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Abstract

Wireless sensor networks consist of many wireless sensor nodes that enable the

collection of sensor data from the physical world. A key requirement to interpreting

the data is to determine the locations of the sensor nodes. The localization techniques

developed can be divided into two categories: range-free and range-based.

Range-free localization usually assumes isotropic networks where the hop count

between two nodes is proportional to their distance. However, anisotropic networks

are more realistic due to the presence of various anisotropic factors in practice, e.g.

irregular radio propagation, low sensor density, anisotropic terrain condition, and

obstacles which can detour the shortest path between two nodes. The previous

anisotropy-tolerating solutions focused on only one anisotropic factor - the obstacles.

We will propose a pattern-driven localization scheme to tolerate multiple anisotropic

factors.

Range-based localization assumes that the inter-node distances can be accurately

measured by special ranging hardware. There are two important issues: (1) the

ranging noise which affects the localization accuracy ; (2) the collinearity of critical

node sets which may produce unanticipated flip ambiguities and harm the localization

robustness. However, the previous research does not fully address these two issues,
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especially for patch merging, a powerful tool to localize sparse sensor networks. We

will present our inflexible body merging algorithm to address these two issues for both

patch merging and multilateration. Our algorithm can also improve the percentage

of localizable nodes by nearly two times in sparse networks as compared with state-

of-the-art work.

Another critical issue for range-based localization is the existence of outliers in

raw data (i.e. distance measurements and anchor positions) which strongly deviate

from their true values. These outliers can severely degrade localization accuracy

and need to be rejected. Previous studies have two inadequacies of (1) focusing on

adding an outlier rejection ability to multilateration but neglecting patch merging;

(2) rejecting only the outlier distances but neglecting outlier anchors which are more

difficult to remove, because outlier anchors may collude by declaring positions in the

same coordinate frame. We will present an algorithm to reject both outlier distances

and colluding outlier anchors, in both dense networks and sparse networks.
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Chapter 1

Introduction

1.1 Background of Wireless Sensor Networks

In the late 1990s, with the declining of manufacturing cost of radios and micro-

processors, there emerge wireless sensor networks (WSNs) which consist of a large

quantity of inexpensive sensor nodes [Culler et al., 2004]. These spatially distributed

nodes can monitor environmental conditions (e.g. temperature, sound, vibration,

Remote Monitoring
Facility

MicaDot TelosB MDA300

Internet

Local Monitoring 
Base Station

Deployment Field of Wireless Sensor Networks

Sensor 
Node

Bridge or 
Gateway

Fig. 1.1: Architecture of Wireless Sensor Networks.

speed or pollutants), collaborate to preprocess the sensed data and relay the data

of interest to a base station [Estrin et al., 1999]. Nowadays, WSNs have become

1
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extremely popular due to the wide applications in smart power grid, intelligent trans-

port system, healthcare, home automation, tracking, structural health monitoring,

environmental and habitat monitoring. In summary, wireless sensor networks have

tremendous potential because they will expand our ability to monitor and interact

remotely with the physical world.
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Fig. 1.2: Architecture of an Individual Sensor Node

An individual sensor node is essentially an embedded wireless device, which com-

prised of four basic modules as illustrated in Fig. 1.2(a): the sensor module which

can collect sensing readings; the microprocessor module and the memory module can

process and store the collected data; the radio module enables the collaboration be-

tween sensor nodes via wireless communications. An example is the TMote Sky mote

whose components are listed in the following table [Moteiv, 2006] and illustrated in

Fig. 1.2(b). Multiple such TMotes can form a mesh network to forward collected data

to the base station, utilizing the mesh support from TinyOS [Levis et al., 2008, 2004],
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Sensor Module: Integrated Humidity, Temperature, and Light sensors
Microprocessor Module: 8MHz TI MSP430 microprocessor (10k RAM, 48k Flash)
Radio Module: 250kbps 2.4GHz IEEE 802.15.4 Chipcon RF Transceiver;

integrated antenna with range 50m indoors / 125m outdoors

the most popular embedded operating system for wireless sensor nodes.

Wireless sensor networks have attracted extensive research efforts. We briefly list

some of the hot research problems as follows, to give readers an overall impression of

wireless sensor network research.

• Low Power MAC (Medium Access Control) Protocols: Wireless sensor nodes

are energy-constrained embedded devices, whose energy supplies mainly rely on

their battery packs. For a sensor node, each component needs to be optimized to

save energy cost and prolong the overall operation time. Among the four basic

components, the radio module is the most energy-expensive. Pottie and Kaiser

[Pottie and Kaiser, 2000] have shown that the energy required to transmit 1 bit

over 100 meters, which is 3 joules, can be used to execute 3 million instructions.

Therefore, it is not surprising that extensive research efforts have been devoted

to designing low power MAC protocols, which can reduce the energy wasted

on idle listening, overhearing, resend due to collision, and unnecessary control

overhead [Bachir et al., 2010, Buettner et al., 2006, Dutta et al., 2010, Polastre

et al., 2004, Rhee et al., 2005, Sun et al., 2008, Ye et al., 2002, 2006].

• Reliable Data Collection: The wireless channel used by wireless motes is lossy by

nature, because (1) to save manufacturing cost, the motes are usually equipped

with narrow-band and low-power transceivers; (2) the motes are frequently

placed directly on ground or in complex indoor environments where multipath
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fading becomes a serious problem; (3) the presence of sporadic natural interfer-

ences also becomes a serious issue. However, many applications (e.g. industrial

process control) require that the collected data be delivered reliably to the base

station. Thus researchers have investigated various methods to improve the re-

liability of data collection, e.g. by exploiting antenna diversity, temporal diver-

sity, spectrum diversity, or network-wide scheduling of transmissions [Lennvall

et al., 2008, Pister and Doherty, 2008, Song et al., 2008].

• Sensor Coverage: While the previous two research problems are on the radio

component of sensor nodes, the coverage problem is focused on the sensing com-

ponent of sensor nodes. Its observation is that the major purpose of deploying

a sensor network is to monitor a region of interests, e.g. for intrusion detection

or intruder tracking. Most of these applications have the same requirement that

every point in the service area of the sensor network is covered by at least k sen-

sors, where k is a given parameter [Meguerdichian et al., 2001]. This coverage

problem becomes more challenging when it involves with the sleep scheduling of

sensor nodes [Kumar et al., 2004], or when the coverage verification algorithm

needs to be a distributed one [Huang and Tseng, 2005].

• Clock Synchronization: Time synchronization is a critical piece of infrastructure

for any distributed system. For wireless sensor networks, the sensor nodes

also need to agree on a common notion of time, as required by data fusion.

Traditional synchronization algorithms assume that the entities to synchronize

are only one hop away from the time source, e.g. to synchronize a GPRS base

station with GPS satellites. However, in wireless sensor networks, the sensor

nodes, which need to synchronize against each other, can be multiple hops away.
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A research issue is how to achieve a balance between synchronization accuracy

and energy consumption in such multihop networks [Sundararaman et al., 2005].

• Data Aggregation and Fusion: The data, which are to be forwarded to the base

station, can be preprocessed within the network and thus compressed in volume,

which is called data aggregation. Data fusion refers to the concept that sensor

nodes cooperate to merge individual sensor readings into a high-level sensing

result, such as integrating a time series of position measurements into a velocity

estimate.

• Various other problems which are application specific, e.g. smart power grid [Jiang

et al., 2009], intelligent transport system, healthcare [Gao et al., 2007, Mandal

et al., 2009], home automation, tracking [Smith et al., 2004, Volgyesi et al.,

2007], structural health monitoring [Ceriotti et al., 2009], environmental and

habitat monitoring [Szewczyk et al., 2004, Werner-Allen et al., 2006].

1.2 Sensor Network Localization Problem

For most WSNs applications and protocols, it is essential to know the locations

of the sensor nodes. For environmental monitoring application, the sensed data are

meaningless without the location information where the data is obtained. For routing

protocol, communication cost can be reduced by geographical routing if node locations

are known [Karp and Kung, 2000, Ko and Vaidya, 2000]. Other location-dependent

applications are sensing coverage, location directory service [Abraham et al., 2004, Li

et al., 2000], tracking (e.g. asset tracking in residential environments or tank tracking

in the military background) [Hu and Evans, 2004, Smith et al., 2004].
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The system service of WSNs that obtains the critical location knowledge is called

localization service. It is not an easy task to give location knowledge to sensor nodes in

a large-scale network, because the per-node manual configuration is too troublesome

and equipping each node with a GPS (Global Positioning System) receiver is over-

expensive. Therefore, a plethora of previous studies can be found to automatically

derive sensor locations in a network topology, which is known as network localization

problem [Eren et al., 2004, Goldenberg et al., 2006, Horn et al., 1988, Jin et al., 2011,

Li and Liu, 2007, Lim and C., 2005, Moore et al., 2004, Niculescu and Nath, 2003,

Priyantha et al., 2003, Savvides et al., 2003b, Shang and Ruml, 2004, Wang et al.,

2008, Whitehouse et al., 2005, Zhang et al., 2011].

For the network localization problem, there are two basic assumptions. The first

assumption is that the network contains a small number of special nodes with the

priori knowledge of their locations, which are called anchor nodes. The location

knowledge can be acquired from GPS receivers equipped on these anchor nodes, or

by manually configuring these nodes with locations to save cost, or by equipping the

anchor nodes with laser range finders which can achieve sub-centimeter level accuracy.

The purpose of deploying anchor nodes in a network is to guarantee the estimated

locations for other unknown nodes are defined in the coordinate frame of anchor nodes,

which is well-known to network users. The second assumption is about the topology

edges, which can be divided into two categories: range-based and range-free [He et al.,

2003]. The former assumes the length of topology edges can be measured by special

ranging hardware which is equipped on each sensor node. In contrast, the latter does

not need special ranging hardware and uses the dipole antennas already on sensor

nodes to achieve a rough localization.
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This dissertation will examine both categories of localization algorithms. More

specifically, range-free localization derives locations from the network connectivity

(i.e. who is within the radio range of whom) or from the received signal strength (RSS),

which can be directly obtained from radio-frequency (RF) transceivers. In contrast,

range-based localization assumes the sensor nodes are equipped with extra ranging

hardware to measure the geometric relation between neighboring nodes, e.g. their

distance or their relative angle. For a WSNs project, the choice of a localization

technique (range-free or range-based) depends on the application-specific factors, in-

cluding the accuracy requirement of intended WSNs application, the needed coverage

of sensor fields, and the budget for the whole project.

We briefly list in Table 1.1 the pros and cons of several localization techniques. In

range-based localization category, the ultrasound-based technique can provide high

precision below 1cm. But the range of its ranging signals is as small as 6m, and these

ultrasonic signals can be easily blocked by obstacles like walls [Priyantha et al., 2000,

2001]. The UWB1-based technique [Molisch et al., 2004] provides both high sub-meter

precision and good coverage of 50m range with the wall-penetration ability which is

especially suitable for indoor environments. But UWB is still prohibitively expensive

now for low-end users. In contrast, RSS fingerprinting in the range-free category

is cost-effective but provides only a coarse accuracy above 3m and needs regular

maintenance [Lorincz and Welsh, 2005]. Connectivity-based localization, although

providing the lowest accuracy (about one-third of radio range), has the lowest cost by

requiring sparser anchor distribution than RSS fingerprinting, and its coarse accuracy

can satisfy the requirement of some location-based applications [He et al., 2003].
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Table 1.1: Pros and Cons of Range-Free Localization and Range-Based Localization
Advantages Disadvantages

Range-
free

Cheap Cost since connectivity or
received signal strength (RSS)
data can be directly obtained from
the RF transceivers already on
board

Low Localization Accuracy about one
third of communication range (≈
10m); can be improved to around 3m
if RSS fingerprinting is used.

Range-
based

High Localization Accuracy rang-
ing from sub-centimeters to sub-
meters depending on the rang-
ing hardware adopted. Generally,
sonic methods have higher accu-
racy than RF methods but have
much shorter range.

High expense on per-node ranging
hardware, e.g. UWB1 RF TOA
[Chung and Ha, 2003], Ultrasonic
TOA2 [Priyantha et al., 2000], RF
AOA3 [Pages-Zamora et al., 2002],
Ultrasonic AOA [Priyantha et al.,
2001]

1.3 Contributions and Thesis Organization

1.3.1 Range-Free Localization: Robustness against Network

Anisotropy

The early range-free localization algorithms function well in isotropic networks

assuming the hop count distance between two nodes is proportional to their geometric

distance [Doherty et al., 2001, Nagpal et al., 2003, Niculescu and Nath, 2003, Shang

et al., 2003]. Their performance deteriorates sharply in concave networks with the

presence of obstacles, since the obstacles can detour the shortest path between two

nodes and enlarge the anchor-sensor distance estimates. Recently, several methods

have been proposed to handle obstacle detours [Li and Liu, 2007, Lim and C., 2005,

1Ultra-Wideband (UWB) is a radio technology that can be used at very low energy levels for
short-range high-bandwidth communications by using a large portion of the radio spectrum.

2Time-of-Arrival (TOA) is a method for determining the distance between two transceivers by
measuring the travel time (or round trip travel time) of signals between them.

3Angle-of-Arrival (AOA) is a method for determining the direction of propagation of a radio-
frequency wave incident on an antenna array.
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Shang and Ruml, 2004, Wang and Xiao, 2006].

However, the previous studies focused on only one anisotropic factor, i.e. obstacle

detours. Their localization accuracy still degrades in realistic networks with various

anisotropic factors, including obstacle detours, irregular radio propagation pattern,

non-uniform sensor distribution density, and anisotropic deployment terrain condi-

tion with some regions higher than others. The previous methods also have another

inadequacy of non-scalability, since their anchor-sensor distance estimates have larger

errors with the increase of network scale, which is called error accumulation. Some

of the previous methods rely on centralized computation, which consumes the micro

sensors’ precious energies to collect and disseminate required information. Most of

them neglect the impact of last hop distance on the overall distance estimation.

In Chapter 3, we propose a pattern-driven localization scheme targeting at large-

scale sensor networks with the presence of multiple anisotropic factors [Xiao et al.,

2010b]. This scheme can accurately estimate an anchor-sensor distance, even when the

shortest path from the anchor to the sensor (1) spans many hops which may incur the

accumulation of errors in anchor-sensor distance estimation, (2) has inaccurate per-

hop distance due to the interference of various anisotropic factors, and (3) is detoured

by obstacles. Our basic idea is that a sensor node can trust the nearby anchors within

three hops, and can accurately estimate distances to these trustworthy anchors by

an isotropic algorithm. For the remote anchors which are suspectable to anisotropic

interferences and obstacle detours, the sensor can use the trustworthy nearby anchors

as reference stations to revise their distance estimates:

• if there is only one trustworthy nearby anchor, we can revise the remote anchors

which are slightly detoured but are interfered by other anisotropic factors;
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• if there are two or more trustworthy nearby anchors, we can revise the re-

mote anchors which are both strongly detoured and interfered by other other

anisotropic factors.

Our simulation results show that our scheme can improve distance estimation ac-

curacy to be better than 0.4r, where r is the average radio range. Such a performance

is achieved in sparse concave networks with radio anisotropy based on DOI model.

In contrast, the state-of-the-art PDM fails in O-shaped networks and cannot handle

the last hop distance problem [Lim and C., 2005].

1.3.2 Range-Based Localization: An Accurate and Robust

Approach

The previous research on range-based localization advances in two opposite direc-

tions: whole-topology approach and iterative approach. The former directly analyzes

the whole network topology [Ji and Zha, 2004, Priyantha et al., 2003]. The lat-

ter firstly divides the network topology into small network elements (i.e. individual

nodes and groups of nodes called patches) and then merges these elements itera-

tively [Goldenberg et al., 2006, Horn et al., 1988, Meertens and Fitzpatrick, 2004,

Moore et al., 2004, Savvides et al., 2003b, Wang et al., 2008]. Recently, the itera-

tive approach becomes more and more popular, because the whole-topology approach

is more prone to trap in local minima, especially when applied to concave network

topologies with holes inside. In contrast, the iterative approach can avoid the local

minima problem because it merges two network elements at one time and handles

only a small number of degree-of-freedom during the merging. For example, iterative

multilateration [Savvides et al., 2003b] can merge a node into a patch, which has two
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degree-of-freedom, i.e. the translations of the node in x and y directions relative the

patch. CALL [Wang et al., 2008] proposed to merge two patches, where the right

patch has three degree-of-freedom in the coordinate frame of the left patch, i.e. two

translations and an additional rotation.

However, the previous iterative localization methods still have three inadequacies.

(1) They provided only parts of the sufficient conditions where two network elements

can be merged either uniquely or ambiguously. It is desirable to unify these sufficient

conditions and give out a more robust condition that also considers previously ne-

glected collinear geometry of sensor nodes. (2) Multilateration can be used to tolerate

ranging noise only when merging a node into a patch. The toleration of ranging noise

when merging two patches is still not fully addressed. (3) Although RobustQuad can

detect the node collinearity for multilateration [Moore et al., 2004], we still need a

unified approach to discover node collinearity for network element merging, i.e. for

both multilateration and patch merging.

In Chapter 4, we present a body merging (a network element is called a body for

short) algorithm to address all the issues above. Our algorithm is both accurate and

robust:

• Accuracy and Noise Toleration: align two bodies accurately by finding the best

relative position and orientation of the two bodies that can minimize the mean

squared error of their constraints. Our basic idea is to model the two bodies

to be connected by springs and then relaxes these springs to their minimum

energy states. Note that such an optimal alignment can find only one of the

possibilities of aligning two bodies.
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• Robustness and Collinearity Discovery: enumerate all the possibilities of align-

ing two bodies. We firstly check various node combinations during body merg-

ing and discover the potential collinear geometry in the presence of ranging

noise. We then flip one of the body alignment possibilities across the discovered

collinear node set and thus obtain other body alignment possibilities.

We also provide a condition for the merging of two bodies ambiguously. The ba-

sic idea is that the two bodies should have enough constraints by sharing nodes or

being connected by links to confine their continuous relative motions (i.e. Degree-

Of-Constraint ≥ Degree-Of-Freedom). This condition can unify previous work [Gold-

enberg et al., 2006, Savvides et al., 2003b, Wang et al., 2008] and help to achieve a

higher localization percentage than state-of-the-art CALL [Wang et al., 2008].

1.3.3 Range-Based Localization: Outlier Rejection

Range-based localization needs two types of inputs: the measurements of inter-

node distances and the positions of anchor nodes. However, for the measuring of

inter-node distances, it is inevitable to have erroneous distance measurements that

deviate significantly from true distances (call them outlier distances or outlier links).

The presence of these outlier distances can be caused by malfunctions of ranging

hardware, severe natural interferences to ranging signals, or malicious attacks. For

example, ultrasonic TOA may generate outlier distances with enlarged estimates due

to non-line-of-sight propagation of sound signals [Whitehouse et al., 2005]. Besides

outlier distances, it is inevitable to have outlier anchors declaring erroneous locations

that significantly deviate from their true locations. The sources of outlier anchors can

be misconfigurations or malicious attacks, e.g. Replay attack (i.e. attacker overhears
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an anchor location declaration and replays this declaration at other places) and Sybil

attack (i.e. attacker compromises an anchor node, exploits its identity and declares

erroneous anchor locations at different places [Newsome et al., 2004]).

The outlier distances and outlier anchors can severely degrade the accuracy of

localization algorithms. A bunch of algorithms thus are proposed to identify and

reject the outliers among normal distance measurements and normal anchors, which

is called robust network localization. Previous studies in this field are focused on

adding outlier rejection ability to multilateration (called robust multilateration), be-

cause multilateration is a basic operation that can be applied iteratively to localize

a network [Kiyavash and Koushanfar, 2007, Kung et al., 2009, Li et al., 2005, Liu

et al., 2005, Wang et al., 2007]. However, these previous studies have two inadequa-

cies. (1) They are inefficient in sparse networks where the node degree can be six or

less, because iterative multilateration becomes weak and even powerless for localiza-

tion in such networks. We must resort to another operation named patch merging,

which however is still vulnerable to outliers. (2) Previous studies neglect the differ-

ence between outlier distances and outlier anchors. Outlier anchors are more harmful

because multiple outlier anchors may collude and declare positions in the same co-

ordinate frame. Their toleration needs global knowledge in a multihop network to

exploit the majority of benign anchors, i.e. benign anchors outnumber outlier anchors

in the whole network.

In Chapter 5, we propose a robust network localization algorithm called RobustLoc

to reject outlier distances and outlier anchors in networks which can be either sparse

or dense. Our RobustLoc algorithm makes the following contributions if compared

with previous work. (1) We propose a robust patch merging operation which is
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more generalized and powerful than robust multilateration presented in [Kiyavash and

Koushanfar, 2007, Liu et al., 2005, Wang et al., 2007]. Our RobustLoc algorithm thus

can effectively reject outlier links and meanwhile achieve high localization percentage

in sparse networks. In contrast, robust multilateration method can only localize a

small proportion of nodes in sparse networks. (2) Our robust patch merging operation

handles the non-rejectable outlier distances due to insufficient connectivity in sparse

subregions, which is neglected before. (3) Our RobustLoc algorithm can reject both

outlier links and outlier anchors. In contrast, a recent paper [Jian et al., 2010] can

only reject outlier links, based on the enumeration of realizable generic cycles. (4) Our

RobustLoc algorithm can tolerate multiple outlier anchors which may collude under

malicious attacks. These declared contributions will be validated by high-fidelity

simulations with practical system parameters from [Moore et al., 2004, Savvides et al.,

2003b].



Chapter 2

Related Work

In this chapter, we give a brief introduction to related work and further highlight

the contributions made in this dissertation.

2.1 Range-Free Localization

Chapter 3 concentrates on the range-free localization, which probably is a much

cheaper option than range-based and anchor free localization [Stoleru et al., 2007].

This is because the range-free option leverages the radio transmitter already deployed

on each sensor and thus eliminates the need for extra per-node devices or additional

infrastructure. However, it is more difficult for the range-free localization to achieve

high localization accuracy, which is desirable for location dependent protocols and

applications [He et al., 2003]. Therefore, for a range-free solution, accuracy is the

most critical factor in deciding its applicability.

A common feature of pioneering range-free solutions (e.g. DV-Hop [Niculescu and

Nath, 2003], Amorphous [Nagpal et al., 2003] and MDS-MAP [Shang et al., 2003])

15
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is their assumption about network isotropy. Therefore, their performance degrades

severely [Lim and C., 2005] in test beds, where multiple anisotropic factors exist (e.g.

concave deployment region, sparse and non-uniform sensor distribution, anisotropic

terrain condition and irregular radio pattern). This underperformance has led to

extensive research on anisotropy tolerating algorithms. Most of these studies are

based on two commonly seen (and also overlapping) assumptions: a fixed number of

anchors and the presence of only one anisotropic factor, i.e. obstacle detour.

A fixed number of anchors is assumed by MDS-MAP(P) [Shang and Ruml, 2004]

and REP [Li and Liu, 2007]. The algorithms with this assumption share two draw-

backs: (1) lack of mechanisms to fully exploit increased anchor density and (2) po-

tential accumulation of error, when the network scale is large. As one example,

MDS-MAP(P), following the canonical “divide and conquer” paradigm, splits the

network into small overlapping subregions. For each subregion, which is considered

to be locally isotropic, MDS-MAP is applied to compute a local map. By merging

all these local maps, a global map is formed through a coordinate registration pro-

cedure. However, its recursive merge operation is sensitive to the noise in local map

construction and suffers from error propagation after several iterations [Meertens and

Fitzpatrick, 2004], especially when the network scale is large.

The presence of only one anisotropic factor (i.e., the concave deployment region) is

assumed by iMultihop [Wang and Xiao, 2006] and REP [Li and Liu, 2007]. However,

the performance of these algorithms may degrade in practice, because the existence

of multiple anisotropic factors may be inevitable in test beds and real deployment of

WSNs. The iMultihop [Wang and Xiao, 2006] contributes an impressive improvement

to the multilateration component of DV-Hop. It is based on the observation that the
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shortest path from an anchor to a sensor will deviate far away from straight lines when

distorted by obstacles, and the distorted distance estimate is always larger than its

real value. Therefore, a set of upper bound quadratic inequality constraints can be

added to the MMSE objective function of traditional multilateration. However, this

assumption of iMultihop that distance estimates are enlarged due to anisotropy may

not hold for networks having multiple anisotropic factors other than obstacle detour.

As a summary, the assumption about existence of only one anisotropic factor may

weaken the soundness of an algorithm designed to tolerate network anisotropy.

The problem of range-free localization tolerating network anisotropy can be inves-

tigated from another perspective by assuming a varied number of anchors proportional

to network scale and the presence of multiple anisotropic factors, rather than a fixed

number of anchors and the presence of only one anisotropic factor. The PDM [Lim

and C., 2005] and our scheme both fall into this category. These two solutions are

compared as follows. (1) Our scheme is a distributed solution with less communica-

tion overhead. The communication cost of our scheme is O(MN), while that of PDM

(a centralized algorithm) is O(M2N), where M is the number of anchors and N is

the number of sensors - Subsection 3.7.5. (2) Our scheme has consistent performance

in various shapes (e.g. rectangular, O and U shapes) of sensor deployment fields, but

PDM degrades severely in the O-shaped region. (3) Our scheme has higher accuracy

than PDM, when sensors are densely distributed, thanks to the ability of CrMcs to

handle the last hop distance problem. (4) It is easier to integrate our pattern-driven

scheme with the state-of-the-art works in secured localization to additionally toler-

ate malicious attacks. However, PDM has no such convenience, since (a) if a sensor

drops several unreliable anchors individually, then it may become inconvenient for



18

the sensor to use the global Proximity-Distance-Matrix; (b) if an anchor lies about

its own position, the error in this position declaration can pollute all anchor-sensor

distance estimates of a sensor, which makes it difficult for GridVoting [Liu et al.,

2005] algorithm to detect lying anchors.

2.2 Range-Based Localization: Accuracy and Ro-

bustness against Ambiguities

Network localization techniques can be divided into two categories according to

ranging accuracy.

(1) Coarse-grained techniques have low ranging accuracy of meters or tens of meters

since they exploit radio attenuation for ranging [He et al., 2003, Li and Liu, 2007,

Lim and C., 2005, Wang and Xiao, 2006, Xiao et al., 2010a,b]. They have two

advantages of low cost with no requirement for extra ranging hardware and the

ability to satisfy accuracy requirements of certain location-dependent protocols

and applications [He et al., 2003].

(2) Fine-grained techniques can provide high accuracy at centimeter level, which

is based on TOA techniques e.g. ultrasonic TOA or round-trip ultra-wideband

TOA [Goldenberg et al., 2006, Horn et al., 1988, Moore et al., 2004, Priyantha

et al., 2003, Savvides et al., 2003b, Shang and Ruml, 2004, Wang et al., 2008].

The price for this high accuracy is to deploy per node a ranging device.

Chapter 4 focuses on fine-grained localization, in which the inter-node distances

can be accurately measured. From the distance measurements, node locations need
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to be derived, which can be affected by the following three basic factors:

(1) Ranging Noise. Ranging noise if not properly handled can reduce localization

accuracy. Multilateration [Foy, 1976] focuses on how ranging noise can be tolerated

when aligning a node with a patch. Patch stitching [Horn et al., 1988] solves how

ranging noise can be tolerated when merging two patches that share at least three

nodes. However, ranging noise toleration is still a problem when merging two patches

that share two nodes or less. Our body merging optimization algorithm can tolerate

ranging noise no matter how many nodes two bodies share.

