
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



 

 
 

The Hong Kong Polytechnic University 
Department of Computing 

 
 
 
 
 
 

Exploring Children’s Usage on Tangible Computational 
Construction Platforms 

 
Hands-on Learning through Functionality, Crafts and Stories 

 
 
 
 
 
 

LAU Wing Yiu 
 
 
 
 
 
 

A thesis submitted in partial fulfillment of the requirements for the 
degree of Master of Philosophy 

 
 
 

December 2010 
 
 
 

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author.  In the case where its contents is different from the printed version, the printed version shall prevail.






 

i 

Certificate of Originality  

 

I hereby declare that this thesis is my own work and that, to the best of my 

knowledge and belief, it reproduces no material previously published or written, nor 

material that has been accepted for the award of any other degree or diploma, except 

where due acknowledgement has been made in the text. 

 

 
___________________ 

LAU Wing Yiu 



 

 ii 

Abstract 

Many tangible computational construction platforms are designed with new 

technologies and children’s learning theories to assist children in learning 

computational concepts. This thesis explores how children learn computational 

concepts through these platforms, by focusing on three categories of tangible 

computational platforms: tangible programming systems, computational toolkits for 

crafts making, and computational interfaces for story creation. Our rationale for 

choosing these three categories is motivated by the hands-on learning theories 

argued by three influential educators: Montessori, Froebel and Vygotsky. 

Given this motivation, we design three dimensions of case studies: abstract 

thinking through functional blocks construction, creativity through crafts making 

and expression through stories creation, for analysis of children’s learning of 

computational concepts vertically through three main categories of computational 

construction kits respectively. Each dimension of empirical studies obtains 

qualitative and quantitative results, and the results indicate that children have 

positive learning experience on each category of computational construction kits in 

different aspects. 

For the study in building functionality, we use a tangible programming system 

to study how children understand the abstract concepts by building functional blocks 

to simulate functions of smart clothing and flows of story, as well as computational 

concepts such as looping and branching. 

To study creativity through crafts making, three kinds of computational craft 

platforms are adopted as case studies. These are the Lilypad Arduino with TeeBoard 

platform, i*CATch apparel platform and i*CATch robotic platform. The focus is on 

crafts making in robotic and apparel domains, integrating traditional materials such 

as paper and cloth with the electronic devices. Through these three different design 

approaches of the computational craft platforms, we gain a deeper understanding of 

how children use computational platforms for creating crafts. 

To study expression via story creation, a storytelling expression media is 

proposed: storytelling augmented with computational apparel for children to express 



 

 iii 

their stories and learn computational concepts through story creation. The i*CATch 

wearable computing platform is used as the storytelling media. The results show that 

computational apparel can be a media for children to tell a story, and indicate that 

there is room for children to improve their stories through more practice on 

storytelling and programming electronic device skills. 

To gain a broader insight into computational toolkits for children, we propose 

five evaluation criteria for computational construction toolkits. Five factors include 

coupling of computational concepts, construction interfaces, domains of tasks, 

learners’ characteristics and learning environments. The evaluation results reveal 

fundamental differences between the computational construction kits pertaining to 

children's learning of computational concepts. Finally, our thesis concludes with four 

suggested guidelines: determine places of learning, support diversity of domains, 

support simple and challenging tasks and provide hybrid programming environments, 

and these guidelines should be useful for designers and researchers who wish to 

develop a computational construction toolkit for computational concept learning. 

 

 



 

 iv 

List of Publications 

Journal Article 
Grace Ngai, Stephen C.F. Chan, Joey C.Y. Cheung, and Winnie W.Y. Lau. 2010. 

Deploying a Wearable Computing Platform for Computing Education. IEEE Trans. 

Learn. Technol. 3, 1 (January 2010), 45-55. 

 

Grace Ngai, Stephen C.F. Chan, Vincent T.Y. Ng, Winnie W.Y. Lau, and Jason T.P. 

Tse. i*CATch: A Novice Friendly Platform for Wearable Computing. Trans. Sys. 

Man Cyber. Part A (In submission).  

 

Conference and Workshop Papers 
Winnie W.Y. Lau, Grace Ngai, Stephen C.F. Chan, and Joey C.Y. Cheung. 2009. 

Learning programming through fashion and design: a pilot summer course in 

wearable computing for middle school students. In Proceedings of the 40th ACM 

technical symposium on Computer science education (SIGCSE '09). ACM, New 

York, NY, USA, 504-508. 

 

Joey C.Y. Cheung, Grace Ngai, Stephen C.F. Chan, and Winnie W.Y. Lau. 2009. 

Filling the gap in programming instruction: a text-enhanced graphical programming 

environment for junior high students. In Proceedings of the 40th ACM technical 

symposium on Computer science education (SIGCSE '09). ACM, New York, NY, 

USA, 276-280. 

 

Grace Ngai, Stephen C.F. Chan, Joey C.Y. Cheung, and Winnie W.Y. Lau. 2009. 

The TeeBoard: an education-friendly construction platform for e-textiles and 

wearable computing. In Proceedings of the 27th international conference on Human 

factors in computing systems (CHI '09). ACM, New York, NY, USA, 249-258. 

 



 

 v 

Grace Ngai, Stephen C.F. Chan, Joey C.Y. Cheung, and Winnie W.Y. Lau. 2009. 

An education-friendly construction platform for wearable computing. In 

Proceedings of the 27th international conference extended abstracts on Human 

factors in computing systems (CHI '09). ACM, New York, NY, USA, 3235-3240. 

 

Grace Ngai, Stephen C. F. Chan, Winnie W. Y. Lau, and Joey C. Y. Cheung. 2009. 

A framework for collaborative eTextiles design - An introduction to Co-eTex. In 

Proceedings of the 2009 13th International Conference on Computer Supported 

Cooperative Work in Design (CSCWD '09). IEEE Computer Society, Washington, 

DC, USA, 191-196. 

 

Grace Ngai, Stephen C.F. Chan, Vincent T.Y. Ng, Joey C.Y. Cheung, Sam S.S. 

Choy, Winnie W.Y. Lau, and Jason T.P. Tse. 2010. i*CATch: a scalable plug-n-

play wearable computing framework for novices and children. In Proceedings of the 

28th international conference on Human factors in computing systems (CHI '10). 

ACM, New York, NY, USA, 443-452. 



 

vi 

Acknowledgements 

Thank God for leading me back to The Hong Kong Polytechnic University, 

Department of Computing, eToy Laboratory to start my amazing research study.  

I would like to express my deepest gratitude to my supervisor Dr Grace Ngai 

for her invaluable support, advice, insight, and guidance throughout this interesting 

and challenging research work that I cannot find it in other universities in Hong 

Kong even in this moment. It is a great pleasure and honor for me to be her student 

and to work closely with her. I will never forget her kind encouragement, patient 

support and tolerance of my last-minute work habit, and even the days she took her 

valuable time working with me overnight.  She enlightens me not only on academic 

research, but also values and goals in life. She gave me many opportunities to 

explore the world through novel technologies and community services. I would also 

like to express my sincere apology to her because I made her disappointed. Anyway, 

Dr Ngai is the best teacher I ever met. 

I am also very thankful for the valuable feedback and support of my co-

supervisor, Dr Stephen Chan, and the other faculties who generously shared their 

knowledge and experience with me: Dr Alvin Chan and Dr Hong-va Leong from the 

Department of Computing; Mr Rémi Leclerc and Mr Nury Vittachi from the School 

of Design; and Dr Cecilia Pang from the University of Colorado at Boulder at the 

Department of Theatre and Dance. 

I wish to thank Dr Leah Buechley from the MIT Media Lab and Professor 

Francis Lau from the Hong Kong University at the Department of Computer Science 

for their willingness to be my external examiners and their comments and interests 

on my thesis. 

I would like to thank all team members for their support and encouragement. 

Special thanks to Ms Joey Cheung and Mr Sam Choi for helping to develop my 

supervisors’ ideas in the TeeBoard and i*CATch platforms; Mr Jason Tse for 

helping to develop the ideas in the simulation of the tangible programming system; 

and Ms Cat Lai for helping to organize a series of workshops for case studies. I also 

would like to thank Dr Simon Lui for helping us to develop the sound library for 



 

 vii 

performance workshops and the undergraduate students who helped in the 

workshops, special thanks to Ms Esther Leung and Mr Li Li. 

Many thanks to my co-supervisor, Dr Chan again for acting as liaison to the 

Conservative Baptist Lui Ming Choi Primary School. Thanks to the principal, Mr. 

Enoch Yeung and the teachers, Ms Lau-tim Ho and Ms Lai-yee Ho for allowing us 

to work in their classrooms and to conduct user studies with their students. 

Thanks to Dr Mable Chan for giving me comments on my English writing for 

my thesis.  

I am grateful to all my teachers, especially to Professor Helen Meng and Dr 

Y.Y. Lo for mentoring me at the beginning of my research journey. Thanks to all my 

friends, especially to Kelan, Holly, Peggy and Iris for listening to my happiness and 

sadness. 

Finally, I would like to sincerely thank my family for their understanding and 

tolerance. I know that I have not spent enough time on them over the years.  

 



 

viii 

Table of Contents 

Certificate of Originality ........................................................................................... i 

Abstract   ..................................................................................................................... ii 

List of Publications .................................................................................................. iv 

Acknowledgements .................................................................................................. vi 

Table of Contents ................................................................................................... viii 

List of Figures .......................................................................................................... xii 

List of Tables   ....................................................................................................... xviii 

Chapter 1 Introduction .............................................................................................. 1 

1.1 Current Computer Science Education ........................................................ 1 

1.2 Learning Computational Concepts from Tangible Manipulatives ............. 2 

1.3 Motivation .................................................................................................. 3 

1.4 Contributions.............................................................................................. 8 

1.5 Thesis Overview ........................................................................................ 9 

Chapter 2 Theories and Related Work .................................................................. 11 

2.1 From Constructivist Learning to Tangible Computational Construction 

Toolkits .................................................................................................... 11 

2.1.1 Constructivist Learning ................................................................... 12 

2.1.2 Current Computational Construction Kits....................................... 14 

2.1.3 Summary of the categories from traditional learning systems to 

current tangible computational construction platforms .................. 18 

2.2 Other Concepts related to Learning ......................................................... 19 

2.2.1 Cognitive Development .................................................................... 19 

2.2.2 Zone of Proximal Development ....................................................... 20 

2.2.3 Collaborative Learning .................................................................... 21 

2.2.4 Learning Styles................................................................................. 21 

2.3 Conceptual Frameworks for Tangible Interfaces ..................................... 25 

2.3.1 Tangible User Interface (TUI) ......................................................... 25 

2.3.2 Child Tangible Interaction framework (CTI) .................................. 26 

2.3.3 A framework for conceptualizing tangible environments ................ 27 



 

 ix 

2.3.4 A framework on tangibles for learning ............................................27 

2.4 General Evaluation Approaches for Tangible Interfaces .........................29 

2.4.1 Proof-of-concept Prototypes ............................................................29 

2.4.2 Ethnography .....................................................................................30 

2.4.3 Comparative Studies ........................................................................30 

2.5 Programming Paradigms ..........................................................................31 

2.5.1 Imperative Programming .................................................................31 

2.5.2 Object-Oriented Programming ........................................................31 

2.5.3 Functional Programming .................................................................32 

2.5.4 Logic Programming .........................................................................32 

2.5.5 End-user programming ....................................................................32 

Chapter 3 Abstract Thinking through Functional Blocks Construction ............33 

3.1 Tangible Programming System – a kind of Conceptual Manipulation ....33 

3.2 Design Process .........................................................................................34 

3.2.1 Two Early Prototypes ......................................................................34 

3.2.2 The Evolution of the design into i*CATchBadges ...........................46 

3.3 Implementation ........................................................................................48 

3.3.1 Technical Setup ................................................................................48 

3.3.2 Programming Language ..................................................................50 

3.4 Evaluation ................................................................................................53 

3.4.1 i*CATchBadges Study in Game Booth ............................................54 

3.4.2 i*CATchBadges Study in Technology Workshop .............................55 

3.5 Discussion ................................................................................................59 

3.5.1 Computational Concepts ..................................................................60 

3.5.2 Task Outcomes .................................................................................60 

3.5.3 Learning Environment .....................................................................61 

3.6 Summary ..................................................................................................62 

Chapter 4 Creativity through Crafts Making .......................................................63 

4.1 Computational Platforms for Construction and Materials .......................65 

4.1.1 Computational Toolkits for Construction ........................................65 

4.1.2 Programming Environments ............................................................68 



 

 x 

4.1.3 Craft Materials................................................................................. 70 

4.2 Research Methodology ............................................................................ 71 

4.2.1 Courses Background ........................................................................ 72 

4.2.2 Case Study 1: TeeBoard with LilyPad ............................................. 72 

4.2.3 Case Study 2:  i*CATch Apparel Platform ...................................... 76 

4.2.4 Case Study 3:  i*CATch Robotic Platform ...................................... 82 

4.3 Discussion ................................................................................................ 87 

4.3.1 Construction Interface ..................................................................... 87 

4.3.2 Project Theme .................................................................................. 91 

4.3.3 Complexity of Computer Programs ................................................. 91 

4.3.4 Engagement Factors ........................................................................ 93 

4.4 Summary .................................................................................................. 95 

Chapter 5 Expression through Story Creation ..................................................... 96 

5.1 Storytelling and Storytelling Media ......................................................... 97 

5.2 Methodology ............................................................................................ 98 

5.2.1 Two Syllabi of Workshops ................................................................ 99 

5.2.2 Wearable Computing Tools and Materials .................................... 101 

5.3 Findings.................................................................................................. 103 

5.3.1 Electronic Devices on Computational Apparel Representations ... 103 

5.3.2 Roles of Computational Apparel in Performing a Story ................ 115 

5.3.3 Computer Programs....................................................................... 121 

5.4 Discussion .............................................................................................. 124 

5.4.5 Computational Apparel Media for Creating a Story ..................... 124 

5.4.6 Task Characteristics ...................................................................... 126 

5.4.7 Support for Computational Learning............................................. 128 

5.5 Summary ................................................................................................ 130 

Chapter 6 Analysis of Design of Tangible Computational Construction Kits . 131 

6.1 Coupling of computational concepts ..................................................... 131 

6.2 Construction interfaces .......................................................................... 133 

6.3 Domains of Tasks .................................................................................. 135 

6.4 Learner’s Characteristics ....................................................................... 138 



 

 xi 

6.5 Learning Environments ..........................................................................140 

Chapter 7 Conclusion and Future Work .............................................................145 

7.1 Conclusion .............................................................................................145 

7.2 Future Work ...........................................................................................147 

Appendix A: Crafts Making Workshops Syllabi ...............................................149 

Appendix B: Storytelling Workshops Syllabi ....................................................158 

Appendix C: Sample Program of i*CATchBadges Study in Game Booth ......160 

Appendix D: Sample Program of i*CATchBadges Study in Technology 

Workshop .......................................................................................162 

Appendix E: Sample Program of Using TeeBoard with LilyPad ....................164 

Appendix F: Sample Program of Using i*CATch Apparel Platform ..............165 

Appendix G: Sample Program of Using i*CATch Robotic Platform ..............167 

Appendix H: Sample Programs of Program Structures in Storytelling 

Workshop .......................................................................................168 

References ...............................................................................................................174 

 



 

 xii 

List of Figures 

Figure 1.1. The categorization of the educators’ learning systems and the current 

tangible computational systems, and the corresponding studies on the 

tangible computational construction platforms .......................................... 6 

Figure 1.2. The relationship of the five evaluation factors: coupling of the 

computational concepts, construction interfaces, domains of tasks, learner 

characteristics and learning environments .................................................. 8 

Figure 2.1. Two examples of Froebel’s Gifts: (a) Gift 6 is a set of blocks used to 

create buildings. (b) Gift 7 is a set of paperboard pieces used to create 

decorations. [47] ....................................................................................... 13 

Figure 2.2. Two examples of Montessori’s Materials: (a) The knobless cylinder 

contains a set of cylinders with varied height or width for learning the 

concepts of size. (b) The pink tower has different sizes of cubes. [92] ... 13 

Figure 2.3. Three pictures illustrate the Vygotsky’s theory: (a) Imagining a banana 

as a phone (b) Imagining a stick as a horse (c) Acting as a doctor .......... 14 

Figure 2.4. A sample simulation: Two loops with 50% probability measurement 

[134]. ........................................................................................................ 15 

Figure 2.5. A sample program of Tern which contains condition, loop and subroutine 

constructs [56]. ......................................................................................... 15 

Figure 2.6. (a) The NXT brick which can be programmed to control the connected 

motors and sensors. (b) An NXT robot (c) The NXT programming 

environment [90] ...................................................................................... 16 

Figure 2.7. (a) A set of LilyPad Arduino electronic components: microcontroller, 

light sensor, accelerometer, buzzer, vibration motor, LED and battery 

case [80] (b) An interactive handbag with using LilyPad Arduino [81] (c) 

Arduino IDE [6] ....................................................................................... 16 

Figure 2.8. An example of physical programming devices like above: children can 

squeeze the purple hand to make the pink light turn on or to program the 

mouth shaped speaker to say whatever they want [91]. ........................... 17 



 

 xiii 

Figure 2.9. (a) PicoBoard can be programmed to interact with Scratch Project [100]. 

(b) Scratch programming environment [111] (c) An example of a custom 

sensor: the clips are attached to a pair of home-made bracelets used for 

the wrists touch detection [100]. .............................................................. 17 

Figure 2.10. metaDESK design approach [67] ......................................................... 26 

Figure 2.11. Physical instantiation of GUI elements in TUI [61] ............................. 26 

Figure 3.1. The grid distribution for the three types of patches: (a) sequence, (b) 

condition and (c) iteration, where C means Characters, D mean 

Descriptions, A means Actions, O means Objects, T means True and F 

mean False. .............................................................................................. 37 

Figure 3.2. (a) A sequence patch represents a statement “A pig cuts grass to build a 

house” with badges [pig], [hummer,] [grass] and [house], and adding a 

[dialog cloud] to add more interest to the scene. (b) A simplified version 

of the Three Little Pigs using an iteration patch ...................................... 37 

Figure 3.3. Overview of COATline design: link up a character or an object with an 

action by a blue ribbon without arrow; link up actions by a pink ribbon 

with arrow ................................................................................................ 40 

Figure 3.4. Three types of actions: sequence, condition and iteration ...................... 40 

Figure 3.5. The Three Little Pigs story in COATline version .................................. 41 

Figure 3.6. The results of the third task done by the 16-year-old boy: after additional 

clarifications and the addition of an affordance onto the badges, the boy 

performed the task correctly. Yellow strip is used for the connection 

between two actions and blue strip is used for the connection between 

character, action and object. .................................................................... 43 

Figure 3.7. (a) The example task for teaching the 5 1/2 year-old boy: Control a 

motor on and off. However, there is a mistake on no connection between 

[motor] and [off] badges. (b) The task done by the boy: Control a light on 

and off (c) The corrected version of the task done by the boy: add one 

[light] and connect it to [off] ................................................................... 44 

Figure 3.8. Using COATline expression method to control the car moves while it 

senses the environment is bright or not. To make it easier for the boy to 



 

 xiv 

understand, the action ON was changed into MOVE, and OFF was 

changed into STOP. .................................................................................. 45 

Figure 3.9. The i*CATch wearable construction kit .................................................. 47 

Figure 3.10. Constructing the communications bus (a) The individual bus lines, with 

tabs for the snap buttons (b) Bus lines adhered to insulating nylon (c) 

Combining the individual lines to make the communication bus ............ 49 

Figure 3.11. Making the construction platform (a) Affixing the bus to the garment 

substrate (b) Fixing the interface snap buttons (c) The standardized 

i*CATch interface socket (d) Insulating the inside of the garment .......... 50 

Figure 3.12. Illustration of three basic programming constructs (sequences, iterations 

and conditions) in i*CATchBadges programming language ................... 51 

Figure 3.13. Some samples of felt icons were provided for children to design their 

smart clothes or stories. ............................................................................ 52 

Figure 3.14. An example of using felt icons to add meaning to a multicolored LED 

badge: a purple fish wakes up when multicolored LEDs light up. ........... 52 

Figure 3.15. A girl decorates the jacket with i*CATchBadges in the game booth. ... 54 

Figure 3.16. A representative example of a boy’s jacket (left) and a girl’s jacket 

(right) ........................................................................................................ 55 

Figure 3.17. (a) The original figure has a simple curve. An example of three 

students’ sketches: (b) A boy’s sketch: a hand (c) Another boy’s sketch: a 

hand with nails and tattoos (d) A girl’s sketch: no meaning .................... 57 

Figure 3.18. Two different learning environments: game booth (left) and classroom 

(right) ........................................................................................................ 62 

Figure 4.1. (a) The TeeBoard construction interface (b) The modified LilyPad 

components with snaps buttons ................................................................ 66 

Figure 4.2. The i*CATch main board ........................................................................ 67 

Figure 4.3. An interface box for i*CATch robot version (left) and the i*CATch main 

board inserted in the socket of the interface box (right) ........................... 67 

Figure 4.4. A robot adapter block: the side of the connection interface for the robot 

interface box (left) and the side of the connection interface for the 

wearable electronic devices (right) ........................................................... 67 



 

 xv 

Figure 4.5. The Arduino IDE and the sample i*CATch program code .................... 68 

Figure 4.6. The BrickLayer’s interface: A brick area (left), construction area (middle) 

and source code (right) [26] ..................................................................... 69 

Figure 4.7. The i*CATch IDE’s interface. ................................................................ 70 

Figure 4.8. (a) A middle school boy shows how to control the LED pattern by 

moving his hands. (b) A middle school girl explains the design of her t-

shirt: a smiley-face with blush on its cheeks. (c) An interactive t-shirt is 

done by four primary school girls: sunrise and the two ladybugs’ 

conversation. ............................................................................................ 76 

Figure 4.9. (a) A middle school boy decorates their group’ jacket. (b) A multi-

function casual wear is created by a group of two middle school girls: the 

pink felt heart shows the wearer’s emotion, the purple felt clock tells time 

and the yellow felt flower massages the wearer’s stomach. (c) A girl 

demonstrates their hi-tech hiking jacket which could play a song by using 

a remote control. ...................................................................................... 79 

Figure 4.10. Illustration of the measurement of the creativity space of a construction 

platform ................................................................................................... 80 

Figure 4.11. A yellow truck is created by a group of four middle school boys (left). 

A trapezium-shaped car with an ultrasonic sensor on the top is 

constructed by another group of four middle school boys (middle). An 

open-top bus decorated with colorful balloons on two sides is produced 

by a group of four primary school girls (right). ....................................... 85 

Figure 4.12. Summary of the results of the student’s feedbacks from three kinds of 

workshops showing the student’s difficulty on the course ...................... 86 

Figure 4.13. Summary of the results of the student’s feedbacks from three kinds of 

workshops showing the student’s interest on the course ......................... 86 

Figure 4.14. A girl shows her circuitry design with a symmetric pattern for lighting 

up a series of LEDs at the back. .............................................................. 89 

Figure 4.15. A summary of the three kinds of course schedules .............................. 89 

Figure 4.16. (a) A representative program by i*CATch robot students, (b) by the 

TeeBoard/Lilypad students and (c) by the i*CATch apparel students. The 



 

 xvi 

i*CATch programs for interactive garments tend to be longer and more 

elaborate, and use more functions and programming constructs. ............ 92 

Figure 5.1. A primary school girl holds the crying pose with the moving blue LED 

lights as tears to express the sad emotion. .............................................. 100 

Figure 5.2. A story about filming: a director (center) and two gunmen (left and right) 

to make a movie (squared in green) and the trajectory of flying bullet 

(circled in red) ........................................................................................ 105 

Figure 5.3. Turning on an LED positioned on the top of the boy’s head (circled) to 

indicate coming up with an idea. ............................................................ 106 

Figure 5.4. The Looking for a Planet to Live story shows an example of using 

vibration motor to express one of the common story events – explosion.

 ................................................................................................................ 107 

Figure 5.5. A scene of The Three Sons story: three sons (left) are watching their 

father’s virtual image (right) projected from the smart jacket worn on the 

youngest son (sitting in the middle) and listening to his wish. .............. 107 

Figure 5.6. A scene of two girls bullying a boy:  two violet LEDs on the front of the 

boy’s jacket lights up and the buzzer plays the car alarm sound. ........... 108 

Figure 5.7. A microcontroller (center) dressed up as a movie director, alongside two 

gunmen actors. ........................................................................................ 110 

Figure 5.8. A girl presses a switch to trigger a light to indicate the food order. ...... 110 

Figure 5.9. A girl standing on the other side (left) controls the lights on the arm to 

change different colors and the buzzer to play different tones to represent 

the disco ball and music ......................................................................... 111 

Figure 5.10. A scene of the No Pain No Gain story: Two farmers drive (left) a car to 

the store (right). Two LED lights on the front of the boy’s jacket (left) are 

turn on to represent headlamps of a car. ................................................. 112 

Figure 5.11. A thief (right) looks happily and come into the store. Three 

multicolored lights flash repeatedly to indicate the happy emotion. ...... 113 

Figure 5.12. The story of The Little Match Girl. The narrator sticks a felt cutout of a 

match onto the “stage” of the jacket. ...................................................... 117 



 

 xvii 

Figure 5.13. The boys are moving after the siren sound cue in The Three Sons story.

 ............................................................................................................... 118 

Figure 5.14. A boy controls a joystick to change the lights to blue on the front of the 

boy’s jacket to show his sad feeling. ..................................................... 119 

Figure 5.15. (a) A fan wears a cheerleading jacket with lights and star-shaped felt 

accessories. (b) A smart blind girl uses a light sensor (circled) on her 

smart jacket to check the banknotes. ..................................................... 120 

Figure 5.16. A scene of The Girl and The Magic Mirror story .............................. 120 

Figure 5.17. Three kinds of program structures found in the workshops (a) 

Sequentiality on events and timed delays (b) Infinity loop with joystick or 

switches triggers (c) Sequentiality on states with a switch trigger ........ 130 

Figure C.1. An example of a boy’s jacket with labels ............................................ 160 

Figure C.2. An example of a girl’s jacket with labels ............................................. 161 

Figure D.1. (a) A sample output screen of a story with using Scratch created by a 

mixed group of students (b) Crazy Cat’s script (c) Lam Cat’s script (d) 

Stage’s script .......................................................................................... 162 

Figure D.2. An example of a story using i*CATchBadges created by a mixed group 

of students .............................................................................................. 163 

 



 

 xviii 

List of Tables 

Table 2.1. A summary of the similar features of Montessori’s materials and tangible 

programming systems ............................................................................... 18 

Table 2.2. A summary of the similar features of Froebel’s gifts and computational 

toolkits for construction ............................................................................ 18 

Table 2.3. A summary of the similar features of Vygotsky’s theory of play and 

computational interfaces for story creation .............................................. 19 

Table 2.4. The stages of cognitive development [98] ................................................ 19 

Table 3.1. A list of the i*CATch modules used for the i*CATchBadges 

programming language. There are two physical types: actuator and sensor. 

Each badge is mapped into a specified function. ..................................... 53 

Table 3.2. Summary of the results of the students interaction with the 

i*CATchBadges to decorate a jacket ....................................................... 55 

Table 3.3. Summary of the five groups’ results of TCTT-Figural test, the number of 

associations and devices applied in their stories ...................................... 59 

Table 3.4. The time for teaching, preparation and storytelling in graphical 

programming interface (Scratch) and tangible programming interface 

(i*CATchBadges) sessions ....................................................................... 59 

Table 4.1. Materials provided in three kinds of workshops ....................................... 71 

Table 4.2. Three syllabi of our workshops (see the details in Appendix A) .............. 72 

Table 4.3. The degrees of the similarity of the ideas between each stage ................. 82 

Table 4.4. A summary of the creativity space supported by three kinds of 

computational construction interfaces for making computational crafts. 88 

Table 5.1. The two syllabi of the workshops (see the details in Appendix B) ........ 100 

Table 5.2. Materials used in the workshops ............................................................. 102 

Table 5.3. The 11 sound effects encapsulated into functions in the sound library .. 103 

Table 5.4. Statistics on the device and representation in the students’ stories with 

free forms of storytelling (syllabus I) and limited forms on drama or 

pantomime (syllabus II) .......................................................................... 105 



 

 xix 

Table 5.5. The total number and the percentage of groups in each category of the 

representations of electronic devices ..................................................... 105 

Table 5.6. Summary of the students’ stories and the role of the computational 

clothing modules .................................................................................... 116 

Table 5.7. The scoring system for the program quality .......................................... 124 

Table 5.8. Summary of the average of three kinds of program measurements ....... 124 

Table 6.1. Summary the five factors of the three mainstreams of computational 

construction kits ..................................................................................... 143 





 

 1 

Chapter 1 Introduction 

1.1 Current Computer Science Education 
One of the core parts of computer science education is learning programming 

languages. Programming language is a language, which is written as a set of human 

understandable instructions, which can be translated by a compiler or interrupter into 

machine codes that can be understood by a computational device, such as a 

computer or a robot. The set of instructions can be a series of mathematical 

expressions or English-like statements. Even though the high-level programming 

languages, such as Pascal, Java and C, are designed to be more easily understood by 

humans, they are still too abstract for humans to grasp without any training.   

Recently, computer science and engineering degrees worldwide are suffering 

from the same problem of declining student enrolment and interest [46, 87, 127]. As 

far as we know, one main reason is that computational concepts are too abstract for 

students to understand. As a result, students are relatively losing interests and 

confidence in pursuing computer science studies [1, 24]. To combat the decreasing 

enrolment of science and engineering majors in university, more science and 

technology outreach courses are held for middle school students. Basically, these 

courses aim to 1) motivate students’ interests in science and technology, 2) 

encourage them more likely to take science and technology subjects in the future, 

and 3) in the long run, help increasing the enrolment rate in science and engineering 

degrees in university.  

These outreach workshops have contributed many innovative methods to teach 

computer science to children. One of the biggest problems with teaching 

programming is that learning the correct syntax often interferes with the learning of 

programming concepts, making it difficult to learn. Hence, most outreach workshops 

use graphical programming languages, such as Alice [2] and Scratch [111], to teach 

programming concepts. The colorful graphics and animations attract children, and 

drag-and-drop icons address the syntax problem, but there is still the question of 

concretizing the abstract concepts.  

 



 

 2 

1.2 Learning Computational Concepts from Tangible 
Manipulatives 

According to the hands-on learning theories proposed by the educators such as 

Froebel, Montessori, Vygotsky and Piaget, children learn through their senses and 

physical or social activity, and that physical or social interaction is a critical learning 

factor in the child’s cognitive development [48, 92, 93, 97, 129]. To simplify 

abstract computational concepts, some computer science researchers incorporated 

this hands-on learning theory into the computational manipulatives for children 

learning abstract computational concepts. In the 1970s, Seymour Papert was one of 

the first researchers who extended Piaget’s constructivism into constructionism. 

Piaget’s theory of constructivist learning explains the development of knowledge 

which is from an interaction between their experiences and their ideas. Papert’s 

constructionist learning focuses on learning through actively constructing objects in 

the real world, this help us build mental models. Papert applied his theory to develop 

the LOGO programming language [83, 96] with using simple commands to control a 

physical turtle. In this system, the output was tangible, but the input programming 

framework is still abstract.  

For almost 20 years, there was no significant breakthrough in computational 

manipulatives or tangible learning systems until the 1990s. First example was the 

AlgoBlocks system (developed in 1993) [120] which took the opposite approach: it 

consisted of a collection of physical computational building blocks that controlled a 

virtual submarine on the computer screen. Another important example was the best 

known LEGO Mindstorms platform (commercialized in 1998) [90] which consisted 

of an intelligent brick and a set of sensors and motors allowed children to construct 

and program their own robots. In 1997, one year before the appearance of the 

Mindstorms platform, Ishii proposed a “Tangible User Interface” (TUI) to represent 

digital information [67]. After these works, more researchers started to rethink the 

development of tangible computing systems for learning. With the rapid 

development of technology, better hardware and toolkits such as RFID and 

microcontrollers are available, which expand the possibilities of the forms of 

tangible systems. As a result, a variety of tangible construction kits for learning of 



 

 3 

computational concepts have appeared, such as Tern [56], which is a tangible 

computer language developed by a set of wooden bricks with a webcam for 

controlling robots; LilyPad Arduino [80], which is a set of sewable electronic 

components for learners to build the soft and interactive fashion; StoryRoom Kit 

[91], which provides a space for children to create their interactive story by physical 

interactions with sensors and activation of actuators. Outreach workshops [19, 20, 56, 

70, 77] also start to utilize these tangible construction kits to teach abstract 

computational concepts and engage children in learning computer science and 

technology. 

 

1.3 Motivation 
In the late 1960s, with limited technology, researchers could mainly develop some 

physical computational platforms for programming robotic movements, such as 

LOGO turtle [83]. Along with the rapid development of technology, learning 

manipulatives are not only made of wood, plastic or fabric, but also integrate 

computational elements inside. These advanced computational embedded systems 

and ubiquitous technologies provide more opportunities for researchers and 

designers to develop various tangible computational platforms. As a result, more and 

more novel tangible computational platforms are developed. This scenario motivates 

us to find a way to explore how children learn computational concepts through these 

tangible platforms. We find that there are three well-known educators’ constructivist 

learning approaches which are similar to the design features of the current tangible 

computational construction platforms. Thus, these three educators’ learning theories 

are adopted to divide the current tangible computational construction platforms into 

three categories, this help us to understand the characteristics of the current tangible 

platforms and to reveal the possibilities and opportunities of tangible computational 

platforms. The three influential educators’ hands-on learning ideas are described as 

follows:   

♦ Maria Montessori who created a set of learning materials called Montessori 

materials [92], which include various dimensions of blocks designed for 

developing children’s sensory capabilities through exploration.  



 

 4 

♦ Friedrich Froebel who designed a set of educational play materials called 

Froebel’s gifts [47], which include geometric building blocks designed for 

children to explore the physical world by construction. 

♦ Lev Vygotsky did not create any learning artifacts, but he emphasized that 

children learn through social interactions and believed that children develop 

their abstract concepts to understand the world through play [129].  

And the three main categories of the current tangible computational construction 

platforms are:  

♦ Tangible programming systems usually consist of a collection of bricks or 

modules, designed for hands-on exploration of abstract computational 

concepts. Children can learn through the construction of the bricks to 

program some kinds of simulations or robot movements. For example, Flow 

Blocks [134] is designed for exploring mathematical concepts such as 

counting, and Tern [56] is designed for exploring computational concepts 

such as looping by manipulating robot movements. The objective of these 

computational block building systems is similar to Montessori’s idea of 

learning abstract concepts by building blocks.  

♦ Computational toolkits for construction provide a set of components for 

building physical models or making crafts, enabled children to program their 

own computational artifacts. For example, LEGO Mindstorms [90] allows 

construction and programming robots, and Lilypad Arduino [80] enables 

design and programming crafts with sensors and actuators. The objective of 

these programming real world structures is similar to Froebel’s view of 

exploring the physical world by construction. 

♦ Computational interfaces for story creation provide an interface for 

storytelling through a set of sensors and actuators by physical interactions or 

making props or decorations. Children can express their emotions or stories 

through programming sensors and actuators. These activities encourage 

children to have social interaction and imaginative plays. For example, 

StoryRoom [91] provides a space for programming and integrating the 

technology into a story, and PicoBoard [100] creates interactive stories by 



 

 5 

programming sensors. The achievement of these story creations is similar to 

Vygotsky’s philosophy of understanding the world through play.  

These three categories do not cover all aspects of the existing tangible computational 

interfaces, but the majority of them. On the other hand, some tangible computational 

construction platforms can be sorted into two categories, such as Tobopo [104] 

which combines a tangible programming system with a robotic construction kit. 

Again, the purpose of this kind of categories is to help us to analyze and understand 

the characteristics of the majority of tangible construction toolkits for children to 

learning computational concepts. 

Most studies of tangible computational construction platforms received positive 

feedback that may be related to the novelty of the systems. We are interested in 

which category of these three categories of tangible computational platforms are 

more efficient for children to learning computational concepts or what kind of 

characteristics of tangible toolkits are more important to children’s learning. In 

general, most researchers focus on the evaluation of their own platforms with a set 

of hypotheses vertically, such as tasks achievement, learner engagement, and 

interaction quality [20, 89, 134], in which few of them have tried to compare their 

platforms to other platforms horizontally. Even in a comparative study, they may 

have comparisons between tangible and graphical interfaces of similar platforms 

[58], but they may have few considerations on the learning benefit among different 

types of platforms. We believe that each category of construction kits has its own 

merits for children to use for learning, such as coupling of concepts which may be 

related to knowledge assimilation; user interfaces which may be related to 

collaborative learning; learning domains which may be related to engagement. If the 

kits are used by children with different backgrounds, the original design of the kits 

may be not fully utilized by children, or some unexpected usage of the kits may be 

discovered by children. Therefore, we aim to compare and analyze how children use 

different categories of computational construction platform, and decide whether to 

make any tradeoff for a design of a new computational platform for learning.  

In this thesis, the three dimensions of case studies are developed corresponding 

to the three famous educators’ views and the three categories of tangible 



 

 6 

construction platforms mentioned in the above paragraph of this section, by 

observing children how to use and interact with each categories of the computational 

construction kits vertically with several various factors:  

♦ Abstract thinking through functional blocks construction - observes how 

children understand the abstract concepts through using tangible 

programming systems by building function blocks to simulate functions of 

smart clothing and story flows, as well as computational concepts such as 

looping and branching.  

♦ Creativity through craft making - examines how children construct their 

robots and their clothing by using different computational interfaces for 

construction for making crafts in robotic and apparel domains with 

integrating traditional materials such as paper and cloth. 

♦ Expression through story creation - explores how children express their 

stories by programming on different computational interfaces for story 

creation and their performance methods. 

 
Figure 1.1. The categorization of the educators’ learning systems and the current tangible 
computational systems, and the corresponding studies on the tangible computational construction 
platforms 
 
After conducting the three dimensions of studies on tangible computational 

construction platforms, we do an overall evaluation of the learning of computational 

concepts. Based on the review of learning theories and conceptual frameworks of 



 

 7 

tangible interfaces (more details introduced in chapter 2), and our experience from 

the three dimensions of studies, we consider five factors to further analyze how 

children learn through these three categories of tangible construction platforms 

horizontally. The five factors are:  

♦ Coupling of computational concepts – focuses on how abstract 

computational concepts are coupled with physical or expressive 

representation. The representation may be physical blocks, physical actions 

or stories. Computational concepts shall be easier to learn if the concepts are 

coupled with intuitive representations. 

♦ Construction interfaces – refers to the perceived affordance and the 

collaborative learning support. If the construction interface brings many 

difficulties to the learners, they will lose interest easily. Also, learners 

working together should aid effective learning.   

♦ Domains of tasks – refers to the learning engagement in the domains of 

tasks (e.g. robots, e-fashion, and storytelling). The learning engagement may 

consider the children’s responses before, during and after the activity. This 

factor may affect learner’s learning interests and creativity. 

♦ Learner’s characteristics – highlights the characteristics of learners in 

terms of gender, age, knowledge and learning style. Different learners’ 

characteristics are suited to use different kinds of interfaces and domains of 

tasks.  

♦ Learning environments – focuses on the flexibility of the platforms for 

children to learn in different places, such as physical environment like 

classrooms, studios and exhibitions; virtual environment like online 

communities. Different learning places provide different learning experience 

for children. The factor may impact on learner’s active learning and social 

interaction. 

Finally, we base on our analysis to generate guidelines for design of a new tangible 

computational learning platform which should be useful for other researchers, 

educators and designers.  



 

 8 

 
Figure 1.2. The relationship of the five evaluation factors: coupling of the computational concepts, 
construction interfaces, domains of tasks, learner characteristics and learning environments 

 

1.4 Contributions 
This thesis has the following contributions: 

Empirical Evidence on the Learning of Different Categories of Tangible 

Computational Construction Kits by Children 

During the process of this research, we performed a great number of case studies 

through workshops and activities to observe how children master computing 

concepts via tangible computational toolkits. The results of this study contain data 

and knowledge on how children learn to program and to solve problem solutions 

using a tangible kit. 

 

Evaluation Factors for Tangible Computational Construction Kits 

In this thesis, we suggest the use of five factors to evaluate three categories of 

computational construction kits. These are: coupling of computational concepts, 

construction interfaces, domains of tasks, learners’ characteristics and learning 

environments. These factors may also be suitable to analyze other types of 

computational construction kits. 

 

Guidelines for the Design of Tangible Computational Learning Platforms  

This thesis also proposes four guidelines based on the empirical data of children’s 



 

 9 

usage on computational construction platforms. The guidelines include: determine 

places of learning, support diversity of domains, support simple and challenging 

tasks and provide hybrid programming environments. These guidelines should be 

helpful in giving directions to designers and researchers who wish to develop a 

tangible computational construction toolkit for computational concepts learning.  

 

1.5 Thesis Overview 
The remainder of this thesis is organized as follows: 

Chapter 2  Background and Related Work 

This chapter describes the learning theories, and reviews the frameworks specific for 

tangibles and learning, followed by a description of tangible computational 

construction kits.  

 

Chapter 3  Abstract Thinking through Functional Blocks Construction 

This chapter introduces tangible programming environments that are designed for 

children to learn abstract computational concepts. Case studies are used to analyze 

how children use the tangible programming toolkits and compare with the graphical 

approach. Finally, we also examine the effectiveness of tangible programming 

systems in helping children understand the concepts in different learning 

environments.  

