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Abstract 

The appearance of high-throughput experimental techniques to 

measure biological data in recent decades gives birth to Systems 

Biology which studies the emergent properties of biological systems by 

mathematical modelling. 

The most ubiquitous structure in biological systems is the network 

structure. Among different biological networks, a particular important 

one is the metabolic network consisting of all the biochemical reactions 

and compounds in a cell. Reconstructed from the whole genome of a 

cell, the so-called genome-scale metabolic network successfully 

describes the cellular metabolism. 

A fundamental computational framework applied to metabolic 

networks is the flux balance analysis (FBA) derived from the steady-

state assumption. In FBA, the metabolic flux distribution, which is the 

vector containing all reaction rates in a metabolic network, can be 

obtained from solving a simple linear program given the stoichiometric 

information of reactions and a biological objective for optimization. 

Metabolic pathway analysis (MPA) is a computational technique 

relevant to FBA to analyze metabolic pathways in metabolic networks. 

The first mathematically defined metabolic pathway, elementary flux 

mode (EFM), has theoretical as well as practical importance. One 

significant role of EFMs is that every flux distribution can be 

decomposed into a set of EFMs and a number of methods to study flux 

distributions originate from it. Yet finding such decompositions requires 
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the complete set of EFMs, which is intractable in genome-scale 

metabolic networks due to combinatorial explosion. 

In this research, we propose an algorithm to decompose flux 

distributions into EFMs in genome-scale networks. It is an iterative 

scheme of a mixed integer linear program. The algorithm is also able to 

approximate the EFM of largest contribution to an objective reaction in 

a flux distribution. 

Complimentary to existing methods, our algorithm is capable of 

finding EFMs of flux distributions with complex structures, closer to the 

realistic case in which a cell is subject to various constraints. Our 

algorithm is first applied to study the growth of Escherichia coli (E. coli) 

under simple growth condition and we find that the employment of 

different EFMs is highly dynamic and sensitive to growth condition in 

order to achieve an optimal state of metabolism. This suggests a possible 

reason for the enormous redundancy of EFMs consuming the same set 

of uptake substrates and producing the same set of metabolites. A case 

of growth of E. coli in the Lysogeny broth (LB) medium in which the 

situation is complicated by the presence of various carbon sources is 

simulated and studied via our algorithm. Essential metabolites and their 

syntheses are located. Information on the contribution of each carbon 

source not obvious from the apparent flux distribution is also revealed. 

Finally, we apply our algorithm to analyze a real experimental flux 

distribution in mouse cardiomyocyte. Results consistent with literature 

are obtained. Interestingly, a mode of oxidative phosphorylation 

uncoupled from adenosine triphosphate (ATP) synthesis is discovered 

and this is not obvious from the flux distribution. 
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In conclusion, the algorithm can facilitate MPA in genome-scale 

metabolic networks. It provides an analytic method that prepares for the 

future breakthrough in experimental techniques to measure in vivo 

fluxes in a huge scale. One of the future directions is the improvement, 

refinement and further applications of the algorithm. Another possibility 

is the development of a more general algorithm to decompose a flux 

distribution into a set of EFMs with respect to a given optimization 

objective in a genome-scale metabolic network. Also, in the future, by 

further case studies and evaluations of different schemes for 

decomposition, a well-structured methodology may be established to 

analyze flux distributions in different situations as thorough as possible 

by their decompositions into EFMs. 
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Chapter 1 Introduction 

 

 

The appearance of high-throughput experimental techniques in the 

recent several decades gave birth to different „omics‟ studies in biology, 

which analyze biological objects of interest with large-scale data. For 

example, genomics studies the genome of an organism by genome 

sequencing; transcriptomics investigates regulatory relations between 

transcriptomes by DNA microarray experiment; proteomics examines 

protein interactions by ChIP-chip experiment; metabolomics profiles 

metabolites by mass spectrometry (MS) and nuclear magnetic resonance 

(NMR), etc. [DeK06]. 

Since the last two decades, various large-scale data have been generated 

and become accessible to researchers through public online databases. 

Traditional methods are insufficient to extract useful information and build 

up biological knowledge from such a large amount of data. Instead, different 

computational approaches are adopted to cope with the scale of data. 

Systems biology is the paradigm to study the emergent properties of 

biological systems by integrating the huge amount of data, rather than to 

traditionally study the function of an individual entity [Vid04]. 

The most ubiquitous structure in biological systems is the network 

structure. For instance, the transcription of genes is governed by the 

transcriptional regulatory network behind or the gene regulatory network on 

the gene level; the metabolism in a cell is always described by a network 

structure called metabolic network; the signal transduction in a cell is 
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carried out by its signaling network. With these networks accompanied by 

appropriate computational or mathematical models, quantitative analysis 

can be performed. 

This research project focuses on the metabolic pathway analysis (MPA) 

in metabolic networks. Before stating the research objectives, these 

concepts and the relevant research challenges are briefly introduced. 

 

1.1 Metabolic Networks 

Proteins are produced from genes in organisms and they are essential for 

lives. All living organisms maintain lives by performing a large number of 

biochemical reactions. The most obvious is the respiration in cells 

generating energy in a form that cells can utilize to perform other important 

tasks. Almost all such biochemical reactions need enzymes, the most 

important type of proteins produced from organisms‟ genes. This stresses 

the essentiality of genes to an organism. 

Metabolism refers to all biochemical reactions that occur in organisms. 

It is essential for the maintenance of life and performance of life activities, 

including growth, response to environment, reproduction, etc. All the 

compounds involved in these biochemical reactions are called metabolites. 

Together, the set of all metabolites and biochemical reactions form a 

metabolic network. In fact, it can be thought of the graphical representation 

of metabolism. The nodes are metabolites and the edges are reactions 

between metabolites. A more refined representation is a bipartite graph in 

which the first type of nodes represents metabolites, the second type 

represents reactions [Alm07]. An arc going to a reaction node from a 
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metabolite node means the metabolite is a reactant in the reaction and an arc 

from a reaction to a metabolite means the metabolite is a product in the 

reaction. Reaction rates in metabolic network are called metabolic fluxes. 

Figure 1.1 shows a part of a metabolic network of Escherichia coli (E. coli) 

downloaded from Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(http://www.genome.jp/kegg/).  

 

Figure 1.1 Part of a Metabolic Network 

Part of a metabolic network of E. coli adopted from KEGG [Kan00]. 

http://www.genome.jp/kegg/
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The reconstruction of metabolic network lies in the recognition of 

biochemical reactions in the targeted cell. The present technology of 

reconstructing metabolic networks is fundamentally in silico [Edw00, 

Ree03, Fei07]. From the annotated genome of a certain organism, together 

with literature, metabolic database, all the gene products, mainly enzymes, 

possibly participating in metabolism are extracted. The reactions mediated 

by them and the metabolites involved are compiled as a large metabolic 

dataset. Metabolic networks reconstructed in this way are usually called 

genome-scale metabolic networks. Some of the genome-scale metabolic 

networks reconstructed by the Systems Biology Research Group in the 

University of California, San Diego are available online 

(http://bigg.ucsd.edu/). Different computational approaches had then been 

applied to study metabolism through genome-scale metabolic networks 

[Van06]. 

A widely accepted computational approach is flux balance analysis 

(FBA). It is a constraint-based optimization model relying on the 

stoichiometric information of chemical reactions and the mass balance 

principle in biochemistry. Since one metabolite is usually involved in more 

than one reaction, under the steady-state assumption that metabolite 

concentration remains unchanged, fluxes of different reactions are no longer 

independent, but satisfy a set of linear equations. Analysis of metabolic 

fluxes under this steady-state assumption alone is usually called metabolic 

flux analysis (MFA). However, such a system of linear equations is always 

underdetermined. Hence, with additional constraints and a biologically 

meaningful objective, a linear programming problem was formed and the 

optimal flux distribution was determined [Bon97]. This methodology is 
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referred as FBA. The dynamic simulation dFBA derived from FBA showed 

satisfactory agreement with experimental data [Var94], validating the 

approach to a certain extent. 

FBA has become the cornerstone in metabolic network analysis and 

various refinement and extension have been developed. For example, 

regulatory FBA incorporates effect of transcriptional regulation into FBA 

[Cov02]. Other examples include prediction of biological objective 

functions [Gia08] and prediction of flux bottlenecks in E. coli mutant strains 

[Her06] using bi-level optimization with FBA as the inner problem. 

 

1.2 Metabolic Pathway Analysis 

A series of biochemical reactions catalyzed by different enzymes form 

a metabolic pathway [Nel05], which is a part of a metabolic network. For 

example, in a cell, glycolysis (Figure 1.2), which is the process to release 

energy in the form of four adenosine triphosphate (ATP) molecules 

generated from one glucose molecule and two ATP molecules, is an 

important example of metabolic pathways. There are ten reactions and 

eighteen metabolites involved. 

Corresponding to the definition of metabolic pathways in the 

biochemistry context, two major mathematical definitions of metabolic 

pathways have also been proposed under the steady state assumption. The 

first one is the elementary flux mode (EFM) proposed in [Sch94]. EFMs by 

definition are flux distributions satisfying the steady-state assumption with 

minimal sets of reactions. However, the set of EFMs for a metabolic 

network is always very large and it is not systematically independent, i.e., a 
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certain EFM can be represented as the positive sum of two others EFMs. 

Extreme pathways (EPs) had then been proposed as a smaller and 

systematically independent set of metabolic pathways [Sch00]. The set of 

EPs is always a subset of the set of EFMs. EFMs, however, seem to still be 

the most widely applied mathematical definition of metabolic pathways in a 

vast number of research (reviewed in [Dur09, Gag04, Lla10, Tri09b]). 

 

Figure 1.2 Glycolysis Pathway 

The glycolysis pathway synthesizing pyruvate from glucose, 

adopted from KEGG [Kan00]. 
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An important interpretation of EFMs is that every flux distribution can 

be decomposed as a positive sum of a subset of EFMs with the „no 

cancelation‟ property that all EFMs have a particular component being zero 

wherever the flux distribution has that component being zero [Sch02]. The 

„no cancelation‟ property is unique compared to other generating sets of the 

flux space like EPs and allows EFMs to answer questions regarding 

pathways producing or consuming specific metabolites [Lla10]. 

In many studies, flux distributions are analyzed by similar 

decompositions. Usually, such decompositions are chosen with respect to 

some optimization objectives. The first attempt is the α-spectrum to 

determine the range of attainable weights for each EP [Wib03]. This 

approach is also applicable to EFMs. Later, decomposing flux distributions 

with minimum sum of weights has been proposed [Schw05] and applied to 

study yeast glycolysis [Schw06]. Decompositions with respect to other 

objectives have also been adopted to investigate particular cases, for 

instances, maximum number of active EFMs [Noo07], minimum relative 

error [Wan07], maximum yield rate [Son09] and maximum entropy 

[Zha09b]. There are also other studies analyzing flux distributions by 

decompositions into EFMs e.g. [Kur07, Car09]. 

 

1.3 Challenge in the Computation of Elementary Flux Modes 

These approaches based on decomposing flux distributions into sets of 

EFMs, despite the insights they have provided, have only limited 

capabilities because the calculation always requires the complete set of 

EFMs in prior given a metabolic network, whose computation is 
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notoriously hard due to the combinatorial explosion when the network size 

grows. This drawback was first studied in [Kla02] and has been mentioned 

in many literatures, e.g. [Dur09, Tri09b, Yeu07]. Efforts have been put 

continuously to improve the computational speed and memory demand to 

compute EFMs, as discussed in Chapter 2. Despite the efforts, present 

algorithms still cannot cope with genome-scale metabolic networks 

reconstructed recently, usually consisting of at least a thousand of reactions 

and metabolites (e.g. [Fei07, Dua07]). This has motivated the present 

research. 

 

1.4 Research Objectives 

The aim of this research is to facilitate metabolic pathway analysis in 

genome-scale metabolic networks in which complete sets of EFMs cannot 

be found by existing algorithms. We in particular focus on EFMs that 

decompose a given flux distribution. There are two research objectives: 

(1) To devise an algorithm to decompose a flux distribution into a set 

of EFMs in a genome-scale metabolic network; 

(2) To analyze flux distributions in genome-scale metabolic networks 

by applying the algorithm to find decompositions into EFMs to 

gain new insight into cellular metabolism. 

 

1.5 Importance of the Research 

The two research objectives proposed are important in view of the 

following two aspects. Regarding the first research objective, it can 



Chapter 1 Introduction 

9 

facilitate the analysis of flux distributions by decompositions into EFMs, 

which has been found useful in the literature when applying to metabolic 

networks of small sizes but meanwhile has currently no corresponding 

method available in genome-scale metabolic networks. The first research 

objective will fill the research gap between the usefulness of the method and 

the lack of computational tool in genome-scale metabolic networks. Focus 

will be especially put on the computational bottleneck brought by the 

combinatorial explosion of the traditional methods, in which the full set of 

EFMs is required to be determined prior to the decomposition of a flux 

distribution into EFMs. This stresses the importance of the first research 

objective. 

As for the second research objective, analyzing genome-scale flux 

distributions in genome-scale metabolic networks is expected to bring new 

insights in biology. It is exactly what the purpose of the systems biology 

approach is, namely to study biology at a system level. With further efforts, 

these insights can result in new knowledge in biology. Also, the 

applicability of the devised algorithm can be examined through studies on 

real cases in biology. Hence, the second objective is also important since it 

attempts to fulfill the noble purpose of the research area, systems biology, to 

obtain biological knowledge at a system level. 

 

1.6 Scope of the Thesis 

The rest of the thesis includes six more chapters. 

In Chapter 2, a comprehensive literature review on metabolic networks, 

their reconstruction, metabolic pathway analysis and its development is 
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presented. 

In Chapter 3, a novel algorithm to decompose a flux distribution into a 

set of EFMs without finding the complete set of EFMs in prior is developed. 

It is an iterative scheme of a mixed integer linear program and guarantees 

certain nice properties of the decomposition. 

In Chapter 4, the algorithm proposed is validated by computing the 

EFMs in a sample network [Cov01] in which existing methods are also 

feasible. To further test the capability of the algorithm, it is applied to 

decompose flux distributions into EFMs in the genome-scale metabolic 

network of E. coli strain K-12 MG1655 iAF1260 [Fei07]. The results are 

compared with the computation of the currently best methods up to the best 

of our understanding. 

In Chapter 5, the algorithm is applied to investigate the growth of E. coli 

under two vastly different conditions, a glucose minimal medium and the 

Lysogeny broth (LB) medium, with a focus on the biological perspective. 

In Chapter 6, an experimental flux distribution of mouse cardiomycyte 

[VoP06] is analyzed by the algorithm with an emphasis on the 

approximation of the largest contributing EFM relevant to the function of 

the mouse cardiomyocyte. 

Finally, conclusions of the research and future work are given in Chapter 

7. 
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Chapter 2 Literature Review 

 

 

2.1 From DNA to Metabolism 

2.1.1 Gene and DNA 

DNA, deoxyribonucleic acid, is the basic unit which stores genetic 

information in all known forms of lives. It consists of a sequence of 

nucleotides, each of them containing one base out of four possible choices, 

described by A, C, G and T. The well-known DNA sequence refers to the 

sequence of these four letters. One of the most important functions of such 

DNA sequence is its interaction with RNA, called transcription. During 

transcription, a messenger RNA (mRNA) copies information of a strand of 

DNA sequence. Units of three bases, or triplets, on the mRNA form codons 

and are translated in turn into amino acids in the molecular factory, 

ribosome. This process is called translation. After that, a sequence of amino 

acids is formed and then folded according to physical laws to become a 

protein, which is vital for every life on the Earth. A gene, conceptually 

referring to a unit of heredity, was discovered to be physically a strand of 

DNA sequence used to produce a protein. It is the functional unit of DNA 

and genome is just the whole collection of genes in an organism [Gri08]. 
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2.1.2 Gene Expression and its Regulation 

Gene expression refers to the whole sequential processes by which a 

gene product, usually protein or RNA, is produced using the information in 

a gene. The two main stages of gene expression, as stated in the central 

dogma of molecular biology [Cri70], are firstly the transcription and 

secondly the translation mentioned above. In addition, there are other 

modifications near the two stages. For example, after transcription and 

before translation, mRNA usually splices to remove introns on it, which are 

sequences containing no information for protein synthesis [Twy03]. 