(2) Flip Ambiguities due to Node Collinearity. Nodes can be roughly collinear

when ranging noise exists, and such implicit collinearity can cause unanticipated flip

ambiguities which corrupt localization computations. RobustQuad [Moore et al.,

2004], which is proposed to avoid unanticipated flip ambiguities, is only applicable to

multilateration. But our algorithm can enumerate flip ambiguities for both multilat-

eration and patch merging.

(3) Network Connectivity. Connectivity, which means which node pairs have dis-

tance measurements, can affect the localizability of a network. As uncovered by

global rigidity related researches [Eren et al., 2004, Goldenberg et al., 2006], sensors

or patches can be localized if they have sufficient connectivity to already localized

nodes. The drawback of the previous studies is that they neglect the case where two

patches, if having enough connectivity, can be merged to generate a larger patch.

This larger patch has a better chance to find enough connectivity to localized nodes.

Although CALL [Wang et al., 2008] can also merge two patches, it neglects the cases

where two patches share two nodes (or share one node and are connected by a link).

Our inflexible body merging condition can support all the cases and achieve a higher



20

localization percentage than CALL.

2.3 Range-Based Localization: Outlier Rejection

Chapter 5 focuses on fine-grained localization, in which the inter-node distances

can be accurately measured. From the distance measurements, node locations need

to be derived. In this field, most of the solutions are based on two basic operations,

i.e. multilateration [Goldenberg et al., 2006, Priyantha et al., 2003, Savvides et al.,

2003b] and patch merging [Horn et al., 1988, Moore et al., 2004, Shang and Ruml,

2004, Wang et al., 2008]. However, the accuracy of these two basic operations are

under the threat of outlier links and outlier anchors. These outliers are inevitable

due to hardware malfunctions, natural interferences and malicious attacks.

A school of researchers acknowledge the threat of outliers and try to enhance

multilateration with outlier rejection ability, which is called “robust multilateration”.

Ring-overlapping method [Liu et al., 2005] compares distance measurements to rings,

finds the region that is most heavily overlapped by rings, and regards the centroid of

this region as a trustworthy location estimate. SISR [Kung et al., 2009] is based on

weighted multilateration and assigns smaller weights to outlier links than to normal

links, because intuitively outlier links have larger deformation and can be identified.

LMS [Li et al., 2005] supports robust multilateration based on least median of squares.

C(n, 3) methods [Kiyavash and Koushanfar, 2007, Wang et al., 2007] find an outlier-

free link group by checking each group of three links. Different from the previous

researches on robust multilateration, we provide a robust patch merging operation

that can reject outliers for both patch merging and multilateration. Based on this

robust operation, we further solve the problem of robustly localizing a network which
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can be either sparse or dense.

A recent work [Jian et al., 2010] proposes an outlier link rejection algorithm which

can remove outlier links before the execution of a network localization algorithm. This

work identifies outlier links based on the enumeration of realizable generic cycles: a

generic cycle is outlier-free if it can be realized, and a link is identified as an outlier

if it is not contained in any outlier-free generic cycles. Different from [Jian et al.,

2010], we reject outlier links based on robust patch merging operation, and we can

additionally reject outlier anchors even when multiple outlier anchors collude due to

malicious attacks.
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Chapter 3

Range-Free Localization in

Anisotropic Wireless Sensor

Networks: A Pattern-Driven

Scheme

3.1 Overview

In recent years, by the advances in MEMS and communication theory, wireless

sensor networks (WSNs) have revealed great potential to provide economical and

practical solutions for both civilian and military applications, e.g. tracking, surveil-

lance and environmental monitoring. In many of these applications, knowledge about

sensors’ geometrical positions is assumed to be an integral part of sensor readings,

23
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and it is also critical for many network protocols, including topology control, clus-

tering and geographical routing. It thus becomes one of the fundamental issues in

WSNs to acquire sensor position knowledge, called sensor localization problem.

To address this localization problem, extensive research has been conducted on

multihop solutions for the following reasons. It is a naive solution to have all the

sensor nodes equipped with GPS receivers to directly contact satellites, because this

“one-hop” approach is prohibited by the size, cost and power consumption constraints

of sensor nodes. As a compromise, only a small portion of nodes named anchors have

GPS receivers (or other localization equipments like laser range finder) and can know

their positions accordingly, and these anchors can help to locate other “unknown”

sensors. The challenging part of this anchor based approach is that the anchors can

only be sparsely distributed, in order to reduce WSNs deployment cost. Therefore,

the anchors only one hop away from a sensor may not provide enough anchor-sensor

distance estimates to localize this sensor. For this reason, researchers actively seek for

the multihop localization solutions that can measure anchor-sensor distances spanning

multiple hops.

Among various multihop solutions, people pay great attention to the multihop

range-free solutions [Doherty et al., 2001, He et al., 2003, Nagpal et al., 2003, Niculescu

and Nath, 2003, Shang et al., 2003, Xiao et al., 2008] that utilize only connectivity

information, i.e. who is within the radio range of whom. This is because range-free

solutions have no requirements for expensive ranging devices and can satisfy the ac-

curacy requirement of many location-based applications [He et al., 2003]. Moreover,

current ranging techniques (e.g. TDoA, AoA and RSSI) have their inadequacies [Sav-

vides et al., 2001].
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Although the previous multihop range-free solutions [Doherty et al., 2001, He

et al., 2003, Nagpal et al., 2003, Niculescu and Nath, 2003, Shang et al., 2003, Xiao

et al., 2008] function well in isotropic networks (that assume hop count distance

between two nodes is proportional to their geometric distance), their performance

deteriorates sharply in anisotropic networks. Network anisotropy stems from vari-

ous factors, e.g. concave networks, irregular radio propagation pattern, non-uniform

sensor distribution density, and anisotropic deployment terrain condition with some

regions higher than others. To tolerate these anisotropic factors, several methods [Li

and Liu, 2007, Lim and C., 2005, Shang and Ruml, 2004, Wang and Xiao, 2006] have

been proposed recently. These methods however have the inadequacy to focus on only

one anisotropic factor, like obstacle detour. They may also have the inadequacy of

non-scalability due to the error accumulation along with the increase of network scale.

Some of these methods rely on centralized computation, which consumes the micro

sensors’ precious energies to collect and disseminate required information. Most of

them neglect the impact of last hop distance on the overall distance estimation.

We focus on multihop range-free localization in anisotropic networks, and propose

a distributed pattern-driven scheme to produce accurate estimates of anchor-sensor

distances with the presence of multiple anisotropic factors. This accurate distance

estimation is the basis of accurate sensor location estimation. The main idea of

our pattern-driven scheme is to exploit the observation that the hop count field of

an anchor (i.e. hop count distribution of sensors with respect to that anchor) can

exhibit multiple patterns in an anisotropic network. One example of this coexistence

of multiple patterns can be found in Fig. 3.1. As illustrated, region I is within a

few hops from the anchor, and the hop count field there approximately exhibits a
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Concentric Ring (CR) pattern, in which sensors can approximately treat this anchor

as an isotropic anchor. However, region II is far away from the anchor, and the

hop count field there exhibits a Centrifugal Gradient (CG) pattern, in which sensors

can witness the anchor as an anisotropic anchor. CR and CG patterns are different

because CG pattern permits the HopSize (i.e. average per-hop-distance) to vary

in an unpredictable manner due to the disturbance of multiple anisotropic factors,

e.g. non-uniform sensor distribution, irregular radio propagation, anisotropic terrain

condition. CR and CG patterns however have a shared feature that a rough match is

preserved between the hop count field gradient (with the greatest rate of increase of

hop count) and the centrifugal direction (that departs from the anchor). The worst

case is that in region III, hop count field exhibits Distorted Gradient (DG) pattern,

in which the line-of-sight rule is violated by obstacle detour and the field gradient

strongly deviates from the centrifugal direction.

a few hops
Anchor

Region I

Region III

Region II

Sensor Sandy Land

Pond

Woods

Sensor

Gradient

Centrifugal 
 Direction

Fig. 3.1: Coexistence of multiple patterns in the hop count field of an anchor.

To achieve accurate distance estimation in this anisotropic sensor network, we

assume each sensor has the ability to classify heard anchors into three categories ac-

cording to the CR, CG, DG patterns. In practice, we put into CR category all the
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anchors within three (or four) hops. This threshold is chosen based on our observa-

tions of the error accumulation trend (with increased hop count) of the anchor-sensor

distance estimation by isotropic algorithms (like Amorphous and DV-Hop) in rect-

angular anisotropic networks. It is a difficult problem to differentiate between the

CG pattern (anisotropic but slightly detoured) and the DG pattern (anisotropic and

strongly detoured). In fact, it may be impossible in practice to accurately recognize

the slightly detoured anchors from strongly detoured (or even from moderately de-

toured anchors), without the global knowledge on network topology, e.g. network

boundary and obstacles shapes. A practical and efficient way is to select the eight

nearest anchors into the CG category, which thus may contain detoured anchors. We

choose this threshold of eight, because from the localization perspective, eight anchors

are sufficient to mitigate bad anchor geometry and obtain accurate location estimate.

Those anchors that are not eight nearest are put into the DG category.

The three categories of heard anchors corresponding to the three patterns (namely

CR, CG, DG) have different dominating error sources in anchor-sensor distance es-

timation. For the three different categories, we therefore propose different anchor-

sensor distance estimation algorithms. (1) For the CR pattern, the last hop distance

is an important factor interfering the distance estimation accuracy. To reduce its

impact, we propose an algorithm named CrMcs to achieve higher accuracy than DV-

Hop [Niculescu and Nath, 2003] and Amorphous [Nagpal et al., 2003]. (2) For the

CG pattern, varying HopSize becomes the dominating factor and we propose the

DiffTriangle to tolerate the inaccurate HopSize estimates. The main idea of Diff-

Triangle is to revise the anchor-sensor distance estimates with the assistance from

the nearest anchor to the sensor (namely Reference Station), which exhibits the CR
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pattern. Because it is inevitable for the CG category to contain detoured anchors,

we enhance the DiffTriangle by DiffTriangle* to tolerate obstacle detour additionally.

DiffTriangle* however requires two reference stations exhibiting the CR pattern. As

a summary, for the CG category, when there are two reference stations in the CR

category, DiffTriangle* is adopted; when only one is available, DiffTriangle is used

as a backup; when there are none, CrMcs is the only choice left. (3) The surplus

anchors in the DG category vulnerable to obstacle detour are dropped. Finally, when

sufficient (more than 6) distance estimates are collected from anchors exhibiting the

CR or CG pattern, a sensor can deduce an estimate about its own location using

weighted MMSE multilateration [Foy, 1976]

Extensive theoretical analysis about estimation accuracy of our pattern-driven

scheme can be found in this chapter. We show that, for the CR pattern, CrMcs can

effectively suppress distance estimation error below 0.2r (r is the average communi-

cation range of sensors) when network density is higher than eight. Benefiting from

these accurate estimates by CrMcs, distance estimation accuracy of DiffTriangle is

improved to be better than 0.4r, when DiffTriangle is applied to the CG pattern.

We demonstrate by simulations the averaged accuracy of DiffTriangle* to be better

than 0.5r when handling obstacle detour. With these accurate anchor-sensor distance

estimates (even when network density is as sparse as eight), the average localization

accuracy approaches 0.4r according to Cramér-Rao lower bound [Savvides et al.,

2003a]. This localization accuracy can satisfy the needs of many location dependent

applications, including geographical routing and tracking [He et al., 2003].

Our pattern-driven localization scheme differs from other anisotropy tolerating

methods in several fundamental aspects.
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• Higher Localization Accuracy:

1. In the CR pattern, CrMcs minimizes the impact of the last hop distance

on distance estimation, which is neglected by other anisotropy tolerating

methods.

2. In the CG pattern, DiffTriangle can effectively tolerate the variation of

HopSize disturbed by multiple anisotropic factors and DiffTriangle* can

additionally tolerate obstacle detour. As a comparison, most of the existing

works can tolerate only one anisotropic factor (obstacle detour) and ideally

assume circular radio model, dense and uniform sensor distribution and

uniform terrain condition.

3. For the DG pattern, anchors in the DG category are dropped. Therefore,

our scheme can easily integrate the state-of-the-art works in secured local-

ization, which can recognize outliers and place them into the DG category

to eliminate their impact.

• Less Communication Overhead: The communication overhead of our method

is O(MN), while that of PDM is O(M2N), where M is the number of anchors

and N is the number of sensors (including the anchors).

• Reduced Computational Complexity: The arithmetic operations needed by our

scheme includes only basic trigonometric functions, bisection root finding and

MMSE multilateration [Foy, 1976]. There is no need for inversion of large

matrices as in PDM [Lim and C., 2005] and MDS-MAP [Shang and Ruml,

2004].

• Enhanced Algorithm Robustness to Different Network Topologies: Our scheme
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is a distributed solution that functions well in all simulated deployment regions,

including rectangular, U-shaped, O-shaped regions. Performance of centralized

algorithms (like PDM) degrades dramatically in the O-shaped regions (see Sub-

section 3.7.5).

The rest of this chapter is organized as follows. In Section 3.2, we propose a

localization framework to give an overall impression of our pattern-driven localiza-

tion scheme. Section 3.3 presents CrMcs for distance estimation in the CR pattern

to minimize the impact of the last hop distance. Section 3.4 proposes DiffTriangle

algorithm to tolerate the varying HopSize in the CG pattern. Section 3.5 first quan-

tifies the impact of DG pattern on the accuracy of DiffTriangle and then enhance the

DiffTriangle by DiffTriangle* to further tolerate obstacle detour. Section 3.6 provides

the algorithm pseudo code to reproduce our simulation results. Section 3.7 presents

simulation results, comparing our algorithm with Amorphous and PDM. Finally, we

conclude this chapter in Section 3.8.

3.2 Proposed Localization Framework

We present a pattern-driven localization framework, which is deployed at each

sensor to estimate its location. The design of this framework is inspired by the

fact that from the perspective of an sensor, hop count fields of different anchors

may exhibit different patterns, disturbed by different anisotropic factors. To classify

heard anchors according to the three patterns (CR - isotropic, CG - anisotropic but

slightly detoured, DG - strongly detoured) and to invoke suitable distance estimation

algorithms for different patterns, we present the localization framework in Fig. 3.2,
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which depicts both the data flow and control flow. We hope the following description

can help foster an overall understanding of our pattern-driven localization scheme.

Distance

errloc dist

(1) Anchor
Classification

Phase

Drop

CrMcs

id loc hop nbrs- nbrs= nbrs+

Input I All anchors heard by this sensor

Revision informa�on received fro-
m nearby reference sta�ons, who propagate their own Input I to their surroundings

Input II

CG recognizer

CR recognizer

Entrance

(2)  Distance
Estimation

Phase

(3)  Location
Estimation

Phase

Output:

Exit

Data Flow

Control Flow

Structured States
Legend

Fig. 3.2: The unified localization framework deployed at each sensor for range-free
localization.

From the perspective of control flow, our framework has only one control thread,

which consists of three consecutive phases: (1) Anchor Classification Phase; (2) Dis-

tance Estimation Phase; (3) Location Estimation Phase. In phase (1), we classify

the anchors heard by a sensor into three categories (CR, CG or DG patterns). In

phase (2), we schedule a corresponding anchor-sensor distance estimator for each an-

chor category, which prepares a sufficient number of distance estimates for the next

phase. In phase (3), we deduce an estimate about the sensor’s location by weighted

multilateration.
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From the perspective of data flow, the framework has one output (the final loca-

tion estimate) and two inputs (Input I & II). Firstly, to obtain the Input I (stored

temporally in the DG category), each anchor initiates network-wide flooding and each

sensor hearing the flooding records the information about the anchor, such as its iden-

tifier, location and hop count. Secondly, each sensor locally broadcasts its incomplete

Input I (the hop counts to all heard anchors) to its immediate neighborhood, since

the Input I additionally requires the knowledge on the number of neighbors having

smaller (equal, larger) hop counts than the sensor itself. Finally, each anchor propa-

gates its Input I to three (or four) hops neighborhood by a confined flooding, which

is recorded by nearby sensors as their Input II and is needed by our DiffTriangle* al-

gorithm. Therefore, we regard our localization scheme as a distributed solution with

only one simple communication protocol - the confined flooding, since the network-

wide flooding and the local broadcast are both special cases of the confined flooding.

In phase (1), we classify the set of all heard anchors into three subsets (namely CR,

CG, DG) by a sequential execution of two pattern recognizers. Firstly, the CG recog-

nizer relocates undetoured anchors from the DG category into the CG category, since

the CG pattern in contrast to the DG pattern has the slight detour assumption. This

chapter configures the CG recognizer to trust the nearest 8 anchors, which reduces

the chance to contain strongly detoured anchors in the CG category. Secondly, the

CR recognizer relocates anchors exhibiting the CR pattern from the CG category into

the CR category, since the CR pattern additionally assumes network isotropy (with

identical HopSize) compared with the CG pattern. For the CR recognizer, we use an

empirical rule to trust anchors within a few hops (i.e. three or four hops adjustably).

In phase (2), we adopt different anchor-sensor distance estimators for different
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anchor categories (CrMcs for the CR pattern, DiffTriangle* and DiffTriangle for the

CG pattern) and drop the remaining anchors in the DG pattern. CrMcs can solve

the last hop distance estimation problem for isotropic anchors and it is discussed in

Section 3.3. DiffTriangle can tolerate varying HopSize and we present DiffTriangle

in Section 3.4. DiffTriangle* is an enhancement to DiffTriangle to additionally tol-

erate obstacle detour and we cover it in Section 3.5. In phase (3), we adopt the

weighted multilateration [Foy, 1976] as the location estimator, which is described in

Subsection 3.5.2.

An advantage of our framework is its flexibility, which permits the “Stateless Ac-

tivities” in Fig. 3.2 to be replaced by other algorithms. One example is to replace

CrMcs by MDS-MAP [Ji and Zha, 2004], which however incurs higher communication

overhead. Another example is to use the GridVoting [Liu et al., 2005] method as the

CG recognizor, which can filter both obstacle detour and malicious attacks. However,

secured localization is not the focus of this chapter and we find in practice that Grid-

Voting can only detect strongly biased anchors but not moderately detoured anchors.

It may be impossible to completely rule out detoured anchors in the CG category,

and DiffTriangle* is still necessary even when the GridVoting method is employed.

As a summary, our framework has the flexibility to accommodate different algorithm

combinations, which can facilitate future studies in sensor network localization.

3.3 CR Pattern and Proposed CrMcs

In this section, we present the CrMcs algorithm to estimate the multihop anchor-

sensor distance for isotropic anchors approximately exhibiting the Concentric Ring

(CR) pattern. The CR pattern applies in isotropic networks and isotropic regions (like
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the region I in Fig. 3.1), in which the field gradient roughly matches centrifugal

direction and HopSize is identical in all directions as illustrated by Fig. 3.3. We

firstly identify the last hop distance problem - an important factor interfering the

distance estimation in the CR pattern, and then show the ineffectiveness of DV-Hop

and Amorphous to handle this problem. In order to minimize its impact, CrMcs is

proposed to reduce distance estimation error of the CR pattern to below 0.2r (when

network density is above 8). We give out this accuracy bound by theoretical analysis

and this accuracy is crucial to guarantee satisfactory performance of DiffTriangle,

which will be discussed in the next section. Additionally, the symbols in this section

are summarized in TABLE 3.1 and they are also used throughout the chapter.

3.3.1 CR Pattern and The Last Hop Distance

4th Hop Communication Disk

3rd Hop Communication Disk

Anchor j

1st Hop Communication Disk

4th Hop Contour Ring

Last Hop
Distance

HopSize

Anchor-Sensor 
Distance•

Gradient &
Centrifugal
Direction

Sensor i

Fig. 3.3: Multihop distance estimation based on the concentric rings pattern.

It is well known that in networks where sensors are uniformly distributed, the

hop count field of an anchor approximately demonstrates the Concentric Ring (CR)

pattern, under the assumption that the RF transmitters of wireless sensor nodes
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have a rotationally symmetric range. We argue that when estimating anchor-sensor

distances using the CR pattern, another important factor influencing estimation ac-

curacy (besides the accuracy in HopSize estimation) is the last hop distance.

Definition 1 (Definition of Last Hop Distance).

When hj(i) = 1, the last hop distance of sensor i is dj(i);

When hj(i) > 1, the last hop distance of sensor i is the shortest distance from the

contour ring with hop hj(i)− 1 to the sensor i.

If there is no methods to effectively estimate the last hop distance, the average

distance estimation error will surely exceed one quarter of HopSize (≈ 1
4
· 0.8r = 0.2r).

This is because the maximum estimation error is half of HopSize, since all sensors in

a contour ring (like the 4th hop contour ring in Fig. 3.3) have the same hop count and

thus share the same anchor-sensor distance estimate that is the arithmetical mean of

the inner radius and the outer radius of the ring.

Although this problem of last hop distance is important, it is inappropriately han-

dled by traditional distance estimation algorithms, including DV-Hop [Niculescu and

Nath, 2003] and Amorphous [Nagpal et al., 2003]. The DV-Hop, using the following

equation, neglects this problem.

d̂1j(i) = hj(i) · dhop

The Amorphous, though striving to mitigate the impact of this problem using a

method called “smoothing”, produces biased distance estimates for the first two hops

even when HopSize is accurately known, according to the following analysis. Amor-

phous adopts the smoothed hop count hj(i), rather than the raw hop count hj(i), to
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derive distance estimate d̂2j(i).

d̂2j(i) = hj(i) · dhop (3.1)

The smoothed hop count hj(i) is calculated by a local averaging around sensor i’s

immediate neighborhood.

hj(i) =
1

|N(i)|
∑

l∈N(i)

hj(l) − 0.5 (3.2)

We analyze the systematic error of Amorphous incurred by the last hop distance

in Appendix A.A and plot its result in Fig. 3.4, which indicates Amorphous can
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Fig. 3.4: Systematic error of smoothing technique in Amorphous.

be inaccurate in the first two hops. A similar conclusion can be drawn from the

simulation results in Section 3.7.

3.3.2 Proposed CrMcs

We propose the CrMcs algorithm to achieve accurate anchor-sensor distance es-

timation in the CR pattern. The main idea underlying CrMcs is to minimize the
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impact of the last hop distance by exploiting the uniform sensor distribution around

a sensor’s immediate neighborhood (i.e. essentially Monte Carlo sampling). There-

fore, from the percentage of neighbors with no larger hop count than the sensor itself,

we can estimate the area of the gray region illustrated in Fig. 3.3. With this area

estimate, we can derive an anchor-sensor distance estimate that includes the last hop

distance.

The first step of CrMcs is to estimate the area of the mentioned gray region, which

is the intersected region of anchor j’s hj(i) hop disk - dskj(hj(i)) - and sensor i’s one

hop disk dski(1). We represent its area by aj(i) and estimate the area by the following

equation.

aj(i)

πr2
≈ |Nj(i)|

|N(i)|
(3.3)

Its basic idea is the Monte Carlo sampling, treating each node around sensor i’s

neighborhood as an independent sampling. In this way, the ratio of aj(i) to the area

πr2 of sensor i’s neighborhood dski(1) can be approximated to the proportion of

sensor i’s neighbors with hop counts equal to or lower than the sensor i’s hop count

hj(i).

The second step of CrMcs is to estimate the radius of the two intersecting disks -

dskj(hj(i)) and dski(1) by Eq. (3.4), assuming the CR pattern.

r(h) ≈ (h − 1) · dhop + r (3.4)

In this equation, the radius of dskj(hj(i)) is equal to r(hj(i)) and radius of dski(1)

is r(1). In Eq. (3.4), we intentionally assign the one hop disk’s radius r(1) as the
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sensors’ average radio range r, which is determined when the sensors are deployed.

This assignment improves estimation accuracy of r(1), while it brings error to esti-

mation of r(h), when h > 1. This error is negligible in simulation, since it is quite

difficult to estimate HopSize (or dhop) precisely in practice due to the existence of

radio irregularity (enlarged by the long range link) and it is always underestimated

by Kleinrock’s equation [Kleinrock and Silvester., 1978].

The final step is to estimate the anchor-sensor distance dj(i) by Eq (3.5), as the

distance between centers of two disks dskj(hj(i)) and dski(1).

d̂3j(i) = A−1[r(1), r(hj(i)), aj(i)] (3.5)

This equation assumes that the we have the estimates about the radius of the two

disks and the area of their intersected region in the previous two steps . The function

A−1 is the inverse function ofA in Eq. (3.6), which is established by applying bisection

root finding algorithm to function A.

a = A (r1, r2, d) = r1 ·
θ1 − sinθ1

2
+ r2 ·

θ2 − sinθ2

2
(3.6)

θ1 = 2 arccos
x1

r1

x1 =
d

2
+

r2
1 − r2

2

2d

θ2 = 2 arccos
x2

r2

x2 =
d

2
+

r2
2 − r2

1

2d

The A (r1, r2, d) is a geometric function calculating the area of the intersected region

of two disks and taking three parameters - the radius r1, r2 of the two intersecting

disks and the distance d between their centers. The symbols used in Eq. (3.6) are

illustrated by Fig. 3.5.
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gray intersected
region  a

Fig. 3.5: Calculating the area of the intersected region of two disks.

3.3.3 Error Characteristics of CrMcs

Sensor density is an important factor influencing the accuracy of CrMcs, which

directly decides the accuracy of the intersected area estimation in Eq (3.3). For

this issue, we provide an analysis in Appendix A.B and plot the analysis result in

Fig. 3.6, showing that the accuracy of CrMcs is better than 0.2r when sensor density

> 8. This analysis result is consistent with the simulation result in Section 3.7. The
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Fig. 3.6: Accuracy of CrMcs in different sensor densities.
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limitation of this analysis however is its assumption of accurate HopSize (simplified

to r) and it thus is only valuable for low hop count cases, in which the impact of

inaccurate HopSize on the accuracy of Eq (3.4) is minimized. For large hop count

cases, it is inevitable for the accuracy of CrMcs (and Amorphous) to degrade with the

increase of hop count (namely error accumulation), since the inaccuracy in HopSize

get amplified by large hop count in Eq (3.4). It is the topic of the next section

on how to tolerate this error accumulation due to varied and inaccurate HopSize.

Additionally, the accuracy of CrMcs with the presence of radio irregularity (based on

DOI model [He et al., 2003]) has been investigated by simulations in Subsection 3.7.3.

3.4 CG Pattern and Proposed DiffTriangle

In this section, we consider the distance estimation problem in anisotropic net-

works with the presence of various anisotropic factors apart from large obstacles. In

this type of networks and regions (like the region II in Fig. 3.1), the hop count fields

exhibit the Centrifugal Gradient (CG) pattern. The CG pattern, compared with the

CR pattern,

• relaxes the assumption about identical HopSize to permit it to vary in all di-

rections - the anisotropic assumption,

• but it preserves the assumption about the rough match between gradient and

centrifugal direction - the slight obstacle detour assumption.

Therefore, isotropic algorithms assuming the CR pattern (like DV-Hop and CrMcs)

encounter performance degradation in the CG pattern. To tolerate the varying Hop-

Size, we propose DiffTriangle algorithm that can reduce the distance estimation error
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below 0.4r (sensor density ≥ 8). We also provide theoretical analysis for this claimed

accuracy in this section.

