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Abstract

In this thesis, we develop some parameter estimation methods of jump-diffusion

process. The originality of the thesis lies in the fact that the developed estimation

methods are different from those commonly-used approaches.

This thesis consists of two parts. In the first part, estimation method for con-

tinuous state branching process with immigration (hereafter, CBI) is proposed,

which is based on the weighted conditional least square estimators (WCLSE). It

is remarkable that the Cox-Ingersoll-Ross model with jumps (JCIR) in the studies

of interest rate is a simplified version of our CBI process. Our developed method

provides new perspective in parameter estimation for JCIR model. The strength

of the method is that it avoids computationally expensive numerical integration

which is used in many extant estimation methods.

In the second part, particle Markov chain Monte Carlo method is applied to the es-

timation of a parametric model for ultra-high frequency stock price data, whereas

most existing studies mainly focus on nonparametric estimation methods. Our

method has two special features: on the one hand, it can estimate all parameters in

the jump-diffusion model whereas nonparametric methods can only provide volatil-

ity estimation; on the other hand, it can effectively estimate volatility generated

by diffusion component under the influence of jumps with market microstructure

noise.

Detailed simulation studies are implemented for both developed methods to eval-

uate their estimation performance. Results indicate that both these methods lead

to reasonable estimations for parameters in the models.

Key Words jump-diffusion process, continuous state branching process with im-

migration, weighted conditional least square estimator, high frequency data, par-

ticle Markov chain Monte Carlo.
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Chapter 1

Introduction

Due to the arrivals of unanticipated news and possible liquidity shocks, financial

markets sometimes generate discontinuities, which can be termed as “Jumps” in

academic literature. A large number of recent empirical and theoretical studies

reveal the existence of jumps and their significant impact on financial model-

ing, from risk management to derivatives pricing and hedging. See, for example,

Merton (1976), Bates (1996), Duffie, Pan and Singleton (2000), Das (2002) and

Johannes (2004).

There are several reasons to extend basic models based on geometric Brownian

motion to those based on jump-diffusion process. First of all, although jumps do

not come to markets regularly, their arrivals tend to depend on market information.

Due to this reason, the analysis of jumps will enable us to learn more about the

influence of macro-economical information and corporate financial conditions on

asset price.

Secondly, previous structural default models for corporate bonds pricing, see Black

and Scholes (1973), Merton (1974), and Black and Cox (1976), rely on geometric

Brownian motion to model firm value processes. However, it is notable that when

such models are applied, the credit spreads vanish for bonds with a short time to

maturity, as discussed by Jarrow and Protter (2004). This phenomenon contradicts
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the empirical observation of credit spreads which have positive limits at the short

end of the term structure. To explain this inconsistency, there are papers which

suggest to model firm value process as some jump-diffusion processes, see Zhou

(2001) for example.

Thirdly, reasonable specification of interest rate process is essential for accurate

valuation of fixed income derivatives. In prior literature, many researchers, such

as Vasicek (1977), Cox et al. (1985), Chan et. al. (1992), Ahn and Gao (1999),

model interest rate by continuous-path stochastic process. However, there are

strong empirical evidence indicating that interest rate should evolve as a jump-

diffusion process. Relevant studies can be found in Das (2002), Johannes (2004)

and Jarrow et al. (2007).

Moreover, the introduction of jumps may explain the excess kurtosis, skewness of

stock return distributions and implied volatility smiles in option price. For this

reason, jump-diffusion process is widely used to improve standard Black-Scholes

model. Some prior works along this direction include Merton (1976) and Kou

(2002). The existence of jumps also makes the markets to be incomplete. The

incomplete nature of a market challenges traditional hedging methods. Unlike the

complete Black-Scholes model, a continuously rebalanced delta hedge will not lead

to an instantaneously risk-free portfolio. He et al. (2006) shows that the degree of

market incompleteness depends on the size and intensity of jumps, which determine

the magnitude of derivative hedging error.

In summary, it is reasonable and meaningful to find some approaches which esti-

mate parameters in jump-diffusion model accurately and efficiently. Despite the
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progresses in statistical inference methods, parameter estimation under influence

of jumps is still a challenge. Jump-diffusion process used in defaultable bonds

pricing, fixed income derivatives pricing and interest rate modeling largely belong

to affine term structure process (Duffie et al., 2000). Methods based on Fourier

transform of conditional characteristic function are broadly applied to estimate

parameters in such kind processes. However, Fourier transform is computationally

expensive and numerically unstable. Furthermore, considerable existing methods

are based on daily, weekly and monthly observed data, which are the so-called

low frequency data. With emergence of accessible high frequency data, such as

intraday option price and intraday stock price, many researchers hope to take ad-

vantage over the high volume of information contained in such data. While high

frequency data may lead to better estimations, it is notable that many existing

methods suffer from market microstructure noise.

This thesis is devoted to developing estimation methods for jump-diffusion process

via low and high frequency data respectively. The thesis comprises four chapters.

In Chapter 1, there is a brief introduction of background and motivations. In

Chapter 2, an estimation method for the continuous state branching processes

with immigration (hereafter, CBI) is developed. CBI process is a sub-class of

affine process developed by Duffie et al. (2000) and has a simplified version which

is coincident with Cox-Ingersol-Ross (Cox et al., 1985) model with jumps in the

study of interest rate modeling. As a result, the developed method provides new

perspective in interest rate model estimation. The method is based on weight least

square estimators and it is suitable for low frequency data. The strength of this
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method is that it avoids the computationally expensive numerical integrations in

many existing methods. Consistency of the estimators are also proved. The prop-

erty of this method is illustrated through a detailed simulation study. Besides,

an empirical study is conducted via U. S. daily effective Federal Fund rate. In

Chapter 3, particle Markov chain Monte Carlo framework is used, for the first

time, to estimate parameters of jump-diffusion process via intraday stock price.

High frequency data modeling is an emerging researching field. In current studies,

various nonparametric methods are applied to estimate volatility for stock price.

However, parametric methods are less used. Potential reasons are the difficul-

ties in parameter estimation and the lack of proper modeling methods concerning

market microstructure theory. The purpose of Chapter 3 is to provide possible

solution to the problem of parameter estimation in high frequency data modeling.

Particle Markov chain Monte Carlo method is applied to estimate a parametric

model developed by Zeng (2003). Unlike nonparametric methods, estimation of

this model identify all parameters in jump-diffusion process, besides volatility. De-

tailed simulation studies are conducted and a comparison is made with existing

nonparametric methods. The results show that this method can estimate volatility

generated by diffusion process effectively under the influence of jumps with market

microstructure noise. In Chapter 4, conclusions and ideas for future research are

provided.
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Chapter 2

Estimation of Jump-Diffusion Process via

Low Frequency Data

2.1 Motivation

Many existing models assume that interest rates move continuously, and follow

some diffusion-type processes. However, recent studies provide empirical evidence

that interest rates contain unexpected discontinuous changes of large magnitude.

Accordingly, there is an increasing body of literature explicitly incorporating jumps

into interest rates modeling. Das (2002) extends the Vasicek (1977) model to in-

tegrate jumps and shows that incorporating jumps may capture many empirical

features of Federal Funds rate which cannot be explained by continuous diffusion

models. Farnsworth and Bass (2003) model Federal Fund rate process with jumps

and find their model explaining well the shifts in yield curve. In Johannes (2004),

Cox-Ingersoll-Ross (CIR) model (Cox et al., 1985) is also extended to the jump-

diffusion case. A nonparametric methods is applied to analyze trend of mean

reverting, volatility and jump intensity at different levels of interest rates. More-

over, jumps in the LIBOR rates, found by Jarrow et al. (2007), can well explain

the volatility smiles of interest rate caps.
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Among many models, the CIR model is the most widely used one in studies of inter-

est rate. However, it is not an easy task to extend this model to the jump-diffusion

case, mainly due to the difficulties in parameter estimation. In literature jumps are

generally modeled as a compound Poisson process with restrictive forms of distri-

butions for jump magnitude. Most researchers assume that jumps have a constant

or affine jump intensity with exponentially or normally distributed jump magni-

tudes. The reasons for these assumptions are that CIR model is a special form of

affine term structure models (Duffie et al., 2000), and analytical forms of charac-

teristic functions are available for exponential and normal distribution. Therefore

analytical form of conditional characteristic function (CCF) for CIR model with

jumps (JCIR) is also available according to Duffie (2005). These analytical forms

are important because they can be used within maximum likelihood method or

generalized method of moments to estimate parameters. Many researchers, such as

Singleton (2001), Das (2002), use this kind of methods. However, methods based

on CCF need to transform characteristic function to density function, by applying

either Fast Fourier Transform (FFT) or other numerical integration method, such

as Gauss quadrature. The transformation is computationally expensive, which

needs specialties in numerical analysis. Because of these difficulties, many studies

involving interest rate modeling still use CIR model without jumps.

In this chapter, a new estimation method for the continuous state branching pro-

cess with immigration (hereafter, CBI) is proposed, which is based on weighted

conditional least square estimators (WCLSE). Since the CBI process has JCIR

model as its special form, this method leads to consistent estimators of parame-
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ters for JCIR model. The originality of this method is as follows. On the one hand,

it does not require transformation of characteristic functions, which makes its im-

plementation simpler and faster. On the other hand, it does not specify special

forms of jumps, thus it can be applied as a more general estimation method for real

problems. This method is developed for drift and diffusion parameters of JCIR

model, and it needs to be used together with other methods, such as nonparamet-

ric method developed by Bandi and Nguyen (2003), to estimate parameters for

jumps.

2.2 Model Specification

As mentioned above, JCIR model is a special form of the affine term structure

process and the general CBI process. For a better understanding of the estima-

tion method to be developed in next section, it is necessary to introduce some

preliminaries for both of the processes.

The following definition for affine jump-diffusion process is taken from Duffie et

al. (2000).

Definition 2.1 (Affine Jump-Diffusion Process). Fix a probability space (Ω,F , P )

and an information filtration {Ft}, an affine jump-diffusion process X is a Markov

process in some state space D ∈ R, satisfying the stochastic differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt + dJt,

where Wt is a (Ft)-standard Brownian motion; µ : D → R, σ : D → R, and Jt is

a pure jump process whose jumps have a fixed probability distribution ν on R and

7



arrive with intensity {λ(Xt) : t ≥ 0}, for some λ : D → [0,∞).

The affine jump-diffusion process X has conditional characteristic function of the

form as follows, for any u ∈ R,

E(eiu·X(t) | X(s)) = eϕ(t−s,iu)+ψ(t−s,iu)·X(s) (2.1)

where ϕ(·, iu) and ψ(·, iu) are coefficients. X is regular if the coefficients ϕ(·, iu)

and ψ(·, iu) of conditional characteristic function are differentiable and if their

derivatives are continuous at 0. This regularity implies that these coefficients

satisfy a Riccati ordinary differential equation (ODE). The general analytical so-

lutions for Riccati ODEs are listed in Duffie (2005). These Riccati ODEs play an

essential role in currently widely-used estimation methods based on conditional

characteristic function, which will be briefly introduced in next section.

Duffie (2005) defines the JCIR model as a “basic affine process”. Then the CIR

model is treated as a simplified version of JCIR model.

Definition 2.2 (CIR Model).

dXt = (a+ bXt)dt+ σ
√
XtdWt, (2.2)

where Wt is a standard Brownian motion, a and b are drift parameters, and σ is

diffusion parameter.

Definition 2.3 (JCIR Model).

dXt = (a+ bXt)dt+ σ
√
XtdWt + dJt, (2.3)

where Jt is a compound Poisson process with exponential jump sizes. Wt, a, b and
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σ are of the same meanings as those in Equation (2.2). In addition, Wt and Jt

are independent.

The general concept of CBI (continuous state branching processes with immigra-

tion) is first introduced by Kawazu and Watanable (1971). In the following, the

definition taken from Dawson and Li (2006) is used.

Definition 2.4 (CBI Process). Let R+ = [0,∞). Let m(dξ) and µ(dξ) be σ-finite

measures supported by R+\{0}, such that

∫ ∞
0

ξm(dξ) +

∫ ∞
0

ξ ∧ ξ2µ(dξ) <∞. (2.4)

Let Wt be a standard Brownian motion, N0(ds, dξ) be a Poisson random mea-

sure on (0,∞)× R+ with intensity dsm(dξ) and N1(ds, du, dξ) be a Poisson ran-

dom measure on (0,∞) × (0,∞) × R+ with intensity dsduµ(dξ). Supposing that

Wt, N0, N1 are independent of each other, a CBI process is as follows.

Xt = x0 +

∫ t

0

(a+ bXs)ds+

∫ t

0

σ
√
XsdWs

+

∫ t

0

∫
R+

ξN0(ds, dξ) +

∫ t

0

∫ Xs−

0

∫
R+

ξÑ1(ds, du, dξ), (2.5)

where x0 ∈ R+, a ≥ 0, b ∈ R, σ ≥ 0, and Ñ1(ds, du, dξ) = N1(ds, du, dξ) −

dsduµ(dξ). The above process is also called CB process without immigration if

a = 0 and m = 0 (i.e. N0 = 0).

The CBI process Xt will be called supercritical, subcritical or critical respectively if

b > 0, b < 0, or b = 0. This classification also corresponds to different asymptotic

behaviors of Xt as t → ∞. Roughly speaking, if b > 0, the process explodes

exponentially with rate b. If b < 0, the process without immigration goes to 0
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almost surely, but immigration will prevent extinction, thus will yield an ergodic

behavior under mild moment conditions. In the critical case, Xt has linear growth

rate according to a weak convergence result proved by Huang, Ma and Zhu (2011).

Although CBI process is firstly applied in population biology and demography, a

comparison of Equation (2.2), Equation (2.3) and the general form of CBI process

Equation (2.5) indicates that CIR model and JCIR model are all special cases of

CBI process. When Poisson random measure N0(ds, dξ) and N1(ds, du, dξ) are

set to be zero, CBI process becomes the CIR model. When only Poisson random

measure N1(ds, du, dξ) is set to be zero, CBI process becomes the JCIR model.

Filipović (2001) further proves that all non-negative Markov short rate processes

with affine term structure are coincident with the class of CBI processes.