 

Figure 2.1 Processes in Gene Expression 

Process in gene expression including transcription, alternative splicing, 

translation and posttranslational modification, adopted from NIAAA 

[NIA08]. 
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Gene expression draws researchers‟ attention because not every gene is 

expressed equally probably and meanwhile not every organism expresses 

the same gene at the same level. The process of gene expression is different 

from species to species, strain to strain, and even cell to cell within a single 

multicellular organism [Twy03]. Jacob, Monod and Lwoff first noticed the 

existence of regulation mechanism in gene expression. They successfully 

manifested how gene expression was regulated and won the Nobel Prize in 

physiology or medicine in 1965 [Gri08]. 

Any step mentioned above during the gene expression process can be 

regulated. Among all the steps, the best studied one is the transcriptional 

regulation. Transcriptional factors (TFs), activated by phosphorylation, 

sometimes in response to extracellular stimuli, usually contain several DNA 

binding sites and bind to different genes to act as repressors or activators to 

repress or activate the transcription of certain genes (reviewed in [Kar94]). 

All regulation mechanisms can be formally described by a system with 

different states mathematically [Ros68] while the network indicating the 

interaction between different substances in regulation is the most widely 

accepted theoretical and graphical representation [deJ02]. For example, 

transcriptional regulatory network describes all the interactions between TFs, 

genes, RNA in transcription regulation. Basically, for any kind of 

regulations, all the substances, say TFs, are produced from genes at the very 

first step and all the species-specific characteristics, or heredity, are stored 

in genes [Bol02]. Hence, this starting from genes and ending at genes 

perspective has directed the development of gene regulatory network. 

Interactions in it may be explicit or implicit, showing the final influence 

between genes after considering all the regulation processes [Bra02]. 
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2.1.3 Regulation of Gene Expression and Metabolism 

The regulation mechanism is essential for life. It enables a cell to adapt 

to different external environment or stimulus [Kar94]. To perform different 

life activities, e.g. growth, respiration, reproduction, an organism depends 

on all the biochemical reactions taking place in it. The whole set of 

reactions is termed „metabolism‟. It is thought to be an important aspect of 

the phenotype of an organism. Metabolism is always described by a network 

called metabolic network, with its nodes being metabolites, i.e., the 

compound involved in reactions [Che09]. Most of these reactions, including 

those most important, are enzymatic reactions relying on the presence and 

the activity of enzymes while enzymes are proteins produced from genes 

with their production rate being controlled by the gene expression 

regulation. Meanwhile, as an inverse relation, some metabolites produced 

during metabolism also contribute to the regulation of gene expression 

[Cov01]. In conclusion, genes, proteins, metabolite are interrelated objects 

in molecular networks and regulation of gene expression, metabolism are 

highly related process in organisms. Figure 2.2 gives an example of the 

network hierarchy [Bra02]. 

 

2.2 Systems Biology 

The huge amount of objects and interactions being studied at the same 

time with an aim of a unifying framework give birth to systems biology, a 

new branch in biology in recent decades. In systems biology, biological 

systems, including the networks mentioned before, are modeled to be 
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qualitative or quantitative, deterministic or stochastic, discrete or continuous 

and of other system characteristics, built upon biological knowledge and 

experimental data, in particular data from high–throughput technologies 

lately [Kli09]. It boosts our biological knowledge to a system level. It brings 

insight to biomedical research. In the remaining of the chapter, previous 

researches related to metabolic networks, which are the objects of interest in 

our research, are reviewed. 

 

Figure 2.2 Example of Network of Three Levels 

The interactions between genes, proteins and metabolites shown 

in the network of three levels, adopted from [Bra02]. 
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2.3 Metabolic Networks 

Metabolic network of a cell describes all biochemical reactions within 

the cell. Mathematically, it is represented by a bipartite graph with two types 

of nodes being metabolites and reactions [Alm07]. Let R be the set of 

reaction nodes, M be the set of metabolite nodes and E be the set of arcs in 

the network. Then, the bipartite graph is given by ),,( EMR , where 

Erm ),(  for RrMm  ,  if and only if metabolite m is a reactant of 

reaction r and Emr ),(  if and only if metabolite m is a product of reaction 

r. Different attributes can be assigned to the nodes and edges. The most 

common are the reaction stoichiometry assigned to edges and the reaction 

rates assigned to reaction nodes, which are called „metabolic fluxes‟ or 

simply „fluxes‟. Reactions inside a cell are called internal or intracellular 

reactions while exchange reactions refer to the exchange of metabolites 

between a cell and its surrounding environment. 

Between the whole network and individual reactions, the important 

concept of metabolic pathway is used to represent a subset of reactions in 

the network acting collaboratively to fulfill a certain function. The studies 

on metabolic network can reveal the metabolism of cells, identify metabolic 

pathways, predict the behavior of mutants, etc. All of these possess great 

values in the field of biomedical research, metabolic engineering, etc. In this 

section, the experimental technologies, the development of modeling and 

analyzing metabolic network are reviewed. 

 

2.3.1 Experimental Technologies 

The two types of elements in a metabolic network are metabolites and 
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reactions. Hence two important measurements involved in experiments are 

values of metabolite concentration and metabolic fluxes. Metabolomics and 

fluxomics are the study of the whole profile of metabolite concentration 

[Fie02] and metabolic flux distribution [Sau04], respectively. The 

technologies applied are nuclear magnetic resonance (NMR) and mass 

spectrometry (MS) to label the pattern of carbon-13 (13C) [Sau06]. Later, 

the combination of gas chromatography (GC) and MS, abbreviated GC-MS, 

sometimes together with time-of-flight detectors (TOF), has allowed data 

generation of high throughput [Kel04]. By analyzing spectra obtained in 

experiments, relative ratios or absolute values can be found. For the detail 

of these experiments and the role of high throughput data in system biology, 

several reviews [Kel04, Sau04, Sau06, Fie02] are available. 

 

2.3.2 In silico Metabolic Network Reconstruction 

Metabolic networks used to be reconstructed only from biochemical 

data. After the completion of the genome sequencing for some 

microorganisms, for instances, the well-known E. coli and S. cerevisiae, 

genomic data has undertaken an important role in metabolic reconstruction 

[Edw00, Ree03, Fei07]. From the annotated genome of an organism, gene 

products, in particular enzymes, which are able to be produced from the 

genome, are identified. The possible reactions catalyzed by them are also 

found out from literature and enzyme databases. All reactions and 

metabolites involved together form a large dataset, which is the basis of the 

model. As the primary source of the data comes from genome sequence 

rather than in vivo experimental results, the model is in silico. Meanwhile, 
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since it accounts for all possible reactions reflected from the genome, the 

model is a genome-scale one. A variety of analysis can be applied to 

conduct various studies based on this large dataset. One of the most popular 

methods is introduced in the following section. 

 

2.4 Flux Balance Analysis 

It is difficult to accurately measure fluxes, especially intracellular fluxes. 

It is more difficult to make simultaneous measurement on a number of 

fluxes. To overcome the situation, the metabolic flux balance method is 

adopted based on the steady state assumption [Hor72, Red88]. It assumes 

metabolism is in a steady state in general with constant flux values and 

constant metabolite concentrations [Hei77]. By this, the flux balance 

equation can be derived as below: 

 

Let nm

ijS  RS ][  be the stoichiometric matrix, with entries given: 

1. If the number of metabolite i consumed in reaction j is k , then 

kS ij  . 

2. If the number of metabolite i produced in reaction j is k , then 

kSij  .  

3. If metabolite i does not participate in reaction j, then 0ijS .  

Let jv  be the flux of reaction j , ix  be the concentration of metabolite i. 

Then, 


j

jij
i vS

dt

dx
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By the steady state assumption, we have the flux balance equation: 

 0
j

jij
i vS

dt

dx
 

for all metabolites i. It can be written in matrix form: 

0Sv   

where T

nvv ][ 1 v  is the flux vector. 

In the stoichiometric matrix, columns for intracellular reactions must 

contain both positive and negative entries while each column for each 

exchange reaction by convention contains only one non-zero entry of „ 1 ‟ 

for the particular metabolite being exchanged. The upper half of Figure 2.3 

shows an example of transforming chemical equations into stoichiometric 

matrix [Ram09]. The first two columns stand for intracellular reactions and 

the last five for exchange reactions. The rows stand for the five metabolites 

A, B, C, D, and E. 

 

Figure 2.3 Steps in Flux Balance Analysis. 

The basic steps in FBA, adopted from [Ram09]. 
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As seen in Figure 2.3, the system of linear equations is underdetermined 

and it is also the practical situation. To estimate the whole flux profile, 

upper and lower bounds of fluxes are determined first. Upper bounds are 

provided by enzyme capacity data while lower bounds, zero for irreversible 

reactions and negative for reversible ones, are obtained from the knowledge 

of thermodynamics [Pri04]. Biological objective functions are imposed to 

find optimal solutions from the feasible regions [Bon97]. The earliest used 

objective is the maximization of growth rate, or biomass synthesis and later, 

adenosine triphosphate (ATP) production, nicotinamide adenine 

dinucleotide phosphate (NADPH) production, the square sum of flux values 

and their combinations have been proposed [Sch07]. The lower half of 

Figure 2.3 shows an example of the procedure to estimate the fluxes. This 

whole linear programming (LP) approach is called „Flux Balance Analysis‟ 

(FBA) today. It is the most common constraint-based analysis of metabolic 

network. LP is a well-studied problem and its structure is clean. Solutions 

are easy to obtain by well-known algorithms like simplex and barrier. 

The simplicity and linearity of FBA make additional models and 

constraints easy to be incorporated. Also, different kinds of studies can be 

performed under this simple framework. Some of the important 

developments are introduced below. 

 

2.4.1 Dynamic Simulations 

An earlier extension of FBA was the dynamic FBA (dFBA) simulating 

the growth of E. coli [Var94]. dFBA divides a duration into a large number 

of small time steps. In each time step, a flux distribution is calculated by 



Chapter 2 Literature Review 

21 

FBA and is used together with ordinary differential equations to update the 

concentrations of metabolites which then influence the fluxes calculated in 

the next time step. 

Noticing the above dFBA is static optimization-based, with the same 

steady-state assumption, a dynamic optimization-based problem has been 

formulated to simulate the diauxic growth of E. coli on glucose and acetate 

medium [Mah02]. With additional constraints on the rates of change of 

fluxes, both dynamic and static optimization-based dFBA are performed to 

compare their results. 

 

2.4.2 Mutant Studies 

For a strain of a species, especially microorganism which evolves 

quickly, computational method based on FBA can give valuable insights to 

the mutants of the strain. Usually in a mutant, some genes are mutated or 

can be virtually thought as deleted and this is sometimes called genetic 

perturbations. By constraining the flux of the reaction catalyzed by the 

respective enzyme to be zero, the flux distribution of a mutant can be 

estimated by FBA [Edw99]. From a biological intuition that the changes 

between an original strain and its mutant should be minimized, MOMA, a 

quadratic programming problem (QP) and ROOM, a mixed integer linear 

programming problem (MILP) were formulated to predict mutants‟ 

structures by minimizing the total flux change [Seg02] and the number of 

fluxes constrained to be zero [Shl05], respectively. As a reverse problem, 

Optknock, a bilevel programming problem (BLP) is proposed to find the 

best gene deletion strategy given the objective of minimizing the fluxes 
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producing certain compounds [Bur03b]. 

 

2.4.3 Multiple Optimal Phenotypes 

Multiple optimal solutions giving the same optimal objective function 

value often appear. Biologically, this situation can be comprehended as the 

existence of silent phenotypes [Raa01]. A first attempt to enumerate all the 

optimal solutions was made in 2000 [Lee00]. The enumeration is performed 

by a recursive MILP. Then an application on the in silico model of E. coli 

found certain properties across these multiple optima and some are matched 

with other experimental data [Ree04]. 

 

2.4.4 Additional Constraints 

The basic equality constraints in FBA are actually the mass balance 

constraints, i.e. zero changes of mass for intracellular metabolites. 

Researchers keep exploring constraints from other aspects to refine the 

feasible region. It also helps to eliminate biologically unrealistic optima. 

Two first important additional constraints are the enzyme capacity which 

estimates the upper bounds of reactions and the reversibility of reactions 

determined by thermodynamic analysis [Pri04]. The incorporation of 

regulatory constraints [Cov01, Cov02, Cov03], based on the genome-scale 

regulatory network, also brings insights to metabolic network. Explicit 

thermodynamic constraints are added by considering the free energy in the 

loops of reactions with the cost of non-linearity of the feasible region 

[Bea02]. In the paper, an analogy to the Kirchoff‟s law in Electricity is 
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given in which the traditional mass balance is analogous to the junction law 

while the proposed energy balance is analogous to the loop law. Attempts to 

incorporate metabolite concentrations into FBA were also made [Hop07]. 

Recently, with the awareness of traditional FBA being flux or reaction-

centered, flux sum analysis is proposed to consider the maximum and 

minimum absolute fluxes allowed for individual metabolites as 

complementary metabolite-centered constraints [Chu09]. Other 

modifications include establishing the stoichiometric matrix by carbon mole 

balance rather than mass balance [Jia07], locating a unique solution in FBA 

from a geometry analysis of the solution space [Sma09], etc. 

 

2.4.5 Network Properties 

Different analytic techniques related to FBA on the properties of 

metabolic networks have also been developed, including random sampling, 

flux variability, flux coupling and metabolic pathway analysis (listed in 

[Dur09]). 

In the random sampling analysis, feasible flux distributions are 

randomly sampled and the distribution for a certain flux is fitted with a 

curve [Alm04]. Then by defining a specific measure on the means of fluxes 

to check their significance, a high-flux backbone of the metabolic network 

can be found. 

The flux variability analysis reveals the ranges of flux values that are 

able to give the same optimal objective value in FBA [Mah03]. It first finds 

the optimal solution. Then the constraint of objective value equal to the 

optimal one is imposed. By minimizing and maximizing each flux as an 
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objective respectively, the variability of each flux is found. 

The flux coupling analysis finds the pairwise coupling relations between 

fluxes by examining the zeros and non-zeros in the solutions of an LP based 

on FBA [Bur04]. 

For metabolic pathway analysis, due to the large quantity of research 

conducted and an intended focus on it, it is separately reviewed in section 

2.5. 

 

2.4.6 Reverse Engineering from Experimental Data 

The research based on genome-scale in silico models begins with 

different additional constraints and additional analysis on the model to gain 

insightful predictive information. Such information is meaningless without 

the support of experimental facts. To gain more insights from the available 

experimental data, computational methods directly accounting for the 

difference between in silico calculation and in vivo data, or reconciling the 

data into a model are developed. Below are some of these methods based on 

FBA. 

One of the important while arguable basis of FBA is the assumed 

optimality of metabolic flux distribution with respect to a certain objective 

function, which is based on the theory of evolution. ObjFind is a bi-level 

programming problem (BLP) first developed to find the most consistent 

linear objective function given a set of experimental fluxes [Bur03a]. The 

inner problem is the usual FBA with the objective being a linear 

combination of fluxes, where the coefficients jc  in the combination are 

determined by the outer problem to minimize the sum of squares of the 



Chapter 2 Literature Review 

25 

difference between the experimental data and the optimal solution in the 

inner problem. The solution technique lies on transforming the problem into 

a single level non-linear problem by applying strong duality theorem and 

adding the dual constraints of the inner LP. 

Recently, BOSS (biological objective solution search), another BLP to 

predict objectives from experimental flux data has been formulated [Gia08]. 

The predicted objective is not limited to a linear combination of the existing 

reactions, but can also be a new reaction with arbitrary stoichiometry on the 

existing metabolites. The effectiveness of the method is validated by 

predicting the objective of maximum growth rate in S. cerevisiae even when 

the biomass synthesis reaction is removed but the limitation comes from 

practical implementation due to the high non-linearity and non-convexity of 

the algorithm [Gia08]. 

