T
i (Q−1/2

n )Tv
}} 3

2

= 0.

As a result,

lim
n→∞

n∑
i=1

∫
|vTQ−1/2

n HiSi(θ0)|≥ε
{vTQ−1/2

n HiSi(θ0)}2dP.

The Lindeberg condition holds consequently. So as n→∞

vTQ−1/2
n Sn(θ0)

D−→ N(0, 1),

where N(0, 1) is a standard normal distribution. As v is an arbitrary unit vector, the

elements of Q−1/2
n Sn(θ0) converge in distribution to N(0, 1). Note that the individuals

are independent of each other, condition (C4) holds consequently.
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Proof of Theorem 3.3.1. Since conditions (C1) − (C4) have been verified by the

lemmas, it suffices to check the conditions (A1) − (A2) to use Theorem 2.1 in Vu and

Zhou (1997). The subset over which the maximization takes place is specified as:

τ = Θ1 = Rπ1JK+(π2+1)J .

On the basis of the specification, we can recast conditions (A1)− (A3) as

(D1) For a neighborhood N of θ0, the function ln(θ) is continuous on τ ∩ N , and the

first and second directional derivatives of ln(θ) with respect to θ exist, are finite

and are continuous on τ ∩N .

(D2) There is a closed cone Cτ with vertex at θ0 such that

Cτ ⊆ Θ1 and Cτ ∩N = τ ∩N ,

where N is a closed neighborhood of θ0.

Condition (D1) is satisfied trivially by the regularity conditions. Let

Cτ = τ = Rπ1JK+(π2+1)J .

It is clear that N (δ) ⊆ τ for sufficiently small δ, since θ0 is an interior point of Θ1.

Then condition (D2) is established.

Now conditions (C1)− (C4) and (D1)− (D2) are verified. Then Theorem 2.1 of Vu

and Zhou (1997) gives a local maximum likelihood estimator θ̂
(1)
n with maximization

taking place over τ , which is locally uniquely determined interior to θ0 with probability

approaching 1, and is consistent for θ0 as n → ∞. The asymptotic distributions of
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the maximum likelihood estimators, however, are not discussed in Vu and Zhou (1997).

The next part of the proof is for the asymptotic normality of θ̂
(1)
n . Let v be an arbitrary

unit vector in RπiJK+(π2+1)J . Note that θ̂
(1)
n is a maximizer of ln(θ) over a neighborhood

Nn(A) of θ0 with probability approaching 1, i.e.

Sn(θ̂(1)
n ) = 0 (3.6.65)

with probability approaching 1. Let θ∗ be on the line segment between θ̂
(1)
n and θ0, then

by Taylor expansion we have

vTQ−1/2
n Sn(θ0) = vTQ−1/2

n Sn(θ0)− vTQ−1/2
n Sn(θ̂(1)

n )

= vTQ−1/2
n Fn(θ∗)(θ̂(1)

n − θ0) + op(1)

= vT
{
I +Q−1/2

n {Fn(θ∗)−Qn}(Q−1/2
n )T

}
(Q1/2

n )T (θ̂(1)
n − θ0) + op(1)

= vT {I + op(1)} (Q1/2
n )T (θ̂(1)

n − θ0) + op(1),

(3.6.66)

where op(1) is a square matrix whose elements converge in probability to 0. Hence

vTQ−1/2
n Sn(θ0) and vT (Q1/2

n )T (θ̂
(1)
n − θ0) have the same limiting distribution. Thus

(3.3.37) holds. To prove (3.3.38), it suffices to show that as n→∞,

(Q1/2
n )T (θ̂(1)

n )(θ̂(1)
n − θ0)− (F1/2

n )T (θ̂(1)
n )(θ̂(1)

n − θ0)
D−→ 0. (3.6.67)

It holds directly from condition (C3).

Proof of Theorem 3.3.2. and Theorem 3.3.3. For these theorems, we shall use the

results of Vu and Zhou (1997) again. Here we need to deal with two parameter spaces

τ1 and τ2, where τ1 is a subset of Θ1 to which the true point θ0 is constrained under the

null hypothesis and τ2 is the parameter space under the alternative hypothesis. The
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requirements for τ in conditions (D1) and (D2) should be satisfied by τ1 and τ2. In

addition, τ1 and τ2 are required to have similar properties as (A3) in Vu and Zhou

(1997) which we recast as condition (D3) here:

(D3) The space τ is said to satisfy (D3) if there exists a closed cone Cτ with vertex

at the true point θ0 and a closed cone C
′
τ with vertex at 0 such that Cτ can be

rescaled to C
′
τ .

Let

τ1 = Sr + θ∗ ⊂ Θ1

with Sr + θ∗ being defined by (3.3.39). The parameter space under the unrestricted

alternative hypothesis is simply

τ2 = Θ1 = Rπ1JK+(π2+1)J .

Further assume that

Cτ1 = Sr + θ∗ and C
′

τ1
= Rr × {0}π1JK+(π2+1)J−r.

As θ0 and θ∗ are in the interior of Θ1, Sr + θ∗ can be rescaled to Rr×{0}π1JK+(π2+1)J−r

and condition (D3) is satisfied by τ1. Let

Cτ2 = Rπ1JK+(π2+1)J and C
′

τ2
= Rπ1JK+(π2+1)J .

Condition (D3) holds trivially for τ2 since Rπ1JK+(π2+1)J keeps invariant under rescaling

and centering. Thus the existence, uniqueness and consistency of θ̂
(2)
n , the maximum

likelihood estimator under the null hypothesis, are implied by Theorem 2.1 of Vu and

Zhou(1997) and Theorem 3.3.2 is proved. By Theorem 2.2 of Vu and Zhou(1997) we
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can get

d(11)
n = −2(ln(θ̂(2)

n )− θ̂(1)
n )

D−→ inf
θ∈C′τ1

|Nπ1JK+π2J+J − θ| − inf
θ∈C′τ2

|Nπ1JK+π2J+J − θ|

= inf
θ∈Rr
|Nπ1JK+π2J+J − θ| − inf

θ∈Rπ1JK+π2J+J
|Nπ1JK+π2J+J − θ|

= χ2
π1JK+π2J+J−r,

where Nπ1JK+π2J+J is a standard normal random vector in π1JK+π2J+J dimensions.

This proves Theorem 3.3.3.

Proof of Theorem 3.3.4 and Theorem 3.3.5. Theorem 3.3.4 and Theorem 3.3.5

are for the boundary cases. The proof is similar to that of Theorem 2. The parameter

spaces under null hypothesis and alternative hypothesis are respectively

Θ3 = Rπ1JK+(π2+1)(J−1) × {0}

and

Θ4 = Rπ1JK+(π2+1)(J−1) × [0,∞).

Further we specify

CΘ3 = Rπ1JK+(π2+1)(J−1) × {0}, C
′

Θ3
= Rπ1JK+(π2+1)(J−1) × {0} (3.6.68)

and

CΘ4 = Rπ1JK+(π2+1)(J−1) × [0,∞), C
′

Θ4
= Rπ1JK+(π2+1)(J−1) × [0,∞). (3.6.69)
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To verify the conditions (D1)− (D3), we need to define the neighborhood of θ0 on the

boundary by

N (δ) =
J∏
j=1

K∏
k=1

π1∏
m=1

[αjkm − δ, αjkm + δ]

×
J−1∏
j=1

[ξj − δ, ξj + δ]×
J∏
j=1

π2∏
m=1

[βjm − δ, βjm + δ]× [−δ, δ].

Thus

N (δ) ∩Θ3 =
J∏
j=1

K∏
k=1

π1∏
m=1

[αjkm − δ, αjkm + δ]

×
J−1∏
j=1

[ξj − δ, ξj + δ]×
J∏
j=1

π2∏
m=1

[βjm − δ, βjm + δ]× {0}

and

N (δ) ∩Θ4 =
J∏
j=1

K∏
k=1

π1∏
m=1

[αjkm − δ, αjkm + δ]

×
J−1∏
j=1

[ξj − δ, ξj + δ]×
J∏
j=1

π2∏
m=1

[βjm − δ, βjm + δ]× [0,∞).

We still need to define the first and second order derivatives of ln(θ) in N (δ) ∩ Θ3

and N (δ) ∩ Θ4. For those points that are in the interior of ln(θ) in N (δ) ∩ Θ3 and

N (δ)∩Θ4, the derivatives are set to be the usual directional derivatives. For the points

that lie on the boundary, i.e. the points in N (δ) ∩Θ3, let

∂g(θ)

∂γ
= lim

h2→0

g{θ + {0}π1JK+(π2+1)(J−1) × {h2}} − g(θ)

h2
,
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where g(·) is any function satisfying the regularity conditions. It is obvious that (D1)

and (D2) are satisfied by Θ3 and Θ4. By Theorem 2.1 of Vu and Zhou (1997), there are

maximizers θ̂n
(3)

and θ̂n
(4)

of ln(θ) over Θ3 and Θ4 respectively, which are locally unique

with probability approaching 1, and is consistent for θ0. Theorem 3.3.4 is proved.