Consequently, estimation method developed for CBI process can be applied dis-

cretely for JCIR model. In this chapter, consistency of parameter estimators for

CBI process are proved for supercritical, subcritical and critical cases. Note that

interest rate modeling requires b in Equation (2.5) should be negative, thus both

of simulation and empirical studies only focus on this subcritical case.

2.3 Estimation Method

Real interest rate data is often obtained as discretely data points with equidistant

time interval ∆t {tk = k∆t, k = 0, . . . , n}, such as daily, weekly and monthly data.

The target of this section is to estimate a, b and σ in Equation (2.5) based on the

observed data stream {Xtk}nk=0.
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2.3.1 A Brief Review of Existing Estimation Methods

Before introducing our new estimation method, a review of existing estimation

methods is given as follows. In general, there are mainly three kinds of estima-

tion methods for JCIR model (Singleton, 2001): maximum likelihood method,

Bayesian estimation method and generalized method of moments. These methods

are all based on conditional characteristic function (CCF). Let φXt(u,Θ) denote

the known CCF of Xt+1 given Xt, which has the form of Equation (2.1), where

Θ is parameter vector. By definition, φXt(u,Θ) is the Fourier transform of the

density function of Xt+1 conditioned on Xt.

φXt(u,Θ) =

∫
f(Xt+1 | Xt; Θ)eiuXt+1dXt+1. (2.6)

Therefore, conditional density function of Xt+1 can be obtained by an inverse

Fourier transform of φXt(u,Θ).

f(Xt+1 | Xt; Θ) =
1

π

∫
Re[e−iuXt+1φXt(u,Θ)]du. (2.7)

Based on Equation (2.7), the log-likelihood function has the form

`(Θ) = log `(X1:T | Θ) =
T−1∑
t=1

log
{∫

Re[e−iuXt+1φXt(u,Θ)]du
}
. (2.8)

Maximum likelihood method is implemented by maximizing Equation (2.8).

Θ̂ = argmax
Θ

log `(Θ). (2.9)

In Bayesian setup, the parameters are viewed as random variables and the following
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posterior density is investigated:

p(Θ | X1:T ) =
`(X1:T | Θ)π(Θ)∫
`(X1:T | Θ)dΘ

, (2.10)

where π(Θ) is prior density, which expresses econometrician’s personal beliefs and

knowledge.

Conditional moments method calculates conditional moments of Xt+1 given Xt

from derivatives of CFF at u = 0, thus gives a particular conditional moments,

∂jφXt(u,Θ)

∂uj

∣∣∣
u=0

= ijE[Xj
t+1 | Xt], (2.11)

orthogonality conditions for generalized method of moments (GMM) can be con-

structed from the moment restrictions

E
(
Xj
t+1 −

∂jφXt(u,Θ)

ij∂uj

∣∣∣
u=0

∣∣∣ Xt

)
= 0. (2.12)

Although the three methods above are quite intuitive, the numerical implementa-

tions are not easy tasks. Numerical integration is often needed, which is compu-

tationally expensive, and coefficient matrix of the system of equations in GMM

method is sometimes singular.

2.3.2 New Estimation Method Based on WCLSE

Following the estimation approach in discrete-time and discrete-space branching

processes with immigration in Wei and Winnicki (1990), the weighted conditional

least square estimators (WCLSE) is introduced to avoid the problems mentioned

above in methods based on conditional characteristic functions. The related esti-

12



mation procedure has four steps as follows.

Throughout this chapter, the following condition is needed, which means Xt has

finite second moment.

∫ ∞
1

ξ2m(dξ) +

∫ ∞
1

ξ2µ(dξ) <∞. (2.13)

Let l01 =
∫∞

0
ξm(dξ), l02 =

∫∞
0
ξ2m(dξ), l11 =

∫∞
0
ξµ(dξ) and l12 =

∫∞
0
ξ2µ(dξ).

Additionally, the following condition is also assumed to be true.

a+ l01 > 0 and σ2 + l12 > 0. (2.14)

Step 1. Write Xk for Xtk . By Equation (2.5),

Xk = γ0 + γ1Xk−1 + εk, (2.15)

where εk = Xk − E[Xk | Xk−1], γ1 = eb∆t, γ0 = a+l01

b
(eb∆t − 1) if b 6= 0, otherwise

γ0 = (a + l01)∆t if b = 0. Then εk is a martingale difference w.r.t. {Fk}, where

Fk = σ{X0, X1, . . . , Xk}.

Step 2. Rewrite Equation (2.15) as follows,

Xk

(Xk−1 + 1)
1
2

= γ1(Xk−1 + 1)
1
2 + (γ0 − γ1)(Xk−1 + 1)−

1
2 + δk, (2.16)

where δk = εk/(Xk−1 + 1)
1
2 . Note that E[δ2

k | Fk−1] = η1Xk−1+η0

Xk−1+1
, where, if b 6= 0,

η0 =
(σ2 + l12)(a+ l01)

2b2
(eb∆t − 1)2 +

l02

2b
(e2b∆t − 1), η1 =

σ2 + l12

b
eb∆t(eb∆t−1).

(2.17)

if b = 0, η0 = (σ2 + l12)(a+ l01)(∆t)2/2 + l02∆t, η1 = (σ2 + l12)∆t.

13



Step 3. Based on Equation (2.16), the following WCLSEs are obtained for a, b.

b̂n =
1

∆t
log

∑n
k=1 Xk

∑n
k=1

1
Xk−1+1

− n
∑n

k=1
Xk

Xk−1+1∑n
k=1(Xk−1 + 1)

∑n
k=1

1
Xk−1+1

− n2
, (2.18)

ân =
1
n
(
∑n

k=1 Xk − eb̂n∆t
∑n

k=1Xk−1)

eb̂n∆t − 1
b̂n − l01. (2.19)

Step 4. Once a and b are obtained, σ2 can be estimated by least square estimation

method according to Ludger and Rydén (1997). Let’s consider conditional variance

of εk : Var(εk | Fk−1).

Var(εk | Fk−1) = E[(εk − E[εk | Fk−1])2 | Fk−1]

= E[ε2
k | Fk−1]− E2[εk | Fk−1]

= E[ε2
k | Fk−1]. (2.20)

The last equation holds because εk is martingale difference.

E[ε2
k | Fk−1] = η1Xk−1 + η0 = (K1Xk−1 +K0)σ2 +K3Xk−1 +K2, (2.21)

where

K0 =
a+ l01

2b2
(eb∆t−1 − 1)2, (2.22)

K1 =
eb∆t

b
(eb∆t − 1), (2.23)

K2 =
l12(a+ l01)

2b2
(eb∆t−1 − 1)2 +

l02

2b
(e2b∆t − 1), (2.24)

K3 =
l12

b
eb∆t(eb∆t−1). (2.25)
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Equation (2.21) is considered as a regression equation: Yk = Zkσ
2 + ek, where

Yk = (Xk − γ0 − γ1Xk−1)2 −K3Xk−1 −K2, (2.26)

Zk = K1Xk−1 +K0, (2.27)

and ek is an error process with unknown form. Therefore σ2 can be calculated by

standard least square estimation process:

σ̂2 =

∑n
k=1 ZkYk∑n
k=1 Z

2
k

. (2.28)

Note that a and b must be substituted by corresponding estimators, and then

η̂1, η̂0, K̂0, K̂1, K̂2, K̂3, Ŷk, Ẑk can be calculated.

2.4 Asymptotic properties of the WCLSE

Theorem 2.1. Assume that b < 0, and condition (2.13) - (2.14) hold. Then

ân and b̂n are strongly consistent. Furthermore,
(√

n(b̂n − b),
√
n(ân − a)

)
d→

N(0, (UV )W (UV )′), where

U =

 1
eb∆t∆t

0

a+l01

beb∆t∆t
− a+l01

eb∆t−1
b

eb∆t−1

 ,

V =
(
E[X + 1]E

[ 1

X + 1

]
− 1
)−1

 E
[

1
X+1

]
−1

−E
[

X
X+1

]
E[X]

 ,
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W =

 η0 + η1E[X] E
[
η0+η1X
X+1

]
E
[
η0+η1X
X+1

]
E
[
η0+η1X
(X+1)2

]
 ,

and X is a random variable with the stationary distribution of Xn as n→∞.

Proof. By Pinsky (1971) and condition (2.13), if b < 0, we have Xt
d→ X. If

we further assume that σ > 0, then X(·) is ergodic. From the Birkhoff’s ergodic

theorem (see Theorem 7.2.1 in Durrett, 2010), we have

1

n

n∑
k=1

Xk
a.s.→ −a+ l01

b
,

1

n

n∑
k=1

1

1 +Xk−1

a.s.→ E
[ 1

1 +X

]
,

1

n

n∑
k=1

Xk

Xk−1 + 1

a.s.→ γ1 + (γ0 − γ1)E
[ 1

1 +X

]
.

Then by Equation (2.18) - (2.19), b̂n
a.s.→ b and ân

a.s.→ a. Let θ̂1n = eb̂n∆t and

θ̂2n = ân+l01

b̂n
(eb̂n∆t − 1). By Taylor’s theorem, b̂n − b = 1

∆t
(θ̂1n − γ1)(e−b∆t + op(1))

and

ân − a =
[ γ0

eb∆t∆t(eb̂n∆t − 1)
− γ0b

(eb̂n∆t − 1)(eb∆t − 1)
+ op(1)

]
(θ̂1n − γ1)

+
b̂n

eb̂n∆t − 1
(θ̂2n − γ0). (2.29)

As in Wei and Winnicki (1990),
(√

n(θ̂1n − γ1),
√
n(θ̂2n − γ0)

)
= VnZn, where

Vn =
( 1

n2

n∑
k=1

(Xk−1 + 1)
n∑
k=1

1

Xk−1 + 1
− 1
)−1


1
n

n∑
k=1

1
Xk−1+1

−1

− 1
n

n∑
k=1

Xk−1

Xk−1+1
1
n

n∑
k=1

Xk


,

(2.30)

Z ′n =

(
1√
n

n∑
k=1

εk
1√
n

n∑
k=1

εk
Xk−1+1

)
.

16



By the ergodic theorem, Vn
a.s.→ V . From condition (2.14), X is not degenerate.

It follows from Jensen’s inequality and non-degeneracy of X, det(V ) > 0. By

Equation (2.29) - (2.30), it suffices to prove that Zn
d→ N(0,W ). Note that

1

n

n∑
k=1

E[ε2
k|Fk−1]

p→ η0 + η1E[X],
1

n

n∑
k=1

E
[ ε2

k

(Xk−1 + 1)2
|Fk−1

]
p→ E

[η0 + η1X

(X + 1)2

]
,

1

n

n∑
k=1

E
[ ε2

k

(Xk−1 + 1)
|Fk−1

]
p→ E

[η0 + η1X

X + 1

]
.

For any ε > 0, 1
n

∑n
k=1 E[ε2

k1{|εk|>
√
nε}|Fk−1] ≤ 1

n

∑n
k=1 E[ε2

k1{|εk|>
√
kε}|Fk−1].

Note that ε2
k = (Xk − γ1Xk−1 − γ0)2 is stationary since (Xk−1, Xk) is station-

ary. As k → ∞, E[ε2
k] → a+l01

b
η1 + η0. Then ε2

k is uniformly integrable and

1
n

∑n
k=1 E[ε2

k1{|εk|>
√
nε}|Fk−1]→ 0. Similarly,

1

n

n∑
k=1

E
[ ε2

k

(Xk−1 + 1)2
1{|εk/(Xk−1+1)|>

√
nε}|Fk−1

]
→ 0.

As a result, the Linderberg conditions are satisfied. The remaining proof follows

from the martingale central limit theorem, see Hall and Heyde (1980). 2

Now we concentrate on the supercritical case. By Pinsky (1971) and condition

(2.13) - (2.14), if b > 0, then as t → ∞, Xt/e
bt a.s.→ L for some positive variable L

and 0 < L < ∞ a.s. Let R∞ denote the space of real sequences x = (x1, x2, · · · )

with metric d(x, y) =
∑∞

j=1 2−j|xj − yj|/(1 + |xj − yj|). Recall that δk is defined

in Equation (2.16) for k ≥ 1. We consider the R∞-valued random variables Γn =
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{%nj} and Γ = {%j} defined by

%nj =


δn−j+1 j = 1, 2, . . . , n,

0 otherwise,

(2.31)

and %j are i.i.d. random variables distributed as N(0, η1), where η1 is defined in

Equation (2.17).

Lemma 2.1. Assume that b > 0, conditions (2.13) - (2.14) hold. Then Γn con-

verges weakly to Γ in R∞.

Proof. Recall that εk is defined in Equation (2.15) and Xk = Xtk . For j ≤ n, we

note that

εn−j+1 =

∫ tn−j+1

tn−j
σeb(tn−j+1−s)

√
X(s)dWs

+

∫ tn−j+1

tn−j

∫ X(s−)

0

∫
R+

eb(tn−j+1−s)ξÑ1(ds, du, dξ)

+

∫ tn−j+1

tn−j

∫
R+

eb(tn−j+1−s)ξÑ0(ds, dξ).

Let φn−j(s) = eb(s−tn−j)(Xn−j + 1). Define

δ′n−j+1 =

∫ tn−j+1

tn−j

σe
b
2

(tn−j+2−s)dWs+

∫ tn−j+1

tn−j

∫ φn−j(s)

0

∫
R+

eb(tn−j+1−s)ξ

(Xn−j + 1)
1
2

Ñ1(ds, du, dξ).

It is not hard to see that for fixed j and some positive constant C,

E[(δn−j+1 − δ′n−j+1)2] ≤ CE
[ ∫ ∆t

0

e2b(∆t−s)| Xs+tn−j

Xtn−j + 1
− ebs|ds

]
+ C

∫ ∆t

0
e2b(∆−s)ds

E[Xtn−j + 1]
,

which converges to 0 as n → ∞. Define %′nj as in Equation (2.31) with δn−j+1

replaced by δ′n−j+1. Then Lemma 2.1 is equivalent to the weak convergence of
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{%′nj, 1 ≤ i ≤ k} for all k ≥ 1. Without loss of generality, we only consider the

case k = 2. For λj ∈ R (j = 1, 2) and i2 = −1,

E[eiλ1%n1+iλ2%n2 ] = e−
1
2
σ2λ2

1

∫ ∆t
0 eb(2∆t−s)dsE[eiλ2%n2eυn ],

where

υn =

∫ ∆t

0

∫
R+

ebs(Xn−1 + 1)[eie
b(∆t−s)ξ(Xn−1+1)−

1
2 − 1− ieb(∆t−s)ξ(Xn−1 + 1)−

1
2 ]µ(dξ)ds

= − l12

2

∫ ∆t

0

eb(2∆t−s)ds+ un.