 

Chapter 4  Creativity through Craft Making 

This chapter describes programming courses that focus on robotic with crafts 

making which is different from traditional tools with a well-designed construction 

platform, and wearable computing with apparel design. We explore how children 

use and learn through this kind of approach by the working process, program design 

and final products, and analyze the pros and cons of this approach. 

 

Chapter 5  Expression through Story Creation 

This chapter explores how children combine their low-tech individual storytelling or 

group performance methods with high-tech smart clothing components to express 



 

 10 

their ideas and thoughts through creating stories and giving performances. We 

investigate how children create stories and write programs in this new approach.  

 

Chapter 6  Analysis of the Design of Tangible Computational Construction Kits 

This chapter suggests five factors to analyze the learning properties of each stream 

of the computational construction kits. It emphasizes the discussion of the strengths 

and limitations of each kind of the computational construction kits and the balance 

of some design factors on a new computational construction kit. Finally, we generate 

some design guidelines for a new learning kit. 

 

Chapter 7  Conclusion  

It summarizes the thesis and presents a framework to explore the computational 

construction kits learning through building functionalities, crafts making and stories 

expression. It also addresses future directions for design and development of the 

toolkits for learning computational concepts. 



 

 11 

Chapter 2 Theories and Related Work 

To develop a tangible computational construction platform, it often involves 

different scope of elements, including child cognitive development, constructivist 

learning, computational concepts and tangible user interfaces. To review 

constructivist learning theories and the current tangible computational construction 

platforms, it assists us in understanding how the features of tangible systems 

facilitate children’s learning.  Besides that, more tangible systems are developed, 

and more theoretical frameworks are proposed to conceptualize the features of 

tangible systems in terms of representations and spatial, which are often useful for 

developers to analyze the design features of tangible systems. The main purpose of 

the tangible computational construction platforms is to arouse children’s interest in 

learning programming, so it is also necessary for us to study programming 

paradigms to aid the design of the toolkits and the syllabi in case studies. This 

chapter summarizes the relevant learning theories, modern tangible conceptual 

frameworks, evaluation approaches and program paradigms; and it also examines 

some computational toolkits based on the three main perspectives of the 

constructivist learning. This review should be helpful for us to understand the 

background of tangible computational construction toolkits and to design the 

research approaches in our study.  

 
2.1 From Constructivist Learning to Tangible 

Computational Construction Toolkits 
This section provides an overview of traditional constructivist learning systems to 

the current tangible systems, focusing on tangible computational construction 

toolkits. It first describes the approach of constructivist learning and the current 

tangible computational construction toolkits respectively, and then discusses the 

similarity of the features of the three traditional constructivist learning systems and 

the three categories of current tangible computational construction toolkits. 

 
 



 

 12 

2.1.1 Constructivist Learning  
Constructivist learning theory basically argues that the best approach of learning is 

hands-on learning that means learning from experience, from sensation and 

reflection. Formalization of constructivist learning theory is generally attributed to 

Jean Piaget in 1937. Before the work of Piaget, some educators also proposed the 

ideas of hands-on learning in different directions. For example, Froebel, Montessori 

and Vygotsky, who are some of the significant educators, proposed their own 

approaches: 1) Froebel’s approach focuses on construction and design; 2) 

Montessori’s method focuses on conceptual manipulation; and 3) Vygotsky’s 

philosophy focuses on the group of role play. The extensions of constructivist 

learning theory influenced many researchers and designers for building learning 

tools, for example, Seymour Papert who is the founder of LEGO Mindstorms.  

 

Jean Piaget  

Jean Piaget (1896-1980) proposed mechanisms of learning – how learners develop 

cognitive abilities – called constructivist learning [97]. His constructivism proposes 

that learners cannot be given information which they immediately understand and 

use. Instead, learners must construct their new knowledge through experience. There 

are two processes of learning: assimilation and accommodation. Assimilation is a 

process of perceiving new objects or events in terms of existing schemas or 

operations. Accommodation is the process of changing internal mental structure of 

the external world to fit new experiences. 

Constructivism is not a particular pedagogy rather a theory describing how 

learning happens. It is regardless of how learners use their experiences to understand 

a lecture or follow the instructions for building a physical model. However, 

constructivism is often associated with pedagogic approaches that promote active 

learning, or learning by doing. 

 

Friedrich Froebel  

Friedrich Froebel (1782-1852) developed a specific set of “gifts” [47] - physical 

objects, such as balls, blocks, and sticks, for children to use in the kindergarten. 



 

 13 

Froebel designed carefully these gifts into three forms: nature, beauty, and 

knowledge, which help children to learn about colors, shapes and spaces through the 

design and construction of the models by the gifts. For example, gift 6 contains a set 

rectangular blocks which can be used to learn area and volume through constructing 

various forms of buildings; gift 7 is a set of paperboard pieces which can be used to 

learn various shapes and symmetry through creating freestyle decorations. Froebel's 

gifts were eventually distributed throughout the world, deeply influencing the design 

of the construction kits to children.  

                
(a)                                                                                  (b) 

Figure 2.1. Two examples of Froebel’s Gifts: (a) Gift 6 is a set of blocks used to create buildings. (b) 
Gift 7 is a set of paperboard pieces used to create decorations. [47] 
 

Maria Montessori  

Maria Montessori (1870-1952) extended Froebel's ideas, developing a set of 

materials [92], such as the cylinder blocks, the pink tower and the board stair. The 

design of the materials considers a “control of error”feature. For example, the pink 

tower has different sizes of cubes, which helps children to know the tower cubes are 

in the right or wrong order. Montessori believed that the materials enable children to 

learn through personal investigation and exploration [93]. Her idea inspired many 

schools in which manipulative materials play a central role. Montessori sensorial 

materials also become the ancestors of many modern toys, such as puzzles and 

stacking toys. 

                                 
        (a)                                                                (b) 

Figure 2.2. Two examples of Montessori’s Materials: (a) The knobless cylinder contains a set of 
cylinders with varied height or width for learning the concepts of size. (b) The pink tower has 
different sizes of cubes. [92] 



 

 14 

Lev Vygotsky 

Lev Vygotsky (1896-1934) proposed that children’s learning are not only through 

the physical world, but also through the interactions among people in relation to the 

world [129]. His view on learning through social interactions is extended to the 

learning through imaginative play [128]. He argued that play creates an imaginary 

situation which allows children in thinking about the abstract meaning from the 

objects in the world, and contains rules for behavior which stretches the logical skills. 

For example, children can imagine a banana as a phone or a stick as a horse; or they 

can act as a doctor in a role play. 

                                  
                   (a)                                                (b)                                                   (c) 
Figure 2.3. Three pictures illustrate the Vygotsky’s theory: (a) Imagining a banana as a phone (b) 
Imagining a stick as a horse (c) Acting as a doctor 

 

2.1.2 Current Computational Construction Kits 
Many researchers believe that children learn through sensory, physical objects and 

social interactions, so many programming environments for children are created 

specifically to interact or control tangible objects or environment, instead of a visual 

display only. In this section, we summarize some examples of the tangible 

computational construction platforms into three groups: tangible programming 

systems, computational toolkits for construction and computational toolkits for story 

creation, corresponding to the philosophy of hands-on learning from the three key 

educators, Froebel, Montessari and Vygotsky.  

 

Tangible programming systems 

FlowBlocks 

FlowBlocks [134] are a set of physical blocks embedded with electronic devices. 

Blocks are connected to each other by magnetic connectors. There are four types of 

components to FlowBlocks: Paths, Generators, Rules and Probes. Children can learn 



 

 15 

through arranging the blocks in different patterns to simulate different causal 

structures. For example, a light signal is sent through the blocks to create a visible 

chain reaction of “moving lights”. There is another example: a probability slider is 

set with 50% probability at the middle of the two loops to control the light which 

passes through right or left and displays each pass on the display probes to show a 

probability measurement. 

 
Figure 2.4. A sample simulation: Two loops with 50% probability measurement [134]. 

 
Tern  

Tern [56] is a tangible programming language for controlling robots. Its design 

emphasizes the use of inexpensive and durable parts with no embedded electronics 

or power supplies. Students create programs in offline settings - on their desks or on 

the floor - and use a portable scanning station to compile their code. Users connect 

wooden blocks shaped like jigsaw puzzle pieces to form program flow chains. 

 
Figure 2.5. A sample program of Tern which contains condition, loop and subroutine constructs [56]. 
 

Computational toolkits for construction 

LEGO Mindstorms NXT  

The NXT robot [90] consists of an intelligent brick which can control other 

connected motors and sensors to make it come alive and to perform different 



 

 16 

operations. Users can use the Lego parts to build a car or a robot and program it to 

perform different tasks. The program can be written in the NXT graphical 

programming environment to control NXT intelligent bricks and corresponding 

motors and sensors. A user constructs a program by dragging and dropping block 

icons. Each block represents a command and a pair of blocks represents a condition 

or a loop. It includes the data wires that show the data flow from block to block. 

 

           
(a)                                             (b)                                                (c) 

 
Figure 2.6. (a) The NXT brick which can be programmed to control the connected motors and sensors. 
(b) An NXT robot (c) The NXT programming environment [90] 
 

Lilypad Arduino  

The LilyPad Arduino [80] is a system for learners to build their own soft and 

interactive wearables by sewing a microcontroller, sensor and actuator modules 

together with conductive thread and writing a program to control the interactions 

among electronic modules. The program can be written in the text-based Arduino 

IDE [6], the icon-based programming environment Amici [7] or the hybrid text-

graphical programming environment i*CATch IDE [61].  

 

                        
                     (a)                                              (b)                                                        (c) 

 
Figure 2.7. (a) A set of LilyPad Arduino electronic components: microcontroller, light sensor, 
accelerometer, buzzer, vibration motor, LED and battery case [80] (b) An interactive handbag with 
using LilyPad Arduino [81] (c) Arduino IDE [6]  



 

 17 

Computational interfaces for story creation 

StoryRoom Kits 

StoryRoom Kits [91] are designed for children aged 4 to 6 to facilitate them to build 

interactive stories by providing sensors and actuators for them to create some rules 

as programs. These sensors and actuators can be used to augment everyday objects, 

such as chairs or teddy bears. For example, a child can combine a sensor, an actuator, 

and a prop into a magic programming wand.  

 
Figure 2.8. An example of physical programming devices like above: children can squeeze the purple 
hand to make the pink light turn on or to program the mouth shaped speaker to say whatever they 
want [91]. 
 
 

PicoBoard  

The PicoBoard is a built-in sensors board, which enables the program to interact 

with things in the real world: Pencils, paper and water on the Scratch projects [100]. 

Scratch [111] is a kind of graphical programming environment for creating 

        
(a)                                                (b)                                                      (c) 

Figure 2.9. (a) PicoBoard can be programmed to interact with Scratch Project [100]. (b) Scratch 
programming environment [111] (c) An example of a custom sensor: the clips are attached to a pair of 
home-made bracelets used for the wrists touch detection [100]. 



 

 18 

animations and interactive stories. For example, children can write a Scratch 

program to control an action of sprite by the sound sensor on the PicoBoard: when 

there is a loud sound, a sprite changes its color. The PicoBoard also contains a USB 

cable and four sets of alligator clips which are used to measure the electrical 

resistance in a circuit. Thus, children can use the alligator clips to build different 

kinds of custom sensors. For example, the clips are attached to a pair of home-made 

bracelets for the detection of the wrists touch. 

 
2.1.3 Summary of the categories from traditional learning systems to 

current tangible computational construction platforms 
Previous two subsections describe the features of traditional learning systems and 

some examples of current tangible computational construction toolkits. This 

subsection highlights the similarity of the features of the traditional and the current 

tangible learning systems into three categories respectively (see Table 2.1, Table 2.2 

and Table 2.3). The highlighted features basically refer to three perspectives: 

physical materials, construction process and learning objectives. 

 
Montessori’s Materials Tangible Programming Systems 

A set of materials, e.g. cylinder blocks, cubic 
blocks 

A collection of functional bricks or modules 
(maybe with embedded electronic devices) 

With a “control of error” feature Usually no syntax error 
Designed for developing children’s sensory 
capabilities through personal investigation and 
exploration 

Designed for hands-on exploration of abstract 
computational concepts 

E.g. The board stair, the pink tower E.g. Flow blocks, Tern 
Table 2.1. A summary of the similar features of Montessori’s materials and tangible programming 
systems 
 

Froebel’s Gifts Computational Toolkits for Construction 

The physical materials include balls, blocks, 
paperboard pieces and sticks 

A set of components consists include a 
microcontroller, actuators, sensors and some 
materials like blocks or cloth 

Used to create freestyle designs with beauty and 
structure in child’s creations (e.g. houses, 
decorations) 

Used to build physical models (e.g. robots) or 
make crafts (e.g. light-flashing bags) 

Learning arithmetic concepts through 
introducing different sizes of blocks or shapes 

Learning computational concepts through 
programming their own computational artifacts 

E.g. Gift 6, gift 7 E.g. LEGO Mindstorms, LilyPad Arduino 
Table 2.2. A summary of the similar features of Froebel’s gifts and computational toolkits for 
construction 
 



 

 19 

Vygotsky’s Theory of Play 
Computational Interfaces for  

Story Creation 
Any objects, social rules in the world An interface with a set of sensors and actuators 

for storytelling 
Through giving meaning to objects, e.g. a 
banana as a phone,  a stick as a horse 

Through programming artifacts to create 
physical interactions or interactive props 

To reach beyond a child’s average age, level of 
skills or knowledge through play 

Learning computational concepts through 
programming their stories 

E.g. Use an banana as a phone, take a stick as a 
horse, act themselves as a doctor 

E.g. StoryRoom Kits, PicoBoard 

Table 2.3. A summary of the similar features of Vygotsky’s theory of play and computational 
interfaces for story creation 
 

2.2 Other Concepts related to Learning 
Besides the idea of constructivist learning has a deep impact on children’s learning, 

there are other learning concepts which also have a significant influence on 

children’s education. The concepts include child cognitive development, zone of 

proximal development, collaborative learning and learning styles.  The details are 

described as follows. 

 
2.2.1 Cognitive Development   
Jean Piaget (1896-1980) proposed four stages of cognitive development: 

sensorimotor, preoperational, concrete operational and formal operational (see Table 

2.4) [98]. He theorized that children’s knowledge is constructed through “concrete 

operations” before moving on to “formal operations” that is characterized by purely 

abstract thinking. 

Age Period Characteristics 

0-2 Sensori-motor 
The infant learns to differentiate between itself and other objects 
within its environment, learning the difference between “me” 
and “not me”. 

2-4* Pre-operational 
thought 

The child is still very egocentric, but now classifies objects in 
simple ways - particularly by individual important features. 

4-7* Intuitive 
The child can classify things more generally, but is not aware of 
the classes that he or she uses. 

7-11 
Concrete 
operations 

The child can use logical operations, such as reversal, deliberate 
classification and serialization. 

11-15 Formal operations Now things become more conceptual as the child is able to think 
in terms of abstract ideas. 

* Age 2-4 and age 4-7 can be grouped into one stage. 
 

Table 2.4. The stages of cognitive development [98] 
 



 

 20 

Piaget extended his cognitive development into play theory and classified it into four 

categories [99]:  

♦ Sensory-motor play - Child repeats a physical activity, e.g. running and 

climbing. 

♦ Fantasy play - Child mentally represents realities that are not present, e.g. 

role play. 

♦ Construction Play – Involve accidental learning emerging from symbolic 

play, e.g. Brick building and clay modelling. 

♦ Game Play – Game with rules, e.g. Board games and card games. 

Play provides a relaxed atmosphere in which learning can easily occur. However, 

play is not the same as learning: cognitive development requires both assimilation 

and accommodation, while play is assimilation with or without accommodation.  

Piaget’s stage of cognitive development indicates that children aged 7 to 15 

who are able to learn logical operations through concrete materials, and therefore 

our target subjects should be able to learn abstract computational concepts if we 

make it into concrete materials such as bricks. Piaget’s play theory points out the 

play which is not a must to require accommodation, so the tangible computational 

construction platforms as a kind of learning tools are important to support both 

assimilation and accommodation. 

 

2.2.2 Zone of Proximal Development 
Lev Vygotsky advocated a concept called “Zone of Proximal Development” (ZPD) 

that is the distance between the actually ability of a child to finish a task 

independently and the potential ability of a child to solve a problem under adult 

guidance or in collaboration with peers [129]. The idea is like “scaffolding” which 

builds up a child’s new knowledge by the assistance of an adult [131]. This concept 

pushes more children’s activities played with peers and adults, not played 

individually. This concept has influenced many researchers and teachers to provide 

children with experiences by encouraging and advancing their individual learning. 

The benefit of this concept also influences us to organize children to work with their 

peers and be assisted by our student helpers during the workshops. 



 

 21 

2.2.3 Collaborative Learning 
Collaborative learning is a situation in which two or more people learn something 

together [32]. This concept extends from the Vygotsky’s theory of zone of proximal 

development [129] that addresses the social nature of learning of a child interact 

with adults or peers. Collaborative learning is more likely to occur among people 

with similar level of knowledge than among people with different levels such as a 

teacher and a student. This concept inspires us to have a criterion which is to 

determine the interfaces of tangible computational construction platforms whether 

support children to work collaboratively to obtain the benefit of learning. 

 

2.2.4 Learning Styles 
Learning styles are various preferred approaches of learners to perceive knowledge. 

Proponents of learning styles encourage teachers to adapt various teaching methods 

to best fit each student’s learning style that help students learn most effectively. 

There are some well-known models and theories related to learning styles which are 

helpful to identify learner’s preferred ways to learn and develop. For example, 

Jung’s theory of psychological types [63], Kolb’s experimental learning model [74], 

Fleming’s VARK model [44], Gregorc’s mind styles model [53] and Gardner’s 

multiple intelligences [50]. This concept drives us to analyze the design of tangible 

computational construction platforms whether support different styles of learners to 

achieve a diverse population in science and technology disciplines. 

 

Jung’s Psychological Types 

Jung’s theory of psychological types [63] is to classify people into four kinds of 

functions of consciousness: two perceiving functions – sensation and intuition; two 

judging functions – thinking and feeling. These four functions are further modified 

by two main attitude types: extraversion and introversion.  As Jung believed that the 

dominant function characterized consciousness, its opposite will tend to be repressed 

and to characterize the functioning of the unconsciousness. To give a complete 

description of a psychological type, the function and attitude type should be 

combined, and therefore the eight psychological types are: extraverted sensation; 



 

 22 

introverted sensation; extraverted intuition; introverted intuition; extraverted 

thinking; introverted thinking; extraverted feeling; introverted feeling. This theory is 

not exactly used to describe the styles of learners, while the concept of learning 

styles is rooted in the classification of psychological types. 

 

Kolb’s Experimental Learning Model 

Kolb’s experimental learning model [74] is a cyclical model of learning with four 

stages: concrete experience, reflective observation, abstract conceptualization, active 

experimentation. Learners can enter the cycle at any point depending on their 

particular preferred learning style, but must follow each stage in sequence for 

successful learning to take place. Each learning style was based on two of the 

learning cycle stages. The learning styles are as follows: divergers (concrete 

experience and reflective observation) are good at thinking deeply and coming up 

with multiple possibilities of ideas; convergers (abstract conceptualization and active 

experimentation) are good at making practical applications of ideas and using 

deductive reasoning to solve problems; accommodators (concrete experience and 

active experimentation) are good at actively engaging with the world and actually 

doing things rather than thinking only; assimilators (abstract conceptualization and 

reflective observation) are good at creating theoretical models by means of inductive 

reasoning rather than taking practical actions. 

 

Fleming’s VARK Model 

Fleming's VARK model [44] is an extension of concept of VAK (visual, auditory 

and kinesthetic) which comes from neuro-linguistic programming developed by 

Bandler, R. and Grinder, J. [11] and the Dunn and Dunn’s VAK model [36]. 

Fleming improved the VAK model and divided the visual learning component into 

two parts: a symbolic aspect (represented as visual) and a text aspect (represented as 

read-write). Fleming VARK learning model states that each learner is inclined to 

one of its four styles to learn best. Visual learners learn best by seeing things in 

charts and diagrams. Auditory learners learn best through listening lectures. Read-



 

 23 

write learners learn best by reading and writing in text. Kinesthetic learners learn 

best by doing and by using their sense of touch. 

 

Gregorc’s Mind Styles Model 

Gregorc’s mind styles model [53] provides an organized way to describe how the 

mind works. In this model, there are two perceptual qualities: concrete and abstract; 

and two ordering abilities: sequential and random. Concrete perceptions enable 

learners to register information directly through their five senses: sight, smell, touch, 

taste, and hearing. Abstract perceptions allow learners to visualize, imagine, to 

conceive ideas, to understand some concepts that they can't really see. Sequential 

ability allows learners’ mind to organize information in a linear, step-by-step manner. 

Random ability enables learners’ mind to organize information by chunks, and in no 

specific order. All the perceptual qualities and the ordering abilities are present in 

each learner, but learners usually tend to use one of the combinations of the 

strongest perceptual and ordering ability more easily. The four combinations are: 

concrete sequential, abstract random, abstract sequential and concrete random. 

 

Gardner’s Multiple Intelligences 

Gardner’s theory of multiple intelligences [50] is a cognitive model to understand 

learner’s intellectual ability. This model includes some of the VARK modalities as 

“intelligences” and extends that list to at least five other dimensions. The idea of 

multiple intelligences has changed the view of traditional schools which mainly 

focus on verbal-linguistic and logical-mathematical skills, so now most schools 

focus on developing other talents and capacities of their students.  The eight 

intelligences include: linguistic intelligence (strong in use of language), logical-

mathematical intelligence (strong in scientific thinking and problem solving), spatial 

intelligence (strong in visual thinking), bodily-kinesthetic intelligence (strong in 

body control and movement), musical intelligence (strong in music and rhythm), 

interpersonal intelligence (strong in communication with people), intrapersonal 

intelligence (strong in self-awareness), naturalist intelligence (strong in finding 

relationships to nature). 



 

 24 

Felder-Silverman’s Learning Styles Model 

Richard Felder and Linda K. Silverman co-developed a learning style model to 

classify the ways of engineering learners to perceiving information [39]. This model 

consists of four dimensions including sensing-intuitive; visual-verbal; active-

reflective, and sequential-global. The proposed dimensions are neither original nor 

comprehensive, such as sensing/intuitive dimension is based on Jung’s theory of 

psychological types [63]; visual/verbal dimension is a component of VARK model 

[44]; active/reflective dimension is a component of a Kolb’s model [74]; 

sequential/global dimension is according to Gregorc’s mind styles model [53]. The 

contents of four scales are summarized as follows [40]: 

♦ Sensing (concrete thinker, practical, oriented toward facts and procedures) or 

intuitive (abstract thinker, innovative, oriented toward theories and 

underlying meanings); 

♦ Visual (prefer visual representations of presented material, such as pictures, 

diagrams, and flow charts) or verbal (prefer written and spoken explanations); 

♦ Active (learn by trying things out, enjoy working in groups) or reflective 

(learn by thinking things through, prefer working alone or with one or two 

familiar partners); 

♦ Sequential (linear thinking process, learn in incremental steps) or global 

(holistic thinking process, learn in large leaps). 

These four dimensions help instructors to provide effective teaching materials to 

their students. 

 

According to the above models, few learning style models have been developed 

and specified to the engineering students except Felder-Silverman’s model. Felder-

Silverman’s model has been studied in a vast number of engineering students [40]. 

In addition, learning of computational concepts is similar to learning of engineering 

subjects, which also emphasizes concepts and logic. The aim of this thesis is to 

explore how children learn computational concepts through tangible computational 

construction platforms, and therefore we adopted Felder-Silverman’s model in our 

study, as described in Chapter 6, Section 6.4. 



 

 25 

2.3 Conceptual Frameworks for Tangible Interfaces 
Tangible computational construction platforms contain tangible construction 

interfaces, thus it is important for us to understand the features of tangible interfaces 

and how tangible interfaces support learning. These may be helpful for us to define 

factors for exploring our proposed three kinds of tangible platforms. Researchers 

believe that besides tangible interfaces take the advantage of interacting with 

physical objects, and also the results of observations and responses on physical 

activity [4, 34, 86, 103]. To aid developers in designing new tangible systems, 

researchers have proposed some conceptual frameworks which provide explanatory 

power to understand the design factors of tangible interfaces and analyze the results 

of the tangible systems. We try to address three conceptual frameworks which focus 

on the current directions of the exploration of tangible interfaces for children’s usage 

and learning.  Before that, we introduce the fundamental concept of the tangible user 

interface.  

 

2.3.1 Tangible User Interface (TUI) 
Ishii and Ullmer proposed a new user interface called “Tangible User Interface” 

(TUI) that uses tangible objects to represent the digital world [67]. TUI aims to 

bridge the gaps between the virtual and the physical environments by manipulating 

the digital information directly with our hands and perceiving its physical 

embodiment through our peripheral senses. They also defined the term “tangible 

bits” to represent the tangible digital information. The metaDESK design approach 

is an example of physical instantiation of GUI elements such as windows, icons, and 

handles in TUI (see Figure 2.10 and 2.11). This framework provides a basic model 

of representational relationships between the digital information and the physical 

artefacts, but not includes the relationship between tangible interfaces and learning. 

 



 

 26 

 
Figure 2.10. metaDESK design approach [67] 

 

 
Figure 2.11. Physical instantiation of GUI elements in TUI [61] 

 
2.3.2 Child Tangible Interaction framework (CTI) 
The Child Tangible Interaction (CTI) framework [4] is a conceptual design 

framework that derived the design features for tangible and spatial interactive 

systems from the literature on child cognitive development for children under the 

age of twelve. The CTI framework consists of five aspects of tangible systems: 1) 

spaces for action are related to how the actions affect computation in the traditional 

learning environment for children, such as theme parks and museums, 2) perceptual 

mappings refer to the perceptual coupling between the physical and digital aspects of 

the system, 3) behavioral mappings focus on the relationship of the input behavior 

and output effects of the physical and digital aspects of the system, 4) semantic 

mappings refer to the carried information linkage of the physical and digital aspects 

of the system, and 5) space for friends means for support collaboration and imitation. 

This framework provides the design concepts related to spatial aspects of the 

systems and the various kinds of mappings between the physical and digital aspects 

of the systems. In tangible computational construction platforms, spatial aspects may 

be related to the support of flexibility of learning environment and the collaborative 



 

 27 

construction interface which may influence children’s computational learning; 

mappings between the physical and digital aspects may be related to the coupling of 

computational concepts which should be one of the core factors for children to learn 

computational concepts. These two aspects may be helpful in analyzing the tangible 

computational systems. 
 

2.3.3 A framework for conceptualizing tangible environments  
A framework for conceptualizing tangible environments [103] is proposed by Price. 

This conceptual framework highlights the central role of the external representations 

in tangible environments. It addresses four features of the representation 

relationships of the digital information and physical artifacts in environment impact 

on learning: 1) locations refer to the different location coupling between the digital 

information and the physical artifacts, 2) dynamics refer to the different created 

information associations between the digital information and the physical artifacts, 3) 

correspondence that refers to the closeness of the mapping between the physical 

artifacts and the learning concepts, and 4) modality focuses on the understanding the 

value of the conjunction of the interactions of visual, audio and tactile. This 

framework helps us to understand the design features of tangibles and 

representations on interaction for learning, and the underlying mechanisms of 

tangible environments that impact on learning. The highlighted features especially 

dynamics and correspondence are also important for the tangible computational 

construction platforms to support learning, which may help us to identify the 

advantages and disadvantages of the representations in tangible learning 

environments. 

 

2.3.4 A framework on tangibles for learning 
An analytic framework on tangibles for learning is proposed by Marshall [86]. This 

framework identifies the six perspectives of the latest trends and assumptions that 

might facilitate the design of tangible interfaces for learning. The six perspectives 

are: 1) learning benefits refer to how tangibles support more effective or more 

natural learning related to child cognitive development, 2) learning domain refers to 



 

 28 

how tangible interface designs highlight the interesting commonality such as 

molecular biology and chemistry, 3) types of learning activity focus on the 

discussion on the learning possible under two types of learning activity: exploratory 

and expressive, 4) integration of representations refer to the spatial and temporal 

relationship between representations to support learning, 5) concreteness and 

sensory directness focus on the discussion on the impact of the potential learning 

benefit with interacting the concreteness of physical representation , and 6) effects of 

physicality bring out the discussions on the effectiveness of using physical materials 

for learning. Marshall also addresses the needs on the measurable demonstrations of 

the learning benefit of using physical materials. These perspectives may inspire us to 

consider the factors of tangible computational construction platforms which may 

focus on improving learning, and the measurement of learning benefits for tangible 

computational construction platforms which may be related to some factors such as 

user interfaces, domains and representations. 

 

Overall, the above conceptual frameworks focus on the general tangible 

learning systems, not specific to the tangible computational platforms. Some aspects 

of the above conceptual frameworks may not have to be considered in tangible 

computational construction platforms. For example, CTI framework focuses on 

various kinds of mappings between the physical and digital aspects of the system, in 

which behavioral mappings may not be directly related to tangible computational 

platforms because learners learn computational concepts that should be explored 

through programming the input behaviors and the output effects of physical and 

digital aspects of the system. Price’s framework considers the modality aspect which 

refers to understand the value of the conjunction of the interactions of visual, audio 

and tactile, but tangible computational construction platforms should provide a 

programming environment for learners to program the conjunction of the 

interactions of visual (e.g. LEDs), audio (e.g. buzzers) and tactile (e.g. switches). 

Marshall’s framework considers the integration of representations aspect which 

refers to the spatial and temporal relationship between representations, but tangible 

construction interfaces that contain a set of physical materials should not include 



 

 29 

temporal feature for representations. In addition, as far as we know, most conceptual 

frameworks focus on the relationship between the physical and digital aspects of the 

system rather than the relationship between the styles of learners and tangible 

interfaces aspects. Therefore, we indentify five factors which are drawn from the 

frameworks described above and traditional learning theories are specified for 

further analysis on the three kinds of tangible computational construction platforms 

to support children’s learning (applied in chapter 6). 

 

2.4 General Evaluation Approaches for Tangible Interfaces 
To our best knowledge, there are no standard evaluation methods for tangible user 

interfaces, as it is relatively difficult to define the benchmark to compare in this 

novel area. To evaluate the tangible systems, there are three general evaluation 

methods for measuring the performance: proof-of-concept prototypes, ethnography 

and comparative studies. Most of these approaches are also applied in our case 

studies. 

 

2.4.1 Proof-of-concept Prototypes 
A proof-of-concept prototype is an initial evaluation method in tangible user 

interface or other novel research fields to verify the concept or theory by the 

demonstration of its feasibility [112]. According to the Bruce Carsten’s definition 

[25], proof-of-concept prototype is a term that is similar to an engineering prototype, 

but one in which the purpose was only to demonstrate the feasibility of a new circuit 

and/or a fabrication technique, and was not planned to be an early version of a 

production design. For example, Mcnerney developed Tangible Programming Bricks 

to prove the concepts of tangible programming [89]. He redesigned the LEGO bricks 

embedded with microprocessor and adding a card slot to the side of each brick that 

could be used for building simple programs with parameters passing, such as 

counting the number of the wheel revolutions and displaying the speed and distance 

of the bicycle travelled. He arranged a 30-minute informal user testing with four 

children to complete some tasks such as using the bricks and bicycle to measure 



 

 30 

distance. The successes of children in accomplishing tasks show that tangible 

programming systems are simple for children to work on.  

 

2.4.2 Ethnography  
Ethnography is a research strategy often used in the HCI area [112]. It is often 

employed for gathering empirical data on user experience. Data collection is often 

done through qualitative observations, interviews, questionnaires, and video analysis. 

Video analysis is well suited to investigating verbal and nonverbal behavior, and 

focusing on the interaction between the user and the physical interfaces of the 

system. The video data can be observed iteratively to remain the possibility to open 

new aspects and develop new analysis criteria, especially only with a loosely 

phrased hypothesis. For example, AlgoBlock programming language [112] was 

taken a video to analyze the collaboration of children body movement and 

positioning in playing the blocks. Qualitative observations and interviews tend to be 

more suitable for small groups of participants. For example, Zuckerman et al [134] 

interviewed the children during FlowBlocks session that involved doing a set of 

tasks to examine their understanding of the tasks and the systems. Questionnaires are 

also suitable in case studies; especially standardized questionnaires are often useful 

to analyze the user’s feedback in a series of experimental workshops or in the wild. 

For example, Katterfeldt et al [70] used a set of the pre and post survey to assist in 

analyzing the qualitative results obtained from workshops.  

 

2.4.3 Comparative Studies 
Comparative study is a method to quantify the performance of user interfaces by 

comparing to other similar platforms with different variants of the interfaces, such as 

graphical user interface compared to tangible user interface or comparing different 

interaction styles [112]. The comparative studies would often measure the objective 

quantitative factors, such as task completion time, error rate, and memorization time. 

For example, Jacob’s study on the performance of the Senseboard [62], he measured 

the performance of the interfaces under four different conditions by comparing the 

correctness rate and the time completion of the tasks. In the recent years, the 



 

 31 

comparative studies focus on the high-level interaction qualities more, such as 

enjoyment, engagement and legibility of actions. For example, Horn’s study on the 

comparison of the effectiveness of a tangible and a graphical programming interface 

[58]. He defined six qualities to measure the effectiveness: inviting, apprehendable, 

active collaborative, engaging, programs and child-focused. There are still rather 

rare examples of comparative studies among the tangible user interface systems, 

particular in the domain of learning computational concepts.  

 

2.5 Programming Paradigms 
Programming paradigm is a pattern of problem solving styles that underlies a 

particular type of programs and languages. To understand the characteristics of each 

kind of paradigms, it is important for us to design a workshop syllabus which is 

suitable for children to learn, and to determine how the programming environments 

to be designed or used in the case studies. There are five fundamental programming 

paradigms introduced below. 

 

2.5.1 Imperative Programming 
Imperative programming describes computation in terms of statements or commands, 

and each execution of each statement changes a program state [102]. In this model, 

both the program and its variables are stored together, and the program contains a 

series of commands that perform calculations, assign values to variables, retrieve 

input and produce output, etc. Procedural abstraction is an essential building block 

for imperative programming as sequences, conditions and loops [123]. The examples 

of imperative programming languages include C, Basic and Pascal, etc. 

 

2.5.2 Object-Oriented Programming 
Object-Oriented programming uses objects interact with each other by passing 

messages that transform their states [123]. Message passing means that the data 

objects are allowed to become active rather than passive. There are some 

fundamental techniques included, classification, inheritance and message passing. 

Examples of object-oriented programming languages include C++, Java and C#, etc. 



 

 32 

2.5.3 Functional Programming 
Functional programming models a computational problem as a collection of 

mathematical functions, each with an input (domain) and a result (range) space [123]. 

Functions interact and combine with each other using functional composition, 

conditional, and recursion. Examples of functional programming languages include 

Lisp, Scheme and Haskell, etc. 

 

2.5.4 Logic Programming 
Logic programming, also named declarative programming, allows a program to 

model a problem by declaring the outcome instead of the algorithm [123]. It also 

provides a natural vehicle for expressing non-determinism, which is appropriate for 

problems whose specifications are incomplete. An example of a logic programming 

language is Prolog. 

 

2.5.5 End-user programming 
End-user programming cannot be said a programming paradigm. Instead, it is a 

method or technique to present programming such that most users will not require as 

much time to learn the tools and skills of a professional programmer [77]. There is a 

variety of techniques to make it easier for the user to write a program, such as 

programming by demonstration [30] and graphical programming [68]. As children 

are mostly programming novices, many child-oriented programming frameworks are 

designed as end-user programming applications. 

 

 



 

 33 

Chapter 3 Abstract Thinking through 
Functional Blocks Construction 

This chapter examines the impact of tangible programming system on children’s 

learning of computational concepts. This study investigates the design of tangible 

languages and construction interfaces. Two paper prototypes were designed with 

different expression methods to model the computational concepts associated with 

story elements or robot actions. Based on the observation of the children’s 

interactions with these two paper prototypes, the i*CATch wearable toolkit was 

modified to simulate a tangible programming system and was called 

“i*CATchBadges”. This system was used to investigate how children interact with 

the badges in two different learning environments: school fun fair game booth and 

the classroom. During the task period, children were encouraged to associate the 

construction badges with some meanings such as the functionality of intelligent 

clothing and the representations of the functions of the badges. The following 

presents a detailed discussion on the effectiveness of tangible programming systems 

in helping children learn computational concepts through three perspectives: 

♦ Computational Concepts - analyze how children learn computational 

concepts through tangible programming systems 

♦ Task Outcomes - discuss the possible aspects of tasks solved by tangible 

programming systems 

♦ Learning Environments - explore the potential usage of tangible 

programming systems in different learning environments 

 

3.1 Tangible Programming System – a kind of Conceptual 
Manipulation 

Tangible programming system supports a tangible programming language, which is 

programmed by grasping a set of tangible blocks instead of writing texts or 

manipulating virtual objects displayed on a computer screen. It consists of a set of 

tangible blocks, and each of which represents a function or an expression, which 



 

 34 

focuses on modeling conceptual structures instead of constructing physical objects. 

This means that the learning approach that is different from some well-known 

computational construction platforms like LEGO Mindstorms [90]. This tangible 

learning approach supports hands-on learning that is a natural way for children to 

learn, and also encourages learning of abstract concepts such as computational 

concepts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

There are two kinds of tangible programming systems. One kind of tangible 

programming systems contains two parts: the input is through a tangible user 

interface (TUI) such as a set of physical blocks, and the output is displayed on a 

separated graphical user interface (GUI) such as a computer screen or a physical 

object such as a robot. For example, AlgoBlocks [120] has a collection of physical 

computational building blocks that controls a virtual submarine on the computer 

screen; Tern [56] has a set of wooden blocks shaped like jigsaw puzzle pieces that 

created a program by a chain of wooden blocks to control the actions of a robot. 

Another kind of tangible programming system contains only one part, which serves 

as both input and output, with no standard computers, but embedded 

microcontrollers involved. For example, Tangible Programming Bricks [89] is made 

of computational LEGO bricks to explore measurement and computation such as 

bicycle’s velocity computation; SystemBlocks [135] and FlowBlocks [134] are 

similar and both consist of a set of computational blocks which simulates 

computational concepts through dynamic behaviours or processes. 

 

3.2 Design Process 
This section presents our two early paper prototypes: LivePic Study and COATline 

Study. The preliminary design dimensions of these two prototypes are listed, based 

on which the final prototypes: i*CATchBadges is designed.  

 

3.2.1 Two Early Prototypes 
We developed two early paper prototypes LivePic and COATline to review the user 

interface of the tangible programming environment. A tangible user interface (TUI) 

was simulated as an input device to control an output device such as a monitor or a 



 

 35 

physical robot. The objective of such simulation is to evaluate the pros and cons of 

these two initial designs. A story structure was used as the theme to simulate the 

computational concepts and behavior, as we believe that storytelling is a natural way 

for children to learn and express ideas. The design dimensions of two prototypes 

were basically the same, except the expression method of programming statements. 

In these two preliminary studies, we learned from several flaws on the user interface 

designs, which helped us to improve the final technical and physical design of a 

tangible programming system. The details of initial design dimensions and the 

studies of two paper prototypes are described as follows. 

 

Initial Design Dimensions  

There are three core initial design dimensions considered in our design process.  

(1) Knowledge of Computational Concepts  

There are some children’s computational toolkits used the event-based or object-

based paradigms [72] that are convenient for programming, but they are not 

necessarily appropriate in a toolkit that is meant to support the teaching of 

programming. This toolkit should contain basic computation concepts, including 

sequences, conditions and repetitions. 

(2) Gender-Neutral Programming Domain 

Many child-centred programming environments focus on robot control and 

mathematical concepts. However, these kinds of learning domains tend to be 

appealing to boys. Therefore, storytelling was chosen to be the programming domain, 

as it is familiar to children and is a fairly gender-neutral activity at least for younger 

children. In addition, some story structures actually are similar to a program 

structure. For example, stories are usually written in chronological order, echoing 

the sequentiality of programs; interactive stories consist of choices, similar to the 

concept of conditions in programming; in fairy tales, it is common to repeat events 

three times, each time with slightly different elements, which is similar to the 

concept of repetition. Storytelling should be able to broaden the population of 

children who may be interested in learning programming, and the characteristics of 



 

 36 

story structure should help children to understand the abstract programming 

concepts more easily. 

(3) Expressions of Programming Statements 

In LivePic prototype, the program specified textual statements by moving to a scene-

based expression, in the style of a pictorial story book. Each programming statement 

acts as a scene in the story book. Our rationale for using this is to facilitate learners 

to understand the program flow, because of the similarity of reading a pictorial 

storybook. In COATline prototype, a flowchart-based notation was used to make the 

design of the system more intuitive and simple. It was simplified in terms of the 

rules of the scene-based expression and formed a flowchart-like sequence flow. Our 

reason for using a flowchart-based notation is to assist learners in focusing on each 

step without being overwhelmed by the whole process.  