As Rπ1JK+(π2+1)(J−1) is trivially invariant under rescaling and centering, CΘ3 and

CΘ4 satisfy condition (D3) by (3.6.68) and (3.6.69). Then by Theorem 2.2 of Vu and

Zhou(1997),

d(12)
n = −2(ln(θ̂(3)

n )− θ̂(4)
n )

D−→ inf
θ∈C′Θ3

|Nπ1JK+π2(J−1)+J − θ|2 − inf
θ∈C′Θ4

|Nπ1JK+π2(J−1)+J − θ|2

= inf
θ∈Rπ1JK+(π2+1)(J−1)×{0}

|Nπ1JK+π2(J−1)+J − θ|2

− inf
θ∈Rπ1JK+(π2+1)(J−1)×[0,∞)

|Nπ1JK+π2(J−1)+J − θ|2

= N2 −N2I{N<0}

= N2I{N≥0}, (3.6.70)

where Nπ1JK+π2(J−1)+J represents a standard normal distribution of π1JK + π2(J −

1) + J dimensions and N is the standard normal distribution. Theorem 3.3.5 is proved

consequently.
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Chapter 4

A Piecewise Exponential Mixture

Model

4.1 Introduction

In this chapter, a piecewise exponential mixture model which is a special case of the

general mixture model in Chapter 3 is investigated for competing risks data with covari-

ates and possible immunes. Section 4.2 is devoted to the model development. Section

4.3 is for the inference methods and the large sample properties of the estimators and

test statistics. In Section 4.4, a set of real life data is fitted by our model. Section 4.5

is for the concluding remarks. Finally, the proofs are put in Section 4.6.
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4.2 Model Specification

A simple and flexible distribution for modeling time to event data is piecewise exponen-

tial distribution, which has been widely used because it allows us to approximate almost

any baseline hazard function reasonably when the cutpoints of the time duration are

specified appropriately. There have been many discussions in the literature in which

the applications of piecewise exponential distribution are investigated. Among them

Friedman (1982) studied piecewise exponential models for survival data with covariates

and Larson and Dinse (1985) approximated the Stanford Heart Transplant data by a

boundary piecewise exponential mixture model.

In a piecewise exponential mixture distribution setting, the distribution of the sur-

vival time of individual i given that Di = j is assumed to be

fij(t) = λij(t) exp{−λij(t)t}, 1 ≤ i ≤ n, 1 ≤ j ≤ J (4.2.1)

for t > 0, where λij(t)’s are linked to observed covariates xi’s, the sub-vector of the

covariates of individual i, by

λij(t) = exp{ςj(t) + αTj xi}, 1 ≤ i ≤ n, 1 ≤ j ≤ J. (4.2.2)

The time duration [0,∞) under our study is partitioned into M exhaustive and mutually

exclusive intervals Im = [τm−1, τm) with cut points

0 = τ0 < τ1 < · · · < τM =∞.

In addition, the baseline hazard function is assumed to be constant within each interval,

so that

ςj(t) = ςjm, t ∈ Im, 1 ≤ m ≤M. (4.2.3)
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The failure rate with respect to a specific risk j of individual i is related to yi, another

sub-vector of the covariates of individual i, by (3.2.15) for the interior cases and by

(3.2.16) and (3.2.17) for boundary cases, i.e.

pij =
exp(ξj + βTj yi)

1 +
∑J

l=1 exp(ξl + βTl yi)
(4.2.4)

when the true point lies in the interior of the parameter space and

pij =
exp(ξj + βTj yi)

γ + 1 +
∑J−1

l=1 exp(ξl + βTl yi)
, 1 ≤ j ≤ J − 1 (4.2.5)

and

piJ =
1

γ + 1 +
∑J−1

l=1 exp(ξl + βTl yi)
(4.2.6)

when the true point lies on the boundary of the parameter space. Under the previous

assumptions,

Fij(t) = P{T ∗i ≤ t|Di = j}

=
M∑
m=1

1{t>τm−1}P{τm−1 < T ∗i ≤ (t ∧ τm)|Di = j}

=
M∑
m=1

1{t>τm−1}

{
exp

(
− τm−1e

ςjm+αTj xi
)
− exp

(
− (t ∧ τm) expςjm+αTj xi

)}
for 1 ≤ i ≤ n and 1 ≤ j ≤ J . Noting that for any t <∞,

P{T ∗i ≤ t|Di = 0} = 0 and P{T ∗i > t|Di = 0} = 1,

the distribution function of individual i is

Fi(t) = P{T ∗i ≤ t} =
J∑
j=1

pijFij(t). (4.2.7)

Recall that the observations normally consist of (ti, δij, xi, yi ), i = 1, 2, . . . , n and

j = 1, 2, . . . , J , where ti represents the observed survival time for the ith individual, xi
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and yi are the observed values of the covariates and δij is the risk indicator defined by

δij =


1 if individual i dies from cause j,

0 otherwise,

i = 1, 2, . . . , n; j = 1, . . . , J. (4.2.8)

The ith individual who experiences a type j failure contributes pijfij(ti) to the likelihood

function. Alternatively, individual i who is censored contributes 1− Fi(ti) =: Si(ti) to

the likelihood. As a consequence, the full likelihood function is

Ln =
n∏
i=1

{
J∏
j=1

(
pijfij(ti)

)δij(1− Fi(ti))1−δi

}
.

The log-likelihood function of the observations is

ln =
n∑
i=1

{
J∑
j=1

δij
(

log pij + log fij(ti)
)

+ (1− δi) logSi(ti)

}
,

which is the estimating function in this part of study.

Assume ςj = (ςj1, . . . , ςjM)T , it should be emphasized that the parameters to be

estimated for the interior case are

θ = (ςT1 , . . . , ς
T
J , α

T
1 , . . . , α

T
J , β

T
1 , . . . , β

T
J , ξ1, . . . , ξJ)T

and the parameters to be estimated for the boundary case are

θ = (ςT1 , . . . , ς
T
J , α

T
1 , . . . , α

T
J , β

T
1 , . . . , β

T
J−1, ξ1, . . . , ξJ−1, γ)T .

The estimators of the parameters could be developed under some further specifica-

tions. In next section, we will investigate the application of the EM algorithm to the

statistical inferences on the mixture piecewise exponential model and develop several

tests for hypotheses of practical interest.
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4.3 Main Results and Applications

For the piecewise exponential mixture model specified in Section 4.2 with finite follow

up, the sufficient conditions (B2) − (B4) can be replaced by the following simpler

condition:

(E) The true value of the regression coefficients of the hazard functions are uniformly

bounded. More specifically, there is a constant Ms > 0 such that

|ςjm0| ≤Ms and |αj0| ≤Ms

for 1 ≤ j ≤ J and 1 ≤ m ≤M .

Remark. Condition (E) implies that for an individual, the failure rates subject to

different types of risks are comparable, i.e. no particular type of risk dominates the

other types. If condition (E) is violated, i.e. there is a risk which is negligible compared

with another, degeneracy would arise. Furthermore, Condition (E) implies that if the

covariates are finite, there exists 0 < E < 1 such that

E ≤ λij(t) ≤
1

E

for 1 ≤ i ≤ n, ≤ j ≤ J and 0 ≤ t <∞.

Thus we have the following theorem.

Theorem 4.3.1 For the piecewise exponential mixture model specified in Section 4.2

with bounded censorship and covariates, if (B1) and (E) are satisfied, the conclusions

of Theorem 3.3.1− 3.3.5 hold.
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Theorem 4.3.1 provides us with the existence, uniqueness and normality with probability

approaching 1 of the maximum likelihood estimators of the parameters local to the true

point over several subspaces of the parameter space. It also allows us to carry out a

number of tests of practical interest by restricting the parameter in the underlying

subspaces which depend on the details of the tests.

To calculate the estimates, we adopt EM algorithm which is proposed by Demp-

ster, Laird and Rubin (1977). EM algorithm has been a popular method in statistical

computation as the computation based on the likelihood function of complete data is

much easier than that on the basis of incomplete data. The convergence properties of

EM algorithm was then discussed in Wu (1983). Our settings satisfy the requirement of

Theorem 2 in Wu (1983) trivially so that EM algorithm is applicable and a stationary

point could be reached. For other examples of applications of EM algorithm in survival

analysis, see Larson and Dinse (1985), Peng and Dear (2000) and Craiu and Duchesne

(2004).

The EM algorithm is applicable when there is a many-to-one mapping from the

complete data to incomplete data. In our analysis, the observations are incomplete

because of the existence of censoring. Take individual i for example, the missing infor-

mation that is unobservable is the failure cause that individual i may be susceptible to

and will eventually fail from if the observation of individual i is censored.

A set of “pseudo-data” should be created to use the EM algorithm. Let cij be a
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Bernoulli variable indicating failure causes, i.e.

cij =


1 if individual i will fail from cause j eventually,

0 otherwise

for i = 1, 2, . . . , n and j = 1, . . . , J . Naturally ci =
∑J

j=1 cij can be used to represent

the cured status of individual i as

ci =


1 if patient i is susceptible to the risks,

0 if i is cured or an immune subject

for i = 1, 2, . . . , n. The relationships of the cij’s and δij’s are

cij =


1 δij = 1,

0 δij = 0 and δi = 1,

0 or 1 δi = 0

and

δij =


0 cij = 0 ,

0 or 1 cij = 1

for i = 1, 2, . . . , n and j = 1, . . . , J .

The complete observation of individual i is assumed to be the combination of cij

and the normal observation (ti, δij, xi, yi ), 1 ≤ i ≤ n. The cured rate of individual i is

pci = 1−
J∑
j=1

pij, i = 1, 2, . . . , n.

Let ∆i be the contribution of individual i to the likelihood function based on the

complete observations, we have

∆i =


pijfij(ti) cij = δij = 1, 1 ≤ j ≤ J,

pci ci = δi = 0,

pijSij δi = 0, cij = 1, 1 ≤ j ≤ J.
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The likelihood function and log-likelihood function on the basis of the complete

observations are

Lc =
n∏
i=1

∆i

=
n∏
i=1

{
J∏
j=1

(
pijfij(ti)

)cijδij(1− J∑
j=1

pij
)(1−ci)(1−δi)

J∏
j=1

(
pijSij(ti)

)cij(1−δi)}

and

lc =
n∑
i=1

J∑
j=1

{
cijδij log

(
pijfij(ti)

)}
+

n∑
i=1

{
(1− ci)(1− δi) log(1−

J∑
j=1

pij)

}

+
n∑
i=1

J∑
j=1

{
cij(1− δi) log

(
pijSij(ti)

)}
.