3.4.1 CG Pattern with Slight Obstacle Detour

Effective localization remains a problem in sparse networks where the sensor den-

sity falls in the range of 6 to 15. There are two reasons for using this range. First,

Nagpal suggests in [Nagpal et al., 2003] that 15 is a critical minimum sensor density

for Amorphous to obtain good accuracy. Second, Kleinrock and Silvester prove in

[Kleinrock and Silvester., 1978] that 6 is the optimum sensor density to maintain the

network connectivity. The localization problem in sparse networks deserves investiga-

tion, because lower sensor density implies lower deployment cost, smaller possibility

of traffic jam and radio interference.

0 1 2 3 4 5 612345

Density = 30 Density = 8 

Varying HopSizeGradient & Centrifugal Direction

Fig. 3.7: Anisotropy caused by low sensor density.

We argue that the underperformance of Amorphous in sparse networks is caused

by network anisotropy. To visualize this anisotropy, we use convex hulls to contain all

sensors with the same hop count, which offer a good approximation and illustration
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of contour curves in a hop count field. As in the left part of Fig. 3.7, when the sensor

density is 30, a tight match can be seen between the concentric rings and the convex

hulls, which are represented as the polygons in Fig. 3.7. However, when the sensor

density is as low as 8, the convex hulls deviate from concentric rings, with HopSize

varying unpredictably in different directions. This deviation explains why localization

algorithms assuming network isotropy suffer from severe performance degradation in

sparse networks.

A CG pattern can be extracted from the hop count fields of sparse networks. In

the right part of Fig. 3.7, although the HopSize varies when the sensor density is 8,

the field gradient still roughly matches the centrifugal direction, which is represented

as the rough perpendicularity between centrifugal directions and contour curves. This

type of anisotropy is summarized as the Centrifugal Gradient (CG) pattern, which

permits varying HopSize and preserves a rough match between field gradient and

centrifugal direction.

Sensor Density = 8 

Fig. 3.8: Disturbance by small holes in sparse networks.

The existence of the CG pattern in a sparse network can be explained as its
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non-uniform sensor distribution tendency, which creates numerous small holes scat-

tered over the whole network, as illustrated in Fig. 3.8. These small holes distort the

shortest path between the anchor and a sensor, which thus slightly deviates from the

straight line connecting the two sensor nodes. Therefore, in Fig. 3.7, the HopSize

varies unpredictably in different directions, but the field gradient is only slightly dis-

turbed from its outward direction, due to the small scale of these holes. This rough

match between field gradient and centrifugal direction (the slight detour assump-

tion) is a common trait observable in more generalized network settings, additionally

assuming the presence of anisotropic terrains condition, non-uniform sensor distribu-

tion, irregular radio propagation and inconsistent sensor radio range.

3.4.2 Proposed DiffTriangle

To tolerate the unpredictable variation of HopSize in CG pattern and produce

accurate estimates about anchor-sensor distances, we propose DiffTriangle exploiting

the rough match between field gradient and centrifugal direction. The DiffTriangle

gets its inspiration from the Voronoi diagram with geometrically distributed anchors

acting as the sites of the Voronoi cells. Sensors within a Voronoi cell adopts the

dominating anchor as their Reference Station to revise their distance estimates (to

other distant anchors), which deteriorate due to network anisotropy if applying CrMcs

or Amorphous.

We assume that the dominating reference station of a Voronoi Cell approximately

exhibits the CR pattern to the sensors within the cell. This implies that these ref-

erence stations should appear in normal sensors’ CR category and thus the distance

from sensors to their dominating reference stations should be no more than three
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(or four) hops. This assumption implicitly places a demand for anchor distribution

density. As an approximate estimation, to guarantee the availability of reference

station in the CR category when the sensor density is 10, the anchor percentage

(= Anchor Number
Sensor Number

) should be roughly One Anchor
(Sensor Density/πr2) ·π(3r)2

= 1
10

πr2

π(3r)2
≈ 1.1%. There-

fore, in our simulations, a random distribution of anchors with anchor percentage of

3% to 5% can guarantee the availability of reference stations for a large majority of

sensors. In those “unavailable” rare cases, CrMcs is used as a backup for DiffTriangle

in our prototype system.

The DiffTriangle algorithm gets its abbreviated name from Differential Triangle,

since frequently the anchor, sensor and reference station (call it station for short) are

not collinear but are positioned as a triangle depicted by Fig. 3.9. In this triangle,

Anchor j Sensor i

Reference Station k

Gradient &

Centrifugal Direction

dj(k) dk(i)

dj(i)

αj(i, k)

prj−−−→
gdj(i)

−−→sksi

Fig. 3.9: DiffTriangle algorithm in the CG pattern.

we solve the problem of how to revise the estimate of anchor-sensor distance dj(i),

benefiting from:

1. the precisely known dj(k) from geometric coordinates of anchor j and reference

station k;

2. the accurate estimate d̂3k(i) by CrMcs of the station-sensor distance dk(i), since

the nearby reference station k exhibits the CR pattern to sensor i;



45

3. accurately estimated prj−−−→
gdj(i)

−−→sksi from the proximity difference of reference sta-

tion k and sensor i in anchor j’s hop count field. Its estimation suffers much

less from varying HopSize than estimation of dj(i), thanks to the geometric

closeness of reference station k to sensor i.

We adopt the following equations for DiffTriangle Algorithm for the CG pattern.


d̂4j(i)|k =

√
d2

j(k)−d̂2
3k(i)+

ˆprj
2−−−→
gdj(i)

−−→sksi + ˆprj−−−→
gdj(i)

−−→sksi

ˆprj−−−→
gdj(i)

−−→sksi = [hj(i) − hj(k)] · dhop

(3.7)

The d̂4j(i)|k in Eq. (3.7) is our estimate of anchor-sensor distance by DiffTriangle. The

station-sensor distance estimate d̂3k(i) required by Eq. (3.7) is obtained by applying

CrMcs algorithm in Eq. (3.5). The ˆprj−−−→
gdj(i)

−−→sksi is the proximity difference of sensor

i and station k. The adopted proximity hj(i) and hj(k) is the smoothed hop counts

of sensor i and station k (see Eq. (3.2)).

Our derivation of the equations of DiffTriangle is presented below. The anchor-

sensor distance dj(i) can be calculated using the following trigonometric formula,

assuming the angle αj(i, k) is known.

dj(i) =
√

d2
j(k) − d2

k(i) sin2 αj(i, k) + dk(i) cos αj(i, k) (3.8)

The angle αj(i, k) can be estimated from the projection prj−−→sjsi

−−→sksi of vector −−→sksi over

vector −−→sjsi, where −−→sksi is the vector pointing from station k to sensor i and −−→sjsi is the

centrifugal vector from anchor j to sensor i.

αj(i, k) = arccos
prj−−→sjsi

−−→sksi

dk(i)
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The critical prj−−→sjsi

−−→sksi can be approximated to prj−−−→
gdj(i)

−−→sksi, under the assumption

that the centrifugal direction −−→sjsi roughly matches the direction of gradient
−−−→
gdj(i) of

hop count field of anchor j seen by sensor i.

αj(i, k) ≈ arccos
prj−−−→

gdj(i)

−−→sksi

dk(i)
(3.9)

We estimate the projection prj−−−→
gdj(i)

−−→sksi in Eq. (3.7) by assuming prj−−−→
gdj(i)

−−→sksi propor-

tional to the proximity difference hj(i) − hj(k) of sensor i and station k, since the

isotropy can be well preserved in the small region between sensor i and station k. To

achieve higher accuracy, Eq. (3.7) uses smoothed hop count described in Eq. (3.2)

for the proximities of sensor i and station k to solve the last hop distance problem,

because smoothed hop count is accurate when the hop count is larger than two (see

Fig. 3.4).

3.4.3 Error Characteristics of DiffTriangle

In this subsection, we demonstrate by analysis that DiffTriangle can reduce the av-

erage distance estimation error to below 0.4r in CG pattern, when the sensor density

is higher than 8. The analysis is the theoretical foundation of the weighted multilat-

eration adopted by our localization scheme, which configures the expected error of

CrMcs as 0.2r and that of DiffTriangle (or its enhancement DiffTriangle*) as 0.4r.

We linearize the impact of several factors on distance estimation error ∆dj(i) by

applying the Taylor expansion on Eq. (3.8): (1) station-sensor distance estimation

error ∆dk(i) and (2) angle estimation error ∆αj(i, k), which leads to the establishment
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of the following equation.

∆dj(i) ≈ [cos αj(i, k) − dk(i) sin2 αj(i, k)√
∗

] ·∆dk(i)

+ [sin αj(i, k) +
dk(i) sin 2αj(i, k)

2
√
∗

] dk(i) ·∆αj(i, k)

where ∗ = d2
j(k) − d2

k(i) sin2 αj(i, k)

To simplify our analysis, the two items in the form of dk(i)...√
∗ are approximated to 0,

leading to the simplified representation of ∆dj(i) in Eq. (3.10).

∆dj(i) ≈ cos αj(i, k)∆dk(i) + sin αj(i, k)dk(i)∆αj(i, k) (3.10)

This approximation is reasonable due to the fact that station-sensor distance dk(i)

is much smaller than the anchor-station distance dj(k). The required ∆αj(i, k) in

Eq. (3.10) can be derived by applying Taylor Expansion to Eq. (3.9).

∆αj(i, k) =
cos αj(i, k) ∆dk(i) − ∆prj−−→sjsi

−−→sksi

dk(i) sin αj(i, k)

Therefore, the Eq. (3.10) can be converted to a more simplified form in Eq. (3.11).

∆dj(i) ≈ 2 cos αj(i, k) ∆dk(i) − ∆prj−−→sjsi

−−→sksi (3.11)

This equation indicates that distance estimation error ∆dj(i) of DiffTriangle is influ-

enced by two factors: (1) estimation error ∆dk(i) of the station-sensor distance; (2) es-

timation error ∆prj−−→sjsi

−−→sksi of the station-sensor proximity difference. The first factor

∆dk(i) < 0.2r, since the estimation of dk(i) is achieved using CrMcs, whose accuracy
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has been analyzed in the previous section. The second factor ∆prj−−→sjsi

−−→sksi < 0.2r,

since estimation algorithm of prj−−→sjsi

−−→sksi by Eq. (3.7) minimizes the impact of last

hop distance, which is similar to CrMcs. Therefore, according to Eq. (3.11), aver-

age distance estimation error ∆dj(i) of DiffTriangle in convex anisotropic networks is

smaller than [1 + 2 cos αj(i, k)] · 0.2r ≈ 0.4r, which is consistent with the simulation

results in Section 3.7.

3.5 DG Pattern and Proposed DiffTriangle*

This section focuses on the distance estimation problem in anisotropic networks

additionally assuming the presence of large obstacles. These obstacles can distort field

gradients to strongly deviate from the centrifugal directions (see region III in Fig. 3.1

and Fig. 3.10), which undermines the slight detour assumption of DiffTriangle (the

rough match between gradient direction and centrifugal direction) and deteriorates

its accuracy. In this section, we firstly quantify the impact of the DG pattern on

DiffTriangle and based on the analysis propose DiffTriangle* - an enhancement to

DiffTriangle, which can tolerate both obstacle detour and the interference of multiple

anisotropic factors.

Our DiffTriangle* has the following advantages compared with other algorithms

tolerating detoured anchors. Different from RenderedPath [Li and Liu, 2007] assum-

ing a constant number of anchors, DiffTriangle* can provide higher accuracy, due to

its ability inherited from DiffTriangle to exploit increased anchor density and toler-

ate multiple anisotropic factors. Compared with PDM [Lim and C., 2005], which

is another algorithm able to tolerate both multiple anisotropic factors and obstacle

detour, DiffTriangle* is a distributed solution with less communication overhead and
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Gradient Centrifugal Direction

Sensor Density = 8

Fig. 3.10: The deviation of gradient and centrifugal direction in the DG pattern.

is robust in all simulated networks (rectangular, U-shaped, O-shaped). PDM how-

ever degrades severely in the O-shaped deployment fields (see Subsection 3.7.5). In

contrast to GridVoting [Liu et al., 2005], which can detect and drop outliers including

the detoured anchors, DiffTriangle* has higher accuracy, since GridVoting can filter

strongly detoured anchors but not moderately detoured anchors, which thus deteri-

orates its localization accuracy. Moreover, GridVoting is sensitive to the configured

threshold of distance estimation error.

3.5.1 DG pattern and Its Impact on Accuracy of DiffTriangle

In this subsection, we analyze the impact of the DG pattern on anchor-sensor

distance estimation accuracy of DiffTriangle, showing the accuracy of DiffTriangle

can degrade to 0.8r in typical anisotropic concave networks. This error may not be

tolerated by many location dependent protocols and applications, since 0.4r is the

tolerable bound of localization error as argued by [He et al., 2003]. This imposes a

requirement for more effective anchor-sensor distance estimation algorithms to handle
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obstacle detour, which is the topic of the next subsection.

The shortest path between two sensor nodes can strongly deviate from the straight

line connecting them, if distorted by obstacles, as illustrated by the exemplified S-

shaped network in Fig. 3.10. This deviation causes a mismatch between field gradient

and centrifugal direction, which we summarize as the DG pattern, which undermines

the assumption of DiffTriangle and degrades its accuracy. We quantify the degree of

obstacle detour by the deviation angle γj(i).

γj(i) : the deviation angle between gradient direction

−−−→
gdj(i) and centrifugal direction −−→sjsi

Based on this definition, we can quantify the impact of obstacle detour on DiffTrian-

gle’s accuracy as

± sin αj(i, k) · dk(i) · γj(i). (3.12)

The above quantification is based on the ambiguous DiffTriangle in Fig. 3.11, which

clearly shows the deviation angle γj(i). Due to the existence of nonzero γj(i), sensor

Anchor j
Reference Station k

Reference Station k′

Sensor i

γj(i)

−−−→
gdj(i)−−→sjsi

dj(k)

dk(i)
αj(i, k)

αj(i, k′)

prj−−−→
gdj(i)

−−→sksi

Fig. 3.11: Ambiguous DiffTriangle in the DG pattern.
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i can not tell whether its reference station and the anchor lie on the same side of

the gradient
−−−→
gdj(i) or on opposite sides. This ambiguity is represented in Fig. 3.11

as the two cases, reference stations k and k′. Caused by this ambiguity of stations k

and k′, the αj(i, k) required by DiffTriangle in its Fig. 3.8 has ambiguous values as

represented by αj(i, k) and αj(i, k
′) in Fig. 3.11. Therefore, Eq. (3.9) for DiffTriangle

should be modified to the following equation for ambiguous DiffTriangle.

αj(i, k), αj(i, k
′) ≈ arccos [prj−−−→

gdj(i)

−−→sksi / dk(i)] ± γj(i)

Therefore, the impact of the ambiguous deviation angle ±γj(i) on accuracy of DiffTri-

angle can be quantified as ± sin αj(i, k) · dk(i) · γj(i), by assigning ±γj(i) to ∆αj(i, k)

in Eq. (3.10).

Our conclusion is that the accuracy of DiffTriangle in the DG pattern can de-

grade to 0.4r + 0.4r = 0.8r, since the accuracy of DiffTriangle in the CG pattern is

roughly 0.4r and the additional impact of obstacle detour on the accuracy of Diff-

Triangle is ±0.4r. This impact ±0.4r of obstacle detour is estimated by Eq. (3.12)

as ±1
2
· 1.6r · π

6
≈ ±0.4r, since in typical concave anisotropic networks, the average

station-sensor distance dk(i) is roughly 2 hops ≈ 1.6r and the average deviation angle

γj(i) is π
6

(see Fig. 3.10). Moreover, the impact ±0.4r of obstacle detour indicates

that distance estimates by DiffTriangle may be either enlarged or diminished.

3.5.2 Proposed DiffTriangle* and wMultilateration(8)

To tolerate the gradient distortion (or obstacle detour), we present our solution

comprising of two parts: wMultilateration(n) and DiffTriangle*. wMultilateration(8)

is a weighted multilateration [Foy, 1976] method using only the nearest 8 anchors.
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• wMultilateration(8) deploys the Nearest(8) filter at the CG recognizer to reduce

the chance to contain detoured anchors in the CG category, assuming the nearest

8 anchors are less vulnerable to obstacle detour than farther anchors. We choose

the threshold eight, because eight is beneficial to mitigate the potential bad

geometry effect of anchors [He et al., 2003].

• wMultilateration(8) uses weighted multilateration [Foy, 1976] to prefer nearby

anchors, assuming the expected error of CR pattern is 0.2r and that of the CG

pattern is 0.4r.

However, there is a non-negligible chance for the CG category to contain detoured

anchors, which degrades the performance of DiffTriangle and deteriorates the local-

ization accuracy.

We therefore propose DiffTriangle*, an enhancement to DiffTriangle algorithm

with no additional communication cost and able to generate accurate distance esti-

mates with the presence of gradient distortion (call it “recover the distorted anchors”

for short). Therefore, our framework in Fig. 3.2 adopts DiffTriangle* as a better dis-

tance estimator for the CG pattern than DiffTriangle, since it is inevitable for the CG

category to contain detoured anchors. Although DiffTriangle* has higher accuracy

than DiffTriangle, it needs two reference stations from the CR category. Therefore,

when there is only one anchor in the CR category, DiffTriangle is a good backup for

DiffTriangle*; when there is none, CrMcs is the last choice.

We present the intuition of DiffTriangle* as follows. DiffTriangle* assumes there

are two reference stations for sensor i: Station k and altStation k∗ with dk(i) <

dk∗(i). Its main idea is that if sensor i and station k both use the DiffTriangle

algorithm and altStation k∗ (as the reference station required by DiffTriangle) to
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estimate their distances to anchor j, then the two distance estimates d̂4j(i)|k∗ and

d̂4j(k)|k∗ by DiffTriangle may encounter similar distortion effects and thus have similar

estimation errors. Because the error in d̂4j(k)|k∗ is known from the geometric location

of station k, it is possible for DiffTriangle* to recover the error in d̂4j(i)|k∗ due to

obstacle detour by knowing the error in d̂4j(k)|k∗ . As a summary, DiffTriangle* is

a revision to DiffTriangle (and thus a second order revision to CrMcs), exploiting

the geometric closeness between sensor j and station k and recovering the bias in

DiffTriangle’s distance estimation due to obstacle detour.

We present the equation of DiffTriangle* as follows.

d̂5j(i)|kk∗ = d̂4j(i)|k∗ − ∆d̂4j(i)|k∗

= d̂4j(i)|k∗ − ∆d̂4j(k)|k∗ · d̂3k∗(i)

d̂3k∗(k)
(3.13)

In the above equation, the sensor i firstly obtains an unrevised anchor-sensor dis-

tance estimate d̂4j(i)|k∗ by DiffTriangle algorithm (with altStation k∗ as the required

reference station). Then we revise the d̂4j(i)|k∗ to d̂5j(i)|kk∗ by the estimated error

∆d̂4j(i)|k∗ in d̂4j(i)|k∗ . The estimated error ∆d̂4j(i)|k∗ is a linear transformation from

the estimated error ∆d̂4j(k)|k∗ in the anchor-station distance estimation. The above

correction is possible, since the station k and the sensor i are geometrically close to

each other and the anchor j’s hop field near them thus probably experiences simi-

lar distortion with similar deviation angle γj(i) ≈ γj(k). The aim in Eq. (3.13) of

multiplying the revision ∆d4j(k) by the ratio d̂3k∗ (i)

d̂3k∗ (k)
is to remove the impact of sensor-

altStation distance dk∗(i), since our analysis indicates that dk∗(i) linearly interferes

the accuracy of DiffTriangle.
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We present the analysis on error characteristics of DiffTriangle, showing that dk∗(i)

linearly interferes the accuracy of DiffTriangle. According to Eq (3.10), if sensor

i applies DiffTriangle and uses altStation k∗ as the reference station, the distance

estimation error of DiffTriangle can be estimated by the following equation.

∆d̂4j(i)|k∗ ≈ cos αj(i, k
∗) ∆dk∗(i) + sin αj(i, k

∗) dk∗(i) ∆αj(i, k
∗)

From the above equation, we know the accuracy of DiffTriangle is mainly affected by

two factors: the altStation-sensor distance dk∗(i) and the deviation angle γj(i) from

obstacle detour. According to our analysis in the previous subsection, the deviation

angle γj(i) directly interferes our estimation of angle αj(i, k
∗), whose impact over

∆d4j(i) is ± sin αj(i, k
∗) · dk∗(i) · γj(i). The aim of DiffTriangle* is to recover this

impact from obstacle detour. The other factor affecting accuracy of DiffTriangle is

dk∗(i), because (1) there exists a tight bond (linear approximately) between dk∗(i)

and the altStation-sensor distance estimation accuracy ∆dk∗(i) due to the existence

of error accumulation if applying the isotropic CrMcs method; (2) dk∗(i) linearly

amplifies the error ∆αj(i, k
∗) in estimation of angle αj(i, k

∗).

The required error ∆d̂4j(k)|k∗ (or correction) in Eq. (3.13) is provided by station

k as follows.

∆d̂4j(k)|k∗ = d̂4j(k)|k∗ − dj(k).

In this equation, the station k derives an anchor-station distance estimate d̂4j(k)|k∗ , by

pretending as a normal sensor and applying the DiffTriangle algorithm with altStation

k∗ as the required reference station. The error in this estimate d̂4j(k)|k∗ can be known,
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since the anchor-station distance dj(k) can be known from their coordinates.

An implementation tip of DiffTriangle* for reduced communication overhead is

that the required correction ∆̂d4j(k) in Eq. (3.13) provided by the station k can be

calculated locally by sensor i, since the station k has already transmitted its Input I

to sensor i and the Input II of the station k (that contains the Input I of altStation

k∗) is the same with Input II of sensor i (see Fig. 3.2). Another implementation tip of

DiffTriangle* for an improved accuracy is to well handle the case that the station k

and altstation k∗ are roughly of the equal distance to the sensor i. To well handle this,

sensor i can make anchors k and k∗ take turns to be the station and the altStation.

Then sensor i by applying Eq. (3.13) can obtain two revised distance estimates to

anchor j: d̂5j(i)|kk∗ and d̂5j(i)|k
∗

k . The final estimate d̂′5j(i) is a weighted average of the

two estimates.

d̂′5j(i)|kk∗ =
1

d̂3k(i) + d̂3k∗(i)
[ d̂3k∗ · d̂5j(i)|kk∗ + d̂3k · d̂5j(i)|k

∗

k ] (3.14)

3.6 Pattern-driven Localization Algorithm

We present the pseudo code of our pattern-driven localization algorithm in Alg. 1,

which corresponds to the framework depicted in Fig. 3.2. The pseudo code in Alg. 1

integrates (provides a facade for) the three proposed algorithms:

• CrMcs at line 5 for the isotropic anchors in the CR category to mitigate the

impact of last hop distance,

• DiffTriangle at line 10 requiring one reference station (for the first order revision

to CrMcs) to tolerate the anisotropic anchors in the CG category,
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• DiffTriangle* at line 8 requiring two reference stations (for the second order

revision to CrMcs) to tolerate the detoured and anisotropic anchors in the CG

category.

An implementation tip for the weighted multilateration [Foy, 1976] at line 13 is

that it is necessary to use multiple start points to perform the multilateration and

choose the best solution (with the smallest weighted average residue) as the final

location estimate, due to its non-negligible possibility of trap in local minima. One

rule of thumb for the reference station filtering (and propagation) at line 6 is that

(1) when the anchors are densely distributed, we only need reference stations within

three hops; (2) when the anchors are sparsely distributed, the threshold can be relaxed

to be four hops. For the meaning of used annotations, please refer to Fig. 3.2 and

TABLE 3.1.

3.7 Simulation Results

To verify the effectiveness of our pattern-driven localization scheme in tolerating

multiple network anisotropic factors, simulations have been designed and conducted

in this section. In these simulations, the accuracy of our scheme has been compared

with that of Amorphous [Nagpal et al., 2003] and PDM [Lim and C., 2005] in vari-

ous network configurations. We choose Amorphous and PDM for comparisons, since

(1) Amorphous is a typical isotropic localization algorithm which can be used by

an anisotropy-tolerating algorithm to show its power and (2) PDM is a state-of-the-

art algorithm who also declares to handle network anisotropy. We do not compare

our algorithm with iMultihop [Wang and Xiao, 2006], REP [Li and Liu, 2007] or

MDS-MAP(P) [Shang and Ruml, 2004], since they are not the algorithms declared to
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tolerate multiple anisotropic factors. Our conclusions are (1) compared with Amor-

phous, PDM and our scheme can improve both distance estimation accuracy and

localization accuracy by tolerating multiple anisotropic factors; (2) compared with

PDM, our scheme has lower communication cost and is more accurate in dense net-

works; (3) our scheme is robust in rectangular, O-shaped, U-shaped networks, while

PDM degrades severely in O-shaped networks.

3.7.1 Evaluation Metrics and Controlled System Parameters

We use the following metrics to evaluate the three algorithms (Amorphous, PDM

and our scheme) in simulations.

• Average distance estimation error µh for h-hop paths:

µh =
∑

d̂j(i)∈Dh

|d̂j(i) − dj(i)|
|Dh|

, where

Dh = {distance estimates of all paths with lengths of h}.

µh is a useful metric to observe the accumulation of distance estimation error

with the increase of hop count.

• Overall average distance estimation error µ: µ =
∑

d̂j(i)∈∪Dh

|d̂j(i) − dj(i)|
|∪Dh|

, where

∪Dh is the set of distance estimates of paths with any hops. According to the

analysis of multilateration in [Savvides et al., 2003a] based on Cramér-Rao

bound, localization error should approach average distance error µ, which we

shall verify in our simulations.

• Average localization error ε: ε is the arithmetic mean of the localization error



58

of all sensors, with ε =
∑

εi/N , where N is the total number of sensors and εi

is the localization error of sensor i with εi = |p̂i − pi|, which is the geometric

distance between the estimated position p̂i and the true position pi.

We control the following system parameters and investigate their impact on the

above evaluation metrics.

• Sensor Density (SD): The average number of sensors per sensor radio area.

SD = |N(i)|. (see TABLE 3.1).

• Degree of Radio Irregularity (DOI): With the presence of DOI, the possibility

P (d) of two sensor nodes with distance d to establish a link follows the equation

below.

P (d) =


1 d

r
< 1 − DOI

1
2DOI

(d
r
− 1) + 1

2
1 − DOI ≤ d

r
≤ 1 + DOI

0 d
r

> 1 + DOI

• Shape of Deployment Region (SDR): The rectangular, U-shaped, O-shaped re-

gions have been studied.

• Anchor Cell Radius (ACR): The average radius of the Voronoi cell dominated by

an anchor. ACR (=
√

Area of deployment region
π ·Anchor Number

) is a good indicator for the average

distance of a sensor to its nearest reference station.



59

3.7.2 Distance Estimation Error when Varying Sensor Den-

sity

This simulation varies the sensor density to study its impact on the accuracy of

distance estimation. To isolate the impact of sensor density, we intentionally fix the

DOI to 0.0, the ACR to 1.5r and the SDR to rectangular regions (10r × 10r). The

simulation results are plotted in Fig. 3.12.

We show the advantages of our scheme over Amorphous in Fig. 3.12(a). (1) When

SD is as low as 8, Amorphous encounters severe error accumulation as the hop count

grows, due to the anisotropy from low sensor density (Subsection 3.4.1). However,

Amorphous’s accuracy is relatively satisfactory in the first three (or four) hops. That

is why our scheme approximately treats the first few hops as isotropic regions, where

the impact of varying HopSize is negligible and the CR pattern approximately ap-

plies. Compared with Amorphous, our scheme can suppress the error accumulation

and keep the distance estimation error constantly below 0.4r, which is consistent

with our analysis of DiffTriangle’s accuracy in Subsection 3.4.3. (2) Even in the

approximately isotropic region within four hops, our scheme constantly outperforms

Amorphous, because CrMcs is a better method to solve the last hop distance problem

than Amorphous smoothing.