 

LivePic Study 

The initial paper prototype was called LivePic, with a meaning of live pictograph, in 

which animated pictures demonstrated their actions or meanings within the context 

of a story or a message. Our approach was similar to a graphic-based programming 

system, but the tangible user interface was applied to make it more intuitive and 

reduce the abstractions. The LivePic system was therefore a combination of these 

two elements -- a kind of “tangible pictograph” – which was used to represent scenes 

(or programming statements in terms of computer language). Originally, a set of 

rules were designed to express story (or program) statements in a way that would be 

free of ambiguity. Two examples of the rules: 1) four types of badges were defined 

to be used in the particular positions of a patch to represent a programming 

statement: characters, actions, objects and descriptions, which represent subjects, 

verbs, objects, and adjectives or adverbs in English grammar (Figure 3.1); 2) three 

categories of patches were designed to echo the three basic constructs of 

programming: sequences, conditions and iterations. However, these rules were not 

so successful, because the rules were too complex for children to digest and apply 

into a story.  



 

 37 

   
Sequence Condition Iteration 

(a) (b) (c) 
Figure 3.1. The grid distribution for the three types of patches: (a) sequence, (b) condition and (c) 
iteration, where C means Characters, D mean Descriptions, A means Actions, O means Objects, T 
means True and F mean False. 
 
Task: Recreate the story of the Three Little Pigs 

Ten children (six boys and four girls) from 8 to 12 years old studying in local public 

primary schools participated in the study. They were separated by age and gender 

into three groups of three to four students each: one was all-male, one was all-female 

and one was mixed. The children were provided a set of LivePic materials (badges 

and patches) to recreate the Three Little Pigs story in a playground. We gave a brief 

introduction of the rules of LivePic, but we did not expect the children to remember 

all the rules and gave them freedom to place the badges on the patches as they felt 

appropriate. The objectives were 1) to investigate whether LivePic can assist them to 

analyze or organize a story, and 2) to observe how easily children could use LivePic 

to express their ideas. 

 

             
  (a)                                              (b) 

Figure 3.2. (a) A sequence patch represents a statement “A pig cuts grass to build a house” with 
badges [pig], [hummer,] [grass] and [house], and adding a [dialog cloud] to add more interest to the 
scene. (b) A simplified version of the Three Little Pigs using an iteration patch 
 

 



 

 38 

Observations 

In general, the children encountered two main difficulties when doing the task: 1) 

expressing a concise, complete statement using the given badges, and 2) developing 

the story flow with respect to program constructs. For example, the children often 

gave too much detail in their expressions. In one scene of the story created by a 

mixed group, they illustrated a statement with “the first pig finds a salesman from 

whom he buys the straw to build his house” (Figure 3.2 (a)), rather than using a 

simpler manner (involves fewer characters) such as “the first pig buys straw”. This 

phenomenon is similar to novices who write a simple program with redundancies, 

making it unwieldy and clumsy. This observed behaviour informs us about the need 

to reconsider the user interface design and its affordances, so as to enable the user to 

more easily follow the programming/storytelling rules. On the other hand, the 

children tended to focus on the sequence of story, and did not try to use conditions 

or iterations to summarize the story flow. The exception was one all-girl group, 

which tried to use the iteration patch to make a simplified version of the Three Little 

Pigs (Figure 3.2 (b)). In addition, some objects were designed to have more than one 

part of speech in LivePic, such as the “fire” badge, which can be used to represent its 

actual meaning: a fire (which would be a noun), and being angry (which would be an 

adjective). However, it seems that children tend to focus more on actions, rather than 

descriptions. 

Children’s Feedback 

Interviews were used to obtain feedback directly from the children rather than filling 

in a survey form, due to the limited time and the age of the children. The questions 

mainly focused on the medium for storytelling - drawing versus LivePic. Most of 

them preferred using LivePic to drawing, as they did not think they can draw well. 

On the other hand, they enjoyed the idea of using tangible objects to build something. 

This gives more evidence to the hypothesis that tangible interfaces are more 

appealing to children. 

Discussions 

The observation of the study revealed two weaknesses of LivePic: 1) the rules are 

not intuitive to children, and 2) the ambiguity of the meaning of patches may occur. 



 

 39 

Most of them put badges on the wrong position. For example, the children always 

placed all badges on the top half of a patch (see Figure 3.2 (a)), but the action badge 

should be placed in the centre. Each badge basically is an object, but it has different 

parts of speech when it is placed on different positions of a patch. Some positions 

share three types of parts of speech, and this rule causes the ambiguity of the 

meaning of a patch. For example, one all-girl group placed the [house] on the top of 

the [pig] (see Figure 3.2 (b)), in which the position of the [house] can be a character, 

a description or an object. This patch can be interpreted as “the wolf blows the house 

and the pig” or “the wolf blows the pig as a house”. As we know that the children 

retold the Three Little Pigs story, we do not choose the latter interpretation. 

However, it is difficult to determine the real meaning in other new stories. The 

original rationale of this design is to be more flexible to express stories, but this 

flexibility brings ambiguity to understand.  

Despite some problems with LivePic, there are still two strengths: 1) it allows 

children to have a figure classification practice, and 2) it encourages collaboration 

among children. One interesting discovery was that most of the children tried to 

classify the badges before creating the story. That way, they could know which 

badges were related, and which were not, hence indirectly practicing a form of 

classification exercise. Also, LivePic supported children to discuss and construct the 

story in a collaborative fashion. Each student had his/her chance to put badges onto 

patches to make different parts of the story.  Furthermore, none of them wanted to 

stop for a break when given the opportunity, preferring to finish the story. 

 

COATline Study 

In order to address the weaknesses of LivePic as evidenced by the evaluation, 

modifications to the design was made, which resulted in: COATline. It follows the 

idea of LivePic in supporting basic programming concepts, including sequences, 

conditionals and iterations. It was simplified from four to three terms of badges: 

characters, objects and actions, and supported a simple sentence structure: subject 

(character) verb (action) object (object). It also focused on the interface design on 

the relationship between character, object and action, using the programming 



 

 40 

flowchart as an inspiration to visualize the timeline flowing from one event to 

another (Figure 3.3). The characteristics of character and object are similar to 

variables or parameters in terms of programming constructs, whereas the 

characteristics of actions are similar to sequences, conditions and iterations, and 

therefore there are three types of actions (Figure 3.4). 

 
Figure 3.3. Overview of COATline design: link up a character or an object with an action by a blue 
ribbon without arrow; link up actions by a pink ribbon with arrow 
 

 
Figure 3.4. Three types of actions: sequence, condition and iteration 

 
Researchers found that a common novice programming problem is variable 

usage [23]. It is easy to forget which variables have been declared, and which have 

not. This mistake causes frustration and confusion, and is something inherent in all 

programming languages. Even graphical programming languages may not 

completely relieve the variable usage problem. Another common problem is that it is 

often difficult to trace a program step by step, especially when it comes to 

repetitions [13]. The design of COATline specifically addressed these two problems. 

To deal with the problem of variable usage, each character or object was designed to 

connect to one or more actions (see Figure 3.3). In this way, it is easy to figure out 

which action(s) are related to which character(s) and object(s). To help tracing a 

program flow, we use connectors with arrows to link up the actions one by one. This 

clue helps to avoid step-skipping by mistake. This design emphasized the 



 

 41 

relationship between character, object and action to assist students in training up 

their visual and analytic abilities. 

On the visual screen, this design of the programming expression resembles a 

graph, with a number of edges everywhere. The program seems more messy than 

intuitive. However, on a tangible interface, the user can physically touch the 

connecting ribbons and follow them from badge to badge. This integrates the sense 

of touch into the language, which helps to visualize the program flow (see Figure 

3.5).  

 
Figure 3.5. The Three Little Pigs story in COATline version 

 
Methods 

COATline was evaluated on two dimensions: 1) the readability of the notation, and 2) 

the usability of the system with respect to writing a story or constructing a program. 

Five subjects were invited to test the readability, to investigate whether it better 

assists the learner in reading a story, and to determine how difficult it is to use 

COATline to express a story. Two people were invited to test the usability, to 

observe how difficult it is for the learners to construct a COATline program to 

control a robot. Learning from the experience of the LivePic study, the evaluation 



 

 42 

was carried out with one subject at a time such that we could better direct and 

observe the participants.  

Readability Task: Reading the Three Little Pigs 

Five subjects were invited: Two female subjects were university staff with computer 

science background; one male and one female subject were first-year computer 

science students with weak programming knowledge; the last male subject was a 

writer of children’s stories. Although none of these individuals are the 

representatives of our target users, the purpose of this evaluation is to obtain users’ 

reactions towards the non-traditional and non-conventional kind of representation of 

COATline. For this evaluation, the participants first had a brief introduction to the 

COATline version of the Three Little Pigs story (Figure 3.5), and then were 

requested to explain the meaning of the representations. The objective was to gauge 

the understandability and intuitiveness of the new COATline design. The motivation 

for this evaluation is that a tool needs to be easy to understand and read if it is to be 

effective at learning. 

Observations 

When the subjects were presented with COATline, the first impression of the one 

female staff and one female student was that it was very confusing, as it had many 

criss-crossing lines, while the rest of the subjects had no particular feeling one way 

or another. Basically, all of them could follow the event flow of the story without 

any problem; the only difficulty was that the participants sometimes mixed up the 

pink lines (which are used for connecting actions to each other in the form of a 

timeline/action sequence) with the blue ones (which connect characters and objects 

to actions that they perform). The only exception was the loop structure, where all 

they needed to be shown first how to read the loop. That may be because a loop is 

less natural when compared to sequential action. 

Programming Tasks: Controlling electronic components 

For this evaluation, two subjects were asked to do several tasks using the COATline 

version to construct programs for electronic device control. One subject was a boy, 

aged 16, who was studying in arts and commercial subjects and had never learned 

any programming before. Another subject was a boy, aged 5 ½, who was studying in 



 

 43 

kindergarten and had a little experience with Lego robotics. The objective was to 

gauge the difficulty of using COATline, which is a story-flowchart-based 

representation of a program problem. We believe if the user finds it easy to pick up 

the rules of the tool, he/she can spend more time focusing on learning logic concepts 

and problem solving. 

 
Figure 3.6. The results of the third task done by the 16-year-old boy: after additional clarifications 
and the addition of an affordance onto the badges, the boy performed the task correctly. Yellow strip 
is used for the connection between two actions and blue strip is used for the connection between 
character, action and object. 
 

Results 

The 16-year-old boy was asked to do three similar tasks with different types of 

actuators and sensors: turn on or off actuators (light or motor) by a sensor (light or 

sound sensor). During the first task, he could not distinguish between the action and 

the object (e.g. [light sensor] is an object, not an action, but it was connected to [start] 

action and [check sensor value condition] action with blue strips), and between the 

data flow and the action flow (e.g. in the [condition] action badge with the true and 

false connection points, one blue strip was connected to true and one yellow strip 

was connected to false). After being given the answer of the first task, we let him try 

another similar task again. He still had a similar problem with the connections of 

badges. He also was not able to generalize and identify the common areas between 

the first and the second task (both involve controlling an actuator using a light sensor 

in which one is a light and another one is a motor). Before he started to do the third 

task, we suggested him thinking about the flow first and then the relationship 

Circle for character or object 
 

Square for action 
 



 

 44 

between the object and action. We also drew two squares and two circles onto the 

action badges, and told him that the action strips should be attached to the squares, 

and the data strips to the circles. With this additional clarification and help, he was 

able to finish the third task (see Figure 3.6). This shows that the affordance of the 

physical interface is an important factor towards reducing errors and enhancing the 

efficiency of learning. 

     
 (a)                                             (b)                                             (c) 

Figure 3.7. (a) The example task for teaching the 5 1/2 year-old boy: Control a motor on and off. 
However, there is a mistake on no connection between [motor] and [off] badges. (b) The task done by 
the boy: Control a light on and off (c) The corrected version of the task done by the boy: add one 
[light] and connect it to [off] 
 

The 5½-year-old boy was asked to do two tasks: one is to control a light bulb 

on or off; another one is to explain the movements of the car. Before he started on 

the first task, he was taught how to control a motor on and off by demonstrating how 

to connect the badges (Figure 3.7 (a)). Then, he was asked to use COATline to turn a 

light bulb on and off. He had no problem finishing the task (Figure 3.7 (b)), but was 

very easily distracted and needed to be reminded and encouraged to finish. As a 

result of the distraction, one interesting observation was made: a mistake was made 

on our example of controlling a motor on and off by forgetting to make a connection 

between the [motor] and [off] badges. This, however, turned to be an opportunity to 

ask the boy if anything was missing on the action [off]. The response was to pick up 

another [light bulb] icon and connect it to the [off] badge, as he thought any picture 

of a light would refer to the same light bulb. The result was unexpected, as we had 

not previously explained that one object could have two actions, but the boy was 



 

 45 

able to extrapolate from similar data to correct our mistake (Figure 3.7 (c)). In the 

second task, we asked him to trace and explain a program that would cause a car to 

move when the environment is bright, and to stop when it was dark. At the very 

beginning, we tried to connect a [wheel] to action [on], and so on. However, this 

caused some difficulties in understanding, as the boy was not able to associate a 

wheel turning on with a car moving. We then changed the wordings into more 

general terms, such as using [move] instead of [on], [stop] instead of [off], and 

connecting to a [car] instead of a [wheel]. With these changes, he could follow the 

flow and explain how the car moves (Figure 3.8).  

 

     
Figure 3.8. Using COATline expression method to control the car moves while it senses the 
environment is bright or not. To make it easier for the boy to understand, the action ON was changed 
into MOVE, and OFF was changed into STOP. 
 

Lessons Learned from Two Paper Prototypes 

In these two studies, we used two different story expression approaches to represent 

a programming problem. We found that some design elements or improvements 

would be useful for the next iteration prototype:  

♦ Simple Output - From our observations, the children had no problem 

imagining the output of the tangible programs as a story animation displayed 

on the screen or a real robot movement either in LivePic or COATline. This 

inspired us to design the interactive prototype with a tangible user interface 

that serve as both inputs and outputs, thus the simple and concrete functional 

output provides more space for children to practice their imaginations, which 

facilitates learning of abstract computational concepts. 

Move 

Stop 



 

 46 

♦ Affordance – The LivePic interface does not provide any visual clues for 

children to put the badges onto the patches, while in the COATline interface, 

the additional squares and circles helped the 16-year-old boy to finish the 

task. Therefore, effective use of affordance on the physical interface is 

important in reducing errors and enhancing the efficiency of learning. 

♦ Syntax Errors Prevention – From our observations, the story-flowchart-

based structure (character, action and object) used in COATline is more 

intuitive for children to express their ideas and construct their programs, but 

the children sometimes introduced syntax errors especially in condition and 

iteration action badges. Since these two kinds of action badges contain 

branches that connect to more than one action badge, it is difficult to direct a 

connection strip to attach to the correct place. To prevent this problem, the 

construction interface has to be redesigned; otherwise a complier is needed to 

check the syntax errors.  

♦ Plot/Action Driven – According to our observation, the children preferred 

the action description to the character/object description. In addition, the 

writer, one of our subjects, stated that action events were appealing to 

children, so a child’s story should be plot-driven instead of character-driven. 

His professional comment supported our decision to base our design on an 

event timeline. 

 

3.2.2 The Evolution of the design into i*CATchBadges 
To transform the COATline paper prototype into the i*CATchBadges interactive 

prototype, we revised the design dimensions based on the two early paper prototypes 

and modified a suitable current platform – i*CATch [95] – a plug and play wearable 

construction kit (see Figure 3.9) into “i*CATchBadges” for our study.  



 

 47 

 
Figure 3.9. The i*CATch wearable construction kit 

 
The revised design dimensions are shown below: 

(1) Knowledge of Computational Concepts 

The computation concepts sequences, conditions and repetitions were basically kept 

in the interactive prototype. However, due to providing a “syntax” error free 

construction interface, the design of the construction interface was simplified to 

eliminate the connection strips between the badges. To accommodate the simplified 

construction interface, the conditional and repetitive constructs would be more 

constrained than the paper prototype version. In addition, as children prefer to work 

with the action events, the character and object elements were discarded, keeping 

only the action element. Therefore, the programming paradigm of the interactive 

prototype is functional rather than imperative.   

 

(2) Increment of Abstraction  

In the paper prototype, each badge had one concrete meaning (e.g. run) and was 

designed with certain outputs. It is not scalable to create numerous physical badges 

each corresponding to a word in the dictionary for storytelling. To solve this 

problem, the meaning of each badge should be more abstract, thus allowing it to be 

mapped to more than one concrete meaning to increase the flexibility. For example, 

a LED device flashes (more abstract) could be used to represent “pig runs” or “wolf 

escapes” (more concrete). Thus, the abstract tangible programming language would 

support a variety of domains such as storytelling, robot movement controls, and even 

intelligent clothing functions. 

 



 

 48 

(3) Space of Imagination   

According to our studies, the children are able to imagine the output results of their 

tangible programs (demonstrated by paper badges) as a scene or an action. Therefore, 

the external output does not have to be a screen display, but can be some simple 

effects of actuators or sensors such as flashing light patterns and melodies, and each 

badge would be a kind of program functions. These concrete physical functions (but 

abstract to children’s story or life) in a general programming flow provide space for 

children to imagine concrete things and map them to familiar meanings for 

themselves.  

 

(4) Function-based Expression 

To simplify the tangible construction interface, the LivePic scene-based expression 

and COATline flowchart-based notation were discarded, and moved to a function-

based notation. The interface would support both input (program construction) and 

output (program result). Our rationale was to provide a syntax free interface for 

programming and maintain a certain level of abstraction for children’s imagination, 

as we believe that this direct input and output function-based expression is intuitive 

for children and their imaginations on the program output would assist them to 

assimilate the computational concepts.  

 

3.3 Implementation 
3.3.1 Technical Setup 
i*CATchBadges were constructed on the i*CATch wearable construction toolkit. 

The i*CATch main board and peripheral modules (or badges in this setting) were 

designed on the Arduino platform, and used an ATMega 168 chip as the 

microcontroller, with pins 27 and 28 for inter-integrated circuit (I2C) 

communications. To support the plug-and-play functionality of the i*CATchBadges, 

I2C bus technology was applied as the communications channel between the 

electronic devices. The I2C protocol requires two lines (signal and clock) for data 

communication and most modules also need to be connected to the power supply 

and the ground wires. On the I2C bus, the main board acts as the master device and 



 

 49 

is responsible for sending instructions with the peripheral input and output badges. 

All custom instructions of each i*CATchBadges were written into a program 

developed in the Arduino integrated development environment (IDE).  
 

       
                (a)                                                     (b)                                            (c) 

Figure 3.10. Constructing the communications bus (a) The individual bus lines, with tabs for the snap 
buttons (b) Bus lines adhered to insulating nylon (c) Combining the individual lines to make the 
communication bus 
 

To create the communication bus, the four strips of conductive fabric were 

precut to the appropriate length, with tabs for affixing snap buttons at the correct 

locations (Figure 3.10 (a)). Each strip is then adhered onto a length of close-weave 

insulating nylon (Figure 3.10 (b)). The strips are then laid over each other with the 

data line at the bottom, then the ground line, and then the power, and finally the 

clock line on top. This configuration allows necessary separation between the data 

clock lines to minimize potential capacitance and crosstalk issues. [64]. The edges of 

the insulating material are then tacked together to create the bus (Figure 3.10 (c)). 

The communication channel is created with 3 ohms of resistance per meter, which is 

well within the range of tolerance required by I2C for signal transmission. 

To create the final construction platform, the communications bus is first 

stitched onto a wearable garment or accessory (Figure 3.11 (a)). The snap button 

connectors are then affixed to the extension tabs using a button gun (Figure 3.11 (b)). 

To make it less likely that the user would misuse the interface, two lines use male 

snap buttons, while the other lines use female snaps (Figure 3.11 (c)). This prevents 

the user from plugging in a device backwards and causing damage. Finally, a layer 

of lining material is affixed over the communications bus and the exposed extension 

tabs, both to prevent short-circuiting from the inside of the garment as well as for 

comfort (Figure 3.11 (d)). 



 

 50 

          
(a)                              (b)                                       (c)                                         (d) 

Figure 3.11. Making the construction platform (a) Affixing the bus to the garment substrate (b) Fixing 
the interface snap buttons (c) The standardized i*CATch interface socket (d) Insulating the inside of 
the garment  
 

3.3.2 Programming Language 
The badges are plugged on the garment construction platform one by one, and the 

output of the badges follows the sequence of when they are plugged onto the 

garment. This plugging order illustrates the concept of sequentiality (see Figure 

3.12). For example, a multicolored LED and buzzer badges are plugged onto the 

construction platform in order, which may refer to the predefined program 

statements LED_ON(RED, 0.8); LED_OFF(RED, 0.3); SOUND(C, 0.5), that means 

that multicolored LED turns on red color for 0.8 seconds, and then turns off for 0.3 

seconds, finally buzzer plays a C tone for 0.5 second. The repeated patterns are 

likely to reveal an iteration concept; on the other hand, the output sequence of the 

badges keeps going until runs out of battery, this is another way to reveal an iteration 

concept by an infinite loop structure. For example of a repeated pattern of a badge, a 

buzzer badge plays a D tone for 0.5 seconds with five times, which may refer to the 

predefined program statements REPEAT 5 { SOUND(D, 0.5) }. Sensor badges 

cannot function independently and require working with the same color labeled 

actuators; this combination is likely to represent a conditional construct. For 

example, an ultrasonic sensor and a vibration motor badges are plugged onto the 

garment construction platform, which may refer to a predefined program statement 

IF (ULTRASONIC-SENSOR-VALUE < 20) THEN VIBRATION_ON(1) ELSE 

VIBRATION_OFF(1), that means if the ultrasonic sensor detects an obstacle closer 

than 20cm, vibration motor turns on for a second; if not, it turns off. This design 

focuses on the flow of a program and aims to give a very simple idea of the basic 

computational concepts for learners within a very short period of time. 



 

 51 

Sequences 
In i*CATchBadges: 

Step 1:                                                               Step 2: 

               
In the text program: 
LED_ON(RED, 0.8)  
LED_OFF(RED, 0.3) 
SOUND(C, 0.5) 
 
Interpretation: 
Assume 1) the (red) multicolored LED badge is predefined to turn on red light for 0.8 second and 
then turn off red light for 0.3 second; 2) the (light blue) buzzer badge is predefined to play a C tone 
for 0.5 second. 
The (red) multicolored LED badge is first plugged onto the construction platform, which is equal to 
the first two lines of the text program, and then the (light blue) buzzer badge is plugged on it, which 
is equal to the third line of the text program. The position of the badge does not affect the sequence 
of output. 
Iterations 

In i*CATchBadges: 

 

In the text program: 
REPEAT 5 { SOUND(D, 0.5) } 
 

 

 
Interpretation: 
Assume the (pink) buzzer badge is predefined to repeat to play a D tone for 0.5 second for 5 times. 
The (pink) buzzer badge plugged onto the platform that is equal to the program statement in the text 
program. 
Conditions 

In i*CATchBadges: 

 

In the text program: 
IF (ULTRASONIC-SENSOR-VALUE < 100) THEN  

VIBRATION_ON(1)  
ELSE  

VIBRATION_OFF(1) 
 

 
Interpretation: 
Assume the (orange) ultrasonic sensor is predefined to detect an obstacle less than 20cm, and then 
the (orange) vibration motor is triggered to turn on for 1 second; otherwise it turns off for 1 second. 
To express a conditional statement, the sensor and actuator badges with the same color are plugged 
onto the same construction platform, regardless of the plugging order of them. The (orange) 
ultrasonic sensor and (orange) vibration motor badges are plugged onto the platform, which is equal 
to the set of program statements in the text program. 
Figure 3.12. Illustration of three basic programming constructs (sequences, iterations and conditions) 
in i*CATchBadges programming language  



 

 52 

The design of the programming language follows the design dimensions 

mentioned in section 3.3.1 to be simple with basic computational constructs: 

sequences, and simplified conditions and repetitions, supporting the level of 

abstraction and space of imagination, and function-based expression. The language 

syntax is expressed by a set of the i*CATch badges and each badge represents a 

particular function, thus it does not let users produce a syntax error. Table 3.1 

summarizes the details of the language syntax of i*CATchBadges and the 

corresponding functions and the sample patterns. The functions and patterns could 

be changed in the custom program to fit the requirements of the study, and the 

custom program was set in the main board. Overall, there were eight types of badges: 

four types of which were actuators included multicolored LEDs, white LEDs, 

buzzers and vibration motors; and four types of which were sensors included light 

sensors, ultrasonic sensors, infrared sensors and switches. Each type of badges could 

be more than one with unique identifier address (each badge was labeled with 

different color sticker for children to recognize them easily.) Theoretically, up to 128 

different badges can be connected onto the platform. In addition, this language is 

also designed to use felt icons to add meaning to the sound, light and vibration 

effects to personalize the construct (see Figure 3.13 and Figure 3.14). 

 

  
Figure 3.13. Some samples of felt icons were provided for children to design their smart clothes or 
stories. 

 

 
Figure 3.14. An example of using felt icons to add meaning to a multicolored LED badge: a purple 
fish wakes up when multicolored LEDs light up. 
 

 



 

 53 

Badge Types Physical Types Functions Sample Patterns 
Multicolored 
LED 

Actuator Flash in a multicolored 
light pattern 

Turn on a red LED for 0.8 
seconds and turn it off for 0.3 
seconds 

White LED Actuator Flash in a white light 
pattern 

Repeat 2 times to turn on for 
0.5 seconds and turn off for 0.5 
seconds 

Buzzer Actuator Play a melody Play a C note 4 times in 2 
seconds 

Vibration Motor Actuator Produce a vibration 
pattern 

Repeat three times to turn on a 
vibration motor for 0.3 seconds 
and turn it off for 0.3 seconds 

Light Sensor Sensor Turn on or off LEDs in 
different level of 
brightness 

Turn off a white LED in the 
dark 

Ultrasonic 
Sensor 

Sensor Change the color of lights 
and the speed of vibration 
in different level of 
distance 

Turn on four colors of the 
lights and the vibration motor 
when in the closest distance 
detection 

Infrared (IR) 
Sensor 

Sensor Produce a tone on a 
buzzer when receive a IR 
signal 

Make a buzzer to produce a E 
note for a second when receive 
a IR signal from a remote 
control 

Switch Sensor Change a light pattern Turn on four colors of the 
lights 

Table 3.1. A list of the i*CATch modules used for the i*CATchBadges programming language. There 
are two physical types: actuator and sensor. Each badge is mapped into a specified function. 
 
 
3.4 Evaluation 
Our evaluation of the i*CATchBadges took place in two different settings with 

primary school students aged from 6 to 12. Through these two studies of two 

different settings, we examined whether children could obtain some ideas of the 

computational concepts and what they did with the i*CATchBadges system. 

Furthermore, we investigated how children performed their works on the system in 

two different learning environments – game booth and classroom. A video camera 

and audio equipment were used to record children’s interactions with the badges. To 

support the studies, the i*CATchBadges programming language used at least 20 to 

30 badges (the ratio of actuators to sensors is around 2 to 1), to produce at least 30 to 

40 patterns, where around 15 patterns were produced by the combination of two to 

three badges.  



 

 54 

 
Figure 3.15. A girl decorates the jacket with i*CATchBadges in the game booth. 

 

3.4.1 i*CATchBadges Study in Game Booth 
This study was carried out as a game booth activity held in a primary school fun fair. 

The theme of the booth was plug and play e-fashion. The objective of the task was 

to use the tangible programming interface (i*CATchBadges and some felt icons) to 

decorate a jacket (see Figure 3.13). There was an animation display to demonstrate 

the effect of each badge or combination. While students were plugging the badges or 

sticking the felt icons on the jacket, they were encouraged to explore the effects of 

the badges and associate the function properties of the badges to the felt icons or 

functionality of the smart clothing. There were 16 males and 12 females, resulting in 

28 persons in total. Among the subjects these, four pairs of boys, a trio of girls, and 

three mixed groups worked together while five male and six female students worked 

alone, resulting in 11 individuals and 8 groups in total. One mixed group consisted 

of a female teacher with her male student; another mixed group was a mother with 

her son; and the last mixed group was two students. All students were aged around 

12 years old, except one who was 6 years old. All of them had no previous 

experience with programming systems. 

In the decoration task, each student or group put around 3 badges on a jacket. 

The boys used around 2.9 badges; the girls used around 3 badges; and the mixed 

group used 3.7 badges (see Table 3.2). Basically, there is no significant difference 

between the genders while the number of badges used by the mixed group is above 

average. This is because a 6-year-old boy liked to plug all the badges onto the jacket, 

no matter what the effects of the badges were. The number of patterns produced by 

two badges or above and the number of felt icons on T-shirt in boys group are more 

than those numbers of girls group (1.0 > 0.3 patterns and 3.4 > 1.4 felt icons) while 



 

 55 

the number of felt icons associated with badges in boys group is less than that of the 

girls group (1.1 < 2.4 felt icons). These numbers indicate that most of the boys spent 

more time combining the badges to explore different effects of the sensors and 

actuators, and thus they put the felt icons on the T-shirt directly instead of putting 

the felt icons and the badges together. Two boys working together mentioned that 

the function of the ultrasonic sensor could be built as a kind of anti-stalker or anti-

rape devices. In contrast, the girls mainly liked to observe the effects of the lights 

and sounds and think how to make it pretty, and thus they spent more time on 

coupling the effects with the felt icons such as a tropical fish felt icon with a light 

and a pig felt icon with a sound (see Figure 3.14 and Appendix C). The statistical 

results on duration also indicate that the girls spent more time to decorate the jacket 

than the boys (5:10 > 4:44 minutes). Each student or group spent at least 1 minute, at 

most 7.25 minutes, and around 4.5 minutes in average.  
 Boys Girls Mixed Average 
Number of individuals or groups 9 7 3 N/A 
Number of used badges 2.9 3.0 3.7 3.1 
Number of patterns  
(produced by two badges or above) 

1.0 0.3 0.3 0.6 

Number of associations  
(felt icons associated with the badges) 

1.1 2.4 1.3 1.6 

Number of felt icons on T-shirt only 3.4 1.4 6.0 3.1 
Duration (minutes) 4:44 5:10 2:30 4:32 
Table 3.2. Summary of the results of the students interaction with the i*CATchBadges to decorate a 
jacket 
 

    
Figure 3.16. A representative example of a boy’s jacket (left) and a girl’s jacket (right) 

 

3.4.2 i*CATchBadges Study in Technology Workshop 
Our next evaluation of i*CATchBadges took place in a primary school, in an after-

class workshop for students to learn computing and technology. This workshop ran 



 

 56 

for 4 lessons and 1.5 hour each. There were 12 males and 6 females, making 18 

students in total, with an age range from 8 to 12. All students had no previous 

programming experience. They were arranged into five groups of three to four by 

their class levels: three groups consisted of males only (all-male), one group with 

females only (all-female) and one mixed.  This workshop had three parts: 1) 

Creativity Test – a simple creativity test for children that served as a reference for 

students’ ability of association on their tasks; 2) Graphical Programming Session – 

teaching the basic functions of Scratch [111], a kind of graphical programming 

environments with syntax-error-free design; and 3) Tangible Programming Session – 

teaching the features of the i*CATchBadges system. The last two sessions were 

designed to compare how students learned computational concepts through these 

two different kinds of user interfaces, so both sessions also requested students to use 

the tools to do the same task – presenting a story. 

The creativity test was based upon the Torrance Tests of Creative Thinking-

Figural (TTCT-Figural) [124] to develop and consult the scoring method to measure 

the divergent thinking of students in terms of figure. This test was adopted because 

using electronic functions and felt icons to create different meanings requires 

students to have divergent thinking and the associations of electronic functions with 

felt icons as a kind of visual meanings are similar to a picture. The scoring method 

consists of three categories: 1) fluency – the number of relevant ideas; 2) 

originality – the number of statistically unusual responses among the test subjects; 

and 3) elaboration – the number of detail in the responses. Each student was asked to 

sketch three pictures from given three simple line figures (one sample is shown in 

Figure 3.15 (a)) within 10 minutes. Given the same figure, the students may have 

similar idea to complete the figure, but the results of the pictures can be quite 

different. For example, Figure 3.15 (b) and (c) shows two students’ sketches under 

the same figure: two boys both had an idea to sketch a hand, but one boy drew a 

simple hand only, and another boy drew a hand with tattoo. Both boys obtained the 

score of fluency (since the hand is relevant to the given figure) and lost the score of 

originality (since they have same response on the same figure to draw a hand), but 

the boy who drew a hand with nails and tattoos obtained the score of elaboration 



 

 57 

(since his drawing with nails and tattoos is more details than another boy). Some 

students may have difficulties to construct a picture with meaning. For example, one 

girl drew an object but even she could not explain what it is (see Figure 3.15 (d)). 

The average of score range of each group is between 5.3 and 7.7, which shows that 

the students’ divergent thinking is quite various (see Table 3.3).  

             
             (a)                         (b)                        (c)                         (d) 

Figure 3.17. (a) The original figure has a simple curve. An example of three students’ sketches: (b) A 
boy’s sketch: a hand (c) Another boy’s sketch: a hand with nails and tattoos (d) A girl’s sketch: no 
meaning  

 

In the graphical programming session using Scratch, the students were 

introduced to the basic controls of the sprite such as motion, message display, and 

conditional and iterative control (around an hour), and carried out a story task 

(around 40 minutes). The Scratch programming environment was adopted in this 

session, since it provides a relatively simple graphical user interface for children to 

create animations without considering syntax errors. Since most of the students did 

not have coordinate geometry background, we spent much time on the motion 

control and less time on the other three control functions. However, they still had 

difficulties to create the expected motions for the sprites in their stories. They mainly 

used the message display function to present their stories. The all-female groups 

attempted to use some conditional controls, which they applied to control the 

message display only, but not in other functions such as motion. Almost no one 

showed that they could fully understand the conditional concept. When we assigned 

the story task to the students, we planned to allow them 20 minutes to complete their 

stories. However, after 20 minutes, no group could finish their tasks. Some of them 

were struggling with the controls, but more of them were busy typing words for 

message display. On the other hand, laptop is designed for individual use, so it is 

common for us to observe that one group mate often took control of the computer 



 

 58 

most of the time. As a result, they could not complete the task within the time set. 

Finally, we extended 20 more minutes for them to complete it. This situation reflects 

that a computer with one keyboard and one mouse only is difficult to support a 

group of children to learn collaboratively and effectively. 

In the tangible programming session using i*CATchBadges, the students firstly 

learned the functions of each badge or combination, at the same time, encouraged to 

couple the functions of the badges with real-world examples (around an hour), and 

finally they were assigned to create a story (around 20 minutes). The students were 

eager to speak aloud their imaginations. According to the students’ association of the 

badges, there were three types of the mappings: 1) daily electronic applications, such 

as LED lights associated with festival lights or traffic lights; the frequency of 

vibration motor associated with the vibration mode of mobile phones or moving 

vehicle’s engine; the combination of an IR remote control sending signal to the IR 

sensor with a “du” sound - car alarm or laser gun; 2) natural environment, such as 

LED lights associated with stars blinking; the frequency of vibration motor 

associated with natural disasters and earthquake 3) emotions, such as ultrasonic 

sensor with light output associated with oppressed feeling. Each group’s story was 

used two to three badges and they coupled the badges with one to three 

representations. Only one all-male group used the combination of the badges - IR 

sensor with a buzzer that was coupled to a laser gun - in their Superman Fights with 

Monster story, the rest of the groups used the effect of the badges one by one into 

their stories. For example, one all-male group’s School Accident story -- a boy sings 

a song (used a buzzer with a melody) in the singing contest and then earthquake 

happens (represented by the feature of a vibration motor), and finally the boy is sent 

to the hospital (used another buzzer with ambulance siren); one mixed group’s fire 

accident story – used different kinds of badges to represent a fire-engine (More 

details refer to Appendix D). During the task period, the students had more 

discussion with their peers, and most of them worked together in plugging the 

badges onto the jacket to explore the effects and design their stories. All groups 

could complete their stories within our stated time period.  



 

 59 

 Based on the results shown in Table 3.3, there is no significant relationship 

between the ability of the students’ divergent thinking in the TCTT-Figural test and 

their association ability in their stories. The result indicates that the abstract tangible 

user interface of i*CATchBadges supports general students to exercise their 

creativity and explore the computational concepts. On the other hand, based on the 

results shown in Table 3.4, the students spent less preparation time to create stories 

of the similar length of their stories in the tangible user interface than that of the 

graphical user interface. This result consists with our observation during the task 

period that the tangible user interface supports collaborative working and is more 

efficient for students to learn this way.  

Group Gender Number of 
Students 

TCTT – Figural 
 in Average  

Number of 
Associations 

Number of 
Badges 

1 Female 4 5.3 (SD=2.6) 2 2 
2 Male 3 5.5 (SD=5.3) 2 2 
3 Mixed 3 5.7 (SD=3.8) 3 3 
4 Male 4 7.0 (SD=2.9) 3 3 
5 Male 4 7.7 (SD=1.5) 1 2 

Table 3.3. Summary of the five groups’ results of TCTT-Figural test, the number of associations and 
devices applied in their stories 
 

 
Graphical Programming 

Interface 
(Scratch) 

Tangible Programming 
Interface 

(i*CATchBadges) 
Teaching time 60 min 60 min 
Preparation time 40 min 20 min 
Storytelling time (average of 5 groups) 1:20 min 1:24 min 
Table 3.4. The time for teaching, preparation and storytelling in graphical programming interface 
(Scratch) and tangible programming interface (i*CATchBadges) sessions 
 

 

3.5 Discussion 
In two case studies in different scenarios, through observations, conservations with 

the students, and their task outcomes, it was found that our proposed tangible 

language design supports learning of basic level of computational concepts and 

provides space for children to exercise their imaginations. This section discusses the 

directions of the design of the tangible programming systems that facilitate students 

in learning the computational concepts. 

 



 

 60 

3.5.1 Computational Concepts  
This study focuses on the investigation of language design on the tangible user 

interface. The plug-and-play programming language without syntax error decreases 

the complexity of the program. It also lowers the barrier and makes it easier for 

students to construct programs and learn computational concepts. Our hypothesis is 

that students learn computational concepts by creating a program to present their 

ideas and following the program flow. Therefore, even the language seems to be 

quite limited, students still can learn the basic computational concepts through 

exploration. In the game booth and technology workshop studies, not every student 

uses the combination of badges to express their ideas. This means that few of them 

explore the conditional concepts, but at least they did use the badges one after 

another to express their ideas, which means that most of them understand the 

concepts of sequences and iterations. Furthermore, in contrast to Scratch, which is a 

kind of syntax-free graphical programming platforms supporting more complex 

program design, it was also found that the students had difficulties applying the 

conditional concept on their stories (see Appendix D). This observation indicates 

that it is not easy for students to assimilate the conditional concept in a very short 

period of time (within five minutes to one hour) compared to a 5-day workshop. 

However, the advantages of tangible interface are clearly shown in the study, which 

facilitate a physical and sensory engagement, provide room for students to practice 

imagination, and support collaborative learning. Therefore, the tangible 

programming language assists students in learning the abstract concepts better. 

 

3.5.2 Task Outcomes 
Due to the scalability and the versatility of the tangible user interface, most of the 

tangible programming languages support simple tasks in monotonous aspects. For 

example, each puzzle of the Tern language is mapped to one command or variable, 

which is only used for controlling the motion of a robot. FlowBlocks is another 

example, which contains a set of abstract construction blocks to represent real-world 

system such as probability measurement; even though the representations of the 

blocks are relatively versatile, it is used in causality relationship only.  



 

 61 

Our tangible language design could not escape from similar physical limitations 

of the tangible user interface [56, 134, 135]. It was difficult to support a 

sophisticated task compared to the graphical or text-based programming 

environments. However, the functions of the actuator and sensor badges are easier 

for students to associate with different kinds of representations in terms of 

functionality and aesthetic of smart clothing, the daily applications and feelings. 

This design shows that the abstraction interface with concrete physical function of 

the construction blocks provide a wider scope for discovery, exploration and 

association, which supports different topics of learning such as science, design and 

storytelling. In other words, the design better caters for different learning styles and 

preferences. 

 

3.5.3 Learning Environment 
Tangible learning tools support hands-on learning that let children learn actively by 

manipulating physical objects. If a tangible learning tool is used in different places 

or activities, students may gain other learning benefits. In our study, the students in 

two different learning environments - game booth and classroom, could gain some 

knowledge of computational concepts and wearable computing (see Figure 3.15). In 

the classroom workshop, the tangible programming system supported the students to 

work collaboratively on their tasks; in other words, the students had social 

interaction between peers while they were doing their tasks. In the game booth, even 

though the students stayed in the booth for only a short time, it does not mean that 

they learned nothing from it. They had more social interaction between peers and 

adults in the game booth than in the classroom workshop. Most of the students liked 

to discuss together how to build their intelligent jackets; some liked to invite their 

peers to come to our booth and introduce them to the tool; a student gain more ideas 

from his teacher to design a turtle and rabbit theme jacket with lights. These 

interactions indicate that the tangible programming system is suitable for running 

workshops as well as for public area interactive exhibitions.  

Currently, more physical or tangible systems are available, not only in research 

labs or classrooms, but also in public areas such as science museums [57, 114]. The 



 

 62 

systems set in public areas attract a diversity of children to interact with technology, 

and thus children have more opportunity to learn technology outside classrooms. 