The log likelihood function lc can be divided into two separate parts lc1 and lc2, say,

such that lc1 depends on pij’s only and lc2 depends on λij’s only. So we can estimate

the parameters corresponding to pij’s and λij’s separately. The expressions of lc1 and

lc2 are

lc1 =
n∑
i=1

J∑
j=1

{cijδij log pij}+
n∑
i=1

{
(1− ci)(1− δi) log(1−

J∑
j=1

pij)

}

+
n∑
i=1

J∑
j=1

{cij(1− δi) log pij}

=
n∑
i=1

J∑
j=1

{cij(δij + 1− δi) log pij}+
n∑
i=1

{
(1− ci)(1− δi) log(1−

J∑
j=1

pij)

}

and

lc2 =
n∑
i=1

J∑
j=1

{
cijδij log

(
fij(ti)

)}
+

n∑
i=1

J∑
j=1

{
cij(1− δi) log

(
Sij(ti)

)}
=

n∑
i=1

J∑
j=1

{
cijδij log

(
λij(ti)

)}
+

n∑
i=1

J∑
j=1

{
cij(δij + 1− δi) log

(
Sij(ti)

)}
.

The expectations of lc1 and lc2 conditional on the incomplete observations and current

estimates of the parameters are required to be calculated in the E-step in the EM
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algorithm. Let gij = E[cij|(ti, δij, xi, yi)], then

gij = P{cij = 1|δij, δi}

= δijP{cij = 1|δij = 1}+ (1− δij)δiP{cij = 1|δij = 0, δi = 1}

+ (1− δi)P{cij = 1|δi = 0}

= δij + (1− δi)
P{cij = 1, T ∗i > ti}

P{T ∗i > ti}

= δij + (1− δi)
pijSij(ti)

1−
∑J

j=1 pij +
∑J

j=1 pijSij(ti)
. (4.3.9)

So the conditional expectations of lc1 and lc2 are

E[lc1] =
n∑
i=1

J∑
j=1

{gij log pij}+
n∑
i=1

{
(1− gi) log(1−

J∑
j=1

pij)

}

and

E[lc2] =
n∑
i=1

J∑
j=1

{
δij log

(
hij(ti)

)}
+

n∑
i=1

J∑
j=1

{
gij log

(
Sij(ti)

)}
,

where gi = E[ci] =
∑J

j=1 gij. Then the EM Algorithm is ready to use. Let θq be the

estimation of the parameter vector after the qth iteration. The iteration from θq to θq+1

is comprised of the following two steps:

E-step: Calculate E[lc1(θq)] and E[lc2(θq)].

M-step: Find θq+1 that maximizes E[lc1(θq)] and E[lc2(θq)].

The likelihood function based on the incomplete data is maximized by repeating the

iterations from a chosen starting point.

Recall that to improve the approximation of the competing risks data with covariates

and possible immunes, it is better to solve the following problems first:
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(a) Are there immunes?

(b) Are the probabilities that individuals will eventually fail from a risk the same?

(c) Are the failure rates subject to a risk the same for all individuals?

(d) Are the failure rates of the risks of an individual the same with each other?

(e) Can we combine some intervals together? More specifically, is the exponential

mixture model proper?

It is desired to investigate question (a) at the beginning of the data analysis. If there

are immunes, the interior model should be adopted, otherwise the boundary model is

preferred. Questions (b) − (e) are studied for the simplicity of the model since the

number of parameters decreases when the answers for the questions are “yes”.

The test of the presence of immunes can only be carried out firstly. Once the

existence of immunes is identified, the interior model or the boundary model can be

chosen to fit the data accordingly. Thus for the model defined by (4.2.1), (4.2.2), (4.2.5)

and (4.2.6), question (a) can be expressed by

H01: γ = 0.

If H01 is accepted, the boundary model with γ = 0 is supposed to be proper. If H01

is rejected, the interior model may be more precise since the test implies the existence

of immunes. For convenience of understanding, we describe the remaining tests in

boundary model and in interior model separately. For the boundary case, questions

(b)− (e) can be expressed mathematically as:
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H02: β1 = β2 = · · · = βJ−1 = 0.

H03: αj = 0, for 1 ≤ j ≤ J .

H04: ς1m = ς2m = · · · = ςJm for 1 ≤ m ≤M and α1 = α2 = · · · = αJ .

H05: ςj1 = ςj2 = · · · = ςjM for 1 ≤ j ≤ J .

Alternatively, for the model defined by (4.2.1), (4.2.2) and (4.2.4) questions (b) − (e)

can be formulated similarly as:

H
′
02: β1 = β2 = · · · = βJ = 0.

H
′
03: αj = 0, for 1 ≤ j ≤ J .

H
′
04: ς1m = ς2m = · · · = ςJm for 1 ≤ m ≤M and α1 = α2 = · · · = αJ .

H
′
05: ςj1 = ςj2 = · · · = ςjM for 1 ≤ j ≤ J .

Let dn = −2
(
ln(θ̂0)− ln(θ̂a)

)
be the deviance statistic, where θ̂0 and θ̂a are the estimates

of the parameters under null and alternative hypotheses respectively. By Theorem 4.3.1,

we have

dn
D−→



N2I{N ≤ 0} under H01,

χ2
(J−1)π2

under H02,

χ2
Jπ2

under H
′
02,

χ2
Jπ1

under H03 or H
′
03,

χ2
(J−1)(M+π1) under H04 or H

′
04,

χ2
J(M−1) under H05 or H

′
05.

(4.3.10)
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4.4 An Example of Real Life Data

We now illustrate the proposed approach with a subset of Bone Marrow Transplant

Data listed in Tables 4.1 and 4.2, which have been studied by many authors, see for

example Ibrahim, et al (2008) and Shu and Klein (2005). The common group (group

1) and AML low-risk group (group 2) are considered in our analysis. N = 92 patients

who have received a transplant are exposed to two failure causes. δ1 and δ2 are the

indicators of death with relapse and death without relapse, respectively. We can see

from Table 4.3 that there are several differences between the two groups. The censoring

of group 2 is heavier than that of group 1 and the proportion of failures caused by risk

2 among the deaths in group 2 is bigger that that in group 1. For the convenience of

computation, the covariate is set to be x = 0 for group 1 and x = 1 for group 2.

The piecewise exponential mixture model specified in Section 4.2 is applied to the

data. The cutpoints are set to be τ1 = 800 and τ2 = 1600 so that M = 3. We fit the

data with several models based on different settings. Model 1 is the boundary model

specified by (4.2.1), (4.2.2), (4.2.3), (4.2.5) and (4.2.6). The assumptions of model 2 are

those of model 1 in addition with γ = 0. Model 3 is defined by (4.2.1), (4.2.2), (4.2.3)

and (4.2.4). Model 4 is a specifical case of model 3 with M = 1. The estimates are

developed by EM algorithm.

The models are assessed by the values of −2 logL and the performances are listed in

Table 4.4. Two tests are carried out for the model selection and the details are in Table

4.5. According to the test of model 2 against model 1, the interior model should be

adopted to approximate the data. The test of model 4 against model 3 suggests that an
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exponential mixture model is acceptable. The estimates developed by the exponential

mixture model are presented in Table 4.6. The fitted model for this grouped data

displayed in Table 4.7. It is easy to see that the cured rate of group 2 is higher than

that of group 1. This is reasonable since group 2 is AML low-risk.

Figure 4.1 and Figure 4.2 show the survival curves developed by the exponential

mixture model, the approach of Kaplan and Meier (1958) and the method of Larson

and Dinse (1985). The curves developed by our approach are similar to those by the

method of Kaplan and Meier (1958) for both groups. The approach of Larson and

Dinse (1985) tends to over-estimate the survival up to about 1100 days for group 1 and

1400 days for group 2, and then predict shorter survival than the other two methods.

The main reason is that the existences of immunes is ignored in the approach of Larson

and Dinse (1985).

Compared with the previous models, our approach in the analysis of the BMT data

has several advantages:

1. It is more flexible to fit the data and model the real-life situation by relaxing the

restriction that all individuals under the study must eventually fail from one of

the risk under consideration.

2. It is able to test the presence of long-term survivors and thus select the appropriate

model – interior or boundary.

3. It provides more accurate estimates, especially if there is a substantial proportion

of long-term survivors.
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We also carried out the boundary hypothesis testing on a subset of Standford Heart

Transplant Data (Crowley and Hu, 1997). This set of data has been studied by Larson

and Dinse (1985) with the boundary model. The test shows that the existence of

immunes is insignificant (deviance = 0.24). Hence the work of Larson and Dince (1985)

is supported by our results.

