

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

- 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis.
- 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose.
- 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests.

This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

The Hong Kong Polytechnic University

Department of Building Services Engineering

A Multi-criteria Daylighting Performance

Assessment Method for Cellular Offices

Ng Tsz Ho Roger

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it reproduces no material previously published or written, nor material that has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text.

	(Signed)
Ng Tsz Ho Roger	(Name of student)

Department of Building Services Engineering The Hong Kong Polytechnic University Hong Kong China May 2011

ABSTRACT

Daylight is the only natural light source that can provide sufficient illumination in building interiors. Exploitation of daylight to light up indoor spaces has always been an indivisible part of building design through the centuries. Although the importance of daylighting has once been lowered after the invention of electric lights, the interest in the use of this natural light from the sky comes back as a kind of clean energy source from the hundred year reign of electric lighting since climate change reminds people to consume less fossil fuel energy.

Daylighting has many advantages: saving electric energy, improving human productivity and enhancing mood and health. It plays an important role in our daily lives. However, it is not an easy task for designers to craft a well performed daylit environment. Many researchers have proposed a number of indicators to ensure the provision of daylight into the room and attempt modelling human preferred indoor daylighting performance, but most of them scantily account for a single criterion focusing on either daylight quantity or daylight quality. There is no doubt that each of them explains a part to the daylighting performance; however, the overall indoor daylighting performance should be evaluated in an ampler measure in terms of occupants' visual satisfaction and electric lighting energy saving potential, which are believed to be affected by a list of decision factors that have to be fulfilled. Previous researchers seldom concern the interrelationships among the daylighting performance criteria and decision factors in their proposed assessment methods, resulting in that there remains a significant knowledge gap on their combined effects giving rise to the criticism of poor daylighting design inside buildings – neither satisfying occupant needs and preferences nor effectively saving electric lighting energy. This research study is therefore carried out to develop an inclusive daylighting performance assessment method for buildings taking multiple criteria into consideration. Since an individual can practically have full power to adjust the daylit condition as he prefers in his own cellular office and cellular offices are typically less than 16 m², this study sets local sidelit cellular offices limited to this floor area as the research target.

This thesis is built up on the hypotheses that whether a cellular office environment is of good or poor daylighting performance involves a series of criteria and decision factors, and every office occupant has a similar tendency towards each component of a daylit space. It presents a novel daylighting performance assessment method for local cellular offices using the theory of analytic hierarchy process (AHP). The reason of applying AHP in this study is that it is a multiple criteria decision making technique providing a comprehensive and rational framework particularly suitable for dealing with a problem of complex factors. Because daylighting is the kind of science involving human perception probably the most complicated subject in the world, designing a well performed cellular office is precisely such a problem that is believed to be solvable by AHP. AHP is well known for its use of a hierarchical structure to model the problem. In this study, good daylighting performance was regarded as a goal to be achieved and placed at the top of the AHP hierarchy. Occupants' visual satisfaction and electric lighting energy saving potential were hypothesized to be the two criteria having equal weight of influence in the contribution of the overall office daylighting performance and located at the middle level. Brightness and uniformity on task and surrounding surfaces and perceived glare from the side window are the decision factors that were found correlated with these two criteria with different statistical analyses, and they were allocated at the bottom level of the hierarchy for the study of their individual weights of importance with a series of AHP pairwise comparisons.

In this research study, on one hand, field surveys of physical measurements and user assessment questionnaires were conducted in cellular offices to examine the relationships between each decision factor and quantitative lighting parameters. In this process, a kind of advanced technology named high dynamic range (HDR) photography was applied for the measurement of the luminance distribution within the field of view using a consumer grade digital camera fitted with an ultra wide angle lens in a quick and inexpensive manner. It was believed that the primary success in the application of HDR photography for subjective evaluation of a daylit environment in this research study can lead the future lighting researches to a new technical trend. The study also explains the decision factors in regards of occupants' visual satisfaction and electric lighting energy saving potential with the correlated lighting parameters, with which the probabilities that occupants would feel visually

satisfied with their sidelit cellular offices and that they would accept not turning on electric lights in their sidelit cellular offices, expressed as a logistic regression formula, in terms of each decision factor, were then derived.

This research study, on the other hand, classifies the hourly sky type of the city in accordance with the official hourly cloud cover data such that the percentages of occurrences of clear, partly cloudy and overcast skies throughout a year were computed for the following investigation. Twelve identical cellular offices but having different window sizes, facing different orientations and with or without external obstructions were modelled respectively under the three sky types by the lighting simulation software DIALux for their hourly daylighting situations such that the multi-influences of these three features inside or out of a cellular office on the overall daylighting performance could be revealed after the numerical values of the correlated lighting parameters accounting for the decision factors in these twelve cellular office simulations were obtained and calculations for the probability of achieving good daylighting performance weighted with the frequencies of occurrence of different sky types taking all the criteria and decision factors with their influential weights into consideration were performed. The result was defined as the multi-criteria daylighting performance indicator of that hour, which in this thesis, is called the daylighting performance index (DPI). The DPI of the working hours on the 21st day of every month throughout a year for the modelled cellular offices were worked out and analyzed.

This research study launches a scientific grading scheme for cellular office daylighting performance. It was suggested that a cellular office would be accredited as possessing a certain level of daylighting performance according to the average value of DPI (DPI_{avg}) over a year. For instance, a cellular office would be acclaimed to possess the 5-star daylighting performance if the DPI_{avg} is 4.5 or above while it would be granted 4 stars only if the DPI_{avg} is between 3.5 and 4.5, and so forth. With the application of this newly proposed daylighting performance assessment method, the amount of energy saving for electric lighting systems of cellular offices can be maximized at the same moment without sacrificing the visual satisfaction level of office users. The immediate financial reward in saving lighting energy can also be calculated. This new index offers a more informative performance-based method

taking both human factors and energy issues into consideration for the daylighting performance evaluation of cellular offices. Since then, building developers, architects, engineers, lighting designers and environmentalists can be more confident to designing better daylighting performance inside workplaces by applying the *DPI* grading scheme introduced in this thesis.

PUBLICATIONS ARISING FROM THE THESIS

Journal papers

- **Ng R.T.H.** and Chung T.M. (2011). On the calibration of high dynamic range photography for luminance measurements in indoor daylit scenes. *Architectural Science Review*, *54*(1), 39-49.
- Chung T.M. and **Ng R.T.H.** (2010). Variation of calibration factor over time for high dynamic range photography in a single daylit indoor scene. *Journal of Light and Visual Environment*, 34(2), 87-93.

Conference papers

- **Ng R.T.H.** and Chung T.M. (2011). A study on subjective evaluation of a daylit cellular office using analytic hierarchy process. *Proceedings of the Hunan-Hong Kong Joint Symposium 2011*, Changsha, China, 9-19.
- Chung T.M. and **Ng R.T.H.** (2009). Subjective evaluation of a side-lit office environment using conjoint analysis. *Proceedings of the Tianjin-Hong Kong Joint Symposium 2009*, Tianjin, China, 43-54.
- Chung T.M. and **Ng R.T.H.** (2009). Variation of calibration factor over time for high dynamic range photography in a single daylit interior scene. *Proceedings of the* 6th Lux Pacifica, Bangkok, Thailand, 71-75.
- **Ng R.T.H.** and Chung T.M. (2009). Survey on occupants' preferences towards daylighting design in office premises in Hong Kong. *Proceedings of the International Postgraduate Conference on Infrastructure and Environment*, Hong Kong, China, 1-8.
- Chung T.M. and **Ng R.T.H.** (2008). Survey on current daylighting design practices of office premises in Hong Kong. *Proceedings of the 4th International Conference on Solar Radiation and Daylighting (SOLARIS)*, Hong Kong, China, 60-67.
- **Ng R.T.H.**, Chung T.M. and Cheung H.D. (2008). A new approach for subjective evaluation of the luminous environment of a daylit office with side windows. *Proceedings of the 1st International Conference on Building Energy and Environment*, Dalian, China, 1099-1107.
- **Ng R.T.H.**, Chung T.M. and Cheung H.D. (2008). Lighting parameters affecting the use of daylight and electric light in a private office environment. *Proceedings of*

- the 9th International Symposium on Building and Urban Environmental Engineering, Hong Kong, China, 296-302.
- **Ng R.T.H.**, Chung T.M. and Cheung H.D. (2008). Simple clerical task performance in a mainly daylit office with visual satisfaction. *Proceedings of the Henan-Hong Kong Joint Symposium 2008*, Zhengzhou, China, 107-116.
- Chung T.M., Cheung H.D. and **Ng R.T.H.** (2007). Measurable parameters related to visual satisfaction of a daylit indoor environment. *Proceedings of the 26th Session of the CIE*, Beijing, China, D3-106-109.
- Chung T.M., Cheung H.D. and **Ng R.T.H.** (2007). Physical parameters affecting the subjective evaluation of a daylit indoor residential environment based on a user assessment survey. *Proceedings of the 26th Session of the CIE*, Beijing, China, D3-27-30.
- Chung T.M. and **Ng R.T.H.** (2006). Assessing daylighting performance in buildings Trends and challenges for dense urban environments. *Proceedings of the Sichuan-Hong Kong Joint Symposium 2006*, Chengdu, China, 62-73.

ACKNOWLEDGEMENTS

I would like to express my most sincere appreciation and gratitude to my chief supervisor, Dr Tse-ming Chung, Department of Building Services Engineering, The Hong Kong Polytechnic University, for his professional guidance and suggestions throughout the PhD study. The invaluable support from Dr Hongyi Cai, Dr Hilda Cheung and Mr Chun-man Kwok, my mates in the lighting research team, must also be acknowledged.

I would like to thank all those who have assisted with this research study, in particular Mr Raymond Wong, Project Engineer of Parsons Brinckerhoff (Asia) Ltd. Last but not least, I would like to express my thankfulness to my parents for their unstinting support and encouragement, and my wife Sandy for her endless love and enduring patience.

TABLE OF CONTENTS

Certi	ficate of	originality	1
Abstı	ract		ii
Publi	cations a	arising from the thesis	vi
Ackn	owledge	ements	viii
Table	e of cont	ents	ix
List	of tables		xiv
List	of figures	3	xviii
List	of abbrev	viations	xxiv
List	of symbo	ls	xxvi
Chap	oter 1	Introduction	
1.1	Motiva	ation	1
1.2	Purpos	ee	3
1.3	Scope	and major hypotheses	4
1.4	Import	ance	7
1.5	Organi	zation	8
Chap	oter 2	Daylight and daylighting in Hong Kong	
2.1	Introdu	action	11
2.2	Nature	of daylight	11
2.3	Benefi	ts of daylighting	18
2.4	Climat	e in Hong Kong	26
2.5	Potent	ial and problems of daylighting in Hong Kong	31
	2.5.1	Availability of daylight	31
	2.5.2	Dense built environment in Hong Kong	36
2.6	Local	regulations and voluntary guidelines for daylight provisions	37
	2.6.1	Prescriptive requirements	37
	2.6.2	Performance-based approach	39
	2.6.3	Voluntary guidelines	41

Chap	oter 3	Review of current daylighting design and assessment method	ds
3.1	Introdu	action	43
3.2	Diagra	mmatic approaches	44
	3.2.1	Skylight availability	45
	3.2.2	Sunlight availability	46
	3.2.3	Possible and probable sunlight duration	49
3.3	Rules	of thumb	54
	3.3.1	No-sky line	55
	3.3.2	Limiting room depth	58
	3.3.3	Window-height-to-daylit-room-depth ratio	60
	3.3.4	Window-to-window-wall area ratio	61
	3.3.5	Window-to-floor area ratio	62
	3.3.6	Limiting obstruction angle and vertical sky component	65
	3.3.7	Quality of view	68
3.4	Parame	eters based on illuminance and luminance	69
	3.4.1	Illuminance	69
	3.4.2	Daylight factor	73
	3.4.3	Lumen method	83
	3.4.4	Illuminance ratios	84
	3.4.5	Daylight autonomy	85
	3.4.6	Luminance and its ratios	86
	3.4.7	Glare from windows	88
3.5	Prospe	ctive trends and possible challenges	93
Chap	oter 4	Surveys on daylighting design preferences and practices	
4.1	Backg	round	96
4.2	Survey	on ideas of office occupants about daylighting	96
	4.2.1	Preferences on windows	98
	4.2.2	Preferences on view outside	105
	4.2.3	Preferences on lighting and internal shading control methods	106
	4.2.4	Summary	110
4.3	Survey	on ideas of building design practitioners about daylighting	112
	4.3.1	Ideas about allocation of work in office daylighting design	113

4.3.2	Daily practices of daylighting design in office project	116
4.3.3	Suggestions to the future daylighting design guide	122
4.3.4	Summary	125
Researc	ch problem	126
oter 5	Decision factors and their physical parameters	
Introdu	ection	128
Selection	on of decision factors for daylighting performance assessment	129
Survey	on verification of decision factors and controlling parameters	131
5.3.1	Methodology	132
5.3.2	Results and analyses for verification of decision factors	137
5.3.3	Analyses for verification of controlling parameters	144
5.3.4	Brightness on desktop under visual satisfaction	148
5.3.5	Brightness on surroundings under visual satisfaction	155
5.3.6	Uniformity on desktop under visual satisfaction	161
5.3.7	Uniformity on surroundings under visual satisfaction	164
5.3.8	Perceived glare from window under visual satisfaction	170
5.3.9	Brightness on desktop under energy saving potential	174
5.3.10	Brightness on surroundings under energy saving potential	179
5.3.11	Uniformity on desktop under energy saving potential	185
5.3.12	Uniformity on surroundings under energy saving potential	189
5.3.13	Perceived glare from window under energy saving potential	194
Summa	пту	198
oter 6	High dynamic range photography	
Introdu	ection	199
Princip	le of luminance data acquisition by HDR photography	201
Lumina	ance calibration of HDR images	205
6.3.1	Equipment setup	207
6.3.2	Camera settings	209
6.3.3	Measurements	211
6.3.4	Vignetting effect	212
6.3.5	Point spread effect	215
	4.3.3 4.3.4 Research oter 5 Introdu Selectic Survey 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.3.7 5.3.8 5.3.9 5.3.10 5.3.11 5.3.12 5.3.13 Summa oter 6 Introdu Princip Lumina 6.3.1 6.3.2 6.3.3 6.3.4	4.3.3 Suggestions to the future daylighting design guide 4.3.4 Summary Research problem ther 5 Decision factors and their physical parameters Introduction Selection of decision factors for daylighting performance assessment Survey on verification of decision factors and controlling parameters 5.3.1 Methodology 5.3.2 Results and analyses for verification of decision factors 5.3.3 Analyses for verification of controlling parameters 5.3.4 Brightness on desktop under visual satisfaction 5.3.5 Brightness on surroundings under visual satisfaction 5.3.6 Uniformity on desktop under visual satisfaction 5.3.7 Uniformity on surroundings under visual satisfaction 5.3.8 Perceived glare from window under visual satisfaction 5.3.9 Brightness on desktop under energy saving potential 5.3.10 Brightness on surroundings under energy saving potential 5.3.11 Uniformity on desktop under energy saving potential 5.3.12 Uniformity on surroundings under energy saving potential 5.3.13 Perceived glare from window under energy saving potential 5.3.14 Uniformity on surroundings under energy saving potential 5.3.15 Perceived glare from window under energy saving potential 5.3.16 Summary There 6 High dynamic range photography Introduction Principle of luminance data acquisition by HDR photography Luminance calibration of HDR images 6.3.1 Equipment setup 6.3.2 Camera settings 6.3.3 Measurements 6.3.4 Vignetting effect

	6.3.6	Results and analyses	215		
	6.3.7	Concluding remarks	221		
6.4	Post-p	rocessing of HDR photography	223		
6.5	Summ	ary	233		
Chaj	pter 7	Analytic hierarchy process			
7.1	Introdu	uction	235		
7.2	Princip	ble	236		
7.3	Survey	7	239		
7.4	Metho	dology of analysis	242		
7.5	Result	s	246		
7.6	Discus	sion	248		
7.7	Summ	ary	250		
Chaj	pter 8	Daylighting performance index			
8.1	Introdu	uction	252		
8.2	Formu	lation	253		
	8.2.1	DIALux daylighting simulation	254		
	8.2.2	Analyses of hourly sky type of Hong Kong	259		
	8.2.3	Analyses of simulation results	262		
	8.2.4	Morningstar rating system	264		
8.3	Implic	ation on electric lighting energy saving	268		
8.4	Summ	ary	272		
Cha	pter 9	Conclusion			
9.1	Summ	ary and significance of research study	274		
9.2	Limita	tion of research study	277		
9.3	Implic	ation of future research study	280		
App	endices				
A	Global	horizontal illuminance (in klux) of Hong Kong (2007-2009)	282		
В	Online	survey on occupants' preferred cellular office daylighting	288		
	design	design			

C	Online survey on building design practitioners' opinions about	292
	cellular office daylighting design	
D	Questionnaire on occupants' visual satisfaction and judgment on	295
	electric lighting energy saving potential to a daylit cellular office	
E	Questionnaire on importance levels of various daylighting attributes	299
	towards the overall daylighting performance of a cellular office	
F	Results of AHP pairwise comparisons	302
G	Conversions from cloud cover to sky type (2007-2009)	303
Н	Probability of achieving the two criteria due to the five decision	315
	factors in all simulation model sets	
I	Probability of achieving good daylighting performance in all	435
	simulation model sets	
J	Conversions from P_{DP} to DPI for all simulation model sets	459
K	Possible electric lighting energy saving amount in all simulation	465
	model sets	
L	Summary of survey information	471
References 4		472

LIST OF TABLES

Chapter 3	
Table 3.1	Minimum sunlight duration stated in regulations of different countries
Table 3.2	Minimum sunlight duration depending on the latitude of the site
Table 3.3	Sunlight duration factors received at vertical walls in Hong Kong
Table 3.4	Suggested critical obstruction angle degrees and the corresponding
	critical vertical sky component values by latitude
Table 3.5	Average daylight factor values giving satisfactory daylit environments
Chapter 4	
Table 4.1	Descriptions of four commonly used glazing types in office buildings
Table 4.2	Descriptions of two commonly used blind types in office buildings
Chapter 5	
Table 5.1	Justifications for selection of daylighting performance decision factors
Table 5.2	Votes on overall daylit condition under visual satisfaction
Table 5.3	Votes on brightness on desktop under visual satisfaction
Table 5.4	Votes on brightness on surroundings under visual satisfaction
Table 5.5	Votes on uniformity on desktop under visual satisfaction
Table 5.6	Votes on uniformity on surroundings under visual satisfaction
Table 5.7	Votes on perceived glare from window under visual satisfaction
Table 5.8	Votes on overall daylit condition under energy saving potential
Table 5.9	Votes on brightness on desktop under energy saving potential
Table 5.10	Votes on brightness on surroundings under energy saving potential
Table 5.11	Votes on uniformity on desktop under energy saving potential
Table 5.12	Votes on uniformity on surroundings under energy saving potential
Table 5.13	Votes on perceived glare from window under energy saving potential
Table 5.14	Votes on visual satisfaction with a sidelit cellular office
Table 5.15	Votes on acceptability of energy saving in a sidelit cellular office
Table 5.16	Brightness on desktop under visual satisfaction:
	ANOVA results

Table 5.17	Brightness on desktop under visual satisfaction:
	Responses to $log E_{avg,desk}$ (Group 1)
Table 5.18	Brightness on desktop under visual satisfaction:
	Responses to $log E_{avg,desk}$ (Group 2)
Table 5.19	Brightness on surroundings under visual satisfaction:
	ANOVA results
Table 5.20	Brightness on surroundings under visual satisfaction:
	Responses to $log L_{avg,surr}$
Table 5.21	Uniformity on desktop under visual satisfaction:
	ANOVA results
Table 5.22	Uniformity on desktop under visual satisfaction:
	Responses to U_{desk}
Table 5.23	Uniformity on surroundings under visual satisfaction:
	ANOVA results
Table 5.24	Uniformity on surroundings under visual satisfaction:
	Responses to L_{back}/L_{front}
Table 5.25	Perceived glare from window under visual satisfaction:
	ANOVA results
Table 5.26	Perceived glare from window under visual satisfaction:
	Responses to DGI_{N2}
Table 5.27	Brightness on desktop under energy saving potential:
	ANOVA results
Table 5.28	Brightness on desktop under energy saving potential:
	Responses to $E_{avg,desk}$
Table 5.29	Brightness on surroundings under energy saving potential:
	ANOVA results
Table 5.30	Brightness on surroundings under energy saving potential:
	Responses to $log L_{avg,surr}$
Table 5.31	Uniformity on desktop under energy saving potential:
	ANOVA results
Table 5.32	Uniformity on desktop under energy saving potential:
	Responses to U_{desk}

Table 5.33	Uniformity on surroundings under energy saving potential:
	ANOVA results
Table 5.34	Uniformity on surroundings under energy saving potential:
	Responses to L_{back}/L_{front}
Table 5.35	Perceived glare from window under energy saving potential:
	ANOVA results
Table 5.36	Perceived glare from window under energy saving potential:
	Responses to DGI_{N2}
Chapter 6	
Table 6.1	CIE chromaticity coordinates of primary colours RGB and white point
Table 6.2	The 24 targets in the X-Rite ColorChecker chart
Table 6.3	Features used by the camera and lens system
Table 6.4	Inclusion of LDR photographs in data fusion for a certain target
Table 6.5	Percentage errors between luminances obtained by the two methods
Table 6.6	The best target colour of grey for HDR luminance calibration
Table 6.7	Inclusion of LDR photographs in data fusion for a test cellular office
Table 6.8	Inclusion of LDR photographs in data fusion for an external view
Chapter 7	
Table 7.1	Conceptual characteristics of AHP
Table 7.2	Scale of intensity of importance for AHP pairwise comparison
Table 7.3	Random consistency index
Table 7.4	Weights of influence of decision factors under visual satisfaction
Table 7.5	Weights of influence of decision factors under energy saving potential
Chapter 8	
Table 8.1	Parameters of daylighting performance probability formulae
Table 8.2	Sky types in DIALux according to CIE 110-1994
Table 8.3	The 12 sets of daylighting simulations of the cellular office
Table 8.4	Conversions from cloud cover to sky type at 0900 in January
	(2007-2009)
Table 8.5	Frequency of sky type in each working hour of each month

Γable 8.6	Probability of achieving visual satisfaction
	due to brightness on desktop in set 1
Γable 8.7	Probability of achieving good daylighting performance in set 1
Γable 8.8	Conversions from P_{DP} to DPI in set 1
Γable 8.9	Classification of the overall daylighting performance of cellular offices
Γable 8.10	Daylighting performance assessment results of the 12 office models
Гable 8.11	Possible electric lighting energy saving amount in set 1
Γable 8.12	Possible electric lighting energy saving amount in the 12 office models

LIST OF FIGURES

Chapter 2	
Figure 2.1	The sun's position in terms of solar altitude (a_t) and azimuth (a_s) with
	respect to the cardinal points of the compass
Figure 2.2	Spectral power distribution of daylight at different colour temperatures
Figure 2.3	Electricity consumption of commercial sector in Hong Kong (1998-2007)
Figure 2.4	Percentage of electricity consumption in commercial sector to overall
	electricity consumption in Hong Kong (1998-2007)
Figure 2.5	Electricity consumption of office lighting in Hong Kong (1998-2007)
Figure 2.6	Percentage of electricity consumption of office lighting to overall
	electricity consumption in offices in Hong Kong (1998-2007)
Figure 2.7	Monthly average surface air temperature (1999-2008)
Figure 2.8	Monthly average global solar irradiation (1999-2008)
Figure 2.9	Monthly average bright sunshine hours (1999-2008)
Figure 2.10	Monthly frequency of occurrence of various cloud covers (1999-2008)
Figure 2.11	Probability of bright sunshine existence (1999-2008)
Figure 2.12	Normalized frequency distribution of global horizontal illuminance in
	Hong Kong from 0900 to 1700 (2007-2009)
Figure 2.13	Percentage of normal office working hours (0900-1700) for which a
	certain outdoor horizontal illuminance exceeded (2007-2009)
Chapter 3	
Figure 3.1	A skylight indicator
Figure 3.2	A sample of sunpath indicator
Figure 3.3	Stereographic sunpath diagram of Hong Kong (22.3°N)
Figure 3.4	A sample of sunlight probability diagram
Figure 3.5	The no-sky line
Figure 3.6	An illustration of the limiting obstruction angle at 25°
Chapter 4	
Figure 4.1	Breakdown of respondents' age groups
Figure 4.2	Respondents' reasons for a window

Figure 4.3	Preferences on window orientation			
Figure 4.4	Preferences on window glazing			
Figure 4.5	Preferences on window size and dimensions			
Figure 4.6	Illustrations for the five common elements constructing a view out			
Figure 4.7	Preferences on lighting control			
Figure 4.8	Preferences on internal shading control			
Figure 4.9	Who can influence daylighting design decisions the most?			
Figure 4.10	Who should take the duty of lighting design in office projects?			
Figure 4.11	Who should take the duty of sizing MVAC equipment in office projects?			
Figure 4.12	Which type of control systems is mostly used in the daylighting design?			
Figure 4.13	How often do the subjects consider daylighting in the office projects?			
Figure 4.14	How much time do the subjects dedicate to daylighting design?			
Figure 4.15	Why don't engineers consider daylighting in office projects?			
Figure 4.16	Which approach do the subjects follow when designing for daylighting?			
Figure 4.17	Which building design aspect is mostly affected by daylighting design?			
Figure 4.18	Which should be added in the future daylighting design guide?			
Chapter 5				
Figure 5.1	Canon 350D digital camera and Sigma lens 10-20 mm F4-5.6 EX			
Figure 5.2	Breakdown of respondents' age groups			
Figure 5.3	Brightness on desktop under visual satisfaction:			
	Ratings against $E_{avg,desk}$			
Figure 5.4	Brightness on desktop under visual satisfaction:			
	Ratings against $log E_{avg,desk}$			
Figure 5.5	Brightness on desktop under visual satisfaction:			
	Ratings against of $L_{avg,desk}$			
Figure 5.6	Brightness on desktop under visual satisfaction:			
	Ratings against $log L_{avg,desk}$			
Figure 5.7	Probability of achieving visual satisfaction			
	due to brightness on desktop (Group 1)			
Figure 5.8	Probability of achieving visual satisfaction			
	due to brightness on desktop (Group 2)			

Figure 5.9	Brightness on surroundings under visual satisfaction:
	Ratings against $L_{avg,surr}$
Figure 5.10	Brightness on surroundings under visual satisfaction:
	Ratings against $log L_{avg,surr}$
Figure 5.11	Brightness on surroundings under visual satisfaction:
	Ratings against $L_{avg,40H}$
Figure 5.12	Brightness on surroundings under visual satisfaction:
	Ratings against $log L_{avg,40H}$
Figure 5.13	Brightness on surroundings under visual satisfaction:
	Ratings against $L_{avg,40C}$
Figure 5.14	Brightness on surroundings under visual satisfaction:
	Ratings against $log L_{avg,40C}$
Figure 5.15	Probability of achieving visual satisfaction
	due to brightness on surroundings
Figure 5.16	Uniformity on desktop under visual satisfaction:
	Ratings against U_{desk}
Figure 5.17	Probability of achieving visual satisfaction
	due to uniformity on desktop
Figure 5.18	Horizontal band of width 40° within the field of view
Figure 5.19	Central circle of angular subtense 40° within the field of view
Figure 5.20	Uniformity on surroundings under visual satisfaction:
	Ratings against L_{back}/L_{front}
Figure 5.21	Uniformity on surroundings under visual satisfaction:
	Ratings against R_{surr}
Figure 5.22	Uniformity on surroundings under visual satisfaction:
	Ratings against R_{40H}
Figure 5.23	Uniformity on surroundings under visual satisfaction:
	Ratings against of R_{40C}
Figure 5.24	Probability of achieving visual satisfaction
	due to uniformity on surroundings
Figure 5.25	Perceived glare from window under visual satisfaction:
	Ratings against DGI_{N2}

Figure 5.26	Probability of achieving visual satisfaction
	due to perceived glare from window
Figure 5.27	Brightness on desktop under energy saving potential:
	Ratings against $E_{avg,desk}$
Figure 5.28	Brightness on desktop under energy saving potential:
	Ratings against $log E_{avg,desk}$
Figure 5.29	Brightness on desktop under energy saving potential:
	Ratings against $L_{avg,desk}$
Figure 5.30	Brightness on desktop under energy saving potential:
	Ratings against $log L_{avg,desk}$
Figure 5.31	Probability of achieving energy saving
	due to brightness on desktop
Figure 5.32	Brightness on surroundings under energy saving potential:
	Ratings against $L_{avg,surr}$
Figure 5.33	Brightness on surroundings under energy saving potential:
	Ratings against $log L_{avg,surr}$
Figure 5.34	Brightness on surroundings under energy saving potential:
	Ratings against $L_{avg,40H}$
Figure 5.35	Brightness on surroundings under energy saving potential:
	Ratings against $log L_{avg,40H}$
Figure 5.36	Brightness on surroundings under energy saving potential:
	Ratings against $L_{avg,40C}$
Figure 5.37	Brightness on surroundings under energy saving potential:
	Ratings against $log L_{avg,40C}$
Figure 5.38	Probability of achieving energy saving
	due to brightness on surroundings
Figure 5.39	Uniformity on desktop under visual satisfaction:
	Ratings against U_{desk}
Figure 5.40	Probability of achieving energy saving
	due to uniformity on desktop
Figure 5.41	Uniformity on surroundings under energy saving potential
	Ratings against L_{back}/L_{front}

Figure 5.42	Uniformity on surroundings under energy saving potential:		
	Ratings against R_{surr}		
Figure 5.43	Uniformity on surroundings under energy saving potential:		
	Ratings against R_{40H}		
Figure 5.44	Uniformity on surroundings under energy saving potential:		
	Ratings against R_{40C}		
Figure 5.45	Probability of achieving energy saving		
	due to uniformity on surroundings		
Figure 5.46	Perceived glare from window under energy saving potential:		
	Ratings against of DGI_{N2}		
Figure 5.47	Probability of achieving energy saving		
	due to perceived glare from window		
Chapter 6			
Figure 6.1	The X-Rite ColorChecker chart used in this study		
Figure 6.2	The layout and section of the classroom used in this study		
Figure 6.3	Eighteen LDR photographs of multiple exposures of the X-Rite		
	ColorChecker chart as the scene		
Figure 6.4	The centre of the grey card lies on the diagonal line of the scene when		
	rotating horizontally the 33.7° inclined camera at every 5° from 0 to 50°		
Figure 6.5	The <i>LLF</i> due to vignetting effect		
Figure 6.6	Comparison between luminance values obtained by the two methods for		
	the targets at an illuminance on the chart of 29 lux		
Figure 6.7	Comparison between luminance values obtained by the two methods for		
	the targets at an illuminance on the chart of 42 lux		
Figure 6.8	Comparison between luminance values obtained by the two methods for		
	the targets at an illuminance on the chart of 71 lux		
Figure 6.9	Comparison between luminance values obtained by the two methods for		
	the targets at an illuminance on the chart of 99 lux		
Figure 6.10	Comparison between luminance values obtained by the two methods for		
	the targets at an illuminance on the chart of 126 lux		
Figure 6.11	Comparison between luminance values obtained by the two methods for		
	the targets at an illuminance on the chart of 153 lux		

as the first scene Figure 6.14 Eighteen LDR photographs of multiple exposures of an external view out of a test cellular office as the second scene Figure 6.15 The area of the scene used for computation of $L_{min,desk}$ and $L_{avg,desk}$ Figure 6.16 The area of the scene used for computation of $L_{min,surr}$ and $L_{avg,surr}$ Figure 6.17 The area of the scene used for computation of L_w Figure 6.18 The area of the scene used for computation of L_a Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.21 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.22 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses	Figure 6.12	Scatter plot of calibration factor against average vertical daylight				
as the first scene Figure 6.14 Eighteen LDR photographs of multiple exposures of an external view out of a test cellular office as the second scene Figure 6.15 The area of the scene used for computation of $L_{min,desk}$ and $L_{avg,desk}$ Figure 6.16 The area of the scene used for computation of $L_{min,surr}$ and $L_{avg,surr}$ Figure 6.17 The area of the scene used for computation of L_w Figure 6.18 The area of the scene used for computation of L_a Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment		illuminance at the target of No.22 of the ColorChecker chart				
Figure 6.14 Eighteen LDR photographs of multiple exposures of an external view out of a test cellular office as the second scene Figure 6.15 The area of the scene used for computation of $L_{min,desk}$ and $L_{avg,desk}$ Figure 6.16 The area of the scene used for computation of L_w Figure 6.17 The area of the scene used for computation of L_w Figure 6.18 The area of the scene used for computation of L_w Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.13	Eighteen LDR photographs of multiple exposures of a test cellular office				
of a test cellular office as the second scene Figure 6.15 The area of the scene used for computation of $L_{min,desk}$ and $L_{avg,desk}$ Figure 6.16 The area of the scene used for computation of $L_{min,surr}$ and $L_{avg,surr}$ Figure 6.17 The area of the scene used for computation of L_w Figure 6.18 The area of the scene used for computation of L_a Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment		as the first scene				
Figure 6.15 The area of the scene used for computation of $L_{min,desk}$ and $L_{avg,desk}$ Figure 6.16 The area of the scene used for computation of $L_{min,surr}$ and $L_{avg,surr}$ Figure 6.17 The area of the scene used for computation of L_w Figure 6.18 The area of the scene used for computation of L_a Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,4001}$ and $L_{avg,4001}$ Figure 6.22 The area of the scene used for computation of $L_{min,4001}$ and $L_{avg,4001}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.14	Eighteen LDR photographs of multiple exposures of an external view out				
Figure 6.16 The area of the scene used for computation of $L_{min,surr}$ and $L_{avg,surr}$ Figure 6.17 The area of the scene used for computation of L_w Figure 6.18 The area of the scene used for computation of L_a Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses The complete AHP hierarchy for the daylighting performance assessment		of a test cellular office as the second scene				
Figure 6.17 The area of the scene used for computation of L_w Figure 6.18 The area of the scene used for computation of L_a Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.15	The area of the scene used for computation of $L_{min,desk}$ and $L_{avg,desk}$				
Figure 6.18 The area of the scene used for computation of L_{a} Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.16	The area of the scene used for computation of $L_{min,surr}$ and $L_{avg,surr}$				
Figure 6.19 The area of the scene used for computation of L_{back} Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.17	The area of the scene used for computation of L_w				
Figure 6.20 The area of the scene used for computation of L_{front} Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.18	The area of the scene used for computation of L_{α}				
Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$ Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.19	The area of the scene used for computation of L_{back}				
Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$ Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.20	The area of the scene used for computation of L_{front}				
Figure 6.23 The area of the scene used for computation of L_{ex} Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.21	The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$				
Chapter 7 Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.22	The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$				
Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 6.23	The area of the scene used for computation of L_{ex}				
Figure 7.1 An example of a simple AHP hierarchy Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment						
Figure 7.2 An example of AHP pairwise comparisons Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Chapter 7					
Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 7.1	An example of a simple AHP hierarchy				
for cellular offices Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 7.2	An example of AHP pairwise comparisons				
Figure 7.4 Response of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 7.3	The proposed AHP hierarchy for the daylighting performance assessment				
decision factors under visual satisfaction in terms of importance Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment		for cellular offices				
Figure 7.5 Response of a participant to AHP pairwise comparisons among the five decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 7.4	Response of a participant to AHP pairwise comparisons among the five				
decision factors under energy saving potential in terms of importance Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment		decision factors under visual satisfaction in terms of importance				
Figure 7.6 Age breakdown of the participants providing valid responses Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment	Figure 7.5	Response of a participant to AHP pairwise comparisons among the five				
Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment		decision factors under energy saving potential in terms of importance				
	Figure 7.6	Age breakdown of the participants providing valid responses				
for cellular offices	Figure 7.7	The complete AHP hierarchy for the daylighting performance assessment				
		for cellular offices				
Chapter 9	Chanter 0					
Figure 9.1 DR-37P HDR display by Brightside	-	DR_37P HDR display by Brightside				

LIST OF ABBREVIATIONS

3D Three dimensional

AHP Analytic hierarchy process

ANOVA One-way analysis of variance

BD Brightness on desktop

BRE Building Research Establishment

BRS Building Research Station
BS Brightness on surroundings
BSI British Standards Institution

C CIE clear sky

CCD Charge-coupled device

CIBSE Chartered Institution of Building Services Engineers

CIE Commission Internationale de l'Eclairage

CMOS Complementary metal-oxide-semiconductor

DIN Deutsches Institut für Normung e.V.

EMSD Electrical and Mechanical Services Department

EV Exposure value

HDR High dynamic range

HK-BEAM Hong Kong Building Environmental Assessment Method

HKO Hong Kong Observatory

HKSAR Hong Kong Special Administrative Region
HVAC Heating, ventilation and air-conditioning

IDMP International Daylighting Measurement Programme

IES Illuminating Engineering Society

IESNA Illuminating Engineering Society of North America

ISO International Organization for Standardization

LDR Low dynamic range
LED Light emitting diode

MVAC Mechanical ventilation and air-conditioning

O CIE overcast sky

P CIE averaged intermediate sky or partly cloudy sky

PG Perceived glare from window

RGB Red, green and blue RGBE RGB and exponent

RHP Rectangular horizontal plane

SPSS Statistical package of social science

sRGB Standard RGB colour space

UD Uniformity on desktop

UK-BREEAM BRE's Environmental Assessment Method of the United Kingdom

US Uniformity on surroundings

US-LEED Leadership in Energy & Environmental Design of the United States

WCR Window-to-false-ceiling-wall area ratio

WWR Window-to-window-wall area ratio

LIST OF SYMBOLS

		Unit
α	Angle between the vertical of the plane containing the light	deg
	source and the line of sight for Guth position index	
β	Angle between the line of sight and the line from the observer	deg
	to the light source for Guth position index	
Γ	Gamma function	-
γ	Lower incomplete Gamma function	-
γ_{cl}	Altitude angle of the clear sky element above horizon	rad
γ_{oc}	Altitude angle of the overcast sky element above horizon	rad
γ_s	Altitude angle of the sun above horizon	rad
δ	Solar inclination	deg
ζ	Angle between the sun and the clear sky element	rad
ε	Eccentricity correction factor	-
θ	Vertical angle subtended by visible sky at the window centre	deg
θ_s	Altitude angle of the sun above horizon	deg
λ	Eigenvalue of a matrix	-
λ_{max}	Maximum eigenvalue of a matrix	-
σ	Hour angle	deg
Φ	Off-axis angle from optical centre of the lens	rad
φ	An arbitrary value of a representative lighting parameter	-
χ^2	Pearson's chi-square	-
Ω	Solid angle subtended by the light source	sr
Ψ	Configuration factor of the window from observation place	-
ω	Solid angle subtended by the window	sr
A	Total area of room interior surfaces	m^2
A_w	Area of glazing	m^2
AD	Average absolute deviation	-
a_s	Solar azimuth	deg
a_t	Solar altitude	deg
C	Cloud cover	okta
CDF	Cumulative distribution function	_

CF	Calibration factor for HDR photography	-				
CI	Consistency index of AHP -					
CR	Consistency ratio of AHP					
CU	Coefficient of utilization of Lumen Method	-				
DF	Daylight factor at a point	-				
DF_{avg}	Average daylight factor on a plane	-				
DGI	Daylight glare index	-				
DGI_{N1}	New daylight glare index proposed by Nazzal (2001a)	-				
DGI_{N2}	New daylight glare index proposed by Nazzal (2001b)	-				
DGR	Daylight glare rating	-				
DPI	Hourly daylighting performance index	-				
DPI_{avg}	Yearly average daylighting performance index	-				
df	Degree of freedom	-				
E_{α}	Adaptation illuminance	lux				
$E_{avg,desk}$	Average horizontal illuminance on the desk surface	lux				
E_i	Daylight illuminance at an indoor point	lux				
E_{ex}	Exterior illuminance	lux				
$E_{min,desk}$	Minimum horizontal illuminance on the desk surface	lux				
E_o	Daylight illuminance on an outdoor horizontal plane due to an	lux				
	unobstructed sky					
E_w	Window illuminance	lux				
E_{v}	Average vertical illuminance measured at the corners of the	lux				
	ColorChecker chart					
$E_{vl,unshielded}$	Average vertical illuminance of the outdoors	lux				
$E_{v2,unshielded}$	Average vertical unshielded illuminance from surroundings	lux				
$E_{v3,shielded}$	Average vertical shielded illuminance from the window	lux				
E_x	Daylight illuminance on an exterior horizontal place	lux				
	regardless of sky conditions					
ERC	Externally reflected component	-				
ES	Hourly possible electric lighting energy saving amount	W/m^2				
ES_t	Yearly possible electric lighting energy saving amount	W/m^2				
$f_{ES,BD}$	Weight of influence of brightness on desktop under energy	-				
	saving potential					

$f_{ES,BS}$	Weight of influence of brightness on surroundings under	-
	energy saving potential	
$f_{ES,DF}$	Weight of influence of a decision factor under energy saving	
	potential	
$f_{ES,PG}$	Weight of influence of perceived glare from window under	-
	energy saving potential	
$f_{ES,UD}$	Weight of influence of uniformity on desktop under energy	-
	saving potential	
$f_{ES,US}$	Weight of influence of uniformity on surroundings under	-
	energy saving potential	
$f_{VS,DF}$	Weight of influence of a decision factor under visual	-
	satisfaction	
$f_{VS,BS}$	Weight of influence of brightness on surroundings under	-
	visual satisfaction	
$f_{VS,PG}$	Weight of influence of perceived glare from window under	-
	visual satisfaction	
$f_{VS,UD}$	Weight of influence of uniformity on desktop under visual	-
	satisfaction	
$f_{VS,US}$	Weight of influence of uniformity on surroundings under	-
	visual satisfaction	
GM	Geometric mean	-
H_w	Window head height above the floor	m
I	Regularized incomplete Beta function	-
I_o	Hourly extraterrestrial irradiation on a horizontal surface	J/m^2
I_{sc}	Solar constant	-
IRC	Internally reflected component	-
K	Diffuse fraction	-
K_{gcl}	Global luminous efficacy for clear sky	lm/W
K_{goc}	Global luminous efficacy for overcast sky	lm/W
K_{gpc}	Global luminous efficacy for partly cloudy sky	lm/W
K_t	Clearness index	-
L	Latitude of a city	deg

$L_{avg,40C}$	Average luminance within the central circle of angular				
	subtense 40°				
$L_{avg,40H}$	Average luminance within a horizontal band of 40° wide	cd/m^2			
L_{α}	Adaptation luminance				
$L_{avg,desk}$	Average luminance on the desk surface	cd/m^2			
$L_{avg,surr}$	Average luminance on the surrounding surfaces	cd/m^2			
L_b	Background luminance	cd/m^2			
L_{back}	Luminance of the back half of the room	cd/m^2			
L_{cl}	Clear sky luminance at a sky element	kcd/m ²			
L_{ex}	Exterior luminance	cd/m^2			
L_{front}	Luminance of the front half of the room	cd/m^2			
L_{HDR}	Luminance of a pixel of an HDR image	cd/m^2			
L_{HDR} ,	Luminance of a pixel of an HDR image after vignetting effect	cd/m^2			
	correction				
$L_{measured}$	Luminance of a target measured by spot luminance meter	cd/m ²			
L_{oc}	Overcast sky luminance at a sky element	kcd/m ²			
L_s	Source luminance	cd/m^2			
L_w	Window luminance	cd/m^2			
L_{zcl}	Clear sky luminance at the zenith	kcd/m ²			
L_{zoc}	Overcast sky luminance at the zenith	kcd/m ²			
LLF	Luminance loss factor	-			
LPD_{max}	Maximum allowance lighting power density	W/m^2			
$log E_{avg,desk}$	Logarithm of average horizontal illuminance on the desk	-			
	surface				
$log E_{min,desk}$	Logarithm of minimum horizontal illuminance on the desk	-			
	surface				
$log L_{avg,40C}$	Logarithm of average luminance within the central circle of	-			
	angular subtense 40°				
$log L_{avg,40H}$	Logarithm of average luminance within a horizontal band of	-			
	40° wide				
$log L_{avg,desk}$	Logarithm of average luminance on the desk surface	-			
$log L_{avg,surr}$	Logarithm of average luminance on the surrounding surfaces	-			
P	Guth position index	-			

PGSV	Predicted glare sensation vote	-
P_o	Observed proportion	%
P_a	Assumed proportion	%
P_C	Probability of occurrence of a clear sky	%
P_{DF}	Probability of achieving a criteria due to a decision factor	%
$\mathbf{P}_{DF,C}$	Probability of achieving a criteria due to a decision factor under a clear sky	%
$P_{DF,O}$	Probability of achieving a criteria due to a decision factor under an overcast sky	%
$P_{DF,P}$	Probability of achieving a criteria due to a decision factor under a partly cloudy sky	%
$P_{DF,R}$	Resultant probability of achieving a criteria due to a decision	%
	factor after considering the probability of sky type	
P_{DP}	Probability of achieving good daylighting performance	%
P_{ES}	Probability of achieving energy saving	%
$P_{ES,BD}$	Probability of achieving energy saving due to brightness on	%
	desktop	
$P_{ES,BS}$	Probability of achieving energy saving due to brightness on	%
	surroundings	
$P_{ES,PG}$	Probability of achieving energy saving due to perceived glare	%
	from window	
$P_{ES,UD}$	Probability of achieving energy saving due to uniformity on	%
	desktop	
$P_{ES,US}$	Probability of achieving energy saving due to uniformity on	%
	surroundings	
P_O	Probability of occurrence of an overcast sky	%
P_P	Probability of occurrence of a partly cloudy sky	%
P_{VS}	Probability of achieving visual satisfaction	%
$P_{VS,BD}$	Probability of achieving visual satisfaction due to brightness	%
	on desktop	
$P_{VS,BS}$	Probability of achieving visual satisfaction due to brightness	%
	on surroundings	

$P_{VS,PG}$	Probability of achieving visual satisfaction due to perceived			
	glare from window			
$P_{VS,UD}$	Probability of achieving visual satisfaction due to uniformity	%		
	on desktop			
$P_{VS,US}$	Probability of achieving visual satisfaction due to uniformity	%		
	on surroundings			
p	<i>p</i> -value			
R	Area-weighted average reflectance of all the interior surfaces	-		
R_{40C}	Ratio of minimum to average luminances within the central	-		
	circle of angular subtense 40°			
R_{40H}	Ratio of minimum to average luminances within a horizontal	-		
	band of 40° wide			
R_b	Area-weighted average reflectance of the surfaces in the rear	-		
	half of a room			
R_{surr}	Ratio of minimum to average luminances of the surroundings	-		
RI	Random consistency ratio			
R^2	Coefficient of determination	-		
r	Pearson correlation coefficient			
SC	Sky component	-		
SC_g	Shading coefficient of glazing	-		
SD	Standard deviation	_		
SR_{avg}	Average star rating of a daylit cellular office subject to DPI_{avg}	-		
s_I	Dichotomous scale	_		
s_2	Likert scale	_		
U_{desk}	Uniformity on the desk surface	-		
UDI	Useful daylight illuminance	lux		
UGR	CIE unified glare rating	_		
VDF	Vertical daylight factor	%		
VH ratio	Vertical-to-horizontal illuminance ratio	-		
VSC	Vertical sky component	%		
VT_g	Visible transmittance of glazing	_		

CHAPTER 1 INTRODUCTION

1.1 Motivation

Global warming is threatening the whole world. Researchers are working hard in finding ways to mitigate its effects. A key method is to reduce the consumption of fossil fuel energy. Humans spend one-third of their time every day in offices, and thus energy conservation in commercial buildings should be followed with interest. Take Hong Kong as an example, over the past decade, the electricity consumption of this city has been steadily rising without any significant signs of reduction. Despite the application of more energy efficient light sources, lighting as a major energy end-user in the office segment keeps sharing about one-fifth of the local electricity consumption (EMSD, 2009). The data reflects that it is essential for office buildings to initiate a green lighting scheme. Humans should not hesitate to take action before any troubles emerge – turn off the lights and use daylight now!

On one side, making good use of natural light has long been recommended as an effective means of reducing electric lighting energy consumption in office buildings; on the other side, it should not be neglected that lighting is a kind of science closely involving human psychological judgments and physiological functioning playing an important role in people's mood, comfort, health and productivity. Consequently, to effectively reduce electric lighting energy consumption, daylighting design in offices should act on a major premise that occupants would feel satisfactory with the daylit working environment. However, the abstract concept of indoor daylighting performance, which has not yet been clearly defined, poses great challenges of designing a visually satisfactory and high electric lighting energy saving potential office environment with a side window.

The prime concern in daylighting research of buildings is the assessment of its performance. Occupants' visual satisfaction and electric lighting energy saving potential should be taken attention for the achievement of good daylighting performance. Many researchers have developed various methods, indicators, systems and tools to evaluate occupants' visual satisfaction towards a sidelit interior, but most

of them only account for a single parameter focusing on either daylight quantity or daylight quality. Daylight quantity is simply regarded as the appropriate amount of daylight within a certain period of time providing adequate brightness for illuminating the room and the task area for workers to perform visual tasks with good visibility whereas daylight quality is a term used to describe all the factors not directly connected with the quantity of daylight illumination (Stein and Reynolds, 2006), indicating the degree to which the daylit environment supports the behavioural needs of occupants (Veitch and Newsham, 1998), creates a feeling of well-being, enhances visual comfort and promotes economic benefits due to the saving of electric lighting energy (Veitch, 2001).

Average daylight factor (Longmore, 1975; Crisp and Littlefair, 1984; BSI, 1992; CIBSE, 1999), probably the most widely used parameter for daylighting design and performance evaluation, emphasizes solely the daylight amount falling into an interior from an overcast sky but not necessarily its quality. As a result, a large value of the average daylight factor does not always imply good indoor daylight quality. Daylight glare index (Chauvel et al., 1982), vertical-to-horizontal illuminance ratio (Love and Navvab, 1994) and luminance differences index (Parpairi et al., 2002) are all potential contributors to daylight quality but unlikely its quantity. Further, none of the widely used methods provides a practical concept about the reward of exploiting daylight in interiors in the energy aspect. It remains a significant knowledge gap on the interrelationships of the daylight quantity and quality variables as well as occupants' visual satisfaction and electric lighting energy saving potential to the overall interior daylighting performance. It is believed that the lack of knowledge is the main reason causing daylighting not as popular as expected in our daily lives.

This research study aims to develop a multi-criteria daylighting performance assessment method for cellular offices by considering relevant decision factors with the use of analytic hierarchy process (AHP). An inclusive indicator is proposed for the daylighting performance evaluation so that building developers, architects, engineers, lighting designers and environmentalists can be more confident in designing for daylighting in interior workplaces. The long term mission is to light up working spaces satisfactorily in the visual aspect by daylight, whenever it is available, for creating a low carbon office environment.

1.2 Purpose

Daylight is the only natural light source that can be used for illumination in buildings. Daylighting, i.e. the conscious use of glare-free natural light for illuminating building interiors (Reinhart, 2002), has been an important part of building design for centuries. In the recent hundred years, improved technology has allowed humans to depend more on electric lighting such that daylighting has moved to a lower level of priority in the design process resulting in that daylighting is sometimes considered as a by-product from windows. Many recent studies have shown that the use of daylight in interiors offers a number of benefits to the environment as well as to the occupants, such as saving electric energy, improving human productivity, mood and health (Cuttle, 1983; Heerwagen and Heerwagen, 1986; Veitch et al., 1993; Veitch and Gifford, 1996). The rising energy cost and the recent emphasis on a green and sustainable building design have made a turn moving daylighting up. However, it is never an easy task for architects and lighting designers to sketch a well performed daylit environment probably because the existing indoor daylighting assessment methods solely evaluate one or parts of the essential daylighting attributes of an interior and leave their individual influences to the overall daylighting performance unclear. In addition, they may lack for the considerations of human visual satisfaction and electric lighting energy saving possibility. All of these reasons lead to the purpose of this research study.

The primary objective of this research study is to invent the multi-criteria daylighting performance index (*DPI*) for cellular offices beyond which the saving of energy for electric lighting systems of cellular offices can be maximized meanwhile without compromising the visual satisfaction level of office occupants. In order to accomplish the task, four objectives are set out,

Objective 1: To review the daylighting performance assessment methods and parameters which are commonly used in local building regulations and international lighting design guides;

- Objective 2: To develop a hierarchical structure for the novel daylighting performance assessment method for cellular offices that integrates various criteria and decision factors;
- Objective 3: To find out the weights of importance of decision factors to each criterion and the values of physical parameters for the erection of the hierarchical structure;
- Objective 4: To introduce the application of *DPI* and its associated grading scheme for the daylighting performance evaluation of cellular offices and discuss its implication of electric lighting energy saving.

The next section goes deep into the scope of work for achieving the above objectives as well as the hypotheses and assumptions made in the research study.

1.3 Scope and major hypotheses

This thesis aims to develop a novel comprehensive daylighting performance assessment method for cellular offices with the example of Hong Kong in order to build up a visually satisfactory low carbon lighting environment in the future. It is first necessary to look over the shortages of current daylighting situations and the evaluation schemes. The research study starts with the discussion on the position of daylighting in the city followed by the regulations for daylight provision in interiors as well as the daylighting design and assessment methods commonly recommended in international as well as local daylighting design guides. The principles, assumptions and limitations of each method were reviewed and the ideas of daylighting of building designers and office occupants were surveyed. The first objective was achieved. These findings would reveal the potential and problems of designing for daylighting and provide a directional development for this research study of introducing a new and inclusive daylighting performance indicator.

An indoor daylit space is always so complicated that the decision factors accounting for its performance have not yet been completely understood. This study starts with the hypothesis about the criteria of a well performed daylit environment, and then focuses on the selection of daylighting performance decision factors and the associations between each decision factor and quantitative lighting parameters by

conducting various field surveys, user assessment questionnaires and daylight measurements analyzed with different statistical techniques, under the presumptions that all occupants have similar tendency towards the perception of each decision factor and the variations of the sky condition during each field measurement were insignificant. A sort of advanced technology named high dynamic range (HDR) photography, which simply requires a consumer grade digital camera with an ultra wide angle lens and a sort of lighting software to fuse the photographs of different luminance ranges, was applied for the measurement of luminance distribution within the field of view. This improved photography technology changes lighting researches on human subjective perception from the conventional way with the use of point luminance meter to a new era. The findings made known the potential decision factors that can explain the criteria and formulated the probability of achieving good daylighting performance inside cellular offices in terms of each decision factor and its representative lighting parameter.

This study purposes to develop a hierarchical structure for the overall office daylighting performance assessment. The next part goes naturally to the introduction of the concept of analytic hierarchy process (AHP). AHP is a multiple criteria decision making technique providing a comprehensive and rational framework, which is particularly suitable for dealing with a problem made up of complex factors. Daylighting performance assessment involves the visual satisfaction level of human subjective perception, probably the most complicated subject in the world science, as well as the possible saving amount of electric lighting energy, an accurate value of which can give occupants immediate and consolidated determination to exploit daylight in their working spaces. These two criteria are hypothesized to be made up of many decision factors. It would most likely be well analyzed by AHP for disclosing the priority of the decision factors to each criterion with a series of pairwise comparisons. In this thesis, the hierarchical structure was designed to be made up of three levels. The goal to be achieved, i.e. good daylighting performance, sat at the top level, under which were two criteria lying at the middle level, occupants' visual satisfaction and electric lighting energy saving potential, assumed to have equal influential weight to the goal. The confirmed decision factors of different perceptions characterized by their controlling lighting parameters were allocated at the bottom level of the hierarchy for explaining the two criteria. In this

research study, it was hypothesized that any thermal problem arisen from daylighting was no longer a setback after the use of low-emissivity glazing, the number of the daylighting performance criteria and decision factors was fixed, and no more other criteria or decision factors were added into the hierarchical structure. The findings in this part exposed the influential weights of the decision factors in numerical values. The results achieved the second and third objectives of this thesis since the AHP hierarchy was completely developed with final priorities. The study remains the introduction of the daylighting performance index (*DPI*).

In the last part, the study builds up on the findings from the previous parts and emphasizes the most crucial construction of its output – daylighting performance index (DPI) for cellular offices. It is a quantitative indicator of the daylighting performance of an interior within one working hour taking multiple criteria into consideration in the form of AHP hierarchy, where a larger number of DPI implies better overall indoor daylighting performance. In order to formulate the DPI, the study on one hand classifies the hourly sky type of the city into clear, partly cloudy and overcast skies in accordance with the official hourly cloud cover records over the recent years such that their individual frequencies of occurrence in each working hour were obtained; on the other hand, the study simulates twelve cellular office models with different window sizes and orientations, having or not having external obstructions under the three sky types by the computer software DIALux for their hourly daylighting situations such that the numerical values of the representative parameters were recorded from the simulation results. Having obtained these data, plus the influential weights of the criteria and the decision factors, the main outcome of this research study, a multi-criteria daylighting performance indicator of an hour, daylighting performance index (DPI), was produced.

The study further figures out the DPI of every working hour on a typical day of every month in a year and analyzes the daylighting performance in the simulation cellular office models. It aims to design a scientific grading system that a cellular office is accredited as possessing a certain level of daylighting performance when it attains an average DPI (DPI_{avg}) throughout the whole year at a certain value. In the end of this study, the implication of electric lighting energy saving with the use of the DPI grading scheme was added for reference so that the final objective was

achieved. It is believed that applying this novel performance indicator in designing cellular offices for daylighting can effectively maximize the saving of energy for electric lighting systems without reducing any visual satisfaction of the users. The thesis aims to offer a more comprehensive assessment method of the daylighting performance for cellular offices taken both human factors and energy issues into consideration so that building developers, architects, engineers, lighting designers and building environmentalists can apply it for designing for better exploitation of daylight in workplaces and take a step towards a low carbon lighting environment.

1.4 Importance

Hong Kong is regarded as the city concerned in this thesis. It is a place like any other international metropolitans where service industry dominates over others, high rise buildings erect closely together, and a large proportion of the labour force works in offices during daytime. The period of time for workers to stay at offices may not be less than that staying at homes. It is of utmost importance that the office environment is comfortable in all dimensions, unexceptionally in the visual aspect. Although it is the fact that artificial lighting can support security and daily work with the necessary level of illuminance when natural lighting cannot fully fulfill the functional requirements, appropriate daylighting design in offices can still provide the essential psychological needs on views of outside world and reduce the use of electric lighting. However, designing for daylighting in interiors is not an easy task probably because the means of analyzing indoor daylighting performance is not yet well understood (Robbins, 1986). In order to promote an occupants' visually satisfactory and high electric lighting energy saving potential daylit working environment, a novel daylighting performance assessment method taking multiple daylighting criteria into account is proposed for local cellular offices.

The research study examines the relationship between human perception on daylit environments and a list of quantitative lighting parameters, discovers the priority of the decision factors when occupants judge on the daylighting performance of their workplaces and encourages the better use of daylight in interiors as a kind of natural renewable energy that brings the least adverse effects to the environment as well as to the occupants. It presents procedures of the multi-criteria daylighting performance

assessment so that occupants' visual satisfaction and electric lighting energy saving potential weight equal importance in a sidelit working environment. The assessment is simple yet scientific. The input parameters are the room and window dimensions, window orientation, glazing properties, reflectances of the internal surfaces and obstructions of the external environment of a cellular office, which are all available as early as in the preliminary design stages. The output results are the DPI obtained in each working hour, the corresponding star rating due to the DPI_{avg} over a year and the possible saving amount of electric lighting energy subject to the daylighting performance achieved in the office. The process in between is a series of daylighting simulations involving various criteria and decision factors by the computer software DIALux. Architects, engineers and lighting designers can make use of the DPI grading scheme for designing for better daylighting performance in cellular offices. The concept of DPI contributes in the future development of a revised regulation of daylight provision in offices. The trial of HDR photography in the use of daylighting performance assessment integrated with human factors paves the way for the upcoming lighting research trend.

1.5 Organization

This thesis is organized in nine chapters. The first four chapters bring out the grounds of doing this research study. Chapter 1 is the introduction. Chapter 2 starts with the nature of daylight and the necessity of daylighting in Hong Kong, and then presents the possibility of exploiting daylight in interiors in Hong Kong. The general information of Hong Kong, including its climate and daylighting availability as well as the built environment in its major commercial districts, is reported. The potentials and problems of daylighting in the city are discussed. The local building regulations related to daylight provision in indoor spaces are also described. Both prescriptive and performance based approaches as well as a local voluntary guideline about designing for daylighting are introduced in this chapter. Chapter 3 gives a review on the commonly used daylighting performance indicators. The principles, assumptions and limitations of each method are presented. This chapter also discusses the trends and challenges in the development of a more refined and reliable daylighting assessment method. Chapter 4 reports the results of the surveys on the current practices of office daylighting design in Hong Kong. The opinions of building design

practitioners and occupants on daylighting in offices are also investigated. Their ideas provide an important reference to the direction of this study – hypothesizing the two main criteria of achieving good daylighting performance in cellular offices, i.e. occupants' visual satisfaction and electric lighting energy saving potential.

The following four chapters are the main body of this thesis. Chapter 5 presents the methodology for concluding the decision factors which account for the two criteria of daylighting performance in cellular offices. These decision factors include 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window'. The underlying physical parameters explaining these decision factors are revealed. A series of logistic regression models are also proposed to approximate the probability of achieving the two criteria due to each decision factor in terms of their representative parameters in this chapter. Chapter 6 specifies the use of a kind of advanced technology, high dynamic range (HDR) photography, in the measurement of luminance distribution within the field of view. A feasibility study is discussed together with some technical concerns. The discrepancies between the real luminance values and those obtained from HDR images are reported. The future investigations on the application of HDR photography are also pointed out. Chapter 7 introduces the application of analytic hierarchy process (AHP) to solve the problem of creating good daylighting performance in cellular offices. The methodology of disclosing the weight of importance of each decision factor towards the overall daylighting performance is presented. An AHP hierarchy structure with final priorities of decision factors is built up in this chapter. Chapter 8 aims to formulate the major output of this research study, daylighting performance index (DPI). In this chapter, the frequencies of occurrence of different sky types in Hong Kong throughout the years are studied. Different cellular offices are modelled by the computer software DIALux for the daylighting situations. Ratings of different levels of daylighting performance considering multiple criteria are proposed. The implication of electric lighting energy saving potential in accordance with the DPI is also discussed.

Chapter 9 comes to the end of this thesis. A conclusion of the research results is drawn in this chapter which also discusses the limitations of the study and the needs for future works. Figure 1.1 shows the organization of this thesis by a block diagram.

Chapter 1: Introduction

Chapter 3:

Review of current daylighting design and assessment methods

- Review the commonly used daylighting performance indicators with their principles, assumptions and limitations
- Deduce the reason of poor daylighting design is the lack of knowledge about the combined effects of daylighting performance criteria and decision factors
- Discuss the future daylighting performance assessment trend

Chapter 5: Decision factors and their physical parameters

- Shortlist five daylighting performance decision factors from literature
- Verify the relationships between the selected decision factors and the two criteria via user assessment surveys
- Discover the representative parameters for the five decision factors via user assessment surveys and field measurements
- Develop logistic regression models for the probability of achieving the two criteria due to each decision factor via statistical approaches

Chapter 7: Analytic hierarchy process

- Introduce application of AHP to disclose weights of importance of each decision factor to overall daylighting performance
- Construct an AHP hierarchy for daylighting performance assessment in cellular offices with the final priorities of all the criteria and decision factors

Chapter 9: Conclusion

Chapter 2: Daylight and daylighting in Hong Kong

- Review the nature of daylight and the benefits of daylighting
- Review the potential and problems of daylighting in Hong Kong
- Review local daylighting regulations and guidelines

Chapter 4: Survey on daylighting design preferences and practices

- Confirm occupants' visual satisfaction and electric lighting energy saving potential are the two criteria of achieving good daylighting performance in cellular offices
- Establish the research problem

Chapter 6: High dynamic range photography

- Introduce the application of HDR photography to acquire luminance within visual field
- Report the results and technical concerns of a feasibility study

Chapter 8: Daylighting performance index

- Study occurrence frequencies of clear, partly cloudy and overcast skies in Hong Kong
- Simulate daylighting situations of 12 different cellular office models by DIALux
- Develop *DPI* of each working hour for each cellular office model with the simulation results, the sky type probabilities and the logistic regression models
- Propose a scientific grading scheme for cellular office daylighting performance with *DPI*_{avg}
- Explain the implication of electric lighting energy saving by *DPI* grading scheme

Figure 1.1 Organization of thesis

CHAPTER 2

DAYLIGHT AND DAYLIGHTING IN HONG KONG

2.1 Introduction

Daylight is essential to life on earth. The change of daylight intensity creates climates and determines the natural landscape of different parts of the planet. Its presence on the earth's surface provides warmth and light for mankind and other creations. Prior to the study of the exploitation of daylight for illuminating building interiors, it is important to understand daylight and the associated solar radiation. They are necessary to make clear in the beginning of the thesis. Afterwards, this chapter talks about the benefits of daylighting to humans in visual, psychological, biological and hygienic aspects as well as to this city for energy conservation. Some problems arisen from daylighting are also briefed.

Hong Kong is the place that this research study concerns. It is currently one of the most highly compact urban areas in the world. As both population and commercial activities are expected to increase in the coming years, a large number of densely packed residential and office skyscrapers are being continuously built to meet the rising demand forming the unwanted wall effect in the urban layout. The defence for daylight provision in buildings therefore becomes a hot topic in this city (The Standard, 2010a, 2010b). This chapter presents the feasibility of daylighting in Hong Kong, both its potential and problems. Hong Kong's climate, daylighting availability and the built environment in the main commercial areas are discussed. The legislative clauses governing the indoor daylit environment and the alternative measure for regulatory control of daylighting in buildings are described. The recommendations of provision of daylight in interiors provided in local voluntary guidelines are also introduced in this chapter.

2.2 Nature of daylight

Daylight is the main focus of this study. As implied in its name, daylight is the light reaching the earth's surface during daytime between sunrise and sunset. The sun is the origin of all living things on the earth. It gives off solar energy in the form of

electromagnetic waves. The amount of solar energy emanating from the sun within a specified period of time is called solar radiation (Muneer, 2004). Part of the solar radiation is absorbed, part is reflected and part is scattered after passing through the atmosphere of the earth. The final intensity of solar radiation received on a surface of the earth, which is named as solar irradiation, varies with solar elevation, controlled by latitude, season and time of day, geographical location of the surface as well as local weather condition. Daylight can be divided into two components: sunlight and skylight. Sunlight is the part of solar irradiation received on the earth's surface from the sun without any change of direction except for the slight refraction by the atmosphere, i.e. the direct solar irradiation producing strong and sharp-edged shadows. Skylight is the part of solar irradiation received on the earth's surface after scattered by the atmosphere, i.e. diffuse solar irradiation producing weak and diffuse shadows.

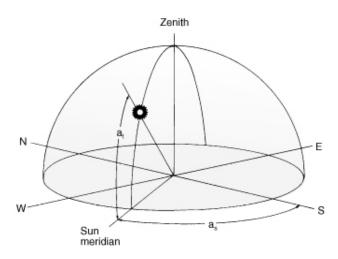


Figure 2.1 The sun's position in terms of solar altitude (a_t) and azimuth (a_s) with respect to the cardinal points of the compass (IESNA, 2000)

The direction of sunlight is expressed in two angles: solar altitude and solar azimuth. Figure 2.1 illustrates the physical meanings of these two angles. Solar altitude (a_t) is the angle between the sun's ray and the horizontal plane while solar azimuth (a_s) is the angle between the vertical plane containing the sun's ray and the vertical plane running north-south measured from the south. These two angles are of the horizontal system which uses the local horizontal plane as the reference plane so they will be different at different places of the planet. The reference plane can be converted from

the local horizontal plane to the equatorial plane. In this case, the two angles become solar declination and hour angle. Solar declination is the angle between the sun-earth line and the equatorial plane. It varies roughly as a sine function through the year with 0° on the equinoxes, $\pm 23.5^{\circ}$ on the summer and winter solstice respectively. Hour angle is the angle between the meridian of the sun and a reference meridian which is usually assumed to be the local meridian. With regard to skylight, it comes from the sky hemisphere where the sun is excluded. The sky is made up of small suspended particles, such as ozone, dust, water vapour, droplets and clouds. It is of different luminances and shows different colours as these substances in the sky scatter, diffuse, reflect and refract the visible light of different wavelengths coming from the sun through the atmosphere at different angles.

Daylight produces a wide range of illuminances on the earth's surface. The maximum outdoor illuminance on the earth's surface can reach 150 klux at noon under very clear sky conditions on a summer's day but it can drop to below 1 klux on heavily cloudy days in winters (Boyce, 2003). Irrespective of the continuously changing spectral distribution with the sun position and sky conditions, daylight is a full spectrum light source which covers the electromagnetic spectrum that gives rise to a visual sensation with wavelengths ranging from 380 nm to 760 nm, with a higher fraction of relative power in the shorter wavelengths, and contains significant amounts of shorter ultraviolet and longer infrared irradiation, which may also be detected by a human eye in right circumstances (Sliney et al. 1976). Daylight colour temperature changes greatly. Subject to sky type, season and time of day and also direction of observation, it varies from less than 2,000 K at twilight to more than 40,000 K for blue parts of cloudless skies and it is generally more uniform but lower under cloudy skies at about 6,000 K while it is higher under clear skies ranging from 7,000 K near the sun to more than 20,000 K on the opposite side of the sun (Chain et al., 2001). Figure 2.2 shows the three spectral radiant power distributions for the daylight developed by the Commission Internationale de l'Eclairage (CIE) at 5500 K (D55), 6500 K (D65) and 7500 K (D75).

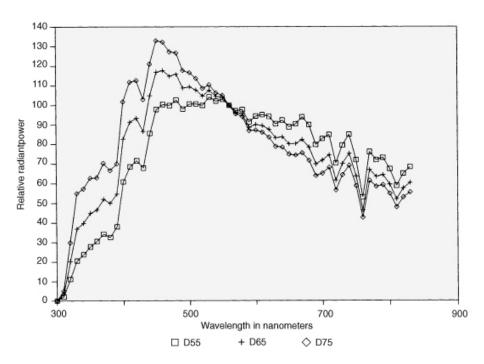


Figure 2.2 Spectral power distributions of daylight at different colour temperatures (IESNA, 2000)

In addition to the wide range of quantity and the ever-changing spectral power distribution, daylight also has a dynamic variation in its luminance distribution over the whole sky hemisphere. Sky luminance distribution depends strongly on the sky conditions, which can be categorized into various sky types by prevailing climatic parameters. Sky conditions of the same category would have similar sky luminance patterns. Among different sky types, an overcast sky provides the worst design condition for daylighting, and therefore it is always considered to be the most crucial for daylighting designs and evaluations. Its luminance distribution had earlier been mathematically assumed to be uniform over the whole sky vault. The first field study on the sky luminance distribution was initiated by Schramm (1901). Twenty years later, some researches on the sky luminance were conducted by Kimball and Hand (1921, 1922). They performed extensive measurements of sky luminance in the cities of Chicago and Washington in the United States from 1919 to 1922, and reported the average values of overcast sky luminances with a variation from 30 to 200%. Since then, many researchers have carried out measurements on the overcast sky and showed that the luminance distribution conforms closely to a pattern that it is symmetrical about the zenith, gains its peak at the zenith and falls down

systematically towards the horizon where it has only one-third of the zenith value, independent of the solar altitude (Moon and Spencer, 1942; McDermott and Gordon-Smith, 1951; Hopkinson, 1954; Richards and Rennhackkamp, 1959; Paix, 1963). Among all, the Moon-Spencer formula was adopted by the CIE (1955) as the standard for computing the overcast sky luminance distribution,

$$L_{oc} = L_{zoc} \frac{1 + 2\sin\gamma_{oc}}{3} \tag{2.1}$$

where L_{oc} is the overcast sky luminance at a sky element in kcd/m², L_{zoc} is the overcast sky luminance at the zenith in kcd/m², and γ_{oc} is the angle of altitude of the overcast sky element above the horizon in radians.

The CIE standard overcast sky has however been criticized for years, such as missing the consideration of reflected light from the ground and lacking generality. Fritz (1955) and Petherbridge (1955) respectively pointed out in theory and through experiments that the reflecting properties of the ground would exert an influence on the standard overcast sky model. They showed that the more light is reflected from the ground, the more uniform the luminance of the overcast sky will be. A modification of Equation 2.1 was expressed,

$$L_{oc} = L_{zoc} \frac{1 + k \sin \gamma_{oc}}{1 + k} \tag{2.2}$$

where k is a constant dependent on the reflectance of the ground, having a value of 2 for ground of the normal reflectance about 10%, and 1 for snow-covered ground of reflectance about 80%. Muneer and Angus (1994) put forward another model using this basic luminance distribution equation with different k values. They proposed k = 1.32 for shaded windows and k = 0 for sun-facing windows. Steven and Unsworth (1980) reported that this expression may also represent the luminance distribution for a general one-dimensional anisotropic model. Kittler and Valko (1993) proposed numerical values of modelling coefficients in the exponential alternative model, which was initially targeted to describe the sky luminance of all kinds of weather (Perez et al., 1993), to account for the luminance of an overcast sky,

$$L_{oc} = L_{zoc} \frac{1 + a^{b/\sin \gamma_{oc}}}{1 + a^{b}} \tag{2.3}$$

where a and b are modelling coefficients, respectively equal to 3.5 and -0.56 as proposed by Kittler and Valko (1993).

An overcast sky is characterized as a sky covered with heavy clouds and completely impeded the vision of the sun (IESNA, 2000). In the CIE standard overcast sky model, the luminance of the overcast sky is assumed to be a function only of the elevation angle of the sky patch observed and nothing else. Enarun and Littlefair (1995) reported that the CIE standard overcast sky model performed the best after evaluating some of the above overcast sky models and comparing the measured data in southern England under a fully overcast sky. Local researchers also claimed that the CIE standard overcast sky model produces a better agreement with the fully overcast sky measurement data obtained in Hong Kong than a uniform sky pattern does (Li et al., 2004). However, some researchers have other ideas on this assumption. Muneer (1995) commented that the fully overcast sky type is not unique and it should be subdivided into two types according to cloud thickness. He pointed out that this sky model is applicable only to a heavily overcast sky when the complete sky vault is covered with uniform dark thick clouds (Muneer, 1998). Igawa and Nakamura (2001) expressed a similar idea. Muneer (1995) suggested that a circumsolar component dependent on the orientation should be included in account for the sky luminance pattern of a thin overcast sky. This comment is quite consistent with the study of Coombes and Harrison (1988) who added the solar zenith angle and the scattering angle between the sky patch and the sun into their proposed equation for the sky luminance of an overcast sky. Some researchers also followed this direction of investigation (Perraudeau, 1988; Page, 1990). Muneer (1998) further pointed out that the CIE standard overcast sky model might lead to significant underestimation of available daylight within building interiors grounded on Japanese data and a uniform sky is a better representation of the overcast luminance distribution. Despite the criticism and uncertainty, the CIE standard overcast sky is still widely adopted in current CIE publications (CIE, 1994) and universally accepted in research studies for window design and different daylighting systems.

Apart from the standardization of overcast sky luminance distribution, CIE (1973) also gave an official expression for the luminance distribution of a clear sky, which was first proposed by Kittler (1967),

$$L_{cl} = L_{zcl} \frac{\left(1 - e^{-0.32/\sin\gamma_{cl}}\right) \left(0.91 + 10e^{-3\zeta} + 0.45\cos^2\zeta\right)}{0.27385 \left[0.91 + 10e^{-3(\pi/2 - \gamma_s)} + 0.45\cos^2(\pi/2 - \gamma_s)\right]}$$
(2.4)

where L_{cl} is the clear sky luminance at a sky element in kcd/m², L_{zcl} is the clear sky luminance at the zenith in kcd/m², γ_{cl} is the angle of altitude of the clear sky element above the horizon in radians, γ_s is the angle of altitude of the sun above the horizon in radians, and ζ is the angle between the sun and the clear sky element in radians.

Both the CIE standard overcast and clear skies are at the extremes of the possible sky conditions. In practice, the luminance distribution of the sky usually varies between these two standards under an intermediate weather condition, and such a sky is named a partly cloudy sky (CIE, 1994). The luminance distribution of a partly cloudy sky depends partially on the degree of cloud cover and partially on the degree of solar altitude, where the sun and the aureole close to it are excluded.

Researchers never feel fine with the discrepancies between the actual state of daylight and that calculated from the above CIE standard skies. Some of them proposed a new range of 15 standard skies for all the luminance distribution conditions, including five clear, five partly cloudy and five overcast sky types (Kittler et al., 1997), which were later also adopted as the CIE standard general skies (CIE, 2003). Nevertheless, it is not necessary for researchers to exploit every single sky type to describe the sky luminance distribution conditions of a place. Kittler et al. (1997) reported the use of a subset of four sky types for any sky conditions at any station while Li et al. (2003) showed five fitting for the skies of Hong Kong, and they were sky types 1, 3, 6, 11 and 13. Other researchers thought that 15 different sky types might be too many. Igawa and Nakamura (2001) established a sky model named 'All Sky Model' that can represent all the sky luminance distributions from clear sky to overcast sky continuously based on functions of solar altitude and normalized global illuminance derived from available global illuminance data.

The above paragraphs discuss some of the crucial features of daylight, including its origin, components, quantity, properties and luminance distributions under different sky types. It is wished that they can bring some general ideas of daylight, which is the major focus of this research study, to the readers. In the following parts of this research study, daylight is regarded as the natural light from the whole sky hemisphere taking account of both sunlight and skylight, unless otherwise stated. Details of the occurrence frequencies of different sky types in Hong Kong are talked about in the Section 2.4.

2.3 Benefits of daylighting

Since human civilization, daylight has been the only natural light source that can be used for illumination inside buildings. Daylighting, defined as the conscious use of glare-free natural light for illuminating building interiors (Reinhart, 2002), has been an important part of building design for centuries. Candles, lanterns, oil and gas flames might provide some supplementary illumination functions to indoor spaces but their contributions were restricted because of their limited luminous intensities. In the recent hundred years, advanced technology has paved the way for human to invent various types of artificial lighting that can effectively light up the interiors, such as electric light bulbs, fluorescent tubes, discharge lamps and the latest LED lamps, some of which are designed to be energy efficient. It changes the pattern of lives for millions of people on earth. Humans can now possibly rely wholly on artificial lighting in working, living, playing and many other kinds of indoor activities. Then does it mean that natural lighting can be entirely superseded by artificial lighting in buildings? The answer is 'No'. More and more evidence has shown that utilization of daylight in interiors provide many benefits which the current electric lighting does not possess and cannot replace.

Daylighting has at least five advantages that electric lighting has not yet been able to provide despite its rapid development. The first one is visual benefit. Daylight is considered as the best light source that humans are born to live under and most eager to obtain. It is capable of providing high illuminance and has a continuous spectrum in visible wavelength range making excellent colour rendering and colour

temperature available and containing the quality matching most closely with human visual response. These two properties give daylight the potential to produce good vision. It was concluded that office workers show a strong preference for daylight to illuminate their work area (Cuttle, 1983), natural daylight is better working under than artificial light (Veitch et al., 1993) and they did their best work when places were lit by natural light (Veitch and Gifford, 1996). The high dynamic property of daylight also acts as an advantage. The most preferred office lighting was that which provided both brightness and interest (Hawkes et al., 1979). In addition that it can provide a lot of light, the variability in luminance of daylight changing from time to time and from place to place can bring interest to a space and different kinds of visual stimuli to human. Thus daylighting provides a better visual environment for the space users.

Apart from visual benefit, daylighting also promotes human mood. Several research studies have documented that people believe that daylight is superior to electric light in its effect on them so that working by daylight would result in less stress and discomfort than working by electric light, and daylight is better for psychological comfort (Cuttle, 1983; Veitch et al., 1993; Veitch and Gifford, 1996). Daylight was rated 19 out of 20 in importance among features essential to a comfortable work environment (Heerwagen and Heerwagen, 1986). Daylighting is always associated with windows. It was sometimes even considered as a by-product from windows during the days when electric lighting took over the reign in illumination and daylighting has not yet been given weight to. It was true to a certain extent since there is a close relationship between windows and daylighting that it is the windows to admit daylight into an interior, and in other words, a window is the main light source in daylighting. Utilizing daylight through windows can provide humans with a communication channel in visual, in physical and in emotional with the outside world. A window offers room users a view out allowing them to keep in contact with the external environment, which presents a significant positive impact on them with a sense of spaciousness to the room. With daylight penetrating through windows into a room, it gives occupants a feeling of warmness, brightness and optimism (Robbins, 1986). The psychological benefit resulting from contact with windows was ranked the highest among the advantages ascribed to daylight by architects and engineers (BRE, 1988). Some studies showed that with so many credits in the psychological

aspect, satisfaction and worker productivity gains can be achieved naturally through the utilization of daylight in workplaces (Norris and Tillet, 1997).

Human biological benefit is another advantage of exploiting daylight in interiors (CIE, 2004). On this planet there is a natural 24-hour day-night cycle and humans are born to live in this natural cycle. Before the advent of any artificial light, periods of activity were largely controlled by the rising and setting of the sun. The body rests in dark periods and works in bright periods. The cycle is regulated by the biological clock inside the human circadian system. This internal clock tunes human daily rhythms of sleep and wake, body temperature, hormone secretion, cognitive function and many other physiological conditions. Researchers showed that the light human exposes to during day and night can influence daily rhythms and hormones, and exerts a significant impact on the human circadian system (Bernecker, 1994; Webb, 2006). Bright light in the daytime enters the eye and stimulates not only the visual part but also the non-visual part of the brain making active the mechanism of some kinds of hormone secretion, which synchronizes the biological clock to a regular 24-hour light-dark cycle. The pineal gland synthesizes and secretes melatonin in response to the external light-dark cycle, with high levels of melatonin secreted during the night and low levels during the day (Reiter, 1991). Skin exposure to daylight containing a certain threshold of UV radiation also sparks off manufacturer of vitamin D for absorbing calcium (Engelsen et al., 2005). These cannot be achieved in a room without any window aperture for daylight admittance as the normal illuminance level of artificial lighting is not high enough to boost the human circadian system to adjust the biological clock. The disturbance of a regular biological clock may come up various health hazards like sleep disorder, insomnia, seasonal affective disorder and cancers (Stevens and Rea, 2001; Schernhammer et al., 2001). Several studies showed that carefully scheduled periods of exposure to light and dark can help alleviate these problems by assisting workers' circadian systems to adapt to shift patterns (Czeisler et al., 1986; Czeisler et al., 1990). Daylight provision in interiors relieves some biological discomfort.

Aside from the psychological and physical advantages, daylighting also shows its strength in the hygienic aspect. After the outbreak of the Severe Acute Respiratory Syndrome (SARS) in Hong Kong in 2003, citizens are now more alert to hygiene in

the living and working environments. Daylighting becomes one of the effective means to keep places in acceptable sanitation. Indeed as early as in 1942, it was concluded that natural daylight, particularly direct sunlight, can dilute organisms that cause air borne respiratory infection (Buchbinder, 1942). Two years later, medical evidence proved that direct sunlight and diffuse skylight are powerful lethal weapons to kill bacteria (Garrod, 1944). The World Health Organization also encourages making use of sunlight to be a tool to maintain a hygienic environment in buildings by its bactericidal effects (Page, 1990).

Among various merits, the potential of electric lighting energy saving is the most crucial reason for daylighting though almost certainly it is economically motivated. In view of the energy crisis in 1970s when there was a dramatic increase in fossil fuel price and the recently popular theme of green and sustainability in building design for environmental conservation and against global warming, energy consumption by buildings have been more emphasized. In particular the possibility of energy saving in working spaces should be followed with the greatest interest since most of the Hong Kong citizens stay at offices for over eight hours day by day, much more than at homes or anywhere else. Electricity use in commercial buildings climbed up to 95,000 TJ, or 65% of the total electricity consumption, in Hong Kong in 2007 while lighting was reported as one of the major energy end-users in the office segment accounting for about 19%, or 2,900 TJ (EMSD, 2009). Because this energy is often supplied by fossil fuel generation, provision of lighting results in the large-scale release of greenhouse gases speeding up the influence of global warming. Figures 2.3 and 2.6 respectively show the electricity used by commercial sector and used by office lighting as well as their percentages in the last 10 years.

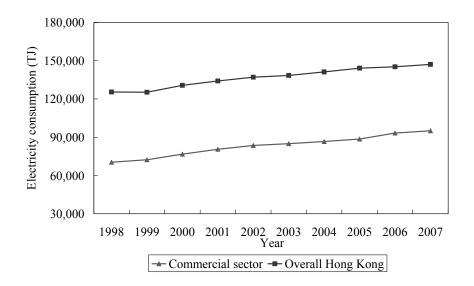


Figure 2.3 Electricity consumption of commercial sector in Hong Kong (1998-2007)

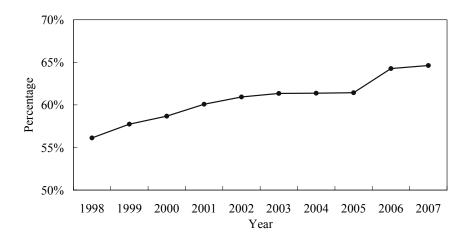


Figure 2.4 Percentage of electricity consumption in commercial sector to overall electricity consumption in Hong Kong (1998-2007)

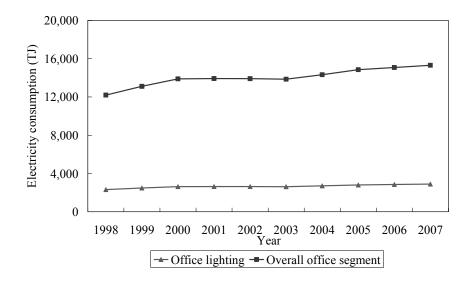


Figure 2.5 Electricity consumption of office lighting in Hong Kong (1998-2007)

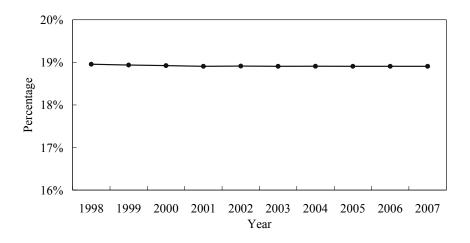


Figure 2.6 Percentage of electricity consumption of office lighting to overall electricity consumption in offices in Hong Kong (1998-2007)

The data shows that there is an urgency to change the current office lighting energy use situation. Making better use of clean lighting energy source – daylight – in interiors is a useful method since admitting natural light into a space can effectively reduce the need to supply electricity to the electric lighting, which is usually supported in expense of non-renewable energy sources. From the energy and cost saving viewpoints, the arguments for daylighting are strong. In terms of luminous

efficacy, daylight's 100 - 200 lm/W is much better than the 16 - 40 lm/W incandescent and 50 - 80 lm/W fluorescent lamps that are commonly installed in interiors (Rodgers et al., 1979; Lam, 1986), so that less heat is dissipated to achieve the same lighting level and less cooling will be required. This is particularly beneficial to subtropical Hong Kong, where air-conditioning during hot summer months accounts for more than a quarter of the total electricity consumption in the commercial sector (EMSD, 2009). The more daylight is made available in a building, the less artificial lighting is required. The IESNA Recommended Practice of Daylighting (IESNA, 1999) adds that it is potential to reduce lighting energy with a well designed daylighting system which takes daytime occupancy patterns, installed lighting power density, hours of daylighting application, annual relationship between daily hours of daylight availability to daily hours of space use, occupant use of adjustable shades and effectiveness of the electric lighting control system into consideration. Many literatures also reported that spaces installed daylight-linked photoelectric dimming systems could achieve electricity saving from 30% to 64% compared with the consumption on days when all electric lighting was turned on during daytime hours (Winkelmann and Lokmanhekim, 1985; BRE, 1988; Rutten, 1994; Schrum and Parker, 1996). It was shown that it is possible for the total electricity load and peak demand to swiftly reduce by efficient utilization of daylighting as well (Choi et al., 1994). The use of daylight with good electric lighting controls can lead to a significant amount of saving in the primary energy used by a building to national advantage and to the benefit of the environment and building users (CIBSE, 2002).

Occupants enjoy a wide variety of profits from utilization of daylight in interiors. However, complaints about perceived glare from windows and excessive solar heat gain are not uncommonly coming along with daylighting. Direct sunlight, which is a component of daylight, brings excessive brightness and its associated solar heat into indoor spaces, and then creates visual and thermal problems to occupants. These issues were ranked the highest in the disadvantages ascribed to daylight by architects and engineers (BRE, 1988). They show up probably because of the poorly designed daylighting system of a building. When direct sun rays enter human visual field through a badly sized or located window of an interior, the simultaneous adaption of the bright light and the relatively dark surroundings will cause certain discomfort to

the eye, and hence discomfort glare is arisen. When sunlight shines directly into visual field or is reflected into visual field through glossy surfaces, such as video display units, affecting task visibility, disability glare or veiling glare occurs (CIBSE, 2002). These kinds of glare due to direct or reflect sunlight can result in different levels of long or short term psychological and physical harms to occupants, for example, diffraction, annoyance, dazzle and pain. Fortunately glare is a kind of visual problems that can be effectively tackled with a few architectural structures and internal features. Overhangs, fins or canopies can deal with glare problems by solar shading although doing so may at the same time trim down normal daylight penetration. Occupants can also lower curtains or blinds to screen the bright sunlight, apply solar control glass to reduce window luminance, light up the window wall to reduce luminance contrast at the window wall or use light-colour finishes for internal surfaces. Moreover, despite the fact that daylight is more likely to cause serious glare compared to electric lighting due to its high intensity, some studies showed that humans have a greater tolerance of mild degrees of glare from windows having an interesting view than from comparable electric lighting sources (Osterhaus, 2001; Tuatcharoen and Tregenza, 2005). The existence of glare within visual field is one of the concerns in this research study.

The sun gives off visible light to this planet, so as heat. Solar heat gain in a space refers to the increase in temperature in that space due to solar irradiation. Whether occupants welcome it or not depends mainly on seasons. In hot summers, solar heat is naturally not desirable as it usually overheats the space; in cold winters, on the contrary, it provides a positive influence on maintaining the interior thermal comfort so that space heating demand is lowered. External shading, internal blinds, light shelves and other solar control devices (BRE, 1999) are all contributors to the prevention of overheating in indoors, but since window apertures are always the source of solar heat gain in a space, modification of window glazing becomes the most usual method to tackle the indoor thermal problem. Special made window glazing can effectively limit the amount of solar heat penetrating into an interior; however, indoor daylight amount is inevitably diminished in the meantime. Tinted glazing generally reduces daylight level more than solar gain (Evans, 1981) and changes the colour of daylight entering the space. Reflective glazing even greatly reduces both. Advanced low-emissivity glazing that can restrict a high portion of

solar heat from admitting into a space yet allow a considerate percentage of visible light to transmit through should be encouraged to apply in building façades. Double glazing of clear float glasses can even effectively provide good thermal insulation without sacrificing any daylight transmission. This research study assumes all local office buildings apply low-emissivity window glazing in the near future, and that is why the thermal problem arisen from daylight is not the interest of the thesis.

To conclude, daylight is a kind of elements that every human being needs naturally. It is the fact that exploiting daylight in indoor spaces may cause glare and thermal problems, but they can be avoided with better building or window design. The properties of daylighting, such as helping occupants function better in visual, psychological and physical aspects, maintaining environments to be hygienically cleaner, and more important, increasing the potential of electric lighting energy saving, are not easily possessed by any current artificial lighting. So, for the sake of conserving the nature, take action now – use daylight in buildings!

2.4 Climate in Hong Kong

Daylighting offers so many advantages to humans and to the environment. There is no point in opposing the use of daylight in interiors. But does the climate of Hong Kong match up? It is reviewed in this section.

Hong Kong is located on the southeast coast of Asia surrounded by the South China Sea on the east, south and west and situated just south of the Tropic of Cancer. Its climate is humid subtropical tending towards temperate for nearly half the year in accordance with climatological method of classification. Winter in Hong Kong covers about four months from November to February as a winter monsoon coming from the north and northeast directions provides the city with occasional cold fronts followed by dry winds from the continental anticyclone in Mainland China. Spring comes around in March and April when the climate is dominated with spells of high humidity, fog and drizzle on high ground exposed to the southeast. Hot and humid summer starts from May and lasts until September during which southerly monsoon brings intermittent heavy showers and thunderstorms, and gradually turns to long periods of sunny days with high insolation in the later time of summer. During the

change from summer to autumn, Hong Kong is occasionally influenced by tropical cyclones originated in the Northwest Pacific Ocean carrying with strong wind and heavy rain for the city. Gales also come usually at any time between May and November. Autumn in Hong Kong is short that it may only last from mid-September to early November with pleasant breezes coming from more easterly direction with humidity and cloud amount in the sky decreased rapidly and plenty of sunshine at comfortable temperatures (HKO, 2010). Many citizens regard these as the best months of the year. According to the meteorological data collected from 1999 to 2008, the monthly average surface air temperature, the monthly global solar radiation, the monthly bright sunshine hours, the frequency of occurrence of various cloud cover of each month are shown in Figures 2.7 to 2.10.

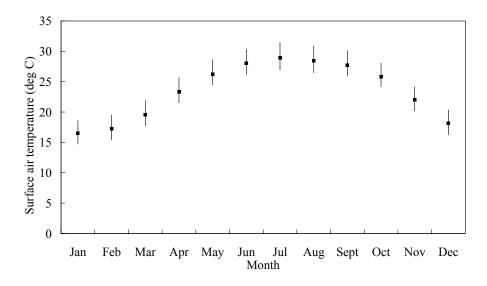


Figure 2.7 Monthly average surface air temperature (1999-2008)

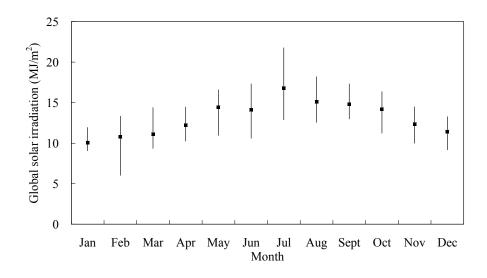


Figure 2.8 Monthly average global solar irradiation (1999-2008)

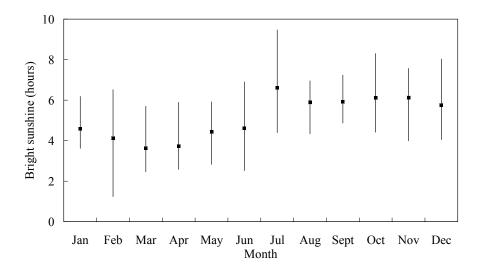


Figure 2.9 Monthly average bright sunshine hours (1999-2008)

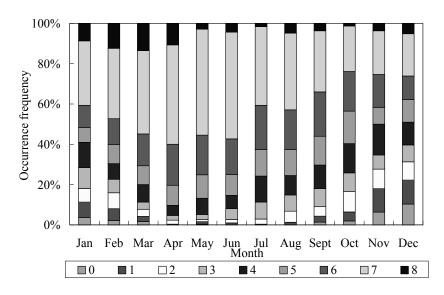


Figure 2.10 Monthly frequency of occurrence of various cloud covers (1999-2008)

The Hong Kong Observatory has been the main local authority to take or compute the local surface observations of air temperature, including the mean, maximum and minimum values of every hour, since 1885. They are measured by platinum resistance thermometers placed about 1.2 metres above ground level in an open shed with a roof made of two separate layers of matting (HKO, 2009). Throughout the last decade, the average surface air temperature in Hong Kong is 23.5°C. January is commonly the coldest month in a year. It is not uncommon for temperatures to drop below 15°C in the urban areas during this period. Sub-zero temperatures and frost even occur at times on the high ground and in the rural areas of northern Hong Kong. The typically hottest month goes to July. Afternoon temperatures in this month often exceed 31°C whereas at night temperatures generally still remain at around 26°C.

Apart from surface air temperature, visual observations of cloud type and amount are also made hourly and daily at the Observatory in the unit of okta, which is a unit of measurement used to describe cloud cover in meteorology (HKO, 2009). Sky type is estimated in terms of that how many eights of the sky are obscured by clouds, ranging from completely clear, 0 okta, partly cloudy, from 1 to 7 oktas, through to completely overcast, 8 oktas. The occurrence of a clear sky (0 okta) reaches its peak in December when the dry air from the continent dominates the climate. The cloud amount then rapidly increases in late winter and early spring as the dry cold wind from the north meets the warm air from the ocean, and therefore, it is more probable

for an overcast sky (8 oktas) to form in March. Sometimes the Observatory would provide the mass with the data of amount of cloud, which is a simple conversion of cloud cover in percentage, from 0 to 100%.

The Hong Kong Observatory installed a CSD-1 sunshine duration meter of 6 metres tall on the roof of the Radiation Laboratory at King's Park for the hourly record of bright sunshine. The bright sunshine hour reading is expressed in fraction of an hour over a 60-minute interval centred on the hour in local time (HKO, 2009). From 1999 to 2008, the average value of annual bright sunshine hours on a horizontal plane is about 1890 hours. March and April are the months that have the least bright sunshine hours because of the combined effects of the short day length and the thick cloud cover. With the opposite reasons, July has the longest bright sunshine hours in a year. Figure 2.11 shows the probability of the existence of bright sunshine by comparing the possible duration of sunlight from sunrise to sunset and the daily bright sunshine hours in Hong Kong in the last decade. It is observed that October, November and December are the months usually having the highest ratio of bright sunshine hours to the possible sunlight duration indicating that despite shorter length of a day in winter bright sunshine is most likely available during daytime.

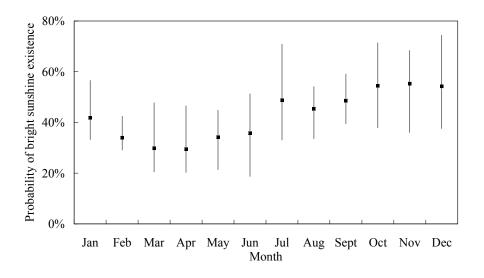


Figure 2.11 Probability of bright sunshine existence (1999-2008)

Global solar irradiation is the amount of direct and scattered solar energy that reaches the surface of the earth. The hourly global solar irradiation has been measured by a thermo-electric pyranometer (sealed thermo-pile dome solarimeter) together with an integrating counter installed on the roof of the Radiation Laboratory at King's Park by the Hong Kong Observatory since 1978 (HKO, 2009). Based on the meteorological data collected from 1999 to 2008, the average daily global solar irradiation in Hong Kong peaks in July at about 17 MJ/m² whilst attains its lowest value in the winter months at about 11 MJ/m², as shown in Figure 2.12. Neither is there official record for the solar radiation on vertical surfaces nor for the diffuse radiation or the instantaneous irradiance value. Aside from the Hong Kong Observatory, a measuring station has been set up at the City University of Hong Kong to measure both the hourly horizontal global and diffuse radiation since 1991 (Lam and Li, 1996a). Vertical global solar radiation and daylight illuminance on the four cardinal directions have also been measured since 1996. An International Daylighting Measurement Programme (IDMP) Research class measuring station was installed at the Chinese University of Hong Kong in 2002, which records both vertical and horizontal solar irradiation (Ng et al., 2007).

2.5 Potential and problems of daylighting in Hong Kong

Daylight availability, i.e. the outdoor illuminance available on an unobstructed horizontal place for a certain period of time, is a major factor which affects the possibility of making good use of daylight in interiors. A poor daylight available city is doomed to failure in daylighting whereas possessing a high availability of daylight implies a promising future of utilizing daylight in the city. It is therefore important for researchers to realize the situation of daylight availability prior to doing any daylighting studies for a place.

2.5.1 Availability of daylight

Chung (1992) and Lam and Li (1996a) carried out some measurements on solar irradiance or solar irradiation under different sky types in Hong Kong for the study of the availability of daylight in this city. By the same token received on unit area of the earth's surface, solar irradiance means the instantaneous rate of solar energy while solar irradiation means the amount of solar energy during a specified period of time, which may be one hour, one day, one month or one year. The total solar

irradiance or irradiation, or namely global solar irradiance or irradiation, is the combination of direct solar irradiance or irradiation, which is the part of solar irradiance or irradiation reaching the earth's surface without change of direction except for the slight refraction by the atmosphere, and diffuse solar irradiance or irradiation, which is the part of solar irradiance or irradiation reaching the earth's surface after scattered by the atmosphere or reflected from the ground. Although these measurements were not a part of IDMP and did not have data quality control or formatting in accordance with the guide recommended by CIE (1994), they did provide some data for the study of the potential of daylighting in Hong Kong.

Chung (1992) conducted measurements of global and diffuse solar irradiance as well as daylight illuminance on the relatively unobstructed horizontal plane on the roof of a building of the Hong Kong Polytechnic University from December 1989 to March 1991. Data obtained were sorted into clear, partly cloudy and overcast sky types classified by the sky ratio method. Empirical models of luminous efficacy of daylight were then statistically developed for the three sky types. These models could enable the computation of outdoor daylight illuminance from available solar radiation data.

Lam and Li (1996a) did a similar research measuring hourly data of global and diffuse solar irradiation and outdoor illuminance on the unobstructed horizontal plane on the roof of the City University of Hong Kong from 1991 to 1993. Alike empirical models of luminous efficacy of daylight were built up for the three sky types which were classified according to clearness index. Similarly these models could enable daylight illuminance to be generated from measured solar irradiation. The paper also discusses the implications for high energy efficiency in building designs with the availability of daylight in Hong Kong.

These two studies concluded a high potential of utilizing daylight for illuminating building interiors in Hong Kong (Chung, 2003); however there has been a long time since these measurements were completed. Due to global warming and local urbanization, weather in this city has been changed rapidly in the last 20 years. In 2004, the Hong Kong Observatory issued a technical report on the climate change in Hong Kong pointing out that there have been an increase trend in cloud amount and a decrease trend in global solar irradiation (Leung et al., 2004), where both of them

greatly influence the daylight availability in Hong Kong. Updated outdoor daylight illuminance data in this city is necessary.

Provided that the models of luminous efficacy of daylight under the three sky types are valid, based on the global luminous efficacy expressions given by Lam and Li (1996a) and the measured hourly horizontal global solar irradiation by the Hong Kong Observatory from 2007 to 2009, global horizontal illuminance has been calculated for each working hour (0900–1700) during these three years. Procedures in calculation are listed below.

The official record of hourly global solar radiation from 2007 to 2009 was sorted into three categories according to the clearness index K_t : clear, partly cloudy and overcast conditions as follows,

- (a) clear sky ($K_t > 0.65$)
- (b) partly cloudy sky $(0.3 \le K_t \le 0.65)$
- (c) overcast sky $(0 < K_t \le 0.3)$

where K_t = global solar irradiation / extraterrestrial solar irradiation

Extraterrestrial solar irradiation is the solar irradiation incident outside the earth's atmosphere over a period of time. The hourly extraterrestrial global irradiation was determined using the following equation (Liu and Jordan, 1960),

$$I_o = \varepsilon I_{sc} \left(\cos L \cos \delta \cos \sigma + \sin L \sin \delta \right) \tag{2.5}$$

where I_o is the hourly extraterrestrial irradiation incident on a horizontal surface in J/m², ε is the eccentricity correction factor, I_{sc} is the solar constant (1367 W/m²), L is the latitude in degrees, δ is the solar declination in degrees and σ is the hour angle in degrees.

Global luminous efficacies in lm/W for clear sky K_{gcl} , for overcast sky K_{goc} and for partly cloudy sky K_{gpc} can then be calculated based on the following expressions given by Lam and Li (1996a),

$$K_{gcl} = 78.51 + 1.11\theta_s - 0.0094\theta_s^2$$
 (2.6)

$$K_{gac} = 116.2$$
 (2.7)

$$K_{gpc} = K(130.6 - 14.4C) + (1 - K)(59.15 + 1.12\theta_s - 0.0061\theta_s^2)$$
(2.8)

where θ_s is solar altitude in degrees, C is cloud cover in percentage, and K is diffuse fraction, which is the ratio of diffuse to global irradiation and was found to have the following relationships with clearness index K_t (Lam and Li, 1996b),

$$K = 0.974 \text{ for } K_t \le 0.15$$
 (2.9)

$$K = 1.192 - 1.349K_t$$
 for $0.15 < K_t \le 0.7$ (2.10)

$$K = 0.259 \text{ for } K_t > 0.7$$
 (2.11)

Multiplying global luminous efficacy by the global solar irradiation measured by the Hong Kong Observatory for each hour, the global horizontal illuminance could then be obtained for each working hour during the three years. Appendix A gives the values of the global horizontal illuminance within each normal office working hour from 2007 to 2009. The frequency distribution of global horizontal illuminance during working hours and the percentage of normal office working hours for which a certain outdoor horizontal illuminance is exceeded are shown in Figures 2.12 and 2.13.

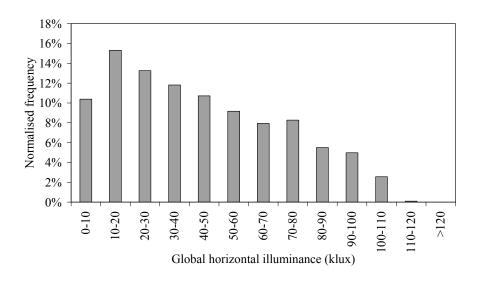


Figure 2.12 Normalized frequency distribution of global horizontal illuminance in Hong Kong from 0900 to 1700 (2007-2009)

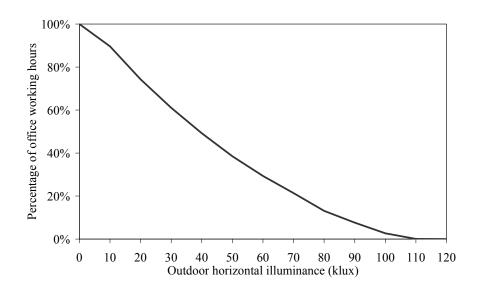


Figure 2.13 Percentage of normal office working hours (0900-1700) for which a certain outdoor horizontal illuminance exceeded (2007-2009)

The frequency analysis showed that the outdoor horizontal illuminance exceeded 10,000 lux for over 85% of the normal office hours (0900-1700) in a year. Assuming a 500 lux indoor design illuminance for office space and a daylight factor of 5%, the required outdoor illuminance should be 10,000 lux. From the figure, it can be seen that over 85% of the working hour time in a year, the outdoor illuminance would be

above 10,000 lux. Hence, the potential of utilizing daylight for saving electric lighting energy use is still very high in Hong Kong regardless of the increasing effects of global warming or high urbanization rate.

2.5.2 Dense built environment in Hong Kong

The high daylight availability in Hong Kong makes the city full of potential in utilizing daylight in building interiors; however the densely packed high-rise buildings may hinder daylight from entering the indoor space. In this section, the built environment, particularly in the main commercial centre, of Hong Kong is described.

The geography of Hong Kong primarily consists of three main territories: Hong Kong Island, Kowloon Peninsula and the New Territories including over 200 outlying islands. The body of water between Hong Kong Island and Kowloon Peninsula is Victoria Harbour. The landscape of the two coasts is fairly hilly and mountainous with steep slopes. Lowlands exist in the rural northwest New Territories. Of the territory which spans just above 1,000 km², less than 25% of the land is developed. Major commercial areas centralize along the northwest coast of Hong Kong Island and in the south and west parts of Kowloon Peninsula. For accommodating a population of over seven million, a significant amount of flat land in the city, particularly in the urban areas, comes from reclamation.

Hong Kong is an international financial centre that has over 250 buildings taller than 150 m and over 7,650 high-rise buildings leading the city to rank first in the world in both skyscrapers and high-rise count. Tall buildings were rare in the early 20th century but due to the rapid development in economy in 1970s high-rise construction boomed in Hong Kong, mostly crowded on the Island. Due to the closure of the Kai Tak Airport located to the northeast, which lifted height restrictions across Kowloon, allowing taller buildings to be built in the region since 1998, the city has seen more skyscrapers rise out of the Peninsula. The International Commerce Centre is a 118 floor, 484 m skyscraper completed in 2010 in West Kowloon, making it the currently tallest building in Hong Kong. The high density and tall skyline of the urban area is in large part a result of a lack of available sprawl space of flat land between the

Harbour and the steep hills of Hong Kong Island. This lack of space causes demand for close and high-rise offices and housing. The dense built environment probably keeps on for the expectation of population to exceed eight million within 30 years and the increasing force from the mass on the restriction of reclaimed land supply. More people live or work above the 14th floor than anywhere else on the planet making Hong Kong the world's most vertical city but also resulting in the fact that lower floors may suffer from severe sky obstructions and natural light is limited to access to building interiors.

2.6 Local regulations and voluntary guidelines for daylight provisions

Hong Kong is one of the most densely populated cities in the world. The total area of Hong Kong is just over 1,000 km² but accommodating a population of almost 7 million. Most of its land belongs to hills. The commercial centre of Hong Kong is mainly located on the two sides of the Victoria Harbour. To support the prosperous economic activities in the limited land area, office buildings in the city are constructed mostly high-rise and closely together. It causes that offices on the lower levels are difficult to obtain daylight from the sky which has been blocked by the neighbouring tall buildings despite enjoying high potential of daylight availability. Compulsory regulations and voluntary guidelines are therefore crucial to safeguard the provisions of natural light in working environments. The origins and the limitations of the regulations and guidelines are reviewed. Besides, some suggestions to the future daylighting design and assessment in office buildings are addressed.

2.6.1 Prescriptive requirements

The provision of natural lighting in office buildings is safeguarded by the Hong Kong Law Chapter 123F, Building (Planning) Regulations, Regulation 30 – Lighting and ventilation of rooms used or intended to be used for habitation or as an office or kitchen – which states that every room used for the purposes of an office shall be provided with natural lighting by means of one or more windows (HKSAR, 1997). The building regulations further provide two prescriptive requirements on windows.

The first prescriptive requirement is about the area of windows. As stated in the second part of the same regulation, the total glazing area and the total openable area of the windows shall not be less than one-tenth and one-sixteenth of the total floor area of the room respectively, and the top of the opening shall be above the floor level at least 2 m for detached buildings or 1.9 m for semi-detached buildings.

The second prescriptive requirement is about the separation between windows and the obstructions provided in Regulation 31 – Minimum requirements of window. It states that a window shall face into a street not less than 4.5 m wide or it shall face into an uncovered and unobstructed space confined by a Rectangular Horizontal Plane (RHP) extended from the window sill height, which is defined as 1 m above the floor level, whether or not the sill is at such level, with the area not less than 21 m² and the base length common with the line of window sill not less than 2.3 m, forming maximum vertical obstruction angles of 71.5° and 76° respectively for habitation and offices or kitchens facing opposite buildings, or forming maximum vertical angles of 80.5° and 83° respectively for habitation rooms and offices or kitchens facing the site boundary, with another rectangular plane sharing a common base (HKSAR, 1997).

These requirements were first introduced in 1959, but their origins could be dated back to as early as mid-eighteenth century in Britain (Ng, 2003). Its objectives aimed at finding ways to allow buildings to be built higher and larger to cater for the rapid increase in population and the problem of overcrowding in London. It should however be noticed that it was expected to apply to low-rise terrace-type dwellings only. At that time, neither were the buildings in Hong Kong tall nor dense, and thus, it was logical to apply this British regulation about daylight provisions for indoor spaces as a basis of the Buildings Ordinance of Hong Kong. Nowadays, since Hong Kong has been becoming a city full of skyscrapers and high-rise buildings and probably the most densely populated city in the world, it is likely that this sole regulation in Hong Kong governing the daylit environment in buildings has been outdated. Besides, it was accused of limiting the flexibility of designing a building, and no longer able to guarantee a desirable performance of natural light.

The conventional building code was simply a prescriptive approach and insufficient to guarantee good quantity of daylight as towers increase their heights (Ng, 2003). Having considered such a cityscape change, in the year of 1999, the Buildings Department of the Hong Kong Government commissioned a consultancy study to a team of researchers from the Chinese University of Hong Kong to review the standards of natural light provision in building interiors with a key intention of proposing a more flexible method in daylighting design and regulatory control than the prescriptive requirements. Four years later the study completed and the Buildings Department issued a performance-based approach as an alternative method or a supplement in assessing the daylighting performance of a residential building as stated in Building (Planning) Regulations 30, 31 and 32.

2.6.2 Performance-based approach

The performance-based approach for evaluating the daylighting performance of domestic buildings established by the Buildings Department was launched in Practice Note PNAP278 in 2003 (HKSAR, 2005). The method bases on a daylight factor theory widely accepted by most countries and makes use of the concept of vertical daylight factor (*VDF*) to assess the daylight availability at the centre of the window plane of a habitable room or a domestic kitchen in a domestic building. *VDF* is defined as the ratio in percentage of the total amount of illuminance falling onto a vertical surface of a building to the instantaneous horizontal illuminance from a complete hemisphere of sky excluding direct sunlight. It takes all the light directly from the sky and reflected from surrounding buildings and ground below and above the horizon, but does not include that directly from the sun. The sky is commonly assumed to be the CIE standard overcast sky. The required *VDF* for habitable rooms shall be at least 8% and that for domestic kitchens at least 4%. The concept of *VDF* will be further discussed in the next chapter of this thesis.

Domestic buildings shall be designed in the manner that satisfies either the prescriptive unobstructed RHP requirement or the performance standards in *VDF*. It is stated that authorized persons may demonstrate compliance to the performance standards by any suitably verified and scientifically validated methods, and if the *VDF* standards are met applications to modify the prescriptive requirements set out

in Building (Planning) Regulations 30, 31 and 32 will be accepted. However, computing for *VDF* is never a simple task as it involves field measurements or computer simulations of the vertical illuminance on the window plane and the instantaneous global horizontal illuminance under an overcast sky, which in many cases are not available to architects and lighting designers in the design stage. Therefore, a simplified assessment method based on a parameter, named Unobstructed Vision Area (*UVA*), is suggested in the Practice Note, together with the *VDF* approach.

The UVA method, which was originally proposed by Ng and Tregenza (2001), is recommended in the Practice Note as a reliable way or a 'deed-to-satisfy' design tool to demonstrate compliance to the VDF requirements for provision of natural lighting in buildings. The UVA of a window is basically defined as the horizontal open area bounded by a cone up to the lot boundary, or to the full width of the street unless it adjoins a street, that the effective window glazing plane sees when the cone is overlaid onto a site plan. This cone is actually a symmetrical fan-shaped area, perpendicular to the window plane, 100° wide and has the length equal to the height of the building façade from the head of the concerned window. The Practice Note provides the minimum UVA requirements for habitable rooms and domestic kitchens according to the window-to-floor ratio and the height of facade.

This *UVA* method seems to become another prescriptive requirement rather than a performance-based approach for the provisions of daylight in residential buildings. This is because the *UVA* is similar to the original RHP method, which specifies the minimum separation between building blocks based on an uncovered and unobstructed rectangular horizontal plane in front of the window. Nevertheless, *UVA* does improve the requirement in flexibility so that instead of requiring a fixed area of narrow rectangular view in front of the window to be free of obstruction it requires an area within a cone of much wider view in front of the window to be obstruction-free. More relaxation and enhancement were observed in terms of formulation variables, orientation issues, sustained angles and percentage of glazing in the *UVA* method, but it was also commented to be more difficult to apply and would be better used as a checking tool rather than a design tool (Lau et al., 2005).

However, it should be noted that neither *VDF* nor *UVA* is mentioned to be applicable for the daylighting performance assessment of office buildings.

The prescriptive requirements stated in Building (Planning) Regulations are up to now the only legislative rule in Hong Kong to safeguard the provision of natural light in offices. However, most of the Hong Kong people within the working ages work in offices during daytime. The period of time staying at offices may not be less than that staying at homes. Although it is the fact that artificial lighting can provide a necessary level of illuminance when natural lighting cannot fully fulfill the functional requirement for the task lighting, appropriate daylighting design in offices can still provide the essential psychological needs on views of outside world and reduce the use of electric lighting. It is as much important to introduce performance-based regulations to safeguard the minimum provision of natural light in office buildings as well.

2.6.3 Voluntary guidelines

Legislative requirements give the minimal control over the performance of buildings in terms of safety and environmental protection. Local voluntary guidelines can encourage buildings to perform better than the minimum requirements by improving the reputation of the buildings. The Hong Kong Building Environmental Assessment Method (HK-BEAM) since established in 1996 has been a major voluntary guidebook extensively adopted in local buildings (HK-BEAM, 1996a; HK-BEAM, 1996b). The HK-BEAM is intended to provide authoritative guidance on practices to reduce the adverse effects of buildings on the surroundings and develop good quality built environments. It quantifies the environmental performance of a building by awarding credits if the building satisfies the criteria which are set at a level over and above the minimum requirements laid down by laws or codes of practice. If the building can gain a certain percentage of applicable credits, then it will be granted a classification accordingly as a positive reputation.

The HK-BEAM in its first edition for new and existing air conditioned offices (HK-BEAM, 1996a; HK-BEAM, 1996b) set three criteria for assessing daylighting performance: average daylight factor, no-sky line and room depth. In the later

versions (HK-BEAM, 2003a; HK-BEAM, 2003b), the HK-BEAM cancelled the no-sky line criterion, but kept average daylight factor and room depth, and adds vertical daylight factor, window-to-floor area ratio and views as the requirements for daylighting in new and existing buildings. In the current edition (HK-BEAM, 1999a; HK-BEAM, 2004), the HK-BEAM remains to use average daylight factor and vertical daylight factor as the requirements of the provision of daylight in new and existing buildings. All the aforementioned criteria plus some commonly used quantifiable parameters for assessing daylighting performance in offices are introduced in the next chapter.

CHAPTER 3

REVIEW OF CURRENT DAYLIGHTING DESIGN AND ASSESSMENT METHODS

3.1 Introduction

Daylighting regains its importance and status in illuminating indoor spaces in the wake of sustainable development of building design, reduction of lighting energy demand, and enhancement of human productivity, health and well-being. The trend of lighting research has turned back to focus on improving daylighting performance in an interior. Researchers aim to investigate the characteristics of a well performed daylit environment, in which occupants would find the indoor daylit conditions satisfying their needs and contributing to energy saving, i.e. (i) daylight is of adequate amount for visual task, (ii) the daylit environment is visually comfortable and interesting, and (iii) the daylit environment is of high electric lighting energy saving potential. Various methods have been developed for evaluating indoor daylighting performance, but usually concern either of the first two criteria of an interior and none for energy issues - some researchers set up restrictions on the dimensions of a window or its extensions to ensure an adequate provision of daylight into an interior while others proposed numerical limits based on illuminance or luminance on the window or inside a room for creating a better visual environment and increasing user satisfaction. Each of these methods has its weaknesses that make it not able to assess daylighting performance in an all-round manner and some of the key information needed in daylighting design has not yet been addressed in any single approach. This lack of knowledge is a major reason to explain why indoor daylighting design faces frequent criticism. In this chapter, a literature review was conducted on the current daylighting design and assessment methods. It is only by understanding how the poor daylighting design arrived at this moment so that it is able to lift architects and lighting designers out of this predicament. The commonly used daylighting design criteria are sorted into different categories according to their characteristics: diagrammatic approaches, rules of thumb, illuminance-based and luminance-based parameters. The principles, assumptions and limitations of each method are presented. The prospective trends and the possible challenges in the

development of a more refined and reliable daylighting assessment method are also discussed.

3.2 Diagrammatic approaches

Daylighting in an interior is not feasible unless there is enough natural light available on its windows. Everywhere in the dense urban landscape of Hong Kong is however high-rise and tightly erected buildings, which are so tall and wide that they may act as an obstruction to another building blocking a large portion of daylight from the sky from reaching the window for much of the year resulting in the situation that indoor daylighting performance would often be unfavourable. As surrounding buildings would have a great impact on the quality and quantity of daylight which falls into an interior, it is always a good practice to start considering the daylight availability to a window from the earliest design stage.

Daylight plays an important role in providing an interior with light and well-beings with the feeling of warmth, making it look brighter and cheerful as well as giving positive physical health effects. It should be exploited to enhance the overall brightness of interiors unless it is likely to fall on visual tasks or directly on people at work in a situation that causes visual or thermal discomfort to the users. Site layout and window positioning should therefore be carefully planned in the early stage of building design to avoid obstructions from reducing the amount of daylight penetration into an interior. Otherwise, no matter how good the design of windows and the interior is, highly performed indoor daylighting will never be achievable. Since daylight comprises skylight and sunlight, separate concern with the availability of skylight and sunlight becomes a usual procedure for architects and lighting designers to evaluate the availability of daylight to an interior. Some guidelines (BSI, 1992; BRE, 1995; CIBSE 1999) suggested a few diagrammatic approaches to determine the best orientation of a window for receiving the largest amount of daylight over a year in terms of skylight and sunlight availability. They are introduced in the following paragraphs.

3.2.1 Skylight availability

The skylight availability to an interior where its obstructions are not continuous can be made known by calculating the vertical sky component (*VSC*) on its window reference point, where the *VSC* is a measure of the amount of skylight incident on a vertical plane computable by taking the ratio of the skylight incident at a point to the unobstructed skylight available at the same point on a horizontal plane, and the window reference point is defined as the point in the centre of a window on the plane of the outside surface of the window wall and assumed to be at least 2 m above ground level (BSI, 1992). For a uniform sky, where luminance is the same everywhere in the sky, since only half the hemisphere can contribute daylight to the point on the window reference point, the maximum value of *VSC* is 50%; for the CIE standard overcast sky, where luminance declines gradually from the zenith towards the horizon, the maximum value is just under 40% for a completely unobstructed window.

The VSC can be calculated using a skylight indicator (BRE, 1995; CIBSE, 1999), as shown in Figure 3.1. The skylight indicator is independent of latitude and can be used anywhere on the earth. It is in semi-circular shape. The centre of the circular arc corresponds to the window reference point while the radial distance from this point is the ratio of the distance of the obstruction on plan divided by its height above the reference point and it is usually assumed to be the obstruction height above ground minus 2 m provided that the ground is flat. The skylight indicator has 80 crosses marked on it, each of which represents 0.5% VSC such that the whole device shows the maximum VSC value of 40% under the standard overcast sky. The scaled site plan outside the window reference point is then plotted on the indicator so that all the obstructions to the window can be revealed. If a cross is outside the area of the obstructions, then it is unobstructed and counts towards the VSC; if a cross is inside the area of the obstructions, then it is obstructed and does not count. The unobstructed crosses are counted up and half the total number is the VSC on that window. The skylight indicator stands on the principle that more sky visible from the window implies more skylight falls into the interior so that better indoor daylighting performance should be obtained. A larger value of the VSC indicates more light from the sky is available to the window and therefore it is believed that better daylighting

performance can be achieved in the interior of that site planning and window positioning.

The skylight indicator is a simple daylighting design and assessment device to quantify the amount of sky on the window that is not obscured by neighbouring buildings or objects. Its unlimitation on the application by any geographical constraints increases its generality. This approach is greatly related to another daylighting rule of thumb, the limiting obstruction angle, and hence the rationale of the critical *VSC* values regarded as good indoor daylighting will be discussed in the later part of this chapter. The skylight indicator shows the best orientation that would allow the window to receive the largest amount of skylight. Nevertheless, this device cannot express the prospective quantity or quality of skylight admitted into the room. It does not consider any influence on skylight due to window glazing or internal or external obstructions. It should also be noted that the assumption of the CIE standard overcast sky has been applied during the finding of *VSC*. Without considering the possible direct sunlight influence, the appropriate site planning and window positioning may not be reliably suggested by the skylight indicator alone, and the sunlight availability should also be of concern at the same time.

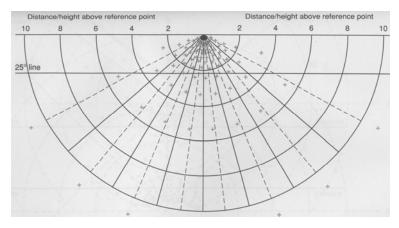


Figure 3.1 A skylight indicator (BRE, 1995)

3.2.2 Sunlight availability

The sunlight availability to an interior can be revealed by checking the route of the sun outside its window reference point. The locus of the centre of the sun is unique

for every city on the same latitude and varies with time and day of a year. With the assumption that the sky is completely clear, the sun track of a city can be followed for a year. The solar altitude and azimuth during daytime can be obtained, and thus the path of the sun on the sky vault of the city in connection with daily sunshine hours can be displayed on a sunpath indicator (BRE, 1995) or a stereographic sunpath diagram (BSI, 1992). They are respectively shown in Figures 3.2 and 3.3.

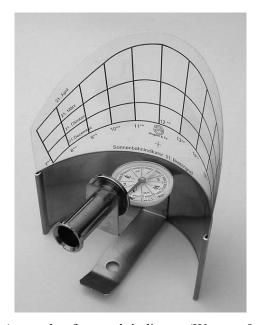


Figure 3.2 A sample of sunpath indicator (Wagner & Co., 2007)

The sunpath indicator is a device that is used on the actual site or on the site layout plan to find the time of a day and the day of a year during which sunlight is available on the window reference point of an interior. It allows examining whether buildings or any other obstructions outside the window will block the path of the sun throughout a year resulting in the insufficient direct sunlight penetration into an interior. One kind of sunpath indicators is a transparent sheet on which annual irradiation curves and the corresponding daily sunshine hours of the city are shown. Placing the indicator vertically, aligning it south with the use of a compass on site at the window reference point, regardless of its orientation, obstructions to the sun outside the window can be identified and the obstruction-free duration of the interior in a year can be read on the indicator.

Another kind of sunpath indicators is a paper sheet shaped like a circle with a segment removed. Similar to the transparent sunpath indicator, it displays annual irradiation curves with respect to the daily sunshine hours of the city. Similar to the skylight indicator, the centre of the circular arc is the window reference point and the radial distance from this point is the ratio of the distance of the obstruction on plan divided by its height above the reference point, which is assumed to 2 m high above the flat ground. By plotting the neighbourhood site layout to scale on the indicator, the time that the sun is not blocked by obstructions can be shown.

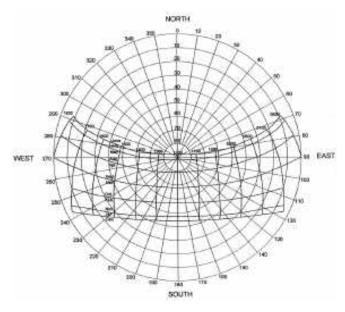


Figure 3.3 Stereographic sunpath diagram of Hong Kong (22.3° N)

The stereographic sunpath diagram is another paper device for illustrating the apparent movement of the sun in a city. It consists of concentric circles representing angles of elevation above the horizon, a scale and compass points around the perimeter showing the orientation. Long curved arcs are the sunpaths with the data of solar altitude and azimuth throughout a year; shorter ones give the time of day. Having identified the orientation of a window, the outlines of both the window reveal and the obstacle to the sun can be drawn on the diagram with the view cut-off angles and obstruction angles from the window reference point respectively in a form of segment shape. The superimposition of the two segments covers the time that the obscured building will block the path of the sun. The remaining window reveal portion then shows the period of time in a year that the sun is not blocked.

The larger area of the remaining window reveal portion on the sunpath indicator or diagram generally means that there is a longer period of time throughout a year for direct sunlight to be available to the window reference point of the interior. Despite their limitations that these devices cannot show any prospective quantity or quality of sunlight admitted into the room and do not concern any external factors, such as reflected daylight, or other climatic factors, such as cloud cover, which exert a significant influence on the actual period of sunlight available to the window, architects and lighting designers are still encouraged to preliminarily make use of the result to site the building and windows to an orientation that the sunpath is least to be blocked in a year for achieving an indoor environment which can receive as long duration of sunlight as possible.

3.2.3 Possible and probable sunlight duration

Possible sunlight duration is an assessment tool used to assess the sunlight availability to a window of an interior for the deduction of its daylighting quantity, and can be read from the sunpath indicator or diagram. It has been found that the duration of sunshine, but not its intensity nor the size of the sunny patch, correlates best with occupants' appreciation of sunlight in the interior (Ne'eman et al., 1976). BSI (1992) defines possible sunlight hours as the total number of hours in a year during which the centre of the sun is above the unobscured horizon, and in other words, a period of possible sunlight hours is approximately the total time that the sun would shine on the ground with a cloudless atmosphere, and can be expressed in a formula, in percentage,

Possible sunlight duration

Numerous researchers have conducted studies on occupants' expressions of satisfaction with the admitted sunlight. They proposed criteria on the number of possible sunlight hours on a single day to ensure adequate availability of sunlight to

the window of an interior over a year. Two researchers reported that at least two hours of possible sunlight on 19 February should be achieved at the middle of the inner part of the window sill at home in the Netherlands in order to allow housewives almost always to feel enough sun over the year (Bitter and van Ierland, 1965). Another study investigated the sunlight availability at the centres of various apartment rooms in Zurich and made recommendations of possible sunlight duration for different domestic areas on 8 February, for example a minimum of 60 to 90 minutes and an optimal sunlight period of two hours in a living room; a minimum of 30 minutes and an optimal sunlight period of 90 minutes in a children's room (Gilgen and Barrier, 1976). German researchers compared the sunlight measured at the middle of the room with that at the middle of the window. They found that the window is a better location for sunlight calculation, and suggested a four hour possible sun at the window reference point on 20 March (Kilingenberg and Seidl, 1982). This recommendation has also been adopted in DIN 5034 Part 1, the German standard on daylight provision. In Slovenia, the criterion is at least one hour possible sunlight on 21 December, three hours on 21 March and five hours on 21 June (Santamouris, 2006). It is noted that the above research studies were interested in dwellings only and none of the recommended possible sunlight hours was reported to be applicable for offices to ensure their sunlight availability. Table 3.1 summarizes the criteria of minimum sunlight duration for selected countries.

Table 3.1 Minimum sunlight duration stated in regulations of different countries

Country	Required minimum duration of sunlight	
UK	> 25% annual probable sunlight hours in six months	
Germany	> 4 hours of sunlight on 20 March	
The Netherlands	> 2 hours of sunlight on 19 February	
Slovenia	 > 1 hour of sunlight on 21 December, > 3 hours of sunlight on 21 March, and > 5 hours of sunlight on 21 June 	

The capability of restricting the minimum possible sunlight duration on a single winter day to secure the provision of sufficient sunlight to the window of an interior in a year was affirmed. Littlefair (2001) agreed that for places at a more southerly

location where summer sun is of less benefit, a possible sunlight hour criterion requiring specific possible sunlight duration on a particular winter date could work better as it guarantees some sun in winters. However, the fact that the possible sunlight hour criterion neither requires any summer sunlight duration nor considers any influence on sunlight due to the actual sky or weather conditions doomed this sunlighting assessment tool. Littlefair (2001) argued that a building may meet the criterion in calculations even though in reality it gets much less sun over the year than another one which fails the criterion. Therefore, the one-day-criterion of possible sunlight duration is not a reliable sunlight availability assessment parameter.

Some researchers and guide books proposed another parameter in terms of sunlight duration to account for sunlight availability to a window of an interior. Ne'eman et al. (1976) proposed a new recommendation in terms of probable rather than possible sunlight duration. They conducted a long-term study on the specifications of sunlight requirements in buildings assuming that the duration of sunlight penetration is the main criterion by which the sunlighting performance of the interior is judged. Their calculations of the probable sunlight duration take account of climatic statistics for different latitudes and activity patterns of occupants. This is an improvement from possible sunlight duration, which bases simply on solar geometry and the assumption of clear sky. The researchers recommended a target of 500 hours of probable sunlight per year for domestic living rooms and the spread of sunlight should last at least six months with the aid of good and flexible sunlighting control. They however did not provide any suggested values of probable sunlight for office premises.

BSI (1992) adopts the concept of probable sunlight duration for evaluating sunlight availability to a window of an interior. It defines probable sunlight duration as the long-term average of the total number of hours during the year in which direct sunlight reaches the unobstructed ground, and in other words, a period of probable sunlight hours is the mean total time of sunlight when cloud is taken into account. While probable sunlight duration at a window is usually expressed as a number of hours, in more cases, it is expressed as a percentage of the annual probable sunlight duration received by an unobstructed ground,

$$= \frac{\text{Total number of hours in a year that sunlight shines on the ground}}{\text{Total number of hours in a year}}$$
(3.2)

BSI (1992) recommends that interiors in which occupants have a reasonable expectation of direct sunlight, without a specific mention of a domestic or working environment, should receive at least 25% of probable sunlight hours for a year and at least 5% of probable sunlight hours should be received during the winter months between 23 September and 21 March. The standard provides a procedure for calculating the fraction of probable sunlight hours with the use of a probability diagram that gives the actual distribution of sunlight with respect to solar altitude and azimuth. The sunlight probability diagram looks everything the same as a stereographic sunpath diagram, but there are 100 dots plus a dashed demarcation line for summer and winter added on the diagram, where the density of the dots is proportional to the probability of the sun shining from the sky. Each dot represents 1% of the probable sunlight hours. The percentage of annual probable sunlight hours can simply be obtained by counting the number of dots falling within the sun unobstructed area on the diagram. The dots below the dashed line represent the sunlight occurring during winter months. The probable sunlight duration that happens within this period can also be obtained by the same approach. A sunlight probability diagram is shown in Figure 3.4.

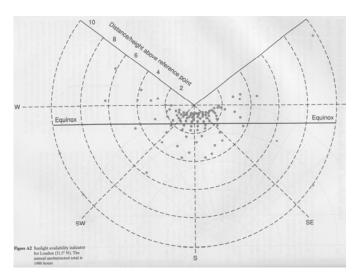


Figure 3.4 A sample of sunlight probability diagram (BRE, 1995)

The comment of Day and Creed (1996) that the probable sunlight duration in winters might be a better predictor of subjective assessments and a better reference quantity than the summer one or that in a yearly basis resembles the particular emphasis on the probable sunlight duration in winter period stated in BSI (1992). Notwithstanding probable sunlight duration provides more realistic information of sunlight availability to a window of an interior, there are still problems. Littlefair (2001) reviewed previous literature and suggested that the requirement of sunlight hours should be separately treated for northern and southern or central Europe. He commented that the 5% annual probable sunlight duration criterion required to obtain in winters is not achievable in the far north even with no serious obstacles blocking the sun, and proposed different sunlight hour requirements for different locations of the world. For places north of 50°N, the centre of window should receive 25% of annual probable sunlight hours spread over 6 months of the year; for places between 42° and 50°N, the centre of the window should receive at least 2 hour possible sunlight latest on 19 February. Table 3.2 summarizes the criteria of minimum sunlight duration for site latitudes. Talk about Hong Kong, since all the sunlight comes from the southern direction during winter months in this city, as shown in Table 3.3, the window facing north never receives any sunlight in winters and thus never comply with the recommendations. In other words, windows placed towards this orientation have a limited function on daylighting.

Table 3.2 Minimum sunlight duration depending on the latitude of the site

City latitude (degrees)	Sunlight hours
40 - 50	> 2 hours of sunlight on 19 February
50 +	> 25% annual probable sunlight hours spread over six months of the year

Table 3.3 Sunlight duration factors received at vertical walls in Hong Kong (Cheung, 2005)

Orientation	Probable sunlight hours			
	Summer	Winter	Annual	
N	25%	0%	25%	
NE	22%	11%	33%	
E	28%	26%	54%	
SE	29%	35%	64%	
S	27%	48%	75%	
SW	30%	37%	67%	
W	29%	28%	57%	
NW	23%	13%	36%	

3.3 Rules of thumb

Rules of thumb exist in almost all engineering discipline areas that need application of knowledge to account for complicated phenomena but do not necessarily require absolute accuracy in the results. Designing for daylighting in interiors is precisely this kind of engineering. On one hand, it involves nature, which is probably the most complex issue in the world; on the other side, human satisfaction with a daylit environment is the sort of matters that does not contain an exact value because occupants usually have a wide range of adaption to the daylighting performance. Rules of thumb can therefore provide a broadly accurate guide or principle for daylighting design based on practical experience rather than theory. Their significance can be seen from their long history, repeated use and workable solutions in the current daylighting design process.

Daylighting design rules of thumb have a history of over two thousand years. Ancient Greeks advised the importance of sky component for good daylighting performance and stated one of the most famous and earliest daylighting design rules: 'On the side from which the light should be obtained, let a line be stretched from the top of the wall that seems to obstruct the light to the point at which it ought to be introduced, and if a considerable space of open sky can be seen when one looks above the line, there will be no obstruction to the light in that situation.' (Pollio, 1960)

Later during the Renaissance, some architects expanded the rule with their own experience: 'Make sure when marking windows that they do not let in too much light or too little light and that they are not spread out or closer together than necessary. One should, therefore, take great care over the size of rooms which will receive the light from them, because it is obvious that a larger room needs much more light to make it luminous and bright than a small one.' (Palladio, 1965) Through years, these literal rules have been gradually quantified and expressed with numbers, such as the room depth for good daylighting should be twice the window height and the window area should be about 10% of the room area (Lukman et al., 2002).

Since daylighting design rules of thumb are easily remembered and mainly concerned with physical parameters of windows and indoor spaces, they are commonly enshrined in building regulations and design guidelines for safeguarding the provision of daylight or promoting a better design of daylighting. However, each of them has shortcomings that make itself incapable of accounting for the overall indoor daylighting performance on its own. The underlying assumptions of these rules of thumb may also be poorly stated, missed or dropped with use resulting in misapplication or contravention during the process of daylighting design. In the following paragraphs, some of the current daylighting design rules of thumb are discussed with their rationales, hypotheses and constraints.

3.3.1 No-sky line

The no-sky line is perhaps the oldest rule of thumb in the history of daylighting design for a rectangular interior with a side window. The ancients were used to draw a sight line between the top of the obstruction and the window head, and extend it to the inside space on the design section plan to assess the degree of penetration of daylight from the sky into the interior. The sight line would cut a certain indoor reference plane, which is usually set to be the horizontal working plane of 0.85 m above the floor but it can be another surface such as a wall or floor. The intercept between the sight line and the reference plane would form a line across the room, beyond which no sky is visible, and this is named no-sky line. This practice continues to the present. Although this rule of thumb is not adopted in local regulations, many current daylighting design guidelines (BSI, 1992; BRE, 1995;

CIBSE, 1999) recommend the no-sky line as a simple and voluntary method to check the adequacy of daylight level in a room. If a significant area of the reference plane lies beyond the no-sky line, then any point within this area is completely blocked by obstructions through the window and has no direct view of the sky. As a result, this no-sky area has a lower level of daylight and looks gloomier than the area in front of the no-sky line near the window. The distribution of daylight in the room is expected to be poor and supplementary electric lighting would most likely be required to create an environment with a rather uniform lighting distribution pattern. In other words, the more indoor area behind the no-sky line, the poorer daylighting performance is resulted. Figure 3.5 shows the concept of the no-sky line.

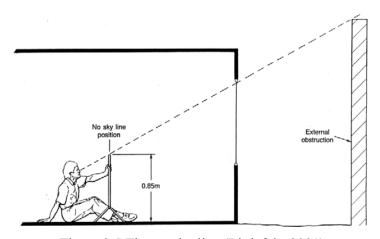


Figure 3.5 The no-sky line (Littlefair, 2001)

The no-sky line is suggested as a rule of thumb to be considered in the early stage of daylighting design. BRE (1995) gives hints on how to plot the no-sky line; CIBSE (1999) provides a simple calculation procedure for determining the position of the no-sky line. However, most of the design guidelines do not provide any critical value on the percentage of the no-sky area although BRE (1995) requires that if the no-sky line moves so that the area of the existing room which receives direct skylight is reduced to less than 0.8 times its former value following construction of a new development then more of the room will appear poorly lit. An exception was stated in the old versions of the local voluntary design guideline, HK-BEAM (1996a; 1996b; 1999), in which the no-sky line was applied as one of the daylighting design criteria: There should not be more than 20% of the office area, including any fixed work surfaces and tables, from which the sky cannot be seen from a desk height of 0.7 m

and the ratio of the area beyond the no-sky line to the area in front of the line should not exceed 1:4.

The no-sky line relates the window head height and the obstruction top to demarcate a certain horizontal plane across a room into the part which can directly see the sky and that which cannot. This approach informs architects and lighting designers to take corresponding lighting measures for the areas behind and in front of the no-sky line. However, it should be noted the no-sky line criterion can only be applicable in rooms of rectangular shape. Also, given from this rule of thumb, there is no direct requirement on the effective window width and height, which are important configurations in admitting the amount of daylight into interiors. In addition, the assumed sky type in this method is overcast or uniform, in which direct sunlight contribution is excluded. Although the worst case of daylighting performance of a room can be revealed by this rule of thumb, neither is considered sky condition nor window orientation, with both of which the quality and quantity of daylight may change a lot, compelling the no-sky line to fail as a design or assessment tool to evaluate the actual indoor daylighting performance, needless to mention about the possible light loss due to tinted glazing, the possible light gain from the reflection of opposite buildings and the ground or the inter-reflection among room surfaces. Besides, this rule of thumb was criticized to be unachievable by most of the office premises in Hong Kong (Chung and Burnett, 1999). In the commercial districts of this city, discrete high-rise obstructions with inconstant heights usually form a complicated skyline causing the difficulty of drawing the no-sky line of an office interior. Because the no-sky line criterion cannot provide a practical guideline for the better daylighting design in office buildings, it was cancelled in the later versions of the HK-BEAM (2003a; 2003b). Nevertheless, increasing the window height and widening the distance between the building and its obstructions are always the effective means to provide positive influences on the indoor daylighting performance. Architects and lighting designers should find ways to shrink the no-sky area so that more spaces can be lit by natural light instead of electric light.

3.3.2 Limiting room depth

The limiting room depth is a common rule of thumb for architects and lighting designers to follow for promoting better daylighting performance in the inner side of a rectangular interior with a side window – adequate amount of daylight reaching the rear part of the space and higher uniform daylight distribution on the horizontal plane of the whole room – assuming independent of external environments, sky condition, window orientation and glazing materials. Recommended in BSI (1992) and CIBSE (1999), there should be a limit on the overall room depth if a multi-storey building is to be completely lit by daylight. These design guidelines assume that the sidelit room is in rectangular shape and halved to be of equal size with an imaginary and perfectly transparent full width and full height partition parallel to the window wall. They propose the maximum depth of a room to have some relationship with the dimensions of the room and the window as well as the nature of the reflected surfaces in the back half of the room, which can be expressed in Equation 3.3,

$$\frac{L}{W} + \frac{L}{H_{w}} < \frac{2}{1 - R_{h}} \tag{3.3}$$

where L is the room depth, W is the room width, H_w is the window head height above the floor, and R_b is the area-weighted average reflectance of surfaces in the rear half of the room.

This rule of thumb aims to make sure a satisfactorily daylight level with a good looking daylight distribution in an interior particularly in the rear part away from the window. If the room depth exceeds the value in the equation, then the back half of the room will tend to look gloomy and supplementary electric lighting will be required. The limiting room depth criterion provides a reminder for architects and lighting designers to pay more attention to the balance between the size of a room and the dimensions of its window for achieving good daylighting performance particularly in the inner part of the room. There are however some natural-born drawbacks in the equation of the limiting room depth leading to the fact that this rule of thumb cannot be applied to evaluate the overall daylighting performance in a single and effective mode.

The sole focus on the window head height is obviously the fatal wound of this rule of thumb. The extension of the window head height from the floor level for the fulfilment of the limiting room depth equation does not necessarily mean that the height of the window itself is long enough for harvesting sufficient daylight into the interior. A window that is small in size and high in position on the window wall will still satisfy the rule, but the actual received daylight will centre on the indoor surfaces closely together rather than evenly spread out resulting in a pattern of skylight distribution far from acceptance. The deficiency of the direct restriction on the window area in this rule of thumb together with the ignorance of the factors stated in the assumption, such as the restricted use in rectangular room and the mere consideration under the assumed overcast sky condition, also lead to a poor design of daylight level and daylight distribution in the interior. The worst case of daylighting performance can be shown up by this rule of thumb, but for a better and more realistic design for daylighting, the limiting room depth criterion cannot guarantee on its own.

This rule of thumb is never a statutory daylighting design criterion in local regulations; it was a voluntary daylighting design tool suggested in the previous versions of the HK-BEAM (1996a; 1996b; 1999a). Local researchers expressed some opinions on the application of the limiting room depth rule in Hong Kong. Chung and Burnett (1999) commented that this rule of thumb could only be applied in perimeter zones as most of the office buildings in this city have a large floor plan, and electric lighting is still commonly required in maintaining the lighting level in the inner areas. In other words, the limiting room depth criterion can merely promote the exploitation of daylight in local interiors in a limited progress and therefore it is deemed to review. The revised versions of the HK-BEAM (2003a; 2003b) on one hand kept the concern on the daylight penetration into the deeper area of a building as before while on the other hand loosened the requirement that only 80% of the occupied rooms with windows were necessary to achieve the limiting room depth criterion, otherwise an alternative method with the aid of an advanced daylighting system should be made use to significantly improve the daylight level beyond 5 m from the window wall. Since many architects and lighting designers still found the demerit of impracticability to adopt the limiting room depth rule for local buildings

and tended to provide natural light to the inner space with the application of daylighting system for easier acquisition of credits, this rule of thumb eventually disappeared in the current versions of the HK-BEAM (1999b; 2004).

3.3.3 Window-height-to-daylit-room-depth ratio

'Surfaces that are closer to a window than twice the height of the window head above desktop will receive adequate daylight for tasks for most of the year.' This is a popular rule of thumb for initial appraisal of indoor daylight quantity recommended in a wide range of design guidelines (BSI, 1992; CIBSE, 1999).

This rule of thumb stands firmly on the concept that the higher the window, the deeper the zone of strong daylight in a rectangular room. Assuming there are enough daylight available to the window, less significant influence on indoor daylight due to external obstructions, no considerable loss due to tinted glazing or internal screening, and the sky type is overcast so that there is no effect on interior daylight quantity due to different window orientations, the approximate distance limit from the window for sufficient amount of daylight for working is twice the height of the window head above the working plane, provided that the window sill is at the same level or below the plane. Architects and lighting designers should make use of this rule of thumb to enlarge the height of the window so that more daylight can admit into the interiors.

The window-height-to-daylit-room-depth ratio has good points that the previous two daylighting rules of thumb cannot offer. The first advantage is that it is the simplest rule of thumb in daylighting design as only two parameters are considered, i.e. window height and the depth of the room that requires useful daylighting, plus these two parameters are available for architects and lighting designers in their own design plan. The second advantage is that the focus of this rule is on the effective height of the window, i.e. the distance from the window head to the window sill or the working plane, whichever is higher, on which daylight would reach, instead of the window head height from the floor like that required in the no-sky line and the limiting room depth rules, which results in a letdown as it cannot exclude the chance that the lower part of the window wall is opaque and unable for daylight to penetrate through.

Some factors that the no-sky line or the limiting room depth criteria do not concern however still keep neglected in the window-height-to-daylit-room-depth ratio. There is no restriction on the window width. Even the shape of the window is long but slim, this rule of thumb is satisfied but helpless in improving the daylight amount and distribution inside a space. Also, inapplicability in non-rectangular spaces, no account for the variation of daylight intensities under different window orientations and different sky conditions nor any consideration about the light gain from reflections of external and internal surfaces or the light loss through window glazing all make this criterion incompetent to paint the whole picture of the actual indoor daylighting performance with its own effort.

3.3.4 Window-to-window-wall area ratio

Daylight must come from windows installed on the façade of buildings; the daylighting performance in an interior must depend on the property and amount of the natural light available on windows, window design and interior configuration. With a larger window on the wall, by nature larger amount and higher uniformity of daylight is expected to provide in a building interior throughout a year. The window-to-window-wall area ratio is then developed based on this concept to evaluate the efficiency of daylight admittance through a side window under the assumed overcast sky, regardless of the shape of the interior, the possible influence on daylight amount and nature incident on indoor surfaces due to different sky conditions, window orientations and glazing materials, internal and external environments.

A number of studies have been carried out in these 40 years on the proposal of window-to-window-wall area ratio to design and assess a well performed daylit environment despite not being as a criterion in local regulations. Ne'eman and Hopkinson (1970) showed in their study that about half of the subjects expressed the minimum value of this ratio to be 25%, and an increase of the ratio to 32% would make 85% of the respondents feel the daylit room satisfactory. Similar conclusion was drawn by a behavioural response study which showed that if the window-to-window-wall area was between 20% and 30%, users would feel

satisfactory with the daylit environment; however, if it fell below 20%, the satisfaction level would decline in a steep manner because of an inadequate level of daylight in the rear part of the room (IES, 1972). Keighley (1973a) further set a bottom limit of 15% to make up a support group of at least 30%. Some local researchers examined the adoption of the recommended values of the window-to-window-wall area ratio (Li et al., 2006). They conducted a large scale survey in Hong Kong on this rule of thumb and reported that in residences the values of the ratio ranged between 25% and 30%, and in some luxury units the ratio climbs to 35% or even greater. The results implied a good correlation between the percentage of window area on the wall and user preferences to their daylit living spaces, provided that the window design is based on their request and favour.

This rule of thumb remedies the possible problem raised by the lack of restriction on window width limit appeared in other criteria by considering the total effective area of the window over the total area of the window wall. The recommended 25% of the window-to-window-wall area ratio would ensure a considerate amount of daylight falling into the interior through the window glazing despite the ignorance of glazing transmittance of the window. However, blindly following this figure may become a major limitation on daylighting possibilities in an interior since under the actual sky condition, e.g. clear sky, there is equally a considerate amount of solar radiant heat passing through the window subject to the shading coefficient of the glazing that may hinder the overall energy saving performance in buildings. Fulfilled the window-to-window-wall area ratio criterion alone cannot assure the creation of a well performed daylit space in real situations. Architects and lighting designers are advised to carefully balance the areas of the window and the window wall in terms of the visual needs of daylight and the thermal by-product from its associated heat.

3.3.5 Window-to-floor area ratio

The window-to-floor area ratio is another antique but still popular rule of thumb for addressing the daylighting performance of an interior with a side window by evaluating the effective window area expressed as a percentage or fraction of the floor area. The statement of restricting the relationship between the window area and the floor area has appeared since the Renaissance. It assumes that the room is

approximately rectangular in plan, there are no factors such as dark internal surfaces, low transmittance glazing or high and continuous external obstructions that significantly reduce the amount of daylight into the space, and the sky is always completely cloudy. Since then, the window-to-floor area ratio has become one of the widely known daylighting design criteria in the world as enshrined in many regional and local building regulations and design guidelines to safeguard the minimum provision of daylight in building interiors, and Hong Kong is not an exception. The Building Regulations of Hong Kong (HKSAR, 1997) requires that all habitable rooms are provided with a glazing area equal to at least 10% of the floor area. Various critical values of this rule of thumb have been emerged one after another with different purposes – for the least daylight provision and for better daylighting performance in a range of premises.

The Metropolitan Building Act 1844 and the London Building Act 1894 in England governed the minimum window-to-floor area ratio to be 10% (Ng, 2003). Its ex-colony Hong Kong inherited this regulation and made it specific for habitable rooms as mentioned in the previous paragraph. Price (1914) reported that some countries established various standards at the turn of the century to prescribe the exact proportion of the window area to the size of the room. For example, German factories were required to have a ratio from 10% to 33% while in New York schools 17% to 25%, industries 17% and residences 10% to 13%. Karlen (1993) quoted the ratio of 8% to 10% for residential spaces in accordance with the Building Code of Australia.

Regulations protect the least provision of daylight in interiors. For better daylighting design, architects and lighting designers can refer to researchers' findings and voluntary guidelines' recommendations. Robson (1874) made particular suggestions about the layout of schools in his publication. He advised an increase in the critical window-to-floor area ratio to 20% in classrooms in order to make the daylighting design certain to provide students with a healthy, comfortable and effective learning environment. Hopkinson (1963) commented that a window-to-floor area ratio of 20% could yield the rear of a room an adequate amount of daylight. The past versions of HK-BEAM (2003a; 2003b), which applied the window-to-floor area ratio as a criterion for evaluating daylighting performance, stated that 80% of all the occupied

rooms with windows should have the ratio of 35% or more while the remainder at least 25%. Typically the window is recommended to be sized larger in regard of the room area for the enjoyment of sufficient daylight, but there is an exceptional case when thermal effect is taken into consideration. Saini (1973) and Evans (1980) argued that for hot dry climates smaller glazing should be designed and the window-to-floor area ratio should be as small as 6%.

The window-to-floor area ratio has been extensively adopted as a daylighting design criterion in both legal regulations and design guidelines. It benefits architects and lighting designers by its easy approach to figure out an appropriate size of windows with respect to the room dimensions and secure a well distribution of daylight within short period of time. However, the window-to-floor area ratio is only a very crude daylighting performance indicator as it shows only the amount of daylight entering the room, relative to the daylight available external to the window. The actual daylighting performance of the interior space should also depend on daylight availability outside the window under different sky types, window positions, window orientations, glazing materials and internal surface reflectances. Besides, this rule of thumb may not be applicable in Hong Kong, a city of so high building density. The fulfilment of the 10% window-to-floor area ratio as required in law does not necessarily guarantee the obtainment of adequate or quality daylight. Its assumption makes this ratio untenable in this city since no reduction of natural light contribution to the window due to the heavily obstructed external environment is considered. The ratio either does not involve any evaluation of visual and thermal effects on the large window due to the window orientation. The window-to-floor area ratio together with other rules stated in the prescriptive regulation for provision of indoor daylight were criticized to be unable to indicate the actual daylighting performance and consequently limit the flexibility in building design. A performance-based approach for assessing daylighting in buildings has therefore been recently introduced by the government of this city to put up a more flexible and effective method to safeguard the provision of daylight in dwellings. The requirement of a window-to-floor area ratio stated in the HK-BEAM (2003a; 2003b) has also been repealed in its latest version for its uncertainty in assurance of ideal daylighting.

3.3.6 Limiting obstruction angle and vertical sky component

An obstruction angle is defined as the angular altitude of the top of an infinitely long and continuous obscured building of constant height above the horizon measured from the point in the centre of a side window on the plane of the outside surface of the window wall at the least level of 2 m above the flat ground in the direction parallel to the window and of any configuration in the direction normal to the window (BSI, 1992; CIBSE, 1999). It is suggested in some lighting standards and design guidelines, such as BRE (1995) and CIBSE (1999), as a rule of thumb to provide better daylighting performance in the way that this angle should not be greater than 25°, equivalent to 27% *VSC*, when a side window is to be used as a main source of light. The idea of the limiting obstruction angle at 25° is illustrated in Figure 3.6.

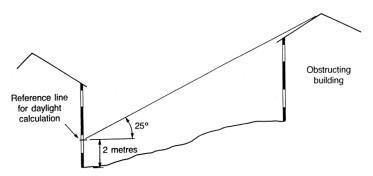


Figure 3.6 An illustration of the limiting obstruction angle at 25° (Littlefair, 2001)

Besides, the altered form of limiting obstruction angle is currently adopted in local regulations that the obstruction angle is maximized from 71.5° to 83° under different circumstances measured in the form of RHP at the window sill height to limit the spacing of obstructions outside a window and safeguard the least provision of daylight into an interior (HKSAR, 1997). Section 2.6.1 presented the details of this prescriptive requirement.

The limiting obstruction angle was deduced from a well-known daylighting parameter – the average daylight factor – which will be introduced in the later part of this chapter, and definitely inherits its shortcomings, such as the sole consideration of the worst daylighting case in a rectangular room under the standard CIE overcast sky

condition. The average daylight factor can be shown to be approximately proportional to the angle of visible sky measured in a vertical plane perpendicular to the window that inspires the idea of merely using a limiting obstruction angle measured up from the horizontal plane, provided that no protruding structure obscuring part or whole of the visible sky is assembled beyond the side of the building, to ensure enough daylight from the sky reaching the window. The quantitative natural light level on the window or inside the room is however not hinted by this rule of thumb.

Most of these guides solely advise the maximum obstruction angle without clear explanation of the underlying assumptions. It may result in the misuse of this rule of thumb during the daylighting design process. Three points are therefore worth highlighted.

First, the critical value of the obstruction angle of 25° suggested in design guidelines is not a universal figure for every place in the world, but only appropriate for imposing restriction on the least spacing between buildings in southern England and in the cities on latitude of 50°, where is the origin of these design guidelines. Architects and lighting designers should refer to the recommendations of Evans (1980) and Chung (2004) on the degrees of the maximum obstruction angle for buildings in other places as long as they are planning a rectangular interior for daylighting. Table 3.4 shows the suggested critical obstruction angle degrees and the corresponding critical *VSC* values by latitude. In Hong Kong, where the latitude is 22.3°N, the critical value of the obstruction angle to ensure enough daylight in a rectangular interior is about 48°, equivalent to 13% *VSC*. However, catering for the rapid increase in population is a concern that rises above all others in this city and forces the regulation on obstruction angle to be loosened so that buildings can be built closer irrespective of the daylighting performance.

Table 3.4 Suggested critical obstruction angle degrees and the corresponding critical vertical sky component values by latitude

Latitude (degrees)	Critical obstruction angle (degrees)	Critical vertical sky component (%)
Up to 20	55	9
20 - 30	48	13
30 - 40	40	18
40 - 45	35	21
45 - 50	30	24
50 - 55	25	27
55 - 60	22	29
60 +	20	30

Second, it must be emphasized that in light of the assumption the limiting obstruction angle should be applied under the condition of a continuous long parallel obscured building. If there is only moderate variation, a horizontal line at the average height of the obscured buildings can still be acceptable to provide a reasonable estimate for the calculation of the obstruction angle. However, in some places in Hong Kong, obstructions are in discrete form and of very distinct heights. It causes that the skyline seen from the window becomes so complex and it is difficult for architects and lighting designers to draw an average line for such various obstruction heights. This rule of thumb on limiting the angle of obstructions may fail in such a circumstance since the actual situation is that the window can yet admit sufficient daylight that come between gaps of separately arranged obstructions.

Third, the limiting obstruction angle simply guarantees the adequacy of daylight from the sky by quantifying the obstructing environment outside the window; however, this rule of thumb provides no clue to the contribution of reflected light from the ground or external walls of the opposite buildings to the interior. In Hong Kong, where the built environment is so tight, typically the light from the visible sky is blocked by obstructions and a large portion of indoor natural light comes from the daylight after reflected. In view of the serious violation of the assumption, the limiting obstruction angle should not be used as the single criterion when designing a local interior for daylighting.

3.3.7 Quality of view

As a rule of thumb, windows should be positioned in the orientation that contains a good quality view. Quality of view is always an intuitional criterion for humans to assess daylighting performance in building interiors. In fact it could be as important as the quality of interior lighting in the evaluation of visual comfort (Veitch, 2001). Daylight penetrates into a room through a window which is usually associated with a view. The interrelationship among daylighting, view and human perception is complicated. A study suggested that windows of interesting views could enhance the visual communications with the exterior environment, provide a sense of orientation and information of time, and also improve human mood (Robbins, 1986), but there are different conclusions about the definition of 'interesting' views.

There have been quite a number of researches with the objective to investigate which kind of view is 'interesting' (Ludlow, 1972; Orland, 1988; Tennessen and Cimprich, 1995). It was reported that when the subjects were asked what kind of view they preferred, most of them expressed a desire for natural views; but when the subjects had been exposed to a variety of possible views, they were not satisfied with static landscaping no matter how beautiful they are. The subjects preferred a complex structural organization in the view containing a balance of synthetic and natural things with some elements of movement, change and surprise involved. Besides, it was also demonstrated that people preferred views containing any one or two horizontal layers of the sky, landscape or cityscape, and nearly ground. As long as the quality of view is thought to be a contributor of daylighting performance, it should also be considered in the human subjective assessment of the overall indoor daylit environment.

View was ever a criterion to assess the performance of daylighting in buildings required in the previous versions of the HK-BEAM as well (HK-BEAM, 2003a; HK-BEAM, 2003b). However, it was not related to the content of the view. It stated that direct line of sight to a vision window should be possible from at least 90% of areas in regularly occupied workspaces. The aim of this criterion was to safeguard the provision of view out from the inner part of the room.

3.4 Parameters based on illuminance and luminance

The above rules of thumb may provide a general guideline for architects and lighting designers to design a building and its interiors well for harvesting more daylight. Lighting researchers would however prefer using figures to explain the daylighting performance of an interior. This raises the development of light measurement in terms of subjective perception. Light is a kind of electromagnetic radiation that quantities based on energy or power cannot be used to measure with. The reason is that the same amount of radiant energy at different wavelengths creates different sensation of brightness to humans. A special set of quantities based on luminous flux, i.e. the radiant power weighted against the spectral sensitivity of a human eye, or its extension, luminous intensity, i.e. the luminous flux radiated in a specific direction per unit solid angle, has to be used for light measurement. Illuminance and luminance are two of these quantities. Illuminance is defined as the luminous flux incident on a surface per unit surface area while luminance is the luminous intensity reflected or emitted by a surface in a specified direction per unit apparent or projected area in that direction. Daylight is the light from the sun and the sky, and thus these two quantities and the parameters developed upon their foundations are also applicable in the daylighting setting. Different from the previous two daylighting design criteria, i.e. daylight availability and rules of thumb, subjective preferences towards daylighting performance in an interior can be expressed in terms of illuminance and luminance. In the following paragraphs, some well-known illuminance and luminance based indicators of indoor daylighting performance are discussed.

3.4.1 Illuminance

Illuminance is probably the most commonly used basic parameter to assess daylight quantity of an environment. It is believed to be highly correlated with perception of brightness. Almost all lighting standards and codes identify the illuminance levels on workplane as one of the lighting design criteria and recommend the standard service illuminance level for task work in general offices to be 500 lux (ISO, 2002). This figure is also recommended for offices in many countries, such as Canada, Germany, Switzerland, UK and USA (Boyce, 2003). The emersion of this figure can be traced

back to a 1960s research. Saunders (1969) collected subjective preferences on the lighting of a simple office task under a range of illuminance levels provided by a regular array of luminaires through surveys and experiments. He concluded that the workplane illuminance increases with the preference rating on the lighting until it saturates at about 800 lux and the majority would appreciate an illuminance level of about 500 lux on the workplane. Since then, many researchers have carried out acceptance surveys to investigate the relationships between electric lighting level and occupants' satisfaction (Horst et al., 1988; Newsham and Veitch, 2001). A few researchers turned their interest to indoor daylit environment. For example, Hunt (1979) conducted a series of field studies and suggested that when occupants enter a deep-plan office of minimum daylight illuminance higher than about 650 lux, they would not turn on electric lights. Nevertheless, it should be mentioned that there is no single illuminance value being considered satisfactory by all the subjects in any study. Instead, there is a wide variation in individual preference on illuminance (Halonen and Lehtovaara, 1995), especially at different times of the day, which may be dependent on individual's sensitivity to light, quality of sleep, biological clock, and degree of well-being and comfort (Begemann et al., 1997). The best satisfactory level that can be achieved is about 80% for artificial lighting (Van Ierland, 1967). The percentage for daylighting is expected to be much lower. There have been several surveys conducted on the preferred illuminance levels in daylit indoor spaces, where some of them included supplementary electric lighting. A few recent and significant studies are discussed below.

Hunt (1979) carried out a field survey in offices and classrooms with side windows, where paper-based tasks were dominated, to investigate the criterion which people used in deciding whether or not to switch on the electric lights. It was found that a better correlation was obtained between the occupants' light switching on pattern and the minimum working plane illuminance in a daylit space. It implies that occupants' visual satisfaction with a daylit indoor environment mainly for paper-based tasks is dependent on the desktop illuminance level.

Roche (2002) conducted an experiment over several weeks in summer to determine a suitably designed combined blind and lighting control algorithm. The experiment took place in real daylit offices installed with individually controllable custom-made

motorized roller blinds. Illuminance sensors were placed on the horizontal workplane and horizontal ceiling respectively. A photocell was mounted to measure direct solar illuminances. Several external sensors were to measure global horizontal, diffuse horizontal and vertical illuminance on the window. The algorithm aimed to prevent direct solar glare while provide acceptable work plane illuminance in a daylit office. Subjective observations made by the researcher suggested that the visual environment when facing a computer workstation at a right angle to the window was reasonably comfortable when the working plane illuminance was below 1800 lux. It was further indicated that the daylight illuminance range from 700 to 1800 lux on the desktop in offices appeared to be acceptable for computer- and paper-oriented tasks.

Nabil and Mardeljevic (2005) did a brief survey of published work on occupant preferences towards indoor daylight levels. They found that there is a large range of daylighting conditions over which the human eye performs satisfactorily, and that there is also a large range of variations in preferred daylight levels among individuals. It was reported that as the daylight illuminance across the workplane of a typical sidelit office varies from the area near the window to the back of the room, it is inevitable to find great discrepancies between the target illuminance of 500 lux on the workplane. Besides, occupants usually lower the blinds when the daylight level is too high and switch on electric lights when the daylight level is too low. When these occupant behaviours are considered, it was suggested that only a range of daylight illuminance could be useful. It was pointed out that if the daylight illuminance is too small, it may not contribute in any useful way to either the perception of the visual environment or in the carrying out of visual tasks; while if the daylight illuminance is too great, it may produce visual discomfort triggering the operation of blinds. Nabil and Mardeljevic concluded that the range of useful daylight illuminance level (*UDI*) is between 100 and 2000 lux, within which the illuminance is generally considered sufficient and unlikely to cause glare, occupant discomfort or unwanted solar gains that lead to turning on electric lights or drawing shading devices.

Escuyer and Fontoyont (2001) carried out a survey in a daylit office with electric lighting as a supplement to investigate occupant preferences towards the working environment and various lighting control systems. They measured the desktop illuminance and took photographs of the offices after the interview with the subjects.

It was found that the preferred illuminance levels on the desks for subjects working mainly on computers were about 100 to 300 lux, while for subjects working less on computers the preferred illuminance levels were between 300 and 600 lux. Although the range of acceptable illuminance is similar for all people, there is no single value of the preferred illuminance level which can satisfy all individuals. The variation among different occupants may depend on individual's sensitivity to light, degree of well-being and comfort, climate and culture. It was also reported that besides intended to work under sufficient daylight which may be of different ideal amounts for different people, the researchers also suspected that the preferred daylight amount of a daylit office would be affected by the task type.

Some researchers switched the study from paper-based tasks to computer-based tasks. They found that the position for specifying the illuminance indicator is undergoing a change that horizontal illuminance may not be a good or the only indicator of the user perception of lighting level in this case. Iwata et al. (1994) investigated the visual comfort in a daylit environment to identify the influence of various phenomena which occurred simultaneously and caused discomfort in luminous environments. They conducted a field survey in a sidelit classroom by measuring the outdoor horizontal illuminance, vertical illuminances in the front, right and left, horizontal illuminance on the desk surface, and the luminance of the sidelit windows whilst asking subjects to vote for the brightness on the desk. The researchers studied the relationship between physical quantities and Brightness Sensation Vote (BSV), and found that the desk illuminance is the most dominant factor in BSV but vertical illuminance also influences it. An expression of the brightness sensation was given as a function of not only of workplane illuminance but also the vertical illuminance in a sidelit room. The higher vertical illuminance values suppressed the BSV to a certain extent while the lower ones enhanced it. The findings indicated that in the morning or evening when the solar altitude is low, occupants in a sidelit room do not feel much visual comfort; but when the sun goes higher, the comfort level also becomes higher.

Nicol and his colleagues (2006) conducted field surveys in offices, where occupants usually work with a visual display unit (VDU), to investigate which illuminance levels were considered best by the occupants. The researchers measured the

horizontal illuminance on the desks, at the same time asked the subjects to assess how the brightness of the office was and determine whether or not it was preferable to be dimmer or brighter. It was found that in general people seemed to prefer their environment to be bright since most people found the room was neither bright nor dim when the desktop illuminance reached just below 1,000 lux. However, meanwhile some people wanted to have a dimmer environment, and analysis of findings indicated that the subjective responses were almost independent of the desktop illuminance level. Nicol and his researchers speculated that it was because the occupants might work with a VDU. It was accounted for the fact that in the context of computer-based tasks, desktop illuminance does not directly govern the visual acuity of objects on the self-luminous VDUs, where the illuminance was provided by the screen and high levels of desktop illuminance might cause reflections and glare on the screen. The results implied that horizontal desktop illuminance may not be an effective daylighting assessment criterion for offices with computer work as the major task type. Besides, the use of interior horizontal illuminance as a design criterion may overlook the problem of sunlight glare, which may exist on a clear day with the sun low in the sky even if the desktop illuminance is not especially high.

The previous studies showed that despite having a wide acceptable range, horizontal or desktop illuminance should be a good indicator of assessing daylighting performance of an interior where the occupants are doing paper tasks on a working plane. However, solely using horizontal illuminance on workplane to assess the daylighting performance of an indoor space seems insufficient. Vertical illuminance can supplement the information which desktop illuminance cannot offer. It is therefore concluded that daylight quantities on horizontal and vertical surfaces are the least but not the only factors affecting the visual satisfaction of a daylit environment, and they should be considered together in daylighting design and assessment when both paper- and computer-based tasks are concerned.

3.4.2 Daylight factor

Daylight factor (DF) is perhaps the most extensively used metric for daylighting design and performance evaluation in buildings. It was first introduced in 1895 as a

means of rating daylighting performance independently of the instantaneous sky luminance (Trotter, 1951). It is currently the only recommended procedure of the Commission Internationale de l'Eclairage (CIE, 1970) and has been widely adopted in various standards and codes of practice of more than 100 countries to determine the performance characteristics of daylighting systems (Robbins, 1986). The DF is defined as the ratio of the illuminance (E_i) at a given point on a given plane due to the light received directly or indirectly from a sky of known or assumed luminance distribution to the illuminance (E_o) on a horizontal plane due to an unobstructed hemisphere of the same sky (BSI, 1992), and direct and reflected sunlight are excluded from both values of illuminance.

$$DF = \frac{E_i}{E_o} \times 100\% \tag{3.4}$$

The daylight illuminance E_i at an indoor point can be theoretically calculated when the exterior unobstructed horizontal illuminance E_o and the DF at that point are provided. The larger value the DF, the more skylight is admitted into the indoor point. E_o varies with time but DF at a given point is theoretically a constant for a given building configuration under a given sky condition. In performance analysis using the DF, only one single sky condition is used, which is usually not the 'known' real sky condition but an 'assumed' sky luminance distribution. This assumed sky condition is the CIE standard overcast sky – the zenith is the brightest point across the CIE overcast sky; the luminance gradually decreases with altitude until the horizon where it becomes one-third of that at the zenith – which is used almost universally in daylight factor calculations, irrespective of whether this sky represents the predominant condition in the location. The reason of adopting the idealized CIE standard overcast sky is that it is simple and symmetrical making calculations and analysis relatively easy. In other words, the DF approach is used for its simplicity rather than realism (Nabil and Mardaljevic, 2005).

In the basic DF definition, it requires the value of E_i at an indoor point, but it is not easy to obtain in the preliminary stage of building design. Before any daylight simulation software was released, some researchers have proposed alternative

calculation approaches. Hopkinson et al. (1966b) developed the point-by-point method for the calculation of daylight factor. The daylight factor at a given point of a room with a side window equals to the summation of the sky component (*SC*), externally reflected component (*ERC*) and internally reflected component (*IRC*). Of the relative illuminance striking at a given point of a room, the *SC* is the light received directly from the sky, the *ERC* is that received directly from the external obstructions and the ground, and the *IRC* is the daylight inter-reflected by the internal surfaces within the room. This method investigates all the daylight flux receiving at that point with a well-established theory.

Several mathematical and geometrical tools were developed for the calculation of *DF*. The Waldram diagrams invented in 1923 was one of the earliest graphical methods to obtain the *SC* from the CIE standard overcast sky (Waldram and Waldram, 1923). It makes use of plotting the area of visible sky on the given grid to output the *SC*. Together with the BRS daylight factor protractors created by Dufton (1946) and the BRS sky component tables developed by Hopkinson et al. (1966b), both of which determine the *SC* by quantifying the assumed infinitely long external obstruction with an obstruction angle, the Waldram diagrams are attached in many international lighting guidebooks (BRE, 1986; BSI, 1992) as the recommended *SC* estimators. Other well known approaches such as the pepper-dot chart method developed by Pleijel (1954) and the dot chart distributed as a function of sky luminance devised by Turner (1969) are also ways for architects and lighting designers to find out the *SC*.

The amount of the light received at an indoor point after reflection of daylight by external surfaces, i.e. the *ERC*, is usually estimated by the method of equivalent sky component with the assumption that the *ERC* is part of the sky which is obstructed. This is then converted to the *ERC* by allowing for reduced luminance of the obstructing surfaces compared with the luminance of the sky, where the typical conversion factor is 0.2 for obstructions near the horizon under the CIE standard overcast sky.

Different from the SC and the ERC, the amount of natural light from outside after inter-reflection within the room surfaces, i.e. the IRC, cannot be easily found for a specific point, and therefore for most purposes, it is assumed to take an average value

over the greater part of the room with a lower minimum value at points far away from the window. A few researchers (Dresler, 1954; Arndt, 1955) developed mathematical expressions to account for the average IRC of daylight inside a sidelit room. Hopkinson et al. (1954) built up the split-flux method through experiments for the calculation of the average IRC on the foundation of these previous studies. The split-flux method was developed upon the principle of inter-reflection based on the theory of the integrating sphere, where it assumes that the sidelit room is spherical and all the internal surfaces of the room, i.e. ceiling, walls and floor, are perfectly diffusing. It proposes that the total flux entering the room comes from two individual parts separated by a horizontal imaginary plane passing through the centre of the window. The light directly came from the sky and indirectly came from an obstruction above the horizontal plane is modified by the average reflectance of the lower part of the room while the light indirectly came from the ground and from an obstruction below the horizontal plane is modified by the average reflectance of the upper part of the room. Some daylighting design software also provides point-by-point DF calculations with text and graphical outputs. In this approach, the obstruction outside the window is assumed to be in an infinitely long horizontal form

This point-by-point DF approach has long been facing criticism. It contains complicated and tedious processes but gives insignificant solutions for improving daylighting design. Many architects and lighting designers found its function limited in daylighting design. A more general assessment method was in demand. The idea of the making of an average DF accounting for the amount of daylight on the workplane surface of a sidelit room has emerged. There have been two main streams to derive it – adopting the split-flux theory and using a visible sky angle.

On one side, Longmore (1975) extended the concept of split-flux principle adopted in the *IRC* calculation to develop a simpler and faster approach which presents the *DF* on the working plane in a room with a side window as an average value, with the assumption that obstructions are of fixed heights parallel with the window wall. Tregenza (1989) modified Longmore's formula for configurations with large vertical obstructions by quantifying them with four angles: upper and lower, right and left extent angles, with the assumption that the effective mean illuminance values from

the sky on the facades of the obscured buildings and on the window are the same, their surfaces are uniformly diffusing, and the obstructions are not necessary to be continuous but only of fixed angular height. Ng (2001) showed that Tregenza's modified split-flux equation gives much smaller errors at high obstruction angles. Cheung and Chung (2003) later described a method to allow Tregenza's equation applicable in a densely packed urban environment with complex obstruction configurations.

On the other side, Lynes (1979) introduced a simple method that depends upon half the value of the visible sky angle measuring from the window reference point. He claimed that is a reasonable approximation of the ratio of the total daylight flux incident on the working plane to the area of the working plane, expressed as a percentage of the outdoor illuminance on a horizontal plane due to the unobstructed CIE Standard Overcast Sky. His equation stands on the assumption that if all the external obstructions, including the ground, contribute about 10% of the mean sky luminance then the *DF* at the window reference point equals to the percentage value of half the angle subtended by the visible sky.

The average daylight factor (DF_{avg}) derived by Lynes originally concerns on all the surfaces of the room with a single side window but not on the working plane. The Lynes formula was then modified by Crisp and Littlefair (1984) to give the DF_{avg} on the working plane and is now widely adopted by CIBSE (1999) and BSI (1992),

$$DF_{avg} = \frac{VT_g A_w \theta}{A(1 - R^2)}$$
(3.5)

where VT_g is visible transmittance of the glazing, A_w is the area of glazing in m^2 , θ is the vertical angle subtended by visible sky at the centre of the window in degrees, A is the total area of room interior surfaces in m^2 , and R is area-weighted average reflectance of interior surfaces.

This formula is faster and simpler than the point-by-point DF approach. CIBSE (1999) recommends that the DF_{avg} of over 2% or 5% are required to give,

respectively, a partially daylit or predominantly daylit sensation in most types of buildings. BSI (1992) further recommends the minimum values of DF_{avg} to be at least 1% in bedrooms, 1.5% in living rooms and 2% in kitchens to give satisfactorily daylit feeling in dwellings. It however does not give any suggestions for office premises. Given the intended DF_{avg} value, the required glazing area can be obtained by inverting Equation 3.5,

$$A_{w} = \frac{DF_{avg} A(1 - R^{2})}{VT_{g} \theta}$$
(3.6)

where the meanings of all the symbols are the same as those in Equation 3.5.

Chung (2004) reminded architects and lighting designers that for multi-storey buildings required to have identical window configurations, the window area should be estimated for the floor with the largest obstruction, which is usually the lowest floor.

Through years there have been appreciations about the invention of DF, no matter in point or average forms, in accounting for the daylighting performance of a sidelit room. Hopkinson et al. (1966a) appraised DF as a better indicator than absolute illuminance since it can express the efficiency of a room and its windows as a natural lighting system as well as the amount of light in a space relative to the light that would be seen outdoors in sidelit spaces.

But what is more is that the DF has been facing a series of criticism against its validity and effectiveness as an indicator of daylighting performance or user satisfaction despite its wide acceptance. Some researchers found that the calculated DF is a poor predictor of daylighting performance across different conditions. Lynes et al. (1966) commented that daylight from a side window usually falls onto vertical surfaces preferentially and human sense of brightness in a room involves the illuminance of the walls, but DF concerns solely the daylight availability on the desk that may give architects and lighting designers a misleading impression of the effectiveness of daylight in a sidelit room. Hopkinson (1969) advised architects and

lighting designers to pay attention to its assumption when they apply the DF method that this criterion is restricted to rectangular sidelit rooms, up to 5:3 proportions with the window on the longer wall and without internal or external obstructions. Tregenza (1980) reported significant variations between calculated DF and simultaneously measured indoor and outdoor horizontal illuminance ratios through long-term measurements. Littlefair (1984) carried out a long period of measurements on the horizontal external illuminance, vertical external illuminance and interior illuminance inside a room. He pointed out that there are great discrepancies found in different orientations for the frequency distribution of external vertical illuminance. Love (1992) added that DF cannot correlate with human assessment of general brightness of spaces, and difficulties exist in practical determination by field measurements of the indoor and outdoor illuminances due to the variability of sky conditions over time. He supplemented that DF cannot be applied for places where electric lighting system contributes together as the former is a relative value while the latter should be measured in absolute illuminance values. He also pointed out that daylight factor cannot provide information on glare conditions. Love and Navvab (1994) suspected that variations in the DF across a space for a given set of conditions overstate the variability of illumination in terms of human perception. They worried that, as the only information, the illuminance ratio of the indoor horizontal plane to the outdoor condition ignores the illuminance on the vertical surfaces where light from outside preferentially falls on leading to the misunderstanding of the whole daylighting effectiveness inside the sidelit room. The DF method is not the preferred method mentioned by IESNA (2000), which instead recommends the lumen method as described briefly in Section 3.4.3. It states that the DF method is a low-precision procedure for determining the daylight illuminance at a point in a building interior (IESNA, 2000).

Furthermore, the values of *DF* recommended in various daylighting design guidelines were originated from Britain, where high-rise buildings were not common, resulting in the fact that it remains unknown whether the suggested values are yet appropriate in a densely populated city with high-rise buildings built closely together, such as Hong Kong. A recent survey was carried out on this issue. Ng (2003) conducted a comprehensive user survey together with on-site measurements and computer simulations covered about 1,000 units in twelve high density residential

estates in Hong Kong. He introduced the use of vertical daylight factor (*VDF*), which means the ratio of the total amount of illuminance falling onto a vertical surface of a building to the instantaneous horizontal illuminance from a complete hemisphere of sky excluding direct sunlight. The *VDF* approach takes into account both the daylight coming from the sky directly and from the reflected light of the surrounding buildings as well as the ground both above and below the horizon. Actually, *VDF* is not a strange parameter at all to the researchers. As early as 1980s, Tregenza (1980) issued a conclusion after his survey that *VDF* changes less in magnitude than *DF* does through the time, implying the possibility of adopting *VDF* as another daylighting performance indicator apart from the conventional *DF*. A few years later, Littlefair (1984) conducted a long term daylight measurement and found that there is a good correlation between internal horizontal illuminance and external vertical illuminance with a multiplying factor. He concluded that the ratio of these two illuminance values appears to give a better fit to the experimental measurements than the *DF* does.

Ng (2003) conducted the study on the use of VDF to assess the daylight availability in urban configurations with a non-continuous obstruction pattern 20 years later. The survey results showed that the rate of occupant satisfaction with the daylit condition of habitable rooms and kitchens keeps at 80% when the VDF value is 10% or above. An even higher value of VDF cannot improve much the occupant satisfaction whilst satisfaction rate drops along a steep slope once the VDF falls below 8% and 4% respectively. The results indicated that there is a natural tendency in human sensation of brightness with occupant satisfaction. Ng (2003) therefore proposed 8% and 4% of VDF, which correspond to the DF_{avg} as low as 0.4% and 0.2% respectively, as the recommended values to achieve good daylighting performance for habitable rooms and kitchens.

Looked into the critical values of DF_{avg} converted from VDF proposed for habitable rooms and kitchens in Hong Kong, it is surprising that there is a great difference from the recommendations in CIBSE (1999) and BSI (1992) in terms of the magnitude and the order of the place where higher acceptable daylight level is needed – acceptable daylight level was found to be higher in bedrooms and living rooms than that in kitchens in the preferences of people in this city. Although Ng did

not give further explanations in his publication, it can be assumed that is because of the different living habits of Hong Kong people and British people. However, when compared the critical values of VDF proposed by Ng (2003) and the suggested limiting obstruction angle of 48° following the principal of Evans (1980) and Chung (2004), which is about 21% standing on the assumption that the ground reflected and interreflected components are 3%, then the habitual divergence is no longer a valid reason. This 'more flexible' daylighting regulation on VDF values does sacrifice the provision of daylight for buildings in this city as great as what the prescriptive requirement does since the corresponding critical VDF values converted from the maximum vertical obstruction angles of 80.5° and 83° for habitation rooms and offices respectively in the worse case are 5% and 3.5%. Besides, VDF also suffers heavily from the assumption of the overcast sky excluding direct sunlight contribution as the DF approach does. Nevertheless, based on this user acceptance survey, a new supplement to daylighting regulation, PNAP 278 (HKSAR, 2005), using VDF was introduced in Hong Kong. The current version of the HK-BEAM (HK-BEAM, 1999; HK-BEAM, 2004) also modifies its criteria that credits will only be acquired if the provision of daylight meets the levels specified in the PNAP 278 for VDF. Chapter 2 provides more information about the current lighting regulation with the use of the VDF and its simplified method UVA. Table 3.5 summarizes the average daylight factor required in an interior to give a satisfactory daylit environment.

The ratio of DF_{avg} in the front half of room to that in the back half of room has also been used as an indicator of the appearance of the daylit interior. Lynes (1979) proposed this daylight factor ratio as a simplified way to predict daylight uniformity of a room. He stated that if this ratio exceeds 3, the occupants would expect the back half of the room to look distinctly dimmer than the front half. Lynes however did not explain why the threshold ratio was 3.

Table 3.5 Average daylight factor values giving satisfactory daylit environments

Building type	DF _{avg}	Description	
Most types of buildings	< 2%	Daylight will be noticeable only on room surfaces immediately adjacent to windows (CIBSE, 2002)	
	2 - 5%	Partially daylit interior, supplementary electric lighting is necessary during daytime (CIBSE, 2002; BSI, 1992); highest mean level of satisfaction (Roche et al., 2000)	
	> 5%	Predominantly daylit appearance without supplementary electric lighting during daytime (CIBSE, 2002; BSI, 1992); more likely to be dissatisfied with complaints of sun and glare (Roche et al., 2000)	
Dwellings: living rooms Dwellings: bedrooms Dwellings: kitchens	> 1% > 1.5% > 2%	Recommended minimum DF_{avg} even if a predominantly daylit appearance is not required (CIBSE, 2002)	
High-rise residential buildings: habitable rooms	> 0.4%	About 80% of occupants are satisfied with the dayling environment (DF_{avg} value deduced from external	
High-rise residential buildings: kitchens	> 0.2%	VDF at window centre) (Ng, 2003)	

All the aforementioned methods of daylight factor suffer from the assumption of the CIE standard overcast sky condition. Robbins (1986) queried the generality of the DF approach. He commented that the traditional DF method does not apply in the clear sky condition as easily as it does under the overcast sky because interior illuminance under the clear sky depends on the sun position, whereas under the overcast sky it does not. Faced with this shortage, researchers have been trying to extend the use of DF in all the real sky conditions. Alshaibani (1997) introduced a DF_{avg} calculation on the workplane for the clear sky condition which is assumed to be related to the solar location with two arguable assumptions: the illuminance on the external plane of a vertical window is approximately equal to the horizontal diffuse illuminance as a worst condition where direct sunlight is excluded and the average internal illuminance on the work plane is a proportion of the illuminance on the external surface of the vertical window plane. The assumptions help greatly reduce

the complexity of the estimation of the external illuminance levels, but its prevalence is still pending valid empirical results under various conditions of obstructions.

3.4.3 Lumen method

Lumen method is a major method using illuminance as the parameter to assess the daylighting performance of an indoor environment in the North American countries. IESNA (2000) comments it simple enough to permit manual computation. Contrary to the *DF* method which determines the relative illuminance, the lumen method determines the absolute daylight illuminance in an interior. It is similar to the zonal cavity method for finding out the actual amount of indoor electric lighting in principle. Lumen method for daylighting has two approaches depending on the daylighting condition of the room: toplighting or sidelighting. It is assumed that the illuminance reaching an indoor point is a function of the amount of daylight received on the skylight or window plane respectively. The lumen method for sidelighting is emphasized to discuss in the following paragraph.

For sidelit interiors, the lumen method predicts the interior illuminance values due to daylight at five reference points in an empty rectangular room with simple fenestration. These five reference points are located on a line perpendicular to the window wall across the centre of the room at the same height as the window sill. The lumen method for daylighting in a sidelit interior is applicable under a wide range of sky conditions including clear, partly cloudy and overcast, which is an advantage over the *DF* method only applicable under an overcast sky. It does not account for the direct sunlight entering into the room cavity in the sidelighting approach however just the same as the *DF* method. The basic form of the lumen method is as follows,

$$E_i = E_x \cdot VT_g \cdot CU \tag{3.7}$$

where E_i is the interior illuminance in lux, E_x is the exterior illuminance in lux, VT_g is the visible transmittance of glazing, and CU is the coefficient of utilization.

In the calculations for the lumen method for sidelighting, the exterior illuminance value at the window is determined from daylight availability materials first, and then the net transmittance of the fenestration or daylighting system, which includes all the factors that reduce the amount of daylight reaching the interior of the room. The CU, which is the ratio of interior to exterior illuminance values, can be found from tables given in IESNA recommendation and Lighting Handbook (IESNA, 1989; IESNA, 2000). For sidelighting, the sky component and ground reflected component are separately calculated using different CU tables. A total of 46 CU tables are given in IESNA recommendation for the sky component and ground component based on different values of the vertical-to-horizontal sky illuminance, with or without blinds, sunny side or shaded side, etc. CU tables have also been developed for sidelit rooms with light shelves (Saraiji and Mistrick, 1993).

3.4.4 Illuminance ratios

Daylight changes as a function of sky conditions. Absolute daylight illuminance requirements may not be meaningful to the actual daylighting performance in buildings; illuminance ratios seem to be more meaningful. They are usually used to quantify lighting uniformity and typically measured or calculated across a reference plane, for example the horizontal working plane. CIBSE (2002) states that the ratio of minimum to average illuminance values over the task plane should not be less than 0.8. Although there is evidence that supports human preference of higher uniformity, some researchers claimed that non-uniform lighting distributions on workplane can still be acceptable (McKennan and Parry, 1984). For a daylit office, the minimum uniformity ratio on the desk is suggested to be 0.7 (Velds, 2000). Some studies even argued that a daylight illuminance ratio as low as 0.5 on the working plane would still be acceptable for most of the people to perform tasks (Slater and Boyce, 1990). A study concluded that uniformity in open plan offices has no effect on paper-based clerical tasks (Slater et al., 1993) whilst another reported that there is little effect of desktop uniformity on visual performance (Rea et al., 1990). There has been no unfavourable comment of illuminance ratios in the evaluation of daylighting performance; on the contrary, one study praised non-uniform desktop illuminance helps improving the performance of arithmetric calculations (Taylor et al., 1975).

Love and Navvab (1994) introduced the vertical-to-horizontal illuminance ratio (VH ratio) as an indicator of daylighting performance while criticising that DF ignores the illuminance on interior vertical surfaces. VH ratio is the ratio of the vertical illuminance to the horizontal illuminance at a given point in an indoor space, where direct sunlight is not necessarily excluded. The researchers conducted a long-term experiment in summer to compare the measured DF (the ratio of indoor to outdoor illuminances under an unobstructed sky) and the VH ratio of real spaces, where one of them being put under the real sky. The results showed that the VH ratio is rather stable over time than the DF values for any real sky conditions. It was reported that its variations in space and time are much more meaningful than those of the DF approach and other illuminance ratios. The researchers claimed that the VH ratio can be interpreted to compare the daylighting quality of various window systems in terms of direct sunlight control, the dynamic effects of sunlight on shading systems, and the interior distribution of daylight, including inter-reflections. They also reported that VH ratios can provide information on the presence or absence of direct sun, glare, contrast, and the balance of daylight illumination in a space. The VH ratio was promoted to be a useful daylighting performance indicator and potentially a supplement or a replacement of the DF method. The significance of VH ratio was further supported by Iwata et al. (1994) which have been discussed before in this chapter that visual comfort judgment depends not only on horizontal illuminance but also on vertical illuminance at the eye. Although the VH ratio can indicate at best the direction of incidence of daylight to a point, which may be related to the visual satisfaction of a space because it will affect the appearance or modelling (i.e. the 3-dimensional form) of objects, it is surely that a ratio never has the ability to indicate the available quantity of daylight inside a space. Moreover, there is not yet a recommended VH ratio for an acceptable indoor daylit environment.

3.4.5 Daylight autonomy

Daylight autonomy is a measure of how often the interior daylight illuminance equals or exceeds the desired illuminance level, which is usually presented as the percentage of the working or occupied hours in a year that a minimum workplane illuminance threshold of 500 lux for task work in general offices as required in many international lighting standards (BSI, 1992; CIBSE, 2002) can be maintained by

daylight alone and electric lighting system can be switched off. This quantity of daylight throughout the working or occupied period in one year has to be got known for daylighting performance assessment, particularly when it is related to energy efficiency of a daylighting system. For simple analysis, the yearly daylight illuminance values can be derived from daylight factors and a time series of, for example hourly, exterior horizontal unobstructed sky illuminance. Calculating a time series of interior illuminances using the lumen method needs more daylight availability data than just the exterior horizontal unobstructed sky illuminance; data such as the external vertical and horizontal half-sky illuminances are required.

Daylight autonomy has its strength in informing the daylighting performance of an interior. Both daylight autonomy and DF are expressed as percentages, but the information contained in daylight autonomy is more than that in DF. For example, daylight autonomy of 50% means that daylight alone is sufficient for performing the intended activity in the interior for 50% of the time; while daylight factor of 5% conveys only a vague idea of daylight quantity although a general interpretation by experience is that the space is sufficiently daylit. Daylight autonomy however has its weak points too. Nabil and Mardaljevic (2005) pointed out that it fails to give significance to those daylight illuminances that are less than the threshold but may still have potential to put all or part of the electric lighting loads out of place. Besides, it also ignores the possible glare and thermal comfort which is associated with the amount of daylight exceeds the threshold illuminance at any particular instant.

3.4.6 Luminance and its ratios

Luminance is another commonly used basic parameter to describe daylight quality. CIBSE (2002) states that the ratios between task, wall and ceiling luminances have a strong influence on satisfaction. Researches which attempted to find the preferred balances of luminances between the task, the immediate surround and the general background have identified that the performance will be reduced and that attention will be harder to maintain if the task is dimmer than the immediate surround, while a sharp contrast between the two makes visual conditions uncomfortable. The suggested maximum luminance ratios stated in CIBSE (2002) are task-to-immediate surround 3:1 and task-to-general background 10:1. The European daylighting

reference book (Baker et al., 1993) states an acceptable luminance contrast of task to adjacent darker surroundings of 3:1. The reference book also suggests that luminance ratios of no greater than 10:1 anywhere in the field of view are desirable, and the maximum luminance ratio permissible within a space is between 20 and 40:1. Besides, some researchers studied the occupant preferences towards different luminance ratios.

Loe et al. (1994) conducted an empirical study to light up a full-scale mock up conference room in many different ways in order to examine the relationship between a subjective response to a lighting environment and its luminance distribution as a contribution to improving lighting design. They found that the two main factors of an observer subjective assessment were visual interest and visual lightness, which were able to be respectively described by the luminance contrast and the average luminance within a horizontal band of 40° wide ($L_{avg,40H}$) and central circle of angular subtense 40° ($L_{avg,40C}$) at the normal eye height. The study suggested that these two parameters are likely to be contributors to an interest and bright lighting environment. It was however the fact that Loe and his researchers did not provide any recommended values of these luminance descriptors. Also, whether the same parameters could account for the evaluations of a daylit condition was still an unknown.

Parpairi et al. (2002) looked into how daylighting quality affects the users of a library interior and found that luminance variability in the field of view is a key factor to lighting quality perception. They carried out field surveys in libraries in Britain to investigate the daylighting performance. Photometric measurements were made meanwhile subjective feelings towards indoor daylighting were assessed. The researchers found that the higher the luminance ratio of task-to-adjacent surround, which implies greater difference between task and desktop luminance, the poorer is the daylighting performance perceived. They suggested that luminance ratios of task to immediate and general surround were moderately good indicators of sensation. They showed that luminance ratios account for a maximum of 27% of the variance in the perception of daylit spaces. It was claimed that real daylit interiors have luminance ratios far from the recommended 3:1 and 10:1 while subjects are still satisfied with the spaces in several cases. They introduced another indicator called

luminance differences index, which is used to evaluate the luminance variability in a daylit space. Parpairi and his colleagues illustrated that this index was successful in relating to subjective assessments of daylight quality. It was concluded that luminance variability is highly appreciated and occupants enjoy the stimulation of variable luminances in the field of view. The higher differences the luminance variability in the field of view, the more pleasant, cheerful, bright, radiant, clear, visually warm and strong the space will appear. Even for subjects performing tasks on horizontal work plane, they still prefer luminance differences on the vertical planes of the room.

3.4.7 Glare from windows

Visual comfort is one of the important elements in assessing indoor daylighting performance. Conventionally, the extent of visual discomfort is quantified by the degree of discomfort glare perceived by occupants. Discomfort glare is produced by the excessive contrast between the luminance due to bright daylight from windows and the general background luminance of the room. Some researchers define a glaring source to have luminance over 500 cd/m² (Canter, 1975), or having a luminance four times higher than the average luminance of task area (Wienold and Christoffersen, 2006), but none of them are internationally accepted. Daylight glare is included here as one of the measurable parameters because measurement methods have been proposed for its evaluation, e.g. daylight glare index (Hopkinson, 1972) and daylight glare probability (Iwata et al., 1992a; Iwata et al., 1992b). These methods are in general based on the luminance of the scene outside the window and an adaptation or background luminance. Among the published methods, the mostly discussed one is the daylight glare index (DGI). The DGI formula is also known as the Hopkinson-Cornell formula and it was modified slightly by Chauvel et al. (1982) to the following form,

$$DGI = 10\log_{10}\left(0.478\sum \frac{L_s^{1.6}\Omega^{0.8}}{L_b + 0.07\omega^{0.5}L_w}\right)$$
(3.8)

where L_s is the source luminance, i.e. the luminance of the patch of visible sky, of the obstructions and of the ground seen through the window, in cd/m², L_b is the background luminance, i.e. the luminance of the interior surfaces within the field of view excluding the glare source, in cd/m², L_w is the weighted average window luminance, in function of the relative areas of sky, obstruction and ground, in cd/m², Ω is the solid angle subtended by the source modified for its position with respect to the field of view in steradians, and ω is the solid angle subtended by the window in steradians.

The DGI formula is however not easy to use due to its contradiction (Iwata et al., 1992a; Iwata et al., 1992b), confusing interpretations of the variables, such as the meanings of the source and window luminances, and difficulties in the determination of the two solid angles. The unclear meanings of the variables and the complexity of the formula to an extent limit its general application. This form of the DGI formula lacks mathematical consistency concerning additivity when a large window source is divided into several smaller concentric sources. Chung (2005) commented that if the power index of Ω is equal to 1, then the DGI formula will be more consistent mathematically. In the evaluation of CIE unified glare rating (UGR), which is an index of artificial lighting glare, the additivity issue has been taken into account resulting in the following formula,

$$UGR = 8\log_{10}\left(\frac{0.25}{L_b}\sum_{b}\frac{L_s^2\omega}{P^2}\right)$$
 (3.9)

where L_s is the luminance of the luminous parts fo each luminance in the direction of the observer's eye in cd/m², L_b is the background luminance in cd/m², ω is the solid angle of the luminous parts of each luminaire in the observer's eye in steradians, and P is the Guth position index that can be calculated with the below formula provided by IESNA (2000),

$$P = \exp\left[\left(35.2 - 0.31889\alpha - 1.22e^{-2\alpha/9}\right)10^{-3}\beta + \left(21 + 0.26667\alpha - 0.002963\alpha^2\right)10^{-5}\beta^2\right]$$
(3.10)

where α is the angle between the vertical of the plane containing the source and the line of sight in degrees, and β is the angle between the line of sight and the line from the observer to the source in degrees.

Nazzal (2000, 2001a) derived a new daylight glare formula (DGI_N) in the UGR form and named it as the new daylight glare index, here denoted as DGI_{N1} for the differentiation with his later proposed DGI_{N2} ,

$$DGI_{N1} = 8\log_{10}\left(0.25\sum \frac{\sum L_{ex}^{2}\Omega}{L_{\alpha} + 0.07\sum L_{w}\omega^{0.5}}\right)$$
(3.11)

where L_{ex} is the exterior luminance, i.e. the luminance of the outdoors caused by direct sunlight, diffuse light from the sky and reflected light from the ground and other external surfaces in cd/m², L_w is the window luminance, i.e. the luminance from the outside through the window in cd/m², and L_a is the adaptation luminance, i.e. the luminance of the surroundings including reflections from the internal surfaces and the window luminance in cd/m², and ω is the solid angle subtended by the window in steradians.

Almost at the same time, Nazzal published another form of DGI_N in other papers (Nazzal, 2001b; Nazzal and Chutarat, 2001), where a large difference of the two formulae exists subject to the magnitude of the window luminance and the window size, but he did not provide any explanation on the discrepancy of the two new daylight glare index formulae,

$$DGI_{N2} = 10\log_{10}\left(0.478\sum \frac{\sum L_{ex}^{1.6}\Omega^{0.8}}{L_{\alpha} + 0.07\sum L_{w}\omega^{0.5}}\right)$$
(3.12)

where the symbols have the same meanings as those in Equation 3.11.

Nazzal (2001b) introduced a standard monitoring protocol together with the calculation method of his proposed DGI_{N2} . The daylight discomfort glare is defined by a special arrangement of three illuminance sensors inside the room. The sensors

are respectively placed close to the middle point of the window at a distance of 0.2 m from the glazing to measure the exterior illuminance (E_{ex}), placed at the level of the midpoint of the window and adjusted with a shield, black pyramid with mat finish free of any reflections to cover the rectangular window entirely without gathering light from the surroundings to measure the window illuminance (E_w), and placed on the level of the opening of the shield to cover a semicircular 180° area to measure the adaptation illuminance (E_a). The dimensions of the shield as well as the distance between the window and the shielded sensor are standardized with equations. E_{ex} , E_w and E_a are then mathematically converted to L_{ex} , L_w and L_a with the assumption that all the interior surfaces have the Lambertian reflecting or emitting properties.

Chauvel et al. (1982) suggested that there is greater tolerance of mild degrees of glare from the sky seen through windows probably due to the provision of a view than from a comparable artificial lighting situation with the same value of glare index, and hence, *DGI* has a more compressed scale than *UGR* does. Originally it is a merit to Chauvel's comment; but Chung (2005) argued that just without this bearing in mind, confusion on the glare rating can result due to that the same numerical value of *DGI* and *UGR* may correspond to different glare criteria. He proposed a new daylight glare rating (*DGR*) formula as given below,

$$DGR = 8\log_{10}\left(\frac{0.088}{\left(L_b + 0.07\omega^{0.5}L_w\right)^{0.88}}\sum_{s}\frac{L_s\omega_s}{P^2}\right)$$
(3.13)

where ω is the solid angle subtended by individual divided source element in steradians, P is the Guth position index and all other symbols are of the same meanings as those in Equation 3.8.

Tokura et al. (1996) proposed the predicted glare sensation vote (PGSV) as another method for evaluating the discomfort glare from windows. The method correlates the possible influential factors, including solid angles of the source, source and background luminances, to provide the PGSV, which has a scale of 0-3: 0=just perceptible, 1=just acceptable, 2=just uncomfortable and 3=just intolerable. Some literature pointed out limitations of PGSV, such as the mathematical contradiction

and the effect of the source shape on discomfort glare. Although Iwata and Tokura (1998) attempted to account for the problems, further examinations towards its validity are necessary for the application of *PGSV*. There is not yet a universally accepted evaluation method for glare from windows due to daylight up to now.

Apart from the luminance contrast between the scene outside window and the background stated in the above daylight glare evaluation methods, it was reported that when the quality of view is taken into consideration, the perceived glare sensation is not related to room and window orientation, task illuminance, position of the subject in the room, presence of shading devices, computer screen contrast and orientation relative to the window, and thus it is difficult to identify the parameters controlling the perceived glare sensation (Iwata et al., 1992a; Iwata et al., 1992b).

Tuaycharoen and Tregenza (2005) conducted laboratory experiments to study whether there is any association between subjects' interest in the content of projected images and tolerance of discomfort glare. They investigated the subjects' feedback on perceived glare when they were asked to view bright images which were judged interesting previously by another independent group of subjects projected onto small screens. It was found that significant differences existed between glare sensation from interesting and non-interesting images. The researchers concluded that tolerance of daylight glare could increase when people see some interesting information from a glare source. Osterhaus (2001) reviewed the current discomfort glare assessment methods, and further claimed that having access to windows that provide attractive ways may be far more important than any perceived discomfort glare associated with them. The type of task and the position of the subject relative to the window might also affect glare sensation from windows. Velds (2000) in her thesis found that when the view is held constant, the discomfort glare sensation should be at least dependent on the type of task, where discomfort glare should be less acceptable for subjects working on computer tasks than for those working on horizontal reading and writing tasks, and the position of the subject relative to the window, where the perceived glare near the window should be higher than that at the back of the room.

Although a space with non-uniform luminance distributions may appear interesting (Veitch, 2001), the luminance contrast in the field of view should not be so large that discomfort glare is created by the distracting bright light source. People satisfy with a room with some contrasts in luminance level to create certain extends of interest, but not including any glare. However, the ideal balance between luminance distributions that are interesting and prevention of glare is still unknown (Velds and van der Voorden, 1996).

3.5 Prospective trends and possible challenges

Through the centuries, a number of physical devices, rules of thumb and numerical recommendations in terms of illuminance and luminance have been developed to evaluate daylighting performance of a building interior. However each of these approaches suffers from different kinds of assumptions and limitations that make it fail to become a comprehensive and effective daylighting performance indicator. Some of them are introduced in the above paragraphs. For example, the *DF* method is not precise enough due to the use of an idealized sky condition and the exclusion of direct sunlight and the sole consideration about the daylight amount on the working plane. An overall daylighting performance indicator instead should be integrated with the features of both the daylight quantity and quality on the working plane as well as on the other surfaces of the room under the real situations in a multi-criteria manner.

In daylighting design, instead just using an idealized sky condition, it is often necessary to predict daylight quantity and quality over the interior for at least several frequently occurring sky conditions at the location. In order to cope with the highly variable sun positions and sky conditions, computational simulation seems to become the trend towards more refined and reliable methods. With real climate dataset available, the simulation tools can help assess the daylighting performance in building interiors. Computer simulation has been shown by researchers to be accurate in daylighting calculations and analyses (Mardaljevic, 1995; Mardaljevic, 2000; Reinhart and Herkel, 2000; Reinhart and Walkenhorst, 2001). The more recent development trend of daylighting design and assessment is to use computer

simulation with real climatic data for dynamic daylighting computation at intervals as short as one minute (Walkenhorst et al., 2002).

An annual time-series prediction of a number of daylighting parameters relevant to occupants' visual satisfaction and electric lighting energy saving potential under real variable sky conditions can provide a true measure of daylighting performance of an interior. This however would mean a large amount of data to be treated and parameter values to be understood. Building designers may consider the volume of the data of various related parameters too massive and they do not need the level of details in many cases. One reason for the *DF* factor to be so commonly used is that it is simple and easy to understand. The useful daylight illuminance (*UDI*) paradigm proposed by Nabil and Mardaljevic (2005) retains the simplicity of interpretation and assessment of the traditional *DF* method, but with a considerable improvement because *UDI* is founded on an annual time-series of absolute and realistic values of interior illuminance predicted under real skies of variable sky and sun conditions in hourly or minutely basis generated from standard meteorological data.

The *UDI* can be defined as the annual occurrence, expressed in percentage, of daylight illuminances across the work plane where all the illuminances are within the range between 100 and 2000 lux. This range is based on occupants' preferences and behaviour feedback in daylit offices possessing manual shading devices. There is a good correlation between interior daylight illuminance and human subjective assessment by the *UDI* paradigm. In fact, *UDI* is not just an indicator for the quantity but also embraces some lighting quality as well. *UDI* also provides significant correlations with the annual energy consumption for lighting. With the advanced computational simulation, the *UDI* paradigm is an intriguing concept that can promote more realistic modelling and analysis of daylight in buildings. The concept of *UDI* will be adopted and extended to include more relevant daylighting parameters in the development of the novel daylighting performance assessment method studied in this thesis.

There is not much improvement in the assessment of daylight quality in an interior, particularly in the area of glare from windows. The difficulties in measuring the luminance levels of the source and the background have not been overcome for years.

The monitoring protocol such as the one proposed by Nazzal (2000) calls for a list of calculations and geometrically correctly placed and sized shielded and unshielded illuminance sensors subject to the dimensions of the room and the window, which is a tedious and conventional light measurement process. The emerging high dynamic range (HDR) photography technique is expected to bring some breakthrough since it provides a quick, reliable and holistic way to acquaint both source and background luminance for the calculation of *DGI*. This technique will contribute its part in the evolution of the daylighting performance indicator, which is the major outcome of this thesis.

CHAPTER 4

SURVEYS ON DAYLIGHTING DESIGN PREFERENCES AND PRACTICES

4.1 Background

Past studies showed that daylighting, being the best light source preferred by occupants, is an effective means of reducing electric lighting energy consumption and enhancing visual comfort in office buildings. The fact in Hong Kong is however that occupants usually turn on all electric lights with all window blinds down once entering their cellular offices regardless of the interior daylight condition, resulting in that energy consumption for lighting has been kept at a relatively high level despite the use of more efficient lighting systems in the recent decade. It is suspected such a phenomenon is caused by that the current daylighting design methods cannot effectively create a visually satisfactory working environment entirely illuminated by natural light for office occupants to perform their tasks. There is a necessity to look into the ideas of local office users about their preferred daylighting design their workspaces in the meantime identify the difficulties of daylighting design that building design practitioners are facing to at present. It is believed that grasping the room users' favourable features of a daylit working environment and realizing the obstacles to designing for better use of daylight in interiors are the first and essential step for the establishment of a more reliable and inclusive daylighting design and assessment method. This chapter reports on two surveys respectively conducted to investigate office workers' preferences on windows, view outside as well as lighting and internal shading control methods, and the building design practitioners' opinions on and their current practices of office daylighting design in Hong Kong.

4.2 Survey on ideas of office occupants about daylighting

A survey was conducted for obtaining opinions about occupants' preferred cellular office daylighting design. The survey was performed from 25 July to 24 September 2008. The target subjects were the occupants working in office buildings in Hong Kong. Sending questionnaires to prospective respondents by traditional mail is probably the most common approach to collecting information. An obvious advantage over other methods, such as interviewing, is that it is less expensive since

time, human and financial resources are saved. However, experience tells researchers that even with a prepaid, self-addressed envelope mailed together with the questionnaire, the response rate still keeps low. A survey through electronic mail was chosen as a better alternative because it is the easiest way to reach the busy Hong Kong office staff. Improving convenience by filling in the e-questionnaires may increase the response rate. In the study, 262 email invitations were randomly sent to the target subjects of different professions of companies in various grades of local office buildings, other than those in building and construction engineering field, so that the subjects were most probably laymen of lighting design in building interiors.

The questionnaire started with general information about the content of the survey and the rights of the participants. The sole incentive offered to the subjects to take part in the survey was the chance to contribute in the development of a better daylighting performance assessment method which could address their real demands of a visually satisfactory daylit office. Once a subject accepted to participate in the survey, he was then asked to give background information concerning his gender, age group, and whether he was working in local offices. The subject was also requested to state the name of the office building where his office was located for verification. Should he be identified to be in the focus group, he was then invited to the main body of the questionnaire, which contained ten questions geared up for collecting information relating to the following three aspects: (i) preferences on windows; (ii) preferences on view outside; and, (iii) preferences on lighting and internal shading control methods. Predefined answers with open-text fields for providing supplementary information were offered. Unless specified, the subjects could select only one answer for each question. He could skip a question without answering it and continue to the next question in case he found it inappropriate. Since the target subjects were laymen of lighting engineering, clear explanations of some terminologies were necessarily given together with illustrations provided for their easier understanding. Appendix B provides the complete questionnaire of this survey.

A total of 102 valid questionnaires were returned. The response rate of the survey was 39%. The data collected from these questionnaires were then analyzed. 49% of

the respondents were male while the other 51% female. Figure 4.1 shows the breakdown of respondents' age groups.

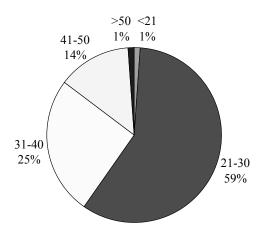


Figure 4.1 Breakdown of respondents' age groups

4.2.1 Preferences on windows

A window is a crucial feature of a building. It supplies daylight, provides views of the outside world, acts as a glare protector, and sometimes it can be an energy saver. A suitable design of windows, which is preferred by occupants, can have a significant impact on building energy efficiency because of the better use of daylight.

In accordance with Building Regulations of Hong Kong (HKSAR, 1997), every office room shall be provided with windows for natural lighting. However, the regulations at the same time state that, owing to the position, level or unsuitable surroundings of any office room where natural lighting is impossible, artificial lighting may be approved. This exemption from regulations leads to the permission of afterward partitioning of an open plan space resulting in that some newly created cellular offices cannot enjoy window apertures. It is interesting to realize the occupants' perceived attributes of windows. It could be seen from the survey results that all respondents (100%) believed offices should have windows. Open-text fields were prepared in the questionnaires for the subjects to give explanations for their answers. As shown in Figure 4.2, 37% of the respondents expressed that they could

get relaxation from the visual connection with outside through windows, 22% gave details that sunlight penetration into the offices through windows can provide them with warmness and pleasantness, about one-fifth revealed that the use of daylight through windows can help in consuming less electric lighting energy, and 14% explained that working with daylight seems visually as well as bodily healthier. Supported with various reasons, it could be concluded that occupants do like the existence of a window in their cellular offices. For satisfying occupants' need, architects and lighting designers should prevent the making of private offices in the inner part of the buildings where windows are not accessible.

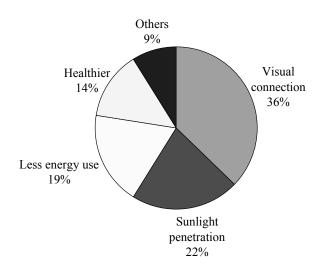


Figure 4.2 Respondents' reasons for a window

Window orientation is a key element affecting daylighting design in an office environment. The orientation of windows to the sun significantly influences the amount of solar gain and the degree of sunlight penetration into the room, and thus the thermal and visual comfort of occupants. In Hong Kong, a city located at latitude 22.3° of the northern hemisphere, south-west is the worst direction for window orientation since sunlight is intense and at a low angle in the afternoon, and it is difficult to shade. On the north side, there is little direct solar radiation throughout the year. The theoretically preferred orientation for a building is the south facing. On the south, the sun is high in the sky at noon in summer. Even in winter, when the sun inclines to the south to a small extent, the consequent large solar gain and shallow sunlight penetration can be effectively avoided by appropriate overhangs. A south by

east orientation is most likely a bonus in providing solar heat in winter morning and avoiding afternoon overheating in summer.

Nevertheless, does occupants' preference on window orientation in their cellular offices match with the theory? The results are shown in Figure 4.3. It was found that south-east (26%) and south (21%) got the highest two votes while the worst case in theory, south-west (7%), along with west (7%) and north-west (2%), were opted by few subjects. The results showed that office workers probably agreed with the theory. Respondents were then invited to give explanations to their choices. Some of those selected south or south-east explained about their pick with either winter-warm-summer-cool or a Chinese proverb 'sitting on the north, facing to the south'. The reason is surprising because most of the local offices are air-conditioned and their windows are always shut, though solar radiant heat can still get into the interior through window glazing, the effects on comfort due to solar gain should be minimized. Their answer is therefore perhaps a common belief rather than an actual subjective perception. Yet, with the mindset of reducing solar gain, providing good access to daylight and fulfilling occupants' demand, architects and lighting designers should consider the advantages of south facing windows and place more window apertures with suitable external shadings on the south side but less on the east and west.

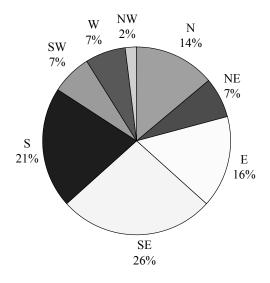


Figure 4.3 Preferences on window orientation

Window glazing is an important part of a window. Glazing type can control the amount of daylight and solar radiant heat penetrating into an interior in terms of visible transmittance (VT_g) and shading coefficient (SC_g) respectively. Window glazing is usually made of glass or specially developed plastics, having a wide variety of thickness, single or double, in clear, tinted or other forms. The improved technology helps satisfy designers' desire for maximum light transmission and a low total solar radiant heat transmission together with a high level of thermal insulation, but is it also what occupants mostly concern? A recent study (Li and Tsang, 2008) reported the application of various glazing materials in buildings in Hong Kong. They found that four types of glazing are mostly applied in local office buildings: float glass, body-tinted glass, reflective glass and low-emissivity (low-e) glass. The first three types are of single glazing commonly 6 mm thick while the last one is usually doubled glazed. Descriptions of these four kinds of glazing were offered to subjects as supplementary information, with reference to CIBSE (1999) and the study of Li and Tsang (2008) as shown Table 4.1.

Table 4.1 Descriptions of four commonly used glazing types in office buildings

Glazing type	Illustration	Description		SC_g
Float glass		It is a term for perfectly flat, clear glass.	0.8	0.95
Body-tinted glass		It is a normal float glass modified by adding melt colorants for tinting and solar radiation absorption properties, reducing heat penetration into buildings.	0.39 - 0.66	0.69 - 0.72
Reflective glass	*	It is an ordinary float glass with a metallic coating to reduce light and solar heat and produce a mirror effect preventing others from seeing into the interiors through it.	0.09 - 0.18	0.26 - 0.38
Low-e glass		It is a clear glass having a microscopically thin coating of metal oxide allowing light to pass through into the building, and at the same time blocking solar heat from entering the room reducing heat gain considerably.	0.21 - 0.62	0.25 - 0.37

^{*}The higher the VT_g , the higher transmission of light through that glazing.

The higher the SC_g , the more solar radiant heat passing through that glazing.

Subjects were asked to choose their preferred window glazing in their office environments from these four commonly used glazing types having different visual and thermal properties. As shown in Figure 4.4, it was found that nearly a half of the respondents voted for reflective glass (49%). Although many reflective glass supporters skipped to give explanations, a certain portion of them expressed that they would like to have a private working environment where outsiders cannot see through the glazing. It seems that to a considerable number of people, privacy aspect is more important than visual and thermal comfort. For those who did not choose body-tinted or reflective glass as their preferred window glazing, they gave a reason that they refused to see a view outside with possible colour changes created by the glazing. Some also expressed the awareness of effects on aesthetics of buildings by the reflective glasses. Almost one-fifth of the subjects picked low-e glass, which is believed to be a promoter of a daylight penetrable office environment, despite the fact that most of them did not directly point out this as the rationale of their choices.

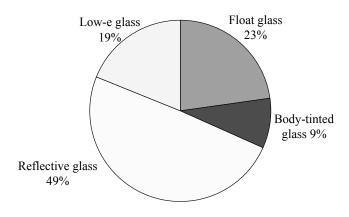


Figure 4.4 Preferences on window glazing

The size coupled with dimensions of a window is another essential element of a daylit cellular office. Overseas studies reported that occupants' satisfaction towards an office was proportionally affected by window size (Keighley, 1973a; Keighley, 1973b); and the larger the windows, the more desirable they were perceived to be

(Cuttle, 1983). But do office workers in Hong Kong also prefer a large window in their working environments?

In Hong Kong, currently only the Building Regulations (HKSAR, 1997) stipulate the window size that the aggregate superficial area of glass in the window shall not be less than one-tenth of the floor of the room. Window area is commonly represented by the window-to-window-wall area ratio (WWR), which is defined as the ratio of the total window area to the overall gross façade area. However, it is believed that expressing window size in percentage of a wall of height from floor to false ceiling is much easier than that of floor-to-floor height for subjects to cast their votes on preference on it. Therefore, window-to-false-ceiling-wall area ratio (WCR) was used in the questionnaire. With the assumption that a typical office floor-to-floor height is 4.5 m and floor-to-false-ceiling height 3 m, WCR can be simply converted back to WWR.

Besides, it is also intriguing to realize their preferred dimension of a window, whether they would like the window width (W) to be longer than, equal to or shorter than its height (H). Therefore, participants were asked to choose, in terms of WCR and shape, the most favourite window size and dimensions for a cellular office of a fixed size from a fixed viewing point. As shown in Figure 4.5, simulated pictures, illustrating ten windows of four different sizes and three different dimensions which were placed in the centre of the wall seen at an identical point in a room, were given as the choices. The four WCRs were 0.25, 0.50, 0.75 and 1.00 (curtain wall), which represent WWRs of 0.17, 0.33, 0.5 and 0.67 accordingly. The three shapes were of W > H, W < H and W = H. For indicative purpose only, W > H was shown as a rectangular window with W = 1.25H whilst W < H was that with H = 1.25W.

Figure 4.5 shows also the results, which were quite consistent with those of the past studies. Analyses were carried out in terms of size and dimensions respectively. The majority of the subjects (84%) opted for windows with WCRs of 0.50 or above, regardless of dimensions, indicated that in general they preferred large windows. However, it should be noted at the same time that the results could not sufficiently show the previous conclusion which claimed the larger the windows, the higher preference occupants have towards an office. It may not be necessary to provide a

curtain wall for the offices since one-third of the respondents in this study expressed that it would be more preferable to possess a window with WCR of 0.50 (35%) or 0.75 (30%) in their cellular offices. It is commented that occupants generally desire a large window, but not necessarily as large as a curtain wall.

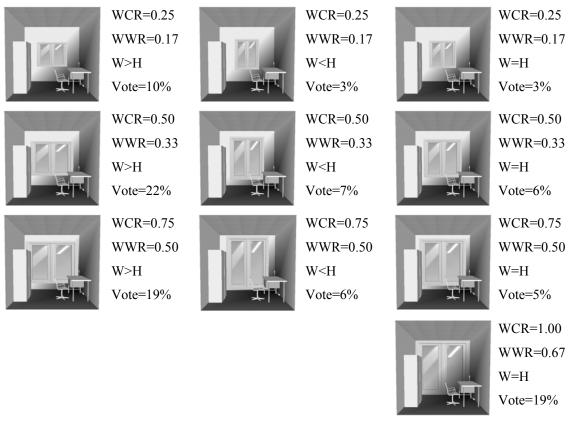


Figure 4.5 Preferences on window size and dimensions

Having known occupants' preference on window size, it is also interesting to realize their preferred dimensions of a window whether they would like a window with width longer than, equal to or shorter than height. The results showed that over a half of subjects (51%) would like to have a window of W > H, regardless of window size. Analyzing together with the preferred window size, it was found that the window with WCR = 0.50 and W > H was the most favourite (22%) among the ten choices. Then, what is the favourite content of the preferred wide lateral view in their cellular offices?

4.2.2 Preferences on view outside

Quality of view is another concern in occupants' evaluation of a daylit environment. Daylight penetrating into a room through a window is usually associated with a view. The inter-relationship among daylighting, view and human perception is complicated. Some studies suggested that windows of interesting views could enhance the visual communications with the outside environments, provide a sense of orientation and information of time, and also improve human mood (Robbins, 1986; Butler and Biner, 1989). With the objective of finding what kind of view is 'interesting', there are quite a number of researches studying occupants' preference of view (Orland, 1988; Tennessen and Cimprich, 1995). Most of the results showed a desire for natural views or a complex structural organization in the view containing a balance of synthetic and natural scenes with movement, change and surprise involved. Another study also demonstrated that people preferred views containing any one or two horizontal layers of the sky, landscape or cityscape, and nearly ground (Markus, 1967). In the survey, five elements constructing a view out commonly found in local offices were given as choices. They were sky, hills, buildings, sea and ground, as shown in Figure 4.6. Sky is the top level of view representing that the whole sky line can be seen. Hills and buildings represent the middle layer of view, in which the former corresponds to a natural scene whereas the latter is a synthetic one. Sea and ground represent the bottom layer of view in which, similarly the former stands for a natural scene whereas the latter, along with roads, shops, moving vehicles and pedestrians, a synthetic one. Subjects were asked to select one single or a mixture of two or more from these five elements of the view out from an office. It was found that the highest three votes went to the combination of sky, hills and sea (23%), the mixture of sky and sea (19%) and the sky alone (16%). The joint view of the three elements was returned at the head of the poll showing that occupants would like several horizontal layers of the view as some studies reported. Sky, alone or part of the view, polled almost 60% of the votes indicating its high importance in occupants' preferred view that they would like to see the skyline. Hills and sea were also respondents' favours demonstrating that occupants would like to see more natural scenes rather than those synthetic ones.

Figure 4.6 Illustrations of the five common elements constructing a view out (Left to right: Sky, hills, buildings, sea and ground)

In the survey, it is clear that occupants prefer a rather large window as well as a natural view out. When asked whether they would increase, decrease or keep unchanged the size of the perceivable view outside, by making a smaller window or lowering the blinds, in case they could not attain a preferred one, most of the respondents (82%) answered 'decrease', followed by 'keep unchanged' at 16%. Since the majority would prefer reducing the extent of view to seeing an undesirable scene, there is probably a close relationship among quality of view, window size and use of blinds. It requires further researches to identify the content of an unpleasant view and verify the correlation.

4.2.3 Preferences on lighting and internal shading control methods

Occupants' visual satisfaction to an office environment is subject to their preferences on technical solutions of combining daylight and electric lights. The usual act of workers in Hong Kong once entering their cellular offices, i.e. switching on all electric lights and pulling down all blinds, is suspected to be formed by the lack of designers' understanding about users' preferences on lighting and internal shading control methods in the daylighting design of local office buildings creating inconvenience to them. In the survey, this issue was investigated.

In a typical local office building, the lighting control approaches can be classified into two main groups: manual and automatic. Manual on-off switching is the most conventional lighting control method. It is cheap and can be used for all kinds of lighting sources. However, as solely either fully on or off can be chosen, occupants may need frequent on-off switching of the light source for energy saving, and it will shorten the lamp life. In addition, since it is without ease of changing light level, always keeping the light source on at full light output will limit the possible lighting energy saving. Manual dimming is a technically improved lighting control method.

With suitable high frequency ballasts, occupants can adjust the lumen output of the fluorescent lamps according to the interior daylighting performance as well as their own needs, but it is more expensive. Automatic lighting control methods are becoming more popular in local office buildings. There are two main streams in the auto-control approaches: daylight-linked and occupancy sensing. Near the windows, equipped with an appropriate daylight-linked photosensor, such as a ceiling-mounted sensor, electric light level in an interior can then respond automatically to the change of outdoor daylight amount. Occupancy sensing is not specifically daylight linked, but it can give significant energy saving in irregularly occupied areas, such as conference rooms.

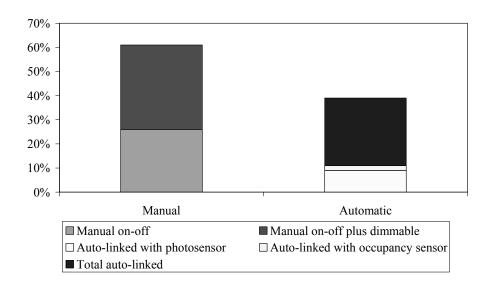


Figure 4.7 Preferences on lighting control

In the survey, respondents were invited to choose which lighting control approach they would like to apply in their sidelit cellular offices. Five lighting control methods were offered. The first two were manual control approaches: manual on-off switching and manual dimming; and the remaining three were automatic control approaches: auto-linked with photosensor, auto-linked with occupancy sensor and auto-linked with both sensors. The results, as shown in Figure 4.7, indicated that over 60% of the subjects preferred a manual lighting control and more than a half of these people favoured a manual on-off plus dimming approach. The other participants preferred an auto-linked sensing method, where most of them chose a totally auto-linked one. It was assumed that the chance for them to choose between manual

and automatic lighting control approaches is 50-50. Since the sample size is greater than 30, which was considered as sufficiently large to justify the normal approximation to the binomial, the significance of the difference between this assumed proportion and the observed proportion of either lighting control approach could then be investigated with the statistical method of *Z*-test (Kanji, 2006). The test statistic is,

$$Z = \frac{\left| P_o - P_a \right| - 1/2n}{\left\{ \frac{P_a (1 - P_a)}{n} \right\}^{\frac{1}{2}}}$$
 (4.1)

where P_o is the observed proportion in this case, i.e. 62% for the manual lighting control, P_a is the assumed proportion, i.e. 50% for a balanced ballot, and n is the sample size of the test.

In statistical significance testing, the p-value (p), which is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, is typically applied to determine whether the null hypothesis is true or not. The smaller the p-value obtained, the more statistically significant the results are, and thus the less likely the null hypothesis is true. The critical value of the p-value is usually set at 0.05, corresponding to a 5% chance of rejecting the null hypothesis when it is true.

In this case, it was computed that Z = 2.325 with p = 0.020 for the two tailed probability, which is far beyond the acceptance region of p > 0.05, meaning that the null hypothesis of no difference in their choices was rejected. These results indicated that the respondents had discordant opinions on the lighting control method of their preferred office environments. The reasons were also queried. Most of the feedbacks from those who picked manual controls were 'easy to use', 'free to use' or 'light output would be steadier throughout the time', whereas the responses from those who opted automatic controls were usually 'don't need to concern light level since then' or 'save energy'. Further asking those who preferred automatic lighting control on whether they would like their auto-control methods could be manually overridden, 'Yes' became the overwhelming answer (82%). It was convinced that occupants

would favour to have say to the internal light level. Even auto-control was installed; they would prefer to have rights to override it.

Moreover, which blind type and which sort of internal shading control the respondents would prefer to use were questioned. Two kinds of blind types commonly installed in local offices were offered to choose: Venetian blind and fabric roller blind. Descriptions of both types of blinds as stated in CIBSE (1999) were given to the respondents as shown in Table 4.2.

Table 4.2 Descriptions of two commonly used blind types in office buildings

Blind type	Illustration	Description
Venetian blind		It is a blind with plastic or aluminum alloy slats, fully retractable and with variable tilt to slats. It could be manually controlled by a cord or a rod, or fully automatic. It is easy to install and maintain giving flexible shading control with good shielding against direct sunlight if required.
Fabric roller blind		It is a blind fixed to window surrounding or window frame. It is simple to operate manually or automatically with a wide range of solar control.

Three kinds of blind control methods were provided for the subjects to choose for their preferred office environments: purely manual control, auto-linked with photosensor, and auto-linked with photosensor and manually override function. It is hoped the installation of a preferred blind with the most favourite blind control method would allow occupants to pull up the blinds and exploit more daylight in their working environments satisfactorily.

The results indicated that Venetian blind got a vote of 54% while fabric roller blind 46%. Analyzing with the same approach of Z-test, it was found that Z = 0.709 with p = 0.478 for the two tailed probability. Since the calculated p-value is much greater than the critical value 0.05, it was concluded that there is insufficient evidence to indicate that which of these two blind types is significantly more preferable. Figure 4.8 shows that a high percentage of the subjects preferred the blind to be controlled automatically with photosensor but they could override it manually when necessary

(50%), 35% supported the simple manual control and only 15% supported fully automatic control. Z-test shows that there is a significant statistical difference in their options that automatic shading control method is more preferable than the manual one (Z = 2.93; p = 0.003). Those respondents who preferred a fully automatic blind control gave details that they did not have time to control the blinds, automatic control was helpful and energy saving was always welcome; whereas those supported manual control or an automatic control with override functions expressed that they would like to have full dominance of the light level in their offices. Nevertheless, it should be noted that a certain portion of the participants expressed that they might be annoyed by the regular change of blind position in case automatic approach was applied, and if override was needed, they would rather exploit simple manual control.

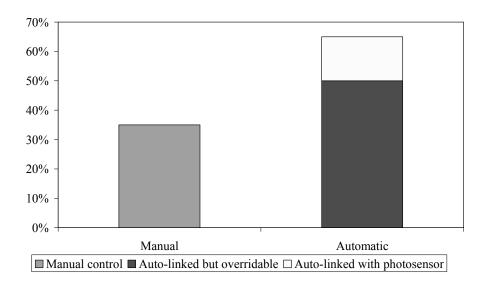


Figure 4.8 Preferences on internal shading control

4.2.4 Summary

The survey aims to investigate the opinions of local office workers about their preferred daylighting design in their working environments. It was conducted via electronic mail to achieve the goal. Having gathered opinions of 102 office workers, a list of preferred window properties, view out, and lighting and blind control systems were found. All the office workers, despite having different reasons, would like to have a window in cellular offices. The majority would prefer a large window,

but probably only to a certain extent. A window with WCR of 0.50 or 0.75 and with its width longer than its height would have made many occupants feel satisfactory.

In choosing the preferred window orientation, office workers might not clearly understand the underlying principle, but they made theoretically correct daylighting design choices for their working environments. Nearly a half of the participants chose south or mainly southerly slightly skewed to easterly directions as their preferred window orientation, probably due to a common belief. Their answer agreed with the theory that window facing the direction of south is the best for buildings located in the northern hemisphere, and appropriate overhangs can effectively block the consequent large solar heat gain and shallow sunlight penetration. Almost a half of the subjects however supported the use of reflective glass as the window glazing in their offices for the purpose of privacy, instead of visual or thermal comfort. Only near one-fifth of the subjects picked low-e glass even though it is well-known for its property of creating a daylight penetrable office environment.

The results showed that the participants had discrepant opinions on the lighting control approach of their preferred office environments. Although manual lighting control got over 60% of votes, a considerable portion of respondents preferred the auto-linked sensing method. When they were further asked whether an override function was acceptable, most of those who selected auto-linked sensing method welcomed it. The same finding was also obtained in the case of internal shading control approach that the majority of participants would like to have rights to control the blind systems despite the lack of evidence showing which type of blinds the occupants preferred more. From the results of preferences on view outside, it could be stated that most of the office workers have the same desire to enjoy a view out of natural scenes rather than the synthetic ones.

The findings of the survey showed office workers' preferred window and daylighting design in their working environments. The next section of this chapter is to understand building design practitioners' ideas about daylighting and realize their difficulties in the process of designing daylighting in cellular offices.

4.3 Survey on ideas of building design practitioners about daylighting

This section reports on the results of another survey which was conducted from 10 March to 30 April 2008 via email investigating the opinions of local building design practitioners on and their usual practice of daylighting design. The target subjects included architects, lighting or interior designers, and building services engineers, who have experience in dealing with local office projects.

Similar to that of the previous survey, the questionnaire started with general information about the content of the survey and the rights of the participants. The sole incentive offered to the subjects to participate was the opportunity to contribute in the development of a new daylighting performance assessment method which could address their real needs. Once a subject accepted to take part in the survey, he was then asked to give background information concerning his profession and duty: whether he belonged to the target subjects of the survey, and whether he had ever been working on office projects. Should he be in the focus group and his answer was 'yes' to the latter question, he was then invited to the main body of the questionnaire.

The main body of the questionnaire contained queries geared up for collecting information related to the following three aspects: (i) ideas about the allocation of work in office daylighting design; (ii) daily practices of daylighting design in office projects; and, (iii) suggestions to the future daylighting design guide. The survey was branched to separate those participants who considered daylighting in their design from those who did not. Depending on the answers given, the questionnaire varied in length from two to ten questions. Predefined answers with open-text fields for providing supplementary information were offered to all the questions. For each question, the subjects could select more than one item unless specified or continue to the next question without answering in case they found it inappropriate. Appendix C attaches the complete questionnaire of this survey.

A total of 133 invitations were sent out to various building construction related companies and 102 target subjects completed the survey. The response rate reached 77%, probably because the questions concerned their professions triggering their interest in answering them. It should be noted that although the number of the

respondents in this survey was coincidentally the same as that in the previous one, they came from different subsets, where the participants of this survey were merely building design practitioners. In order to study their possible different views on office daylighting design, the subjects were classified into two main professional groups according to their occupations: designers and engineers. The designer group consisted of 41 architects and 9 lighting or interior designers, representing 49% of the total subjects; whilst the engineer group was made up of 52 building services engineers, representing the remaining 51%.

Hong Kong has a subtropical humid climate. The daylight illuminance is relatively high throughout the year, so is the potential of utilizing daylight for local office buildings (Chung, 2003). Researchers indicated that over 80% of the normal office hours in a year, the outdoor horizontal illuminance exceeds 10 klux (Lam and Li, 1996a), and therefore with a 5% daylight factor design, daylighting alone would be adequate to fulfill the recommended standard service illuminance level of 500 lux for task work in general offices (ISO, 2002). Making better use of natural light ought to reduce greatly the electric lighting energy consumption of local office buildings; however it has not yet become true in this city. To identify why in reality the utilization of natural light for illumination inside offices is not as popular as it should be, it is necessary to understand how building designers and engineers distribute their work in the design process of daylighting.

4.3.1 Ideas about allocation of work in office daylighting design

Building design requires responsibility and co-operation. Each party ought to take their duties of certain components of the design and work together well in the interface parts. Daylighting design is a part of building design; designers, engineers and other parties of the building construction all put their effort in the daylighting design process. A clearer scope of right and duty among the practitioners can increase the effect of the daylighting design and thus improve the usage condition of natural light. In the survey, the subjects were invited to express their ideas on the person who can influence daylighting design decisions the most. They could opt for one single character. The results are indicated in Figure 4.9. Both the designer and

engineer groups thought that client (52%) should be the commander-in-chief possessing full authority to confirm or convert all daylighting design decisions.

Figure 4.9 Who can influence daylighting design decisions the most?

The subjects were then asked to choose which party should take the responsibility for lighting design in office projects. Figure 4.10 shows the results, from which it can be seen that the designers' expressions were slightly different from the engineers' ones. Many designers thought that it was either the architects' own job (30%) or the collective duty of the whole team (34%). Relatively few designers believed that it was the building services engineers' responsibility (18%). Some engineers also agreed that it was architects' job (29%) but the same number of engineers admitted office lighting design was indeed their own job (29%). In this question, 'client' was a choice for the designers and engineers to select. In industry, clients usually ask independent consultants or experts, such as architects, lighting or interior designers, and building services engineers, to do lighting design. But, clients may also have an internal team to do these jobs for simple and cheap alteration and addition works. The main aim of this question was to get known what the practitioners' ideas are about the allocation of work in office daylighting design, and that was why 'client' was allowed to be an option in this question.

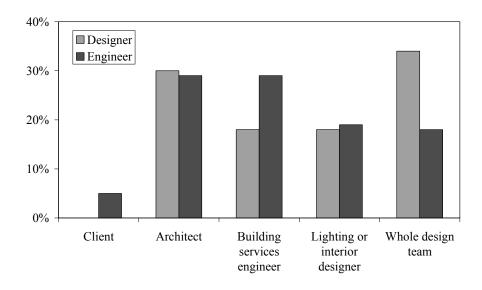


Figure 4.10 Who should take the duty of lighting design in office projects?

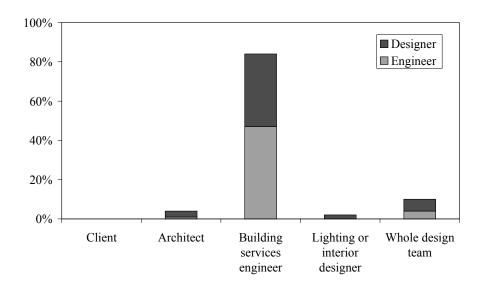


Figure 4.11 Who should take the duty of sizing MVAC equipment in office projects?

When asked who should take the duty to size MVAC equipment, which may be affected by the permission of excess solar hear gain due to improper daylighting design, the findings, as shown in Figure 4.11, were one-sided that the majority supported it was the building services engineers' responsibility (84%). The above results have revealed the potential conflicts when daylighting measures are implemented in a cost neutral way by trading off extra costs for lighting control systems with reduced MVAC equipment. Once communication is insufficient, the

ultimate decision maker of daylighting design – clients, and the major lighting system designer – architects would carry the prestige of a seemingly successful daylighting design off whereas building services engineers would be left to suffer from the failure of MVAC systems. The possible solution is to enhance the involvement of building services engineers in the office daylighting design so that they could balance well the performance of both systems.

4.3.2 Daily practices of daylighting design in office projects

Having realized what the designers and engineers think about the allocation of duty in office daylighting design, it is also intriguing to investigate their actions as well. Their manners can significantly produce a remarkable success on improving the office daylighting design. What kind of daylighting control systems the practitioners mostly apply in their design raises the researcher's curiosity. Six predefined choices were provided for the participants to select from. They were all the devices which can be found inside or on the facades of typical office buildings and have the potential to manage the resultant internal light level properly either by adjusting the electric light output or restricting surplus direct sunlight from falling into the interior in a static or dynamic mode. The response varied between designer and engineer groups. It was found that the designers' answers were usually 'overhangs and fins' (29%) or 'roller blinds or shades' (27%) but the engineers' feedbacks were mainly 'photosensors' (48%), as shown in Figure 4.12. The results are rational that designers focus more on the aesthetics of buildings as overhangs, fins, roller blinds and shades would expose greatly to passers-by and occupants whereas engineers pay more attention to lighting installations and energy consumption which would have mutual effects with photosensors. Just because the ideas of designers and engineers in controlling the quantity and quality of natural light harvested for the interior are diverse, they can individually offer their part of profession in building a better daylighting performance working environment.

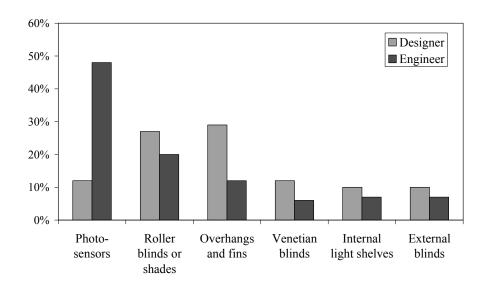


Figure 4.12 Which type of control systems is mostly used in the daylighting design?

Designers' and engineers' actions are also believed to show honestly the weight of daylighting in their mind. They were asked the frequency of considering daylighting in their local office projects. Figure 4.13 indicates the results. It was found that for the designers' group, 'always', 'often' and 'sometimes' were the most popular choices and they all together contributed over 90% of the ballot; while for the engineers, these three options together only gave around 60%. About 40% of the engineers seldom or never consider daylighting in their office projects.

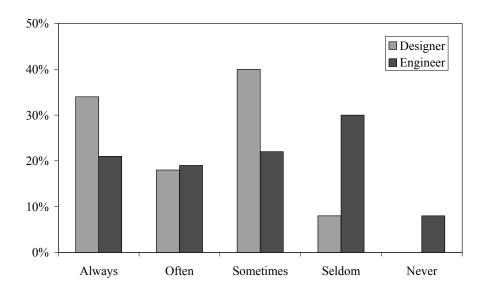


Figure 4.13 How often do the subjects consider daylighting in the office projects?

Those who answered 'always', 'often' or 'sometimes' in the previous question were further requested to point out the amount of time they spent on designing for daylighting in their office projects. Figure 4.14 shows the results. Half the subjects (50%) expressed that they used one day to one week for considering daylighting design in their office projects. Those who expressed that they seldom or never considered daylighting were invited to give explanations for not routinely considering daylighting design in their local office projects. Since only few designers in the survey did not regularly regard daylighting as a design consideration (8%), the investigation mainly focused on engineers' reasons. The results are shown in Figure 4.15. The main reason was 'not my duty', accounting for over 20%. Without appropriate contributions of engineers, daylighting may not be designed in the manner of lighting energy saving, most probably resulting in poor electric lighting energy performance in offices.

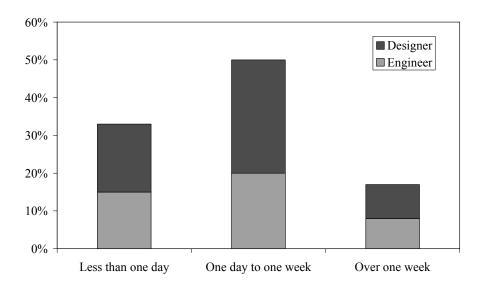


Figure 4.14 How much time do the subjects dedicate to daylighting design?

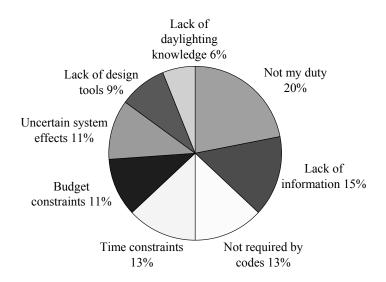


Figure 4.15 Why don't engineers consider daylighting in office projects?

Apart from the building design practitioners' action for daylighting design in their office projects, it is also interesting to know which daylighting design method they depend on.

Six predefined options were offered to the subjects that they could choose more than one. 'Experience' means that the building design practitioners would mainly rely on their working experience of daylighting design gained in the previous projects, which do not necessarily have ground to support. Leaning on experience from earlier works is the easiest but probably the most inaccurate method. 'Regulation' refers to the marginal compliance with the statutory control of the provision of daylight in buildings. Currently, in Hong Kong, only the Building (Planning) Regulations (HKSAR, 1997) safeguards the provisions of natural light in office buildings by prescriptive specifications of the minimum window to floor ratio and the minimum separation between windows and obstructions. Chapter 2 provided descriptions about the legislative requirement on windows and daylighting. 'Design guidelines' in the questionnaire represents the daylighting design approaches for promoting better use of natural light in interiors recommended by learned and professional societies, for example IESNA and CIBSE, involving daylight measurements, daylighting simulations or calculations expressed in terms of illuminance and luminance, such as the standard service illuminance level, various forms of daylight factor, uniformity,

luminance ratios and daylight glare index. 'Rules of thumb' specifies those only related to the fixed configurations of interior and external environments, as well as the diagrammatic approaches, for instance, skylight indicator, sunpath diagram, no-sky line, limiting room depth, limiting obstruction angle and window-to-floor area ratio, that provide a broadly accurate direction for indoor daylighting design. 'Computer simulations' and 'scale models' respectively denote that the practitioners would make use of software in a trendy style or hardware in a conventional manner to focus more on the effects of adjacent buildings on daylighting and imitate the predicted daylit conditions of their design. Figure 4.16 shows their choices.

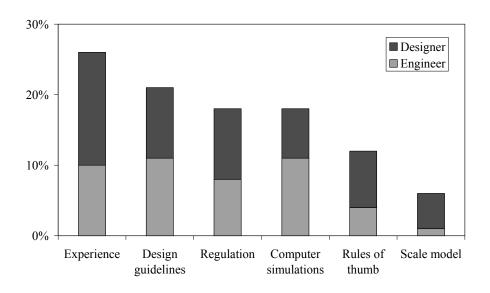


Figure 4.16 Which approach do the subjects follow when designing for daylighting?

There were no great differences in design methods between designers and engineers. Believing in experience (26%), adopting design guidelines (21%), complying with regulations only (18%) and using computer simulations (18%) were relatively more popular than applying rules of thumb (12%) or setting up a scale model (5%). The indistinctive voting results indicated that building design practitioners would use a wide range of approaches to reach the goal of designing for daylighting in offices. The lean on past experience to make the design is however not a good practice as it is not a scientific nor reliable method, and the advantage of the daylighting design prepared in this way cannot be guaranteed. The sole compliance with the regulation can only safeguard the minimum provision of natural light and it is of course insufficient in the current trend of creating a sustainable built environment. The more

information provided in design guidelines about the building-up of a visually satisfactory and high electric lighting energy saving potential daylit environment and the more exploitation of the computer software to simulate the prospective daylit condition are vital.

No matter which approach the practitioners apply in the process, it is inevitable for them to amend or adjust the original building design to suit for the appropriate daylighting design. The next question is therefore to ask the participants which aspect of an office building would be mostly affected by their daylighting design. The finding of this question is shown in Figure 4.17. It was revealed that window properties (36%), including location, shape, size and glazing materials of windows, and building orientation (18%) were the two major influential factors when the design for daylighting is particularly followed with interest. The concern on window properties could be explained in the way that since it is almost a must for natural light to access into the office interior through window apertures, window then physically becomes the daylight source, like the function of luminaires in the family of artificial lights, where their configurations significantly influence the amount and characteristic of light inside the room. On the other hand, solar radiation, which comes along with daylight, varies with orientations, and therefore the direction that the windows face to also plays a crucial role of building design whenever daylighting measures are considered.

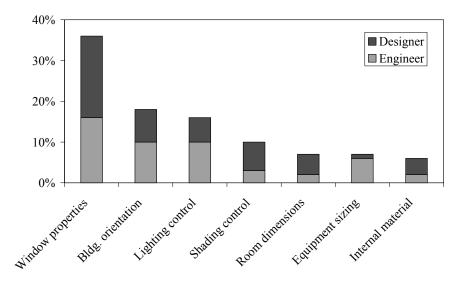


Figure 4.17 Which building design aspect is mostly affected by daylighting design?

4.3.3 Suggestions to the future daylighting design guide

The situation that the utilization of daylight for illumination in local offices is poorly reflected by the insignificant electric lighting energy consumption drop is supposed to be the consequence of the insufficient recommendations in current daylighting design guides. The study was therefore carried out with the objective to develop a new daylighting design guide which provides designers and engineers with more realistic information. In the last question of the survey, the subjects were invited to give suggestions to the future guideline for practically solving their problems of present daylighting design for offices. Some of the inadequacy in current guidelines was shortlisted and introduced in the questionnaire.

Building and window designs for daylighting have been recommended in many standards and guidelines, but most of them are written in a prescriptive style and lack for flexibility in the actual design situation. Rules of thumb such as no-sky line and limiting obstruction angle stated in BRE (1991), BSI (1992) and CIBSE (1999) are good examples. More performance-based approaches in positioning building and sizing windows may be requested in the new daylighting design guide.

Charts and tables are always regarded as convenient approaches for designers and engineers to estimate useful daylighting values. For instance, the sky component of the daylight factor at an interior on the working plane can be easily obtained from the BRS sky component table (BRE, 1986; BSI, 1992). Examples can on the other side help practitioners to understand more clearly the procedures of daylighting design. In BSI (1992), the methods of using a sunpath diagram and a sunlight probability diagram in assessing the sunlight availability at a window are demonstrated. There are however few other charts, tables or examples in common daylighting design guidelines. Therefore, engineers and designers may prefer more provisions of simple charts, tables or design examples in the newly proposed guide for them to refer to provided that they fit local conditions.

Daylight from windows may produce discomfort glare to occupants. Avoiding glare is important so that a window designed for daylighting will be used as intended.

There are several methods of evaluating glare from windows in the literature. Yet there is no broadly accepted method for predicting and evaluating daylight glare. The CIE and major lighting codes and guidelines do not have any recommendation on daylight glare and its evaluation. To promote the use of quality daylight in buildings, reliable calculations and estimation methods of glare from windows with suggested thresholds for different premises may also be demanded in the new daylighting design guideline.

Daylighting can promote human mood and bring human biological benefits. Office workers expressed working by daylight would result in less stress and better psychological comfort than working by electric light. The receipt of sufficient light in the daytime can control the mechanism of hormone secretion and therefore regulate the biological clock to 24 hour light-dark pattern. The psychological and physical advantages of daylighting have been proved by many researchers (Veitch et al., 1993; Veitch and Gifford, 1996; Webb, 2006). More details about these issues were discussed in Section 2.2. However, since the current guidelines cover less content about these topics, more information on the impacts of the use of daylight in interiors on emotion and health matters may be asked for in the future guide.

Effective daylighting design provides illumination inside buildings. Full output of electric light is no longer necessary during daytime, and therefore electric lighting energy consumption can be reduced. However, the design should act on a major premise that occupants should feel visually satisfactory with the daylit environment in terms of daylight quantity and quality. Many researchers have developed various types of indicators to determine whether the indoor daylighting performance of a room fulfills human's preference, but most of them suffer from serious limitations. Occupants' visual satisfaction with a daylit environment should be explained by a series of criteria with different weights. Current daylighting design guidelines may fall short of the designers' and engineers' expectations in this aspect that they would like them to be mentioned in the new one.

The rising energy cost and recent emphasis on green and sustainable building design have made daylighting a turn moving up in the priority of building design after the hundred year dominance of electric lighting. Use of daylight has been recommended as an effective means to reduce building energy consumption in the recent decades. It was pointed out that energy savings from daylighting mean not only low electric lighting and reduced peak electrical demands, but also reduced cooling requirements and potential for smaller MVAC equipment size due to less heat dissipation from electric lighting systems. Li et al. (2002) carried out a study with computer simulations to investigate the implications of office building energy consumption by daylighting. They found that with proper daylighting designs, the reductions for peak cooling load and annual electricity consumption for the base-case office model were 10% and 13% respectively. Few of the design guidelines however talk about the conservable amount of energy from the reduced use of electric lighting and decreased demand of cooling load due to the exploitation of natural light in office buildings. More focus on these two areas may be called for in the revised daylighting design guide.

The above proposed improvements were well defined in the questionnaire and offered for the participants to choose from; open-text fields were also provided for them to freely express their other ideas. The results are graphed in Figure 4.18. There is no significant difference between designers' and engineers' ideas. It was found that 'impact on lighting energy saving' (17%) and 'occupants' satisfaction towards a daylit environment' (15%) were the two major suggestions to the prospective daylighting design guide. The emphasis on these two aspects from the eyes of building design practitioners in their expected daylighting design guide implies that the current ones may lack for the consideration of the overall human perception as well as the remark about the energy issues leaving difficulties for them to design a well performed daylit environment.

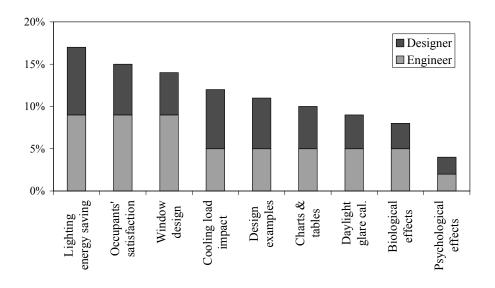


Figure 4.18 Which should be added in the future daylighting design guide?

4.3.4 Summary

The survey aims to investigate the views of building design practitioners and their practices of office daylighting design in Hong Kong. It was conducted via electronic email to achieve the goal, the same as the previous study on the ideas of office occupants, which is believed to be the most convenient method to access to the workers. The target subjects were the architects, lighting or interior designers, and building services engineers, who have experienced the local office project designs. They were classified into two study groups in the survey: designers and engineers, subject to their professions, for observing the possible different views about daylighting.