However, those systems usually occupy a large space augmented with sensors, 

cameras, monitors, and other physical settings.  They are not flexible and seem to be 

better established in the indoor environment. However, the embedded electronic 

devices are getting smaller and thinner. These advanced materials provide potential 

to design smaller and even hand-carried tangible programming systems which serve 

both input and output, and thus they can be flexibly used in outdoor and indoor 

environment without installation.  

     
Figure 3.18. Two different learning environments: game booth (left) and classroom (right) 

 

3.6 Summary 
The tangible language design process was presented through two paper prototype 

studies, and finalized some important design dimensions of the tangible 

programming systems. The final design dimensions inspired the development of the 

i*CATchBadges tangible programming system, and the system was evaluated by 

two case studies in two different learning environments - game booth and classroom. 

The students were able to successfully use the system for learning basic 

computational concepts, and creating simple and meaningful tasks by building 

simple function badges. The study indicates that the abstract construction interface 

with concrete physical functions of the tangible programming system provides a 

potential way for students learning computational concepts through interacting, 

exploring and association.  Furthermore, the tangible programming system serves as 

both input and output on the same interface, which supports simple installation, and 

thus it can be flexibly used in different learning environments, such as indoor 

museums and outdoor exhibition. Therefore, it has potential to draw more attention 

of a diversity of children engaged in computing and technology.  



 

 63 

Chapter 4 Creativity through Crafts Making 

As the proportion of female students in computer science has always been small 

[119], those who wish to see this trend reversed have developed some different 

programming domains to cater for both male and female learners, such as the 

multimedia-based programming environments ALICE [2] and Scratch [111], which 

are related to games and animation design. Some researchers believed these 

multimedia platforms would not be very successful due to the gender expectation 

that computers were primarily associated with males and hence female did not play 

with computers [119]. Some other researchers are looking for new strategies to 

reduce the gender imbalance in computer science education, such as developing 

computational construction platforms and motivating children’s interests in science 

and technology [18, 37]. 

In traditional, computational construction kits are constructed by standard unit 

blocks, and are only used for building robots and mechanism such as LEGO 

construction kit Mindstorms [90]. Recently, the rapid development of embedded 

electronics, wearable computing and e-textiles technology raises the possibility of 

using computational construction kits for children, or we call it as computational 

crafts kits. Craft is about making objects by hand where functional and aesthetic 

considerations are equally important [3, 33], often with the use of different materials 

such as wood, clay, textile, metal, paper, plastic, and beads. The computational 

crafts kits are a set of electronic modules, which are constructed with traditional 

materials together to create artifacts with computational functions and aesthetic 

design. There are some examples of computational crafts kits, such as Lilypad 

Arduino [80] which is a wearable construction kit for making soft computational 

crafts, and paper computing [21] which is used for creating functional computational 

artifacts on painted paper substrates. 

Crafts activity is a kind of traditional hands-on learning in children education. 

The nature of this activity involves design and creativity, and thus it often attracts 

both boys and girls. These integrated-technological crafts expand the range of 

children’s constructions with high and low tech materials not only to construct 



 

 64 

robots, but also to create artistic sculptures and clothing. Therefore, the 

computational crafts have the potential to broaden the diversity of the children who 

are interested in exploring science and computational world through customizing 

their personalized artifacts.  

Even though there were much positive feedback from children using those 

computational tools for crafts making [19, 70], most research studies mainly focus 

on the ability of such tools to engage the children’s interests; few research studies 

examine the learning process of children in using different types of the 

computational platforms for crafts making. This chapter investigates the learning 

process of children in creating computational crafts. Three kinds of computational 

crafts toolkits were used in different learning and design objectives in the case 

studies. The first computational crafts toolkit was the Lilypad Arduino with 

TeeBoard platform [94], which supported learning electronic circuitry concepts and 

circuitry design on a T-shirt; the second computational toolkit was the i*CATch 

platform for apparel [95], which focused on learning computational logic and 

programming design on clothing; the last toolkit was the i*CATch platform for robot, 

which enabled robotic construction and robotic car movement control. The study 

also examines which of the three platforms would be the most conducive to creating 

innovative applications of the technology. There are four research questions to 

investigate:  

 How does the design of the construction platforms affect the space of 

creativity, the curriculum design and the learning process of children? 

 What kinds of crafts are created by children under different objectives of 

the computational platforms? 

 How do children design the program on their crafts? 

 Are there any factors will reduce the learning engagement between 

children and computational crafts activities? (E.g. students’ characteristics, 

domains of tasks and types of programming environments, etc.) 

The remainder is arranged as follows: Section 4.1 introduces the technology of three 

types of computational construction platforms used for the case study.  Section 4.2 

describes the course information of the outreach programs and presents the 



 

 65 

evaluation results of the children’s work and feedback. In section 4.3, discussions 

are presented about the learning process and the challenges of the children using 

computational construction platforms to learn computational concepts. A summary 

follows in section 4.4.  

 

4.1 Computational Platforms for Construction and 
Materials 

In order to investigate how children use computational toolkits for construction to 

learn computational concepts, three kinds of computational toolkits for construction 

were used: TeeBoard and LilyPad Arduino, i*CATch for apparel and i*CATch for 

robots, all of which are based upon the Arduino platform and are integrated with 

three science topics respectively: electronic circuitry, computational logic and 

robotics. To examine the degree of engagement related to the nature of 

computational craft activities rather than other factors such as the types of 

programming environment, three kinds of programming environments were 

designed to support writing Arduino programs: Arduino Integrated Development 

Environment (IDE) which is a kind of text-based programming environment; 

BrickLayer which is a kind of text-enhanced graphical programming environment; 

and i*CATch IDE which is a kind of hybrid text-icon-based programming 

environment. Craft materials should provide more space for children to design and 

create their artifacts, so we provided some traditional craft materials like paper and 

cloth rather than some well-designed standard-sized blocks for children.  

 

4.1.1 Computational Toolkits for Construction  
TeeBoard and LilyPad Arduino 

TeeBoard is a reconfigurable t-shirt integrated with a breadboard (Figure 4.1 (a)).  

TeeBoard is designed for young learners to construct circuits easily on a garment 

similar to a conventional breadboard, which supports the teaching of electronics by 

making it easy to construct electronic circuits. Students can snap the microcontroller, 

actuators and sensors in place onto the TeeBoard, and program the microcontroller 

to control actuators and sensors. The LilyPad Arduino [80] is a set of sewable 



 

 66 

electronic components including microcontroller, actuators and sensors, which is 

designed for wearable computing and e-textiles. As the LilyPad does not have plug-

and-play capability, we modified the LilyPad components with snap buttons to 

connect to the TeeBoard substrate and the ribbon-wrapped pieces of conductive 

fabric served as wires (Figure 4.1 (b)).  

    
(a)                                                                       (b) 

Figure 4.1. (a) The TeeBoard construction interface (b) The modified LilyPad components with snaps 
buttons  
 

i*CATch Apparel Platform 

i*CATch [95] is a scalable, extensible wearable computing toolkit, which consists of 

a set of plug-and-play electronic components includes LED lights, buzzers, a light 

sensor, an ultrasonic sensor and switches, and a pluggable jacket construction 

platform. It is similar to the TeeBoard/LilyPad wearable computing platform 

specially designed for use by novices and support wearable computing teaching in 

the classroom. The main difference between the i*CATch and the TeeBoard/LilyPad 

platforms is the communication architecture. The i*CATch apparel platform uses 

inter-integrated circuit (I2C) bus technology [65] as the communications channel 

between the electronic devices, in which there is no need to match input and output 

ports between the main controller and the peripheral device. The TeeBoard/LilyPad 

platform uses point-to-point connections, in which individual input and output pins 

on the microcontroller connect directly to those on the peripheral input devices such 

as sensors and output devices such as actuators. Hence, in the i*CATch platform, 

there is no need to trace connection lines or connect extra ribbon wires to control the 

devices.  



 

 67 

 
Figure 4.2. The i*CATch main board 

 

i*CATch Robotic Platform 

The i*CATch platform is designed for wearable computing, and it is also supported 

robotic computing. In contrast to the wearable construction kit, there are two motors 

and one interface box (Figure 4.3) extra for the robot construction kit. The interface 

box contains six ports, and each port is used to connect to either input or output 

device. In the robot version, the platform uses point-to-point architecture. In order to 

connect the wearable electronic devices to the interface box, a robot adapter block 

(Figure 4.4) is designed for converting the connection interface of the wearable 

electronic device into the connection interface of the robot construction.  

       
Figure 4.3. An interface box for i*CATch robot version (left) and the i*CATch main board inserted in 
the socket of the interface box (right) 

             
Figure 4.4. A robot adapter block: the side of the connection interface for the robot interface box (left) 
and the side of the connection interface for the wearable electronic devices (right) 
 



 

 68 

4.1.2 Programming Environments 
Arduino IDE: Text-based programming environment 

The Arduino IDE [6] is an open-source text-based programming environment. It 

allows users to write programs in C language to control an Arduino main board or 

ATMEGA168 and ATMEGA328 microcontroller. It also provides a standard library 

to support Two Wire Interface (TWI) or Inter-Integrated Circuit (I2C) for sending 

and receiving data over a net of actuators or sensors. However, C language has a 

number of syntactic rules, which is only suitable for the experienced programmers.  

Therefore, we developed a library called i*CATch sensor [60] to modularize codes 

into functions to control the I2C devices. Programmers only need to know the 

function parameters like I2C address and output value of the actuator. This library 

makes it easier for programmer to write a program to control the i*CATch devices, 

even children who only have limited programming experience can still handle it. 

Figure 4.5 shows the Arduino IDE and a sample i*CATch program. 

 
Figure 4.5. The Arduino IDE and the sample i*CATch program code 

  



 

 69 

BrickLayer: Text-enhanced graphical programming environment 

BrickLayer [14, 26] is a text-enhanced graphical-based programming environment 

for programming the Arduino microcontroller. BrickLayer consists of three areas: 

brick area, construction area and source code area (Figure 4.6). Each graphic brick 

on the brick area represents one programming construct. Students build programs by 

dragging the brick from brick area and dropping it onto the construction area, and 

the corresponding program code will be auto-generated on the source code area. As 

we do not expect that our young learners are good at typing and have any 

programming experience, this text-enhanced graphical programming environment is 

designed to free students from having to worry about the syntax; but at the same 

time, they are also presented with the syntactic statements so that they learn to make 

a connection between the program structure and programming statements.  

 
Figure 4.6. The BrickLayer’s interface: A brick area (left), construction area (middle) and source code 
(right) [26] 
 

i*CATch IDE: Hybrid text-icon-based programming environment 

i*CATch IDE is a hybrid text-icon-based programming environment [60], which is 

also designed for programming the Arduino platform. The idea of this programming 

environment is inspired by Bricklayer [26] and Robolab [101], which allows 

programming by drag-and-drop icons that represent programming constructs and 

joining them together to denote a program flow, thus giving the user to have a 

graphical view on control structures such as conditionals and repetitions; at the same 

time, the actual source code is generated immediately, thus allowing the user to 

actually see what is being generated and sent to the i*CATch main board, thus 



 

 70 

facilitating a later switch to pure text-based programming (Figure 4.7). In addition, 

this IDE supports both point-to-point architecture and bus-based communications 

between the main board and the peripheral electronic modules, and therefore we 

replace the BrickLayer platform with i*CATch IDE in the workshops with using 

i*CATch devices. 

 
Figure 4.7. The i*CATch IDE’s interface. 

 

4.1.3 Craft Materials 
In the workshops, we provided craft materials including “low-tech” materials such 

as fabric, color pens, and some recycle materials, as well as “high-tech” materials 

such as electronic components designed for computational clothing or robots. In 

order to provide more space for children to design and create their computational 

artifacts, the traditional craft materials were used like fabric and paper rather than 

the standard unit wooden or plastic blocks. Because the length and the course 

content of the workshops were slightly different, the set of the craft materials that 

was provided was also slightly different, but all the provided set of materials was 

sufficient to achieve the course objectives. Table 4.1 summarizes the materials 

provided in our workshops.  

 

 



 

 71 

Construction Toolkits TeeBoard and 
Lilypad Arduino 

i*CATch for 
Apparel 

i*CATch for 
Robots 

High-
Tech 
Materials 

Construction 
Platforms 

TeeBoard with 
conductive ribbon-
wires  

Jacket with 
integrated 
communication bus  

Interface Box with 
LAN Cables 

Input Sensors 

Accelerometer 
Light sensor 
 

Switch 
Joystick  
Infar-red sensor 
Light sensor 
Ultrasonic sensor 

Switch 
Ultrasonic sensor  
Light sensor 

Output Actuators 
LEDs 
 

LEDs 
Buzzer 
Vibration motor 

LEDs 
Buzzer  
Motor 

Low-Tech Materials 

Felt scraps Cloth scraps 
Paper 
Ribbons 
Fabric paint pens 

Carton paper 
Magazine 
Plastic bottles 
Balloons 
Color marker pens 

Table 4.1. Materials provided in three kinds of workshops 
 

4.2 Research Methodology 
We explored how children used the computational toolkits for crafts making to 

achieve the learning benefits along four angles: the flexibility of the construction 

interfaces for children to build their crafts iteratively; the creativity space of the 

platform for children to exercise; the design of the programs; engagement factors 

such as workshop theme, construction interface, nature of tasks and learner 

characteristics. We used three sets of computational toolkits for making different 

kinds of crafts: TeeBoard with Lilypad Arduino, i*CATch for Apparel and i*CATch 

for Robots respectively in our workshops to collect data over the past two years. 

Each set of the computational toolkits combined with different programming 

environments was used in at least two workshops.  

All workshops were taught or assisted by our undergraduate computer science 

students and the project team members. In average, the instructor student ratio was 

about 1:6. We mostly conducted four kinds of evaluation in our workshops: 

observations, interviews, surveys and project outcomes, and documented by videos 

and photographs. We also tried to record the design progress of students to quantify 

the creativity space of the construction interfaces in one of the workshops using 

i*CATch for apparel. This section presents three kinds of course background and the 



 

 72 

results of three case studies. Further analysis of three case studies is discussed in 

section 5.  

 

4.2.1 Courses Background 
The workshops were organized for primary school students (aged 8-12) and 

secondary school students (aged 12-15). The participants were recruited via open 

advertisements or some via particular schools. The class size of the workshops was 

related to the results of the recruitments each time without any rejection, usually 

around 10 to 30 students in each class. All workshops were held in a school 

environment. Table 4.2 summarizes three syllabi of our workshops (see the details in 

Appendix A). In order to cater for the younger children, the length of the workshops 

for primary school was usually shorter than the secondary school one, but the 

contents of the syllabus were roughly the same.  

Computational Toolkits for  
Crafts Making 

TeeBoard with 
LilyPad 

i*CATch for 
Apparel 

i*CATch for 
Robots 

Learning Contents Example Tasks 

Robotics N/A N/A 
Motor controls 
Building a robotic 
chassis 

Electricity and Circuitry 

Complete circuits 
Serial circuits 
Parallel circuits 
Short circuits 

N/A N/A 

Electronic devices Output devices (e.g. LEDs, buzzers, etc.)  
Input devices (e.g. Light sensors, switches, etc.) 

Computational 
Concepts 

Sequential logic Blink a multicolored LED in rainbow color sequence; play a 
melody on buzzer, etc. 

Conditionals Turn on a LED in the dark, give a sound when too close to a 
wall, etc. 

Repetitions Set LEDs to flash repeatedly in reciprocal pattern on the 
clothing; or set the car to move a square pattern, etc. 

Project Design an e-fashion Solve 
challenging tasks 

Table 4.2. Three syllabi of our workshops (see the details in Appendix A) 
 

4.2.2 Case Study 1: TeeBoard with LilyPad 
We organized two workshops which used the TeeBoard with LilyPad platform. The 

main differences between the workshops were the age group of students, academic 



 

 73 

background of students, the length of the course and the programming environment. 

One workshop was designed for middle school students. There were 19 boys and 6 

girls, making 25 students in total, with an age range from 11 to 16, and academic 

background from public and private schools. It ran for 5 full days (around 27 hours 

in total) and used BrickLayer, a text-enhanced graphical programming environment, 

for students to write their programs on the LilyPad main boards. Another workshop 

was designed for primary school students. There were 7 boys and 13 girls, making 

20 students in total, with an age range from 8 to 12, and they were studied in the 

same school. It took place over 9 weeks with 1.5 hour each week (around 13.5 hours 

in total) and used i*CATch IDE, a hybrid text-icon-based programming environment, 

for students to write their programs. In the workshop for the middle school students, 

we divided the students into eight groups of three to four according to their age and 

gender: six all-male groups and two all-female groups. In the workshop for the 

primary school students, the school teacher helped us to separate the students mainly 

by age into five groups of four students each: one all-male group, two all-female 

groups and two mixed.  

The themes of the two workshops were similar: the one for middle school 

students was about sports; another one for primary school students was about smart 

t-shirt. The objective of both workshops was to introduce students to programming 

and electronic circuitry, and exercise their creativity as well as the newly learned 

programming and electronics knowledge through the final project: make their own 

interactive garment. More descriptions of the syllabus of the workshops are shown 

in Table 4.2 and Appendix A (A).  

 

Instructors’ Feedback 

The class activities were usually observed by our instructors and project team 

members. Our project team members also interviewed students while they were 

carrying out the tasks or the presentations to understand more what the students’ 

ideas. According to our instructors’ reports, the responses of the primary and middle 

school students were similar: while the students did not show much interest in 

learning about electrical theory (voltage and resistances, etc.), they became excited 



 

 74 

and animated when they were presented with the TeeBoard and immediately started 

trying to make their own circuits. They experimented the TeeBoard on their own, 

connecting the LEDs and wires in all sorts of configurations, trying color mixing, 

and even testing the surrounding light level. This indicates that e-textiles and 

wearable computing seems to be an appropriate teaching medium as the students 

find it interesting and exciting.  

In performing the assigned tasks, there were some differences between the 

primary and middle school students. In the middle school workshop, our instructors 

observed that most of the all-boy groups focused on finishing the tasks as quickly as 

possible, without paying much attention to the aesthetics of the final product. In 

contrast, the all-female groups worked slowly and methodically, considering factors 

such as design, colors and patterns. They also inserted their own interpretations into 

their assignments: for instance, they designed a circuit in which the color of the 

multicolored LED changed according to the colors of the rainbow. When asked to 

explain their idea, they stated that they chose the rainbow pattern as it represented 

hope. In the primary school workshop, both the boys and girls groups focused on 

finishing the tasks as quickly as possible. While the all-female group knew that other 

groups did not complete their task, they started to consider the colors and patterns to 

revise their design. The all-female group’s action motivated the all-male group to 

design their work. This working style also shows that girls appeals to design and 

make art works. 

According to the instructors, the students experienced the most difficulty when 

first presented with the TeeBoard, as they did not really understand the whole 

structure of the conductive strip pattern at first. Most of them constructed their 

circuits using direct connecting ribbon wires rather than exploiting the strips on the 

TeeBoard. However, once the concept was explained to them, they picked it up 

quickly and had no trouble using the TeeBoard in the way that it was designed for. 

Even though they understood the structure of the TeeBoard, one all-female group 

from the primary school workshop still preferred to use the extra color ribbon wires 

to create the forms of beauty. The instructors did not find that the primary or middle 

school students had difficulty to use the programming environments, either 



 

 75 

BrickLayer or i*CATch IDE. Some of the middle school students tried to modify the 

text code, because they had prior programming experience.  

 

Survey Results 

An informal survey was done before the lesson started. More than half of the middle 

school students had some programming experience with LEGO NXT robots and/or 

Scratch, but most of them did not feel that they knew much about programming. All 

of the primary school students did not have any programming experience. We also 

conducted a survey to collect the students’ feedback at the end of the workshops. 

The result of the level of difficulty of the course reveals that the primary school 

students had more difficulty than the middle school students in the course (see 

Figure 4.12). This result is to be expected, as electronic circuitry and wearable 

computing would certainly be new and unfamiliar to the primary school students. 

Most of the primary and middle school students also felt that the programming 

element was difficult. This is due to the nature of programming the Arduino 

microcontroller, which involves physical constraints as well as logical issues. For 

example, when asked to program a toggle switch to control the LED, most of the 

students were able to come up with the idea of creating a variable to store the stage 

of the LED (on or off) by themselves. However, when asked to write a program to 

flash the LED on and off, most of the students did not realize that a timed delay was 

necessary to slow down the program to make the LED’s light visible to the human 

eye. Figure 4.13 shows both primary and middle school students gave very positive 

feelings to their experiences. According to our survey results, almost all of the 

students felt that our course was interesting in the design, circuitry and programming 

sections. One 12 year-old primary school girl said she was not interested in 

traditional science subjects, but she felt that the tasks involving science and crafts 

were very interesting.  

 

Students’ Projects 

We were delighted by the fact that all 13 groups in both primary and middle school 

workshops were able to achieve the course objective and create a final project. Most 



 

 76 

of their final products was very creative and showed that their design both creative 

and technologically challenging. One of the all-male middle school groups put two 

accelerometers on the arms of the TeeBoard to control patterns of flashing LEDs, 

thus LEDs that would flash in different colors and patterns that would change 

according to hand motion (Figure 4.8 (a)). One of the all-female middle school 

groups chose the creative way and created a smiley-face t-shirt, using two 

multicolored LEDs for cheeks, whose color was controlled by the readings from the 

accelerometer. When the face was patted lightly, moving the accelerometer along 

the z-axis, the color of the two LEDs changed to red, creating a “blushing” effect 

(Figure 4.8 (b)). One of the all-girl primary school groups also showed their 

creativity and designed an interactive picture t-shirt, moving an accelerometer to 

light up the LED embedded on the felt sun, and using the back and forth pattern of 

flashing LEDs between two felt ladybugs to represent their conversation (Figure 4.8 

(c)). A sample program of their projects can be found in Appendix E. 

     
   (a)                                                 (b)                                            (c) 

Figure 4.8. (a) A middle school boy shows how to control the LED pattern by moving his hands. (b) A 
middle school girl explains the design of her t-shirt: a smiley-face with blush on its cheeks. (c) An 
interactive t-shirt is done by four primary school girls: sunrise and the two ladybugs’ conversation. 
 

4.2.3 Case Study 2: i*CATch Apparel Platform 
More than two workshops used the i*CATch apparel platform; we selected one 

workshop for primary school students and one for middle school students as the 

samples of our research findings in using the i*CATch toolkit. In the primary school 

workshop, there were 9 girls, with an age range from 10 to 12, and come from the 

same school. It ran for 5 half days (around 15 hours in total) and used the Arduino 

IDE with our i*CATch functions library, a text-based programming environment, 

for students to write their programs on the i*CATch main boards. We let the 

students form their own groups of one to three students each, and had four groups 



 

 77 

finally. In the middle school workshop, there were 18 boys and 4 girls, making 22 

students in total, with an age range from 11 to 14, and academic backgrounds from 

both public and private schools. It took place over 5 full days (around 27 hours in 

total) and used i*CATch IDE, a hybrid text-icon-based programming environment, 

for students to write their programs. Students were encouraged to form their own 

groups of approximately four students each: four all-male groups and three mixed. 

The theme of the two workshops was e-fashion and intelligent clothing. The 

overall objective for both workshops was to introduce the students to programming 

and electronics through wearable computing. More descriptions of the syllabus of 

the workshops are shown in Table 4.2 and Appendix A (B).  

 

Instructors’ Feedback 

Based on our instructors’ observation, the students were excited, both all male and 

female groups from primary and middle school workshops, when they were 

introduced to the i*CATch toolkits. They immediately asked the functionality of the 

electronic devices and tried to plug the electronic devices on the i*CATch jacket to 

observe the effects. In the bus-based i*CATch toolkit, the circuitry is abstracted into 

the design of the bus and the interface sockets, and therefore the students did not 

spend time to learn about the electricity and circuitry concepts. In addition, the 

design of the interface sockets with the male and female snap fasteners prevents the 

user from plugging in a device backwards, and therefore we did not find that the 

students plugged in the devices on the jacket substrate in a wrong way.  

In doing the assigned tasks, the instructors reported that the students were very 

interested in working on multicolored LEDs and buzzers. The students who had 

music background, they like to compose a melody; the other students without music 

background like to play a tone or a sound from the library. The students were also 

excited to experiment with the input sensors. In one of the tasks, the students were 

assigned to use an ultrasonic sensor to create an “intelligent stick” for blind people. 

They put on their programmed jacket and walk along the corridor with their eyes 

closed. They could apply their newly learned programming skills into other input 

sensors such as light sensor as well. In general, they did not have much difficulty to 



 

 78 

program light sensor to turn on a light in the dark. In the final project, both the boys 

and girls engaged in designing their intelligent jackets. The majority of the boys 

group focused on functionality design and simple abstract pattern. In contrast, most 

of the girls group spent more time integrating felt decoration into electronic devices 

than writing program, except one 11-year-old primary school girl who was 

enthusiastic about science and technology and already had much programming 

experience on MicroWorlds, NXT robot, Scratch, Flash and 3ds Max programming 

tool. Due to the time limitation, we did not introduce the usage of IR sensor to the 

students, but that girl begged us to give her a remote control to test the result of the 

IR sensor used in her intelligent hiking jacket.  

Around half of the middle school students were observed that were eager to 

modify the text code in the i*CATch IDE, it was likely that they had prior 

programming experience. It was also reported that most of the primary school 

students could cope with the text-based Arduino IDE augmented the i*CATch 

functions library, which is highly related to all of them having typing training and 

programming background in text-based programming environment such as 

MicroWorlds.  

 

Survey Results 

A survey was conducted at the end of the lessons to evaluate the workshops and the 

i*CATch toolkit. Figure 4.12 shows the results of the level of difficulty of our 

workshops for primary and middle school students. Only close to 10% of the 

primary or middle school students felt it was difficult to complete our tasks. This 

result is encouraging as it indicates that the tasks associated with the bus-based 

i*CATch computational platform is suitable for a wider range of students to learn 

computational concepts. We also asked the students about their feelings on our 

courses. Almost 95% of the students liked the topic of e-fashion and intelligent 

clothing and using wearable computing as a teaching approach of learning 

computational concepts (see Figure 4.13). Most of them said they learned the 

concepts of smart clothing, clothing design and programming concepts.  

 



 

 79 

         
(a)                                            (b)                                          (c) 

Figure 4.9. (a) A middle school boy decorates their group’ jacket. (b) A multi-function casual wear is 
created by a group of two middle school girls: the pink felt heart shows the wearer’s emotion, the 
purple felt clock tells time and the yellow felt flower massages the wearer’s stomach. (c) A girl 
demonstrates their hi-tech hiking jacket which could play a song by using a remote control. 
 

Students’ Projects 

All 10 groups of the primary and middle school students were able to generate 

fashionable and intelligent jacket in the final project. One of the all-male middle 

school groups designed their smart clothing for blind people with four functions: 

aesthetics – generating the colorful lights associated with the colorful check pattern 

on the jacket; call for help – flashing white light in the Morse code pattern SOS with 

a long tune; money checker – detecting the color of banknotes, thus the 

denominations of banknotes, through a light sensor; blind man’s cane - alerting 

distance through an ultrasonic sensor into vibration felt by the wearer. The first three 

functions were controlled by a switch, and the last function was available when the 

jacket was turned on (Figure 4.9 (a)). In general, the all-female groups’ projects 

were more creative. In the following two examples, they not only considered the 

aesthetic factor, but also the functional factor of their smart clothing. One of the all-

female primary school groups designed a multi-function casual wear: using a 

multicolored LED integrated into the pink felt heart, each color represented an 

emotion such as blue was sad and green was sick, and whose color was controlled by 

the joystick; using a buzzer embedded into the purple felt clock, every hour played 

with different sounds; using a vibration motor hidden in the yellow felt flower acted 

as a massage machine, creating a series of vibrations when the switch was pressed 

(Figure 4.9 (b)). Another all-female primary school groups made a hi-tech hiking 



 

 80 

jacket with four functions: illumination through the integrated LEDs into two arms 

of the jacket; neck massage through a vibration motor at the back of the neck; 

follower detection through an ultrasonic sensor at the back, playing “iPod” music 

through a buzzer controlled by a switch, even an IR remote control, thus the 

wearer’s companies were able to choose other music to play (Figure 4.9 (c)). A 

sample program of their projects can be found in Appendix F. 

 

Design Progress 

We encouraged students to start with a draft of the design before they developed 

their projects as a reference, particularly to the e-fashion design project. We also 

designed a method to have a deeper analysis of the computational construction 

platform for smart clothing, because the concepts of e-textiles and wearable 

computing are comparative new to children. The method measures the creativity 

space of a construction platform by comparing the number of the similarity of the 

ideas between four learning stage (see Figure 4.10). We supposed that if the 

difference of the degree of similarity between the transitional stages is small, and the 

difference of the number of ideas between the initial and final stage is small, the 

construction platform will support certain level of creativity space for children to 

design. 

 
Figure 4.10. Illustration of the measurement of the creativity space of a construction platform 

Individual 
Brainstorming 

(Optional) 

Group (2-4 students) 
Brainstorming  

Having a brief introduction 
of the course topic 

(E.g. e-fashion) 

New or 
combined ideas 

After the exploration 
of the modules of 

the toolkit 

Finalized ideas Revised ideas Unrestrained 
ideas 

 

 Similarity  

Project Preparation 

Stage 0 Stage 1 Stage 2 Stage 3 

 Similarity   Similarity  

After learning the 
basic skills of the 

toolkits 



 

 81 

We applied this method in a 5-half-day wearable computing workshop for 

primary school students held in 2010 summer. The class began with the introduction 

to the latest applications of the e-textile and wearable computing, after that we asked 

each student to design their dream e-fashion and draw it down. We recorded the 

students’ unrestrained ideas in this moment (stage 0). Then, we let them form a 

group to have further discussion on their designs. In this “group brainstorming” time, 

students combine or generate some new ideas for their projects (stage 1). The 

“individual brainstorming” process is optional if the children are assigned to work in 

a group, not individually. In the beginning of the second day of the workshop, the 

students were asked to revise their design. In this “revising” stage (stage 2), the 

students had already known the basic modules of the provided wearable computing 

toolkit i*CATch. On the fourth day of the workshop, the students were asked to 

finalize their design of the final project. In this “finalizing” stage (stage 3), the 

students learned the basic programming skills to build functions through the toolkits.  

We counted the number of ideas in each stage and the number of changes of the 

ideas between the two stages of each group. The number of idea was based on the 

students’ draft and presentation to list out the features of the e-fashion in terms of 

aesthetic and functionality. Aesthetics referred to flashing light pattern; functionality 

referred to some daily used electronics such as music player, clock, heater, fan, 

temperature and GPS map, and some fantasy applications such as friend detector and 

emotion-face display. From stage 0 to 1, the changes of the ideas were mainly due to 

the effect of brainstorming in group. From stage 1 to 2, the students were introduced 

to the provided electronic modules that were more basic and simple. The limited 

modules were not able to fulfill all the students’ ideas. Thus, some ideas obviously 

had to be given up such as fan, GPS map and friend detector. However, some 

students still insisted in their ideas. On the other hand, some students used some 

available modules in unexpected ways to create new ideas. For example, vibration 

motor was used to be a massage machine; friend detector was changed to follower 

detector by using ultrasonic sensor to detect obstacles. The inspiration of the 

available modules is another reason to increase the number of ideas. From stage 2 to 

3, the students learned the basic skills on programming the electronic modules. 



 

 82 

Some insisted students confirmed that some ideas were impossible, such as 

temperature; some students wanted to challenge themselves to add some new 

functions, such as light sensor to detect the brightness of environment to change 

light flashing pattern. Therefore, the number of ideas increased and decreased in 

each stage. Finally, all groups were able to use the limited modules to represent their 

creative ideas. For examples, music player - the students programmed a buzzer to 

play two melodies and a joystick to switch the music; clock – they programmed a 

buzzer to play 12 different tones respectively after each period of time; emotion 

display – they changed to use different colors instead of faces to represent different 

emotions.  

Table 4.3 shows the degree of the similarity of the ideas between each stage of 

four groups. The result indicates that the number of changes of the ideas from stage 

0 to stage 1 is slightly more than the other transitional stages. A possible explanation 

for this difference is that the group brainstorming tends to produce more effective 

ideas than the individual brainstorming. The result also shows that the degrees of the 

similarity of the ideas between the transitional stages are almost the same, and the 

difference of the number of ideas between the initial and final stage is small. 

Therefore, according to our hypothesis and the quality of the students’ projects, the 

i*CATch platform for apparel design supports enough creativity space for students 

to design.  

Group # of 
Students 

Stage 0 to 1 Stage 1 to 2 Stage 2 to 3 
# of Ideas Similar

ity 
# of Ideas Similar

ity 
# of Ideas Similar

ity *S0 S1 S1 S2 S2 S3 
1 1 7 +4 3 4 4 3 4 3 3 
2 2 **(2, 2)  2 0 4 3 3 3 3 2 
3 3 (2, 2, 2) 5 2 5 6 5 6 5 4 
4 3 (2, 2, 4) 4 4 4 4 4 4 3 2 

* S, where S is the abbreviation of stage  
** (x, x), where x is the number of the individual idea  
+ As there was only one student in a group, one of our instructors discussed with the student during 

the group brainstorming section. 
 

Table 4.3. The degrees of the similarity of the ideas between each stage 
 

4.2.4 Case Study 3: i*CATch Robotic Platform 
More than two robotic workshops using the i*CATch platform were carried out, we 

selected one workshop for primary school students and one for middle school 



 

 83 

students as the samples of our study. There were 12 girls and 25 boys in the primary 

school, with an age range from 8 to 12, and there were 3 girls and 27 boys in middle 

school, with an age range from 11 to 14. All students were enrolled from both public 

and private schools. The primary and the middle school workshop ran for 5 half days 

(around 15 hours in total) and 5 full days (around 27 hours in total) respectively. 

Both workshops were available the i*CATch IDE, a hybrid text-icon-based 

programming environment, for students to write their programs. Students were 

encouraged to form their own groups of approximately four students each: three all-

female groups and six all-male groups in the primary school workshop; and one all-

female group and seven all-male groups in the middle school workshop. 

The theme of the two workshops was basically the same: green robots. The 

theme was called “green” robots as the provided low-tech construction materials 

were recycle materials such as carton paper, magazine paper and plastic bottles 

instead of the standard unit blocks like LEGO. Making robots with use of different 

materials provides more challenging for construction and more space for creativity. 

The objective for both workshops was to introduce the students to programming and 

electronics through robotic computing and make their functional and aesthetic robots. 

More descriptions of the syllabus of the workshops are shown in Table 4.2 and 

Appendix A (C).  
 

Instructors’ Feedback 

In constructing the robotic cars session, our instructors reported that boys and girls, 

primary and middle school students concentrated on their craft work. Some of them 

even kept building their cars during the break. They did not feel that cutting the 

carton paper or plastic bottles to build their robotic chassis was troublesome, but 

they felt it was challenging and had fun with it. Most of the primary school students 

encountered difficulties to construct their robotic cars such as the servo wheel 

mounting problem that the wheel was easily detached from the servo; or the size of 

wheels was too small to support the load of the car’s weight and electronic devices, 

one reason may be because they had fewer experience on constructing models 

compared to the secondary school students. Despite the difficulties of construction, 



 

 84 

most of them still enjoyed the construction process. Some of them also cut out some 

magazines to decorate their cars. This indicates our approach that craft activity could 

attract both boys and girls to learn and work on.  

In performing the programming tasks, in general, the male groups always 

finished faster than the female groups in both primary and middle school workshops. 

Instructors observed that the programming ability of the primary school students was 

weaker than the secondary school students. It is obvious that the construction time of 

the robotic car was almost the same in the primary and secondary school workshops; 

the primary school students had fewer time to solve the problems and practice 

programming skills. On the other hand, this could be because the middle school 

students had more programming experience. Basically, the assigned tasks were 

similar to the general NXT workshops such as following a black line and moving 

backward when too close to a wall, but the big difference was that the students had 

to consider how to fix the sensors on the carton car, which is more difficult than 

using the standard-size blocks. For example, one all-male group demonstrated their 

car to move backward when the obstacle was detected, but they were not successful 

at the first time even though their program was correct. The boys did not understand 

why they could not achieve the task, until they found that the position of the sensor 

had shifted. A sample program of their programming tasks can be found in 

Appendix G. 
 

Survey results 

A survey was conducted to collect the students’ feedback at the end of the 

workshops. Figure 4.12 shows that the primary school students encountered more 

difficulties than the middle school students. Of 24 primary school student’s feedback, 

over 20% had difficulty in the tasks, whereas among the 29 middle school student’s 

feedback, less than 5% had difficulty. Figure 4.13 indicates that the primary school 

students were less interested in our course than the middle school students. Almost 

75% of the primary students were interested in our course using recycled materials 

to construct robotic cars and the assigned tasks, whereas more than 95% of the 



 

 85 

middle students were interested in it. It is apparent that there was a strong correlation 

between students’ interest and the degree of difficulty encountered.  

 

            
Figure 4.11. A yellow truck is created by a group of four middle school boys (left). A trapezium-
shaped car with an ultrasonic sensor on the top is constructed by another group of four middle school 
boys (middle). An open-top bus decorated with colorful balloons on two sides is produced by a group 
of four primary school girls (right). 
 

Student Projects 

All 9 groups of the primary school workshop and 8 groups of the middle school 

workshop were able to construct their robotic car using the recycled materials, such 

as carton paper and plastic bottles. Despite their cars’ wheels sometimes were not 

fixed well during the task demonstration, they could achieve the task after the repair. 

Figure 4.11 shows the examples of the features of the robotic cars created by the 

middle school students and the primary school students. The variety of the design in 

terms of structure and size was found in the middle school student’s cars. For 

examples, a group of four middle school boys created a yellow truck; another group 

of four middle school boys created a trapezium-shaped car with an ultrasonic sensor 

on the top. In contrast, the similar design was found in primary student’s cars. Most 

of the structure of the car was a rectangular box. For example, an open-top bus in 

rectangular structure was produced by a group of four primary school girls. The 

structure of the middle school student’s car was relatively sturdier than that of the 

primary student’s one. Figure 4.11 also shows the examples that the all-male groups 

usually focused on the structure design while the all-female groups considered the 

decoration for the cars more than the car structure. It was difficult to find an example 

of the all-male groups’ cars with decorative detail that was similar in effort to a 

group of four primary school girls’ open-top bus with colorful balloons on two sides.  



 

 86 

 
Figure 4.12. Summary of the results of the student’s feedbacks from three kinds of workshops 
showing the student’s difficulty on the course 
 

 
Figure 4.13. Summary of the results of the student’s feedbacks from three kinds of workshops 
showing the student’s interest on the course 
 



 

 87 

4.3 Discussion 
Overall three kinds of computational toolkits for crafts making had positive 

feedback from the students, and all of the groups successfully achieved the course 

objectives to create an interactive garment or complete challenging tasks. In fact, 

there were some elements of the computational toolkits for learning and creation that 

were different from each other. This section analyzes the computational toolkits 

from four different angles: construction interface, project theme, computer programs 

and engagement factors. 

 

4.3.1 Construction Interface 
Construction interface is the tangible interface of the computational craft toolkit that 

provides a space for user to make their interactive crafts. This interface element is 

coupled with the creativity, course design and learning process. We considered 

whether the construction interface supports creativity in two directions: one is the 

creative projects and conceivable ideas; another one is iterative design on 

construction and aesthetics (Table 4.4). From the view of the project outcomes, it is 

clear that three types of computational construction interfaces supported students to 

produce their creative projects. However, from the view of conceivable ideas, the 

flexible construction interface of the i*CATch apparel platform had better support 

on creative design than that of the TeeBoard/LilyPad platform significantly. Despite 

no measurement of the creativity space in the TeeBoard workshop, we could 

imagine if we applied the students’ ideas from the i*CATch apparel platform to the 

TeeBoard/LilyPad platform, the idea of the final product could be greatly different 

from the initial one. For example, a hi-tech hiking jacket created by a group of three 

primary school girls from i*CATch apparel workshop, which consisted of four 

functions by using nine modules including three multicolored LEDs, one buzzer, one 

vibration motor, one switch, one joystick, one IR sensor and one ultrasonic sensor. It 

is impossible to achieve their ideas using the TeeBoard/LilyPad platform which only 

has 6 analog and 13 digital pins. Regarding the i*CATch robotic platform, it is 

difficult to compare it to the TeeBoard/LilyPad or i*CATch apparel platform 

directly, because the nature of tasks is different: robot is goal-oriented, and e-fashion 



 

 88 

is design-oriented. If the i*CATch robotic platform is compared to the standard 

construction bricks of NXT platform, the design of the car structure of i*CATch is 

often more innovative than NXT, because of the unlimited shapes of the low-tech 

craft materials. From the perspective of the iterative design, the TeeBoard/LilyPad 

and i*CATch apparel platform support iterative construction design of electronic 

devices well, while the i*CATch robotic platform is not that flexible, due to 

electronic devices that are fastened by glue or tape on the carton paper. The surface 

or the structure of the robotic chassis may be damaged while reconstructing the 

position of the electronic devices.  On the other hand, there was one unexpected 

usage of TeeBoard by the students, which could not be observed in other workshops. 

The primary school students, especially the girls, liked to use the colorful ribbon 

wires to make some patterns while completing their circuitry tasks. Figure 4.14 

shows an example of the circuitry design by a group of girls aged 9-10. This 

observation shows that TeeBoard also supports iterative design on aesthetics without 

any extra craft materials. 