Table 4.1: Bone Marrow Transplant Data for Group 1

t δ1 δ2 t δ1 δ2 t δ1 δ2

2081 0 0 1167 0 0 1279 1 0

1602 0 0 418 0 1 110 1 0

1496 0 0 417 1 0 243 1 0

1462 0 0 276 0 1 86 0 1

1433 0 0 156 1 0 466 0 1

1377 0 0 781 1 0 262 1 0

1330 0 0 172 0 1 162 1 0

996 0 0 487 0 1 262 1 0

226 0 0 716 1 0 1 0 1

1199 0 0 194 0 1 107 0 1

1111 0 0 371 1 0 269 1 0

530 0 0 526 0 1 350 0 0

1182 0 0 122 0 1
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Table 4.2: Bone Marrow Transplant Data for Group 2

t δ1 δ2 t δ1 δ2 t δ1 δ2

2569 0 0 1527 0 0 288 0 1

2506 0 0 1324 0 0 522 1 0

2409 0 0 957 0 0 79 0 1

2218 0 0 932 0 0 1156 1 0

1857 0 0 847 0 0 583 1 0

1829 0 0 848 0 0 48 0 1

1562 0 0 1850 0 0 431 1 0

1470 0 0 1843 0 0 1074 0 1

1363 0 0 1535 0 0 393 1 0

1030 0 0 1447 0 0 10 0 1

860 0 0 1384 0 0 53 0 1

1258 0 0 414 0 1 80 0 1

2246 0 0 2204 0 1 35 0 1

1870 0 0 1063 0 1 1499 0 0

1799 0 0 481 0 1 704 0 1

1709 0 0 105 0 1 653 1 0

1674 0 0 641 0 1 222 1 0

1568 0 0 390 0 1 1356 0 0

73



Table 4.3: Data Analysis

Group Total No. Risk 1 Risk 2 Censoring

1 38 12 (31.58%) 11 (28.95%) 15 (39.47%)

2 54 7 (12.96%) 16 (29.63%) 31 (54.71%)

Total 92 19 (20.65%) 27 (29.35%) 46 (50.00%)

Table 4.4: Performances of Different Models

Model Type M Cutpoints -2Log-L

1 boundary 3 800, 1600 816.4664

2 boundary, γ = 0 3 800, 1600 821.6395

3 interior 3 800, 1600 816.3791

4 interior 1 NA 821.6194

Table 4.5: Results of The Tests

H0 H1 Deviance Distribution Critical value Result

model 2 model 1 5.1731 N2I{N ≤ 0} 2.71(95%) reject

model 4 model 3 5.2403 χ2
4 7.78(90%) accept

Table 4.6: Estimation of The Parameters

Parameter α1 α2 ς1 ς2 ξ1 ξ2 β1 β2

Estimate -0.3974 -0.7728 -6.3739 -5.6511 0.1589 -0.0544 -1.3367 -0.3969

Table 4.7: Fitted Model

Group i pi1 pi2 pci λi1 λi2

1 0.3758 0.3036 0.3206 0.0017 0.0035

2 0.1978 0.2626 0.5396 0.0011 0.0016
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Figure 4.1: Comparison of Survival Curves for Group 1

Figure 4.2: Comparison of Survival Curves for Group 2
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4.5 Concluding Remarks

In this chapter, we discussed the application of a piecewise exponential mixture model

and EM algorithm on competing risks data with covariates and possible immunes. Two

real life data sets are investigated and the results favorite our approach.

The theoretical results of the general mixture model provide the basic large-sample

foundations for competing risks data analysis in the possible presence of immunes. But

it is difficult to identify the distribution of the failure time conditional on a give risk at

the origin of a study. The piecewise exponential mixture model provide a convenient

process to specify the hazard function of the failure time conditional on a give risk by

selecting the cutpoints appropriately. In this way, the theoretical results developed in

Chapter 3 could be applied easily in practical survival analysis.

4.6 Proofs

As the proofs are similar for the interior case and boundary case of the model, we

illustrate the details of the proof based on the boundary model, in which

θ = (ςT1 , . . . , ς
T
J , α

T
1 , . . . , α

T
J , β

T
1 , . . . , β

T
J−1, ξ

T
1 , . . . , ξ

T
J−1, γ)T
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and

Hi =



IJM 0 0 0 0

0 IJ ⊗ xi 0 0 0

0 0 IJ−1 ⊗ yi 0 0

0 0 0 IJ−1 0

0 0 0 0 I1


. (4.6.11)

Lemma 4.6.1 In the piecewise exponential mixture model specified in Section 4.2, if

the censorship and covariates are bounded and condition (E) holds, V ar{f lki (θ0)} are

uniformly bounded for 1 ≤ i ≤ n and 1 ≤ l, k ≤ J(M + 3)− 1.

Proof. First we derive some useful equations. For 1 ≤ i ≤ n, 1 ≤ j, r ≤ J , 1 ≤ l, w ≤

J − 1 and 1 ≤ m, k ≤M ,

s
M(j−1)+m
i = 1{ti∈Im}δij(1− tiλmij )−

(1− δi)pijλmij
1− Fi(ti)

∂Fij(ti)

∂λmij
,

sJM+j
i = δij

(
1− tiλij(ti)

)
−

M∑
m=1

(1− δi)pijλmij
1− Fi(ti)

∂Fij(ti)

∂λmij
,

s
J(M+1)+l
i = s

J(M+2)−1+l
i = δil − pil +

(1− δi)pil(1− Fil(ti))
1− Fi(ti)

,

s
J(M+3)−1
i = −piJ +

(1− δi)piJ
1− Fi(ti)

,

f
M(j−1)+m,M(r−1)+k
i =1{ti∈Im,j=r,m=k}δijtiλ

m
ij + 1{j=r,m=k}

(1− δi)pijλmij
1− Fi(ti)

∂Fij(ti)

∂λmij

+ 1{j=r,m=k}
(1− δi)pij(λmij )2

1− Fi(ti)
∂2Fij(ti)

(∂λmij )
2

+
(1− δi)pijpirλmijλkir(

1− Fi(ti)
)2

∂Fij(ti)

∂λmij

∂Fir(ti)

∂λkir
,
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f
M(j−1)+m,JM+r
i =1{ti∈Im}δijtiλ

m
ij +

(1− δi)pijλmij
1− Fi(ti)

∂Fij(ti)

∂λmij
+

(1− δi)pij(λmij )2

1− Fi(ti)
∂2Fij(ti)

(∂λmij )
2

+
(1− δi)pijpirλmij(

1− Fi(ti)
)2

∂Fij(ti)

∂λmij

∂Fir(ti)

∂αr
,

f
M(j−1)+m,J(M+1)+l
i =f

M(j−1)+m,J(M+2)−1+l
i

=
(1− δi)pijλmij

1− Fi(ti)
∂Fij(ti)

∂λmij

{
1{l=j} −

pil
(
1− Fil(ti)

)
1− Fi(ti)

}
,

f
M(j−1)+m,J(M+3)−1
i = −

(1− δi)λmijpijpiJ(
1− Fi(ti)

)2

∂Fij(ti)

∂λmij
,

fJM+j,JM+r
i = 1{r=j}δijtiλij(ti) + 1{r=j}

(1− δi)pij
1− Fi(ti)

∂2Fij(ti)

(∂αj)2
+

(1− δi)pijpir(
1− Fi(ti)

)2

∂Fij(ti)

∂αj

∂Fir(ti)

∂αr
,

f
JM+j,J(M+1)+l
i =f

JM+j,J(M+2)−1+l
i

=1{l=j}
(1− δi)pil
1− Fi(ti)

∂Fij(ti)

∂αj
−

(1− δi)
(
1− Fil(ti)

)
pilpij(

1− Fi(ti)
)2

∂Fij(ti)

∂αj
,

f
JM+j,J(M+3)−1
i = −(1− δi)pijpiJ(

1− Fi(ti)
)2

∂Fij(ti)

∂αj
,

f
J(M+1)+l,J(M+1)+w
i =f

J(M+1)+l,J(M+2)−1+w
i

=f
J(M+2)−1+l,J(M+1)+w
i = f

J(M+2)−1+l,J(M+2)−1+w
i

=1{w=l}pil − pilpiw − 1{l=w}
(1− δi)

(
1− Fil(ti)

)
pil

1− Fi(ti)

+
(1− δi)

(
1− Fil(ti)

(
1− Fiw(ti)

)
pilpiw(

1− Fi(ti)
)2 ,

f
J(M+1)+l,J(M+3)−1
i = f

J(M+2)−1+l,J(M+3)−1
i = −pilpiJ +

(1− δi)
(
1− Fil(ti)

)
pilpiJ(

1− Fi(ti)
)2 ,
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f
J(M+3)−l,J(M+3)−1
i = −(piJ)2 +

(1− δi)(piJ)2(
1− Fi(ti)

)2 ,

where 1{·} is an indicator function and

∂Fij(ti)

∂λmij
= 1{ti>τm−1}

{
(ti ∧ τm)e−λ

m
ij (ti∧τm) − τm−1e

−λmij τm−1

}
,

∂2Fij(ti)

(∂λmij )
2

= 1{ti>τm−1}

{
−
(
(ti ∧ τm)

)2
e−λ

m
ij (ti∧τm) + τ 2

m−1e
−λmij τm−1

}
,

∂Fij(ti)

∂αj
=

M∑
m=1

1{ti>τm−1}λ
m
ij

{
(ti ∧ τm)e−λ

m
ij (ti∧τm) − τm−1e

−λmij τm−1

}
,

∂2Fij(ti)

(∂αj)2
=

M∑
m=1

1{ti>τm−1}λ
m
ij

{
(ti ∧ τm)e−λ

m
ij (ti∧τm) − τm−1e

−λmij τm−1

}
+ 1{ti>τm−1}(λ

m
ij )

2
{
−
(
(ti ∧ τm)

)2
e−λ

m
ij (ti∧τm) + τ 2

m−1e
−λmij τm−1

}
.

Let ui be the censoring time associated with individual i,

1− Fi0(ui) ≥ min
1≤j≤J, 1≤m≤M

{e−λmij0ui}

≥ min
1≤j≤J, 1≤m≤M

{e−λmij0ui}

≥ exp{− sup
1≤j≤J, 1≤m≤M

λmij0 sup
1≤i≤n

ui}

= K∗, (4.6.12)

where K∗ is a positive constant.