Here, un is some random variable, supn |un| is bounded and |un|
a.s.→ 0 as n → ∞.

Note that
∣∣eυn − e−

l12
2

∫ ∆t
0 eb(2∆t−s)ds

∣∣ ≤ K|un| for some positive constant K. We

have

E[eiλ1ρn1+iλ2ρn2 ] = e−
1
2

(σ2+l12)λ2
1

∫ ∆t
0 eb(2∆t−s)dsE[eiλ2%n2 ] + o(1)

= e−
1
2

[(σ2+l12)λ2
1+(σ2+l12)λ2

2]
∫ ∆t
0 eb(2∆t−s)ds + o(1),

which converges to e−
1
2
η1(λ2

1+λ2
2), as n→∞. 2

Lemma 2.2. Under the conditions of Lemma 2.1, we have as n→∞,

[ n∑
j=1

(Xj−1 + 1)
]− 1

2

n∑
j=1

εj
d→ N(0, η1). (2.32)

Proof. We first claim that as n→∞,

Vn =
( ebn∆t

eb∆t − 1

)− 1
2

n∑
j=1

eb(j−1)∆t/2δj
d→ N(0, η1). (2.33)

In fact, for any k ≥ 1 let Mnk = (eb∆t − 1)
1
2

∑k
j=1 e

−bj∆t/2%nj. Then we have
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Vn = Mnn. By Lemma 2.1, for any fixed k, Mnk
d→Mk = (eb∆t−1)

1
2

∑k
j=1 e

−bj∆t/2%j.

It is easy to see that Mk
d→ N(0, η1) as k →∞. Also note that for any ε > 0,

P(|Mnk −Mnn| > ε) =
1

ε2
E
[ n∑
j=k+1

e−bj∆tγ2
nk

]
≤ η1 + η0

ε2

∞∑
j=k+1

e−bj∆t.

Thus it follows from Theorem 3.2 in Billingsley (1999) that Equation (2.33) holds.

Using the same method as in Theorem 3.5 in Wei and Winnicki (1990), we have

n∑
j=1

[(Xj−1 + 1)
1
2 − (eb(j−1)∆tL)

1
2 ]δj = op(e

bn∆t/2). (2.34)

Also note that

e−bn∆t

n∑
k=1

(Xk−1 + 1)
a.s.→ 1

eb∆t − 1
L. (2.35)

By Equation (2.33), we obtain Equation (2.32). 2

Theorem 2.2. Under the conditions of Lemma 2.1, b̂n is strongly consistent while

ân is not weakly consistent. Furthermore,

[ n∑
j=1

(Xj−1 + 1)
] 1

2
(b̂n − b)

d→ 1

∆teb∆t
N(0, η1). (2.36)

Proof. Since Xj/Xj−1
a.s.→ eb∆t as j → ∞, we have n−1

∑n
j=1

Xj
Xj−1+1

a.s.→ eb∆t.

Furthermore,
∞∑
j=1

1

Xj−1 + 1
<∞ a.s. (2.37)

By Equation (2.18), it is easy to see that b̂n
a.s.→ b. Note that b̂n − b = 1

∆t
(θ̂1n −

γ1)(e−b∆t + op(1)) and

[ n∑
j=1

(Xj−1 + 1)
] 1

2
(θ1n − γn) =

An −Bn

1− Cn
,
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where

An =
[ n∑
j=1

(Xj−1 + 1)
]− 1

2

n∑
j=1

εj,

Bn =
[
n

n∑
j=1

εj
Xj−1 + 1

]/[ n∑
j=1

1

Xj−1 + 1
(
n∑
j=1

(Xj−1 + 1))
1
2

]
,

Cn = n2
[ n∑
j=1

(Xj−1 + 1)
n∑
j=1

1

Xj−1 + 1

]−1

.

Note that
∑∞

j=1 E
[ ε2j

(Xj−1+1)2 | Fj−1

]
=
∑∞

j=1
η1Xj−1+η0

Xj−1+1
<∞. It follows from Theo-

rem 2.17 in Hall and Heyde (1980) that
∑n

j=1
εj

Xj−1+1
converges a.s. By Equation

(2.35) and Equation (2.37), Bn
a.s.→ 0 and Cn

a.s.→ 0. Thus Equation (2.36) follows

from Lemma 2.1. By Equation (2.29) and Equation (2.36), it is not hard to see

that

n
[ n∑
j=1

(Xj−1 + 1)
]− 1

2
(ân − a)

d→ 2b

eb∆t − 1
N(0, η1)

which implies that ân − a
p→∞, as n→∞. 2

Theorem 2.3. Let Yn(t) = X[nt]/n. Assume that b = 0 and condition (2.13)

holds. Then Yn(·) converges in distribution on D([0,∞),R+) to a CBI process

defined by

Y (t) = (a+ l01)t+

∫ t

0

√
(σ2 + l12)Y (s) dW (s), (2.38)

where Y (0) = 0 and W (·) is a standard Brownian motion.

Proof. This proof is divided into four steps. We may rewrite Equation (2.5) as
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follows.

Xnt

n
=

x0

n
+ at+

∫ nt

0

σ
√
Xs

n
dW (s)

+

∫ nt

0

∫
R+

ξ

n
N0(ds, dξ) +

∫ nt

0

∫ Xs−

0

∫
R+

ξ

n
Ñ1(ds, du, dξ). (2.39)

Step 1. Applying Doob’s inequality to the martingale terms in Equation (2.39),

we obtain

E
[ 1

n
sup

0≤s≤t
Xns

]
≤ x0

n
+ (a+ l01)t+ 4σ

(∫ nt

0

E[Xs]

n2
ds
) 1

2

+4
(
l12

∫ nt

0

E[Xs]

n2
ds
) 1

2
.

Let C(t) := 1 + lim supn→∞E
[

1
n

sup0≤s≤tXns

]
. Since E[Xt] = (a + l01)t, C(t) is

a locally bounded function of t ≥ 0. Similarly, lim supn→∞E
[

1
n2 sup0≤s≤tX

2
ns

]
is

also locally bounded.

Step 2. Tightness. Since C(t) is locally bounded, Xnt/n is a tight sequence

of random variables for every t ≥ 0. Let {τn} be a sequence of stopping times

bounded by T and let {δn} be a sequence of positive constants such that δn → 0

as n → 0. By the properties of independent increments of Brownian motion and

Poisson process we have

E
[ 1

n

∣∣Xn(τn+δn) −Xnτn

∣∣]≤x0

n
+ (a+ l01)δn + 4σ

(∫ δn

0

C(T + s)ds
) 1

2

+4
(
l12

∫ δn

0

C(T + s)ds
) 1

2
,

which converges to 0 as n→∞. Then Xnt
n

is tight in D([0,∞),R+) by the criterion

of Aldous (1978).

Step 3. Limiting. Let Y (·) be any limit point of Xnt
n

. Without loss of generality, by
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Skorokhod’s theorem, we can assume that on some Skorokhod’s space (Ω,F ,Ft,P),

Xnt
n

a.s.−→ Y (t) in the topology of D([0,∞),R+). We claim that for any fixed λ ∈ R,

M(t) = e−λY (t) − 1−
∫ t

0

e−λY (s)
[1

2
(σ2 + l12)λ2Y (s)− (a+ l01)λ

]
ds (2.40)

is a square integrable Ft-martingale. In fact, by Itô’s formula, it is not hard to

show that

Mn(t) = e−λ
Xnt
n − e−λ

X0
n −

∫ t

0

e−λ
Xns
n An(

Xns

n
)ds

is a square integrable martingale, where A(x) = 1
2
xσ2λ2 + xn2

∫∞
0

(e−λξ/n − 1 +

λξ/n)µ(dξ) − aλ + n
∫∞

0
(e−λξ/n − 1)m(dξ). By condition (2.13), the tightness

of Xnt/n, Problem 13 (P.151) in Ethier and Kurtz (1986) and Proposition 1.23

(P.293) in Jacod and Schiryaev (1987), we have

Mn(t)
a.s.−→M(t) in D([0,∞),C), as n→∞. (2.41)

Then for all t ≥ 0, Mn(t)
a.s.−→M(t) in R+. Since lim supn→∞E

[
1
n2 sup0≤s≤tX

2
ns

]
is

locally bounded, supn E[M2
n(t)] <∞. Then for any t ≥ 0, Mn(t)

L2−→ M(t). Thus

M(t) is a martingale.

Step 4. It follows from (2.40) and Theorem 2.42 (P86) in Jocod and Schiryaev

(1987) that Y (·) is a semi-martingale and it admits the canonical representation

Y (t) = (a+l01)t+Yc(t), where Yc(t) is a continuous local martingales with quadratic

covariation process
∫ t

0
(σ2 + l12)Ys ds. Therefore, Y (·) is the solution of the stochas-

tic equation (2.38). In addition, by Step 2, we have the weak convergence for

Xnt/n. Since [nt]/n→ t as n→∞, we have Proposition 2.3. 2
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Remark 2.1. By the above theorem and the continuous mapping theorem,

(
Xn/n, n

−2

n∑
k=1

Xk−1

) d→
(
Y (1),

∫ 1

0

Y (t)dt
)
.

As calculated in Pitman and Yor (1982), the Laplace transform of (Y (1),
∫ 1

0
Y (t)dt)

is given by

E[e−2λ1Y (1)−2λ2

∫ 1
0 Y (t)dt]

=

(
cosh(2(σ2 + l12)2λ

1
2
2 ) + 2λ1λ

− 1
2

2 sinh(2(σ2 + l12)λ
1
2
1 )

)−2(a+l01)/(σ2+l12)

.

Theorem 2.4. Assume that b = 0 and condition (2.13) - (2.14) hold. Then b̂n
p→ b

and

n(b̂n − b)
d→ Y (1)− (a+ l01)

∆te∆t
∫ 1

0
Y (t)dt

, (2.42)

where Y (·) is defined by Equation (2.38).

Proof. By Proposition 2.3, Xn/n
d→ Y (1). It follows from Remark 2.1 that

Y (1) > 0 and
∫ 1

0
Y (t)dt > 0, a.s. Then Xn

p→∞. We can find some subsequence

{nk} such that Xnk

a.s.→ ∞. Define

Mn = (Xn + 1)
/[

Πn
k=1(1 + η0/(Xk−1 + 1))

]
.

We see that Mn is a positive Fn-martingale. By the martingale convergence the-

orem, Mn converges a.s. Then Πnk
j=1(1 + η0/(Xj−1 + 1))

a.s.→ ∞. This implies that∑nk
j=1 η0/(Xj−1 +1)

a.s.→ ∞ and thus
∑n

j=1 η0/(Xj−1 +1)
a.s.→ ∞. On the other hand,

24



∑n
j=1 εk/(Xj−1 + 1) is a Fn-martingale and

n∑
j=1

E
[( εj
Xj−1 + 1

)2
∣∣∣Fj−1

]
=

n∑
j=1

η1Xj−1 + η0

(Xj−1 + 1)2
≤ (η1 + η0)

( n∑
j=1

1

Xj−1 + 1

)
.

By the local martingale convergence theorem (see Theorem 2.17 in Wei and Win-

nicki, 1989), we have

n∑
j=1

εj
Xj−1 + 1

= o
( n∑
j=1

1

Xj−1 + 1

)
a.s. (2.43)

Now we first consider

n(θ1n − γ1) =
An −Bn

1− Cn
, (2.44)

where

An =
n
∑n

j=1 εj∑n
j=1(Xj−1 + 1)

, Bn = n2

n∑
j=1

εj
Xj−1 + 1

( n∑
j=1

(Xj−1 + 1)
n∑
j=1

1

Xj−1 + 1

)−1

,

Cn = n2
( n∑
j=1

(Xj−1 + 1)
n∑
j=1

1

Xj−1 + 1

)−1

.

By Remark 2.1 and Equation (2.43), we have
∑n

j=1 εj/n
d→ Y (1)−(a+l01), Bn

p→ 0

and Cn
p→ 0. Thus

n(θ̂1n − γ1)
d→ Y (1)− (a+ l01)∫ 1

0
Y (t)dt

, (2.45)

and then θ̂1n
p→ γ1. By Taylor’s theorem, b̂n− b = 1

∆t
(θ̂1n− γ1)(e−b∆t + op(1)) and

(2.42) follows from (2.45). 2

Remark 2.2. In the critical case, Theorem 2.4 shows that the WCLSEs b̂n has
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a non-Gaussian asymptotic distribution with normalizing factor n. However, it is

not known what is the asymptotic distribution for ân, which may depend on the

limiting behavior of
∑n

j=1
1

xj−1+1
as n→∞.

Theorem 2.5. Assume that b < 0, and condition (2.13) - (2.14) hold, then σ̂2 in

Equation (2.28) is strongly consistent.