In addition to predicting objectives, experimental flux data has also been 

used to identify the set of metabolic reactions in vivo from the large set in 

silico [Her06]. The algorithm used is called OMNI (optimal metabolic 

network identification). It is also a BLP with FBA as the inner problem and 

the outer problem determining which reactions are included in the network 

by minimizing the discrepancy between experimental flux data and the 

optimal flux distribution given by the inner problem. The algorithm finds 

the bottleneck reactions in the in silico model of E. coli. When the reactions 

are deleted, the model gives good prediction matching the experimental data 

well [Her06]. 

Experimental data of rates of change of metabolite concentration has 

also been reconciled into metabolic network model. In [Rag03], rates of 

change of metabolite concentration can be nonzero in contrast to the mass 



Chapter 2 Literature Review 

26 

balance in usual FBA. By solving a BLP, intracellular fluxes can be 

determined. The inner problem resembles FBA with constraints 0
j

jijvS  

relaxed to i

j

jij rvS  , where ir  is the variable for the rate of change of the 

i-th metabolite concentration. The outer problem minimizes the sum of 

discrepancies between data and all ir . 

From above, it is seen that BLP is a fairly popular method effective to 

reconcile data into existing model and extract information from data with 

assumed models. 

 

2.5 Metabolic Pathway Analysis 

Metabolic pathway is an important concept in metabolic network. The 

major research conducted concerns the discovery of metabolic pathway. 

Before the genome-scale in silico model appeared, pathways can only be 

discovered by experimental means. Different computational approaches, 

however, have been developed today. They can be divided into two 

categories, path-finding and stoichiometric approaches [Pla08]. 

 

2.5.1 Path-Finding Approaches 

Path-finding approaches typically enumerate all paths from a huge 

database of annotated genomes, enzymes, reactions and metabolites, for 

example, PathFinder [Goe02] and PathMiner [McS03]. These 

enumeration methods encounter the problem that the number of possible 

paths is too large for a systematic analysis due to the combinatorial nature 

of the composition of paths [Kuf00]. For more biologically meaningful 



Chapter 2 Literature Review 

27 

paths, connectivity of metabolite nodes, a network property is considered 

[Cro05]. Connectivity in graph theory is the number of edges connected to a 

node, so it describes the number of reactions that a metabolite participates in. 

Methods have been developed to find paths minimizing the connectivity of 

the metabolites involved [Cro06, Pla09a]. These methods yield much better 

results. 

 

2.5.2 Stoichiometric Approaches: Elementary Flux Modes 

As noted in the name, stoichiometric approaches make use of the 

stoichiometric information in chemical equations. An earlier stoichiometry 

method is the elementary flux mode (EFM), or simply elementary mode 

[Sch94]. Mathematically, the feasible solution space in FBA is a convex 

polyhedral cone. By convex analysis, if we treat a reversible reaction as two 

reactions with non-negative fluxes, then every feasible solution can be 

represented as the non-negative sum of the extreme rays of the convex 

polyhedral cone. These rays define EFMs and they are pathways in 

metabolic networks. EFMs satisfy the property of genetic independence, or 

called non-decomposability or elementarity. This means an EFM cannot be 

decomposed as the sum of two other flux modes whose reactions with non-

zero fluxes are subsets of the reactions with non-zero fluxes in the EFM. 

Practically, EFMs have been applied to a variety of studies: investigating 

network structures and robustness [Ste02], dynamic properties of pathways 

[Ste07], pathway efficiency [Car07] and modularity [Yoo07], exploring new 

pathways [Sch99, deF09b] and hence suggesting rational strain design 

[Kla04, Tri08 Tri09a], predicting mutants‟ behavior [Zha09a], identifying 
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interactions with other networks [Kla06], etc. (reviewed in [Dur09, Gag04, 

Lla10, Tri09b]). 

 

2.5.3 Stoichiometric Approaches: Extreme Pathway 

In the set of EFMs, a certain EFM can virtually be the combination of 

other EFMs when the decomposed forward and backward reactions of the 

same reversible reaction can cancel out each other [Pap04], i.e., when they 

are transferred back to the original flux space. As a complementary 

definition, extreme pathway, abbreviated as EP, is defined to be a basis of 

the convex flux cone that cannot be decomposed into the non-negative sum 

of other convex bases [Sch00]. Hence the number of extreme pathways is 

always no larger than that of elementary modes. Figure 2.4 [Pap04] shows a 

clear distinction between two definitions. EIMo 4 in Figure 2.4b is the 

resultant of ExPa 1 and ExPa 2 in Figure 2.4c [Pap04].  

 

Figure 2.4 Elementary Modes and Extreme Pathways 

(a) Sample Network (b) Elementary Modes (c) Extreme Pathways [Pap04] 
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2.5.4 Flux Distributions Composed of Metabolic Pathways 

An important interpretation of EFMs is that every flux distribution 

T
nvv ][ 1v  can be decomposed as a positive sum of a subset of EFMs 

  }{ 1

T

inii ee e  with the „no cancelation‟ property that all je  have a 

particular component being zero wherever v has that component being zero 

[Sch02]. That is, 

0  ,  j

j

jj ww ev  and )()( jZZ ev   for all j, 

where jw  is the weight for je  and }0|{)(  iviZ v  is the index set for the 

zero components of v. The „no cancelation‟ property is unique compared to 

other generating sets of the flux space like EPs and allows EFMs to answer 

questions regarding pathways producing or consuming specific metabolites 

[Lla10]. 

In many studies, flux distributions are analyzed by similar 

decompositions. Because such decomposition is in general not unique, a 

particular decomposition is usually chosen with respect to an optimization 

objective. The optimization problem can be stated as follows: 

 wfmin  

subject to vEw   

0w   

where  KeeE 1  is the matrix with all EFMs as its columns; 

 TKww 1w  is the weight vector for EFMs;  wf  is the objective 

function dependent on w. It is remarked that each je  is usually scaled to the 

largest possible fluxes given the upper bound for each reaction. The first 
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attempt is the α-spectrum to determine the range of attainable weights for 

each EP [Wib03]. This approach is also applicable to EFMs. Later, 

decomposing flux distributions with minimum sum of weights has been 

proposed [Schw05] and applied to study yeast glycolysis [Schw06]. 

Decompositions with respect to other objectives have also been adopted to 

investigate particular cases, for instances, maximum number of active EFMs 

[Noo07], minimum relative error [Wan07], maximum yield rate [Son09] 

and maximum entropy [Zha09b]. There are also other studies analyzing flux 

distributions by decompositions into EFMs e.g. [Kur07, Car09]. Table 2.1 

summarizes all different objectives. 

Objective Objective function  wf  Ref. 

α-spectrum iw  for each Ki ,,1  [Wib03] 

Min. no. of 

EFMs 



K
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each je  scaled to a particular uptake reaction. 

[Son09] 

Max. entropy 




K

i

ii

1

ln   

where i

u

iu
i w

v

e

s

s 
  and su  is the uptake 

reaction of the extracellular metabolite s. 

[Zha09b] 

Table 2.1 Different Objectives to Decompose Flux Distributions in Literature 
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2.5.5 Computation of Elementary Flux Modes 

The approaches mentioned in section 2.5.4 based on decomposing flux 

distributions into sets of EFMs, despite the insights they have provided, 

have limited capabilities because the calculation always requires the 

complete set of EFMs in prior given a metabolic network, whose 

computation is notoriously hard due to the combinatorial explosion when 

the network size grows. This drawback was first studied by Klamt and 

Stelling [Kla02] and has been mentioned in many literatures, e.g. [Dur09, 

Kla02, Lla10, Ter09, Tri09b, Yeu07]. 

To overcome the difficulty, efforts have been put to improve the 

computational speed and memory demand for computing EFMs. The first 

algorithm was presented by Schuster et al. [Sch96]. Improvements have 

then been made continuously by introducing the nullspace approach to 

reduce computational cost [Wag04,Urb05]; the binary approach to save a 

great deal of memory and allow bit operations [Gag04]; the elementary 

testing by matrix rank to accelerate computations [Kla05]; the bit pattern 

trees to hasten elementary testing [Ter06] and the latest recursive 

enumeration approach based on bit pattern trees [Ter08]. Software 

implementing these approaches has also been engineered, including 

METATOOL [Pfe99, von06], FluzAnalyzer [Kla03], CellNetAnalyzer 

[Kla07], EFMtool [Ter08]. Despite these improvements, these algorithms 

still cannot cope with genome-scale metabolic networks reconstructed 

recently, usually consisting of at least a thousand of reactions and 

metabolites (e.g. [Fei07, Dua07]). 

One characteristic in common of the mentioned approaches to calculate 
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EFMs is that they all compute the complete set of EFMs given the network 

stoichiometry and this is the major reason of the computational infeasibility 

in genome-scale networks because the size of the full set grows extremely 

fast due to combinatorial explosion [Kla02]. As an alternative, recently 

there have been attempts to find specific metabolic pathways from 

stoichiometric information by optimization modeling. They are able to cope 

with the scale and furthermore to identify pathways with specific 

requirements. Pathways matched with literature are found [Bea07] by 

balancing „low presence‟ compounds and minimizing the number of 

reactions involved and ATP consumed which is supported by evolution 

viewpoint. Later by further considering connectivity of compounds, linear 

pathways were located [Pla09b]. It is able to reconstruct most of the 

metabolic paths in E. coli. Also, the K-shortest EFMs in genome-scale 

networks have been calculated successfully by an optimization model 

[deF09a]. More recently, the K-shortest generating flux modes, a subset of 

EFMs, have also been investigated by a similar model [Rez11]. 

 

2.6 Summary 

The basic definition and representation of metabolic network have been 

introduced in this chapter. Among the existing methods to investigate it, 

FBA is one of the most fundamental while simple methods. Major studies 

based on FBA have been reviewed. 

A relevant and very important area studying the properties of metabolic 

networks is metabolic pathway analysis. Definitions, interpretations, 

applications as well as challenges in metabolic pathway analysis in 
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particular EFMs have been presented. It is remarked that while the 

computation of the full sets of EFMs has come to a bottleneck, recent 

attempts to find metabolic pathways by optimization models has been 

successful. This inspires the proposed research. Detailed reviews in 

metabolic pathway analysis are available [Lla10, Pla08, Pap04, Sch96, 

Sch00, Tri09b]. 
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Chapter 3 A Decomposition Approach 

 

 

3.1 Algorithm to Decompose Flux Distributions 

In this chapter, we present an algorithm to find a set of EFMs that 

decomposes a given flux distribution in a genome-scale metabolic network 

without finding the complete set of EFMs in prior. The algorithm solves 

optimization models recursively with data stored in a stack structure. Its 

implementation is highly dynamic. By editing the model being solved, a set 

of EFMs with certain properties can be found. In addition to the basic 

decomposition, the algorithm is applied to approximate EFMs with largest 

contributions to a particular objective reaction in a given flux distribution. 

 

3.2 Decomposability 

Suppose the stoichiometric matrix is given by 

   21|0
nnm

revirr
 RSSS  with 1nm

irr
RS  being the columns for 

irreversible reactions and 2nm
rev

RS  for reversible reactions. A flux 

distribution, or equivalently a flux mode, is a vector v satisfying the steady 

state assumption and the thermodynamic constraint regarding the 

reversibility of reactions, i.e. 
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where 
revv , 

irr
v  are the vectors for reversible and irreversible reactions 
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respectively. 0F  is called the flux space. Note that 0F  is inside the null 

space of 0S . 

An EFM by definition is a flux mode unable to be decomposed as the 

sum of two other flux modes, whose active reactions are proper subsets of 

the active reactions of that flux mode [Sch94]. By „active‟ reactions, we 

mean reactions with non-zero fluxes. The definition is also called non-

decomposability, elementarity or genetic independence in literature. 

Mathematically, a flux mode e is an EFM if there are no flux modes v1, v2 

such that 

21 vve   with )()( 1ve ZZ

  and )()( 2ve ZZ


  

where }0|{)(  iviZ v  is the index set for the zero components of v. If for 

a flux mode e, such v1, v2 exist, they are said to be bounded by e. The 

algorithm proposed exploits this decomposability. In what follows, first, an 

optimization model to check the decomposability of a given flux mode is 

formulated, followed by the algorithm integrating the model to decompose 

flux distributions. Then, modifications of the algorithm to approximate 

EFMs of largest contributions are presented. 

 

3.3 Decomposability Check 

In the optimization model formulated in this section, all reactions are 

assumed to be irreversible. This can be done easily in reality by replacing a 

reversible reaction by two irreversible reactions with stoichiometry negative 

to each other. Explicitly, we define a new stoichiometric matrix S by 

    nm
ijrevrevirr S  RSSSS ||  where 21 2nnn  . The corresponding 
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new flux space F  is given by 

nn
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n
irrrev

T

rev

rev

rev
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
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














 



 21 ,,,0,,|

 

Note that   revrevrev vvv . The conditions 0v   and 0
rev

T

rev vv  ensures 

that for each reversible reaction, only one of the entries in 
revrev vv ,  is non-

zero. 

In the model, the decomposability of a given flux mode  Tnvv 1v  

is determined by examining whether a flux mode  Tnpp 1p bounded 

by v can be found. First, p must satisfy the usual steady state condition: 

 0
1




n

j

jij pS  for mi ,,1  (3.1) 

Each reaction is assigned with a binary integer variable ja specifying the 

on/off condition by the following constraints: 

 jj pa   for nj ,,1  (3.2) 

 jjj aMp   for nj ,,1  (3.3) 

where M is a large positive number and 









0if0

0if1

j

j

j
v

v
 . If 0ja , from 

(3.3), we have 0jp  and thus reaction j is not involved, else if 1ja , 

from (3.2), we have 1jp  and reaction j must have a positive flux. 

Constraints similar to (3.2 – 3.3) have been employed in optimization 

models to find pathways before [Bea07, deF09am Rez10]. The difference of 

our approach lies in the introduction of j . If 0j , ja  and jp  are forced 

to be zero by (3.2 – 3.3). In other words, if 0jv , then 0jp . This 

implies )()( pv ZZ   which is a necessary condition for p to be bounded by 
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v. For the large number M, it can be interpreted as the greatest 

stoichiometric ratio permissible within the flux mode p, so it should be 

sufficiently large to allow all flux modes bounded by v to satisfy (3.2 – 3.3). 

To ensure p is non-trivial, i.e. has at least one non-zero flux, we have: 

 1
1




n

j

ja  (3.4) 

 For p to be properly bounded by v, the number of non-zero fluxes in p 

must be strictly less than the number of non-zero fluxes in v, so we have: 

 1
11




n

j

j

n

j

ja   (3.5) 

Finally, since all reactions are irreversible, all fluxes must be positive: 

 0jp  for nj ,,1   (3.6) 

Constraints (3.1 – 3.6) suffice to define p as a flux mode bounded by v. 

Hence any objective can work. We simply choose maximizing zero: 

 0max  (3.7) 

(3.1 – 3.7) form a mixed integer linear program that we call 

Decomposability Check (DC). Given a flux mode v, if any feasible solution 

can be found in solving DC, then v is decomposable. Otherwise, we 

conclude that v is an EFM. 

Different from an early study [deF09a], p is not required to be integers 

though this may lengthen computational time. In some of our investigations, 

fractional stoichiometric coefficients are involved, like the biomass 

composition, and turning these coefficients into integral will make them too 

large in magnitude and inconvenient for computation. 
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3.4 Decomposition of Flux Distributions 

The algorithm to decompose flux distributions is an iterative scheme of 

DC. Flux modes involved are stored in a stack structure. The 

decomposability of the given flux distribution is first examined by DC. If it 

is decomposable, the flux mode bounded by it returned by DC will be 

stacked up and become the current flux mode.  Else if it is non-

decomposable, an EFM is reached and it leaves the stack. The EFM found is 

then used to update each intermediate flux mode by subtracting a scalar 

multiple of the EFM. After updating, intermediate flux modes unable to 

contribute to the first flux mode are removed. This procedure is repeated 

until all flux modes leave the stack. A set of EFMs decomposing the flux 

distribution is then obtained. 