We compare our scheme with PDM in Fig. 3.12(b). (1) In dense networks (SD ≥

15), the accuracy of PDM is still above 0.2r, since it neglects the last hop distance

problem. As a comparison, the accuracy of our scheme can be improved to be around

0.15r, when sensor density is 15 and in the first four hops. However, our scheme is only

slightly better than PDM when sensor density is 15 and beyond four hops, since the

anisotropy (inaccurate HopSize) becomes the dominating factor rather the last hop
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(a) Amorphous and Our scheme.
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(b) PDM and Our scheme.

Fig. 3.12: Distance estimation error when varying SD, when DOI = 0.0, Anchor
Number = 6, SDR = rectangle 10r × 10r, ACR = 1.5r.

distance. (2) In sparse networks (SD ≤ 10), PDM has non-negligible possibility for

the failure of its matrix inverse operation and may have to apply the pseudo inverse

multiple times. Moreover, sparse networks have higher possibility to be separated

and the branch separated from the base station may not be localized by PDM. Our

scheme, a distributed algorithm, has no such problem.

3.7.3 Distance Estimation Error when Varying DOI Ratio

This simulation investigates the impact of high DOI ratio, such as DOI = 0.5,

on distance estimation accuracy. To highlight its impact, we minimize the impact

of other anisotropic factors by configuring SD as high as 15 and SDR as rectangle

regions. The simulation results are depicted in Fig. 3.13.

In Fig. 3.13(a), the accuracy of Amorphous degrades severely when DOI = 0.5,

since the Kleinrock’s equation that Amorphous uses is inaccurate in estimating Hop-

Size, assuming a perfect circular communication range. As a comparison, the perfor-

mance of our scheme however remains stable, when DOI = 0.5, although our scheme



61

also uses the Kleinrock’s equation. This is because the estimated HopSize is only

used by DiffTriangle to estimate the short sensor-station distance and the projection

of this distance on the field gradient. As a summary, our DiffTriangle and DiffTrian-

gle* method is insensitive to the error in HopSize estimation, which gives our scheme

the freedom to choose any appropriate HopSize estimation algorithm, either online

or offline. In Fig. 3.13(b), the PDM is also robust against radio irregularity. The

slightly lower accuracy of PDM than our scheme is also due to the non-negligible last

hop distance problem in dense networks.
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Fig. 3.13: Distance estimation error varying DOI ratio; SD = 15, SDR = rectangle
10r × 10r, ACR = 1.5r.

3.7.4 Localization Error when Varying ACR

This simulation explores the impact of anchor density (quantified by ACR) over

the accuracy of distance estimation and localization. The simulation results are il-

lustrated by Fig. 3.14, in which we adopt the same localization algorithms wMulti-

lateration(8) for Amorphous, PDM and our scheme to maintain a fair comparison.
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Fig. 3.14: Distance estimation error and localization error varying ACR; SD = 8,
DOI = 0.25, SDR = rectangle 10r × 10r, Sensor Number ≈ 250, Anchor Percentage
(AP) = Anchor Number (AN)

Sensor Number
.

In Fig. 3.14(a), the distance estimation accuracy of Amorphous has no change

when ACR decreases, since Amorphous has no mechanism exploiting the increased

anchor density and optimizing its distance estimation accuracy. In contrast, our

scheme and PDM have much smaller distance estimation error below 0.4r. Although

the distance estimation accuracy of Amorphous does not improve with reduced ACR,

its localization accuracy constantly improves, if Amorphous adopts wMultilatera-

tion(8) for localization. However, Amorphous’s localization accuracy deterioration

speed (when ACR grows) is much faster than our scheme and PDM. Moreover, for

PDM and our scheme, we can find a tight correspondence between average distance

estimation error and average localization error, which is consistent with the theoret-

ical analysis in [Savvides et al., 2003a] based on Cramér-Rao lower bound.

The underperformance of Amorphous is because although wMultilateration(8)

uses the nearest 8 anchors and the weighted multilateration to prefer nearby anchors,

it can be quite difficult to precisely capture the error accumulation trend of Amor-

phous’s distance estimation at the location estimator layer. As a comparison, PDM
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and our scheme choose to suppress the error accumulation mainly at the distance

estimator layer by exploiting the dense anchor distribution. For this reason, the lo-

calization accuracy of Amorphous (even with wMultilateration(8)) can be above 0.7r,

while that of PDM and our scheme stay below 0.5r when ACR is below 2. This per-

formance improvement is important, since the work in [He et al., 2003] has stated

that the performance of several location dependent protocols (like geometric routing)

degrades quickly when the localization accuracy is above 0.4r. Moreover, when an-

chors are densely distributed with ACR = 1.5r, the anchor percentage is merely 5.5%,

which does not seem to be an unbearable huge investment. The optimized tradeoff

between anchor percentage and localization accuracy may only be found in specific

applications.

3.7.5 Localization Error when Varying SDR

In this subsection, we compare the localization accuracy of three algorithms (i.e.

Amorphous, PDM and our scheme) in anisotropic networks with both obstacle detour

and the presence of multiple anisotropic factors (radio irregularity and low sensor

density). This simulation shows that (1) in the U-shaped regions like Fig. 3.15, PDM

and our scheme can improve the localization accuracy, compared with Amorphous; (2)

in the O-shaped regions like Fig. 3.16, PDM degrades dramatically but our algorithm

still functions well. In Fig. 3.15&3.16, we depict the network topologies as graphs with

triangular nodes for anchors, circular nodes for sensors, links for radio connections.

We also label for each node its localization error by color.

In Fig. 3.15, we compare the localization accuracy of Amorphous, PDM and our

scheme in the U-shaped region (for fairness, all of them use wMultilateration(8) for



64

(a) Amorphous; AvgLocError = 0.72r. (b) PDM; AvgLocError = 0.52r.

(c) Our scheme; AvgLocError = 0.46r.

Fig. 3.15: A comparison of localization accuracy of Amorphous, PDM and our scheme;
SD = 8, DOI = 0.3, ACR = 1.6r, r = 10ft.
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location estimation). As illustrated, Amorphous suffers from network anisotropy and

obstacle detour, with localization accuracy above 0.7r. If instead applying PDM for

anchor-sensor distance estimation in Fig. 3.15(b), the localization accuracy can be

improved to around 0.5r. When we use our scheme (including CrMcs and DiffTri-

angle*) to estimate the distances in Fig. 3.15(c), we can achieve similar localization

accuracy with PDM. Our scheme however has two advantages over PDM.

(1) To achieve this comparable accuracy with PDM, our scheme has simpler commu-

nication operation (i.e., the confined flooding) and less communication overhead.

• The overall communication overhead of PDM is O(M2N), where M is the num-

ber of anchors and N is the number of sensors. PDM firstly needs the M times

flooding initiated by M anchors to make the sensors know their hop counts,

whose overhead is O(MN). PDM then needs to collect the hop counts between

all pair of anchors to the base station (i.e. M unicasts to the base station), and

disseminate the calculated PDM matrix to the entire network (i.e. a flooding

of a M ×M matrix), whose communication cost is O(M2N).

• The overall communication overhead of our algorithm is O(MN). (1) Besides

the M times flooding initiated by M anchors, our algorithm (precisely DiffTri-

angle and DiffTriangle*) requires each anchor to propagate its hop counts (to

M anchors) to three or four hops’ neighborhood by a confined flooding. This

is equivalent to 1∼ 2 times flooding of a M -sized vector because a confined

flooding may partly overlap with another confined flooding. This has the over-

head of O(MN). (2) Another kind of communication needed by our algorithm

(precisely CrMcs) is to make every node aware of the number of neighbors with

equal and larger hop counts. This needs N times local broadcast of M sized
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vector (see paragraph 3 of Section 3.2), whose overhead is O(MN).

(2) Our scheme has specially optimized localization accuracy near each anchor (see

Fig. 3.15(c)), since sensors use their nearest reference stations to optimize distance

estimates. The shorter the distance to reference station, the better the localization

accuracy.

Here comes an interesting feature of our scheme in contrast to PDM: PDM de-

grades in the O-shaped region, but our scheme still functions well as shown by

Fig. 3.16. According to the simulation in Fig. 3.16(a), the localization accuracy of

PDM degrades quickly in the O-shaped region. This degradation is probably because

the PDM tries to find an optimum linear transformation between two high dimen-

sional spaces (One space is the proximity distances to all anchors and the other is the

Euclidean distances to all anchors). This bidirectional linear transformation provides

a good approximation in the rectangular, U-shaped and S-shaped regions, but it is

inaccurate in the O-shaped regions. Our localization scheme has no such problem

and it still renders satisfying performance in the O-shaped region as illustrated by

Fig. 3.16(b).

3.8 Conclusion

For accurate localization in networks with multiple anisotropic factors, we pro-

pose a pattern-driven localization scheme, applying different distance estimation al-

gorithms for anchors exhibiting different patterns, i.e., the CR, CG and DG patterns.

For the CR pattern, CrMcs is adopted to minimize the impact of last hop distance.

For the CG pattern, DiffTriangle is used to tolerate varying HopSize and exploiting
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(a) PDM; AvgLocError = 0.87r.
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(b) Our scheme; AvgLocError = 0.45r.

Fig. 3.16: A comparison of localization accuracy of PDM and our scheme in O-shaped
region; SD = 8, DOI = 0.3, ACR = 1.6r, r = 10ft.
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the rough match between field gradient and centrifugal direction. DiffTriangle* pro-

vides an enhancement to DiffTriangle to additionally tolerate obstacle detour. For

the DG pattern, where the line-of-sight rule no longer holds, the anchors are dropped.

Both theoretical analysis and simulation results support the effectiveness of our lo-

calization scheme in tolerating multiple network anisotropic factors.
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Table 3.1: Symbols used by Our Pattern-Driven Range-Free Localization Scheme
Networks

r average communication range of sensors and anchors
loci the location estimate of sensor i. If sensor i is an anchor, then

this knowledge is precise; otherwise, it is imprecise.
dj(i) the real geometric distance between sensor i and anchor j
hj(i) the hop count of sensor i with respect to anchor j
N(i) the set of immediate neighbors of sensor i, including i itself
SD Sensor Density = |N(i)|, i.e.,

the expected number of immediate neighbors of a sensor
DV-Hop

d̂1j(i) an estimate of dj(i) given by DV-Hop
dhop average distance per hop or HopSize

Amorphous

d̂2j(i) an estimate of dj(i) given by Amorphous
hj(i) the smoothed hop count by Amorphous

CrMcs

d̂3j(i) an estimate of dj(i) given by CrMcs
r(h) the radius of hth hop communication disks
dski(h) hth hop communication disk of sensor i;

dski(h) centers at sensor i, with radius r(h)
aj(i) the intersected area of dski(1) and dskj(hj(i))
Nj(i) { l | l ∈ N(i) ∧ hj(l) ≤ hj(i) }

DiffTriangle

d̂4j(i)|k an estimate of dj(i) revised by reference station k
−−−→
gdj(i) the gradient of anchor j’s hop count field at sensor i
−−→sisj the vector from sensor i to sensor j

DiffTriangle*

d̂5j(i)|kk∗ an estimate of dj(i) revised by reference stations k and k∗

γj(i) the deviation angle between
−−−→
gdj(i) and

−−→sjsi
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Algorithm 1: Our localization scheme running on sensor i
Input:
1. DGPattern (Input I): the initial set of heard anchors (by flooding and local broadcast),
temporally stored as DGPattern = Input I = { [j, locj , hj(i), |Nj(i)|, |N(i)|] }
2. RefInfo (Input II): the Input I of nearby reference stations propagated by confined
flooding, with RefInfo = { [k, Input I] }, where k is the reference station id. RefInfo.size
indicates the number of heard stations.
Output: location estimate loci of sensor i.

1 begin
/* Init: System Assembly */

2 CRThreshold = 4
3 CRRecognizer = HopNoLargerThan(CRThreshold)
4 CGRecognizer = Nearest(8)
5 CREstimator = CrMcs /* Eq. (3.5) */
6 RefInfo = HopNoLargerThan(CRThreshold).filter(RefInfo)
7 if RefInfo.size > 1 then
8 CGEstimator = DiffTriangle*(RefInfo) /* Eq. (3.14) */
9 else if RefInfo.size == 1 then

10 CGEstimator = DiffTriangle(RefInfo) /* Eq. (3.7) */
11 else
12 CGEstimator = CrMcs /* Eq. (3.5) */

13 LocEstimator = wMultilateration /* subsection 3.5.2 */

/* Phase I: Anchor Classification */
14 CGPattern = CGRecognizer.filter(DGPattern)
15 CRPattern = CRRecognizer.filter(CGPattern)

/* Phase II: Distance Estimation */
16 DEs = ∅ /* the set of distance estimates */
17

18 foreach anchor j ∈ CRPattern do
19 DEs += [locj , CREstimator.estimate(anchor j), 0.2r]

20 foreach anchor j ∈ CGPattern do
21 DEs += [locj , CGEstimator.estimate(anchor j), 0.4r]

/* Phase III: Location Estimation */
22 return loci = LocEstimator.estimate(DEs)



Chapter 4

Range-Based Localization of

Wireless Sensor Networks: An

Accurate and Robust Approach

4.1 Overview

For wireless sensor networks (WSNs), it is important to derive the locations of sen-

sor nodes from the distance measurements between neighboring nodes. The ranging

techniques to measure distances can be divided into two categories according to ac-

curacy. Coarse-grained ranging techniques have low accuracy at meter level because

they exploit radio attenuation to measure distances, and these techniques include

RSSI-based methods [Dimitrios et al., 2006, He et al., 2003] and proximity-based

methods [Li and Liu, 2007, Lim and C., 2005, Niculescu and Nath, 2003, Wang and

Xiao, 2006, Xiao et al., 2010a,b]. Fine-grained ranging techniques have high accuracy

71
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at centimeter level since they adopt Time-Of-Arrival (TOA) technique, e.g. ultra-

sonic TOA or ultra-wideband TOA [Goldenberg et al., 2006, Horn et al., 1988, Ji

and Zha, 2004, Meertens and Fitzpatrick, 2004, Moore et al., 2004, Priyantha et al.,

2003, Savvides et al., 2003b, Wang et al., 2008]. This chapter adopts the fine-grained

ranging techniques for accurate measurement of inter-node distances.

Existing solutions for the fine-grained localization can be divided into two cat-

egories: whole-topology approach and iterative approach. The whole-topology ap-

proach [Ji and Zha, 2004, Priyantha et al., 2003] directly analyzes the whole network

topology by numerical optimization algorithms. For example, AFL [Priyantha et al.,

2003] models the topology as a bunch of nodes connected by springs. AFL then re-

laxes these springs and let the location estimates of the nodes converge to their true

locations guided by the spring forces. Another example is MDS-Map [Ji and Zha,

2004] which analyzes the network topology by multi-dimensional scaling. The major

drawback of the whole-topology approach is that a network topology contains too

many variables with each node having two variables x, y in a 2D space. The numeri-

cal tools that analyze a large topology directly can be easily trapped in local minima,

especially when the topology is concave-shaped.

In contrast, the iterative approach [Goldenberg et al., 2006, Horn et al., 1988,

Meertens and Fitzpatrick, 2004, Moore et al., 2004, Savvides et al., 2003b, Wang

et al., 2008] divides the large network topology into small network elements, including

individual nodes and groups of nodes (or patches). Each of the network elements has

its own coordinate frame. Then among these network elements, the iterative approach

picks out two elements, merges them to share a coordinate frame and generates a

larger network element. Such a merging operation, since it manipulates only a small
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number of variables (i.e. the relative position and orientation of the two network

elements), can avoid the local minima problem which the whole-topology approach

suffers from. For example, iterative multilateration [Savvides et al., 2003b] can align

an individual node with a patch if the node has three distance measurements to nodes

contained in the patch. Patch stitching [Horn et al., 1988] can align two patches if

they share three nodes. CALL [Wang et al., 2008] can merge two patches if they share

two nodes and are connected by a link, or if they share one node and are connected

by two links, or if they are connected by four links. SWEEPS [Goldenberg et al.,

2006] describes a scheme in which a sensor can be merged with a patch when the

sensor is connected to the patch by only two links, but this sensor has two ambiguous

positions relative to the patch. The ambiguity can be eliminated later when sufficient

constraints are available.

However, these previous studies [Goldenberg et al., 2006, Horn et al., 1988, Moore

et al., 2004, Savvides et al., 2003b, Wang et al., 2008] in the field of iterative localiza-

tion are incomplete, in that they provide only parts of the sufficient conditions where

two network elements can be merged (either uniquely or ambiguously). It is desirable

to unify these sufficient conditions and give out a more robust condition that also

considers previously neglected collinear geometry of sensor nodes. Besides the incom-

plete specification of conditions, there exist two other fundamental aspects that are

not fully addressed. (1) When merging two network elements, how can ranging noise

be tolerated, particularly for the merging of two patches? (2) How can flip ambigui-

ties be enumerated? These flip ambiguities can be caused by roughly collinear nodes

as interfered by ranging noise. The failure to enumerate these ambiguities may incur

abnormally large localization error.
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This chapter presents a problem of merging two network elements to form a larger

one, in which a network element can either be an individual node or a group of nodes.

This problem is named body merging problem (because we call a network element a

body for short), which addresses two issues.

• Accuracy: align two bodies accurately by finding the best relative position and

orientation of the two bodies that can minimize the mean squared error of their

constraints. Note that such an optimal alignment can find only one of the

possibilities of aligning two bodies.

• Robustness: enumerate all the possibilities of aligning two bodies, by discovering

collinear geometry of nodes and enumerating flip ambiguities accordingly.

Providing a solution requires us to reveal the mutual dependency between the two

issues of accuracy and robustness. (1) Robustness needs accuracy, because when

accurately aligning two bodies we can obtain one of the ambiguities. By flipping this

ambiguity across the line passing through collinear nodes, we can obtain all the other

ambiguities. (2) Accuracy requires robustness, because without the proper handling

of the robustness issue, the localization accuracy can be poor due to the unexpected

flip ambiguities. Because this body merging can have finite ambiguities, we call a

body as an inflexible body which has finite ambiguities.

Our solution to the inflexible body merging problem makes the following contri-

butions.

• Accuracy: we propose an algorithm to merge two bodies optimally (i.e. to

minimize the mean-squared error of their constraints and thus tolerate ranging

noise). Our algorithm models the two bodies to be connected by springs and
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then relaxes these springs to their minimum energy states. Directed by the

spring forces, the bodies moves and their motions are modeled by the physical

model of rigid body dynamics. Our algorithm is more generalized than tra-

ditional noise toleration algorithms, i.e. multilateration [Foy, 1976] and patch

stitching [Horn et al., 1988]. This is because multilateration only aligns a node

with a patch, and patch stitching can align two patches only when they shares

three nodes. Our algorithm can align two bodies no matter how many nodes

they share.

• Robustness: we present an algorithm to enumerate flip ambiguities during the

merging of two bodies. The flip ambiguities are enumerated by flipping one of

the ambiguities across the line passing collinear nodes during bodies merging.

The challenge is that the previous work [Goldenberg et al., 2006] only considers

the collinearity of anchor nodes during multilateration. But for body merging,

sensor nodes can be collinear with anchor nodes, which produces flip ambiguities

that are expected by previous work. Moreover, a set of collinear nodes can

be just roughly collinear as interfered by ranging noise, and such an implicit

collinearity may incur abnormally large localization error. But such an implicit

collinearity can be detected by our algorithm based on orthogonal regression.

• Condition: we also provide a condition for the merging of two inflexible bodies.

The basic idea is that the two bodies should have enough constraints by sharing

nodes or having connecting links to confine their continuous relative motions

(i.e. Degree-Of-Constraint ≥ Degree-Of-Freedom). This condition can unify

previous work [Goldenberg et al., 2006, Savvides et al., 2003b, Wang et al.,

2008] and help to achieve a higher localization percentage than state-of-the-art
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CALL [Wang et al., 2008].

These declared contributions are validated by high-fidelity simulations with practical

system parameters from [Moore et al., 2004, Savvides et al., 2003b].

The rest of this chapter is organized as follows. Section 5.4.2 introduces the back-

ground knowledge on network localization problem and iterative localization. Sec-

tion 4.3 presents the body merging optimization problem and proposes an algorithm

to align two bodies accurately by relaxing springs and based on rigid body dynamics.

Section 4.4 presents the condition when two bodies can be merged uniquely and this

condition also considers the collinear geometry of constraints between two bodies.

Section 4.5 proposes the algorithm to enumerate flip ambiguities and ensure merging

robustness. Section 4.6 shows our simulation results. Finally, Section 4.7 concludes

this chapter.

4.2 Background Knowledge on Network Localiza-

tion Problem and Iterative Localization

This section introduces the network localization problem, and describes the itera-

tive localization approach which divides the network topology into bodies and merges

them incrementally. This approach can simplify the network localization problem as

a small-scale problem of merging two bodies.

Definition 1 (Network Localization Problem).

Input: distance measurements between neighboring nodes, and a small proportion

of network nodes (called GCF anchors) whose locations are already known in the
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GCF (Global Coordinate Frame). The purpose of GCF anchors is to ensure the loca-

tion estimates of normal nodes are defined in the GCF.

Output: location estimates of the nodes that can be localized uniquely. These location

estimates should be defined in the GCF, whose purpose is to make these location esti-

mates understandable for network users. For example, we can use the GPS coordinate

frame as the GCF.

(a) Input: Links and GCF Anchors (b) Output: Location Estimates

GCF Anchor

Link

GCF

Fig. 4.1: Input and Output of Network Localization Problem.

Example: The input is illustrated in Fig. 4.1(a) where the GCF anchors are drawn

as triangles and normal nodes are drawn as white dots. The output is shown in

Fig. 4.1(b) where the location estimates are drawn as black dots. The nodes that

do not have black dots in Fig. 4.1(b) have ambiguous location assignments. For ex-

ample, node 20 does not have a black dot because it can flip across the line through

nodes 15, 21.

Iterative Localization. Iterative localization approach solves network localization

problem by the following two phases.

Phase 1 (Network Division). The output of network localization problem is location

estimates in the same coordinate frame (i.e. the GCF). The iterative localization
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approach therefore divides the network into a list of bodies, each of which has its

own coordinate frame. As shown in Fig. 4.2, there are two types of bodies: Global

Body whose coordinate frame is the GCF, and Local Body whose coordinate frame

is a Local Coordinate Frame (LCF). There is only one global body, which contains

all the GCF anchors with known locations in the GCF. There are numerous local

bodies, each of which can be either a triangle or an individual node. For example, in

Fig. 4.2, the three nodes k1, k2, k3 form a triangle with edges dk1k2 , dk2k3 , dk3k1 . The

LCF of this triangle can place its original point at node k1, have x-axis through node

k2, have node k3 above its x-axis. In Fig. 4.2, the node k4 constitutes a local body,

whose LCF can place its original point at k4.

anchor
GCF

k4

GCF

Global Body with the GCF

Local Bodies with LCFs :
with k1 at [0, 0],

k2 on x-axis at [dk1k2
, 0],

and k3 above x-axis

a triangle

with k4 at [0, 0]a node

contains all the GCF anchors

LCF
k2

k3

dk1k2

dk2k3

dk3k1

LCF
1k0k

Fig. 4.2: Divide the Network Topology into Elementary Bodies.

Phase 2 (Iterative Body Merging). The network has been divided by phase 1 into a

list of bodies [. . . , Bi, . . .], where

• Bi denotes the global body, if the index i is zero;

• Bi denotes a local body, if the index i is positive.
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B0

merge      into     and localize      in the GCFB0 BjBj

merge      into BiBj

BjBi ...... ...

Global Body
with GCF

Local Bodies
with LCFs

List of Bodies

Phase 2 conquers the network localization problem by the proposed procedure in

Algorithm 2 named Iterative Inflexible Body Merging (IIBM). This algorithm recur-

sively selects two bodies from the body list (e.g. bodies Bi and Bj at Line 2) and

merges them to share a coordinate frame (by Line 5). When this procedure cannot

Algorithm 2: IterativeInflexibleBodyMerging (IIBM)

Input: A List of Bodies [. . . , Bi, . . .] with index i ≥ 0
Output: Global Body B0 with the GCF

1 begin
2 find two bodies in the body list that can be merged, namely body Bi and body

Bj with 0 ≤ i < j
3 if no such Bi and Bj then return the global body B0

4 else
5 merge body Bj into body Bi to generate a larger body Bi, and remove body

Bj from the body list
6 goto Line 2

find two bodies that can be merged, it terminates at Line 3 and return the global

body B0 whose nodes are localized in the GCF.

In Algorithm 2, Line 2 needs to tell whether two bodies can be merged, which

is to be described in Section 4.4 for unique body merging and in Section 4.5.1 for

body merging with finite ambiguities. Line 5 needs to solve how to merge two bodies,

which is to be described in Section 4.3 for the accuracy issue (by tolerating ranging

noise) and in Section 4.5.2 for the robustness issue (by enumerating flip ambiguities).
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4.3 Accurate Body Merging against Noise

A challenge of aligning two bodies is the inevitable presence of ranging noise,

which can degrade the body aligning accuracy. To tolerate the ranging noise, we

propose the body merging optimization problem that minimizes the mean-squared

error of the constraints between the two bodies. We then propose a solution to this

problem, which is more generalized than the traditional noise toleration algorithms,

i.e. multilateration [Foy, 1976] and patch stitching [Horn et al., 1988].

4.3.1 Body Merging Optimization Problem

Merging is the basic operation to merge two bodies, which requires a coordinate

transformation between their coordinate frames. The challenge towards an accurate

location transformation is the presence of ranging noises within the constraints that

confine the relative motions of the two bodies. This subsection presents our algorithm

to tolerate ranging noise and achieve an optimal transformation.

This chapter appears to be the first to summarize and solve the optimization

problem (see Definition 3) to merge body B∗ into body B as shown in Fig. 4.3(a).

The traditional multilateration [Foy, 1976], which aligns a node with a patch, is just

a special case of our algorithm where body B∗ is a node and body B is a patch.

Although patch stitching [Horn et al., 1988] can align two patches, it requires the two

patches B and B∗ to share three nodes. Our optimal body merging algorithm can

align two patches when they share two nodes or less. Moreover, our algorithm can

align two bodies for all situations in a unified manner.

It is assumed that the two bodies to merge have enough constraints by sharing

nodes and having connecting links. As shown in Fig. 4.3(b), a constraint is drawn
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as an edge with one end incident to a node in body B (i.e. the black node) and the

other end incident to a node in body B∗ (i.e. the white node). Note that the length

of the constraint can be zero when the constraint is a shared node (e.g. d1 equals

zero in Fig. 4.3(b)). These constraints confine the relative motions of the two bodies

which thus can be aligned. A formal definition for the set of constraints is given in

Definition 2.