Proof. As in Ludger and Rydén (1997), let θ be parameter vector. Fix θ, let

h(x, y; θ) = (K1x + K0){(y − γ1x − γ0)2 − K3x − K2}, and let U ⊂ Θ be a

neighborhood of θ such that Eθ

[
sup
θ∈U
|h(X0, X1; θ)|

]
< ∞. By Theorem 2.1 and

ergodicity of {Xk}, the inequality

lim sup
n→∞

1

n

n∑
k=1

(K1Xk−1 +K0){(Xk − γ1Xk−1 − γ0)2 −K3Xk−1 −K2}

≤ lim sup
n→∞

1

n

n∑
k=1

lim sup
θ∈U

(K1Xk−1 +K0){(Xk − γ1Xk−1 − γ0)2 −K3Xk−1 −K2}

= Eθ

[
sup
θ∈U
|h(X0, X1; θ)|

]
,

holds almost surely. Then let U ↓ {θ}, because K0, K1, K2, K3, γ1, γ0 are all con-

tinuous functions of θ, according to the dominated convergence theorem, the con-

clusion is drawn that

lim sup
n→∞

1

n

n∑
k=1

(K1Xk−1 +K0){(Xk − γ1Xk−1 − γ0)2 −K3Xk−1 −K2}

≤ Eθ[(K1X0 +K0){(X1 − γ1X0 − γ0)2 −K3X0 −K2}]

= σ2Eθ[(K1X0 +K0)2],

holds almost surely. An entirely analogous argument with lim inf instead of lim sup

proves convergence to the right hand side. In a similar fashion, the denominator
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in Equation (2.28) can be shown in converge to Eθ[(K1X0 + K0)2] almost surely,

which completes the proof. 2

2.5 Simulation Study

There are two types of jumps widely used in the study of interest rate modeling:

jumps with exponentially distributed jump sizes and jumps with normally dis-

tributed jump sizes. Therefore simulation studies here apply Duffie’s basic affine

process with these two types of jumps.

For each case, 300 sample paths are simulated. The range of time is assumed

from 1 to 2500 days, with intervals equal to 1 day. This is analogous to real

daily interest rate data. To our best knowledge, there is no exact simulation

schemes for JCIR model, so simulation is conducted using Euler method. For

parameters of continuous part of Equation (2.3), a = 0.012, b = −0.6, and σ =

0.141. For parameters of jumps in Equation (2.3), different values are set according

to different types of jumps. For exponentially distributed jumps, there are only two

parameters: Poisson jump intensity λ and mean of jump sizes 1
K

. Jump intensity

is set from 0.1 to 1, with interval 0.1 and K is set from 10 to 100, with interval

10. For normally distributed jumps, there are three parameters: Poisson jump

intensity λ, mean of jump size µ and standard deviation of jump size δ. Jump

intensity is also set from 0.1 to 1, with interval 0.1 and standard derivation of

jump size is set from 0.01 to 0.5, with interval 0.05. Mean parameter is fixed to

be 0, because there is no tendency for direction of jumps.

Some numerical results are listed in Table 2.1 and Table 2.2. For different com-
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binations of (λ, K) and (λ, δ), the sample means, bias, and standard deviations

of 300 replicates of estimator are listed. SSE is sampling standard error, SEE

is mean of standard error estimator. SEE for σ2 is calculated via standard least

square regression theory. Since there are too many combinations to be listed, only

a part of results are reported in the tables, but all results are shown in Figure

2.1 and Figure 2.2. Generally speaking, estimation errors get larger when jump

intensity and jump magnitude become larger. Recalling the estimation method

presented in Section 2.3, effects of jumps on estimating a, b and σ are considered

through calculating l01 and l02. However, because path simulation is biased, when

influence of jumps become significant, errors tend to be larger. In addition, errors

for σ̂2 are larger than those for â and b̂. This is because the three parameters are

not estimated simultaneously. σ2 is estimated based on a and b, therefore errors

of a and b may influence evaluation of σ2.

2.6 Empirical Study

In this section, parameters of JCIR model are estimated by combining our esti-

mation method with the nonparametric method developed by Bandi and Nguyen

(2003). The nonparametric method is firstly used to identify parameters related

to jumps in JCIR model, and then the results are used for estimating drift and

diffusion parameters of JCIR model.
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Table 2.1. Estimation Results for JCIR Model with Exponential Jump Size

parameter a b σ2

true value 0.012 -0.6 0.01988

λ = 0.1, K = 10

Mean 0.01308 -0.6565 0.02458

Bias 0.001079 -0.05650 0.00470
SSE 0.001787 0.04535 0.007638
SEE 0.001732 0.04485 0.007333

λ = 0.2, K = 20

Mean 0.01297 -0.6511 0.02439

Bias 0.0009784 -0.05113 0.004511
SSE 0.001575 0.04510 0.003422
SEE 0.001538 0.04278 0.003235

λ = 0.3, K = 30

Mean 0.01301 -0.6521 0.02420

Bias 0.001010 -0.05206 0.004316
SSE 0.001450 0.044527 0.002428
SEE 0.001456 0.041730 0.002088

Table 2.2. Estimation Results for JCIR Model with Normal Jump Size

parameter a b σ2

true value 0.012 -0.6 0.01988

λ = 0.1, δ = 0.05

Mean 0.01781 -0.8497 0.03920

Bias 0.005805 -0.2497 0.01932
SSE 0.001300 0.06147 0.003010
SEE 0.001350 0.06239 0.001636

λ = 0.2, δ = 0.02

Mean 0.01711 -0.8311 0.03648

Bias 0.005106 -0.2311 0.01660
SSE 0.001223 0.06509 0.002342
SEE 0.001224 0.05946 0.001102

λ = 0.3, δ = 0.01

Mean 0.01692 -0.8189 0.03499

Bias 0.004917 -0.2189 0.01510
SSE 0.001049 0.05473 0.001981
SEE 0.001182 0.05864 0.001003
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Figure 2.1. Estimation Results for JCIR Model with Exponential Jump Size
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Figure 2.2. Estimation Results for JCIR Model with Normal Jump Size
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2.6.1 Data Description

The real interest rate data used is Federal Fund rate (FFR) of the United States1.

FFR is the interest rate at which private depository institutions (in usual cases,

banks) lend balances (Federal Funds) at the Federal Reserve to other depository

institutions, usually overnight. The daily effective Federal Funds rate is a weighted

average of rates on brokered trades. The weekly data are averages of 7 calendar

days ending on Wednesday of the current week. The monthly data are averages

including each calendar day in the month. The Federal Funds target rate (FFTR)

is determined by a meeting of the members of the Federal Open Market Committee

which normally occurs eight times a year about seven weeks apart. The commit-

tee may also hold additional meetings and implement target rate changes outside

of its normal schedule. The FFR and FFTR have connections as follows. Firstly,

through meetings, committee determines FFTR, then Federal Reserve Bank makes

open markets operations about selling or purchasing government securities to ad-

just the FFR to the level of FFTR.

2.6.2 Test for Jumps

To justify the necessity of applying JCIR model to FFR data, one test for existence

of jumps is conducted. The test follows procedures developed by Johannes (2004).

The null assumption is that the data generating process satisfies a continuous CIR

model with no jumps.

1. Estimate test statistic (unconditional kurtosis k̂) from a sample of interest rate

1 The data is downloaded from official website of Federal Reserve Bank of New York:
www.newyorkfed.org/markets/omo/dmm/fedfundsdata.cfm.
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data (e.g. daily effective Federal Fund rate).

2. Estimate parameters assuming that data are generated from a continuous CIR

model without jumps. This estimation is straightforward, by setting jump related

parameters to be 0 in our estimation procedures in Section 2.3.2.

3. Simulate N paths of continuous CIR model without jumps, using parameters

estimated in Step 2. N needs to be large, and in this test, N = 5000, which is

larger than N = 1000 used by Johannes (2004). For each path, calculate test

statistic (unconditional kurtosis k̂i, i = 1, . . . , N).

4. Use quantiles of the empirical distribution of k̂i to obtain critical values of test

statistic under the null, and compare the statistic estimated from observed data

with the critical values. Table 2.3 summarizes statistical tests for FFR data of

Table 2.3. Statistical Test for Existence of Jumps

Data Frequency Daily Weekly Monthly
Sample Statistic 49.35 8.03 2.83

50% quantile 0.88 1.72 1.36
75% quantile 1.10 3.96 3.04
90% quantile 1.32 6.88 5.01
95% quantile 1.49 9.24 6.55
99% quantile 1.89 15.14 10.16

different frequency. For daily data, there is a strong rejection for null assumption

of CIR model without jumps. As data frequency becomes lower, the test is less

significant. This is quite natural, because low frequency data tends to “smooth”

sample path and it is more difficult to identify jumps. Therefore in empirical study,

daily effective FFR data is applied.
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Figure 2.3. Federal Fund Rate: Daily Data

2.6.3 Estimation JCIR Model

Before estimating drift and diffusion parameters for JCIR model, parameters for

jumps should be identified first. According to Gikhman and Skorohod (1972), the

JCIR model is supposed to have the formula:

dXt = µ(Xt)dt+ σ(Xt)dWt + Jt, (2.46)

where µ(Xt) = a + bXt, σ(Xt) = σXt, Wt is a standard Brownian motion, Jt is a

compound Poisson process with jump intensity λ(Xt) = λXt and jump magnitude

c(Xt, Y ). Y is a random variable satisfying certain distribution law. The infinites-

imal conditional moments of the changes in solutions to Equation (2.46) can be

34



written in terms of the functions µ(·), σ(·), c(·, Y ) and λ(·). In particular

M1(r) = lim
∆→0

1

∆
E[Xt+∆ −Xt | Xt = r] = µ(r). (2.47)

M2(r) = lim
∆→0

1

∆
E[(Xt+∆ −Xt)

2 | Xt = r] = σ2(r) + λ(r)EY [c2(r, Y )]. (2.48)

Mk(r) = lim
∆→0

1

∆
E[(Xt+∆ −Xt)

k | Xt = r] = λ(r)EY [ck(r, Y )],∀ k > 2.(2.49)

Under some mild conditions like those discussed in Bandi and Nguyen (2003) and

Johannes (2004), Mk(r) can be estimated consistently as follows:

M̂1
n,T (r) =

1
hn,T

n−1∑
i=1

K
(
Xi∆n,T
hn,T

)
[X(i+1)∆n,T

−Xi∆n,T
]

∆n,T

hn,T

n∑
i=1

K
(
Xi∆n,T−r

hn,T

) . (2.50)

M̂2
n,T (r) =

1
hn,T

n−1∑
i=1

K
(
Xi∆n,T
hn,T

)
[X(i+1)∆n,T

−Xi∆n,T
]2

∆n,T

hn,T

n∑
i=1

K
(
Xi∆n,T−r

hn,T

) . (2.51)

M̂k
n,T (r) =

1
hn,T

n−1∑
i=1

K
(
Xi∆n,T
hn,T

)
[X(i+1)∆n,T

−Xi∆n,T
]k

∆n,T

hn,T

n∑
i=1

K
(
Xi∆n,T−r

hn,T

) . (2.52)

According to the basic rules of nonparametric regression, M̂k is estimated exactly

by classical Nadaraya-Watson kernel estimation, and hn,T is bandwidth. In basic

nonparametric regression, suppose that (X, Y ) is a pair of random variables which

take values in R×R, the target is to estimate Ψ(·) in the nonparametric regression

model Y = Ψ(X) + ε, given some data: (x1, y1), . . . , (xn, yn) of i.i.d. realizations

of (X, Y ).

The Nadaraya-Watson kernel estimation mentioned above has been introduced

and studied by Watson (1964) and Nadaraya (1964). The method provides a
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smoothing estimation of the regression function Ψ(·) by local weighted averaging

of the yi values,

Ψn(x) =

n∑
i=1

K
(
x−xi
h

)
yi

n∑
i=1

K
(
x−xi
h

) , (2.53)

where K is the kernel, i.e., K : R→ R is a bounded, integrable function. h is the

bandwidth parameter, controlling the smoothness of the estimate Ψn(·).

Generally, h is selected through a cross validation procedure. In cross-validation,

the data are divided into subsets, then the model is successively fitted by omitting

each subset in turn. The fitted model is used to ‘predict’ the response for the

left-out subset. Trying this procedure for different values of bandwidth parameter

h will suggest one that minimizes the cross-validation estimation of the mean-

squared error. Other approaches have been proposed including local choice for

bandwidth, see Schucany (2004) for an overview.

In JCIR model, [X(i+1)∆n,T
− Xi∆n,T

]k is regarded as yi in Equation (2.53), and

Xi∆n,T
is regarded as xi in Equation (2.53). Therefore, Mk can be calculated

according to procedure of nonparametric regression. However, choosing optimal

bandwidth is still an open problem. Those existing methods, such as cross val-

idation, are generally designed for standard regression models, and may not be

the proper choices. Some further discussions about this topic are in Bandi and

Phillips (2003) and Johannes (2004). Here the same bandwidth (0.015) in Bandi

and Nguyen (2003) is used.

In empirical study, the JCIR model with constant jump intensity λ and normally

distributed jump magnitudes is used. As in simulation study, the mean of jump
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sizes is 0, and standard deviation of jump sizes is δ. Therefore according to basic

statistics,

EY [y2r] = δ2r

r∏
n=1

(2r − 1), (2.54)

EY [y2r−1] = 0. (2.55)

Substituting these moments into formulas of Mk(r) leads results for parameters

(δ2)n,T =
1

n

n∑
i=1

M̂6(Xi∆n,T
)

5M̂4
n,T (Xi∆n,T

)
, (2.56)

(λ)2
n,T =

1

n

n∑
i=1

(M̂4/3)6

(M̂6/15)4
. (2.57)

The estimation results are λ = 0.026, and δ = 0.0090. For average, there is

one jump around six weeks. Results for other parameters are as follows. Table

Table 2.4. Estimation Results for JCIR Model

parameter a b σ2

Estimated Value 1.1136e-05 -0.002650 6.3882e-05
Standard Error 3.2727e-05 0.0008453 5.4730e-06

2.4 shows that b and σ2 can be estimated with small standard errors. However,

standard error for a is large. The reason is that a is related to mean reverting level,

which is a trend parameter, whose estimation accuracy depends on the range of

trading time, whereas the accuracy of estimations for b and σ2 depends on the

number of observations.
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2.7 Summary and Remarks

In this chapter, a new estimation method for continuous state branching process

with immigration (hereafter, CBI) is proposed, which is based on weighted con-

ditional least square estimators. The method can be regarded as an extension

of estimation approach for discrete time and discrete state space branching pro-

cess with immigration. Because JCIR model is a special form of CBI process,

this method is ready to be used for parameter estimation of JCIR model. The

strength and originality of this method lies in the fact that it avoids computation-

ally expensive numerical integration in many existing estimation methods for JCIR

model. Proofs for consistency of the developed method are provided. Simulation

and empirical studies show that it is easy to combine this method with existing

nonparametric method to get accurate estimations for parameters in JCIR model,

and the calculations are fast and simple.