Having gathered the opinions of 102 subjects, a series of current daylighting design situations was listed. Most of the participants customarily considered the use of natural light and would ensure the operation of the daylighting systems in local office projects. Only some of the engineers believed that it was not the scope of their work so that they did not have intention to think about daylighting. Both designer and engineer groups opted to rely on their experience or apply suggestions in design guidelines to design for daylighting in offices. They concerned the orientation and elevation of the office buildings influenced by daylighting design by the same token; however, designers and engineers were at odds over the choice of daylighting control

system that designers preferred overhangs, fins, roller blinds and shades whilst engineers preferred photosensors.

The findings of the survey give researchers and readers an idea about the practices of the daylighting design workers and the troubles in the procedures of their tasks. The lack of an all-rounded daylighting performance indicator is probably the major hindrance of using natural light in offices. What the designers and engineers would like to look forward to in the future daylighting design guideline is a comprehensive method to evaluate the daylighting performance of an indoor space together with the involvement of human factors and to estimate the amount of electric lighting energy saving due to the use of natural light in interiors. Previous studies seldom evaluate the daylighting performance of an indoor space in an overall manner. The answer from the subjects provides an important reference to the direction of this thesis. Occupants' visual satisfaction with a sidelit working environment and the potential of electric lighting energy saving due to daylighting since then become the main criteria of achieving good daylighting performance of a cellular office in this study. It is believed that having filled in the blank spaces of the current guides, daylight can be better exploited and less electric energy for lighting up the office buildings can then be achieved. A low carbon office lighting environment is coming.

4.4 Research problem

In this chapter, the results of the two surveys conducted for collecting the ideas about daylighting respectively from local office workers and building design practitioners were reported. The findings of the first survey confirmed that office occupants welcome daylighting and their preferred daylighting systems in their working environments. While the world believes that electric lighting energy consumption can significantly fall down with the increased use of natural light in interiors, it is not the case. The utilization of daylight inside buildings is heavily undervalued; improper daylighting design is suspected to be blamed.

The discovery of the second survey revealed the daily practice of those daylighting designers and engineers. The neglect of the daylighting design duty in their office projects is a reason, but what more important is their particular suggestions about the

future daylighting design guide – more focuses should be provided on human perception and energy impact in the determination of daylighting performance. This precisely unmasked the shortage of the current design and assessment methods that each of the commonly used approaches discussed in the previous chapter evaluates solely one or parts of the essential attributes of an acceptable daylit environment and their individual influences to the overall daylighting performance have not yet been made clear. It is supposed that these deficiencies are the contributors to the poor utilization of daylight in offices. The major research question of this study is then raised out: Can a single indicator be shaped in an integrated form that all the factors influencing the daylighting performance of an indoor space will have been considered?

The ultimate goal of this thesis therefore targets at developing the daylighting performance index (*DPI*) for cellular offices beyond which the electric energy consumed by lighting systems can be minimized without compromising any visual satisfaction of the room users. The index is aimed to become the comprehensive indicator of daylighting performance of a sidelit room during normal office working hours throughout a year that takes into account a series of criteria and decision factors including daylight quantity and quality, electric lighting energy consumption as well as those relevant human factors.

CHAPTER 5

DECISION FACTORS AND THEIR PHYSICAL PARAMETERS

5.1 Introduction

Earlier contents of the thesis have expounded the motivation of this research study – today the ideas of creating a well performed sidelit environment are still not fully appreciated and there is not yet a single indicator developed for assessing the daylighting performance of an interior space in a comprehensive way. For this reason the thesis proposes to systematically integrate multiple weighted daylighting performance criteria and decision factors, characterized by their relevant physical parameters, into a hierarchical structure to point out whether occupants would be visually satisfied with and how high the potential is for occupants to make use of natural light rather than to turn on electric lights under a certain condition of daylighting in a cellular office with a side window. From this chapter onwards, the concept of the research and the methodology to this ultimate goal will be discussed.

Evaluating the overall daylighting performance of a sidelit cellular office is always a challenge to architects and lighting designers. The main reason is that a daylit environment is so complex made up of many kinds of features but its performance decision factors have not yet been clearly disclosed. The performance indicators of electric lighting systems cannot be directly copied and pasted for the assessment of daylighting performance. A piece of literature commented that daylighting systems on one hand can be considered as a sort of lighting techniques and characterized through the same physical parameters as those used for evaluating electric lighting installations, such as illuminance, luminance, colour temperature and colour rendering index; on the other side, there are after all some big differences in property that daylight is so unique to possess (Fontoynont, 2002). The number one dissimilarity is that the source of the natural light is highly variable whereas the artificial light output keeps almost steady throughout the day and the year. This special characteristic of daylight implies that daylighting performance of an interior is unlike that of artificial lighting and can be judged in two different ways: instantaneously and in the long term, subject to the objective. This study hypothesizes that whether occupants utilize daylight or turn on electric lights is

absolutely not a kind of habit, but entirely depends on the instantaneous daylighting performance they perceive at the moment they enter their cellular offices. To identify the decision factors and their controlling parameters that workers would decide upon for a well performed sidelit cellular office in terms of occupants' visual satisfaction and electric lighting energy saving potential, a field study was carried out at the instant when they access to their workplaces from outside. This chapter will talk about this issue.

5.2 Selection of decision factors for daylighting performance assessment

It is realized that people have different interpretations and decision factors in describing the daylit condition of an indoor space. Brightness for example is one of the daylighting attributes that occupants would usually consider in the daylighting performance assessment although it has been reported that there are large variations in preferred daylight levels among different people (Nabil and Mardaljevic, 2005), where the variations may depend on individual's age, experience, expectation or mood. Although the favourite levels of each decision factor may differ, the determining visual sensations towards a satisfactory daylit environment are more or less the same for different individuals. Most of these indicators have been introduced in Chapter 3 of this thesis; Fontoynont (2002) summarized them to 21 performance indices of daylighting in his publication.

In order to select the decision factors which best differentiate among commonly occurring interior daylit environment, these 21 performance indices were considered in this study. They include illuminance, luminance, various types of daylight factors, uniformity, transmittance, colouring effect and reduction of colouring rendering of glazing, impact on energy for lighting and HVAC, glare, effect of quality of view, window aesthetics, sunlight penetration, user friendliness of shading control as well as subjective perception and expectation. Some of these indices are similar, for example the four types of daylight factor; or unlikely to be expressed in numerical values for the evaluation of the daylighting performance of a cellular office, such as quality of view and user friendliness of shading control; some do not vary substantially among general private offices, for instance glazing transmittance, its colour effect and reduction of colour rendering, and window aesthetics; some are

inappropriate to be considered as critical for instantaneous daylighting performance assessment, like long-term perception, whereas some important attributes are missing and necessarily added and extended in detail for the comprehensive development of a new assessment method, such as the particular focuses on the daylit conditions on the desk and on the other opaque surfaces of the room.

Table 5.1 Justification for selection of daylighting performance decision factors

	Daylighting performance indices suggested by Fontoynont (2002)	Selected daylighting attributes with justification
1	Daylight factor	
2	Average daylight factor	(1-2, 4-6) As subjects may not be familiar with daylight factors, 'brightness on
3	Uniformity	desktop' and 'brightness on surroundings'
4	Minimum value of daylight factor	were used to describe brightness sensation
5	Absolute minimum value of daylight factor	on desk and other surfaces of the room.
6	Frequency to exceed a given illuminance	
	or indoor luminance over the operating	
_	period	(3) 'Uniformity on desktop' and 'uniformity
7	Glare rating	on surroundings' were used to manifest the
8	Maximum acceptable luminance of view,	particular focuses on the daylight
0	with respect to indoor or task luminances	uniformity on the desk and other internal surfaces of the room.
9	Contrast of luminances around task	surfaces of the footh.
10	Temporary effects, e.g. sunlight	
	penetration, sunlight reflections on external ground, reflection on snow, sunsets, etc.	(7-9) 'Perceived glare from window' was
11	Window aesthetics, quality of view,	used to address daylight glare and dramatic
1.1	presence of nature, view to the sky, etc.	luminance variation of the view outside.
12		
12	illuminances and luminances as a function	(10-14, 17) Sunlight penetration, quality of
	of quality of view	view and user friendliness of shading
13		control were inapplicable to be quantified.
	windows and quality of views	
14	User friendliness of shading control	(15-16) Impact on energy for lighting was
15	Impact on energy for lighting	assumed to be a criterion of office
16	Impact on energy for HVAC	daylighting performance while that for
17	Level of attenuation of shading system	HVAC was not the interest of this study.
18	Colouring effect of glazing or paint	
19	Reduction of colour rendering index due to	(18-21) These indices were considered to
	colouring of glazing	have no obvious variation among common
	Long-term perception	cellular offices and the last two indices
21	Existing situation versus expected situation	could only be tested in long-term surveys.

Five potential daylighting attributes were finally selected as the shortlisted decision factors of the daylighting performance of a cellular office for further inspection. They were 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window'. Brightness and uniformity here were defined as the attributes of visual perception towards the amount and distribution of daylight respectively; desktop was the task area regardless of the location of the desk while surroundings included all the solid surfaces inside the room within the visual field, excluding the window aperture and the desktop. Perceived glare from window referred to the kind of daylighting attributes that causes discomfort visual feeling owing to the excessive contrast between the luminance due to bright daylight from window and the general background luminance of the office. Table 5.1 summaries the justification for the selection of the shortlisted daylighting decision factors from the 21 daylighting performance indices.

5.3 Survey on verification of decision factors and controlling parameters

A user assessment survey was carried out at random times during daytime on certain days of September 2009 under different but rather stable sky conditions in local private offices with a side window to examine whether the five potential daylighting attributes are actual workers' decision factors of the two main criteria of achieving good daylighting performance in a cellular office – occupants' visual satisfaction and electric lighting energy saving potential – which were hypothesized in the last chapter. In the same survey, physical measurements of luminance and illuminance were also performed inside the rooms to investigate the relationship between each decision factor and quantitative lighting parameters. The target subjects were the occupants working inside cellular offices and the sample private offices were located in numerous commercial buildings as well as in the university buildings. Five basic terms and conditions were used in the selection of the sidelit rooms for the survey to conceptualize cellular offices and keep consistency throughout the survey for collecting data: (i) each office should be occupied by one individual only; (ii) the office should be rectangular in shape; (iii) the window should be on one side of the wall opposite to the entrance of the office and the other three walls should be opaque; (iv) the floor area of the office should be within 16 m²; and (v) there should be a working desk inside the office but the location of the desk was not the interest of this study.

5.3.1 Methodology

The survey attempted to reproduce the same situation that a cellular office worker would face every day, i.e. to decide to make use of natural light or switch on electric lights for illumination in his interior once going back to the workplace in the morning, after lunch break or after an outdoor meeting. Every subject was first invited to leave his office for at least five minutes such that his eyes were allowed to adapt to the non-daylit condition. Outside the room during this period, the subject was briefed the objectives of the survey and that his incentive to take part in the survey was solely the contribution in the development of a better daylighting performance assessment method. After he accepted to participate, his general information including his age and gender was collected. The participant was told that he would be going to do some paperwork tasks in his office with all electric lighting turned off and all blinds pulled up such that he would perceive a merely daylit environment throughout the survey. He was then asked to evaluate the indoor daylighting performance standing on a fixed mark at the entrance of his office, because an occupant would usually have determined whether he has to turn on the light switch or he can leave it off at this place. Clear explanations about the meanings of the questions to be asked were provided. Appendix D gives the complete questionnaire of this survey.

The judgment on the daylighting performance of a cellular office controlled by the two criteria explained by the five daylighting attributes, namely "brightness on desktop", 'brightness on surroundings", 'uniformity on desktop", 'uniformity on surroundings' and 'perceived glare from window", was studied with a dichotomous assessment scale (Portney and Watkins, 2000). This scale was used for initial feedbacks from the following questions with only 'Yes' or 'No' answer choices:

Criterion 1: Occupants' visual satisfaction

(i) Do you feel visually satisfactory with the overall daylit condition of the cellular office at this moment?

- (ii) Do you feel visually satisfactory with 'brightness on desktop' in the daylit cellular office at this moment?
- (iii) Do you feel visually satisfactory with 'brightness on surroundings' in the daylit cellular office at this moment?
- (iv) Do you feel visually satisfactory with 'uniformity on desktop' in the daylit cellular office at this moment?
- (v) Do you feel visually satisfactory with 'uniformity on surroundings' in the daylit cellular office at this moment?
- (vi) Do you feel visually satisfactory with 'perceived glare from window' in the daylit cellular office at this moment?

Criterion 2: Electric lighting energy saving potential

- (vii) Do you accept not to turn on electric lights in accordance with the overall daylit condition of the cellular office at this moment?
- (viii) Do you accept not to turn on electric lights in accordance with 'brightness on desktop' in the daylit cellular office at this moment?
- (ix) Do you accept not to turn on electric lights in accordance with 'brightness on surroundings' in the daylit cellular office at this moment?
- (x) Do you accept not to turn on electric lights in accordance with 'uniformity on desktop' in the daylit cellular office at this moment?
- (xi) Do you accept not to turn on electric lights in accordance with 'uniformity on surroundings' in the daylit cellular office at this moment?
- (xii) Do you accept not to turn on electric lights in accordance with 'perceived glare from window' in the daylit cellular office at this moment?

The ranks '(1) Yes' and '(0) No' were self-explanatory. In order to confirm the validity of the participants' initial responses collected through the dichotomous scale s_1 , each respondent had to use another kind of rating scales to evaluate the daylighting performance of the cellular office again. This approach has been commonly adopted in many lighting and other indoor environmental quality research studies to validate subjects' attitude and values of the kinds (Mui and Wong, 2006a; Mui and Wong, 2006b). In this survey for the same reason the five-point Likert scale s_2 was applied.

The Likert scale is one of the most popular rating scales applied in lighting researches (Moore et al., 2002). It is a one-dimensional scale that consists of traditionally five labelled points running from one extreme to another among which a respondent has to specify his level of agreement or disagreement with a conceptual statement that best aligns with his attitude (Likert, 1932).

The Likert scale was exploited in this study because the extent of the agreement or disagreement could easily be made known with the explicit labelling of each point on the scale that other kinds of rating scales, such as the semantic differential scale, which was designed to measure the connotative meaning of a concept of a respondent by the same token but on a semantic space between a pair of bipolar adjectives solely labelled at the two ends (Osgood et al., 1957), do not provide. In the five-point Likert scale s_2 , '1' meant strongly disagree, '2' meant disagree, '3' meant neither agree nor diagree, '4' meant agree and '5' meant strongly agree. If there is a significant association between the votes on the two scales, then the validity of the responses can be confirmed. The following statements were given,

- (i) You feel visually satisfactory with the overall daylit condition of the cellular office at this moment.
- (ii) You feel visually satisfactory with 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window' in the daylit cellular office at this moment.
- (iii) You can accept not turning on electric lights in accordance with the overall daylit condition of the cellular office at this moment.
- (iv) You can accept not turning on electric lights in accordance with 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window' in the daylit cellular office at this moment.

Both the dichotomous and Likert scales were easily understandable. Rapid responses could be made during the survey. It was assumed the time consumed for informing and responding to the statements was so short that any changes in the sky condition could be negligible to take into account.

Equipment for daylight measurements was setup inside the room also during this period. Illuminance is probably the most extensively adopted fundamental parameter to assess daylight performance of an interior, in particular horizontal desktop illuminance to evaluate the daylit condition for the paper-based tasks. Absolute daylight illuminance alone is not sufficient to describe the overall the interior daylight performance, illuminance ratios on the desk help. A multi-point illuminance meter with six Konica Minolta T-10M sensors was placed in a 3 x 2 array at six points on the desktop in a square of 0.5 x 0.5 m to measure average horizontal illuminance ($E_{avg,desk}$) and minimum horizontal illuminance ($E_{min,desk}$) such that the logarithm value of the average horizontal illuminance ($Iog E_{avg,desk}$) and the uniformity of the desktop ($Iog E_{avg,desk}$), which is the ratio of $Iog E_{avg,desk}$, could also be computed.

Luminance and its extended variables are also common parameters to describe the daylight performance of a room. A Canon EOS 350D digital camera with a Sigma ultra wide angle lens, as shown in Figure 5.1, giving a 96° horizontal field of view was used to take a total of 18 low dynamic range (LDR) photographs in a sequence of shutter speeds ranging from 1/4000 s to 30 s with step of 1 exposure value (EV) for capturing the wide luminance variation within the visual view of the room respectively at two places. The camera fitted with the lens mounted on a tripod was placed at a height dependent on the eye level of each standing subject near the door for capturing the daylit condition within the field of view at the simultaneous moment of collecting participants' evaluation on their cellular office daylighting performance in the two aspects.

Figure 5.1 Canon 350D digital camera and Sigma lens 10-20 mm F4-5.6 EX

After the camera response curve calibration was undergone and the RBG values of the 18 LDR photographs were checked, the qualified photographs were fused into a high dynamic range (HDR) image with the computer software named Photosphere. The HDR images were stored in a RADIANCE RGBE image format file, where the pixel values could extend over the luminance span of the human visual system (Inanici, 2006). Through this method the luminance of every pixel of the image could be obtained. In this way the average luminance quantities of the desktop ($L_{avg,desk}$) and the surroundings ($L_{avg,surr}$) as well as their logarithms ($log L_{avg,desk}$ and $log L_{avg,surr}$) and the ratio of minimum to average luminances of the surroundings (R_{surr}) were worked out in this study. The average luminance quantities of the horizontal band of width 40° ($L_{avg,40H}$) and the central circle of angular subtense 40° ($L_{avg,40C}$) within the field of view, which were pointed out in a previous research that they have significant correlations with occupants' preference to a daylit environment (Loe et al., 1994), together with their logarithms ($log L_{avg,40H}$ and $log L_{avg,40C}$) and the ratios of minimum to average luminance values of these regions (R_{40H} and R_{40C}), were computed. The luminance ratio of the back half to the front half of the room (L_{back}/L_{front}) was also calculated since in a previous study this parameter was implied to have the ability to predict daylight uniformity of a room (Lynes, 1979). The front half here meant the part of the room containing the window whereas the back half referred to the part without. These HDR images captured at the entrance of the cellular office were also used for the acquisition of parameters such as the window luminance (L_w) and the adaptation luminance (L_a) while the exterior luminance (L_{ex}) was extracted from another set of HDR image files which were made up of multiple exposure LDR photographs taken at a perpendicular distance of 0.2 m from the centre of the window plane, once the subjects finished expressing their opinions on the interior daylighting performance. The three luminance values, L_w , L_α and L_{ex} , were the major components of the new daylight glare index (DGI_{N2}) proposed by Nazzal (2001b).

The entire process of the survey, including the questioning and measurement parts, would last for about six minutes for each respondent, and it was assumed that the daylit condition did not significantly vary during this period. The theory and some calibration issues of HDR photography as well as the post-processing for the obtainment of these luminance-based parameters will be discussed in detail in

Chapter 6. Besides, the dimensions of the room and the side window together with the location of the desk were also recorded during this period. The participant was called back to his office when everything was ready. Subjective evaluations of the five daylighting attributes towards a visually satisfactory and high electric lighting energy saving potential cellular office then started at the entrance in the form of interview. Quantitative daylight measurements began at the same time.

5.3.2 Results and analyses for verification of decision factors

A total of 125 occupants were randomly interviewed and their cellular offices were surveyed. Simultaneous collections of user satisfaction ratings in visual aspect and acceptance votes in lighting energy saving issue using the two assessment scales with respect to the overall daylit condition of their rooms and the five decision factor candidates as well as a wide range of lighting parameter quantities obtained by illuminance meters and with the help of the camera were performed. Among the 125 survey participants, 68% were male and 32% female. Their age groups were presented in Figure 5.2.

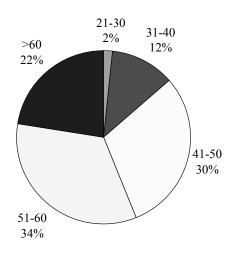


Figure 5.2 Breakdown of respondents' age groups

Whether the five selected daylighting attributes could explain the two criteria of daylighting performance was the first issue to be answered in this survey. The primary step was to evaluate the association between the votes obtained by the two assessment scales in order to examine whether different choices made using a scale

would also favour particular choices using another one. The Chi-square (χ^2) test for consistency with degree of freedom (df) k-1 was adopted to investigate the significance of the differences between the observed frequency distributions of the Likert scale s_2 with a dichotomous classification of scale s_1 (Class '0' referred to unsatisfactory or unacceptable; Class '1' referred to satisfactory or acceptable). There were five categories in each case, i.e. the five-point scale, and considered to be large enough to satisfy the requirement of this statistical test (Kanji, 2006). The test statistic is,

$$\chi_{k-1}^{2} = \frac{n^{2}}{x(n-x)} \left\{ \left(\sum_{i=1}^{k} \frac{x_{i}^{2}}{n_{i}} \right) - \left(\frac{x^{2}}{n} \right) \right\}$$
 (5.1)

where k is the number of categories, x_i is the observed frequency falling into the i-th category in Class 0, x is the total observed frequency in Class 0, n_i is the observed frequency falling into the i-th category, and n is the total observed frequency in the test.

Subtracting the cumulative distribution function (CDF) value for the corresponding df, i.e. k-1, from 1 gives the consequent p-value for this χ^2 test. The p-value in statistical significance testing represents the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. In this study, if the obtained p-value is less than 0.05 the null hypothesis of independence between five-point Likert categories and dichotomous classes is regarded as rejected. Under each result table the p-value of each test was shown. CDF can be calculated in the following way:

$$CDF = \frac{\gamma \left(\frac{k-1}{2}, \frac{\chi_{k-1}^2}{2}\right)}{\Gamma\left(\frac{k-1}{2}\right)}$$
(5.2)

where Γ is the Gamma function and γ is the lower incomplete Gamma function.

The results obtained from the dichotomous scale s_1 and the Likert scale s_2 are tabulated in Tables 5.2 to 5.13.

Table 5.2 Votes on overall daylit condition under visual satisfaction

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	3	21	14	0	0	38
1	0	1	32	37	17	87
Total votes	3	22	46	37	17	125

 $\chi^2 = 60.28$; df = 4; $p \le 0.001$

Table 5.3 Votes on brightness on desktop under visual satisfaction

Scale s ₁	Scale s	7 2	Total votes			
	1	2	3	4	5	
0	1	15	17	0	0	33
1	0	0	19	54	19	92
Total votes	1	15	36	54	19	125

 $\chi^2 = 78.82$; df = 4; $p \le 0.001$

Table 5.4 Votes on brightness on surroundings under visual satisfaction

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	4	27	17	0	0	48
1	0	1	37	27	12	77
Total votes	4	28	54	27	12	125

 $\chi^2 = 71.68$; df = 4; $p \le 0.001$

Table 5.5 Votes on uniformity on desktop under visual satisfaction

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	7	14	2	0	0	23
1	0	1	37	50	14	102
Total votes	7	15	39	50	14	125

 $\chi^2 = 106.1$; df = 4; $p \le 0.001$

Table 5.6 Votes on uniformity on surroundings under visual satisfaction

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	4	19	13	4	0	40
1	0	2	46	21	16	85
Total votes	4	21	59	25	16	125

 $\chi^2 = 54.66$; df = 4; $p \le 0.001$

Table 5.7 Votes on perceived glare from window under visual satisfaction

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	1	22	4	0	0	27
1	0	0	36	40	22	98
Total votes	1	22	40	40	22	125

 $\chi^2 = 103.7 \; ; df = 4 \; ; p \le 0.001$

Table 5.8 Votes on overall daylit condition under energy saving potential

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	3	18	19	0	0	40
1	0	2	27	35	21	85
Total votes	3	20	46	35	21	125

 $\chi^2 = 51.69$; df = 4; $p \le 0.001$

Table 5.9 Votes on brightness on desktop under energy saving potential

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	1	24	10	0	0	35
1	0	1	19	39	31	90
Total votes	1	25	29	39	31	125

 $\frac{764477663}{\chi^2 = 87.74; df = 4; p \le 0.001}$

Table 5.10 Votes on brightness on surroundings under energy saving potential

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	3	28	19	0	0	50
1	0	2	27	28	18	75
Total votes	3	30	46	28	18	125

 $\chi^2 = 70.75 \; ; \, df = 4 \; ; \, p \le 0.001$

Table 5.11 Votes on uniformity on desktop under energy saving potential

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	4	14	9	0	0	27
1	0	2	40	35	21	98
Total votes	4	16	49	35	21	125

 $\chi^2 = 71.28$; df = 4; $p \le 0.001$

Table 5.12 Votes on uniformity on surroundings under energy saving potential

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	5	14	27	0	0	46
1	0	3	34	25	17	79
Total votes	5	17	61	25	17	125

 $\chi^2 = 49.67$; df = 4; $p \le 0.001$

Table 5.13 Votes on perceived glare from window under energy saving potential

Scale s ₁	Scale s	Total votes				
	1	2	3	4	5	
0	1	8	13	0	0	22
1	0	0	37	47	19	103
Total votes	1	8	50	47	19	125

 $\chi^2 = 58.67$; df = 4; $p \le 0.001$

Results showed that all the statistical significances of the votes on the overall daylit condition and on the five candidate decision factors accounting for either the occupants' visual satisfaction or the electric lighting energy saving potential criteria were less than the critical value 0.05. The significant evidence of an association between the results obtained from the two scales indicated that both the initial ballots of scale s_1 and the reaffirmed ballots of scale s_2 were valid.

The second step was to evaluate the relationship between the subjective responses to each shortlisted decision factor and those to the overall daylit condition in terms of the two criteria respectively. The statistics are summarized in Tables 5.14 and 5.15. The χ^2 -test for consistency with df = 1 was applied to investigate the significance of the difference between the observed frequencies for the two dichotomous distributions: votes from scale s_1 for evaluating the visual satisfaction or the acceptability of not turning on electric lights in accordance with each proposed decision factor versus votes from scale s_1 for evaluating the visual satisfaction with the overall daylit condition or the acceptability of not turning on electric lights in accordance with the overall daylit condition correspondingly. This statistical test was assumed to be satisfied as in each case the total observed frequency was greater than 20 and the observed frequency in each cell was greater than 3 (Kanji, 2006). The test statistic is.

$$\chi^{2} = \frac{(n-1)(x_{11}x_{22} - x_{12}x_{21})^{2}}{(x_{11} + x_{12})(x_{11} + x_{21})(x_{12} + x_{22})(x_{21} + x_{22})}$$
(5.3)

where x_{11} , x_{12} , x_{21} and x_{22} are the observed frequencies in the corresponding cells, and n is the total observed frequency in the test.

Table 5.14 Votes on visual satisfaction with a sidelit cellular office

Visual satisfaction	Votes	Brightness on desktop		Brightness on surroundings		Uniformity on desktop		Uniformity on surroundings		Perceived glare from window	
		0	1	0	1	0	1	0	1	0	1
0	38 87	26 7	12 80	26 22	12 65	12 11	26 76	23 17	15 70	18 9	20 78
Total votes	125	33	92	48	77	23	102	40	85	27	98

Brightness on desktop: $\chi^2 = 49.22$; df = 1; $p \le 0.001$

Brightness on surroundings: $\chi^2 = 20.64$; df = 1; $p \le 0.001$

Uniformity on desktop: $\chi^2 = 6.265$; df = 1; p = 0.012Uniformity on surroundings: $\chi^2 = 23.14$; df = 1; $p \le 0.001$

Perceived glare from window $\chi^2 = 21.24$; df = 1; $p \le 0.001$

Table 5.15 Votes on acceptability of energy saving in a sidelit cellular office

Energy saving acceptability	Votes	Brightness on desktop		Brightness on surroundings		Uniformity on desktop		Uniformity on surroundings		Perceived glare from window	
		0	1	0	1	0	1	0	1	0	1
0 1	40 85	30 5	10 80	32 18	8 67	20 7	20 78	22 24	18 61	17 5	23 80
Total votes	125	35	90	50	75	27	98	46	79	22	103

Brightness on desktop: $\chi^2 = 63.94$; df = 1; $p \le 0.001$ Brightness on surroundings: $\chi^2 = 38.90$; df = 1; $p \le 0.001$ Uniformity on desktop: $\chi^2 = 27.79$; df = 1; $p \le 0.001$ Uniformity on surroundings: $\chi^2 = 8.311$; df = 1; p = 0.004Perceived glare from window $\chi^2 = 24.95$; df = 1; $p \le 0.001$

The *p*-values were calculated using Equation 5.2. If the obtained *p*-value is less than 0.05 then the null hypothesis of independence between the two sets of dichotomous scale votes is rejected. Values of the above χ^2 tests showed significant evidence of a relationship between all the five shortlisted daylighting decision factors and the two assumed daylighting performance criteria. It could be concluded through the results of this survey that 'brightness on desktop' (BD), 'brightness on surroundings' (BS), 'uniformity on desktop' (UD), 'uniformity on surroundings' (US) and 'perceived glare from window' (PG) were proved to be the actual decision factors of the two assumed criteria, i.e. occupants' visual satisfaction (VS) and electric lighting energy saving potential (ES), of the daylighting performance of cellular offices in this study.

5.3.3 Analyses for verification of controlling parameters

Literature review showed that researchers are longing for a single numerical index made up of a variety of weighted criteria and decision factors to account for good daylighting performance. In the previous part of this thesis, for a well performed daylit cellular office, two criteria have been assumed and five decision factors have been identified. The subsequent task goes to investigate the underlying lighting parameters which determine the five decision factors with respect to the two criteria.

During the process of the survey, inside each sample office, various candidate lighting parameters were measured directly by traditional equipment or obtained through the luminance data acquisition system of the HDR photography simultaneously when a subject was answering the questions about the evaluations towards the daylighting performance of his cellular office. For each decision factor, the quantities of each proposed parameter were first plotted against the corresponding respondents' ratings of scale s_2 in a scatter graph to observe whether their preliminary relationship was linear or nonlinear. Linear, quadratic and cubic relationships between physical quantities and ratings of Likert scale s_2 have been checked using goodness of fit analysis. The one with the highest coefficient of determination R^2 was regarded as the primary relationship. The test of one-way analysis of variance (ANOVA) was then carried out to examine whether there was any significant and strong linear correlation between the two variables assumed that these variations compared originated from a bivariate normal distribution. The correlation coefficient r was calculated from the formula,

$$r = \frac{\sum_{i=1}^{n} (x_i - x_{avg})(y_i - y_{avg})}{\left[\sum_{i=1}^{n} (x_i - x_{avg})^2 \sum_{i=1}^{n} (y_i - y_{avg})^2\right]^{\frac{1}{2}}}$$
(5.4)

where n is the total number of paired samples, x_i is the parameter value in the i-th pair, x_{avg} is the average parameter value in all the paired samples, y_i is the dichotomous classification value in the i-th pair, y_{avg} is the average dichotomous classification value in all the paired samples.

The larger the magnitude of r the stronger is the relationship between the two variables. Apart from the strength, the significance of the association was also tested. The test statistic is calculated with the null hypothesis that the population value of r is zero and this follows the Student's t-distribution with n-2 degrees of freedom,

$$t = \frac{r}{\sqrt{1 - r^2}} \cdot \sqrt{n - 2} \tag{5.5}$$

The *p*-value of this *t*-test was then computed to check the significance of the relationship,

$$p = 1 - I_x \left(\frac{n-2}{2}, \frac{n-2}{2} \right) \tag{5.6}$$

where I_x is the regularized incomplete Beta function, with

$$x = \frac{t + \sqrt{t^2 + (n-2)}}{2\sqrt{t^2 + (n-2)}}$$
 (5.7)

The parameter with the strongest and most significant correlation with the ratings of the subjective scale s_2 was treated as the decision factor's representative for the future development of an empirical expression for describing indoor daylighting performance in that aspect. The association between this controlling parameter and occupants' votes on the decision factor was further evaluated for validity with the use of χ^2 test. The parameter values were ranked in order and grouped in categories of similar size. The observed frequencies in Classes 0 and 1 were counted for each category. The test statistic is the same as Equation 5.1.

In statistics, a logistic regression analysis is usually adopted to predict the probability of occurrence of an event in a function of logistic curve. It is extensively used in medical, social science and marketing fields, particularly for the prediction of tendency for a customer to purchase a product or a service (Bagley et al., 2003; Morrow-Howell and Proctor, 1993; Akinci et al., 2007). It was believed that the logistic regression analysis should also be applicable in the assessment of indoor daylighting performance by predicting the chance that occupants would feel visually satisfactory or they would accept not to turn on electric lights inside their sidelit cellular offices. A logistic regression involves a generic logistic function,

$$f(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \alpha_1 + \beta_2 \alpha_2 + \beta_3 \alpha_3 + \dots + \beta_k \alpha_k)}}$$
(5.8)

where α is an independent variable, β_0 is the constant, β_1 , β_2 and β_3 are the regression coefficients of α_1 , α_2 and α_3 respectively, and z is the measure of the total contribution of all the independent variables.

A logistic function converts an input variable ranging from negative infinity to positive infinity to an output value confined between 0 and 1, and therefore it is probably the most suitable statistical method in describing the relationship between one or more independent variables and a binary response variable expressed as a probability that has only two extremes. Consequently this study hypothesizes that the probability of occurrence of visual satisfaction or acceptability of saving electric lighting energy due to the kind of occupants' sensations represented by one of the five decision factors and assessed via the dichotomous scale s_1 could be quantified with a representative parameter (φ) of that decision factor and formulated as an equation like this,

$$P_{DF}(s_1 = 1) = f(\varphi) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \varphi)}}$$
 (5.9)

where P_{DF} is the general expression collectively abbreviated all the probability values of occupants' visual satisfaction and electric lighting energy saving potential due to the five decision factors, i.e. $P_{VS,BD}$, $P_{VS,BS}$, $P_{VS,UD}$, $P_{VS,US}$, $P_{VS,PG}$, $P_{ES,BD}$, $P_{ES,BS}$, $P_{ES,UD}$, $P_{ES,US}$ and $P_{ES,PG}$.

The statistical package of social science (SPSS) was used in the procedures of constructing a logistic regression formula in order to deal with the huge database collected throughout the survey. The percentage of probability obtained at a certain value of the representative parameter of a decision factor in relation to a daylighting performance criterion would be regarded as the chance that decision factor could grasp under that daylit condition for the later construction of a hierarchical structure to evaluate the overall daylighting performance of a cellular office in a multiple criteria manner.

5.3.4 Brightness on desktop under visual satisfaction

Four lighting parameters were suspected to have potential to explain the brightness sensation on the desktop with regard to occupants' visual satisfaction inside a sidelit cellular office. They included $E_{avg,desk}$, $log\ E_{avg,desk}$, $L_{avg,desk}$ and $log\ L_{avg,desk}$. Desktop illuminance parameters were studied with the assumption that the reflectivity of desks in local offices is more or less the same. The measured values were individually plotted against the satisfaction ratings obtained from the Likert scale s_2 in Figures 5.3 to 5.6.

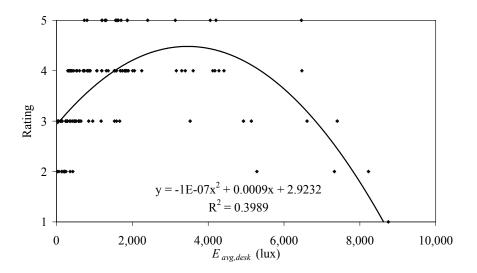


Figure 5.3 Brightness on desktop under visual satisfaction: Ratings against $E_{avg,desk}$ (with peak at $E_{avg,desk} = 3,469$ lux; n = 125)

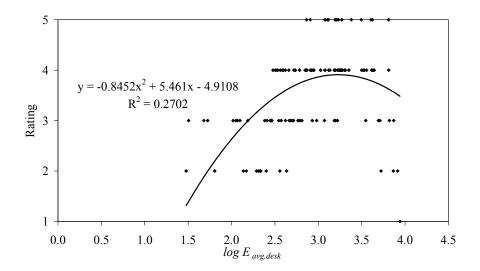


Figure 5.4 Brightness on desktop under visual satisfaction: Ratings against $log E_{avg,desk}$ (with peak at $log E_{avg,desk} = 3.231$; n = 125)

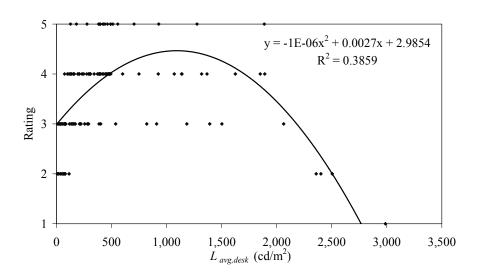


Figure 5.5 Brightness on desktop under visual satisfaction: Ratings against $L_{avg,desk}$ (with peak at $L_{avg,desk} = 1,128$ cd/m²; n = 125)

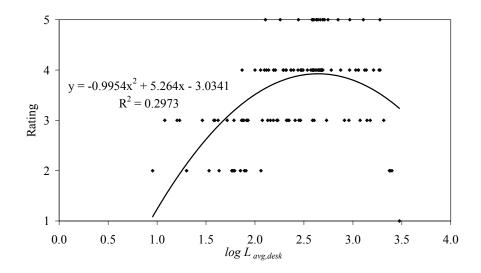


Figure 5.6 Brightness on desktop under visual satisfaction: Ratings against $log L_{avg,desk}$ (with peak at $log L_{avg,desk} = 2.644$; n = 125)

In the scatter plots, it was observed that all the four shortlisted lighting parameters possessed a fairly close quadratic relationship with the subjective satisfaction rating using scale s_2 , preliminarily indicating that occupants would feel visually satisfactory with the increasing illuminance or luminance or their logarithms on the desk until it reached a peak, after which their satisfaction level fell. As a result, the quantities of these four lighting parameters were separated into two groups in accordance with the trends that the first group was the range of parameter variables that increased the ratings of visual satisfaction owing to the brightness sensation on the desktop in their cellular offices while the second group was the range that reduced it. The watersheds were assumed to be the parameter values at the peaks. The parameter quantities and the corresponding ratings of scale s_2 were then tested by ANOVA for the confirmation of their relationships. Table 5.16 summarizes the results.

Table 5.16 Brightness on desktop under visual satisfaction: ANOVA results

Parameter	Condition				n	r	p
E avg,desk	30 ≤ 3,469 <	$E_{\mathit{avg},\mathit{desk}}$ $E_{\mathit{avg},\mathit{desk}}$		3,469 lux 8,750 lux	107 18	0.596	≤ 0.001 0.005
log E avg,desk	1.478 \le 3.231 <	$log E_{avg,desk}$ $log E_{avg,desk}$	<u>≤</u>	3.231 3.942	88 37	0.646 -0.587	≤ 0.001 ≤ 0.001
$L_{\mathit{avg,desk}}$	9 ≤ 1,128 <	$L_{\mathit{avg,desk}}$ $L_{\mathit{avg,desk}}$		$1,128 cd/m^2$ $2,988 cd/m^2$	108 17	0.535 -0.724	≤ 0.001 0.001
log L avg,desk	$0.954 \le 2.644 <$	$log \ L_{avg,desk}$ $log \ L_{avg,desk}$	_	2.644 3.475	83 42	0.656 -0.580	≤ 0.001 ≤ 0.001

For all the four shortlisted lighting parameters, the relatively large magnitude of the correlation coefficients r and the p-values less than 0.05 obtained from the results of ANOVA tests proved that there was a statistically significant and strong linear relationship with subjective ratings, positive for the first group of the parameter values and negative for the second group. It was concluded that these four lighting parameters, namely $E_{avg,desk}$, $log\ E_{avg,desk}$, $L_{avg,desk}$ and $log\ L_{avg,desk}$, are all potentially capable for predicting occupants' brightness sensation on the desk surface under the criterion 'occupants' visual satisfaction'. Among them however none had an obviously larger r than one another in both groups. Any one of them could become the representative lighting parameter, and $log\ E_{avg,desk}$ was eventually chosen.

The validity of selecting $log\ E_{avg,desk}$ as the controlling parameter of the decision factor 'brightness on desktop' under the criterion of visual satisfaction was further evaluated by χ^2 test. Tables 5.17 and 5.18 respectively show the results for the first group (1.478 $\leq log\ E_{avg,desk} \leq$ 3.231) and the second group (3.231 $< log\ E_{avg,desk} \leq$ 3.942). The calculated p-values less than 0.05 reconfirmed that the satisfaction votes of the dichotomous scale s_1 related to the representative parameter $log\ E_{avg,desk}$ and thus the parameter could explain the visual satisfaction in the subject of their brightness sensation on the desk surface.

Table 5.17 Brightness on desktop under visual satisfaction: Responses to $log E_{avg,desk}$ (Group 1)

log E avg, desk	Scale s ₁		Row total	
	0	1		
≤ 2.350	9	8	17	
2.350 - 2.600	8	9	17	
2.600 - 2.850	5	11	16	
2.850 - 3.100	3	17	20	
3.100 - 3.231	1	17	18	
Column total	26	62	88	

$$\chi^2 = 14.01$$
; $df = 4$; $p = 0.007$

Table 5.18 Brightness on desktop under visual satisfaction: Responses to $log E_{avg,desk}$ (Group 2)

log E avg,desk	Scale s	Row total	
	0	1	
3.231 - 3.350	0	13	13
3.350 - 3.650	0	14	14
> 3.650	7	3	10
Column total	7	30	37

$$\chi^2 = 23.31$$
; $df = 2$; $p \le 0.001$

A regression analysis on the binary response regarding 'brightness on desktop' under the criterion 'occupants' visual satisfaction' was carried out. It was shown that the probability of visual satisfaction reflected by the participants in regard to the decision factor 'brightness on desktop' with the use of the dichotomous scale s_1 , which was confirmed the applicability with the votes of the Likert scale s_2 , could be made known by two logistic regression curves, both having p-values less than the critical value 0.05,

For the first group $(1.478 \le log E_{avg,desk} \le 3.231)$,

$$P_{VS,BD1}(s_1 = 1) = \frac{1}{1 + e^{3.454 - 1.633 \log E_{avg,desk}}}$$
(5.10)

For the second group $(3.231 < log E_{avg,desk} \le 3.942)$,

$$P_{VS,BD2}(s_1 = 1) = \frac{1}{1 + e^{-69.247 + 18.383 \log E_{avg,desk}}}$$
(5.11)

where $P_{VS,BD}$ is the probability of achieving visual satisfaction reported from the respondents that they would have perceived towards the brightness sensation on the desk surface at a certain logarithm value of average daylight illuminance level on the desk area due to the decision factor 'brightness on desktop', and '1' and '2' correspondingly denote the group classifications of the parameter values.

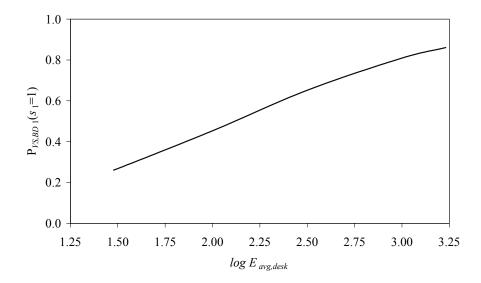


Figure 5.7 Probability of achieving visual satisfaction due to brightness on desktop within the range of $log E_{avg,desk}$ between 1.478 and 3.231

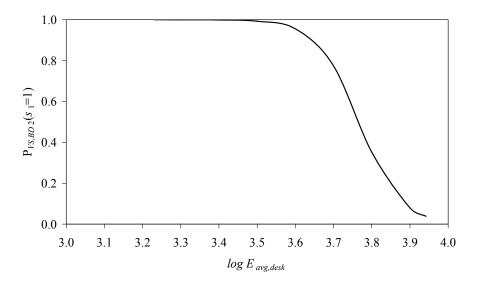


Figure 5.8 Probability of achieving visual satisfaction due to brightness on desktop within the range of $log E_{avg,desk}$ between 3.231 and 3.942

The empirical formulae of the probability of visual satisfaction due to 'brightness on desktop' are shown in Figures 5.7 and 5.8, respectively for the two groups of the parameter values. The results indicated that at the standard service illuminance level for task work in general offices recommended in many international lighting guides (ISO, 2002), i.e. 500 lux or its logarithm 2.7, $P_{VS,BD}$ was 72%. An increase in illuminance level up to 1,000 lux would result in a chance of 81% for responses of satisfaction to take place. An even higher illuminance level, say 6,000 lux, would however seriously reduce $P_{VS,BD}$ to only 45%. It would reach 80% or above when the desktop daylight illuminance fell into the range of 921 and 4,915 lux. The large variety of satisfactory desktop daylight level showed the high brightness adaptation ability of a human eye. The results also revealed that people would prefer working in a task area with sufficient brightness but never too much. The harvest of daylight of extremely high level into a room would bring negative effects to the occupants' visual perception. Architects and lighting designers should find ways to better control the amount of daylight received on the desk of a cellular office.

5.3.5 Brightness on surroundings under visual satisfaction

Six lighting parameters were proposed to be the candidates to account for the brightness sensation on the surfaces of the room, other than the desktop and the window, with respect to occupants' visual satisfaction in a sidelit cellular office. They were $L_{avg,surr}$, $log\ L_{avg,40H}$, $log\ L_{avg,40H}$, $log\ L_{avg,40H}$, $L_{avg,40C}$ and $log\ L_{avg,40C}$. Their variables were plotted against the satisfaction ratings obtained from the Likert scale s_2 one by one. Figures 5.9 to 5.14 illustrate the trends of their relationships.

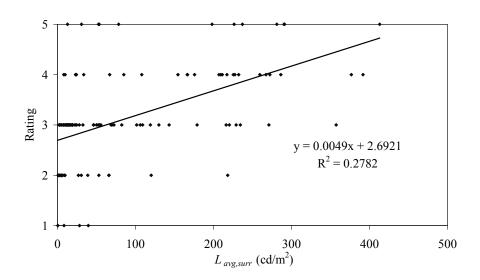


Figure 5.9 Brightness on surroundings under visual satisfaction: Ratings against $L_{avg,surr}$ (n = 125)

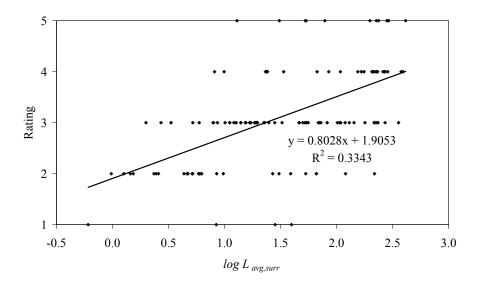


Figure 5.10 Brightness on surroundings under visual satisfaction: Ratings against $log L_{avg,surr}$ (n = 125)

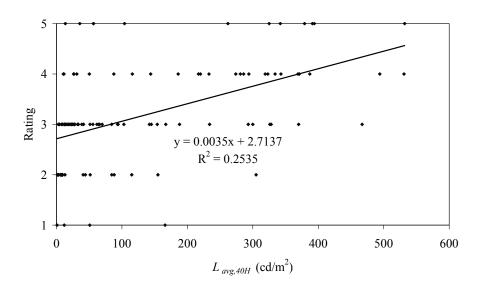


Figure 5.11 Brightness on surroundings under visual satisfaction: Ratings against $L_{avg,40H}$ (n = 125)

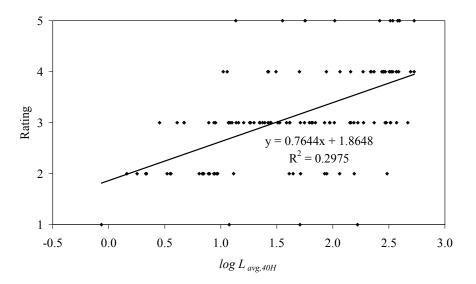


Figure 5.12 Brightness on surroundings under visual satisfaction: Ratings against $log\ L_{avg,40H}$ (n = 125)

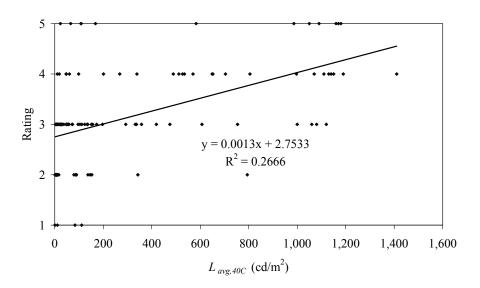


Figure 5.13 Brightness on surroundings under visual satisfaction: Ratings against $L_{avg,40C}$ (n = 125)

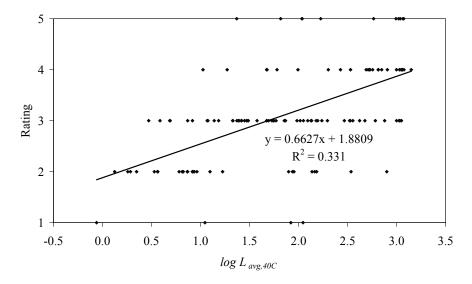


Figure 5.14 Brightness on surroundings under visual satisfaction: Ratings against $log L_{avg,40C}$ (n = 125)

It was preliminarily realized from the straight lines of the scatter plots that all the six potential lighting parameters possessed a linear positive relationship with the subjective votes of scale s_2 . The trends revealed that occupants would feel more visually satisfactory with the increasing average luminance or logarithms of luminance within the entire field of view, within the 40° horizontal band and within the 40° central circle inside the visual field. The parameter quantities together with the corresponding occupants' satisfaction ratings of the Likert scale s_2 were then tested by ANOVA for the investigation of the strength and significance of their correlations. Table 5.19 shows the results.

Table 5.19 Brightness on surroundings under visual satisfaction: ANOVA results

Parameter	Condition						r	p
$L_{avg,surr}$	0.607	<u>≤</u>	$L_{avg,surr}$	\leq	413	cd/m ²	0.579	≤ 0.001
$log L_{avg,surr}$	-0.217	\leq	$log L_{avg,surr}$	\leq	2.616		0.608	≤ 0.001
$L_{avg,40H}$	0.860	\leq	$L_{avg,40H}$	\leq	532	cd/m^2	0.563	≤ 0.001
$log L_{avg,40H}$	-0.066	\leq	$log L_{avg,40H}$	\leq	2.726		0.584	\leq 0.001
$L_{avg,40C}$	0.871	\leq	$L_{\it avg,40C}$	\leq	1,410	cd/m^2	0.578	≤ 0.001
$log L_{avg,40C}$	-0.060	\leq	$log L_{avg,40C}$	\leq	3.149		0.606	\leq 0.001

The correlation coefficients r obtained from the statistical test for all the six shortlisted lighting parameters were moderately large with the magnitude greater than 0.5. In addition with the small p-values ($p \le 0.05$) computed, there was sufficient evidence to declare that there was a statistically significant relationship between each of the parameters and the subjective satisfaction ratings. It was therefore concluded that any one of the six selected lighting parameters, namely $L_{avg,surr}$, $log L_{avg,surr}$, $L_{avg,40H}$, $log L_{avg,40H}$, $L_{avg,40C}$ and $log L_{avg,40C}$, had the ability to describe cellular office workers' brightness sensation on the surrounding surfaces under the criterion 'occupants' visual satisfaction'. $log L_{avg,surr}$ was chosen as the representative lighting parameter of this decision factor since it had the largest significant correlation coefficient r of 0.578 among all.

The judgment that $log L_{avg,surr}$ was selected to be the determining parameter of the decision factor 'brightness on surroundings' under the criterion of visual satisfaction was further checked by χ^2 test for its appropriateness. The analysis is shown in Table 5.20. Since the p-value obtained was smaller than the critical value, the null hypothesis that the subjective ratings would have no dependence on the corresponding parameter values was rejected. The results validated the representation of $log L_{avg,surr}$ for this decision factor.

Table 5.20 Brightness on surroundings under visual satisfaction:

Responses to $log L_{avg,surr}$

log L avg,surr	Scale s ₁		Row total
	0	1	
≤ 0.75	14	5	19
0.75 - 1.15	15	8	23
1.15 - 1.55	10	13	23
1.55 - 1.95	6	14	20
1.95 - 2.35	3	18	21
> 2.35	0	19	19
Column total	48	77	125

 $\chi^2 = 34.85$; df = 5; $p \le 0.001$

The next procedure was to initiate a regression analysis on the binary response of scale s_1 to investigate the probability of visual satisfaction expressed by the survey respondents regarding the decision factor 'brightness on surroundings' with the use of a logistic regression equation ($p \le 0.05$),

$$P_{VS,BS}(s_1 = 1) = \frac{1}{1 + e^{2.496 - 2.083 \log L_{avg,surr}}}$$
(5.12)

where $P_{VS,BS}$ is the probability of achieving visual satisfaction reported from the respondents that they would have perceived towards the brightness sensation on the surrounding surfaces of the room at a certain logarithm value of average daylight illuminance level on these surfaces due to the decision factor 'brightness on surroundings'.

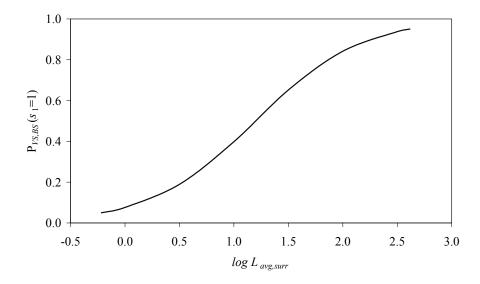


Figure 5.15 Probability of achieving visual satisfaction due to brightness on surroundings within the range of $log L_{avg,surr}$ between -0.217 and 2.616

The empirical formula of the probability of occupants' visual satisfaction due to 'brightness on surroundings' is plotted in Figure 5.15. The profile revealed that to achieve a higher chance of satisfaction with the brightness sensation on the surrounding surfaces it is not necessary to provide the cellular office workers with a very bright atmosphere. An average daylight luminance level on these surfaces of 73 cd/m² or its logarithm 1.9 would have already resulted in a $P_{VS,BS}$ of 80%. An

increase in the daylight level on the surrounding surfaces within the range investigated in this survey would only enhance the occupants' visual satisfaction. Architects and lighting designers should allow as much as daylight falling on the internal surfaces from outside to meet workers' visual request.

5.3.6 Uniformity on desktop under visual satisfaction

To quantify the decision factor 'uniformity on desktop' with regard to occupants' visual satisfaction inside a sidelit cellular office, only one lighting parameter was picked to test for its accountability. It was the ratio of the minimum illuminance to the average illuminance on the desk, denoted by U_{desk} ,

$$U_{desk} = \frac{E_{\min,desk}}{E_{avg,desk}} \tag{5.13}$$

The range of U_{desk} confined between 0 and 1. A closer value to 1 referred to a more uniform distribution of daylight on the desktop. Values of the parameter were plotted against the corresponding occupants' satisfaction ratings obtained from the Likert scale s_2 .

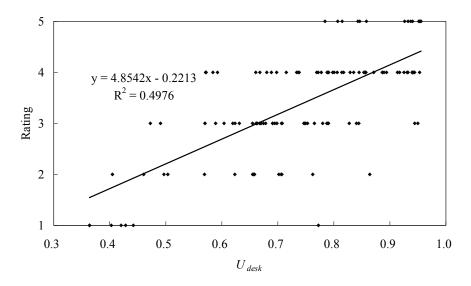


Figure 5.16 Uniformity on desktop under visual satisfaction: Ratings against U_{desk} (n = 125)

It was indicated from the trend line added in the scatter plot that U_{desk} had a linear positive relationship with the respondents' votes of scale s_2 . The finding preliminarily disclosed that participants would enjoy a higher satisfaction with an evener daylight distribution on the desk surface. Their correlation was further studied by the ANOVA test. The statistics are put into Table 5.21.

Table 5.21 Uniformity on desktop under visual satisfaction: ANOVA results

Parameter	Condition			r	p
$U_{\it desk}$	0.364 ≤	$U_{\it desk}$	≤ 0.956	0.705	≤ 0.001

The correlation coefficient r and the p-value computed in the ANOVA test for the parameter U_{desk} which was suspected to have potential to account for the decision factor 'uniformity on desktop' under the criterion of visual satisfaction were respectively over 0.7 and less than the critical value 0.05. It was reported that U_{desk} had a statistically significant and strong association with the subjective satisfaction with the daylight uniformity on the desk surface, and hence U_{desk} was regarded as the representative lighting parameter of this decision factor. Its qualification was also verified by χ^2 test. The results are shown in Table 5.22.

Table 5.22 Uniformity on desktop under visual satisfaction: Responses to U_{desk}

$U_{\it desk}$	Scale s ₁		Row total
	0	1	
≤ 0.60	11	9	20
0.60 - 0.68	5	16	21
0.68 - 0.76	3	17	20
0.76 - 0.84	2	23	25
0.84 - 0.92	1	18	19
> 0.92	1	19	20
Column total	23	102	125

$$\chi^2 = 26.07$$
; $df = 5$; $p \le 0.001$

A regression analysis on the respondents' feedback of the dichotomous scale s_1 to the decision factor 'uniformity on desktop' with respect to the criterion of visual satisfaction was carried out for the study of its probability. A logistic regression equation was derived with its p-value smaller than 0.05,

$$P_{VS,UD}(s_1 = 1) = \frac{1}{1 + e^{5.153 - 9.629U_{desk}}}$$
 (5.14)

where $P_{VS,UD}$ is the probability of achieving visual satisfaction reported from the respondents that they would have perceived towards the sensation of the daylight uniformity on the desk at a certain ratio of minimum to average illuminance levels on this task area due to the decision factor 'uniformity on desktop'.

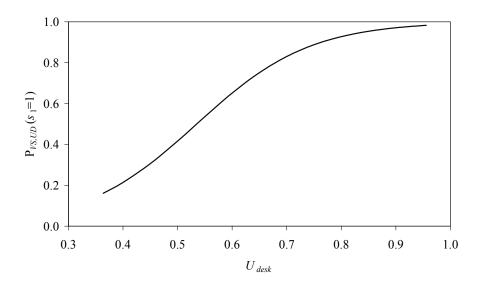


Figure 5.17 Probability of achieving visual satisfaction due to uniformity on desktop within the range of U_{desk} between 0.364 and 0.956

The empirical probability curve of visual satisfaction in relation to the decision factor 'uniformity on desktop' is presented in Figure 5.17. It was illustrated in the curve that a high chance of satisfaction could have already been obtained (80%) with the provision of U_{desk} at 0.68 or above. Besides, with the U_{desk} value of 0.8, which is a threshold that the uniformity of illuminance over any task area and immediate surround should not be less than recommended in common lighting design guidelines, such as CIBSE (2002), it was observed from the profile that the subsequent $P_{VS,UD}$

would even be over 90%. The finding revealed that people would prefer an evenly distributed daylight on the working desks in their sidelit cellular offices to a low degree of uniformity. Architects and lighting designers should pay attention to not only provide appropriate daylight level on the desktop, but also design well balanced daylight uniformity on the workplane to satisfy office workers' visual needs.

5.3.7 Uniformity on surroundings under visual satisfaction

Four lighting parameters were supposed to be capable of explaining the uniformity perception on the surrounding surfaces of a sidelit cellular office, except the desktop and the window, with regard to the criterion 'occupants' visual satisfaction'. They included L_{back}/L_{front} , where L_{back} and L_{front} here respectively meant the average luminance value of these surfaces of the back half side and those of the front half side of the room, and R_{surr} , R_{40H} and R_{40C} with the following physical meanings,

$$R_{surr} = \frac{L_{\min,surr}}{L_{avg.surr}} \tag{5.16}$$

where $L_{min,surr}$ and $L_{avg,surr}$ respectively referred to the minimum and average luminances of the surrounding surfaces of a sidelit cellular office within the field of view.

$$R_{40H} = \frac{L_{\min,40H}}{L_{avg,40H}} \tag{5.17}$$

where $L_{min,40H}$ and $L_{avg,40H}$ respectively referred to the minimum and average luminances of the region of horizontal band of width 40° within the field of view, which is shown in Figure 5.18.

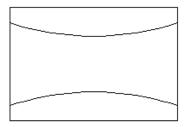


Figure 5.18 Horizontal band of width 40° within the field of view

$$R_{40C} = \frac{L_{\min,40C}}{L_{avg,40C}} \tag{5.18}$$

where $L_{min,40C}$ and $L_{avg,40C}$ respectively referred to the minimum and average luminances of the region of central circle of angular subtense 40° within the field of view, which is shown in Figure 5.19.

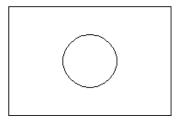


Figure 5.19 Central circle of angular subtense 40° within the field of view

The quantities of each of the four parameters were tentatively studied in scatter plots against the corresponding satisfaction ratings of the Likert scale s_2 collected from the survey participants, as shown in Figures 5.20 to 5.23.

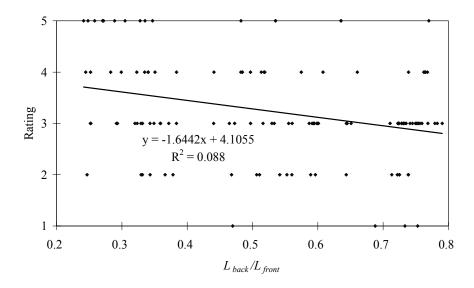


Figure 5.20 Uniformity on surroundings under visual satisfaction: Ratings against L_{back}/L_{front} (n = 125)

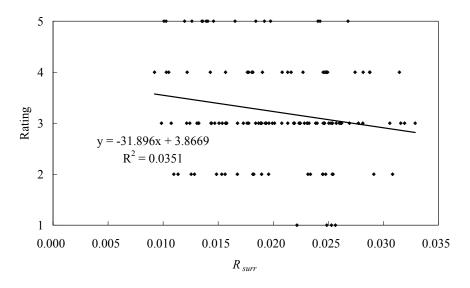


Figure 5.21 Uniformity on surroundings under visual satisfaction: Ratings against R_{surr} (n = 125)

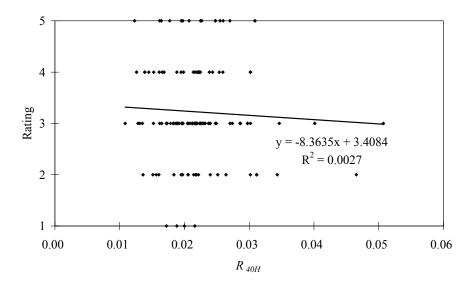


Figure 5.22 Uniformity on surroundings under visual satisfaction: Ratings against R_{40H} (n = 125)

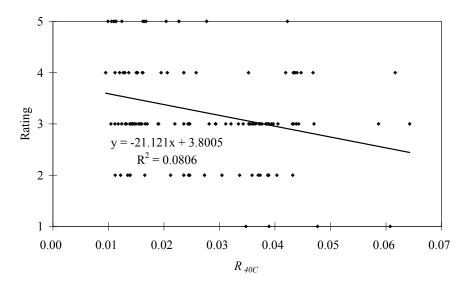


Figure 5.23 Uniformity on surroundings under visual satisfaction: Ratings against R_{40C} (n = 125)

A trend line was attempted to draw in each graph although it was observed that the collection of coordinates displaying the values for the two variables was considerably scattered. The straight lines illustrated that all the four parameter quantities had linear negative relationships with the occupants' ratings of scale s_2 in the aspect of visual satisfaction, meaning that respondents would feel more visually satisfactory when it

was obviously brighter in the front half side of the room and darker in the back half side; or when there is an apparent contrast in brightness in a region to another within the specified part of the field of view. Since one or two of these relationships looked so weak, all the preliminary findings were tested again by ANOVA for the verification of the strength and significance of the correlations. The statistical results are shown in Table 5.23.

Table 5.23 Uniformity on surroundings under visual satisfaction: ANOVA results

Parameter	Condition					r	p	
$L_{\it back}/L_{\it front}$	0.2413	<u> </u>	$L_{\it back}/L_{\it front}$	<u> </u>	0.7905	-0.297	0.001	
R_{surr}	0.0092	\leq	R_{surr}	\leq	0.0329	-0.187	0.037	
R_{40H}	0.0108	\leq	R_{40H}	\leq	0.0507	-0.051	0.571	
R_{40C}	0.0095	\leq	R_{40C}	\leq	0.0643	-0.284	0.001	

It was found from the ANOVA test results that, except for R_{40H} with a correlation coefficient r of less than 0.1 and the p-value greater than 0.05 showing a disappointing association of weak and insignificant correlation strength with the subjective visual satisfaction with the daylight uniformity on the surrounding surfaces of cellular offices, the other three shortlisted parameters offered acceptable results, particularly L_{back}/L_{front} . Among all the shortlisted parameters, L_{back}/L_{front} obtained the largest value of r in magnitude, despite indicating just marginal medium correlation strength of about 0.3, and the least p-value in the ANOVA test, resulting in that L_{back}/L_{front} was considered to be the representative lighting parameter of this decision factor in this study. The judgment was further challenged by a statistical test. The results calculated in this test are presented in Table 5.24.

The *p*-value obtained from the χ^2 test was analysed. Since it was smaller than the critical value 0.05, the null hypothesis that the subjective ratings would have no dependence on the corresponding parameter values was no longer valid. The representation of L_{back}/L_{front} was therefore confirmed for the decision factor 'uniformity on surroundings' under the criterion of visual satisfaction.

Table 5.24 Uniformity on surroundings under visual satisfaction:

Responses	to	L_{back}	$/L_{front}$
-----------	----	------------	--------------

$L_{\it back}/L_{\it front}$	Scale s 1		Row total
	0	1	
≤ 0.33	4	18	22
0.33 - 0.43	3	15	18
0.43 - 0.53	4	14	18
0.53 - 0.63	7	13	20
0.63 - 0.73	7	14	21
> 0.73	15	11	26
Column total	40	85	125

$$\chi^2 = 12.65$$
; $df = 5$; $p = 0.027$

The following procedure was to carry out a regression analysis on their response of the dichotomous scale s_1 to occupants' visual satisfaction with regard to this decision factor for the study of its probability of occurrence. A logistic regression curve was subsequently developed ($p \le 0.05$),

$$P_{VS,US}(s_1 = 1) = \frac{1}{1 + e^{-2.849 + 3.758 L_{back} / L_{front}}}$$
(5.19)

where $P_{VS,US}$ is the probability of achieving visual satisfaction reported from the respondents that they would have perceived towards the sensation on the daylight uniformity on the surrounding surfaces at a certain ratio of luminances between the surfaces of the back half and those of the front half of the cellular offices due to the decision factor 'uniformity on surroundings'.

The empirical logistic regression equation expressed the probability of occurrence of occupants' visual satisfaction due to the decision factor 'uniformity on surroundings' in Figure 5.24. The graph showed that a higher chance of satisfactory perception could be obtained when the daylight level on the surrounding surfaces of a room was not so uniform providing some kinds of visual interest to the office workers. It was read from the curve that a $P_{VS,US}$ value of 80% could be reached when L_{back}/L_{front} was about 0.4. An increase in the parameter quantity would contrarily decrease the

probability of enjoying a visually satisfactory perception. A more evenly daylight uniformity at about 0.8 could only allow about a half of the occupants (46%) to vote for satisfaction. This finding reflected that people would prefer an uneven daylight distribution across the surfaces of a room, excluding the window and the desktop. Architects and lighting designers should provide a generally bright working environment but with some differences in the illumination level between the two halves of a cellular office.

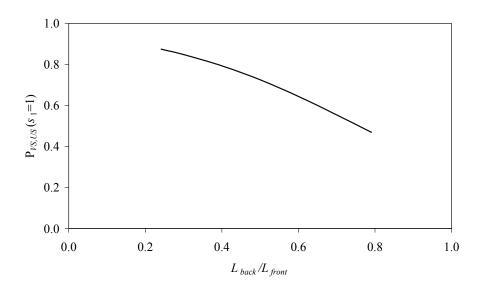


Figure 5.24 Probability of achieving visual satisfaction due to uniformity on surroundings within the range of L_{back}/L_{front} between 0.2413 and 0.7905

5.3.8 Perceived glare from window under visual satisfaction

The new daylight glare index developed by Nazzal (2001b) was regarded as the determining lighting parameter to account for the visual satisfaction in the aspect of perceived glare from the side window of a cellular office, subject to the results of a series of statistical tests. Nazzal has proposed two different formulae of new daylight glare index one after another in his publications. The latest one, mentioned in Chapter 3, denoted as DGI_{N2} , was adopted in this study and stated here again,

$$DGI_{N2} = 10\log_{10}\left(0.478\sum \frac{\sum L_{ex}^{1.6}\Omega^{0.8}}{L_{\alpha} + 0.07\sum L_{w}\omega^{0.5}}\right)$$
(5.20)

where L_{ex} is the exterior luminance, i.e. the luminance of the outdoors caused by direct sunlight, diffuse light from the sky and reflected light from the ground and other external surfaces in cd/m², L_{α} is the adaptation luminance, i.e. the luminance of the surroundings including reflections from internal surfaces in cd/m², L_{w} is the window luminance, i.e. the luminance of the source from the outside through the window in cd/m², Ω is the solid angle subtended by the source modified for its position with respect to the field of view in steradians, and ω is the solid angle subtended by the window in steradians.

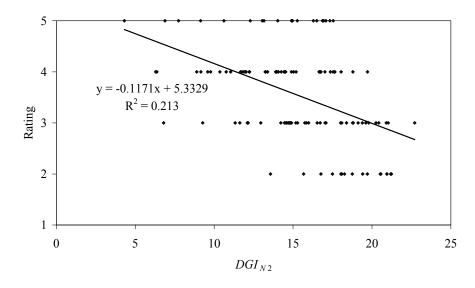


Figure 5.25 Perceived glare from window under visual satisfaction: Ratings against DGI_{N2} (n = 125)

The relationship between the DGI_{N2} and the satisfaction votes of the Likert scale s_2 obtained from the respondents was first examined with the use of a scatter graph, as shown in Figure 5.25. The trend line of the plot preliminarily showed that this selected parameter had a linear negative association with the evaluation of the participants' visual satisfaction. Respondents would be less tolerant when the index becomes larger. The tendency fitted in with the basic definition of DGI_{N2} . This primary discovery was then tested by ANOVA to investigate the strength and significance of the correlation between these two variables. The results are tabulated in Table 5.25.

Table 5.25 Perceived glare from window under visual satisfaction: ANOVA results

Parameter	Condition	1				r	p
DGI_{N2}	4.31	≤	DGI_{N2}	<u> </u>	22.71	-0.461	≤ 0.001

From the ANOVA test result, it was found that the correlation coefficient r between the occupants' satisfaction ratings and the parameter DGI_{N2} was of medium degree with an absolute numerical value slightly smaller than 0.5. The small p-values ($p \le 0.05$) computed added sufficient evidence to reject the null hypothesis that there was no connection between the two variables but proved that there was a statistically significant linear negative correlation between the parameter numbers and the subjective satisfaction ratings of scale s_2 . As a result, it was concluded that DGI_{N2} possessed the ability to describe the degree of glare perceived from the side window by the cellular office workers under the criterion of visual satisfaction and this parameter could be the representative lighting parameter of this decision factor.

Table 5.26 Perceived glare from window under visual satisfaction:

Responses to DGI_{N2}

DGI_{N2}	Scale s 1		Row total
	0	1	
≤ 12	1	21	22
12 - 14	2	17	19
14 - 15	4	16	20
15 - 17	5	17	22
17 - 19	6	17	23
> 19	9	10	19
Column total	27	98	125

$$\chi^2 = 12.18$$
; $df = 5$; $p = 0.032$

The validity of regarding DGI_{N2} as the controlling parameter of the decision factor 'perceived glare from window' in relation to the criterion of visual satisfaction was further verified by χ^2 test. The analytical results are presented in Table 5.26. The

p-value obtained from the test was smaller than the critical value 0.05, meaning that there was statistical support about the qualification for this parameter to represent the decision factor.

A regression analysis was performed on occupants' responses of the dichotomous scale s_1 to occupants' visual satisfaction due to the decision factor 'perceived glare from window' for studying its probability. A logistic regression formula was then derived with the p-value less than 0.05,

$$P_{VS,PG}(s_1 = 1) = \frac{1}{1 + e^{-5.642 + 0.270DGI_{N2}}}$$
(5.21)

where $P_{VS,PG}$ is the probability of achieving visual satisfaction reported from the respondents that they would have perceived towards the glare that was perceived from the side window of the room at a certain value of DGI_{N2} due to the decision factor 'perceived glare from window'.

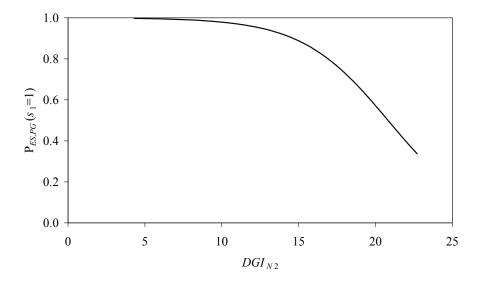


Figure 5.26 Probability of achieving visual satisfaction due to perceived glare from window within the range of DGI_{N2} between 4.31 and 22.71

The empirical logistic regression formula showed that it was of higher chance to collect a feedback of visual satisfaction in terms of perceived glare from the side window when the index kept at a low value. It was revealed from the curve that a

 $P_{VS,PG}$ value of 80% or above could be obtained when DGI_{N2} was smaller than 16. Although Nazzal (2001b) did not provide any physical meaning of glare condition in his newly proposed daylight glare index, with reference to the original version of DGI, developed by Chauvel et al. (1982), a DGI of 16 stands for a glare criterion of 'just imperceptible', which is the strictest required level in daylight glare, typically requested in the lighting design of some indoor premises where activities of very high accuracy are to be carried out. An increase in the DGI_{N2} would greatly decrease the probability of a visual satisfaction response. Architects and lighting designers should implement appropriate design measures to reduce the excessive contrast in the amount of outdoor daylight and the harvested daylight in the interiors.

5.3.9 Brightness on desktop under energy saving potential

The same four lighting parameters, $E_{avg,desk}$, $log\ E_{avg,desk}$, $L_{avg,desk}$ and $log\ L_{avg,desk}$, considered in Section 5.3.4 for investigating the representative parameters of the decision factor 'brightness on desktop' under the criterion of visual satisfaction were applied in this issue to test for their capabilities of predicting 'brightness on desktop' but this time in relation to another criterion – the electric lighting energy saving potential. Similar procedures were carried out, such as the drawing of scatter plots for observing the type of relationships between the acceptability ratings of not turning on electric lights collected from the Likert scale s_2 and the quantities of these four parameters. The charts are shown in Figures 5.27 to 5.30.

It was shown in the scatter plots that all the four shortlisted lighting parameter values preliminarily achieved linear positive relationships with the subjective ratings on the acceptability of saving electric lighting energy. The trend lines indicated that the respondents would be more ready to utilizing daylight and not turning on any electric lights with a higher value of the daylight illuminance or luminance or their logarithms on the desk. These parameter quantities and the corresponding occupants' ratings of scale s_2 were put into the ANOVA test and checked for the strengths and significances of their correlations. Table 5.27 displays the results.

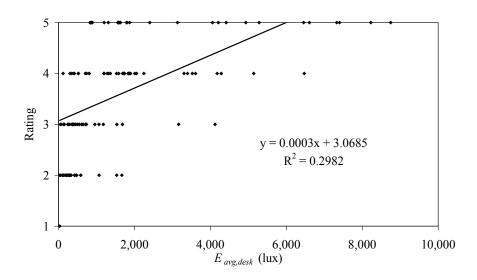


Figure 5.27 Brightness on desktop under energy saving potential: Ratings against $E_{avg,desk}$ (n = 125)

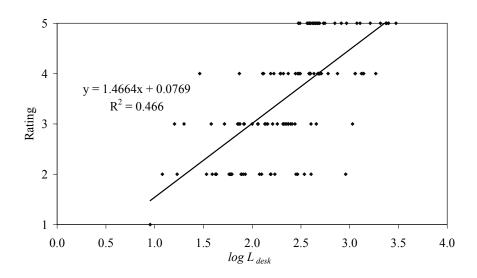


Figure 5.28 Brightness on desktop under energy saving potential: Ratings against $log E_{avg,desk}$ (n = 125)

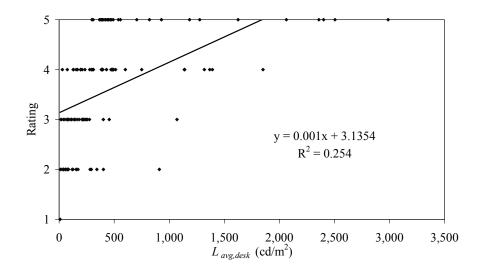


Figure 5.29 Brightness on desktop under energy saving potential: Ratings against $L_{avg,desk}$ (n = 125)

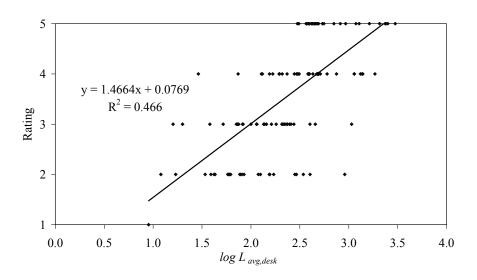


Figure 5.30 Brightness on desktop under energy saving potential: Ratings against $log L_{avg,desk}$ (n = 125)

Table 5.27 Brightness on desktop under energy saving potential: ANOVA results

Parameter	Conditi	on					r	p
E avg,desk	30	<u> </u>	$E_{avg,desk}$	<u> </u>	8,750	lux	0.546	≤ 0.001
$log E_{avg,desk}$	1.478	\leq	$log E_{avg,desk}$	\leq	3.942		0.690	\leq 0.001
$L_{avg,desk}$	9	\leq	$L_{\mathit{avg,desk}}$	\leq	2,988	cd/m^2	0.504	\leq 0.001
$log L_{avg,desk}$	0.954	\leq	$log L_{avg,desk}$	\leq	3.475		0.683	≤ 0.001

The correlation coefficients r computed in the ANOVA test for all the four selected lighting parameters were considerably large with the magnitude ranging from above 0.5 to about 0.7. Together with the small p-values obtained ($p \le 0.05$) sufficient statistical evidence was provided to indicate a strong and significant linear positive association between each of the shortlisted parameter and their corresponding subjective ratings. These four parameters were therefore confirmed to possess the ability to predict occupants' acceptability of saving electric lighting energy due to the brightness sensation on the desktop surface of their cellular offices. $log E_{avg,desk}$ was identified as the representative lighting parameter of this decision factor under the criterion of electric lighting energy saving potential in this study because its correlation coefficient was the largest among the four shortlisted ones at a value of 0.690.

Another statistical test was afterwards applied to examine the representation of log $E_{avg,desk}$ for the decision factor in this case. The analysis of χ^2 test is shown in Table 5.28. It was calculated that the p-value obtained from the test was less than 0.05 indicating that a kind of dependence existed between the occupants' ratings on lighting energy saving acceptability and the quantities of log $E_{avg,desk}$. The results validated the ability of this parameter to determine the decision factor 'brightness on desktop' in relation to the saving potential of electric lighting energy.

Table 5.28 Brightness on desktop under energy saving potential: Responses to $E_{avg,desk}$

log E avg,desk	Scale s	1	Row total	
	0	1		
≤ 2.45	14	7	21	
2.45 - 2.70	10	10	20	
2.70 - 2.95	6	15	21	
2.95 - 3.20	4	17	21	
3.20 - 3.45	1	19	20	
> 3.45	0	22	22	
Column total	35	90	125	

 $\chi^2 = 35.02$; df = 5; $p \le 0.001$

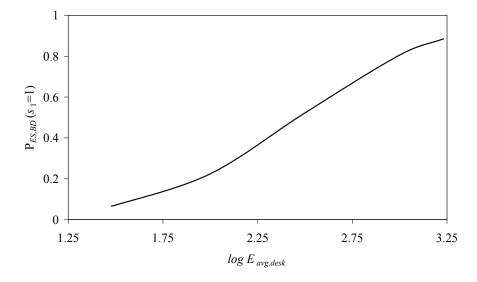


Figure 5.31 Probability of achieving energy saving due to brightness on desktop within the range of $log E_{avg,desk}$ between 1.478 and 3.942

A regression analysis was made based on the binary feedbacks of scale s_1 to investigate the probability of saving electric lighting energy by not turning on any electric lights in relation with the decision factor 'brightness on desktop'. A logistic regression curve in terms of the representative lighting parameter $log \ E_{avg,desk}$ was formulated with $p \le 0.05$ and is plotted in Figure 5.31,

$$P_{ES,BD}(s_1 = 1) = \frac{1}{1 + e^{6.574 - 2.666 \log Eavg, desk}}$$
 (5.22)

where $P_{ES,BD}$ is the probability that electric lighting energy could be saved by the respondents due to the brightness sensation on the desk surface at a certain logarithm value of average daylight illuminance level on the desk area due to the decision factor 'brightness on desktop'.

The profile of the curve indicated that, at the common service illuminance level for general task in offices 500 lux or its logarithm 2.7, P_{ES,BD} was 65%. A higher daylight illuminance level on the desk would increase the chance of receiving feedbacks from the occupants that they accept not to turn on any electric lights. Up to $log E_{avg,desk} = 3$, or the daylight level of 968 lux, the probability would reach 80%. By comparing this finding with the result obtained from the investigation on the representative lighting parameter of the decision factor 'brightness on desktop' under the other criterion 'occupants' visual satisfaction', it was found that occupants would prefer working in an adequately but not excessively bright task area with a daylight illuminance level of $900 - 5{,}000$ lux on the desk, under which they would also be very much willing not to turn on electric lights for illumination. It should be noted that although an even higher value of this parameter quantity would greatly reduce the energy consumption of electric lighting, human may not meanwhile necessarily feel visually satisfactory with the brightness on the desk since the occupants' satisfaction level would start falling down significantly for illuminance exceeding 5 klux. Architects and lighting designers should balance well the provision of natural light between these two criteria to create good daylighting performance in a cellular office.

5.3.10 Brightness on surroundings under energy saving potential

The six lighting parameters, i.e. $L_{avg,surr}$, $log L_{avg,surr}$, $L_{avg,40H}$, $log L_{avg,40H}$, $L_{avg,40C}$ and $log L_{avg,40C}$, used before were again shortlisted for the study, treated to have the potential to explain the brightness sensation on the surfaces of cellular offices, excluding the desk surface and the window aperture, with regard to occupants' acceptability of not turning on electric lights inside their workplaces. The values of

these selected parameters were plotted individually against the ratings obtained from the Likert scale s_2 , and the graphs are shown in Figure 5.32 to 5.37.

Figure 5.32 Brightness on surroundings under energy saving potential: Ratings against $L_{avg,surr}$ (n = 125)

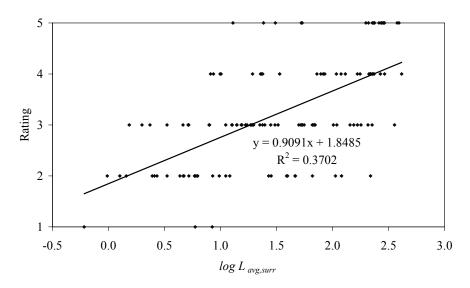


Figure 5.33 Brightness on surroundings under energy saving potential: Ratings against $log L_{avg,surr}$ (n = 125)

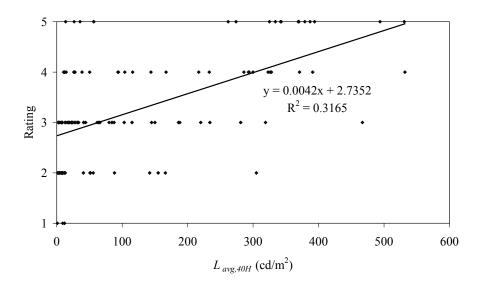


Figure 5.34 Brightness on surroundings under energy saving potential: Ratings against $L_{avg,40H}$ (n = 125)

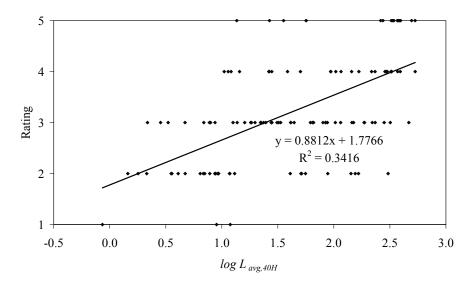


Figure 5.35 Brightness on surroundings under energy saving potential: Ratings against $log L_{avg,40H}$ (n = 125)

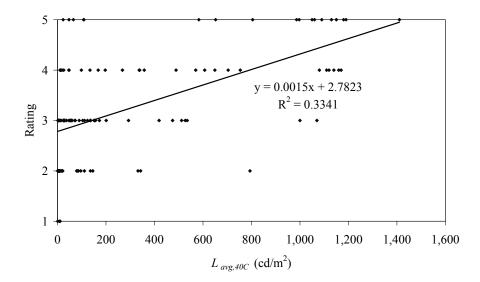


Figure 5.36 Brightness on surroundings under energy saving potential: Ratings against $L_{avg,40C}$ (n = 125)

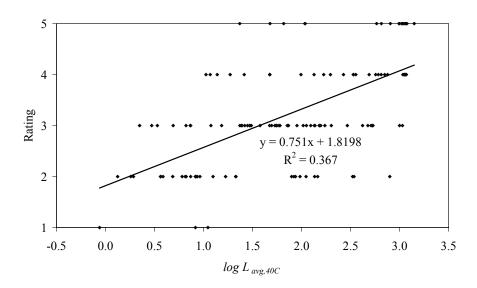


Figure 5.37 Brightness on surroundings under energy saving potential: Ratings against $log L_{avg,40C}$ (n = 125)

A trend line was added in each scatter plot to reveal the type of relationship between the two variables. It was observed that all the six shortlisted lighting parameters preliminary possessed linear positive connections with the participants' votes expressed in scale s_2 . It was shown that occupants would be more willing to make use of natural light instead of turning on electric lights to illuminate their working spaces with the increasing average luminance or logarithm values of luminance within the whole field of view, within the 40° horizontal band and within the 40° central circle inside the visual field. The values of these six parameters were further tested against the corresponding respondents' ratings by ANOVA for the examination of the strength and significance of their correlations. The results are presented in Table 5.29.

Table 5.29 Brightness on surroundings under energy saving potential: ANOVA results

Parameter	Condition	_					r	p
$L_{avg,surr}$	0.607	<u> </u>	$L_{\mathit{avg,surr}}$	\leq	413	cd/m ²	0.579	≤ 0.001
$log L_{avg,surr}$	-0.217	\leq	$log L_{avg,surr}$	\leq	2.616		0.608	\leq 0.001
$L_{avg,40H}$	0.860	\leq	$L_{\it avg,40H}$	\leq	532	cd/m^2	0.563	\leq 0.001
$log L_{avg,40H}$	-0.066	\leq	$log L_{avg,40H}$	\leq	2.726		0.584	\leq 0.001
$L_{avg,40C}$	0.871	\leq	$L_{\it avg,40C}$	\leq	1,410	cd/m^2	0.578	\leq 0.001
$log L_{avg,40C}$	-0.060	\leq	$log L_{avg,40C}$	\leq	3.149		0.606	\leq 0.001

The ANOVA test results confirmed that the linear positive correlation between each of the chosen parameters and the occupants' ratings was statistically significant and strong since the correlation coefficients r obtained were adequately large at about 0.6 and the p-values were sufficiently small, i.e. less than the critical value 0.05. It could be declared that all of these lighting parameters, namely $L_{avg,surr}$, $log L_{avg,surr}$, $L_{avg,40H}$, $log L_{avg,40H}$, $L_{avg,40C}$ and $log L_{avg,40C}$, were capable of accounting for the brightness sensation on the surrounding surfaces perceived by the workers when they considered whether turning on electric lights was necessary or daylight could be alone utilized in their cellular offices. Since the largest r value existed in $log L_{avg,surr}$, at a value of 0.608, it was regarded as the representative lighting parameter of the decision factor 'brightness on surroundings' with respect to the criterion of electric lighting energy saving potential. This inference was proved to be appropriate because the p-value obtained from the χ^2 test was much less than the critical value 0.05. The test results are tabulated in Table 5.30.

Table 5.30 Brightness on surroundings under energy saving potential: Responses to $log L_{avg,surr}$

$log L_{avg,surr}$	Scale s	I	Row total
	0	1	
≤ 0.75	15	4	19
0.75 - 1.15	16	7	23
1.15 - 1.55	10	13	23
1.55 - 1.95	6	14	20
1.95 - 2.35	3	18	21
> 2.35	0	19	19
Column total	50	75	125

$$\chi^2 = 39.79$$
; $df = 5$; $p \le 0.001$

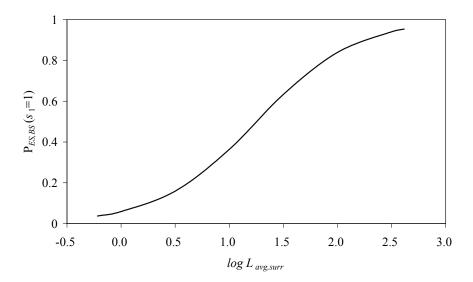


Figure 5.38 Probability of achieving energy saving due to brightness on surroundings within the range of $log L_{avg,surr}$ between -0.217 and 2.616

The probability of not turning on electric lights in a cellular office for conserving energy of electric lighting due to the occupants' brightness sensation on the surrounding surfaces was investigated through a regression analysis. A logistic regression formula was proposed ($p \le 0.05$),

$$P_{ES,BS}(s_1 = 1) = \frac{1}{1 + e^{2.772 - 2.212 \log L_{avg,surr}}}$$
(5.23)

where $P_{ES,BS}$ is the probability that electric lighting energy could be saved by the respondents due to the brightness sensation on the surroundings at a certain logarithm value of average daylight illuminance level on these surfaces due to the decision factor 'brightness on surroundings'.

The empirical formula of the probability of occurrence of not turning on electric lights such that energy for lighting could be conserved due to the decision factor 'brightness on surroundings' is plotted in Figure 5.38. The curve revealed that the chance would increase with the values of the representative lighting parameter log $L_{avg,surr}$. A brighter surrounding environment would enhance the occupants' acceptability to make use of natural light rather than to switch on artificial lights. A $P_{ES,BS}$ value of 80% or above would need an average luminance value over 76 cd/m², or its logarithm value 1.9, on the surfaces within the visual field, other than the desktop and the window. This figure was compared with the result obtained from the study on the representative lighting parameter of the decision factor 'brightness on surroundings' with regard to the criterion of visual satisfaction, i.e. the level of $L_{ave,surr}$ should be above 73 cd/m² such that most of the occupants would prefer working at. It was concluded that with $L_{avg,surr}$ at about 75 cd/m² people would most likely feel satisfactory with the brightness on the surroundings meanwhile it was not necessary for them to turn on electric lights under this level of illumination. Architects, lighting designers should thus find multiple ways to provide the surrounding surfaces of a cellular office environment with sufficient daylight for minimizing the chance for occupants to voice out a necessity of switching on lights.

5.3.11 Uniformity on desktop under energy saving potential

 U_{desk} was applied in this part for the investigation of a representative parameter to describe the decision factor 'uniformity on desktop' with respect to the acceptability of saving electric lighting energy. The quantities of this parameter computed from the simultaneous collection of the minimum and average illuminance values on the desk surface were plotted against the corresponding occupants' energy saving acceptability ratings of scale s_2 in Figure 5.39.

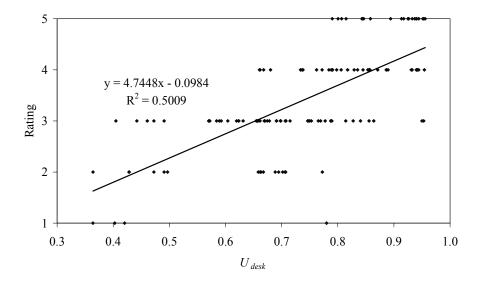


Figure 5.39 Uniformity on desktop under energy saving potential: Ratings against U_{desk} (n = 125)

The trend line drawn in the scatter plot indicated that there was a linear positive relationship between the variables of U_{desk} and the respondents' votes of the Likert scale s_2 . The primary finding was that occupants would accept not to turn on electric lights with an evenly distributed daylight level on the desk surface. The ANOVA statistical test was then applied to further check out the strength and significance of their correlation. The results are presented in Table 5.31.

Table 5.31 Uniformity on desktop under energy saving potential: ANOVA results

Parameter	Condition	Į.				r	p
$U_{\it desk}$	0.364	<	U_{desk}	<u> </u>	0.956	0.708	≤ 0.001

The correlation coefficient r and the p-value output from the ANOVA test were found to be respectively above 0.7 and less than 0.05. The results showed that this parameter had a statistically strong and significant correlation with the occupants' consideration of not turning on any electric lights in their sidelit cellular offices. The parameter U_{desk} was therefore confirmed to possess some abilities to predict occupants' acceptability to save electric lighting saving in their working spaces due to the decision factor 'uniformity on desktop', and therefore, it became the

controlling lighting parameter of daylight distribution level on the desk surface under this criterion. The validity of this conclusion was checked by another statistical test. The analysis of χ^2 test is shown in Table 5.32.

Table 5.32 Uniformity on desktop under energy saving potential: Responses to U_{desk}

$U_{\it desk}$	Scale s	Scale s ₁	
	0	1	
≤ 0.60	10	10	20
0.60 - 0.68	4	17	21
0.68 - 0.76	6	14	20
0.76 - 0.84	4	21	25
0.84 - 0.92	2	17	19
> 0.92	1	19	20
Column total	27	98	125

$$\chi^2 = 15.53$$
; $df = 5$; $p = 0.008$

A regression analysis on respondents' response obtained from the dichotomous scale s_1 to the decision factor 'uniformity on desktop' with regard to the acceptability of saving electric lighting energy was conducted for the study of its probability of occurrence. A logistic regression equation was then developed with its p-value less than 0.05,

$$P_{ES,UD}(s_1 = 1) = \frac{1}{1 + e^{3.129 - 6.254U_{desk}}}$$
 (5.24)

where $P_{ES,UD}$ is the probability that electric lighting energy could be saved by the respondents due to the sensation on the daylight uniformity on the desk at a certain ratio of minimum to average illuminance levels on this task area due to the decision factor 'uniformity on desktop'.

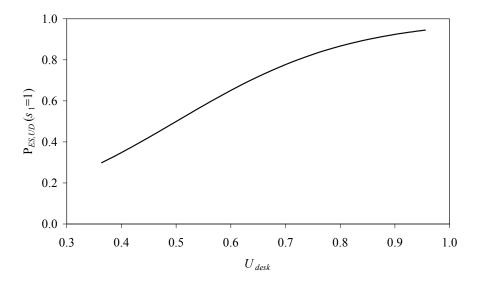


Figure 5.40 Probability of achieving energy saving due to uniformity on desktop within the range of U_{desk} between 0.364 and 0.956

The empirical formula expressed the probability of occurrence for occupants to accept not turning on electric lights due to the sensation on the daylight uniformity on the desk surface and is plotted in Figure 5.40. The curve shows the larger the U_{desk} value the higher the probability of saving lighting energy could be attained. Occupants would probably make use of daylight alone in their cellular offices when they perceived a very even daylight distribution on their working desks. It was illustrated that the $P_{ES,UD}$ value was 80% when U_{desk} was designed to be about 0.72. This result was compared with that revealed from the analysis of the same decision factor but in relation to another criterion, i.e. visual satisfaction. It was discovered that most of the survey participants would feel visually satisfactory with the daylit cellular office environment having the U_{desk} value at a higher value. Their trends looked similar showing that architects and lighting designers should maintain a high degree of balance in the distribution of daylight on the work plane in a cellular office in order to satisfy occupants' visual demands as well as achieve more energy conservation.

5.3.12 Uniformity on surroundings under energy saving potential

Four lighting parameters were suspected to be able to predict the uniformity sensation on the surfaces of a sidelit cellular office, excluding the desk surface and the window aperture, under the criterion of saving electric lighting. They were L_{back}/L_{front} , R_{surr} , R_{40H} and R_{40C} , having the same physical meanings as those described in Section 5.3.7. The quantities of these four parameters were first studied in scatter plots against the corresponding occupants' votes of not turning on electric lights obtained from the Likert scale s_2 collected during the survey. Figures 5.41 to 5.44 show the graphs.

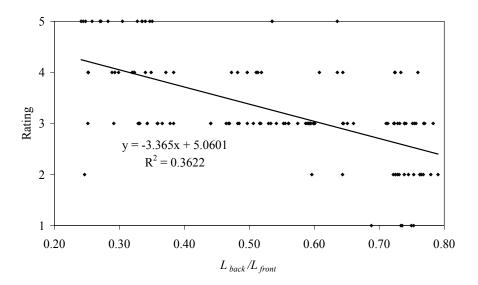


Figure 5.41 Uniformity on surroundings under energy saving potential: Ratings against L_{back}/L_{front} (n = 125)

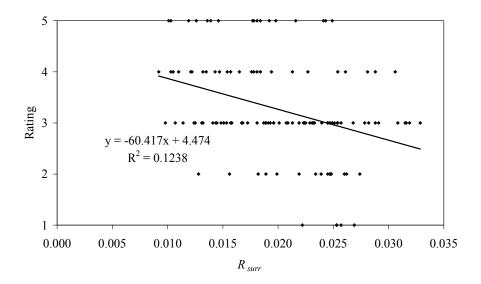


Figure 5.42 Uniformity on surroundings under energy saving potential: Ratings against R_{surr} (n = 125)

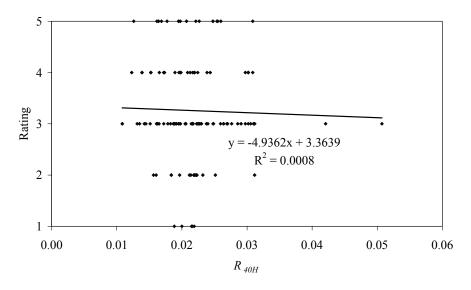


Figure 5.43 Uniformity on surroundings under energy saving potential: Ratings against R_{40H} (n = 125)

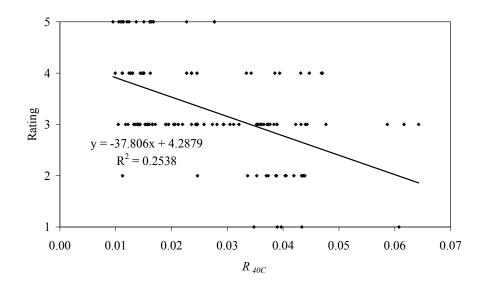


Figure 5.44 Uniformity on surroundings under energy saving potential: Ratings against R_{40C} (n = 125)

Table 5.33 Uniformity on surroundings under energy saving potential: ANOVA results

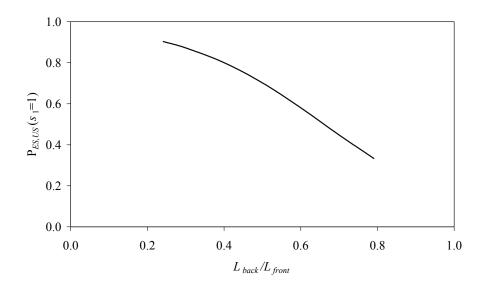
Parameter	Condition					r	p
L_{back}/L_{front}	0.2413	<u> </u>	$L_{\it back}/L_{\it front}$	<	0.7905	-0.602	≤ 0.001
R_{surr}	0.0092	\leq	R_{surr}	\leq	0.0329	-0.352	\leq 0.001
R_{40H}	0.0108	\leq	R_{40H}	\leq	0.0507	-0.028	0.754
R_{40C}	0.0095	\leq	R_{40C}	\leq	0.0643	-0.504	\leq 0.001

A poor association of weak and insignificant correlation strength with the subjective acceptability of saving lighting energy due to the daylight uniformity on the surrounding surfaces of a cellular office come across the ANOVA test results. It was discovered in the lighting parameter R_{40H} , which had the correlation coefficient r of less than 0.1 and the p-value larger than 0.05 with the subjective ratings of scale s_2 . Nevertheless, the other three proposed parameters offered reasonable results, in particular L_{back}/L_{front} . It obtained the largest value of r in magnitude and the p-value was sufficiently small, resulting in that L_{back}/L_{front} was regarded as the controlling lighting parameter of the decision factor 'uniformity on surroundings' with regard to the criterion of lighting energy saving potential. This selection was checked by χ^2 test for its applicability. The results are presented in Table 5.34.

Table 5.34 Uniformity on surroundings under energy saving potential: Responses to L_{back}/L_{front}

$L_{\it back}/L_{\it front}$	Scale s	Scale s 1		
	0	1		
≤ 0.33	1	21	22	
0.33 - 0.43	2	16	18	
0.43 - 0.53	7	11	18	
0.53 - 0.63	13	7	20	
0.63 - 0.73	7	14	21	
> 0.73	16	10	26	
Column total	46	79	125	

$$\chi^2 = 28.77$$
; $df = 5$; $p \le 0.001$


It was found that the p-value obtained from the χ^2 test for verifying the qualification of L_{back}/L_{front} as the determining lighting parameter of this decision factor was smaller than the critical value 0.05, indicating that the null hypothesis of non-connection between the subjective acceptability of not turning on electric lights and the corresponding parameter quantities should be rejected. It was therefore concluded that L_{back}/L_{front} was valid to be the representative of 'uniformity on surroundings' with respect to the criterion of energy saving potential.

A regression analysis was then carried out based on the votes of the dichotomous scale s_1 collected from the respondents to the potential of saving lighting energy in relation to the sensation of daylight uniformity on the surrounding surfaces to investigate the probability of occurrence of acceptability to maintain electric lights off in their cellular offices. A logistic regression curve was developed ($p \le 0.05$),

$$P_{ES,US}(s_1 = 1) = \frac{1}{1 + e^{-3.518 + 5.325 L_{back} / L_{front}}}$$
(5.25)

where $P_{ES,US}$ is the probability that electric lighting energy could be saved by the respondents due to the sensation on the daylight uniformity on the surrounding surfaces at a certain ratio of luminances between the surfaces of the back half and

those of the front half of the cellular offices due to the decision factor 'uniformity on surroundings'.

5.45 Probability of achieving energy saving due to uniformity on surroundings within the range of L_{back}/L_{front} between 0.2413 and 0.7905

The probability of occurrence of acceptance expressed by survey participants about keeping electric lights off in relation to the decision factor 'uniformity on surroundings' was plotted in Figure 5.45 in accordance with the derived empirical formula. The chart illustrated that a higher chance for electric energy to be saved could be obtained when the representative lighting parameter of this decision factor L_{back}/L_{front} was kept at a low value. It meant that occupants would agree not to turn on electric lights when the daylight level on the surrounding surfaces of the room was so non-uniform that the average luminance at the side of the office containing the window was obviously superior to that at the side without. When there was a good balance of luminance between the two parts of the room, occupants would on the contrary need to switch on electric lights. It was probably because a low ratio of L_{back}/L_{front} would bring a sort of sensation to the occupants that the whole room was gloomy. It was found in the curve that the $P_{ES,US}$ value would be 80% or above when L_{back}/L_{front} was smaller than 0.4. An increase in the value of the parameter would only lead to the reduction of the probability. This finding was compared with that of the same decision factor but under the criterion of visual satisfaction. It was found that

both cases shared the same trend, the threshold values, i.e. the value of L_{back}/L_{front} for $P_{VS,US}$ or $P_{ES,US} = 80\%$, were exactly the same. It was therefore concluded that a working environment of non-uniformity in brightness would allow occupants to enjoy visual satisfaction at the same time they would feel acceptable not turning on any electric lights. Architects and lighting designers since then have had powerful grounds to design localized rather than generalized lighting design subject to the fact that they make use of daylight to provide sufficient brightness on the surroundings.

5.3.13 Perceived glare from window under energy saving potential

The DGI_{N2} developed by Nazzal (2001b) was proposed to be a shortlisted lighting parameter to predict the acceptability of not turning on electric lights in a cellular office in the subject of perceived glare from its side window. The type of relationship between this proposed parameter and the ratings of acceptability of not turning on electric lights expressed in the Likert scale s_2 obtained from the respondents was disclosed with the use of a scatter plot, as shown in Figure 5.46.

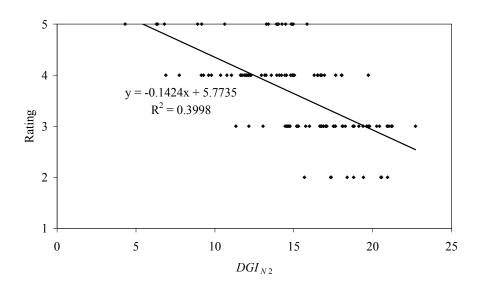


Figure 5.46 Perceived glare from window under energy saving potential: Ratings against DGI_{N2} (n = 125)

The straight line sketched to mark out the trend of the distribution indicated that there was primarily a linear negative connection between the quantities of DGI_{N2} and

the subjective ratings of acceptability of saving electric lighting energy. Participants would accept not turning on electric lights when the index was a small number, but they could no longer be tolerant of the contrast when the index was getting large. They would need the aid of artificial lights at this moment. The relationship was also tested by ANOVA for the investigation of its strength and significance. The results are shown in Table 5.35.

Table 5.35 Perceived glare from window under energy saving potential:

ANOVA results

Parameter	Condition	1				r	p
DGI_{N2}	4.31	<u>≤</u>	DGI_{N2}	<u> </u>	22.71	-0.632	≤ 0.001

It was found from the ANOVA test results that the correlation coefficient r between the occupants' ratings of scale s_2 showing their acceptability of not turning on electric lights and the proposed determining lighting parameter of this decision factor DGI_{N2} was about -0.6, indicating the negative relationship was sufficiently strong, while the p-value was less than the critical value 0.05, proving the association was statistically significant. It was therefore concluded that DGI_{N2} had the ability to describe the degree of glare perceived from the side window by the cellular office workers under the criterion of electric lighting energy saving potential. DGI_{N2} could then be regarded as the representative lighting parameter of the decision factor 'perceived glare from window', but its validity was also needed to check by χ^2 test.

The results of χ^2 test are presented in Table 5.36. It was found that the *p*-value obtained was smaller than the critical value 0.05 meaning that the qualification for DGI_{N2} to represent the decision factor 'perceived glare from window' under the criterion of electric lighting energy saving potential was statistically appropriate.

Table 5.36 Perceived glare from window under energy saving potential: Responses to DGI_{N2}

$\overline{DGI_{N2}}$	Scale s	Scale s 1		
	0	1		
≤ 12	0	22	22	
12 - 14	1	18	18	
14 - 15	2	18	18	
15 - 17	5	17	20	
17 - 19	6	17	21	
> 19	8	11	26	
Column total	22	103	125	

$$\chi^2 = 16.90$$
; $df = 5$; $p = 0.005$

A regression analysis was afterwards performed on respondents' feedback of the dichotomous scale s_1 to occupants' acceptability of not turning on electric lights in accordance with the decision factor 'perceived glare from window' for examining the probability of occurrence of this event. A logistic regression formula was developed with the p-value less than 0.05,

$$P_{ES,PG}(s_1 = 1) = \frac{1}{1 + e^{-7.409 + 0.356DGI_{N2}}}$$
(5.26)

where $P_{ES,PG}$ is the probability that electric lighting energy could be saved by the respondents due to the perceived glare from the side window of the room at a certain value of DGI_{N2} due to the decision factor 'perceived glare from window'.

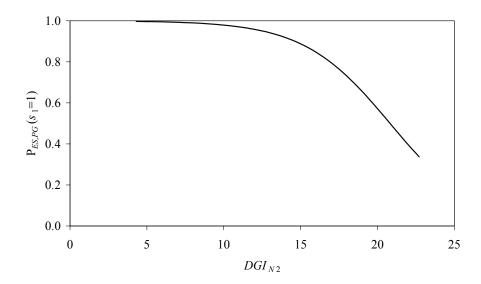


Figure 5.47 Probability of achieving energy saving due to perceived glare from window within the range of DGI_{N2} between 4.31 and 22.71

The empirical logistic regression formula is plotted in Figure 5.47. The curve revealed that a higher chance for occupants not to turn on electric lights when DGI_{N2} kept at a small value. The bright glare from the side window could not be tolerable when the controlling parameter quantities went larger. Respondents would then request for turning on electric lights in the comparatively darker interior to narrow the illumination gap between the two parts within the field of view, just like the condition that lights should be turned on at the openings of dark tunnels for the drivers' eyes to gradually adapt to the outdoor bright environment or vice versa. A P_{ES,PG} value of 80% or above could be obtained when the representative lighting parameter quantity was smaller than 17. This value was almost the same as the one obtained from the study on the representative lighting parameter of the same decision factor under the criterion of visual satisfaction that was defined as 'just imperceptible'. This comparison illustrated to architects and lighting designers that for a daylit working environment that glare was at the imperceptible condition, occupants would most likely express a visual satisfaction feedback and the need of using electric lights to reduce the brightness contrast between outdoor and the interior would be minimized.

5.4 Summary

In the previous chapter, two criteria of achieving good daylighting performance in a cellular office – occupants' visual satisfaction and electric lighting energy saving potential – were hypothesized; in this chapter, works were done on the identification of decision factors and their representative lighting parameters which were accountable for the criteria. With the inspiration from the 21 daylighting performance indices summarized by Fontoynont (2002), five attributes were sieved out as the potential daylighting performance decision factors by a thorough inspection. They were namely 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window'. A field survey was carried out in random sidelit cellular offices on days of stable sky conditions, where the variation of the average horizontal desktop illuminance during each set of measurement lasting for 2 to 3 minutes was limited to ±2%, to collect cellular office occupants' evaluations on these five proposed decision factors in terms of visual satisfaction and acceptability of not turning on electric lights so as to conserve energy. Various statistical tests were applied to investigate the dependence between the candidate decision factors and the two assumed criteria. The results were encouraging that the five daylighting attributes were all confirmed to be the actual decision factors of the criteria. During the same user assessment survey, simultaneous light measurements were performed inside the private rooms with traditional tools such as illuminance meters as well as the advanced technology of high dynamic range (HDR) photography to acquire values of fundamental lighting parameters, illuminance and luminance, on multiple surfaces or in different parts of the visual field. The studies on the representation ability of each proposed lighting parameter for each decision factor with a series of statistics were followed. The probabilities of occupants' visual satisfaction and acceptability of not turning on electric lights in their sidelit cellular offices in terms of the confirmed controlling lighting parameter of each decision factor were obtained and expressed as a form of logistic regression equation. These figures are important to this study and will bring out a five star rating system for the multi-criteria cellular office daylighting performance assessment method, which will be discussed in the later chapters.

CHAPTER 6

HIGH DYNAMIC RANGE PHOTOGRAPHY

6.1 Introduction

Luminance is a commonly used parameter to describe the daylighting performance of an interior. The ratios between task, wall and ceiling luminances have been claimed to have a strong influence on occupants' visual satisfaction (CIBSE, 2002). Lighting guides, for example Baker et al. (1993) and CIBSE (2002), give recommendations of luminance contrasts between task and immediate surround and between task and general background in the working environment. Researchers have also carried out studies on subjective preferences towards the daylit environment within the field of view using different luminance-based parameters, such as luminance differences index (Parpairi et al., 2002) and luminances in the horizontal band of width 40° and in the central circle of angular subtense 40° (Loe et al., 1994). There is undoubtedly a close relationship between the luminance within the field of view and subjective preferences to an interior daylit environment.

Luminance within the field of view can be obtained using point-by-point measurements with a hand-held luminance meter. These measurements however take excessive time to conduct, yet suffer from random errors and the assumptions that within the standard spot the luminance level is the same. Moreover, the data obtained from the measurements generally give luminance values at too few points for researchers to analyze the overall light distributions. In order to develop a comprehensive daylighting performance assessment method for interior spaces, lighting researchers have been looking for decades for a faster, affordable, more reliable and more practical way for the measurements of luminance in the real non-uniform scenes.

Digital photography can effectively capture the different lighting conditions over the entire visual field at one time, instantly make the images available on the camera display and directly store the information in image file formats. Hence it sounds to be a potential alternative to collect this kind of luminance data. Digital cameras nevertheless suffer one major problem that makes it impossible for them to capture

scenes as a human eye can see. The human eye is capable of adapting to luminances as high as 10⁸ cd/m² and as low as 10⁻⁶ cd/m²; once adapted, the eye can cope with a luminance range of 1:1000, but for a part of the scene, this can still be up to 1:10,000 and over 12-14 order of magnitude in total. A single digital photography however has a limited dynamic range that depends on the choice of range of luminance values which are of interest or the determination of the exposure time. Under-exposure or saturation often occurs in a photograph that contains extreme differences in luminance values, like the scene of a daylit interior that simultaneously consists of very bright sunlight patches and very dark shadows. This is because a common CCD or CMOS sensor of a commercial grade camera can only acquire a contrast of dynamic range of intensities at roughly 1:1000 within one exposure. This photosensor in a camera takes the responsibility to convert photons to electrons, yet a signal will still be generated possibly due to nearby thermal noise or else even there is no light incident on it. Meanwhile the sensor can only cope with a certain amount of light before becoming saturated. Such a large variation in real luminance is not allowed to express in photometric terms in the information stored in traditional low dynamic range (LDR) image file as what the human eye can see. The luminance value of a pixel in the image is not correlated to the corresponding luminance of that point in the real scene; they can only indicate whether one object is brighter or darker than another. This seriously limits the ability of the conventional digital photography to cover the full dynamic range of the scene.

Researchers tried to combine a series of LDR photographs with different exposures into one with the use of some computer software to make it possible to cover the full dynamic range of the scene (Debevec and Malik, 1997; Robertson et al., 1999; Battiato et al., 2003; Inanici, 2006; Reinhard et al., 2006). The technique of high dynamic range (HDR) photography consequently emerges. This state-of-the-art digital imaging technology makes photography not only a technique which is capable for capturing a lighting environment realistically, but also owns the potential to collect luminance data within the field of view. With the advanced technology of HDR photography, the luminance within the field of view could be obtained using a consumer grade digital camera with an ultra wide angle lens in a quick and inexpensive manner. This chapter describes the principle of obtaining the luminance value of a pixel by HDR photography. A study on the issues concerning its

calibration for luminance measurements in indoor daylit scenes will be reported. The post HDR photography processing for the computation of the luminance-based potential representative parameters will also be discussed in this chapter.

6.2 Principle of luminance data acquisition by HDR photography

HDR photography is a sort of techniques that allows a wide dynamic range of luminance between the darkest and the lightest areas of a real scene to be recorded accurately in a single image. It is what normal standard digital photography technique cannot achieve. In HDR photography, LDR photographs of multiple exposures are taken to capture a wide luminance variation of a scene and, using data fusion software, merged into a single HDR image with the luminance value of each pixel extended over the luminance span of the human visual system (Inanici, 2006). The multiple exposures can be achieved by changing either the aperture size or the shutter speed whereas some past studies suggested that the latter one is a more reliable measure (Debevec and Malik, 1997; Mitsunaga and Nayar, 1999). Photosphere, hdrgen, Radiance and Photolux are the computer software that is appropriate to fuse the LDR photographs for the making of an HDR image (Jacobs, 2007). To keep optical properties consistent, maintain the image in alignment, eliminate noise disturbance and avoid possible camera shake throughout the sequential photograph taking, it is desirable for lighting researchers to mount the camera on a tripod at a fixed location, adjust the lens' aperture and focal length at a single position, and merely allow the camera shutter speed being altered automatically via an external computer program. DSLR remote pro (Chung and Cai, 2009), DigiSnap (Jacobs, 2007) and HDRcapOSX (Mardaljevic et al., 2009) were the computational control devices applied in previous researches.

In literature there was no technical reason behind the choices of aperture size of the camera in the HDR photography. Previous researchers ever made use of very large apertures, such as f/1.3 (Xiao et al., 2002), f/2.6 (Jacobs, 2007) and f/4.0 (Inanici, 2006); middle apertures, like f/7.9 (Anaokar and Moeck, 2005) and f/8.0 (Debevec and Malik, 1997); small apertures, i.e. f/11 (Mitsunage and Nayar, 1999), f/16 (Xiao et al., 2002) and f/22 (Bellia et al, 2002). A larger aperture in size produces a narrow depth of field in focus but the areas in front of or behind the depth of field are out of

focus. Fusing blurred LDR photographs dooms to low quality HDR image since a severe vignetting effect considerably reduces the luminance values of the pixels towards the corners of the HDR image. A smaller aperture increases the adverse effect of light diffraction, which results in blurring the whole LDR photographs and reducing the quality of the HDR image for luminance acquisition as well. Therefore, in order to minimize these negative influences raised by the aperture size, it would be adjusted to have a medium size, f/8.0, throughout this study.

Literature similarly did not issue any technical recommendations on the number of exposures of LDR photographs to be taken for the emerging of an HDR image. In previous studies, there was a wide variation of this number, from 4 (Xiao et al., 2002) or 6 (Jacobs, 2007) to 11 (Debevec and Malik, 1997) or 14 (Inanici, 2006). In theory, the more LDR photographs are fused into an HDR image, the wider dynamic range of luminance can be obtained and the HDR image can be of higher quality for more accurate luminance mapping. However the more LDR photographs to be fused also means that longer time has to be spent for the software to do its job. While researchers have not yet had the ideas about the optimal number of exposures to be taken as photographs, Jacobs (2008) proposed a criterion for determining the useful LDR photographs for the making of an HDR image: 'The darkest exposure should have no RGB values above 200, while the lightest exposure should not contain values below 20.' This guideline implies the required minimum number of exposures of photographs for an HDR image by imposing a condition in RGB values. It was adopted in the selection of LDR photographs to be merged into an HDR image in this study.

A consumer grade digital camera nowadays has the ability to be remotely controlled by computer software and take a sequence of photographs with changing shutter speeds with step of 1 exposure value (EV) for a single scene within a few minutes. After sieving for the useful photographs in accordance with the RGB recommendation of Jacobs (2008), the next step goes to the data fusion of these useful LDR photographs into an HDR image.

In between the procedures of data fusion, a camera response function is necessary to be applied. It is a curve that relates the amount of incoming light and the luminance values of the pixels in the image captured by a digital camera. The brightness value obtained in a pixel of the photograph is rarely the true luminance value or its multiple in the scene. Instead, the association is usually in polynomial functions that model the accumulated radiometric non-linearities of the image acquisition process without addressing the individual source of each non-linearity (Mitsunage and Nayar, 1999). The camera response function then gives corrections to the brightness value to form the luminance value of each pixel in an HDR image. The function is self-produced, computationally derived through a self-calibration process from these photographs, and thus any digital cameras having the functions of taking multiple exposure photographs can perform HDR photography. However due to its considerable variations between different models of cameras, the curve should be verified for each of them (Inanici, 2006).

The HDR image fused from the LDR photographs of multiple exposures is then saved in the RADIANCE RGBE image format. The luminance value of a pixel can be extracted from the measure of the Y component in the CIE 1931 XYZ colour space by converting the tristimulus values of that pixel from RGB to XYZ using a 3x3 matrix transformation. The tristimulus values of a colour are the amounts of the three primary colours, i.e. red, green and blue, in a three-component additive colour model needed to match that colour. They are most often given in the RGB colour model or in the CIE 1931 colour space denoted as X, Y and Z. Since colour appears to be a crucial element for calculating the luminance of a pixel in an HDR image, it is particularly important to fix the white balancing in the camera settings for achieving consistent colour space transitions.

To convert one tristimulus colour space to another, the chromaticity coordinates of the primaries, (x_R, y_R, z_R) , (x_G, y_G, z_G) , (x_B, y_B, z_B) , are required as well as the chromaticity coordinates (x_W, y_W, z_W) and normalized luminance (Y_W) of a specified white point that is associated with equal contributions of each primary colour. The CIE Standard Illuminant D65 is therefore used as the white point (W) (Inanici, 2006).

Table 6.1 CIE chromaticity coordinates of primary colours RGB and white point

	R	G	В	W
X	0.6400	0.3000	0.1500	0.3127
y	0.3300	0.6000	0.0600	0.3290
Z	0.0300	0.1000	0.7900	0.3583

The chromaticity coordinates of the reference primary colours and the white point D65 are shown in Table 6.1, where the RGB chromaticity coordinates can be written in a matrix form, denoted by [K],

and normalizing for relative luminance, the XYZ tristimulus values of the white point [W] can be expressed as,

$$[W] = \begin{bmatrix} x_{D65} & y_{D65} & z_{D65} \\ y_{D65} & y_{D65} & y_{D65} \end{bmatrix} = [X_W \quad Y_W \quad Z_W] = [0.9505 \quad 1 \quad 1.0891]$$
 (6.2)

As the Y component in the CIE XYZ colour space represents the measure of luminance, from Equation 6.2, it is revealed that the relative luminance of the white point (Y_w) is 1, and then the following set of trichromatic linear equations is solved for S_R , S_G and S_B , where S_R , S_G and S_B are the relative spectral power of the corresponding monochromatic primary colours,

$$\begin{bmatrix} X_W \\ Y_W \\ Z_W \end{bmatrix} = \begin{bmatrix} x_R S_R & x_G S_G & x_B S_B \\ y_R S_R & y_R S_G & y_B S_B \\ z_R S_R & z_G S_G & z_B S_B \end{bmatrix}$$

$$(6.3)$$

$$\begin{bmatrix} S_R \\ S_G \\ S_B \end{bmatrix} = \begin{bmatrix} 0.6445 \\ 1.1918 \\ 1.2032 \end{bmatrix}$$
 (6.4)

The conversion matrix to convert from RGB to XYZ is then given by,

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} x_R S_R & x_G S_G & x_B S_B \\ y_R S_R & y_R S_G & y_B S_B \\ z_R S_R & z_G S_G & z_B S_B \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$(6.5)$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} 0.4125 & 0.3575 & 0.1805 \\ 0.2127 & 0.7151 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix} \begin{bmatrix} R \\ B \end{bmatrix}$$

$$(6.6)$$

In theory, the luminance value of a pixel of an HDR image (L_{HDR}) can therefore be directly described with the following equation,

$$L_{HDR} = Y = CF(0.2127R + 0.7151G + 0.0722B)$$
(6.7)

where *CF* is the calibration factor of the HDR image, which will be discussed in the following part.

6.3 Luminance calibration of HDR images

In recent years, increasing studies related to the validation and evaluation of employing HDR photography for luminance acquisition have been published (Anaokar & Moeck, 2005; Inanici, 2006; Jacobs, 2007). In particular, Inanici (2006) systematically evaluated the potential, limitations and applicability of the HDR photography technique as a luminance mapping tool by laboratory and field measurements to compare the luminance values shown in the HDR images with the luminance values physically measured by a calibrated luminance meter in different settings, from black painted rooms to general office spaces and outdoors, under different kinds of light sources, from fluorescent lamps, metal halide lamps to overcast and clear skies. The past study reported that the luminance values in the HDR images correspond to the physical quantity of luminance with reasonable precision and repeatability.

Despite the encouraging findings in the literature, the studies left behind two unclear issues about the luminance calibration of an HDR image. Calibration is needed when converting the luminance values extracted from an HDR image to the real luminances within the scene. It involves a factor named the calibration factor (CF), which is determined by dividing the physically measured luminance values of a selected target in the scene ($L_{measured}$) by the luminance values of the same target in the HDR image (L_{HDR}), i.e.

$$CF = \frac{L_{measured}}{L_{HDR}} \tag{6.8}$$

The 'real' luminance of any point within the scene can therefore be found by multiplying the single calibration factor and the luminance value of the corresponding pixel of the HDR image. However, which target in the scene should be selected for the calculation of the single calibration factor was not clearly defined in the literature.

Another query is about the degree of variation of the calibration factor for a single scene over time. The calibration factor would most likely be kept constant over time for a confined space with stable light output, but in HDR scenes, such as an interior daylit environment, its change over time is still an unknown. It is therefore necessary to take a look at the change of calibration factor at the selected target with various indoor daylight levels in HDR photography.

A study was conducted on the selection of the best target for luminance calibration in the HDR photography and the consistency of the calibration factor at this target under different vertical daylight illuminances. A chart of 24 standardized coloured and greyscale targets was used as the single scene in this study. 30 field measurements were conducted in a classroom under stable sky conditions, each of which had steady daylight level, directly with a calibrated luminance meter and indirectly by means of the HDR imaging approach using a digital camera fitted with an ultra wide angle lens. The error percentage between the results obtained from the two methods for each coloured or greyscale target was first computed. The target

which satisfied the following two conditions was selected for the luminance calibration of the HDR image: (i) having an error percentage smaller than other targets in general; and (ii) with the smallest error percentage variation throughout the range of daylight levels investigated. The extent of variation of the calibration factor of this target with daylight levels was further analyzed. It is believed that having answered the question about the variability of the HDR calibration factor over various daylight levels, it would be more confident for researchers to apply the HDR photography technique as a luminance data acquisition system.

6.3.1 Equipment set up

The X-Rite ColorChecker chart, as shown in Figure 6.1, was used as the scene in this study. The chart is made up of 24 scientifically designed coloured (No. 1 to 18) and greyscale targets (No. 19 to 24). The codes, RGB values and reflectances of the 24 targets used in this study are listed in Table 6.2. The reflectance of each target given in Table 6.2 was measured with a calibrated Gardner Colorgard II 45/0 reflectometer and is included for reference only.

Figure 6.1 The X-Rite ColorChecker chart used in this study.

The top three rows are coloured targets (No. 1 to 18) and the bottom row consists of grey targets (No. 19 to 24)

Table 6.2 The 24 targets in the X-Rite ColorChecker chart

Code No.	Name	sRGB			Reflectance
		R	G	В	
1	Dark skin	115	82	68	9.4
2	Light skin	194	150	130	31.4
3	Blue sky	98	122	157	17.6
4	Foliage	87	108	67	13.1
5	Blue flower	133	128	177	21.8
6	Bluish green	103	189	170	41.9
7	Orange	214	126	44	28.0
8	Purplish blue	80	91	166	10.4
9	Moderate red	193	90	99	16.2
10	Purple	94	60	108	5.9
11	Yellow green	157	188	64	42.9
12	Orange yellow	224	163	46	41.1
13	Blue	56	61	150	5.2
14	Green	70	148	73	22.9
15	Red	175	54	60	9.6
16	Yellow	231	199	31	57.6
17	Magenta	187	86	149	16.7
18	Cyan	8	133	161	18.9
19	White	243	243	242	87.8
20	Neutral 8	200	200	200	57.2
21	Neutral 6.5	160	160	160	35.4
22	Neutral 5	122	122	121	18.0
23	Neutral 3.5	85	85	85	8.4
24	Black	52	52	52	2.9

The study was conducted in a classroom of the Hong Kong Polytechnic University with all the window blinds pulled up and all electric lights turned off, under stable clear and overcast sky conditions. The layout and section of the classroom used in this study are shown in Figure 6.2. The ColorChecker chart was placed on a vertical plane opposite to the windows to achieve an even daylight distribution on the chart without direct sunlight contribution. A consumer grade digital single-lens reflex camera (Canon EOS 350D) fitted with an ultra wide angle lens (Sigma 10-20 mm F4-5.6 EX DC HSM) was mounted on a tripod at a perpendicular distance of 2 m from the centre of the ColorChecker chart. The measurements were conducted with the lens fixed at focal length of 10 mm giving a 96° horizontal field of view. A calibrated hand held luminance meter with 1° field of view (Minolta LS-100) was used to perform physical luminance measurements for each target of the

ColorChecker chart. A multi-point illuminance measuring system (Konica Minolta T-10M) with four sensor heads was used to measure the daylight illuminance at the four corners of the ColorChecker chart. The clear and overcast sky conditions were ensured to be stable if the variation of the average vertical illuminance during each set of measurement lasting for 2 to 3 minutes was limited to $\pm 2\%$.

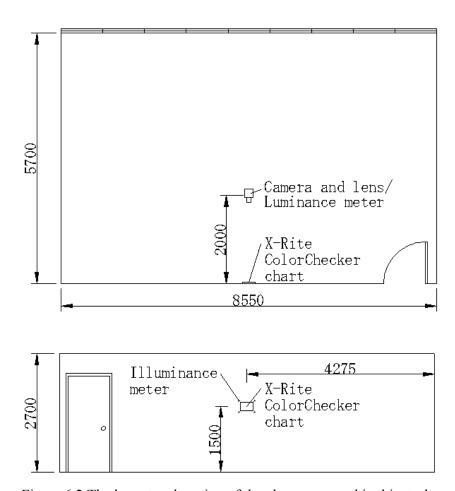


Figure 6.2 The layout and section of the classroom used in this study

6.3.2 Camera settings

In this study, a total of 18 low dynamic range (LDR) photographs in sequence of shutter speeds ranging from 1/4000 s to 30 s with step of 1 exposure value (EV) were taken for each target to capture a wider luminance range. Figure 6.3 shows a set of photographs taken for one of the targets. It is noted that although altering either the aperture size or the shutter speed could vary the exposure values, the camera was set

to aperture priority mode with a fixed aperture size of f/8.0 so that exposure variations were achieved by varying the shutter speed in automatic exposure bracketing (AEB) mode, which was reported to be more reliable (Debevec & Malik, 1997; Mitsunaga & Nayar, 1999). Automatic white balancing was turned off; instead daylight white balancing dominated (Jacob, 2008). To avoid the camera from any possible shaking due to the motion of bare hands when capturing the scene, throughout the measurements, it was remotely controlled by the computer software called DSLR Remote Pro. More camera settings are listed in Table 6.3.

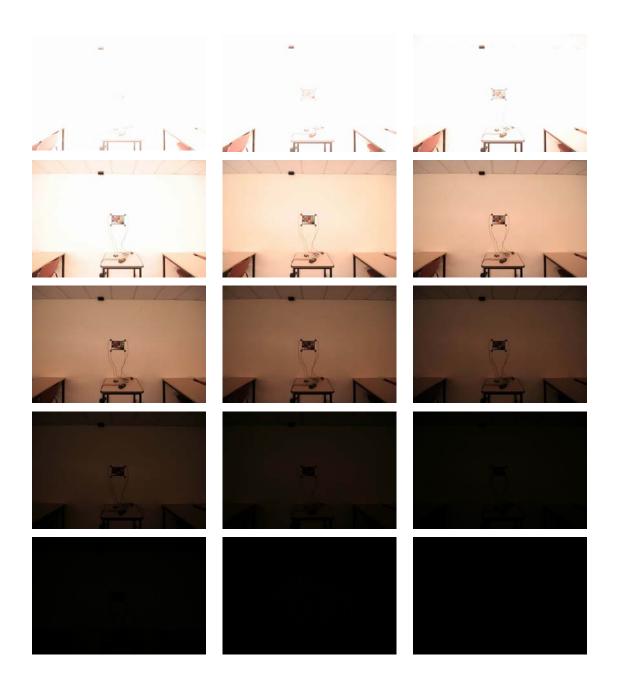


Figure 6.3 Eighteen LDR photographs of multiple exposures of the X-Rite ColorChecker chart as the scene (first row left to right: 30 s, 15 s, 8 s; second row left to right: 4 s, 2 s, 1 s; third row left to right: 1/2 s, 1/4 s, 1/8 s; fourth row left to right: 1/15 s, 1/30 s, 1/60 s; fifth row left to right: 1/120 s, 1/250 s, 1/500 s; sixth row left to right: 1/1000 s, 1/2000 s, 1/4000 s)

Table 6.3 Features used by the camera and lens system

Feature	Setting	Feature	Setting
White balance ISO speed Size/Quality AF mode AE lock Exposure compensation	Daylight	Metering mode	Partial
	100	Colour space	sRGB
	Large/Fine	Focal length	10 mm
	One shot	Auto bracket	On
	Yes	Drive mode	Continuous
	None	Aperture size	f/8.0

6.3.3 Measurements

The digital camera fitted with the ultra wide angle lens was placed at 2 m in front of the X-Rite ColorChecker chart which was the scene in this study such that the chart was in the middle of the field of view of the lens. Within the shortest time afterwards, the luminance at the centre of each target of the ColorChecker chart was physically measured with the calibrated luminance meter at the same location as the camera. Meanwhile, the vertical illuminance of each target was estimated by averaging the four illuminance values recorded by the illuminance meters placed at the four corners of the ColorChecker chart. This average illuminance was assumed to be the indoor daylight level received by each target of the ColorChecker chart. The deviation of the illuminance during each measurement set was calculated to ensure it was an acceptably stable sky condition. For each target of the ColorChecker chart, using the

computer software named Photosphere, an HDR image fused with those multiple exposure LDR photographs of the scene having the RGB values not larger than 200 for the darkest exposure and not smaller than 20 for the lightest exposure (Jacobs, 2008) was obtained. There were ultimately eight LDR photographs satisfying this recommendation. Table 6.4 lists the minimum and maximum RGB values of the 18 multiple exposure LDR photographs. Whether a photograph should be included in the data fusion is presented. The above procedures were repeated for all the 24 coloured and greyscale targets.

Table 6.4 Inclusion of LDR photographs in data fusion for a certain target

Shutter speed	min RGB	max RGB	Included in the data fusion?
30 s	63.8	255	No
15 s	36.9	255	Yes
8 s	11	255	Yes
4 s	0	255	Yes
2 s	0	255	Yes
1 s	0	255	Yes
1/2 s	0	254	Yes
1/4 s	0	204	Yes
1/8 s	0	134	Yes
1/15 s	0	79.7	No
1/30 s	0	47.8	No
1/60 s	0	21.9	No
1/120 s	0	14.9	No
1/250 s	0	11.0	No
1/500 s	0	6.97	No
1/1000 s	0	6.97	No
1/2000 s	0	6.97	No
1/4000 s	0	6.97	No

6.3.4 Vignetting effect

Vignetting effect is a major optical concern during the study. It occurs in different extents for different types of lens. Since in this study an ultra wide angle lens was applied to capture the field of view as what human could see in reality, considerable light falloff was incurred from the optical centre of the scene to its perimeter in a radial form. Light reduced towards the corners of the photographs and this is the vignetting effect. Although a relatively small aperture, f/8.0, was used in this study to

mitigate the vignetting effect, there was considerable reduction of the pixel luminance values towards the corners of the HDR image; therefore, appropriate correction was required to compensate for the luminance loss.

A simple experiment was carried out in advance to determine the vignetting effect of the camera and lens system used in this study. A grey card with 18% reflectance was put perpendicularly in front of the digital camera at a distance of 2 m, i.e. the same distance that the ColorChecker chart in the later field measurements would be placed. Since the aspect ratio of the CMOS sensor was 3:2, the camera was tilted at an angle of 33.7° such that the centre point of the grey card would lie on the diagonal line of the scene when rotating horizontally the camera, as shown in Figure 6.4. A total of 18 multiple exposure LDR photographs were taken for the centre point of the grey card along the horizontal rotation at every 5°. The luminance values at the centre point of the grey card at different angles from the centre point of the scene were then obtained from the HDR image fused with those RGB qualified LDR photographs. Within a short period of time under the stable sky condition, monitored by keeping the standard deviation of the vertical illuminance on the grey card in the units of 2, the luminance of the centre point of the grey card was presumed to be the same. The luminance loss of the centre point of grey card along the diagonal line of the scene with respect to that taken at the 0° from the optical centre of the lens could then be calculated. The luminance loss factor (LLF) due to the vignetting effect of the lens used in this study was expressed in the following equation, where Φ is the angle from the optical centre of the lens in radians $(r = 1, p \le 0.05)$,

$$LLF = -0.191\Phi^{5} - 0.440\Phi^{3} + 0.157\Phi^{2} - 0.01175\Phi + 1$$
(6.9)

Figure 6.5 shows the digital filter for luminance loss of HDR images due to the vignetting effect. At the edges of the image, where is about 50° from the optical centre, the luminance was reduced by 28%. The luminance compensation could then be achieved by dividing the luminance value of each pixel directly extracted from an HDR image (L_{HDR}) by LLF calculated using Equation 6.9,

$$L_{HDR'} = \frac{L_{HDR}}{LLF} \tag{6.10}$$

where L_{HDR} is the luminance value of a pixel after the correction of vignetting effect.

And hence, Equation 6.8 about the calibration factor could be modified to the following one,

$$CF = \frac{L_{measured}}{L_{HDR'}} \tag{6.11}$$

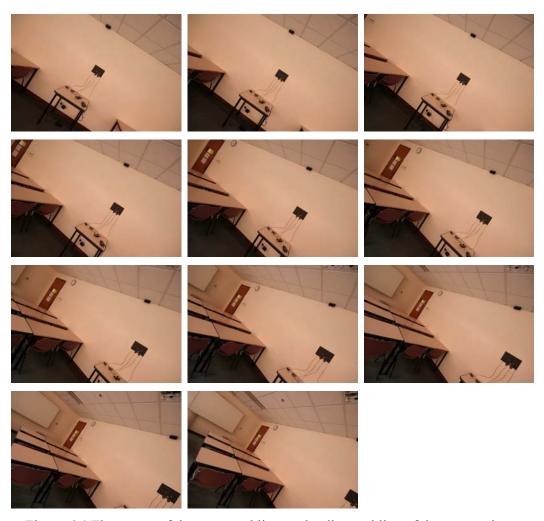


Figure 6.4 The centre of the grey card lies on the diagonal line of the scene when rotating horizontally the 33.7° inclined camera at every 5° from 0 to 50°

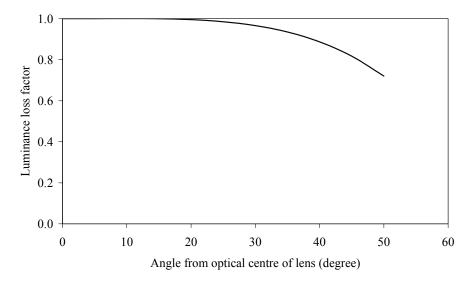


Figure 6.5 The *LLF* due to vignetting effect

6.3.5 Point spread effect

Point spread effect is another optical effect that might be of concern in this study. In theory, a narrow light beam from a small object (point) located very far from the camera covers less than one pixel area. In practice, however, the beam would be spread out and scattered by the lens so that a small amount of light would fall on a few pixels surrounding the pixel where the image of the point falls, resulting in a loss of luminance in the image pixel to its neighboring ones. Many factors, such as the aperture size, exposure time and distance from the optical centre, affect the point spread effect. In this study, the aperture size was fixed, but it was not yet feasible to quantify the general scattering of light due to this effect. Therefore, point spread effect was neglected in this study.

6.3.6 Results and analyses

The experiments were carried out, with the use of the X-Rite ColorChecker chart, in a sidelit classroom at the Hong Kong Polytechnic University under stable overcast and clear sky conditions to investigate: (i) the appropriate target selection for the luminance calibration of an HDR image and (ii) the variation of the calibration factor at the selected target with various daylight levels. 30 field measurements were

conducted in this study under the range of daylight levels with the mean vertical illuminance at the ColorChecker chart varying from about 20 to 150 lux. The luminance differences across all the coloured and greyscale targets at six illuminance levels are plotted in Figures 6.6-6.11.

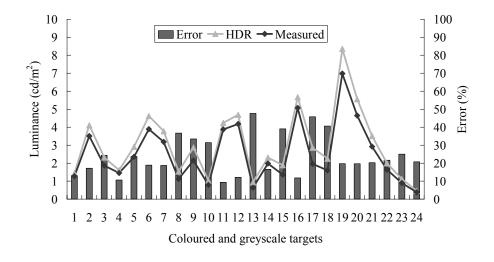


Figure 6.6 Comparison between luminance values obtained by the two methods for the targets at an illuminance on the chart of 29 lux with a standard deviation of 2.7

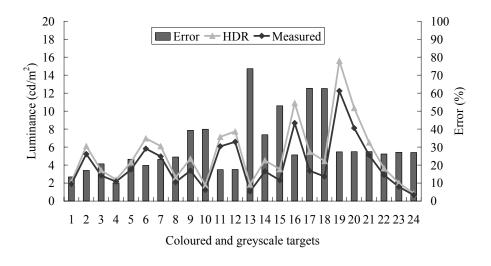


Figure 6.7 Comparison between luminance values obtained by the two methods for the targets at an illuminance on the chart of 42 lux with a standard deviation of 2.3

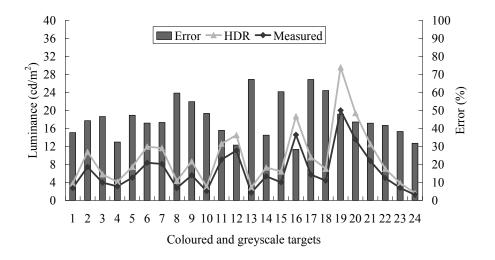


Figure 6.8 Comparison between luminance values obtained by the two methods for the targets at an illuminance on the chart of 71 lux with a standard deviation of 4.8

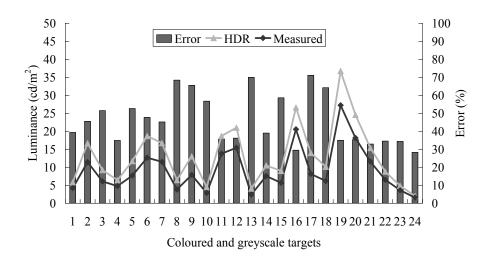


Figure 6.9 Comparison between luminance values obtained by the two methods for the targets at an illuminance on the chart of 99 lux with a standard deviation of 4.4

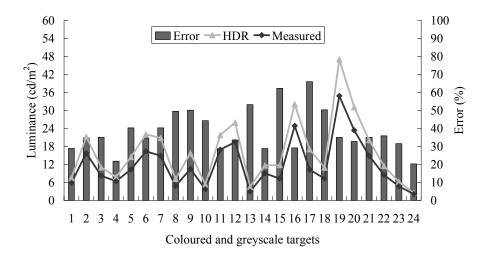


Figure 6.10 Comparison between luminance values obtained by the two methods for the targets at an illuminance on the chart of 126 lux with a standard deviation of 5.7

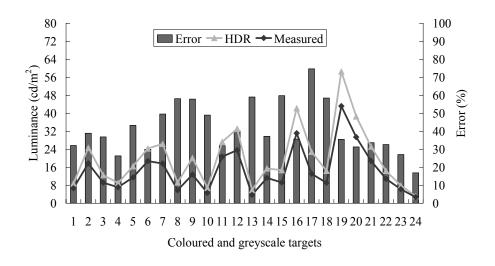


Figure 6.11 Comparison between luminance values obtained by the two methods for the targets at an illuminance on the chart of 153 lux with a standard deviation of 4.0

For the first calibration issue, it was suggested that the appropriate target for luminance calibration of the HDR photography should be of the colour in the scene fulfilling the two conditions of having a smaller percentage error and with smaller variation than the other colours do. The percentage errors of each target in each measurement set are shown in Table 6.5, in which S stands for Set No., E_v for the

average vertical illuminance level measured at the corners of the ColorChecker chart in lux and SD for standard deviation of E_v .

Table 6.5 Percentage errors between luminances obtained by the two methods

S	E_{v}	SD	Tar	get																						
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	16	2	27	28	43	29	43	38	18	54	36	41	17	14	76	34	45	19	56	60	43	39	41	42	45	34
2	22	2	36	37	49	33	52	48	33	70	50	55	31	28	82	44	57	30	70	73	41	40	40	42	44	36
3	27	2	15	18	24	12	27	21	27	54	42	42	21	20	78	40	54	29	62	70	40	40	40	42	43	34
4	28	3	13	17	24	11	24	19	19	37	33	31	9	12	48	17	39	12	46	41	20	20	20	22	25	21
5	34	2	25	32	38	24	40	35	29	62	46	50	27	25	72	36	55	25	64	66	29	27	27	27	29	22
6	35	1	21	28	34	21	37	32	19	40	32	31	9	13	62	27	46	18	54	53	28	28	28	28	28	22
7	36	2	33	38	47	35	50	46	33	65	48	52	26	25	75	36	57	25	62	62	35	33	34	35	36	32
8	41	2	20	24	30	20	34	30	30	65	48	51	27	26	75	38	55	27	63	65	37	38	38	37	40	37
9	42	2	13	17	21	10	23	20	23	25	39	40	17	18	74	37	53	26	63	63	27	27	27	26	27	27
10	49	2	15	18	23	10	25	21	28	54	42	41	19	19	56	24	41	16	51	48	24	25	23	23	24	21
11	51	1	14	17	21	9	23	19	19	35	32	28	8	11	41	13	37	10	45	35	16	16	15	15	14	11
12	61	7	18	29	30	18	37	33	30	35	44	26	16	23	38	18	43	17	50	38	22	23	23	22	19	8
13	61	1	36	41	46	30	48	42	40	62	56	53	29	30	72	35	61	28	65	61	40	36	37	20	35	31
14	62	2	35	38	44	28	47	40	42	64	56	54	31	32	54	22	45	15	47	43	23	22	22	21	19	14
15	68	3	34	40	42	28	47	37	40	57	53	50	26	29	70	34	61	29	67	57	41	37	40	40	38	33
16	71	5	38	44	47	32	47	43	43	60	55	48	39	31	67	36	60	28	67	61	48	44	43	42	38	32
17	75	4	22	33	31	20	37	33	30	42	43	34	23	24	37	19	48	17	51	38	20	20	19	19	13	0
18	76	3	34	35	36	23	40	30	39	54	55	48	23	30	64	32	60	28	68	54	38	35	38	37	35	30
19	78	5	43	55	54	38	55	51	45	53	63	46	36	41	52	42	61	31	67	54	44	47	45	35	32	22
20	86	10	42	49	52	38	57	49	43	61	56	49	27	30	78	46	69	38	80	70	41	41	38	38	37	30
21	94	4	36	42	45	33	48	41	41	60	58	49	28	32	74	42	65	33	76	65	41	40	36	37	37	29
22	99	4	39	46	51	35	53	48	45	68	66	57	36	36	70	39	59	30	71	64	35	35	33	35	34	28
23	99	2	39	46	38	35	53	48	45	65	63	54	32	34	74	42	66	34	76	67	40	39	36	38	37	31
24	100	2	37	42	48	32	50	44	46	66	64	54	33	34	69	36	60	29	72	63	41	39	37	37	36	29
25	102		28	35	36	23	38	32	28	29	42	28	11	16	52	29	55	24	63	50	40	41	39	38	37	32
26	102		39	44	51	35	53	48	45	68	64	56	36	35	69	41	62	32	72	64	40	40	38	38	37	28
27	126		29	35	35	22	40	35	40	49	50	44	29	34	53	29	62	29	66	50	35	33	35	36	32	20
28	140		29	36	35	22	42	34	38	49	50	45	27	32	62	36	64	34	71	56	41	37	41	41	35	24
29	148		52	59	57	39	58	49	46	87	58	51	33	39	55	33	61	34	73	54	39	35	39	37	33	20
30	153	4	32	39	37	26	43	30	50	58	58	49	32	40	59	37	60	36	75	58	36	31	34	33	27	17
GM			33	39	41	28	45	38	39	55	53	46	27	30	62	34	58	28	67	57	36	35	35	34	32	24
AD			8	9	9	8	8	8	8	10	8	7	8	7	11	7	7	6	8	8	7	7	7	7	7	7

The geometric mean (*GM*) and average absolute deviation (*AD*) of the percentage error throughout the measurements of each coloured and greyscale target were computed. It was found that three coloured targets and all the six greyscale targets fulfilled both requirements attaining a small *GM* and a small *AD* within the range of investigated daylight levels, respectively not more than 36 and 7, and they were orange yellow (No. 12), green (No. 14), yellow (No. 16) and all the six greyscale targets (No. 19 to 24). These targets were shortlisted for HDR luminance calibration. Since yellow, green, pure white and pure black are colours that do not appear in a scene as commonly as grey does, the research focus went to four grey targets (No. 20 to 23) only.

The following step was to find out, among the four grey targets, the most appropriate one to become the standard target for the luminance calibration of an HDR image. The variation of the percentage errors between luminances of these four extents of grey obtained by the two methods over the investigating daylight levels was tested pairwise by two sample independent t test. The results are shown in Table 6.6. Since the p-values in all the group comparisons were not less than 0.05, it was concluded that there was no significant difference between the data, and therefore it was recommended that any grey in ColorChecker chart could be the standard target for HDR calibration without any priority.

Table 6.6 Which grey was the best target colour for HDR luminance calibration?

Group	t	p	
No. 20 vs No. 21	0.032	0.974	
No. 20 vs No. 22	0.401	0.690	
No. 20 vs No. 23	0.670	0.505	
No. 21 vs No. 22	0.368	0.714	
No. 21 vs No. 23	0.637	0.527	
No. 22 vs No. 24	0.268	0.790	

The next stage went to investigation on the second calibration issue concerning the possible change of calibration factor with indoor daylight levels at the selected target. Since it was found that any grey in the greyscale of the ColorChecker chart had no statistical difference in percentage errors between the luminances obtained by the two methods, any level of grey could be chosen as the standard target for the calibration. In this study, the grey surface of 18% reflectance (No. 22) was selected. Its calibration factor was calculated for all the measurement sets. Meanwhile the possible relationship between the calibration factor and indoor daylight levels was investigated. A Pearson correlation coefficient r was computed. A weak and negative correlation was found with r = -0.259 and it is not significant either (p = 0.166). Since a weak linear correlation was found, it could be concluded that calibration factor at the 18% reflectance grey surface does not correlate significantly with the indoor daylight levels. A scatter plot is shown in Figure 6.12.

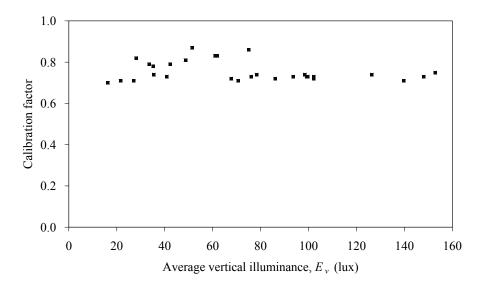


Figure 6.12 Scatter plot of calibration factor against average vertical daylight illuminance at the target for No. 22 of the ColorChecker chart

Besides, since the absolute deviation was as small as 0.04, it could be concluded that using the average value of the calibration factors at the standard coloured target, 0.75, as the universal calibration factor is theoretically acceptable to be the representative of the calibration factors within the investigated range of daylight levels. Further experiments should be carried out for investigating the consistence of calibration factor within a wider range of daylight levels.

6.3.7 Concluding remarks

In order to comprehensively verify the feasibility of using HDR photography as a reliable luminance data acquisition system, this study investigated two issues about the calibration of the luminances extracted from an HDR image to the real luminances of the scene. Field measurements were conducted to investigate the selection of target for the calibration and the variation of calibration factor within daylight levels of 20 and 150 lux. It was assumed that target used for the calibration should be of the colour having small percentage errors between the luminances physically measured and those obtained in an HDR image; and little variation of percentage errors throughout the range of investigated daylight levels.

The X-Rite ColorChecker chart was placed in the middle of the scene. With the use of a consumer grade digital single-lens reflex camera and an ultra wide angle lens, LDR photographs of multiple exposures were taken for the ColorChecker chart, and with the aid of Photosphere, the photographs were fused into an HDR image. After appropriate vignetting effect correction, the luminance of each pixel of the HDR image was extracted. At the almost same time, the luminance of each coloured and greyscale target of the ColorChecker chart was physically measured with a calibrated luminance meter. The percentage error of the luminances obtained by the two methods for each coloured and greyscale target of the ColorChecker chart was analyzed. It was found that greyscale targets generally had a more stable and smaller percentage errors across the investigated daylight levels than many coloured targets did. Grey was then recommended as the standard target for the calibration. Since there is no statistical difference found in between the luminance percentage error in the four greyscale targets, one of them was selected in this study to demonstrate the justifications of variation of HDR calibration factor. The selected colour was No. 22 of the chart, i.e. the grey target with 18% reflectance. The change of the ratio between luminances of this colour obtained respectively by the two methods with indoor daylight levels was tested with correlation analysis. It was found that there was a weak and not significant correlation between them in this study indicating that calibration factor changes with no respect to daylight levels. The geometric mean of the calibration factor at this selected region, 0.75, with an absolute deviation of 0.04, was regarded as the universal calibration factor within the range of investigated daylight level. More experiments should be conducted in the future for the verification of this figure, 0.75, as the representative of calibration factors beyond the daylight levels investigated in this study.

This study not only answers the question about the selection problem of target in a scene for the calibration as well as the variation of calibration factor of HDR luminance acquisition system under a range of daylight level, but also increases researchers' confidence in applying HDR photography as a luminance data acquisition. However, there are still some observations from this study. Apart from the necessity of conducting similar measurements in a higher range of daylight levels for increasing the reliability of a single calibration factor, another issue is that the experiments were only performed with one digital camera fitted with one lens. If

other combinations of cameras and lens are applied, the calibration factor of 0.75 might no longer be valid, and besides, it would yet be an unknown whether a reasonably steady calibration factor still exists over various daylight levels which represent changes over time of a daylit environment, like the results in this study, would still be applicable.

6.4 Post-processing of HDR photography

Daylight changes all the time. It is never an easy task for lighting researchers to collect luminance values of the surfaces or regions in a room lit by ever-changing daylight. HDR photography due to its fast measurement process and reliable results was applied for the acquisition of these fundamental luminance values. During the survey, the Canon EOS 350D digital camera fitted with the Sigma ultra wide angle lens used in the previous study on the luminance calibration of HDR images was mounted on a tripod located firstly at the entrance of the test office to obtain most of the basic luminance values and then at the perpendicular distance of 0.2 m from the centre of the window plane exclusively for the collection of the exterior luminance (L_{ex}) . The aperture size was fixed at f/8.0 and the sequential release of the shutter with different steps of exposure was remotely controlled by DSLR Remote Pro. Other camera settings adjusted for the study are listed in Table 6.3. A scene of a 96° horizontal field of view was captured, which was assumed to be the same as what a human eye can statically see. The first scene should contain the rectangular side window in the middle, the walls on the sides, the ceiling at the top and the floor at the bottom, the desk and other typical surfaces inside a cellular office. The second scene should be an external view out of the window of the office. Figures 6.13 and 6.14 respectively show the 18 LDR photographs of multiple exposures of one of the test cellular offices as the first scene and those of an external view out of the window of that office as the second scene. Tables 6.7 and 6.8 specify those LDR photographs to be merged into an HDR image under the criterion of RGB values. It was found that at least nine of them should be involved in the luminance data fusion process for the making of an HDR image of the cellular office scene while at least six for that of the external view.

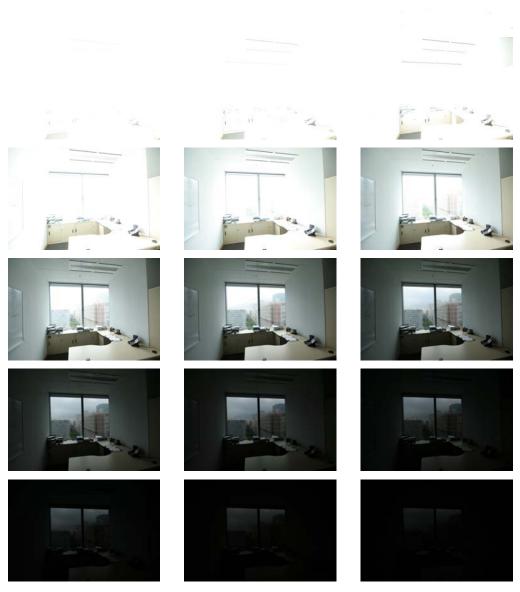


Figure 6.13 Eighteen LDR photographs of multiple exposures of a test cellular office as the first scene (first row left to right: $30 \, s$, $15 \, s$, $8 \, s$; second row left to right: $4 \, s$, $2 \, s$, $1 \, s$; third row left to right: $1/2 \, s$, $1/4 \, s$, $1/8 \, s$; fourth row left to right: $1/15 \, s$, $1/30 \, s$, $1/60 \, s$; fifth row left to right: $1/120 \, s$, $1/250 \, s$, $1/500 \, s$; sixth row left to right: $1/1000 \, s$, $1/2000 \, s$, $1/4000 \, s$)

Figure 6.14 Eighteen LDR photographs of multiple exposures of an external view out of a test cellular office as the second scene (first row left to right: 30 s, 15 s, 8 s; second row left to right: 4 s, 2 s, 1 s; third row left to right: 1/2 s, 1/4 s, 1/8 s; fourth row left to right: 1/15 s, 1/30 s, 1/60 s; fifth row left to right: 1/120 s, 1/250 s, 1/500 s; sixth row left to right: 1/1000 s, 1/2000 s, 1/4000 s)

Table 6.7 Inclusion of LDR photographs in data fusion for a test cellular office

Shutter speed	min RGB	max RGB	Included in the data fusion?
30 s	252	255	No
15 s	242	255	No
8 s	202	255	No
4 s	155	255	No
2 s	107	255	No
1 s	64.7	255	No
1/2 s	33.9	255	Yes
1/4 s	14.9	255	Yes
1/8 s	4.98	255	Yes
1/15 s	0	255	Yes
1/30 s	0	255	Yes
1/60 s	0	255	Yes
1/120 s	0	244	Yes
1/250 s	0	202	Yes
1/500 s	0	150	Yes
1/1000 s	0	101	No
1/2000 s	0	61.8	No
1/4000 s	0	37.9	No

Table 6.8 Inclusion of LDR photographs in data fusion for an external view

Shutter speed	min RGB	max RGB	Included in the data fusion?
30 s	252	255	No
15 s	252	255	No
8 s	252	255	No
4 s	252	255	No
2 s	252	255	No
1 s	231	255	No
1/2 s	181	255	No
1/4 s	132	255	No
1/8 s	88.7	255	No
1/15 s	36.9	255	Yes
1/30 s	14.9	255	Yes
1/60 s	1.99	255	Yes
1/120 s	0	255	Yes
1/250 s	0	243	Yes
1/500 s	0	199	Yes
1/1000 s	0	149	No
1/2000 s	0	106	No
1/4000 s	0	68.7	No

The procedures of merging the LDR photographs into an HDR image have been mentioned in the previous parts in this section, and they were not replicate here. Instead some post-processing of the conversion from the fundamental luminance values to the proposed representative lighting parameters is discussed in this part.

Once an HDR image was successfully produced, with the camera response curve being automatically calibrated, by the computer software Photosphere, the luminance value of each pixel on the image was obtained and saved in a RADIANCE RGBE image format file. The first post-processing was to correct the original luminance data by the luminance loss factor, as stated in Equation 6.9, for the compensation of the reduction in luminance due to the vignetting effect. The processed luminance data of each pixel in the HDR image was then individually multiplied by the calibration factor, with the assumption that the value of 0.75 concluded as the standard calibration factor within daylight levels of 20 and 150 lux in the study discussed in Section 6.3 was also applicable in other ranges of daylight levels. Afterwards the luminance of a pixel in the HDR image taken by the camera should reflect the approximate luminance value of that point in the real scene observed by the subject, who stood close to the camera during the survey.

Some luminance-based parameters were proposed to be the potential representative lighting parameters for accounting for the five daylighting performance decision factors in the study reported in the previous chapter. They included the average luminances of the desk and the surrounding surfaces ($L_{avg,desk}$ and $L_{avg,surr}$), their logarithms ($log L_{avg,desk}$ and $log L_{avg,surr}$), the ratio of minimum to average luminances of the surroundings (R_{surr}), the average luminances of the horizontal band of width 40° and the central circle of angular subtense 40° ($L_{avg,40H}$ and $L_{avg,40C}$) within the scene, their logarithms ($log L_{avg,40H}$ and $log L_{avg,40C}$), the ratios of minimum to average luminances of these regions (R_{40H} and R_{40C}), the luminance ratio of the back half to the front half of an interior (L_{back}/L_{front}) and the new daylight glare index (DGI_{N2}) introduced by Nazzal (2001b). It should be noted that Nazzal (2001b) has introduced a specific monitoring protocol for DGI_{N2} . He made use of illuminance sensors and black pyramids to measure the window illuminance (E_w), the adaptation illuminance (E_a) and the exterior illuminance (E_{ex}), and then correspondingly

converted them to the window luminance (L_w) , the adaptation luminance (L_α) and the exterior luminance (L_{ex}) , assuming that all the interior surfaces have the lambertian reflecting or emitting properties. In this study, however, these three luminance values were directly obtained by the HDR photography.

These parameters indeed originate from the 13 basic luminance values of a few surfaces or areas within the field of view captured in the HDR images for the first and second scenes. They were $L_{min,desk}$, $L_{avg,desk}$, $L_{min,surr}$, $L_{avg,surr}$, $L_{min,40H}$, $L_{avg,40H}$, $L_{min,40C}$, $L_{avg,40C}$, L_{back} , L_{front} , L_w , L_a and L_{ex} . The next post-processing task was therefore to find out the quantities of these basic luminance values from the processed HDR images covered with almost accurate luminance values extended over the luminance span of the human visual system. The parameters were either the minimum or average luminance over a certain region in the images. Knowing the xy coordinates of each pixel, the method of graphing and shading a polygon of constraints was applied. As long as the images were sufficiently sharp, the coordinates of the vertices of a region could be easily identified, and thus a series of linear equations could be formulated to draw out that region. For example, in the computation of $L_{min,desk}$ and $L_{avg,desk}$, the desktop surface in the HDR image of the first scene were made out by its four corners. As a result, the four sides could be presented in four equations in terms of the xy coordinates of the corners. The area outside the four linear constraints was washed out in the HDR image with the aid of a digital filter. The luminance values of these remaining pixels were found in the RADIANCE RGBE image format file. The minimum and average luminances of the pixels within this region were therefore able to be obtained respectively. Similar procedures were proceeded for $L_{min,surr}$ and $L_{avg,surr}$, which were the minimum and average luminances of the pixels in the whole HDR image of the first scene except the regions of the desktop surface and the window aperture; for L_w , which was the average luminance of the pixels identified as the window; for L_{α} , which was the average luminance of all the pixels in the HDR image of the first scene. Using one of the cellular offices surveyed in the study as a scene, figures 6.15 to 6.18 respectively illustrate the areas of the scene involved for the acquisition of $L_{min,desk}$ and $L_{avg,desk}$, $L_{min,surr}$ and $L_{avg,surr}$, L_w and L_α .

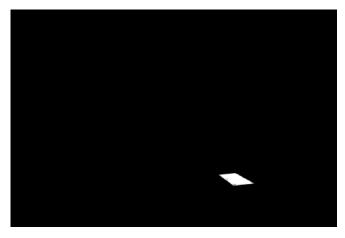


Figure 6.15 The area of the scene used for computation of $L_{min,desk}$ and $L_{avg,desk}$

Figure 6.16 The area of the scene used for computation of $L_{min,surr}$ and $L_{avg,surr}$

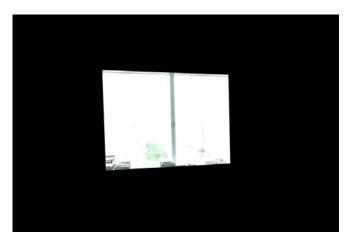


Figure 6.17 The area of the scene used for computation of L_w

Figure 6.18 The area of the scene used for computation of L_{α}

For computing L_{back} and L_{front} , four linear equations were derived to demarcate the front and back halves of a room. These equations expressed the lines which formed a vertical plane parallel with the window wall cutting the room into two even sizes. Figures 6.19 and 6.20 highlight the regions of the scene respectively for the obtainment of L_{back} and L_{front} .

Figure 6.19 The area of the scene used for computation of L_{back}

Figure 6.20 The area of the scene used for computation of L_{front}

Comparatively the tasks for working out $L_{min,40H}$, $L_{avg,40H}$, $L_{min,40C}$ and $L_{avg,40C}$ required more effort. For $L_{min,40H}$ and $L_{avg,40H}$, a pair of quadratic inequalities derived from regression analysis, y_1 and y_2 , were plotted in the HDR image to identify the horizontal band of width 40° of the scene, both of which had a Pearson correlation coefficient r = 0.999 with $p \le 0.001$,

$$\begin{cases} y_1 \le 9.49x10^{-5}x^2 - 0.328x + 2008.069 \\ y_2 \ge -9.49x10^{-5}x^2 + 0.328x + 295.93 \end{cases}$$
(6.12)

Like the previous procedure, the area outside the two curved constraints was turned black with the use of a digital filter. The minimum and average luminances of the pixels within the remaining region could then be obtained in the RADIANCE RGBE image format file.

For $L_{min,40C}$ and $L_{avg,40C}$, a theoretical circle inequality was derived to account for the central circle of angular subtense 40° of the scene, outside which the region was erased such that the minimum and average luminances of the pixels inside the circle could be computed,

$$\sqrt{(x-1728)^2 + (y-1152)^2} \le 566.61 \tag{6.13}$$

Figures 6.21 and 6.22 respectively show the regions defined as the horizontal band of width 40° and the central circle of angular subtense 40° of the first scene.

Figure 6.21 The area of the scene used for computation of $L_{min,40H}$ and $L_{avg,40H}$

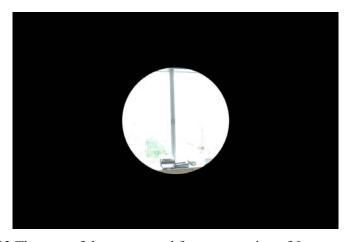


Figure 6.22 The area of the scene used for computation of $L_{min,40C}$ and $L_{avg,40C}$

 L_{ex} was the average exterior luminance. It could be easily computed from the luminance of all the pixels within the whole scene of the HDR image taken at the position of 0.2 m perpendicularly from the centre point of the window. Figure 6.23 shows the whole external view out of a test cellular office.

Figure 6.23 The areas of the scene used for computation of L_{ex}

6.5 Summary

For years lighting researchers have been persecuted by a big problem of light measurements, i.e. to obtain reliable luminance value of a tiny point as well as the luminance distribution on a surface within one or two minutes. With the improved technology, a useful light measurement tool, namely high dynamic range (HDR) photography, was emerged. This technique has the capability of filling the gap that a conventional spot luminance meter cannot achieve – obtain accurate luminance values of the surfaces inside a daylit environment regardless of the highly variable intensity of natural light throughout the time. In this chapter, the principle and necessary calibration of this advanced luminance data acquisition system were introduced. The work done for the computation of the luminance values of the shortlisted representative parameters, which potentially account for the five daylighting performance decision factors, discovered in the last chapter, were also reported.

While the conventional photography technique is solely able to capture a limited dynamic range of luminance, the HDR photography pioneers a practice to cover a wider luminance dynamic range between the brightest and lightest parts of a realistic scene to the magnitude of order as what a human eye can see. In this approach, luminance value of each pixel extended over the luminance span of the human visual system can be extracted from an HDR image fused with a series of low dynamic range (LDR) photographs of multiple exposures at a fixed aperture size with a digital

camera fitted with an ultra wide angle lens. Despite the encouraging findings on its precision and repeatability in previous studies, there were unclear issues about the calibration of this technique for luminance measurements in indoor daylit scenes. A field survey was consequently conducted and a numerical calibration factor of 0.75 was found between the daylight illuminance from 20 to 150 lux with the use of a Canon 350D digital camera fitted with an ultra wide angle lens. It was assumed that this figure was also applicable in other ranges of daylight levels using the same photograph taking devices and usable in the later acquisition of the luminance-based parameter quantities.

It was mentioned in the previous chapter that some luminance-based parameters within the field of view were suspected to have potential to predict the five decision factors in terms of the two daylighting performance criteria, and the luminance values of these parameters could be revealed from the HDR images; in this chapter, the methodology of extracting the necessary parameter quantities from these HDR images was described. Since these parameters were either the minimum or average luminance over a certain region in a scene, the approach of graphing and shading a polygon of constraints was applied to show up the interesting regions of the image and washed out those useless. By doing so, only the luminance values of the pixels fallen in the highlighted areas remained and could therefore be considered.

In conclusion, the HDR photography paves the way for a refined daylighting performance assessment of a sidelit interior studied in this thesis, and it is believed that this technique is going to become a trendy luminance measurement tool in the near future.

CHAPTER 7 ANALYTIC HIERARCHY PROCESS

7.1 Introduction

In many real problem settings, decision makers have to choose among a considerable number of factors, each of which is characterized by definite levels of different criteria. These criteria are independent of one another, but partially conflicting such that improving the level of one of the decision factors requires deteriorating the level of at least another one. In most cases, decision makers need to rank the significance of each criteria and its decision factor to the problem. When they find there is no single decision factor that dominates the others, they have to resolve tradeoffs. All the decision problems of this type belong to multi-criteria decision problems. They arise in many fields of decision making like marketing for the design of new products, management for the design of services, politics for the design of programs and strategies.

In this study, whether a daylit cellular office is visually satisfactory and allows not turning on electric lights were regarded as a decision to be made by occupants. Making such a decision is never simple because it involves many unconnected but possibly contradictory factors and the relative impact of each decision factor can be unlike. Since providing daylighting of good performance in an interior is usually considered as a product, a service or a strategy for improving indoor environmental quality in terms of human visual and energy issues, this study hypothesizes that the problem of daylighting design in a cellular office contains two criteria – occupants' visual satisfaction and electric lighting energy saving potential – resulting from the combination of several weighted quantitative and qualitative decision factors. In Chapter 5 of this thesis, five decision factors were discovered from cellular office workers' mind and they were 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window'. Although these decision factors were shown to be influential to the daylighting performance assessment, their weights of importance to the overall daylighting performance of a cellular office have not yet been made known. This study attempts to evaluate the daylighting performance of a cellular office via the

multi-criteria decision problem setting. To solve the multi-criteria daylighting design problem, a method for measuring individual and problem-specific preferences, namely analytic hierarchy process (AHP), was exploited. The weights of influence of these decision factors in consideration of the two daylighting performance criteria obtained from the office occupants are reported in this chapter.

7.2 Principle

Analytic hierarchy process (AHP) is a systematic analysis technique based on psychology and mathematics providing a comprehensive and rational framework for dealing with a decision problem made up of various complex factors (Saaty, 1977; Saaty, 1987). It is a multiple criteria decision making method that was originally developed by Thomas L. Saaty in 1970s, and since then it has been widely studied and applied in various areas including making decisions, ranking and prioritizing choices in the fields of social sciences, economics, physics and engineering. Rather than purely prescribing the most suitable decision, AHP is a compositional method that combines preference judgments on criteria and factors for decision makers to determine the importance levels of all the decision factors. The mathematical technique used in AHP is capable of handling a large number of independent decision factors, considering tangible and intangible, quantitative and qualitative elements simultaneously, and evaluating the impact of various components of the problem by presenting a systematic procedure of prioritization. AHP offers a methodology to quantify and derive measurements from intangible decision factors and provides a quantitative approach for decision makers to mathematically link human thoughts with those difficult-to-measure factors. It is the feature of AHP helping itself to be distinguished from other sorts of decision making techniques.

AHP is well known for its use of a hierarchical structure to model a decision problem. An AHP hierarchy consists of three fundamental layers. At the top level is the overall goal of the decision problem. The goal is then decomposed into several criteria allocated in the middle level of the hierarchy. Each criterion is analyzed independently and may also be broken down into some more comprehensive sub-criteria in as many levels as it needs subject to the extent of the overall goal. The subdivision stops as soon as elementary criteria are found which may directly be

used for evaluating decision factors allocated at the bottom. The goal is connected to its relevant criteria and the criteria are connected to their relevant decision factors with lines while the criteria at the same level and the decision factors at the same level remain independent. The idea of the AHP hierarchy is illustrated in Figure 7.1. The example shows the simplest AHP hierarchy, which consists of three levels only: an overall goal of the decision problem, three elementary criteria and four decision factors, where the goal is the parent of each of the three criteria whereas the three criteria are the children of the goal and each decision factor is a child of each of the three criteria. Table 7.1 tabulates the conceptual characteristics of AHP.

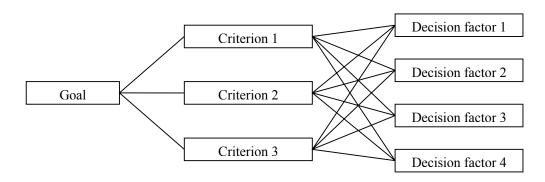


Figure 7.1 An example of a simple AHP hierarchy

Table 7.1 Conceptual characteristics of AHP (Scholl et al., 2005)

Items	Characteristics
Pre-condition	Preferential independent of criteria and decision factors
Utility model	Weighted additive utility model
Scale used	Ratio scale
Proceeding	Compositional
Results	Weights of influence of all criteria and decision factors
Measured object	Individual decision maker
Applicability	Many criteria and decision factors; up to 8 levels
Interview expense	Time due to many simple pairwise comparisons,
	but certain computer software available

Once the AHP hierarchy is established, the numbers of levels, criteria and decision factors are fixed throughout the entire process and cannot be added in the halfway; otherwise the outcomes would be inaccurate. Various criteria and decision factors at the same level are systematically evaluated by comparing them with one another in

terms of importance in pairs with respect to their parents using the scale from 1 to 9. It is a scale introduced by Saaty, the AHP inventor, showing different intensities of importance as shown in Table 7.2.

Table 7.2 Scale of intensity of importance for AHP pairwise comparison

Intensity of importance	Definition	Explanation
1	Equal importance	Two factors contribute equally to the criterion
3	Weak importance	One factor slightly favours over another one
5	Strong importance	One factor strongly favours over another one
7	Dominant importance	One factor dominantly favours over another one
9	Absolute importance	Evidence favouring one factor over another is of the highest possible order of affirmation
2, 4, 6, 8	Intermediate values between the two adjacent judgments	When compromise is needed

Despite the application of AHP sounds complicated and demanding for respondents because a large number of comparisons in pairs on the criteria and decision factors have to be carried out with imagination and concentration, AHP offers a unique advantage that other multi-criteria decision making methods do not have – AHP can take the difficulty of giving precise preference judgments into account by allowing the decision makers to be inconsistent and intransitive to some extent. The consistency of a participant's answer is checked through some simple calculations. Calculation details will be demonstrated in the Section 7.4.

After carrying out the analysis for the whole hierarchy, the priority in importance and relative weights of influence of each decision factor to the goal can be obtained, and subject to the objective of the decision problem, the most preferred solution can also be made. These capabilities of AHP indurate its suitability in those studies on the decision making involving multiple criteria of subjective preferences, including the aspects of the complex building environmental assessment. An example of the application of AHP in a relevant subject is the study on the comprehensive indicator of an indoor environment assessment for occupants' health conducted by Chiang and Lai (2002).

In this study the ultimate goal of the decision is to assess the daylighting performance of a cellular office. With the state of mind that the utilization of daylight in interiors is to minimize the consumption of electric lighting energy without influencing occupants' visual satisfaction, the two assumed criteria of the decision problem – visual satisfaction and electric lighting energy saving potential – were hypothesized to have equal importance level in a well performed daylit cellular office. The features affecting the subjective evaluation of visual satisfaction towards the sidelit office and those encouraging occupants to use natural light and not electric lights in the office were treated as a sort of decision factors whereas the occupants are the decision makers. Instead of solely finding the most important decision factor of the analysis, this study made use of the AHP to particularly investigate the relative importance level of each decision factor. The next section describes the survey conducted for the collection of subjective preferences towards the daylighting performance of a cellular office.

7.3 Survey

The first part of this study focused on the importance level of the decision factors affecting the subjective evaluation of visual satisfaction towards a daylit cellular office; the second part of the study looked into the weight of influence of the decision factors encouraging occupants to utilize daylight and not turning on electric lights in their cellular offices. A survey was conducted to achieve the aims of the study. The survey was conducted from 1 October to 30 November 2009. The target subjects were the occupants working in cellular offices in commercial buildings in Hong Kong. Over 250 email invitations were randomly sent to the target subjects of different professions of companies in various grades of local office buildings.

The questionnaire started with general information about the content of the survey and the rights of the participants. The sole incentive offered to the subjects to take part in the survey was the chance to contribute in the development of a better daylighting design and assessment method which could address their real demands of a visually satisfactory and highly lighting energy saving daylit cellular office. Once a subject accepted to participate in the survey, he was then asked to give his background information concerning his gender, age group and whether he is working

in local cellular offices. He was also requested to state the name of the office buildings currently working in for verification. Should he be in the focus group, he was invited to the main body of the questionnaire. Appendix E gives the complete questionnaire of this survey.

The main body of the questionnaire began with an example (Teknomo, 2006). It was given to the subjects for clear indication about the pairwise comparisons specified in AHP. It showed the approach of quantifying subjective evaluation using the Saaty's scale from 1 to 9. It was about a participant's judgment on which fruit (apple, banana and cherry) he would prefer and how much he preferred one to the other two. Three statements were expressed by the respondent as below and the corresponding AHP pairwise comparisons are shown in Figure 7.2.

- 1. 'He slightly favoured banana to apple', and consequently a tick was put in the box labelled '3' in the banana side;
- 2. 'He strongly favoured apple to cherry', and consequently a tick was put in the box labelled '5' in the apple side;
- 3. 'He very strongly favoured banana to cherry', and consequently a tick was put in the box labelled '7' in the banana side.

	9	7	5	3	1	3	5	7	9	
Apple Apple Banana			$\overline{\checkmark}$							Banana Cherry Cherry

Figure 7.2 An example of AHP pairwise comparisons

The content of the questionnaire afterwards focuses on the objective of the survey. Concluded in the previous study of this thesis, there were five decision factors respectively accountable for the criteria of occupants' visual satisfaction and electric lighting energy saving potential, and they were 'brightness on desktop' (BD), 'brightness on surroundings' (BS), 'uniformity on desktop' (UD), 'uniformity on surroundings' (US) and 'perceived glare from window' (PG). This survey adopted a paper-and-pencil basis for its static and non-interactive manner that individual

explanations and reactions were not involved. Clear explanation of the five decision factors were provided in the questionnaire. As a result, an AHP hierarchy like the one shown in Figure 7.3 could be developed for the decision making of a cellular office of preferred daylighting performance.

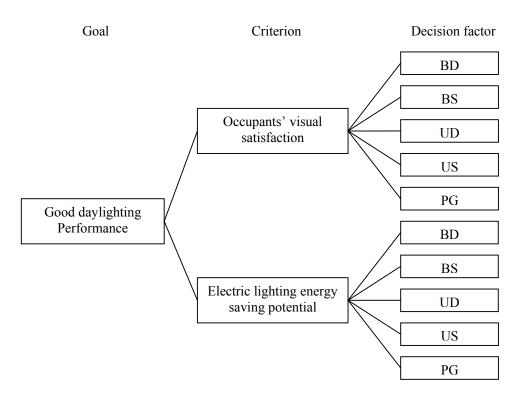


Figure 7.3 The proposed AHP hierarchy for the daylighting performance assessment for cellular offices

The following two types of questions about the subjective judgment on how much one decision factor (i) affects the visual satisfaction with a sidelit cellular office and (ii) encourages occupants not turning on electric lights in a sidelit cellular office, respectively, in comparison with the other decision factors were then asked.

- 1. Please compare in pairs the decision factors in terms of importance when you are deciding a visually satisfactory daylit environment.
- Please compare in pairs the decision factors in terms of importance that a sidelit cellular office should possess in order to encourage you not to use electric lighting.

There were totally 10 pairwise comparisons for each criterion of daylighting performance. The order of the comparisons was randomly arranged to avoid any habitual answering from the respondents.

7.4 Methodology of analysis

In order to demonstrate the analysis procedures, the responses of a participant about his subjective judgments on the two daylighting performance criteria obtained during the survey are discussed in detail. His answers are shown in Figures 7.4 and 7.5.

	9	7	5	3	1	3	5	7	9	
BD										BS
BD					$\overline{\checkmark}$					UD
BD			\checkmark							US
BD					$\overline{\checkmark}$					PG
BS							$\overline{\checkmark}$			UD
BS					$\overline{\checkmark}$					US
BS									\checkmark	PG
UD				$ \overline{\checkmark} $						US
UD						$\overline{\checkmark}$				PG
US										PG
	9	7	5	3	1	3	5	7	9	
BD										BS
BD				\checkmark						UD
BD										US
BD					\checkmark					PG
BS										UD
Do				_		\checkmark				US
BS						ب	_	_	_	OB
							_	_		PG
BS									· 	
BS BS									$\overline{\checkmark}$	PG

Figures 7.4 (Top) and 7.5 (Bottom) Responses of a participant to AHP pairwise comparisons among the five decision factors under visual satisfaction and energy saving potential respectively in terms of importance

A 5 x 5 matrix M was made for the analysis of the 10 pairwise comparisons for the first part of the study. The response of a participant to the comparison between the decision factor i and the decision factor j would be put in the entry m_{ij} of the matrix M. That is, for example, when comparing 'brightness on desktop' and 'brightness on surroundings', the participant dominantly favoured 'brightness on desktop', and therefore '7' was put in the row 1 column 2 of the matrix M. Then the participant evaluated that both 'brightness on desktop' and 'uniformity on desktop' had the same importance towards the criterion of occupants' visual satisfaction, and therefore, '1' was put in the row 1 column 3 of the matrix M. Comparing 'brightness on surroundings' and 'uniformity on desktop', the participant strongly favoured 'uniformity on desktop', and therefore '1/5' was put in the row 2 column 3 of the matrix M. The same procedure proceeded until the upper triangular matrix was filled up. The lower triangular matrix was the reciprocal values of the upper diagonal. The complete comparison matrix M was prepared as follows,

$$\mathbf{M} = \begin{bmatrix} 1 & 7 & 1 & 5 & 1 \\ 1/7 & 1 & 1/5 & 1 & 1/9 \\ 1 & 5 & 1 & 3 & 1/3 \\ 1/5 & 1 & 1/3 & 1 & 1/7 \\ 1 & 9 & 3 & 7 & 1 \end{bmatrix}$$
(7.1)

For the second part of the study, another 5 x 5 matrix N was made for the analysis of the other 10 pairwise comparisons. Similar procedures were carried out – the response of the participant to the comparison between the decision factor i and the decision factor j would be put in the entry n_{ij} of the matrix N,

$$N = \begin{bmatrix} 1 & 9 & 3 & 5 & 1 \\ 1/9 & 1 & 1/5 & 1/3 & 1/9 \\ 1/3 & 5 & 1 & 1 & 1/3 \\ 1/5 & 3 & 1 & 1 & 1/7 \\ 1 & 9 & 3 & 7 & 1 \end{bmatrix}$$
(7.2)

The next step was to compute the normalized eigenvector x_M of the comparison matrix M. A normalized eigenvector is a non-zero vector satisfying the eigenvalue equation for some scalar λ such that,

$$Mx_{M} = \lambda_{M}x_{M} \tag{7.3}$$

In this situation, the scalar λ_M is called an eigenvalue of M corresponding to the eigenvector x_M .

Since x_M needs to be non-zero,

$$\det\left(\mathbf{M} - \lambda_{\mathbf{M}}\mathbf{I}\right) = 0 \tag{7.4}$$

One real root of $\lambda_{\rm M} = 5.102$ could then be calculated and this is the maximum eigenvalue of the matrix M, $\lambda_{\rm M \ max}$.

Substituting $\lambda_{M,max}$ as λ_{M} in Equation 7.3, the normalized eigenvector x_{M} could then be computed,

$$x_{M} = \begin{bmatrix} 0.29 & 0.04 & 0.20 & 0.06 & 0.41 \end{bmatrix}$$
 (7.5)

The eigenvector x_M showed the weights of influence of the five decision factors of occupants' visual satisfaction, such that the weight of influence of 'brightness on desktop' on the criterion in percentage was 29%, 'brightness on surroundings' 4%, 'uniformity on desktop' 20%, 'uniformity on surroundings' 6% and 'perceived glare from window' 41%. From the AHP pairwise comparisons, it was realized that not only did the participant in this example rank 'perceived glare from window' as the most important decision factor in the judgment of visual satisfaction in a cellular office, but he also pointed out the relative weights of influence among the decision factors.

Similar approaches were performed for the computation of the normalized eigenvector x_N of the comparison matrix N, and it was found that $\lambda_{N,max} = 5.116$ and,

$$\mathbf{x}_{N} = \begin{bmatrix} 0.36 & 0.03 & 0.12 & 0.09 & 0.40 \end{bmatrix}$$
 (7.6)

The eigenvector x_N showed the weights of influence of the five decision factors of electric lighting energy saving potential. It was revealed that the weight of influence of 'brightness on desktop' on the criterion in percentage was 36%, 'brightness on surroundings' 3%, 'uniformity on desktop' 12%, 'uniformity on surroundings' 9% and 'perceived glare from window' 40%. It was concluded that the participant in this example ranked again 'perceived glare from window' as the most crucial decision factor in the judgment of saving electric lighting energy in a cellular office, followed by in order 'brightness on desktop', 'uniformity on desktop', 'brightness on surroundings' and 'uniformity on surroundings'.

Apart from the ranks and the relative weights of the decision factors, the consistency of a subject's answer to the AHP pairwise comparisons could also be verified. Suggested by Saaty (1977), using λ_{max} , which is the maximum eigenvalue of a matrix, the consistency index (*CI*) could be worked out through the following equation,

$$CI = \frac{\lambda_{\text{max}} - n}{n - 1} \tag{7.7}$$

where *n* is the size of the matrix.

Throughout the study, n was 5 as there were five decision factors to account for the two daylighting performance criteria respectively. As a result, the calculated CI for the criterion of occupants' visual satisfaction was 0.026 and that for the criterion of electric lighting energy saving potential was 0.029. Next, Saaty (1977) proposed that the consistency index could be applied by comparing it with the appropriate one, which is the random consistency index (RI). The values of RI up to n = 10 came up with by the inventor are listed in Table 7.3. The comparison between CI and RI is named consistency ratio (CR),

$$CR = \frac{CI}{RI} \tag{7.8}$$

If the value of CR is smaller or equal to 10%, the consistency is acceptable; if CR is greater than 10%, the subjective judgment is not valid. In this case, the calculated CRs were 2.3% and 2.6% respectively for the two parts of the study. Both values were less than 10% indicating that the participant's responses were acceptably consistent.

Table 7.3 Random consistency index

n	1	2	3	4	5	6	7	8	9	10
RI	0	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45	1.49

7.5 Results

A total of 181 valid questionnaires were returned before the due date. The response rate of the survey was 72%. The data collected from these questionnaires was then analyzed. 83% of the respondents were male while the remaining 17% were female. Their age ranges extended from 21-30 to larger than 50, as shown in Figure 7.6.

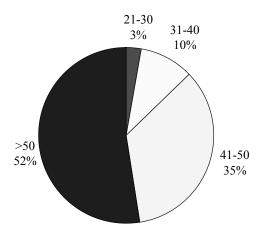


Figure 7.6 Age breakdown of the participants providing valid responses

In this study, a list of numerical values from 1 to 9 for each pairwise comparison of decision factors performed by each subject about the importance of each decision

factor in affecting visual satisfaction with a daylit cellular office and in encouraging an occupant not to turn on electric lights inside his daylit cellular office were respectively collected. Calculations and analyses as shown in the previous section were done for all the subjects' responses such that the priority and relative weight of importance of each decision factor assessed by each subject, as well as the consistency ratios of each subject's judgments in the two parts of the study were obtained. Appendix F shows all the results obtained from the AHP pairwise comparisons.

In the first part of the study, it was found that among the 181 participants, there were 32% of them keeping acceptable consistency in the pairwise comparisons of the decision factors. The average relative weight of influence of each decision factor on visual satisfaction was determined from the valid 58 responses, collectively abbreviated as $f_{VS,DF}$ which includes $f_{VS,BD}$, $f_{VS,BS}$, $f_{VS,UD}$, $f_{VS,US}$ and $f_{VS,PG}$. The results are shown in Table 7.4. The order of importance of the five decision factors was as follows: 'perceived glare from window' ($f_{VS,PG}$) (28%), 'brightness on desktop' ($f_{VS,BD}$) (26%), 'uniformity on desktop' ($f_{VS,UD}$) (18%), 'brightness on surroundings' ($f_{VS,BS}$) (16%) and 'uniformity on surroundings' ($f_{VS,US}$) (12%).

Table 7.4 Weights of influence of decision factors under visual satisfaction

Rank	Decision factor	Weight of influence $(f_{VS,DF})$
1st 2nd	Perceived glare from window Brightness on desktop	28% 26%
3rd 4th 5th	Uniformity on desktop Brightness on surroundings Uniformity on surroundings	18% 16% 12%

Regarding the second part of the study, it was found that the number of subjects who passed the consistency check slightly decreased; only 30% of the respondents or 54 responses were valid for the analysis. A similar procedure was carried out for the collection of the list of rank and relative importance level of each decision factor encouraging occupants to make use of daylight instead of electric lights in their cellular offices, collectively abbreviated as $f_{ES,DF}$ which includes $f_{ES,BD}$, $f_{ES,BS}$, $f_{ES,UD}$, $f_{ES,US}$ and $f_{ES,PG}$. The results are shown in Table 7.5. The order of importance of the

five decision factors was as follows: 'brightness on desktop' ($f_{ES,BD}$) (35%), 'uniformity on desktop' ($f_{ES,UD}$) (20%), 'perceived glare from window' ($f_{ES,PG}$) (18%), 'brightness on surroundings' ($f_{ES,BS}$) (17%) and 'uniformity on surroundings' ($f_{ES,US}$) (10%).

Table 7.5 Weights of influence of decision factors under energy saving potential

Rank	Decision factor	Weight of influence $(f_{ES,DF})$
1st	Brightness on desktop	35%
2nd	Uniformity on desktop	20%
3rd	Perceived glare from window	18%
4th	Brightness on surroundings	17%
5th	Uniformity on surroundings	10%

7.6 Discussion

In the first part of the study, glare-free from outside (28%), appropriate brightness on the desk due to daylight (26%) and suitably uniform daylight distribution on the desk (18%) were found to be the three most crucial decision factors constituting a visually satisfactory daylit cellular office. In a previous study it was reported that the feature which is the least satisfied is always the most important one in a working place (Ne'eman et al., 1984). Since 'perceived glare from window' has the highest relative importance level among the five decision factors, it is reasonably suspecting that glare in a sidelit working interior is probably the most dissatisfied feature with regard to lighting concerning human impression. This assumption needs further verification. Anyhow this finding indicated that occupants would feel visually satisfactory if no discomfort glare from the window exists in their cellular offices. Aside from designing for adequate daylight amount and appropriate variations in brightness in the task area, lighting designers ought to as well bear in mind the elimination of the presence of any glare from the window perceived within the daylit cellular office in order to increase the visual satisfaction level of occupants. These three most important decision factors, 'perceived glare from window', 'brightness on desktop' and 'uniformity on desktop', explained about 70% of the variance of a visually satisfactory sidelit environment of a cellular office.

In the second part of the study, it was found that occupants would like to exploit daylight and not to turn on electric lights if the desktop of the cellular office is already sufficiently bright due to daylight (35%) with appropriate variations in brightness (20%) and if there is no perceived glare from the window (18%). They were the three most influential decision factors encouraging occupants to save electric lighting energy in their cellular offices. This finding was within researchers' expectation. Provided that daylight gives adequate amount of brightness level on the work plane of their cellular offices, occupants with the mindset of energy conservation would naturally consider the utilization of the natural light alone for illumination. Besides, a balanced daylight distribution on the desktop would lead to a reduction of the minimum acceptable illuminance, concluded in a previous study (Baker et al., 1993). Because of the consent to a lower lighting level, daylight can become the sole light source and switching off electric lights is thus usually permitted in a cellular office with an evenly daylight distribution on the desk surface. In addition, an absence of excessive luminance contrast between outdoor and internal surfaces would allow occupants not turning on any electric lights to balance the significant illumination discrepancy for the eyes to adapt to. These three most crucial decision factors, 'brightness on desktop', 'uniformity on desktop' and 'perceived glare from window', accounted for more than 70% of the variance of a high electric lighting energy saving potential in the sidelit environment of a cellular office.

The results found in the survey helped complete the comprehensive AHP hierarchy to assess the daylighting performance of a cellular office, as shown in Figure 7.7. The number in the bracket indicates the weight of influence of a child on its parent in the AHP hierarchy.

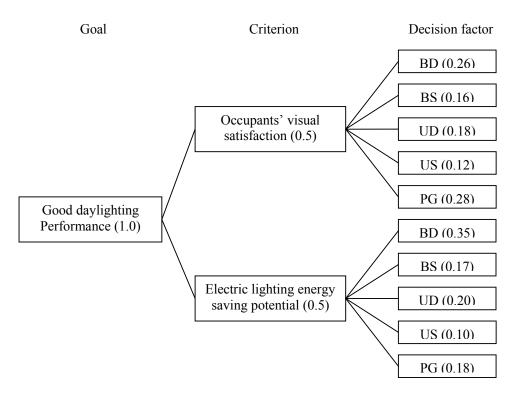


Figure 7.7 The complete AHP hierarchy for the daylighting performance assessment for cellular offices

7.7 Summary

A survey via electronic email was conducted using a novel approach in lighting research – analytic hierarchy process (AHP) – to investigate the subjective preferences towards a visually satisfactory cellular office and the subjective judgments on the saving potential of electric lighting energy inside the cellular office. This study was divided into two parts in accordance with these two daylighting performance criteria. In both parts of the study, the five decision factors discovered in Chapter 5 with respect to the two criteria were applied in this survey for the collection of the view of daylighting performance assessment from cellular office workers. They included 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window'. The AHP method was adopted to obtain the relative weights of influence among these five decision factors in each part of the study.

In the first part of this study, for researching occupants' visual satisfaction inside a sidelit cellular office, a total of 58 responses which conformed to the consistency check were analyzed. It was found that the rank of the five decision factors towards this daylighting performance criterion in terms of importance was 'perceived glare from window', 'brightness on desktop', 'uniformity on desktop', 'brightness on surroundings' and 'uniformity on surroundings'. In the second part of the study, for researching occupants' judgments on electric lighting energy saving potential inside a sidelit cellular office, a total of 54 responses were valid for analysis. The order of the five decision factors from the most important to the least towards this daylighting performance criterion was 'brightness on desktop', 'uniformity on desktop', 'perceived glare from window', 'brightness on surroundings' and 'uniformity on surroundings'.

The work done in this chapter established the feasibility of assessing a daylit cellular office with the use of AHP. It was suggested that designing a sidelit cellular office with appropriate daylight level and daylight distribution but without any presence of daylight glare from the window would not only help fulfill occupants' visual satisfaction but also greatly encourage occupants to consume less electric lighting energy and utilize more daylight instead. The following task goes to develop the daylighting performance index (*DPI*), which is the main objective of this thesis, by considering the weight of influence of each decision factor under each criterion and its probability of occurrence at a certain time on a certain day in a year. The details will be discussed in the next chapter.

CHAPTER 8

DAYLIGHTING PERFORMANCE INDEX

8.1 Introduction

The assessment of building environmental performance by grading schemes emerged among the professions in 1990s when higher indoor environmental quality and sustainable development not only started griping the attention of researchers and designers but also became the concern of owners and facility managers due to the rising energy and maintenance costs as well as the desire for a higher reputation. The scopes of current green building grading schemes are diverse ranging from simple to complex, from prescriptive-based to performance-based, from design guidance to environmental impact assessment, or even a combination of all these approaches (Todd et al., 2001). Some researchers classified the grading schemes into three different generations with respect to their evaluation methods (Chew and Das, 2008). The first generation includes those grading schemes mostly developed for conventional building design judged against codes, standards or by-laws with limited focuses on human factors and energy issues under the straightforward pass-fail system, such as ENERGY STAR (1992) of the United States. The grading schemes of the second generation follow the simple additive system, which usually contains various assessment areas presented in numerous criteria of equal credit such that the total score of the building environmental performance is calculated by adding each credit earned upon fulfilling a criterion. US-LEED (2000) initiated by the United States Green Building Council is a good example to the grading schemes of the second generation. Those of the third generation typically adopt the weighted additive system since different impacts of various parameters are recognized. Pre-weighted points are allocated in each assessment category depending on the effect of its performance on the entire building environment. The awarded credits are added up to a final overall score that can then be rated on a scale of several levels. UK-BREEAM (2006) and HK-BEAM (2004) are regarded as the building grading schemes of this generation. Daylighting performance is a sort of indoor environmental quality that consists of various criteria and decision factors of different levels of influence. It is therefore reasonably believed that daylighting

performance of an indoor space can also be assessed in a grading scheme of the third generation.

This thesis aims to launch a new scientific grading scheme for evaluating the daylighting performance of cellular offices with the use of a multiple criteria indicator, namely daylighting performance index (DPI). In the previous chapters, the relevant daylighting performance criteria and decision factors were identified, the probability formulae of occupants' visual satisfaction and electric lighting energy saving potential due to these decision factors were derived and their weights of importance towards the overall daylighting performance of a cellular office were obtained through the analytic hierarchy process. In this chapter, the formation of DPI is introduced. Simulation results of cellular office models of different window sizes. different orientations and with or without an external obstruction by the computational lighting software DIALux for their daylighting conditions are reported. In addition, since the performance of daylighting in an interior greatly relies on the sky types of its geographical location and because Hong Kong is taken as the sample city in the thesis, the analysis of sky condition classification of this place in an interval of one office working hour throughout the recent three years is described. A DPI grading scheme is proposed for expressing various daylighting performance situations of cellular offices and the implication of the possible electric lighting energy saving by the utilization of daylight in accordance with the DPI is also discussed at the end of this chapter.

8.2 Formulation

This thesis purposes to develop a novel comprehensive daylighting performance assessment method for cellular offices in order to create a visually satisfactory and low carbon lighting environment on the basis of a numerical indicator involving various criteria and decision factors of different importance levels. In this study the indicator was named daylighting performance index (*DPI*). This chapter starts with the introduction of *DPI*.

DPI is designed to be a multiple criteria indicator that can scientifically evaluate the overall daylighting performance of a sidelit cellular office in terms of human factors

and energy issues – occupants' visual satisfaction and electric lighting energy saving potential with regard to the five relevant decision factors, namely 'brightness on desktop' (BD), 'brightness on surroundings' (BS), 'uniformity on desktop' (UD), 'uniformity on surroundings' (US) and 'perceived glare from window' (PG) – within each working hour of a particular day of a month under the probable sky condition.

In Chapter 5, towards the overall daylighting performance of a cellular office, the probability formulae of occupants' visual satisfaction (VS) and electric lighting energy saving potential (ES) due to the five decision factors were derived in a logistic function, denoted by P_{DF} , which was the general abbreviation of $P_{VS,BD}$, $P_{VS,BS}$, $P_{VS,UD}$, $P_{VS,US}$, $P_{VS,UD}$, $P_{VS,DS}$, $P_{ES,BD}$, $P_{ES,BD}$, $P_{ES,BD}$, $P_{ES,UD}$, $P_{ES,US}$ and $P_{ES,PG}$, varied between 0 and 1, such that the answers could be calculated once their individual representative lighting parameter values of the daylighting condition within a working hour were discovered. Computational daylighting simulations were carried out in order to achieve the tasks. Table 8.1 summarizes the required parameters for the calculations.

Table 8.1 Parameters of daylighting performance probability formulae

Decision factors	Criteria						
	Occupants' visual satisfaction	Electric lighting energy saving potential					
Brightness on desktop	log E _{avg,desk}	log E avg,desk					
Brightness on surroundings	log L _{avg,surr}	$log L_{avg,surr}$					
Uniformity on desktop	${U}_{\it desk}$	$U_{\it desk}$					
Uniformity on surroundings	$L_{\it back}$ / $L_{\it front}$	L_{back} / L_{front}					
Perceived glare from window	DGI_{N2}	DGI_{N2}					

8.2.1 DIALux daylighting simulation

A wide range of feasible daylighting simulation software is available for researchers and designers to choose from for the acquisition of the representative lighting parameter values. DIALux version 4.9 program of the German Institute for Applied Lighting was selected for this study.

DIALux is the software specific for the planning and design of artificial lighting as well as natural lighting (DIALux, 2011). It is probably the most efficient lighting calculation program on the market – free of charge and can be used with the luminaires of any luminaire manufacturers. The capability of the software in its extensive support of daylight calculations was particularly attractive. Three default types of sky models are provided for researchers and designers to use, and they are clear sky with direct sunlight, partly cloudy sky and overcast sky. These sky types in DIALux refer to the CIE 110-1994 'Spatial distribution of daylight – luminance distributions of various reference skies' (CIE, 1994). A luminance value is thereby assigned to every point of the sky dependent on the solar height, the solar azimuth, the sky point height and the sky point azimuth. Table 8.2 repeats the information of the three sky types provided in DIALux manual.

Table 8.2 Sky types in DIALux according to CIE 110-1994 (DIALux, 2011)

	Clear sky	Partly cloudy sky	Overcast sky
CIE Name	Clear sky	Averaged intermediate sky, developed by Nakamura et al. (1985)	Overcast sky
Description	Cloudless sky	Developed from a long period of measurements, described average weather conditions	Complete overcast sky, rotationally symmetrical luminance distribution
Direct sun possible	Yes	No	No

Once a project file is created in the DIALux lighting simulation program, daylight scenes of different sky conditions at any time can be inserted allowing the influence of daylight in the interior and exterior scenes to be calculated. The alignment and the exterior daylight obstruction could also be taken into consideration in the calculation.

In this study, a 3 x 3 x 3 m room without any external or internal shading was illustrated as a cellular office in the program. The global position of the cellular office was defined as Hong Kong located at latitude 22.3° north and longitude 114.2° east. The reflectances of the ceiling, walls and floor of the cellular office were assumed to be those typically found in general offices: 0.8, 0.5 and 0.2, respectively.

A window was designed to place in the middle of the front wall with all the properties of the glazing remained default except the degree of light transmission, which was adjusted to 50% because low-emissivity glass was presumed to apply as the glazing for minimizing any thermal discomfort caused due to excessive solar heat gain. A working desk with model name 'Model1 150x75' was positioned on the floor by the side wall at a right angle to the window. The default dimensions of the desk surface were 1.5 m x 0.75 m and the default desktop level was at 0.85 m from the floor. There were totally 12 daylighting simulations of the cellular office with either of the two levels of window sizes, facing one of the four cardinal orientations and having either no external obstruction or a continuous obstruction of a certain height.

Table 8.3 The 12 sets of daylighting simulations of the cellular office

Model set	Window size	Orientation	Existence of obstruction
1	Small	North	Yes
2	Small	East	Yes
3	Small	South	Yes
4	Small	West	Yes
5	Large	North	Yes
6	Large	East	Yes
7	Large	South	Yes
8	Large	West	Yes
9	Large	North	No
10	Large	East	No
11	Large	South	No
12	Large	West	No

Among the 12 simulation models, four of them would possess a smaller window and the rest enjoyed a larger one. The smaller window had an area of 0.9 m^2 , which barely fulfilled the local building regulation that the window aperture shall not be less than 10% of the floor area, while the larger window area was 4.5 m^2 , indicating office occupants' most favourite size, i.e. 50% of the window-to-false-ceiling-wall area ratio (WCR) as reported in Chapter 4. Both the window dimensions followed the rule of W = 1.25H. Besides, eight out of the 12 simulation models suffered from a continuous external obstruction of reflectance at 0.2, which was 4.5 m perpendicularly from the window, 30 m long and 28 m high from the ground, forming an obstructing angle of 83° , that scarcely satisfied with the statutory

requirements on the separation between windows and obstructions in terms of both limiting distance and obstruction angles. The remaining four simulation models were designed to have no daylight obstructions.

 DGI_{N2} consists of three lighting parameters, i.e. the exterior luminance caused by direct sunlight, diffuse light from the sky and reflected light from the ground and other external surfaces (L_{ex}), the luminance of the surroundings including reflections from the internal surfaces (L_{α}) and the luminance of the source from the outside through the window (L_w) (Nazzal, 2001b). The inventor suggested a calculation method of DGI_{N2} in his research that these three luminance parameters were not directly measured but indirectly obtained from the average vertical illuminance of the outdoors $(E_{vl,unshielded})$, the average vertical unshielded illuminance from the surroundings ($E_{v2,unshielded}$) and the average vertical shielded illuminance from the window ($E_{v3,shielded}$). The illuminance values were measured by three vertical sensors that the first one is unshielded and placed close to the middle point of the window at a perpendicular distance of 0.2 m from the glazing to measure the exterior illuminance, the second one is unshielded and placed on the level of the opening of the shield for the third sensor to measure the adaptation illuminance and the third one is shielded with a black pyramid, placed at the back of the room on the same level as the midpoint of the window to cover the rectangular window entirely without gathering light from the surroundings to measure the window illuminance. Since the simulation program could not show the necessary luminance values in its output either, this original calculation approach was followed.

 $E_{vl,unshielded}$ for the conversion to L_{ex} and $E_{v2,unshielded}$ for the conversion to L_{α} were revealed from the simulation results of the cellular office models in the DIALux program by inserting light calculation points at the same places where the corresponding two sensors should be located in the real space. Up to here all the aforementioned major components of the representative lighting parameters could be directly read or easily converted from the light calculation results of the 12 simulation models; however, the obtainment of the L_w values required more effort. The other 12 sets of simulation models were specially created with the reflectances of all the internal surfaces turned to zero. By doing so, the simulated daylighting situations could be assumed to be the same scenarios as what the shielded

illuminance sensors would measure in reality – solely the light from the window, i.e. $E_{v3,shielded}$, which was then able to be converted to L_w . The mathematical transformations from those illuminance values to the useful luminance values were presented in Equations 8.1 to 8.3 (Nazzal, 2001b),

$$L_{ex} = \frac{E_{v1,unshielded}}{2(\pi - 1)} \tag{8.1}$$

$$L_{\alpha} = \frac{E_{v2,unshielded}}{\pi} \tag{8.2}$$

$$L_{w} = \frac{E_{v3,shielded}}{2\psi\pi} \tag{8.3}$$

where ψ is the configuration factor of the window from the observation place, i.e. the position of the third sensor at the back of the room, which was calculated by the following equations (Nazzal, 2001b),

$$\psi = \frac{A \arctan B + C \arctan D}{\pi} \tag{8.4}$$

$$A = \frac{X}{\sqrt{1+X^2}}, \quad B = \frac{Y}{\sqrt{1+X^2}}, \quad C = \frac{Y}{\sqrt{1+Y^2}}, \quad D = \frac{X}{\sqrt{1+Y^2}}$$
 (8.5)

$$X = \frac{a}{2d}, \ Y = \frac{b}{2d}$$
 (8.6)

where a is the width of the window, b is the height of the window, and d is the distance from the observation place to the centre of the window area.

Each cellular office model was simulated for its daylighting performance one by one under the clear sky with direct sunlight (C), partly cloudy sky (P) and overcast sky (O) in an interval of one normal office working hour (0900 – 1700) throughout the year of 2010. For simplification, every 21^{st} day of each month was hypothesized to

be the representative day of that month so that the results of the daylighting conditions on these days obtained from the DIALux simulations were assumed to be the average ones of the corresponding months. With the values of the necessary representative lighting parameters under each sky type in each working hour all discovered, the hourly probability percentages of occupants' visual satisfaction and electric lighting energy saving potential with respect to each decision factor achieved under the three sky conditions ($P_{DF,C}$, $P_{DF,P}$ and $P_{DF,O}$) could therefore be calculated in accordance with the equations (P_{DF}) stated in Chapter 5.

8.2.2 Analyses of hourly sky type of Hong Kong

Sky conditions are frequently categorized into clear, partly cloudy and overcast using some common climatic data including cloud cover, sunshine hour and solar irradiation, which are all availably recorded in hours by the Hong Kong Observatory. In this study, the official hourly cloud cover distribution was selected to determine the sky type of a normal office working hour (0900 - 1700).

Some researchers criticized that cloud cover data are not always reliable or accurate in the determination of sky conditions (Tregenza, 1987; Li and Lam, 2001). Their critics included that the cloud cover values are simply recorded based on observations which are significantly subject to the skill and experience of the observer and only taken at specific times regardless of the possible variations between consecutive observations. Neither the cloud cover data are able to indicate which part of the sky is covered by clouds nor consider the transmissivity of the clouds due to the different types of clouds. There are nevertheless solid reasons for the researchers to make use of cloud cover to investigate the type of the sky. As commented by Li and Lam (2001), it is always logical and intuitive utilizing cloud cover distribution to denote the sky condition as it is the merely single parameter considering the whole sky. Less cloud in the sky directly indicates a clearer sky resulting in more solar irradiation and higher outdoor illuminance. The cloud cover data have also been proved in the literature as a valid parameter of weighting the clearness of the sky for modelling sky radiance and luminance distributions (Harrison and Coombes, 1988; Harrison, 1991) and luminous efficacy determination (Lam and Li, 1996a; Lam and Li, 1996b).

As a rule, skies without any cloud (i.e. 0 okta) and totally covered by clouds (i.e. 8 oktas) are defined as clear (C) and overcast (O) respectively while sky conditions with cloud cover between 1 and 7 oktas are regarded as partly cloudy (P). In a previous study, local hourly cloud cover data measured from 1961 to 1998 were analysed for their frequency of occurrence (Lam and Li, 2001). It was found that 0 okta was the least common cloud cover explaining that clear sky accounted for only 6% of the 38 years while 8 oktas, or overcast sky, made up just about 20%. The prevailing condition for the rest of time engaged about 74% was partly cloudy sky.

Table 8.4 Conversions from cloud cover to sky type at 0900 in January (2007-2009)

Date		1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th
2007 2008 2009	Cloud	7 3 0	1 7 1	7 8 1	7 8 1	7 3 1	7 5 3	7 4 6	7 1 7	7 1 7	7 7 7	2 7 7	7 7 5	0 7 7	2 7 7	4 8 7	7 7 7
2007 2008 2009	Sky type	P P C	P P P	P O P	P O P	P P P	C P P	P P P	O	P P P							
Date		17th	18th	19th	20th	21st	22nc	23rd	24th	25th	26th	27th	28th	29th	30th	31st	
2007 2008 2009	Cloud	7 8 7	7 7 7	8 7 5	7 8 3	8 8 4	7 7 7	7 8 7	7 7 8	7 7 7	7 1 7	7 1 7	8 0 7	7 0 8	7 1 8	5 0 8	
2007 2008 2009	Sky type	P O P	P P P	O P P	P O P	O O P	P P P	P O P	P P O	P P P	P P P	P P P	O C P	P C O	P P O	P C O	

However, since the measurements were carried out over 10 to 50 years ago, any influence of the latest climate change on the sky conditions was not considered. The analysis was conducted again with more up-to-date data, i.e. the data of the recent three years (2007-2009), and more the hourly sky type of each month, rather than the overall average one, was investigated in this study. The procedures of converting the official hourly cloud cover data of a month in the three years to the corresponding sky types are presented with an example of January at 0900 in Table 8.4. The frequencies of occurrence of each sky type in accordance with each office working

hour of each month in these three recent years could therefore be computed and they are shown in Table 8.5. Appendix G shows the complete conversion framework.

Table 8.5 Frequency of sky type in each working hour of each month

Time	Month	Frequ	iency		Month	Frequ	iency		Month	Frequ	Frequency	
		С	P	О	•	С	P	О	-	С	P	О
0900		0.05	0.80	0.15		0.04	0.89	0.07		0.04	0.83	0.13
1000		0.06	0.81	0.13		0.02	0.89	0.08		0.03	0.85	0.12
1100		0.06	0.81	0.13		0.02	0.88	0.09		0.03	0.87	0.10
1200		0.08	0.80	0.13		0.04	0.87	0.09		0.03	0.86	0.11
1300	Jan	0.08	0.83	0.10	Feb	0.05	0.92	0.04	Mar	0.02	0.90	0.08
1400		0.08	0.84	0.09		0.04	0.92	0.05		0.03	0.88	0.09
1500		0.09	0.83	0.09		0.02	0.92	0.06		0.03	0.87	0.10
1600		0.11	0.83	0.06		0.02	0.92	0.06		0.03	0.89	0.08
1700		0.10	0.83	0.08		0.04	0.91	0.06		0.03	0.89	0.08
0900		0.00	0.88	0.12		0.02	0.96	0.02		0.00	0.89	0.11
1000		0.00	0.90	0.10		0.01	0.97	0.02		0.00	0.89	0.11
1100		0.00	0.89	0.11		0.01	0.94	0.05		0.00	0.89	0.11
1200		0.00	0.90	0.10		0.02	0.91	0.06		0.00	0.88	0.12
1300	Apr	0.00	0.92	0.08	May	0.01	0.94	0.05	Jun	0.00	0.92	0.08
1400		0.00	0.92	0.08		0.02	0.88	0.10		0.00	0.93	0.07
1500		0.00	0.89	0.11		0.02	0.90	0.08		0.00	0.97	0.03
1600		0.00	0.89	0.11		0.02	0.89	0.09		0.00	0.93	0.07
1700		0.00	0.88	0.12		0.02	0.88	0.10		0.00	0.93	0.07
0900		0.00	0.92	0.08		0.00	0.92	0.08		0.02	0.92	0.06
1000		0.00	0.91	0.09		0.00	0.92	0.08		0.00	0.96	0.04
1100		0.00	0.91	0.09		0.00	0.90	0.10		0.01	0.96	0.03
1200		0.00	0.91	0.09		0.00	0.92	0.08		0.01	0.93	0.06
1300	Jul	0.00	0.96	0.04	Aug	0.00	0.90	0.10	Sep	0.00	0.97	0.03
1400		0.00	0.97	0.03		0.00	0.90	0.10		0.00	0.97	0.03
1500		0.00	0.97	0.03		0.00	0.91	0.09		0.00	0.98	0.02
1600		0.00	0.97	0.03		0.00	0.91	0.09		0.00	0.99	0.01
1700		0.00	0.95	0.05		0.00	0.90	0.10		0.00	0.99	0.01
0900		0.03	0.97	0.00		0.12	0.84	0.03		0.14	0.85	0.01
1000		0.04	0.96	0.00		0.17	0.80	0.03		0.19	0.77	0.03
1100		0.01	0.99	0.00		0.17	0.80	0.03		0.18	0.78	0.03
1200		0.00	1.00	0.00		0.14	0.82	0.03		0.16	0.81	0.03
1300	Oct	0.02	0.97	0.01	Nov	0.12	0.83	0.04	Dec	0.16	0.82	0.02
1400		0.02	0.97	0.01		0.16	0.79	0.06		0.19	0.78	0.02
1500		0.02	0.97	0.01		0.16	0.79	0.06		0.20	0.77	0.02
1600		0.01	0.98	0.01		0.16	0.79	0.06		0.17	0.81	0.02
1700		0.03	0.96	0.01		0.13	0.80	0.07		0.15	0.83	0.02

8.2.3 Analyses of simulation results

Once the average probability values of the hourly sky type (P_C , P_P or P_O) on the days of a month was revealed, the resultant probability of occupants' visual satisfaction or electric lighting energy saving potential due to one of the five decision factors within that hour, collectively abbreviated by $P_{DF,R}$, could then be calculated. Equation 8.7 shows the computation,

$$P_{DF,R} = P_{DF,C} \times P_C + P_{DF,P} \times P_P + P_{DF,Q} \times P_Q$$

$$(8.7)$$

Table 8.6 Probability of achieving visual satisfaction due to brightness on desktop in set 1 (Partial)

Simulation Model Set No.: 1

Window size: Small Orientation: North

Existence of obstruction: Yes

Date	Time	$P_{VS,BD,C}$	P_C	$P_{VS,BD,P}$	P_P	$P_{VS,BD,O}$	P_O	$P_{VS,BD,R}$
21-Jan-10	0900 1000 1100	0.3426 0.4077 0.4404	0.05 0.06 0.06	0.1705 0.2417 0.2824	0.80 0.81 0.81	0.1002 0.1243 0.1393	0.15 0.13 0.13	0.1691 0.2373 0.2741
	1200 1300 1400 1500 1600 1700	0.4549 0.4549 0.4441 0.4143 0.3574 0.2315	0.08 0.08 0.08 0.09 0.11 0.10	0.2944 0.2944 0.2865 0.2515 0.1843 0.0934	0.80 0.83 0.84 0.83 0.83	0.1476 0.1476 0.1393 0.1270 0.1042 0.0703	0.13 0.10 0.09 0.09 0.06 0.08	0.2875 0.2923 0.2857 0.2548 0.1977 0.1050

Table 8.6 lists the probability values of achieving 'occupants' visual satisfaction' with respect to the decision factor of 'brightness on desktop' in the simulation model set 1 on 21st January 2010. Appendix H provides the complete lists of probability values of achieving the two criteria due to the five decision factors in all the simulation model sets throughout the year.

Table 8.7 Probability of achieving good daylighting performance in set 1 (Partial)

Simulation Model Set No.: 1

Window size: Small Orientation: North

Existence of obstruction: Yes

Date	Time	$\mathrm{P}_{VS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$P_{VS,UD,R}$	$\mathrm{P}_{VS,US,R}$	$P_{VS,PG,R}$	P_{VS}
21-Jan-10	0900	0.1691	0.3230	0.9887	0.8846	0.9728	0.6522
	1000	0.2373	0.4462	0.9887	0.8819	0.9579	0.6851
	1100	0.2741	0.5036	0.9887	0.8811	0.9486	0.7012
	1200	0.2875	0.5256	0.9887	0.8798	0.9450	0.7070
	1300	0.2923	0.5343	0.9887	0.8792	0.9436	0.7092
	1400	0.2857	0.5214	0.9887	0.8820	0.9463	0.7065
	1500	0.2548	0.4748	0.9887	0.8669	0.9542	0.6914
	1600	0.1977	0.3750	0.9887	0.8863	0.9674	0.6666
	1700	0.1050	0.1899	0.9887	0.8854	0.9852	0.6178
Date	Time	$P_{ES.BD,R}$	$P_{ES,BS,R}$	$P_{ES,UD,R}$	$P_{ES,US,R}$	$P_{ES,PG,R}$	P_{ES}
Date 21-Jan-10	Time 0900	P _{ES.BD,R} 0.0309	P _{ES,BS,R} 0.2891	P _{ES,UD,R} 0.9579	P _{ES,US,R} 0.9142	P _{ES,PG,R} 0.9905	P _{ES} 0.5213
	0900	0.0309	0.2891	0.9579	0.9142	0.9905	0.5213
	0900 1000	0.0309 0.0596	0.2891 0.4148	0.9579 0.9579	0.9142 0.9113	0.9905 0.9830	0.5213 0.5510
	0900 1000 1100	0.0309 0.0596 0.0797	0.2891 0.4148 0.4751	0.9579 0.9579 0.9579	0.9142 0.9113 0.9104	0.9905 0.9830 0.9777	0.5213 0.5510 0.5673
	0900 1000 1100 1200	0.0309 0.0596 0.0797 0.0884	0.2891 0.4148 0.4751 0.4984	0.9579 0.9579 0.9579 0.9579	0.9142 0.9113 0.9104 0.9090	0.9905 0.9830 0.9777 0.9756	0.5213 0.5510 0.5673 0.5737
	0900 1000 1100 1200 1300	0.0309 0.0596 0.0797 0.0884 0.0904	0.2891 0.4148 0.4751 0.4984 0.5074	0.9579 0.9579 0.9579 0.9579 0.9579	0.9142 0.9113 0.9104 0.9090 0.9083	0.9905 0.9830 0.9777 0.9756 0.9748	0.5213 0.5510 0.5673 0.5737 0.5758
	0900 1000 1100 1200 1300 1400	0.0309 0.0596 0.0797 0.0884 0.0904 0.0860	0.2891 0.4148 0.4751 0.4984 0.5074 0.4936	0.9579 0.9579 0.9579 0.9579 0.9579 0.9579	0.9142 0.9113 0.9104 0.9090 0.9083 0.9114	0.9905 0.9830 0.9777 0.9756 0.9748 0.9764	0.5213 0.5510 0.5673 0.5737 0.5758 0.5725

Date	Time	P_{VS}	P_{ES}	P_{DP}
21-Jan-10	0900	0.6522	0.5213	0.5867
	1000	0.6851	0.5510	0.6181
	1100	0.7012	0.5673	0.6342
	1200	0.7070	0.5737	0.6404
	1300	0.7092	0.5758	0.6425
	1400	0.7065	0.5725	0.6395
	1500	0.6914	0.5568	0.6241
	1600	0.6666	0.5339	0.6003
	1700	0.6178	0.4944	0.5561

The weights of importance of the five decision factors towards their daylighting performance criteria, respectively abbreviated by $f_{VS,DF}$ and $f_{ES,DF}$, were found in Chapter 7. These numerical values were multiplied by the corresponding $P_{DF,R}$, subject to the decision factor and the criterion, within a certain normal office working hour after considered the sky type effect as well as the assigned influential factor of the criterion towards the overall daylighting performance of a cellular office, i.e. 50% for both criteria, to obtain the probability of achieving good daylighting performance (P_{DP}) within the hour in the cellular office. Equations 8.8 to 8.10 show the calculations,

$$P_{VS} = \sum \left(P_{VS,DF,R} \times f_{VS,DF} \right) \tag{8.8}$$

$$P_{ES} = \sum \left(P_{ES,DF,R} \times f_{ES,DF} \right) \tag{8.9}$$

$$P_{DP} = P_{VS} \times 0.5 + P_{ES} \times 0.5 \tag{8.10}$$

A part of the formulation of P_{DP} for the simulation model set 1 on 21st January 2010 is given in Table 8.7. Appendix I shows the complete results.

8.2.4 Morningstar rating system

The probability value of achieving good daylighting performance within a normal office working hour inside a cellular office (P_{DP}) was then graded by the 5-star Morningstar rating system (Blume, 1998).

The Morningstar rating system was developed by Morningstar Incorporated in Chicago originally applied in the field of finance for the measurement of a fund's risk-adjusted return relative to similar funds. Funds are rated from one to five stars with the best performers receiving five stars and the worst receiving a single star. This rating system of investment assessment has recently been cited in wider research scopes successfully, for example in the aspect of indoor environmental quality evaluation (Mui et al., 2009). It was consequently convinced that daylighting

performance of a cellular office being a major component of an indoor environment could also be assessed in the similar approach.

Table 8.8 Conversions from P_{DP} to DPI in set 1 (Partial)

Simulation Model Set No.: 1

Window size: Small Orientation: North

Existence of obstruction: Yes

Date	Time	P_{DP}	DPI
21-Jan-10	0900	0.5867	3
	1000	0.6181	3
	1100	0.6342	3
	1200	0.6404	3
	1300	0.6425	3
	1400	0.6395	3
	1500	0.6241	3
	1600	0.6003	3
	1700	0.5561	3

The system assigned five stars to the top 10% of the probability values of achieving good daylighting performance within a normal office working hour inside a cellular office ($P_{DP} \ge 0.9$), four stars to the next 22.5% (0.675 $\le P_{DP} < 0.9$), three stars to the next 35% (0.325 $\le P_{DP} < 0.675$), two stars to the next 22.5% (0.1 $\le P_{DP} < 0.325$) and one star to the bottom 10% ($P_{DP} < 0.1$). Table 8.8 indicates a part of the conversion framework from P_{DP} to DPI, expressed in number, for the normal office working hours on 21st January 2010 in the simulation model set 1. Appendix J shows the complete framework of conversions for all the simulation model sets over the year.

In this study, the average daylighting performance index (DPI_{avg}) of a cellular office throughout all the working hours of a year was believed having the capability of accounting for the overall daylighting performance of that office. The mathematic expression is presented as follows,

$$DPI_{avg} = \frac{\sum_{i=1}^{n} DPI}{n}$$
(8.11)

where i stands for the i-th hour of the representative day of a month and n is the number of office working hours in a day. From 0900 to 1700 there are nine hours in total every day.

The DPI_{avg} is the major output of this thesis. It was proposed to be a comprehensive daylighting performance indicator of cellular offices that can quantify human perception towards a certain daylit working environment in terms of visual satisfaction and electric lighting energy saving potential in numerical expression. It varies between 1 and 5, such that the larger the DPI_{avg} obtained by an interior, the better is its general performance of daylighting throughout the year. The classification of the overall cellular office daylighting performance within the year is mathematically subject to the round value of DPI_{avg} and could also be expressed in the 5-star rating system (SR_{avg}) , as presented in Table 8.9. For instance, for the simulation office model set 1, which was designed to be barely satisfied with the legislative regulations about daylighting in an office interior, its DPI_{avg} was 3.00, and therefore it is rated as a 3-star DPI grading cellular office. The simulation office model set 11, reported to be occupants' most favourite one among the simple indoor sidelit working environments, attained a DPI_{avg} of 3.97, and thus earned a 4-star award. Table 8.10 summarizes the daylighting performance assessment results of all the simulation office models in this study.

The findings showed that cellular offices with a smaller window and suffered from external obstructions, i.e. model sets 1 to 4, would be harder to get reward from the DPI grading scheme. Their DPI_{avg} were limited at a level of 3 regardless of the orientations, and thus these offices could only enjoy a relatively low star-rating at 3. In case researchers and designers face the problem of huge obstructions blocking considerable daylight amount onto the window, the usual solution was to enlarge the window for harvesting as much daylight as possible. The method may work as the DPI_{avg} did increase by 7% to 26% in the model sets 5 to 8, in which larger windows were placed, comparing with those in the first four model sets, reaching a value from 3.21 to 3.79 depending on the window orientation. It was also discovered from the results of model sets 5 to 8 that a cellular office with its south facing window obscured by an external obstruction even a larger window has already been placed

would cause poorer daylighting performance than that with its side window facing other directions blocked. This explains the particular importance of south facing windows in daylight harvesting in cellular offices. Whenever possible, architects and lighting designers should locate large windows on the façades opposite to less daylighting obstacles. From the results of model sets 9 to 12, in which larger windows were placed but in front of them there were no external obstructions, it was convinced that the ultimate benefits in daylighting performance from a good building position. Their DPI_{avg} generally rose to a level that allowed the cellular offices to be accredited possessing the 4-star daylighting performance. The effect of window orientations under this circumstance was no longer significant. A window facing west is usually criticized as the source of daylight glare. In this study, the unobstructed cellular office with a large window facing west (set 12) however has a slightly higher DPI_{avg} than that facing other orientations. It is probably because low-emissivity glass has been applied to be the glazing in the simulation causing not only thermal discomfort has been minimized but also has the daylight glare.

The analysis revealed that multiple issues both inside and outside a cellular office influence its performance of daylighting. The interactions among each daylighting attribute are so complicated that a performance-based assessment approach, but not a prescriptive-based one which merely gives single literal suggestion or simple numerical threshold of a fundamental indicator, is necessary for improving the daylighting performance for cellular offices. Increasing the area of side windows and placing more openings on the south façades without heavy obstructions may work but it is never the only correct answer to build up a well performed daylit working environment. For instance, an excessively bright or too uniform daylit surrounding due to an oversized side window does not necessarily favour room users. A detailed daylighting simulation or field measurements should be carried out for the investigation of its performance instead. In this study the DPI_{avg} obtained by the best daylighting performance cellular office model just peaked at 4. However, it should be noted that all the 12 simulations concerned only the simplest cellular office environment; researchers and designers are therefore advised to exploit more effective daylighting systems in both hardware and software for reflecting, guiding, diffracting and controlling the incoming natural light, such as light shelves, laser cut window panels and programmatic daylighting control scheme, in order to gain a

higher daylighting performance reputation for their sidelit cellular offices using this newly proposed *DPI* grading scheme.

Table 8.9 Classification of the overall daylighting performance of cellular offices

SR avg	DPI avg
****	4.5 - 5.0
***	3.5 - 4.5
***	2.5 - 3.5
**	1.5 - 2.5
*	1.0 - 1.5

Table 8.10 Daylighting performance assessment results of the 12 office models

Set	Window size	Orientation	Existence of obstruction	DPI avg	SR avg
1	Small	North	Yes	3.00	***
2	Small	East	Yes	3.00	***
3	Small	South	Yes	3.00	***
4	Small	West	Yes	3.00	***
5	Large	North	Yes	3.79	***
6	Large	East	Yes	3.49	***
7	Large	South	Yes	3.21	***
8	Large	West	Yes	3.50	***
9	Large	North	No	3.96	****
10	Large	East	No	3.94	***
11	Large	South	No	3.97	***
12	Large	West	No	4.00	****

8.3 Implication on electric lighting energy saving

A novel assessment method is never successful unless the immediate financial advantage is considered. EMSD (2007) issued a revised code of practice for energy efficiency of lighting installations requiring that the maximum allowance lighting power density (LPD_{max}) for cellular offices shall be 17 W/m². In the newly proposed DPI grading scheme, the total possible saving amount of electric lighting energy throughout a year is implied in the hourly P_{ES} , which is the probability that occupants would accept not turning on electric lights in their cellular offices within that office working hour, or in other words, it is the potential that electric lighting energy can be

saved during that hour. The combination of these two data results in the possible saving amount of electric lighting energy within that working hour by the sidelit cellular office (ES) and the total electric lighting energy saving amount throughout a year (ES_t) can subsequently be computed by summing up all the products of P_{ES} and LPD_{max} , as presented in Equation 8.13,

$$ES_{t} = \sum ES = \sum (P_{ES} \times LPD_{max})$$
(8.13)

Table 8.11 shows the calculation of the possible saving amount of electric lighting energy in 2010 in simulation office model set 1. (Other calculations were recorded in Appendix K.) It was found that a lighting power density of 997 W/m² could be saved, which accounted for about 54% of the overall electric lighting energy consumption, assumed that the electric lighting energy was maximally consumed at 17 W/m² every normal office working hour in the office model. The possible amount of electric lighting energy that could be conserved due to the proper utilization of daylight throughout the year in the other office models simulated in this study ranged from at least 52% to as high as 75%. The results are summarized in Table 8.12. It was concluded that only if the occupants bear in mind the importance of conserving electric lighting energy and estimate the necessity before turning on electric lights in their cellular offices, a large amount of energy could actually be saved. From the findings, it was also observed that a larger window and the inexistence of daylighting obstacles are beneficial to the electric lighting energy saving potential. Comparing the results of model sets 3 and 7 with those of model sets 1, 2 and 4 and 5, 6 and 8, it could be reported that the blocking of the south façade to the visible sky exerts a more serious effect on the energy saving amount than any other window orientations suffer, implying once more the importance of an obstruction-free south-facing window in promoting the exploitation of daylight for reducing electric lighting energy use. As long as the sidelit office is not obscured out of its window, the orientation that it is facing then never becomes a critical factor again to the electric lighting energy conservation.

Table 8.11 Possible electric lighting energy saving amount in set 1

Simulation Model Set No.: 1

Window size: Small Orientation: North

Existence of obstruction: Yes

Date	Time	\mathbf{P}_{ES}	ES	Date	Time	P_{ES}	ES
21-Jan-10	0900	0.5213	8.86	21-May-10	0900	0.5419	9.21
	1000	0.5510	9.37	-	1000	0.5407	9.19
	1100	0.5673	9.64		1100	0.5266	8.95
	1200	0.5737	9.75		1200	0.5258	8.94
	1300	0.5758	9.79		1300	0.5192	8.83
	1400	0.5725	9.73		1400	0.5310	9.03
	1500	0.5568	9.47		1500	0.5418	9.21
	1600	0.5339	9.08		1600	0.5354	9.10
	1700	0.4944	8.40		1700	0.5123	8.71
21-Feb-10	0900	0.5320	9.04	21-Jun-10	0900	0.5354	9.10
	1000	0.5562	9.46		1000	0.5366	9.12
	1100	0.5657	9.62		1100	0.5248	8.92
	1200	0.5673	9.64		1200	0.5211	8.86
	1300	0.5712	9.71		1300	0.5173	8.79
	1400	0.5703	9.70		1400	0.5270	8.96
	1500	0.5614	9.54		1500	0.5394	9.17
	1600	0.5390	9.16		1600	0.5352	9.10
	1700	0.5035	8.56		1700	0.5148	8.75
21-Mar-10	0900	0.5387	9.16	21-Jul-10	0900	0.5376	9.14
	1000	0.5551	9.44		1000	0.5402	9.18
	1100	0.5568	9.47		1100	0.5280	8.98
	1200	0.5497	9.34		1200	0.5212	8.86
	1300	0.5506	9.36		1300	0.5208	8.85
	1400	0.5569	9.47		1400	0.5287	8.99
	1500	0.5570	9.47		1500	0.5417	9.21
	1600	0.5413	9.20		1600	0.5382	9.15
	1700	0.5080	8.64		1700	0.5168	8.79
21-Apr-10	0900	0.5406	9.19	21-Aug-10	0900	0.5409	9.20
	1000	0.5469	9.30		1000	0.5475	9.31
	1100	0.5359	9.11		1100	0.5366	9.12
	1200	0.5266	8.95		1200	0.5263	8.95
	1300	0.5281	8.98		1300	0.5265	8.95
	1400	0.5407	9.19		1400	0.5381	9.15
	1500	0.5474	9.30		1500	0.5468	9.30
	1600	0.5363	9.12		1600	0.5385	9.15
	1700	0.5089	8.65		1700	0.5124	8.71

Table 8.11 (continued)

Date	Time	P_{ES}	ES	Date	Time	P_{ES}	ES
21-Sep-10	0900	0.5464	9.29	21-Nov-10	0900	0.5446	9.26
	1000	0.5574	9.47		1000	0.5734	9.75
	1100	0.5543	9.42		1100	0.5849	9.94
	1200	0.5464	9.29		1200	0.5855	9.95
	1300	0.5486	9.33		1300	0.5825	9.90
	1400	0.5571	9.47		1400	0.5758	9.79
	1500	0.5567	9.46		1500	0.5554	9.44
	1600	0.5361	9.11		1600	0.5220	8.87
	1700	0.5003	8.51		1700	0.4800	8.16
21-Oct-10	0900	0.5500	9.35	21-Dec-10	0900	0.5356	9.10
	1000	0.5687	9.67		1000	0.5682	9.66
	1100	0.5707	9.70		1100	0.5834	9.92
	1200	0.5692	9.68		1200	0.5861	9.96
	1300	0.5713	9.71		1300	0.5857	9.96
	1400	0.5696	9.68		1400	0.5810	9.88
	1500	0.5550	9.43		1500	0.5627	9.57
	1600	0.5231	8.89		1600	0.5266	8.95
	1700	0.4856	8.26		1700	0.4839	8.23

 $ES_t = 997 \text{ W/m}^2$

About 54% of electric lighting energy consumption could be saved throughout the year.

Table 8.12 Possible electric lighting energy saving amounts in the 12 office models

Set	Window size	Orientation	Existence of obstruction	ES_t (W/m ²)	Saving amount (%)
1	Small	North	Yes	997	54
2	Small	East	Yes	977	53
3	Small	South	Yes	951	52
4	Small	West	Yes	972	53
5	Large	North	Yes	1,167	64
6	Large	East	Yes	1,133	62
7	Large	South	Yes	1,079	59
8	Large	West	Yes	1,125	61
9	Large	North	No	1,339	73
10	Large	East	No	1,331	72
11	Large	South	No	1,376	75
12	Large	West	No	1,379	75

8.4 Summary

This chapter synthesizes all the findings in the previous contents of the thesis and aims to develop a novel daylighting performance assessment method for cellular offices in the form of a scientific grading scheme with the use of a new daylighting performance indicator, namely daylighting performance index (DPI). The assessment method was designed to follow the grading schemes of the third generation in order to particularly display the different weights of influence of the various daylighting performance criteria and decision factors. In this study, the representative lighting parameter values of the five decision factors with respect to the two criteria under the three default sky conditions within the normal office working hours (0900 - 1700) on the selected dates of the months throughout the year of 2010 were obtained via the computational lighting simulation program DIALux. The corresponding probability values of occupants' visual satisfaction with a cellular office and acceptability of not turning on electric lights inside that cellular office due to the decision factors under each sky type were then calculated based on the formulae derived in the previous chapter. The hourly sky type of Hong Kong was also analyzed with the use of the latest cloud cover data, such that the monthly averaged frequencies of occurrence of clear sky, partly cloudy sky and overcast sky in each office working hour could be made known. The sky-type-weighted probability of occupants' visual satisfaction or electric lighting energy saving potential due to each of the decision factors within a working hour was therefore computable. The weight of influence of each decision factor on its criterion was followed to relate to its corresponding sky-type-weighted probability value so that the DPI of each working hour could be calculated. A larger DPI means better general daylighting performance can be achieved inside the cellular office over the whole year. The Morningstar rating system was made reference on the development of a grading scheme in terms of DPI in this study for encouraging architects and lighting designers to create a well performed daylit working environment for a higher reputation. The instant profits earned from the more exploitation of daylight and less consumption of electric lighting energy can also be estimated through the use of *DPI*.

With the application of the *DPI* grading scheme, the daylighting performance of a cellular office can be evaluated in a more scientific and comprehensive manner. The

guarantee of a well performed daylit working environment is no longer dependent on some prescriptive regulations or threshold numbers, but entirely provided after multiple criteria and decision factors comprised human factors and energy issues were reviewed.

CHAPTER 9 CONCLUSION

9.1 Summary and significance of research study

This thesis presents a new multi-criteria comprehensive daylighting performance assessment method for cellular offices. The study was made up of nine chapters, in which the background, the objectives, the methodology, the findings and the long-term impacts of this research are discussed one by one.

The idea of introducing a novel scheme for evaluating indoor daylighting performance came up in virtue of the fact that, although various researches have reported that utilization of daylight in buildings has so many advantages to humans and the environment and more lighting energy efficient devices have been applied, occupants are usually found turning on all electric lights and covering all side windows with blinds in their cellular offices without noticing the actual daylighting conditions once they arrived. This thesis believes their behaviour is not a habit but the consequence of poor daylighting design in their workspaces. Whether the deficiency of the daylighting design is inborn or acquired became the first question to be solved in this study.

Hong Kong is the city concerned in this research. The climatic parameters of this city were analyzed and the feasibility of exploiting daylight for illuminating building interiors in this city was reported. It was found that the outdoor horizontal illuminance reached 10 klux for over 85% of the normal office working hours throughout the last decade, proving that the potential of daylighting in Hong Kong is actually very high. The poor daylighting design in interiors is therefore being blamed by the limitations of the commonly used daylighting performance assessment methods. Numerous indicators have ever been proposed for daylighting design in interiors. They however solely focus on one or parts of the essential daylighting attributes leaving the interrelationships among the daylighting performance criteria and decision factors uncertain. To close the loophole of knowledge, a new assessment method that considers daylighting performance in a whole with multiple criteria and decision factors of different weights has been introduced.

Preferences and practices about the design for daylighting in cellular offices from over 200 office workers and building design practitioners were collected via respective surveys in the beginning of the study. From the responses of the occupants, it was found that they would like to have a side window in their workspaces, where most of the respondents preferred a large one in a longer-width rectangular shape placed mainly on the southerly façade with a reflective glass as the window glazing and a view out of natural scenes although they might not thoroughly understand some of the rationales. It was also noticed that office users might have different opinions about the lighting and shading control methods but they did show a relatively consistent demand to have the power over the controlling devices. From the answers of the designers and engineers, it was realized that the allocation of work for designing for daylighting in cellular offices was not clearly defined in the industry, which probably resulted in the inadequate communications and the undesirable performance of daylighting systems and other various building services systems. It was also revealed that practitioners would mostly welcome the introduction of impact on lighting energy saving and occupants' visual satisfaction in the future daylighting design guide. In addition to the increasing concern on the sustainable development without any compromise of visual comfort in office buildings, the research direction of this thesis was firmly established - the new daylighting performance assessment method should hypothesize both occupants' visual satisfaction and electric lighting energy saving potential as the equal weighted criteria explained by various relevant decision factors of different importance levels in order to create a visually satisfactory and low carbon lighting environment in cellular offices.

Field surveys consisting of physical measurements and user assessment questionnaires were conducted and statistical analyses were carried out to identify the decision factors accountable for the two criteria and find out the quantitative lighting parameters that have relationships with these factors. Apart from the traditional light measurement tools, in this study, the high dynamic range (HDR) photography technique was also applied for the acquisition of luminance distribution inside the test cellular offices. Encouraging results were obtained paving the path for the future development of advanced light measurement. Five decision factors were

proved to be valid to give explanation to each of the criteria, and they were namely 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window'. Their individual representative lighting parameters were also discovered. They were coincidently the same for formulating logistic expressions in the determination of the probability of achieving the two criteria with regard to each decision factor, and they were respectively the logarithm of average illuminance of the desk surface ($log E_{avg,desk}$), the logarithm of average luminance of the surrounding surfaces ($log L_{surr}$), the ratio of minimum to average illuminances of the desk surface (U_{desk}), the ratio between average luminance of the back half of the room to that of the front half (L_{back}/L_{front}) and the new daylight glare index proposed by Nazzal (2001b) (DGI_{N2}).

This thesis also makes use of the theory of analytic hierarchy process (AHP) to develop a hierarchical structure for investigating the weights of influence of each decision factor on its criterion. Cellular office occupants were invited to perform numerous pairwise comparisons among the five decision factors. Their perception of each decision factor in relation to the occupants' visual satisfaction and electric lighting energy saving potential was quantified. It was found that the rank of the five decision factors towards the former criterion was 'perceived glare from window' (28%), 'brightness on desktop' (26%), 'uniformity on desktop' (18%), 'brightness on surroundings' (16%) and 'uniformity on surroundings' (12%). It was also found that the rank of the five decision factors towards the latter criterion was 'brightness on desktop' (35%), 'uniformity on desktop' (20%), 'perceived glare from window' (18%), 'brightness on surroundings' (17%) and 'uniformity on surroundings' (10%).

In the last part of this research study, the formulation of the multi-criteria daylighting performance index (*DPI*), which was the major output of this thesis, was introduced. The classification of official hourly sky type of this city, the results of the DIALux daylighting simulations of typical cellular offices with different window sizes, orientations and external obstructions, and the findings reported in the previous paragraphs, such as the logistic probability formulae of occupants' visual satisfaction and acceptability of not turning on electric lights in cellular offices as well as the weights of influence of the decision factors on their criteria, were all input to calculate the chance of achieving good daylighting performance in each cellular

office model within a normal office working hour, which in this study was given the name DPI. The average value of DPI (DPI_{avg}) throughout a year and its associated DPI grading scheme were further believed to have the capability of accounting for the overall daylighting performance of a cellular office and estimating the immediate financial benefits due to the saving of electric lighting energy inside the office. This thesis also found that as long as occupants bear in mind the importance of preserving the natural environment every time before they turn on electric lights in their cellular offices, a considerably large amount of electric lighting energy indeed can be conserved. A novel multiple criteria daylighting performance assessment method was developed in this manner that fills up the knowledge gap that current indicators solely express individual daylighting attribute and evaluates occupants' visual satisfaction and electric lighting energy saving possibility in a daylit cellular office. This work can contribute to establish a revised version of HK-BEAM and other similar environmental protection schemes in regards to daylighting performance in office buildings. Building developers, architects, engineers, lighting designers and environmentalists are hereby advised to apply the DPI grading scheme for designing better daylighting performance inside private workplaces and for encouraging people to utilize more natural light and less artificial lights from now on.

9.2 Limitations of research study

The newly proposed *DPI* grading scheme for evaluating the daylighting performance of cellular offices with multiple criteria and decision factors, like many other contemporary indoor environmental quality rating methods, suffers from the assumptions made at the times of its development, which then become the limitations during its application. They are discussed in this section.

This thesis focuses on the creation of a new multi-criteria daylighting performance assessment method for cellular offices with a side window. Limited by the scope of work in the investigation, the method is not applicable for open plan offices, residences or any interior premises other than private workspaces of a specific size and condition nor appraising the daylighting performance of cellular offices having skylights or more than one side windows. Effort should be made on expanding the applicability of this method to more kinds of indoor spaces. The study emphasizes on

the effects of daylighting in human visual aspects and the possible saving of electric lighting energy. Neither is the method applicable in interiors for evaluation any thermal discomfort nor for the estimation of possible solar radiant heat gain due to daylighting. More works should be carried out in the future for investigating the combined visual and thermal influence on humans and energy raised by the use of daylight.

This research study involves the field measurements of daylight inside cellular offices so as to make known the simultaneous daylit condition when occupants were giving comments on it. Illuminance at a point could be instantaneously read from an illuminance meter, but it took time for researchers to capture photographs of different exposures for the acquisition of luminance distribution over a surface, and ask occupants questions and record their feedbacks. The time was so short lasting for just one or two minutes; daylight however changes all the time resulting in the difficulty in accurately measuring daylight during the field surveys. Although days of stable sky type were selected to carry out measurements, it was still hypothesized in this study that any changes in the daylight condition during each survey were negligible. The lighting parameter values measured for explaining the five decision factor of daylighting performance inside cellular offices were therefore limited to the assumption of a stable sky condition.

On one hand, the weights of influence of the two criteria, i.e. occupants' visual satisfaction and electric lighting energy saving potential, on the overall daylighting performance of a cellular office were respectively assumed to be 0.5 in this study for particularly showing the equal importance of the human factors and the energy issue. It was an arbitrary determination and inadequate evidence was shown to prove it was the actual situation in humans' mind. Despite balancing their significance, this hypothesis might limit the accuracy of accounting for a well performed daylit working environment. On the other hand, the weights of influence of the five decision factors respectively on the two criteria were resolved in a hierarchical structure of the AHP, and thus the analysis was limited to follow the principle of AHP that requires the decision factors at the same level should be independent and should not have any relationship among them. That means, for example, even uniformity on the desktop is only physically meaningful when there is sufficient

brightness on that surface, in this study it was neglected with the assumption that under the normal daylit condition, the brightness on the surface must be adequate to display uniformity and the change of brightness does not exert any influence on uniformity.

The thought of human beings is perhaps the most complicated matter in the world. Different people may have different interpretations of a single issue; some people may keep rational in making a series of connected decisions but most of them cannot. This makes quantification of human perception, such as that involved in this research – to evaluate occupants' visual satisfaction and acceptability of not turning on electric lights in a cellular office by giving numerical ratings to determine its daylighting performance – is a difficult task for researchers to achieve. It was therefore assumed that every survey participant has a similar tendency of cognition, or the same ruler in mind, towards each daylighting performance criterion or decision factor, and can be precisely express it in a relative scale. The setback of this hypothesis could be minimized with a larger size of database. However it was not the case in this research study due to lacking of resources in time as well as in finance. The outcomes of the thesis might have deviations even though it was believed to be a convincing methodology.

Last but not least, the limitation of this study also came into sight in the daylighting simulations of different cellular office models with the use of DIALux (2011). It is one of the most efficient lighting calculation programs on the market probably because of its sparkling advantage – free of charge but still providing reasonably precise results – which is good news for researchers with limited resources. It is however comparatively weak in its calculation pace with other lighting simulation programs, such as RADIANCE (Mardaljevic and Rylatt, 2003). For instance, in DIALux, every time only one daylighting situation can be simulated, part of the simulation time is spent for creating a rendered image, but not every calculation result is valuable for computing the *DPI*. Manual exporting of the useful data from the program to spreadsheets is necessary resulting in prolonging the analysis procedures. The work has to be simplified to adopt in HK-BEAM. It is recommended to develop a tailor-made *DPI* computer calculator in the future, by which solely the required lighting parameters would be input and output without the depiction of the

image unless requested to shorten the time of computational simulation processing. Besides, the calculation accuracy of DIALux has not been verified in this study. A future study will be conducted to compare the daylit conditions between a real office and the simulated office model in terms of the same dimensions, surface reflectances and window properties.

9.3 Implication of future research study

Conventional light measurement techniques using meters are a point-by-point tedious process. Not only confining creative thinking of lighting professionals and hindering lighting practice, it is probably also a reason explaining why architects and lighting designers are accused of crafting poor daylighting design in interiors – they lack for instruments to measure the light distribution across the daylit scene. In this study innovative HDR photography using a consumer grade digital camera has been successfully introduced as a tool to evaluate subjective perception towards the daylighting performance of an interior by measuring luminance within the field of view at pixel level extracted from a photometrically correct HDR image in a quick, reliable and holistic way. In the future this technique should be extended to measure the spatial or photogrammetric luminance of the entire scene. The idea was first described by Wolf et al. (1995) and Berutto and Fontoynont (1995) that for each pixel not only the exact object luminance but also its position with regards to the camera and the solid angle subtended can be determined from an image. With the invention of advanced HDR photography, now this concept can become materialized. Once the additional information is acquired, improved physiological evaluations of an artificial or natural lighting environment can be carried out. The derivation of glare indices such as Daylight Glare Index and Unified Glare Rating are then in need of revision. Some researchers have initiated studies on this future lighting research trend (Cai and Chung, 2010).

In this research study, user acceptance surveys were conducted in real daylit cellular offices. The advantage was that participants could observe the actual dalighting performance and therefore could present an exact evaluation at the same time; the drawback was however that the daylit conditions were uncontrolled such that daylight might severely vary during the period of the survey causing the imprecision

of respondents' expressions on their perception towards the daylighting performance of the interior. Improvements can be made if an HDR image was produced for an indoor environment of relatively steady daylit condition, where all the lighting parameter values have already been known from the image, and shown in an HDR display device, which offers a luminance contrast ratio as high as 200,000:1, even higher than what a human eye can cope with. A model of the HDR display is shown in Figure 9.1 (Seetzen et al., 2004).

Figure 9.1 DR-37P HDR display by Brightside

The future development of subjective evaluation of lighting performance is to improve the authenticity of the scene to be appraised by respondents in case it is not real. An HDR display is available to demonstrate HDR images of different lighting conditions of an interior inside a dark room, such that all the lights must come from the display and all the assessment should be theoretically made solely due to the lighting performance of that interior by the respondents. It sounds to be successful but researchers should never feel satisfactory with this situation.

3D imaging, or stereoscopy, has become a popular topic in amusement and entertainment in recent years. It is predicted that this technique can also be integrated with the HDR photography technique for lighting research although appropriate corrections for the reductions of contrast ratio and brightness level are essential. In additional to the technology of Virtusphere (2001), in the near future, respondents wearing the 3D wireless head-mounted display in the form of spectacles may no longer be able to distinguish the 3D rendered image shown on the display in front of their eyes from the real scene. Lighting performance evaluation of an interior in relation to human factors will hence get into a new era.