 

3.4.1 Algorithmic Steps 

Let N be the number of flux modes in the stack, K be the number of 

EFMs found. The s-th flux mode in the stack is denoted as sfm  with the 

flux of the j-th reaction being sjfm . kefm  and kjefm  are similarly defined 

for the k-th EFM. The steps of the algorithm can be summarized as follows. 

Step 0. Initialize with 1N , 0K  and vfm 1 . 

Step 1. Solve DC with Nfm  as input.  

If there is a feasible solution p, go to step 2. Otherwise, go to 

step 3. 

Step 2. Update N  by 1N . Set pfm N . Go to step 1. 

Step 3. Update K  by 1K . Set NK fmefm  . 

If 1N , terminate the algorithm, else go to step 4. 
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Step 4. For 1,,1  Ns  , update sfm  by K
K

ss r efmfm   

where  0min  KjKjsj
j

K
s efmefmfmr . Go to step 5. 

Step 5. Remove Nfm  from the stack.  

If 2N , for 1,,2  Ns  , check if )()( 1 sZZ fmfm

 .  

If not, remove sfm  from the stack.  

Set N  to be the current size of the stack. Go to step 1. 

An example of the algorithm can be found in A.1 in the appendices. The 

algorithm can be interpreted as decomposing fm1 repeatedly until fm1 

becomes an EFM. Step 1 checks the decomposability of the current flux 

mode fmN. If a feasible solution exists, the flux mode is not an EFM and it 

is replaced by a new flux mode bounded by it which is found by DC as 

indicated in step 2. The procedure is repeated until an EFM is reached.  

Once an EFM is found, in step 3, first we check whether it is the only 

flux mode in the stack. If it is, this means it is the last EFM and the 

algorithm is terminated. Otherwise, it will be used to update all flux modes 

in the stack as in step 4. Note that after each updating step, fm1 is the flux 

mode remaining to be further decomposed. This updating process serves to 

eliminate the largest possible fluxes able to be contributed by the EFM 

found in each preceding flux mode. The number of non-zero entries in each 

flux mode is diminished. This step can accelerate computations because 

there are less non-zero entries needed to be dealt with in each flux mode. In 

practice, step 4 can be efficiently performed by matrix multiplications. 

After updating flux modes, some intermediate flux modes may have 

positive entries that have become zero in fm1. The „no cancellation‟ 

property states that these flux modes cannot contribute to fm1 anymore, so 
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they are removed from the stack in step 5, which can be carried out by bit 

operations in practice. In fact, they can still contribute to v, but it turns out 

that step 4 and step 5, besides saving memory and computational cost, 

guarantee that the finally resulting set of EFMs has the four nice properties 

described in the following subsection. 

 

3.4.2 Properties of the Solution Found by the Algorithm 

The first two properties are the „denseness‟ and „uniqueness‟ of the 

solution. No EFM found is redundant and each EFM has a unique positive 

weight in the decomposition. The other two properties of greater theoretical 

interest are the linear independence and systemic independence of the 

solution set, i.e. the set of solution EFMs forms a linear basis as well as a 

convex basis for the flux distribution. These four properties, which follow 

from the fact that our algorithm decomposes a flux distribution by stepwise 

finding an EFM and reducing the flux mode, also hold in the original flux 

space 0F . They together give an exact role for each EFM in the solution. 

The cooperation between different pathways can be clearly revealed. This 

brings more exact biological interpretations. These properties are proved in 

the following theorem. 

 

Theorem. Given a flux distribution   Fv 
T

nvv 1 , the set of EFMs 

found by the proposed algorithm is a dense and unique decomposition of the 

flux distribution, i.e. each EFM has a unique positive weight in the 

decomposition. Furthermore, the set of EFMs is linearly and systematically 

independent. All of these properties also hold in the original flux space 0F . 
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Proof: 

The s-th flux mode in the stack is denoted as sfm  with the flux of the j-

th reaction being sjfm . Similarly, the k-th EFM found is denoted as kefm  

with the flux of the j-th reaction being kjefm . 

During the algorithm, whenever an EFM is found, in step 4, it is used to 

update other flux modes sfm  in the stack by K
K

ss r efmfm  , where 

 0min  KjKjsj
j

K
s efmefmfmr , in particular the first flux mode 1fm  

which in the very beginning is the original flux distribution. Hence, when 

the K-th EFM is found, we have: 

 



K

k
k

kr
1

11 efmfmv . (3.8) 

For 1,,1  KNs  , where KN  is the size of the stack when the K-th EFM 

is found, let 

  0minarg  KjKjsj
j

K
s efmefmfmj . (3.9) 

Note that K
sj  is the reaction whose flux in sfm  can be totally contributed 

by the EFM found. In step 5, intermediate flux modes unable to contribute 

to fm1 anymore are deleted, i.e. those flux modes sfm  not satisfying 

)()( 1 sZZ fmfm

 . Therefore, whenever 0Kjefm , 01 jfm  because: 

)()()()()( 321 KN ZZZZZ
K

efmfmfmfmfm 


 . 

This ensures 01 Kr  and 0
11
Kj

fm . Assume there are K0 EFMs in the final 

solution. From (3.8), finally we have 
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 



0

1
1

K

k
k

kr efmv  (3.10) 

Note that 
0Kefm  is just 1fm  at the last step of the algorithm and 10

1 Kr . 

This proves the denseness of the decomposition because each 01 kr .  

For the uniqueness of the weight of each EFM, consider again when the 

K-th EFM is found. After updating the flux mode in step 4, by definition 

(3.9), the flux of reaction Kj1  in the new 1fm  becomes 

   0
111111 1111
 KKKKKK KjKjjjKj

K

j
efmefmfmfmefmrfm . (3.11) 

From (3.11), it can be seen that step 4 will make at least one positive entry 

in fm1 ( Kj1 ) become zero. The optimization model used in our algorithm 

then ensures that the EFMs found later during the algorithm must have that 

entry ( Kj1 ) equal to zero due to )()( 1 kZZ efmfm

  for all Kk   while the 

present EFM has that entry being positive, i.e. 

 0
1
KKj

efm  and 0
1
Kkj

efm  for all Kk  . (3.12) 

To prove the uniqueness, assume there is another set of weights 

),,(
01 Kww  for the same set of EFMs such that 





00

1

1

1

K

k

k
k

K

k

kk rw efmefm . 

Then we have 

0efm 


0

1
1 )(

K

k
k

k
k rw . 

For each 0,,1 KK  , look at reaction Kj1 : 

 0)()(
1

1
1

1
1

0

1
 



K

k
kj

k
k

K

k
kj

k
k KK efmrwefmrw  (3.13) 

The first equality results from (3.12) since 0
1
Kkj

efm  for all Kk  . 
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For 1K , since from (3.12), we have 01
11


j
efm , together with (3.13), we 

have  

1
111

1
11 0)( 1

1
rwefmrw

j
  

When 2K , we have  

0)()()()( 2
1

2
1

2
1

2
1 2

2
122

2
121

1
11

2

1

1 


jjj

k

kj

k
k efmrwefmrwefmrwefmrw . 

This implies 2
12 rw  . Similarly, for 0,,1 KK  , by looking at reaction 

0

1
1
1 ,, Kjj   respectively, we have K

K rw 1  and hence the set of weights is 

unique. 

From above, it is obvious that the set of EFMs is linearly independent. 

Assume 

0efm 


0

1

K

k

kk . 

By looking at reaction 0

1
2
1

1
1 ,,, Kjjj   respectively as above, we have 

0ka  for all k and hence the set of EFMs is linearly independent. The set 

is also systematically independent, following from the linear independence 

because systematic independence requires that for any 1321 kkkk  , 

there does not exist 0,   such that  

321 kkk efmefmefm   . 

The linear independence naturally guarantees this property. 

In the original flux space 0F , for each pair of reactions representing for 

a reversible reaction in 0F , at most one of the reactions has non-zero flux. 

Define the function mapping the indices of reactions in 0F  and F : 

   21,,1,,1: nnnf    such that  









njnnnj

nnjj
jf

212

21

if

0if
. 
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Note that  Kjf 1  are distinct for all 01 KK   as 0,, 
revK

T

revK efmefm  

holds for all EFMs. Hence, the condition similar to (3.12) holds in 0F : 

  








njnn

nnj
efm

K

K

jKf K

121

211

if0

0if0
1

 and   0
1
Kjkf

efm  for all Kk  .(3.14) 

From (3.14), exactly the same argument for the uniqueness, linear 

independence and the consequent systematic independence applies. For the 

„denseness‟, it is obvious that (3.10) still holds in 0F  with each 01 kr . □ 

There are two major differences of the proposed algorithm compared 

with previous optimization models to find pathways. First, it is an iterative 

scheme to solve optimization models instead of solving a single 

optimization model. Second, any feasible solution can finally become an 

EFM and optimality is not necessarily needed. Any optimization objective 

works. In what follows, we propose one for a specific application. 

 

3.5 Approximation of EFMs of Largest Contributions 

In flux balance analysis (FBA), cellular metabolism is assumed to 

achieve an optimal state with respect to an objective like the maximum 

growth rate and ATP production (reviewed in [Sch07]). 

Conversely, for a flux distribution (maybe experimentally measured, or 

simulated by methods other than FBA), if a biologically reasonable 

objective of the cell can be assumed, it will be insightful to decompose the 

flux distribution into EFMs that have considerable contributions to that 

objective. By „contribution‟, we mean the flux of the objective reaction 
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provided by an EFM in the flux distribution. Finding largest contributing 

EFMs can reveal principal operational modes in cells. We applied our 

algorithm to approximate such decompositions with only two modifications 

required. The first is the replacement of objective (3.7) by: 

 
0

max jp  (3.7‟) 

where j0 is the objective reaction that we are interested. The resulting 

solution flux mode then has the greatest flux at reaction j0. Nonetheless, the 

flux mode can possibly contribute little to fm1. This comes to the second 

modification which replaces constraint (3.3) by: 

 jjj afmMp 1'  for nj ,,1   (3.3‟) 

Here j  is replaced by fm1j. This takes the flux values of fm1 into account. 

Intuitively, the solution flux mode should have a better contribution because 

upper bounds for fluxes are not the same but proportional to the fluxes of 

fm1. In fact, the stepwise solution has maximum contribution to the 

objective reaction flux in fm1 among all flux modes bounded by fm1. This 

also forms the rationale of applying the algorithm to approximate EFMs 

with largest contributions: in each step, the best flux mode bounded by the 

current flux mode is found until an EFM is reached. Hence, it is a greedy 

approach. For the large number 'M , it should be chosen large enough to 

properly scale fm1 to allow all feasible flux modes.  

 

3.6 Implementations 

Both versions of the optimization model DC [version 1: objective (3.7) 

subject to constraints (3.1 – 3.6); version 2: objective (3.7‟) subject to 

constraints (3.1 – 3.2), (3.3‟), (3.4 –3.6)] are mixed integer linear programs 
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(MILPs). It can be solved efficiently by various software packages. ILOG 

CPLEX
®

 was used in all the investigations reported in this thesis. For the 

whole algorithm, all the data and operations other than solving optimization 

models were processed in MATLAB
®
. For hardware, all computations were 

performed in a computer with a 2.67 GHz CPU and 24 GB of RAM. 

 

3.7 Summary 

In this chapter, by exploiting the definition of non-decomposability, an 

optimization to check the decomposability of a flux distribution and an 

algorithm to decompose a flux distribution into a set of EFMs without first 

finding the complete set of EFMs have been devised. The set of solution 

EFMs found by the algorithm is dense, unique, linearly and systematically 

independent. A characteristic of the algorithm is that the elementarity of the 

flux modes found is independent of the optimality of the optimization model. 

This enables the algorithm to be applied to approximate EFMs of the largest 

contributions to a particular reaction of interest. 
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Chapter 4 Method Validation 

 

 

4.1 Introduction 

In this chapter, the algorithm proposed in Chapter 3 is applied to three 

metabolic networks of different sizes to test its capability. The first is the 

sample network originally used to demonstrate regulatory FBA [Cov01] and 

later applied to study α-spectrum [Wib03]. The full set of EFMs of this 

network of small size can be computed easily by existing methods. The 

second is the core metabolic network of E. coli strain K-12 MG1655 

iAF1260 [Fei07]. It is more realistic with a size considerably larger than the 

first one but the subset of all EFMs consuming certain substrate can still be 

computed. These two networks are used as benchmarks to examine the 

validity of our algorithm. 

Then, to highlight the usefulness of our algorithm complementary to 

existing methods, a computational experiment is conducted. Flux 

distributions of optimal growth rate subject to various substrate availability 

in the complete E. coli MG1655 iAF1260 metabolic network [Fei07] are 

generated and are used to compare the performance of our algorithm and 

EFMtool [Ter08], which is presently the most efficient algorithm to find full 

sets of EFMs up to the best of our understanding. 
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4.2 Benchmarks 

For each of the two networks for benchmarks, we first randomly sample 

2000 flux distributions [Alm04] and decompose them by the two versions of 

our algorithm. We then check whether the solutions are true EFMs that are 

able to be located by existing methods. For the approximation of EFMs of 

largest contributions, we choose the biomass production, or equivalently the 

growth rate, as the objective reaction. We check the rankings of 

contributions of the EFMs found by our algorithm among the complete set 

of EFMs. The sets of EFMs for the two networks will be calculated by 

EFMtool [Ter08] and the random sampling is implemented with the 

COBRA Toolbox [Bec07]. 

 

4.2.1 Test Procedure for Benchmarks 

The test follows the procedure below: 

1. Randomly sample 2000 flux distributions; 

2. Run our algorithm (version 1 and version 2); 

3. Check whether all solutions are true EFMs able to be found by 

EFMtool; 

4. For solutions from version 2, in each of the sample flux 

distributions, we check the ranking of the best contributing EFM 

in the solution as follows. Suppose the full set of EFMs is 

 Kkk ,,1|  eEFM  and the sample flux distribution is 

 Tnvv 1v . For each EFMe , compute growtherc e  where 

 0min  jjj
j

eevr . Note that ec  is the maximum possible 
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contribution to growthv  by e. Denote efm  the best contributing 

EFM in the solution with a weight w. The contribution by efm is 

growthefmw . Then the ranking of efm is given by the number of 

elements in the following set: 

 growthefmwcc  ee EFMe   and  |  

In other words, the number of different contributions larger than or 

equal to the contribution by efm. Also, the percentage difference 

of the contribution by efm to the contribution by the overall best 

contributing EFMe  is calculated: 

 
%100

)max(

)max(




e

e

c

cefmw growth
 

 

4.2.2 Sample Metabolic Network 

There are 20 reactions and 19 metabolites in the sample metabolic 

network [Cov01]. The information of the metabolic network is given in 

section A.1 in the appendices. The number of EFMs found by EFMtool was 

82, the same as in Wiback et al. [Wib03]. In that paper, an algorithm for 

extreme pathways was used, but since the authors had treated each 

reversible reaction as two irreversible reactions, the resulting set of 

pathways is in fact the set of EFMs [Lla10]. 

In average, version 1 of the algorithm took 5s to decompose a flux 

distribution and version 2 took 6s. It was verified that all solutions belong to 

the set of EFMs computed by EFMtool.  

For version 2, among the 2000 samples, EFMs of maximum 

contributions to growth rate in the flux distributions are the first EFMs 

calculated in 98% of the solutions. The corresponding percentage for 
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version 1 which does not optimize for any objective is only about 15%.  All 

other solutions by version 2 except one include EFMs of the second or third 

largest contributions. For each sample, the percentage differences between 

the best contributions to the objective in the solutions by both versions of 

the algorithm and the best contribution in the full set of EFM are calculated. 

The comparison between both versions shows that version 2 of our 

algorithm has a distinguishable power to find EFMs of best contributions 

(Table 4.1). 

Network Version Mean Median S.D. 