Thus for 1 ≤ l, k ≤ J(M + 3)− 1, V ar{f lki (θ0)} ≤ E[
(
f lki (θ0)

)2
] and

(
f lki (θ0)

)2
are

linear combinations of the following terms with finite coefficients:

1{ti∈Im}δij
{
tiλ

m
ij0

}2
,
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{
λmij0(ti ∧ τm)e−λ

m
ij0(ti∧τm)

}2

,
{
λmij0τm−1e

−λmij0τm−1
}2
,

(λmij0λ
k
ir0)2(ti ∧ τm)τk−1e

−λmij0(ti∧τm)e−λ
k
ir0τk−1 ,

(λmij0)2(λkir0)2
{

(ti ∧ τm)(ti ∧ τk)e−λ
m
ij0(ti∧τm)e−λ

k
ir0(ti∧τk)

}2

,

(λmij0)2(λkir0)2
{
τm−1τk−1e

−λmij0τm−1e−λ
k
ir0τk−1

}2

,

(λmij0)2(λkir0)2(ti ∧ τm)2(ti ∧ τk)τk−1e
−2λmij0(ti∧τm)e−λ

k
ir0(ti∧τk)e−λ

k
ir0τk−1 ,

(λmij0)2(λkir0)2(ti ∧ τm)(ti ∧ τk)τm−1τk−1e
−λmij0(ti∧τm)e−λ

k
ir0(ti∧τk)e−λ

m
ij0τm−1e−λ

k
ir0τk−1 ,

(λmij0)2(λkir0)2(ti ∧ τm)τm−1τ
2
k−1e

−λmij0(ti∧τm)e−λ
m
ij0τm−1e−2λkir0τk−1 .

Noting that for 1 ≤ i ≤ n, 1 ≤ j ≤ J and 1 ≤ m ≤M , we have

E[1{ti∈Im}δij(tiλ
m
ij0)2] = pij0E

{∫ ui

τm−1

(λmij0t)
2λmij0e

−λmij0tdt

}
≤ sup

{∫ ∞
0

(λmij0t)
2λmij0e

−λmij0tdt

}
= sup

{∫ ∞
0

y2e−ydy

}
= 2 (4.6.13)

and for any positive integer a <∞ we have

sup
x>0

xae−x = aae−a <∞, (4.6.14)

we can argue that the above terms that constitute (f lki (θ0)
)2

are uniformly bounded.

It follows that V ar{f lki (θ0)} are uniformly bounded.
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Lemma 4.6.2 In the piecewise exponential mixture model specified in Section 4.2 with

bounded censorship and covariates, if condition (B1) and condition (E) hold, condition

(B3) holds.

Proof. For 1 ≤ l, k ≤ J(M + 3)− 1 and 1 ≤ i ≤ n, let

q
M(j−1)+m
ilk = λmij

∂f lki (θ)

∂λmij
, 1 ≤ j ≤ J, 1 ≤ m ≤M,

qJM+j
ilk =

M∑
m=1

λmij
∂f lki (θ)

∂λmij
, 1 ≤ j ≤ J,

q
J(M+1)+w
ilk = q

J(M+2)−1+w
ilk = piw

{
∂f lki (θ)

∂piw
−

J∑
j=1

pij
∂f lki (θ)

∂pij

}
, 1 ≤ w ≤ J − 1,

q
J(M+3)−1
ilk = −piJ

J∑
j=1

pij
∂f lki (θ)

∂pij
.

We will then show that there exists a constant K > 0 such that

E{ sup
θ∈Nn(A)

|qilk(θ)|} ≤ K (4.6.15)

for θ ∈ Nn(A), 1 ≤ l, k ≤ J(M + 3)− 1 and 1 ≤ i ≤ n. For simplicity, we provide the

proof for l = k = 1. It suffices to show that there exist K1 > 0 and K2 > 0 such that

E{ sup
θ∈Nn(A)

1{ti∈I1}δi1tiλ
1
i1} ≤ K1 (4.6.16)

and for 0 ≤ a1, a2, a3, a4 ≤ 3,

E

{
sup

θ∈Nn(A)

(1− δi)
(λ1

i1ti)
a1e−λ

1
i1ti(λ1

i1τm)a2e−λ
1
i1τm(λ1

i1τm−1)a3e−λ
1
i1τm−1(

1− Fi(ti)
)a4

}
≤ K2.

(4.6.17)
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Noting that for θ ∈ Nn(A),

|HT
i (θ − θ0)|2 = |HT

i Q−1/2
n Q1/2

n (θ − θ0)|2

≤ |Q1/2
n (θ − θ0) |2 |λmax{Q−1/2

n HiH
T
i Q1/2

n }

≤ A2tr{HT
i Q−1

n Hi}, (4.6.18)

by condition (B1) and condition (E), we have, for θ ∈ Nn(A) and 0 ≤ v <∞,

|(λmij )v − (λmij0)v| = (λmij0)v|v
(
1− eςmj −ςmj0+xTi (αj−αj0)

)
|

= (λmij0)v|v
(
ςmj − ςmj0 + xTi (αj − αj0)

)
|
∞∑
r=1

{
v
(
ςmj − ςmj0 + xTi (αj − αj0)

)}r−1

r!

≤ (λmij0)v|v
(
ςmj − ςmj0 + xTi (αj − αj0)

)
|
∞∑
r=0

|v
(
ςmj − ςmj0 + xTi (αj − αj0)

)
|r

(r)!

= (λmij0)v|v
(
ςmj − ςmj0 + xTi (αj − αj0)

)
| exp{v|ςmj − ςmj0 + xTi (αj − αj0)|}

≤ (λmij0)vvA
{
tr{HT

i Q−1
n Hi}

}1/2
exp

{
vA
{
tr{HT

i Q−1
n Hi}

}1/2
}

−→ 0 (n −→∞). (4.6.19)

Similarly, for θ ∈ Nn(A), we can drive

|pij − pij0| −→ 0 (n −→∞). (4.6.20)

Hence, for n large enough,

|λmij − λmij0| ≤ inf
1≤r≤J, 1≤k≤M

λkir0 ≤ λij0. (4.6.21)
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It follows that

E{ sup
θ∈Nn(A)

1{ti∈I1}δi1tiλ
1
i1} ≤ 2E[1{ti∈I1}δi1tiλ

1
i10]

≤ 2pi10E

{∫ ui

0

λ1
i10tλ

1
i10e

−λ1
i10tdt

}
≤ 2 sup

{∫ ∞
0

(λ1
i10t)

2λ1
i10e

−λ1
i10tdt

}
= 2 sup

{∫ ∞
0

ye−ydy

}
= 2

(4.6.22)

and so (4.6.16) holds and it leaves (4.6.17) to be verified. By (4.6.14), there exists

K3 > 0 such that

(λmij )
b

{
∂Fij(ti)

∂λmij

}
≤ K3. (4.6.23)

Also for θ ∈ Nn(A),

|Fi(ui)− Fi0(ui)|

≤
J∑
j=1

|pij
(
Fij(ui)− Fij0(ui)

)
|+

J∑
j=1

|Fij0(ui)(pij − pij0)|

≤
J∑
j=1

M∑
m=1

1{ui>τm−1}|e−λ
m
ij τm−1 − e−λmij0τm−1|+ |e−λmij (τm∧ui) −

J∑
j=1

M∑
m=1

e−λ
m
ij0(τm∧ui)|

+
J∑
j=1

|Fij0(ui)(pij − pij0)| −→ 0 (n −→∞)

by (4.6.19) and(4.6.20). Thus for θ ∈ Nn(A),

|{1− Fi(ui)} − {1− Fi0(ui)}| −→ 0 (n −→∞). (4.6.24)

E

{
sup

θ∈Nn(A)

(1− δi)
(λ1

i1ti)
a1e−λ

1
i1ti(λ1

i1τm)a2e−λ
1
i1τm(λ1

i1τm−1)a3e−λ
1
i1tm−1(

1− Fi(ti)
)a4

}

= E

{
sup

θ∈Nn(A)

(λ1
i1ui)

a1e−λ
1
i1ui(λ1

i1τm)a2e−λ
1
i1τm(λ1

i1τm−1)a3e−λ
1
i1τm−1(

1− Fi(ui)
)a4−1

}
. (4.6.25)
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So (4.6.12), (4.6.23), (4.6.24) and (4.6.25) imply that (4.6.17) holds and further imply

that (4.6.15) holds.

Hence for 1 ≤ l, k ≤ J(M + 3)− 1, by Taylor expansion, (4.6.18) and (4.6.15),

E

{
sup

θ∈Nn(A)

|f lki (θ)− f lki (θ0)|

}
= E

{
sup

θ∈Nn(A)

|(θ − θ0)T
∂f lii
∂θ

(θ∗)|

}

= E

{
sup

θ∈Nn(A)

|(θ − θ0)THiqilk(θ
∗)|

}

≤ A{tr(HT
I Q−1

n Hi)}1/2E

{
sup

θ∈Nn(A)

|qilk(θ)|

}

≤ KA{tr(HT
I Q−1

n Hi)}1/2,

which implies that condition (B3) holds.

Proof of Theorem 4.3.1. By Lemma 4.6.1 and 4.6.2, condition (B1) together with

condition (E) imply that condition (B2) and condition (B3) are satisfied. It suffices to

verify condition (B4) to prove Theorem 4.3.1. Let

Xjm(ti) =
(
λmij0(ti ∧ τm)

)b1e−a1λmij0(ti∧τm)
(
λmij0τm−1

)b2e−a2λmij0τm−1 ,

where 0 ≤ a1, a2, b1, b2 ≤ 4. For 1 ≤ r ≤ J(M+3)−1, {sri (θ0)}4 are linear combinations

of the following terms:

1{ti∈Im}δij0(1− tiλmij0)4,
(1− δi)(

1− Fi(ti)
)b3 Xjm(ti)Xjk(ti), 1 ≤ b3 ≤ 4, (4.6.26)
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for 1 ≤ j ≤ J and 1 ≤ m ≤ M . We only need to prove that the expectations of the

items of (4.6.26) are uniformly bounded.

E{1{ti∈Im}δij0(1− tλmij0)4} = pij0E

{∫ ui

τm−1

(1− tλmij0)4λmij0e
−λmij0tdt

}
≤ sup

{∫ ∞
0

(1− tλmij0)4λmij0e
−λmij0tdt

}
= sup

{∫ ∞
0

(1− y)4e−ydy

}
= 9,

which implies that E{1{ti∈Im}δij0(1− tλmij0)4} is uniformly bounded.