APPENDIX A: Global horizontal illuminance (in klux) of Hong Kong (2007-2009)

Date	Time									Date	Time								
	0900	1000	1100	1200	1300	1400	1500	1600	1700		0900	1000	1100	1200	1300	1400	1500	1600	1700
1-Jan-07	11.3	29.5	46.0	70.7	74.3	68.5	54.3	36.9	15.7	1-Apr-07	20.7	49.0	80.9	57.3	82.7	72.6	49.2	55.1	28.2
2-Jan-07	21.5	40.2	57.2	68.1	74.3	70.0	57.6	38.1	17.4	2-Apr-07	17.4	12.6	13.2	31.0	26.1	32.3	31.3	24.5	7.1
3-Jan-07 4-Jan-07	17.7 9.4	33.0 37.6	51.8 40.7	42.0 27.4	45.0 46.6	37.7 55.7	28.9 47.1	16.5 26.4	8.5 9.1	3-Apr-07 4-Apr-07	36.5 21.3	44.6 25.5	61.4 40.0	53.7 21.9	69.6 54.6	81.2 60.7	70.3 47.3	48.5 56.0	19.8 44.2
5-Jan-07	13.9	24.9	46.3	34.2	13.2	11.0	9.0	4.2	3.2	5-Apr-07	28.7	44.7	57.3	70.3	84.3	63.0	66.5	42.5	18.9
6-Jan-07	6.8	16.1	19.7	26.5	31.3	26.5	16.8	10.3	5.8	6-Apr-07	17.4	42.9	59.7	93.7	91.9	92.4	79.7	49.2	16.9
7-Jan-07	12.9	30.9	50.8	65.0	75.9	70.8	56.9	37.2	16.8	7-Apr-07	9.7	13.9	19.4	19.7	26.5	19.7	7.1	4.8	2.9
8-Jan-07 9-Jan-07	10.0 5.8	18.4 19.0	25.5 25.8	26.1 31.3	28.4 34.4	24.2 26.8	22.6 27.9	14.5 21.1	8.1 10.0	8-Apr-07 9-Apr-07	15.8 22.6	39.5 32.6	75.7 49.6	86.6 47.0	104.5 23.6	83.9 23.9	39.9 23.9	26.1 16.8	16.1 8.7
10-Jan-07	14.5	28.5	35.3	39.0	40.7	56.5	45.1	31.8	12.5	10-Apr-07	25.2	45.7	47.8	77.3	66.2	48.6	51.3	46.6	18.2
11-Jan-07	23.0	42.3	56.6	75.4	64.9	58.4	57.9	38.1	13.4	11-Apr-07	12.9	23.9	43.6	42.9	48.8	49.8	59.9	38.4	26.1
12-Jan-07	8.7	26.1	50.2	65.8	79.4	73.9	60.9	42.0	20.4	12-Apr-07	17.4	58.1	90.0	92.9	66.9	60.2	34.9	41.7	28.8
13-Jan-07	22.8 22.3	40.7 36.4	58.4 59.6	68.1 74.0	70.2 77.0	69.8 71.9	56.9 59.0	39.6 39.4	17.7 19.0	13-Apr-07	5.5 5.2	12.6 10.3	11.9 13.9	13.6 18.1	13.2 22.9	14.5 15.2	12.9 17.4	5.5 11.3	5.5
14-Jan-07 15-Jan-07	15.8	41.4	46.4	48.5	66.8	71.7	61.4	41.4	19.0	14-Apr-07 15-Apr-07	4.2	10.3	14.5	17.8	16.8	12.9	12.9	9.4	5.8 4.5
16-Jan-07	16.8	37.0	57.9	43.9	60.1	72.0	62.0	42.5	20.8	16-Apr-07	9.0	16.5	20.0	30.3	45.8	20.3	13.9	13.2	12.9
17-Jan-07	6.8	19.0	15.8	41.3	26.8	17.4	14.5	10.3	6.1	17-Apr-07	43.8	67.2	86.7	95.2	90.5	89.2	54.7	29.4	16.1
18-Jan-07	6.8	14.5	19.4	27.4	21.6	24.9	10.7	6.1	4.8	18-Apr-07	19.0	39.9	52.2	82.3	102.3	100.0	68.3	60.7	35.2
19-Jan-07 20-Jan-07	5.5 1.3	10.0	19.4 4.2	18.4 8.4	21.6 8.4	19.4 2.9	13.2 2.9	16.1 1.6	7.1 0.6	19-Apr-07 20-Apr-07	46.5 29.1	71.6 50.6	90.8 75.0	99.2 84.7	103.1 95.7	95.6 87.5	83.0 54.9	62.2 18.1	36.0 4.2
21-Jan-07	2.9	4.5	9.4	19.0	16.1	17.8	21.3	14.5	12.5	21-Apr-07	21.9	67.3	91.9	107.1	109.6	104.3	78.4	34.1	18.3
22-Jan-07	3.6	6.8	9.0	9.7	8.7	11.3	11.0	8.4	3.9	22-Apr-07	20.0	28.1	60.1	99.5	98.3	78.4	70.6	67.3	39.4
23-Jan-07	6.8	13.9	30.3	47.1	55.6	43.4	27.8	18.1	9.0	23-Apr-07	30.4	40.0	68.7	91.5	94.2	99.6	70.6	51.9	32.2
24-Jan-07	13.2	24.2	31.6	38.9	35.8	33.4	31.3	20.0	12.2	24-Apr-07	10.0	16.5	24.2	20.7	55.4	78.8	52.8	38.3	24.4
25-Jan-07 26-Jan-07	10.0 17.4	24.9 29.8	42.5 52.5	59.1 59.2	77.4 51.2	78.2 50.3	62.8 45.4	42.4 31.3	20.1 14.5	25-Apr-07 26-Apr-07	13.2 16.1	19.7 38.1	36.2 40.7	36.8 60.4	26.1 90.3	26.1 72.3	45.5 66.5	49.1 45.8	25.5 32.1
27-Jan-07	18.4	27.9	45.5	54.1	57.7	55.0	39.6	29.6	12.3	27-Apr-07	36.4	33.9	39.4	38.7	32.9	46.4	39.3	33.6	24.7
28-Jan-07	8.1	9.0	13.6	28.7	32.9	23.6	14.2	6.8	5.2	28-Apr-07	3.9	5.8	16.8	19.0	15.2	7.1	5.5	5.8	4.2
29-Jan-07	17.4	28.4	39.0	64.6	86.1	83.5	70.7	50.2	26.9	29-Apr-07	8.4	9.0	36.2	22.9	38.4	44.5	33.9	24.5	11.3
30-Jan-07 31-Jan-07	7.1 23.1	18.1 43.2	43.6 47.7	57.2 74.9	85.3 81.3	82.7 75.1	69.0 60.4	48.8 41.3	25.6 21.1	30-Apr-07	30.8 32.3	34.2 45.5	48.1 80.8	73.9 96.1	71.3 94.5	49.9	51.2 70.5	34.2 51.6	43.7 32.7
31-Jan-07 1-Feb-07	23.1 18.1	43.2 23.9	31.3	68.4	81.3	75.1 76.4	63.2	41.3	21.1	1-May-07 2-May-07	32.3 19.4	45.5 22.6	80.8 35.2	96.1 37.8	94.5 59.5	72.1 67.5	70.5 49.3	51.6 22.6	32.7 13.9
2-Feb-07	18.4	47.5	66.8	82.2	87.8	83.1	69.4	49.3	26.0	3-May-07	3.2	6.1	10.7	16.5	15.5	25.5	21.6	24.2	10.3
3-Feb-07	25.5	36.6	61.7	80.4	85.7	80.4	67.4	47.4	23.2	4-May-07	18.1	25.8	44.1	50.9	44.9	29.7	23.6	16.1	11.6
4-Feb-07	4.2	8.4	14.5	20.3	15.2	11.6	11.6	8.1	7.7	5-May-07	19.0	28.4	47.8	32.3	36.2	11.9	18.4	25.5	11.9
5-Feb-07 6-Feb-07	15.2 25.8	39.9 47.1	75.6 64.5	91.8 79.6	89.2 81.5	63.6 79.0	71.4 65.8	52.0 45.6	22.8 22.5	6-May-07 7-May-07	29.7 46.0	48.9 74.2	57.8 89.6	78.8 86.9	97.8 92.4	98.6 86.7	83.1 80.6	65.7 63.1	36.9 43.3
7-Feb-07	24.1	42.7	64.8	79.6	86.2	83.0	69.4	49.6	27.2	8-May-07	25.2	45.1	69.8	80.3	98.1	106.2	72.3	75.9	44.7
8-Feb-07	24.8	52.1	72.7	86.7	89.6	78.8	83.8	61.3	23.9	9-May-07	32.5	55.9	95.4	103.3	111.1	98.5	95.7	72.6	45.2
9-Feb-07	16.5	27.4	62.5	73.5	87.8	81.9	64.5	44.9	23.7	10-May-07	51.4	80.1	97.2	102.9	107.5	104.4	90.5	69.1	42.8
10-Feb-07	23.1	44.2	63.2	74.1	77.3	75.2	62.7	41.1	22.1	11-May-07	24.5	62.5	84.7	89.6	84.9	90.8	33.2	10.3	4.2
11-Feb-07 12-Feb-07	20.3 18.1	39.9 39.3	58.9 55.7	69.3 69.3	75.6 74.2	71.8 76.8	58.0 56.7	37.7 42.0	20.2 19.6	12-May-07 13-May-07	8.4 56.2	11.3 69.4	53.0 70.8	95.1 65.8	105.6 42.6	92.4 32.9	90.5 23.9	68.2 25.8	42.3 17.8
13-Feb-07	18.4	31.7	34.9	34.5	36.5	33.2	29.1	22.8	7.1	14-May-07	57.0	79.7	70.8	80.1	106.7	104.7	90.8	68.8	43.1
14-Feb-07	8.4	20.7	20.3	11.0	21.0	16.1	18.1	22.9	11.6	15-May-07	34.3	47.3	85.9	63.6	70.2	57.0	26.8	50.9	30.9
15-Feb-07	9.0	20.7	43.4	53.1	58.8	62.0	65.1	54.3	30.4	16-May-07	12.9	21.9	29.1	28.1	31.3	28.1	16.8	13.2	10.3
16-Feb-07 17-Feb-07	11.6 6.1	26.1 6.5	25.2 12.9	33.9 41.8	34.5 31.0	38.5 13.9	27.8 5.8	18.1 3.6	9.7 5.2	17-May-07 18-May-07	21.0 45.8	22.6 76.1	24.9 102.0	27.8 102.6	32.3 104.7	33.2 100.9	14.5 49.3	12.9 38.7	9.7 44.0
17-Feb-07 18-Feb-07	2.9	6.1	14.8	22.9	20.3	15.8	20.7	14.5	7.7	19-May-07	60.1	84.1	99.8	96.6	69.6	86.0	73.4	69.2	40.2
19-Feb-07	5.5	12.6	54.1	77.1	71.2	57.3	34.8	20.7	10.7	20-May-07	20.3	26.1	25.2	40.3	56.1	41.3	28.4	19.4	8.4
20-Feb-07	14.8	21.0	76.6	89.8	87.1	71.1	36.9	12.9	8.4	21-May-07	5.8	9.0	7.7	4.2	4.8	4.5	2.9	2.3	3.9
21-Feb-07	20.7	52.5	76.9	90.5	96.1	92.8	79.5	58.0	32.2	22-May-07	11.3	15.5	14.2	15.8	28.7	17.4	24.9	8.1	9.0
22-Feb-07 23-Feb-07	11.3 12.6	19.0 17.8	32.6 23.9	55.7 44.6	60.1 50.6	47.1 44.5	59.1 33.8	52.6 28.4	29.4 13.2	23-May-07 24-May-07	7.1 5.8	28.7 11.9	61.5 16.5	11.0 21.0	17.4 31.0	18.7 24.2	36.5 22.9	19.7 5.2	7.1 3.2
24-Feb-07	21.3	24.2	20.3	15.8	13.6	24.5	19.0	13.6	11.6	25-May-07	39.4	49.6	55.5	43.9	62.3	48.8	55.5	39.5	33.8
25-Feb-07	22.7	19.7	18.7	33.2	39.7	21.9	32.4	19.4	5.2	26-May-07	24.9	20.3	50.3	84.9	93.2	89.8	83.8	49.5	28.4
26-Feb-07	5.8	14.5	27.4	66.9	87.8	43.1	43.6	15.8	10.0	27-May-07	1.9	4.2	25.8	34.9	17.4	14.2	16.1	12.6	11.0
27-Feb-07	3.6	8.4	12.9	16.8	18.1	13.6	9.7	4.2	2.3	28-May-07	14.5	5.5	4.8	4.8	1.6	2.3	5.2	10.0	16.1
28-Feb-07 1-Mar-07	3.9 15.8	4.2 28.4	4.5 62.0	13.6 92.4	43.3 74.8	18.4 44.4	14.5 57.7	8.7 51.5	7.7 29.0	29-May-07 30-May-07	5.2 23.2	14.2 30.7	13.6 12.9	14.2 18.1	15.2 63.2	15.2 36.8	8.7 27.4	11.9 38.7	9.7 30.7
2-Mar-07	21.6	39.0	38.7	80.2	88.4	53.1	62.5	44.3	24.8	31-May-07	13.9	17.4	6.8	10.3	17.8	23.6	35.5	14.8	32.3
3-Mar-07	36.9	60.9	84.0	98.0	102.0	98.1	83.3	61.4	35.8	1-Jun-07	15.5	30.7	47.8	27.8	39.4	50.1	44.5	50.3	22.0
4-Mar-07	11.9	23.9	21.0	26.8	38.1	42.7	19.7	7.7	3.6	2-Jun-07	6.1	4.5	0.6	0.3	0.6	1.3	8.1	6.1	6.8
5-Mar-07 6-Mar-07	4.5 11.3	5.8 15.2	12.6 27.8	25.5 43.1	40.0 14.2	13.9 9.4	23.9 17.8	18.4 14.2	8.1 6.5	3-Jun-07 4-Jun-07	14.5 13.2	22.6 21.9	28.4 36.8	16.5 72.8	13.9 66.3	16.5 52.2	18.4 41.6	18.1 21.0	14.2 10.7
7-Mar-07	8.7	21.3	35.8	78.1	97.6	98.5	46.9	25.2	15.5	5-Jun-07	26.8	28.7	25.5	34.2	40.0	40.7	36.8	29.1	16.5
8-Mar-07	24.5	27.4	32.3	38.1	50.4	60.7	46.6	46.3	25.9	6-Jun-07	20.3	17.4	50.9	67.6	73.6	90.4	64.7	42.7	31.1
9-Mar-07	10.3	23.2	62.6	83.1	83.0	61.0	43.7	26.4	17.1	7-Jun-07	11.3	20.0	52.7	48.7	47.1	56.4	36.5	22.9	17.8
10-Mar-07 11-Mar-07	19.0 26.4	18.1 41.3	23.9 27.8	63.4 54.3	95.4 80.6	91.1 66.6	78.2 37.1	57.4 27.1	31.7 24.5	8-Jun-07 9-Jun-07	9.7 1.0	10.3 1.3	21.3 0.6	31.0 1.0	35.5 1.3	42.6 2.9	25.2 8.7	20.7 10.3	18.7 6.1
11-Mar-07 12-Mar-07	16.5	13.6	46.9	53.2	46.6	37.8	19.4	18.7	4.8	9-Jun-07 10-Jun-07	7.7	24.2	16.1	1.0	1.3	44.9	35.5	11.6	7.7
13-Mar-07	5.2	10.0	17.4	21.3	17.8	19.4	11.0	7.1	2.9	11-Jun-07	30.0	56.8	52.1	26.8	53.7	59.1	15.8	9.0	5.5
14-Mar-07	13.2	15.8	25.5	47.2	47.5	43.8	44.9	33.0	18.6	12-Jun-07	17.4	18.4	13.2	18.1	26.5	22.6	10.3	13.9	5.8
15-Mar-07	12.9	26.1	38.1	62.7	58.3	46.5	21.0	8.7	6.5	13-Jun-07	21.0	38.4	21.3	52.2	49.6	68.3	42.8	34.2	29.0
16-Mar-07 17-Mar-07	15.5 10.3	30.0 14.8	39.8 25.8	69.2 48.8	84.5 48.8	77.4 57.6	66.6 48.6	53.8 30.5	22.9 15.9	14-Jun-07 15-Jun-07	12.6 10.0	22.9 28.1	28.1 24.2	39.4 26.5	74.2 29.4	74.1 52.2	67.7 36.8	52.4 17.4	21.9 9.0
17-Mar-07 18-Mar-07	24.2	37.6	25.8 54.7	48.8 52.1	48.8 90.5	86.8	48.6 78.1	57.4	30.8	15-Jun-07 16-Jun-07	18.4	25.2	42.3	79.1	50.9	52.5	52.1	54.6	9.0 19.4
19-Mar-07	21.9	5.8	15.5	47.9	67.0	90.6	64.0	36.6	11.9	17-Jun-07	36.8	32.6	55.4	96.5	64.5	78.7	80.2	56.8	46.9
20-Mar-07	17.4	36.5	33.6	26.5	53.7	71.5	62.6	29.2	16.4	18-Jun-07	32.9	34.9	41.3	59.9	45.5	44.6	39.3	17.8	8.4
21-Mar-07	7.1	14.5	36.8	53.4	55.2	33.2	36.8	21.3	14.5	19-Jun-07	5.2	11.3	19.0	25.2	35.8	41.0	42.6	29.1	23.2
22-Mar-07	10.7 13.9	17.8 13.2	26.8 14.2	32.9 14.5	25.2 22.6	17.8 24.5	18.7 14.5	13.2	26.3	20-Jun-07	46.9 46.8	71.5 77.0	77.7 90.9	106.5 102.4	99.3 105.2	15.5 81.0	3.6 68.0	8.7 67.0	19.0 53.1
23-Mar-07 24-Mar-07	5.5	9.0	7.1	5.5	2.9	3.6	9.4	9.0 23.2	6.1 10.7	21-Jun-07 22-Jun-07	46.8 37.1	22.6	75.9	33.6	105.2	11.9	37.8	47.5	22.5
25-Mar-07	8.1	9.4	18.4	12.9	14.8	5.2	32.3	8.4	8.7	23-Jun-07	55.9	78.4	95.4	101.6	101.4	105.0	91.6	72.1	44.1
26-Mar-07	9.7	15.8	11.3	42.3	33.9	5.2	11.6	10.3	8.4	24-Jun-07	47.9	73.8	95.4	101.6	105.8	104.0	92.3	73.0	48.7
27-Mar-07	16.1	21.0	19.4	10.3	7.1	6.5	9.7	7.1	5.8	25-Jun-07	33.5	57.4	55.3	97.2	89.7	89.9	83.3	53.4	34.2
28-Mar-07	35.9	57.5	74.6	86.7	90.8	88.7	77.4	57.0	33.2	26-Jun-07	50.6	81.9	98.8	106.3	97.5	100.0	92.9	73.6	49.0
	33.7	53.8	69.8 48.1	92.1 91.0	94.7 94.1	88.4 89.6	61.3 51.6	29.1 24.2	18.3 11.3	27-Jun-07 28-Jun-07	46.2 21.3	69.6 6.5	56.3 6.1	76.7 3.6	79.0 8.7	65.1 11.6	59.2 13.9	41.3 9.0	34.0 11.6
29-Mar-07 30-Mar-07	34.6																		
30-Mar-07 31-Mar-07	34.6 17.8	32.3 33.2	63.0	80.7	71.6	56.5	43.0	42.3	25.0	29-Jun-07	20.3	36.8	39.4	33.9	70.9	54.1	49.3	48.3	33.2

73 .	me.									B :	me.								
Date	Time									Date	Time								
	0900	1000	1100	1200	1300	1400	1500	1600	1700		0900	1000	1100	1200	1300	1400	1500	1600	1700
1-Jul-07	58.2	66.1	59.0	88.3	95.0	67.8	92.6	74.6	50.1	1-Oct-07	23.6	36.9	49.5	44.5	31.3	25.2	17.4	14.5	7.7
2-Jul-07	28.7	14.8	56.3	110.5	108.2	68.4	86.7	75.5	50.2	2-Oct-07	19.7	33.6	30.0	41.6	52.1	79.8	38.0	22.2	13.4
3-Jul-07 4-Jul-07	37.4 38.0	25.5 33.9	62.0 15.2	92.5 35.8	87.1 47.1	58.6 62.5	69.2 58.4	50.3 39.7	31.3 32.3	3-Oct-07 4-Oct-07	15.2 43.4	35.1 64.1	61.6 80.8	81.6 84.8	67.1 68.5	74.2 47.0	58.1 62.7	40.7 35.8	18.8 19.0
5-Jul-07	46.0	63.8	67.0	59.0	45.9	59.5	92.3	80.9	52.7	5-Oct-07	42.4	63.8	79.2	89.6	92.7	73.8	64.5	35.9	14.7
6-Jul-07	18.7	48.3	49.1	93.0	91.4	102.7	91.4	72.5	51.6	6-Oct-07	29.4	55.4	78.0	88.7	75.5	24.9	29.7	2.9	2.9
7-Jul-07 8-Jul-07	36.6 1.6	52.9 3.6	79.9 11.3	30.7 38.7	71.5 80.5	78.6 94.8	67.4 91.7	77.0 76.7	20.9 48.8	7-Oct-07 8-Oct-07	40.3 28.6	61.7 49.3	78.0 72.8	85.5 83.2	85.1 82.7	78.7 45.8	57.1 28.7	37.8 29.6	18.1 14.9
9-Jul-07	6.1	11.3	15.2	30.0	57.7	75.1	62.0	41.4	29.2	9-Oct-07	11.6	13.6	10.7	14.5	15.5	5.5	3.9	2.3	0.6
10-Jul-07	19.0	16.5	6.5	20.0	42.9	27.4	37.6	32.1	26.9	10-Oct-07	39.8	61.4	79.0	87.8	89.9	63.2	51.4	20.3	13.3
11-Jul-07 12-Jul-07	1.3 54.3	2.9 75.6	4.2 94.3	31.3 99.5	32.9 101.9	31.0 90.8	57.3 88.0	62.9 69.8	44.5 38.7	11-Oct-07 12-Oct-07	36.5 39.1	56.3 60.4	71.6 78.0	74.4 88.4	78.5 90.5	69.8 82.2	50.8 64.6	25.2 43.2	9.7 18.7
13-Jul-07	36.9	64.6	73.5	90.3	95.0	92.0	40.6	43.6	5.5	13-Oct-07	26.5	56.0	66.3	86.2	89.9	80.6	62.5	38.9	16.5
14-Jul-07	24.2	45.0	40.3	59.0	53.1	41.0	44.1	25.2	28.1	14-Oct-07	28.9	49.2	50.9	33.9	16.1	13.2	40.1	19.9	11.2
15-Jul-07 16-Jul-07	2.9 20.7	2.3 37.1	1.6 41.0	1.9 22.9	4.5 24.9	9.4 15.5	12.9 6.5	7.7 3.9	3.9 3.6	15-Oct-07 16-Oct-07	7.7 19.4	29.7 37.5	49.1 55.1	57.1 65.9	34.9 73.0	33.2 62.6	32.4 40.8	23.8 27.0	6.5 12.0
17-Jul-07	16.5	32.3	35.5	62.4	59.9	84.6	72.0	30.4	20.7	17-Oct-07	15.8	33.7	63.6	80.0	83.4	74.9	52.1	33.3	13.6
18-Jul-07	50.0	62.1	79.5	72.1	87.4	81.2	89.5	62.9	44.5	18-Oct-07	16.8	34.9	47.6	77.3	67.0	65.8	58.6	37.2	15.7
19-Jul-07 20-Jul-07	43.7 51.2	36.5 63.9	29.1 95.0	47.5 102.7	59.6 106.0	92.9 104.9	81.2 93.2	72.2 73.7	48.1 49.0	19-Oct-07 20-Oct-07	27.7 11.0	45.7 23.6	71.2 57.4	52.9 60.6	43.9 83.6	25.2 74.5	31.4 57.0	38.0 34.9	16.7 15.1
21-Jul-07	54.4	79.0	95.0	103.0	104.3	98.1	96.0	80.6	52.9	21-Oct-07	16.5	23.9	37.4	58.5	68.7	75.3	57.0	34.6	15.2
22-Jul-07	13.2	29.7	81.7	50.8	39.1	49.5	52.9	57.3	25.4	22-Oct-07	34.4	56.0	72.6	85.9	58.3	76.2	60.2	37.6	15.6
23-Jul-07 24-Jul-07	54.6 43.6	44.4 67.4	84.3 83.4	18.7 95.0	39.1 96.2	77.1 77.6	48.0 72.2	39.6 44.4	43.9 2.3	23-Oct-07	28.6 21.0	40.9 32.9	43.9 51.4	46.0 52.4	64.6 43.5	66.7 65.8	50.0 47.1	32.2 18.4	13.9 5.5
25-Jul-07	21.6	53.8	63.7	56.1	79.7	69.3	68.2	50.2	31.9	24-Oct-07 25-Oct-07	11.9	25.2	58.8	76.9	75.5	70.9	51.2	31.3	12.9
26-Jul-07	14.2	17.8	20.3	20.3	18.7	17.8	16.8	11.0	8.1	26-Oct-07	18.7	39.2	48.2	73.5	86.8	53.5	42.7	29.3	14.8
27-Jul-07	2.3	3.2	9.0	14.2	22.6	32.3	38.5	26.1	21.0	27-Oct-07	29.3	52.3	68.6	85.8	82.8	72.6	44.6	25.1	11.7
28-Jul-07 29-Jul-07	4.5 4.5	18.1 6.8	70.2 3.2	77.3 1.9	43.3 1.9	19.4 2.3	10.0 3.2	25.8 6.8	24.0 4.8	28-Oct-07 29-Oct-07	38.5 36.6	57.8 56.6	61.7 73.6	71.6 81.4	73.3 83.0	75.6 78.0	59.5 46.9	36.7 35.3	14.0 11.3
30-Jul-07	34.6	55.1	62.5	54.3	41.0	38.7	65.5	43.2	29.0	30-Oct-07	34.7	55.7	70.1	71.1	81.5	73.7	51.2	30.3	12.5
31-Jul-07	49.5 51.0	70.5 74.9	89.9 91.7	102.2 96.7	103.2 99.4	103.4 87.2	95.3 70.8	75.1 56.6	49.9 36.5	31-Oct-07 1-Nov-07	30.8 33.9	50.4 47.0	72.0 63.8	82.0 68.0	83.0 67.9	59.1 60.9	42.0 43.5	29.4 27.9	11.7 9.7
1-Aug-07 2-Aug-07	23.6	29.1	53.2	45.9	36.2	29.4	14.5	13.2	16.1	2-Nov-07	31.6	53.0	60.2	44.3	48.9	45.7	28.0	15.2	7.1
3-Aug-07	5.8	7.7	9.4	18.1	20.0	14.2	6.5	3.6	3.9	3-Nov-07	19.4	56.6	70.5	69.1	64.9	43.9	52.2	21.5	9.8
4-Aug-07	10.7	21.3	26.8	38.1	53.1	76.8	59.7	35.1	22.4	4-Nov-07	40.4	60.4	79.3	86.8	84.4	75.6	56.2	32.4	11.9
5-Aug-07 6-Aug-07	18.4 27.8	20.7 34.2	21.3 56.5	88.2 49.6	116.6 52.7	87.3 39.4	69.4 30.0	41.2 44.0	28.0 48.3	5-Nov-07 6-Nov-07	40.9 38.2	61.5 57.6	79.0 72.3	85.5 81.2	84.0 78.5	74.0 56.2	57.3 52.6	34.2 29.8	12.4 11.4
7-Aug-07	48.2	33.6	68.1	49.5	24.2	35.5	34.5	44.2	36.7	7-Nov-07	34.6	53.5	69.1	76.5	77.5	68.8	49.1	29.8	10.8
8-Aug-07	40.3	38.4	82.8	86.7	52.4	57.0	54.2	52.9	44.3	8-Nov-07	20.3	31.1	71.8	77.7	78.1	70.2	54.6	33.6	13.3
9-Aug-07 10-Aug-07	41.7 18.1	61.4 37.8	37.8 33.2	48.7 17.8	72.0 29.1	53.4 15.2	45.2 18.1	37.2 37.7	16.1 13.6	9-Nov-07 10-Nov-07	36.1 30.8	54.9 48.2	70.3 62.1	79.9 68.3	80.2 66.3	72.0 58.7	56.0 44.6	34.7 26.5	13.5 10.0
11-Aug-07	4.5	5.8	11.0	26.5	79.8	68.2	70.9	70.6	35.3	11-Nov-07	29.0	47.4	61.5	70.9	70.0	62.1	46.4	28.2	10.7
12-Aug-07	35.1	56.9	90.3	94.4	83.4	88.9	71.7	49.2	35.9	12-Nov-07	33.4	53.2	68.7	76.7	78.3	67.7	52.7	29.4	11.8
13-Aug-07 14-Aug-07	52.9 34.5	76.4 41.9	94.0 61.8	95.4 102.0	100.1 104.7	105.5 102.4	90.0 91.5	68.4 71.7	41.6 46.9	13-Nov-07 14-Nov-07	5.5 13.6	5.5 32.8	6.5 43.5	31.6 35.5	50.2 28.4	47.2 22.9	29.1 27.5	25.5 10.7	10.3 5.5
15-Aug-07	52.7	59.7	90.6	102.4	82.4	85.5	86.0	53.4	32.0	15-Nov-07	8.4	28.7	34.7	25.5	14.5	11.6	10.0	6.5	3.6
16-Aug-07	53.4	80.5	98.6	95.7	35.5	66.7	71.6	55.0	37.9	16-Nov-07	9.0	13.2	19.7	29.1	30.7	55.6	45.6	16.9	8.5
17-Aug-07 18-Aug-07	52.0 41.3	74.7 62.3	91.9 79.5	101.7 76.8	109.5 86.2	102.5 79.5	89.0 73.1	64.1 49.7	37.9 29.4	17-Nov-07 18-Nov-07	15.5 14.8	15.2 22.9	35.5 28.1	43.6 32.6	52.4 40.2	54.6 32.7	34.8 23.2	20.7 22.2	8.3 9.0
19-Aug-07	43.3	65.8	77.5	72.2	77.3	45.1	63.3	49.6	29.1	19-Nov-07	10.7	23.2	25.2	52.4	66.8	57.1	17.4	4.2	3.2
20-Aug-07	36.4	50.9	50.7	29.1	54.8	5.5	2.3	3.9	3.2	20-Nov-07	4.2	16.5	24.5	52.7	62.6	63.8	34.9	19.2	3.9
21-Aug-07 22-Aug-07	39.8 44.7	64.8 52.8	85.2 77.5	97.4 91.8	96.3 101.3	97.1 98.3	72.8 86.1	40.3 63.0	28.8 38.2	21-Nov-07 22-Nov-07	1.6 1.9	3.2 3.9	3.2 19.0	5.2 6.5	6.8 11.9	2.9 5.5	0.6 5.2	1.6 5.2	6.1 1.6
23-Aug-07	40.3	65.4	84.2	96.5	84.5	91.6	88.0	64.8	38.4	23-Nov-07	22.8	19.7	18.7	24.9	26.8	31.2	34.4	11.0	6.1
24-Aug-07	25.5	37.5	29.4	77.5	64.8	49.6	31.3	48.4	22.1	24-Nov-07	12.6	23.9	39.3	35.2	31.3	26.5	16.1	13.6	5.9
25-Aug-07 26-Aug-07	12.6 20.0	21.9 46.5	47.6 71.6	36.8 86.3	38.4 92.3	35.5 74.2	16.1 77.1	14.8 61.4	9.4 25.5	25-Nov-07 26-Nov-07	4.8 13.9	6.5 35.7	13.9 42.6	11.6 27.8	6.8 30.7	9.4 46.9	15.2 24.2	8.1 17.2	5.5 14.4
27-Aug-07	49.1	33.2	62.6	91.3	58.4	38.1	48.2	29.7	18.2	27-Nov-07	17.8	28.9	24.2	2.9	3.2	8.1	5.2	4.5	3.2
28-Aug-07	44.4	45.1	39.1	18.7	36.2	61.1	81.4	41.0	18.1	28-Nov-07	5.8	11.0	16.1	32.6	25.8	35.7	29.4	15.5	6.2
29-Aug-07 30-Aug-07	32.6 21.0	51.4 42.4	71.0 70.7	86.5 73.2	75.8 105.7	62.5 103.7	58.5 90.2	50.9 67.7	43.4 41.7	29-Nov-07 30-Nov-07	9.0 10.7	16.1 17.4	18.7 33.0	28.4 42.4	15.8 47.5	14.2 58.0	11.0 47.4	8.7 20.3	4.5 8.7
31-Aug-07	46.4	73.0	89.3	100.5	103.9	95.7	77.6	61.4	26.2	1-Dec-07	29.0	47.4	44.1	74.9	66.4	62.9	44.2	26.4	10.3
1-Sep-07	38.6	66.9	82.3	94.6	102.5	95.4	80.0	55.2	29.8	2-Dec-07	22.1	47.5	62.4	72.4	67.2	58.3	30.7	26.8	10.8
2-Sep-07 3-Sep-07	29.2 15.8	52.1 18.1	56.9 21.6	74.1 33.9	61.3 52.2	58.6 36.5	87.4 43.0	50.2 49.5	26.0 19.0	3-Dec-07 4-Dec-07	26.4 25.1	47.4 46.8	61.5 63.0	66.5 74.8	67.0 77.3	53.9 70.0	27.0 55.9	22.9 30.0	7.8 11.7
4-Sep-07	6.8	20.7	32.3	38.7	90.4	64.4	78.1	63.8	26.4	5-Dec-07	24.1	46.2	51.1	72.7	71.2	63.5	48.8	24.6	9.6
5-Sep-07	46.4	71.0	92.2	97.6	108.9	89.9	81.1	61.1	35.0	6-Dec-07	19.7	34.9	51.2	76.3	66.1	37.1	27.6	32.1	13.7
6-Sep-07 7-Sep-07	40.9 6.1	62.3 1.3	80.2 3.2	91.9 6.5	84.5 3.6	70.0 22.9	81.1 35.1	31.6 33.9	19.9 24.2	7-Dec-07 8-Dec-07	11.0 21.4	27.3 47.3	41.8 62.2	60.8 72.9	50.2 74.2	49.4 66.4	57.6 52.8	34.0 32.7	13.4 13.2
8-Sep-07	23.6	37.7	18.4	13.2	41.3	51.4	31.6	32.3	26.0	9-Dec-07	11.9	11.9	17.8	21.9	31.6	33.4	25.4	16.3	6.5
9-Sep-07	29.4	24.9	38.1	30.7	2.9	3.9	6.1	6.5	2.9	10-Dec-07	26.0	22.6	34.3	34.2	31.0	30.3	30.6	18.2	7.9
10-Sep-07 11-Sep-07	38.1 15.2	49.0 21.0	41.3 26.8	30.0 60.3	49.3 32.6	85.0 26.1	55.3 11.6	45.8 7.7	38.0 3.2	11-Dec-07 12-Dec-07	19.3 23.9	41.0 36.7	56.3 34.2	48.0 48.8	56.2 49.1	64.3 42.9	33.6 27.0	21.2 13.6	8.8 5.8
12-Sep-07	9.4	14.5	19.4	17.4	13.9	19.4	11.0	10.3	11.9	13-Dec-07	2.3	3.6	5.2	8.1	8.7	4.8	4.8	3.2	1.9
13-Sep-07	0.6	0.6	1.3	2.9	7.1	6.1	6.8	14.5	4.2	14-Dec-07	3.2	3.9	7.7	10.3	11.3	6.5	11.3	7.7	3.6
14-Sep-07 15-Sep-07	15.2 35.2	45.8 49.4	74.9 61.1	60.9 54.8	7.1 38.4	8.4 66.4	32.3 33.7	63.5 15.5	21.7 4.5	15-Dec-07 16-Dec-07	8.1 9.7	8.4 23.6	11.9 38.6	24.9 33.9	27.4 34.8	20.3 35.6	17.4 51.4	13.2 27.0	4.2 11.3
15-Sep-07 16-Sep-07	11.6	13.2	36.8	46.2	23.6	20.3	21.9	19.0	18.4	17-Dec-07	31.0	53.0	71.7	82.2	83.5	76.3	59.7	38.7	15.7
17-Sep-07	49.1	70.4	87.4	96.9	98.7	91.2	72.4	44.0	24.0	18-Dec-07	27.8	47.8	64.5	77.6	78.1	69.4	54.6	34.4	13.8
18-Sep-07	44.3	62.3	89.0	76.4	81.7	64.8	41.6	54.7	30.2	19-Dec-07	28.6	48.3	67.5	78.5	80.2	73.0	58.6	37.4	15.0
19-Sep-07 20-Sep-07	43.4 42.5	63.3 64.0	82.1 81.0	94.9 91.8	97.9 95.2	77.4 85.3	74.4 70.7	51.2 45.6	27.3 23.1	20-Dec-07 21-Dec-07	27.9 27.9	47.9 48.1	65.9 65.6	76.7 75.8	78.1 78.4	69.1 71.5	53.5 56.4	34.5 36.4	13.8 11.9
21-Sep-07	28.5	58.9	77.6	88.2	81.0	68.7	46.1	41.7	23.4	22-Dec-07	28.1	48.1	67.1	78.5	81.1	72.1	56.1	36.7	15.0
22-Sep-07	32.6	57.3	58.0	81.3	63.4	55.3	53.9	36.4	20.0	23-Dec-07	26.2	46.1	63.8	74.6	76.0	68.9	54.4	28.9	13.1
23-Sep-07 24-Sep-07	47.4 21.3	66.5 25.2	82.6 21.9	98.7 14.5	102.4 22.9	89.9 17.4	71.5 24.5	61.9 18.1	17.0 8.7	24-Dec-07 25-Dec-07	18.7 26.4	43.2 45.6	52.8 61.7	48.8 73.4	53.9 77.2	56.1 70.4	45.0 54.4	28.8 34.6	11.6 14.4
25-Sep-07	24.2	53.1	52.3	94.2	108.3	102.5	79.8	56.3	29.6	26-Dec-07	24.5	43.8	60.0	70.9	74.2	56.4	50.1	29.2	11.8
26-Sep-07	45.1	67.9	85.6	97.0	99.4	92.3	75.5	52.5	26.6	27-Dec-07	22.8	42.2	57.9	66.3	74.5	69.5	54.8	33.8	13.4
27-Sep-07 28-Sep-07	41.0 46.6	67.4 66.8	84.0 84.7	92.8 95.3	97.3 96.3	90.7 89.4	74.6 73.0	52.7 49.5	27.6 24.2	28-Dec-07 29-Dec-07	22.3 16.1	40.6 37.2	57.0 51.0	67.0 65.9	71.5 65.7	65.4 58.1	51.6 46.4	33.0 29.4	13.4 12.5
29-Sep-07	48.2	68.4	84.8	95.6	93.3	90.3	75.0	55.1	23.4	30-Dec-07	9.0	37.9	58.9	71.3	74.9	69.0	54.6	35.5	15.2
30-Sep-07	21.6	43.6	49.8	45.4	42.2	35.2	21.6	10.3	6.8	31-Dec-07	25.4	44.6	61.0	74.3	77.9	72.0	57.2	37.5	15.9

1-Jan-08 25.6				
2-Jan-08	1300 1400	1500	1600	1700
Sample S	48.1 30.7	32.3	25.8	17.3
A-Jan-08	1.0 4.2 7.7 5.2	6.5 8.4	1.3 5.2	2.9 3.2
G-Jan-08 25.5 38.7 46.6 80.5 80.5 71.3 58.3 34.1 19.8 G-Apr-08 4.5 11.3 21.0 34.5	11.6 8.7	4.5	2.9	1.6
7-Jan-08 19.7 42.3 58.9 71.7 75.0 68.1 55.7 36.6 16.1 7-Apc-08 25.2 31.0 21.9 25.2 8-Jan-08 24.0 44.3 60.4 73.2 77.2 72.6 58.1 38.3 16.3 8-Apc-08 10.0 17.4 29.4 65.6 9-Jan-08 24.5 44.9 61.6 73.6 75.7 69.6 54.7 34.8 14.9 9-Apc-08 21.6 54.7 71.5 94.2 11-Jan-08 8.4 20.7 19.7 19.0 20.7 18.1 10.7 7.7 3.9 11-Apc-08 26.5 59.6 84.1 96.7 12-Jan-08 7.7 14.2 25.5 31.3 30.0 31.6 28.0 21.1 9.9 12-Apc-08 21.0 40.5 47.3 84.2 14-Jan-08 13.2 23.6 34.3 49.4 66.4 59.9 47.8 38.9 13.7 15-Apc-08	13.2 16.5	10.0	6.5	3.6
S-Jan-08 24.0 44.3 60.4 73.2 77.2 72.6 58.1 38.3 16.3 8-Apr-08 10.0 17.4 29.4 65.6	31.6 29.7 27.8 35.8	21.6 21.9	20.0 25.8	11.9 10.7
10-Jan-08	42.9 21.0	10.0	9.0	5.5
11-Jan-08	101.4 97.6 5.2 6.8	78.5 8.7	62.0 9.0	30.6 9.0
13-Jan-08 11.0 29.7 55.7 69.0 73.4 68.0 54.0 34.3 16.2 13-Åpr-08 21.0 40.5 47.3 84.2 14-Jan-08 13.2 28.3 44.9 58.0 59.3 50.4 36.9 30.3 16.8 14-Åpr-08 38.8 50.7 78.6 84.0 16-Jan-08 18.3 27.4 32.9 50.2 64.0 50.9 44.9 30.8 16.1 16-Åpr-08 38.8 50.7 78.6 84.0 16-Jan-08 18.3 27.4 32.9 50.2 64.0 50.9 44.9 30.8 16.1 16-Åpr-08 35.9 54.6 85.2 92.7 17-Jan-08 42.2 81.1 15.2 19.0 8.7 11.6 65.5 52.2 36.6 17-Apr-08 41.8 24.9 30.3 40.7 18-Jan-08 14.8 21.0 34.9 43.4 48.7 45.4 28.7 18.7 11.3 18-Åpr-08 54.8 82.6 102.4 111.1 19-Jan-08 5.8 12.9 15.2 37.7 67.0 47.3 32.5 21.4 10.0 19-Åpr-08 36.0 83.6 88.3 96.0 20-Jan-08 65.6 65.9 78.7 11.9 23.6 25.2 22.9 11.6 20-Åpr-08 21.6 42.0 71.0 94.6 21-Jan-08 3.6 3.6 5.8 8.4 52.2 9.4 7.7 5.5 3.9 21-Åpr-08 21.6 36.2 35.8 26.8 22-Jan-08 11.3 33.3 26.8 17.4 34.2 32.9 29.7 33.7 18.8 23-Åpr-08 13. 9.7 23.2 33.2 38.7 22-Jan-08 13.6 28.4 40.3 59.8 50.8 37.4 35.3 27.2 14.7 24-Åpr-08 21.6 55.5 9.7 11.3 10.0 22-Jan-08 23.0 42.5 57.8 70.4 73.6 67.6 53.6 36.3 18.8 23-Åpr-08 11.3 7.5 90.5 102.9 22-Jan-08 23.0 42.5 57.8 70.4 73.6 67.6 53.6 36.3 18.8 26-Åpr-08 43.1 76.5 90.5 102.9 22-Jan-08 23.1 50.3 70.5 84.2 89.5 84.1 70.7 48.5 24.3 29-Åpr-08 11.0 32.3 69.4 68.7 22-Jan-08 25.4 40.9 66.3 81.5 86.2 81.5 68.7 44.8 23.3 29-Åpr-08 11.0 32.3 69.4 68.7 22-Jan-08 25.4 40.9 66.3 81.5 86.2 81.5 68.7 44.8 23.3 29-Åpr-08 11.0 32.3 69.4 68.7 22-Jan-08 25.4 40.9 66.3 81.5 86.2 81.5 68.7 44.8 23.3 29-Åpr-08 11.0 32.3 69.4 68.7 22-Jan-08 25.4 40.4 65.3 79.9 84.0 79.8 66.2 44.0 22.0 28-Åpr-08 11.0	94.8 85.5	84.1	62.4	36.2
14-Jan-08 13.2 28.3 44.9 58.0 59.3 50.4 36.9 30.3 16.8 14-Jan-08 41.1 45.2 47.3 45.8 15-Jan-08 18.3 27.4 32.9 50.2 64.0 50.9 47.8 38.9 13.7 15-Jan-08 35.9 54.6 85.2 92.7 17-Jan-08 4.2 8.1 15.2 19.0 8.7 11.6 65.5 52. 3.6 17-Jan-08 14.5 24.9 30.3 40.7 18-Jan-08 18.8 21.9 15.2 37.7 67.0 47.3 32.5 21.4 10.0 19-Jan-08 5.8 12.9 15.2 37.7 67.0 47.3 32.5 21.4 10.0 19-Jan-08 5.8 12.9 15.2 37.7 67.0 47.3 32.5 21.4 10.0 19-Jan-08 36.6 65.6 5.9 7.8 7.1 19-Jan-08 65.6 65.5 57.1 13.6 15.8 18.4 23.6 25.2 22.9 11.6 20-Jan-08 21.4 20.3 21.4	102.4 98.5 91.9 78.6	84.4	61.8 51.9	33.7 28.8
15-Jan-08 5.2 23.6 34.3 49.4 66.4 59.9 47.8 38.9 13.7 15-Apr-08 38.8 50.7 78.6 84.0 16-Jan-08 18.3 27.4 32.9 50.2 64.0 50.9 44.9 30.8 16.1 16-Apr-08 35.9 54.6 85.2 92.7 17-Jan-08 42 81.1 15.2 19.0 8.7 11.6 6.5 5.2 3.6 17-Apr-08 14.5 24.9 30.3 40.7 18-Jan-08 14.8 21.0 34.9 43.4 48.7 45.4 28.7 18.7 11.3 18-Apr-08 54.8 82.6 102.4 111.1 19-Jan-08 5.8 12.9 15.2 37.7 67.0 47.3 32.5 21.4 10.0 19-Apr-08 39.6 68.6 88.3 96.0 20-Jan-08 6.5 6.5 9.7 8.7 11.9 23.6 25.2 22.9 11.6 20-Apr-08 21.6 42.0 71.0 94.6 21-Jan-08 3.6 3.6 3.8 8.4 52.2 9.4 7.7 5.5 3.9 21-Apr-08 21.6 36.2 35.8 26.8 22-Jan-08 4.2 5.5 7.1 13.6 15.8 18.4 23.6 20.4 8.1 22-Apr-08 19.7 23.2 33.2 38.7 23-Jan-08 11.3 33.3 26.8 17.4 34.2 32.9 29.7 33.7 18.8 23-Apr-08 13.9 7. 20.3 16.8 24-Jan-08 23.0 42.5 57.8 70.4 73.6 67.6 53.6 36.3 18.8 26-Apr-08 43.1 76.5 90.5 102.9 27-Jan-08 21.4 42.4 59.8 72.1 76.9 71.6 55.5 37.7 71.6 68.1 29.2 28-Jan-08 25.5 47.0 65.3 79.9 84.0 79.8 66.2 44.0 22.0 28-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 25.5 47.0 65.3 76.9 80.0 76.9 63.6 44.3 21.3 30-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 25.5 47.0 65.3 76.9 80.0 76.9 63.6 44.3 21.3 30-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 26.4 47.4 66.8 63.3 76.9 80.0 76.9 63.6 44.3 21.3 30-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 26.5 46.6 63.3 76.9 80.0 76.9 63.6 44.3 21.3 30-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 26.5 46.6 63.3 76.9 80.0 76.9 63.6 44.3 21.3 30-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 26.5 46.6 63.3 76.9 80.0 76.9 63.6 44.3 21.3 30-Apr-08 11.0 32.	91.9 78.6 58.1 53.5	70.7 35.8	31.1	15.2
17-14m-08	96.4 76.1	67.0	48.7	31.3
18-Jan-08 14-8 21-0 34-9 43-4 48.7 45-4 28.7 18.7 11.3 18-Apr-08 54.8 8.2.6 10.2.4 11.1	89.1 67.6 32.6 14.8	55.7 29.4	43.5 26.8	23.6 7.1
20-Jan-08 6.5 6.5 6.5 9.7 8.7 11.9 23.6 25.2 2.9 11.6 20-Ápr-08 21.6 42.0 71.0 94.6 21-Jan-08 3.6 3.6 5.8 8.4 5.2 9.4 7.7 5.5 3.9 21-Apr-08 21.6 36.2 35.8 26.8 22-Jan-08 4.2 5.5 7.1 13.6 15.8 18.4 23.6 20.4 8.1 22-Apr-08 19.7 23.2 33.2 38.7 23-Jan-08 11.3 33.3 26.8 17.4 34.2 32.9 29.7 33.7 18.8 23-Apr-08 11.3 9.7 20.3 16.8 24-Jan-08 13.6 28.4 40.3 59.8 50.8 37.4 35.3 27.2 14.7 24-Apr-08 6.5 7.1 1.3 1.0 25-Jan-08 9.4 34.1 57.3 51.1 37.8 45.9 48.0 32.5 16.3 25-Apr-08 7.1 7.7 12.9 11.3 26-Jan-08 23.0 42.5 57.8 70.4 73.6 67.6 53.6 36.3 18.8 26-Apr-08 43.1 76.5 90.5 102.9 27-Jan-08 21.4 42.4 59.8 72.1 76.9 71.6 55.5 37.7 19.6 27-Apr-08 41.7 68.1 92.6 100.2 28-Jan-08 25.5 47.0 65.3 79.9 84.0 79.8 66.2 44.0 22.0 28-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 25.5 47.0 65.3 79.9 84.0 79.8 66.2 44.0 22.0 28-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 25.5 47.0 65.3 76.9 80.5 84.1 70.7 48.5 24.3 29-Apr-08 11.0 32.3 69.4 68.7 31-Jan-08 26.6 47.9 66.8 33.7 6.9 80.0 76.9 63.6 44.3 21.3 30-Apr-08 13.6 23.6 20.7 46.5 31-Jan-08 26.4 44.5 4.6 63.3 76.9 80.6 81.5 86.2 81.5 68.7 48.3 23.9 1-May-08 49.3 70.7 76.5 92.3 11-Ep-0.8 24.4 56.4 62.3 73.9 78.6 75.5 64.0 44.5 22.9 2-Apr-08 13.6 23.6 20.7 46.5 31-Jan-08 26.4 45.4 62.3 73.9 78.6 75.5 64.0 44.5 22.9 2-Apr-08 13.6 23.6 20.7 46.5 21.5 41.5 41.5 41.5 41.5 41.5 41.5 41.5 4	114.4 110.1	95.8	69.6	43.2
22-Jan-08	100.1 100.0	91.9	74.0	42.9
22-Jan-08 4.2 5.5 7.1 13.6 15.8 18.4 23.6 20.4 8.1 22-Apr-08 19.7 23.2 33.2 38.7 23-Jan-08 11.3 33.3 26.8 17.4 34.2 32.9 29.7 33.7 18.8 23-Apr-08 13. 9.7 20.3 16.8 24-Jan-08 13.6 28.4 40.3 59.8 50.8 37.4 35.3 27.2 14.7 24-Apr-08 65.7 7.1 1.3 1.0 25-Jan-08 9.4 34.1 57.3 51.1 37.8 45.9 48.0 32.5 16.3 25-Apr-08 7.1 7.6 70.5 102.9 27-Jan-08 21.4 42.4 59.8 72.1 76.9 71.6 55.5 37.7 18.6 26-Apr-08 43.1 76.5 90.5 102.9 27-Jan-08 21.4 42.4 59.8 72.1 76.9 71.6 55.5 37.7 18.6 22-Apr-08 <td>84.5 82.9 34.5 32.9</td> <td>78.7 19.0</td> <td>56.3 17.8</td> <td>27.4 14.2</td>	84.5 82.9 34.5 32.9	78.7 19.0	56.3 17.8	27.4 14.2
24-Jan-08 13.6 28.4 40.3 59.8 50.8 37.4 35.3 27.2 14.7 24-Apr-08 6.5 7.1 1.3 1.0 25-Jan-08 23.0 42.5 57.8 70.4 73.6 67.6 53.6 36.3 18.8 25-Apr-08 43.1 76.5 90.5 102.9 27-Jan-08 21.4 42.4 59.8 72.1 76.9 71.6 55.5 37.7 19.6 27-Apr-08 41.7 65.1 92.6 100.7 28-Jan-08 25.5 47.0 65.3 79.9 84.0 79.8 62.2 44.0 22.7 49.7 65.1 32.6 40.0 22.2 28-Apr-08 41.7 65.1 90.5 102.9 29-Jan-08 28.1 50.3 70.5 84.2 89.5 84.1 70.7 48.5 24.3 29-Apr-08 11.0 32.3 96.4 68.7 30-Jan-08 26.5 46.6 63.3 76.9 80.2	44.9 44.8	42.6	32.0	15.8
25-Jan-08 9.4 34.1 57.3 51.1 37.8 45.9 48.0 32.5 16.3 25-Åpr-08 7.1 7.7 12.9 11.3 26-Jan-08 23.0 42.5 57.8 70.4 73.6 67.6 53.6 36.3 18.8 26-Åpr-08 41.7 65.5 90.5 102.9 27-Jan-08 21.4 42.4 59.8 72.1 76.9 71.6 55.5 37.7 19.6 27-Åpr-08 41.7 68.1 92.6 100.7 28-Jan-08 25.5 47.0 65.3 79.9 84.0 79.8 66.2 44.0 22.0 28-Åpr-08 11.0 32.3 69.4 68.7 29-Jan-08 28.1 50.3 70.5 84.2 89.5 84.1 70.7 48.5 24.3 29-Åpr-08 10.0 14.5 20.7 21.3 30-Jan-08 26.6 47.9 66.3 81.5 86.2 81.5 68.7 48.3 23.9 1-May-08 49.3 70.7 76.5 92.3 11-Feb-08 26.4 45.4 62.3 73.9 78.6 28.1 66.5 44.3 23.9 1-May-08 49.3 70.7 76.5 92.3 1-Feb-08 26.2 44.4 62.3 73.9 78.6 75.5 64.0 44.5 22.9 2-May-08 39.2 48.3 72.7 88.5 2-Feb-08 26.2 45.6 67.4 83.4 87.2 80.1 66.5 43.9 22.9 3-May-08 30.7 36.2 46.8 59.6 3-Feb-08 24.7 40.9 66.4 81.6 87.6 84.4 69.2 49.9 27.1 4-May-08 21.9 24.9 15.8 15.5 4-Feb-08 24.6 43.4 56.8 81.1 85.4 67.7 12.9 1.2 66.6 17.9 5-May-08 11.0 21.6 39.7 20.7	31.3 13.9 1.6 1.9	17.4 10.7	11.3 13.2	10.7 5.2
27-Jan-08 21,4 42,4 59,8 72,1 76,9 71,6 55,5 37,7 19,6 27-Apr-08 41,7 68,1 92,6 100,7 28-Jan-08 25,5 47,0 65,3 79,9 84,0 79,8 66,2 44,0 22,0 28-Apr-08 11.0 32,3 69,4 68,7 29-Jan-08 28,1 50,3 70,5 84,2 89,5 84,1 70,7 48,5 24,3 29-Apr-08 11.0 14,5 20,7 21,3 30-Jan-08 26,5 46,6 63,3 76,9 80,0 76,9 63,6 44,3 21,3 30-Apr-08 11.0 13,6 23,6 20,7 46,5 31-Jan-08 26,6 47,9 66,3 81,5 86,2 81,5 68,7 48,3 23,9 1-May-08 39,2 48,3 72,7 76,5 92,3 1-Feb-08 26,2 45,6 67,4 83,4 87,2 80,4 49,9 27,1	11.9 9.7	36.2	27.4	16.8
28-Jan-08 25.5 47.0 65.3 79.9 84.0 79.8 66.2 44.0 22.0 28-Apr-08 11.0 32.3 69.4 68.7 29-Jan-08 26.1 50.3 70.5 84.2 89.5 84.1 70.7 48.5 24.3 29-Apr-08 10.0 14.5 20.7 21.3 30-Jan-08 26.6 47.9 66.3 81.5 86.2 81.5 68.7 48.3 21.3 30-Apr-08 13.6 23.6 20.7 46.5 31-Jan-08 26.6 47.9 66.3 81.5 86.2 81.5 68.7 48.3 23.9 1-May-08 49.3 70.7 76.5 92.3 1-Feb-08 26.2 45.6 67.4 83.4 87.2 80.1 66.5 49.9 27.1 2-Par-08 39.2 48.3 72.7 88.5 2-Feb-08 26.2 45.6 67.4 83.4 87.2 80.1 66.5 49.9 27.1 2-Par-08 39.7 36.2 46.8 59.6 3-Feb-08 20.6 34.5 66.8 81.1 85.6 84.4 69.2 49.9 27.1 4-May-08 21.9 24.9 15.8 15.5	107.4 103.6		67.7	40.8
29-Jan-08 28.1 50.3 70.5 84.2 89.5 84.1 70.7 48.5 24.3 29-Apr-08 10.0 14.5 20.7 21.3 30-Jan-08 26.5 46.6 63.3 76.9 80.0 76.9 63.6 44.3 21.3 30-Apr-08 19.6 22.6 20.7 46.5 31-Jan-08 26.6 47.9 66.3 81.5 86.2 48.3 23.9 1-May-08 49.3 70.7 76.5 92.3 1-Feb-08 24.4 45.4 62.3 73.9 78.6 75.5 64.0 44.5 22.9 2-May-08 39.2 48.3 72.7 88.5 2-Feb-08 26.2 45.6 67.4 83.4 87.2 80.1 66.5 43.9 22.9 2-May-08 39.2 48.3 72.7 88.5 3-Feb-08 26.2 45.6 67.4 81.6 87.6 84.4 69.2 49.9 27.1 4-May-08 31.9 24.9<	104.3 102.0 90.6 100.8	88.6 83.3	66.2 67.7	41.4 39.8
31-lan-08 26.6 47.9 66.3 81.5 86.2 81.5 68.7 48.3 23.9 1.May-08 49.3 70.7 76.5 92.3 1.Feb-08 24.4 45.4 62.3 73.9 78.6 75.5 64.0 44.5 22.9 2.May-08 39.2 48.3 72.7 88.5 2.Feb-08 26.2 45.6 67.4 83.4 87.2 80.1 66.5 43.9 22.9 3.May-08 30.7 36.2 46.8 59.6 3.Feb-08 24.7 40.9 66.4 81.6 87.6 84.4 69.2 49.9 27.1 4.May-08 21.9 24.9 15.8 15.5 4.Feb-08 20.6 34.5 66.8 81.1 85.4 77.1 29.1 26.6 17.9 5.May-08 11.0 21.6 39.7 20.7	21.9 17.8	17.8	18.4	13.2
1-Feb-08 24.4 45.4 62.3 73.9 78.6 75.5 64.0 44.5 22.9 2-May-08 39.2 48.3 72.7 88.5 2-Feb-08 26.2 45.6 67.4 83.4 87.2 80.1 66.5 43.9 22.9 3-May-08 30.7 36.2 46.8 59.6 3-Feb-08 24.7 40.9 66.4 81.6 87.6 84.4 69.2 49.9 27.1 4-May-08 21.9 24.9 15.8 15.5 4-Feb-08 20.6 34.5 66.8 81.1 85.7 77.1 29.1 26.6 17.9 5-May-08 11.0 21.6 39.7 20.7	44.9 30.7 93.0 80.0	32.6 67.3	32.6 53.6	13.2 29.3
3-Feb-08 24.7 40.9 66.4 81.6 87.6 84.4 69.2 49.9 27.1 4-May-08 21.9 24.9 15.8 15.5 4-Feb-08 20.6 34.5 66.8 81.1 85.4 77.1 29.1 26.6 17.9 5-May-08 11.0 21.6 39.7 20.7	82.1 71.2	54.6	40.7	29.3
4-Feb-08 20.6 34.5 66.8 81.1 85.4 77.1 29.1 26.6 17.9 5-May-08 11.0 21.6 39.7 20.7	51.7 71.5	64.5	49.0	23.6
	14.5 26.5 29.7 38.7	14.5 38.3	16.1 32.6	10.0 19.0
5-Feb-08 27.0 49.2 67.7 81.7 86.4 83.0 70.2 50.9 27.2 6-May-08 38.8 43.1 77.4 83.9	51.8 55.1	50.7	52.2	38.5
6-Feb-08 27.3 49.1 67.2 84.8 89.5 86.1 72.7 52.3 29.0 7-May-08 55.6 79.4 96.3 103.2 7-Feb-08 19.4 47.9 72.4 86.7 92.3 87.6 74.5 55.5 32.4 8-May-08 35.8 71.2 90.4 105.1	108.8 105.6 109.7 106.6	92.0 67.4	61.9 58.6	43.5 40.0
8-Feb-08 19.6 25.2 28.1 68.0 88.0 89.2 73.7 49.1 24.9 9-May-08 51.5 69.8 92.3 96.2	83.1 71.9	41.8	28.4	15.8
9-Feb-08 17.4 33.6 48.5 68.9 85.9 84.1 71.6 48.8 23.7 10-May-08 27.8 30.0 32.6 42.3	37.8 81.5	70.7	69.1	38.0
10-Feb-08 3.9 6.5 10.3 11.9 30.7 36.2 28.1 32.4 16.6 11-May-08 18.7 29.7 86.1 94.6 11-Feb-08 2.9 11.3 22.9 28.1 33.2 45.3 53.6 34.4 11.0 12-May-08 40.1 71.1 83.0 102.4	105.0 86.7 105.0 101.0	92.0 60.3	64.3 60.5	30.6 32.4
12-Feb-08 15.5 37.4 38.5 64.8 65.8 70.7 63.1 41.2 21.9 13-May-08 49.5 71.1 81.6 94.4	93.0 92.0	81.6	52.4	40.1
13-Feb-08 16.8 32.9 25.2 38.5 49.1 62.4 50.0 41.5 17.3 14-May-08 49.4 75.8 92.5 95.8 14-Feb-08 18.1 23.2 43.4 60.6 72.9 68.6 40.7 16.1 14.3 15-May-08 44.5 78.8 95.3 96.0	99.5 90.5 78.6 81.0	84.1 92.1	63.2 28.4	36.7 23.4
14-repus 16.1 25.2 45.4 00.0 72.9 08.0 40.7 10.1 14.5 15-may-90 44.5 78.0 95.3 70.0 15-feb-08 1.3 1.9 2.9 3.6 3.2 3.9 7.1 9.4 4.8 16-May-08 54.7 77.3 93.7 96.0	100.6 98.8	86.2	63.5	38.4
16-Feb-08 4.5 11.0 11.0 21.0 16.5 13.6 16.8 14.2 11.6 17-May-08 34.9 61.4 64.8 80.4	93.8 84.5	77.9	58.1	28.8
17-Feb-08 18.7 25.2 24.9 38.7 30.3 21.9 10.3 9.4 15.8 18-May-08 21.9 57.4 78.7 91.7 18-Feb-08 6.5 28.7 68.2 50.9 33.9 36.8 47.3 34.6 18.7 19-May-08 18.4 37.4 66.3 71.9	94.0 74.8 62.3 13.6	78.5 14.2	53.9 3.2	24.8 0.3
19-Feb-08 21.6 24.5 30.3 34.5 34.9 27.8 20.0 5.8 6.5 20-May-08 2.3 1.6 1.0 1.3	2.3 4.8	11.6	15.8	9.7
20-Feb-08 7.1 13.2 16.8 24.9 32.9 35.5 37.6 30.8 14.9 21-May-08 13.6 14.2 11.0 12.6 21-Feb-08 3.2 5.8 7.7 16.8 17.8 19.0 23.9 23.2 8.1 22-May-08 0.3 1.3 1.9 3.9	13.2 8.4 2.9 15.5	10.0 31.0	12.9 21.3	5.5 17.8
22-Feb-08 3.6 5.5 6.5 5.8 5.2 6.1 6.8 13.9 13.9 23-May-08 19.7 16.8 18.1 30.3	71.1 73.4	68.1	75.5	40.0
23-Feb-08 31.5 55.1 65.1 76.7 77.4 69.2 48.7 36.0 15.2 24-May-08 47.9 47.3 55.2 91.1 24-Feb-08 14.2 13.9 13.9 18.4 15.2 7.1 8.1 7.1 3.9 25-May-08 31.0 39.2 33.2 59.0	56.1 51.8 63.5 97.2	37.9 82.6	32.3 69.0	22.5 45.3
24-returbo 14-2 13-7 13-9 16-4 13-2 7-1 6-1 13-2 7-1 6-1 13-2 7-1 6-1 3-1 25-reb-08 10.0 39.0 71.1 62.4 88.4 74.4 34.6 45.3 28.4 26-May-08 39.7 67.5 88.8 78.3	84.3 38.4	16.5	17.8	14.2
26-Feb-08 6.5 13.6 18.1 28.1 56.8 43.7 34.4 9.4 6.8 27-May-08 28.1 35.2 86.7 78.9	56.8 39.4	37.9	1.3	1.6
27-Feb-08 29.6 53.2 72.3 85.3 86.9 87.5 73.2 43.2 18.6 28-May-08 53.7 29.1 66.3 21.0 28-Feb-08 10.7 40.4 36.5 35.2 41.2 29.7 36.2 33.4 16.3 29-May-08 60.9 21.3 35.5 78.0	40.0 10.0 43.9 73.1	5.8 82.9	9.4 74.4	7.7 47.4
1-Mar-08 3.2 13.2 14.2 17.4 13.6 21.0 25.2 19.4 23.3 30-May-08 53.3 83.8 94.0 62.4	79.9 102.7	86.3	51.9	26.9
2-Mar-08 12.9 26.1 61.6 78.9 93.7 92.2 80.0 57.0 32.3 31-May-08 6.1 13.6 29.7 38.7 3-Mar-08 16.1 36.0 72.0 91.5 95.5 88.2 77.9 55.9 30.2 1-Jun-08 44.3 77.3 58.5 89.3	66.3 88.9 107.7 103.3	90.9 91.2	71.5 62.5	53.0 40.1
4-Mar-08 9.4 9.4 20.3 29.1 31.3 53.4 33.9 46.1 21.4 2-Jun-08 21.9 51.9 80.4 83.4	95.8 92.2	79.5	65.5	30.3
5-Mar-08 26.1 45.4 63.1 77.0 81.7 16.8 11.0 12.6 4.8 3-Jun-08 39.6 59.9 91.6 94.1 6-Mar-08 2.9 4.5 7.1 9.4 15.5 15.5 13.2 11.6 3.6 4-Jun-08 43.5 82.2 95.2 101.4	94.8 93.8 106.7 104.8	93.1 93.1	67.3 73.6	50.0 52.8
7-Mar-08 8.7 11.6 13.9 16.5 16.5 15.8 20.3 14.8 8.4 5-Jun-08 55.5 77.3 85.3 95.0	102.6 101.7	94.0	73.4	49.7
8-Mar-08 3.6 10.3 28.7 24.2 23.6 20.3 6.8 8.1 4.2 6-Jun-08 45.9 74.5 67.8 40.3	71.8 92.8	72.3	26.8	11.0
9-Mar-08 10.7 9.4 10.0 10.3 13.6 13.6 15.2 10.0 13.2 7-Jun-08 16.5 31.0 57.9 16.5 10-Mar-08 14.5 21.3 36.8 47.8 85.4 65.5 53.1 38.8 19.7 8-Jun-08 11.9 6.1 1.6 2.3	13.2 14.2 14.5 28.7	26.5 44.0	28.4 13.6	21.3
11-Mar-08 1.6 3.6 9.0 7.1 11.9 10.3 16.8 10.7 3.9 9-Jun-08 41.0 56.2 63.9 61.8	65.1 33.6	13.2	14.8	10.7
12-Mar-08 5.2 8.1 14.2 18.4 25.8 22.9 26.5 28.5 14.2 10-Jun-08 0.6 1.3 1.3 3.6 13-Mar-08 10.3 29.1 32.6 42.9 77.1 66.2 62.7 45.8 21.5 11-Jun-08 26.8 24.5 48.7 57.5	1.9 4.2 63.2 52.2	7.7 30.7	10.0 27.4	8.7 25.2
13-martos 10.3 25.1 32.0 42.7 7.1 0.2 02.7 43.6 21.3 11-juntos 20.6 24.3 43.7 37.3 14-Martos 8.7 20.3 25.2 23.9 24.2 29.1 16.8 12.9 8.1 12-juntos 34.9 31.6 42.6 16.1	56.8 67.1	53.8	23.2	21.3
15-Mar-08 17.8 43.0 63.3 64.2 48.5 46.8 60.0 36.1 22.9 13-Jun-08 26.8 27.8 46.8 25.2	29.7 42.6	49.5	27.4	17.8
16-Mar-08 21.0 18.4 39.1 46.6 42.6 54.1 55.7 34.5 12.6 14-Jun-08 6.1 4.5 8.1 5.5 17-Mar-08 1.6 4.2 4.5 5.2 6.8 6.8 7.7 8.1 2.9 15-Jun-08 30.7 21.3 28.4 40.0	15.5 20.0 51.2 32.6	33.2 21.6	20.7 13.9	18.1 15.8
18-Mar-08 15.5 19.7 30.3 38.4 52.7 78.2 50.2 24.9 7.1 16-Jun-08 23.2 43.7 61.5 86.3	102.7 90.6	72.0	61.5	24.2
19-Mar-08 5.8 25.8 42.0 55.5 85.8 77.1 51.8 43.0 29.4 17-Jun-08 22.6 22.6 27.4 46.5	46.2 26.5	21.6	25.5	20.0
20-Mar-08 14.8 41.3 67.6 81.7 72.0 71.5 56.3 36.0 26.3 18-Jun-08 39.6 68.5 90.1 107.9 21-Mar-08 32.3 62.0 75.6 75.5 63.0 57.7 38.8 22.6 14.5 19-Jun-08 55.9 80.3 96.6 100.9	69.6 74.4 107.0 99.2	86.7 92.9	77.4 63.6	31.8 43.8
22-Mar-08 13.2 21.9 29.7 42.3 43.3 39.1 44.3 28.9 15.5 20-Jun-08 48.6 80.6 96.6 100.9	103.8 107.1	93.8	73.6	47.8
23-Mar-08 9.7 22.6 35.8 45.2 51.3 46.6 42.6 38.6 18.5 21-Jun-08 65.0 74.4 80.5 92.2 24-Mar-08 13.2 20.3 26.5 43.9 28.7 16.5 18.1 15.5 15.2 22-Jun-08 29.1 81.6 72.4 79.1	72.1 11.0 108.2 108.4	67.2 74.2	49.1 53.7	32.6 47.5
25-Mar-08 20.0 25.2 34.9 24.5 43.9 39.4 27.8 33.4 24.3 23-Jun-08 55.0 77.3 93.9 100.1	102.8 96.7	86.1	55.8	36.4
26-Mar-08 5.2 7.7 10.3 12.9 15.2 11.3 8.7 9.7 5.2 24-Jun-08 56.5 74.1 97.9 103.3	107.2 110.8		62.5	42.2
27-Mar-08 20.3 35.6 73.6 88.6 74.4 79.0 31.3 13.2 18.6 25-Jun-08 9.7 21.9 49.6 46.5 28-Mar-08 19.4 32.3 28.7 36.8 84.2 61.4 43.5 15.5 8.7 26-Jun-08 54.9 63.4 62.9 91.3	99.8 52.5 68.1 92.1	83.0 100.6	62.5 79.6	53.2 44.4
29-Mar-08 32.7 51.5 57.4 66.8 67.7 81.2 64.5 48.7 29.0 27-Jun-08 38.2 24.5 47.7 20.7	38.7 15.5	34.5	44.5	33.0
30-Mar-08 13.2 21.0 38.1 52.7 76.5 66.6 53.2 25.8 17.8 28-Jun-08 2.9 1.0 3.2 5.5 31-Mar-08 42.2 46.5 40.0 40.0 38.7 31.3 31.6 27.4 23.5 29-Jun-08 25.8 38.8 58.7 42.3	2.9 4.5 23.9 14.2	8.1 29.1	11.3 23.9	19.0 19.7
31-Mar-08 42.2 40.3 40.0 40.0 58.7 51.5 51.6 27.4 25.3 29-Jun-08 22.9 56.3 33.6 50.6 30-Jun-08 22.9 56.3 33.6 50.6	70.0 45.8	5.5	1.3	1.6

Date Time								Date Time											
	0900	1000	1100	1200	1300	1400	1500	1600	1700		0900	1000	1100	1200	1300	1400	1500	1600	1700
1-Jul-08	24.5	53.5	21.9	28.1	48.7	21.6	23.6	18.4	18.4	1-Oct-08	36.9	50.8	50.7	54.4	47.4	42.5	55.5	28.9	12.7
2-Jul-08 3-Jul-08	20.0 31.0	41.4 38.2	75.3 53.2	88.6 64.8	109.7 55.5	94.5 26.5	102.8 73.0	74.3 79.1	22.2 53.6	2-Oct-08 3-Oct-08	19.0 5.2	22.6 12.9	41.7 18.7	38.1 26.5	56.5 56.2	27.4 66.2	21.9 43.1	6.8 21.6	3.2 9.7
4-Jul-08	32.3	43.8	49.5	81.5	83.8	64.6	19.7	34.9	50.7	4-Oct-08	37.9	54.7	76.6	93.3	97.1	91.1	48.6	19.4	13.1
5-Jul-08	42.7	53.7	68.2	69.7	74.8	38.7	34.9	30.3	17.8	5-Oct-08	38.4	31.3	44.4	47.7	68.1	72.1	52.6	31.1	17.1
6-Jul-08 7-Jul-08	29.4 49.0	50.8 70.2	53.2 92.8	52.7 92.7	74.2 82.3	84.0 80.3	81.8 74.5	70.7 77.3	44.2 45.1	6-Oct-08 7-Oct-08	43.2 41.8	60.3 61.1	78.1 75.0	86.6 93.9	85.3 82.9	76.9 61.7	58.0 55.5	41.5 28.1	19.3 13.6
8-Jul-08	41.1	60.2	69.4	75.2	100.8	104.9	95.4	70.4	42.0	8-Oct-08	16.1	25.8	37.8	30.7	17.8	32.6	37.5	27.0	15.6
9-Jul-08	39.9	72.5	95.5	102.1	100.5	105.2	92.9	74.0	50.2	9-Oct-08	45.0	66.0	82.8	94.3	94.3	86.0	62.1	47.6	23.9
10-Jul-08 11-Jul-08	36.3 55.2	79.1 77.3	94.6 94.6	93.9 102.5	104.9 105.1	104.6 103.0	93.5 89.2	73.7 71.0	48.5 47.6	10-Oct-08 11-Oct-08	22.6 10.3	34.1 29.7	61.8 26.5	82.7 49.7	49.2 65.5	60.5 54.0	47.0 47.3	31.8 29.9	10.7 20.0
12-Jul-08	51.2	76.0	89.7	99.5	101.9	102.7	91.1	69.2	46.8	12-Oct-08	14.5	19.7	26.1	23.9	31.3	61.4	36.0	18.7	6.5
13-Jul-08	42.5	68.4	88.6	97.5	101.0	98.4	88.0	72.2	48.2	13-Oct-08	16.5	25.8	36.5	68.6	64.5	76.0	39.7	23.3	6.1
14-Jul-08 15-Jul-08	49.4 25.8	74.6 70.5	93.7 98.0	99.3 101.7	100.7 98.6	97.8 101.8	88.6 74.9	71.9 47.9	47.3 33.4	14-Oct-08 15-Oct-08	15.2 18.4	18.7 34.2	30.7 65.3	44.2 66.0	41.9 54.8	47.5 46.4	37.0 42.0	19.7 30.6	9.4 12.8
16-Jul-08	19.0	43.3	89.0	84.8	90.3	84.8	79.9	47.7	36.6	16-Oct-08	31.6	58.6	78.1	80.6	53.6	35.1	39.0	17.8	11.1
17-Jul-08	49.7	59.9	69.1	39.7	64.2	40.0	31.0	29.7	26.3	17-Oct-08	36.9	56.3	71.3	79.1	56.7	25.2	21.3	24.9	12.2
18-Jul-08 19-Jul-08	25.5 30.4	40.9 26.1	48.0 56.8	96.0 88.9	88.3 109.6	74.9 108.5	68.8 92.3	76.4 76.4	44.2 52.1	18-Oct-08 19-Oct-08	28.7 38.0	52.6 58.9	70.4 75.8	86.5 85.0	87.7 85.8	76.4 78.2	29.9 62.4	13.2 37.7	9.3 16.7
20-Jul-08	41.9	61.2	96.5	97.9	94.6	106.4	92.9	73.7	48.1	20-Oct-08	38.6	59.3	74.2	81.9	84.5	76.3	60.0	38.5	15.9
21-Jul-08	51.9	74.3	87.7	100.6	105.2	105.8	96.0	74.9	50.1	21-Oct-08	39.2	60.8	75.0	84.3	84.5	77.5	62.9	41.2	16.9
22-Jul-08 23-Jul-08	54.0 54.7	77.0 79.3	94.1 95.6	100.7 103.3	104.3 107.0	103.0 106.4	88.0 94.1	72.8 73.4	48.7 48.9	22-Oct-08 23-Oct-08	25.8 36.6	54.4 52.7	75.9 74.2	88.0 86.2	88.5 88.2	80.2 80.7	63.1 64.5	39.5 43.0	16.6 19.1
24-Jul-08	38.6	67.6	88.6	106.0	91.4	93.2	79.6	70.3	42.7	24-Oct-08	41.8	62.9	80.0	91.7	91.5	83.1	66.2	43.0	18.5
25-Jul-08	55.8	79.6	94.7	100.8	103.5	44.4	34.5	57.9	46.4	25-Oct-08	38.4	56.8	58.9	79.6	83.2	76.4	59.7	38.8	16.3
26-Jul-08 27-Jul-08	41.7 53.5	47.7 64.9	71.6 95.0	29.4 106.4	34.9 109.2	28.1 107.7	57.6 95.4	24.2 53.6	21.9 27.1	26-Oct-08 27-Oct-08	38.3 18.1	58.7 31.3	72.0 44.9	89.2 61.3	89.3 85.0	79.3 76.3	62.6 58.7	39.6 35.1	16.0 14.5
28-Jul-08	54.3	79.0	94.7	104.1	105.1	106.8	95.7	73.9	48.3	28-Oct-08	25.2	21.9	28.4	51.7	84.3	63.3	45.6	30.5	13.7
29-Jul-08	15.5	46.7	73.7	87.1	54.6	45.6	71.9	47.2	41.8	29-Oct-08	24.5	54.5	76.8	85.4	85.2	72.2	55.7	24.3	10.8
30-Jul-08 31-Jul-08	42.5 25.8	40.0 24.2	65.8 36.2	93.5 32.3	59.8 41.6	40.3 99.1	48.5 67.8	46.2 76.0	31.4 50.2	30-Oct-08 31-Oct-08	22.6 6.5	41.8 11.9	38.5 23.6	51.3 39.0	56.9 23.6	53.6 32.3	26.1 23.9	14.2 15.5	5.2 5.5
1-Aug-08	53.6	75.8	94.2	101.4	106.5	108.3	96.3	75.0	47.9	1-Nov-08	5.5	12.9	12.6	12.6	10.7	8.7	5.8	4.2	2.9
2-Aug-08	53.5	76.2	93.9	101.4	104.8	103.4	92.2	72.0	47.1	2-Nov-08	17.8	34.5	34.2	63.4	61.0	21.9	36.6	17.8	7.1
3-Aug-08 4-Aug-08	18.4 40.5	28.7 58.2	72.5 97.3	97.9 79.6	105.8 96.4	82.0 102.2	86.7 95.3	53.4 63.3	40.0 48.7	3-Nov-08 4-Nov-08	28.3 37.4	49.9 58.2	58.8 75.9	51.7 85.2	52.5 85.0	50.3 75.3	46.1 58.3	26.2 36.2	14.4 14.6
5-Aug-08	39.6	73.7	50.1	20.3	66.0	100.7	55.2	55.0	36.1	5-Nov-08	33.4	45.4	59.6	80.0	84.3	58.5	46.8	27.5	11.2
6-Aug-08	42.6	15.8	19.4	28.7	16.1	15.5	34.9	51.2	33.5	6-Nov-08	38.0	58.0	74.3	79.0	81.2	70.3	55.3	35.8	14.6
7-Aug-08 8-Aug-08	42.1 25.5	18.7 44.7	42.9 64.5	96.7 80.8	81.9 83.1	95.8 85.8	89.7 54.0	76.4 31.1	40.4 16.5	7-Nov-08 8-Nov-08	32.2 13.9	45.8 16.1	60.6 23.6	32.9 29.4	30.0 32.6	43.2 38.3	30.3 15.5	20.0 10.3	7.9 4.8
9-Aug-08	3.6	15.2	27.8	20.3	41.3	22.6	19.0	11.6	15.8	9-Nov-08	37.7	54.8	69.5	80.5	80.5	69.3	53.4	33.3	13.1
10-Aug-08	8.4	11.3	18.4	12.9	8.7	21.3	9.4	3.6	4.8	10-Nov-08 11-Nov-08	34.8	54.7	71.3	81.1	80.2	72.6	56.8	34.6	13.5
11-Aug-08 12-Aug-08	3.2 4.2	5.8 5.8	6.5 19.4	19.0 19.7	24.5 22.6	24.2 23.9	12.9 12.9	7.7 18.4	1.3 9.0	11-Nov-08 12-Nov-08	33.2 29.9	54.8 39.2	72.6 70.6	81.3 82.8	80.7 84.1	72.8 75.2	55.9 58.5	36.8 36.2	13.8 14.2
13-Aug-08	20.7	36.8	56.8	63.2	70.2	99.7	56.2	20.3	10.0	13-Nov-08	37.2	58.4	77.1	86.5	86.8	77.3	60.5	38.0	15.4
14-Aug-08	7.1 22.6	9.7	17.8	22.6	21.6 29.4	7.1	8.1	7.7	2.3	14-Nov-08	32.8	54.3	72.8	82.8 80.0	84.0	76.6	59.9	38.0 34.2	15.6
15-Aug-08 16-Aug-08	10.7	29.7 24.9	25.2 34.9	36.2 32.3	14.8	23.6 6.1	17.8 3.2	4.8 5.2	6.1 4.2	15-Nov-08 16-Nov-08	34.6 32.0	54.4 54.6	71.2 73.3	83.9	83.7 83.6	75.4 74.4	58.7 57.2	35.3	15.4 13.7
17-Aug-08	20.0	46.7	43.0	42.3	51.7	83.8	68.1	48.6	26.9	17-Nov-08	22.2	47.7	65.8	80.8	80.5	71.7	54.0	34.7	12.5
18-Aug-08	47.9	57.2	74.9	68.1	73.1	65.5	52.0	47.8	22.8	18-Nov-08	22.6 14.2	40.6	58.6	65.0	63.4	44.6	40.5	16.3	7.9
19-Aug-08 20-Aug-08	47.5 0.6	69.4 1.9	89.5 9.4	82.7 24.9	77.3 39.4	57.2 59.0	78.2 55.4	59.6 33.4	37.0 26.2	19-Nov-08 20-Nov-08	32.5	18.7 52.9	46.1 67.6	66.1 77.3	61.2 78.3	52.0 70.1	46.2 53.6	28.5 31.2	10.1 11.3
21-Aug-08	18.7	20.0	29.4	49.2	54.2	45.1	40.3	29.3	19.2	21-Nov-08	30.9	51.6	70.1	65.4	77.7	69.8	54.1	32.8	12.2
22-Aug-08	6.5 22.9	4.8	4.8	11.6	16.8 37.4	18.4	18.4	12.6 28.1	10.0	22-Nov-08	13.2	28.7	53.1	61.0	61.0 59.9	58.2	40.5	33.0 24.5	13.4
23-Aug-08 24-Aug-08	20.3	31.6 24.5	56.1 40.7	49.5 35.2	66.6	29.7 56.8	35.2 39.7	26.5	18.7 8.4	23-Nov-08 24-Nov-08	31.0 20.0	48.9 45.5	62.0 64.5	66.3 80.0	78.2	45.8 69.4	37.9 52.9	30.6	9.5 13.4
25-Aug-08	38.0	64.7	47.6	44.5	29.1	35.8	30.7	6.8	7.7	25-Nov-08	17.8	39.8	59.7	67.7	73.0	43.1	35.2	20.8	7.6
26-Aug-08	40.4	45.7 50.3	41.3	55.4	44.9	23.9	40.3	47.8 29.4	38.3	26-Nov-08	20.3	35.8 22.9	58.2	51.3	52.6	48.2	43.7 49.4	23.9	8.5
27-Aug-08 28-Aug-08	36.5 23.2	39.0	68.2 35.8	63.0 54.8	64.5 73.5	57.9 52.6	36.7 76.5	49.3	23.6 36.5	27-Nov-08 28-Nov-08	13.9 30.6	49.8	37.6 65.4	58.5 75.9	64.7 75.9	63.9 68.7	54.6	28.3 35.6	10.1 13.9
29-Aug-08	38.5	63.2	92.7	95.2	109.2	108.6	87.2	68.9	45.6	29-Nov-08	32.5	51.8	68.9	78.3	78.6	70.1	54.0	32.1	11.5
30-Aug-08 31-Aug-08	43.6 47.2	48.1 73.6	44.6 89.0	28.7 100.8	63.8 106.4	40.3 47.5	28.1 58.6	18.1 49.5	28.9 40.8	30-Nov-08 1-Dec-08	31.6 31.9	50.9 50.8	69.1 68.2	79.8 78.8	82.0 78.9	74.9 71.6	58.0 52.8	36.7 35.3	14.1 8.3
1-Sep-08	43.3	40.3	60.4	66.3	85.0	99.7	81.0	56.9	38.8	2-Dec-08	24.2	50.7	68.5	77.0	77.4	68.0	50.2	29.2	9.0
2-Sep-08	14.8	39.8	47.2	65.1	11.6	7.7	7.1	26.1	16.5	3-Dec-08	25.5	44.8	60.3	68.2	67.6	63.5	49.1	29.5	11.0
3-Sep-08 4-Sep-08	44.8 4.5	70.1 19.7	85.6 42.9	62.6 54.4	82.7 77.4	52.7 53.3	18.4 88.8	20.0 45.3	17.5 12.9	4-Dec-08 5-Dec-08	25.4 4.5	44.6 14.2	59.6 23.9	68.3 34.6	70.0 45.2	62.9 39.1	43.0 28.8	24.7 15.7	9.9 6.1
4-Sep-08 5-Sep-08	20.7	30.3	58.6	69.5	70.2	44.9	40.9	28.4	16.5	6-Dec-08	16.1	35.9	54.6	52.2	63.1	57.3	33.8	16.5	7.5
6-Sep-08	47.8	55.0	58.0	67.4	62.4	28.4	13.2	13.9	13.2	7-Dec-08	23.5	40.1	54.1	61.8	64.0	57.5	43.2	24.9	9.3
7-Sep-08 8-Sep-08	46.2 10.0	49.3 16.5	25.5 43.5	13.2 59.5	24.5 89.3	23.9 68.7	40.3 58.5	11.9 61.2	7.7 32.4	8-Dec-08 9-Dec-08	24.3 18.4	43.5 27.6	60.2 43.5	71.1 63.9	73.9 46.2	66.7 44.2	51.0 48.8	32.7 23.9	12.5 8.3
9-Sep-08	11.9	25.2	31.0	19.4	36.2	54.3	60.0	38.3	14.2	10-Dec-08	26.5	44.0	62.0	66.5	76.0	69.4	55.1	34.0	13.9
10-Sep-08	26.8	51.6	50.2	65.8	74.7	63.3	42.8	24.5	15.7	11-Dec-08	17.4	34.3	55.4	60.6	76.6	69.4	55.9	35.4	14.2
11-Sep-08	46.2	69.0	89.2	98.6	101.8	95.8	80.3	58.1	38.4	12-Dec-08	22.3	37.2	61.1	72.2	72.4	63.4	43.7	25.6	10.7
12-Sep-08 13-Sep-08	47.1 47.5	68.6 70.3	86.7 88.3	93.8 97.6	101.2 99.1	94.0 94.6	78.1 78.4	56.6 55.1	23.3 29.5	13-Dec-08 14-Dec-08	15.2 13.9	38.0 40.9	55.8 57.4	63.0 68.3	64.7 71.1	57.1 63.4	41.5 48.5	25.1 28.9	9.5 11.3
14-Sep-08	28.5	48.7	66.0	59.7	83.2	79.7	53.1	37.8	18.1	15-Dec-08	21.8	42.3	57.4	66.5	70.8	64.0	50.8	31.4	12.0
15-Sep-08	38.3	61.1	80.2 45.8	69.5	54.0	59.8 35.2	38.1	32.9	18.1	16-Dec-08	19.2	32.5	32.2	50.3	69.0	47.9	34.4	31.4	12.1
16-Sep-08 17-Sep-08	19.7 21.6	39.3 39.1	45.8 55.4	52.9 46.1	49.5 47.6	35.2 51.2	26.1 23.6	32.2 21.0	14.2 20.2	17-Dec-08 18-Dec-08	5.8 22.0	8.4 17.4	16.8 19.0	37.2 43.0	51.4 42.0	41.3 50.0	40.8 51.7	15.2 33.6	8.0 13.3
18-Sep-08	40.5	63.3	82.1	91.6	93.5	76.1	70.2	49.0	22.5	19-Dec-08	1.6	1.9	1.9	10.0	11.6	5.2	5.2	5.2	1.9
19-Sep-08	36.2	58.2	75.6	87.0	86.5	79.0	60.5	33.4	15.5 22.6	20-Dec-08	4.8	10.3	31.6	42.5	58.9	62.0	50.3	28.4	13.6
20-Sep-08 21-Sep-08	26.5 29.0	41.4 51.9	67.0 86.5	91.8 95.0	88.0 94.6	53.3 71.2	44.7 39.4	40.8 30.4	22.6 19.7	21-Dec-08 22-Dec-08	25.8 19.9	45.4 24.9	61.0 22.9	72.5 29.1	74.5 25.8	67.7 36.1	52.9 22.6	33.1 13.6	13.1 7.1
22-Sep-08	46.5	69.0	84.7	95.6	98.3	94.2	68.8	50.4	22.6	23-Dec-08	4.2	8.1	6.1	8.7	13.6	14.2	10.3	7.7	3.9
23-Sep-08	6.1	11.0	19.4	34.2	31.3	27.8	28.4	17.8	9.4	24-Dec-08	11.3	31.2	39.5	43.6	38.5	28.4	11.3	9.0	4.2
24-Sep-08 25-Sep-08	5.2 14.8	5.8 29.4	8.7 31.6	11.9 51.6	26.8 34.2	22.6 33.9	6.5 23.9	14.2 39.2	12.6 17.1	25-Dec-08 26-Dec-08	9.7 25.3	20.7 45.4	20.7 61.5	38.0 74.3	21.0 77.2	36.6 71.0	38.3 56.8	23.3 37.3	9.9 15.6
26-Sep-08	40.7	59.6	39.4	80.8	105.3	97.8	79.2	55.3	29.8	27-Dec-08	25.7	44.6	59.5	70.3	74.8	69.2	54.8	35.4	14.6
27-Sep-08	40.0	64.0	89.6	101.7	100.0	93.2	77.6	53.8	28.1	28-Dec-08	23.3	44.3	60.5	72.5	75.4	69.3	54.8	33.3	12.5
28-Sep-08	45.6 47.0	51.9 69.7	66.0 91.5	91.6 72.6	104.7 91.4	93.7 90.9	76.9 69.6	40.1 41.2	29.6 17.4	29-Dec-08 30-Dec-08	17.8 7.7	41.4 21.6	58.2 56.1	67.6 72.2	63.9 69.7	38.4 40.3	27.5 33.4	17.4 21.2	5.5 9.1
29-Sep-08				, 2.0	/ A.T	10.1	07.0	4	A / . TT	20.1200-00		21.0	20.1	,	07.1	.0.5	22.7		

Date	Time									Date	Time								
	0900	1000	1100	1200	1300	1400	1500	1600	1700		0900	1000	1100	1200	1300	1400	1500	1600	1700
1-Jan-09	24.0	44.0	60.4	72.8	76.1	70.3	57.2	37.5	16.2	1-Apr-09	6.8	15.2	16.8	17.8	9.7	9.4	19.7	9.4	6.1
2-Jan-09	25.0	44.5	61.3	73.7	76.1	69.7	54.9	35.6	15.0	2-Apr-09	4.5	9.7	11.0	12.3	11.6	11.0	6.8	5.8	3.6
3-Jan-09 4-Jan-09	23.8 23.8	42.6 43.9	57.5 67.8	70.4 73.8	72.2 78.0	66.7 71.5	53.8 58.2	33.4 35.9	14.5 14.5	3-Apr-09 4-Apr-09	7.7 4.8	19.7 7.1	34.9 12.6	25.8 20.0	11.3 17.4	11.0 14.2	10.3 12.9	9.7 7.4	3.9 8.1
5-Jan-09	22.8	41.5	58.5	68.3	72.8	68.2	53.8	34.8	15.7	5-Apr-09	9.4	16.8	39.7	58.6	93.7	88.7	56.4	62.3	29.1
6-Jan-09	18.4	29.9	51.0	67.4	67.0	69.8	55.0	37.0	17.2	6-Apr-09	11.6	21.3	42.6	82.7	107.4	105.3	92.3	63.2	40.5
7-Jan-09 8-Jan-09	14.5 12.6	30.9 28.5	43.2 31.7	48.9 52.1	49.7 63.5	53.4 47.9	53.6 41.5	37.3 27.9	16.7 11.0	7-Apr-09 8-Apr-09	28.1 36.3	63.7 67.6	80.9 89.8	98.3 101.6	99.7 106.3	97.6 104.1	75.5 92.4	42.8 67.4	36.2 35.9
9-Jan-09	15.2	38.8	59.4	72.7	74.4	67.1	51.0	34.9	15.8	9-Apr-09	21.6	29.1	34.9	61.1	52.2	62.6	51.0	41.7	37.6
10-Jan-09	4.8	6.8	14.8	20.3	32.9	24.5	35.4	29.4	15.5	10-Apr-09	12.3	14.5	17.4	25.8	41.6	23.2	22.9	11.0	10.3
11-Jan-09 12-Jan-09	15.8 21.5	26.4 45.3	48.3 61.6	49.5 76.7	27.1 83.6	27.8 71.1	26.5 61.0	23.1 40.4	13.5 20.5	11-Apr-09 12-Apr-09	28.1 10.7	41.8 20.7	65.7 27.4	48.2 20.3	37.8 21.3	18.4 34.5	18.1 41.1	21.0 44.5	21.3 26.1
13-Jan-09	6.5	5.2	8.4	9.4	11.0	20.3	27.9	11.9	6.5	13-Apr-09	13.9	26.5	23.2	32.6	46.7	46.6	29.1	22.6	13.6
14-Jan-09	7.1	28.7	36.3	31.6	20.3	32.5	48.0	19.8	11.6	14-Apr-09	5.5 25.5	6.8	13.6	21.3	20.3 39.7	22.9	22.6	21.9 44.9	18.3
15-Jan-09 16-Jan-09	8.1 12.9	27.3 28.2	33.5 45.9	38.2 66.9	29.1 42.5	23.6 43.9	24.2 33.8	18.5 21.5	8.6 11.3	15-Apr-09 16-Apr-09	30.8	52.5 37.5	60.8 71.9	44.9 73.9	99.8	29.1 95.9	43.2 73.2	65.9	24.9 31.5
17-Jan-09	14.8	23.9	23.6	47.6	22.9	21.0	22.6	16.1	6.8	17-Apr-09	49.9	70.7	90.2	97.7	98.9	101.8	91.6	59.7	37.0
18-Jan-09 19-Jan-09	22.3	27.6 35.9	34.7 40.8	24.9 48.7	25.8 47.6	16.1 59.7	10.3 48.9	10.7 30.5	7.1	18-Apr-09	22.9	36.2 11.0	33.2	49.8 17.1	61.8 20.7	69.5 19.7	56.5 18.1	16.1 13.2	9.0
20-Jan-09	24.2	46.7	63.6	77.8	82.4	77.4	64.5	44.5	13.3 22.4	19-Apr-09 20-Apr-09	6.1 2.3	2.3	11.3 2.3	2.6	1.9	1.9	1.3	1.0	5.2 1.9
21-Jan-09	20.0	36.6	57.4	67.9	69.5	63.0	43.7	33.2	14.4	21-Apr-09	21.6	30.7	42.9	45.2	43.3	61.3	59.3	31.5	22.7
22-Jan-09	9.7	11.3	26.8	43.2	48.8	52.1	58.5	39.4	17.9	22-Apr-09	24.2	32.6	45.2	59.2	42.3	17.8	59.6	44.4	29.2
23-Jan-09 24-Jan-09	14.5 7.1	31.5 14.5	42.3 16.8	52.7 27.4	57.2 19.4	48.6 15.2	41.4 9.4	32.1 6.8	12.6 4.5	23-Apr-09 24-Apr-09	43.1 2.9	68.0 5.5	79.5 8.1	96.9 11.0	97.1 14.5	95.2 18.7	67.8 10.7	36.3 9.7	25.2 11.3
25-Jan-09	2.3	3.6	10.0	9.4	19.4	16.1	11.6	9.7	3.6	25-Apr-09	8.1	11.3	16.8	21.6	31.0	13.9	20.7	20.3	8.4
26-Jan-09	5.5	7.1	11.9	9.7	12.9	14.8	9.7	10.3	6.1	26-Apr-09	10.7	10.7	10.7	16.1	14.5	7.1	6.8	11.3	10.3
27-Jan-09 28-Jan-09	5.5 3.9	12.6 10.0	17.4 16.1	20.3 21.9	18.7 28.7	18.7 30.3	16.8 29.5	13.9 21.3	9.5 10.4	27-Apr-09 28-Apr-09	28.1 20.0	51.0 39.0	79.1 40.0	73.9 42.9	94.1 57.0	93.6 36.8	60.5 26.8	43.5 13.6	21.1 16.8
29-Jan-09	6.5	2.3	3.9	5.2	14.8	10.3	9.7	9.4	3.2	29-Apr-09	10.7	12.6	14.8	33.9	21.3	14.5	20.7	12.3	5.5
30-Jan-09 31-Jan-09	1.3 4.2	3.2 6.8	4.8 10.3	5.2 11.6	4.5 18.4	5.2 21.3	4.8 21.6	2.9 11.3	1.9 6.1	30-Apr-09 1-May-09	19.7 20.3	40.0 45.6	59.5 66.6	59.8 62.6	60.7 71.7	40.0 76.3	32.9 69.7	34.9 22.6	29.5 16.5
1-Feb-09	3.9	7.1	10.0	10.7	14.8	13.9	21.3	10.7	4.5	2-May-09	5.5	16.8	24.9	35.8	53.0	46.7	37.1	19.0	10.3
2-Feb-09	1.9	3.6	5.5	6.8	7.4	9.0	8.1	3.6	2.3	3-May-09	4.8	7.7	17.8	21.0	22.3	58.8	51.5	62.5	27.5
3-Feb-09 4-Feb-09	18.4 11.9	49.3 21.6	54.0 20.3	59.8 23.2	60.8 35.2	57.7 15.8	52.7 19.0	46.0 14.8	25.3 12.3	4-May-09 5-May-09	22.6 34.4	33.2 73.7	51.1 97.6	73.6 93.1	79.8 96.1	87.7 70.9	74.4 58.1	60.7 56.1	22.7 40.9
5-Feb-09	4.8	7.1	9.0	8.4	14.2	13.2	14.2	6.8	3.9	6-May-09	34.9	36.5	59.5	102.3	95.5	59.7	57.9	40.1	24.0
6-Feb-09	4.2	22.6	38.8	64.2	56.1	24.5	11.9	10.0	6.5	7-May-09	38.8	58.2	35.2	38.1	92.9	77.0	72.4	16.1	12.9
7-Feb-09 8-Feb-09	4.5 10.0	7.7 27.8	11.9 34.9	18.4 49.2	23.9 58.9	25.5 42.2	10.3 36.6	8.7 23.2	7.7 10.5	8-May-09 9-May-09	23.9 54.2	37.8 77.6	58.0 87.3	95.8 70.7	107.9 106.6	109.4 106.3	58.5 94.7	48.5 71.6	23.6 46.8
9-Feb-09	26.7	48.6	67.6	75.7	54.3	66.7	68.8	48.8	24.5	10-May-09	55.6	80.6	86.0	102.5	106.0	99.2	87.9	53.2	29.5
10-Feb-09	10.0	15.8	14.2	20.0	27.8	35.9	39.1	22.7	11.6	11-May-09	29.4	15.2	18.7	21.9	11.6	9.4	22.6	24.2	11.0
11-Feb-09 12-Feb-09	3.9 9.0	7.1 16.8	14.5 26.5	17.8 58.8	16.1 90.0	13.2 85.5	9.7 73.4	8.7 48.9	3.9 21.5	12-May-09 13-May-09	3.9 30.4	5.2 49.7	10.7 89.0	18.7 94.5	43.9 97.4	51.9 95.2	44.9 69.9	13.9 43.8	7.7 32.6
13-Feb-09	13.2	34.0	51.9	62.3	63.1	37.7	29.7	15.5	9.4	14-May-09	55.9	78.1	94.4	101.7	105.8	104.1	90.7	69.2	43.3
14-Feb-09	7.1	17.8	35.5	51.4	42.9	31.3	30.5	16.5	7.4	15-May-09	51.3	73.4	92.4	94.8	99.8	97.7	86.4	66.0	38.0
15-Feb-09 16-Feb-09	28.0 18.7	50.1 22.3	60.9 39.0	41.5 58.3	36.5 62.2	38.4 64.6	29.4 35.3	35.5 11.0	23.9 6.1	16-May-09 17-May-09	51.3 46.8	74.4 69.0	91.6 88.2	98.9 93.0	102.4 97.6	99.8 97.9	83.0 84.8	58.2 63.0	35.2 36.4
17-Feb-09	10.3	28.4	47.5	57.2	69.8	64.3	49.3	49.2	16.6	18-May-09	29.7	31.0	53.8	58.7	63.9	68.1	40.8	26.5	13.2
18-Feb-09	19.7	46.7	70.9	84.6	84.9	79.6	63.3	44.7	16.1	19-May-09	27.4	53.8	45.6	50.0	47.4	50.7	56.7	33.4	17.1
19-Feb-09 20-Feb-09	3.9 30.3	8.1 53.1	17.4 72.0	57.3 84.0	87.7 92.3	77.2 88.0	66.7 72.7	46.2 52.2	23.2 27.9	20-May-09 21-May-09	7.4 5.2	6.5 8.1	6.5 12.3	15.5 7.1	16.5 8.4	13.9 16.8	6.5 14.2	4.5 6.5	5.2 4.2
21-Feb-09	31.9	54.6	74.9	89.9	96.3	92.6	75.4	55.7	31.9	22-May-09	12.6	23.2	42.6	63.6	45.8	33.2	27.1	29.8	32.2
22-Feb-09	7.1	22.6	27.1	21.9	20.7	30.0	9.0	11.0	12.6	23-May-09	9.4	17.8	36.8	28.7	51.2	73.1	67.1	43.2	27.7
23-Feb-09 24-Feb-09	14.5 12.3	23.9 16.8	26.8 21.9	27.4 26.8	25.5 29.4	16.5 24.2	14.2 31.9	13.9 26.0	11.6 12.6	24-May-09 25-May-09	27.1 28.7	30.7 35.8	47.7 71.2	43.3 77.6	26.1 77.6	52.7 88.8	73.7 53.0	72.4 55.2	27.7 27.4
25-Feb-09	9.0	14.8	27.8	37.8	26.5	35.2	31.6	15.2	15.3	26-May-09	19.7	30.7	32.3	18.1	45.8	49.8	43.8	43.7	31.8
26-Feb-09	5.8	23.6	28.7	21.9	25.2	49.8	52.2	32.1	25.8	27-May-09	31.0	15.5	20.7	29.7	39.1	18.7	36.2	11.3	5.8
27-Feb-09 28-Feb-09	33.7 32.0	56.4 55.3	76.2 74.1	85.9 85.7	89.6 89.6	86.4 85.2	71.9 70.7	51.7 49.2	28.5 26.2	28-May-09 29-May-09	30.8 22.6	42.7 34.2	44.6 23.9	56.2 10.3	63.9 9.0	69.6 14.2	39.6 26.5	46.8 24.2	33.5 23.2
1-Mar-09	9.7	12.3	35.5	33.9	56.3	48.9	30.7	9.0	9.7	30-May-09	4.8	1.0	1.6	4.5	25.5	41.0	29.4	30.4	15.5
2-Mar-09	33.3	55.7	76.8	91.5	97.4	93.9	80.5	59.6	33.6	31-May-09	10.3	2.9	3.6	3.6	4.8	7.7	14.2	14.2	4.8
3-Mar-09 4-Mar-09	33.7 32.2	56.9 55.3	75.7 75.3	89.3 92.1	92.4 96.1	87.5 92.7	73.9 77.6	49.9 57.7	25.2 31.8	1-Jun-09 2-Jun-09	17.4 29.7	22.6 40.0	15.5 36.8	16.1 55.6	31.0 68.8	45.2 56.5	37.9 63.1	20.7 31.0	15.8 16.8
5-Mar-09	32.0	53.8	74.1	87.5	93.3	92.1	77.6	56.9	32.7	3-Jun-09	21.6	27.1	35.2	21.9	49.6	31.3	22.6	9.4	11.6
6-Mar-09	35.6	60.2	81.5	95.2	98.9	95.3	81.3	58.7	32.4	4-Jun-09	14.5	28.1	36.5	68.5	63.3	54.7	40.8	41.4	16.5
7-Mar-09 8-Mar-09	23.9 34.2	37.4 57.0	59.5 78.3	75.5 92.7	62.1 98.3	44.1 96.5	51.0 74.4	35.3 48.2	21.0 29.9	5-Jun-09 6-Jun-09	5.8 48.0	13.2 66.4	28.7 48.4	49.7 64.8	35.2 48.7	22.3 19.4	38.5 18.4	25.8 12.3	23.0 8.7
9-Mar-09	31.6	43.4	79.4	91.1	95.2	90.7	75.1	53.1	28.9	7-Jun-09	2.6	2.3	3.6	2.9	1.3	2.3	8.4	3.2	2.9
10-Mar-09	30.1	52.7	73.6	87.2	92.1	85.5	70.9	52.0	28.1	8-Jun-09	0.3	0.6	1.3	4.5	10.7	15.8	20.7	9.4	3.9
11-Mar-09 12-Mar-09	30.2 30.5	53.3 50.5	68.8 65.8	74.3 79.4	89.9 84.6	85.2 79.6	72.5 66.4	40.9 46.7	23.0 25.5	9-Jun-09 10-Jun-09	26.8 39.7	28.4 58.9	23.6 57.8	48.1 112.3	47.4 73.0	45.5 84.8	46.1 50.1	53.0 41.4	11.9 32.6
13-Mar-09	31.8	57.8	76.6	91.4	98.2	93.9	79.8	59.4	33.8	11-Jun-09	12.6	24.9	39.4	52.8	82.0	37.1	56.4	34.6	22.0
14-Mar-09	11.3	21.9	37.4	59.2	78.4	65.2	49.8	33.7	20.0	12-Jun-09	6.5	17.8	48.4	48.1	74.2	70.4	51.3	64.1	37.2
15-Mar-09 16-Mar-09	19.0 33.1	52.5 55.1	40.5 70.2	37.1 82.9	75.1 80.5	79.3 90.5	30.0 71.5	15.5 57.2	12.9 32.3	13-Jun-09 14-Jun-09	20.3 3.6	33.2 1.0	32.3 1.3	34.9 3.6	57.1 5.5	47.4 11.9	43.2 10.3	30.7 4.8	24.8 8.4
17-Mar-09	19.4	37.1	71.1	80.4	83.4	78.5	64.9	47.7	26.7	15-Jun-09	2.3	16.5	16.8	14.2	10.3	9.4	17.1	22.6	27.3
18-Mar-09	23.2	20.0	40.8	53.1	60.8	22.9	40.7	45.3	23.5	16-Jun-09	25.2	27.1	27.1	36.5	56.8	56.2	41.1	50.1	23.0
19-Mar-09 20-Mar-09	10.0 15.5	9.7 42.0	32.0 56.9	26.5 59.7	36.8 61.4	68.8 72.2	56.1 56.9	37.4 33.5	21.1 22.5	17-Jun-09 18-Jun-09	6.1 4.2	12.3 11.6	19.4 8.1	25.5 5.5	32.6 5.2	24.5 9.0	25.2 7.7	32.9 6.8	26.4 4.8
20-Mar-09 21-Mar-09	27.1	36.6	48.1	51.6	32.9	38.7	46.6	29.3	16.1	18-Jun-09 19-Jun-09	14.2	32.9	40.3	26.1	23.2	22.3	22.3	9.7	4.8 9.7
22-Mar-09	6.1	10.3	14.8	31.3	49.8	40.8	53.4	40.9	15.5	20-Jun-09	10.0	34.5	62.9	84.2	94.8	42.6	27.8	32.8	22.0
23-Mar-09	2.9	5.8	7.4	11.9	4.2	5.8	2.3	4.5	4.5	21-Jun-09	56.8	70.9	89.3	94.9	92.0	66.3	70.4	64.7	46.5
24-Mar-09 25-Mar-09	10.7 29.9	13.9 61.2	17.8 71.0	15.5 90.9	14.8 103.0	13.6 101.4	9.0 88.0	10.3 65.9	12.6 39.7	22-Jun-09 23-Jun-09	40.9 43.6	77.0 70.3	93.3 94.5	91.2 101.2	107.7 103.6	109.2 104.3	74.2 92.3	69.5 73.1	52.2 48.8
26-Mar-09	5.2	10.0	9.7	9.0	13.2	11.3	16.1	17.4	5.2	24-Jun-09	54.3	76.4	92.4	87.2	93.6	73.1	65.8	35.5	38.1
27-Mar-09	3.9	11.9	10.3	30.0	42.3	30.0	25.8	19.4	18.7	25-Jun-09	39.2	45.4	34.2	29.1	25.2	43.6	54.7	32.9	23.8
28-Mar-09 29-Mar-09	38.9 1.6	59.0 6.5	59.2 9.7	77.4 19.4	77.9 21.9	78.4 29.7	43.5 26.8	40.7 16.8	19.4 7.1	26-Jun-09 27-Jun-09	1.3	2.9 1.9	7.4 6.5	9.0 14.8	13.6 16.5	14.2 13.6	15.5 10.3	8.1 11.9	5.2 6.5
30-Mar-09	29.2	54.0	78.4	93.4	100.2	95.5	82.3	46.4	20.7	28-Jun-09	1.3	2.9	10.0	17.4	16.5	28.4	23.2	34.3	26.8
31-Mar-09	23.2	34.9	37.8	46.9	51.8	59.7	27.4	11.0	7.1	29-Jun-09	5.2	15.5	9.0	3.9	9.7	26.8	30.7	24.2	7.1
										30-Jun-09	6.8	8.1	2.3	8.4	28.7	37.1	34.5	35.2	20.3

Date	Time	Time								Date	Time								
	0900	1000	1100	1200	1300	1400	1500	1600	1700	· 	0900	1000	1100	1200	1300	1400	1500	1600	1700
1-Jul-09	7.1	16.1	9.0	10.3	15.5	24.9	41.7	62.8	42.2	1-Oct-09	30.3	62.2	79.8	70.1	81.0	76.6	69.5	42.6	21.9
2-Jul-09 3-Jul-09	33.7 45.3	39.7 66.6	66.8 90.9	85.1 102.0	92.9 92.8	87.3 84.0	75.2 91.0	65.0 77.0	38.1 24.6	2-Oct-09 3-Oct-09	33.6 37.7	54.6 54.5	46.9 58.2	48.9 56.7	79.6 54.9	52.6 69.8	48.5 61.1	31.6 40.3	11.6 17.5
4-Jul-09	52.5	68.4	42.3	63.0	102.4	102.5	70.8	72.5	46.7	4-Oct-09	21.9	17.1	53.0	42.8	21.0	12.3	10.0	16.8	3.6
5-Jul-09	54.2	42.9	85.5	108.7	80.5	105.5	93.2	77.0	50.7	5-Oct-09	9.0	28.7	72.0	94.5	95.8	73.9	55.3	33.4	12.3
6-Jul-09 7-Jul-09	48.9 45.9	57.2 72.6	90.0 70.0	98.8 15.2	104.7 10.0	113.2 16.5	87.3 13.9	72.8 22.3	56.1 7.7	6-Oct-09 7-Oct-09	3.2 37.3	0.6 44.8	1.6 60.2	11.0 67.5	15.5 46.4	38.1 30.7	49.1 23.9	14.5 13.2	5.5 6.5
8-Jul-09	8.1	6.1	9.4	15.2	8.7	10.3	14.2	23.6	18.7	8-Oct-09	13.2	13.2	22.3	38.7	34.5	35.2	18.4	10.3	10.7
9-Jul-09	4.2	1.3	2.6	15.8	41.0	27.4	25.5	24.9	22.5	9-Oct-09	38.0	43.4	41.8	59.4	55.5	36.5	39.9	23.5	8.7
10-Jul-09 11-Jul-09	15.8 0.6	21.0 1.0	24.2 2.6	9.7 5.5	11.6 6.8	14.5 12.6	15.5 18.1	21.3 29.4	11.9 25.3	10-Oct-09 11-Oct-09	38.9 42.0	62.9 64.0	85.1 83.8	89.6 94.6	93.0 95.2	92.7 87.8	56.1 71.1	41.7 48.5	23.8 20.8
12-Jul-09	27.1	14.5	20.7	23.2	24.5	31.0	44.7	38.0	22.5	12-Oct-09	37.5	66.5	85.3	94.9	96.4	88.0	71.1	49.3	24.4
13-Jul-09	10.7	17.4	13.9	14.8	21.3	20.3	22.9	28.1	20.3	13-Oct-09	21.6	44.0	34.5	36.8	32.6	26.1	25.2	10.7	6.1
14-Jul-09 15-Jul-09	15.2 43.0	34.2 20.0	41.3 26.1	45.5 42.0	19.7 68.8	5.5 74.8	6.5 62.4	11.9 41.4	15.8 40.7	14-Oct-09 15-Oct-09	17.4 28.3	22.3 47.1	23.2 60.3	33.2 57.9	37.4 76.2	31.3 77.5	28.1 58.6	11.9 32.8	5.5 18.8
16-Jul-09	49.3	59.7	46.2	77.6	36.8	82.8	60.8	46.5	35.3	16-Oct-09	38.2	63.1	88.9	96.4	96.4	84.2	70.3	44.8	21.6
17-Jul-09	24.2	61.9	44.6 93.1	39.7 101.5	29.1 103.9	27.1	41.9 92.6	54.0	10.3 47.4	17-Oct-09	36.5	61.9	67.0	50.6 30.7	89.6 28.4	64.9 28.7	42.8 38.0	37.5	19.6
18-Jul-09 19-Jul-09	53.9 31.6	76.5 57.5	93.1 64.1	62.1	66.3	104.6 85.7	92.6 66.0	72.1 29.1	15.5	18-Oct-09 19-Oct-09	37.9 22.9	66.2 16.5	45.3 43.5	30.7 95.8	28.4 102.9	28.7 86.9	38.0 45.2	8.1 44.9	11.6 18.0
20-Jul-09	40.0	29.1	41.6	95.2	84.4	95.4	66.8	31.2	25.5	20-Oct-09	6.5	37.8	83.3	87.4	92.6	86.2	69.2	45.4	20.8
21-Jul-09	22.9	32.9	50.2	86.9	91.2	102.8	94.1	72.3	33.2	21-Oct-09	41.8	65.2	78.3	92.3	94.8	87.4	68.8	46.8	22.5
22-Jul-09 23-Jul-09	43.2 39.4	69.0 64.0	94.9 77.2	101.9 94.6	106.6 94.5	105.0 57.9	94.1 51.4	75.3 62.7	49.9 51.9	22-Oct-09 23-Oct-09	19.0 28.6	16.1 54.8	34.5 69.7	92.6 92.0	93.2 91.7	85.8 83.9	69.1 54.0	46.2 32.3	21.7 16.2
24-Jul-09	37.1	68.4	69.7	99.0	103.1	100.7	84.8	76.2	59.5	24-Oct-09	31.6	46.5	71.0	82.4	82.4	63.6	46.6	26.7	13.0
25-Jul-09	54.1	77.3	94.9	102.6	106.4	106.5	95.0	75.0	50.7	25-Oct-09	22.5	34.9	41.4	66.3	73.7	64.2	64.7	37.2	19.8
26-Jul-09 27-Jul-09	52.7 48.7	75.1 70.5	92.2 86.9	99.1 93.3	102.9 97.9	102.8 99.8	91.9 88.8	72.9 70.2	47.9 45.9	26-Oct-09 27-Oct-09	8.1 18.4	18.1 49.5	34.9 80.5	38.8 88.2	56.5 87.6	75.9 78.0	55.3 62.8	37.2 37.6	14.2 17.0
28-Jul-09	44.3	64.7	84.2	78.2	90.2	89.1	82.7	19.7	3.9	28-Oct-09	28.9	39.5	39.0	49.6	58.9	58.1	42.8	30.6	18.2
29-Jul-09	44.0	65.7	81.7	94.7	97.4	89.1	75.1	56.8	35.8	29-Oct-09	31.2	57.7	65.8	88.1	87.5	79.7	62.7	40.8	18.2
30-Jul-09 31-Jul-09	21.3 1.9	30.7 2.3	32.6 7.1	42.6 19.7	51.5 30.7	48.6 46.4	32.6 40.2	27.1 38.3	18.7 22.8	30-Oct-09 31-Oct-09	36.1 22.1	52.4 40.3	70.5 62.1	85.0 85.0	82.5 82.5	34.8 79.9	30.2 59.7	21.4 40.7	14.1 11.3
1-Aug-09	30.1	62.7	67.3	42.0	55.2	44.3	36.9	36.7	23.3	1-Nov-09	23.7	41.1	62.1	54.8	69.0	63.1	51.8	44.0	20.4
2-Aug-09	31.9	53.4	82.6	73.0	53.7	40.7	73.4	62.9	35.8	2-Nov-09	12.9	12.6	21.3	23.6	15.5	12.6	20.3	14.8	9.7
3-Aug-09 4-Aug-09	37.2 44.3	56.2 63.7	85.2 88.9	100.4 94.3	89.0 104.3	69.2 105.1	52.6 93.1	47.1 73.4	36.1 48.3	3-Nov-09 4-Nov-09	5.8 10.3	11.0 6.8	19.7 5.2	13.6 15.8	14.5 53.3	18.7 49.0	11.0 35.0	10.7 20.2	3.6 10.3
5-Aug-09	42.9	61.2	58.9	67.8	61.7	52.8	48.3	38.4	40.1	5-Nov-09	6.8	32.1	34.2	31.0	37.7	52.4	58.5	26.7	13.5
6-Aug-09	33.5	18.1	21.6	20.3	15.8	13.2	15.2	17.1	17.1	6-Nov-09	4.5	15.8	19.0	20.3	36.8	32.3	13.9	7.7	6.1
7-Aug-09	5.2 23.2	7.7 30.0	9.0 24.5	12.3 17.1	9.7 25.5	15.8 28.4	15.5 33.2	10.0 13.6	8.4 25.0	7-Nov-09 8-Nov-09	19.7 31.7	50.9 35.0	71.8 81.2	63.2 85.7	54.8 86.9	43.9 78.9	35.6 61.6	30.0 39.0	10.7 17.1
8-Aug-09 9-Aug-09	1.9	3.9	9.4	13.2	14.5	14.2	24.5	24.2	23.7	9-Nov-09	26.0	32.7	61.5	52.8	40.0	28.1	18.4	26.3	11.9
10-Aug-09	30.7	56.2	71.6	58.3	68.1	71.4	60.6	48.0	39.2	10-Nov-09	25.7	46.8	49.6	87.7	72.3	38.1	60.3	33.8	15.6
11-Aug-09	21.0	32.6	49.2	58.9	47.1	48.5	49.4	40.3	34.4	11-Nov-09	36.9	60.9	78.3	88.9	89.5	81.2	63.2	40.2	16.8
12-Aug-09 13-Aug-09	19.4 36.2	17.1 50.7	15.2 90.9	16.5 81.3	18.1 78.0	11.6 70.2	9.7 88.7	6.8 30.0	7.7 27.7	12-Nov-09 13-Nov-09	36.3 35.6	60.8 59.3	78.3 78.3	88.6 87.0	89.8 88.5	81.2 79.0	64.1 62.8	40.5 39.9	17.3 16.7
14-Aug-09	50.2	74.6	96.4	104.9	106.8	104.6	93.0	72.2	46.6	14-Nov-09	34.9	56.3	73.4	83.0	83.3	75.0	59.6	35.6	15.4
15-Aug-09	53.3	78.4	95.5	103.0	107.2	105.3	92.1	71.0	45.4	15-Nov-09	32.4	44.6	72.4	80.2	80.2	73.5	58.1	36.8	15.8
16-Aug-09 17-Aug-09	41.1 42.6	66.7 67.1	75.3 64.2	98.6 91.7	99.8 108.0	100.3 107.1	88.4 91.5	69.5 68.6	43.2 51.5	16-Nov-09 17-Nov-09	29.0 34.4	52.3 55.9	60.0 72.6	67.3 82.0	76.2 83.5	72.5 76.1	50.8 59.7	32.8 37.5	14.2 15.5
18-Aug-09	48.4	16.5	62.7	94.6	107.5	79.2	95.2	67.1	45.9	18-Nov-09	31.0	49.8	68.1	78.3	80.4	72.4	56.2	34.7	14.8
19-Aug-09	54.5	81.1	102.1	107.8	96.4	107.8	95.1	73.9	46.2	19-Nov-09	27.2	46.1	60.7	68.2	61.0	47.6	43.1	27.6	11.6
20-Aug-09 21-Aug-09	49.9 50.5	64.4 72.2	91.6 90.1	59.4 98.7	51.7 101.1	42.3 97.4	38.6 82.5	18.7 60.4	31.2 33.6	20-Nov-09 21-Nov-09	22.6 30.5	44.9 50.5	54.3 68.2	62.0 77.2	63.4 78.7	61.1 71.1	53.5 56.1	33.1 35.2	14.4 14.7
22-Aug-09	20.3	30.7	27.8	40.3	88.4	42.9	80.6	45.5	28.0	22-Nov-09	31.3	49.6	64.5	75.1	76.0	68.1	54.6	33.6	14.6
23-Aug-09	18.4	20.7	12.9	9.0	13.2	11.9	7.4	4.8	2.3	23-Nov-09	28.2	33.5	19.4	27.1	62.3	35.1	11.9	18.6	9.1
24-Aug-09 25-Aug-09	6.5 53.9	14.5 50.8	35.2 50.0	41.3 22.9	39.4 70.6	66.5 78.5	48.4 56.4	67.8 44.5	40.7 27.2	24-Nov-09 25-Nov-09	22.8 29.2	47.8 48.4	54.3 66.0	61.5 76.2	55.3 77.1	58.6 70.1	41.2 55.3	31.0 34.2	10.7 12.0
26-Aug-09	34.5	73.1	66.4	38.7	80.6	95.6	67.2	70.4	23.1	26-Nov-09	29.3	49.7	66.9	76.8	78.3	70.9	55.6	31.7	12.8
27-Aug-09	49.0	72.0	97.3	100.8	108.0	103.6	91.3	69.5	41.4	27-Nov-09	15.8	37.5	34.7	73.7	44.9	60.1	53.2	29.3	13.0
28-Aug-09 29-Aug-09	47.7 50.8	73.7 74.9	93.7 94.6	102.7 98.3	108.1 110.3	104.9 104.3	90.7 91.0	68.9 69.4	42.2 41.6	28-Nov-09 29-Nov-09	19.8 33.6	51.0 55.4	71.3 73.4	81.0 84.0	82.8 85.5	74.2 76.8	57.8 60.4	35.3 38.8	13.8 16.1
30-Aug-09	48.4	75.2	94.6	104.7	103.7	104.3	89.4	67.9	38.3	30-Nov-09	32.8	55.7	74.6	84.6	85.7	77.4	60.4	38.2	15.5
31-Aug-09	42.6	71.5	90.6	105.7	108.4	103.4	87.6	64.9	44.3	1-Dec-09	31.0	50.8	70.0	80.9	82.1	74.4	58.9	37.7	14.2
1-Sep-09 2-Sep-09	41.4 43.8	58.2 67.5	80.5 88.5	93.4 96.5	93.4 99.7	81.5 97.2	87.2 74.6	70.5 27.7	34.4 13.2	2-Dec-09 3-Dec-09	29.1 29.3	49.4 49.3	68.8 68.8	78.1 79.6	78.1 83.5	71.3 74.9	55.7 60.6	33.8 40.1	13.6 16.3
3-Sep-09	23.9	54.6	63.3	92.7	36.2	10.7	8.7	7.7	8.1	4-Dec-09	19.6	20.0	37.3	45.1	28.4	11.6	16.5	29.8	15.5
4-Sep-09	11.3	22.3	38.1	61.1	59.2	109.0	91.2	82.5	45.3	5-Dec-09	13.2	21.0	27.8	16.5	46.9	57.9	51.3	18.1	3.2
5-Sep-09 6-Sep-09	11.6 25.8	13.6 36.2	33.2 45.9	63.2 25.8	44.5 12.6	68.8 3.6	45.0 22.3	37.4 32.1	16.8 7.7	6-Dec-09 7-Dec-09	26.2 19.8	45.7 37.8	60.4 58.7	72.0 71.7	73.1 71.3	66.5 67.9	52.1 56.1	34.0 35.6	12.8 14.0
7-Sep-09	46.4	75.3	96.0	88.1	17.4	9.0	8.7	11.0	11.6	8-Dec-09	27.7	46.8	64.8	60.4	38.3	35.2	29.4	14.8	9.1
8-Sep-09	50.4	68.4	93.2	103.4	104.4	100.7	86.1	57.2	34.2	9-Dec-09	17.1	26.6	41.3	58.9	74.6	66.7	53.5	33.2	13.2
9-Sep-09 10-Sep-09	40.9 32.2	49.2 67.7	76.7 90.5	100.7 94.1	101.8 104.0	97.9 97.3	82.7 85.8	59.8 59.8	26.9 37.4	10-Dec-09 11-Dec-09	28.7 29.7	47.7 48.8	61.1 67.1	72.5 79.2	76.7 82.5	71.2 75.9	56.9 60.1	36.1 38.3	14.5 15.9
11-Sep-09	50.1	74.9	92.7	98.1	106.8	83.2	75.6	43.9	20.7	12-Dec-09	27.6	47.0	62.0	72.8	75.5	69.0	52.9	32.6	13.4
12-Sep-09	38.9	59.0	62.7	91.5	94.3	90.6	73.8	49.2	26.6	13-Dec-09	12.9	25.2	28.4	33.2	28.4	28.4	13.9	10.0	5.8
13-Sep-09	41.6	48.5	73.1	74.8	79.1	88.1	61.5	39.4	14.5	14-Dec-09 15-Dec-09	15.5	23.6	32.1	44.4	56.4	52.8	36.6	25.2	8.1
14-Sep-09 15-Sep-09	36.7 43.8	60.4 64.8	82.8 80.5	93.7 91.2	96.0 93.3	90.6 88.4	73.7 74.6	56.4 47.6	29.5 27.9	16-Dec-09	11.9 20.7	25.5 38.1	48.1 53.2	61.2 63.3	63.3 65.7	57.0 59.4	44.0 45.3	27.9 27.4	11.5 11.2
16-Sep-09	45.3	68.4	84.9	74.4	72.5	62.6	25.5	41.9	21.5	17-Dec-09	22.2	40.9	56.7	63.5	65.7	58.8	45.0	28.6	11.6
17-Sep-09	45.1	67.6	50.4	60.7	69.0	63.8	67.8	42.2	18.2	18-Dec-09	24.2	43.9	60.2	72.4	74.8	69.0	52.5	32.5	13.2
18-Sep-09 19-Sep-09	27.4 1.0	28.4 6.8	30.7 11.9	55.3 43.3	25.8 77.3	60.6 93.0	41.4 46.6	43.7 48.0	17.0 25.0	19-Dec-09 20-Dec-09	25.8 24.9	44.9 43.2	60.1 63.1	72.7 75.2	76.3 78.7	70.2 71.1	57.4 55.1	37.1 36.3	16.2 14.7
20-Sep-09	12.9	11.6	5.8	28.1	45.8	47.7	67.2	37.8	32.6	21-Dec-09	25.8	45.3	63.1	74.2	77.2	71.7	58.0	37.7	16.1
21-Sep-09	36.1	65.3	65.2	92.6	102.8	100.5	83.3	59.6	33.7	22-Dec-09	23.0	43.3	59.2	76.4	78.4	71.7	57.1	36.6	16.1
22-Sep-09 23-Sep-09	45.6 38.6	57.9 59.7	42.0 78.6	66.8 80.2	99.4 64.1	81.4 60.7	78.7 52.5	53.7 41.9	28.4 23.9	23-Dec-09 24-Dec-09	22.0 12.9	40.8 29.8	57.6 55.3	67.2 79.1	70.9 78.1	64.8 69.9	50.8 54.8	32.3 33.9	13.1 14.4
23-Sep-09 24-Sep-09	24.9	28.4	20.3	42.6	37.4	11.0	6.5	14.5	5.8	24-Dec-09 25-Dec-09	9.7	29.8	39.3	79.1 52.4	78.1 51.8	63.6	39.1	21.4	10.3
25-Sep-09	5.2	18.1	19.0	4.8	10.3	15.2	23.9	18.7	8.1	26-Dec-09	20.0	36.2	57.1	59.1	53.5	51.5	38.3	32.5	13.5
26-Sep-09	28.0	41.3	52.7	80.4	101.1	90.5	58.4	26.8	16.7	27-Dec-09	13.2	34.7	56.2	70.9	58.9	41.6	45.1	23.3	8.4
27-Sep-09 28-Sep-09	28.1 44.8	64.0 63.1	86.8 64.3	80.9 71.4	86.7 104.0	95.5 64.7	79.1 21.6	54.4 14.5	32.6 14.8	28-Dec-09 29-Dec-09	10.0 2.9	30.5 6.1	35.5 10.0	47.9 16.1	32.6 14.8	18.4 21.9	18.7 14.2	12.9 6.1	4.2 2.6
29-Sep-09	42.8	70.7	89.9	99.7	101.2	93.9	58.4	41.1	23.7	30-Dec-09	10.0	20.7	41.2	46.6	38.8	17.8	15.8	13.6	5.8
30-Sep-09	27.9	57.1	69.4	75.8	99.4	84.0	62.1	42.3	28.2	31-Dec-09	5.5	10.3	15.8	19.0	26.8	28.4	15.8	7.4	4.8

APPENDIX B: Online survey on occupants' preferred cellular office daylighting design

20 July 2008

Dear occupants,

Online survey on occupants' preferred cellular office daylighting design

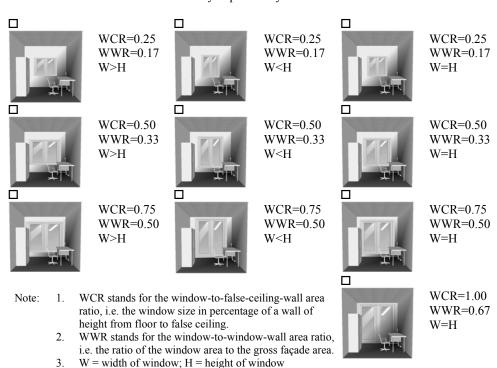
Daylighting has long been recommended as an effective means of reducing electric lighting energy consumption and enhancing visual comfort in office buildings. In Hong Kong however occupants usually turn on all electric lights with all window blinds down once entering their cellular offices. It is suspected that the current daylighting design in cellular offices cannot satisfy the demands of occupants. A survey is now carried out for the investigation of your preferences towards the daylighting design in your office. The sole incentive for you to take part in this survey is the chance to contribute in the development of a better daylighting performance assessment method which can address your real demands of a well performed daylit office. Data collected in this questionnaire is used for academic study only. Should you have any query, please contact Mr Roger Ng at 2766 7966.

Thank you for your help.

Yours faithfully,

Department of Building Services Engineering The Hong Kong Polytechnic University

e-Questionnaire


Back	<u>kground</u>							
1.	Gender							
	□ Male	[☐ Female					
2.	Age group							
	□ < 21		21-30	□ 31-	40	□ 41-50		> 50
3.	Are you worki	ing in loca	al offices?					
	□ Yes		l No					
	If yes, please s	state the n	ame of the	office building	ng where yo	our office is lo	ocated.	
	If yes, you are each question to the next que	unless sp	ecified. You	ı can also sk				
Mai	n body – Prefe	rences on	window					
4.	Do you think	offices sho	ould have w	indows?				
	□ Yes		l No					
	If yes, why? _							
5.	Which window	w orientati	ion do you p	orefer in you	r cellular o	ffice?		
	□N	□ NE	□Е	□ SE	\square S	□ SW	\square W	□NW
	Why?							

6. Which window glazing do you prefer in your cellular office?

☐ Float glass		☐ Body-tinted glass ☐ Reflective		glass	
Why?					
Description	ns of the fou	ar choices of window glazing are	provided	below	:
Glazing type	Illustration	Description		VT^*	$SC^{}$
Float glass		It is a term for perfectly flat, clear glass.		0.8	0.95
Body-tinted glass		It is a normal float glass modified by add colorants for tinting and solar radiation a properties, reducing heat penetration into buildings.	absorption	0.39 - 0.66	0.69 - 0.72
Reflective glass	*	It is an ordinary float glass with a metall to reduce light and solar heat and produc effect preventing others from seeing into interiors through the glass.	ce a mirror	0.09 - 0.18	0.26 - 0.38
Low-e glass		It is a clear glass which has a microscopi coating of metal oxide allowing light to through into the building, and at the sam blocking solar heat from entering the roo	pass ne time	0.21 - 0.62	0.25 - 0.37

reducing heat gain considerably.

7. Which window size and dimensions do you prefer in your cellular office?

^{*} The higher the VT, the higher transmission of light through that glazing.

The higher The SC, The higher proportion of solar radiant heat passing through that glazing.

Main body - Preferences on view outside

8.	Which view do y	ou prefer out	side your cellular of	fice? (Yo	ou can choose m	nore than one option.)				
	□ Sky	Hills	□ Buildin	gs	□ Sea	☐ Ground				
9.			ease or keep unchan owering the blinds in			eivable view outside by a preferred one?				
	☐ Increase		☐ Decrease		□ Unc	hanged				
Mai	in body – Prefere	ences on light	ting and internal sh	ading co	ontrol methods					
10.	Which kind of lighting control do you prefer in your cellular office?									
	<u>Manual</u>			<u>Aut</u>	<u>omatic</u>					
	☐ Manual on-o	ff			Auto-linked with	ı photosensor				
	☐ Manual on-o	ff plus dimma	able		Auto-linked with	occupancy sensor				
				□ 1	Total auto-linked	1				
	Why?									
11.			ntomatic lighting conquestion; if not, pleas			answer in the previous go to Question 12.				
	Do you prefer overriding the auto-control methods manually if necessary?									
	□ Yes			□ No						
12.	Which blind typ	oe do you pre	fer in your cellular o	ffice?						
	☐ Venetian blir	nd		☐ Fabric roller blind						
	Descriptions of	the two choic	es of internal shadin	g contro	l are provided b	elow:				
	Blind type	Illustration	Description							
	Venetian blind		retractable and with vari controlled by a cord or a	able tilt to rod, or fung flexible	a aluminum alloy slats, fully ble tilt to slats. It could be manually od, or fully automatic. It is easy to g flexible shading control with good nlight if required.					
	Fabric roller blind		It is a blind fixed to win is simple to operate mar range of solar control.		-					
13.	Which kind of i	nternal shadii	ng control do you pre	efer in yo	our cellular offic	ce?				
	☐ Manual	□ Aı	nto-linked but overrie	lable	☐ Auto-linl	xed with photosensor				
	Why?									

APPENDIX C: Online survey on building design practitioners' opinions about cellular office daylighting design

5 March 2008

Dear colleagues,

Online survey on building design practitioners' opinions about cellular office daylighting design

Daylighting has long been recommended as an effective means of reducing electric lighting energy consumption and enhancing visual comfort in office buildings. In Hong Kong however occupants usually turn on all electric lights with all window blinds down once entering their cellular offices. It is suspected that the current daylighting design in cellular offices cannot satisfy the demands of occupants. A survey is now carried out for the investigation of your opinions towards the daylighting design of cellular offices. The sole incentive for you to take part in this survey is the chance to contribute in the development of a better daylighting performance assessment method which can address your real needs in designing a well performed daylit office. Data collected in this questionnaire is used for academic study only. Should you have any query, please contact Mr Roger Ng at 2766 7966.

Thank you for your help.

Yours faithfully,

Department of Building Services Engineering The Hong Kong Polytechnic University

e-Questionnaire

Backgi	<u>round</u>					
1.	Gender					
	□ Male	☐ Female				
2.	Age group					
	□ < 21	□ 21-30	□ 31-40	□ 41-5	50 □>	50
3.	What is your p	profession?				
	☐ Architect	☐ Lighting or is	nterior designer	☐ Building s	services engineer	☐ Others
4.	Have you ever	been working or	office projects?			
	□ Yes		[□ No		
	you have ever questionnaire.	architect, a lightir been working of You can select not a question without	on office projects	s, you are invitate for each q	ited to the main juestion unless sp	body of the pecified. You
Main b	oody – Ideas abo	out allocation of	work in office da	ylighting desi	<u>gn</u>	
5.		ence daylighting choose one optio		he most?		
	☐ Client		☐ Architect		☐ Building service	ees engineer
	☐ Lighting or	interior designer	☐ Occupant	:		
6.	Who should ta	ke the duty of lig	hting design in of	fice projects?		
	☐ Client		☐ Architect		☐ Building service	ees engineer
	☐ Lighting or	interior designer	☐ Whole de	esign team		
7.	Who should ta	ke the duty of siz	ing MVAC equip	ment in office	projects?	
	□ Client		☐ Architect	С	☐ Building service	ces engineer
	☐ Lighting or	interior designer	☐ Whole de	sign team		
Main b	oody – Daily pra	ctices of dayligh	ting design in of	fice projects		
8.	Which type of	control systems i	s mostly used in	office daylight	ing design?	
	□ Photosenso	rs	☐ Roller blinds	or shades	☐ Overhangs ar	nd fins
	☐ Venetian bl	inds	☐ Internal light	shelves	☐ External bline	ds
9.	How often do option.)	you consider day	lighting in your o	ffice project? (You can only ch	oose one
	□ Always	☐ Often	☐ Sometin	nes 🗆 Se	ldom 🗆	Never

10.	If you answered 'always', 'usually' or 'sometimes' in the previous question, please answer this question; if not, please skip this question and go to Question 11.								
	How much time of (You can only cho			design in your	office project?				
	☐ Less than one of	day	☐ One day to o	one week	☐ Over one week				
11.	If you answered 'skip this question			n 9, please ansv	wer this question; if not, please				
	Why don't you co	onsider daylig	ghting in your of	fice project?					
	☐ Lack of daylig	hting knowle	dge	☐ Lack of day	lighting design tools				
	☐ Lack of daylig	ht informatio	n	☐ Uncertain s	certain system effects				
	☐ Budget constra	nints		☐ Time constr	raints				
	☐ Not required by	y codes		□ Not my duty	y				
12.	Which approach do you follow when designing for daylighting?								
	☐ Experience ☐ Regulation ☐ Design guide								
	☐ Rules of thumb)	☐ Computer si	mulations	☐ Scale model				
	Notes:								
	Choices	Description							
	Experience Regulation Design guidelines	Rely on previous working experience of daylighting design only Marginally comply with statutory building control of daylight provision Follow approaches recommended by CIBSE or IESNA involving calculations or							
	Rules of thumb Computer simulations Scale model	Follow approace Make use of so	illuminance or lumin thes concerning only ftware to predict the o odels to predict the ef	dimensions of windo effects of daylighting	_				
13.	Which building d	esign aspect i	is mostly affecte	d by daylighting	g design?				
	☐ Window prope	erties (e.g. wii	ndow location, s	hape, size and g	(lazing materials)				
	☐ Building orient	tation	□ Room dime	nsions	☐ Services equipment sizing				
	☐ Lighting contro	ol method	☐ Shading cor	ntrol method	☐ Internal material				
Main bo	dy – Suggestions	to the future	daylighting de	sign guide					
14.	Which should be	added in the	future daylightin	g design guide?					
	☐ Occupants' sat	isfaction eval	luation	☐ Impact on la	ighting energy saving				
	☐ Appropriate wi	indow design	ı	☐ Impact on c	cooling load				
	☐ Daylighting de	esign example	es	☐ Daylighting	design charts and tables				
	☐ Daylight glare	calculations		☐ Biological €	effects due to daylighting				
	☐ Psychological	effects due to	daylighting						

APPENDIX D: Questionnaire on occupants' visual satisfaction and judgment on electric lighting energy saving potential to a daylit cellular office

30 August 2009

Dear Sir/Madam,

Survey on occupants' visual satisfaction and judgment on electric lighting energy saving potential towards a daylit cellular office

Global warming is threatening the whole world. A key method to mitigate its effect is to reduce energy use in buildings. Workers spend about one-third of their time every day in offices and thus energy saving opportunities in offices should be explored with interest. Lighting is reported as one of the major energy end-users by offices. It is therefore essential for offices to consume less electric lighting energy.

Making good use of natural lighting on one hand has long been recommended as an effective means of reducing lighting energy consumption, on the other hand lighting is a kind of science closely involving human psychological judgment and physiological functioning. Consequently, to effectively reduce electric lighting energy consumption, daylighting design in offices should act on a major premise that the occupants should feel visually satisfactory with the daylit environments. However, the abstract concept of indoor daylighting performance, which has not yet been clearly defined, procures the difficulties of designing for a visually satisfactory low carbon lighting environment.

This survey aims to collect your evaluation towards the daylighting performance of your cellular office during the interview period in two criteria: visual satisfaction and electric lighting energy saving potential, with respect to five decision factors, namely 'brightness on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window'. Brightness and uniformity here are defined as the attributes of visual perception towards the amount and distribution of daylight respectively; desktop is the desk surface and surroundings include all the solid surfaces inside the room, other than the window aperture and the desktop. Perceived glare from window refers to the kind of daylighting attributes that causes discomfort visual feeling due to the excessive contrast between the brightness from the window and from the background.

Please spend about 10 minutes to take part in the survey. The sole incentive for you to participate in this survey is the chance to contribute in the development of a better daylighting performance assessment method which can address your real demands of a well performed daylit cellular office. Data collected in this questionnaire is used for academic study only.

Thank you for your co-operation.

Yours faithfully,

Department of Building Services Engineering The Hong Kong Polytechnic University

Questionnaire

Bacl	kground							
1.	Gender	☐ Male	☐ Fen	nale				
2.	Age group							
	□ < 21	□ 21-30	□ 31-40	□ 41-50	□ 51-60	□ > 60		
Mai	n body – Criterion	1: Occupants	' visual satisfac	ction_				
3.	Do you feel visua moment?	illy satisfactory	with the overa	all daylit condi	tion of the ce	llular office at this		
	□ (1) Yes			(0) No				
4.	You feel visually moment.	satisfactory v	with the overall	daylit conditi	on of the cel	lular office at this		
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree : □ 3	nor disagree	Agree □ 4	Strongly agree ☐ 5		
5.	Do you feel visually satisfactory with 'brightness on desktop' in the daylit cellular office at this moment?							
	□ (1) Yes			(0) No				
6.	You feel visually moment.	satisfactory w	rith 'brightness	on desktop' in	the daylit cel	llular office at this		
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree : □ 3	nor disagree	Agree □ 4	Strongly agree ☐ 5		
7.	Do you feel visual this moment?	ly satisfactory	with 'brightness	s on surroundir	ngs' in the day	lit cellular office at		
	□ (1) Yes			(0) No				
8.	You feel visually this moment.	satisfactory w	ith 'brightness o	on surrounding	s' in the dayl	it cellular office at		
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree : □ 3	nor disagree	Agree □ 4	Strongly agree ☐ 5		
9.	Do you feel visual moment?	lly satisfactory	with 'uniformit	y on desktop'	in the daylit ce	ellular office at this		
	□ (1) Yes		Г	□ (0) No				
10.	You feel visually moment.	satisfactory w	ith 'uniformity	on desktop' in	the daylit ce	llular office at this		
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree : □ 3	nor disagree	Agree □ 4	Strongly agree ☐ 5		

11.	this moment?	y satisfactory	with uniformity on surroundings	s in the day	iit ceiiuiar office at
	□ (1) Yes		□ (0) No		
12.	You feel visually s this moment.	atisfactory w	ith 'uniformity on surroundings'	in the dayl	it cellular office at
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree nor disagree ☐ 3 ☐ 4	Agree	Strongly agree ☐ 5
13.	Do you feel visually at this moment?	y satisfactory	with 'perceived glare from wind	ow' in the d	aylit cellular office
	□ (1) Yes		□ (0) No		
14.	You feel visually sa this moment.	atisfactory wi	th 'perceived glare from window	' in the day	lit cellular office at
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree nor disagree ☐ 3	Agree □ 4	Strongly agree ☐ 5
Maiı	n body – Criterion 2	2: Electric lig	hting energy saving potential		
15.	Do you accept not to cellular office at this		etric lights in accordance with the	e overall day	vlit condition of the
	□ (1) Yes		□ (0) No		
16.	You can accept not the cellular office a		lectric lights in accordance with	the overall	daylit condition of
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree nor disagree ☐ 3	Agree □ 4	Strongly agree ☐ 5
17.	Do you accept not daylit cellular office		ectric lights in accordance with ent?	'brightness	on desktop' in the
	□ (1) Yes		□ (0) No		
18.	You can accept not daylit cellular office		lectric lights in accordance with ent.	'brightness	on desktop' in the
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree nor disagree ☐ 3	Agree □ 4	Strongly agree ☐ 5
19.	Do you accept not the cellular office a		ectric lights in accordance with '?	brightness o	on surroundings' in
	□ (1) Yes		□ (0) No		
20.	You can accept not the daylit cellular o		ectric lights in accordance with oment.	brightness o	on surroundings' in
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree nor disagree ☐ 3	Agree □ 4	Strongly agree ☐ 5

21.	Do you accept not daylit cellular offic			accordance with	'uniformity	on desktop' in the
	□ (1) Yes		I	□ (0) No		
22.	You can accept not daylit cellular offic			accordance with	'uniformity	on desktop' in the
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree □ 3	nor disagree	Agree □ 4	Strongly agree ☐ 5
23.	Do you accept not the daylit cellular o			accordance with 'u	uniformity o	on surroundings' in
	□ (1) Yes		I	□ (0) No		
24.	You can accept not the daylit cellular o			accordance with '	uniformity o	on surroundings' in
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree □ 3	nor disagree	Agree □ 4	Strongly agree ☐ 5
25.	Do you accept not the daylit cellular o			cordance with 'pe	erceived glar	e from window' in
	□ (1) Yes		1	□ (0) No		
26.	You can accept not in the daylit cellula			accordance with '	perceived g	lare from window'
	Strongly disagree ☐ 1	Disagree ☐ 2	Neither agree □ 3	nor disagree	Agree □ 4	Strongly agree ☐ 5
			- END	-		

APPENDIX E: Questionnaire on importance levels of various daylighting attributes towards the overall daylighting performance of a cellular office

30 September 2009

Dear Sir/Madam,

Survey on importance levels of various daylighting attributes towards the overall daylighting performance of a cellular office

This survey aims to investigate the importance levels of several daylighting attributes affecting the subjective evaluation of visual satisfaction towards a daylit cellular office as well as encouraging occupants to utilize daylight and not turning on electric lights in their cellular offices. Previous studies showed that five daylighting attributes, namely 'brightness on on desktop', 'brightness on surroundings', 'uniformity on desktop', 'uniformity on surroundings' and 'perceived glare from window', are the decision factors of the two daylighting performance criteria, visual satisfaction and electric lighting energy saving potential respectively, where brightness and uniformity here are defined as the attributes of visual perception towards the amount and distribution of daylight respectively; desktop is the desk surface and surroundings include all the solid surfaces inside the room, other than the window aperture and the desktop; perceived glare from window refers to the kind of daylighting attributes that causes discomfort visual feeling due to the excessive contrast between the brightness from the window and from the background. Nevertheless the weights of influence of each decision factor on each of the criteria have not yet been revealed.

In this survey, providing daylighting of good performance in an interior is regarded as a product, a service or a strategy for improving indoor environmental quality in terms of human visual and energy issues. The analytic hierarchy process (AHP) is applied in this survey for analysis. It is a systematic analysis technique providing a comprehensive and rational framework for dealing with a decision problem made up of various complex factors, like daylighting. You are invited to make pairwise comparisons among the decision factors in terms of importance either when you are deciding a visually satisfactory daylit environment or when you are judging not turning on electric lights inside the cellular office.

Please spend about 10 minutes to take part in the survey. The sole incentive for you to participate in this survey is the chance to contribute in the development of a better daylighting performance assessment method which can address your real demands of a well performed daylit cellular office. Data collected in this questionnaire is used for academic study only.

Thank you for your co-operation.

Yours faithfully,

Department of Building Services Engineering The Hong Kong Polytechnic University

Questionnaire

Background

•	Gender					
	□ Male	☐ Female				
2.	Age group					
	□ < 21	□ 21-30	□ 31-40	□ 41-50	□ > 50	
3 .	Are you work	ing in local office	s?			
	□ Yes			No		
	If yes, please s	state the name of t	the office build	ding where your	office is located.	
	If ves. you are	e invited to the m	ain body of th	ne questionnaire.	which begins with an	exampl

If yes, you are invited to the main body of the questionnaire, which begins with an example showing for clear indication about the pairwise comparisons specified in AHP.

Main body – Example

The approach of quantifying subjective evaluation applies a scale from 1 to 9. The table below indicates the meaning of the numbers in the scale.

Intensity of importance	Definition	Explanation
1	Equal importance	Two factors contribute equally to the criterion
3	Weak importance	One factor slightly favoured over another one
5	Strong importance	One factor strongly favoured over another one
7	Dominant importance	One factor dominantly favoured over another one
9	Absolute importance	Evidence favouring one factor over another is of the highest possible order of affirmation
2, 4, 6, 8	Intermediate values between the two adjacent judgments	When compromise is needed

An example is shown about a participant's judgment on which fruit (apple, banana and cherry) he would prefer and how much he prefers one to the other two. Three statements expressed by the participant and the corresponding AHP pairwise comparisons are shown below:

- 1. 'He slightly favoured banana to apple', and consequently a tick was put in the box labelled '3' in the banana side;
- 2. 'He strongly favoured apple to cherry', and consequently a tick was put in the box labelled '5' in the apple side;
- 3. 'He very strongly favoured banana to cherry', and consequently a tick was put in the box labelled '7' in the banana side.

	9	7	5	3	1	3	5	7	9	
Apple Apple Banana										Banana Cherry Cherry

In the below comparisons, abbreviations of the five decision factors are used:

BD – Brightness on desktop

BS – Brightness on surroundings

UD – Uniformity on desktop

US – Uniformity on surroundings

PG – Perceived glare from window

Main body - Criterion 1: Occupants' visual satisfaction

Please compare in pairs the decision factors in terms of importance when you are deciding a visually satisfactory daylit environment.

	9	7	5	3	1	3	5	7	9	
BD										BS
BD										UD
BD										US
BD										PG
BS										UD
BS										US
BS										PG
UD										US
UD										PG
US										PG

Main body – Criterion 2: Electric lighting energy saving potential

Please compare in pairs the decision factors in terms of importance that a sidelit cellular office should possess in order to encourage you not to use electric lighting.

	9	7	5	3	1	3	5	7	9	
BD										BS
BD										UD
BD										US
BD										PG
BS										UD
BS										US
BS										PG
UD										US
UD										PG
US										PG

APPENDIX F: Results of AHP pairwise comparisons

Subject	$f_{VS,BD}$	$f_{VS,BS}$	$f_{VS,UD}$	$f_{VS,US}$	$f_{VS,PG}$	Subject	$f_{ES,BD}$	$f_{ES,BS}$	$f_{\it ES,UD}$	$f_{ES,US}$	$f_{ES,PG}$
1	32%	4%	21%	4%	40%	1	31%	3%	31%	3%	31%
2	25%	23%	23%	7%	23%	2	31%	15%	19%	15%	19%
3	24%	19%	19%	13%	24%	3	37%	15%	19%	15%	15%
1	20%	20%	20%	20%	20%	4	23%	23%	23%	23%	8%
5	12%	29%	7%	29%	24%	5	29%	29%	12%	7%	22%
6	48%	12%	16%	8%	16%	6	36%	29%	11%	7%	17%
7	19%	24%	13%	19%	24%	7	20%	20%	20%	20%	20%
8 9	38%	14%	14%	10%	23%	8	45%	14%	14%	10%	18%
	9%	23% 9%	12% 9%	28% 7%	28%	10	20%	20% 9%	20% 9%	20% 7%	20%
10 11	33% 30%	21%	30%	13%	42% 5%	11	42% 65%	11%	8%	5%	33% 10%
12	13%	12%	13%	12%	49%	12	48%	12%	17%	10%	13%
13	19%	6%	19%	5%	51%	13	40%	12%	9%	3%	36%
14	29%	21%	14%	5%	31%	14	24%	22%	24%	5%	24%
15	29%	11%	29%	3%	29%	15	38%	38%	8%	8%	8%
16	32%	22%	25%	18%	3%	16	43%	14%	14%	14%	14%
17	33%	4%	33%	4%	26%	17	38%	38%	8%	8%	8%
18	28%	9%	28%	6%	28%	18	23%	23%	23%	23%	8%
19	15%	15%	19%	19%	31%	19	43%	14%	14%	14%	14%
20	14%	14%	14%	14%	43%	20	38%	38%	8%	8%	8%
21	11%	11%	11%	11%	56%	21	43%	14%	14%	14%	14%
22	26%	7%	28%	8%	31%	22	41%	41%	6%	6%	6%
23	6%	29%	6%	29%	29%	23	20%	20%	20%	20%	20%
24	22%	25%	22%	25%	6%	24	20%	20%	20%	20%	20%
25	6%	18%	6%	18%	50%	25	31%	31%	7%	7%	25%
26	38%	17%	24%	17%	4%	26	44%	42%	5%	5%	5%
27	34%	11%	15%	11%	28%	27	29%	6%	29%	6%	29%
28	38%	17%	23%	17%	5%	28	37%	6%	37%	5%	15%
29	33%	33%	11%	11%	11%	29	31%	19%	24%	3%	23%
30	13%	13%	12%	12%	49%	30	38%	8%	38%	8%	8%
31	57%	18%	7%	7%	11%	31	29%	14%	24%	3%	29%
32	33%	28%	9%	4%	26%	32	33%	11%	33%	11%	11%
33	19%	7%	19%	7%	47% 9%	33	25%	22% 20%	25%	6% 7%	22% 7%
34 35	35% 24%	35% 30%	11% 13%	11% 30%	3%	34 35	60% 25%	23%	7% 23%	23%	7%
36	20%	20%	20%	20%	20%	36	34%	13%	6%	13%	34%
37	23%	23%	23%	23%	8%	37	29%	29%	6%	6%	29%
38	20%	20%	20%	20%	20%	38	20%	20%	20%	20%	20%
39	28%	12%	28%	12%	19%	39	43%	14%	14%	14%	14%
40	24%	9%	10%	4%	53%	40	33%	6%	29%	5%	26%
41	20%	4%	29%	6%	41%	41	27%	9%	27%	9%	27%
42	14%	14%	14%	14%	43%	42	27%	9%	27%	9%	27%
43	33%	11%	11%	11%	33%	43	47%	7%	19%	7%	19%
14	30%	27%	10%	4%	30%	44	28%	12%	28%	12%	19%
45	33%	9%	13%	6%	39%	45	23%	23%	23%	8%	23%
46	21%	10%	13%	10%	47%	46	33%	11%	33%	11%	11%
47	18%	6%	18%	6%	50%	47	42%	9%	31%	9%	9%
48	33%	11%	11%	11%	33%	48	37%	15%	19%	15%	15%
19	28%	19%	12%	12%	28%	49	33%	11%	33%	11%	11%
50	23%	23%	23%	23%	8%	50	38%	5%	38%	5%	14%
51	28%	12%	19%	12%	28%	51	27%	9%	27%	9%	27%
52	32%	4%	29%	4%	32%	52	37%	8%	37%	8%	10%
53	24%	22%	24%	5%	24%	53	55%	5%	30%	5%	5%
54	24%	22%	24%	5%	24%	54	55%	5%	30%	5%	5%
55	30%	5%	5%	5%	55%						
56	28%	8%	8%	4%	53%						
57 58	29% 30%	4% 5%	9% 5%	4% 5%	54% 55%						

APPENDIX G: Conversions from cloud cover to sky type (2007-2009)

Conversions from cloud cover to sky type in January from 2007 to 2009

Jan-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	7	1	7	7	7	7	7	7	7	7	2	7	0	2	4	7	7	7	8	7	8	7	7	7	7	7	7	8	7	7	5
1000	7	1	6	7	6	7	7	7	7	7	2	7	0	6	2	3	8	7	8	7	8	7	7	7	7	7	7	8	7	7	6
1100	4	1	5	7	2	7	7	7	7	7	3	7	1	1	6	5	7	7	8	7	7	7	7	7	7	7	7	8	7	6	6
1200	1	1	7	7	7	7	2	7	7	7	3	6	1	1	6	7	6	7	8	7	7	7	7	7	7	7	7	8	7	6	1
1300	1	1	7	7	7	7	2	7	7	7	7	3	1	3	3	5	7	7	8	7	8	7	6	7	2	7	6	8	2	3	1
1400	1	1	7	7	7	7	0	7	7	7	6	1	1	1	1	2	7	7	8	7	8	7	7	7	2	7	7	8	2	1	1
1500	2	1	7	7	7	7	0	7	7	7	4	1	1	1	1	1	7	7	8	7	8	7	7	7	2	7	7	8	1	2	1
1600	1	1	7	7	7	7	0	7	7	7	7	0	0	1	2	1	7	7	8	7	8	7	7	7	3	7	7	8	2	1	1
1700	1	1	/	8	/	/	U	/	/	/	/	0	U	1	3	1	/	/	8	/	/	/	/	/	2	4	/	8	1	1	1
Jan-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd		24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	O	P	O	P	P	P	P	P	P	O	P	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	O	P	O	P	O	P	P	P	P	P	P	O	P	P	P
1100	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	0	P	P	P
1200	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	0	P	P	P
1300	P P	P P	P	P P	P P	P P	P C	P P	P P	0	P P	0	P P	P P	P P	P P	P	P P	0	P P	P	P P									
1400	P	P	P D	P	P	P	c	P	P	P P	P	P	P	P	P	P	P	P		P P		P	P	P	P	P	P		P	P	
1500	-	P	P	P	P			-	P	P P	P	-	P	P	P	P	P	P	0	-	0	P	P	P	P	P	-	0		-	P
1600 1700	P P	P	P	0	P	P P	C C	P P	P	P	P	C C	C	P	P	P	P	P	0	P P	O P	P	P	P	P	P	P P	0	P P	P P	P P
1700	г	г	г	U	г	г	C	г	г	г	г	C	C	г	г	г	г	г	U	г	г	г	г	г	г	г	г	U	г	г	г
Jan-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	3	7	8	8	3	5	4	1	1	7	7	7	7	7	8	7	8	7	7	8	8	7	8	7	7	1	1	0	0	1	0
1000	4	7	7	8	2	6	1	1	2	7	7	7	5	6	7	7	8	7	7	8	8	7	8	7	6	1	0	0	0	1	0
1100	3	7	8	8	1	5	1	1	2	7	7	7	2	7	7	7	8	7	7	8	8	7	8	7	5	1	0	0	0	1	0
1200	3	7	8	8	1	3	0	1	2	7	7	7	1	6	7	7	8	7	7	8	8	7	8	7	7	1	0	0	0	1	0
1300	4	7	8	7	1	2	0	0	2	7	7	7	0	7	7	7	8	7	7	8	8	7	7	7	7	0	0	1	0	1	1
1400	6	7	8	7	1	1	0	1	2	7	7	7	1	7	7	6	8	7	7	7	7	7	7	7	6	0	0	1	0	0	1
1500	6	7	8	4	0	2	0	1	1	7	7	7	1	7	7	5	8	7	7	7	7	7	7	7	6	0	0	1	0	0	1
1600	6	7	7	3	0	5	0	1	1	7	7	7	0	7	5	5	8	7	7	7	7	7	4	7	6	0	0	1	0	1	1
1700	3	7	8	2	1	3	1	1	1	7	7	7	0	5	7	6	8	7	7	7	7	7	2	7	5	0	0	1	0	1	1
Jan-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	0	O	P	P	P	P	P	P	P	P	P	P	0	P	O	P	P	0	O	P	0	P	P	P	P	C	C	P	C
1000	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	O	O	P	0	P	P	P	C	C	C	P	C
1100	P	P	O	O	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	0	O	P	0	P	P	P	C	C	C	P	C
1200	P	P	O	O	P	P	C	P	P	P	P	P	P	P	P	P	O	P	P	0	O	P	0	P	P	P	C	C	C	P	C
1300	P	P	0	P	P	P	C	С	P	P	P	P	C	P	P	P	0	P	P	0	0	P	P	P	P	C	C	P	C	P	P
1400	P	P	0	P	P	P	C	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	C	С	P	C	C	P
1500	P	P P	0	P	С	P	C	P	P P	P	P P	P P	P	P P	P P	P P	0	P	P P	P	P	P	P	P	P	C	С	P	C	C	P
1600 1700	P P	P P	P O	P P	C P	P P	C P	P P	P P	P P	P P	P P	C C	P	P P	P P	0	P P	P P	P P	P P	P P	P P	P P	P P	C C	C C	P P	C C	P P	P P
1700	Р	Р	U	Р	Р	Р	Р	Р	Р	Р	Р	Р	C	Р	Р	Р	U	Р	Р	Р	Р	Р	Р	Р	Р	C	C	Р		Р	Р
Jan-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	0	1	1	1	1	3	6	7	7	7	7	5	7	7	7	7	7	7	5	3	4	7	7	8	7	7	7	7	8	8	8
1000	0	1	1	1	1	7	7	7	5	7	7	5	7	6	7	6	7	7	7	2	4	7	7	7	7	7	7	7	8	8	8
1100	0	0	2	1	1	5	7	7	2	7	7	4	7	7	7	4	7	7	7	2	1	7	7	8	7	7	7	7	8	8	8
1200	0	0	1	1	1	3	7	6	3	7	7	4	7	7	7	6	7	7	7	2	1	7	7	8	7	7	7	7	8	8	8
1300	0	1	1	1	3	3	7	5	3	7	7	3	7	7	7	7	7	7	7	1	1	7	7	7	7	7	7	7	8	8	7
1400	0	1	1	1	3	2	7	6	3	7	7	3	7	7	7	7	7	7	7	1	3	6	7	7	7	7	7	8	8	8	7
1500	0	1	1	1	3	1	5	6	4	7	7	1	7	6	7	7	7	7	7	1	6	1	7	7	7	7	7	8	8	8	7
1600	0	1	0	1	3	1	1	6	4	7	7	1	7	7	7	7	7	7	7	1	2	1	7	7	7	7	7	8	8	7	7
1700	0	1	0	1	3	2	1	4	6	7	6	1	7	7	7	7	7	7	7	1	3	1	7	7	7	7	7	8	8	7	7
Jan-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	0	0	0
1000	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	0	0
1100	C	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	O	O	O
1200	C	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	O	O	O
		P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	O	P
	C										P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P				P
1300	C	P	P	P	P	P	P	P	P	P		r				•			•		•						r	0	O	O	
1300 1400 1500	C C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	O	0	P
1300 1400	C		•	-	•		-	-	-	-		-	-	-	-	-	P P P	P P P	-	P P P	-	-		-		-					

Average probability of clear, partly cloudy and overcast skies in each working hour in January from 2007 to 2009

Jan	С	P	О	\mathbf{P}_C	P_P	P_O
0900 1000 1100 1200 1300 1400	5 6 6 7 7	74 75 75 74 77 78	14 12 12 12 9 8	0.05 0.06 0.06 0.08 0.08	0.80 0.81 0.81 0.80 0.83	0.15 0.13 0.13 0.13 0.10 0.09
1500 1600 1700	8 10 9	78 77 77 77	8 6 7	0.08 0.09 0.11 0.10	0.83 0.83 0.83	0.09 0.09 0.06 0.08

Conversions from cloud cover to sky type in February from 2007 to 2009

Feb-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	
0900	6	3	6	7	7	1	2	4	7	2	3	3	7	7	8	7	7	7	7	7	5	7	8	7	7	7	7	8	
1000	7	1	7	7	7	i	2	3	7	5	2	3	8	7	8	7	7	7	7	7	2	7	8	7	7	7	7	8	
		1	7	7		-		4		1		5	8				7	7	5				8		7	7	7	8	
1100	6				6	2	1		7	-	2	-	-	8	6	7	,			1	1	7	-	7				-	
1200	3	0	5	7	7	3	1	3	7	3	3	5	8	8	6	7	7	7	7	4	1	7	7	7	7	6	7	8	
1300	0	1	2	8	7	2	1	2	7	3	0	6	8	7	6	7	7	7	7	5	1	7	7	7	7	4	7	7	
1400	1	1	1	8	7	1	1	3	5	3	0	7	8	8	5	7	7	7	7	7	1	7	7	7	7	7	7	7	
1500	1	1	1	8	3	1	1	3	7	3	0	7	8	7	4	7	7	7	7	8	1	5	7	8	7	7	7	7	
1600	0	1	1	7	4	1	1	3	7	4	1	6	8	7	2	7	7	7	7	8	1	2	7	8	7	7	7	7	
1700	0	1	1	7	5	i	1	2	7	3	1	7	8	8	1	7	7	7	7	7	4	1	7	7	7	7	8	7	
1700	U	1	1	,	3	1	1	2	,	3	1	,	0	0	1	/	,	,	,	,	*	1	,	,	,	,	0	,	
Feb-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	
0900	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	0	P	P	P	P	0	
1000	P	P	P	P	P	P	P	P	P	P	P	P	0	P	0	P	P	P	P	P	P	P	0	P	P	P	P	o	
1100	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P	P	P	P	P	P	P	0	P	P	P	P	0	
	-			-	-							-							-										
1200	P	C	P	P	P	P	P	P	P	P	P	P	0	O	P	P	P	P	P	P	P	P	P	P	P	P	P	O	
1300	C	P	P	0	P	P	P	P	P	P	C	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	
1400	P	P	P	O	P	P	P	P	P	P	C	P	O	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	
1500	P	P	P	0	P	P	P	P	P	P	C	P	O	P	P	P	P	P	P	0	P	P	P	0	P	P	P	P	
1600	C	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	0	P	P	P	o	P	P	P	P	
1700	č	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P	P	P	P	P	P	P	P	P	P	P	0	P	
. 700		•	•	•	•	•	٠	•	•	•	•	•	~		•	•	•	•	•	•	•	•	•	•	•	•	-	•	
Feb-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th
0900	1	5	4	5	0	0	5	7	7	8	8	7	7	7	7	7	6	7	6	7	7	8	2	7	7	7	1	7	7
1000	1	5	3	2	0	1	4	7	7	8	7	7	7	6	7	7	7	7	7	7	7	8	3	7	7	7	1	6	7
1100	1	1	3	1	0	1	3	7	7	8	7	7	7	7	7	7	7	5	7	7	8	8	2	7	7	7	2	7	7
1200	1	3	2	1	0	2	3	3	4	8	7	7	7	6	7	7	7	7	7	7	8	8	7	7	7	8	4	7	7
1300	3	4	2	2	0	2	3	4	3	7	7	7	7	6	7	7	7	7	7	7	7	8	6	7	3	7	4	7	7
1400	2	5	3	5	0	2	3	3	4	7	7	7	6	6	7	7	7	7	7	7	7	8	6	7	4	7	3	7	7
1500	2	5	3	7	1	2	3	5	4	7	7	7	6	7	7	7	7	6	7	7	7	8	7	7	5	7	3	7	7
1600	3	6	2	5	i	2	5	3	4	5	7		4	7	7	7	7	7	7	7	7	8	7	7	5	7	6	7	7
					-							6	4			7			7				7	7					
1700	3	5	2	5	0	2	4	4	3	6	7	6	4	7	7	7	7	7	7	7	7	8	7	7	6	7	6	7	7
Feb-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th
0900	P	P	P	P	C	C	P	P	P	0	0	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P
1000	P	P	P	P	c	P	P	P	P	o	P	P	P	P	P	P	P	P	P	P	P	o	P	P	P	P	P	P	P
		P	P	P P	c	P	P	P			P P	-	P	P	P	P P	P	P	P P	P			P P	P P	P	P		P P	P P
1100	P			-				-	P	0	-	P	-		-	-			-		0	0	-	-		-	P	-	
1200	P	P	P	P	C	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	O	0	P	P	P	O	P	P	P
1300	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P
1400	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P
1500	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P
1600	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P
1700	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P
	-	•	•	-	-	•	•	-	-	-	•	-	•	-	•	•		-	-	-	-	-	-	-	-		-	-	
Feb-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	
0900	7	7	5	7	7	7	7	7	1	7	7	7	7	7	1	7	7	7	7	1	0	7	7	7	7	7	1	1	
									-											-							-	-	
1000	8	7	4	7	7	7	7	7	1	7	7	7	7	7	2	7	7	7	7	1	0	7	7	7	7	7	1	1	
1100	8	7	6	7	7	7	7	7	1	7	7	7	7	7	7	7	4	4	7	1	0	7	7	7	7	7	1	1	
					7	5	7	7	7	7	7	2	7	7	7	7	6	3	5	1	0	7	7	7	7	7	2	1	
1200	8	7	7	7					7	7	7	1	7	7	7	7	6	3	5	1	0	7	7	7	7	7	2	1	
		7 7	7 7	7	7	7	7	7	,			2	7	7	7	7	4	3	2	0	1	7	7	7	7	6	2	1	
1200	8				7	7	7	7	7	7	7	2																	
1200 1300 1400	8 7 7	7	7	7			7			7		1	7			7	4	4	1	0	4	7	7	7	7	7	1	1	
1200 1300 1400 1500	8 7 7 7	7 7 7	7 7 6	7 7 7	7	7	7	7	7	7	7	1	7	7	7	7		4	-	0		7			7	7	-	-	
1200 1300 1400 1500 1600	8 7 7 7 7	7 7 7 7	7 7 6 5	7 7 7 7	7 7 8	7 7 7	7 7 7	7 7 7	7 5 3	7	7	1	7	7	7	7	6	6	1	0	1	7	7	7	7	6	1	2	
1200 1300 1400 1500	8 7 7 7	7 7 7	7 7 6	7 7 7	7	7	7	7	7	7	7	1	7	7	7				-								-	-	
1200 1300 1400 1500 1600	8 7 7 7 7	7 7 7 7 7	7 7 6 5 2	7 7 7 7	7 7 8	7 7 7 7	7 7 7 7	7 7 7	7 5 3	7	7	1	7 7 7	7 7 7	7 4 5	7	6	6	1	0	1	7 7	7	7	7 7	6	1	2	
1200 1300 1400 1500 1600 1700 Feb-09	8 7 7 7 7 7 1st	7 7 7 7 7 7	7 7 6 5 2 3rd	7 7 7 7 7 4th	7 7 8 8 5th	7 7 7 7 6th	7 7 7 7 7th	7 7 7 7 7 8th	7 5 3 3 9th	7 7 7 10th	7 7 7 7	1 6 3 12th	7 7 7 13th	7 7 7 14th	7 4 5 15th	7 7 16th	6 7 17th	6 7 18th	1 1 19th	0 0 20th	1 1 21st	7 7 22nd	7 7 23rd	7 7 24th	7 7 25th	6 3 26th	1 1 27th	2 3 28th	
1200 1300 1400 1500 1600 1700 Feb-09 0900	8 7 7 7 7 7 1st P	7 7 7 7 7 7 2nd P	7 7 6 5 2 3rd P	7 7 7 7 7 7 4th P	7 7 8 8 8 5th	7 7 7 7 6th P	7 7 7 7 7th P	7 7 7 7 7 8th	7 5 3 3 9th	7 7 7 10th P	7 7 7 11th P	1 6 3 12th P	7 7 7 7 13th	7 7 7 14th P	7 4 5 15th P	7 7 16th P	6 7 17th P	6 7 18th P	1 1 19th P	0 0 20th P	1 1 21st C	7 7 22nd P	7 7 23rd P	7 7 24th P	7 7 25th P	6 3 26th P	1 1 27th P	2 3 28th P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1000	8 7 7 7 7 7 7 1st P	7 7 7 7 7 7 2nd P	7 7 6 5 2 3rd P	7 7 7 7 7 4th P	7 7 8 8 8 5th P	7 7 7 7 6th P	7 7 7 7 7th P	7 7 7 7 7 8th P	7 5 3 3 9th P	7 7 7 7 10th P	7 7 7 7 11th P	1 6 3 12th P	7 7 7 7 13th P	7 7 7 14th P	7 4 5 15th P	7 7 16th P P	6 7 17th P	6 7 18th P P	1 1 19th P	0 0 20th P	1 1 21st C C	7 7 22nd P P	7 7 23rd P P	7 7 24th P	7 7 25th P	6 3 26th P P	1 1 27th P	2 3 28th P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1000 1100	8 7 7 7 7 7 7 1st P O	7 7 7 7 7 7 2nd P P	7 7 6 5 2 3rd P P	7 7 7 7 7 4th P P	7 7 8 8 8 5th P P	7 7 7 7 6th P P	7 7 7 7 7th P P	7 7 7 7 7 8th P P	7 5 3 3 9th P P	7 7 7 10th P P	7 7 7 11th P P	1 6 3 12th P P	7 7 7 13th P P	7 7 7 14th P P	7 4 5 15th P P	7 7 16th P P	6 7 17th P P	6 7 18th P P	1 1 19th P P	0 0 20th P P	1 1 21st C C C	7 7 22nd P P	7 7 23rd P P	7 7 24th P P	7 7 25th P P	6 3 26th P P	1 1 27th P P	2 3 28th P P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1000 1100 1200	8 7 7 7 7 7 7 1st P O O	7 7 7 7 7 7 2nd P P P	7 7 6 5 2 3rd P P P	7 7 7 7 7 4th P P P	7 7 8 8 8 5th P P P	7 7 7 7 6th P P P	7 7 7 7 7th P P P	7 7 7 7 8th P P P	7 5 3 3 9th P P P	7 7 7 10th P P P	7 7 7 11th P P P	1 6 3 12th P P P	7 7 7 13th P P P	7 7 7 14th P P P	7 4 5 15th P P P	7 7 16th P P P	6 7 17th P P P	6 7 18th P P P	1 1 19th P P P	0 0 20th P P P	1 1 21st C C C	7 7 22nd P P P	7 7 23rd P P P	7 7 24th P P P	7 7 25th P P P	6 3 26th P P P	1 1 27th P P P	2 3 28th P P P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1000 1100	8 7 7 7 7 7 7 1st P O	7 7 7 7 7 7 2nd P P	7 7 6 5 2 3rd P P	7 7 7 7 7 4th P P	7 7 8 8 8 5th P P	7 7 7 7 6th P P	7 7 7 7 7th P P	7 7 7 7 7 8th P P	7 5 3 3 9th P P	7 7 7 10th P P	7 7 7 11th P P	1 6 3 12th P P	7 7 7 13th P P	7 7 7 14th P P	7 4 5 15th P P	7 7 16th P P	6 7 17th P P	6 7 18th P P	1 1 19th P P	0 0 20th P P	1 1 21st C C C	7 7 22nd P P	7 7 23rd P P	7 7 24th P P	7 7 25th P P	6 3 26th P P	1 1 27th P P	2 3 28th P P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1000 1100 1200	8 7 7 7 7 7 7 1st P O O	7 7 7 7 7 7 2nd P P P	7 7 6 5 2 3rd P P P	7 7 7 7 7 4th P P P	7 7 8 8 8 5th P P P	7 7 7 7 6th P P P	7 7 7 7 7th P P P	7 7 7 7 8th P P P	7 5 3 3 9th P P P	7 7 7 10th P P P	7 7 7 11th P P P	1 6 3 12th P P P	7 7 7 13th P P P	7 7 7 14th P P P	7 4 5 15th P P P	7 7 16th P P P	6 7 17th P P P	6 7 18th P P P	1 1 19th P P P	0 0 20th P P P	1 1 21st C C C	7 7 22nd P P P	7 7 23rd P P P	7 7 24th P P P	7 7 25th P P P	6 3 26th P P P	1 1 27th P P P	2 3 28th P P P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1000 1100 1200 1300	8 7 7 7 7 7 7 1st P O O P	7 7 7 7 7 2nd P P P	7 7 6 5 2 3rd P P P	7 7 7 7 7 4th P P P	7 7 8 8 8 5th P P P P	7 7 7 7 6th P P P	7 7 7 7 7th P P P P	7 7 7 7 8th P P P	7 5 3 3 9th P P P P	7 7 7 10th P P P P	7 7 7 11th P P P P	1 6 3 12th P P P P	7 7 7 13th P P P P	7 7 7 14th P P P P	7 4 5 15th P P P P	7 7 16th P P P P	6 7 17th P P P P	6 7 18th P P P P	1 1 19th P P P P	0 0 20th P P P P	1 1 21st C C C C	7 7 22nd P P P P	7 7 23rd P P P P	7 7 24th P P P P	7 7 25th P P P P	6 3 26th P P P P	1 1 27th P P P P	2 3 28th P P P P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1100 11200 1300 1400 1500	8 7 7 7 7 7 7 7 1st P O O P P P	7 7 7 7 7 7 2nd P P P P	7 7 6 5 2 3rd P P P P	7 7 7 7 7 4th P P P P	7 7 8 8 8 5th P P P P P	7 7 7 7 6th P P P P P	7 7 7 7 7th P P P P P	7 7 7 7 8th P P P P	7 5 3 9th P P P P	7 7 7 10th P P P P P	7 7 7 11th P P P P P	1 6 3 12th P P P P	7 7 7 13th P P P P	7 7 7 14th P P P P P	7 4 5 15th P P P P	7 7 16th P P P P P	6 7 17th P P P P P	6 7 18th P P P P	1 1 19th P P P P	0 0 20th P P P P C C	1 1 21st C C C C C C	7 7 22nd P P P P P P	7 7 23rd P P P P P	7 7 24th P P P P	7 7 25th P P P P P	6 3 26th P P P P P	1 1 27th P P P P	2 3 28th P P P P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1000 1100 1200 1300 1400 1500	8 7 7 7 7 7 7 1st P O O P P P P P	7 7 7 7 7 2nd P P P P P	7 7 6 5 2 3rd P P P P P	7 7 7 7 7 4th P P P P P P P P	7 7 8 8 8 5th P P P P P P P P P P P P P P P P P P P	7 7 7 7 6th P P P P P	7 7 7 7 7 7 1 P P P P P P P P P P P P P	7 7 7 7 8th P P P P P P P P	7 5 3 3 9th P P P P P P P P P P P P P P P P P P P	7 7 7 10th P P P P P P	7 7 7 11th P P P P P P	1 6 3 12th P P P P P P	7 7 7 13th P P P P P P	7 7 7 14th P P P P P P	7 4 5 15th P P P P P P	7 7 16th P P P P P P P	6 7 17th P P P P P P	6 7 18th P P P P P P	1 1 19th P P P P P	0 0 20th P P P P C C	1 1 21st C C C C C C P P	7 7 22nd P P P P P P P	7 7 23rd P P P P P P	7 7 24th P P P P P P	7 7 25th P P P P P P	6 3 26th P P P P P P	1 1 27th P P P P P P	2 3 28th P P P P P P	
1200 1300 1400 1500 1600 1700 Feb-09 0900 1100 11200 1300 1400 1500	8 7 7 7 7 7 7 1st P O O O P P P P	7 7 7 7 7 7 2nd P P P P P	7 7 6 5 2 3rd P P P P P	7 7 7 7 7 4th P P P P P	7 7 8 8 8 5th P P P P P	7 7 7 7 6th P P P P P	7 7 7 7 7th P P P P P	7 7 7 7 8th P P P P P	7 5 3 3 9th P P P P P P	7 7 7 10th P P P P P	7 7 7 11th P P P P P	1 6 3 12th P P P P P	7 7 7 13th P P P P P	7 7 7 14th P P P P P	7 4 5 15th P P P P P P	7 7 16th P P P P P	6 7 17th P P P P P	6 7 18th P P P P P	1 1 19th P P P P P	0 0 20th P P P P C C	1 1 21st C C C C C C	7 7 22nd P P P P P P	7 7 23rd P P P P P	7 7 24th P P P P P	7 7 25th P P P P P	6 3 26th P P P P P	1 1 27th P P P P P	2 3 28th P P P P P	

Average probability of clear, partly cloudy and overcast skies in each working hour in February from 2007 to 2009

Feb	C	P	О	\mathbf{P}_C	\mathbf{P}_{P}	P_O
0900 1000 1100 1200 1300 1400	3 2 2 3 4 3	76 76 75 74 78 78	6 7 8 8 3 4	0.04 0.02 0.02 0.04 0.05 0.04	0.89 0.89 0.88 0.87 0.92	0.07 0.08 0.09 0.09 0.04 0.05
1500 1600 1700	2 2 3	78 78 77	5 5 5	0.02 0.02 0.04	0.92 0.92 0.91	0.06 0.06 0.06

Conversions from cloud cover to sky type in March from 2007 to 2009

																															_
Mar-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	7	6	0	7	8	7	8	7	7	6	7	8	7	7	7	7	7	7	7	7	7	8	7	7	7	7	7	1	4	6	7
1000	6	7	1	8	8	7	7	7	7	7	7	8	7	7	7	7	7	7	7	7	7	8	7	8	7	7	8	1	6	7	7
1100	3	7	1	8	7	7	7	7	6	7	7	7	7	7	7	7	7	7	7	7	7	8	7	8	7	7	7	2	6	5	6
1200 1300	4	2	1	7	7	7	6	7	5	3	7	7	7	7	7	5	7	3	6	7	7	8	8	8	7	7	8	1	5	6	6 7
1400	7	7	0	7	7	8	6	7	6	3	7	7	7	7	7	5	7	2	6	7	7	7	7	8	7	7	8	4	6	6	7
1500	4	6	0	7	7	8	7	7	4	2	8	7	7	7	7	5	7	2	4	7	7	7	7	8	7	7	8	2	6	7	7
1600	2	6	0	7	7	8	7	3	5	2	7	7	7	7	7	5	7	2	6	7	7	7	7	7	7	7	8	1	6	7	6
1700	6	4	0	7	7	8	7	3	3	2	7	7	7	7	7	6	7	2	7	7	7	7	7	7	7	7	7	1	6	7	6
Mar-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	C	P	0	P	0	P	P	P	P	0	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P
1000	P	P	P	0	o	P	P	P	P	P	P	0	P	P	P	P	P	P	Р	P	P	0	P	0	P	P	0	P	P	P	P
1100	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	0	P	P	P	P	P	P	P
1200	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	O	O	P	P	O	P	P	P	P
1300	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	O	P	P	P	P
1400	P	P	C	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	O	P	P	P	P
1500	P	P	C	P	P	0	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	0	P	P	P	P
1600	P	P	С	P P	P P	0	P	P	P	P	P	P P	P	P	P	P	P	P	P P	P P	P	P	P	P	P	P P	0	P	P	P	P
1700	P	P	С	Р	Р	0	P	P	P	P	P	Р	P	P	P	P	P	P	Р	Р	P	P	P	P	P	Р	P	P	P	P	P
Mar-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	7	7	7	7	1	7	8	7	8	8	8	8	8	7	7	7	8	7	7	7	7	7	7	7	7	7	7	7	3	7	5
1000	7	7	7	7	2	7	7	7	8	8	8	8	7	7	6	7	8	7	7	7	7	7	7	7	7	7	6	7	4	7	7
1100	7	7	2	7	2	7	7	7	8	8	8	8	7	7	6	7	8	7	7	7	7	7	7	7	7	7	7	7	5	7	7
1200	7	5	2	7	2	7	7	7	8	8	8	8	7	7	7	7	8	7	7	7	7	7	7	7	7	7	5	7	7	7	6
1300	7	3	1	7	2	7	7	7	8	7	8	8	7	7	7	6	8	7	6	6	7	7	7	7	7	8	7	6	7	6	6
1400 1500	7 7	2	1 2	7	6 7	7	8	7	8	7	8	8	7	7	7	7	7	7	6	7	7	7	7	7	7	8	7	7	6 7	7	6
1600	7	3	2	6	7	7	8	7	8	7	8	7	7	7	7	6	7	7	5	7	7	7	7	7	6	8	7	7	7	7	6
1700	7	4	4	7	7	7	8	7	8	7	8	7	6	7	7	6	7	7	4	5	7	7	7	7	5	8	8	7	6	7	6
Mar-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	O	P	O	O	0	0	O	P	P	P	O	P	P	P	P	P	P	24tii P	P	P	P	P	P	P	P
1000	P	Р	P P	P	Р	P	P	P	0	0	0	0	P	P	P	P	0	P	Р	P	P	P	P	P	P	P	P	P	P	P	P
1100	P	P	P	P	P	P	P	P	o	o	o	o	P	P	P	P	o	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1200	P	P	P	P	P	P	P	P	O	O	O	O	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1300	P	P	P	P	P	P	P	P	O	P	0	O	P	P	P	P	O	P	P	P	P	P	P	P	P	O	P	P	P	P	P
1400	P	P	P	P	P	P	O	P	O	P	O	O	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P
1500	P	P	P	P	P	P	0	P	O	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	O	P	P	P	P
1600	P	P	P	P	P	P	0	P	0	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P
1700	P	P	P	P	P	P	0	P	0	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	О	О	P	P	P	P
Mar-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	1	0	0	0	1	7	3	4	2	2	2	3	7	7	4	7	7	7	7	6	7	7	7	7	7	7	1	8	7	6	7
1000	1	0	0	0	1	7	2	5	2	2	3	1	7	7	5	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
1100	1	0	0	0	1	7	2	1	1	5	2	4	7	7	6	7	7	7	7	7	7	7	7	7	7	7	7	8	4	7	7
1200	1	0	0	0	1	7	2	1	1	3	2	1	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	8	3	7	7
1300	0	2	1	1	0	7	3	1	1	1	1	2	7	7	6	7	7	7	3	7	7	7	7	4	7	7	7	7	5	7	7
1400	0	2	1	1	0	7	5	1	1	2	1	2	7	7	6	5	7	6	7	7	7	7	7	2	7	7	7	7	5	7	7
1500 1600	0	2	1	1	0	7	5	1	1	6	1	1	7	7	5	4	7	7	7 7	7	7	7	7	1	7	7	7	7 7	5	7	7
1700	0	2	1	1	0	7	4	1	1	6	1	1	7	7	3	3	7	7	7	7	7	7	7	1	7	6	7	7	6	7	8
			-		-							-			-													*			
Mar-09	1st	2nd	3rd	4th	5th	6th	7th P	8th P	9th P	10th P	11th P	12th P	13th P	14th P	15th P	16th P	17th P	18th P	19th P	20th P	21st P	22nd P	23rd P	24th P	25th	26th P	27th	28th	29th	30th P	31st P
0900 1000	P P	C C	C C	C C	P P	P P	P P	P	P	P P	P P	P P	P	P	P	P P	P P	P	P	P P	P P	P P	P	P P	P P	P P	P P	O P	P P	P	P
1100	P	c	c	c	P	P	P	P	P	P	P	P P	P	P	P	P	P	P	P	P P	P	P	P	P	P	P	P	0	P	P	P
1200	P	c	c	c	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	o	P	P	P
1300	c	P	P	P	c	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1400	C	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1500	C	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1600	C	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O
1700	C	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O

Average probability of clear, partly cloudy and overcast skies in each working hour in March from 2007 to 2009

Mar	C	P	О	\mathbf{P}_C	\mathbf{P}_{P}	P_O
0900	4	77	12	0.04	0.83	0.13
1000	3	79	11	0.03	0.85	0.12
1100	3	81	9	0.03	0.87	0.10
1200	3	80	10	0.03	0.86	0.11
1300	2	84	7	0.02	0.90	0.08
1400	3	82	8	0.03	0.88	0.09
1500	3	81	9	0.03	0.87	0.10
1600	3	83	7	0.03	0.89	0.08
1700	3	83	7	0.03	0.89	0.08

Conversions from cloud cover to sky type in April from 2007 to 2009

																_	_		_											
Apr-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	7	7	7	7	7	6	7	7	7	7	7	6	8	8	8	7	4	7	2	7	5	7	7	7	7	7	7	7	8	7
1000	6	7	7	7	7	6	7	7	7	7	7	6	8	8	7	7	5	7	2	4	4	7	7	7	7	7	7	8	8	7
1100	7	7	7	7	7	6	7	6	7	6	7	6	8	8	7	7	5	7	3	3	4	6	7	7	7	7	7	8	8	7
1200	7	7	7	7	7	7	7	6	7	6	7	7	8	8	7	7	3	4	2	6	5	4	5	7	7	7	7	8	8	5
1300	7	7	6	7	7	7	7	6	7	7	7	6	8	8	7	7	6	2	3	5	5	5	6	7	7	7	7	8	7	7
1400	5	7	6	6	7	5	7	7	7	7	7	7	8	8	7	7	6	6	3	3	5		6	6	7	7	8	8	7	6
1500	4	7	6	7	7	5	8	7	7	7	7	7	8	8	7	7	7	5	5	6	4	5	7	7	7	7	8	8	8	7
1600	5	7	5	5	7	7	8	7	7	7	7	7	8	8	8	7	7	3	2	7	7		7	7	7	7	7	8	8	7
1700	5	7	5	3	7	8	8	7	7	7	7	6	8	8	8	7	7	3	2	7	7		7	7	7	6	7	8	7	3
1700	5	,	5	,	,	0	o	,	,	,	,	0	0	0	0	,	'	,	-	,	,	,	,	,	,	0	,	0	,	,
Apr-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	P	P	P	P	P	P	P	P	P	P	P	P	O	O	O	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P
000	P	P	P	P	P	P	P	P	P	P	P	P	O	O	P	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P
100	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P	P	P	P	P	P	P	P	P	P	P	P	O	0	P
200	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P
300	P	Р	P	P	P	P	P	P	P	P	P	P	0	Ó	P	P	Р	Р	P	P	P	P	Р	Р	P	Р	P	0	P	P
400	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P
500	P	P	P	Р	P	P P	0	Р	P	P	P	P	o	o	P	P	P	P	P	P	Р	-	P	Р	P	P	o	o	0	p
1600	P	P	P	P	P	P	0	P	P	P	P	P	0	0	0	P	P	P	P	P	P		P P	P	P	P	P	0	0	P P
1700	P	P	P	P	P	0	0	P	P	P	P	P P	0	0	0	P	P	P	P	P P	P P		P P	P P	P	P	P	0	P	P P
1700	г	г	г	г	г	U	U	r	г	r	г	r	U	J	J	ı.	£	r	r	r	r.	1,	1.	r	ı.	£	r	J	ı.	1
Apr-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
1900	7	7	7	7	7	7	7	8	5	7	4	2	7	6	7	7	7	3	5	7	7	7 7	8 8	7	7	4	6	7	7	7
000	7	7	7	7	7	7	7	7	7	7	4	1	7	7	7	6	7	2	5	7	7		7	7	7	2	4	7	7	7
100	7	7	7	7	7	7	7	7	6	7	4	1	7	7	7	4	7	2	6	6	7		7	8	7	2	2	7	7	7
200	7	7	7	7	7	7	7	7		7	4	1	7	7	7	6	7	2		6	7		7	8	7	1	2	7	7	7
									3			-		_					6			-		-					_	_
300	7	7	7	7	7	7	7	7	4	8	5	2	7	7	7	7	7	2	5	6	7	7	7	7	7	1	2	7	7	7
400	7	7	7	7	7	7	7	7	4	8	5	2	7	7	7	7	7	2	4	7	7	7	7	7	7	1	2	7	7	7
500	7	7	7	7	7	7	8	7	5	8	2	1	6	7	6	7	7	2	4	6	7		7	7	7	1	1	6	7	7
600	7	7	7	8	7	7	7	7	5	8	2	1	6	7	6	7	7	2	3	6	7	7	7	7	7	1	2	6	7	7
700	7	7	7	8	7	7	8	7	7	8	2	2	6	7	4	7	7	2	4	6	7	7	7	7	7	1	1	6	7	7
Apr-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	P	P	P	P	P	p	P	0	P	p	P	P	P	P	P	p	P	р	P	p	P	P	0	p p	P	P	P	P	P	P
000	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P		P	P	P	P	P	P	P	P
100	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P		P	0	P	P	P	P	P	P P
200	P	P	P	P	P	P	P	P	P	P	P	P P	P	P	P	P	P P	P	P	P P	P		P P	0	P	P P	P	P	P	P P
		-		P	-	-		-				-		-		-	-			P		-		0		-		-	-	P
300	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	•
400	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P		P	P	P	P	P	P	P	P
500	P	P	P	P	P	P	O	P	P	0	P	P	P	P	P	P	P	P	P	P	P		P	P	P	P	P	P	P	P
600	P	P	P	0	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P		P	P	P	P	P	P	P	P
700	P	P	P	O	P	P	O	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Apr-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th			13th	14th	15th		17th	18th			21st								29th	30th
900	8	8	8	7	7	7	6	7	7	7	7	7	8	7	7	3	7	7	8	7	7		7	7	7	7	7	7	7	7
000	8	8	8	7	7	6	6	7	7	7	7	7	8	7	7	3	7	7	8	7	7		7	7	7	7	7	7	7	7
100	8	8	8	7	7	6	6	7	7	7	7	7	8	7	7	4	7	7	8	7	7		7	7	7	7	7	7	7	7
200	8	8	8	7	6	7	6	7	7	7	7	7	8	7	7	4	7	7	7	7	7	5	7	7	7	4	7	7	7	7
300	8	7	8	7	3	7	6	7	7	7	7	7	8	7	3	5	7	7	7	7	7		7	7	7	3	7	7	7	7
400	8	7	8	7	5	6	6	7	7	7	7	7	7	7	6	5	7	7	7	7	7		7	7	7	4	7	7	7	7
500	8	7	8	7	3	7	6	7	7	7	7	7	7	7	4	4	7	7	7	7	7	6	7	7	7	6	7	7	7	7
600	8	7	8	7	3	6	6	7	7	7	7	7	7	7	6	3	7	7	7	7	7	6	7	7	7	7	7	7	7	7
700	8	7	8	7	2	6	6	7	7	7	7	7	7	7	3	4	7	7	7	7	5	6	7	7	7	7	7	7	6	7
		2.1		44				0.4	0.1	104	114	124	124	1.44		160	174	104	104	204	21	22.1	22.1	244	254	264	274	204	204	204
	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th		14th	15th		17th	18th			21st	22nd					27th		29th	30th
		O	O	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	O	P	P		P	P	P	P	P	P	P	P
900	O	0	O	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	O	P	P		P	P	P	P	P	P	P	P
900 000	O			P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P
900 000		o	O			T-	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
900 000 100	O		0	P	P	P								P	_	P	P	P	P	P	P	P	P	T-	_					
900 000 100 200	0	O		P P	P P	P P	P	P	P	P	P	P	0	P	P	P	r	r	P	r		r	P	P	P	P	P	P	P	P
900 000 100 200 300	0 0	0	0	-		-		-		P P	P P	P P	O P	P P	P P	P	P	P	P	P	P	P	P P							
900 000 100 200 300 400	0 0 0	O O P	0	P	P	P	P	P	P	-		-		-		-	-	-	-	-	-	P	-	-	-	-	-	-	•	•
Apr-09 1900 000 100 200 300 400 500 600	0 0 0 0 0 0	O O P P	0 0 0	P P	P P	P P	P P	P P	P P	P	P	P	P	P	P	P	P	P	P	P	P	P P	P	P	P	P	P	P	P	P
900 000 100 200 300 400	0 0 0 0 0	O O P P P	0 0	P P P	P P P	P P P	P P P	P P P	P P P	P P	P	P P	P	P P	P P P	P P														

Average probability of clear, partly cloudy and overcast skies in each working hour in April from 2007 to 2009

Apr	C	P	О	\mathbf{P}_C	\mathbf{P}_{P}	P_O
0900	0	79	11	0.00	0.88	0.12
1000	0	81	9	0.00	0.90	0.10
1100	0	80	10	0.00	0.89	0.11
1200	0	81	9	0.00	0.90	0.10
1300	0	83	7	0.00	0.92	0.08
1400	0	83	7	0.00	0.92	0.08
1500	0	80	10	0.00	0.89	0.11
1600	0	80	10	0.00	0.89	0.11
1700	0	79	11	0.00	0.88	0.12

Conversions from cloud cover to sky type in May from 2007 to 2009

																												_	_	_	_
May-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	6	7	7	7	6	5	4	6	5	3	7	7	0	1	7	7	7	6	1	7	7	7	7	7	7	7	7	7	7	7	7
1000	5	7	7	7	6	6	4	6	6	3	7	7	1	3	7	7	7	6	1	7	7	7	7	7	7	7	7	7	7	7	7
1100	6	7	7	7	7	6	4	5	6	3	7	6	4	7	7	7	8	4	2	7	8	7	7	7	7	7	7	7	7	8	7
1200	6	7	7	7	7	4	5	4	3	3	7	4	4	2	7	7	8	2	5	7	8	7	7	7	7	7	7	8	8	7	7
																												8		_	
1300	7	7	7	7	7	5	5	2	4	3	7	2	7	1	7	7	8	3	5	7	8	8	7	7	6	7	7	8	7	7	7
1400	7	7	7	7	7	4	5	3	3	2	7	2	6	1	8	8	8	3	5	7	8	8	8	7	6	7	7	8	7	7	7
1500	7	7	7	7	7	7	5	4	4	1	7	1	6	1	7	8	8	6	5	7	8	8	7	7	5	7	7	7	7	7	7
1600	6	7	7	7	7	7	5	4	3	1	7	1	6	1	7	8	8	6	4	7	8	8	8	7	5	7	7	7	7	7	7
1700	6	7	7	7	7	7	5	5	4	1	7	1	6	1	7	8	8	5	6	7	8	8	8	7	5	7	7	7	8	7	7
				4.3		6.0		0.1	0.1									40.3								200			***	20.1	
May-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th		17th	18th	19th		21st		23rd		25th			28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1100	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	O	P	P	P	P	P	P	P	P	O	P
1200	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	O	P	P	P	P	P	P	O	0	P	P
1300	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	O	O	P	P	P	P	P	O	P	P	P
1400	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	0	0	P	P	P	0	0	0	P	P	P	P	0	P	P	P
1500	P	P	P	P	P	P	P	P	P	P	P	P	P	Р	P	0	0	P	Р	P	0	0	P	Р	P	P	P	P	P	P	P
1600	P	Р	P	P	Р	P	P	P	P	P	P	Р	p	P	P	o	o	Р	P	Р	o	o	0	P	P	P	P	P	P	Р	P
1700	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	o	o	P	P	P	0	0	o	P	P	P	P	P	0	P	P
1700	г	r	г	г	г	г	г	г	г	г	г	r	г	г	г	U	0	г	г	r	U	0	U	г	г	г	г	г		г	г
M: 00	1	2.1	3rd	4th	5th	Cit.	7th	8th	9th	10th	11th	12th	13th	14th	15th	160	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
May-08	1st	2nd 7	31a	4tn 7	7	6th 7	/tn			7	7 Tith	12tn 4	15th		4		7 /tn	7 7	7	20th 8	21St	22na 7	23rd 7		25tn 7	20th 7	2/tn 7	28tn 7	29tn 7		7
0900	5						-	6	5				1	3		3								6						6	
1000	6	6	7	7	7	7	1	6	6	7	7	4	3	3	4	5	7	7	7	8	7	7	7	7	7	7	7	7	7	5	7
1100	5	4	7	7	7	7	1	3	6	7	5	6	7	3	4	4	7	5	7	8	7	7	7	7	7	7	6	7	7	4	7
1200	6	4	7	7	7	7	0	1	7	7	4	3	7	5	4	6	7	5	7	8	7	7	7	6	7	7	7	7	7	4	7
1300	6	6	7	7	7	7	1	1	6	7	6	6	7	5	5	3	7	5	7	8	7	7	7	6	7	7	7	7	6	4	7
1400	6	7	7	7	7	7	0	1	7	6	5	6	7	4	5	3	7	4	7	8	8	7	6	6	5	7	7	7	5	4	6
1500	6	7	6	7	7	7	0	1	7	5	6	5	6	3	4	3	7	5	8	8	7	7	6	6	3	7	8	7	5	4	5
1600	5	7	7	7	7	7	0	1	7	6	6	5	5	3	4	3	7	5	8	8	7	7	7	6	5	7	8	7	3	5	5
1700	6	7	7	7	7	7	0	1	7	6	6	5	4	3	4	3	7	7	8	7	7	7	7	5	2	7	8	7	3	6	5
May-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st		23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P
1100	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P
1200	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P
1300	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P
1400	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P	Р	P	P	P	Р	Р	P	P
1500	P	P	P	P	P	P	č	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P	P	P	P	P	0	P	P	P	P
1600	P	Р	P	P	Р	P	c	P	P	P	P	P	P	P	Р	P	P	P	o	o	P	P	P	P	P	P	o	P	P	Р	P
1700	P	P	P	P	P	P	c	P	P	P	P	P	p	P	p	P	P	P	0	P	P	P	P	P	P	P	0	P	P	p	P
1700	г	г	г	г	г	г		г	г	г	г	г	г	г	г	г	г	г	0	г	г	г	г	г	г	г	0	г	г	г	г
May 00	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
May-09 0900	7	2na 7	31a	4tn 7	7	otn 7	7tn	stn 3	9tn 3	7	7	7 7	0	14tn 1	15tn	7	7 /tn	7 7	7	20th 7	7 7	22na 7		24tn 7	25tn 7	20th 7	27tn 7	28tn 7		30th 7	7
															1					7			6						8		
1000	7	7	7	5	7	7	7	2	5	7	7	7	0	1	1	7	7	7	7		7	7	6	6	7	7	7	7	8	7	7
1100	7	7	7	6	6	7	7	4	4	7	7	7	0	1	1	7	7	7	7	7	7	7	6	7	7	7	6	7	8	7	7
1200	7	7	7	6	7	7	5	4	4	7	7	6	0	1	1	7	7	7	7	7	7	7	3	6	7	7	6	7	8	7	7
1300	7	7	7	7	7	7	6	5	5	7	7	4	0	1	1	2	7	7	7	7	7	7	4	7	7	7	6	7	7	7	7
1400	7	7	7	7	7	7	7	5	4	7	7	6	0	1	1	1	7	7	7	7	7	7	4	7	7	7	6	7	7	7	7
1500	7	7	7	6	7	7	7	5	4	7	7	7	0	1	1	1	7	7	7	7	7	7	4	7	7	7	7	7	7	7	7
1600	7	6	7	5	7	7	7	3	6	7	7	7	0	1	1	1	7	7	7	7	7	7	5	7	7	7	7	7	7	7	7
1700	7	7	7	4	7	7	6	1	6	7	7	6	0	1	1	1	7	7	7	7	6	7	7	7	7	7	7	7	7	8	7
				4.3				0.1	0.1	40.1								40.1	40.1	00.1								00.1		20.1	
May-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th		17th	18th	19th		21st			24th	25th		27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P
1100	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P
1200	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P
1300	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1400	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
	P	P	P	P	P	P	P	P	P	P	P	P	c	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1500							-				-				-			P		-		-		-		-		-		-	
1500 1600		P	P	P	P	P	P	P	P	P		P	C		Р		P		P			P	P	P		P	P	P	P	P	P
1600	P		-	-	-	P	P	P	P	P	P	P	C	P	P	P D				P	P	P	P	-	P	-	P	-	P	-	P D
		P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	c	P P	P P	P P	P P	P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P O	P P

Average probability of clear, partly cloudy and overcast skies in each working hour in May from 2007 to 2009

May	С	P	О	\mathbf{P}_C	\mathbf{P}_{P}	P_O
0900	2	89	2	0.02	0.96	0.02
1000	1	90	2	0.01	0.97	0.02
1100	1	87	5	0.01	0.94	0.05
1200	2	85	6	0.02	0.91	0.06
1300	1	87	5	0.01	0.94	0.05
1400	2	82	9	0.02	0.88	0.10
1500	2	84	7	0.02	0.90	0.08
1600	2	83	8	0.02	0.89	0.09
1700	2	82	9	0.02	0.88	0.10

Conversions from cloud cover to sky type in June from 2007 to 2009

Jun-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th 7	10th	11th	12th		14th	15th	16th	17th	18th	19th		21st	22nd 7		24th		26th	27th	28th	29th	30th
0900	7	7	,	7	7	7	7	7	,	7	7	7	7	7	8	7	5	7	7	5	4	,	3	5	6	4	7	8	7	7
1000	7	7	7	7	7	7	7	7	7	7	7	8	7	7	8	7	6 7	7	7	5	5	7	3	4	3	3	5	8	7	7
1100	7	7	7	7		7	7		8			-		7	8			7		6	4		3				7		7	7
1200	7	8		7	7			7	8	7	7	8	7	7	8	7	6		7	6		7	3	2	2	5		7	7	7
1300	7	8	7	7	7	6 7	7	7	8	7	7	7	7	7	8	7	6	7	7	6	4	7	3	1	5	4	7	7	7	4
1400	7	8	7	7	7	7	7	7	8	7	7	7	7	7		6	5	7	7	7	-		2	1	3	3	7	7	7	6
1500	7	8	,	7	7	,	,		,	,				,	7	,	6	,	7	,	6	7	3	1	-	2	,		,	5
1600	7	8	7	7	7	7	7	7	7	7	8	7	7	7	8	5	6	7	7	7	6	7	3	1	3	2	6	7	7	5
1700	7	8	7	7	7	7	7	7	7	7	8	7	7	7	8	7	6	7	7	7	4	6	3	1	3	2	7	7	7	7
Jun-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	O	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P
1100	P	P	P	P	P	P	P	P	0	P	P	O	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1200	P	0	P	P	P	P	P	P	0	P	P	O	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1300	P	0	P	P	P	P	P	P	0	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1400	P	0	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1500	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1600	P	O	P	P	P	P	P	P	P	P	O	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	P	O	P	P	P	P	P	P	P	P	O	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1 - 00	1	21	2-1	441	64	ca.	7.1	0.4	Out	104	110	124	124	144	150	160	174	104	104	204	21	22	22.7	244	254	264	274	204	204	204
Jun-08 0900	1st	2nd 7	3rd	4th 4	5th	6th 7	7th 8	8th 8	9th 7	10th 8	11th 7	12th	13th 7	14th 7	15th 7	16th	17th 7	18th	19th	20th 4	21st 5	22nd 5	23rd	24th 4	25th 7	26th 5	27th 7	28th 8	29th	30th 7
1000	5	6	5	5	6	7	8	8	7	8	7	7	7	7	7	7	7	7	4	4	5	4	5	4	7	6	7	8	7	6
1100	6	6	5	5	6	7	7	8	7	8	7	7	7	7	7	7	7	7	5	4	5	5	6	5	7	7	7	8	7	7
1200	4	5	5	4	7	7	7	8	7	8	7	7	7	7	7	7	7	7	5	4	6	6	5	4	7	6	7	8	7	7
1300	4	6	5	3	7	7	7	7	7	8	7	6	7	7	7	6	7	7	6	4	7	6	3	4	7	7	7	7	7	7
1400	4	5	4	3	7	7	7	7	7	8	7	7	7	7	7	7	7	7	6	4	7	6	4	5	7	5	7	8	7	7
1500	3	6	5	4	7	7	7	7	7	8	7	7	7	7	7	7	7	7	6	4	5	5	5	5	6	6	7	7	7	7
1600	4		4	4	7	7	7	8	7	7	7	7	7	7	7	7	7	6	5	3	6	4	6	5	6	5	7	7	7	7
1700	4	7	5	5	7	7	7	7	7	7	7	7	7	7	7	7	7	6	6	3	5	4	7	5	6	6	7	7	7	7
1700	7	,	,			,	,	,		,			,	,		,	,	-		-										
Jun-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	P	P	P	P	P	P	0	0	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P
1000	P	P	P	P	P	P	0	0	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P
1100	P	P	P	P	P	P	P	0	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P
1200	P	P	P	P	P	P	P	0	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P
1300	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1400	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P
1500	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1600	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Jun-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	7	7	8	7	7	8	8	7	6	7	7	7	7	7	7	7	7	7	7	6	3	5	5	7	7	7	8	7	7	7
1000	7	6	7	7	7	8	8	7	6	7	7	7	7	7	7	7	7	7	7	5	3	5	5	7	7	7	8	7	7	7
1100	7	7	7	7	7	8	8	7	5	7	7	7	7	8	7	7	7	7	7	4	3	4	5	7	7	7	8	7	7	7
1200	7	7	7	7	7	8	8	7	5	7	7	7	7	8	7	7	7	7	7	3	3	4	6	7	7	7	8	7	7	7
	7	7	7	7	7	8	7	7	6	7	7	7	7	7	7	7	7	7	7	4	4	3	7	7	7	8	8	7	7	7
1300			7	7	7	8	7	7	6	7	7	7	7	7	7	7	7	7	7	4	3	2	7	6	7	8	7	7	7	7
1300 1400	7	7				7	7	7	6	7	6	7	7	7	7	7	7	7	6	4	3	2	7	7	7	8	7	7	7	7
		7	7	7	7	/					,	7	7	7	7	7	7	7	6	3	2	2	7	7	7		-	_	7	7
1400	7		7 7	7	7	8	7	7	7	7	5	/	,	,	,										/	8	7	7		
1400 1500	7 7	7					7	7 7	7	7	5	7	7	7	7	7	7	7	6	2	2	2	4	7	7	8	7	7	7	7
1400 1500 1600	7 7 7	7	7	7	7	8										7 16th	7 17th	7 18th	6 19th	2 20th	2 21st				7					7 30th
1400 1500 1600 1700	7 7 7 7	7 7 7	7	7	7 8	8	7	7	7	7	5	7	7	7	7	,	,	,						7	7	8	7	7	7	
1400 1500 1600 1700 Jun-09	7 7 7 7 1st	7 7 7 2nd	7 7 3rd	7 7 4th	7 8 5th	8 8 6th	7 7th	7 8th	7 9th	7 10th	5 11th	7 12th	7 13th	7 14th	7 15th	16th	17th	18th	19th	20th	21st	22nd	23rd	7 24th	7 25th	8 26th	7 27th	7 28th	7 29th	30th
1400 1500 1600 1700 Jun-09 0900	7 7 7 7 1st P	7 7 7 2nd P	7 7 3rd O	7 7 4th P	7 8 5th P	8 8 6th O	7 7th O	7 8th P	7 9th P	7 10th P	5 11th P	7 12th P	7 13th P	7 14th P	7 15th P	16th P	17th P	18th P	19th P	20th P	21st P	22nd P	23rd P	7 24th P	7 25th P	8 26th P	7 27th O	7 28th P	7 29th P	30th P
1400 1500 1600 1700 Jun-09 0900 1000 1100	7 7 7 7 1st P	7 7 7 2nd P	7 7 3rd O P	7 7 4th P P	7 8 5th P	8 8 6th O O	7 7th O O O	7 8th P P	7 9th P P	7 10th P P	5 11th P P	7 12th P	7 13th P P	7 14th P P	7 15th P P P	16th P	17th P P	18th P P	19th P P	20th P	21st P P	22nd P P	23rd P P	7 24th P P	7 25th P P	8 26th P P P	7 27th O O	7 28th P P	7 29th P	30th P P
1400 1500 1600 1700 Jun-09 0900 1000	7 7 7 7 1st P P	7 7 7 2nd P P	7 7 3rd O P	7 7 4th P P	7 8 5th P P	8 8 6th O	7 7th O	7 8th P P	7 9th P P	7 10th P P P	5 11th P P P	7 12th P P P	7 13th P P P	7 14th P P O	7 15th P P	16th P P P	17th P P P	18th P P P	19th P P P	20th P P P	21st P P P	22nd P P P	23rd P P P	7 24th P P P	7 25th P P P	8 26th P P	7 27th O O O	7 28th P P	7 29th P P	30th P P
1400 1500 1600 1700 Jun-09 0900 1000 1100 1200	7 7 7 7 1st P P P	7 7 7 2nd P P P	7 7 3rd O P P	7 7 4th P P P	7 8 5th P P P	8 8 6th O O O	7 7th O O O	7 8th P P P	7 9th P P P	7 10th P P P	5 11th P P P P	7 12th P P P P	7 13th P P P P	7 14th P P O O	7 15th P P P P	16th P P P	17th P P P P	18th P P P	19th P P P	20th P P P	21st P P P	22nd P P P P	23rd P P P P	7 24th P P P	7 25th P P P P	26th P P P P	7 27th O O O O	7 28th P P P	7 29th P P P	30th P P P
1400 1500 1600 1700 Jun-09 0900 1000 1100 1200 1300	7 7 7 7 1st P P P	7 7 7 2nd P P P P	7 7 3rd O P P P	7 7 4th P P P P	7 8 5th P P P P	8 8 6th O O O O	7 7th O O O P	7 8th P P P P	7 9th P P P P	7 10th P P P P	5 11th P P P P	7 12th P P P P	7 13th P P P P	7 14th P P O O	7 15th P P P P	16th P P P P	17th P P P P	18th P P P P	19th P P P P	20th P P P P	21st P P P P	22nd P P P P	23rd P P P P	7 24th P P P P	7 25th P P P P	8 26th P P P P O	7 27th O O O O O	7 28th P P P P	7 29th P P P P	30th P P P P
1400 1500 1600 1700 Jun-09 0900 1000 1100 1200 1300 1400	7 7 7 7 1st P P P P	7 7 7 2nd P P P P	7 7 3rd O P P P P	7 7 4th P P P P P	7 8 5th P P P P P	8 8 6th O O O O O	7 7th O O O P P	7 8th P P P P	7 9th P P P P	7 10th P P P P P	5 11th P P P P P	7 12th P P P P P	7 13th P P P P P	7 14th P P O O P	7 15th P P P P	16th P P P P P	17th P P P P P	18th P P P P P	19th P P P P P	20th P P P P P	21st P P P P P	22nd P P P P P	23rd P P P P P	7 24th P P P P P	7 25th P P P P P	26th P P P P O O	7 27th O O O O O P	7 28th P P P P	7 29th P P P P P	30th P P P P P
1400 1500 1600 1700 Jun-09 0900 1000 1100 1200 1300 1400 1500	7 7 7 7 1st P P P P P	7 7 7 2nd P P P P P	7 7 3rd O P P P P	7 7 4th P P P P P	7 8 5th P P P P P	8 8 6th O O O O O O	7 7th O O O P P P	7 8th P P P P P	7 9th P P P P P P	7 10th P P P P P	5 11th P P P P P	7 12th P P P P P P	7 13th P P P P P	7 14th P P O O P P	7 15th P P P P P	16th P P P P P P	17th P P P P P	18th P P P P P	19th P P P P P	20th P P P P P P	21st P P P P P	22nd P P P P P P	23rd P P P P P P	7 24th P P P P P	7 25th P P P P P P	8 26th P P P P O O	7 27th O O O O O O P	7 28th P P P P P	7 29th P P P P P P	30th P P P P P P

Average probability of clear, partly cloudy and overcast skies in each working hour in June from 2007 to 2009

Jun	C	P	О	\mathbf{P}_C	\mathbf{P}_{P}	P_O
0900	0	80	10	0.00	0.89	0.11
1000	0	80	10	0.00	0.89	0.11
1100	0	80	10	0.00	0.89	0.11
1200	0	79	11	0.00	0.88	0.12
1300	0	83	7	0.00	0.92	0.08
1400	0	84	6	0.00	0.93	0.07
1500	0	87	3	0.00	0.97	0.03
1600	0	84	6	0.00	0.93	0.07
1700	0	84	6	0.00	0.93	0.07

Conversions from cloud cover to sky type in July from 2007 to 2009

Jul-07 0900	1st 4	2nd 7	3rd 6	4th 6	5th 6	6th 7	7th 6	8th 7	9th 7	10th 7	11th 7	12th 2	13th 5	14th 5	15th 8	16th 8	17th 7	18th 7	19th 5	20th 5	21st 3	22nd 5	23rd 3	24th 5	25th 7	26th 7	27th 8	28th 7	29th 8	30th 7	31st
1000	7	7	7	6	6	7	6	7	7	7	7	4	6	7	8	8	7	7	6	4	3	5	4	5	4	7	8	7	8	7	5
1100	5	7	7	6	6	5	7	7	7	7	7	7	6	7	8	8	7	7	7	3	4	5	5	5	6	7	8	7	8	7	4
1200	4	6	6	7	7	5	7	7	7	7	7	6	5	7	8	8	7	7	7	3	4	5	6	5	5	8	8	7	8	7	2
1300	6	6	7	7	7	6	7	5	7	7	7	4	6	7	8	8	7	7	6	3	3	6	6	3	6	7	8	7	8	7	4
1400	6	7	7	6	5	5	7	6	7	7	7	2	5	7	8	8	7	6	5	3	3	6	6	3	6	7	7	7	8	7	4
1500	5	5	6	7	5	5	7	5	7	7	7	2	3	7	8	8	7	6	5	3	3	4	5	3	6	7	7	7	8	7	3
1600	5	3	7	6	4	5	6	5	7	7	7	2	5	7	8	8	7	7	3	2	2	4	5	6	6	7	7	7	8	7	4
1700	5	2	7	5	3	5	7	5	7	7	6	2	6	6	8	8	7	6	3	2	2	3	5	7	6	7	7	7	8	7	4
Jul-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	O	P	P	P	P	P	P	P	P	P	P	O	P	0	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	O	P	P	P	P	P	P	P	P	P	P	0	P	0	P	P
1100	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	O	P	P	P	P	P	P	P	P	P	P	O	P	O	P	P
1200	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	O	P	P	P	P	P	P	P	P	P	O	O	P	0	P	P
1300	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	0	P	P	P	P	P	P	P	P	P	P	0	P	0	P	P
1400	P	P P	P P	P P	P P	P P	P P	P	P P	P	P P	P P	P P	P	0	0	P P	P	P P	P P	P	P	P	P P	P P	P P	P	P P	0	P P	P P
1500 1600	P P	P P	P P	P	P	P P	P P	P P	P	P P	P	P P	P P	P P	0	0	P	P P	0	P P	P P										
1700	P	P	P	P	P	P	P	P	P P	P	P P	P	P P	P	0	0	P	P	P	P	P	P	P P	P	P	P	P P	P	0	P	P P
	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•		•	<u>. </u>
Jul-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	7	7	7	6	7	6	5	5	4	6	4	3	6	5	6	7	6	7	7	6	2	2	4	4	2	5	5	4	6	7	5
1000	7	6	7	6	6 7	6	5	5	4	6	3	2	6	5	6	7	6	7	6	5	2	2	3	3	1	4	5	3	6	7	5
1100 1200	7	6	7	6		6	5		3	5	3	3	6	4	5	7	6	7	5	5	2	2	3	4	1	5	4	4		7	5
1300	7	6 7	7	7	6 7	6	6	3	1	5	3	6	7	3 6	5 4	6	7	7	5	6	2	4	3	4	2	5	4	4	5	5	6
1400	7	7	7	7	7	7	7	3	1	2	4	5	6	5	5	6	7	7	4	5	2	5	3	4	5	4	4	4	4	5	4
1500	7	7	5	7	7	6	6	3	1	2	3	3	7	4	5	5	7	7	5	5	4	3	2	4	4	3	3	4	4	4	5
1600	7	6	4	5	7	3	4	3	1	2	2	3	5	3	5	5	7	7	4	4	4	2	2	4	2	2	5	4	4	4	4
1700	7	8	5	5	6	5	4	3	1	2	2	5	3	4	5	6	7	7	4	4	2	1	2	4	1	2	4	3	4	5	4
Jul-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900 1000	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
1100	P	P	P	P	P	P	P	P	P P	P	P P	P	P	P	P	P	P P	P	P	P	P	P	P	P	P	P P	P P	P	P	P	P P
1200	P	P	P	P	Р	P	P	P	P	P	P	P	P	Р	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1300	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1400	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1500	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1600	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Jul-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	7	6	4	5	6	7	7	8	7	8	7	7	7	7	6	5	2	7	7	7	7	5	6	3	1	1	1	1	7	8	7
1000	7	6	4	6	6	7	8	8	7	8	7	7	7	7	7	7	2	7	7	7	7	5	6	3	1	1	2	1	7	8	7
1100	7	5	4	5	6	7	8	8	7	8	7	7	7	7	7	7	2	7	7	7	6	5	6 4	1	1	1	2	1	7	8	7
1200 1300	6	4	4	6	6	7	8	8	7	7	7	7	7	6	7	6	3	7	7	7	6	5	4	1	1	2	4	1	7	7	7
1400	6	3	5	6	7	7	7	7	7	7	7	7	7	6	7	6	2	7	6	6	3	5	4	1	1	2	3	2	7	7	7
1500	6	2	3	6	7	7	7	7	7	7	7	7	7	5	7	6	2	7	7	5	3	5	5	1	1	1	4	2	7	7	7
1600	6	4	2	6	7	7	7	7	7	7	6	7	7	5	7	7	2	7	7	6	4	5	5	1	1	1	7	1	7	7	7
1700	6	6	3	5	6	8	7	7	7	7	7	7	7	7	7	5	2	7	7	6	3	5	4	1	1	1	7	2	7	7	7
Jul-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	0	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P
1000	P	P P	P P	P P	P P	P P	0	0	P P	0	P P	0	P P																		
1100 1200	P P	P P	P P	P P	P P	P P	0	0	P P	0	P P	O	P P																		
1300	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P P	P	P	P	P	P	P	P	P	P	P	P P
1400	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1500	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1600	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P

Average probability of clear, partly cloudy and overcast skies in each working hour in July from 2007 to 2009

Jul	C	P	О	\mathbf{P}_C	\mathbf{P}_{P}	\mathbf{P}_O
0900	0	86	7	0.00	0.92	0.08
1000	0	85	8	0.00	0.91	0.09
1100	0	85	8	0.00	0.91	0.09
1200	0	85	8	0.00	0.91	0.09
1300	0	89	4	0.00	0.96	0.04
1400	0	90	3	0.00	0.97	0.03
1500	0	90	3	0.00	0.97	0.03
1600	0	90	3	0.00	0.97	0.03
1700	0	88	5	0.00	0.95	0.05

Conversions from cloud cover to sky type in August from 2007 to 2009

Aug-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	2	7	8	8	7	7	4	7	6	7	7	7	1	5	7	2	3	5	5	7	4	4	6	7	7	7	6	6	6	6	4
1000	2	7	7	8	7	7	4	7	7	7	7	7	1	6	7	3	3	5	5	7	2	5	5	7	7	6	7	7	6	6	4
1100	2	7	8	8	7	7	4	7	7	7	7	7	2	6	5	3	3	5	6	7	2	6	5	7	7	5	6	7	5	3	4
1200	2	7	7	8	6	7	5	7	7	7	7	7	3	4	7	4	3	7	7	7	2	3	5	7	7	5	7	7	6	5	4
1300	3	7	8	8	6 7	7	7	6	7	7	7	7	3	2	7	5	5	7	7	7	4	2	6	7	7	7	6	7	6	3	4
1400 1500	5	7	8	7	7	6	7	6 5	7	7	7	7	3	2	6	5	5 4	6	7	7	4	2	4	7	7	5	6	7	6	3	6
1600	4	7	8	7	7	6	4	4	7	7	3	4	3	1	6	5	3	5	7	7	5	2	1	7	7	4	7	7	5	4	7
1700	3	7	8	7	7	6	2	3	7	7	6	4	2	1	6	4	3	6	7	7	5	3	1	7	7	6	6	7	5	3	6
												-																			
Aug-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th P	18th	19th		21st P			24th	25th	26th	27th P	28th	29th	30th	31st
0900 1000	P P	P P	O P	0	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P												
1100	P	P	0	0	P	P	P	P	P	P	P P	P	P	P	P	P	P	P	P	P	P P	P	P	P	P	P	P	P	P P	P	P
1200	P	P	P	o	P	P P	P	P	P	P	Р	P	P	P	P P	P	P	P	P	P	Р	P	P	P	P	P	P	P	P	P	Р
1300	P	P	0	o	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1400	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1500	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1600	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	P	P	0	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Aug-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th		21st			24th			27th	28th	29th	30th	31st
0900	4	3	3	4	6	7	7	7	7	7	7	8	7	7	7	7	7	3	4	8	7	7	7	6	7	7	6	7	7	4	2
1000	4	3	3	4	7	7	6	7	7	7	8	8	7	7	7	7	7	3	4	8	7	7	7	6	7	7	7	7	5	4	3
1100	4	2	3	5	7	7	7	6	7	7	8	8	7	7	7	7	7	3	6	8	7	7	7	6	7	7	6	7	7	5	2
1200	3	2	3	5	7	7	7	7	7	7	8	8	7	7	7	7	7	4	6	8	7	7	7	6	7	7	6	7	5	6	2
1300 1400	2	2	2	5	7	7	7	7	7	7 8	8	8	7	7	7	7	7	6	6 7	7	7	7	7	7	7	7	5	7	3	5	3
1500	3	2	2	3	7	7	6	7	7	8	8	8	7	8	7	7	6	5	6	7	7	7	7	7	7	7	7	6	4	6	4
1600	6	1	2	2	7	7	5	7	7	8	8	8	7	8	7	7	5		5	7	7	7	7	7	7	5	7	6	3	4	2
1700	7	1	2	3	7	7	6	7	7	8	8	8	7	8	7	6	5	5	5	7	7	7	7	7	6	4	7	6	7	3	2
Aug-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P
1000	P	P	P	P	P	P	P	P	P	P	0	0	P P	P	P	P	P P	P	P P	0	P P	P	P	P	P	P	P	P P	P	P	P
1100 1200	P P	P P	P P	P P	P	P P	P P	P P	P P	P P	0	0	P P	P P	P P	P P	P P	P P	P P	0	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P
1300	P P	P	P P	P	P	P	P	P	P	P P	0	0	P P	P	P	P P	P P	P P	P P	P	P P	P	P P	P	P P	P	P	P	P	P	P
1400	P P	P	P	P	P	P	P P	P	P	0	0	0	P	0	P	P	P	P	P P	P	P P	P	P P	P	P	P	P P	P	P P	P	P P
1500	P	P	P	Р	P	P P	P	P	P	o	0	o	P	o	P P	P	P	P	P	Р	Р	P	Р	P	P	P	P	P P	P	P	Р
1600	P	P	P	P	P	P	P	P	P	o	o	o	P	o	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	P	P	P	P	P	P	P	P	P	O	O	O	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Aug-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	7	7	7	6	7	8	7	8	7	7	7	7	3	1	6	5	5	5	4	1	7	8	7	5	6	5	4	3	3	2	7
1000	7	7	6	6	7	8	7	8	7	7	7	6	3	2	6	5	5	6	6	1	7	8	7	7	6	6	3	3	2	2	7
1100	6	6	7	7	7	8	7	8	7	7	8	5	3	2	6	5	6	5	7	1	6	8	7	7	6	6	3	3	2	3	7
1200	7	6	6	7	7	8	7	8	7	7	7	6	3	2	4	5	5	5	7	1	7	8	7	7	6	5	2	5	2	3	7
1300	7	6	5	7	8	8	7	8	7	7	8	6	3	3	5	4	5	4	7	2	7	8	7	7	6	4	2	4	4	2	6
1400	7	6	4	7	8	8	7	7	7	7	8	6	3	3	4	4	5	4	4	2	6 4	8	7	7	6	4	2	3	4	3	6
1500 1600	6	6	3	6	7	8	7	7	6	7	8	6	1	3	2	4	3	4	3	2	7	8	3	7	6	3	2	3	6	3	7
1700	6	6	4	4	8	8	7	7	7	6	8	5	1	1	2	4	3	3	1	2	6	8	2	7	6	3	2	4	3	3	7
Aug-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	0	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P
1000	P	P	P	P	P	O	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P
1100	P	P	P	P	P	O	P	O	P	P	O	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P
1200	P	P	P	P	P	O	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P
1300	P	P	P	P	0	0	P	0	P	P	0	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P	P
1400 1500	P P	P P	P P	P P	O P	0	P P	P P	P P	P P	0	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	0	P P	P P	P P	P P	P P	P P	P P	P P	P P
		-	P P	-	P		P P	P P	P P	P P	0	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	0	P P	P P	P P	P P	P P	P P	P P	P P	P P
1600																															
1600 1700	P P	P P	P P	P P	0	0	P	P	P	P	0	P	P	P	P	P	P P	P	P	P	P	0	P	P	P	P	P	P	P	P	P

Average probability of clear, partly cloudy and overcast skies in each working hour in August from 2007 to 2009

Aug	С	P	О	P_C	\mathbf{P}_{P}	P_O
0900	0	86	7	0.00	0.92	0.08
1000	0	86	7	0.00	0.92	0.08
1100	0	84	9	0.00	0.90	0.10
1200	0	86	7	0.00	0.92	0.08
1300	0	84	9	0.00	0.90	0.10
1400	0	84	9	0.00	0.90	0.10
1500	0	85	8	0.00	0.91	0.09
1600	0	85	8	0.00	0.91	0.09
1700	0	84	9	0.00	0.90	0.10

Conversions from cloud cover to sky type in September from 2007 to 2009

Sep-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	6	6	7	8	3	6	7	7	7	7	7	7	8	7	6	7	1	7	3	2	6	7	3	7	7	3	2	2	0	7
1000	5	4	7	7	3	6	8	7	7	7	7	7	8	7	6	7	1	7	3	2	6	7	3	7	6	1	1	1	1	7
1100	6	7	7	7	4	7	8	7	7	7	6	7	8	7	7	7	1	7	3	3	7	7	3	7	7	1	1	1	1	7
1200	5	5	7	7	4	7	8	8	7	7	7	7	8	7	7	7	1	7	3	3	7	7	2	8	6	3	2	1	1	7
1300	4	7	7	7	4	7	8	7	7	7	7	7	8	8	7	7	1	6	3	3	7	7	4	7	5	1	2	1	5	7
1400	4	6	7	7	5	7	8	7	7	7	7	7	8	7	7	7	2	6	2	3	7	7	6	7	4	1	1	1	5	7
1500	5	5	7	5	5	7	7	7	7	7	7	7	8	7	7	7	3	7	2	2	7	7	6	7	3	1	1	1	3	7
1600	3	5	7	6	5	7	7	7	7	6 7	7	7	8	7	7	7	3	5	3	3	7	7	6	7	2	1	1	1	5 7	7
1700	5	6	6	6	3	/	/	/	/	/	/	/	8	/	/	/	3	3	4	4	/	/	/	/	3	1	1	1	/	/
Sep-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st		23rd	24th		26th		28th	29th	30th
0900	P	P	P	O	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	C	P
1000	P	P	P	P	P	P	0	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1100	P	P	P	P	P	P	O	P	P	P	P	P	O	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1200	P	P	P	P	P	P	0	0	P	P	P	P	0	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P
1300	P	P P	P P	P P	P	P P	0	P	P	P P	P	P P	0	0	P P	P	P	P P	P P	P	P	P	P P	P	P	P	P P	P	P P	P
1400 1500	P P	P P	P P	P P	P P	P P	O P	P P	P P	P P	P	P P	0	P P	P	P P	P P	P P												
1600	P	P	P P	P	P	P	P	P	P	P	P	P	0	P	P	P P	P	P P	P	P	P P	P	P	P P	P P	P	P	P	P	P
1700	P	P	P	P P	P	P	P	P	P	P	P	P P	0	P	P	P	P	P	P P	P	P	P	P P	P P	P	P	P P	P	P	P P
1700	•		•	1						•	•		0	•	•	•									•		•			•
Sep-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	6	7	4	7	7	7	4	7	7	7	7	1	1	7	3	7	7	0	2	7	7	1	8	8	7	5	6	6	2	5
1000	6	7	7	7	7	7	6	7	7	7	7	1	1	7	2	6	7	1	1	7	7	3	8	8	7	7	4	5	2	5
1100	5	7	7	7	7	7	7	7	7	7	4	1	0	7	2	6	6	1	1	6	4	5	7	8	7	7	2	5	5	5
1200	5	7	7	7	7	7	7	7	7	7	3	2	0	7	4	6	6	1	2	6	5	6	7	7	7	6	2	4	6	6
1300	3	7	7	7	7	7	7	7	7	7	1	5	1	7	5	7	7	3	3	6	4	6	7	7	7	6	1	4	6	7
1400	3	7	7	6	7	7	7	7	7	7	1	3	1	5	5	7	7	4	3	6	7	7	7	7	8	3	1	3	6	6
1500	3	7	7	6	7	7	7	7	7	7	1	2	1	6 4	5	7	7	2	3	5	6 7	5 7	7	8	7	3	1	3	5	5
1600 1700	3	7	7	6	7	7	7	5	7	7	1	4	1	3	4	7	6	2	3	2	6	7	7	7	7	4	1	4	6	5
											1																			
Sep-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st		23rd	24th	25th	26th		28th	29th	30th
0900	P P	P	P P	P P	P p	P P	P P	P P	P P	P	P P	P P	P	P	P P	P P	P P	C	P P	P P	P	P P	0	0	P P	P P	P P	P P	P P	P P
1000 1100	P P	P P	P	P	P	P P	P	P	P	P P	P	P P	P C	P P	P	P P	P	P P	P	P P	P P	P P	O P	0	P P	P P	P	P P	P P	P P
1200	P	P	P	P P	P P	P	P P	P	P P	P	P P	P P	c	P	P	P	P	P	P P	P P	P	P	P P	P	P	P	P P	P	P	P P
1300	P	P	P	P	p	P	p	P	p	P	p	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1400	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P
1500	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P
1600	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
Sep-09	1st	2nd	3rd 7	4th	5th	6th	7th	8th	9th 7	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st		23rd	24th	25th	26th	27th	28th	29th	30th
0900 1000	4	7	7	7	7	6	3	5		2	6	2	4	5	2	2	5	7	7	5	3	2	7	8	7	6	6	4	3	7
1100	5	7	7	7	7	6	3	4	6	2	7	4	4	6	2	5	7	7	7	5	6	1	7	7	7	4	7	4	5	4
1200	5	7	7	7	7	6	2	4	6	2	7	6	3	6	4	5	7	7	7	3	5	2	7	8	7	7	3	4	6	7
1300	6	7	7	7	7	7	3	4	4	3	7	7	3	6	5	5	7	7	7	3	6	5	7	7	7	5	6	3	6	7
1400	5	7	6	7	7	7	3	4	4	4	6	6	1	6	5	6	6	7	7	3	5	6	7	7	7	3	7	4	5	7
1500	6	7	6	6	7	7	3	3	3	5	6	6	3	6	6	3	5	6	6	3	4	4	7	7	7	2	7	6	5	7
1600	7	7	6	7	7	7	5	3	2	5	3	6	6	4	6	3	5	7	5	3	2	2	7	7	7	3	7	6	6	7
1700	7	7	7	7	7	7	5	5	2	6	2	7	4	5	6	3	5	6	4	3	1	1	7	7	7	4	7	6	7	7
Sep-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1000		P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1100	P					_	p	P	p	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	P	P	P	P	P
1100 1200	P	P	P	P	P	P	•	-	•																					
1100 1200 1300	P P	P P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1100 1200 1300 1400	P P P	P P P	P P	P P	P P	P P	P P	P P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1100 1200 1300 1400 1500	P P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P							
1100 1200 1300 1400	P P P	P P P	P P	P P	P P	P P	P P	P P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P

Average probability of clear, partly cloudy and overcast skies in each working hour in September from 2007 to 2009

Sep	С	P	О	P_C	P_P	P_O
0900	2	83	5	0.02	0.92	0.06
1000	0	86	4	0.00	0.96	0.04
1100	1	86	3	0.01	0.96	0.03
1200	1	84	5	0.01	0.93	0.06
1300	0	87	3	0.00	0.97	0.03
1400	0	87	3	0.00	0.97	0.03
1500	0	88	2	0.00	0.98	0.02
1600	0	89	1	0.00	0.99	0.01
1700	0	89	1	0.00	0.99	0.01

Conversions from cloud cover to sky type in October from 2007 to 2009

Oct-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th			12th	13th		15th		17th	18th	19th		21st	22nd			25th		27th	28th	29th	30th	31st
0900	7	7	7	1	1	6	1	5	7	2	4	1	5	7	7	7	7	7	7	7	7	3	4	7	7	6	5	1	2	1	7
1000	7	7	7	0	0	6	1	5	7	3	4	1	5	7	7	7	7	7	6	7	7	2	6	7	7	7	5	1	2	0	7
1100	7	7	5	1	0	4	1	4	7	1	5	1	6	7	7	7	5	7	6	7	6	4	6	7	7	7	5	3	1	1	6
1200	7	7	5	2	1	3	1	4	7	1	7	1	4	7	7	6	6	7	7	7	5	4	6	7	7	6	5	3	3	1	7
1300	7	7	5	6	2	5	0	4	7	3	5	1	4	7	7	5	6	7	7	5	3	4	5	7	6	6	4	2	2	2	4
1400	7	7	4	6	3	7	0	7	7	2	5	1	3	7	7	6	6	5	7	3	4	3	5	7	6	5	4	2	2	2	4
1500	7	7	5	6	3	7	5	7	8	6	6	1	3	7	7	7	7	3	7	2	2	2	4	7	6	4	5	1	1	2	5
1600	7	7	4	5	2	7	2	7	8	7	7	1	2	7	7	7	6	2	5	1	1	2	3	7	6	3	6	3	2	1	6
1700	7	7	5	5	3	7	0	6	8	6	6	1	3	7	7	7	7	1	6	1	1	2	3	7	6	2	6	3	4	2	7
Oct-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	Р	P	P	P	P	P	P	P	P	P	P	P
1000	P	P	P	c	c	P P	P	P	P	P P	P	P	P	P	P	P	P	Р	P	Р	P	P	P	P	P	P	P	Р	P	c	P
1100	P	P	P	р	c	p.	P	Р	Р	P	Р	Р	P	Р	P	Р	P	Р	Р	Р	P	Р	P	P	P	p	P	P	P	р	P
1200	P	p	P	р	P	p.	Р	р	Р	P	P	Р	P	Р	Р	Р	p .	Р	Р	Р	Р	Р	P	P	Р	p	P	P	P	р	P
1300	P	P	P	р	P	P P	c	Р	P	P P	P	Р	P	P	P	P	P	Р	Р	Р	P	Р	P	P	P	p	P	P	P	р	P
1400	P	P	P	p	P	P	c	P	P	P	P	p	P	P	P	P	P	P	P	p	P	P	P	p	P	p	P	p	P	p	p
1500	P	P	P	D	P	P	P	P	o	P	P	p	P	P	P	p	P	p	P	p	P	p	P	p	P	p	P	p	P	p	p
1600	P	P	P	P	P	P	P	P	o	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	P	P	P	P	P	P	c	P	o	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1700	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•
Oct-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	7	7	7	7	7	0	3	7	5	7	7	7	7	7	7	7	5	5	1	0	0	7	5	2	3	1	7	7	5	7	7
1000	7	7	7	6	7	1	3	7	5	7	7	7	7	7	7	1	5	5	1	1	0	5	4	2	3	1	6	7	3	7	7
1100	7	7	7	5	7	1	4	7	4	6	7	7	7	7	4	1	5	3	1	2	1	5	4	2	2	1	6	7	3	7	7
1200	7	7	7	5	7	1	3	7	5	7	7	7	7	7	5	2	5	3	1	1	2	4	4	1	2	1	5	7	3	7	7
1300	7	7	7	6	5	i	5	7	3	7	7	7	7	7	6	6	6	3	0	1	2	3	1	1	1	1	3	5	2	7	8
1400	7	7	7	7	6	1	4	7	2	6	6	7	7	7	7	7	7	3	0	1	2	2	1	1	1	1	2	6	3	7	8
1500	7	7	7	7	6	i	5	7	2	5	7	7	7	7	6	5	7	6	0	0	2	2	1	1	1	1	1	5	3	7	7
1600	7	7	7	7	5	1	6	7	2	5	6	7	7	7	7	6	5	6	1	0	2	2	1	1	2	1	1	5	5	7	7
1700	7	7	7	7	5	i	7	7	4	7	5	7	7	7	7	4	6	6	0	1	2	1	1	0	1	1	1	4	7	7	7
																		-		•			-	-		•	-				
Oct-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th		21st		23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	C	C	P	P	P	P	P	P	P	P	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P
1100	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1200	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1300	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	0
1400	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	0
1500	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	C	C	P	P	P	P	P	P	P	P	P	P	P
1600	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P
1700	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	C	P	P	P	P	C	P	P	P	P	P	P	P
Oct-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th			12th	13th	14th	15th	16th	17th	18th			21st	22nd						28th	29th	30th	31st
0900	5	5	7	7	7	7	7	6	5	2	4	7	7	7	3	2	2	7	6	1	7	6	4	7	7	6	5	3	2	7	6
1000	7	6	7	7	7	7	7	7	6	2	2	7	7	7	1	4	6	7	5	2	7	5	3	7	7	3	6	4	3	7	7
1100	7	7	7	7	7	7	7	7	6	2	2	7	7	7	3	6	7	6	5	2	5	5	4	7	7	3	7	4	4	5	6
1200	7	,	7	6	7	7	7	7	7	2	1	7	7	7	3	6	7	3	4	2	3	3	4	7	7	3	7	2	6	5	6
1300	7	7	7	7	7	7	7	7	5	1	3	7	7	7	3	6	7	5	4	2	3	2	4	7	6	2	7	2	7	6	6
1400	7	7	7		7	7	7	7	5	1	1	7	7		3	6 7	7		3	2	2	2	6	5	7	2	6	-	7	5	6
1500	6	7	7	7	7	7	7	7	7	1	1		7	6	1		7	6	2	2	2	2	5	2	7	2	7	2	7	5	5
1600	7	6	7	7	7	7	7	7	3	2	-	7	7	5	1	6	7	5	2	1	-	3	7	3		2	6	1	7		2
1700	7	4	7	7	7	7	7	7	3	4	1	7	7	4	1	2	7	6	2	2	1	1	2	5	7	3	6	2	7	3	3
Oct-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1000	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1100	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
		P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1200	P				_	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
	P P	P	P	P	P																										
1200 1300	-	-	P P	P P	P P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1200	P	P		P P P		-		-		P P		P P	P P																		
1200 1300 1400	P P	P P	P	-	P	P	P	P	P			-		-		-				-				-				-	P		
1200 1300 1400 1500	P P P	P P P	P P	P	P P	P P	P P	P P	P P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P P	P	P

Average probability of clear, partly cloudy and overcast skies in each working hour in October from 2007 to 2009

Oct	С	P	О	P_C	P_P	P_O
0900	3	90	0	0.03	0.97	0.00
1000	4	89	0	0.04	0.96	0.00
1100	1	92	0	0.01	0.99	0.00
1200	0	93	0	0.00	1.00	0.00
1300	2	90	1	0.02	0.97	0.01
1400	2	90	1	0.02	0.97	0.01
1500	2	90	1	0.02	0.97	0.01
1600	1	91	1	0.01	0.98	0.01
1700	3	89	1	0.03	0.96	0.01

Conversions from cloud cover to sky type in November from 2007 to 2009

Nov-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	6	6	6	1	1	1	0	7	0	1	1	1	7	7	8	7	7	7	7	7	8	8	7	7	7	7	7	7	7	7
1000	7	7	5	1	0	1	0	6	0	1	1	0	7	7	7	7	7	7	7	7	8	8	8	7	7	7	7	7	7	7
1100	6	7	4	1	0	i	0	1	0	1	1	0	7	7	7	7	7	7	7	7	8	8	8	7	7	7	7	7	7	7
1200	6	7	5	1	0	1	0	0	1	1	1	0	7	7	8	7	7	7	6	7	8	8	7	7	7	7	7	7	7	7
	7	7	3	0		4	0		1	1		0	7	7		7	7	7					7	7	7		7	7	7	7
1300			_	-	1		-	1	1	1	1	-			8				6	6	8	8				6	,			
1400	7	6	7	0	0	5	0	1	1	1	1	0	7	7	8	7	7	7	7	6	8	8	7	7	7	6	7	7	8	4
1500	7	7	7	0	0	1	0	1	1	1	2	0	7	7	8	7	7	6	7	7	8	8	7	7	7	5	7	7	8	4
1600	6	7	7	0	0	1	2	1	1	1	2	2	4	7	8	7	7	5	7	7	8	8	7	7	7	5	7	7	8	7
1700	6	7	7	0	1	1	2	1	2	1	2	5	7	8	8	7	7	2	7	7	8	8	7	7	7	3	7	7	8	7
NI 07	1	2 1	2 - 1	4.0	60	ca	74	0.1	0.1	104	114	124	124	1.44	1.50	160	170	104	104	204	21.4	22 . 1	22.1	244	254	260	274	204	204	204
Nov-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd		24th	25th	26th	27th	28th	29th	30th
0900	P	P	P	P	P	P	C	P	C	P	P	P	P	P	O	P	P	P	P	P	O	O	P	P	P	P	P	P	P	P
1000	P	P	P	P	C	P	C	P	C	P	P	C	P	P	P	P	P	P	P	P	0	O	0	P	P	P	P	P	P	P
1100	P	P	P	P	C	P	C	P	C	P	P	C	P	P	P	P	P	P	P	P	O	O	0	P	P	P	P	P	P	P
1200	P	P	P	P	C	P	C	C	P	P	P	C	P	P	O	P	P	P	P	P	0	O	P	P	P	P	P	P	P	P
1300	P	P	P	C	P	P	C	P	P	P	P	C	P	P	0	P	P	P	P	P	O	0	P	P	P	P	P	P	P	P
1400	P	P	P	C	C	P	C	P	P	P	P	C	P	P	O	P	P	P	P	P	0	O	P	P	P	P	P	P	O	P
1500	P	P	P	C	C	P	C	P	P	P	P	C	P	P	0	P	P	P	P	P	o	o	P	P	P	P	P	P	0	P
1600	P	P	P	Č	Č	P	P	P	P	P	P	P	P	P	o	P	P	P	P	P	o	o	P	P	P	P	P	P	o	P
1700	P	P	P P	c	P	P	P	P	P	P	P	Р	P	0	o	P	P	P	P	P	o	o	P	P	P	P	P	P	o	P
1700	г	г	г		г	г	г	г	г	г	г	г	г	U	U	г	г	г	г	г	U	0	г	г	r	г	г	г	U	г
NI 00	1	2.1	2.1	4.0	ca.	ca	74	0.4	0.4	104	114	124	124	1.44	100	160	120	104	104	204	21.4	22	22.1	244	200	264	274	204	204	204
Nov-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	7	7	5	0	6	1	5	7	2	1	2	2	1	2	1	4	6	5	7	1	2	7	2	6	7	7	6	1	1	1
1000	7	7	7	0	6	1	6	7	1	1	1	3	0	2	2	3	4	6	7	1	2	7	4	4	6	6	6	1	1	1
1100	7	7	7	0	6	1	7	7	3	1	1	1	0	1	2	1	2	5	7	1	5	7	4	4	7	7	5	1	1	0
1200	7	7	7	0	5	1	7	7	2	1	1	1	1	1	2	1	1	5	7	1	3	7	7	4	6	6	3	1	1	1
1300	8	7	7	1	5	1	7	7	2	1	1	0	1	1	4	1	2	5	7	0	2	7	7	3	7	7	2	1	1	1
1400	8	7	4	1	6	1	7	7	1	1	1	0	1	0	5	1	3	6	6	0	2	6	7	2	6	7	4	1	1	1
1500	8	7	6	1	6	1	7	7	2	1	2	0	1	0	3	1	2	5	2	0	2	5	7	3	6	7	1	1	1	1
1600	8	7	5	1	7	i	7	7	2	1	3	0	1	0	5	1	2	7	2	0	1	5	7	5	7	7	1	1	1	1
1700	8	7	2	1	7	2	7	7	1	1	2	0	1	0	6	1	3	7	3	0	1	6	7	6	7	7	1	1	1	1
1700	0	,	2	1	,	-	,	,	1	1	2	U	1	U	0	1	3	,	3	U	1	0	/	0	,	/	1	1		1
Nov-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1000	Р	P	P	C	P	Р	P	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
1100	P	P	P	Č	P	P	P	P	p	P	P	P	c	P	P	P	P	P	P	P	P	P	P	P	P	P	p	P	P	С
1200	Р	P	P	c	Р	P	P	P	P	P	P	Р	P	P	P P	P	P	P P	P	P P	P	Р	P	P	Р	P	P	P	P P	P
	-	P	P	P	P	P	P	P	P	P	P	-	P P	P	P	P P	P	P P	P	-	P	P	P P	P	P P	P	P	P P	P	P P
1300	0		-	-	-		-	-		P	-	C			-		P			C					P	P	-	P	-	
1400	0	P	P	P	P	P	P	P	P	•	P	C	P	C	P	P	•	P	P	C	P	P	P	P		•	P	•	P	P
1500	0	P	P	P	P	P	P	P	P	P	P	C	P	C	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P
1600	0	P	P	P	P	P	P	P	P	P	P	C	P	C	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P
1700	O	P	P	P	P	P	P	P	P	P	P	C	P	C	P	P	P	P	P	C	P	P	P	P	P	P	P	P	P	P
-																														
Nov-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th
0900	7	7	7	7	7	6	7	4	4	1	1	0	0	5	5	2	1	0	7	0	0	6	1	1	2	7	2	0	0	0
1000	7	7	7	7	7	7	7	6	6	2	0	0	0	3	6	1	1	0	7	0	0	7	1	1	1	7	1	0	0	0
1100	7	7	7	7	7	7	4	7	6	2	0	0	0	1	5	1	1	0	7	0	1	7	7	1	1	4	1	0	0	0
1200	7	7	7	7	7	7	3	7	5	2	0	0	0	0	6	1	1	1	7	0	1	7	7	1	1	6	1	0	0	0
	/	7	7	7	7	7	3	7	7	1	0	0	0	1	2	1	1	3	6	1	1	7	7	1	1	7	1	0	0	0
	7			7	7	7	3	7		1	0	0	0	1	2	1	1	5	3	1	0	7	7	1	2	3	1	0	0	0
1.400	7					7			6	-	-			-			•			-				-			1			
1400	7	7	7	-			3	7	7	1	0	0	0	2	3	1	1	6	0	1	1	7	6	1	2	1	1	0	0	0
1500	7 7	7 7	7	7	7		-					0	0	3	1	0	0	3	0	1	1	7	5							
1500 1600	7 7 7	7 7 7	7	7	7	7	2	7	7	1	0				-									2	4	5	1	0	0	0
1500	7 7	7 7	7				2	7 6	7 6	2	0	0	0	1	1	0	0	2	0	1	1	7	7	4	7	1	1	1	0	0
1500 1600 1700	7 7 7 7	7 7 7 7	7 7 7	7	7	7	2	6	6	2	0	0	0	1						-	•			4	7	1	1	1	0	0
1500 1600 1700 Nov-09	7 7 7 7	7 7 7 7 2nd	7 7 7 3rd	7 6 4th	7 7 5th	7 5 6th	2 7th	6 8th	6 9th	2 10th	0 11th	0 12th	0 13th	1 14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	4 24th	7 25th	1 26th	1 27th	1 28th	0 29th	0 30th
1500 1600 1700 Nov-09 0900	7 7 7 7 1st P	7 7 7 7 2nd P	7 7 7 3rd P	7 6 4th P	7 7 5th P	7 5 6th P	2 7th P	6 8th P	6 9th P	2 10th P	0 11th P	0 12th C	0 13th C	1 14th P	15th P	16th P	17th P	18th C	19th P	20th C	21st C	22nd P	23rd P	4 24th P	7 25th P	1 26th P	1 27th P	1 28th C	0 29th C	0 30th C
1500 1600 1700 Nov-09 0900 1000	7 7 7 7 1st P	7 7 7 7 2nd P	7 7 7 3rd P	7 6 4th P P	7 7 5th P	7 5 6th P P	2 7th P P	6 8th P P	6 9th P P	2 10th P P	0 11th P C	0 12th C C	0 13th C C	1 14th P P	15th P P	16th P P	17th P P	18th C C	19th P P	20th C C	21st C C	22nd P P	23rd P P	4 24th P P	7 25th P P	1 26th P P	1 27th P	1 28th C C	0 29th C C	0 30th C C
1500 1600 1700 Nov-09 0900 1000 1100	7 7 7 7 1st P	7 7 7 7 2nd P P	7 7 7 3rd P P	7 6 4th P P	7 7 5th P P	7 5 6th P P	2 7th P	6 8th P P	6 9th P P	2 10th P P	0 11th P C C	0 12th C C C	0 13th C C C	1 14th P P P	15th P P P	16th P P P	17th P P P	18th C C C	19th P P P	20th C C	21st C C	22nd P P P	23rd P P P	4 24th P P P	7 25th P P P	1 26th P P P	1 27th P P	1 28th C C C	0 29th C C C	0 30th C C C
1500 1600 1700 Nov-09 0900 1000	7 7 7 7 1st P	7 7 7 7 2nd P	7 7 7 3rd P	7 6 4th P P	7 7 5th P	7 5 6th P P	2 7th P P	6 8th P P	6 9th P P	2 10th P P P	0 11th P C	0 12th C C	0 13th C C	1 14th P P	15th P P	16th P P	17th P P	18th C C	19th P P	20th C C C	21st C C	22nd P P	23rd P P	4 24th P P	7 25th P P	26th P P P P	1 27th P	1 28th C C C C	0 29th C C	0 30th C C
1500 1600 1700 Nov-09 0900 1000 1100	7 7 7 7 1st P P	7 7 7 7 2nd P P	7 7 7 3rd P P	7 6 4th P P	7 7 5th P P	7 5 6th P P	7th P P P	6 8th P P	6 9th P P	2 10th P P	0 11th P C C	0 12th C C C	0 13th C C C	1 14th P P P	15th P P P	16th P P P	17th P P P	18th C C C	19th P P P	20th C C	21st C C	22nd P P P	23rd P P P	4 24th P P P	7 25th P P P	1 26th P P P	1 27th P P	1 28th C C C	0 29th C C C	0 30th C C C
1500 1600 1700 Nov-09 0900 1000 1100 1200	7 7 7 7 1st P P P	7 7 7 7 2nd P P P	7 7 7 3rd P P P	7 6 4th P P P	7 7 5th P P P	7 5 6th P P P	7th P P P	6 8th P P P	9th P P P	2 10th P P P	0 11th P C C C	0 12th C C C C	0 13th C C C C	1 14th P P P C	15th P P P	16th P P P P	17th P P P P	18th C C C P	19th P P P	20th C C C	21st C C P	22nd P P P P	23rd P P P P	4 24th P P P P	7 25th P P P	26th P P P P	27th P P P	1 28th C C C C	0 29th C C C C	0 30th C C C C
1500 1600 1700 Nov-09 0900 1000 1100 1200 1300 1400	7 7 7 7 1st P P P	7 7 7 7 2nd P P P P	7 7 7 3rd P P P P	7 6 4th P P P P	7 7 5th P P P P	7 5 6th P P P P	7th P P P P	6 8th P P P P	6 9th P P P P	2 10th P P P P	0 11th P C C C C	0 12th C C C C C	0 13th C C C C C	1 14th P P P C P P	15th P P P P	16th P P P P P	17th P P P P	18th C C C P P	19th P P P P P	20th C C C C P	21st C C P P P	22nd P P P P P	23rd P P P P	4 24th P P P P	7 25th P P P P	26th P P P P P	27th P P P P	1 28th C C C C C	0 29th C C C C C	0 30th C C C C C
1500 1600 1700 Nov-09 0900 1000 1100 1200 1300 1400 1500	7 7 7 7 1st P P P P	7 7 7 7 2nd P P P P P	7 7 7 3rd P P P P	7 6 4th P P P P P	7 7 5th P P P P P	7 5 6th P P P P P	7th P P P P P P	6 8th P P P P P P P P P	6 9th P P P P P P	2 10th P P P P P P	0 11th P C C C C C	0 12th C C C C C C	0 13th C C C C C C	1 14th P P P C P P P	15th P P P P P	16th P P P P P	17th P P P P P	18th C C C P P	19th P P P P P P	20th C C C C P P	21st C C P P P C	22nd P P P P P P	23rd P P P P P P	24th P P P P P P	7 25th P P P P P	26th P P P P P P	27th P P P P P P	1 28th C C C C C C	0 29th C C C C C C	0 30th C C C C C C
1500 1600 1700 Nov-09 0900 1000 1100 1200 1300 1400	7 7 7 7 1st P P P P	7 7 7 7 2nd P P P P	7 7 7 7 3rd P P P P P	7 6 4th P P P P P	7 7 5th P P P P	7 5 6th P P P P	7th P P P P P	6 8th P P P P	6 9th P P P P	2 10th P P P P	0 11th P C C C C	0 12th C C C C C	0 13th C C C C C	1 14th P P P C P P	15th P P P P P	16th P P P P P	17th P P P P P	18th C C C P P	19th P P P P P	20th C C C C P	21st C C P P P	22nd P P P P P	23rd P P P P P	24th P P P P P	7 25th P P P P P	26th P P P P P	27th P P P P P	1 28th C C C C C	0 29th C C C C C	0 30th C C C C C