Definition 2 (Constraint Set during Body Merging). During the merging of body B∗

into body B, the two bodies have the constraint set C = {`l} = { [nl, n∗l , dl, wl] } as

illustrated in Fig. 4.3(b), where

• `l is the l th (0 ≤ l < |C|) constraint contained in C,

• nl is node index of `l that is contained in body B,

• n∗l is node index of `l that is contained in body B∗,

(Note: in all figures throughout the chapter, we draw node nl as a black node

and draw node n∗l as a white node)

• dl is the measured length of the constraint `l, and

• wl is the weight of the constraint `l.
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When a constraint `l corresponds to a node shared by body B and body B∗, its length

dl is zero and its two node indices nl, n∗l are equal. Otherwise, a constraint `l is a

link connecting the two bodies. Its two node indices nl, n∗l are different, and note that

nl, n∗l should not be the indices of shared nodes.

The challenge for accurate body merging is the inevitable presence of ranging

noise in these constraints’ length estimation. We thus formalize a problem (called body

merging optimization problem) in Definition 3 to tolerate ranging noise by minimizing

the mean squared error in the constraints.

Definition 3 (Body Merging Optimization Problem).

Input: The constraint set C ′ = {`′l}= { [pl, p∗l , dl, wl] } confines the relative motion

between body B and body B∗. `′l is one of the constraints in set C ′, and `′l has four

fields:

• pl is the position of node nl contained in body B and pl is defined in body B’s

coordinate frame (see Fig. 4.4);

• p∗l is the position of node n∗l contained in body B∗ and p∗l is defined in body B∗’s

coordinate frame (see Fig. 4.4);

• dl is the measured length of constraint `′l;

• wl is the weight to reflect dl’s measurement accuracy.

Manipulated Variables: Tp, R is a transformation function from body B∗’s coordi-

nate frame to B’s coordinate frame:

Tp, R (p∗) = p + R p∗ , where (4.1)
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• p is position of body B∗’s the original point in body B’s coordinate frame as

shown in Fig. 4.4, and

• R is rotation of body B∗ about body B∗’s original point.

By function Tp, R (p∗), a position p∗ in body B∗’s coordinate frame can be transformed

to body B’s coordinate frame.

Objective: The weighted error of constraint `′l is calculated as

errl(Tp, R) = wl

(
dl − ‖pl − Tp, R (p∗l )‖

)
, where

• ‖pl −Tp, R (p∗l )‖ is the length of constraint `′l estimated from the two positions pl

and p∗l , if given Tp, R.

The objective function is the mean-squared error for all constraints in set C ′, which

is noted as fC′ (Tp, R).

fC′ (Tp, R) =

√ ∑
`′l ∈C′

errl(Tp, R)2

|C ′|
, where (4.2)

• |C ′| is the number of constraints in constraint set C ′.
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We use the symbol Tmin
p, R to denote the optimal transformation function that can min-

imize mean-squared error fC′ (Tp, R).

Tmin
p, R = arg min fC′ (Tp, R)

Restrictions: For the optimized transformation Tmin
p, R , the error of each constraint

`′l has its magnitude below threshold 2 c σ.

∀ `′l ∈ C ′ errl(T
min
p, R ) < 2 c σ , where (4.3)

• σ is the expected ranging noise, and

• c is a constant which can be 3 for Gaussian noise.

4.3.2 Optimal Body Merging Algorithm

For the body merging optimization problem in Definition 3, we propose a solution

called optimal body merging algorithm. This algorithm recursively optimizes transfor-

mation function Tp, R (or informally body B∗’s spatial pose in the coordinate frame of

body B). The basic idea is to model each constraint as a spring as shown in Fig. 4.5.

These springs due to their deformations cast their forces on body B∗. This body B∗

directed by these spring forces gradually moves towards the equilibrium and finally

minimize the deformations of all springs. We simulate the movement of the body B∗

using the physical model of rigid body dynamics [Witkin et al., 1997].

Although spring based modeling is also used by AFL [Priyantha et al., 2003],

our solution has the following novelties. (1) AFL only simulates the translations of
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Fig. 4.5: Iterative Optimization based on Rigid Body Dynamics.

particles without volumes. In contrast, we simulate both translations and rotations of

rigid bodies. Our solution thus can support both sensor merging where body B∗ is an

individual node and patch merging where body B∗ contains more than one node. (2)

AFL is suspectable to trap in local minima because AFL tries to solve a large-scale

problem of optimizing a network of nodes. The Degree-Of-Freedom of such a large

problem is the number of nodes multiplied by two in a 2D space, since each node

has two translations separatively in x and y directions. In contrast, our solution can

avoid such suboptimality problem because it only focuses on a small-scale problem

to align two group of nodes, whose Degree-Of-Freedom is only three in a 2D space

(with two translations and one rotation for the body B∗).

Pseudocode. We present in Algorithm 3 the pseudocode of our optimal body merg-

ing algorithm. The output of Algorithm 3 is the optimal transformation function

Tmin
p, R . With this output Tmin

p, R , the node positions in body B∗ can be converted to the

coordinate frame of body B, and body B∗ can thus be merged into body B. The
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inputs of Algorithm 3 are the constraint set C ′ (see Fig. 4.4) and the initial guesses

of translation p and rotation R of the transformation Tmin
p, R .

Firstly, Line 2 asserts that the original point of B∗’s coordinate frame has been

moved to the centroid of all the white points in Fig. 4.4, or more precisely the set of

points {p∗l } that are contained by body B∗ and are incident to constraint set C ′. Such

decentralization of body B∗ is to make translation p of body B∗ to be independent

with its rotation R. This is because for a rigid body, the translation of its centroid is

independent from the rotation of this body about its centroid, according to Euler’s laws

of motion [Witkin et al., 1997]. For the ease of extension to 3D spaces, we represent

translation p by 3× 1 vectors and represent rotation R by a 3× 3 orthogonal matrix.

Algorithm 3: GetOptimizedTransfm (3D compatible)

Input: C′ = {`′l}= { [pl, p∗l , dl, wl] }; initial guess of p, R
Output: transformation Tmin

p, R with mean squared-error e

1 begin
2 assert centroid of C′’s position set {p∗l } equals [0, 0, 0]
3 repeat // start from guess p, R at time 2t

4 optimize guess p, R to guess p, R at time 2t+1
5 optimize guess p, R to guess p, R at time 2t+2
6 until both ‖p− p‖ and ‖R− R‖c are small, where ‖p− p‖ is magnitude of

vector p− p, and ‖R− R‖c is the maximum magnitude of all columns of matrix
R− R

7 return Tmin
p, R with mean squared-error e = fC′ (Tmin

p, R )

At Line 4-6, the translation and rotation of body B∗ are optimized iteratively. At

the end of an iteration, current translation p and rotation R at time 2t are optimized

to the new p, R at time 2t + 2, since p, R at time 2t is optimized by Line 4 to

p, R at time 2t+1, and p, R at time 2t+1 is optimized by Line 5 to p, R at time

2t+2. The loop terminates at Line 6 if the changes from time 2t + 1 to time 2t + 2

are negligibly small. Both Line 4 and Line 5 need to optimize translation p(t) and
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rotation R(t) at time t to translation p(t + 1) and rotation R(t + 1) at time t + 1,

which is depicted in Fig. 4.5.

In Fig. 4.5, translation p(t) at time t is optimized to p(t + 1) at time t + 1. This

optimization is directed by linear acceleration F (t) /M , where M is mass and F (t) is

net force combining all forces acting on body B∗. When calculating the lth spring force

Fl(t), weight wl within errl(Tp(t),R(t)) is modeled as the spring constant to capture

the different error characteristics in different constraints. The parameter δ when

calculating p(t + 1) is the optimization step size, whose configuration as a rule of

thumb is δ ∈ [0.5a, a] (a = M /
∑

`′l ∈C′ wl) to balance between convergence speed and

potential oscillations.

In Fig. 4.5, rotation R(t) at time t is optimized to R(t + 1). This optimization is

directed by angular acceleration ω(t) = I(t)−1 τ(t), where I(t) is inertial tensor and

τ(t) is torque. With this ω(t), R(t + 1) can be calculated by Rodrigues’ rotation for-

mula Rrod(φ, θ) that rotates R(t) around unit vector φ (φ = ω(t) / ‖ω(t)‖) by angle θ

(θ = δ ‖ω(t)‖). After this

Rrod(φ, θ) = I + sin θ [φ]× + (1 − cos θ) [φ] 2
×

rotation, orthogonality of R(t + 1) should be maintained, since we represent rotations

by 3× 3 rotation matrices, which compared with quaternion has numerical drift prob-

lem [Witkin et al., 1997]. But rotation matrix is easier to manipulated by standard

matrix operations. When calculating the torque τ(t) acting on body B∗, operator

[ . ]× converts vector a to its skew-symmetric matrix [a]×, in order to transform vector
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cross product to

Given vector a =


a1

a2

a3

, [a]×
def

====


0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

matrix multiplication (i.e. a× b = [a]× b ). Although the equations in Fig. 4.5 are

defined in 3D, they can easily handle the cases in 2D by setting z value of each

position to zero and by setting each orientation vertical to z-axis.

4.3.3 Two Technical Issues

Conquer Local Minima Problem. Our optimal body merging algorithm (i.e.

Algorithm 3) is essentially a greedy optimization algorithm, which in practice has

a non-negligible possibility to trap in local minima. The traditional Multilateration

also has this kind of problem. We can conquer this local minima problem by the

following strategy: generate a set of initial guesses of the optimal transformation

function Tmin
p, R , then separatively optimize them by Algorithm 3, and finally select the

best solution with the minimum mean-squared error (see Eq. (4.2) for the definition

of mean-squared error).

We describe a method to generate a set of good-quality initial guesses about the

optimal transformation function Tmin
p, R .

(1) We generate the guess of translation p in Tmin
p, R by the extended bounding box

algorithm as follows. A bounding box can be obtained in Fig. 4.6 that corresponds

to a constraint with length dl and with two vertices pl, p∗l . The position pl is de-
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fined in body B’s coordinate frame and position p∗l is defined in body B∗’s coor-

dinate frame. The centroid of body B∗ is denoted as p∗. Then this centroid p∗

should be included in the bounding box centered at position pl with its radius to

be dl + ‖p∗l − p∗‖ + 2 c σ /wl, where ‖p∗l − p∗‖ is distance between position p∗l and

the centroid p∗ and 2 c σ /wl is the upper bound of measurement error of constraint

length dl. Each constraint in set C ′ that connects the two bodies can provide such a

bounding box for the centroid of body B∗. Then the guesses of the position of this

centroid can be generated within the overlapped box of all the bounding boxes.

(2) we generate a guess of rotation R randomly with Euler angle γ ∈ (−π, π]. More-

over, rotation matrix R should be randomly multiplied with a reflection matrix.

Mitigate Error Accumulation by Refinement. The body merging optimization

problem in Definition 3 is focused on minimizing the mean-squared error within the

constraints whose length estimates are noisy. However, this problem formulation

neglects that the position assignments of a body can also be inaccurate with noise.

More specifically, in Fig. 4.4, both the constraint length measurement dl and the two

positions pl, p
∗
l can be inaccurate. To address this subtle issue, an optional refinement

step can be added after the bodies are merged by Algorithm 3. This refinement step
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(as shown at Line 4 of Algorithm 4) decomposes the body merged from B and B∗

(i.e. body B+ constructed at Line 3) into a network of nodes connected by springs,

and apply AFL [Priyantha et al., 2003] to this network of nodes to further refine

their positions (see Line 4). Finally, this refined body B+ is verified at Line 5 to

check whether the error of each constraint is below a threshold (see Eq. (4.3)). If the

verification fails, Algorithm 3 declares the failure to merge two bodies by returning

an empty set.

Algorithm 4: MergeTwoBodiesOptimally

Input: Bodies B,B∗; Constraint Set C= {`l}= { [nl, n∗l , dl, wl] }
Output: Body B+ by merging body B∗ into body B

1 begin
2 Get the optimal transformation function Tmin

p, R from B∗’s coordinate frame to B’s
coordinate frame (by Algorithm 3)

3 Get body B+ by merging the node coordinates in B with the node coordinates in
B∗ transformed by Tmin

p, R

4 (optional) Refine this body B+ by AFL [Priyantha et al., 2003]
5 Verify B+ by testing whether the error of each constraint is below a threshold

(see Eq. (4.3)), and if it fails return ∅

4.4 Unique Body Merging Conditions

This section presents two necessary conditions for the unique alignment of two

bodies. The first condition is the redundancy in the constraints between two bodies.

This condition can unify the previous work in the field of global rigidity [Horn et al.,

1988, Savvides et al., 2003b, Wang et al., 2008]. The second condition is the non-

collinear geometry of given constraints. This non-collinearity is not fully explored by

the previous work [He et al., 2003], due to the possibility that the black nodes and

white nodes can also be collinear during body merging, as illustrated in Fig. 4.9.
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4.4.1 Unique Body Merging Condition: Redundant Constraints

For the unique merging of two bodies, a necessary condition is the redundancy in

their constraints, which is formulated as

Degree-Of-Constraint (DOC) > Degree-Of-Freedom (DOF) .

• Calculation of DOF : if body B∗ contains only one node, DOF is two; otherwise,

DOF is three due to the rotation of B∗.

• Calculation of DOC : in constraint set C, each shared node can contribute two
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DOC, and each connecting link can contribute one DOC. The DOC value for

each case in shown in Fig. 4.7.

This necessary condition can unify the previous work [Horn et al., 1988, Savvides

et al., 2003b, Wang et al., 2008] that localizes individual nodes and patches. We

explain this condition case by case as follows.

Case (a). Trilateration is an operation that merges body B∗ containing a single node

into body B. As shown in Fig. 4.7(a), body B contains the three nodes 1, 2, 3 which

are drawn as black nodes. Body B∗ contains only the node 0 which is drawn as a

white node. Body B∗ has two DOF in the coordinate frame of body B, because node

0 can move in two directions, i.e. x and y directions. Trilateration requires at least

three links connecting body B∗ to body B, because the three links can provide three

DOC to redundantly constrain the two DOF of body B∗. Otherwise, as shown in

Fig. 4.8(a), node 0 can have an ambiguous position assignment 0′, if there are just

two links [0, 1], [0, 2] providing two DOC.

Case (b). Collaborative Multilateration [Savvides et al., 2003b] is an operation that

merges body B∗ containing two nodes into body B. As shown in Fig. 4.7(b), body

B contains the three black nodes 1, 2, 4. Body B∗ contains the two white nodes 0, 3.

Because body B∗ contains more than one node, it has three DOF with two translations
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and one rotation. Collaborative Multilateration requires four links connecting body

B∗ to body B, which can provide four DOC and redundantly constrain the three

DOF. Otherwise, as shown in Fig. 4.8(b), the body B∗ can have four spatial poses,

i.e. [0, 3], [0, 3′], [0′, 3′′] and [0′, 3′′′], if there are just three links providing three DOC.

Case (c). Patch Stitching [Horn et al., 1988] is an operation that merges body B∗

containing at least three nodes into body B. As shown in Fig. 4.7(c), body B contains

the three black nodes 1, 2, 3. Body B∗ is drawn as a gray block. Patch stitching

requires body B and B∗ share at least three nodes which are drawn as three black

nodes 1, 2, 3 fixing on body B∗. Different from a link that can provide one DOC, each

shared node can provide two DOC. This is because body B∗ by sharing a node with

body B can only rotate about the shared node, which indicates the two translations

body B∗ is constrained by the shared node.

Case (d)(e). CALL [Wang et al., 2008] proposed two other conditions that two patches

can be merged uniquely, as shown in Fig. 4.7(d)(e). Fig. 4.7(d) depicts the condition

of one shared node and two connecting links, which can provide four DOC. Fig. 4.7(e)

shows the condition of four connecting links, which can provide four DOC. If DOC is

not redundant and is equal to DOF, the body B∗ can have multiple spatial poses. In

Fig. 4.8(d), the body B∗ has four ambiguities, if we flip body B∗ across the depicted

lines. In Fig. 4.8(e), the body B∗ can have four ambiguities when body B∗ is connected

to B by only three links [0, 0∗], [1, 1∗] and [2, 2∗]. The upper bound for the number of

ambiguities for Fig. 4.8(e) is twelve, which is to be proved in Section 4.5.1.
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4.4.2 Unique Body Merging Condition: Geometry of Con-

straints

Motivation. It is well-known that for multilateration the three black nodes 1, 2, 3

in Fig. 4.7(a) should be non-collinear. Otherwise, as shown in Fig. 4.9(a), the node

0 can flip across the depicted line without changing the length of each constraint.

However, the non-collinearity during body merging is still not thoroughly explored

by previous work. This is because multilateration only considers the collinearity of

black nodes, and it is possible that black nodes and white nodes are collinear during

body merging. For example, in Fig. 4.9(b), the nodes 0, 1, 4 are collinear and node 3

can flip across the depicted line; in Fig. 4.9(c), the body B∗ can flip across the line

through the nodes 1, 2, 3∗.

We propose a necessary condition for unique body merging, which can fully explore

the collinear geometry of the constraint set C (see Definition 2 about constraint set).

The basic idea is that there does not exist a line that can pass through a vertex

of each constraint. Otherwise, body B∗ can flip across this line and has ambiguous

realizations as shown in Fig. 4.9.

To describe the point set that contains a vertex of each constraint in constraint set

C, we define the concept of constraint point set in Definition 4 and with the notation

of PC(k), where k is an integer. For example, in Fig. 4.9(f), constraint set C contains

three constraints: one of them is a shared node n1 (equal to n∗1) and the other two are

links [n0, n
∗
0], [n2, n

∗
2]. The constraint point set PC(110B) contains three nodes indices

n2, n1, n
∗
0, because k is equal to the binary 110B. PC(110B) can also be written as

PC(6) since binary 110B is equal to decimal 6.

Definition 4 (Constraint Point Set PC(k)). Assume that C = {`l} = { [nl, n∗l , dl, wl] }
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is the constraint set during the merging of body B∗ into body B, as shown in Fig. 4.7(f).

The constraint point set PC(k) corresponding to C contains one of the nodes of each

constraint `l (∈C). The integer k, which is between 0 and 2|C| (exclusive), can indicate

which node (nl or n∗l ) is contained by PC(k). If the l th bit of the integer k is 1, point

set PC(k) contains the node nl in constraint `l; otherwise point set PC(k) contains the

node n∗l in constraint `l.

With the concept of constraint point set PC(k), we present in Theorem 1 a nec-

essary condition for the unique merging of two bodies: the non-collinear geometry

of constraint set C. This condition fully considers the collinearity of different com-

binations of black nodes and white nodes shown in Fig. 4.9, by varying integer k to

generate different node combinations.

Theorem 1 (Constraint Set Non-collinearity). For the unique merging of body B∗

into body B, a necessary condition is the non-collinearity of constraint set C as defined

below:

• when body B∗ contains one node, constraint point set PC(k) is non-collinear with

k = 2|C| − 1 (or 11..1B);

• when body B∗ contains two nodes, constraint point set PC(k) is non-collinear for

each k ∈ [1, 2|C| − 1];

• when body B∗ contains three nodes or more, constraint point set PC(k) is non-

collinear for each k ∈ [0, 2|C| − 1].

Proof. When body B∗ contains one node as depicted in Fig. 4.9(a), the three black

nodes (denoted as PC(2
|C|−1)) should be non-collinear for the unique merging. When
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body B∗ contains two nodes as depicted in Fig. 4.9(b), the two white nodes (denoted

as PC(0)) can be collinear because the flipping of body B∗ across the line through

PC(0) cannot change the locations of the two nodes in B∗. But other PC(k) with

k ∈ [1, 2|C|− 1] should be non-collinear for the unique merging. When B∗ contains at

least three nodes as depicted in Fig. 4.9(c-e), PC(k) with k ∈ [0, 2|C| − 1] should be

non-collinear. Otherwise, the flipping across the line passing through collinear PC(k)

can change node locations of B∗.

Collinearity Testing Problem. A key issue required by Theorem 1 is the ability

to test whether a constraint point set PC(k) is collinear. The challenge is the presence

of ranging noise, because the constraint point set PC(k) can be roughly collinear as

interfered by ranging noise.

To test the rough collinearity of the given constraint point set PC(k), our basic

idea is to

1. obtain by orthogonal regression a line φ fitting the constraint point set PC(k), as

shown in Fig. 4.10, and

2. test whether the distance from each point to line φ is within a threshold that

relates with ranging noise σ.

Firstly, we apply orthogonal regression algorithm (i.e. Algorithm 5) to the con-

straint point set PC(k) and obtain a line φ that fits the coordinates of PC(k). For

example, in Fig. 4.10, the constraint point set PC(k) contains seven node indices.

Four of them are black nodes (i.e. n0, n3, n4, n5), which are contained in body B.

Three of them are white nodes (i.e. n∗1, n∗2, n∗6), which are contained in body B∗.

We can apply orthogonal regression to the seven nodes to obtain the fitted line φ.
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Fig. 4.10: Test Collinearity of Constraint Point Set PC(k).

Although the positions of the seven nodes are defined in different coordinate frames,

we can transform the coordinates of the white nodes to the coordinate frame of body

B, because we have the coordinate transformation function obtained by Algorithm 3

to transform body B∗’s coordinate frame to body B’s coordinate frame. Thus all the

seven nodes can have their coordinates in the same coordinate frame.

Algorithm 5: Orthogonal Regression (or total least squares)

Input: a set of data points { [xl, yl, wl] } in the same coordinate frame, where wl is
the weight of point xl, yl

Output: fitted line φ: Ax+By +C =0 that minimizes the orthogonal distances
from the data points to line φ

1 begin
2 x̄ =

∑
w2

l xl /
∑

w2
l ; ȳ =

∑
w2

l yl /
∑

w2
l

3 x′l = xl − x̄; y′l = yl − ȳ; W =
[ ∑

w2
l x

′
lx
′
l

∑
w2

l x
′
ly
′
l∑

w2
l y
′
lx
′
l

∑
w2

l y
′
ly
′
l

]
4 [A,B]T is equal to the eigenvector of the matrix W with the minimum

eigenvalue, and C = −A x̄−B ȳ

Secondly, we calculate the distance from each point in PC(k) to φ. If each dis-

tance is below the threshold 2 c σ/wl, the constraint point set PC(k) is regarded to be

collinear; otherwise, the constraint point set PC(k) is non-collinear. Here, σ/wl is the
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measurement noise of constraint `l and c is an adjustable constant. For example, in

Fig. 4.10, the seven points are non-collinear because the distance of the node n∗2 to

the fitted line φ is larger than the threshold.

4.5 Body Merging with Finite Ambiguities

In a sparse network, the redundancy in constraints (i.e. DOC > DOF) for

unique body merging may not always be satisfied. This section thus considers non-

underdetermined constraints (i.e. DOC ≥ DOF), with which two bodies can be

merged with finite ambiguities as shown in Fig. 4.8. This section firstly proves that

non-underdetermined constraints are the sufficient condition for the body merging

with finite ambiguities, and then presents our algorithm to enumerate flip ambigui-

ties to improve the robustness of body merging.

When this idea of finite ambiguities is incorporated into the iterative body merging

algorithm in Algorithm 2, we call it Iterative Inflexible Body Merging (IIBM) where

an inflexible body without any flexible parts can have finite ambiguities. Compared

with the state-of-the-art SWEEPS [Goldenberg et al., 2006] and CALL [Wang et al.,

2008] that also adopts the idea of finite ambiguities, our IIBM algorithm has two

advantages. (1) Better robustness of body merging against collinear constraints: This

is because the collinear geometry of constraints can also produce finite ambiguities as

shown Fig. 4.9. Such flip ambiguities need to be enumerated, which is to be described

in Section 4.5.2. (2) Higher percentage of localizable nodes: This is because IIBM

applies all the cases, including the unique merging cases in Fig. 4.7 and the ambiguous

merging cases in Fig. 4.8, equally to

• the merging of a local body into the global body and
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• the merging of a local body into another local body,

In contrast, CALL [Wang et al., 2008] does not use the ambiguous cases in Fig. 4.8(c)(d)

for the merging of two local bodies.

An Example of IIBM algorithm. The network in Fig. 4.11(a) needs to be local-

ized, where nodes 4, 5, 6 are GCF anchors nodes in global coordinate frame. Firstly,

the network is divided into a list of bodies shown in Fig. 4.11(b), including

• global body B0 containing the three GCF anchors 4, 5, 6,

• local body B1 (i.e. the triangle with nodes 0, 2, 3),

• local body B2 (i.e. the triangle with nodes 0, 1, 2),

• local body B3 (i.e. the triangle with nodes 0, 1, 4).

(b) Network Division

B0

B3
4

5 6

1

3
0

2
B2B1

(a) Input Network

4

5 6

1

3
0

2
1

3
0

4

5 6
2

B1

inflexible
body B0

(c) Merge Body B   into B1 0

’

’

Fig. 4.11: An Example of Iterative Inflexible Body Merging.

Then the bodies are merged iteratively. The local body B1 and the local body

B2 in Fig. 4.11(b) share two nodes 0 and 2, which corresponds to the ambiguous

body merging case in Fig. 4.8(c). Thus they can be merged with two ambiguities,

and generate the inflexible body B′1 in Fig. 4.11(c) which can be folded across the

line through nodes 0, 2. The inflexible body B′1 and the global body B0 have four

connecting links, which corresponds to the case in Fig. 4.7(e). Thus inflexible body B′1
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can be localized in GCF. The wrong ambiguity of inflexible body B′1 can be rejected,

because when the wrong ambiguity of B′1 is aligned with the global body B0 (by

Algorithm 3), the two bodies cannot fit with each other. That is no matter how we

adjust the spatial pose of the wrong ambiguity of body B′1, the error of all constraints

cannot be reduced below the defined threshold (see Line 5 of Algorithm 5).

4.5.1 Condition of Non-underdetermined Constraints

The theoretical foundation of inflexible body merging is that there are only finite

ambiguities during the merging of body B∗ into body B when the constraint set

C is non-underdetermined with DOC ≥ DOF, which is illustrated in Fig. 4.7. For

this theoretical foundation, we provide a formal proof based on quadratic equation

systems and Bézout’s theorem. Moreover, with this proof, a tight upper bound of 12

is derived for the number of ambiguities when the two bodies are connected by three

links as shown in Fig. 4.8(e) (see Theorem 4). This upper bound of 12 is much tighter

than the upper bound of 24 provided by CALL [Wang et al., 2008].

We firstly present the governing equations in Eq. (4.4) which have three unknowns

in 2D. Two unknowns is contained in translation p and one unknown is in rotation R.

The real solutions to this parallel equation set are all the ambiguities that two bodies

can be aligned. Note that Eq. (4.4) can lose its rotation parameter R and degrades

to multilateration, when body B∗ contains only one node and thus all sensors overlap

as p∗l ≡0. Thus for the following analysis we assume the nodes p∗l do not overlap with

at least one of ‖p∗l1 − p∗l2‖ (0≤ l1 < l2 <n) to be nonzero.

Definition 5 (Governing Equations of Body Merging Problem). During the merging

of body B∗ into body B, we have the constraint set C ′ = {`′l}= { [pl, p∗l , dl, wl] } as
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defined in Definition 3. The purpose is to find all the real roots of the following

governing equation system.

d2
l = ‖(p + R p∗l ) − pl‖2 (0 ≤ l < |C ′|) (4.4)

For simplicity, Eq. (4.4) omits the reflection of body B∗, which can later be imple-

mented by left multiplying each position p∗l of body B∗ by matrix

[
1 0

0 −1

]
.