Computational Platforms for  
Crafts Making 

TeeBoard with 
LilyPad 

i*CATch for 
Apparel 

i*CATch for 
Robots 

Creative 
Projects 

Initial Conceivable 
Ideas 

Limited by point-to-
point architecture, 
requires circuitry 
knowledge 

Bus-based 
architecture supports 
complex ideas 

Constrained by 
functionality and 
mechanics 

Final Outcomes Still like a prototype More resembles final 
product 

Can complete 
traditional robotic 
challenges 

Iterative 
Design 

Construction 

 Plug-n-play facilitates iterative 
 construction 

Integrity of body 
parts limits iterative 
construction 

Dependency issues 
may arise from 
modifications 
because of point-to-
point architecture 

Bus-based 
architecture enables 
modifications 
without affecting 
previously placed 
modules 

Aesthetics 
Functional elements 
(e.g. wires) part of 
decoration 

Effects of functional 
modules are part of 
aesthetics, supports 
attachment 
decorative elements 

 Limited by 
 mechanics 

Table 4.4. A summary of the creativity space supported by three kinds of computational construction 
interfaces for making computational crafts. 



 

 89 

 
Figure 4.14. A girl shows her circuitry design with a symmetric pattern for lighting up a series of 
LEDs at the back.  
 

As three kinds of construction interfaces support different dimensions of 

creativity, it leads the course syllabus or schedule to have some variations. Figure 

4.15 summarizes three possible course schedules of three computational construction 

platforms. The TeeBoard and i*CATch robotic platform requires students to start 

from learning electronic circuitry concepts and robotic concepts such as car 

construction and motor control respectively while the i*CATch apparel platform 

does not require students to learn any science concept before learning computational  

 
Figure 4.15. A summary of the three kinds of course schedules 



 

 90 

concepts. The TeeBoard/LilyPad platform requires students to construct a simple 

circuit; or the i*CATch robotic platform requires students to build two basic wheels 

attached to two motors on the chassis before writing a program to control those 

modules; however, the i*CATch apparel platform does not require students to 

construct anything, except plugging the electronic modules on the jacket substrate. 

In other words, the i*CATch apparel platform allows have more time on 

programming practice during the course; or it is more flexible to adjust the course 

content to involve more craft design. 

In the learning process, three kinds of construction interface bring different 

challenges to students. In TeeBoard workshop, although the students could use the 

colorful ribbon wires to create some creative shapes, they spent much time on 

debugging non-working circuits, many of which had typical problems such as open 

circuits and LEDs plugged in wrong directions, even at the final project session. In 

contrast, the students in the i*CATch apparel workshop did not encounter these 

problems, since the i*CATch apparel interface enforced correct attachment of the 

electronic modules. The students in the i*CATch robotic workshop also did not 

encounter these debugging problems, but they had to spend time to repair their cars 

sometimes such as wheel mounting. In addition, the bus-based architecture of the 

i*CATch apparel platform allows the electronic modules plugged in anywhere and 

programming would still remain the same, this encourages good programming 

practices of code reuse, divide-and-conquer coding strategies and modular design. 

From our observations, the students would work on developing the functionality of 

one or two actuators and sensors at a time, saving the program in a separate file, 

working on another couple of modules, and then finally integrating everything into 

their final product. In comparison, the students in the TeeBoard/LilyPad and 

i*CATch robotic platform tended to write a new program for the modules to solve 

the task every time. This reveals that programs for a bus-based architecture are 

inherently more portable and reusable than programs for point-to-point architectures. 

 



 

 91 

4.3.2 Project Theme 
Obviously, the direction of the theme of the students’ project in the workshop is 

highly related to the objective of the computational toolkits, such as constructing 

robotic car by robotic computational toolkit and creating interactive garments by 

wearable computational toolkit. But we focus on the discussion on possible themes 

of the projects or workshops that can be developed through a specific objective of 

computational toolkits. In the robotic workshops, the students seemed to limit 

themselves to design the physical appearance, movement and interaction of a robotic 

car. In contrast, in the wearable computing workshops using TeeBoard/LilyPad or 

i*CATch apparel platforms, the students had slightly a wider range of design on 

their garments. In aesthetic side, the students made light flashing pattern design (e.g. 

Figure 4.8 (a)), light embedded geometric-shaped or cartoon-pattern design (e.g. 

Figure 4.8 (b) and (c)) for their e-fashion projects. In functionality side, the students 

designed multi-functional garments for special usage, such as intelligent clothing for 

the blind (e.g. Figure 4.9 (a)) and hi-tech hiking jacket (e.g. Figure 4.9 (b)), etc. This 

illustrates that the project theme of wearable computing is more neutral and wider 

than robotics and inspires students to learn and design, which implies that it is able 

to improve the diversity of the student pool by introducing functionality or aesthetics 

design.  

 

4.3.3 Complexity of Computer Programs 
To understand how much computational knowledge the students learned through 

three tools, we analyzed the actual computer programs that the students created 

during the final project session. According to our observations, we did not find that 

the students had too many difficulties on using different kinds of programming 

environments. It is probable that we based on the student’s programming experience 

to provide the relevant type of environments for them to use, so we will not consider 

the programming environment factor in the following discussion. Our hypothesis is 

the students will create longer and complex programs by using the i*CATch apparel 

platform, the next is TeeBoard/LilyPad, and the last is i*CATch robot. This is 

because the three computational platforms have different objectives of final projects, 



 

 92 

nature of tasks and design of construction platforms. In robotic workshop, the aim of 

the final project was to program a robot to solve a number of complex tasks. In 

contrast, in the apparel workshop, the aim of the final project was to design and 

create an interactive garment. As expected, the nature of robotic tasks was goal-

oriented, which required students to spend more time on solving the assigned 

challenges; and the nature of apparel tasks was design-oriented, which required more 

time on fashion and functionality design. In addition, the i*CATch robotic and 

TeeBoard/LilyPad platform are point-to-point architecture, which are less flexible to 

manipulate and reconstruct the modules than bus-based architecture.  

 

                     
(a)                                                                                     (b) 

 

 
(c) 

Figure 4.16. (a) A representative program by i*CATch robot students, (b) by the TeeBoard/Lilypad 
students and (c) by the i*CATch apparel students. The i*CATch programs for interactive garments 
tend to be longer and more elaborate, and use more functions and programming constructs. 



 

 93 

Figure 4.16 shows three representative programs by students using three types 

of platforms as examples. The student programs show that our hypothesis is 

generally valid. From the view of program length, we measured it in terms of the 

number of icons programmed in i*CATch IDE (program bricks or statements of 

other two kinds of IDE were converted into program icons.). On average, the 

programs written by the i*CATch apparel students had around 100 icons; the 

programs written by the TeeBoard/LilyPad students had around 50 icons; and the 

programs written by the i*CATch robot students had around 20 icons. There was a 

slight difference in the variance of the programs generated by the students who 

worked on the apparel tasks due to various design ideas for their garments, while 

there was no noticeable difference in the variance of the programs generated by 

these who worked on the same robotic tasks. However, the results are still 

significant and show that the overall programs written by the i*CATch apparel 

students were relatively complex either in primary or middle school workshops. 

In terms of program complexity, we measure it in terms of the number of 

logical constructs (i.e. conditional and looping constructs). On average, the programs 

written by the i*CATch apparel students had around three to four logical constructs 

in total, while the programs written by the TeeBoard/LilyPad and i*CATch robot 

students had around two to three logical constructs in total. The reason is because 

point-to-point construction on the TeeBoard/Lilypad and i*CATch robot platform 

involves more dependencies than bus-based construction on the i*CATch apparel 

platform. In the TeeBoard/Lilypad platform, students had to construct complex 

circuits if they wanted to write a complex programs, and in the i*CATch robotic 

platform, students were limited by the six sockets interface box and the fact of the 

assigned tasks, while in the i*CATch apparel platform, students were free to 

construct the modules, and thus they focused on program design more.  

 

4.3.4 Engagement Factors 
To investigate the engagement of the students to the computational craft activity, we 

analyzed our observations in our workshops from three angles: gender, learner styles, 

and types of programming environments. In our robotic or apparel workshops, the 



 

 94 

majority of our students were male, and more than half of the students, especially the 

boys, had experience on robotic NXT construction toolkit before. Although more 

girls joined our apparel workshops than our robotic workshops, the number of 

enrollment was still lower than our expectations. The reason was probably related to 

our promotion of our apparel workshops that emphasized wearable computing and 

intelligent clothing, instead of other less technical themes such as fashion design.  

Based on our observations on all workshops, some students found it easier to 

work with other students than others. It seems that is related to student’s learning 

style: active (enjoy working in groups) or reflective (prefer working alone or with on 

or two familiar partners). To have more detailed observations, we found that more 

students had problems working with other students in the robotic workshops, maybe 

because the construction interface of the i*CATch robotic platform gives less 

support for collaborative learning than the TeeBoard/LilyPad and i*CATch apparel 

platform. Obviously, the physical construction area of i*CATch robotic platform is 

much smaller than the other two wearable computing platforms, which makes it 

difficult for more than two students work together. On the other hand, in performing 

assigned tasks, we observed that some students were eager to solve the programming 

tasks and some were more interested in the craft work. It seems that this working 

behavior is also related to students’ learning style in sensing (prefer practical work 

and problem-solving) and intuitive (enjoy innovative work and design). Thus, these 

two kinds of students worked together in our workshops, their projects were usually 

better than the same styles of students. We also found that they had satisfactions on 

their work and could learn from their teammates’ merits. Therefore, the wider 

domain of tasks attracts more kinds of learning styles of students to learn technology. 

Most students enrolled into the workshop were interested in science and 

technology. Even though the students had different levels of programming 

experience, no students reported that they had big difficulties to use our text-based 

or graphical-based programming environments. Thus, we believe if the design of 

programming environment is user-friendly, programming environment will not be a 

factor to reduce the student’s interest to learn computational concepts. 



 

 95 

Overall, the engagement factors of students learning computational concepts 

through computational construction toolkits are associated with the intrinsic factors: 

workshop theme, construction interface and nature of tasks, and the extrinsic factor: 

learner characteristics.  

4.4 Summary 
In this section, we presented our investigation on how children learn through three 

types of the computational toolkits for crafts making: Lilypad Arduino with 

TeeBoard platform, i*CATch apparel platform and i*CATch robotic platform. Our 

aim was to have a better understanding of the children’s learning experience of using 

computational toolkits to create computational crafts under different kinds of 

construction interfaces and assigned tasks or projects. According to our studies, the 

overall results confirm in the evaluative surveys and feedbacks from students and 

instructors, which shows that computational toolkits for craft activity attracts both 

boys and girls, and therefore they have the potential to broaden the population in 

learning technology and computing; computational toolkits for crafts making can 

provide a space for children to exercise their creativity and practice their 

programming skills. In conclusion, different construction interfaces of computational 

craft toolkits support different levels of creativity; wearable computing platform 

widens the themes of project, and thus broadens the diversity of students to learn 

computational concepts; the flexible construction interfaces encourage students to 

write complex programs; and the engagement factors are associated with workshop 

theme, construction interface, nature of tasks and learner characteristics. 



 

96 

Chapter 5 Expression through Story Creation 

Children like playing bricks and making crafts and also like telling stories. It is 

common for children to receive stories through parents, friends and electronic media. 

Meanwhile, children also tell stories for communication and self-expression. 

According to Vygotsky, it is important for children learn through imaginative play 

and social interactions [128, 129]. Story creation or storytelling is a way to mediate 

the construction of meaning and a child’s organization of knowledge, and also is a 

social activity that supports positive interaction among students and teachers [16]. 

Storytelling has been successfully applied as a mode of communication in digital 

and tangible media, which facilitates children in expressing their thoughts and ideas 

relating to surrounding objects [31, 35, 51, 126] and becomes a vehicle for children 

to learn languages and even programming concepts [2, 42, 45, 91, 108, 111, 118].  

Currently, technology, especially in wearable computing and computational 

textiles, focuses not only on the improvement of existing functions, but also on style 

and aesthetics [80]. It has been shown that advanced e-textiles and computational 

technologies can positively impact the way children learn and create [18], and there 

has also been work on methods to “lower the bar” on user design interface [94, 95], 

which allows high-tech fashion to be usable not only by professionals, but by 

children. These developments lead to formation several e-textiles and wearable 

computing workshops [19, 20, 70, 77, 94, 95] for children to learn about technology 

and programming while allowing them room to express their personal style via 

apparel. In particular, apparel is a kind of personal object, and wearable computing 

supports to create some sorts of special effects. Some researchers have already taken 

the role of wearable computing in performance [116, 117, 121], but the systems 

developed are only based on the performer's body movements or gestures to display 

the images on the body or project the images on a screen, but which are not available 

for children to program some effects for performance on their own.  

To take advantage of storytelling with the personal nature of computational 

apparel created through the “lower the bar” computational apparel construction 

platform, we proposed to combine these two modes of expressions to be a new form 



 

 97 

of expression media (i.e. storytelling augmented computational apparel) for 

storytelling and for children to learn computational concepts. This chapter aims to 

explore the potential of our proposed expression medium – storytelling augmented 

with computational apparel – supporting children to create stories in some certain 

ways, and examine whether this expression mode of storytelling media has potential 

to be a new programming domain for children to learn computational concept. There 

are three basic aspects for analysis: 

 Electronic devices on computational apparel representations: How do 

children associate electronic devices with their ideas to create stories? 

 Roles of computational apparel in performing a story: How do children 

use the computational apparel to perform the stories? 

 Computational learning: How do children learn the computational 

concepts through this new form of storytelling? 

The chapter is organized into five sections. Section 5.1 reviews the forms of 

storytelling and the development of storytelling media. Section 5.2 describes the 

research methodology, including the introduction of wearable computational toolkit 

and two syllabi of wearable computing workshops for children. The findings of the 

stories created by the children are presented in section 5.3, and the discussion in 

section 5.4 examines the various ways in which children deployed the technologies 

and the programs in their stories and computational apparel to support children to 

learn computational concepts. A summary is given in section 5.5.  

 

5.1 Storytelling and Storytelling Media 
The art of storytelling has been around as long as there has been civilization. It was 

originally a method of passing knowledge from one generation to the next; it can 

also be a powerful tool for communication, collaboration, creating imagery, 

expressing emotions, and understanding of events through the interaction between 

storytellers and audiences [52, 78, 91]. Stories can be expressed in different forms of 

media: oral interpretation combined with gestures and expressions; visual form as a 

graph or movie; textual forms as a poem or novel [10, 78]. In all forms of 

storytelling,  storytellers employ approaches or tools to enrich the plot: traditional 



 

 98 

and adaptive pantomime, character imagery, draw talk, puppetry, felt board, chant, 

balloon, musical and group role play [10] are examples.  

The rapid development of new technologies, such as virtual reality, ubiquitous 

computing and tangible user interfaces, offers storytellers a richer variety of tools to 

use. In recent years, storytelling has been successfully enriched with these 

technologies, such as animation creation using graphical programming environments: 

Alice [2] and Scratch [111]; electronic puppets: SAGE [126], Rosebud [51] and PET 

[35]; and physical or tangible interactive platforms: StoryMat [109], StoryRooms 

[91], StoryToy [45] and PageCraft [17]. The objectives of telling stories through 

these interactive tools are to engage children in technology learning while 

supporting the development of their cognitive and language skills, as well as to assist 

them in expressing their design ideas.  

Graphical programming environments have been shown to be able support 

storytelling and computational concept learning by children [73]. However, these 

environments do not usually provide the same level of support for social interactions 

compared by physical or tangible environments. The few tangible or physical 

programming environments involve simple computational concepts and most of 

them have some defects. For example, StoryRooms’ switching modes confused 

children to learn [91] and StoryToy’s non-linear content seemed to be too hard to 

younger children [45]. Researchers have already researched the role of wearable 

computing in performance [116, 117, 121]. On the other hand, current “lower the 

bar” wearable technology and applications allow children to learn technology and 

programming with positive results [20, 94, 95]. These reasons motivate us to explore 

computational apparel that may be potential tangible interactive media for children’s 

storytelling and learning of computational concepts.  

 

5.2 Methodology 
To explore the proposed medium: storytelling augmented with computational 

apparel to be a potential expression medium and to learn computational concepts, 

two syllabi of the workshops were designed to conduct a comparative study. 

Observations were conducted in six wearable computing workshops over the past 



 

 99 

two years: two were targeted at primary school students and four for middle school 

students. The data gathered was supplemented through interviews, observations and 

video and photographic documentation. 

 

5.2.1 Two Syllabi of Workshops 
The objectives of two syllabi were the same to introduce young students to 

computational concepts via the proposed innovative media. Both workshops 

introduced students to basic programming concepts such as sequentiality, repetition 

and conditionals, and provided electronic devices through a series of small exercises 

such as getting the lights to flash in particular order or patterns, or emitting sounds in 

response to a sensor trigger. Towards the end of the workshop, the students were 

asked to create a project, which involved telling a story on the provided 

computational apparel with the given electronic devices and craft materials. 

The main differences between the two syllabi were the extra time for 

introducing storytelling techniques (e.g. storyboard, image theatre and pantomime 

[82, 130]) and the requirement for the forms of storytelling (drama or pantomime) 

used in the project. The syllabus with the extra introduction of storytelling 

techniques and project requirements (or it was labeled as syllabus II) also contained 

some exercises with image theater technique (holding a static pose to form an image) 

and electronic effects to express emotion, such as holding a crying pose with the 

moving blue LED lights as tears to express the sad emotion (see Figure 5.1). Two 

syllabi were designed in owing to compare the usage of computational apparel in 

expression and storytelling by children and to explore the differences in children’s 

learning of computational concepts with or without extra storytelling information 

and practices. Our hypothesis is that children are able to program computational 

apparel to express a certain level of a story, whereas they can create a more complex 

and substantial story with more practice on storytelling skills. There is room for 

improvement in expression through technology and computational knowledge 

through learning. 

Table 5.1 summarizes two syllabi of the workshops (see the details in Appendix 

B). The same syllabus was used for three times for different subject groups: one was 



 

 100 

organized for primary school children and two for middle school children. In order 

to take the younger children into account, the length of the workshops for primary 

school was usually shorter than that of the secondary school ones, but the contents of 

the syllabus were roughly the same. The syllabus I primary school workshop was 

run for 4 half days (around 12 hours in total), and two middle school workshops was 

run for 4 full days (around 24 hours in total). The syllabus II primary school 

workshop was run for 5 half days (around 15 hours in total), and two middle school 

workshops was run for 5 full days (around 30 hours in total). 

 
Figure 5.1. A primary school girl holds the crying pose with the moving blue LED lights as tears to 
express the sad emotion. 
 

 Syllabus I Syllabus II 

Learning Contents Example Tasks 

Storytelling techniques Not included, assumed to be 
prior knowledge 

Forms of storytelling (e.g. 
pantomime and image 
theatre), story elements, 
storyboarding 

Electronic devices Output devices (e.g. LEDs, buzzers, etc.)  
Input devices (e.g. Light sensors, switches, etc.) 

Computational 
Concepts 

Sequential logic Blink a multicolored LED in rainbow color sequence; play a 
melody on buzzer, etc. 

Conditionals Turn on a LED or play a tone by a switch, etc. 

Repetitions Set LEDs to flash repeatedly in reciprocal pattern on the 
clothing, etc. 

Project Various forms of storytelling Drama / Pantomime 

Table 5.1. The two syllabi of the workshops (see the details in Appendix B) 
 

 



 

 101 

Participants 

All workshops were held in a school environment. In the syllabus I workshops, there 

were nine girls (aged 9 -12) from a primary school, and there were 40 children (aged 

12- 15) from various middle schools, who were assigned to  two workshops, making 

21 children (4 girls and 17 boys) and 19 children (4 girls and 15 boys) in total 

respectively. In the syllabus II workshops, there were 34 children (19 girls and 15 

boys) from various primary schools, and 49 children from various middle schools, 

who were assigned to two workshops, resulting in 17 children (9 girls and 8 boys) 

and 32 children (12 girls and 20 boys) in total respectively. In all of the workshops, 

the children were asked to work in a group of three to four. As they were allowed to 

form groups on their own, most of the groups were of single gender, with only a few 

mixed groups. An informal survey of the students showed that a few of them had 

experience in programming and/or storytelling and performance. All workshops 

were taught by undergraduate computer science students. The ratio of instructors to 

students was about 1:6.  

 

5.2.2 Wearable Computing Tools and Materials 
The materials used in the workshops included both high-tech devices, such as 

wearable computing components, and low-tech materials, such as paper, felt and 

tape. The i*CATch wearable computing system [88] was deployed in the study.  The 

i*CATch system consists of a construction platform, which is usually a garment, and 

a set of components: a main control board, and peripheral devices such as sensors 

and actuators. It has a plug-and-play construction interface, which supports iterative 

or trial-and-error design and development. Table 5.2 shows the materials provided in 

the wearable computing workshops. The high-tech devices were provided slightly 

differently in two syllabi of the workshops because of the improvement of the switch 

controls and the process of creating sound effects in the syllabus II workshops. 

According to the findings on the syllabus I workshops, the students always relied on 

numbers of switches on different positions to trigger electronic effects, and spent too 

much time on programming sound effects, and therefore we made a few changes 

outlined in Table 5.2. The electronic devices included actuators that were specially 



 

 102 

engineered to be attention grabbing, such as extra-bright LED lights and extra-loud 

speakers. The construction platform was a long-sleeved jacket with pockets (and a 

hood appeared in syllabus II workshops only), with connection sockets running 

down the front and back of the jacket, down the sleeves (and on the top and front of 

the hood). For more details on the process of building the garment construction 

platform, refers to Section 3.3.1 Technical Setup in Chapter 3). The students were 

also supplied with low-tech materials such as felt scraps and paper that they could 

use to decorate their jackets or make some simple props. The i*CATch IDE was 

chosen to be a programming environment for children to write programs, which 

allows graphical drag-and-drop programming with source code generation (To 

review the details of the i*CATch IDE, refers to Section 4.1.2 Programming 

Environments in Chapter 4). 

 Syllabus I Syllabus II 

Low-tech materials Felt scraps, paper and tapes 

High-tech devices 

Microcontroller 
LEDs 
Buzzers 
Vibration Motor 
Switches 
Light Sensors 
Ultrasonic Sensor 

Microcontroller 
LEDs 
Buzzers (with sound library) 
Vibration Motor 
Switches 
Joystick 
Light Sensors 

Table 5.2. Materials used in the workshops 
 

A Sound Library for Expression  

The i*CATch buzzer is capable of emitting sounds specified by frequency and 

duration. However, based on our observations in the syllabus I workshops requiring 

students to program in their sound effects note by note would be very tedious, not a 

good use of their time, and would lead to spaghetti code. To come up with this 

problem, a sound library with 11 sound functions was designed (Table 5.3). These 

sounds were encapsulated into functions and could be used by the children as an 

atomic unit. The children could also choose to emit single tones by specifying the 

note (pitch), octave and beat (duration).  

The design of the sound effects was inspired by some previous research from 

fields such as robotics. It has been shown that even simple sounds, such as beeps or 

tones, can effectively convey a variety of meanings, such as notifications to the user, 



 

 103 

the state of the machine, or mimic confidence levels [49, 75]. We therefore expect 

that if children are given the opportunity to effectively make use of technology, they 

may find it appealing to integrate sound effects into their own stories to express 

different events, objects or even signaling another cast member or synchronization 

between cast members. 

Table 5.3. The 11 sound effects encapsulated into functions in the sound library 
 

5.3 Findings 
This section delves into the results of six user studies, highlighting the most 

interesting observations of the students’ stories and performance. The findings 

include the use of electronic devices on computational apparel to represent some 

elements in their stories, the role of the computational apparel in the performance of 

their stories and children’s computer programs. 

 

5.3.1 Electronic Devices on Computational Apparel Representations 
Based on the results in the syllabus I workshops, we expected that students would be 

more familiar with using electronic devices on computational apparel to express 

their ideas. This means that there may be more number of devices and 

representations in a story when they were introduced to story techniques and had 

more practice on their expressions through the electronic devices.  

Table 5.4 shows the statistics on the device and representation in the stories in 

each workshop under the conditions by the storytelling techniques with more 

Types of Sound Effects in Sound Functions 

Common sounds 
The siren of an ambulance or police 
The beating of a heart 
A car alarm 

Non-specific 
single-tone sounds 

A long beep 
A short beep 
A rapid sequence of beeps 

Non-specific 
multi-tone 
sequences 

Four slow ascending tones spanning an octave (do-mi-so-do)  
Four descending tones in a minor key (la-so-fa-mi) 
Three rapidly ascending tones (do-mi-so) 
Three rapidly descending tones (so-mi-do) 
A rapidly descending tone sequence of 20 notes 



 

 104 

introductions and practices (syllabus II) and without any detail on storytelling skills 

(syllabus I). The fluctuation of the average number of devices used between two 

syllabi does not consist with our expectation of more number of devices in a story 

strongly. Based on our observation, children could program each electronic device to 

represent zero or more than one idea in different moments of a story. In general, 

actuators such as LEDs and buzzers were mainly used to express various and 

interesting ideas. In contrast, sensors such as switches and joysticks were usually 

used for triggering events rather than representations. However, there are some 

exceptions, such as using a switch to represent a gun trigger and using an ultrasonic 

sensor to represent the process of the collision. Furthermore, children could program 

each representation using more than one electronic device to express, such as a 

flashing white-blue LED with a buzzer emitting the siren sound to represent 

delivering a patient to a hospital. Therefore, the number of devices was not a suitable 

indicator to reflect our expectation of familiarity with using electronic device for 

expression. On the other hand, the number of representations in the students’ stories 

in each syllabus II workshops was slightly more than the number of the 

corresponding levels of the workshops (see Table 5.4), which supports our 

expectation of more number of representations in a story. However, there was one 

exceptional case in the primary-school syllabus II workshop. One all-boy group 

always did not focus on their works and played with each other all the time, so when 

we gave children an option to choose using devices or not in their stories, they chose 

the easiest way by not using any device to perform their stories. Except them, most 

students were interested in programming the electronic effects integrated into their 

stories.  

Upon closer analysis on all children’s stories, the representations using the 

deployed electronic devices could be categorized into four areas: to denote 

abstractions and actions; to denote concrete objects; to denote emotions; and to 

denote themselves in intelligent clothing, in which only to denote emotion category 

appeared in the syllabus II workshops, which was obviously related to the 

storytelling practice on the emotion topic (see Table 5.5). This result shows again 

that more practices facilitate students to use electronic devices to express ideas better. 



 

 105 

Even though the concept of using electronic devices to convey ideas seem to be not 

so intuitive, most of the students could use the devices to represent abstractions, 

actions and concrete objects in their stories in both workshops. Therefore, general 

students enable to associate the properties of electronic devices with some story 

events or objects, such as death and fire. A more descriptive analysis of each 

category of representations is presented below. 
 Workshops Number of Devices Number of Representations 

Avg Min Max Avg Min Max 

Syllabus I Primary  (N=3) 6.30 5 8 1.67 1 2 
Middle   (N=13) 6.31 4 10 2.00 1 5 

Syllabus II Primary  (N=8) 4.25 0 8 1.75 0  4 
Middle   (N=13) 6.00 4 9 3.31 3 5 

* N = Number of groups 
Table 5.4. Statistics on the device and representation in the students’ stories with free forms of 
storytelling (syllabus I) and limited forms on drama or pantomime (syllabus II) 
 

 Syllabus I Syllabus II 
Representations Primary 

(N=3) 
Middle 
(N=13) 

Overall 
(N=16) 

Primary 
(N=8) 

Middle 
(N=13) 

Total 
(N=21) 

Abstractions and Actions  1 (33%) 11 (85%) 13 (82%) 2 (25%) 11 (85%) 13 (62%) 
Concrete Objects 1 (33%) 7 (54%) 8 (50%) 2 (25%) 10 (76%) 12 (57%) 
Emotions 0 (0%) 0 (0%) 0 (0%) 3 (38%) 7 (53%) 10 (48%) 
Themselves  1 (33%) 2 (23%) 3 (19%) 3 (38%) 1 (8%) 4 (19%) 
* N = Number of groups 
Table 5.5. The total number and the percentage of groups in each category of the representations of 
electronic devices 
 

 
Figure 5.2. A story about filming: a director (center) and two gunmen (left and right) to make a movie 
(squared in green) and the trajectory of flying bullet (circled in red) 
 
To Denote Abstractions and Actions 

The most common usage of the electronic devices was to represent abstract concepts 

or events in both the syllabus I and II workshops, such as explosions, stock market 

fluctuations, or illnesses. There was an impressive example in the syllabus I 



 

 106 

workshop. Four middle-school boys illustrated a story about filming by creating a 

director (microcontroller) who directs a movie about two gunmen, with using felt 

scraps embedded with a switch (see Figure 5.2, squared in green). A sequence of 

blue LEDs was attached along the top of the arms of the jacket. As the trigger is 

pressed, the blue LEDs turn on one by one to represent the trajectory of the flying 

bullet (see Figure 5.2, circled in red). Another example is the story No Pain No Gain, 

performed by three middle-school boys in the syllabus II workshop (the brackets 

indicate how the electronic devices were integrated into the story):  
“… Two farmers bargain the price with the salesman. One of the farmers suddenly has 

an idea (Yellow LED on the head is on) to make the salesman reduce the price, and 

the bargain is deal finally…” 
They used a flashed LED placed on the head to indicate that a farmer had an idea in 

their story (see Figure 5.3).   

 
Figure 5.3. Turning on an LED positioned on the top of the boy’s head (circled) to indicate coming up 
with an idea. 
 

The use of the LEDs to illustrate the trajectory of the flying bullet or reinforce the 

concept of a happy ending was unique to these two particular groups. However, the 

use of electronic devices to represent events such as explosion, stock market rallies 

and crashes, and major life events (such as injury and death) was a fairly common 

theme, as shown in the following story Looking for a Planet to Live (see Figure 5.4), 

told by a group of middle-school boys in the syllabus I workshop: 
“Originally, all planets were beautiful and healthy (LEDs light up). However, man 

messed up Earth (LED embedded in the Earth felt turns off)…In the end, all the 

planets explode (vibration motor turns on and buzzer issues a “BOOM” sound)”. 



 

 107 

 
Figure 5.4. The Looking for a Planet to Live story shows an example of using vibration motor to 
express one of the common story events – explosion.  

 

Another example is The Three Sons story, performed by a group of middle-school 

boys in the syllabus II workshop (Figure 5.5): 
“… three sons’ father passed away (siren sound), ...The eldest son invested the 

money in the stock market, making a lot of money at first (slow ascending tone 

sequence). However, the market suddenly crashed (rapidly descending 20-tone 

sequence) and he lost all his money…The third son presses a button on the smart 

jacket (long beep), and their father’s virtual image appears to tell them his wish...”  

 
Figure 5.5. A scene of The Three Sons story: three sons (left) are watching their father’s virtual image 
(right) projected from the smart jacket worn on the youngest son (sitting in the middle) and listening 
to his wish.  

 

Closely related to abstractions are the representations of actions. For example, 

the fluctuations of the stock market can arguably be considered actions, as can be the 

event of the father dying in the previous story. In another example, there were many 

abstractions (e.g. injury and heaven) and actions (e.g. bleeding and delivering to a 

hospital) in Siu Ming has an Accident story, narrated by a group of middle-school 

boys in syllabus workshop I: 



 

 108 

“Siu Ming goes into the forest and is listening to mp3 (a song is played from the 

buzzer). He doesn’t notice a tree in front of him and walks into it (walks towards a desk 

in front of him, which is detected by the ultrasonic sensor), and he is injured and 

bleeding (the ultrasonic sensor triggers the turning on a series of red LEDs). An 

ambulance arrives, and he is sent to hospital (buzzer plays the siren of an ambulance). 

However, it is too late, he sees a flash of bright light (all white LEDs on the jacket turn 

on), and God receives him to heaven.” 

One more example about beating action is in the Bullying story, told by a mixed 

group of two middle-school girls and a boy in the syllabus II workshop (Figure 5.6):  
“…A naughty boy played a nasty trick on a girl classmate by pulling out a chair from 

under her…The girls decide to take revenge on the boy and beat him up (violet LEDs 

flash, car alarm sound plays)…”  

 
Figure 5.6. A scene of two girls bullying a boy:  two violet LEDs on the front of the boy’s jacket 
lights up and the buzzer plays the car alarm sound.  
 

Many syllabus II workshop students relied on the provided sound effects, and 

few of them conducted a simple sound to represent an action. For example, a group 

of middle-school boys used a slow series of a low tone to represent the sound of 

plowing in their No Pain No Gain story: 
“… Two farmers drive back to their farm and plow their fields (a slow series of a low 

tone)...” 

To denote abstractions and actions was the most popular usage of the electronic 

devices both in two kinds of syllabi workshops, with 13 of the 16 groups (82%) in 

the syllabus I and 13 of the 21 groups (62%) in the syllabus II choosing to deploy 

the devices in this fashion (see Table 5.4). The middle school children were more 

able to use electronics devices to represent abstractions than the primary school 

students (see Table 5.5), owing to the stage of cognitive development. The primary 

school children 8-12 aged have not developed their abstract thinking ability well. 



 

 109 

Many of the children used the sound effects from what they had previously seen 

from cartoons, movies or computer games (for example, using the siren to indicate 

the delivery to a hospital, using a descending sequence of tones to indicate a stock 

market crash, or using the car alarm tone, which was a rapid alternating sequence, to 

indicate a fight with fists going back and forth). 

In this category, there was an even use of LEDs in the syllabus I workshops 

while there was comparatively less use of the LED lights in the syllabus II 

workshops. One reason was the students in syllabus I workshop, who worked 

without sound library, had some difficulties to convert a series of tones to express 

their ideas, and therefore some gave up using the sound. Therefore, the usage of 

buzzers in the syllabus I workshops was less than that of the syllabus II workshops. 

In other words, the sound library enriched the children to express some abstract 

ideas and actions. Even though the usage of LEDs was relatively less in the syllabus 

II workshops, there were quite a number of creative usages that were found in 

several groups using LEDs. For example, a flashed LED placed on the head to 

indicate that the wearer had an idea; a LED light flashing in colors of the rainbow is 

used to reinforce the concept of a happy ending in Adapt to Change.  

The other types of electronic devices such as vibration motors and sensors were 

seldom used; only four stories used vibration motors to indicate explosions, 

earthquakes and fart, and only one story used ultrasonic sensor to indicate the 

process of collision in the syllabus I workshops. The main reason is probably related 

to the nature of vibration motors having less various output and unobvious effects in 

performance, and sensors having no output effect, not intuitive to be used for 

representations. In other words, using sensors to denote some meanings seems to 

require children to have a more creative mind. 

All these observations show that actuators, especially buzzers and LEDs, were 

intuitive to students to express abstractions and actions in many forms of storytelling, 

regardless of having extra storytelling skills practice or not.  

 

To Denote Concrete Objects  

Another common usage for the electronic devices was to represent concrete objects. 



 

 110 

In the syllabus I workshops, there were quite a number of groups that used the 

microcontroller to represent characters in their stories. This usage was only in the 

syllabus I workshops, since the children were free to choose their forms of 

storytelling. There were a numbers of groups that used puppetry to perform their 

stories, and therefore the children decorated the robot-faced microcontroller into 

their characters. Figure 5.7 shows a story with a movie director represented by a 

microcontroller as an example. In this story, besides a director, there were two 

gunmen created from felt scraps embedded with a switch. When the switch is 

pressed, the blue LEDs are turned on one by one along the arms (see Figure 5.2), 

which is similar to pressing a gun trigger, and the blue bullet is fired from the gun. 

In our observation, it is common for student to use switches to represent a button of 

a real object, such as a gun trigger, a play button of MP3 player and a button of a 

panel to order food (see Figure 5.8), as switches are common in our daily appliances.  

 
Figure 5.7. A microcontroller (center) dressed up as a movie director, alongside two gunmen actors. 
 

 
Figure 5.8. A girl presses a switch to trigger a light to indicate the food order. 

 
In the syllabus II workshops, it was more common to use the LED lights, which 

could easily be programmed with different colors to represent different objects. An 

example is the cautionary tale Don’t do Drugs (Figure 5.9), performed by a group of 

middle-school girls:  
“One night, a girl got drunk at a disco (multicolored LED flashes with different colors, 

speakers emit the short ascending and descending sequences in succession) and 



 

 111 

somebody slipped her some drugs. Leaving the disco on a drug high, she crosses the 

road (multicolored LED flashes red, yellow and green, representing traffic lights). She 

passes by a hawker selling scarves, starts to look through the scarves, and finally to 

take off with one of them. However, the police come (multicolored LED flashes white 

and blue, speaker emits siren sound), and they arrest the girl.”  

One of the girls in the group of performing the Don’t do Drugs story wore the 

computational apparel and stood on one side to produce the light effects of a disco 

ball, the red-yellow-green color of a traffic light and the flashing the white and blue 

lights of a police car to represent the scenes in the disco, street and the final arrest 

scenes respectively. There was another primary-school girls group in the syllabus I 

workshop who also used three colors of lights to represent a traffic light in their 

story. Traffic light seems to be a common object in children’s story. 

 
Figure 5.9. A girl standing on the other side (left) controls the lights on the arm to change different 
colors and the buzzer to play different tones to represent the disco ball and music 
 

In our observations on both syllabi workshops, representing actual objects was 

a fairly common mode of usage for the electronic devices, especially for the LED 

lights. Perhaps the students used lights as paint to simulate the color of objects. 

Another example in the syllabus II workshops is The Exam, illustrated by two boys 

and a girl from the primary school section: 
“Three students are taking an exam which is invigilated by a very harsh examiner. One 

boy is so nervous (LED flashes red like a beating heart) that he starts sweating 

(another LED flashes blue like a drop of sweat). The boy see that the invigilator has 

fallen asleep, so he grabs his classmate’s paper and starts copying from it (blue LED 

goes off). The invigilator wakes up and discovers that the boy is cheating, and decides 

to report this incident. The boy gets really nervous again (a blue LED starts flashing 

again)...”   

8 out of 16 (50%) stories in the syllabus I workshops and 12 out of 21 (57%) 

stories in the syllabus II workshops incorporated the use of electronic devices to 



 

 112 

represent concrete objects. More examples of concrete objects that were represented 

were: the sirens of ambulances or police cars, the headlights of cars, traffic lights, 

blood (red flashes), tears, sky (blue steady light), lightning (flashes of white light), 

or heartbeats (flashes of red lights, accompanied by sounds from buzzer). As the 

representations were for concrete objects, the majority of the effects were 

straightforward and easy to understand. For example, the siren of the ambulance or 

police car is easily recognized, and two white lights on opposing sides of the 

wearer’s body also readily recall us to associate them with the headlamps of a car 

(Figure 5.10). Using red lights to represent the heart or blood, and blue lights to 

represent tears or sweat were also fairly common choices. 

 
Figure 5.10. A scene of the No Pain No Gain story: Two farmers drive (left) a car to the store (right). 
Two LED lights on the front of the boy’s jacket (left) are turn on to represent headlamps of a car. 

 
To Express Emotions 

One of the most interesting usages of the electronic devices was to represent 

emotions. As expected, this usage was only found in the syllabus II stories, because 

there was an extra practice on an emotion expression through a static pose with the 

aid of the electronic devices. This practice in the syllabus II workshops was added 

because was to examine the way children used electronic devices to represent ideas 

was not a random result in the syllabus I workshops, but was also reasonable for 

children to apply. If the use of electronic device was not intuitive to represent 

various meanings, the children would be biased to use it for expressing emotions 

only, not for other representations. Using emotion topic but not the other, basically it 

was based on our experience that this category was not found in the syllabus I stories, 

and it was also inspired by some designers and researchers used lights in apparel to 

express emotion [27].  



 

 113 

As a result, the extra practice only assisted, but not biased the students in their 

final project, and around half of them used the electronic devices to represent 

emotions. Looked into the ratio of the representations in the primary school 

workshop (see Table 5.5), the number of groups using emotions in their stories is 

slightly more than using abstractions and concrete objects. Owing to the age of the 

primary school students and the shorter duration of the syllabus, their stories were 

noticeably with fewer number of electronic device representations than the 

secondary school’s one, and it would be reasonable for the primary students to 

follow some ideas from the prior practices in their final stories. The following is an 

example of denoting emotion, the storyline of A Thief, presented by a group of 

middle-school boys (Figure 5.11): 
“...Outside hides a thief, nervously looking in (heartbeat sound plays) the store. The 

thief conceals his real motivations from the shopkeeper and the customer, so he come 

in happily (three red-green-blue lights flash repeatedly). Suddenly, he takes action: he 

demands money, discovers a thousand bucks in the cash register, and beats up the 

storekeeper. The customer, in the meantime, has witnessed the whole scene and calls 

the police. The police arrive and give chase to the thief, and finally shoot him (red 

LEDs turn on).” 

 
Figure 5.11. A thief (right) looks happily and come into the store. Three multicolored lights flash 
repeatedly to indicate the happy emotion.  
 

Nervousness seemed to be a common emotion in the children’s stories, as were 

happiness, frustrations and sadness, as seen in the story Jenny and the Cat, played by 

5 primary school girls: 
“A little girl called Jenny is frustrated at school and very depressed about it (mournful 

four-tone descending sequence plays, blue LED turns on)...The next day, Jenny 

comes up with the correct answer to a question (four-tone ascending sequence plays). 

She is overjoyed (red LEDs turn on)...”  