Average probability of clear, partly cloudy and overcast skies in each working hour in November from 2007 to 2009

Nov	C	P	О	P_C	P_P	P_O
0900	11	76	3	0.12	0.84	0.03
1000	15	72	3	0.17	0.80	0.03
1100	15	72	3	0.17	0.80	0.03
1200	13	74	3	0.14	0.82	0.03
1300	11	75	4	0.12	0.83	0.04
1400	14	71	5	0.16	0.79	0.06
1500	14	71	5	0.16	0.79	0.06
1600	14	71	5	0.16	0.79	0.06
1700	12	72	6	0.13	0.80	0.07

Conversions from cloud cover to sky type in December from 2007 to 2009

Dec-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	6	4	3	3	3	7	7	3	7	6	6	5	7	7	8	7	0	1	1	1	0	0	1	6	1	3	1	1	4	7	0
1000	7	1	3	2	2	7	7	1	8	7	4	5	7	7	8	7	0	0	1	0	0	0	1	5	1	2	0	0	6	2	0
1100	4	1	2	2	6	4	7	1	8	7	6	7	7	7	8	7	0	1	1	0	0	0	0	5	1	2	0	0	4	1	1
1200	2	2	3	2	2	3	7	1	8	7	7	7	7	7	8	7	0	2	1	0	0	0	0	5	1	1	0	0	3	2	1
1300	3	2	3	2	2	5	7	1	7	7	5	7	7	7	8	7	0	1	0	0	1	0	1	5	0	5	1	0	3	0	2
1400	2	1	7	2	4	6	7	1	7	7	4	7	7	7	8	7	0	1	0	0	1	0	1	3	0	5	1	0	3	0	1
1500	2	2	7	5	5	5	1	1	7	7	6	7	7	7	8	7	0	1	0	0	1	0	2	4	0	5	1	0	3	0	2
1600	3	1	3	4	6	2	1	1	7	7	5	7	7	7	8	7	0	1	0	0	1	0	5	1	0	2	1	0	2	1	2
1700	7	1	7	3	6	3	1	1	7	7	7	7	7	7	8	6	0	1	1	0	0	1	3	1	0	1	1	0	2	1	5
	,	•																													
Dec-07	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	C	P	P	P	C	C	P	P	P	P	P	P	P	P	C
1000	P	P	P	P	P	P	P	P	O	P	P	P	P	P	O	P	C	C	P	C	C	C	P	P	P	P	C	C	P	P	C
1100	P	P	P	P	P	P	P	P	O	P	P	P	P	P	O	P	C	P	P	C	C	C	C	P	P	P	C	C	P	P	P
1200	P	P	P	P	P	P	P	P	O	P	P	P	P	P	O	P	C	P	P	C	C	C	C	P	P	P	C	C	P	P	P
1300	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	C	P	C	C	P	C	P	P	C	P	P	C	P	C	P
1400	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	C	P	C	C	P	C	P	P	C	P	P	C	P	C	P
1500	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	C	P	C	C	P	C	P	P	C	P	P	C	P	C	P
1600	P	P	P	P	P	P	P	P	P	P	P	P	P	P	0	P	C	P	C	C	P	C	P	P	C	P	P	C	P	P	P
1700	P	P	P	P	P	P	P	P	P	P	P	P	P	P	O	P	C	P	P	C	C	P	P	P	C	P	P	C	P	P	P
Dec-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd		24th	25th	26th	27th	28th	29th	30th	31st
0900	1	2	2	1	7	7	7	3	7	5	6	7	2	4	4	6	7	7	7	7	2	6	7	7	7	1	0	1	5	7	2
1000	1	1	2	1	7	7	7	2	7	5	4	3	0	2	2	5	7	7	7	7	2	7	8	6	7	1	0	1	3	5	1
1100	0	1	1	1	7	7	7	1	6	5	4	2	0	1	2	7	7	7	7	7	2	7	8	6	7	1	1	0	1	3	1
1200	1	1	1	1	7	5	7	2	7	5	2	2	0	1	2	6	7	7	7	7	1	7	8	7	7	1	1	1	2	2	1
1300	1	1	0	1	7	5	1	1	7	2	2	2	1	1	2	6	7	6	7	6	1	7	8	7	7	1	0	1	6	6	0
1400	1	1	0	2	7	5	1	1	7	3	2	4	1	1	1	7	6	3	7	4	1	7	8	7	6	1	0	1	7	7	0
1500	2	1	0	2	7	7	1	1	4	2	2	1	1	1	1	6	7	5	7	5	1	7	8	7	6	1	0	1	7	7	0
1600	2	1	0	3	7	7	1	1	7	2	1	2	1	1	1	5	7	3	7	5	1	7	8	7	6	1	1	1	7	7	0
1700	5	3	1	5	7	7	1	1	5	1	2	1	0	1	1	6	6	5	7	4	1	7	7	7	7	1	1	1	7	7	0
Dec-08	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	P	P	P	P	P	P	P	P	P	P	р	P	р	P	P	P	p	P	P	P	P	P	P	P	P	P	C	P	P	P	P
1000	P P	P	P	P	P	P	P	P	P	P	P	P	c	P	Р	P	Р	P	P	P	P	P	0	P	P	P	C	P	P	P	P
1100	c	P	P	P	P	P	P	P	P	P	P	P	c	P	P	P	p .	P	P	P	Р	P	0	P	P	P	р	c	P	P	p
1200	P	P	P	P	P	P	P	P	P	P	P	P	c	P	P	P	P	P	P	P	P	P	0	P	P	P	P	P	P	P	P
1300	P	P	c	P	P	P	P	P	P	P	P	P	Р	P	P	P	P	P	P	P	P	P	0	P	P	P	C	P	P	P	C
1400	P	P P	c	P P	P	P	P P	P	P P	P P	P P	P	P	P P	P P	P	P P	P P	P P	P P	P P	P	0	P	P P	P	C	P P	P P	P	c
	P	P P		P P	P P	P	P	P	P	P P	P	P	P	P	P P	P P	P	P	P P	P P	P P	P	0	P	P P	P P	C	P P	P	P P	C
1500	-		С	-	-	-	P	-	-	-	P		-		P	-	P	-	P P	-	P	-			P	-	P		-	-	-
1600	P	P	C P	P	P P	P	P	P	P	P	P	P	P	P	P	P	P	P	P P	P P	P	P	O P	P	P	P	P	P P	P	P	С
1700	P	P	Р	P	Р	P	Р	P	P	P	Р	P	С	P	Р	P	Р	P	Р	Р	Р	P	Р	P	Р	P	Р	Р	P	P	С
Dec-09	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	24th	25th	26th	27th	28th	29th	30th	31st
0900	0	1	7	7	1	6	0	7	0	0	0	7	7	7	0	0	1	1	7	0	2	1	6	7	7	7	7	7	7	7	7
1000	0	1	7	7	1	4	1	7	0	0	0	7	7	7	0	0	1	0	7	0	4	1	6	7	6	6	7	7	7	7	7
1100	0	1	7	7	1	2	6	7	1	0	0	7	7	6	0	0	1	0	7	0	4	1	3	7	5	5	7	7	7	7	7
1200	0	1	7	7	1	3	7	3	1	0	0	7	7	3	0	0	1	0	6	0	2	1	6	7	6	5	7	7	7	7	7
1300		1	7	6	3	1	7	2	0	0	0	7	7	2	0	1	1	1	1	1	2	1	2	7	6	7	7	7	7	7	7
			7	6	2	1	7	2	0	0	0	7	7	2	0	1	1	1	0	0	1	1	1	7	6	7	7	7	7	7	7
	0				3	1	7	2	0	0	0	7	6	1	0	1	0	1	0	0	1	1	1	7	6	7	7	7	7	7	7
1400	0	0	7				/		-	0	0	7	7	1	0	1	0	1	1	0	1	1	2	7	5	7	7	7	7	7	7
1400 1500	0	0	7	4	-		7						/	1	U	1			1	0	1		2								/
1400 1500 1600	0 0 0	0	6	7	6	1	7	2	0				4	1	0	1							4								7
1400 1500 1600 1700	0 0 0	0 0	6	7	6	1	7	1	0	1	0	7	6	1	0	1	0	1				1	4	7	4	7	7	8	7	7	7
1400 1500 1600 1700 Dec-09	0 0 0 0	0 0 0 2nd	6 5 3rd	7 7 4th	6 6 5th	1 1 6th	7 7th	1 8th	0 9th	1 10th	0 11th	7 12th	13th	14th	15th	16th	17th	18th	19th	20th	21st	22nd	23rd	7 24th	4 25th	7 26th	7 27th	8 28th	7 29th	7 30th	31st
1400 1500 1600 1700 Dec-09 0900	0 0 0 0 1st	0 0 0 2nd P	6 5 3rd P	7 7 4th P	6 6 5th P	1 1 6th P	7	1 8th P	0 9th C	1 10th C	0 11th C	7 12th P	13th P	14th P	15th C	16th C	17th P	18th P	19th P	20th C	21st P	22nd P	23rd P	7 24th P	4 25th P	7 26th P	7	8 28th P	7 29th P	7 30th P	,
1400 1500 1600 1700 Dec-09	0 0 0 0	0 0 0 2nd P	6 5 3rd	7 7 4th	6 6 5th	1 1 6th P P	7 7th	1 8th	0 9th	1 10th C C	0 11th	7 12th	13th	14th P P	15th	16th C C	17th	18th P C	19th	20th C C	21st	22nd P P	23rd	7 24th	4 25th	7 26th	7 27th	8 28th	7 29th	7 30th	31st
1400 1500 1600 1700 Dec-09 0900	0 0 0 0 1st	0 0 0 2nd P	6 5 3rd P	7 7 4th P	6 6 5th P	1 1 6th P	7 7th C	1 8th P	0 9th C	1 10th C	0 11th C	7 12th P	13th P	14th P	15th C	16th C	17th P	18th P	19th P	20th C	21st P	22nd P	23rd P	7 24th P	4 25th P	7 26th P	7 27th P	8 28th P	7 29th P	7 30th P	31st P
1400 1500 1600 1700 Dec-09 0900 1000	0 0 0 0 1st C	0 0 0 2nd P	6 5 3rd P	7 7 4th P P	6 6 5th P	1 1 6th P P	7 7th C P	1 8th P P	0 9th C C	1 10th C C C C	0 11th C C	7 12th P P	13th P P	14th P P P P	15th C C	16th C C C	17th P P	18th P C C C	19th P P	20th C C C	21st P P	22nd P P	23rd P P	7 24th P P	4 25th P P	7 26th P P	7 27th P	8 28th P P	7 29th P P	7 30th P P	31st P
1400 1500 1600 1700 Dec-09 0900 1000 1100	0 0 0 0 1st C C	0 0 0 2nd P P	6 5 3rd P P	7 7 4th P P	6 6 5th P P	1 1 6th P P	7 7th C P P	1 8th P P P	9th C C P	1 10th C C C	0 11th C C C	7 12th P P P	13th P P P	14th P P P	15th C C C	16th C C C	17th P P P	18th P C C	19th P P P	20th C C C	21st P P P	22nd P P	23rd P P P	7 24th P P P	4 25th P P P	7 26th P P	7 27th P	8 28th P P	7 29th P P	7 30th P P P	31st P P P
1400 1500 1600 1700 Dec-09 0900 1000 1100 1200	0 0 0 0 1st C C C	0 0 0 2nd P P P	6 5 3rd P P P	7 7 4th P P P	6 6 5th P P P	1 1 6th P P P	7 7th C P P	8th P P P	9th C C P	1 10th C C C C	0 11th C C C C	7 12th P P P P	13th P P P P	14th P P P P	15th C C C C	16th C C C	17th P P P	18th P C C C	19th P P P	20th C C C	21st P P P	22nd P P P P	23rd P P P P	7 24th P P P	4 25th P P P	7 26th P P P	7 27th P P P	8 28th P P P	7 29th P P P	7 30th P P P P	31st P P P P
1400 1500 1600 1700 Dec-09 0900 1000 1100 1200 1300	0 0 0 0 1st C C C C	0 0 0 2nd P P P P	6 5 3rd P P P P	7 7 4th P P P P	6 6 5th P P P P	1 1 6th P P P P	7 7th C P P P	1 8th P P P P	9th C C P P	1 10th C C C C	0 11th C C C C C	7 12th P P P P	13th P P P P	14th P P P P	15th C C C C	16th C C C C C	17th P P P P	18th P C C C	19th P P P P	20th C C C C	21st P P P P	22nd P P P P	23rd P P P P	7 24th P P P P	4 25th P P P P	7 26th P P P P	7 27th P P P P	8 28th P P P P	7 29th P P P P	7 30th P P P P	31st P P P P
1400 1500 1600 1700 Dec-09 0900 1000 1100 1200 1300 1400	0 0 0 0 1st C C C C	0 0 0 2nd P P P P P	6 5 3rd P P P P P	7 7 4th P P P P P	6 6 5th P P P P P	1 6th P P P P	7 7th C P P P P	8th P P P P P	0 9th C C P P C	1 10th C C C C C	0 11th C C C C C	7 12th P P P P P	13th P P P P P	14th P P P P P	15th C C C C C	16th C C C C P	17th P P P P P	18th P C C C P	19th P P P P P C	20th C C C C C	21st P P P P P	22nd P P P P P	23rd P P P P P	7 24th P P P P P	4 25th P P P P P	7 26th P P P P	7 27th P P P P P	8 28th P P P P	7 29th P P P P	7 30th P P P P P	31st P P P P P
1400 1500 1600 1700 Dec-09 0900 1000 1100 1200 1300 1400 1500	0 0 0 0 1st C C C C C	0 0 2nd P P P P P C C	6 5 3rd P P P P P	7 7 4th P P P P P	6 6 5th P P P P P	1 1 6th P P P P P	7 7th C P P P P P	8th P P P P P P P	0 9th C C P P C C	1 10th C C C C C C C	0 11th C C C C C C	7 12th P P P P P	13th P P P P P	14th P P P P P	15th C C C C C C	16th C C C C P P	17th P P P P P P	18th P C C C P P	19th P P P P P C C	20th C C C C C C	21st P P P P P	22nd P P P P P P	23rd P P P P P	7 24th P P P P P	25th P P P P P P	7 26th P P P P P	7 27th P P P P P	8 28th P P P P P	7 29th P P P P P P	7 30th P P P P P	31st P P P P P P

Average probability of clear, partly cloudy and overcast skies in each working hour in December from 2007 to 2009

Dec	С	P	О	P_C	\mathbf{P}_{P}	P_O
0900	13	79	1	0.14	0.85	0.01
1000	18	72	3	0.19	0.77	0.03
1100	17	73	3	0.18	0.78	0.03
1200	15	75	3	0.16	0.81	0.03
1300	15	76	2	0.16	0.82	0.02
1400	18	73	2	0.19	0.78	0.02
1500	19	72	2	0.20	0.77	0.02
1600	16	75	2	0.17	0.81	0.02
1700	14	77	2	0.15	0.83	0.02

APPENDIX H: Probability of achieving the two criteria due to the five decision factors in all simulation model sets

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 1

Simulation Model Set No.: 1 Window size: Small Orientation: North

Date	Time	$\mathbf{P}_{VS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BD,P}$	\mathbf{P}_{p}	$\mathbf{P}_{VS,BD,O}$	P_O	$\mathbf{P}_{VS,BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	\mathbf{P}_{C}	$\mathbf{P}_{VS,BD,P}$	\mathbf{P}_{p}	$\mathbf{P}_{FS,BD,O}$	P_O	$\mathbf{P}_{FS,BD,R}$
21-Jan-10	0900	0.3426	0.05	0.1705	0.80	0.1002	0.15	0.1691	21-Jul-10	0900	0.2466	0.00	0.2093	0.92	0.1391	0.08	0.2040
	1000	0.4077	0.06	0.2417	0.81	0.1243	0.13	0.2373		1000	0.1908	0.00	0.2150	0.91	0.1556	0.09	0.2099
	1100	0.4404	0.06	0.2824	0.81	0.1393	0.13	0.2741		1100	0.1705	0.00	0.1775	0.91	0.1705	0.09	0.1769
	1200	0.4549	0.08	0.2944	0.80	0.1476	0.13	0.2875		1200	0.1908	0.00	0.1632	0.91	0.1775	0.09	0.1644
	1300	0.4549	0.08	0.2944	0.83	0.1476	0.10	0.2923		1300	0.1908	0.00	0.1632	0.96	0.1775	0.04	0.1638
	1400	0.4441	0.08	0.2865	0.84	0.1393	0.09	0.2857		1400	0.1705	0.00	0.1843	0.97	0.1705	0.03	0.1838
	1500	0.4143	0.09	0.2515	0.83	0.1270	0.09	0.2548		1500	0.1908	0.00	0.2150	0.97	0.1556	0.03	0.2131
	1600	0.3574	0.11	0.1843	0.83	0.1042	0.06	0.1977		1600	0.2150	0.00	0.2093	0.97	0.1386	0.03	0.2070
	1700	0.2315	0.10	0.0934	0.83	0.0703	0.08	0.1050		1700	0.2515	0.00	0.1632	0.95	0.1120	0.05	0.1604
21-Feb-10	0900	0.3332	0.04	0.1972	0.89	0.1116	0.07	0.1959	21-Aug-10	0900	0.1972	0.00	0.2150	0.92	0.1366	0.08	0.2091
	1000	0.3891	0.02	0.2562	0.89	0.1354	0.08	0.2494		1000	0.2466	0.00	0.2315	0.92	0.1556	0.08	0.2257
	1100	0.4206	0.02	0.2783	0.88	0.1476	0.09	0.2693		1100	0.2824	0.00	0.2033	0.90	0.1705	0.10	0.2001
	1200	0.4347	0.04	0.2783	0.87	0.1556	0.09	0.2722		1200	0.2982	0.00	0.1775	0.92	0.1775	0.08	0.1775
	1300	0.4347	0.05	0.2783	0.92	0.1556	0.04	0.2813		1300	0.2982	0.00	0.1775	0.90	0.1775	0.10	0.1775
	1400	0.4248	0.04	0.2824	0.92	0.1556	0.05	0.2815		1400	0.2824	0.00	0.2093	0.90	0.1705	0.10	0.2055
	1500	0.4009	0.02	0.2653	0.92	0.1393	0.06	0.2611		1500	0.2417	0.00	0.2315	0.91	0.1556	0.09	0.2249
	1600	0.3516	0.02	0.2150	0.92	0.1181	0.06	0.2125		1600	0.1908	0.00	0.2150	0.91	0.1338	0.09	0.2080
	1700	0.2562	0.04	0.1262	0.91	0.0862	0.06	0.1284		1700	0.1632	0.00	0.1556	0.90	0.1047	0.10	0.1506
21-Mar-10	0900	0.2982	0.04	0.2150	0.83	0.1260	0.13	0.2071	21-Sep-10	0900	0.3057	0.02	0.2261	0.92	0.1327	0.06	0.2227
	1000	0.3486	0.03	0.2515	0.85	0.1476	0.12	0.2423		1000	0.3516	0.00	0.2515	0.96	0.1556	0.04	0.2472
	1100	0.3791	0.03	0.2515	0.87	0.1632	0.10	0.2470		1100	0.3739	0.01	0.2417	0.96	0.1632	0.03	0.2406
	1200	0.3915	0.03	0.2315	0.86	0.1705	0.11	0.2301		1200	0.3841	0.01	0.2261	0.93	0.1705	0.06	0.2248
	1300	0.3915	0.02	0.2366	0.90	0.1705	0.08	0.2350		1300	0.3816	0.00	0.2315	0.97	0.1705	0.03	0.2294
	1400	0.3791	0.03	0.2515	0.88	0.1632	0.09	0.2480		1400	0.3658	0.00	0.2515	0.97	0.1632	0.03	0.2485
	1500	0.3516	0.03	0.2562	0.87	0.1476	0.10	0.2488		1500	0.3364	0.00	0.2515	0.98	0.1476	0.02	0.2492
	1600	0.3020	0.03	0.2207	0.89	0.1264	0.08	0.2162		1600	0.2824	0.00	0.2033	0.99	0.1210	0.01	0.2024
	1700	0.2207	0.03	0.1393	0.89	0.0953	0.08	0.1386		1700	0.1908	0.00	0.1207	0.99	0.0874	0.01	0.1204
21-Apr-10	0900	0.2093	0.00	0.2207	0.88	0.1380	0.12	0.2106	21-Oct-10	0900	0.3658	0.03	0.2315	0.97	0.1248	0.00	0.2358
21 Apr 10	1000	0.2608	0.00	0.2315	0.90	0.1556	0.10	0.2239	21 001 10	1000	0.4055	0.04	0.2697	0.96	0.1476	0.00	0.2756
	1100	0.2944	0.00	0.2033	0.89	0.1705	0.11	0.1997		1100	0.4268	0.01	0.2783	0.99	0.1556	0.00	0.2799
	1200	0.3057	0.00	0.1775	0.90	0.1775	0.10	0.1775		1200	0.4247	0.00	0.2783	1.00	0.1632	0.00	0.2783
	1300	0.3057	0.00	0.1773	0.92	0.1775	0.08	0.1773		1300	0.4347	0.00	0.2824	0.97	0.1556	0.00	0.2842
	1400	0.2865	0.00	0.2150	0.92	0.1632	0.08	0.2110		1400	0.4308	0.02	0.2783	0.97	0.1336	0.01	0.2798
	1500	0.2466	0.00	0.2366	0.89	0.1556	0.11	0.2276		1500	0.3791	0.02	0.2466	0.97	0.1306	0.01	0.2482
	1600	0.1972	0.00	0.2093	0.89	0.1336	0.11	0.2276		1600	0.3129	0.02	0.1775	0.98	0.1043	0.01	0.1782
	1700	0.1972	0.00	0.2093	0.88	0.1314	0.11	0.1420		1700	0.1775	0.01	0.1773	0.96	0.1043	0.01	0.1782
21-May-10	0900	0.2207	0.02	0.2150	0.96	0.1393	0.02	0.2135	21-Nov-10	0900	0.3765	0.12	0.2033	0.84	0.1119	0.03	0.2214
21-iviay-10	1000	0.1843	0.02	0.2130	0.97	0.1593	0.02	0.2133	21-NOV-10	1000	0.3763	0.12	0.2653	0.80	0.1119	0.03	0.2214
	1100	0.1843	0.01	0.2093	0.97	0.1032		0.2080		1100	0.4248	0.17	0.2053		0.1321	0.03	
	1200	0.1843	0.01	0.17/5	0.94	0.1705	0.05	0.17/2		1200	0.4478	0.17	0.2905	0.80	0.1476	0.03	0.3119
	1300	0.1972	0.02	0.1705	0.91	0.1775	0.06	0.1713		1300	0.4506	0.14	0.2944	0.82	0.1476	0.03	0.3129
	1400	0.1775	0.02	0.1908	0.88	0.1705	0.10	0.1886		1400	0.4347	0.16	0.2740	0.79	0.1366	0.06	0.2914
	1500	0.1908	0.02	0.2207	0.90	0.1556	0.08	0.2151		1500	0.3963	0.16	0.2261	0.79	0.1190	0.06	0.2466
	1600 1700	0.2150	0.02	0.2033	0.89	0.1347	0.09	0.1977		1600	0.3164	0.16	0.1476 0.0553	0.79	0.0922	0.06	0.1708
		0.2608		0.1476	0.88	0.1065	0.10	0.1461		1700	0.1393	0.13			0.0513		0.0662
21-Jun-10	0900	0.2417	0.00	0.2033	0.89	0.1393	0.11	0.1962	21-Dec-10	0900	0.3602	0.14	0.1775	0.85	0.1010	0.01	0.2022
	1000	0.2207	0.00	0.2033	0.89	0.1632	0.11	0.1988		1000	0.4206	0.19	0.2466	0.77	0.1233	0.03	0.2763
	1100	0.1908	0.00	0.1705	0.89	0.1705	0.11	0.1705		1100	0.4496	0.18	0.2824	0.78	0.1370	0.03	0.3083
	1200	0.1775	0.00	0.1556	0.88	0.1775	0.12	0.1582		1200	0.4600	0.16	0.2905	0.81	0.1393	0.03	0.3129
	1300	0.1775	0.00	0.1476	0.92	0.1775	0.08	0.1499		1300	0.4583	0.16	0.2865	0.82	0.1393	0.02	0.3110
	1400	0.1908	0.00	0.1775	0.93	0.1705	0.07	0.1770		1400	0.4423	0.19	0.2740	0.78	0.1338	0.02	0.3036
	1500	0.2093	0.00	0.2093	0.97	0.1556	0.03	0.2075		1500	0.4077	0.20	0.2315	0.77	0.1178	0.02	0.2650
	1600	0.2315	0.00	0.2033	0.93	0.1379	0.07	0.1989		1600	0.3332	0.17	0.1556	0.81	0.0926	0.02	0.1848
	1700	0.2697	0.00	0.1556	0.93	0.1113	0.07	0.1526		1700	0.1632	0.15	0.0616	0.83	0.0545	0.02	0.0767

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 1

21-Jan-10 0900 1000 1100 1200 1300 1400 1500	000 0.7 100 0.7 200 0.7 200 0.7 300 0.7 400 0.7 600 0.6 700 0.4 900 0.6 000 0.6 100 0.7 200 0.7 300 0.7 400 0.7 500 0.7 500 0.7 600 0.6 600 0.6 600 0.6	6252 0.05 7044 0.06 7381 0.06 7381 0.06 7519 0.08 7526 0.08 7409 0.08 7409 0.09 6406 0.11 4438 0.10 66084 0.04 66807 0.02 7141 0.02 7281 0.04 7297 0.05	0.3287 0.4592 0.5225 0.5431 0.5436 0.5273 0.4726 0.3530 0.1653 0.3741 0.4816 0.5208 0.5223	0.80 0.81 0.81 0.80 0.83 0.84 0.83 0.83 0.83	0.1849 0.2362 0.2687 0.2855 0.2852 0.2714 0.2597 0.2143 0.1334 0.2091	0.15 0.13 0.13 0.13 0.10 0.09 0.09 0.06 0.08	0.3230 0.4462 0.5036 0.5256 0.5343 0.5214 0.4748 0.3750 0.1899	21-Jul-10	0900 1000 1100 1200 1300 1400	0.6188 0.4063 0.3393 0.3746 0.3741	0.00 0.00 0.00 0.00	0.4036 0.4145 0.3589 0.3205	0.92 0.91 0.91	0.2679 0.3055 0.3309	0.08 0.09 0.09	0.3934 0.4051 0.3565
21-Feb-10	100 0.7 200 0.7 200 0.7 300 0.7 400 0.7 500 0.7 600 0.6 600 0.6 700 0.4 900 0.6 100 0.7 200 0.7 300 0.7 300 0.7 500 0.7 500 0.6 600 0.6 600 0.6	7381 0.06 7519 0.08 7526 0.08 77409 0.08 7107 0.09 6406 0.11 4438 0.10 6084 0.04 6807 0.02 77141 0.02 77281 0.04	0.5225 0.5431 0.5436 0.5273 0.4726 0.3530 0.1653 0.3741 0.4816 0.5208	0.81 0.80 0.83 0.84 0.83 0.83 0.83	0.2687 0.2855 0.2852 0.2714 0.2597 0.2143 0.1334	0.13 0.13 0.10 0.09 0.09 0.06	0.5036 0.5256 0.5343 0.5214 0.4748 0.3750		1100 1200 1300	0.3393 0.3746	0.00	0.3589	0.91	0.3309	0.09	
21-Feb-10	200 0.7 300 0.7 300 0.7 400 0.7 500 0.6 600 0.6 700 0.4 9900 0.6 000 0.7 200 0.7 200 0.7 300 0.7 400 0.7 500 0.6 600 0.6	7519 0.08 7526 0.08 7409 0.08 7107 0.09 6406 0.11 4438 0.10 6684 0.04 6687 0.02 7141 0.02 7281 0.04 7297 0.05	0.5431 0.5436 0.5273 0.4726 0.3530 0.1653 0.3741 0.4816 0.5208	0.80 0.83 0.84 0.83 0.83 0.83	0.2855 0.2852 0.2714 0.2597 0.2143 0.1334	0.13 0.10 0.09 0.09 0.06	0.5256 0.5343 0.5214 0.4748 0.3750		1200 1300	0.3746						0.3565
1-Feb-10	300 0.7 400 0.7 500 0.7 600 0.6 700 0.4 9900 0.6 100 0.7 200 0.7 200 0.7 400 0.7 500 0.6 600 0.7	7526 0.08 7409 0.08 7107 0.09 6406 0.11 4438 0.10 6084 0.04 6807 0.02 7141 0.02 7281 0.04 7297 0.05	0.5436 0.5273 0.4726 0.3530 0.1653 0.3741 0.4816 0.5208	0.83 0.84 0.83 0.83 0.83	0.2852 0.2714 0.2597 0.2143 0.1334	0.10 0.09 0.09 0.06	0.5343 0.5214 0.4748 0.3750		1300		0.00	0.3205				
14-00 15000 1700 1700 1700 1700 1700 1700 1	400 0.7 500 0.7 600 0.6 6700 0.4 9900 0.6 100 0.7 200 0.7 400 0.7 500 0.6 600 0.6	7409 0.08 7107 0.09 6406 0.11 4438 0.10 6084 0.04 6807 0.02 7141 0.02 7281 0.04 7297 0.05	0.5273 0.4726 0.3530 0.1653 0.3741 0.4816 0.5208	0.84 0.83 0.83 0.83	0.2714 0.2597 0.2143 0.1334	0.09 0.09 0.06	0.5214 0.4748 0.3750						0.91	0.3429	0.09	0.3224
11-Feb-10 9900 1100 1200 1300 1400 1500 1400 1500 1400 1500 1400 1500	500 0.7 600 0.6 700 0.4 900 0.6 000 0.6 100 0.7 200 0.7 300 0.7 400 0.7 500 0.6 600 0.6	7107 0.09 6406 0.11 4438 0.10 6084 0.04 6807 0.02 7141 0.02 7281 0.04 7297 0.05	0.4726 0.3530 0.1653 0.3741 0.4816 0.5208	0.83 0.83 0.83	0.2597 0.2143 0.1334	0.09 0.06	0.4748 0.3750				0.00	0.3188	0.96	0.3429	0.04	0.3199
21-Feb-10	600 0.6 700 0.4 900 0.6 000 0.6 100 0.7 200 0.7 300 0.7 500 0.6 600 0.6	6406 0.11 4438 0.10 6084 0.04 6807 0.02 7141 0.02 7281 0.04 7297 0.05	0.3530 0.1653 0.3741 0.4816 0.5208	0.83 0.83 0.89	0.2143 0.1334	0.06	0.3750			0.3360	0.00	0.3580	0.97	0.3303	0.03	0.3571
21-Feb-10	700 0.4 900 0.6 000 0.6 100 0.7 200 0.7 300 0.7 400 0.7 500 0.6 600 0.6	4438 0.10 6084 0.04 6807 0.02 7141 0.02 7281 0.04 7297 0.05	0.1653 0.3741 0.4816 0.5208	0.83	0.1334				1500	0.4129	0.00	0.4147	0.97	0.3048	0.03	0.4112
21-Feb-10 0900 1000 1200 1300 1400 1500 1600 1700 21-Mar-10 0900 1000 1100 1500 1600 1700 1200 1300 1600 1700 1700 1700 1700 1700 1700 17	900 0.6 000 0.6 100 0.7 200 0.7 300 0.7 400 0.7 500 0.6 600 0.6	6084 0.04 6807 0.02 7141 0.02 7281 0.04 7297 0.05	0.3741 0.4816 0.5208	0.89		0.08			1600	0.5654	0.00	0.4004	0.97	0.2670	0.03	0.3961
11-000 11-000 11-000 13-000 13-000 15-000 15-000 15-000 11-000 11-000 15	000 0.6 100 0.7 200 0.7 300 0.7 400 0.7 500 0.6 600 0.6	6807 0.02 7141 0.02 7281 0.04 7297 0.05	0.4816 0.5208		0.2091				1700	0.5911	0.00	0.3061	0.95	0.2102	0.05	0.3009
11-Mar-10 11-Mar	100 0.7 200 0.7 300 0.7 400 0.7 500 0.6 600 0.6	7141 0.02 7281 0.04 7297 0.05	0.5208	0.89		0.07	0.3707	21-Aug-10	0900	0.3849	0.00	0.4217	0.92	0.2634	0.08	0.4098
21-Mar-10 9900 1300 1500 1600 1700 1000 1100 1100 1500 1600 1700 1200 1300 1600 1700 1100 1200 1700 1200 1100 1200 1100 1200 1300 1400 1500 1600 1700 1500 1600 1700 1700 1800 1800 1800 1800 1800 18	200 0.7 300 0.7 400 0.7 500 0.6 600 0.6	7281 0.04 7297 0.05			0.2586	0.08	0.4679		1000	0.4762	0.00	0.4468	0.92	0.3024	0.08	0.4359
21-Mar-10 9900 1-0	300 0.7 400 0.7 500 0.6 600 0.6	7297 0.05	0.5223	0.88	0.2903	0.09	0.5036		1100	0.5261	0.00	0.4009	0.90	0.3283	0.10	0.3939
14-000 1500 1600 1700 1700 1700 1700 1700 1700 17	400 0.7 500 0.6 600 0.6			0.87	0.3087	0.09	0.5094		1200	0.5487	0.00	0.3492	0.92	0.3407	0.08	0.3486
11-Mar-10 1500	500 0.6 600 0.6	7187 0.04	0.5215	0.92	0.3096	0.04	0.5238		1300	0.5467	0.00	0.3514	0.90	0.3401	0.10	0.3503
11-Mar-10	600 0.6		0.5226	0.92	0.2973	0.05	0.5189		1400	0.5224	0.00	0.4067	0.90	0.3265	0.10	0.3989
.:I-Mar-10		6909 0.02	0.4962	0.92	0.2687	0.06	0.4874		1500	0.4668	0.00	0.4459	0.91	0.2994	0.09	0.4333
1-Mar-10 0900 1000 1000 1200 1300 1400 1500 1600 1700 1200 1300 1400 1500 1500 1600 1700 1200 1300 1400 1500 1600 1700 1100 1200 130	700 0.4	6304 0.02	0.4058	0.92	0.2229	0.06	0.4003		1600	0.3687	0.00	0.4108	0.91	0.2559	0.09	0.3975
11000 1100 1200 13000 1400 1500 1600 1700 11000 1200 11000 1700 1400 1500 1600 1700 1100 1600 1700 1100 1100 11		4889 0.04	0.2351	0.91	0.1556	0.06	0.2394		1700	0.3481	0.00	0.2896	0.90	0.1945	0.10	0.2804
11-00 12000 1300 14000 1500 1500 1500 1500 1500 1500 1	900 0.5	5573 0.04	0.4165	0.83	0.2397	0.13	0.3998	21-Sep-10	0900	0.5688	0.02	0.4406	0.92	0.2540	0.06	0.4331
1-Apr-10 9900 1700 1700 1700 1700 1700 1700 17	000 0.6	6263 0.03	0.4835	0.85	0.2852	0.12	0.4646		1000	0.6291	0.00	0.4849	0.96	0.2958	0.04	0.4765
1300 1400 1500 1600 11-Apr-10 0900 1100 1200 1300 1500 1500 1600 1700 1100 1100 1100 1100 1100 11	100 0.6	6616 0.03	0.4817	0.87	0.3138	0.10	0.4712		1100	0.6593	0.01	0.4683	0.96	0.3192	0.03	0.4654
1-Apr-10 0900 1200 1100 1100 1100 1100 1100 11	200 0.6	6764 0.03	0.4524	0.86	0.3276	0.11	0.4462		1200	0.6710	0.01	0.4387	0.93	0.3297	0.06	0.4353
1-Apr-10 9900 1-Apr-10 1000 1100 1200 1300 1400 1500 1600 1700 1100 1100 1200 1300 1100 1100 1100 1300 1400	300 0.6	6764 0.02	0.4524	0.90	0.3282	0.08	0.4479		1300	0.6671	0.00	0.4486	0.97	0.3275	0.03	0.4445
1-Apr-10 0900 1700 1100 1100 1200 1300 1400 1600 1600 1000 1-May-10 0900 1200 1300 1400 1400	400 0.6	6619 0.03	0.4801	0.88	0.3139	0.09	0.4717		1400	0.6480	0.00	0.4802	0.97	0.3109	0.03	0.4746
1-Apr-10 0900 1000 1200 1300 1400 1500 1600 1600 1600 1000 11-May-10 0900 1200 13000 1400 1400 1400	500 0.6	6267 0.03	0.4841	0.87	0.2860	0.10	0.4696		1500	0.6062	0.00	0.4748	0.98	0.2800	0.02	0.4705
(1-Apr-10 0900 1000 11000 1200 1300 1400 1500 1700 1700 1700 1700 1700 1200 1200 1300 1400 1400 1400 1400 1400 1400 14	600 0.5	5588 0.03	0.4180	0.89	0.2408	0.08	0.4092		1600	0.5248	0.00	0.3924	0.99	0.2291	0.01	0.3906
1000 11000 1200 1300 1400 1500 1600 1700 1000 1000 1200 1300 1400	700 0.4	4185 0.03	0.2646	0.89	0.1749	0.08	0.2628		1700	0.3626	0.00	0.2239	0.99	0.1575	0.01	0.2232
1100 1200 13000 1400 1500 1600 1700 11-May-10 0900 1100 1200 1300 1400	900 0.4	4091 0.00	0.4273	0.88	0.2660	0.12	0.4076	21-Oct-10	0900	0.6493	0.03	0.4391	0.97	0.2373	0.00	0.4459
1200 1300 1400 1500 1600 1700 11-May-10 900 1100 1200 1300 1400	000 0.4	4931 0.00	0.4480	0.90	0.3040	0.10	0.4336		1000	0.6987	0.04	0.5086	0.96	0.2793	0.00	0.5168
1300 1400 1500 1600 1700 1100 1100 1200 1300 1400	100 0.5	5395 0.00	0.3989	0.89	0.3295	0.11	0.3912		1100	0.7214	0.01	0.5232	0.99	0.3017	0.00	0.5253
1400 1500 1600 1700 21-May-10 0900 1000 1100 1200 1300 1400	200 0.5	5596 0.00	0.3523	0.90	0.3407	0.10	0.3511		1200	0.7290	0.00	0.5196	1.00	0.3116	0.00	0.5196
1500 1600 1700 1-May-10 0900 1000 1100 1200 1300 1400	300 0.5	5576 0.00	0.3575	0.92	0.3389	0.08	0.3561		1300	0.7243	0.02	0.5216	0.97	0.3047	0.01	0.5236
1600 1700 1-May-10 0900 1000 1100 1200 1300 1400	400 0.5	5299 0.00	0.4166	0.92	0.3245	0.08	0.4094		1400	0.7063	0.02	0.5159	0.97	0.2859	0.01	0.5176
1700 11-May-10 0900 1000 1100 1200 1300 1400	500 0.4	4742 0.00	0.4494	0.89	0.2965	0.11	0.4324		1500	0.6659	0.02	0.4630	0.97	0.2498	0.01	0.4651
11-May-10 0900 1000 1100 1200 1300 1400	600 0.3	3747 0.00	0.4059	0.89	0.2512	0.11	0.3887		1600	0.5768	0.01	0.3321	0.98	0.1943	0.01	0.3333
1000 1100 1200 1300 1400	700 0.3	3951 0.00	0.2745	0.88	0.1876	0.12	0.2639		1700	0.3446	0.03	0.1375	0.96	0.1131	0.01	0.1439
1100 1200 1300 1400	900 0.5	5139 0.02	0.4126	0.96	0.2738	0.02	0.4118	21-Nov-10	0900	0.6666	0.12	0.3942	0.84	0.2102	0.03	0.4214
1200 1300 1400	000 0.3	3827 0.01	0.4119	0.97	0.3117	0.02	0.4094		1000	0.7214	0.17	0.4931	0.80	0.2531	0.03	0.5232
1300 1400	100 0.3	3645 0.01	0.3491	0.94	0.3333	0.05	0.3484		1100	0.7452	0.17	0.5346	0.80	0.2793	0.03	0.5612
1400	200 0.3	3949 0.02	0.3455	0.91	0.3435	0.06	0.3464		1200	0.7533	0.14	0.5440	0.82	0.2869	0.03	0.5657
	300 0.3	3884 0.01	0.3136	0.94	0.3417	0.05	0.3160		1300	0.7492	0.12	0.5394	0.83	0.2827	0.04	0.5536
	400 0.3	3434 0.02	0.3731	0.88	0.3282	0.10	0.3681		1400	0.7308	0.16	0.5114	0.79	0.2634	0.06	0.5317
1500		4114 0.02	0.4190	0.90	0.3008	0.08	0.4099		1500	0.6884	0.16	0.4316	0.79	0.2252	0.06	0.4601
1600		5627 0.02	0.3936	0.89	0.2577	0.09	0.3855		1600	0.5858	0.16	0.2817	0.79	0.1678	0.06	0.3227
1700		5799 0.02	0.2844	0.88	0.1985	0.10	0.2825		1700	0.2726	0.13	0.0886	0.80	0.0784	0.07	0.1125
1-Jun-10 0900	900 0.6	6344 0.00	0.4005	0.89	0.2722	0.11	0.3863	21-Dec-10	0900	0.6461	0.14	0.3406	0.85	0.1874	0.01	0.3816
1000		6038 0.00	0.4015	0.89	0.3108	0.11	0.3914		1000	0.7164	0.19	0.4618	0.77	0.2340	0.03	0.5037
1100		4117 0.00	0.3413	0.89	0.3326	0.11	0.3403		1100	0.7460	0.18	0.5221	0.78	0.2643	0.03	0.5547
1200		5339 0.00	0.3225	0.88	0.3435	0.12	0.3251		1200	0.7570	0.16	0.5405	0.81	0.2748	0.03	0.5669
1300		3890 0.00	0.3036	0.92	0.3423	0.08	0.3066		1300	0.7554	0.16	0.5376	0.82	0.2730	0.02	0.5671
1400		4274 0.00	0.3519	0.93	0.3296	0.07	0.3504		1400	0.7401	0.19	0.5096	0.78	0.2531	0.02	0.5487
1500	300 0.3	5806 0.00	0.4051	0.97	0.3039	0.03	0.4017		1500	0.7019	0.20	0.4328	0.77	0.2227	0.02	0.4833
1600	300 0.3 400 0.4	6219 0.00	0.3912	0.93	0.2660	0.07	0.3829		1600	0.6070	0.17	0.2888	0.81	0.1691	0.02	0.3410
1700	300 0.3 400 0.4 500 0.5	6238 0.00	0.2984	0.93	0.2088	0.07	0.2924		1700	0.3177	0.17	0.1012	0.83	0.0895	0.02	0.1336

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set $1\,$

Date	Time	$P_{FS,\mathit{UD},\mathit{C}}$	P_C	$\mathbf{P}_{VS,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},UD,R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},UD,O}$	P_O	$\mathbf{P}_{FS,UD,R}$
21-Jan-10	0900	0.9887	0.05	0.9887	0.80	0.9887	0.15	0.9887	21-Jul-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1000	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1100	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1100	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1200	0.9887	0.08	0.9887	0.80	0.9887	0.13	0.9887		1200	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1300	0.9887	0.08	0.9887	0.83	0.9887	0.10	0.9887		1300	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1400	0.9887	0.08	0.9887	0.84	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.09	0.9887	0.83	0.9887	0.09	0.9887		1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1600	0.9887	0.11	0.9887	0.83	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1700	0.9887	0.10	0.9887	0.83	0.9887	0.08	0.9887		1700	0.9569	0.00	0.9887	0.95	0.9887	0.05	0.9887
21-Feb-10	0900	0.9887	0.04	0.9887	0.89	0.9887	0.07	0.9887	21-Aug-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.02	0.9887	0.89	0.9887	0.08	0.9887		1000	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1100	0.9887	0.02	0.9887	0.88	0.9887	0.09	0.9887		1100	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1200	0.9887	0.04	0.9887	0.87	0.9887	0.09	0.9887		1200	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1300	0.9887	0.05	0.9887	0.92	0.9887	0.04	0.9887		1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1400	0.9887	0.04	0.9887	0.92	0.9887	0.05	0.9887		1400	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1500	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1500	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1600	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1700	0.9887	0.04	0.9887	0.91	0.9887	0.06	0.9887		1700	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
21-Mar-10	0900	0.9887	0.04	0.9887	0.83	0.9887	0.13	0.9887	21-Sep-10	0900	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887
	1000	0.9887	0.03	0.9887	0.85	0.9887	0.12	0.9887		1000	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1100	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1100	0.9887	0.01	0.9887	0.96	0.9887	0.03	0.9887
	1200	0.9887	0.03	0.9887	0.86	0.9887	0.11	0.9887		1200	0.9887	0.01	0.9887	0.93	0.9887	0.06	0.9887
	1300	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1400	0.9887	0.03	0.9887	0.88	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1500	0.9887	0.00	0.9887	0.98	0.9887	0.02	0.9887
	1600	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1600	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
	1700	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
21-Apr-10	0900	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887	21-Oct-10	0900	0.9887	0.03	0.9887	0.97	0.9887	0.00	0.9887
	1000	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1000	0.9887	0.04	0.9887	0.96	0.9887	0.00	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.01	0.9887	0.99	0.9887	0.00	0.9887
	1200	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1200	0.9887	0.00	0.9887	1.00	0.9887	0.00	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1400	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1500	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1500	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1600	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1600	0.9887	0.01	0.9887	0.98	0.9887	0.01	0.9887
	1700	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1700	0.9887	0.03	0.9887	0.96	0.9887	0.01	0.9887
21-May-10	0900	0.9887	0.02	0.9887	0.96	0.9887	0.02	0.9887	21-Nov-10	0900	0.9887	0.12	0.9887	0.84	0.9887	0.03	0.9887
	1000	0.9887	0.01	0.9887	0.97	0.9887	0.02	0.9887		1000	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1100	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1100	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1200	0.9887	0.02	0.9887	0.91	0.9887	0.06	0.9887		1200	0.9887	0.14	0.9887	0.82	0.9887	0.03	0.9887
	1300	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1300	0.9887	0.12	0.9887	0.83	0.9887	0.04	0.9887
	1400	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1400	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1500	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1500	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1600	0.9887	0.02	0.9887	0.89	0.9887	0.09	0.9887		1600	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1700	0.9276	0.02	0.9887	0.88	0.9887	0.10	0.9874		1700	0.9887	0.13	0.9887	0.80	0.9887	0.07	0.9887
21-Jun-10	0900	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	21-Dec-10	0900	0.9887	0.14	0.9887	0.85	0.9887	0.01	0.9887
	1000	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	0	1000	0.9887	0.19	0.9887	0.77	0.9887	0.03	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.18	0.9887	0.78	0.9887	0.03	0.9887
	1200	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1200	0.9887	0.16	0.9887	0.81	0.9887	0.03	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.16	0.9887	0.82	0.9887	0.03	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.07	0.9887		1400	0.9887	0.19	0.9887	0.78	0.9887	0.02	0.9887
	1500	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1500	0.9887	0.19	0.9887	0.78	0.9887	0.02	0.9887
	1600	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1600	0.9887	0.20	0.9887	0.77	0.9887	0.02	0.9887
	1700	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1700	0.9887	0.17	0.9887	0.81	0.9887	0.02	0.9887
	1700	0.9313	0.00	0.7007	0.73	0.7007	0.07	0.7007		1700	0.7007	0.13	0.7007	0.03	0.7007	0.02	0.7007

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 1

Date	Time	$\mathbf{P}_{VS,US,C}$	P_C	$\mathbf{P}_{V\mathbf{X},U\mathbf{X},P}$	P_P	$\mathbf{P}_{VX,UX,O}$	P_O	$\mathbf{P}_{\mathrm{FS},US,R}$	Date	Time	$\mathbf{P}_{\mathrm{FX},UX,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UX,P}$	P_P	$\mathbf{P}_{FS,US,O}$	P_O	$\mathbf{P}_{VS,US,R}$
21-Jan-10	0900	0.8719	0.05	0.8848	0.80	0.8880	0.15	0.8846	21-Jul-10	0900	0.9318	0.00	0.8928	0.92	0.8885	0.08	0.8924
	1000	0.8729	0.06	0.8816	0.81	0.8881	0.13	0.8819		1000	0.8962	0.00	0.8926	0.91	0.8864	0.09	0.8921
	1100	0.8720	0.06	0.8807	0.81	0.8882	0.13	0.8811		1100	0.8941	0.00	0.8951	0.91	0.8871	0.09	0.8944
	1200	0.8726	0.08	0.8789	0.80	0.8897	0.13	0.8798		1200	0.8864	0.00	0.8967	0.91	0.8868	0.09	0.8958
	1300	0.8719	0.08	0.8789	0.83	0.8879	0.10	0.8792		1300	0.8864	0.00	0.8973	0.96	0.8868	0.04	0.8969
	1400	0.8723	0.08	0.8823	0.84	0.8875	0.09	0.8820		1400	0.8917	0.00	0.8926	0.97	0.8872	0.03	0.8924
	1500	0.8737	0.09	0.8817	0.83	0.7173	0.09	0.8669		1500	0.8957	0.00	0.8933	0.97	0.8867	0.03	0.8931
	1600	0.8712	0.11	0.8862	0.83	0.9116	0.06	0.8863		1600	0.9275	0.00	0.8916	0.97	0.8887	0.03	0.8915
	1700	0.8723	0.10	0.8848	0.83	0.9085	0.08	0.8854		1700	0.9252	0.00	0.8915	0.95	0.8881	0.05	0.8913
21-Feb-10	0900	0.8758	0.04	0.8843	0.89	0.8880	0.07	0.8843	21-Aug-10	0900	0.8869	0.00	0.8915	0.92	0.8899	0.08	0.8914
	1000	0.8747	0.02	0.8834	0.89	0.8863	0.08	0.8834		1000	0.8781	0.00	0.8901	0.92	0.8875	0.08	0.8899
	1100	0.8731	0.02	0.8804	0.88	0.8867	0.09	0.8808		1100	0.8710	0.00	0.8895	0.90	0.8879	0.10	0.8893
	1200	0.8721	0.04	0.8800	0.87	0.8896	0.09	0.8806		1200	0.8715	0.00	0.8903	0.92	0.8885	0.08	0.8902
	1300	0.8716	0.05	0.8797	0.92	0.8885	0.04	0.8796		1300	0.8693	0.00	0.8902	0.90	0.8886	0.10	0.8900
	1400	0.8724	0.04	0.8805	0.92	0.8886	0.05	0.8806		1400	0.8705	0.00	0.8889	0.90	0.8881	0.10	0.8888
	1500	0.8745	0.02	0.8830	0.92	0.8882	0.06	0.8831		1500	0.8769	0.00	0.8882	0.91	0.8885	0.09	0.8882
	1600	0.8751	0.02	0.8839	0.92	0.8881	0.06	0.8839		1600	0.8861	0.00	0.8898	0.91	0.8871	0.09	0.8896
	1700	0.8787	0.04	0.8857	0.91	0.8881	0.06	0.8856		1700	0.8960	0.00	0.8901	0.90	0.8881	0.10	0.8899
21-Mar-10	0900	0.8777	0.04	0.8861	0.83	0.8881	0.13	0.8860	21-Sep-10	0900	0.8760	0.02	0.8877	0.92	0.8877	0.06	0.8874
	1000	0.8731	0.03	0.8873	0.85	0.8880	0.12	0.8869		1000	0.8739	0.00	0.8855	0.96	0.8891	0.04	0.8857
	1100	0.8711	0.03	0.8859	0.87	0.8879	0.10	0.8856		1100	0.8706	0.01	0.8857	0.96	0.8868	0.03	0.8855
	1200	0.8705	0.03	0.8848	0.86	0.8882	0.11	0.8847		1200	0.8693	0.01	0.8823	0.93	0.8875	0.06	0.8824
	1300	0.8703	0.02	0.8848	0.90	0.8882	0.08	0.8848		1300	0.8700	0.00	0.8833	0.97	0.8883	0.03	0.8835
	1400	0.8711	0.03	0.8844	0.88	0.8878	0.09	0.8843		1400	0.8722	0.00	0.8845	0.97	0.8888	0.03	0.8846
	1500	0.8739	0.03	0.8872	0.87	0.8878	0.10	0.8869		1500	0.8720	0.00	0.8859	0.98	0.8896	0.02	0.8860
	1600	0.8752	0.03	0.8857	0.89	0.8880	0.08	0.8856		1600	0.8772	0.00	0.8875	0.99	0.8881	0.01	0.8876
	1700	0.8809	0.03	0.8865	0.89	0.8881	0.08	0.8864		1700	0.8846	0.00	0.8883	0.99	0.8881	0.01	0.8883
21-Apr-10	0900	0.8851	0.00	0.8892	0.88	0.8891	0.12	0.8892	21-Oct-10	0900	0.8730	0.03	0.8849	0.97	0.8880	0.00	0.8845
	1000	0.8759	0.00	0.8898	0.90	0.8869	0.10	0.8895		1000	0.8735	0.04	0.8829	0.96	0.8898	0.00	0.8825
	1100	0.8706	0.00	0.8874	0.89	0.8877	0.11	0.8874		1100	0.8718	0.01	0.8817	0.99	0.8878	0.00	0.8816
	1200	0.8702	0.00	0.8896	0.90	0.8885	0.10	0.8895		1200	0.8721	0.00	0.8808	1.00	0.8887	0.00	0.8808
	1300	0.8708	0.00	0.8884	0.92	0.8889	0.08	0.8884		1300	0.8718	0.02	0.8798	0.97	0.8868	0.01	0.8797
	1400	0.8735	0.00	0.8886	0.92	0.8887	0.08	0.8886		1400	0.8737	0.02	0.8825	0.97	0.8879	0.01	0.8824
	1500	0.8776	0.00	0.8898	0.89	0.8889	0.11	0.8897		1500	0.8743	0.02	0.8828	0.97	0.8881	0.01	0.8826
	1600	0.8880	0.00	0.8921	0.89	0.8881	0.11	0.8916		1600	0.8753	0.01	0.8837	0.98	0.8880	0.01	0.8836
	1700	0.9107	0.00	0.8899	0.88	0.8881	0.12	0.8897		1700	0.8813	0.03	0.8869	0.96	0.8880	0.01	0.8867
21-May-10	0900	0.9216	0.02	0.8921	0.96	0.8867	0.02	0.8926	21-Nov-10	0900	0.8711	0.12	0.8837	0.84	0.8881	0.03	0.8823
	1000	0.8928	0.01	0.8930	0.97	0.8886	0.02	0.8929		1000	0.8732	0.17	0.8824	0.80	0.8880	0.03	0.8810
	1100	0.8903	0.01	0.8942	0.94	0.8870	0.05	0.8938		1100	0.8726	0.17	0.8814	0.80	0.8898	0.03	0.8802
	1200	0.8860	0.02	0.8959	0.91	0.8866	0.06	0.8951		1200	0.8719	0.14	0.8789	0.82	0.8874	0.03	0.8781
	1300	0.8851	0.01	0.8956	0.94	0.8871	0.05	0.8951		1300	0.8727	0.12	0.8831	0.83	0.8887	0.04	0.8821
	1400	0.8885	0.02	0.8915	0.88	0.8882	0.10	0.8911		1400	0.8724	0.16	0.8826	0.79	0.8899	0.06	0.8814
	1500	0.8964	0.02	0.8929	0.90	0.8881	0.08	0.8926		1500	0.8724	0.16	0.8828	0.79	0.8880	0.06	0.8814
	1600	0.9273	0.02	0.8925	0.89	0.8866	0.09	0.8927		1600	0.8738	0.16	0.8847	0.79	0.8881	0.06	0.8832
	1700	0.9246	0.02	0.8929	0.88	0.8880	0.10	0.8931		1700	0.8790	0.13	0.8860	0.80	0.8600	0.07	0.8834
21-Jun-10	0900	0.9329	0.00	0.8931	0.89	0.8872	0.11	0.8924	21-Dec-10	0900	0.8728	0.14	0.8853	0.85	0.8881	0.01	0.8836
	1000	0.9331	0.00	0.8938	0.89	0.8889	0.11	0.8932		1000	0.8720	0.19	0.8818	0.77	0.8880	0.03	0.8801
	1100	0.8969	0.00	0.8972	0.89	0.8872	0.11	0.8961		1100	0.8720	0.18	0.8829	0.78	0.8896	0.03	0.8811
	1200	0.9352	0.00	0.8988	0.88	0.8867	0.12	0.8973		1200	0.8725	0.16	0.8812	0.81	0.8864	0.03	0.8800
	1300	0.8976	0.00	0.8983	0.92	0.8869	0.08	0.8974		1300	0.8723	0.16	0.8817	0.82	0.8868	0.02	0.8803
	1400	0.8959	0.00	0.8948	0.93	0.8876	0.07	0.8943		1400	0.8655	0.19	0.8811	0.78	0.9032	0.02	0.8785
	1500	0.9324	0.00	0.8942	0.97	0.8870	0.03	0.8939		1500	0.8715	0.20	0.8823	0.77	0.8881	0.02	0.8802
	1600	0.9311	0.00	0.8931	0.93	0.8892	0.07	0.8929		1600	0.8724	0.17	0.8826	0.81	0.8881	0.02	0.8809
	1700	0.9266	0.00	0.8933	0.93	0.8880	0.07	0.8929		1700	0.8765	0.15	0.8851	0.83	0.8881	0.02	0.8839
			50	2.3733		5.5000		,2,		50	3.3703		2.3021		2.3001		2.2007

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 1

Date	Time	$\mathbf{P}_{VS,PG,C}$	P_C	$\mathbf{P}_{VS,PG,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$	Date	Time	$P_{VS,PG,C}$	P_C	$\mathbf{P}_{VX,PG,P}$	P_P	$\mathbf{P}_{\mathrm{FS},PG,O}$	\mathbf{P}_O	$P_{VX,PG,R}$
21-Jan-10	0900	0.9297	0.05	0.9730	0.80	0.9872	0.15	0.9728	21-Jul-10	0900	0.9728	0.00	0.9714	0.92	0.9811	0.08	0.9721
	1000	0.9089	0.06	0.9580	0.81	0.9821	0.13	0.9579		1000	0.9632	0.00	0.9701	0.91	0.9781	0.09	0.9708
	1100	0.8971	0.06	0.9475	0.81	0.9809	0.13	0.9486		1100	0.9732	0.00	0.9748	0.91	0.9763	0.09	0.9749
	1200	0.8912	0.08	0.9443	0.80	0.9808	0.13	0.9450		1200	0.9694	0.00	0.9782	0.91	0.9755	0.09	0.9779
	1300	0.8914	0.08	0.9440	0.83	0.9807	0.10	0.9436		1300	0.9696	0.00	0.9787	0.96	0.9755	0.04	0.9786
	1400	0.8959	0.08	0.9472	0.84	0.9814	0.09	0.9463		1400	0.9737	0.00	0.9743	0.97	0.9765	0.03	0.9743
	1500	0.9063	0.09	0.9561	0.83	0.9837	0.09	0.9542		1500	0.9610	0.00	0.9699	0.97	0.9783	0.03	0.9702
	1600	0.9261	0.11	0.9713	0.83	0.9867	0.06	0.9674		1600	0.9675	0.00	0.9715	0.97	0.9812	0.03	0.9718
	1700	0.9595	0.10	0.9876	0.83	0.9912	0.08	0.9852		1700	0.9823	0.00	0.9791	0.95	0.9855	0.05	0.9795
21-Feb-10	0900	0.9341	0.04	0.9714	0.89	0.9856	0.07	0.9711	21-Aug-10	0900	0.9727	0.00	0.9693	0.92	0.9819	0.08	0.9702
	1000	0.9167	0.02	0.9577	0.89	0.9822	0.08	0.9587		1000	0.9621	0.00	0.9659	0.92	0.9789	0.08	0.9669
	1100	0.9064	0.02	0.9517	0.88	0.9795	0.09	0.9532		1100	0.9554	0.00	0.9705	0.90	0.9771	0.10	0.9712
	1200	0.9010	0.04	0.9521	0.87	0.9779	0.09	0.9528		1200	0.9521	0.00	0.9753	0.92	0.9760	0.08	0.9754
	1300	0.9008	0.05	0.9524	0.92	0.9786	0.04	0.9509		1300	0.9526	0.00	0.9748	0.90	0.9755	0.10	0.9749
	1400	0.9050	0.04	0.9506	0.92	0.9801	0.05	0.9504		1400	0.9558	0.00	0.9701	0.90	0.9774	0.10	0.9708
	1500	0.9136	0.02	0.9550	0.92	0.9809	0.06	0.9555		1500	0.9628	0.00	0.9665	0.91	0.9797	0.09	0.9676
	1600	0.9285	0.02	0.9677	0.92	0.9847	0.06	0.9677		1600	0.9738	0.00	0.9699	0.91	0.9827	0.09	0.9710
	1700	0.9532	0.04	0.9831	0.91	0.9890	0.06	0.9824		1700	0.9734	0.00	0.9803	0.90	0.9866	0.10	0.9809
21-Mar-10	0900	0.9516	0.04	0.9691	0.83	0.9840	0.13	0.9703	21-Sep-10	0900	0.9501	0.02	0.9666	0.92	0.9819	0.06	0.9670
	1000	0.9399	0.03	0.9612	0.85	0.9807	0.12	0.9628		1000	0.9393	0.00	0.9614	0.96	0.9787	0.04	0.9622
	1100	0.9330	0.03	0.9614	0.87	0.9784	0.10	0.9621		1100	0.9331	0.01	0.9630	0.96	0.9770	0.03	0.9632
	1200	0.9293	0.03	0.9646	0.86	0.9773	0.11	0.9648		1200	0.9302	0.01	0.9659	0.93	0.9767	0.06	0.9661
	1300	0.9295	0.02	0.9646	0.90	0.9771	0.08	0.9648		1300	0.9313	0.00	0.9646	0.97	0.9773	0.03	0.9650
	1400	0.9327	0.03	0.9615	0.88	0.9784	0.09	0.9620		1400	0.9358	0.00	0.9615	0.97	0.9784	0.03	0.9621
	1500	0.9400	0.03	0.9609	0.87	0.9805	0.10	0.9621		1500	0.9439	0.00	0.9628	0.98	0.9808	0.02	0.9632
	1600	0.9517	0.03	0.9685	0.89	0.9839	0.08	0.9691		1600	0.9561	0.00	0.9708	0.99	0.9843	0.02	0.9710
	1700	0.9685	0.03	0.9811	0.89	0.9878	0.08	0.9812		1700	0.9747	0.00	0.9844	0.99	0.9890	0.01	0.9845
21-Apr-10	0900	0.9698	0.00	0.9684	0.88	0.9814	0.12	0.9700	21-Oct-10	0900	0.9240	0.03	0.9636	0.97	0.9832	0.00	0.9624
	1000	0.9602	0.00	0.9667	0.90	0.9785	0.10	0.9679		1000	0.9107	0.04	0.9538	0.96	0.9802	0.00	0.9519
	1100	0.9534	0.00	0.9705	0.89	0.9767	0.11	0.9712		1100	0.9035	0.01	0.9523	0.99	0.9791	0.00	0.9518
	1200	0.9508	0.00	0.9745	0.90	0.9760	0.10	0.9746		1200	0.9016	0.00	0.9518	1.00	0.9782	0.00	0.9518
	1300	0.9512	0.00	0.9747	0.92	0.9759	0.08	0.9748		1300	0.9026	0.02	0.9524	0.97	0.9783	0.01	0.9516
	1400	0.9548	0.00	0.9691	0.92	0.9773	0.08	0.9698		1400	0.9089	0.02	0.9524	0.97	0.9805	0.01	0.9518
	1500	0.9619	0.00	0.9663	0.89	0.9773	0.00	0.9677		1500	0.9204	0.02	0.9524	0.97	0.9825	0.01	0.9593
	1600	0.9733	0.00	0.9003	0.89	0.9792	0.11	0.9771		1600	0.9403	0.02	0.9399	0.98	0.9865	0.01	0.9393
	1700	0.9779	0.00	0.9703	0.88	0.9824	0.11	0.9819		1700	0.9702	0.03	0.9900	0.96	0.9917	0.01	0.9894
21-May-10	0900	0.9671	0.02	0.9701	0.96	0.9808	0.02	0.9703	21-Nov-10	0900	0.9199	0.12	0.9670	0.84	0.9855	0.03	0.9618
	1000	0.9669	0.01	0.9707	0.97	0.9789	0.02	0.9709		1000	0.9032	0.17	0.9528	0.80	0.9820	0.03	0.9455
	1100	0.9699	0.01	0.9758	0.94	0.9768	0.05	0.9758		1100	0.8940	0.17	0.9456	0.80	0.9802	0.03	0.9381
	1200	0.9677	0.02	0.9762	0.91	0.9762	0.06	0.9760		1200	0.8909	0.14	0.9437	0.82	0.9803	0.03	0.9373
	1300	0.9683	0.01	0.9777	0.94	0.9758	0.05	0.9775		1300	0.8927	0.12	0.9449	0.83	0.9802	0.04	0.9401
	1400	0.9723	0.02	0.9740	0.88	0.9771	0.10	0.9742		1400	0.8993	0.16	0.9494	0.79	0.9819	0.06	0.9435
	1500	0.9618	0.02	0.9695	0.90	0.9793	0.08	0.9701		1500	0.9137	0.16	0.9622	0.79	0.9845	0.06	0.9559
	1600	0.9688	0.02	0.9720	0.89	0.9823	0.09	0.9728		1600	0.9375	0.16	0.9770	0.79	0.9883	0.06	0.9715
	1700	0.9839	0.02	0.9800	0.88	0.9863	0.10	0.9807		1700	0.9774	0.13	0.9931	0.80	0.9935	0.07	0.9911
21-Jun-10	0900	0.9722	0.00	0.9719	0.89	0.9812	0.11	0.9729	21-Dec-10	0900	0.9244	0.14	0.9723	0.85	0.9869	0.01	0.9657
	1000	0.9636	0.00	0.9720	0.89	0.9784	0.11	0.9727		1000	0.9044	0.19	0.9568	0.77	0.9837	0.03	0.9475
	1100	0.9603	0.00	0.9763	0.89	0.9770	0.11	0.9764		1100	0.8934	0.18	0.9475	0.78	0.9817	0.03	0.9387
	1200	0.9648	0.00	0.9786	0.88	0.9753	0.12	0.9782		1200	0.8893	0.16	0.9433	0.81	0.9806	0.03	0.9358
	1300	0.9623	0.00	0.9794	0.92	0.9756	0.08	0.9791		1300	0.8903	0.16	0.9447	0.82	0.9810	0.02	0.9367
	1400	0.9564	0.00	0.9761	0.93	0.9767	0.07	0.9761		1400	0.8961	0.19	0.9490	0.78	0.9827	0.02	0.9395
	1500	0.9612	0.00	0.9709	0.97	0.9785	0.03	0.9711		1500	0.9095	0.20	0.9604	0.77	0.9846	0.02	0.9505
	1600	0.9715	0.00	0.9730	0.93	0.9814	0.07	0.9736		1600	0.9334	0.17	0.9766	0.81	0.9882	0.02	0.9694
	1700	0.9844	0.00	0.9793	0.93	0.9856	0.07	0.9797		1700	0.9728	0.17	0.9920	0.83	0.9932	0.02	0.9892
	1,00	0.70-14	0.00	0.7773	3.73	0.7020	0.07	0.7777		1,00	0.5728	0.15	0.7720	0.00	0.7752	0.02	0.7072

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 1

Date	Time	$\mathbf{P}_{ES,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{EX,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	P_O	$P_{ES,BD,R}$
21-Jan-10	0900	0.1193	0.05	0.0288	0.80	0.0108	0.15	0.0309	21-Jul-10	0900	0.0596	0.00	0.0429	0.92	0.0196	0.08	0.0411
	1000	0.1759	0.06	0.0572	0.81	0.0159	0.13	0.0596		1000	0.0358	0.00	0.0453	0.91	0.0242	0.09	0.0435
	1100	0.2098	0.06	0.0789	0.81	0.0197	0.13	0.0797		1100	0.0288	0.00	0.0311	0.91	0.0288	0.09	0.0309
	1200	0.2261	0.08	0.0861	0.80	0.0219	0.13	0.0884		1200	0.0358	0.00	0.0265	0.91	0.0311	0.09	0.0269
	1300	0.2261	0.08	0.0861	0.83	0.0219	0.10	0.0904		1300	0.0358	0.00	0.0265	0.96	0.0311	0.04	0.0267
	1400	0.2139	0.08	0.0813	0.84	0.0197	0.09	0.0860		1400	0.0288	0.00	0.0334	0.97	0.0288	0.03	0.0333
	1500	0.1824	0.09	0.0620	0.83	0.0166	0.09	0.0685		1500	0.0358	0.00	0.0453	0.97	0.0242	0.03	0.0446
	1600	0.1309	0.11	0.0334	0.83	0.0116	0.06	0.0425		1600	0.0453	0.00	0.0429	0.97	0.0195	0.03	0.0421
	1700	0.0524	0.10	0.0095	0.83	0.0058	0.08	0.0134		1700	0.0620	0.00	0.0265	0.95	0.0132	0.05	0.0258
21-Feb-10	0900	0.1123	0.04	0.0381	0.89	0.0131	0.07	0.0390	21-Aug-10	0900	0.0381	0.00	0.0453	0.92	0.0190	0.08	0.0433
	1000	0.1582	0.02	0.0644	0.89	0.0187	0.08	0.0629		1000	0.0596	0.00	0.0524	0.92	0.0242	0.08	0.0503
	1100	0.1888	0.02	0.0765	0.88	0.0219	0.09	0.0740		1100	0.0789	0.00	0.0405	0.90	0.0288	0.10	0.0394
	1200	0.2036	0.04	0.0765	0.87	0.0242	0.09	0.0761		1200	0.0885	0.00	0.0311	0.92	0.0311	0.08	0.0311
	1300	0.2036	0.05	0.0765	0.92	0.0242	0.04	0.0806		1300	0.0885	0.00	0.0311	0.90	0.0311	0.10	0.0311
	1400	0.1931	0.04	0.0789	0.92	0.0242	0.05	0.0803		1400	0.0789	0.00	0.0429	0.90	0.0288	0.10	0.0415
	1500	0.1693	0.02	0.0693	0.92	0.0197	0.06	0.0687		1500	0.0572	0.00	0.0524	0.91	0.0242	0.09	0.0500
	1600	0.1263	0.02	0.0453	0.92	0.0145	0.06	0.0454		1600	0.0358	0.00	0.0453	0.91	0.0183	0.09	0.0429
	1700	0.0644	0.04	0.0164	0.91	0.0082	0.06	0.0176		1700	0.0265	0.00	0.0242	0.90	0.0117	0.10	0.0230
21-Mar-10	0900	0.0885	0.04	0.0453	0.83	0.0163	0.13	0.0434	21-Sep-10	0900	0.0933	0.02	0.0500	0.92	0.0180	0.06	0.0492
	1000	0.1240	0.03	0.0620	0.85	0.0219	0.12	0.0593		1000	0.1263	0.00	0.0620	0.96	0.0242	0.04	0.0604
	1100	0.1492	0.03	0.0620	0.87	0.0265	0.10	0.0614		1100	0.1447	0.01	0.0572	0.96	0.0265	0.03	0.0572
	1200	0.1604	0.03	0.0524	0.86	0.0288	0.11	0.0534		1200	0.1537	0.01	0.0500	0.93	0.0288	0.06	0.0500
	1300	0.1604	0.02	0.0548	0.90	0.0288	0.08	0.0551		1300	0.1515	0.00	0.0524	0.97	0.0288	0.03	0.0516
	1400	0.1492	0.03	0.0620	0.88	0.0265	0.09	0.0618		1400	0.1378	0.00	0.0620	0.97	0.0265	0.03	0.0609
	1500	0.1263	0.03	0.0644	0.87	0.0219	0.10	0.0623		1500	0.1146	0.00	0.0620	0.98	0.0219	0.02	0.0612
	1600	0.0909	0.03	0.0476	0.89	0.0165	0.08	0.0467		1600	0.0789	0.00	0.0405	0.99	0.0152	0.01	0.0402
	1700	0.0476	0.03	0.0197	0.89	0.0099	0.08	0.0198		1700	0.0358	0.00	0.0151	0.99	0.0085	0.01	0.0150
21-Apr-10	0900	0.0429	0.00	0.0476	0.88	0.0194	0.12	0.0442	21-Oct-10	0900	0.1378	0.03	0.0524	0.97	0.0161	0.00	0.0552
	1000	0.0669	0.00	0.0524	0.90	0.0242	0.10	0.0496		1000	0.1737	0.04	0.0717	0.96	0.0219	0.00	0.0761
	1100	0.0861	0.00	0.0405	0.89	0.0288	0.11	0.0392		1100	0.1952	0.01	0.0765	0.99	0.0242	0.00	0.0778
	1200	0.0933	0.00	0.0311	0.90	0.0311	0.10	0.0311		1200	0.2036	0.00	0.0765	1.00	0.0265	0.00	0.0765
	1300	0.0933	0.00	0.0334	0.92	0.0311	0.08	0.0333		1300	0.1994	0.02	0.0789	0.97	0.0242	0.01	0.0809
	1400	0.0813	0.00	0.0453	0.92	0.0265	0.08	0.0438		1400	0.1824	0.02	0.0765	0.97	0.0219	0.01	0.0782
	1500	0.0596	0.00	0.0548	0.89	0.0242	0.11	0.0514		1500	0.1492	0.02	0.0596	0.97	0.0175	0.01	0.0611
	1600	0.0381	0.00	0.0429	0.89	0.0177	0.11	0.0401		1600	0.0980	0.01	0.0311	0.98	0.0116	0.01	0.0316
	1700	0.0429	0.00	0.0219	0.88	0.0110	0.12	0.0206		1700	0.0311	0.03	0.0071	0.96	0.0051	0.01	0.0079
21-May-10	0900	0.0476	0.02	0.0453	0.96	0.0197	0.02	0.0448	21-Nov-10	0900	0.1470	0.12	0.0405	0.84	0.0132	0.03	0.0526
,	1000	0.0334	0.01	0.0429	0.97	0.0265	0.02	0.0424		1000	0.1931	0.17	0.0693	0.80	0.0178	0.03	0.0882
	1100	0.0334	0.01	0.0311	0.94	0.0288	0.05	0.0310		1100	0.2180	0.17	0.0837	0.80	0.0219	0.03	0.1040
	1200	0.0381	0.02	0.0288	0.91	0.0311	0.06	0.0291		1200	0.2281	0.14	0.0861	0.82	0.0219	0.03	0.1045
	1300	0.0381	0.01	0.0242	0.94	0.0311	0.05	0.0247		1300	0.2221	0.12	0.0861	0.83	0.0219	0.04	0.0999
	1400	0.0311	0.02	0.0358	0.88	0.0288	0.10	0.0350		1400	0.2036	0.16	0.0741	0.79	0.0190	0.06	0.0912
	1500	0.0358	0.02	0.0476	0.90	0.0242	0.08	0.0456		1500	0.1649	0.16	0.0500	0.79	0.0147	0.06	0.0659
	1600	0.0453	0.02	0.0405	0.89	0.0185	0.09	0.0387		1600	0.1004	0.16	0.0219	0.79	0.0093	0.06	0.0334
	1700	0.0669	0.02	0.0219	0.88	0.0120	0.10	0.0219		1700	0.0197	0.13	0.0038	0.80	0.0033	0.07	0.0059
21-Jun-10	0900	0.0572	0.00	0.0405	0.89	0.0197	0.11	0.0382	21-Dec-10	0900	0.1332	0.14	0.0311	0.85	0.0110	0.01	0.0452
21-7011-10	1000	0.0372	0.00	0.0405	0.89	0.0197	0.11	0.0382	21-1500-10	1000	0.1332	0.14	0.0511	0.83	0.0110	0.01	0.0432
	1100	0.0478	0.00	0.0403	0.89	0.0288	0.11	0.0390		1100	0.2200	0.19	0.0390	0.77	0.0137	0.03	0.1028
	1200	0.0338	0.00	0.0242	0.89	0.0288	0.11	0.0250		1200	0.2321	0.16	0.0789	0.78	0.0191	0.03	0.1028
	1300	0.0311	0.00	0.0242	0.88	0.0311	0.12	0.0230		1300	0.2321	0.16	0.0837	0.81	0.0197	0.03	0.1056
	1400	0.0311	0.00	0.0219	0.92	0.0311	0.08	0.0226		1400	0.2301	0.16	0.0813	0.82	0.0197	0.02	0.1040
	1500	0.0338	0.00	0.0311	0.93	0.0288	0.07			1500	0.2119	0.19		0.78	0.0183	0.02	
								0.0423					0.0524				0.0768
	1600	0.0524	0.00	0.0405	0.93	0.0193	0.07	0.0391		1600	0.1123	0.17	0.0242	0.81	0.0094	0.02	0.0390
	1700	0.0717	0.00	0.0242	0.93	0.0130	0.07	0.0235		1700	0.0265	0.15	0.0046	0.83	0.0037	0.02	0.0079

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 1

Date	Time	$\mathbf{P}_{ES,RS,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,RS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,BX,P}$	P_P	$\mathbf{P}_{ES,BS,O}$	P_O	$\mathbf{P}_{ES,BS,R}$
21-Jan-10	0900	0.6040	0.05	0.2932	0.80	0.1549	0.15	0.2891	21-Jul-10	0900	0.5970	0.00	0.3691	0.92	0.2334	0.08	0.3589
	1000	0.6901	0.06	0.4267	0.81	0.2030	0.13	0.4148		1000	0.3719	0.00	0.3803	0.91	0.2702	0.09	0.3708
	1100	0.7268	0.06	0.4935	0.81	0.2342	0.13	0.4751		1100	0.3039	0.00	0.3235	0.91	0.2955	0.09	0.3211
	1200	0.7420	0.08	0.5156	0.80	0.2506	0.13	0.4984		1200	0.3394	0.00	0.2851	0.91	0.3075	0.09	0.2870
	1300	0.7427	0.08	0.5161	0.83	0.2503	0.10	0.5074		1300	0.3389	0.00	0.2834	0.96	0.3074	0.04	0.2844
	1400	0.7299	0.08	0.4987	0.84	0.2368	0.09	0.4936		1400	0.3005	0.00	0.3226	0.97	0.2949	0.03	0.3217
	1500	0.6970	0.09	0.4408	0.83	0.2255	0.09	0.4443		1500	0.3787	0.00	0.3806	0.97	0.2695	0.03	0.3770
	1600	0.6206	0.11	0.3176	0.83	0.1823	0.06	0.3415		1600	0.5394	0.00	0.3658	0.97	0.2326	0.03	0.3615
	1700	0.4107	0.10	0.1369	0.83	0.1083	0.08	0.1613		1700	0.5671	0.00	0.2708	0.95	0.1784	0.05	0.2658
21-Feb-10	0900	0.5857	0.04	0.3390	0.89	0.1774	0.07	0.3363	21-Aug-10	0900	0.3499	0.00	0.3878	0.92	0.2291	0.08	0.3758
	1000	0.6643	0.02	0.4502	0.89	0.2245	0.08	0.4367		1000	0.4446	0.00	0.4138	0.92	0.2672	0.08	0.4028
	1100	0.7007	0.02	0.4917	0.88	0.2553	0.09	0.4744		1100	0.4973	0.00	0.3663	0.90	0.2929	0.10	0.3592
	1200	0.7160	0.04	0.4933	0.87	0.2734	0.09	0.4805		1200	0.5215	0.00	0.3138	0.92	0.3053	0.08	0.3131
	1300	0.7177	0.05	0.4925	0.92	0.2743	0.04	0.4954		1300	0.5194	0.00	0.3160	0.90	0.3046	0.10	0.3149
	1400	0.7057	0.04	0.4937	0.92	0.2621	0.05	0.4903		1400	0.4934	0.00	0.3723	0.90	0.2911	0.10	0.3644
	1500	0.6754	0.02	0.4657	0.92	0.2342	0.06	0.4570		1500	0.4347	0.00	0.4129	0.91	0.2642	0.09	0.4001
	1600	0.6095	0.02	0.3713	0.92	0.1904	0.06	0.3663		1600	0.3334	0.00	0.3765	0.91	0.2219	0.09	0.3632
	1700	0.4579	0.04	0.2020	0.91	0.1281	0.06	0.2066		1700	0.3127	0.00	0.2546	0.90	0.1638	0.10	0.2458
21-Mar-10	0900	0.5307	0.04	0.3824	0.83	0.2063	0.13	0.3661	21-Sep-10	0900	0.5430	0.02	0.4074	0.92	0.2201	0.06	0.4000
	1000	0.6052	0.03	0.4523	0.85	0.2503	0.12	0.4333		1000	0.6081	0.00	0.4537	0.96	0.2607	0.04	0.4451
	1100	0.6435	0.03	0.4503	0.87	0.2785	0.10	0.4399		1100	0.6410	0.01	0.4362	0.96	0.2838	0.03	0.4334
	1200	0.6595	0.03	0.4197	0.86	0.2922	0.11	0.4137		1200	0.6537	0.01	0.4054	0.93	0.2942	0.06	0.4020
	1300	0.6596	0.02	0.4196	0.90	0.2927	0.08	0.4152		1300	0.6495	0.00	0.4157	0.97	0.2921	0.03	0.4115
	1400	0.6438	0.03	0.4487	0.88	0.2786	0.09	0.4404		1400	0.6287	0.00	0.4488	0.97	0.2756	0.03	0.4430
	1500	0.6055	0.03	0.4529	0.87	0.2510	0.10	0.4383		1500	0.5833	0.00	0.4431	0.98	0.2452	0.02	0.4387
	1600	0.5323	0.03	0.3840	0.89	0.2074	0.08	0.3754		1600	0.4960	0.00	0.3576	0.99	0.1962	0.01	0.3558
	1700	0.3844	0.03	0.2302	0.89	0.1457	0.08	0.2288		1700	0.3273	0.00	0.1913	0.99	0.1298	0.01	0.1906
21-Apr-10	0900	0.3748	0.00	0.3935	0.88	0.2316	0.12	0.3737	21-Oct-10	0900	0.6302	0.03	0.4058	0.97	0.2040	0.00	0.4131
	1000	0.4624	0.00	0.4150	0.90	0.2687	0.10	0.4004		1000	0.6839	0.04	0.4788	0.96	0.2445	0.00	0.4876
	1100	0.5117	0.00	0.3643	0.89	0.2941	0.11	0.3565		1100	0.7086	0.01	0.4943	0.99	0.2664	0.00	0.4966
	1200	0.5332	0.00	0.3169	0.90	0.3053	0.10	0.3157		1200	0.7170	0.00	0.4905	1.00	0.2762	0.00	0.4905
	1300	0.5311	0.00	0.3222	0.92	0.3034	0.08	0.3207		1300	0.7118	0.02	0.4926	0.97	0.2694	0.01	0.4949
	1400	0.5015	0.00	0.3824	0.92	0.2891	0.08	0.3752		1400	0.6922	0.02	0.4866	0.97	0.2510	0.01	0.4885
	1500	0.4425	0.00	0.4165	0.89	0.2614	0.11	0.3993		1500	0.6482	0.02	0.4307	0.97	0.2160	0.01	0.4331
	1600	0.3395	0.00	0.3715	0.89	0.2173	0.11	0.3543		1600	0.5517	0.01	0.2967	0.98	0.1636	0.01	0.2980
	1700	0.3604	0.00	0.2399	0.88	0.1573	0.12	0.2298		1700	0.3091	0.03	0.1119	0.96	0.0904	0.01	0.1181
21-May-10	0900	0.4844	0.02	0.3783	0.96	0.2392	0.02	0.3776	21-Nov-10	0900	0.6489	0.12	0.3595	0.84	0.1784	0.03	0.3888
	1000	0.3477	0.01	0.3776	0.97	0.2763	0.02	0.3751		1000	0.7086	0.17	0.4624	0.80	0.2192	0.03	0.4954
	1100	0.3292	0.01	0.3136	0.94	0.2978	0.05	0.3130		1100	0.7346	0.17	0.5064	0.80	0.2445	0.03	0.5357
	1200	0.3601	0.02	0.3100	0.91	0.3081	0.06	0.3110		1200	0.7435	0.14	0.5165	0.82	0.2519	0.03	0.5405
	1300	0.3535	0.01	0.2783	0.94	0.3062	0.05	0.2806		1300	0.7390	0.12	0.5115	0.83	0.2479	0.04	0.5276
	1400	0.3079	0.02	0.3379	0.88	0.2927	0.10	0.3329		1400	0.7190	0.16	0.4817	0.79	0.2291	0.06	0.5046
	1500	0.3771	0.02	0.3849	0.90	0.2656	0.08	0.3758		1500	0.6726	0.16	0.3980	0.79	0.1926	0.06	0.4293
	1600	0.5365	0.02	0.3588	0.89	0.2236	0.09	0.3510		1600	0.5613	0.16	0.2469	0.79	0.1392	0.06	0.2898
	1700	0.5550	0.02	0.2495	0.88	0.1675	0.10	0.2482		1700	0.2380	0.13	0.0694	0.80	0.0607	0.07	0.0913
21-Jun-10	0900	0.6139	0.00	0.3659	0.89	0.2376	0.11	0.3517	21-Dec-10	0900	0.6266	0.14	0.3051	0.85	0.1571	0.01	0.3485
	1000	0.5808	0.00	0.3669	0.89	0.2755	0.11	0.3567	2 10	1000	0.7032	0.19	0.4295	0.77	0.2009	0.03	0.4751
	1100	0.3775	0.00	0.3058	0.89	0.2972	0.11	0.3049		1100	0.7355	0.18	0.4931	0.78	0.2299	0.03	0.5289
	1200	0.5057	0.00	0.2871	0.88	0.3080	0.11	0.2896		1200	0.7333	0.16	0.5128	0.78	0.2401	0.03	0.5418
	1300	0.3542	0.00	0.2683	0.88	0.3069	0.12	0.2890		1300	0.7473	0.16	0.5097	0.82	0.2384	0.03	0.5419
	1400	0.3936	0.00	0.3165	0.93	0.2941	0.03	0.3150		1400	0.7291	0.19	0.4798	0.32	0.2191	0.02	0.5225
	1500	0.5557	0.00	0.3706	0.93	0.2686	0.07	0.3130		1500	0.6874	0.19	0.3993	0.78	0.1902	0.02	0.3223
		0.6004		0.3706	0.97	0.2886	0.03	0.3672		1600	0.5842	0.20	0.3993	0.77	0.1902	0.02	0.4536
	1600 1700	0.6024	0.00	0.3564	0.93	0.2316	0.07	0.3481		1700	0.2823	0.17	0.2538	0.81	0.1404	0.02	0.3082
	1/00	0.0024	0.00	0.2032	0.93	0.1771	0.07	0.2575		1 /00	0.2823	0.15	0.0802	0.85	0.0701	0.02	0.1104

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 1

Date	Time	$\mathbf{P}_{ES,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{ES,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.9579	0.05	0.9579	0.80	0.9579	0.15	0.9579	21-Jul-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1000	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1100	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1100	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1200	0.9579	0.08	0.9579	0.80	0.9579	0.13	0.9579		1200	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1300	0.9579	0.08	0.9579	0.83	0.9579	0.10	0.9579		1300	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1400	0.9579	0.08	0.9579	0.84	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.09	0.9579	0.83	0.9579	0.09	0.9579		1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1600	0.9579	0.11	0.9579	0.83	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1700	0.9579	0.10	0.9579	0.83	0.9579	0.08	0.9579		1700	0.9030	0.00	0.9579	0.95	0.9579	0.05	0.9579
21-Feb-10	0900	0.9579	0.04	0.9579	0.89	0.9579	0.07	0.9579	21-Aug-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.02	0.9579	0.89	0.9579	0.08	0.9579		1000	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1100	0.9579	0.02	0.9579	0.88	0.9579	0.09	0.9579		1100	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1200	0.9579	0.04	0.9579	0.87	0.9579	0.09	0.9579		1200	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1300	0.9579	0.05	0.9579	0.92	0.9579	0.04	0.9579		1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1400	0.9579	0.04	0.9579	0.92	0.9579	0.05	0.9579		1400	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1500	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1500	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1600	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1700	0.9579	0.04	0.9579	0.91	0.9579	0.06	0.9579		1700	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
21-Mar-10	0900	0.9579	0.04	0.9579	0.83	0.9579	0.13	0.9579	21-Sep-10	0900	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579
	1000	0.9579	0.03	0.9579	0.85	0.9579	0.12	0.9579		1000	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1100	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1100	0.9579	0.01	0.9579	0.96	0.9579	0.03	0.9579
	1200	0.9579	0.03	0.9579	0.86	0.9579	0.11	0.9579		1200	0.9579	0.01	0.9579	0.93	0.9579	0.06	0.9579
	1300	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1300	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1400	0.9579	0.03	0.9579	0.88	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1500	0.9579	0.00	0.9579	0.98	0.9579	0.02	0.9579
	1600	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1600	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
	1700	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
21-Apr-10	0900	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579	21-Oct-10	0900	0.9579	0.03	0.9579	0.97	0.9579	0.00	0.9579
	1000	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1000	0.9579	0.04	0.9579	0.96	0.9579	0.00	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.01	0.9579	0.99	0.9579	0.00	0.9579
	1200	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1200	0.9579	0.00	0.9579	1.00	0.9579	0.00	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1400	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1400	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1500	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1500	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1600	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1600	0.9579	0.01	0.9579	0.98	0.9579	0.01	0.9579
	1700	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1700	0.9579	0.03	0.9579	0.96	0.9579	0.01	0.9579
21-May-10	0900	0.9579	0.02	0.9579	0.96	0.9579	0.02	0.9579	21-Nov-10	0900	0.9579	0.12	0.9579	0.84	0.9579	0.03	0.9579
	1000	0.9579	0.01	0.9579	0.97	0.9579	0.02	0.9579		1000	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1100	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1100	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1200	0.9579	0.02	0.9579	0.91	0.9579	0.06	0.9579		1200	0.9579	0.14	0.9579	0.82	0.9579	0.03	0.9579
	1300	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1300	0.9579	0.12	0.9579	0.83	0.9579	0.04	0.9579
	1400	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1400	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1500	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1500	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1600	0.9579	0.02	0.9579	0.89	0.9579	0.09	0.9579		1600	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1700	0.8669	0.02	0.9579	0.88	0.9579	0.10	0.9560		1700	0.9579	0.13	0.9579	0.80	0.9579	0.07	0.9579
21-Jun-10	0900	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579	21-Dec-10	0900	0.9579	0.14	0.9579	0.85	0.9579	0.01	0.9579
	1000	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1000	0.9579	0.19	0.9579	0.77	0.9579	0.03	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.18	0.9579	0.78	0.9579	0.03	0.9579
	1200	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1200	0.9579	0.16	0.9579	0.81	0.9579	0.03	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.16	0.9579	0.82	0.9579	0.02	0.9579
	1400	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1400	0.9579	0.19	0.9579	0.78	0.9579	0.02	0.9579
	1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1500	0.9579	0.20	0.9579	0.77	0.9579	0.02	0.9579
	1600	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1600	0.9579	0.17	0.9579	0.81	0.9579	0.02	0.9579
	1700	0.8955	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9579	0.15	0.9579	0.83	0.9579	0.02	0.9579

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 1

Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{E \le U \le O}$	P_O	$\mathbf{P}_{EX,UX,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{E \mathbf{X}, U \mathbf{X}, P}$	P_P	$\mathbf{P}_{ES,US,O}$	P_O	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9001	0.05	0.9145	0.80	0.9180	0.15	0.9142	21-Jul-10	0900	0.9603	0.00	0.9230	0.92	0.9184	0.08	0.9227
	1000	0.9013	0.06	0.9110	0.81	0.9180	0.13	0.9113		1000	0.9266	0.00	0.9228	0.91	0.9163	0.09	0.9223
	1100	0.9002	0.06	0.9100	0.81	0.9182	0.13	0.9104		1100	0.9244	0.00	0.9255	0.91	0.9170	0.09	0.9248
	1200	0.9009	0.08	0.9080	0.80	0.9197	0.13	0.9090		1200	0.9162	0.00	0.9271	0.91	0.9166	0.09	0.9262
	1300	0.9001	0.08	0.9080	0.83	0.9178	0.10	0.9083		1300	0.9162	0.00	0.9277	0.96	0.9167	0.04	0.9273
	1400	0.9005	0.08	0.9118	0.84	0.9174	0.09	0.9114		1400	0.9219	0.00	0.9229	0.97	0.9171	0.03	0.9227
	1500	0.9022	0.09	0.9111	0.83	0.6900	0.09	0.8913		1500	0.9261	0.00	0.9236	0.97	0.9165	0.03	0.9233
	1600	0.8993	0.11	0.9161	0.83	0.9419	0.06	0.9159		1600	0.9566	0.00	0.9218	0.97	0.9187	0.03	0.9217
	1700	0.9006	0.10	0.9145	0.83	0.9390	0.08	0.9150		1700	0.9546	0.00	0.9217	0.95	0.9180	0.05	0.9215
21-Feb-10	0900	0.9045	0.04	0.9139	0.89	0.9180	0.07	0.9139	21-Aug-10	0900	0.9167	0.00	0.9217	0.92	0.9199	0.08	0.9215
	1000	0.9033	0.02	0.9129	0.89	0.9161	0.08	0.9130		1000	0.9071	0.00	0.9202	0.92	0.9174	0.08	0.9200
	1100	0.9015	0.02	0.9097	0.88	0.9166	0.09	0.9101		1100	0.8990	0.00	0.9196	0.90	0.9179	0.10	0.9194
	1200	0.9004	0.04	0.9092	0.87	0.9196	0.09	0.9099		1200	0.8996	0.00	0.9204	0.92	0.9185	0.08	0.9203
	1300	0.8998	0.05	0.9089	0.92	0.9185	0.04	0.9088		1300	0.8972	0.00	0.9203	0.90	0.9186	0.10	0.9201
	1400	0.9007	0.04	0.9098	0.92	0.9186	0.05	0.9099		1400	0.8986	0.00	0.9189	0.90	0.9180	0.10	0.9188
	1500	0.9030	0.02	0.9126	0.92	0.9181	0.06	0.9127		1500	0.9057	0.00	0.9182	0.91	0.9185	0.09	0.9182
	1600	0.9037	0.02	0.9135	0.92	0.9181	0.06	0.9135		1600	0.9159	0.00	0.9199	0.91	0.9170	0.09	0.9196
	1700	0.9078	0.04	0.9154	0.91	0.9180	0.06	0.9153		1700	0.9264	0.00	0.9202	0.90	0.9180	0.10	0.9200
21-Mar-10	0900	0.9067	0.04	0.9159	0.83	0.9180	0.13	0.9158	21-Sep-10	0900	0.9048	0.02	0.9176	0.92	0.9176	0.06	0.9173
	1000	0.9015	0.03	0.9172	0.85	0.9180	0.12	0.9168		1000	0.9024	0.00	0.9153	0.96	0.9191	0.04	0.9154
	1100	0.8992	0.03	0.9157	0.87	0.9179	0.10	0.9154		1100	0.8987	0.01	0.9154	0.96	0.9167	0.03	0.9153
	1200	0.8985	0.03	0.9145	0.86	0.9182	0.11	0.9144		1200	0.8971	0.01	0.9117	0.93	0.9174	0.06	0.9119
	1300	0.8983	0.02	0.9145	0.90	0.9181	0.08	0.9145		1300	0.8980	0.00	0.9129	0.97	0.9183	0.03	0.9130
	1400	0.8992	0.03	0.9141	0.88	0.9177	0.09	0.9139		1400	0.9005	0.00	0.9141	0.97	0.9188	0.03	0.9143
	1500	0.9024	0.03	0.9171	0.87	0.9177	0.10	0.9167		1500	0.9003	0.00	0.9157	0.98	0.9196	0.02	0.9158
	1600	0.9039	0.03	0.9155	0.89	0.9180	0.08	0.9153		1600	0.9061	0.00	0.9175	0.99	0.9180	0.01	0.9175
	1700	0.9103	0.03	0.9163	0.89	0.9181	0.08	0.9162		1700	0.9143	0.00	0.9183	0.99	0.9181	0.01	0.9183
21-Apr-10	0900	0.9148	0.00	0.9193	0.88	0.9191	0.12	0.9192	21-Oct-10	0900	0.9014	0.03	0.9146	0.97	0.9180	0.00	0.9142
	1000	0.9047	0.00	0.9199	0.90	0.9168	0.10	0.9195		1000	0.9019	0.04	0.9124	0.96	0.9199	0.00	0.9119
	1100	0.8987	0.00	0.9173	0.89	0.9176	0.11	0.9173		1100	0.9001	0.01	0.9111	0.99	0.9177	0.00	0.9110
	1200	0.8982	0.00	0.9197	0.90	0.9185	0.10	0.9196		1200	0.9003	0.00	0.9101	1.00	0.9187	0.00	0.9101
	1300	0.8988	0.00	0.9184	0.92	0.9189	0.08	0.9184		1300	0.9000	0.02	0.9090	0.97	0.9166	0.01	0.9089
	1400	0.9020	0.00	0.9186	0.92	0.9187	0.08	0.9186		1400	0.9021	0.02	0.9120	0.97	0.9178	0.01	0.9118
	1500	0.9066	0.00	0.9199	0.89	0.9189	0.11	0.9198		1500	0.9028	0.02	0.9123	0.97	0.9180	0.01	0.9121
	1600	0.9179	0.00	0.9223	0.89	0.9180	0.11	0.9218		1600	0.9040	0.01	0.9133	0.98	0.9180	0.01	0.9132
	1700	0.9411	0.00	0.9199	0.88	0.9180	0.12	0.9197		1700	0.9106	0.03	0.9168	0.96	0.9180	0.01	0.9166
21-May-10	0900	0.9514	0.02	0.9223	0.96	0.9166	0.02	0.9228	21-Nov-10	0900	0.8993	0.12	0.9133	0.84	0.9180	0.03	0.9117
	1000	0.9231	0.01	0.9233	0.97	0.9186	0.02	0.9231		1000	0.9016	0.17	0.9119	0.80	0.9180	0.03	0.9104
	1100	0.9204	0.01	0.9245	0.94	0.9169	0.05	0.9240		1100	0.9009	0.17	0.9108	0.80	0.9199	0.03	0.9094
	1200	0.9158	0.02	0.9263	0.91	0.9165	0.06	0.9254		1200	0.9001	0.14	0.9080	0.82	0.9173	0.03	0.9071
	1300	0.9148	0.01	0.9260	0.94	0.9169	0.05	0.9254		1300	0.9010	0.12	0.9127	0.83	0.9187	0.04	0.9115
	1400	0.9185	0.02	0.9217	0.88	0.9181	0.10	0.9213		1400	0.9007	0.16	0.9121	0.79	0.9199	0.06	0.9108
	1500	0.9269	0.02	0.9231	0.90	0.9181	0.08	0.9228		1500	0.9007	0.16	0.9123	0.79	0.9180	0.06	0.9108
	1600	0.9565	0.02	0.9227	0.89	0.9164	0.09	0.9229		1600	0.9023	0.16	0.9144	0.79	0.9180	0.06	0.9127
	1700	0.9540	0.02	0.9231	0.88	0.9180	0.10	0.9233		1700	0.9081	0.13	0.9158	0.80	0.8862	0.07	0.9128
21-Jun-10	0900	0.9612	0.00	0.9234	0.89	0.9171	0.11	0.9227	21-Dec-10	0900	0.9012	0.14	0.9151	0.85	0.9180	0.01	0.9132
	1000	0.9614	0.00	0.9241	0.89	0.9190	0.11	0.9235		1000	0.9002	0.19	0.9112	0.77	0.9180	0.03	0.9093
	1100	0.9273	0.00	0.9276	0.89	0.9171	0.11	0.9265		1100	0.9003	0.18	0.9124	0.78	0.9197	0.03	0.9104
	1200	0.9632	0.00	0.9292	0.88	0.9165	0.12	0.9277		1200	0.9008	0.16	0.9106	0.81	0.9162	0.03	0.9092
	1300	0.9281	0.00	0.9288	0.92	0.9168	0.08	0.9279		1300	0.9006	0.16	0.9111	0.82	0.9167	0.02	0.9095
	1400	0.9263	0.00	0.9251	0.93	0.9175	0.07	0.9246		1400	0.8928	0.19	0.9104	0.78	0.9337	0.02	0.9075
	1500	0.9608	0.00	0.9245	0.97	0.9169	0.03	0.9242		1500	0.8997	0.20	0.9118	0.77	0.9181	0.02	0.9095
	1600	0.9597	0.00	0.9234	0.93	0.9192	0.07	0.9231		1600	0.9007	0.17	0.9121	0.81	0.9180	0.02	0.9102
	1700	0.9558	0.00	0.9235	0.93	0.9180	0.07	0.9232		1700	0.9053	0.15	0.9148	0.83	0.9181	0.02	0.9135

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 1

Date	Time	$\mathbf{P}_{ES,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$
21-Jan-10	0900	0.9669	0.05	0.9910	0.80	0.9967	0.15	0.9905	21-Jul-10	0900	0.9909	0.00	0.9902	0.92	0.9944	0.08	0.9905
	1000	0.9527	0.06	0.9836	0.81	0.9948	0.13	0.9830		1000	0.9863	0.00	0.9896	0.91	0.9932	0.09	0.9899
	1100	0.9440	0.06	0.9778	0.81	0.9943	0.13	0.9777		1100	0.9911	0.00	0.9918	0.91	0.9924	0.09	0.9918
	1200 1300	0.9395 0.9397	0.08	0.9759 0.9758	0.80	0.9943	0.13	0.9756 0.9748		1200 1300	0.9893 0.9894	0.00	0.9932 0.9934	0.91	0.9920	0.09	0.9931
	1400	0.9397	0.08	0.9738	0.83	0.9942	0.10	0.9764		1400	0.9894	0.00	0.9934	0.97	0.9920	0.04	0.9934
	1500	0.9508	0.08	0.9776	0.83	0.9943	0.09	0.9764		1500	0.9912	0.00	0.9913	0.97	0.9923	0.03	0.9897
	1600	0.9646	0.11	0.9902	0.83	0.9965	0.06	0.9878		1600	0.9884	0.00	0.9903	0.97	0.9944	0.03	0.9904
	1700	0.9844	0.10	0.9968	0.83	0.9980	0.08	0.9957		1700	0.9948	0.00	0.9936	0.95	0.9961	0.05	0.9937
21-Feb-10	0900	0.9697	0.04	0.9902	0.89	0.9961	0.07	0.9899	21-Aug-10	0900	0.9908	0.00	0.9892	0.92	0.9947	0.08	0.9897
	1000	0.9582	0.02	0.9834	0.89	0.9948	0.08	0.9838		1000	0.9857	0.00	0.9876	0.92	0.9935	0.08	0.9881
	1100	0.9509	0.02	0.9802	0.88	0.9937	0.09	0.9807		1100	0.9822	0.00	0.9898	0.90	0.9927	0.10	0.9901
	1200	0.9469	0.04	0.9804	0.87	0.9931	0.09	0.9804		1200	0.9804	0.00	0.9920	0.92	0.9923	0.08	0.9920
	1300	0.9468	0.05	0.9806	0.92	0.9934	0.04	0.9794		1300	0.9807	0.00	0.9918	0.90	0.9921	0.10	0.9918
	1400	0.9499	0.04	0.9796	0.92	0.9940	0.05	0.9792		1400	0.9824	0.00	0.9896	0.90	0.9929	0.10	0.9899
	1500	0.9561	0.02	0.9820	0.92	0.9943	0.06	0.9821		1500	0.9861	0.00	0.9879	0.91	0.9938	0.09	0.9884
	1600	0.9661	0.02	0.9885	0.92	0.9958	0.06	0.9884		1600	0.9913	0.00	0.9895	0.91	0.9950	0.09	0.9900
	1700	0.9810	0.04	0.9952	0.91	0.9973	0.06	0.9948		1700	0.9912	0.00	0.9941	0.90	0.9964	0.10	0.9943
21-Mar-10	0900	0.9801	0.04	0.9892	0.83	0.9955	0.13	0.9896	21-Sep-10	0900	0.9792	0.02	0.9879	0.92	0.9947	0.06	0.9881
	1000	0.9733	0.03	0.9853	0.85	0.9942	0.12	0.9859		1000	0.9730	0.00	0.9854	0.96	0.9934	0.04	0.9857
	1100	0.9690	0.03	0.9853	0.87	0.9933	0.10	0.9856		1100	0.9690	0.01	0.9862	0.96	0.9927	0.03	0.9862
	1200	0.9666	0.03	0.9870	0.86	0.9928	0.11	0.9870		1200	0.9672	0.01	0.9876	0.93	0.9926	0.06	0.9877
	1300	0.9668	0.02	0.9870	0.90	0.9927	0.08	0.9870		1300	0.9680	0.00	0.9870	0.97	0.9928	0.03	0.9871
	1400	0.9688	0.03	0.9854	0.88	0.9933	0.09	0.9856		1400	0.9707	0.00	0.9854	0.97	0.9933	0.03	0.9857
	1500	0.9734	0.03	0.9851	0.87	0.9941	0.10	0.9856		1500	0.9757	0.00	0.9861	0.98	0.9943	0.02	0.9863
	1600	0.9802	0.03	0.9889	0.89	0.9955	0.08	0.9891		1600	0.9825	0.00	0.9900	0.99	0.9956	0.01	0.9900
	1700	0.9889	0.03	0.9944	0.89	0.9969	0.08	0.9944		1700	0.9917	0.00	0.9957	0.99	0.9973	0.01	0.9957
21-Apr-10	0900	0.9895	0.00	0.9888	0.88	0.9945	0.12	0.9895	21-Oct-10	0900	0.9632	0.03	0.9865	0.97	0.9952	0.00	0.9857
	1000	0.9847	0.00	0.9880	0.90	0.9933	0.10	0.9886		1000	0.9540	0.04	0.9813	0.96	0.9940	0.00	0.9801
	1100	0.9811	0.00	0.9898	0.89	0.9926	0.11	0.9901		1100	0.9488	0.01	0.9805	0.99	0.9936	0.00	0.9801
	1200	0.9797	0.00	0.9916	0.90	0.9923	0.10	0.9917		1200	0.9474	0.00	0.9802	1.00	0.9932	0.00	0.9802
	1300	0.9799	0.00	0.9917	0.92	0.9922	0.08	0.9917		1300	0.9481	0.02	0.9806	0.97	0.9933	0.01	0.9800
	1400	0.9818	0.00	0.9892	0.92	0.9928	0.08	0.9895		1400	0.9527	0.02	0.9806	0.97	0.9941	0.01	0.9801
	1500	0.9856	0.00	0.9878	0.89	0.9936	0.11	0.9884		1500	0.9607	0.02	0.9846	0.97	0.9949	0.01	0.9842
	1600	0.9911	0.00	0.9899	0.89	0.9949	0.11	0.9905		1600	0.9735	0.01	0.9919	0.98	0.9964	0.01	0.9918
	1700	0.9931	0.00	0.9944	0.88	0.9966	0.12	0.9947		1700	0.9897	0.03	0.9976	0.96	0.9981	0.01	0.9973
21-May-10	0900	0.9882	0.02	0.9896	0.96	0.9943	0.02	0.9897	21-Nov-10	0900	0.9604	0.12	0.9881	0.84	0.9961	0.03	0.9850
	1000	0.9881	0.01	0.9899	0.97	0.9935	0.02	0.9900		1000	0.9486	0.17	0.9808	0.80	0.9947	0.03	0.9759
	1100	0.9895	0.01	0.9922	0.94	0.9926	0.05	0.9922		1100	0.9417	0.17	0.9767	0.80	0.9940	0.03	0.9714
	1200	0.9885	0.02	0.9924	0.91	0.9924	0.06	0.9923		1200	0.9393	0.14	0.9756	0.82	0.9941	0.03	0.9709
	1300	0.9888	0.01	0.9930	0.94	0.9922	0.05	0.9929		1300	0.9407	0.12	0.9763	0.83	0.9940	0.04	0.9727
	1400	0.9906	0.02	0.9914	0.88	0.9927	0.10	0.9915		1400	0.9457	0.16	0.9789	0.79	0.9947	0.06	0.9746
	1500	0.9856	0.02	0.9893	0.90	0.9937	0.08	0.9896		1500	0.9561	0.16	0.9858	0.79	0.9957	0.06	0.9817
	1600	0.9890	0.02	0.9905	0.89	0.9949	0.09	0.9908		1600	0.9718	0.16	0.9927	0.79	0.9970	0.06	0.9897
	1700	0.9955	0.02	0.9940	0.88	0.9964	0.10	0.9942		1700	0.9929	0.13	0.9985	0.80	0.9986	0.07	0.9978
21-Jun-10	0900	0.9906	0.00	0.9905	0.89	0.9944	0.11	0.9909	21-Dec-10	0900	0.9634	0.14	0.9906	0.85	0.9966	0.01	0.9869
	1000	0.9865	0.00	0.9905	0.89	0.9933	0.11	0.9908		1000	0.9494	0.19	0.9830	0.77	0.9954	0.03	0.9769
	1100	0.9848	0.00	0.9924	0.89	0.9927	0.11	0.9925		1100	0.9412	0.18	0.9778	0.78	0.9946	0.03	0.9717
	1200	0.9871	0.00	0.9934	0.88	0.9920	0.12	0.9932		1200	0.9380	0.16	0.9753	0.81	0.9942	0.03	0.9699
	1300	0.9858	0.00	0.9937	0.92	0.9921	0.08	0.9936		1300	0.9388	0.16	0.9761	0.82	0.9944	0.02	0.9705
	1400	0.9827	0.00	0.9923	0.93	0.9926	0.07	0.9923		1400	0.9433	0.19	0.9787	0.78	0.9950	0.02	0.9722
	1500	0.9853	0.00	0.9900	0.97	0.9933	0.03	0.9901		1500	0.9531	0.20	0.9848	0.77	0.9957	0.02	0.9786
	1600	0.9903	0.00	0.9910	0.93	0.9945	0.07	0.9912		1600	0.9693	0.17	0.9925	0.81	0.9970	0.02	0.9886
	1700	0.9957	0.00	0.9937	0.93	0.9961	0.07	0.9938		1700	0.9909	0.15	0.9982	0.83	0.9986	0.02	0.9971

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 2

Date	Time	$\mathbf{P}_{FS,BD,C}$	P_C	$\mathbf{P}_{VS,BD,P}$	P_P	$\mathbf{P}_{VX,BD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	P_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{VS,BD,O}$	P_O	$\mathbf{P}_{VS,BD,R}$
21-Jan-10	0900	0.1213	0.05	0.1055	0.80	0.1002	0.15	0.1056	21-Jul-10	0900	0.1313	0.00	0.1476	0.92	0.1391	0.08	0.1470
	1000	0.1393	0.06	0.1476	0.81	0.1243	0.13	0.1441		1000	0.1347	0.00	0.1556	0.91	0.1556	0.09	0.1556
	1100	0.1556	0.06	0.1775	0.81	0.1393	0.13	0.1711		1100	0.1389	0.00	0.1385	0.91	0.1705	0.09	0.1413
	1200	0.2315	0.08	0.2033	0.80	0.1476	0.13	0.1982		1200	0.2315	0.00	0.1385	0.91	0.1775	0.09	0.1418
	1300 1400	0.2515 0.3574	0.08	0.2315	0.83	0.1476 0.1393	0.10	0.2248		1300	0.2608 0.3841	0.00	0.1705 0.2261	0.96	0.1775	0.04	0.1708
	1500	0.3574	0.08	0.2466	0.84	0.1393	0.09	0.2457 0.2411		1400 1500	0.4385	0.00	0.2261	0.97	0.1705 0.1556	0.03	0.2243
	1600	0.3986	0.09	0.2300	0.83	0.1270	0.09	0.2411		1600	0.4585	0.00	0.2740	0.97	0.1386	0.03	0.2702
	1700	0.2783	0.10	0.0990	0.83	0.0702	0.08	0.1142		1700	0.4347	0.00	0.2207	0.95	0.1120	0.05	0.2148
21-Feb-10	0900	0.1228	0.04	0.1204	0.89	0.1115	0.07	0.1198	21-Aug-10	0900	0.1305	0.00	0.1476	0.92	0.1365	0.08	0.1468
	1000	0.1361	0.02	0.1556	0.89	0.1353	0.08	0.1534		1000	0.1348	0.00	0.1556	0.92	0.1556	0.08	0.1556
	1100	0.1476	0.02	0.1775	0.88	0.1476	0.09	0.1740		1100	0.1393	0.00	0.1476	0.90	0.1705	0.10	0.1498
	1200	0.2207	0.04	0.1972	0.87	0.1556	0.09	0.1941		1200	0.2315	0.00	0.1393	0.92	0.1775	0.08	0.1422
	1300	0.2466	0.05	0.2207	0.92	0.1556	0.04	0.2196		1300	0.2697	0.00	0.1705	0.90	0.1775	0.10	0.1711
	1400	0.3658	0.04	0.2515	0.92	0.1556	0.05	0.2510		1400	0.3891	0.00	0.2315	0.90	0.1705	0.10	0.2256
	1500	0.4227	0.02	0.2653	0.92	0.1393	0.06	0.2616		1500	0.4441	0.00	0.2824	0.91	0.1556	0.09	0.2715
	1600 1700	0.4268 0.3574	0.02	0.2315	0.92	0.1181	0.06	0.2294 0.1439		1600 1700	0.4634 0.4227	0.00	0.2740 0.1972	0.91	0.1338 0.1047	0.09	0.2620 0.1882
21-Mar-10	0900	0.1281	0.04	0.1342	0.83	0.1260	0.13	0.1329	21-Sep-10	0900	0.1306	0.02	0.1393	0.92	0.1326	0.06	0.1387
21-Wai-10	1000	0.1251	0.03	0.1556	0.85	0.1200	0.13	0.1529	21-3cp-10	1000	0.1370	0.02	0.1556	0.96	0.1526	0.04	0.1556
	1100	0.1393	0.03	0.1632	0.87	0.1632	0.10	0.1624		1100	0.1476	0.01	0.1632	0.96	0.1632	0.03	0.1630
	1200	0.2562	0.03	0.1632	0.86	0.1705	0.11	0.1669		1200	0.2033	0.01	0.1705	0.93	0.1705	0.05	0.1708
	1300	0.2653	0.02	0.1972	0.90	0.1705	0.08	0.1966		1300	0.3020	0.00	0.2093	0.97	0.1705	0.03	0.2080
	1400	0.3841	0.03	0.2466	0.88	0.1632	0.09	0.2439		1400	0.4009	0.00	0.2562	0.97	0.1632	0.03	0.2531
	1500	0.4404	0.03	0.2783	0.87	0.1476	0.10	0.2709		1500	0.4478	0.00	0.2783	0.98	0.1476	0.02	0.2754
	1600	0.4549	0.03	0.2562	0.89	0.1264	0.08	0.2528		1600	0.4496	0.00	0.2417	0.99	0.1209	0.01	0.2404
	1700	0.3986	0.03	0.1705	0.89	0.0953	0.08	0.1722		1700	0.3685	0.00	0.1476	0.99	0.0874	0.01	0.1469
21-Apr-10	0900	0.1310	0.00	0.1476	0.88	0.1380	0.12	0.1464	21-Oct-10	0900	0.1304	0.03	0.1393	0.97	0.1248	0.00	0.1390
	1000	0.1352	0.00	0.1556	0.90	0.1556	0.10	0.1556		1000	0.1476	0.04	0.1705	0.96	0.1476	0.00	0.1695
	1100	0.1393	0.00	0.1476	0.89	0.1705	0.11	0.1502		1100	0.1556	0.01	0.1843	0.99	0.1556	0.00	0.1840
	1200	0.2315	0.00	0.1393	0.90	0.1775	0.10	0.1431		1200	0.1908	0.00	0.2033	1.00	0.1632	0.00	0.2033
	1300	0.2905	0.00	0.1775	0.92	0.1775	0.08	0.1775		1300	0.3199	0.02	0.2366	0.97	0.1556	0.01	0.2376
	1400	0.3963	0.00	0.2366	0.92	0.1632	0.08	0.2309		1400	0.4009	0.02	0.2653	0.97	0.1476	0.01	0.2670
	1500	0.4478	0.00	0.2824	0.89	0.1556	0.11	0.2683		1500	0.4347	0.02	0.2562	0.97	0.1305	0.01	0.2587
	1600 1700	0.4634 0.4164	0.00	0.2697 0.1908	0.89	0.1314	0.11	0.2543 0.1799		1600 1700	0.4099 0.2653	0.01	0.1908	0.98	0.1043	0.01	0.1922
21-May-10	0900 1000	0.1320 0.1352	0.02	0.1556 0.1476	0.96	0.1393 0.1632	0.02	0.1547 0.1478	21-Nov-10	0900 1000	0.1305 0.1476	0.12	0.1256 0.1632	0.84	0.1119 0.1321	0.03	0.1257 0.1595
	1100	0.1332	0.01	0.1476	0.94	0.1032	0.02	0.1478		1100	0.1476	0.17	0.1032	0.80	0.1321	0.03	0.1393
	1200	0.1393	0.01	0.1556	0.94	0.1703	0.05	0.1579		1200	0.1972	0.17	0.1908	0.80	0.1476	0.03	0.1833
	1300	0.1972	0.02	0.1705	0.91	0.1775	0.05	0.1379		1300	0.1972	0.14	0.2130	0.82	0.1476	0.03	0.2102
	1400	0.3939	0.02	0.2315	0.88	0.1775	0.10	0.2290		1400	0.3816	0.12	0.2417	0.79	0.1366	0.04	0.2615
	1500	0.4460	0.02	0.2783	0.90	0.1765	0.08	0.2726		1500	0.4055	0.16	0.2261	0.79	0.1190	0.06	0.2481
	1600	0.4617	0.02	0.2740	0.89	0.1347	0.09	0.2661		1600	0.3630	0.16	0.1556	0.79	0.0922	0.06	0.1843
	1700	0.4248	0.02	0.2033	0.88	0.1065	0.10	0.1987		1700	0.1843	0.13	0.0595	0.80	0.0513	0.07	0.0756
21-Jun-10	0900	0.1321	0.00	0.1556	0.89	0.1393	0.11	0.1537	21-Dec-10	0900	0.1236	0.14	0.1093	0.85	0.1010	0.01	0.1112
	1000	0.1353	0.00	0.1556	0.89	0.1632	0.11	0.1564		1000	0.1393	0.19	0.1476	0.77	0.1233	0.03	0.1452
	1100	0.1393	0.00	0.1367	0.89	0.1705	0.11	0.1405		1100	0.1556	0.18	0.1775	0.78	0.1370	0.03	0.1722
	1200	0.2315	0.00	0.1476	0.88	0.1775	0.12	0.1513		1200	0.2207	0.16	0.2093	0.81	0.1393	0.03	0.2088
	1300	0.2697	0.00	0.1705	0.92	0.1775	0.08	0.1710		1300	0.2740	0.16	0.2315	0.82	0.1393	0.02	0.2363
	1400	0.3841	0.00	0.2261	0.93	0.1705	0.07	0.2224		1400	0.3574	0.19	0.2366	0.78	0.1338	0.02	0.2578
	1500	0.4404	0.00	0.2783	0.97	0.1556	0.03	0.2742		1500	0.3915	0.20	0.2150	0.77	0.1178	0.02	0.2490
	1600	0.4600	0.00	0.2783	0.93	0.1379	0.07	0.2689		1600	0.3602	0.17	0.1556	0.81	0.0926	0.02	0.1894
	1700	0.4366	0.00	0.2150	0.93	0.1113	0.07	0.2081		1700	0.1972	0.15	0.0649	0.83	0.0545	0.02	0.0846

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 2

Date	Time	$\mathbf{P}_{VS,BS,C}$	P_C	$\mathbf{P}_{VX,BX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VS,BS,O}$	\mathbf{P}_O	$\mathbf{P}_{FS,BS,R}$	Date	Time	$\mathbf{P}_{\mathrm{FX},BX,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,BS,P}$	P_P	$\mathbf{P}_{FS,BS,O}$	P_O	$\mathbf{P}_{VX,BX,R}$
21-Jan-10	0900	0.2160	0.05	0.1938	0.80	0.1794	0.15	0.1929	21-Jul-10	0900	0.2459	0.00	0.2865	0.92	0.2611	0.08	0.2846
	1000	0.2518	0.06	0.2829	0.81	0.2296	0.13	0.2740		1000	0.2561	0.00	0.2973	0.91	0.2975	0.09	0.2974
	1100	0.2783	0.06	0.3442	0.81	0.2620	0.13	0.3293		1100	0.2673	0.00	0.2717	0.91	0.3224	0.09	0.2761
	1200	0.6001	0.08	0.3938	0.80	0.2767	0.13	0.3942		1200	0.6676	0.00	0.2849	0.91	0.3343	0.09	0.2891
	1300	0.4695	0.08	0.4370	0.83	0.2779	0.10	0.4241		1300	0.4948	0.00	0.3339	0.96	0.3342	0.04	0.3340
	1400	0.6318	0.08	0.4671	0.84	0.3486	0.09	0.4693		1400	0.6625	0.00	0.4264	0.97	0.3218	0.03	0.4231
	1500	0.6898	0.09	0.4549	0.83	0.2349	0.09	0.4562		1500	0.7297	0.00	0.5183	0.97	0.2968	0.03	0.5112
	1600	0.6799	0.11	0.3615	0.83	0.1876	0.06	0.3845		1600	0.7511	0.00	0.5228	0.97	0.2603	0.03	0.5143
	1700	0.5271	0.10	0.1788	0.83	0.1179	0.08	0.2079		1700	0.7238	0.00	0.4192	0.95	0.2041	0.05	0.4076
21-Feb-10	0900	0.2281	0.04	0.2233	0.89	0.2030	0.07	0.2220	21-Aug-10	0900	0.2438	0.00	0.2798	0.92	0.2539	0.08	0.2778
	1000	0.2547	0.02	0.2981	0.89	0.2514	0.08	0.2932		1000	0.2526	0.00	0.3018	0.92	0.2945	0.08	0.3012
	1100	0.2756	0.02	0.3435	0.88	0.2827	0.09	0.3362		1100	0.2676	0.00	0.2837	0.90	0.3198	0.10	0.2872
	1200	0.6735	0.04	0.3780	0.87	0.3008	0.09	0.3812		1200	0.6606	0.00	0.2792	0.92	0.3315	0.08	0.2831
	1300	0.4663	0.05	0.4106	0.92	0.3023	0.04	0.4094		1300	0.5127	0.00	0.3376	0.90	0.3314	0.10	0.3370
	1400	0.6456	0.04	0.4812	0.92	0.2893	0.05	0.4780		1400	0.6730	0.00	0.4475	0.90	0.3183	0.10	0.4350
	1500	0.7130	0.02	0.5013	0.92	0.2620	0.06	0.4922		1500	0.7363	0.00	0.5259	0.91	0.2915	0.09	0.5057
	1600	0.7203	0.02	0.4404	0.92	0.2165	0.06	0.4338		1600	0.7531	0.00	0.5114	0.91	0.2496	0.09	0.4889
	1700	0.6349	0.04	0.2714	0.91	0.1508	0.06	0.2772		1700	0.7090	0.00	0.3806	0.90	0.1888	0.10	0.3621
21-Mar-10	0900	0.2396	0.04	0.2574	0.83	0.2330	0.13	0.2535	21-Sep-10	0900	0.2447	0.02	0.2759	0.92	0.2471	0.06	0.2736
	1000	0.2533	0.03	0.3082	0.85	0.2779	0.12	0.3029		1000	0.2581	0.00	0.3111	0.96	0.2884	0.04	0.3101
	1100	0.2704	0.03	0.3197	0.87	0.3059	0.10	0.3168		1100	0.2736	0.01	0.3168	0.96	0.3128	0.03	0.3162
	1200	0.7340	0.03	0.3343	0.86	0.4183	0.11	0.3562		1200	0.4206	0.01	0.3363	0.93	0.3211	0.06	0.3364
	1300	0.4990	0.02	0.3886	0.90	0.4183	0.08	0.3932		1300	0.5551	0.00	0.4042	0.97	0.3190	0.03	0.4014
	1400	0.6664	0.03	0.4742	0.88	0.3060	0.09	0.4660		1400	0.6878	0.00	0.4902	0.97	0.3031	0.03	0.4840
	1500	0.7307	0.03	0.5231	0.87	0.2786	0.10	0.5061		1500	0.7394	0.00	0.5245	0.98	0.2695	0.02	0.5189
	1600	0.7445	0.03	0.4829	0.89	0.2340	0.08	0.4726		1600	0.7392	0.00	0.4626	0.99	0.2226	0.01	0.4600
	1700	0.6795	0.03	0.3264	0.89	0.1696	0.08	0.3259		1700	0.6484	0.00	0.2801	0.99	0.1526	0.01	0.2786
21-Apr-10	0900	0.2451	0.00	0.2803	0.88	0.2594	0.12	0.2778	21-Oct-10	0900	0.2429	0.03	0.2669	0.97	0.2306	0.00	0.2661
	1000	0.2564	0.00	0.3023	0.90	0.2960	0.10	0.3017		1000	0.2650	0.04	0.3241	0.96	0.2694	0.00	0.3216
	1100	0.2692	0.00	0.2833	0.89	0.3205	0.11	0.2874		1100	0.2867	0.01	0.3578	0.99	0.2938	0.00	0.3570
	1200	0.6600	0.00	0.2854	0.90	0.3315	0.10	0.2900		1200	0.3738	0.00	0.3988	1.00	0.3031	0.00	0.3988
	1300	0.5321	0.00	0.3481	0.92	0.3302	0.08	0.3467		1300	0.5785	0.02	0.4546	0.97	0.2968	0.01	0.4556
	1400	0.6803	0.00	0.4583	0.92	0.3163	0.08	0.4472		1400	0.6877	0.02	0.4990	0.97	0.2780	0.01	0.5007
	1500	0.7390	0.00	0.5295	0.89	0.2885	0.11	0.5027		1500	0.7253	0.02	0.4850	0.97	0.2442	0.01	0.4875
	1600	0.7526	0.00	0.5043	0.89	0.2452	0.11	0.4755		1600	0.6978	0.01	0.3730	0.98	0.1885	0.01	0.3745
	1700	0.7001	0.00	0.3629	0.88	0.1820	0.12	0.3408		1700	0.5018	0.03	0.1611	0.96	0.1094	0.01	0.1716
21-May-10	0900	0.2471	0.02	0.2904	0.96	0.2662	0.02	0.2889	21-Nov-10	0900	0.2340	0.12	0.2371	0.84	0.2041	0.03	0.2356
	1000	0.2570	0.01	0.2956	0.97	0.3038	0.02	0.2953		1000	0.2639	0.17	0.3118	0.80	0.2462	0.03	0.3016
	1100	0.2689	0.01	0.2680	0.94	0.3268	0.05	0.2712		1100	0.2911	0.17	0.3677	0.80	0.2694	0.03	0.3516
	1200	0.4211	0.02	0.3154	0.91	0.3372	0.06	0.3191		1200	0.3822	0.14	0.4140	0.82	0.2795	0.03	0.4050
	1300	0.5326	0.01	0.3366	0.94	0.3330	0.05	0.3385		1300	0.5589	0.12	0.4525	0.83	0.2755	0.04	0.4576
	1400	0.6770	0.02	0.4463	0.88	0.3191	0.10	0.4389		1400	0.6662	0.16	0.4710	0.79	0.2540	0.06	0.4893
	1500	0.7363	0.02	0.5257	0.90	0.2923	0.08	0.5127		1500	0.6957	0.16	0.4302	0.79	0.2188	0.06	0.4597
	1600	0.7514	0.02	0.5125	0.89	0.2506	0.09	0.4951		1600	0.6485	0.16	0.2985	0.79	0.1627	0.06	0.3454
	1700	0.7116	0.02	0.3899	0.88	0.1928	0.10	0.3777		1700	0.3470	0.13	0.0976	0.80	0.0796	0.07	0.1297
21-Jun-10	0900	0.2473	0.00	0.2912	0.89	0.2653	0.11	0.2883	21-Dec-10	0900	0.2197	0.14	0.2007	0.85	0.1809	0.01	0.2032
	1000	0.2570	0.00	0.2971	0.89	0.3024	0.11	0.2977		1000	0.2544	0.19	0.2877	0.77	0.2273	0.03	0.2793
	1100	0.2681	0.00	0.2697	0.89	0.3256	0.11	0.2759		1100	0.2857	0.18	0.3518	0.78	0.2548	0.03	0.3366
	1200	0.6682	0.00	0.2996	0.88	0.3343	0.12	0.3039		1200	0.4646	0.16	0.4007	0.81	0.2678	0.03	0.4067
	1300	0.5105	0.00	0.3339	0.92	0.3337	0.08	0.3339		1300	0.5096	0.16	0.4387	0.82	0.2661	0.02	0.4464
	1400	0.6661	0.00	0.4318	0.93	0.3211	0.07	0.4244		1400	0.6380	0.19	0.4535	0.78	0.2496	0.02	0.4848
	1500	0.7299	0.00	0.5214	0.97	0.2960	0.03	0.5139		1500	0.6795	0.20	0.4176	0.77	0.2164	0.02	0.4668
	1600	0.7494	0.00	0.5204	0.93	0.2587	0.07	0.5029		1600	0.6410	0.17	0.2951	0.81	0.1639	0.02	0.3518
	1700	0.7216	0.00	0.4129	0.93	0.2028	0.07	0.3989		1700	0.3769	0.15	0.1079	0.83	0.0866	0.02	0.1480

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 2

Date	Time	$\mathbf{P}_{FS,\mathit{UD},\mathit{C}}$	\mathbf{P}_C	$\mathbf{P}_{VS,UD,P}$	P_P	$\mathbf{P}_{VX,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},\mathit{UD},R}$	Date	Time	$\mathbf{P}_{FS,UD,C}$	P_C	$\mathbf{P}_{VX,UD,P}$	P_P	$\mathbf{P}_{VS,UD,O}$	P_O	$\mathbf{P}_{VS,UD,R}$
21-Jan-10	0900	0.9887	0.05	0.9887	0.80	0.9887	0.15	0.9887	21-Jul-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1000	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1100	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1100	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1200	0.9887	0.08	0.9887	0.80	0.9887	0.13	0.9887		1200	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1300	0.9887	0.08	0.9887	0.83	0.9887	0.10	0.9887		1300	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1400	0.9887	0.08	0.9887	0.84	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887 0.9887	0.09	0.9887	0.83	0.9887	0.09	0.9887		1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1600 1700	0.9887	0.11	0.9887 0.9887	0.83	0.9887	0.06	0.9887		1600	0.9887 0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
								0.9887		1700			0.9887	0.95	0.9887	0.05	0.9887
21-Feb-10	0900	0.9887	0.04	0.9887	0.89	0.9887	0.07	0.9887	21-Aug-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.02	0.9887	0.89	0.9887	0.08	0.9887		1000	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1100	0.9887	0.02	0.9887	0.88	0.9887	0.09	0.9887		1100	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1200 1300	0.9887 0.9887	0.04	0.9887 0.9887	0.87	0.9887	0.09	0.9887 0.9887		1200 1300	0.9887 0.9887	0.00	0.9887 0.9887	0.92	0.9887 0.9887	0.08	0.9887 0.9887
	1400	0.9887	0.03	0.9887	0.92	0.9887	0.04	0.9887		1400	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1500	0.9887	0.04	0.9887	0.92	0.9887	0.05	0.9887		1500	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1600	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1700	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1700	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
21-Mar-10	0900	0.9887	0.04	0.9887	0.83	0.9887	0.13	0.9887	21-Sep-10	0900	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887
21-Wai-10	1000	0.9887	0.04	0.9887	0.85	0.9887	0.13	0.9887	21-3cp-10	1000	0.9887	0.02	0.9887	0.92	0.9887	0.04	0.9887
	1100	0.9887	0.03	0.9887	0.87	0.9887	0.12	0.9887		1100	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1200	0.9887	0.03	0.9887	0.86	0.9887	0.11	0.9887		1200	0.9887	0.01	0.9887	0.93	0.9887	0.05	0.9887
	1300	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1400	0.9887	0.03	0.9887	0.88	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1500	0.9887	0.00	0.9887	0.98	0.9887	0.02	0.9887
	1600	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1600	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
	1700	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
21-Apr-10	0900	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887	21-Oct-10	0900	0.9887	0.03	0.9887	0.97	0.9887	0.00	0.9887
	1000	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1000	0.9887	0.04	0.9887	0.96	0.9887	0.00	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.01	0.9887	0.99	0.9887	0.00	0.9887
	1200	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1200	0.9887	0.00	0.9887	1.00	0.9887	0.00	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1400	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1500	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1500	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1600	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1600	0.9887	0.01	0.9887	0.98	0.9887	0.01	0.9887
	1700	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1700	0.9887	0.03	0.9887	0.96	0.9887	0.01	0.9887
21-May-10	0900	0.9887	0.02	0.9887	0.96	0.9887	0.02	0.9887	21-Nov-10	0900	0.9887	0.12	0.9887	0.84	0.9887	0.03	0.9887
	1000	0.9887	0.01	0.9887	0.97	0.9887	0.02	0.9887		1000	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1100	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1100	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1200	0.9887	0.02	0.9887	0.91	0.9887	0.06	0.9887		1200	0.9887	0.14	0.9887	0.82	0.9887	0.03	0.9887
	1300	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1300	0.9887	0.12	0.9887	0.83	0.9887	0.04	0.9887
	1400	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1400	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1500	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1500	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1600	0.9887	0.02	0.9887	0.89	0.9887	0.09	0.9887		1600	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1700	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1700	0.9887	0.13	0.9887	0.80	0.9887	0.07	0.9887
21-Jun-10	0900	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	21-Dec-10	0900	0.9887	0.14	0.9887	0.85	0.9887	0.01	0.9887
	1000	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1000	0.9887	0.19	0.9887	0.77	0.9887	0.03	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.18	0.9887	0.78	0.9887	0.03	0.9887
	1200	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1200	0.9887	0.16	0.9887	0.81	0.9887	0.03	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.16	0.9887	0.82	0.9887	0.02	0.9887
	1400	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1400	0.9887	0.19	0.9887	0.78	0.9887	0.02	0.9887
	1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1500	0.9887	0.20	0.9887	0.77	0.9887	0.02	0.9887
	1600 1700	0.9887 0.9887	0.00	0.9887 0.9887	0.93	0.9887	0.07	0.9887 0.9887		1600 1700	0.9887 0.9887	0.17	0.9887 0.9887	0.81	0.9887 0.9887	0.02	0.9887 0.9887
	1/00	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1700	0.9887	0.15	0.9887	0.83	0.9887	0.02	0.9887

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 2

Date	Time	$P_{VS,US,C}$	P_C	$\mathbf{P}_{VX,UX,P}$	P_P	$P_{VX,UX,O}$	P_O	$P_{VS,US,R}$	Date	Time	$P_{VX,UX,C}$	P_C	$P_{VX,UX,P}$	P_P	$P_{VS,US,O}$	P_O	$P_{VS,US,R}$
21-Jan-10	0900	0.8955	0.05	0.8984	0.80	0.8953	0.15	0.8977	21-Jul-10	0900	0.8918	0.00	0.9024	0.92	0.8963	0.08	0.9019
	1000	0.8973	0.06	0.8991	0.81	0.8953	0.13	0.8985		1000	0.8976	0.00	0.9034	0.91	0.8938	0.09	0.9025
	1100	0.8980	0.06	0.8982	0.81	0.8961	0.13	0.8979		1100	0.8992	0.00	0.9066	0.91	0.8941	0.09	0.9056
	1200	0.9347	0.08	0.8979	0.80	0.8952	0.13	0.9003		1200	0.9379	0.00	0.9112	0.91	0.8937	0.09	0.9097
	1300	0.8841	0.08	0.8933	0.83	0.8955	0.10	0.8928		1300	0.8814	0.00	0.9000	0.96	0.8937	0.04	0.8997
	1400	0.8802	0.08	0.8897	0.84	0.9314	0.09	0.8925		1400	0.8789	0.00	0.8918	0.97	0.8942	0.03	0.8918
	1500	0.8764	0.09	0.8884	0.83	0.8948	0.09	0.8879		1500	0.8770	0.00	0.8875	0.97	0.8939	0.03	0.8877
	1600	0.8752	0.11	0.8851	0.83	0.8954	0.06	0.8847		1600	0.8751	0.00	0.8856	0.97	0.8966	0.03	0.8859
	1700	0.8806	0.10	0.8877	0.83	0.8952	0.08	0.8875		1700	0.8790	0.00	0.8854	0.95	0.8953	0.05	0.8860
1-Feb-10	0900	0.8975	0.04	0.8986	0.89	0.8954	0.07	0.8983	21-Aug-10	0900	0.8910	0.00	0.9005	0.92	0.8938	0.08	0.9000
	1000	0.8966	0.02	0.8988	0.89	0.8945	0.08	0.8984		1000	0.8934	0.00	0.9048	0.92	0.8946	0.08	0.9040
	1100	0.8995	0.02	0.9008	0.88	0.8940	0.09	0.9001		1100	0.8988	0.00	0.9061	0.90	0.8947	0.10	0.9050
	1200	0.9390	0.04	0.8997	0.87	0.8967	0.09	0.9008		1200	0.9374	0.00	0.9057	0.92	0.8953	0.08	0.9049
	1300	0.8841	0.05	0.8718	0.92	0.8963	0.04	0.8733		1300	0.8785	0.00	0.8996	0.90	0.8954	0.10	0.8992
	1400	0.8801	0.04	0.8884	0.92	0.8961	0.05	0.8885		1400	0.8789	0.00	0.8894	0.90	0.8952	0.10	0.8900
	1500	0.8771	0.02	0.8880	0.92	0.8960	0.06	0.8883		1500	0.8776	0.00	0.8863	0.91	0.8955	0.09	0.8871
	1600	0.8764	0.02	0.8884	0.92	0.8953	0.06	0.8885		1600	0.8745	0.00	0.8862	0.91	0.8953	0.09	0.8870
	1700	0.8785	0.04	0.8883	0.91	0.8952	0.06	0.8884		1700	0.8807	0.00	0.8837	0.90	0.8953	0.10	0.8849
1-Mar-10	0900	0.8955	0.04	0.8994	0.83	0.8954	0.13	0.8987	21-Sep-10	0900	0.8947	0.02	0.9018	0.92	0.8959	0.06	0.9013
	1000	0.8924	0.03	0.9026	0.85	0.8955	0.12	0.9014		1000	0.8962	0.00	0.9018	0.96	0.8965	0.04	0.9016
	1100	0.8974	0.03	0.9022	0.87	0.8952	0.10	0.9013		1100	0.8965	0.01	0.9027	0.96	0.8967	0.03	0.9025
	1200	0.9392	0.03	0.9034	0.86	0.9323	0.11	0.9076		1200	0.9034	0.01	0.9030	0.93	0.8943	0.06	0.9025
	1300	0.8835	0.02	0.8964	0.90	0.9323	0.08	0.8988		1300	0.8805	0.00	0.8947	0.97	0.8951	0.03	0.8947
	1400	0.8784	0.03	0.8891	0.88	0.8951	0.09	0.8893		1400	0.8769	0.00	0.8889	0.97	0.8960	0.03	0.8891
	1500	0.8766	0.03	0.8871	0.87	0.8954	0.10	0.8875		1500	0.8769	0.00	0.8865	0.98	0.8935	0.02	0.8867
	1600	0.8746	0.03	0.8844	0.89	0.8952	0.08	0.8849		1600	0.8770	0.00	0.8863	0.99	0.8953	0.01	0.8864
	1700	0.8790	0.03	0.8851	0.89	0.8954	0.08	0.8857		1700	0.8788	0.00	0.8855	0.99	0.8954	0.01	0.8856
1-Apr-10	0900	0.8920	0.00	0.9010	0.88	0.8969	0.12	0.9005	21-Oct-10	0900	0.8956	0.03	0.9005	0.97	0.8953	0.00	0.9004
	1000	0.8973	0.00	0.9047	0.90	0.8941	0.10	0.9036		1000	0.8984	0.04	0.9010	0.96	0.8937	0.00	0.9009
	1100	0.8985	0.00	0.9063	0.89	0.8945	0.11	0.9049		1100	0.9008	0.01	0.8999	0.99	0.8949	0.00	0.8999
	1200	0.9373	0.00	0.9072	0.90	0.8953	0.10	0.9060		1200	0.8995	0.00	0.8993	1.00	0.8959	0.00	0.8993
	1300	0.8793	0.00	0.8989	0.92	0.8956	0.08	0.8986		1300	0.8821	0.02	0.8933	0.97	0.8940	0.01	0.8930
	1400	0.8785	0.00	0.8886	0.92	0.8957	0.08	0.8891		1400	0.8778	0.02	0.8884	0.97	0.8954	0.01	0.8882
	1500	0.8773	0.00	0.8866	0.89	0.8963	0.11	0.8877		1500	0.8743	0.02	0.8864	0.97	0.8971	0.01	0.8863
	1600	0.8753	0.00	0.8862	0.89	0.8966	0.11	0.8874		1600	0.8773	0.01	0.8867	0.98	0.8953	0.01	0.8867
	1700	0.8810	0.00	0.8853	0.88	0.8953	0.12	0.8865		1700	0.8821	0.03	0.8876	0.96	0.8955	0.01	0.8875
1-May-10	0900	0.8917	0.02	0.9014	0.96	0.8946	0.02	0.9011	21-Nov-10	0900	0.8980	0.12	0.9004	0.84	0.8953	0.03	0.8999
	1000	0.8973	0.01	0.9038	0.97	0.8958	0.02	0.9036		1000	0.8982	0.17	0.8976	0.80	0.8962	0.03	0.8977
	1100	0.8987	0.01	0.9077	0.94	0.8964	0.05	0.9070		1100	0.8983	0.17	0.9013	0.80	0.8937	0.03	0.9006
	1200	0.9028	0.02	0.9106	0.91	0.8962	0.06	0.9095		1200	0.9008	0.14	0.8978	0.82	0.8950	0.03	0.8982
	1300	0.8809	0.01	0.8994	0.94	0.8939	0.05	0.8989		1300	0.8837	0.12	0.8916	0.83	0.8963	0.04	0.8909
	1400	0.8784	0.02	0.8895	0.88	0.8949	0.10	0.8898		1400	0.8790	0.16	0.8879	0.79	0.8938	0.06	0.8868
	1500	0.8776	0.02	0.8864	0.90	0.8952	0.08	0.8869		1500	0.8733	0.16	0.8866	0.79	0.8954	0.06	0.8850
	1600	0.8745	0.02	0.8861	0.89	0.8948	0.09	0.8866		1600	0.8758	0.16	0.8890	0.79	0.8954	0.06	0.8873
	1700	0.8819	0.02	0.8853	0.88	0.8953	0.10	0.8862		1700	0.8811	0.13	0.8885	0.80	0.8952	0.07	0.8879
1-Jun-10	0900	0.8920	0.00	0.9011	0.89	0.8950	0.11	0.9004	21-Dec-10	0900	0.8960	0.14	0.8978	0.85	0.8952	0.01	0.8975
	1000	0.8973	0.00	0.9035	0.89	0.8961	0.11	0.9027		1000	0.8965	0.19	0.8972	0.77	0.8953	0.03	0.8970
	1100	0.8989	0.00	0.9073	0.89	0.8965	0.11	0.9061		1100	0.8996	0.18	0.8989	0.78	0.8935	0.03	0.8989
	1200	0.9379	0.00	0.9101	0.88	0.8937	0.12	0.9081		1200	0.9187	0.16	0.8960	0.81	0.8942	0.03	0.8996
	1300	0.8827	0.00	0.9002	0.92	0.8938	0.08	0.8997		1300	0.8806	0.16	0.8930	0.82	0.8948	0.02	0.8910
	1400	0.8800	0.00	0.8888	0.93	0.8944	0.07	0.8892		1400	0.8777	0.19	0.8892	0.78	0.8953	0.02	0.8871
	1500	0.8774	0.00	0.8866	0.97	0.8943	0.03	0.8869		1500	0.8753	0.20	0.8879	0.77	0.8953	0.02	0.8855
	1600	0.8751	0.00	0.8855	0.93	0.8971	0.07	0.8863		1600	0.8755	0.17	0.8853	0.81	0.8953	0.02	0.8838
			0.00	0.0000	3.70	0.0771											

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 2

Date	Time	$\mathbf{P}_{FS,PG,C}$	P_C	$\mathbf{P}_{FX,PG,P}$	P_P	$\mathbf{P}_{FX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	P_C	$\mathrm{P}_{VX,PG,P}$	P_P	$\mathrm{P}_{\mathrm{FS},PG,O}$	P_O	$\mathbf{P}_{FX,PG,R}$
21-Jan-10	0900	0.9849	0.05	0.9869	0.80	0.9875	0.15	0.9869	21-Jul-10	0900	0.9805	0.00	0.9822	0.92	0.9821	0.08	0.9822
	1000	0.9810	0.06	0.9808	0.81	0.9845	0.13	0.9813		1000	0.9793	0.00	0.9799	0.91	0.9792	0.09	0.9799
	1100	0.9795	0.06	0.9766	0.81	0.9820	0.13	0.9775		1100	0.9789	0.00	0.9823	0.91	0.9773	0.09	0.9819
	1200	0.9684	0.08	0.9719	0.80	0.9808	0.13	0.9728		1200	0.9678	0.00	0.9806	0.91	0.9764	0.09	0.9803
	1300	0.9627	0.08	0.9669	0.83	0.9807	0.10	0.9679		1300	0.9587	0.00	0.9764	0.96	0.9764	0.04	0.9764
	1400	0.9389	0.08	0.9621	0.84	0.9814	0.09	0.9620		1400	0.9316	0.00	0.9662	0.97	0.9775	0.03	0.9666
	1500	0.9111	0.09	0.9594	0.83	0.9837	0.09	0.9574		1500	0.9000	0.00	0.9493	0.97	0.9793	0.03	0.9503
	1600	0.9140	0.11	0.9674	0.83	0.9870	0.06	0.9629		1600	0.8901	0.00	0.9448	0.97	0.9823	0.03	0.9461
	1700	0.9439	0.10	0.9844	0.83	0.9913	0.08	0.9810		1700	0.8959	0.00	0.9601	0.95	0.9858	0.05	0.9615
21-Feb-10	0900	0.9823	0.04	0.9850	0.89	0.9859	0.07	0.9850	21-Aug-10	0900	0.9809	0.00	0.9815	0.92	0.9819	0.08	0.9815
	1000	0.9801	0.02	0.9806	0.89	0.9824	0.08	0.9808		1000	0.9795	0.00	0.9812	0.92	0.9789	0.08	0.9810
	1100	0.9797	0.02	0.9766	0.88	0.9805	0.09	0.9770		1100	0.9790	0.00	0.9813	0.90	0.9780	0.10	0.9810
	1200	0.9746	0.04	0.9729	0.87	0.9790	0.09	0.9735		1200	0.9677	0.00	0.9808	0.92	0.9765	0.08	0.9805
	1300	0.9631	0.05	0.9678	0.92	0.9786	0.04	0.9680		1300	0.9562	0.00	0.9764	0.90	0.9765	0.10	0.9764
	1400	0.9357	0.04	0.9610	0.92	0.9802	0.05	0.9610		1400	0.9293	0.00	0.9640	0.90	0.9767	0.10	0.9653
	1500	0.9053	0.02	0.9519	0.92	0.9820	0.06	0.9526		1500	0.8974	0.00	0.9485	0.91	0.9797	0.09	0.9511
	1600	0.9000	0.02	0.9575	0.92	0.9850	0.06	0.9578		1600	0.8887	0.00	0.9467	0.91	0.9827	0.09	0.9498
	1700	0.9140	0.04	0.9759	0.91	0.9892	0.06	0.9745		1700	0.8884	0.00	0.9646	0.90	0.9868	0.10	0.9667
21-Mar-10	0900	0.9807	0.04	0.9825	0.83	0.9840	0.13	0.9826	21-Sep-10	0900	0.9811	0.02	0.9821	0.92	0.9832	0.06	0.9821
	1000	0.9808	0.03	0.9793	0.85	0.9807	0.12	0.9796		1000	0.9805	0.00	0.9786	0.96	0.9797	0.04	0.9786
	1100	0.9798	0.03	0.9784	0.87	0.9784	0.10	0.9785		1100	0.9792	0.01	0.9790	0.96	0.9782	0.03	0.9789
	1200	0.9720	0.03	0.9768	0.86	0.9782	0.11	0.9768		1200	0.9565	0.01	0.9760	0.93	0.9777	0.06	0.9759
	1300	0.9590	0.02	0.9710	0.90	0.9782	0.08	0.9713		1300	0.9515	0.00	0.9694	0.97	0.9782	0.03	0.9697
	1400	0.9310	0.03	0.9608	0.88	0.9784	0.09	0.9614		1400	0.9260	0.00	0.9589	0.97	0.9784	0.03	0.9596
	1500	0.8995	0.03	0.9486	0.87	0.9805	0.10	0.9501		1500	0.8958	0.00	0.9462	0.98	0.9813	0.02	0.9470
	1600	0.8925	0.03	0.9511	0.89	0.9838	0.08	0.9517		1600	0.8949	0.00	0.9541	0.99	0.9844	0.01	0.9545
	1700	0.8915	0.03	0.9700	0.89	0.9880	0.08	0.9689		1700	0.8912	0.00	0.9738	0.99	0.9892	0.01	0.9740
21-Apr-10	0900	0.9807	0.00	0.9818	0.88	0.9824	0.12	0.9819	21-Oct-10	0900	0.9817	0.03	0.9823	0.97	0.9843	0.00	0.9823
	1000	0.9793	0.00	0.9810	0.90	0.9795	0.10	0.9808		1000	0.9800	0.04	0.9784	0.96	0.9813	0.00	0.9785
	1100	0.9786	0.00	0.9813	0.89	0.9778	0.11	0.9809		1100	0.9790	0.01	0.9754	0.99	0.9791	0.00	0.9754
	1200	0.9675	0.00	0.9816	0.90	0.9765	0.10	0.9811		1200	0.9674	0.00	0.9704	1.00	0.9784	0.00	0.9704
	1300	0.9544	0.00	0.9757	0.92	0.9768	0.08	0.9758		1300	0.9483	0.02	0.9640	0.97	0.9793	0.01	0.9638
	1400	0.9276	0.00	0.9629	0.92	0.9773	0.08	0.9641		1400	0.9151	0.02	0.9561	0.97	0.9807	0.01	0.9555
	1500	0.8960	0.00	0.9473	0.89	0.9804	0.11	0.9510		1500	0.9008	0.02	0.9527	0.97	0.9825	0.01	0.9519
	1600	0.8893	0.00	0.9479	0.89	0.9835	0.11	0.9518		1600	0.9064	0.01	0.9652	0.98	0.9868	0.01	0.9648
	1700	0.8860	0.00	0.9659	0.88	0.9872	0.12	0.9685		1700	0.9303	0.03	0.9855	0.96	0.9918	0.01	0.9838
21-May-10	0900	0.9804	0.02	0.9813	0.96	0.9810	0.02	0.9812	21-Nov-10	0900	0.9822	0.12	0.9843	0.84	0.9858	0.03	0.9841
	1000	0.9791	0.01	0.9803	0.97	0.9782	0.02	0.9803		1000	0.9805	0.17	0.9793	0.80	0.9833	0.03	0.9796
	1100	0.9786	0.01	0.9829	0.94	0.9768	0.05	0.9825		1100	0.9785	0.17	0.9741	0.80	0.9813	0.03	0.9750
	1200	0.9574	0.02	0.9792	0.91	0.9762	0.06	0.9785		1200	0.9659	0.14	0.9693	0.82	0.9803	0.03	0.9692
	1300	0.9540	0.01	0.9766	0.94	0.9768	0.05	0.9764		1300	0.9515	0.12	0.9644	0.83	0.9812	0.04	0.9636
	1400	0.9286	0.02	0.9648	0.88	0.9782	0.10	0.9653		1400	0.9201	0.16	0.9592	0.79	0.9819	0.06	0.9544
	1500	0.8974	0.02	0.9486	0.90	0.9795	0.08	0.9498		1500	0.9091	0.16	0.9594	0.79	0.9848	0.06	0.9530
	1600	0.8896	0.02	0.9471	0.89	0.9825	0.09	0.9489		1600	0.9238	0.16	0.9744	0.79	0.9885	0.06	0.9674
	1700	0.8964	0.02	0.9631	0.88	0.9866	0.10	0.9639		1700	0.9655	0.13	0.9911	0.80	0.9940	0.07	0.9879
21-Jun-10	0900	0.9804	0.00	0.9811	0.89	0.9812	0.11	0.9811	21-Dec-10	0900	0.9849	0.14	0.9866	0.85	0.9874	0.01	0.9863
	1000	0.9791	0.00	0.9799	0.89	0.9786	0.11	0.9798		1000	0.9819	0.19	0.9807	0.77	0.9837	0.03	0.9810
	1100	0.9788	0.00	0.9826	0.89	0.9771	0.11	0.9820		1100	0.9798	0.18	0.9751	0.78	0.9817	0.03	0.9761
	1200	0.9676	0.00	0.9793	0.88	0.9764	0.12	0.9789		1200	0.9673	0.16	0.9712	0.81	0.9806	0.03	0.9709
	1300	0.9568	0.00	0.9764	0.92	0.9766	0.08	0.9764		1300	0.9581	0.16	0.9662	0.82	0.9810	0.02	0.9652
	1400	0.9310	0.00	0.9660	0.93	0.9777	0.07	0.9667		1400	0.9273	0.19	0.9628	0.78	0.9827	0.02	0.9563
	1500	0.8998	0.00	0.9498	0.97	0.9795	0.03	0.9508		1500	0.9141	0.20	0.9618	0.77	0.9849	0.02	0.9525
	1600	0.8910	0.00	0.9463	0.93	0.9826	0.07	0.9487		1600	0.9252	0.17	0.9737	0.81	0.9884	0.02	0.9657
	1700	0.8987	0.00	0.9598	0.93	0.9858	0.07	0.9615		1700	0.9655	0.15	0.9905	0.83	0.9933	0.02	0.9868

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 2

Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{EX,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.0152	0.05	0.0118	0.80	0.0108	0.15	0.0119	21-Jul-10	0900	0.0176	0.00	0.0219	0.92	0.0196	0.08	0.0218
	1000	0.0197	0.06	0.0219	0.81	0.0159	0.13	0.0210		1000	0.0185	0.00	0.0242	0.91	0.0242	0.09	0.0242
	1100	0.0242	0.06	0.0311	0.81	0.0197	0.13	0.0292		1100	0.0196	0.00	0.0195	0.91	0.0288	0.09	0.0203
	1200	0.0524	0.08	0.0405	0.80	0.0219	0.13	0.0390		1200	0.0524	0.00	0.0195	0.91	0.0311	0.09	0.0205
	1300	0.0620	0.08	0.0524	0.83	0.0219	0.10	0.0502		1300	0.0669	0.00	0.0288	0.96	0.0311	0.04	0.0289
	1400	0.1309	0.08	0.0596	0.84	0.0197	0.09	0.0616		1400	0.1537	0.00	0.0500	0.97	0.0288	0.03	0.0494
	1500	0.1671	0.09	0.0548	0.83	0.0166	0.09	0.0612		1500	0.2077	0.00	0.0741	0.97	0.0242	0.03	0.0725
	1600	0.1604	0.11	0.0358	0.83	0.0116	0.06	0.0476		1600	0.2341	0.00	0.0765	0.97	0.0195	0.03	0.0746
	1700	0.0765	0.10	0.0106	0.83	0.0057	0.08	0.0166		1700	0.2036	0.00	0.0476	0.95	0.0132	0.05	0.0458
21-Feb-10	0900	0.0156	0.04	0.0150	0.89	0.0131	0.07	0.0149	21-Aug-10	0900	0.0174	0.00	0.0219	0.92	0.0189	0.08	0.0217
	1000	0.0189	0.02	0.0242	0.89	0.0186	0.08	0.0236		1000	0.0185	0.00	0.0242	0.92	0.0242	0.08	0.0242
	1100	0.0219	0.02	0.0311	0.88	0.0219	0.09	0.0300		1100	0.0197	0.00	0.0219	0.90	0.0288	0.10	0.0226
	1200	0.0476	0.04	0.0381	0.87	0.0242	0.09	0.0372		1200	0.0524	0.00	0.0197	0.92	0.0311	0.08	0.0205
	1300	0.0596	0.05	0.0476	0.92	0.0242	0.04	0.0474		1300	0.0717	0.00	0.0288	0.90	0.0311	0.10	0.0290
	1400	0.1378	0.04	0.0620	0.92	0.0242	0.05	0.0629		1400	0.1582	0.00	0.0524	0.90	0.0288	0.10	0.0501
	1500	0.1909	0.02	0.0693	0.92	0.0197	0.06	0.0692		1500	0.2139	0.00	0.0789	0.91	0.0242	0.09	0.0742
	1600	0.1952	0.02	0.0524	0.92	0.0145	0.06	0.0536		1600	0.2360	0.00	0.0741	0.91	0.0183	0.09	0.0693
	1700	0.1309	0.04	0.0197	0.91	0.0082	0.06	0.0229		1700	0.1909	0.00	0.0381	0.90	0.0117	0.10	0.0356
21-Mar-10	0900	0.0168	0.04	0.0184	0.83	0.0163	0.13	0.0180	21-Sep-10	0900	0.0175	0.02	0.0197	0.92	0.0180	0.06	0.0195
	1000	0.0188	0.03	0.0242	0.85	0.0219	0.12	0.0238		1000	0.0191	0.00	0.0242	0.96	0.0242	0.04	0.0242
	1100	0.0197	0.03	0.0265	0.87	0.0265	0.10	0.0263		1100	0.0219	0.01	0.0265	0.96	0.0265	0.03	0.0264
	1200	0.0644	0.03	0.0265	0.86	0.0288	0.11	0.0280		1200	0.0405	0.01	0.0288	0.93	0.0288	0.06	0.0289
	1300	0.0693	0.02	0.0381	0.90	0.0288	0.08	0.0381		1300	0.0909	0.00	0.0429	0.97	0.0288	0.03	0.0424
	1400	0.1537	0.03	0.0596	0.88	0.0265	0.09	0.0598		1400	0.1693	0.00	0.0644	0.97	0.0265	0.03	0.0632
	1500	0.2098	0.03	0.0765	0.87	0.0219	0.10	0.0755		1500	0.2180	0.00	0.0765	0.98	0.0219	0.02	0.0753
	1600	0.2261	0.03	0.0644	0.89	0.0165	0.08	0.0661		1600	0.2200	0.00	0.0572	0.99	0.0152	0.01	0.0568
	1700	0.1671	0.03	0.0288	0.89	0.0099	0.08	0.0318		1700	0.1401	0.00	0.0219	0.99	0.0085	0.01	0.0218
21-Apr-10	0900	0.0176	0.00	0.0219	0.88	0.0194	0.12	0.0216	21-Oct-10	0900	0.0174	0.03	0.0197	0.97	0.0161	0.00	0.0196
21 /tp: 10	1000	0.0176	0.00	0.0242	0.90	0.0242	0.10	0.0242	21 000 10	1000	0.0219	0.04	0.0288	0.96	0.0219	0.00	0.0285
	1100	0.0197	0.00	0.0219	0.89	0.0288	0.11	0.0227		1100	0.0242	0.01	0.0334	0.99	0.0242	0.00	0.0333
	1200	0.0524	0.00	0.0197	0.90	0.0288	0.10	0.0227		1200	0.0242	0.00	0.0405	1.00	0.0242	0.00	0.0405
	1300	0.0324	0.00	0.0311	0.92	0.0311	0.08	0.0200		1300	0.1028	0.02	0.0548	0.97	0.0242	0.00	0.0555
	1400	0.1649	0.00	0.0548	0.92	0.0265	0.08	0.0526		1400	0.1623	0.02	0.0693	0.97	0.0242	0.01	0.0709
	1500	0.2180	0.00	0.0789	0.92	0.0242	0.11	0.0728		1500	0.2036	0.02	0.0644	0.97	0.0219	0.01	0.0669
	1600	0.2160	0.00	0.0789	0.89	0.0242	0.11	0.0728		1600	0.2030	0.02	0.0358	0.98	0.0174	0.01	0.0371
	1700	0.2300	0.00	0.0717	0.89	0.0177	0.11	0.0037		1700	0.1780	0.01	0.0090	0.96	0.0051	0.01	0.0371
21-May-10	0900	0.0178	0.02	0.0242	0.96	0.0197	0.02	0.0240	21-Nov-10	0900	0.0174	0.12	0.0163	0.84	0.0132	0.03	0.0163
	1000	0.0186	0.01	0.0219	0.97	0.0265	0.02	0.0220		1000	0.0219	0.17	0.0265	0.80	0.0178	0.03	0.0254
	1100	0.0197	0.01	0.0189	0.94	0.0288	0.05	0.0194		1100	0.0242	0.17	0.0358	0.80	0.0219	0.03	0.0334
	1200	0.0381	0.02	0.0242	0.91	0.0311	0.06	0.0249		1200	0.0381	0.14	0.0453	0.82	0.0219	0.03	0.0435
	1300	0.0837	0.01	0.0288	0.94	0.0311	0.05	0.0295		1300	0.0933	0.12	0.0572	0.83	0.0219	0.04	0.0601
	1400	0.1627	0.02	0.0524	0.88	0.0288	0.10	0.0525		1400	0.1515	0.16	0.0596	0.79	0.0190	0.06	0.0717
	1500	0.2160	0.02	0.0765	0.90	0.0242	0.08	0.0756		1500	0.1737	0.16	0.0500	0.79	0.0147	0.06	0.0673
	1600	0.2341	0.02	0.0741	0.89	0.0185	0.09	0.0727		1600	0.1355	0.16	0.0242	0.79	0.0093	0.06	0.0407
	1700	0.1931	0.02	0.0405	0.88	0.0120	0.10	0.0410		1700	0.0334	0.13	0.0043	0.80	0.0033	0.07	0.0081
21-Jun-10	0900	0.0178	0.00	0.0242	0.89	0.0197	0.11	0.0237	21-Dec-10	0900	0.0158	0.14	0.0126	0.85	0.0110	0.01	0.0130
	1000	0.0186	0.00	0.0242	0.89	0.0265	0.11	0.0245		1000	0.0197	0.19	0.0219	0.77	0.0157	0.03	0.0213
	1100	0.0197	0.00	0.0190	0.89	0.0288	0.11	0.0201		1100	0.0242	0.18	0.0311	0.78	0.0191	0.03	0.0295
	1200	0.0524	0.00	0.0219	0.88	0.0311	0.12	0.0231		1200	0.0476	0.16	0.0429	0.81	0.0197	0.03	0.0429
	1300	0.0717	0.00	0.0288	0.92	0.0311	0.08	0.0290		1300	0.0741	0.16	0.0524	0.82	0.0197	0.02	0.0552
	1400	0.1537	0.00	0.0500	0.93	0.0288	0.07	0.0486		1400	0.1309	0.19	0.0548	0.78	0.0183	0.02	0.0688
	1500	0.2098	0.00	0.0765	0.97	0.0242	0.03	0.0747		1500	0.1604	0.20	0.0453	0.77	0.0144	0.02	0.0681
	1600	0.2321	0.00	0.0765	0.93	0.0193	0.07	0.0727		1600	0.1332	0.17	0.0242	0.81	0.0094	0.02	0.0426
	1700	0.2057	0.00	0.0453	0.93	0.0130	0.07	0.0431		1700	0.0381	0.15	0.0050	0.83	0.0037	0.02	0.0100

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 2

1	Date	Time	$\mathbf{P}_{ES,BS,C}$	P_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,RS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,BS,R}$
100	21-Jan-10									21-Jul-10								0.2497
1																		0.2622
1																		0.2414
140																		0.2542
1. 1. 1. 1. 1. 1. 1. 1.																		0.2985
1.00																		0.3892
14-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1																		0.4818
21-Hg-10																		0.4852
1		1700	0.4984	0.10	0.1493	0.83	0.0946	0.08	0.1790		1700	0.7113	0.00	0.3852	0.95	0.1727	0.05	0.3737
14 10 0 0 0 0 0 0 0 0	21-Feb-10	0900	0.1952	0.04	0.1908	0.89	0.1717	0.07	0.1896	21-Aug-10	0900	0.2103	0.00	0.2450	0.92	0.2200	0.08	0.2431
100		1000	0.2207	0.02	0.2629	0.89	0.2176	0.08	0.2582		1000	0.2187	0.00	0.2665	0.92	0.2594	0.08	0.2660
190		1100	0.2409	0.02	0.3081	0.88	0.2478	0.09	0.3008		1100	0.2332	0.00	0.2488	0.90	0.2844	0.10	0.2523
1400		1200	0.6565	0.04	0.3430	0.87	0.2656	0.09	0.3468		1200	0.6423	0.00	0.2444	0.92	0.2961	0.08	0.2483
1500 0.6995 0.02		1300	0.4342	0.05	0.3763	0.92	0.2670	0.04	0.3752		1300	0.4832	0.00	0.3022	0.90	0.2960	0.10	0.3016
1600 0.7075 0.02		1400	0.6261	0.04	0.4499	0.92	0.2543	0.05	0.4469		1400	0.6559	0.00	0.4145	0.90	0.2829	0.10	0.4018
1700		1500	0.6995	0.02	0.4710	0.92	0.2277	0.06	0.4621		1500	0.7249	0.00	0.4972	0.91	0.2565	0.09	0.4765
21-Mar-10 1000		1600	0.7075	0.02	0.4071	0.92	0.1844	0.06	0.4011		1600	0.7432	0.00	0.4818	0.91	0.2158	0.09	0.4589
1000		1700	0.6145	0.04	0.2369	0.91	0.1238	0.06	0.2435		1700	0.6952	0.00	0.3456	0.90	0.1585	0.10	0.3275
100	21-Mar-10			0.04		0.83			0.2195	21-Sep-10	0900						0.06	0.2390
1200				0.03		0.85	0.2432		0.2677		1000		0.00	0.2757				0.2747
1300				0.03		0.87	0.2706	0.10	0.2814		1100	0.2390	0.01				0.03	0.2808
1400		1200	0.7225	0.03	0.2988	0.86	0.3842	0.11	0.3217		1200	0.3866	0.01	0.3008	0.93	0.2857	0.06	0.3009
1500		1300	0.4686	0.02	0.3537	0.90	0.3842	0.08	0.3585		1300	0.5284	0.00	0.3697	0.97	0.2836	0.03	0.3669
1600		1400	0.6487	0.03	0.4425	0.88	0.2707	0.09	0.4344		1400	0.6720	0.00	0.4593	0.97	0.2678	0.03	0.4529
1700		1500	0.7188	0.03	0.4942	0.87	0.2439	0.10	0.4772		1500	0.7283	0.00	0.4957	0.98	0.2350	0.02	0.4899
21-Apr-10		1600	0.7338	0.03	0.4517	0.89	0.2009	0.08	0.4419		1600	0.7281	0.00	0.4304	0.99	0.1901	0.01	0.4277
1000 0.2224 0.00 0.2641 0.89 0.2669 0.10 0.26655 1.00 0.2366 0.04 0.2887 0.06 0.2449 0.00 0.25		1700	0.6630	0.03	0.2909	0.89	0.1408	0.08	0.2916		1700	0.6292	0.00	0.2453	0.99	0.1254	0.01	0.2439
1100	21-Apr-10									21-Oct-10								0.2317
1200																		0.2862
1300																		0.3217
1400																		0.3642
1500 0.7279 0.00 0.5910 0.89 0.2535 0.11 0.4735 1.500 0.7130 0.02 0.4538 0.7 0.2107 0.01 0.45 0.75																		0.4231
1600			0.6638	0.00														0.4706
1700 0.6854 0.00 0.3276 0.88 0.1522 0.12 0.3062 1700 0.4716 0.03 0.1332 0.96 0.0872 0.01 0.142																		0.4568
21-May-10 0900																		0.3396
1000		1700	0.6854	0.00	0.3276	0.88	0.1522	0.12	0.3062		1700	0.4716	0.03	0.1332	0.96	0.0872	0.01	0.1436
1100	21-May-10		0.2134	0.02	0.2554	0.96	0.2318		0.2539	21-Nov-10	0900	0.2009	0.12		0.84			0.2024
1200 0.3871 0.02 0.2800 0.91 0.3107 0.06 0.2837 1.200 0.3472 0.14 0.3798 0.82 0.2488 0.03 0.34 0.04			0.2229	0.01	0.2604	0.97	0.2685		0.2602		1000	0.2295	0.17	0.2764	0.80		0.03	0.2665
190		1100	0.2344	0.01	0.2335	0.94	0.2913	0.05	0.2367		1100	0.2560	0.17	0.3324	0.80	0.2349	0.03	0.3164
1400		1200	0.3871	0.02	0.2800	0.91	0.3017	0.06	0.2837		1200	0.3472	0.14	0.3798	0.82	0.2448	0.03	0.3706
1500 0.7249 0.92 0.4979 0.99 0.273 0.08 0.4838 1500 0.6807 0.16 0.2955 0.79 0.1865 0.06 0.425 0.79 0.1865 0.06 0.425 0.79 0.7945		1300	0.5044	0.01	0.3012	0.94	0.2975	0.05	0.3031		1300	0.5324	0.12	0.4197	0.83	0.2408	0.04	0.4255
1600		1400	0.6603	0.02	0.4133	0.88	0.2837	0.10	0.4060		1400	0.6485	0.16	0.4391	0.79	0.2200	0.06	0.4595
21-Jun-10 0,698 0,02 0,355 0,88 0,162 0,10 0,343 1700 0,3115 0,13 0,0771 0,80 0,0618 0,07 0,10		1500	0.7249	0.02	0.4970	0.90	0.2573	0.08	0.4838		1500	0.6807	0.16	0.3965	0.79	0.1865	0.06	0.4291
21-Jun-10 900 0.2136 0.00 0.2561 0.89 0.2309 0.11 0.2533 21-Dec-10 0900 0.1874 0.14 0.1696 0.85 0.1512 0.01 0.1512 0.01 0.1512 0.01 0.1512 0.01 0.1512 0.01 0.1512 0.01 0.1512 0.01 0.1512 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.		1600	0.7414	0.02	0.4829	0.89	0.2167	0.09	0.4656		1600	0.6293	0.16	0.2633	0.79	0.1345	0.06	0.3131
1000 0.2229 0.00 0.2620 0.89 0.2671 0.11 0.2625 1000 0.2204 0.19 0.2527 0.77 0.1946 0.03 0.252 0.89 0.2901 0.11 0.2413 1100 0.258 0.18 0.3164 0.78 0.2268 0.03 0.34 0.34 0.252 0.89 0.2901 0.12 0.2686 1200 0.4325 0.16 0.3661 0.81 0.2333 0.03 0.35 0.252 0.89 0.252 0.88 0.2984 1300 0.4798 0.16 0.4603 0.82 0.2517 0.02 0.41 0.4808 0.4808 0.4808 0.3902 0.2528 0.88 0.2984 1300 0.4798 0.16 0.4603 0.82 0.2517 0.02 0.41 0.4808 0.4808 0.382 0.382 0.382 0.383 0.3997 0.4809 0.4904 0.4908 0.4808 0.4908 0		1700	0.6980	0.02	0.3550	0.88	0.1622	0.10	0.3437		1700	0.3115	0.13	0.0771	0.80	0.0618	0.07	0.1073
1100 0.2336 0.00 0.2352 0.89 0.2901 0.11 0.2413 1100 0.2508 0.18 0.3164 0.78 0.2208 0.03 0.36 1200 0.6507 0.00 0.2644 0.88 0.2989 0.12 0.2866 1200 0.4325 0.16 0.3661 0.81 0.2333 0.03 0.35 1300 0.4808 0.00 0.2985 0.92 0.2982 0.08 0.2994 1300 0.4798 0.16 0.4053 0.82 0.2317 0.02 0.41 1400 0.6484 0.00 0.3982 0.93 0.2287 0.07 0.3907 1400 0.6178 0.19 0.4207 0.78 0.2158 0.02 0.45 1500 0.7180 0.00 0.4924 0.97 0.2608 0.03 0.4847 1500 0.630 0.20 0.3835 0.77 0.1842 0.02 0.45 1600 0.7393 0.00 0.4913 0.93 0.2246 0.07 0.4735 1600 0.6211 0.17 0.2600 0.81 0.157 0.02 0.31	21-Jun-10			0.00	0.2561		0.2309			21-Dec-10								0.1719
1200 0.6507 0.00 0.2644 0.88 0.2989 0.12 0.2686 1200 0.4325 0.16 0.3661 0.81 0.2333 0.03 0.37 1300 0.4808 0.00 0.2985 0.92 0.2982 0.08 0.2984 1300 0.4798 0.16 0.4053 0.82 0.2317 0.02 0.41 1400 0.6484 0.00 0.3982 0.93 0.2887 0.07 0.3997 1400 0.6178 0.19 0.4207 0.78 0.2185 0.02 0.44 1500 0.7180 0.00 0.4924 0.97 0.2608 0.03 0.4847 1500 0.6630 0.20 0.3835 0.77 0.1842 0.02 0.44 1600 0.7393 0.00 0.4913 0.93 0.2246 0.07 0.4735 1600 0.6211 0.17 0.2600 0.81 0.157 0.02 0.31		1000	0.2229	0.00	0.2620	0.89	0.2671	0.11	0.2625		1000	0.2204	0.19	0.2527	0.77	0.1946	0.03	0.2446
1300 0.4808 0.00 0.2985 0.92 0.2982 0.08 0.2984 1300 0.4798 0.16 0.4053 0.82 0.2317 0.02 0.41 1400 0.6484 0.00 0.3982 0.93 0.2857 0.07 0.3907 1400 0.6178 0.19 0.4207 0.78 0.2188 0.02 0.44 1500 0.7180 0.00 0.4924 0.97 0.2608 0.03 0.4847 1500 0.6211 0.17 0.2600 0.81 0.1577 0.1842 0.02 0.43 1600 0.7393 0.00 0.4913 0.93 0.2246 0.07 0.4735 1600 0.6211 0.17 0.2600 0.81 0.1557 0.02 0.33		1100	0.2336	0.00	0.2352	0.89	0.2901	0.11	0.2413		1100	0.2508	0.18	0.3164	0.78	0.2208	0.03	0.3013
1400 0.6484 0.00 0.3982 0.93 0.2887 0.07 0.3907 1400 0.6178 0.19 0.4207 0.78 0.2188 0.02 0.48 1500 0.7180 0.00 0.4924 0.97 0.2608 0.03 0.4847 1500 0.6630 0.20 0.3835 0.77 0.1842 0.02 0.43 1600 0.7393 0.00 0.4913 0.93 0.2246 0.07 0.4735 1600 0.6211 0.17 0.2600 0.81 0.1357 0.02 0.31		1200	0.6507	0.00		0.88	0.2989		0.2686		1200		0.16		0.81	0.2333		0.3725
1500 0.7180 0.00 0.4924 0.97 0.2608 0.03 0.4847 1500 0.6630 0.20 0.3835 0.77 0.1842 0.02 0.43 1600 0.7393 0.00 0.4913 0.93 0.2246 0.07 0.4735 1600 0.6211 0.17 0.2600 0.81 0.1357 0.02 0.31		1300	0.4808	0.00	0.2985	0.92	0.2982	0.08	0.2984		1300	0.4798	0.16	0.4053	0.82	0.2317	0.02	0.4136
1600 0.7393 0.00 0.4913 0.93 0.2246 0.07 0.4735 1600 0.6211 0.17 0.2600 0.81 0.1357 0.02 0.31		1400	0.6484	0.00	0.3982	0.93	0.2857	0.07	0.3907		1400	0.6178	0.19	0.4207	0.78	0.2158	0.02	0.4545
1600 0.7393 0.00 0.4913 0.93 0.2246 0.07 0.4735 1600 0.6211 0.17 0.2600 0.81 0.1357 0.02 0.31		1500	0.7180	0.00	0.4924	0.97	0.2608	0.03	0.4847		1500	0.6630	0.20	0.3835	0.77	0.1842	0.02	0.4363
		1600	0.7393	0.00	0.4913	0.93	0.2246	0.07			1600	0.6211	0.17	0.2600	0.81	0.1357	0.02	0.3194
		1700	0.7088	0.00	0.3787	0.93	0.1715	0.07	0.3649		1700	0.3418	0.15	0.0859	0.83	0.0676	0.02	0.1241

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 2

Date	Time	$\mathbf{P}_{ES,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{EX,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.9579	0.05	0.9579	0.80	0.9579	0.15	0.9579	21-Jul-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1000	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1100	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1100	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1200	0.9579	0.08	0.9579	0.80	0.9579	0.13	0.9579		1200	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1300	0.9579	0.08	0.9579	0.83	0.9579	0.10	0.9579		1300	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1400	0.9579	0.08	0.9579	0.84	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.09	0.9579	0.83	0.9579	0.09	0.9579		1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1600	0.9579	0.11	0.9579	0.83	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1700	0.9579	0.10	0.9579	0.83	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.95	0.9579	0.05	0.9579
21-Feb-10	0900	0.9579	0.04	0.9579	0.89	0.9579	0.07	0.9579	21-Aug-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.02	0.9579	0.89	0.9579	0.08	0.9579		1000	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1100	0.9579	0.02	0.9579	0.88	0.9579	0.09	0.9579		1100	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1200	0.9579	0.04	0.9579	0.87	0.9579	0.09	0.9579		1200	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1300	0.9579	0.05	0.9579	0.92	0.9579	0.04	0.9579		1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1400	0.9579	0.04	0.9579	0.92	0.9579	0.05	0.9579		1400	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1500	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1500	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1600	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1700	0.9579	0.04	0.9579	0.91	0.9579	0.06	0.9579		1700	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
21-Mar-10	0900	0.9579	0.04	0.9579	0.83	0.9579	0.13	0.9579	21-Sep-10	0900	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579
	1000	0.9579	0.03	0.9579	0.85	0.9579	0.12	0.9579		1000	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1100	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1100	0.9579	0.01	0.9579	0.96	0.9579	0.03	0.9579
	1200	0.9579	0.03	0.9579	0.86	0.9579	0.11	0.9579		1200	0.9579	0.01	0.9579	0.93	0.9579	0.06	0.9579
	1300	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1300	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1400	0.9579	0.03	0.9579	0.88	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1500	0.9579	0.00	0.9579	0.98	0.9579	0.02	0.9579
	1600	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1600	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
	1700	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
21-Apr-10	0900	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579	21-Oct-10	0900	0.9579	0.03	0.9579	0.97	0.9579	0.00	0.9579
	1000	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1000	0.9579	0.04	0.9579	0.96	0.9579	0.00	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.01	0.9579	0.99	0.9579	0.00	0.9579
	1200	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1200	0.9579	0.00	0.9579	1.00	0.9579	0.00	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1400	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1400	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1500	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1500	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1600	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1600	0.9579	0.01	0.9579	0.98	0.9579	0.01	0.9579
	1700	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1700	0.9579	0.03	0.9579	0.96	0.9579	0.01	0.9579
21-May-10	0900	0.9579	0.02	0.9579	0.96	0.9579	0.02	0.9579	21-Nov-10	0900	0.9579	0.12	0.9579	0.84	0.9579	0.03	0.9579
,	1000	0.9579	0.01	0.9579	0.97	0.9579	0.02	0.9579		1000	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1100	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1100	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1200	0.9579	0.02	0.9579	0.91	0.9579	0.06	0.9579		1200	0.9579	0.14	0.9579	0.82	0.9579	0.03	0.9579
	1300	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1300	0.9579	0.12	0.9579	0.83	0.9579	0.04	0.9579
	1400	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1400	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1500	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1500	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1600	0.9579	0.02	0.9579	0.89	0.9579	0.09	0.9579		1600	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1700	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1700	0.9579	0.13	0.9579	0.80	0.9579	0.07	0.9579
1-Jun-10	0900	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579	21-Dec-10	0900	0.9579	0.14	0.9579	0.85	0.9579	0.01	0.9579
	1000	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1000	0.9579	0.19	0.9579	0.77	0.9579	0.03	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.18	0.9579	0.78	0.9579	0.03	0.9579
	1200	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1200	0.9579	0.16	0.9579	0.81	0.9579	0.03	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.16	0.9579	0.82	0.9579	0.02	0.9579
	1400	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1400	0.9579	0.19	0.9579	0.78	0.9579	0.02	0.9579
	1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1500	0.9579	0.20	0.9579	0.77	0.9579	0.02	0.9579
	1600	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1600	0.9579	0.17	0.9579	0.81	0.9579	0.02	0.9579
	1700	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9579	0.15	0.9579	0.83	0.9579	0.02	0.9579
	1700	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9579	0.15	0.9579	0.83	0.9579	0.02	

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 2

Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{E \mathbf{X} U \mathbf{X} O}$	P_O	$\mathbf{P}_{EX,US,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{E \mathbf{X}, U \mathbf{X}, P}$	P_P	$\mathbf{P}_{E\mathbf{X},U\mathbf{X},O}$	P_O	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9258	0.05	0.9288	0.80	0.9257	0.15	0.9282	21-Jul-10	0900	0.9220	0.00	0.9329	0.92	0.9267	0.08	0.9324
	1000	0.9278	0.06	0.9295	0.81	0.9257	0.13	0.9289		1000	0.9281	0.00	0.9339	0.91	0.9241	0.09	0.9331
	1100	0.9284	0.06	0.9287	0.81	0.9265	0.13	0.9284		1100	0.9297	0.00	0.9372	0.91	0.9244	0.09	0.9361
	1200	0.9627	0.08	0.9283	0.80	0.9256	0.13	0.9305		1200	0.9653	0.00	0.9416	0.91	0.9240	0.09	0.9401
	1300	0.9137	0.08	0.9236	0.83	0.9259	0.10	0.9230		1300	0.9108	0.00	0.9305	0.96	0.9240	0.04	0.9302
	1400	0.9094	0.08	0.9197	0.84	0.9600	0.09	0.9224		1400	0.9080	0.00	0.9220	0.97	0.9245	0.03	0.9220
	1500	0.9053	0.09	0.9184	0.83	0.9252	0.09	0.9178		1500	0.9059	0.00	0.9174	0.97	0.9242	0.03	0.9176
	1600	0.9039	0.11	0.9148	0.83	0.9257	0.06	0.9143		1600	0.9037	0.00	0.9153	0.97	0.9270	0.03	0.9157
	1700	0.9099	0.10	0.9176	0.83	0.9255	0.08	0.9174		1700	0.9082	0.00	0.9152	0.95	0.9256	0.05	0.9157
21-Feb-10	0900	0.9279	0.04	0.9290	0.89	0.9258	0.07	0.9288	21-Aug-10	0900	0.9211	0.00	0.9310	0.92	0.9241	0.08	0.9304
	1000	0.9270	0.02	0.9293	0.89	0.9248	0.08	0.9289		1000	0.9237	0.00	0.9353	0.92	0.9250	0.08	0.9345
	1100	0.9300	0.02	0.9313	0.88	0.9243	0.09	0.9306		1100	0.9293	0.00	0.9367	0.90	0.9251	0.10	0.9355
	1200	0.9663	0.04	0.9302	0.87	0.9271	0.09	0.9312		1200	0.9650	0.00	0.9363	0.92	0.9257	0.08	0.9355
	1300	0.9137	0.05	0.9000	0.92	0.9267	0.04	0.9016		1300	0.9076	0.00	0.9301	0.90	0.9258	0.10	0.9296
	1400	0.9093	0.04	0.9184	0.92	0.9265	0.05	0.9184		1400	0.9081	0.00	0.9195	0.90	0.9256	0.10	0.9201
	1500	0.9059	0.02	0.9180	0.92	0.9264	0.06	0.9182		1500	0.9066	0.00	0.9161	0.91	0.9259	0.09	0.9170
	1600	0.9052	0.02	0.9183	0.92	0.9257	0.06	0.9185		1600	0.9031	0.00	0.9160	0.91	0.9257	0.09	0.9168
	1700	0.9075	0.04	0.9183	0.91	0.9256	0.06	0.9183		1700	0.9100	0.00	0.9133	0.90	0.9257	0.10	0.9145
21-Mar-10	0900	0.9259	0.04	0.9299	0.83	0.9257	0.13	0.9292	21-Sep-10	0900	0.9250	0.02	0.9323	0.92	0.9263	0.06	0.9318
	1000	0.9226	0.03	0.9331	0.85	0.9259	0.12	0.9319		1000	0.9266	0.00	0.9324	0.96	0.9269	0.04	0.9321
	1100	0.9279	0.03	0.9327	0.87	0.9256	0.10	0.9318		1100	0.9269	0.01	0.9333	0.96	0.9271	0.03	0.9330
	1200	0.9664	0.03	0.9339	0.86	0.9607	0.11	0.9378		1200	0.9339	0.01	0.9335	0.93	0.9246	0.06	0.9330
	1300	0.9131	0.02	0.9268	0.90	0.9607	0.08	0.9291		1300	0.9098	0.00	0.9251	0.97	0.9254	0.03	0.9251
	1400	0.9074	0.03	0.9191	0.88	0.9255	0.09	0.9193		1400	0.9058	0.00	0.9189	0.97	0.9264	0.03	0.9192
	1500	0.9054	0.03	0.9169	0.87	0.9258	0.10	0.9174		1500	0.9057	0.00	0.9164	0.98	0.9238	0.02	0.9165
	1600	0.9031	0.03	0.9141	0.89	0.9255	0.08	0.9146		1600	0.9059	0.00	0.9161	0.99	0.9257	0.01	0.9162
	1700	0.9081	0.03	0.9148	0.89	0.9258	0.08	0.9154		1700	0.9079	0.00	0.9153	0.99	0.9257	0.01	0.9154
21-Apr-10	0900	0.9222	0.00	0.9316	0.88	0.9274	0.12	0.9310	21-Oct-10	0900	0.9260	0.03	0.9310	0.97	0.9257	0.00	0.9309
	1000	0.9277	0.00	0.9352	0.90	0.9245	0.10	0.9342		1000	0.9289	0.04	0.9315	0.96	0.9240	0.00	0.9314
	1100	0.9290	0.00	0.9368	0.89	0.9248	0.11	0.9355		1100	0.9313	0.01	0.9304	0.99	0.9252	0.00	0.9304
	1200	0.9648	0.00	0.9377	0.90	0.9257	0.10	0.9365		1200	0.9300	0.00	0.9298	1.00	0.9263	0.00	0.9298
	1300	0.9085	0.00	0.9294	0.92	0.9260	0.08	0.9291		1300	0.9115	0.02	0.9236	0.97	0.9243	0.01	0.9233
	1400	0.9076	0.00	0.9186	0.92	0.9261	0.08	0.9191		1400	0.9068	0.02	0.9183	0.97	0.9258	0.01	0.9182
	1500	0.9062	0.00	0.9165	0.89	0.9267	0.11	0.9176		1500	0.9029	0.02	0.9162	0.97	0.9275	0.01	0.9161
	1600	0.9040	0.00	0.9160	0.89	0.9271	0.11	0.9172		1600	0.9063	0.01	0.9166	0.98	0.9256	0.01	0.9166
	1700	0.9104	0.00	0.9150	0.88	0.9257	0.12	0.9163		1700	0.9115	0.03	0.9175	0.96	0.9259	0.01	0.9174
21-May-10	0900	0.9219	0.02	0.9320	0.96	0.9249	0.02	0.9316	21-Nov-10	0900	0.9284	0.12	0.9309	0.84	0.9257	0.03	0.9304
	1000	0.9277	0.01	0.9344	0.97	0.9262	0.02	0.9341		1000	0.9287	0.17	0.9281	0.80	0.9266	0.03	0.9281
	1100	0.9292	0.01	0.9382	0.94	0.9268	0.05	0.9375		1100	0.9287	0.17	0.9319	0.80	0.9240	0.03	0.9311
	1200	0.9334	0.02	0.9410	0.91	0.9266	0.06	0.9399		1200	0.9313	0.14	0.9283	0.82	0.9254	0.03	0.9286
	1300	0.9102	0.01	0.9299	0.94	0.9242	0.05	0.9294		1300	0.9133	0.12	0.9218	0.83	0.9267	0.04	0.9210
	1400	0.9075	0.02	0.9196	0.88	0.9252	0.10	0.9199		1400	0.9081	0.16	0.9178	0.79	0.9241	0.06	0.9167
	1500	0.9066	0.02	0.9162	0.90	0.9256	0.08	0.9167		1500	0.9017	0.16	0.9165	0.79	0.9257	0.06	0.9147
	1600	0.9031	0.02	0.9159	0.89	0.9251	0.09	0.9165		1600	0.9045	0.16	0.9190	0.79	0.9258	0.06	0.9171
	1700	0.9114	0.02	0.9150	0.88	0.9257	0.10	0.9160		1700	0.9104	0.13	0.9185	0.80	0.9256	0.07	0.9179
21-Jun-10	0900	0.9222	0.00	0.9316	0.89	0.9254	0.11	0.9309	21-Dec-10	0900	0.9264	0.14	0.9283	0.85	0.9256	0.01	0.9280
	1000	0.9277	0.00	0.9341	0.89	0.9265	0.11	0.9332		1000	0.9270	0.19	0.9276	0.77	0.9257	0.03	0.9274
	1100	0.9294	0.00	0.9378	0.89	0.9270	0.11	0.9366		1100	0.9301	0.18	0.9294	0.78	0.9238	0.03	0.9294
	1200	0.9654	0.00	0.9406	0.88	0.9240	0.12	0.9385		1200	0.9487	0.16	0.9264	0.81	0.9246	0.03	0.9299
	1300	0.9122	0.00	0.9307	0.92	0.9241	0.08	0.9302		1300	0.9099	0.16	0.9233	0.82	0.9251	0.02	0.9211
	1400	0.9093	0.00	0.9188	0.93	0.9248	0.07	0.9192		1400	0.9067	0.19	0.9192	0.78	0.9257	0.02	0.9169
	1500	0.9064	0.00	0.9165	0.97	0.9246	0.03	0.9167		1500	0.9040	0.20	0.9178	0.77	0.9257	0.02	0.9152
	1600	0.9037	0.00	0.9152	0.93	0.9275	0.07	0.9161		1600	0.9042	0.17	0.9150	0.81	0.9257	0.02	0.9134
	1700	0.9093	0.00	0.9162	0.93	0.9257	0.07	0.9168		1700	0.9096	0.15	0.9183	0.83	0.9258	0.02	0.9172

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 2

Date	Time	$\mathbf{P}_{ES,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$
21-Jan-10	0900	0.9959	0.05	0.9966	0.80	0.9968	0.15	0.9965	21-Jul-10	0900	0.9942	0.00	0.9948	0.92	0.9948	0.08	0.9948
	1000	0.9943	0.06	0.9943	0.81	0.9957	0.13	0.9945		1000	0.9937	0.00	0.9939	0.91	0.9936	0.09	0.9939
	1100	0.9938	0.06	0.9925	0.81	0.9947	0.13	0.9929		1100	0.9935	0.00	0.9949	0.91	0.9928	0.09	0.9947
	1200	0.9888	0.08	0.9905	0.80	0.9943	0.13	0.9908		1200	0.9885	0.00	0.9942	0.91	0.9925	0.09	0.9941
	1300	0.9860	0.08	0.9881	0.83	0.9942	0.10	0.9885		1300	0.9840	0.00	0.9924	0.96	0.9925	0.04	0.9924
	1400	0.9727	0.08	0.9857	0.84	0.9945	0.09	0.9855		1400	0.9681	0.00	0.9878	0.97	0.9929	0.03	0.9879
	1500	0.9543	0.09	0.9843	0.83	0.9954	0.09	0.9827		1500	0.9462	0.00	0.9788	0.97	0.9937	0.03	0.9793
	1600	0.9563	0.11	0.9883	0.83	0.9966	0.06	0.9854		1600	0.9387	0.00	0.9762	0.97	0.9949	0.03	0.9768
	1700	0.9757	0.10	0.9957	0.83	0.9980	0.08	0.9939		1700	0.9431	0.00	0.9847	0.95	0.9962	0.05	0.9853
1-Feb-10	0900	0.9949	0.04	0.9959	0.89	0.9962	0.07	0.9959	21-Aug-10	0900	0.9943	0.00	0.9945	0.92	0.9947	0.08	0.9946
	1000	0.9940	0.02	0.9942	0.89	0.9949	0.08	0.9943		1000	0.9938	0.00	0.9944	0.92	0.9935	0.08	0.9943
	1100	0.9938	0.02	0.9925	0.88	0.9941	0.09	0.9927		1100	0.9935	0.00	0.9945	0.90	0.9931	0.10	0.9943
	1200	0.9917	0.04	0.9909	0.87	0.9935	0.09	0.9912		1200	0.9885	0.00	0.9943	0.92	0.9925	0.08	0.9941
	1300	0.9862	0.05	0.9885	0.92	0.9934	0.04	0.9886		1300	0.9826	0.00	0.9925	0.90	0.9925	0.10	0.9925
	1400	0.9707	0.04	0.9852	0.92	0.9940	0.05	0.9851		1400	0.9666	0.00	0.9867	0.90	0.9926	0.10	0.9873
	1500	0.9501	0.02	0.9803	0.92	0.9947	0.06	0.9804		1500	0.9443	0.00	0.9783	0.91	0.9938	0.09	0.9797
	1600	0.9462	0.02	0.9833	0.92	0.9959	0.06	0.9832		1600	0.9376	0.00	0.9773	0.91	0.9950	0.09	0.9789
	1700	0.9563	0.04	0.9922	0.91	0.9973	0.06	0.9913		1700	0.9373	0.00	0.9870	0.90	0.9965	0.10	0.9879
1-Mar-10	0900	0.9942	0.04	0.9949	0.83	0.9955	0.13	0.9950	21-Sep-10	0900	0.9944	0.02	0.9948	0.92	0.9952	0.06	0.9948
	1000	0.9943	0.03	0.9937	0.85	0.9942	0.12	0.9938		1000	0.9941	0.00	0.9934	0.96	0.9938	0.04	0.9934
	1100	0.9939	0.03	0.9933	0.87	0.9933	0.10	0.9933		1100	0.9936	0.01	0.9935	0.96	0.9932	0.03	0.9935
	1200	0.9905	0.03	0.9926	0.86	0.9932	0.11	0.9926		1200	0.9828	0.01	0.9923	0.93	0.9930	0.06	0.9922
	1300	0.9841	0.02	0.9901	0.90	0.9932	0.08	0.9902		1300	0.9801	0.00	0.9893	0.97	0.9932	0.03	0.9894
	1400	0.9677	0.03	0.9851	0.88	0.9933	0.09	0.9852		1400	0.9645	0.00	0.9841	0.97	0.9933	0.03	0.9844
	1500	0.9458	0.03	0.9784	0.87	0.9941	0.10	0.9789		1500	0.9430	0.00	0.9770	0.98	0.9945	0.02	0.9774
	1600	0.9405	0.03	0.9798	0.89	0.9954	0.08	0.9797		1600	0.9423	0.00	0.9815	0.99	0.9957	0.01	0.9817
	1700	0.9397	0.03	0.9896	0.89	0.9969	0.08	0.9885		1700	0.9395	0.00	0.9913	0.99	0.9974	0.01	0.9914
1-Apr-10	0900	0.9942	0.00	0.9947	0.88	0.9949	0.12	0.9947	21-Oct-10	0900	0.9946	0.03	0.9949	0.97	0.9956	0.00	0.9948
	1000	0.9937	0.00	0.9943	0.90	0.9938	0.10	0.9943		1000	0.9939	0.04	0.9933	0.96	0.9945	0.00	0.9933
	1100	0.9934	0.00	0.9945	0.89	0.9931	0.11	0.9943		1100	0.9936	0.01	0.9920	0.99	0.9936	0.00	0.9920
	1200	0.9884	0.00	0.9946	0.90	0.9925	0.10	0.9944		1200	0.9883	0.00	0.9898	1.00	0.9933	0.00	0.9898
	1300	0.9817	0.00	0.9921	0.92	0.9926	0.08	0.9922		1300	0.9783	0.02	0.9867	0.97	0.9937	0.01	0.9865
	1400	0.9656	0.00	0.9861	0.92	0.9928	0.08	0.9867		1400	0.9571	0.02	0.9826	0.97	0.9942	0.01	0.9822
	1500	0.9432	0.00	0.9777	0.89	0.9941	0.11	0.9795		1500	0.9468	0.02	0.9807	0.97	0.9949	0.01	0.9801
	1600	0.9380	0.00	0.9780	0.89	0.9953	0.11	0.9799		1600	0.9509	0.01	0.9873	0.98	0.9965	0.01	0.9870
	1700	0.9355	0.00	0.9876	0.88	0.9967	0.12	0.9887		1700	0.9673	0.03	0.9961	0.96	0.9982	0.01	0.9951
1-May-10	0900	0.9941	0.02	0.9944	0.96	0.9944	0.02	0.9944	21-Nov-10	0900	0.9948	0.12	0.9956	0.84	0.9962	0.03	0.9955
	1000	0.9936	0.01	0.9941	0.97	0.9932	0.02	0.9940		1000	0.9941	0.17	0.9937	0.80	0.9953	0.03	0.9938
	1100	0.9934	0.01	0.9951	0.94	0.9926	0.05	0.9949		1100	0.9933	0.17	0.9914	0.80	0.9945	0.03	0.9918
	1200	0.9833	0.02	0.9936	0.91	0.9924	0.06	0.9933		1200	0.9876	0.14	0.9893	0.82	0.9941	0.03	0.9892
	1300	0.9814	0.01	0.9925	0.94	0.9926	0.05	0.9924		1300	0.9800	0.12	0.9869	0.83	0.9944	0.04	0.9864
	1400	0.9662	0.02	0.9871	0.88	0.9932	0.10	0.9872		1400	0.9605	0.16	0.9842	0.79	0.9947	0.06	0.9811
	1500	0.9443	0.02	0.9784	0.90	0.9937	0.08	0.9788		1500	0.9528	0.16	0.9843	0.79	0.9958	0.06	0.9800
	1600	0.9383	0.02	0.9775	0.89	0.9949	0.09	0.9782		1600	0.9631	0.16	0.9916	0.79	0.9971	0.06	0.9875
	1700	0.9434	0.02	0.9862	0.88	0.9964	0.10	0.9863		1700	0.9874	0.13	0.9979	0.80	0.9988	0.07	0.9966
1-Jun-10	0900	0.9941	0.00	0.9944	0.89	0.9944	0.11	0.9944	21-Dec-10	0900	0.9958	0.14	0.9964	0.85	0.9967	0.01	0.9964
	1000	0.9936	0.00	0.9939	0.89	0.9934	0.11	0.9939	2	1000	0.9947	0.19	0.9942	0.77	0.9954	0.03	0.9944
	1100	0.9935	0.00	0.9950	0.89	0.9928	0.11	0.9947		1100	0.9939	0.18	0.9919	0.78	0.9946	0.03	0.9923
	1200	0.9884	0.00	0.9937	0.88	0.9925	0.12	0.9935		1200	0.9883	0.16	0.9902	0.81	0.9942	0.03	0.9900
	1300	0.9830	0.00	0.9924	0.92	0.9925	0.08	0.9924		1300	0.9836	0.16	0.9877	0.82	0.9944	0.03	0.9872
	1400	0.9677	0.00	0.9876	0.93	0.9930	0.03	0.9880		1400	0.9654	0.19	0.9861	0.78	0.9950	0.02	0.9822
	1500	0.9460	0.00	0.9791	0.97	0.9938	0.07	0.9386		1500	0.9564	0.20	0.9856	0.77	0.9958	0.02	0.9798
	1600	0.9394	0.00	0.9791	0.97	0.9950	0.03	0.9790		1600	0.9640	0.20	0.9830	0.77	0.9938	0.02	0.9867
	1700	0.9394	0.00	0.97/1	0.93	0.9950	0.07	0.9783		1700	0.9874	0.17	0.9913	0.81	0.9971	0.02	0.9867
	1/00	0.9432	0.00	0.9845	0.93	0.9902	0.07	0.7833		1/00	0.98/4	0.15	0.9977	0.63	0.9980	0.02	0.9962

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 3

1	Date	Time	$P_{FS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,BD,P}$	P_P	$\mathbf{P}_{VX,BD,O}$	P_O	$\mathbf{P}_{FS,BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},BD,O}$	P_O	$\mathbf{P}_{VS,BD,R}$
100	21-Jan-10									21-Jul-10								
140																		
1																		
1																		
1																		
14 15 16 16 16 17 18 18 18 18 18 18 18																	0.03	
21-Feb-1 100																		
2 1 2 2 2 3 3 3 3 3 3 3																		
Part		1700	0.0962	0.10	0.0646	0.83	0.0657	0.08	0.0678		1700	0.2466	0.00	0.1705	0.95	0.1052	0.05	0.1670
140	21-Feb-10	0900	0.1389	0.04	0.1382	0.89	0.1048	0.07	0.1359	21-Aug-10	0900	0.1843	0.00	0.2033		0.1285	0.08	0.1977
Part		1000	0.1393	0.02	0.1632	0.89	0.1273	0.08	0.1596		1000	0.2261	0.00	0.1972	0.92	0.1476	0.08	0.1934
1900 0.1287 0.05		1100	0.1339	0.02	0.1632	0.88	0.1393	0.09	0.1602		1100	0.2697	0.00	0.1556	0.90	0.1556	0.10	0.1556
1400		1200	0.1297	0.04	0.1476	0.87	0.1476	0.09	0.1470		1200	0.2261	0.00	0.1265	0.92	0.1632	0.08	0.1293
1500		1300	0.1287	0.05	0.1476	0.92	0.1476	0.04	0.1467		1300	0.2515	0.00	0.1274	0.90	0.1632	0.10	0.1309
1600		1400	0.1310	0.04	0.1556	0.92	0.1476	0.05	0.1543		1400	0.2697	0.00	0.1632	0.90	0.1556	0.10	0.1624
1700		1500	0.1361	0.02	0.1632	0.92	0.1315	0.06	0.1607		1500	0.2150	0.00	0.1972	0.91	0.1476	0.09	0.1929
21-Mar-10		1600	0.1354	0.02	0.1393	0.92	0.1109	0.06	0.1376		1600	0.1843	0.00	0.1972	0.91	0.1259	0.09	0.1910
1000		1700	0.1173	0.04	0.0940	0.91	0.0808	0.06	0.0940		1700	0.1775	0.00	0.1476	0.90	0.0983	0.10	0.1428
100	21-Mar-10	0900	0.2865	0.04	0.1705	0.83	0.1184	0.13	0.1687	21-Sep-10	0900	0.1632	0.02	0.1775	0.92	0.1249	0.06	0.1742
1200		1000	0.1476	0.03	0.1843	0.85	0.1391	0.12	0.1778		1000	0.1476	0.00	0.1775	0.96	0.1476	0.04	0.1762
1300		1100	0.1383	0.03	0.1632	0.87	0.1556	0.10	0.1616		1100	0.1372	0.01	0.1556	0.96	0.1556	0.03	0.1553
1400		1200	0.1331	0.03	0.1391	0.86	0.1556	0.11	0.1406		1200	0.1329	0.01	0.1350	0.93	0.1632	0.06	0.1365
1400		1300	0.1325	0.02	0.1379	0.90	0.1556	0.08	0.1391		1300	0.1334	0.00	0.1385	0.97	0.1556	0.03	0.1390
1500		1400	0.1379	0.03	0.1556	0.88	0.1556	0.09	0.1550		1400	0.1393	0.00	0.1632	0.97	0.1476	0.03	
1600 1607 1608 1609		1500	0.1476	0.03	0.1775	0.87	0.1393	0.10	0.1728		1500	0.1476	0.00	0.1843	0.98	0.1361	0.02	
1700 0.2207 0.03																		
100		1700	0.2207	0.03	0.1186	0.89	0.0895	0.08	0.1197		1700	0.1843	0.00	0.1043	0.99	0.0819	0.01	
1100	21-Apr-10	0900	0.1972	0.00	0.2033	0.88	0.1299	0.12	0.1943	21-Oct-10	0900	0.1393	0.03	0.1556	0.97	0.1173	0.00	0.1550
1200 0.1393 0.00 0.1254 0.90 0.1632 0.10 0.1292 0.1632 0.10 0.1296 0.02 0.1289 0.00 0.1476 0.00 0.1476 0.1476 0.147		1000	0.2366	0.00	0.1972	0.90	0.1476	0.10	0.1922		1000	0.1383	0.04	0.1632	0.96	0.1358	0.00	0.1621
1300		1100	0.1843	0.00	0.1556	0.89	0.1632	0.11	0.1564		1100	0.1317	0.01	0.1556	0.99	0.1476	0.00	0.1553
1400		1200	0.1393	0.00	0.1254	0.90	0.1632	0.10	0.1292		1200	0.1289	0.00	0.1476	1.00	0.1476	0.00	0.1476
1500 0.2466 0.00 0.1972 0.89 0.1476 0.11 0.1917 0.1918 0.100 0.1372 0.02 0.1556 0.07 0.1228 0.01 0.1548 0.100 0.1908 0.089 0		1300	0.1393	0.00	0.1289	0.92	0.1632	0.08	0.1316		1300	0.1296	0.02	0.1476	0.97	0.1476	0.01	0.1472
1600 1600		1400	0.2466	0.00	0.1632	0.92	0.1556	0.08	0.1626		1400	0.1345	0.02	0.1632	0.97	0.1393	0.01	0.1623
1600 1600		1500	0.2466	0.00	0.1972	0.89	0.1476	0.11	0.1917		1500	0.1372	0.02	0.1556	0.97	0.1228	0.01	0.1548
21-May-10 0900				0.00	0.1908	0.89	0.1236	0.11			1600				0.98	0.0980	0.01	
1000		1700	0.1705	0.00	0.1393	0.88	0.0951	0.12	0.1339		1700	0.1556	0.03	0.0620	0.96	0.0617	0.01	0.0650
1100	21-May-10	0900	0.2207	0.02	0.2207	0.96	0.1341	0.02	0.2188	21-Nov-10	0900	0.1292	0.12	0.1282	0.84	0.1051	0.03	0.1275
1 1 1 1 1 1 1 1 1 1		1000	0.1843	0.01	0.2093	0.97	0.1476	0.02	0.2077		1000	0.1303	0.17	0.1476	0.80	0.1243	0.03	0.1440
1300 0,1908 0,11 0,1375 0,28 0,152 0,105 0,1362 0,105 0,1365 0,105 0,1365 0,105 0,1267 0,1267 0,1267 0,1466 0,79 0,1285 0,06 0,1446 0,1466 0,1467 0,1275 0,16 0,1476 0,1476 0,1275 0,16 0,1476 0,1476 0,1275 0,16 0,1476 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1275 0,16 0,1476 0,1476 0,1275 0,1765 0,1476 0,147		1100	0.1775	0.01	0.1632	0.94	0.1632	0.05	0.1633		1100	0.1283	0.17	0.1556	0.80	0.1357	0.03	0.1503
1400		1200	0.1908	0.02	0.1476	0.91	0.1632	0.06	0.1495		1200	0.1266	0.14	0.1476	0.82	0.1393	0.03	0.1443
1500 0.1908 0.02 0.215 0.09 0.1476 0.08 0.094 0.094 1.500 0.1275 0.16 0.1345 0.09 0.1119 0.06 0.1212 0.105		1300	0.1908	0.01	0.1376	0.94	0.1632	0.05	0.1396		1300	0.1267	0.12	0.1476	0.83	0.1378	0.04	0.1446
1500 0.1908 0.02 0.215 0.09 0.1476 0.08 0.094 0.094 1.500 0.1275 0.16 0.1345 0.09 0.1119 0.06 0.1212 0.105		1400	0.1775	0.02	0.1775	0.88	0.1556	0.10	0.1754		1400	0.1278	0.16	0.1476	0.79	0.1285	0.06	0.1435
1600 0.2315 0.02 0.2093 0.89 0.1268 0.09 0.2056 1600 0.1148 0.16 0.0983 0.79 0.0864 0.06 0.1002		1500	0.1908	0.02	0.2150	0.90	0.1476	0.08	0.2094		1500	0.1275		0.1345	0.79	0.1119	0.06	0.1321
21-Jun-10 0.0417 0.02 0.1556 0.88 0.1001 0.10 0.1520 1700 0.0738 0.13 0.0403 0.80 0.0480 0.07 0.0452				0.02		0.89									0.79			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0.02							1700						0.07	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21-Jun-10	0900	0.2562	0.00	0.2207	0.89	0.1333	0.11	0.2110	21-Dec-10	0900	0.1213	0.14	0.1095	0.85	0.0949	0.01	0.1110
1100 0.1908 0.00 0.1705 0.89 0.1632 0.11 0.1696 1100 0.1269 0.18 0.1476 0.78 0.1289 0.03 0.1432 1200 0.1705 0.00 0.1556 0.88 0.1652 0.12 0.1565 1200 0.1256 0.16 0.1476 0.81 0.1347 0.03 0.1437 1300 0.1775 0.00 0.1476 0.92 0.1632 0.08 0.1488 1300 0.1253 0.16 0.1476 0.82 0.1338 0.02 0.1437 1400 0.1972 0.00 0.1775 0.93 0.1632 0.07 0.1765 1400 0.1255 0.19 0.1476 0.82 0.1338 0.02 0.1478 1500 0.2261 0.00 0.2261 0.00 0.1775 0.93 0.1632 0.07 0.1765 1400 0.1255 0.19 0.1476 0.78 0.1259 0.02 0.1429 1500 0.2261 0.00 0.2150 0.97 0.1476 0.03 0.2128 1500 0.1245 0.02 0.1290 0.77 0.106 0.02 0.1271 0.00 0.1255 0.19 0.1470 0.093 0.81 0.000 0.02 0.0981																		
1200 0.1705 0.00 0.1556 0.88 0.1632 0.12 0.1565 1200 0.1256 0.16 0.1476 0.81 0.1347 0.03 0.1437 1300 0.1775 0.00 0.1476 0.92 0.1632 0.08 0.1488 1300 0.1253 0.16 0.1476 0.82 0.1338 0.02 0.1437 1400 0.1972 0.00 0.1775 0.93 0.1652 0.07 0.1765 1400 0.1255 0.19 0.1476 0.78 0.1259 0.02 0.1439 1500 0.2261 0.00 0.2250 0.97 0.1476 0.03 0.2128 1500 0.1245 0.20 0.1290 0.77 0.1106 0.02 0.127 0.109 0.176 0		1100		0.00		0.89	0.1632	0.11			1100		0.18		0.78	0.1289	0.03	
1300 0.1775 0.00 0.1476 0.92 0.1632 0.08 0.1488 1300 0.1253 0.16 0.1476 0.82 0.1338 0.02 0.1437 1400 0.1972 0.00 0.1775 0.93 0.1632 0.07 0.1765 1400 0.1255 0.19 0.1476 0.78 0.1259 0.02 0.1429 1500 0.2608 0.00 0.2150 0.97 0.1476 0.03 0.2128 1500 0.1245 0.20 0.1290 0.77 0.1106 0.02 0.1277 1600 0.2608 0.00 0.2150 0.93 0.1297 0.07 0.2093 1600 0.1124 0.17 0.0953 0.81 0.02 0.081																		
1400 0.1972 0.00 0.1775 0.93 0.1632 0.07 0.1765 1400 0.1255 0.19 0.1476 0.78 0.1259 0.02 0.1429 1500 0.2261 0.00 0.2150 0.97 0.1476 0.03 0.2128 1500 0.1245 0.20 0.1290 0.77 0.1166 0.02 0.1271 1600 0.2608 0.00 0.2150 0.93 0.1297 0.07 0.2093 1600 0.1124 0.17 0.0953 0.81 0.0669 0.02 0.0981																		
1500 0.2261 0.00 0.2150 0.97 0.1476 0.03 0.2128 1500 0.1245 0.20 0.1290 0.77 0.1106 0.02 0.1277 1600 0.2608 0.00 0.2150 0.93 0.1297 0.07 0.2093 1600 0.1124 0.17 0.0953 0.81 0.0869 0.02 0.0981																		
$1600 \qquad 0.2608 0.00 \qquad 0.2150 0.93 \qquad 0.1297 0.07 \qquad 0.2093 \qquad \qquad \\ 1600 \qquad 0.1124 0.17 0.0953 0.81 0.0869 0.02 0.0981 0.0869 0.0981 0.09$																		
		1700	0.2653	0.00	0.1705	0.93	0.1246	0.07	0.1661		1700	0.0756	0.17	0.0432	0.83	0.0510	0.02	0.0482

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 3

Date	Time	$\mathbf{P}_{VS,BS,C}$	P_C	$\mathbf{P}_{VX,BX,P}$	P_P	$\mathbf{P}_{FX,BX,O}$	P_O	$\mathbf{P}_{FS,BS,R}$	Date	Time	$\mathbf{P}_{\mathrm{FX},BX,C}$	P_C	$\mathbf{P}_{VS,BS,P}$	P_P	$\mathbf{P}_{FS,BS,O}$	P_O	$P_{FX,BX,R}$
21-Jan-10	0900	0.2081	0.05	0.2036	0.80	0.1692	0.15	0.1987	21-Jul-10	0900	0.4177	0.00	0.4110	0.92	0.2461	0.08	0.3986
	1000	0.2407	0.06	0.2693	0.81	0.2174	0.13	0.2607		1000	0.3702	0.00	0.8035	0.91	0.2843	0.09	0.7589
	1100	0.2565	0.06	0.2880	0.81	0.2469	0.13	0.2807		1100	0.3180	0.00	0.3323	0.91	0.3086	0.09	0.3302
	1200	0.2615	0.08	0.2850	0.80	0.2624	0.13	0.2803		1200	0.3518	0.00	0.2892	0.91	0.3201	0.09	0.2919
	1300	0.2614	0.08	0.2839	0.83	0.2632	0.10	0.2802		1300	0.3523	0.00	0.2902	0.96	0.3201	0.04	0.2914
	1400	0.3430	0.08	0.2881	0.84	0.2523	0.09	0.2891		1400	0.3179	0.00	0.3345	0.97	0.3079	0.03	0.3336
	1500	0.2437	0.09	0.2731	0.83	0.2228	0.09	0.2663		1500	0.3715	0.00	0.4055	0.97	0.2843	0.03	0.4016
	1600	0.2147	0.11	0.2170	0.83	0.1779	0.06	0.2142		1600	0.4188	0.00	0.4101	0.97	0.2453	0.03	0.4048
	1700	0.1514	0.10	0.1086	0.83	0.1108	0.08	0.1129		1700	0.4297	0.00	0.3263	0.95	0.1929	0.05	0.3192
21-Feb-10	0900	0.2334	0.04	0.2552	0.89	0.1918	0.07	0.2500	21-Aug-10	0900	0.3244	0.00	0.3816	0.92	0.2420	0.08	0.3711
	1000	0.2584	0.02	0.3098	0.89	0.2403	0.08	0.3029		1000	0.3697	0.00	0.3798	0.92	0.2815	0.08	0.3724
	1100	0.2684	0.02	0.3091	0.88	0.2699	0.09	0.3045		1100	0.3813	0.00	0.3153	0.90	0.3066	0.10	0.3145
	1200	0.2747	0.04	0.2898	0.87	0.2850	0.09	0.2888		1200	0.3133	0.00	0.2557	0.92	0.3182	0.08	0.2604
	1300	0.2743	0.05	0.2844	0.92	0.2865	0.04	0.2840		1300	0.3486	0.00	0.2616	0.90	0.3176	0.10	0.2670
	1400	0.2714	0.04	0.3048	0.92	0.2743	0.05	0.3022		1400	0.3811	0.00	0.3246	0.90	0.3021	0.10	0.3224
	1500	0.2627	0.02	0.3144	0.92	0.2469	0.06	0.3092		1500	0.3679	0.00	0.3850	0.91	0.2758	0.09	0.3756
	1600	0.2407	0.02	0.2761	0.92	0.2048	0.06	0.2711		1600	0.3164	0.00	0.3783	0.91	0.2379	0.09	0.3662
	1700	0.1915	0.04	0.1700	0.91	0.1420	0.06	0.1691		1700	0.3122	0.00	0.2784	0.90	0.1782	0.10	0.2687
21-Mar-10	0900	0.3032	0.04	0.3241	0.83	0.2206	0.13	0.3098	21-Sep-10	0900	0.2756	0.02	0.3397	0.92	0.2330	0.06	0.3323
	1000	0.2798	0.03	0.3485	0.85	0.2625	0.12	0.3361		1000	0.2840	0.00	0.3463	0.96	0.2728	0.04	0.3431
	1100	0.2847	0.03	0.3148	0.87	0.2900	0.10	0.3114		1100	0.2877	0.01	0.3023	0.96	0.2974	0.03	0.3020
	1200	0.3954	0.03	0.2722	0.86	0.3059	0.11	0.2798		1200	0.2864	0.01	0.2633	0.93	0.3079	0.06	0.2660
	1300	0.3954	0.02	0.2715	0.90	0.3059	0.08	0.2768		1300	0.2871	0.00	0.2764	0.97	0.3053	0.03	0.2774
	1400	0.2847	0.03	0.3141	0.88	0.2933	0.09	0.3114		1400	0.2860	0.00	0.3262	0.97	0.2872	0.03	0.3249
	1500	0.2799	0.03	0.3481	0.87	0.2661	0.10	0.3379		1500	0.2786	0.00	0.3550	0.98	0.2578	0.02	0.3528
	1600	0.2998	0.03	0.3250	0.89	0.2217	0.08	0.3164		1600	0.3222	0.00	0.3142	0.99	0.2106	0.01	0.3130
	1700	0.2640	0.03	0.2198	0.89	0.1599	0.08	0.2167		1700	0.2415	0.00	0.1902	0.99	0.1436	0.01	0.1897
21-Apr-10	0900	0.3398	0.00	0.3817	0.88	0.2445	0.12	0.3649	21-Oct-10	0900	0.2488	0.03	0.2923	0.97	0.2184	0.00	0.2909
21.1491.10	1000	0.3714	0.00	0.3752	0.90	0.2835	0.10	0.3660	21 00 10	1000	0.2648	0.04	0.3156	0.96	0.2571	0.00	0.3134
	1100	0.3160	0.00	0.3096	0.89	0.3072	0.11	0.3093		1100	0.2723	0.01	0.2982	0.99	0.2807	0.00	0.2979
	1200	0.3028	0.00	0.2541	0.90	0.3182	0.11	0.2605		1200	0.2746	0.00	0.2822	1.00	0.2878	0.00	0.2822
	1300	0.3023	0.00	0.2639	0.92	0.3145	0.08	0.2678		1300	0.2722	0.02	0.2933	0.97	0.2836	0.00	0.2928
	1400	0.3790	0.00	0.3314	0.92	0.3007	0.08	0.3290		1400	0.2682	0.02	0.3134	0.97	0.2632	0.01	0.2328
	1500	0.3675	0.00	0.3855	0.92	0.2735	0.08	0.3290		1500	0.2562	0.02	0.3057	0.97	0.2032	0.01	0.3119
	1600	0.3675	0.00	0.3855	0.89	0.2305	0.11	0.3549		1600	0.2362	0.02	0.3057	0.97	0.2297	0.01	0.3038
	1700	0.3180	0.00	0.3703	0.89	0.2303	0.11	0.3549		1700	0.2234	0.01	0.2344	0.98	0.1780	0.01	0.2337
21-May-10	0900	0.4026	0.02	0.4129	0.96	0.2546	0.02	0.4093	21-Nov-10	0900	0.2261	0.12	0.2389	0.84	0.1929	0.03	0.2358
21-May-10	1000	0.4026	0.02	0.4129	0.96	0.2546	0.02	0.4093	21-NoV-10	1000	0.2497	0.12	0.2389	0.84	0.1929	0.03	0.2358
	1100	0.3370	0.01	0.3159	0.94	0.3107	0.05	0.3158		1100	0.2580	0.17	0.2875	0.80	0.2570	0.03	0.2815
	1200	0.3535	0.02	0.3115	0.91	0.3207	0.06	0.3130		1200	0.2624	0.14	0.2842	0.82	0.2676	0.03	0.2805
	1300	0.3521	0.01	0.2824	0.94	0.3194	0.05	0.2851		1300	0.2616	0.12	0.2861	0.83	0.2602	0.04	0.2820
	1400	0.3285	0.02	0.3494	0.88	0.3059	0.10	0.3448		1400	0.2519	0.16	0.2853	0.79	0.2420	0.06	0.2777
	1500	0.3699	0.02	0.4108	0.90	0.2800	0.08	0.4001		1500	0.2348	0.16	0.2586	0.79	0.2070	0.06	0.2520
	1600	0.4148	0.02	0.4015	0.89	0.2395	0.09	0.3878		1600	0.1945	0.16	0.1783	0.79	0.1533	0.06	0.1794
	1700	0.4179	0.02	0.3026	0.88	0.1820	0.10	0.2934		1700	0.1120	0.13	0.0605	0.80	0.0758	0.07	0.0684
21-Jun-10	0900	0.4545	0.00	0.4222	0.89	0.2531	0.11	0.4034	21-Dec-10	0900	0.2078	0.14	0.2013	0.85	0.1716	0.01	0.2019
	1000	0.4193	0.00	0.4104	0.89	0.2871	0.11	0.3967		1000	0.2378	0.19	0.2590	0.77	0.2160	0.03	0.2535
	1100	0.3779	0.00	0.3363	0.89	0.3101	0.11	0.3334		1100	0.2506	0.18	0.2773	0.78	0.2428	0.03	0.2713
	1200	0.3504	0.00	0.3129	0.88	0.3207	0.12	0.3138		1200	0.2563	0.16	0.2777	0.81	0.2555	0.03	0.2735
	1300	0.3532	0.00	0.2946	0.92	0.3195	0.08	0.2966		1300	0.2559	0.16	0.2774	0.82	0.2539	0.02	0.2734
	1400	0.3829	0.00	0.3503	0.93	0.3075	0.07	0.3475		1400	0.2489	0.19	0.2730	0.78	0.2379	0.02	0.2675
	1500	0.4252	0.00	0.4168	0.97	0.2829	0.03	0.4124		1500	0.2309	0.20	0.2467	0.77	0.2046	0.02	0.2426
	1600	0.4609	0.00	0.4161	0.93	0.2444	0.07	0.4047		1600	0.1931	0.17	0.1749	0.81	0.1545	0.02	0.1776
	1700	0.4591	0.00	0.3291	0.93	0.1916	0.07	0.3200		1700	0.1171	0.15	0.0657	0.83	0.0812	0.02	0.0738

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 3

Date	Time	$\mathbf{P}_{FS,UD,C}$	P_C	$\mathbf{P}_{VS,UD,P}$	P_P	$\mathbf{P}_{VX,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},UD,R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	P_C	$\mathbf{P}_{VX,UD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},UD,O}$	P_O	$\mathbf{P}_{FS,UD,R}$
21-Jan-10	0900	0.9887	0.05	0.9887	0.80	0.9887	0.15	0.9887	21-Jul-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1000	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1100	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1100	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1200	0.9887	0.08	0.9887	0.80	0.9887	0.13	0.9887		1200	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1300	0.9887	0.08	0.9887	0.83	0.9887	0.10	0.9887		1300	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1400	0.9887	0.08	0.9887	0.84	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.09	0.9887	0.83	0.9887	0.09	0.9887		1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1600	0.9887	0.11	0.9887	0.83	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1700	0.9887	0.10	0.9887	0.83	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.95	0.9887	0.05	0.9887
21-Feb-10	0900	0.9887	0.04	0.9887	0.89	0.9887	0.07	0.9887	21-Aug-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.02	0.9887	0.89	0.9887	0.08	0.9887		1000	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1100	0.9887	0.02	0.9887	0.88	0.9887	0.09	0.9887		1100	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1200	0.9887	0.04	0.9887	0.87	0.9887	0.09	0.9887		1200	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1300	0.9887	0.05	0.9887	0.92	0.9887	0.04	0.9887		1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1400	0.9887	0.04	0.9887	0.92	0.9887	0.05	0.9887		1400	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1500	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1500	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1600	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1700	0.9887	0.04	0.9887	0.91	0.9887	0.06	0.9887		1700	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
21-Mar-10	0900	0.9887	0.04	0.9887	0.83	0.9887	0.13	0.9887	21-Sep-10	0900	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887
	1000	0.9887	0.03	0.9887	0.85	0.9887	0.12	0.9887		1000	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1100	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1100	0.9887	0.01	0.9887	0.96	0.9887	0.03	0.9887
	1200	0.9887	0.03	0.9887	0.86	0.9887	0.11	0.9887		1200	0.9887	0.01	0.9887	0.93	0.9887	0.06	0.9887
	1300	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1400	0.9887	0.03	0.9887	0.88	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1500	0.9887	0.00	0.9887	0.98	0.9887	0.02	0.9887
	1600	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1600	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
	1700	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
21-Apr-10	0900	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887	21-Oct-10	0900	0.9887	0.03	0.9887	0.97	0.9887	0.00	0.9887
	1000	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1000	0.9887	0.04	0.9887	0.96	0.9887	0.00	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.01	0.9887	0.99	0.9887	0.00	0.9887
	1200	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1200	0.9887	0.00	0.9887	1.00	0.9887	0.00	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1400	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1500	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1500	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1600	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1600	0.9887	0.01	0.9887	0.98	0.9887	0.01	0.9887
	1700	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1700	0.9887	0.03	0.9887	0.96	0.9887	0.01	0.9887
21-May-10	0900	0.9887	0.02	0.9887	0.96	0.9887	0.02	0.9887	21-Nov-10	0900	0.9887	0.12	0.9887	0.84	0.9887	0.03	0.9887
	1000	0.9887	0.01	0.9887	0.97	0.9887	0.02	0.9887		1000	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1100	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1100	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1200	0.9887	0.02	0.9887	0.91	0.9887	0.06	0.9887		1200	0.9887	0.14	0.9887	0.82	0.9887	0.03	0.9887
	1300	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1300	0.9887	0.12	0.9887	0.83	0.9887	0.04	0.9887
	1400	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1400	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1500	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1500	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1600	0.9887	0.02	0.9887	0.89	0.9887	0.09	0.9887		1600	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1700	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1700	0.9887	0.13	0.9887	0.80	0.9887	0.07	0.9887
21-Jun-10	0900	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	21-Dec-10	0900	0.9887	0.14	0.9887	0.85	0.9887	0.01	0.9887
	1000	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	2 10	1000	0.9887	0.19	0.9887	0.77	0.9887	0.03	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.18	0.9887	0.78	0.9887	0.03	0.9887
	1200	0.9887	0.00	0.9887	0.88	0.9887	0.11	0.9887		1200	0.9887	0.16	0.9887	0.78	0.9887	0.03	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.16	0.9887	0.82	0.9887	0.03	0.9887
	1400	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1400	0.9887	0.19	0.9887	0.78	0.9887	0.02	0.9887
	1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1500	0.9887	0.20	0.9887	0.77	0.9887	0.02	0.9887
	1600	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1600	0.9887	0.20	0.9887	0.77	0.9887	0.02	0.9887
	1700	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1700	0.9887	0.17	0.9887	0.81	0.9887	0.02	0.9887
	1700	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.968/		1/00	0.9887	0.15	0.9887	0.63	0.9887	0.02	0.988/

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 3

Date	Time	$\mathbf{P}_{VS,US,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,US,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,UX,O}$	P_O	$\mathbf{P}_{FS,US,R}$	Date	Time	$P_{\mathrm{FX},\mathrm{UX},C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UX,P}$	P_P	$\mathbf{P}_{VS,US,O}$	P_O	$\mathbf{P}_{VS,US,R}$
21-Jan-10	0900	0.8953	0.05	0.9162	0.80	0.9159	0.15	0.9150	21-Jul-10	0900	0.8963	0.00	0.9160	0.92	0.9152	0.08	0.9159
	1000	0.8953	0.06	0.9173	0.81	0.9159	0.13	0.9157		1000	0.8938	0.00	0.9165	0.91	0.9160	0.09	0.9164
	1100	0.8961	0.06	0.9184	0.81	0.9150	0.13	0.9165		1100	0.8941	0.00	0.9192	0.91	0.9167	0.09	0.9189
	1200	0.8952	0.08	0.9182	0.80	0.9150	0.13	0.9161		1200	0.8937	0.00	0.9209	0.91	0.9164	0.09	0.9205
	1300	0.8955	0.08	0.9191	0.83	0.9148	0.10	0.9169		1300	0.8937	0.00	0.9224	0.96	0.9164	0.04	0.9221
	1400	0.9314	0.08	0.9183	0.84	0.9169	0.09	0.9192		1400	0.8942	0.00	0.9184	0.97	0.9168	0.03	0.9184
	1500	0.8948	0.09	0.9165	0.83	0.9160	0.09	0.9146		1500	0.8939	0.00	0.9165	0.97	0.9161	0.03	0.9165
	1600	0.8954	0.11	0.9161	0.83	0.9159	0.06	0.9139		1600	0.8966	0.00	0.9161	0.97	0.9153	0.03	0.9161
	1700	0.8952		0.9154		0.9158	0.08	0.9135		1700	0.8953	0.00	0.9148	0.95	0.9159	0.05	0.9149
21-Feb-10	0900	0.8954	0.04	0.9162	0.89	0.9159	0.07	0.9154	21-Aug-10	0900	0.8938	0.00	0.9163	0.92	0.9160	0.08	0.9163
	1000	0.8945	0.02	0.9166	0.89	0.9164	0.08	0.9161		1000	0.8946	0.00	0.9176	0.92	0.9165	0.08	0.9175
	1100	0.8940	0.02	0.9195	0.88	0.9162	0.09	0.9186		1100	0.8947	0.00	0.9195	0.90	0.9170	0.10	0.9193
	1200	0.8967	0.04	0.9203	0.87	0.9158	0.09	0.9190		1200	0.8953	0.00	0.9224	0.92	0.9166	0.08	0.9219
	1300	0.8963	0.05	0.9191	0.92	0.9156	0.04	0.9179		1300	0.8954	0.00	0.9235	0.90	0.9166	0.10	0.9228
	1400	0.8961	0.04	0.9198	0.92	0.9154	0.05	0.9188		1400	0.8952	0.00	0.9202	0.90	0.9153	0.10	0.9198
	1500 1600	0.8960 0.8953	0.02	0.9178 0.9166	0.92	0.9150 0.9159	0.06	0.9171 0.9160		1500 1600	0.8955 0.8953	0.00	0.9182 0.9165	0.91	0.9150 0.9170	0.09	0.9179 0.9165
	1700	0.8952	0.02	0.9161	0.92	0.9159	0.06	0.9153		1700	0.8953	0.00	0.9163	0.91	0.9170	0.10	0.9165
21-Mar-10	0900	0.8954	0.04	0.9177	0.83	0.9159	0.13	0.9165	21-Sep-10	0900	0.8959	0.02	0.9168	0.92	0.9146	0.06	0.9162
21-Mai-10	1000	0.8955	0.04	0.9177	0.85	0.9139	0.13	0.9163	21-3cp-10	1000	0.8965	0.02	0.9108	0.92	0.9146	0.04	0.9102
	1100	0.8952	0.03	0.9179	0.87	0.9149	0.12	0.9183		1100	0.8967	0.00	0.9201	0.96	0.9160	0.04	0.9197
	1200	0.9323	0.03	0.9214	0.86	0.9170	0.11	0.9213		1200	0.8943	0.01	0.9201	0.93	0.9168	0.06	0.9203
	1300	0.9323	0.03	0.9215	0.90	0.9170	0.08	0.9214		1300	0.8951	0.00	0.9209	0.97	0.9171	0.03	0.9208
	1400	0.8951	0.02	0.9197	0.88	0.9168	0.09	0.9187		1400	0.8960	0.00	0.9189	0.97	0.9154	0.03	0.9188
	1500	0.8954	0.03	0.9173	0.87	0.9170	0.10	0.9166		1500	0.8935	0.00	0.9183	0.98	0.9159	0.02	0.9182
	1600	0.8952	0.03	0.9163	0.89	0.9159	0.08	0.9156		1600	0.8953	0.00	0.9166	0.99	0.9159	0.01	0.9166
	1700	0.8954	0.03	0.9160	0.89	0.9159	0.08	0.9153		1700	0.8954	0.00	0.9161	0.99	0.9159	0.01	0.9161
21-Apr-10	0900	0.8969	0.00	0.9163	0.88	0.9156	0.12	0.9162	21-Oct-10	0900	0.8953	0.03	0.9165	0.97	0.9159	0.00	0.9158
	1000	0.8941	0.00	0.9186	0.90	0.9162	0.10	0.9184		1000	0.8937	0.04	0.9179	0.96	0.9160	0.00	0.9168
	1100	0.8945	0.00	0.9200	0.89	0.9169	0.11	0.9197		1100	0.8949	0.01	0.9189	0.99	0.9167	0.00	0.9187
	1200	0.8953	0.00	0.9227	0.90	0.9166	0.10	0.9221		1200	0.8959	0.00	0.9194	1.00	0.9154	0.00	0.9194
	1300	0.8956	0.00	0.9232	0.92	0.9150	0.08	0.9225		1300	0.8940	0.02	0.9197	0.97	0.9162	0.01	0.9191
	1400	0.8957	0.00	0.9201	0.92	0.9155	0.08	0.9198		1400	0.8954	0.02	0.9180	0.97	0.9148	0.01	0.9175
	1500	0.8963	0.00	0.9181	0.89	0.9155	0.11	0.9179		1500	0.8971	0.02	0.9169	0.97	0.9154	0.01	0.9165
	1600	0.8966	0.00	0.9166	0.89	0.9151	0.11	0.9164		1600	0.8953	0.01	0.9168	0.98	0.9159	0.01	0.9166
	1700	0.8953	0.00	0.9145	0.88	0.9159	0.12	0.9147		1700	0.8955	0.03	0.9156	0.96	0.9160	0.01	0.9149
21-May-10	0900	0.8946	0.02	0.9158	0.96	0.9165	0.02	0.9153	21-Nov-10	0900	0.8953	0.12	0.9158	0.84	0.9160	0.03	0.9133
	1000	0.8958	0.01	0.9168	0.97	0.9153	0.02	0.9166		1000	0.8962	0.17	0.9170	0.80	0.9219	0.03	0.9137
	1100	0.8964	0.01	0.9182	0.94	0.9154	0.05	0.9178		1100	0.8937	0.17	0.9184	0.80	0.9160	0.03	0.9142
	1200	0.8962	0.02	0.9222	0.91	0.9163	0.06	0.9213		1200	0.8950	0.14	0.9186	0.82	0.9167	0.03	0.9151
	1300	0.8939	0.01	0.9220	0.94	0.9165	0.05	0.9214		1300	0.8963	0.12	0.9186	0.83	0.9153	0.04	0.9157
	1400	0.8949	0.02	0.9191	0.88	0.9170	0.10	0.9184		1400	0.8938	0.16	0.9165	0.79	0.9160	0.06	0.9129
	1500	0.8952	0.02	0.9172	0.90	0.9169	0.08	0.9167		1500	0.8954	0.16	0.9165	0.79	0.9159	0.06	0.9131
	1600	0.8948	0.02	0.9157	0.89	0.9166	0.09	0.9153		1600	0.8954	0.16	0.9161	0.79	0.9160	0.06	0.9129
	1700	0.8953	0.02	0.9155	0.88	0.9159	0.10	0.9151		1700	0.8952	0.13	0.9156	0.80	0.9158	0.07	0.9129
21-Jun-10	0900	0.8950	0.00	0.9156	0.89	0.9168	0.11	0.9157	21-Dec-10	0900	0.8952	0.14	0.9162	0.85	0.9159	0.01	0.9132
	1000	0.8961	0.00	0.9172	0.89	0.9155	0.11	0.9170		1000	0.8953	0.19	0.9167	0.77	0.9159	0.03	0.9126
	1100	0.8965	0.00	0.9187	0.89	0.9155	0.11	0.9183		1100	0.8935	0.18	0.9181	0.78	0.9159	0.03	0.9136
	1200	0.8937	0.00	0.9209	0.88	0.9163	0.12	0.9203		1200	0.8942	0.16	0.9177	0.81	0.9163	0.03	0.9138
	1300	0.8938	0.00	0.9202	0.92	0.9164	0.08	0.9199		1300	0.8948	0.16	0.9182	0.82	0.9166	0.02	0.9144
	1400	0.8944	0.00	0.9179	0.93	0.9157	0.07	0.9177		1400	0.8953	0.19	0.9167	0.78	0.9170	0.02	0.9125
	1500	0.8943	0.00	0.9160	0.97	0.9163	0.03	0.9160		1500	0.8953	0.20	0.9166	0.77	0.9159	0.02	0.9122
	1600 1700	0.8971	0.00	0.9150 0.9146	0.93	0.9156 0.9159	0.07	0.9150 0.9147		1600 1700	0.8953	0.17	0.9161	0.81	0.9159	0.02	0.9125
	1700	0.8953	0.00	0.9140	0.95	0.9159	0.07	0.9147		1/00	0.8954	0.15	0.9155	0.83	0.9158	0.02	0.9125

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 3

Date	Time	$\mathbf{P}_{FS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,PG,P}$	P_P	$\mathbf{P}_{VX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,PG,P}$	P_P	$\mathbf{P}_{FS,PG,O}$	\mathbf{P}_O	$\mathbf{P}_{VS,PG,R}$
21-Jan-10	0900	0.9852	0.05	0.9855	0.80	0.9875	0.15	0.9858	21-Jul-10	0900	0.9634	0.00	0.9672	0.92	0.9822	0.08	0.9683
	1000	0.9810	0.06	0.9810	0.81	0.9845	0.13	0.9815		1000	0.9666	0.00	0.2898	0.91	0.9792	0.09	0.3491
	1100	0.9799	0.06	0.9805	0.81	0.9820	0.13	0.9806		1100	0.9753	0.00	0.9761	0.91	0.9773	0.09	0.9762
	1200	0.9798	0.08	0.9807	0.80	0.9807	0.13	0.9806		1200	0.9675	0.00	0.9795	0.91	0.9764	0.09	0.9792
	1300	0.9801	0.08	0.9809	0.83	0.9805	0.10	0.9808		1300	0.9673	0.00	0.9799	0.96	0.9764	0.04	0.9797
	1400	0.9799	0.08	0.9805	0.84	0.9814	0.09	0.9805		1400	0.9753	0.00	0.9756	0.97	0.9775	0.03	0.9756
	1500	0.9806	0.09	0.9811	0.83	0.9837	0.09	0.9813		1500	0.9661	0.00	0.9684	0.97	0.9792	0.03	0.9688
	1600	0.9844	0.11	0.9851	0.83	0.9867	0.06	0.9851		1600	0.9630	0.00	0.9675	0.97	0.9823	0.03	0.9680
	1700	0.9887	0.10	0.9916	0.83	0.9913	0.08	0.9913		1700	0.9604	0.00	0.9756	0.95	0.9858	0.05	0.9761
21-Feb-10	0900	0.9818	0.04	0.9810	0.89	0.9859	0.07	0.9814	21-Aug-10	0900	0.9696	0.00	0.9710	0.92	0.9819	0.08	0.9718
	1000	0.9796	0.02	0.9777	0.89	0.9822	0.08	0.9781		1000	0.9649	0.00	0.9714	0.92	0.9789	0.08	0.9720
	1100	0.9798	0.02	0.9786	0.88	0.9805	0.09	0.9788		1100	0.9753	0.00	0.9780	0.90	0.9778	0.10	0.9780
	1200	0.9803	0.04	0.9806	0.87	0.9790	0.09	0.9805		1200	0.9873	0.00	0.9831	0.92	0.9769	0.08	0.9826
	1300	0.9805	0.05	0.9797	0.92	0.9786	0.04	0.9797		1300	0.9815	0.00	0.9825	0.90	0.9765	0.10	0.9819
	1400	0.9800	0.04	0.9790	0.92	0.9801	0.05	0.9790		1400	0.9764	0.00	0.9770	0.90	0.9774	0.10	0.9770
	1500	0.9797	0.02	0.9778	0.92	0.9820	0.06	0.9781		1500	0.9605	0.00	0.9713	0.91	0.9797	0.09	0.9720
	1600	0.9812	0.02	0.9801	0.92	0.9850	0.06	0.9804		1600	0.9714	0.00	0.9712	0.91	0.9827	0.09	0.9722
	1700	0.9857	0.04	0.9876	0.91	0.9892	0.06	0.9876		1700	0.9744	0.00	0.9791	0.90	0.9868	0.10	0.9799
21-Mar-10	0900	0.9849	0.04	0.9764	0.83	0.9840	0.13	0.9778	21-Sep-10	0900	0.9796	0.02	0.9750	0.92	0.9830	0.06	0.9756
	1000	0.9790	0.03	0.9749	0.85	0.9807	0.12	0.9757		1000	0.9790	0.00	0.9747	0.96	0.9797	0.04	0.9749
	1100	0.9792	0.03	0.9777	0.87	0.9784	0.10	0.9778		1100	0.9794	0.01	0.9795	0.96	0.9780	0.03	0.9794
	1200	0.9789	0.03	0.9818	0.86	0.9780	0.11	0.9813		1200	0.9789	0.01	0.9816	0.93	0.9775	0.06	0.9814
	1300	0.9789	0.02	0.9813	0.90	0.9780	0.08	0.9810		1300	0.9786	0.00	0.9807	0.97	0.9773	0.03	0.9805
	1400	0.9792	0.03	0.9779	0.88	0.9782	0.09	0.9780		1400	0.9787	0.00	0.9768	0.97	0.9784	0.03	0.9769
	1500	0.9790	0.03	0.9751	0.87	0.9805	0.10	0.9757		1500	0.9783	0.00	0.9742	0.98	0.9818	0.02	0.9744
	1600	0.9867	0.03	0.9762	0.89	0.9839	0.08	0.9771		1600	0.9844	0.00	0.9770	0.99	0.9844	0.01	0.9770
	1700	0.9858	0.03	0.9842	0.89	0.9880	0.08	0.9846		1700	0.9854	0.00	0.9859	0.99	0.9892	0.01	0.9860
21-Apr-10	0900	0.9673	0.00	0.9710	0.88	0.9825	0.12	0.9724	21-Oct-10	0900	0.9804	0.03	0.9782	0.97	0.9843	0.00	0.9783
	1000	0.9693	0.00	0.9720	0.90	0.9793	0.10	0.9728		1000	0.9794	0.04	0.9775	0.96	0.9813	0.00	0.9776
	1100	0.9807	0.00	0.9780	0.89	0.9777	0.11	0.9780		1100	0.9799	0.01	0.9794	0.99	0.9791	0.00	0.9794
	1200	0.9766	0.00	0.9823	0.90	0.9769	0.10	0.9818		1200	0.9805	0.00	0.9803	1.00	0.9782	0.00	0.9803
	1300	0.9763	0.00	0.9820	0.92	0.9766	0.08	0.9816		1300	0.9801	0.02	0.9797	0.97	0.9793	0.01	0.9797
	1400	0.9720	0.00	0.9764	0.92	0.9771	0.08	0.9765		1400	0.9796	0.02	0.9782	0.97	0.9805	0.01	0.9782
	1500	0.9703	0.00	0.9717	0.89	0.9802	0.11	0.9727		1500	0.9798	0.02	0.9788	0.97	0.9825	0.01	0.9789
	1600	0.9706	0.00	0.9716	0.89	0.9835	0.11	0.9729		1600	0.9836	0.01	0.9836	0.98	0.9868	0.01	0.9836
	1700	0.9757	0.00	0.9807	0.88	0.9872	0.12	0.9815		1700	0.9935	0.03	0.9919	0.96	0.9918	0.01	0.9919
21-May-10	0900	0.9651	0.02	0.9680	0.96	0.9808	0.02	0.9682	21-Nov-10	0900	0.9824	0.12	0.9827	0.84	0.9858	0.03	0.9828
	1000	0.9705	0.01	0.9701	0.97	0.9789	0.02	0.9703		1000	0.9803	0.17	0.9812	0.80	0.9831	0.03	0.9811
	1100	0.9716	0.01	0.9770	0.94	0.9768	0.05	0.9769		1100	0.9799	0.17	0.9806	0.80	0.9813	0.03	0.9805
	1200	0.9677	0.02	0.9782	0.91	0.9762	0.06	0.9779		1200	0.9798	0.14	0.9809	0.82	0.9801	0.03	0.9807
	1300	0.9673	0.01	0.9805	0.94	0.9766	0.05	0.9801		1300	0.9799	0.12	0.9810	0.83	0.9812	0.04	0.9809
	1400	0.9736	0.02	0.9740	0.88	0.9780	0.10	0.9744		1400	0.9801	0.16	0.9805	0.79	0.9819	0.06	0.9805
	1500	0.9664	0.02	0.9680	0.90	0.9793	0.08	0.9688		1500	0.9815	0.16	0.9823	0.79	0.9848	0.06	0.9823
	1600	0.9635	0.02	0.9690	0.89	0.9823	0.09	0.9701		1600	0.9858	0.16	0.9871	0.79	0.9885	0.06	0.9870
	1700	0.9620	0.02	0.9766	0.88	0.9866	0.10	0.9772		1700	0.9909	0.13	0.9950	0.80	0.9937	0.07	0.9943
21-Jun-10	0900	0.9585	0.00	0.9666	0.89	0.9812	0.11	0.9682	21-Dec-10	0900	0.9843	0.14	0.9857	0.85	0.9872	0.01	0.9855
	1000	0.9635	0.00	0.9680	0.89	0.9784	0.11	0.9691		1000	0.9815	0.19	0.9823	0.77	0.9835	0.03	0.9822
	1100	0.9671	0.00	0.9755	0.89	0.9770	0.11	0.9757		1100	0.9804	0.18	0.9809	0.78	0.9817	0.03	0.9808
	1200	0.9707	0.00	0.9785	0.88	0.9762	0.12	0.9783		1200	0.9802	0.16	0.9809	0.81	0.9806	0.03	0.9808
	1300	0.9707	0.00	0.9788	0.92	0.9766	0.08	0.9786		1300	0.9802	0.16	0.9809	0.82	0.9810	0.02	0.9808
	1400	0.9661	0.00	0.9745	0.93	0.9777	0.07	0.9747		1400	0.9806	0.19	0.9813	0.78	0.9827	0.02	0.9812
	1500	0.9631	0.00	0.9672	0.97	0.9795	0.03	0.9676		1500	0.9822	0.20	0.9831	0.77	0.9849	0.02	0.9829
	1600	0.9569	0.00	0.9668	0.93	0.9824	0.07	0.9678		1600	0.9858	0.17	0.9874	0.81	0.9884	0.02	0.9872
	1700	0.9563	0.00	0.9747	0.93	0.9858	0.07	0.9754		1700	0.9906	0.15	0.9945	0.83	0.9933	0.02	0.9939