38



Chapter 3

Estimation of Jump-Diffusion Process via

High Frequency Data

3.1 Motivation

As mentioned in the introduction, jumps have significant impact in many aspects of

financial management. With the emergence of available high frequency data, many

researchers turn to estimate parameters in jump-diffusion process via such data,

instead of traditional low frequency data. Compared with low frequency data, such

as daily data, high frequency data has several distinguishable features. Firstly, the

intraday observations occur at random trading time. Secondly, the trading price

is contaminated by market microstructure noise. Thirdly, high frequency data has

no data aggregation effect. Therefore, it contains more information concerning

market microstructure.

Because of market microstructure noise, analysis methods for high frequency data

are very different from those for low frequency data. Generally speaking, mod-

eling methods for high frequency data can be divided into two main categories:

nonparametric methods and parametric methods.

Nonparametric methods are based on integrated volatility, realized volatility and
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quadratic variation. The underlying theory for those methods assumes that log

prices follow a continuous-time semi-martingale process so that the sum of suc-

cessively finer sampled high-frequency squared returns converges to the quadratic

variation of the price process. Prior works include Andersen and Bollerslev (1998),

Barndorff-Nielsen and Shephard (2002). However, these estimators might be incon-

sistent. Aı̈t-Sahalia et al. (2005a) and Bandi and Russell (2006) show that market

microstructure noise may introduce a bias in the realized volatility estimation us-

ing high frequency data. As a sequel, many researchers, such as Aı̈t-Sahalia et al.

(2005b), Bandi and Russell (2008) and Barndorff-Nielsen et al. (2008), develop

various methods based on optimal sampling, subsampling and realized kernels,

which may overcome this difficulty. The five-minute sample frequency used in

many papers is a tradeoff between estimation accuracy and market microstructure

noise. Besides methods for calculating realized volatility, there are also tests for

identifying jumps using high frequency data, developed by Aı̈t-Sahalia and Jacod

(2009, 2011), Jiang and Oomen (2008) and Lee and Mykland (2008).

Although there is a large volume of literature focusing on nonparametric meth-

ods, relatively few works focus on parametric modeling of high frequency data.

Parametric Methods treat high frequency data, which contains transaction time

together with trading price and trading volume, as a Marked Point Process in

which a point process describes the transaction times and marks represent price

and volume observed at trading time. See Martin (2006) for a comprehensive in-

troduction to market point process. Based on different statistical foundations, two

kinds of parametric models have been developed: time-series-based models and
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filtering-based models.

The time-series-based models are originally developed by Engle (2000). In this

kind of models, high frequency data is treated as an irregularly-spaced time series

and modeled via Autoregressive Conditional Duration (ACD) model proposed by

Engle and Russell (1998). There are many researchers using this model to analyze

high frequency data, such as McCulloch and Tsay (2001), Grammig and Wellner

(2002), Ghysels et al. (2004), Zhang et al. (2009). Refer to Engle and Russell

(2005) and Pacurar (2008) for reviews about ACD model and its extensions.

Although ACD model is widely used in financial econometrics, it has some limita-

tions. For example, market microstructure noise is not considered in this kind of

models. Black (1986) and Stoll (2000) address noise as an important factor when

considering the market microstructure. Although the influence on low frequency

data is not so significant due to its short-term impact, noise plays an essential

role in high frequency data models. The filtering-based models are proposed by

Zeng (2003) and Duan (2009) by integrating the noise. In Zeng’s model, tick

size effect, clustering noise and non-clustering noise are explicitly modeled. The

data is treated as a collection of counting process points, a special case of MPP

observations. Within this framework, the model can be formulated by some filter-

ing problem, and it is applied to stochastic volatility estimation by Zeng (2004),

Bayesian model selection by Kouritzin and Zeng (2005) as well as option hedging

by Lee and Zeng (2010). It is further extended by Hu et al. (2010). In Duan’s

model, noise is implicitly modeled by introducing a Gaussian white noise. The

model is also considered as a filtering problem, and calibrated via a particle filter-
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ing based maximum likelihood method. Duan and Fulop (2007) also use a similar

model to study jumps in high frequency data. Along with Johannes et al. (2009),

these papers are prior studies about jump-diffusion process via high frequency

data.

The purpose of this chapter is to develop a general estimation framework for Zeng’s

high frequency data model (Zeng, 2003)1, and to make the method more feasible

and efficient. The method proposed here is based on particle Markov chain Monte

Carlo method (Andrieu et al., 2010).

3.2 Model Specification

Zeng’s model (2003) is based on the intuition that trading price should arise from

an intrinsic price process in combination with market noise from trading activi-

ties. According to market microstructure theory, intraday price movements suffer

from three important kinds of noise: discrete, clustering, and non-clustering noise.

Discrete noise exists because intraday prices move discretely, that is, tick by tick.

Clustering noise exits because prices gather more on integer and half ticks, instead

of distributing evenly on all ticks. Non-clustering noise exits due to change of

distribution of prices and outliers in prices formulation.

A high frequency data model should reflect these three kinds of noise. Assume

{Yt, t ≥ 1} is observed intraday price, and {St, t ≥ 1} is unobserved intrinsic price.

1 In early research papers, the definitions of ultra-high frequency data (not aggregated,
transaction-by-transaction data with random trading time) and high frequency data (aggre-
gated, equally-spaced data) are different, see Engle (2000). All of the nonparametric methods
mentioned above use high frequency data, including parametric method of Duan (2007). How-
ever, models of Engle (2000) and Zeng (2003) is designed for ultra-high frequency data, which
makes them different from other models. In the rest of this thesis, for coherence in narrative,
only the phrase “high frequency data” is used. But readers should notice the difference.
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First of all, {St, t ≥ 1} should be modeled by certain stochastic process. Then

some function which reflects all three kinds of noise should be used to map from

intrinsic price St to intraday trading price Yt. The mapping procedure consists of

three steps.

Step 1. Incorporate discrete noise by rounding off St to its closest tick:

Round[St,
1
M

], where M is tick size. Tick size is determined by trading regula-

tions of different market and varies with time. For example, the tick size in New

York Stock Exchange (NYSE) was switched to $ 1
16

from $1
8

in June 24, 1997 and

then further adjusted to $0.01 beginning from January 29, 2001.

Step 2. Incorporate non-clustering noise by adding V : Y ′t = Round[St + V, 1
M

],

where V is a random variable satisfying doubly geometric distribution with pa-

rameter ρ.

P (V = v) =


(1− ρ) if v = 0,

1
2
(1− ρ)ρM |v| if v = ± 1

M
,± 2

M
, . . . .

(3.1)

Step 3. Incorporate clustering noise by biasing Y ′t . The biasing function b(·)

moves Y ′t to some close ticks according to certain probability defined by parameters

α, β, γ. The construction of biasing function is related to tick size. For example,

when tick size is $1
8
, b(·) is constructed by following rules: if the fractional part

of Y ′t is an even eighth, then Y ′t stays on Y ′t with probability one; if the fractional

part of Y ′t is an odd eighth, then Y ′t stays on Y ′t with probability 1−α−β− γ, Y ′t

moves to the closest odd quarter with probability α, moves to the closet half with

probability β, and moves to the closed integer with γ. This modeling is based on

the clustering phenomenon: integers and halves are most likely trading prices and
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have about the same frequencies; odd quarters are the second most likely and have

about the same frequencies; odd eighthes are least likely and have about the same

frequencies. The three parameters α, β, γ can be estimated via relative frequency

methods. The details are illustrated in Zeng (2003).

The conditional likelihood function P (Yt | St), which is similar to the one in

Kouritzin and Zeng (2005), is listed in Table 3.1, where

D = M ∗ |Yt − Round[St,
1

M
]|,

and

R =



3 if the fractional part of Yt is 1
8
, 3

8
, 5

8
, 7

8
,

2 if the fractional part of Yt is 1
4
, 3

4
,

1 if the fractional part of Yt is 1
2
,

0 if Yt is an integer.

In general, the intrinsic price St could be modeled by any stochastic process. It is

natural to apply geometric Brownian motion (GBM), jump-diffusion process and

stochastic volatility process in the model. In this chapter, GBM and a simple

jump-diffusion process are used. GBM is used firstly to study the method in

details, then results are extended to the jump-diffusion case.

The stochastic differential equation for Geometric Brownian Motion is as follows:

dSt
St

= µdt+ σdWt, (3.2)

where µ is the drift parameter, σ is the positive diffusion parameter, and Wt is a

standard Brownian motion.
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Table 3.1. Likelihood Function for High Frequency Data Model

R D Likelihood Function

0 0 (1− ρ) ∗ (1 + γ ∗ ρ ∗ (1 + ρ2))
0 1 0.5 ∗ (1− ρ) ∗ (ρ+ γ ∗ (2 + 2 ∗ ρ2 + ρ4))
0 2 0.5 ∗ (1− ρ) ∗ ρ ∗ (ρ+ γ ∗ (2 + ρ2 + ρ4))
0 3 0.5 ∗ (1− ρ) ∗ (ρ3 + γ ∗ (2 + ρ2 + ρ4 + ρ6))
0 ≥ 4 0.5 ∗ (1− ρ) ∗ ρD−3 ∗ (ρ3 + γ ∗ (1 + ρ2 + ρ4 + ρ6))

1 0 (1− ρ) ∗ (1 + β ∗ ρ ∗ (1 + ρ2))
1 1 0.5 ∗ (1− ρ) ∗ (ρ+ β ∗ (2 + 2 ∗ ρ2 + ρ4))
1 2 0.5 ∗ (1− ρ) ∗ ρ ∗ (ρ+ β ∗ (2 + ρ2 + ρ4))
1 3 0.5 ∗ (1− ρ) ∗ (ρ3 + β ∗ (2 + ρ2 + ρ4 + ρ6)
1 ≥ 4 0.5 ∗ (1− ρ) ∗ ρD−3 ∗ (ρ3 + β ∗ (1 + ρ2 + ρ4 + ρ6))

2 0 (1− ρ) ∗ (1 + α ∗ ρ)
2 1 0.5 ∗ (1− ρ)(ρ+ α ∗ (2 + ρ2))
2 ≥ 2 0.5 ∗ (1− ρ)ρD−1 ∗ (ρ+ α ∗ (1 + ρ2))

3 0 (1− ρ) ∗ (1− α− β − γ)
3 ≥ 1 0.5 ∗ (1− α− β − γ) ∗ (1− ρ) ∗ ρD

The stochastic differential equation for Merton’s jump-diffusion process (Merton,

1976) is as follows:

dSt
St

= µdt+ σdWt + JtdNt, (3.3)

where µ, σ and Wt are of the same meanings as those in Equation (3.2), Nt is a

Poisson process with intensity λ and Jt is normally distributed jump size with mean

µJ and variance σ2
J , which is independent of Wt and Nt. These two processes yield

the same conditional likelihood formula in Table 3.1. The target is to estimate all

parameters in both stochastic processes together with ρ in Equation (3.1).

3.3 Estimation Method

Traditionally, estimation methods for parametric model are built upon likelihood

function. In Engle’s model, trading time and trading price are supposed to be
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directly observed. Therefore, the estimation via maximum likelihood method is

workable. However, the estimation is more difficult and more computationally

expensive in Zeng’s model. One reason is that the intrinsic prices are not observed

directly due to the existence of market microstructure noise, which makes the

model to be a state-space model. Another reason is the high randomness of market

microstructure noise makes the state-space model nonlinear and non-Gaussian.

Because of these challenges in model estimation, filtering based models are usually

difficult to incorporate complicated noise structures which reflect stylized facts of

intrinsic price process, such as leverage, jump and stochastic volatility. Therefore

an efficient estimation method should be developed in such case.

In this chapter, an alternative method will be derived, which is based on particle

Markov Chain Monte Carlo (PMCMC) method. This method combines particle

filtering with Markov Chain Monte Carlo (MCMC). To be precise, MCMC is used

to propose new values for parameters in the model, then particle filtering is used

to calculate values of marginal likelihood functions in the state-space model based

on those proposed parameters.

The idea of PMCMC method has been used in economics by several scholars

for estimating dynamic stochastic general equilibrium (DSGE) models, such as

Fernández-Villaverde and Rubio-RamÍrez (2007) and An and Schorfheide (2007).

These researchers use particle filtering to calculate likelihood function values for

DSGE models, and then use either Bayesian method or numerical optimization to

estimate parameters in the models. Recently, Andrieu et al. (2010) summarize this

idea as a general calculation framework and provide some theoretical foundations.
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PMCMC method has several nice features. First of all, although it is based on

simulation, the resampling schemes in particle filtering step of the method can

efficiently reduce the variance. Secondly, approximation to likelihood functions

by particle filtering is proved to be unbiased by Pitt et al. (2010). Thirdly, the

Markov Chain Monte Carlo step of the method approximates to the posterior

distributions of parameters, containing more information to conduct statistical

inference than just point estimations. Moreover, due to the nature of simulation,

parallel programming is able to be used in calculation, which makes this method

more efficient when dealing with large data set in practice.

The state-space model consists of two components: one unobserved component,

which is intrinsic price process {St; t ≥ 1}; one observable component, which is

trading price {Yt; t ≥ 1}. {St; t ≥ 1} is a Markov process, characterized by its

initial density S1 ∼ µθ(·) and transition probability density

St+1|(St = S) ∼ fθ(·|S), (3.4)

where θ is the parameter vector for the model. Since {St; t ≥ 1} is observed

indirectly through trading price {Yt; t ≥ 1}, their common marginal probability

density has the form

Yt|(S1, . . . , St = S, . . . , Sm) ∼ gθ(·|S). (3.5)

The most important issues for a state-space model are filtering and parameter
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estimation. The filtering equations for the state-space model are as follows:

p(St|Y1:t−1; θ) =

∫
p(St|St−1; θ)p(St−1|Y1:t−1; θ)dSt−1, (3.6)

p(St|Y1:t; θ) =
p(Yt|St; θ)p(St|Y1:t−1; θ)

p(Yt|Y1:t−1; θ)
, (3.7)

p(Yt|Y1:t−1; θ) =

∫
p(Yt|St; θ)p(St|Y1:t−1; θ)dSt. (3.8)

Equations (3.6) - (3.8) enable us to filter for a given θ and evaluate marginal

likelihood of observation {Y1:t}. The likelihood function is as follows:

p(Y1:t|θ) = p(Y1|θ)
t∏

k=2

p(Yk|Y1:k−1; θ). (3.9)

In order to obtain the marginal likelihood function value, {St; t ≥ 1} should be

integrated out from joint likelihood function (likelihood function assuming {St; t ≥

1} is observable):

p(Y1:t|θ) =

∫
pθ(S1:t, Y1:t)dS1:t

=

∫
µθ(S1)

t∏
k=2

fθ(Sk|Sk−1)
t∏

k=1

gθ(Yk|Sk)dS1:t.