We convert Eq. (4.4) to the equation system about translation p and rotation t

in Eq. (4.5), where t is equal to tan γ
2

and γ is the rotational angle of the rotation

matrix R. Rotation R in Eq. (4.4) can be substituted by rotation matrix with angle

γ.

d2
l = ‖

[
cos γ sin γ

− sin γ cos γ

]
p∗l + (p − pl)‖2

= ‖

[
1 0

0 1

]
p∗l cos γ +

[
0 1

− 1 0

]
p∗l sin γ + (p − pl)‖2

= ‖p∗l cos γ + �p∗l sin γ + (p − pl)‖2

= ‖p∗l ‖
2+ ‖p−pl‖2+ 2p∗l ·(p−pl) cos γ + 2�p∗l ·(p−pl) sin γ

where �p∗l =

[
0 1

−1 0

]
p∗l . Note that p∗l · �p∗l ≡ 0, ‖p∗l ‖ ≡ ‖�p∗l ‖. Simplification is achieved

by introducing symbols Al, Bl, Cl.

0 = Al + Bl cos γ + Cl sin γ

Al = ‖p‖2 − 2 pl · p + ‖pl‖2 + ‖p∗l ‖
2 − d2

l

Bl = 2 p∗l · p − 2 p∗l · pl Cl = 2 �p∗l · p − 2 �p∗l · pl
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The above equations can be transformed to the polynomial system below about t =

tan γ
2

by tangent half-angle formulae.

0 =

[
Al + Bl 2 Cl Al −Bl

] [
t0 t1 t2

]T

(4.5)

By solving the equation system in Eq. (4.5), we give out in Theorem 2-4 the upper

bounds of the number of ambiguities for different cases with DOC ≥ DOF.

Theorem 2. There are at most four ambiguities during the merging of body B∗ into

body B, if

• they can satisfy the condition of DOC ≥ DOF, and

• they share at least one node as shown in Fig. 4.8(d).

Proof. The following two parallel equations can be established from the two con-

straints in Fig. 4.8(d).

0 = d2
0 = ‖p − p0‖2 (with d0 = 0 and p∗0 = 0)

0 =

[
A1 + B1 2 C1 A1−B1

] [
t0 t1 t2

]T

The first equation corresponds to the zero-length link with d0 = 0 and it is additionally

assumed p∗0 = 0, which can be realized by a translation of body B∗’s coordinate frame.

From the first equation, it can be known that translation p is equal to p0. From the

second equation which follows Eq. (4.5), 2 roots can be derived for variable t, since p

is already known and the second equation is quadratic in t. With a known t, we have

only one γ and thus only one rotation R, since t = tan γ
2
. Considering the reflection
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of body B∗, which can double the number of ambiguities, variables p, R can have at

most 4 solutions and thus Fig. 4.8(d) can have 4 ambiguities.

Theorem 3. There are at most eight ambiguities during the merging of body B∗ into

body B, if

• they can satisfy the condition of DOC ≥ DOF,

• they does not share a node as shown in Fig. 4.8(e), and

• a node of body B∗ is incident to two links, e.g. p∗0 = p∗1.

Proof. The following two parallel equations can be established from the three links in

Fig. 4.8(e), however with two links l = 0, 1 incident to a same node in B∗, i.e. p∗0 = p∗1.

d2
l = ‖p − pl‖2 (with l = 0 or 1 and p∗0 = p∗1 = 0)

0 =

[
A2 + B2 2 C2 A2−B2

] [
t0 t1 t2

]T

The first equation corresponds to these two links with p∗0 = p∗1 =0, which can be

realized by moving the original point of body B∗ to this shared sensor. The first

equation has 2 roots for p, since two circles has 2 intersection points. The second

equation directly follows Eq. (4.5), by which and a known p, we can derive 2 roots for

rotation R. Considering the reflection of body B∗, [p, R] can have 8 ambiguities.

Theorem 4. There are at most twelve ambiguities during the merging of body B∗

into body B, if

• they can satisfy the condition of DOC ≥ DOF, and

• they are connected by three links as shown in Fig. 4.8(e).



104

Proof. The following derivations assumes that body B contains at least three nodes

and the number of links n equals 3, to make it a determined system with DOC

= DOF which is shown in Fig. 4.8(e). It is also assumed that there are no zero-

length links ∀ l∈ [0, n), dl 6= 0, and there do not exist two links sharing a sensor

∀ l1 l2 ∈ [0, n), l1 6= l2→ p∗l1 6= p∗l2 .

Before the elimination of variable t in Eq. (4.5), note that Bl, Cl are linear in p,

and Al is quadratic in p. The next step therefore is to reduce the degree of Al by

eliminating the quadratic term ‖p‖2; otherwise, the resultant, after the elimination

variable t in Eq. (4.5), can have a high degree in p.

Firstly, it is assumed that in Eq. (4.4) p∗0 equals zero, which can be realized by

a temporary translation of body B∗’s coordinate frame, and thus Eq. (4.6) can be

established.

d2
0 = ‖p − p0‖2 = ‖p‖2 − 2 p0 · p + ‖p0‖2 (4.6)

Therefore, the degree of Al (l = 1, 2) can be reduced to one in Eq. (4.7), by substi-

tuting ‖p‖2 with d2
0 + 2 p0 · p − ‖p0‖2.

0 =

 A1 + B1 2 C1 A1 − B1

A2 + B2 2 C2 A2 − B2

[
t0 t1 t2

]T

(4.7)

Al = − 2 (pl − p0) · p + (‖pl‖2−‖p0‖2) + ‖p∗l ‖
2 − (d2

l− d2
0)

Bl = 2 p∗l · p − 2 p∗l · pl Cl = 2 �p∗l · p − 2 �p∗l · pl

By elimination of variable t in Eq. (4.7), Eq. (4.8) is established. The elimination

technique used is linear elimination since the sufficient and necessary condition for
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the two polynomials in Eq. (4.7) to have a common root for variable t is that the

determinant of their associated Sylvester matrix M should vanish.

0 = det(M) (4.8)

M =



A1 + B1 2 C1 A1−B1 0

0 A1 + B1 2 C1 A1−B1

A2 + B2 2 C2 A2−B2 0

0 A2 + B2 2 C2 A2−B2


This common root, by eliminating t’s quadratic term, is

t =
(A1−B1) (A2 + B2) − (A1 + B1) (A2−B2)

2 C1 (A2−B2) − (A1−B1) 2 C2

. (4.9)

The polynomial without t in Eq. (4.8) is quartic in p, because each row of M

is linear in p. We however can further reduce Eq. (4.8) to a cubic polynomial by

substitutions of ‖p‖2 with d2
0 + 2 p0 · p − ‖p0‖2. Eq. (4.8) can be expanded to

Eq. (4.10).

0 = (B1 C2−C1 B2)
2 + 2 A1 A2 (B1 B2 + C1 C2)

− A2
1 (B2

2 + C2
2) − A2

2 (B2
1 + C2

1) (4.10)

The following analysis shows that Eq. (4.10) is cubic in p. With
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(p∗1 · p) (�p∗2 · p)− (�p∗1 · p) (p∗2 · p) = (p∗1 · �p∗2) ‖p‖2, we have

(B1 C2−C1 B2) / 4 = (p∗1 · �p∗2)‖p‖2

− (p∗1 · p)(�p∗2 · p2)− (p∗1 · p1)(
�p∗2 · p) + (p∗1 · p1)(

�p∗2 · p2)

+ (�p∗1 · p)(p∗2 · p2) + (�p∗1 · p1)(p
∗
2 · p)− (�p∗1 · p1)(p

∗
2 · p2) .

Moreover, we have (p∗l · p)2 + (�p∗l · p)2 = ‖p∗l ‖2‖p‖2 and

(p∗l · p) (p∗l · pl) + (�p∗l · p) (�p∗l · pl) = ‖p∗l ‖2 (pl · p). Therefore,

(B2
l + C2

l ) / 4 = ‖p∗l ‖2 (‖p‖2− 2 pl · p + ‖pl‖2) .

Because (p∗1 · p) (p∗2 · p) + (�p∗1 · p) (�p∗2 · p) = (p∗1 · p∗2) ‖p‖2,

(B1 B2 + C1 C2) / 4 = (p∗1 · p∗2) ‖p‖2

− (p∗1 · p )(p∗2 · p2)− (p∗1 · p1)(p
∗
2 · p ) + (p∗1 · p1)(p

∗
2 · p2)

− (�p∗1 · p1)(
�p∗2 · p )− (�p∗1 · p )(�p∗2 · p2) + (�p∗1 · p1)(

�p∗2 · p2) .

By the substitution of ‖p‖2 with d2
0 + 2 p0 · p − ‖p0‖2, B1C2−C1B2, B2

l + C2
l ,

B1B2 + C1C2 can be reduced to be linear in p, and thus reduce Eq. (4.10) to be

cubic in p.

The quadratic curve about p in Eq. (4.6) and the cubic curve about p in Eq. (4.10),

according to Bézout’s theorem, have 2× 3 = 6 intersection points in complex space.

In fact, given special inputs, these 6 intersection points can all stay in real space,

according to our simulation results. Given a translation p, there is only one t value

as indicated by Eq. (4.9) and thus only one rotation R with t = tan γ
2
. Considering

the reflection of body B∗, the number of solutions for [p, R] is at most 12.
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4.5.2 Flip Ambiguity Enumeration

The key point of our inflexible body merging is the ability to enumerate finite

ambiguities during the merging of two bodies. The existence of finite ambiguities can

be caused by

• the lack of redundancy in constraints as shown in Fig. 4.8,

• or the collinearity of constraints as shown in Fig. 4.9.

The previous subsection has presented the method to enumerate ambiguities by solv-

ing polynomial equation system. However, such a symbolic method cannot enumerate

the flip ambiguities in Fig. 4.9 where the constraint point set can be roughly collinear

due to the interferences of ranging noise.

In this subsection, we propose a numerical algorithm to enumerate flip ambiguities

during body merging, with the presence of ranging noise. Our observation is that the

ambiguities in Fig. 4.8(a-d) and in Fig. 4.9(a-e) have the symmetry that if flipping one

ambiguity across the depicted lines, we can get the other ambiguity or ambiguities.

For example, in Fig. 4.9(d), a second ambiguity can be obtained by flipping the

depicted ambiguity across the line through nodes 1, 2∗, 3∗. The difficulty is that when

enumerating flip ambiguities for the case in Fig. 4.8(d), there are two flip lines φ0, φ1

and four flip ambiguities. The second ambiguity is obtained by flipping the first

ambiguity across φ0, the third ambiguity is obtained by flipping the first ambiguity

across φ1, and the fourth ambiguity is obtained by flipping the first ambiguity across

φ0 then across φ1.

We present the pseudo code of our flip ambiguity enumeration algorithm in Al-

gorithm 6, which provides good localization robustness by testing the collinearity of
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each constraint point set PC(k), as defined in Theorem 1 and described at Line 3-

5. This algorithm also has the advantage of enumerating flip ambiguities with the

presence of ranging noise, thanks to the ability of Algorithm 5 (invoked at Line 7 of

Algorithm 6) to detect the rough collinearity of a constraint point set.

Algorithm 6: EnumerateFlipAmbiguities

Input: An ambiguity of body B (call it body B for short);
An ambiguity of body B∗ (call it body B∗ for short);
Constraint Set C= {`l}= { [nl, n∗l , dl, wl] }
Output: All flip ambiguities when merging two ambiguities B,B∗

1 begin
// Step 1. obtain the first ambiguity

2 Get the first ambiguity by invoking Algorithm 4
// Step 2. obtain the other ambiguities

3 switch number of nodes in body B∗ do // Theorem 1

4 case 1: k =2|C|−1; case 2: k =1; otherwise: k =0

5 for k +=2|C| − 2|C|−NumOfSharedNodes; k < 2|C|; k ++ do
6 if the nodes in constraint point set PC(k) coincide at one position then

return ∅ to indicate the failure
7 if constraint point set PC(k) is collinear around a line φ (as tested by

Algorithm 5) then record the line φ

8 if a flip line φ0 has been found then get the second ambiguity by flipping the
first ambiguity across line φ0

9 if a second flip line φ1 has been found then get the third ambiguity by flipping
the first ambiguity across φ1; get the fourth ambiguity by flipping the first one
across φ0 and φ1

4.6 Simulation Results

This section firstly compares our optimal body merging algorithm in Algorithm 3

with the traditional noise toleration algorithms (i.e. Multilateration [Foy, 1976] and

Patch Stitching [Horn et al., 1988]) to verify that our algorithm is more generalized

than the traditional algorithms in tolerate ranging noise during body merging. Then
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we show that our flip ambiguity enumeration algorithm in Algorithm 6 can improve

the robustness of body merging. We further compare our IIBM algorithm in Algo-

rithm 2 with state-of-the-art CALL [Wang et al., 2008], to verify that our algorithm

can achieve higher localization percentage than CALL. Finally, our IIBM algorithm

are applied to localize sparse networks deployed in either convex or concave regions.

4.6.1 Simulation Settings

The adopted ranging system is ultrasonic TOA with 5m ranging radius and 4 cm

ranging noise σ, which is also used in [Moore et al., 2004]. Our simulations eval-

uate the proposed localization algorithms by the metrics listed in Table 4.1. The

adjustable system parameters are also listed there and we investigate their impact on

the evaluated metrics.

Table 4.1: Evaluated Metrics and Adjusted System Parameters
LocError Localization Error of a node is the distance between its true location

and its unique location estimate.
GCF Anchor
LocError

Localization Error of a GCF anchor is the distance between its true
location and its declared location.

Body Merging
Accuracy

Body Merging Accuracy is the mean-squared error of all constraints
between two bodies, as formalized in Eq. (4.2), which is also used by
[Goldenberg et al., 2006] since mean-squared error of constraints is pro-
portionate to average LocError by Cramér-Rao bound if ranging noise
is Gaussian noise.

LocPercentage Localization Percentage is the percentage of nodes that can be localized
finitely, among all network nodes.

NtwkDegree Network Degree is average number of neighbors of a sensor, to which the
distances can be measured.

AncPercentage Anchor Percentage is the percentage of GCF anchors deployed to the
network, among all network nodes.

NtwkRegion Network Region is the region to deploy the network, which can be rect-
angular, O-Shaped, U-Shaped, etc.
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4.6.2 Body Merging Accuracy By Tolerating Ranging Noise

This simulation is to show that our optimal body merging algorithm in Algo-

rithm 3 can achieve high body merging accuracy for all the cases in Fig. 4.7(a-e). Our

algorithm is thus more generalized than the traditional noise toleration algorithms,

i.e. multilateration [Foy, 1976] and patch stitching [Horn et al., 1988]. Multilatera-

tion only handles the case in Fig. 4.7(a). Patch stitching is designed for the case in

Fig. 4.7(c).
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Fig. 4.12: Comparisons in Body Merging Accuracy.

Fig. 4.12 depicts the relation between ranging noise σ and body merging accuracy

(check Table 4.1) during the merging of a local body into the global body. Fig. 4.12(a)

assumes that GCF anchor localization error is zero, and Fig. 4.12(b) assumes that

GCF anchor LocError is σ to emulate the effect of error accumulation, i.e. the increase

of localization error of nodes in the global body with the increase of number of nodes.

Fig. 4.12(a) shows that our optimal body merging algorithm can tolerate noise

and improve body merging accuracy for all the cases in Fig. 4.7 in a unified manner.

This major advantage is because we adopt the physical model of rigid body dynamics

to align two groups of nodes. Fig. 4.12(a) also shows the accuracy of our body
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merging algorithm is comparable with multilateration for case (a). Our body merging

algorithm can outperform patch stitching for case (c) because our body merging

algorithm refines the merged body B+ (see Algorithm 4) to tolerate the ranging noise

in the local body B∗.

Fig. 4.12(b) shows that our optimal body merging algorithm can alleviate the

error accumulation problem, i.e. the increased uncertainty in node positions within

a body when the body contains more nodes. To simulate such an effect, the GCF

anchor LocError is configured to σ in Fig. 4.12(b). In this situation, our optimal

body merging algorithm outperforms multilateration during case (a), and outperforms

patch stitching during case (c). Such an advantage is because we apply refinement

to merged body B+ (see Algorithm 4) to tolerate the positioning uncertainties in the

global body B.

4.6.3 Robust Body Merging against Unexpected Flipping

During body merging, it is necessary to discover the collinear geometry in con-

straint set C and enumerate flip ambiguities (see Section 4.4.2 and Section 4.5.2). The

simulation in Fig. 4.13 show that our algorithm in Algorithm 6 can enumerate flip

ambiguities for the cases in Fig. 4.9(a)(c)(d), and can thus improve the robustness of

inflexible body merging.

Fig. 4.13(a) shows that Algorithm 6 can enumerate flip ambiguities for sensor

merging in Fig. 4.9(a) and patch stitching in Fig. 4.9(c). Sensor 0 has two ambiguous

positions since anchors 1∼ 3 are collinear. The patch with nodes 5∼ 8 contains two

anchors 5, 6 and has one link [4, 7] connecting it to anchor 4. This patch has two

ambiguities (with gray and red colors) since the three nodes 5∼ 7 are collinear.
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Fig. 4.13: Enumerate Flip Ambiguities During Body Merging in Cases (a)(c)(d) of
Fig. 4.9 due to Constraints Collinearity.

Fig. 4.13(b) shows that Algorithm 6 can enumerate flip ambiguities for patch

merging in Fig. 4.9(d). The patch with nodes 0, 3, 4 has an redundant constraint set

that contains one anchor node 0 and two links [1, 3], [2, 4]. This patch has three

ambiguities with gray, red and blue colors. To enumerate the three ambiguities, the

constraint set is firstly reduced to be determined (i.e. DOC = DOF) by removing a

link, e.g. [2, 4]. Then the first ambiguity can be obtained (e.g. with the gray color)

together with the two illustrated flip axes φ0 and φ1. The red ambiguity is obtained,

by flipping the gray ambiguity across axis φ0. The blue ambiguity is obtained, by

flipping the gray ambiguity firstly across φ0 then across φ1.
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4.6.4 Localization Percentage in Sparse Networks

This simulation is to verify that our IIBM algorithm in Algorithm 2 can achieve

high localization percentage in sparse networks with low connectivity and sparse an-

chor distribution. We adjust network degree and anchor percentage to investigate

their impacts on localization percentage and show that we can achieve higher local-

ization percentage than CALL [Wang et al., 2008].
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Fig. 4.14: Comparisons in Localization Percentage.

Fig. 4.14(a) depicts the relation between network degree and anchor percentage.

Fig. 4.14(a) shows that the localization percentage of both IIBM algorithm and CALL

approaches 1 when network degree is larger than 4.5. But when network degree is

between 3.7 and 4.5, IIBM algorithm can outperform CALL by roughly two times

(see Fig. 4.14(b)). This is because CALL does not consider ambiguous cases (c)(d)

in Fig. 4.8 for component merging, which would reduce the chance for local bodies to

expand. In contrast, IIBM algorithm can handle all ambiguous body merging cases

(a-e) and apply these cases equally to the merging and embedding of local bodies.

Fig. 4.14(b) depicts the relation between anchor percentage and localization per-

centage. Fig. 4.14(b) shows that IIBM algorithm strongly outperforms CALL when
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anchor percentage is between 5% and 8%. This is because IIBM algorithm gives local

bodies greater chance to expand, and a larger local body has better chance to be

localized in GCF.

4.6.5 Performance in Convex and Concave Networks

Our IIBM algorithm in Algorithm 2 is applied to sparse networks deployed in

concave and convex regions (see in Fig. 4.15) to show our algorithm is accurate and

robust in both regions. In Fig. 4.15, GCF anchors are drawn as triangles and sensors

are drawn as dots. For each sensor, if it has unique location estimate, a colored

dot is used to to show its estimated location and the color used corresponds to its

localization error (see the legend on the left of Fig. 4.15(a)). The nodes that can

not be uniquely localized are shown as gray dots at their true locations (e.g. nodes

55, 62, 63 in Fig. 4.15(a)).

0.03 σ ~ 0.33 σ
LocError

0.33 σ ~ 0.66 σ

0.66 σ ~ 0.99 σ

0.99 σ ~ 1.32 σ

1.32 σ ~ 1.65 σ

1.65 σ ~ 1.98 σ

1.98 σ ~ 2.31 σ

2.31 σ ~  ... ... 

True Location

(a) Convex Rectangular Field. (b) Concave O-Shaped Field.

Fig. 4.15: Localization by IIBM algorithm. (a) NtwkDegree = 4.81, LocError =
1.58 σ, LocPercentage = 85%. (b) NtwkDegree = 5.13, LocError = 1.16 σ, LocPer-
centage = 96.7%.



115

In both the convex topology in Fig. 4.15(a) and the concave topology in Fig. 4.15(b),

the average localization error of localized nodes is kept below 2 σ. This good accu-

racy is because (1) we can provide good body merging accuracy by our optimal body

merging algorithm as shown in Fig. 4.12(b), and (2) we can ensure body merging

robustness by enumerating the flip ambiguities. For example, nodes 40, 48, 56 cannot

be localized uniquely due to the collinearity of nodes 41, 49, 57. Moreover, for the

two sparse networks in Fig. 4.15, the localization percentage is well kept above 80%,

which is consistent with the results in Fig. 4.14.

4.7 Conclusion

This chapter focused on fine-grained iterative localization of wireless sensor net-

works. We have proposed an optimal body merging algorithm that can tolerate

ranging noise when aligning two bodies. This algorithm can handle all body merging

cases in a unified manner and the simulation results show that it is more accurate

than the traditional multilateration and patch stitching by mitigating error accumu-

lation. We also proposed a flip ambiguity enumeration algorithm that can improve

the localization robustness by discovering rough constraint collinearity with the pres-

ence of ranging noise. It is finally verified that our network localization algorithm

called IIBM algorithm can achieve higher localization percentage than state-of-the-

art CALL and our demonstration shows that it can work well in both convex and

concave networks.
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Chapter 5

Range-Based Localization of

Wireless Sensor Networks:

Robustness Against Outliers

5.1 Overview

For wireless sensor networks, a wide range of applications and protocols require

sensor nodes to know their locations. For example, environmental monitoring applica-

tion needs data reported by sensor nodes to be geographically meaningful, and rout-

ing protocol can reduce its communication cost by geographical routing. Therefore,

a plethora of previous studies can be found to automatically derive sensor locations,

which is known as network localization [Eren et al., 2004, Goldenberg et al., 2006,

Horn et al., 1988, Li and Liu, 2007, Lim and C., 2005, Moore et al., 2004, Niculescu

and Nath, 2003, Priyantha et al., 2003, Savvides et al., 2003b, Shang and Ruml,

2004, Wang et al., 2008, Whitehouse et al., 2005]. These studies generally assume

117
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the distances between neighboring nodes in a topology can be accurately measured

by ranging techniques, e.g. ultrasonic TOA (Time-Of-Arrival) and ultra-wideband

RF TOA.

For the measuring of inter-node distances, it is inevitable to have erroneous dis-

tance measurements that deviate significantly from true distances (call them outlier

distances or outlier links). The presence of these outlier distances can be caused by

malfunctions of ranging hardware, severe natural interferences to ranging signals, or

malicious attacks. For example, ultrasonic TOA may generate outlier distances with

enlarged estimates due to non-line-of-sight propagation of sound signals [Whitehouse

et al., 2005].

These inevitable outlier distances can severely degrade the accuracy of network

localization algorithms. For example, in Fig. 5.1, nodes 1, 2, 3, 4 are anchors nodes

whose locations are already known. The sensor 0 can measure distances to them.

Each distance measurement is drawn as a dashed circle centered at the corresponding

anchor node. Among the four links, the link [4, 0] is an outlier whose measurement

is much smaller than the true value. As misled by this outlier link, location estimate

of sensor 0 converges to the severely inaccurate position 0′ following the red polyline,

if applying multilateration.

3

4
0

12

0’

Convergence Path
of Multileration

Initial Guess of 
Location of Sensor 0

Outlier
Distance

Fig. 5.1: Impact of Outliers on Multilateration Accuracy.
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These harmful outlier distances need to be identified and rejected during network

localization, which is called robust network localization. Previous studies in this field

are focused on adding outlier rejection ability to multilateration (called robust mul-

tilateration [Kiyavash and Koushanfar, 2007, Kung et al., 2009, Li et al., 2005, Liu

et al., 2005, Wang et al., 2007]), because multilateration is a basic operation that can

be applied iteratively to localize a network. Here “iteratively” means a node can be

localized if it can measure distances to at least three anchors, and a node after being

localized can be upgraded to an anchor [Savvides et al., 2003b].

Iterative multilateration becomes weak and even powerless for localization in

sparse networks where the node degree can be six or less. Thus, we must resort

to another basic operation called patch merging where a patch is a group of nodes

forming a rigid structure and two patches can be merged to generate a larger patch

if they have enough connectivity to confine their relative motions [Horn et al., 1988,

Moore et al., 2004, Shang and Ruml, 2004, Wang et al., 2008]. Thanks to patch

merging, the percentage of localizable nodes can be increased by at least 30% in

sparse networks with the average degree between 5 and 7 (see the simulations in

Section 5.6.3).

However, the accuracy of this useful patch merging operation is still vulnerable to

outlier distances, due to its nature of least square estimator. There is no previous work

to invent robust patch merging that can reject outliers during patch merging. Thus,

we propose such a robust operation as the basis of robust network localization. This

operation is more generalized and powerful than robust multilateration since it can

reject outliers either when merging a single node with a patch (i.e. multilateration)

or when merging two patches (i.e. patch merging). To implement such generalized
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operation, our basic idea is to find a consistent subset of the links connecting two

patches. We say a subset of links is “consistent” if it has no detectable outliers

(i.e. the residue of each link in this subset is below a threshold proportionate to

ranging noise).

Robust patch merging does not directly imply the robust network localization.

This is because the robust patch merging requires sufficient redundancy in connectiv-

ity between two patches to reject outlier links. This redundancy requirement however

may not be satisfied in sparse subregions of a network. An outlier link in such a sparse

region thus may be non-rejectable and skew the final location estimates. We propose

to make the robust patch merging operation explicitly report the existence of non-

rejectable outliers. When receiving such a report, a network localization algorithm

can isolate the non-rejectable outliers. This network localization algorithm is called

RobustLoc which according to our proof can reject outlier links reliably. Compared

with robust multilateration [Kiyavash and Koushanfar, 2007, Kung et al., 2009, Li

et al., 2005, Liu et al., 2005, Wang et al., 2007] that can easily get stuck in sparse

networks, RobustLoc can reliably reject outlier links in sparse networks. Our simu-

lation results show that in sparse networks with 5.5 degree, RobustLoc can localize

90% nodes, which strongly outperforms robust multilateration methods.

Besides the toleration of outlier links, another key issue is the toleration of outlier

anchor nodes. Anchor nodes constitute only a small proportion of network nodes

in a network topology. These anchor nodes have prior knowledge of their locations

in a Global Coordinate Frame (GCF), e.g. in the GPS coordinate frame which is

meaningful to most of potential users. However, it is inevitable to have outlier anchor
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nodes declaring erroneous locations that significantly deviate from their true loca-

tions. The sources of outlier anchors can be misconfigurations or malicious attacks,

e.g. Replay attack (i.e. attacker overhears an anchor location declaration and re-

plays this declaration at other places) and Sybil attack (i.e. attacker compromises

an anchor node, exploits its identity and makes erroneous anchor declarations at dif-

ferent places [Newsome et al., 2004]). Outlier anchors are more harmful than outlier

links because multiple outlier anchors may collude and declare positions in the same

coordinate frame which is different from the GCF.