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 3

Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	$\mathrm{P}_{\mathcal{O}}$	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{EX,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.0159	0.05	0.0131	0.80	0.0096	0.15	0.0128	21-Jul-10	0900	0.0524	0.00	0.0453	0.92	0.0176	0.08	0.0432
	1000	0.0177	0.06	0.0197	0.81	0.0143	0.13	0.0189		1000	0.0381	0.00	0.0453	0.91	0.0219	0.09	0.0433
	1100	0.0171	0.06	0.0242	0.81	0.0177	0.13	0.0229		1100	0.0242	0.00	0.0288	0.91	0.0265	0.09	0.0286
	1200	0.0166	0.08	0.0219	0.80	0.0195	0.13	0.0212		1200	0.0358	0.00	0.0197	0.91	0.0265	0.09	0.0203
	1300	0.0164	0.08	0.0219	0.83	0.0197	0.10	0.0213		1300	0.0358	0.00	0.0197	0.96	0.0265	0.04	0.0200
	1400	0.0166	0.08	0.0219	0.84	0.0180	0.09	0.0212		1400	0.0242	0.00	0.0288	0.97	0.0265	0.03	0.0287
	1500	0.0170	0.09	0.0197	0.83	0.0148	0.09	0.0190		1500	0.0358	0.00	0.0429	0.97	0.0219	0.03	0.0422
	1600	0.0154	0.11	0.0138	0.83	0.0103	0.06	0.0138		1600	0.0524	0.00	0.0453	0.97	0.0174	0.03	0.0444
	1700	0.0100	0.10	0.0050	0.83	0.0051	0.08	0.0055		1700	0.0596	0.00	0.0288	0.95	0.0118	0.05	0.0279
21-Feb-10	0900	0.0196	0.04	0.0194	0.89	0.0117	0.07	0.0189	21-Aug-10	0900	0.0334	0.00	0.0405	0.92	0.0170	0.08	0.0387
	1000	0.0197	0.02	0.0265	0.89	0.0167	0.08	0.0255		1000	0.0500	0.00	0.0381	0.92	0.0219	0.08	0.0369
	1100	0.0183	0.02	0.0265	0.88	0.0197	0.09	0.0257		1100	0.0717	0.00	0.0242	0.90	0.0242	0.10	0.0242
	1200	0.0172	0.04	0.0219	0.87	0.0219	0.09	0.0218		1200	0.0500	0.00	0.0165	0.92	0.0265	0.08	0.0172
	1300	0.0170	0.05	0.0219	0.92	0.0219	0.04	0.0217		1300	0.0620	0.00	0.0167	0.90	0.0265	0.10	0.0176
	1400	0.0176	0.04	0.0242	0.92	0.0219	0.05	0.0239		1400	0.0717	0.00	0.0265	0.90	0.0242	0.10	0.0263
	1500	0.0188	0.02	0.0265	0.92	0.0177	0.06	0.0258		1500	0.0453	0.00	0.0381	0.91	0.0219	0.09	0.0368
	1600	0.0187	0.02	0.0197	0.92	0.0130	0.06	0.0193		1600	0.0334	0.00	0.0381	0.91	0.0163	0.09	0.0363
	1700	0.0143	0.04	0.0096	0.91	0.0074	0.06	0.0097		1700	0.0311	0.00	0.0219	0.90	0.0104	0.10	0.0208
21-Mar-10	0900	0.0813	0.04	0.0288	0.83	0.0146	0.13	0.0292	21-Sep-10	0900	0.0265	0.02	0.0311	0.92	0.0161	0.06	0.0302
	1000	0.0219	0.03	0.0334	0.85	0.0196	0.12	0.0314		1000	0.0219	0.00	0.0311	0.96	0.0219	0.04	0.0307
	1100	0.0194	0.03	0.0265	0.87	0.0242	0.10	0.0260		1100	0.0191	0.01	0.0242	0.96	0.0242	0.03	0.0241
	1200	0.0181	0.03	0.0196	0.86	0.0242	0.11	0.0201		1200	0.0180	0.01	0.0186	0.93	0.0265	0.06	0.0190
	1300	0.0179	0.02	0.0193	0.90	0.0242	0.08	0.0196		1300	0.0182	0.00	0.0195	0.97	0.0242	0.03	0.0196
	1400	0.0193	0.03	0.0242	0.88	0.0242	0.09	0.0240		1400	0.0197	0.00	0.0265	0.97	0.0219	0.03	0.0263
	1500	0.0219	0.03	0.0311	0.87	0.0197	0.10	0.0297		1500	0.0219	0.00	0.0334	0.98	0.0188	0.02	0.0331
	1600	0.0572	0.03	0.0288	0.89	0.0147	0.08	0.0286		1600	0.0741	0.00	0.0265	0.99	0.0136	0.01	0.0263
	1700	0.0476	0.03	0.0146	0.89	0.0088	0.08	0.0153		1700	0.0334	0.00	0.0116	0.99	0.0075	0.01	0.0116
21-Apr-10	0900	0.0381	0.00	0.0405	0.88	0.0173	0.12	0.0377	21-Oct-10	0900	0.0197	0.03	0.0242	0.97	0.0143	0.00	0.0241
	1000	0.0548	0.00	0.0381	0.90	0.0219	0.10	0.0365		1000	0.0194	0.04	0.0265	0.96	0.0188	0.00	0.0262
	1100	0.0334	0.00	0.0242	0.89	0.0265	0.11	0.0245		1100	0.0177	0.01	0.0242	0.99	0.0219	0.00	0.0241
	1200	0.0197	0.00	0.0162	0.90	0.0265	0.10	0.0172		1200	0.0170	0.00	0.0219	1.00	0.0219	0.00	0.0219
	1300	0.0197	0.00	0.0170	0.92	0.0265	0.08	0.0178		1300	0.0172	0.02	0.0219	0.97	0.0219	0.01	0.0218
	1400	0.0596	0.00	0.0265	0.92	0.0242	0.08	0.0263		1400	0.0184	0.02	0.0265	0.97	0.0197	0.01	0.0262
	1500	0.0596	0.00	0.0381	0.89	0.0219	0.11	0.0363		1500	0.0191	0.02	0.0242	0.97	0.0156	0.01	0.0240
	1600	0.0358	0.00	0.0358	0.89	0.0158	0.11	0.0336		1600	0.0176	0.01	0.0160	0.98	0.0104	0.01	0.0159
	1700	0.0288	0.00	0.0197	0.88	0.0098	0.12	0.0185		1700	0.0242	0.03	0.0046	0.96	0.0046	0.01	0.0053
21-May-10	0900	0.0476	0.02	0.0476	0.96	0.0183	0.02	0.0470	21-Nov-10	0900	0.0171	0.12	0.0169	0.84	0.0118	0.03	0.0167
	1000	0.0334	0.01	0.0429	0.97	0.0219	0.02	0.0423		1000	0.0174	0.17	0.0219	0.80	0.0159	0.03	0.0210
	1100	0.0311	0.01	0.0265	0.94	0.0265	0.05	0.0265		1100	0.0169	0.17	0.0242	0.80	0.0187	0.03	0.0228
	1200	0.0358	0.02	0.0219	0.91	0.0265	0.06	0.0225		1200	0.0165	0.14	0.0219	0.82	0.0197	0.03	0.0211
	1300	0.0358	0.01	0.0192	0.94	0.0265	0.05	0.0198		1300	0.0165	0.12	0.0219	0.83	0.0193	0.04	0.0212
	1400	0.0311	0.02	0.0311	0.88	0.0242	0.10	0.0304		1400	0.0168	0.16	0.0219	0.79	0.0170	0.06	0.0209
	1500	0.0358	0.02	0.0453	0.90	0.0219	0.08	0.0433		1500	0.0167	0.16	0.0184	0.79	0.0170	0.06	0.0179
	1600	0.0524	0.02	0.0433	0.89	0.0219	0.08	0.0433		1600	0.0107	0.16	0.0104	0.79	0.0083	0.06	0.0179
	1700	0.0524	0.02	0.0242	0.88	0.0103	0.10	0.0236		1700	0.0063	0.13	0.0022	0.80	0.0030	0.07	0.0028
21-Jun-10	0900	0.0644	0.00	0.0476	0.89	0.0181	0.11	0.0444	21-Dec-10	0900	0.0152	0.14	0.0127	0.85	0.0098	0.01	0.0130
21-Jun-10	1000	0.0644	0.00	0.0476	0.89	0.0181	0.11	0.0444	21-1900-10	1000	0.0152	0.14	0.0127	0.85	0.0098	0.01	0.0130
	1100	0.0476	0.00	0.0453	0.89	0.0219	0.11	0.0427		1100	0.0166	0.19	0.0194	0.77	0.0140	0.03	0.0187
	1200						0.11									0.03	
	1200	0.0288	0.00	0.0242	0.88	0.0265	0.12	0.0245		1200 1300	0.0163	0.16	0.0219	0.81	0.0185 0.0183	0.03	0.0209
								0.0223			0.0162			0.82			0.0209
	1400	0.0381	0.00	0.0311	0.93	0.0265	0.07	0.0308		1400	0.0162	0.19	0.0219	0.78	0.0163	0.02	0.0207
	1500	0.0500	0.00	0.0453	0.97	0.0219	0.03	0.0445		1500	0.0160	0.20	0.0171	0.77	0.0129	0.02	0.0168
	1600	0.0669	0.00	0.0453	0.93	0.0172	0.07	0.0434		1600	0.0133	0.17	0.0099	0.81	0.0084	0.02	0.0104
	1700	0.0693	0.00	0.0288	0.93	0.0116	0.07	0.0276		1700	0.0065	0.15	0.0025	0.83	0.0033	0.02	0.0031

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 3

Date	Time	$\mathbf{P}_{ES,RS,C}$	P_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,RS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	P_C	$\mathbf{P}_{EX,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$P_{ES,BS,R}$
21-Jan-10	0900	0.1764	0.05	0.1723	0.80	0.1405	0.15	0.1677	21-Jul-10	0900	0.3836	0.00	0.3767	0.92	0.2124	0.08	0.3643
	1000	0.2072	0.06	0.2348	0.81	0.1851	0.13	0.2266		1000	0.3350	0.00	0.7981	0.91	0.2494	0.09	0.7509
	1100	0.2224	0.06	0.2531	0.81	0.2132	0.13	0.2459		1100	0.2826	0.00	0.2968	0.91	0.2732	0.09	0.2948
	1200	0.2273	0.08	0.2501	0.80	0.2281	0.13	0.2455		1200	0.3164	0.00	0.2542	0.91	0.2847	0.09	0.2568
	1300	0.2272	0.08	0.2490	0.83	0.2288	0.10	0.2454		1300	0.3169	0.00	0.2551	0.96	0.2847	0.04	0.2564
	1400	0.3075	0.08	0.2531	0.84	0.2184	0.09	0.2542		1400	0.2825	0.00	0.2990	0.97	0.2726	0.03	0.2982
	1500	0.2101	0.09	0.2385	0.83	0.1903	0.09	0.2319		1500	0.3363	0.00	0.3710	0.97	0.2494	0.03	0.3671
	1600	0.1827	0.11	0.1848	0.83	0.1485	0.06	0.1822		1600	0.3847	0.00	0.3758	0.97	0.2117	0.03	0.3705
	1700	0.1244	0.10	0.0866	0.83	0.0884	0.08	0.0904		1700	0.3960	0.00	0.2909	0.95	0.1623	0.05	0.2840
21-Feb-10	0900	0.2003	0.04	0.2212	0.89	0.1613	0.07	0.2162	21-Aug-10	0900	0.2889	0.00	0.3466	0.92	0.2086	0.08	0.3362
	1000	0.2242	0.02	0.2745	0.89	0.2069	0.08	0.2677		1000	0.3345	0.00	0.3448	0.92	0.2466	0.08	0.3374
	1100	0.2339	0.02	0.2738	0.88	0.2354	0.09	0.2692		1100	0.3463	0.00	0.2799	0.90	0.2713	0.10	0.2791
	1200	0.2400	0.04	0.2548	0.87	0.2501	0.09	0.2538		1200	0.2779	0.00	0.2217	0.92	0.2828	0.08	0.2263
	1300	0.2397	0.05	0.2495	0.92	0.2515	0.04	0.2491		1300	0.3132	0.00	0.2273	0.90	0.2822	0.10	0.2327
	1400	0.2368	0.04	0.2695	0.92	0.2396	0.05	0.2669		1400	0.3460	0.00	0.2891	0.90	0.2669	0.10	0.2870
	1500	0.2284	0.02	0.2790	0.92	0.2132	0.06	0.2740		1500	0.3326	0.00	0.3501	0.91	0.2411	0.09	0.3407
	1600	0.2072	0.02	0.2414	0.92	0.1733	0.06	0.2366		1600	0.2810	0.00	0.3432	0.91	0.2046	0.09	0.3313
	1700	0.1609	0.04	0.1412	0.91	0.1159	0.06	0.1404		1700	0.2769	0.00	0.2436	0.90	0.1487	0.10	0.2344
21-Mar-10	0900	0.2680	0.04	0.2886	0.83	0.1882	0.13	0.2748	21-Sep-10	0900	0.2409	0.02	0.3042	0.92	0.2000	0.06	0.2970
	1000	0.2451	0.03	0.3130	0.85	0.2282	0.12	0.3008		1000	0.2491	0.00	0.3109	0.96	0.2382	0.04	0.3076
	1100	0.2498	0.03	0.2794	0.87	0.2549	0.10	0.2761		1100	0.2527	0.01	0.2671	0.96	0.2622	0.03	0.2668
	1200	0.3607	0.03	0.2376	0.86	0.2706	0.11	0.2451		1200	0.2514	0.01	0.2290	0.93	0.2726	0.06	0.2317
	1300	0.3607	0.02	0.2369	0.90	0.2706	0.08	0.2421		1300	0.2522	0.00	0.2417	0.97	0.2700	0.03	0.2427
	1400	0.2498	0.03	0.2787	0.88	0.2582	0.09	0.2760		1400	0.2511	0.00	0.2908	0.97	0.2522	0.03	0.2895
	1500	0.2451	0.03	0.3126	0.87	0.2317	0.10	0.3026		1500	0.2439	0.00	0.3196	0.98	0.2237	0.02	0.3175
	1600	0.2646	0.03	0.2896	0.89	0.1892	0.08	0.2812		1600	0.2868	0.00	0.2788	0.99	0.1788	0.01	0.2777
	1700	0.2296	0.03	0.1875	0.89	0.1320	0.08	0.1847		1700	0.2080	0.00	0.1598	0.99	0.1174	0.01	0.1593
21-Apr-10	0900	0.3044	0.00	0.3467	0.88	0.2109	0.12	0.3301	21-Oct-10	0900	0.2151	0.03	0.2572	0.97	0.1861	0.00	0.2558
	1000	0.3362	0.00	0.3400	0.90	0.2487	0.10	0.3309		1000	0.2304	0.04	0.2802	0.96	0.2230	0.00	0.2781
	1100	0.2806	0.00	0.2743	0.89	0.2719	0.11	0.2740		1100	0.2377	0.01	0.2630	0.99	0.2459	0.00	0.2628
	1200	0.2675	0.00	0.2201	0.90	0.2828	0.10	0.2264		1200	0.2399	0.00	0.2474	1.00	0.2529	0.00	0.2474
	1300	0.2684	0.00	0.2296	0.92	0.2792	0.08	0.2334		1300	0.2376	0.02	0.2582	0.97	0.2487	0.01	0.2577
	1400	0.3439	0.00	0.2959	0.92	0.2655	0.08	0.2936		1400	0.2337	0.02	0.2780	0.97	0.2289	0.01	0.2766
	1500	0.3322	0.00	0.3506	0.89	0.2389	0.11	0.3382		1500	0.2221	0.02	0.2704	0.97	0.1968	0.01	0.2686
	1600	0.2826	0.00	0.3353	0.89	0.1976	0.11	0.3200		1600	0.1908	0.01	0.2013	0.98	0.1485	0.01	0.2006
	1700	0.2654	0.00	0.2286	0.88	0.1428	0.12	0.2181		1700	0.1297	0.03	0.0822	0.96	0.0815	0.01	0.0838
21-May-10	0900	0.3681	0.02	0.3787	0.96	0.2206	0.02	0.3750	21-Nov-10	0900	0.1934	0.12	0.2056	0.84	0.1622	0.03	0.2027
	1000	0.3146	0.01	0.3595	0.97	0.2529	0.02	0.3568		1000	0.2159	0.17	0.2474	0.80	0.1980	0.03	0.2405
	1100	0.3015	0.01	0.2805	0.94	0.2754	0.05	0.2804		1100	0.2239	0.17	0.2525	0.80	0.2229	0.03	0.2467
	1200	0.3181	0.02	0.2761	0.91	0.2853	0.06	0.2776		1200	0.2282	0.14	0.2493	0.82	0.2331	0.03	0.2457
	1300	0.3167	0.01	0.2475	0.94	0.2840	0.05	0.2502		1300	0.2274	0.12	0.2512	0.83	0.2260	0.04	0.2471
	1400	0.2930	0.02	0.3140	0.88	0.2706	0.10	0.3094		1400	0.2180	0.16	0.2504	0.79	0.2086	0.06	0.2430
	1500	0.3347	0.02	0.3765	0.90	0.2452	0.08	0.3657		1500	0.2016	0.16	0.2245	0.79	0.1754	0.06	0.2182
	1600	0.3806	0.02	0.3669	0.89	0.2061	0.09	0.3534		1600	0.1637	0.16	0.1488	0.79	0.1260	0.06	0.1499
	1700	0.3839	0.02	0.2673	0.88	0.1522	0.10	0.2587		1700	0.0894	0.13	0.0459	0.80	0.0586	0.07	0.0525
21-Jun-10	0900	0.4219	0.00	0.3883	0.89	0.2192	0.11	0.3695	21-Dec-10	0900	0.1762	0.14	0.1701	0.85	0.1427	0.01	0.1707
	1000	0.3852	0.00	0.3761	0.89	0.2522	0.11	0.3624		1000	0.2045	0.19	0.2248	0.77	0.1838	0.03	0.2195
	1100	0.3429	0.00	0.3008	0.89	0.2747	0.11	0.2979		1100	0.2167	0.18	0.2426	0.78	0.2093	0.03	0.2368
	1200	0.3149	0.00	0.2775	0.88	0.2853	0.12	0.2785		1200	0.2222	0.16	0.2429	0.81	0.2214	0.03	0.2389
	1300	0.3178	0.00	0.2595	0.92	0.2841	0.08	0.2614		1300	0.2219	0.16	0.2426	0.82	0.2199	0.02	0.2388
	1400	0.3479	0.00	0.3149	0.93	0.2722	0.07	0.3121		1400	0.2151	0.19	0.2383	0.78	0.2046	0.02	0.2331
	1500	0.3913	0.00	0.3827	0.97	0.2480	0.03	0.3782		1500	0.1980	0.20	0.2130	0.77	0.1732	0.02	0.2091
	1600	0.4286	0.00	0.3820	0.93	0.2108	0.07	0.3706		1600	0.1625	0.17	0.1457	0.81	0.1272	0.02	0.1482
	1700	0.4266	0.00	0.2937	0.93	0.1611	0.07	0.2848		1700	0.0939	0.15	0.0502	0.83	0.0631	0.02	0.0571

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 3

Date	Time	$\mathbf{P}_{ES,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{ES,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.9579	0.05	0.9579	0.80	0.9579	0.15	0.9579	21-Jul-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1000	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1100	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1100	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1200	0.9579	0.08	0.9579	0.80	0.9579	0.13	0.9579		1200	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1300	0.9579	0.08	0.9579	0.83	0.9579	0.10	0.9579		1300	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1400	0.9579	0.08	0.9579	0.84	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.09	0.9579	0.83	0.9579	0.09	0.9579		1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1600	0.9579	0.11	0.9579	0.83	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1700	0.9579	0.10	0.9579	0.83	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.95	0.9579	0.05	0.9579
21-Feb-10	0900	0.9579	0.04	0.9579	0.89	0.9579	0.07	0.9579	21-Aug-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.02	0.9579	0.89	0.9579	0.08	0.9579		1000	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1100	0.9579	0.02	0.9579	0.88	0.9579	0.09	0.9579		1100	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1200	0.9579	0.04	0.9579	0.87	0.9579	0.09	0.9579		1200	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1300	0.9579	0.05	0.9579	0.92	0.9579	0.04	0.9579		1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1400	0.9579	0.04	0.9579	0.92	0.9579	0.05	0.9579		1400	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1500	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1500	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1600	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1700	0.9579	0.04	0.9579	0.91	0.9579	0.06	0.9579		1700	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
21-Mar-10	0900	0.9579	0.04	0.9579	0.83	0.9579	0.13	0.9579	21-Sep-10	0900	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579
	1000	0.9579	0.03	0.9579	0.85	0.9579	0.12	0.9579		1000	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1100	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1100	0.9579	0.01	0.9579	0.96	0.9579	0.03	0.9579
	1200	0.9579	0.03	0.9579	0.86	0.9579	0.11	0.9579		1200	0.9579	0.01	0.9579	0.93	0.9579	0.06	0.9579
	1300	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1300	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1400	0.9579	0.03	0.9579	0.88	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1500	0.9579	0.00	0.9579	0.98	0.9579	0.02	0.9579
	1600	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1600	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
	1700	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
21-Apr-10	0900	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579	21-Oct-10	0900	0.9579	0.03	0.9579	0.97	0.9579	0.00	0.9579
	1000	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1000	0.9579	0.04	0.9579	0.96	0.9579	0.00	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.01	0.9579	0.99	0.9579	0.00	0.9579
	1200	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1200	0.9579	0.00	0.9579	1.00	0.9579	0.00	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1400	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1400	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1500	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1500	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1600	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1600	0.9579	0.01	0.9579	0.98	0.9579	0.01	0.9579
	1700	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1700	0.9579	0.03	0.9579	0.96	0.9579	0.01	0.9579
21-May-10	0900	0.9579	0.02	0.9579	0.96	0.9579	0.02	0.9579	21-Nov-10	0900	0.9579	0.12	0.9579	0.84	0.9579	0.03	0.9579
	1000	0.9579	0.01	0.9579	0.97	0.9579	0.02	0.9579		1000	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1100	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1100	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1200	0.9579	0.02	0.9579	0.91	0.9579	0.06	0.9579		1200	0.9579	0.14	0.9579	0.82	0.9579	0.03	0.9579
	1300	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1300	0.9579	0.12	0.9579	0.83	0.9579	0.04	0.9579
	1400	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1400	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1500	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1500	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1600	0.9579	0.02	0.9579	0.89	0.9579	0.09	0.9579		1600	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1700	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1700	0.9579	0.13	0.9579	0.80	0.9579	0.07	0.9579
21-Jun-10	0900	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579	21-Dec-10	0900	0.9579	0.14	0.9579	0.85	0.9579	0.01	0.9579
	1000	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1000	0.9579	0.19	0.9579	0.77	0.9579	0.03	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.18	0.9579	0.78	0.9579	0.03	0.9579
	1200	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1200	0.9579	0.16	0.9579	0.81	0.9579	0.03	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.16	0.9579	0.82	0.9579	0.02	0.9579
	1400	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1400	0.9579	0.19	0.9579	0.78	0.9579	0.02	0.9579
	1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1500	0.9579	0.20	0.9579	0.77	0.9579	0.02	0.9579
	1600	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1600	0.9579	0.17	0.9579	0.81	0.9579	0.02	0.9579
	1700	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9579	0.15	0.9579	0.83	0.9579	0.02	0.9579

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 3

Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{E \mathbf{X} U \mathbf{X} O}$	P_O	$\mathbf{P}_{EX,UX,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{E \mathbf{X}, U \mathbf{X}, P}$	P_P	$\mathbf{P}_{E\mathbf{X},U\mathbf{X},O}$	P_O	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9257	0.05	0.9464	0.80	0.9461	0.15	0.9452	21-Jul-10	0900	0.9267	0.00	0.9462	0.92	0.9454	0.08	0.9461
	1000	0.9257	0.06	0.9474	0.81	0.9461	0.13	0.9458		1000	0.9241	0.00	0.9466	0.91	0.9461	0.09	0.9466
	1100	0.9265	0.06	0.9484	0.81	0.9452	0.13	0.9466		1100	0.9244	0.00	0.9491	0.91	0.9468	0.09	0.9489
	1200	0.9256	0.08	0.9482	0.80	0.9452	0.13	0.9461		1200	0.9240	0.00	0.9507	0.91	0.9465	0.09	0.9503
	1300	0.9259	0.08	0.9490	0.83	0.9451	0.10	0.9469		1300	0.9240	0.00	0.9521	0.96	0.9465	0.04	0.9518
	1400	0.9600	0.08	0.9483	0.84	0.9470	0.09	0.9491		1400	0.9245	0.00	0.9484	0.97	0.9469	0.03	0.9484
	1500	0.9252	0.09	0.9466	0.83	0.9461	0.09	0.9447		1500	0.9242	0.00	0.9467	0.97	0.9462	0.03	0.9466
	1600	0.9257	0.11	0.9463	0.83	0.9461	0.06	0.9441		1600	0.9270	0.00	0.9463	0.97	0.9455	0.03	0.9462
	1700	0.9255	0.10	0.9456	0.83	0.9460	0.08	0.9437		1700	0.9256	0.00	0.9450	0.95	0.9460	0.05	0.9451
21-Feb-10	0900	0.9258	0.04	0.9463	0.89	0.9461	0.07	0.9456	21-Aug-10	0900	0.9241	0.00	0.9464	0.92	0.9462	0.08	0.9464
	1000	0.9248	0.02	0.9467	0.89	0.9465	0.08	0.9462		1000	0.9250	0.00	0.9476	0.92	0.9466	0.08	0.9476
	1100	0.9243	0.02	0.9494	0.88	0.9463	0.09	0.9486		1100	0.9251	0.00	0.9495	0.90	0.9471	0.10	0.9492
	1200	0.9271	0.04	0.9501	0.87	0.9460	0.09	0.9489		1200	0.9257	0.00	0.9520	0.92	0.9467	0.08	0.9516
	1300	0.9267	0.05	0.9490	0.92	0.9458	0.04	0.9479		1300	0.9258	0.00	0.9530	0.90	0.9467	0.10	0.9524
	1400	0.9265	0.04	0.9497	0.92	0.9456	0.05	0.9487		1400	0.9256	0.00	0.9501	0.90	0.9455	0.10	0.9497
	1500	0.9264	0.02	0.9478	0.92	0.9452	0.06	0.9472		1500	0.9259	0.00	0.9482	0.91	0.9452	0.09	0.9480
	1600	0.9257	0.02	0.9467	0.92	0.9461	0.06	0.9462		1600	0.9257	0.00	0.9466	0.91	0.9471	0.09	0.9467
	1700	0.9256	0.04	0.9462	0.91	0.9461	0.06	0.9455		1700	0.9257	0.00	0.9446	0.90	0.9461	0.10	0.9447
21-Mar-10	0900	0.9257	0.04	0.9477	0.83	0.9461	0.13	0.9466	21-Sep-10	0900	0.9263	0.02	0.9469	0.92	0.9449	0.06	0.9463
	1000	0.9259	0.03	0.9479	0.85	0.9451	0.12	0.9469		1000	0.9269	0.00	0.9477	0.96	0.9458	0.04	0.9476
	1100	0.9256	0.03	0.9495	0.87	0.9452	0.10	0.9483		1100	0.9271	0.01	0.9499	0.96	0.9462	0.03	0.9496
	1200	0.9607	0.03	0.9511	0.86	0.9471	0.11	0.9510		1200	0.9246	0.01	0.9506	0.93	0.9469	0.06	0.9501
	1300	0.9607	0.02	0.9512	0.90	0.9471	0.08	0.9511		1300	0.9254	0.00	0.9507	0.97	0.9472	0.03	0.9506
	1400	0.9255	0.03	0.9496	0.88	0.9469	0.09	0.9486		1400	0.9264	0.00	0.9488	0.97	0.9456	0.03	0.9487
	1500	0.9258	0.03	0.9474	0.87	0.9471	0.10	0.9467		1500	0.9238	0.00	0.9483	0.98	0.9461	0.02	0.9482
	1600	0.9255	0.03	0.9464	0.89	0.9461	0.08	0.9457		1600	0.9257	0.00	0.9467	0.99	0.9461	0.01	0.9467
	1700	0.9258	0.03	0.9462	0.89	0.9461	0.08	0.9455		1700	0.9257	0.00	0.9462	0.99	0.9461	0.01	0.9462
21-Apr-10	0900	0.9274	0.00	0.9464	0.88	0.9457	0.12	0.9464	21-Oct-10	0900	0.9257	0.03	0.9466	0.97	0.9461	0.00	0.9459
	1000	0.9245	0.00	0.9486	0.90	0.9464	0.10	0.9484		1000	0.9240	0.04	0.9479	0.96	0.9461	0.00	0.9469
	1100	0.9248	0.00	0.9499	0.89	0.9470	0.11	0.9496		1100	0.9252	0.01	0.9489	0.99	0.9468	0.00	0.9486
	1200	0.9257	0.00	0.9523	0.90	0.9467	0.10	0.9517		1200	0.9263	0.00	0.9493	1.00	0.9456	0.00	0.9493
	1300	0.9260	0.00	0.9527	0.92	0.9452	0.08	0.9522		1300	0.9243	0.02	0.9496	0.97	0.9463	0.01	0.9490
	1400	0.9261	0.00	0.9500	0.92	0.9457	0.08	0.9497		1400	0.9258	0.02	0.9480	0.97	0.9450	0.01	0.9475
	1500	0.9267	0.00	0.9482	0.89	0.9457	0.11	0.9479		1500	0.9275	0.02	0.9470	0.97	0.9456	0.01	0.9466
	1600	0.9271	0.00	0.9467	0.89	0.9453	0.11	0.9466		1600	0.9256	0.01	0.9469	0.98	0.9461	0.01	0.9467
	1700	0.9257	0.00	0.9448	0.88	0.9461	0.12	0.9449		1700	0.9259	0.03	0.9458	0.96	0.9461	0.01	0.9451
21-May-10	0900	0.9249	0.02	0.9460	0.96	0.9467	0.02	0.9455	21-Nov-10	0900	0.9257	0.12	0.9459	0.84	0.9461	0.03	0.9435
	1000	0.9262	0.01	0.9469	0.97	0.9455	0.02	0.9467		1000	0.9266	0.17	0.9471	0.80	0.9516	0.03	0.9439
	1100	0.9268	0.01	0.9482	0.94	0.9456	0.05	0.9478		1100	0.9240	0.17	0.9484	0.80	0.9461	0.03	0.9442
	1200	0.9266	0.02	0.9519	0.91	0.9465	0.06	0.9510		1200	0.9254	0.14	0.9486	0.82	0.9469	0.03	0.9452
	1300	0.9242	0.01	0.9517	0.94	0.9466	0.05	0.9511		1300	0.9267	0.12	0.9485	0.83	0.9455	0.04	0.9457
	1400	0.9252	0.02	0.9490	0.88	0.9471	0.10	0.9484		1400	0.9241	0.16	0.9466	0.79	0.9462	0.06	0.9431
	1500	0.9256	0.02	0.9473	0.90	0.9470	0.08	0.9468		1500	0.9257	0.16	0.9466	0.79	0.9461	0.06	0.9433
	1600	0.9251	0.02	0.9458	0.89	0.9468	0.09	0.9455		1600	0.9258	0.16	0.9463	0.79	0.9461	0.06	0.9431
	1700	0.9257	0.02	0.9457	0.88	0.9461	0.10	0.9453		1700	0.9256	0.13	0.9457	0.80	0.9460	0.07	0.9431
21-Jun-10	0900	0.9254	0.00	0.9458	0.89	0.9469	0.11	0.9459	21-Dec-10	0900	0.9256	0.14	0.9463	0.85	0.9461	0.01	0.9434
	1000	0.9265	0.00	0.9473	0.89	0.9457	0.11	0.9471		1000	0.9257	0.19	0.9468	0.77	0.9461	0.03	0.9427
	1100	0.9270	0.00	0.9486	0.89	0.9457	0.11	0.9483		1100	0.9238	0.18	0.9482	0.78	0.9460	0.03	0.9436
	1200	0.9240	0.00	0.9507	0.88	0.9465	0.12	0.9501		1200	0.9246	0.16	0.9477	0.81	0.9465	0.03	0.9439
	1300	0.9241	0.00	0.9500	0.92	0.9466	0.08	0.9498		1300	0.9251	0.16	0.9482	0.82	0.9468	0.02	0.9444
	1400	0.9248	0.00	0.9479	0.93	0.9459	0.07	0.9478		1400	0.9257	0.19	0.9468	0.78	0.9471	0.02	0.9427
	1500	0.9246	0.00	0.9462	0.97	0.9465	0.03	0.9462		1500	0.9257	0.20	0.9467	0.77	0.9461	0.02	0.9424
	1600	0.9275	0.00	0.9452	0.93	0.9458	0.07	0.9452		1600	0.9257	0.17	0.9463	0.81	0.9461	0.02	0.9427
	1700	0.9257	0.00	0.9448	0.93	0.9461	0.07	0.9449		1700	0.9258	0.15	0.9457	0.83	0.9460	0.02	0.9427

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 3

Date	Time	$\mathbf{P}_{ES,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$P_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$P_{ES,PG,R}$
21-Jan-10	0900	0.9960	0.05	0.9961	0.80	0.9968	0.15	0.9962	21-Jul-10	0900	0.9864	0.00	0.9882	0.92	0.9948	0.08	0.9887
	1000	0.9943	0.06	0.9944	0.81	0.9957	0.13	0.9945		1000	0.9880	0.00	0.2294	0.91	0.9936	0.09	0.2951
	1100	0.9939	0.06	0.9941	0.81	0.9947	0.13	0.9942		1100	0.9920	0.00	0.9923	0.91	0.9928	0.09	0.9924
	1200	0.9939	0.08	0.9942	0.80	0.9942	0.13	0.9942		1200	0.9884	0.00	0.9937	0.91	0.9925	0.09	0.9936
	1300	0.9940	0.08	0.9943	0.83	0.9941	0.10	0.9943		1300	0.9883	0.00	0.9939	0.96	0.9925	0.04	0.9938
	1400	0.9939	0.08	0.9941	0.84	0.9945	0.09	0.9941		1400	0.9920	0.00	0.9921	0.97	0.9929	0.03	0.9921
	1500	0.9942	0.09	0.9944	0.83	0.9954	0.09	0.9944		1500	0.9877	0.00	0.9888	0.97	0.9936	0.03	0.9890
	1600	0.9957	0.11	0.9959	0.83	0.9965	0.06	0.9959		1600	0.9862	0.00	0.9884	0.97	0.9949	0.03	0.9886
	1700	0.9972	0.10	0.9981	0.83	0.9980	0.08	0.9980		1700	0.9848	0.00	0.9921	0.95	0.9962	0.05	0.9923
21-Feb-10	0900	0.9947	0.04	0.9944	0.89	0.9962	0.07	0.9945	21-Aug-10	0900	0.9894	0.00	0.9900	0.92	0.9947	0.08	0.9904
	1000	0.9938	0.02	0.9930	0.89	0.9948	0.08	0.9932		1000	0.9871	0.00	0.9902	0.92	0.9935	0.08	0.9905
	1100	0.9939	0.02	0.9934	0.88	0.9941	0.09	0.9935		1100	0.9920	0.00	0.9931	0.90	0.9931	0.10	0.9931
	1200	0.9941	0.04	0.9942	0.87	0.9935	0.09	0.9941		1200	0.9967	0.00	0.9952	0.92	0.9927	0.08	0.9950
	1300	0.9941	0.05	0.9938	0.92	0.9934	0.04	0.9938		1300	0.9946	0.00	0.9949	0.90	0.9925	0.10	0.9947
	1400	0.9939	0.04	0.9935	0.92	0.9940	0.05	0.9936		1400	0.9924	0.00	0.9927	0.90	0.9929	0.10	0.9927
	1500	0.9938	0.02	0.9931	0.92	0.9947	0.06	0.9932		1500	0.9849	0.00	0.9902	0.91	0.9938	0.09	0.9905
	1600	0.9944	0.02	0.9940	0.92	0.9959	0.06	0.9941		1600	0.9902	0.00	0.9902	0.91	0.9950	0.09	0.9906
	1700	0.9961	0.04	0.9968	0.91	0.9973	0.06	0.9968		1700	0.9916	0.00	0.9936	0.90	0.9965	0.10	0.9939
21-Mar-10	0900	0.9959	0.04	0.9925	0.83	0.9955	0.13	0.9930	21-Sep-10	0900	0.9938	0.02	0.9919	0.92	0.9951	0.06	0.9921
	1000	0.9936	0.03	0.9918	0.85	0.9942	0.12	0.9921		1000	0.9936	0.00	0.9917	0.96	0.9938	0.04	0.9918
	1100	0.9936	0.03	0.9930	0.87	0.9933	0.10	0.9931		1100	0.9937	0.01	0.9937	0.96	0.9931	0.03	0.9937
	1200	0.9935	0.03	0.9947	0.86	0.9931	0.11	0.9945		1200	0.9935	0.01	0.9946	0.93	0.9929	0.06	0.9945
	1300	0.9935	0.02	0.9945	0.90	0.9931	0.08	0.9943		1300	0.9934	0.00	0.9942	0.97	0.9928	0.03	0.9942
	1400	0.9936	0.03	0.9931	0.88	0.9932	0.09	0.9931		1400	0.9934	0.00	0.9926	0.97	0.9933	0.03	0.9926
	1500	0.9936	0.03	0.9919	0.87	0.9941	0.10	0.9921		1500	0.9933	0.00	0.9915	0.98	0.9947	0.02	0.9916
	1600	0.9965	0.03	0.9924	0.89	0.9955	0.08	0.9927		1600	0.9957	0.00	0.9927	0.99	0.9957	0.01	0.9927
	1700	0.9962	0.03	0.9956	0.89	0.9969	0.08	0.9957		1700	0.9960	0.00	0.9962	0.99	0.9974	0.01	0.9962
21-Apr-10	0900	0.9883	0.00	0.9900	0.88	0.9949	0.12	0.9906	21-Oct-10	0900	0.9941	0.03	0.9932	0.97	0.9956	0.00	0.9932
21.1401.10	1000	0.9893	0.00	0.9905	0.90	0.9937	0.10	0.9908	21 00 10	1000	0.9937	0.04	0.9929	0.96	0.9945	0.00	0.9929
	1100	0.9942	0.00	0.9931	0.89	0.9930	0.11	0.9931		1100	0.9939	0.01	0.9937	0.99	0.9936	0.00	0.9937
	1200	0.9925	0.00	0.9949	0.90	0.9927	0.10	0.9947		1200	0.9941	0.00	0.9941	1.00	0.9932	0.00	0.9941
	1300	0.9924	0.00	0.9947	0.92	0.9925	0.08	0.9946		1300	0.9940	0.02	0.9938	0.97	0.9937	0.01	0.9938
	1400	0.9924	0.00	0.9925	0.92	0.9928	0.08	0.9925		1400	0.9938	0.02	0.9932	0.97	0.9941	0.01	0.9932
	1500	0.9903	0.00	0.9923	0.92	0.9928	0.08	0.9923		1500	0.9938	0.02	0.9932	0.97	0.9941	0.01	0.9935
	1600	0.9897	0.00	0.9904	0.89	0.9940	0.11	0.9908		1600	0.9939	0.02	0.9953	0.97	0.9949	0.01	0.9954
	1700	0.9899	0.00	0.9903	0.89	0.9953	0.11	0.9909		1700	0.9986	0.01	0.9953	0.98	0.9982	0.01	0.9982
21-May-10	0900	0.9872	0.02	0.9886	0.96	0.9943	0.02	0.9887	21-Nov-10	0900	0.9949	0.12	0.9950	0.84	0.9962	0.03	0.9950
21-May-10	1000	0.9872	0.02	0.9886	0.96	0.9943	0.02	0.9887	21-Nov-10	1000	0.9949	0.12	0.9950	0.84	0.9962	0.03	0.9950
	1100	0.9903	0.01	0.9927	0.94	0.9926	0.05	0.9927		1100	0.9939	0.17	0.9942	0.80	0.9945	0.03	0.9942
	1200	0.9885	0.02	0.9932	0.91	0.9924	0.06	0.9931		1200	0.9939	0.14	0.9943	0.82	0.9940	0.03	0.9942
	1300	0.9883	0.01	0.9941	0.94	0.9925	0.05	0.9940		1300	0.9939	0.12	0.9943	0.83	0.9944	0.04	0.9943
	1400	0.9912	0.02	0.9914	0.88	0.9931	0.10	0.9916		1400	0.9940	0.16	0.9941	0.79	0.9947	0.06	0.9941
	1500	0.9879	0.02	0.9886	0.90	0.9937	0.08	0.9890		1500	0.9946	0.16	0.9948	0.79	0.9958	0.06	0.9949
	1600	0.9864	0.02	0.9891	0.89	0.9949	0.09	0.9896		1600	0.9962	0.16	0.9966	0.79	0.9971	0.06	0.9966
	1700	0.9857	0.02	0.9925	0.88	0.9964	0.10	0.9927		1700	0.9979	0.13	0.9990	0.80	0.9987	0.07	0.9989
21-Jun-10	0900	0.9838	0.00	0.9880	0.89	0.9944	0.11	0.9887	21-Dec-10	0900	0.9956	0.14	0.9961	0.85	0.9967	0.01	0.9961
	1000	0.9864	0.00	0.9886	0.89	0.9933	0.11	0.9891		1000	0.9946	0.19	0.9948	0.77	0.9953	0.03	0.9948
	1100	0.9882	0.00	0.9921	0.89	0.9927	0.11	0.9921		1100	0.9941	0.18	0.9943	0.78	0.9946	0.03	0.9943
	1200	0.9899	0.00	0.9934	0.88	0.9924	0.12	0.9932		1200	0.9940	0.16	0.9943	0.81	0.9942	0.03	0.9943
	1300	0.9899	0.00	0.9935	0.92	0.9925	0.08	0.9934		1300	0.9940	0.16	0.9943	0.82	0.9944	0.02	0.9943
	1400	0.9877	0.00	0.9916	0.93	0.9930	0.07	0.9917		1400	0.9942	0.19	0.9944	0.78	0.9950	0.02	0.9944
	1500	0.9862	0.00	0.9883	0.97	0.9938	0.03	0.9884		1500	0.9948	0.20	0.9951	0.77	0.9958	0.02	0.9951
	1600	0.9830	0.00	0.9880	0.93	0.9949	0.07	0.9885		1600	0.9962	0.17	0.9967	0.81	0.9971	0.02	0.9967
	1700	0.9827	0.00	0.9917	0.93	0.9962	0.07	0.9920		1700	0.9978	0.15	0.9989	0.83	0.9986	0.02	0.9987

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 4

Date	Time	$\mathbf{P}_{VS,BD,C}$	P_C	$\mathbf{P}_{VS,BD,P}$	P_P	$\mathbf{P}_{V \boxtimes BD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	P_C	$\mathbf{P}_{V \boxtimes BD,P}$	P_P	$\mathbf{P}_{VS,BD,O}$	\mathbf{P}_{O}	$\mathbf{P}_{VS,BD,R}$
21-Jan-10	0900	0.3915	0.05	0.1843	0.80	0.1013	0.15	0.1829	21-Jul-10	0900	0.4634	0.00	0.2865	0.92	0.1393	0.08	0.2754
	1000	0.4077	0.06	0.2417	0.81	0.1256	0.13	0.2374		1000	0.4404	0.00	0.2824	0.91	0.1632	0.09	0.2722
	1100	0.3685	0.06	0.2562	0.81	0.1393	0.13	0.2484		1100	0.3816	0.00	0.2261	0.91	0.1705	0.09	0.2213
	1200	0.2740	0.08	0.2417	0.80	0.1476	0.13	0.2320		1200	0.2608	0.00	0.1775	0.91	0.1775	0.09	0.1775
	1300	0.2466	0.08	0.2150	0.83	0.1476	0.10	0.2109		1300	0.2315	0.00	0.1476	0.96	0.1775	0.04	0.1489
	1400	0.1556	0.08	0.1908	0.84	0.1393	0.09	0.1837		1400	0.1476	0.00	0.1393	0.97	0.1705	0.03	0.1403
	1500	0.1393	0.09	0.1632	0.83	0.1283	0.09	0.1581		1500	0.1393	0.00	0.1556	0.97	0.1556	0.03	0.1556
	1600	0.1258	0.11	0.1175	0.83	0.1053	0.06	0.1176		1600	0.1373	0.00	0.1556	0.97	0.1393	0.03	0.1550
	1700	0.0939	0.10	0.0622	0.83	0.0710	0.08	0.0659		1700	0.1262	0.00	0.1194	0.95	0.1131	0.05	0.1191
21-Feb-10	0900	0.4288	0.04	0.2207	0.89	0.1127	0.07	0.2204	21-Aug-10	0900	0.4651	0.00	0.2824	0.92	0.1379	0.08	0.2715
	1000	0.4327	0.02	0.2697	0.89	0.1367	0.08	0.2626		1000	0.4423	0.00	0.2865	0.92	0.1556	0.08	0.2766
	1100	0.3866	0.02	0.2653	0.88	0.1556	0.09	0.2578		1100	0.3816	0.00	0.2315	0.90	0.1705	0.10	0.2256
	1200	0.2865	0.04	0.2366	0.87	0.1632	0.09	0.2315		1200	0.2608	0.00	0.1705	0.92	0.1775	0.08	0.1710
	1300	0.2207	0.05	0.2093	0.92	0.1632	0.04	0.2082		1300	0.2608	0.00	0.1476	0.90	0.1775	0.10	0.1505
	1400	0.1556	0.04	0.1843	0.92	0.1556	0.05	0.1819		1400	0.1476	0.00	0.1476	0.90	0.1705	0.10	0.1498
	1500	0.1476	0.02	0.1705	0.92	0.1393	0.06	0.1681		1500	0.1393	0.00	0.1556	0.91	0.1556	0.09	0.1556
	1600	0.1320	0.02	0.1361	0.92	0.1192	0.06	0.1350		1600	0.1357	0.00	0.1476	0.91	0.1351	0.09	0.1465
	1700	0.1083	0.04	0.0841	0.91	0.0871	0.06	0.0852		1700	0.1214	0.00	0.1078	0.90	0.1057	0.10	0.1076
21-Mar-10	0900	0.4566	0.04	0.2608	0.83	0.1272	0.13	0.2520	21-Sep-10	0900	0.4583	0.02	0.2740	0.92	0.1340	0.06	0.2703
	1000	0.4423	0.03	0.2865	0.85	0.1476	0.12	0.2751		1000	0.4347	0.00	0.2824	0.96	0.1556	0.04	0.2768
	1100	0.3866	0.03	0.2562	0.87	0.1632	0.10	0.2514		1100	0.3685	0.01	0.2417	0.96	0.1632	0.03	0.2405
	1200	0.2740	0.03	0.2093	0.86	0.1705	0.11	0.2072		1200	0.2261	0.01	0.1908	0.93	0.1705	0.06	0.1901
	1300	0.2515	0.02	0.1775	0.90	0.1705	0.08	0.1786		1300	0.1632	0.00	0.1705	0.97	0.1705	0.03	0.1705
	1400	0.1476	0.03	0.1705	0.88	0.1632	0.09	0.1691		1400	0.1476	0.00	0.1705	0.97	0.1632	0.03	0.1702
	1500	0.1393	0.03	0.1632	0.87	0.1476	0.10	0.1609		1500	0.1393	0.00	0.1632	0.98	0.1476	0.02	0.1628
	1600	0.1340	0.03	0.1393	0.89	0.1277	0.08	0.1383		1600	0.1312	0.00	0.1323	0.99	0.1222	0.01	0.1322
	1700	0.1148	0.03	0.0965	0.89	0.0963	0.08	0.0970		1700	0.1085	0.00	0.0839	0.99	0.0883	0.01	0.0840
21-Apr-10	0900	0.4634	0.00	0.2865	0.88	0.1393	0.12	0.2685	21-Oct-10	0900	0.4385	0.03	0.2515	0.97	0.1260	0.00	0.2575
	1000	0.4404	0.00	0.2824	0.90	0.1556	0.10	0.2697		1000	0.4164	0.04	0.2740	0.96	0.1476	0.00	0.2802
	1100	0.3765	0.00	0.2261	0.89	0.1705	0.11	0.2199		1100	0.3486	0.01	0.2515	0.99	0.1556	0.00	0.2525
	1200	0.2466	0.00	0.1705	0.90	0.1775	0.10	0.1712		1200	0.2033	0.00	0.2207	1.00	0.1632	0.00	0.2207
	1300	0.2562	0.00	0.1476	0.92	0.1775	0.08	0.1499		1300	0.1632	0.02	0.1972	0.97	0.1556	0.01	0.1960
	1400	0.1476	0.00	0.1476	0.92	0.1705	0.08	0.1494		1400	0.1476	0.02	0.1775	0.97	0.1476	0.01	0.1765
	1500	0.1393	0.00	0.1556	0.89	0.1556	0.11	0.1556		1500	0.1390	0.02	0.1556	0.97	0.1318	0.01	0.1549
	1600	0.1348	0.00	0.1476	0.89	0.1326	0.11	0.1460		1600	0.1228	0.01	0.1128	0.98	0.1054	0.01	0.1128
	1700	0.1191	0.00	0.1034	0.88	0.1023	0.12	0.1033		1700	0.0883	0.03	0.0548	0.96	0.0666	0.01	0.0560
21-May-10	0900	0.4617	0.02	0.2905	0.96	0.1476	0.02	0.2911	21-Nov-10	0900	0.4099	0.12	0.2150	0.84	0.1131	0.03	0.2355
	1000	0.4327	0.01	0.2740	0.97	0.1632	0.02	0.2734		1000	0.3986	0.17	0.2515	0.80	0.1334	0.03	0.2721
	1100	0.3685	0.01	0.2150	0.94	0.1705	0.05	0.2143		1100	0.3364	0.17	0.2515	0.80	0.1476	0.03	0.2622
	1200	0.2315	0.02	0.1843	0.91	0.1775	0.06	0.1848		1200	0.2033	0.14	0.2315	0.82	0.1476	0.03	0.2246
	1300	0.2608	0.01	0.1377	0.94	0.1775	0.05	0.1412		1300	0.1705	0.12	0.2093	0.83	0.1476	0.04	0.2018
	1400	0.1476	0.02	0.1476	0.88	0.1705	0.10	0.1498		1400	0.1476	0.16	0.1775	0.79	0.1379	0.06	0.1706
	1500	0.1393	0.02	0.1556	0.90	0.1556	0.08	0.1552		1500	0.1371	0.16	0.1476	0.79	0.1203	0.06	0.1445
	1600	0.1361	0.02	0.1476	0.89	0.1361	0.09	0.1464		1600	0.1152	0.16	0.0961	0.79	0.0931	0.06	0.0989
	1700	0.1230	0.02	0.1122	0.88	0.1077	0.10	0.1120		1700	0.0719	0.13	0.0382	0.80	0.0519	0.07	0.0436
21-Jun-10	0900	0.4600	0.00	0.2865	0.89	0.1393	0.11	0.2701	21-Dec-10	0900	0.3866	0.14	0.1843	0.85	0.1021	0.01	0.2117
	1000	0.4347	0.00	0.2740	0.89	0.1632	0.11	0.2617		1000	0.3939	0.19	0.2315	0.77	0.1246	0.03	0.2595
	1100	0.3712	0.00	0.2150	0.89	0.1705	0.11	0.2101		1100	0.3456	0.18	0.2466	0.78	0.1384	0.03	0.2612
	1200	0.2466	0.00	0.1775	0.88	0.1775	0.12	0.1775		1200	0.2366	0.16	0.2315	0.81	0.1476	0.03	0.2296
	1300	0.2608	0.00	0.1393	0.92	0.1775	0.08	0.1423		1300	0.2466	0.16	0.2093	0.82	0.1393	0.02	0.2138
	1400	0.1476	0.00	0.1393	0.93	0.1705	0.07	0.1414		1400	0.1556	0.19	0.1843	0.78	0.1351	0.02	0.1777
	1500	0.1393	0.00	0.1556	0.97	0.1556	0.03	0.1556		1500	0.1389	0.20	0.1476	0.77	0.1189	0.02	0.1452
	1600	0.1373	0.00	0.1476	0.93	0.1392	0.07	0.1471		1600	0.1169	0.17	0.0988	0.81	0.0936	0.02	0.1018
	1700	0.1262	0.00	0.1198	0.93	0.1125	0.07	0.1193		1700	0.0756	0.15	0.0423	0.83	0.0551	0.02	0.0476

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 4

Date	Time	$\mathbf{P}_{VS,BS,C}$	P_C	$\mathbf{P}_{VX,BX,P}$	P_P	$\mathbf{P}_{VS,BS,O}$	P_O	$\mathbf{P}_{FS,RS,R}$	Date	Time	$\mathbf{P}_{VX,BX,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,BS,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VS,BS,O}$	P_O	$P_{VS,BS,R}$
21-Jan-10	0900	0.6715	0.05	0.3397	0.80	0.1773	0.15	0.3331	21-Jul-10	0900	0.7508	0.00	0.5243	0.92	0.2582	0.08	0.5043
	1000	0.6932	0.06	0.4471	0.81	0.2270	0.13	0.4346		1000	0.7275	0.00	0.5172	0.91	0.2949	0.09	0.4981
	1100	0.6422	0.06	0.6440	0.81	0.2590	0.13	0.5942		1100	0.6579	0.00	0.4222	0.91	0.3201	0.09	0.4134
	1200	0.4985	0.08	0.4417	0.80	0.2743	0.13	0.4244		1200	0.4869	0.00	0.3307	0.91	0.2726	0.09	0.3257
	1300	0.6305	0.08	0.3970	0.83	0.2751	0.10	0.4028		1300	0.6695	0.00	0.2734	0.96	0.3318	0.04	0.2759
	1400	0.2810	0.08	0.3504	0.84	0.2616	0.09	0.3375		1400	0.2692	0.00	0.2709	0.97	0.3195	0.03	0.2725
	1500	0.2549	0.09	0.2920	0.83	0.2327	0.09	0.2837		1500	0.2608	0.00	0.2958	0.97	0.2941	0.03	0.2958
	1600	0.2205	0.11	0.2073	0.83	0.1854	0.06	0.2073		1600	0.2508	0.00	0.2849	0.97	0.2573	0.03	0.2840
	1700	0.1583	0.10	0.0973	0.83	0.1165	0.08	0.1046		1700	0.2257	0.00	0.2178	0.95	0.2018	0.05	0.2169
21-Feb-10	0900	0.7125	0.04	0.4089	0.89	0.2011	0.07	0.4049	21-Aug-10	0900	0.7525	0.00	0.5196	0.92	0.2509	0.08	0.4994
	1000	0.7195	0.02	0.4938	0.89	0.2491	0.08	0.4790		1000	0.7300	0.00	0.5208	0.92	0.2919	0.08	0.5035
	1100	0.6666	0.02	0.4906	0.88	0.2799	0.09	0.4749		1100	0.6596	0.00	0.4340	0.90	0.3172	0.10	0.4227
	1200	0.5228	0.04	0.4395	0.87	0.2956	0.09	0.4289		1200	0.4817	0.00	0.3216	0.92	0.3298	0.08	0.3222
	1300	0.4322	0.05	0.3841	0.92	0.2997	0.04	0.3834		1300	0.7600	0.00	0.2722	0.90	0.3291	0.10	0.2777
	1400	0.2827	0.04	0.3476	0.92	0.2872	0.05	0.3424		1400	0.2684	0.00	0.2814	0.90	0.3158	0.10	0.2847
	1500	0.2585	0.02	0.3108	0.92	0.2569	0.06	0.3064		1500	0.2570	0.00	0.2987	0.91	0.2888	0.09	0.2978
	1600	0.2363	0.02	0.2450	0.92	0.2141	0.06	0.2430		1600	0.2450	0.00	0.2735	0.91	0.2465	0.09	0.2711
	1700	0.1882	0.04	0.1403	0.91	0.1490	0.06	0.1425		1700	0.2164	0.00	0.1928	0.90	0.1866	0.10	0.1922
1-Mar-10	0900	0.7434	0.04	0.4814	0.83	0.2305	0.13	0.4603	21-Sep-10	0900	0.7456	0.02	0.5040	0.92	0.2447	0.06	0.4949
	1000	0.7298	0.03	0.5237	0.85	0.2751	0.12	0.5010		1000	0.7210	0.00	0.5183	0.96	0.2857	0.04	0.5079
	1100	0.6672	0.03	0.4757	0.87	0.3033	0.10	0.4652		1100	0.6417	0.01	0.4519	0.96	0.3078	0.03	0.4492
	1200	0.5015	0.03	0.3866	0.86	0.3165	0.11	0.3827		1200	0.4335	0.01	0.3625	0.93	0.3188	0.06	0.3609
	1300	0.7232	0.02	0.3314	0.90	0.3165	0.08	0.3387		1300	0.2967	0.00	0.3201	0.97	0.3164	0.03	0.3199
	1400	0.2745	0.03	0.5959	0.88	0.3034	0.09	0.5604		1400	0.2683	0.00	0.3129	0.97	0.3004	0.03	0.3125
	1500	0.2575	0.03	0.3070	0.87	0.2758	0.10	0.3024		1500	0.2555	0.00	0.2993	0.98	0.2673	0.02	0.2986
	1600	0.2412	0.03	0.2593	0.89	0.2315	0.08	0.2567		1600	0.2362	0.00	0.2437	0.99	0.2201	0.01	0.2435
	1700	0.2025	0.03	0.1651	0.89	0.1676	0.08	0.1665		1700	0.1899	0.00	0.1404	0.99	0.1508	0.01	0.1406
1-Apr-10	0900	0.7522	0.00	0.5231	0.88	0.2564	0.12	0.4905	21-Oct-10	0900	0.7261	0.03	0.4657	0.97	0.2281	0.00	0.4741
	1000	0.7271	0.00	0.5181	0.90	0.2934	0.10	0.4956		1000	0.7016	0.04	0.5022	0.96	0.2665	0.00	0.5108
	1100	0.6514	0.00	0.4258	0.89	0.3181	0.11	0.4139		1100	0.6138	0.01	0.4670	0.99	0.2911	0.00	0.4685
	1200	0.4587	0.00	0.3184	0.90	0.3292	0.10	0.3194		1200	0.3795	0.00	0.4086	1.00	0.3011	0.00	0.4086
	1300	0.7555	0.00	0.2722	0.92	0.3279	0.08	0.2765		1300	0.2970	0.02	0.3631	0.97	0.2941	0.01	0.3609
	1400	0.2676	0.00	0.2873	0.92	0.3137	0.08	0.2894		1400	0.2716	0.02	0.3300	0.97	0.2752	0.01	0.3282
	1500	0.2561	0.00	0.2987	0.89	0.2864	0.11	0.2974		1500	0.2509	0.02	0.2815	0.97	0.2403	0.01	0.2804
	1600	0.2429	0.00	0.2692	0.89	0.2416	0.11	0.2661		1600	0.2173	0.01	0.1978	0.98	0.1863	0.01	0.1979
	1700	0.2120	0.00	0.1829	0.88	0.1799	0.12	0.1825		1700	0.1498	0.03	0.0842	0.96	0.1081	0.01	0.0866
1-May-10	0900	0.7498	0.02	0.5298	0.96	0.2633	0.02	0.5288	21-Nov-10	0900	0.6935	0.12	0.3983	0.84	0.2018	0.03	0.4278
	1000	0.7201	0.01	0.5075	0.97	0.3012	0.02	0.5053		1000	0.6809	0.17	0.4657	0.80	0.2428	0.03	0.4941
	1100	0.6399	0.01	0.4029	0.94	0.3221	0.05	0.4012		1100	0.6000	0.17	0.4625	0.80	0.2665	0.03	0.4789
	1200	0.4428	0.02	0.3436	0.91	0.3324	0.06	0.3450		1200	0.3843	0.14	0.4250	0.82	0.2767	0.03	0.4142
	1300	0.7646	0.01	0.2601	0.94	0.3305	0.05	0.2693		1300	0.3026	0.12	0.3792	0.83	0.2727	0.04	0.3651
	1400	0.2668	0.02	0.2760	0.88	0.3171	0.10	0.2798		1400	0.2697	0.16	0.3277	0.79	0.2509	0.06	0.3144
	1500	0.2600	0.02	0.2969	0.90	0.2903	0.08	0.2956		1500	0.2423	0.16	0.2621	0.79	0.2164	0.06	0.2565
	1600	0.2463	0.02	0.2758	0.89	0.2482	0.09	0.2728		1600	0.2005	0.16	0.1639	0.79	0.1607	0.06	0.1694
	1700	0.2200	0.02	0.2010	0.88	0.1905	0.10	0.2004		1700	0.1184	0.13	0.0540	0.80	0.0798	0.07	0.0643
1-Jun-10	0900	0.7481	0.00	0.5278	0.89	0.2624	0.11	0.4983	21-Dec-10	0900	0.6871	0.14	0.3416	0.85	0.1797	0.01	0.3881
	1000	0.7211	0.00	0.5102	0.89	0.2998	0.11	0.4868		1000	0.6751	0.19	0.4339	0.77	0.2248	0.03	0.4739
	1100	0.6448	0.00	0.4101	0.89	0.3214	0.11	0.4003		1100	0.6136	0.18	0.4521	0.78	0.2547	0.03	0.4752
	1200	0.4658	0.00	0.3389	0.88	0.3318	0.12	0.3380		1200	0.4388	0.16	0.4281	0.81	0.2649	0.03	0.4246
	1300	0.7623	0.00	0.2678	0.92	0.3312	0.08	0.2727		1300	0.6330	0.16	0.3842	0.82	0.2632	0.02	0.4218
	1400	0.2685	0.00	0.2735	0.93	0.3187	0.07	0.2765		1400	0.2756	0.19	0.3323	0.78	0.2465	0.02	0.3195
	1500	0.2609	0.00	0.2975	0.97	0.2933	0.03	0.2974		1500	0.2439	0.20	0.2644	0.77	0.2139	0.02	0.2592
	1600	0.2479	0.00	0.2845	0.93	0.2557	0.07	0.2825		1600	0.2027	0.17	0.1692	0.81	0.1620	0.02	0.1748
	1700	0.2258	0.00	0.2168	0.93	0.2005	0.07	0.2157		1700	0.1262	0.15	0.0606	0.83	0.0854	0.02	0.0710

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 4

21-Jan-10						$P_{VX,UD,O}$	P_O	$P_{FS,UD,R}$			$P_{VS,UD,C}$	P_C			$P_{FS,UD,O}$	P_O	$P_{VX,UD,R}$
21-Jan-10	0900	0.9887	0.05	0.9887	0.80	0.9887	0.15	0.9887	21-Jul-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1000	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1100	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1100	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1200	0.9887	0.08	0.9887	0.80	0.9887	0.13	0.9887		1200	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1300	0.9887	0.08	0.9887	0.83	0.9887	0.10	0.9887		1300	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1400	0.9887	0.08	0.9887	0.84	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.09	0.9887	0.83	0.9887	0.09	0.9887		1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1600	0.9887	0.11	0.9887	0.83	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1700	0.9887	0.10	0.9887	0.83	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.95	0.9887	0.05	0.9887
21-Feb-10	0900	0.9887	0.04	0.9887	0.89	0.9887	0.07	0.9887	21-Aug-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.02	0.9887	0.89	0.9887	0.08	0.9887		1000	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1100	0.9887	0.02	0.9887	0.88	0.9887	0.09	0.9887		1100	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1200	0.9887	0.04	0.9887	0.87	0.9887	0.09	0.9887		1200	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1300	0.9887	0.05	0.9887	0.92	0.9887	0.04	0.9887		1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1400	0.9887	0.04	0.9887	0.92	0.9887	0.05	0.9887		1400	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1500	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1500	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1600	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1700	0.9887	0.04	0.9887	0.91	0.9887	0.06	0.9887		1700	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
21-Mar-10	0900	0.9887	0.04	0.9887	0.83	0.9887	0.13	0.9887	21-Sep-10	0900	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887
	1000	0.9887	0.03	0.9887	0.85	0.9887	0.12	0.9887		1000	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1100	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1100	0.9887	0.01	0.9887	0.96	0.9887	0.03	0.9887
	1200	0.9887	0.03	0.9887	0.86	0.9887	0.11	0.9887		1200	0.9887	0.01	0.9887	0.93	0.9887	0.06	0.9887
	1300	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1400	0.9887	0.03	0.9887	0.88	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1500	0.9887	0.00	0.9887	0.98	0.9887	0.02	0.9887
	1600	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1600	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
	1700	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
21-Apr-10	0900	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887	21-Oct-10	0900	0.9887	0.03	0.9887	0.97	0.9887	0.00	0.9887
21-Apr-10	1000	0.9887	0.00	0.9887	0.90	0.9887	0.12	0.9887	21-001-10	1000	0.9887	0.04	0.9887	0.96	0.9887	0.00	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.01	0.9887	0.99	0.9887	0.00	0.9887
	1200	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1200	0.9887	0.00	0.9887	1.00	0.9887	0.00	0.9887
	1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.00	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1400	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
			0.00	0.9887						1500				0.97	0.9887	0.01	
	1500 1600	0.9887 0.9887	0.00	0.9887	0.89	0.9887 0.9887	0.11	0.9887 0.9887		1600	0.9887 0.9887	0.02	0.9887 0.9887	0.97	0.9887	0.01	0.9887 0.9887
	1700	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1700	0.9887	0.03	0.9887	0.96	0.9887	0.01	0.9887
21-May-10	0900	0.9887	0.02	0.9887	0.96	0.9887	0.02	0.9887	21-Nov-10	0900	0.9887	0.12	0.9887	0.84	0.9887	0.03	0.9887
	1000	0.9887	0.01	0.9887	0.97	0.9887	0.02	0.9887		1000	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1100	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1100	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1200	0.9887	0.02	0.9887	0.91	0.9887	0.06	0.9887		1200	0.9887	0.14	0.9887	0.82	0.9887	0.03	0.9887
	1300	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1300	0.9887	0.12	0.9887	0.83	0.9887	0.04	0.9887
	1400	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1400	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1500	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1500	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1600	0.9887	0.02	0.9887	0.89	0.9887	0.09	0.9887		1600	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1700	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1700	0.9887	0.13	0.9887	0.80	0.9887	0.07	0.9887
21-Jun-10	0900	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	21-Dec-10	0900	0.9887	0.14	0.9887	0.85	0.9887	0.01	0.9887
	1000	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1000	0.9887	0.19	0.9887	0.77	0.9887	0.03	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.18	0.9887	0.78	0.9887	0.03	0.9887
	1200	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1200	0.9887	0.16	0.9887	0.81	0.9887	0.03	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.16	0.9887	0.82	0.9887	0.02	0.9887
	1400	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1400	0.9887	0.19	0.9887	0.78	0.9887	0.02	0.9887
	1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1500	0.9887	0.20	0.9887	0.77	0.9887	0.02	0.9887
	1600	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1600	0.9887	0.17	0.9887	0.81	0.9887	0.02	0.9887
	1700	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1700	0.9887	0.15	0.9887	0.83	0.9887	0.02	0.9887

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 4

Date	Time	$\mathbf{P}_{VS,US,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,US,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,UX,O}$	P_O	$\mathbf{P}_{FS,US,R}$	Date	Time	$P_{\mathrm{FS},US,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VS,US,O}$	P_O	$\mathbf{P}_{VS,US,R}$
21-Jan-10	0900	0.8804	0.05	0.8876	0.80	0.8943	0.15	0.8882	21-Jul-10	0900	0.8813	0.00	0.8896	0.92	0.8951	0.08	0.8900
	1000	0.8840	0.06	0.8904	0.81	0.8944	0.13	0.8905		1000	0.8825	0.00	0.8897	0.91	0.8931	0.09	0.8900
	1100	0.8839	0.06	0.9379	0.81	0.8949	0.13	0.9289		1100	0.8812	0.00	0.8926	0.91	0.8935	0.09	0.8927
	1200	0.8813	0.08	0.8940	0.80	0.8949	0.13	0.8931		1200	0.8803	0.00	0.8959	0.91	0.8945	0.09	0.8958
	1300	0.9348	0.08	0.8969	0.83	0.8946	0.10	0.8995		1300	0.9373	0.00	0.9010	0.96	0.8945	0.04	0.9007
	1400	0.8945	0.08	0.8991	0.84	0.8941	0.09	0.8983		1400	0.8936	0.00	0.9030	0.97	0.8936	0.03	0.9027
	1500	0.8936	0.09	0.8975	0.83	0.8944	0.09	0.8969		1500	0.8957	0.00	0.9006	0.97	0.8933	0.03	0.9004
	1600 1700	0.8933	0.11	0.8970	0.83	0.8944	0.06	0.8964		1600	0.8933	0.00	0.8998	0.97	0.8954	0.03	0.8997
		0.8928		0.8974			0.08	0.8967		1700	0.8911		0.8988	0.95	0.8943	0.05	0.8986
21-Feb-10	0900	0.8826	0.04	0.8891	0.89	0.8912	0.07	0.8890	21-Aug-10	0900	0.8812	0.00	0.8887	0.92	0.8922	0.08	0.8889
	1000	0.8829	0.02	0.8883	0.89	0.8929	0.08	0.8886		1000	0.8819	0.00	0.8883	0.92	0.8940	0.08	0.8888
	1100	0.8813	0.02	0.8915	0.88	0.8931	0.09	0.8914		1100	0.8815	0.00	0.8910	0.90	0.8951	0.10	0.8914
	1200 1300	0.8816 0.8961	0.04	0.8948 0.8977	0.87	0.8930 0.8959	0.09	0.8941 0.8976		1200 1300	0.8800 0.9397	0.00	0.8950 0.9015	0.92	0.8949 0.8951	0.08	0.8950 0.9008
	1400	0.8961	0.03	0.8977	0.92	0.8959	0.04	0.8976		1400	0.89397	0.00	0.9013	0.90	0.8951	0.10	0.8999
	1500	0.8975	0.04	0.8987	0.92	0.8955	0.05	0.8985		1500	0.8939	0.00	0.9003	0.90	0.8949	0.10	0.8999
	1600	0.8925	0.02	0.8989	0.92	0.8944	0.06	0.8996		1600	0.8916	0.00	0.8987	0.91	0.8949	0.09	0.8984
	1700	0.8926	0.02	0.8974	0.91	0.8944	0.06	0.8970		1700	0.8917	0.00	0.8985	0.90	0.8943	0.10	0.8981
21-Mar-10	0900	0.8796	0.04	0.8893	0.83	0.8943	0.13	0.8895	21-Sep-10	0900	0.8808	0.02	0.8886	0.92	0.8943	0.06	0.8888
21-Wai-10	1000	0.8814	0.03	0.8905	0.85	0.8946	0.13	0.8907	21-3cp-10	1000	0.8819	0.02	0.8882	0.96	0.8959	0.04	0.8886
	1100	0.8821	0.03	0.8900	0.87	0.8948	0.10	0.8902		1100	0.8823	0.01	0.8909	0.96	0.8935	0.03	0.8909
	1200	0.8797	0.03	0.8936	0.86	0.8953	0.11	0.8933		1200	0.8836	0.01	0.8946	0.93	0.8937	0.06	0.8944
	1300	0.9390	0.02	0.8994	0.90	0.8952	0.08	0.8999		1300	0.8964	0.00	0.8988	0.97	0.8954	0.03	0.8987
	1400	0.8956	0.03	0.8994	0.88	0.8947	0.09	0.8988		1400	0.8928	0.00	0.8990	0.97	0.8956	0.03	0.8989
	1500	0.8910	0.03	0.9004	0.87	0.8945	0.10	0.8995		1500	0.8918	0.00	0.8993	0.98	0.8923	0.02	0.8992
	1600	0.8923	0.03	0.8995	0.89	0.8944	0.08	0.8989		1600	0.8919	0.00	0.9000	0.99	0.8943	0.01	0.8999
	1700	0.8913	0.03	0.8978	0.89	0.8943	0.08	0.8973		1700	0.8917	0.00	0.8977	0.99	0.8944	0.01	0.8977
21-Apr-10	0900	0.8811	0.00	0.8901	0.88	0.8958	0.12	0.8908	21-Oct-10	0900	0.8814	0.03	0.8886	0.97	0.8943	0.00	0.8883
	1000	0.8818	0.00	0.8884	0.90	0.8935	0.10	0.8889		1000	0.8825	0.04	0.8916	0.96	0.8926	0.00	0.8912
	1100	0.8818	0.00	0.8922	0.89	0.8938	0.11	0.8924		1100	0.8817	0.01	0.8914	0.99	0.8943	0.00	0.8913
	1200	0.8828	0.00	0.8958	0.90	0.8949	0.10	0.8957		1200	0.8869	0.00	0.8960	1.00	0.8955	0.00	0.8960
	1300	0.9398	0.00	0.9017	0.92	0.8952	0.08	0.9011		1300	0.8969	0.02	0.8977	0.97	0.8935	0.01	0.8977
	1400	0.8942	0.00	0.9021	0.92	0.8958	0.08	0.9016		1400	0.8968	0.02	0.8969	0.97	0.8945	0.01	0.8969
	1500	0.8921	0.00	0.8987	0.89	0.8957	0.11	0.8984		1500	0.8949	0.02	0.8970	0.97	0.8944	0.01	0.8970
	1600	0.8894	0.00	0.9005	0.89	0.8944	0.11	0.8998		1600	0.8922	0.01	0.8973	0.98	0.8943	0.01	0.8973
	1700	0.8926	0.00	0.8982	0.88	0.8943	0.12	0.8978		1700	0.8928	0.03	0.8972	0.96	0.8945	0.01	0.8971
21-May-10	0900	0.8817	0.02	0.8895	0.96	0.8934	0.02	0.8895	21-Nov-10	0900	0.8807	0.12	0.8875	0.84	0.8943	0.03	0.8869
	1000	0.8819	0.01	0.8872	0.97	0.8954	0.02	0.8873		1000	0.8826	0.17	0.8895	0.80	0.8944	0.03	0.8885
	1100	0.8811	0.01	0.8920	0.94	0.8931	0.05	0.8919		1100	0.8841	0.17	0.8914	0.80	0.8926	0.03	0.8902
	1200	0.8818	0.02	0.8951	0.91	0.8943	0.06	0.8948		1200	0.8870	0.14	0.8966	0.82	0.8941	0.03	0.8951
	1300	0.9399	0.01	0.9012	0.94	0.8947	0.05	0.9013		1300	0.8962	0.12	0.8988	0.83	0.8953	0.04	0.8983
	1400	0.8942	0.02	0.9018	0.88	0.8952	0.10	0.9010		1400	0.8937	0.16	0.8985	0.79	0.8922	0.06	0.8974
	1500	0.8956	0.02	0.9001	0.90	0.8946	0.08	0.8995		1500	0.8924	0.16	0.8982	0.79	0.8944	0.06	0.8971
	1600 1700	0.8896 0.8924	0.02	0.8996	0.89	0.8932 0.8943	0.09	0.8988 0.8981		1600 1700	0.8922 0.8941	0.16	0.8970 0.8971	0.79	0.8944	0.06	0.8961
21-Jun-10	0900	0.8810	0.00	0.8910	0.89	0.8938	0.11	0.8913	21-Dec-10	0900	0.9074	0.14	0.8905	0.85	0.8944	0.01	0.8929
	1000	0.8826	0.00	0.8890	0.89	0.8957	0.11	0.8897		1000	0.8833	0.19	0.8897	0.77	0.8943	0.03	0.8886
	1100	0.8795	0.00	0.8931	0.89	0.8932	0.11	0.8931		1100	0.8832	0.18	0.8912	0.78	0.8962	0.03	0.8899
	1200	0.8852	0.00	0.8963	0.88	0.8944	0.12	0.8961		1200	0.8843	0.16	0.8958	0.81	0.8931	0.03	0.8939
	1300	0.9397	0.00	0.9025	0.92	0.8946	0.08	0.9019		1300	0.9345	0.16	0.8983	0.82	0.8936	0.02	0.9040
	1400	0.8937	0.00	0.9025	0.93	0.8937	0.07	0.9019		1400	0.8962	0.19	0.8980	0.78	0.8938	0.02	0.8976
	1500	0.8956	0.00	0.9003	0.97	0.8937	0.03	0.9001		1500	0.8919	0.20	0.8975	0.77	0.8944	0.02	0.8963
	1600 1700	0.8887 0.8924	0.00	0.9008	0.93	0.8958 0.8944	0.07	0.9005 0.8985		1600 1700	0.8928 0.8945	0.17	0.8969 0.8972	0.81	0.8943 0.8941	0.02	0.8961 0.8967
	1/00	0.8924	0.00	0.8988	0.95	0.8944	0.07	0.8985		1/00	0.8945	0.15	0.8972	0.83	0.8941	0.02	0.890/

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 4

Date	Time	$\mathbf{P}_{FS,PG,C}$	P_C	$\mathbf{P}_{VS,PG,P}$	P_P	$\mathbf{P}_{VX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,PG,P}$	P_P	$\mathbf{P}_{FS,PG,O}$	P_O	$\mathbf{P}_{VS,PG,R}$
21-Jan-10	0900	0.9176	0.05	0.9687	0.80	0.9875	0.15	0.9688	21-Jul-10	0900	0.8895	0.00	0.9454	0.92	0.9822	0.08	0.9481
	1000	0.9107	0.06	0.9585	0.81	0.9845	0.13	0.9588		1000	0.8997	0.00	0.9500	0.91	0.9792	0.09	0.9525
	1100	0.9358	0.06	0.9608	0.81	0.9820	0.13	0.9619		1100	0.9315	0.00	0.9670	0.91	0.9773	0.09	0.9679
	1200	0.9590	0.08	0.9659	0.80	0.9808	0.13	0.9673		1200	0.9595	0.00	0.9771	0.91	0.9910	0.09	0.9783
	1300	0.9703	0.08	0.9711	0.83	0.9807	0.10	0.9720		1300	0.9678	0.00	0.9812	0.96	0.9764	0.04	0.9810
	1400	0.9788	0.08	0.9758	0.84	0.9814	0.09	0.9765		1400	0.9789	0.00	0.9821	0.97	0.9775	0.03	0.9820
	1500	0.9802	0.09	0.9797	0.83	0.9837	0.09	0.9801		1500	0.9793	0.00	0.9799	0.97	0.9793	0.03	0.9799
	1600	0.9836	0.11	0.9861	0.83	0.9870	0.06	0.9859		1600	0.9808	0.00	0.9822	0.97	0.9823	0.03	0.9822
	1700	0.9883	0.10	0.9930	0.83	0.9913	0.08	0.9924		1700	0.9820	0.00	0.9858	0.95	0.9858	0.05	0.9858
21-Feb-10	0900	0.9040	0.04	0.9615	0.89	0.9859	0.07	0.9612	21-Aug-10	0900	0.8884	0.00	0.9464	0.92	0.9819	0.08	0.9491
	1000	0.9021	0.02	0.9518	0.89	0.9822	0.08	0.9532		1000	0.8986	0.00	0.9489	0.92	0.9789	0.08	0.9511
	1100	0.9305	0.02	0.9589	0.88	0.9805	0.09	0.9603		1100	0.9316	0.00	0.9659	0.90	0.9780	0.10	0.9670
	1200	0.9557	0.04	0.9657	0.87	0.9790	0.09	0.9666		1200	0.9598	0.00	0.9773	0.92	0.9763	0.08	0.9772
	1300	0.9610	0.05	0.9719	0.92	0.9786	0.04	0.9716		1300	0.9733	0.00	0.9814	0.90	0.9765	0.10	0.9810
	1400	0.9788	0.04	0.9757	0.92	0.9801	0.05	0.9761		1400	0.9791	0.00	0.9814	0.90	0.9767	0.10	0.9810
	1500	0.9806	0.02	0.9792	0.92	0.9820	0.06	0.9794		1500	0.9795	0.00	0.9810	0.91	0.9797	0.09	0.9809
	1600	0.9814	0.02	0.9842	0.92	0.9850	0.06	0.9842		1600	0.9811	0.00	0.9825	0.91	0.9827	0.09	0.9825
	1700	0.9862	0.04	0.9904	0.91	0.9892	0.06	0.9902		1700	0.9824	0.00	0.9874	0.90	0.9868	0.10	0.9874
21-Mar-10	0900	0.8916	0.04	0.9518	0.83	0.9840	0.13	0.9533	21-Sep-10	0900	0.8913	0.02	0.9482	0.92	0.9830	0.06	0.9489
	1000	0.8983	0.03	0.9484	0.85	0.9807	0.12	0.9506		1000	0.9019	0.00	0.9502	0.96	0.9797	0.04	0.9515
	1100	0.9299	0.03	0.9612	0.87	0.9784	0.10	0.9618		1100	0.9351	0.01	0.9635	0.96	0.9782	0.03	0.9637
	1200	0.9574	0.03	0.9716	0.86	0.9782	0.11	0.9718		1200	0.9619	0.01	0.9737	0.93	0.9777	0.06	0.9738
	1300	0.9697	0.02	0.9766	0.90	0.9782	0.08	0.9766		1300	0.9772	0.00	0.9775	0.97	0.9773	0.03	0.9775
	1400	0.9786	0.03	0.9784	0.88	0.9784	0.09	0.9784		1400	0.9793	0.00	0.9791	0.97	0.9784	0.03	0.9791
	1500	0.9795	0.03	0.9793	0.87	0.9805	0.10	0.9795		1500	0.9798	0.00	0.9806	0.98	0.9818	0.02	0.9807
	1600	0.9804	0.03	0.9834	0.89	0.9838	0.08	0.9833		1600	0.9812	0.00	0.9846	0.99	0.9844	0.01	0.9846
	1700	0.9849	0.03	0.9890	0.89	0.9880	0.08	0.9888		1700	0.9859	0.00	0.9905	0.99	0.9892	0.01	0.9904
21-Apr-10	0900	0.8889	0.00	0.9460	0.88	0.9824	0.12	0.9505	21-Oct-10	0900	0.8988	0.03	0.9540	0.97	0.9843	0.00	0.9523
	1000	0.9002	0.00	0.9503	0.90	0.9795	0.10	0.9533		1000	0.9083	0.04	0.9529	0.96	0.9813	0.00	0.9510
	1100	0.9331	0.00	0.9666	0.89	0.9778	0.11	0.9679		1100	0.9408	0.01	0.9619	0.99	0.9791	0.00	0.9617
	1200	0.9628	0.00	0.9782	0.90	0.9765	0.10	0.9780		1200	0.9686	0.00	0.9697	1.00	0.9782	0.00	0.9697
	1300	0.9729	0.00	0.9814	0.92	0.9768	0.08	0.9811		1300	0.9774	0.02	0.9748	0.97	0.9793	0.01	0.9750
	1400	0.9793	0.00	0.9816	0.92	0.9773	0.08	0.9813		1400	0.9793	0.02	0.9779	0.97	0.9807	0.01	0.9779
	1500	0.9797	0.00	0.9810	0.89	0.9802	0.11	0.9809		1500	0.9808	0.02	0.9818	0.97	0.9825	0.01	0.9818
	1600	0.9815	0.00	0.9823	0.89	0.9835	0.11	0.9824		1600	0.9826	0.01	0.9868	0.98	0.9867	0.01	0.9868
	1700	0.9843	0.00	0.9879	0.88	0.9872	0.12	0.9879		1700	0.9885	0.03	0.9937	0.96	0.9918	0.01	0.9935
21-May-10	0900	0.8899	0.02	0.9446	0.96	0.9810	0.02	0.9442	21-Nov-10	0900	0.9101	0.12	0.9629	0.84	0.9858	0.03	0.9572
	1000	0.9026	0.01	0.9530	0.97	0.9782	0.02	0.9530		1000	0.9143	0.17	0.9583	0.80	0.9833	0.03	0.9518
	1100	0.9358	0.01	0.9693	0.94	0.9768	0.05	0.9694		1100	0.9433	0.17	0.9633	0.80	0.9813	0.03	0.9606
	1200	0.9604	0.02	0.9759	0.91	0.9762	0.06	0.9756		1200	0.9712	0.14	0.9677	0.82	0.9803	0.03	0.9686
	1300	0.9738	0.01	0.9823	0.94	0.9768	0.05	0.9819		1300	0.9772	0.12	0.9728	0.83	0.9812	0.04	0.9737
	1400	0.9795	0.02	0.9821	0.88	0.9780	0.10	0.9816		1400	0.9793	0.16	0.9773	0.79	0.9819	0.06	0.9779
	1500	0.9795	0.02	0.9807	0.90	0.9793	0.08	0.9806		1500	0.9820	0.16	0.9826	0.79	0.9848	0.06	0.9826
	1600	0.9809	0.02	0.9819	0.89	0.9823	0.09	0.9819		1600	0.9856	0.16	0.9889	0.79	0.9885	0.06	0.9884
	1700	0.9823	0.02	0.9869	0.88	0.9866	0.10	0.9868		1700	0.9909	0.13	0.9956	0.80	0.9936	0.07	0.9948
21-Jun-10	0900	0.8908	0.00	0.9456	0.89	0.9812	0.11	0.9496	21-Dec-10	0900	0.9186	0.14	0.9689	0.85	0.9872	0.01	0.9621
	1000	0.9023	0.00	0.9523	0.89	0.9786	0.11	0.9552		1000	0.9160	0.19	0.9607	0.77	0.9837	0.03	0.9528
	1100	0.9343	0.00	0.9682	0.89	0.9770	0.11	0.9692		1100	0.9418	0.18	0.9638	0.78	0.9817	0.03	0.9604
	1200	0.9625	0.00	0.9755	0.88	0.9764	0.12	0.9756		1200	0.9652	0.16	0.9680	0.81	0.9806	0.03	0.9679
	1300	0.9736	0.00	0.9825	0.92	0.9766	0.08	0.9820		1300	0.9714	0.16	0.9721	0.82	0.9810	0.02	0.9721
	1400	0.9791	0.00	0.9816	0.93	0.9777	0.07	0.9814		1400	0.9800	0.19	0.9770	0.78	0.9827	0.02	0.9777
	1500	0.9793	0.00	0.9812	0.97	0.9795	0.03	0.9811		1500	0.9819	0.20	0.9821	0.77	0.9849	0.02	0.9821
	1600	0.9808	0.00	0.9822	0.93	0.9826	0.07	0.9822		1600	0.9856	0.17	0.9885	0.81	0.9884	0.02	0.9880
		0.9822	0.00	0.9859	0.93	0.9858	0.07	0.9859		1700	0.9902	0.15	0.9953	0.83	0.9933	0.02	0.9945

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 4

Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{EX,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.1604	0.05	0.0334	0.80	0.0110	0.15	0.0369	21-Jul-10	0900	0.2360	0.00	0.0813	0.92	0.0197	0.08	0.0767
	1000	0.1759	0.06	0.0572	0.81	0.0163	0.13	0.0596		1000	0.2098	0.00	0.0789	0.91	0.0265	0.09	0.0744
	1100	0.1401	0.06	0.0644	0.81	0.0197	0.13	0.0636		1100	0.1515	0.00	0.0500	0.91	0.0288	0.09	0.0482
	1200	0.0741	0.08	0.0572	0.80	0.0219	0.13	0.0539		1200	0.0669	0.00	0.0311	0.91	0.0311	0.09	0.0311
	1300	0.0596	0.08	0.0453	0.83	0.0219	0.10	0.0441		1300	0.0524	0.00	0.0219	0.96	0.0311	0.04	0.0223
	1400	0.0242	0.08	0.0358	0.84	0.0197	0.09	0.0335		1400	0.0219	0.00	0.0197	0.97	0.0288	0.03	0.0200
	1500	0.0197	0.09	0.0265	0.83	0.0169	0.09	0.0251		1500	0.0197	0.00	0.0242	0.97	0.0242	0.03	0.0242
	1600	0.0163	0.11	0.0144	0.83	0.0118	0.06	0.0144		1600	0.0192	0.00	0.0242	0.97	0.0197	0.03	0.0241
	1700	0.0096	0.10	0.0047	0.83	0.0059	0.08	0.0052		1700	0.0164	0.00	0.0148	0.95	0.0134	0.05	0.0147
21-Feb-10	0900	0.1973	0.04	0.0476	0.89	0.0133	0.07	0.0505	21-Aug-10	0900	0.2380	0.00	0.0789	0.92	0.0193	0.08	0.0744
	1000	0.2015	0.02	0.0717	0.89	0.0190	0.08	0.0704		1000	0.2119	0.00	0.0813	0.92	0.0242	0.08	0.0770
	1100	0.1560	0.02	0.0693	0.88	0.0242	0.09	0.0671		1100	0.1515	0.00	0.0524	0.90	0.0288	0.10	0.0501
	1200	0.0813	0.04	0.0548	0.87	0.0265	0.09	0.0531		1200	0.0669	0.00	0.0288	0.92	0.0311	0.08	0.0290
	1300	0.0476	0.05	0.0429	0.92	0.0265	0.04	0.0425		1300	0.0669	0.00	0.0219	0.90	0.0311	0.10	0.0228
	1400	0.0242	0.04	0.0334	0.92	0.0242	0.05	0.0327		1400	0.0219	0.00	0.0219	0.90	0.0288	0.10	0.0226
	1500	0.0219	0.02	0.0288	0.92	0.0197	0.06	0.0281		1500	0.0197	0.00	0.0242	0.91	0.0242	0.09	0.0242
	1600	0.0178	0.02	0.0189	0.92	0.0148	0.06	0.0186		1600	0.0187	0.00	0.0219	0.91	0.0186	0.09	0.0216
	1700	0.0124	0.04	0.0079	0.91	0.0084	0.06	0.0081		1700	0.0153	0.00	0.0123	0.90	0.0119	0.10	0.0123
21-Mar-10	0900	0.2281	0.04	0.0669	0.83	0.0166	0.13	0.0673	21-Sep-10	0900	0.2301	0.02	0.0741	0.92	0.0183	0.06	0.0744
	1000	0.2119	0.03	0.0813	0.85	0.0219	0.12	0.0785		1000	0.2036	0.00	0.0789	0.96	0.0242	0.04	0.0765
	1100	0.1560	0.03	0.0644	0.87	0.0265	0.10	0.0637		1100	0.1401	0.01	0.0572	0.96	0.0265	0.03	0.0571
	1200	0.0741	0.03	0.0429	0.86	0.0288	0.11	0.0424		1200	0.0500	0.01	0.0358	0.93	0.0288	0.06	0.0356
	1300	0.0620	0.02	0.0311	0.90	0.0288	0.08	0.0316		1300	0.0265	0.00	0.0288	0.97	0.0288	0.03	0.0288
	1400	0.0219	0.03	0.0288	0.88	0.0265	0.09	0.0284		1400	0.0219	0.00	0.0288	0.97	0.0265	0.03	0.0287
	1500	0.0197	0.03	0.0265	0.87	0.0219	0.10	0.0258		1500	0.0197	0.00	0.0265	0.98	0.0219	0.02	0.0264
	1600	0.0183	0.03	0.0197	0.89	0.0168	0.08	0.0194		1600	0.0176	0.00	0.0179	0.99	0.0154	0.01	0.0179
	1700	0.0138	0.03	0.0101	0.89	0.0101	0.08	0.0102		1700	0.0125	0.00	0.0079	0.99	0.0086	0.01	0.0079
21-Apr-10	0900	0.2360	0.00	0.0813	0.88	0.0197	0.12	0.0738	21-Oct-10	0900	0.2077	0.03	0.0620	0.97	0.0163	0.00	0.0667
	1000	0.2098	0.00	0.0789	0.90	0.0242	0.10	0.0734		1000	0.1845	0.04	0.0741	0.96	0.0219	0.00	0.0788
	1100	0.1470	0.00	0.0500	0.89	0.0288	0.11	0.0477		1100	0.1240	0.01	0.0620	0.99	0.0242	0.00	0.0627
	1200	0.0596	0.00	0.0288	0.90	0.0311	0.10	0.0290		1200	0.0405	0.00	0.0476	1.00	0.0265	0.00	0.0476
	1300	0.0644	0.00	0.0219	0.92	0.0311	0.08	0.0226		1300	0.0265	0.02	0.0381	0.97	0.0242	0.01	0.0377
	1400	0.0219	0.00	0.0219	0.92	0.0288	0.08	0.0225		1400	0.0219	0.02	0.0311	0.97	0.0219	0.01	0.0308
	1500	0.0197	0.00	0.0242	0.89	0.0242	0.11	0.0242		1500	0.0196	0.02	0.0242	0.97	0.0178	0.01	0.0240
	1600	0.0185	0.00	0.0219	0.89	0.0180	0.11	0.0215		1600	0.0156	0.01	0.0133	0.98	0.0118	0.01	0.0134
	1700	0.0148	0.00	0.0114	0.88	0.0112	0.12	0.0114		1700	0.0086	0.03	0.0037	0.96	0.0052	0.01	0.0039
21-May-10	0900	0.2341	0.02	0.0837	0.96	0.0219	0.02	0.0856	21-Nov-10	0900	0.1780	0.12	0.0453	0.84	0.0134	0.03	0.0604
	1000	0.2015	0.01	0.0741	0.97	0.0265	0.02	0.0744		1000	0.1671	0.17	0.0620	0.80	0.0182	0.03	0.0781
	1100	0.1401	0.01	0.0453	0.94	0.0288	0.05	0.0454		1100	0.1146	0.17	0.0620	0.80	0.0219	0.03	0.0695
	1200	0.0524	0.02	0.0334	0.91	0.0311	0.06	0.0337		1200	0.0405	0.14	0.0524	0.82	0.0219	0.03	0.0497
	1300	0.0669	0.01	0.0193	0.94	0.0311	0.05	0.0204		1300	0.0288	0.12	0.0429	0.83	0.0219	0.04	0.0402
	1400	0.0219	0.02	0.0219	0.88	0.0288	0.10	0.0226		1400	0.0219	0.16	0.0311	0.79	0.0193	0.06	0.0290
	1500	0.0197	0.02	0.0242	0.90	0.0242	0.08	0.0241		1500	0.0191	0.16	0.0219	0.79	0.0150	0.06	0.0211
	1600	0.0189	0.02	0.0219	0.89	0.0189	0.09	0.0216		1600	0.0139	0.16	0.0100	0.79	0.0095	0.06	0.0106
	1700	0.0156	0.02	0.0132	0.88	0.0123	0.10	0.0132		1700	0.0060	0.13	0.0020	0.80	0.0034	0.07	0.0026
21-Jun-10	0900	0.2321	0.00	0.0813	0.89	0.0197	0.11	0.0744	21-Dec-10	0900	0.1560	0.14	0.0334	0.85	0.0112	0.01	0.0503
	1000	0.2036	0.00	0.0741	0.89	0.0265	0.11	0.0688		1000	0.1627	0.19	0.0524	0.77	0.0160	0.03	0.0726
	1100	0.1424	0.00	0.0453	0.89	0.0288	0.11	0.0434		1100	0.1216	0.18	0.0596	0.78	0.0194	0.03	0.0697
	1200	0.0596	0.00	0.0311	0.88	0.0311	0.12	0.0311		1200	0.0548	0.16	0.0524	0.81	0.0219	0.03	0.0518
	1300	0.0669	0.00	0.0197	0.92	0.0311	0.08	0.0206		1300	0.0596	0.16	0.0429	0.82	0.0197	0.02	0.0451
	1400	0.0219	0.00	0.0197	0.93	0.0288	0.07	0.0203		1400	0.0242	0.19	0.0334	0.78	0.0186	0.02	0.0313
	1500	0.0197	0.00	0.0242	0.97	0.0242	0.03	0.0242		1500	0.0196	0.20	0.0219	0.77	0.0147	0.02	0.0213
	1600	0.0197	0.00	0.0219	0.93	0.0197	0.03	0.0218		1600	0.0130	0.17	0.0219	0.81	0.0096	0.02	0.0213
	1700	0.0192	0.00	0.0149	0.93	0.0137	0.07	0.0148		1700	0.0065	0.15	0.0024	0.83	0.0038	0.02	0.0031

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 4

Date	Time	$\mathbf{P}_{ES,BS,C}$	P_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BS,O}$	$P_{\mathcal{O}}$	$\mathbf{P}_{ES,BS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	P_C	$\mathbf{P}_{EX,BS,P}$	P_P	$\mathbf{P}_{ES,BS,O}$	P_O	$\mathbf{P}_{ES,BS,R}$
21-Jan-10	0900	0.6542	0.05	0.3042	0.80	0.1479	0.15	0.2995	21-Jul-10	0900	0.7408	0.00	0.4955	0.92	0.2240	0.08	0.4751
	1000	0.6779	0.06	0.4141	0.81	0.1943	0.13	0.4027		1000	0.7153	0.00	0.4880	0.91	0.2598	0.09	0.4683
	1100	0.6224	0.06	0.6244	0.81	0.2248	0.13	0.5727		1100	0.6395	0.00	0.3883	0.91	0.2847	0.09	0.3794
	1200	0.4681	0.08	0.4085	0.80	0.2397	0.13	0.3912		1200	0.4559	0.00	0.2952	0.91	0.2380	0.09	0.2903
	1300	0.6097	0.08	0.3623	0.83	0.2405	0.10	0.3691		1300	0.6520	0.00	0.2387	0.96	0.2963	0.04	0.2412
	1400	0.2462	0.08	0.3150	0.84	0.2273	0.09	0.3023		1400	0.2347	0.00	0.2364	0.97	0.2840	0.03	0.2379
	1500	0.2209	0.09	0.2570	0.83	0.1996	0.09	0.2489		1500	0.2266	0.00	0.2607	0.97	0.2590	0.03	0.2606
	1600	0.1881	0.11	0.1757	0.83	0.1554	0.06	0.1757		1600	0.2169	0.00	0.2500	0.97	0.2232	0.03	0.2491
	1700	0.1305	0.10	0.0768	0.83	0.0933	0.08	0.0832		1700	0.1931	0.00	0.1855	0.95	0.1706	0.05	0.1847
21-Feb-10	0900	0.6989	0.04	0.3745	0.89	0.1699	0.07	0.3715	21-Aug-10	0900	0.7426	0.00	0.4905	0.92	0.2170	0.08	0.4699
	1000	0.7066	0.02	0.4632	0.89	0.2153	0.08	0.4485		1000	0.7181	0.00	0.4917	0.92	0.2568	0.08	0.4740
	1100	0.6489	0.02	0.4598	0.88	0.2451	0.09	0.4440		1100	0.6414	0.00	0.4005	0.90	0.2818	0.10	0.3890
	1200	0.4939	0.04	0.4062	0.87	0.2605	0.09	0.3955		1200	0.4504	0.00	0.2861	0.92	0.2943	0.08	0.2868
	1300	0.3987	0.05	0.3491	0.92	0.2645	0.04	0.3485		1300	0.7507	0.00	0.2376	0.90	0.2937	0.10	0.2430
	1400	0.2478	0.04	0.3121	0.92	0.2522	0.05	0.3070		1400	0.2339	0.00	0.2466	0.90	0.2804	0.10	0.2498
	1500	0.2243	0.02	0.2755	0.92	0.2228	0.06	0.2712		1500	0.2229	0.00	0.2635	0.91	0.2538	0.09	0.2627
	1600	0.2030	0.02	0.2114	0.92	0.1821	0.06	0.2095		1600	0.2114	0.00	0.2388	0.91	0.2128	0.09	0.2366
	1700	0.1579	0.04	0.1144	0.91	0.1222	0.06	0.1164		1700	0.1842	0.00	0.1622	0.90	0.1564	0.10	0.1617
21-Mar-10	0900	0.7326	0.04	0.4500	0.83	0.1975	0.13	0.4296	21-Sep-10	0900	0.7351	0.02	0.4739	0.92	0.2111	0.06	0.4651
	1000	0.7179	0.03	0.4949	0.85	0.2404	0.12	0.4720		1000	0.7082	0.00	0.4891	0.96	0.2508	0.04	0.4785
	1100	0.6495	0.03	0.4441	0.87	0.2681	0.10	0.4337		1100	0.6218	0.01	0.4192	0.96	0.2725	0.03	0.4165
	1200	0.4712	0.03	0.3517	0.86	0.2811	0.11	0.3479		1200	0.4000	0.01	0.3272	0.93	0.2834	0.06	0.3256
	1300	0.7106	0.02	0.2959	0.90	0.2811	0.08	0.3037		1300	0.2615	0.00	0.2846	0.97	0.2810	0.03	0.2845
	1400	0.2398	0.03	0.5723	0.88	0.2681	0.09	0.5354		1400	0.2338	0.00	0.2775	0.97	0.2652	0.03	0.2771
	1500	0.2234	0.03	0.2717	0.87	0.2412	0.10	0.2672		1500	0.2214	0.00	0.2641	0.98	0.2329	0.02	0.2634
	1600	0.2078	0.03	0.2252	0.89	0.1985	0.08	0.2226		1600	0.2030	0.00	0.2102	0.99	0.1877	0.01	0.2099
	1700	0.1712	0.03	0.1367	0.89	0.1390	0.08	0.1380		1700	0.1595	0.00	0.1145	0.99	0.1238	0.01	0.1146
21-Apr-10	0900	0.7422	0.00	0.4941	0.88	0.2224	0.12	0.4609	21-Oct-10	0900	0.7138	0.03	0.4336	0.97	0.1953	0.00	0.4426
	1000	0.7149	0.00	0.4889	0.90	0.2583	0.10	0.4658		1000	0.6871	0.04	0.4721	0.96	0.2321	0.00	0.4813
	1100	0.6324	0.00	0.3920	0.89	0.2827	0.11	0.3799		1100	0.5916	0.01	0.4349	0.99	0.2560	0.00	0.4366
	1200	0.4263	0.00	0.2829	0.90	0.2938	0.10	0.2840		1200	0.3444	0.00	0.3742	1.00	0.2659	0.00	0.3742
	1300	0.7458	0.00	0.2376	0.92	0.2924	0.08	0.2419		1300	0.2618	0.02	0.3278	0.97	0.2590	0.01	0.3256
	1400	0.2331	0.00	0.2523	0.92	0.2784	0.08	0.2544		1400	0.2371	0.02	0.2945	0.97	0.2405	0.01	0.2927
	1500	0.2221	0.00	0.2635	0.89	0.2515	0.11	0.2622		1500	0.2170	0.02	0.2466	0.97	0.2069	0.01	0.2456
	1600	0.2094	0.00	0.2347	0.89	0.2082	0.11	0.2318		1600	0.1851	0.01	0.1668	0.98	0.1562	0.01	0.1669
	1700	0.1801	0.00	0.1530	0.88	0.1503	0.12	0.1527		1700	0.1229	0.03	0.0656	0.96	0.0861	0.01	0.0677
21-May-10	0900	0.7396	0.02	0.5013	0.96	0.2290	0.02	0.5006	21-Nov-10	0900	0.6782	0.12	0.3637	0.84	0.1705	0.03	0.3957
	1000	0.7072	0.01	0.4776	0.97	0.2660	0.02	0.4755		1000	0.6645	0.17	0.4335	0.80	0.2093	0.03	0.4646
	1100	0.6199	0.01	0.3684	0.94	0.2867	0.05	0.3667		1100	0.5767	0.17	0.4302	0.80	0.2321	0.03	0.4480
	1200	0.4096	0.02	0.3082	0.91	0.2970	0.06	0.3096		1200	0.3493	0.14	0.3912	0.82	0.2420	0.03	0.3801
	1300	0.7558	0.01	0.2259	0.94	0.2951	0.05	0.2353		1300	0.2674	0.12	0.3442	0.83	0.2381	0.04	0.3301
	1400	0.2324	0.02	0.2413	0.88	0.2817	0.10	0.2450		1400	0.2351	0.16	0.2923	0.79	0.2170	0.06	0.2792
	1500	0.2258	0.02	0.2618	0.90	0.2552	0.08	0.2605		1500	0.2088	0.16	0.2278	0.79	0.1842	0.06	0.2225
	1600	0.2127	0.02	0.2411	0.89	0.2145	0.09	0.2382		1600	0.1694	0.16	0.1356	0.79	0.1328	0.06	0.1407
	1700	0.1876	0.02	0.1698	0.88	0.1601	0.10	0.1692		1700	0.0951	0.13	0.0406	0.80	0.0619	0.07	0.0493
21-Jun-10	0900	0.7378	0.00	0.4992	0.89	0.2281	0.11	0.4691	21-Dec-10	0900	0.6713	0.14	0.3061	0.85	0.1501	0.01	0.3555
	1000	0.7083	0.00	0.4805	0.89	0.2646	0.11	0.4565		1000	0.6582	0.19	0.4004	0.77	0.1922	0.03	0.4436
	1100	0.6252	0.00	0.3758	0.89	0.2860	0.11	0.3658		1100	0.5913	0.18	0.4193	0.78	0.2207	0.03	0.4443
	1200	0.4337	0.00	0.3034	0.88	0.2964	0.12	0.3026		1200	0.4054	0.16	0.3944	0.81	0.2305	0.03	0.3909
	1300	0.7532	0.00	0.2333	0.92	0.2957	0.08	0.2382		1300	0.6124	0.16	0.3493	0.82	0.2289	0.02	0.3891
	1400	0.2340	0.00	0.2389	0.93	0.2833	0.07	0.2418		1400	0.2410	0.19	0.2968	0.78	0.2128	0.02	0.2842
	1500	0.2267	0.00	0.2623	0.97	0.2582	0.03	0.2622		1500	0.2104	0.20	0.2301	0.77	0.1819	0.02	0.2250
	1600	0.2141	0.00	0.2495	0.93	0.2217	0.07	0.2477		1600	0.1714	0.17	0.1405	0.81	0.1339	0.02	0.1457
	1700	0.1931	0.00	0.1846	0.93	0.1693	0.07	0.1836		1700	0.1019	0.15	0.0460	0.83	0.0667	0.02	0.0548

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 4

Date	Time	$\mathbf{P}_{ES,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{ES,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.9579	0.05	0.9579	0.80	0.9579	0.15	0.9579	21-Jul-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1000	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1100	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1100	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1200	0.9579	0.08	0.9579	0.80	0.9579	0.13	0.9579		1200	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1300	0.9579	0.08	0.9579	0.83	0.9579	0.10	0.9579		1300	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1400	0.9579	0.08	0.9579	0.84	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.09	0.9579	0.83	0.9579	0.09	0.9579		1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1600	0.9579	0.11	0.9579	0.83	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1700	0.9579	0.10	0.9579	0.83	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.95	0.9579	0.05	0.9579
21-Feb-10	0900	0.9579	0.04	0.9579	0.89	0.9579	0.07	0.9579	21-Aug-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.02	0.9579	0.89	0.9579	0.08	0.9579		1000	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1100	0.9579	0.02	0.9579	0.88	0.9579	0.09	0.9579		1100	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1200	0.9579	0.04	0.9579	0.87	0.9579	0.09	0.9579		1200	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1300	0.9579	0.05	0.9579	0.92	0.9579	0.04	0.9579		1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1400	0.9579	0.04	0.9579	0.92	0.9579	0.05	0.9579		1400	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1500	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1500	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1600	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1700	0.9579	0.04	0.9579	0.91	0.9579	0.06	0.9579		1700	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
21-Mar-10	0900	0.9579	0.04	0.9579	0.83	0.9579	0.13	0.9579	21-Sep-10	0900	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579
	1000	0.9579	0.03	0.9579	0.85	0.9579	0.12	0.9579		1000	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1100	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1100	0.9579	0.01	0.9579	0.96	0.9579	0.03	0.9579
	1200	0.9579	0.03	0.9579	0.86	0.9579	0.11	0.9579		1200	0.9579	0.01	0.9579	0.93	0.9579	0.06	0.9579
	1300	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1300	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1400	0.9579	0.03	0.9579	0.88	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1500	0.9579	0.00	0.9579	0.98	0.9579	0.02	0.9579
	1600	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1600	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
	1700	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
21-Apr-10	0900	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579	21-Oct-10	0900	0.9579	0.03	0.9579	0.97	0.9579	0.00	0.9579
	1000	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1000	0.9579	0.04	0.9579	0.96	0.9579	0.00	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.01	0.9579	0.99	0.9579	0.00	0.9579
	1200	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1200	0.9579	0.00	0.9579	1.00	0.9579	0.00	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1400	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1400	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1500	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1500	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1600	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1600	0.9579	0.01	0.9579	0.98	0.9579	0.01	0.9579
	1700	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1700	0.9579	0.03	0.9579	0.96	0.9579	0.01	0.9579
21-May-10	0900	0.9579	0.02	0.9579	0.96	0.9579	0.02	0.9579	21-Nov-10	0900	0.9579	0.12	0.9579	0.84	0.9579	0.03	0.9579
	1000	0.9579	0.01	0.9579	0.97	0.9579	0.02	0.9579		1000	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1100	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1100	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1200	0.9579	0.02	0.9579	0.91	0.9579	0.06	0.9579		1200	0.9579	0.14	0.9579	0.82	0.9579	0.03	0.9579
	1300	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1300	0.9579	0.12	0.9579	0.83	0.9579	0.04	0.9579
	1400	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1400	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1500	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1500	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1600	0.9579	0.02	0.9579	0.89	0.9579	0.09	0.9579		1600	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1700	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1700	0.9579	0.13	0.9579	0.80	0.9579	0.07	0.9579
21-Jun-10	0900	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579	21-Dec-10	0900	0.9579	0.14	0.9579	0.85	0.9579	0.01	0.9579
	1000	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1000	0.9579	0.19	0.9579	0.77	0.9579	0.03	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.18	0.9579	0.78	0.9579	0.03	0.9579
	1200	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1200	0.9579	0.16	0.9579	0.81	0.9579	0.03	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.16	0.9579	0.82	0.9579	0.02	0.9579
	1400	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1400	0.9579	0.19	0.9579	0.78	0.9579	0.02	0.9579
	1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1500	0.9579	0.20	0.9579	0.77	0.9579	0.02	0.9579
	1600	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1600	0.9579	0.17	0.9579	0.81	0.9579	0.02	0.9579
	1700	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9579	0.15	0.9579	0.83	0.9579	0.02	0.9579

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 4

Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{EX,UX,O}$	P_O	$\mathbf{P}_{ES,US,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,UX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{EX,UX,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9097	0.05	0.9175	0.80	0.9246	0.15	0.9182	21-Jul-10	0900	0.9107	0.00	0.9197	0.92	0.9255	0.08	0.9201
	1000	0.9136	0.06	0.9205	0.81	0.9247	0.13	0.9206		1000	0.9120	0.00	0.9198	0.91	0.9234	0.09	0.9201
	1100	0.9136	0.06	0.9654	0.81	0.9252	0.13	0.9569		1100	0.9105	0.00	0.9228	0.91	0.9238	0.09	0.9229
	1200	0.9106	0.08	0.9243	0.80	0.9252	0.13	0.9234		1200	0.9096	0.00	0.9263	0.91	0.9248	0.09	0.9262
	1300	0.9629	0.08	0.9273	0.83	0.9250	0.10	0.9297		1300	0.9649	0.00	0.9315	0.96	0.9249	0.04	0.9312
	1400	0.9249	0.08	0.9296	0.84	0.9244	0.09	0.9288		1400	0.9239	0.00	0.9335	0.97	0.9239	0.03	0.9332
	1500	0.9239	0.09	0.9279	0.83	0.9247	0.09	0.9273		1500	0.9260	0.00	0.9311	0.97	0.9236	0.03	0.9309
	1600	0.9236	0.11	0.9274	0.83	0.9247	0.06	0.9268		1600	0.9235	0.00	0.9303	0.97	0.9258	0.03	0.9302
	1700	0.9231	0.10	0.9278	0.83	0.9246	0.08	0.9271		1700	0.9213	0.00	0.9293	0.95	0.9247	0.05	0.9290
21-Feb-10	0900	0.9121	0.04	0.9191	0.89	0.9214	0.07	0.9190	21-Aug-10	0900	0.9105	0.00	0.9187	0.92	0.9225	0.08	0.9190
	1000	0.9125	0.02	0.9183	0.89	0.9232	0.08	0.9186		1000	0.9113	0.00	0.9183	0.92	0.9244	0.08	0.9188
	1100	0.9107	0.02	0.9217	0.88	0.9234	0.09	0.9216		1100	0.9109	0.00	0.9212	0.90	0.9255	0.10	0.9216
	1200	0.9110	0.04	0.9251	0.87	0.9232	0.09	0.9244		1200	0.9092	0.00	0.9254	0.92	0.9253	0.08	0.9254
	1300	0.9265	0.05	0.9282	0.92	0.9262	0.04	0.9280		1300	0.9669	0.00	0.9320	0.90	0.9254	0.10	0.9313
	1400	0.9280	0.04	0.9292	0.92	0.9259	0.05	0.9290		1400	0.9242	0.00	0.9308	0.90	0.9259	0.10	0.9303
	1500	0.9227	0.02	0.9298	0.92	0.9374	0.06	0.9301		1500	0.9218	0.00	0.9292	0.91	0.9253	0.09	0.9289
	1600	0.9229	0.02	0.9294	0.92	0.9248	0.06	0.9290		1600	0.9196	0.00	0.9298	0.91	0.9241	0.09	0.9293
	1700	0.9228	0.04	0.9278	0.91	0.9247	0.06	0.9274		1700	0.9219	0.00	0.9290	0.90	0.9246	0.10	0.9286
21-Mar-10	0900	0.9087	0.04	0.9194	0.83	0.9246	0.13	0.9196	21-Sep-10	0900	0.9101	0.02	0.9186	0.92	0.9247	0.06	0.9188
	1000	0.9107	0.03	0.9206	0.85	0.9250	0.12	0.9208		1000	0.9113	0.00	0.9182	0.96	0.9263	0.04	0.9186
	1100	0.9116	0.03	0.9201	0.87	0.9251	0.10	0.9203		1100	0.9118	0.01	0.9211	0.96	0.9237	0.03	0.9211
	1200	0.9089	0.03	0.9238	0.86	0.9257	0.11	0.9236		1200	0.9132	0.01	0.9249	0.93	0.9240	0.06	0.9247
	1300	0.9663	0.02	0.9299	0.90	0.9256	0.08	0.9304		1300	0.9268	0.00	0.9293	0.97	0.9257	0.03	0.9292
	1400	0.9259	0.03	0.9299	0.88	0.9251	0.09	0.9293		1400	0.9231	0.00	0.9295	0.97	0.9260	0.03	0.9293
	1500	0.9212	0.03	0.9309	0.87	0.9249	0.10	0.9300		1500	0.9220	0.00	0.9298	0.98	0.9226	0.02	0.9297
	1600	0.9226	0.03	0.9300	0.89	0.9247	0.08	0.9293		1600	0.9221	0.00	0.9305	0.99	0.9246	0.01	0.9304
	1700	0.9215	0.03	0.9282	0.89	0.9247	0.08	0.9277		1700	0.9219	0.00	0.9282	0.99	0.9247	0.01	0.9281
21-Apr-10	0900	0.9104	0.00	0.9201	0.88	0.9262	0.12	0.9209	21-Oct-10	0900	0.9108	0.03	0.9186	0.97	0.9247	0.00	0.9183
	1000	0.9113	0.00	0.9183	0.90	0.9238	0.10	0.9189		1000	0.9120	0.04	0.9217	0.96	0.9228	0.00	0.9213
	1100	0.9112	0.00	0.9225	0.89	0.9241	0.11	0.9226		1100	0.9111	0.01	0.9216	0.99	0.9246	0.00	0.9215
	1200	0.9123	0.00	0.9261	0.90	0.9253	0.10	0.9261		1200	0.9167	0.00	0.9264	1.00	0.9259	0.00	0.9264
	1300	0.9669	0.00	0.9322	0.92	0.9256	0.08	0.9317		1300	0.9273	0.02	0.9282	0.97	0.9238	0.01	0.9281
	1400	0.9245	0.00	0.9326	0.92	0.9262	0.08	0.9321		1400	0.9272	0.02	0.9273	0.97	0.9249	0.01	0.9273
	1500	0.9223	0.00	0.9320	0.92	0.9261	0.00	0.9289		1500	0.9272	0.02	0.9275	0.97	0.9247	0.01	0.9274
	1600	0.9223	0.00	0.9292	0.89	0.9247	0.11	0.9289		1600	0.9232	0.02	0.9278	0.97	0.9247	0.01	0.9277
	1700	0.9194	0.00	0.9310	0.88	0.9247	0.11	0.9303		1700	0.9224	0.01	0.9278	0.96	0.9248	0.01	0.9277
21.36. 10	0900	0.9111	0.02	0.9196	0.96	0.9237	0.02	0.9195	21.37. 10	0900	0.9100	0.12	0.9175	0.84	0.9246	0.03	0.9168
21-May-10	1000	0.9111	0.02	0.9196	0.96	0.9257	0.02	0.9195	21-Nov-10	1000	0.9100	0.12	0.9175	0.84	0.9248	0.03	0.9168
				0.9171				0.9172							0.9248		
	1100	0.9105	0.01		0.94	0.9233	0.05			1100	0.9137	0.17	0.9216	0.80		0.03	0.9203
	1200	0.9112	0.02	0.9255	0.91	0.9247	0.06	0.9251		1200	0.9169	0.14	0.9270	0.82	0.9244	0.03	0.9255
	1300	0.9670	0.01	0.9318	0.94	0.9250	0.05	0.9318		1300	0.9266	0.12	0.9293	0.83	0.9257	0.04	0.9288
	1400	0.9245	0.02	0.9323	0.88	0.9256	0.10	0.9315		1400	0.9240	0.16	0.9290	0.79	0.9224	0.06	0.9278
	1500	0.9260	0.02	0.9306	0.90	0.9250	0.08	0.9300		1500	0.9226	0.16	0.9286	0.79	0.9247	0.06	0.9275
	1600	0.9196	0.02	0.9301	0.89	0.9234	0.09	0.9293		1600	0.9224	0.16	0.9275	0.79	0.9247	0.06	0.9265
	1700	0.9226	0.02	0.9291	0.88	0.9246	0.10	0.9285		1700	0.9244	0.13	0.9276	0.80	0.9248	0.07	0.9270
21-Jun-10	0900	0.9104	0.00	0.9211	0.89	0.9241	0.11	0.9215	21-Dec-10	0900	0.9379	0.14	0.9207	0.85	0.9247	0.01	0.9231
	1000	0.9120	0.00	0.9190	0.89	0.9261	0.11	0.9198		1000	0.9128	0.19	0.9198	0.77	0.9246	0.03	0.9186
	1100	0.9087	0.00	0.9234	0.89	0.9235	0.11	0.9234		1100	0.9128	0.18	0.9213	0.78	0.9266	0.03	0.9199
	1200	0.9149	0.00	0.9267	0.88	0.9247	0.12	0.9265		1200	0.9140	0.16	0.9262	0.81	0.9234	0.03	0.9242
	1300	0.9668	0.00	0.9331	0.92	0.9249	0.08	0.9324		1300	0.9625	0.16	0.9287	0.82	0.9239	0.02	0.9341
	1400	0.9240	0.00	0.9331	0.93	0.9240	0.07	0.9325		1400	0.9266	0.19	0.9285	0.78	0.9241	0.02	0.9280
	1500	0.9260	0.00	0.9309	0.97	0.9240	0.03	0.9306		1500	0.9221	0.20	0.9279	0.77	0.9247	0.02	0.9267
	1600	0.9187	0.00	0.9313	0.93	0.9262	0.07	0.9310		1600	0.9231	0.17	0.9273	0.81	0.9247	0.02	0.9265
	1700	0.9226	0.00	0.9293	0.93	0.9247	0.07	0.9290		1700	0.9249	0.15	0.9276	0.83	0.9245	0.02	0.9271
					****			******									

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 4

Date	Time	$\mathbf{P}_{ES,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$P_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	P_P	$P_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$
21-Jan-10	0900	0.9588	0.05	0.9890	0.80	0.9968	0.15	0.9885	21-Jul-10	0900	0.9382	0.00	0.9765	0.92	0.9948	0.08	0.9779
	1000	0.9540	0.06	0.9839	0.81	0.9957	0.13	0.9835		1000	0.9459	0.00	0.9792	0.91	0.9936	0.09	0.9805
	1100	0.9708	0.06	0.9850	0.81	0.9947	0.13	0.9854		1100	0.9680	0.00	0.9882	0.91	0.9928	0.09	0.9886
	1200	0.9841	0.08	0.9876	0.80	0.9943	0.13	0.9882		1200	0.9844	0.00	0.9927	0.91	0.9979	0.09	0.9932
	1300	0.9897	0.08	0.9901	0.83	0.9942	0.10	0.9905		1300	0.9885	0.00	0.9944	0.96	0.9925	0.04	0.9944
	1400	0.9935	0.08	0.9922	0.84	0.9945	0.09	0.9925		1400	0.9935	0.00	0.9948	0.97	0.9929	0.03	0.9947
	1500	0.9940	0.09	0.9938	0.83	0.9954	0.09	0.9940		1500	0.9937	0.00	0.9939	0.97	0.9937	0.03	0.9939
	1600	0.9954	0.11	0.9963	0.83	0.9966	0.06	0.9962		1600	0.9943	0.00	0.9948	0.97	0.9949	0.03	0.9948
	1700	0.9971	0.10	0.9985	0.83	0.9980	0.08	0.9983		1700	0.9947	0.00	0.9962	0.95	0.9962	0.05	0.9962
21-Feb-10	0900	0.9491	0.04	0.9854	0.89	0.9962	0.07	0.9849	21-Aug-10	0900	0.9374	0.00	0.9772	0.92	0.9947	0.08	0.9785
	1000	0.9477	0.02	0.9802	0.89	0.9948	0.08	0.9807		1000	0.9452	0.00	0.9786	0.92	0.9935	0.08	0.9797
	1100	0.9674	0.02	0.9841	0.88	0.9941	0.09	0.9846		1100	0.9681	0.00	0.9876	0.90	0.9931	0.10	0.9881
	1200	0.9824	0.04	0.9875	0.87	0.9935	0.09	0.9879		1200	0.9845	0.00	0.9928	0.92	0.9924	0.08	0.9928
	1300	0.9852	0.05	0.9905	0.92	0.9934	0.04	0.9903		1300	0.9911	0.00	0.9945	0.90	0.9925	0.10	0.9943
	1400	0.9935	0.04	0.9922	0.92	0.9940	0.05	0.9923		1400	0.9936	0.00	0.9945	0.90	0.9926	0.10	0.9943
	1500	0.9942	0.02	0.9936	0.92	0.9947	0.06	0.9937		1500	0.9937	0.00	0.9943	0.91	0.9938	0.09	0.9943
	1600	0.9945	0.02	0.9956	0.92	0.9959	0.06	0.9956		1600	0.9944	0.00	0.9949	0.91	0.9950	0.09	0.9949
	1700	0.9963	0.04	0.9977	0.91	0.9973	0.06	0.9977		1700	0.9949	0.00	0.9967	0.90	0.9965	0.10	0.9967
21-Mar-10	0900	0.9398	0.04	0.9802	0.83	0.9955	0.13	0.9804	21-Sep-10	0900	0.9396	0.02	0.9782	0.92	0.9951	0.06	0.9783
	1000	0.9449	0.03	0.9783	0.85	0.9942	0.12	0.9791		1000	0.9476	0.00	0.9793	0.96	0.9938	0.04	0.9800
	1100	0.9670	0.03	0.9852	0.87	0.9933	0.10	0.9854		1100	0.9703	0.01	0.9864	0.96	0.9932	0.03	0.9865
	1200	0.9833	0.03	0.9903	0.86	0.9932	0.11	0.9904		1200	0.9856	0.01	0.9913	0.93	0.9930	0.06	0.9913
	1300	0.9894	0.02	0.9925	0.90	0.9932	0.08	0.9925		1300	0.9928	0.00	0.9929	0.97	0.9928	0.03	0.9929
	1400	0.9934	0.03	0.9933	0.88	0.9933	0.09	0.9933		1400	0.9937	0.00	0.9936	0.97	0.9933	0.03	0.9936
	1500	0.9938	0.03	0.9937	0.87	0.9941	0.10	0.9937		1500	0.9939	0.00	0.9942	0.98	0.9947	0.02	0.9942
	1600	0.9941	0.03	0.9953	0.89	0.9955	0.08	0.9952		1600	0.9944	0.00	0.9957	0.99	0.9957	0.01	0.9957
	1700	0.9958	0.03	0.9973	0.89	0.9969	0.08	0.9972		1700	0.9962	0.00	0.9977	0.99	0.9973	0.01	0.9977
21-Apr-10	0900	0.9377	0.00	0.9769	0.88	0.9949	0.12	0.9791	21-Oct-10	0900	0.9453	0.03	0.9815	0.97	0.9956	0.00	0.9803
21-Apr-10	1000	0.9463	0.00	0.9794	0.90	0.9938	0.12	0.9808	21-001-10	1000	0.9523	0.03	0.9808	0.96	0.9945	0.00	0.9796
	1100	0.9691	0.00	0.9880	0.89	0.9931	0.11	0.9885		1100	0.9323	0.01	0.9856	0.99	0.9936	0.00	0.9855
	1200	0.9861	0.00	0.9880	0.89	0.9931	0.11	0.9883		1200	0.9889	0.00	0.9894	1.00	0.9930	0.00	0.9894
	1300	0.9861	0.00	0.9932	0.90	0.9925	0.10	0.9931		1300	0.9889	0.00	0.9894	0.97	0.9932	0.00	0.9894
	1400	0.9909	0.00	0.9945	0.92	0.9928	0.08			1400	0.9929	0.02	0.9918	0.97	0.9937	0.01	
								0.9945									0.9931
	1500	0.9938	0.00	0.9943	0.89	0.9940	0.11	0.9943		1500	0.9943	0.02	0.9947	0.97	0.9949	0.01	0.9947
	1600	0.9945	0.00	0.9949	0.89	0.9953	0.11	0.9949		1600	0.9950	0.01	0.9965	0.98	0.9965	0.01	0.9965
	1700	0.9956	0.00	0.9969	0.88	0.9967	0.12	0.9969		1700	0.9971	0.03	0.9987	0.96	0.9982	0.01	0.9986
21-May-10	0900	0.9385	0.02	0.9761	0.96	0.9944	0.02	0.9757	21-Nov-10	0900	0.9536	0.12	0.9861	0.84	0.9962	0.03	0.9825
	1000	0.9481	0.01	0.9809	0.97	0.9932	0.02	0.9808		1000	0.9565	0.17	0.9837	0.80	0.9953	0.03	0.9796
	1100	0.9707	0.01	0.9893	0.94	0.9926	0.05	0.9892		1100	0.9754	0.17	0.9863	0.80	0.9945	0.03	0.9848
	1200	0.9849	0.02	0.9922	0.91	0.9924	0.06	0.9921		1200	0.9902	0.14	0.9885	0.82	0.9941	0.03	0.9889
	1300	0.9913	0.01	0.9949	0.94	0.9926	0.05	0.9947		1300	0.9928	0.12	0.9909	0.83	0.9944	0.04	0.9913
	1400	0.9937	0.02	0.9948	0.88	0.9931	0.10	0.9946		1400	0.9937	0.16	0.9928	0.79	0.9947	0.06	0.9931
	1500	0.9937	0.02	0.9942	0.90	0.9937	0.08	0.9942		1500	0.9948	0.16	0.9950	0.79	0.9958	0.06	0.9950
	1600	0.9943	0.02	0.9947	0.89	0.9949	0.09	0.9947		1600	0.9961	0.16	0.9972	0.79	0.9971	0.06	0.9971
	1700	0.9949	0.02	0.9966	0.88	0.9964	0.10	0.9965		1700	0.9979	0.13	0.9992	0.80	0.9987	0.07	0.9990
21-Jun-10	0900	0.9392	0.00	0.9767	0.89	0.9944	0.11	0.9787	21-Dec-10	0900	0.9595	0.14	0.9891	0.85	0.9967	0.01	0.9850
	1000	0.9479	0.00	0.9805	0.89	0.9934	0.11	0.9819		1000	0.9577	0.19	0.9850	0.77	0.9954	0.03	0.9801
	1100	0.9698	0.00	0.9887	0.89	0.9927	0.11	0.9892		1100	0.9744	0.18	0.9866	0.78	0.9946	0.03	0.9846
	1200	0.9859	0.00	0.9921	0.88	0.9925	0.12	0.9921		1200	0.9873	0.16	0.9886	0.81	0.9942	0.03	0.9886
	1300	0.9912	0.00	0.9949	0.92	0.9925	0.08	0.9947		1300	0.9902	0.16	0.9905	0.82	0.9944	0.02	0.9906
	1400	0.9936	0.00	0.9946	0.93	0.9930	0.07	0.9945		1400	0.9940	0.19	0.9927	0.78	0.9950	0.02	0.9930
	1500	0.9937	0.00	0.9944	0.97	0.9938	0.07	0.9944		1500	0.9947	0.20	0.9948	0.77	0.9958	0.02	0.9948
	1600	0.9937	0.00	0.9944	0.97	0.9950	0.03	0.9944		1600	0.9947	0.20	0.9948	0.77	0.9938	0.02	0.9948
	1700	0.9943	0.00	0.9948	0.93	0.9950	0.07	0.9948		1700	0.9961	0.17	0.9971	0.81	0.9971	0.02	0.9989
	1700	0.9940	0.00	0.9902	0.73	0.7902	0.07	0.7702		1700	0.3911	0.13	0.7991	0.03	0.7980	0.02	0.7707

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 5

Date	Time	$\mathbf{P}_{FS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{FS,BD,P}$	P_P	$\mathbf{P}_{VX,BD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BD,R}$	Date	Time	$\mathbf{P}_{FS,BD,C}$	P_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},BD,O}$	P_O	$\mathbf{P}_{VS,BD,R}$
21-Jan-10	0900	0.5963	0.05	0.3630	0.80	0.2366	0.15	0.3566	21-Jul-10	0900	0.4600	0.00	0.4185	0.92	0.3093	0.08	0.4103
	1000	0.6618	0.06	0.4683	0.81	0.2824	0.13	0.4568		1000	0.4009	0.00	0.4268	0.91	0.3426	0.09	0.4195
	1100	0.6904	0.06	0.5176	0.81	0.3129	0.13	0.5024		1100	0.3685	0.00	0.3791	0.91	0.3630	0.09	0.3777
	1200	0.7022	0.08	0.5340	0.80	0.3266	0.13	0.5199		1200	0.4055	0.00	0.3486	0.91	0.3739	0.09	0.3508
	1300	0.7032	0.08	0.5363	0.83	0.3266	0.10	0.5285		1300	0.4055	0.00	0.3486	0.96	0.3739	0.04	0.3497
	1400	0.6930	0.08	0.5237	0.84	0.3129	0.09	0.5183		1400	0.3712	0.00	0.3841	0.97	0.3630	0.03	0.3835
	1500	0.6678	0.09	0.4808	0.83	0.2905	0.09	0.4806		1500	0.3963	0.00	0.4347	0.97	0.3426	0.03	0.4317
	1600	0.6107	0.11	0.3841	0.83	0.2466	0.06	0.3996		1600	0.4600	0.00	0.4268	0.97	0.3093	0.03	0.4230
	1700	0.4566	0.10	0.2207	0.83	0.1705	0.08	0.2397		1700	0.5225	0.00	0.3516	0.95	0.2608	0.05	0.3467
21-Feb-10	0900	0.5829	0.04	0.3963	0.89	0.2608	0.07	0.3933	21-Aug-10	0900	0.4099	0.00	0.4327	0.92	0.3057	0.08	0.4232
	1000	0.6420	0.02	0.4838	0.89	0.3020	0.08	0.4726		1000	0.4824	0.00	0.4531	0.92	0.3395	0.08	0.4446
	1100	0.6701	0.02	0.5152	0.88	0.3299	0.09	0.5014		1100	0.5260	0.00	0.4164	0.90	0.3630	0.10	0.4113
	1200	0.6827	0.04	0.5176	0.87	0.3456	0.09	0.5073		1200	0.5438	0.00	0.3739	0.92	0.3712	0.08	0.3737
	1300	0.6839	0.05	0.5164	0.92	0.3456	0.04	0.5183		1300	0.5428	0.00	0.3765	0.90	0.3712	0.10	0.3760
	1400	0.6749	0.04	0.5189	0.92	0.3364	0.05	0.5158		1400	0.5249	0.00	0.4268	0.90	0.3602	0.10	0.4203
	1500	0.6515	0.02	0.4995	0.92	0.3129	0.06	0.4921		1500	0.4808	0.00	0.4600	0.91	0.3364	0.09	0.4494
	1600	0.6030	0.02	0.4288	0.92	0.2697	0.06	0.4235		1600	0.4055	0.00	0.4347	0.91	0.3020	0.09	0.4233
	1700	0.4911	0.04	0.2865	0.91	0.2093	0.06	0.2892		1700	0.3915	0.00	0.3364	0.90	0.2466	0.10	0.3277
21-Mar-10	0900	0.5449	0.04	0.4308	0.83	0.2865	0.13	0.4171	21-Sep-10	0900	0.5540	0.02	0.4496	0.92	0.2982	0.06	0.4435
	1000	0.5993	0.03	0.4838	0.85	0.3266	0.12	0.4690		1000	0.6023	0.00	0.4853	0.96	0.3332	0.04	0.4786
	1100	0.6275	0.03	0.4824	0.87	0.3486	0.10	0.4741		1100	0.6275	0.01	0.4715	0.96	0.3545	0.03	0.4694
	1200	0.6403	0.03	0.4600	0.86	0.3602	0.11	0.4551		1200	0.6364	0.01	0.4496	0.93	0.3630	0.06	0.4469
	1300	0.6403	0.02	0.4600	0.90	0.3602	0.08	0.4564		1300	0.6347	0.00	0.4583	0.97	0.3602	0.03	0.4551
	1400	0.6287	0.03	0.4853	0.88	0.3486	0.09	0.4782		1400	0.6194	0.00	0.4853	0.97	0.3456	0.03	0.4807
	1500	0.6015	0.03	0.4897	0.87	0.3266	0.10	0.4775		1500	0.5862	0.00	0.4824	0.98	0.3199	0.02	0.4787
	1600	0.5480	0.03	0.4385	0.89	0.2865	0.08	0.4306		1600	0.5237	0.00	0.4185	0.99	0.2783	0.01	0.4170
	1700	0.4423	0.03	0.3164	0.89	0.2261	0.08	0.3137		1700	0.3986	0.00	0.2783	0.99	0.2093	0.01	0.2775
21-Apr-10	0900	0.4308	0.00	0.4385	0.88	0.3093	0.12	0.4227	21-Oct-10	0900	0.6168	0.03	0.4496	0.97	0.2824	0.00	0.4550
	1000	0.4968	0.00	0.4531	0.90	0.3426	0.10	0.4421		1000	0.6575	0.04	0.5049	0.96	0.3199	0.00	0.5115
	1100	0.5363	0.00	0.4164	0.89	0.3630	0.11	0.4105		1100	0.6765	0.01	0.5164	0.99	0.3395	0.00	0.5181
	1200	0.5520	0.00	0.3765	0.90	0.3712	0.10	0.3760		1200	0.6835	0.00	0.5152	1.00	0.3456	0.00	0.5152
	1300	0.5500	0.00	0.3841	0.92	0.3712	0.08	0.3831		1300	0.6799	0.02	0.5176	0.97	0.3426	0.01	0.5193
	1400	0.5307	0.00	0.4327	0.92	0.3574	0.08	0.4269		1400	0.6646	0.02	0.5139	0.97	0.3266	0.01	0.5151
	1500	0.4868	0.00	0.4617	0.89	0.3332	0.11	0.4474		1500	0.6311	0.02	0.4731	0.97	0.2944	0.01	0.4746
	1600	0.4143	0.00	0.4308	0.89	0.2982	0.11	0.4161		1600	0.5599	0.01	0.3712	0.98	0.2466	0.01	0.3719
	1700	0.3866	0.00	0.3233	0.88	0.2366	0.12	0.3127		1700	0.3791	0.03	0.1972	0.96	0.1632	0.01	0.2027
21-May-10	0900	0.4404	0.02	0.4248	0.96	0.3164	0.02	0.4228	21-Nov-10	0900	0.6305	0.12	0.4164	0.84	0.2608	0.03	0.4374
	1000	0.3841	0.01	0.4227	0.97	0.3486	0.02	0.4207		1000	0.6761	0.17	0.4940	0.80	0.2982	0.03	0.5178
	1100	0.3963	0.01	0.3712	0.94	0.3658	0.05	0.3712		1100	0.6967	0.17	0.5272	0.80	0.3199	0.03	0.5485
	1200	0.4206	0.02	0.3685	0.91	0.3739	0.06	0.3700		1200	0.7036	0.14	0.5363	0.82	0.3266	0.03	0.5534
	1300	0.4164	0.01	0.3456	0.94	0.3739	0.05	0.3479		1300	0.7002	0.12	0.5340	0.83	0.3233	0.04	0.5450
	1400	0.3816	0.02	0.3963	0.88	0.3602	0.10	0.3925		1400	0.6847	0.16	0.5114	0.79	0.3057	0.06	0.5269
	1500	0.3963	0.02	0.4385	0.90	0.3395	0.08	0.4302		1500	0.6495	0.16	0.4496	0.79	0.2740	0.06	0.4709
	1600	0.4651	0.02	0.4206	0.89	0.3020	0.09	0.4114		1600	0.5664	0.16	0.3266	0.79	0.2207	0.06	0.3580
	1700	0.5237	0.02	0.3332	0.88	0.2515	0.10	0.3294		1700	0.3199	0.13	0.1393	0.80	0.1311	0.07	0.1628
21-Jun-10	0900	0.4853	0.00	0.4164	0.89	0.3164	0.11	0.4053	21-Dec-10	0900	0.6134	0.14	0.3712	0.85	0.2366	0.01	0.4036
	1000	0.4423	0.00	0.4143	0.89	0.3456	0.11	0.4067		1000	0.6723	0.19	0.4699	0.77	0.2824	0.03	0.5030
	1100	0.3791	0.00	0.3630	0.89	0.3658	0.11	0.3633		1100	0.6977	0.18	0.5176	0.78	0.3057	0.03	0.5437
	1200	0.3791	0.00	0.3456	0.88	0.3739	0.12	0.3491		1200	0.7072	0.16	0.5318	0.81	0.3164	0.03	0.5531
	1300	0.3841	0.00	0.3332	0.92	0.3739	0.08	0.3363		1300	0.7059	0.16	0.5307	0.82	0.3164	0.02	0.5543
	1400	0.4077	0.00	0.3791	0.93	0.3630	0.07	0.3780		1400	0.6923	0.19	0.5101	0.78	0.3020	0.02	0.5409
	1500	0.4531	0.00	0.4288	0.97	0.3426	0.03	0.4259		1500	0.6609	0.20	0.4514	0.77	0.2697	0.02	0.4903
	1600	0.4883	0.00	0.4206	0.93	0.3093	0.07	0.4132		1600	0.5846	0.17	0.3332	0.81	0.2207	0.02	0.3740
	1700	0.4883	0.00	0.3456	0.93	0.2608	0.07	0.4132		1700	0.3574	0.17	0.3332	0.81	0.2207	0.02	0.3740
	1700	0.5062	0.00	0.5450	0.93	0.2008	0.07	0.5400		1700	0.3374	0.15	0.1550	0.05	0.1304	0.02	0.1050

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 5

	Time	$P_{VS,BS,C}$	P_C	$P_{VX,BX,P}$	P_P	$P_{VX,BX,O}$	P_O	$P_{VS,RS,R}$	Date	Time	$P_{VX,BX,C}$	P_C	$P_{VS,BS,P}$	P_P	$P_{VS,RS,O}$	P_O	$P_{VS,BS,R}$
21-Jan-10	0900	0.7883	0.05	0.5420	0.80	0.3694	0.15	0.5293	21-Jul-10	0900	0.8620	0.00	0.6482	0.92	0.4853	0.08	0.6359
	1000	0.8402	0.06	0.6697	0.81	0.4442	0.13	0.6516		1000	0.7421	0.00	0.6560	0.91	0.5377	0.09	0.6459
	1100	0.8607	0.06	0.7202	0.81	0.4858	0.13	0.6990		1100	0.5646	0.00	0.6001	0.91	0.5617	0.09	0.5968
	1200	0.8689	0.08	0.7351	0.80	0.5062	0.13	0.7157		1200	0.5961	0.00	0.5685	0.91	0.5746	0.09	0.5690
	1300	0.8693	0.08	0.7358	0.83	0.5095	0.10	0.7240		1300	0.5948	0.00	0.5643	0.96	0.5746	0.04	0.5647
	1400	0.8624	0.08	0.7237	0.84	0.4909	0.09	0.7142		1400	0.5626	0.00	0.6007	0.97	0.5613	0.03	0.5994
	1500	0.8441	0.09	0.6802	0.83	0.4515	0.09	0.6746		1500	0.7416	0.00	0.6566	0.97	0.5323	0.03	0.6526
	1600	0.7992	0.11	0.5674	0.83	0.3839	0.06	0.5805		1600	0.8623	0.00	0.6474	0.97	0.4848	0.03	0.6421
	1700	0.6451	0.10	0.3276	0.83	0.2651	0.08	0.3536		1700	0.8984	0.00	0.5477	0.95	0.4067	0.05	0.5401
21-Feb-10	0900	0.7777	0.04	0.5940	0.89	0.4045	0.07	0.5871	21-Aug-10	0900	0.6221	0.00	0.6558	0.92	0.4791	0.08	0.6425
	1000	0.8254	0.02	0.6926	0.89	0.4741	0.08	0.6777		1000	0.6890	0.00	0.6745	0.92	0.5280	0.08	0.6635
	1100	0.8459	0.02	0.7212	0.88	0.5152	0.09	0.7047		1100	0.7236	0.00	0.6294	0.90	0.5583	0.10	0.6225
	1200	0.8544	0.04	0.7201	0.87	0.5346	0.09	0.7074		1200	0.7387	0.00	0.5764	0.92	0.5721	0.08	0.5761
	1300	0.8553	0.05	0.7187	0.92	0.5366	0.04	0.7187		1300	0.7375	0.00	0.5784	0.90	0.5710	0.10	0.5777
	1400	0.8488	0.04	0.7217	0.92	0.5215	0.05	0.7168		1400	0.7203	0.00	0.6362	0.90	0.5552	0.10	0.6284
	1500	0.8318	0.02	0.7038	0.92	0.4858	0.06	0.6940		1500	0.6832	0.00	0.6754	0.91	0.5249	0.09	0.6625
	1600	0.7932	0.02	0.6259	0.92	0.4248	0.06	0.6180		1600	0.6102	0.00	0.6485	0.91	0.4710	0.09	0.6332
	1700	0.6874	0.04	0.4338	0.91	0.3236	0.06	0.4363		1700	0.6834	0.00	0.5213	0.90	0.3844	0.10	0.5081
21-Mar-10	0900	0.7421	0.04	0.6421	0.83	0.4499	0.13	0.6216	21-Sep-10	0900	0.7502	0.02	0.6638	0.92	0.4682	0.06	0.6549
	1000	0.7884	0.03	0.6659	0.85	0.5093	0.12	0.6513		1000	0.7899	0.00	0.6980	0.96	0.5187	0.04	0.6900
	1100	0.8105	0.03	0.6911	0.87	0.5418	0.10	0.6805		1100	0.8094	0.01	0.6795	0.96	0.5480	0.03	0.6766
	1200	0.8197	0.03	0.6630	0.86	0.5576	0.11	0.6567		1200	0.8166	0.01	0.6519	0.93	0.5605	0.06	0.6486
	1300	0.8197	0.02	0.6628	0.90	0.5578	0.08	0.6583		1300	0.8146	0.00	0.6620	0.97	0.5575	0.03	0.6585
	1400	0.8108	0.03	0.6900	0.88	0.5419	0.09	0.6812		1400	0.8023	0.00	0.6915	0.97	0.5372	0.03	0.6864
	1500	0.7890	0.03	0.6972	0.87	0.5095	0.10	0.6820		1500	0.7757	0.00	0.6905	0.98	0.4994	0.02	0.6863
	1600	0.7427	0.03	0.6431	0.89	0.4502	0.08	0.6318		1600	0.7193	0.00	0.6198	0.99	0.4338	0.01	0.6177
	1700	0.6350	0.03	0.4810	0.89	0.3526	0.08	0.4763		1700	0.5867	0.00	0.4271	0.99	0.3259	0.01	0.4260
21-Apr-10	0900	0.6400	0.00	0.6611	0.88	0.4824	0.12	0.6392	21-Oct-10	0900	0.8059	0.03	0.6580	0.97	0.4464	0.00	0.6627
	1000	0.7020	0.00	0.6745	0.90	0.5309	0.10	0.6601		1000	0.8369	0.04	0.7124	0.96	0.4991	0.00	0.7177
	1100	0.7329	0.00	0.6271	0.89	0.5597	0.11	0.6196		1100	0.8504	0.01	0.7212	0.99	0.5275	0.00	0.7225
	1200	0.7463	0.00	0.5791	0.90	0.5712	0.10	0.5783		1200	0.8552	0.00	0.7172	1.00	0.5384	0.00	0.7172
	1300	0.7442	0.00	0.5858	0.92	0.5705	0.08	0.5846		1300	0.8524	0.02	0.7200	0.97	0.5311	0.01	0.7208
	1400	0.7263	0.00	0.6459	0.92	0.5531	0.08	0.6387		1400	0.8413	0.02	0.7175	0.97	0.5095	0.01	0.7180
	1500	0.6882	0.00	0.6776	0.89	0.5200	0.11	0.6601		1500	0.8161	0.02	0.6762	0.97	0.4614	0.01	0.6769
	1600	0.6142	0.00	0.6424	0.89	0.4640	0.11	0.6226		1600	0.7555	0.01	0.5528	0.98	0.3839	0.01	0.5531
	1700	0.6349	0.00	0.5017	0.88	0.3731	0.12	0.4859		1700	0.5550	0.03	0.2874	0.96	0.2480	0.01	0.2956
21-May-10	0900	0.8310	0.02	0.6556	0.96	0.4957	0.02	0.6559	21-Nov-10	0900	0.8163	0.12	0.6116	0.84	0.4067	0.03	0.6297
	1000	0.6126	0.01	0.6520	0.97	0.5391	0.02	0.6491		1000	0.8508	0.17	0.6980	0.80	0.4670	0.03	0.7158
	1100	0.5890	0.01	0.5894	0.94	0.5644	0.05	0.5881		1100	0.8650	0.17	0.7293	0.80	0.4988	0.03	0.7442
	1200	0.6132	0.02	0.5962	0.91	0.5749	0.06	0.5952		1200	0.8696	0.14	0.7366	0.82	0.5102	0.03	0.7482
	1300	0.6069	0.01	0.5559	0.94	0.5732	0.05	0.5574		1300	0.8673	0.12	0.6716	0.83	0.5030	0.04	0.6880
	1400	0.5713	0.02	0.6144	0.88	0.5578	0.10	0.6080		1400	0.8563	0.16	0.7115	0.79	0.4791	0.06	0.7211
	1500	0.7357	0.02	0.6609	0.90	0.5258	0.08	0.6523		1500	0.8304	0.16	0.6458	0.79	0.4298	0.06	0.6625
	1600	0.8594	0.02	0.6386	0.89	0.4733	0.09	0.6291		1600	0.7591	0.16	0.4875	0.79	0.3429	0.06	0.5217
	1700	0.8898	0.02	0.5191	0.88	0.3899	0.10	0.5146		1700	0.4694	0.13	0.1948	0.80	0.1871	0.07	0.2309
21-Jun-10	0900	0.9046	0.00	0.6482	0.89	0.4920	0.11	0.6308	21-Dec-10	0900	0.8021	0.14	0.5538	0.85	0.3727	0.01	0.5865
	1000	0.8837	0.00	0.6469	0.89	0.5368	0.11	0.6346		1000	0.8479	0.19	0.6712	0.77	0.4414	0.03	0.6980
	1100	0.6141	0.00	0.5879	0.89	0.5633	0.11	0.5851		1100	0.8656	0.18	0.7193	0.78	0.4796	0.03	0.7383
	1200	0.5936	0.00	0.5780	0.88	0.5749	0.12	0.5776		1200	0.8720	0.16	0.7338	0.81	0.4963	0.03	0.7484
	1300	0.6065	0.00	0.5527	0.92	0.5744	0.08	0.5544		1300	0.8710	0.16	0.7321	0.82	0.4925	0.02	0.7493
	1400	0.7881	0.00	0.5993	0.93	0.5599	0.07	0.5966		1400	0.8618	0.19	0.7103	0.78	0.4710	0.02	0.7345
	1500	0.8606	0.00	0.6523	0.97	0.5307	0.03	0.6483		1500	0.8388	0.20	0.6450	0.77	0.4238	0.02	0.6799
	1600	0.8970	0.00	0.6404	0.93	0.4824	0.07	0.6298		1600	0.7751	0.17	0.4974	0.81	0.3447	0.02	0.5419
	1700	0.9154	0.00	0.5391	0.93	0.4041	0.07	0.5301		1700	0.5196	0.15	0.2169	0.83	0.2029	0.02	0.2622

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 5

Date	Time	$\mathbf{P}_{FS,UD,C}$	P_C	$\mathbf{P}_{VS,UD,P}$	P_P	$\mathbf{P}_{VX,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},UD,R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{V \boxtimes ,UD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},UD,O}$	P_O	$\mathbf{P}_{VX,UD,R}$
21-Jan-10	0900	0.9887	0.05	0.9887	0.80	0.9887	0.15	0.9887	21-Jul-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1000	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1100	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1100	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1200	0.9887	0.08	0.9887	0.80	0.9887	0.13	0.9887		1200	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1300	0.9887	0.08	0.9887	0.83	0.9887	0.10	0.9887		1300	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1400	0.9887	0.08	0.9887	0.84	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.09	0.9887	0.83	0.9887	0.09	0.9887		1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1600	0.9887	0.11	0.9887	0.83	0.9887	0.06	0.9887		1600	0.9767	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1700	0.9887	0.10	0.9887	0.83	0.9887	0.08	0.9887		1700	0.9343	0.00	0.9887	0.95	0.9887	0.05	0.9887
21-Feb-10	0900	0.9887	0.04	0.9887	0.89	0.9887	0.07	0.9887	21-Aug-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.02	0.9887	0.89	0.9887	0.08	0.9887		1000	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1100	0.9887	0.02	0.9887	0.88	0.9887	0.09	0.9887		1100	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1200	0.9887	0.04	0.9887	0.87	0.9887	0.09	0.9887		1200	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1300	0.9887	0.05	0.9887	0.92	0.9887	0.04	0.9887		1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1400	0.9887	0.04	0.9887	0.92	0.9887	0.05	0.9887		1400	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1500	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1500	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1600	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1700	0.9887	0.04	0.9887	0.91	0.9887	0.06	0.9887		1700	0.9779	0.00	0.9887	0.90	0.9887	0.10	0.9887
21-Mar-10	0900	0.9887	0.04	0.9887	0.83	0.9887	0.13	0.9887	21-Sep-10	0900	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887
	1000	0.9887	0.03	0.9887	0.85	0.9887	0.12	0.9887		1000	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1100	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1100	0.9887	0.01	0.9887	0.96	0.9887	0.03	0.9887
	1200	0.9887	0.03	0.9887	0.86	0.9887	0.11	0.9887		1200	0.9887	0.01	0.9887	0.93	0.9887	0.06	0.9887
	1300	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1400	0.9887	0.03	0.9887	0.88	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1500	0.9887	0.00	0.9887	0.98	0.9887	0.02	0.9887
	1600	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1600	0.9887	0.00	0.9887	0.99	0.9887	0.02	0.9887
	1700	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
21-Apr-10	0900	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887	21-Oct-10	0900	0.9887	0.03	0.9887	0.97	0.9887	0.00	0.9887
21 Apr 10	1000	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887	21 001 10	1000	0.9887	0.04	0.9887	0.96	0.9887	0.00	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.01	0.9887	0.99	0.9887	0.00	0.9887
	1200	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1200	0.9887	0.00	0.9887	1.00	0.9887	0.00	0.9887
	1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.00	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1400	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1500	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1500	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1600		0.00	0.9887	0.89	0.9887		0.9887			0.9887	0.02	0.9887	0.97	0.9887	0.01	
		0.9887					0.11			1600							0.9887
	1700	0.9609	0.00	0.9887	0.88	0.9887	0.12	0.9887		1700	0.9887	0.03	0.9887	0.96	0.9887	0.01	0.9887
21-May-10	0900	0.9887	0.02	0.9887	0.96	0.9887	0.02	0.9887	21-Nov-10	0900	0.9887	0.12	0.9887	0.84	0.9887	0.03	0.9887
	1000	0.9887	0.01	0.9887	0.97	0.9887	0.02	0.9887		1000	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1100	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1100	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1200	0.9887	0.02	0.9887	0.91	0.9887	0.06	0.9887		1200	0.9887	0.14	0.9887	0.82	0.9887	0.03	0.9887
	1300	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1300	0.9887	0.12	0.9887	0.83	0.9887	0.04	0.9887
	1400	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1400	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1500	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1500	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1600	0.9751	0.02	0.9887	0.89	0.9887	0.09	0.9885		1600	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1700	0.9174	0.02	0.9887	0.88	0.9887	0.10	0.9872		1700	0.9887	0.13	0.9887	0.80	0.9887	0.07	0.9887
21-Jun-10	0900	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	21-Dec-10	0900	0.9887	0.14	0.9887	0.85	0.9887	0.01	0.9887
	1000	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1000	0.9887	0.19	0.9887	0.77	0.9887	0.03	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.18	0.9887	0.78	0.9887	0.03	0.9887
	1200	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1200	0.9887	0.16	0.9887	0.81	0.9887	0.03	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.16	0.9887	0.82	0.9887	0.02	0.9887
	1400	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1400	0.9887	0.19	0.9887	0.78	0.9887	0.02	0.9887
	1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1500	0.9887	0.20	0.9887	0.77	0.9887	0.02	0.9887
	1600	0.9715	0.00	0.9887	0.93	0.9887	0.07	0.9887		1600	0.9887	0.17	0.9887	0.81	0.9887	0.02	0.9887
		0.8048	0.00	0.9887	0.93	0.9887	0.07	0.9887		1700	0.9887	0.15	0.9887	0.83	0.9887	0.02	0.9887

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 5

Date	Time	$\mathbf{P}_{VS,US,C}$	\mathbf{P}_C	$\mathbf{P}_{V\mathbf{X},U\mathbf{X},P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,UX,O}$	P_O	$\mathbf{P}_{FS,US,R}$	Date	Time	$\mathbf{P}_{\mathrm{FX},U\mathrm{S},C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UX,P}$	P_P	$\mathbf{P}_{VS,US,O}$	P_O	$\mathbf{P}_{VS,US,R}$
21-Jan-10	0900	0.8804	0.05	0.8929	0.80	0.9001	0.15	0.8933	21-Jul-10	0900	0.9339	0.00	0.9044	0.92	0.9006	0.08	0.9041
	1000	0.8784	0.06	0.8910	0.81	0.9017	0.13	0.8916		1000	0.9273	0.00	0.9048	0.91	0.8895	0.09	0.9035
	1100	0.8777	0.06	0.8896	0.81	0.9006	0.13	0.8902		1100	0.9000	0.00	0.9071	0.91	0.9003	0.09	0.9065
	1200	0.8775	0.08	0.8890	0.80	0.9001	0.13	0.8896		1200	0.8967	0.00	0.9114	0.91	0.9007	0.09	0.9105
	1300	0.8774	0.08	0.8894	0.83	0.9006	0.10	0.8896		1300	0.8962	0.00	0.9113	0.96	0.9007	0.04	0.9108
	1400	0.8780	0.08	0.8900	0.84	0.9016	0.09	0.8901		1400	0.8999	0.00	0.9074	0.97	0.9001	0.03	0.9072
	1500	0.8784	0.09	0.8918	0.83	0.9002	0.09	0.8914		1500	0.9278	0.00	0.9063	0.97	0.9004	0.03	0.9061
	1600	0.8799	0.11	0.8941	0.83	0.9000	0.06	0.8929		1600	0.9349	0.00	0.9054	0.97	0.9009	0.03	0.9053
	1700	0.8835	0.10	0.8950	0.83	0.9015	0.08	0.8944		1700	0.9322	0.00	0.9049	0.95	0.9008	0.05	0.9047
21-Feb-10	0900	0.8806	0.04	0.8952	0.89	0.9000	0.07	0.8950	21-Aug-10	0900	0.8991	0.00	0.9007	0.92	0.9011	0.08	0.9007
	1000	0.8787	0.02	0.8935	0.89	0.9006	0.08	0.8937		1000	0.8907	0.00	0.9002	0.92	0.9009	0.08	0.9002
	1100	0.8777	0.02	0.8915	0.88	0.9006	0.09	0.8920		1100	0.8858	0.00	0.9001	0.90	0.9012	0.10	0.9002
	1200	0.8767	0.04	0.8905	0.87	0.9011	0.09	0.8910		1200	0.8842	0.00	0.9020	0.92	0.9012	0.08	0.9020
	1300	0.8767	0.05	0.8902	0.92	0.9009	0.04	0.8899		1300	0.8845	0.00	0.9012	0.90	0.9008	0.10	0.9011
	1400	0.8775	0.04	0.8913	0.92	0.9013	0.05	0.8913		1400	0.8866	0.00	0.9010	0.90	0.9005	0.10	0.9010
	1500	0.8784	0.02	0.8932	0.92	0.9006	0.06	0.8933		1500	0.8920	0.00	0.9010	0.91	0.9007	0.09	0.9010
	1600	0.8804	0.02	0.8953	0.92	0.8997	0.06	0.8952		1600	0.9003	0.00	0.9022	0.91	0.9005	0.09	0.9021
	1700	0.8842	0.04	0.8966	0.91	0.9006	0.06	0.8964		1700	0.9194	0.00	0.9024	0.90	0.9001	0.10	0.9022
21-Mar-10	0900	0.8835	0.04	0.8972	0.83	0.9014	0.13	0.8971	21-Sep-10	0900	0.8822	0.02	0.8969	0.92	0.9000	0.06	0.8967
	1000	0.8799	0.03	0.8954	0.85	0.9006	0.12	0.8955		1000	0.8789	0.00	0.8957	0.96	0.9002	0.04	0.8959
	1100	0.8776	0.03	0.8942	0.87	0.9006	0.10	0.8943		1100	0.8774	0.01	0.8945	0.96	0.9011	0.03	0.8945
	1200	0.8761	0.03	0.8935	0.86	0.9011	0.11	0.8937		1200	0.8772	0.01	0.8942	0.93	0.9005	0.06	0.8944
	1300	0.8763	0.02	0.8934	0.90	0.9011	0.08	0.8936		1300	0.8769	0.00	0.8942	0.97	0.9013	0.03	0.8944
	1400	0.8777	0.03	0.8946	0.88	0.9007	0.09	0.8946		1400	0.8776	0.00	0.8953	0.97	0.9010	0.03	0.8955
	1500	0.8800	0.03	0.8963	0.87	0.9006	0.10	0.8962		1500	0.8806	0.00	0.8972	0.98	0.9003	0.02	0.8973
	1600	0.8837	0.03	0.8979	0.89	0.9014	0.08	0.8977		1600	0.8855	0.00	0.8982	0.99	0.9013	0.01	0.8982
	1700	0.8900	0.03	0.8982	0.89	0.8998	0.08	0.8981		1700	0.8936	0.00	0.8994	0.99	0.9007	0.01	0.8994
21-Apr-10	0900	0.8966	0.00	0.9006	0.88	0.9009	0.12	0.9007	21-Oct-10	0900	0.8799	0.03	0.8944	0.97	0.9016	0.00	0.8939
	1000	0.8899	0.00	0.8998	0.90	0.8999	0.10	0.8998		1000	0.8784	0.04	0.8921	0.96	0.9009	0.00	0.8916
	1100	0.8854	0.00	0.9002	0.89	0.9017	0.11	0.9004		1100	0.8771	0.01	0.8909	0.99	0.9014	0.00	0.8908
	1200	0.8838	0.00	0.9015	0.90	0.9008	0.10	0.9014		1200	0.8768	0.00	0.8903	1.00	0.9015	0.00	0.8903
	1300	0.8841	0.00	0.9014	0.92	0.9008	0.08	0.9013		1300	0.8770	0.02	0.8912	0.97	0.8999	0.01	0.8910
	1400	0.8864	0.00	0.9012	0.92	0.9004	0.08	0.9011		1400	0.8778	0.02	0.8924	0.97	0.9006	0.01	0.8922
	1500	0.8912	0.00	0.9012	0.89	0.9007	0.11	0.9011		1500	0.8794	0.02	0.8941	0.97	0.9009	0.01	0.8939
	1600	0.8992	0.00	0.9016	0.89	0.9016	0.11	0.9016		1600	0.8822	0.01	0.8962	0.98	0.9000	0.01	0.8961
	1700	0.9150	0.00	0.9015	0.88	0.9013	0.12	0.9015		1700	0.8877	0.03	0.8974	0.96	0.9013	0.01	0.8972
21-May-10	0900	0.9325	0.02	0.9035	0.96	0.9010	0.02	0.9041	21-Nov-10	0900	0.8794	0.12	0.8934	0.84	0.9008	0.03	0.8920
	1000	0.9019	0.01	0.9050	0.97	0.9011	0.02	0.9049		1000	0.8780	0.17	0.8906	0.80	0.9006	0.03	0.8888
	1100	0.8981	0.01	0.9070	0.94	0.9009	0.05	0.9066		1100	0.8776	0.17	0.8894	0.80	0.9009	0.03	0.8878
	1200	0.8916	0.02	0.9114	0.91	0.9008	0.06	0.9103		1200	0.8773	0.14	0.8894	0.82	0.9007	0.03	0.8880
	1300	0.8955	0.01	0.9099	0.94	0.9003	0.05	0.9092		1300	0.8774	0.12	0.8897	0.83	0.9012	0.04	0.8887
	1400	0.9001	0.02	0.9065	0.88	0.9011	0.10	0.9059		1400	0.8780	0.16	0.8905	0.79	0.9011	0.06	0.8891
	1500	0.9269	0.02	0.9060	0.90	0.9009	0.08	0.9061		1500	0.8789	0.16	0.8932	0.79	0.9012	0.06	0.8915
	1600	0.9343	0.02	0.9051	0.89	0.9012	0.09	0.9054		1600	0.8807	0.16	0.8955	0.79	0.9012	0.06	0.8935
	1700	0.9309	0.02	0.9049	0.88	0.9013	0.10	0.9051		1700	0.8872	0.13	0.8968	0.80	0.8993	0.07	0.8957
21-Jun-10	0900	0.9367	0.00	0.9059	0.89	0.9009	0.11	0.9054	21-Dec-10	0900	0.8799	0.14	0.8930	0.85	0.9011	0.01	0.8913
	1000	0.9376	0.00	0.9063	0.89	0.9009	0.11	0.9057		1000	0.8784	0.19	0.8908	0.77	0.9008	0.03	0.8887
	1100	0.9020	0.00	0.9094	0.89	0.9006	0.11	0.9084		1100	0.8776	0.18	0.8895	0.78	0.9012	0.03	0.8877
	1200	0.9013	0.00	0.9141	0.88	0.9008	0.12	0.9125		1200	0.8774	0.16	0.8891	0.81	0.9010	0.03	0.8876
	1300	0.9007	0.00	0.9130	0.92	0.9007	0.08	0.9121		1300	0.8773	0.16	0.8893	0.82	0.9009	0.02	0.8876
	1400	0.9304	0.00	0.9092	0.93	0.9017	0.07	0.9087		1400	0.8777	0.19	0.8901	0.78	0.9005	0.02	0.8879
	1500	0.9361	0.00	0.9074	0.97	0.8999	0.03	0.9071		1500	0.8788	0.20	0.8912	0.77	0.9005	0.02	0.8889
	1600	0.9368	0.00	0.9067	0.93	0.9009	0.07	0.9063		1600	0.8802	0.17	0.8946	0.81	0.9011	0.02	0.8922
	1700	0.9337	0.00	0.9047	0.93	0.9000	0.07	0.9044		1700	0.8865	0.15	0.8954	0.83	0.9013	0.02	0.8942

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 5

Date	Time	$\mathbf{P}_{FS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{IX,PG,P}$	P_P	$\mathbf{P}_{VX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FX},PG,R}$	Date	Time	$\mathbf{P}_{FS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{FX,PG,P}$	P_P	$\mathbf{P}_{VS,PG,O}$	P_O	$\mathbf{P}_{FS,PG,R}$
21-Jan-10	0900	0.9041	0.05	0.9552	0.80	0.9741	0.15	0.9553	21-Jul-10	0900	0.9664	0.00	0.9340	0.92	0.9631	0.08	0.9361
	1000	0.8787	0.06	0.9354	0.81	0.9678	0.13	0.9359		1000	0.9504	0.00	0.9362	0.91	0.9577	0.09	0.9381
	1100	0.8652	0.06	0.9242	0.81	0.9627	0.13	0.9254		1100	0.9456	0.00	0.9514	0.91	0.9540	0.09	0.9516
	1200	0.8598	0.08	0.9210	0.80	0.9605	0.13	0.9215		1200	0.9425	0.00	0.9605	0.91	0.9521	0.09	0.9598
	1300	0.8593	0.08	0.9211	0.83	0.9607	0.10	0.9202		1300	0.9428	0.00	0.9607	0.96	0.9521	0.04	0.9603
	1400	0.8639	0.08	0.9231	0.84	0.9623	0.09	0.9220		1400	0.9453	0.00	0.9499	0.97	0.9538	0.03	0.9501
	1500	0.8760	0.09	0.9328	0.83	0.9666	0.09	0.9308		1500	0.9483	0.00	0.9351	0.97	0.9575	0.03	0.9359
	1600	0.8992	0.11	0.9517	0.83	0.9733	0.06	0.9474		1600	0.9603	0.00	0.9326	0.97	0.9634	0.03	0.9336
	1700	0.9414	0.10	0.9764	0.83	0.9821	0.08	0.9734		1700	0.3900	0.00	0.9483	0.95	0.9709	0.05	0.9495
21-Feb-10	0900	0.9083	0.04	0.9475	0.89	0.9713	0.07	0.9478	21-Aug-10	0900	0.9333	0.00	0.9344	0.92	0.9639	0.08	0.9366
	1000	0.8890	0.02	0.9293	0.89	0.9643	0.08	0.9313		1000	0.9289	0.00	0.9335	0.92	0.9577	0.08	0.9353
	1100	0.8767	0.02	0.9233	0.88	0.9596	0.09	0.9256		1100	0.9229	0.00	0.9454	0.90	0.9542	0.10	0.9462
	1200	0.8714	0.04	0.9246	0.87	0.9574	0.09	0.9259		1200	0.9195	0.00	0.9564	0.92	0.9525	0.08	0.9561
	1300	0.8708	0.05	0.9243	0.92	0.9571	0.04	0.9230		1300	0.9197	0.00	0.9557	0.90	0.9525	0.10	0.9554
	1400	0.8749	0.04	0.9225	0.92	0.9593	0.05	0.9225		1400	0.9233	0.00	0.9429	0.90	0.9544	0.10	0.9440
	1500	0.8856	0.02	0.9262	0.92	0.9627	0.06	0.9274		1500	0.9296	0.00	0.9316	0.91	0.9584	0.09	0.9339
	1600	0.9027	0.02	0.9408	0.92	0.9693	0.06	0.9416		1600	0.9340	0.00	0.9342	0.91	0.9642	0.09	0.9367
	1700	0.9317	0.04	0.9663	0.91	0.9782	0.06	0.9658		1700	0.9535	0.00	0.9538	0.90	0.9733	0.10	0.9557
21-Mar-10	0900	0.9169	0.04	0.9384	0.83	0.9676	0.13	0.9413	21-Sep-10	0900	0.9141	0.02	0.9342	0.92	0.9651	0.06	0.9355
	1000	0.9016	0.03	0.9782	0.85	0.9610	0.12	0.9737		1000	0.9013	0.00	0.9279	0.96	0.9592	0.04	0.9293
	1100	0.8929	0.03	0.9312	0.87	0.9568	0.10	0.9324		1100	0.8935	0.01	0.9344	0.96	0.9552	0.03	0.9347
	1200	0.8886	0.03	0.9390	0.86	0.9547	0.11	0.9391		1200	0.8903	0.01	0.9415	0.93	0.9537	0.06	0.9416
	1300	0.8886	0.02	0.9388	0.90	0.9545	0.08	0.9389		1300	0.8913	0.00	0.9389	0.97	0.9547	0.03	0.9394
	1400	0.8928	0.03	0.9309	0.88	0.9568	0.09	0.9319		1400	0.8967	0.00	0.9301	0.97	0.9572	0.03	0.9310
	1500	0.9015	0.03	0.9267	0.87	0.9607	0.10	0.9292		1500	0.9061	0.00	0.9277	0.98	0.9619	0.02	0.9285
	1600	0.9158	0.03	0.9369	0.89	0.9673	0.08	0.9385		1600	0.9215	0.00	0.9406	0.99	0.9685	0.01	0.9409
	1700	0.9381	0.03	0.9604	0.89	0.9756	0.08	0.9608		1700	0.9454	0.00	0.9667	0.99	0.9778	0.01	0.9668
21-Apr-10	0900	0.9346	0.00	0.9334	0.88	0.9640	0.12	0.9372	21-Oct-10	0900	0.8981	0.03	0.9320	0.97	0.9675	0.00	0.9310
	1000	0.9270	0.00	0.9333	0.90	0.9578	0.10	0.9357		1000	0.8829	0.04	0.9249	0.96	0.9616	0.00	0.9231
	1100	0.9204	0.00	0.9458	0.89	0.9539	0.11	0.9467		1100	0.8740	0.01	0.9239	0.99	0.9580	0.00	0.9234
	1200	0.9172	0.00	0.9565	0.90	0.9525	0.10	0.9561		1200	0.8701	0.00	0.9248	1.00	0.9572	0.00	0.9248
	1300	0.9180	0.00	0.9544	0.92	0.9524	0.08	0.9542		1300	0.8727	0.02	0.9238	0.97	0.9575	0.01	0.9230
	1400	0.9219	0.00	0.9414	0.92	0.9552	0.08	0.9425		1400	0.8795	0.02	0.9234	0.97	0.9607	0.01	0.9229
	1500	0.9284	0.00	0.9308	0.89	0.9589	0.11	0.9339		1500	0.8930	0.02	0.9315	0.97	0.9659	0.01	0.9310
	1600	0.9345	0.00	0.9349	0.89	0.9653	0.11	0.9383		1600	0.9146	0.01	0.9524	0.98	0.9733	0.01	0.9523
	1700	0.9509	0.00	0.9561	0.88	0.9746	0.12	0.9583		1700	0.9538	0.03	0.9790	0.96	0.9837	0.01	0.9783
21-May-10	0900	0.9612	0.02	0.9334	0.96	0.9624	0.02	0.9346	21-Nov-10	0900	0.8915	0.12	0.9455	0.84	0.9709	0.03	0.9397
	1000	0.9453	0.01	0.9380	0.97	0.9570	0.02	0.9385		1000	0.8721	0.17	0.9292	0.80	0.9657	0.03	0.9209
	1100	0.9432	0.01	0.9537	0.94	0.9536	0.05	0.9536		1100	0.8626	0.17	0.9222	0.80	0.9619	0.03	0.9136
	1200	0.9402	0.02	0.9576	0.91	0.9519	0.06	0.9569		1200	0.8591	0.14	0.9205	0.82	0.9601	0.03	0.9130
	1300	0.9407	0.01	0.9609	0.94	0.9520	0.05	0.9602		1300	0.8611	0.12	0.9989	0.83	0.9612	0.04	0.9804
	1400	0.9443	0.02	0.9469	0.88	0.9545	0.10	0.9476		1400	0.8681	0.16	0.9257	0.79	0.9639	0.06	0.9189
	1500	0.9476	0.02	0.9335	0.90	0.9586	0.08	0.9357		1500	0.8842	0.16	0.9391	0.79	0.9687	0.06	0.9322
	1600	0.9609	0.02	0.9341	0.89	0.9644	0.09	0.9373		1600	0.9134	0.16	0.9807	0.79	0.9766	0.06	0.9700
	1700	0.4057	0.02	0.9521	0.88	0.9727	0.10	0.9423		1700	0.9648	0.13	0.9859	0.80	0.9874	0.07	0.9832
21-Jun-10	0900	0.9719	0.00	0.9338	0.89	0.9620	0.11	0.9369	21-Dec-10	0900	0.8982	0.14	0.9545	0.85	0.9733	0.01	0.9469
	1000	0.9656	0.00	0.9385	0.89	0.9568	0.11	0.9405		1000	0.8740	0.19	0.9354	0.77	0.9676	0.03	0.9245
	1100	0.9489	0.00	0.9539	0.89	0.9532	0.11	0.9538		1100	0.8613	0.18	0.9248	0.78	0.9638	0.03	0.9145
	1200	0.9501	0.00	0.9608	0.88	0.9519	0.12	0.9597		1200	0.8563	0.16	0.9219	0.81	0.9618	0.03	0.9126
	1300	0.9500	0.00	0.9626	0.92	0.9517	0.08	0.9618		1300	0.8568	0.16	0.9224	0.82	0.9627	0.02	0.9127
	1400	0.9547	0.00	0.9502	0.93	0.9537	0.07	0.9505		1400	0.8641	0.19	0.9269	0.78	0.9642	0.02	0.9155
	1500	0.9600	0.00	0.9350	0.97	0.9581	0.03	0.9358		1500	0.8794	0.20	0.9398	0.77	0.9697	0.02	0.9281
	1600	0.9662	0.00	0.9329	0.93	0.9632	0.07	0.9349		1600	0.9085	0.17	0.9610	0.81	0.9762	0.02	0.9523
	1700	0.3271	0.00	0.9490	0.93	0.9032	0.07	0.9505		1700	0.9598	0.17	0.9846	0.83	0.9859	0.02	0.9809
	1,50	0.3271	0.00	5.7490	5.75	0.7710	0.07	0.7505		1,50	0.9390	0.15	0.7040	0.00	0.7639	0.02	0.7307

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 5

				$P_{ES,BD,P}$	P_P	$P_{ES,BD,O}$	P_O	$P_{ES,BD,R}$	Date	Time	$P_{EX,BD,C}$	P_C	$P_{ES,BD,P}$	P_P	$P_{ES,BD,O}$	P_O	$P_{ES,BD,R}$
21-Jan-10	0900	0.4261	0.05	0.1355	0.80	0.0548	0.15	0.1390	21-Jul-10	0900	0.2321	0.00	0.1867	0.92	0.0957	0.08	0.1798
	1000	0.5402	0.06	0.2419	0.81	0.0789	0.13	0.2401		1000	0.1693	0.00	0.1952	0.91	0.1193	0.09	0.1887
	1100	0.5926	0.06	0.3058	0.81	0.0980	0.13	0.2975		1100	0.1401	0.00	0.1492	0.91	0.1355	0.09	0.1480
	1200	0.6143	0.08	0.3291	0.80	0.1075	0.13	0.3220		1200	0.1737	0.00	0.1240	0.91	0.1447	0.09	0.1257
	1300	0.6162	0.08	0.3323	0.83	0.1075	0.10	0.3319		1300	0.1737	0.00	0.1240	0.96	0.1447	0.04	0.1249
	1400	0.5974	0.08	0.3143	0.84	0.0980	0.09	0.3170		1400	0.1424	0.00	0.1537	0.97	0.1355	0.03	0.1531
	1500	0.5511	0.09	0.2573	0.83	0.0837	0.09	0.2676		1500	0.1649	0.00	0.2036	0.97	0.1193	0.03	0.2009
	1600	0.4502	0.11	0.1537	0.83	0.0596	0.06	0.1795		1600	0.2321	0.00	0.1952	0.97	0.0957	0.03	0.1920
	1700	0.2281	0.10	0.0476	0.83	0.0288	0.08	0.0637		1700	0.3126	0.00	0.1263	0.95	0.0669	0.05	0.1231
21-Feb-10	0900	0.4041	0.04	0.1649	0.89	0.0669	0.07	0.1664	21-Aug-10	0900	0.1780	0.00	0.2015	0.92	0.0933	0.08	0.1934
	1000	0.5046	0.02	0.2610	0.89	0.0909	0.08	0.2528		1000	0.2592	0.00	0.2241	0.92	0.1170	0.08	0.2160
	1100	0.5552	0.02	0.3024	0.88	0.1099	0.09	0.2902		1100	0.3176	0.00	0.1845	0.90	0.1355	0.10	0.1798
	1200	0.5783	0.04	0.3058	0.87	0.1216	0.09	0.2981		1200	0.3434	0.00	0.1447	0.92	0.1424	0.08	0.1445
	1300	0.5805	0.05	0.3041	0.92	0.1216	0.04	0.3107		1300	0.3418	0.00	0.1470	0.90	0.1424	0.10	0.1465
	1400	0.5639	0.04	0.3075	0.92	0.1146	0.05	0.3075		1400	0.3159	0.00	0.1952	0.90	0.1332	0.10	0.1892
	1500	0.5216	0.02	0.2813	0.92	0.0980	0.06	0.2761		1500	0.2573	0.00	0.2321	0.91	0.1146	0.09	0.2220
	1600	0.4372	0.02	0.1973	0.92	0.0717	0.06	0.1956		1600	0.1737	0.00	0.2036	0.91	0.0909	0.09	0.1939
	1700	0.2703	0.04	0.0813	0.91	0.0429	0.06	0.0857		1700	0.1604	0.00	0.1146	0.90	0.0596	0.10	0.1093
21-Mar-10	0900	0.3449	0.04	0.1994	0.83	0.0813	0.13	0.1904	21-Sep-10	0900	0.3587	0.02	0.2200	0.92	0.0885	0.06	0.2158
	1000	0.4310	0.03	0.2610	0.85	0.1075	0.12	0.2484		1000	0.4359	0.00	0.2629	0.96	0.1123	0.04	0.2562
	1100	0.4792	0.03	0.2592	0.87	0.1240	0.10	0.2532		1100	0.4792	0.01	0.2458	0.96	0.1286	0.03	0.2445
	1200	0.5017	0.03	0.2321	0.86	0.1332	0.11	0.2301		1200	0.4947	0.01	0.2200	0.93	0.1355	0.06	0.2184
	1300	0.5017	0.02	0.2321	0.90	0.1332	0.08	0.2304		1300	0.4916	0.00	0.2301	0.97	0.1332	0.03	0.2269
	1400	0.4813	0.03	0.2629	0.88	0.1240	0.09	0.2580		1400	0.4650	0.00	0.2629	0.97	0.1216	0.03	0.2582
	1500	0.4347	0.03	0.2685	0.87	0.1075	0.10	0.2583		1500	0.4094	0.00	0.2592	0.98	0.1028	0.02	0.2557
	1600	0.3496	0.03	0.2077	0.89	0.0813	0.08	0.2028		1600	0.3143	0.00	0.1867	0.99	0.0765	0.01	0.1854
	1700	0.2119	0.03	0.1004	0.89	0.0500	0.08	0.1002		1700	0.1671	0.00	0.0765	0.99	0.0429	0.01	0.0761
21-Apr-10	0900	0.1994	0.00	0.2077	0.88	0.0957	0.12	0.1940	21-Oct-10	0900	0.4605	0.03	0.2200	0.97	0.0789	0.00	0.2278
	1000	0.2776	0.00	0.2241	0.90	0.1193	0.10	0.2136		1000	0.5324	0.04	0.2884	0.96	0.1028	0.00	0.2989
	1100	0.3323	0.00	0.1845	0.89	0.1355	0.11	0.1791		1100	0.5670	0.01	0.3041	0.99	0.1170	0.00	0.3069
	1200	0.3557	0.00	0.1470	0.90	0.1424	0.10	0.1465		1200	0.5798	0.00	0.3024	1.00	0.1216	0.00	0.3024
	1300	0.3527	0.00	0.1537	0.92	0.1424	0.08	0.1528		1300	0.5731	0.02	0.3058	0.97	0.1193	0.01	0.3095
	1400	0.3242	0.00	0.2015	0.92	0.1309	0.08	0.1960		1400	0.5453	0.02	0.3007	0.97	0.1075	0.01	0.3038
	1500	0.2648	0.00	0.2341	0.89	0.1123	0.11	0.2205		1500	0.4855	0.02	0.2477	0.97	0.0861	0.01	0.2511
	1600	0.1824	0.00	0.1994	0.89	0.0885	0.11	0.1871		1600	0.3677	0.01	0.1424	0.98	0.0596	0.01	0.1439
	1700	0.1560	0.00	0.1052	0.88	0.0548	0.12	0.0990		1700	0.1492	0.03	0.0381	0.96	0.0265	0.01	0.0416
21-May-10	0900	0.2098	0.02	0.1931	0.96	0.1004	0.02	0.1914	21-Nov-10	0900	0.4844	0.12	0.1845	0.84	0.0669	0.03	0.2173
	1000	0.1537	0.01	0.1909	0.97	0.1240	0.02	0.1891		1000	0.5662	0.17	0.2740	0.80	0.0885	0.03	0.3165
	1100	0.1649	0.01	0.1424	0.94	0.1378	0.05	0.1424		1100	0.6040	0.17	0.3193	0.80	0.1028	0.03	0.3595
	1200	0.1888	0.02	0.1401	0.91	0.1447	0.06	0.1415		1200	0.6168	0.14	0.3323	0.82	0.1075	0.03	0.3659
	1300	0.1845	0.01	0.1216	0.94	0.1447	0.05	0.1235		1300	0.6105	0.12	0.3291	0.83	0.1052	0.04	0.3535
	1400	0.1515	0.02	0.1649	0.88	0.1332	0.10	0.1615		1400	0.5820	0.16	0.2972	0.79	0.0933	0.06	0.3302
	1500	0.1649	0.02	0.2077	0.90	0.1170	0.08	0.2000		1500	0.5179	0.16	0.2200	0.79	0.0741	0.06	0.2583
	1600	0.2380	0.02	0.1888	0.89	0.0909	0.09	0.1814		1600	0.3778	0.16	0.1075	0.79	0.0476	0.06	0.1462
	1700	0.3143	0.02	0.1123	0.88	0.0620	0.10	0.1117		1700	0.1028	0.13	0.0197	0.80	0.0176	0.07	0.0306
21-Jun-10	0900	0.2629	0.00	0.1845	0.89	0.1004	0.11	0.1752	21-Dec-10	0900	0.4549	0.14	0.1424	0.85	0.0548	0.01	0.1851
	1000	0.2119	0.00	0.1824	0.89	0.1216	0.11	0.1756		1000	0.5592	0.19	0.2439	0.77	0.0789	0.03	0.2996
	1100	0.1492	0.00	0.1355	0.89	0.1378	0.11	0.1358		1100	0.6060	0.18	0.3058	0.78	0.0933	0.03	0.3538
	1200	0.1492	0.00	0.1216	0.88	0.1447	0.12	0.1244		1200	0.6235	0.16	0.3258	0.81	0.1004	0.03	0.3666
	1300	0.1537	0.00	0.1123	0.92	0.1447	0.08	0.1148		1300	0.6211	0.16	0.3242	0.82	0.1004	0.02	0.3673
	1400	0.1759	0.00	0.1492	0.93	0.1355	0.07	0.1483		1400	0.5960	0.19	0.2954	0.78	0.0909	0.02	0.3492
	1500	0.2241	0.00	0.1973	0.97	0.1193	0.03	0.1947		1500	0.5385	0.20	0.2221	0.77	0.0717	0.02	0.2835
	1600	0.2666	0.00	0.1888	0.93	0.0957	0.07	0.1826		1600	0.4067	0.17	0.1123	0.81	0.0476	0.02	0.1615
	1700	0.3807	0.00	0.1216	0.93	0.0669	0.07	0.1180		1700	0.1309	0.15	0.0242	0.83	0.0194	0.02	0.0402

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 5

Date	Time	$\mathbf{P}_{ES,BS,C}$	P_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,BS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{E\mathbf{X},B\mathbf{X},P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,BS,R}$
21-Jan-10	0900	0.7816	0.05	0.5143	0.80	0.3342	0.15	0.5016	21-Jul-10	0900	0.8611	0.00	0.6289	0.92	0.4541	0.08	0.6158
	1000	0.8376	0.06	0.6523	0.81	0.4111	0.13	0.6331		1000	0.7313	0.00	0.6374	0.91	0.5097	0.09	0.6265
	1100	0.8597	0.06	0.7074	0.81	0.4547	0.13	0.6846		1100	0.5386	0.00	0.5768	0.91	0.5355	0.09	0.5733
	1200	0.8684	0.08	0.7237	0.80	0.4763	0.13	0.7026		1200	0.5725	0.00	0.5427	0.91	0.5493	0.09	0.5433
	1300	0.8688	0.08	0.7244	0.83	0.4798	0.10	0.7116		1300	0.5711	0.00	0.5382	0.96	0.5493	0.04	0.5387
	1400	0.8615	0.08	0.7112	0.84	0.4601	0.09	0.7009		1400	0.5364	0.00	0.5774	0.97	0.5350	0.03	0.5761
	1500	0.8419	0.09	0.6637	0.83	0.4187	0.09	0.6580		1500	0.7307	0.00	0.6381	0.97	0.5040	0.03	0.6338
	1600	0.7934	0.11	0.5416	0.83	0.3489	0.06	0.5562		1600	0.8614	0.00	0.6280	0.97	0.4537	0.03	0.6224
	1700	0.6256	0.10	0.2921	0.83	0.2307	0.08	0.3198		1700	0.8996	0.00	0.5204	0.95	0.3723	0.05	0.5125
21-Feb-10	0900	0.7700	0.04	0.5702	0.89	0.3700	0.07	0.5631	21-Aug-10	0900	0.6006	0.00	0.6372	0.92	0.4477	0.08	0.6229
	1000	0.8217	0.02	0.6772	0.89	0.4424	0.08	0.6613		1000	0.6734	0.00	0.6575	0.92	0.4995	0.08	0.6456
	1100	0.8438	0.02	0.7084	0.88	0.4857	0.09	0.6906		1100	0.7111	0.00	0.6085	0.90	0.5318	0.10	0.6011
	1200	0.8530	0.04	0.7072	0.87	0.5064	0.09	0.6935		1200	0.7275	0.00	0.5513	0.92	0.5466	0.08	0.5509
	1300	0.8539	0.05	0.7058	0.92	0.5086	0.04	0.7058		1300	0.7262	0.00	0.5534	0.90	0.5454	0.10	0.5526
	1400	0.8469	0.04	0.7090	0.92	0.4925	0.05	0.7037		1400	0.7074	0.00	0.6159	0.90	0.5285	0.10	0.6074
	1500	0.8286	0.02	0.6895	0.92	0.4547	0.06	0.6789		1500	0.6670	0.00	0.6585	0.91	0.4962	0.09	0.6446
	1600	0.7868	0.02	0.6047	0.92	0.3909	0.06	0.5964		1600	0.5877	0.00	0.6292	0.91	0.4391	0.09	0.6129
	1700	0.6716	0.04	0.4003	0.91	0.2882	0.06	0.4033		1700	0.6673	0.00	0.4923	0.90	0.3495	0.10	0.4785
21-Mar-10	0900	0.7312	0.04	0.6223	0.83	0.4170	0.13	0.6005	21-Sep-10	0900	0.7400	0.02	0.6459	0.92	0.4361	0.06	0.6363
	1000	0.7817	0.03	0.6482	0.85	0.4795	0.12	0.6325		1000	0.7833	0.00	0.6831	0.96	0.4895	0.04	0.6745
	1100	0.8056	0.03	0.6757	0.87	0.5141	0.10	0.6642		1100	0.8044	0.01	0.6630	0.96	0.5208	0.03	0.6598
	1200	0.8156	0.03	0.6450	0.86	0.5310	0.11	0.6382		1200	0.8123	0.01	0.6329	0.93	0.5342	0.06	0.6294
	1300	0.8156	0.02	0.6448	0.90	0.5312	0.08	0.6399		1300	0.8100	0.00	0.6439	0.97	0.5309	0.03	0.6402
	1400	0.8060	0.03	0.6744	0.88	0.5143	0.09	0.6649		1400	0.7968	0.00	0.6761	0.97	0.5092	0.03	0.6705
	1500	0.7823	0.03	0.6822	0.87	0.4798	0.10	0.6659		1500	0.7678	0.00	0.6750	0.98	0.4691	0.02	0.6704
	1600	0.7319	0.03	0.6233	0.89	0.4174	0.08	0.6113		1600	0.7064	0.00	0.5981	0.99	0.4003	0.01	0.5959
	1700	0.6146	0.03	0.4497	0.89	0.3171	0.08	0.4450		1700	0.5623	0.00	0.3934	0.99	0.2904	0.01	0.3922
21-Apr-10	0900	0.6200	0.00	0.6429	0.88	0.4511	0.12	0.6195	21-Oct-10	0900	0.8007	0.03	0.6395	0.97	0.4134	0.00	0.6447
	1000	0.6875	0.00	0.6575	0.90	0.5025	0.10	0.6420		1000	0.8342	0.04	0.6988	0.96	0.4688	0.00	0.7046
	1100	0.7212	0.00	0.6060	0.89	0.5333	0.11	0.5979		1100	0.8486	0.01	0.7084	0.99	0.4989	0.00	0.7099
	1200	0.7358	0.00	0.5541	0.90	0.5457	0.10	0.5533		1200	0.8537	0.00	0.7041	1.00	0.5105	0.00	0.7041
	1300	0.7336	0.00	0.5614	0.92	0.5449	0.08	0.5601		1300	0.8508	0.02	0.7071	0.97	0.5028	0.01	0.7080
	1400	0.7140	0.00	0.6265	0.92	0.5262	0.08	0.6187		1400	0.8389	0.02	0.7044	0.97	0.4798	0.01	0.7049
	1500	0.6724	0.00	0.6609	0.89	0.4909	0.11	0.6420		1500	0.8117	0.02	0.6594	0.97	0.4290	0.01	0.6602
	1600	0.5921	0.00	0.6226	0.89	0.4318	0.11	0.6014		1600	0.7458	0.01	0.5259	0.98	0.3489	0.01	0.5263
	1700	0.6144	0.00	0.4714	0.88	0.3379	0.12	0.4551		1700	0.5282	0.03	0.2524	0.96	0.2142	0.01	0.2609
21-May-10	0900	0.8278	0.02	0.6369	0.96	0.4652	0.02	0.6373	21-Nov-10	0900	0.8119	0.12	0.5892	0.84	0.3723	0.03	0.6092
	1000	0.5903	0.01	0.6330	0.97	0.5112	0.02	0.6299		1000	0.8490	0.17	0.6831	0.80	0.4349	0.03	0.7025
	1100	0.5648	0.01	0.5652	0.94	0.5384	0.05	0.5638		1100	0.8642	0.17	0.7172	0.80	0.4685	0.03	0.7334
	1200	0.5910	0.02	0.5726	0.91	0.5497	0.06	0.5715		1200	0.8692	0.14	0.7252	0.82	0.4805	0.03	0.7378
	1300	0.5841	0.01	0.5293	0.94	0.5478	0.05	0.5309		1300	0.8667	0.12	0.6543	0.83	0.4728	0.04	0.6722
	1400	0.5458	0.02	0.5922	0.88	0.5312	0.10	0.5853		1400	0.8550	0.16	0.6979	0.79	0.4477	0.06	0.7084
	1500	0.7243	0.02	0.6427	0.90	0.4970	0.08	0.6335		1500	0.8272	0.16	0.6263	0.79	0.3961	0.06	0.6448
	1600	0.8583	0.02	0.6185	0.89	0.4415	0.09	0.6084		1600	0.7498	0.16	0.4565	0.79	0.3075	0.06	0.4938
	1700	0.8906	0.02	0.4899	0.88	0.3550	0.10	0.4855		1700	0.4375	0.13	0.1641	0.80	0.1570	0.07	0.2001
21-Jun-10	0900	0.9061	0.00	0.6289	0.89	0.4613	0.11	0.6103	21-Dec-10	0900	0.7965	0.14	0.5270	0.85	0.3376	0.01	0.5626
	1000	0.8841	0.00	0.6275	0.89	0.5088	0.11	0.6143		1000	0.8460	0.19	0.6539	0.77	0.4082	0.03	0.6831
	1100	0.5919	0.00	0.5636	0.89	0.5372	0.11	0.5606		1100	0.8649	0.18	0.7064	0.78	0.4482	0.03	0.7270
	1200	0.5698	0.00	0.5529	0.88	0.5497	0.12	0.5525		1200	0.8717	0.16	0.7222	0.81	0.4658	0.03	0.7380
	1300	0.5837	0.00	0.5258	0.92	0.5491	0.08	0.5277		1300	0.8707	0.16	0.7203	0.82	0.4618	0.02	0.7390
	1400	0.7814	0.00	0.5759	0.93	0.5336	0.07	0.5731		1400	0.8609	0.19	0.6966	0.78	0.4391	0.02	0.7228
	1500	0.8596	0.00	0.6334	0.97	0.5022	0.03	0.6290		1500	0.8362	0.20	0.6255	0.77	0.3899	0.02	0.6635
	1600	0.8982	0.00	0.6204	0.93	0.4511	0.07	0.6091		1600	0.7672	0.17	0.4669	0.81	0.3092	0.02	0.5152
	1700	0.9174	0.00	0.5112	0.93	0.3696	0.07	0.5018		1700	0.4905	0.15	0.1847	0.83	0.1716	0.02	0.2305

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 5

Date	Time	$P_{ES,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$P_{ES,UD,R}$	Date	Time	$\mathbf{P}_{EX,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$P_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.9579	0.05	0.9579	0.80	0.9579	0.15	0.9579	21-Jul-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1000	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1100	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1100	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1200	0.9579	0.08	0.9579	0.80	0.9579	0.13	0.9579		1200	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1300	0.9579	0.08	0.9579	0.83	0.9579	0.10	0.9579		1300	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1400	0.9579	0.08	0.9579	0.84	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.09	0.9579	0.83	0.9579	0.09	0.9579		1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1600	0.9579	0.11	0.9579	0.83	0.9579	0.06	0.9579		1600	0.9336	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1700	0.9579	0.10	0.9579	0.83	0.9579	0.08	0.9579		1700	0.8746	0.00	0.9579	0.95	0.9579	0.05	0.9579
21-Feb-10	0900	0.9579	0.04	0.9579	0.89	0.9579	0.07	0.9579	21-Aug-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.02	0.9579	0.89	0.9579	0.08	0.9579		1000	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1100	0.9579	0.02	0.9579	0.88	0.9579	0.09	0.9579		1100	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1200	0.9579	0.04	0.9579	0.87	0.9579	0.09	0.9579		1200	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1300	0.9579	0.05	0.9579	0.92	0.9579	0.04	0.9579		1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1400	0.9579	0.04	0.9579	0.92	0.9579	0.05	0.9579		1400	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1500	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1500	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1600	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1700	0.9579	0.04	0.9579	0.91	0.9579	0.06	0.9579		1700	0.9357	0.00	0.9579	0.90	0.9579	0.10	0.9579
21-Mar-10	0900	0.9579	0.04	0.9579	0.83	0.9579	0.13	0.9579	21-Sep-10	0900	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579
	1000	0.9579	0.03	0.9579	0.85	0.9579	0.12	0.9579		1000	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1100	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1100	0.9579	0.01	0.9579	0.96	0.9579	0.03	0.9579
	1200	0.9579	0.03	0.9579	0.86	0.9579	0.11	0.9579		1200	0.9579	0.01	0.9579	0.93	0.9579	0.06	0.9579
	1300	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1300	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1400	0.9579	0.03	0.9579	0.88	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1500	0.9579	0.00	0.9579	0.98	0.9579	0.02	0.9579
	1600	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1600	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
	1700	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
21-Apr-10	0900	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579	21-Oct-10	0900	0.9579	0.03	0.9579	0.97	0.9579	0.00	0.9579
	1000	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1000	0.9579	0.04	0.9579	0.96	0.9579	0.00	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.01	0.9579	0.99	0.9579	0.00	0.9579
	1200	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1200	0.9579	0.00	0.9579	1.00	0.9579	0.00	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1400	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1400	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1500	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1500	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1600	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1600	0.9579	0.01	0.9579	0.98	0.9579	0.01	0.9579
	1700	0.9087	0.00	0.9579	0.88	0.9579	0.12	0.9579		1700	0.9579	0.03	0.9579	0.96	0.9579	0.01	0.9579
21-May-10	0900	0.9579	0.02	0.9579	0.96	0.9579	0.02	0.9579	21-Nov-10	0900	0.9579	0.12	0.9579	0.84	0.9579	0.03	0.9579
	1000	0.9579	0.01	0.9579	0.97	0.9579	0.02	0.9579		1000	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1100	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1100	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1200	0.9579	0.02	0.9579	0.91	0.9579	0.06	0.9579		1200	0.9579	0.14	0.9579	0.82	0.9579	0.03	0.9579
	1300	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1300	0.9579	0.12	0.9579	0.83	0.9579	0.04	0.9579
	1400	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1400	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1500	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1500	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1600	0.9308	0.02	0.9579	0.89	0.9579	0.09	0.9573		1600	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1700	0.8559	0.02	0.9579	0.88	0.9579	0.10	0.9557		1700	0.9579	0.13	0.9579	0.80	0.9579	0.07	0.9579
21-Jun-10	0900	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579	21-Dec-10	0900	0.9579	0.14	0.9579	0.85	0.9579	0.01	0.9579
	1000	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1000	0.9579	0.19	0.9579	0.77	0.9579	0.03	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.18	0.9579	0.78	0.9579	0.03	0.9579
	1200	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1200	0.9579	0.16	0.9579	0.81	0.9579	0.03	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.16	0.9579	0.82	0.9579	0.02	0.9579
	1400	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1400	0.9579	0.19	0.9579	0.78	0.9579	0.02	0.9579
	1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1500	0.9579	0.20	0.9579	0.77	0.9579	0.02	0.9579
	1600	0.9248	0.00	0.9579	0.93	0.9579	0.07	0.9579		1600	0.9579	0.17	0.9579	0.81	0.9579	0.02	0.9579
	1700	0.7573	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9579	0.15	0.9579	0.83	0.9579	0.02	0.9579

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 5

Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{EX,UX,O}$	P_O	$\mathbf{P}_{ES,US,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,UX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{EX,UX,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9097	0.05	0.9232	0.80	0.9306	0.15	0.9236	21-Jul-10	0900	0.9621	0.00	0.9349	0.92	0.9312	0.08	0.9346
	1000	0.9074	0.06	0.9212	0.81	0.9323	0.13	0.9217		1000	0.9564	0.00	0.9353	0.91	0.9196	0.09	0.9340
	1100	0.9066	0.06	0.9196	0.81	0.9312	0.13	0.9203		1100	0.9305	0.00	0.9376	0.91	0.9309	0.09	0.9370
	1200	0.9065	0.08	0.9191	0.80	0.9306	0.13	0.9196		1200	0.9271	0.00	0.9418	0.91	0.9312	0.09	0.9409
	1300	0.9064	0.08	0.9194	0.83	0.9311	0.10	0.9196		1300	0.9266	0.00	0.9417	0.96	0.9312	0.04	0.9412
	1400	0.9070	0.08	0.9201	0.84	0.9321	0.09	0.9201		1400	0.9304	0.00	0.9379	0.97	0.9306	0.03	0.9377
	1500	0.9074	0.09	0.9220	0.83	0.9307	0.09	0.9215		1500	0.9569	0.00	0.9368	0.97	0.9310	0.03	0.9366
	1600	0.9091	0.11	0.9244	0.83	0.9305	0.06	0.9231		1600	0.9629	0.00	0.9360	0.97	0.9314	0.03	0.9358
	1700	0.9131	0.10	0.9254	0.83	0.9320	0.08	0.9247		1700	0.9606	0.00	0.9355	0.95	0.9314	0.05	0.9352
21-Feb-10	0900	0.9099	0.04	0.9255	0.89	0.9305	0.07	0.9253	21-Aug-10	0900	0.9295	0.00	0.9312	0.92	0.9316	0.08	0.9312
	1000	0.9078	0.02	0.9238	0.89	0.9311	0.08	0.9240		1000	0.9209	0.00	0.9307	0.92	0.9314	0.08	0.9307
	1100	0.9067	0.02	0.9216	0.88	0.9311	0.09	0.9222		1100	0.9156	0.00	0.9306	0.90	0.9317	0.10	0.9307
	1200	0.9055	0.04	0.9206	0.87	0.9316	0.09	0.9211		1200	0.9139	0.00	0.9326	0.92	0.9317	0.08	0.9325
	1300	0.9056	0.05	0.9203	0.92	0.9314	0.04	0.9200		1300	0.9142	0.00	0.9317	0.90	0.9313	0.10	0.9317
	1400	0.9065	0.04	0.9215	0.92	0.9318	0.05	0.9214		1400	0.9164	0.00	0.9315	0.90	0.9310	0.10	0.9315
	1500	0.9074	0.02	0.9235	0.92	0.9312	0.06	0.9236		1500	0.9222	0.00	0.9315	0.91	0.9313	0.09	0.9315
	1600	0.9097	0.02	0.9257	0.92	0.9302	0.06	0.9256		1600	0.9308	0.00	0.9327	0.91	0.9310	0.09	0.9326
	1700	0.9139	0.04	0.9270	0.91	0.9311	0.06	0.9268		1700	0.9493	0.00	0.9330	0.90	0.9306	0.10	0.9327
21-Mar-10	0900	0.9131	0.04	0.9276	0.83	0.9319	0.13	0.9275	21-Sep-10	0900	0.9117	0.02	0.9273	0.92	0.9305	0.06	0.9271
	1000	0.9091	0.03	0.9258	0.85	0.9311	0.12	0.9259		1000	0.9080	0.00	0.9261	0.96	0.9308	0.04	0.9263
	1100	0.9066	0.03	0.9245	0.87	0.9311	0.10	0.9246		1100	0.9063	0.01	0.9248	0.96	0.9316	0.03	0.9248
	1200	0.9049	0.03	0.9238	0.86	0.9316	0.11	0.9240		1200	0.9061	0.01	0.9245	0.93	0.9310	0.06	0.9247
	1300	0.9052	0.02	0.9237	0.90	0.9316	0.08	0.9239		1300	0.9058	0.00	0.9245	0.97	0.9318	0.03	0.9247
	1400	0.9067	0.03	0.9249	0.88	0.9312	0.09	0.9249		1400	0.9065	0.00	0.9256	0.97	0.9315	0.03	0.9258
	1500	0.9093	0.03	0.9267	0.87	0.9311	0.10	0.9265		1500	0.9099	0.00	0.9276	0.98	0.9308	0.02	0.9277
	1600	0.9133	0.03	0.9283	0.89	0.9319	0.08	0.9281		1600	0.9152	0.00	0.9287	0.99	0.9319	0.01	0.9287
	1700	0.9201	0.03	0.9287	0.89	0.9303	0.08	0.9285		1700	0.9238	0.00	0.9299	0.99	0.9312	0.01	0.9299
21-Apr-10	0900	0.9270	0.00	0.9312	0.88	0.9314	0.12	0.9312	21-Oct-10	0900	0.9092	0.03	0.9247	0.97	0.9322	0.00	0.9242
	1000	0.9199	0.00	0.9303	0.90	0.9304	0.10	0.9303		1000	0.9075	0.04	0.9224	0.96	0.9314	0.00	0.9217
	1100	0.9151	0.00	0.9307	0.89	0.9323	0.11	0.9309		1100	0.9060	0.01	0.9211	0.99	0.9320	0.00	0.9209
	1200	0.9134	0.00	0.9320	0.90	0.9313	0.10	0.9319		1200	0.9056	0.00	0.9204	1.00	0.9320	0.00	0.9204
	1300	0.9138	0.00	0.9319	0.92	0.9313	0.08	0.9319		1300	0.9059	0.02	0.9214	0.97	0.9304	0.01	0.9211
	1400	0.9162	0.00	0.9317	0.92	0.9309	0.08	0.9316		1400	0.9068	0.02	0.9227	0.97	0.9311	0.01	0.9224
	1500	0.9102	0.00	0.9317	0.92	0.9312	0.00	0.9317		1500	0.9085	0.02	0.9244	0.97	0.9314	0.01	0.9241
	1600	0.9214	0.00	0.9317	0.89	0.9312	0.11	0.9317		1600	0.9083	0.02	0.9244	0.97	0.9314	0.01	0.9241
	1700	0.9297	0.00	0.9321	0.88	0.9321	0.11	0.9321		1700	0.9116	0.01	0.9279	0.96	0.9303	0.01	0.9203
21-May-10	0900	0.9609	0.02	0.9340	0.96	0.9315	0.02	0.9346	21-Nov-10	0900	0.9086	0.12	0.9237	0.84	0.9314	0.03	0.9221
21-Way-10	1000	0.9324	0.02	0.9355	0.97	0.9316	0.02	0.9354	21-1404-10	1000	0.9070	0.17	0.9207	0.80	0.9314	0.03	0.9188
	1100	0.9324	0.01	0.9375	0.94	0.9315	0.02	0.9371		1100	0.9066	0.17	0.9195	0.80	0.9314	0.03	0.9177
															0.9314		
	1200	0.9218	0.02	0.9418	0.91	0.9313	0.06	0.9407		1200	0.9063	0.14	0.9195	0.82		0.03	0.9180
	1300	0.9259	0.01	0.9403	0.94	0.9308	0.05	0.9397		1300	0.9064	0.12	0.9198	0.83	0.9317	0.04	0.9187
	1400	0.9306	0.02	0.9370	0.88	0.9316	0.10	0.9364		1400	0.9070	0.16	0.9206	0.79	0.9316	0.06	0.9191
	1500	0.9561	0.02	0.9365	0.90	0.9314	0.08	0.9366		1500	0.9081	0.16	0.9235	0.79	0.9317	0.06	0.9216
	1600	0.9624	0.02	0.9356	0.89	0.9317	0.09	0.9359		1600	0.9100	0.16	0.9258	0.79	0.9317	0.06	0.9237
	1700	0.9595	0.02	0.9355	0.88	0.9318	0.10	0.9356		1700	0.9170	0.13	0.9273	0.80	0.9298	0.07	0.9261
21-Jun-10	0900	0.9644	0.00	0.9365	0.89	0.9314	0.11	0.9359	21-Dec-10	0900	0.9092	0.14	0.9233	0.85	0.9317	0.01	0.9214
	1000	0.9651	0.00	0.9369	0.89	0.9314	0.11	0.9363		1000	0.9074	0.19	0.9209	0.77	0.9314	0.03	0.9186
	1100	0.9326	0.00	0.9398	0.89	0.9311	0.11	0.9389		1100	0.9066	0.18	0.9195	0.78	0.9317	0.03	0.9176
	1200	0.9318	0.00	0.9444	0.88	0.9313	0.12	0.9428		1200	0.9063	0.16	0.9192	0.81	0.9315	0.03	0.9175
	1300	0.9312	0.00	0.9434	0.92	0.9312	0.08	0.9424		1300	0.9062	0.16	0.9193	0.82	0.9315	0.02	0.9174
	1400	0.9591	0.00	0.9396	0.93	0.9323	0.07	0.9391		1400	0.9067	0.19	0.9202	0.78	0.9310	0.02	0.9178
	1500	0.9639	0.00	0.9379	0.97	0.9304	0.03	0.9376		1500	0.9079	0.20	0.9214	0.77	0.9310	0.02	0.9188
	1600	0.9645	0.00	0.9372	0.93	0.9314	0.07	0.9368		1600	0.9094	0.17	0.9249	0.81	0.9316	0.02	0.9224
	1700	0.9619	0.00	0.9353	0.93	0.9305	0.07	0.9350		1700	0.9164	0.15	0.9258	0.83	0.9318	0.02	0.9245

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 5

Date	Time	$P_{ES,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$	Date	Time	$\mathbf{P}_{ES,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$
21-Jan-10	0900	0.9492	0.05	0.9821	0.80	0.9914	0.15	0.9817	21-Jul-10	0900	0.9879	0.00	0.9696	0.92	0.9862	0.08	0.9709
	1000	0.9297	0.06	0.9705	0.81	0.9885	0.13	0.9702		1000	0.9794	0.00	0.9710	0.91	0.9834	0.09	0.9721
	1100	0.9184	0.06	0.9633	0.81	0.9860	0.13	0.9633		1100	0.9767	0.00	0.9800	0.91	0.9815	0.09	0.9801
	1200	0.9138	0.08	0.9612	0.80	0.9849	0.13	0.9607		1200	0.9749	0.00	0.9849	0.91	0.9804	0.09	0.9845
	1300	0.9134	0.08	0.9612	0.83	0.9850	0.10	0.9599		1300	0.9750	0.00	0.9850	0.96	0.9804	0.04	0.9848
	1400	0.9173	0.08	0.9625	0.84	0.9858	0.09	0.9611		1400	0.9765	0.00	0.9792	0.97	0.9813	0.03	0.9792
	1500	0.9274	0.09	0.9689	0.83	0.9880	0.09	0.9670		1500	0.9783	0.00	0.9703	0.97	0.9833	0.03	0.9708
	1600	0.9456	0.11	0.9802	0.83	0.9911	0.06	0.9771		1600	0.9848	0.00	0.9688	0.97	0.9864	0.03	0.9693
	1700	0.9742	0.10	0.9924	0.83	0.9948	0.08	0.9908		1700	0.3498	0.00	0.9782	0.95	0.9900	0.05	0.9789
21-Feb-10	0900	0.9523	0.04	0.9778	0.89	0.9902	0.07	0.9778	21-Aug-10	0900	0.9692	0.00	0.9699	0.92	0.9866	0.08	0.9711
	1000	0.9378	0.02	0.9667	0.89	0.9868	0.08	0.9676		1000	0.9664	0.00	0.9693	0.92	0.9834	0.08	0.9704
	1100	0.9280	0.02	0.9627	0.88	0.9844	0.09	0.9639		1100	0.9624	0.00	0.9765	0.90	0.9816	0.10	0.9770
	1200	0.9236	0.04	0.9636	0.87	0.9833	0.09	0.9640		1200	0.9602	0.00	0.9827	0.92	0.9806	0.08	0.9826
	1300	0.9231	0.05	0.9634	0.92	0.9831	0.04	0.9622		1300	0.9603	0.00	0.9824	0.90	0.9806	0.10	0.9822
	1400	0.9265	0.04	0.9621	0.92	0.9843	0.05	0.9619		1400	0.9627	0.00	0.9751	0.90	0.9816	0.10	0.9757
	1500	0.9351	0.02	0.9646	0.92	0.9860	0.06	0.9652		1500	0.9668	0.00	0.9681	0.91	0.9838	0.09	0.9695
	1600	0.9482	0.02	0.9738	0.92	0.9893	0.06	0.9741		1600	0.9697	0.00	0.9697	0.91	0.9868	0.09	0.9712
	1700	0.9682	0.04	0.9878	0.91	0.9932	0.06	0.9874		1700	0.9812	0.00	0.9813	0.90	0.9911	0.10	0.9823
21-Mar-10	0900	0.9583	0.04	0.9724	0.83	0.9884	0.13	0.9739	21-Sep-10	0900	0.9564	0.02	0.9698	0.92	0.9872	0.06	0.9704
	1000	0.9474	0.03	0.9932	0.85	0.9851	0.12	0.9908		1000	0.9471	0.00	0.9657	0.96	0.9842	0.04	0.9665
	1100	0.9408	0.03	0.9678	0.87	0.9829	0.10	0.9684		1100	0.9413	0.01	0.9699	0.96	0.9821	0.03	0.9700
	1200	0.9375	0.03	0.9728	0.86	0.9818	0.11	0.9726		1200	0.9388	0.01	0.9742	0.93	0.9813	0.06	0.9742
	1300	0.9375	0.02	0.9726	0.90	0.9817	0.08	0.9725		1300	0.9396	0.00	0.9727	0.97	0.9818	0.03	0.9730
	1400	0.9407	0.03	0.9677	0.88	0.9829	0.09	0.9681		1400	0.9437	0.00	0.9671	0.97	0.9832	0.03	0.9677
	1500	0.9473	0.03	0.9650	0.87	0.9850	0.10	0.9663		1500	0.9507	0.00	0.9656	0.98	0.9856	0.02	0.9661
	1600	0.9576	0.03	0.9714	0.89	0.9883	0.08	0.9723		1600	0.9615	0.00	0.9737	0.99	0.9889	0.01	0.9739
	1700	0.9722	0.03	0.9849	0.89	0.9921	0.08	0.9850		1700	0.9766	0.00	0.9880	0.99	0.9930	0.01	0.9880
21-Apr-10	0900	0.9700	0.00	0.9693	0.88	0.9867	0.12	0.9714	21-Oct-10	0900	0.9448	0.03	0.9684	0.97	0.9884	0.00	0.9676
	1000	0.9652	0.00	0.9692	0.90	0.9835	0.10	0.9706		1000	0.9330	0.04	0.9638	0.96	0.9855	0.00	0.9625
	1100	0.9607	0.00	0.9768	0.89	0.9814	0.11	0.9773		1100	0.9258	0.01	0.9631	0.99	0.9836	0.00	0.9627
	1200	0.9586	0.00	0.9828	0.90	0.9806	0.10	0.9826		1200	0.9225	0.00	0.9637	1.00	0.9832	0.00	0.9637
	1300	0.9591	0.00	0.9817	0.92	0.9806	0.08	0.9816		1300	0.9247	0.02	0.9630	0.97	0.9833	0.01	0.9624
	1400	0.9618	0.00	0.9742	0.92	0.9821	0.08	0.9748		1400	0.9303	0.02	0.9628	0.97	0.9850	0.01	0.9623
	1500	0.9661	0.00	0.9676	0.89	0.9841	0.11	0.9694		1500	0.9409	0.02	0.9681	0.97	0.9876	0.01	0.9677
	1600	0.9700	0.00	0.9702	0.89	0.9873	0.11	0.9721		1600	0.9567	0.01	0.9806	0.98	0.9911	0.01	0.9804
	1700	0.9797	0.00	0.9826	0.88	0.9916	0.12	0.9837		1700	0.9813	0.03	0.9936	0.96	0.9954	0.01	0.9932
21-May-10	0900	0.9852	0.02	0.9692	0.96	0.9859	0.02	0.9699	21-Nov-10	0900	0.9397	0.12	0.9766	0.84	0.9900	0.03	0.9726
	1000	0.9765	0.01	0.9721	0.97	0.9830	0.02	0.9724		1000	0.9242	0.17	0.9666	0.80	0.9875	0.03	0.9602
	1100	0.9752	0.01	0.9813	0.94	0.9812	0.05	0.9812		1100	0.9162	0.17	0.9620	0.80	0.9856	0.03	0.9551
	1200	0.9735	0.02	0.9834	0.91	0.9803	0.06	0.9830		1200	0.9132	0.14	0.9608	0.82	0.9847	0.03	0.9547
	1300	0.9738	0.01	0.9851	0.94	0.9803	0.05	0.9847		1300	0.9149	0.12	0.9999	0.83	0.9852	0.04	0.9888
	1400	0.9759	0.02	0.9775	0.88	0.9817	0.10	0.9778		1400	0.9209	0.16	0.9643	0.79	0.9866	0.06	0.9588
	1500	0.9778	0.02	0.9693	0.90	0.9839	0.08	0.9706		1500	0.9340	0.16	0.9728	0.79	0.9890	0.06	0.9677
	1600	0.9851	0.02	0.9697	0.89	0.9869	0.09	0.9715		1600	0.9559	0.16	0.9942	0.79	0.9925	0.06	0.9882
	1700	0.3697	0.02	0.9804	0.88	0.9908	0.10	0.9683		1700	0.9871	0.13	0.9962	0.80	0.9967	0.07	0.9950
21-Jun-10	0900	0.9905	0.00	0.9695	0.89	0.9857	0.11	0.9713	21-Dec-10	0900	0.9449	0.14	0.9817	0.85	0.9911	0.01	0.9767
	1000	0.9875	0.00	0.9724	0.89	0.9830	0.11	0.9736		1000	0.9258	0.19	0.9705	0.77	0.9884	0.03	0.9624
	1100	0.9786	0.00	0.9814	0.89	0.9810	0.11	0.9813		1100	0.9151	0.18	0.9637	0.78	0.9866	0.03	0.9555
	1200	0.9793	0.00	0.9850	0.88	0.9803	0.12	0.9845		1200	0.9108	0.16	0.9618	0.81	0.9856	0.03	0.9543
	1300	0.9792	0.00	0.9860	0.92	0.9802	0.08	0.9855		1300	0.9113	0.16	0.9621	0.82	0.9860	0.02	0.9544
	1400	0.9818	0.00	0.9793	0.93	0.9813	0.07	0.9795		1400	0.9175	0.19	0.9651	0.78	0.9868	0.02	0.9563
	1500	0.9846	0.00	0.9703	0.97	0.9836	0.03	0.9707		1500	0.9302	0.20	0.9733	0.77	0.9894	0.02	0.9648
	1600	0.9878	0.00	0.9689	0.93	0.9863	0.07	0.9701		1600	0.9524	0.17	0.9852	0.81	0.9924	0.02	0.9797
	1700	0.2727	0.00	0.9786	0.93	0.9903	0.07	0.9794		1700	0.9845	0.15	0.9957	0.83	0.9962	0.02	0.9941

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 6

Date	Time	$\mathbf{P}_{VS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{FS,BD,P}$	P_P	$\mathbf{P}_{VX,BD,O}$	P_O	$P_{FS,BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{VS,BD,O}$	P_O	$\mathrm{P}_{\mathrm{FS},BD,R}$
21-Jan-10	0900	0.2865	0.05	0.2562	0.80	0.2366	0.15	0.2549	21-Jul-10	0900	0.3199	0.00	0.3364	0.92	0.3093	0.08	0.3343
	1000	0.3199	0.06	0.3332	0.81	0.2824	0.13	0.3258		1000	0.3233	0.00	0.3426	0.91	0.3426	0.09	0.3426
	1100	0.3364	0.06	0.3791	0.81	0.3093	0.13	0.3673		1100	0.3299	0.00	0.3164	0.91	0.3630	0.09	0.3204
	1200	0.4778	0.08	0.4185	0.80	0.3233	0.13	0.4107		1200	0.4385	0.00	0.3164	0.91	0.3739	0.09	0.3214
	1300	0.4853	0.08	0.4549	0.83	0.3233	0.10	0.4444		1300	0.5049	0.00	0.3658	0.96	0.3712	0.04	0.3660
	1400	0.6080	0.08	0.4793	0.84	0.3129	0.09	0.4747		1400	0.6341	0.00	0.4460	0.97	0.3630	0.03	0.4433
	1500	0.6541	0.09	0.4699	0.83	0.2865	0.09	0.4700		1500	0.6866	0.00	0.5201	0.97	0.3426	0.03	0.5144
	1600	0.6484	0.11	0.3963	0.83	0.2417	0.06	0.4134		1600	0.7059	0.00	0.5237	0.97	0.3093	0.03	0.5168
	1700	0.5295	0.10	0.2366	0.83	0.1705	0.08	0.2600		1700	0.6870	0.00	0.4441	0.95	0.2608	0.05	0.4343
21-Feb-10	0900	0.2982	0.04	0.2824	0.89	0.2562	0.07	0.2811	21-Aug-10	0900	0.3129	0.00	0.3299	0.92	0.3057	0.08	0.3281
	1000	0.3233	0.02	0.3486	0.89	0.3020	0.08	0.3442		1000	0.3233	0.00	0.3426	0.92	0.3395	0.08	0.3424
	1100	0.3395	0.02	0.3791	0.88	0.3299	0.09	0.3735		1100	0.3299	0.00	0.3266	0.90	0.3602	0.10	0.3299
	1200	0.4366	0.04	0.4055	0.87	0.3426	0.09	0.4007		1200	0.4366	0.00	0.3129	0.92	0.3712	0.08	0.3173
	1300	0.4808	0.05	0.4441	0.92	0.3456	0.04	0.4424		1300	0.5176	0.00	0.3685	0.90	0.3685	0.10	0.3685
	1400	0.6194	0.04	0.4897	0.92	0.3332	0.05	0.4869		1400	0.6414	0.00	0.4634	0.90	0.3574	0.10	0.4531
	1500	0.6727	0.02	0.5049	0.92	0.3093	0.06	0.4973		1500	0.6923	0.00	0.5260	0.91	0.3364	0.09	0.5097
	1600	0.6815	0.02	0.4583	0.92	0.2697	0.06	0.4525		1600	0.7072	0.00	0.5152	0.91	0.2982	0.09	0.4965
	1700	0.6155	0.04	0.3199	0.91	0.2093	0.06	0.3238		1700	0.6757	0.00	0.4143	0.90	0.2466	0.10	0.3981
21-Mar-10	0900	0.3093	0.04	0.3129	0.83	0.2865	0.13	0.3093	21-Sep-10	0900	0.3129	0.02	0.3266	0.92	0.2982	0.06	0.3247
	1000	0.3233	0.03	0.3516	0.85	0.3233	0.12	0.3473		1000	0.3266	0.00	0.3545	0.96	0.3332	0.04	0.3536
	1100	0.3332	0.03	0.3602	0.87	0.3486	0.10	0.3582		1100	0.3395	0.01	0.3574	0.96	0.3545	0.03	0.3571
	1200	0.4617	0.03	0.3658	0.86	0.3602	0.11	0.3683		1200	0.4288	0.01	0.3685	0.93	0.3630	0.06	0.3689
	1300	0.5062	0.02	0.4143	0.90	0.3602	0.08	0.4122		1300	0.5510	0.00	0.4268	0.97	0.3602	0.03	0.4246
	1400	0.6364	0.03	0.4838	0.88	0.3486	0.09	0.4771		1400	0.6530	0.00	0.4968	0.97	0.3456	0.03	0.4917
	1500	0.6878	0.03	0.5237	0.87	0.3266	0.10	0.5099		1500	0.6945	0.00	0.5249	0.98	0.3199	0.02	0.5203
	1600	0.6998	0.03	0.4926	0.89	0.2865	0.08	0.4837		1600	0.6974	0.00	0.4762	0.99	0.2783	0.01	0.4740
	1700	0.6520	0.03	0.3685	0.89	0.2261	0.08	0.3670		1700	0.6281	0.00	0.3299	0.99	0.2093	0.01	0.3286
21-Apr-10	0900	0.3164	0.00	0.3332	0.88	0.3057	0.12	0.3298	21-Oct-10	0900	0.3129	0.03	0.3199	0.97	0.2824	0.00	0.3197
	1000	0.3233	0.00	0.3426	0.90	0.3395	0.10	0.3423		1000	0.3299	0.04	0.3658	0.96	0.3199	0.00	0.3643
	1100	0.3332	0.00	0.3266	0.89	0.3602	0.11	0.3304		1100	0.3486	0.01	0.3891	0.99	0.3395	0.00	0.3887
	1200	0.4441	0.00	0.3199	0.90	0.3712	0.10	0.3250		1200	0.3891	0.00	0.4206	1.00	0.3456	0.00	0.4206
	1300	0.5352	0.00	0.3765	0.92	0.3685	0.08	0.3759		1300	0.5673	0.02	0.4683	0.97	0.3426	0.01	0.4691
	1400	0.6479	0.00	0.4715	0.92	0.3574	0.08	0.4627		1400	0.6536	0.02	0.5036	0.97	0.3233	0.01	0.5048
	1500	0.6949	0.00	0.5295	0.89	0.3332	0.11	0.5077		1500	0.6835	0.02	0.4940	0.97	0.2944	0.01	0.4959
	1600	0.7069	0.00	0.5088	0.89	0.2944	0.11	0.4850		1600	0.6646	0.01	0.4032	0.98	0.2417	0.01	0.4043
	1700	0.6687	0.00	0.3986	0.88	0.2366	0.12	0.3788		1700	0.5127	0.03	0.2207	0.96	0.1632	0.01	0.2295
21-May-10	0900	0.3164	0.02	0.3395	0.96	0.3164	0.02	0.3385	21-Nov-10	0900	0.3057	0.12	0.2944	0.84	0.2608	0.03	0.2946
	1000	0.3233	0.01	0.3395	0.97	0.3456	0.02	0.3395		1000	0.3233	0.17	0.3545	0.80	0.2982	0.03	0.3474
	1100	0.3332	0.01	0.3093	0.94	0.3658	0.05	0.3126		1100	0.3456	0.17	0.3986	0.80	0.3199	0.03	0.3872
	1200	0.4206	0.02	0.3395	0.91	0.3739	0.06	0.3435		1200	0.4009	0.14	0.4327	0.82	0.3266	0.03	0.4246
	1300	0.5363	0.01	0.3685	0.94	0.3712	0.05	0.3705		1300	0.5520	0.12	0.4683	0.83	0.3233	0.04	0.4721
	1400	0.6452	0.02	0.4600	0.88	0.3602	0.10	0.4544		1400	0.6335	0.16	0.4824	0.79	0.3057	0.06	0.4961
	1500	0.6923	0.02	0.5260	0.90	0.3364	0.08	0.5153		1500	0.6604	0.16	0.4496	0.79	0.2740	0.06	0.4726
	1600	0.7062	0.02	0.5164	0.89	0.3020	0.09	0.5020		1600	0.6226	0.16	0.3426	0.79	0.2207	0.06	0.3794
	1700	0.6778	0.02	0.4206	0.88	0.2466	0.10	0.4093		1700	0.3866	0.13	0.1556	0.80	0.1305	0.07	0.1847
21-Jun-10	0900	0.3233	0.00	0.3395	0.89	0.3129	0.11	0.3365	21-Dec-10	0900	0.2905	0.14	0.2608	0.85	0.2366	0.01	0.2647
	1000	0.3233	0.00	0.3426	0.89	0.3456	0.11	0.3429		1000	0.3164	0.19	0.3364	0.77	0.2824	0.03	0.3308
	1100	0.3332	0.00	0.3129	0.89	0.3630	0.11	0.3185		1100	0.3395	0.18	0.3841	0.78	0.3057	0.03	0.3734
	1200	0.4441	0.00	0.3299	0.88	0.3739	0.12	0.3353		1200	0.4385	0.16	0.4248	0.81	0.3164	0.03	0.4235
	1300	0.5176	0.00	0.3658	0.92	0.3712	0.08	0.3662		1300	0.5164	0.16	0.4566	0.82	0.3129	0.03	0.4632
	1400	0.6364	0.00	0.4514	0.93	0.3602	0.07	0.4453		1400	0.6148	0.19	0.4683	0.78	0.2982	0.02	0.4930
	1500	0.6870	0.00	0.5213	0.97	0.3395	0.03	0.5152		1500	0.6463	0.20	0.4385	0.77	0.2697	0.02	0.4773
	1600	0.7042	0.00	0.5213	0.93	0.3057	0.07	0.5152		1600	0.6168	0.17	0.3426	0.81	0.2207	0.02	0.3871
	1700	0.7042	0.00	0.3213	0.93	0.3037	0.07	0.4281		1700	0.4099	0.17	0.1632	0.81	0.1377	0.02	0.1998
	1700	0.0043	0.00	0.4404	0.73	0.2302	0.07	0.4201		1700	0.4077	0.15	0.1032	0.05	0.1377	0.02	0.1770

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 6

Date	Time	$\mathbf{P}_{VS,BS,C}$	P_C	$\mathrm{P}_{VX,BX,P}$	P_P	$\mathbf{P}_{FX,BS,O}$	P_O	$\mathbf{P}_{FS,BS,R}$	Date	Time	$\mathbf{P}_{FX,BX,C}$	\mathbf{P}_C	$\mathbf{P}_{FS,BS,P}$	P_P	$\mathbf{P}_{FS,BS,O}$	P_O	$P_{FX,BX,R}$
21-Jan-10	0900	0.4128	0.05	0.3931	0.80	0.3522	0.15	0.3880	21-Jul-10	0900	0.4558	0.00	0.5246	0.92	0.4663	0.08	0.5202
	1000	0.4661	0.06	0.5159	0.81	0.4252	0.13	0.5010		1000	0.4683	0.00	0.5424	0.91	0.5139	0.09	0.5399
	1100	0.5067	0.06	0.5882	0.81	0.4670	0.13	0.5673		1100	0.4871	0.00	0.5144	0.91	0.5418	0.09	0.5167
	1200	0.8919	0.08	0.6293	0.80	0.4863	0.13	0.6306		1200	0.9008	0.00	0.5354	0.91	0.5552	0.09	0.5371
	1300	0.6726	0.08	0.6584	0.83	0.4883	0.10	0.6430		1300	0.6907	0.00	0.5638	0.96	0.5552	0.04	0.5634
	1400	0.7875	0.08	0.6751	0.84	0.4700	0.09	0.6659		1400	0.8080	0.00	0.6339	0.97	0.5416	0.03	0.6310
	1500	0.8271	0.09	0.6572	0.83	0.4335	0.09	0.6525		1500	0.8513	0.00	0.7099	0.97	0.5124	0.03	0.7035
	1600	0.8215	0.11	0.5639	0.83	0.3634	0.06	0.5786		1600	0.8655	0.00	0.7134	0.97	0.4645	0.03	0.7054
	1700	0.7100	0.10	0.3348	0.83	0.2495	0.08	0.3647		1700	0.8491	0.00	0.6221	0.95	0.3876	0.05	0.6095
21-Feb-10	0900	0.4244	0.04	0.4387	0.89	0.3864	0.07	0.4345	21-Aug-10	0900	0.4498	0.00	0.5149	0.92	0.4281	0.08	0.5084
	1000	0.4671	0.02	0.5383	0.89	0.4555	0.08	0.5298		1000	0.4687	0.00	0.5436	0.92	0.5097	0.08	0.5411
	1100	0.4993	0.02	0.5877	0.88	0.4949	0.09	0.5769		1100	0.4879	0.00	0.5268	0.90	0.5394	0.10	0.5280
	1200	0.9026	0.04	0.6184	0.87	0.5153	0.09	0.6187		1200	0.8965	0.00	0.5215	0.92	0.5522	0.08	0.5238
	1300	0.6689	0.05	0.6497	0.92	0.5161	0.04	0.6459		1300	0.7046	0.00	0.5596	0.90	0.5507	0.10	0.5588
	1400	0.7971	0.04	0.6863	0.92	0.5022	0.05	0.6815		1400	0.8150	0.00	0.6531	0.90	0.5368	0.10	0.6419
	1500	0.8415	0.02	0.6961	0.92	0.4670	0.06	0.6860		1500	0.8556	0.00	0.7158	0.91	0.5046	0.09	0.6976
	1600	0.8478	0.02	0.6407	0.92	0.4058	0.06	0.6318		1600	0.8667	0.00	0.7037	0.91	0.4520	0.09	0.6820
	1700	0.7912	0.04	0.4589	0.91	0.3055	0.06	0.4616		1700	0.8398	0.00	0.5848	0.90	0.3661	0.10	0.5636
21-Mar-10	0900	0.4403	0.04	0.4885	0.83	0.4286	0.13	0.4787	21-Sep-10	0900	0.4484	0.02	0.5109	0.92	0.4494	0.06	0.5061
	1000	0.4688	0.03	0.5513	0.85	0.4880	0.12	0.5411		1000	0.4738	0.00	0.5557	0.96	0.5000	0.04	0.5532
	1100	0.4932	0.03	0.5661	0.87	0.5215	0.10	0.5595		1100	0.4985	0.01	0.5631	0.96	0.5291	0.03	0.5612
	1200	0.9053	0.03	0.5765	0.86	0.5386	0.11	0.5830		1200	0.8481	0.01	0.5759	0.93	0.5410	0.06	0.5769
	1300	0.6948	0.02	0.6122	0.90	0.5388	0.08	0.6085		1300	0.7351	0.00	0.6237	0.97	0.5376	0.03	0.6209
	1400	0.8109	0.03	0.6786	0.88	0.5226	0.09	0.6694		1400	0.8246	0.00	0.6907	0.97	0.5183	0.03	0.6849
	1500	0.8525	0.03	0.7139	0.87	0.4883	0.10	0.6965		1500	0.8575	0.00	0.7146	0.98	0.4800	0.02	0.7094
	1600	0.8613	0.03	0.6793	0.89	0.4312	0.08	0.6665		1600	0.8588	0.00	0.6605	0.99	0.4151	0.01	0.6578
	1700	0.8211	0.03	0.5266	0.89	0.3355	0.08	0.5217		1700	0.8002	0.00	0.4745	0.99	0.3074	0.01	0.4727
21-Apr-10	0900	0.4506	0.00	0.5192	0.88	0.4636	0.12	0.5124	21-Oct-10	0900	0.4505	0.03	0.4968	0.97	0.4257	0.00	0.4953
	1000	0.4690	0.00	0.5432	0.90	0.5114	0.10	0.5400		1000	0.4831	0.04	0.5666	0.96	0.4796	0.00	0.5630
	1100	0.4903	0.00	0.5262	0.89	0.5397	0.11	0.5277		1100	0.5140	0.01	0.6025	0.99	0.5077	0.00	0.6015
	1200	0.8968	0.00	0.5244	0.90	0.5520	0.10	0.5272		1200	0.5923	0.00	0.6295	1.00	0.5185	0.00	0.6295
	1300	0.7190	0.00	0.5675	0.92	0.5503	0.08	0.5662		1300	0.7507	0.02	0.6677	0.97	0.5122	0.01	0.6678
	1400	0.8198	0.00	0.6625	0.92	0.5331	0.08	0.6524		1400	0.8252	0.02	0.6979	0.97	0.4883	0.01	0.6983
	1500	0.8573	0.00	0.7183	0.89	0.5004	0.11	0.6941		1500	0.8496	0.02	0.6819	0.97	0.4415	0.01	0.6829
	1600	0.8663	0.00	0.6980	0.89	0.4439	0.11	0.6698		1600	0.8330	0.01	0.5755	0.98	0.3634	0.01	0.5760
	1700	0.8340	0.00	0.5654	0.88	0.3559	0.12	0.5398		1700	0.6889	0.03	0.3062	0.96	0.2308	0.01	0.3178
21-May-10	0900	0.8886	0.02	0.5309	0.96	0.4734	0.02	0.5373	21-Nov-10	0900	0.4401	0.12	0.4547	0.84	0.3876	0.03	0.4507
	1000	0.4704	0.01	0.5406	0.97	0.5188	0.02	0.5393		1000	0.4850	0.17	0.5515	0.80	0.4467	0.03	0.5369
	1100	0.4912	0.01	0.5106	0.94	0.5450	0.05	0.5122		1100	0.5366	0.17	0.6089	0.80	0.4794	0.03	0.5926
	1200	0.8685	0.02	0.5690	0.91	0.5563	0.06	0.5746		1200	0.6713	0.14	0.6424	0.82	0.4917	0.03	0.6416
	1300	0.7195	0.01	0.5589	0.94	0.5531	0.05	0.5603		1300	0.7372	0.12	0.6682	0.83	0.4849	0.04	0.6684
	1400	0.8179	0.02	0.6505	0.88	0.5388	0.10	0.6433		1400	0.8108	0.16	0.6753	0.79	0.4584	0.06	0.6843
	1500	0.8550	0.02	0.7153	0.90	0.5066	0.08	0.7026		1500	0.8319	0.16	0.6332	0.79	0.4089	0.06	0.6517
	1600	0.8555	0.02	0.7057	0.89	0.4533	0.09	0.6874		1600	0.7991	0.16	0.4927	0.79	0.3250	0.06	0.5310
	1700	0.8284	0.02	0.5938	0.88	0.4333	0.10	0.5773		1700	0.5389	0.13	0.1994	0.80	0.1777	0.07	0.2432
21-Jun-10	0900	0.4595	0.00	0.5317	0.89	0.4722	0.11	0.5251	21-Dec-10	0900	0.4204	0.14	0.4042	0.85	0.3536	0.01	0.4059
21-Juil-10	1000	0.4393	0.00	0.5419	0.89	0.4722	0.11	0.5392	21-1900-10	1000	0.4204	0.14	0.5212	0.83	0.3330	0.01	0.5092
	1100	0.4708	0.00	0.5126	0.89	0.5436	0.11	0.5392		1100	0.5164	0.19	0.5914	0.77	0.4219	0.03	0.5734
																0.03	
	1200 1300	0.9021 0.7029	0.00	0.5538	0.88	0.5563 0.5544	0.12	0.5541		1200 1300	0.7956	0.16	0.6329	0.81	0.4769	0.03	0.6541
				0.5598				0.5594			0.7048		0.6574		0.4726		0.6610
	1400	0.8106	0.00	0.6390	0.93	0.5410	0.07	0.6324		1400	0.7935	0.19	0.6616	0.78	0.4520	0.02	0.6826
	1500	0.8513	0.00	0.7112	0.97	0.5103	0.03	0.7045		1500	0.8209	0.20	0.6220	0.77	0.4057	0.02	0.6580
	1600	0.8644	0.00	0.7116	0.93	0.4636	0.07	0.6950		1600	0.7945	0.17	0.4917	0.81	0.3262	0.02	0.5402
	1700	0.8471	0.00	0.6178	0.93	0.3862	0.07	0.6024		1700	0.5705	0.15	0.2183	0.83	0.1884	0.02	0.2707

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 6

Date	Time	$\mathbf{P}_{\mathrm{FS},\mathit{UD},\mathit{C}}$	\mathbf{P}_C	$\mathbf{P}_{VS,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,UD,O}$	\mathbf{P}_{O}	$\mathbf{P}_{\mathrm{FS},UD,R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UD,P}$	P_P	$\mathbf{P}_{VX,UD,O}$	P_O	$\mathbf{P}_{VS,UD,R}$
21-Jan-10	0900	0.9887	0.05	0.9887	0.80	0.9887	0.15	0.9887	21-Jul-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1000	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1100	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1100	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1200	0.9887	0.08	0.9887	0.80	0.9887	0.13	0.9887		1200	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1300	0.9887	0.08	0.9887	0.83	0.9887	0.10	0.9887		1300	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1400	0.9887	0.08	0.9887	0.84	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.09	0.9887	0.83	0.9887	0.09	0.9887		1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1600	0.9887	0.11	0.9887	0.83	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1700	0.9887	0.10	0.9887	0.83	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.95	0.9887	0.05	0.9887
21-Feb-10	0900	0.9887	0.04	0.9887	0.89	0.9887	0.07	0.9887	21-Aug-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.02	0.9887	0.89	0.9887	0.08	0.9887		1000	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1100	0.9887	0.02	0.9887	0.88	0.9887	0.09	0.9887		1100	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1200	0.9887	0.04	0.9887	0.87	0.9887	0.09	0.9887		1200	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1300	0.9887	0.05	0.9887	0.92	0.9887	0.04	0.9887		1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1400	0.9887	0.04	0.9887	0.92	0.9887	0.05	0.9887		1400	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1500	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1500	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1600	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1700	0.9887	0.04	0.9887	0.91	0.9887	0.06	0.9887		1700	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
21-Mar-10	0900	0.9887	0.04	0.9887	0.83	0.9887	0.13	0.9887	21-Sep-10	0900	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887
	1000	0.9887	0.03	0.9887	0.85	0.9887	0.12	0.9887		1000	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1100	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1100	0.9887	0.01	0.9887	0.96	0.9887	0.03	0.9887
	1200	0.9887	0.03	0.9887	0.86	0.9887	0.11	0.9887		1200	0.9887	0.01	0.9887	0.93	0.9887	0.06	0.9887
	1300	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1400	0.9887	0.03	0.9887	0.88	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1500	0.9887	0.00	0.9887	0.98	0.9887	0.02	0.9887
	1600	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1600	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
	1700	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
21-Apr-10	0900	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887	21-Oct-10	0900	0.9887	0.03	0.9887	0.97	0.9887	0.00	0.9887
	1000	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1000	0.9887	0.04	0.9887	0.96	0.9887	0.00	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.01	0.9887	0.99	0.9887	0.00	0.9887
	1200	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1200	0.9887	0.00	0.9887	1.00	0.9887	0.00	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1400	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1500	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1500	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1600	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1600	0.9887	0.01	0.9887	0.98	0.9887	0.01	0.9887
	1700	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1700	0.9887	0.03	0.9887	0.96	0.9887	0.01	0.9887
21-May-10	0900	0.9887	0.02	0.9887	0.96	0.9887	0.02	0.9887	21-Nov-10	0900	0.9887	0.12	0.9887	0.84	0.9887	0.03	0.9887
	1000	0.9887	0.01	0.9887	0.97	0.9887	0.02	0.9887		1000	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1100	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1100	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1200	0.9887	0.02	0.9887	0.91	0.9887	0.06	0.9887		1200	0.9887	0.14	0.9887	0.82	0.9887	0.03	0.9887
	1300	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1300	0.9887	0.12	0.9887	0.83	0.9887	0.04	0.9887
	1400	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1400	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1500	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1500	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1600	0.9887	0.02	0.9887	0.89	0.9887	0.09	0.9887		1600	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1700	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1700	0.9887	0.13	0.9887	0.80	0.9887	0.07	0.9887
21-Jun-10	0900	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	21-Dec-10	0900	0.9887	0.14	0.9887	0.85	0.9887	0.01	0.9887
21 3411 10	1000	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	21 Dec 10	1000	0.9887	0.19	0.9887	0.77	0.9887	0.03	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.18	0.9887	0.78	0.9887	0.03	0.9887
	1200	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1200	0.9887	0.16	0.9887	0.78	0.9887	0.03	0.9887
	1300	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1300	0.9887	0.16	0.9887	0.81	0.9887	0.03	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1400	0.9887	0.16	0.9887	0.82	0.9887	0.02	0.9887
	1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1500	0.9887	0.20	0.9887	0.77	0.9887	0.02	0.9887
	1600	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1600	0.9887	0.17	0.9887	0.81	0.9887	0.02	0.9887
	1700	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1700	0.9887	0.15	0.9887	0.83	0.9887	0.02	0.9887

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 6

Date	Time	$\mathbf{P}_{VS,US,C}$	P_C	$\mathbf{P}_{V\mathbf{X},U\mathbf{X},P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,UX,O}$	P_O	$\mathbf{P}_{\mathrm{FS},US,R}$	Date	Time	$P_{\mathrm{FX},UX,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,US,P}$	P_P	$\mathbf{P}_{\mathrm{FS},US,O}$	P_O	$\mathbf{P}_{FS,US,R}$
21-Jan-10	0900	0.8984	0.05	0.9058	0.80	0.9010	0.15	0.9047	21-Jul-10	0900	0.8981	0.00	0.9099	0.92	0.9022	0.08	0.9093
	1000	0.9014	0.06	0.9065	0.81	0.9018	0.13	0.9055		1000	0.9029	0.00	0.9121	0.91	0.9022	0.09	0.9112
	1100	0.9034	0.06	0.9069	0.81	0.9022	0.13	0.9060		1100	0.9057	0.00	0.9148	0.91	0.9019	0.09	0.9137
	1200	0.9378	0.08	0.9053	0.80	0.9014	0.13	0.9072		1200	0.9404	0.00	0.9186	0.91	0.9016	0.09	0.9172
	1300	0.8894	0.08	0.9001	0.83	0.9017	0.10	0.8995		1300	0.8870	0.00	0.9087	0.96	0.9016	0.04	0.9084
	1400	0.8811 0.8805	0.08	0.8953 0.8919	0.84	0.9017 0.9028	0.09	0.8948		1400	0.8798	0.00	0.8965	0.97	0.9019	0.03	0.8967
	1500 1600	0.8822	0.09	0.8919	0.83	0.9028	0.09	0.8919 0.8905		1500 1600	0.8793 0.8800	0.00	0.8916 0.8912	0.97	0.9017 0.9016	0.03	0.8919 0.8915
	1700	0.8854	0.11	0.8938	0.83	0.9021	0.08	0.8937		1700	0.8855	0.00	0.8912	0.95	0.9009	0.05	0.8913
21-Feb-10	0900	0.8982	0.04	0.9068	0.89	0.9026	0.07	0.9062	21-Aug-10	0900	0.8990	0.00	0.9093	0.92	0.8858	0.08	0.9075
	1000	0.9009	0.02	0.9072	0.89	0.9017	0.08	0.9066		1000	0.9027	0.00	0.9115	0.92	0.9014	0.08	0.9108
	1100	0.9034	0.02	0.9076	0.88	0.9024	0.09	0.9070		1100	0.9054	0.00	0.9143	0.90	0.9013	0.10	0.9131
	1200	0.9404	0.04	0.9075	0.87	0.9026	0.09	0.9082		1200	0.9401	0.00	0.9161	0.92	0.9024	0.08	0.9151
	1300	0.8895	0.05	0.9012	0.92	0.9020	0.04	0.9007		1300	0.8867	0.00	0.9052	0.90	0.9019	0.10	0.9049
	1400	0.8808	0.04	0.8952	0.92	0.9022	0.05	0.8950		1400	0.8794	0.00	0.8951	0.90	0.9023	0.10	0.8958
	1500	0.8799	0.02	0.8914	0.92	0.9022	0.06	0.8918		1500	0.8794	0.00	0.8909	0.91	0.9021	0.09	0.8919
	1600	0.8816	0.02	0.8911	0.92	0.9010	0.06	0.8915		1600	0.8805	0.00	0.8905	0.91	0.9022	0.09	0.8915
	1700	0.8862	0.04	0.8908	0.91	0.9024	0.06	0.8913		1700	0.8878	0.00	0.8914	0.90	0.9031	0.10	0.8925
21-Mar-10	0900	0.8979	0.04	0.9081	0.83	0.9017	0.13	0.9068	21-Sep-10	0900	0.8985	0.02	0.9083	0.92	0.9016	0.06	0.9077
	1000	0.9020	0.03	0.9096	0.85	0.9017	0.12	0.9084		1000	0.9011	0.00	0.9095	0.96	0.9019	0.04	0.9092
	1100	0.9041	0.03	0.9111	0.87	0.9014	0.10	0.9099		1100	0.9053	0.01	0.9108	0.96	0.9015	0.03	0.9105
	1200	0.9396	0.03	0.9107	0.86	0.9020	0.11	0.9107		1200	0.9374	0.01	0.9101	0.93	0.9018	0.06	0.9099
	1300	0.8881	0.02	0.9020	0.90	0.9020	0.08	0.9017		1300	0.8843	0.00	0.9005	0.97	0.9016	0.03	0.9006
	1400	0.8802	0.03	0.8948	0.88	0.9019	0.09	0.8950		1400	0.8794	0.00	0.8936	0.97	0.9014	0.03	0.8939
	1500	0.8794	0.03	0.8910	0.87	0.9017	0.10	0.8917		1500	0.8799	0.00	0.8908	0.98	0.9021	0.02	0.8910
	1600	0.8808	0.03	0.8904	0.89	0.9020	0.08	0.8910		1600	0.8822	0.00	0.8902	0.99	0.9022	0.01	0.8904
	1700	0.8878	0.03	0.8916	0.89	0.9023	0.08	0.8923		1700	0.8893	0.00	0.8921	0.99	0.9021	0.01	0.8922
21-Apr-10	0900	0.8989	0.00	0.9085	0.88	0.9015	0.12	0.9076	21-Oct-10	0900	0.9002	0.03	0.9072	0.97	0.9018	0.00	0.9070
	1000	0.9027	0.00	0.9115	0.90	0.9018	0.10	0.9105		1000	0.9010	0.04	0.9079	0.96	0.9022	0.00	0.9076
	1100	0.9043	0.00	0.9143	0.89	0.9013	0.11	0.9129		1100	0.9045	0.01	0.9082	0.99	0.9015	0.00	0.9082
	1200	0.9399	0.00	0.9149	0.90	0.9024	0.10	0.9136		1200	0.9022	0.00	0.9042	1.00	0.9015	0.00	0.9042
	1300	0.8850	0.00	0.9037	0.92	0.9019	0.08	0.9036		1300	0.8830	0.02	0.8978	0.97	0.9017	0.01	0.8975
	1400	0.8795	0.00	0.8948	0.92	0.9018	0.08	0.8954		1400	0.8803	0.02	0.8933	0.97	0.9017	0.01	0.8931
	1500	0.8804	0.00	0.8905	0.89	0.9016	0.11	0.8917		1500	0.8803	0.02	0.8911	0.97	0.9019	0.01	0.8910
	1600	0.8807	0.00	0.8909	0.89	0.9025	0.11	0.8922		1600	0.8833	0.01	0.8919	0.98	0.9021	0.01	0.8919
	1700	0.8884	0.00	0.8909	0.88	0.9022	0.12	0.8923		1700	0.8889	0.03	0.8914	0.96	0.9011	0.01	0.8915
21-May-10	0900	0.9436	0.02	0.9105	0.96	0.9013	0.02	0.9110	21-Nov-10	0900	0.9011	0.12	0.9060	0.84	0.9009	0.03	0.9053
	1000	0.9028	0.01	0.9122	0.97	0.9014	0.02	0.9118		1000	0.9020	0.17	0.9062	0.80	0.9021	0.03	0.9053
	1100	0.9048	0.01	0.9161	0.94	0.9021	0.05	0.9152		1100	0.9093	0.17	0.9068	0.80	0.9021	0.03	0.9070
	1200	0.9391	0.02	0.9185	0.91	0.9020	0.06	0.9179		1200	0.9214	0.14	0.9030	0.82	0.9021	0.03	0.9056
	1300	0.8853	0.01	0.9052	0.94	0.9018	0.05	0.9048		1300	0.8842	0.12	0.8976	0.83	0.9024	0.04	0.8962
	1400	0.8795	0.02	0.8946	0.88	0.9020	0.10	0.8950		1400	0.8808	0.16	0.8935	0.79	0.9024	0.06	0.8920
	1500	0.8831	0.02	0.8912	0.90	0.9024	0.08	0.8918		1500	0.8812	0.16	0.8915	0.79	0.9018	0.06	0.8905
	1600 1700	0.8801 0.8872	0.02	0.8911	0.89	0.9011	0.09	0.8917 0.8923		1600 1700	0.8831 0.8871	0.16	0.8910 0.8925	0.79	0.9010 0.9017	0.06	0.8904 0.8924
									** ** **								
21-Jun-10	0900	0.8995	0.00	0.9106	0.89	0.9024	0.11	0.9097	21-Dec-10	0900	0.8996	0.14	0.9054	0.85	0.9012	0.01	0.9046
	1000	0.9028	0.00	0.9121	0.89	0.9025	0.11	0.9110		1000	0.9025	0.19	0.9057	0.77	0.9013	0.03	0.9049
	1100 1200	0.9059 0.9403	0.00	0.9149	0.89	0.9016 0.9020	0.11	0.9134		1100	0.9046	0.18	0.9060	0.78	0.9025	0.03	0.9056
	1300	0.9403	0.00	0.9192 0.9071	0.88	0.9020	0.12	0.9171 0.9067		1200 1300	0.9317 0.8861	0.16	0.9033	0.81	0.9015 0.9024	0.03	0.9078 0.8962
	1400	0.8868	0.00	0.8958	0.92	0.9023	0.08	0.8962		1400	0.8812	0.16	0.8949	0.82	0.9024	0.02	0.8962
	1500	0.8798	0.00	0.8938	0.93	0.9018	0.07	0.8962		1500	0.8812	0.19	0.8949	0.78	0.9022	0.02	0.8924
	1600	0.8790	0.00	0.8913	0.97	0.9015	0.03	0.8917		1600	0.8822	0.20	0.8917	0.77	0.9010	0.02	0.8897
	1700	0.8856	0.00	0.8913	0.93	0.9015	0.07	0.8920		1700	0.8822	0.17	0.8925	0.81	0.9011	0.02	0.8909
	1/00	0.00.00	0.00	0.0714	0.93	0.9030	0.07	0.0722		1700	0.003/	0.13	0.0920	0.63	0.9010	0.02	0.8917