E

{
(1− δi)(

1− Fi(ti)
)b3 Xjm(ti)Xjk(ti)

}
= E

{
1(

1− Fi(ui)
)b3−1

Xjm(ui)Xjk(ui)

}

is uniformly bounded by (4.6.12) and (4.6.14). Hence condition (B4) holds and Theorem

4.3.1 is proved.
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Chapter 5

A Proportional Hazards Model

5.1 Introduction

Methodologies based on the hazard functions (Cox, 1972) have been popular for decades

because they can approximate survival data more naturally than multivariate survival

functions do. Among them Cox’s proportional hazards approach has been the most

widely used. On the other hand, the methodology on the basis of martingale counting

processes has been developed in the modern literature, for it can provide a unified and

efficient way to give proofs. See, for example, Aalen (1975), Fleming and Harrington

(1991), Andersen and Gill (1982), Andersen, Borgan, Gill and Keiding (1993) and Zhao

and Zhou (2006).

Our work is motivated by the fact that studies in proportional hazards models for

survival data that combine competing risks, covariates and immunes have not been
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reported. To narrow this gap, a semi-parametric approach is proposed and modern

techniques of counting processes and martingales are adopted to derive the existence,

consistency and asymptotic normality of the estimators. The advantage of our approach

over the parametric model is that we can concentrate on the parameters of interest

without the need of knowing the particular pattern of the survival distribution.

In this chapter, an extended Cox proportional hazards model is proposed to approx-

imate survival data in the presence of competing risks, covariates and immunes. Under

the assumptions of independent censoring and improper baseline hazards, an MLE is

derived from partial likelihood functions. The existence, consistency and asymptotic

distributions of the estimators are studied thoroughly. A simulation is conducted to

assess the performance of our proposed approach.

The rest of this chapter is organized as follows. In Section 5.2, we give the notations

of the model and introduce some important relationships. In Section 5.3, we derive the

estimators of the coefficients of covariates and failure rates using the partial likelihood

(Cox, 1975) approach and establish their existence, consistency and asymptotic distri-

butions. The analysis of the simulated data is described in Section 5.4. Section 5.5

gives the concluding remarks and discussions about further work. Finally, Section 5.6

is devoted to the mathematical proofs.
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5.2 Specification

Like the models specified in Chapter 3 and Chapter 4, throughout this chapter, we

assume that n individuals suffering from J risks are included in our study. Let T ∗i

be an independent and continuous nonnegative random variable representing the true

survival (uncensored) time of individual i, i = 1, 2, . . . , n. Each individual i is observed

over a limited time interval [0, ui], where ui represents the censoring time which is

independent of T ∗i and its distribution is assumed to be non-informative. Further let

Di be a discrete random variable with Di = j for j = 1, 2, . . . , J if the failure of

the i-th individual will be caused by risk j and Di = 0 implies that the failure will

never be observed. Suppose that t∗i is the realization of T ∗i , the risk indicators are

δij = 1{t∗i≤ui, Di=j}, i = 1, 2, . . . , n, j = 1, 2, . . . , J and the censoring indicators are

δi =
∑J

j=1 δij = 1{t∗i≤ui}, i = 1, 2, . . . , n, where 1{E} is the indicator of event E. It is

natural that the observation of individual i is comprised of (ti, δij, zi), where ti = t∗i ∧ui

and zi is an outcome of a κ-dimensional covariate vector Zi which is independent of

time.

The existence of immunes calls for a possibly improper hazard function including

the informations of the instantaneous failure rates, the influence of covariates and the

probability associated with the immunes. A common methodology adopted in the

literature is to satisfy the requirements by letting the baseline hazard be defined by the

real improper c.d.f. of T ∗i and the cured rate can be obtained by letting the survival time

be ∞ in the estimated survival function. Instead we propose an approach in which the

cured rate is included in the partial likelihood function and can be estimated directly.
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The hazard functions are formulated by

hij(t)dt = pj exp{βT zi}h0(t)dt = P{t 6 T ∗i < t+ dt,Di = j|T ∗i > t},

where h0(t) is an unspecified non-negative function which serves as the baseline hazard

in our study, β is a κ-vector of unknown regression coefficients and pj = exp (rj) is the

baseline probability of failing from cause j with 0 < pj < 1 and
∑J

j=1 pj = p ≤ 1.

Let pij = P{Di = j} be the probability that individual i dies (will die) from cause

j and Fij(t) = P{T ∗i ≤ t|Di = j} represent the c.d.f. of the survival time with respect

to a particular risk for i = 1, . . . , n and j = 1, 2, . . . , J . Then Fi(t), the c.d.f. of T ∗i , is

Fi(t) = P{T ∗i ≤ t} =
J∑
j=1

P{T ∗i ≤ t|Di = j}P{Di = j} =
J∑
j=1

pijFij(t).

It is obvious that Fij(t) is proper and Fi(t) is proper if and only if
∑J

j=1 pij = 1.

Let pi =
∑J

j=1 pij be the probability that individual i is not an immune subject.

From the definition of hazard functions we have:

1− Fi(t) = exp

{
−
∫ t

u=0

p exp{βT zi}h0(u)du

}
= {1− F0(t)}exp{βT zi}, (5.2.1)

where F0(t) is the baseline distribution function of T ∗i . This yields:

pi = F ∗i (∞) = 1− (1− p)exp{βT zi}. (5.2.2)

Equation (5.2.2) shows how the probability of being an immune subject of an individual

is influenced by the values of the covariates. Suppose that there is a baseline individual

0 with Z0 = 0. Further note that

h0(t)dt =
P{t 6 T ∗0 < t+ dt|T ∗0 > t}

P{D0 6= 0}
. (5.2.3)

It can be seen that h0(t) is the instaneous failure rate for individual 0 if and only if

P{D0 6= 0} = 1, i.e. there are no immunes.

89



5.3 Likelihood and Asymptotics

In this section, we formulate our model on the basis of the previous specifications and

derive the consistency and asymptotic normality of the estimators. The real survival

time and the censoring time are assumed to be random on [0, τT ] and [0, τC ] with

0 ≤ τT , τC ≤ ∞. Suppose that τ = τT ∧ τC , the observation period is [0, τ ].

As the baseline-hazard function h0(t) is left unspecified, we follow the approach

of Cox’s partial likelihood (Cox, 1975) with h0(t) left non-informative for the esti-

mation. Let ψ = (βT , p1, . . . , pJ)T be the parameter vector with true value ψ0 =

(β0
T , p10, . . . , pJ0)T and γ = (βT , r1, . . . , rJ)T , where rj = log(pj) for 1 ≤ j ≤ J . The

problem is to estimate the true value ψ0 from the log likelihood function L on the basis

of these observations and the estimator ψ̂ is defined to be the solution of ∂L(ψ)/∂ψ = 0.

Noting the fact that γ̂ = (β̂T , log p̂1, . . . , log p̂J)T is exactly the solution of ∂L(γ)/∂γ = 0

due to the good property of logarithm function, the problem of finding the estimator

of ψ is equivalent to deriving the estimator of γ from the same likelihood function. To

utilize the existing results of the literature, we take γ as the parameter vector to be

estimated instead of ψ. Let t(1) < t(2) < · · · < t(K) represent the ordered failure times.

Further assume that there are no tied failure times and individual ik is the the one

who failed from risk jk at t(k) for k = 1, . . . , K. Denote by Ri = R(ti) the risk set (the

individuals that are still under observation) at time ti and set r = log p, the partial

likelihood function with respect to γ based on the observations (ti, δij, zi) for 1 ≤ i ≤ n
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can be written as

Lp =
K∏
k=1

hikjk(t(k))∑
i∈Rik

hi(t(k))
=

n∏
i=1

∏J
j=1

(
exp(βT zi + rj)

)δij(∑
l∈Ri exp(βT zl + r)

)δi , (5.3.4)

where hi(t) =
∑J

j=1 hij(t) is the hazard function for individual i.

The process Nij(t) = I{T ∗i ≤ t, δij = 1} is used to count the number of the j-th

failures happening to individual i and Yi(t) = Yij(t) = I{Ti ≥ t} indicates whether

the ith individual is still under consideration for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , J}.

The sample paths of Ni1, . . . , NiJ are step functions, zero at time zero, with at most one

jump of size +1 at a time as there are no ties. Through this chapter, all properties of the

counting processes of individual i are relative to the right continuous non-decreasing fil-

tration {Fi(t) : 0 ≤ t ≤ τ} with Fi(t) = σ{Nij(u), NU
i (u) : 0 ≤ u ≤ t, j ∈ {1, . . . , J}},

where NU
i (u) = I{Ci ≤ u, δi = 0}. Obviously Ni(t) =

∑J
j=1 Nij(t) is also a counting

process with at most one jump at a time and Yi(t) is a predictable process. Further we

define

dNij(t) = Nij(t)−Nij(t−) and Q(l)(β, t) =
n∑
i=1

Z l
iYi(t) exp{βTZi}

for l ∈ {0, 1, 2}, where Z0
i = 1, Z1

i = Zi and Z2
i = ZiZ

T
i .

Naturally, the intensity processes of Nij(t) and Ni(t) conditional on the covariates

are λij(t) = exp{βT zi + rj}Yi(t)h0(t) and λi(t) = exp{βT zi + r}Yi(t)h0(t) respectively.