Sample Network 
1 -27.2% -28.5% 18.7% 

2 -0.3% 0% 2.3% 

Core E. coli Network 
1 -19.1% -8.9% 23.6 

2 -0.7% 0% 4.9% 

Table 4.1 Percentage difference of the contribution of the first EFM by the 

algorithm to the contribution by the overall best EFM in each sample. 

 

4.2.3 Core E. coli K-12 MG1655 iAF1260 Metabolic Network 

The core E. coli metabolic network contains 95 reactions and 72 

metabolites. The complete set of EFMs for the network is unable to be 

computed by EFMtool due to insufficient memory in the test computer. The 

available uptake substrates are then restricted to glucose, phosphate, CO2, 

H
+
, H2O, NH4 and O2 only. Over 100,000 EFMs were found by EFMtool. 

The number is comparable to previous studies with similar configurations 

[Kla02]. One issue complicating the computation is the fractional 

stoichiometry in the biomass reaction estimated from molecular content 
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[Fei07]. Magnitudes of coefficients in the reaction highly vary. The ratio of 

the greatest to the smallest is 840. 

In average, version 1 of the algorithm took 12s to finish and version 2 

took 18s. All solutions are verified to be true EFMs.  

For version 2, in the 2000 trials, the greatest contributing EFMs are first 

found in 97% of solutions. 80% of the remaining solutions contain EFMs 

whose contributions rank top 10% among all EFMs. This further confirms 

the utility of our algorithm, especially in view of the number of different 

possible contributions by all EFMs in each sample, which is over 7000 in 

average (Table 4.2). 

Network 
No. of  different 

contributions 

Percentile of the first EFM  

Version 1 Version 2 

Sample Network 32 0.7% 0.1% 

Core E. coli Network 7010 2.9% 0.2% 

Table 4.2 Average number of different contributions of all EFMs and average 

percentile of the first EFM by the algorithm in each sample. 

 

4.2.4 Conclusion on Benchmarks 

Benchmark results for the two networks with quite different sizes show 

that our algorithm is able to decompose flux distributions into sets of EFMs. 

Furthermore, it is capable of approximating the best contributing EFM with 

respect to a certain reaction and the success rate of finding the largest 

contributing EFM is significant. 
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4.3 Computational Experiment 

In cell culture experiments, minimal media containing one carbon 

source and necessary inorganic compounds only are often preferred due to 

the ease in analysis. Correspondingly, flux distributions of optimal growth 

rate simulating these cases consist of only few EFMs regardless of the 

network complexity. In this case, existing tools are able to find the set of 

EFMs that contributes to a flux mode by considering the subnetwork formed 

by the active reactions in the flux distribution (called subnetwork of a flux 

distribution for simplicity). Realistic metabolic fluxes are, however, shaped 

by factors like thermodynamics, gene regulation and in particular 

heterogeneous nutrients [Zam10]. Structures of flux distributions are thus 

more complicated and existing tools may not cope with them. To test the 

capability of our algorithm to analyze these cases, we perform a 

computational experiment in the complete E. coli K-12 MG1655 iAF1260 

genome-scale metabolic network. 

 

4.3.1 Complete E. coli K-12 MG1655 iAF1260 Metabolic Network 

The complete E. coli K-12 MG1655 iAF1260 genome-scale metabolic 

network reconstructed by Feist et al. [Fei07] is a huge network much more 

complex than the core one studied in section 4.2.3. There are 1039 

metabolites and 2382 reactions, of which 852 are reversible. After 

compartmentalization and transformation of each reversible reaction into 

two irreversible reactions, there are 3234 irreversible reactions and 1668 

metabolites, of which 299 are extracellular metabolites for uptake. The 

detailed information of the metabolic network is available [Fei07]. 
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4.3.2 Procedure of the Computational Experiment  

In each trial of the experiment, in addition to inorganic compounds 

necessary for growth, a random set of extracellular carbon sources is 

selected to be available for uptake and a flux distribution of optimal growth 

rate is determined by FBA. It is then decomposed by version 2 of our 

algorithm with the growth rate as the objective. Meanwhile, we try to find 

the complete set of EFMs of the subnetwork of the flux distribution by 

EFMtool. 

Let  nssS 1  be the stoichiometric matrix. Let carbonUT be the index 

set for the uptake reactions for extracellular carbon sources 

( 278carbonUT ). The steps for each trial of the test are as follows: 

1. Randomly select a number of k  carbon sources from carbonUT  to 

form the set select
carbonUT . 

2. Obtain a flux distribution  Tnvv 1v  of optimal growth by the 

following optimization model: 

 growthvmax   

 subject to  0Sv     

  10000  jv   for carbonj UT  

  10  jv   for select
carbonj UT  

  0jv   for 

select
carboncarbonj UTUT \  

3. Decompose v  by the version 2 of our algorithm with the growth 

rate as the objective. 

4. Assume without loss of generality that for nNj r 1 , 0jv  
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where rN  is the number of active reactions in v. The 

stoichiometric matrix of the subnetwork of v is given by 

 
rNssSv 1 . Examine whether EFMtool is able to find the full 

set of EFMs of vS  with all reactions indicated as irreversible 

reactions. 

The trials of step 1 to step 4 are repeated with for 270 , ,20 ,10 k  

(step 1). For each fixed k, the trials are repeated 10 times, i.e. ten different 

sets of carbon sources are randomly selected. 

 

4.3.3 Results of the Computational Experiment 

In the computational experiment, the number of active reactions Nr, 

partially reflecting the complexity of a flux distribution, increases with the 

number of carbon sources consumed Nc linearly (Figure 4.1). In general, 

when Nc ≥ 30, EFMtool is unable to find the full set of EFMs of the 

subnetwork of the flux distribution. In contrast, our algorithm succeeded to 

decompose every test flux distribution. 

In certain cases with large Nr in the flux distributions but a small number 

of contributing EFMs Nefm (<50) in the solution found by our algorithm, 

EFMtool is unable to find the sets of EFMs of the subnetworks while our 

algorithm can find EFMs decomposing the flux distributions in relatively 

short time (Figure 4.2, „+‟s with small Nefm). This corresponds to the 

situation in which a flux distribution having an enormous number of 

contributing EFMs can actually be represented as a convex sum of only a 

few of those EFMs. Our algorithm is very useful and efficient in this case. 
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Moreover, the memory demand is not expensive as the most complicated 

cases in the computational experiment can also be solved by our algorithm 

in a computer with 2 GB memory only. 

The complexity of our algorithm is also examined. The computational 

time increases with Nefm as well as Nr (Figure 4.2). Simple linear regression 

indicates a satisfactory linear relationship between the computational time 

and the product Nefm × Nr (R
2 

= 0.97, Figure 4.3). 

 

Figure 4.1 The number of active reactions against the number of 

consumed carbon sources in the test flux distribution. 

 „o‟ represents the case in which the set of EFMs of the subnetwork 

of active reactions can be calculated by EFMtool. „+‟ represents the 

corresponding case in which the set cannot be calculated by EFMtool. 
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Figure 4.2 The computational time of the proposed algorithm 

against the number of active reactions and the number of EFMs 

in the solution found. 

 „o‟ represents the case in which the set of EFMs of the subnetwork 

of active reactions can be calculated by EFMtool. „+‟ represents the 

corresponding case in which the set cannot be calculated by EFMtool. 

 

4.3.4 Remarks on the Computational Experiment 

The computational experiment has shown that our algorithm is more 

advantageous than existing methods in analyzing flux distributions with 

complex structures, which are closer to realistic cases in which a cell is 

subject to complicated factors. 

 

4.4 Conclusion 

In this chapter, we have demonstrated the ability of the proposed 

algorithm to decompose flux distributions and approximate EFMs with 

largest contributions to flux distributions in genome-scale metabolic 
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networks. In particular, it is more advantageous than existing methods in 

respect of finding EFMs of flux distributions with complex structures. We 

conclude that the proposed algorithm is able to be applied to analyze flux 

distributions in the genome-scale metabolic network in which the full set of 

EFMs is always intractable. 

 

 

Figure 4.3 Computational time against the number of solution 

EFMs multiplied by the number of active reactions. 

 „o‟ represents the case in which the set of EFMs of the subnetwork 

of active reactions can be calculated by EFMtool. „+‟ represents the 

corresponding case in which the set cannot be calculated by EFMtool. 
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Chapter 5 The Growth of E. Coli 

 

 

5.1 Introduction 

In this chapter, we apply the algorithm to the complete E. coli MG1655 

iAF1260 metabolic network [Fei07] to investigate the growth of E. coli. 

Different to section 4.3, we aim to look into the flux distributions from a 

biological perspective. First, flux distributions in a minimal medium with 

glucose as the only carbon source are simulated and analyzed by our 

algorithm. Second, a flux distribution simulating a much more complicated 

case of growth of E. coli on the Lysogeny broth (LB) medium [Bae06a, 

Bae06b] is studied in detail with our algorithm. 

 

5.2 Growth of E. coli on the Glucose Minimal Medium 

To simulate the flux distribution of growth, adenosine triphosphate 

maintenance (ATPM) cost, biomass composition and maximum uptake rates 

for glucose and oxygen, all experimentally determined in [Fei07], are 

adopted. ATPM is represented by a reaction in the model which hydrolyzes 

the high energy phosphate bond in ATP into adenosine diphosphate (ADP) 

and phosphate. It is the usual way to generate energy in most organisms. 

The flux value of ATPM can be interpreted as the production rate of extra 

ATP used for hydrolysis for purposes not shown in the model. Uptake 

conditions for the two cases of growth, aerobic and anaerobic growth, are 
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also provided [Fei07]. Based on the information, we first optimize for the 

growth rate to obtain in silico flux distributions for the two cases of growth. 

Then our algorithm is applied to decompose the flux distributions. Finally, a 

sensitivity analysis on how the uptake rate limits and the ATPM cost 

influence the cooperation of EFMs to maximize biomass production is 

performed by our algorithm. 

 

5.2.1 Aerobic Growth 

In the aerobic growth condition, glucose is the only carbon source with 

its uptake rate capped by 8 mmol gDW
-1

 h
-1

. The maximum oxygen uptake 

rate is 18.5 mmol gDW
-1

 h
-1

. Other ions and small molecules are also 

available for uptake. The ATPM cost is 8.39 mmol gDW
-1

 h
-1

.  The cost is 

imposed by setting the value as the lower bound for the reaction. 

With the biomass production as the objective reaction, after applying our 

algorithm to decompose the flux distribution for optimal aerobic growth, 

two EFMs were found. The first EFM is responsible for 84% of the biomass 

production and the second EFM is responsible for the rest of the growth and 

all ATPM. The two EFMs use nearly the same set of reactions. Each EFM 

has only one reaction different from each other. 

Since there is only glucose present in the medium as the single carbon 

source, the structures of the flux distributions generated are expected to be 

relatively simple. The small number of EFMs involved is thus not surprising 

in the light of the optimal nature of the flux distribution calculated. Since 

the only constraint on the flux distribution is the ATPM cost, the solution 

can be interpreted as first fulfilling the ATP requirement by an EFM which 
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is balanced in producing ATP and biomass, and then producing biomass by 

the most efficient EFM using the rest of the resources. 

 

5.2.2 Anaerobic Growth 

In the anaerobic case, all conditions remain the same except the oxygen 

uptake is prohibited. In the optimized flux distribution, four extracellular 

organic compounds, acetate, ethanol, formate and succinate, are produced as 

a result of fermentation. Again, application of our algorithm yielded two 

EFMs. This time the roles of the EFMs are more obvious. The first mode is 

responsible for biomass production only and the second mode, which is a 

mixed acid fermentation mode producing acetate, ethanol and formate, is 

responsible for the ATP maintenance only. 

 

5.2.3 Sensitivity Analysis 

The factors determining the optimal flux distributions in the two cases 

and the resulting decomposition into EFMs in the model include the ATPM 

cost, oxygen and glucose uptake rate limits. For example, if there is no 

ATPM cost, the first EFM in the previous aerobic case producing the 

majority of biomass will be adopted entirely as the flux distribution. In 

contrast, if the ATPM cost is too high, we can anticipate that a pathway with 

high efficiency for ATPM will be chosen and little biomass will be produced 

using the rest of the glucose and oxygen. By varying these coefficients and 

applying our algorithm, different modes of pathway cooperation can be 

revealed. 
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Figure 5.1 shows the result of sensitivity analysis by fixing the glucose 

uptake rate limit and varying the oxygen uptake rate limit and the ATPM 

cost. From the boundary of the scatter diagram, it can be seen that the 

maximum ATPM cost sustainable increases quite linearly with the 

maximum oxygen uptake rate. Although there are only five types of EFMs 

involved regarding what they consume and produce, the modes of their 

cooperation vary largely (Table 5.1). An interesting point during the analysis 

is that an optimal flux distribution is always composed of different 

suboptimal EFMs regarding their efficiencies in growth or maintenance. 

This highlights the importance of suboptimal pathways and suggests a 

possible reason for the high redundancy of pathways in organisms. Their 

cooperation can help the metabolism to best adapt to different 

environmental conditions. 
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Figure 5.1 Scatter diagram for different modes of cooperation between EFMs 

Different modes are plotted with different icons. The legend is given in Table 5.1. 

EFM  

ARG √   √  √   √  √  √  

ARM  √  √    √ √ √ √   √ 

ARGM   √   √  √ √    √ √ 

ANG     √       √   

ANM       √   √ √ √ √ √ 

Table 5.1 Legend for the different modes of cooperation in Figure 5.1 

„AR‟: aerobic; „AN‟: anaerobic; „G‟: growth; „M‟: ATP maintenance. 

For example, a tick in the box for „ARGM‟ means an aerobic EFM  

contributing to both growth and ATP maintenance is involved in that case. 
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5.3 Growth of E. coli on the Lysogeny Broth Medium 

The Lysogeny broth (LB) medium, or usually called Luria-Bertani 

medium, is one of the most common complex media used in bacterial 

growth. It is composed of tryptone, yeast extract and NaCl. In their studies, 

Baev et al. monitored the utilization of sugars, alcohols, organic acids 

[Bae06a] and amino acids, peptides, nucleotides [Bae06b] indirectly by 

transcriptional microarrays during the growth of E. coli MG1655 in the LB 

medium. Interestingly, during about 3 hour to 5 hour of fermentation, 

simultaneous assimilation of a set of carbon sources was observed [Bae06a]. 

Combining the result in Baev et al. [Bae06b], a large number of sugars, 

amino acid and other carbon sources were absorbed during the time period. 

We simulate a flux distribution describing the metabolism of E. coli under 

such conditions by optimizing the growth rate in FBA and allowing the list 

of carbon sources in Table 5.2 and some inorganic compounds for uptake. 

Maximum oxygen uptake rate (18.5 mmol gDW
-1

) and ATP maintenance 

cost (8.39 mmol gDW
-1

 h
-1

) under growth condition determined 

experimentally in Feist et al. [Fei07] are adopted. All maximum uptake rates 

of carbon sources are set to be 0.5 mmol gDW
-1

 h
-1

 because information on 

enzyme capacities is not given and under this constraint, the resulting flux 

distribution consumed all 25 carbon sources while a test on a range of 

values of maximum uptake rates (≤ 20 mmol gDW
-1

 h
-1

, randomly assigned 

to each source repeated for 100 times) does not show significant differences 

in the structure of the flux distribution. We denote the simulated flux 

distribution by f0 to avoid confusion. 
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Sugar  N-Acetyl-glucosamine (acgam) 

L-Arabinose (arab-L) L-Fucose (fuc-L) D-Galactose (gal) 

D-Glucosamine (gam) D-Mannose (man) Melibiose (melib) 

L-Rhamnose (rmn) Trehalose (tre)  

Sugar alcohol  D-Mannitol (mnl) Glycerol (glyc) 

Organic acid  D-Lactate (lac-D) L-Lactate (lac-L) 

Amino acid  L-Arginine (arg-L) L-Aspartate (asp-L) 

L-Glutamine (gln-L) Glycine (gly) L-Histidine (his-L) 

L-Methionine (met-L) L-Serine (ser-L)  

Nucleotide  Adenosine monophosphate (amp) 

Cytidine monophosphate (cmp) Guanosine monophosphate (gmp) 

Inosine monophosphate (imp) Uridine monophosphate (ump) 

Inorganic compound Cob(I)alamin Molybdate Phosphate Tungstate 

Ca
2+

 Cl
-
 CO2 Co

2+
 Cu

2+
 Fe

2+
 

Fe
3+

 H2O H
+
 K

+
 Mg

2+
 Mn

2+
 

Na
+
 NH4

+
 O2 SO4

2-
 Zn

2+
  

Table 5.2 List of extracellular metabolites available in the LB medium 

Abbreviations adopted from [Fei07] are written in brackets. 