 

 114 

10 of the 21 groups (48%) represented the electronic devices, only actuators, in 

this usage. The use of the devices was divided fairly evenly between the lights and 

the sounds. Some of the usages resembled (or perhaps were inspired from or inspired) 

the concrete and abstract usages previously described. For example, four groups 

used a blue light to express sadness, which is reminiscent of the use of blue light to 

represent the concept of tears or crying. Among the colors, red, white and blue were 

the most often used, with red most commonly used to represent “active” emotions, 

such as anger, disgust or happiness, and blue to represent the more “passive” 

emotions, such as worry, sadness and nervousness. The sound effects were relatively 

more varied than the light effects. The most common usage was to use the heartbeat 

sound to represent nervousness. Other usages included using ascending sequences to 

represent positive emotions, such as successes or happiness, and the descending 

sequences to represent negative emotions, such as anger or sadness.  

 

To Denote as Themselves in Intelligent Clothing 

Interestingly, there were very few usages where the wearable computing devices 

represented themselves in both syllabi stories. In other words, very few students 

used the concept of smart jacket in their stories. Even when the concept of a smart 

clothing appeared in the story, it tended to take a minor role, such as the inherited 

jacket in the story The Three Sons. Another two examples of the stories in which one 

jacket played a role was an intelligent blind stick with smart functions worn by a 

blind in the story The Foolish Blind and The Smart Blind performed by a group of 

middle-school girls in the syllabus I workshops; another jacket played a role was a 

cheerleading jacket with lights worn by a fan in The Volleyball Match, performed by 

a group of primary-school girls in the syllabus II workshop. This usage was found 

on 3 of the 16 groups (19%) in the syllabus I workshop and 4 of the 21 groups (19%) 

in the syllabus II workshop.  

 

The Overall Usage of Electronic Devices for Representations 

The actuators were widely used in the student’s stories. Among the actuators, the 

LED lights were the most popular in the stories, with all but two of the groups in the 



 

 115 

syllabus I and II workshops respectively choosing to deploy them in the storytelling 

process. Both the white and the multicolored LED lights were used, with different 

patterns of flashes or colors invoking meanings or special effects in the story.  

Confirming our expectations, the sound library was also widely used by the 

students in the syllabus II workshops. The most commonly used functions were the 

ascending and descending tones; many of the students tended to associate 

descending tones with unhappy events and ascending tones with happy ones, which 

was consistent with observations in previous work [75]. Rapidly alternating tones 

and sounds invoking real-life objects (such as the ambulance siren and the heartbeat) 

were also popular. Perhaps due to the children’s music background or the time-

consuming action on composing a sound effect, very few syllabus II children 

explicitly composed a song note by note in their stories.  

Compared with the other two types of actuators, the vibration motor was very 

rarely used in both syllabi workshops. As expected, the final project required telling 

or performing a story in front of an audience and the vibration motor is not seen or 

heard. It is reasonable that the students found it less effective for expression 

compared with the lights and the sounds.  

In contrast to actuators, sensors and microcontroller were not used to represent 

any meaning in the syllabus II stories, but few cases in syllabus I stories such as 

switch as a button of an appliance and microcontroller as a main character in a 

puppetry show. This result indicates that the use of electronic device representations 

tends to be related to how children to perform their stories. There is more discussion 

in the following subsection 5.3.2.    

 

5.3.2 Roles of Computational Apparel in Performing a Story 
In all the workshops, the students were provided with a jacket as a substrate for their 

computational garment construction. In the wearable computing and storytelling 

workshops (syllabus I), they were free to use their own ways to tell or perform their 

stories, and their stories could be categorized into four forms of storytelling: 

pictorial, puppetry, drama and pantomime. Based on the children’s performance of 

the syllabus I workshops, it shows that computational apparel could be more 



 

 116 

relevant to theater-based performance and other forms of storytelling could be use 

other forms of computational textiles such as bags and quilts instead. Therefore, in 

the technical stage workshops (syllabus II), the children were assigned to perform 

their stories in forms of drama or pantomime. As a result, Table 5.6 shows that the 

syllabus II middle-students had a little wider range of usage on the computational 

apparel for performing a story overall. However, the result in the syllabus II 

primary-students is not significant to show the advantage of drama or pantomime 

format compared to that of the syllabus I primary-students. This may be related to 

the class size and the ratio of instructors and students.  The following is analysis on 

the roles of computational apparel in terms of stage, stage effects, control panel, 

costumes and cast members, which is similar to some kinds of theatrical elements 

such as costumes, music and lighting.  
 Syllabus I Syllabus II 

Role of 
Computational 

Apparel 

Primary 
(N=3) 

Middle 
(N=13) 

Overall 
(N=16) 

Primary 
(N=8) 

Middle 
(N=13) 

Total 
(N=21) 

Stage* 2 (67%) 10 (77%) 12 (75%) N/A N/A N/A 
Stage Effects 2 (67%) 11 (85%) 13 (81%) 5 (63%) 12 (92%) 17 (81%)   
Control Panel 2 (67%) 8 (62%) 10 (63%) 3 (38%) 11 (85%) 14 (67%)   
Costumes / Props 1 (33%) 2 (15%) 3 (19%) 2 (25%) 2 (15%) 4 (19%)   
Cast Members** 0 (  0%) 0 (  0%) 0 (  0%) 1 (13%) 0 (  0%) 0 (0.05%) 
* Stage role was only found in pictorial or puppetry forms of storytelling 
** Cast members role was only found in drama or pantomime 
*** N=Number of groups 
 

Table 5.6. Summary of the students’ stories and the role of the computational clothing modules 
 

As a Stage for Pictorial and Puppetry 

The pictorial form of storytelling presents the characters in a static tableau, which is 

used in picture books and gives both teller and listener a good idea of the setting of 

the story. In contrast, the puppetry form of storytelling presents a dynamic set of 

characters that appear and disappear from the field of view of the listener as they 

enter and exit from the storyline. The children used the garment construction 

platform as a presentation board or we called it a stage for puppets to tell these two 

forms of storytelling. The main difference of puppetry from pictorial is that the 

students detached the characters from the stage, moved to other locations, or even 

thrown away (which usually signified the character’s death) during the telling of the 



 

 117 

story. Figure 5.12 shows The Little Match Girl and the Frog Prince, an example of 

such a story, developed by a mixed group in the syllabus I middle-school workshop:  
“…she suddenly saw something bright under the snow (white LEDs flash) -- it was a 

glass shoe! (Sticks felt cutout of glass shoe onto the jacket). She tried to put on the 

shoe. Right at that moment, the Frog Prince came by in his carriage (sticks felt cutout 

of prince onto the jacket) and saw this beautiful girl who had the shoe that he was 

looking for...” 

In our experiments, the pictorial and puppetry formats were the most common 

forms of storytelling, with a total of 12 of the 16 groups (75%) choosing to use the 

computational apparel construction platform as a stage to tell in these two formats. 

The students who chose to use the puppetry form tended to be related to how they 

learn to present a story from schools according to our informal survey in the syllabus 

I workshops. 

 
Figure 5.12. The story of The Little Match Girl. The narrator sticks a felt cutout of a match onto the 
“stage” of the jacket. 
 

As Stage Effects for Performing a Story 

As discussed in subsection 5.3.1 elaboration, those representations were used as 

traditional stage effects in the all forms of storytelling performed by the children. 

The traditional stage effects including spot light, sound and fake blood capsules, etc. 

may serve doubly as an indicator of mood or characterization in the children’s 

stories. In the pictorial form or puppetry, the students used sound effects to show on 

the stage (the computational jacket) and light effects to show on the felt puppets or 

objects to make them lively, or to indicate the key or active character, which is 

similar to the spot light function. For example, in The Little Match Girl story (Figure 

5.12):  
 “…She felt very cold, so she lit a match to keep warm (sticks match onto jacket, red 

LEDs flash). It burned for a while, and then went out (removes match from jacket). She 



 

 118 

was cold, so she lit match after match (repeats the process). When she got to the last 

match, she thought she would die of the cold. However, she suddenly saw something 

bright under the snow (white LEDs flash) -- it was a glass shoe...” 

In drama or pantomime, most students wore the computational jacket in front of the 

stage to produce the effects and some students put it at the backstage or one side to 

produce the effects. Three groups exchanged the computational jacket (without any 

effect of electronic device to show) to wear between their group mates to indicate 

the key character at that moment of the story. For example, in The Birth of Paper 

story, performed by a mixed group in the syllabus II primary-school workshop:  
“...The tree (a boy wears a jacket with blue lights) is so worried and scared and hopes 

itself won't be chopped. But the tree is still chopped by a man and is sent to a paper 

making factory. A piece of paper is produced (a girl wears the jacket) and narrates her 

life...” 

On the other hand, one all-boy and one all-girl groups in the pantomime 

performance also utilized these stage effects, using sound usually, for cueing other 

cast members, such as synchronizing a movement within the group in The Three 

Sons story after the siren sound (representing a scene of father’s death) (see Figure 

5.13).  

 
Figure 5.13. The boys are moving after the siren sound cue in The Three Sons story. 

 
The use of computational apparel to produce the stage effects was very 

common, over 80% of all groups in average. Particularly, the middle-school children 

used the stage effects more than the primary-school children. This result reflects that 

producing stage effects may not be that easy to primary-school students because it is 

not concrete knowledge and is related to children’s experience on watching dramas 

or movies in their lives.  



 

 119 

As a Control Panel 

To facilitate to show the stage effects on a particular moment or event, children used 

a joystick, a switch or other sensors to trigger the effects instead using the timed 

delay function to display the effects. Therefore, sensors used as a control panel of a 

stage. For example, in the Bullying story, a middle-school boy used a joystick to 

change the lights to blue to indicate his sad feeling after bullying (Figure 5.14). 

There were 10 of the 16 groups (63%) in the syllabus I and 14 of the 21 groups (67%) 

in the syllabus II using sensors as a control panel to trigger effects in a particular 

event. More syllabus II children used sensors to trigger effects, in particular to 

joysticks, as perhaps the joysticks were available in the syllabus II workshops, which 

was predictable and intuitive of the device for this trigger events purpose. However, 

programming sensors to trigger event was seemed to be more difficult to the 

primary-school children, so fewer primary-school groups used sensors than middle-

school groups.  

 
Figure 5.14. A boy controls a joystick to change the lights to blue on the front of the boy’s jacket to 
show his sad feeling. 
 

As a Costume 

It is rare for the children to use computational apparel as costume in their 

performance, being found in seven groups (19%) in all workshops. Only one 

primary-school girls group and one middle-school mixed group in the syllabus II 

workshops used some felt scraps to have extra decorations on the computational 

jacket, and the rest mainly programmed the LEDs to produce different flashing 

patterns to make the jacket beautiful or futurist, such as a fan’s cheerleading jacket 

in The Volleyball Match (Figure 5.15 (a)), or they programmed the sensors to create 

a smart jacket as a prop for their dramas such as a smart blind’s smart jacket in The 



 

 120 

Foolish Blind and The Smart Blind (Figure 5.15 (b)). This result shows that most 

children (even girls) are more interested in programming the electronic devices to 

produce effects rather than designing a costume with craft materials.  

      
 (a)                                                  (b) 

Figure 5.15. (a) A fan wears a cheerleading jacket with lights and star-shaped felt accessories. (b) A 
smart blind girl uses a light sensor (circled) on her smart jacket to check the banknotes.  

 

As a Cast Member 

There was an unexpected and interesting finding in the syllabus II primary-school 

workshop. The role of the computational apparel that have been described so far 

have mainly used as stage effects: to accentuate or to convey a point of information 

to the audience and as a control panel: to trigger events. One all-girl group used the 

computational jacket with a sound to be a cast member – magic mirror. Figure 5.16 

illustrates their The Girl and The Magic Mirror performance: A girl stands on the 

left who wishes to be beautiful. Another girl stands on the right who holds up a 

jacket and controls the sound of the magic mirror. Every time when the girl asks the 

mirror if she was beautiful, the mirror answers her “No” with a mournful sequence 

plays. This interaction is similar to a communication of two cast members on the 

stage.   

 
Figure 5.16. A scene of The Girl and The Magic Mirror story 

 



 

 121 

5.3.3 Computer Programs 
In addition to the usage of the computational apparel for performing a story, another 

thing was the potential for this media to facilitate students’ computational learning. 

Given that most of the students did not have any experience in programming, this is 

a good indicator as to whether the use of new media such as storytelling augmented 

with computational apparel which can also be used effectively to teach 

computational concepts. To investigate this aspect, two hypotheses were established: 

I) the programs for the primary-school workshops were shorter and simpler than the 

middle-school workshops, because the age of primary-school students was smaller 

and the duration of the primary workshops was shorter; II) the programs for the 

syllabus I workshops were also shorter and simpler than the syllabus II workshops, 

because the extra practice on expression through electronic devices in the syllabus II 

workshops. Three methods of program measurement were used for analysis: the 

number of line of code, the complexity of program and the quality of program. Most 

of the results support the hypotheses.  

 

Line of Code 

The length of the program is measured by the number of lines of text codes 

generated by drag-and-drop icons in the i*CATch programming environment. The 

average number of line of code in the syllabus I primary-school workshop was 40.7 

while the average number of line of code in the syllabus II primary-school workshop 

was 18.7 (see Table 5.8). This difference was statistically significant. It violates the 

hypothesis I because most syllabus I primary-school girls liked music so much and 

conducted their own music note by note; as a result, a lengthy program was found. 

In contrast, most syllabus II primary-school children relied on the provided sound 

library, and thus their program length was much shorter.  

The average number of line of code in the syllabus I middle-school workshops 

was 25.8 while the average number of line of code in the syllabus II middle-school 

workshops was 38.0, which is more than that of the syllabus I middle-school 

workshops. This is because the number of line of code would be proportional to the 

number of electronic device representations in the story if students do not create 



 

 122 

their own sound effect with a series of notes. A longer program is required for more 

number of representations. This result is consistent with the results of the number of 

representation discussed in section 5.3.1 and the hypotheses in this section. In other 

words, if children have more practicing on storytelling skills with electronic devices, 

students would be able to design a longer program.  

 

Program complexity  

To measure complexity, the number of complex operations (iterations and 

conditionals) in a program was added up. The average complexity of the syllabus I 

primary-school children’s programs was 1.7, as same as the syllabus II primary-

school children’s programs (see Table 5.8). There is no significant difference 

between two syllabi in primary-school workshops. This result is reasonable as there 

was only three-hour learning time difference between two primary-school 

workshops. In fact, the iterative and conditional concepts are often abstract for 

younger children to learn. Most of the children in our workshops only programmed 

one conditional statement for controlling a switch or used an infinite loop construct 

to repeat the effects of actuators. In contrast, the average complexity of the syllabus I 

and II middle-school children’s programs were 2.5 and 5.5 respectively. This result 

supports our hypothesis I and II that program complexity in the middle-school 

children’s programs was more complex than the primary-school children’s programs, 

and program complexity in the syllabus II middle-school children’s programs were 

more complex than the others.  

A closer analysis of the programs from middle-school children indicated that 

most of them could apply conditional constructs for triggering events with sensors 

and iterative constructs for repeating sound effects or flashes of light. In syllabus II 

middle-school workshops, most children were able to write a multilevel of 

conditional construct for triggering events with a joystick (that was only provided in 

syllabus II workshops) while this multilevel construct was not common in the 

syllabus I workshops, and the conditional constructs were inserted into different 

parts of sequential statements, when children used switches only. This children 

application shows that a five-directional joystick is convenient for children to trigger 



 

 123 

stage effects during the performance and also facilitates children to learn conditional 

concepts. Furthermore, some children wrapped this multilevel of conditional 

constructs into an infinite loop construct. They realized that this approach was more 

efficient instead of restarting the program by resetting the i*CATch main control 

board (and waiting for the requisite 3-5 seconds as it resets itself). This finding also 

explains why the syllabus II middle-school children’s programs are more complex 

than the syllabus I students’ programs.  

 

Program quality 

To measure the program quality, the scoring system was designed (see Table 5.7), 

which was defined as the level of the linkage of a program and a story and the 

number of program errors. Programs with a score of 1 contained a weak linkage to 

the story, or there were many unnecessary program statements or logical errors. For 

example, in a story about a policeman fighting with four fighters (created by one all-

boy group in the syllabus I primary-school workshop), the boys only programmed 

the light flashing pattern for the jacket to indicate the policeman from the other four 

fighters. This program was only related to a costume which took a minor role in the 

story, so the score of this program was given 1 point. Programs with a score of 2 

contained a strong linkage to the story, or there were few unnecessary program 

statements or logical errors. For example, some extra codes were found in some 

children’s program, which was not used for the story, because the students forgot to 

delete those codes after the device was plugged out from the jacket; the common 

logical error was found due to a lack of using timed delays after the codes for 

actuators, and thus the effect of the actuator could not work properly. Programs with 

a score of 3 contained a strong linkage to the story with no significant program error. 

The programs of the Don’t do Drugs and Siu Ming has an Accident story are 

examples which contain numbers of program statements to produce effects to enrich 

the story plot without any program error. 

The average score of program quality of the syllabus I and II primary-school 

children’s programs were 1.3 and 1.7 respectively. In contrast, the average scores of 

program quality of the syllabus I and II middle-school children’s program were 2.1 



 

 124 

and 2.3 respectively. The score of program quality in the primary-school children’s 

programs is lower than that of the middle-school children’s programs, and the score 

of program quality in the syllabus I workshops is slightly lower than that of the 

syllabus II workshops; this result verifies the hypothesis I and II again.  
Score Score Explanation 

1 The program has a weak linkage to the story, or there are many unnecessary program 
statements or logical errors. 

2 The program has a strong linkage to the story, but there are few unnecessary program 
statements or logical errors. 

3 The program has a strong linkage to the story with no significant program error. 

Table 5.7. The scoring system for the program quality 
 

Syllabus Workshop Project Line of Code Complexity Program 
Quality 

I Primary Various forms 
of storytelling 

40.7 1.7 1.3 
Middle 25.8 2.5 2.1 

II Primary Drama/ 
Pantomime 

18.7 1.7 1.7 
Middle 38.0 5.5 2.3 

Table 5.8. Summary of the average of three kinds of program measurements 
 

5.4 Discussion 
Overall, the findings show that children are able to create and perform a story 

through the suggested media storytelling augmented with computational apparel 

media; meanwhile, children can learn some computational concepts through this 

platform. In addition, children can create more interesting stories or performances 

with more practices on storytelling and programming skills, which confirms our 

expectations on the potential for this expression domain and storytelling media to 

facilitate children’s learning of computational concepts.  

 
5.4.5 Computational Apparel Media for Creating a Story 
In our studies, most students could program electronic devices to link to or to 

illustrate key points in the stories and could use the computational apparel to 

perform their stories through different ways, particularly through drama or 

pantomime.  However, we may still want to ask how the computational apparel and 

electronic devices critical to the stories, or whether the students were incidental and 

used only because we requested the children to do so. According to the instructors’ 

observations, most children were motivated to interact with the computational 



 

 125 

apparel platform, especially the children in the syllabus II workshops, who made 

their storyboards to design which scenes should add what effects or which scenes 

without effects, which is similar to stage effects design in a traditional drama. Only 

few children (usually boys) reported that they found it difficult to use the 

computational apparel and electronic devices to create a story. The main reason was 

that they thought a smart jacket could not be used for other purposes. As a result, 

most of these groups usually used the computational apparel as a costume with a 

very few linkage in their stories, or programmed one to two electronic devices to 

produce several simple effects for their stories. The children’s story design process 

indicates that most stories did not come from incidental and most design was critical 

to the story.  

Actually, the concepts of electronic effects from computational apparel are 

similar to the traditional stage effects. One 13-aged girl from the syllabus II 

workshops was an active member in the school drama club for at least 6 years. She 

reported that using the clothing with lights and sounds was similar to the lighting 

and sound production on the stage, and only the position was different -- the 

traditional lighting was from outside pointing to a stage or characters while the 

computational apparel method was that the lighting directly lighted up on the 

clothing. Compared to the traditional theatre methods such as lighting and sound 

design, computational apparel platforms have the advantage of supporting children 

to design stage effects quickly and flexibility by programmability. The light and 

sound effects from computational apparel enriched the visual appeal during 

performing a story, whereas particularly in a pantomime, those effects also provided 

more information for audiences to associate the effects with the cast members’ body 

gestures, which helped to understand, also left enough space to imagine. For 

example, a scene in The Three Sons story: the eldest son’s hands held some paper 

(with slow ascending tone sequence), and then he threw all the paper from hands 

(with rapidly descending 20-tone sequence). This scene with sound effects was clear 

to the audience to know that the eldest son lost all his money in the stock market. 

However, we may have gotten the impression that the eldest son was so happily 

throwing away all the paper if no sound was supplemented.  



 

 126 

In addition, an unforeseen contribution of computational apparel media was 

that electronic devices helped the students to present their ideas more comfortably. 

Since they were given only three hours to create a story, to build and program their 

computational clothing creation and to rehearse their story (even they were given 

three hours more in the syllabus II middle-school workshops), it is understandable 

that many of them should be nervous about presenting in front of a crowd. However, 

the electronic devices helped to keep the audience’s attention, and therefore reduced 

the children’s nervousness when speaking or moving their bodies in front of the 

audience. A case in point is the group of students in the syllabus I middle-school 

workshops who created the movie director story. They were too shy to even speak 

up when asked a direct question during the workshop, but when they were asked to 

present their story, they were very eager to see the audience’s reaction on the LED 

“bullet”. Their feedback was very enjoyed the process of telling the story.  

 

5.4.6 Task Characteristics 
To program a story through a computational apparel platform is different from 

traditional robotic programming, even traditional storytelling programming. We 

found that some children had difficulties in writing a program for storytelling while 

some children were engaged in programming for performing stories easily. The 

following analysis focuses on three aspects to discuss. 

 

Problem-Oriented versus Design-Oriented  

Traditional computational tasks for children to learn are related to robotics, which 

are often to solve problems related to science and mathematics such as line-

following and obstacle detection. This kind of tasks focuses on training children’s 

problem understanding and using the divide-and-conquer approach to solve the 

problem. In contrast to robotics, storytelling tasks on computational apparel platform 

are often to design storyboards and story elements, which is similar to the tasks on 

graphical programming environment. In the syllabus I workshops, most of the 

children expected to learn computing and technology, as the theme was related to 

smart clothing. The gender ratio of females to males was 1 to 1.89, which was much 



 

 127 

higher than that of the general robotic workshops (almost no girl there). By 

comparison, in the syllabus II workshops, the children clearly knew that the theme 

was related to theater and performance, and few children even unexpected to learn 

programming. As a result, the gender ratio of females to males was 1 to1.08, which 

was almost even. This statistics indicates that the nature of storytelling tasks attract 

children of both gender and with different learning styles.  

 

Screen-based versus Theater-based 

Storytelling tasks on computational apparel platforms are also related to creating 

stories, but its design focus is different from story creation in graphical 

programming environments. According to the findings, children programmed the 

stage effects to express the mood of characters or indicate some objects or events, 

which were tied in the voice with puppetry or body gestures. During the 

performance, the children had to remember when to trigger the effects or what 

effects would produce, and then what actions the students needed to do. In addition, 

each performance seems to trace a program once, which should facilitate children to 

understand more of programming concepts. Compared to graphical programming 

environments, children often programmed the movements or dialogues of virtual 

characters to create animations [73, 106]. If children only focus on the screen to 

design and program, they will miss the chance of learning through bodily 

engagement and interaction with tangible objects and peers, which is a good starting 

point to motivate children to gain knowledge about abstract concepts [55].  

 

Products and Performances 

In general, researchers mainly consider what kinds of project aspects (e.g. related to 

robotics, e-fashions or animations) can motivate children to learn abstract 

computational concepts or how to improve construction platforms to support 

collaborative learning and create their computational products effectively (e.g. Tern 

bricks [56] and Storytelling Alice [73]), but few researchers consider what will 

happen after the children’s projects come out. The robotic projects usually are used 

to solve the assigned challenges; the e-fashion projects usually are to express 



 

 128 

children’s design and creativity; the animations usually are to display children’s 

ideas and stories. Most of the outcomes of these kinds of projects can be 

demonstrated by one child, and the rest of the group members may stand near to the 

presenter and observe the results. In contrast, performing a story through 

computational apparel often require more than one student: in puppetry, usually one 

child was a narrator and others moved around the puppets or triggered the effects on 

the stage or used their voices to act out the puppets; in drama or pantomime, most 

children conducted a role play in front of the audience and some were responsible 

for triggering the stage effects. In other words, the storytelling through 

computational apparel platforms support children to prepare their stories 

collaboratively (due to the fact that the i*CATch computational platform was 

suggested to use in the study, and its construction interface supports to work 

collaboratively mentioned in section 4.3.4 engagement factors in chapter 4), and 

even performing their outcomes of their stories. This result inspires us that 

collaboration design for learning tools is not only related to the construction user 

interfaces, but it is also related to the presentation of their project outcomes.  

 

5.4.7 Support for Computational Learning 
In all workshops, students learned some basic computational concepts such as 

sequentiality, iteration and conditionals and worked with the wearable electronic 

devices before they wrote a program to create a story. In the project session, we did 

not teach them to use a particular program structure to create their stories, but we 

encouraged them to utilize the sensors to generate the effects of actuators instead of 

the effects running all the time. According to the statistical findings in section 5.3.3 

above, the program length, program complexity and program quality indicate that 

the children were able to apply the basic computational concepts to program some 

effects or representations for their stories.  

Interestingly, one unexpected observation of the children’s programs was that 

they basically deployed three types of program structure to link up their stories (see 

Figure 5.17): 1)   Sequentiality on events and timed delays; 2) Infinite loop with 

joystick or switches as triggers; 3) Sequentiality on states with a switch trigger. 



 

 129 

Sequentiality on events and timed delays is the simplest logic to link up to a story, as 

its structure is close to the sequential storyline. Thus, at the very beginning, most 

students used this structure. After a while, most students discovered the problem that 

they were required to predict the exact time of each scene to use this structure, which 

is difficult in practice. As a result, only one group of students used this program 

structure in the end. Infinite loop with joystick or switches triggers was used by most 

students, due to its flexibility in triggering events at a particular time. Time control is 

important to a performance. Without a lengthy rehearsal, the length of each scene is 

not clear and this flexibility becomes a critical issue that allows students to operate 

the effects or representations in particular scenes. It is also convenient to allow 

children to test their programs because they can test the outputs of each event 

individually without waiting to run through all the previous events and timed delays. 

Sequentiality on states with a switch trigger is the most complex logic to link up to a 

story, as this structure requires the use of an extra variable and while constructs to 

keep checking the state of each event. Therefore, this structure has the advantage of 

flexibility similar to the second type of program structure; while being close to the 

sequential structure of a story. Furthermore, while performing a story, the children 

did not need to remember which directions of the joystick or which switches trigger 

which events, since they only needed to press one switch to run each event in order. 

However, this complex structure was only deployed by one syllabus II middle-

school all-boy group, in which the boys had programming experience on NXT. This 

is likely the reason why they could construct a complex and relevant program 

structure (see Appendix H).  

While the storyline was not intended use of infinite loop or while loop with 

states, the first that the children could figure out how to construct their programs to 

be more flexible show that they do have a grasp of the computational concepts of 

sequentiality, iteration and conditionals. Again, this is additional evidence that 

shows that the storytelling argument with computational apparel has potential to be a 

new media for children to learn computational concepts.  

 



 

 130 

      
                         (a)                                                 (b)                                                  (c) 

Figure 5.17. Three kinds of program structures found in the workshops (a) Sequentiality on events 
and timed delays (b) Infinity loop with joystick or switches triggers (c) Sequentiality on states with a 
switch trigger  
 

5.5 Summary 
This chapter presents a study to reveal the potential of storytelling augmented with 

computational apparel media for children to perform stories and learn computational 

concepts. By comparing two syllabi of the workshops, the results give evidence that 

children were able to use wearable electronic devices and computational apparel for 

expression and performing stories, which was not an accidental, and there was room 

for children to improve their stories through more practices on storytelling and 

programming electronic device skills. In addition, the analysis of the children’s 

computer programs shows that our proposed storytelling through computational 

apparel platform is possible to be a new tangible interactive storytelling method for 

children to learn computational concepts.  

 



 

131 

Chapter 6 Analysis of Design of Tangible 
Computational Construction Kits 

The previous three chapters describe three case studies from the three major 

categories of tangible computational construction platforms. Each study indicates 

that the corresponding platforms have potential for assisting in children’s 

computational concepts learning. These positive results lead to two questions: Are 

they all efficient in children’s computational concepts learning at same level? Any 

characteristics of these kinds of platforms have an advantage over each other? 

To address these questions, we suggest an analysis of the three major categories 

of tangible computational construction kits via five factors that were informed by 

our experience of the studies described in previous chapters: coupling of 

computational concepts, construction interfaces, domains of tasks, learners’ 

characteristics and learning environments.  

 

6.1 Coupling of computational concepts  
In general, children find it difficult to learn abstract computational concepts. 

According to Piaget’s theory of cognitive development, children at the concrete 

operational stage require concrete objects to understand abstract concepts [98]. 

Ullmer and Ishii have proposed that tangible user interfaces (TUIs) [125] bridge 

between the abstract digital world of computational concepts and the real world, in 

which tangibles can carry physical state, with their physical configurations tightly 

coupled to the digital state of the systems they represent. Some tangible 

programming systems are influenced by this concept, such as AlgoBlocks [120], 

Programming bricks [89] and Tern [56]. However, in our i*CATchBadges study, we 

found no significant difference in children’s computer programs between 

programming in GUI or TUI environment within a 2-hour period of time. No 

significant differences were also found in Horn et al.’s study in science museum [58] 

that confirms our results. Actually, the nature of programming structures is one 

instruction (or one function) followed by one instruction, which is similar to brick 



 

 132 

by brick, and therefore the design of tangible programming language usually uses a 

physical brick to represent an instruction or function to form the basic programming 

constructs (e.g. sequentiality, repetition and conditionals). However, computational 

concepts are dynamic fashions instead of static objects, and therefore it is difficult to 

have a strong coupling of passive physical bricks or other artifacts with 

computational concepts. Even though bricks can be embedded with electronics to 

generate dynamic simulations like i*CATchBadges, SystemBlocks [135] and 

Topobo [104], the scalability and the versatility of TUIs often support simple tasks 

only; it is still difficult for the design to apply to more complex tasks compared to 

GUI environments. The TUIs tend to encourage children’s sensory engagement and 

collaborative interactions [58, 133] rather than facilitating children to assimilate the 

abstract concepts directly. This is discussed in section 6.2.  

Concreteness does not only indicate objects that can be grasped with hands, but 

it can also refer to physical actions [29]. Building physical microworlds is a 

cognitive approach to link the abstract world and the real world [38]. Programming a 

Mindstorms robot [90] to have different movements and computing a bicycle’s 

speed by Tangible Programming Bricks [89] are some of the representative 

examples. In our study, the i*CATch robots and apparel systems also support 

building physical microworlds. For example, programming a robot to move in a 

square shape can use a series of instructions in sequence or a repetition construct; 

turning on a light in the dark and producing a sound when too close to a wall can be 

solved by a conditional construct. In our observations, children were eager to count 

the number of movements and experiment the responses by triggering the light and 

ultrasonic sensors. Through these explorations, most children were able to link the 

tasks of building physical microworlds, which is similar to the researchers’ studies 

in robots and e-textiles [19, 20, 89]. Furthermore, building physical worlds is 

flexible to form simple and sophisticated tasks for children to solve with 

computational concepts. Therefore, the building physical microworlds approach is 

effective to assist children in assimilating the concepts through exploration of the 

physical world.  



 

 133 

However, it is difficult to motivate girls to learn computational concepts 

through building physical microworlds, and researchers therefore use storytelling 

that is a natural way for children to express ideas to bridge the abstract 

computational world such as the graphical programming environments Alice [2] and 

Scratch [111], and a physical programming environment StoryRooms [91]. Even 

though storytelling is a natural way of expression, it does not match well to 

computational constructs. Some researchers found that children used fewer loops in 

Storytelling Alice programs than generic Alice programs and commented that loop 

construct does not match well to storytelling [73]. In our experience in storytelling 

through computational apparel, children also used fewer loops compared to 

conditionals, even in situations where they wanted to repeat the effects of actuators 

(e.g. two-tone siren sound).  They relied on sensor triggers in an infinite loop instead 

of using several loop constructs for each effect, which means that they have to hold 

down a switch or keep the joystick in one direction for a while to generate repeated 

effects (e.g. a series of siren sound). However, this is not to imply that the loop 

construct is not suitable for storytelling, since repetition of events or effects 

generally occurs in stage performance. If children could implement sensor-triggers 

embedded in a number of while-loops in sequence like the group of middle-school 

boys in the syllabus II workshop, three basic constructs would be used in a program 

to perform a story. Some hints are suggested to be given to children when designing 

their programs, which should be helpful for children to match computational 

constructs with storytelling. Therefore, we believe storytelling can be considered a 

potential method to assist children in understanding computational concepts. 

 

6.2 Construction interfaces  
The construction interface of a computational toolkit needs to consider inputs and 

outputs. Input interface is used for programming, which can be a mouse, keyboard 

or tangible platform. The design should prevent learners’ frustration on program 

syntax errors and provide a scaffolding layer for transitioning to a more complex 

system (e.g. text-based). Output device is programmed by an input interface, which 

can be a robot, e-fashion and story, and may have a reconstruction interface for 



 

 134 

learners to design their artifacts flexibly. In addition, there is evidence that working 

together aids learning [32, 129], and therefore collaborative construction interfaces 

are also preferable.  

In tangible programming systems, the design of input construction interfaces 

are as important as the design of output interfaces, since its rationale is to let learners 

focus on their hands-on physical blocks to solve computational tasks, which means 

writing a program by manipulating a set of tangible objects while the output can be 

displayed on a separate device or on the same input bricks. Usually, the design is a 

one-to-one mapping between (functional) bricks and program instructions. As a 

program is often formed by a series of bricks (e.g. Tangible Programming Bricks 

and Tern), and learners do not worry about the syntax error problem.  In addition, 

the space of tangible interface often supports collaborative construction [58, 133]. In 

our study involving the age 16 male subject who could not distinguish between the 

action flow and the data flow, the subject always made the connections in the wrong 

place until we drew two squares for action connections and two circles for data 

connections onto the action badges. This additional clarification indicates that the 

perceived affordance of the construction interface prevents making errors, and 

therefore children can focus on manipulating the computational concepts. On the 

other hand, our tangible programming simulation has a one to multi-semantics 

mapping between (functional) bricks and a number of representations or instructions 

(e.g. smart clothing’s functions or story’s characters) which expands the possible 

aspects of tasks. Even though the one-to-many mapping approach is more flexible 

and facilitates children’s association ability, it still can be only used to solve simple 

tasks. The children also had the initiative to work collaboratively in the game booth 

activity or the classroom workshop through our tangible programming simulation. 

In computational crafts construction platforms, the rationale is reversed, in 

which the programming part often uses in graphical or text-based programming 

environments (the input is not necessarily tangible) to control a physical 

construction artifact (the output is physically constructible). Unlike text-based 

programming environments, graphical programming environments often free 

learners from having to worry about the syntax, but it may be too simple for the 



 

 135 

learners who have programming experience [26, 110]. To fill in the gap between 

graphical and textual programming environments, a hybrid graphical-text-based 

programming environment is suggested such as the Bricklayer and the i*CATch IDE 

in our study. This kind of interface supports a wider range of learners’ experience in 

programming and a transition to text-based programming environment. However, it 

does not really support learners to collaborative work while the physical output of 

the computational crafts platforms may or may not support collaborative work. 

There are two examples which show that the physical output of the computational 

crafts platforms does not seem to support learners to construct collaboratively: the 

Arduino Lilypad platform supports construction by sewing, and the sewing process 

is quite individually; the i*CATch robotic platform in our study has a limited 

physical space of the interface box. In contrast, there are another two examples that 

support learners to construct the craft collaboratively: the TeeBoard/LilyPad and the 

i*CATch apparel platforms in our study both have plug-and-play electronic 

components and a wide physical area of a garment substrate for simultaneous 

construction. Therefore, computational crafts construction platforms support 

collaboration, which is mainly related to the design of the output construction 

interface.  

The storytelling augmented computational apparel platform uses the i*CATch 

apparel platform, and it also uses hybrid graphical and textual programming 

environment and supports collaborative construction, which is different from the 

traditional graphical [2, 111] or physical storytelling [45, 91] platforms in which 

learners tend to work individually for both input and output parts.  

 

6.3 Domains of Tasks  
Traditional programming tasks that are related to robotics seem to attract mainly 

boys [108]. To broaden the potential computing student population, researchers 

develop toolkits to provide potential domains which are not limited to science topics 

to motivate children to learn programming, such as storytelling [73, 91, 106] and e-

textiles [19, 20, 70]. In our study, the three major categories of computational 

construction platforms were used in different domains of tasks such as e-fashion, 



 

 136 

wearable computing, robots and storytelling. Our findings show that children had 

different levels of engagement in different domains. To investigate children’s 

engagement in a particular domain, three stages of children’s responses to the 

domain are considered: recruitment period (before joining the activity), performing 

assigned tasks and after the activity.  

In a recruitment period, children’s decision is based on the introduction of 

advertisements on the news or the theme of a booth whether to join the workshops or 

activities. In this study, the gender ratio in the storytelling workshops and the game 

booth with the e-fashion theme was fairly even while the ratio of the boys in the 

robotic and wearable computing workshops (with craft making) was higher. It is 

clear that even though workshops involve other learning or teaching approaches 

such as crafts making, children are attracted to join the workshop by the theme, but 

not the content of the workshop, which may be due to the impression of science and 

arts subjects that influences their perception of the workshop.  

In performing the assigned tasks, if children are engaged in their tasks, they are 

eager to work on their tasks, which may be reflected on the time-on tasks [15, 43, 88] 

and positive emotions or interests [113]. In the game booth study, the boys and girls 

exhibited different approaches in the e-fashion domain. The boys tried to form 

different combinations of badges to design functionality while the girls spent more 

time on decorations. Some participants, both boys and girls, obviously wanted to 

keep working on their tasks until we stopped them while some just attempted a 

minute. In our workshops, regardless of the themes, the boys and girls also have 

their unique styles to express their engagements. While boys focused on 

programming and girls more on making the decorations, both were eager to work on 

their tasks even for both the craft part and programming part; they often requested to 

have more time to finish their tasks. There were some exceptional cases. One is in 

the primary-school technology workshop: the boys did not want to use the tangible 

programming system (i*CATchBadges) to tell a story, since they disliked creating 

stories and liked learning technology; another one is common to all workshops: 

there were usually one to two groups who lost their interests in their tasks after they 

failed in a number of trials. The first exception suggests that teaching or learning 



 

 137 

approaches need to be with the theme of a workshop. The second exception reminds 

us to be careful about the level of difficulty of tasks and the instruction given to 

support them.   

After the activities or courses, if children are still engaged in that domain or 

learning technology and programming, they will come back again to join the same 

activity or other technology courses or ask their friends to join them. It is difficult to 

follow up all children’s participation in relevant science activities after our activities. 

Based on our enrollment records, there were a few children who joined our different 

workshops in different years. Based on the post-course surveys, if children have a 

positive feeling about the workshops (e.g. complete all tasks successfully; achieve 

their expected design), they will be likely to pursue other technology and computing 

courses, either boys or girls. In game booth study, one girl invited her friend to come 

to our booth, after finishing her e-fashion design. We were interested to know 

whether she wanted to learn writing programs to control electronic devices instead 

of plugging them on a jacket. Her reply was, “Yes, if we can make our own!” Even 

though the activity time was very short, around 3 to 5 minutes, it is still possible to 

motivate children to join relevant workshops. In the primary-school wearable 

computing workshop, there was a girl who learned many different kinds of 

computational platforms and also succeeded in all our challenges. She reported, 

“Hope to have an advanced class!” In the performance workshops, there was a 

primary-school girl who created a story The Exam with programming electronic 

devices to express emotions. She commented, “I am interested in programming 

i*CATch board!” There was another middle-school girl said, “She never thinks 

about learning programming and sciences, and now it is possible in the future.” They 

were very positive to our workshops and tended to be engaged in technology and 

computing, but there is a countering example: one primary-school girl in the 

TeeBoard workshop said, “I am very much enjoyed this workshop, even though I 

may not choose science subjects to study in the future.” Overall, we still believe that 

most children who have positive feelings have motivation to pursue learning 

technology in the future. 



 

 138 

To conclude, the theme of a workshop is the most important step to engage 

with a particular group of children who may be interested in science, arts or both. 

The second step is to maintain children’s engagement during the activities by 

developing instructors’ awareness of the children’s behaviors on tasks (e.g. feel too 

difficult or dislike the teaching or learning approaches). If children have positive 

experience in the activity, they will tend to pursue technology and programming. In 

other words, regardless of the categories of computational construction kits, if the 

kits support a domain that attract a group of children to join, it becomes a motivating 

way to learn technology and programming for that group of children.  