(3.10)

When both observation and state transition equations are linear and Gaussian, the

likelihood function can be evaluated analytically by Kalman filtering (see Welch

and Bishop, 1995). However, since the model in this chapter is a nonlinear, non-

Gaussian and high dimensional2 state-space model, integration in Equation (3.10)

needs to be calculated numerically via Monte Carlo method, which means that

S1:t need to be sampled from distribution πt(S1:t), and the likelihood value can be

2 The number of dimensions is equal to the number of data points in high frequency data set.
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calculated by

Eπt(p(Y1:t|θ)) =
1

N

N∑
i=1

pθ(S1:t, Y1:t), (3.11)

where {Si1:t, i = 1, . . . , N} are N samples drawn from πt(S1:t).

Sampling from πt(S1:t) links particle filtering (sequential importance sampling)

with state-space models. According to Doucet and Johansen (2011), intuitive

explanation of particle filtering algorithm is as follows.

Initially, consider a sequence of probability distributions πt(t≥1) defined on a se-

quence of measurable spaces (Et,Ft)t≥1, where E1 = E,F1 = F and Et = Et−1×E,

Ft = Ft−1 × F . Each distribution πt(dS1:t) = πt(S1:t)dS1:t is known up to a nor-

malizing constant Zt, i.e.

πt(S1:t) =
γt(S1:t)

Zt
, (3.12)

Zt =

∫
γt(S1:t)dS1:t. (3.13)

The purpose is to sample N independent random variables, Si1:t ∼ πt(S1:t) for

i = 1, . . . , N . In the high frequency data model, S1:t is the path of intrinsic

price process until time t, thus πt(S1:t) is a complex high-dimensional probability

distribution. It is difficult to draw samples directly from such a distribution. A

traditional way is to use importance sampling technique. Importance sampling

serves as a fundamental Monte Carlo method and is also the basis of particle

filtering algorithms. It relies on an importance density qt(S1:t), such that

πt(S1:t) > 0⇒ qt(S1:t) > 0. (3.14)
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In this case, Equation (3.12) - (3.13) are rewritten as follows:

πt(S1:t) =
wt(S1:t)qt(S1:t)

Zt
, (3.15)

Zt =

∫
wt(S1:t)qt(S1:t)dS1:t, (3.16)

where wt(S1:t) is the unnormalized weight

wt(S1:t) =
γt(S1:t)

qt(S1:t)
, (3.17)

W i
t =

wt(S
i
1:t)

N∑
i=1

wt(Si1:t)

. (3.18)

Importance density qt(S1:t) is often carefully selected from some special distribu-

tions, from which it is easy to draw samples. Particle filtering (sequential impor-

tance sampling) method chooses a special importance density

qt(S1:t) = qt−1(S1:t−1)qt(St|S1:t−1) = q1(S1)
t∏

k=2

qk(Sk|S1:k−1). (3.19)

In the algorithm, Si1:t is called one particle at time t. To obtain a particle, first

S1 should be sampled from π1(S1) and given a weight w1 at time 1. Then based

on the result of time 1, S2 should be sampled from π2(S1:2) and given a weight

w2 at time 2 and so on. The associated unnormalized weights can be calculated

recursively according to Equation (3.17):

wt(S1:t) =
γt(S1:t)

qt(S1:t)
=
γt−1(S1:t−1)

qt−1(S1:t−1)

γt(S1:t)

γt−1qt(St|S1:t−1)

= wt−1(S1:t−1)αt(S1:t) = w1(S1)
t∏

k=2

αk(S1:k),

(3.20)
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where αk is called as incremental importance weight function, which is given by

αk(S1:k) =
γk(S1:k)

γk−1(S1:k−1)qk(Sk|S1:k−1)
. (3.21)

In the high frequency data model, let π(S1:t) = p(S1:t|Y1:t), γ(S1:t) = p(S1:t, Y1:t),

Zt = p(Y1:t), then the only thing left is to select an importance distribution

qt(St|S1:t−1). In practice, qt(St|St−1) = q(St|Yt, St−1). Particularly, qt(St|S1:t−1)

is chosen as fθ(St|St−1) by Gordon (1993), then α(S1:t) = gθ(Yt|St) in this case due

to the Markov property of unobserved process St. The algorithm is simply written

as Algorithm 1.

Algorithm 1 Particle Filtering Method for State Space Model

At time t = 1
Select q1(S1) = µ(S1), and sample Si1, i = 1, . . . , N from q1(S1).
Compute unnormalized weights w1(Si1) = gθ(Y1|Si1) .
Compute normalized weights W i

1 ∝ w1(Si1) .
Resample {Si1} via weight {W i

1} to obtain N particles, denoted as {Si1}.
for iteration t ≥ 2 do

Sample Sit ∼ fθ(St|Sit−1).
Compute unnormalized weights wt(St) = gθ(Yt|Sit) .
Compute normalized weights W i

t ∝ wt(S
i
1:t) .

Resample {Sit} via weight {W i
t } to obtain N particles, denoted as {Sit}.

end for

Algorithm 1 allows us to estimate sequentially the marginal likelihood function by

p̂θ(Y1:t) = p̂θ(Y1)
T∏
t=2

p̂θ(Yt|Y1:t−1), (3.22)

where

p̂θ(Yt|Y1:t−1) =
1

N

N∑
k=1

wt(S1:t)
i. (3.23)

In the particle filtering algorithm, when parameter vector θ is fixed, {S1:t}i is
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sampled from p(S1:t|Y1:t). For parameters estimation in PMCMC method, θ should

also be sampled from certain distribution. PMCMC can be regarded as particle

filtering within MCMC, which allows us to sample from joint density p(θ, S1:t|Y1:t)

in each iteration by an particular MCMC algorithm. In this chapter, Metropolis-

Hastings (M-H) algorithm proposed by Metropolis et al. (1953) is applied. Since

Metropolis-Hastings algorithm is widely used and well known, it is not introduced

in details. Refer to Bolstad (2010) for some comprehensive introduction.

By standard decomposition, p(θ, S1:t|Y1:t) = p(θ|Y1:t)pθ(S1:t|Y1:t). Consequently it

is natural to use a proposal density for an M-H upgrade in the form of

q(θ′, S ′1:t|θ, S1:t) = q(θ′|θ)pθ′(S ′1:t|Y1:t). (3.24)

The M-H acceptance rate α is given by

α =
p(θ′, S ′1:t|Y1:t)

p(θ, S1:t|Y1:t)
=
pθ′(Y1:t)

pθ(Y1:t)

q(θ|θ′)
q(θ′|θ)

, (3.25)

where pθ(Y1:t) and pθ′(Y1:t) can be calculated via particle filtering method listed in

Algorithm 1. The whole algorithm is summarized in Algorithm 2.

Algorithm 2 Particle MCMC for State Space Model

At time t = 1
Set initial parameters θ0.
Run a particle filtering algorithm, obtaining p̂θ0(Y1:t), denote as estimation of
marginal likelihood value.

for iterations i ≥ 1 do
Sample θ′ ∼ q(· | θi−1).
Run a particle filtering algorithm, obtaining p̂θ0(Y1:t), denote as estimation of
marginal likelihood value.

With probability α = min(1,
p(θ′,S′1:t|Y1:t)

p(θ,S1:t|Y1:t)
=

pθ′ (Y1:t)

pθ(Y1:t)
q(θ|θ′)
q(θ′|θ)).

Set θi = θ′, and p̂θi(Y1:t) = p̂θ′(Y1:t).
end for

52



Algorithm 2 is sufficient for most state-space high frequency data models. In the

particle filtering part, the time intervals for particle generation steps are equal.

However, one characteristic of Zeng’s high frequency data model is that the se-

quence of trading times has irregular intervals. That’s why trading times are

modeled as a Poisson process. The generalization of particle filtering algorithm

in such situation is straightforward. The only thing needed is to alter the time

sequence {1 : t} in Algorithm 1 to {t1, t2, . . . , tn}, where n is the length of data,

and {ti}ni=1 is the sequence of trading times.

The estimation approach relies on particle approximations to the likelihood func-

tions. Under mild regularities on state transition function and the likelihood func-

tion, particle approximations to the likelihood functions of Algorithm 1 converge

to the true values as the number of particles N increases, see Crisan and Doucet

(2002) for a summary. Typically, particle filtering will achieve good accuracy when

the number of particles N is equal or larger than the number of data points. The

convergence of particle filtering also depends on properties of resampling methods.

Theories for multinomial resampling, residual resampling and systematic resam-

pling are established. The extension to branching resampling is given by Xiong

and Zeng (2011). Moreover, Douc and Moulines (2008) and Del Moral et al. (2011)

prove the convergence properties for algorithms in which resampling is conducted

at random times, according to coefficient of variation (CV) and effective sample

size (ESS) criterion.

53



3.4 Simulation Study for Geometric Brownian Motion

3.4.1 Simulation

In simulation experiment, parameters are set as follows: M = 8, ρ = 0.2, α =

0.225, β = 0.066, γ = 0.3, µ = 4.4e−8, σ = 1.2e−4. The simulated data is shown

in Figure 3.1. The figure shows clearly that when market microstructure noise is

considered, the observed trading prices present different characteristics compared

with the underlying intrinsic prices.

Due to the irregular intervals among trading times, a Poisson process with mean

λ′ is needed to model the trading time process. Then GBM is simulated according

to the trading times. λ′ is set to be 0.067, which means there is one trading every

16.67 seconds in average. Since there are totally 6.5 hours in one trading day,

sample size in one day should be around 1500. For the sake of simplicity, 2000

simulated trading data are used for estimation. Particle number is 4000, and the

length of Markov chain is 100000. The last 50000 data from the chain is used for

analysis.

3.4.2 Variance Reduction Effect of Particle Filtering Method

In Algorithm 2, the likelihood value pθ(Y1:t) is also the normalize constant Zt

in Equation (3.12), then according to standard Monte Carlo integration theory,

pθ(Yt|Y1:t−1) is calculated at every time t via particle filtering by Equation (3.23).

As is known, directly using Monte Carlo integration method suffers from large

variance. To make it clear, take GBM for example. Since the variance of GBM
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Figure 3.1. Simulated Trading Price for Geometric Brownian Motion

increases with time, Figure 3.2 shows that after very short time, the simulated

paths will deviate from the true one far away. To maintain a given degree of ac-

curacy, the number of paths needed may be large and may increase with time.

However, when particle filtering with certain kind of resampling scheme is applied,

the paths are able to be constrained near the true one. The basic idea of resam-

pling methods is to eliminate trajectories which have small normalized importance

weights and to concentrate upon trajectories with larger weights. As resampling

frequency increases, the simulated paths get to the true one closer, which improves

the accuracy of estimation for pθ(Y1:t).

3.4.3 Choice of Resampling Schemes

There are four common resampling methods in particle filtering: Multinomial

Resampling, Residual Resampling, Stratified Resampling and Systematic Resam-

pling. Douc et al. (2005) gives a brief introduction of these four schemes. Multi-
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Figure 3.2. Effects of Particle Filtering in Variance Reduction

nomial resampling is a classical and stable algorithm, and is used in particle fil-

tering by Gordon (1993). With pre-sorted weights, the complex of this algorithm

can be O(N). Residual Resampling is used in particle filtering by Liu and Chen

(1998). This method comprises two main steps: in the first step, particles are repli-

cated deterministically according to their weights and total number of particles;

in the second step, particles are randomly sampled via Multinomial Resampling

method with processed weights, which is calculated according to certain formulas.

Stratified resampling is based on ideas used in survey sampling and conducted

by pre-partitioning the (0, 1] interval into N disjoint sets, and is used in particle

filtering by Carpenter et al. (1999). Systematic resampling takes one step further

by deterministically linking all the variables drawn from the N pre-partitioned

sub-intervals in stratified resampling. According to Doucet and Johansen (2011),

among these four resampling schemes mentioned, the most widely used one is sys-

tematic resampling due to its easy implementation and better performances. The

pseudo codes of these four resampling schemes are listed in Appendix A.
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Except for the four resampling methods mentioned above, a novel particle filtering

algorithm is proposed by Xiong and Zeng (2011), which uses branching resampling

scheme. The algorithm is different from classical particle filtering in three aspects.

First of all, in classical particle filtering (Algorithm 1), the time intervals between

every two steps is equal to time intervals of observed trading time. However,

in Xiong’s algorithm, the time intervals are determined by users. Secondly, in

classical particle filtering (Algorithm 1), the number of particles in the system is

unchanged during the calculation. However, in branching particle filtering, the

number of particles varies in different steps. Thirdly, Xiong and Zeng (2011) prove

that this method has uniform convergence property when applied upon Zeng’s

high frequency data model, which is better than mean square error convergence

property of classical particle filtering. The details about this algorithm is described

in Xiong and Zeng (2011). Pseudo code for branching resampling scheme is listed

in Appendix A.

A comparison about numerical accuracy of likelihood function calculation is made

by using these five resamlping schemes. Calculations of likelihood function value

are repeated 1000 times, with 2000 simulated data and different particle numbers.

The true parameter values are set to be the same as those in Section 3.4.1. Table

3.2 shows that when the number of particles is equal to the number of data points,

systematic resampling yields smallest variance, which is important for implemen-

tation of particle filtering. Since particle filtering algorithm is computationally

expensive, it is a customary in practice to set the number of particles equal to

the number of data points. It is a tradeoff between accuracy and program exe-
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cuting time. Note that although multinomial resampling needs least CPU time,

the variance is much larger. In further simulation study, systematic resampling is

applied. Branching resampling scheme is also used because the algorithm is novel,

and there are no numerical study upon it.