 

5.3.1 Test of Growth by Individual Carbon Sources 

There are 493 active reactions in f0. To understand the complexity and 

the difference of f0 due to multiple sources, we examine whether there is 

any flux mode bound by f0 that is contributed solely by a single carbon 

source. Let  251 ,, CC C  be the index set of the uptake reactions of the 

25 extracellular carbon sources in Table 5.2. The flux mode with maximum 

sum of fluxes bounded by f0 contributed by each individual carbon source is 

found by solving the following optimization model for 25,,1 k : 
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 


n

j

jv
1

max   

 subject to  0Sv    

  0f0  v   

  0jv   for  kCj \C  

Surprisingly, only three non-zero flux modes (atpm1~3 in Table 5.3) 

consuming L-fucose, D-lactate and L-lactate respectively are resulted, each 

verified to be EFMs by EFMtool. They together provide the whole ATPM 

flux in f0 and no single carbon source is independently consumed for growth. 

Meanwhile, we test the ability of each carbon source to give non-zero 

growth rate independently by solving the following optimization model for 

25,1 k : 

 growthvmax   

 subject to  0Sv     

  00010  jv   for nj ,,1   

  0jv   for  kcarbon Cj \UT  

  10 
kCv  

It turns out that all carbon sources except L-histidine and L-methionine can 

generate growth independently. 

From these two results, we can conclude that first, more efficient growth 

can be achieved by the simultaneous assimilation of the carbon sources in 

Table 5.2 if they are the only sources available, rather than the assimilation 

of only a single source at a time. This provides a rationale for the switch of 

the mode of assimilation from a sequential one to a simultaneous one as 
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observed in Baev et al. [Bae06a]. Second, f0 cannot be simply decomposed 

into flux modes of individual carbon sources. This necessitates the use of 

our algorithm. 

FM Nr Nc ATPM GR FM Nr Nc ATPM GR 

f0 493 25 8.39 0.9975 gr11 422 12 0 0.0050 

atpm1 35 1 5.375 0 gr12 412 12 0 0.0047 

atpm2 23 1 2.25 0 gr13 417 14 0 0.0025 

atpm3 23 1 0.765 0 gr14 419 12 0 0.0017 

f1 482 23 0 0.9975 gr15 422 12 0 0.0009 

gr1 431 16 0 0.1918 gr16 417 14 0 0.0006 

gr2 422 13 0 0.1726 gr17 420 14 0 0.0004 

gr3 428 15 0 0.1652 gr18 415 13 0 0.0003 

gr4 416 14 0 0.1522 gr19 417 12 0 0.0003 

gr5 421 14 0 0.1134 gr20 417 13 0 0.0002 

gr6 411 12 0 0.0825 gr21 417 13 0 0.0002 

gr7 422 14 0 0.0565 gr22 414 13 0 0.0001 

gr8 417 12 0 0.0262      

gr9 420 12 0 0.0147      

gr10 417 12 0 0.0055      

Table 5.3 Flux modes responsible for ATPM and growth 

FM: flux mode; Nr: number. of active reactions; Nc: number of consumed carbon 

sources; ATPM: ATPM flux (mmol gDW
-1

); GR: growth rate (mmol gDW
-1

). 

atpm1~3 and gr1~5 account for all ATPM flux and 80% of the growth rate 

respectively. All flux modes except f0, f1 are EFMs. 

 

5.3.2 Results of the Decomposition by the Algorithm 

f0 is then simplified into f1 by subtracting atpm1~3 in Table 5.3. We try to 

find the set of EFMs of the subnetwork of f1 by EFMtool but it is 

unsuccessful due to insufficient memory. We then decompose f1 by version 
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2 of our algorithm. 22 EFMs are found. All are verified to be true EFMs by 

EFMtool. The first EFM, also the one with the largest growth rate in the 

solution, accounts for 19% of the growth rate. 

Consistent with the test of individual carbon sources in section 5.3.1, all 

EFMs of growth consume multiple sources simultaneously, at least twelve 

(Table 5.4). 

The 22 EFMs consist of quite similar sets of reactions. In fact, among 

the 482 active reactions in f1, 376 reactions are found to be shared by all 

EFMs, called the „backbone‟ reactions (Figure 5.2). They can be interpreted 

as the necessary reactions for optimal growth on the medium. The structures 

are complicated, as expected from the detailed biomass composition 

containing 63 metabolites. Various biochemical pathways are involved: 

glycolysis, pentose phosphate pathway, non-mevalonate pathway, 

glycerophospholipid metabolism, lipopolysaccharide biosynthesis, cell 

envelope biosynthesis, biosynthesis of different amino acids, cofactor and 

prosthetic group, etc. They are mainly connected by branch point 

metabolites like pyruvate (pyr) and chorismate (chor).  Interestingly, in the 

backbone, besides the uptake of 8 extracellular carbon sources, some 

cytosolic metabolites are always synthesized in each EFM and then enter 

into the backbone acting as source nodes, including L-aspartate, L-serine, 

D-glucosamine 6-phosphate, glyceraldehyde 3-phosphate, D-glucose 6-

phosphate, pyruvate, alpha-D-ribose 1-phosphate, uridine, D-xylulose 5- 

phosphate. Meanwhile, we find that outside the backbone, there is not any 

single extracellular carbon source used by all EFMs. This means that these 

cytosolic sources of the backbone must thus be first synthesized regardless 

of the carbon sources. Hence, the ability to synthesize them represents the  
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gr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

acgam √ √ √  √  √                

amp √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

arab_L √          √   √ √ √      √ 

arg_L √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

asp_L √  √                    

cmp √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

fuc_L                       

gal    √    √  √   √    √ √ √ √ √  

gam    √  √  √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

gln_L √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

gly √ √ √ √ √  √      √    √      

glyc √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

gmp √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

his_L √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

imp √                      

lac_D                       

lac_L        √           √    

man    √  √   √   √           

melib √  √    √  √  √   √ √        

met_L √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

mnl   √       √   √   √ √ √  √ √  

rmn  √   √                  

ser_L √ √ √ √ √ √ √     √ √   √ √ √  √ √ √ 

tre  √   √  √         √      √ 

ump √  √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Nc 16 13 15 14 14 12 14 12 12 12 12 12 14 12 12 14 14 13 12 13 13 13 

Table 5.4 Consumed carbon sources of the 22 EFMs contributing to 

growth 
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Figure 5.2 ‘Backbone’ reactions for f1 

Sources entering the backbone are in squares. Metabolites involved in many 

pathways are in parallelograms. Metabolites comprising biomass are in bold and 

italic text. Independent intersecting edges are bolded for clarity. Small molecules, 

cofactors and their reactions are not shown for simplicity. Abbreviations are the 

same as in [Fei07]. 
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ability for the cell to grow efficiently. The reactions outside the backbone of 

the five EFMs with largest growth, accounting for 80% of the growth rate, 

are shown in Figure 5.3, from which different pathways to synthesize those 

necessary cytosolic metabolites entering the backbone can be seen. All 

EFMs are in general different arrangements of these pathways to strike 

delicate balance to produce biomass. 

We further look into the contribution of each carbon source. Recall that 

 251 ,, CC C  is the index set of the uptake reactions of the 25 

extracellular carbon sources. Given the flux distribution f1, the apparent 

relative contribution by each carbon source can be simply defined as: 





25

1

1

k

CCk kk
vvRC f . 

Under the resolution of the decomposition of f1 into the 25 EFMs, the 

„marginal relative contribution‟ of each carbon source is calculated by 

summing up the relative contribution by that source in each EFM: 

























25

1

,

25

1

,

,

i growth

growthii

k

Ci

Ci

k
v

efm

efm

efm
RC

k

k
EFM  

where 



25

1

,

i

growthiigrowth efmv  . The values of the relative contributions are 

shown in Table 5.5. The carbon source with largest relative contribution to 

biomass is N-Acetyl-glucosamine, over 5.4% and L-histidine has the lowest 

contribution equal to 0.9% only. The information cannot be obtained from f0 

or f1 alone in which nearly all uptake fluxes of carbon sources are equal. 

The value of marginal relative contribution, however, seems to change with 

the non-unique decomposition by EFMs. Further analysis will be needed to 

formally address this issue. 
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Figure 5.3 Reactions outside the backbone of the top five EFMs contributing 

to growth 

Extracellular sources are in squares. „BF‟ stands for „backbone fluxes‟. Legend for 

EFMs (source to sink is from left to right): 1
st
: ; 2

nd
: ; 3

rd
: ; 4

th
: reaction 

name bold and italic; 5
th
: reaction name underscored. Independent intersecting 

edges are bolded for clarity. Small molecules, cofactors and their reactions are not 

shown for simplicity. Abbreviations are the same as in [Fei07]. 
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It is remarked that the above analysis focuses on f0 and f1. In-depth 

studies are required to prove the claims from it. For example, alternative 

optimal flux distributions and different maximum uptake rates chosen may 

alter the results on the dependence of carbon sources and the necessity of 

certain metabolites. Still, the resolution brought by the present 

decomposition has revealed some information not observed from the 

apparent flux distribution. 

 

5.4 Conclusion 

In this chapter, we have applied the proposed algorithm to study the 

growth of E. coli under two vastly different conditions, the glucose minimal 

medium and the LB medium. For the growth on the glucose minimal 

medium, the sensitivity analysis has succeeded to reveal various modes of 

cooperation of EFMs that are very sensitive to changes in uptake conditions 

in the E. coli MG1655 iAF1260 network. Also, from the analysis, a 

rationale for the tremendous redundancy of metabolic pathways has been 

suggested. For the case of growth of E. coli on the LB medium, it gives an 

exemplary flux distribution with a complex structure in which a 

simultaneous mode of assimilation of carbon sources is seen. By our 

algorithm, essential reactions and metabolites, contribution of carbon 

sources to the flux distribution have been studied under the resolution of the 

decomposition by EFMs. We conclude that the algorithm can facilitate 

metabolic pathway analysis in genome-scale metabolic networks. It 

provides an analytic method that prepares for the future breakthrough in 

experimental techniques to measure in vivo fluxes in a huge scale. 
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Carbon Source 1f
kRC (%) EFM

kRC (%) 

acgam 4.2560 5.3863 

amp 4.2560 5.1745 

arab_L 4.2560 4.5966 

arg_L 4.2560 4.9183 

asp_L 4.2560 4.8024 

cmp 4.2560 5.2073 

fuc_L 4.2560 0 

gal 4.2560 4.4227 

gam 4.2560 4.3578 

gln_L 4.2560 4.7229 

gly 4.2560 4.9817 

glyc 4.2560 3.7351 

gmp 4.2560 4.6646 

his_L 0.8044 0.9148 

imp 4.2560 4.6727 

lac_D 4.2560 0 

lac_L 4.2560 1.4088 

man 4.2560 4.4594 

melib 4.2560 4.8377 

met_L 1.3069 1.4863 

mnl 4.2560 4.9286 

rmn 4.2560 5.3487 

ser_L 4.2560 4.8582 

tre 4.2560 5.3817 

ump 4.2560 4.7329 

Table 5.5 Apparent and marginal relative 

contributions of each carbon source 
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Chapter 6 Mouse Cardiomyocyte 

 

 

6.1 Introduction 

In this chapter, the algorithm is applied to analyze a realistic 

experimental flux distribution of the mouse cardiac muscle, or called mouse 

cardiomyocyte, published in an early study [VoP06]. The approximation of 

the EFM of largest contribution to a particular reaction relevant to the 

function of the mouse cardiomyocyte is particular focused. 

 

6.2 Mouse Cardiomyocyte Metabolic Network 

The mouse cardiomyocyte metabolic network was reconstructed to 

interpret mass isotopomer data and a flux distribution in a mouse heart 

perfused with labeled substrates was experimentally estimated [VoP06]. 

There are 257 reactions and 240 metabolites. It is compartmentalized into 

three parts: cytoplasm, mitochondrion and extracellular. The stoichiometric 

matrix, experimental flux distribution and other information of the network 

is given as supplementary information in [VoP06]. 

Obviously, the primary role of cardiomyocyte is to generate energy for 

heart contraction to maintain life. In the reconstructed network, ATP 

hydrolysis, which is the primary biochemical reaction in organisms to 

release energy from the high-energy phosphoanhydridic bonds, is 

represented by the reaction DMatp. It is therefore reasonable to assume that 



Chapter 6 Mouse Cardiomyocyte 

75 

DMatp is the cellular objective. We then apply our algorithm to approximate 

the largest ATP-producing EFM in the given experimental flux distribution. 

 

6.3 Experimental Flux Distribution 

The experimental flux distribution in [VoP06] follows the steady state 

assumption quite well though some unsteadiness exists. For computational 

convenience, we adjusted the flux distribution slightly to satisfy the steady 

state assumption by minimizing the sum of squared differences. This yields 

the following quadratic programming problem: 

   expexpmin vvvv 
T

 

subject to  0Sv  

  expsgn vv M  

 0v  

where expv  is the experimental flux distribution; M is a large number and 

 expsgn v  is the sign of expv . The second constraint aims to keep the zeros 

in the flux distribution zero. 

 

6.4 Results of the Decomposition by the Algorithm 

In our solution, we find three EFMs account for the ATP hydrolysis 

DMatp. The EFM with the largest DMatp flux in the solution, also the first 

EFM detected by our algorithm, is the combination of fatty acid oxidation, 

the tricarboxylic acid cycle (TCA cycle) and the oxidative phosphorylation 

in the mitochondria. The EFM with 42 reactions consumes the long-chain 
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fatty acid oleate and contributes 85% to the DMatp flux. This is actually 

expectable because long-chain fatty acid has been found to be the major 

source in cardiac muscle and the inability of its catabolism can cause 

ischemia [van92]. Figure 6.1 describes the EFM. Uptake oleate is activated 

by coenzyme A and becomes oleoyl-CoA (FACOAL181i). After that, 

oleoyl-CoA enters the matrix through the carnitine shuttle (C181CPT1, 

C181CRNt, C181CPT2) and then yields an acetyl-CoA, which initiates the 

TCA cycle, as well as the intermediate coenzyme A ester, palmitate, which 

is in turn oxidated into 8 molecules of acetyl-CoA (FAOXC181, 

FAOXC160). The oxidation of palmitate at the same time generates 7 

molecules of FADH2 which are also generated in the TCA cycle by 

succinate-Q reductase (SUCD1m) and serve as electron donors in the 

oxidative phosphorylation. This explains the standard cooperation between 

the three subsystems and the ability of the EFM to synthesize ATP at a high 

rate. 

The second EFM contributing to DMatp is the standard anaerobic 

respiration. The EFM consisting of 17 reactions contributes 11% to the ATP 

demand. Glucose is catabolized into pyruvate during glycolysis which 

simply turns into lactate at last. Each mole of glucose leads to two moles of 

ATP in this EFM. 
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Figure 6.1 1st and 3rd EFMs found in the flux distribution of mouse 

cardiomyocyte. 