 

6.4 Learner’s Characteristics 
In designing a construction kit, researchers usually consider the gender factor when 

deciding which programming domains or paradigms should be supported by a 

platform. Through a series of case studies, it was found that the girls can be more 

engaged and have better performance in their works than the boys. Therefore, 

children’s interests do not only depend on gender. This finding is similar to Kelleher 

et al.’s findings in their study about children’s performance and interests in 

programming [73], which depends on programming experience rather than on 

gender. Age range seems to be another design factor to decide the complexity of the 

systems because of the child’s cognitive development [98]. However, there are now 

more children who have the opportunity of learning computational concepts through 

creating animations and games or constructing robots in workshops compared to the 

past. Some primary school students may have more experience in programming than 

middle school students, just like the primary-school girls in one of our wearable 

computing workshops. The discrepancy in students’ programming experience is 

reflected in the zone of proximal development and not the mental age [129].  

The main objective of three streams of the computational toolkits is similar, 

which is to broaden the potential children’s population to learn programming by 

gender and age range. All three of the computational toolkits basically reached this 

objective. The exception is the computational crafts stream, but we believe that it 

will achieve this objective if the theme of a workshop was more neutral. Therefore, 



 

 139 

we propose to use learning styles [40] to analyze the suitability of three categories of 

the computational toolkits for a particular group of children’s learning styles. 

 

Sensing versus Intuitive 

The design of the computational crafts construction kit is clearly intended for 

children to build an artifact such as robots or smart clothing (functional design) to 

solve computational problems. It should be more suitable for sensing learners. In 

contrast, the design of our tangible programming system or storytelling argument 

with apparel platform requires children to associate concrete physical outputs with 

some meanings which may be related to functions or stories. Wearable computing 

platforms for e-fashion design also require children to have a creative mind to use 

electronic devices to express aesthetics.  The association process is abstract to some 

children, and it should be more suitable for intuitive learners.  

 

Visual versus Verbal 

The programming environment of the three main computational construction kits 

can be tangible, graphical and textual. In our workshops, most children reported that 

they preferred programming in graphics which seems to be a kind of visual learning 

style. In contrast, few children, especially male children, preferred programming in 

text.  These children should belong to verbal learning style. In our primary-school 

technology workshop, there is no significant difference on the performance of 

children using tangible or graphical interfaces. Horn et al. [58] also had a similar 

finding between tangible and graphical interfaces. Thus, we consider that tangible 

representations are similar to visual representations, which should be also suitable 

for visual learners. 

 

Active versus Reflective 

Most tangible construction kits have designs that tend to support collaborative 

construction. This takes advantage of collaborative learning. The computational 

construction platforms used in this study also support three to four children working 

together. The exception is robotic construction platform which is limited because of 



 

 140 

the physical size. If the kits can support collaborative work, they can support 

individual work. Therefore, most tangible construction kits can satisfy the learning 

style of active learners and reflective learners while most graphical construction kits 

with one mouse or keyboard control cannot. 

 

Sequential versus Global 

The learning computational concepts approach of tangible programming systems 

focus on the flow of a dynamic system by constructing bricks one by one; the nature 

of tasks in the robotic or wearable computing (functional) domain tends to be action-

oriented or problem-oriented, which requires children to have linear thinking process 

and to learn problem solving by divide-and-conquer strategies (i.e. sequential 

learners). In contrast, the nature of tasks in the e-fashion or storytelling domain tends 

to be design-oriented and event-oriented, which requires children to think in parallel 

and holistically (i.e. global learners).  

 

Overall, tangible computational construction kits accommodate a wider range 

of learning styles. Tangible programming systems are suitable for intuitive, visual 

and sequential learners; computational crafts construction kits are suitable for most 

of the learning style of children, which depends on application domain; storytelling 

construction platforms are suitable for intuitive, visual or verbal and global learners.  

 

6.5 Learning Environments 
An appropriate learning environment allows children to become expressive using 

new technologies, and this expressive experience offers them the opportunity to 

explore basic concepts [8, 105]. Children usually learn computational construction 

kits in a workshop carried out in a classroom, and the workshop is similar to the 

general outreach programs with a curriculum and an instructor [19, 73]. This 

learning environment provides less opportunity for children to take an active role. 

Some researchers propose a learning method that is related to the “Atelier” or 

“Studio” style of working [22, 76]. This learning method aims to facilitate a learning 

environment that engages learners in active learning and positive social interaction 



 

 141 

[70]. On the other hand, some researchers have proposed learning computational 

construction kits through online communities such as Instructables [66] and 

LilyPond [81] that introduce how to build construction artifacts, where can be shared 

with and discussed by others. These supportive social communities support children 

to have Constructionist Learning [96] and Zones of Proximal Development (ZPD) 

[129], which encourage creativity, problem solving and engagement. Furthermore, 

some researchers believe that science museums assist children in learning scientific 

or computational concepts [9, 59]. Science museums offer a constructivist, self-

guided learning environments, where allow children to learn through constructing 

their own knowledge by hands-on exploration and correlating with social aspects of 

engagement [9, 59].  Tangible programming systems allow children to explore 

computational concepts through constructing physical structures, often using a set of 

bricks. The complexity of the tasks is flexible, some of which can be finished in 

around 5 minutes and some others are much longer. This flexibility allows tangible 

programming systems to be used as a teaching tool in a classroom or science 

museum. Usually, tasks are related to the demonstration of dynamic behaviors or 

systems [134, 135], and they can be used to construct an artifact such as our game 

booth’s activity that was to design an e-fashion. However, the artifacts are too 

simple, and the learning concept of tangible programming systems focuses on the 

process of constructing bricks to form a flow of program, which is similar to playing 

Scrabble to form a numbers of words. Therefore, it does not seem suitable to 

organize an online community for tangible programming systems to engage children 

in learning science and technology by sharing their products, but it is possible to 

form a club to appeal to a group of children playing with tangible programming 

systems after school or in leisure time, much like a Scrabble club or chess club. In 

computational crafts construction platforms, children have to use a programming 

environment to build their computational artifacts. Since the construction platforms 

involve the connection between the software and hardware components, this 

connection is quite complex when children encounter it for the first time. The 

learning process should be more efficient if children were to learn through an 

instructor giving an introduction in a classroom or guiding in studios, but there are 



 

 142 

some examples of older children who were successful in self-learning through online 

tutorials [84]. The online communities work well for children to share their artifacts, 

even source codes, with their friends or to ask for questions with some experienced 

learners.  Constructing a computational artifact usually requires at least an hour or 

above, hence computational crafts platforms seem not to be suitable for children to 

learn in science museum.  Tangible storytelling platforms often require a number of 

ubiquitous settings and physical props, and those settings are usually new to children, 

which tend to be suitable for learning in a classroom. This applies to our proposed 

storytelling augmented computational apparel platform as well. Regardless of 

individual narration or collaborative performance, the children in our study reported 

that they often preferred to obtain feedback from their audiences in real time. Even 

though children can take a video as a record and upload it onto an online community, 

this sharing tends to be for entertainment, rather than to facilitate learning 

computational concepts. Tangible storytelling which is similar to traditional 

storytelling tends to be a classroom activity, which is different from creating a 

virtual story that can be done at home on the computer. Hence, tangible storytelling 

platforms are not suggested to be an online community. The time for creating a story 

usually is more than an hour, hence tangible storytelling platforms also seem to be as 

suitable for science museums or exhibitions. 

 

The five factors of a computational construction kit discussed in this section 

are interrelated. It is difficult to comment which factor is more effective for learning, 

since it depends on the objective of a toolkit. It is also difficult for a tool to obtain 

the optimum level of each factor (see Table 6.1). Based on the analysis of these five 

factors, there are four suggested guidelines that we believe to be useful for designers 

and researchers to develop a new computational construction toolkit for children to 

learning computational concepts.  

 

 

 

 



 

 143 

 Coupling of 
Concepts 

Construction Interfaces Domains of 
Tasks 

(Engagement) 

Learners’ 
Characteristics 

Learning 
Environments 

Scaffolding Collaborative 

Tangible 
Programming 
Systems 

Passive 
physical bricks 
are mapped to 
dynamic 
computing 
concepts 

Difficult to 
transit to text-
based 
systems  

Construction 
domain 
supports 
collaborative 
building 

Monotonous 
tasks, short 
engagement 

Diverse 
  Exhibitions /    
Museums, 

  Classrooms 

Crafts 
Platforms 

Dynamic 
behavior of 
artifacts maps 
to dynamic 
computing 
concepts 

Easy to 
transit to text-
based 
systems 

Depends on 
the platform 
types 

Variety and 
challenging 
tasks, long 
engagement 

Depends on the 
theme of 
projects 

Classrooms, 
Studios, 
Online   
Community 

Storytelling 
Platforms 

Dynamic story 
flow / stage 
effects map to 
dynamic 
computing 
concepts  

Easy to 
transit to text-
based 
systems 

Plug-n-play, 
bus based 
platform 
allows 
multiple 
learners to 
collaborate 

Variety forms 
of storytelling, 
long 
engagement 

Diverse Classrooms 

       Table 6.1. Summary the five factors of the three mainstreams of computational construction kits 
 

Determine places of learning 

It is important to determine places of learning first, since it is directly related to the 

complexity of tasks (measurement by time) and domains of tasks (appealing to both 

genders). If a tool is designed for learning through public environments such as 

exhibitions or science museums, tasks should be finished within a short period of 

time and domains should appeal to males and females, similar to the tangible 

programming system’s approach. Otherwise, designers have more freedom to 

determine the complexity and the domain of tasks, similar to the computational 

crafts or tangible storytelling’s approach.  

 

Support diversity of domains 

In this thesis, the i*CATch construction platform was used in most case studies 

through different aspects to represent the three categories of computational 

construction toolkits. In our analysis, the three categories of computational 

construction toolkits are suitable for different learning styles of children. If a toolkit, 

such as i*CATch, can be applied into different domains for learning programming, 

instructors can flexibly design teaching materials or the theme of a workshop to 



 

 144 

support different learning styles of children. It may be easier to find a domain which 

appeals to both genders.  

 

Support simple and challenging tasks 

It seems obvious that simple tasks appeal to children. But if tasks are too simple and 

monotonous, children will feel bored, and therefore simple tasks cannot encourage 

children to learn. However, if tasks are too challenging, children will be frustrated 

by repeated failures. As a result, challenging tasks also cannot motivate children to 

learn. To maintain children’s learning motivation, computational construction 

toolkits should be flexible to support different complexity of tasks, and therefore 

children can learn computational concepts through accomplishing tasks from simple 

to complex. The i*CATch construction platform is an example, which contains a set 

of modules to form different combinations to design different levels of tasks.  

 

Provide hybrid programming environments 

To develop different kinds of computational construction kits, the main objective is 

to appeal to children, especially girls, to pursue the study of computer science in the 

future. Ultimately, learners still have to learn textual programming instead of 

tangible or graphical programming if they choose computer science as their major. 

To bridge the gap between learning textual and graphical or tangible programming, a 

hybrid programming system is proposed for each computational construction kit. 

This approach assists in transiting from tangible or graphical version to textual 

programming with increased complexity, and also entertains diversity of children 

with different levels of programming knowledge in an outreach program by its 

flexibility. Our studies used two hybrid graphical and textual environments, 

BrickLayer and the i*CATch IDE, which show the advantages of hybrid 

programming environments.  

 

 



 

145 

Chapter 7 Conclusion and Future Work 

7.1 Conclusion 
This thesis explores how children learn computational concepts through these 

platforms, by focusing on three types of tangible computational platforms: tangible 

programming systems, computational toolkits for crafts making, and computational 

interfaces for story creation. Our motivation for choosing these aspects is based on 

the hands-on learning theories proposed by three influential educators: Montessori, 

Froebel and Vygotsky.   

In the study on tangible programming systems, we investigated how children 

understand the abstract concepts by building block functions to simulate functions of 

smart clothing and story flows, as well as computational concepts such as looping 

and branching. Two paper prototypes and a simulation were designed. The paper 

prototypes studies helped us to determine some important design dimensions of a 

tangible programming language for children to learning computational concepts, 

including knowledge of computational concepts, increment of abstraction, space of 

imagination and function-based expression. To find more evidence on the design 

dimensions, the i*CATch construction platform was modified into the 

i*CATchBadges tangible programming system to simulate a tangible programming 

system for further study. The results show that the children were able to successfully 

grasp some basic computational concepts through the tangible programming system 

to solve some simple tasks. Furthermore, the system was examined in two different 

learning environments. The results indicate that tangible programming systems 

which have input and output on the same interface support simple installation, which 

makes them suitable for different learning environments including indoor museums 

and outdoor exhibitions. Hence, it has potential to draw the attention of a diversity of 

children engaged in computing and technology through different learning 

environments. 

To study the computational toolkits for crafts making, three computational craft 

platforms were adopted as case studies, including Lilypad Arduino with TeeBoard 

platform, i*CATch apparel platform and i*CATch robotic platform. The focus was 



 

 146 

on crafts making in robotic and apparel domains, integrating traditional materials 

such as paper and cloth with the electronic devices. Through these three different 

design approaches of the computational craft platforms, we gain a deeper 

understanding of how children use computational platforms for creating crafts. 

Different construction interfaces of computational craft toolkits support different 

levels of creativity. The wearable computing platform is able to facilitate the 

learning of computational concepts by a wider diversity of children via enabling a 

wider selection of project themes. The flexible construction interfaces encourage 

students to write complex programs. Overall, the results confirm that computational 

crafts toolkits attract both boys and girls and provide a space for children to exercise 

their creativity and practice their programming skills. 

To study the computational interfaces for story creation, a storytelling 

expression media was proposed: storytelling augmented with computational apparel 

for children to learn the computational concepts through story creation. The 

i*CATch wearable computing platform was used as the storytelling media. Two 

syllabi of the workshops were designed to compare how children use computational 

apparel platforms to tell a story. The results show that computational apparel can be 

a media for children to tell a story, and indicate that there is room for children to 

improve their stories through more practices on storytelling and programming 

electronic device skills. Furthermore, through the analysis of the children’s computer 

programs, we notice that the children could figure out different programming 

approaches to construct their programs; hence it shows that this proposed 

storytelling through computational apparel can function as a new tangible interactive 

storytelling method for children to learn computational concepts.  

The exploration of each aspect has adopted different research methodologies, 

curricula and evaluation approaches, which can be used as a reference for running 

other case studies or workshops. The findings of several empirical user studies have 

also helped us to understand the characteristics of the three types of platforms and 

how they support children’s learning of computational concepts. 

To this end, this thesis also proposes five factors for a cross-evaluation between 

these three categories of computational construction toolkits. The five factors 



 

 147 

include coupling of computational concepts, construction interfaces, domains of 

tasks, learners’ characteristics and learning environments. The cross-evaluation of 

three types of tangible computational construction kits reveals fundamental 

differences related to children’s learning of computational concepts. It concludes 

with four suggested guidelines: determine places of learning, support diversity of 

domains, support simple and challenging tasks and provide hybrid programming 

environments. We believe that the guidelines should be useful for designers and 

researchers who wish to develop a new computational construction toolkit for 

children to learning computational concepts. 

 

7.2 Future Work 
There are still some the state-of-the-art technologies and innovative methodologies 

which have not been applied into tangible construction platforms for children to 

learn computational concepts.  The suggested factors and guidelines facilitate to 

design and examine new platforms. There are a few directions for possible future 

work. 

 

Explore extensions of each mainstream of computational construction kits 

Basically, the technology applied in our study is to extend the i*CATch wearable 

computational construction platform to simulate a tangible programming system and 

propose to be an interactive storytelling media to explore the major types of 

computational construction kits. Therefore, it should have potential methodologies 

to extend the current computational construction kits to investigate the strengths and 

weaknesses. Furthermore, there are more advanced technologies available, for 

example, paper computing [21] and skin input [54], which can be developed into a 

new interface of computational construction kits to arouse children’s interests in 

computer science and technology.  

 

Explore new streams of computational kits for learning computational concepts 

There are more than three categories of computational construction kits. For 

example, tangible interactive games are common [85, 115, 132], even in commercial 



 

 148 

products such as a dance mat and Wii. However, few of them address children’s 

learning of computational concepts, nor do they propose to have a simple 

programming environment by interactions with the physical objects [41]. Actually, it 

may be possible for children, especially older children, to design their physical 

environment games or bodily interactive games by writing programs on physical or 

tangible modules. On the other hand, some researchers have proposed a concrete 

real-world cooking scenario for children to learn programming [122]. Furthermore, 

social network is so popular to nowadays, some researchers have also developed 

some prototypes for tangible social networks [69], which may also have potential as 

a new tangible platform for children to learn computational concepts. 

 

Investigate potential learning environments 

Learning computational concepts is usually regarded as learning with a computer in 

the indoor environment. Wireless technology has become mature enough to satisfy 

the needs of mobility and electronic devices are getting smaller. All these 

technologies are possible to move the classroom into the outdoor environment. Our 

study of a tangible programming system run in game booth is an example. On the 

other hand, some researchers advocate outdoor field learning in which children on 

field trip are encouraged to explore their surrounding environments to gain 

knowledge during the immersive learning experience [71]. Some researchers have 

developed a mobile device which supports children’s collaborative artifact creation 

and play in outdoor environments [12, 28, 107]. It may be also possible to develop a 

mobile tangible construction platform for children to write programs to build simple 

functions to measure some data in outdoor environment such as air pollution, UV 

light and humidity.   



 

 149 

Appendix A: Crafts Making Workshops Syllabi 

 

(A) Syllabus of TeeBoard with LilyPad Workshops 
Chapter 1: Introduction to E-textiles and Wearable Computing 

Contents: Display latest applications of e-textiles and wearable computing such as 

smart clothing, performance dressing, and intelligent bags. 

Sample task: Discuss the possible features of e-textiles and wearable computing. 

Learning outcomes: Students should obtain some background in e-textiles and 

wearable computing. 

 

Chapter 2: Electronic Circuit Theory 

Contents: Electricity, electrical circuits and electrical resistance. 

Sample tasks:  

1) Create a complete circuit with four ribbons and one LED. 

2) Create a serial circuit with five ribbons and two LEDs. 

3) Create a parallel circuit with six ribbons and two LEDs. 

4) Create a short circuit with adding one ribbon on the current circuit.  

Learning outcomes: Students should understand basic electrical knowledge such as 

voltage, conductivity and resistance. 

 

Chapter 3: T-Shirt Circuit Design 

Contents: Introduction to the circuit design and a t-shirt breadboard. 

Sample tasks:  

1) Create a circuit with three LEDs: one LED is in the centre part of the t-shirt and 

another two are in two sleeves separately. 

2) Create a circuit with two LEDs in parallel connected to one LED in series at the 

back of the t-shirt. 

Learning outcomes: Students should understand the basics of circuit structures and 

the use of breadboards.  

 



 

 150 

Chapter 4: Integrated Circuits (ICs)  

Contents: ICs introduction and the output signals of ICs  

Sample tasks:  

1) Connect an IC with two LEDs to observe the flash pattern of LEDs on the t-shirt 

breadboard. 

2) Connect an IC with four LEDs to observe the flash pattern of LEDs on the t-shirt 

breadboard. 

3) Compare the difference between the results of connecting with two LEDs and 

four LEDs. 

Learning outcomes: Students should understand the concept of ICs and the notion 

of a predefined logical output. 

 

Chapter 5: Computational Platforms 

Contents: Introduction to programming environment such as Arduino IDE, 

Bricklayer and i*CATch IDE, and hardware such as microcontrollers, actuators and 

sensors. 

Sample tasks:  

1) Write a simple program such as turning the microcontroller’s LED on. 

2) Compile and execute a program, and upload it onto a microcontroller. 

Learning outcomes: Students should understand how to operate the programming 

environment and load programs onto a microcontroller.  

 

Chapter 6: Introduction to Sequential Logic 

Contents: Incorporate a microcontroller into the t-shirt breadboard and program a 

circuit consisting of actuators (e.g. LEDs) in sequential logic.  

Sample tasks:  

1) Blink a multicolored LED in rainbow color sequence. 

2) Blink four LEDs one by one for 0.5 second each in order. 

Learning Outcomes: Students should be able to write a program to solve a problem 

involving the sequential logic. 

 



 

 151 

Chapter 7: Introduction to Repetitions 

Contents: Incorporate a microcontroller into the t-shirt breadboard and program a 

circuit consisting of actuators (e.g. LEDs) and sensors (e.g. light sensors) in 

repetitions.  

Sample tasks:  

1) Blink a multicolored LED repeated six times in red, repeated four times in green 

and repeated two times in blue. 

2) Use a light sensor to collect five readings after every one second.  

Learning Outcomes: Students should be able to write a program to solve a problem 

involving repetitions. 

 

Chapter 8: Introduction to Conditionals 

Contents: Incorporate a microcontroller into the t-shirt breadboard and program a 

circuit consisting of sensors (e.g. accelerometers and light sensors), and actuators 

(e.g. LEDs) in the conditional logic.  

Sample tasks:  

1) Blink a multicolored LED in rainbow color sequence when in the dark. 

2) Turn on two LEDs at the back of the t-shirt when moving both arms. 

Learning Outcomes: Students should be able to write a program involving the 

conditional logic that reads in signals from sensors and sends simple signal to output 

devices.  

 

Chapter 9: Project 

Contents: Combine all the electronic circuit and computational concepts to design 

an interactive t-shirt. 

Sample project: Design and construct an interactive t-shirt in sport theme. 

Learning outcomes: Students should be able to exercise their creativity as well as 

their newly learned programming and electronics knowledge. 

 

 



 

 152 

(B) Syllabus of i*CATch for Apparel Workshops 
Chapter 1: Introduction to E-textiles and Wearable Computing 

Contents: Display latest applications of e-textiles and wearable computing such as 

smart clothing, performance dressing, and intelligent bags. 

Sample task: Discuss the possible functions of e-textiles and wearable computing. 

Learning outcomes: Students should obtain some background in e-textiles and 

wearable computing. 

 

Chapter 2: Introduction to Electronic Devices for Apparel 

Contents: Input devices include switches, joysticks, light sensors, ultrasonic sensors; 

output devices include LEDs, buzzers and vibration motors. 

Sample task: Explore and write down the physical properties of the electronic 

devices for apparel by providing a pre-programmed microcontroller. 

Learning Outcomes: Students should learn some basic physical properties of each 

provided electronic device. 

 

Chapter 3: Introduction to Programming Environment 

Contents: Introduction to programming environment such as Arduino IDE and 

i*CATch IDE. 

Sample tasks:  

1) Write a simple program such as turning the microcontroller’s LED on. 

2) Compile and execute a program, and upload it onto a microcontroller. 

Learning outcomes: Students should understand how to operate the programming 

environment and load programs onto a microcontroller.  

 

 

 

 

 

 

 



 

 153 

Chapter 4: Introduction to Sequential Logic 

Contents: Plug a microcontroller and actuators (e.g. LEDs and buzzers) into the 

i*CATch jacket and program them in sequential logic.  

Sample tasks:  

1) Blink a multicolored LED in rainbow color sequence. 

2) Play the C major scale on a buzzer. 

Learning Outcomes: Students should be able to write a program to solve a problem 

involving the sequential logic. 

 

Chapter 5: Introduction to Repetitions 

Contents: Plug a microcontroller, actuators (e.g. LEDs and buzzers) and sensors 

(e.g. light sensors) into the i*CATch jacket and program them with applying the 

concept of repetition. 

Sample tasks:  

1) Blink a multicolored LED repeated six times in red, repeated four times in green 

and repeated two times in blue. 

2) Use a light sensor to collect five readings after every one second.  

Learning Outcomes: Students should be able to write a program to solve a problem 

involving repetitions. 

 

Chapter 6: Introduction to Basic Conditionals 

Contents: Plug a microcontroller, actuators (e.g. LEDs and buzzers) and sensors 

(e.g. switches and joysticks) into the i*CATch jacket and program them in the 

conditional logic.  

Sample tasks:  

1) Blink a multicolored LED in rainbow color sequence when a switch is pressed. 

2) Control four lighting patterns by turning different directions of a joystick. 

Learning Outcomes: Students should be able to write a program involving the 

conditional logic that reads in signals from simple sensors and sends simple signal to 

output devices.  

 



 

 154 

Chapter 7: Introduction to Advanced Conditionals 

Contents: Plug a microcontroller, actuators (e.g. LEDs and buzzers) and sensors 

(e.g. light sensors and ultrasonic sensors) into the i*CATch jacket and program them 

in the conditional logic.  

Sample tasks:  

1) Blink a multicolored LED in rainbow color sequence when in the dark. 

2) Turn on two LEDs in the front of the jacket when someone is getting closer to 

the wearer. 

Learning Outcomes: Students should be able to write a program involving the 

advanced conditional logic that reads in signals from sensors and send simple signal 

to output devices. 

 

Chapter 8: Project 

Contents: Combine all the computational concepts to design an interactive jacket. 

Sample project: Design and construct an e-fashion smart jacket. 

Learning outcomes: Students should be able to exercise their creativity as well as 

their newly learned programming knowledge. 

 



 

 155 

(C) Syllabus of i*CATch for Robots Workshops 
Chapter 1: Introduction to Electronic Devices for Robots 

Contents: Input devices include switches, joysticks, light sensors, ultrasonic sensors; 

Output devices include motors, LEDs and buzzers; data transmission devices include 

USB cables and Bluetooth dongle. 

Sample task: Explore and write down the physical properties of the electronic 

devices for robots. 

Learning outcomes: Students should understand the physical properties of the 

electronic devices for robots.  

 

Chapter 2: Introduction to Building a Robotic Chassis 

Contents: Discuss some basic mechanical principles to build a robotic chassis such 

as the size of wheels and the weight of the car body. 

Sample task: Design and build a robotic chassis incorporated with two motor 

wheels and the interface box. 

Learning outcomes: Students should be able to design their own robotic cars which 

will be used for solving challenging tasks. 

 
Chapter 3: Introduction to Programming Environment 

Contents: Introduction to programming environment such as Arduino IDE and 

i*CATch IDE 

Sample tasks:  

1) Write a simple program such as turning the microcontroller’s LED on. 

2) Compile and execute a program, and upload it onto a microcontroller. 

Learning outcomes: Students should understand how to operate the programming 

environment and load programs onto a microcontroller.  

 

 

 

 

 



 

 156 

Chapter 4: Introduction to Sequential Logic 

Contents: Incorporate a microcontroller and actuators (e.g. motors, buzzers and 

LEDs) into the interface box, and program the movement of a robot in sequential 

logic.  

Sample tasks:  

1) Move a robot forward for 0.5 second and give a sound. 

2) Move a robot forward for 0.5 second and backward for 0.5 second, and finally 

blink a multicolored LED in rainbow color sequence. 

Learning outcomes: Students should be able to write a program to solve a problem 

involving the sequential logic. 

 

Chapter 5: Introduction to Repetitions 

Contents: Incorporate a microcontroller, actuators (e.g. motors, buzzers and LEDs) 

and sensors (e.g. ultrasonic sensors and light sensors) into the interface box, and 

program the movement of a robot with applying the concept of repetition. 

Sample tasks:  

1) Control a robot to move in a square shape. 

2) Print out the intensity of light through a light sensor in every one second.  

Learning outcomes: Students should be able to write a program to solve a problem 

involving the repetition logic. 

 

Chapter 6: Introduction to Conditionals 

Contents: Incorporate a microcontroller, actuators (e.g. motors, buzzers and LEDs) 

and sensors (e.g. ultrasonic sensors and light sensors) into the interface box, and 

program the movement of a robot in conditional logic. 

Sample tasks:  

1) Give a sound when a robot hits the wall. 

2) Turn on a LED when a robot moves in the dark. 

Learning outcomes: Students should be able to write a program involving the 

conditional logic that reads in signals from sensors and sends simple signal to output 

devices. 



 

 157 

Chapter 7: Solving Challenging Tasks 

Contents: Combine all the computational concepts to solve a series of challenging 

tasks. 

Sample challenging tasks:  

1) Bombs detection: Detect the bombs by using light sensor to identify the color of 

objects (e.g. ball in red color represents a bomb.), and give a sound when a bomb 

is found. 

2) Escape the maze: Detect the walls by using ultrasonic sensor to find out the way 

to escape out of the maze. 

Learning outcomes: Students should be able to exercise their problem solving skills 

as well as their newly learned programming and mechanics knowledge. 

 



 

 158 

Appendix B: Storytelling Workshops Syllabi 

 
(A) Syllabus I of Storytelling Workshops 
Chapter 1 to 6: Electronic Devices and Computational Concepts 

May refer to syllabus of i*CATch for apparel workshops chapter 2 to 7 in Appendix 

A (B). 

 

Chapter 7: Project – Storytelling 

Contents: Combine all the computational concepts and students’ own storytelling 

skills to create an interactive story. 

Sample stories:  

1) Design and construct an interactive jacket as a stage for telling a story. 

2) Design and construct an interactive jacket as a costume to highlight the main 

character. 

Learning outcomes: Students should be able to exercise their creativity and 

imagination as well as their newly learned programming and presentation skills. 
 

 



 

 159 

(B) Syllabus II of Storytelling Workshops 
Chapter 1: Introduction to Forms of Storytelling 

Contents: Introduce the forms of storytelling (e.g. pantomime and image theatre), 

story elements (e.g. setting, plot, conflict and character), and storyboarding. 

Sample tasks:  

1) Image theatre: A group of students give a static pose to express a particular 

emotion (e.g. happy, angry or sad). 

2) Pantomime: A group of students perform a number of actions without dialogue 

to express a scene in a particular venue (e.g. in a restaurant, in a classroom or on 

the road). 

Learning outcomes: Students should learn some basic storytelling skills and should 

be able to express a scene in different forms of storytelling. 

 

Chapter 2 to 7: Electronic Devices and Computational Concepts 

May refer to syllabus of i*CATch for apparel workshops chapter 2 to 7 in Appendix 

A (B), but the tasks require students to associate the effects of the electronic devices 

with some meanings.  
 

Chapter 8: Project – Drama / Pantomime  

Contents: Combine all the taught computational concepts and storytelling skills to 

create a drama or pantomime. 

Sample stories:  

1) Design and construct an interactive jacket to produce stage effects for 

performing a drama. 

2) Design and construct an interactive jacket to express the main character’s 

emotion. 

Learning outcomes: Students should be able to exercise their creativity and 

imagination as well as their newly learned programming and presentation skills. 

 



 

 160 

Appendix C: Sample Program of i*CATchBadges 
Study in Game Booth 

(Refer to Section 3.4.1 i*CATchBadges Study in Game Booth, page 54)  
 
(A) A sample of the program without associations with felt icons 
 

 
Figure C.1.  An example of a boy’s jacket with labels 

 
Author: A primary-school boy 

Steps of the program (Figure C.1): 

1. *LED light [Flash in a multicolor light pattern]: Use as a decoration 

2. Ultrasonic sensor (right) and vibration motor (left) [A pair of badges contains a 

 condition function – when ultrasonic sensor detects something within 20 cm distance, 

 the vibration motor turns on]: Function as an anti-stalker 

 
* Read as: Badge type [Physical function]: Representation(s) 
 

 

 

1 

2 2 

Microcontroller 

Felt icons 



 

 161 

(B) A sample of the program with associations with felt icons 
 

 
Figure C.2. An example of a girl’s jacket with labels 

 
Author: A primary-school girl 

Steps of the program (Figure C.2):  

1. Buzzer with a fire felt [Play a C note sound repeated 3 times]: There is a fire 

accident on the sea. 

2. LED light with a treasure felt [Flash in a multicolor light pattern]: A treasure sinks 

into the sea. 

3. Buzzer with a shark felt [Play a roar sound repeated 2 times]: A shark threatens the 

clown fish near to the treasure, since the shark wants to get the treasure. 

4. LED light with a clown fish felt [Flash in red color]: A clown fish is so afraid and 

swims away. 

 
* Read as: Badge type [Physical function]: Representation(s) 

 

 

2 
4 

1 

3 
Microcontroller 



 

 162 

Appendix D: Sample Program of i*CATchBadges 
Study in Technology Workshop 

(Refer to Section 3.4.2 i*CATchBadges Study in Technology Workshop, page 55)  
 
(A) A sample program with using a graphical programming environment 

(Scratch)  

    
(a)                                     (b)                            (c)                                  (d) 

Figure D.1. (a) A sample output screen of a story with using Scratch created by a mixed group of 
students (b) Crazy Cat’s script (c) Lam Cat’s script (d) Stage’s script 
 

Author: A primary-school mixed group (2 girls and 1 boy) 

Storytelling Time: Around 1:30 minutes 

Story script:  

Crazy Cat met Lam Cat in a breach. Crazy Cat and Lam Cat greeted each other 

(Refer to program step 1) Crazy Cat waited a second and asked whether Lam Cat 

wanted to go to a park (Refer to program step 2). Lam Cat replied that that’s good. 

Crazy cat replied to Crazy Cat that’s good (Refer to program step 3).  

Steps of the program (Figure D.1): 

1. Crazy Cat and Lam Cat’s program scripts run at the same time:  
when green flag clicked  move 10 steps  say “你好！” 

2. Crazy Cat’s program  scripts run:  
wait 1 sec  say “你想到公園玩嗎？”  broadcast “問去公園” 

3. Lam Cat’s program scripts run:  
when I received “問去公園”  say “好呀！”  broadcast “到公園去”;  

Stage’s program scripts run:  
when I received “到公園去”  switch to background “woods and bench” 



 

 163 

(B) A sample program with using a tangible programming environment 
(i*CATchBadges) 

 
Figure D.2. An example of a story using i*CATchBadges created by a mixed group of students 

 

Author: A primary-school mixed group (2 girls and 1 boy) 

Storytelling Time: Around 1 minute 

Story script: 

One day, there was a fire accident in a building. Someone called the police, and after 

a while four fire-engines and one ambulance came to the accident scene. Luckily, all 

residents left the building safely. However, one fireman inhaled too much smoke and 

finally died after being taken to a hospital.   

Steps of the program (Figure D.2):  

1. Buzzer with a fire-engine felt [Play a siren sound repeated 2 times]: A siren of a 

fire engine 

2. LED light [Flash in a multicolor light pattern]: Left front light of a fire engine 

3. LED light [Flash in a multicolor light pattern]: Right front light of a fire engine 

4. LED light [Flash in a multicolor light pattern]: For car body decoration 

5. LED light [Flash in a multicolor light pattern]: For car body decoration 

6. Vibration Motor [Generate a vibration pattern]: The vibration of a moving fire-

engine

Microcontroller 

Battery a) An ambulance (paper) 
b) 4 Firemen (paper) 
c) Fire (felt) 
d) A building with fire (paper) 
 

1 

2 3 
4 

6 
5 

a b c d 



 

 164 

Appendix E: Sample Program of Using TeeBoard 
with LilyPad 

(Refer to Section 4.2.2 Case Study 1:TeeBoard with LilyPad, page 72)  
 
A sample code of the e-fashion project 
Author: A primary-school-girl group (4 girls) 

Theme: Zoo 

Program code: 
#include <sensor.h> 
int main(void){ 
 init(); 
 int red = 0; 
 Wire.begin(); 
 Serial.begin(9600); 
 
 while(1){ 
  red = getLightSensorReading(5);  
  Serial.println(red); 
  delay(1000); 
   

if (red<600) { // when in dark environment, animals come out 
   ledOn(13, LED);  // A bear felt with an LED: A bear wakes up. 
   delay(1000); 
   ledOff(13, LED); 
   delay(2000); 
 
   ledOn(9, LED);  // A cow felt with an LED: A cow wakes up. 
   delay(1000); 
   ledOff(9, LED); 
   delay(2000); 
 
   ledOn(3, LED); // A cat felt with an LED: A cat wakes up. 
   delay(1000); 
   ledOff(3, LED); 
   delay(2000); 
 
   ledOn(5, LED); // A rabbit with an LED: A rabbit wakes up. 
   delay(1000); 
   ledOff(5, LED); 
   delay(2000); 
  } 
  else{ 
  } 
 } 
 while(1); 
 return 0; 
} 



 

 165 

Appendix F: Sample Program of Using i*CATch 
Apparel Platform 

(Refer to Section 4.2.3 Case Study 2: i*CATch Apparel Platform, page 76)  
 
A sample code of the e-fashion project 
Author: A primary-school-girl group (3 girls) 

Theme: Hi-tech hiking jacket 

Program code: 
#include <Wire.h> 
#include <sensor.h> 
void setup() 
{ 
    Serial.begin(9600); 
    Wire.begin(); 
} 
void loop() 
{ 
    if (getUltraSonicSensorReading (136) <70)  // a follower detection function 
    { 
        ledOff (122, GREEN); ledOff (122, BLUE); 
        soundLibrary (86, 11); ledOn (122, RED); 
    } 
    else if (getUltraSonicSensorReading (136) >70)  
    { 
        noSound (86, 11); ledOff (122, RED); 
        ledOn (122, GREEN); ledOn (122, BLUE); 
    } 
    if (isIRDetected (56))  // play a song by using a IR remote control 
    { // Mary had a little lamb 
        playSound (80, "E", 3, 10); playSound (80, "D", 3, 10); playSound (80, "C", 3, 10); 
        playSound (80, "D", 3, 10); playSound (80, "E", 3, 10); noSound (80, 1); 
        playSound (80, "E", 3, 10); noSound (80, 1); playSound (80, "E", 3, 20); 
 
        playSound (80, "D", 3, 10); noSound (80, 1); playSound (80, "D", 3, 10);  
        noSound (80, 1); playSound (80, "D", 3, 20); playSound (80, "E", 3, 10); 
        playSound (80, "G", 3, 10); noSound (80, 1); playSound (80, "G", 3, 20); 
        noSound (80, 1); 
 
        playSound (80, "E", 3, 10); playSound (80, "D", 3, 10); playSound (80, "C", 3, 10); 
        noSound (80, 1); playSound (80, "D", 3, 10); noSound (80, 1);  
        playSound (80, "E", 3, 10); noSound (80, 1); playSound (80, "E", 3, 10); 
        noSound (80, 1); playSound (80, "E", 3, 10); 
   

playSound (80, "C", 3, 10); playSound (80, "D", 3, 10); noSound (80, 1); 
         playSound (80, "D", 3, 10); playSound (80, "E", 3, 10); playSound (80, "D", 3, 10); 
         noSound (80, 1); playSound (80, "C", 3, 30); noSound (80, 1); 
    } 



 

 166 

 if (getJoyStickReading (44) ==1) // a neck massage function 
    { 
        vibrationMotorOn (92); 
        delay (6000); 
        vibrationMotorOff (92); 
    } 

 if (getJoyStickReading (44) ==2) // 
    { 
        onBoardLedOn (12); onBoardLedOn (13); 
        delay (6000); 
        onBoardLedOff (12); onBoardLedOff (13) ; 
    } 
    if (getJoyStickReading (44) ==3) // an illumination function 
    { 
        ledOn (116, RED); ledOn (122, RED); ledOn (110, RED); 
        delay (3000); 
        ledOn (110, BLUE); ledOn (122, BLUE); ledOn (116, BLUE); 
        delay (3000); 
        ledOff (110, RED); ledOff (122, RED); ledOff (116, RED); 
        delay (3000); 
        ledOn (110, GREEN); ledOn (122, GREEN); ledOn (116, GREEN); 
        delay (3000); 
        ledOff (110, BLUE); ledOff (122, BLUE); ledOff (116, BLUE); 
        delay (3000); 
        ledOn (110, RED); ledOn (122, RED); ledOn (116, RED); 
        delay (3000); 
        ledOff (110, GREEN); ledOff (122, GREEN); ledOff (116, GREEN); 
        ledOff (110, RED); ledOff (122, RED); ledOff (116, RED); 
    } 
    if (getJoyStickReading (44) ==4) // play a song by using a joystick 
    {  
        ledOn (98, LED); // an LED attached with an “iPod” music player  

   // Row Row Row Your Boat 
        playSound (86, "C", 3, 10); noSound (86, 1); playSound (86, "C", 3, 10);  
        noSound (86, 1); playSound (86, "C", 3, 15); playSound (86, "D", 3, 5); 
        playSound (86, "E", 3, 10); noSound (86, 1); 
 
        playSound (86, "E", 3, 15); playSound (86, "D", 3, 5); playSound (86, "E", 3, 15); 
        playSound (86, "F", 3, 5); playSound (86, "G", 3, 20);  
 
        playSound (86, "C", 4, 5); noSound (86, 1); playSound (86, "C", 4, 5);  
        noSound (86, 1); playSound (86, "C", 4, 5); playSound (86, "G", 3, 5);  
        noSound (86, 1); playSound (86, "G", 3, 5); noSound (86, 1); playSound (86, "G", 3, 5); 

 
        playSound (86, "E", 3, 5); noSound (86, 1); playSound (86, "E", 3, 5); noSound (86, 1);  
        playSound (86, "E", 3, 5); playSound (86, "C", 3, 5); noSound (86, 1);  
        playSound (86, "C", 3, 5); noSound (86, 1);playSound (86, "C", 3, 5);  

 
        playSound (86, "G", 3, 15); noSound (86, 1);playSound (86, "F", 3, 5); noSound (86, 1); 
        playSound (86, "E", 3, 15); noSound (86, 1); playSound (86, "D", 3, 5); noSound (86, 1); 
        playSound (86, "C", 3, 20); noSound (86, 1);  
        ledOff (98, LED); 
    } 
} 



 

 167 

Appendix G: Sample Program of Using i*CATch 
Robotic Platform 

(Refer to Section 4.2.4 Case Study 3: i*CATch Robotic Platform, page 83)  
 
A sample code of robotic challenging tasks:  
Author: A middle-school-boy group (4 boys) 

Task: To detect obstacles: the robotic car cannot bump into the obstacles and move 

away from them 

Program Code: 
#include <sensor.h> 
int main(void){ 
 init(); 
 Wire.begin(); 
 while(1){ 
  if (getUltraSonicSensorReading(138)<=46){ 
   servoAntiClockwise(62); 
   servoClockwise(64); 
   delay(500); 
   delay(100); 
   servoStop(64);   // stop servo 
   servoStop(62);   // stop servo 
   delay(500); 
   servoAntiClockwise(64); 
   servoAntiClockwise(62); 
   delay(1000); 
   servoStop(64);    // stop servo 
   servoStop(62);    // stop servo 
  } 
  else { 
   servoAntiClockwise(64); 
   servoClockwise(62); 
   delay(100); 
   servoStop(64);      // stop servo 
   servoStop(62);      // stop servo 
  } 
 } 
 while(1); 
 return 0; 
} 
 
 
* Remarks: Students may consider the mechanical problems such as stopping servos which 
help to stabilize the car to turn around. 