Thus

Lp =
n∏
i=1

J∏
j=1

∏
t

{
exp{βT zi + rj}∑n

l=1 Yl(t) exp{βT zl + r}

}dNij(t)
, (5.3.5)
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logLp =
n∑
i=1

J∑
j=1

∫ ∞
t=0

{(
rj + βT zi

)
− r − log

{
n∑
l=1

Yl(t) exp(βT zl)

}}
dNij(t). (5.3.6)

Consider the parameter space Γ =
{
γ : γ = (βT , r1, . . . , rJ)T

}
with the constrains

that β ∈ Rκ, (r1, . . . , rJ)T ∈ MJ and the true value γ0 = (βT , r10, . . . , rJ0)T ∈ Γ. The

simplex MJ is defined by

MJ =

{
(r1, . . . , rJ)T : rj ∈ (−∞, 0) for j ∈ {1, . . . , J},

J∑
j=1

exp{rj} ≤ 1

}
⊂ RJ .

(5.3.7)

We aim to find a maximizer γ̂ = (β̂T , r̂1, . . . , r̂J)T of logLp and take it as the

estimate of the true parameter γ0. The following theorem shows the conditions for the

existence of the consistent MLE and the asymptotic distributions of the estimators. We

shall take advantage of the results in Andersen and Gill (1982) who provided a general

approach of deriving the asymptotic properties of the Cox’s regression model. They

proved the consistency and asymptotic normality of the estimated covariate coefficients

and suggested the asymptotic distribution of the baseline cumulative incidence function

under the so called “A-D conditions” with the time scale being [0, 1] in Section 3 of

their paper. In addition, they also showed how the A-D conditions could be satisfied in

i.i.d. case and the fact that time scale can be extended to [0,∞) under some additional

conditions. As a result, our proof suffices to check the A-D conditions for t ∈ [0, 1] as

well as the condition of extending the result to t ∈ [0,∞).

Let ej be the J-dimensional unit column vector with the jth element being 1 and
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Zij = (ZT
i , e

T
j )T be a new covariate vector. Further suppose that for l ∈ {0, 1, 2},

S(l)(γ, t) =
1

nJ

n∑
i=1

J∑
j=1

Z l
ijYij(t) exp{γTZij} (5.3.8)

and s(l)(γ, t) = E[S(l)(γ, t)] with Z0
ij = 1, Z1

ij = Zij and Z2
ij = ZijZ

T
ij , then we have the

following theorem.

Theorem 5.3.1 Suppose that Ni, Yi, Zi are i.i.d. replicates of (N, Y, Z) for l = 0, 1, 2,

let q(l)(β, t) = E[Q(l)(β, t)]. Assume the following conditions hold:

(I) pj0, p0 ∈ (0, 1), h0(t) is non-negative finite and Z is bounded.

(II) The matrix Υ is positive definite, where Υ is defined by

Υ =

∫ ∞
0

(
q(2)(β0, t)−

q(1)(β0, t)
(
q(1)(β0, t)

)T(
q(0)(β0, t)

)T
)
h0(t)dt.

Then with probability approaching one, there exists a local maximizer γ̂ such that

γ̂
p→ γ0 and n1/2(γ̂ − γ0)

d→ N(0,Σ−1), where

Σ =

∫ ∞
0

(
s(2)(γ0, t)−

s(1)(γ0, t)
(
s(1)(γ0, t)

)T(
s(0)(γ0, t)

)T
)
h0(t)dt. (5.3.9)

Remark. Theorem 5.3.1 establishes the existence, consistency and asymptotic

normality of γ̂. So the estimated coefficients of the covariates have asymptotic normal

distributions. The large sample distribution of the estimator of pj0 is log-normal instead

of normal as a result of the assumption that rj = log pj. Another issue to be noted is

that our discussion is restricted to the interior of the parameter space. The boundary

on which there are no immunes is not studied here.

Although we have restricted ourselves to the independence of baseline failure prob-

abilities of the risks and Zi, and the independence of β and failure causes, there is no
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difficulty in principle in allowing the cause-specific hazard function to be

hij(t)dt = pj(zi) exp{βTj zi}h0(t)dt,

where pj(zi) is a function of zi and βj is the regression coefficient associated with risk

j. For instance, if we assume that

pj(zi) =
exp{uj + πTj zi}

1 +
∑J

l=1 exp{ul + πTl zi}
,

the statistical inference can be given in the same way under some regular conditions.

The assumption of proportional cause-specific hazards function, however, cannot be

relaxed in this study. If we let h0 = hj0, i.e. hij(t)dt = pj exp{βT zi}hj0(t)dt such that

the hazard functions are not proportional to each other, the partial likelihood approach

cannot be adopted. The work of Larson and Dinse (1985) is relatively general and does

not have such restrictions. But their work is based on a parametric setting and the

exhaustion of the failure cause.

Following the suggestion of Breslow (1972), the cumulative baseline hazard can be

estimated by

Λ̂0(t) =

∫ t

0

dN̄(u)∑
i exp{β̂T zi}Yi(u)

,

where Λ0(t) =
∫ t

0
p0h0(u)du and N̄(u) =

∑
i,j Nij(u). Consequently, the baseline pro-

portion of the immunes can be estimated by

1− p̂0 = exp{−Λ̂0(∞)}

and the failure function of T ∗i can be approximated by

F̂i(t) = 1− Ŝi(t) = 1− exp
{
− exp(β̂T zi)Λ̂0(t)

}
. (5.3.10)
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The foregoing describes how the estimated probability of immunes may be derived with

improper baseline c.d.f. mentioned in Section 5.2. The likelihood function employed is

logLp =
n∑
i=1

∫ ∞
0

βT zidNi(t)−
∫ ∞

0

log

{
n∑
l=1

Yl(t) exp{zTl β}

}
dN̄(t). (5.3.11)

It is obvious that only covariate is informative in Equation (5.3.11). The proba-

bilities associated with the risks can be estimated by a non-parametric approach. In

comparison, we have derived the MLE of pj0 for 1 ≤ j ≤ J parametrically.

5.4 A Simulation Study

A simulation has been conducted to assess the performance of our approach. As-

sume that Zi = (Zi1, Zi2), where Zi1 follows a 50-50 Bernoulli distribution and Zi2 ∼

U(−1, 1). The survival times and failure causes of the individuals are assumed to be

independent. The coefficient vector of the covariates is assumed to be β0. Individual

i suffers from two potential risks with associated probabilities pi1 and pi2 respectively.

pi = pi1 + pi2 is the probability that individual i is not a long-term survivor, i.e. indi-

vidual i will eventually fail from the two risks under consideration. We take pi < 1 so

that the immunes exist.

Without loss of generality, the baseline failure distribution given that a failure will

eventually happen is assumed to be

F ∗0 (t) = P{T ∗0 6 t|D0 6= 0} = 1− e−0.0321t,
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the baseline failure proportion for the two risks are set to be

p01 = P{D0 = 1} = 0.4, p02 = P{D0 = 2} = 0.5

and the covariate coefficient β0 = (−0.6484, 0.5)T . In addition, each subject is assumed

to have an independent random censoring time generated from uniform distribution

between 50 and 100. Equation 5.2.2 indicates that:

pi = 1− (1− p0)exp{βT0 zi}.

Thus

pi1 = pi p01/(p01 + p02) , pi2 = pi p02/(p01 + p02).

The baseline distribution function is

F0(t) = P{T ∗0 6 t}

= P{T ∗0 6 t,D0 6= 0}

= P{T ∗0 6 t|D0 6= 0}(p01 + p02)

= 0.9− 0.9e−0.0321t.

Hence the true distribution function for T ∗i is

Fi(t) = P{T ∗i 6 t}

= 1− P{T ∗i > t}

= 1−
(
1− F0(t)

)exp{βT0 zi}

= 1− (0.1 + 0.9e−0.0321t)exp{βT0 zi}.

Similarly we can derive the distribution conditional on the eventual failure. It is

F ∗i (t) =
Fi(t)

pi1 + pi2
=

1− (0.1 + 0.9e−0.0321t)exp{βT0 zi}

1− (1− p0)exp{βT0 zi}
.
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Table 1 shows the simulation performance for different sample sizes with replicates

R = 100. To show the robustness of this approach, another simulation with β0 =

(−0.2730, 0.8)T , p01 = 0.3 and p02 = 0.4 is also conducted. The results have been listed

in Table 2 also with replicates R = 100. It can be seen from Table 5.1 and Table 5.2

that our proposed approach leads to reasonably accurate point estimates. The STD

also seems to decrease as the sample size increases.

In addition, to assess the goodness-of-fit of our fitted model, Kolmogorov-Smirnov

test has been carried out for different sample sizes of 1000 replicates based on the re-

moval of the continuous covariate. Two groups of survival data are generated separately

with the covariates (0, 0)T and (1, 0)T for the analysis. The sample size for each group

is assumed to be M . As can be seen from Table 5.3, the rejection percentage for each

sample size is almost zero.