Normal arrows indicate reactions shared by both EFMs. Arrows with double 

hollow triangles represent reactions used by the first EFM only and those with a 

hollow triangle and a hyphen are used by the third EFM only. Circled nodes are 

main metabolites and rectangles stand for reactions. All abbreviations are the same 

as in the original network [VoP06]. Some metabolites and their reactions are not 

shown, like CO2, H2O and phosphate. 
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The remaining 3% of the DMatp flux is provided by the third EFM very 

similar to the first one (Figure 6.1). It also consumes oleate and involves the 

TCA cycle and oxidative phosphorylation. The major difference is the 

replacement of the reaction SUCOAS1m catalyzed by succinate thiokinase 

which produces succinate and guanosine triphosphate (GTP). The reaction 

OCOAT1m by β-ketoacyl-CoA transferase is used instead. Although both 

reactions transform succinyl-CoA into succinate, the former generates GTP 

which can directly convert into ATP while the latter consumes another 

important energy source derived from fatty acid, the ketone body 

acetoacetate, and produces acetoacetyl-CoA. This reaction is actually a part 

of the inter-conversion between acetoacetate and acetoacetyl-CoA 

(OCOAT1m, HMGCOASim, HMGLm). This was discovered as 

pseudoketogenesis in literature [Fin88, VoP06]. It maintains the TCA cycle 

and indicates the limit of the activity of the standard TCA cycle due to the 

capacity of succinate thiokinase. This agrees with the fact that the 

bottlenecks in the first EFM are GTPm and SUCOAS1m. 

These three EFMs suffice to produce all ATP used for hydrolysis. The 

sum of fluxes by the three EFMs contributes to 54% of the total fluxes. This 

suggests that the mouse cardiac muscle performs metabolic activities other 

than ATP hydrolysis for contractile function and ion pumps. From the 

remaining flux distribution, productions of two ketone bodies, acetoacetate 

and D-3-hydroxybutyrate, two intermediate metabolites of the TCA cycle, 

citrate and succinate, as well as pyruvate and lactate are seen. To 

contextualize the remaining flux distribution, instead of sticking to the 

objective of maximizing DMatp, we maximized the production of each 

substrate accordingly. When a set of EFMs producing one substrate is found, 
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we move to the next substrate. In this way, EFMs found can be categorized 

by their production (Table 6.1). 

We first optimize for the production of the two ketone bodies. Five 

EFMs of ketogenesis are found (EFM4–8) and the majority of extracellular 

succinate and all pyruvate are also produced by these EFMs. Productions of 

the rest of the succinate (EFM9), L-lactate (EFM10–11) and finally H+ 

(EFM12–13) are optimized in turn and together five other EFMs are found. 

The remaining one (EFM14) is an isolated internal cycle describing the 

exchange of L-citrulline and ornithine between mitochondria and cytoplasm. 

One characteristic of all EFMs found with zero DMatp fluxes, except the 

cycle, i.e. EFM4–13, is that all productions involve both glycolysis from 

glucose and the fatty acid oxidation of oleate. 

An interesting point is that we discover that one of these EFMs performs 

oxidative phosphorylation without synthesizing ATP. This implies the 

possibility of the existence of the uncoupling of oxidative phosphorylation 

and ATP synthesis. Actually, it is consistent with the finding that long-chain 

fatty acids lead to this uncoupling for other purposes like heat generation 

[Sku91]. Such mode of operation cannot be easily revealed from the whole 

flux distribution in which the P/O ratio is as high as 4.2. 
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Extracellular 

metabolites/ 

Dmatp 

EFM1 EFM2 EFM3 EFM4 EFM5 EFM6 EFM7 

bhb 0 0 0 0.381 0.076 0 0 

acac 0 0 0 0 0 0.152 0.103 

cit 0 0 0 0.017 0 0 0 

pyr 0 0 0 0 0 0.621 0 

succ 0 0 0 0 0.0031 0 0 

lac-L 0 1.8894 0 0 0 0 0 

h 0.0637 1.8894 0.0027 0.3813 0.0757 0.7738 0.1027 

co2 2.162 0 0.092 0.062 0.047 0 0.104 

h2o 1.95 0 0.083 0 0.034 0.723 0.189 

o2 -3.02 0 -0.13 -0.49 -0.1 -0.56 -0.19 

glc 0 -0.9447 0 -0.0402 -0.0233 -0.3106 -0.0518 

ocdcea -0.1201 0 -0.0051 -0.0804 -0.0123 -0.0339 -0.0113 

DMatp 14.19 1.889 0.557 0 0 0 0 

 

Extracellular 

metabolites/ 

Dmatp 

EFM8 EFM9 EFM10 EFM11 EFM12 EFM13 EFM14 
Flux 

distribution 

bhb 0 0 0 0 0 0 0 0.457 

acac 0.011 0 0 0 0 0 0 0.266 

cit 0 0 0 0 0 0 0 0.017 

pyr 0 0 0 0 0 0 0 0.621 

succ 0.0005 0.0009 0 0 0 0 0 0.0044 

lac-L 0 0 0.2109 0.0004 0 0 0 2.1007 

h 0.0107 0.0021 0.2174 0.0005 0.0169 0.002 0 3.5389 

co2 0.004 0.015 0.22 0.004 0.456 0.054 0 3.218 

h2o 0.012 0.014 0.199 0.003 0.419 0.05 0 3.676 

o2 -0.02 -0.02 -0.31 -0.01 -0.59 -0.07 0 -5.49 

glc -0.0018 -0.0004 -0.1054 -0.0002 -0.019 -0.0022 0 -1.4998 

ocdcea -0.0021 -0.0009 -0.0122 -0.0002 -0.019 -0.0022 0 -0.2997 

DMatp 0 0 0 0 0 0 0 16.63 

Table 6.1 DMatp fluxes and exchange rates of extracellular metabolites in the 

flux distribution and the decomposed EFMs. 

acac: acetoacetate; bhb: (R)-3-Hydroxybutanoate; cit: citrate; co2: carbon dioxide; 

glc: glucose; h: H+; h2o: H2O; lacL: L-lactate; o2: O2; ocdcea: octadecenoate (n-

C18:1) (oleate); pyr: pyruvate; succ: succinate; DMatp: ATP demand. A positive 

flux represents excretion and a negative flux represents uptake. 
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6.5 Conclusion 

The above analysis on the experimental flux distribution of mouse 

cardiomyocyte shows that although there are only a small number of carbon 

sources available, a realistic flux distribution can have a certain complexity, 

as reflected by the number of EFMs, compared to a simulated flux 

distribution optimized for a particular objective only. In this sense, the 

decomposition of a flux distribution into a set of EFMs is very useful to 

study the structure of the flux distribution, break down it into different 

components and reveal information that is not obvious from the apparent 

flux distribution. 
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7.1 Conclusion of the Research 

7.1.1 Algorithm to Decompose a Flux Distribution into EFMs 

In this research, we developed a novel algorithm to decompose flux 

distributions into EFMs in genome-scale networks. It is an iterative scheme 

of a mixed integer linear program with the processed flux modes stored in a 

stack structure. Each time the mixed integer linear program returns a 

feasible flux mode bounded by the current flux mode and the process is 

repeated until no „smaller‟ flux mode exists. Then an EFM is reached. Each 

EFM found is used to update the flux modes in the stack so that the 

computational cost is reduced and properties like denseness, uniqueness, 

linear and systemic independence are guaranteed. The algorithm is also able 

to approximate the EFM of largest contribution to an objective reaction in a 

flux distribution.  

The algorithm brings a breakthrough of the bottleneck of metabolic 

pathway analysis in genome-scale metabolic networks caused by the 

combinatorial explosion of the number of EFMs as the network size grows. 

While traditional methods to find EFMs rely on the double description 

method to find the full set of EFMs, the proposed algorithm can find 

individual EFMs with specific properties directly. The benchmarks reported 

in section 4.2 have confirmed the correctness of our algorithm to find EFMs 

and its usefulness to approximate the EFM with the largest contribution to a 
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particular objective reaction. Moreover, the computational experiment 

reported in section 4.3 has shown the capability of our algorithm compared 

to the best of all the existing methods. Our algorithm has succeeded to find 

EFMs contributing to flux distributions in a genome-scale metabolic 

network in which existing methods are unable to compute the complete set 

of EFMs.  

From these studies, we conclude that the algorithm is valid and makes 

an advance in the computation of EFMs. Hence, the first research objective 

which is to devise an algorithm to decompose a flux distribution into a set of 

EFMs has been achieved. 

 

7.1.2 Case Studies 

With the algorithm, we have performed two case studies, the growth of 

E. coli and the metabolism of mouse cardiomyocyte. For the growth of E. 

coli, two vastly different conditions have been investigated, the glucose 

minimal medium and the LB medium. The sensitivity analysis on the 

glucose minimal medium has revealed various modes of cooperation of 

EFMs that are very sensitive to changes in uptake conditions and it has 

brought insight into the observation that the redundancy of metabolic 

pathways is always immense.  

For the growth of E. coli on the LB medium, the structure of the 

simulated flux distribution is very complex. Still, by our algorithm, essential 

reactions and metabolites, contribution of carbon sources to the flux 

distribution have been located under the resolution of the decomposition by 

EFMs. 
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For the mouse cardiomyocyte, by assuming the ATP hydrolysis, which is 

responsible to release energy in many organisms, to be the cellular objective, 

we have looked into the EFMs that contribute to the ATP hydrolysis. 

Metabolic pathways consistent with literature and knowledge in 

biochemistry have been successfully located. Also, a possibly hidden 

phenomenon supported by literature, the uncoupling of oxidative 

phosphorylation and ATP synthesis, has been detected. 

In view of the results of the case studies, we conclude that the second 

research objective which is to analyze flux distributions in genome-scale 

metabolic networks by the algorithm has also been achieved. 

 

7.1.3 Contributions of the Research 

There are three particular contributions of this research. First, regarding 

the first research objective to devise an algorithm, this provides an 

alternative way complementary to traditional methods to compute EFMs 

that decompose a flux distribution. The devised algorithm and the ideas 

behind have their own theoretical value, including formulating the 

elementarity of EFMs as the feasibility of the optimization model DC and 

finding EFMs by iteratively restricting the values of fluxes to zeros. 

Second, the devised algorithm facilitates the analysis of flux 

distributions in genome-scale metabolic networks by decompositions into 

EFMs, which has been found useful in the literature when applying to 

metabolic networks of small sizes but meanwhile has currently no 

corresponding method available in genome-scale metabolic networks. It is a 

novel approach to answer the open question as to the functional relevance of 
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EFMs. In comparison with previous methods, the main advantage is that it 

does not require the complete determination of the full set of EFMs. This 

constitutes a progress over the state of the art. 

Third, regarding the second research objective, analyzing genome-scale 

flux distributions by applying the devised algorithm can generate new 

insights and hypotheses in biology, fulfilling the purpose of the systems 

biology approach which aims to study biology at a system level. These 

insights and hypotheses can possibly be developed into new biological 

knowledge with further experimental verifications. This kind of information 

obtained at a system level is unique with respect to the traditional sheer 

experimental studies in biology. At the same time, the devised algorithm can 

also be validated by examining its applicability to real cases in biology. 

Hence, this demonstrates and concretizes the usefulness of the devised 

algorithm by trying to attain the goal of systems biology which is to study 

biology at a system level. 

In conclusion, the algorithm proposed in this research can facilitate 

metabolic pathway analysis in genome-scale metabolic networks and this 

can shed light on cellular metabolism. It provides an analytic method that 

prepares for the future breakthrough in experimental techniques to measure 

in vivo fluxes in a huge scale. 

 

7.2 Future Work 

Metabolic pathway analysis in genome-scale metabolic networks is 

challenging. There are several research possibilities that can further 

facilitate metabolic pathway analysis by overcoming the computational 
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barrier and make it a more useful, unified analytic technique. 

First, the algorithm proposed in this research still has room for 

improvement, for example, the computation cost and memory demand. The 

iterative scheme of the current algorithm is simple and straightforward, 

analogous to a depth first search in the branch-and-bound method for 

optimization. It can be modified to improve its efficiency. For instance, the 

updating process can be performed earlier before an EFM is found.  In this 

way, the data structure becomes a binary tree instead of a simple stack and 

different strategies used in branch-and-bound can then be applied. Also, 

multi-core computation may be implemented. Besides, other use of the 

objective function applicable to particular cases in biology may exist and 

this may add new value to the algorithm. 

Second, efforts should be put on solving a more general and meaningful 

problem which is to decompose a flux distribution into a set of EFMs with 

respect to an optimization objective, like the α-spectrum [Wib03] and other 

problems listed in Table 2.1. Techniques in linear or even non-linear 

optimization will be required. The algorithm proposed in this research may 

serve as a reference. 

Third, comparison between different methods or objectives to 

decompose a flux distribution into EFMs is desirable. Since it is known that 

the decomposition of a flux distribution into EFMs is generally not unique, 

different objectives of decomposition are expected to yield different results. 

This non-uniqueness of the representation by EFMs undermines its 

applicability and the reliability of the conclusion drawn from the analysis 

since alternative interpretation from another set of EFMs can exist. By 

investigating solutions from different objectives in different cases from a 
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more biologically relevant perspective, the applicability of different 

objectives in different cases can be evaluated. If some well-defined 

invariants are located during the studies, this will be of even greater 

importance and may lead to a well-structured methodology to analyze flux 

distributions by EFMs. The usefulness and significance of metabolic 

pathway analysis will then be largely increased. 
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Appendices 

 

 

A.1 Example of the Algorithm 

The network used to illustrate the algorithm is the sample network in 

[Cov01], which has also been used as benchmark in chapter 4. 

 

A.1.1 Information of the Sample Metabolic Network 

Reaction Lower Bound Upper Bound Equation 

R1 0 200 A + ATP -> B 

R2a 0 200 B -> C + 2 ATP + 2 NADH 

R2b 0 200 C + 2 ATP + 2 NADH -> B 

R3 0 200 B -> F 

R4 0 200 C -> G 

R5a 0 200 G -> 0.8 C + 2 NADH 

R5b 0 200 0.8 C + 2 NADH -> G 

R6 0 200 C -> 3 D + 2 ATP 

R7 0 200 C + 4 NADH -> 3 E 

R8a 0 200 G + ATP + 2 NADH -> H 

R8b 0 200 H -> G + ATP + 2 NADH 

Rres 0 200 NADH + O2 -> ATP 

Tc1 0 10.5 Carbon1 -> A 

Tc2 0 10.5 Carbon2 -> A 

Tf 0 5 Fext -> F 

Td 0 12 D -> Dext 

Te 0 12 E -> Eext 

Th 0 5 Hext -> H 

To2 0 15 Oxygen -> O2 

Growth 0 200 C + F + H + 10 ATP -> Biomass 

Table A1 Information of the Sample Metabolic Network. 

Reactions, lower and upper bounds and the equations adopted from [Cov01]. 

For the visual representation of the sample metabolic network, interested 

readers are referred to [Cov01]. 
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A.1.2 Example 

The following example demonstrates the first few steps to decompose a 

flux distribution and all operations in the algorithm are involved. 

 

 Stack  Stack 

Reaction fm1  fm1 fm2 fm3 

R1 6.2636  6.2636 3.3753 1.1066 

R2a 5.0242  5.0242 3.3753 1.1066 

R2b 0  0 0 0 

R3 1.2394  1.2394 0 0 

R4 3.1421  3.1421 1.0151 0 

R5a 5.7775  5.7775 1.0151 0 

R5b 0  0 0 0 

R6 0.6455  0.6455 0.5964 0.6455 

R7 4  4 2.0683 0 

R8a 0  0 0 0 

R8b 2.6354  2.6354 0 0 

Rres 10.874  10.874 0.5076 2.2131 

Tc1 3.3753  3.3753 3.3753 1.1066 

Tc2 2.8882  2.8882 0 0 

Tf 0.6191  0.6191 0.5076 0.4611 

Td 1.9365  1.9365 1.7892 1.9365 

Te 12  12 6.2049 0 

Th 4.4939  4.4939 0.5076 0.4611 

To2 10.874  10.874 0.5076 2.2131 

Growth 1.8585  1.8585 0.5076 0.4611 

Initially, the stack contains only the original flux distribution (left). 