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 6

Date	Time	$\mathbf{P}_{FS,PG,C}$	P_C	$\mathbf{P}_{VX,PG,P}$	P_P	$\mathbf{P}_{VX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	P_C	$\mathbf{P}_{VX,PG,P}$	P_P	$\mathbf{P}_{VS,PG,O}$	P_O	$\mathbf{P}_{FX,PG,R}$
21-Jan-10	0900	0.9633	0.05	0.9698	0.80	0.9767	0.15	0.9705	21-Jul-10	0900	0.9608	0.00	0.9555	0.92	0.9661	0.08	0.9563
	1000	0.9529	0.06	0.9559	0.81	0.9697	0.13	0.9575		1000	0.9593	0.00	0.9557	0.91	0.9611	0.09	0.9561
	1100	0.9517	0.06	0.9463	0.81	0.9658	0.13	0.9491		1100	0.9587	0.00	0.9637	0.91	0.9573	0.09	0.9631
	1200	0.9741	0.08	0.9407	0.80	0.9638	0.13	0.9462		1200	0.9724	0.00	0.9672	0.91	0.9558	0.09	0.9662
	1300	0.9328	0.08	0.9363	0.83	0.9639	0.10	0.9387		1300	0.9252	0.00	0.9601	0.96	0.9558	0.04	0.9599
	1400	0.9014	0.08	0.9328	0.84	0.9656	0.09	0.9332		1400	0.8933	0.00	0.9449	0.97	0.9576	0.03	0.9453
	1500	0.8836	0.09	0.9372	0.83	0.9695	0.09	0.9354		1500	0.8717	0.00	0.9267	0.97	0.9607	0.03	0.9278
	1600	0.8864	0.11	0.9526	0.83	0.9750	0.06	0.9469		1600	0.8503	0.00	0.9264	0.97	0.9664	0.03	0.9277
	1700	0.9232	0.10	0.9770	0.83	0.9834	0.08	0.9722		1700	0.8642	0.00	0.9444	0.95	0.9737	0.05	0.9460
21-Feb-10	0900	0.9627	0.04	0.9656	0.89	0.9733	0.07	0.9660	21-Aug-10	0900	0.9609	0.00	0.9568	0.92	0.9670	0.08	0.9576
	1000	0.9570	0.02	0.9531	0.89	0.9671	0.08	0.9544		1000	0.9590	0.00	0.9552	0.92	0.9609	0.08	0.9557
	1100	0.9541	0.02	0.9480	0.88	0.9629	0.09	0.9495		1100	0.9581	0.00	0.9614	0.90	0.9577	0.10	0.9610
	1200	0.9738	0.04	0.9450	0.87	0.9608	0.09	0.9475		1200	0.9717	0.00	0.9666	0.92	0.9562	0.08	0.9658
	1300	0.9325	0.05	0.9397	0.92	0.9605	0.04	0.9401		1300	0.9266	0.00	0.9587	0.90	0.9563	0.10	0.9585
	1400	0.8978	0.04	0.9314	0.92	0.9625	0.05	0.9316		1400	0.8900	0.00	0.9405	0.90	0.9577	0.10	0.9421
	1500	0.8765	0.02	0.9291	0.92	0.9658	0.06	0.9300		1500	0.8690	0.00	0.9250	0.91	0.9617	0.09	0.9282
	1600	0.8706	0.02	0.9409	0.92	0.9716	0.06	0.9411		1600	0.8574	0.00	0.9284	0.91	0.9674	0.09	0.9317
	1700	0.8925	0.04	0.9657	0.91	0.9797	0.06	0.9639		1700	0.8667	0.00	0.9504	0.90	0.9750	0.10	0.9528
21-Mar-10	0900	0.9608	0.04	0.9599	0.83	0.9697	0.13	0.9612	21-Sep-10	0900	0.9606	0.02	0.9569	0.92	0.9683	0.06	0.9576
	1000	0.9577	0.03	0.9531	0.85	0.9642	0.12	0.9546		1000	0.9579	0.00	0.9530	0.96	0.9624	0.04	0.9534
	1100	0.9567	0.03	0.9535	0.87	0.9601	0.10	0.9542		1100	0.9566	0.01	0.9554	0.96	0.9588	0.03	0.9555
	1200	0.9745	0.03	0.9549	0.86	0.9583	0.11	0.9559		1200	0.9666	0.01	0.9557	0.93	0.9578	0.06	0.9560
	1300	0.9288	0.02	0.9487	0.90	0.9580	0.08	0.9489		1300	0.9189	0.00	0.9470	0.97	0.9580	0.03	0.9473
	1400	0.8918	0.03	0.9343	0.88	0.9601	0.09	0.9351		1400	0.8851	0.00	0.9313	0.97	0.9606	0.03	0.9323
	1500	0.8704	0.03	0.9255	0.87	0.9639	0.10	0.9275		1500	0.8648	0.00	0.9252	0.98	0.9647	0.02	0.9261
	1600	0.8615	0.03	0.9334	0.89	0.9691	0.08	0.9338		1600	0.8615	0.00	0.9373	0.99	0.9711	0.01	0.9377
	1700	0.8755	0.03	0.9583	0.89	0.9779	0.08	0.9571		1700	0.8846	0.00	0.9648	0.99	0.9790	0.01	0.9650
21-Apr-10	0900	0.9602	0.00	0.9567	0.88	0.9663	0.12	0.9578	21-Oct-10	0900	0.9590	0.03	0.9584	0.97	0.9701	0.00	0.9584
	1000	0.9590	0.00	0.9555	0.90	0.9612	0.10	0.9561		1000	0.9562	0.04	0.9504	0.96	0.9649	0.00	0.9506
	1100	0.9580	0.00	0.9616	0.89	0.9575	0.11	0.9612		1100	0.9532	0.01	0.9468	0.99	0.9614	0.00	0.9468
	1200	0.9721	0.00	0.9658	0.90	0.9562	0.10	0.9648		1200	0.9501	0.00	0.9433	1.00	0.9606	0.00	0.9433
	1300	0.9236	0.00	0.9576	0.92	0.9562	0.08	0.9575		1300	0.9151	0.02	0.9356	0.97	0.9610	0.01	0.9355
	1400	0.8876	0.00	0.9387	0.92	0.9587	0.08	0.9402		1400	0.8856	0.02	0.9284	0.97	0.9639	0.01	0.9278
	1500	0.8683	0.00	0.9249	0.89	0.9621	0.11	0.9291		1500	0.8704	0.02	0.9327	0.97	0.9681	0.01	0.9318
	1600	0.8578	0.00	0.9297	0.89	0.9684	0.11	0.9340		1600	0.8756	0.01	0.9519	0.98	0.9750	0.01	0.9513
	1700	0.8694	0.00	0.9528	0.88	0.9760	0.12	0.9556		1700	0.9232	0.03	0.9784	0.96	0.9850	0.01	0.9767
21-May-10	0900	0.9592	0.02	0.9547	0.96	0.9654	0.02	0.9551	21-Nov-10	0900	0.9595	0.12	0.9620	0.84	0.9737	0.03	0.9621
	1000	0.9590	0.01	0.9564	0.97	0.9603	0.02	0.9565		1000	0.9542	0.17	0.9506	0.80	0.9679	0.03	0.9518
	1100	0.9583	0.01	0.9650	0.94	0.9571	0.05	0.9645		1100	0.9496	0.17	0.9437	0.80	0.9649	0.03	0.9454
	1200	0.9690	0.02	0.9637	0.91	0.9555	0.06	0.9633		1200	0.9510	0.14	0.9389	0.82	0.9634	0.03	0.9415
	1300	0.9238	0.01	0.9596	0.94	0.9557	0.05	0.9590		1300	0.9181	0.12	0.9342	0.83	0.9641	0.04	0.9336
	1400	0.8887	0.02	0.9413	0.88	0.9580	0.10	0.9417		1400	0.8933	0.16	0.9327	0.79	0.9670	0.06	0.9285
	1500	0.8690	0.02	0.9254	0.90	0.9620	0.08	0.9269		1500	0.8813	0.16	0.9419	0.79	0.9714	0.06	0.9341
	1600	0.8582	0.02	0.9280	0.89	0.9677	0.09	0.9299		1600	0.8951	0.16	0.9620	0.79	0.9780	0.06	0.9525
	1700	0.9233	0.02	0.9487	0.88	0.9744	0.10	0.9506		1700	0.9535	0.13	0.9861	0.80	0.9881	0.07	0.9819
21-Jun-10	0900	0.9601	0.00	0.9544	0.89	0.9651	0.11	0.9556	21-Dec-10	0900	0.9618	0.14	0.9691	0.85	0.9760	0.01	0.9682
	1000	0.9587	0.00	0.9562	0.89	0.9602	0.11	0.9567		1000	0.9546	0.19	0.9549	0.77	0.9706	0.03	0.9554
	1100	0.9583	0.00	0.9639	0.89	0.9576	0.11	0.9632		1100	0.9484	0.18	0.9450	0.78	0.9669	0.03	0.9463
	1200	0.9733	0.00	0.9654	0.88	0.9555	0.12	0.9642		1200	0.9641	0.16	0.9398	0.81	0.9651	0.03	0.9446
	1300	0.9273	0.00	0.9601	0.92	0.9560	0.08	0.9598		1300	0.9260	0.16	0.9361	0.82	0.9650	0.02	0.9351
	1400	0.8920	0.00	0.9385	0.93	0.9578	0.07	0.9398		1400	0.8996	0.19	0.9353	0.78	0.9674	0.02	0.9290
	1500	0.8714	0.00	0.9261	0.97	0.9612	0.03	0.9273		1500	0.8871	0.20	0.9437	0.77	0.9716	0.02	0.9327
	1600	0.8593	0.00	0.9269	0.93	0.9663	0.07	0.9295		1600	0.8985	0.17	0.9614	0.81	0.9785	0.02	0.9510
	1700	0.8658	0.00	0.9454	0.93	0.9733	0.07	0.9472		1700	0.9506	0.15	0.9850	0.83	0.9869	0.02	0.9798

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 6

Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{EX,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.0813	0.05	0.0644	0.80	0.0548	0.15	0.0639	21-Jul-10	0900	0.1028	0.00	0.1146	0.92	0.0957	0.08	0.1132
	1000	0.1028	0.06	0.1123	0.81	0.0789	0.13	0.1073		1000	0.1052	0.00	0.1193	0.91	0.1193	0.09	0.1193
	1100	0.1146	0.06	0.1492	0.81	0.0957	0.13	0.1401		1100	0.1099	0.00	0.1004	0.91	0.1355	0.09	0.1034
	1200	0.2535	0.08	0.1867	0.80	0.1052	0.13	0.1812		1200	0.2077	0.00	0.1004	0.91	0.1447	0.09	0.1042
	1300	0.2629	0.08	0.2261	0.83	0.1052	0.10	0.2172		1300	0.2884	0.00	0.1378	0.96	0.1424	0.04	0.1380
	1400	0.4455	0.08	0.2554	0.84	0.0980	0.09	0.2562		1400	0.4906	0.00	0.2160	0.97	0.1355	0.03	0.2134
	1500	0.5262	0.09	0.2439	0.83	0.0813	0.09	0.2542		1500	0.5855	0.00	0.3092	0.97	0.1193	0.03	0.3031
	1600	0.5161	0.11	0.1649	0.83	0.0572	0.06	0.1957		1600	0.6211	0.00	0.3143	0.97	0.0957	0.03	0.3072
	1700	0.3226	0.10	0.0548	0.83	0.0288	0.08	0.0788		1700	0.5863	0.00	0.2139	0.95	0.0669	0.05	0.2060
21-Feb-10	0900	0.0885	0.04	0.0789	0.89	0.0644	0.07	0.0782	21-Aug-10	0900	0.0980	0.00	0.1099	0.92	0.0933	0.08	0.1086
	1000	0.1052	0.02	0.1240	0.89	0.0909	0.08	0.1208		1000	0.1052	0.00	0.1193	0.92	0.1170	0.08	0.1191
	1100	0.1170	0.02	0.1492	0.88	0.1099	0.09	0.1448		1100	0.1099	0.00	0.1075	0.90	0.1332	0.10	0.1100
	1200	0.2057	0.04	0.1737	0.87	0.1193	0.09	0.1697		1200	0.2057	0.00	0.0980	0.92	0.1424	0.08	0.1014
	1300	0.2573	0.05	0.2139	0.92	0.1216	0.04	0.2127		1300	0.3058	0.00	0.1401	0.90	0.1401	0.10	0.1401
	1400	0.4650	0.04	0.2685	0.92	0.1123	0.05	0.2681		1400	0.5036	0.00	0.2360	0.90	0.1309	0.10	0.2259
	1500	0.5600	0.02	0.2884	0.92	0.0957	0.06	0.2835		1500	0.5960	0.00	0.3176	0.91	0.1146	0.09	0.3001
	1600	0.5761	0.02	0.2301	0.92	0.0717	0.06	0.2289		1600	0.6235	0.00	0.3024	0.91	0.0885	0.09	0.2840
	1700	0.4583	0.04	0.1028	0.91	0.0429	0.06	0.1118		1700	0.5655	0.00	0.1824	0.90	0.0596	0.10	0.1705
21-Mar-10	0900	0.0957	0.04	0.0980	0.83	0.0813	0.13	0.0958	21-Sep-10	0900	0.0980	0.02	0.1075	0.92	0.0885	0.06	0.1063
	1000	0.1052	0.03	0.1263	0.85	0.1052	0.12	0.1231		1000	0.1075	0.00	0.1286	0.96	0.1123	0.04	0.1279
	1100	0.1123	0.03	0.1332	0.87	0.1240	0.10	0.1317		1100	0.1170	0.01	0.1309	0.96	0.1286	0.03	0.1307
	1200	0.2341	0.03	0.1378	0.86	0.1332	0.11	0.1404		1200	0.1973	0.01	0.1401	0.93	0.1355	0.06	0.1405
	1300	0.2902	0.02	0.1824	0.90	0.1332	0.08	0.1810		1300	0.3542	0.00	0.1952	0.97	0.1332	0.03	0.1931
	1400	0.4947	0.03	0.2610	0.88	0.1240	0.09	0.2568		1400	0.5243	0.00	0.2776	0.97	0.1216	0.03	0.2724
	1500	0.5877	0.03	0.3143	0.87	0.1075	0.10	0.3031		1500	0.6001	0.00	0.3159	0.98	0.1028	0.02	0.3112
	1600	0.6099	0.03	0.2722	0.89	0.0813	0.08	0.2687		1600	0.6054	0.00	0.2516	0.99	0.0765	0.01	0.2496
	1700	0.5225	0.03	0.1401	0.89	0.0500	0.08	0.1457		1700	0.4802	0.00	0.1099	0.99	0.0429	0.01	0.1092
21-Apr-10	0900	0.1004	0.00	0.1123	0.88	0.0933	0.12	0.1099	21-Oct-10	0900	0.0980	0.03	0.1028	0.97	0.0789	0.00	0.1026
	1000	0.1052	0.00	0.1193	0.90	0.1170	0.10	0.1191		1000	0.1099	0.04	0.1378	0.96	0.1028	0.00	0.1366
	1100	0.1123	0.00	0.1075	0.89	0.1332	0.11	0.1104		1100	0.1240	0.01	0.1582	0.99	0.1170	0.00	0.1578
	1200	0.2139	0.00	0.1028	0.90	0.1424	0.10	0.1068		1200	0.1582	0.00	0.1888	1.00	0.1216	0.00	0.1888
	1300	0.3307	0.00	0.1470	0.92	0.1401	0.08	0.1464		1300	0.3792	0.02	0.2419	0.97	0.1193	0.01	0.2435
	1400	0.5151	0.00	0.2458	0.92	0.1309	0.08	0.2369		1400	0.5253	0.02	0.2866	0.97	0.1052	0.01	0.2898
	1500	0.6007	0.00	0.3226	0.89	0.1123	0.11	0.2992		1500	0.5798	0.02	0.2740	0.97	0.0861	0.01	0.2786
	1600	0.6229	0.00	0.2937	0.89	0.0861	0.11	0.2706		1600	0.5453	0.01	0.1715	0.98	0.0572	0.01	0.1743
	1700	0.5528	0.00	0.1671	0.88	0.0548	0.12	0.1534		1700	0.2989	0.03	0.0476	0.96	0.0265	0.01	0.0555
21-May-10	0900	0.1004	0.02	0.1170	0.96	0.1004	0.02	0.1162	21-Nov-10	0900	0.0933	0.12	0.0861	0.84	0.0669	0.03	0.0863
	1000	0.1052	0.01	0.1170	0.97	0.1216	0.02	0.1169		1000	0.1052	0.17	0.1286	0.80	0.0885	0.03	0.1234
	1100	0.1123	0.01	0.0957	0.94	0.1378	0.05	0.0981		1100	0.1216	0.17	0.1671	0.80	0.1028	0.03	0.1574
	1200	0.1888	0.02	0.1170	0.91	0.1447	0.06	0.1203		1200	0.1693	0.14	0.2015	0.82	0.1075	0.03	0.1937
	1300	0.3323	0.01	0.1401	0.94	0.1424	0.05	0.1423		1300	0.3557	0.12	0.2419	0.83	0.1052	0.04	0.2497
	1400	0.5104	0.02	0.2321	0.88	0.1332	0.10	0.2285		1400	0.4896	0.16	0.2592	0.79	0.0933	0.06	0.2858
	1500	0.5960	0.02	0.3176	0.90	0.1146	0.08	0.3083		1500	0.5376	0.16	0.2200	0.79	0.0741	0.06	0.2613
	1600	0.6217	0.02	0.3041	0.89	0.0909	0.09	0.2926		1600	0.4705	0.16	0.1193	0.79	0.0476	0.06	0.1700
	1700	0.5693	0.02	0.1888	0.88	0.0596	0.10	0.1845		1700	0.1560	0.13	0.0242	0.80	0.0174	0.07	0.0413
21-Jun-10	0900	0.1052	0.00	0.1170	0.89	0.0980	0.11	0.1149	21-Dec-10	0900	0.0837	0.14	0.0669	0.85	0.0548	0.01	0.0691
	1000	0.1052	0.00	0.1193	0.89	0.1216	0.11	0.1196		1000	0.1004	0.19	0.1146	0.77	0.0789	0.03	0.1107
	1100	0.1123	0.00	0.0980	0.89	0.1355	0.11	0.1022		1100	0.1170	0.18	0.1537	0.78	0.0933	0.03	0.1451
	1200	0.2139	0.00	0.1099	0.88	0.1447	0.12	0.1141		1200	0.2077	0.16	0.1931	0.81	0.1004	0.03	0.1925
	1300	0.3058	0.00	0.1378	0.92	0.1424	0.08	0.1382		1300	0.3041	0.16	0.2281	0.82	0.0980	0.02	0.2376
	1400	0.4947	0.00	0.2221	0.93	0.1332	0.07	0.2161		1400	0.4571	0.19	0.2419	0.78	0.0885	0.02	0.2803
	1500	0.5863	0.00	0.3109	0.97	0.1170	0.03	0.3044		1500	0.5123	0.20	0.2077	0.77	0.0717	0.02	0.2670
	1600	0.6181	0.00	0.3109	0.93	0.0933	0.07	0.2964		1600	0.4605	0.17	0.1193	0.81	0.0476	0.02	0.1765
	1700	0.5812	0.00	0.2098	0.93	0.0644	0.07	0.2001		1700	0.1780	0.15	0.0265	0.83	0.0193	0.02	0.0491

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 6

Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,BS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{ES,BS,O}$	P_O	$\mathbf{P}_{ES,BS,R}$
21-Jan-10	0900	0.3786	0.05	0.3583	0.80	0.3168	0.15	0.3532	21-Jul-10	0900	0.4232	0.00	0.4958	0.92	0.4342	0.08	0.4911
	1000	0.4339	0.06	0.4866	0.81	0.3914	0.13	0.4709		1000	0.4363	0.00	0.5147	0.91	0.4844	0.09	0.5121
	1100	0.4768	0.06	0.5639	0.81	0.4349	0.13	0.5416		1100	0.4560	0.00	0.4849	0.91	0.5141	0.09	0.4874
	1200	0.8928	0.08	0.6084	0.80	0.4552	0.13	0.6100		1200	0.9022	0.00	0.5073	0.91	0.5284	0.09	0.5091
	1300	0.6555	0.08	0.6400	0.83	0.4573	0.10	0.6235		1300	0.6752	0.00	0.5376	0.96	0.5284	0.04	0.5373
	1400	0.7806	0.08	0.6582	0.84	0.4380	0.09	0.6485		1400	0.8030	0.00	0.6134	0.97	0.5139	0.03	0.6102
	1500	0.8236	0.09	0.6386	0.83	0.3999	0.09	0.6340		1500	0.8496	0.00	0.6961	0.97	0.4829	0.03	0.6892
	1600	0.8175	0.11	0.5377	0.83	0.3281	0.06	0.5543		1600	0.8647	0.00	0.6999	0.97	0.4323	0.03	0.6913
	1700	0.6963	0.10	0.2994	0.83	0.2157	0.08	0.3315		1700	0.8473	0.00	0.6006	0.95	0.3527	0.05	0.5873
21-Feb-10	0900	0.3906	0.04	0.4054	0.89	0.3515	0.07	0.4011	21-Aug-10	0900	0.4170	0.00	0.4855	0.92	0.3943	0.08	0.4786
	1000	0.4350	0.02	0.5104	0.89	0.4229	0.08	0.5014		1000	0.4367	0.00	0.5161	0.92	0.4799	0.08	0.5134
	1100	0.4689	0.02	0.5635	0.88	0.4643	0.09	0.5519		1100	0.4569	0.00	0.4981	0.90	0.5116	0.10	0.4994
	1200	0.9040	0.04	0.5965	0.87	0.4859	0.09	0.5970		1200	0.8976	0.00	0.4925	0.92	0.5252	0.08	0.4950
	1300	0.6515	0.05	0.6305	0.92	0.4868	0.04	0.6264		1300	0.6903	0.00	0.5332	0.90	0.5237	0.10	0.5323
	1400	0.7911	0.04	0.6704	0.92	0.4720	0.05	0.6653		1400	0.8105	0.00	0.6343	0.90	0.5088	0.10	0.6221
	1500	0.8390	0.02	0.6810	0.92	0.4349	0.06	0.6703		1500	0.8542	0.00	0.7026	0.91	0.4745	0.09	0.6829
	1600	0.8459	0.02	0.6208	0.92	0.3713	0.06	0.6114		1600	0.8660	0.00	0.6893	0.91	0.4193	0.09	0.6661
	1700	0.7847	0.04	0.4264	0.91	0.2702	0.06	0.4299		1700	0.8373	0.00	0.5602	0.90	0.3308	0.10	0.5380
21-Mar-10	0900	0.4070	0.04	0.4576	0.83	0.3949	0.13	0.4473	21-Sep-10	0900	0.4155	0.02	0.4812	0.92	0.4165	0.06	0.4762
	1000	0.4368	0.03	0.5243	0.85	0.4570	0.12	0.5135		1000	0.4421	0.00	0.5290	0.96	0.4697	0.04	0.5263
	1100	0.4624	0.03	0.5402	0.87	0.4925	0.10	0.5331		1100	0.4681	0.01	0.5369	0.96	0.5006	0.03	0.5349
	1200	0.9069	0.03	0.5513	0.86	0.5107	0.11	0.5584		1200	0.8462	0.01	0.5507	0.93	0.5133	0.06	0.5519
	1300	0.6797	0.02	0.5899	0.90	0.5110	0.08	0.5859		1300	0.7236	0.00	0.6024	0.97	0.5097	0.03	0.5993
	1400	0.8060	0.03	0.6620	0.88	0.4936	0.09	0.6521		1400	0.8209	0.00	0.6751	0.97	0.4891	0.03	0.6689
	1500	0.8509	0.03	0.7005	0.87	0.4573	0.10	0.6818		1500	0.8563	0.00	0.7012	0.98	0.4485	0.02	0.6956
	1600	0.8603	0.03	0.6627	0.89	0.3976	0.08	0.6492		1600	0.8576	0.00	0.6423	0.99	0.3810	0.01	0.6394
	1700	0.8171	0.03	0.4979	0.89	0.3000	0.08	0.4933		1700	0.7944	0.00	0.4428	0.99	0.2721	0.01	0.4409
21-Apr-10	0900	0.4178	0.00	0.4901	0.88	0.4313	0.12	0.4829	21-Oct-10	0900	0.4176	0.03	0.4663	0.97	0.3919	0.00	0.4648
	1000	0.4370	0.00	0.5156	0.90	0.4818	0.10	0.5122		1000	0.4519	0.04	0.5407	0.96	0.4482	0.00	0.5369
	1100	0.4594	0.00	0.4975	0.89	0.5118	0.11	0.4991		1100	0.4845	0.01	0.5794	0.99	0.4778	0.00	0.5783
	1200	0.8980	0.00	0.4956	0.90	0.5251	0.10	0.4985		1200	0.5684	0.00	0.6086	1.00	0.4893	0.00	0.6086
	1300	0.7061	0.00	0.5417	0.92	0.5232	0.08	0.5402		1300	0.7406	0.02	0.6501	0.97	0.4826	0.01	0.6503
	1400	0.8157	0.00	0.6445	0.92	0.5049	0.08	0.6336		1400	0.8215	0.02	0.6830	0.97	0.4573	0.01	0.6835
	1500	0.8560	0.00	0.7053	0.89	0.4701	0.11	0.6792		1500	0.8477	0.02	0.6656	0.97	0.4083	0.01	0.6667
	1600	0.8657	0.00	0.6832	0.89	0.4108	0.11	0.6529		1600	0.8300	0.01	0.5502	0.98	0.3281	0.01	0.5509
	1700	0.8310	0.00	0.5395	0.88	0.3205	0.12	0.5127		1700	0.6732	0.03	0.2709	0.96	0.1979	0.01	0.2831
21-May-10	0900	0.8893	0.02	0.5025	0.96	0.4417	0.02	0.5095	21-Nov-10	0900	0.4068	0.12	0.4221	0.84	0.3527	0.03	0.4179
	1000	0.4385	0.01	0.5128	0.97	0.4896	0.02	0.5115		1000	0.4539	0.17	0.5245	0.80	0.4137	0.03	0.5090
	1100	0.4603	0.01	0.4809	0.94	0.5176	0.05	0.4826		1100	0.5086	0.17	0.5863	0.80	0.4480	0.03	0.5688
	1200	0.8679	0.02	0.5433	0.91	0.5297	0.06	0.5494		1200	0.6541	0.14	0.6226	0.82	0.4610	0.03	0.6218
	1300	0.7066	0.01	0.5324	0.94	0.5262	0.05	0.5339		1300	0.7259	0.12	0.6506	0.83	0.4537	0.04	0.6511
	1400	0.8136	0.02	0.6314	0.88	0.5110	0.10	0.6237		1400	0.8060	0.16	0.6584	0.79	0.4259	0.06	0.6684
	1500	0.8535	0.02	0.7020	0.90	0.4767	0.08	0.6883		1500	0.8287	0.16	0.6127	0.79	0.3746	0.06	0.6331
	1600	0.8648	0.02	0.6915	0.89	0.4206	0.09	0.6720		1600	0.7933	0.16	0.4619	0.79	0.2895	0.06	0.5039
	1700	0.8249	0.02	0.5700	0.88	0.3366	0.10	0.5529		1700	0.5110	0.13	0.1683	0.80	0.1483	0.07	0.2127
21-Jun-10	0900	0.4271	0.00	0.5033	0.89	0.4404	0.11	0.4963	21-Dec-10	0900	0.3864	0.14	0.3697	0.85	0.3182	0.01	0.3715
	1000	0.4389	0.00	0.5142	0.89	0.4883	0.11	0.5113	2 10	1000	0.4437	0.19	0.4922	0.77	0.3879	0.03	0.4795
	1100	0.4583	0.00	0.4830	0.89	0.5160	0.11	0.4867		1100	0.4871	0.18	0.5674	0.78	0.4266	0.03	0.5482
	1200	0.9035	0.00	0.5270	0.88	0.5297	0.11	0.5273		1200	0.7895	0.16	0.6123	0.78	0.4453	0.03	0.6355
	1300	0.6885	0.00	0.5335	0.92	0.5276	0.12	0.5273		1300	0.6905	0.16	0.6389	0.81	0.4433	0.03	0.6430
	1400	0.8057	0.00	0.5333	0.92	0.5133	0.08	0.5550		1400	0.7872	0.10	0.6435	0.82	0.4193	0.02	0.6665
	1500		0.00	0.6189	0.93	0.5133	0.07	0.6118		1500	0.7872	0.19	0.6005	0.78	0.4193	0.02	0.6398
		0.8496															
	1600	0.8637	0.00	0.6979	0.93	0.4313	0.07	0.6802		1600	0.7883	0.17	0.4609	0.81	0.2908	0.02	0.5136
	1700	0.8451	0.00	0.5959	0.93	0.3512	0.07	0.5796		1700	0.5449	0.15	0.1861	0.83	0.1581	0.02	0.2395

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 6

Date	Time	$\mathbf{P}_{ES,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{EX,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.9579	0.05	0.9579	0.80	0.9579	0.15	0.9579	21-Jul-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1000	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1100	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1100	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1200	0.9579	0.08	0.9579	0.80	0.9579	0.13	0.9579		1200	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1300	0.9579	0.08	0.9579	0.83	0.9579	0.10	0.9579		1300	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1400	0.9579	0.08	0.9579	0.84	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.09	0.9579	0.83	0.9579	0.09	0.9579		1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1600	0.9579	0.11	0.9579	0.83	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1700	0.9579	0.10	0.9579	0.83	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.95	0.9579	0.05	0.9579
21-Feb-10	0900	0.9579	0.04	0.9579	0.89	0.9579	0.07	0.9579	21-Aug-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.02	0.9579	0.89	0.9579	0.08	0.9579		1000	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1100	0.9579	0.02	0.9579	0.88	0.9579	0.09	0.9579		1100	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1200	0.9579	0.04	0.9579	0.87	0.9579	0.09	0.9579		1200	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1300	0.9579	0.05	0.9579	0.92	0.9579	0.04	0.9579		1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1400	0.9579	0.04	0.9579	0.92	0.9579	0.05	0.9579		1400	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1500	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1500	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1600	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1700	0.9579	0.04	0.9579	0.91	0.9579	0.06	0.9579		1700	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
21-Mar-10	0900	0.9579	0.04	0.9579	0.83	0.9579	0.13	0.9579	21-Sep-10	0900	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579
	1000	0.9579	0.03	0.9579	0.85	0.9579	0.12	0.9579		1000	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1100	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1100	0.9579	0.01	0.9579	0.96	0.9579	0.03	0.9579
	1200	0.9579	0.03	0.9579	0.86	0.9579	0.11	0.9579		1200	0.9579	0.01	0.9579	0.93	0.9579	0.06	0.9579
	1300	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1300	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1400	0.9579	0.03	0.9579	0.88	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1500	0.9579	0.00	0.9579	0.98	0.9579	0.02	0.9579
	1600	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1600	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
	1700	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
21-Apr-10	0900	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579	21-Oct-10	0900	0.9579	0.03	0.9579	0.97	0.9579	0.00	0.9579
	1000	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1000	0.9579	0.04	0.9579	0.96	0.9579	0.00	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.01	0.9579	0.99	0.9579	0.00	0.9579
	1200	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1200	0.9579	0.00	0.9579	1.00	0.9579	0.00	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1400	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1400	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1500	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1500	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1600	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1600	0.9579	0.01	0.9579	0.98	0.9579	0.01	0.9579
	1700	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1700	0.9579	0.03	0.9579	0.96	0.9579	0.01	0.9579
21-May-10	0900	0.9579	0.02	0.9579	0.96	0.9579	0.02	0.9579	21-Nov-10	0900	0.9579	0.12	0.9579	0.84	0.9579	0.03	0.9579
	1000	0.9579	0.01	0.9579	0.97	0.9579	0.02	0.9579		1000	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1100	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1100	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1200	0.9579	0.02	0.9579	0.91	0.9579	0.06	0.9579		1200	0.9579	0.14	0.9579	0.82	0.9579	0.03	0.9579
	1300	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1300	0.9579	0.12	0.9579	0.83	0.9579	0.04	0.9579
	1400	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1400	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1500	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1500	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1600	0.9579	0.02	0.9579	0.89	0.9579	0.09	0.9579		1600	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1700	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1700	0.9579	0.13	0.9579	0.80	0.9579	0.07	0.9579
21-Jun-10	0900	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579	21-Dec-10	0900	0.9579	0.14	0.9579	0.85	0.9579	0.01	0.9579
	1000	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1000	0.9579	0.19	0.9579	0.77	0.9579	0.03	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.18	0.9579	0.78	0.9579	0.03	0.9579
	1200	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1200	0.9579	0.16	0.9579	0.81	0.9579	0.03	0.9579
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.16	0.9579	0.82	0.9579	0.02	0.9579
	1400	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1400	0.9579	0.19	0.9579	0.78	0.9579	0.02	0.9579
	1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1500	0.9579	0.20	0.9579	0.77	0.9579	0.02	0.9579
	1600	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1600	0.9579	0.17	0.9579	0.81	0.9579	0.02	0.9579
	1700	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9579	0.15	0.9579	0.83	0.9579	0.02	0.9579

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 6

Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{E\mathbf{X},U\mathbf{X},O}$	P_O	$\mathbf{P}_{ES,US,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{E\mathbf{X},U\mathbf{X},P}$	P_P	$\mathbf{P}_{E\mathbf{X},U\mathbf{X},O}$	P_O	$\mathbf{P}_{EX,UX,R}$
21-Jan-10	0900	0.9289	0.05	0.9363	0.80	0.9316	0.15	0.9352	21-Jul-10	0900	0.9286	0.00	0.9403	0.92	0.9327	0.08	0.9397
	1000	0.9319	0.06	0.9370	0.81	0.9324	0.13	0.9361		1000	0.9335	0.00	0.9425	0.91	0.9327	0.09	0.9416
	1100	0.9339	0.06	0.9374	0.81	0.9327	0.13	0.9365		1100	0.9362	0.00	0.9450	0.91	0.9325	0.09	0.9440
	1200	0.9653	0.08	0.9358	0.80	0.9319	0.13	0.9375		1200	0.9674	0.00	0.9486	0.91	0.9322	0.09	0.9472
	1300	0.9195	0.08	0.9306	0.83	0.9322	0.10	0.9299		1300	0.9169	0.00	0.9392	0.96	0.9322	0.04	0.9389
	1400	0.9104	0.08	0.9257	0.84	0.9323	0.09	0.9251		1400	0.9090	0.00	0.9269	0.97	0.9325	0.03	0.9271
	1500	0.9098	0.09	0.9222	0.83	0.9333	0.09	0.9221		1500	0.9085	0.00	0.9218	0.97	0.9322	0.03	0.9221
	1600	0.9116	0.11	0.9208	0.83	0.9326	0.06	0.9206		1600	0.9093	0.00	0.9213	0.97	0.9321	0.03	0.9217
	1700	0.9152	0.10	0.9241	0.83	0.9339	0.08	0.9240		1700	0.9152	0.00	0.9218	0.95	0.9315	0.05	0.9223
21-Feb-10	0900	0.9287	0.04	0.9373	0.89	0.9331	0.07	0.9367	21-Aug-10	0900	0.9294	0.00	0.9397	0.92	0.9156	0.08	0.9379
	1000	0.9314	0.02	0.9377	0.89	0.9323	0.08	0.9371		1000	0.9332	0.00	0.9419	0.92	0.9319	0.08	0.9412
	1100	0.9339	0.02	0.9381	0.88	0.9329	0.09	0.9375		1100	0.9359	0.00	0.9446	0.90	0.9318	0.10	0.9433
	1200	0.9674	0.04	0.9380	0.87	0.9332	0.09	0.9386		1200	0.9671	0.00	0.9463	0.92	0.9330	0.08	0.9453
	1300	0.9195	0.05	0.9317	0.92	0.9326	0.04	0.9312		1300	0.9166	0.00	0.9357	0.90	0.9324	0.10	0.9354
	1400	0.9102	0.04	0.9256	0.92	0.9328	0.05	0.9254		1400	0.9086	0.00	0.9254	0.90	0.9328	0.10	0.9262
	1500	0.9091	0.02	0.9216	0.92	0.9327	0.06	0.9219		1500	0.9085	0.00	0.9211	0.91	0.9326	0.09	0.9221
	1600	0.9110	0.02	0.9213	0.92	0.9316	0.06	0.9216		1600	0.9098	0.00	0.9206	0.91	0.9327	0.09	0.9216
	1700	0.9161	0.04	0.9210	0.91	0.9329	0.06	0.9215		1700	0.9177	0.00	0.9216	0.90	0.9336	0.10	0.9227
21-Mar-10	0900	0.9284	0.04	0.9386	0.83	0.9322	0.13	0.9373	21-Sep-10	0900	0.9289	0.02	0.9387	0.92	0.9321	0.06	0.9382
	1000	0.9325	0.03	0.9400	0.85	0.9322	0.12	0.9388		1000	0.9316	0.00	0.9400	0.96	0.9324	0.04	0.9396
	1100	0.9346	0.03	0.9415	0.87	0.9319	0.10	0.9404		1100	0.9359	0.01	0.9413	0.96	0.9321	0.03	0.9409
	1200	0.9668	0.03	0.9411	0.86	0.9325	0.11	0.9410		1200	0.9650	0.01	0.9405	0.93	0.9323	0.06	0.9403
	1300	0.9180	0.02	0.9325	0.90	0.9325	0.08	0.9322		1300	0.9139	0.00	0.9310	0.97	0.9321	0.03	0.9311
	1400	0.9094	0.03	0.9252	0.88	0.9324	0.09	0.9253		1400	0.9086	0.00	0.9239	0.97	0.9319	0.03	0.9242
	1500	0.9086	0.03	0.9212	0.87	0.9322	0.10	0.9218		1500	0.9092	0.00	0.9209	0.98	0.9327	0.02	0.9212
	1600	0.9101	0.03	0.9205	0.89	0.9326	0.08	0.9211		1600	0.9117	0.00	0.9203	0.99	0.9327	0.01	0.9205
	1700	0.9177	0.03	0.9218	0.89	0.9328	0.08	0.9225		1700	0.9193	0.00	0.9223	0.99	0.9327	0.01	0.9224
21-Apr-10	0900	0.9294	0.00	0.9390	0.88	0.9320	0.12	0.9381	21-Oct-10	0900	0.9307	0.03	0.9377	0.97	0.9324	0.00	0.9375
	1000	0.9332	0.00	0.9419	0.90	0.9323	0.10	0.9409		1000	0.9315	0.04	0.9384	0.96	0.9327	0.00	0.9381
	1100	0.9348	0.00	0.9446	0.89	0.9318	0.11	0.9432		1100	0.9351	0.01	0.9387	0.99	0.9320	0.00	0.9387
	1200	0.9670	0.00	0.9451	0.90	0.9329	0.10	0.9439		1200	0.9327	0.00	0.9348	1.00	0.9320	0.00	0.9348
	1300	0.9147	0.00	0.9342	0.92	0.9324	0.08	0.9341		1300	0.9126	0.02	0.9282	0.97	0.9322	0.01	0.9279
	1400	0.9087	0.00	0.9252	0.92	0.9323	0.08	0.9257		1400	0.9096	0.02	0.9236	0.97	0.9322	0.01	0.9233
	1500	0.9097	0.00	0.9206	0.89	0.9322	0.11	0.9219		1500	0.9096	0.02	0.9213	0.97	0.9324	0.01	0.9212
	1600	0.9100	0.00	0.9210	0.89	0.9330	0.11	0.9224		1600	0.9129	0.01	0.9221	0.98	0.9326	0.01	0.9221
	1700	0.9184	0.00	0.9210	0.88	0.9327	0.12	0.9224		1700	0.9189	0.03	0.9216	0.96	0.9316	0.01	0.9216
21-May-10	0900	0.9699	0.02	0.9409	0.96	0.9318	0.02	0.9414	21-Nov-10	0900	0.9316	0.12	0.9366	0.84	0.9315	0.03	0.9358
	1000	0.9333	0.01	0.9425	0.97	0.9320	0.02	0.9422		1000	0.9325	0.17	0.9367	0.80	0.9326	0.03	0.9358
	1100	0.9353	0.01	0.9463	0.94	0.9326	0.05	0.9454		1100	0.9397	0.17	0.9373	0.80	0.9326	0.03	0.9375
	1200	0.9663	0.02	0.9485	0.91	0.9326	0.06	0.9478		1200	0.9512	0.14	0.9335	0.82	0.9326	0.03	0.9360
	1300	0.9150	0.01	0.9357	0.94	0.9324	0.05	0.9353		1300	0.9139	0.12	0.9280	0.83	0.9329	0.04	0.9265
	1400	0.9087	0.02	0.9250	0.88	0.9325	0.10	0.9253		1400	0.9101	0.16	0.9238	0.79	0.9329	0.06	0.9222
	1500	0.9127	0.02	0.9213	0.90	0.9329	0.08	0.9220		1500	0.9105	0.16	0.9217	0.79	0.9323	0.06	0.9205
	1600	0.9094	0.02	0.9212	0.89	0.9316	0.09	0.9219		1600	0.9126	0.16	0.9212	0.79	0.9315	0.06	0.9204
	1700	0.9171	0.02	0.9217	0.88	0.9312	0.10	0.9225		1700	0.9169	0.13	0.9228	0.80	0.9322	0.07	0.9226
21-Jun-10	0900	0.9300	0.00	0.9411	0.89	0.9329	0.11	0.9402	21-Dec-10	0900	0.9301	0.14	0.9359	0.85	0.9317	0.01	0.9351
	1000	0.9334	0.00	0.9425	0.89	0.9330	0.11	0.9414		1000	0.9330	0.19	0.9362	0.77	0.9319	0.03	0.9355
	1100	0.9364	0.00	0.9451	0.89	0.9322	0.11	0.9437		1100	0.9352	0.18	0.9365	0.78	0.9331	0.03	0.9361
	1200	0.9673	0.00	0.9491	0.88	0.9326	0.12	0.9471		1200	0.9603	0.16	0.9338	0.81	0.9320	0.03	0.9380
	1300	0.9166	0.00	0.9376	0.92	0.9328	0.08	0.9373		1300	0.9159	0.16	0.9285	0.82	0.9329	0.02	0.9265
	1400	0.9090	0.00	0.9262	0.93	0.9323	0.07	0.9266		1400	0.9106	0.19	0.9253	0.78	0.9327	0.02	0.9226
	1500	0.9081	0.00	0.9215	0.97	0.9318	0.03	0.9218		1500	0.9102	0.20	0.9218	0.77	0.9316	0.02	0.9197
	1600	0.9093	0.00	0.9214	0.93	0.9321	0.07	0.9222		1600	0.9117	0.17	0.9227	0.81	0.9316	0.02	0.9210
	1700	0.9153	0.00	0.9214	0.93	0.9321	0.07	0.9224		1700	0.9154	0.17	0.9228	0.83	0.9315	0.02	0.9219
	1700	0.7103	0.00	0.7210	0.75	0.7555	0.07	0.7224		1,00	0.7154	0.10	0.7223	0.00	0.7513	0.02	0.7217

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 6

Date	Time	$\mathbf{P}_{ES,PG,C}$	\mathbf{P}_C	$\mathrm{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$P_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$
21-Jan-10	0900	0.9863	0.05	0.9895	0.80	0.9926	0.15	0.9898	21-Jul-10	0900	0.9850	0.00	0.9822	0.92	0.9877	0.08	0.9826
	1000	0.9808	0.06	0.9825	0.81	0.9894	0.13	0.9833		1000	0.9843	0.00	0.9823	0.91	0.9852	0.09	0.9826
	1100	0.9802	0.06	0.9771	0.81	0.9876	0.13	0.9786		1100	0.9840	0.00	0.9865	0.91	0.9832	0.09	0.9862
	1200	0.9915	0.08	0.9738	0.80	0.9866	0.13	0.9768		1200	0.9907	0.00	0.9882	0.91	0.9824	0.09	0.9877
	1300	0.9689	0.08	0.9710	0.83	0.9866	0.10	0.9724		1300	0.9639	0.00	0.9847	0.96	0.9824	0.04	0.9846
	1400	0.9472	0.08	0.9689	0.84	0.9875	0.09	0.9688		1400	0.9412	0.00	0.9762	0.97	0.9834	0.03	0.9765
	1500	0.9335	0.09	0.9716	0.83	0.9894	0.09	0.9699		1500	0.9239	0.00	0.9649	0.97	0.9850	0.03	0.9656
	1600	0.9357	0.11	0.9806	0.83	0.9919	0.06	0.9765		1600	0.9055	0.00	0.9648	0.97	0.9879	0.03	0.9655
	1700	0.9626	0.10	0.9927	0.83	0.9953	0.08	0.9900		1700	0.9176	0.00	0.9760	0.95	0.9913	0.05	0.9768
21-Feb-10	0900	0.9860	0.04	0.9875	0.89	0.9911	0.07	0.9877	21-Aug-10	0900	0.9851	0.00	0.9830	0.92	0.9881	0.08	0.9833
	1000	0.9831	0.02	0.9809	0.89	0.9882	0.08	0.9816		1000	0.9841	0.00	0.9821	0.92	0.9851	0.08	0.9823
	1100	0.9815	0.02	0.9781	0.88	0.9861	0.09	0.9789		1100	0.9836	0.00	0.9853	0.90	0.9835	0.10	0.9852
	1200	0.9913	0.04	0.9763	0.87	0.9850	0.09	0.9777		1200	0.9904	0.00	0.9880	0.92	0.9826	0.08	0.9876
	1300	0.9687	0.05	0.9732	0.92	0.9849	0.04	0.9734		1300	0.9649	0.00	0.9839	0.90	0.9827	0.10	0.9838
	1400	0.9445	0.04	0.9680	0.92	0.9859	0.05	0.9680		1400	0.9386	0.00	0.9736	0.90	0.9834	0.10	0.9746
	1500	0.9278	0.02	0.9665	0.92	0.9876	0.06	0.9668		1500	0.9216	0.00	0.9638	0.91	0.9855	0.09	0.9657
	1600	0.9230	0.02	0.9739	0.92	0.9903	0.06	0.9737		1600	0.9117	0.00	0.9660	0.91	0.9883	0.09	0.9680
	1700	0.9405	0.04	0.9875	0.91	0.9938	0.06	0.9862		1700	0.9197	0.00	0.9794	0.90	0.9918	0.10	0.9806
21-Mar-10	0900	0.9850	0.04	0.9846	0.83	0.9894	0.13	0.9852	21-Sep-10	0900	0.9849	0.02	0.9830	0.92	0.9888	0.06	0.9834
	1000	0.9834	0.03	0.9809	0.85	0.9868	0.12	0.9817		1000	0.9836	0.00	0.9809	0.96	0.9859	0.04	0.9811
	1100	0.9829	0.03	0.9811	0.87	0.9847	0.10	0.9815		1100	0.9828	0.01	0.9822	0.96	0.9840	0.03	0.9823
	1200	0.9916	0.03	0.9819	0.86	0.9837	0.11	0.9824		1200	0.9880	0.01	0.9824	0.93	0.9835	0.06	0.9825
	1300	0.9663	0.02	0.9785	0.90	0.9836	0.08	0.9786		1300	0.9597	0.00	0.9775	0.97	0.9836	0.03	0.9777
	1400	0.9400	0.03	0.9698	0.88	0.9847	0.09	0.9701		1400	0.9348	0.00	0.9679	0.97	0.9849	0.03	0.9685
	1500	0.9228	0.03	0.9642	0.87	0.9866	0.10	0.9650		1500	0.9181	0.00	0.9640	0.98	0.9870	0.02	0.9645
	1600	0.9153	0.03	0.9693	0.89	0.9892	0.08	0.9690		1600	0.9153	0.00	0.9717	0.99	0.9901	0.01	0.9719
	1700	0.9270	0.03	0.9838	0.89	0.9931	0.08	0.9826		1700	0.9343	0.00	0.9871	0.99	0.9935	0.01	0.9871
21-Apr-10	0900	0.9848	0.00	0.9829	0.88	0.9878	0.12	0.9835	21-Oct-10	0900	0.9841	0.03	0.9838	0.97	0.9896	0.00	0.9838
	1000	0.9841	0.00	0.9823	0.90	0.9853	0.10	0.9826		1000	0.9826	0.04	0.9794	0.96	0.9871	0.00	0.9796
	1100	0.9836	0.00	0.9855	0.89	0.9833	0.11	0.9852		1100	0.9810	0.01	0.9774	0.99	0.9854	0.00	0.9774
	1200	0.9905	0.00	0.9876	0.90	0.9826	0.10	0.9871		1200	0.9793	0.00	0.9753	1.00	0.9849	0.00	0.9753
	1300	0.9629	0.00	0.9834	0.92	0.9826	0.08	0.9833		1300	0.9571	0.02	0.9707	0.97	0.9851	0.01	0.9705
	1400	0.9367	0.00	0.9725	0.92	0.9840	0.08	0.9734		1400	0.9351	0.02	0.9660	0.97	0.9866	0.01	0.9656
	1500	0.9211	0.00	0.9638	0.89	0.9857	0.11	0.9662		1500	0.9228	0.02	0.9688	0.97	0.9887	0.01	0.9680
	1600	0.9121	0.00	0.9669	0.89	0.9888	0.11	0.9693		1600	0.9271	0.01	0.9803	0.98	0.9919	0.01	0.9798
	1700	0.9220	0.00	0.9808	0.88	0.9923	0.12	0.9822		1700	0.9626	0.03	0.9933	0.96	0.9959	0.01	0.9923
21-May-10	0900	0.9842	0.02	0.9818	0.96	0.9874	0.02	0.9820	21-Nov-10	0900	0.9844	0.12	0.9857	0.84	0.9913	0.03	0.9857
	1000	0.9841	0.01	0.9827	0.97	0.9848	0.02	0.9828		1000	0.9815	0.17	0.9796	0.80	0.9886	0.03	0.9802
	1100	0.9838	0.01	0.9872	0.94	0.9831	0.05	0.9869		1100	0.9790	0.17	0.9756	0.80	0.9871	0.03	0.9765
	1200	0.9891	0.02	0.9865	0.91	0.9823	0.06	0.9863		1200	0.9798	0.14	0.9727	0.82	0.9864	0.03	0.9742
	1300	0.9630	0.01	0.9844	0.94	0.9824	0.05	0.9841		1300	0.9591	0.12	0.9698	0.83	0.9867	0.04	0.9692
	1400	0.9375	0.02	0.9741	0.88	0.9836	0.10	0.9742		1400	0.9411	0.16	0.9688	0.79	0.9881	0.06	0.9656
	1500	0.9216	0.02	0.9641	0.90	0.9857	0.08	0.9648		1500	0.9317	0.16	0.9745	0.79	0.9902	0.06	0.9687
	1600	0.9124	0.02	0.9658	0.89	0.9885	0.09	0.9666		1600	0.9425	0.16	0.9857	0.79	0.9931	0.06	0.9794
	1700	0.9627	0.02	0.9785	0.88	0.9916	0.10	0.9794		1700	0.9812	0.13	0.9963	0.80	0.9970	0.07	0.9943
21-Jun-10	0900	0.9847	0.00	0.9817	0.89	0.9872	0.11	0.9823	21-Dec-10	0900	0.9856	0.14	0.9892	0.85	0.9923	0.01	0.9887
	1000	0.9839	0.00	0.9826	0.89	0.9847	0.11	0.9829		1000	0.9818	0.19	0.9819	0.77	0.9898	0.03	0.9822
	1100	0.9838	0.00	0.9866	0.89	0.9834	0.11	0.9862		1100	0.9783	0.18	0.9763	0.78	0.9881	0.03	0.9771
	1200	0.9911	0.00	0.9874	0.88	0.9823	0.12	0.9867		1200	0.9867	0.16	0.9732	0.81	0.9872	0.03	0.9759
	1300	0.9653	0.00	0.9847	0.92	0.9825	0.08	0.9845		1300	0.9645	0.16	0.9710	0.82	0.9872	0.02	0.9703
	1400	0.9402	0.00	0.9724	0.93	0.9835	0.07	0.9732		1400	0.9459	0.19	0.9704	0.78	0.9883	0.02	0.9661
	1500	0.9236	0.00	0.9646	0.97	0.9853	0.03	0.9652		1500	0.9363	0.20	0.9756	0.77	0.9903	0.02	0.9679
	1600	0.9134	0.00	0.9651	0.93	0.9878	0.07	0.9666		1600	0.9451	0.17	0.9854	0.81	0.9933	0.02	0.9786
	1700	0.9189	0.00	0.9766	0.93	0.9911	0.07	0.9775		1700	0.9796	0.15	0.9959	0.83	0.9966	0.02	0.9934

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 7

Date	Time	$\mathbf{P}_{FS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,BD,P}$	P_P	$\mathbf{P}_{VS,BD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},BD,O}$	P_O	$\mathbf{P}_{FX,BD,R}$
21-Jan-10	0900	0.3020	0.05	0.2697	0.80	0.2261	0.15	0.2649	21-Jul-10	0900	0.4778	0.00	0.4441	0.92	0.3020	0.08	0.4334
	1000	0.3164	0.06	0.3332	0.81	0.2740	0.13	0.3245		1000	0.4206	0.00	0.4366	0.91	0.3332	0.09	0.4277
	1100	0.3164	0.06	0.3456	0.81	0.3020	0.13	0.3381		1100	0.3685	0.00	0.3739	0.91	0.3545	0.09	0.3722
	1200	0.3093	0.08	0.3364	0.80	0.3164	0.13	0.3317		1200	0.3841	0.00	0.3266	0.91	0.3630	0.09	0.3298
	1300	0.3093	0.08	0.3332	0.83	0.3164	0.10	0.3298		1300	0.3841	0.00	0.3233	0.96	0.3630	0.04	0.3250
	1400	0.3129	0.08	0.3332	0.84	0.3057	0.09	0.3293		1400	0.3602	0.00	0.3685	0.97	0.3545	0.03	0.3681
	1500	0.3129	0.09	0.3266	0.83	0.2783	0.09	0.3213		1500	0.4164	0.00	0.4288	0.97	0.3332	0.03	0.4257
	1600	0.2865	0.11	0.2740	0.83	0.2366	0.06	0.2730		1600	0.4715	0.00	0.4347	0.97	0.2982	0.03	0.4303
	1700	0.2315	0.10	0.1705	0.83	0.1705	0.08	0.1764		1700	0.4883	0.00	0.3685	0.95	0.2515	0.05	0.3622
21-Feb-10	0900	0.3299	0.04	0.3233	0.89	0.2515	0.07	0.3184	21-Aug-10	0900	0.3791	0.00	0.4248	0.92	0.2944	0.08	0.4149
	1000	0.3332	0.02	0.3658	0.89	0.2944	0.08	0.3592		1000	0.4600	0.00	0.4206	0.92	0.3299	0.08	0.4138
	1100	0.3233	0.02	0.3630	0.88	0.3199	0.09	0.3580		1100	0.4667	0.00	0.3574	0.90	0.3516	0.10	0.3568
	1200	0.3164	0.04	0.3395	0.87	0.3332	0.09	0.3381		1200	0.4327	0.00	0.3020	0.92	0.3602	0.08	0.3064
	1300	0.3129	0.05	0.3332	0.92	0.3364	0.04	0.3323		1300	0.4496	0.00	0.3020	0.90	0.3602	0.10	0.3076
	1400	0.3199	0.04	0.3516	0.92	0.3266	0.05	0.3493		1400	0.4699	0.00	0.3574	0.90	0.3486	0.10	0.3566
	1500	0.3233	0.02	0.3574	0.92	0.3020	0.06	0.3533		1500	0.4385	0.00	0.4121	0.91	0.3266	0.09	0.4048
	1600	0.3129	0.02	0.3266	0.92	0.2608	0.06	0.3224		1600	0.3816	0.00	0.4099	0.91	0.2905	0.09	0.3997
	1700	0.2740	0.04	0.2315	0.91	0.2033	0.06	0.2313		1700	0.3866	0.00	0.3299	0.90	0.2366	0.10	0.3209
21-Mar-10	0900	0.4954	0.04	0.3816	0.83	0.2783	0.13	0.3732	21-Sep-10	0900	0.3939	0.02	0.3963	0.92	0.2905	0.06	0.3904
	1000	0.3456	0.03	0.3963	0.85	0.3164	0.12	0.3852		1000	0.3456	0.00	0.3939	0.96	0.3233	0.04	0.3908
	1100	0.3332	0.03	0.3658	0.87	0.3395	0.10	0.3622		1100	0.3299	0.01	0.3516	0.96	0.3426	0.03	0.3511
	1200	0.3199	0.03	0.3199	0.86	0.3516	0.11	0.3233		1200	0.3199	0.01	0.3093	0.93	0.3516	0.06	0.3118
	1300	0.3199	0.02	0.3164	0.90	0.3516	0.08	0.3191		1300	0.3233	0.00	0.3233	0.97	0.3486	0.03	0.3241
	1400	0.3299	0.03	0.3545	0.88	0.3395	0.09	0.3524		1400	0.3332	0.00	0.3630	0.97	0.3364	0.03	0.3621
	1500	0.3299	0.03	0.3841	0.87	0.3164	0.10	0.3758		1500	0.3332	0.00	0.3915	0.98	0.3093	0.02	0.3897
	1600	0.4583	0.03	0.3685	0.89	0.2783	0.08	0.3646		1600	0.5127	0.00	0.3574	0.99	0.2697	0.01	0.3564
	1700	0.4496	0.03	0.2783	0.89	0.2207	0.08	0.2795		1700	0.4009	0.00	0.2466	0.99	0.2033	0.01	0.2462
21-Apr-10	0900	0.4009	0.00	0.4248	0.88	0.2982	0.12	0.4093	21-Oct-10	0900	0.3364	0.03	0.3545	0.97	0.2740	0.00	0.3539
	1000	0.4496	0.00	0.4164	0.90	0.3299	0.10	0.4078		1000	0.3299	0.04	0.3739	0.96	0.3093	0.00	0.3720
	1100	0.4227	0.00	0.3516	0.89	0.3516	0.11	0.3516		1100	0.3199	0.01	0.3516	0.99	0.3299	0.00	0.3513
	1200	0.3395	0.00	0.2982	0.90	0.3602	0.10	0.3044		1200	0.3129	0.00	0.3299	1.00	0.3364	0.00	0.3299
	1300	0.3395	0.00	0.3020	0.92	0.3602	0.08	0.3065		1300	0.3164	0.02	0.3395	0.97	0.3332	0.01	0.3389
	1400	0.4731	0.00	0.3630	0.92	0.3486	0.08	0.3619		1400	0.3233	0.02	0.3602	0.97	0.3164	0.01	0.3590
	1500	0.4496	0.00	0.4143	0.89	0.3233	0.11	0.4042		1500	0.3164	0.02	0.3516	0.97	0.2865	0.01	0.3501
	1600	0.3712	0.00	0.4032	0.89	0.2865	0.11	0.3903		1600	0.3020	0.01	0.2905	0.98	0.2366	0.01	0.2900
	1700	0.3765	0.00	0.3164	0.88	0.2315	0.12	0.3060		1700	0.3364	0.03	0.1632	0.96	0.1556	0.01	0.1687
21-May-10	0900	0.4617	0.02	0.4478	0.96	0.3057	0.02	0.4450	21-Nov-10	0900	0.3129	0.12	0.3057	0.84	0.2515	0.03	0.3048
	1000	0.4055	0.01	0.4288	0.97	0.3364	0.02	0.4266		1000	0.3199	0.17	0.3456	0.80	0.2865	0.03	0.3394
	1100	0.3841	0.01	0.3602	0.94	0.3545	0.05	0.3602		1100	0.3129	0.17	0.3395	0.80	0.3093	0.03	0.3341
	1200	0.3816	0.02	0.3426	0.91	0.3630	0.06	0.3448		1200	0.3093	0.14	0.3364	0.82	0.3164	0.03	0.3318
	1300	0.3841	0.01	0.3164	0.94	0.3630	0.05	0.3197		1300	0.3093	0.12	0.3364	0.83	0.3129	0.04	0.3320
	1400	0.3712	0.02	0.3791	0.88	0.3516	0.10	0.3762		1400	0.3129	0.16	0.3395	0.79	0.2982	0.06	0.3331
	1500	0.4164	0.02	0.4327	0.90	0.3266	0.08	0.4244		1500	0.2982	0.16	0.3129	0.79	0.2653	0.06	0.3080
	1600	0.4699	0.02	0.4288	0.89	0.2944	0.09	0.4181		1600	0.2740	0.16	0.2417	0.79	0.2150	0.06	0.2453
	1700	0.4808	0.02	0.3486	0.88	0.2417	0.10	0.3411		1700	0.1908	0.13	0.1089	0.80	0.1260	0.07	0.1210
21-Jun-10	0900	0.5062	0.00	0.4531	0.89	0.3057	0.11	0.4368	21-Dec-10	0900	0.2982	0.14	0.2697	0.85	0.2315	0.01	0.2733
	1000	0.4667	0.00	0.4404	0.89	0.3364	0.11	0.4289		1000	0.3129	0.19	0.3233	0.77	0.2740	0.03	0.3197
	1100	0.4227	0.00	0.3739	0.89	0.3545	0.11	0.3717		1100	0.3093	0.18	0.3332	0.78	0.2982	0.03	0.3277
	1200	0.3891	0.00	0.3486	0.88	0.3630	0.12	0.3504		1200	0.3093	0.16	0.3299	0.81	0.3093	0.03	0.3259
	1300	0.3915	0.00	0.3332	0.92	0.3630	0.08	0.3355		1300	0.3093	0.16	0.3299	0.82	0.3057	0.02	0.3261
	1400	0.4227	0.00	0.3816	0.93	0.3516	0.07	0.3796		1400	0.3093	0.19	0.3299	0.78	0.2905	0.02	0.3251
	1500	0.4667	0.00	0.4385	0.97	0.3299	0.03	0.4349		1500	0.3057	0.20	0.3057	0.77	0.2608	0.02	0.3047
	1600	0.5075	0.00	0.4404	0.93	0.2982	0.07	0.4309		1600	0.2697	0.17	0.2366	0.81	0.2150	0.02	0.2419
	1700	0.5139	0.00	0.3712	0.93	0.2515	0.07	0.3632		1700	0.1972	0.17	0.1159	0.83	0.1330	0.02	0.1285
	1700	0.5159	0.00	0.57.12	0.75	0.2313	0.07	0.5052		1,00	0.1772	0.10	0.1107	0.00	0.1550	0.02	0.1200

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 7

Date	Time	$\mathbf{P}_{VS,BS,C}$	P_C	$\mathbf{P}_{VX,BX,P}$	P_P	$\mathbf{P}_{FS,BS,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BS,R}$	Date	Time	$\mathbf{P}_{\mathrm{FX},BX,C}$	P_C	$\mathbf{P}_{FX,BS,P}$	P_P	$\mathbf{P}_{FS,BS,O}$	P_O	$\mathrm{P}_{\mathrm{FS},\mathrm{BS},R}$
21-Jan-10	0900	0.4209	0.05	0.3942	0.80	0.3226	0.15	0.3848	21-Jul-10	0900	0.6426	0.00	0.6170	0.92	0.4344	0.08	0.6033
	1000	0.4406	0.06	0.4908	0.81	0.3932	0.13	0.4750		1000	0.5810	0.00	0.6160	0.91	0.4810	0.09	0.6044
	1100	0.4364	0.06	0.5159	0.81	0.4353	0.13	0.5004		1100	0.5164	0.00	0.5499	0.91	0.5091	0.09	0.5464
	1200	0.4329	0.08	0.5132	0.80	0.4539	0.13	0.4995		1200	0.5556	0.00	0.5164	0.91	0.5226	0.09	0.5170
	1300	0.4323	0.08	0.5129	0.83	0.4546	0.10	0.5012		1300	0.5565	0.00	0.5148	0.96	0.5226	0.04	0.5151
	1400	0.4372	0.08	0.5145	0.84	0.4383	0.09	0.5021		1400	0.5069	0.00	0.5517	0.97	0.5087	0.03	0.5503
	1500	0.4422	0.09	0.4964	0.83	0.4000	0.09	0.4835		1500	0.5827	0.00	0.6167	0.97	0.4794	0.03	0.6123
	1600	0.4242	0.11	0.4124	0.83	0.3341	0.06	0.4087		1600	0.6391	0.00	0.6155	0.97	0.4319	0.03	0.6096
	1700	0.3470	0.10	0.2282	0.83	0.2255	0.08	0.2395		1700	0.6513	0.00	0.5231	0.95	0.3577	0.05	0.5142
21-Feb-10	0900	0.4656	0.04	0.4665	0.89	0.3573	0.07	0.4587	21-Aug-10	0900	0.5703	0.00	0.5973	0.92	0.4267	0.08	0.5844
	1000	0.4676	0.02	0.5408	0.89	0.4239	0.08	0.5295		1000	0.8547	0.00	0.6030	0.92	0.4760	0.08	0.5934
	1100	0.4551	0.02	0.5418	0.88	0.4633	0.09	0.5324		1100	0.9164	0.00	0.5439	0.90	0.5064	0.10	0.5402
	1200	0.4447	0.04	0.5214	0.87	0.4813	0.09	0.5149		1200	0.9127	0.00	0.4844	0.92	0.5193	0.08	0.4870
	1300	0.4440	0.05	0.5162	0.92	0.4845	0.04	0.5116		1300	0.9267	0.00	0.4863	0.90	0.5190	0.10	0.4895
	1400	0.4520	0.04	0.5373	0.92	0.4690	0.05	0.5310		1400	0.9140	0.00	0.5531	0.90	0.5032	0.10	0.5482
	1500	0.4643	0.02	0.5452	0.92	0.4353	0.06	0.5369		1500	0.8267	0.00	0.6054	0.91	0.4729	0.09	0.5940
	1600	0.4674	0.02	0.4918	0.92	0.3757	0.06	0.4844		1600	0.5699	0.00	0.5904	0.91	0.4199	0.09	0.5757
	1700	0.4242	0.04	0.3335	0.91	0.2785	0.06	0.3334		1700	0.5444	0.00	0.4732	0.90	0.3348	0.10	0.4598
21-Mar-10	0900	0.9060	0.04	0.5452	0.83	0.3969	0.13	0.5416	21-Sep-10	0900	0.8934	0.02	0.5662	0.92	0.4154	0.06	0.5651
	1000	0.5458	0.03	0.5824	0.85	0.4543	0.12	0.5661		1000	0.4870	0.00	0.5811	0.96	0.4664	0.04	0.5760
	1100	0.4716	0.03	0.5479	0.87	0.4892	0.10	0.5397		1100	0.4700	0.01	0.5353	0.96	0.4962	0.03	0.5333
	1200	0.4568	0.03	0.5009	0.86	0.5049	0.11	0.4999		1200	0.4579	0.01	0.4928	0.93	0.5084	0.06	0.4933
	1300	0.4582	0.02	0.4995	0.90	0.5050	0.08	0.4990		1300	0.4620	0.00	0.5060	0.97	0.5035	0.03	0.5060
	1400	0.4714	0.03	0.5459	0.88	0.4896	0.09	0.5386		1400	0.4772	0.00	0.5584	0.97	0.4852	0.03	0.5559
	1500	0.4909	0.03	0.5805	0.87	0.4560	0.10	0.5656		1500	0.4988	0.00	0.5838	0.98	0.4483	0.02	0.5808
	1600	0.9059	0.03	0.5469	0.89	0.3973	0.08	0.5472		1600	0.8907	0.00	0.5297	0.99	0.3832	0.01	0.5281
	1700	0.7080	0.03	0.4014	0.89	0.3073	0.08	0.4042		1700	0.6323	0.00	0.3554	0.99	0.2804	0.01	0.3545
21-Apr-10	0900	0.7186	0.00	0.5991	0.88	0.4296	0.12	0.5784	21-Oct-10	0900	0.4738	0.03	0.5177	0.97	0.3936	0.00	0.5163
21.7401.10	1000	0.8680	0.00	0.5996	0.90	0.4783	0.10	0.5874	21 001 10	1000	0.4607	0.04	0.5482	0.96	0.4480	0.00	0.5445
	1100	0.8724	0.00	0.5375	0.89	0.5067	0.11	0.5341		1100	0.4490	0.01	0.5314	0.99	0.4757	0.00	0.5305
	1200	0.4811	0.00	0.4804	0.90	0.5193	0.10	0.4843		1200	0.4436	0.00	0.5151	1.00	0.4757	0.00	0.5151
	1300	0.4836	0.00	0.4878	0.92	0.5193	0.08	0.4901		1300	0.4474	0.02	0.5249	0.97	0.4791	0.00	0.5228
	1400	0.9137	0.00	0.5588	0.92	0.5009	0.08	0.5543		1400	0.4584	0.02	0.5457	0.97	0.4546	0.01	0.5429
	1500	0.9137	0.00	0.6053	0.92	0.4668	0.08	0.5899		1500	0.4707	0.02	0.5322	0.97	0.4346	0.01	0.5295
	1600	0.5542	0.00	0.5821	0.89	0.4008	0.11	0.5633		1600	0.4570	0.02	0.5322	0.97	0.4098	0.01	0.5295
	1700	0.5342	0.00	0.3821	0.88	0.3250	0.11	0.3033		1700	0.7006	0.01	0.4329	0.96	0.3347	0.01	0.4321

21-May-10	0900	0.6254	0.02	0.6217	0.96	0.4411	0.02	0.6179	21-Nov-10	0900	0.4367	0.12	0.4465	0.84	0.3577	0.03	0.4424
	1000	0.5557	0.01	0.6082	0.97	0.4868	0.02	0.6050		1000	0.4425	0.17	0.5075	0.80	0.4129	0.03	0.4935
	1100	0.5448	0.01	0.5366	0.94	0.5114	0.05	0.5353		1100	0.4347	0.17	0.5165	0.80	0.4465	0.03	0.5005
	1200	0.5551	0.02	0.5446	0.91	0.5228	0.06	0.5434		1200	0.4319	0.14	0.5127	0.82	0.4573	0.03	0.4991
	1300	0.5576	0.01	0.5028	0.94	0.5210	0.05	0.5044		1300	0.4336	0.12	0.5155	0.83	0.4513	0.04	0.5026
	1400	0.5246	0.02	0.5643	0.88	0.5050	0.10	0.5577		1400	0.4390	0.16	0.5128	0.79	0.4267	0.06	0.4965
	1500	0.5828	0.02	0.6208	0.90	0.4737	0.08	0.6089		1500	0.4372	0.16	0.4732	0.79	0.3773	0.06	0.4623
	1600	0.6380	0.02	0.6067	0.89	0.4215	0.09	0.5914		1600	0.4058	0.16	0.3520	0.79	0.2969	0.06	0.3573
	1700	0.6420	0.02	0.4953	0.88	0.3396	0.10	0.4834		1700	0.2737	0.13	0.1371	0.80	0.1604	0.07	0.1569
21-Jun-10	0900	0.6704	0.00	0.6264	0.89	0.4402	0.11	0.6057	21-Dec-10	0900	0.4115	0.14	0.3902	0.85	0.3240	0.01	0.3924
	1000	0.6276	0.00	0.6177	0.89	0.4849	0.11	0.6030		1000	0.4320	0.19	0.4766	0.77	0.3898	0.03	0.4652
	1100	0.5741	0.00	0.5483	0.89	0.5112	0.11	0.5442		1100	0.4305	0.18	0.5018	0.78	0.4272	0.03	0.4863
	1200	0.5379	0.00	0.5374	0.88	0.5228	0.12	0.5356		1200	0.4280	0.16	0.5059	0.81	0.4433	0.03	0.4913
	1300	0.5412	0.00	0.5138	0.92	0.5212	0.08	0.5144		1300	0.4280	0.16	0.5052	0.82	0.4406	0.02	0.4914
	1400	0.5848	0.00	0.5625	0.93	0.5081	0.07	0.5589		1400	0.4324	0.19	0.4983	0.78	0.4199	0.02	0.4838
	1500	0.6377	0.00	0.6236	0.97	0.4780	0.03	0.6187		1500	0.4293	0.20	0.4599	0.77	0.3752	0.02	0.4518
	1600	0.6742	0.00	0.6196	0.93	0.4296	0.07	0.6069		1600	0.3950	0.17	0.3473	0.81	0.2977	0.02	0.3544
	1700	0.5947	0.00	0.5252	0.93	0.3546	0.07	0.5138		1700	0.2782	0.15	0.1484	0.83	0.1709	0.02	0.1684

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 7

Date	Time	$P_{VS,UD,C}$	P_C	$\mathbf{P}_{VS,UD,P}$	P_P	$\mathbf{P}_{VX,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},\mathit{UD},R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	P_C	$\mathbf{P}_{FX,UD,P}$	P_P	$\mathbf{P}_{VS,UD,O}$	P_O	$\mathbf{P}_{VX,UD,R}$
21-Jan-10	0900	0.9887	0.05	0.9887	0.80	0.9887	0.15	0.9887	21-Jul-10	0900	0.9878	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1000	0.9874	0.00	0.9875	0.91	0.9887	0.09	0.9876
	1100	0.9860	0.06	0.9865	0.81	0.9887	0.13	0.9868		1100	0.9887	0.00	0.9869	0.91	0.9867	0.09	0.9869
	1200	0.9887	0.08	0.9887	0.80	0.9860	0.13	0.9884		1200	0.9870	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1300	0.9887	0.08	0.9887	0.83	0.9887	0.10	0.9887		1300	0.9870	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1400	0.9887	0.08	0.9887	0.84	0.9858	0.09	0.9885		1400	0.9887	0.00	0.9887	0.97	0.9867	0.03	0.9887
	1500	0.9887	0.09	0.9887	0.83	0.9887	0.09	0.9887		1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1600	0.9887	0.11	0.9887	0.83	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1700	0.9887	0.10	0.9887	0.83	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.95	0.9887	0.05	0.9887
21-Feb-10	0900	0.9863	0.04	0.9862	0.89	0.9887	0.07	0.9864	21-Aug-10	0900	0.9887	0.00	0.9874	0.92	0.9887	0.08	0.9875
	1000	0.9863	0.02	0.9887	0.89	0.9887	0.08	0.9887		1000	0.9887	0.00	0.9874	0.92	0.9887	0.08	0.9875
	1100	0.9887	0.02	0.9887	0.88	0.9887	0.09	0.9887		1100	0.9887	0.00	0.9867	0.90	0.9887	0.10	0.9869
	1200	0.9887	0.04	0.9864	0.87	0.9887	0.09	0.9867		1200	0.9887	0.00	0.9857	0.92	0.9887	0.08	0.9860
	1300	0.9887	0.05	0.9863	0.92	0.9887	0.04	0.9865		1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1400	0.9861	0.04	0.9887	0.92	0.9862	0.05	0.9885		1400	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1500	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1500	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1600	0.9860	0.02	0.9887	0.92	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1700	0.9887	0.04	0.9887	0.91	0.9887	0.06	0.9887		1700	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
21-Mar-10	0900	0.9190	0.04	0.9870	0.83	0.9887	0.13	0.9843	21-Sep-10	0900	0.9871	0.02	0.9872	0.92	0.9887	0.06	0.9872
	1000	0.9887	0.03	0.9887	0.85	0.9887	0.12	0.9887		1000	0.9865	0.00	0.9871	0.96	0.9887	0.04	0.9872
	1100	0.9863	0.03	0.9868	0.87	0.9887	0.10	0.9870		1100	0.9887	0.01	0.9887	0.96	0.9887	0.03	0.9887
	1200	0.9887	0.03	0.9887	0.86	0.9866	0.11	0.9885		1200	0.9887	0.01	0.9887	0.93	0.9887	0.06	0.9887
	1300	0.9887	0.02	0.9887	0.90	0.9866	0.08	0.9886		1300	0.9887	0.00	0.9862	0.97	0.9887	0.03	0.9863
	1400	0.9863	0.03	0.9887	0.88	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1500	0.9887	0.00	0.9887	0.98	0.9887	0.02	0.9887
	1600	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1600	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
	1700	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.99	0.9887	0.01	0.9887
21-Apr-10	0900	0.9872	0.00	0.9874	0.88	0.9887	0.12	0.9876	21-Oct-10	0900	0.9864	0.03	0.9867	0.97	0.9887	0.00	0.9867
	1000	0.9887	0.00	0.9873	0.90	0.9887	0.10	0.9875		1000	0.9863	0.04	0.9869	0.96	0.9887	0.00	0.9869
	1100	0.9887	0.00	0.9866	0.89	0.9887	0.11	0.9869		1100	0.9887	0.01	0.9866	0.99	0.9887	0.00	0.9866
	1200	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1200	0.9887	0.00	0.9887	1.00	0.9887	0.00	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.02	0.9864	0.97	0.9887	0.01	0.9865
	1400	0.9887	0.00	0.9887	0.92	0.9866	0.08	0.9886		1400	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1500	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1500	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1600	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1600	0.9887	0.01	0.9887	0.98	0.9887	0.01	0.9887
	1700	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1700	0.9887	0.03	0.9887	0.96	0.9887	0.01	0.9887
21-May-10	0900	0.9877	0.02	0.9876	0.96	0.9887	0.02	0.9876	21-Nov-10	0900	0.9860	0.12	0.9858	0.84	0.9887	0.03	0.9859
	1000	0.9872	0.01	0.9874	0.97	0.9887	0.02	0.9875		1000	0.9861	0.17	0.9865	0.80	0.9887	0.03	0.9865
	1100	0.9870	0.01	0.9887	0.94	0.9887	0.05	0.9887		1100	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1200	0.9887	0.02	0.9865	0.91	0.9887	0.06	0.9867		1200	0.9887	0.14	0.9864	0.82	0.9887	0.03	0.9868
	1300	0.9887	0.01	0.9887	0.94	0.9868	0.05	0.9886		1300	0.9887	0.12	0.9864	0.83	0.9887	0.04	0.9868
	1400	0.9869	0.02	0.9887	0.88	0.9866	0.10	0.9885		1400	0.9887	0.16	0.9887	0.79	0.9856	0.06	0.9886
	1500	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1500	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1600	0.9887	0.02	0.9887	0.89	0.9887	0.09	0.9887		1600	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1700	0.9878	0.02	0.9887	0.88	0.9887	0.10	0.9887		1700	0.9887	0.13	0.9884	0.80	0.9884	0.07	0.9885
21-Jun-10	0900	0.9887	0.00	0.9876	0.89	0.9887	0.11	0.9878	21-Dec-10	0900	0.9856	0.14	0.9849	0.85	0.9887	0.01	0.9850
	1000	0.9887	0.00	0.9875	0.89	0.9887	0.11	0.9877		1000	0.9860	0.19	0.9887	0.77	0.9887	0.03	0.9882
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.18	0.9863	0.78	0.9887	0.03	0.9869
	1200	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1200	0.9887	0.16	0.9887	0.81	0.9859	0.03	0.9887
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9859	0.16	0.9887	0.82	0.9887	0.02	0.9883
	1400	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1400	0.9887	0.19	0.9863	0.78	0.9887	0.02	0.9868
	1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1500	0.9858	0.20	0.9887	0.77	0.9887	0.02	0.9881
	1600	0.9879	0.00	0.9887	0.93	0.9887	0.07	0.9887		1600	0.9887	0.17	0.9887	0.81	0.9887	0.02	0.9887
		0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1700	0.9809	0.15	0.9885	0.83	0.9883	0.02	0.9873

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 7

Date	Time	$\mathbf{P}_{VS,US,C}$	P_C	$\mathbf{P}_{VS,US,P}$	\mathbf{P}_{p}	$\mathbf{P}_{VX,UX,O}$	\mathbf{P}_{O}	$\mathbf{P}_{FS,US,R}$	Date	Time	$\mathbf{P}_{VX,US,C}$	P_C	$\mathbf{P}_{VX,UX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VS,US,O}$	\mathbf{P}_{O}	$\mathbf{P}_{VS,US,R}$
21-Jan-10	0900	0.9222	0.05	0.9225	0.80	0.9224	0.15	0.9224	21-Jul-10	0900	0.9166	0.00	0.9207	0.92	0.9213	0.08	0.9207
	1000	0.9216	0.06	0.9248	0.81	0.9209	0.13	0.9241		1000	0.9186	0.00	0.9223	0.91	0.9212	0.09	0.9222
	1100	0.9210	0.06	0.9257	0.81	0.9210	0.13	0.9248		1100	0.9214	0.00	0.9254	0.91	0.9212	0.09	0.9251
	1200	0.9212	0.08	0.9258	0.80	0.9216	0.13	0.9249		1200	0.9196	0.00	0.9292	0.91	0.9216	0.09	0.9286
	1300	0.9224	0.08	0.9258	0.83	0.9216	0.10	0.9252		1300	0.9198	0.00	0.9291	0.96	0.9216	0.04	0.9288
	1400	0.9213	0.08	0.9255	0.84	0.9214	0.09	0.9248		1400	0.9224	0.00	0.9253	0.97	0.9219	0.03	0.9252
	1500	0.9206	0.09	0.9232	0.83	0.9214	0.09	0.9229		1500	0.9186	0.00	0.9216	0.97	0.9209	0.03	0.9216
	1600	0.9207	0.11	0.9229	0.83	0.9216	0.06	0.9226		1600	0.9159	0.00	0.9197	0.97	0.9220	0.03	0.9198
	1700	0.9210	0.10	0.9209	0.83	0.9218	0.08	0.9210		1700	0.9133	0.00	0.9192	0.95	0.9220	0.05	0.9193
21-Feb-10	0900	0.9229	0.04	0.9230	0.89	0.9220	0.07	0.9229	21-Aug-10	0900	0.9224	0.00	0.9215	0.92	0.9216	0.08	0.9215
	1000	0.9224	0.02	0.9249	0.89	0.9212	0.08	0.9245		1000	0.9403	0.00	0.9246	0.92	0.9217	0.08	0.9244
	1100	0.9227	0.02	0.9259	0.88	0.9216	0.09	0.9254		1100	0.9424	0.00	0.9271	0.90	0.9217	0.10	0.9266
	1200	0.9233	0.04	0.9271	0.87	0.9212	0.09	0.9264		1200	0.9430	0.00	0.9299	0.92	0.9213	0.08	0.9293
	1300	0.9233	0.05	0.9267	0.92	0.9217	0.04	0.9264		1300	0.9430	0.00	0.9298	0.90	0.9213	0.10	0.9289
	1400	0.9224	0.04	0.9256	0.92	0.9210	0.05	0.9252		1400	0.9420	0.00	0.9269	0.90	0.9214	0.10	0.9264
	1500	0.9221	0.02	0.9245	0.92	0.9210	0.06	0.9242		1500	0.9391	0.00	0.9233	0.91	0.9216	0.09	0.9232
	1600	0.9218	0.02	0.9222	0.92	0.9221	0.06	0.9222		1600	0.9217	0.00	0.9206	0.91	0.9223	0.09	0.9207
	1700	0.9209	0.04	0.9210	0.91	0.9217	0.06	0.9211		1700	0.9164	0.00	0.9192	0.90	0.9217	0.10	0.9194
21-Mar-10	0900	0.9399	0.04	0.9229	0.83	0.9210	0.13	0.9234	21-Sep-10	0900	0.9412	0.02	0.9237	0.92	0.9216	0.06	0.9239
	1000	0.9314	0.03	0.9249	0.85	0.9216	0.12	0.9247		1000	0.9238	0.00	0.9257	0.96	0.9217	0.04	0.9255
	1100	0.9241	0.03	0.9270	0.87	0.9221	0.10	0.9264		1100	0.9241	0.01	0.9271	0.96	0.9216	0.03	0.9269
	1200	0.9236	0.03	0.9282	0.86	0.9216	0.11	0.9274		1200	0.9239	0.01	0.9286	0.93	0.9219	0.06	0.9282
	1300	0.9239	0.02	0.9281	0.90	0.9214	0.08	0.9275		1300	0.9244	0.00	0.9277	0.97	0.9214	0.03	0.9275
	1400	0.9239	0.03	0.9261	0.88	0.9219	0.09	0.9257		1400	0.9233	0.00	0.9260	0.97	0.9215	0.03	0.9259
	1500	0.9230	0.03	0.9244	0.87	0.9219	0.10	0.9241		1500	0.9227	0.00	0.9238	0.98	0.9214	0.02	0.9237
	1600	0.9392	0.03	0.9223	0.89	0.9210	0.08	0.9227		1600	0.9353	0.00	0.9220	0.99	0.9213	0.01	0.9220
	1700	0.9277	0.03	0.9206	0.89	0.9215	0.08	0.9209		1700	0.9257	0.00	0.9204	0.99	0.9214	0.01	0.9205
21-Apr-10	0900	0.9362	0.00	0.9219	0.88	0.9217	0.12	0.9218	21-Oct-10	0900	0.9230	0.03	0.9242	0.97	0.9209	0.00	0.9241
	1000	0.9410	0.00	0.9245	0.90	0.9218	0.10	0.9242		1000	0.9228	0.04	0.9252	0.96	0.9214	0.00	0.9250
	1100	0.9420	0.00	0.9276	0.89	0.9217	0.11	0.9269		1100	0.9223	0.01	0.9268	0.99	0.9217	0.00	0.9267
	1200	0.9241	0.00	0.9303	0.90	0.9213	0.10	0.9294		1200	0.9233	0.00	0.9267	1.00	0.9215	0.00	0.9267
	1300	0.9243	0.00	0.9298	0.92	0.9220	0.08	0.9292		1300	0.9233	0.02	0.9264	0.97	0.9209	0.01	0.9263
	1400	0.9419	0.00	0.9266	0.92	0.9211	0.08	0.9262		1400	0.9228	0.02	0.9250	0.97	0.9216	0.01	0.9249
	1500	0.9395	0.00	0.9232	0.89	0.9217	0.11	0.9230		1500	0.9224	0.02	0.9237	0.97	0.9211	0.01	0.9237
	1600	0.9207	0.00	0.9209	0.89	0.9215	0.11	0.9209		1600	0.9217	0.01	0.9219	0.98	0.9216	0.01	0.9219
	1700	0.9167	0.00	0.9195	0.88	0.9207	0.12	0.9197		1700	0.9241	0.03	0.9201	0.96	0.9218	0.01	0.9203
21-May-10	0900	0.9173	0.02	0.9209	0.96	0.9215	0.02	0.9208	21-Nov-10	0900	0.9212	0.12	0.9236	0.84	0.9220	0.03	0.9232
	1000	0.9204	0.01	0.9229	0.97	0.9218	0.02	0.9228		1000	0.9206	0.17	0.9244	0.80	0.9212	0.03	0.9237
	1100	0.9202	0.01	0.9261	0.94	0.9212	0.05	0.9258		1100	0.9212	0.17	0.9258	0.80	0.9211	0.03	0.9249
	1200	0.9198	0.02	0.9295	0.91	0.9216	0.06	0.9288		1200	0.9224	0.14	0.9258	0.82	0.9209	0.03	0.9252
	1300	0.9200	0.01	0.9289	0.94	0.9213	0.05	0.9284		1300	0.9212	0.12	0.9258	0.83	0.9215	0.04	0.9251
	1400	0.9226	0.02	0.9248	0.88	0.9214	0.10	0.9245		1400	0.9213	0.16	0.9241	0.79	0.9216	0.06	0.9236
	1500	0.9187	0.02	0.9218	0.90	0.9214	0.08	0.9217		1500	0.9209	0.16	0.9230	0.79	0.9207	0.06	0.9225
	1600	0.9157	0.02	0.9200	0.89	0.9209	0.09	0.9200		1600	0.9204	0.16	0.9213	0.79	0.9214	0.06	0.9211
	1700	0.9131	0.02	0.9191	0.88	0.9219	0.10	0.9192		1700	0.9199	0.13	0.9222	0.80	0.9221	0.07	0.9219
21-Jun-10	0900	0.9150	0.00	0.9205	0.89	0.9217	0.11	0.9206	21-Dec-10	0900	0.9209	0.14	0.9237	0.85	0.9225	0.01	0.9233
	1000	0.9165	0.00	0.9222	0.89	0.9215	0.11	0.9221		1000	0.9205	0.19	0.9244	0.77	0.9218	0.03	0.9235
	1100	0.9187	0.00	0.9249	0.89	0.9212	0.11	0.9245		1100	0.9205	0.18	0.9251	0.78	0.9213	0.03	0.9242
	1200	0.9211	0.00	0.9283	0.88	0.9216	0.12	0.9274		1200	0.9217	0.16	0.9260	0.81	0.9218	0.03	0.9251
	1300	0.9205	0.00	0.9276	0.92	0.9213	0.08	0.9271		1300	0.9217	0.16	0.9250	0.82	0.9217	0.02	0.9244
	1400	0.9184	0.00	0.9236	0.93	0.9219	0.07	0.9235		1400	0.9209	0.19	0.9247	0.78	0.9223	0.02	0.9239
	1500	0.9167	0.00	0.9208	0.97	0.9218	0.03	0.9208		1500	0.9201	0.20	0.9239	0.77	0.9221	0.02	0.9231
	1600	0.9135	0.00	0.9195	0.93	0.9217	0.07	0.9196		1600	0.9207	0.17	0.9228	0.81	0.9212	0.02	0.9224
	1700	0.9128	0.00	0.9184	0.93	0.9215	0.07	0.9186		1700	0.9198	0.15	0.9219	0.83	0.9217	0.02	0.9216

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 7

Date	Time	$\mathbf{P}_{VS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,PG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{VX,PG,O}$	\mathbf{P}_{O}	$\mathbf{P}_{FS,PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,PG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{\mathrm{FS},PG,O}$	P_O	$\mathbf{P}_{VS,PG,R}$
21-Jan-10	0900	0.9439	0.05	0.9611	0.80	0.9741	0.15	0.9621	21-Jul-10	0900	0.9230	0.00	0.9323	0.92	0.9638	0.08	0.9347
	1000	0.9480	0.06	0.9475	0.81	0.9678	0.13	0.9501		1000	0.9345	0.00	0.9351	0.91	0.9577	0.09	0.9370
	1100	0.9512	0.06	0.9448	0.81	0.9635	0.13	0.9476		1100	0.9481	0.00	0.9510	0.91	0.9547	0.09	0.9513
	1200	0.9544	0.08	0.9467	0.80	0.9613	0.13	0.9492		1200	0.9516	0.00	0.9625	0.91	0.9528	0.09	0.9617
	1300	0.9544	0.08	0.9479	0.83	0.9607	0.10	0.9496		1300	0.9516	0.00	0.9631	0.96	0.9528	0.04	0.9626
	1400	0.9519	0.08	0.9460	0.84	0.9630	0.09	0.9479		1400	0.9477	0.00	0.9515	0.97	0.9545	0.03	0.9516
	1500	0.9487	0.09	0.9483	0.83	0.9674	0.09	0.9500		1500	0.9345	0.00	0.9360	0.97	0.9580	0.03	0.9367
	1600	0.9463	0.11	0.9601	0.83	0.9733	0.06	0.9594		1600	0.9289	0.00	0.9336	0.97	0.9634	0.03	0.9345
	1700	0.9580	0.10	0.9794	0.83	0.9821	0.08	0.9775		1700	0.9275	0.00	0.9491	0.95	0.9718	0.05	0.9503
21-Feb-10	0900	0.9338	0.04	0.9508	0.89	0.9713	0.07	0.9516	21-Aug-10	0900	0.9393	0.00	0.9339	0.92	0.9639	0.08	0.9362
	1000	0.9436	0.02	0.9403	0.89	0.9648	0.08	0.9424		1000	0.9630	0.00	0.9358	0.92	0.9584	0.08	0.9375
	1100	0.9502	0.02	0.9419	0.88	0.9604	0.09	0.9438		1100	0.9729	0.00	0.9517	0.90	0.9549	0.10	0.9520
	1200	0.9533	0.04	0.9485	0.87	0.9581	0.09	0.9495		1200	0.9762	0.00	0.9649	0.92	0.9532	0.08	0.9640
	1300	0.9540	0.05	0.9495	0.92	0.9578	0.04	0.9500		1300	0.9788	0.00	0.9641	0.90	0.9525	0.10	0.9630
	1400	0.9509	0.04	0.9448	0.92	0.9593	0.05	0.9457		1400	0.9745	0.00	0.9503	0.90	0.9548	0.10	0.9507
	1500	0.9457	0.02	0.9411	0.92	0.9635	0.06	0.9425		1500	0.9635	0.00	0.9355	0.91	0.9591	0.09	0.9376
	1600	0.9387	0.02	0.9491	0.92	0.9693	0.06	0.9501		1600	0.9432	0.00	0.9369	0.91	0.9650	0.09	0.9393
	1700	0.9443	0.04	0.9695	0.91	0.9782	0.06	0.9691		1700	0.9423	0.00	0.9553	0.90	0.9733	0.10	0.9570
21-Mar-10	0900	0.2374	0.04	0.9393	0.83	0.9676	0.13	0.9127	21-Sep-10	0900	0.1420	0.02	0.9359	0.92	0.9651	0.06	0.9199
	1000	0.9428	0.03	0.9360	0.85	0.9610	0.12	0.9392		1000	0.9445	0.00	0.9374	0.96	0.9599	0.04	0.9384
	1100	0.9495	0.03	0.9461	0.87	0.9568	0.10	0.9472		1100	0.9512	0.01	0.9488	0.96	0.9559	0.03	0.9491
	1200	0.9532	0.03	0.9563	0.86	0.9551	0.11	0.9561		1200	0.9536	0.01	0.9587	0.93	0.9541	0.06	0.9584
	1300	0.9532	0.02	0.9566	0.90	0.9551	0.08	0.9564		1300	0.9535	0.00	0.9558	0.97	0.9547	0.03	0.9557
	1400	0.9498	0.03	0.9466	0.88	0.9572	0.09	0.9476		1400	0.9495	0.00	0.9445	0.97	0.9572	0.03	0.9449
	1500	0.9432	0.03	0.9370	0.87	0.9614	0.10	0.9396		1500	0.9402	0.00	0.9361	0.98	0.9623	0.02	0.9367
	1600	0.2679	0.03	0.9406	0.89	0.9673	0.08	0.9209		1600	0.4094	0.00	0.9439	0.99	0.9693	0.01	0.9442
	1700	0.9750	0.03	0.9624	0.89	0.9756	0.08	0.9638		1700	0.9722	0.00	0.9678	0.99	0.9778	0.01	0.9679
21-Apr-10	0900	0.9455	0.00	0.9335	0.88	0.9640	0.12	0.9372	21-Oct-10	0900	0.9392	0.03	0.9441	0.97	0.9675	0.00	0.9439
	1000	0.9634	0.00	0.9368	0.90	0.9585	0.10	0.9390		1000	0.9474	0.04	0.9400	0.96	0.9616	0.00	0.9403
	1100	0.9698	0.00	0.9531	0.89	0.9546	0.11	0.9532		1100	0.9523	0.01	0.9456	0.99	0.9587	0.00	0.9456
	1200	0.9517	0.00	0.9648	0.90	0.9532	0.10	0.9636		1200	0.9543	0.00	0.9507	1.00	0.9576	0.00	0.9507
	1300	0.9513	0.00	0.9634	0.92	0.9531	0.08	0.9626		1300	0.9533	0.02	0.9480	0.97	0.9582	0.01	0.9482
	1400	0.9749	0.00	0.9487	0.92	0.9552	0.08	0.9492		1400	0.9488	0.02	0.9417	0.97	0.9607	0.01	0.9421
	1500	0.9654	0.00	0.9352	0.89	0.9596	0.11	0.9379		1500	0.9414	0.02	0.9424	0.97	0.9656	0.01	0.9426
	1600	0.9404	0.00	0.9379	0.89	0.9660	0.11	0.9411		1600	0.9369	0.01	0.9570	0.98	0.9730	0.01	0.9570
	1700	0.9437	0.00	0.9580	0.88	0.9746	0.12	0.9600		1700	0.5605	0.03	0.9805	0.96	0.9837	0.01	0.9670
21-May-10	0900	0.9316	0.02	0.9315	0.96	0.9631	0.02	0.9322	21-Nov-10	0900	0.9455	0.12	0.9533	0.84	0.9709	0.03	0.9529
	1000	0.9385	0.01	0.9368	0.97	0.9576	0.02	0.9373		1000	0.9498	0.17	0.9455	0.80	0.9657	0.03	0.9469
	1100	0.9497	0.01	0.9548	0.94	0.9543	0.05	0.9547		1100	0.9526	0.17	0.9454	0.80	0.9616	0.03	0.9472
	1200	0.9512	0.02	0.9599	0.91	0.9525	0.06	0.9593		1200	0.9547	0.14	0.9470	0.82	0.9608	0.03	0.9486
	1300	0.9513	0.01	0.9629	0.94	0.9526	0.05	0.9622		1300	0.9537	0.12	0.9472	0.83	0.9619	0.04	0.9486
	1400	0.9472	0.02	0.9486	0.88	0.9551	0.10	0.9492		1400	0.9512	0.16	0.9460	0.79	0.9639	0.06	0.9478
	1500	0.9299	0.02	0.9344	0.90	0.9593	0.08	0.9362		1500	0.9467	0.16	0.9511	0.79	0.9695	0.06	0.9514
	1600	0.9290	0.02	0.9352	0.89	0.9646	0.09	0.9376		1600	0.9486	0.16	0.9674	0.79	0.9766	0.06	0.9650
	1700	0.9301	0.02	0.9532	0.88	0.9727	0.10	0.9546		1700	0.9657	0.13	0.9877	0.80	0.9876	0.07	0.9848
21-Jun-10	0900	0.9231	0.00	0.9308	0.89	0.9627	0.11	0.9344	21-Dec-10	0900	0.9470	0.14	0.9607	0.85	0.9743	0.01	0.9590
	1000	0.9270	0.00	0.9353	0.89	0.9575	0.11	0.9377		1000	0.9508	0.19	0.9498	0.77	0.9684	0.03	0.9506
	1100	0.9379	0.00	0.9516	0.89	0.9539	0.11	0.9519		1100	0.9523	0.18	0.9465	0.78	0.9646	0.03	0.9481
	1200	0.9446	0.00	0.9598	0.88	0.9525	0.12	0.9589		1200	0.9544	0.16	0.9477	0.81	0.9625	0.03	0.9492
	1300	0.9434	0.00	0.9618	0.92	0.9524	0.08	0.9611		1300	0.9544	0.16	0.9477	0.82	0.9627	0.02	0.9491
	1400	0.9360	0.00	0.9495	0.93	0.9543	0.07	0.9498		1400	0.9519	0.19	0.9483	0.78	0.9650	0.02	0.9494
	1500	0.9301	0.00	0.9344	0.97	0.9588	0.03	0.9352		1500	0.9504	0.20	0.9529	0.77	0.9697	0.02	0.9527
	1600	0.9224	0.00	0.9332	0.93	0.9640	0.07	0.9353		1600	0.9518	0.17	0.9671	0.81	0.9762	0.02	0.9647
	1700	0.9954	0.00	0.9494	0.93	0.9716	0.07	0.9509		1700	0.9670	0.15	0.9863	0.83	0.9859	0.02	0.9834

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 7

Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{EX,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.0909	0.05	0.0717	0.80	0.0500	0.15	0.0694	21-Jul-10	0900	0.2535	0.00	0.2139	0.92	0.0909	0.08	0.2047
	1000	0.1004	0.06	0.1123	0.81	0.0741	0.13	0.1066		1000	0.1888	0.00	0.2057	0.91	0.1123	0.09	0.1976
	1100	0.1004	0.06	0.1216	0.81	0.0909	0.13	0.1163		1100	0.1401	0.00	0.1447	0.91	0.1286	0.09	0.1433
	1200	0.0957	0.08	0.1146	0.80	0.1004	0.13	0.1113		1200	0.1537	0.00	0.1075	0.91	0.1355	0.09	0.1099
	1300	0.0957	0.08	0.1123	0.83	0.1004	0.10	0.1099		1300	0.1537	0.00	0.1052	0.96	0.1355	0.04	0.1065
	1400	0.0980	0.08	0.1123	0.84	0.0933	0.09	0.1096		1400	0.1332	0.00	0.1401	0.97	0.1286	0.03	0.1397
	1500	0.0980	0.09	0.1075	0.83	0.0765	0.09	0.1040		1500	0.1845	0.00	0.1973	0.97	0.1123	0.03	0.1946
	1600	0.0813	0.11	0.0741	0.83	0.0548	0.06	0.0736		1600	0.2458	0.00	0.2036	0.97	0.0885	0.03	0.1999
	1700	0.0524	0.10	0.0288	0.83	0.0288	0.08	0.0311		1700	0.2666	0.00	0.1401	0.95	0.0620	0.05	0.1359
21-Feb-10	0900	0.1099	0.04	0.1052	0.89	0.0620	0.07	0.1023	21-Aug-10	0900	0.1492	0.00	0.1931	0.92	0.0861	0.08	0.1850
	1000	0.1123	0.02	0.1378	0.89	0.0861	0.08	0.1330		1000	0.2321	0.00	0.1888	0.92	0.1099	0.08	0.1829
	1100	0.1052	0.02	0.1355	0.88	0.1028	0.09	0.1317		1100	0.2400	0.00	0.1309	0.90	0.1263	0.10	0.1305
	1200	0.1004	0.04	0.1170	0.87	0.1123	0.09	0.1159		1200	0.2015	0.00	0.0909	0.92	0.1332	0.08	0.0941
	1300	0.0980	0.05	0.1123	0.92	0.1146	0.04	0.1117		1300	0.2200	0.00	0.0909	0.90	0.1332	0.10	0.0950
	1400	0.1028	0.04	0.1263	0.92	0.1075	0.05	0.1246		1400	0.2439	0.00	0.1309	0.90	0.1240	0.10	0.1302
	1500	0.1052	0.02	0.1309	0.92	0.0909	0.06	0.1280		1500	0.2077	0.00	0.1802	0.91	0.1075	0.09	0.1740
	1600	0.0980	0.02	0.1075	0.92	0.0669	0.06	0.1049		1600	0.1515	0.00	0.1780	0.91	0.0837	0.09	0.1699
	1700	0.0741	0.04	0.0524	0.91	0.0405	0.06	0.0525		1700	0.1560	0.00	0.1099	0.90	0.0548	0.10	0.1046
21-Mar-10	0900	0.2758	0.04	0.1515	0.83	0.0765	0.13	0.1471	21-Sep-10	0900	0.1627	0.02	0.1649	0.92	0.0837	0.06	0.1603
	1000	0.1216	0.03	0.1649	0.85	0.1004	0.12	0.1559		1000	0.1216	0.00	0.1627	0.96	0.1052	0.04	0.1601
	1100	0.1123	0.03	0.1378	0.87	0.1170	0.10	0.1350		1100	0.1099	0.01	0.1263	0.96	0.1193	0.03	0.1259
	1200	0.1028	0.03	0.1028	0.86	0.1263	0.11	0.1053		1200	0.1028	0.01	0.0957	0.93	0.1263	0.06	0.0974
	1300	0.1028	0.02	0.1004	0.90	0.1263	0.08	0.1024		1300	0.1052	0.00	0.1052	0.97	0.1240	0.03	0.1058
	1400	0.1099	0.03	0.1286	0.88	0.1170	0.09	0.1270		1400	0.1123	0.00	0.1355	0.97	0.1146	0.03	0.1348
	1500	0.1099	0.03	0.1537	0.87	0.1004	0.10	0.1472		1500	0.1123	0.00	0.1604	0.98	0.0957	0.02	0.1590
	1600	0.2301	0.03	0.1401	0.89	0.0765	0.08	0.1382		1600	0.2989	0.00	0.1309	0.99	0.0717	0.01	0.1303
	1700	0.2200	0.03	0.0765	0.89	0.0476	0.08	0.0789		1700	0.1693	0.00	0.0596	0.99	0.0405	0.01	0.0594
21-Apr-10	0900	0.1693	0.00	0.1931	0.88	0.0885	0.12	0.1803	21-Oct-10	0900	0.1146	0.03	0.1286	0.97	0.0741	0.00	0.1282
	1000	0.2200	0.00	0.1845	0.90	0.1099	0.10	0.1771		1000	0.1099	0.04	0.1447	0.96	0.0957	0.00	0.1432
	1100	0.1909	0.00	0.1263	0.89	0.1263	0.11	0.1263		1100	0.1028	0.01	0.1263	0.99	0.1099	0.00	0.1260
	1200	0.1170	0.00	0.0885	0.90	0.1332	0.10	0.0930		1200	0.0980	0.00	0.1099	1.00	0.1146	0.00	0.1099
	1300	0.1170	0.00	0.0909	0.92	0.1332	0.08	0.0942		1300	0.1004	0.02	0.1170	0.97	0.1123	0.01	0.1165
	1400	0.2477	0.00	0.1355	0.92	0.1240	0.08	0.1346		1400	0.1052	0.02	0.1332	0.97	0.1004	0.01	0.1323
	1500	0.2200	0.00	0.1824	0.89	0.1052	0.11	0.1738		1500	0.1004	0.02	0.1263	0.97	0.0813	0.01	0.1252
	1600	0.1424	0.00	0.1715	0.89	0.0813	0.11	0.1615		1600	0.0909	0.01	0.0837	0.98	0.0548	0.01	0.0835
	1700	0.1470	0.00	0.1004	0.88	0.0524	0.12	0.0946		1700	0.1146	0.03	0.0265	0.96	0.0242	0.01	0.0293
21-May-10	0900	0.2341	0.02	0.2180	0.96	0.0933	0.02	0.2157	21-Nov-10	0900	0.0980	0.12	0.0933	0.84	0.0620	0.03	0.0928
-	1000	0.1737	0.01	0.1973	0.97	0.1146	0.02	0.1953		1000	0.1028	0.17	0.1216	0.80	0.0813	0.03	0.1171
	1100	0.1537	0.01	0.1332	0.94	0.1286	0.05	0.1332		1100	0.0980	0.17	0.1170	0.80	0.0957	0.03	0.1131
	1200	0.1515	0.02	0.1193	0.91	0.1355	0.06	0.1210		1200	0.0957	0.14	0.1146	0.82	0.1004	0.03	0.1114
	1300	0.1515	0.02	0.1004	0.94	0.1355	0.05	0.1029		1300	0.0957	0.14	0.1146	0.83	0.0980	0.03	0.1114
	1400	0.1424	0.02	0.1492	0.88	0.1263	0.10	0.1468		1400	0.0980	0.16	0.1170	0.79	0.0885	0.06	0.1124
	1500	0.1424	0.02	0.2015	0.90	0.1205	0.08	0.1941		1500	0.0885	0.16	0.0980	0.79	0.0693	0.06	0.0950
	1600	0.1843	0.02	0.1973	0.89	0.1073	0.08	0.1941		1600	0.0883	0.16	0.0572	0.79	0.0453	0.06	0.0592
	1700	0.2573	0.02	0.1240	0.88	0.0572	0.10	0.1204		1700	0.0358	0.13	0.0372	0.80	0.0163	0.07	0.0352
21-Jun-10	0900	0.2902	0.00	0.2241	0.89	0.0933	0.11	0.2096	21-Dec-10	0900	0.0885	0.14	0.0717	0.85	0.0524	0.01	0.0738
21 344-10	1000	0.2400	0.00	0.2098	0.89	0.1146	0.11	0.1992	2. 200-10	1000	0.0980	0.19	0.1052	0.77	0.0741	0.03	0.1028
	1100	0.1909	0.00	0.1447	0.89	0.1146	0.11	0.1429		1100	0.0957	0.19	0.1123	0.78	0.0885	0.03	0.1025
	1200	0.1582	0.00	0.1447	0.88	0.1280	0.11	0.1429		1200	0.0957	0.16	0.1123	0.78	0.0883	0.03	0.1083
	1300	0.1582	0.00	0.1240	0.88	0.1355	0.12	0.1254		1300	0.0957	0.16	0.1099	0.81	0.0937	0.03	0.1071
	1400	0.1909	0.00	0.1123	0.92	0.1353	0.08	0.1141		1400	0.0957	0.19	0.1099	0.82	0.0933	0.02	0.1072
	1500	0.1909	0.00	0.1515	0.93	0.1263	0.07	0.1498		1500	0.0937	0.19	0.1099	0.78	0.0669	0.02	
					0.97												0.0927
	1600 1700	0.2919	0.00	0.2098	0.93	0.0885	0.07	0.2017		1600 1700	0.0717	0.17	0.0548	0.81	0.0453	0.02	0.0575
	1/00	0.3007	0.00	0.1424	0.93	0.0620	0.07	0.1370		1/00	0.0381	0.15	0.0140	0.83	0.0181	0.02	0.0178

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 7

Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BS,P}$	P_P	\mathbf{P}_{EXBXO}	P_O	$\mathbf{P}_{ES,BS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,BS,R}$
21-Jan-10	0900	0.3869	0.05	0.3594	0.80	0.2872	0.15	0.3500	21-Jul-10	0900	0.6228	0.00	0.5951	0.92	0.4010	0.08	0.5805
	1000	0.4074	0.06	0.4600	0.81	0.3584	0.13	0.4435		1000	0.5561	0.00	0.5940	0.91	0.4497	0.09	0.5816
	1100	0.4029	0.06	0.4865	0.81	0.4019	0.13	0.4702		1100	0.4871	0.00	0.5228	0.91	0.4793	0.09	0.5191
	1200	0.3994	0.08	0.4837	0.80	0.4212	0.13	0.4693		1200	0.5289	0.00	0.4871	0.91	0.4936	0.09	0.4877
	1300	0.3987	0.08	0.4834	0.83	0.4219	0.10	0.4711		1300	0.5299	0.00	0.4854	0.96	0.4936	0.04	0.4857
	1400	0.4038	0.08	0.4851	0.84	0.4050	0.09	0.4721		1400	0.4770	0.00	0.5247	0.97	0.4789	0.03	0.5232
	1500	0.4090	0.09	0.4659	0.83	0.3654	0.09	0.4524		1500	0.5580	0.00	0.5947	0.97	0.4480	0.03	0.5900
	1600	0.3904	0.11	0.3782	0.83	0.2986	0.06	0.3744		1600	0.6191	0.00	0.5935	0.97	0.3983	0.03	0.5872
	1700	0.3116	0.10	0.1954	0.83	0.1928	0.08	0.2064		1700	0.6322	0.00	0.4942	0.95	0.3224	0.05	0.4849
21-Feb-10	0900	0.4334	0.04	0.4344	0.89	0.3219	0.07	0.4264	21-Aug-10	0900	0.5447	0.00	0.5737	0.92	0.3929	0.08	0.5601
	1000	0.4355	0.02	0.5131	0.89	0.3900	0.08	0.5011		1000	0.8533	0.00	0.5799	0.92	0.4443	0.08	0.5697
	1100	0.4225	0.02	0.5141	0.88	0.4310	0.09	0.5042		1100	0.9184	0.00	0.5163	0.90	0.4765	0.10	0.5125
	1200	0.4116	0.04	0.4923	0.87	0.4500	0.09	0.4855		1200	0.9146	0.00	0.4532	0.92	0.4901	0.08	0.4560
	1300	0.4109	0.05	0.4868	0.92	0.4533	0.04	0.4821		1300	0.9291	0.00	0.4552	0.90	0.4899	0.10	0.4586
	1400	0.4192	0.04	0.5093	0.92	0.4370	0.05	0.5027		1400	0.9159	0.00	0.5262	0.90	0.4730	0.10	0.5210
	1500	0.4321	0.02	0.5178	0.92	0.4019	0.06	0.5090		1500	0.8231	0.00	0.5825	0.91	0.4412	0.09	0.5703
	1600	0.4354	0.02	0.4610	0.92	0.3406	0.06	0.4533		1600	0.5443	0.00	0.5663	0.91	0.3859	0.09	0.5508
	1700	0.3903	0.04	0.2980	0.91	0.2437	0.06	0.2981		1700	0.5169	0.00	0.4415	0.90	0.2993	0.10	0.4277
21-Mar-10	0900	0.9076	0.04	0.5178	0.83	0.3622	0.13	0.5145	21-Sep-10	0900	0.8944	0.02	0.5403	0.92	0.3812	0.06	0.5393
	1000	0.5184	0.03	0.5577	0.85	0.4216	0.12	0.5403		1000	0.4559	0.00	0.5563	0.96	0.4343	0.04	0.5509
	1100	0.4398	0.03	0.5206	0.87	0.4583	0.10	0.5120		1100	0.4381	0.01	0.5072	0.96	0.4657	0.03	0.5050
	1200	0.4242	0.03	0.4707	0.86	0.4749	0.11	0.4696		1200	0.4254	0.01	0.4620	0.93	0.4786	0.06	0.4626
	1300	0.4257	0.02	0.4691	0.90	0.4750	0.08	0.4686		1300	0.4297	0.00	0.4761	0.97	0.4733	0.03	0.4760
	1400	0.4396	0.03	0.5185	0.88	0.4587	0.09	0.5108		1400	0.4457	0.00	0.5319	0.97	0.4541	0.03	0.5293
	1500	0.4600	0.03	0.5556	0.87	0.4235	0.10	0.5398		1500	0.4684	0.00	0.5592	0.98	0.4154	0.02	0.5560
	1600	0.9075	0.03	0.5195	0.89	0.3627	0.08	0.5203		1600	0.8915	0.00	0.5012	0.99	0.3482	0.01	0.4995
	1700	0.6941	0.03	0.3669	0.89	0.2720	0.08	0.3703		1700	0.6116	0.00	0.3200	0.99	0.2456	0.01	0.3192
21-Apr-10	0900	0.7056	0.00	0.5757	0.88	0.3959	0.12	0.5537	21-Oct-10	0900	0.4420	0.03	0.4884	0.97	0.3589	0.00	0.4869
	1000	0.8675	0.00	0.5762	0.90	0.4468	0.10	0.5633		1000	0.4283	0.04	0.5210	0.96	0.4150	0.00	0.5170
	1100	0.8722	0.00	0.5096	0.89	0.4768	0.11	0.5059		1100	0.4161	0.01	0.5030	0.99	0.4440	0.00	0.5021
	1200	0.4497	0.00	0.4490	0.90	0.4901	0.10	0.4531		1200	0.4105	0.00	0.4857	1.00	0.4544	0.00	0.4857
	1300	0.4523	0.00	0.4568	0.92	0.4889	0.08	0.4593		1300	0.4144	0.02	0.4962	0.97	0.4477	0.01	0.4939
	1400	0.9156	0.00	0.5324	0.92	0.4706	0.08	0.5276		1400	0.4259	0.02	0.5183	0.97	0.4219	0.01	0.5153
	1500	0.8435	0.00	0.5824	0.89	0.4347	0.11	0.5660		1500	0.4388	0.02	0.5038	0.97	0.3755	0.01	0.5011
	1600	0.5274	0.00	0.5574	0.89	0.3781	0.11	0.5375		1600	0.4244	0.01	0.3993	0.98	0.2992	0.01	0.3985
	1700	0.5029	0.00	0.4219	0.88	0.2896	0.12	0.4057		1700	0.6860	0.03	0.1824	0.96	0.1789	0.01	0.1986
21-May-10	0900	0.6041	0.02	0.6001	0.96	0.4079	0.02	0.5961	21-Nov-10	0900	0.4033	0.12	0.4135	0.84	0.3224	0.03	0.4092
	1000	0.5290	0.01	0.5855	0.97	0.4557	0.02	0.5821		1000	0.4094	0.17	0.4776	0.80	0.3787	0.03	0.4630
	1100	0.5174	0.01	0.5086	0.94	0.4818	0.05	0.5072		1100	0.4013	0.17	0.4872	0.80	0.4135	0.03	0.4704
	1200	0.5283	0.02	0.5171	0.91	0.4939	0.06	0.5159		1200	0.3984	0.14	0.4831	0.82	0.4247	0.03	0.4689
	1300	0.5311	0.01	0.4727	0.94	0.4919	0.05	0.4743		1300	0.4001	0.12	0.4861	0.83	0.4185	0.04	0.4726
	1400	0.4958	0.02	0.5383	0.88	0.4750	0.10	0.5312		1400	0.4057	0.16	0.4833	0.79	0.3929	0.06	0.4662
	1500	0.5581	0.02	0.5992	0.90	0.4420	0.08	0.5865		1500	0.4038	0.16	0.4414	0.79	0.3422	0.06	0.4301
	1600	0.6178	0.02	0.5839	0.89	0.3875	0.09	0.5678		1600	0.3714	0.16	0.3166	0.79	0.2617	0.06	0.3220
	1700	0.6221	0.02	0.4647	0.88	0.3042	0.10	0.4525		1700	0.2391	0.13	0.1116	0.80	0.1325	0.07	0.1300
21-Jun-10	0900	0.6530	0.00	0.6053	0.89	0.4070	0.11	0.5832	21-Dec-10	0900	0.3772	0.14	0.3553	0.85	0.2886	0.01	0.3577
	1000	0.6066	0.00	0.5959	0.89	0.4538	0.11	0.5801		1000	0.3984	0.19	0.4450	0.77	0.3549	0.03	0.4331
	1100	0.5488	0.00	0.5211	0.89	0.4815	0.11	0.5167		1100	0.3968	0.18	0.4716	0.78	0.3934	0.03	0.4554
	1200	0.5100	0.00	0.5094	0.88	0.4939	0.12	0.5075		1200	0.3943	0.16	0.4760	0.81	0.4102	0.03	0.4607
	1300	0.5135	0.00	0.4844	0.92	0.4922	0.08	0.4850		1300	0.3943	0.16	0.4752	0.82	0.4073	0.02	0.4607
	1400	0.5602	0.00	0.5363	0.93	0.4783	0.07	0.5324		1400	0.3989	0.19	0.4679	0.78	0.3859	0.02	0.4527
	1500	0.6175	0.00	0.6022	0.97	0.4465	0.03	0.5970		1500	0.3956	0.20	0.4274	0.77	0.3401	0.02	0.4190
	1600	0.6572	0.00	0.5979	0.93	0.3959	0.07	0.5844		1600	0.3603	0.17	0.3118	0.81	0.2626	0.02	0.3191
	1700	0.5710	0.00	0.4964	0.93	0.3193	0.07	0.4846		1700	0.2435	0.17	0.1216	0.83	0.1421	0.02	0.1404
	1,00	0.5710	0.00	0.4504	0.75	0.5175	0.07	0.1010		1,00	0.2455	0.10	0.1210	0.05	0.1-121	0.02	0.1.101

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 7

Date	Time	$\mathbf{P}_{ES,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	$\mathrm{P}_{\mathcal{O}}$	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{EX,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.9579	0.05	0.9579	0.80	0.9579	0.15	0.9579	21-Jul-10	0900	0.9557	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1000	0.9548	0.00	0.9551	0.91	0.9579	0.09	0.9553
	1100	0.9518	0.06	0.9529	0.81	0.9579	0.13	0.9535		1100	0.9579	0.00	0.9537	0.91	0.9532	0.09	0.9537
	1200	0.9579	0.08	0.9579	0.80	0.9518	0.13	0.9571		1200	0.9540	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1300	0.9579	0.08	0.9579	0.83	0.9579	0.10	0.9579		1300	0.9540	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1400	0.9579	0.08	0.9579	0.84	0.9513	0.09	0.9573		1400	0.9579	0.00	0.9579	0.97	0.9532	0.03	0.9578
	1500	0.9579	0.09	0.9579	0.83	0.9579	0.09	0.9579		1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1600	0.9579	0.11	0.9579	0.83	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1700	0.9579	0.10	0.9579	0.83	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.95	0.9579	0.05	0.9579
21-Feb-10	0900	0.9523	0.04	0.9521	0.89	0.9579	0.07	0.9525	21-Aug-10	0900	0.9579	0.00	0.9548	0.92	0.9579	0.08	0.9551
	1000	0.9525	0.02	0.9579	0.89	0.9579	0.08	0.9578		1000	0.9579	0.00	0.9548	0.92	0.9579	0.08	0.9550
	1100	0.9579	0.02	0.9579	0.88	0.9579	0.09	0.9579		1100	0.9579	0.00	0.9533	0.90	0.9579	0.10	0.9537
	1200	0.9579	0.04	0.9527	0.87	0.9579	0.09	0.9534		1200	0.9579	0.00	0.9511	0.92	0.9579	0.08	0.9516
	1300	0.9579	0.05	0.9525	0.92	0.9579	0.04	0.9529		1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1400	0.9519	0.04	0.9579	0.92	0.9522	0.05	0.9574		1400	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1500	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1500	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1600	0.9516	0.02	0.9579	0.92	0.9579	0.06	0.9578		1600	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1700	0.9579	0.04	0.9579	0.91	0.9579	0.06	0.9579		1700	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
21-Mar-10	0900	0.8576	0.04	0.9539	0.83	0.9579	0.13	0.9503	21-Sep-10	0900	0.9542	0.02	0.9543	0.92	0.9579	0.06	0.9545
	1000	0.9579	0.03	0.9579	0.85	0.9579	0.12	0.9579		1000	0.9529	0.00	0.9542	0.96	0.9579	0.04	0.9544
	1100	0.9525	0.03	0.9535	0.87	0.9579	0.10	0.9539		1100	0.9579	0.01	0.9579	0.96	0.9579	0.03	0.9579
	1200	0.9579	0.03	0.9579	0.86	0.9531	0.11	0.9574		1200	0.9579	0.01	0.9579	0.93	0.9579	0.06	0.9579
	1300	0.9579	0.02	0.9579	0.90	0.9531	0.08	0.9575		1300	0.9579	0.00	0.9521	0.97	0.9579	0.03	0.9523
	1400	0.9523	0.03	0.9579	0.88	0.9579	0.09	0.9577		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1500	0.9579	0.00	0.9579	0.98	0.9579	0.02	0.9579
	1600	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1600	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
	1700	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
21-Apr-10	0900	0.9544	0.00	0.9548	0.88	0.9579	0.12	0.9552	21-Oct-10	0900	0.9526	0.03	0.9532	0.97	0.9579	0.00	0.9532
21-Apr-10	1000	0.9579	0.00	0.9547	0.90	0.9579	0.12	0.9550	21-00-10	1000	0.9523	0.03	0.9537	0.96	0.9579	0.00	0.9537
	1100	0.9579	0.00	0.9531	0.89	0.9579	0.11	0.9536		1100	0.9529	0.04	0.9531	0.99	0.9579	0.00	0.9531
	1200	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1200	0.9579	0.00	0.9579	1.00	0.9579	0.00	0.9579
	1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1300	0.9579	0.00	0.9527	0.97	0.9579	0.00	0.9528
	1400	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9575		1400	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9528
	1500	0.9579	0.00	0.9579	0.92	0.9530	0.08			1500	0.9579	0.02		0.97	0.9579	0.01	
	1600	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579 0.9579		1600	0.9579	0.02	0.9579 0.9579	0.97	0.9579	0.01	0.9579 0.9579
	1700	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1700	0.9579	0.03	0.9579	0.96	0.9579	0.01	0.9579
21-May-10	0900	0.9554	0.02	0.9552	0.96	0.9579	0.02	0.9553	21-Nov-10	0900	0.9516	0.12	0.9513	0.84	0.9579	0.03	0.9516
	1000	0.9545	0.01	0.9549	0.97	0.9579	0.02	0.9550		1000	0.9519	0.17	0.9529	0.80	0.9579	0.03	0.9529
	1100	0.9540	0.01	0.9579	0.94	0.9579	0.05	0.9579		1100	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1200	0.9579	0.02	0.9528	0.91	0.9579	0.06	0.9532		1200	0.9579	0.14	0.9526	0.82	0.9579	0.03	0.9535
	1300	0.9579	0.01	0.9579	0.94	0.9534	0.05	0.9577		1300	0.9579	0.12	0.9526	0.83	0.9579	0.04	0.9535
	1400	0.9537	0.02	0.9579	0.88	0.9531	0.10	0.9574		1400	0.9579	0.16	0.9579	0.79	0.9510	0.06	0.9575
	1500	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1500	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1600	0.9579	0.02	0.9579	0.89	0.9579	0.09	0.9579		1600	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1700	0.9557	0.02	0.9579	0.88	0.9579	0.10	0.9579		1700	0.9579	0.13	0.9572	0.80	0.9570	0.07	0.9572
21-Jun-10	0900	0.9579	0.00	0.9553	0.89	0.9579	0.11	0.9556	21-Dec-10	0900	0.9510	0.14	0.9493	0.85	0.9579	0.01	0.9496
	1000	0.9579	0.00	0.9551	0.89	0.9579	0.11	0.9554		1000	0.9516	0.19	0.9579	0.77	0.9579	0.03	0.9567
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.18	0.9525	0.78	0.9579	0.03	0.9536
	1200	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1200	0.9579	0.16	0.9579	0.81	0.9515	0.03	0.9577
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9515	0.16	0.9579	0.82	0.9579	0.02	0.9569
	1400	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1400	0.9579	0.19	0.9523	0.78	0.9579	0.02	0.9535
	1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1500	0.9513	0.20	0.9579	0.77	0.9579	0.02	0.9566
	1600	0.9560	0.00	0.9579	0.93	0.9579	0.07	0.9579		1600	0.9579	0.17	0.9579	0.81	0.9579	0.02	0.9579
	1700	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9415	0.15	0.9572	0.83	0.9568	0.02	0.9548

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 7

Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{E \mathbf{X} U \mathbf{X} O}$	P_O	$\mathbf{P}_{EX,UX,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{E \mathbf{X}, U \mathbf{X}, P}$	P_P	$\mathbf{P}_{E\mathbf{X},U\mathbf{X},O}$	P_O	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9518	0.05	0.9521	0.80	0.9521	0.15	0.9521	21-Jul-10	0900	0.9467	0.00	0.9505	0.92	0.9511	0.08	0.9505
	1000	0.9513	0.06	0.9542	0.81	0.9507	0.13	0.9536		1000	0.9486	0.00	0.9520	0.91	0.9509	0.09	0.9519
	1100	0.9508	0.06	0.9550	0.81	0.9508	0.13	0.9542		1100	0.9512	0.00	0.9548	0.91	0.9509	0.09	0.9544
	1200	0.9510	0.08	0.9551	0.80	0.9513	0.13	0.9543		1200	0.9495	0.00	0.9581	0.91	0.9513	0.09	0.9575
	1300	0.9520	0.08	0.9551	0.83	0.9513	0.10	0.9545		1300	0.9497	0.00	0.9580	0.96	0.9513	0.04	0.9577
	1400	0.9511	0.08	0.9548	0.84	0.9511	0.09	0.9542		1400	0.9521	0.00	0.9546	0.97	0.9516	0.03	0.9545
	1500	0.9504	0.09	0.9528	0.83	0.9512	0.09	0.9525		1500	0.9485	0.00	0.9513	0.97	0.9507	0.03	0.9513
	1600	0.9505	0.11	0.9525	0.83	0.9514	0.06	0.9522		1600	0.9460	0.00	0.9496	0.97	0.9517	0.03	0.9497
	1700	0.9508	0.10	0.9507	0.83	0.9515	0.08	0.9508		1700	0.9436	0.00	0.9491	0.95	0.9517	0.05	0.9492
21-Feb-10	0900	0.9526	0.04	0.9526	0.89	0.9517	0.07	0.9525	21-Aug-10	0900	0.9521	0.00	0.9513	0.92	0.9513	0.08	0.9513
	1000	0.9520	0.02	0.9543	0.89	0.9510	0.08	0.9540		1000	0.9673	0.00	0.9541	0.92	0.9514	0.08	0.9539
	1100	0.9523	0.02	0.9552	0.88	0.9513	0.09	0.9548		1100	0.9689	0.00	0.9563	0.90	0.9514	0.10	0.9558
	1200	0.9529	0.04	0.9562	0.87	0.9509	0.09	0.9556		1200	0.9694	0.00	0.9587	0.92	0.9510	0.08	0.9581
	1300	0.9529	0.05	0.9559	0.92	0.9515	0.04	0.9556		1300	0.9695	0.00	0.9586	0.90	0.9510	0.10	0.9578
	1400	0.9520	0.04	0.9549	0.92	0.9508	0.05	0.9546		1400	0.9686	0.00	0.9561	0.90	0.9511	0.10	0.9556
	1500	0.9518	0.02	0.9539	0.92	0.9508	0.06	0.9537		1500	0.9663	0.00	0.9529	0.91	0.9514	0.09	0.9527
	1600	0.9515	0.02	0.9519	0.92	0.9518	0.06	0.9519		1600	0.9514	0.00	0.9504	0.91	0.9520	0.09	0.9505
	1700	0.9507	0.04	0.9508	0.91	0.9515	0.06	0.9509		1700	0.9465	0.00	0.9491	0.90	0.9514	0.10	0.9494
21-Mar-10	0900	0.9670	0.04	0.9525	0.83	0.9508	0.13	0.9529	21-Sep-10	0900	0.9680	0.02	0.9532	0.92	0.9513	0.06	0.9534
	1000	0.9599	0.03	0.9543	0.85	0.9513	0.12	0.9541		1000	0.9533	0.00	0.9550	0.96	0.9514	0.04	0.9548
	1100	0.9536	0.03	0.9562	0.87	0.9518	0.10	0.9556		1100	0.9536	0.01	0.9563	0.96	0.9513	0.03	0.9561
	1200	0.9531	0.03	0.9572	0.86	0.9514	0.11	0.9565		1200	0.9534	0.01	0.9576	0.93	0.9516	0.06	0.9572
	1300	0.9534	0.02	0.9571	0.90	0.9512	0.08	0.9566		1300	0.9539	0.00	0.9568	0.97	0.9511	0.03	0.9566
	1400	0.9534	0.03	0.9554	0.88	0.9516	0.09	0.9550		1400	0.9528	0.00	0.9553	0.97	0.9513	0.03	0.9552
	1500	0.9526	0.03	0.9539	0.87	0.9516	0.10	0.9536		1500	0.9524	0.00	0.9533	0.98	0.9512	0.02	0.9532
	1600	0.9664	0.03	0.9519	0.89	0.9508	0.08	0.9523		1600	0.9633	0.00	0.9517	0.99	0.9510	0.01	0.9517
	1700	0.9567	0.03	0.9504	0.89	0.9512	0.08	0.9507		1700	0.9550	0.00	0.9503	0.99	0.9512	0.01	0.9503
21-Apr-10	0900	0.9640	0.00	0.9516	0.88	0.9514	0.12	0.9516	21-Oct-10	0900	0.9526	0.03	0.9537	0.97	0.9507	0.00	0.9536
	1000	0.9679	0.00	0.9539	0.90	0.9515	0.10	0.9537		1000	0.9524	0.04	0.9545	0.96	0.9512	0.00	0.9544
	1100	0.9687	0.00	0.9567	0.89	0.9514	0.11	0.9561		1100	0.9520	0.01	0.9560	0.99	0.9514	0.00	0.9559
	1200	0.9536	0.00	0.9590	0.90	0.9510	0.10	0.9582		1200	0.9529	0.00	0.9559	1.00	0.9513	0.00	0.9559
	1300	0.9538	0.00	0.9586	0.92	0.9517	0.08	0.9580		1300	0.9529	0.02	0.9557	0.97	0.9507	0.01	0.9556
	1400	0.9686	0.00	0.9558	0.92	0.9509	0.08	0.9554		1400	0.9524	0.02	0.9544	0.97	0.9513	0.01	0.9543
	1500	0.9666	0.00	0.9527	0.89	0.9514	0.11	0.9526		1500	0.9521	0.02	0.9532	0.97	0.9509	0.01	0.9532
	1600	0.9505	0.00	0.9507	0.89	0.9512	0.11	0.9507		1600	0.9514	0.01	0.9516	0.98	0.9514	0.01	0.9516
	1700	0.9468	0.00	0.9494	0.88	0.9505	0.12	0.9496		1700	0.9536	0.03	0.9500	0.96	0.9515	0.01	0.9501
21-May-10	0900	0.9474	0.02	0.9507	0.96	0.9512	0.02	0.9506	21-Nov-10	0900	0.9509	0.12	0.9531	0.84	0.9517	0.03	0.9528
	1000	0.9502	0.01	0.9525	0.97	0.9515	0.02	0.9524		1000	0.9504	0.17	0.9539	0.80	0.9510	0.03	0.9532
	1100	0.9500	0.01	0.9553	0.94	0.9510	0.05	0.9551		1100	0.9510	0.17	0.9551	0.80	0.9509	0.03	0.9543
	1200	0.9497	0.02	0.9583	0.91	0.9513	0.06	0.9577		1200	0.9520	0.14	0.9551	0.82	0.9507	0.03	0.9545
	1300	0.9499	0.01	0.9578	0.94	0.9511	0.05	0.9573		1300	0.9510	0.12	0.9551	0.83	0.9512	0.04	0.9545
	1400	0.9522	0.02	0.9543	0.88	0.9512	0.10	0.9539		1400	0.9511	0.16	0.9536	0.79	0.9513	0.06	0.9531
	1500	0.9487	0.02	0.9515	0.90	0.9512	0.08	0.9514		1500	0.9507	0.16	0.9526	0.79	0.9505	0.06	0.9521
	1600	0.9459	0.02	0.9499	0.89	0.9507	0.09	0.9499		1600	0.9502	0.16	0.9510	0.79	0.9511	0.06	0.9509
	1700	0.9434	0.02	0.9491	0.88	0.9516	0.10	0.9492		1700	0.9498	0.13	0.9519	0.80	0.9518	0.07	0.9516
21-Jun-10	0900	0.9452	0.00	0.9503	0.89	0.9515	0.11	0.9505	21-Dec-10	0900	0.9507	0.14	0.9532	0.85	0.9521	0.01	0.9529
	1000	0.9466	0.00	0.9519	0.89	0.9513	0.11	0.9518		1000	0.9503	0.19	0.9538	0.77	0.9515	0.03	0.9531
	1100	0.9487	0.00	0.9543	0.89	0.9510	0.11	0.9540		1100	0.9503	0.18	0.9545	0.78	0.9511	0.03	0.9536
	1200	0.9509	0.00	0.9573	0.88	0.9513	0.12	0.9565		1200	0.9514	0.16	0.9552	0.81	0.9515	0.03	0.9545
	1300	0.9503	0.00	0.9567	0.92	0.9511	0.08	0.9562		1300	0.9514	0.16	0.9544	0.82	0.9515	0.02	0.9539
	1400	0.9484	0.00	0.9532	0.93	0.9516	0.07	0.9531		1400	0.9507	0.19	0.9541	0.78	0.9520	0.02	0.9534
	1500	0.9468	0.00	0.9506	0.97	0.9515	0.03	0.9506		1500	0.9499	0.20	0.9534	0.77	0.9518	0.02	0.9526
	1600	0.9438	0.00	0.9494	0.93	0.9514	0.07	0.9495		1600	0.9505	0.17	0.9524	0.81	0.9510	0.02	0.9521
	1700	0.9432	0.00	0.9484	0.93	0.9514	0.07	0.9486		1700	0.9303	0.17	0.9516	0.83	0.9514	0.02	0.9513
	1700	0.7432	0.00	0.7404	0.75	0.5512	0.07	0.5400		1,00	0.7477	0.15	0.7510	0.00	0.5514	0.02	0.7515

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 7

Date	Time	$\mathbf{P}_{ES,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$P_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$P_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$
21-Jan-10	0900	0.9757	0.05	0.9852	0.80	0.9914	0.15	0.9856	21-Jul-10	0900	0.9625	0.00	0.9686	0.92	0.9866	0.08	0.9699
	1000	0.9780	0.06	0.9778	0.81	0.9885	0.13	0.9792		1000	0.9700	0.00	0.9703	0.91	0.9834	0.09	0.9714
	1100	0.9799	0.06	0.9762	0.81	0.9864	0.13	0.9778		1100	0.9781	0.00	0.9798	0.91	0.9818	0.09	0.9799
	1200	0.9816	0.08	0.9773	0.80	0.9853	0.13	0.9787		1200	0.9801	0.00	0.9859	0.91	0.9808	0.09	0.9855
	1300	0.9816	0.08	0.9780	0.83	0.9850	0.10	0.9789		1300	0.9801	0.00	0.9862	0.96	0.9808	0.04	0.9860
	1400	0.9803	0.08	0.9769	0.84	0.9862	0.09	0.9780		1400	0.9779	0.00	0.9801	0.97	0.9817	0.03	0.9801
	1500	0.9785	0.09	0.9782	0.83	0.9883	0.09	0.9791		1500	0.9699	0.00	0.9709	0.97	0.9836	0.03	0.9713
	1600	0.9771	0.11	0.9847	0.83	0.9911	0.06	0.9843		1600	0.9663	0.00	0.9694	0.97	0.9864	0.03	0.9699
	1700	0.9836	0.10	0.9937	0.83	0.9948	0.08	0.9928		1700	0.9654	0.00	0.9787	0.95	0.9904	0.05	0.9793
21-Feb-10	0900	0.9695	0.04	0.9797	0.89	0.9902	0.07	0.9800	21-Aug-10	0900	0.9729	0.00	0.9696	0.92	0.9866	0.08	0.9709
	1000	0.9755	0.02	0.9735	0.89	0.9871	0.08	0.9747		1000	0.9861	0.00	0.9708	0.92	0.9838	0.08	0.9718
	1100	0.9793	0.02	0.9745	0.88	0.9848	0.09	0.9756		1100	0.9909	0.00	0.9801	0.90	0.9819	0.10	0.9803
	1200	0.9811	0.04	0.9783	0.87	0.9836	0.09	0.9789		1200	0.9924	0.00	0.9871	0.92	0.9810	0.08	0.9867
	1300	0.9814	0.05	0.9789	0.92	0.9835	0.04	0.9792		1300	0.9934	0.00	0.9867	0.90	0.9806	0.10	0.9861
	1400	0.9797	0.04	0.9762	0.92	0.9843	0.05	0.9767		1400	0.9916	0.00	0.9794	0.90	0.9819	0.10	0.9796
	1500	0.9767	0.02	0.9740	0.92	0.9864	0.06	0.9748		1500	0.9864	0.00	0.9706	0.91	0.9842	0.09	0.9718
	1600	0.9725	0.02	0.9787	0.92	0.9893	0.06	0.9792		1600	0.9753	0.00	0.9714	0.91	0.9872	0.09	0.9728
	1700	0.9759	0.04	0.9893	0.91	0.9932	0.06	0.9891		1700	0.9747	0.00	0.9821	0.90	0.9911	0.10	0.9830
21-Mar-10	0900	0.1724	0.04	0.9729	0.83	0.9884	0.13	0.9405	21-Sep-10	0900	0.0830	0.02	0.9708	0.92	0.9872	0.06	0.9520
	1000	0.9751	0.03	0.9709	0.85	0.9851	0.12	0.9727		1000	0.9760	0.00	0.9718	0.96	0.9846	0.04	0.9723
	1100	0.9789	0.03	0.9769	0.87	0.9829	0.10	0.9776		1100	0.9799	0.01	0.9785	0.96	0.9825	0.03	0.9787
	1200	0.9810	0.03	0.9827	0.86	0.9821	0.11	0.9826		1200	0.9812	0.01	0.9840	0.93	0.9815	0.06	0.9838
	1300	0.9810	0.02	0.9829	0.90	0.9821	0.08	0.9828		1300	0.9812	0.00	0.9824	0.97	0.9818	0.03	0.9824
	1400	0.9791	0.03	0.9773	0.88	0.9831	0.09	0.9778		1400	0.9789	0.00	0.9760	0.97	0.9832	0.03	0.9763
	1500	0.9753	0.03	0.9715	0.87	0.9854	0.10	0.9730		1500	0.9735	0.00	0.9709	0.98	0.9858	0.02	0.9713
	1600	0.2049	0.03	0.9737	0.89	0.9883	0.08	0.9500		1600	0.3744	0.00	0.9757	0.99	0.9892	0.01	0.9758
	1700	0.9919	0.03	0.9859	0.89	0.9921	0.08	0.9865		1700	0.9906	0.00	0.9886	0.99	0.9930	0.01	0.9886
21-Apr-10	0900	0.9766	0.00	0.9693	0.88	0.9867	0.12	0.9714	21-Oct-10	0900	0.9729	0.03	0.9758	0.97	0.9884	0.00	0.9757
21 /tp: 10	1000	0.9864	0.00	0.9714	0.90	0.9839	0.10	0.9726	21 000 10	1000	0.9778	0.04	0.9733	0.96	0.9855	0.00	0.9735
	1100	0.9895	0.00	0.9809	0.89	0.9818	0.11	0.9810		1100	0.9805	0.01	0.9767	0.99	0.9840	0.00	0.9767
	1200	0.9892	0.00	0.9871	0.90	0.9810	0.10	0.9865		1200	0.9805	0.00	0.9796	1.00	0.9834	0.00	0.9796
	1300	0.9802	0.00	0.9864	0.90	0.9810	0.10	0.9859		1300	0.9810	0.00	0.9790	0.97	0.9837	0.00	0.9782
	1400	0.9800	0.00	0.9864	0.92	0.9809	0.08	0.9839		1400	0.9810	0.02	0.9744	0.97	0.9850	0.01	0.9746
	1500	0.9918	0.00	0.9785	0.92	0.9821	0.08			1500	0.9783	0.02	0.9744	0.97	0.9850	0.01	
								0.9720									0.9749
	1600 1700	0.9736 0.9755	0.00	0.9721 0.9836	0.89	0.9877 0.9916	0.11	0.9738 0.9846		1600 1700	0.9714 0.5722	0.01	0.9831	0.98	0.9909	0.01	0.9830 0.9805
21-May-10	0900	0.9681	0.02	0.9681	0.96	0.9862	0.02	0.9685	21-Nov-10	0900	0.9766	0.12	0.9811	0.84	0.9900	0.03	0.9808
	1000	0.9725	0.01	0.9714	0.97	0.9834	0.02	0.9717		1000	0.9791	0.17	0.9766	0.80	0.9875	0.03	0.9774
	1100	0.9791	0.01	0.9819	0.94	0.9816	0.05	0.9818		1100	0.9807	0.17	0.9766	0.80	0.9855	0.03	0.9776
	1200	0.9799	0.02	0.9846	0.91	0.9806	0.06	0.9842		1200	0.9818	0.14	0.9775	0.82	0.9851	0.03	0.9784
	1300	0.9799	0.01	0.9861	0.94	0.9807	0.05	0.9857		1300	0.9813	0.12	0.9776	0.83	0.9856	0.04	0.9784
	1400	0.9776	0.02	0.9784	0.88	0.9821	0.10	0.9787		1400	0.9799	0.16	0.9769	0.79	0.9866	0.06	0.9779
	1500	0.9670	0.02	0.9699	0.90	0.9842	0.08	0.9709		1500	0.9773	0.16	0.9798	0.79	0.9893	0.06	0.9800
	1600	0.9664	0.02	0.9704	0.89	0.9870	0.09	0.9717		1600	0.9784	0.16	0.9883	0.79	0.9925	0.06	0.9870
	1700	0.9671	0.02	0.9810	0.88	0.9908	0.10	0.9816		1700	0.9875	0.13	0.9968	0.80	0.9968	0.07	0.9956
21-Jun-10	0900	0.9626	0.00	0.9676	0.89	0.9860	0.11	0.9697	21-Dec-10	0900	0.9775	0.14	0.9850	0.85	0.9915	0.01	0.9840
	1000	0.9651	0.00	0.9704	0.89	0.9833	0.11	0.9719		1000	0.9797	0.19	0.9791	0.77	0.9888	0.03	0.9795
	1100	0.9720	0.00	0.9801	0.89	0.9814	0.11	0.9802		1100	0.9805	0.18	0.9772	0.78	0.9870	0.03	0.9781
	1200	0.9761	0.00	0.9845	0.88	0.9806	0.12	0.9840		1200	0.9817	0.16	0.9779	0.81	0.9859	0.03	0.9788
	1300	0.9754	0.00	0.9856	0.92	0.9805	0.08	0.9852		1300	0.9817	0.16	0.9779	0.82	0.9860	0.02	0.9787
	1400	0.9709	0.00	0.9789	0.93	0.9816	0.07	0.9791		1400	0.9803	0.19	0.9782	0.78	0.9872	0.02	0.9788
	1500	0.9672	0.00	0.9699	0.97	0.9840	0.03	0.9704		1500	0.9794	0.20	0.9808	0.77	0.9894	0.02	0.9807
	1600	0.9621	0.00	0.9691	0.93	0.9867	0.07	0.9703		1600	0.9802	0.17	0.9882	0.81	0.9924	0.02	0.9869
	1700	0.9992	0.00	0.9789	0.93	0.9903	0.07	0.9796		1700	0.9881	0.15	0.9964	0.83	0.9962	0.02	0.9951
	1,00	0.7772	0.00	0.7107	0.75	0.7703	0.07	0.7770		1,00	0.5001	0.15	0.7704	0.05	0.7702	0.02	0.7751

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 8

Date	Time	$\mathbf{P}_{FS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,BD,P}$	P_P	$\mathbf{P}_{VX,BD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	P_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},BD,O}$	P_O	$\mathbf{P}_{VS,BD,R}$
21-Jan-10	0900	0.6565	0.05	0.3939	0.80	0.2417	0.15	0.3851	21-Jul-10	0900	0.7177	0.00	0.5385	0.92	0.3199	0.08	0.5220
	1000	0.6705	0.06	0.4808	0.81	0.2905	0.13	0.4685		1000	0.6984	0.00	0.5318	0.91	0.3516	0.09	0.5163
	1100	0.6311	0.06	0.4995	0.81	0.3199	0.13	0.4848		1100	0.6425	0.00	0.4549	0.91	0.3712	0.09	0.4477
	1200	0.5249	0.08	0.4762	0.80	0.3332	0.13	0.4614		1200	0.5127	0.00	0.3765	0.91	0.3816	0.09	0.3769
	1300	0.4778	0.08	0.4441	0.83	0.3332	0.10	0.4359		1300	0.4583	0.00	0.3233	0.96	0.3816	0.04	0.3258
	1400	0.3574	0.08	0.4077	0.84	0.3233	0.09	0.3967		1400	0.3332	0.00	0.3266	0.97	0.3712	0.03	0.3281
	1500	0.3332	0.09	0.3602	0.83	0.2944	0.09	0.3522		1500	0.3266	0.00	0.3486	0.97	0.3516	0.03	0.3487
	1600	0.3020	0.11	0.2783	0.83	0.2515	0.06	0.2791		1600	0.3164	0.00	0.3426	0.97	0.3164	0.03	0.3417
	1700	0.2366	0.10	0.1632	0.83	0.1775	0.08	0.1713		1700	0.2982	0.00	0.2824	0.95	0.2653	0.05	0.2815
21-Feb-10	0900	0.6889	0.04	0.4496	0.89	0.2653	0.07	0.4450	21-Aug-10	0900	0.7195	0.00	0.5352	0.92	0.3129	0.08	0.5184
	1000	0.6919	0.02	0.5176	0.89	0.3129	0.08	0.5049		1000	0.7009	0.00	0.5363	0.92	0.3486	0.08	0.5221
	1100	0.6495	0.02	0.5139	0.88	0.3395	0.09	0.5007		1100	0.6442	0.00	0.4651	0.90	0.3712	0.10	0.4560
	1200	0.5428	0.04	0.4731	0.87	0.3516	0.09	0.4641		1200	0.5075	0.00	0.3712	0.92	0.3791	0.08	0.3718
	1300	0.4617	0.05	0.4308	0.92	0.3545	0.04	0.4295		1300	0.4583	0.00	0.3233	0.90	0.3791	0.10	0.3287
	1400	0.3516	0.04	0.4009	0.92	0.3426	0.05	0.3965		1400	0.3332	0.00	0.3395	0.90	0.3685	0.10	0.3423
	1500	0.3332	0.02	0.3739	0.92	0.3199	0.06	0.3697		1500	0.3233	0.00	0.3545	0.91	0.3456	0.09	0.3538
	1600	0.3093	0.02	0.3129	0.92	0.2783	0.06	0.3108		1600	0.3164	0.00	0.3332	0.91	0.3093	0.09	0.3311
	1700	0.2653	0.04	0.2093	0.91	0.2150	0.06	0.2116		1700	0.2905	0.00	0.2608	0.90	0.2515	0.10	0.2599
21-Mar-10	0900	0.7120	0.04	0.5075	0.83	0.2944	0.13	0.4888	21-Sep-10	0900	0.7138	0.02	0.5249	0.92	0.3057	0.06	0.5169
	1000	0.7009	0.03	0.5385	0.85	0.3332	0.12	0.5194		1000	0.6934	0.00	0.5352	0.96	0.3426	0.04	0.5266
	1100	0.6500	0.03	0.5009	0.87	0.3574	0.10	0.4918		1100	0.6300	0.01	0.4808	0.96	0.3630	0.03	0.4786
	1200	0.5237	0.03	0.4288	0.86	0.3685	0.11	0.4254		1200	0.4699	0.01	0.4077	0.93	0.3712	0.06	0.4064
	1300	0.4617	0.02	0.3816	0.90	0.3685	0.08	0.3824		1300	0.3602	0.00	0.3712	0.97	0.3685	0.03	0.3711
	1400	0.3395	0.03	0.3739	0.88	0.3574	0.09	0.3713		1400	0.3364	0.00	0.3712	0.97	0.3545	0.03	0.3707
	1500	0.3266	0.03	0.3630	0.87	0.3332	0.10	0.3590		1500	0.3266	0.00	0.3602	0.98	0.3266	0.02	0.3595
	1600	0.3129	0.03	0.3233	0.89	0.2944	0.08	0.3208		1600	0.3093	0.00	0.3093	0.99	0.2865	0.01	0.3091
	1700	0.2783	0.03	0.2366	0.89	0.2315	0.08	0.2376		1700	0.2653	0.00	0.2093	0.99	0.2150	0.01	0.2093
21-Apr-10	0900	0.7192	0.00	0.5374	0.88	0.3164	0.12	0.5104	21-Oct-10	0900	0.6974	0.03	0.4968	0.97	0.2905	0.00	0.5032
	1000	0.6981	0.00	0.5340	0.90	0.3516	0.10	0.5158		1000	0.6774	0.04	0.5237	0.96	0.3266	0.00	0.5303
	1100	0.6375	0.00	0.4583	0.89	0.3712	0.11	0.4487		1100	0.6080	0.01	0.4954	0.99	0.3486	0.00	0.4966
	1200	0.4911	0.00	0.3685	0.90	0.3791	0.10	0.3696		1200	0.4308	0.00	0.4496	1.00	0.3545	0.00	0.4496
	1300	0.4731	0.00	0.3233	0.92	0.3791	0.08	0.3276		1300	0.3630	0.02	0.4164	0.97	0.3516	0.01	0.4146
	1400	0.3332	0.00	0.3426	0.92	0.3658	0.08	0.3444		1400	0.3426	0.02	0.3915	0.97	0.3332	0.01	0.3898
	1500	0.3233	0.00	0.3545	0.89	0.3426	0.11	0.3532		1500	0.3233	0.02	0.3486	0.97	0.3020	0.01	0.3476
	1600	0.3129	0.00	0.3299	0.89	0.3057	0.11	0.3272		1600	0.2944	0.02	0.2697	0.98	0.2515	0.01	0.2698
	1700	0.2865	0.00	0.2515	0.88	0.2466	0.12	0.2509		1700	0.2261	0.03	0.1476	0.96	0.1705	0.01	0.1504
21-May-10	0900	0.7168	0.02	0.5428	0.96	0.3233	0.02	0.5418	21-Nov-10	0900	0.6718	0.12	0.4423	0.84	0.2653	0.03	0.4644
	1000	0.6930	0.01	0.5249	0.97	0.3545	0.02	0.5230		1000	0.6609	0.17	0.4954	0.80	0.3057	0.03	0.5166
	1100	0.6294	0.01	0.4385	0.94	0.3739	0.05	0.4371		1100	0.5986	0.17	0.4926	0.80	0.3266	0.03	0.5047
	1200	0.4808	0.02	0.3866	0.91	0.3841	0.06	0.3885		1200	0.4366	0.14	0.4634	0.82	0.3364	0.03	0.4553
	1300	0.4715	0.01	0.3093	0.94	0.3816	0.05	0.3150		1300	0.3986	0.12	0.4308	0.83	0.3299	0.04	0.4224
	1400	0.3299	0.02	0.3299	0.88	0.3685	0.10	0.3337		1400	0.3456	0.16	0.3891	0.79	0.3129	0.06	0.3781
	1500	0.3233	0.02	0.3233	0.90	0.3456	0.08	0.3505		1500	0.3199	0.16	0.3299	0.79	0.2824	0.06	0.3257
	1600	0.3253	0.02	0.3364	0.89	0.3093	0.09	0.3336		1600	0.2824	0.16	0.2366	0.79	0.2261	0.06	0.2432
	1700	0.2905	0.02	0.2697	0.88	0.2562	0.10	0.2688		1700	0.1908	0.13	0.1034	0.80	0.1353	0.07	0.1172
21-Jun-10	0900	0.7157	0.00	0.5406	0.89	0.3233	0.11	0.5165	21-Dec-10	0900	0.6495	0.14	0.3939	0.85	0.2466	0.01	0.4281
21-Jull-10	1000	0.7137	0.00	0.5260	0.89	0.3233	0.11	0.5070	21-1900-10	1000	0.6560	0.14	0.3939	0.83	0.2905	0.01	0.5014
	1100	0.6329	0.00	0.3200	0.89	0.3739	0.11	0.4347		1100	0.6080	0.19	0.4713	0.77	0.3129	0.03	0.5022
	1200	0.6329	0.00	0.3816	0.89	0.3739	0.11	0.3816		1200	0.6080	0.18	0.4853	0.78	0.3129	0.03	0.5022
	1300	0.4968	0.00	0.3816	0.88	0.3816	0.12	0.3215		1300	0.4793	0.16	0.4347	0.81	0.3233	0.03	0.4423
		0.4383		0.3164	0.92		0.08	0.3215				0.16	0.4347	0.82	0.3233	0.02	0.3839
	1400		0.00			0.3712				1400	0.3516						
	1500	0.3266	0.00	0.3516	0.97	0.3486	0.03	0.3515		1500	0.3266	0.20	0.3332	0.77	0.2783	0.02	0.3306
	1600	0.3164	0.00	0.3395	0.93	0.3164	0.07	0.3380		1600	0.2824	0.17	0.2417	0.81	0.2261	0.02	0.2484
	1700	0.2982	0.00	0.2783	0.93	0.2653	0.07	0.2774		1700	0.1972	0.15	0.1135	0.83	0.1393	0.02	0.1266

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set $8\,$

Date	Time	$\mathbf{P}_{VS,BS,C}$	P_C	$\mathbf{P}_{VX,BX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,BX,O}$	P_O	$\mathbf{P}_{FS,RS,R}$	Date	Time	$\mathbf{P}_{VX,BX,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,BS,P}$	\mathbf{P}_{P}	$\mathbf{P}_{FS,BS,O}$	P_O	$\mathbf{P}_{VS,BS,R}$
21-Jan-10	0900	0.8130	0.05	0.5377	0.80	0.3469	0.15	0.5238	21-Jul-10	0900	0.8634	0.00	0.7105	0.92	0.4593	0.08	0.6916
	1000	0.8268	0.06	0.6461	0.81	0.4193	0.13	0.6285		1000	0.8482	0.00	0.7049	0.91	0.5080	0.09	0.6880
	1100	0.7926	0.06	0.6799	0.81	0.4614	0.13	0.6589		1100	0.8013	0.00	0.6245	0.91	0.5359	0.09	0.6169
	1200	0.6944	0.08	0.6560	0.80	0.4811	0.13	0.6363		1200	0.6788	0.00	0.5576	0.91	0.5496	0.09	0.5569
	1300	0.8483	0.08	0.6294	0.83	0.4819	0.10	0.6316		1300	0.9195	0.00	0.5227	0.96	0.5486	0.04	0.5238
	1400	0.5099	0.08	0.5915	0.84	0.4646	0.09	0.5744		1400	0.4825	0.00	0.5117	0.97	0.5356	0.03	0.5125
	1500	0.4716	0.09	0.5260	0.83	0.4269	0.09	0.5128		1500	0.4655	0.00	0.5389	0.97	0.5066	0.03	0.5379
	1600	0.4190	0.11	0.4104	0.83	0.3582	0.06	0.4080		1600	0.4489	0.00	0.5206	0.97	0.4574	0.03	0.5185
	1700	0.3158	0.10	0.2219	0.83	0.2446	0.08	0.2327		1700	0.4189	0.00	0.4294	0.95	0.3834	0.05	0.4269
21-Feb-10	0900	0.8399	0.04	0.6085	0.89	0.3809	0.07	0.6006	21-Aug-10	0900	0.8646	0.00	0.7065	0.92	0.4531	0.08	0.6874
	1000	0.8436	0.02	0.6865	0.89	0.4501	0.08	0.6708		1000	0.8501	0.00	0.7083	0.92	0.5038	0.08	0.6929
	1100	0.8088	0.02	0.6889	0.88	0.4896	0.09	0.6729		1100	0.8024	0.00	0.6356	0.90	0.5326	0.10	0.6256
	1200	0.7104	0.04	0.6524	0.87	0.5083	0.09	0.6409		1200	0.6755	0.00	0.5451	0.92	0.5461	0.08	0.5452
	1300	0.8531	0.05	0.6183	0.92	0.5105	0.04	0.6255		1300	0.9162	0.00	0.6755	0.90	0.5459	0.10	0.6629
	1400	0.5015	0.04	0.5911	0.92	0.4956	0.05	0.5834		1400	0.4817	0.00	0.5238	0.90	0.5304	0.10	0.5244
	1500	0.4721	0.02	0.5501	0.92	0.4614	0.06	0.5430		1500	0.4617	0.00	0.5399	0.91	0.4982	0.09	0.5363
	1600	0.4329	0.02	0.4650	0.92	0.4016	0.06	0.4605		1600	0.4411	0.00	0.5047	0.91	0.4467	0.09	0.4997
	1700	0.3641	0.04	0.3016	0.91	0.3003	0.06	0.3037		1700	0.4024	0.00	0.3916	0.90	0.3589	0.10	0.3884
21-Mar-10	0900	0.8592	0.04	0.6753	0.83	0.4227	0.13	0.6506	21-Sep-10	0900	0.8604	0.02	0.6944	0.92	0.4419	0.06	0.6840
	1000	0.8503	0.03	0.7097	0.85	0.4815	0.12	0.6872		1000	0.8443	0.00	0.7071	0.96	0.4936	0.04	0.6977
	1100	0.8077	0.03	0.6746	0.87	0.5165	0.10	0.6636		1100	0.7900	0.01	0.6555	0.96	0.5220	0.03	0.6525
	1200	0.6945	0.03	0.6068	0.86	0.5308	0.11	0.6014		1200	0.6375	0.01	0.5870	0.93	0.5352	0.06	0.5847
	1300	0.9038	0.02	0.5708	0.90	0.5321	0.08	0.5750		1300	0.5145	0.00	0.5615	0.97	0.5306	0.03	0.5605
	1400	0.4897	0.03	0.5612	0.88	0.5165	0.09	0.5550		1400	0.4822	0.00	0.5575	0.97	0.5116	0.03	0.5559
	1500	0.4643	0.03	0.5471	0.87	0.4819	0.10	0.5381		1500	0.4585	0.00	0.5399	0.98	0.4736	0.02	0.5384
	1600	0.4377	0.03	0.4871	0.89	0.4240	0.08	0.4808		1600	0.4275	0.00	0.4664	0.99	0.4089	0.01	0.4658
	1700	0.3827	0.03	0.3458	0.89	0.3309	0.08	0.3459		1700	0.3644	0.00	0.3017	0.99	0.3029	0.01	0.3017
21-Apr-10	0900	0.8645	0.00	0.7089	0.88	0.4570	0.12	0.6781	21-Oct-10	0900	0.8480	0.03	0.6622	0.97	0.4197	0.00	0.6682
	1000	0.8481	0.00	0.7056	0.90	0.5056	0.10	0.6856		1000	0.8320	0.04	0.6953	0.96	0.4719	0.00	0.7012
	1100	0.7967	0.00	0.6303	0.89	0.5329	0.11	0.6195		1100	0.7713	0.01	0.6715	0.99	0.5025	0.00	0.6726
	1200	0.6580	0.00	0.5418	0.90	0.5461	0.10	0.5422		1200	0.5934	0.00	0.6327	1.00	0.5127	0.00	0.6327
	1300	0.9290	0.00	0.5113	0.92	0.5433	0.08	0.5138		1300	0.5170	0.02	0.6047	0.97	0.5063	0.01	0.6018
	1400	0.4793	0.00	0.5293	0.92	0.5278	0.08	0.5292		1400	0.4869	0.02	0.5751	0.97	0.4819	0.01	0.5722
	1500	0.4612	0.00	0.5392	0.89	0.4941	0.11	0.5342		1500	0.4553	0.02	0.5162	0.97	0.4359	0.01	0.5140
	1600	0.4387	0.00	0.4978	0.89	0.4383	0.11	0.4912		1600	0.4067	0.01	0.3982	0.98	0.5451	0.01	0.3999
	1700	0.3950	0.00	0.3761	0.88	0.3490	0.12	0.3728		1700	0.2962	0.03	0.1951	0.96	0.3713	0.01	0.2003
21-May-10	0900	0.8628	0.02	0.7147	0.96	0.4685	0.02	0.7126	21-Nov-10	0900	0.8272	0.12	0.5999	0.84	0.3834	0.03	0.6204
	1000	0.8440	0.01	0.6975	0.97	0.5130	0.02	0.6951		1000	0.8186	0.17	0.6654	0.80	0.4399	0.03	0.6834
	1100	0.7912	0.01	0.6081	0.94	0.5389	0.05	0.6063		1100	0.7626	0.17	0.6687	0.80	0.4719	0.03	0.6778
	1200	0.6447	0.02	0.5795	0.91	0.5499	0.06	0.5790		1200	0.6020	0.14	0.6451	0.82	0.4840	0.03	0.6335
	1300	0.9315	0.01	0.5055	0.94	0.5482	0.05	0.5124		1300	0.8914	0.12	0.6157	0.83	0.4786	0.04	0.6433
	1400	0.4787	0.02	0.5166	0.88	0.5321	0.10	0.5173		1400	0.4922	0.16	0.5684	0.79	0.4532	0.06	0.5501
	1500	0.4633	0.02	0.5400	0.90	0.5010	0.08	0.5354		1500	0.4498	0.16	0.4864	0.79	0.4033	0.06	0.4761
	1600	0.4462	0.02	0.5112	0.89	0.4485	0.09	0.5044		1600	0.3858	0.16	0.3425	0.79	0.3202	0.06	0.3480
	1700	0.4068	0.02	0.4056	0.88	0.3652	0.10	0.4017		1700	0.2428	0.13	0.1291	0.80	0.1760	0.07	0.1474
21-Jun-10	0900	0.8618	0.00	0.7135	0.89	0.4660	0.11	0.6860	21-Dec-10	0900	0.8078	0.14	0.5391	0.85	0.3489	0.01	0.5746
	1000	0.8442	0.00	0.6997	0.89	0.5113	0.11	0.6788		1000	0.8148	0.19	0.6369	0.77	0.4163	0.03	0.6642
	1100	0.7936	0.00	0.6137	0.89	0.5380	0.11	0.6053		1100	0.7718	0.18	0.6597	0.78	0.4541	0.03	0.6736
	1200	0.6633	0.00	0.5694	0.88	0.5498	0.12	0.5670		1200	0.6489	0.16	0.6465	0.81	0.4703	0.03	0.6412
	1300	0.9196	0.00	0.5154	0.92	0.5484	0.08	0.5179		1300	0.8959	0.16	0.6177	0.82	0.4681	0.02	0.6594
	1400	0.4816	0.00	0.5143	0.93	0.5342	0.07	0.5156		1400	0.5027	0.19	0.5715	0.78	0.4467	0.02	0.5555
	1500	0.4711	0.00	0.5408	0.97	0.5056	0.03	0.5396		1500	0.4571	0.20	0.4895	0.77	0.4015	0.02	0.4810
	1600	0.4490	0.00	0.5206	0.93	0.4567	0.07	0.5163		1600	0.3923	0.17	0.3491	0.81	0.3211	0.02	0.3559
	1700	0.4038	0.00	0.4281	0.93	0.3807	0.07	0.4249		1700	0.2574	0.15	0.1463	0.83	0.3262	0.02	0.1669

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set $8\,$

Date	Time	$\mathbf{P}_{FS,\mathit{UD},\mathit{C}}$	\mathbf{P}_C	$\mathbf{P}_{VS,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{FS,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},\mathit{UD},R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{\mathrm{FS},UD,O}$	P_O	$\mathbf{P}_{FS,UD,R}$
21-Jan-10	0900	0.9887	0.05	0.9887	0.80	0.9887	0.15	0.9887	21-Jul-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.06	0.9887	0.81	0.9887	0.13	0.9887		1000	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1100	0.9887	0.06	0.9879	0.81	0.9887	0.13	0.9881		1100	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1200	0.9887	0.08	0.9887	0.80	0.9887	0.13	0.9887		1200	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1300	0.9584	0.08	0.9887	0.83	0.9887	0.10	0.9865		1300	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1400	0.9867	0.08	0.9873	0.84	0.9887	0.09	0.9874		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.09	0.9867	0.83	0.9887	0.09	0.9871		1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1600	0.9887	0.11	0.9887	0.83	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9865	0.97	0.9887	0.03	0.9866
	1700	0.9887	0.10	0.9887	0.83	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.95	0.9887	0.05	0.9887
21-Feb-10	0900	0.9887	0.04	0.9887	0.89	0.9887	0.07	0.9887	21-Aug-10	0900	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1000	0.9887	0.02	0.9887	0.89	0.9887	0.08	0.9887		1000	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1100	0.9887	0.02	0.9887	0.88	0.9887	0.09	0.9887		1100	0.9887	0.00	0.9887	0.90	0.9869	0.10	0.9886
	1200	0.9887	0.04	0.9887	0.87	0.9887	0.09	0.9887		1200	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887
	1300	0.9877	0.05	0.9887	0.92	0.9887	0.04	0.9887		1300	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
	1400	0.9866	0.04	0.9887	0.92	0.9887	0.05	0.9887		1400	0.9887	0.00	0.9864	0.90	0.9887	0.10	0.9867
	1500	0.9887	0.02	0.9869	0.92	0.9887	0.06	0.9871		1500	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1600	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887		1600	0.9887	0.00	0.9887	0.91	0.9887	0.09	0.9887
	1700	0.9887	0.04	0.9887	0.91	0.9887	0.06	0.9887		1700	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887
21-Mar-10	0900	0.9887	0.04	0.9879	0.83	0.9887	0.13	0.9881	21-Sep-10	0900	0.9887	0.02	0.9887	0.92	0.9887	0.06	0.9887
	1000	0.9887	0.03	0.9887	0.85	0.9887	0.12	0.9887		1000	0.9887	0.00	0.9887	0.96	0.9887	0.04	0.9887
	1100	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1100	0.9887	0.01	0.9887	0.96	0.9887	0.03	0.9887
	1200	0.9887	0.03	0.9887	0.86	0.9887	0.11	0.9887		1200	0.9887	0.01	0.9887	0.93	0.9887	0.06	0.9887
	1300	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1300	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1400	0.9887	0.03	0.9887	0.88	0.9887	0.09	0.9887		1400	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887
	1500	0.9887	0.03	0.9887	0.87	0.9887	0.10	0.9887		1500	0.9862	0.00	0.9867	0.98	0.9887	0.03	0.9868
	1600	0.9887	0.03	0.9887	0.89	0.9887	0.10	0.9887		1600	0.9887	0.00	0.9887	0.99	0.9853	0.02	0.9887
	1700	0.9887	0.03	0.9887	0.89	0.9887	0.08	0.9887		1700	0.9887	0.00	0.9887	0.99	0.9833	0.01	0.9887
21-Apr-10	0900	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887	21-Oct-10	0900	0.9887	0.03	0.9887	0.97	0.9887	0.00	0.9887
	1000	0.9887	0.00	0.9887	0.90	0.9866	0.10	0.9885		1000	0.9887	0.04	0.9880	0.96	0.9887	0.00	0.9880
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.01	0.9887	0.99	0.9887	0.00	0.9887
	1200	0.9887	0.00	0.9887	0.90	0.9887	0.10	0.9887		1200	0.9887	0.00	0.9876	1.00	0.9887	0.00	0.9876
	1300	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1400	0.9887	0.00	0.9887	0.92	0.9887	0.08	0.9887		1400	0.9887	0.02	0.9871	0.97	0.9887	0.01	0.9872
	1500	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1500	0.9887	0.02	0.9887	0.97	0.9887	0.01	0.9887
	1600	0.9887	0.00	0.9863	0.89	0.9887	0.11	0.9866		1600	0.9887	0.01	0.9887	0.98	0.9887	0.01	0.9887
	1700	0.9853	0.00	0.9887	0.88	0.9887	0.12	0.9887		1700	0.9887	0.03	0.9887	0.96	0.9887	0.01	0.9887
21-May-10	0900	0.9887	0.02	0.9887	0.96	0.9887	0.02	0.9887	21-Nov-10	0900	0.9884	0.12	0.9887	0.84	0.9887	0.03	0.9887
	1000	0.9887	0.01	0.9887	0.97	0.9887	0.02	0.9887		1000	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1100	0.9887	0.01	0.9887	0.94	0.9887	0.05	0.9887		1100	0.9887	0.17	0.9887	0.80	0.9887	0.03	0.9887
	1200	0.9887	0.02	0.9887	0.91	0.9870	0.06	0.9886		1200	0.9875	0.14	0.9887	0.82	0.9887	0.03	0.9886
	1300	0.9877	0.01	0.9887	0.94	0.9887	0.05	0.9887		1300	0.9887	0.12	0.9875	0.83	0.9887	0.04	0.9877
	1400	0.9887	0.02	0.9863	0.88	0.9887	0.10	0.9866		1400	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1500	0.9887	0.02	0.9887	0.90	0.9887	0.08	0.9887		1500	0.9887	0.16	0.9887	0.79	0.9887	0.06	0.9887
	1600	0.9887	0.02	0.9864	0.89	0.9887	0.08	0.9866		1600	0.9852	0.16	0.9887	0.79	0.9887	0.06	0.9882
	1700	0.9887	0.02	0.9887	0.88	0.9887	0.10	0.9887		1700	0.9832	0.10	0.9884	0.79	0.9886	0.00	0.9885
21.1 - 10	0900	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887	21-Dec-10	0900	0.9887	0.14	0.9887	0.85	0.9887	0.01	0.9887
21-Jun-10	1000								21-Dec-10	1000		0.14					
		0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887			0.9887		0.9887	0.77	0.9887	0.03	0.9887
	1100	0.9887	0.00	0.9887	0.89	0.9887	0.11	0.9887		1100	0.9887	0.18	0.9887	0.78	0.9887	0.03	0.9887
	1200	0.9887	0.00	0.9887	0.88	0.9887	0.12	0.9887		1200	0.9887	0.16	0.9887	0.81	0.9887	0.03	0.9887
	1300	0.9877	0.00	0.9887	0.92	0.9887	0.08	0.9887		1300	0.9746	0.16	0.9887	0.82	0.9887	0.02	0.9865
	1400	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1400	0.9887	0.19	0.9871	0.78	0.9887	0.02	0.9875
	1500	0.9887	0.00	0.9887	0.97	0.9887	0.03	0.9887		1500	0.9862	0.20	0.9887	0.77	0.9887	0.02	0.9882
	1600	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1600	0.9887	0.17	0.9887	0.81	0.9887	0.02	0.9887
	1700	0.9887	0.00	0.9887	0.93	0.9887	0.07	0.9887		1700	0.9887	0.15	0.9883	0.83	0.9887	0.02	0.9884

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 8

Date	Time	$\mathbf{P}_{VS,US,C}$	P_C	$\mathbf{P}_{V\mathbf{X},U\mathbf{X},P}$	P_P	$\mathbf{P}_{FS,US,O}$	P_O	$\mathbf{P}_{FS,US,R}$	Date	Time	$P_{\mathrm{FX},UX,C}$	\mathbf{P}_C	$\mathbf{P}_{FS,US,P}$	P_P	$\mathbf{P}_{VS,US,O}$	P_O	$\mathbf{P}_{FS,US,R}$
21-Jan-10	0900	0.8840	0.05	0.8933	0.80	0.9035	0.15	0.8943	21-Jul-10	0900	0.8822	0.00	0.8928	0.92	0.9035	0.08	0.8936
	1000	0.8826	0.06	0.8943	0.81	0.9035	0.13	0.8947		1000	0.8812	0.00	0.8931	0.91	0.9035	0.09	0.8940
	1100	0.8829	0.06	0.9014	0.81	0.9041	0.13	0.9005		1100	0.8815	0.00	0.8977	0.91	0.9037	0.09	0.8982
	1200	0.8921	0.08	0.9011	0.80	0.9030	0.13	0.9006		1200	0.8884	0.00	0.9100	0.91	0.9033	0.09	0.9094
	1300	0.9363	0.08	0.9069	0.83	0.9028	0.10	0.9087		1300	0.9412	0.00	0.9190	0.96	0.9029	0.04	0.9183
	1400	0.9076	0.08	0.9093	0.84	0.9037	0.09	0.9087		1400	0.9071	0.00	0.9163	0.97	0.9037	0.03	0.9159
	1500	0.9055	0.09	0.9093	0.83	0.9025	0.09	0.9084		1500	0.9044	0.00	0.9127	0.97	0.9030	0.03	0.9124
	1600	0.9024	0.11	0.9078	0.83	0.9044	0.06	0.9070		1600	0.9018	0.00	0.9120	0.97	0.9029	0.03	0.9117
	1700	0.9010	0.10	0.9079	0.83	0.9037	0.08	0.9069		1700	0.9016	0.00	0.9098	0.95	0.9031	0.05	0.9094
21-Feb-10	0900	0.8838	0.04	0.8933	0.89	0.9022	0.07	0.8936	21-Aug-10	0900	0.8819	0.00	0.8924	0.92	0.9038	0.08	0.8933
	1000	0.8820	0.02	0.8935	0.89	0.9040	0.08	0.8940		1000	0.8812	0.00	0.8929	0.92	0.9029	0.08	0.8937
	1100	0.8826	0.02	0.8961	0.88	0.9026	0.09	0.8964		1100	0.8815	0.00	0.8971	0.90	0.9027	0.10	0.8976
	1200	0.8897	0.04	0.9011	0.87	0.9035	0.09	0.9009		1200	0.8916	0.00	0.9081	0.92	0.9034	0.08	0.9077
	1300	0.9373	0.05	0.9081	0.92	0.9031	0.04	0.9093		1300	0.9411	0.00	0.8752	0.90	0.9034	0.10	0.8779
	1400	0.9073	0.04	0.9104	0.92	0.9038	0.05	0.9100		1400	0.9067	0.00	0.9150	0.90	0.9030	0.10	0.9139
	1500	0.9038	0.02	0.9099	0.92	0.9041	0.06	0.9094		1500	0.9048	0.00	0.9126	0.91	0.9038	0.09	0.9119
	1600	0.9012	0.02	0.9093	0.92	0.9028	0.06	0.9087		1600	0.9021	0.00	0.9112	0.91	0.9036	0.09	0.9105
	1700	0.9006	0.04	0.9087	0.91	0.9042	0.06	0.9081		1700	0.9000	0.00	0.9093	0.90	0.9044	0.10	0.9088
21-Mar-10	0900	0.8821	0.04	0.8926	0.83	0.9033	0.13	0.8936	21-Sep-10	0900	0.8820	0.02	0.8925	0.92	0.9031	0.06	0.8929
	1000	0.8814	0.03	0.8931	0.85	0.9028	0.12	0.8939		1000	0.8813	0.00	0.8937	0.96	0.9036	0.04	0.8941
	1100	0.8817	0.03	0.8966	0.87	0.9039	0.10	0.8968		1100	0.8821	0.01	0.8973	0.96	0.9031	0.03	0.8973
	1200	0.8910	0.03	0.9034	0.86	0.9030	0.11	0.9029		1200	0.8935	0.01	0.9062	0.93	0.9036	0.06	0.9059
	1300	0.9403	0.02	0.9124	0.90	0.9035	0.08	0.9123		1300	0.9077	0.00	0.9132	0.97	0.9030	0.03	0.9128
	1400	0.9072	0.03	0.9132	0.88	0.9039	0.09	0.9122		1400	0.9062	0.00	0.9123	0.97	0.9024	0.03	0.9120
	1500	0.9034	0.03	0.9117	0.87	0.9027	0.10	0.9105		1500	0.9040	0.00	0.9116	0.98	0.9034	0.02	0.9115
	1600	0.9014	0.03	0.9099	0.89	0.9031	0.08	0.9091		1600	0.8995	0.00	0.9100	0.99	0.9040	0.01	0.9099
	1700	0.8997	0.03	0.9089	0.89	0.9037	0.08	0.9083		1700	0.8994	0.00	0.9087	0.99	0.9024	0.01	0.9086
21-Apr-10	0900	0.8821	0.00	0.8925	0.88	0.9030	0.12	0.8937	21-Oct-10	0900	0.8823	0.03	0.8933	0.97	0.9035	0.00	0.8929
	1000	0.8815	0.00	0.8929	0.90	0.9032	0.10	0.8939		1000	0.8818	0.04	0.8941	0.96	0.9029	0.00	0.8936
	1100	0.8817	0.00	0.8980	0.89	0.9027	0.11	0.8985		1100	0.8829	0.01	0.8976	0.99	0.9037	0.00	0.8974
	1200	0.8925	0.00	0.9090	0.90	0.9034	0.10	0.9085		1200	0.8972	0.00	0.9046	1.00	0.9029	0.00	0.9046
	1300	0.9415	0.00	0.9168	0.92	0.9030	0.08	0.9158		1300	0.9069	0.02	0.9101	0.97	0.9030	0.01	0.9099
	1400	0.9071	0.00	0.9152	0.92	0.9033	0.08	0.9143		1400	0.9063	0.02	0.9105	0.97	0.9028	0.01	0.9104
	1500	0.9052	0.00	0.9124	0.89	0.9033	0.11	0.9114		1500	0.9020	0.02	0.9104	0.97	0.9034	0.01	0.9101
	1600	0.9014	0.00	0.9110	0.89	0.9040	0.11	0.9103		1600	0.9010	0.01	0.9089	0.98	0.9038	0.01	0.9087
	1700	0.8996	0.00	0.9097	0.88	0.9024	0.12	0.9088		1700	0.8991	0.03	0.9082	0.96	0.9031	0.01	0.9079
21-May-10	0900	0.8820	0.02	0.8924	0.96	0.9030	0.02	0.8924	21-Nov-10	0900	0.8831	0.12	0.8942	0.84	0.9031	0.03	0.8931
	1000	0.8812	0.01	0.8933	0.97	0.9029	0.02	0.8934		1000	0.8825	0.17	0.8951	0.80	0.9024	0.03	0.8933
	1100	0.8824	0.01	0.8986	0.94	0.9027	0.05	0.8986		1100	0.8840	0.17	0.8981	0.80	0.9029	0.03	0.8959
	1200	0.8926	0.02	0.9124	0.91	0.9033	0.06	0.9114		1200	0.8981	0.14	0.9034	0.82	0.9033	0.03	0.9026
	1300	0.9416	0.01	0.9191	0.94	0.9029	0.05	0.9185		1300	0.9388	0.12	0.9085	0.83	0.9031	0.04	0.9120
	1400	0.9072	0.02	0.9157	0.88	0.9035	0.10	0.9143		1400	0.9054	0.16	0.9092	0.79	0.9038	0.06	0.9083
	1500	0.9051	0.02	0.9128	0.90	0.9033	0.08	0.9119		1500	0.9032	0.16	0.9088	0.79	0.9029	0.06	0.9076
	1600	0.9011	0.02	0.9107	0.89	0.9036	0.09	0.9099		1600	0.9006	0.16	0.9077	0.79	0.9026	0.06	0.9063
	1700	0.9012	0.02	0.9095	0.88	0.9021	0.10	0.9086		1700	0.8975	0.13	0.9070	0.80	0.9044	0.07	0.9056
21-Jun-10	0900	0.8822	0.00	0.8929	0.89	0.9026	0.11	0.8940	21-Dec-10	0900	0.8832	0.14	0.8940	0.85	0.9024	0.01	0.8926
	1000	0.8820	0.00	0.8938	0.89	0.9024	0.11	0.8947		1000	0.8828	0.19	0.8948	0.77	0.9029	0.03	0.8927
	1100	0.8815	0.00	0.8982	0.89	0.9040	0.11	0.8988		1100	0.8842	0.18	0.8979	0.78	0.9026	0.03	0.8956
	1200	0.8915	0.00	0.9112	0.88	0.9033	0.12	0.9102		1200	0.8950	0.16	0.9024	0.81	0.9035	0.03	0.9012
	1300	0.9412	0.00	0.9193	0.92	0.9029	0.08	0.9180		1300	0.9383	0.16	0.9068	0.82	0.9033	0.02	0.9118
	1400	0.9067	0.00	0.9158	0.93	0.9032	0.07	0.9149		1400	0.9067	0.19	0.9084	0.78	0.9036	0.02	0.9079
	1500	0.8927	0.00	0.9130	0.97	0.9031	0.03	0.9127		1500	0.9049	0.20	0.9084	0.77	0.9028	0.02	0.9076
	1600	0.9018	0.00	0.9120	0.93	0.9030	0.07	0.9114		1600	0.9028	0.17	0.9083	0.81	0.9025	0.02	0.9072
	1700	0.8937	0.00	0.9109	0.93	0.9027	0.07	0.9103		1700	0.8998	0.15	0.9083	0.83	0.9036	0.02	0.9070

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 8

Date	Time	$\mathbf{P}_{FS,PG,C}$	P_C	$\mathbf{P}_{VX,PG,P}$	P_P	$\mathbf{P}_{VX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$	Date	Time	$\mathbf{P}_{FS,PG,C}$	P_C	$\mathbf{P}_{VX,PG,P}$	P_P	$\mathbf{P}_{FS,PG,O}$	P_O	$\mathbf{P}_{FX,PG,R}$
21-Jan-10	0900	0.8881	0.05	0.9555	0.80	0.9759	0.15	0.9550	21-Jul-10	0900	0.8576	0.00	0.9257	0.92	0.9661	0.08	0.9288
	1000	0.8817	0.06	0.9384	0.81	0.9697	0.13	0.9388		1000	0.8703	0.00	0.9264	0.91	0.9604	0.09	0.9294
	1100	0.8975	0.06	0.9317	0.81	0.9658	0.13	0.9339		1100	0.8933	0.00	0.9450	0.91	0.9573	0.09	0.9461
	1200	0.9266	0.08	0.9343	0.80	0.9638	0.13	0.9375		1200	0.9261	0.00	0.9598	0.91	0.9552	0.09	0.9594
	1300	0.9648	0.08	0.9383	0.83	0.9633	0.10	0.9427		1300	0.9753	0.00	0.9668	0.96	0.9552	0.04	0.9663
	1400	0.9501	0.08	0.9443	0.84	0.9656	0.09	0.9466		1400	0.9582	0.00	0.9631	0.97	0.9570	0.03	0.9629
	1500	0.9550	0.09	0.9528	0.83	0.9688	0.09	0.9544		1500	0.9590	0.00	0.9554	0.97	0.9607	0.03	0.9555
	1600	0.9618	0.11	0.9666	0.83	0.9750	0.06	0.9667		1600	0.9599	0.00	0.9558	0.97	0.9657	0.03	0.9561
	1700	0.9741	0.10	0.9830	0.83	0.9834	0.08	0.9822		1700	0.9635	0.00	0.9659	0.95	0.9729	0.05	0.9663
21-Feb-10	0900	0.8717	0.04	0.9461	0.89	0.9733	0.07	0.9454	21-Aug-10	0900	0.8566	0.00	0.9266	0.92	0.9663	0.08	0.9296
	1000	0.8718	0.02	0.9300	0.89	0.9671	0.08	0.9317		1000	0.8700	0.00	0.9254	0.92	0.9609	0.08	0.9281
	1100	0.8905	0.02	0.9288	0.88	0.9629	0.09	0.9311		1100	0.8930	0.00	0.9422	0.90	0.9577	0.10	0.9437
	1200	0.9235	0.04	0.9369	0.87	0.9602	0.09	0.9386		1200	0.9292	0.00	0.9597	0.92	0.9556	0.08	0.9594
	1300	0.9652	0.05	0.9430	0.92	0.9605	0.04	0.9447		1300	0.9742	0.00	0.9656	0.90	0.9556	0.10	0.9647
	1400	0.9533	0.04	0.9453	0.92	0.9618	0.05	0.9464		1400	0.9578	0.00	0.9606	0.90	0.9577	0.10	0.9603
	1500	0.9566	0.02	0.9502	0.92	0.9658	0.06	0.9513		1500	0.9585	0.00	0.9549	0.91	0.9617	0.09	0.9555
	1600	0.9605	0.02	0.9602	0.92	0.9716	0.06	0.9609		1600	0.9607	0.00	0.9574	0.91	0.9674	0.09	0.9582
	1700	0.9701	0.04	0.9766	0.91	0.9797	0.06	0.9766		1700	0.9645	0.00	0.9689	0.90	0.9750	0.10	0.9695
21-Mar-10	0900	0.8609	0.04	0.9338	0.83	0.9697	0.13	0.9353	21-Sep-10	0900	0.8598	0.02	0.9295	0.92	0.9676	0.06	0.9300
	1000	0.8693	0.03	0.9247	0.85	0.9635	0.12	0.9275		1000	0.8739	0.00	0.9251	0.96	0.9624	0.04	0.9268
	1100	0.8908	0.03	0.9330	0.87	0.9595	0.10	0.9342		1100	0.8978	0.01	0.9373	0.96	0.9588	0.03	0.9376
	1200	0.9275	0.03	0.9474	0.86	0.9576	0.11	0.9479		1200	0.9349	0.01	0.9514	0.93	0.9572	0.06	0.9515
	1300	0.9719	0.02	0.9540	0.90	0.9574	0.08	0.9547		1300	0.9535	0.00	0.9550	0.97	0.9574	0.03	0.9550
	1400	0.9567	0.03	0.9525	0.88	0.9595	0.09	0.9532		1400	0.9562	0.00	0.9527	0.97	0.9599	0.03	0.9529
	1500	0.9577	0.03	0.9521	0.87	0.9633	0.10	0.9533		1500	0.9585	0.00	0.9529	0.98	0.9640	0.02	0.9532
	1600	0.9608	0.03	0.9585	0.89	0.9691	0.08	0.9593		1600	0.9619	0.00	0.9609	0.99	0.9711	0.01	0.9610
	1700	0.9673	0.03	0.9727	0.89	0.9770	0.08	0.9729		1700	0.9705	0.00	0.9766	0.99	0.9790	0.01	0.9766
21-Apr-10	0900	0.8568	0.00	0.9258	0.88	0.9660	0.12	0.9307	21-Oct-10	0900	0.8686	0.03	0.9360	0.97	0.9694	0.00	0.9338
	1000	0.8715	0.00	0.9260	0.90	0.9612	0.10	0.9296		1000	0.8813	0.04	0.9276	0.96	0.9643	0.00	0.9256
	1100	0.8953	0.00	0.9436	0.89	0.9575	0.11	0.9452		1100	0.9048	0.01	0.9324	0.99	0.9614	0.00	0.9321
	1200	0.9309	0.00	0.9605	0.90	0.9556	0.10	0.9600		1200	0.9416	0.00	0.9408	1.00	0.9599	0.00	0.9408
	1300	0.9766	0.00	0.9657	0.92	0.9562	0.08	0.9650		1300	0.9509	0.02	0.9446	0.97	0.9610	0.01	0.9449
	1400	0.9582	0.00	0.9593	0.92	0.9581	0.08	0.9592		1400	0.9545	0.02	0.9478	0.97	0.9633	0.01	0.9481
	1500	0.9585	0.00	0.9547	0.89	0.9621	0.11	0.9555		1500	0.9579	0.02	0.9541	0.97	0.9681	0.01	0.9543
	1600	0.9601	0.00	0.9576	0.89	0.9704	0.11	0.9590		1600	0.9640	0.01	0.9680	0.98	0.9750	0.01	0.9680
	1700	0.9653	0.00	0.9706	0.88	0.9760	0.12	0.9713		1700	0.9770	0.03	0.9852	0.96	0.9850	0.01	0.9849
21-May-10	0900	0.8580	0.02	0.9247	0.96	0.9647	0.02	0.9241	21-Nov-10	0900	0.8816	0.12	0.9463	0.84	0.9729	0.03	0.9393
	1000	0.8723	0.01	0.9276	0.97	0.9597	0.02	0.9277		1000	0.8876	0.17	0.9336	0.80	0.9679	0.03	0.9271
	1100	0.8985	0.01	0.9479	0.94	0.9565	0.05	0.9479		1100	0.9078	0.17	0.9321	0.80	0.9643	0.03	0.9291
	1200	0.9344	0.02	0.9580	0.91	0.9555	0.06	0.9573		1200	0.9381	0.14	0.9363	0.82	0.9634	0.03	0.9374
	1300	0.9779	0.01	0.9678	0.94	0.9557	0.05	0.9672		1300	0.1426	0.12	0.9406	0.83	0.9635	0.04	0.8441
	1400	0.9588	0.02	0.9618	0.88	0.9574	0.10	0.9613		1400	0.9522	0.16	0.9468	0.79	0.9663	0.06	0.9487
	1500	0.9585	0.02	0.9553	0.90	0.9613	0.08	0.9558		1500	0.9576	0.16	0.9583	0.79	0.9714	0.06	0.9589
	1600	0.9600	0.02	0.9569	0.89	0.9670	0.09	0.9579		1600	0.9662	0.16	0.9741	0.79	0.9780	0.06	0.9731
	1700	0.9640	0.02	0.9679	0.88	0.9744	0.10	0.9684		1700	0.9803	0.13	0.9900	0.80	0.9880	0.07	0.9886
21-Jun-10	0900	0.8591	0.00	0.9250	0.89	0.9651	0.11	0.9295	21-Dec-10	0900	0.8915	0.14	0.9553	0.85	0.9760	0.01	0.9466
	1000	0.9876	0.00	0.9275	0.89	0.9602	0.11	0.9311		1000	0.8879	0.19	0.9394	0.77	0.9706	0.03	0.9304
	1100	0.7749	0.00	0.9467	0.89	0.9568	0.11	0.9479		1100	0.9052	0.18	0.9338	0.78	0.9662	0.03	0.9296
	1200	0.9301	0.00	0.9589	0.88	0.9549	0.12	0.9584		1200	0.9355	0.16	0.9356	0.81	0.9651	0.03	0.9366
	1300	0.9755	0.00	0.9679	0.92	0.9554	0.08	0.9669		1300	0.9717	0.16	0.9394	0.82	0.9650	0.02	0.9451
	1400	0.9578	0.00	0.9626	0.93	0.9572	0.07	0.9623		1400	0.9498	0.19	0.9466	0.78	0.9674	0.02	0.9477
	1500	0.9590	0.00	0.9553	0.97	0.9606	0.03	0.9554		1500	0.9565	0.20	0.9579	0.77	0.9716	0.02	0.9579
	1600	0.9599	0.00	0.9558	0.93	0.9663	0.07	0.9565		1600	0.9643	0.17	0.9732	0.81	0.9777	0.02	0.9718
	1700	0.9635	0.00	0.9662	0.93	0.9733	0.07	0.9667		1700	0.9788	0.15	0.9889	0.83	0.9869	0.02	0.9873

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 8

Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	P_P	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.5306	0.05	0.1627	0.80	0.0572	0.15	0.1666	21-Jul-10	0900	0.6430	0.00	0.3355	0.92	0.1028	0.08	0.3180
	1000	0.5560	0.06	0.2573	0.81	0.0837	0.13	0.2541		1000	0.6073	0.00	0.3258	0.91	0.1263	0.09	0.3087
	1100	0.4855	0.06	0.2813	0.81	0.1028	0.13	0.2714		1100	0.5056	0.00	0.2261	0.91	0.1424	0.09	0.2189
	1200	0.3159	0.08	0.2516	0.80	0.1123	0.13	0.2384		1200	0.2989	0.00	0.1470	0.91	0.1515	0.09	0.1473
	1300	0.2535	0.08	0.2139	0.83	0.1123	0.10	0.2071		1300	0.2301	0.00	0.1052	0.96	0.1515	0.04	0.1072
	1400	0.1309	0.08	0.1759	0.84	0.1052	0.09	0.1664		1400	0.1123	0.00	0.1075	0.97	0.1424	0.03	0.1087
	1500	0.1123	0.09	0.1332	0.83	0.0861	0.09	0.1274		1500	0.1075	0.00	0.1240	0.97	0.1263	0.03	0.1240
	1600	0.0909	0.11	0.0765	0.83	0.0620	0.06	0.0771		1600	0.1004	0.00	0.1193	0.97	0.1004	0.03	0.1187
	1700	0.0548	0.10	0.0265	0.83	0.0311	0.08	0.0296		1700	0.0885	0.00	0.0789	0.95	0.0693	0.05	0.0784
21-Feb-10	0900	0.5898	0.04	0.2200	0.89	0.0693	0.07	0.2225	21-Aug-10	0900	0.6463	0.00	0.3307	0.92	0.0980	0.08	0.3132
	1000	0.5953	0.02	0.3058	0.89	0.0980	0.08	0.2955		1000	0.6118	0.00	0.3323	0.92	0.1240	0.08	0.3166
	1100	0.5179	0.02	0.3007	0.88	0.1170	0.09	0.2885		1100	0.5085	0.00	0.2380	0.90	0.1424	0.10	0.2288
	1200	0.3418	0.04	0.2477	0.87	0.1263	0.09	0.2396		1200	0.2919	0.00	0.1424	0.92	0.1492	0.08	0.1429
	1300	0.2341	0.05	0.1994	0.92	0.1286	0.04	0.1985		1300	0.2301	0.00	0.1052	0.90	0.1492	0.10	0.1094
	1400	0.1263	0.04	0.1693	0.92	0.1193	0.05	0.1654		1400	0.1123	0.00	0.1170	0.90	0.1401	0.10	0.1192
	1500	0.1123	0.02	0.1447	0.92	0.1028	0.06	0.1415		1500	0.1052	0.00	0.1286	0.91	0.1216	0.09	0.1280
	1600	0.0957	0.02	0.0980	0.92	0.0765	0.06	0.0967		1600	0.1004	0.00	0.1123	0.91	0.0957	0.09	0.1108
	1700	0.0693	0.04	0.0429	0.91	0.0453	0.06	0.0440		1700	0.0837	0.00	0.0669	0.90	0.0620	0.10	0.0664
21-Mar-10	0900	0.6324	0.04	0.2919	0.83	0.0861	0.13	0.2800	21-Sep-10	0900	0.6358	0.02	0.3159	0.92	0.0933	0.06	0.3107
	1000	0.6118	0.03	0.3355	0.85	0.1123	0.12	0.3180		1000	0.5980	0.00	0.3307	0.96	0.1193	0.04	0.3213
	1100	0.5188	0.03	0.2831	0.87	0.1309	0.10	0.2759		1100	0.4834	0.01	0.2573	0.96	0.1355	0.03	0.2557
	1200	0.3143	0.03	0.1973	0.86	0.1401	0.11	0.1949		1200	0.2439	0.01	0.1759	0.93	0.1424	0.06	0.1748
	1300	0.2341	0.02	0.1515	0.90	0.1401	0.08	0.1524		1300	0.1332	0.00	0.1424	0.97	0.1401	0.03	0.1423
	1400	0.1170	0.03	0.1447	0.88	0.1309	0.09	0.1426		1400	0.1146	0.00	0.1424	0.97	0.1286	0.03	0.1419
	1500	0.1075	0.03	0.1355	0.87	0.1123	0.10	0.1324		1500	0.1075	0.00	0.1332	0.98	0.1075	0.02	0.1327
	1600	0.0980	0.03	0.1052	0.89	0.0861	0.08	0.1035		1600	0.0957	0.00	0.0957	0.99	0.0813	0.01	0.0955
	1700	0.0765	0.03	0.0548	0.89	0.0524	0.08	0.0553		1700	0.0693	0.00	0.0429	0.99	0.0453	0.01	0.0429
21-Apr-10	0900	0.6458	0.00	0.3339	0.88	0.1004	0.12	0.3054	21-Oct-10	0900	0.6054	0.03	0.2776	0.97	0.0837	0.00	0.2882
	1000	0.6067	0.00	0.3291	0.90	0.1263	0.10	0.3088		1000	0.5686	0.04	0.3143	0.96	0.1075	0.00	0.3252
	1100	0.4967	0.00	0.2301	0.89	0.1424	0.11	0.2204		1100	0.4455	0.01	0.2758	0.99	0.1240	0.00	0.2777
	1200	0.2703	0.00	0.1401	0.90	0.1492	0.10	0.1410		1200	0.1994	0.00	0.2200	1.00	0.1286	0.00	0.2200
	1300	0.2477	0.00	0.1052	0.92	0.1492	0.08	0.1086		1300	0.1355	0.02	0.1845	0.97	0.1263	0.01	0.1828
	1400	0.1123	0.00	0.1193	0.92	0.1378	0.08	0.1207		1400	0.1193	0.02	0.1604	0.97	0.1123	0.01	0.1590
	1500	0.1052	0.00	0.1286	0.89	0.1193	0.11	0.1276		1500	0.1052	0.02	0.1240	0.97	0.0909	0.01	0.1232
	1600	0.0980	0.00	0.1099	0.89	0.0933	0.11	0.1080		1600	0.0861	0.01	0.0717	0.98	0.0620	0.01	0.0717
	1700	0.0813	0.00	0.0620	0.88	0.0596	0.12	0.0617		1700	0.0500	0.03	0.0219	0.96	0.0288	0.01	0.0229
21-May-10	0900	0.6414	0.02	0.3418	0.96	0.1052	0.02	0.3432	21-Nov-10	0900	0.5584	0.12	0.2119	0.84	0.0693	0.03	0.2495
	1000	0.5974	0.01	0.3159	0.97	0.1286	0.02	0.3149		1000	0.5385	0.17	0.2758	0.80	0.0933	0.03	0.3135
	1100	0.4823	0.01	0.2077	0.94	0.1447	0.05	0.2073		1100	0.4298	0.17	0.2722	0.80	0.1075	0.03	0.2930
	1200	0.2573	0.02	0.1560	0.91	0.1537	0.06	0.1580		1200	0.2057	0.14	0.2360	0.82	0.1146	0.03	0.2276
	1300	0.2458	0.01	0.0957	0.94	0.1515	0.05	0.1003		1300	0.1671	0.12	0.1994	0.83	0.1099	0.04	0.1915
	1400	0.1099	0.02	0.1099	0.88	0.1401	0.10	0.1128		1400	0.1216	0.16	0.1582	0.79	0.0980	0.06	0.1492
	1500	0.1052	0.02	0.1263	0.90	0.1216	0.08	0.1255		1500	0.1028	0.16	0.1099	0.79	0.0789	0.06	0.1071
	1600	0.1004	0.02	0.1146	0.89	0.0957	0.09	0.1127		1600	0.0789	0.16	0.0548	0.79	0.0500	0.06	0.0583
	1700	0.0837	0.02	0.0717	0.88	0.0644	0.10	0.0712		1700	0.0358	0.13	0.0114	0.80	0.0186	0.07	0.0151
21-Jun-10	0900	0.6392	0.00	0.3387	0.89	0.1052	0.11	0.3127	21-Dec-10	0900	0.5179	0.14	0.1627	0.85	0.0596	0.01	0.2112
	1000	0.5980	0.00	0.3176	0.89	0.1286	0.11	0.2966		1000	0.5297	0.19	0.2458	0.77	0.0837	0.03	0.2955
	1100	0.4886	0.00	0.2119	0.89	0.1447	0.11	0.2044		1100	0.4455	0.18	0.2629	0.78	0.0980	0.03	0.2910
	1200	0.2776	0.00	0.1515	0.88	0.1515	0.12	0.1515		1200	0.2554	0.16	0.2400	0.81	0.1075	0.03	0.2382
	1300	0.2301	0.00	0.1004	0.92	0.1515	0.08	0.1044		1300	0.2776	0.16	0.2036	0.82	0.1052	0.02	0.2134
	1400	0.1123	0.00	0.1075	0.93	0.1424	0.07	0.1099		1400	0.1263	0.19	0.1627	0.78	0.0957	0.02	0.1542
	1500	0.1075	0.00	0.1263	0.97	0.1240	0.03	0.1262		1500	0.1205	0.20	0.1123	0.77	0.0765	0.02	0.1105
	1600	0.1073	0.00	0.1170	0.93	0.1004	0.03	0.1202		1600	0.0789	0.17	0.0572	0.81	0.0500	0.02	0.0608
	1700	0.0885	0.00	0.0765	0.93	0.0693	0.07	0.0760		1700	0.0381	0.17	0.0372	0.83	0.0197	0.02	0.0173
	****				****										/		

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 8

Date	Time	$\mathbf{P}_{ES,RS,C}$	P_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,RS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,BX,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,BS,R}$
21-Jan-10	0900	0.8083	0.05	0.5097	0.80	0.3115	0.15	0.4959	21-Jul-10	0900	0.8625	0.00	0.6968	0.92	0.4268	0.08	0.6764
	1000	0.8232	0.06	0.6267	0.81	0.3852	0.13	0.6082		1000	0.8463	0.00	0.6907	0.91	0.4782	0.09	0.6724
	1100	0.7862	0.06	0.6634	0.81	0.4290	0.13	0.6410		1100	0.7957	0.00	0.6032	0.91	0.5078	0.09	0.5950
	1200	0.6793	0.08	0.6374	0.80	0.4497	0.13	0.6163		1200	0.6622	0.00	0.5310	0.91	0.5224	0.09	0.5303
	1300	0.8464	0.08	0.6085	0.83	0.4505	0.10	0.6111		1300	0.9216	0.00	0.4938	0.96	0.5214	0.04	0.4950
	1400	0.4802	0.08	0.5675	0.84	0.4324	0.09	0.5493		1400	0.4513	0.00	0.4821	0.97	0.5075	0.03	0.4829
	1500	0.4398	0.09	0.4973	0.83	0.3932	0.09	0.4834		1500	0.4334	0.00	0.5110	0.97	0.4766	0.03	0.5099
	1600	0.3849	0.11	0.3761	0.83	0.3229	0.06	0.3736		1600	0.4160	0.00	0.4915	0.97	0.4249	0.03	0.4894
	1700	0.2804	0.10	0.1894	0.83	0.2110	0.08	0.1998		1700	0.3849	0.00	0.3957	0.95	0.3484	0.05	0.3932
21-Feb-10	0900	0.8374	0.04	0.5859	0.89	0.3459	0.07	0.5778	21-Aug-10	0900	0.8639	0.00	0.6924	0.92	0.4204	0.08	0.6719
	1000	0.8413	0.02	0.6706	0.89	0.4173	0.08	0.6538		1000	0.8483	0.00	0.6943	0.92	0.4737	0.08	0.6777
	1100	0.8038	0.02	0.6732	0.88	0.4587	0.09	0.6561		1100	0.7968	0.00	0.6152	0.90	0.5044	0.10	0.6045
	1200	0.6966	0.04	0.6335	0.87	0.4785	0.09	0.6211		1200	0.6586	0.00	0.5176	0.92	0.5188	0.08	0.5177
	1300	0.8516	0.05	0.5964	0.92	0.4808	0.04	0.6043		1300	0.9183	0.00	0.6586	0.90	0.5185	0.10	0.6451
	1400	0.4713	0.04	0.5671	0.92	0.4650	0.05	0.5589		1400	0.4503	0.00	0.4950	0.90	0.5019	0.10	0.4956
	1500	0.4403	0.02	0.5230	0.92	0.4290	0.06	0.5155		1500	0.4294	0.00	0.5121	0.91	0.4678	0.09	0.5082
	1600	0.3993	0.02	0.4329	0.92	0.3670	0.06	0.4282		1600	0.4079	0.00	0.4747	0.91	0.4137	0.09	0.4695
	1700	0.3288	0.04	0.2664	0.91	0.2651	0.06	0.2685		1700	0.3678	0.00	0.3568	0.90	0.3236	0.10	0.3536
21-Mar-10	0900	0.8580	0.04	0.6584	0.83	0.3888	0.13	0.6322	21-Sep-10	0900	0.8593	0.02	0.6792	0.92	0.4087	0.06	0.6681
	1000	0.8485	0.03	0.6959	0.85	0.4502	0.12	0.6717		1000	0.8421	0.00	0.6931	0.96	0.4630	0.04	0.6829
	1100	0.8025	0.03	0.6576	0.87	0.4872	0.10	0.6458		1100	0.7834	0.01	0.6368	0.96	0.4930	0.03	0.6337
	1200	0.6794	0.03	0.5840	0.86	0.5024	0.11	0.5783		1200	0.6173	0.01	0.5626	0.93	0.5071	0.06	0.5601
	1300	0.9053	0.02	0.5452	0.90	0.5037	0.08	0.5498		1300	0.4851	0.00	0.5353	0.97	0.5022	0.03	0.5341
	1400	0.4588	0.03	0.5349	0.88	0.4872	0.09	0.5283		1400	0.4509	0.00	0.5309	0.97	0.4820	0.03	0.5293
	1500	0.4321	0.03	0.5198	0.87	0.4505	0.10	0.5103		1500	0.4260	0.00	0.5121	0.98	0.4418	0.02	0.5105
	1600	0.4043	0.03	0.4561	0.89	0.3901	0.08	0.4495		1600	0.3938	0.00	0.4343	0.99	0.3746	0.01	0.4336
	1700	0.3478	0.03	0.3104	0.89	0.2954	0.08	0.3104		1700	0.3292	0.00	0.2664	0.99	0.2677	0.01	0.2665
21-Apr-10	0900	0.8637	0.00	0.6950	0.88	0.4245	0.12	0.6620	21-Oct-10	0900	0.8461	0.03	0.6442	0.97	0.3857	0.00	0.6507
	1000	0.8462	0.00	0.6914	0.90	0.4757	0.10	0.6698		1000	0.8288	0.04	0.6802	0.96	0.4400	0.00	0.6866
	1100	0.7907	0.00	0.6095	0.89	0.5046	0.11	0.5978		1100	0.7631	0.01	0.6543	0.99	0.4724	0.00	0.6554
	1200	0.6396	0.00	0.5141	0.90	0.5188	0.10	0.5146		1200	0.5695	0.00	0.6121	1.00	0.4832	0.00	0.6121
	1300	0.9315	0.00	0.4817	0.92	0.5157	0.08	0.4843		1300	0.4877	0.02	0.5818	0.97	0.4763	0.01	0.5786
	1400	0.4478	0.00	0.5008	0.92	0.4992	0.08	0.5006		1400	0.4558	0.02	0.5498	0.97	0.4505	0.01	0.5467
	1500	0.4288	0.00	0.5114	0.89	0.4634	0.11	0.5061		1500	0.4227	0.02	0.4869	0.97	0.4025	0.01	0.4846
	1600	0.4255	0.00	0.4674	0.89	0.4050	0.11	0.4604		1600	0.3723	0.02	0.3636	0.98	0.5177	0.01	0.3653
	1700	0.3602	0.00	0.3410	0.88	0.3136	0.12	0.3376		1700	0.2611	0.03	0.1643	0.96	0.3361	0.01	0.1693
21-May-10	0900	0.8619	0.02	0.7014	0.96	0.4365	0.02	0.6991	21-Nov-10	0900	0.8237	0.12	0.5765	0.84	0.3484	0.03	0.5991
21 111119 10	1000	0.8417	0.01	0.6826	0.97	0.4835	0.02	0.6800	21 1101 10	1000	0.8143	0.17	0.6476	0.80	0.4066	0.03	0.6674
	1100	0.7846	0.01	0.5854	0.94	0.5110	0.02	0.5835		1100	0.7536	0.17	0.6512	0.80	0.4400	0.03	0.6612
	1200	0.6251	0.02	0.5546	0.91	0.5228	0.05	0.5535		1200	0.7330	0.17	0.6255	0.82	0.4528	0.03	0.6130
	1300	0.0231	0.02	0.3346	0.91	0.5228	0.05	0.4829		1300	0.8922	0.14	0.5937	0.82	0.4328	0.03	0.6237
	1400	0.4472	0.02	0.4873	0.88	0.5037	0.10	0.4829		1400	0.4614	0.12	0.5426	0.79	0.4204	0.06	0.5232
	1500	0.4472	0.02	0.5122	0.88	0.3037	0.10	0.5073		1500	0.4169	0.16	0.4553	0.79	0.3688	0.06	0.3232
	1600	0.4310	0.02	0.5122	0.90	0.4707	0.08	0.5075		1600	0.4169	0.16	0.4555	0.79	0.3688	0.06	0.3126
	1700	0.4132	0.02	0.3711	0.88	0.4130	0.10	0.3672		1700	0.2093	0.10	0.3070	0.79	0.2847	0.07	0.1213
21-Jun-10	0900	0.8609	0.00	0.7000	0.89	0.4339	0.11	0.6704	21-Dec-10	0900	0.8027	0.14	0.5112	0.85	0.3134	0.01	0.5498
21-Juft-10	1000	0.8609	0.00	0.6850	0.89	0.4339	0.11	0.6624	21-Dec-10	1000	0.8027	0.14	0.5112	0.85	0.3134	0.01	0.5498
	1100	0.8420	0.00	0.5915	0.89	0.4817	0.11	0.5825		1100	0.7636	0.19	0.6414	0.77	0.3822	0.03	0.6567
	1200	0.6453	0.00	0.5437	0.88	0.5227	0.12	0.5411		1200	0.6297	0.16	0.6271	0.81	0.4384	0.03	0.6214
	1300	0.9218		0.4860	0.92	0.5212	0.08	0.4887		1300	0.8970	0.16	0.5959	0.82	0.4360	0.02	0.6410
	1400	0.4502	0.00	0.4849	0.93	0.5060	0.07	0.4863		1400	0.4725	0.19	0.5459	0.78	0.4137	0.02	0.5289
	1500	0.4392	0.00	0.5130	0.97	0.4756	0.03	0.5118		1500	0.4245	0.20	0.4586	0.77	0.3670	0.02	0.4496
	1600	0.4161	0.00	0.4915	0.93	0.4241	0.07	0.4870		1600	0.3575	0.17	0.3137	0.81	0.2856	0.02	0.3206
	1700	0.3693	0.00	0.3944	0.93	0.3457	0.07	0.3911		1700	0.2233	0.15	0.1198	0.83	0.2907	0.02	0.1391

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 8

Date	Time	$\mathbf{P}_{ES,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{EX,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.9579	0.05	0.9579	0.80	0.9579	0.15	0.9579	21-Jul-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.06	0.9579	0.81	0.9579	0.13	0.9579		1000	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1100	0.9579	0.06	0.9559	0.81	0.9579	0.13	0.9563		1100	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1200	0.9579	0.08	0.9579	0.80	0.9579	0.13	0.9579		1200	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1300	0.9051	0.08	0.9579	0.83	0.9579	0.10	0.9539		1300	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1400	0.9533	0.08	0.9545	0.84	0.9579	0.09	0.9547		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.09	0.9533	0.83	0.9579	0.09	0.9541		1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1600	0.9579	0.11	0.9579	0.83	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9528	0.97	0.9579	0.03	0.9530
	1700	0.9579	0.10	0.9579	0.83	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.95	0.9579	0.05	0.9579
1-Feb-10	0900	0.9579	0.04	0.9579	0.89	0.9579	0.07	0.9579	21-Aug-10	0900	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1000	0.9579	0.02	0.9579	0.89	0.9579	0.08	0.9579		1000	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1100	0.9579	0.02	0.9579	0.88	0.9579	0.09	0.9579		1100	0.9579	0.00	0.9579	0.90	0.9537	0.10	0.9575
	1200	0.9579	0.04	0.9579	0.87	0.9579	0.09	0.9579		1200	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579
	1300	0.9554	0.05	0.9579	0.92	0.9579	0.04	0.9578		1300	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
	1400	0.9531	0.04	0.9579	0.92	0.9579	0.05	0.9577		1400	0.9579	0.00	0.9527	0.90	0.9579	0.10	0.9532
	1500	0.9579	0.02	0.9537	0.92	0.9579	0.06	0.9541		1500	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1600	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579		1600	0.9579	0.00	0.9579	0.91	0.9579	0.09	0.9579
	1700	0.9579	0.04	0.9579	0.91	0.9579	0.06	0.9579		1700	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579
21-Mar-10	0900	0.9579	0.04	0.9560	0.83	0.9579	0.13	0.9563	21-Sep-10	0900	0.9579	0.02	0.9579	0.92	0.9579	0.06	0.9579
	1000	0.9579	0.03	0.9579	0.85	0.9579	0.12	0.9579		1000	0.9579	0.00	0.9579	0.96	0.9579	0.04	0.9579
	1100	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1100	0.9579	0.01	0.9579	0.96	0.9579	0.03	0.9579
	1200	0.9579	0.03	0.9579	0.86	0.9579	0.11	0.9579		1200	0.9579	0.01	0.9579	0.93	0.9579	0.06	0.9579
	1300	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1300	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1400	0.9579	0.03	0.9579	0.88	0.9579	0.09	0.9579		1400	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579
	1500	0.9579	0.03	0.9579	0.87	0.9579	0.10	0.9579		1500	0.9522	0.00	0.9533	0.98	0.9579	0.02	0.9534
	1600	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1600	0.9579	0.00	0.9579	0.99	0.9503	0.01	0.9578
	1700	0.9579	0.03	0.9579	0.89	0.9579	0.08	0.9579		1700	0.9579	0.00	0.9579	0.99	0.9579	0.01	0.9579
1-Apr-10	0900	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579	21-Oct-10	0900	0.9579	0.03	0.9579	0.97	0.9579	0.00	0.9579
	1000	0.9579	0.00	0.9579	0.90	0.9531	0.10	0.9574		1000	0.9579	0.04	0.9562	0.96	0.9579	0.00	0.9563
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.01	0.9579	0.99	0.9579	0.00	0.9579
	1200	0.9579	0.00	0.9579	0.90	0.9579	0.10	0.9579		1200	0.9579	0.00	0.9553	1.00	0.9579	0.00	0.9553
	1300	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1400	0.9579	0.00	0.9579	0.92	0.9579	0.08	0.9579		1400	0.9579	0.02	0.9542	0.97	0.9579	0.01	0.9543
	1500	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1500	0.9579	0.02	0.9579	0.97	0.9579	0.01	0.9579
	1600	0.9579	0.00	0.9523	0.89	0.9579	0.11	0.9530		1600	0.9579	0.01	0.9579	0.98	0.9579	0.01	0.9579
	1700	0.9503	0.00	0.9579	0.88	0.9579	0.12	0.9579		1700	0.9579	0.03	0.9579	0.96	0.9579	0.01	0.9579
21-May-10	0900	0.9579	0.02	0.9579	0.96	0.9579	0.02	0.9579	21-Nov-10	0900	0.9572	0.12	0.9579	0.84	0.9579	0.03	0.9578
	1000	0.9579	0.01	0.9579	0.97	0.9579	0.02	0.9579		1000	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1100	0.9579	0.01	0.9579	0.94	0.9579	0.05	0.9579		1100	0.9579	0.17	0.9579	0.80	0.9579	0.03	0.9579
	1200	0.9579	0.02	0.9579	0.91	0.9540	0.06	0.9577		1200	0.9551	0.14	0.9579	0.82	0.9579	0.03	0.9575
	1300	0.9556	0.01	0.9579	0.94	0.9579	0.05	0.9579		1300	0.9579	0.12	0.9550	0.83	0.9579	0.04	0.9554
	1400	0.9579	0.02	0.9523	0.88	0.9579	0.10	0.9530		1400	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1500	0.9579	0.02	0.9579	0.90	0.9579	0.08	0.9579		1500	0.9579	0.16	0.9579	0.79	0.9579	0.06	0.9579
	1600	0.9579	0.02	0.9526	0.89	0.9579	0.09	0.9531		1600	0.9501	0.16	0.9579	0.79	0.9579	0.06	0.9567
	1700	0.9579	0.02	0.9579	0.88	0.9579	0.10	0.9579		1700	0.9579	0.13	0.9571	0.80	0.9576	0.07	0.9572
1-Jun-10	0900	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579	21-Dec-10	0900	0.9579	0.14	0.9579	0.85	0.9579	0.01	0.9579
	1000	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1000	0.9579	0.19	0.9579	0.77	0.9579	0.03	0.9579
	1100	0.9579	0.00	0.9579	0.89	0.9579	0.11	0.9579		1100	0.9579	0.18	0.9579	0.78	0.9579	0.03	0.9579
	1200	0.9579	0.00	0.9579	0.88	0.9579	0.12	0.9579		1200	0.9579	0.16	0.9579	0.81	0.9579	0.03	0.9579
	1300	0.9554	0.00	0.9579	0.92	0.9579	0.08	0.9579		1300	0.9301	0.16	0.9579	0.82	0.9579	0.02	0.9534
	1400	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1400	0.9579	0.19	0.9542	0.78	0.9579	0.02	0.9550
	1500	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1500	0.9522	0.20	0.9579	0.77	0.9579	0.02	0.9567
	1600	0.9579	0.00	0.9579	0.97	0.9579	0.03	0.9579		1600	0.9522	0.20	0.9579	0.77	0.9579	0.02	0.9579
	1700	0.9579	0.00	0.9579	0.93	0.9579	0.07	0.9579		1700	0.9579	0.17	0.9579	0.81	0.9579	0.02	0.9579
	1700	0.9379	0.00	0.93/9	0.93	0.9379	0.07	0.9379		1/00	0.93/9	0.15	0.9308	0.63	0.9379	0.02	0.93/0

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 8

		$P_{ES,US,C}$	P_C	$\mathbf{P}_{ES,US,P}$	P_P	$P_{EX,UX,O}$	P_O	$P_{ES,US,R}$	Date	Time	$P_{ES,US,C}$	P_C	$P_{EX,UX,P}$	P_P	$P_{ES,US,O}$	P_O	$P_{EX,UX,R}$
21-Jan-10	0900	0.9136	0.05	0.9236	0.80	0.9340	0.15	0.9246	21-Jul-10	0900	0.9116	0.00	0.9231	0.92	0.9340	0.08	0.9239
	1000	0.9121	0.06	0.9246	0.81	0.9341	0.13	0.9250		1000	0.9105	0.00	0.9234	0.91	0.9340	0.09	0.9243
	1100	0.9125	0.06	0.9319	0.81	0.9346	0.13	0.9310		1100	0.9109	0.00	0.9281	0.91	0.9342	0.09	0.9286
	1200	0.9223	0.08	0.9316	0.80	0.9336	0.13	0.9311		1200	0.9184	0.00	0.9404	0.91	0.9338	0.09	0.9398
	1300	0.9641	0.08	0.9374	0.83	0.9333	0.10	0.9390		1300	0.9680	0.00	0.9489	0.96	0.9334	0.04	0.9482
	1400	0.9381	0.08	0.9398	0.84	0.9342	0.09	0.9392		1400	0.9376	0.00	0.9464	0.97	0.9342	0.03	0.9460
	1500	0.9360	0.09	0.9397	0.83	0.9331	0.09	0.9389		1500	0.9350	0.00	0.9430	0.97	0.9336	0.03	0.9427
	1600	0.9330	0.11	0.9383	0.83	0.9349	0.06	0.9375		1600	0.9323	0.00	0.9424	0.97	0.9335	0.03	0.9421
	1700	0.9315	0.10	0.9384	0.83	0.9342	0.08	0.9374		1700	0.9322	0.00	0.9402	0.95	0.9336	0.05	0.9399
21-Feb-10	0900	0.9134	0.04	0.9236	0.89	0.9328	0.07	0.9239	21-Aug-10	0900	0.9114	0.00	0.9227	0.92	0.9343	0.08	0.9235
	1000	0.9114	0.02	0.9237	0.89	0.9345	0.08	0.9243		1000	0.9105	0.00	0.9232	0.92	0.9334	0.08	0.9239
	1100	0.9121	0.02	0.9265	0.88	0.9331	0.09	0.9268		1100	0.9109	0.00	0.9275	0.90	0.9333	0.10	0.9281
	1200	0.9197	0.04	0.9316	0.87	0.9341	0.09	0.9314		1200	0.9217	0.00	0.9386	0.92	0.9339	0.08	0.9382
	1300	0.9649	0.05	0.9385	0.92	0.9336	0.04	0.9396		1300	0.9679	0.00	0.9039	0.90	0.9339	0.10	0.9068
	1400	0.9378	0.04	0.9408	0.92	0.9344	0.05	0.9404		1400	0.9372	0.00	0.9453	0.90	0.9335	0.10	0.9441
	1500	0.9343	0.02	0.9403	0.92	0.9346	0.06	0.9398		1500	0.9354	0.00	0.9430	0.91	0.9344	0.09	0.9422
	1600	0.9317	0.02	0.9397	0.92	0.9334	0.06	0.9392		1600	0.9326	0.00	0.9416	0.91	0.9341	0.09	0.9409
	1700	0.9311	0.04	0.9392	0.91	0.9348	0.06	0.9386		1700	0.9305	0.00	0.9398	0.90	0.9350	0.10	0.9393
21-Mar-10	0900	0.9115	0.04	0.9229	0.83	0.9339	0.13	0.9238	21-Sep-10	0900	0.9114	0.02	0.9228	0.92	0.9336	0.06	0.9231
	1000	0.9108	0.03	0.9234	0.85	0.9333	0.12	0.9242		1000	0.9107	0.00	0.9240	0.96	0.9341	0.04	0.9244
	1100	0.9111	0.03	0.9270	0.87	0.9344	0.10	0.9272		1100	0.9115	0.01	0.9277	0.96	0.9336	0.03	0.9278
	1200	0.9212	0.03	0.9339	0.86	0.9336	0.11	0.9335		1200	0.9237	0.01	0.9367	0.93	0.9341	0.06	0.9364
	1300	0.9673	0.02	0.9427	0.90	0.9340	0.08	0.9426		1300	0.9382	0.00	0.9435	0.97	0.9335	0.03	0.9432
	1400	0.9377	0.03	0.9435	0.88	0.9344	0.09	0.9425		1400	0.9368	0.00	0.9427	0.97	0.9329	0.03	0.9424
	1500	0.9339	0.03	0.9420	0.87	0.9333	0.10	0.9409		1500	0.9346	0.00	0.9420	0.98	0.9340	0.02	0.9419
	1600	0.9319	0.03	0.9403	0.89	0.9336	0.08	0.9395		1600	0.9300	0.00	0.9404	0.99	0.9345	0.01	0.9404
	1700	0.9302	0.03	0.9394	0.89	0.9343	0.08	0.9387		1700	0.9298	0.00	0.9392	0.99	0.9330	0.01	0.9391
21-Apr-10	0900	0.9115	0.00	0.9227	0.88	0.9335	0.12	0.9240	21-Oct-10	0900	0.9117	0.03	0.9235	0.97	0.9341	0.00	0.9232
	1000	0.9109	0.00	0.9232	0.90	0.9337	0.10	0.9242		1000	0.9112	0.04	0.9244	0.96	0.9334	0.00	0.9239
	1100	0.9111	0.00	0.9285	0.89	0.9333	0.11	0.9290		1100	0.9124	0.01	0.9280	0.99	0.9343	0.00	0.9278
	1200	0.9227	0.00	0.9395	0.90	0.9339	0.10	0.9389		1200	0.9276	0.00	0.9351	1.00	0.9334	0.00	0.9351
	1300	0.9683	0.00	0.9470	0.92	0.9336	0.08	0.9459		1300	0.9374	0.02	0.9405	0.97	0.9336	0.01	0.9404
	1400	0.9377	0.00	0.9454	0.92	0.9338	0.08	0.9445		1400	0.9368	0.02	0.9410	0.97	0.9333	0.01	0.9408
	1500	0.9357	0.00	0.9427	0.89	0.9339	0.11	0.9418		1500	0.9325	0.02	0.9408	0.97	0.9339	0.01	0.9406
	1600	0.9319	0.00	0.9414	0.89	0.9346	0.11	0.9407		1600	0.9315	0.01	0.9393	0.98	0.9343	0.01	0.9392
	1700	0.9301	0.00	0.9402	0.88	0.9330	0.12	0.9393		1700	0.9296	0.03	0.9387	0.96	0.9336	0.01	0.9384
21-May-10	0900	0.9114	0.02	0.9226	0.96	0.9335	0.02	0.9226	21-Nov-10	0900	0.9126	0.12	0.9245	0.84	0.9336	0.03	0.9233
	1000	0.9106	0.01	0.9236	0.97	0.9334	0.02	0.9237		1000	0.9120	0.17	0.9255	0.80	0.9329	0.03	0.9235
	1100	0.9119	0.01	0.9290	0.94	0.9332	0.05	0.9291		1100	0.9137	0.17	0.9285	0.80	0.9334	0.03	0.9262
	1200	0.9228	0.02	0.9428	0.91	0.9339	0.06	0.9418		1200	0.9286	0.14	0.9339	0.82	0.9339	0.03	0.9332
	1300	0.9683	0.01	0.9491	0.94	0.9334	0.05	0.9484		1300	0.9661	0.12	0.9390	0.83	0.9337	0.04	0.9421
	1400	0.9377	0.02	0.9458	0.88	0.9340	0.10	0.9445		1400	0.9360	0.16	0.9397	0.79	0.9343	0.06	0.9388
	1500	0.9356	0.02	0.9431	0.90	0.9339	0.08	0.9423		1500	0.9337	0.16	0.9393	0.79	0.9335	0.06	0.9381
	1600	0.9316	0.02	0.9411	0.89	0.9342	0.09	0.9403		1600	0.9311	0.16	0.9382	0.79	0.9331	0.06	0.9368
	1700	0.9317	0.02	0.9399	0.88	0.9326	0.10	0.9390		1700	0.9279	0.13	0.9375	0.80	0.9349	0.07	0.9361
21-Jun-10	0900	0.9116	0.00	0.9232	0.89	0.9331	0.11	0.9243	21-Dec-10	0900	0.9127	0.14	0.9243	0.85	0.9329	0.01	0.9228
	1000	0.9115	0.00	0.9241	0.89	0.9329	0.11	0.9251		1000	0.9123	0.19	0.9252	0.77	0.9334	0.03	0.9229
	1100	0.9109	0.00	0.9287	0.89	0.9346	0.11	0.9293		1100	0.9139	0.18	0.9284	0.78	0.9331	0.03	0.9259
	1200	0.9217	0.00	0.9416	0.88	0.9338	0.12	0.9406		1200	0.9253	0.16	0.9329	0.81	0.9341	0.03	0.9317
	1300	0.9680	0.00	0.9493	0.92	0.9334	0.08	0.9480		1300	0.9657	0.16	0.9373	0.82	0.9338	0.02	0.9418
	1400	0.9372	0.00	0.9459	0.93	0.9337	0.07	0.9451		1400	0.9372	0.19	0.9388	0.78	0.9341	0.02	0.9384
	1500	0.9229	0.00	0.9434	0.97	0.9337	0.03	0.9430		1500	0.9354	0.20	0.9389	0.77	0.9334	0.02	0.9381
	1600	0.9323	0.00	0.9424	0.93	0.9335	0.07	0.9418		1600	0.9333	0.17	0.9388	0.81	0.9330	0.02	0.9377
	1700	0.9240	0.00	0.9413	0.93	0.9332	0.07	0.9408		1700	0.9303	0.15	0.9388	0.83	0.9342	0.02	0.9374
	0	2.7210	2.50	5415				100			2.7505						

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 8

Date	Time	$\mathbf{P}_{ES,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$P_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$P_{ES,PG,R}$
21-Jan-10	0900	0.9371	0.05	0.9823	0.80	0.9922	0.15	0.9813	21-Jul-10	0900	0.9119	0.00	0.9643	0.92	0.9877	0.08	0.9661
	1000	0.9320	0.06	0.9724	0.81	0.9894	0.13	0.9720		1000	0.9227	0.00	0.9648	0.91	0.9849	0.09	0.9665
	1100	0.9443	0.06	0.9682	0.81	0.9876	0.13	0.9691		1100	0.9411	0.00	0.9763	0.91	0.9832	0.09	0.9769
	1200	0.9649	0.08	0.9698	0.80	0.9866	0.13	0.9716		1200	0.9645	0.00	0.9846	0.91	0.9821	0.09	0.9843
	1300	0.9871	0.08	0.9723	0.83	0.9863	0.10	0.9748		1300	0.9920	0.00	0.9880	0.96	0.9821	0.04	0.9878
	1400	0.9793	0.08	0.9759	0.84	0.9875	0.09	0.9772		1400	0.9837	0.00	0.9862	0.97	0.9830	0.03	0.9861
	1500	0.9820	0.09	0.9808	0.83	0.9890	0.09	0.9816		1500	0.9841	0.00	0.9822	0.97	0.9850	0.03	0.9823
	1600	0.9856	0.11	0.9880	0.83	0.9919	0.06	0.9880		1600	0.9846	0.00	0.9824	0.97	0.9875	0.03	0.9826
	1700	0.9914	0.10	0.9951	0.83	0.9953	0.08	0.9948		1700	0.9864	0.00	0.9876	0.95	0.9909	0.05	0.9878
21-Feb-10	0900	0.9239	0.04	0.9770	0.89	0.9911	0.07	0.9761	21-Aug-10	0900	0.9110	0.00	0.9649	0.92	0.9878	0.08	0.9666
	1000	0.9239	0.02	0.9671	0.89	0.9882	0.08	0.9678		1000	0.9225	0.00	0.9641	0.92	0.9851	0.08	0.9657
	1100	0.9390	0.02	0.9663	0.88	0.9861	0.09	0.9675		1100	0.9409	0.00	0.9747	0.90	0.9835	0.10	0.9755
	1200	0.9628	0.04	0.9715	0.87	0.9847	0.09	0.9724		1200	0.9666	0.00	0.9845	0.92	0.9823	0.08	0.9843
	1300	0.9872	0.05	0.9751	0.92	0.9849	0.04	0.9761		1300	0.9915	0.00	0.9875	0.90	0.9823	0.10	0.9870
	1400	0.9811	0.04	0.9765	0.92	0.9856	0.05	0.9771		1400	0.9835	0.00	0.9849	0.90	0.9834	0.10	0.9848
	1500	0.9829	0.02	0.9793	0.92	0.9876	0.06	0.9799		1500	0.9838	0.00	0.9819	0.91	0.9855	0.09	0.9823
	1600	0.9849	0.02	0.9847	0.92	0.9903	0.06	0.9851		1600	0.9850	0.00	0.9832	0.91	0.9883	0.09	0.9837
	1700	0.9896	0.04	0.9925	0.91	0.9938	0.06	0.9925		1700	0.9869	0.00	0.9890	0.90	0.9918	0.10	0.9893
21-Mar-10	0900	0.9148	0.04	0.9695	0.83	0.9894	0.13	0.9697	21-Sep-10	0900	0.9138	0.02	0.9668	0.92	0.9884	0.06	0.9668
	1000	0.9219	0.03	0.9636	0.85	0.9864	0.12	0.9650		1000	0.9257	0.00	0.9639	0.96	0.9859	0.04	0.9649
	1100	0.9392	0.03	0.9690	0.87	0.9844	0.10	0.9695		1100	0.9446	0.01	0.9717	0.96	0.9840	0.03	0.9718
	1200	0.9655	0.03	0.9778	0.86	0.9834	0.11	0.9780		1200	0.9702	0.01	0.9800	0.93	0.9832	0.06	0.9801
	1300	0.9905	0.02	0.9815	0.90	0.9833	0.08	0.9818		1300	0.9811	0.00	0.9820	0.97	0.9833	0.03	0.9820
	1400	0.9829	0.03	0.9806	0.88	0.9844	0.09	0.9810		1400	0.9826	0.00	0.9807	0.97	0.9846	0.03	0.9808
	1500	0.9834	0.03	0.9804	0.87	0.9863	0.10	0.9810		1500	0.9838	0.00	0.9808	0.98	0.9867	0.02	0.9810
	1600	0.9850	0.03	0.9838	0.89	0.9892	0.08	0.9843		1600	0.9856	0.00	0.9851	0.99	0.9901	0.01	0.9851
	1700	0.9883	0.03	0.9908	0.89	0.9927	0.08	0.9909		1700	0.9898	0.00	0.9925	0.99	0.9935	0.01	0.9925
21-Apr-10	0900	0.9112	0.00	0.9643	0.88	0.9877	0.12	0.9672	21-Oct-10	0900	0.9213	0.03	0.9709	0.97	0.9893	0.00	0.9693
	1000	0.9237	0.00	0.9645	0.90	0.9853	0.10	0.9666		1000	0.9317	0.04	0.9655	0.96	0.9868	0.00	0.9641
	1100	0.9427	0.00	0.9755	0.89	0.9833	0.11	0.9764		1100	0.9497	0.01	0.9686	0.99	0.9854	0.00	0.9684
	1200	0.9677	0.00	0.9849	0.90	0.9823	0.10	0.9846		1200	0.9743	0.00	0.9738	1.00	0.9846	0.00	0.9738
	1300	0.9925	0.00	0.9875	0.92	0.9826	0.08	0.9871		1300	0.9797	0.02	0.9761	0.97	0.9851	0.01	0.9763
	1400	0.9837	0.00	0.9843	0.92	0.9836	0.08	0.9842		1400	0.9817	0.02	0.9779	0.97	0.9863	0.01	0.9781
	1500	0.9838	0.00	0.9818	0.89	0.9857	0.11	0.9822		1500	0.9835	0.02	0.9815	0.97	0.9887	0.01	0.9816
	1600	0.9847	0.00	0.9834	0.89	0.9898	0.11	0.9841		1600	0.9867	0.01	0.9886	0.98	0.9919	0.01	0.9886
	1700	0.9873	0.00	0.9899	0.88	0.9923	0.12	0.9902		1700	0.9927	0.03	0.9960	0.96	0.9959	0.01	0.9958
21-May-10	0900	0.9123	0.02	0.9636	0.96	0.9870	0.02	0.9630	21-Nov-10	0900	0.9319	0.12	0.9771	0.84	0.9909	0.03	0.9720
	1000	0.9243	0.01	0.9656	0.97	0.9845	0.02	0.9655		1000	0.9367	0.17	0.9694	0.80	0.9886	0.03	0.9646
	1100	0.9451	0.01	0.9780	0.94	0.9828	0.05	0.9779		1100	0.9519	0.17	0.9684	0.80	0.9868	0.03	0.9663
	1200	0.9699	0.02	0.9836	0.91	0.9823	0.06	0.9832		1200	0.9722	0.14	0.9711	0.82	0.9864	0.03	0.9717
	1300	0.9931	0.02	0.9885	0.94	0.9823	0.05	0.9832		1300	0.9722	0.14	0.9711	0.82	0.9864	0.03	0.8655
	1400	0.9840	0.01	0.9856	0.88	0.9824	0.03	0.9853		1400	0.9804	0.12	0.9774	0.83	0.9878	0.04	0.8033
			0.02		0.88												
	1500 1600	0.9838 0.9846	0.02	0.9821	0.90	0.9853 0.9882	0.08	0.9824 0.9835		1500 1600	0.9834 0.9877	0.16	0.9838	0.79	0.9902	0.06	0.9841 0.9910
	1700	0.9846	0.02	0.9830	0.89	0.9882	0.09	0.9835		1700	0.9877	0.16	0.9915	0.79	0.9931	0.06	0.9910
21 Jun 10	0900	0.9132	0.00	0.9639	0.89	0.9872	0.11		21-Dec-10	0900	0.9398	0.14	0.9821	0.85	0.9923	0.01	
21-Jun-10								0.9664	21-Dec-10								0.9763
	1000	0.9968	0.00	0.9655	0.89	0.9847	0.11	0.9676		1000	0.9369	0.19	0.9730	0.77	0.9898	0.03	0.9665
	1100	0.8320	0.00	0.9773	0.89	0.9829	0.11	0.9780		1100	0.9500	0.18	0.9695	0.78	0.9878	0.03	0.9665
	1200	0.9672	0.00	0.9841	0.88	0.9819	0.12	0.9838		1200	0.9706	0.16	0.9707	0.81	0.9872	0.03	0.9712
	1300	0.9921	0.00	0.9886	0.92	0.9822	0.08	0.9881		1300	0.9904	0.16	0.9730	0.82	0.9872	0.02	0.9761
	1400	0.9835	0.00	0.9860	0.93	0.9832	0.07	0.9858		1400	0.9791	0.19	0.9773	0.78	0.9883	0.02	0.9779
	1500	0.9841	0.00	0.9821	0.97	0.9849	0.03	0.9822		1500	0.9828	0.20	0.9835	0.77	0.9903	0.02	0.9835
	1600	0.9846	0.00	0.9824	0.93	0.9878	0.07	0.9828		1600	0.9868	0.17	0.9911	0.81	0.9930	0.02	0.9904
	1700	0.9864	0.00	0.9878	0.93	0.9911	0.07	0.9880		1700	0.9934	0.15	0.9972	0.83	0.9966	0.02	0.9966

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 9

Date	Time	$\mathbf{P}_{FS,BD,C}$	P_C	$\mathbf{P}_{VS,BD,P}$	P_P	$\mathbf{P}_{VX,BD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{VS,BD,O}$	P_O	$\mathbf{P}_{VX,BD,R}$
21-Jan-10	0900	0.6121	0.05	0.5691	0.80	0.5700	0.15	0.5716	21-Jul-10	0900	0.6870	0.00	0.7357	0.92	0.6585	0.08	0.7299
	1000	0.6392	0.06	0.6358	0.81	0.6287	0.13	0.6351		1000	0.6790	0.00	0.7292	0.91	0.6912	0.09	0.7260
	1100	0.6458	0.06	0.6570	0.81	0.6590	0.13	0.6566		1100	0.6744	0.00	0.6774	0.91	0.7101	0.09	0.6802
	1200	0.6463	0.08	0.6646	0.80	0.6731	0.13	0.6644		1200	0.6799	0.00	0.6305	0.91	0.7186	0.09	0.6381
	1300	0.6463	0.08	0.6782	0.83	0.6740	0.10	0.6754		1300	0.6916	0.00	0.6510	0.96	0.7183	0.04	0.6539
	1400	0.6452	0.08	0.6956	0.84	0.6618	0.09	0.6889		1400	0.7091	0.00	0.7313	0.97	0.7098	0.03	0.7306
	1500	0.6403	0.09	0.6963	0.83	0.6341	0.09	0.6861		1500	0.7321	0.00	0.7935	0.97	0.6908	0.03	0.7902
	1600	0.6181	0.11	0.6495	0.83	0.5813	0.06	0.6417		1600	0.7529	0.00	0.8039	0.97	0.6575	0.03	0.7992
	1700	0.5459	0.10	0.4968	0.83	0.4731	0.08	0.4997		1700	0.7605	0.00	0.7584	0.95	0.6001	0.05	0.7499
21-Feb-10	0900	0.6263	0.04	0.6213	0.89	0.5993	0.07	0.6199	21-Aug-10	0900	0.6565	0.00	0.7153	0.92	0.6536	0.08	0.7107
	1000	0.6452	0.02	0.6665	0.89	0.6510	0.08	0.6647		1000	0.6609	0.00	0.7114	0.92	0.6882	0.08	0.7096
	1100	0.6474	0.02	0.6692	0.88	0.6790	0.09	0.6696		1100	0.6614	0.00	0.6623	0.90	0.7079	0.10	0.6667
	1200	0.6474	0.04	0.6623	0.87	0.6919	0.09	0.6646		1200	0.6656	0.00	0.6059	0.92	0.7166	0.08	0.6142
	1300	0.6489	0.05	0.6753	0.92	0.6930	0.04	0.6747		1300	0.6753	0.00	0.6329	0.90	0.7160	0.10	0.6409
	1400	0.6541	0.04	0.7079	0.92	0.6831	0.05	0.7048		1400	0.6908	0.00	0.7229	0.90	0.7062	0.10	0.7213
	1500	0.6570	0.02	0.7284	0.92	0.6595	0.06	0.7227		1500	0.7072	0.00	0.7794	0.91	0.6851	0.09	0.7713
	1600	0.6484	0.02	0.7069	0.92	0.6148	0.06	0.7001		1600	0.7163	0.00	0.7831	0.91	0.6479	0.09	0.7715
	1700	0.6030	0.04	0.6001	0.91	0.5295	0.06	0.5960		1700	0.7088	0.00	0.7209	0.90	0.5821	0.10	0.7075
21-Mar-10	0900	0.6420	0.04	0.6749	0.83	0.6317	0.13	0.6679	21-Sep-10	0900	0.6468	0.02	0.6870	0.92	0.6458	0.06	0.6838
	1000	0.6510	0.03	0.6916	0.85	0.6740	0.12	0.6882		1000	0.6515	0.00	0.6901	0.96	0.6819	0.04	0.6897
	1100	0.6510	0.03	0.6678	0.87	0.6967	0.10	0.6701		1100	0.6510	0.01	0.6590	0.96	0.7012	0.03	0.6603
	1200	0.6515	0.03	0.6387	0.86	0.7072	0.11	0.6464		1200	0.6530	0.01	0.6341	0.93	0.7091	0.06	0.6385
	1300	0.6575	0.02	0.6575	0.90	0.7072	0.08	0.6613		1300	0.6604	0.00	0.6674	0.97	0.7069	0.03	0.6687
	1400	0.6674	0.03	0.7153	0.88	0.6970	0.09	0.7122		1400	0.6714	0.00	0.7287	0.97	0.6941	0.03	0.7275
	1500	0.6782	0.03	0.7547	0.87	0.6744	0.10	0.7445		1500	0.6819	0.00	0.7602	0.98	0.6683	0.02	0.7581
	1600	0.6782	0.03	0.7470	0.89	0.6329	0.08	0.7362		1600	0.6786	0.00	0.7401	0.99	0.6213	0.02	0.7388
	1700	0.6479	0.03	0.6623	0.89	0.5570	0.08	0.6539		1700	0.6370	0.00	0.6300	0.99	0.5329	0.01	0.6289
21-Apr-10	0900	0.6570	0.00	0.7150	0.88	0.6560	0.12	0.7078	21-Oct-10	0900	0.6392	0.03	0.6525	0.97	0.6294	0.00	0.6521
	1000	0.6604	0.00	0.7079	0.90	0.6897	0.10	0.7060		1000	0.6479	0.04	0.6718	0.96	0.6674	0.00	0.6708
	1100	0.6604	0.00	0.6565	0.89	0.7085	0.11	0.6623		1100	0.6474	0.01	0.6651	0.99	0.6874	0.00	0.6649
	1200	0.6651	0.00	0.6051	0.90	0.7166	0.10	0.6163		1200	0.6484	0.00	0.6646	1.00	0.6945	0.00	0.6646
	1300	0.6753	0.00	0.6398	0.92	0.7153	0.08	0.6457		1300	0.6515	0.02	0.6904	0.97	0.6904	0.01	0.6896
	1400	0.6908	0.00	0.7287	0.92	0.7046	0.08	0.7268		1400	0.6565	0.02	0.7221	0.97	0.6740	0.01	0.7202
	1500	0.7066	0.00	0.7804	0.92	0.6823	0.00	0.7695		1500	0.6560	0.02	0.7263	0.97	0.6414	0.01	0.7238
	1600	0.7141	0.00	0.7791	0.89	0.6431	0.11	0.7640		1600	0.6347	0.02	0.7203	0.98	0.5813	0.01	0.7238
	1700	0.7005	0.00	0.7082	0.88	0.5736	0.11	0.6917		1700	0.5500	0.03	0.4883	0.96	0.4566	0.01	0.4899
21-May-10	0900	0.6827	0.02	0.7367	0.96	0.6642	0.02	0.7339	21-Nov-10	0900	0.6275	0.12	0.6073	0.84	0.6001	0.03	0.6095
21-Way-10	1000	0.6761	0.02	0.7307	0.97	0.6949	0.02	0.7339	21-NOV-10	1000	0.6436	0.12	0.6489	0.80	0.6447	0.03	0.6479
	1100	0.6740	0.01	0.6646	0.94	0.7120	0.02	0.6673		1100	0.6463	0.17	0.6609	0.80	0.6674	0.03	0.6587
	1200	0.6799	0.01	0.6442	0.94	0.7120	0.05			1200	0.6463	0.17	0.6692	0.80		0.03	
	1200	0.6799	0.02		0.91	0.7189	0.06	0.6498		1200		0.14	0.6862	0.82	0.6757	0.03	0.6661
				0.6530				0.6570			0.6458				0.6714		0.6806
	1400	0.7110	0.02	0.7436	0.88	0.7072	0.10	0.7394		1400	0.6447	0.16	0.7005	0.79	0.6536	0.06	0.6892
	1500	0.7331	0.02	0.7973	0.90	0.6862	0.08	0.7876		1500	0.6352	0.16	0.6862	0.79	0.6168	0.06	0.6745
	1600	0.7527	0.02	0.7997	0.89	0.6500	0.09	0.7858		1600	0.5986	0.16	0.6066	0.79	0.5469	0.06	0.6020
	1700	0.7562	0.02	0.7417	0.88	0.5870	0.10	0.7271		1700	0.4778	0.13	0.3739	0.80	0.3915	0.07	0.3889
21-Jun-10	0900	0.6967	0.00	0.7438	0.89	0.6628	0.11	0.7348	21-Dec-10	0900	0.6141	0.14	0.5673	0.85	0.5727	0.01	0.5739
	1000	0.6916	0.00	0.7337	0.89	0.6938	0.11	0.7292		1000	0.6387	0.19	0.6294	0.77	0.6263	0.03	0.6311
	1100	0.6847	0.00	0.6811	0.89	0.7110	0.11	0.6844		1100	0.6447	0.18	0.6520	0.78	0.6541	0.03	0.6508
	1200	0.6897	0.00	0.6510	0.88	0.7189	0.12	0.6593		1200	0.6452	0.16	0.6633	0.81	0.6656	0.03	0.6604
	1300	0.7032	0.00	0.6637	0.92	0.7180	0.08	0.6679		1300	0.6442	0.16	0.6774	0.82	0.6637	0.02	0.6717
	1400	0.7229	0.00	0.7452	0.93	0.7088	0.07	0.7428		1400	0.6409	0.19	0.6878	0.78	0.6479	0.02	0.6779
	1500	0.7454	0.00	0.8015	0.97	0.6893	0.03	0.7978		1500	0.6305	0.20	0.6740	0.77	0.6141	0.02	0.6638
	1600	0.7649	0.00	0.8087	0.93	0.6560	0.07	0.7985		1600	0.5956	0.17	0.6008	0.81	0.5490	0.02	0.5988
	1700	0.7790	0.00	0.7617	0.93	0.5986	0.07	0.7508		1700	0.4868	0.15	0.3891	0.83	0.4077	0.02	0.4042

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 9

Date	Time	$\mathbf{P}_{VS,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BX,P}$	P_P	$\mathbf{P}_{VX,BX,O}$	\mathbf{P}_{O}	$\mathbf{P}_{FS,BS,R}$	Date	Time	$\mathbf{P}_{VX,BX,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{FS,BS,O}$	P_O	$\mathbf{P}_{VX,BX,R}$
21-Jan-10	0900	0.7966	0.05	0.7953	0.80	0.7684	0.15	0.7914	21-Jul-10	0900	0.9213	0.00	0.9163	0.92	0.8423	0.08	0.9108
	1000	0.8194	0.06	0.8474	0.81	0.8189	0.13	0.8419		1000	0.8938	0.00	0.9153	0.91	0.8660	0.09	0.9111
	1100	0.8250	0.06	0.8580	0.81	0.8428	0.13	0.8539		1100	0.8700	0.00	0.8900	0.91	0.8787	0.09	0.8891
	1200	0.8255	0.08	0.8556	0.80	0.8532	0.13	0.8530		1200	0.8653	0.00	0.8717	0.91	0.8843	0.09	0.8728
	1300	0.8255	0.08	0.8549	0.83	0.8538	0.10	0.8525		1300	0.8651	0.00	0.8701	0.96	0.8843	0.04	0.8707
	1400	0.8251	0.08	0.8569	0.84	0.8451	0.09	0.8535		1400	0.8692	0.00	0.8898	0.97	0.8786	0.03	0.8894
	1500	0.8208	0.09	0.8488	0.83	0.8236	0.09	0.8442		1500	0.8931	0.00	0.9143	0.97	0.8657	0.03	0.9127
	1600	0.8018	0.11	0.8050	0.83	0.7782	0.06	0.8030		1600	0.9208	0.00	0.9145	0.97	0.8415	0.03	0.9122
	1700	0.7330	0.10	0.6486	0.83	0.6694	0.08	0.6583		1700	0.9316	0.00	0.8812	0.95	0.7954	0.05	0.8766
21-Feb-10	0900	0.8185	0.04	0.8398	0.89	0.7945	0.07	0.8358	21-Aug-10	0900	0.8652	0.00	0.9053	0.92	0.8385	0.08	0.9003
	1000	0.8319	0.02	0.8721	0.89	0.8367	0.08	0.8683		1000	0.8628	0.00	0.9052	0.92	0.8641	0.08	0.9021
	1100	0.8326	0.02	0.8710	0.88	0.8573	0.09	0.8688		1100	0.8568	0.00	0.8783	0.90	0.8774	0.10	0.8782
	1200	0.8307	0.04	0.8591	0.87	0.8665	0.09	0.8588		1200	0.8523	0.00	0.8442	0.92	0.8831	0.08	0.8471
	1300	0.8302	0.05	0.8566	0.92	0.8674	0.04	0.8558		1300	0.8524	0.00	0.8457	0.90	0.8827	0.10	0.8493
	1400	0.8318	0.04	0.8673	0.92	0.8604	0.05	0.8657		1400	0.8567	0.00	0.8814	0.90	0.8762	0.10	0.8809
	1500	0.8322	0.02	0.8723	0.92	0.8430	0.06	0.8697		1500	0.8622	0.00	0.9052	0.91	0.8619	0.09	0.9015
	1600	0.8231	0.02	0.8505	0.92	0.8074	0.06	0.8473		1600	0.8631	0.00	0.9016	0.91	0.8344	0.09	0.8958
	1700	0.7822	0.04	0.7547	0.91	0.7286	0.06	0.7542		1700	0.8646	0.00	0.8545	0.90	0.7791	0.10	0.8472
21-Mar-10	0900	0.8423	0.04	0.8796	0.83	0.8218	0.13	0.8705	21-Sep-10	0900	0.8460	0.02	0.8877	0.92	0.8326	0.06	0.8838
	1000	0.8457	0.03	0.8910	0.85	0.8538	0.12	0.8852		1000	0.8463	0.00	0.8904	0.96	0.8595	0.04	0.8890
	1100	0.8420	0.03	0.8752	0.87	0.8699	0.10	0.8736		1100	0.8419	0.01	0.8690	0.96	0.8730	0.03	0.8688
	1200	0.8381	0.03	0.8501	0.86	0.8769	0.11	0.8526		1200	0.8387	0.01	0.8453	0.93	0.8782	0.06	0.8470
	1300	0.8333	0.02	0.8491	0.90	0.8770	0.08	0.8508		1300	0.8395	0.00	0.8531	0.97	0.8767	0.03	0.8539
	1400	0.8413	0.03	0.8736	0.88	0.8701	0.09	0.8722		1400	0.8433	0.00	0.8795	0.97	0.8680	0.03	0.8791
	1500	0.8448	0.03	0.8894	0.87	0.8542	0.10	0.8846		1500	0.8464	0.00	0.8913	0.98	0.8495	0.02	0.8903
	1600	0.8411	0.03	0.8782	0.89	0.8226	0.08	0.8728		1600	0.8397	0.00	0.8722	0.99	0.8131	0.01	0.8716
	1700	0.8133	0.03	0.8088	0.89	0.7557	0.08	0.8049		1700	0.8024	0.00	0.8163	0.99	0.7324	0.01	0.8154
21-Apr-10	0900	0.8641	0.00	0.9053	0.88	0.8406	0.12	0.8974	21-Oct-10	0900	0.8281	0.03	0.8629	0.97	0.8197	0.00	0.8617
	1000	0.8614	0.00	0.9026	0.90	0.8652	0.10	0.8989		1000	0.8335	0.04	0.8746	0.96	0.8491	0.00	0.8728
	1100	0.8554	0.00	0.8747	0.89	0.8778	0.11	0.8750		1100	0.8319	0.01	0.8653	0.99	0.8634	0.00	0.8649
	1200	0.8512	0.00	0.8421	0.90	0.8831	0.10	0.8462		1200	0.8303	0.00	0.8252	1.00	0.8683	0.00	0.8252
	1300	0.8517	0.00	0.8470	0.92	0.8822	0.08	0.8497		1300	0.8311	0.02	0.8612	0.97	0.8655	0.01	0.8606
	1400	0.8562	0.00	0.8836	0.92	0.8752	0.08	0.8830		1400	0.8330	0.02	0.8722	0.97	0.8540	0.01	0.8711
	1500	0.8616	0.00	0.9051	0.89	0.8598	0.11	0.9001		1500	0.8303	0.02	0.8673	0.97	0.8294	0.01	0.8661
	1600	0.8614	0.00	0.8987	0.89	0.8307	0.11	0.8911		1600	0.8106	0.02	0.8205	0.98	0.7786	0.01	0.8199
	1700	0.8538	0.00	0.8445	0.88	0.7714	0.12	0.8355		1700	0.7303	0.03	0.6358	0.96	0.6495	0.01	0.6390
21-May-10	0900	0.9123	0.02	0.9172	0.96	0.8468	0.02	0.9156	21-Nov-10	0900	0.8103	0.12	0.8265	0.84	0.7954	0.03	0.8235
21-Way-10	1000	0.8781	0.02	0.9172	0.97	0.8685	0.02	0.9109	21-1404-10	1000	0.8234	0.17	0.8555	0.80	0.8319	0.03	0.8493
	1100	0.8682	0.01	0.8833	0.94	0.8800	0.05	0.8829		1100	0.8258	0.17	0.8580	0.80	0.8490	0.03	0.8523
	1200	0.8640	0.01	0.8816	0.94	0.8847	0.05	0.8814		1200	0.8256	0.17	0.8548	0.80	0.8551	0.03	0.8506
	1300	0.8646	0.02	0.8646	0.91	0.8838	0.06	0.8657		1300	0.8256	0.14	0.8548	0.82	0.8531	0.03	0.8522
	1400	0.8692	0.01	0.8943	0.94	0.8838	0.05	0.8921		1400	0.8257	0.12	0.8562	0.83	0.8319	0.04	0.8522
			0.02		0.88		0.10			1500		0.16		0.79	0.8386	0.06	0.8331
	1500 1600	0.8919 0.9193	0.02	0.9153 0.9113	0.90	0.8626 0.8359	0.08	0.9108 0.9050		1600	0.8162 0.7840	0.16	0.8381	0.79	0.8094	0.06	0.8331
	1700	0.9193	0.02	0.9113	0.89	0.8359	0.09	0.9050		1700	0.7840	0.16	0.7647	0.79	0.7467	0.06	0.7667
21-Jun-10	0900	0.9377	0.00	0.9205	0.89	0.8457	0.11	0.9122	21-Dec-10	0900	0.7958	0.14	0.7925	0.85	0.7706	0.01	0.7927
	1000	0.9293	0.00	0.9176	0.89	0.8678	0.11	0.9120		1000	0.8167	0.19	0.8405	0.77	0.8171	0.03	0.8352
	1100	0.8789	0.00	0.8924	0.89	0.8795	0.11	0.8910		1100	0.8229	0.18	0.8516	0.78	0.8391	0.03	0.8459
	1200	0.8737	0.00	0.8854	0.88	0.8846	0.12	0.8853		1200	0.8234	0.16	0.8513	0.81	0.8477	0.03	0.8467
	1300	0.8750	0.00	0.8756	0.92	0.8841	0.08	0.8762		1300	0.8233	0.16	0.8511	0.82	0.8463	0.02	0.8465
	1400	0.9011	0.00	0.8971	0.93	0.8780	0.07	0.8958		1400	0.8219	0.19	0.8491	0.78	0.8344	0.02	0.8436
	1500	0.9214	0.00	0.9185	0.97	0.8648	0.03	0.9167		1500	0.8130	0.20	0.8303	0.77	0.8070	0.02	0.8263
	1600	0.9344	0.00	0.9170	0.93	0.8404	0.07	0.9119		1600	0.7826	0.17	0.7608	0.81	0.7481	0.02	0.7643
	1700	0.9420	0.00	0.8830	0.93	0.7940	0.07	0.8771		1700	0.6716	0.15	0.5184	0.83	0.5893	0.02	0.5430