We find that outlier anchors toleration is different from outlier links toleration

for two reasons: (1) falsely rejecting normal links incident to outlier anchors may

cause troubles which will be detailed by simulations in Section 5.5.1; (2) different

from outlier links, outlier anchors may collude due to malicious attacks. Thus the

rejection of colluding outlier anchors needs global knowledge to exploit the majority of

benign anchors, i.e. benign anchors outnumber outlier anchors in the whole network.

Therefore, we propose an enhancement to RobustLoc algorithm that firstly constructs

a largest local patch by an iterative local patch merging process excluding all the

anchor declarations. Then by merging this largest local patch with the global patch

containing all anchor declarations, we can reject colluding outlier anchors by voting.

Such voting is implemented by reusing our robust patch merging operation, which

reflects an elegant design.

As a summary, this chapter makes the following contributions. (1) We propose

the robust patch merging operation which is more generalized and powerful than ro-

bust multilateration [Kiyavash and Koushanfar, 2007, Liu et al., 2005, Wang et al.,
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2007]. Our RobustLoc algorithm thus can effectively reject outlier links and mean-

while achieve high localization percentage in sparse networks. In contrast, robust

multilateration method can only localize a small proportion of nodes in sparse net-

works. (2) Our robust patch merging operation handles the non-rejectable outlier

distances due to insufficient connectivity in sparse subregions, which is neglected be-

fore. (3) Our RobustLoc algorithm can reject both outlier links and outlier anchors.

In contrast, a recent chapter [Jian et al., 2010] can only reject outlier links, based

on the enumeration of realizable generic cycles. (4) Our RobustLoc algorithm can

tolerate multiple outlier anchors which may collude under malicious attacks. These

declared contributions will be validated by high-fidelity simulations with practical

system parameters from [Moore et al., 2004, Savvides et al., 2003b].

The rest of this chapter is organized as follows. Section 5.2 introduces the two basic

operations of network localization, i.e. multilateration and patch merging. Section 5.3

presents our robust patch merging that can reject outlier links for these two basic

operations. Section 5.4 presents how we enhance network localization algorithm to

make it robust against outlier links. Section 5.5 addresses the problem as how to

reject outlier anchors. Section 5.6 shows simulation results. Section 5.7 concludes the

whole chapter.

5.2 Two Basic Operations for Network Localiza-

tion Problem

In this section, we firstly introduce the sensor network localization problem and

then introduce the two basic operations to solve such a problem, i.e.
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1. multilateration that merges a sensor with a patch,

2. patch merging that merges two patches.

Here, a patch is a group of nodes forming a rigid structure without continuous defor-

mation.

Network Localization Problem. To localize a network, the required inputs are a

set of anchors, whose locations are already known, and a set of link length measure-

ments as shown in Fig. 5.2(a). The outputs of a network localization algorithm are

the location estimates of the nodes that can be uniquely localized. These location

estimates are depicted in Fig. 5.2(b) as black dots. The nodes that have ambiguous

location assignments do not have black dots in Fig. 5.2(b). For example, node 20 has

ambiguous location estimates since it can flip across the line through nodes 15, 21.

Anchor

Link

(a) Input: Anchors and Links (b) Output: Location Estimates

Fig. 5.2: Input and Output of Network Localization Problem.

To solve this network localization problem, researchers try to find out how a

group of nodes can be inter-connected to form a rigid structure which is free from

any deformations (i.e. either flip or flex). Such a structure can be localized if it

contains three non-collinear anchors to fix it on a plane. Such a structure is named a
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generically globally rigid graph [Eren et al., 2004] (or globally rigid graph for short)

and is defined in Theorem 5.

Theorem 5 (Globally Rigidity & Generically Rigidity). Graph G with at least four

vertices is globally rigid in R2 if G is 3-connected and redundantly rigid. Graph G is

redundantly rigid if G is generically rigid upon the removal of any edge. Graph G is

generically rigid if it can satisfy Laman’s Theorem. Please refer to [Eren et al., 2004]

for details and proofs.

A Trilateration as a
basic operation:

B C

D
E

Patch Sensor

Fig. 5.3: Patch Expansion by Iterative Trilateration.

However, it is NP-hard to find in a network topology all the globally rigid sub-

graphs and test whether they can be localized [Eren et al., 2004]. Thus people con-

struct globally rigid patches by merging nodes into patches iteratively, which is called

iterative trilateration with polynomial computational cost [Savvides et al., 2003b].

For example, in Fig. 5.3, we start from the simplest rigid structures, i.e. triangle

{A, B, C}. We expand this rigid structure (called a patch) by merging node D into

it, since there are three links connecting this node with the patch {A, B, C}. The

operation that merges a node into a patch is called trilateration. By applying tri-

lateration iteratively, we can keep adding new nodes into the patch. The patches

expanded in this way are called trilateration graphs which are guaranteed to be glob-

ally rigid [Eren et al., 2004].

However, iterative trilateration can easily get stuck in sparse networks with low

connectivity and with sparse anchor distribution, e.g. the network in Fig. 5.2(a). The
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recent work in [Horn et al., 1988, Wang et al., 2008] thus considers not only merging

a node into a patch but also merging two patches which is depicted in Fig. 5.4(b-e)

and described in Definition 6.

Definition 6 (Globally Rigid Patch Merging [Wang et al., 2008]). Left patch GL

and right patch GR can be merged together to generate a larger resultant patch. This

merging is globally rigid merging if the two patches GL and GR can fulfill one of the

following conditions with

• three shared nodes in Fig. 5.4(b).

• two shared nodes and one connecting link in Fig. 5.4(c);

• one shared node and two connecting links in Fig. 5.4(d);

• at least four connecting links in Fig. 5.4(e).

Moreover, for all these shared nodes and links, they should be relevant to at least three

nodes in left patch GL, and relevant to at least three nodes in right patch GR. We call

it “globally rigid merging”, because the resultant patch is globally rigid if GL and GR

are both globally rigid.

(b) Patch Merging I (c) Patch Merging II (d) Patch Merging III (e) Patch Merging IV(a) Sensor Merging by Trilateration

Left
Patch G
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Fig. 5.4: Globally rigid merging cases. (a) merges patch GL with sensor GR. (b-e)
merge two patches GL,GR.

With patch merging, we can discover more globally rigid subgraphs in sparse

networks than using trilateration alone. This is because for trilateration in Fig. 5.4(a)
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we can use only the one-hop information in node A’s neighborhood, while for patch

merging in Fig. 5.4(b-e) we can exploit multihop information to align two patches.

To further increase the ability of discovering globally rigid structures (e.g. wheel

graphs), a patch can be constructed with finite realizations, which is called a gener-

ically rigid patch. For example, SWEEPS [Goldenberg et al., 2006] argues a sensor

node can be merged into a patch with only two links connecting them. The node how-

ever have two possible realizations as shown in Fig. 5.5(a) by flipping across the line

through nodes B, C. The patches expanded with finite realizations are generically

rigid but not globally rigid. We thus call the merging “generically rigid merging”.

Two patches can also be merged with finite realizations [Wang et al., 2008], which is

described in Definition 7 and illustrated in Fig. 5.5(b)(c)(d).

Definition 7 (Generically Rigid Patch Merging [Wang et al., 2008]). Left patch GL

and right patch GR can be merged together to generate a larger resultant patch. This

merging is generically rigid merging if the two patches GL and GR can fulfill one of

the following conditions with

• two shared nodes in Fig. 5.5(b).

• one shared nodes and one connecting link in Fig. 5.5(c);

• at least three connecting links in Fig. 5.5(d).

Moreover, for all these shared nodes and links, they should be relevant to at least two

nodes in left patch GL, and relevant to at least two nodes in right patch GR. We call

it “generically rigid merging”, because the resultant patch is generically rigid if GL

and GR are both generically rigid.
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Fig. 5.5: Generically rigid merging cases. (a) merges patch GL with sensor GR. (b-d)
merge patches GL, GR.

Example. We can localize the network in Fig. 5.2(a) by merging patches iteratively.

Triangle {2, 6, 7} can be merged with triangle {6, 7, 11} since they share two nodes,

which corresponds to the case in Fig. 5.5(b). The resultant patch {2, 6, 7, 11} is gener-

ically rigid, and this patch can be merged with triangle {7, 8, 12} because they share

node 7 and have two links [2, 8] and [11, 12]. This globally rigid merging generates

a patch {2, 6, 7, 8, 11, 12} which is a six-node wheel graph and is globally rigid. This

patch and the global patch (containing all the anchors {6, 8, 16, 18}) share two nodes

6, 8 and has one link [11, 16], which satisfies the globally rigid merging condition in

Fig. 5.4(c). Thus, the nodes 2, 7, 11, 12 can be merged into the global patch and

be uniquely localized as shown in Fig. 5.2(b). Other black nodes can be localized

similarly by iterative patch merging.

As a conclusion, for sensor network localization, there are two basic operations

to expand patches: multilateration as shown in Fig. 5.4(a)&Fig. 5.5(a), and patch

merging as shown in Fig. 5.4(b-e)&Fig. 5.5(b-d). Afterwards, we only use one term

“patch merging”, because multilateration can be regarded as a special case of patch

merging if we regard an individual node (e.g. node A in Fig. 5.4(a)) as a special

one-node patch. For patch merging, we use the following symbols all throughout this

chapter.
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GL left patch during patch merging
GR right patch (maybe just a sensor) during patch merging
L set of links connecting GL and GR. Note that a node shared by GL,GR is

contained in L as a zero-length link.

5.3 Robust Patch Merging Operation

This section presents robust patch merging that is still accurate in the presence

of outlier links whose length measurements severely deviate from their real values.

This robust patch merging is important since patch merging (with multilateration

as a special case) is the basic operation for network localization. In Section 5.3.1,

we discuss the detection of outlier links during patch merging. When outlier links

are detected, we need to identify and remove these outliers, which is addressed in

Section 5.3.2. Finally, Section 5.3.3 presents reliable outlier link rejection against

collusion.

5.3.1 Outlier Link Detection during Patch Merging

We argue in Theorem 6 that outlier links can be detected if the merging is globally

rigid as shown in Fig. 5.4. Such detection can be implemented as checking whether

the links in set L have abnormally large deformations (or residues).

Theorem 6 (Outlier Detectability during Patch Merging). When GL is merged with

GR, an outlier may exist in link set L. This outlier can be detected, if the merging is

globally rigid as shown in Fig. 5.4. This outlier cannot be detected, if the merging is

generically rigid but not globally rigid as shown in Fig. 5.5.

Proof. If the merging is barely generically rigid, we cannot detect outliers since the

removal of link ` (∈ L) makes some part of the graph flexible. For example, in

Fig. 5.6(a), if link [A, B] is removed, node A can rotate around node C, and thus link
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[A, B] if put back can deform freely. In Fig. 5.6(a), link [E, F ] can also deform freely

with the right patch rotating around node I.

A

B

C

stretch

rotate

E

I

F

shrink rotate

(a) Non-Detectable Outlier Links for
Generically Rigid Merging

A

B

C

D

E F

I
H

shrink
(b) Detectable Outlier Links for
Globally Rigid Merging

Fig. 5.6: Outlier Detectability of Basic Merging Operations.

Globally rigid merging upon the removal of any link is still generically rigid merg-

ing. Hence, for globally rigid merging, the deformation of outliers links incurs the

deformation of normal links, which can be detected when we try to align GL and

GR. For example, in Fig. 5.6(b), the stretch of link [A, B] incurs the stretch of link

[A, D], which is detectable; the shrink of link [E, F ] incurs the stretch of link [H, H],

if regarding shared node H as a zero-length link.

5.3.2 Outlier Link Rejection during Patch Merging

Upon the detection of outlier links, we need to identify which link or links are

the outliers and then remove them. The basic idea is to find a subset of link set

L that can let the two patches GL and GR merge without detectable outliers. This

subset of links are trusted to be normal links, and the remaining links are identified

as outlier links.

We present in Theorem 7 the necessary condition for outlier rejection during patch

merging, i.e. there exists a subset of links that has no detectable outlier links and

can satisfy the globally rigid merging condition for effective outlier detection.
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Theorem 7 (Outlier Rejectability during Globally Rigid Patch Merging). When

patch GL is merged with patch GR, outliers may exist in link set L. These outliers

can be identified only if the merging of GL and GR is still globally rigid upon the

removal of outliers in link set L.

Proof. If the merging upon the removal of outliers becomes generically rigid merging,

then this subgraph with outliers removed may not be outlier-free by Theorem 6. Thus

we cannot tell whether we have rejected all the outliers.

According to Theorem 7, we need to find an outlier-free subgraph of the original

patch merging topology that is globally rigid. However, if we check each globally

rigid subgraph on whether it contains outliers, the computational cost can be as high

as O(2n), where n is the number of links connecting the two patches GL and GR.

We thus only check each subgraph that is minimally globally rigid. This concept of

minimally globally rigid merging subgraph is defined in Definition 8 and is illustrated

in Fig. 5.7.

Definition 8 (Minimally Globally Rigid Merging Subgraph). Given a globally rigid

patch merging topology G comprised of left patch GL, right patch GR and link set L

with n links (see Fig. 5.7), G̈ is a minimally globally rigid merging subgraph of G, if

G̈ can satisfy the following conditions:

• G̈ contains left patch GL and right patch GR;

• the links in G̈ that connects GL,GR is a subset of L that connects GL,GR in the

original merging topology G;

• G̈ can satisfy globally rigid merging condition;
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• G̈ cannot satisfy globally rigid merging condition upon the removal of any link

connecting two patches GL,GR.

C(n, 3) ×  =

n links

G
L

G
R

..
G

(a) Enumerate minimally globally rigid merging subgraphs for multilateration

C(m, 3) ×  

+ C(m, 2) × C(n-m, 1) × + C(m, 1) × C(n-m, 2) × 

+ C(n-m, 4) × =

n-m nonzero-length links

m shared nodes

G
L

G
R

..
G

..
G

..
G

..
G

(b) Enumerate minimally globally rigid merging subgraphs for patch merging

Fig. 5.7: Enumerate Minimally Globally Rigid Merging Subgraphs for the Original
Merging Topologies.

We illustrate in Fig. 5.7 the enumeration of minimally globally rigid merging sub-

graphs for multilateration and patch merging. Fig. 5.7(a) depicts the subgraph enu-

meration for multilateration, and there are C(n, 3) such subgraphs, where n is the

number of links. The studies in the field of robust multilateration [Kiyavash and

Koushanfar, 2007, Wang et al., 2007] essentially adopt the similar idea, because they

reject outliers by enumerating the groups of three links. However, this method is

just a special case of our subgraph enumeration method, because our method can be

applied to patch merging as illustrated in Fig. 5.7(b). When there are m shared nodes

during patch merging in Fig. 5.4(b), we enumerate C(m, 3) subgraphs that can barely

satisfy the globally rigid merging condition. Since there are n − m nonzero-length

links, we further enumerate C(m, 2)×C(n−m, 1) subgraphs that can barely satisfy
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the condition in Fig. 5.4(c). Similarly, there are C(m, 1)×C(n−m, 2) subgraphs that

can barely satisfy the condition in Fig. 5.4(d), and there are C(n−m, 4) subgraphs

that can barely satisfy the condition in Fig. 5.4(e).

A

B

C

D E

F

(a) Reject Outlier Link [B,F ]

A

D

C

B

E

F

(b) Reject Outlier Link [A,E]

Fig. 5.8: Reject Outliers by Finding a Minimally Globally Rigid Merging Subgraph
without Detectable Outliers.

Examples. We exemplify how we apply the subgraph enumeration method to iden-

tify outliers during patch merging.

a. In Fig. 5.8(a), we can identify link [B, F ] as an outlier link, when merging patch

{A, B, C} with patch {D, E, F}. Because these two patches can be merged with-

out detectable outliers if using the four links [A, F ], [C, F ], [B, D], [B, E], which

satisfies the condition in Fig. 5.4(e).

b. In Fig. 5.8(b), we can identify link [A, E] as an outlier link, when merging gener-

ically rigid patch {A, B, C,D} with patch {C, E, F}. Because these two patches

can be merged without detectable outliers if using shared node C and two links

[B, F ], [D, E], which follows the patch merging case in Fig. 5.4(d).

With the above examples, an outlier rejection method can work by two steps:

(1) enumerate minimally globally rigid merging subgraphs as shown in Fig. 5.7 and

check whether they have detectable outliers; (2) whenever a subgraph G̈ is found

without detectable outliers, stop the enumeration and declare all the links that are



133

consistent with G̈ to be normal links. Link-subgraph consistency relation is defined

in Definition 9 that the subgraph with the link added has no detectable outliers.

Definition 9 (Link-Subgraph Consistency). Given a globally rigid merging subgraph

G̈ as in Definition 8, a link ` in link set L is consistent with G̈ which is noted as

` . G̈, if

(1) G̈ has no detectable outliers and

(2) G̈ with link ` added has no detectable outliers.

Link ` is trivially consistent with G̈, if ` is contained in G̈.

5.3.3 Reliable Outlier Link Rejection against Collusion

However, the above outlier rejection method can fail in two situations where there

is collusion.

(1) Existence of an outlier link that colludes with normal links due to geometry

effects. In such a situation, we can find a minimally globally rigid subgraph that

contains the outlier link and the normal links that collude with it. In this subgraph,

we cannot detect the outlier link. For example, in Fig. 5.9(a), link [C, E] is an outlier

link declaring its length equal to [C, E ′]. Then we can find a minimally globally rigid

subgraph that contains shared nodes A, B and outlier link [C, E]. In this subgraph

we cannot detect the outlier because there are no abnormal deformations when the

right patch is realized to G′
R.

(2) Existence of multiple outliers that collude with each other. We thus may find a

minimally globally rigid subgraph with all its links to be colluding outliers, and we

cannot detect them. For example, in Fig. 5.9(b), three anchors A, B, C are outliers

which declare their positions to be A′, B′, C ′ in the same coordinate frame. We cannot
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detect the outlier anchors because there are no abnormal deformations when the right

patch is realized to G′
R. We delay the discussion to Section 5.5 on how to tolerate

the multiple colluding outlier anchors.
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(a) Outlier link [C,E] colludes with
shared nodes A,B
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(b) Colluding outlier anchors A,B,C that declares
positions A,B, C ′ in the same coordinate frame

Fig. 5.9: Colluding Outliers to Justify Voting Algorithm. (a) Outlier link [C, E]
are non-rejectable due to flip ambiguity G′

R. (b) Outlier anchors A, B, C are non-
detectable.

We present in Algorithm 5.1 the pseudocode of our robust patch merging opera-

tion to detect outliers and reject them. This operation, if it cannot reject the outliers

due to collusion as shown in Fig. 5.9(a), can report such inability explicitly. The

basic idea to beat collusion is by voting that can exploit the majority of normal links,

which has four steps: (1) enumerate minimally globally rigid merging subgraphs and

check whether they have detectable outliers; (2) when a subgraph has no detectable

outliers, calculate the votes earned by this subgraph, and this subgraph can get the

vote from a link if this link is consistent with this subgraph, as defined in Defini-

tion 9; (3) the subgraph with the highest votes wins, because the subgraph with only

normal links will be supported by all normal links, which outnumber outlier links;

(4) when multiple subgraphs get the same highest votes, we can identify outliers if

these subgraphs have the same set of supporters which is regarded as normal links.

Otherwise, we report the inability to identity the outliers since there are multiple

subgraphs getting the same highest votes but with different sets of supporters.
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For example, Algorithm 5.1 can explicitly report the inability to reject the detected

outlier in Fig. 5.9(a) where the outlier link [C, E] colludes with normal links due to

its special geometry. We cannot reject outlier link [C, E], because the two realizations

GR and G′
R get the same votes (i.e. three votes) but have different sets of supporters.

GR is supported by shared nodes A, B and normal link [C, D]. G′
R is supported by

shared nodes A, B and outlier link [C, E].

Table 5.1: Robust Patch Merging based on Voting

Input: Merging topology G is comprised of left patch GL, right graph GR (that can
be either a sensor or a patch), and a set L of n links between GL and GR, as shown
in Fig. 5.7.
Output: A larger resultant patch by merging GL and GR.

Procedure:
perform the merging of GL and GR with connecting links L
if no detected outliers, then return the merging result directly
initialize max votes vmax as 0 and winner set W as ∅
foreach subgraph G̈ of input topology G as shown in Fig. 5.7

1. if G̈ is not globally rigid merging, then continue

2. if G̈ is detected to contain outliers, then continue

3. for candidate G̈, calculate its votes v obtained from the set of voters L as v =∑
`∈L ` . G̈, where ` . G̈ means the link ` (∈ L) is consistent with the subgraph G̈

4. if v < vmax, then continue

5. if v == vmax, then vmax = v and W is reset to empty

6. add subgraph G̈ to the winner set W

if W is empty, or in nonempty W the winners have different set of supporters, then
return an empty resultant patch;
else regard the shared set of supporters for W as normal links, remove the identified
outliers †, use only normal links to merge GL and GR, and return the merging result.

† Removal of a shared node or a zero-length link is to remove all the edges incident to
the shared node.
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5.4 Robust Network Localization against Non-Rejectable

Outlier Links

This section solves the problem of robustly localizing a network in the presence

of outlier links. At the present stage, we assume the absence of outlier anchors. Our

basic idea of outlier link rejection is to localize a network by iteratively invoking

the robust patch merging operation in Algorithm 5.1. However, the challenge is the

robust patch merging operation may sometime fail to reject the detected outlier links,

either due to collusion or due to insufficient connectivity, which is to be elaborated

in Section 5.4.1. This challenge is to be addressed in Section 5.4.2 by recording the

failure of rejection and isolating the non-rejectable outlier links.

5.4.1 Non-Rejectable Outlier Links in Patch Merging

The challenge to achieve robust network localization is that sometimes when merg-

ing two patches, we can detect outlier links but cannot reject them. This usually

happens in sparse subregions of a network containing outlier links. Such sparse sub-

regions are called minimally globally rigid patches, as illustrated in Fig. 5.10 and as

defined in Theorem 8. If we do not properly handle the non-rejectable outlier links

in such sparse subregions, the final location estimates can be biased.

Theorem 8 (Minimally Globally Rigid Patch & Outlier Link Non-Rejectability). A

patch G is minimally globally rigid, if G is globally rigid and G becomes no longer

globally rigid upon the removal of any of its edge. If an outlier link is contained in a

minimally globally rigid patch G, then this outlier link can be detected but cannot be

rejected.
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Fig. 5.10: Non-rejectable outlier links in minimally globally rigid patches. In such
patches, deformation of a link incurs deformation of another link. Thus we cannot
tell which link is the outlier.

Proof. Intuitively, if patch G is minimally globally rigid, then G has the necessary

redundancy in connectivity to detect outliers, but G is not redundant enough to

identify them. This is because G becomes generically rigid if one of its edge is removed;

for a generically rigid graph, if one of its edge is removed, some part of it is flexible.

For example, if links [A, B] and [A, C] are removed in Fig. 5.10(a), node A can rotate

about node D. Thus for these two links, the stretch of one leads to the shrink of the

other. We can detect the outlier by abnormal deformations but cannot tell which one

is an outlier.

According to Theorem 8, when an outlier link exists during the merging of two

patches GL and GR, this outlier link cannot be rejected if the resultant patch is

minimally globally rigid. Such two patches GL and GR are incompatible, according

to Definition 10. There exists another situation that two patches are incompatible

with a non-rejectable outlier link, i.e. the collusion of the outlier link with normal

links as shown in Fig. 5.9(a).

Definition 10 (Patch Incompatibility Relation). Two patches GL and GR are de-

fined to be incompatible, if their merged patch contains an outlier link that cannot be

rejected.
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We explain why we have to merge the depicted patch pairs in Fig. 5.8 to re-

ject outlier links. This is because other patch pairs that can be merged globally

rigidly are incompatible. In Fig. 5.8(a), patch {A, B, C} is incompatible with patch

{A, C, F}, because their resultant patch {A, B, C, F} is minimally globally rigid and

contains the outlier link; patch {B, D, F} is incompatible with patch {D, E, F} for the

same reason. In Fig. 5.8(b), patch {A, B, C} is incompatible with patch {C, E, F},

because the resultant patch {A, B, C,E, F} is minimally globally rigid and contains

the outlier link; patch {A, C,D} is incompatible with patch {A, D, E} for the same

reason.

Our robust patch merging operation in Algorithm 5.1 can report the patch in-

compatibility relation (by returning an empty resultant patch), for the following two

reasons. (1) Algorithm 5.1 can discover patch incompatibility due to the lack of re-

dundancy in connectivity shown in Fig. 5.10. Firstly, Algorithm 5.1 can detect the

outlier link because the merged patch is minimally globally rigid and the merging of

GL,GR is globally rigid merging. Secondly, Algorithm 5.1 cannot identify the outlier

link because we cannot find an outlier-free subgraph that is globally rigid. Algo-

rithm 5.1 thus reports such non-rejectability by returning an empty merged patch.

(2) Algorithm 5.1 can discover patch incompatibility due to the collusion between

outlier link with normal links as shown in Fig. 5.9(a), which is already explained in

Section 5.3.3.

5.4.2 Robust Network Localization

We present in Algorithm 5.2 our network localization algorithm based on iterative

patch merging. This algorithm is robust with the presence with outlier links, because
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it

• removes the rejectable outlier links by robust patch merging operation (i.e.

Algorithm 5.1) and

• isolates the non-rejectable outlier links when robust patch merging operation

reports patch incompatibility relation.

Algorithm 5.2 is composed of the following two phases:

Phase 1 divides the network into basic patches, including a global patch and many

local patches. Each local patch can be either a triangle or an individual node.

Phase 2 merges these patches iteratively and each local patch that is merged into

the global patch can be localized finally. All cases for two patches to be merged are

already shown in Fig. 5.4 for globally rigid merging and in Fig. 5.5 for generically

rigid merging. At step 1 of phase 2, we merge two patches GL and GR by our robust

patch merging operation in Algorithm 5.1. This operation can reject outlier links.

Several simulations of outlier link rejection can be found in Section 5.6.3.

Algorithm 5.2 can isolate non-rejectable outlier links, because when two patches

are incompatible with non-rejectable outliers, robust patch merging operation in Al-

gorithm 5.1 can detect such a situation. Then at step 2 of phase 2, we memorize

the detected incompatible patch pair, and afterwards we will never attempt to merge

this incompatible patch pair thanks to the guarding condition of foreach loop of

phase 2. Finally, Algorithm 5.2 can guarantee the globally rigid subgraphs of the

global patch is free from detectable outlier links. Only in these subgraphs, the nodes

can be localized and they are immune to the adverse impact of outlier links.
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5.5 Robust Network Localization against Outlier

Anchors

This section solves the problem of robustly localizing a network in the presence of

outlier anchors. Firstly, Section 5.5.1 exposes an inadequacy of the robust network

localization algorithm in Algorithm 5.2 that it cannot reliably reject outlier anchors,

even when there is only one outlier anchor in the network. Then Section 5.5.2 presents

an enhancement to Algorithm 5.2 to reliably reject multiple outlier anchors which may

collude due to malicious attacks. Finally, we analyze the robustness of the proposed

RobustLoc algorithm against various attacks.

5.5.1 Rejection of Single Outlier Anchor

The network localization algorithm presented in Algorithm 5.2 in fact cannot re-

liably reject a single outlier anchor in a network. This inadequacy is not obvious

because it sounds reasonable that an outlier anchor is equivalent to a normal anchor

whose incident links are all outlier links. Then a robust network localization algo-

rithm, if it can reject links with abnormal deformations, can remove the normal links

incident to outlier anchors and thus automatically reject outlier anchors.