Table 3.2. Comparison of Different Resampling Schemes

Multinomial Residual Stratified Systematic Branching

Particle Number = 1000
mean -2705.184 -2704.981 -2704.913 -2704.916 -2705.187

sd 1.789844 1.734905 1.644725 1.554531 1.9928612
time (s) 290 345 307 288 399

Particle Number = 2000
mean -2704.344 -2704.292 -2704.253 -2704.265 -2704.443

sd 1.227276 1.153464 1.163640 1.128178 1.2983432
time (s) 569 649 650 612 751

Particle Number = 3000
mean -2704.117 -2704.104 -2704.071 -2704.057 -2704.137

sd 1.0430071 0.9317736 0.9635022 0.9303675 0.9787504
time (s) 881 967 1072 1017 1107

Particle Number = 4000
mean -2703.994 -2703.950 -2703.931 -2703.976 -2703.968

sd 0.8663533 0.7858741 0.8288907 0.8317786 0.8673299
time (s) 1214 1112 1563 1490 1481

Particle Number = 5000
mean -2703.904 -2703.876 -2703.865 -2703.891 -2703.931

sd 0.7866920 0.7296702 0.7267766 0.7178622 0.7698107
time (s) 1574 1392 2121 2031 1803

∗ mean is sample mean.
∗ sd is standard sample deviation.
∗ time is CPU time of programs.

Although resampling step in particle filtering is an unbiased approximation to the

distribution πt(S1:t), it does introduce errors. As a result, resampling should only

be used when necessary and schemes which lead to less variance are preferable.

Consequently, Doucet and Johansen (2011) suggest that in practice it is more
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sensible to resample only when the variance of the unnormalized weights is superior

to a pre-specified threshold. The suggestion is equal to examining the variability

of the weights using Effective Sample Size (ESS) criterion suggested by Liu (2001).

ESS = (
N∑
i=1

(W i
n)2)−1 (3.26)

The explanation of ESS is that in a simple Monte Carlo integration, variance of

calculation based on the N weighted samples is approximately equivalent to that

based on ESS perfect samples from the target distribution. ESS takes values from

1 to N and resampling is applied only when ESS falls below a threshold NT ,

say NT = N
2

. Apart from introducing variance, resampling also prevent efficient

parallelization of the whole algorithm, which is discussed in details later.

3.4.4 Estimation Results

Table 3.3. Estimation of Parameters via Systematic Resampling

ρ µ σ

mean 0.2012 5.287e-07 1.22e-04
standard deviation 1.030e-02 3.693e-07 4.915e-06

Table 3.4. Estimation of Parameters via Branching Resampling

ρ µ σ

mean 0.1920 5.225e-07 1.219e-04
standard deviation 1.253e-02 4.007e-07 6.026e-06

Figure 3.3 and Figure 3.4 show that the Markov chain moves around the param-

eter space very well. Autocorrelations of the parameters indicate that the mixing

properties of Markov chain is good. The estimations of ρ and σ is around the true
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Figure 3.3. Estimation Results via Systematic Resampling

Figure 3.4. Estimation Results via Branching Resampling
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value with small standard deviations. However, the result of µ is not so accurate.

The reason is that µ is a trend parameter, whose estimation accuracy depends on

the range of trading time, whereas the accuracy of estimations for ρ and σ mainly

depends on the number of observations. Moreover, there is no significant differ-

ence between results via systematic resampling scheme and results via branching

resampling scheme.

3.4.5 Advanced Programming Method

One drawback of PMCMC method is its computational burden. However, parallel

programming techniques may ease the problem. Since C language is used in the

simulation experiment, there are two libraries can be used in parallel programming:

OpenMP (OpenMP Architecture Review Board, 2008) and OpenMPI (Gabriel et

al., 2004). OpenMP is used in shared memory programming, which can use all

the cores in a computer to execute programs. OpenMPI is used in distributed

programming, which is able to link several computers with independent processors

and memory pools to carry out one program simultaneously. Both libraries are

ready to be applied in our algorithm.

It is difficult to parallel MCMC step in PMCMC method, because in most efficient

MCMC algorithms, the updates of parameters are related to their previous val-

ues. Thus without changing the structure of Algorithm 2, the only parts suitable

for parallelization are particle filtering step and resampling step, as is shown in

Algorithm 3. In particle filtering step, simulations of different particles are in-

dependent. Therefore multi-threads can be created, and each thread is able to

undertake simulation tasks for a certain number of particles. However, the next

61



Algorithm 3 Inner-loop Parallel Programming Mode

for L in Markov Chain Length do
Propose new values for parameters.
# parallel for loop
for N in Particle Number do

Simulation particles.
Calculate weights.
Calculate likelihood.

end for
# end parallel
Gather data.
# parallel for loop
for N in Particle Number do

Reampling.
end for
# end parallel

end for

Algorithm 4 Outer-loop Parallel Programming Mode

# parallel for loop
for L in Markov Chain Length do

Propose new values for parameters.
for N in Particle Number do

Simulation particles.
Calculate weights.
Calculate likelihood.

end for
Gather data.
for N in Particle Number do

Reampling.
end for

end for
# end parallel
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parallelization for resampling steps cannot be conducted until all simulated data

from different threads are gathered. Therefore the parallel regions are short in

CPU time, and need to be terminated and restarted frequently, which leads to

large overheads when executing parallel version of the program.

Overheads is the extra time needed when running multi-threads programs. For

example, when entering into parallel region, threads have to be created and some

data structures have to be set up to carry information needed by the system.

When a work-sharing directive is implemented, the work to be performed by each

thread is usually determined at running time. Time spent on these operations is

collectively called parallelization overheads.

In general, there are four types of overheads: Synchronization overheads, load

imbalance overheads, limited parallelization overheads and threads management

overheads. Imbalance overheads is waiting time due to an imbalanced amount of

work in a work-sharing or parallel region. Synchronization overheads is waiting

time due to threads which have to synchronize their activities. Limited paral-

lelization overheads is caused by idle threads due to not enough parallelism being

exposed by the program. This kind of overheads is related to algorithm design,

and does not appear in our program, because parallel regions in our program are

all for loops. Thread management overheads is spent in the process of creating and

destructing threads. In Table 3.5, a real example of these four kinds of overheads

in PMCMC program is given when two cores are applied with OpenMP library.

In Figure 3.5, it is obvious to see that there is indeed acceleration for the program

via Algorithm 3. However, the CPU time does not decrease much corresponding to
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Table 3.5. Overheads Caused by Multi-Threads (2 Threads)

Sum Particle Filtering Resampling Other

Total (%) 5980.05 815.75 5039.77 124.53
Ovhds (%) 1716.34 (26.44) 12.54 (0.19) 1695.95(26.13) 7.85 (0.12)
Synch (%) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Imbal (%) 1703.45 (26.25) 7.48 (1.91) 1692.72 (26.08) 3.07 (0.05)
Limpar (%) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Mgmt (%) 12.89 (0.20) 4.87 (0.08) 3.24 (0.05) 4.78 (0.07)

Figure 3.5. Acceleration Effects via Algorithm 3
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increasing number of processors. There are two possible reasons. The first reason

is small parallel degree. Parallel degree can be simply regarded as CPU time of

one parallel region. As is seen in Algorithm 3, the whole program is nested loops.

Usually, parallel region should be the outside loop to achieve larger parallel degree.

But due to correlation of MCMC chain in the algorithm, it is difficult to do that.

Consequently there is much threads management overheads.

The second reason is that load imbalance overheads is huge. As is seen in Table

3.5, imbalance overheads takes up around 26% of executing time. This is caused

by the randomness of resampling schemes. It is impossible to determine in advance

the number of steps needed to get one sample. As a result, when allocating jobs to

different threads, it is impossible to give them equal computational loads. Some

threads with less loads have to wait for those with more loads. Therefore, such

kind of overheads is inevitable as long as parallelization of resampling steps is

required.

Due to these two reasons, simply changing the program from serial to parallel

can only partially solve the problem of long CPU time. There is another kind of

MCMC algorithm which is not widely used but helpful to obtain larger parallel

degree, that is, independent MCMC method (see Liu, 1996). In algorithm of

independent MCMC, the proposed parameters are independent of their previous

values. Algorithm 2 is revised by letting q(θ|θ′) = q(θ), and q(θ|θ′) = q(θ), as

shown in Algorithm 5.

This modification has two nice features. Firstly, because the parallel region can

be placed in the outside loop, it allows larger parallel degree, just as Algorithm 4.
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Algorithm 5 Particle Independent MCMC for State Space Model

At time t=0
Set initial parameters θ0.
Run a particle filtering algorithm, obtaining p̂θ0(y1:t), denote as estimation of
marginal likelihood value.

for iteration i ≥ 1 do
Sample θ′ ∼ q(·).
Run a particle filtering algorithm, obtaining p̂θ0(y1:t), denote as estimation of
marginal likelihood value.

With probability α = min(1,
p(θ′,S′1:t|y1:t)

p(θ,S1:t|y1:t)
=

pθ′ (y1:t)

pθ(y1:t)
q(θ)
q(θ′)

).

Set θi = θ′, and p̂θi(y1:t) = p̂θ′(y1:t).
end for

Secondly, OpenMPI library can be used, which is helpful to break the limitation

of number of processors in one computer. As is shown in Figure 3.6, there is

significant shrink of executing time of the program via Algorithm 5. When 88

cores are used, the executing time is only 1
75

of the total CPU time needed for the

serial program.

Figure 3.6. Acceleration Effects via Algorithm 5

In addition, a comparison of Figure 3.3 and Figure 3.7 shows that the estimation

results are good via the independent MCMC method. But this algorithm also has
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Figure 3.7. Estimation Results via Particle Independent MCMC Method

drawbacks. On the one hand, parameters for proposal density q(θ) are unknown

in real world applications. As a result, a lot of work is needed to find suitable

values. On the other hand, how to deal with the order of proposed value from

each processor needs further studies. In Algorithm 5, proposed parameters are

processed in the order of processors’ rank. Jacob et al. (2010) propose other

possible choices, which may lead to smaller estimation variance.

3.5 Simulation Study for Jump-Diffusion Process

3.5.1 Simulation

In studies based on low frequency data, jumps are assumed to have relatively large

jump size and small jump intensity, which is caused by macroeconomic informa-

tion and financial statement of particular companies. When daily returns are used,

one well-accepted assumption for jump-diffusion process is that there should be at

most one jump in a given day. Therefore, ∆Nt = Nt − Nt−1 follows a Bernoulli
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distribution. However, there are studies indicating that there could be some small

jumps in one day, and these small jumps may give rise to an appearance of infre-

quent large jumps if one only uses low frequency data such as daily, weekly and

monthly data. According to empirical study of Duan and Fulop (2007) concerning

jumps in high frequency data, estimations of jump intensity and jump size depend

on sampling frequency. As one increases the sampling frequency from once every

hour to once every 10 minutes, the estimated mean number of jumps in price per

trading session rises. Since tick-by-tick data are used in the simulation study, it is

reasonable to assume jumps have relatively small size and arrive more frequently.

In simulation experiment, parameters except for jumps are set to be the same as

Section 3.4.1: M = 8, ρ = 0.2, α = 0.225, β = 0.066, γ = 0.3, µ = 4.4e−8, σ =

1.2e−4. One day’s data is generated with three different sets for jump parameters

(µJ , σJ , λ): Θ1 = (4.4e − 5, 1.2e − 5, 0.01), Θ2 = (4.4e − 3, 1.2e − 3, 0.0001)

and Θ3 = (4.4e− 3, 1.2e− 3, 0.001). The number of simulated tradings is 1374,

particle number is 2000, and the length of Markov chain is 45000. The last 35000

data is used for analysis.

3.5.2 Estimation Results

Before further discussions, the concepts of quadratic variation, realized volatility

and integrated volatility (see Barndorff-Nielsen and Shephard, 2004) should be

introduced for a better understanding of following contents.

Definition 3.1 (Quadratic Variation). Let St be a stochastic process. To compute

quadratic variation of St on [0, T], we choose 0 = t0 < t1 < . . . < tn = T ,
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denote the set of these times by Π = t0, t1, . . . , tn, denote the length of the largest

subinterval by ‖Π‖ = maxj(tj+1 − tj), and defined

QΠ(St) =
n−1∑
j=0

(Stj+1
− Stj)2.

The quadratic variation of St on [0, T] is defined to be

QV(T) = lim
‖Π‖→0

QΠ(St).

Let St be a stochastic process as Equation (3.2), which is a geometric Brownian

motion. The quadratic variation of St on [0, T] is

QV(T) =

∫ T

0

σ2ds.

Let St be a stochastic process as Equation (3.3), which is a jump-diffusion process.

The quadratic variation of St on [0, T] is

QV(T) =

∫ T

0

σ2ds+
∑

0<s≤T

∆J2
s .

The so called realized volatility in studies of high frequency modeling is an esti-

mation of quadratic variation.

Definition 3.2 (Integrated Volatility). Let S be a stochastic process defined by

Equation (3.2) and Equation (3.3). The integrated volatility of S on [0, T] is

defined to be

IV(T) =

∫ T

0

σ2ds.

Definitions above indicate that when St is a geometric Brownian motion, integrated
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volatility can be estimated by realized volatility. However, when St is a jump-

diffusion process, realized volatility is larger than integrated volatility due to the

volatility generated from jumps. The simulation study shows influence of jumps on

parameter estimations by PMCMC method. Then a comparison about accuracy

of integrated volatility estimation is made among PMCMC method and other

nonparametric methods.