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 9

Date	Time	$\mathbf{P}_{FS,UD,C}$	P_C	$\mathbf{P}_{VS,UD,P}$	P_P	$\mathbf{P}_{VX,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},UD,R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	P_C	$\mathbf{P}_{VX,UD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},UD,R}$
21-Jan-10	0900	0.8670	0.05	0.7655	0.80	0.6237	0.15	0.7496	21-Jul-10	0900	0.8744	0.00	0.7648	0.92	0.6214	0.08	0.7540
	1000	0.8627	0.06	0.7392	0.81	0.6153	0.13	0.7312		1000	0.8356	0.00	0.7247	0.91	0.6205	0.09	0.7157
	1100	0.8482	0.06	0.7233	0.81	0.6243	0.13	0.7186		1100	0.7991	0.00	0.6536	0.91	0.6193	0.09	0.6506
	1200	0.8452	0.08	0.7052	0.80	0.6229	0.13	0.7051		1200	0.7697	0.00	0.5153	0.91	0.6174	0.09	0.5241
	1300	0.8368	0.08	0.6866	0.83	0.6218	0.10	0.6917		1300	0.7577	0.00	0.4767	0.96	0.6202	0.04	0.4829
	1400	0.8298	0.08	0.6779	0.84	0.6207	0.09	0.6844		1400	0.7241	0.00	0.5701	0.97	0.6172	0.03	0.5717
	1500	0.8218	0.09	0.6867	0.83	0.6213	0.09	0.6927		1500	0.7247	0.00	0.6074	0.97	0.6182	0.03	0.6077
	1600	0.8254	0.11	0.6882	0.83	0.6167	0.06	0.6983		1600	0.7009	0.00	0.6424	0.97	0.6157	0.03	0.6416
	1700	0.8195	0.10	0.6878	0.83	0.6274	0.08	0.6960		1700	0.6643	0.00	0.6532	0.95	0.6262	0.05	0.6518
21-Feb-10	0900	0.8626	0.04	0.7694	0.89	0.6222	0.07	0.7623	21-Aug-10	0900	0.8520	0.00	0.7636	0.92	0.6205	0.08	0.7528
	1000	0.8470	0.02	0.7466	0.89	0.6200	0.08	0.7386		1000	0.8310	0.00	0.7386	0.92	0.6187	0.08	0.7295
	1100	0.8435	0.02	0.7260	0.88	0.6155	0.09	0.7184		1100	0.8068	0.00	0.6628	0.90	0.6198	0.10	0.6586
	1200	0.8350	0.04	0.6879	0.87	0.6195	0.09	0.6866		1200	0.7880	0.00	0.5808	0.92	0.6179	0.08	0.5836
	1300	0.8213	0.05	0.6654	0.92	0.6209	0.04	0.6712		1300	0.7710	0.00	0.5395	0.90	0.6187	0.10	0.5472
	1400	0.8126	0.04	0.6684	0.92	0.6223	0.05	0.6713		1400	0.7502	0.00	0.5957	0.90	0.6194	0.10	0.5980
	1500	0.8028	0.02	0.6742	0.92	0.6202	0.06	0.6741		1500	0.7233	0.00	0.6201	0.91	0.6227	0.09	0.6203
	1600	0.8007	0.02	0.6769	0.92	0.6230	0.06	0.6767		1600	0.7135	0.00	0.6561	0.91	0.6238	0.09	0.6534
	1700	0.7893	0.04	0.6916	0.91	0.6164	0.06	0.6907		1700	0.7097	0.00	0.6634	0.90	0.6212	0.10	0.6594
21-Mar-10	0900	0.8563	0.04	0.7740	0.83	0.6241	0.13	0.7582	21-Sep-10	0900	0.8544	0.02	0.7702	0.92	0.6189	0.06	0.7637
	1000	0.8395	0.03	0.7444	0.85	0.6155	0.12	0.7323		1000	0.8366	0.00	0.7333	0.96	0.6209	0.04	0.7283
	1100	0.8268	0.03	0.7144	0.87	0.6216	0.10	0.7090		1100	0.8223	0.01	0.6899	0.96	0.6235	0.03	0.6891
	1200	0.8100	0.03	0.6542	0.86	0.6207	0.11	0.6556		1200	0.8050	0.01	0.6372	0.93	0.6181	0.06	0.6380
	1300	0.7949	0.02	0.6226	0.90	0.6207	0.08	0.6262		1300	0.7899	0.00	0.6205	0.97	0.6186	0.03	0.6204
	1400	0.7848	0.03	0.6429	0.88	0.6184	0.09	0.6454		1400	0.7801	0.00	0.6428	0.97	0.6222	0.03	0.6422
	1500	0.7681	0.03	0.6422	0.87	0.6181	0.10	0.6440		1500	0.7684	0.00	0.6486	0.98	0.6194	0.02	0.6479
	1600	0.7540	0.03	0.6621	0.89	0.6227	0.08	0.6621		1600	0.7604	0.00	0.6702	0.99	0.6154	0.01	0.6695
	1700	0.7560	0.03	0.6879	0.89	0.6139	0.08	0.6845		1700	0.7501	0.00	0.6927	0.99	0.6200	0.01	0.6919
21-Apr-10	0900	0.8493	0.00	0.7623	0.88	0.6210	0.12	0.7450	21-Oct-10	0900	0.8587	0.03	0.7567	0.97	0.6188	0.00	0.7600
	1000	0.8257	0.00	0.7348	0.90	0.6224	0.10	0.7235		1000	0.8406	0.04	0.7427	0.96	0.6205	0.00	0.7469
	1100	0.8039	0.00	0.6646	0.89	0.6189	0.11	0.6595		1100	0.8393	0.01	0.7015	0.99	0.6197	0.00	0.7030
	1200	0.7911	0.00	0.5667	0.90	0.6179	0.10	0.5718		1200	0.8199	0.00	0.6751	1.00	0.6190	0.00	0.6751
	1300	0.7710	0.00	0.5508	0.92	0.6195	0.08	0.5561		1300	0.8146	0.02	0.6598	0.97	0.6214	0.01	0.6627
	1400	0.7502	0.00	0.5997	0.92	0.6191	0.08	0.6012		1400	0.8060	0.02	0.6744	0.97	0.6218	0.01	0.6767
	1500	0.7245	0.00	0.6215	0.89	0.6233	0.11	0.6217		1500	0.7950	0.02	0.6819	0.97	0.6242	0.01	0.6837
	1600	0.7111	0.00	0.6608	0.89	0.6184	0.11	0.6561		1600	0.7840	0.01	0.6787	0.98	0.6167	0.01	0.6792
	1700	0.7129	0.00	0.6655	0.88	0.6197	0.12	0.6599		1700	0.8045	0.03	0.6996	0.96	0.6251	0.01	0.7022
21-May-10	0900	0.8662	0.02	0.7597	0.96	0.6212	0.02	0.7590	21-Nov-10	0900	0.8649	0.12	0.7540	0.84	0.6164	0.03	0.7629
	1000	0.8280	0.01	0.7194	0.97	0.6212	0.02	0.7185		1000	0.8596	0.17	0.7484	0.80	0.6202	0.03	0.7627
	1100	0.7935	0.01	0.6435	0.94	0.6168	0.05	0.6437		1100	0.8452	0.17	0.7112	0.80	0.6205	0.03	0.7305
	1200	0.7697	0.02	0.4754	0.91	0.6194	0.06	0.4910		1200	0.8452	0.14	0.6863	0.82	0.6196	0.03	0.7071
	1300	0.7492	0.01	0.4986	0.94	0.6210	0.05	0.5079		1300	0.8311	0.12	0.6796	0.83	0.6187	0.04	0.6954
	1400	0.7207	0.02	0.5692	0.88	0.6207	0.10	0.5775		1400	0.8239	0.16	0.6848	0.79	0.6205	0.06	0.7029
	1500	0.7228	0.02	0.6129	0.90	0.6183	0.08	0.6157		1500	0.8129	0.16	0.6901	0.79	0.6251	0.06	0.7056
	1600	0.6899	0.02	0.6421	0.89	0.6212	0.09	0.6413		1600	0.8224	0.16	0.6953	0.79	0.6251	0.06	0.7112
	1700	0.6620	0.02	0.6580	0.88	0.6157	0.10	0.6540		1700	0.8472	0.13	0.6916	0.80	0.6194	0.07	0.7076
21-Jun-10	0900	0.8861	0.00	0.7607	0.89	0.6196	0.11	0.7451	21-Dec-10	0900	0.8705	0.14	0.7499	0.85	0.6149	0.01	0.7653
2	1000	0.8641	0.00	0.7183	0.89	0.6199	0.11	0.7073	2. 500 10	1000	0.8655	0.19	0.7464	0.77	0.6182	0.03	0.7653
	1100	0.8032	0.00	0.6454	0.89	0.6205	0.11	0.6427		1100	0.8579	0.18	0.7194	0.78	0.6234	0.03	0.7416
	1200	0.7842	0.00	0.4920	0.88	0.6194	0.12	0.5076		1200	0.8511	0.16	0.7045	0.78	0.6228	0.03	0.7255
	1300	0.7514	0.00	0.4920	0.88	0.6229	0.12	0.4903		1300	0.8404	0.16	0.6823	0.81	0.6228	0.03	0.7255
	1400	0.7346	0.00	0.5614	0.93	0.6210	0.07	0.5654		1400	0.8325	0.10	0.6823	0.78	0.6238	0.02	0.7143
	1500	0.7340	0.00	0.6035	0.93	0.6210	0.07	0.6040		1500	0.8323	0.19	0.6933	0.78	0.6192	0.02	0.7177
	1600	0.7281	0.00	0.6221	0.97	0.6201	0.03	0.6040		1600	0.8207	0.20	0.6861	0.77	0.6192	0.02	0.7177
	1700	0.6194	0.00	0.6221	0.93	0.6210	0.07	0.6221		1700	0.8272	0.17	0.7001	0.81	0.6228	0.02	0.7090
	1700	0.0194	0.00	0.0558	0.93	0.0181	0.07	0.0333		1 /00	0.8443	0.13	0.7001	0.63	0.0104	0.02	0.7200

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 9

Date	Time	$\mathbf{P}_{VS,US,C}$	\mathbf{P}_C	$\mathbf{P}_{V\mathbf{S},U\mathbf{S},P}$	P_P	$\mathbf{P}_{\mathrm{FS},U\mathrm{S},O}$	P_O	$P_{FS,US,R}$	Date	Time	$\mathbf{P}_{\mathrm{FX},U\mathrm{X},C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{FS,US,O}$	P_O	$\mathbf{P}_{FS,US,R}$
21-Jan-10	0900	0.8885	0.05	0.9060	0.80	0.9150	0.15	0.9064	21-Jul-10	0900	0.9219	0.00	0.9071	0.92	0.9149	0.08	0.9077
	1000	0.8883	0.06	0.9080	0.81	0.9149	0.13	0.9076		1000	0.9124	0.00	0.9123	0.91	0.9149	0.09	0.9125
	1100	0.8875	0.06	0.9100	0.81	0.9149	0.13	0.9092		1100	0.9038	0.00	0.9190	0.91	0.9149	0.09	0.9187
	1200	0.8864	0.08	0.9117	0.80	0.9149	0.13	0.9102		1200	0.9049	0.00	0.9270	0.91	0.9148	0.09	0.9260
	1300	0.8862	0.08	0.9121	0.83	0.9149	0.10	0.9105		1300	0.9050	0.00	0.9272	0.96	0.9148	0.04	0.9266
	1400	0.8872	0.08	0.9114	0.84	0.9148	0.09	0.9098		1400	0.9045	0.00	0.9200	0.97	0.9149	0.03	0.9199
	1500	0.8878	0.09	0.9098	0.83	0.9149	0.09	0.9083		1500	0.9137	0.00	0.9142	0.97	0.9148	0.03	0.9143
	1600	0.8879	0.11	0.9084	0.83	0.9149	0.06	0.9066		1600	0.9235	0.00	0.9095	0.97	0.9148	0.03	0.9097
	1700	0.8874	0.10	0.9074	0.83	0.9151	0.08	0.9060		1700	0.9215	0.00	0.9058	0.95	0.9148	0.05	0.9062
21-Feb-10	0900	0.8914	0.04	0.9058	0.89	0.9148	0.07	0.9059	21-Aug-10	0900	0.8986	0.00	0.9069	0.92	0.9149	0.08	0.9075
	1000	0.8915	0.02	0.9084	0.89	0.9149	0.08	0.9085		1000	0.8993	0.00	0.9118	0.92	0.9149	0.08	0.9120
	1100	0.8908	0.02	0.9114	0.88	0.9149	0.09	0.9113		1100	0.9009	0.00	0.9178	0.90	0.9149	0.10	0.9175
	1200	0.8908	0.04	0.9138	0.87	0.9148	0.09	0.9130		1200	0.9016	0.00	0.9240	0.92	0.9149	0.08	0.9233
	1300	0.8906	0.05	0.9144	0.92	0.9149	0.04	0.9133		1300	0.9018	0.00	0.9238	0.90	0.9149	0.10	0.9229
	1400	0.8906	0.04	0.9131	0.92	0.9149	0.05	0.9124		1400	0.9015	0.00	0.9182	0.90	0.9148	0.10	0.9178
	1500	0.8913	0.02	0.9107	0.92	0.9150	0.06	0.9105		1500	0.9005	0.00	0.9133	0.91	0.9149	0.09	0.9134
	1600	0.8915	0.02	0.9085	0.92	0.9148	0.06	0.9084		1600	0.8998	0.00	0.9091	0.91	0.9148	0.09	0.9096
	1700	0.8905	0.04	0.9072	0.91	0.9150	0.06	0.9070		1700	0.9047	0.00	0.9058	0.90	0.9149	0.10	0.9067
21-Mar-10	0900	0.8950	0.04	0.9063	0.83	0.9149	0.13	0.9069	21-Sep-10	0900	0.8954	0.02	0.9071	0.92	0.9149	0.06	0.9073
	1000	0.8949	0.03	0.9099	0.85	0.9149	0.12	0.9100		1000	0.8953	0.00	0.9110	0.96	0.9148	0.04	0.9112
	1100	0.8957	0.03	0.9142	0.87	0.9149	0.10	0.9136		1100	0.8961	0.01	0.9154	0.96	0.9148	0.03	0.9152
	1200	0.8960	0.03	0.9177	0.86	0.9149	0.11	0.9167		1200	0.8967	0.01	0.9186	0.93	0.9148	0.06	0.9182
	1300	0.9139	0.02	0.9181	0.90	0.9149	0.08	0.9178		1300	0.8965	0.00	0.9179	0.97	0.9149	0.03	0.9178
	1400	0.8959	0.03	0.9153	0.88	0.9148	0.09	0.9146		1400	0.8962	0.00	0.9148	0.97	0.9148	0.03	0.9148
	1500	0.8953	0.03	0.9118	0.87	0.9149	0.10	0.9116		1500	0.8956	0.00	0.9112	0.98	0.9149	0.02	0.9113
	1600	0.8956	0.03	0.9087	0.89	0.9147	0.08	0.9087		1600	0.8954	0.00	0.9081	0.99	0.9148	0.01	0.9081
	1700	0.8941	0.03	0.9063	0.89	0.9147	0.08	0.9065		1700	0.8938	0.00	0.9059	0.99	0.9150	0.01	0.9060
21-Apr-10	0900	0.8986	0.00	0.9073	0.88	0.9149	0.12	0.9082	21-Oct-10	0900	0.8915	0.03	0.9070	0.97	0.9149	0.00	0.9065
	1000	0.8994	0.00	0.9116	0.90	0.9149	0.10	0.9120		1000	0.8907	0.04	0.9099	0.96	0.9149	0.00	0.9090
	1100	0.9007	0.00	0.9181	0.89	0.9149	0.11	0.9177		1100	0.8911	0.01	0.9128	0.99	0.9149	0.00	0.9126
	1200	0.9014	0.00	0.9240	0.90	0.9149	0.10	0.9231		1200	0.8910	0.00	0.8913	1.00	0.9149	0.00	0.8913
	1300	0.9014	0.00	0.9231	0.92	0.9148	0.08	0.9224		1300	0.8910	0.02	0.9140	0.97	0.9149	0.01	0.9136
	1400	0.9010	0.00	0.9177	0.92	0.9148	0.08	0.9174		1400	0.8908	0.02	0.9121	0.97	0.9148	0.01	0.9116
	1500	0.9002	0.00	0.9128	0.89	0.9149	0.11	0.9130		1500	0.8918	0.02	0.9096	0.97	0.9148	0.01	0.9092
	1600	0.8994	0.00	0.9087	0.89	0.9149	0.11	0.9094		1600	0.8914	0.01	0.9077	0.98	0.9149	0.01	0.9076
	1700	0.9011	0.00	0.9056	0.88	0.9149	0.12	0.9068		1700	0.8902	0.03	0.9063	0.96	0.9149	0.01	0.9059
21-May-10	0900	0.9189	0.02	0.9078	0.96	0.9148	0.02	0.9082	21-Nov-10	0900	0.8884	0.12	0.9068	0.84	0.9148	0.03	0.9048
	1000	0.9022	0.01	0.9132	0.97	0.9149	0.02	0.9131		1000	0.8882	0.17	0.9088	0.80	0.9148	0.03	0.9056
	1100	0.9038	0.01	0.9202	0.94	0.9149	0.05	0.9198		1100	0.8866	0.17	0.9108	0.80	0.9149	0.03	0.9069
	1200	0.9048	0.02	0.9280	0.91	0.9149	0.06	0.9267		1200	0.8864	0.14	0.9121	0.82	0.9148	0.03	0.9085
	1300	0.9048	0.01	0.9259	0.94	0.9149	0.05	0.9251		1300	0.8863	0.12	0.9121	0.83	0.9148	0.04	0.9091
	1400	0.9043	0.02	0.9190	0.88	0.9149	0.10	0.9183		1400	0.8873	0.16	0.9109	0.79	0.9149	0.06	0.9075
	1500	0.9128	0.02	0.9134	0.90	0.9148	0.08	0.9135		1500	0.8879	0.16	0.9091	0.79	0.9149	0.06	0.9062
	1600	0.9228	0.02	0.9089	0.89	0.9148	0.09	0.9097		1600	0.8875	0.16	0.9076	0.79	0.9149	0.06	0.9049
	1700	0.9197	0.02	0.9054	0.88	0.9149	0.10	0.9066		1700	0.8879	0.13	0.9073	0.80	0.9147	0.07	0.9052
21-Jun-10	0900	0.9276	0.00	0.9075	0.89	0.9148	0.11	0.9083	21-Dec-10	0900	0.8877	0.14	0.9065	0.85	0.9149	0.01	0.9040
	1000	0.9275	0.00	0.9129	0.89	0.9149	0.11	0.9131		1000	0.8870	0.19	0.9082	0.77	0.9149	0.03	0.9043
	1100	0.9045	0.00	0.9199	0.89	0.9149	0.11	0.9193		1100	0.8862	0.18	0.9101	0.78	0.9150	0.03	0.9059
	1200	0.9054	0.00	0.9279	0.88	0.9149	0.12	0.9263		1200	0.8859	0.16	0.9113	0.81	0.9149	0.03	0.9073
	1300	0.9057	0.00	0.9269	0.92	0.9149	0.08	0.9260		1300	0.8857	0.16	0.9115	0.82	0.9149	0.02	0.9074
	1400	0.9191	0.00	0.9197	0.93	0.9150	0.07	0.9194		1400	0.8861	0.19	0.9106	0.78	0.9148	0.02	0.9060
	1500	0.9251	0.00	0.9141	0.97	0.9150	0.03	0.9141		1500	0.8864	0.20	0.9092	0.77	0.9148	0.02	0.9047
	1600	0.9275	0.00	0.9093	0.93	0.9149	0.03	0.9097		1600	0.8864	0.17	0.9079	0.81	0.9149	0.02	0.9044
	1700	0.9242	0.00	0.9053	0.93	0.9149	0.07	0.9060		1700	0.8862	0.17	0.9079	0.83	0.9149	0.02	0.9044
	1700	0.7242	0.00	0.7055	3.73	0.7147	0.07	0.7000		1700	0.0002	0.15	0.7073	0.03	0.9132	0.02	0.7043

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 9

Date	Time	$\mathbf{P}_{FS,PG,C}$	P_C	$\mathbf{P}_{FX,PG,P}$	P_P	$\mathbf{P}_{FX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{FX,PG,P}$	P_P	$\mathbf{P}_{\mathrm{FS},PG,O}$	P_O	$\mathbf{P}_{VS,PG,R}$
21-Jan-10	0900	0.9036	0.05	0.8695	0.80	0.8679	0.15	0.8711	21-Jul-10	0900	0.8398	0.00	0.7440	0.92	0.8190	0.08	0.7497
	1000	0.8970	0.06	0.8302	0.81	0.8373	0.13	0.8354		1000	0.8376	0.00	0.7396	0.91	0.7960	0.09	0.7445
	1100	0.8974	0.06	0.8174	0.81	0.8184	0.13	0.8227		1100	0.8462	0.00	0.7748	0.91	0.7813	0.09	0.7753
	1200	0.8992	0.08	0.8173	0.80	0.8094	0.13	0.8225		1200	0.8528	0.00	0.7879	0.91	0.7740	0.09	0.7867
	1300	0.8992	0.08	0.8172	0.83	0.8086	0.10	0.8225		1300	0.8525	0.00	0.7889	0.96	0.7743	0.04	0.7883
	1400	0.8978	0.08	0.8161	0.84	0.8165	0.09	0.8223		1400	0.8455	0.00	0.7726	0.97	0.7819	0.03	0.7729
	1500	0.8966	0.09	0.8259	0.83	0.8339	0.09	0.8327		1500	0.8361	0.00	0.7374	0.97	0.7964	0.03	0.7393
	1600	0.9019	0.11	0.8610	0.83	0.8630	0.06	0.8655		1600	0.8350	0.00	0.7427	0.97	0.8198	0.03	0.7452
	1700	0.9226	0.10	0.9232	0.83	0.9066	0.08	0.9219		1700	0.5554	0.00	0.8001	0.95	0.8527	0.05	0.8029
21-Feb-10	0900	0.8891	0.04	0.8406	0.89	0.8530	0.07	0.8432	21-Aug-10	0900	0.8435	0.00	0.7641	0.92	0.8228	0.08	0.7686
	1000	0.8860	0.02	0.8067	0.89	0.8241	0.08	0.8100		1000	0.8521	0.00	0.7584	0.92	0.7985	0.08	0.7614
	1100	0.8896	0.02	0.8040	0.88	0.8050	0.09	0.8061		1100	0.8617	0.00	0.7915	0.90	0.7830	0.10	0.7907
	1200	0.8926	0.04	0.8141	0.87	0.7959	0.09	0.8151		1200	0.8671	0.00	0.8214	0.92	0.7758	0.08	0.8180
	1300	0.8931	0.05	0.8150	0.92	0.7948	0.04	0.8180		1300	0.8670	0.00	0.8194	0.90	0.7765	0.10	0.8152
	1400	0.8905	0.04	0.8052	0.92	0.8020	0.05	0.8080		1400	0.8604	0.00	0.7852	0.90	0.7844	0.10	0.7852
	1500	0.8866	0.02	0.8021	0.92	0.8183	0.06	0.8050		1500	0.8506	0.00	0.7548	0.91	0.8004	0.09	0.7588
	1600	0.8868	0.02	0.8281	0.92	0.8453	0.06	0.8305		1600	0.8420	0.00	0.7663	0.91	0.8256	0.09	0.7714
	1700	0.9018	0.04	0.8895	0.91	0.8853	0.06	0.8896		1700	0.8529	0.00	0.8286	0.90	0.8618	0.10	0.8318
21-Mar-10	0900	0.8690	0.04	0.8013	0.83	0.8356	0.13	0.8087	21-Sep-10	0900	0.8672	0.02	0.7898	0.92	0.8275	0.06	0.7936
	1000	0.8721	0.03	0.7817	0.85	0.8090	0.12	0.7879		1000	0.8722	0.00	0.7815	0.96	0.8030	0.04	0.7825
	1100	0.8788	0.03	0.7980	0.87	0.7918	0.10	0.8000		1100	0.8789	0.01	0.8041	0.96	0.7880	0.03	0.8044
	1200	0.8833	0.03	0.8211	0.86	0.7837	0.11	0.8191		1200	0.8826	0.01	0.8246	0.93	0.7817	0.06	0.8228
	1300	0.8831	0.02	0.8209	0.90	0.7835	0.08	0.8194		1300	0.8814	0.00	0.8168	0.97	0.7839	0.03	0.8157
	1400	0.8787	0.03	0.7972	0.88	0.7917	0.09	0.7994		1400	0.8760	0.00	0.7904	0.97	0.7942	0.03	0.7905
	1500	0.8717	0.03	0.7803	0.87	0.8086	0.10	0.7860		1500	0.8688	0.00	0.7786	0.98	0.8123	0.02	0.7794
	1600	0.8684	0.03	0.7990	0.89	0.8352	0.08	0.8040		1600	0.8672	0.00	0.8072	0.99	0.8419	0.01	0.8076
	1700	0.8797	0.03	0.8626	0.89	0.8736	0.08	0.8640		1700	0.8836	0.00	0.8790	0.99	0.8841	0.01	0.8790
21-Apr-10	0900	0.8457	0.00	0.7636	0.88	0.8203	0.12	0.7705	21-Oct-10	0900	0.8856	0.03	0.8181	0.97	0.8368	0.00	0.8202
	1000	0.8543	0.00	0.7615	0.90	0.7971	0.10	0.7651		1000	0.8872	0.04	0.8018	0.96	0.8134	0.00	0.8055
	1100	0.8637	0.00	0.7957	0.89	0.7822	0.11	0.7942		1100	0.8911	0.01	0.8089	0.99	0.7990	0.00	0.8098
	1200	0.8687	0.00	0.8231	0.90	0.7760	0.10	0.8184		1200	0.8932	0.00	0.8168	1.00	0.7936	0.00	0.8168
	1300	0.8676	0.00	0.8187	0.92	0.7769	0.08	0.8154		1300	0.8917	0.02	0.8111	0.97	0.7969	0.01	0.8126
	1400	0.8610	0.00	0.7832	0.92	0.7858	0.08	0.7834		1400	0.8880	0.02	0.8006	0.97	0.8085	0.01	0.8026
	1500	0.8508	0.00	0.7552	0.89	0.8028	0.11	0.7605		1500	0.8853	0.02	0.8092	0.97	0.8294	0.01	0.8110
	1600	0.8433	0.00	0.7711	0.89	0.8285	0.11	0.7775		1600	0.8908	0.01	0.8530	0.98	0.8628	0.01	0.8535
	1700	0.8548	0.00	0.8376	0.88	0.8663	0.12	0.8411		1700	0.9180	0.03	0.9267	0.96	0.9114	0.01	0.9263
21-May-10	0900	0.8379	0.02	0.7412	0.96	0.8151	0.02	0.7449	21-Nov-10	0900	0.8993	0.12	0.8484	0.84	0.8530	0.03	0.8548
	1000	0.8388	0.01	0.7447	0.97	0.7937	0.02	0.7468		1000	0.8965	0.17	0.8217	0.80	0.8278	0.03	0.8344
	1100	0.8487	0.01	0.7826	0.94	0.7799	0.05	0.7832		1100	0.8979	0.17	0.8163	0.80	0.8134	0.03	0.8298
	1200	0.8542	0.02	0.7735	0.91	0.7737	0.06	0.7753		1200	0.8993	0.14	0.8176	0.82	0.8078	0.03	0.8291
	1300	0.8530	0.01	0.7968	0.94	0.7750	0.05	0.7962		1300	0.8987	0.12	0.8161	0.83	0.8102	0.04	0.8259
	1400	0.8451	0.02	0.7670	0.88	0.7837	0.10	0.7703		1400	0.8967	0.16	0.8172	0.79	0.8224	0.06	0.8299
	1500	0.8353	0.02	0.7364	0.90	0.7997	0.08	0.7433		1500	0.8974	0.16	0.8364	0.79	0.8437	0.06	0.8463
	1600	0.8359	0.02	0.7497	0.89	0.8251	0.09	0.7580		1600	0.9074	0.16	0.8834	0.79	0.8777	0.06	0.8868
	1700	0.5661	0.02	0.8150	0.88	0.8594	0.10	0.8140		1700	0.9388	0.13	0.9516	0.80	0.9307	0.07	0.9485
21-Jun-10	0900	0.8395	0.00	0.7349	0.89	0.8158	0.11	0.7439	21-Dec-10	0900	0.9061	0.14	0.8701	0.85	0.8661	0.01	0.8751
	1000	0.8418	0.00	0.7345	0.89	0.7944	0.11	0.7411		1000	0.9004	0.19	0.8352	0.77	0.8389	0.03	0.8480
	1100	0.8420	0.00	0.7709	0.89	0.7807	0.11	0.7720		1100	0.9003	0.18	0.8229	0.78	0.8219	0.03	0.8370
	1200	0.8477	0.00	0.7681	0.88	0.7740	0.12	0.7688		1200	0.9012	0.16	0.8209	0.81	0.8145	0.03	0.8337
	1300	0.8470	0.00	0.7831	0.92	0.7744	0.08	0.7824		1300	0.9010	0.16	0.8209	0.82	0.8154	0.02	0.8337
	1400	0.8422	0.00	0.7624	0.93	0.7823	0.07	0.7637		1400	0.9002	0.19	0.8234	0.78	0.8256	0.02	0.8383
	1500	0.8354	0.00	0.7293	0.97	0.7971	0.03	0.7316		1500	0.9012	0.20	0.8415	0.77	0.8459	0.02	0.8538
	1600	0.8322	0.00	0.7382	0.93	0.8209	0.07	0.7437		1600	0.9102	0.17	0.8845	0.81	0.8768	0.02	0.8888
	1700	0.5090	0.00	0.7985	0.93	0.8539	0.07	0.8022		1700	0.9381	0.15	0.9482	0.83	0.9269	0.02	0.9462

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 9

Date	Time	$\mathbf{P}_{ES,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{EX,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.4525	0.05	0.3821	0.80	0.3835	0.15	0.3861	21-Jul-10	0900	0.5863	0.00	0.6761	0.92	0.5342	0.08	0.6654
	1000	0.4997	0.06	0.4937	0.81	0.4813	0.13	0.4925		1000	0.5716	0.00	0.6643	0.91	0.5940	0.09	0.6582
	1100	0.5113	0.06	0.5315	0.81	0.5350	0.13	0.5307		1100	0.5631	0.00	0.5686	0.91	0.6289	0.09	0.5737
	1200	0.5123	0.08	0.5453	0.80	0.5608	0.13	0.5448		1200	0.5731	0.00	0.4844	0.91	0.6447	0.09	0.4982
	1300	0.5123	0.08	0.5701	0.83	0.5624	0.10	0.5650		1300	0.5946	0.00	0.5207	0.96	0.6441	0.04	0.5260
	1400	0.5104	0.08	0.6021	0.84	0.5402	0.09	0.5898		1400	0.6271	0.00	0.6681	0.97	0.6283	0.03	0.6669
	1500	0.5017	0.09	0.6034	0.83	0.4906	0.09	0.5849		1500	0.6696	0.00	0.7795	0.97	0.5933	0.03	0.7735
	1600	0.4628	0.11	0.5179	0.83	0.4014	0.06	0.5045		1600	0.7076	0.00	0.7971	0.97	0.5324	0.03	0.7886
	1700	0.3465	0.10	0.2776	0.83	0.2477	0.08	0.2821		1700	0.7214	0.00	0.7175	0.95	0.4323	0.05	0.7022
21-Feb-10	0900	0.4770	0.04	0.4683	0.89	0.4310	0.07	0.4660	21-Aug-10	0900	0.5306	0.00	0.6386	0.92	0.5253	0.08	0.6301
	1000	0.5104	0.02	0.5486	0.89	0.5207	0.08	0.5454		1000	0.5385	0.00	0.6312	0.92	0.5884	0.08	0.6280
	1100	0.5142	0.02	0.5536	0.88	0.5716	0.09	0.5543		1100	0.5394	0.00	0.5411	0.90	0.6247	0.10	0.5492
	1200	0.5142	0.04	0.5411	0.87	0.5953	0.09	0.5452		1200	0.5470	0.00	0.4420	0.92	0.6408	0.08	0.4569
	1300	0.5170	0.05	0.5647	0.92	0.5974	0.04	0.5636		1300	0.5647	0.00	0.4886	0.90	0.6397	0.10	0.5032
	1400	0.5262	0.04	0.6247	0.92	0.5790	0.05	0.6191		1400	0.5933	0.00	0.6526	0.90	0.6217	0.10	0.6497
	1500	0.5315	0.02	0.6628	0.92	0.5359	0.06	0.6522		1500	0.6235	0.00	0.7551	0.91	0.5827	0.09	0.7402
	1600	0.5161	0.02	0.6229	0.92	0.4571	0.06	0.6107		1600	0.6403	0.00	0.7616	0.91	0.5151	0.09	0.7404
	1700	0.4372	0.04	0.4323	0.91	0.3226	0.06	0.4260		1700	0.6265	0.00	0.6490	0.90	0.4027	0.10	0.6251
21-Mar-10	0900	0.5046	0.04	0.5639	0.83	0.4865	0.13	0.5514	21-Sep-10	0900	0.5132	0.02	0.5863	0.92	0.5113	0.06	0.5805
	1000	0.5207	0.03	0.5946	0.85	0.5624	0.12	0.5884		1000	0.5216	0.00	0.5919	0.96	0.5768	0.04	0.5912
	1100	0.5207	0.03	0.5511	0.87	0.6040	0.10	0.5553		1100	0.5207	0.01	0.5350	0.96	0.6124	0.03	0.5375
	1200	0.5216	0.03	0.4987	0.86	0.6235	0.11	0.5128		1200	0.5243	0.01	0.4906	0.93	0.6271	0.06	0.4986
	1300	0.5324	0.02	0.5324	0.90	0.6235	0.08	0.5393		1300	0.5376	0.00	0.5503	0.97	0.6229	0.03	0.5527
	1400	0.5503	0.03	0.6386	0.88	0.6047	0.09	0.6328		1400	0.5576	0.00	0.6633	0.97	0.5994	0.03	0.6612
	1500	0.5701	0.03	0.7110	0.87	0.5631	0.10	0.6921		1500	0.5768	0.00	0.7207	0.98	0.5519	0.02	0.7170
	1600	0.5701	0.03	0.6969	0.89	0.4886	0.08	0.6771		1600	0.5708	0.00	0.6842	0.99	0.4683	0.01	0.6818
	1700	0.5151	0.03	0.5411	0.89	0.3632	0.08	0.5268		1700	0.4957	0.00	0.4834	0.99	0.3275	0.01	0.4816
21-Apr-10	0900	0.5315	0.00	0.6381	0.88	0.5297	0.12	0.6248	21-Oct-10	0900	0.4997	0.03	0.5234	0.97	0.4823	0.00	0.5227
	1000	0.5376	0.00	0.6247	0.90	0.5912	0.10	0.6214		1000	0.5151	0.04	0.5584	0.96	0.5503	0.00	0.5565
	1100	0.5376	0.00	0.5306	0.89	0.6259	0.11	0.5412		1100	0.5142	0.01	0.5461	0.99	0.5870	0.00	0.5458
	1200	0.5461	0.00	0.4408	0.90	0.6408	0.10	0.4608		1200	0.5161	0.00	0.5453	1.00	0.6001	0.00	0.5453
	1300	0.5647	0.00	0.5007	0.92	0.6386	0.08	0.5114		1300	0.5216	0.02	0.5926	0.97	0.5926	0.01	0.5910
	1400	0.5933	0.00	0.6633	0.92	0.6187	0.08	0.6598		1400	0.5306	0.02	0.6511	0.97	0.5624	0.01	0.6475
	1500	0.6223	0.00	0.7567	0.89	0.5776	0.11	0.7368		1500	0.5297	0.02	0.6588	0.97	0.5036	0.01	0.6544
	1600	0.6364	0.00	0.7545	0.89	0.5065	0.11	0.7270		1600	0.4916	0.01	0.5592	0.98	0.4014	0.01	0.5568
	1700	0.6112	0.00	0.6253	0.88	0.3891	0.12	0.5965		1700	0.3527	0.03	0.2666	0.96	0.2281	0.01	0.2690
21-May-10	0900	0.5783	0.02	0.6780	0.96	0.5445	0.02	0.6729	21-Nov-10	0900	0.4792	0.12	0.4443	0.84	0.4323	0.03	0.4482
	1000	0.5662	0.01	0.6526	0.97	0.6007	0.02	0.6506		1000	0.5075	0.17	0.5170	0.80	0.5094	0.03	0.5152
	1100	0.5624	0.01	0.5453	0.94	0.6324	0.05	0.5502		1100	0.5123	0.17	0.5385	0.80	0.5503	0.03	0.5345
	1200	0.5731	0.02	0.5085	0.91	0.6452	0.06	0.5187		1200	0.5123	0.14	0.5536	0.82	0.5655	0.03	0.5480
	1300	0.5967	0.01	0.5243	0.94	0.6430	0.05	0.5315		1300	0.5113	0.12	0.5848	0.83	0.5576	0.04	0.5746
	1400	0.6306	0.02	0.6907	0.88	0.6235	0.10	0.6829		1400	0.5094	0.16	0.6112	0.79	0.5253	0.06	0.5906
	1500	0.6715	0.02	0.7860	0.90	0.5848	0.08	0.7684		1500	0.4927	0.16	0.5848	0.79	0.4605	0.06	0.5636
	1600	0.7072	0.02	0.7900	0.89	0.5188	0.09	0.7649		1600	0.4298	0.16	0.4432	0.79	0.3480	0.06	0.4358
	1700	0.7136	0.02	0.6873	0.88	0.4107	0.10	0.6611		1700	0.2535	0.13	0.1447	0.80	0.1604	0.07	0.1602
21-Jun-10	0900	0.6040	0.00	0.6911	0.89	0.5419	0.11	0.6745	21-Dec-10	0900	0.4560	0.14	0.3792	0.85	0.3877	0.01	0.3901
	1000	0.5946	0.00	0.6724	0.89	0.5987	0.11	0.6642		1000	0.4987	0.19	0.4823	0.77	0.4770	0.03	0.4853
	1100	0.5820	0.00	0.5753	0.89	0.6306	0.11	0.5815		1100	0.5094	0.18	0.5225	0.78	0.5262	0.03	0.5202
	1200	0.5912	0.00	0.5207	0.88	0.6452	0.12	0.5359		1200	0.5104	0.16	0.5428	0.81	0.5470	0.03	0.5377
	1300	0.6162	0.00	0.5436	0.92	0.6436	0.08	0.5514		1300	0.5085	0.16	0.5686	0.82	0.5436	0.02	0.5583
	1400	0.6526	0.00	0.6936	0.93	0.6265	0.07	0.6891		1400	0.5026	0.19	0.5877	0.78	0.5151	0.02	0.5697
	1500	0.6940	0.00	0.7931	0.97	0.5905	0.03	0.7863		1500	0.4844	0.20	0.5624	0.77	0.4560	0.02	0.5441
	1600	0.7293	0.00	0.8051	0.93	0.5297	0.07	0.7867		1600	0.4248	0.17	0.4335	0.81	0.3511	0.02	0.4302
	1700	0.7542	0.00	0.7235	0.93	0.4298	0.07	0.7039		1700	0.2648	0.15	0.1582	0.83	0.1759	0.02	0.1746

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 9

Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,BS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,BX,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	P_O	$\mathbf{P}_{ES,BS,R}$
21-Jan-10	0900	0.7905	0.05	0.7892	0.80	0.7599	0.15	0.7849	21-Jul-10	0900	0.9235	0.00	0.9184	0.92	0.8400	0.08	0.9125
	1000	0.8153	0.06	0.8454	0.81	0.8147	0.13	0.8395		1000	0.8948	0.00	0.9173	0.91	0.8653	0.09	0.9128
	1100	0.8213	0.06	0.8568	0.81	0.8405	0.13	0.8524		1100	0.8696	0.00	0.8908	0.91	0.8789	0.09	0.8898
	1200	0.8218	0.08	0.8542	0.80	0.8516	0.13	0.8515		1200	0.8646	0.00	0.8714	0.91	0.8848	0.09	0.8725
	1300	0.8219	0.08	0.8534	0.83	0.8523	0.10	0.8509		1300	0.8643	0.00	0.8697	0.96	0.8847	0.04	0.8703
	1400	0.8214	0.08	0.8556	0.84	0.8430	0.09	0.8520		1400	0.8687	0.00	0.8906	0.97	0.8787	0.03	0.8902
	1500	0.8167	0.09	0.8469	0.83	0.8197	0.09	0.8420		1500	0.8941	0.00	0.9163	0.97	0.8650	0.03	0.9146
	1600	0.7962	0.11	0.7997	0.83	0.7706	0.06	0.7975		1600	0.9230	0.00	0.9165	0.97	0.8391	0.03	0.9140
	1700	0.7213	0.10	0.6293	0.83	0.6519	0.08	0.6399		1700	0.9341	0.00	0.8815	0.95	0.7892	0.05	0.8765
21-Feb-10	0900	0.8143	0.04	0.8372	0.89	0.7882	0.07	0.8330	21-Aug-10	0900	0.8645	0.00	0.9069	0.92	0.8358	0.08	0.9015
	1000	0.8288	0.02	0.8718	0.89	0.8339	0.08	0.8677		1000	0.8619	0.00	0.9067	0.92	0.8633	0.08	0.9035
	1100	0.8294	0.02	0.8706	0.88	0.8560	0.09	0.8683		1100	0.8555	0.00	0.8784	0.90	0.8774	0.10	0.8783
	1200	0.8274	0.04	0.8579	0.87	0.8659	0.09	0.8576		1200	0.8507	0.00	0.8420	0.92	0.8835	0.08	0.8451
	1300	0.8269	0.05	0.8553	0.92	0.8668	0.04	0.8544		1300	0.8508	0.00	0.8436	0.90	0.8831	0.10	0.8474
	1400	0.8287	0.04	0.8667	0.92	0.8593	0.05	0.8650		1400	0.8554	0.00	0.8817	0.90	0.8762	0.10	0.8812
	1500	0.8290	0.02	0.8721	0.92	0.8407	0.06	0.8692		1500	0.8613	0.00	0.9068	0.91	0.8609	0.09	0.9029
	1600	0.8192	0.02	0.8487	0.92	0.8023	0.06	0.8453		1600	0.8622	0.00	0.9030	0.91	0.8314	0.09	0.8968
	1700	0.7749	0.04	0.7450	0.91	0.7166	0.06	0.7444		1700	0.8638	0.00	0.8530	0.90	0.7715	0.10	0.8451
21-Mar-10	0900	0.8399	0.04	0.8798	0.83	0.8178	0.13	0.8701	21-Sep-10	0900	0.8439	0.02	0.8884	0.92	0.8295	0.06	0.8841
	1000	0.8436	0.03	0.8919	0.85	0.8523	0.12	0.8856		1000	0.8442	0.00	0.8912	0.96	0.8584	0.04	0.8897
	1100	0.8396	0.03	0.8751	0.87	0.8694	0.10	0.8734		1100	0.8395	0.01	0.8685	0.96	0.8727	0.03	0.8683
	1200	0.8354	0.03	0.8483	0.86	0.8769	0.11	0.8509		1200	0.8360	0.01	0.8431	0.93	0.8783	0.06	0.8450
	1300	0.8303	0.02	0.8472	0.90	0.8770	0.08	0.8491		1300	0.8369	0.00	0.8515	0.97	0.8767	0.03	0.8524
	1400	0.8388	0.03	0.8734	0.88	0.8697	0.09	0.8720		1400	0.8410	0.00	0.8797	0.97	0.8675	0.03	0.8793
	1500	0.8426	0.03	0.8902	0.87	0.8527	0.10	0.8850		1500	0.8444	0.00	0.8921	0.98	0.8477	0.02	0.8911
	1600	0.8387	0.03	0.8783	0.89	0.8187	0.08	0.8726		1600	0.8372	0.00	0.8720	0.99	0.8084	0.01	0.8713
	1700	0.8086	0.03	0.8038	0.89	0.7461	0.08	0.7996		1700	0.7969	0.00	0.8119	0.99	0.7206	0.01	0.8109
21-Apr-10	0900	0.8633	0.00	0.9069	0.88	0.8381	0.12	0.8985	21-Oct-10	0900	0.8246	0.03	0.8620	0.97	0.8156	0.00	0.8608
	1000	0.8604	0.00	0.9041	0.90	0.8645	0.10	0.9001		1000	0.8304	0.04	0.8745	0.96	0.8473	0.00	0.8726
	1100	0.8540	0.00	0.8745	0.89	0.8779	0.11	0.8749		1100	0.8287	0.01	0.8645	0.99	0.8625	0.00	0.8641
	1200	0.8495	0.00	0.8397	0.90	0.8834	0.10	0.8441		1200	0.8270	0.00	0.8215	1.00	0.8677	0.00	0.8215
	1300	0.8500	0.00	0.8450	0.92	0.8826	0.08	0.8479		1300	0.8279	0.02	0.8602	0.97	0.8648	0.01	0.8595
	1400	0.8549	0.00	0.8841	0.92	0.8751	0.08	0.8834		1400	0.8299	0.02	0.8719	0.97	0.8525	0.01	0.8708
	1500	0.8606	0.00	0.9067	0.89	0.8587	0.11	0.9014		1500	0.8270	0.02	0.8667	0.97	0.8260	0.01	0.8654
	1600	0.8604	0.00	0.8999	0.89	0.8274	0.11	0.8919		1600	0.8057	0.01	0.8164	0.98	0.7710	0.01	0.8158
	1700	0.8523	0.00	0.8423	0.88	0.7632	0.12	0.8326		1700	0.7184	0.03	0.6155	0.96	0.6303	0.01	0.6190
21-May-10	0900	0.9142	0.02	0.9193	0.96	0.8448	0.02	0.9175	21-Nov-10	0900	0.8055	0.12	0.8230	0.84	0.7892	0.03	0.8197
	1000	0.8782	0.01	0.9141	0.97	0.8680	0.02	0.9127		1000	0.8195	0.17	0.8541	0.80	0.8287	0.03	0.8475
	1100	0.8677	0.01	0.8837	0.94	0.8802	0.05	0.8833		1100	0.8222	0.17	0.8568	0.80	0.8472	0.03	0.8507
	1200	0.8631	0.02	0.8819	0.91	0.8852	0.06	0.8817		1200	0.8219	0.14	0.8534	0.82	0.8537	0.03	0.8489
	1300	0.8639	0.01	0.8639	0.94	0.8842	0.05	0.8650		1300	0.8220	0.12	0.8548	0.83	0.8502	0.04	0.8506
	1400	0.8687	0.02	0.8953	0.88	0.8770	0.10	0.8930		1400	0.8210	0.16	0.8552	0.79	0.8359	0.06	0.8488
	1500	0.8928	0.02	0.9173	0.90	0.8616	0.08	0.9126		1500	0.8118	0.16	0.8354	0.79	0.8044	0.06	0.8300
	1600	0.9215	0.02	0.9131	0.89	0.8330	0.09	0.9064		1600	0.7769	0.16	0.7558	0.79	0.7363	0.06	0.7580
	1700	0.9293	0.02	0.8685	0.88	0.7765	0.10	0.8609		1700	0.6418	0.13	0.4653	0.80	0.5437	0.07	0.4940
21-Jun-10	0900	0.9403	0.00	0.9227	0.89	0.8436	0.11	0.9139	21-Dec-10	0900	0.7897	0.14	0.7861	0.85	0.7623	0.01	0.7864
	1000	0.9318	0.00	0.9197	0.89	0.8672	0.11	0.9138		1000	0.8124	0.19	0.8380	0.77	0.8128	0.03	0.8323
	1100	0.8791	0.00	0.8934	0.89	0.8797	0.11	0.8918		1100	0.8190	0.18	0.8499	0.78	0.8365	0.03	0.8438
	1200	0.8735	0.00	0.8860	0.88	0.8851	0.11	0.8858		1200	0.8195	0.16	0.8496	0.78	0.8457	0.03	0.8446
	1300	0.8749	0.00	0.8755	0.92	0.8845	0.08	0.8762		1300	0.8195	0.16	0.8494	0.82	0.8442	0.02	0.8445
	1400	0.9025	0.00	0.8982	0.93	0.8781	0.07	0.8969		1400	0.8180	0.19	0.8473	0.78	0.8314	0.02	0.8413
	1500	0.9236	0.00	0.9206	0.97	0.8640	0.03	0.9187		1500	0.8083	0.19	0.8270	0.77	0.8018	0.02	0.8227
	1600	0.9230	0.00	0.9200	0.97	0.8379	0.03	0.9137		1600	0.7753	0.17	0.8270	0.77	0.7378	0.02	0.8227
	1700	0.9370	0.00	0.8834	0.93	0.8379	0.07	0.9137		1700	0.6544	0.17	0.4892	0.83	0.5652	0.02	0.7334
	1700	0.7448	0.00	0.0034	0.93	0.7677	0.07	0.6770		1700	0.0344	0.13	0.4692	0.03	0.3032	0.02	0.3137

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 9

Date	Time	$\mathbf{P}_{ES,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	\mathbf{P}_O	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{EX,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.8077	0.05	0.7284	0.80	0.6332	0.15	0.7183	21-Jul-10	0900	0.8143	0.00	0.7278	0.92	0.6318	0.08	0.7206
	1000	0.8040	0.06	0.7098	0.81	0.6278	0.13	0.7053		1000	0.7814	0.00	0.6998	0.91	0.6311	0.09	0.6939
	1100	0.7917	0.06	0.6989	0.81	0.6336	0.13	0.6965		1100	0.7530	0.00	0.6525	0.91	0.6304	0.09	0.6506
	1200	0.7893	0.08	0.6866	0.80	0.6327	0.13	0.6874		1200	0.7314	0.00	0.5641	0.91	0.6292	0.09	0.5697
	1300	0.7824	0.08	0.6742	0.83	0.6320	0.10	0.6783		1300	0.7228	0.00	0.5393	0.96	0.6309	0.04	0.5432
	1400	0.7767	0.08	0.6685	0.84	0.6313	0.09	0.6734		1400	0.6994	0.00	0.5990	0.97	0.6291	0.03	0.6000
	1500	0.7704	0.09	0.6743	0.83	0.6317	0.09	0.6789		1500	0.6999	0.00	0.6227	0.97	0.6297	0.03	0.6230
	1600	0.7733	0.11	0.6752	0.83		0.06	0.6828		1600	0.6837	0.00	0.6453	0.97	0.6281	0.03	0.6447
	1700	0.7686		0.6750		0.6356	0.08	0.6811		1700	0.6595		0.6523	0.95	0.6348	0.05	0.6514
21-Feb-10	0900	0.8039	0.04	0.7312	0.89	0.6322	0.07	0.7268	21-Aug-10	0900	0.7949	0.00	0.7270	0.92	0.6311	0.08	0.7198
	1000	0.7907	0.02	0.7150	0.89	0.6308	0.08	0.7099		1000	0.7777	0.00	0.7094	0.92	0.6300	0.08	0.7034
	1100	0.7878	0.02	0.7007	0.88	0.6279	0.09	0.6959		1100	0.7588	0.00	0.6585	0.90	0.6307	0.10	0.6558
	1200	0.7809	0.04	0.6750	0.87	0.6305	0.09	0.6746		1200	0.7447	0.00	0.6058	0.92	0.6295	0.08	0.6076
	1300	0.7700	0.05	0.6603	0.92	0.6314	0.04	0.6644		1300	0.7323	0.00	0.5795	0.90	0.6300	0.10	0.5844
	1400	0.7633	0.04	0.6622	0.92	0.6323	0.05	0.6643		1400	0.7175	0.00	0.6153	0.90	0.6305	0.10	0.6167
	1500 1600	0.7558 0.7542	0.02	0.6660 0.6678	0.92	0.6310 0.6327	0.06	0.6661		1500 1600	0.6989 0.6922	0.00	0.6309 0.6542	0.91	0.6326 0.6333	0.09	0.6310 0.6524
	1700	0.7542	0.02	0.6775	0.92	0.6327	0.06	0.6678 0.6771		1700	0.6922	0.00	0.6590	0.91	0.6333	0.09	0.6524
21-Mar-10	0900	0.7985	0.04	0.7345	0.83	0.6335	0.13	0.7242	21-Sep-10	0900	0.7970	0.02	0.7317	0.92	0.6302	0.06	0.7275
	1000	0.7846	0.03	0.7135	0.85	0.6280	0.12	0.7056		1000	0.7822	0.00	0.7057	0.96	0.6314	0.04	0.7024
	1100	0.7743	0.03	0.6928	0.87	0.6319	0.10	0.6896		1100	0.7708	0.01	0.6764	0.96	0.6331	0.03	0.6760
	1200	0.7612	0.03	0.6529	0.86	0.6313	0.11	0.6541		1200	0.7574	0.01	0.6419	0.93	0.6296	0.06	0.6425
	1300	0.7498	0.02	0.6325	0.90	0.6313	0.08	0.6350		1300	0.7461	0.00	0.6311	0.97	0.6299	0.03	0.6311
	1400	0.7424	0.03	0.6456	0.88	0.6298	0.09	0.6474		1400	0.7389	0.00	0.6456	0.97	0.6322	0.03	0.6451
	1500	0.7302	0.03	0.6452	0.87	0.6296	0.10	0.6464		1500	0.7304	0.00	0.6493	0.98	0.6304	0.02	0.6489
	1600	0.7202	0.03	0.6581	0.89	0.6326	0.08	0.6581		1600	0.7247	0.00	0.6634	0.99	0.6279	0.01	0.6630
	1700	0.7216	0.03	0.6750	0.89	0.6270	0.08	0.6729		1700	0.7174	0.00	0.6783	0.99	0.6308	0.01	0.6777
21-Apr-10	0900	0.7926	0.00	0.7261	0.88	0.6315	0.12	0.7145	21-Oct-10	0900	0.8006	0.03	0.7221	0.97	0.6301	0.00	0.7246
	1000	0.7735	0.00	0.7067	0.90	0.6324	0.10	0.6993		1000	0.7854	0.04	0.7123	0.96	0.6311	0.00	0.7154
	1100	0.7566	0.00	0.6597	0.89	0.6302	0.11	0.6564		1100	0.7844	0.01	0.6842	0.99	0.6306	0.00	0.6852
	1200	0.7470	0.00	0.5968	0.90	0.6295	0.10	0.6001		1200	0.7689	0.00	0.6666	1.00	0.6302	0.00	0.6666
	1300	0.7323	0.00	0.5867	0.92	0.6305	0.08	0.5901		1300	0.7648	0.02	0.6566	0.97	0.6318	0.01	0.6587
	1400	0.7175	0.00	0.6179	0.92	0.6302	0.08	0.6188		1400	0.7582	0.02	0.6661	0.97	0.6320	0.01	0.6678
	1500	0.6997	0.00	0.6318	0.89	0.6330	0.11	0.6319		1500	0.7499	0.02	0.6711	0.97	0.6335	0.01	0.6724
	1600	0.6906		0.6572		0.6298	0.11	0.6542		1600	0.7417	0.01	0.6690	0.98	0.6287	0.01	0.6693
	1700	0.6918	0.00	0.6603	0.88	0.6306	0.12	0.6567		1700	0.7571	0.03	0.6829	0.96	0.6341	0.01	0.6847
21-May-10	0900	0.8071	0.02	0.7242	0.96	0.6316	0.02	0.7240	21-Nov-10	0900	0.8059	0.12	0.7201	0.84	0.6285	0.03	0.7276
	1000	0.7753	0.01	0.6962	0.97	0.6316	0.02	0.6957		1000	0.8013	0.17	0.7163	0.80	0.6310	0.03	0.7276
	1100	0.7488	0.01	0.6460	0.94	0.6288	0.05	0.6462		1100	0.7893	0.17	0.6906	0.80	0.6311	0.03	0.7051
	1200	0.7314	0.02	0.5384	0.91	0.6304	0.06	0.5485		1200	0.7893	0.14	0.6740	0.82	0.6306	0.03	0.6892
	1300	0.7168	0.01	0.5534	0.94	0.6315	0.05	0.5593		1300	0.7778	0.12	0.6695	0.83	0.6300	0.04	0.6810
	1400	0.6971	0.02	0.5984	0.88	0.6313	0.10	0.6037		1400	0.7720	0.16	0.6730	0.79	0.6311	0.06	0.6861
	1500	0.6985	0.02	0.6263	0.90	0.6297	0.08	0.6281		1500	0.7635	0.16	0.6766	0.79	0.6341	0.06	0.6877
	1600 1700	0.6764 0.6580	0.02	0.6451 0.6554	0.89	0.6316 0.6281	0.09	0.6446 0.6528		1600 1700	0.7709 0.7909	0.16	0.6800 0.6775	0.79	0.6341	0.06	0.6916 0.6895
21-Jun-10	0900	0.8250	0.00	0.7250	0.89	0.6306	0.11	0.7145	21-Dec-10	0900	0.8109	0.14	0.7173	0.85	0.6276	0.01	0.7294
	1000	0.8052	0.00	0.6955	0.89	0.6308	0.11	0.6883		1000	0.8065	0.19	0.7148	0.77	0.6297	0.03	0.7298
	1100	0.7561	0.00	0.6472	0.89	0.6311	0.11	0.6455		1100	0.7999	0.18	0.6962	0.78	0.6330	0.03	0.7131
	1200	0.7419	0.00	0.5491	0.88	0.6304	0.12	0.5591		1200	0.7941	0.16	0.6861	0.81	0.6326	0.03	0.7018
	1300	0.7183	0.00	0.5408	0.92	0.6327	0.08	0.5479		1300	0.7853	0.16	0.6714	0.82	0.6298	0.02	0.6889
	1400	0.7066	0.00	0.5935	0.93	0.6315	0.07	0.5960		1400	0.7789	0.19	0.6749	0.78	0.6333	0.02	0.6942
	1500	0.7021	0.00	0.6203	0.97	0.6309	0.03	0.6206		1500	0.7696	0.20	0.6786	0.77	0.6303	0.02	0.6962
	1600	0.6697	0.00	0.6322	0.93	0.6315	0.07	0.6322		1600	0.7747	0.17	0.6739	0.81	0.6326	0.02	0.6903
	1700	0.6304	0.00	0.6540	0.93	0.6296	0.07	0.6523		1700	0.7885	0.15	0.6832	0.83	0.6285	0.02	0.6979

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 9

Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{EX,UX,O}$	P_O	$\mathbf{P}_{ES,US,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,UX,P}$	P_P	$\mathbf{P}_{E\mathbf{X},U\mathbf{X},O}$	P_O	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9185	0.05	0.9365	0.80	0.9452	0.15	0.9368	21-Jul-10	0900	0.9516	0.00	0.9376	0.92	0.9451	0.08	0.9381
	1000	0.9183	0.06	0.9385	0.81	0.9451	0.13	0.9381		1000	0.9427	0.00	0.9427	0.91	0.9451	0.09	0.9429
	1100	0.9175	0.06	0.9404	0.81	0.9451	0.13	0.9395		1100	0.9343	0.00	0.9490	0.91	0.9451	0.09	0.9486
	1200	0.9162	0.08	0.9420	0.80	0.9451	0.13	0.9405		1200	0.9354	0.00	0.9562	0.91	0.9451	0.09	0.9552
	1300	0.9160	0.08	0.9425	0.83	0.9451	0.10	0.9408		1300	0.9355	0.00	0.9563	0.96	0.9451	0.04	0.9558
	1400	0.9171	0.08	0.9418	0.84	0.9451	0.09	0.9402		1400	0.9351	0.00	0.9499	0.97	0.9451	0.03	0.9497
	1500	0.9177	0.09	0.9403	0.83	0.9451	0.09	0.9387		1500	0.9440	0.00	0.9445	0.97	0.9451	0.03	0.9445
	1600	0.9178	0.11	0.9389	0.83	0.9451	0.06	0.9370		1600	0.9531	0.00	0.9400	0.97	0.9451	0.03	0.9401
	1700	0.9173	0.10	0.9379	0.83	0.9453	0.08	0.9365		1700	0.9513	0.00	0.9363	0.95	0.9450	0.05	0.9368
21-Feb-10	0900	0.9216	0.04	0.9363	0.89	0.9451	0.07	0.9364	21-Aug-10	0900	0.9291	0.00	0.9374	0.92	0.9451	0.08	0.9380
	1000	0.9217	0.02	0.9388	0.89	0.9451	0.08	0.9390		1000	0.9298	0.00	0.9422	0.92	0.9451	0.08	0.9424
	1100	0.9210	0.02	0.9418	0.88	0.9451	0.09	0.9416		1100	0.9314	0.00	0.9478	0.90	0.9451	0.10	0.9476
	1200	0.9210	0.04	0.9440	0.87	0.9451	0.09	0.9433		1200	0.9321	0.00	0.9535	0.92	0.9451	0.08	0.9529
	1300	0.9208	0.05	0.9446	0.92	0.9451	0.04	0.9435		1300	0.9323	0.00	0.9533	0.90	0.9451	0.10	0.9525
	1400	0.9208	0.04	0.9435	0.92	0.9451	0.05	0.9427		1400	0.9320	0.00	0.9482	0.90	0.9451	0.10	0.9479
	1500	0.9215	0.02	0.9411	0.92	0.9452	0.06	0.9409		1500	0.9310	0.00	0.9436	0.91	0.9451	0.09	0.9437
	1600	0.9217	0.02	0.9389	0.92	0.9450	0.06	0.9389		1600	0.9303	0.00	0.9395	0.91	0.9451	0.09	0.9400
	1700	0.9207	0.04	0.9377	0.91	0.9452	0.06	0.9375		1700	0.9352	0.00	0.9363	0.90	0.9451	0.10	0.9372
21-Mar-10	0900	0.9253	0.04	0.9368	0.83	0.9451	0.13	0.9374	21-Sep-10	0900	0.9258	0.02	0.9376	0.92	0.9451	0.06	0.9378
	1000	0.9252	0.03	0.9404	0.85	0.9451	0.12	0.9404		1000	0.9257	0.00	0.9414	0.96	0.9451	0.04	0.9416
	1100	0.9261	0.03	0.9444	0.87	0.9452	0.10	0.9439		1100	0.9265	0.01	0.9456	0.96	0.9451	0.03	0.9454
	1200	0.9264	0.03	0.9478	0.86	0.9451	0.11	0.9468		1200	0.9271	0.01	0.9486	0.93	0.9450	0.06	0.9482
	1300	0.9442	0.02	0.9481	0.90	0.9452	0.08	0.9478		1300	0.9269	0.00	0.9480	0.97	0.9452	0.03	0.9479
	1400	0.9263	0.03	0.9455	0.88	0.9450	0.09	0.9448		1400	0.9266	0.00	0.9450	0.97	0.9451	0.03	0.9450
	1500	0.9256	0.03	0.9422	0.87	0.9451	0.10	0.9420		1500	0.9260	0.00	0.9416	0.98	0.9451	0.02	0.9417
	1600	0.9260	0.03	0.9392	0.89	0.9450	0.08	0.9392		1600	0.9258	0.00	0.9385	0.99	0.9451	0.01	0.9386
	1700	0.9244	0.03	0.9368	0.89	0.9449	0.08	0.9370		1700	0.9241	0.00	0.9364	0.99	0.9452	0.01	0.9365
21-Apr-10	0900	0.9291	0.00	0.9378	0.88	0.9451	0.12	0.9387	21-Oct-10	0900	0.9217	0.03	0.9375	0.97	0.9451	0.00	0.9370
	1000	0.9299	0.00	0.9420	0.90	0.9451	0.10	0.9423		1000	0.9209	0.04	0.9403	0.96	0.9451	0.00	0.9395
	1100	0.9312	0.00	0.9481	0.89	0.9452	0.11	0.9478		1100	0.9212	0.01	0.9432	0.99	0.9451	0.00	0.9429
	1200	0.9319	0.00	0.9535	0.90	0.9451	0.10	0.9526		1200	0.9211	0.00	0.9215	1.00	0.9451	0.00	0.9215
	1300	0.9319	0.00	0.9527	0.92	0.9451	0.08	0.9521		1300	0.9211	0.02	0.9443	0.97	0.9452	0.01	0.9438
	1400	0.9315	0.00	0.9477	0.92	0.9451	0.08	0.9475		1400	0.9209	0.02	0.9424	0.97	0.9451	0.01	0.9420
	1500	0.9307	0.00	0.9431	0.89	0.9451	0.11	0.9434		1500	0.9220	0.02	0.9400	0.97	0.9451	0.01	0.9397
	1600	0.9299	0.00	0.9392	0.89	0.9451	0.11	0.9399		1600	0.9215	0.02	0.9382	0.98	0.9451	0.01	0.9381
	1700	0.9233	0.00	0.9361	0.88	0.9451	0.12	0.9373		1700	0.9203	0.01	0.9368	0.96	0.9451	0.01	0.9364
21-May-10	0900	0.9489	0.02	0.9383	0.96	0.9451	0.02	0.9386	21-Nov-10	0900	0.9184	0.12	0.9373	0.84	0.9450	0.03	0.9352
21-Way-10	1000	0.9489	0.02	0.9383	0.97	0.9451	0.02	0.9434	21-NOV-10	1000	0.9184	0.12	0.9373	0.80	0.9451	0.03	0.9352
	1100	0.9328	0.01	0.9433	0.94	0.9451	0.02	0.9496		1100	0.9165	0.17	0.9393	0.80	0.9451	0.03	0.9372
	1200	0.9353	0.02	0.9571	0.91	0.9451	0.06	0.9558		1200	0.9162	0.14	0.9425	0.82	0.9450	0.03	0.9388
	1300	0.9354	0.01	0.9552	0.94	0.9452	0.05	0.9544		1300	0.9161	0.12	0.9425	0.83	0.9451	0.04	0.9394
	1400	0.9348	0.02	0.9489	0.88	0.9451	0.10	0.9482		1400	0.9172	0.16	0.9413	0.79	0.9451	0.06	0.9378
	1500	0.9431	0.02	0.9437	0.90	0.9450	0.08	0.9438		1500	0.9178	0.16	0.9396	0.79	0.9451	0.06	0.9365
	1600	0.9524	0.02	0.9393	0.89	0.9450	0.09	0.9401		1600	0.9175	0.16	0.9381	0.79	0.9451	0.06	0.9353
	1700	0.9496	0.02	0.9359	0.88	0.9452	0.10	0.9371		1700	0.9178	0.13	0.9378	0.80	0.9449	0.07	0.9356
21-Jun-10	0900	0.9567	0.00	0.9380	0.89	0.9450	0.11	0.9388	21-Dec-10	0900	0.9176	0.14	0.9371	0.85	0.9451	0.01	0.9344
	1000	0.9566	0.00	0.9433	0.89	0.9451	0.11	0.9435		1000	0.9169	0.19	0.9387	0.77	0.9451	0.03	0.9347
	1100	0.9350	0.00	0.9498	0.89	0.9451	0.11	0.9493		1100	0.9160	0.18	0.9405	0.78	0.9452	0.03	0.9362
	1200	0.9359	0.00	0.9569	0.88	0.9451	0.12	0.9555		1200	0.9157	0.16	0.9417	0.81	0.9451	0.03	0.9376
	1300	0.9362	0.00	0.9561	0.92	0.9451	0.08	0.9552		1300	0.9155	0.16	0.9419	0.82	0.9451	0.02	0.9377
	1400	0.9490	0.00	0.9496	0.93	0.9452	0.07	0.9493		1400	0.9159	0.19	0.9411	0.78	0.9451	0.02	0.9363
	1500	0.9544	0.00	0.9443	0.97	0.9452	0.03	0.9444		1500	0.9163	0.20	0.9397	0.77	0.9451	0.02	0.9350
	1600	0.9566	0.00	0.9398	0.93	0.9451	0.07	0.9401		1600	0.9162	0.17	0.9384	0.81	0.9452	0.02	0.9347
	1700	0.9537	0.00	0.9358	0.93	0.9452	0.07	0.9365		1700	0.9160	0.15	0.9378	0.83	0.9454	0.02	0.9347

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 9

Date	Time	$\mathbf{P}_{ES,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$	Date	Time	PES,PG,C	PC	PES,PG,P	PP	PES,PG,O	PO	PES,PG,R
21-Jan-10	0900	0.9489	0.05	0.9220	0.80	0.9207	0.15	0.9233	21-Jul-10	0900	0.8961	0.00	0.7985	0.92	0.8766	0.08	0.8044
	1000	0.9440	0.06	0.8872	0.81	0.8938	0.13	0.8917		1000	0.8941	0.00	0.7936	0.91	0.8539	0.09	0.7987
	1100	0.9442	0.06	0.8750	0.81	0.8760	0.13	0.8796		1100	0.9018	0.00	0.8318	0.91	0.8387	0.09	0.8324
	1200	0.9456	0.08	0.8750	0.80	0.8672	0.13	0.8793		1200	0.9077	0.00	0.8456	0.91	0.8311	0.09	0.8443
	1300	0.9456	0.08	0.8748	0.83	0.8665	0.10	0.8794		1300	0.9074	0.00	0.8466	0.96	0.8314	0.04	0.8459
	1400	0.9445	0.08	0.8737	0.84	0.8742	0.09	0.8791		1400	0.9013	0.00	0.8295	0.97	0.8394	0.03	0.8299
	1500	0.9436	0.09	0.8832	0.83	0.8906	0.09	0.8890		1500	0.8927	0.00	0.7911	0.97	0.8542	0.03	0.7931
	1600	0.9476	0.11	0.9149	0.83	0.9165	0.06	0.9185		1600	0.8917	0.00	0.7970	0.97	0.8774	0.03	0.7996
	1700	0.9622	0.10	0.9626	0.83	0.9511	0.08	0.9617		1700	0.5655	0.00	0.8580	0.95	0.9077	0.05	0.8606
21-Feb-10	0900	0.9379	0.04	0.8968	0.89	0.9079	0.07	0.8991	21-Aug-10	0900	0.8995	0.00	0.8205	0.92	0.8802	0.08	0.8250
	1000	0.9355	0.02	0.8645	0.89	0.8814	0.08	0.8676		1000	0.9071	0.00	0.8143	0.92	0.8564	0.08	0.8174
	1100	0.9383	0.02	0.8619	0.88	0.8628	0.09	0.8638		1100	0.9154	0.00	0.8493	0.90	0.8405	0.10	0.8484
	1200	0.9406	0.04	0.8718	0.87	0.8537	0.09	0.8725		1200	0.9200	0.00	0.8789	0.92	0.8330	0.08	0.8754
	1300	0.9409	0.05	0.8727	0.92	0.8526	0.04	0.8752		1300	0.9199	0.00	0.8769	0.90	0.8337	0.10	0.8727
	1400	0.9389	0.04	0.8631	0.92	0.8599	0.05	0.8656		1400	0.9143	0.00	0.8428	0.90	0.8419	0.10	0.8427
	1500	0.9359	0.02	0.8599	0.92	0.8759	0.06	0.8627		1500	0.9057	0.00	0.8104	0.91	0.8582	0.09	0.8145
	1600	0.9361	0.02	0.8853	0.92	0.9011	0.06	0.8874		1600	0.8981	0.00	0.8228	0.91	0.8829	0.09	0.8280
	1700	0.9476	0.04	0.9382	0.91	0.9349	0.06	0.9383		1700	0.9078	0.00	0.8857	0.90	0.9155	0.10	0.8886
21-Mar-10	0900	0.9216	0.04	0.8592	0.83	0.8922	0.13	0.8662	21-Sep-10	0900	0.9201	0.02	0.8475	0.92	0.8846	0.06	0.8512
	1000	0.9242	0.03	0.8392	0.85	0.8668	0.12	0.8452		1000	0.9243	0.00	0.8389	0.96	0.8608	0.04	0.8399
	1100	0.9297	0.03	0.8559	0.87	0.8495	0.10	0.8576		1100	0.9297	0.01	0.8620	0.96	0.8457	0.03	0.8622
	1200	0.9333	0.03	0.8786	0.86	0.8412	0.11	0.8763		1200	0.9327	0.01	0.8819	0.93	0.8391	0.06	0.8801
	1300	0.9331	0.02	0.8784	0.90	0.8410	0.08	0.8767		1300	0.9318	0.00	0.8744	0.97	0.8414	0.03	0.8733
	1400	0.9296	0.03	0.8551	0.88	0.8494	0.09	0.8570		1400	0.9274	0.00	0.8481	0.97	0.8520	0.03	0.8482
	1500	0.9239	0.03	0.8377	0.87	0.8664	0.10	0.8433		1500	0.9215	0.00	0.8359	0.98	0.8701	0.02	0.8367
	1600	0.9211	0.03	0.8569	0.89	0.8918	0.08	0.8616		1600	0.9202	0.00	0.8650	0.99	0.8980	0.01	0.8654
	1700	0.9304	0.03	0.9162	0.89	0.9255	0.08	0.9174		1700	0.9336	0.00	0.9298	0.99	0.9340	0.01	0.9299
21-Apr-10	0900	0.9014	0.00	0.8199	0.88	0.8779	0.12	0.8270	21-Oct-10	0900	0.9351	0.03	0.8757	0.97	0.8934	0.00	0.8776
	1000	0.9090	0.00	0.8177	0.90	0.8549	0.10	0.8214		1000	0.9364	0.04	0.8597	0.96	0.8711	0.00	0.8630
	1100	0.9171	0.00	0.8535	0.89	0.8397	0.11	0.8520		1100	0.9394	0.01	0.8667	0.99	0.8568	0.00	0.8675
	1200	0.9214	0.00	0.8805	0.90	0.8331	0.10	0.8758		1200	0.9411	0.00	0.8744	1.00	0.8514	0.00	0.8744
	1300	0.9204	0.00	0.8763	0.92	0.8341	0.08	0.8730		1300	0.9399	0.02	0.8688	0.97	0.8547	0.01	0.8702
	1400	0.9149	0.00	0.8407	0.92	0.8434	0.08	0.8409		1400	0.9370	0.02	0.8585	0.97	0.8663	0.01	0.8603
	1500	0.9060	0.00	0.8109	0.89	0.8606	0.11	0.8164		1500	0.9349	0.02	0.8670	0.97	0.8865	0.01	0.8687
	1600	0.8993	0.00	0.8109	0.89	0.8856	0.11	0.8344		1600	0.9349	0.02	0.9079	0.98	0.8863	0.01	0.9083
	1700	0.9993	0.00	0.8280	0.88	0.9193	0.11	0.8971		1700	0.9592	0.01	0.9650	0.96	0.9545	0.01	0.9647
21-May-10	0900	0.8944	0.02	0.7953	0.96	0.8728	0.02	0.7991	21-Nov-10	0900	0.9456	0.12	0.9038	0.84	0.9079	0.03	0.9091
21 1114) 10	1000	0.8952	0.01	0.7992	0.97	0.8515	0.02	0.8014	21 1101 10	1000	0.9436	0.17	0.8792	0.80	0.8850	0.03	0.8901
	1100	0.9041	0.01	0.8401	0.94	0.8373	0.02	0.8407		1100	0.9447	0.17	0.8740	0.80	0.8711	0.03	0.8857
	1200	0.9090	0.01	0.8306	0.91	0.8373	0.06	0.8322		1200	0.9457	0.17	0.8752	0.82	0.8656	0.03	0.8851
	1300	0.9090	0.02	0.8546	0.91	0.8307	0.06	0.8522		1300	0.9457	0.14	0.8738	0.82	0.8681	0.03	0.8822
	1400	0.9009	0.02	0.8236	0.88	0.8412	0.10	0.8270		1400	0.9437	0.16	0.8749	0.79	0.8798	0.06	0.8859
	1500	0.8919	0.02	0.7899	0.90	0.8576	0.08	0.7972		1500	0.9442	0.16	0.8929	0.79	0.8996	0.06	0.9013
	1600 1700	0.8925 0.5794	0.02	0.8047 0.8727	0.89	0.8824 0.9135	0.09	0.8133 0.8704		1600 1700	0.9516 0.9726	0.16	0.9334 0.9801	0.79	0.9288 0.9675	0.06	0.9360 0.9783
21-Jun-10	0900	0.8958	0.00	0.7882	0.89	0.8734	0.11	0.7977	21-Dec-10	0900	0.9507	0.14	0.9226	0.85	0.9192	0.01	0.9265
	1000	0.8979	0.00	0.7878	0.89	0.8522	0.11	0.7949		1000	0.9465	0.19	0.8919	0.77	0.8952	0.03	0.9026
	1100	0.8980	0.00	0.8278	0.89	0.8381	0.11	0.8289		1100	0.9464	0.18	0.8803	0.78	0.8794	0.03	0.8923
	1200	0.9032	0.00	0.8247	0.88	0.8310	0.12	0.8255		1200	0.9471	0.16	0.8784	0.81	0.8722	0.03	0.8893
	1300	0.9026	0.00	0.8406	0.92	0.8314	0.08	0.8398		1300	0.9470	0.16	0.8784	0.82	0.8730	0.02	0.8893
	1400	0.8982	0.00	0.8187	0.93	0.8398	0.07	0.8201		1400	0.9463	0.19	0.8808	0.78	0.8829	0.02	0.8935
	1500	0.8920	0.00	0.7819	0.97	0.8550	0.03	0.7844		1500	0.9471	0.20	0.8976	0.77	0.9016	0.02	0.9078
	1600	0.8891	0.00	0.7920	0.93	0.8784	0.07	0.7977		1600	0.9536	0.17	0.9343	0.81	0.9281	0.02	0.9375
	1700	0.5044	0.00	0.8563	0.93	0.9087	0.07	0.8598		1700	0.9722	0.15	0.9782	0.83	0.9651	0.02	0.9770

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 10

Date	Time	$\mathbf{P}_{FS,BD,C}$	P_C	$\mathbf{P}_{VS,BD,P}$	P_P	$\mathbf{P}_{V \boxtimes BD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	P_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{\mathrm{FX},BD,O}$	P_O	$\mathbf{P}_{VS,BD,R}$
21-Jan-10	0900	0.7714	0.05	0.7120	0.80	0.5700	0.15	0.6938	21-Jul-10	0900	0.0540	0.00	0.8480	0.92	0.6585	0.08	0.8338
	1000	0.7719	0.06	0.7682	0.81	0.6287	0.13	0.7504		1000	0.9901	0.00	0.8368	0.91	0.6912	0.09	0.8243
	1100	0.7445	0.06	0.7705	0.81	0.6590	0.13	0.7544		1100	0.7685	0.00	0.7715	0.91	0.7101	0.09	0.7662
	1200	0.6967	0.08	0.7466	0.80	0.6731	0.13	0.7333		1200	0.7153	0.00	0.6753	0.91	0.7186	0.09	0.6790
	1300	0.6590	0.08	0.7150	0.83	0.6740	0.10	0.7069		1300	0.6727	0.00	0.6148	0.96	0.7183	0.04	0.6192
	1400	0.6489	0.08	0.6843	0.84	0.6618	0.09	0.6797		1400	0.6556	0.00	0.6364	0.97	0.7098	0.03	0.6388
	1500	0.6409	0.09	0.6442	0.83	0.6341	0.09	0.6430		1500	0.6479	0.00	0.6723	0.97	0.6908	0.03	0.6729
	1600	0.6200	0.11	0.5682	0.83	0.5813	0.06	0.5746		1600	0.6431	0.00	0.6692	0.97	0.6575	0.03	0.6688
	1700	0.5520	0.10	0.4055	0.83	0.4731	0.08	0.4248		1700	0.6219	0.00	0.6128	0.95	0.6001	0.05	0.6121
21-Feb-10	0900	0.7977	0.04	0.7632	0.89	0.5993	0.07	0.7529	21-Aug-10	0900	0.4731	0.00	0.8390	0.92	0.6536	0.08	0.8251
	1000	0.7849	0.02	0.7992	0.89	0.6510	0.08	0.7866		1000	0.9992	0.00	0.8309	0.92	0.6882	0.08	0.8201
	1100	0.7549	0.02	0.7863	0.88	0.6790	0.09	0.7754		1100	0.7604	0.00	0.7693	0.90	0.7079	0.10	0.7633
	1200	0.7069	0.04	0.7463	0.87	0.6919	0.09	0.7398		1200	0.7075	0.00	0.6665	0.92	0.7166	0.08	0.6702
	1300	0.6623	0.05	0.7069	0.92	0.6930	0.04	0.7043		1300	0.6665	0.00	0.6134	0.90	0.7160	0.10	0.6234
	1400	0.6505	0.04	0.6839	0.92	0.6831	0.05	0.6827		1400	0.6510	0.00	0.6414	0.90	0.7062	0.10	0.6477
	1500	0.6463	0.02	0.6614	0.92	0.6595	0.06	0.6609		1500	0.6474	0.00	0.6669	0.91	0.6851	0.09	0.6685
	1600	0.6347	0.02	0.6100	0.92	0.6148	0.06	0.6109		1600	0.6420	0.00	0.6530	0.91	0.6479	0.09	0.6526
	1700	0.5902	0.04	0.4883	0.91	0.5295	0.06	0.4943		1700	0.6155	0.00	0.5787	0.90	0.5821	0.10	0.5791
21-Mar-10	0900	0.9999	0.04	0.8105	0.83	0.6317	0.13	0.7956	21-Sep-10	0900	0.9999	0.02	0.8203	0.92	0.6458	0.06	0.8146
	1000	0.8004	0.03	0.8204	0.85	0.6740	0.12	0.8024		1000	0.7913	0.00	0.8165	0.96	0.6819	0.04	0.8105
	1100	0.7570	0.03	0.7834	0.87	0.6967	0.10	0.7742		1100	0.7457	0.01	0.7678	0.96	0.7012	0.03	0.7654
	1200	0.7049	0.03	0.7157	0.86	0.7072	0.11	0.7144		1200	0.6927	0.01	0.6963	0.93	0.7091	0.06	0.6970
	1300	0.6628	0.02	0.6678	0.90	0.7072	0.08	0.6707		1300	0.6590	0.00	0.6604	0.97	0.7069	0.03	0.6620
	1400	0.6500	0.03	0.6646	0.88	0.6970	0.09	0.6670		1400	0.6489	0.00	0.6642	0.97	0.6941	0.03	0.6652
	1500	0.6463	0.03	0.6642	0.87	0.6744	0.10	0.6646		1500	0.6463	0.00	0.6609	0.98	0.6683	0.02	0.6611
	1600	0.6398	0.03	0.6317	0.89	0.6329	0.08	0.6321		1600	0.6358	0.00	0.6187	0.99	0.6213	0.01	0.6188
	1700	0.6051	0.03	0.5329	0.89	0.5570	0.08	0.5371		1700	0.5902	0.00	0.4981	0.99	0.5329	0.01	0.4985
21-Apr-10	0900	0.6783	0.00	0.8392	0.88	0.6560	0.12	0.8168	21-Oct-10	0900	0.7926	0.03	0.7902	0.97	0.6294	0.00	0.7903
	1000	0.9995	0.00	0.8276	0.90	0.6897	0.10	0.8138		1000	0.7727	0.04	0.7981	0.96	0.6674	0.00	0.7970
	1100	0.7560	0.00	0.7625	0.89	0.7085	0.11	0.7565		1100	0.7347	0.01	0.7685	0.99	0.6874	0.00	0.7682
	1200	0.7046	0.00	0.6614	0.90	0.7166	0.10	0.6669		1200	0.6774	0.00	0.7243	1.00	0.6945	0.00	0.7243
	1300	0.6646	0.00	0.6161	0.92	0.7153	0.08	0.6238		1300	0.6556	0.02	0.6930	0.97	0.6904	0.01	0.6922
	1400	0.6500	0.00	0.6458	0.92	0.7046	0.08	0.6504		1400	0.6479	0.02	0.6744	0.97	0.6740	0.01	0.6739
	1500	0.6468	0.00	0.6674	0.89	0.6823	0.11	0.6690		1500	0.6431	0.02	0.6425	0.97	0.6414	0.01	0.6425
	1600	0.6409	0.00	0.6484	0.89	0.6431	0.11	0.6478		1600	0.6207	0.01	0.5646	0.98	0.5813	0.01	0.5653
	1700	0.6107	0.00	0.5655	0.88	0.5736	0.12	0.5665		1700	0.5385	0.03	0.3816	0.96	0.4566	0.01	0.3875
21-May-10	0900	0.1307	0.02	0.8491	0.96	0.6642	0.02	0.8297	21-Nov-10	0900	0.7757	0.12	0.7466	0.84	0.6001	0.03	0.7452
	1000	0.9967	0.01	0.8303	0.97	0.6949	0.02	0.8292		1000	0.7619	0.17	0.7747	0.80	0.6447	0.03	0.7683
	1100	0.7615	0.01	0.7554	0.94	0.7120	0.05	0.7531		1100	0.7263	0.17	0.7630	0.80	0.6674	0.03	0.7537
	1200	0.7072	0.02	0.6786	0.91	0.7189	0.06	0.6818		1200	0.6736	0.14	0.7334	0.82	0.6757	0.03	0.7228
	1300	0.6687	0.01	0.6059	0.94	0.7177	0.05	0.6125		1300	0.6541	0.12	0.7022	0.83	0.6714	0.04	0.6950
	1400	0.6536	0.02	0.6436	0.88	0.7072	0.10	0.6500		1400	0.6463	0.16	0.6705	0.79	0.6536	0.06	0.6658
	1500	0.6479	0.02	0.6740	0.90	0.6862	0.08	0.6744		1500	0.6352	0.16	0.6200	0.79	0.6168	0.06	0.6222
	1600	0.6414	0.02	0.6633	0.89	0.6500	0.09	0.6616		1600	0.6023	0.16	0.5176	0.79	0.5469	0.06	0.5324
	1700	0.6155	0.02	0.5948	0.88	0.5870	0.10	0.5945		1700	0.4868	0.13	0.2944	0.80	0.3915	0.07	0.3265
21-Jun-10	0900	0.0445	0.00	0.8508	0.89	0.6628	0.11	0.8299	21-Dec-10	0900	0.7669	0.14	0.7082	0.85	0.5727	0.01	0.7149
	1000	0.9897	0.00	0.8351	0.89	0.6938	0.11	0.8194		1000	0.7615	0.19	0.7580	0.77	0.6263	0.03	0.7544
	1100	0.7676	0.00	0.7655	0.89	0.7110	0.11	0.7594		1100	0.7321	0.18	0.7590	0.78	0.6541	0.03	0.7507
	1200	0.7153	0.00	0.6815	0.88	0.7189	0.12	0.6861		1200	0.6823	0.16	0.7367	0.81	0.6656	0.03	0.7256
	1300	0.6731	0.00	0.6148	0.92	0.7180	0.08	0.6228		1300	0.6546	0.16	0.7066	0.82	0.6637	0.02	0.6972
	1400	0.6556	0.00	0.6436	0.93	0.7088	0.07	0.6480		1400	0.6452	0.19	0.6723	0.78	0.6479	0.02	0.6665
	1500	0.6484	0.00	0.6774	0.97	0.6893	0.03	0.6778		1500	0.6341	0.20	0.6207	0.77	0.6141	0.02	0.6233
	1600	0.6425	0.00	0.6723	0.93	0.6560	0.07	0.6712		1600	0.6023	0.17	0.5213	0.81	0.5490	0.02	0.5358
		0.6207	0.00	0.6141	0.93	0.5986	0.07	0.6131		1700	0.4995	0.15	0.3164	0.83	0.4077	0.02	0.3460

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 10

Date	Time	$\mathbf{P}_{FS,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BX,P}$	P_P	$\mathbf{P}_{FX,BS,O}$	P_O	$P_{FS,BS,R}$	Date	Time	$\mathbf{P}_{\mathrm{FX},BX,C}$	P_C	$\mathbf{P}_{FX,BS,P}$	P_P	$\mathbf{P}_{FS,BS,O}$	P_O	$P_{FX,BX,R}$
21-Jan-10	0900	0.9669	0.05	0.8789	0.80	0.7573	0.15	0.8653	21-Jul-10	0900	0.9794	0.00	0.9402	0.92	0.8338	0.08	0.9322
	1000	0.9727	0.06	0.9201	0.81	0.8095	0.13	0.9093		1000	0.9826	0.00	0.9414	0.91	0.8586	0.09	0.9343
	1100	0.9697	0.06	0.9269	0.81	0.8345	0.13	0.9177		1100	0.9771	0.00	0.9198	0.91	0.8719	0.09	0.9157
	1200	0.9311	0.08	0.9178	0.80	0.8453	0.13	0.9095		1200	0.9342	0.00	0.8886	0.91	0.8778	0.09	0.8877
	1300	0.8510	0.08	0.9005	0.83	0.8472	0.10	0.8916		1300	0.8465	0.00	0.8477	0.96	0.8778	0.04	0.8490
	1400	0.8285	0.08	0.8787	0.84	0.8367	0.09	0.8713		1400	0.8278	0.00	0.8348	0.97	0.8717	0.03	0.8360
	1500	0.8082	0.09	0.8456	0.83	0.8144	0.09	0.8397		1500	0.8169	0.00	0.8472	0.97	0.8582	0.03	0.8476
	1600	0.7798	0.11	0.7763	0.83	0.7676	0.06	0.7761		1600	0.8086	0.00	0.8363	0.97	0.8331	0.03	0.8362
	1700	0.7038	0.10	0.5911	0.83	0.6550	0.08	0.6068		1700	0.7887	0.00	0.7819	0.95	0.7851	0.05	0.7821
21-Feb-10	0900	0.9728	0.04	0.9072	0.89	0.7846	0.07	0.9008	21-Aug-10	0900	0.9788	0.00	0.9392	0.92	0.8299	0.08	0.9310
	1000	0.9778	0.02	0.9340	0.89	0.8280	0.08	0.9263		1000	0.9822	0.00	0.9424	0.92	0.8565	0.08	0.9359
	1100	0.9753	0.02	0.9341	0.88	0.8495	0.09	0.9271		1100	0.9767	0.00	0.9229	0.90	0.8705	0.10	0.9179
	1200	0.9443	0.04	0.9189	0.87	0.8592	0.09	0.9142		1200	0.9325	0.00	0.8823	0.92	0.8765	0.08	0.8818
	1300	0.8531	0.05	0.8973	0.92	0.8601	0.04	0.8939		1300	0.8459	0.00	0.8439	0.90	0.8761	0.10	0.8470
	1400	0.8308	0.04	0.8786	0.92	0.8527	0.05	0.8757		1400	0.8266	0.00	0.8432	0.90	0.8693	0.10	0.8457
	1500	0.8143	0.02	0.8564	0.92	0.8346	0.06	0.8542		1500	0.8156	0.00	0.8485	0.91	0.8543	0.09	0.8489
	1600	0.7949	0.02	0.8095	0.92	0.7976	0.06	0.8085		1600	0.8057	0.00	0.8291	0.91	0.8255	0.09	0.8288
	1700	0.7470	0.04	0.6834	0.91	0.7164	0.06	0.6876		1700	0.7796	0.00	0.7565	0.90	0.7685	0.10	0.7577
21-Mar-10	0900	0.9772	0.04	0.9296	0.83	0.8126	0.13	0.9165	21-Sep-10	0900	0.9790	0.02	0.9358	0.92	0.8238	0.06	0.9306
	1000	0.9808	0.03	0.9417	0.85	0.8458	0.12	0.9317		1000	0.9812	0.00	0.9413	0.96	0.8518	0.04	0.9374
	1100	0.9770	0.03	0.9322	0.87	0.8627	0.10	0.9269		1100	0.9731	0.01	0.9265	0.96	0.8659	0.03	0.9250
	1200	0.9369	0.03	0.9047	0.86	0.8700	0.11	0.9020		1200	0.9144	0.01	0.8950	0.93	0.8714	0.06	0.8939
	1300	0.8489	0.02	0.8756	0.90	0.8701	0.08	0.8747		1300	0.8430	0.00	0.8689	0.97	0.8698	0.03	0.8689
	1400	0.8282	0.03	0.8638	0.88	0.8629	0.09	0.8626		1400	0.8245	0.00	0.8609	0.97	0.8608	0.03	0.8609
	1500	0.8150	0.03	0.8536	0.87	0.8462	0.10	0.8516		1500	0.8123	0.00	0.8489	0.98	0.8414	0.02	0.8487
	1600	0.8010	0.03	0.8204	0.89	0.8133	0.08	0.8193		1600	0.7966	0.00	0.8075	0.99	0.8035	0.01	0.8074
	1700	0.7651	0.03	0.7213	0.89	0.7439	0.08	0.7244		1700	0.7503	0.00	0.6829	0.99	0.7201	0.01	0.6833
21-Apr-10	0900	0.9788	0.00	0.9401	0.88	0.8320	0.12	0.9269	21-Oct-10	0900	0.9765	0.03	0.9258	0.97	0.8104	0.00	0.9275
	1000	0.9825	0.00	0.9418	0.90	0.8577	0.10	0.9334		1000	0.9777	0.04	0.9366	0.96	0.8409	0.00	0.9384
	1100	0.9755	0.00	0.9208	0.89	0.8710	0.11	0.9153		1100	0.9686	0.01	0.9282	0.99	0.8559	0.00	0.9286
	1200	0.9319	0.00	0.8795	0.90	0.8764	0.10	0.8792		1200	0.8703	0.00	0.9081	1.00	0.8609	0.00	0.9081
	1300	0.8441	0.00	0.8433	0.92	0.8756	0.08	0.8458		1300	0.8413	0.02	0.8874	0.97	0.8580	0.01	0.8861
	1400	0.8253	0.00	0.8450	0.92	0.8682	0.08	0.8468		1400	0.8223	0.02	0.8691	0.97	0.8460	0.01	0.8678
	1500	0.8147	0.00	0.8482	0.89	0.8521	0.11	0.8486		1500	0.8064	0.02	0.8389	0.97	0.8205	0.01	0.8380
	1600	0.8042	0.00	0.8252	0.89	0.8216	0.11	0.8248		1600	0.7787	0.01	0.7653	0.98	0.7677	0.01	0.7655
	1700	0.7749	0.00	0.7441	0.88	0.7601	0.12	0.7460		1700	0.6902	0.03	0.5499	0.96	0.6353	0.01	0.5554
21-May-10	0900	0.9798	0.02	0.9419	0.96	0.8385	0.02	0.9405	21-Nov-10	0900	0.9709	0.12	0.9038	0.84	0.7850	0.03	0.9080
	1000	0.9831	0.01	0.9398	0.97	0.8613	0.02	0.9386		1000	0.9726	0.17	0.9260	0.80	0.8229	0.03	0.9303
	1100	0.9763	0.01	0.9143	0.94	0.8733	0.05	0.9127		1100	0.9616	0.17	0.9248	0.80	0.8409	0.03	0.9282
	1200	0.9207	0.02	0.8945	0.91	0.8781	0.06	0.8940		1200	0.8774	0.14	0.9113	0.82	0.8472	0.03	0.9043
	1300	0.8430	0.01	0.8363	0.94	0.8772	0.05	0.8386		1300	0.8413	0.12	0.8920	0.83	0.8439	0.04	0.8837
	1400	0.8254	0.02	0.8376	0.88	0.8701	0.10	0.8405		1400	0.8203	0.16	0.8674	0.79	0.8300	0.06	0.8580
	1500	0.8156	0.02	0.8473	0.90	0.8551	0.08	0.8472		1500	0.7988	0.16	0.8243	0.79	0.7997	0.06	0.8189
	1600	0.8067	0.02	0.8310	0.89	0.8272	0.09	0.8301		1600	0.7590	0.16	0.7237	0.79	0.7348	0.06	0.7298
	1700	0.7825	0.02	0.7648	0.88	0.7729	0.10	0.7660		1700	0.6273	0.13	0.4347	0.80	0.5546	0.07	0.4684
21-Jun-10	0900	0.9795	0.00	0.9410	0.89	0.8374	0.11	0.9295	21-Dec-10	0900	0.9664	0.14	0.8790	0.85	0.7596	0.01	0.8899
21-7011-10	1000	0.9793	0.00	0.9410	0.89	0.8605	0.11	0.9293	21-1500-10	1000	0.9706	0.14	0.8790	0.83	0.8076	0.01	0.9233
	1100	0.9828	0.00	0.9400	0.89	0.8727	0.11	0.9312		1100	0.9626	0.19	0.9102	0.77	0.8305	0.03	0.9253
	1200	0.9768	0.00	0.8918	0.89	0.8727	0.11	0.8901		1200	0.9020	0.16	0.9217	0.78	0.8395	0.03	0.9282
	1300	0.9341	0.00	0.8918	0.88	0.8780	0.12	0.8901		1300	0.9003	0.16	0.9122	0.81	0.8393	0.03	0.8852
	1400	0.8520	0.00	0.8420	0.92	0.8773	0.08	0.8384		1400	0.8446	0.16	0.8945	0.82	0.8381	0.02	0.8852
	1500		0.00	0.8360	0.93	0.8712	0.07			1500	0.8224	0.19		0.78		0.02	
		0.8168						0.8482					0.8268		0.7972		0.8206
	1600	0.8084	0.00	0.8361	0.93	0.8318	0.07	0.8358		1600	0.7607	0.17	0.7309	0.81	0.7360	0.02	0.7361
	1700	0.7881	0.00	0.7812	0.93	0.7836	0.07	0.7813		1700	0.6423	0.15	0.4655	0.83	0.5737	0.02	0.4944

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 10

Date	Time	$\mathbf{P}_{VS,\mathit{UD},\mathit{C}}$	\mathbf{P}_C	$\mathbf{P}_{VS,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VX,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},UD,R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	P_C	$\mathbf{P}_{VX,UD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},UD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},UD,R}$
21-Jan-10	0900	0.9326	0.05	0.7170	0.80	0.5882	0.15	0.7092	21-Jul-10	0900	0.0179	0.00	0.6464	0.92	0.5864	0.08	0.6419
	1000	0.9234	0.06	0.7171	0.81	0.5901	0.13	0.7140		1000	0.0431	0.00	0.5469	0.91	0.5864	0.09	0.5503
	1100	0.9077	0.06	0.7272	0.81	0.5895	0.13	0.7211		1100	0.7960	0.00	0.5166	0.91	0.5893	0.09	0.5229
	1200	0.8765	0.08	0.7210	0.80	0.5911	0.13	0.7160		1200	0.7881	0.00	0.4484	0.91	0.5892	0.09	0.4606
	1300	0.8261	0.08	0.7157	0.83	0.5901	0.10	0.7118		1300	0.7563	0.00	0.4918	0.96	0.5871	0.04	0.4959
	1400	0.8346	0.08	0.7265	0.84	0.5934	0.09	0.7232		1400	0.7934	0.00	0.5946	0.97	0.5872	0.03	0.5943
	1500	0.8499	0.09	0.7161	0.83	0.5888	0.09	0.7166		1500	0.8185	0.00	0.6488	0.97	0.5840	0.03	0.6467
	1600	0.8593	0.11	0.7037	0.83	0.5832	0.06	0.7127		1600	0.8378	0.00	0.6684	0.97	0.5875	0.03	0.6658
	1700	0.8808	0.10	0.6904	0.83	0.5864	0.08	0.7010		1700	0.8540	0.00	0.6737	0.95	0.5864	0.05	0.6690
21-Feb-10	0900	0.8966	0.04	0.7114	0.89	0.5922	0.07	0.7096	21-Aug-10	0900	0.0247	0.00	0.6558	0.92	0.5844	0.08	0.6504
	1000	0.9067	0.02	0.6898	0.89	0.5907	0.08	0.6868		1000	0.0749	0.00	0.5715	0.92	0.5898	0.08	0.5728
	1100	0.8941	0.02	0.6957	0.88	0.5847	0.09	0.6899		1100	0.8115	0.00	0.5504	0.90	0.5894	0.10	0.5542
	1200	0.8666	0.04	0.6862	0.87	0.5856	0.09	0.6831		1200	0.7727	0.00	0.5128	0.92	0.5892	0.08	0.5185
	1300	0.8139	0.05	0.6998	0.92	0.5873	0.04	0.7012		1300	0.7721	0.00	0.5595	0.90	0.5899	0.10	0.5625
	1400	0.8209	0.04	0.6992	0.92	0.5864	0.05	0.6982		1400	0.7988	0.00	0.6318	0.90	0.5887	0.10	0.6276
	1500	0.8411	0.02	0.7075	0.92	0.5854	0.06	0.7034		1500	0.8262	0.00	0.6808	0.91	0.5873	0.09	0.6728
	1600	0.8619	0.02	0.6944	0.92	0.5864	0.06	0.6920		1600	0.8482	0.00	0.6729	0.91	0.5864	0.09	0.6655
	1700	0.8715	0.04	0.6828	0.91	0.5864	0.06	0.6838		1700	0.8641	0.00	0.6786	0.90	0.5880	0.10	0.6698
21-Mar-10	0900	0.2841	0.04	0.6866	0.83	0.5912	0.13	0.6570	21-Sep-10	0900	0.2780	0.02	0.6699	0.92	0.5886	0.06	0.6567
	1000	0.8041	0.03	0.6353	0.85	0.5837	0.12	0.6346		1000	0.8225	0.00	0.6305	0.96	0.5847	0.04	0.6285
	1100	0.8614	0.03	0.6363	0.87	0.5888	0.10	0.6390		1100	0.8374	0.01	0.6215	0.96	0.5918	0.03	0.6229
	1200	0.8193	0.03	0.6262	0.86	0.5901	0.11	0.6285		1200	0.8021	0.01	0.6139	0.93	0.5879	0.06	0.6146
	1300	0.7882	0.02	0.6424	0.90	0.5901	0.08	0.6416		1300	0.7948	0.00	0.6326	0.97	0.5879	0.03	0.6311
	1400	0.8149	0.03	0.6689	0.88	0.5912	0.09	0.6669		1400	0.8167	0.00	0.6727	0.97	0.5889	0.03	0.6699
	1500	0.8368	0.03	0.6971	0.87	0.5864	0.10	0.6909		1500	0.8411	0.00	0.6992	0.98	0.5864	0.02	0.6967
	1600	0.8558	0.03	0.6864	0.89	0.5900	0.08	0.6846		1600	0.8601	0.00	0.6859	0.99	0.5890	0.01	0.6849
	1700	0.8637	0.03	0.6759	0.89	0.5883	0.08	0.6753		1700	0.8715	0.00	0.6778	0.99	0.5907	0.01	0.6769
21-Apr-10	0900	0.0277	0.00	0.6496	0.88	0.5854	0.12	0.6417	21-Oct-10	0900	0.9080	0.03	0.6899	0.97	0.5852	0.00	0.6969
	1000	0.0808	0.00	0.5695	0.90	0.5881	0.10	0.5714		1000	0.8955	0.04	0.6934	0.96	0.5874	0.00	0.7021
	1100	0.8024	0.00	0.5560	0.89	0.5886	0.11	0.5596		1100	0.8730	0.01	0.6850	0.99	0.5907	0.00	0.6870
	1200	0.7801	0.00	0.5196	0.90	0.5892	0.10	0.5265		1200	0.8277	0.00	0.6831	1.00	0.5856	0.00	0.6831
	1300	0.7752	0.00	0.5666	0.92	0.5857	0.08	0.5681		1300	0.8168	0.02	0.6994	0.97	0.5873	0.01	0.7008
	1400	0.8006	0.00	0.6338	0.92	0.5879	0.08	0.6302		1400	0.8320	0.02	0.6954	0.97	0.5901	0.01	0.6972
	1500	0.8338	0.00	0.6771	0.89	0.5873	0.11	0.6672		1500	0.8505	0.02	0.7088	0.97	0.5853	0.01	0.7105
	1600	0.8499	0.00	0.6762	0.89	0.5876	0.11	0.6664		1600	0.8692	0.01	0.6875	0.98	0.5832	0.01	0.6883
	1700	0.8599	0.00	0.6807	0.88	0.5848	0.12	0.6689		1700	0.8786	0.03	0.6961	0.96	0.5799	0.01	0.7007
21-May-10	0900	0.0196	0.02	0.6259	0.96	0.5874	0.02	0.6120	21-Nov-10	0900	0.9301	0.12	0.7210	0.84	0.5864	0.03	0.7421
	1000	0.0515	0.01	0.5364	0.97	0.5880	0.02	0.5323		1000	0.9156	0.17	0.7223	0.80	0.5898	0.03	0.7501
	1100	0.7953	0.01	0.5077	0.94	0.5872	0.05	0.5150		1100	0.8915	0.17	0.7219	0.80	0.5874	0.03	0.7457
	1200	0.7825	0.02	0.4224	0.91	0.5912	0.06	0.4411		1200	0.8398	0.14	0.7205	0.82	0.5883	0.03	0.7334
	1300	0.7657	0.01	0.5211	0.94	0.5878	0.05	0.5273		1300	0.8302	0.12	0.7300	0.83	0.5864	0.04	0.7359
	1400	0.7920	0.02	0.6063	0.88	0.5901	0.10	0.6087		1400	0.8368	0.16	0.7211	0.79	0.5844	0.06	0.7315
	1500	0.8231	0.02	0.6524	0.90	0.5890	0.08	0.6513		1500	0.8548	0.16	0.7152	0.79	0.5891	0.06	0.7299
	1600	0.8427	0.02	0.6678	0.89	0.5843	0.09	0.6644		1600	0.8583	0.16	0.7037	0.79	0.5982	0.06	0.7219
	1700	0.8549	0.02	0.6762	0.88	0.5942	0.10	0.6721		1700	0.8732	0.13	0.7168	0.80	0.5864	0.07	0.7289
21-Jun-10	0900	0.0172	0.00	0.6305	0.89	0.5924	0.11	0.6262	21-Dec-10	0900	0.9394	0.14	0.7279	0.85	0.5915	0.01	0.7560
	1000	0.0412	0.00	0.5353	0.89	0.5864	0.11	0.5410		1000	0.9256	0.19	0.7321	0.77	0.5926	0.03	0.7651
	1100	0.7878	0.00	0.5007	0.89	0.5908	0.11	0.5107		1100	0.9140	0.18	0.7287	0.78	0.5875	0.03	0.7580
	1200	0.7743	0.00	0.4254	0.88	0.5864	0.12	0.4451		1200	0.8501	0.16	0.7301	0.81	0.5894	0.03	0.7449
	1300	0.7580	0.00	0.4918	0.92	0.5899	0.08	0.4994		1300	0.8315	0.16	0.7245	0.82	0.5913	0.02	0.7389
	1400	0.7885	0.00	0.5909	0.93	0.5908	0.07	0.5909		1400	0.8428	0.19	0.7289	0.78	0.5864	0.02	0.7479
	1500	0.8105	0.00	0.6417	0.97	0.5914	0.03	0.6401		1500	0.8525	0.20	0.7254	0.77	0.5918	0.02	0.7485
	1600	0.8365	0.00	0.6669	0.93	0.5854	0.07	0.6615		1600	0.8632	0.17	0.7054	0.81	0.5826	0.02	0.7299
	1700	0.8514	0.00	0.6802	0.93	0.5879	0.07	0.6741		1700	0.8763	0.15	0.6804	0.83	0.5864	0.02	0.7079

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 10

Date	Time	$\mathbf{P}_{VS,US,C}$	\mathbf{P}_C	$\mathbf{P}_{V\mathbf{X},U\mathbf{X},P}$	P_P	$\mathbf{P}_{VX,UX,O}$	P_O	$\mathbf{P}_{FS,US,R}$	Date	Time	$\mathbf{P}_{VX,US,C}$	P_C	$\mathbf{P}_{VX,UX,P}$	P_P	$\mathbf{P}_{VS,US,O}$	P_O	$P_{FS,US,R}$
21-Jan-10	0900	0.7853	0.05	0.8920	0.80	0.9161	0.15	0.8899	21-Jul-10	0900	0.9162	0.00	0.9043	0.92	0.9162	0.08	0.9052
	1000	0.9113	0.06	0.8975	0.81	0.9162	0.13	0.9008		1000	0.9370	0.00	0.9128	0.91	0.9162	0.09	0.9131
	1100	0.9331	0.06	0.9036	0.81	0.9161	0.13	0.9071		1100	0.9392	0.00	0.9215	0.91	0.9162	0.09	0.9211
	1200	0.9279	0.08	0.9070	0.80	0.9161	0.13	0.9097		1200	0.9328	0.00	0.9289	0.91	0.9162	0.09	0.9278
	1300	0.8968	0.08	0.9076	0.83	0.9114	0.10	0.9072		1300	0.9042	0.00	0.9279	0.96	0.9162	0.04	0.9274
	1400	0.8931	0.08	0.9072	0.84	0.9162	0.09	0.9069		1400	0.8976	0.00	0.9205	0.97	0.9162	0.03	0.9204
	1500	0.8891	0.09	0.9065	0.83	0.9162	0.09	0.9058		1500	0.8898	0.00	0.9155	0.97	0.9162	0.03	0.9155
	1600	0.8852	0.11	0.9065	0.83	0.9162	0.06	0.9048		1600	0.8833	0.00	0.9131	0.97	0.9161	0.03	0.9132
	1700	0.8813	0.10	0.9082	0.83	0.9163	0.08	0.9062		1700	0.8783	0.00	0.9121	0.95	0.9161	0.05	0.9123
1-Feb-10	0900	0.7990	0.04	0.8924	0.89	0.9163	0.07	0.8908	21-Aug-10	0900	0.9072	0.00	0.9013	0.92	0.9163	0.08	0.9025
	1000	0.9178	0.02	0.8996	0.89	0.9163	0.08	0.9014		1000	0.9347	0.00	0.9105	0.92	0.9162	0.08	0.9109
	1100	0.9359	0.02	0.9073	0.88	0.9162	0.09	0.9088		1100	0.9387	0.00	0.9194	0.90	0.9162	0.10	0.9191
	1200	0.9323	0.04	0.9114	0.87	0.9162	0.09	0.9126		1200	0.9319	0.00	0.9256	0.92	0.9161	0.08	0.9249
	1300	0.8990	0.05	0.9118	0.92	0.9162	0.04	0.9114		1300	0.9029	0.00	0.9244	0.90	0.9163	0.10	0.9236
	1400	0.8941	0.04	0.9104	0.92	0.9162	0.05	0.9101		1400	0.8962	0.00	0.9183	0.90	0.9161	0.10	0.9181
	1500	0.8890	0.02	0.9087	0.92	0.9161	0.06	0.9087		1500	0.8886	0.00	0.9140	0.91	0.9163	0.09	0.9142
	1600	0.8846	0.02	0.9080	0.92	0.9162	0.06	0.9079		1600	0.8820	0.00	0.9119	0.91	0.9161	0.09	0.9122
	1700	0.8808	0.04	0.9083	0.91	0.9160	0.06	0.9078		1700	0.8783	0.00	0.9113	0.90	0.9163	0.10	0.9117
1-Mar-10	0900	0.8440	0.04	0.8962	0.83	0.9163	0.13	0.8966	21-Sep-10	0900	0.8805	0.02	0.8981	0.92	0.9163	0.06	0.8987
	1000	0.9279	0.03	0.9047	0.85	0.9162	0.12	0.9068		1000	0.9337	0.00	0.9074	0.96	0.9161	0.04	0.9078
	1100	0.9377	0.03	0.9132	0.87	0.9162	0.10	0.9143		1100	0.9373	0.01	0.9153	0.96	0.9162	0.03	0.9155
	1200	0.9317	0.03	0.9178	0.86	0.9162	0.11	0.9181		1200	0.9260	0.01	0.9188	0.93	0.9162	0.06	0.9187
	1300	0.9009	0.02	0.9175	0.90	0.9161	0.08	0.9171		1300	0.8999	0.00	0.9174	0.97	0.9161	0.03	0.9174
	1400	0.8949	0.03	0.9142	0.88	0.9162	0.09	0.9137		1400	0.8934	0.00	0.9139	0.97	0.9162	0.03	0.9139
	1500	0.8876	0.03	0.9113	0.87	0.9162	0.10	0.9110		1500	0.8861	0.00	0.9111	0.98	0.9162	0.02	0.9112
	1600	0.8831	0.03	0.9100	0.89	0.9162	0.08	0.9096		1600	0.8821	0.00	0.9100	0.99	0.9162	0.01	0.9101
	1700	0.8791	0.03	0.9100	0.89	0.9162	0.08	0.9095		1700	0.8780	0.00	0.9100	0.99	0.9162	0.01	0.9101
1-Apr-10	0900	0.9094	0.00	0.9018	0.88	0.9163	0.12	0.9035	21-Oct-10	0900	0.8802	0.03	0.8955	0.97	0.9160	0.00	0.8950
	1000	0.9363	0.00	0.9110	0.90	0.9163	0.10	0.9115		1000	0.9317	0.04	0.9038	0.96	0.9162	0.00	0.9050
	1100	0.9385	0.00	0.9198	0.89	0.9161	0.11	0.9194		1100	0.9354	0.01	0.9100	0.99	0.9161	0.00	0.9103
	1200	0.9320	0.00	0.9255	0.90	0.9161	0.10	0.9245		1200	0.9012	0.00	0.9122	1.00	0.9162	0.00	0.9122
	1300	0.9024	0.00	0.9235	0.92	0.9162	0.08	0.9230		1300	0.8969	0.02	0.9114	0.97	0.9163	0.01	0.9112
	1400	0.8957	0.00	0.9176	0.92	0.9162	0.08	0.9175		1400	0.8913	0.02	0.9096	0.97	0.9162	0.01	0.9093
	1500	0.8877	0.00	0.9137	0.89	0.9162	0.11	0.9139		1500	0.8867	0.02	0.9082	0.97	0.9162	0.01	0.9078
	1600	0.8821	0.00	0.9117	0.89	0.9163	0.11	0.9122		1600	0.8822	0.01	0.9082	0.98	0.9162	0.01	0.9080
	1700	0.8777	0.00	0.9113	0.88	0.9162	0.12	0.9119		1700	0.8789	0.03	0.9097	0.96	0.9162	0.01	0.9088
1-May-10	0900	0.9193	0.02	0.9054	0.96	0.9162	0.02	0.9059	21-Nov-10	0900	0.8587	0.12	0.8938	0.84	0.9162	0.03	0.8903
	1000	0.9386	0.01	0.9141	0.97	0.9162	0.02	0.9144		1000	0.9268	0.17	0.9003	0.80	0.9162	0.03	0.9052
	1100	0.9346	0.01	0.9227	0.94	0.9162	0.05	0.9225		1100	0.9318	0.17	0.9055	0.80	0.9163	0.03	0.9102
	1200	0.9297	0.02	0.9297	0.91	0.9162	0.06	0.9288		1200	0.9061	0.14	0.9076	0.82	0.9162	0.03	0.9077
	1300	0.9030	0.01	0.9266	0.94	0.9162	0.05	0.9258		1300	0.8949	0.12	0.9076	0.83	0.9162	0.04	0.9064
	1400	0.8963	0.02	0.9194	0.88	0.9161	0.10	0.9186		1400	0.8914	0.16	0.9070	0.79	0.9163	0.06	0.9051
	1500	0.8884	0.02	0.9148	0.90	0.9162	0.08	0.9144		1500	0.8874	0.16	0.9065	0.79	0.9162	0.06	0.9040
	1600	0.8819	0.02	0.9126	0.89	0.9162	0.09	0.9123		1600	0.8840	0.16	0.9070	0.79	0.9162	0.06	0.9039
	1700	0.8779	0.02	0.9120	0.88	0.9164	0.10	0.9117		1700	0.8811	0.13	0.9090	0.80	0.9163	0.07	0.9057
1-Jun-10	0900	0.9205	0.00	0.9059	0.89	0.9161	0.11	0.9070	21-Dec-10	0900	0.8223	0.14	0.8927	0.85	0.9161	0.01	0.8831
	1000	0.9386	0.00	0.9143	0.89	0.9162	0.11	0.9145		1000	0.9197	0.19	0.8981	0.77	0.9161	0.03	0.9029
	1100	0.9394	0.00	0.9226	0.89	0.9162	0.11	0.9219		1100	0.9307	0.18	0.9033	0.78	0.9161	0.03	0.9087
	1200	0.9331	0.00	0.9297	0.88	0.9163	0.12	0.9280		1200	0.9162	0.16	0.9059	0.81	0.9162	0.03	0.9079
	1300	0.9089	0.00	0.9277	0.92	0.9162	0.08	0.9268		1300	0.8960	0.16	0.9064	0.82	0.9162	0.02	0.9049
	1400	0.8972	0.00	0.9204	0.93	0.9162	0.07	0.9202		1400	0.8922	0.19	0.9060	0.78	0.9162	0.02	0.9036
	1500	0.8895	0.00	0.9158	0.97	0.9162	0.03	0.9158		1500	0.8885	0.20	0.9057	0.77	0.9161	0.02	0.9024
	1600	0.8830	0.00	0.9133	0.93	0.9162	0.07	0.9135		1600	0.8851	0.17	0.9064	0.81	0.9162	0.02	0.9029
	1700	0.8783	0.00	0.9123	0.93	0.9163	0.07	0.9126		1700	0.8822	0.15	0.9083	0.83	0.9165	0.02	0.9045

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 10

Date	Time	$P_{\mathit{FS},\mathit{PG},\mathit{C}}$	\mathbf{P}_C	$\mathbf{P}_{VS,PG,P}$	P_P	$\mathbf{P}_{FX,PG,O}$	P_O	$\mathrm{P}_{\mathrm{FS},PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	P_C	$\mathbf{P}_{FX,PG,P}$	\mathbf{P}_{P}	$\mathbf{P}_{FS,PG,O}$	P_O	$P_{FS,PG,R}$
21-Jan-10	0900	0.4052	0.05	0.8158	0.80	0.8674	0.15	0.8015	21-Jul-10	0900	0.2877	0.00	0.6983	0.92	0.8198	0.08	0.7074
	1000	0.3459	0.06	0.7406	0.81	0.8379	0.13	0.7277		1000	0.2629	0.00	0.6751	0.91	0.7966	0.09	0.6856
	1100	0.3707	0.06	0.7145	0.81	0.8192	0.13	0.7058		1100	0.3079	0.00	0.7143	0.91	0.7820	0.09	0.7201
	1200	0.8398	0.08	0.7294	0.80	0.8094	0.13	0.7480		1200	0.8472	0.00	0.7579	0.91	0.7745	0.09	0.7593
	1300	0.8529	0.08	0.7601	0.83	0.8093	0.10	0.7719		1300	0.8641	0.00	0.8090	0.96	0.7745	0.04	0.8075
	1400	0.8769	0.08	0.7908	0.84	0.8172	0.09	0.7995		1400	0.8831	0.00	0.8268	0.97	0.7821	0.03	0.8254
	1500	0.8948	0.09	0.8249	0.83	0.8344	0.09	0.8317		1500	0.8951	0.00	0.8164	0.97	0.7970	0.03	0.8158
	1600	0.9118	0.11	0.8697	0.83	0.8628	0.06	0.8738		1600	0.9034	0.00	0.8255	0.97	0.8206	0.03	0.8253
	1700	0.9357	0.10	0.9291	0.83	0.9057	0.08	0.9279		1700	0.9137	0.00	0.8611	0.95	0.8531	0.05	0.8607
21-Feb-10	0900	0.3572	0.04	0.7811	0.89	0.8539	0.07	0.7713	21-Aug-10	0900	0.2894	0.00	0.7056	0.92	0.8226	0.08	0.7144
	1000	0.3089	0.02	0.7084	0.89	0.8241	0.08	0.7086		1000	0.2635	0.00	0.6749	0.92	0.7987	0.08	0.6842
	1100	0.3328	0.02	0.6936	0.88	0.8056	0.09	0.6956		1100	0.3065	0.00	0.7102	0.90	0.7838	0.10	0.7173
	1200	0.8430	0.04	0.7233	0.87	0.7961	0.09	0.7344		1200	0.8468	0.00	0.7721	0.92	0.7761	0.08	0.7724
	1300	0.8537	0.05	0.7616	0.92	0.7948	0.04	0.7671		1300	0.8649	0.00	0.8162	0.90	0.7766	0.10	0.8124
	1400	0.8775	0.04	0.7885	0.92	0.8026	0.05	0.7923		1400	0.8845	0.00	0.8208	0.90	0.7847	0.10	0.8173
	1500	0.8940	0.02	0.8124	0.92	0.8190	0.06	0.8147		1500	0.8967	0.00	0.8162	0.91	0.8010	0.09	0.8149
	1600	0.9077	0.02	0.8486	0.92	0.8457	0.06	0.8498		1600	0.9056	0.00	0.8311	0.91	0.8264	0.09	0.8307
	1700	0.9264	0.04	0.9034	0.91	0.8859	0.06	0.9032		1700	0.9179	0.00	0.8734	0.90	0.8622	0.10	0.8723
21-Mar-10	0900	0.3081	0.04	0.7358	0.83	0.8362	0.13	0.7304	21-Sep-10	0900	0.2952	0.02	0.7153	0.92	0.8273	0.06	0.7122
21 11111 10	1000	0.2784	0.03	0.6822	0.85	0.8090	0.12	0.6842	21 Sep 10	1000	0.2776	0.00	0.6787	0.96	0.8038	0.04	0.6843
	1100	0.3152	0.03	0.6935	0.87	0.7925	0.10	0.6909		1100	0.3376	0.01	0.7051	0.96	0.7888	0.03	0.7038
	1200	0.8442	0.03	0.7464	0.86	0.7840	0.11	0.7536		1200	0.8453	0.01	0.7611	0.93	0.7824	0.06	0.7632
	1300	0.8603	0.02	0.7880	0.90	0.7839	0.08	0.7892		1300	0.8667	0.00	0.7957	0.97	0.7844	0.03	0.7954
	1400	0.8821	0.02	0.8028	0.88	0.7919	0.09	0.8044		1400	0.8861	0.00	0.8060	0.97	0.7944	0.03	0.8056
	1500	0.8960	0.03	0.8028	0.87	0.8088	0.10	0.8044		1500	0.8986	0.00	0.8169	0.97	0.8130	0.03	0.8168
	1600	0.9069	0.03	0.8393	0.89	0.8357	0.10	0.8412		1600	0.9096	0.00	0.8477	0.98	0.8130	0.02	0.8476
	1700	0.9009	0.03	0.8889	0.89	0.8337	0.08	0.8888		1700	0.9090	0.00	0.9013	0.99	0.8843	0.01	0.9011
				0.8889				0.8888					0.9013		0.8845	0.01	
21-Apr-10	0900	0.2853	0.00	0.7016	0.88	0.8211	0.12	0.7162	21-Oct-10	0900	0.3225	0.03	0.7374	0.97	0.8374	0.00	0.7240
	1000	0.2638	0.00	0.6753	0.90	0.7979	0.10	0.6876		1000	0.3081	0.04	0.6932	0.96	0.8132	0.00	0.6766
	1100	0.3154	0.00	0.7138	0.89	0.7831	0.11	0.7215		1100	0.3912	0.01	0.7047	0.99	0.7996	0.00	0.7013
	1200	0.8492	0.00	0.7764	0.90	0.7763	0.10	0.7764		1200	0.8386	0.00	0.7439	1.00	0.7943	0.00	0.7439
	1300	0.8667	0.00	0.8173	0.92	0.7776	0.08	0.8142		1300	0.8666	0.02	0.7762	0.97	0.7969	0.01	0.7783
	1400	0.8857	0.00	0.8191	0.92	0.7861	0.08	0.8166		1400	0.8863	0.02	0.7992	0.97	0.8091	0.01	0.8012
	1500	0.8976	0.00	0.8165	0.89	0.8028	0.11	0.8150		1500	0.9006	0.02	0.8275	0.97	0.8300	0.01	0.8291
	1600	0.9066	0.00	0.8341	0.89	0.8291	0.11	0.8335		1600	0.9154	0.01	0.8727	0.98	0.8632	0.01	0.8730
	1700	0.9195	0.00	0.8791	0.88	0.8670	0.12	0.8777		1700	0.9405	0.03	0.9354	0.96	0.9121	0.01	0.9353
21-May-10	0900	0.2809	0.02	0.6905	0.96	0.8156	0.02	0.6844	21-Nov-10	0900	0.3662	0.12	0.7780	0.84	0.8534	0.03	0.7302
	1000	0.2673	0.01	0.6774	0.97	0.7937	0.02	0.6755		1000	0.3408	0.17	0.7226	0.80	0.8284	0.03	0.6625
	1100	0.3284	0.01	0.7241	0.94	0.7799	0.05	0.7229		1100	0.4155	0.17	0.7160	0.80	0.8134	0.03	0.6692
	1200	0.8491	0.02	0.7473	0.91	0.7744	0.06	0.7513		1200	0.8369	0.14	0.7417	0.82	0.8078	0.03	0.7576
	1300	0.8677	0.01	0.8206	0.94	0.7751	0.05	0.8187		1300	0.8639	0.12	0.7728	0.83	0.8111	0.04	0.7856
	1400	0.8855	0.02	0.8249	0.88	0.7837	0.10	0.8222		1400	0.8848	0.16	0.8039	0.79	0.8231	0.06	0.8176
	1500	0.8968	0.02	0.8164	0.90	0.8004	0.08	0.8169		1500	0.9015	0.16	0.8415	0.79	0.8443	0.06	0.8510
	1600	0.9050	0.02	0.8295	0.89	0.8249	0.09	0.8308		1600	0.9201	0.16	0.8927	0.79	0.8779	0.06	0.8962
	1700	0.9163	0.02	0.8697	0.88	0.8601	0.10	0.8698		1700	0.9503	0.13	0.9547	0.80	0.9310	0.07	0.9525
21-Jun-10	0900	0.2828	0.00	0.6923	0.89	0.8165	0.11	0.7061	21-Dec-10	0900	0.4103	0.14	0.8126	0.85	0.8668	0.01	0.7570
	1000	0.2651	0.00	0.6768	0.89	0.7946	0.11	0.6899	21 100 10	1000	0.3600	0.19	0.7463	0.77	0.8395	0.03	0.6745
	1100	0.3229	0.00	0.7205	0.89	0.7807	0.11	0.7272		1100	0.4083	0.19	0.7259	0.78	0.8218	0.03	0.6709
	1200	0.8503	0.00	0.7203	0.88	0.7741	0.11	0.7272		1200	0.8388	0.16	0.7239	0.78	0.8218	0.03	0.7595
	1300	0.8503	0.00	0.7519	0.88	0.7741	0.12	0.7546		1300	0.8588	0.16	0.7415	0.81	0.8152	0.03	0.7858
	1400	0.8838	0.00	0.8141	0.92	0.7751	0.08	0.8111		1400	0.8584	0.16	0.7707	0.82	0.8161	0.02	0.7858
	1500	0.8953	0.00	0.8159	0.97	0.7979	0.03	0.8153		1500	0.8993	0.20	0.8406	0.77	0.8458	0.02	0.8527
	1600	0.9033	0.00	0.8257	0.93	0.8216	0.07	0.8254		1600	0.9182	0.17	0.8905	0.81	0.8776	0.02	0.8950
	1700	0.9134	0.00	0.8617	0.93	0.8543	0.07	0.8612		1700	0.9472	0.15	0.9504	0.83	0.9272	0.02	0.9495

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 10

Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{EX\!,BD\!,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	\mathbf{P}_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.7408	0.05	0.6324	0.80	0.3835	0.15	0.6007	21-Jul-10	0900	0.9798	0.00	0.8666	0.92	0.5342	0.08	0.8416
	1000	0.7417	0.06	0.7352	0.81	0.4813	0.13	0.7028		1000	0.9427	0.00	0.8499	0.91	0.5940	0.09	0.8279
	1100	0.6923	0.06	0.7392	0.81	0.5350	0.13	0.7099		1100	0.7358	0.00	0.7411	0.91	0.6289	0.09	0.7314
	1200	0.6040	0.08	0.6961	0.80	0.5608	0.13	0.6717		1200	0.6386	0.00	0.5647	0.91	0.6447	0.09	0.5716
	1300	0.5350	0.08	0.6381	0.83	0.5624	0.10	0.6230		1300	0.5600	0.00	0.4571	0.96	0.6441	0.04	0.4652
	1400	0.5170	0.08	0.5812	0.84	0.5402	0.09	0.5729		1400	0.5289	0.00	0.4947	0.97	0.6283	0.03	0.4990
	1500	0.5026	0.09	0.5085	0.83	0.4906	0.09	0.5064		1500	0.5151	0.00	0.5592	0.97	0.5933	0.03	0.5603
	1600	0.4661	0.11	0.3807	0.83	0.4014	0.06	0.3912		1600	0.5065	0.00	0.5536	0.97	0.5324	0.03	0.5529
	1700	0.3557	0.10	0.1737	0.83	0.2477	0.08	0.1969		1700	0.4694	0.00	0.4537	0.95	0.4323	0.05	0.4525
21-Feb-10	0900	0.7866	0.04	0.7263	0.89	0.4310	0.07	0.7076	21-Aug-10	0900	0.9702	0.00	0.8532	0.92	0.5253	0.08	0.8286
	1000	0.7647	0.02	0.7892	0.89	0.5207	0.08	0.7665		1000	0.9200	0.00	0.8407	0.92	0.5884	0.08	0.8217
	1100	0.7113	0.02	0.7670	0.88	0.5716	0.09	0.7473		1100	0.7211	0.00	0.7371	0.90	0.6247	0.10	0.7262
	1200	0.6229	0.04	0.6957	0.87	0.5953	0.09	0.6837		1200	0.6241	0.00	0.5486	0.92	0.6408	0.08	0.5556
	1300	0.5411	0.05	0.6229	0.92	0.5974	0.04	0.6182		1300	0.5486	0.00	0.4549	0.90	0.6397	0.10	0.4727
	1400	0.5198	0.04	0.5805	0.92	0.5790	0.05	0.5783		1400	0.5207	0.00	0.5036	0.90	0.6217	0.10	0.5150
	1500	0.5123	0.02	0.5394	0.92	0.5359	0.06	0.5385		1500	0.5142	0.00	0.5495	0.91	0.5827	0.09	0.5523
	1600	0.4916	0.02	0.4491	0.92	0.4571	0.06	0.4505		1600	0.5046	0.00	0.5243	0.91	0.5151	0.09	0.5236
	1700	0.4159	0.04	0.2666	0.91	0.3226	0.06	0.2752		1700	0.4583	0.00	0.3973	0.90	0.4027	0.10	0.3979
21-Mar-10	0900	0.8876	0.04	0.8081	0.83	0.4865	0.13	0.7700	21-Sep-10	0900	0.8850	0.02	0.8240	0.92	0.5113	0.06	0.8080
	1000	0.7913	0.03	0.8242	0.85	0.5624	0.12	0.7921		1000	0.7758	0.00	0.8179	0.96	0.5768	0.04	0.8072
	1100	0.7150	0.03	0.7621	0.87	0.6040	0.10	0.7453		1100	0.6944	0.01	0.7345	0.96	0.6124	0.03	0.7300
	1200	0.6193	0.03	0.6392	0.86	0.6235	0.11	0.6369		1200	0.5967	0.01	0.6034	0.93	0.6271	0.06	0.6046
	1300	0.5419	0.02	0.5511	0.90	0.6235	0.08	0.5564		1300	0.5350	0.00	0.5376	0.97	0.6229	0.03	0.5405
	1400	0.5188	0.03	0.5453	0.88	0.6047	0.09	0.5496		1400	0.5170	0.00	0.5445	0.97	0.5994	0.03	0.5463
	1500	0.5123	0.03	0.5445	0.87	0.5631	0.10	0.5452		1500	0.5123	0.00	0.5385	0.98	0.5519	0.02	0.5388
	1600	0.5007	0.03	0.4865	0.89	0.4886	0.08	0.4871		1600	0.4937	0.00	0.4639	0.99	0.4683	0.01	0.4640
	1700	0.4408	0.03	0.3275	0.89	0.3632	0.08	0.3338		1700	0.4159	0.00	0.2795	0.99	0.3275	0.01	0.2800
21-Apr-10	0900	0.9664	0.00	0.8536	0.88	0.5297	0.12	0.8140	21-Oct-10	0900	0.7779	0.03	0.7739	0.97	0.4823	0.00	0.7740
	1000	0.9148	0.00	0.8357	0.90	0.5912	0.10	0.8112		1000	0.7432	0.04	0.7872	0.96	0.5503	0.00	0.7854
	1100	0.7132	0.00	0.7249	0.89	0.6259	0.11	0.7139		1100	0.6743	0.01	0.7358	0.99	0.5870	0.00	0.7351
	1200	0.6187	0.00	0.5394	0.90	0.6408	0.10	0.5495		1200	0.5686	0.00	0.6552	1.00	0.6001	0.00	0.6552
	1300	0.5453	0.00	0.4594	0.92	0.6386	0.08	0.4733		1300	0.5289	0.02	0.5974	0.97	0.5926	0.01	0.5958
	1400	0.5188	0.00	0.5113	0.92	0.6187	0.08	0.5197		1400	0.5151	0.02	0.5631	0.97	0.5624	0.01	0.5621
	1500	0.5132	0.00	0.5503	0.89	0.5776	0.11	0.5533		1500	0.5065	0.02	0.5056	0.97	0.5036	0.01	0.5056
	1600	0.5026	0.00	0.5161	0.89	0.5065	0.11	0.5150		1600	0.4672	0.01	0.3749	0.98	0.4014	0.01	0.3762
	1700	0.4502	0.00	0.3764	0.88	0.3891	0.12	0.3779		1700	0.3355	0.03	0.1515	0.96	0.2281	0.01	0.1582
21-May-10	0900	0.9769	0.02	0.8683	0.96	0.5445	0.02	0.8636	21-Nov-10	0900	0.7486	0.12	0.6961	0.84	0.4323	0.03	0.6937
	1000	0.9334	0.01	0.8398	0.97	0.6007	0.02	0.8357		1000	0.7239	0.17	0.7468	0.80	0.5094	0.03	0.7351
	1100	0.7232	0.01	0.7121	0.94	0.6324	0.05	0.7079		1100	0.6588	0.17	0.7259	0.80	0.5503	0.03	0.7089
	1200	0.6235	0.02	0.5708	0.91	0.6452	0.06	0.5768		1200	0.5616	0.14	0.6719	0.82	0.5655	0.03	0.6524
	1300	0.5528	0.01	0.4420	0.94	0.6430	0.05	0.4540		1300	0.5262	0.12	0.6143	0.83	0.5576	0.04	0.6010
	1400	0.5253	0.02	0.5075	0.88	0.6235	0.10	0.5191		1400	0.5123	0.16	0.5560	0.79	0.5253	0.06	0.5475
	1500	0.5151	0.02	0.5624	0.90	0.5848	0.08	0.5630		1500	0.4927	0.16	0.4661	0.79	0.4605	0.06	0.4699
	1600	0.5036	0.02	0.5428	0.89	0.5188	0.09	0.5399		1600	0.4359	0.16	0.3058	0.79	0.3480	0.06	0.3284
	1700	0.4583	0.02	0.4235	0.88	0.4107	0.10	0.4230		1700	0.2648	0.13	0.0861	0.80	0.1604	0.07	0.1149
21-Jun-10	0900	0.9804	0.00	0.8706	0.89	0.5419	0.11	0.8341	21-Dec-10	0900	0.7329	0.14	0.6253	0.85	0.3877	0.01	0.6378
	1000	0.9431	0.00	0.8473	0.89	0.5987	0.11	0.8197		1000	0.7232	0.19	0.7168	0.77	0.4770	0.03	0.7103
	1100	0.7342	0.00	0.7303	0.89	0.6306	0.11	0.7192		1100	0.6696	0.18	0.7186	0.78	0.5262	0.03	0.7034
	1200	0.6386	0.00	0.5761	0.88	0.6452	0.11	0.5845		1200	0.5776	0.16	0.6780	0.78	0.5202	0.03	0.6575
	1300	0.5608	0.00	0.3761	0.88	0.6436	0.12	0.3843		1300	0.5776	0.16	0.6223	0.81	0.5476	0.03	0.6053
	1400	0.5289	0.00	0.5075	0.92	0.6265	0.03	0.5154		1400	0.5104	0.19	0.5592	0.78	0.5151	0.02	0.5488
	1500	0.5161	0.00	0.5686	0.93	0.5905	0.07	0.5693		1500	0.4906	0.19	0.3392	0.78	0.4560	0.02	0.3488
			0.00	0.5592	0.97	0.5297	0.03			1600				0.77	0.4560	0.02	0.4718
	1600 1700	0.5056 0.4672	0.00	0.5592	0.93	0.5297	0.07	0.5572 0.4543		1700	0.4359 0.2813	0.17	0.3109	0.81	0.3511	0.02	0.3333
	1700	0.4072	0.00	0.4500	0.93	0.4298	0.07	0.4343		1700	0.2813	0.15	0.1004	0.83	0.1/39	0.02	0.1293

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 10

Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BS,P}$	P_P	$\mathbf{P}_{EX,BX,O}$	\mathbf{P}_O	$\mathbf{P}_{ES,BS,R}$	Date	Time	$\mathbf{P}_{ES,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,BX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{EX,BX,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,BS,R}$
21-Jan-10	0900	0.9696	0.05	0.8790	0.80	0.7478	0.15	0.8642	21-Jul-10	0900	0.9817	0.00	0.9429	0.92	0.9429	0.08	0.9429
	1000	0.9752	0.06	0.9223	0.81	0.8046	0.13	0.9105		1000	0.9847	0.00	0.9442	0.91	0.9442	0.09	0.9442
	1100	0.9723	0.06	0.9293	0.81	0.8316	0.13	0.9195		1100	0.9795	0.00	0.9220	0.91	0.9220	0.09	0.9220
	1200	0.9336	0.08	0.9199	0.80	0.8431	0.13	0.9111		1200	0.9368	0.00	0.8893	0.91	0.8893	0.09	0.8893
	1300	0.8493	0.08	0.9018	0.83	0.8452	0.10	0.8924		1300	0.8445	0.00	0.8458	0.96	0.8458	0.04	0.8458
	1400	0.8250	0.08	0.8788	0.84	0.8340	0.09	0.8709		1400	0.8243	0.00	0.8318	0.97	0.8318	0.03	0.8318
	1500	0.8032	0.09	0.8435	0.83	0.8099	0.09	0.8372		1500	0.8125	0.00	0.8452	0.97	0.8452	0.03	0.8452
	1600	0.7723	0.11	0.7685	0.83	0.7590	0.06	0.7683		1600	0.8036	0.00	0.8335	0.97	0.8335	0.03	0.8335
	1700	0.6895	0.10	0.5670	0.83	0.6363	0.08	0.5841		1700	0.7820	0.00	0.7746	0.95	0.7746	0.05	0.7746
21-Feb-10	0900	0.9753	0.04	0.9088	0.89	0.7775	0.07	0.9019	21-Aug-10	0900	0.9811	0.00	0.9419	0.92	0.9419	0.08	0.9419
	1000	0.9801	0.02	0.9366	0.89	0.8245	0.08	0.9284		1000	0.9843	0.00	0.9451	0.92	0.9451	0.08	0.9451
	1100	0.9777	0.02	0.9367	0.88	0.8477	0.09	0.9293		1100	0.9791	0.00	0.9252	0.90	0.9252	0.10	0.9252
	1200	0.9471	0.04	0.9211	0.87	0.8580	0.09	0.9161		1200	0.9351	0.00	0.8826	0.92	0.8826	0.08	0.8826
	1300	0.8515	0.05	0.8985	0.92	0.8591	0.04	0.8949		1300	0.8438	0.00	0.8416	0.90	0.8416	0.10	0.8416
	1400	0.8276	0.04	0.8787	0.92	0.8510	0.05	0.8756		1400	0.8230	0.00	0.8409	0.90	0.8409	0.10	0.8409
	1500	0.8098	0.02	0.8551	0.92	0.8316	0.06	0.8527		1500	0.8111	0.00	0.8465	0.91	0.8465	0.09	0.8465
	1600	0.7887	0.02	0.8046	0.92	0.7917	0.06	0.8034		1600	0.8004	0.00	0.8258	0.91	0.8258	0.09	0.8258
	1700	0.7366	0.04	0.6672	0.91	0.7032	0.06	0.6718		1700	0.7721	0.00	0.7470	0.90	0.7470	0.10	0.7470
21-Mar-10	0900	0.9795	0.04	0.9321	0.83	0.8079	0.13	0.9181	21-Sep-10	0900	0.9812	0.02	0.9385	0.92	0.9385	0.06	0.9394
	1000	0.9829	0.03	0.9445	0.85	0.8437	0.12	0.9338		1000	0.9833	0.00	0.9441	0.96	0.9441	0.04	0.9441
	1100	0.9794	0.03	0.9347	0.87	0.8618	0.10	0.9291		1100	0.9756	0.01	0.9289	0.96	0.9289	0.03	0.9294
	1200	0.9395	0.03	0.9062	0.86	0.8696	0.11	0.9034		1200	0.9163	0.01	0.8960	0.93	0.8960	0.06	0.8963
	1300	0.8471	0.02	0.8756	0.90	0.8697	0.08	0.8745		1300	0.8407	0.00	0.8684	0.97	0.8684	0.03	0.8684
	1400	0.8247	0.03	0.8630	0.88	0.8620	0.09	0.8617		1400	0.8208	0.00	0.8599	0.97	0.8599	0.03	0.8599
	1500	0.8105	0.03	0.8520	0.87	0.8441	0.10	0.8499		1500	0.8076	0.00	0.8470	0.98	0.8470	0.02	0.8470
	1600	0.7953	0.03	0.8164	0.89	0.8086	0.08	0.8151		1600	0.7905	0.00	0.8023	0.99	0.8023	0.01	0.8023
	1700	0.7563	0.03	0.7086	0.89	0.7332	0.08	0.7120		1700	0.7402	0.00	0.6667	0.99	0.6667	0.01	0.6667
21-Apr-10	0900	0.9811	0.00	0.9428	0.88	0.8289	0.12	0.9289	21-Oct-10	0900	0.9789	0.03	0.9282	0.97	0.9282	0.00	0.9298
	1000	0.9846	0.00	0.9446	0.90	0.8565	0.10	0.9357		1000	0.9801	0.04	0.9393	0.96	0.9393	0.00	0.9410
	1100	0.9779	0.00	0.9230	0.89	0.8706	0.11	0.9172		1100	0.9713	0.01	0.9306	0.99	0.9306	0.00	0.9310
	1200	0.9344	0.00	0.8797	0.90	0.8764	0.10	0.8794		1200	0.8699	0.00	0.9098	1.00	0.9098	0.00	0.9098
	1300	0.8419	0.00	0.8410	0.92	0.8755	0.08	0.8437		1300	0.8388	0.02	0.8880	0.97	0.8880	0.01	0.8870
	1400	0.8216	0.00	0.8429	0.92	0.8677	0.08	0.8448		1400	0.8184	0.02	0.8686	0.97	0.8686	0.01	0.8675
	1500	0.8102	0.00	0.8463	0.89	0.8505	0.11	0.8468		1500	0.8012	0.02	0.8362	0.97	0.8362	0.01	0.8355
	1600	0.7988	0.00	0.8215	0.89	0.8177	0.11	0.8211		1600	0.7711	0.01	0.7565	0.98	0.7565	0.01	0.7567
	1700	0.7670	0.00	0.7334	0.88	0.7508	0.12	0.7355		1700	0.6747	0.03	0.5228	0.96	0.5228	0.01	0.5277
21-May-10	0900	0.9820	0.02	0.9446	0.96	0.8359	0.02	0.9431	21-Nov-10	0900	0.9734	0.12	0.9053	0.84	0.9053	0.03	0.9136
	1000	0.9851	0.01	0.9425	0.97	0.8603	0.02	0.9412		1000	0.9751	0.17	0.9283	0.80	0.9283	0.03	0.9361
	1100	0.9787	0.01	0.9162	0.94	0.8731	0.05	0.9146		1100	0.9644	0.17	0.9272	0.80	0.9272	0.03	0.9334
	1200	0.9229	0.02	0.8955	0.91	0.8782	0.06	0.8950		1200	0.8774	0.14	0.9131	0.82	0.9131	0.03	0.9080
	1300	0.8407	0.01	0.8335	0.94	0.8772	0.05	0.8360		1300	0.8389	0.12	0.8929	0.83	0.8929	0.04	0.8863
	1400	0.8218	0.02	0.8349	0.88	0.8697	0.10	0.8380		1400	0.8162	0.16	0.8668	0.79	0.8668	0.06	0.8589
	1500	0.8111	0.02	0.8453	0.90	0.8537	0.08	0.8452		1500	0.7930	0.16	0.8205	0.79	0.8205	0.06	0.8162
	1600	0.8015	0.02	0.8277	0.89	0.8236	0.09	0.8268		1600	0.7497	0.16	0.7112	0.79	0.7112	0.06	0.7172
	1700	0.7752	0.02	0.7560	0.88	0.7648	0.10	0.7573		1700	0.6062	0.13	0.4012	0.80	0.4012	0.07	0.4286
21-Jun-10	0900	0.9817	0.00	0.9437	0.89	0.8347	0.11	0.9316	21-Dec-10	0900	0.9691	0.14	0.8792	0.85	0.8792	0.01	0.8917
	1000	0.9849	0.00	0.9427	0.89	0.8594	0.11	0.9335		1000	0.9732	0.19	0.9183	0.77	0.9183	0.03	0.9289
	1100	0.9792	0.00	0.9181	0.89	0.8725	0.11	0.9131		1100	0.9653	0.18	0.9239	0.78	0.9239	0.03	0.9315
	1200	0.9366	0.00	0.8927	0.88	0.8781	0.12	0.8909		1200	0.9016	0.16	0.9141	0.81	0.9141	0.03	0.9121
	1300	0.8503	0.00	0.8396	0.92	0.8776	0.08	0.8426		1300	0.8424	0.16	0.8955	0.82	0.8955	0.02	0.8870
	1400	0.8235	0.00	0.8332	0.93	0.8709	0.07	0.8357		1400	0.8185	0.19	0.8691	0.78	0.8691	0.02	0.8593
	1500	0.8125	0.00	0.8459	0.97	0.8560	0.03	0.8462		1500	0.7938	0.20	0.8232	0.77	0.8232	0.02	0.8172
	1600	0.8034	0.00	0.8333	0.93	0.8287	0.07	0.8330		1600	0.7515	0.17	0.7190	0.81	0.7190	0.02	0.7246
	1700	0.7813	0.00	0.7738	0.93	0.7764	0.07	0.7740		1700	0.6224	0.15	0.4334	0.83	0.4334	0.02	0.4618

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 10

Date	Time	$\mathbf{P}_{ES,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{EX,UD,C}$	P_C	$\mathbf{P}_{ES,UD,P}$	P_P	$\mathbf{P}_{ES,UD,O}$	P_O	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.8726	0.05	0.6946	0.80	0.6105	0.15	0.6915	21-Jul-10	0900	0.0845	0.00	0.6479	0.92	0.6094	0.08	0.6450
	1000	0.8623	0.06	0.6946	0.81	0.6117	0.13	0.6947		1000	0.1423	0.00	0.5842	0.91	0.6094	0.09	0.5864
	1100	0.8458	0.06	0.7016	0.81	0.6113	0.13	0.6992		1100	0.7507	0.00	0.5649	0.91	0.6112	0.09	0.5689
	1200	0.8162	0.08	0.6973	0.80	0.6123	0.13	0.6953		1200	0.7448	0.00	0.5208	0.91	0.6111	0.09	0.5286
	1300	0.7738	0.08	0.6937	0.83	0.6117	0.10	0.6918		1300	0.7218	0.00	0.5490	0.96	0.6098	0.04	0.5516
	1400	0.7806	0.08	0.7010	0.84	0.6138	0.09	0.6995		1400	0.7488	0.00	0.6146	0.97	0.6098	0.03	0.6144
	1500	0.7932	0.09	0.6940	0.83	0.6109	0.09	0.6954		1500	0.7678	0.00	0.6494	0.97	0.6078	0.03	0.6481
	1600	0.8011	0.11	0.6856	0.83	0.6073	0.06	0.6930		1600	0.7832	0.00	0.6622	0.97	0.6100	0.03	0.6605
	1700	0.8201	0.10	0.6767	0.83	0.6094	0.08	0.6855		1700	0.7966	0.00	0.6657	0.95	0.6094	0.05	0.6627
21-Feb-10	0900	0.8349	0.04	0.6908	0.89	0.6131	0.07	0.6904	21-Aug-10	0900	0.1025	0.00	0.6540	0.92	0.6080	0.08	0.6505
	1000	0.8449	0.02	0.6763	0.89	0.6121	0.08	0.6750		1000	0.1955	0.00	0.5998	0.92	0.6115	0.08	0.6007
	1100	0.8325	0.02	0.6802	0.88	0.6082	0.09	0.6771		1100	0.7624	0.00	0.5865	0.90	0.6113	0.10	0.5889
	1200	0.8074	0.04	0.6739	0.87	0.6089	0.09	0.6725		1200	0.7336	0.00	0.5624	0.92	0.6111	0.08	0.5661
	1300	0.7643	0.05	0.6830	0.92	0.6099	0.04	0.6843		1300	0.7331	0.00	0.5922	0.90	0.6116	0.10	0.5941
	1400	0.7697	0.04	0.6826	0.92	0.6094	0.05	0.6822		1400	0.7528	0.00	0.6384	0.90	0.6108	0.10	0.6357
	1500	0.7858	0.02	0.6881	0.92	0.6087	0.06	0.6858		1500	0.7739	0.00	0.6704	0.91	0.6099	0.09	0.6652
	1600	0.8033	0.02	0.6794	0.92	0.6094	0.06	0.6782		1600	0.7917	0.00	0.6652	0.91	0.6094	0.09	0.6604
	1700	0.8117	0.04	0.6717	0.91	0.6094	0.06	0.6729		1700	0.8052	0.00	0.6689	0.90	0.6104	0.10	0.6632
21-Mar-10	0900	0.4055	0.04	0.6742	0.83	0.6124	0.13	0.6547	21-Sep-10	0900	0.4008	0.02	0.6632	0.92	0.6108	0.06	0.6544
	1000	0.7568	0.03	0.6407	0.85	0.6076	0.12	0.6405		1000	0.7709	0.00	0.6376	0.96	0.6083	0.04	0.6363
	1100	0.8029	0.03	0.6413	0.87	0.6109	0.10	0.6436		1100	0.7829	0.01	0.6318	0.96	0.6128	0.03	0.6328
	1200	0.7685	0.03	0.6348	0.86	0.6117	0.11	0.6366		1200	0.7552	0.01	0.6270	0.93	0.6103	0.06	0.6275
	1300	0.7448	0.02	0.6453	0.90	0.6117	0.08	0.6449		1300	0.7497	0.00	0.6390	0.97	0.6103	0.03	0.6380
	1400	0.7651	0.03	0.6625	0.88	0.6124	0.09	0.6615		1400	0.7664	0.00	0.6650	0.97	0.6109	0.03	0.6632
	1500	0.7824	0.03	0.6812	0.87	0.6094	0.10	0.6775		1500	0.7858	0.00	0.6826	0.98	0.6094	0.02	0.6810
	1600	0.7981	0.03	0.6740	0.89	0.6116	0.08	0.6733		1600	0.8018	0.00	0.6738	0.99	0.6110	0.01	0.6731
	1700	0.8049	0.03	0.6671	0.89	0.6106	0.08	0.6673		1700	0.8117	0.00	0.6684	0.99	0.6121	0.01	0.6678
21-Apr-10	0900	0.1098	0.00	0.6499	0.88	0.6087	0.12	0.6449	21-Oct-10	0900	0.8461	0.03	0.6764	0.97	0.6086	0.00	0.6819
	1000	0.2041	0.00	0.5986	0.90	0.6104	0.10	0.5998		1000	0.8338	0.04	0.6787	0.96	0.6100	0.00	0.6854
	1100	0.7555	0.00	0.5900	0.89	0.6108	0.11	0.5923		1100	0.8131	0.01	0.6731	0.99	0.6121	0.00	0.6746
	1200	0.7389	0.00	0.5668	0.90	0.6111	0.10	0.5712		1200	0.7750	0.00	0.6719	1.00	0.6089	0.00	0.6719
	1300	0.7354	0.00	0.5968	0.92	0.6089	0.08	0.5977		1300	0.7665	0.02	0.6827	0.97	0.6099	0.01	0.6838
	1400	0.7541	0.00	0.6397	0.92	0.6103	0.08	0.6374		1400	0.7785	0.02	0.6800	0.97	0.6117	0.01	0.6814
	1500	0.7799	0.00	0.6679	0.89	0.6099	0.11	0.6615		1500	0.7937	0.02	0.6890	0.97	0.6087	0.01	0.6904
	1600	0.7932	0.00	0.6674	0.89	0.6101	0.11	0.6610		1600	0.8096	0.01	0.6748	0.98	0.6073	0.01	0.6755
	1700	0.8016	0.00	0.6703	0.88	0.6083	0.12	0.6627		1700	0.8181	0.03	0.6805	0.96	0.6052	0.01	0.6841
21-May-10	0900	0.0891	0.02	0.6346	0.96	0.6100	0.02	0.6224	21-Nov-10	0900	0.8698	0.12	0.6973	0.84	0.6094	0.03	0.7155
	1000	0.1578	0.01	0.5775	0.97	0.6104	0.02	0.5737		1000	0.8540	0.17	0.6982	0.80	0.6115	0.03	0.7212
	1100	0.7502	0.01	0.5592	0.94	0.6098	0.05	0.5639		1100	0.8300	0.17	0.6979	0.80	0.6100	0.03	0.7170
	1200	0.7407	0.02	0.5037	0.91	0.6124	0.06	0.5158		1200	0.7848	0.14	0.6970	0.82	0.6105	0.03	0.7068
	1300	0.7285	0.01	0.5678	0.94	0.6103	0.05	0.5718		1300	0.7771	0.12	0.7035	0.83	0.6094	0.04	0.7083
	1400	0.7476	0.02	0.6221	0.88	0.6117	0.10	0.6238		1400	0.7824	0.16	0.6974	0.79	0.6080	0.06	0.7056
	1500	0.7714	0.02	0.6518	0.90	0.6110	0.08	0.6513		1500	0.7973	0.16	0.6934	0.79	0.6110	0.06	0.7049
	1600	0.7872	0.02	0.6618	0.89	0.6080	0.09	0.6599		1600	0.8002	0.16	0.6856	0.79	0.6169	0.06	0.6996
	1700	0.7974	0.02	0.6673	0.88	0.6143	0.10	0.6650		1700	0.8132	0.13	0.6944	0.80	0.6094	0.07	0.7046
21-Jun-10	0900	0.0825	0.00	0.6376	0.89	0.6132	0.11	0.6349	21-Dec-10	0900	0.8806	0.14	0.7020	0.85	0.6126	0.01	0.7260
21 5411 10	1000	0.1387	0.00	0.5768	0.89	0.6094	0.11	0.5804	21 1500 10	1000	0.8648	0.19	0.7049	0.77	0.6133	0.03	0.7329
	1100	0.7446	0.00	0.5547	0.89	0.6121	0.11	0.5611		1100	0.8524	0.18	0.7026	0.78	0.6100	0.03	0.7270
	1200	0.7347	0.00	0.5057	0.88	0.6094	0.11	0.5183		1200	0.7933	0.16	0.7025	0.78	0.6112	0.03	0.7150
	1300	0.7230	0.00	0.5490	0.92	0.6116	0.08	0.5538		1300	0.7781	0.16	0.6997	0.82	0.6125	0.02	0.7105
	1400	0.7250	0.00	0.6122	0.93	0.6122	0.07	0.6122		1400	0.7781	0.19	0.7027	0.78	0.6094	0.02	0.7171
	1500	0.7431	0.00	0.6448	0.97	0.6126	0.07	0.6438		1500	0.7953	0.20	0.7003	0.77	0.6128	0.02	0.7178
	1600	0.7817	0.00	0.6612	0.97	0.6087	0.03	0.6577		1600	0.7933	0.20	0.6868	0.77	0.6069	0.02	0.7053
	1700	0.7944	0.00	0.6700	0.93	0.6103	0.07	0.6660		1700	0.8160	0.17	0.6701	0.83	0.6094	0.02	0.6908
	1700	0.7544	0.00	0.0700	0.73	0.0103	0.07	0.0000		1700	0.0100	0.15	0.0701	0.03	0.0094	0.02	0.0700

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 10

Date	Time	$\mathbf{P}_{ES,US,C}$	P_C	$\mathbf{P}_{ES,US,P}$	P_P	$\mathbf{P}_{E \mathbf{X} U \mathbf{X} O}$	P_O	$\mathbf{P}_{EX,UX,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{E \mathbf{X}, U \mathbf{X}, P}$	P_P	$\mathbf{P}_{ES,US,O}$	P_O	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.7889	0.05	0.9222	0.80	0.9462	0.15	0.9186	21-Jul-10	0900	0.9464	0.00	0.9348	0.92	0.9463	0.08	0.9357
	1000	0.9417	0.06	0.9279	0.81	0.9463	0.13	0.9312		1000	0.9647	0.00	0.9432	0.91	0.9463	0.09	0.9434
	1100	0.9614	0.06	0.9341	0.81	0.9463	0.13	0.9374		1100	0.9664	0.00	0.9513	0.91	0.9464	0.09	0.9508
	1200	0.9569	0.08	0.9375	0.80	0.9463	0.13	0.9401		1200	0.9611	0.00	0.9578	0.91	0.9463	0.09	0.9568
	1300	0.9272	0.08	0.9381	0.83	0.9418	0.10	0.9377		1300	0.9348	0.00	0.9570	0.96	0.9463	0.04	0.9565
	1400	0.9234	0.08	0.9377	0.84	0.9463	0.09	0.9373		1400	0.9281	0.00	0.9503	0.97	0.9464	0.03	0.9502
	1500	0.9191	0.09	0.9370	0.83	0.9464	0.09	0.9362		1500	0.9198	0.00	0.9457	0.97	0.9463	0.03	0.9457
	1600	0.9149	0.11	0.9370	0.83	0.9463	0.06	0.9352		1600	0.9128	0.00	0.9434	0.97	0.9463	0.03	0.9435
	1700	0.9107	0.10	0.9387	0.83	0.9465	0.08	0.9365		1700	0.9074	0.00	0.9425	0.95	0.9463	0.05	0.9427
21-Feb-10	0900	0.8079	0.04	0.9226	0.89	0.9464	0.07	0.9202	21-Aug-10	0900	0.9377	0.00	0.9319	0.92	0.9464	0.08	0.9330
	1000	0.9479	0.02	0.9301	0.89	0.9464	0.08	0.9319		1000	0.9627	0.00	0.9409	0.92	0.9464	0.08	0.9413
	1100	0.9637	0.02	0.9378	0.88	0.9463	0.09	0.9392		1100	0.9661	0.00	0.9493	0.90	0.9463	0.10	0.9490
	1200	0.9607	0.04	0.9418	0.87	0.9464	0.09	0.9429		1200	0.9604	0.00	0.9549	0.92	0.9463	0.08	0.9543
	1300	0.9295	0.05	0.9422	0.92	0.9464	0.04	0.9417		1300	0.9334	0.00	0.9539	0.90	0.9464	0.10	0.9531
	1400	0.9244	0.04	0.9409	0.92	0.9464	0.05	0.9405		1400	0.9266	0.00	0.9483	0.90	0.9463	0.10	0.9481
	1500	0.9190	0.02	0.9392	0.92	0.9462	0.06	0.9391		1500	0.9186	0.00	0.9442	0.91	0.9464	0.09	0.9444
	1600	0.9143	0.02	0.9385	0.92	0.9463	0.06	0.9384		1600	0.9115	0.00	0.9422	0.91	0.9463	0.09	0.9426
	1700	0.9101	0.04	0.9388	0.91	0.9462	0.06	0.9382		1700	0.9073	0.00	0.9417	0.90	0.9465	0.10	0.9421
21-Mar-10	0900	0.8669	0.04	0.9266	0.83	0.9465	0.13	0.9266	21-Sep-10	0900	0.9098	0.02	0.9286	0.92	0.9464	0.06	0.9291
	1000	0.9570	0.03	0.9353	0.85	0.9464	0.12	0.9373		1000	0.9619	0.00	0.9379	0.96	0.9463	0.04	0.9383
	1100	0.9653	0.03	0.9436	0.87	0.9464	0.10	0.9445		1100	0.9649	0.01	0.9455	0.96	0.9464	0.03	0.9457
	1200	0.9602	0.03	0.9479	0.86	0.9463	0.11	0.9481		1200	0.9553	0.01	0.9488	0.93	0.9464	0.06	0.9487
	1300	0.9314	0.02	0.9476	0.90	0.9463	0.08	0.9471		1300	0.9304	0.00	0.9475	0.97	0.9463	0.03	0.9475
	1400	0.9253	0.03	0.9445	0.88	0.9463	0.09	0.9440		1400	0.9237	0.00	0.9441	0.97	0.9464	0.03	0.9442
	1500	0.9176	0.03	0.9417	0.87	0.9464	0.10	0.9414		1500	0.9159	0.00	0.9415	0.98	0.9463	0.02	0.9416
	1600	0.9126	0.03	0.9404	0.89	0.9463	0.08	0.9399		1600	0.9115	0.00	0.9404	0.99	0.9463	0.01	0.9405
	1700	0.9082	0.03	0.9404	0.89	0.9463	0.08	0.9398		1700	0.9070	0.00	0.9404	0.99	0.9463	0.01	0.9405
21-Apr-10	0900	0.9398	0.00	0.9323	0.88	0.9464	0.12	0.9340	21-Oct-10	0900	0.9095	0.03	0.9259	0.97	0.9462	0.00	0.9254
	1000	0.9640	0.00	0.9414	0.90	0.9464	0.10	0.9419		1000	0.9603	0.04	0.9344	0.96	0.9464	0.00	0.9355
	1100	0.9659	0.00	0.9497	0.89	0.9463	0.11	0.9493		1100	0.9633	0.01	0.9404	0.99	0.9463	0.00	0.9407
	1200	0.9605	0.00	0.9548	0.90	0.9463	0.10	0.9539		1200	0.9317	0.00	0.9425	1.00	0.9464	0.00	0.9425
	1300	0.9329	0.00	0.9531	0.92	0.9463	0.08	0.9526		1300	0.9273	0.02	0.9418	0.97	0.9464	0.01	0.9416
	1400	0.9261	0.00	0.9477	0.92	0.9464	0.08	0.9476		1400	0.9214	0.02	0.9400	0.97	0.9463	0.01	0.9397
	1500	0.9176	0.00	0.9440	0.89	0.9463	0.11	0.9442		1500	0.9165	0.02	0.9387	0.97	0.9463	0.01	0.9383
	1600	0.9115	0.00	0.9421	0.89	0.9464	0.11	0.9425		1600	0.9117	0.01	0.9387	0.98	0.9463	0.01	0.9385
	1700	0.9067	0.00	0.9417	0.88	0.9464	0.12	0.9423		1700	0.9080	0.03	0.9401	0.96	0.9464	0.01	0.9392
21-May-10	0900	0.9492	0.02	0.9359	0.96	0.9463	0.02	0.9364	21-Nov-10	0900	0.8847	0.12	0.9241	0.84	0.9464	0.03	0.9200
	1000	0.9659	0.01	0.9443	0.97	0.9463	0.02	0.9446		1000	0.9559	0.17	0.9308	0.80	0.9463	0.03	0.9355
	1100	0.9627	0.01	0.9523	0.94	0.9463	0.05	0.9521		1100	0.9603	0.17	0.9360	0.80	0.9464	0.03	0.9404
	1200	0.9585	0.02	0.9585	0.91	0.9464	0.06	0.9577		1200	0.9366	0.14	0.9381	0.82	0.9463	0.03	0.9382
	1300	0.9335	0.01	0.9558	0.94	0.9464	0.05	0.9551		1300	0.9252	0.12	0.9381	0.83	0.9464	0.04	0.9369
	1400	0.9267	0.02	0.9493	0.88	0.9463	0.10	0.9486		1400	0.9216	0.16	0.9375	0.79	0.9464	0.06	0.9355
	1500	0.9184	0.02	0.9451	0.90	0.9463	0.08	0.9446		1500	0.9173	0.16	0.9370	0.79	0.9463	0.06	0.9344
	1600	0.9113	0.02	0.9430	0.89	0.9463	0.09	0.9426		1600	0.9137	0.16	0.9375	0.79	0.9463	0.06	0.9343
	1700	0.9069	0.02	0.9424	0.88	0.9466	0.10	0.9420		1700	0.9105	0.13	0.9394	0.80	0.9464	0.07	0.9360
21-Jun-10	0900	0.9503	0.00	0.9364	0.89	0.9463	0.11	0.9375	21-Dec-10	0900	0.8392	0.14	0.9229	0.85	0.9463	0.01	0.9115
	1000	0.9660	0.00	0.9445	0.89	0.9464	0.11	0.9447		1000	0.9496	0.19	0.9286	0.77	0.9463	0.03	0.9332
	1100	0.9666	0.00	0.9522	0.89	0.9463	0.11	0.9516		1100	0.9594	0.18	0.9338	0.78	0.9463	0.03	0.9389
	1200	0.9614	0.00	0.9585	0.88	0.9464	0.12	0.9570		1200	0.9464	0.16	0.9364	0.81	0.9464	0.03	0.9384
	1300	0.9394	0.00	0.9567	0.92	0.9463	0.08	0.9559		1300	0.9264	0.16	0.9369	0.82	0.9464	0.02	0.9354
	1400	0.9277	0.00	0.9503	0.93	0.9463	0.07	0.9500		1400	0.9224	0.19	0.9366	0.78	0.9463	0.02	0.9340
	1500	0.9195	0.00	0.9460	0.97	0.9463	0.03	0.9460		1500	0.9185	0.20	0.9362	0.77	0.9463	0.02	0.9328
	1600	0.9125	0.00	0.9436	0.93	0.9464	0.07	0.9438		1600	0.9148	0.17	0.9369	0.81	0.9463	0.02	0.9333
	1700	0.9074	0.00	0.9427	0.93	0.9464	0.07	0.9429		1700	0.9116	0.15	0.9388	0.83	0.9466	0.02	0.9348

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 10

Date	Time	$\mathbf{P}_{ES,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	P_C	$\mathbf{P}_{ES,PG,P}$	P_P	$\mathbf{P}_{ES,PG,O}$	P_O	$\mathbf{P}_{ES,PG,R}$
21-Jan-10	0900	0.3691	0.05	0.8735	0.80	0.9203	0.15	0.8534	21-Jul-10	0900	0.2270	0.00	0.7458	0.92	0.8773	0.08	0.7557
	1000	0.2952	0.06	0.7947	0.81	0.8943	0.13	0.7753		1000	0.1995	0.00	0.7180	0.91	0.8545	0.09	0.7297
	1100	0.3256	0.06	0.7648	0.81	0.8767	0.13	0.7509		1100	0.2501	0.00	0.7646	0.91	0.8395	0.09	0.7710
	1200	0.8961	0.08	0.7820	0.80	0.8672	0.13	0.8016		1200	0.9028	0.00	0.8137	0.91	0.8316	0.09	0.8153
	1300	0.9078	0.08	0.8162	0.83	0.8671	0.10	0.8280		1300	0.9175	0.00	0.8668	0.96	0.8315	0.04	0.8653
	1400	0.9282	0.08	0.8485	0.84	0.8749	0.09	0.8568		1400	0.9331	0.00	0.8841	0.97	0.8395	0.03	0.8826
	1500	0.9423	0.09	0.8822	0.83	0.8911	0.09	0.8881		1500	0.9425	0.00	0.8741	0.97	0.8549	0.03	0.8735
	1600	0.9548	0.11	0.9222	0.83	0.9164	0.06	0.9254		1600	0.9487	0.00	0.8828	0.97	0.8781	0.03	0.8826
	1700	0.9707	0.10	0.9665	0.83	0.9504	0.08	0.9657		1700	0.9561	0.00	0.9149	0.95	0.9080	0.05	0.9146
21-Feb-10	0900	0.3090	0.04	0.8385	0.89	0.9087	0.07	0.8248	21-Aug-10	0900	0.2289	0.00	0.7544	0.92	0.8800	0.08	0.7638
	1000	0.2513	0.02	0.7578	0.89	0.8815	0.08	0.7560		1000	0.2002	0.00	0.7177	0.92	0.8566	0.08	0.7282
	1100	0.2794	0.02	0.7402	0.88	0.8635	0.09	0.7409		1100	0.2484	0.00	0.7598	0.90	0.8413	0.10	0.7677
	1200	0.8990	0.04	0.7751	0.87	0.8539	0.09	0.7869		1200	0.9024	0.00	0.8290	0.92	0.8333	0.08	0.8293
	1300	0.9085	0.05	0.8177	0.92	0.8526	0.04	0.8233		1300	0.9182	0.00	0.8739	0.90	0.8338	0.10	0.8700
	1400	0.9287	0.04	0.8462	0.92	0.8605	0.05	0.8498		1400	0.9342	0.00	0.8783	0.90	0.8423	0.10	0.8748
	1500	0.9417	0.02	0.8702	0.92	0.8765	0.06	0.8723		1500	0.9437	0.00	0.8739	0.91	0.8588	0.09	0.8726
	1600	0.9518	0.02	0.9040	0.92	0.9014	0.06	0.9050		1600	0.9503	0.00	0.8881	0.91	0.8836	0.09	0.8877
	1700	0.9647	0.04	0.9487	0.91	0.9353	0.06	0.9485		1700	0.9590	0.00	0.9253	0.90	0.9159	0.10	0.9244
21-Mar-10	0900	0.2504	0.04	0.7893	0.83	0.8928	0.13	0.7795	21-Sep-10	0900	0.2356	0.02	0.7657	0.92	0.8845	0.06	0.7606
	1000	0.2166	0.03	0.7265	0.85	0.8669	0.12	0.7267		1000	0.2157	0.00	0.7223	0.96	0.8617	0.04	0.7285
	1100	0.2586	0.03	0.7401	0.87	0.8503	0.10	0.7353		1100	0.2852	0.01	0.7539	0.96	0.8464	0.03	0.7518
	1200	0.9001	0.03	0.8011	0.86	0.8415	0.11	0.8087		1200	0.9011	0.01	0.8172	0.93	0.8399	0.06	0.8194
	1300	0.9143	0.02	0.8457	0.90	0.8414	0.08	0.8468		1300	0.9197	0.00	0.8536	0.97	0.8420	0.03	0.8532
	1400	0.9323	0.03	0.8607	0.88	0.8496	0.09	0.8621		1400	0.9355	0.00	0.8638	0.97	0.8522	0.03	0.8635
	1500	0.9432	0.03	0.8705	0.87	0.8666	0.10	0.8725		1500	0.9451	0.00	0.8745	0.98	0.8707	0.02	0.8744
	1600	0.9513	0.03	0.8956	0.89	0.8924	0.08	0.8972		1600	0.9532	0.00	0.9032	0.99	0.8978	0.01	0.9031
	1700	0.9620	0.03	0.9377	0.89	0.9259	0.08	0.9376		1700	0.9652	0.00	0.9471	0.99	0.9341	0.01	0.9470
21-Apr-10	0900	0.2242	0.00	0.7497	0.88	0.8785	0.12	0.7655	21-Oct-10	0900	0.2673	0.03	0.7910	0.97	0.8939	0.00	0.7741
	1000	0.2005	0.00	0.7182	0.90	0.8558	0.10	0.7320		1000	0.2503	0.04	0.7397	0.96	0.8710	0.00	0.7187
	1100	0.2589	0.00	0.7641	0.89	0.8406	0.11	0.7726		1100	0.3513	0.01	0.7533	0.99	0.8575	0.00	0.7490
	1200	0.9045	0.00	0.8336	0.90	0.8335	0.10	0.8336		1200	0.8950	0.00	0.7983	1.00	0.8522	0.00	0.7983
	1300	0.9197	0.00	0.8750	0.92	0.8348	0.08	0.8718		1300	0.9196	0.02	0.8333	0.97	0.8547	0.01	0.8354
	1400	0.9352	0.00	0.8767	0.92	0.8437	0.08	0.8741		1400	0.9357	0.02	0.8571	0.97	0.8670	0.01	0.8589
	1500	0.9444	0.00	0.8741	0.89	0.8606	0.11	0.8726		1500	0.9466	0.02	0.8847	0.97	0.8870	0.01	0.8860
	1600	0.9510	0.00	0.8908	0.89	0.8861	0.11	0.8903		1600	0.9573	0.01	0.9247	0.98	0.9167	0.01	0.9250
	1700	0.9601	0.00	0.9300	0.88	0.9199	0.12	0.9287		1700	0.9737	0.03	0.9705	0.96	0.9550	0.01	0.9704
21-May-10	0900	0.2193	0.02	0.7366	0.96	0.8733	0.02	0.7284	21-Nov-10	0900	0.3201	0.12	0.8352	0.84	0.9082	0.03	0.7747
	1000	0.2044	0.01	0.7208	0.97	0.8515	0.02	0.7180		1000	0.2891	0.17	0.7743	0.80	0.8855	0.03	0.6971
	1100	0.2741	0.01	0.7760	0.94	0.8373	0.05	0.7739		1100	0.3822	0.17	0.7666	0.80	0.8711	0.03	0.7060
	1200	0.9044	0.02	0.8022	0.91	0.8314	0.06	0.8062		1200	0.8934	0.14	0.7959	0.82	0.8656	0.03	0.8123
	1300	0.9206	0.01	0.8781	0.94	0.8323	0.05	0.8761		1300	0.9173	0.12	0.8298	0.83	0.8689	0.04	0.8422
	1400	0.9351	0.02	0.8822	0.88	0.8412	0.10	0.8794		1400	0.9345	0.16	0.8618	0.79	0.8805	0.06	0.8742
	1500	0.9438	0.02	0.8740	0.90	0.8583	0.08	0.8743		1500	0.9473	0.16	0.8976	0.79	0.9001	0.06	0.9055
	1600	0.9499	0.02	0.8866	0.89	0.8822	0.09	0.8876		1600	0.9605	0.16	0.9407	0.79	0.9290	0.06	0.9431
	1700	0.9579	0.02	0.9222	0.88	0.9141	0.10	0.9222		1700	0.9794	0.13	0.9818	0.80	0.9678	0.07	0.9805
21-Jun-10	0900	0.2215	0.00	0.7387	0.89	0.8741	0.11	0.7537	21-Dec-10	0900	0.3756	0.14	0.8704	0.85	0.9198	0.01	0.8017
	1000	0.2019	0.00	0.7199	0.89	0.8524	0.11	0.7347		1000	0.3125	0.19	0.8010	0.77	0.8958	0.03	0.7095
	1100	0.2677	0.00	0.7718	0.89	0.8381	0.11	0.7792		1100	0.3730	0.18	0.7780	0.78	0.8792	0.03	0.7072
	1200	0.9055	0.00	0.8072	0.88	0.8312	0.12	0.8101		1200	0.8951	0.16	0.7956	0.81	0.8729	0.03	0.8142
	1300	0.9186	0.00	0.8719	0.92	0.8322	0.08	0.8688		1300	0.9126	0.16	0.8275	0.82	0.8737	0.02	0.8422
	1400	0.9337	0.00	0.8829	0.93	0.8398	0.07	0.8800		1400	0.9316	0.19	0.8605	0.78	0.8836	0.02	0.8747
	1500	0.9426	0.00	0.8735	0.97	0.8558	0.03	0.8729		1500	0.9457	0.20	0.8968	0.77	0.9015	0.02	0.9069
	1600	0.9486	0.00	0.8830	0.93	0.8791	0.03	0.8827		1600	0.9593	0.17	0.9389	0.81	0.9287	0.02	0.9422
	1700	0.9480	0.00	0.8850	0.93	0.9091	0.07	0.8827		1700	0.9393	0.17	0.9389	0.83	0.9287	0.02	0.9422
	1700	0.7559	0.00	0.7155	0.73	0.7071	0.07	0.7131		1700	0.7770	0.15	0.7173	0.00	0.7055	0.02	0.7707

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 11

Date	Time	$\mathbf{P}_{FS,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,BD,P}$	P_P	$\mathbf{P}_{VX,BD,O}$	P_O	$\mathbf{P}_{\mathrm{FS},BD,R}$	Date	Time	$\mathbf{P}_{VS,BD,C}$	P_C	$\mathbf{P}_{VX,BD,P}$	P_P	$\mathbf{P}_{\mathrm{FS},BD,O}$	P_O	$\mathbf{P}_{VS,BD,R}$
21-Jan-10	0900	0.9483	0.05	0.7505	0.80	0.5709	0.15	0.7341	21-Jul-10	0900	0.7042	0.00	0.7788	0.92	0.6585	0.08	0.7697
	1000	0.1292	0.06	0.8266	0.81	0.6287	0.13	0.7561		1000	0.7138	0.00	0.7805	0.91	0.6916	0.09	0.7729
	1100	0.0804	0.06	0.8512	0.81	0.6595	0.13	0.7767		1100	0.7104	0.00	0.7308	0.91	0.7104	0.09	0.7291
	1200	0.1843	0.08	0.8517	0.80	0.6736	0.13	0.7785		1200	0.7029	0.00	0.6656	0.91	0.7189	0.09	0.6702
	1300	0.9851	0.08	0.8390	0.83	0.6744	0.10	0.8340		1300	0.6908	0.00	0.6431	0.96	0.7186	0.04	0.6463
	1400	0.7986	0.08	0.8167	0.84	0.6623	0.09	0.8021		1400	0.6753	0.00	0.6807	0.97	0.7101	0.03	0.6816
	1500	0.7766	0.09	0.7782	0.83	0.6347	0.09	0.7657		1500	0.6660	0.00	0.7177	0.97	0.6908	0.03	0.7169
	1600	0.7461	0.11	0.6988	0.83	0.5813	0.06	0.6963		1600	0.6546	0.00	0.7091	0.97	0.6575	0.03	0.7075
	1700	0.6500	0.10	0.5164	0.83	0.4747	0.08	0.5262		1700	0.6287	0.00	0.6431	0.95	0.6008	0.05	0.6408
21-Feb-10	0900	0.9985	0.04	0.7769	0.89	0.5993	0.07	0.7722	21-Aug-10	0900	0.7295	0.00	0.7927	0.92	0.6536	0.08	0.7822
	1000	0.9333	0.02	0.8347	0.89	0.6515	0.08	0.8220		1000	0.7472	0.00	0.8027	0.92	0.6886	0.08	0.7941
	1100	0.9393	0.02	0.8482	0.88	0.6790	0.09	0.8344		1100	0.7454	0.00	0.7666	0.90	0.7082	0.10	0.7609
	1200	0.9790	0.04	0.8399	0.87	0.6923	0.09	0.8310		1200	0.7367	0.00	0.7042	0.92	0.7168	0.08	0.7052
	1300	0.9998	0.05	0.8249	0.92	0.6934	0.04	0.8285		1300	0.7232	0.00	0.6862	0.90	0.7163	0.10	0.6892
	1400	0.7796	0.04	0.8097	0.92	0.6835	0.05	0.8027		1400	0.7082	0.00	0.7209	0.90	0.7066	0.10	0.7196
	1500	0.7615	0.02	0.7852	0.92	0.6595	0.06	0.7773		1500	0.6897	0.00	0.7405	0.91	0.6855	0.09	0.7358
	1600	0.7391	0.02	0.7287	0.92	0.6148	0.06	0.7222		1600	0.6633	0.00	0.7180	0.91	0.6484	0.09	0.7120
	1700	0.6718	0.04	0.5933	0.91	0.5295	0.06	0.5923		1700	0.6219	0.00	0.6323	0.90	0.5821	0.10	0.6275
21-Mar-10	0900	0.7816	0.04	0.7972	0.83	0.6323	0.13	0.7752	21-Sep-10	0900	0.7834	0.02	0.8092	0.92	0.6463	0.06	0.7996
	1000	0.7967	0.03	0.8296	0.85	0.6740	0.12	0.8102		1000	0.7938	0.00	0.8288	0.96	0.6823	0.04	0.8223
	1100	0.7928	0.03	0.8223	0.87	0.6970	0.10	0.8093		1100	0.7864	0.01	0.8128	0.96	0.7015	0.03	0.8088
	1200	0.7813	0.03	0.7942	0.86	0.7075	0.11	0.7844		1200	0.7737	0.01	0.7816	0.93	0.7095	0.06	0.7775
	1300	0.7664	0.02	0.7757	0.90	0.7075	0.08	0.7704		1300	0.7580	0.00	0.7693	0.97	0.7072	0.03	0.7672
	1400	0.7505	0.02	0.7767	0.88	0.6974	0.09	0.7690		1400	0.7427	0.00	0.7736	0.97	0.6945	0.03	0.7709
	1500	0.7342	0.03	0.7698	0.87	0.6749	0.10	0.7594		1500	0.7246	0.00	0.7627	0.98	0.6683	0.02	0.7606
	1600	0.7072	0.03	0.7287	0.89	0.6335	0.08	0.7208		1600	0.6938	0.00	0.7027	0.99	0.6213	0.02	0.7103
	1700	0.6468	0.03	0.6168	0.89	0.5570	0.08	0.6132		1700	0.6200	0.00	0.5762	0.99	0.5329	0.01	0.5757
21-Apr-10	0900	0.7347	0.00	0.7963	0.88	0.6565	0.12	0.7792	21-Oct-10	0900	0.9705	0.03	0.8135	0.97	0.6300	0.00	0.8186
	1000	0.7488	0.00	0.8035	0.90	0.6901	0.10	0.7922		1000	0.9644	0.04	0.8450	0.96	0.6678	0.00	0.8501
	1100	0.7486	0.00	0.7655	0.89	0.7088	0.11	0.7592		1100	0.9696	0.01	0.8452	0.99	0.6878	0.00	0.8465
	1200	0.7394	0.00	0.7059	0.90	0.7168	0.10	0.7070		1200	0.9960	0.00	0.8317	1.00	0.6949	0.00	0.8317
	1300	0.7254	0.00	0.6930	0.92	0.7157	0.08	0.6948		1300	0.8197	0.02	0.8166	0.97	0.6904	0.01	0.8153
	1400	0.7091	0.00	0.7271	0.92	0.7049	0.08	0.7254		1400	0.7707	0.02	0.7996	0.97	0.6744	0.01	0.7976
	1500	0.6912	0.00	0.7422	0.89	0.6827	0.00	0.7254		1500	0.7503	0.02	0.7636	0.97	0.6420	0.01	0.7620
	1600	0.6609	0.00	0.7422	0.89	0.6436	0.11	0.7336		1600	0.7303	0.02	0.6782	0.98	0.5813	0.01	0.6776
	1700	0.6168	0.00	0.6200	0.88	0.5736	0.11	0.6143		1700	0.5886	0.01	0.4699	0.96	0.4566	0.01	0.4736
21-May-10	0900	0.7085	0.02	0.7836	0.96	0.6646	0.02	0.7794	21-Nov-10	0900	0.4206	0.12	0.7926	0.84	0.6008	0.03	0.7407
21-Way-10	1000	0.7153	0.02	0.7778	0.97	0.6952	0.02	0.7754	21-1404-10	1000	0.0924	0.12	0.8413	0.80	0.6447	0.03	0.7099
	1100	0.7126	0.01	0.7207	0.94	0.7123	0.05	0.7201		1100	0.0729	0.17	0.8536	0.80	0.6678	0.03	0.7185
	1200	0.7120	0.01	0.6782	0.91	0.7123	0.05	0.6814		1200	0.5585	0.17	0.8330	0.82	0.6761	0.03	0.8000
	1300	0.7022	0.02	0.6420	0.91	0.7172	0.05	0.6466		1300	0.9999	0.14	0.8309	0.82	0.6718	0.03	0.8445
	1400	0.6757	0.01	0.6916	0.88	0.7177	0.03	0.6928		1400	0.7873	0.12	0.8037	0.83	0.6536	0.04	0.7928
	1500		0.02	0.7207	0.90		0.10	0.0928				0.16	0.7529	0.79	0.6336		0.7928
	1600	0.6651 0.6520	0.02	0.7207	0.90	0.6866	0.08	0.7169		1500 1600	0.7667 0.7186	0.16	0.7529	0.79	0.5480	0.06	0.7475
	1700	0.6320	0.02	0.7039	0.89	0.6500	0.09	0.6214		1700	0.7186	0.16	0.8425	0.79	0.3480	0.06	0.4035
21-Jun-10	0900	0.6984	0.00	0.7754	0.89	0.6633	0.11	0.7629	21-Dec-10	0900	0.6852	0.14	0.7590	0.85	0.5727	0.01	0.7467
	1000	0.7059	0.00	0.7703	0.89	0.6941	0.11	0.7618		1000	0.0480	0.19	0.8280	0.77	0.6269	0.03	0.6705
	1100	0.7015	0.00	0.7138	0.89	0.7114	0.11	0.7136		1100	0.0376	0.18	0.8501	0.78	0.6546	0.03	0.6953
	1200	0.6912	0.00	0.6585	0.88	0.7192	0.12	0.6659		1200	0.1309	0.16	0.8494	0.81	0.6660	0.03	0.7276
	1300	0.6799	0.00	0.6287	0.92	0.7183	0.08	0.6357		1300	0.9954	0.16	0.8348	0.82	0.6642	0.02	0.8570
	1400	0.6701	0.00	0.6749	0.93	0.7091	0.07	0.6771		1400	0.7952	0.19	0.8075	0.78	0.6484	0.02	0.8017
	1500	0.6623	0.00	0.7114	0.97	0.6897	0.03	0.7106		1500	0.7749	0.20	0.7576	0.77	0.6141	0.02	0.7580
	1600	0.6520	0.00	0.7022	0.93	0.6560	0.07	0.6991		1600	0.7331	0.17	0.6530	0.81	0.5490	0.02	0.6646
	1700	0.6275	0.00	0.6358	0.93	0.5993	0.07	0.6334		1700	0.5718	0.15	0.4121	0.83	0.4077	0.02	0.4361

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 11

Date	Time	$\mathbf{P}_{VS,BS,C}$	P_C	$\mathbf{P}_{VX,BX,P}$	P_P	$\mathbf{P}_{VX,BX,O}$	\mathbf{P}_{O}	$\mathrm{P}_{\mathrm{FS},BS,R}$	Date	Time	$\mathrm{P}_{\mathrm{FX},BX,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BX,P}$	\mathbf{P}_{P}	$\mathbf{P}_{FS,BS,O}$	P_O	$\mathrm{P}_{VX,BX,R}$
21-Jan-10	0900	0.9461	0.05	0.8484	0.80	0.7383	0.15	0.8371	21-Jul-10	0900	0.8261	0.00	0.8820	0.92	0.8194	0.08	0.8773
	1000	0.9678	0.06	0.9091	0.81	0.7936	0.13	0.8980		1000	0.8392	0.00	0.8913	0.91	0.8460	0.09	0.8874
	1100	0.9769	0.06	0.9301	0.81	0.8201	0.13	0.9189		1100	0.8460	0.00	0.8737	0.91	0.8740	0.09	0.8737
	1200	0.9801	0.08	0.9369	0.80	0.8316	0.13	0.9266		1200	0.8521	0.00	0.8657	0.91	0.8666	0.09	0.8657
	1300	0.9803	0.08	0.9374	0.83	0.8323	0.10	0.9305		1300	0.8522	0.00	0.8645	0.96	0.8665	0.04	0.8646
	1400	0.9779	0.08	0.9321	0.84	0.8224	0.09	0.9262		1400	0.8455	0.00	0.8751	0.97	0.8600	0.03	0.8746
	1500	0.9703	0.09	0.9144	0.83	0.7985	0.09	0.9092		1500	0.8401	0.00	0.8924	0.97	0.8454	0.03	0.8909
	1600	0.9533	0.11	0.8629	0.83	0.7489	0.06	0.8653		1600	0.8267	0.00	0.8827	0.97	0.8185	0.03	0.8806
	1700	0.8879	0.10	0.6943	0.83	0.6319	0.08	0.7083		1700	0.7947	0.00	0.8297	0.95	0.7677	0.05	0.8264
21-Feb-10	0900	0.9456	0.04	0.8716	0.89	0.7668	0.07	0.8668	21-Aug-10	0900	0.8452	0.00	0.8904	0.92	0.8151	0.08	0.8848
	1000	0.9683	0.02	0.9170	0.89	0.8131	0.08	0.9097		1000	0.9116	0.00	0.9048	0.92	0.8437	0.08	0.9002
	1100	0.9776	0.02	0.9313	0.88	0.8362	0.09	0.9234		1100	0.9394	0.00	0.8952	0.90	0.8587	0.10	0.8917
	1200	0.9819	0.04	0.9343	0.87	0.8464	0.09	0.9277		1200	0.9513	0.00	0.8813	0.92	0.8651	0.08	0.8801
	1300	0.9826	0.05	0.9346	0.92	0.8475	0.04	0.9338		1300	0.9512	0.00	0.8821	0.90	0.8648	0.10	0.8804
	1400	0.9797	0.04	0.9331	0.92	0.8396	0.05	0.9304		1400	0.9383	0.00	0.8979	0.90	0.8575	0.10	0.8940
	1500	0.9720	0.02	0.9230	0.92	0.7187	0.06	0.9122		1500	0.9027	0.00	0.9055	0.91	0.8413	0.09	0.9000
	1600	0.9546	0.02	0.8886	0.92	0.7810	0.06	0.8838		1600	0.8444	0.00	0.8879	0.91	0.8106	0.09	0.8813
	1700	0.9051	0.04	0.7783	0.91	0.6957	0.06	0.7779		1700	0.7984	0.00	0.8193	0.90	0.7499	0.10	0.8126
21-Mar-10	0900	0.9368	0.04	0.8903	0.83	0.7966	0.13	0.8802	21-Sep-10	0900	0.9423	0.02	0.9002	0.92	0.8087	0.06	0.8960
	1000	0.9631	0.03	0.9180	0.85	0.8321	0.12	0.9093		1000	0.9645	0.00	0.9196	0.96	0.8386	0.04	0.9160
	1100	0.9734	0.03	0.9221	0.87	0.8502	0.10	0.9168		1100	0.9730	0.01	0.9196	0.96	0.8538	0.03	0.9180
	1200	0.9777	0.03	0.9178	0.86	0.8582	0.11	0.9133		1200	0.9760	0.01	0.9147	0.93	0.8597	0.06	0.9124
	1300	0.9777	0.02	0.9180	0.90	0.8583	0.08	0.9148		1300	0.9755	0.00	0.9168	0.97	0.8580	0.03	0.9149
	1400	0.9739	0.03	0.9227	0.88	0.8505	0.09	0.9181		1400	0.9703	0.00	0.9218	0.97	0.8482	0.03	0.9193
	1500	0.9640	0.03	0.9191	0.87	0.8326	0.10	0.9122		1500	0.9574	0.00	0.9152	0.98	0.8274	0.02	0.9132
	1600	0.9381	0.03	0.8925	0.89	0.7974	0.08	0.8868		1600	0.9243	0.00	0.8805	0.99	0.7870	0.01	0.8794
	1700	0.8483	0.03	0.8034	0.89	0.7245	0.08	0.7989		1700	0.8190	0.00	0.7649	0.99	0.6995	0.01	0.7642
21-Apr-10	0900	0.8625	0.00	0.8933	0.88	0.8176	0.12	0.8841	21-Oct-10	0900	0.9595	0.03	0.9005	0.97	0.7943	0.00	0.9024
	1000	0.9172	0.00	0.9059	0.90	0.8450	0.10	0.8999		1000	0.9741	0.04	0.9263	0.96	0.8271	0.00	0.9284
	1100	0.9457	0.00	0.8958	0.89	0.8592	0.11	0.8917		1100	0.9805	0.01	0.9333	0.99	0.8430	0.00	0.9338
	1200	0.9559	0.00	0.8832	0.90	0.8651	0.10	0.8814		1200	0.9825	0.00	0.9342	1.00	0.8485	0.00	0.9342
	1300	0.9552	0.00	0.8850	0.92	0.8642	0.08	0.8833		1300	0.9819	0.02	0.9342	0.97	0.8453	0.01	0.9342
	1400	0.9383	0.00	0.9008	0.92	0.8563	0.08	0.8974		1400	0.9769	0.02	0.9299	0.97	0.8324	0.01	0.9299
	1500	0.9085	0.00	0.9059	0.89	0.8390	0.11	0.8985		1500	0.9654	0.02	0.9111	0.97	0.8049	0.01	0.9111
	1600	0.8418	0.00	0.8853	0.89	0.8064	0.11	0.8766		1600	0.9378	0.02	0.8517	0.98	0.7490	0.01	0.8516
	1700	0.7932	0.00	0.8087	0.88	0.7412	0.11	0.8004		1700	0.8327	0.03	0.6450	0.96	0.6117	0.01	0.6506
21-May-10	0900	0.8298	0.02	0.8863	0.96	0.8244	0.02	0.8837	21-Nov-10	0900	0.9583	0.12	0.8826	0.84	0.7675	0.03	0.8880
21-May-10	1000	0.8298	0.02	0.8919	0.97	0.8244	0.02	0.8905	21-NOV-10	1000	0.9383	0.12	0.8820	0.80	0.7073	0.03	0.9257
	1100	0.8503	0.01	0.8708	0.94	0.8617	0.02	0.8700		1100	0.9726	0.17	0.9209	0.80	0.8269	0.03	0.9237
	1200	0.8535	0.02	0.8804	0.91	0.8669	0.06	0.8789		1200	0.9809	0.14	0.9377	0.82	0.8336	0.03	0.9405
	1300	0.8534	0.01	0.8606	0.94	0.8659	0.05	0.8608		1300	0.9797	0.12	0.9362	0.83	0.8301	0.04	0.9368
	1400	0.8473	0.02	0.8807	0.88	0.8583	0.10	0.8778		1400	0.9759	0.16	0.9272	0.79	0.8152	0.06	0.9285
	1500	0.8398	0.02	0.8937	0.90	0.8421	0.08	0.8887		1500	0.9655	0.16	0.8550	0.79	0.7830	0.06	0.8682
	1600	0.8243	0.02	0.8785	0.89	0.8123	0.09	0.8717		1600	0.9368	0.16	0.8185	0.79	0.7149	0.06	0.8311
	1700	0.7868	0.02	0.8145	0.88	0.7550	0.10	0.8082		1700	0.7865	0.13	0.5275	0.80	0.5283	0.07	0.5621
21-Jun-10	0900	0.8230	0.00	0.8805	0.89	0.8232	0.11	0.8742	21-Dec-10	0900	0.9503	0.14	0.8551	0.85	0.7407	0.01	0.8671
	1000	0.8345	0.00	0.8857	0.89	0.8478	0.11	0.8815		1000	0.9692	0.19	0.9102	0.77	0.7916	0.03	0.9178
	1100	0.8394	0.00	0.8642	0.89	0.8611	0.11	0.8638		1100	0.9765	0.18	0.9297	0.78	0.8160	0.03	0.9346
	1200	0.8409	0.00	0.8647	0.88	0.8668	0.12	0.8649		1200	0.9795	0.16	0.9360	0.81	0.8254	0.03	0.9394
	1300	0.8413	0.00	0.8530	0.92	0.8663	0.08	0.8540		1300	0.9791	0.16	0.9151	0.82	0.8239	0.02	0.9235
	1400	0.8394	0.00	0.8702	0.93	0.8595	0.07	0.8695		1400	0.9756	0.19	0.9265	0.78	0.8106	0.02	0.9335
	1500	0.8343	0.00	0.8878	0.97	0.8447	0.03	0.8864		1500	0.9665	0.20	0.9004	0.77	0.7803	0.02	0.9113
	1600	0.8210	0.00	0.8776	0.93	0.8172	0.07	0.8735		1600	0.9429	0.17	0.8250	0.81	0.7162	0.02	0.8429
	1700	0.7891	0.00	0.8125	0.93	0.7659	0.07	0.8093		1700	0.8205	0.15	0.5648	0.83	0.5490	0.02	0.6029

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 11

Date	Time	$\mathbf{P}_{FS,\mathit{UD},\mathit{C}}$	\mathbf{P}_C	$\mathbf{P}_{VS,UD,P}$	P_P	$\mathbf{P}_{VX,UD,O}$	P_O	$P_{FX,UX,R}$	Date	Time	$\mathbf{P}_{VS,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UD,P}$	P_P	$\mathbf{P}_{VS,UD,O}$	P_O	$\mathbf{P}_{\mathrm{FX},UX,R}$
21-Jan-10	0900	0.0384	0.05	0.6455	0.80	0.5571	0.15	0.5996	21-Jul-10	0900	0.7043	0.00	0.5942	0.92	0.5578	0.08	0.5915
	1000	0.0201	0.06	0.6260	0.81	0.5644	0.13	0.5789		1000	0.6837	0.00	0.5571	0.91	0.5600	0.09	0.5573
	1100	0.0192	0.06	0.5989	0.81	0.5569	0.13	0.5561		1100	0.6827	0.00	0.5080	0.91	0.5610	0.09	0.5125
	1200	0.0192	0.08	0.5742	0.80	0.5614	0.13	0.5308		1200	0.7066	0.00	0.4162	0.91	0.5576	0.09	0.4283
	1300	0.0441	0.08	0.5857	0.83	0.5606	0.10	0.5425		1300	0.7366	0.00	0.4518	0.96	0.5603	0.04	0.4564
	1400	0.8524	0.08	0.6343	0.84	0.5615	0.09	0.6445		1400	0.7567	0.00	0.6074	0.97	0.5587	0.03	0.6058
	1500	0.9136	0.09	0.6874	0.83	0.5592	0.09	0.6958		1500	0.7941	0.00	0.6664	0.97	0.5607	0.03	0.6630
	1600	0.9320	0.11	0.7228	0.83	0.5604	0.06	0.7348		1600	0.8229	0.00	0.7070	0.97	0.5587	0.03	0.7022
	1700	0.9175	0.10	0.7260	0.83	0.5536	0.08	0.7316		1700	0.8455	0.00	0.7243	0.95	0.5603	0.05	0.7155
21-Feb-10	0900	0.0520	0.04	0.6122	0.89	0.5616	0.07	0.5888	21-Aug-10	0900	0.6922	0.00	0.6007	0.92	0.5622	0.08	0.5978
	1000	0.0308	0.02	0.5812	0.89	0.5565	0.08	0.5662		1000	0.7149	0.00	0.5568	0.92	0.5629	0.08	0.5573
	1100	0.0321	0.02	0.5401	0.88	0.5595	0.09	0.5300		1100	0.7183	0.00	0.4965	0.90	0.5606	0.10	0.5027
	1200	0.0361	0.04	0.5099	0.87	0.5593	0.09	0.4978		1200	0.7402	0.00	0.4455	0.92	0.5621	0.08	0.4543
	1300	0.1038	0.05	0.5306	0.92	0.5611	0.04	0.5116		1300	0.7812	0.00	0.4858	0.90	0.5627	0.10	0.4933
	1400	0.8521	0.04	0.6260	0.92	0.5585	0.05	0.6308		1400	0.8164	0.00	0.6051	0.90	0.5595	0.10	0.6007
	1500	0.8981	0.02	0.6864	0.92	0.5641	0.06	0.6842		1500	0.8289	0.00	0.6804	0.91	0.5598	0.09	0.6700
	1600	0.9207	0.02	0.7293	0.92	0.5584	0.06	0.7238		1600	0.8290	0.00	0.7224	0.91	0.5592	0.09	0.7084
	1700	0.9172	0.04	0.7407	0.91	0.5558	0.06	0.7360		1700	0.8348	0.00	0.7316	0.90	0.5655	0.10	0.7155
21-Mar-10	0900	0.6562	0.04	0.5861	0.83	0.5612	0.13	0.5859	21-Sep-10	0900	0.6610	0.02	0.5737	0.92	0.5611	0.06	0.5750
	1000	0.6790	0.03	0.5431	0.85	0.5577	0.12	0.5492		1000	0.6921	0.00	0.5322	0.96	0.5566	0.04	0.5333
	1100	0.7228	0.03	0.4994	0.87	0.5633	0.10	0.5128		1100	0.7233	0.01	0.4865	0.96	0.5617	0.03	0.4916
	1200	0.7621	0.03	0.4883	0.86	0.5612	0.11	0.5050		1200	0.7664	0.01	0.4873	0.93	0.5593	0.06	0.4944
	1300	0.8051	0.02	0.5277	0.90	0.5612	0.08	0.5362		1300	0.8028	0.00	0.5437	0.97	0.5589	0.03	0.5442
	1400	0.8467	0.03	0.6170	0.88	0.5602	0.09	0.6195		1400	0.8509	0.00	0.5701	0.97	0.5572	0.03	0.5696
	1500	0.8834	0.03	0.6870	0.87	0.5569	0.10	0.6807		1500	0.8811	0.00	0.6993	0.98	0.5595	0.02	0.6962
	1600	0.8960	0.03	0.7257	0.89	0.5602	0.08	0.7187		1600	0.8929	0.00	0.7305	0.99	0.5621	0.01	0.7286
	1700	0.8954	0.03	0.7315	0.89	0.5622	0.08	0.7240		1700	0.8878	0.00	0.7269	0.99	0.5607	0.01	0.7250
21-Apr-10	0900	0.6945	0.00	0.5991	0.88	0.5595	0.12	0.5943	21-Oct-10	0900	0.0324	0.03	0.5948	0.97	0.5547	0.00	0.5766
	1000	0.7168	0.00	0.5520	0.90	0.5614	0.10	0.5530		1000	0.0364	0.04	0.5571	0.96	0.5633	0.00	0.5347
	1100	0.7220	0.00	0.4972	0.89	0.5599	0.11	0.5042		1100	0.0351	0.01	0.5242	0.99	0.5576	0.00	0.5189
	1200	0.7464	0.00	0.4425	0.90	0.5572	0.10	0.4540		1200	0.0484	0.00	0.5086	1.00	0.5598	0.00	0.5086
	1300	0.7833	0.00	0.4944	0.92	0.5583	0.08	0.4994		1300	0.4732	0.02	0.5777	0.97	0.5640	0.01	0.5753
	1400	0.8162	0.00	0.6150	0.92	0.5585	0.08	0.6106		1400	0.8796	0.02	0.6579	0.97	0.5606	0.01	0.6616
	1500	0.8329	0.00	0.6866	0.89	0.5593	0.11	0.6724		1500	0.9114	0.02	0.7136	0.97	0.5570	0.01	0.7162
	1600	0.8351	0.00	0.7224	0.89	0.5595	0.11	0.7043		1600	0.9207	0.02	0.7343	0.98	0.5604	0.01	0.7345
	1700	0.8381	0.00	0.7300	0.88	0.5610	0.12	0.7094		1700	0.8964	0.03	0.7260	0.96	0.5567	0.01	0.7297
21-May-10	0900	0.6993	0.02	0.5860	0.96	0.5629	0.02	0.5880	21-Nov-10	0900	0.0233	0.12	0.6390	0.84	0.5603	0.03	0.5611
	1000	0.6834	0.01	0.5493	0.97	0.5566	0.02	0.5509		1000	0.0193	0.17	0.6163	0.80	0.5586	0.03	0.5149
	1100	0.6858	0.01	0.4979	0.94	0.5591	0.05	0.5032		1100	0.0184	0.17	0.5837	0.80	0.5565	0.03	0.4886
	1200	0.7077	0.02	0.3944	0.91	0.5597	0.06	0.4118		1200	0.0231	0.14	0.5720	0.82	0.5590	0.03	0.4923
	1300	0.7350	0.01	0.4762	0.94	0.5587	0.05	0.4834		1300	0.1644	0.12	0.5962	0.83	0.5563	0.04	0.5416
	1400	0.7679	0.02	0.6060	0.88	0.5612	0.10	0.6051		1400	0.8960	0.16	0.6613	0.79	0.5622	0.06	0.6923
	1500	0.8003	0.02	0.6789	0.90	0.5617	0.08	0.6727		1500	0.9263	0.16	0.7136	0.79	0.5562	0.06	0.7380
	1600	0.8003	0.02	0.7116	0.90	0.5617	0.08	0.7012		1600	0.9286	0.16	0.7136	0.79	0.5629	0.06	0.7503
	1700	0.8481	0.02	0.7116	0.88	0.5551	0.10	0.7012		1700	0.9280	0.10	0.7260	0.79	0.5527	0.00	0.7382
21-Jun-10	0900	0.7073	0.00	0.5944	0.89	0.5606	0.11	0.5907	21-Dec-10	0900	0.0331	0.14	0.6605	0.85	0.5677	0.01	0.5718
21-Jull-10	1000	0.6901	0.00	0.5560	0.89	0.5604	0.11	0.5565	21-1900-10	1000	0.0331	0.14	0.6457	0.83	0.5616	0.01	0.5218
	1100	0.6997	0.00	0.5095	0.89	0.5626	0.11	0.5363		1100	0.0197	0.19	0.6207	0.77	0.5613	0.03	0.5218
	1200	0.7050	0.00	0.3095	0.89	0.5526	0.11	0.5154		1200	0.0183	0.18	0.6207	0.78	0.5582	0.03	0.5087
	1300	0.7414	0.00	0.4055	0.88	0.5630	0.12	0.4244		1300	0.0192	0.16	0.5984	0.81	0.5598	0.03	0.5213
				0.6082	0.92		0.08				0.8876	0.16		0.82	0.5598	0.02	
	1400	0.7609	0.00			0.5622		0.6051		1400			0.6526				0.6960
	1500	0.8006	0.00	0.4288	0.97	0.5588	0.03	0.4331		1500	0.9240	0.20	0.6967	0.77	0.5637	0.02	0.7403
	1600	0.8206	0.00	0.7032	0.93	0.5636	0.07	0.6939		1600	0.9338	0.17	0.7238	0.81	0.5551	0.02	0.7563
	1700	0.8428	0.00	0.7193	0.93	0.5616	0.07	0.7088		1700	0.9101	0.15	0.7194	0.83	0.5558	0.02	0.7446

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 11

Date	Time	$\mathbf{P}_{VS,US,C}$	P_C	$\mathbf{P}_{V\mathbf{X},U\mathbf{X},P}$	P_P	$\mathbf{P}_{\mathrm{FX},U\mathrm{X},O}$	P_O	$\mathbf{P}_{\mathrm{FS},US,R}$	Date	Time	$\mathbf{P}_{VX,UX,C}$	P_C	$\mathbf{P}_{VX,UX,P}$	P_P	$\mathbf{P}_{VS,US,O}$	P_O	$\mathbf{P}_{VS,US,R}$
21-Jan-10	0900	0.9277	0.05	0.9240	0.80	0.9299	0.15	0.9251	21-Jul-10	0900	0.9237	0.00	0.9277	0.92	0.9301	0.08	0.9279
	1000	0.9304	0.06	0.9245	0.81	0.9301	0.13	0.9256		1000	0.9248	0.00	0.9298	0.91	0.9300	0.09	0.9298
	1100	0.9315	0.06	0.9252	0.81	0.9300	0.13	0.9263		1100	0.9262	0.00	0.9327	0.91	0.9332	0.09	0.9327
	1200	0.9317	0.08	0.9257	0.80	0.9300	0.13	0.9267		1200	0.9263	0.00	0.9363	0.91	0.9300	0.09	0.9357
	1300	0.9299	0.08	0.9256	0.83	0.9300	0.10	0.9264		1300	0.9261	0.00	0.9362	0.96	0.9300	0.04	0.9359
	1400	0.9294	0.08	0.9250	0.84	0.9300	0.09	0.9258		1400	0.9261	0.00	0.9325	0.97	0.9300	0.03	0.9324
	1500	0.9283	0.09	0.9242	0.83	0.9300	0.09	0.9251		1500	0.9246	0.00	0.9294	0.97	0.9303	0.03	0.9294
	1600	0.9280	0.11	0.9237	0.83	0.9300	0.06	0.9245		1600	0.9236	0.00	0.9273	0.97	0.9300	0.03	0.9273
	1700	0.9199	0.10	0.9239	0.83	0.9301	0.08	0.9240		1700	0.9218	0.00	0.9260	0.95	0.9300	0.05	0.9262
1-Feb-10	0900	0.9327	0.04	0.9250	0.89	0.9300	0.07	0.9256	21-Aug-10	0900	0.9242	0.00	0.9273	0.92	0.9300	0.08	0.9275
	1000	0.9374	0.02	0.9261	0.89	0.9300	0.08	0.9267		1000	0.9361	0.00	0.9295	0.92	0.9300	0.08	0.9295
	1100	0.9399	0.02	0.9275	0.88	0.9300	0.09	0.9281		1100	0.9395	0.00	0.9323	0.90	0.9300	0.10	0.9321
	1200	0.9411	0.04	0.9286	0.87	0.9300	0.09	0.9292		1200	0.9407	0.00	0.9352	0.92	0.9300	0.08	0.9348
	1300	0.9411	0.05	0.9286	0.92	0.9300	0.04	0.9293		1300	0.9407	0.00	0.9349	0.90	0.9300	0.10	0.9344
	1400	0.9399	0.04	0.9276	0.92	0.9301	0.05	0.9281		1400	0.9391	0.00	0.9318	0.90	0.9301	0.10	0.9316
	1500	0.9373	0.02	0.9261	0.92	0.8402	0.06	0.9213		1500	0.9343	0.00	0.9288	0.91	0.9300	0.09	0.9289
	1600	0.9335	0.02	0.9248	0.92	0.9300	0.06	0.9253		1600	0.9239	0.00	0.9268	0.91	0.9301	0.09	0.9271
	1700	0.9248	0.04	0.9244	0.91	0.9299	0.06	0.9247		1700	0.9218	0.00	0.9256	0.90	0.9301	0.10	0.9260
21-Mar-10	0900	0.9348	0.04	0.9262	0.83	0.9299	0.13	0.9271	21-Sep-10	0900	0.9360	0.02	0.9267	0.92	0.9301	0.06	0.9271
	1000	0.9398	0.03	0.9281	0.85	0.9300	0.12	0.9287		1000	0.9401	0.00	0.9287	0.96	0.9300	0.04	0.9287
	1100	0.9415	0.03	0.9302	0.87	0.9300	0.10	0.9306		1100	0.9415	0.01	0.9309	0.96	0.9300	0.03	0.9310
	1200	0.9420	0.03	0.9320	0.86	0.9300	0.11	0.9321		1200	0.9419	0.01	0.9325	0.93	0.9300	0.06	0.9324
	1300	0.9419	0.02	0.9319	0.90	0.9300	0.08	0.9320		1300	0.9417	0.00	0.9318	0.97	0.9300	0.03	0.9317
	1400	0.9411	0.03	0.9300	0.88	0.9300	0.09	0.9303		1400	0.9406	0.00	0.9296	0.97	0.9300	0.03	0.9297
	1500	0.9391	0.03	0.9277	0.87	0.9300	0.10	0.9283		1500	0.9382	0.00	0.9273	0.98	0.9300	0.02	0.9274
	1600	0.9340	0.03	0.9259	0.89	0.9300	0.08	0.9265		1600	0.9316	0.00	0.9256	0.99	0.9300	0.01	0.9257
	1700	0.9249	0.03	0.9250	0.89	0.9299	0.08	0.9254		1700	0.9232	0.00	0.9251	0.99	0.9301	0.01	0.9251
21-Apr-10	0900	0.9282	0.00	0.9274	0.88	0.9301	0.12	0.9277	21-Oct-10	0900	0.9361	0.03	0.9255	0.97	0.9299	0.00	0.9259
	1000	0.9369	0.00	0.9296	0.90	0.9300	0.10	0.9296		1000	0.9391	0.04	0.9269	0.96	0.9300	0.00	0.9274
	1100	0.9401	0.00	0.9325	0.89	0.9300	0.11	0.9323		1100	0.9409	0.01	0.9282	0.99	0.9300	0.00	0.9284
	1200	0.9411	0.00	0.9352	0.90	0.9300	0.10	0.9347		1200	0.9411	0.00	0.9289	1.00	0.9301	0.00	0.9289
	1300	0.9409	0.00	0.9345	0.92	0.9300	0.08	0.9342		1300	0.9410	0.02	0.9283	0.97	0.9300	0.01	0.9286
	1400	0.9390	0.00	0.9314	0.92	0.9300	0.08	0.9313		1400	0.9393	0.02	0.9269	0.97	0.9301	0.01	0.9272
	1500	0.9351	0.00	0.9285	0.89	0.9300	0.11	0.9286		1500	0.9365	0.02	0.9255	0.97	0.9300	0.01	0.9258
	1600	0.9236	0.00	0.9266	0.89	0.9301	0.11	0.9270		1600	0.9302	0.01	0.9245	0.98	0.9300	0.01	0.9247
	1700	0.9217	0.00	0.9256	0.88	0.9300	0.12	0.9261		1700	0.9216	0.03	0.9247	0.96	0.9301	0.01	0.9247
1-May-10	0900	0.9240	0.02	0.9280	0.96	0.9300	0.02	0.9279	21-Nov-10	0900	0.9299	0.12	0.9241	0.84	0.9300	0.03	0.9250
	1000	0.9252	0.01	0.9301	0.97	0.9300	0.02	0.9300		1000	0.9309	0.17	0.9248	0.80	0.9300	0.03	0.9260
	1100	0.9261	0.01	0.9332	0.94	0.9300	0.05	0.9330		1100	0.9323	0.17	0.9256	0.80	0.9300	0.03	0.9268
	1200	0.9264	0.02	0.9367	0.91	0.9300	0.06	0.9361		1200	0.9320	0.14	0.9258	0.82	0.9300	0.03	0.9269
	1300	0.9261	0.01	0.9355	0.94	0.9300	0.05	0.9351		1300	0.9301	0.12	0.9255	0.83	0.9300	0.04	0.9262
	1400	0.9258	0.02	0.9319	0.88	0.9300	0.10	0.9316		1400	0.9297	0.16	0.9247	0.79	0.9300	0.06	0.9258
	1500	0.9242	0.02	0.9290	0.90	0.9300	0.08	0.9290		1500	0.9295	0.16	0.8518	0.79	0.9299	0.06	0.8682
	1600	0.9234	0.02	0.9270	0.89	0.9300	0.09	0.9272		1600	0.9252	0.16	0.9238	0.79	0.9300	0.06	0.9243
	1700	0.9214	0.02	0.9262	0.88	0.9300	0.10	0.9264		1700	0.9187	0.13	0.9244	0.80	0.9299	0.07	0.9240
1-Jun-10	0900	0.9234	0.00	0.9279	0.89	0.9300	0.11	0.9281	21-Dec-10	0900	0.9243	0.14	0.9237	0.85	0.9300	0.01	0.9239
	1000	0.9246	0.00	0.9300	0.89	0.9300	0.11	0.9300		1000	0.9264	0.19	0.9240	0.77	0.9300	0.03	0.9247
	1100	0.9261	0.00	0.9330	0.89	0.9300	0.11	0.9327		1100	0.9265	0.18	0.9245	0.78	0.9300	0.03	0.9250
	1200	0.9267	0.00	0.9365	0.88	0.9300	0.12	0.9357		1200	0.9258	0.16	0.9247	0.81	0.9301	0.03	0.9250
	1300	0.9266	0.00	0.9358	0.92	0.9300	0.08	0.9354		1300	0.9243	0.16	0.8978	0.82	0.9299	0.03	0.9028
	1400	0.9256	0.00	0.9322	0.93	0.9300	0.03	0.9321		1400	0.9231	0.19	0.9240	0.78	0.9301	0.02	0.9240
	1500	0.9230	0.00	0.9322	0.97	0.9300	0.07	0.9293		1500	0.9241	0.20	0.9235	0.77	0.9300	0.02	0.9238
	1600	0.9241	0.00	0.9293	0.97	0.9300	0.03	0.9293		1600	0.9241	0.20	0.9233	0.77	0.9300	0.02	0.9238
	1700	0.9233	0.00	0.9273	0.93	0.9300	0.07	0.9275		1700	0.9226	0.17	0.9233	0.81	0.9300	0.02	0.9235
	1/00	0.9213	0.00	0.9220	0.93	0.9299	0.07	0.9231		1/00	0.91/3	0.13	0.9243	0.63	0.9302	0.02	0.9233

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 11

Date	Time	$P_{FS,PG,C}$	P_C	$\mathbf{P}_{FS,PG,P}$	P_P	$\mathbf{P}_{VX,PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	P_C	$\mathbf{P}_{FX,PG,P}$	P_P	$\mathbf{P}_{\mathrm{FS},PG,O}$	P_O	$\mathbf{P}_{\mathrm{FS},PG,R}$
21-Jan-10	0900	0.4126	0.05	0.8177	0.80	0.8679	0.15	0.8035	21-Jul-10	0900	0.8519	0.00	0.7664	0.92	0.8197	0.08	0.7704
	1000	0.3248	0.06	0.7395	0.81	0.8380	0.13	0.7255		1000	0.8456	0.00	0.7502	0.91	0.7966	0.09	0.7542
	1100	0.2882	0.06	0.6970	0.81	0.8191	0.13	0.6864		1100	0.8453	0.00	0.7731	0.91	0.7817	0.09	0.7738
	1200	0.2726	0.08	0.6817	0.80	0.8094	0.13	0.6674		1200	0.8471	0.00	0.7766	0.91	0.7745	0.09	0.7764
	1300	0.2710	0.08	0.6812	0.83	0.8086	0.10	0.6627		1300	0.8473	0.00	0.7794	0.96	0.7743	0.04	0.7792
	1400	0.2905	0.08	0.6940	0.84	0.8172	0.09	0.6742		1400	0.8457	0.00	0.7737	0.97	0.7819	0.03	0.7740
	1500	0.3342	0.09	0.7324	0.83	0.8346	0.09	0.7070		1500	0.8463	0.00	0.7519	0.97	0.7968	0.03	0.7533
	1600	0.4248	0.11	0.8057	0.83	0.8627	0.06	0.7684		1600	0.8530	0.00	0.7695	0.97	0.8198	0.03	0.7711
	1700	0.6304	0.10	0.9031	0.83	0.9066	0.08	0.8770		1700	0.8725	0.00	0.8281	0.95	0.8533	0.05	0.8294
21-Feb-10	0900	0.4141	0.04	0.7885	0.89	0.8538	0.07	0.7799	21-Aug-10	0900	0.8349	0.00	0.7556	0.92	0.8226	0.08	0.7606
	1000	0.3192	0.02	0.7156	0.89	0.8241	0.08	0.7152		1000	0.8362	0.00	0.7288	0.92	0.7985	0.08	0.7341
	1100	0.2788	0.02	0.6829	0.88	0.8056	0.09	0.6849		1100	0.8411	0.00	0.7436	0.90	0.7836	0.10	0.7474
	1200	0.2649	0.04	0.6769	0.87	0.7959	0.09	0.6736		1200	0.8467	0.00	0.7594	0.92	0.7758	0.08	0.7606
	1300	0.2660	0.05	0.6771	0.92	0.7947	0.04	0.6619		1300	0.8474	0.00	0.7602	0.90	0.7765	0.10	0.7618
	1400	0.2862	0.04	0.6808	0.92	0.8026	0.05	0.6726		1400	0.8446	0.00	0.7421	0.90	0.7844	0.10	0.7462
	1500	0.3291	0.02	0.7057	0.92	0.8189	0.06	0.7035		1500	0.8384	0.00	0.7314	0.91	0.8010	0.09	0.7374
	1600	0.4167	0.02	0.7688	0.92	0.8459	0.06	0.7651		1600	0.8393	0.00	0.7634	0.91	0.8263	0.09	0.7688
	1700	0.5762	0.04	0.8661	0.91	0.8853	0.06	0.8570		1700	0.8642	0.00	0.8370	0.90	0.8624	0.10	0.8394
21-Mar-10	0900	0.4781	0.04	0.7588	0.83	0.8356	0.13	0.7566	21-Sep-10	0900	0.4599	0.02	0.7419	0.92	0.8275	0.06	0.7403
	1000	0.3732	0.03	0.7066	0.85	0.8090	0.12	0.7079		1000	0.3672	0.00	0.7024	0.96	0.8036	0.04	0.7069
	1100	0.3188	0.03	0.6966	0.87	0.7923	0.10	0.6937		1100	0.3166	0.01	0.7014	0.96	0.7886	0.03	0.7000
	1200	0.2991	0.03	0.7060	0.86	0.7837	0.11	0.7013		1200	0.3014	0.01	0.7113	0.93	0.7823	0.06	0.7107
	1300	0.3036	0.02	0.7067	0.90	0.7835	0.08	0.7038		1300	0.3104	0.00	0.7261	0.97	0.7843	0.03	0.7280
	1400	0.3338	0.03	0.6980	0.88	0.7917	0.09	0.6943		1400	0.3498	0.00	0.6999	0.97	0.7942	0.03	0.7031
	1500	0.3942	0.03	0.7075	0.87	0.8086	0.10	0.7072		1500	0.4206	0.00	0.7163	0.98	0.8130	0.02	0.7184
	1600	0.4967	0.03	0.7590	0.89	0.8352	0.08	0.7563		1600	0.5428	0.00	0.7765	0.99	0.8419	0.01	0.7773
	1700	0.8678	0.03	0.8494	0.89	0.8745	0.08	0.8519		1700	0.8757	0.00	0.8714	0.99	0.8841	0.01	0.8716
21-Apr-10	0900	0.8343	0.00	0.7507	0.88	0.8210	0.12	0.7593	21-Oct-10	0900	0.3601	0.03	0.7465	0.97	0.8368	0.00	0.7341
21 Apr 10	1000	0.8344	0.00	0.7268	0.90	0.7977	0.10	0.7339	21 001 10	1000	0.2964	0.04	0.6944	0.96	0.8134	0.00	0.6773
	1100	0.8421	0.00	0.7427	0.89	0.7828	0.11	0.7472		1100	0.2702	0.01	0.6785	0.99	0.7994	0.00	0.6741
	1200	0.8482	0.00	0.7571	0.90	0.7760	0.11	0.7590		1200	0.2666	0.00	0.6773	1.00	0.7941	0.00	0.6773
	1300	0.8487	0.00	0.7574	0.90	0.7774	0.08	0.7590		1300	0.2736	0.00	0.6780	0.97	0.7969	0.00	0.6706
	1400	0.8435	0.00	0.7378	0.92	0.7858	0.08	0.7330		1400	0.3051	0.02	0.6887	0.97	0.8091	0.01	0.6818
	1500	0.8392	0.00	0.7378	0.92	0.7838	0.08	0.7413		1500	0.3644	0.02	0.7307	0.97	0.8301	0.01	0.7239
	1600	0.8392	0.00	0.7508	0.89	0.8028	0.11	0.7388		1600	0.3644	0.02	0.7307	0.97	0.8628	0.01	0.7239
	1700	0.8665	0.00	0.7678	0.88	0.8292	0.11	0.8474		1700	0.7233	0.01	0.9160	0.96	0.8628	0.01	0.9097
21-May-10	0900	0.8490	0.02	0.7601	0.96	0.8158	0.02	0.7632	21-Nov-10	0900	0.3643	0.12	0.7798	0.84	0.8530	0.03	0.7315
	1000	0.8438	0.01	0.7394	0.97	0.7937	0.02	0.7417		1000	0.3044	0.17	0.7167	0.80	0.8276	0.03	0.6517
	1100	0.8448	0.01	0.7761	0.94	0.7803	0.05	0.7771		1100	0.2786	0.17	0.6831	0.80	0.8134	0.03	0.6200
	1200	0.8463	0.02	0.7568	0.91	0.7742	0.06	0.7598		1200	0.2723	0.14	0.6797	0.82	0.8078	0.03	0.6251
	1300	0.8461	0.01	0.7857	0.94	0.7755	0.05	0.7858		1300	0.2751	0.12	0.6838	0.83	0.8109	0.04	0.6395
	1400	0.8445	0.02	0.7671	0.88	0.7837	0.10	0.7704		1400	0.3042	0.16	0.7052	0.79	0.8224	0.06	0.6493
	1500	0.8455	0.02	0.7507	0.90	0.8003	0.08	0.7565		1500	0.3652	0.16	0.7577	0.79	0.8444	0.06	0.7014
	1600	0.8540	0.02	0.7756	0.89	0.8249	0.09	0.7816		1600	0.4803	0.16	0.8437	0.79	0.8786	0.06	0.7891
	1700	0.8762	0.02	0.8402	0.88	0.8603	0.10	0.8429		1700	0.7997	0.13	0.9417	0.80	0.9307	0.07	0.9220
21-Jun-10	0900	0.8565	0.00	0.7678	0.89	0.8164	0.11	0.7732	21-Dec-10	0900	0.4024	0.14	0.8133	0.85	0.8670	0.01	0.7564
	1000	0.8511	0.00	0.7580	0.89	0.7944	0.11	0.7621		1000	0.3235	0.19	0.7414	0.77	0.8389	0.03	0.6636
	1100	0.8514	0.00	0.7838	0.89	0.7807	0.11	0.7834		1100	0.2919	0.18	0.7032	0.78	0.8219	0.03	0.6319
	1200	0.8524	0.00	0.7775	0.88	0.7740	0.12	0.7770		1200	0.2813	0.16	0.6895	0.81	0.8145	0.03	0.6277
	1300	0.8526	0.00	0.7930	0.92	0.7749	0.08	0.7916		1300	0.2789	0.16	0.6918	0.82	0.8160	0.02	0.6279
	1400	0.8515	0.00	0.7800	0.93	0.7829	0.07	0.7802		1400	0.3040	0.19	0.7119	0.78	0.8263	0.02	0.6354
	1500	0.8520	0.00	0.7588	0.97	0.7977	0.03	0.7601		1500	0.3581	0.20	0.7600	0.77	0.8459	0.02	0.6798
	1600	0.8591	0.00	0.7760	0.93	0.8209	0.07	0.7790		1600	0.4695	0.17	0.8408	0.81	0.8777	0.02	0.7777
	1700	0.8774	0.00	0.8328	0.93	0.8539	0.07	0.8342		1700	0.7584	0.15	0.9362	0.83	0.9265	0.02	0.9092

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 11

Date	Time	$\mathrm{PE}_{S,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	P_O	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathrm{PE}_{S,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BD,O}$	\mathbf{P}_O	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.9546	0.05	0.7033	0.80	0.3849	0.15	0.6689	21-Jul-10	0900	0.6181	0.00	0.7540	0.92	0.5342	0.08	0.7374
	1000	0.9769	0.06	0.8341	0.81	0.4813	0.13	0.7978		1000	0.6358	0.00	0.7570	0.91	0.5946	0.09	0.7430
	1100	0.9786	0.06	0.8712	0.81	0.5359	0.13	0.8349		1100	0.6295	0.00	0.6672	0.91	0.6295	0.09	0.6639
	1200	0.9755	0.08	0.8720	0.80	0.5616	0.13	0.8397		1200	0.6156	0.00	0.5470	0.91	0.6452	0.09	0.5554
	1300	0.9459	0.08	0.8531	0.83	0.5631	0.10	0.8321		1300	0.5933	0.00	0.5065	0.96	0.6447	0.04	0.5125
	1400	0.7881	0.08	0.8182	0.84	0.5411	0.09	0.7921		1400	0.5647	0.00	0.5746	0.97	0.6289	0.03	0.5764
	1500	0.7500	0.09	0.7528	0.83	0.4916	0.09	0.7301		1500	0.5478	0.00	0.6430	0.97	0.5933	0.03	0.6414
	1600	0.6953	0.11	0.6080	0.83	0.4014	0.06	0.6040		1600	0.5271	0.00	0.6271	0.97	0.5324	0.03	0.6241
	1700	0.5188	0.10	0.3041	0.83	0.2496	0.08	0.3208		1700	0.4813	0.00	0.5065	0.95	0.4335	0.05	0.5026
21-Feb-10	0900	0.9261	0.04	0.7506	0.89	0.4310	0.07	0.7342	21-Aug-10	0900	0.6648	0.00	0.7781	0.92	0.5253	0.08	0.7591
	1000	0.9563	0.02	0.8467	0.89	0.5216	0.08	0.8225		1000	0.6973	0.00	0.7951	0.92	0.5891	0.08	0.7796
	1100	0.9557	0.02	0.8669	0.88	0.5716	0.09	0.8412		1100	0.6940	0.00	0.7322	0.90	0.6253	0.10	0.7219
	1200	0.9484	0.04	0.8546	0.87	0.5960	0.09	0.8336		1200	0.6780	0.00	0.6181	0.92	0.6414	0.08	0.6198
	1300	0.9022	0.05	0.8313	0.92	0.5980	0.04	0.8264		1300	0.6532	0.00	0.5848	0.90	0.6403	0.10	0.5902
	1400	0.7554	0.04	0.8067	0.92	0.5798	0.05	0.7942		1400	0.6253	0.00	0.6490	0.90	0.6223	0.10	0.6464
	1500	0.7232	0.02	0.7652	0.92	0.5359	0.06	0.7507		1500	0.5912	0.00	0.6851	0.91	0.5834	0.09	0.6763
	1600	0.6824	0.02	0.6633	0.92	0.4571	0.06	0.6516		1600	0.5428	0.00	0.6436	0.91	0.5161	0.09	0.6326
	1700	0.5584	0.04	0.4210	0.91	0.3226	0.06	0.4201		1700	0.4694	0.00	0.4875	0.90	0.4027	0.10	0.4793
21-Mar-10	0900	0.7589	0.04	0.7857	0.83	0.4875	0.13	0.7461	21-Sep-10	0900	0.7621	0.02	0.8060	0.92	0.5123	0.06	0.7887
	1000	0.7849	0.03	0.8388	0.85	0.5624	0.12	0.8044		1000	0.7800	0.00	0.8375	0.96	0.5776	0.04	0.8260
	1100	0.7784	0.03	0.8273	0.87	0.6047	0.10	0.8042		1100	0.7672	0.01	0.8118	0.96	0.6131	0.03	0.8047
	1200	0.7584	0.03	0.7806	0.86	0.6241	0.11	0.7631		1200	0.7450	0.01	0.7589	0.93	0.6277	0.06	0.7515
	1300	0.7319	0.02	0.7486	0.90	0.6241	0.08	0.7388		1300	0.7168	0.00	0.7371	0.97	0.6235	0.03	0.7333
	1400	0.7033	0.03	0.7503	0.88	0.6054	0.09	0.7363		1400	0.6890	0.00	0.7447	0.97	0.6001	0.03	0.7399
	1500	0.6733	0.03	0.7380	0.87	0.5639	0.10	0.7191		1500	0.6557	0.00	0.7252	0.98	0.5519	0.02	0.7214
	1600	0.6235	0.03	0.6633	0.89	0.4896	0.08	0.6489		1600	0.5987	0.00	0.6312	0.99	0.4683	0.01	0.6294
	1700	0.5132	0.03	0.4605	0.89	0.3632	0.08	0.4549		1700	0.4661	0.00	0.3932	0.99	0.3275	0.01	0.3925
21-Apr-10	0900	0.6743	0.00	0.7842	0.88	0.5306	0.12	0.7532	21-Oct-10	0900	0.9508	0.03	0.8130	0.97	0.4834	0.00	0.8174
	1000	0.7001	0.00	0.7965	0.90	0.5919	0.10	0.7760		1000	0.9521	0.04	0.8621	0.96	0.5511	0.00	0.8660
	1100	0.6997	0.00	0.7303	0.89	0.6265	0.11	0.7188		1100	0.9510	0.01	0.8624	0.99	0.5877	0.00	0.8634
	1200	0.6829	0.00	0.6211	0.90	0.6414	0.10	0.6231		1200	0.9352	0.00	0.8420	1.00	0.6007	0.00	0.8420
	1300	0.6573	0.00	0.5974	0.92	0.6392	0.08	0.6006		1300	0.8231	0.02	0.8181	0.97	0.5926	0.01	0.8158
	1400	0.6271	0.00	0.6603	0.92	0.6193	0.08	0.6571		1400	0.7396	0.02	0.7898	0.97	0.5631	0.01	0.7863
	1500	0.5940	0.00	0.6881	0.89	0.5783	0.11	0.6759		1500	0.7029	0.02	0.7269	0.97	0.5046	0.01	0.7240
	1600	0.5385	0.00	0.6375	0.89	0.5075	0.11	0.6230		1600	0.6347	0.01	0.5701	0.98	0.4014	0.01	0.5690
	1700	0.4605	0.00	0.4661	0.88	0.3891	0.12	0.4567		1700	0.4133	0.03	0.2439	0.96	0.2281	0.01	0.2492
21-May-10	0900	0.6259	0.02	0.7624	0.96	0.5453	0.02	0.7548	21-Nov-10	0900	0.9711	0.12	0.7779	0.84	0.4335	0.03	0.7900
	1000	0.6386	0.01	0.7523	0.97	0.6014	0.02	0.7478		1000	0.9781	0.17	0.8566	0.80	0.5094	0.03	0.8653
	1100	0.6335	0.01	0.6484	0.94	0.6329	0.05	0.6474		1100	0.9786	0.17	0.8747	0.80	0.5511	0.03	0.8812
	1200	0.6143	0.02	0.5701	0.91	0.6458	0.06	0.5759		1200	0.9688	0.14	0.8658	0.82	0.5662	0.03	0.8707
	1300	0.5926	0.01	0.5046	0.94	0.6430	0.05	0.5130		1300	0.8966	0.12	0.8407	0.83	0.5584	0.04	0.8350
	1400	0.5655	0.02	0.5946	0.88	0.6241	0.10	0.5969		1400	0.7687	0.16	0.7967	0.79	0.5253	0.06	0.7773
	1500	0.5461	0.02	0.6484	0.90	0.5855	0.08	0.6415		1500	0.7326	0.16	0.7076	0.79	0.4617	0.06	0.6978
	1600	0.5225	0.02	0.6174	0.89	0.5188	0.09	0.6069		1600	0.6447	0.16	0.5056	0.79	0.3496	0.06	0.5185
	1700	0.4683	0.02	0.4749	0.88	0.4120	0.10	0.4686		1700	0.3387	0.13	0.1515	0.80	0.1604	0.07	0.1770
21-Jun-10	0900	0.6073	0.00	0.7480	0.89	0.5428	0.11	0.7252	21-Dec-10	0900	0.9663	0.14	0.7186	0.85	0.3877	0.01	0.7497
	1000	0.6211	0.00	0.7389	0.89	0.5994	0.11	0.7234		1000	0.9802	0.19	0.8362	0.77	0.4781	0.03	0.8525
	1100	0.6131	0.00	0.6358	0.89	0.6312	0.11	0.6353		1100	0.9809	0.18	0.8697	0.78	0.5271	0.03	0.8790
	1200	0.5940	0.00	0.5342	0.88	0.6458	0.12	0.5478		1200	0.9769	0.16	0.8687	0.81	0.5478	0.03	0.8758
	1300	0.5731	0.00	0.4813	0.92	0.6441	0.08	0.4939		1300	0.9363	0.16	0.8468	0.82	0.5445	0.03	0.8547
	1400	0.5552	0.00	0.5639	0.92	0.6271	0.03	0.5681		1400	0.7824	0.19	0.8030	0.78	0.5161	0.02	0.7929
	1500	0.5332	0.00	0.6312	0.97	0.5912	0.07	0.6299		1500	0.7471	0.20	0.7161	0.77	0.4560	0.02	0.7168
	1600	0.5225	0.00	0.6312	0.93	0.5297	0.03	0.6087		1600	0.6715	0.20	0.5243	0.77	0.4500	0.02	0.7168
	1700	0.5225	0.00	0.6143	0.93	0.5297	0.07	0.4895		1700	0.6715	0.17	0.5243	0.81	0.3311	0.02	0.5459
	1700	0.4792	0.00	0.493/	0.93	0.4310	0.07	0.4693		1700	0.3603	0.13	0.1602	0.63	0.1/39	0.02	0.2111

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 11

	0900 11000 1100 1200 1300 1400 1500 1600 1700 0900	0.9488 0.9705 0.9793 0.9823 0.9825 0.9803 0.9729 0.9561 0.8886	0.05 0.06 0.06 0.08 0.08 0.08 0.09	0.8465 0.9108 0.9326 0.9395 0.9401 0.9347	0.80 0.81 0.81 0.80	0.7271 0.7873 0.8160	0.15 0.13	0.8340 0.8987	21-Jul-10	0900	0.8225	0.00	0.8823	0.92	0.8152	0.08	0.8773
	1100 1200 1300 1400 1500 1600 1700	0.9793 0.9823 0.9825 0.9803 0.9729 0.9561	0.06 0.08 0.08 0.08 0.09	0.9326 0.9395 0.9401	0.81		0.13	0.0007									
	1200 1300 1400 1500 1600 1700	0.9823 0.9825 0.9803 0.9729 0.9561	0.08 0.08 0.08 0.09	0.9395 0.9401		0.8160				1000	0.8366	0.00	0.8921	0.91	0.8439	0.09	0.8880
	1300 1400 1500 1600 1700	0.9825 0.9803 0.9729 0.9561	0.08 0.08 0.09	0.9401	0.80		0.13	0.9206		1100	0.8439	0.00	0.8735	0.91	0.8738	0.09	0.8735
	1400 1500 1600 1700	0.9803 0.9729 0.9561	0.08			0.8284	0.13	0.9284		1200	0.8505	0.00	0.8650	0.91	0.8659	0.09	0.8650
	1500 1600 1700 0900	0.9729 0.9561	0.09	0.9347	0.83	0.8292	0.10	0.9325		1300	0.8505	0.00	0.8638	0.96	0.8659	0.04	0.8638
	1600 1700 0900	0.9561			0.84	0.8185	0.09	0.9281		1400	0.8434	0.00	0.8750	0.97	0.8589	0.03	0.8745
	1700 0900		0.11	0.9163	0.83	0.7926	0.09	0.9106		1500	0.8376	0.00	0.8933	0.97	0.8433	0.03	0.8917
	0900	0.8886	0.11	0.8620	0.83	0.7387	0.06	0.8642		1600	0.8231	0.00	0.8830	0.97	0.8143	0.03	0.8808
			0.10	0.6791	0.83	0.6112	0.08	0.6942		1700	0.7885	0.00	0.8264	0.95	0.7591	0.05	0.8227
21-Feb-10	1000	0.9484	0.04	0.8713	0.89	0.7582	0.07	0.8660	21-Aug-10	0900	0.8430	0.00	0.8913	0.92	0.8106	0.08	0.8852
		0.9709	0.02	0.9191	0.89	0.8084	0.08	0.9112		1000	0.9135	0.00	0.9064	0.92	0.8415	0.08	0.9015
	1100	0.9800	0.02	0.9338	0.88	0.8333	0.09	0.9255		1100	0.9421	0.00	0.8963	0.90	0.8576	0.10	0.8925
	1200	0.9840	0.04	0.9369	0.87	0.8444	0.09	0.9298		1200	0.9541	0.00	0.8816	0.92	0.8644	0.08	0.8803
	1300	0.9846	0.05	0.9372	0.92	0.8456	0.04	0.9362		1300	0.9540	0.00	0.8824	0.90	0.8640	0.10	0.8806
	1400	0.9819	0.04	0.9357	0.92	0.8370	0.05	0.9327		1400	0.9410	0.00	0.8991	0.90	0.8563	0.10	0.8950
	1500	0.9746	0.02	0.9253	0.92	0.7057	0.06	0.9135		1500	0.9041	0.00	0.9071	0.91	0.8389	0.09	0.9012
	1600	0.9575	0.02	0.8893	0.92	0.7736	0.06	0.8841		1600	0.8422	0.00	0.8886	0.91	0.8057	0.09	0.8815
	1700	0.9066	0.04	0.7707	0.91	0.6806	0.06	0.7702		1700	0.7925	0.00	0.8152	0.90	0.7397	0.10	0.8079
21-Mar-10	0900	0.9394	0.04	0.8911	0.83	0.7906	0.13	0.8802	21-Sep-10	0900	0.9450	0.02	0.9015	0.92	0.8036	0.06	0.8970
	1000	0.9659	0.03	0.9201	0.85	0.8290	0.12	0.9108		1000	0.9673	0.00	0.9217	0.96	0.8360	0.04	0.9179
	1100	0.9759	0.03	0.9244	0.87	0.8485	0.10	0.9187		1100	0.9756	0.01	0.9217	0.96	0.8522	0.03	0.9200
	1200	0.9800	0.03	0.9198	0.86	0.8569	0.11	0.9150		1200	0.9784	0.01	0.9167	0.93	0.8585	0.06	0.9142
	1300	0.9801	0.02	0.9201	0.90	0.8570	0.08	0.9166		1300	0.9779	0.00	0.9189	0.97	0.8568	0.03	0.9168
	1400	0.9764	0.02	0.9250	0.88	0.8488	0.09	0.9201		1400	0.9779	0.00	0.9240	0.97	0.8368	0.03	0.9214
	1500	0.9667	0.03	0.9230	0.87	0.8295	0.10	0.9201		1500	0.9602	0.00	0.9240	0.97	0.8238	0.03	0.9214
	1600	0.9408	0.03	0.8934	0.89	0.7915	0.08	0.8872		1600	0.9266	0.00	0.8807	0.99	0.7801	0.02	0.8796
	1700	0.8464	0.03	0.8934	0.89	0.7913	0.08	0.7930		1700	0.9200	0.00	0.7561	0.99	0.6848	0.01	0.7553
21-Apr-10	0900	0.8616	0.00	0.8943	0.88	0.8133	0.12	0.8844	21-Oct-10	0900	0.9623	0.03	0.9018	0.97	0.7881	0.00	0.9037
21-Apr-10	1000	0.9193	0.00	0.9075	0.90	0.8428	0.12	0.9011	21-001-10	1000	0.9766	0.03	0.9287	0.96	0.8235	0.00	0.9308
	1100	0.9485	0.00	0.8968	0.89	0.8580	0.10	0.8925		1100	0.9700	0.04	0.9257	0.99	0.8233	0.00	0.9363
	1200	0.9483	0.00	0.8836	0.89	0.8643	0.11	0.8923		1200	0.9827	0.00	0.9358	1.00	0.8466	0.00	0.9368
	1300	0.9587	0.00	0.8855	0.90	0.8633	0.10	0.8817		1300	0.9840	0.00	0.9368	0.97	0.8466	0.00	0.9368
			0.00	0.8833	0.92	0.8549		0.8985		1400	0.9840	0.02	0.9308	0.97	0.8293	0.01	0.9308
	1400	0.9410					0.08										
	1500	0.9102	0.00	0.9075	0.89	0.8364	0.11	0.8996		1500	0.9681	0.02	0.9129	0.97	0.7996	0.01	0.9129
	1600	0.8394	0.00	0.8859	0.89	0.8012	0.11	0.8764		1600	0.9405	0.01	0.8501	0.98	0.7388	0.01	0.8498
	1700	0.7869	0.00	0.8036	0.88	0.7302	0.12	0.7947		1700	0.8296	0.03	0.6254	0.96	0.5893	0.01	0.6316
21-May-10	0900	0.8265	0.02	0.8868	0.96	0.8207	0.02	0.8841	21-Nov-10	0900	0.9611	0.12	0.8829	0.84	0.7590	0.03	0.8884
	1000	0.8392	0.01	0.8928	0.97	0.8469	0.02	0.8913		1000	0.9751	0.17	0.9231	0.80	0.8026	0.03	0.9277
	1100	0.8485	0.01	0.8704	0.94	0.8607	0.05	0.8696		1100	0.9809	0.17	0.9367	0.80	0.8234	0.03	0.9403
	1200	0.8520	0.02	0.8806	0.91	0.8663	0.06	0.8791		1200	0.9831	0.14	0.9404	0.82	0.8306	0.03	0.9429
	1300	0.8519	0.01	0.8596	0.94	0.8652	0.05	0.8598		1300	0.9819	0.12	0.9388	0.83	0.8268	0.04	0.9391
	1400	0.8454	0.02	0.8809	0.88	0.8570	0.10	0.8778		1400	0.9783	0.16	0.9296	0.79	0.8107	0.06	0.9306
	1500	0.8372	0.02	0.8947	0.90	0.8397	0.08	0.8893		1500	0.9683	0.16	0.8535	0.79	0.7758	0.06	0.8671
	1600	0.8205	0.02	0.8786	0.89	0.8076	0.09	0.8713		1600	0.9394	0.16	0.8143	0.79	0.7015	0.06	0.8275
	1700	0.7799	0.02	0.8100	0.88	0.7453	0.10	0.8031		1700	0.7796	0.13	0.4989	0.80	0.4998	0.07	0.5364
21-Jun-10	0900	0.8192	0.00	0.8808	0.89	0.8194	0.11	0.8740	21-Dec-10	0900	0.9531	0.14	0.8536	0.85	0.7297	0.01	0.8662
	1000	0.8315	0.00	0.8862	0.89	0.8459	0.11	0.8818		1000	0.9718	0.19	0.9120	0.77	0.7852	0.03	0.9195
	1100	0.8368	0.00	0.8634	0.89	0.8601	0.11	0.8630		1100	0.9789	0.18	0.9322	0.78	0.8116	0.03	0.9369
	1200	0.8384	0.00	0.8639	0.88	0.8662	0.12	0.8642		1200	0.9817	0.16	0.9386	0.81	0.8218	0.03	0.9418
	1300	0.8388	0.00	0.8514	0.92	0.8657	0.08	0.8525		1300	0.9814	0.16	0.9171	0.82	0.8201	0.02	0.9254
	1400	0.8369	0.00	0.8698	0.93	0.8584	0.07	0.8690		1400	0.9780	0.19	0.9288	0.78	0.8057	0.02	0.9357
	1500	0.8313	0.00	0.8885	0.97	0.8425	0.03	0.8870		1500	0.9692	0.20	0.9017	0.77	0.7729	0.02	0.9128
	1600	0.8170	0.00	0.8776	0.93	0.8129	0.07	0.8733		1600	0.9456	0.17	0.8213	0.81	0.7030	0.02	0.8401
	1700	0.7824	0.00	0.8077	0.93	0.7572	0.07	0.8044		1700	0.8164	0.15	0.5387	0.83	0.5218	0.02	0.5802

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 11

Date	Time	$\mathbf{P}_{ES,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,UD,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{EX,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,UD,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,UD,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.1331	0.05	0.6473	0.80	0.5907	0.15	0.6111	21-Jul-10	0900	0.6860	0.00	0.6143	0.92	0.5911	0.08	0.6126
	1000	0.0905	0.06	0.6347	0.81	0.5953	0.13	0.5945		1000	0.6723	0.00	0.5907	0.91	0.5925	0.09	0.5909
	1100	0.0882	0.06	0.6173	0.81	0.5906	0.13	0.5797		1100	0.6716	0.00	0.5594	0.91	0.5932	0.09	0.5623
	1200	0.0882	0.08	0.6016	0.80	0.5934	0.13	0.5619		1200	0.6875	0.00	0.4995	0.91	0.5910	0.09	0.5074
	1300	0.1442	0.08	0.6089	0.83	0.5929	0.10	0.5724		1300	0.7080	0.00	0.5230	0.96	0.5927	0.04	0.5260
	1400	0.7952	0.08	0.6400	0.84	0.5935	0.09	0.6477		1400	0.7221	0.00	0.6228	0.97	0.5917	0.03	0.6218
	1500	0.8519	0.09	0.6747	0.83	0.5920	0.09	0.6829		1500	0.7493	0.00	0.6609	0.97	0.5930	0.03	0.6587
	1600	0.8719	0.11	0.6985	0.83	0.5928	0.06	0.7103		1600	0.7713	0.00	0.6878	0.97	0.5917	0.03	0.6847
	1700	0.8559	0.10	0.7007	0.83	0.5885	0.08	0.7073		1700	0.7895	0.00	0.6995	0.95	0.5928	0.05	0.6938
21-Feb-10	0900	0.1588	0.04	0.6258	0.89	0.5936	0.07	0.6071	21-Aug-10	0900	0.6779	0.00	0.6185	0.92	0.5939	0.08	0.6166
	1000	0.1168	0.02	0.6061	0.89	0.5903	0.08	0.5932		1000	0.6931	0.00	0.5905	0.92	0.5944	0.08	0.5908
	1100	0.1198	0.02	0.5799	0.88	0.5922	0.09	0.5702		1100	0.6955	0.00	0.5520	0.90	0.5929	0.10	0.5560
	1200	0.1284	0.04	0.5606	0.87	0.5921	0.09	0.5483		1200	0.7105	0.00	0.5189	0.92	0.5939	0.08	0.5245
	1300	0.2346	0.05	0.5738	0.92	0.5933	0.04	0.5585		1300	0.7397	0.00	0.5451	0.90	0.5942	0.10	0.5499
	1400	0.7950	0.04	0.6347	0.92	0.5916	0.05	0.6383		1400	0.7662	0.00	0.6213	0.90	0.5922	0.10	0.6185
	1500	0.8364	0.02	0.6741	0.92	0.5952	0.06	0.6733		1500	0.7760	0.00	0.6701	0.91	0.5924	0.09	0.6634
	1600	0.8594	0.02	0.7030	0.92	0.5915	0.06	0.7001		1600	0.7761	0.00	0.6983	0.91	0.5920	0.09	0.6891
	1700	0.8557	0.04	0.7108	0.91	0.5899	0.06	0.7088		1700	0.7808	0.00	0.7046	0.90	0.5960	0.10	0.6941
21-Mar-10	0900	0.6542	0.04	0.6091	0.83	0.5933	0.13	0.6090	21-Sep-10	0900	0.6574	0.02	0.6013	0.92	0.5932	0.06	0.6021
21-Mai-10	1000	0.6692	0.04	0.5818	0.85	0.5911	0.13	0.5857	21-Sep-10	1000	0.6778	0.02	0.5748	0.92	0.5903	0.04	0.5755
	1100	0.6985	0.03	0.5539	0.83	0.5947	0.12	0.5625		1100	0.6988	0.00	0.5455	0.96	0.5936	0.04	0.5733
	1200	0.6985	0.03		0.86	0.5947	0.10			1200	0.7290	0.01		0.96		0.03	
				0.5467				0.5575					0.5461		0.5921		0.5506
	1300	0.7575	0.02	0.5720	0.90	0.5933	0.08	0.5776		1300	0.7558	0.00	0.5822	0.97	0.5918	0.03	0.5825
	1400	0.7905	0.03	0.6289	0.88	0.5927	0.09	0.6310		1400	0.7940	0.00	0.5989	0.97	0.5908	0.03	0.5987
	1500	0.8224	0.03	0.6744	0.87	0.5906	0.10	0.6711		1500	0.8203	0.00	0.6826	0.98	0.5922	0.02	0.6806
	1600 1700	0.8344 0.8338	0.03	0.7005 0.7045	0.89	0.5927	0.08	0.6967 0.7003		1600 1700	0.8314 0.8266	0.00	0.7038 0.7013	0.99	0.5939	0.01	0.7026 0.7001
21-Apr-10	0900	0.6794	0.00	0.6175	0.88	0.5922	0.12	0.6144	21-Oct-10	0900	0.1205	0.03	0.6147	0.97	0.5892	0.00	0.5987
	1000	0.6944	0.00	0.5875	0.90	0.5934	0.10	0.5881		1000	0.1290	0.04	0.5907	0.96	0.5947	0.00	0.5709
	1100	0.6980	0.00	0.5525	0.89	0.5925	0.11	0.5569		1100	0.1263	0.01	0.5697	0.99	0.5910	0.00	0.5649
	1200	0.7148	0.00	0.5169	0.90	0.5907	0.10	0.5243		1200	0.1522	0.00	0.5597	1.00	0.5924	0.00	0.5597
	1300	0.7413	0.00	0.5507	0.92	0.5915	0.08	0.5539		1300	0.5370	0.02	0.6038	0.97	0.5951	0.01	0.6023
	1400	0.7660	0.00	0.6277	0.92	0.5916	0.08	0.6248		1400	0.8190	0.02	0.6553	0.97	0.5929	0.01	0.6582
	1500	0.7792	0.00	0.6742	0.89	0.5921	0.11	0.6650		1500	0.8496	0.02	0.6923	0.97	0.5906	0.01	0.6946
	1600	0.7810	0.00	0.6982	0.89	0.5922	0.11	0.6865		1600	0.8594	0.01	0.7065	0.98	0.5928	0.01	0.7069
	1700	0.7834	0.00	0.7035	0.88	0.5932	0.12	0.6900		1700	0.8347	0.03	0.7007	0.96	0.5905	0.01	0.7039
21-May-10	0900	0.6827	0.02	0.6091	0.96	0.5944	0.02	0.6104	21-Nov-10	0900	0.0990	0.12	0.6430	0.84	0.5928	0.03	0.5749
	1000	0.6721	0.01	0.5857	0.97	0.5904	0.02	0.5868		1000	0.0885	0.17	0.6285	0.80	0.5916	0.03	0.5372
	1100	0.6737	0.01	0.5529	0.94	0.5920	0.05	0.5563		1100	0.0858	0.17	0.6076	0.80	0.5903	0.03	0.5201
	1200	0.6883	0.02	0.4848	0.91	0.5924	0.06	0.4961		1200	0.0985	0.14	0.6002	0.82	0.5919	0.03	0.5275
	1300	0.7069	0.01	0.5389	0.94	0.5917	0.05	0.5436		1300	0.3020	0.12	0.6156	0.83	0.5902	0.04	0.5761
	1400	0.7301	0.02	0.6218	0.88	0.5933	0.10	0.6214		1400	0.8343	0.16	0.6575	0.79	0.5939	0.06	0.6815
	1500	0.7539	0.02	0.6691	0.90	0.5936	0.08	0.6652		1500	0.8655	0.16	0.6923	0.79	0.5901	0.06	0.7136
	1600	0.7730	0.02	0.6909	0.89	0.5936	0.09	0.6843		1600	0.8681	0.16	0.7023	0.79	0.5944	0.06	0.7221
	1700	0.7916	0.02	0.6981	0.88	0.5894	0.10	0.6896		1700	0.8424	0.13	0.7007	0.80	0.5879	0.07	0.7121
21-Jun-10	0900	0.6880	0.00	0.6145	0.89	0.5930	0.11	0.6121	21-Dec-10	0900	0.1219	0.14	0.6570	0.85	0.5974	0.01	0.5816
	1000	0.6765	0.00	0.5900	0.89	0.5928	0.11	0.5903	2	1000	0.0894	0.19	0.6474	0.77	0.5936	0.03	0.5377
	1100	0.6829	0.00	0.5604	0.89	0.5942	0.11	0.5641		1100	0.0856	0.18	0.6313	0.78	0.5934	0.03	0.5303
	1200	0.6865	0.00	0.3004	0.88	0.5924	0.11	0.5041		1200	0.0830	0.16	0.6170	0.78	0.5914	0.03	0.5303
	1300	0.0803	0.00	0.4924	0.92	0.5945	0.12	0.5332		1300	0.0881	0.16	0.6250	0.82	0.5924	0.03	0.5518
	1400	0.7114	0.00	0.5280	0.92	0.5945	0.08	0.6213		1400	0.1751	0.10	0.6230	0.82	0.5924	0.02	0.5518
	1500	0.7541	0.00	0.5079	0.97	0.5918	0.03	0.5107		1500	0.8630	0.20	0.6809	0.77	0.5949	0.02	0.7163
	1600 1700	0.7695	0.00	0.6852	0.93	0.5948	0.07	0.6792		1600 1700	0.8740	0.17	0.6992	0.81	0.5894	0.02	0.7269
	1700	0.7873	0.00	0.6961	0.93	0.5936	0.07	0.6893		1 /00	0.8483	0.15	0.6962	0.83	0.5899	0.02	0.7168