 

 168 

Appendix H: Sample Programs of Program 
Structures in Storytelling Workshop 

(Refer to Section 5.4.7 Support for Computational Learning, page 128)  
 
(A) Using sequentiality on events and timed delays 
Author: A middle-school-boy group (4 boys) 

Story title: Debt  

Program code: 
#include <sensor.h> 
int main(void){ 
      init(); 
      Wire.begin(); 
 
      onBoardLedOn(13); 
      for (int i=0; i<6; i++){ 
            // yellow light means the debtor is so scared 
            ledOn(118, RED); 
            ledOn(118, GREEN); 
            delay(500); 
            ledOff(118, RED); 
            ledOff(118, GREEN); 
      } 
 
      delay(5000); 
 
      for (int i=0; i<6; i++){ 
            // red light means the debtor is so nervous 
            ledOn(116, RED); 
            delay(500); 
            ledOff(116, RED); 
      } 
 
      delay(5000); 
 
      for (int i=0; i<6; i++){ 
            // white light means the debtor gets a shot from one creditor 
            ledOn(118, RED); 
            ledOn(118, GREEN); 
            ledOn(118, BLUE); 
            delay(500); 
            ledOff(118, RED); 
            ledOff(118, GREEN); 
            ledOff(118, BLUE); 
      } 
       

delay(5000); 
 

Event 1 

Event 2 

Event 3 

Timed Delay 

Timed Delay 

Timed Delay 

Program Begin 



 

 169 

      onBoardLedOff(13); 
// a series of sound and light effects means the debtor died 

      soundLibrary(82, 4); // a waiting sound 
      soundLibrary(82, 2); // a heart beat sound 
      for (int i=0; i<10; i++){ 
      // red light 
            ledOn(118, RED); 
            delay(500); 
            ledOff(118, RED); 
      } 
      // white light  
      ledOn(118, RED); 
      ledOn(118, GREEN); 
      ledOn(118, BLUE); 
      delay(5000); 
      ledOff(118, RED); 
      ledOff(118, GREEN); 
      ledOff(118, BLUE); 
      soundLibrary(82, 8);  // a fail sound 
      delay(1000); 
      soundLibrary(82, 1); // a long beep 
      soundLibrary(82, 1); // a long beep 
      soundLibrary(82, 8); // a fail sounds 
      delay(10000); 
      soundLibrary(82, 3); // an ambulance siren 
      delay(5000); 
      // a rapid sound means the creditors had a discussion 
      soundLibrary(82, 11);  
      // yellow light means the debtor resurrects 
      ledOn(118, RED); 
      ledOn(118, GREEN); 
      while(1); 
      return 0; 
} 
 
 
 
 
* Remarks: Not all the timed delays are used to separate the events, while some 

timed delays are used to slow down the program to make the LED’s light visible to 

human or to make a pause to separate two sound-libraries.  

Event 4 

Timed Delay 

Event 5 

Program End 



 

 170 

(B) Using Infinite loop with using joystick or switches triggers 
Author: a middle-school-mixed group (2 girls, 1 boy) 

Story title: Bullying 

Program code: 

#include <sensor.h> 

int main(void){ 
      init(); 
      Wire.begin(); 
 
 
      while(1){ 
 
 
            if (getJoyStickReading(42) == 1) {  

 
// violet lights and a rapid sound mean the boy was being bullied. 

  ledOn(116, RED); 
  ledOn(116, BLUE); 
  ledOn(110, RED); 
  ledOn(110, BLUE); 
  ledOn(112, RED); 
  ledOn(112, BLUE); 
  soundLibrary(78, 11); 
  soundLibrary(86, 11); 
  soundLibrary(80, 11); 

} 
else { 
 

                  if (getJoyStickReading(42) == 2) {  
 
// blue lights and a slow sound mean the boy felt sad. 

         noSound(78, 1); 
         noSound(86, 1); 

         noSound(80, 1); 
         ledOff(116, RED); 
         ledOff(116, BLUE); 
         ledOff(110, RED); 
         ledOff(110, BLUE); 
         ledOff(112, RED); 
         ledOff(112, BLUE); 
         delay(100); 
         ledOn(116, BLUE); 
         ledOn(110, BLUE); 
         ledOn(112, BLUE); 
         soundLibrary(78, 10); 
         soundLibrary(80, 10); 
     } 
 
 
 

Event 1 

Event 2 

Infinity Loop Begin 

Program Begin 

If Joystick = 1 

If Joystick = 2 



 

 171 

     else { 
 
          if (getJoyStickReading(42) == 3){  

 
/* vibration, red lights and an ambulance siren 

mean the boy felt angry. */ 
              noSound(78, 1); 
              noSound(86, 1); 
              noSound(80, 1); 
              ledOff(116, BLUE); 
              ledOff(110, BLUE); 
              ledOff(112, BLUE); 
              delay(100); 
              vibrationMotorOn(92); 
              ledOn(116, RED); 
              ledOn(110, RED); 
              ledOn(112, RED); 
              soundLibrary(78, 3); 
              soundLibrary(86, 3); 
              soundLibrary(80, 3); 
           } 
           else {  
 
  if (getJoyStickReading(42) == 4){ 

// turn off all effects 
      noSound(78, 1); 
      noSound(86, 1); 
      noSound(80, 1); 
      ledOff(116, RED); 
      ledOff(110, RED); 
      ledOff(112, RED); 
      vibrationMotorOff(92); 
                } 
  else { 
  } 
           } 
     } 

} 
} 
while(1); 
return 0; 

}

Event 4 

Event 3 

If Joystick = 3 

If Joystick = 4 

Infinity Loop End 

Program End 



 

172 

(C) Using sequentiality on states with a switch trigger 
Author: A middle-school-mixed group (4 boys) 

Story title: Three Sons 

Program code: 

#include <sensor.h> 
int main(void) { 
      init(); 
      int red = 1; 
      Wire.begin(); 
      red = 1; 
 
      while (red == 1) { 
 
            if (touchSensorPressed (36)) { 
               ledOn(112, RED); 
               ledOn(114, RED); 
               ledOn(118, RED);  
               soundLibrary(78, 3); 
            } // father was in great danger. 
            else { 

 if (touchSensorPressed (38)) {  
                    ledOff(112, RED);  
                    ledOff(114, RED);  
                    ledOff(118, RED);  
                    noSound(78, 16); 
 
                    red += 1; 
                } // turn off all LEDs and sound 
                else { 
                   soundLibrary(78, 1); 
                } // father’s death 
             } 
       } // end while-loop 

 
while (red <= 4) { 

  
            if (touchSensorPressed(36)) {   
                soundLibrary(78, 7); 
 
                 red += 1; 
             } // stock was increasing. 
             else { 
 
                 noSound(78, 16); 
             } // turn off all sound 
        } // end while-loop 
 
       soundLibrary(78, 9); 
       for (int i=0; i<3; i++) { 
             soundLibrary(78, 8); 
       } // stock was decreasing. 

Event 1a 

While State = 1 Begin 

Program Begin 

Change State = 2 

While  
State = 2, 3 & 4 Begin 

While State = 1 End 

Event 2a 
Change  
State = 3, 4 and 5 

Press a touch sensor to 
start Event 1 

Press a touch sensor to 
start Event 2 

Press a touch 
sensor to close 
Event 1a and 
Event 1b 

Event 1b 

Close Event 2a 

Event 3 

Event 1 

Event 2 

While  
State = 2, 3 & 4 End 



 

 173 

       noSound(78, 16); // turn off all sound 
while (red == 5) { 

              
if (touchSensorPressed(36)) { 

                 soundLibrary(78, 1); 
             } // the sound of the jacket button to project father’s image 
             else { 
                 if (touchSensorPressed(38)){ 
                    noSound(78, 16); 
 
                    red += 1; 
                } // turn off sound and end story 
                else { 
                } 
             } 
       } 
       while (1); 
       return 0; 
} 
 
 
 
 

* Remarks: It is not a pure example of the program structure with using sequentiality 

on states  with a switch trigger because: 1) States 3, 4 and 5 are used for repeating the 

sound effect rather than controlling the state to the next event; 2) Event 3 is not 

directly controlled by any state variable. However, the rest of the program is using this 

kind of program structure.  

 

Event 4 

While State = 5 Begin 
Press a touch sensor to 
start Event 4 

Event 4a 

Press a touch 
sensor to close 
Event 4a 

Change State = 6 

Program End 

While State = 5 End 



 

 174 

References 

[1] Ali, A. and Shubra, C. Efforts to Reverse the Trend of Enrollment Decline in 

Computer Science Programs. 2010. In Issues in Informing Science and 

Information Technology, Volume 7, 2010, pp. 209-224.  

[2] Alice. http://www.alice.org/ 

[3] Anscombe, I. 1996. Arts and Crafts Style. Phaidon Press. 

[4] Antle, A.N. 2007. The CTI framework: informing the design of tangible 

systems for children. In Proceedings of the 1st international conference on 

Tangible and embedded interaction (TEI '07). ACM, New York, NY, USA, 

195-202. 

[5] Arduino. http://www.arduino.cc/ 

[6] Arduino Softwware. http://www.arduino.cc/en/Main/software 

[7] Amici.  

http://dimeb.informatik.uni-bremen.de/eduwear/category/development-

software/ 

[8] Ackermann, E. 2004. Constructing knowledge and transforming the world. 

In L. Tokoro M.; Steels (Ed.), A learning zone of one’s own: Sharing 

representations and flow in collaborative learning environments (Vol. 1, pp. 

15–37.). Amsterdam, Berlin. Oxford, Tokyo, Washington, DC: IOS Press 

2004. 

[9] Allen, S. 2004. Designs for Learning: Studying Science Museum Exhibits 

That Do More Than Entertain. Science Education, 88 (S1), Wiley Periodicals, 

S17-S33. 

[10] Band, S. T., and Donato, J.M. 2001. Storytelling in Emergent Literacy: 

Fostering Multiple Intelligences. Delmar Thomson Learning, pp.27-45. 

[11] Bandler, R., Grinder, J. 1979. Frogs into Princes: Neuro Linguistic 

Programming. Moab, UT: Real People Press. 

[12] Benford, S., Rowland, D., Flintham, M., Drozd, A., Hull, R., Reid, J., 

Morrison, J. and Facer, K. 2005. Life on the edge: supporting collaboration 

in location-based experiences. In Proceedings of the SIGCHI conference on 



 

 175 

Human factors in computing systems (CHI '05). ACM, New York, NY, USA, 

721-730. 

[13] Bonar, J. and Soloway, E. 1983. Uncovering principles of novice 

programming. In Proceedings of the 10th ACM SIGACT-SIGPLAN 

symposium on Principles of programming languages (POPL '83). ACM, 

New York, NY, USA, 10-13. 

[14] BrickLayer. 

http://etoy.comp.polyu.edu.hk/sites/default/files/bricklayer/index.htm. 

[15] Brophy, J. 1983. Conceptualizing student motivation. Educational 

Psychologist, 18, 200-215. 

[16] Bruner J. 1996. The culture of education. Harvard University Press, 

Cambridge, MA. 

[17] Budd, J., Madej, K., and Stephens-Wells, J. et al. 2007. PageCraft: learning 

in context a tangible interactive storytelling platform to support early 

narrative development for young children. In Proceedings of the 6th 

international conference on Interaction design and children (IDC '07). ACM, 

New York, NY, USA, 97-100. 

[18] Buechley, L., lumeze, N. and Eisenberg, M. 2006. Electronic/computational 

textiles and children's crafts. In Proceedings of the 2006 conference on 

Interaction design and children (IDC '06). ACM, New York, NY, USA, 49-

56. 

[19] Buechley, L., Eisenberg, M., and Elumeze, N. 2007. Towards a curriculum 

for electronic textiles in the high school classroom. In Proceedings of the 

12th annual SIGCSE conference on Innovation and technology in computer 

science education (ITiCSE '07). ACM, New York, NY, USA, 28-32. 

[20] Buechley, L., Eisenberg, M., Catchen, J. and Crockett, A. 2008. The LilyPad 

Arduino: using computational textiles to investigate engagement, aesthetics, 

and diversity in computer science education. In Proceeding of the twenty-

sixth annual SIGCHI conference on Human factors in computing systems 

(CHI '08). ACM, New York, NY, USA, 423-432. 



 

 176 

[21] Buechley, L., Hendrix, S. and Eisenberg, M. 2009. Paints, paper, and 

programs: first steps toward the computational sketchbook. In Proceedings of 

the 3rd International Conference on Tangible and Embedded Interaction 

(TEI '09). ACM, New York, NY, USA, 9-12. 

[22] Butler, D., Strohecker, C. and Martin, F. 2006. Sustaining Local Identity, 

Control and Ownership While Integrating Technology into School Learning. 

In Proc. ISSEP, Springer, 2006, 4226, 255-266. 

[23] Byckling, P and Sajaniemi, J. 2006. Roles of variables and programming 

skills improvement. SIGCSE Bull. 38, 1 (March 2006), 413-417. 

[24] Carter, L. 2006. Why students with an apparent aptitude for computer 

science don't choose to major in computer science. In Proceedings of the 

37th SIGCSE technical symposium on Computer science education (SIGCSE 

'06). ACM, New York, NY, USA, 27-31. 

[25] Carsten, B. 1989. Power Conversion and Intelligent Motion magazine, in a 

column “Carsten's Corner”, (p. 38) subtitled “Let's Define a Few Terms” 

November 1989. 

[26] Cheung, J.C.Y, Ngai, G., Chan, S.C.F. and Lau, W.W.Y. 2009. Filling the 

gap in programming instruction: a text-enhanced graphical programming 

environment for junior high students. In Proceedings of the 40th ACM 

technical symposium on Computer science education (SIGCSE '09). ACM, 

New York, NY, USA, 276-280. 

[27] Choi, Y., Pan, Y. and Jeung, J. 2007. A study on the emotion expression 

using lights in apparel types. In Proceedings of the 9th international 

conference on Human computer interaction with mobile devices and services 

(MobileHCI '07). ACM, New York, NY, USA, 478-482.  

[28] Chipman, G., Druin, A., Beer, D., Fails, J.A., Guha, M.L. and Simms, S. 

2006. A case study of tangible flags: a collaborative technology to enhance 

field trips. In Proceedings of the 2006 conference on Interaction design and 

children (IDC '06). ACM, New York, NY, USA, 1-8. 

[29] Clements, D. 1999. ‘Concrete’ Manipulatives, Concrete Ideas. Contemporary 

Issues in Early Childhood, 1, 1, 45-60.  



 

 177 

[30] Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H., Maulsby, D., 

Myers, B.A. and Turransky A. (Eds.). 1993. Watch what I do: Programming 

by Demonstration. MIT Press, Cambridge, MA, USA. 

[31] Di Blas, N., Paolini, P. and Sabiescu, A. 2010. Collective digital storytelling 

at school as a whole-class interaction. In Proceedings of the 9th International 

Conference on Interaction Design and Children (IDC '10). ACM, New York, 

NY, USA, 11-19. 

[32] Dillenbourg, P. 1999. Collaborative Learning: Cognitive and Computational 

Approaches. Advances in Learning and Instruction Series. New York, NY: 

Elsevier Science, Inc. 

[33] Dormer, P. 1997. The Culture of Craft (Studies in Design and Material 

Culture). Manchester University Press. 

[34] Dourish, P. 2001. Where the Action Is: The Foundations of Embodied 

Interaction. MIT Press, Cambridge, MA. 

[35] Druin, A., Montemayor, J., and Hendler, J. et al. 1999. Designing PETS: a 

personal electronic teller of stories. In Proceedings of the SIGCHI 

conference on Human factors in computing systems: the CHI is the limit 

(CHI '99). ACM, New York, NY, USA, 326-329. 

[36] Dunn, R. and Dunn, K. 1978. Teaching students through their individual 

learning styles: A practical approach. Reston, VA: Reston Publishing 

Company. 

[37] Eisenberg, M. 2007. Pervasive Fabrication: Making Construction Ubiquitous 

in Education. In Proceedings of the Fifth IEEE International Conference on 

Pervasive Computing and Communications Workshops (PERCOMW '07). 

IEEE Computer Society, Washington, DC, USA, 193-198. 

[38] Eisenberg, M. 2003. Mindstuff: Educational Technology beyond the 

Computer.  In Convergence, Summer 2003. 

[39] Felder, R.M. and Silverman, L.K. 1988. Learning and Teaching Styles in 

Engineering Education. Engineering Education, Vol. 78, No. 7, pp. 674-681.  



 

 178 

[40] Felder, R. M. and Spurlin, J. E. 2005. Applications, Reliablity, and Validity 

of the Index of Learning Styles. Intl. Journal of Engineering Education, 

21(1), 103-112.  

[41] Fernaeus, Y. and Tholander, J. 2006. Finding design qualities in a tangible 

programming space. In Proceedings of the SIGCHI conference on Human 

Factors in computing systems (CHI '06), Rebecca Grinter, Thomas Rodden, 

Paul Aoki, Ed Cutrell, Robin Jeffries, and Gary Olson (Eds.). ACM, New 

York, NY, USA, 447-456. 

[42] Fernaeus, Y. and Tholander, J. 2006. Designing for Programming as Joint 

Performances among Groups of Children. Interacting with Computers 18, 

1012–1031.  

[43] Fisher, C., Berliner, D., Filby, N., Marliave, R., Cahen, L., & Dishaw, M. 

1980. Teaching behaviours, academic learning time, and student 

achievement: An overview.  In C. Denham & A. Lieberman (Eds.), Time to 

Learn. Washington, D.C.: National Institute of Education. 

[44] Fleming, N.D. and Mills, C. 1992. Not Another Inventory, Rather a Catalyst 

for Reflection. To Improve the Academy, Vol. 11, page 137. 

[45] Fontijn, W.F.J. and P. Mendels. 2005. StoryToy the Interactive Storytelling 

Toy. In Proceedings of PerGames workshop, Int. Conference on Pervasive 

Computing, Munich, Germany, 11 May 2005, pp.37-42. 

[46] Frauenheim, E. Students Saying No to Computer Science. C | Net News.com, 

August 11, 2004, http://www.news.com/2100-1022-5306096.html 

[47] Froebel Gifts. http://www.froebelgifts.com/ 

[48] Froebel, F. 1826. On the Education of Man (Die Menschenerziehung), 

Keilhau/Leipzig: Wienbrach.  

[49] Funakoshi, K., Kobayashi, K., Nakano, M., Yamada, S., Kitamura, Y. and 

Tsujino, H. 2008. Smoothing human-robot speech interactions by using a 

blinking-light as subtle expression. In Proceedings of the 10th international 

conference on Multimodal interfaces (ICMI '08). ACM, New York, NY, 

USA, 293-296. 



 

 179 

[50] Gardner, H. 1983. Frames of mind: the theory of multiple intelligences. New 

York: Basic Books. 

[51] Glos, J.W. and Cassell, J. 1997. Rosebud: technological toys for storytelling. 

In CHI '97 extended abstracts on Human factors in computing systems: 

looking to the future (CHI '97). ACM, New York, NY, USA, 359-360. 

[52] Goldman, L. R. 1998. Child's play: Myth, mimesis, and make-believe. New 

York, Berg Press. 

[53] Gregorc, A. F. 1982. An Adult’s Guide to Style. Maynard, Massachusetts: 

Gabriel Systems, Inc. 

[54] Harrison, C., Tan, D. and Morris, D. 2010. Skinput: appropriating the body 

as an input surface. In Proceedings of the 28th international conference on 

Human factors in computing systems (CHI '10). ACM, New York, NY, USA, 

453-462. 

[55] Hashagen, A., Bueching, C., and Schelhowe, H. 2009. Learning abstract 

concepts through bodily engagement: a comparative, qualitative study. In 

Proceedings of the 8th International Conference on Interaction Design and 

Children (IDC '09). ACM, New York, NY, USA, 234-237.  

[56] Horn, M. S. and Jacob, R. J. K. 2007. Tangible programming in the 

classroom with tern. In Proceedings of CHI '07 extended abstracts (San Jose, 

CA, April 2007). ACM Press, pp.1965-1970. 

[57] Horn, M.S., Solovey, E.T. and Jacob, R.J.K. 2008. Tangible programming 

and informal science learning: making TUIs work for museums. In 

Proceedings of the 7th international conference on Interaction design and 

children (IDC '08). ACM, New York, NY, USA, 194-201. 

[58] Horn, M.S., Solovey, E.T., Crouser, R.J., and Jacob, R.J.K. 2009. Comparing 

the use of tangible and graphical programming languages for informal 

science education. In Proceedings of the 27th international conference on 

Human factors in computing systems (CHI '09). ACM, New York, NY, USA, 

975-984. 

[59] Humphrey, T. and Gutwill, J.P. 2005. Fostering Active Prolonged 

Engagement: The art of creating APE exhibits. Exploratorium. 



 

 180 

[60] i*CATch library for Arduino IDE  

http://etoy.comp.polyu.edu.hk/sites/default/files/icatch/iCATchSensor.zip 

[61] i*CATch hybrid text-graphical IDE 

http://etoy.comp.polyu.edu.hk/sites/default/files/icatch/iCATch_v1.6.zip 

[62] Jacob, R.J.K., Ishii, H., Pangaro, G. and Patten, J. 2002. A tangible interface 

for organizing information using a grid. In Proceedings of the SIGCHI 

conference on Human factors in computing systems: Changing our world, 

changing ourselves (CHI '02). ACM, New York, NY, USA, 339-346. 

[63] Jung, C.G. 1971. Psychological Types. Princeton University Press, Princeton, 

N.J. (Originally published in 1921.) 

[64] I2C Bus Specification. 

http://ics.nxp.com/support/documents/interface/pdf/i2c.bus.specification.pdf 

[65] I2C, A networking solution for integrated circuits. 

http://www.nxp.com/documents/leaflet/75016900.pdf 

[66] Instructables. http://www.instructables.com/.  

[67] Ishii, H. and Ullmer, B. 1997. Tangible bits: Towards seamless interfaces 

between people, bits, and atoms. In Proceedings of the SIGCHI conference 

on Human factors in computing systems (CHI '97), Steven Pemberton (Ed.). 

ACM, New York, NY, USA, 234-241. 

[68] Johnson. G.W. 1997. LabVIEW Graphical Programming: Practical 

Applications in Instrumentation and Control (2nd ed.). McGraw-Hill School 

Education Group. 

[69] Kalanithi, J.J. and Bove, V.M. Jr. 2008. Connectibles: tangible social 

networks. In Proceedings of the 2nd international conference on Tangible 

and embedded interaction (TEI '08). ACM, New York, NY, USA, 199-206. 

[70] Katterfeldt, E., Dittert, N., and Schelhowe, H. 2009. EduWear: smart textiles 

as ways of relating computing technology to everyday life. In Proceedings of 

the 8th International Conference on Interaction Design and Children (IDC 

'09). ACM, New York, NY, USA, 9-17. 

[71] Katz, L.G. and S.C. 1989. Chard. Engaging Children' Minds: the Project 

Approach. Ablex, Norwood, NJ. 



 

 181 

[72] Kelleher, C. and Pausch, R. 2005. Lowering the barriers to programming: A 

taxonomy of programming environments and languages for novice 

programmers. ACM Comput. Surv. 37, 2 (June 2005), 83-137. 

[73] Kelleher, C., Pausch, R. and Kiesler, S. 2007. Storytelling alice motivates 

middle school girls to learn computer programming. In Proceedings of the 

SIGCHI conference on Human factors in computing systems (CHI '07). ACM, 

New York, NY, USA, 1455-1464.  

[74] Kolb, D.A. 1984. Experiential Learning: Experience as the source of 

learning and development. Englewood Cliffs, NJ: Prentice-Hall. 

[75] Komatsu, T., Yamada, S., Kobayashi, K., Funakoshi, K. and Nakano, M. 

2010. Artificial subtle expressions: intuitive notification methodology of 

artifacts. In Proceedings of the 28th international conference on Human 

factors in computing systems (CHI '10). ACM, New York, NY, USA, 1941-

1944. 

[76] Kuhn, S. 2001. Learning from the architecture studio: Implications for 

project-based pedagogy. International Journal of Engineering Education, 17 

(4 & 5), 349–352. 

[77] Lau, W.W.Y., Ngai, G., Chan, S.C.F., and Cheung, J.C.Y. 2009. Learning 

programming through fashion and design: a pilot summer course in wearable 

computing for middle school students. In Proceedings of the 40th ACM 

technical symposium on Computer science education (SIGCSE '09). ACM, 

New York, NY, USA, 504-508. 

[78] Lidwell, W., Holden, K. and Butler, J. 2003. Universal Principles of Design: 

100 Ways to Enhance Usability, Influence Perception, Increase Appeal, 

Make Better Design Decisions, and Teach Through Design. Rockport 

Publishers, pp. 186 – 187. 

[79] Lieberman, H., Paternò, F. and Wulf, V. 2006. End User Development 

(Human-Computer Interaction Series). Springer-Verlag New York, Inc., 

Secaucus, NJ, USA. 

[80] LilyPad Arduino. http://web.media.mit.edu/~leah/LilyPad/ 

[81] LilyPond. http://lilypond.media.mit.edu/about 

  
 

   
   

 



 

 182 

[82] Livo, N.J., and Rietz, S.A.1986. Storytelling: Process and Practice, 

Littlejohn, Libraries Unlimited. 

[83] LOGO Foundation.  

http://el.media.mit.edu/logo-foundation/logo/index.html 

[84] Lovell, E. and Buechley, L. 2010. An e-sewing tutorial for DIY learning. In 

Proceedings of the 9th International Conference on Interaction Design and 

Children (IDC '10). ACM, New York, NY, USA, 230-233. 

[85] Magielse, R. and Markopoulos, P. 2009. HeartBeat: an outdoor pervasive 

game for children. In Proceedings of the 27th international conference on 

Human factors in computing systems (CHI '09). ACM, New York, NY, USA, 

2181-2184. 

[86] Marshall, P. 2007. Do tangible interfaces enhance learning? In Proceedings 

of the 1st international conference on Tangible and embedded interaction 

(TEI '07). ACM, New York, NY, USA, 163-170. 

[87] McCluskey, A.V. 2006. The difficulties of Swiss Computer Science studies. 

An example of the need for a new strategy. SARIT conference, March 13, 

2006. 

[88] McIntyre, D.J., Copenhaver, R.W., Byrd, D.M., & Norris, W.R. 1983. A 

study of engaged student behaviour within classroom activities during 

mathematics class.  Journal of Educational Research, 77(1), 55-59.  

[89] McNerney, T.S. 2004. From turtles to Tangible Programming Bricks: 

explorations in physical language design. Personal Ubiquitous Comput. 8, 5 

(Sep. 2004), 326-33 

[90] Mindstorms.  

http://media.mit.edu/sponsorship/getting-value/collaborations/mindstorms 

[91] Montemayor, J., Druin, A., Chipman, G., Farber, A., Guha, M.L., 2004. 

Tools for children to create physical interactive storyrooms. Comput. 

Entertain. 2, 1 (January 2004), 12-12.   

[92] Montessori Materials. http://www.montessoriedutoys.com 

[93] Montessori, M 1912. The Montessori Method. New York Frederick Stokes 

Co. 



 

 183 

[94] Ngai, G., Chan, S.C.F., Cheung, J.C.Y. and Lau, W.W.Y. 2009. The 

TeeBoard: an education-friendly construction platform for e-textiles and 

wearable computing. In Proceedings of the 27th international conference on 

Human factors in computing systems (CHI '09). ACM, New York, NY, USA, 

249-258. 

[95] Ngai, G., Chan, S.C.F., Ng, V.T.Y., Cheung, J.C.Y., Choy, S.S.S., Lau, 

W.W.Y. and Tse, J.T.P. 2010. i*CATch: a scalable plug-n-play wearable 

computing framework for novices and children. In Proceedings of the 28th 

international conference on Human factors in computing systems (CHI '10). 

ACM, New York, NY, USA, 443-452. 

[96] Papert, S.1980. Mindstorms: Children, computers and powerful ideas. Basic 

Books, New York. 

[97] Piaget, J. 1954. The Construction of Reality in the Child. Routledge and 

Kegan Paul Ltd. (Originally published in 1937.) 

[98] Piaget, J. 1997. The Principles of Genetic Epistemology. Routledge and 

Kegan Paul Ltd. (Originally published in 1970.) 

[99] Piaget, J. 1999. Play, dreams and imitation in childhood. Routledge and 

Kegan Paul Ltd. (Originally published in 1951.) 

[100] PicoBoard. http://www.picocricket.com/picoboard.htm 

[101] Portsmore, M. 1999. ROBOLAB: Intuitive Robotic Programming Software 

to Support Life Long Learning. APPLE Learning Technology Review, 26-39. 

[102] Pratt, T.W. and Zelkowitz, M.V. 2000. Programming Languages: Design 

and Implementation (4th ed.). Prentice Hall PTR, Upper Saddle River, NJ, 

USA. 

[103] Price, S. 2008. A representation approach to conceptualizing tangible 

learning environments. In Proceedings of the 2nd international conference 

on Tangible and embedded interaction (TEI '08). ACM, New York, NY, 

USA, 151-158. 

[104] Raffle, H., Parkes, A., Ishii, H., and Lifton, J. 2006. Beyond record and play: 

backpacks: tangible modulators for kinetic behavior. In Proceedings of the 

SIGCHI conference on Human Factors in computing systems (CHI '06), 



 

 184 

Rebecca Grinter, Thomas Rodden, Paul Aoki, Ed Cutrell, Robin Jeffries, and 

Gary Olson (Eds.). ACM, New York, NY, USA, 681-690. 

[105] Resnick, M. & Silverman, B. 2005. Some reflections on designing 

construction kits for kids. In Proceedings of the 2005 conference on 

Interaction design and children (IDC '05). ACM, New York, NY, USA, 117-

122. 

[106] Resnick, M., Maloney, J. et al. 2009. Scratch: programming for all. Commun. 

ACM 52, 11 (November 2009), 60-67.  

[107] Rogers, Y., Price, S., Fitzpatrick, G., Fleck, R., Harris, E., Smith, H., et al. 

2004. Ambient wood: designing new forms of digital augmentation for 

learning outdoors. In Proceedings of the 2004 conference on Interaction 

design and children: building a community (IDC '04). ACM, New York, NY, 

USA, 3-10. 

[108] Rusk, N., Mitchel, R., Berg, R., Pezalla-Granlund, M. 2008. New Pathways 

into Robotics: Strategies for Broadening participation. Journal of Science 

Education and Technology, Volume 17, Issue 1, pp.59-69. 

[109] Ryokai, K. and Cassell, J. 1999. StoryMat: a play space for collaborative 

storytelling. In CHI '99 extended abstracts on Human factors in computing 

systems (CHI '99). ACM, New York, NY, USA, 272-273. 

[110] Schollmeyer, M. 1996. Computer programming in high school vs. college. In 

Proceedings of the twenty-seventh SIGCSE technical symposium on 

Computer science education (SIGCSE '96), Karl J. Klee (Ed.). ACM, New 

York, NY, USA, 378-382.  

[111] Scratch. http://scratch.mit.edu/ 

[112] Shaer, O. and Hornecker, E. 2010. Tangible User Interfaces: Past, Present, 

and Future Directions. Found. Trends Hum.-Comput. Interact. 3, 1-2 

(January 2010), 1-137. 

[113] Skinner, E.A., & Belmont, M.J. 1993. Motivation in the classroom: 

Reciprocal effects of teacher behavior and student engagement across the 

school year. Journal of Educational Psychology, 85(4). p. 572. 



 

 185 

[114] Snibbe, S. 2006. Three Drops. ArtNano: New Approaches for Visualizing the 

Nanoscale. http://www.nisenet.org/artnano/artists/snibbe/artwork/. 

[115] Soler-Adillon, J., Ferrer, J. and Parés, N. 2009. A novel approach to 

interactive playgrounds: the interactive slide project. In Proceedings of the 

8th International Conference on Interaction Design and Children (IDC '09). 

ACM, New York, NY, USA, 131-139. 

[116] Sparacino, F., Wren, C., Davenport, G. and Pentland, A. 1999. Augmented 

Performance in Dance and Theater. International Dance and Technology 99 

(IDAT99), Arizona State University, Tempe, AZ (February 25-28, 1999). 

[117] Sparacino, F., Pentland, A. and Davenport, G. 1997. Wearable Performance. 

In Proceedings of the 1st IEEE International Symposium on Wearable 

Computers (ISWC '97). IEEE Computer Society, Washington, DC, USA, 

181-182. 

[118] Stanton, D., Bayon, V., Neale, H., Ghali, A., Benford, S., Cobb, S., Ingram, 

R., O'Malley, C., Wilson, J. and Pridmore, T. 2001. Classroom collaboration 

in the design of tangible interfaces for storytelling. In Proceedings of the 

SIGCHI conference on Human factors in computing systems (CHI '01). ACM, 

New York, NY, USA, 482-489. 

[119] Stross, R. 2008. What Has Driven Women Out of Computer Science? The 

New York Times.  

http://www.nytimes.com/2008/11/16/business/16digi.html?_r=1 

[120] Suzuki, H., Kato, H. 1995. Interaction-Level Support for Collaborative 

Learning: AlgoBlock-An Open Programming Language. Proceedings of 

CSCL '95 (Bloomington, Indiana, October 1995), pp: 349 – 355. 

[121] Tada, Y., Nishimoto, K., Maekawa, T., Rouve, R., Mase, K. and Nakatsu, R. 

2001. Towards forming communities using wearable musical instruments. 

Distributed Computing Systems Workshop, 2001 International Conference 

on , vol., no., pp.260-265, Apr 2001 

[122] Tarkan, S., Sazawal, V., Druin, A., Golub, E., Bonsignore, E.M., Walsh, G. 

and Atrash, Z. 2010. Toque: designing a cooking-based programming 

language for and with children. In Proceedings of the 28th international 



 

 186 

conference on Human factors in computing systems (CHI '10). ACM, New 

York, NY, USA, 2417-2426. 

[123] Tucker, A.B. and Noonan R.E. 2007. Programming Languages Principles 

and Paradigms, pp. 4-5. Second Ed. 

[124] Torrance, E.P. 1984. Torrance Tests of Creative Thinking. Norms, Technical 

Manual Research Edition. Princeton, NJ: Personnel Press. 

[125] Ullmer, B. and Ishii, H. 2000. Emerging frameworks for tangible user 

interfaces. IBM Syst. J. 39, 3-4 (July 2000), 915-931. 

[126] Umaschi, M. 1997. Soft toys with computer hearts: building personal 

storytelling environments. In CHI '97 extended abstracts on Human factors 

in computing systems: looking to the future (CHI '97). ACM, New York, NY, 

USA, 20-21. 

[127] Vegso, J. 2005. Interest in CS as a Major Drops Among Incoming Freshmen. 

Computing Research News, Vol. 17/No.3. 

[128] Vygotsky, L.S. 1967. Play and its role in the mental development of the child. 

Soviet Psychology, 5(3), 6-18. 

[129] Vygotsky, L.S. 1978. Mind in society: The development of higher 

psychological processes. Cambridge, MA: Harvard University Press. 

[130] Wardrip-Fruin, N. and Nick, M. 2003. From Theatre of the Oppressed. The 

New Media Reader. The MIT Press, pp.339-352. 

[131] Wood, D.J., Bruner, J.S., & Ross, G. 1976. The role of tutoring in problem 

solving. Journal of Child Psychiatry and Psychology, 17(2), 89-100. 

[132] Zhou, Z., Cheok, A.D., Li, Y. and Kato, H. 2005. Magic cubes for social and 

physical family entertainment. In CHI '05 extended abstracts on Human 

factors in computing systems (CHI '05). ACM, New York, NY, USA, 1156-

1157. 

[133] Zuckerman, O., Arida, S. and Resnick, M. 2005. Extending tangible 

interfaces for education: digital montessori-inspired manipulatives. In 

Proceedings of the SIGCHI conference on Human factors in computing 

systems (CHI '05). ACM, New York, NY, USA, 859-868. 



 

 187 

[134] Zuckerman, O., Grotzer, T. and Leahy, K. 2006. Flow blocks as a conceptual 

bridge between understanding the structure and behavior of a complex causal 

system. In Proceedings of the 7th international conference on Learning 

sciences (ICLS '06). International Society of the Learning Sciences 880-886.  

[135] Zuckerman, O. and Resnick, M. 2004. Hands-on modeling and simulation of 

systems. In Proceedings of the 2004 conference on Interaction design and 

children: building a community (IDC '04). ACM, New York, NY, USA, 157-

158. 

 
 
 
 
 
 
 
 


	Certificate of Originality
	Abstract
	List of Publications
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Current Computer Science Education
	1.2 Learning Computational Concepts from Tangible Manipulatives
	1.3 Motivation
	1.4 Contributions
	1.5 Thesis Overview

	Chapter 2 Theories and Related Work
	2.1 From Constructivist Learning to Tangible Computational Construction Toolkits
	2.1.1 Constructivist Learning
	2.1.2 Current Computational Construction Kits
	2.1.3 Summary of the categories from traditional learning systems to current tangible computational construction platforms

	2.2 Other Concepts related to Learning
	2.2.1 Cognitive Development
	2.2.2 Zone of Proximal Development
	2.2.3 Collaborative Learning
	2.2.4 Learning Styles

	2.3 Conceptual Frameworks for Tangible Interfaces
	2.3.1 Tangible User Interface (TUI)
	2.3.2 Child Tangible Interaction framework (CTI)
	2.3.3 A framework for conceptualizing tangible environments
	2.3.4 A framework on tangibles for learning

	2.4 General Evaluation Approaches for Tangible Interfaces
	2.4.1 Proof-of-concept Prototypes
	2.4.2 Ethnography
	2.4.3 Comparative Studies

	2.5 Programming Paradigms
	2.5.1 Imperative Programming
	2.5.2 Object-Oriented Programming
	2.5.3 Functional Programming
	2.5.4 Logic Programming
	2.5.5 End-user programming


	Chapter 3 Abstract Thinking through Functional Blocks Construction
	3.1 Tangible Programming System – a kind of Conceptual Manipulation
	3.2 Design Process
	3.2.1 Two Early Prototypes
	3.2.2 The Evolution of the design into i*CATchBadges

	3.3 Implementation
	3.3.1 Technical Setup
	3.3.2 Programming Language

	3.4 Evaluation
	3.4.1 i*CATchBadges Study in Game Booth
	3.4.2 i*CATchBadges Study in Technology Workshop

	3.5 Discussion
	3.5.1 Computational Concepts
	3.5.2 Task Outcomes
	3.5.3 Learning Environment

	3.6 Summary

	Chapter 4 Creativity through Crafts Making
	4.1 Computational Platforms for Construction and Materials
	4.1.1 Computational Toolkits for Construction
	4.1.2 Programming Environments
	4.1.3 Craft Materials

	4.2 Research Methodology
	4.2.1 Courses Background
	4.2.2 Case Study 1: TeeBoard with LilyPad
	4.2.3 Case Study 2: i*CATch Apparel Platform
	4.2.4 Case Study 3: i*CATch Robotic Platform

	4.3 Discussion
	4.3.1 Construction Interface
	4.3.2 Project Theme
	4.3.3 Complexity of Computer Programs
	4.3.4 Engagement Factors

	4.4 Summary

	Chapter 5 Expression through Story Creation
	5.1 Storytelling and Storytelling Media
	5.2 Methodology
	5.2.1 Two Syllabi of Workshops
	5.2.2 Wearable Computing Tools and Materials

	5.3 Findings
	5.3.1 Electronic Devices on Computational Apparel Representations
	5.3.2 Roles of Computational Apparel in Performing a Story
	5.3.3 Computer Programs

	5.4 Discussion
	5.4.5 Computational Apparel Media for Creating a Story
	5.4.6 Task Characteristics
	5.4.7 Support for Computational Learning

	5.5 Summary

	Chapter 6 Analysis of Design of Tangible Computational Construction Kits
	6.1 Coupling of computational concepts
	6.2 Construction interfaces
	6.3 Domains of Tasks
	6.4 Learner’s Characteristics
	6.5 Learning Environments

	Chapter 7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Appendix A: Crafts Making Workshops Syllabi
	Appendix B: Storytelling Workshops Syllabi
	Appendix C: Sample Program of i*CATchBadges Study in Game Booth
	Appendix D: Sample Program of i*CATchBadges Study in Technology Workshop
	Appendix E: Sample Program of Using TeeBoard with LilyPad
	Appendix F: Sample Program of Using i*CATch Apparel Platform
	Appendix G: Sample Program of Using i*CATch Robotic Platform
	Appendix H: Sample Programs of Program Structures in Storytelling Workshop
	References