Decompose until an EFM (fm3) is found (Step 1 & 2, right). The shaded 

boxes are reactions that are shut down. 
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  Stack EFM  Stack EFM 

Reaction fm1 fm2 efm1  fm1 efm1 

R1 5.157 3.1215 1.1066  5.157 1.1066 

R2a 3.9176 3.1215 1.1066  3.9176 1.1066 

R2b 0 0 0  0 0 

R3 1.2394 0 0  1.2394 0 

R4 3.1421 1.0151 0  3.1421 0 

R5a 5.7775 1.0151 0  5.7775 0 

R5b 0 0 0  0 0 

R6 0 0.4483 0.6455  0 0.6455 

R7 4 2.0683 0  4 0 

R8a 0 0 0  0 0 

R8b 2.6354 0 0  2.6354 0 

Rres 8.6609 0 2.2131  8.6609 2.2131 

Tc1 2.2687 3.1215 1.1066  2.2687 1.1066 

Tc2 2.8882 0 0  2.8882 0 

Tf 0.158 0.4018 0.4611  0.158 0.4611 

Td 0 1.345 1.9365  0 1.9365 

Te 12 6.2049 0  12 0 

Th 4.0328 0.4018 0.4611  4.0328 0.4611 

To2 8.6609 0 2.2131  8.6609 2.2131 

Growth 1.3974 0.4018 0.4611  1.3974 0.4611 

fm3 leaves the stack (Step 3, left of the table). Update all flux modes 

(Step 4, „Stack‟ column in the left of the table). It is checked that fm2 cannot 

contribute to fm1 since it does not contain all the zeros of fm1. Remove it 

from the stack (Step 5, right of the table). The shaded boxes are reactions 

that fm1 has zero fluxes but fm2 does not. 
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A.2 Core E. coli K-12 MG1655 iAF1260 Model 

A.2.1 Network Information 

Abbreviation  Official Name  Equation 

ACALD 
acetaldehyde dehydrogenase 

(acetylating) 
[c] : acald + coa + nad <==> accoa + h + nadh 

ACALDt acetaldehyde reversible transport acald[e] <==> acald[c] 

ACKr acetate kinase [c] : ac + atp <==> actp + adp 

ACONTa 
aconitase (half-reaction A, Citrate 

hydro-lyase) 
[c] : cit <==> acon-C + h2o 

ACONTb 
aconitase (half-reaction B, 

Isocitrate hydro-lyase) 
[c] : acon-C + h2o <==> icit 

ACt2r 
acetate reversible transport via 

proton symport 
ac[e] + h[e] <==> ac[c] + h[c] 

ADK1 adenylate kinase [c] : amp + atp <==> (2) adp 

AKGDH 2-Oxogluterate dehydrogenase [c] : akg + coa + nad --> co2 + nadh + succoa 

AKGt2r 
2-oxoglutarate reversible 

transport via symport 
akg[e] + h[e] <==> akg[c] + h[c] 

ALCD2x alcohol dehydrogenase (ethanol) [c] : etoh + nad <==> acald + h + nadh 

ATPM ATP maintenance requirement [c] : atp + h2o --> adp + h + pi 

ATPS4r 
ATP synthase (four protons for 

one ATP) 
adp[c] + (4) h[e] + pi[c] <==> atp[c] + (3) h[c] + h2o[c] 

BIOMASS 
Biomass Objective Function with 

GAM 

[c] : (1.496) 3pg + (3.7478) accoa + (59.8100) atp + 

(0.3610) e4p + (0.0709) f6p + (0.1290) g3p + (0.2050) 

g6p + (0.2557) gln-L + (4.9414) glu-L + (59.8100) h2o + 

(3.5470) nad + (13.0279) nadph + (1.7867) oaa + (0.5191) 

pep + (2.8328) pyr + (0.8977) r5p --> (59.8100) adp + 

(4.1182) akg + (3.7478) coa + (59.8100) h + (3.5470) 

nadh + (13.0279) nadp + (59.8100) pi 

CO2t CO2 transporter via diffusion co2[e] <==> co2[c] 

CS citrate synthase [c] : accoa + h2o + oaa --> cit + coa + h 

CYTBD 
cytochrome oxidase bd 

(ubiquinol-8: 2 protons) 

(2) h[c] + (0.5) o2[c] + q8h2[c] --> (2) h[e] + h2o[c] + 

q8[c] 

D_LACt2 
D-lactate transport via proton 

symport 
h[e] + lac-D[e] <==> h[c] + lac-D[c] 

ENO enolase [c] : 2pg <==> h2o + pep 

ETOHt2r 
ethanol reversible transport via 

proton symport 
etoh[e] + h[e] <==> etoh[c] + h[c] 

EX_ac(e) Acetate exchange [e] : ac <==> 

EX_acald(e) Acetaldehyde exchange [e] : acald <==> 

EX_akg(e) 2-Oxoglutarate exchange [e] : akg <==> 

EX_co2(e) CO2 exchange [e] : co2 <==> 

EX_etoh(e) Ethanol exchange [e] : etoh <==> 

EX_for(e) Formate exchange [e] : for <==> 

EX_fru(e) D-Fructose exchange [e] : fru <==> 

EX_fum(e) Fumarate exchange [e] : fum <==> 

EX_glc(e) D-Glucose exchange [e] : glc-D <==> 
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EX_gln_L(e) L-Glutamine exchange [e] : gln-L <==> 

EX_glu_L(e) L-Glutamate exchange [e] : glu-L <==> 

EX_h(e) H+ exchange [e] : h <==> 

EX_h2o(e) H2O exchange [e] : h2o <==> 

EX_lac_D(e) D-Lactate exchange [e] : lac-D <==> 

EX_mal_L(e) L-Malate exchange [e] : mal-L <==> 

EX_nh4(e) Ammonium exchange [e] : nh4 <==> 

EX_o2(e) O2 exchange [e] : o2 <==> 

EX_pi(e) Phosphate exchange [e] : pi <==> 

EX_pyr(e) Pyruvate exchange [e] : pyr <==> 

EX_succ(e) Succinate exchange [e] : succ <==> 

FBA fructose-bisphosphate aldolase [c] : fdp <==> dhap + g3p 

FBP fructose-bisphosphatase [c] : fdp + h2o --> f6p + pi 

FORt2 
formate transport via proton 

symport (uptake only) 
for[e] + h[e] --> for[c] + h[c] 

FORti formate transport via diffusion for[c] --> for[e] 

FRD7 fumarate reductase [c] : fum + q8h2 --> q8 + succ 

FRUpts2 

Fructose transport via PEP:Pyr 

PTS  

(f6p generating) 

fru[e] + pep[c] --> f6p[c] + pyr[c] 

FUM fumarase [c] : fum + h2o <==> mal-L 

FUMt2_2 
Fumarate transport via proton 

symport (2 H) 
fum[e] + (2) h[e] --> fum[c] + (2) h[c] 

G6PDH2r 
glucose 6-phosphate 

dehydrogenase 
[c] : g6p + nadp <==> 6pgl + h + nadph 

GAPD 
glyceraldehyde-3-phosphate 

dehydrogenase 
[c] : g3p + nad + pi <==> 13dpg + h + nadh 

GLCpts 
D-glucose transport via PEP:Pyr 

PTS 
glc-D[e] + pep[c] --> g6p[c] + pyr[c] 

GLNS glutamine synthetase [c] : atp + glu-L + nh4 --> adp + gln-L + h + pi 

GLNabc 
L-glutamine transport via ABC 

system 

atp[c] + gln-L[e] + h2o[c] --> adp[c] + gln-L[c] + h[c] + 

pi[c] 

GLUDy 
glutamate dehydrogenase 

(NADP) 
[c] : glu-L + h2o + nadp <==> akg + h + nadph + nh4 

GLUN glutaminase [c] : gln-L + h2o --> glu-L + nh4 

GLUSy glutamate synthase (NADPH) [c] : akg + gln-L + h + nadph --> (2) glu-L + nadp 

GLUt2r 
L-glutamate transport via proton 

symport, reversible (periplasm) 
glu-L[e] + h[e] <==> glu-L[c] + h[c] 

GND phosphogluconate dehydrogenase [c] : 6pgc + nadp --> co2 + nadph + ru5p-D 

H2Ot H2O transport via diffusion h2o[e] <==> h2o[c] 

ICDHyr isocitrate dehydrogenase (NADP) [c] : icit + nadp <==> akg + co2 + nadph 

ICL Isocitrate lyase [c] : icit --> glx + succ 

LDH_D D-lactate dehydrogenase [c] : lac-D + nad <==> h + nadh + pyr 

MALS malate synthase [c] : accoa + glx + h2o --> coa + h + mal-L 

MALt2_2 
Malate transport via proton 

symport (2 H) 
(2) h[e] + mal-L[e] --> (2) h[c] + mal-L[c] 

MDH malate dehydrogenase [c] : mal-L + nad <==> h + nadh + oaa 

ME1 malic enzyme (NAD) [c] : mal-L + nad --> co2 + nadh + pyr 

ME2 malic enzyme (NADP) [c] : mal-L + nadp --> co2 + nadph + pyr 
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NADH16 
NADH dehydrogenase 

(ubiquinone-8 & 3 protons) 
(4) h[c] + nadh[c] + q8[c] --> (3) h[e] + nad[c] + q8h2[c] 

NADTRHD NAD transhydrogenase [c] : nad + nadph --> nadh + nadp 

NH4t ammonia reversible transport nh4[e] <==> nh4[c] 

O2t o2 transport via diffusion o2[e] <==> o2[c] 

PDH pyruvate dehydrogenase [c] : coa + nad + pyr --> accoa + co2 + nadh 

PFK phosphofructokinase [c] : atp + f6p --> adp + fdp + h 

PFL pyruvate formate lyase [c] : coa + pyr --> accoa + for 

PGI glucose-6-phosphate isomerase [c] : g6p <==> f6p 

PGK phosphoglycerate kinase [c] : 3pg + atp <==> 13dpg + adp 

PGL 6-phosphogluconolactonase [c] : 6pgl + h2o --> 6pgc + h 

PGM phosphoglycerate mutase [c] : 2pg <==> 3pg 

PIt2r 
phosphate reversible transport via 

proton symport 
h[e] + pi[e] <==> h[c] + pi[c] 

PPC phosphoenolpyruvate carboxylase [c] : co2 + h2o + pep --> h + oaa + pi 

PPCK 
phosphoenolpyruvate 

carboxykinase 
[c] : atp + oaa --> adp + co2 + pep 

PPS phosphoenolpyruvate synthase [c] : atp + h2o + pyr --> amp + (2) h + pep + pi 

PTAr phosphotransacetylase [c] : accoa + pi <==> actp + coa 

PYK pyruvate kinase [c] : adp + h + pep --> atp + pyr 

PYRt2r 
pyruvate reversible transport via 

proton symport 
h[e] + pyr[e] <==> h[c] + pyr[c] 

RPE ribulose 5-phosphate 3-epimerase [c] : ru5p-D <==> xu5p-D 

RPI ribose-5-phosphate isomerase [c] : r5p <==> ru5p-D 

SUCCt2_2 
succinate transport via proton 

symport (2 H) 
(2) h[e] + succ[e] --> (2) h[c] + succ[c] 

SUCCt3 
succinate transport out via proton 

antiport 
h[e] + succ[c] --> h[c] + succ[e] 

SUCDi 
succinate dehydrogenase 

(irreversible) 
[c] : q8 + succ --> fum + q8h2 

SUCOAS 
succinyl-CoA synthetase (ADP-

forming) 
[c] : atp + coa + succ <==> adp + pi + succoa 

TALA transaldolase [c] : g3p + s7p <==> e4p + f6p 

THD2 NAD(P) transhydrogenase 
(2) h[e] + nadh[c] + nadp[c] --> (2) h[c] + nad[c] + 

nadph[c] 

TKT1 transketolase [c] : r5p + xu5p-D <==> g3p + s7p 

TKT2 transketolase [c] : e4p + xu5p-D <==> f6p + g3p 

TPI triose-phosphate isomerase [c] : dhap <==> g3p 

Table A2 Reactions of the Core E. coli K-12 MG1655 iAF1260 Model. 

The abbreviation, official name and equation for each reaction are adopted from 

[Fei07]. 
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Abbreviation Official Name Formula 

13dpg 3-Phospho-D-glyceroyl phosphate C3H4O10P2 

2pg D-Glycerate 2-phosphate C3H4O7P 

3pg 3-Phospho-D-glycerate C3H4O7P 

6pgc 6-Phospho-D-gluconate C6H10O10P 

6pgl 6-phospho-D-glucono-1,5-lactone C6H9O9P 

ac Acetate C2H3O2 

ac[e] Acetate (extracellular) C2H3O2 

acald Acetaldehyde C2H4O 

acald[e] Acetaldehyde (extracellular) C2H4O 

accoa Acetyl-CoA C23H34N7O17P3S 

acon-C cis-Aconitate C6H3O6 

actp Acetyl phosphate C2H3O5P 

adp ADP C10H12N5O10P2 

akg 2-Oxoglutarate C5H4O5 

akg[e] 2-Oxoglutarate (extracellular) C5H4O5 

amp AMP C10H12N5O7P 

atp ATP C10H12N5O13P3 

cit Citrate C6H5O7 

co2 CO2 CO2 

co2[e] CO2 (extracellular) CO2 

coa Coenzyme A C21H32N7O16P3S 

dhap Dihydroxyacetone phosphate C3H5O6P 

e4p D-Erythrose 4-phosphate C4H7O7P 

etoh Ethanol C2H6O 

etoh[e] Ethanol (extracellular) C2H6O 

f6p D-Fructose 6-phosphate C6H11O9P 

fdp D-Fructose 1,6-bisphosphate C6H10O12P2 

for Formate CH1O2 

for[e] Formate (extracellular) CH1O2 

fru[e] D-Fructose (extracellular) C6H12O6 

fum Fumarate C4H2O4 

fum[e] Fumarate (extracellular) C4H2O4 

g3p Glyceraldehyde 3-phosphate C3H5O6P 

g6p D-Glucose 6-phosphate C6H11O9P 

glc-D[e] D-Glucose (extracellular) C6H12O6 

gln-L L-Glutamine C5H10N2O3 

gln-L[e] L-Glutamine (extracellular) C5H10N2O3 

glu-L L-Glutamate C5H8NO4 

glu-L[e] L-Glutamate (extracellular) C5H8NO4 

glx Glyoxylate C2H1O3 

h2o H2O H2O 

h2o[e] H2O (extracellular) H2O 

h H+ H 

h[e] H+ (extracellular) H 

icit Isocitrate C6H5O7 
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lac-D D-Lactate C3H5O3 

lac-D[e] D-Lactate (extracellular) C3H5O3 

mal-L L-Malate C4H4O5 

mal-L[e] L-Malate (extracellular) C4H4O5 

nad Nicotinamide adenine dinucleotide C21H26N7O14P2 

nadh Nicotinamide adenine dinucleotide - reduced C21H27N7O14P2 

nadp Nicotinamide adenine dinucleotide phosphate C21H25N7O17P3 

nadph Nicotinamide adenine dinucleotide phosphate - reduced C21H26N7O17P3 

nh4 Ammonium H4N 

nh4[e] Ammonium (extracellular) H4N 

o2 O2 O2 

o2[e] O2 (extracellular) O2 

oaa Oxaloacetate C4H2O5 

pep Phosphoenolpyruvate C3H2O6P 

pi Phosphate HO4P 

pi[e] Phosphate (extracellular) HO4P 

pyr Pyruvate C3H3O3 

pyr[e] Pyruvate (extracellular) C3H3O3 

q8 Ubiquinone-8 C49H74O4 

q8h2 Ubiquinol-8 C49H76O4 

r5p alpha-D-Ribose 5-phosphate C5H9O8P 

ru5p-D D-Ribulose 5-phosphate C5H9O8P 

s7p Sedoheptulose 7-phosphate C7H13O10P 

succ Succinate C4H4O4 

succ[e] Succinate (extracellular) C4H4O4 

succoa Succinyl-CoA C25H35N7O19P3S 

xu5p-D D-Xylulose 5-phosphate C5H9O8P 

Table A3 Metabolites of the Core E. coli K-12 MG1655 iAF1260 Model. 

The abbreviation, official name and formula for each reaction are adopted from 

[Fei07]. 

For the visual representation of the core E. coli K-12 MG1655 iAF1260 

metabolic network, interested readers are referred to [Ort10]. 

 

 

 