However, we point out that the removal of normal links incident to outlier anchors

may cause two problems, even when there is only one outlier anchor in a network.

We illustrate these two problems in Fig. 5.11 and describe them below.

1) Reduced Localization Percentage: In Fig. 5.11(a), anchor 8 is an outlier. If normal

links [7, 8], [13, 8] incident to the outlier anchor 8 are removed, patch {3, 4, 8, 9}

cannot be uniquely localized, because it is connected to the network by just three
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links [4, 8], [4, 9] and [2, 3].

2) Localized to Wrong Realizations: In Fig. 5.11(b), with the removal of normal

links [7, 8], [13, 8], patch {3, 4, 8, 9} is localized to the depicted wrong realization

{3′, 4′, 8′, 9′}. Note that this wrong realization has no detectable outliers since

it has no abnormally deformed links, i.e. distance [7, 3] is equal to [7, 3′], and

distance [14, 9] is equal to [14, 9′].

8’

(a) Problem 1: Patch
{3, 4, 8, 9} cannot be localized.

3’ 8’

9’

(b) Problem 2: Patch {3, 4, 8, 9}
is localized to a wrong realization.

Fig. 5.11: Two Problems of Incorrectly Removing Normal Links [7, 8] and [13, 8]
Incident to Outlier Anchor 8.

Considering the above two harms of rejecting normal links incident to outlier

anchors, we need to precisely rejecting outlier anchors and we describe the condition

as follows.

Theorem 9 (Precise Rejection of One Outlier Anchor during Patch Merging). During

the merging of global patch GL with a local patch GR, the condition for the precise

rejection of an outlier anchor without the removal of its incident normal links is that

the outlier anchor is a shared node between GL and GR, like the anchor A shown

in Fig. 5.12(c).
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Proof. When merging global patch GL with a local patch GR, if the outlier anchor

is only incident to a link connecting the two patches as in Fig. 5.12(b), then it is

impossible to tell whether this abnormal deformation of link [A, B] is caused an outlier

anchor A as in Fig. 5.12(b) or is caused by an outlier link [A, B] as in Fig. 5.12(a). If

we simply regard link [A, B] as an outlier link, then the removal of normal links may

cause two problems, as described before.

In contrast, if the outlier anchor is a shared node between two patches in Fig. 5.12(c),

we can know unambiguously that anchor declaration A′ is erroneous, because A′ is

contained in global patch GL, node A is contained in local patch GR, and zero-length

link [A′, A] is abnormally stretched.

G
RGlobal 

Patch G
L

XX
A B

(a) Reject outlier link [A,B]

G
RG

L

XX
AA’ B

(b) Falsely reject normal link [A,B]

G
RG

L

AA’
XX

(c) Reject outlier anchor A

Fig. 5.12: Reliable Rejection of Single Outlier Anchor. In both (a) and (b), abnormal
deformation can be found in link [A, B]. But we cannot tell whether this deformation
is caused by outlier link [A, B] as shown in (a), or by outlier anchor A as shown in (b).

5.5.2 Rejection of Multiple Outlier Anchors

The rejection of multiple colluding outlier anchors is different from the rejection

of a single outlier anchor, because local knowledge may not be enough to reject the

colluding outlier anchors. Here, “local knowledge” means that not all anchors are

involved in the merging of the global patch and a local patch. For example, in

Fig. 5.13(a), we can reject the outlier anchor A, when we merge global patch G0 with
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local patch G1, under the condition that anchor A is a shared node between G0 and

G1 (note that all depicted links in Fig. 5.13 can be either nonzero-length links or

zero-length links). However, global patch G0 contains three colluding outlier anchors

A, B, C which declare their positions to A′, B′, C ′ in the same coordinate frame. The

local patch G2, when it is merged into global patch G0, can be deceived by the three

outlier anchors to be localized in their coordinate frame, since G2 has most of its links

connecting to them.

Local
Patch G

1

Local
Patch G

2

XX
XX

Global 
Patch G

0 A’ A

B’ B
C’ C

(a) Patches G1, G2 with Local Knowledge

Local Patch G
3

XX
XX

XX

Global 
Patch G

0

(b) Patch G3 with Global Knowledge

Fig. 5.13: Networks with multiple outlier anchors. Note that a link depicted in this
figure represents a shared node if the link length is zero.

We verify by simulations that small local patches only with local knowledge can

be deceived by colluding outlier anchors. In Fig. 5.14(a) with three colluding outlier

anchors 10, 14, 28, all the sensors in the right part of the network are shifted rightwards

to be localized in the coordinate frame of these outlier anchors. In contrast, in the

left part of the network where the normal anchors dominate, sensors are still localized

in the correct coordinate frame.

When there exist multiple colluding outlier anchors, we need network-wide global

knowledge to reliably reject them. Here, “global knowledge” (as formally defined in

Definition 11) means that the local patch G3 shown in Fig. 5.13(b) has links to all an-

chors during the merging with global patch G0. Patch G3 thus has enough information

to exploit the network-wide majority of normal anchors over outlier anchors. This
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(a) Nodes are cheated by colluding outlier anchors.

Large Error e 

(b) Successful rejection of colluding outlier anchors.

Fig. 5.14: Localization of networks with four normal anchors and three colluding
outlier anchors 10, 14, 28. (a) is not configured with delayed global patch merging
feature. (b) is configured with such a feature.

majority voting algorithm is already adopted by our robust patch merging algorithm

in Algorithm 5.1.

Definition 11 (Global Knowledge for Reliable Rejection of Outlier Anchors). Mul-

tiple colluding outlier anchors can be rejected reliably by our robust patch merging

operation, under the following conditions. (1) Given link set L connecting the global

patch GL and a local patch GR, for each anchor in the global patch GL, there is a link

in L incident to it as shown in Fig. 5.13(b). (2) In the link set L, the links incident

to normal anchors are the majority.

To reliably reject colluding outlier anchors, we propose an improvement (named

delayed global patch merging) to the iterative patch merging process in Algorithm 5.2.

The basic idea is to construct a large local patch having the global knowledge that

satisfies the condition in Definition 11. When merging this large local patch (with

global knowledge) into the global patch, we can differentiate normal anchors from

outlier anchors by the voting algorithm supported by robust patch merging opera-

tion in Algorithm 5.1.
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In order to construct this large local patch, we firstly merge local patches itera-

tively excluding the global patch. When this iterative local patch merging process

terminates, we find the largest local patch that remains, which is generically rigid.

Then we merge this local patch with global patch using our robust patch merging

algorithm in Algorithm 5.1. During this merging, the anchors are shared nodes due

to the large size of the local patch. This merging thus can reject the outlier anchors

without ambiguities according to Theorem 9. We name such a localization process

as RobustLoc.

5.5.3 Security Analysis of RobustLoc Algorithm

We analyze the security of our robust network localization algorithm (named

RobustLoc) against various attack models. This RobustLoc algorithm is Algorithm 5.2

with the improvement of delayed global patch merging in Section 5.5.2.

Outlier Links. Outlier links exist either due to environmental interferences (e.g.

non-line-of-sight) or due to launched malicious interferences to distance measurement

signals. If these distance outliers exist within the links connecting two patches, our

robust patch merging algorithm in Algorithm 5.1 can reject these outliers by finding

a trustworthy link subset excluding these outlier links, as shown in Fig. 5.8. If these

outlier links are non-rejectable due to the lack of redundancy in network connectivity,

Algorithm 5.2 can isolate them.

Single Compromised Anchor. We have a compromised anchor, if an outside

attacker has cracked the cryptographic key and password of this anchor, or if this

compromised anchor is in fact a betrayer. We assume that each anchor has its unique

cryptographic key, otherwise a single betrayer knowing the shared key can wreck the
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whole network. We can tolerate the compromised anchor, because we can reliably

reject this single outlier anchor during patch merging when this anchor is a shared

node as shown in Fig. 5.12(c).

Replay Attack or Sybil Attack. An attacker can launch the Replay attack, if

it overhears an anchor declaration and replays this declaration at other places. An

attacker can launch the Sybil attack, if it grabs a compromised anchor, exploits this

anchor’s identity and makes falsified anchor declarations at different places [New-

some et al., 2004]. Algorithm 5.2 can defeat both Replay attacks and Sybil attacks,

because its input anchor set AN implicitly assumes that each anchor identity corre-

sponds to only one position declaration. The duplicated position declarations with

the same anchor identity can be compressed to one declaration and get tolerated by

Algorithm 5.2. A safer solution perhaps is for the base station to revoke this com-

promised identity upon the detection of a cloned anchor identity. Sybil attack with

multiple forged identities can be treated as the multiple compromised anchors attack

as follows.

Multiple Compromised Anchors. This attack is the most troublesome since the

attacker may adopt the strategy that firstly pursues local superiority and finally

achieve whole-field superiority, i.e. although initially the multiple comprised anchors

cannot outnumber benign anchors in the whole field, the comprised anchors can out-

number benign anchors in a particular small region. The sensors in that small region

can get deceived, since they have most of their distance measurements incident to

the compromised anchors, which is already shown in Fig. 5.14(a). Our simulation in

Fig. 5.14(b) shows that our RobustLoc can reliably reject such multiple compromised

anchors with local superiority. This is because RobustLoc algorithm uses the global
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knowledge to beat multiple compromised anchors as shown in Fig. 5.13(b).

5.6 Simulation Results

This section verifies the robustness of our RobustLoc algorithm against outlier

links and outlier anchors, in various network conditions. Section 5.6.1 briefly describes

simulation settings. Section 5.6.2 verifies that our robust patch merging operation in

Algorithm 5.1 can effectively detect and reject outlier links. Section 5.6.3 shows that

our robust network localization algorithm RobustLoc can achieve higher localization

percentage than RobustMultilateration [Kiyavash and Koushanfar, 2007] in sparse

networks. Section 5.6.4 shows that our RobustLoc algorithm is more robust and

accurate than state-of-the-art localization algorithm CALL [Wang et al., 2008] by

rejecting outlier links and outlier anchors. Finally in Section 5.6.5, we show that

RobustLoc can provide good localization accuracy and high localization percentage

in concave networks.

5.6.1 Simulation Settings

Our simulations assume the following system parameters. We assume Cricket for

the ranging system, which is based on ultrasonic TOA. Thus the ranging noise σ is

configured as 2 cm and the ranging radius r is set to 6 m, as listed in the following

table. For the ranging noise model, we adopt the empirical model in [Whitehouse

et al., 2005] with heavy tails to overestimate distance probably due to non-line-of-

sight conditions. For outlier distances and outlier anchors with abnormally large

error, their error magnitude e can be adjusted. For network topology, nodes are
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arranged by a disturbed grid. By adjusting grid spacing s, we can generate networks

with different degree d.

Configured Parameters of Wireless Network Localization

σ expected noise of ranging methods, configured as 0.02m

r radius to effectively obtain ranging data, configured as 6m

s spacing of disturbed grid for node deployments

d network degree (networks with d < 7 are sparse networks)

e error magnitude of outlier anchors and outlier links

Compared Variables of Wireless Network Localization

a average localization accuracy (i.e. distance from true location to estimated location)

of uniquely localizable nodes

p percentage of uniquely localizable nodes among all nodes

We compare localization accuracy a and localization percentage p of the three

localization algorithms below.

1) RobustLoc: our robust localization algorithm in Algorithm 5.2 that invokes the

robust patch merging operation in Algorithm 5.1 and adopts the delayed global

patch merging feature described in Section 5.5.2.

2) RobustMultilateration: iterative multilateration algorithm [Savvides et al.,

2003b] that invokes robust multilateration in [Kiyavash and Koushanfar, 2007].

3) CALL [Wang et al., 2008]: a localization algorithm that iteratively invokes the

patch merging operation in Fig. 5.4& 5.5, without any enhancements of outlier

rejection.
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5.6.2 Robust Patch Merging against Outliers

Our first simulation is to investigate the effectiveness of our robust patch merging

operation (i.e. Algorithm 5.1) to detect and reject outliers, because Algorithm 5.1

is the primitive of our RobustLoc algorithm. This simulation shows Algorithm 5.1

can detect outliers with nearly 100% success rate (Pd ≈ 1) when the outlier error e is

larger than 7σ, and it can effectively reject outliers and keep the average residue rsd

of remaining links below 2σ.

Compared Variable for Patch Merging

rsdl residue of link l, i.e. difference between measured length (e.g. by TOA)

and estimated length after patch merging

Pd the probability of detecting the outliers, i.e. finding any link l have

its rsdl exceeding the threshold 2cσ

rsd average residue of remaining links with outliers rejected in link set

L connecting patches GL and GR

Fig. 5.15(a) shows that our robust patch merging operation can effectively detect

and reject outliers for the multilateration topology depicted to Fig. 5.7(a). The

simulated topology has four normal links and one outlier link. Algorithm 5.1 can

detect the existence of the outlier by checking whether the residue rsdl of any link

exceed the threshold 2cσ where c is a constant. In Fig. 5.15(a), Algorithm 5.1 can

detect outliers with nearly 100% success rate (Pd ≈ 1) when the outlier error e is

larger than 7σ. Although the outlier cannot be effectively detected when e is smaller

than 7σ, the average residue is still kept below 2σ. When e is larger than 15σ,

Algorithm 5.1 can identify the outlier and reject it. Thus the average residue is

around 0.5σ. When e is between 7σ and 15σ, Algorithm 5.1 reports that the outlier

can be detected but cannot be identified. This is because Algorithm 5.1 can find
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multiple winners in the winner set W having the same set supporters.

Fig. 5.15(b) shows that our robust patch merging operation can effectively detect

and reject outliers for the patch merging topology as illustrated in Fig. 5.7(b). Out-

lier rejection in such a topology cannot be handled by RobustMultilateration. The

simulated topology has five normal links and one outlier link. In Fig. 5.15(b), the

outlier detection rate Pd is nearly 100% when outlier error e is larger than 7σ. The

average residue is kept below 1.5σ by rejecting the outlier.
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(a) Multilateration Topology in Fig. 5.7(a)
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(b) Patch Merging Topology in Fig. 5.7(b)

Fig. 5.15: Robust Patch Merging Operation vs. Outlier Error. (a) shows the rejection
in Multilateration topology with one outlier link. (b) shows the rejection in Patch
Merging topology with one outlier link.

5.6.3 Outlier Links Toleration in Network Localization

This simulation shows that RobustLoc can effectively tolerate outlier links while

achieve high localization percentage in sparse networks. Thus we compare the lo-

calization percentage p of RobustLoc and RobustMultilateration. This simulation

assumes the presence of outlier links and the absence of outlier anchors in the sim-

ulated networks. We also assume that three anchors in the simulated network are



151

geographically close (like anchors 21, 22, 27 in Fig. 5.16(b)), since RobustMultilater-

ation needs these nearby anchors to bootstrap the algorithm.
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Fig. 5.16: Comparison of RobustLoc and RobustMultilateration in sparse networks.
(a) A comparison of localization percentage. (b) Localization result of RobustLoc
in a sparse network with 5.05 degree and with outlier links [13, 14], [25, 26]. In this
network, RobustMultilateration cannot bootstrap.

Fig. 5.16(a) shows that, in sparse networks with degree between 5 and 7, local-

ization percentage of RobustLoc is higher than that of RobustMultilateration by at

least 30%, because localization percentage of RobustLoc is generally above 80% and

that of RobustMultilateration is below 60%. Fig. 5.16(b) depicts a network with 5.05

degree and with two outlier links [13, 14], [25, 26]. In such a sparse network, Robust-

Multilateration cannot localize any nodes because there does not exist a node with

three links connecting to anchors 21, 22, 27. However, if using RobustLoc, localization

percentage is as good as 93% and meanwhile the location estimates (i.e. black dots)

are close to their true positions.
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5.6.4 Toleration of Colluding Outlier Anchors in Network

Localization

This simulation shows that RobustLoc can effectively tolerate colluding outlier

anchors in sparse networks. We vary the outlier error magnitude e and compare lo-

calization accuracy a of RobustLoc and CALL. The simulated networks are sparse

networks with degree d around 5.5. In these networks, we deploy seven anchors ran-

domly and three of them are colluding outlier anchors, e.g. 10, 14, 28 in Fig. 5.17(b).
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Fig. 5.17: RobustLoc vs. CALL in Localization Accuracy a.

Fig. 5.17(a) shows that RobustLoc is robust against outlier anchors but CALL is

not. This is because localization accuracy a of RobustLoc is proportional to ranging

noise σ regardless of error e of outlier anchors, but accuracy of CALL is proportional to

error e. RobustLoc is robust against outlier anchors because RobustLoc can identify

and isolate the three outlier anchors as shown in Fig. 5.14(b). CALL is not robust

because CALL has no outlier rejection ability. Thus all the sensor nodes shown

in Fig. 5.17(b) are dragged from their true positions by the outlier anchors. The

magnitude of such deviations are proportional to error e of outlier anchors.
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5.6.5 Concave Network Deployment Regions

This simulation verifies that RobustLoc can reliably reject outliers in concave

networks. We simulate O-shaped networks as shown in Fig. 5.18, which are sparse

networks with degree around 5. Although Fig. 5.18(a) contains two outlier links

[41, 48] and [38, 45], our RobustLoc algorithm can still provide good localization ac-

curacy with average error below 2σ and satisfying localization percentage above 80%.

Fig. 5.18(b) depicts an O-shaped network with colluding outlier anchors 20, 14, 51.

Our RobustLoc algorithm can effectively identify and isolate these outliers.

(a) Reject Outlier Links; LocEr-
ror = 1.35 σ; LocPercentage=89%.

(b) Reject Outlier Anchors; LocError
= 1.46 σ; LocPercentage=94%.

Fig. 5.18: Outlier Rejection Demo in O-Shaped Networks.

5.7 Conclusion

This chapter focuses on the problem of localizing a wireless sensor network ro-

bustly against outlier links and outlier anchors. We proposed a solution named Ro-

bustLoc which iteratively invokes our robust patch merging operation. Additionally,
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we addressed the two challenges of (1) isolating non-rejectable outlier links by find-

ing incompatible patch pairs and (2) reliably rejecting multiple outlier anchors which

may collude. Our simulation results show that our RobustLoc algorithm can retain

good localization accuracy with the presence of outliers and meanwhile provide high

localization percentage in both sparse networks and dense networks.
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Table 5.2: Localization of Network N = {AN , EN}
Input: a set of anchors AN whose locations are already known; a set of links EN with measured dis-
tances.
Output: Location estimates of uniquely localizable nodes.

Procedure:
Phase 1. Divide the Network into Basic Patches, including

• a global patch containing all the anchors AN ,

• local patches, each of which is a triangle,

• local patches, each of which is a single node.

Phase 2. Merge Patches Iteratively.
foreach patch pair that are not marked incompatible and can satisfy the generically rigid merg-
ing condition †, do

1. Merge two patches GL and GR connected by link set L (i.e. invoke the robust patch merging
operation in Algorithm 5.1)

• globally rigidly if GL and GR can satisfy the condition in Fig. 5.4, or

• generically rigidly if satisfying the condition in Fig. 5.5

, and get the larger resultant patch G.

2. if the above merging fails ‡, then mark patch pair [GL, GR] as an incompatible pair and
continue this foreach loop.

3. if either one of patch pair [GL, GR] is the global patch, then mark the resultant patch G as
a global patch ‡†; else mark the resultant patch G as a local patch.

4. Destroy the two patches GL and GR.

Only the nodes in the global patch can be localized in global coordinate frame. But the global
patch may not be globally rigid. Some of its nodes may have unique positions, and others may
have ambiguous positions, which is called partial localizability.

† NOTE: If two patches can satisfy globally rigid merging condition, they can also satisfy generically
rigid merging condition, and they are given a higher priority to be merged than the patch pairs that
cannot satisfy globally rigid merging condition.
‡ Failure to reject detected outliers is indicated by empty resultant patch G obtained at step 1 of
phase 2.
‡† If the resultant patch is merged from a local patch and a global patch, it should contain at least
three anchors. A generically rigid structure with at least three anchors is a global patch that can be
localized ambiguously.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions of Whole Thesis

The research presented in this thesis addresses the localization problem of wireless

sensor networks. We explored two categories of localization algorithms: range-free

and range-based. The former is much cheaper than the latter. But the precision

of range-free localization (i.e. meters or tens of meters) is much coarser than that

of range-based localization (i.e. sub-meters or centimeter depending on the ranging

methods).

Firstly, we addressed the problem of improving the accuracy of range-free localiza-

tion in anisotropic sensor networks. Such networks have various anisotropic factors,

including irregular radio propagation, anisotropic terrain condition, non-uniform sen-

sor distribution, and concave network shapes. Our presented algorithm is also suitable

for large-scale networks, since it can suppress error accumulation by using the nearby

anchors to revise remote anchors.

Secondly, we focused on range-based localization and addressed its two important
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issues: (1) the toleration of ranging noises to improve localization accuracy, and (2)

the enumeration of flip ambiguities to guarantee localization robustness. Previous

methods only addressed the two issues for multilateration. We proposed a unified

algorithm (called inflexible body merging) that can solve the two issues for both

multilateration and patch merging. Thus our algorithm has better performance than

previous methods in sparse networks with degree between 4 and 8. Moreover, we

presented a unified condition for multilateration and patch merging, which can achieve

higher localization percentage than state-of-the-art work.

Finally, we solved the outlier rejection problem for range-based localization. We

uncovered the two inadequacies of previous work in this field: (1) add outlier rejection

ability only to multilateration and neglect patch merging; (2) overlook the difference

between outlier distances and outlier anchors, and thus cannot reject colluding outlier

anchors reliably. We proposed a robust network localization algorithm (called Ro-

bustLoc) to reject both outlier distances and colluding outlier anchors, in networks

which can be either dense or sparse.

6.2 Future Directions

A promising direction is the extension of our range-based localization algorithm to

three-dimensional spaces. The challenge is that the ambiguity enumeration problem

is much more complicated in 3D than in 2D. Another possible direction is that we

can investigate the tracking and navigation problem of mobile robots assisted by the

static sensor nodes. These sensor nodes can form a network to provide information

that is multihop away to the robots, to reduce the exposure of the robot army to

potential threats or to avoid the traffic jamming in narrow corridors.
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Appendix A

Proofs for Range-Free Localization

A.A Systematical Error of Amorphous

We analyze the systematical error of Amorphous incurred by the last hop distance,

which has been plotted in Fig. 3.4. To eliminate the influence of inaccurate HopSize

and isolate the impact of last hop distance on distance estimation of Amorphous,

HopSize is assumed to be fixed and accurately known as r, throughout the following

analysis.

The systematic error E2 of Amorphous to estimate last hop distance is the differ-

ence between expected estimate d̂2j(i) produced by Eq. (3.2) and the real distance

value dj(i). Our analysis is all about how to establish the functional relation from

dj(i) to E2.

E2 = d̂2j(i) − dj(i). (A.1)

The expected estimate d̂2j(i) can be calculated by Eq. (A.2), since there are only
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three possible values for the hop count hj(t) of sensor t, which neighbors sensor i.

These three possible values are hj(i) − 1, hj(i) and hj(i) + 1. Moreover, the expected

percentage of neighbors of sensor i to have hop count hj(i) − 1, hj(i) or hj(i) + 1 is

equal to the probability, that the hop count hj(t) is hj(i) − 1, hj(i) or hj(i) + 1.

d̂2j(i) = P [hj(t) < hj(i)] · (hj(i) − 1)

+ P [hj(t) = hj(i)] · hj(i)

+ P [hj(t) > hj(i)] · (hj(i) + 1)

− 0.5 , where t ∈ N(i). (A.2)

The probability P [hj(t) < hj(i)] required by Eq. (A.2) is equal to the division of the

area A (r, (hj(i) − 1)r, dj(i)) of the intersected region of two disks, by the area π r2

of sensor i’s entire neighbor. The intersecting two disks are sensor i’s one hop disk

with radius r and anchor j’s hj(i) − 1 hop disk, whose radius is approximated to

(hj(i) − 1)r. The area of the intersecting region can be calculated, when the distance

dj(i) between the centers of the two disks is known additionally.

P [hj(t) < hj(i)] =
A [r, (hj(i) − 1) r, dj(i)]

π r2
. (A.3)

The probability P [hj(t) ≤ hj(i)] is calculated in a similar way with P [hj(t) < hj(i)].

P [hj(t) ≤ hj(i)] =
A [r, hj(i) r, dj(i)]

π r2
. (A.4)

The other two probabilities P [hj(t) = hj(i)] and P [hj(t) > hj(i)] needed by Eq. (A.2)
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can be calculated as follows.

P [hj(t) = hj(i)] = P [hj(t) ≤ hj(i)] − P [hj(t) < hj(i)].

P [hj(t) > hj(i)] = 1 − P [hj(t) ≤ hj(i)].

The above equations help establish a functional relation from dj(i) to E2, with

hj(i) = ddj(i)

r
e. This functional relation has been plotted in Fig. 3.4 and indicates

the underperformance of Amorphous in one or two hops. This is consistent with the

simulation results in Subsection 3.7.2.

A.B Error Characteristics of CrMcs

we present a theoretical analysis on the error characteristics of the proposed

CrMcs, showing that CrMcs can reduce distance estimation error to below 0.2r (sen-

sor density > 8), if applied to the CR pattern. The accuracy of CrMcs primarily

depends on two factors:

1. the estimation accuracy about the intersected area aj(i) - the accuracy of

Eq. (3.3).

2. the estimation accuracy about the radius of dskj(i) - the accuracy of Eq. (3.4);

Generally speaking, in dense networks and isotropic networks with accurate HopSize

estimates, the first factor dominates, which is directly connected with the last hop

distance. However, in sparse networks and anisotropic networks, where the estimation

of HopSize is inaccurate, the second factor prevails to have a greater impact. Our key

point is that no matter a network is sparse or dense (anisotropic or isotropic), the last
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hop distance (the first factor) is always an important factor in the low hop count cases

(within 3 or 4 hops empirically), in which the error in HopSize estimation (the second

factor) has a reduced influence on the anchor-sensor distance estimation accuracy.

This is why we recommend to adopt CrMcs for the CR pattern in our localization

scheme.

In this subsection, we focus our analysis to the impact of the first factor (the last

hop distance), since our localization scheme (in Fig. 3.2) applies CrMcs only to the

low hop count cases. Driven by this intention, we fix the HopSize to r to eliminate

the impact of inaccurate HopSize and isolate the impact of the last hop distance,

which leads to the following simplified expression of d̂3j(i), with r(1) fixed to r and

r(hj(i)) fixed to hj(i) · r.

d̂3j(i) = A−1 [r, hj(i) · r, π r2 · |Nj(i)|
|N(i)|

]. (A.5)

In this equation, the only randomized variable that determines d̂3j(i) is
|Nj(i)|
|N(i)| , which

is essentially a Binomial trial testing the percentage of neighbor owning hop count

no larger than hj(i). Hence, the accuracy of CrMcs can be theoretically estimated as

the average absolute deviation of d̂3j(i):

Dev [d̂3j(i)] =
∑

|Nj(i)| ∈ [0, |N(i)|]

C
|Nj(i)|
|N(i)| · P̃

|Nj(i)| · (1 − P̃ )|N(i)−Nj(i)| · |d̂3j(i) − dj(i)|,

where P̃ =
A [r, hj(i) · r, dj(i)]

π r2
.

We have plotted the relation between the error of CrMcs Dev [d̂3j(i)] and the sensor

density |N(i)| in Fig. 3.6.
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