Table 3.6. Estimation Results for Parameter Set Θ1

True Value Mean Standard Deviation

ρ 0.200 1.877e-1 4.380e-5
µ 4.400e-8 3.399e-7 2.037e-7
σ 1.200e-4 1.160e-4 5.925e-6
µJ 4.400e-5 4.180e-5 5.056e-6
σJ 1.200e-5 1.092e-5 2.879e-6
λ 0.01 1.084e-2 4.633e-3

Table 3.7. Estimation Results for Parameter Set Θ2

True Value Mean Standard Deviation

ρ 0.200 1.937e-1 8.484e-3
µ 4.400e-8 3.564e-7 2.080e-7
σ 1.200e-4 1.185e-4 6.171e-6
µJ 4.400e-3 4.324e-3 4.842e-4
σJ 1.200e-3 1.154e-3 2.803e-4
λ 0.0001 1.158e-4 4.217e-5

Table 3.8. Estimation Results for Parameter Set Θ3

True Value Mean Standard Deviation

ρ 0.200 1.856e-1 8.893e-3
µ 4.400e-8 3.980e-7 2.456e-7
σ 1.200e-4 1.192e-4 6.284e-6
µJ 4.400e-3 4.452e-3 4.082e-4
σJ 1.200e-3 1.180e-3 2.582e-4
λ 0.001 1.103e-3 2.251e-4
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Figure 3.8. Estimation Results for Jump-Diffusion Process of Θ3

Table 3.6 - 3.8 list estimation results for these three parameter sets, which are

reasonable. Mixing properties of Markov chain for parameter set Θ1 and set Θ2

are similar to Figure 3.3, thus are not reported here. However, for parameter set

Θ3, the autocorrelation is a little higher and mixing properties of Markov chain is

not so good. One possible reason is that jumps generated volatility is substantial

in the quadratic variation in the case of Θ3. When jumps come frequently and

jump sizes are large, particle filtering method (Algorithm 1) may generate inac-

curate samples, as discussed by Johannes et al. (2009). That’s partially because

Algorithm 1 simulates new states St+1 blindly from distribution fθ(St+1 | St), and

does not use new information contained in Yt+1 at this step. An auxiliary parti-

cle filtering algorithm developed by Pitt and Shephard (1999) may alleviate the

problem. However, due to the heavy computational burden, it is not applicable.

Therefore, how to filter jumps efficiently is an important future work.
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3.5.3 Comparison with Nonparametric Methods

As mentioned before, integrated volatility and realized volatility are different. Inte-

grated volatility is generated by the continuous component of price process without

considering the impact of jumps. However, realized volatility contains integrated

volatility and volatility generated from potential jump component. In studies of

risk management, it is useful to decompose realized volatility into the contribution

from the continuous component and the jumps. For example, in option trading,

these two types of volatilities have different hedging requirements and possibili-

ties. In portfolio allocation, the demand for assets subject to both types of risks

can be optimized further if such a decomposition is available. Moreover, such a

decomposition makes it possible to manage the Brownian risk and large jump risk

using Value-at-Risk (VaR) and other tail statistics respectively. This section will

compare accuracy of estimations for integrated volatility via PMCMC method and

nonparametric methods. Once we have estimations for integrated volatility and

realized volatility, the difference between them is volatility generated by jumps.

Many extant nonparametric methods for high frequency data modeling can only

estimate quadratic variation (realized volatility), except for Bipower Method devel-

oped by Barndorff-Nielson and Shephard (2004) and its extensions. Four widely

used nonparametric methods are applied. The first method is Classical Real-

ized Method developed by Andersen et al. (2001). The second method is Two

Timescales Method developed by Aı̈t-Sahalia et al. (2005b). The third method is

Kernel Method developed by Hansen and Lunde (2006) and Barndorff-Nielson et

al. (2008). The fourth method is Bipower Method developed by Barndorff-Nielson
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and Shephard (2004). A detailed review is given by McAleer and Medeiros (2006).

Among all these methods, Classical Realized Method is developed to estimate re-

alized volatility before extensive research of high frequency data, therefore it suf-

fers from market microstructure noise. The Two Timescales Method and Kernel

Method, which also calculate realized volatility, are robust to market microstruc-

ture noise, whereas not robust to jumps. These three methods are used to exam-

ine the influence of jumps on estimation of integrated volatility when the model

is misspecified. Bipower Method is robust to jumps, which calculates integrated

volatility.

Table 3.9. Estimations of Integrated Volatility for Different Parameter Sets

Θ1 Θ2 Θ3

True Value 3.370e-4 3.370e-4 3.370e-4
PMCMC Method 3.148e-4 3.285e-4 3.325e-4
Bipower Method 5.688e-4 2.966e-4 3.401e-4

Table 3.10. Estimations of Realized Volatility for Different Parameter Sets

Θ1 Θ2 Θ3

True Value 3.375e-4 4.000e-4 9.451e-4
Classical Realized Method 8.927e-3 9.100e-3 7.811e-3
Two Timescales Method 8.245e-4 8.615e-4 1.859e-3
Kernel Method 8.391e-4 8.740e-4 1.264e-3

In Table 3.10, Classical Realized Method which uses all tick-by-tick data overesti-

mates quadratic variation significantly due to market microstructure noise. Kernel

Method and Two Timescales Method bring us closer results for quadratic varia-

tion3.
3 The calculations of nonparametric methods are simple and fast. However, it is not an easy

task to choose proper parameters for these methods. In Appendix B, a method for choosing
parameters are given. The calculations are conducted via R software (R Development Core
Team, 2011) with the package ‘realized’ (Payseur, 2011).
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In Table 3.9, the jump robust Bipower Method is able to provide close estimation

for integrated volatility, whereas results of PMCMC are better. However only

accurate estimation of integrated volatility can not make PMCMC method more

valuable than bipower method, because bipower method is much less computation-

ally expensive. The strength of PMCMC method is that it can provide reasonable

parameter estimations of jump magnitudes and jump intensity, which have many

potential applications in asset pricing and risk management.

3.6 Summary and Remarks

In this chapter, the particle Markov chain Monte Carlo method, for the first time,

is used to estimate high frequency data model. The implementation of this method

is straightforward and based on extensive simulation method. The method can es-

timate integrated volatility and the parameters of jumps. One future work is to

modify this method to estimate arrival times of jumps, which is also essential in

financial analysis. Since particle filtering is mostly applied in engineering, theoret-

ical results are not so rich as other statistical methods. Therefore, another future

work is to develop convergence theories for more advanced algorithms.
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Chapter 4

Conclusion and Future Work

In this thesis, new perspectives for jump-diffusion model estimation are provided.

In the first part of thesis, a new estimation method is developed for continuous

state branching process with immigration (hereafter, CBI). CBI process has a sim-

plified version as Cox-Ingersoll-Ross models with jumps (JCIR), which is widely

applied to model stochastic interest rates. Our method is based on weighted

conditional least square estimators (WCLSE), and avoids the computationally ex-

pensive numerical integration which exists in many other estimation methods for

JCIR model. Simulation study shows that this method leads to satisfying esti-

mations. Empirical study provides an example for application of our method via

American Federal Fund rate data.

In future studies, several things can be done for the method. First of all, although

some researchers, such as Wei and Winnicki (1990) and Overbeck (1998), develop

estimation methods for CBI process, their methods are limited to estimate draft

and diffusion parameters in models without jumps. In the thesis, their methods

are extended to consider influence of jumps. However, the estimation method is

still developed for drift and diffusion parameters in JCIR model, which cannot

give us parameters for jumps. As is shown in empirical study, some nonparametric

methods, such as method developed by Bandi and Nguyen (2003), should be ap-
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plied first to estimate parameters for jumps. Therefore, it is necessary to extend

our method in the thesis further to estimate parameters for jumps.

Secondly, in simulation studies, estimation of diffusion parameter has larger bias

compared with those of draft parameters. The reason is that these parameters are

not estimated simultaneously. Estimation of diffusion parameter depends on drift

parameters. Errors of drift parameters may accumulate during estimation, which

may influence estimation of diffusion parameter. As a result, alternative procedure

which can estimate diffusion parameter independently is preferable.

Moreover, since it is difficult to estimate parameters in models with jumps, in

many papers about bond pricing, interest rate is still modeled as a continuous-

path stochastic process. The method developed in thesis is simple and fast in

calculation, therefore it could be extended to other interest rate models, such as

Vasicek model (Vasicek, 1977).

In the second part of this thesis, the particle Markov chain Monte Carlo method,

for the first time, is applied to estimate a jump-diffusion high frequency data

model. In studies of high frequency data modeling, nonparametric methods are

extensively used, and market microstructure noise is often modeled implicitly. In

the thesis, according to Zeng (2003), a method explicitly dealing with market mi-

crostructure noise is applied to high frequency stock price. Particle Markov chain

Monte Carlo method is used to estimate parameters in the model. This estimation

method, based on Monte Carlo integration theory, is able to reduce variance of

numerical integration and achieve high efficiency via parallel programming when

large data set is involved. Detailed simulation studies explore the properties of this
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method. A comparison is made among the method and other extant nonparamet-

ric methods. Results show that this method is able to estimate parameters in the

model accurately. Meanwhile, it can also estimate volatility generated by diffusion

component under the influence of jumps with market microstructure noise.

Much remains to be done in the field of particle Markov chain Monte Carlo method

and high frequency data modeling. First of all, the estimation approach relies on

particle approximation to likelihood function in the model. Under mild regular-

ities on state transition function and the likelihood function, approximation to

likelihood function by particle filters of Algorithm 1 converges to the true value,

see Crisan and Doucet (2002) for a summary. Del Moral (2004) proves consistency

and asymptotic normality results for the particle filtering approximation to the

likelihood function for the state-space model. Proof for convergence of branching

particle filtering algorithm is provided by Xiong and Zeng (2011). However, since

particle filtering is mainly used in engineering, the theoretical results are not so

rich as other statistical estimation methods. Therefore, the convergence for more

advanced particle filtering algorithms and more complicated models is still an open

problem.

Secondly, particle filtering method is computationally expensive. To increase speed

of the algorithm through parallel programming, independent MCMC algorithm is

needed. In real world applications, parameters for proposal density in independent

MCMC algorithm are unknown. As a result, a lot of work is needed to find out

suitable values. For some MCMC methods, there are adaptive algorithms which

are able to search the parameters automatically, see Andrieu and Thoms (2008) for
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an overview. However, for independent MCMC, there is no well-accepted solutions.

Therefore it is useful to develop efficient adaptive methods which automatically

search parameters for proposal density in independent MCMC algorithm.

Moreover, although being able to estimate all parameters in the high frequency

data model, the method cannot give us arrival times of jumps. It is useful if

arrivals of jumps can be analyzed together with macro-econometric information.

Therefore, it is necessary to develop filtering methods to identify when jumps

happen.
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Appendix A. Resampling Schemes for Particle Filtering

There are detailed descriptions for five resampling schemes in particle filtering

applied in Section 3.4.3. In each resampling schemes, suppose that there are N

particles with normalized weights {Xi,Wi}Ni=1, and samples {X̃i, W̃i}Ni=1 should be

generated.

Algorithm A.1 Multinomial Resampling Algorithm

Initialize CDF: obtain {Pi}Ni=1, where Pk =
k∑
i=1

Wi.

for iterations 1 ≤ i ≤ N do
Generate an uniformly distributed random number Ui ∼ [0, 1].
while Ui > Pj do
j = j + 1.

end while
Set X̃i = Xj and W̃i = 1/N .

end for

Algorithm A.2 Residual Resampling Algorithm

First Step: Generate deterministic sample (sample one)
for 1 ≤ i ≤ N do
Ñi = floor(N ∗Wi).

end for

Set sample size R =
N∑
i=1

Ñi.

Repeat the i-th particle with Ñi times.
Second Step: Generate random sample (sample two)

Set Ŵi = Wi −N−1Ñi.
Normalized Ŵi to obtain W̃i.
Multinomial Sampling with {Xi, W̃i}Ni=1, and sample size N −R.

Third Step:
Merge sample one and sample two, and set final W̃i = 1/N .
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Algorithm A.3 Stratified Resampling Algorithm

Initialize CDF: obtain {Pi}Ni=1, where Pk =
k∑
i=1

Wi.

for iteration 1 ≤ i ≤ N do
Generate an uniformly distributed random number Ui ∼ [ i−1

N
, i
N

].
while Ui > Pj do
j = j + 1.

end while
Set X̃i = Xj and W̃i = 1/N .

end for

Algorithm A.4 Systematic Resampling Algorithm

Initialize CDF: obtain {Pi}Ni=1, where Pk =
k∑
i=1

Wi.

Generate an uniformly distributed random number U ∼ [0, 1
N

].
for iteration 1 ≤ i ≤ N do

Generate Ui = (i− 1)/N + U .
while Ui > Pj do
j = j + 1.

end while
Set X̃i = Xj and W̃i = 1/N .

end for

Algorithm A.5 Branching Resampling Algorithm

for iteration 1 ≤ i ≤ N do
Generate an uniformly distributed random number Ui ∼ [0, 1].
Generate integer part of Wi : [Wi].
Generate fraction part of Wi : {Wi} = Wi − [Wi].
if Ui < {Wi} then

Xi will be repeatedly selected [Wi] times in {X̃i}Ni=1.
else
Xi will be repeatedly selected [Wi] + 1 times in {X̃i}Ni=1.

end if
end for
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Appendix B. Parameter Choosing for Calculation of Real-

ized Volatility via Nonparametric Methods

Parameter choosing for nonparametric methods is through signature plot. Signa-

ture plot developed by Andersen et.al (2000) displays the sample average realized

variance across n days (often one year or one month), as a function of differ-

ent sampling frequencies. Payseur (2007) uses the concept to help choose proper

parameters. Instead of sample average realized variance across n days, realized

variance calculated from one day’s data is plotted, as a function of different value

of parameters. Reasonable values of parameters are chosen when variability of

estimations becomes stable. There are some examples using Payseur’s method.

Figure B.1 is signature plot for realized volatility estimations by Classical Real-

ized Method as a function of sub-sampling frequency. Figure B.2 is signature plot

for realized volatility estimations by Two Timescales Method as a function of sub-

sampling frequency. Figure B.3 is signature plot for realized volatility estimations

by Kernel Method (Barlett kernel) as a function of lag parameter. The realized

volatility is the average of estimations when their values become stable.
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Figure B.1. Signature Plot for Classical Realized Method
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Figure B.2. Signature Plot for Two Timescales Method
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Figure B.3. Signature Plot for Barlett Kernel Method
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