Figures 5.1 and 5.2 show the curves of the estimated c.d.f.’s for the grouped data with

covariates (0, 0)T and (1, 0)T superimposed by the empirical distribution and true dis-

tribution for one realization of sample size 100 for each group in simulation 1. The em-

pirical distribution functions are derived by Kaplan-Meier method (Kaplan and Meier,

1958) and the fitted c.d.f.’s are developed from Equation (5.3.10). It can be seen that

the curves are similar and the proposed approach provides good descriptions of the

c.d.f.’s for both groups.
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Table 5.1: Estimated Parameters in Simulation 1

Parameter p01 p02 β0(1) β0(2)

N True value 0.4000 0.5000 -0.6484 0.5000

100 Estimate 0.3989 0.4951 -0.6653 0.5261

STD 0.1153 0.1361 0.2862 0.2201

200 Estimate 0.3983 0.4914 -0.6676 0.5327

STD 0.0742 0.0919 0.1949 0.1478

300 Estimate 0.4045 0.4998 -0.6614 0.5213

STD 0.0594 0.0639 0.1507 0.1337

400 Estimate 0.4022 0.4966 -0.6655 0.5186

STD 0.0497 0.0533 0.1350 0.1110

500 Estimate 0.4010 0.4984 -0.6596 0.5201

STD 0.0453 0.0517 0.1172 0.1046

600 Estimate 0.4026 0.5009 -0.6588 0.5138

STD 0.0417 0.0444 0.0959 0.0989

700 Estimate 0.3972 0.4958 -0.6590 0.5132

STD 0.0364 0.0397 0.0832 0.0851

800 Estimate 0.3973 0.4991 -0.6563 0.5163

STD 0.0339 0.0439 0.0860 0.0845

900 Estimate 0.3998 0.5012 -0.6576 0.5122

STD 0.0314 0.0383 0.0769 0.0810

1000 Estimate 0.4014 0.5010 -0.6521 0.5106

STD 0.0302 0.0356 0.0735 0.0725
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Table 5.2: Estimated Parameters in Simulation 2

Parameter p01 p02 β0(1) β0(2)

N True value 0.3000 0.4000 -0.2730 0.8000

100 Estimate 0.2936 0.4068 -0.2914 0.7827

STD 0.1097 0.1693 0.2687 0.2478

200 Estimate 0.2969 0.4038 -0.2848 0.8062

STD 0.0984 0.1386 0.2104 0.1665

300 Estimate 0.3001 0.4072 -0.2842 0.7951

STD 0.0643 0.0976 0.1656 0.1307

400 Estimate 0.3006 0.4087 -0.2889 0.7986

STD 0.0672 0.0917 0.1411 0.1149

500 Estimate 0.3055 0.4138 -0.2812 0.7960

STD 0.0509 0.0748 0.1282 0.1142

600 Estimate 0.3041 0.4067 -0.2846 0.7919

STD 0.0513 0.0707 0.1100 0.0955

700 Estimate 0.3005 0.4016 -0.2786 0.7919

STD 0.0406 0.0633 0.1005 0.0891

800 Estimate 0.3019 0.4031 -0.2792 0.7901

STD 0.0388 0.0544 0.0964 0.0868

900 Estimate 0.3033 0.4031 -0.2773 0.7904

STD 0.0369 0.0540 0.0882 0.0746

1000 Estimate 0.3002 0.4010 -0.2753 0.7924

STD 0.0337 0.0473 0.0872 0.0731
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Figure 5.1: Curves of C.d.f.’s for Group 1

Figure 5.2: Curves of C.d.f.’s for Group 2
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Table 5.3: Rejection Percentage by K-S Test

M 20 50 100 200 300 400 500

Simulation 1
Group 1 0.009 0.012 0.006 0.004 0.006 0.007 0.005

Group 2 0.018 0.019 0.013 0.016 0.012 0.014 0.011

Simulation 2
Group 1 0.011 0.008 0.014 0.012 0.009 0.004 0.003

Group 2 0.013 0.008 0.007 0.009 0.008 0.007 0.008

5.5 Concluding Remarks

An extended Cox proportional hazards model is proposed to approximate survival data

for competing risks in the presence of covariates and immunes. Under the assumptions

of independent censoring and improper baseline hazards, an MLE can be derived from

the partial likelihood function. The existence, consistency and asymptotic properties of

the estimators are studied thoroughly. In particular, the estimators of the failure rates

are proved to be consistent and asymptotically log-normally distributed. A simulation

study which favors the proposed approach has been conducted to assess and compare

the performances of our methods under different sample sizes.

The advantage of this work is that the probabilities of failing from the risks are

parameterized and separated from the shape of baseline hazard functions. In previous

work, the probabilities can only be obtained after the hazard functions are estimated

first. In many studies, the hazard functions are not of main interest. Our approach
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provides an alternative way to investigate these problems. At least, it provides a method

to verify the results developed by the traditional approach. In addition, it also provides

a foundation of the study of the existence of immunes in a semi-parametric approach.

We have restricted our discussion in the proportional hazards setting which is ex-

pected to be relaxed in the future based on the development of counting processes

techniques. Useful approaches such as those of Aalen (1975), Kuk and Chen (1992) and

Andersen et al. (1993) have provided a basis for this development. Another interesting

issue is the test for the existence of immunes, i.e. whether the value of
∑J

j=1 p0j is 1

or not. A boundary test of “no immunes” for competing risks data in the presence

of covariates has been discussed in Chapter 3 and a similar test in the framework of

semi-parametric model is also included in the future work.

5.6 Proofs

The proof will make use of to the work of Andersen and Gill (1982), where a general

approach to the large sample properties of Cox’s regression model is adopted. Their

conditions A-D can be recast as:

A.
∫ 1

0
h0(t)dt <∞.

B. There exists a neighborhood Γ of γ0 such that for l = 0, 1, 2

sup
t∈[0,1],γ∈Γ

||S(l)(γ, t)− s(l)(γ, t)|| P−→ 0.
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C. There exists δ > 0 such that

n−1/2 sup
i,j,t
|Zij|Yij(t)I{γT0 Zij > −δ}|Zij|

P−→ 0.

D. s(l)(γ, t) is continuous and bounded in Γ uniformly in t ∈ [0, 1] for l = 0, 1, 2 with

s(0) away from zero.

Lemma 5.6.1 (The application of Theorem 4.1 and Theorem 4.2 of Andersen and Gill

(1982)) Suppose that Ni, Yi, Zi are i.i.d. replicates of (N, Y, Z) with Y left continuous

with right hand limits, Z is bounded, E[N(∞)] < ∞, the above A-D conditions are

satisfied and for each τ <∞, P
(
Y (t) = 1, ∀t < τ

)
> 0, we have:

n1/2(γ̂ − γ0)
D−→ N (0,Σ−1). (5.6.12)

Proof. The proof is standard and omitted here.

Proof of Theorem 5.3.1 Note that Y (t) is automatically left continuous with right

hand limits and E[N(∞)] <∞. The log partial likelihood function can be rewritten as

logLp =
∑
i,j

∫ ∞
t=0

zTijγdNij(t)−
∑
i,j

∫ ∞
t=0

log

{∑
l,m

Ylm(t) exp{zTlmγ}

}
dNij(t). (5.6.13)

The score function with respect to γ is

U(γ) =
∑
i,j

∫ ∞
0

{
zij −

∑
l,m Ylm(t)zlm exp{zTlmγ}∑
l,m Ylm(t) exp{zTlmγ}

}
dNij(t) (5.6.14)
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with a compensator

C(γ) =
∑
i,j

∫ ∞
0

{
zij −

∑
l,m Ylm(t)zlm exp{zTlmγ}∑
l,m Ylm(t) exp{zTlmγ}

}
dAij(t), (5.6.15)

where

Aij(t, γ) =

∫ t

0

λij(t)dt (5.6.16)

is the compensator of Nij(t).

The next part of the proof is to check the A-D conditions similar to that in Andersen

and Gill (1982). Note that,

S(0)(γ, t) =
1

nJ

n∑
i=1

J∑
j=1

Yij expγ
TZij(t) =

p

nJ

n∑
i=1

Yi(t) expβ
TZi(t),

(5.6.17)

S(1)(γ, t) =
1

nJ

n∑
i=1

J∑
j=1

Zij(t)Yij expγ
TZij(t) =

p

nJ

n∑
i=1

Yi(t) expβ
TZi(t)(ZT

i , w
T )T ,

(5.6.18)

S(2)(γ, t) =
1

nJ

n∑
i=1

J∑
j=1

ZijZ
T
ij(t)Yij expγ

TZij(t) =
p

nJ

n∑
i=1

Yi(t) expβ
TZi(t) ∆

(5.6.19)

and s(i)(γ, t) = E[S(i)(γ, t)], where the vector w = (p1, . . . , pJ)T/p is comprised of the

weights of the risks and

∆ =

 ZiZ
T
i Ziw

T

wZT
i wIJ

 . (5.6.20)
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After some trivial calculation, we can see that

Σ =

 Υ 0

Ψ Ξ

with Ξ =

∫ ∞
0

q0(β0, t)w(IJ − wIJ)h0(t)dt .

Ψ is a κ × J matrix and its value has no influence on the result. Obviously, Σ is

positive definite given that Υ and Ξ are positive definite by assumption. Further for

each t < τG ≤ ∞, we have

P {Yi(t) = 1} = P {T ∗i ≥ t, ui ≥ t} ≥ (1− p)(1−G(t−)) > 0 , (5.6.21)

where G is the c.d.f. of ui. Therefore by the same line of Theorems 4.1 and 4.2 of

Andersen and Gill (1982) the conditions A, B and D hold. This leaves the condition

“C”. Note that

n−1/2 sup
i,j,t
|Zij(t)|Yij(t)I{γT0 Zij(t) > −δ|Zij(t)|}

= n−1/2 sup
i,j,t

√
Zi(t)2 + 1Yi(t)I

{
βT0 Zi(t) + log pj > −δ

√
Zi(t)2 + 1

}
≤ n−1/2 sup

i,j,t
|Zi(t)|Yi(t)I

{
βT0 Zi(t) > −δ

√
Zi(t)2 + 1

}
+ n−1/2

= B + n−1/2.

It is obvious that B
P−→ 0. Condition “C” holds consequently. To extend the time

scale, Z is bounded by previous specifications, E[N(∞)] ≤ 1 <∞ and for each τ <∞,

P (Y (t) = 1,∀t < τ) > 0 by Equation (5.6.21).

The proof is completed.

105



Reference

Aalen, O. O. (1975). Statistical inference for a family of counting processes. Ph.D.

Thesis, University of California, Berkeley.

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes:

a large sample study. Ann. Statist., 10, 1100-1120.

Andersen, P. K., Borgan, B., Gill, R. D. and Keiding, N. (1993). Statistical models

based on counting processes. New York: Springer-Verlag.

Bernoulli, D. (1760). Essai d’une nouvelle analyse de la mortalité causée par la petite
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