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 11

Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,US,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,US,O}$	P_O	$\mathbf{P}_{ES,US,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,US,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,US,O}$	P_O	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9568	0.05	0.9535	0.80	0.9587	0.15	0.9544	21-Jul-10	0900	0.9532	0.00	0.9568	0.92	0.9588	0.08	0.9569
	1000	0.9591	0.06	0.9539	0.81	0.9588	0.13	0.9549		1000	0.9542	0.00	0.9586	0.91	0.9587	0.09	0.9586
	1100	0.9600	0.06	0.9546	0.81	0.9587	0.13	0.9555		1100	0.9554	0.00	0.9611	0.91	0.9615	0.09	0.9611
	1200	0.9602	0.08	0.9550	0.80	0.9587	0.13	0.9559		1200	0.9555	0.00	0.9640	0.91	0.9588	0.09	0.9636
	1300	0.9587	0.08	0.9549	0.83	0.9588	0.10	0.9556		1300	0.9553	0.00	0.9640	0.96	0.9588	0.04	0.9638
	1400	0.9582	0.08	0.9544	0.84	0.9587	0.09	0.9551		1400	0.9554	0.00	0.9609	0.97	0.9588	0.03	0.9608
	1500	0.9573	0.09	0.9537	0.83	0.9588	0.09	0.9544		1500	0.9540	0.00	0.9583	0.97	0.9590	0.03	0.9583
	1600	0.9570	0.11	0.9532	0.83	0.9588	0.06	0.9540		1600	0.9531	0.00	0.9564	0.97	0.9587	0.03	0.9565
	1700	0.9498	0.10	0.9534	0.83	0.9589	0.08	0.9535		1700	0.9515	0.00	0.9553	0.95	0.9588	0.05	0.9555
21-Feb-10	0900	0.9611	0.04	0.9544	0.89	0.9587	0.07	0.9550	21-Aug-10	0900	0.9537	0.00	0.9564	0.92	0.9588	0.08	0.9566
	1000	0.9650	0.02	0.9554	0.89	0.9588	0.08	0.9559		1000	0.9639	0.00	0.9583	0.92	0.9588	0.08	0.9584
	1100	0.9670	0.02	0.9566	0.88	0.9588	0.09	0.9571		1100	0.9667	0.00	0.9608	0.90	0.9588	0.10	0.9606
	1200	0.9680	0.04	0.9576	0.87	0.9588	0.09	0.9580		1200	0.9676	0.00	0.9632	0.92	0.9587	0.08	0.9629
	1300	0.9679	0.05	0.9576	0.92	0.9587	0.04	0.9581		1300	0.9676	0.00	0.9629	0.90	0.9588	0.10	0.9625
	1400	0.9670	0.04	0.9566	0.92	0.9588	0.05	0.9571		1400	0.9663	0.00	0.9603	0.90	0.9588	0.10	0.9601
	1500	0.9649	0.02	0.9553	0.92	0.8620	0.06	0.9501		1500	0.9624	0.00	0.9578	0.91	0.9587	0.09	0.9578
	1600	0.9617	0.02	0.9542	0.92	0.9588	0.06	0.9547		1600	0.9534	0.00	0.9560	0.91	0.9588	0.09	0.9562
	1700	0.9542	0.04	0.9538	0.91	0.9587	0.06	0.9541		1700	0.9515	0.00	0.9549	0.90	0.9588	0.10	0.9553
21-Mar-10	0900	0.9629	0.04	0.9555	0.83	0.9587	0.13	0.9562	21-Sep-10	0900	0.9638	0.02	0.9559	0.92	0.9588	0.06	0.9562
	1000	0.9669	0.03	0.9571	0.85	0.9588	0.12	0.9576		1000	0.9672	0.00	0.9576	0.96	0.9588	0.04	0.9577
	1100	0.9682	0.03	0.9590	0.87	0.9587	0.10	0.9593		1100	0.9683	0.01	0.9596	0.96	0.9588	0.03	0.9596
	1200	0.9687	0.03	0.9604	0.86	0.9587	0.11	0.9605		1200	0.9686	0.01	0.9609	0.93	0.9588	0.06	0.9608
	1300	0.9686	0.02	0.9604	0.90	0.9588	0.08	0.9604		1300	0.9684	0.00	0.9603	0.97	0.9587	0.03	0.9602
	1400	0.9679	0.03	0.9587	0.88	0.9588	0.09	0.9590		1400	0.9676	0.00	0.9585	0.97	0.9588	0.03	0.9585
	1500	0.9664	0.03	0.9568	0.87	0.9588	0.10	0.9573		1500	0.9656	0.00	0.9565	0.98	0.9588	0.02	0.9565
	1600	0.9621	0.03	0.9552	0.89	0.9587	0.08	0.9557		1600	0.9602	0.00	0.9549	0.99	0.9588	0.01	0.9550
	1700	0.9543	0.03	0.9544	0.89	0.9587	0.08	0.9547		1700	0.9528	0.00	0.9545	0.99	0.9588	0.01	0.9545
21-Apr-10	0900	0.9572	0.00	0.9565	0.88	0.9588	0.12	0.9568	21-Oct-10	0900	0.9639	0.03	0.9549	0.97	0.9587	0.00	0.9552
	1000	0.9646	0.00	0.9584	0.90	0.9588	0.10	0.9584		1000	0.9664	0.04	0.9560	0.96	0.9588	0.00	0.9565
	1100	0.9672	0.00	0.9609	0.89	0.9587	0.11	0.9607		1100	0.9678	0.01	0.9572	0.99	0.9587	0.00	0.9573
	1200	0.9679	0.00	0.9632	0.90	0.9587	0.10	0.9627		1200	0.9680	0.00	0.9578	1.00	0.9588	0.00	0.9578
	1300	0.9678	0.00	0.9626	0.92	0.9588	0.08	0.9623		1300	0.9678	0.02	0.9573	0.97	0.9588	0.01	0.9576
	1400	0.9663	0.00	0.9600	0.92	0.9588	0.08	0.9599		1400	0.9665	0.02	0.9561	0.97	0.9588	0.01	0.9564
	1500	0.9631	0.00	0.9574	0.89	0.9588	0.11	0.9576		1500	0.9642	0.02	0.9548	0.97	0.9587	0.01	0.9551
	1600	0.9531	0.00	0.9558	0.89	0.9588	0.11	0.9561		1600	0.9590	0.01	0.9540	0.98	0.9588	0.01	0.9541
	1700	0.9514	0.00	0.9549	0.88	0.9588	0.12	0.9554		1700	0.9513	0.03	0.9541	0.96	0.9588	0.01	0.9541
21-May-10	0900	0.9535	0.02	0.9570	0.96	0.9588	0.02	0.9570	21-Nov-10	0900	0.9587	0.12	0.9536	0.84	0.9588	0.03	0.9544
	1000	0.9546	0.01	0.9588	0.97	0.9587	0.02	0.9588		1000	0.9596	0.17	0.9542	0.80	0.9588	0.03	0.9553
	1100	0.9554	0.01	0.9615	0.94	0.9587	0.02	0.9613		1100	0.9607	0.17	0.9549	0.80	0.9588	0.03	0.9560
	1200	0.9556	0.02	0.9644	0.91	0.9588	0.06	0.9639		1200	0.9605	0.17	0.9551	0.82	0.9588	0.03	0.9560
	1300	0.9554	0.02	0.9634	0.91	0.9588	0.05	0.9631		1300	0.9589	0.14	0.9531	0.82	0.9587	0.03	0.9555
	1400	0.9551	0.02	0.9604	0.88	0.9588	0.10	0.9601		1400	0.9585	0.12	0.9541	0.79	0.9588	0.04	0.9551
	1500	0.9537	0.02	0.9579	0.90	0.9588	0.10	0.9579		1500	0.9583	0.16	0.9341	0.79	0.9587	0.06	0.8937
	1600 1700	0.9529 0.9512	0.02	0.9562 0.9554	0.89	0.9588 0.9587	0.09	0.9563 0.9556		1600 1700	0.9545 0.9486	0.16	0.9533 0.9539	0.79	0.9588 0.9586	0.06	0.9538 0.9535
21-Jun-10	0900	0.9530	0.00	0.9569	0.89	0.9588	0.11	0.9571	21-Dec-10	0900	0.9538	0.14	0.9533	0.85	0.9588	0.01	0.9534
21-Jun-10	1000	0.9530	0.00	0.9588	0.89	0.9588	0.11	0.9571	21-1/00-10	1000	0.9558	0.14	0.9535	0.85	0.9588	0.01	0.9534
	1100	0.9541	0.00	0.9588	0.89	0.9588	0.11			1100	0.9557	0.19	0.9535	0.77	0.9587	0.03	
	1200	0.9554	0.00	0.9613	0.89	0.9588	0.11	0.9611 0.9636		1200	0.9557	0.18	0.9539	0.78	0.9588	0.03	0.9544 0.9544
	1300	0.9558	0.00	0.9637	0.92	0.9588	0.08	0.9633		1300	0.9537	0.16	0.9283	0.82	0.9587	0.02	0.9330
	1400	0.9549	0.00	0.9607	0.93	0.9588	0.07	0.9605		1400	0.9527	0.19	0.9535	0.78	0.9588	0.02	0.9535
	1500	0.9536	0.00	0.9581	0.97	0.9588	0.03	0.9582		1500	0.9536	0.20	0.9530	0.77	0.9587	0.02	0.9533
	1600	0.9529	0.00	0.9564	0.93	0.9588	0.07	0.9566		1600	0.9523	0.17	0.9529	0.81	0.9588	0.02	0.9529
	1700	0.9512	0.00	0.9523	0.93	0.9587	0.07	0.9527		1700	0.9476	0.15	0.9539	0.83	0.9589	0.02	0.9531

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 11

Date	Time	$\mathbf{P}_{ES,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,PG,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,PG,R}$	Date	Time	$\mathbf{P}_{EX,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{EXPG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,PG,O}$	\mathbf{P}_{O}	$\mathbf{P}_{EX,PG,R}$
21-Jan-10	0900	0.3785	0.05	0.8753	0.80	0.9207	0.15	0.8555	21-Jul-10	0900	0.9070	0.00	0.8230	0.92	0.8773	0.08	0.8270
	1000	0.2700	0.06	0.7934	0.81	0.8945	0.13	0.7727		1000	0.9013	0.00	0.8054	0.91	0.8545	0.09	0.8096
	1100	0.2276	0.06	0.7443	0.81	0.8767	0.13	0.7280		1100	0.9010	0.00	0.8301	0.91	0.8391	0.09	0.8308
	1200	0.2101	0.08	0.7260	0.80	0.8672	0.13	0.7054		1200	0.9027	0.00	0.8337	0.91	0.8316	0.09	0.8336
	1300	0.2083	0.08	0.7254	0.83	0.8665	0.10	0.7001		1300	0.9028	0.00	0.8367	0.96	0.8314	0.04	0.8365
	1400	0.2301	0.08	0.7407	0.84	0.8748	0.09	0.7138		1400	0.9014	0.00	0.8307	0.97	0.8394	0.03	0.8310
	1500	0.2811	0.09	0.7854	0.83	0.8913	0.09	0.7512		1500	0.9020	0.00	0.8072	0.97	0.8547	0.03	0.8087
	1600	0.3941	0.11	0.8635	0.83	0.9163	0.06	0.8165		1600	0.9079	0.00	0.8262	0.97	0.8774	0.03	0.8279
	1700	0.6624	0.10	0.9485	0.83	0.9511	0.08	0.9210		1700	0.9246	0.00	0.8852	0.95	0.9082	0.05	0.8864
21-Feb-10	0900	0.3804	0.04	0.8462	0.89	0.9086	0.07	0.8341	21-Aug-10	0900	0.8916	0.00	0.8112	0.92	0.8800	0.08	0.8164
	1000	0.2633	0.02	0.7661	0.89	0.8814	0.08	0.7638		1000	0.8928	0.00	0.7813	0.92	0.8564	0.08	0.7870
	1100	0.2170	0.02	0.7274	0.88	0.8635	0.09	0.7282		1100	0.8972	0.00	0.7980	0.90	0.8411	0.10	0.8021
	1200	0.2017	0.04	0.7201	0.87	0.8537	0.09	0.7144		1200	0.9023	0.00	0.8153	0.92	0.8330	0.08	0.8167
	1300	0.2029	0.05	0.7203	0.92	0.8525	0.04	0.7006		1300	0.9029	0.00	0.8163	0.90	0.8337	0.10	0.8180
	1400	0.2253	0.04	0.7248	0.92	0.8605	0.05	0.7136		1400	0.9005	0.00	0.7964	0.90	0.8419	0.10	0.8008
	1500	0.2750	0.02	0.7545	0.92	0.8765	0.06	0.7504		1500	0.8948	0.00	0.7843	0.91	0.8588	0.09	0.7907
	1600	0.3838	0.02	0.8255	0.92	0.9016	0.06	0.8196		1600	0.8956	0.00	0.8197	0.91	0.8836	0.09	0.8252
	1700	0.5926	0.04	0.9192	0.91	0.9349	0.06	0.9086		1700	0.9176	0.00	0.8935	0.90	0.9161	0.10	0.8957
21-Mar-10	0900	0.4636	0.04	0.8147	0.83	0.8922	0.13	0.8096	21-Sep-10	0900	0.4398	0.02	0.7961	0.92	0.8846	0.06	0.7931
	1000	0.3288	0.03	0.7556	0.85	0.8668	0.12	0.7550		1000	0.3213	0.00	0.7507	0.96	0.8615	0.04	0.7556
	1100	0.2628	0.03	0.7438	0.87	0.8501	0.10	0.7386		1100	0.2603	0.01	0.7495	0.96	0.8463	0.03	0.7473
	1200	0.2400	0.03	0.7550	0.86	0.8412	0.11	0.7476		1200	0.2427	0.01	0.7611	0.93	0.8397	0.06	0.7597
	1300	0.2451	0.02	0.7557	0.90	0.8410	0.08	0.7511		1300	0.2531	0.00	0.7782	0.97	0.8418	0.03	0.7803
	1400	0.2807	0.03	0.7454	0.88	0.8494	0.09	0.7394		1400	0.2999	0.00	0.7478	0.97	0.8520	0.03	0.7512
	1500	0.3551	0.03	0.7567	0.87	0.8664	0.10	0.7544		1500	0.3887	0.00	0.7669	0.98	0.8707	0.02	0.7692
	1600	0.4882	0.03	0.8149	0.89	0.8918	0.08	0.8102		1600	0.5489	0.00	0.8337	0.99	0.8980	0.01	0.8344
	1700	0.9206	0.03	0.9048	0.89	0.9262	0.08	0.9069		1700	0.9271	0.00	0.9237	0.99	0.9340	0.01	0.9238
21-Apr-10	0900	0.8910	0.00	0.8059	0.88	0.8785	0.12	0.8148	21-Oct-10	0900	0.3126	0.03	0.8012	0.97	0.8934	0.00	0.7855
	1000	0.8912	0.00	0.7791	0.90	0.8556	0.10	0.7867		1000	0.2368	0.04	0.7412	0.96	0.8711	0.00	0.7195
	1100	0.8982	0.00	0.7970	0.89	0.8402	0.11	0.8018		1100	0.2074	0.01	0.7221	0.99	0.8573	0.00	0.7165
	1200	0.9037	0.00	0.8129	0.90	0.8331	0.10	0.8149		1200	0.2074	0.00	0.7221	1.00	0.8520	0.00	0.7206
	1300	0.9041	0.00	0.8132	0.92	0.8347	0.08	0.8149		1300	0.2030	0.02	0.7214	0.97	0.8547	0.00	0.7119
	1400	0.8994	0.00	0.7915	0.92	0.8434	0.08	0.7955		1400	0.2469	0.02	0.7344	0.97	0.8669	0.01	0.7253
	1500	0.8955	0.00	0.7836	0.89	0.8606	0.11	0.7921		1500	0.3178	0.02	0.7835	0.97	0.8872	0.01	0.7746
	1600	0.8943	0.00	0.7836	0.89	0.8863	0.11	0.7921		1600	0.4624	0.02	0.7833	0.98	0.8872	0.01	0.8666
	1700	0.8943	0.00	0.9006	0.88	0.9193	0.11	0.9029		1700	0.7750	0.01	0.8703	0.96	0.9104	0.01	0.9518
21-May-10	0900	0.9044	0.02	0.8161	0.96	0.8735	0.02	0.8192	21-Nov-10	0900	0.3178	0.12	0.8371	0.84	0.9079	0.03	0.7760
	1000	0.8997	0.01	0.7933	0.97	0.8515	0.02	0.7957		1000	0.2460	0.17	0.7674	0.80	0.8848	0.03	0.6844
	1100	0.9006	0.01	0.8333	0.94	0.8377	0.05	0.8342		1100	0.2167	0.17	0.7276	0.80	0.8711	0.03	0.6473
	1200	0.9019	0.02	0.8125	0.91	0.8313	0.06	0.8157		1200	0.2098	0.14	0.7235	0.82	0.8656	0.03	0.6540
	1300	0.9018	0.01	0.8433	0.94	0.8327	0.05	0.8434		1300	0.2128	0.12	0.7284	0.83	0.8687	0.04	0.6717
	1400	0.9004	0.02	0.8237	0.88	0.8412	0.10	0.8271		1400	0.2458	0.16	0.7540	0.79	0.8798	0.06	0.6819
	1500	0.9012	0.02	0.8059	0.90	0.8582	0.08	0.8119		1500	0.3188	0.16	0.8135	0.79	0.9003	0.06	0.7414
	1600	0.9088	0.02	0.8328	0.89	0.8822	0.09	0.8387		1600	0.4665	0.16	0.8996	0.79	0.9296	0.06	0.8339
	1700	0.9276	0.02	0.8964	0.88	0.9142	0.10	0.8988		1700	0.8576	0.13	0.9744	0.80	0.9675	0.07	0.9583
21-Jun-10	0900	0.9110	0.00	0.8245	0.89	0.8741	0.11	0.8300	21-Dec-10	0900	0.3655	0.14	0.8710	0.85	0.9199	0.01	0.8009
	1000	0.9063	0.00	0.8139	0.89	0.8522	0.11	0.8182		1000	0.2684	0.19	0.7955	0.77	0.8952	0.03	0.6967
	1100	0.9065	0.00	0.8413	0.89	0.8381	0.11	0.8409		1100	0.2317	0.18	0.7517	0.78	0.8794	0.03	0.6607
	1200	0.9074	0.00	0.8347	0.88	0.8310	0.12	0.8343		1200	0.2198	0.16	0.7354	0.81	0.8722	0.03	0.6566
	1300	0.9076	0.00	0.8508	0.92	0.8320	0.08	0.8494		1300	0.2171	0.16	0.7381	0.82	0.8737	0.02	0.6569
	1400	0.9066	0.00	0.8373	0.93	0.8404	0.07	0.8375		1400	0.2456	0.19	0.7618	0.78	0.8836	0.02	0.6645
	1500	0.9071	0.00	0.8147	0.97	0.8556	0.03	0.8161		1500	0.3101	0.20	0.8161	0.77	0.9016	0.02	0.7145
	1600	0.9132	0.00	0.8332	0.93	0.8784	0.07	0.8362		1600	0.4524	0.17	0.8970	0.81	0.9288	0.02	0.8212
	1700	0.9285	0.00	0.8896	0.93	0.9087	0.07	0.8909		1700	0.8143	0.15	0.9710	0.83	0.9648	0.02	0.9473

Probability of achieving visual satisfaction due to 'brightness on desktop' in simulation model set 12

Date	Time	$P_{VS,BD,C}$	P_C	$P_{VS,BD,P}$	\mathbf{P}_{P}	$P_{VS,BD,O}$	P_O	$P_{VS,BD,R}$	Date	Time	$P_{VS,BD,C}$	P_C	$P_{VS,BD,P}$	P_{p}	$P_{FS,BD,O}$	P_O	$P_{VS,BD,R}$
21-Jan-10	0900	0.6023	0.05	0.6023	0.80	0.5691	0.15	0.5973	21-Jul-10	0900	0.6442	0.00	0.6575	0.92	0.6575	0.08	0.6575
	1000	0.6392	0.06	0.6945	0.81	0.6275	0.13	0.6823		1000	0.6479	0.00	0.6660	0.91	0.6904	0.09	0.6681
	1100	0.6678	0.06	0.7436	0.81	0.6585	0.13	0.7277		1100	0.6556	0.00	0.6347	0.91	0.7091	0.09	0.6411
	1200	0.7009	0.08	0.7775	0.80	0.6723	0.13	0.7582		1200	0.6749	0.00	0.6200	0.91	0.7177	0.09	0.6284
	1300	0.7512	0.08	0.8079	0.83	0.6731	0.10	0.7906		1300	0.7207	0.00	0.6790	0.96	0.7177	0.04	0.6807
	1400	0.8094	0.08	0.8299	0.84	0.6614	0.09	0.8139		1400	0.7687	0.00	0.7729	0.97	0.7088	0.03	0.7708
	1500	0.2374	0.09	0.8286	0.83	0.6335	0.09	0.7610		1500	0.9955	0.00	0.8316	0.97	0.6897	0.03	0.8270
	1600	0.1577	0.11	0.7790	0.83	0.5804	0.06	0.6994		1600	0.9385	0.00	0.8352	0.97	0.6565	0.03	0.8294
	1700	0.9994	0.10	0.6134	0.83	0.4731	0.08	0.6402		1700	0.9997	0.00	0.7815	0.95	0.5993	0.05	0.7717
21-Feb-10	0900	0.6194	0.04	0.6287	0.89	0.5986	0.07	0.6263	21-Aug-10	0900	0.6425	0.00	0.6604	0.92	0.6525	0.08	0.6598
	1000	0.6442	0.02	0.7009	0.89	0.6500	0.08	0.6953		1000	0.6479	0.00	0.6778	0.92	0.6874	0.08	0.6785
	1100	0.6651	0.02	0.7357	0.88	0.6782	0.09	0.7286		1100	0.6585	0.00	0.6580	0.90	0.7072	0.10	0.6628
	1200	0.6952	0.04	0.7619	0.87	0.6912	0.09	0.7529		1200	0.6827	0.00	0.6425	0.92	0.7157	0.08	0.6480
	1300	0.7445	0.05	0.7970	0.92	0.6923	0.04	0.7909		1300	0.7311	0.00	0.7049	0.90	0.7153	0.10	0.7059
	1400	0.8009	0.04	0.8330	0.92	0.6823	0.05	0.8248		1400	0.7827	0.00	0.7981	0.90	0.7056	0.10	0.7891
	1500	0.2626	0.02	0.8473	0.92	0.6585	0.06	0.8224		1500	0.7904	0.00	0.8443	0.91	0.6843	0.09	0.8305
	1600	0.0175	0.02	0.8199	0.92	0.6134	0.06	0.7889		1600	0.1559	0.00	0.8387	0.91	0.6468	0.09	0.8222
	1700	0.9413	0.04	0.7062	0.91	0.5284	0.06	0.7041		1700	0.9809	0.00	0.7678	0.90	0.5813	0.10	0.7498
21-Mar-10	0900	0.6347	0.04	0.6546	0.83	0.6311	0.13	0.6507	21-Sep-10	0900	0.6392	0.02	0.6692	0.92	0.6447	0.06	0.6672
	1000	0.6479	0.03	0.6977	0.85	0.6731	0.12	0.6932		1000	0.6510	0.00	0.7002	0.96	0.6811	0.04	0.6993
	1100	0.6633	0.03	0.7085	0.87	0.6959	0.10	0.7058		1100	0.6678	0.01	0.7052	0.96	0.7005	0.03	0.7047
	1200	0.6912	0.03	0.7195	0.86	0.7066	0.11	0.7172		1200	0.6988	0.01	0.7207	0.93	0.7082	0.06	0.7197
	1300	0.7417	0.02	0.7655	0.90	0.7066	0.08	0.7605		1300	0.7564	0.00	0.7762	0.97	0.7062	0.03	0.7739
	1400	0.7965	0.03	0.8240	0.88	0.6963	0.09	0.8121		1400	0.8525	0.00	0.8327	0.97	0.6934	0.03	0.8281
	1500	0.3118	0.03	0.8523	0.87	0.6736	0.10	0.8176		1500	0.1183	0.00	0.8529	0.98	0.6674	0.02	0.8488
	1600	0.0078	0.03	0.8356	0.89	0.6323	0.08	0.7936		1600	0.0180	0.00	0.8243	0.99	0.6200	0.01	0.8221
	1700	0.8382	0.03	0.7431	0.89	0.5560	0.08	0.7321		1700	0.9845	0.00	0.7056	0.99	0.5318	0.01	0.7036
21-Apr-10	0900	0.6431	0.00	0.6637	0.88	0.6551	0.12	0.6627	21-Oct-10	0900	0.6335	0.03	0.6718	0.97	0.6287	0.00	0.6706
	1000	0.6484	0.00	0.6786	0.90	0.6889	0.10	0.6797		1000	0.6541	0.04	0.7201	0.96	0.6665	0.00	0.7172
	1100	0.6604	0.00	0.6585	0.89	0.7079	0.11	0.6640		1100	0.6786	0.01	0.7472	0.99	0.6866	0.00	0.7465
	1200	0.6859	0.00	0.6484	0.90	0.7157	0.10	0.6551		1200	0.7138	0.00	0.7769	1.00	0.6938	0.00	0.7769
	1300	0.7369	0.00	0.7160	0.92	0.7144	0.08	0.7158		1300	0.7734	0.02	0.8156	0.97	0.6897	0.01	0.8134
	1400	0.7870	0.00	0.8056	0.92	0.7039	0.08	0.7977		1400	0.9837	0.02	0.8440	0.97	0.6731	0.01	0.8452
	1500	0.6727	0.00	0.8465	0.89	0.6815	0.11	0.8281		1500	0.0317	0.02	0.8412	0.97	0.6409	0.01	0.8216
	1600	0.0980	0.00	0.8352	0.89	0.6425	0.11	0.8138		1600	0.1833	0.01	0.7816	0.98	0.5804	0.01	0.7730
	1700	0.9875	0.00	0.7564	0.88	0.5727	0.12	0.7339		1700	0.9999	0.03	0.5821	0.96	0.4566	0.01	0.5942
21-May-10	0900	0.6447	0.02	0.6618	0.96	0.6637	0.02	0.6615	21-Nov-10	0900	0.6213	0.12	0.6500	0.84	0.5993	0.03	0.6448
	1000	0.6484	0.01	0.6642	0.97	0.6941	0.02	0.6647		1000	0.6510	0.17	0.7186	0.80	0.6436	0.03	0.7049
	1100	0.6580	0.01	0.6287	0.94	0.7110	0.05	0.6335		1100	0.6807	0.17	0.7586	0.80	0.6665	0.03	0.7425
	1200	0.6799	0.02	0.6436	0.91	0.7183	0.06	0.6492		1200	0.7171	0.14	0.7905	0.82	0.6749	0.03	0.7761
	1300	0.7284	0.01	0.6886	0.94	0.7168	0.05	0.6905		1300	0.7767	0.12	0.8190	0.83	0.6705	0.04	0.8072
	1400	0.7774	0.02	0.7876	0.88	0.7066	0.10	0.7795		1400	0.9852	0.16	0.8338	0.79	0.6525	0.06	0.8473
	1500	0.9831	0.02	0.8363	0.90	0.6855	0.08	0.8281		1500	0.0546	0.16	0.8171	0.79	0.6161	0.06	0.6873
	1600	0.9340	0.02	0.8315	0.89	0.6489	0.09	0.8180		1600	0.7223	0.16	0.7334	0.79	0.5469	0.06	0.7213
	1700	0.9999	0.02	0.7649	0.88	0.5862	0.10	0.7527		1700	0.7846	0.13	0.4715	0.80	0.3915	0.07	0.5079
21-Jun-10	0900	0.6452	0.00	0.6590	0.89	0.6623	0.11	0.6593	21-Dec-10	0900	0.6051	0.14	0.6141	0.85	0.5718	0.01	0.6124
	1000	0.6474	0.00	0.6623	0.89	0.6927	0.11	0.6657		1000	0.6425	0.19	0.7012	0.77	0.6257	0.03	0.6874
	1100	0.6556	0.00	0.6275	0.89	0.7104	0.11	0.6367		1100	0.6736	0.18	0.7499	0.78	0.6536	0.03	0.7328
	1200	0.6753	0.00	0.6275	0.88	0.7180	0.12	0.6386		1200	0.7091	0.16	0.7840	0.81	0.6646	0.03	0.7681
	1300	0.7201	0.00	0.6770	0.92	0.7174	0.08	0.6801		1300	0.7638	0.16	0.8112	0.82	0.6628	0.02	0.8003
	1400	0.7682	0.00	0.7737	0.93	0.7082	0.07	0.7694		1400	0.9988	0.19	0.8253	0.78	0.6468	0.02	0.8550
	1500	0.9991	0.00	0.8291	0.97	0.6886	0.03	0.8244		1500	0.1491	0.20	0.8105	0.77	0.6128	0.02	0.6711
	1600	0.9956	0.00	0.8307	0.93	0.6551	0.07	0.8190		1600	0.6929	0.17	0.7339	0.81	0.5480	0.02	0.7229
		0.8530	0.00	0.7756	0.93	0.5978	0.07	0.7637		1700	0.8087					0.02	

Probability of achieving visual satisfaction due to 'brightness on surroundings' in simulation model set 12

Date	Time	$\mathbf{P}_{VS,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,BS,P}$	\mathbf{P}_{p}	$\mathbf{P}_{VS,BS,O}$	\mathbf{P}_{O}	$\mathbf{P}_{VS,BS,R}$	Date	Time	$\mathbf{P}_{VX,BS,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,BX,P}$	\mathbf{P}_{p}	$\mathbf{P}_{\mathrm{FS},BS,O}$	$\mathbf{P}_{\mathcal{O}}$	$\mathbf{P}_{\mathrm{FS},BS,R}$
21-Jan-10	0900	0.7706	0.05	0.7555	0.80	0.7542	0.15	0.7561	21-Jul-10	0900	0.8059	0.00	0.8350	0.92	0.8316	0.08	0.8347
	1000	0.8022	0.06	0.8351	0.81	0.8071	0.13	0.8294		1000	0.8143	0.00	0.8453	0.91	0.8567	0.09	0.8462
	1100	0.8223	0.06	0.8717	0.81	0.8322	0.13	0.8634		1100	0.8255	0.00	0.8323	0.91	0.8701	0.09	0.8355
	1200	0.8441	0.08	0.8948	0.80	0.8431	0.13	0.8843		1200	0.8447	0.00	0.8482	0.91	0.8761	0.09	0.8506
	1300	0.9139	0.08	0.9131	0.83	0.8438	0.10	0.9065		1300	0.9425	0.00	0.8869	0.96	0.8760	0.04	0.8865
	1400	0.9661	0.08	0.9241	0.84	0.8346	0.09	0.9196		1400	0.9770	0.00	0.9195	0.97	0.8699	0.03	0.9179
	1500	0.9716	0.09	0.9200	0.83	0.8118	0.09	0.9152		1500	0.9823	0.00	0.9408	0.97	0.8563	0.03	0.9380
	1600	0.9659	0.11	0.8854	0.83	0.7646	0.06	0.8863		1600	0.9792	0.00	0.9391	0.97	0.8307	0.03	0.9356
	1700	0.9364	0.10	0.7475	0.83	0.6515	0.08	0.7585		1700	0.9699	0.00	0.9077	0.95	0.7823	0.05	0.9009
21-Feb-10	0900	0.7848	0.04	0.7864	0.89	0.7812	0.07	0.7860	21-Aug-10	0900	0.8043	0.00	0.8308	0.92	0.8277	0.08	0.8306
	1000	0.8079	0.02	0.8452	0.89	0.8256	0.08	0.8427		1000	0.8136	0.00	0.8464	0.92	0.8546	0.08	0.8470
	1100	0.8239	0.02	0.8712	0.88	0.8476	0.09	0.8678		1100	0.8254	0.00	0.8394	0.90	0.8687	0.10	0.8423
	1200	0.8441	0.04	0.8897	0.87	0.8572	0.09	0.8850		1200	0.8460	0.00	0.8449	0.92	0.8747	0.08	0.8471
	1300	0.9160	0.05	0.9115	0.92	0.8581	0.04	0.9099		1300	0.9415	0.00	0.8852	0.90	0.8744	0.10	0.8841
	1400	0.9715	0.04	0.9296	0.92	0.8203	0.05	0.9259		1400	0.9783	0.00	0.9251	0.90	0.8675	0.10	0.9195
	1500	0.9767	0.02	0.9338	0.92	0.8323	0.06	0.9289		1500	0.9820	0.00	0.9420	0.91	0.8523	0.09	0.9343
	1600	0.9725	0.02	0.9152	0.92	0.7950	0.06	0.9095		1600	0.9779	0.00	0.9362	0.91	0.8233	0.09	0.9264
	1700	0.9566	0.04	0.8348	0.91	0.7135	0.06	0.8319		1700	0.9658	0.00	0.8935	0.90	0.7656	0.10	0.8811
21-Mar-10	0900	0.7979	0.04	0.8164	0.83	0.8101	0.13	0.8148	21-Sep-10	0900	0.8025	0.02	0.8289	0.92	0.8214	0.06	0.8279
	1000	0.8119	0.03	0.8505	0.85	0.8436	0.12	0.8484		1000	0.8146	0.00	0.8536	0.96	0.8497	0.04	0.8534
	1100	0.8251	0.03	0.8610	0.87	0.8607	0.10	0.8598		1100	0.8290	0.01	0.8607	0.96	0.8640	0.03	0.8604
	1200	0.8458	0.03	0.8725	0.86	0.8682	0.11	0.8712		1200	0.8516	0.01	0.8755	0.93	0.8696	0.06	0.8749
	1300	0.9355	0.02	0.9019	0.90	0.8682	0.08	0.9001		1300	0.9565	0.00	0.9084	0.97	0.8679	0.03	0.9070
	1400	0.9764	0.03	0.9301	0.88	0.8610	0.09	0.9257		1400	0.9787	0.00	0.9341	0.97	0.8589	0.03	0.9315
	1500	0.9799	0.03	0.9402	0.87	0.8440	0.10	0.9322		1500	0.9798	0.00	0.9402	0.98	0.8393	0.02	0.9380
	1600	0.9758	0.03	0.9285	0.89	0.8109	0.08	0.9212		1600	0.9746	0.00	0.9222	0.99	0.8006	0.01	0.9209
	1700	0.9615	0.03	0.8684	0.89	0.7412	0.08	0.8618		1700	0.9536	0.00	0.8409	0.99	0.7167	0.01	0.8396
21-Apr-10	0900	0.8051	0.00	0.8330	0.88	0.8298	0.12	0.8326	21-Oct-10	0900	0.7984	0.03	0.8225	0.97	0.8079	0.00	0.8218
	1000	0.8142	0.00	0.8468	0.90	0.8557	0.10	0.8477		1000	0.8157	0.04	0.8601	0.96	0.8388	0.00	0.8582
	1100	0.8269	0.00	0.8397	0.89	0.8691	0.11	0.8430		1100	0.8328	0.01	0.8803	0.99	0.8539	0.00	0.8797
	1200	0.8482	0.00	0.8483	0.90	0.8747	0.10	0.8510		1200	0.8564	0.00	0.8997	1.00	0.8591	0.00	0.8997
	1300	0.9482	0.00	0.8895	0.92	0.8738	0.08	0.8882		1300	0.9611	0.02	0.9216	0.97	0.8560	0.01	0.9218
	1400	0.9790	0.00	0.9277	0.92	0.8664	0.08	0.9230		1400	0.9767	0.02	0.9341	0.97	0.8439	0.01	0.9340
	1500	0.9815	0.00	0.9424	0.89	0.8502	0.11	0.9321		1500	0.9758	0.02	0.9291	0.97	0.8179	0.01	0.9289
	1600	0.9776	0.00	0.9342	0.89	0.8193	0.11	0.9214		1600	0.9678	0.01	0.8902	0.98	0.7647	0.01	0.8897
	1700	0.9643	0.00	0.8854	0.88	0.7572	0.12	0.8697		1700	0.9302	0.03	0.7229	0.96	0.6315	0.01	0.7286
21-May-10	0900	0.8073	0.02	0.8384	0.96	0.8364	0.02	0.8377	21-Nov-10	0900	0.7873	0.12	0.7983	0.84	0.7823	0.03	0.7964
-	1000	0.8159	0.01	0.8443	0.97	0.8593	0.02	0.8443		1000	0.8112	0.17	0.8536	0.80	0.8206	0.03	0.8454
	1100	0.8280	0.01	0.8299	0.94	0.8715	0.05	0.8321		1100	0.8312	0.17	0.8920	0.80	0.8387	0.03	0.8801
	1200	0.8485	0.02	0.8680	0.91	0.8764	0.06	0.8682		1200	0.8544	0.14	0.9031	0.82	0.8450	0.03	0.8941
	1300	0.9493	0.02	0.8877	0.94	0.8754	0.05	0.8877		1300	0.9540	0.14	0.9192	0.83	0.8417	0.03	0.9200
	1400	0.9796	0.02	0.9248	0.88	0.8683	0.10	0.9205		1400	0.9704	0.16	0.9251	0.79	0.8277	0.06	0.9268
	1500	0.9820	0.02	0.9420	0.90	0.8531	0.08	0.9362		1500	0.9704	0.16	0.9231	0.79	0.7972	0.06	0.9200
	1600	0.9783	0.02	0.9366	0.89	0.8248	0.09	0.9278		1600	0.9596	0.16	0.8516	0.79	0.7317	0.06	0.8617
	1700	0.9667	0.02	0.8969	0.88	0.7702	0.10	0.8862		1700	0.8772	0.13	0.5943	0.80	0.5497	0.07	0.6291
21-Jun-10	0900	0.8073	0.00	0.8389	0.89	0.8353	0.11	0.8385	21-Dec-10	0900	0.7728	0.14	0.7642	0.85	0.7567	0.01	0.7653
Jun 10	1000	0.8075	0.00	0.8454	0.89	0.8585	0.11	0.8369	2. 1000 10	1000	0.8040	0.19	0.8385	0.33	0.8052	0.03	0.8307
	1100	0.8133	0.00	0.8312	0.89	0.8383	0.11	0.8356		1100	0.8254	0.19	0.8746	0.77	0.8032	0.03	0.8641
	1200	0.8466	0.00	0.8592	0.88	0.8763	0.11	0.8613		1200	0.8481	0.16	0.8974	0.78	0.8284	0.03	0.8875
	1300	0.9429	0.00	0.8867	0.88	0.8759	0.12	0.8858		1300	0.9317	0.16	0.8974	0.81	0.8359	0.03	0.8873
	1400	0.9429	0.00	0.8867	0.92	0.8694	0.08	0.8858		1400	0.9517	0.16	0.9135	0.82	0.8233	0.02	0.9147
	1500	0.9821	0.00	0.9409	0.97	0.8555	0.03	0.9380		1500	0.9678	0.20	0.9072	0.77	0.7944	0.02	0.9172
	1600	0.9785	0.00	0.9383	0.93	0.8296	0.07	0.9310		1600	0.9582	0.17	0.8510	0.81	0.7333	0.02	0.8669
	1700	0.9695	0.00	0.9059	0.93	0.7809	0.07	0.8976		1700	0.8905	0.15	0.6223	0.83	0.5700	0.02	0.6615

Probability of achieving visual satisfaction due to 'uniformity on desktop' in simulation model set 12

Date	Time	$\mathbf{P}_{FS,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VS,UD,O}$	P_O	$\mathbf{P}_{VS,UD,R}$	Date	Time	$\mathbf{P}_{FS,UD,C}$	P_C	$\mathbf{P}_{FS,UD,P}$	\mathbf{P}_{P}	$\mathbf{P}_{VS,UD,O}$	P_O	$\mathbf{P}_{FS,UD,R}$
21-Jan-10	0900	0.8314	0.05	0.6751	0.80	0.5830	0.15	0.6696	21-Jul-10	0900	0.8404	0.00	0.6632	0.92	0.5803	0.08	0.6569
	1000	0.8036	0.06	0.6617	0.81	0.5828	0.13	0.6607		1000	0.8138	0.00	0.6384	0.91	0.5757	0.09	0.6330
	1100	0.7672	0.06	0.6285	0.81	0.5793	0.13	0.6311		1100	0.7835	0.00	0.5841	0.91	0.5777	0.09	0.5835
	1200	0.7191	0.08	0.6052	0.80	0.5790	0.13	0.6104		1200	0.7599	0.00	0.4802	0.91	0.5782	0.09	0.4886
	1300	0.6943	0.08	0.5732	0.83	0.5781	0.10	0.5828		1300	0.7571	0.00	0.4319	0.96	0.5782	0.04	0.4381
	1400	0.6331	0.08	0.5788	0.84	0.5765	0.09	0.5826		1400	0.7878	0.00	0.5123	0.97	0.5806	0.03	0.5145
	1500	0.0208	0.09	0.6369	0.83	0.5769	0.09	0.5788		1500	0.0472	0.00	0.5464	0.97	0.5823	0.03	0.5475
	1600	0.9669	0.11	0.7160	0.83	0.5783	0.06	0.7341		1600	0.0370	0.00	0.6392	0.97	0.5813	0.03	0.6373
	1700	0.9794	0.10	0.7404	0.83	0.5864	0.08	0.7519		1700	0.1728	0.00	0.6980	0.95	0.5821	0.05	0.6917
21-Feb-10	0900	0.8339	0.04	0.6717	0.89	0.5777	0.07	0.6708	21-Aug-10	0900	0.8365	0.00	0.6591	0.92	0.5780	0.08	0.6530
	1000	0.8030	0.02	0.6522	0.89	0.5768	0.08	0.6496		1000	0.8090	0.00	0.6322	0.92	0.5788	0.08	0.6282
	1100	0.7670	0.02	0.6303	0.88	0.5793	0.09	0.6288		1100	0.7733	0.00	0.5834	0.90	0.5798	0.10	0.5830
	1200	0.7289	0.04	0.5830	0.87	0.5749	0.09	0.5874		1200	0.7341	0.00	0.5042	0.92	0.5781	0.08	0.5098
	1300	0.7134	0.05	0.5692	0.92	0.5766	0.04	0.5763		1300	0.7577	0.00	0.4668	0.90	0.5759	0.10	0.4774
	1400	0.6950	0.04	0.5502	0.92	0.5812	0.05	0.5568		1400	0.7710	0.00	0.4992	0.90	0.5790	0.10	0.5069
	1500	0.0212	0.02	0.6082	0.92	0.5793	0.06	0.5927		1500	0.0251	0.00	0.5598	0.91	0.5821	0.09	0.5617
	1600	0.9763	0.02	0.7062	0.92	0.5784	0.06	0.7051		1600	0.0207	0.00	0.6558	0.91	0.5799	0.09	0.6493
	1700	0.9782	0.04	0.7479	0.91	0.5799	0.06	0.7462		1700	0.0645	0.00	0.7150	0.90	0.5832	0.10	0.7023
21-Mar-10	0900	0.8359	0.04	0.6674	0.83	0.5792	0.13	0.6633	21-Sep-10	0900	0.8330	0.02	0.6562	0.92	0.5820	0.06	0.6560
	1000	0.8041	0.03	0.6440	0.85	0.5781	0.12	0.6413		1000	0.7938	0.00	0.6379	0.96	0.5794	0.04	0.6353
	1100	0.7651	0.03	0.6189	0.87	0.5785	0.10	0.6197		1100	0.7572	0.01	0.6131	0.96	0.5764	0.03	0.6135
	1200	0.7243	0.03	0.5570	0.86	0.5753	0.11	0.5644		1200	0.7272	0.01	0.5415	0.93	0.5813	0.06	0.5457
	1300	0.7449	0.02	0.5251	0.90	0.5805	0.08	0.5340		1300	0.7412	0.00	0.5225	0.97	0.5782	0.03	0.5243
	1400	0.7318	0.03	0.5149	0.88	0.5809	0.09	0.5276		1400	0.2173	0.00	0.5220	0.97	0.5783	0.03	0.5239
	1500	0.0210	0.03	0.5838	0.87	0.5809	0.10	0.5654		1500	0.0194	0.00	0.6044	0.98	0.5807	0.02	0.6038
	1600	0.9077	0.03	0.6923	0.89	0.5781	0.08	0.6907		1600	0.6533	0.00	0.7061	0.99	0.5813	0.01	0.7047
	1700	0.3361	0.03	0.7390	0.89	0.5827	0.08	0.7142		1700	0.1162	0.00	0.7410	0.99	0.5843	0.01	0.7392
21-Apr-10	0900	0.8378	0.00	0.6576	0.88	0.5792	0.12	0.6480	21-Oct-10	0900	0.8234	0.03	0.6705	0.97	0.5730	0.00	0.6754
	1000	0.8105	0.00	0.6311	0.90	0.5772	0.10	0.6257		1000	0.7835	0.04	0.6450	0.96	0.5816	0.00	0.6510
	1100	0.7649	0.00	0.5793	0.89	0.5791	0.11	0.5793		1100	0.7460	0.01	0.6079	0.99	0.5797	0.00	0.6094
	1200	0.7287	0.00	0.4972	0.90	0.5781	0.10	0.5053		1200	0.7011	0.00	0.5692	1.00	0.5751	0.00	0.5692
	1300	0.7414	0.00	0.4706	0.92	0.5794	0.08	0.4790		1300	0.7092	0.02	0.5389	0.97	0.5765	0.01	0.5430
	1400	0.7622	0.00	0.4925	0.92	0.5781	0.08	0.4991		1400	0.0406	0.02	0.5686	0.97	0.5781	0.01	0.5573
	1500	0.0236	0.00	0.5672	0.89	0.5821	0.11	0.5688		1500	0.0187	0.02	0.6563	0.97	0.5740	0.01	0.6417
	1600	0.0217	0.00	0.6747	0.89	0.5763	0.11	0.6637		1600	0.9775	0.01	0.7361	0.98	0.5783	0.01	0.7370
	1700	0.0780	0.00	0.7176	0.88	0.5797	0.12	0.7007		1700	0.9143	0.03	0.7496	0.96	0.5799	0.01	0.7531
21-May-10	0900	0.8416	0.02	0.6603	0.96	0.5776	0.02	0.6624	21-Nov-10	0900	0.8174	0.12	0.6637	0.84	0.5821	0.03	0.6798
	1000	0.8105	0.01	0.6344	0.97	0.5776	0.02	0.6350		1000	0.7836	0.17	0.6539	0.80	0.5831	0.03	0.6732
	1100	0.7767	0.01	0.5730	0.94	0.5807	0.05	0.5756		1100	0.7497	0.17	0.6137	0.80	0.5816	0.03	0.6353
	1200	0.7414	0.02	0.4556	0.91	0.5775	0.06	0.4696		1200	0.7017	0.14	0.5959	0.82	0.5764	0.03	0.6105
	1300	0.7595	0.01	0.4428	0.94	0.5767	0.05	0.4534		1300	0.6916	0.12	0.5699	0.83	0.5808	0.04	0.5853
	1400	0.7830	0.02	0.5187	0.88	0.5805	0.10	0.5304		1400	0.0407	0.16	0.5956	0.79	0.5780	0.06	0.5083
	1500	0.0379	0.02	0.5614	0.90	0.5779	0.08	0.5513		1500	0.0205	0.16	0.6701	0.79	0.5759	0.06	0.5638
	1600	0.0378	0.02	0.6498	0.89	0.5778	0.09	0.6304		1600	0.9708	0.16	0.7346	0.79	0.5707	0.06	0.7622
	1700	0.2213	0.02	0.7037	0.88	0.5786	0.10	0.6812		1700	0.9802	0.13	0.7323	0.80	0.5864	0.07	0.7556
21-Jun-10	0900	0.8386	0.00	0.6772	0.89	0.5755	0.11	0.6659	21-Dec-10	0900	0.8209	0.14	0.6633	0.85	0.5745	0.01	0.6844
	1000	0.8170	0.00	0.6499	0.89	0.5791	0.11	0.6421		1000	0.7928	0.19	0.6542	0.77	0.5802	0.03	0.6787
	1100	0.7835	0.00	0.5828	0.89	0.5763	0.11	0.5820		1100	0.7548	0.18	0.6229	0.78	0.5770	0.03	0.6455
	1200	0.7518	0.00	0.4685	0.88	0.5803	0.12	0.4822		1200	0.7113	0.16	0.6099	0.81	0.5767	0.03	0.6252
	1300	0.7722	0.00	0.4417	0.92	0.5761	0.08	0.4521		1300	0.6820	0.16	0.5779	0.82	0.5785	0.02	0.5947
	1400	0.7968	0.00	0.5230	0.93	0.5761	0.07	0.5265		1400	0.0654	0.19	0.5962	0.78	0.5799	0.02	0.4931
	1500	0.0706	0.00	0.5566	0.97	0.5806	0.03	0.5574		1500	0.0209	0.20	0.6594	0.77	0.5838	0.02	0.5273
	1600	0.0660	0.00	0.6390	0.93	0.5792	0.07	0.6350		1600	0.9647	0.17	0.7231	0.81	0.5767	0.02	0.7615
	1700	0.3711	0.00	0.7007	0.93	0.5835	0.07	0.6929		1700	0.9757	0.15	0.7341	0.83	0.5732	0.02	0.7670

Probability of achieving visual satisfaction due to 'uniformity on surroundings' in simulation model set 12

Date	Time	$\mathbf{P}_{FS,US,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,US,P}$	\mathbf{P}_{p}	$\mathbf{P}_{VS,US,O}$	\mathbf{P}_{O}	$\mathbf{P}_{VS,US,R}$	Date	Time	$\mathbf{P}_{FX,UX,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,UXP}$	\mathbf{P}_{p}	$\mathbf{P}_{\mathrm{FS},US,O}$	$\mathbf{P}_{\mathcal{O}}$	$\mathbf{P}_{\mathrm{FS},U\mathrm{S},R}$
21-Jan-10	0900	0.8917	0.05	0.9125	0.80	0.9197	0.15	0.9125	21-Jul-10	0900	0.8912	0.00	0.9197	0.92	0.9168	0.08	0.9170
	1000	0.8955	0.06	0.9125	0.81	0.9198	0.13	0.9123		1000	0.8966	0.00	0.9198	0.91	0.9191	0.09	0.9192
	1100	0.8995	0.06	0.9132	0.81	0.9199	0.13	0.9132		1100	0.9035	0.00	0.9198	0.91	0.9236	0.09	0.9233
	1200	0.9034	0.08	0.9139	0.80	0.9198	0.13	0.9139		1200	0.9093	0.00	0.9198	0.91	0.9301	0.09	0.9292
	1300	0.9262	0.08	0.9137	0.83	0.9198	0.10	0.9152		1300	0.9359	0.00	0.9198	0.96	0.9307	0.04	0.9302
	1400	0.9350	0.08	0.9114	0.84	0.9198	0.09	0.9139		1400	0.9398	0.00	0.9198	0.97	0.9241	0.03	0.9240
	1500	0.9270	0.09	0.9067	0.83	0.9198	0.09	0.9096		1500	0.9372	0.00	0.9198	0.97	0.9164	0.03	0.9166
	1600	0.8699	0.11	0.9017	0.83	0.9200	0.06	0.8995		1600	0.9126	0.00	0.9198	0.97	0.9088	0.03	0.9091
	1700	0.7119	0.10	0.9007	0.83	0.9201	0.08	0.8839		1700	0.8593	0.00	0.9199	0.95	0.9036	0.05	0.9045
21-Feb-10	0900	0.8906	0.04	0.9133	0.89	0.9198	0.07	0.9130	21-Aug-10	0900	0.8909	0.00	0.9198	0.92	0.9162	0.08	0.9165
	1000	0.8946	0.02	0.9139	0.89	0.9197	0.08	0.9139		1000	0.8961	0.00	0.9198	0.92	0.9184	0.08	0.9185
	1100	0.8998	0.02	0.9154	0.88	0.9198	0.09	0.9154		1100	0.9031	0.00	0.9198	0.90	0.9224	0.10	0.9222
	1200	0.9048	0.04	0.9170	0.87	0.9199	0.09	0.9168		1200	0.9090	0.00	0.9199	0.92	0.9275	0.08	0.9269
	1300	0.9279	0.05	0.9174	0.92	0.9199	0.04	0.9179		1300	0.9354	0.00	0.9198	0.90	0.9278	0.10	0.9270
	1400	0.9376	0.04	0.9148	0.92	0.9198	0.05	0.9159		1400	0.9399	0.00	0.9198	0.90	0.9221	0.10	0.9219
	1500	0.9307	0.02	0.9093	0.92	0.9198	0.06	0.9104		1500	0.9343	0.00	0.9198	0.91	0.9143	0.09	0.9148
	1600	0.8904	0.02	0.9027	0.92	0.9198	0.06	0.9034		1600	0.9037	0.00	0.9198	0.91	0.9064	0.09	0.9076
	1700	0.6588	0.04	0.9001	0.91	0.9199	0.06	0.8927		1700	0.8290	0.00	0.9197	0.90	0.9016	0.10	0.9034
21-Mar-10	0900	0.8908	0.04	0.9148	0.83	0.9198	0.13	0.9144	21-Sep-10	0900	0.8914	0.02	0.9198	0.92	0.9149	0.06	0.9147
	1000	0.8948	0.03	0.9161	0.85	0.9199	0.12	0.9159		1000	0.8966	0.00	0.9198	0.96	0.9168	0.04	0.9169
	1100	0.9015	0.03	0.9188	0.87	0.9198	0.10	0.9183		1100	0.9031	0.01	0.9198	0.96	0.9198	0.03	0.9196
	1200	0.9070	0.03	0.9216	0.86	0.9198	0.11	0.9209		1200	0.9083	0.01	0.9199	0.93	0.9225	0.06	0.9222
	1300	0.9336	0.02	0.9221	0.90	0.9198	0.08	0.9221		1300	0.9375	0.00	0.9198	0.97	0.9220	0.03	0.9220
	1400	0.9391	0.03	0.9184	0.88	0.9198	0.09	0.9192		1400	0.9392	0.00	0.9198	0.97	0.9174	0.03	0.9174
	1500	0.9320	0.03	0.9115	0.87	0.9198	0.10	0.9132		1500	0.9392	0.00	0.9198	0.98	0.9099	0.02	0.9102
	1600	0.8908	0.03	0.9040	0.89	0.9198	0.08	0.9047		1600	0.8676	0.00	0.9199	0.99	0.9027	0.01	0.9029
	1700	0.7063	0.03	0.8999	0.89	0.9199	0.08	0.8951		1700	0.7736	0.00	0.9200	0.99	0.9001	0.01	0.9004
21-Apr-10	0900	0.8915	0.00	0.9163	0.88	0.9198	0.12	0.9167	21-Oct-10	0900	0.8927	0.03	0.9198	0.97	0.9136	0.00	0.9130
21-Apr-10	1000	0.8965	0.00	0.9185	0.90	0.9199	0.12	0.9186	21-00-10	1000	0.8969	0.03	0.9197	0.96	0.9147	0.00	0.9139
	1100	0.9036	0.00	0.9226	0.89	0.9199	0.10	0.9180		1100	0.9023	0.04	0.9197	0.99	0.9147	0.00	0.9162
	1200	0.9093	0.00	0.9226	0.90	0.9198	0.11	0.9223		1200	0.9023	0.00	0.9198	1.00	0.9176	0.00	0.9102
	1300	0.9093	0.00	0.9276	0.90	0.9199	0.10	0.9268		1300	0.9362	0.00	0.9198	0.97	0.9176	0.00	0.9176
	1400	0.9399	0.00	0.9272	0.92	0.9198	0.08	0.9200		1400	0.9373	0.02	0.9198	0.97	0.9107	0.01	0.9171
	1500	0.9325	0.00	0.9135	0.89	0.9198	0.11	0.9142		1500	0.9203	0.02	0.9198	0.97	0.9059	0.01	0.9064
	1600	0.9015	0.00	0.9056	0.89	0.9198	0.11	0.9072		1600	0.8144	0.01	0.9200	0.98	0.9005	0.01	0.8998
	1700	0.8229	0.00	0.9015	0.88	0.9200	0.12	0.9038		1700	0.6462	0.03	0.9199	0.96	0.9003	0.01	0.8923
21-May-10	0900	0.8921	0.02	0.9171	0.96	0.9198	0.02	0.9166	21-Nov-10	0900	0.8930	0.12	0.9199	0.84	0.9124	0.03	0.9103
	1000	0.8980	0.01	0.9196	0.97	0.9198	0.02	0.9194		1000	0.8973	0.17	0.9199	0.80	0.9128	0.03	0.9104
	1100	0.9044	0.01	0.9244	0.94	0.9199	0.05	0.9240		1100	0.9011	0.17	0.9197	0.80	0.9198	0.03	0.9166
	1200	0.9100	0.02	0.9309	0.91	0.9198	0.06	0.9297		1200	0.9050	0.14	0.9198	0.82	0.9141	0.03	0.9130
	1300	0.9369	0.01	0.9296	0.94	0.9198	0.05	0.9292		1300	0.9336	0.12	0.9199	0.83	0.9132	0.04	0.9160
	1400	0.9401	0.02	0.9229	0.88	0.9198	0.10	0.9230		1400	0.9340	0.16	0.9197	0.79	0.9098	0.06	0.9141
	1500	0.9348	0.02	0.9151	0.90	0.9198	0.08	0.9159		1500	0.9161	0.16	0.9198	0.79	0.9045	0.06	0.9071
	1600	0.9049	0.02	0.9076	0.89	0.9199	0.09	0.9086		1600	0.8012	0.16	0.9198	0.79	0.9005	0.06	0.8861
	1700	0.8379	0.02	0.9031	0.88	0.9198	0.10	0.9033		1700	0.7429	0.13	0.9197	0.80	0.9011	0.07	0.8813
21-Jun-10	0900	0.8920	0.00	0.9171	0.89	0.9198	0.11	0.9174	21-Dec-10	0900	0.8928	0.14	0.9200	0.85	0.9120	0.01	0.9094
	1000	0.8975	0.00	0.9197	0.89	0.9199	0.11	0.9197		1000	0.8964	0.19	0.9198	0.77	0.9120	0.03	0.9092
	1100	0.9042	0.00	0.9243	0.89	0.9198	0.11	0.9238		1100	0.9006	0.18	0.9198	0.78	0.9126	0.03	0.9106
	1200	0.9098	0.00	0.9308	0.88	0.9198	0.12	0.9294		1200	0.9039	0.16	0.9197	0.81	0.9130	0.03	0.9117
	1300	0.9358	0.00	0.9304	0.92	0.9199	0.08	0.9296		1300	0.9306	0.16	0.9199	0.82	0.9123	0.02	0.9154
	1400	0.9399	0.00	0.9238	0.93	0.9199	0.07	0.9236		1400	0.9332	0.19	0.9198	0.78	0.9096	0.02	0.9144
	1500	0.9364	0.00	0.9258	0.97	0.9198	0.07	0.9250		1500	0.9332	0.20	0.9199	0.77	0.9051	0.02	0.9083
	1600	0.9118	0.00	0.9089	0.93	0.9198	0.07	0.9097		1600	0.8258	0.17	0.9199	0.81	0.9012	0.02	0.8887
	1700	0.8635	0.00	0.9040	0.93	0.9198	0.07	0.9051		1700	0.8238	0.17	0.9199	0.81	0.9012	0.02	0.8790
	1700	0.0055	0.00	0.7040	0.73	0.7170	0.07	0.7051		1700	0.7470	0.15	0.9201	0.05	0.7010	0.02	0.0790

Probability of achieving visual satisfaction due to 'perceived glare from window' in simulation model set 12

Date	Time	$\mathbf{P}_{VS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{VX,PG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{VS,PG,O}$	P_O	$\mathbf{P}_{VS,PG,R}$	Date	Time	$\mathbf{P}_{VS,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{VS,PG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{VS,PG,O}$	\mathbf{P}_{O}	$\mathbf{P}_{FS,PG,R}$
21-Jan-10	0900	0.9142	0.05	0.8769	0.80	0.8674	0.15	0.8775	21-Jul-10	0900	0.9031	0.00	0.8248	0.92	0.8198	0.08	0.8245
	1000	0.8967	0.06	0.8294	0.81	0.8379	0.13	0.8348		1000	0.8950	0.00	0.8169	0.91	0.7966	0.09	0.8152
	1100	0.8794	0.06	0.7936	0.81	0.8192	0.13	0.8024		1100	0.8828	0.00	0.8268	0.91	0.7815	0.09	0.8229
	1200	0.8560	0.08	0.7628	0.80	0.8094	0.13	0.7758		1200	0.8635	0.00	0.8063	0.91	0.7743	0.09	0.8035
	1300	0.8350	0.08	0.7312	0.83	0.8087	0.10	0.7465		1300	0.8493	0.00	0.7585	0.96	0.7745	0.04	0.7591
	1400	0.3569	0.08	0.7128	0.84	0.8166	0.09	0.6950		1400	0.3036	0.00	0.7127	0.97	0.7819	0.03	0.7149
	1500	0.3226	0.09	0.7330	0.83	0.8344	0.09	0.7064		1500	0.2617	0.00	0.6746	0.97	0.7970	0.03	0.6785
	1600	0.3854	0.11	0.8025	0.83	0.8626	0.06	0.7616		1600	0.2838	0.00	0.6995	0.97	0.8199	0.03	0.7034
	1700	0.5975	0.10	0.9025	0.83	0.9057	0.08	0.8733		1700	0.3530	0.00	0.7836	0.95	0.8531	0.05	0.7873
21-Feb-10	0900	0.9111	0.04	0.8594	0.89	0.8539	0.07	0.8609	21-Aug-10	0900	0.9046	0.00	0.8277	0.92	0.8226	0.08	0.8274
	1000	0.8969	0.02	0.8187	0.89	0.8241	0.08	0.8210		1000	0.8956	0.00	0.8156	0.92	0.7987	0.08	0.8143
	1100	0.8817	0.02	0.7925	0.88	0.8056	0.09	0.7958		1100	0.8826	0.00	0.8209	0.90	0.7832	0.10	0.8173
	1200	0.8595	0.04	0.7674	0.87	0.7961	0.09	0.7733		1200	0.8617	0.00	0.8121	0.92	0.7761	0.08	0.8094
	1300	0.8371	0.05	0.7315	0.92	0.7948	0.04	0.7387		1300	0.8445	0.00	0.7651	0.90	0.7766	0.10	0.7663
	1400	0.3311	0.04	0.6962	0.92	0.9751	0.05	0.6964		1400	0.2925	0.00	0.7027	0.90	0.7847	0.10	0.7106
	1500	0.2914	0.02	0.6987	0.92	0.8190	0.06	0.6962		1500	0.2643	0.00	0.6746	0.91	0.8010	0.09	0.6855
	1600	0.3374	0.02	0.7590	0.92	0.8457	0.06	0.7542		1600	0.2961	0.00	0.7133	0.91	0.8264	0.09	0.7231
	1700	0.4879	0.04	0.8635	0.91	0.8859	0.06	0.8516		1700	0.3860	0.00	0.8099	0.90	0.8622	0.10	0.8149
21-Mar-10	0900	0.9072	0.04	0.8391	0.83	0.8355	0.13	0.8416	21-Sep-10	0900	0.9044	0.02	0.8301	0.92	0.8273	0.06	0.8316
	1000	0.8961	0.03	0.8125	0.85	0.8090	0.12	0.8148		1000	0.8933	0.00	0.8092	0.96	0.8032	0.04	0.8089
	1100	0.8822	0.03	0.8017	0.87	0.7919	0.10	0.8034		1100	0.8781	0.01	0.8017	0.96	0.7888	0.03	0.8021
	1200	0.8603	0.03	0.7871	0.86	0.7840	0.11	0.7891		1200	0.8536	0.01	0.7826	0.93	0.7824	0.06	0.7834
	1300	0.8414	0.02	0.7457	0.90	0.7837	0.08	0.7506		1300	0.8434	0.00	0.7349	0.97	0.7839	0.03	0.7365
	1400	0.3024	0.02	0.6932	0.88	0.7919	0.09	0.6890		1400	0.2830	0.00	0.6856	0.97	0.7944	0.03	0.6892
	1500	0.2719	0.03	0.6812	0.87	0.8086	0.10	0.6804		1500	0.2763	0.00	0.6863	0.98	0.8130	0.03	0.6891
	1600	0.3168	0.03	0.7343	0.89	0.8350	0.08	0.7284		1600	0.3312	0.00	0.7528	0.99	0.8417	0.01	0.7538
	1700	0.4391	0.03	0.8396	0.89	0.8330	0.08	0.8293		1700	0.1733	0.00	0.8636	0.99	0.8843	0.01	0.8638
21-Apr-10	0900	0.9040	0.00	0.8265	0.88	0.8211	0.12	0.8258	21-Oct-10	0900	0.9040	0.03	0.8366	0.97	0.8374	0.00	0.8388
21-Apr-10	1000	0.8948	0.00	0.8265	0.90	0.7973	0.12	0.8238	21-00-10	1000	0.8900	0.03	0.8046	0.96	0.8374	0.00	0.8083
	1100	0.8811	0.00	0.8130	0.89	0.7973	0.10	0.8162		1100	0.8722	0.04	0.7768	0.99	0.8132	0.00	0.8083
	1200	0.8595	0.00	0.8204	0.89	0.7823	0.11	0.8054		1200	0.8455	0.00	0.7768	1.00	0.7938	0.00	0.7719
	1300	0.8393	0.00	0.8086	0.90	0.7770	0.10	0.7616		1300	0.4258	0.00	0.7515	0.97	0.7958	0.00	0.7067
	1400	0.2845	0.00	0.6979	0.92	0.7861	0.08	0.7048		1400	0.2974	0.02	0.6900	0.97	0.8085	0.01	0.6828
	1500	0.2647	0.00	0.6752	0.89	0.8028	0.11	0.6894		1500	0.3064	0.02	0.7200	0.97	0.8300	0.01	0.7123
	1600	0.3028	0.00	0.7205	0.89	0.8291	0.11	0.7326		1600	0.3865	0.01	0.8058	0.98	0.8623	0.01	0.8019
	1700	0.4045	0.00	0.8210	0.88	0.8661	0.12	0.8265		1700	0.9306	0.03	0.9158	0.96	0.9121	0.01	0.9162
21-May-10	0900	0.9021	0.02	0.8225	0.96	0.8156	0.02	0.8241	21-Nov-10	0900	0.9065	0.12	0.8547	0.84	0.8534	0.03	0.8610
	1000	0.8935	0.01	0.8175	0.97	0.7937	0.02	0.8178		1000	0.8899	0.17	0.8133	0.80	0.8284	0.03	0.8266
	1100	0.8804	0.01	0.8283	0.94	0.7799	0.05	0.8262		1100	0.8703	0.17	0.7805	0.80	0.8134	0.03	0.7966
	1200	0.8596	0.02	0.7835	0.91	0.7738	0.06	0.7845		1200	0.8436	0.14	0.7492	0.82	0.8078	0.03	0.7648
	1300	0.8466	0.01	0.7591	0.94	0.7751	0.05	0.7609		1300	0.4634	0.12	0.7199	0.83	0.8103	0.04	0.6926
	1400	0.2926	0.02	0.7034	0.88	0.7837	0.10	0.7023		1400	0.3231	0.16	0.7143	0.79	0.8224	0.06	0.6594
	1500	0.2624	0.02	0.6743	0.90	0.7998	0.08	0.6749		1500	0.3395	0.16	0.7551	0.79	0.8443	0.06	0.6954
	1600	0.2895	0.02	0.7099	0.89	0.8249	0.09	0.7108		1600	0.4381	0.16	0.8417	0.79	0.8779	0.06	0.7810
	1700	0.3749	0.02	0.8019	0.88	0.8599	0.10	0.7983		1700	0.8072	0.13	0.9423	0.80	0.9310	0.07	0.9235
21-Jun-10	0900	0.9018	0.00	0.8221	0.89	0.8165	0.11	0.8215	21-Dec-10	0900	0.9120	0.14	0.8742	0.85	0.8668	0.01	0.8794
	1000	0.8936	0.00	0.8164	0.89	0.7946	0.11	0.8140		1000	0.8940	0.19	0.8272	0.77	0.8387	0.03	0.8405
	1100	0.8810	0.00	0.8272	0.89	0.7807	0.11	0.8221		1100	0.8383	0.18	0.7912	0.78	0.8218	0.03	0.8008
	1200	0.8612	0.00	0.7941	0.88	0.7741	0.11	0.7917		1200	0.8383	0.16	0.7598	0.78	0.8216	0.03	0.7760
	1300	0.8471	0.00	0.7590	0.92	0.7741	0.08	0.7602		1300	0.8342	0.16	0.7325	0.82	0.8143	0.03	0.7507
	1400	0.3019	0.00	0.7101	0.92	0.7823	0.07	0.7149		1400	0.1727	0.19	0.7325	0.78	0.8264	0.02	0.6207
	1500	0.2626	0.00	0.6750	0.93	0.7823	0.07	0.6791		1500	0.1727	0.19	0.7233	0.77	0.8458	0.02	0.6207
	1600	0.2841	0.00	0.6750	0.97	0.7979	0.03	0.7092		1600	0.3450	0.20	0.7602	0.77	0.8438	0.02	0.6772
	1700	0.2841	0.00	0.7012	0.93	0.8209	0.07	0.7092		1700	0.4354	0.17	0.8391	0.81	0.8776	0.02	0.7705
	1700	0.3308	0.00	0./849	0.93	0.6333	0.07	0.7893		1700	0.7003	0.15	0.9339	0.63	0.9272	0.02	0.9093

Probability of achieving energy saving due to 'brightness on desktop' in simulation model set 12

Date	Time	$\mathbf{P}_{ES,BD,C}$	P_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,BD,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,BD,R}$	Date	Time	$\mathbf{P}_{ES,BD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,BD,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,BD,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,BD,R}$
21-Jan-10	0900	0.4359	0.05	0.4359	0.80	0.3821	0.15	0.4278	21-Jul-10	0900	0.5085	0.00	0.5324	0.92	0.5324	0.08	0.5324
	1000	0.4997	0.06	0.6001	0.81	0.4792	0.13	0.5780		1000	0.5151	0.00	0.5478	0.91	0.5926	0.09	0.5517
	1100	0.5511	0.06	0.6907	0.81	0.5342	0.13	0.6615		1100	0.5289	0.00	0.4916	0.91	0.6271	0.09	0.5033
	1200	0.6118	0.08	0.7517	0.80	0.5592	0.13	0.7163		1200	0.5639	0.00	0.4661	0.91	0.6430	0.09	0.4813
	1300	0.7045	0.08	0.8038	0.83	0.5608	0.10	0.7728		1300	0.6484	0.00	0.5716	0.96	0.6430	0.04	0.5747
	1400	0.8063	0.08	0.8392	0.84	0.5394	0.09	0.8109		1400	0.7361	0.00	0.7435	0.97	0.6265	0.03	0.7398
	1500	0.9744	0.09	0.8373	0.83	0.4896	0.09	0.8191		1500	0.9361	0.00	0.8419	0.97	0.5912	0.03	0.8338
	1600	0.9761	0.11	0.7542	0.83	0.4001	0.06	0.7553		1600	0.9558	0.00	0.8474	0.97	0.5306	0.03	0.8372
	1700	0.9155	0.10	0.4549	0.83	0.2477	0.08	0.4838		1700	0.9076	0.00	0.7586	0.95	0.4310	0.05	0.7410
21-Feb-10	0900	0.4650	0.04	0.4813	0.89	0.4298	0.07	0.4771	21-Aug-10	0900	0.5056	0.00	0.5376	0.92	0.5234	0.08	0.5366
	1000	0.5085	0.02	0.6118	0.89	0.5188	0.08	0.6017		1000	0.5151	0.00	0.5693	0.92	0.5870	0.08	0.5706
	1100	0.5461	0.02	0.6761	0.88	0.5701	0.09	0.6631		1100	0.5342	0.00	0.5333	0.90	0.6235	0.10	0.5420
	1200	0.6014	0.04	0.7239	0.87	0.5940	0.09	0.7073		1200	0.5783	0.00	0.5056	0.92	0.6392	0.08	0.5156
	1300	0.6923	0.05	0.7855	0.92	0.5960	0.04	0.7744		1300	0.6677	0.00	0.6193	0.90	0.6386	0.10	0.6212
	1400	0.7921	0.04	0.8441	0.92	0.5776	0.05	0.8297		1400	0.7608	0.00	0.7872	0.90	0.6205	0.10	0.7711
	1500	0.9739	0.02	0.8655	0.92	0.5342	0.06	0.8486		1500	0.9636	0.00	0.8612	0.91	0.5812	0.09	0.8371
	1600	0.9829	0.02	0.8234	0.92	0.4549	0.06	0.8055		1600	0.9762	0.00	0.8527	0.91	0.5132	0.09	0.8235
	1700	0.9555	0.04	0.6217	0.91	0.3209	0.06	0.6158		1700	0.9477	0.00	0.7345	0.90	0.4014	0.10	0.7023
21-Mar-10	0900	0.4916	0.04	0.5271	0.83	0.4855	0.13	0.5202	21-Sep-10	0900	0.4997	0.02	0.5536	0.92	0.5094	0.06	0.5499
	1000	0.5151	0.03	0.6060	0.85	0.5608	0.12	0.5977		1000	0.5207	0.00	0.6105	0.96	0.5753	0.04	0.6090
	1100	0.5428	0.03	0.6259	0.87	0.6027	0.10	0.6210		1100	0.5511	0.01	0.6199	0.96	0.6112	0.03	0.6188
	1200	0.5940	0.03	0.6463	0.86	0.6223	0.11	0.6420		1200	0.6080	0.01	0.6484	0.93	0.6253	0.06	0.6467
	1300	0.6873	0.02	0.7303	0.90	0.6223	0.08	0.7212		1300	0.7139	0.00	0.7494	0.97	0.6217	0.03	0.7452
	1400	0.7846	0.03	0.8299	0.88	0.6034	0.09	0.8089		1400	0.8732	0.00	0.8436	0.97	0.5980	0.03	0.8354
	1500	0.9730	0.03	0.8728	0.87	0.5616	0.10	0.8459		1500	0.9772	0.00	0.8737	0.98	0.5503	0.02	0.8665
	1600	0.9848	0.03	0.8480	0.89	0.4875	0.08	0.8253		1600	0.9829	0.00	0.8305	0.99	0.4661	0.01	0.8264
	1700	0.9619	0.03	0.6898	0.89	0.3617	0.08	0.6739		1700	0.9462	0.00	0.6205	0.99	0.3258	0.01	0.6172
21-Apr-10	0900	0.5065	0.00	0.5436	0.88	0.5280	0.12	0.5417	21-Oct-10	0900	0.4896	0.03	0.5584	0.97	0.4813	0.00	0.5562
	1000	0.5161	0.00	0.5708	0.90	0.5898	0.10	0.5727		1000	0.5262	0.04	0.6474	0.96	0.5486	0.00	0.6422
	1100	0.5376	0.00	0.5342	0.89	0.6247	0.11	0.5442		1100	0.5708	0.01	0.6973	0.99	0.5855	0.00	0.6959
	1200	0.5841	0.00	0.5161	0.90	0.6392	0.10	0.5284		1200	0.6358	0.00	0.7506	1.00	0.5987	0.00	0.7506
	1300	0.6784	0.00	0.6397	0.92	0.6369	0.08	0.6395		1300	0.7444	0.02	0.8165	0.97	0.5912	0.01	0.8125
	1400	0.7682	0.00	0.8000	0.92	0.6174	0.08	0.7858		1400	0.9466	0.02	0.8608	0.97	0.5608	0.01	0.8594
	1500	0.9666	0.00	0.8643	0.89	0.5761	0.11	0.8323		1500	0.9814	0.02	0.8565	0.97	0.5026	0.01	0.8554
	1600	0.9779	0.00	0.8474	0.89	0.5056	0.11	0.8094		1600	0.9755	0.01	0.7589	0.98	0.4001	0.01	0.7574
	1700	0.9446	0.00	0.7139	0.88	0.3877	0.12	0.6740		1700	0.8875	0.03	0.4027	0.96	0.2281	0.01	0.4165
21-May-10	0900	0.5094	0.02	0.5402	0.96	0.5436	0.02	0.5396	21-Nov-10	0900	0.4683	0.12	0.5188	0.84	0.4310	0.03	0.5097
	1000	0.5161	0.01	0.5445	0.97	0.5994	0.02	0.5453		1000	0.5207	0.17	0.6447	0.80	0.5075	0.03	0.6194
	1100	0.5333	0.01	0.4813	0.94	0.6306	0.05	0.4899		1100	0.5746	0.17	0.7179	0.80	0.5486	0.03	0.6884
	1200	0.5731	0.02	0.5075	0.91	0.6441	0.06	0.5177		1200	0.6419	0.14	0.7744	0.82	0.5639	0.03	0.7482
	1300	0.6628	0.01	0.5891	0.94	0.6414	0.05	0.5927		1300	0.7503	0.12	0.8219	0.83	0.5560	0.04	0.8013
	1400	0.7514	0.02	0.7692	0.88	0.6223	0.10	0.7546		1400	0.9458	0.16	0.8453	0.79	0.5234	0.06	0.8430
	1500	0.9468	0.02	0.8491	0.90	0.5834	0.08	0.8312		1500	0.9798	0.16	0.8189	0.79	0.4594	0.06	0.8239
	1600	0.9562	0.02	0.8417	0.89	0.5170	0.09	0.8163		1600	0.9654	0.16	0.6719	0.79	0.3480	0.06	0.6996
	1700	0.8973	0.02	0.7293	0.88	0.4094	0.10	0.7019		1700	0.7642	0.13	0.2458	0.80	0.1604	0.07	0.3092
21-Jun-10	0900	0.5104	0.00	0.5350	0.89	0.5411	0.11	0.5357	21-Dec-10	0900	0.4408	0.14	0.4560	0.85	0.3863	0.01	0.4531
	1000	0.5142	0.00	0.5411	0.89	0.5967	0.11	0.5473		1000	0.5056	0.19	0.6124	0.77	0.4759	0.03	0.5873
	1100	0.5289	0.00	0.4792	0.89	0.6295	0.11	0.4959		1100	0.5616	0.18	0.7021	0.78	0.5253	0.03	0.6707
	1200	0.5647	0.00	0.4792	0.88	0.6436	0.12	0.4992		1200	0.6271	0.16	0.7631	0.81	0.5453	0.03	0.7342
	1300	0.6474	0.00	0.5678	0.92	0.6425	0.08	0.5736		1300	0.7273	0.16	0.8092	0.82	0.5419	0.02	0.7902
	1400	0.7352	0.00	0.7450	0.93	0.6253	0.07	0.7370		1400	0.9239	0.19	0.8320	0.78	0.5132	0.02	0.8429
	1500	0.9201	0.00	0.8379	0.97	0.5891	0.03	0.8296		1500	0.9764	0.20	0.8081	0.77	0.4537	0.02	0.8349
	1600	0.9360	0.00	0.8405	0.93	0.5280	0.07	0.8296		1600	0.9661	0.17	0.6729	0.81	0.3496	0.02	0.7164
	1700	0.9300	0.00	0.7483	0.93	0.4286	0.07	0.7269		1700	0.8051	0.17	0.0729	0.83	0.1737	0.02	0.7104
	1700	0.0750	0.00	0.7403	0.73	0.4200	0.07	0.7209		1700	0.0051	0.15	0.2770	0.05	0.1757	0.02	0.5546

Probability of achieving energy saving due to 'brightness on surroundings' in simulation model set 12

100	$_{O}$ P_{O} $P_{ES,BS}$	$P_{ES,RS,O}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,BS,P}$	P_C 1	$\mathbf{P}_{ES,BS,C}$	Time	Date	$\mathbf{P}_{ES,RS,R}$	P_O	$\mathbf{P}_{ES,BS,O}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,BS,P}$	\mathbf{P}_C	$\mathbf{P}_{ES,BS,C}$	Time	Date
100		0.8284						21-Jul-10		0.15	0.7445	0.80		0.05	0.7623	0900	21-Jan-10
1		0.8554									0.8020				0.7966		
14 16 16 17 18 18 18 18 18 18 18		0.8697									0.8291				0.8184		
140		0.8760									0.8408				0.8419		
1. 1. 1. 1. 1. 1. 1. 1.		0.8760									0.8416				0.9159		
1600	5 0.03 0.9200	0.8695	0.97	0.9217	0.00	0.9794	1400			0.09	0.8316	0.84		0.08	0.9688	1400	
1. 1. 1. 1. 1. 1. 1. 1.		0.8549									0.8071				0.9742		
21-Rg-1		0.8275									0.7558				0.9686		
1000	0.05 0.902	0.7750	0.95	0.9093	0.00	0.9725	1700		0.7488	0.08	0.6325	0.83	0.7371	0.10	0.9390	1700	
100	2 0.08 0.827-	0.8242	0.92	0.8276	0.00	0.7989	0900	21-Aug-10	0.7791	0.07	0.7739	0.89	0.7795	0.04	0.7777	0900	21-Feb-10
1. 1. 1. 1. 1. 1. 1. 1.	2 0.08 0.8450	0.8532	0.92	0.8443	0.00	0.8090	1000		0.8404	0.08	0.8220	0.89	0.8431	0.02	0.8028	1000	
1900	2 0.10 0.8399	0.8682	0.90	0.8369	0.00	0.8218	1100		0.8673	0.09	0.8456	0.88	0.8708	0.02	0.8201	1100	
1400	5 0.08 0.845	0.8746	0.92	0.8427	0.00	0.8439	1200		0.8855	0.09	0.8559	0.87	0.8905	0.04	0.8418	1200	
1500	2 0.10 0.8844	0.8742	0.90	0.8857	0.00	0.9442	1300		0.9116	0.04	0.8569	0.92	0.9134	0.05	0.9180	1300	
1600	0.10 0.921	0.8669	0.90	0.9274	0.00	0.9806	1400		0.9281	0.05	0.8162	0.92	0.9321	0.04	0.9740	1400	
1700	7 0.09 0.936	0.8507	0.91	0.9447	0.00	0.9841	1500		0.9311	0.06	0.8292	0.92	0.9364	0.02	0.9791	1500	
21-Mar-10	4 0.09 0.9285	0.8194	0.91	0.9388	0.00	0.9802	1600		0.9110	0.06	0.7889	0.92	0.9172	0.02	0.9750	1600	
1000	0.10 0.881	0.7569	0.90	0.8944	0.00	0.9686	1700		0.8286	0.06	0.7001	0.91	0.8318	0.04	0.9594	1700	
100	5 0.06 0.824	0.8175	0.92	0.8255	0.02	0.7969	0900	21-Sep-10	0.8103	0.13	0.8052	0.83	0.8120	0.04	0.7920	0900	21-Mar-10
1.00	0.04 0.8519	0.8479	0.96	0.8521	0.00	0.8100	1000		0.8465	0.12	0.8414	0.85	0.8487	0.03	0.8072	1000	
1300	2 0.03 0.8594	0.8632	0.96	0.8596	0.01	0.8257	1100		0.8587	0.10	0.8597	0.87	0.8599	0.03	0.8214	1100	
1400	1 0.06 0.874	0.8691	0.93	0.8755	0.01	0.8499	1200		0.8708	0.11	0.8676	0.86	0.8723	0.03	0.8437	1200	
1500	4 0.03 0.908	0.8674	0.97	0.9101	0.00	0.9593	1300		0.9014	0.08	0.8677	0.90	0.9033	0.02	0.9382	1300	
1600	7 0.03 0.9340	0.8577	0.97	0.9366	0.00	0.9810	1400		0.9279	0.09	0.8600	0.88	0.9326	0.03	0.9788	1400	
1,00	7 0.02 0.940	0.8367	0.98	0.9429	0.00	0.9821	1500		0.9344	0.10	0.8418	0.87	0.9430	0.03	0.9822	1500	
21-Apr-10 0900	0.01 0.9230	0.7949	0.99	0.9244	0.00	0.9771	1600		0.9230	0.08	0.8061	0.89	0.9309	0.03	0.9782	1600	
1000	0.01 0.8370	0.7036	0.99	0.8385	0.00	0.9565	1700		0.8606	0.08	0.7302	0.89	0.8679	0.03	0.9643	1700	
1100	0.00 0.8178	0.8029	0.97	0.8186	0.03	0.7925	0900	21-Oct-10	0.8295	0.12	0.8265	0.88	0.8299	0.00	0.7998	0900	21-Apr-10
1200	1 0.00 0.8570	0.8361	0.96	0.8590	0.04	0.8113	1000		0.8457	0.10	0.8543	0.90	0.8448	0.00	0.8096	1000	
1300	4 0.00 0.8799	0.8524	0.99	0.8805	0.01	0.8297	1100		0.8407	0.11	0.8687	0.89	0.8372	0.00	0.8233	1100	
1400	0.00 0.9010	0.8580	1.00	0.9010	0.00	0.8551	1200		0.8492	0.10	0.8746	0.90	0.8464	0.00	0.8462	1200	
1500	5 0.01 0.9240	0.8546	0.97	0.9239	0.02	0.9638	1300		0.8889	0.08	0.8736	0.92	0.8902	0.00	0.9510	1300	
1600	5 0.01 0.9365	0.8416	0.97	0.9366	0.02	0.9791	1400		0.9252	0.08	0.8658	0.92	0.9302	0.00	0.9813	1400	
1700	5 0.01 0.9313	0.8136	0.97	0.9315	0.02	0.9783	1500		0.9344	0.11	0.8484	0.89	0.9451	0.00	0.9837	1500	
21-May-10 0900	0.01 0.890	0.7559	0.98	0.8910	0.01	0.9704	1600		0.9233	0.11	0.8152	0.89	0.9368	0.00	0.9799	1600	
1000	8 0.01 0.716	0.6108	0.96	0.7103	0.03	0.9327	1700		0.8690	0.12	0.7477	0.88	0.8859	0.00	0.9670	1700	
100	0.03 0.790	0.7750	0.84	0.7924	0.12	0.7805	0900	21-Nov-10	0.8350	0.02	0.8335	0.96	0.8358	0.02	0.8022	0900	21-May-10
1	5 0.03 0.843	0.8166	0.80	0.8520	0.17	0.8064	1000		0.8421	0.02	0.8582	0.97	0.8421	0.01	0.8114	1000	
190	0.03 0.880	0.8361	0.80	0.8929	0.17	0.8280	1100		0.8290	0.05	0.8712	0.94	0.8266	0.01	0.8245	1100	
1400	0.03 0.8950	0.8429	0.82	0.9045	0.14	0.8529	1200		0.8676	0.06	0.8764	0.91	0.8675	0.02	0.8466	1200	
1500 0.9841 0.02 0.9447 0.90 0.8515 0.08 0.9386 1500 0.9727 0.16 0.9137 0.79 0.79 1600 0.9806 0.02 0.9392 0.891 0.881 0.10 0.9896 0.9299 1600 0.9624 0.16 0.9137 0.79 0.719 1700 0.9694 0.02 0.8981 0.88 0.7618 0.10 0.8864 1700 0.8772 0.13 0.5706 0.50 0.522 21 Jun-10 0.9802 0.00 0.8423 0.89 0.8324 0.11 0.8358 21-Dec-10 0.900 0.7647 0.14 0.7553 0.85 0.747 1700 0.8311 0.00 0.8433 0.89 0.8373 0.11 0.8448 1.00 0.7988 0.747 0.19 0.8358 0.77 0.799 1700 0.8446 0.00 0.8580 0.89 0.8706 0.11 0.8352 1.10 0.8448 1.00 0.7988 0.8714 0.78 0.824 1700 0.8446 0.00 0.8581 0.88 0.8763 0.12 0.8603 1.20 0.8461 1.00 0.9461 0.16 0.8986 0.81 0.8348 1700 0.9846 0.00 0.8733 0.92 0.8758 0.08 0.8864 1.20 0.9464 0.16 0.8986 0.81 0.8348 1800 0.9846 0.00 0.9234 0.93 0.8609 0.07 0.9197 0.9197 0.140 0.9685 0.19 0.9217 0.78 0.819 1800 0.9846 0.00 0.9446 0.07 0.9456 0.07 0.9333 0.9406 0.9700 0.9700 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 1800 0.9846 0.00 0.9496 0.03 0.8266 0.07 0.9333 0.9406 0.00 0.0700 0.70000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000	3 0.04 0.922	0.8393	0.83	0.9214	0.12	0.9569	1300		0.8883	0.05	0.8754	0.94	0.8883	0.01	0.9521	1300	
1600	3 0.06 0.928	0.8243	0.79	0.9275	0.16	0.9730	1400		0.9225	0.10	0.8677	0.88	0.9271	0.02	0.9818	1400	
1700 0.964 0.02 0.891 0.88 0.7618 0.10 0.8864 1700 0.8772 0.13 0.5706 0.80 0.522	2 0.06 0.9160	0.7912	0.79	0.9137	0.16	0.9727	1500		0.9386	0.08	0.8515	0.90	0.9447	0.02	0.9841	1500	
21-Jun-10 900 0.8022 0.00 0.8362 0.89 0.8324 0.11 0.8358 21-Dec-10 900 0.7647 0.14 0.7553 0.85 0.747 1000 0.8111 0.00 0.8433 0.89 0.8736 0.11 0.8448 1000 0.7985 0.19 0.8358 0.71 0.799 1100 0.8258 0.00 0.8433 0.89 0.8706 0.11 0.8327 1100 0.827 0.18 0.8744 0.78 0.824 1200 0.8446 0.00 0.8581 0.88 0.8763 0.12 0.8603 1.20 0.8641 0.10 0.9342 0.16 0.8986 0.81 0.83 1200 0.9456 0.00 0.8583 0.92 0.8756 0.12 0.8603 1.20 0.8604 1.20 0.9456 0.10 0.9342 0.16 0.8986 0.81 0.83 1400 0.9456 0.00 0.9224 0.93 0.869 0.07 0.9197 1.400 0.9685 0.19 0.9217 0.78 0.819 1500 0.9582 0.00 0.9456 0.97 0.8541 0.30 0.9406 0.15 0.9056 0.905 0.79 0.9197 0.9197 0.9187	0.06 0.8602	0.7199	0.79	0.8499	0.16	0.9624	1600		0.9299	0.09	0.8211	0.89	0.9392	0.02	0.9806	1600	
1000	5 0.07 0.608	0.5225	0.80	0.5706	0.13	0.8772	1700		0.8864	0.10	0.7618	0.88	0.8981	0.02	0.9694	1700	
1100 0.8238 0.00 0.8280 0.89 0.8706 0.11 0.8327 1100 0.8217 0.18 0.8744 0.78 0.824 1200 0.8446 0.00 0.8581 0.88 0.8763 0.12 0.8603 1200 0.8461 0.16 0.8986 0.81 0.834 1300 0.9456 0.00 0.8873 0.92 0.8758 0.08 0.8864 1300 0.942 0.16 0.9154 0.82 0.833 1400 0.9800 0.00 0.9234 0.33 0.8690 0.07 0.9197 1400 0.9685 0.19 0.9217 0.78 0.81 0.874 1500 0.9842 0.00 0.9436 0.97 0.8541 0.03 0.9406 1500 0.9705 0.20 0.9089 0.77 0.788 1600 0.9808 0.00 0.9409 0.93 0.8263 0.07 0.9333 1600 0.9610 0.17 0.8493 0.81 0.72	2 0.01 0.7565	0.7472	0.85	0.7553	0.14	0.7647	0900	21-Dec-10	0.8358	0.11	0.8324	0.89	0.8362	0.00	0.8022	0900	21-Jun-10
1200 0.8446 0.00 0.8581 0.88 0.8763 0.12 0.8603 1200 0.8461 0.16 0.8986 0.81 0.834 1300 0.9456 0.00 0.85873 0.92 0.8758 0.08 0.8864 1300 0.9342 0.16 0.9154 0.82 0.833 1400 0.9340 0.00 0.9234 0.93 0.8696 0.07 0.9197 1400 0.9685 0.19 0.9217 0.78 0.819 1500 0.9342 0.00 0.9436 0.97 0.8541 0.03 0.9406 1500 0.9705 0.20 0.9089 0.77 0.78 0.819 1600 0.9888 0.00 0.9496 0.93 0.8263 0.07 0.9333 1600 0.960 0.17 0.8493 0.81 0.72	0.03 0.827	0.7999	0.77	0.8358	0.19	0.7985	1000		0.8448	0.11	0.8573	0.89	0.8433	0.00	0.8111	1000	
1300 0.9456 0.00 0.8873 0.92 0.8758 0.08 0.8864 1300 0.9342 0.16 0.9154 0.82 0.833 1400 0.9800 0.00 0.9234 0.93 0.8690 0.07 0.9197 1400 0.9685 0.19 0.9217 0.78 0.819 1500 0.9842 0.00 0.9436 0.97 0.8541 0.03 0.9406 1500 0.9705 0.20 0.9899 0.77 0.788 1600 0.9808 0.00 0.9409 0.93 0.8263 0.07 0.9333 1600 0.9610 0.17 0.8493 0.81 0.721	0.03 0.8632	0.8249	0.78	0.8744	0.18	0.8217	1100		0.8327	0.11	0.8706	0.89	0.8280	0.00	0.8238	1100	
1400 0.9800 0.00 0.9234 0.93 0.8690 0.07 0.9197 1400 0.9685 0.19 0.9217 0.78 0.819 1500 0.9842 0.00 0.9436 0.97 0.8541 0.03 0.9406 1500 0.9705 0.20 0.9089 0.77 0.788 1600 0.9808 0.00 0.9409 0.93 0.8263 0.07 0.9333 1600 0.9610 0.17 0.8493 0.81 0.721	5 0.03 0.888	0.8345	0.81	0.8986	0.16	0.8461	1200		0.8603	0.12	0.8763	0.88	0.8581	0.00	0.8446	1200	
1500 0.9842 0.00 0.9436 0.97 0.8541 0.03 0.9406 1500 0.9705 0.20 0.9089 0.77 0.788 1600 0.9808 0.00 0.9409 0.93 0.8263 0.07 0.9333 1600 0.9610 0.17 0.8493 0.81 0.721	1 0.02 0.916	0.8331	0.82	0.9154	0.16	0.9342	1300		0.8864	0.08	0.8758	0.92	0.8873	0.00	0.9456	1300	
1500 0.9842 0.00 0.9436 0.97 0.8541 0.03 0.9406 1500 0.9705 0.20 0.9089 0.77 0.788 1600 0.9808 0.00 0.9409 0.93 0.8263 0.07 0.9333 1600 0.9610 0.17 0.8493 0.81 0.721	4 0.02 0.9286	0.8194	0.78	0.9217	0.19	0.9685	1400		0.9197	0.07	0.8690	0.93	0.9234	0.00	0.9800	1400	
1600 0.9808 0.00 0.9409 0.93 0.8263 0.07 0.9333 1600 0.9610 0.17 0.8493 0.81 0.721		0.7882															
		0.7217															
1700 0.9721 0.00 0.9075 0.93 0.7735 0.07 0.8986 1700 0.8913 0.15 0.6008 0.83 0.544		0.5444															

Probability of achieving energy saving due to 'uniformity on desktop' in simulation model set 12

Date	Time	$\mathbf{P}_{ES,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,UD,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,UD,R}$	Date	Time	$\mathbf{P}_{ES,UD,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,UD,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,UD,O}$	$\mathbf{P}_{\mathcal{O}}$	$\mathbf{P}_{ES,UD,R}$
21-Jan-10	0900	0.7780	0.05	0.6666	0.80	0.6072	0.15	0.6637	21-Jul-10	0900	0.7853	0.00	0.6588	0.92	0.6055	0.08	0.6548
	1000	0.7564	0.06	0.6578	0.81	0.6070	0.13	0.6576		1000	0.7642	0.00	0.6427	0.91	0.6025	0.09	0.6393
	1100	0.7296	0.06	0.6363	0.81	0.6048	0.13	0.6382		1100	0.7414	0.00	0.6079	0.91	0.6038	0.09	0.6075
	1200	0.6960	0.08	0.6213	0.80	0.6046	0.13	0.6248		1200	0.7243	0.00	0.5415	0.91	0.6041	0.09	0.5469
	1300	0.6793	0.08	0.6010	0.83	0.6041	0.10	0.6072		1300	0.7224	0.00	0.5099	0.96	0.6041	0.04	0.5140
	1400	0.6393	0.08	0.6045	0.84	0.6030	0.09	0.6070		1400	0.7445	0.00	0.5621	0.97	0.6057	0.03	0.5635
	1500	0.0926	0.09	0.6417	0.83	0.6033	0.09	0.5912		1500	0.1501	0.00	0.5839	0.97	0.6067	0.03	0.5846
	1600	0.9176	0.11	0.6939	0.83	0.6042	0.06	0.7121		1600	0.1302	0.00	0.6432	0.97	0.6061	0.03	0.6420
	1700	0.9385	0.10	0.7107	0.83	0.6094	0.08	0.7251		1700	0.3102	0.00	0.6818	0.95	0.6066	0.05	0.6777
21-Feb-10	0900	0.7800	0.04	0.6644	0.89	0.6038	0.07	0.6642	21-Aug-10	0900	0.7821	0.00	0.6561	0.92	0.6040	0.08	0.6522
	1000	0.7559	0.02	0.6516	0.89	0.6032	0.08	0.6501		1000	0.7605	0.00	0.6387	0.92	0.6045	0.08	0.6361
	1100	0.7294	0.02	0.6375	0.88	0.6048	0.09	0.6366		1100	0.7340	0.00	0.6074	0.90	0.6051	0.10	0.6072
	1200	0.7027	0.04	0.6072	0.87	0.6020	0.09	0.6101		1200	0.7063	0.00	0.5570	0.92	0.6040	0.08	0.5605
	1300	0.6922	0.05	0.5984	0.92	0.6031	0.04	0.6030		1300	0.7228	0.00	0.5328	0.90	0.6027	0.10	0.5396
	1400	0.6798	0.04	0.5863	0.92	0.6060	0.05	0.5905		1400	0.7323	0.00	0.5537	0.90	0.6046	0.10	0.5586
	1500	0.0936	0.02	0.6233	0.92	0.6048	0.06	0.6097		1500	0.1034	0.00	0.5924	0.91	0.6066	0.09	0.5936
	1600	0.9329	0.02	0.6873	0.92	0.6043	0.06	0.6882		1600	0.0922	0.00	0.6540	0.91	0.6052	0.09	0.6498
	1700	0.9364	0.04	0.7159	0.91	0.6052	0.06	0.7172		1700	0.1796	0.00	0.6932	0.90	0.6073	0.10	0.6849
21-Mar-10	0900	0.7816	0.04	0.6615	0.83	0.6048	0.13	0.6594	21-Sep-10	0900	0.7793	0.02	0.6542	0.92	0.6066	0.06	0.6543
	1000	0.7568	0.03	0.6463	0.85	0.6041	0.12	0.6449		1000	0.7490	0.00	0.6424	0.96	0.6049	0.04	0.6407
	1100	0.7281	0.03	0.6302	0.87	0.6043	0.10	0.6308		1100	0.7225	0.01	0.6264	0.96	0.6030	0.03	0.6267
	1200	0.6996	0.03	0.5906	0.86	0.6023	0.11	0.5954		1200	0.7016	0.01	0.5807	0.93	0.6061	0.06	0.5835
	1300	0.7138	0.02	0.5703	0.90	0.6056	0.08	0.5760		1300	0.7112	0.00	0.5686	0.97	0.6042	0.03	0.5698
	1400	0.7047	0.03	0.5638	0.88	0.6058	0.09	0.5719		1400	0.3510	0.00	0.5683	0.97	0.6042	0.03	0.5695
	1500	0.0929	0.03	0.6077	0.87	0.6059	0.10	0.5909		1500	0.0888	0.00	0.6208	0.98	0.6057	0.02	0.6205
	1600	0.8459	0.03	0.6780	0.89	0.6041	0.08	0.6779		1600	0.6523	0.00	0.6872	0.99	0.6061	0.01	0.6863
	1700	0.4442	0.03	0.7097	0.89	0.6070	0.08	0.6934		1700	0.2497	0.00	0.7110	0.99	0.6080	0.01	0.7099
21-Apr-10	0900	0.7832	0.00	0.6552	0.88	0.6047	0.12	0.6490	21-Oct-10	0900	0.7717	0.03	0.6636	0.97	0.6008	0.00	0.6671
	1000	0.7617	0.00	0.6380	0.90	0.6035	0.10	0.6345		1000	0.7414	0.04	0.6470	0.96	0.6063	0.00	0.6510
	1100	0.7279	0.00	0.6048	0.89	0.6047	0.11	0.6048		1100	0.7146	0.01	0.6231	0.99	0.6051	0.00	0.6241
	1200	0.7026	0.00	0.5524	0.90	0.6040	0.10	0.5576		1200	0.6838	0.00	0.5984	1.00	0.6021	0.00	0.5984
	1300	0.7113	0.00	0.5353	0.92	0.6049	0.08	0.5407		1300	0.6893	0.02	0.5791	0.97	0.6030	0.01	0.5818
	1400	0.7260	0.00	0.5494	0.92	0.6041	0.08	0.5537		1400	0.1374	0.02	0.5980	0.97	0.6041	0.01	0.5882
	1500	0.0997	0.00	0.5971	0.89	0.6066	0.11	0.5982		1500	0.0866	0.02	0.6543	0.97	0.6014	0.01	0.6415
	1600	0.0948	0.00	0.6663	0.89	0.6029	0.11	0.6593		1600	0.9351	0.01	0.7077	0.98	0.6042	0.01	0.7090
	1700	0.2000	0.00	0.6950	0.88	0.6051	0.12	0.6840		1700	0.8527	0.03	0.7171	0.96	0.6052	0.01	0.7203
21-May-10	0900	0.7863	0.02	0.6569	0.96	0.6037	0.02	0.6585	21-Nov-10	0900	0.7670	0.12	0.6591	0.84	0.6066	0.03	0.6706
	1000	0.7617	0.01	0.6401	0.97	0.6037	0.02	0.6406		1000	0.7415	0.17	0.6527	0.80	0.6073	0.03	0.6660
	1100	0.7365	0.01	0.6008	0.94	0.6057	0.05	0.6025		1100	0.7171	0.17	0.6268	0.80	0.6063	0.03	0.6411
	1200	0.7114	0.02	0.5255	0.91	0.6037	0.06	0.5346		1200	0.6842	0.14	0.6154	0.82	0.6030	0.03	0.6249
	1300	0.7241	0.01	0.5171	0.94	0.6032	0.05	0.5240		1300	0.6775	0.12	0.5988	0.83	0.6058	0.04	0.6088
	1400	0.7410	0.02	0.5662	0.88	0.6056	0.10	0.5738		1400	0.1376	0.16	0.6152	0.79	0.6040	0.06	0.5403
	1500	0.1320	0.02	0.5934	0.90	0.6039	0.08	0.5843		1500	0.0918	0.16	0.6633	0.79	0.6027	0.06	0.5710
	1600	0.1319	0.02	0.6501	0.89	0.6039	0.09	0.6350		1600	0.9237	0.16	0.7066	0.79	0.5993	0.06	0.7344
	1700	0.3545	0.02	0.6856	0.88	0.6044	0.10	0.6706		1700	0.9401	0.13	0.7050	0.80	0.6094	0.07	0.7300
21-Jun-10	0900	0.7838	0.00	0.6680	0.89	0.6024	0.11	0.6607	21-Dec-10	0900	0.7697	0.14	0.6589	0.85	0.6018	0.01	0.6738
	1000	0.7667	0.00	0.6501	0.89	0.6047	0.11	0.6451		1000	0.7483	0.19	0.6530	0.77	0.6054	0.03	0.6699
	1100	0.7414	0.00	0.6070	0.89	0.6029	0.11	0.6066		1100	0.7208	0.18	0.6327	0.78	0.6034	0.03	0.6479
	1200	0.7187	0.00	0.5339	0.88	0.6054	0.12	0.5427		1200	0.6908	0.16	0.6244	0.81	0.6031	0.03	0.6344
	1300	0.7332	0.00	0.5164	0.92	0.6028	0.08	0.5231		1300	0.6711	0.16	0.6039	0.82	0.6043	0.02	0.6148
	1400	0.7513	0.00	0.5690	0.93	0.6028	0.07	0.5712		1400	0.1810	0.19	0.6156	0.78	0.6052	0.02	0.5312
	1500	0.1890	0.00	0.5904	0.97	0.6056	0.03	0.5909		1500	0.0927	0.20	0.6563	0.77	0.6077	0.02	0.5401
	1600	0.1820	0.00	0.6431	0.93	0.6047	0.07	0.6405		1600	0.9142	0.17	0.6988	0.81	0.6031	0.02	0.7338
	1700	0.4689	0.00	0.6836	0.93	0.6075	0.07	0.6785		1700	0.9319	0.15	0.7063	0.83	0.6010	0.02	0.7380

Probability of achieving energy saving due to 'uniformity on surroundings' in simulation model set 12

Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,US,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,US,O}$	P_O	$\mathbf{P}_{ES,US,R}$	Date	Time	$\mathbf{P}_{ES,US,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,US,P}$	\mathbf{P}_{P}	$\mathbf{P}_{ES,US,O}$	P_O	$\mathbf{P}_{ES,US,R}$
21-Jan-10	0900	0.9219	0.05	0.9429	0.80	0.9496	0.15	0.9428	21-Jul-10	0900	0.9214	0.00	0.9469	0.92	0.9496	0.08	0.9471
	1000	0.9258	0.06	0.9428	0.81	0.9497	0.13	0.9426		1000	0.9271	0.00	0.9491	0.91	0.9497	0.09	0.9491
	1100	0.9299	0.06	0.9435	0.81	0.9497	0.13	0.9435		1100	0.9340	0.00	0.9531	0.91	0.9497	0.09	0.9528
	1200	0.9339	0.08	0.9442	0.80	0.9497	0.13	0.9441		1200	0.9397	0.00	0.9588	0.91	0.9497	0.09	0.9581
	1300	0.9555	0.08	0.9440	0.83	0.9497	0.10	0.9454		1300	0.9637	0.00	0.9594	0.96	0.9497	0.04	0.9589
	1400	0.9630	0.08	0.9418	0.84	0.9497	0.09	0.9441		1400	0.9669	0.00	0.9536	0.97	0.9497	0.03	0.9535
	1500	0.9562	0.09	0.9372	0.83	0.9497	0.09	0.9399		1500	0.9648	0.00	0.9466	0.97	0.9496	0.03	0.9467
	1600	0.8978	0.11	0.9322	0.83	0.9499	0.06	0.9297		1600	0.9430	0.00	0.9393	0.97	0.9497	0.03	0.9396
	1700	0.6820	0.10	0.9312	0.83	0.9500	0.08	0.9085		1700	0.8854	0.00	0.9341	0.95	0.9498	0.05	0.9350
21-Feb-10	0900	0.9208	0.04	0.9436	0.89	0.9497	0.07	0.9433	21-Aug-10	0900	0.9211	0.00	0.9464	0.92	0.9497	0.08	0.9466
	1000	0.9250	0.02	0.9442	0.89	0.9496	0.08	0.9442		1000	0.9265	0.00	0.9484	0.92	0.9496	0.08	0.9485
	1100	0.9303	0.02	0.9456	0.88	0.9497	0.09	0.9456		1100	0.9336	0.00	0.9521	0.90	0.9496	0.10	0.9518
	1200	0.9353	0.04	0.9471	0.87	0.9497	0.09	0.9469		1200	0.9394	0.00	0.9566	0.92	0.9497	0.08	0.9561
	1300	0.9569	0.05	0.9474	0.92	0.9498	0.04	0.9480		1300	0.9633	0.00	0.9569	0.90	0.9497	0.10	0.9562
	1400	0.9651	0.04	0.9451	0.92	0.9497	0.05	0.9460		1400	0.9670	0.00	0.9518	0.90	0.9497	0.10	0.9516
	1500	0.9594	0.02	0.9397	0.92	0.9497	0.06	0.9408		1500	0.9624	0.00	0.9445	0.91	0.9497	0.09	0.9450
	1600	0.9205	0.02	0.9333	0.92	0.9497	0.06	0.9339		1600	0.9342	0.00	0.9370	0.91	0.9497	0.09	0.9381
	1700	0.6019	0.04	0.9306	0.91	0.9498	0.06	0.9201		1700	0.8478	0.00	0.9321	0.90	0.9496	0.10	0.9338
21-Mar-10	0900	0.9209	0.04	0.9451	0.83	0.9497	0.13	0.9446	21-Sep-10	0900	0.9216	0.02	0.9452	0.92	0.9497	0.06	0.9449
	1000	0.9251	0.03	0.9463	0.85	0.9498	0.12	0.9460		1000	0.9270	0.00	0.9469	0.96	0.9497	0.04	0.9470
	1100	0.9320	0.03	0.9487	0.87	0.9497	0.10	0.9483		1100	0.9337	0.01	0.9497	0.96	0.9497	0.03	0.9495
	1200	0.9375	0.03	0.9513	0.86	0.9497	0.11	0.9507		1200	0.9387	0.01	0.9522	0.93	0.9498	0.06	0.9519
	1300	0.9618	0.02	0.9518	0.90	0.9497	0.08	0.9518		1300	0.9650	0.00	0.9517	0.97	0.9497	0.03	0.9517
	1400	0.9664	0.03	0.9484	0.88	0.9497	0.09	0.9491		1400	0.9664	0.00	0.9474	0.97	0.9497	0.03	0.9475
	1500	0.9605	0.03	0.9419	0.87	0.9497	0.10	0.9433		1500	0.9571	0.00	0.9404	0.98	0.9497	0.02	0.9406
	1600	0.9209	0.03	0.9345	0.89	0.9497	0.08	0.9352		1600	0.8952	0.00	0.9332	0.99	0.9498	0.01	0.9334
	1700	0.6736	0.03	0.9304	0.89	0.9498	0.08	0.9236		1700	0.7725	0.00	0.9306	0.99	0.9499	0.01	0.9309
21-Apr-10	0900	0.9217	0.00	0.9465	0.88	0.9497	0.12	0.9469	21-Oct-10	0900	0.9229	0.03	0.9439	0.97	0.9497	0.00	0.9433
	1000	0.9269	0.00	0.9485	0.90	0.9497	0.10	0.9486		1000	0.9273	0.04	0.9449	0.96	0.9496	0.00	0.9441
	1100	0.9341	0.00	0.9523	0.89	0.9497	0.11	0.9520		1100	0.9329	0.01	0.9465	0.99	0.9497	0.00	0.9464
	1200	0.9397	0.00	0.9567	0.90	0.9497	0.10	0.9560		1200	0.9372	0.00	0.9476	1.00	0.9497	0.00	0.9476
	1300	0.9643	0.00	0.9563	0.92	0.9497	0.08	0.9558		1300	0.9640	0.02	0.9468	0.97	0.9497	0.01	0.9472
	1400	0.9670	0.00	0.9511	0.92	0.9497	0.08	0.9510		1400	0.9649	0.02	0.9429	0.97	0.9496	0.01	0.9434
	1500	0.9609	0.00	0.9438	0.89	0.9497	0.11	0.9444		1500	0.9501	0.02	0.9365	0.97	0.9497	0.01	0.9369
	1600	0.9320	0.00	0.9362	0.89	0.9497	0.11	0.9377		1600	0.8287	0.01	0.9310	0.98	0.9499	0.01	0.9301
	1700	0.8399	0.00	0.9320	0.88	0.9499	0.12	0.9342		1700	0.5828	0.03	0.9308	0.96	0.9498	0.01	0.9198
21-May-10	0900	0.9223	0.02	0.9472	0.96	0.9497	0.02	0.9467	21-Nov-10	0900	0.9233	0.12	0.9428	0.84	0.9498	0.03	0.9406
	1000	0.9284	0.01	0.9495	0.97	0.9497	0.02	0.9493		1000	0.9277	0.17	0.9431	0.80	0.9498	0.03	0.9408
	1100	0.9349	0.01	0.9539	0.94	0.9498	0.05	0.9535		1100	0.9316	0.17	0.9496	0.80	0.9496	0.03	0.9466
	1200	0.9404	0.02	0.9595	0.91	0.9497	0.06	0.9585		1200	0.9355	0.14	0.9444	0.82	0.9497	0.03	0.9433
	1300	0.9645	0.01	0.9584	0.94	0.9497	0.05	0.9580		1300	0.9618	0.12	0.9435	0.83	0.9498	0.04	0.9460
	1400	0.9672	0.02	0.9525	0.88	0.9497	0.10	0.9525		1400	0.9621	0.16	0.9403	0.79	0.9496	0.06	0.9442
	1500	0.9628	0.02	0.9453	0.90	0.9497	0.08	0.9460		1500	0.9463	0.16	0.9350	0.79	0.9497	0.06	0.9376
	1600	0.9354	0.02	0.9381	0.89	0.9498	0.09	0.9390		1600	0.8110	0.16	0.9310	0.79	0.9497	0.06	0.9134
	1700	0.8592	0.02	0.9337	0.88	0.9497	0.10	0.9336		1700	0.7280	0.13	0.9317	0.80	0.9496	0.07	0.9057
21-Jun-10	0900	0.9223	0.00	0.9472	0.89	0.9497	0.11	0.9474	21-Dec-10	0900	0.9231	0.14	0.9424	0.85	0.9498	0.01	0.9398
Jun 10	1000	0.9279	0.00	0.9496	0.89	0.9498	0.11	0.9496	2. 200 10	1000	0.9268	0.19	0.9424	0.77	0.9497	0.03	0.9396
	1100	0.9279	0.00	0.9490	0.89	0.9498	0.11	0.9490		1100	0.9208	0.19	0.9424	0.78	0.9497	0.03	0.9390
	1200	0.9402	0.00	0.9594	0.88	0.9497	0.11	0.9582		1200	0.9311	0.16	0.9429	0.78	0.9497	0.03	0.9410
	1300	0.9402	0.00	0.9594	0.88	0.9497	0.12	0.9584		1300	0.9593	0.16	0.9433	0.81	0.9497	0.03	0.9421
	1400	0.9670	0.00	0.9533	0.92	0.9498	0.08	0.9531		1400	0.9595	0.10	0.9427	0.82	0.9497	0.02	0.9444
	1500	0.9642	0.00	0.9333	0.93	0.9498	0.07	0.9551		1500	0.9615	0.19	0.9401	0.78	0.9497	0.02	0.9444
	1600	0.9422	0.00	0.9465	0.97	0.9497	0.03	0.9400		1600	0.9492	0.20	0.9336	0.77	0.9497	0.02	0.9387
	1700	0.9422	0.00	0.9394	0.93	0.9497	0.07	0.9401		1700	0.8437	0.17	0.9318	0.81	0.9497	0.02	0.9170
	1700	0.8904	0.00	0.9340	0.93	0.9497	0.07	0.9330		1 /00	0.7349	0.15	0.9323	0.63	0.9499	0.02	0.9030

Probability of achieving energy saving due to 'perceived glare from window' in simulation model set 12

Simulation Model Set No.: 12 Window size: Large Orientation: West Existence of obstruction: No

Date	Time	$\mathbf{P}_{ES,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{ES,PG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,PG,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,PG,R}$	Date	Time	$\mathbf{P}_{ES,PG,C}$	\mathbf{P}_C	$\mathbf{P}_{EX,PG,P}$	\mathbf{P}_{p}	$\mathbf{P}_{ES,PG,O}$	\mathbf{P}_{O}	$\mathbf{P}_{ES,PG,R}$
21-Jan-10	0900	0.9565	0.05	0.9281	0.80	0.9203	0.15	0.9285	21-Jul-10	0900	0.9485	0.00	0.8822	0.92	0.8773	0.08	0.8818
	1000	0.9437	0.06	0.8865	0.81	0.8943	0.13	0.8912		1000	0.9424	0.00	0.8746	0.91	0.8545	0.09	0.8728
	1100	0.9302	0.06	0.8514	0.81	0.8767	0.13	0.8597		1100	0.9329	0.00	0.8840	0.91	0.8389	0.09	0.8801
	1200	0.9105	0.08	0.8190	0.80	0.8672	0.13	0.8321		1200	0.9170	0.00	0.8642	0.91	0.8314	0.09	0.8613
	1300	0.8916	0.08	0.7841	0.83	0.8665	0.10	0.8002		1300	0.9046	0.00	0.8144	0.96	0.8315	0.04	0.8151
	1400	0.3087	0.08	0.7629	0.84	0.8742	0.09	0.7383		1400	0.2451	0.00	0.7627	0.97	0.8394	0.03	0.7652
	1500	0.2674	0.09	0.7861	0.83	0.8911	0.09	0.7505		1500	0.1982	0.00	0.7173	0.97	0.8549	0.03	0.7217
	1600	0.3440	0.11	0.8604	0.83	0.9162	0.06	0.8085		1600	0.2226	0.00	0.7472	0.97	0.8774	0.03	0.7514
	1700	0.6203	0.10	0.9481	0.83	0.9504	0.08	0.9165		1700	0.3039	0.00	0.8411	0.95	0.9080	0.05	0.8447
21-Feb-10	0900	0.9543	0.04	0.9135	0.89	0.9087	0.07	0.9146	21-Aug-10	0900	0.9496	0.00	0.8849	0.92	0.8800	0.08	0.8845
	1000	0.9439	0.02	0.8763	0.89	0.8815	0.08	0.8783		1000	0.9429	0.00	0.8733	0.92	0.8566	0.08	0.8720
	1100	0.9320	0.02	0.8503	0.88	0.8635	0.09	0.8534		1100	0.9327	0.00	0.8784	0.90	0.8407	0.10	0.8748
	1200	0.9136	0.04	0.8240	0.87	0.8539	0.09	0.8300		1200	0.9155	0.00	0.8699	0.92	0.8333	0.08	0.8672
	1300	0.8936	0.05	0.7844	0.92	0.8526	0.04	0.7920		1300	0.9003	0.00	0.8216	0.90	0.8338	0.10	0.8228
	1400	0.2774	0.04	0.7433	0.92	0.9919	0.05	0.7385		1400	0.2324	0.00	0.7510	0.90	0.8423	0.10	0.7598
	1500	0.2311	0.02	0.7463	0.92	0.8765	0.06	0.7418		1500	0.2010	0.00	0.7174	0.91	0.8588	0.09	0.7295
	1600	0.2850	0.02	0.8149	0.92	0.9014	0.06	0.8075		1600	0.2365	0.00	0.7635	0.91	0.8836	0.09	0.7738
	1700	0.4766	0.04	0.9170	0.91	0.9353	0.06	0.9025		1700	0.3448	0.00	0.8677	0.90	0.9159	0.10	0.8723
21-Mar-10	0900	0.9515	0.04	0.8954	0.83	0.8921	0.13	0.8974	21-Sep-10	0900	0.9495	0.02	0.8871	0.92	0.8845	0.06	0.8884
	1000	0.9433	0.03	0.8703	0.85	0.8669	0.12	0.8722		1000	0.9411	0.00	0.8670	0.96	0.8611	0.04	0.8668
	1100	0.9324	0.03	0.8596	0.87	0.8497	0.10	0.8610		1100	0.9292	0.01	0.8596	0.96	0.8464	0.03	0.8599
	1200	0.9142	0.03	0.8447	0.86	0.8415	0.11	0.8466		1200	0.9084	0.01	0.8401	0.93	0.8399	0.06	0.8409
	1300	0.8976	0.02	0.8003	0.90	0.8412	0.08	0.8055		1300	0.8993	0.00	0.7882	0.97	0.8414	0.03	0.7900
	1400	0.2438	0.03	0.7397	0.88	0.8496	0.09	0.7332		1400	0.2217	0.00	0.7306	0.97	0.8522	0.03	0.7347
	1500	0.2093	0.03	0.7254	0.87	0.8664	0.10	0.7224		1500	0.2143	0.00	0.7315	0.98	0.8707	0.02	0.7346
	1600	0.2605	0.03	0.7876	0.89	0.8917	0.08	0.7784		1600	0.2776	0.00	0.8082	0.99	0.8978	0.01	0.8092
	1700	0.4127	0.03	0.8959	0.89	0.9259	0.08	0.8826		1700	0.1100	0.00	0.9171	0.99	0.9341	0.01	0.9173
21-Apr-10	0900	0.9491	0.00	0.8837	0.88	0.8785	0.12	0.8830	21-Oct-10	0900	0.9491	0.03	0.8932	0.97	0.8939	0.00	0.8950
	1000	0.9423	0.00	0.8733	0.90	0.8552	0.10	0.8715		1000	0.9386	0.04	0.8625	0.96	0.8710	0.00	0.8658
	1100	0.9316	0.00	0.8779	0.89	0.8400	0.11	0.8737		1100	0.9243	0.01	0.8341	0.99	0.8569	0.00	0.8350
	1200	0.9136	0.00	0.8664	0.90	0.8335	0.10	0.8631		1200	0.9012	0.00	0.8068	1.00	0.8516	0.00	0.8068
	1300	0.9001	0.00	0.8163	0.92	0.8342	0.08	0.8177		1300	0.3955	0.02	0.7618	0.97	0.8547	0.01	0.7550
	1400	0.2234	0.00	0.7454	0.92	0.8437	0.08	0.7530		1400	0.2380	0.02	0.7359	0.97	0.8663	0.01	0.7266
	1500	0.2014	0.00	0.7181	0.89	0.8606	0.11	0.7339		1500	0.2484	0.02	0.7712	0.97	0.8870	0.01	0.7612
	1600	0.2442	0.00	0.7718	0.89	0.8861	0.11	0.7845		1600	0.3454	0.01	0.8637	0.98	0.9160	0.01	0.8587
	1700	0.3682	0.00	0.8785	0.88	0.9192	0.12	0.8835		1700	0.9674	0.03	0.9576	0.96	0.9550	0.01	0.9578
21-May-10	0900	0.9477	0.02	0.8800	0.96	0.8733	0.02	0.8813	21-Nov-10	0900	0.9510	0.12	0.9094	0.84	0.9082	0.03	0.9144
	1000	0.9413	0.01	0.8751	0.97	0.8515	0.02	0.8753		1000	0.9385	0.17	0.8710	0.80	0.8855	0.03	0.8828
	1100	0.9310	0.01	0.8854	0.94	0.8373	0.05	0.8833		1100	0.9227	0.17	0.8379	0.80	0.8711	0.03	0.8532
	1200	0.9136	0.02	0.8410	0.91	0.8309	0.06	0.8419		1200	0.8996	0.14	0.8042	0.82	0.8656	0.03	0.8200
	1300	0.9022	0.01	0.8151	0.94	0.8323	0.05	0.8169		1300	0.4444	0.12	0.7711	0.83	0.8681	0.04	0.7355
	1400	0.2325	0.02	0.7518	0.88	0.8412	0.10	0.7493		1400	0.2680	0.16	0.7646	0.79	0.8799	0.06	0.6937
	1500	0.1989	0.02	0.7170	0.90	0.8576	0.08	0.7164		1500	0.2875	0.16	0.8107	0.79	0.9001	0.06	0.7343
	1600	0.2290	0.02	0.7595	0.89	0.8822	0.09	0.7587		1600	0.4114	0.16	0.8978	0.79	0.9290	0.06	0.8239
	1700	0.3309	0.02	0.8598	0.88	0.9139	0.10	0.8536		1700	0.8650	0.13	0.9747	0.80	0.9678	0.07	0.9596
21-Jun-10	0900	0.9475	0.00	0.8796	0.89	0.8741	0.11	0.8790	21-Dec-10	0900	0.9549	0.14	0.9259	0.85	0.9198	0.01	0.9299
	1000	0.9413	0.00	0.8741	0.89	0.8524	0.11	0.8717		1000	0.9417	0.19	0.8844	0.77	0.8951	0.03	0.8958
	1100	0.9315	0.00	0.8844	0.89	0.8381	0.11	0.8793		1100	0.8947	0.18	0.8489	0.78	0.8792	0.03	0.8583
	1200	0.9150	0.00	0.8519	0.88	0.8312	0.12	0.8494		1200	0.9047	0.16	0.8159	0.81	0.8722	0.03	0.8320
	1300	0.9027	0.00	0.8150	0.92	0.8316	0.08	0.8163		1300	0.8909	0.16	0.7855	0.82	0.8737	0.02	0.8044
	1400	0.2432	0.00	0.7597	0.93	0.8398	0.07	0.7651		1400	0.1095	0.19	0.7775	0.78	0.8836	0.02	0.6505
	1500	0.1992	0.00	0.7178	0.97	0.8558	0.03	0.7224		1500	0.2941	0.20	0.8163	0.77	0.9015	0.02	0.7114
	1600	0.2229	0.00	0.7493	0.93	0.8784	0.07	0.7579		1600	0.4079	0.17	0.8954	0.81	0.9287	0.02	0.8123
	1700	0.3085	0.00	0.8425	0.93	0.9083	0.07	0.8469		1700	0.8164	0.15	0.9708	0.83	0.9653	0.02	0.9475
		2.5005		5.5125		2.,003		107					2.5700		2000		475

Probability of achieving good daylighting performance in simulation model set 1

Simulation Model Set No.: 1 Window size: Small Orientation: North Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{VX,UD,R}$	$\mathbf{P}_{VX,UX,R}$	$\mathbf{P}_{VX,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{E \le U \le R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.1691	0.3230	0.9887	0.8846	0.9728	0.6522	0.0309	0.2891	0.9579	0.9142	0.9905	0.5213	0.5867
	1000	0.2373	0.4462	0.9887	0.8819	0.9579	0.6851	0.0596	0.4148	0.9579	0.9113	0.9830	0.5510	0.6181
	1100	0.2741	0.5036	0.9887	0.8811	0.9486	0.7012	0.0797	0.4751	0.9579	0.9104	0.9777	0.5673	0.6342
	1200	0.2875	0.5256	0.9887	0.8798	0.9450	0.7070	0.0884	0.4984	0.9579	0.9090	0.9756	0.5737	0.6404
	1300	0.2923	0.5343	0.9887	0.8792	0.9436	0.7092	0.0904	0.5074	0.9579	0.9083	0.9748	0.5758	0.6425
	1400	0.2857	0.5214	0.9887	0.8820	0.9463	0.7065	0.0860	0.4936	0.9579	0.9114	0.9764	0.5725	0.6395
	1500	0.2548	0.4748	0.9887	0.8669	0.9542	0.6914	0.0685	0.4443	0.9579	0.8913	0.9810	0.5568	0.6241
	1600	0.1977	0.3750	0.9887	0.8863	0.9674	0.6666	0.0425	0.3415	0.9579	0.9159	0.9878	0.5339	0.6003
	1700	0.1050	0.1899	0.9887	0.8854	0.9852	0.6178	0.0134	0.1613	0.9579	0.9150	0.9957	0.4944	0.5561
21-Feb-10	0900	0.1959	0.3707	0.9887	0.8843	0.9711	0.6662	0.0390	0.3363	0.9579	0.9139	0.9899	0.5320	0.5991
	1000	0.2494	0.4679	0.9887	0.8834	0.9587	0.6921	0.0629	0.4367	0.9579	0.9130	0.9838	0.5562	0.6242
	1100	0.2693	0.5036	0.9887	0.8808	0.9532	0.7012	0.0740	0.4744	0.9579	0.9101	0.9807	0.5657	0.6334
	1200	0.2722	0.5094	0.9887	0.8806	0.9528	0.7027	0.0761	0.4805	0.9579	0.9099	0.9804	0.5673	0.6350
	1300	0.2813	0.5238	0.9887	0.8796	0.9509	0.7067	0.0806	0.4954	0.9579	0.9088	0.9794	0.5712	0.6390
	1400	0.2815	0.5189	0.9887	0.8806	0.9504	0.7060	0.0803	0.4903	0.9579	0.9099	0.9792	0.5703	0.6381
	1500	0.2611	0.4874	0.9887	0.8831	0.9555	0.6974	0.0687	0.4570	0.9579	0.9127	0.9821	0.5614	0.6294
	1600	0.2125	0.4003	0.9887	0.8839	0.9677	0.6743	0.0454	0.3663	0.9579	0.9135	0.9884	0.5390	0.6067
	1700	0.1284	0.2394	0.9887	0.8856	0.9824	0.6310	0.0176	0.2066	0.9579	0.9153	0.9948	0.5035	0.5672
21-Mar-10	0900	0.2071	0.3998	0.9887	0.8860	0.9703	0.6738	0.0434	0.3661	0.9579	0.9158	0.9896	0.5387	0.6063
	1000	0.2423	0.4646	0.9887	0.8869	0.9628	0.6913	0.0593	0.4333	0.9579	0.9168	0.9859	0.5551	0.6232
	1100	0.2470	0.4712	0.9887	0.8856	0.9621	0.6933	0.0614	0.4399	0.9579	0.9154	0.9856	0.5568	0.6250
	1200	0.2301	0.4462	0.9887	0.8847	0.9648	0.6855	0.0534	0.4137	0.9579	0.9144	0.9870	0.5497	0.6176
	1300	0.2350	0.4479	0.9887	0.8848	0.9648	0.6870	0.0554	0.4152	0.9579	0.9145	0.9870	0.5506	0.6188
	1400	0.2480	0.4717	0.9887	0.8843	0.9620	0.6934	0.0531	0.4404	0.9579	0.9139	0.9856	0.5569	0.6251
	1500	0.2488	0.4696	0.9887	0.8869	0.9621	0.6936	0.0623	0.4383	0.9579	0.9167	0.9856	0.5570	0.6253
	1600	0.2468	0.4092	0.9887	0.8856	0.9621	0.6773	0.0623	0.3754	0.9579	0.9157	0.9891	0.5413	0.6093
	1700	0.2162	0.2628	0.9887	0.8864	0.9812	0.6372	0.0407	0.3734	0.9579	0.9153	0.9944	0.5080	0.5726
21-Apr-10	0900	0.2106	0.4076	0.9887	0.8892	0.9700	0.6762	0.0442	0.3737	0.9579	0.9192	0.9895	0.5406	0.6084
21-Api-10	1000	0.2239	0.4336	0.9887	0.8895	0.9679	0.6833	0.0442	0.4004	0.9579	0.9192	0.9886	0.5469	0.6151
			0.4336							0.9579				
	1100	0.1997		0.9887	0.8874	0.9712	0.6709	0.0392	0.3565		0.9173	0.9901	0.5359	0.6034
	1200	0.1775	0.3511	0.9887	0.8895	0.9746	0.6599	0.0311	0.3157	0.9579	0.9196	0.9917	0.5266	0.5933
	1300	0.1837	0.3561	0.9887	0.8884	0.9748	0.6623	0.0333	0.3207	0.9579	0.9184	0.9917	0.5281	0.5952
	1400	0.2110	0.4094	0.9887	0.8886	0.9698	0.6765	0.0438	0.3752	0.9579	0.9186	0.9895	0.5407	0.6086
	1500	0.2276	0.4324	0.9887	0.8897	0.9677	0.6841	0.0514	0.3993	0.9579	0.9198	0.9884	0.5474	0.6157
	1600	0.2006	0.3887	0.9887	0.8916	0.9721	0.6715	0.0401	0.3543	0.9579	0.9218	0.9905	0.5363	0.6039
	1700	0.1420	0.2639	0.9887	0.8897	0.9819	0.6388	0.0206	0.2298	0.9579	0.9197	0.9947	0.5089	0.5738
21-May-10	0900	0.2135	0.4118	0.9887	0.8926	0.9703	0.6782	0.0448	0.3776	0.9579	0.9228	0.9897	0.5419	0.6100
	1000	0.2080	0.4094	0.9887	0.8929	0.9709	0.6766	0.0424	0.3751	0.9579	0.9231	0.9900	0.5407	0.6086
	1100	0.1772	0.3484	0.9887	0.8938	0.9758	0.6603	0.0310	0.3130	0.9579	0.9240	0.9922	0.5266	0.5935
	1200	0.1715	0.3464	0.9887	0.8951	0.9760	0.6587	0.0291	0.3110	0.9579	0.9254	0.9923	0.5258	0.5922
	1300	0.1572	0.3160	0.9887	0.8951	0.9775	0.6505	0.0247	0.2806	0.9579	0.9254	0.9929	0.5192	0.5849
	1400	0.1886	0.3681	0.9887	0.8911	0.9742	0.6656	0.0350	0.3329	0.9579	0.9213	0.9915	0.5310	0.5983
	1500	0.2151	0.4099	0.9887	0.8926	0.9701	0.6782	0.0456	0.3758	0.9579	0.9228	0.9896	0.5418	0.6100
	1600	0.1977	0.3855	0.9887	0.8927	0.9728	0.6706	0.0387	0.3510	0.9579	0.9229	0.9908	0.5354	0.6030
	1700	0.1461	0.2825	0.9874	0.8931	0.9807	0.6427	0.0219	0.2482	0.9560	0.9233	0.9942	0.5123	0.5775
21-Jun-10	0900	0.1962	0.3863	0.9887	0.8924	0.9729	0.6703	0.0382	0.3517	0.9579	0.9227	0.9909	0.5354	0.6028
	1000	0.1988	0.3914	0.9887	0.8932	0.9727	0.6718	0.0390	0.3567	0.9579	0.9235	0.9908	0.5366	0.6042
	1100	0.1705	0.3403	0.9887	0.8961	0.9764	0.6577	0.0288	0.3049	0.9579	0.9265	0.9925	0.5248	0.5912
	1200	0.1582	0.3251	0.9887	0.8973	0.9782	0.6527	0.0250	0.2896	0.9579	0.9277	0.9932	0.5211	0.5869
	1300	0.1499	0.3066	0.9887	0.8974	0.9791	0.6479	0.0226	0.2713	0.9579	0.9279	0.9936	0.5173	0.5826
	1400	0.1770	0.3504	0.9887	0.8943	0.9761	0.6607	0.0310	0.3150	0.9579	0.9246	0.9923	0.5270	0.5939
	1500	0.2075	0.4017	0.9887	0.8939	0.9711	0.6754	0.0423	0.3672	0.9579	0.9242	0.9901	0.5394	0.6074
	1600	0.1989	0.3829	0.9887	0.8929	0.9736	0.6707	0.0391	0.3481	0.9579	0.9231	0.9912	0.5352	0.6029
		0.1526	0.2924	0.9887	0.8929	0.9797		0.0235	0.2575			0.9938	0.5332	0.5803

Simulation Model Set No.: 1 Window size: Small Orientation: North Existence of obstruction: Yes

Date	Time	$P_{VS,BD,R}$	$P_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FS,US,R}$	$P_{FS,PG,R}$	P_{FS}	$P_{ES,BD,R}$	$P_{ES,BS,R}$	$P_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$P_{ES,PG,R}$	P_{ES}	P_{DP}
21-Jul-10	0900	0.2040	0.3934	0.9887	0.8924	0.9721	0.6732	0.0411	0.3589	0.9579	0.9227	0.9905	0.5376	0.6054
	1000	0.2099	0.4051	0.9887	0.8921	0.9708	0.6762	0.0435	0.3708	0.9579	0.9223	0.9899	0.5402	0.6082
	1100	0.1769	0.3565	0.9887	0.8944	0.9749	0.6613	0.0309	0.3211	0.9579	0.9248	0.9918	0.5280	0.5947
	1200	0.1644	0.3224	0.9887	0.8958	0.9779	0.6536	0.0269	0.2870	0.9579	0.9262	0.9931	0.5212	0.5874
	1300	0.1638	0.3199	0.9887	0.8969	0.9786	0.6534	0.0267	0.2844	0.9579	0.9273	0.9934	0.5208	0.5871
	1400	0.1838	0.3571	0.9887	0.8924	0.9743	0.6628	0.0333	0.3217	0.9579	0.9227	0.9916	0.5287	0.5957
	1500	0.2131	0.4112	0.9887	0.8931	0.9702	0.6780	0.0446	0.3770	0.9579	0.9233	0.9897	0.5417	0.6099
	1600	0.2070	0.3961	0.9887	0.8915	0.9718	0.6743	0.0421	0.3615	0.9579	0.9217	0.9904	0.5382	0.6062
	1700	0.1604	0.3009	0.9887	0.8913	0.9795	0.6490	0.0258	0.2658	0.9579	0.9215	0.9937	0.5168	0.5829
21-Aug-10	0900	0.2091	0.4098	0.9887	0.8914	0.9702	0.6765	0.0433	0.3758	0.9579	0.9215	0.9897	0.5409	0.6087
	1000	0.2257	0.4359	0.9887	0.8899	0.9669	0.6839	0.0503	0.4028	0.9579	0.9200	0.9881	0.5475	0.6157
	1100	0.2001	0.3939	0.9887	0.8893	0.9712	0.6717	0.0394	0.3592	0.9579	0.9194	0.9901	0.5366	0.6041
	1200	0.1775	0.3486	0.9887	0.8902	0.9754	0.6598	0.0311	0.3131	0.9579	0.9203	0.9920	0.5263	0.5931
	1300	0.1775	0.3503	0.9887	0.8900	0.9749	0.6599	0.0311	0.3149	0.9579	0.9201	0.9918	0.5265	0.5932
	1400	0.2055	0.3989	0.9887	0.8888	0.9708	0.6737	0.0415	0.3644	0.9579	0.9188	0.9899	0.5381	0.6059
	1500	0.2249	0.4333	0.9887	0.8882	0.9676	0.6833	0.0500	0.4001	0.9579	0.9182	0.9884	0.5468	0.6151
	1600	0.2080	0.3975	0.9887	0.8896	0.9710	0.6743	0.0429	0.3632	0.9579	0.9196	0.9900	0.5385	0.6064
	1700	0.1506	0.2804	0.9887	0.8899	0.9809	0.6434	0.0230	0.2458	0.9579	0.9200	0.9943	0.5124	0.5779
21-Sep-10	0900	0.2227	0.4331	0.9887	0.8874	0.9670	0.6824	0.0492	0.4000	0.9579	0.9173	0.9881	0.5464	0.6144
o-p	1000	0.2472	0.4765	0.9887	0.8857	0.9622	0.6942	0.0604	0.4451	0.9579	0.9154	0.9857	0.5574	0.6258
	1100	0.2406	0.4654	0.9887	0.8855	0.9632	0.6909	0.0572	0.4334	0.9579	0.9153	0.9862	0.5543	0.6226
	1200	0.2248	0.4353	0.9887	0.8824	0.9661	0.6825	0.0572	0.4020	0.9579	0.9119	0.9877	0.5464	0.6144
	1300	0.2248	0.4333	0.9887	0.8835	0.9650	0.6850	0.0516	0.4020	0.9579	0.9119	0.9871	0.5486	0.6168
	1400	0.2485	0.4746	0.9887	0.8846	0.9621	0.6941	0.0510	0.4430	0.9579	0.9130	0.9857	0.5571	0.6256
	1500 1600	0.2492 0.2024	0.4705	0.9887 0.9887	0.8860	0.9632 0.9710	0.6940	0.0612	0.4387	0.9579	0.9158	0.9863	0.5567	0.6254
	1700	0.2024	0.2232	0.9887	0.8876 0.8883	0.9710	0.6715 0.6272	0.0402	0.3338	0.9579	0.9173	0.9900	0.5361	0.5638
21-Oct-10	0900	0.2358	0.4459	0.9887	0.8845	0.9624	0.6862	0.0552	0.4131	0.9579	0.9142	0.9857	0.5500	0.6181
21-001-10	1000	0.2756	0.5168	0.9887	0.8825	0.9519	0.7047	0.0352	0.4131	0.9579	0.9119	0.9801	0.5687	0.6367
		0.2799												
	1100		0.5253	0.9887	0.8816	0.9518	0.7071	0.0778	0.4966	0.9579	0.9110	0.9801	0.5707	0.6389
	1200	0.2783	0.5196	0.9887	0.8808	0.9518	0.7057	0.0765	0.4905	0.9579	0.9101	0.9802	0.5692	0.6374
	1300	0.2842	0.5236	0.9887	0.8797	0.9516	0.7077	0.0809	0.4949	0.9579	0.9089	0.9800	0.5713	0.6395
	1400	0.2798	0.5176	0.9887	0.8824	0.9518	0.7059	0.0782	0.4885	0.9579	0.9118	0.9801	0.5696	0.6378
	1500	0.2482	0.4651	0.9887	0.8826	0.9593	0.6915	0.0611	0.4331	0.9579	0.9121	0.9842	0.5550	0.6232
	1600	0.1782	0.3333	0.9887	0.8836	0.9750	0.6566	0.0316	0.2980	0.9579	0.9132	0.9918	0.5231	0.5899
	1700	0.0823	0.1439	0.9887	0.8867	0.9894	0.6059	0.0079	0.1181	0.9579	0.9166	0.9973	0.4856	0.5457
21-Nov-10	0900	0.2214	0.4214	0.9887	0.8823	0.9618	0.6782	0.0526	0.3888	0.9579	0.9117	0.9850	0.5446	0.6114
	1000	0.2874	0.5232	0.9887	0.8810	0.9455	0.7069	0.0882	0.4954	0.9579	0.9104	0.9759	0.5734	0.6401
	1100	0.3119	0.5612	0.9887	0.8802	0.9381	0.7172	0.1040	0.5357	0.9579	0.9094	0.9714	0.5849	0.6510
	1200	0.3129	0.5657	0.9887	0.8781	0.9373	0.7177	0.1045	0.5405	0.9579	0.9071	0.9709	0.5855	0.6516
	1300	0.3070	0.5536	0.9887	0.8821	0.9401	0.7155	0.0999	0.5276	0.9579	0.9115	0.9727	0.5825	0.6490
	1400	0.2914	0.5317	0.9887	0.8814	0.9435	0.7087	0.0912	0.5046	0.9579	0.9108	0.9746	0.5758	0.6423
	1500	0.2466	0.4601	0.9887	0.8814	0.9559	0.6891	0.0659	0.4293	0.9579	0.9108	0.9817	0.5554	0.6223
	1600	0.1708	0.3227	0.9887	0.8832	0.9715	0.6520	0.0334	0.2898	0.9579	0.9127	0.9897	0.5220	0.5870
	1700	0.0662	0.1125	0.9887	0.8834	0.9911	0.5967	0.0059	0.0913	0.9579	0.9128	0.9978	0.4800	0.5384
21-Dec-10	0900	0.2022	0.3816	0.9887	0.8836	0.9657	0.6681	0.0452	0.3485	0.9579	0.9132	0.9869	0.5356	0.6018
	1000	0.2763	0.5037	0.9887	0.8801	0.9475	0.7013	0.0832	0.4751	0.9579	0.9093	0.9769	0.5682	0.6348
	1100	0.3083	0.5547	0.9887	0.8811	0.9387	0.7155	0.1028	0.5289	0.9579	0.9104	0.9717	0.5834	0.6494
	1200	0.3129	0.5669	0.9887	0.8800	0.9358	0.7176	0.1056	0.5418	0.9579	0.9092	0.9699	0.5861	0.6519
	1300	0.3110	0.5671	0.9887	0.8803	0.9367	0.7175	0.1040	0.5419	0.9579	0.9095	0.9705	0.5857	0.6516
	1400	0.3036	0.5487	0.9887	0.8785	0.9395	0.7132	0.0996	0.5225	0.9579	0.9075	0.9722	0.5810	0.6471
	1500	0.2650	0.4833	0.9887	0.8802	0.9505	0.6960	0.0768	0.4536	0.9579	0.9095	0.9786	0.5627	0.6293
	1600	0.1848	0.3410	0.9887	0.8809	0.9694	0.6577	0.0390	0.3082	0.9579	0.9102	0.9886	0.5266	0.5922

Simulation Model Set No.: 2 Window size: Small Orientation: East Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{VX,UX,R}$	$\mathbf{P}_{VX,PG,R}$	$P_{\rm FS}$	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.1056	0.1929	0.9887	0.8977	0.9869	0.6203	0.0119	0.1623	0.9579	0.9282	0.9965	0.4955	0.5579
	1000	0.1441	0.2740	0.9887	0.8985	0.9813	0.6419	0.0210	0.2395	0.9579	0.9289	0.9945	0.5115	0.5767
	1100	0.1711	0.3293	0.9887	0.8979	0.9775	0.6566	0.0292	0.2940	0.9579	0.9284	0.9929	0.5233	0.5900
	1200	0.1982	0.3942	0.9887	0.9003	0.9728	0.6730	0.0390	0.3604	0.9579	0.9305	0.9908	0.5379	0.6055
	1300	0.2248	0.4241	0.9887	0.8928	0.9679	0.6824	0.0502	0.3906	0.9579	0.9230	0.9885	0.5458	0.6141
	1400	0.2457	0.4693	0.9887	0.8925	0.9620	0.6934	0.0616	0.4378	0.9579	0.9224	0.9855	0.5572	0.6253
	1500	0.2411	0.4562	0.9887	0.8879	0.9574	0.6883	0.0612	0.4250	0.9579	0.9178	0.9827	0.5539	0.6211
	1600	0.2068	0.3845	0.9887	0.8847	0.9629	0.6690	0.0476	0.3515	0.9579	0.9143	0.9854	0.5368	0.6029
	1700	0.1142	0.2079	0.9887	0.8875	0.9810	0.6221	0.0166	0.1790	0.9579	0.9174	0.9939	0.4985	0.5603
21-Feb-10	0900	0.1198	0.2220	0.9887	0.8983	0.9850	0.6283	0.0149	0.1896	0.9579	0.9288	0.9959	0.5012	0.5647
	1000	0.1534	0.2932	0.9887	0.8984	0.9808	0.6472	0.0236	0.2582	0.9579	0.9289	0.9943	0.5156	0.5814
	1100	0.1740	0.3362	0.9887	0.9001	0.9770	0.6586	0.0300	0.3008	0.9579	0.9306	0.9927	0.5250	0.5918
	1200	0.1941	0.3812	0.9887	0.9008	0.9735	0.6701	0.0372	0.3468	0.9579	0.9312	0.9912	0.5351	0.6026
	1300	0.2196	0.4094	0.9887	0.8733	0.9680	0.6764	0.0474	0.3752	0.9579	0.9016	0.9886	0.5401	0.6082
	1400	0.2510	0.4780	0.9887	0.8885	0.9610	0.6954	0.0629	0.4469	0.9579	0.9184	0.9851	0.5587	0.6271
	1500	0.2616	0.4922	0.9887	0.8883	0.9526	0.6981	0.0692	0.4621	0.9579	0.9182	0.9804	0.5627	0.6304
	1600	0.2294	0.4338	0.9887	0.8885	0.9578	0.6818	0.0536	0.4011	0.9579	0.9185	0.9832	0.5473	0.6146
	1700	0.1439	0.2772	0.9887	0.8884	0.9745	0.6392	0.0229	0.2435	0.9579	0.9183	0.9913	0.5113	0.5752
21-Mar-10	0900	0.1329	0.2535	0.9887	0.8987	0.9826	0.6361	0.0180	0.2195	0.9579	0.9292	0.9950	0.5072	0.5716
	1000	0.1540	0.3029	0.9887	0.9014	0.9796	0.6489	0.0238	0.2677	0.9579	0.9319	0.9938	0.5175	0.5832
	1100	0.1624	0.3168	0.9887	0.9013	0.9785	0.6530	0.0263	0.2814	0.9579	0.9318	0.9933	0.5206	0.5868
	1200	0.1669	0.3562	0.9887	0.9076	0.9768	0.6608	0.0280	0.3217	0.9579	0.9378	0.9926	0.5285	0.5946
	1300	0.1966	0.3932	0.9887	0.8988	0.9713	0.6718	0.0381	0.3585	0.9579	0.9291	0.9902	0.5370	0.6044
	1400	0.2439	0.4660	0.9887	0.8893	0.9614	0.6918	0.0598	0.4344	0.9579	0.9193	0.9852	0.5556	0.6237
	1500	0.2709	0.5061	0.9887	0.8875	0.9501	0.7019	0.0755	0.4772	0.9579	0.9174	0.9789	0.5671	0.6345
	1600	0.2528	0.4726	0.9887	0.8849	0.9517	0.6920	0.0661	0.4419	0.9579	0.9146	0.9797	0.5576	0.6248
	1700	0.1722	0.3259	0.9887	0.8857	0.9689	0.6524	0.0318	0.2916	0.9579	0.9154	0.9885	0.5218	0.5871
21-Apr-10	0900	0.1464	0.2778	0.9887	0.9005	0.9819	0.6435	0.0216	0.2431	0.9579	0.9310	0.9947	0.5126	0.5781
	1000	0.1556	0.3017	0.9887	0.9036	0.9808	0.6498	0.0242	0.2665	0.9579	0.9342	0.9943	0.5177	0.5838
	1100	0.1502	0.2874	0.9887	0.9049	0.9809	0.6462	0.0227	0.2525	0.9579	0.9355	0.9943	0.5150	0.5806
	1200	0.1431	0.2900	0.9887	0.9060	0.9811	0.6450	0.0208	0.2550	0.9579	0.9365	0.9944	0.5149	0.5799
	1300	0.1775	0.3467	0.9887	0.8986	0.9758	0.6607	0.0311	0.3113	0.9579	0.9291	0.9922	0.5269	0.5938
	1400	0.2309	0.4472	0.9887	0.8891	0.9641	0.6862	0.0526	0.4145	0.9579	0.9191	0.9867	0.5500	0.6181
	1500	0.2683	0.5027	0.9887	0.8877	0.9510	0.7010	0.0728	0.4735	0.9579	0.9176	0.9795	0.5656	0.6333
	1600	0.2543	0.4755	0.9887	0.8874	0.9518	0.6932	0.0657	0.4450	0.9579	0.9172	0.9799	0.5583	0.6258
	1700	0.1799	0.3408	0.9887	0.8865	0.9685	0.6568	0.0328	0.3062	0.9579	0.9163	0.9887	0.5247	0.5908
21-May-10	0900	0.1547	0.2889	0.9887	0.9011	0.9812	0.6473	0.0240	0.2539	0.9579	0.9316	0.9944	0.5153	0.5813
	1000	0.1478	0.2953	0.9887	0.9036	0.9803	0.6466	0.0220	0.2602	0.9579	0.9341	0.9940	0.5159	0.5812
	1100	0.1381	0.2712	0.9887	0.9070	0.9825	0.6412	0.0194	0.2367	0.9579	0.9375	0.9949	0.5114	0.5763
	1200	0.1579	0.3191	0.9887	0.9095	0.9785	0.6532	0.0249	0.2837	0.9579	0.9399	0.9933	0.5213	0.5873
	1300	0.1721	0.3385	0.9887	0.8989	0.9764	0.6581	0.0295	0.3031	0.9579	0.9294	0.9924	0.5250	0.5916
	1400	0.2290	0.4389	0.9887	0.8898	0.9653	0.6848	0.0525	0.4060	0.9579	0.9199	0.9872	0.5487	0.6167
	1500	0.2726	0.5127	0.9887	0.8869	0.9498	0.7033	0.0756	0.4838	0.9579	0.9167	0.9788	0.5681	0.6357
	1600	0.2661	0.4951	0.9887	0.8866	0.9489	0.6985	0.0727	0.4656	0.9579	0.9165	0.9782	0.5639	0.6312
	1700	0.1987	0.3777	0.9887	0.8862	0.9639	0.6663	0.0410	0.3437	0.9579	0.9160	0.9863	0.5335	0.5999
21-Jun-10	0900	0.1537	0.2883	0.9887	0.9004	0.9811	0.6468	0.0237	0.2533	0.9579	0.9309	0.9944	0.5150	0.5809
	1000	0.1564	0.2977	0.9887	0.9027	0.9798	0.6489	0.0245	0.2625	0.9579	0.9332	0.9939	0.5170	0.5830
	1100	0.1405	0.2759	0.9887	0.9061	0.9820	0.6423	0.0201	0.2413	0.9579	0.9366	0.9947	0.5123	0.5773
	1200	0.1513	0.3039	0.9887	0.9081	0.9789	0.6490	0.0231	0.2686	0.9579	0.9385	0.9935	0.5180	0.5835
	1300	0.1710	0.3339	0.9887	0.8997	0.9764	0.6572	0.0290	0.2984	0.9579	0.9302	0.9924	0.5241	0.5907
	1400	0.2224	0.4244	0.9887	0.8892	0.9667	0.6811	0.0486	0.3907	0.9579	0.9192	0.9880	0.5448	0.6129
	1500	0.2742	0.5139	0.9887	0.8869	0.9508	0.7041	0.0747	0.4847	0.9579	0.9167	0.9796	0.5681	0.6361
	1600	0.2689	0.5029	0.9887	0.8863	0.9487	0.7003	0.0727	0.4735	0.9579	0.9161	0.9783	0.5652	0.6328

Simulation Model Set No.: 2 Window size: Small Orientation: East Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{FS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{\mathrm{FS},US,R}$	$\mathbf{P}_{FS,PG,R}$	$P_{\nu S}$	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.1470	0.2846	0.9887	0.9019	0.9822	0.6450	0.0218	0.2497	0.9579	0.9324	0.9948	0.5140	0.5795
	1000	0.1556	0.2974	0.9887	0.9025	0.9799	0.6487	0.0242	0.2622	0.9579	0.9331	0.9939	0.5168	0.5827
	1100	0.1413	0.2761	0.9887	0.9056	0.9819	0.6425	0.0203	0.2414	0.9579	0.9361	0.9947	0.5124	0.5774
	1200	0.1418	0.2891	0.9887	0.9097	0.9803	0.6447	0.0205	0.2542	0.9579	0.9401	0.9941	0.5149	0.5798
	1300	0.1708	0.3340	0.9887	0.8997	0.9764	0.6572	0.0289	0.2985	0.9579	0.9302	0.9924	0.5241	0.5906
	1400	0.2243	0.4231	0.9887	0.8918	0.9666	0.6817	0.0494	0.3892	0.9579	0.9220	0.9879	0.5451	0.6134
	1500	0.2702	0.5112	0.9887	0.8877	0.9503	0.7026	0.0725	0.4818	0.9579	0.9176	0.9793	0.5669	0.6348
	1600	0.2738	0.5143	0.9887	0.8859	0.9461	0.7026	0.0746	0.4852	0.9579	0.9157	0.9768	0.5676	0.6351
	1700	0.2148	0.4076	0.9887	0.8860	0.9615	0.6746	0.0458	0.3737	0.9579	0.9157	0.9853	0.5401	0.6073
21-Aug-10	0900	0.1468	0.2778	0.9887	0.9000	0.9815	0.6434	0.0217	0.2431	0.9579	0.9304	0.9946	0.5126	0.5780
	1000	0.1556	0.3012	0.9887	0.9040	0.9810	0.6498	0.0242	0.2660	0.9579	0.9345	0.9943	0.5177	0.5837
	1100	0.1498	0.2872	0.9887	0.9050	0.9810	0.6462	0.0226	0.2523	0.9579	0.9355	0.9943	0.5149	0.5805
	1200	0.1422	0.2831	0.9887	0.9049	0.9805	0.6434	0.0205	0.2483	0.9579	0.9355	0.9941	0.5135	0.5784
	1300	0.1711	0.3370	0.9887	0.8992	0.9764	0.6577	0.0290	0.3016	0.9579	0.9296	0.9925	0.5246	0.5912
	1400	0.2256	0.4350	0.9887	0.8900	0.9653	0.6833	0.0501	0.4018	0.9579	0.9201	0.9873	0.5471	0.6152
	1500	0.2715	0.5057	0.9887	0.8871	0.9511	0.7023	0.0742	0.4765	0.9579	0.9170	0.9797	0.5666	0.6344
	1600	0.2620	0.4889	0.9887	0.8870	0.9498	0.6967	0.0693	0.4589	0.9579	0.9168	0.9789	0.5617	0.6292
	1700	0.1882	0.3621	0.9887	0.8849	0.9667	0.6617	0.0356	0.3275	0.9579	0.9145	0.9879	0.5290	0.5954
21-Sep-10	0900	0.1387	0.2736	0.9887	0.9013	0.9821	0.6410	0.0195	0.2390	0.9579	0.9318	0.9948	0.5113	0.5761
	1000	0.1556	0.3101	0.9887	0.9016	0.9786	0.6502	0.0242	0.2747	0.9579	0.9321	0.9934	0.5188	0.5845
	1100	0.1630	0.3162	0.9887	0.9025	0.9789	0.6533	0.0264	0.2808	0.9579	0.9330	0.9935	0.5207	0.5870
	1200	0.1708	0.3364	0.9887	0.9025	0.9759	0.6578	0.0289	0.3009	0.9579	0.9330	0.9922	0.5248	0.5913
	1300	0.2080	0.4014	0.9887	0.8947	0.9697	0.6752	0.0424	0.3669	0.9579	0.9251	0.9894	0.5394	0.6073
	1400	0.2531	0.4840	0.9887	0.8891	0.9596	0.6966	0.0632	0.4529	0.9579	0.9192	0.9844	0.5598	0.6282
	1500	0.2754	0.5189	0.9887	0.8867	0.9470	0.7041	0.0753	0.4899	0.9579	0.9165	0.9774	0.5688	0.6365
	1600	0.2404	0.4600	0.9887	0.8864	0.9545	0.6877	0.0568	0.4277	0.9579	0.9162	0.9817	0.5525	0.6201
	1700	0.1469	0.2786	0.9887	0.8856	0.9740	0.6397	0.0218	0.2439	0.9579	0.9154	0.9914	0.5107	0.5752
21-Oct-10	0900	0.1390	0.2661	0.9887	0.9004	0.9823	0.6398	0.0196	0.2317	0.9579	0.9309	0.9948	0.5100	0.5749
	1000	0.1695	0.3216	0.9887	0.9009	0.9785	0.6556	0.0285	0.2862	0.9579	0.9314	0.9933	0.5221	0.5889
	1100	0.1840	0.3570	0.9887	0.8999	0.9754	0.6640	0.0333	0.3217	0.9579	0.9304	0.9920	0.5295	0.5968
	1200	0.2033	0.3988	0.9887	0.8993	0.9704	0.6743	0.0405	0.3642	0.9579	0.9298	0.9898	0.5388	0.6066
	1300	0.2376	0.4556	0.9887	0.8930	0.9638	0.6897	0.0555	0.4231	0.9579	0.9233	0.9865	0.5528	0.6213
	1400	0.2670	0.5007	0.9887	0.8882	0.9555	0.7016	0.0709	0.4706	0.9579	0.9182	0.9822	0.5650	0.6333
	1500	0.2587	0.4875	0.9887	0.8863	0.9519	0.6961	0.0669	0.4568	0.9579	0.9161	0.9801	0.5607	0.6284
	1600	0.1922	0.3745	0.9887	0.8867	0.9648	0.6644	0.0371	0.3396	0.9579	0.9166	0.9870	0.5316	0.5980
	1700	0.0959	0.1716	0.9887	0.8875	0.9838	0.6123	0.0109	0.1436	0.9579	0.9174	0.9951	0.4907	0.5515
21-Nov-10	0900	0.1257	0.2356	0.9887	0.8999	0.9841	0.6319	0.0163	0.2024	0.9579	0.9304	0.9955	0.5039	0.5679
	1000	0.1595	0.3016	0.9887	0.8977	0.9796	0.6497	0.0254	0.2665	0.9579	0.9281	0.9938	0.5175	0.5836
	1100	0.1835	0.3516	0.9887	0.9006	0.9750	0.6630	0.0334	0.3164	0.9579	0.9311	0.9918	0.5287	0.5959
	1200	0.2102	0.4050	0.9887	0.8982	0.9692	0.6766	0.0435	0.3706	0.9579	0.9286	0.9892	0.5407	0.6086
	1300	0.2453	0.4576	0.9887	0.8909	0.9636	0.6917	0.0601	0.4255	0.9579	0.9210	0.9864	0.5546	0.6231
	1400	0.2615	0.4893	0.9887	0.8868	0.9544	0.6979	0.0717	0.4595	0.9579	0.9167	0.9811	0.5630	0.6305
	1500	0.2481	0.4597	0.9887	0.8850	0.9530	0.6891	0.0673	0.4291	0.9579	0.9147	0.9800	0.5560	0.6225
	1600	0.1843	0.3454	0.9887	0.8873	0.9674	0.6585	0.0407	0.3131	0.9579	0.9171	0.9875	0.5285	0.5935
	1700	0.0756	0.1297	0.9887	0.8879	0.9879	0.6015	0.0081	0.1073	0.9579	0.9179	0.9966	0.4838	0.5427
21-Dec-10	0900	0.1112	0.2032	0.9887	0.8975	0.9863	0.6233	0.0130	0.1719	0.9579	0.9280	0.9964	0.4975	0.5604
	1000	0.1452	0.2793	0.9887	0.8970	0.9810	0.6428	0.0213	0.2446	0.9579	0.9274	0.9944	0.5123	0.5776
	1100	0.1722	0.3366	0.9887	0.8989	0.9761	0.6578	0.0295	0.3013	0.9579	0.9294	0.9923	0.5247	0.5912
	1200	0.2088	0.4067	0.9887	0.8996	0.9709	0.6771	0.0429	0.3725	0.9579	0.9299	0.9900	0.5411	0.6091
	1300	0.2363	0.4464	0.9887	0.8910	0.9652	0.6880	0.0552	0.4136	0.9579	0.9211	0.9872	0.5510	0.6195
	1400	0.2578	0.4848	0.9887	0.8871	0.9563	0.6968	0.0688	0.4545	0.9579	0.9169	0.9822	0.5614	0.6291
	1500	0.2490	0.4668	0.9887	0.8855	0.9525	0.6904	0.0681	0.4363	0.9579	0.9152	0.9798	0.5575	0.6239
	1600	0.1894	0.3518	0.9887	0.8838	0.9657	0.6599	0.0426	0.3194	0.9579	0.9134	0.9867	0.5297	0.5948
			0.1480	0.9887	0.8873	0.9868	0.6064	0.0100	0.1241	0.9579	0.9172	0.9962	0.4872	0.5468

Simulation Model Set No.: 3 Window size: Small Orientation: South Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FX,UX,R}$	$\mathbf{P}_{FX,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{E \le U \le R}$	$P_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.1098	0.1987	0.9887	0.9150	0.9858	0.6241	0.0128	0.1677	0.9579	0.9452	0.9962	0.4984	0.5613
	1000	0.1359	0.2607	0.9887	0.9157	0.9815	0.6397	0.0189	0.2266	0.9579	0.9458	0.9945	0.5103	0.5750
	1100	0.1507	0.2807	0.9887	0.9165	0.9806	0.6466	0.0229	0.2459	0.9579	0.9466	0.9942	0.5150	0.5808
	1200	0.1449	0.2803	0.9887	0.9161	0.9806	0.6450	0.0212	0.2455	0.9579	0.9461	0.9942	0.5143	0.5797
	1300	0.1452	0.2802	0.9887	0.9169	0.9808	0.6452	0.0213	0.2454	0.9579	0.9469	0.9943	0.5144	0.5798
	1400	0.1448	0.2891	0.9887	0.9192	0.9805	0.6467	0.0212	0.2542	0.9579	0.9491	0.9941	0.5161	0.5814
	1500	0.1367	0.2663	0.9887	0.9146	0.9813	0.6406	0.0190	0.2319	0.9579	0.9447	0.9944	0.5111	0.5759
	1600	0.1146	0.2142	0.9887	0.9139	0.9851	0.6275	0.0138	0.1822	0.9579	0.9441	0.9959	0.5010	0.5643
	1700	0.0678	0.1129	0.9887	0.9135	0.9913	0.6008	0.0055	0.0904	0.9579	0.9437	0.9980	0.4829	0.5419
1-Feb-10	0900	0.1359	0.2500	0.9887	0.9154	0.9814	0.6379	0.0189	0.2162	0.9579	0.9456	0.9945	0.5085	0.5732
	1000	0.1596	0.3029	0.9887	0.9161	0.9781	0.6517	0.0255	0.2677	0.9579	0.9462	0.9932	0.5194	0.5856
	1100	0.1602	0.3045	0.9887	0.9186	0.9788	0.6527	0.0257	0.2692	0.9579	0.9486	0.9935	0.5200	0.5863
	1200	0.1470	0.2888	0.9887	0.9190	0.9805	0.6472	0.0218	0.2538	0.9579	0.9489	0.9941	0.5162	0.5817
	1300	0.1467	0.2840	0.9887	0.9179	0.9797	0.6460	0.0217	0.2491	0.9579	0.9479	0.9938	0.5152	0.5806
	1400	0.1543	0.3022	0.9887	0.9188	0.9790	0.6508	0.0239	0.2669	0.9579	0.9487	0.9936	0.5190	0.5849
	1500	0.1607	0.3092	0.9887	0.9171	0.9781	0.6531	0.0258	0.2740	0.9579	0.9472	0.9932	0.5207	0.5869
	1600	0.1376	0.2711	0.9887	0.9160	0.9804	0.6416	0.0193	0.2366	0.9579	0.9462	0.9941	0.5121	0.5768
	1700	0.0940	0.1691	0.9887	0.9153	0.9876	0.6159	0.0097	0.1404	0.9579	0.9455	0.9968	0.4928	0.5543
1-Mar-10	0900	0.1687	0.3098	0.9887	0.9165	0.9778	0.6552	0.0292	0.2748	0.9579	0.9466	0.9930	0.5219	0.5885
	1000	0.1778	0.3361	0.9887	0.9168	0.9757	0.6612	0.0314	0.3008	0.9579	0.9469	0.9921	0.5270	0.5941
	1100	0.1616	0.3114	0.9887	0.9183	0.9778	0.6538	0.0260	0.2761	0.9579	0.9483	0.9931	0.5212	0.5875
	1200	0.1406	0.2798	0.9887	0.9213	0.9813	0.6446	0.0201	0.2451	0.9579	0.9510	0.9945	0.5144	0.5795
	1300	0.1391	0.2768	0.9887	0.9214	0.9810	0.6437	0.0196	0.2421	0.9579	0.9511	0.9943	0.5137	0.5787
	1400	0.1550	0.3114	0.9887	0.9187	0.9780	0.6522	0.0240	0.2760	0.9579	0.9486	0.9931	0.5205	0.5864
	1500	0.1728	0.3379	0.9887	0.9166	0.9757	0.6602	0.0240	0.3026	0.9579	0.9467	0.9931	0.5267	0.5934
	1600 1700	0.1689 0.1197	0.3164 0.2167	0.9887 0.9887	0.9156 0.9153	0.9771 0.9846	0.6560 0.6293	0.0286 0.0153	0.2812 0.1847	0.9579 0.9579	0.9457 0.9455	0.9927 0.9957	0.5227 0.5021	0.5893 0.5657
21-Apr-10	0900	0.1943	0.3649	0.9887	0.9162	0.9724	0.6691	0.0377	0.3301	0.9579	0.9464	0.9906	0.5338	0.6015
p. 10	1000	0.1922	0.3660	0.9887	0.9184	0.9728	0.6691	0.0365	0.3309	0.9579	0.9484	0.9908	0.5338	0.6014
	1100	0.1564	0.3093	0.9887	0.9197	0.9780	0.6523	0.0245	0.2740	0.9579	0.9496	0.9931	0.5204	0.5864
	1200	0.1292	0.2605	0.9887	0.9221	0.9818	0.6388	0.0172	0.2264	0.9579	0.9517	0.9947	0.5103	0.5746
	1300	0.1316	0.2678	0.9887	0.9225	0.9816	0.6406	0.0178	0.2334	0.9579	0.9522	0.9946	0.5117	0.5761
	1400	0.1626	0.3290	0.9887	0.9198	0.9765	0.6567	0.0263	0.2936	0.9579	0.9497	0.9925	0.5243	0.5905
	1500	0.1917	0.3731	0.9887	0.9179	0.9727	0.6700	0.0363	0.3382	0.9579	0.9479	0.9908	0.5349	0.6025
	1600	0.1833	0.3549	0.9887	0.9164	0.9729	0.6648	0.0336	0.3200	0.9579	0.9466	0.9909	0.5307	0.5978
	1700	0.1339	0.2518	0.9887	0.9147	0.9815	0.6376	0.0185	0.2181	0.9579	0.9449	0.9945	0.5086	0.5731
1-May-10	0900	0.2188	0.4093	0.9887	0.9153	0.9682	0.6813	0.0470	0.3750	0.9579	0.9455	0.9887	0.5443	0.6128
	1000	0.2077	0.3915	0.9887	0.9166	0.9703	0.6763	0.0423	0.3568	0.9579	0.9467	0.9897	0.5399	0.6081
	1100	0.1633	0.3158	0.9887	0.9178	0.9769	0.6546	0.0265	0.2804	0.9579	0.9478	0.9927	0.5220	0.5883
	1200	0.1495	0.3130	0.9887	0.9213	0.9779	0.6513	0.0225	0.2776	0.9579	0.9510	0.9931	0.5205	0.5859
	1300	0.1396	0.2851	0.9887	0.9214	0.9801	0.6449	0.0198	0.2502	0.9579	0.9511	0.9940	0.5151	0.5800
	1400	0.1754	0.3448	0.9887	0.9184	0.9744	0.6618	0.0304	0.3094	0.9579	0.9484	0.9916	0.5281	0.5950
	1500	0.2094	0.4001	0.9887	0.9167	0.9688	0.6777	0.0433	0.3657	0.9579	0.9468	0.9890	0.5416	0.6097
	1600	0.2026	0.3878	0.9887	0.9153	0.9701	0.6742	0.0408	0.3534	0.9579	0.9455	0.9896	0.5386	0.6064
	1700	0.1520	0.2934	0.9887	0.9151	0.9772	0.6479	0.0236	0.2587	0.9579	0.9453	0.9927	0.5170	0.5825
1-Jun-10	0900	0.2110	0.4034	0.9887	0.9157	0.9682	0.6784	0.0444	0.3695	0.9579	0.9459	0.9887	0.5425	0.6104
	1000	0.2075	0.3967	0.9887	0.9170	0.9691	0.6768	0.0427	0.3624	0.9579	0.9471	0.9891	0.5409	0.6088
	1100	0.1696	0.3334	0.9887	0.9183	0.9757	0.6588	0.0285	0.2979	0.9579	0.9483	0.9921	0.5256	0.5922
	1200	0.1565	0.3138	0.9887	0.9203	0.9783	0.6532	0.0245	0.2785	0.9579	0.9501	0.9932	0.5213	0.5873
	1300	0.1488	0.2966	0.9887	0.9199	0.9786	0.6485	0.0223	0.2614	0.9579	0.9498	0.9934	0.5176	0.5831
	1400	0.1765	0.3475	0.9887	0.9177	0.9747	0.6625	0.0308	0.3121	0.9579	0.9478	0.9917	0.5287	0.5956
	1500	0.2128	0.4124	0.9887	0.9160	0.9676	0.6801	0.0445	0.3782	0.9579	0.9462	0.9884	0.5440	0.6121
	1600	0.2093	0.4047	0.9887	0.9150	0.9678	0.6779	0.0434	0.3706	0.9579	0.9452	0.9885	0.5422	0.6101

Simulation Model Set No.: 3 Window size: Small Orientation: South Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{FS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{\mathrm{FS},US,R}$	$\mathbf{P}_{FS,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.2087	0.3986	0.9887	0.9159	0.9683	0.6771	0.0432	0.3643	0.9579	0.9461	0.9887	0.5412	0.6091
	1000	0.2092	0.7589	0.9887	0.9164	0.3491	0.5615	0.0433	0.7509	0.9579	0.9466	0.2951	0.4821	0.5218
	1100	0.1698	0.3302	0.9887	0.9189	0.9762	0.6586	0.0286	0.2948	0.9579	0.9489	0.9924	0.5252	0.5919
	1200	0.1414	0.2919	0.9887	0.9205	0.9792	0.6461	0.0203	0.2568	0.9579	0.9503	0.9936	0.5162	0.5811
	1300	0.1403	0.2914	0.9887	0.9221	0.9797	0.6461	0.0200	0.2564	0.9579	0.9518	0.9938	0.5162	0.5812
	1400	0.1702	0.3336	0.9887	0.9184	0.9756	0.6590	0.0287	0.2982	0.9579	0.9484	0.9921	0.5257	0.5924
	1500	0.2073	0.4016	0.9887	0.9165	0.9688	0.6773	0.0422	0.3671	0.9579	0.9466	0.9890	0.5414	0.6094
	1600	0.2123	0.4048	0.9887	0.9161	0.9680	0.6789	0.0444	0.3705	0.9579	0.9462	0.9886	0.5427	0.6108
	1700	0.1670	0.3192	0.9887	0.9149	0.9761	0.6555	0.0279	0.2840	0.9579	0.9451	0.9923	0.5227	0.5891
21-Aug-10	0900	0.1977	0.3711	0.9887	0.9163	0.9718	0.6708	0.0387	0.3362	0.9579	0.9464	0.9904	0.5352	0.6030
	1000	0.1934	0.3724	0.9887	0.9175	0.9720	0.6701	0.0369	0.3374	0.9579	0.9476	0.9905	0.5349	0.6025
	1100	0.1556	0.3145	0.9887	0.9193	0.9780	0.6529	0.0242	0.2791	0.9579	0.9492	0.9931	0.5212	0.5870
	1200	0.1293	0.2604	0.9887	0.9219	0.9826	0.6390	0.0172	0.2263	0.9579	0.9516	0.9950	0.5103	0.5747
	1300	0.1309	0.2670	0.9887	0.9228	0.9819	0.6404	0.0176	0.2327	0.9579	0.9524	0.9947	0.5116	0.5760
	1400	0.1624	0.3224	0.9887	0.9198	0.9770	0.6557	0.0263	0.2870	0.9579	0.9497	0.9927	0.5232	0.5895
	1500	0.1929	0.3756	0.9887	0.9179	0.9720	0.6705	0.0368	0.3407	0.9579	0.9480	0.9905	0.5354	0.6030
	1600	0.1910	0.3662	0.9887	0.9165	0.9722	0.6684	0.0363	0.3313	0.9579	0.9467	0.9906	0.5336	0.6010
	1700	0.1428	0.2687	0.9887	0.9145	0.9799	0.6422	0.0208	0.2344	0.9579	0.9447	0.9939	0.5121	0.5771
21-Sep-10	0900	0.1742	0.3323	0.9887	0.9162	0.9756	0.6596	0.0302	0.2970	0.9579	0.9463	0.9921	0.5258	0.5927
	1000	0.1762	0.3431	0.9887	0.9175	0.9749	0.6617	0.0307	0.3076	0.9579	0.9476	0.9918	0.5279	0.5948
	1100	0.1553	0.3020	0.9887	0.9197	0.9794	0.6513	0.0241	0.2668	0.9579	0.9496	0.9937	0.5192	0.5853
	1200	0.1365	0.2660	0.9887	0.9203	0.9814	0.6413	0.0190	0.2317	0.9579	0.9501	0.9945	0.5116	0.5765
	1300	0.1390	0.2774	0.9887	0.9208	0.9805	0.6436	0.0196	0.2427	0.9579	0.9506	0.9942	0.5137	0.5786
	1400	0.1626	0.3249	0.9887	0.9188	0.9769	0.6560	0.0263	0.2895	0.9579	0.9487	0.9926	0.5236	0.5898
	1500	0.1832	0.3528	0.9887	0.9182	0.9744	0.6651	0.0331	0.3175	0.9579	0.9482	0.9916	0.5305	0.5978
	1600	0.1626	0.3130	0.9887	0.9166	0.9770	0.6539	0.0263	0.2777	0.9579	0.9467	0.9927	0.5214	0.5876
	1700	0.1041	0.1897	0.9887	0.9161	0.9860	0.6214	0.0116	0.1593	0.9579	0.9462	0.9962	0.4967	0.5590
21-Oct-10	0900	0.1550	0.2909	0.9887	0.9158	0.9783	0.6486	0.0241	0.2558	0.9579	0.9459	0.9932	0.5169	0.5828
	1000	0.1621	0.3134	0.9887	0.9168	0.9776	0.6540	0.0262	0.2781	0.9579	0.9469	0.9929	0.5214	0.5877
	1100	0.1553	0.2979	0.9887	0.9187	0.9794	0.6505	0.0241	0.2628	0.9579	0.9486	0.9937	0.5184	0.5845
	1200	0.1476	0.2822	0.9887	0.9194	0.9803	0.6463	0.0219	0.2474	0.9579	0.9493	0.9941	0.5152	0.5808
	1300	0.1472	0.2928	0.9887	0.9191	0.9797	0.6477	0.0218	0.2577	0.9579	0.9490	0.9938	0.5168	0.5823
	1400	0.1623	0.3119	0.9887	0.9175	0.9782	0.6541	0.0262	0.2766	0.9579	0.9475	0.9932	0.5213	0.5877
	1500	0.1548	0.3038	0.9887	0.9165	0.9789	0.6509	0.0240	0.2686	0.9579	0.9466	0.9935	0.5191	0.5850
	1600	0.1242	0.2337	0.9887	0.9166	0.9836	0.6330	0.0159	0.2006	0.9579	0.9467	0.9954	0.5051	0.5691
	1700	0.0650	0.1054	0.9887	0.9149	0.9919	0.5993	0.0053	0.0838	0.9579	0.9451	0.9982	0.4818	0.5406
21-Nov-10	0900	0.1275	0.2358	0.9887	0.9133	0.9828	0.6336	0.0167	0.2027	0.9579	0.9435	0.9950	0.5053	0.5695
	1000	0.1440	0.2751	0.9887	0.9137	0.9811	0.6438	0.0210	0.2405	0.9579	0.9439	0.9944	0.5132	0.5785
	1100	0.1503	0.2815	0.9887	0.9142	0.9805	0.6464	0.0228	0.2467	0.9579	0.9442	0.9942	0.5149	0.5806
	1200	0.1443	0.2805	0.9887	0.9151	0.9807	0.6448	0.0211	0.2457	0.9579	0.9452	0.9942	0.5142	0.5795
	1300	0.1446	0.2820	0.9887	0.9157	0.9809	0.6452	0.0212	0.2471	0.9579	0.9457	0.9943	0.5145	0.5799
	1400	0.1435	0.2777	0.9887	0.9129	0.9805	0.6438	0.0209	0.2430	0.9579	0.9431	0.9941	0.5135	0.5786
	1500	0.1321	0.2520	0.9887	0.9131	0.9823	0.6373	0.0179	0.2182	0.9579	0.9433	0.9949	0.5083	0.5728
	1600	0.1002	0.1794	0.9887	0.9129	0.9870	0.6186	0.0108	0.1499	0.9579	0.9431	0.9966	0.4945	0.5566
	1700	0.0452	0.0684	0.9887	0.9129	0.9943	0.5886	0.0028	0.0525	0.9579	0.9431	0.9989	0.4756	0.5321
21-Dec-10	0900	0.1110	0.2019	0.9887	0.9132	0.9855	0.6247	0.0130	0.1707	0.9579	0.9434	0.9961	0.4988	0.5617
	1000	0.1353	0.2535	0.9887	0.9126	0.9822	0.6382	0.0187	0.2195	0.9579	0.9427	0.9948	0.5088	0.5735
	1100	0.1432	0.2713	0.9887	0.9136	0.9808	0.6429	0.0208	0.2368	0.9579	0.9436	0.9943	0.5124	0.5777
	1200	0.1437	0.2735	0.9887	0.9138	0.9808	0.6434	0.0209	0.2389	0.9579	0.9439	0.9943	0.5129	0.5781
	1300	0.1437	0.2734	0.9887	0.9144	0.9808	0.6434	0.0209	0.2388	0.9579	0.9444	0.9943	0.5129	0.5782
	1400	0.1429	0.2675	0.9887	0.9125	0.9812	0.6422	0.0207	0.2331	0.9579	0.9427	0.9944	0.5117	0.5769
	1500	0.1277	0.2426	0.9887	0.9122	0.9829	0.6347	0.0168	0.2091	0.9579	0.9424	0.9951	0.5063	0.5705
	1600	0.0981	0.1776	0.9887	0.9125	0.9872	0.6178	0.0104	0.1482	0.9579	0.9427	0.9967	0.4941	0.5560
	1700	0.0482	0.0738	0.9887	0.9125	0.9939	0.5901	0.0031	0.0571	0.9579	0.9427	0.9987	0.4764	0.5333

Simulation Model Set No.: 4 Window size: Small Orientation: West Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{IX,BD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FX,UX,R}$	$\mathbf{P}_{FX,PG,R}$	$P_{\nu s}$	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$\mathbf{P}_{EX,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.1829	0.3331	0.9887	0.8882	0.9688	0.6567	0.0369	0.2995	0.9579	0.9182	0.9885	0.5252	0.5909
	1000	0.2374	0.4346	0.9887	0.8905	0.9588	0.6846	0.0596	0.4027	0.9579	0.9206	0.9835	0.5500	0.6173
	1100	0.2484	0.5942	0.9887	0.9289	0.9619	0.7184	0.0636	0.5727	0.9579	0.9569	0.9854	0.5842	0.6513
	1200	0.2320	0.4244	0.9887	0.8931	0.9673	0.6842	0.0539	0.3912	0.9579	0.9234	0.9882	0.5472	0.6157
	1300	0.2109	0.4028	0.9887	0.8995	0.9720	0.6773	0.0441	0.3691	0.9579	0.9297	0.9905	0.5410	0.6092
	1400	0.1837	0.3375	0.9887	0.8983	0.9765	0.6610	0.0335	0.3023	0.9579	0.9288	0.9925	0.5262	0.5936
	1500	0.1581	0.2837	0.9887	0.8969	0.9801	0.6465	0.0251	0.2489	0.9579	0.9273	0.9940	0.5143	0.5804
	1600	0.1176	0.2073	0.9887	0.8964	0.9859	0.6253	0.0144	0.1757	0.9579	0.9268	0.9962	0.4985	0.5619
	1700	0.0659	0.1046	0.9887	0.8967	0.9924	0.5973	0.0052	0.0832	0.9579	0.9271	0.9983	0.4800	0.5386
21-Feb-10	0900	0.2204	0.4049	0.9887	0.8890	0.9612	0.6759	0.0505	0.3715	0.9579	0.9190	0.9849	0.5416	0.6087
	1000	0.2626	0.4790	0.9887	0.8886	0.9532	0.6964	0.0704	0.4485	0.9579	0.9186	0.9807	0.5608	0.6286
	1100	0.2578	0.4749	0.9887	0.8914	0.9603	0.6969	0.0671	0.4440	0.9579	0.9216	0.9846	0.5599	0.6284
	1200	0.2315	0.4289	0.9887	0.8941	0.9666	0.6847	0.0531	0.3955	0.9579	0.9244	0.9879	0.5477	0.6162
	1300	0.2082	0.3834	0.9887	0.8976	0.9716	0.6732	0.0425	0.3485	0.9579	0.9280	0.9903	0.5368	0.6050
	1400	0.1819	0.3424	0.9887	0.8985	0.9761	0.6612	0.0327	0.3070	0.9579	0.9290	0.9923	0.5267	0.5940
	1500	0.1681	0.3064	0.9887	0.8996	0.9794	0.6529	0.0281	0.2712	0.9579	0.9301	0.9937	0.5194	0.5861
	1600	0.1350	0.2430	0.9887	0.8985	0.9842	0.6354	0.0186	0.2095	0.9579	0.9290	0.9956	0.5058	0.5706
	1700	0.0852	0.1425	0.9887	0.8970	0.9902	0.6078	0.0081	0.1164	0.9579	0.9274	0.9977	0.4865	0.5472
21-Mar-10	0900	0.2520	0.4603	0.9887	0.8895	0.9533	0.6908	0.0673	0.4296	0.9579	0.9196	0.9804	0.5566	0.6237
	1000	0.2751	0.5010	0.9887	0.8907	0.9506	0.7027	0.0785	0.4720	0.9579	0.9208	0.9791	0.5676	0.6352
	1100	0.2514	0.4652	0.9887	0.8902	0.9618	0.6939	0.0637	0.4337	0.9579	0.9203	0.9854	0.5570	0.6255
	1200	0.2072	0.3827	0.9887	0.8933	0.9718	0.6724	0.0424	0.3479	0.9579	0.9236	0.9904	0.5362	0.6043
	1300	0.1786	0.3387	0.9887	0.8999	0.9766	0.6600	0.0316	0.3037	0.9579	0.9304	0.9925	0.5260	0.5930
	1400	0.1691	0.5604	0.9887	0.8988	0.9784	0.6934	0.0284	0.5354	0.9579	0.9293	0.9933	0.5643	0.6288
	1500	0.1609	0.3024	0.9887	0.8995	0.9795	0.6504	0.0258	0.2672	0.9579	0.9300	0.9937	0.5179	0.5841
	1600	0.1383	0.2567	0.9887	0.8989	0.9833	0.6382	0.0194	0.2226	0.9579	0.9293	0.9952	0.5083	0.5732
	1700	0.0970	0.1665	0.9887	0.8973	0.9888	0.6144	0.0102	0.1380	0.9579	0.9277	0.9972	0.4909	0.5526
21-Apr-10	0900	0.2685	0.4905	0.9887	0.8908	0.9505	0.6993	0.0738	0.4609	0.9579	0.9209	0.9791	0.5641	0.6317
	1000	0.2697	0.4956	0.9887	0.8889	0.9533	0.7010	0.0734	0.4658	0.9579	0.9189	0.9808	0.5649	0.6329
	1100	0.2199	0.4139	0.9887	0.8924	0.9679	0.6795	0.0477	0.3799	0.9579	0.9226	0.9885	0.5430	0.6113
	1200	0.1712	0.3194	0.9887	0.8957	0.9780	0.6549	0.0290	0.2840	0.9579	0.9261	0.9931	0.5214	0.5882
	1300	0.1499	0.2765	0.9887	0.9011	0.9811	0.6440	0.0226	0.2419	0.9579	0.9317	0.9944	0.5128	0.5784
	1400	0.1494	0.2894	0.9887	0.9016	0.9813	0.6461	0.0225	0.2544	0.9579	0.9321	0.9945	0.5149	0.5805
	1500	0.1556	0.2974	0.9887	0.8984	0.9809	0.6485	0.0242	0.2622	0.9579	0.9289	0.9943	0.5165	0.5825
	1600	0.1460	0.2661	0.9887	0.8998	0.9824	0.6416	0.0215	0.2318	0.9579	0.9303	0.9949	0.5106	0.5761
	1700	0.1033	0.1825	0.9887	0.8978	0.9879	0.6184	0.0114	0.1527	0.9579	0.9282	0.9969	0.4938	0.5561
21-May-10	0900	0.2911	0.5288	0.9887	0.8895	0.9442	0.7094	0.0856	0.5006	0.9579	0.9195	0.9757	0.5742	0.6418
	1000	0.2734	0.5053	0.9887	0.8873	0.9530	0.7032	0.0744	0.4755	0.9579	0.9172	0.9808	0.5667	0.6350
	1100	0.2143	0.4012	0.9887	0.8919	0.9694	0.6763	0.0454	0.3667	0.9579	0.9222	0.9892	0.5401	0.6082
	1200	0.1848	0.3450	0.9887	0.8948	0.9756	0.6618	0.0337	0.3096	0.9579	0.9251	0.9921	0.5271	0.5944
	1300	0.1412	0.2693	0.9887	0.9013	0.9819	0.6409	0.0204	0.2353	0.9579	0.9318	0.9947	0.5110	0.5759
	1400	0.1498	0.2798	0.9887	0.9010	0.9816	0.6447	0.0226	0.2450	0.9579	0.9315	0.9946	0.5133	0.5790
	1500	0.1552	0.2956	0.9887	0.8995	0.9806	0.6481	0.0241	0.2605	0.9579	0.9300	0.9942	0.5163	0.5822
	1600	0.1464	0.2728	0.9887	0.8988	0.9819	0.6425	0.0216	0.2382	0.9579	0.9293	0.9947	0.5116	0.5770
	1700	0.1120	0.2004	0.9887	0.8981	0.9868	0.6232	0.0132	0.1692	0.9579	0.9285	0.9965	0.4972	0.5602
1-Jun-10	0900	0.2701	0.4983	0.9887	0.8913	0.9496	0.7008	0.0744	0.4691	0.9579	0.9215	0.9787	0.5657	0.6332
	1000	0.2617	0.4868	0.9887	0.8897	0.9552	0.6981	0.0688	0.4565	0.9579	0.9198	0.9819	0.5620	0.6301
	1100	0.2101	0.4003	0.9887	0.8931	0.9692	0.6752	0.0434	0.3658	0.9579	0.9234	0.9892	0.5394	0.6073
	1200	0.1775	0.3380	0.9887	0.8961	0.9756	0.6589	0.0311	0.3026	0.9579	0.9265	0.9921	0.5251	0.5920
	1300	0.1423	0.2727	0.9887	0.9019	0.9820	0.6418	0.0206	0.2382	0.9579	0.9324	0.9947	0.5116	0.5767
	1400	0.1414	0.2765	0.9887	0.9019	0.9814	0.6420	0.0203	0.2418	0.9579	0.9325	0.9945	0.5120	0.5770
	1500	0.1556	0.2974	0.9887	0.9001	0.9811	0.6487	0.0242	0.2622	0.9579	0.9306	0.9944	0.5167	0.5827
	1600	0.1471	0.2825	0.9887	0.9005	0.9822	0.6445	0.0212	0.2477	0.9579	0.9310	0.9948	0.5135	0.5790
		0.1193	0.2157	0.9887	0.8985	0.9859	0.6274	0.0148	0.1836	0.9579	0.9290			

Simulation Model Set No.: 4 Window size: Small Orientation: West Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{FS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{\mathrm{FS},US,R}$	$\mathbf{P}_{FS,PG,R}$	$P_{\nu S}$	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	\mathbf{P}_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.2754	0.5043	0.9887	0.8900	0.9481	0.7025	0.0767	0.4751	0.9579	0.9201	0.9779	0.5672	0.6349
	1000	0.2722	0.4981	0.9887	0.8900	0.9525	0.7019	0.0744	0.4683	0.9579	0.9201	0.9805	0.5657	0.6338
	1100	0.2213	0.4134	0.9887	0.8927	0.9679	0.6798	0.0482	0.3794	0.9579	0.9229	0.9886	0.5432	0.6115
	1200	0.1775	0.3257	0.9887	0.8958	0.9783	0.6577	0.0311	0.2903	0.9579	0.9262	0.9932	0.5232	0.5904
	1300	0.1489	0.2759	0.9887	0.9007	0.9810	0.6436	0.0223	0.2412	0.9579	0.9312	0.9944	0.5125	0.5781
	1400	0.1403	0.2725	0.9887	0.9027	0.9820	0.6413	0.0200	0.2379	0.9579	0.9332	0.9947	0.5114	0.5764
	1500	0.1556	0.2958	0.9887	0.9004	0.9799	0.6482	0.0242	0.2606	0.9579	0.9309	0.9939	0.5164	0.5823
	1600	0.1550	0.2840	0.9887	0.8997	0.9822	0.6467	0.0241	0.2491	0.9579	0.9302	0.9948	0.5144	0.5806
	1700	0.1191	0.2169	0.9887	0.8986	0.9858	0.6275	0.0147	0.1847	0.9579	0.9290	0.9962	0.5004	0.5639
21-Aug-10	0900	0.2715	0.4994	0.9887	0.8889	0.9491	0.7009	0.0744	0.4699	0.9579	0.9190	0.9785	0.5655	0.6332
	1000	0.2766	0.5035	0.9887	0.8888	0.9511	0.7034	0.0770	0.4740	0.9579	0.9188	0.9797	0.5673	0.6354
	1100	0.2256	0.4227	0.9887	0.8914	0.9670	0.6820	0.0501	0.3890	0.9579	0.9216	0.9881	0.5453	0.6136
	1200	0.1710	0.3222	0.9887	0.8950	0.9772	0.6550	0.0290	0.2868	0.9579	0.9254	0.9928	0.5217	0.5884
	1300	0.1505	0.2777	0.9887	0.9008	0.9810	0.6443	0.0228	0.2430	0.9579	0.9313	0.9943	0.5130	0.5787
	1400	0.1498	0.2847	0.9887	0.8999	0.9810	0.6451	0.0226	0.2498	0.9579	0.9303	0.9943	0.5140	0.5796
	1500	0.1556	0.2978	0.9887	0.8984	0.9809	0.6485	0.0242	0.2627	0.9579	0.9289	0.9943	0.5166	0.5825
	1600	0.1465	0.2711	0.9887	0.8989	0.9825	0.6424	0.0216	0.2366	0.9579	0.9293	0.9949	0.5114	0.5769
	1700	0.1076	0.1922	0.9887	0.8981	0.9874	0.6209	0.0123	0.1617	0.9579	0.9286	0.9967	0.4956	0.5583
21-Sep-10	0900	0.2703	0.4949	0.9887	0.8888	0.9489	0.6998	0.0744	0.4651	0.9579	0.9188	0.9783	0.5647	0.6322
	1000	0.2768	0.5079	0.9887	0.8886	0.9515	0.7043	0.0765	0.4785	0.9579	0.9186	0.9800	0.5679	0.6361
	1100	0.2405	0.4492	0.9887	0.8909	0.9637	0.6891	0.0571	0.4165	0.9579	0.9211	0.9865	0.5521	0.6206
	1200	0.1901	0.3609	0.9887	0.8944	0.9738	0.6651	0.0356	0.3256	0.9579	0.9247	0.9913	0.5303	0.5977
	1300	0.1705	0.3199	0.9887	0.8987	0.9775	0.6550	0.0288	0.2845	0.9579	0.9292	0.9929	0.5217	0.5883
	1400	0.1702	0.3125	0.9887	0.8989	0.9791	0.6542	0.0287	0.2771	0.9579	0.9293	0.9936	0.5205	0.5874
	1500	0.1628	0.2986	0.9887	0.8992	0.9807	0.6506	0.0264	0.2634	0.9579	0.9297	0.9942	0.5175	0.5840
	1600	0.1322	0.2435	0.9887	0.8999	0.9846	0.6350	0.0179	0.2099	0.9579	0.9304	0.9957	0.5058	0.5704
	1700	0.0840	0.1406	0.9887	0.8977	0.9904	0.6073	0.0079	0.1146	0.9579	0.9281	0.9977	0.4862	0.5468
21-Oct-10	0900	0.2575	0.4741	0.9887	0.8883	0.9523	0.6940	0.0667	0.4426	0.9579	0.9183	0.9803	0.5585	0.6262
	1000	0.2802	0.5108	0.9887	0.8912	0.9510	0.7058	0.0788	0.4813	0.9579	0.9213	0.9796	0.5695	0.6376
	1100	0.2525	0.4685	0.9887	0.8913	0.9617	0.6948	0.0627	0.4366	0.9579	0.9215	0.9855	0.5573	0.6261
	1200	0.2207	0.4086	0.9887	0.8960	0.9697	0.6797	0.0476	0.3742	0.9579	0.9264	0.9894	0.5426	0.6112
	1300	0.1960	0.3609	0.9887	0.8977	0.9750	0.6674	0.0377	0.3256	0.9579	0.9281	0.9918	0.5315	0.5994
	1400	0.1765	0.3282	0.9887	0.8969	0.9779	0.6578	0.0308	0.2927	0.9579	0.9273	0.9931	0.5236	0.5907
	1500	0.1549	0.2804	0.9887	0.8970	0.9818	0.6457	0.0240	0.2456	0.9579	0.9274	0.9947	0.5135	0.5796
	1600	0.1128	0.1979	0.9887	0.8973	0.9868	0.6229	0.0134	0.1669	0.9579	0.9277	0.9965	0.4968	0.5598
	1700	0.0560	0.0866	0.9887	0.8971	0.9935	0.5922	0.0039	0.0677	0.9579	0.9275	0.9986	0.4770	0.5346
21-Nov-10	0900	0.2355	0.4278	0.9887	0.8869	0.9572	0.6821	0.0604	0.3957	0.9579	0.9168	0.9825	0.5485	0.6153
	1000	0.2721	0.4941	0.9887	0.8885	0.9518	0.7009	0.0781	0.4646	0.9579	0.9185	0.9796	0.5661	0.6335
	1100	0.2622	0.4789	0.9887	0.8902	0.9606	0.6985	0.0695	0.4480	0.9579	0.9203	0.9848	0.5613	0.6299
	1200	0.2246	0.4142	0.9887	0.8951	0.9686	0.6813	0.0497	0.3801	0.9579	0.9255	0.9889	0.5442	0.6127
	1300	0.2018	0.3651	0.9887	0.8983	0.9737	0.6693	0.0402	0.3301	0.9579	0.9288	0.9913	0.5331	0.6012
	1400	0.1706	0.3144	0.9887	0.8974	0.9779	0.6541	0.0290	0.2792	0.9579	0.9278	0.9931	0.5207	0.5874
	1500	0.1445	0.2565	0.9887	0.8971	0.9826	0.6394	0.0211	0.2225	0.9579	0.9275	0.9950	0.5086	0.5740
	1600	0.0989	0.1694	0.9887	0.8961	0.9884	0.6151	0.0106	0.1407	0.9579	0.9265	0.9971	0.4913	0.5532
	1700	0.0436	0.0643	0.9887	0.8966	0.9948	0.5857	0.0026	0.0493	0.9579	0.9270	0.9990	0.4734	0.5296
21-Dec-10	0900	0.2117	0.3881	0.9887	0.8929	0.9621	0.6716	0.0503	0.3555	0.9579	0.9231	0.9850	0.5392	0.6054
	1000	0.2595	0.4739	0.9887	0.8886	0.9528	0.6947	0.0726	0.4436	0.9579	0.9186	0.9801	0.5607	0.6277
	1100	0.2612	0.4752	0.9887	0.8899	0.9604	0.6976	0.0697	0.4443	0.9579	0.9199	0.9846	0.5607	0.6292
	1200	0.2296	0.4246	0.9887	0.8939	0.9679	0.6839	0.0518	0.3909	0.9579	0.9242	0.9886	0.5465	0.6152
	1300	0.2138	0.4218	0.9887	0.9040	0.9721	0.6817	0.0451	0.3891	0.9579	0.9341	0.9906	0.5452	0.6135
	1400	0.1777	0.3195	0.9887	0.8976	0.9777	0.6567	0.0313	0.2842	0.9579	0.9280	0.9930	0.5224	0.5896
	1500	0.1452	0.2592	0.9887	0.8963	0.9821	0.6397	0.0213	0.2250	0.9579	0.9267	0.9948	0.5090	0.5744
	1600	0.1018	0.1748	0.9887	0.8961	0.9880	0.6166	0.0111	0.1457	0.9579	0.9265	0.9969	0.4923	0.5545
	1700	0.0476	0.0710	0.9887	0.8967	0.9945	0.5877	0.0031	0.0548	0.9579	0.9271	0.9989	0.4745	0.5311

Simulation Model Set No.: 5 Window size: Large Orientation: North Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FX,UX,R}$	$\mathbf{P}_{VX,PG,R}$	$P_{\rm FS}$	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$\mathbf{P}_{EX,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.3566	0.5293	0.9887	0.8933	0.9553	0.7300	0.1390	0.5016	0.9579	0.9236	0.9817	0.5946	0.6623
	1000	0.4568	0.6516	0.9887	0.8916	0.9359	0.7700	0.2401	0.6331	0.9579	0.9217	0.9702	0.6501	0.7101
	1100	0.5024	0.6990	0.9887	0.8902	0.9254	0.7864	0.2975	0.6846	0.9579	0.9203	0.9633	0.6775	0.7319
	1200	0.5199	0.7157	0.9887	0.8896	0.9215	0.7924	0.3220	0.7026	0.9579	0.9196	0.9607	0.6886	0.7405
	1300	0.5285	0.7240	0.9887	0.8896	0.9202	0.7956	0.3319	0.7116	0.9579	0.9196	0.9599	0.6935	0.7446
	1400	0.5183	0.7142	0.9887	0.8901	0.9220	0.7920	0.3170	0.7009	0.9579	0.9201	0.9611	0.6867	0.7393
	1500	0.4806	0.6746	0.9887	0.8914	0.9308	0.7785	0.2676	0.6580	0.9579	0.9215	0.9670	0.6633	0.7209
	1600	0.3996	0.5805	0.9887	0.8929	0.9474	0.7472	0.1795	0.5562	0.9579	0.9231	0.9771	0.6172	0.6822
	1700	0.2397	0.3536	0.9887	0.8944	0.9734	0.6768	0.0637	0.3198	0.9579	0.9247	0.9908	0.5391	0.6079
1-Feb-10	0900	0.3933	0.5871	0.9887	0.8950	0.9478	0.7470	0.1664	0.5631	0.9579	0.9253	0.9778	0.6141	0.6805
	1000	0.4726	0.6777	0.9887	0.8937	0.9313	0.7773	0.2528	0.6613	0.9579	0.9240	0.9676	0.6590	0.7182
	1100	0.5014	0.7047	0.9887	0.8920	0.9256	0.7873	0.2902	0.6906	0.9579	0.9222	0.9639	0.6763	0.7318
	1200	0.5073	0.7074	0.9887	0.8910	0.9259	0.7892	0.2981	0.6935	0.9579	0.9211	0.9640	0.6794	0.7343
	1300	0.5183	0.7187	0.9887	0.8899	0.9230	0.7929	0.3107	0.7058	0.9579	0.9200	0.9622	0.6855	0.7392
	1400	0.5158	0.7168	0.9887	0.8913	0.9225	0.7920	0.3075	0.7037	0.9579	0.9214	0.9619	0.6841	0.7381
	1500	0.4921	0.6940	0.9887	0.8933	0.9274	0.7838	0.2761	0.6789	0.9579	0.9236	0.9652	0.6697	0.7268
	1600	0.4235	0.6180	0.9887	0.8952	0.9416	0.7580	0.1956	0.5964	0.9579	0.9256	0.9741	0.6293	0.6937
	1700	0.2892	0.4363	0.9887	0.8964	0.9658	0.7009	0.0857	0.4033	0.9579	0.9268	0.9874	0.5606	0.6307
21-Mar-10	0900	0.4171	0.6216	0.9887	0.8971	0.9413	0.7571	0.1904	0.6005	0.9579	0.9275	0.9739	0.6284	0.6927
	1000	0.4690	0.6513	0.9887	0.8955	0.9737	0.7842	0.2484	0.6325	0.9579	0.9259	0.9908	0.6570	0.7206
	1100	0.4741	0.6805	0.9887	0.8943	0.9324	0.7785	0.2532	0.6642	0.9579	0.9246	0.9684	0.6599	0.7192
	1200	0.4551	0.6567	0.9887	0.8937	0.9391	0.7716	0.2301	0.6382	0.9579	0.9240	0.9726	0.6481	0.7098
	1300	0.4564	0.6583	0.9887	0.8936	0.9389	0.7721	0.2304	0.6399	0.9579	0.9239	0.9725	0.6485	0.7103
	1400	0.4782	0.6812	0.9887	0.8946	0.9319	0.7721	0.2580	0.6649	0.9579	0.9249	0.9681	0.6617	0.7206
	1500	0.4775	0.6820	0.9887	0.8940	0.9319		0.2583	0.6659	0.9579	0.9249	0.9663	0.6618	0.7204
							0.7790							
	1600 1700	0.4306 0.3137	0.6318 0.4763	0.9887 0.9887	0.8977 0.8981	0.9385 0.9608	0.7615 0.7126	0.2028 0.1002	0.6113 0.4450	0.9579 0.9579	0.9281	0.9723 0.9850	0.6343 0.5725	0.6979 0.6425
21-Apr-10	0900	0.4227	0.6392	0.9887	0.9007	0.9372	0.7607	0.1940	0.6195	0.9579	0.9312	0.9714	0.6328	0.6967
p. 10	1000	0.4421	0.6601	0.9887	0.8998	0.9357	0.7685	0.2136	0.6420	0.9579	0.9303	0.9706	0.6432	0.7059
	1100	0.4105	0.6196	0.9887	0.9004	0.9467	0.7570	0.1791	0.5979	0.9579	0.9309	0.9773	0.6249	0.6909
	1200	0.3760	0.5783	0.9887	0.9014	0.9561	0.7441	0.1465	0.5533	0.9579	0.9319	0.9826	0.6070	0.6755
	1300	0.3831	0.5846	0.9887	0.9013	0.9542	0.7465	0.1528	0.5601	0.9579	0.9319	0.9816	0.6102	0.6783
	1400	0.4269	0.6387	0.9887	0.9011	0.9425	0.7632	0.1960	0.6187	0.9579	0.9316	0.9748	0.6340	0.6986
	1500	0.4474	0.6601	0.9887	0.9011	0.9339	0.7696	0.2205	0.6420	0.9579	0.9317	0.9694	0.6456	0.7076
	1600	0.4161	0.6226	0.9887	0.9016	0.9383	0.7567	0.1871	0.6014	0.9579	0.9321	0.9721	0.6275	0.6921
	1700	0.3127	0.4859	0.9887	0.9015	0.9583	0.7135	0.0990	0.4551	0.9579	0.9320	0.9837	0.5739	0.6437
1-May-10	0900	0.4228	0.6559	0.9887	0.9041	0.9346	0.7630	0.1914	0.6373	0.9579	0.9346	0.9699	0.6350	0.6990
	1000	0.4207	0.6491	0.9887	0.9049	0.9385	0.7626	0.1891	0.6299	0.9579	0.9354	0.9724	0.6334	0.6980
	1100	0.3712	0.5881	0.9887	0.9066	0.9536	0.7444	0.1424	0.5638	0.9579	0.9371	0.9812	0.6076	0.6760
	1200	0.3700	0.5952	0.9887	0.9103	0.9569	0.7466	0.1415	0.5715	0.9579	0.9407	0.9830	0.6092	0.6779
	1300	0.3479	0.5574	0.9887	0.9092	0.9602	0.7356	0.1235	0.5309	0.9579	0.9397	0.9847	0.5963	0.6659
	1400	0.3925	0.6080	0.9887	0.9059	0.9476	0.7513	0.1615	0.5853	0.9579	0.9364	0.9778	0.6173	0.6843
	1500	0.4302	0.6523	0.9887	0.9061	0.9357	0.7649	0.2000	0.6335	0.9579	0.9366	0.9706	0.6376	0.7013
	1600	0.4114	0.6291	0.9885	0.9054	0.9373	0.7566	0.1814	0.6084	0.9573	0.9359	0.9715	0.6269	0.6917
	1700	0.3294	0.5146	0.9872	0.9051	0.9423	0.7181	0.1117	0.4855	0.9557	0.9356	0.9683	0.5806	0.6494
1-Jun-10	0900	0.4053	0.6308	0.9887	0.9054	0.9369	0.7553	0.1752	0.6103	0.9579	0.9359	0.9713	0.6251	0.6902
	1000	0.4067	0.6346	0.9887	0.9057	0.9405	0.7573	0.1756	0.6143	0.9579	0.9363	0.9736	0.6264	0.6918
	1100	0.3633	0.5851	0.9887	0.9084	0.9538	0.7421	0.1358	0.5606	0.9579	0.9389	0.9813	0.6049	0.6735
	1200	0.3491	0.5776	0.9887	0.9125	0.9597	0.7394	0.1244	0.5525	0.9579	0.9428	0.9845	0.6005	0.6700
	1300	0.3363	0.5544	0.9887	0.9121	0.9618	0.7329	0.1148	0.5277	0.9579	0.9424	0.9855	0.5931	0.6630
	1400	0.3780	0.5966	0.9887	0.9087	0.9505	0.7469	0.1483	0.5731	0.9579	0.9391	0.9795	0.6111	0.6790
	1500	0.4259	0.6483	0.9887	0.9071	0.9358	0.7633	0.1947	0.6290	0.9579	0.9376	0.9707	0.6352	0.6992
		0.4132	0.6298	0.9887	0.9063	0.9338	0.7567	0.1947	0.6091	0.9579	0.9368	0.9701	0.6273	0.6920
	1600													

Simulation Model Set No.: 5 Window size: Large Orientation: North Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{VS,US,R}$	$\mathbf{P}_{VS,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.4103	0.6359	0.9887	0.9041	0.9361	0.7570	0.1798	0.6158	0.9579	0.9346	0.9709	0.6274	0.6922
	1000	0.4195	0.6459	0.9887	0.9035	0.9381	0.7615	0.1887	0.6265	0.9579	0.9340	0.9721	0.6325	0.6970
	1100	0.3777	0.5968	0.9887	0.9065	0.9516	0.7469	0.1480	0.5733	0.9579	0.9370	0.9801	0.6110	0.6789
	1200	0.3508	0.5690	0.9887	0.9105	0.9598	0.7382	0.1257	0.5433	0.9579	0.9409	0.9845	0.5993	0.6687
	1300	0.3497	0.5647	0.9887	0.9108	0.9603	0.7375	0.1249	0.5387	0.9579	0.9412	0.9848	0.5982	0.6678
	1400	0.3835	0.5994	0.9887	0.9072	0.9501	0.7485	0.1531	0.5761	0.9579	0.9377	0.9792	0.6131	0.6808
	1500	0.4317	0.6526	0.9887	0.9061	0.9359	0.7654	0.2009	0.6338	0.9579	0.9366	0.9708	0.6380	0.7017
	1600	0.4230	0.6421	0.9887	0.9053	0.9336	0.7607	0.1920	0.6224	0.9579	0.9358	0.9693	0.6326	0.6967
	1700	0.3467	0.5401	0.9887	0.9047	0.9495	0.7290	0.1231	0.5125	0.9579	0.9352	0.9789	0.5915	0.6602
21-Aug-10	0900	0.4232	0.6425	0.9887	0.9007	0.9366	0.7611	0.1934	0.6229	0.9579	0.9312	0.9711	0.6331	0.6971
	1000	0.4446	0.6635	0.9887	0.9002	0.9353	0.7696	0.2160	0.6456	0.9579	0.9307	0.9704	0.6447	0.7072
	1100	0.4113	0.6225	0.9887	0.9002	0.9462	0.7575	0.1798	0.6011	0.9579	0.9307	0.9770	0.6256	0.6915
	1200	0.3737	0.5761	0.9887	0.9020	0.9561	0.7432	0.1445	0.5509	0.9579	0.9325	0.9826	0.6059	0.6746
	1300	0.3760	0.5777	0.9887	0.9011	0.9554	0.7438	0.1465	0.5526	0.9579	0.9317	0.9822	0.6068	0.6753
	1400	0.4203	0.6284	0.9887	0.9010	0.9440	0.7603	0.1892	0.6074	0.9579	0.9315	0.9757	0.6298	0.6951
	1500	0.4494	0.6625	0.9887	0.9010	0.9339	0.7704	0.2220	0.6446	0.9579	0.9315	0.9695	0.6465	0.7085
	1600	0.4233	0.6332	0.9887	0.9021	0.9367	0.7599	0.1939	0.6129	0.9579	0.9326	0.9712	0.6317	0.6958
	1700	0.3277	0.5081	0.9887	0.9022	0.9557	0.7203	0.1093	0.4785	0.9579	0.9327	0.9823	0.5813	0.6508
21-Sep-10	0900	0.4435	0.6549	0.9887	0.8967	0.9355	0.7676	0.2158	0.6363	0.9579	0.9271	0.9704	0.6427	0.7051
	1000	0.4786	0.6900	0.9887	0.8959	0.9293	0.7805	0.2562	0.6745	0.9579	0.9263	0.9665	0.6625	0.7215
	1100	0.4694	0.6766	0.9887	0.8945	0.9347	0.7773	0.2445	0.6598	0.9579	0.9248	0.9700	0.6564	0.7169
	1200	0.4469	0.6486	0.9887	0.8944	0.9416	0.7689	0.2184	0.6294	0.9579	0.9247	0.9742	0.6429	0.7059
	1300	0.4551	0.6585	0.9887	0.8944	0.9394	0.7720	0.2269	0.6402	0.9579	0.9247	0.9730	0.6474	0.7097
	1400	0.4807	0.6864	0.9887	0.8955	0.9310	0.7809	0.2582	0.6705	0.9579	0.9258	0.9677	0.6627	0.7218
	1500	0.4787	0.6863	0.9887	0.8973	0.9285	0.7799	0.2557	0.6704	0.9579	0.9277	0.9661	0.6617	0.7208
	1600	0.4170	0.6177	0.9887	0.8982	0.9409	0.7565	0.1854	0.5959	0.9579	0.9287	0.9739	0.6260	0.6912
	1700	0.2775	0.4260	0.9887	0.8994	0.9668	0.6969	0.0761	0.3922	0.9579	0.9299	0.9880	0.5557	0.6263
21-Oct-10	0900	0.4550	0.6627	0.9887	0.8939	0.9310	0.7702	0.2278	0.6447	0.9579	0.9242	0.9676	0.6475	0.7089
	1000	0.5115	0.7177	0.9887	0.8916	0.9231	0.7913	0.2989	0.7046	0.9579	0.9217	0.9625	0.6814	0.7363
	1100	0.5181	0.7225	0.9887	0.8908	0.9234	0.7937	0.3069	0.7099	0.9579	0.9209	0.9627	0.6851	0.7394
	1200	0.5152	0.7172	0.9887	0.8903	0.9248	0.7924	0.3024	0.7041	0.9579	0.9204	0.9637	0.6826	0.7375
	1300	0.5193	0.7208	0.9887	0.8910	0.9230	0.7937	0.3095	0.7080	0.9579	0.9211	0.9624	0.6856	0.7397
	1400	0.5151	0.7180	0.9887	0.8922	0.9229	0.7923	0.3038	0.7049	0.9579	0.9224	0.9623	0.6832	0.7377
	1500	0.4746	0.6769	0.9887	0.8939	0.9310	0.7776	0.2511	0.6602	0.9579	0.9241	0.9677	0.6583	0.7180
	1600	0.3719	0.5531	0.9887	0.8961	0.9523	0.7373	0.1439	0.5263	0.9579	0.9265	0.9804	0.6006	0.6689
	1700	0.2027	0.2956	0.9887	0.8972	0.9783	0.6595	0.0416	0.2609	0.9579	0.9276	0.9932	0.5220	0.5908
21-Nov-10	0900	0.4374	0.6297	0.9887	0.8920	0.9397	0.7626	0.2173	0.6092	0.9579	0.9221	0.9726	0.6385	0.7005
	1000	0.5178	0.7158	0.9887	0.8888	0.9209	0.7916	0.3165	0.7025	0.9579	0.9188	0.9602	0.6865	0.7391
	1100	0.5485	0.7442	0.9887	0.8878	0.9136	0.8020	0.3595	0.7334	0.9579	0.9177	0.9551	0.7058	0.7539
	1200	0.5534	0.7482	0.9887	0.8880	0.9130	0.8038	0.3659	0.7378	0.9579	0.9180	0.9547	0.7087	0.7563
	1300	0.5450	0.6880	0.9887	0.8887	0.9804	0.8109	0.3535	0.6722	0.9579	0.9187	0.9888	0.6994	0.7552
	1400	0.5269	0.7211	0.9887	0.8891	0.9189	0.7943	0.3302	0.7084	0.9579	0.9191	0.9588	0.6921	0.7432
	1500	0.4709	0.6625	0.9887	0.8915	0.9322	0.7744	0.2583	0.6448	0.9579	0.9216	0.9677	0.6579	0.7162
	1600	0.3580	0.5217	0.9887	0.8935	0.9700	0.7334	0.1462	0.4938	0.9579	0.9237	0.9882	0.5970	0.6652
	1700	0.1628	0.2309	0.9887	0.8957	0.9832	0.6400	0.0306	0.2001	0.9579	0.9261	0.9950	0.5080	0.5740
21-Dec-10	0900	0.4036	0.5865	0.9887	0.8913	0.9469	0.7488	0.1851	0.5626	0.9579	0.9214	0.9767	0.6200	0.6844
2. 100-10	1000	0.5030	0.6980	0.9887	0.8887	0.9469	0.7860	0.1831	0.5626	0.9579	0.9214	0.9624	0.6200	0.7318
	1100	0.5437	0.7383	0.9887	0.8877	0.9243	0.8000	0.2538	0.7270	0.9579	0.9176	0.9555	0.7028	0.7514
	1200	0.5531	0.7383	0.9887	0.8876	0.9143	0.8036	0.3558	0.7270	0.9579	0.9176	0.9533	0.7028	0.7562
	1300	0.5543	0.7484	0.9887	0.8876	0.9126	0.8036	0.3673	0.7390	0.9579	0.9173	0.9543	0.7089	0.7562
	1400	0.5409	0.7493		0.8879		0.8041	0.3492	0.7390	0.9579	0.9174		0.7006	0.7498
				0.9887		0.9155						0.9563		
	1500	0.4903	0.6799	0.9887	0.8889	0.9281	0.7808	0.2835	0.6635	0.9579	0.9188	0.9648	0.6691	0.7250
	1600	0.3740	0.5419	0.9887	0.8922	0.9523	0.7356	0.1615	0.5152	0.9579	0.9224	0.9797	0.6043	0.6700
	1700	0.1856	0.2622	0.9887	0.8942	0.9809	0.6501	0.0402	0.2305	0.9579	0.9245	0.9941	0.5162	0.5832

Simulation Model Set No.: 6 Window size: Large Orientation: East Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{VX,UX,R}$	$\mathbf{P}_{FX,PG,R}$	$P_{\rm FS}$	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$\mathbf{P}_{EX,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.2549	0.3880	0.9887	0.9047	0.9705	0.6866	0.0639	0.3532	0.9579	0.9352	0.9898	0.5457	0.6161
	1000	0.3258	0.5010	0.9887	0.9055	0.9575	0.7196	0.1073	0.4709	0.9579	0.9361	0.9833	0.5798	0.6497
	1100	0.3673	0.5673	0.9887	0.9060	0.9491	0.7387	0.1401	0.5416	0.9579	0.9365	0.9786	0.6025	0.6706
	1200	0.4107	0.6306	0.9887	0.9072	0.9462	0.7595	0.1812	0.6100	0.9579	0.9375	0.9768	0.6283	0.6939
	1300	0.4444	0.6430	0.9887	0.8995	0.9387	0.7672	0.2172	0.6235	0.9579	0.9299	0.9724	0.6416	0.7044
	1400	0.4747	0.6659	0.9887	0.8948	0.9332	0.7766	0.2562	0.6485	0.9579	0.9251	0.9688	0.6584	0.7175
	1500	0.4700	0.6525	0.9887	0.8919	0.9354	0.7735	0.2542	0.6340	0.9579	0.9221	0.9699	0.6551	0.7143
	1600	0.4134	0.5786	0.9887	0.8905	0.9469	0.7500	0.1957	0.5543	0.9579	0.9206	0.9765	0.6221	0.6861
	1700	0.2600	0.3647	0.9887	0.8937	0.9722	0.6834	0.0788	0.3315	0.9579	0.9240	0.9900	0.5461	0.6147
1-Feb-10	0900	0.2811	0.4345	0.9887	0.9062	0.9660	0.6998	0.0782	0.4011	0.9579	0.9367	0.9877	0.5586	0.6292
	1000	0.3442	0.5298	0.9887	0.9066	0.9544	0.7282	0.1208	0.5014	0.9579	0.9371	0.9816	0.5895	0.6589
	1100	0.3735	0.5769	0.9887	0.9070	0.9495	0.7421	0.1448	0.5519	0.9579	0.9375	0.9789	0.6060	0.6741
	1200	0.4007	0.6187	0.9887	0.9082	0.9475	0.7554	0.1697	0.5970	0.9579	0.9386	0.9777	0.6223	0.6889
	1300	0.4424	0.6459	0.9887	0.9007	0.9401	0.7676	0.2127	0.6264	0.9579	0.9312	0.9734	0.6408	0.7042
	1400	0.4869	0.6815	0.9887	0.8950	0.9316	0.7819	0.2681	0.6653	0.9579	0.9254	0.9680	0.6653	0.7236
	1500	0.4973	0.6860	0.9887	0.8918	0.9300	0.7845	0.2835	0.6703	0.9579	0.9219	0.9668	0.6710	0.7277
	1600	0.4525	0.6318	0.9887	0.8915	0.9411	0.7672	0.2289	0.6114	0.9579	0.9216	0.9737	0.6431	0.7051
	1700	0.3238	0.4616	0.9887	0.8913	0.9639	0.7129	0.1118	0.4299	0.9579	0.9215	0.9862	0.5735	0.6432
1-Mar-10	0900	0.3093	0.4787	0.9887	0.9068	0.9612	0.7130	0.0958	0.4473	0.9579	0.9373	0.9852	0.5722	0.6426
	1000	0.3473	0.5411	0.9887	0.9084	0.9546	0.7312	0.1231	0.5135	0.9579	0.9388	0.9817	0.5926	0.6619
	1100	0.3582	0.5595	0.9887	0.9099	0.9542	0.7370	0.1317	0.5331	0.9579	0.9404	0.9815	0.5990	0.6680
	1200	0.3683	0.5830	0.9887	0.9107	0.9559	0.7440	0.1317	0.5584	0.9579	0.9410	0.9824	0.6066	0.6753
	1300	0.4122	0.6085	0.9887	0.9107	0.9339	0.7564	0.1810	0.5859	0.9579	0.9410	0.9824	0.6239	0.6902
	1400	0.4771	0.6694	0.9887	0.8950	0.9351	0.7784	0.2568	0.6521	0.9579	0.9253	0.9701	0.6595	0.7189
	1500	0.5099	0.6965	0.9887	0.8917	0.9275	0.7887	0.3031	0.6818	0.9579	0.9218	0.9650	0.6795	0.7341
	1600	0.4837	0.6665	0.9887	0.8910	0.9338	0.7788	0.2687	0.6492	0.9579	0.9211	0.9690	0.6625	0.7206
	1700	0.3670	0.5217	0.9887	0.8923	0.9571	0.7319	0.1457	0.4933	0.9579	0.9225	0.9826	0.5956	0.6637
21-Apr-10	0900	0.3298	0.5124	0.9887	0.9076	0.9578	0.7228	0.1099	0.4829	0.9579	0.9381	0.9835	0.5830	0.6529
	1000	0.3423	0.5400	0.9887	0.9105	0.9561	0.7303	0.1191	0.5122	0.9579	0.9409	0.9826	0.5913	0.6608
	1100	0.3304	0.5277	0.9887	0.9129	0.9612	0.7270	0.1104	0.4991	0.9579	0.9432	0.9852	0.5867	0.6569
	1200	0.3250	0.5272	0.9887	0.9136	0.9648	0.7266	0.1068	0.4985	0.9579	0.9439	0.9871	0.5858	0.6562
	1300	0.3759	0.5662	0.9887	0.9036	0.9575	0.7428	0.1464	0.5402	0.9579	0.9341	0.9833	0.6051	0.6739
	1400	0.4627	0.6524	0.9887	0.8954	0.9402	0.7734	0.2369	0.6336	0.9579	0.9257	0.9734	0.6500	0.7117
	1500	0.5077	0.6941	0.9887	0.8917	0.9291	0.7882	0.2992	0.6792	0.9579	0.9219	0.9662	0.6779	0.7330
	1600	0.4850	0.6698	0.9887	0.8922	0.9340	0.7798	0.2706	0.6529	0.9579	0.9224	0.9693	0.6640	0.7219
	1700	0.3788	0.5398	0.9887	0.8923	0.9556	0.7375	0.1534	0.5127	0.9579	0.9224	0.9822	0.6015	0.6695
21-May-10	0900	0.3385	0.5373	0.9887	0.9110	0.9551	0.7287	0.1162	0.5095	0.9579	0.9414	0.9820	0.5898	0.6592
	1000	0.3395	0.5393	0.9887	0.9118	0.9565	0.7298	0.1169	0.5115	0.9579	0.9422	0.9828	0.5906	0.6602
	1100	0.3126	0.5122	0.9887	0.9152	0.9645	0.7211	0.0981	0.4826	0.9579	0.9454	0.9869	0.5802	0.6506
	1200	0.3435	0.5746	0.9887	0.9179	0.9633	0.7391	0.1203	0.5494	0.9579	0.9478	0.9863	0.5994	0.6692
	1300	0.3705	0.5603	0.9887	0.9048	0.9590	0.7410	0.1423	0.5339	0.9579	0.9353	0.9841	0.6028	0.6719
	1400	0.4544	0.6433	0.9887	0.8950	0.9417	0.7701	0.2285	0.6237	0.9579	0.9253	0.9742	0.6455	0.7078
	1500	0.5153	0.7026	0.9887	0.8918	0.9269	0.7909	0.3083	0.6883	0.9579	0.9220	0.9648	0.6824	0.7366
	1600	0.5020	0.6874	0.9887	0.8917	0.9209	0.7859	0.2926	0.6720	0.9579	0.9220	0.9666	0.6744	0.7301
	1700	0.4093	0.5773	0.9887	0.8923	0.9299	0.7500	0.2926	0.5529	0.9579	0.9219	0.9794	0.6187	0.7301
1-Jun-10	0900	0.3365	0.5251	0.9887	0.9097	0.9556	0.7262	0.1149	0.4963	0.9579	0.9402	0.9823	0.5870	0.6566
1-Jun-10	1000	0.3365	0.5251	0.9887	0.9097	0.9556	0.7262	0.1149	0.4963	0.9579	0.9402	0.9823	0.5870	0.6566
	1100	0.3185	0.5160	0.9887	0.9134	0.9632	0.7226	0.1022	0.4867	0.9579	0.9437	0.9862	0.5820	0.6523
	1200	0.3353	0.5541	0.9887	0.9171	0.9642	0.7338	0.1141	0.5273	0.9579	0.9471	0.9867	0.5935	0.6637
	1300	0.3662	0.5594	0.9887	0.9067	0.9598	0.7402	0.1382	0.5330	0.9579	0.9373	0.9845	0.6015	0.6709
	1400	0.4453	0.6324	0.9887	0.8962	0.9398	0.7656	0.2161	0.6118	0.9579	0.9266	0.9732	0.6391	0.7024
	1500	0.5152	0.7045	0.9887	0.8917	0.9273	0.7913	0.3044	0.6903	0.9579	0.9218	0.9652	0.6814	0.7363
	1600	0.5069	0.6950	0.9887	0.8920	0.9295	0.7883	0.2964	0.6802	0.9579	0.9222	0.9666	0.6771	0.7327
	1700	0.4281	0.6024	0.9887	0.8922	0.9472	0.7580	0.2001	0.5796	0.9579	0.9224	0.9775	0.6284	0.6932

Simulation Model Set No.: 6 Window size: Large Orientation: East Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FS,US,R}$	$\mathbf{P}_{FS,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$P_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.3343	0.5202	0.9887	0.9093	0.9563	0.7250	0.1132	0.4911	0.9579	0.9397	0.9826	0.5855	0.6553
	1000	0.3426	0.5399	0.9887	0.9112	0.9561	0.7305	0.1193	0.5121	0.9579	0.9416	0.9826	0.5914	0.6610
	1100	0.3204	0.5167	0.9887	0.9137	0.9631	0.7233	0.1034	0.4874	0.9579	0.9440	0.9862	0.5826	0.6529
	1200	0.3214	0.5371	0.9887	0.9172	0.9662	0.7281	0.1042	0.5091	0.9579	0.9472	0.9877	0.5871	0.6576
	1300	0.3660	0.5634	0.9887	0.9084	0.9599	0.7411	0.1380	0.5373	0.9579	0.9389	0.9846	0.6023	0.6717
	1400	0.4433	0.6310	0.9887	0.8967	0.9453	0.7665	0.2134	0.6102	0.9579	0.9271	0.9765	0.6385	0.7025
	1500	0.5144	0.7035	0.9887	0.8919	0.9278	0.7911	0.3031	0.6892	0.9579	0.9221	0.9656	0.6808	0.7360
	1600	0.5168	0.7054	0.9887	0.8915	0.9277	0.7919	0.3072	0.6913	0.9579	0.9217	0.9655	0.6826	0.7373
	1700	0.4343	0.6095	0.9887	0.8921	0.9460	0.7603	0.2060	0.5873	0.9579	0.9223	0.9768	0.6316	0.6960
21-Aug-10	0900	0.3281	0.5084	0.9887	0.9075	0.9576	0.7216	0.1086	0.4786	0.9579	0.9379	0.9833	0.5818	0.6517
	1000	0.3424	0.5411	0.9887	0.9108	0.9557	0.7304	0.1191	0.5134	0.9579	0.9412	0.9823	0.5915	0.6610
	1100	0.3299	0.5280	0.9887	0.9131	0.9610	0.7269	0.1100	0.4994	0.9579	0.9433	0.9852	0.5866	0.6568
	1200	0.3173	0.5238	0.9887	0.9151	0.9658	0.7245	0.1014	0.4950	0.9579	0.9453	0.9876	0.5835	0.6540
	1300	0.3685	0.5588	0.9887	0.9049	0.9585	0.7401	0.1401	0.5323	0.9579	0.9354	0.9838	0.6017	0.6709
	1400	0.4531	0.6419	0.9887	0.8958	0.9421	0.7698	0.2259	0.6221	0.9579	0.9262	0.9746	0.6444	0.7071
	1500	0.5097	0.6976	0.9887	0.8919	0.9282	0.7890	0.3001	0.6829	0.9579	0.9221	0.9657	0.6788	0.7339
	1600	0.4965	0.6820	0.9887	0.8915	0.9317	0.7840	0.2840	0.6661	0.9579	0.9216	0.9680	0.6706	0.7273
	1700	0.3981	0.5636	0.9887	0.8925	0.9528	0.7455	0.1705	0.5380	0.9579	0.9227	0.9806	0.6115	0.6785
21-Sep-10	0900	0.3247	0.5061	0.9887	0.9077	0.9576	0.7204	0.1063	0.4762	0.9579	0.9382	0.9834	0.5805	0.6505
	1000	0.3536	0.5532	0.9887	0.9092	0.9534	0.7345	0.1279	0.5263	0.9579	0.9396	0.9811	0.5964	0.6654
	1100	0.3571	0.5612	0.9887	0.9105	0.9555	0.7374	0.1307	0.5349	0.9579	0.9409	0.9823	0.5992	0.6683
	1200	0.3689	0.5769	0.9887	0.9099	0.9560	0.7431	0.1405	0.5519	0.9579	0.9403	0.9825	0.6055	0.6743
	1300	0.4246	0.6209	0.9887	0.9006	0.9473	0.7610	0.1931	0.5993	0.9579	0.9311	0.9777	0.6301	0.6956
	1400	0.4917	0.6849	0.9887	0.8939	0.9323	0.7837	0.2724	0.6689	0.9579	0.9242	0.9685	0.6674	0.7256
	1500	0.5203	0.7094	0.9887	0.8910	0.9261	0.7930	0.3112	0.6956	0.9579	0.9212	0.9645	0.6845	0.7387
	1600	0.4740	0.6578	0.9887	0.8904	0.9377	0.7759	0.2496	0.6394	0.9579	0.9205	0.9719	0.6546	0.7153
	1700	0.3286	0.4727	0.9887	0.8922	0.9650	0.7163	0.1092	0.4409	0.9579	0.9224	0.9871	0.5747	0.6455
21-Oct-10	0900	0.3197	0.4953	0.9887	0.9070	0.9584	0.7175	0.1026	0.4648	0.9579	0.9375	0.9838	0.5774	0.6475
21 001 10	1000	0.3643	0.5630	0.9887	0.9076	0.9506	0.7379	0.1366	0.5369	0.9579	0.9381	0.9796	0.6008	0.6693
	1100	0.3887	0.6015	0.9887	0.9082	0.9468	0.7494	0.1578	0.5783	0.9579	0.9387	0.9774	0.6149	0.6822
	1200	0.4206	0.6295	0.9887	0.9042	0.9433	0.7607	0.1888	0.6086	0.9579	0.9348	0.9753	0.6302	0.6954
	1300	0.4200	0.6678	0.9887	0.8975	0.9455	0.7764	0.1666	0.6503	0.9579	0.9348	0.9705	0.6549	0.0954
	1400	0.5048	0.6983	0.9887	0.8975	0.9355	0.7764	0.2433	0.6835	0.9579	0.9279	0.9705	0.6754	0.7156
	1500	0.4959	0.6829	0.9887	0.8910	0.9278	0.7840	0.2786	0.6667	0.9579	0.9233	0.9680	0.6688	0.7316
	1600	0.4043	0.5760	0.9887	0.8919	0.9513	0.7486	0.1743	0.5509	0.9579	0.9221	0.9798	0.6148	0.6817
	1700	0.2295	0.3178	0.9887	0.8915	0.9767	0.6689	0.0555	0.2831	0.9579	0.9216	0.9923	0.5299	0.5994
21-Nov-10	0900	0.2946	0.4507	0.9887	0.9053	0.9621	0.7047	0.0863	0.4179	0.9579	0.9358	0.9857	0.5638	0.6343
	1000	0.3474	0.5369	0.9887	0.9053	0.9518	0.7294	0.1234	0.5090	0.9579	0.9358	0.9802	0.5913	0.6603
	1100	0.3872	0.5926	0.9887	0.9070	0.9454	0.7470	0.1574	0.5688	0.9579	0.9375	0.9765	0.6129	0.6799
	1200	0.4246	0.6416	0.9887	0.9056	0.9415	0.7633	0.1937	0.6218	0.9579	0.9360	0.9742	0.6340	0.6987
	1300	0.4721	0.6684	0.9887	0.8962	0.9336	0.7766	0.2497	0.6511	0.9579	0.9265	0.9692	0.6568	0.7167
	1400	0.4961	0.6843	0.9887	0.8920	0.9285	0.7835	0.2858	0.6684	0.9579	0.9222	0.9656	0.6713	0.7274
	1500	0.4726	0.6517	0.9887	0.8905	0.9341	0.7735	0.2613	0.6331	0.9579	0.9205	0.9687	0.6571	0.7153
	1600	0.3794	0.5310	0.9887	0.8904	0.9525	0.7351	0.1700	0.5039	0.9579	0.9204	0.9794	0.6051	0.6701
	1700	0.1847	0.2432	0.9887	0.8924	0.9819	0.6469	0.0413	0.2127	0.9579	0.9226	0.9943	0.5134	0.5802
21-Dec-10	0900	0.2647	0.4059	0.9887	0.9046	0.9682	0.6914	0.0691	0.3715	0.9579	0.9351	0.9887	0.5504	0.6209
	1000	0.3308	0.5092	0.9887	0.9049	0.9554	0.7215	0.1107	0.4795	0.9579	0.9355	0.9822	0.5822	0.6519
	1100	0.3734	0.5734	0.9887	0.9056	0.9463	0.7405	0.1451	0.5482	0.9579	0.9361	0.9771	0.6050	0.6727
	1200	0.4235	0.6541	0.9887	0.9078	0.9446	0.7662	0.1925	0.6355	0.9579	0.9380	0.9759	0.6364	0.7013
	1300	0.4632	0.6610	0.9887	0.8962	0.9351	0.7735	0.2376	0.6430	0.9579	0.9265	0.9703	0.6513	0.7124
	1400	0.4930	0.6826	0.9887	0.8924	0.9290	0.7826	0.2803	0.6665	0.9579	0.9226	0.9661	0.6691	0.7259
	1500	0.4773	0.6580	0.9887	0.8897	0.9327	0.7753	0.2670	0.6398	0.9579	0.9197	0.9679	0.6600	0.7176
	1600	0.3871	0.5402	0.9887	0.8909	0.9510	0.7383	0.1765	0.5136	0.9579	0.9210	0.9786	0.6089	0.6736
	1700	0.1998	0.2707	0.9887	0.8917	0.9798	0.6546	0.0491	0.2395		0.9219			0.5875

Simulation Model Set No.: 7 Window size: Large Orientation: South Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{IX,BD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FX,UX,R}$	$\mathbf{P}_{FX,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$\mathbf{P}_{EX,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.2649	0.3848	0.9887	0.9224	0.9621	0.6885	0.0694	0.3500	0.9579	0.9521	0.9856	0.5480	0.6183
	1000	0.3245	0.4750	0.9887	0.9241	0.9501	0.7153	0.1066	0.4435	0.9579	0.9536	0.9792	0.5759	0.6456
	1100	0.3381	0.5004	0.9868	0.9248	0.9476	0.7219	0.1163	0.4702	0.9535	0.9542	0.9778	0.5827	0.6523
	1200	0.3317	0.4995	0.9884	0.9249	0.9492	0.7208	0.1113	0.4693	0.9571	0.9543	0.9787	0.5818	0.6513
	1300	0.3298	0.5012	0.9887	0.9252	0.9496	0.7208	0.1099	0.4711	0.9579	0.9545	0.9789	0.5818	0.6513
	1400	0.3293	0.5021	0.9885	0.9248	0.9479	0.7203	0.1096	0.4721	0.9573	0.9542	0.9780	0.5815	0.6509
	1500	0.3213	0.4835	0.9887	0.9229	0.9500	0.7156	0.1040	0.4524	0.9579	0.9525	0.9791	0.5764	0.6460
	1600	0.2730	0.4087	0.9887	0.9226	0.9594	0.6937	0.0736	0.3744	0.9579	0.9522	0.9843	0.5534	0.6235
	1700	0.1764	0.2395	0.9887	0.9210	0.9775	0.6464	0.0311	0.2064	0.9579	0.9508	0.9928	0.5113	0.5789
21-Feb-10	0900	0.3184	0.4587	0.9864	0.9229	0.9516	0.7109	0.1023	0.4264	0.9525	0.9525	0.9800	0.5705	0.6407
	1000	0.3592	0.5295	0.9887	0.9245	0.9424	0.7309	0.1330	0.5011	0.9578	0.9540	0.9747	0.5941	0.6625
	1100	0.3580	0.5324	0.9887	0.9254	0.9438	0.7316	0.1317	0.5042	0.9579	0.9548	0.9756	0.5945	0.6630
	1200	0.3381	0.5149	0.9867	0.9264	0.9495	0.7249	0.1159	0.4855	0.9534	0.9556	0.9789	0.5855	0.6552
	1300	0.3323	0.5116	0.9865	0.9264	0.9500	0.7230	0.1117	0.4821	0.9529	0.9556	0.9792	0.5834	0.6532
	1400	0.3493	0.5310	0.9885	0.9252	0.9457	0.7295	0.1246	0.5027	0.9574	0.9546	0.9767	0.5918	0.6607
	1500	0.3533	0.5369	0.9887	0.9242	0.9425	0.7306	0.1280	0.5090	0.9579	0.9537	0.9748	0.5937	0.6621
	1600	0.3224	0.4844	0.9887	0.9222	0.9501	0.7160	0.1049	0.4533	0.9578	0.9519	0.9792	0.5768	0.6464
	1700	0.2313	0.3334	0.9887	0.9211	0.9691	0.6733	0.0525	0.2981	0.9579	0.9509	0.9891	0.5337	0.6035
21-Mar-10	0900	0.3732	0.5416	0.9843	0.9234	0.9127	0.7272	0.1471	0.5145	0.9503	0.9529	0.9405	0.5936	0.6604
	1000	0.3852	0.5661	0.9887	0.9247	0.9392	0.7426	0.1559	0.5403	0.9579	0.9541	0.9727	0.6085	0.6756
	1100	0.3622	0.5397	0.9870	0.9264	0.9472	0.7346	0.1350	0.5120	0.9539	0.9556	0.9776	0.5966	0.6656
	1200	0.3233	0.4999	0.9885	0.9274	0.9561	0.7210	0.1053	0.4696	0.9574	0.9565	0.9826	0.5807	0.6508
	1300	0.3191	0.4990	0.9886	0.9275	0.9564	0.7199	0.1024	0.4686	0.9575	0.9566	0.9828	0.5796	0.6497
	1400	0.3524	0.5386	0.9887	0.9257	0.9476	0.7322	0.1270	0.5108	0.9577	0.9550	0.9778	0.5943	0.6633
	1500	0.3758	0.5656	0.9887	0.9241	0.9396	0.7402	0.1472	0.5398	0.9579	0.9536	0.9730	0.6053	0.6728
	1600	0.3646	0.5472	0.9887	0.9227	0.9209	0.7289	0.1382	0.5203	0.9579	0.9523	0.9500	0.5946	0.6618
	1700	0.2795	0.4042	0.9887	0.9209	0.9638	0.6957	0.0789	0.3703	0.9579	0.9507	0.9865	0.5548	0.6252
21-Apr-10	0900	0.4093	0.5784	0.9876	0.9218	0.9372	0.7498	0.1803	0.5537	0.9552	0.9516	0.9714	0.6183	0.6840
	1000	0.4078	0.5874	0.9875	0.9242	0.9390	0.7516	0.1771	0.5633	0.9550	0.9537	0.9726	0.6192	0.6854
	1100	0.3516	0.5341	0.9869	0.9269	0.9532	0.7326	0.1263	0.5059	0.9536	0.9561	0.9810	0.5931	0.6629
	1200	0.3044	0.4843	0.9887	0.9294	0.9636	0.7160	0.0930	0.4531	0.9579	0.9582	0.9865	0.5745	0.6453
	1300	0.3065	0.4901	0.9887	0.9292	0.9626	0.7171	0.0942	0.4593	0.9579	0.9580	0.9859	0.5759	0.6465
	1400	0.3619	0.5543	0.9886	0.9262	0.9492	0.7377	0.1346	0.5276	0.9575	0.9554	0.9788	0.6000	0.6688
	1500	0.4042	0.5899	0.9887	0.9230	0.9379	0.7508	0.1738	0.5660	0.9579	0.9526	0.9720	0.6188	0.6848
	1600	0.3903	0.5633	0.9887	0.9209	0.9411	0.7436	0.1615	0.5375	0.9579	0.9507	0.9738	0.6098	0.6767
	1700	0.3060	0.4387	0.9887	0.9197	0.9600	0.7069	0.0946	0.4057	0.9579	0.9496	0.9846	0.5658	0.6364
21-May-10	0900	0.4450	0.6179	0.9876	0.9208	0.9322	0.7639	0.2157	0.5961	0.9553	0.9506	0.9685	0.6373	0.7006
	1000	0.4266	0.6050	0.9875	0.9228	0.9373	0.7586	0.1953	0.5821	0.9550	0.9524	0.9717	0.6284	0.6935
	1100	0.3602	0.5353	0.9887	0.9258	0.9547	0.7357	0.1332	0.5072	0.9579	0.9551	0.9818	0.5967	0.6662
	1200	0.3448	0.5434	0.9867	0.9288	0.9593	0.7342	0.1210	0.5159	0.9532	0.9577	0.9842	0.5936	0.6639
	1300	0.3197	0.5044	0.9886	0.9284	0.9622	0.7226	0.1029	0.4743	0.9577	0.9573	0.9857	0.5813	0.6520
	1400	0.3762	0.5577	0.9885	0.9245	0.9492	0.7417	0.1468	0.5312	0.9574	0.9539	0.9787	0.6047	0.6732
	1500	0.4244	0.6089	0.9887	0.9217	0.9362	0.7585	0.1941	0.5865	0.9579	0.9514	0.9709	0.6291	0.6938
	1600	0.4181	0.5914	0.9887	0.9200	0.9376	0.7542	0.1887	0.5678	0.9579	0.9499	0.9717	0.6241	0.6891
	1700	0.3411	0.4834	0.9887	0.9192	0.9546	0.7216	0.1204	0.4525	0.9579	0.9492	0.9816	0.5822	0.6519
21-Jun-10	0900	0.4368	0.6057	0.9878	0.9206	0.9344	0.7604	0.2096	0.5832	0.9556	0.9505	0.9697	0.6332	0.6968
	1000	0.4289	0.6030	0.9877	0.9221	0.9377	0.7590	0.1992	0.5801	0.9554	0.9518	0.9719	0.6295	0.6943
	1100	0.3717	0.5442	0.9887	0.9245	0.9519	0.7392	0.1429	0.5167	0.9579	0.9540	0.9802	0.6013	0.6702
	1200	0.3504	0.5356	0.9887	0.9274	0.9589	0.7346	0.1254	0.5075	0.9579	0.9565	0.9840	0.5945	0.6645
	1300	0.3355	0.5144	0.9887	0.9271	0.9611	0.7279	0.1141	0.4850	0.9579	0.9562	0.9852	0.5869	0.6574
	1400	0.3796	0.5589	0.9887	0.9235	0.9498	0.7429	0.1498	0.5324	0.9579	0.9531	0.9791	0.6061	0.6745
	1500	0.4349	0.6187	0.9887	0.9208	0.9352	0.7624	0.2045	0.5970	0.9579	0.9506	0.9704	0.6344	0.6984
	1600	0.4309	0.6069	0.9887	0.9196	0.9353	0.7594	0.2017	0.5844	0.9579	0.9495	0.9703	0.6311	0.6952
			0.5138	0.9887	0.9186			0.1370	0.4846					

Simulation Model Set No.: 7 Window size: Large Orientation: South Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{VS,US,R}$	$\mathbf{P}_{VS,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.4334	0.6033	0.9887	0.9207	0.9347	0.7594	0.2047	0.5805	0.9579	0.9505	0.9699	0.6315	0.6955
	1000	0.4277	0.6044	0.9876	0.9222	0.9370	0.7587	0.1976	0.5816	0.9553	0.9519	0.9714	0.6291	0.6939
	1100	0.3722	0.5464	0.9869	0.9251	0.9513	0.7392	0.1433	0.5191	0.9537	0.9544	0.9799	0.6010	0.6701
	1200	0.3298	0.5170	0.9887	0.9286	0.9617	0.7271	0.1099	0.4877	0.9579	0.9575	0.9855	0.5861	0.6566
	1300	0.3250	0.5151	0.9887	0.9288	0.9626	0.7259	0.1065	0.4857	0.9579	0.9577	0.9860	0.5847	0.6553
	1400	0.3681	0.5503	0.9887	0.9252	0.9516	0.7392	0.1397	0.5232	0.9578	0.9545	0.9801	0.6013	0.6702
	1500	0.4257	0.6123	0.9887	0.9216	0.9367	0.7595	0.1946	0.5900	0.9579	0.9513	0.9713	0.6299	0.6947
	1600	0.4303	0.6096	0.9887	0.9198	0.9345	0.7594	0.1999	0.5872	0.9579	0.9497	0.9699	0.6309	0.6952
	1700	0.3622	0.5142	0.9887	0.9193	0.9503	0.7308	0.1359	0.4849	0.9579	0.9492	0.9793	0.5928	0.6618
21-Aug-10	0900	0.4149	0.5844	0.9875	0.9215	0.9362	0.7519	0.1850	0.5601	0.9551	0.9513	0.9709	0.6209	0.6864
	1000	0.4138	0.5934	0.9875	0.9244	0.9375	0.7537	0.1829	0.5697	0.9550	0.9539	0.9718	0.6222	0.6879
	1100	0.3568	0.5402	0.9869	0.9266	0.9520	0.7346	0.1305	0.5125	0.9537	0.9558	0.9803	0.5956	0.6651
	1200	0.3064	0.4870	0.9860	0.9293	0.9640	0.7165	0.0941	0.4560	0.9516	0.9581	0.9867	0.5742	0.6453
	1300	0.3076	0.4895	0.9887	0.9289	0.9630	0.7174	0.0950	0.4586	0.9579	0.9578	0.9861	0.5761	0.6467
	1400	0.3566	0.5482	0.9887	0.9264	0.9507	0.7358	0.1302	0.5210	0.9579	0.9556	0.9796	0.5976	0.6667
	1500	0.4048	0.5940	0.9887	0.9232	0.9376	0.7516	0.1740	0.5703	0.9579	0.9527	0.9718	0.6196	0.6856
	1600	0.3997	0.5757	0.9887	0.9207	0.9393	0.7475	0.1699	0.5508	0.9579	0.9505	0.9728	0.6148	0.6812
	1700	0.3209	0.4598	0.9887	0.9194	0.9570	0.7133	0.1046	0.4277	0.9579	0.9494	0.9830	0.5728	0.6430
21-Sep-10	0900	0.3904	0.5651	0.9872	0.9239	0.9199	0.7381	0.1603	0.5393	0.9545	0.9534	0.9520	0.6054	0.6717
	1000	0.3908	0.5760	0.9872	0.9255	0.9384	0.7453	0.1601	0.5509	0.9544	0.9548	0.9723	0.6111	0.6782
	1100	0.3511	0.5333	0.9887	0.9269	0.9491	0.7315	0.1259	0.5050	0.9579	0.9561	0.9787	0.5933	0.6624
	1200	0.3118	0.4933	0.9887	0.9282	0.9584	0.7177	0.0974	0.4626	0.9579	0.9572	0.9838	0.5771	0.6474
	1300	0.3241	0.5060	0.9863	0.9275	0.9557	0.7217	0.1058	0.4760	0.9523	0.9566	0.9824	0.5809	0.6513
	1400	0.3621	0.5559	0.9887	0.9259	0.9449	0.7368	0.1348	0.5293	0.9579	0.9552	0.9763	0.6000	0.6684
	1500	0.3897	0.5808	0.9887	0.9237	0.9367	0.7453	0.1590	0.5560	0.9579	0.9532	0.9713	0.6119	0.6786
	1600	0.3564	0.5281	0.9887	0.9220	0.9442	0.7302	0.1303	0.4995	0.9579	0.9517	0.9758	0.5929	0.6615
	1700	0.2462	0.3545	0.9887	0.9205	0.9679	0.6802	0.0594	0.3192	0.9579	0.9503	0.9886	0.5396	0.6099
21-Oct-10	0900	0.3539	0.5163	0.9867	0.9241	0.9439	0.7274	0.1282	0.4869	0.9532	0.9536	0.9757	0.5893	0.6583
	1000	0.3720	0.5445	0.9869	0.9250	0.9403	0.7358	0.1432	0.5170	0.9537	0.9544	0.9735	0.5994	0.6676
	1100	0.3513	0.5305	0.9866	0.9267	0.9456	0.7298	0.1260	0.5021	0.9531	0.9559	0.9767	0.5915	0.6606
	1200	0.3299	0.5151	0.9887	0.9267	0.9507	0.7236	0.1099	0.4857	0.9579	0.9559	0.9796	0.5845	0.6541
	1300	0.3389	0.5228	0.9865	0.9263	0.9482	0.7260	0.1165	0.4939	0.9528	0.9556	0.9782	0.5870	0.6565
	1400	0.3590	0.5429	0.9887	0.9249	0.9421	0.7329	0.1323	0.5153	0.9579	0.9543	0.9746	0.5963	0.6646
	1500	0.3501	0.5295	0.9887	0.9237	0.9426	0.7285	0.1252	0.5011	0.9579	0.9532	0.9749	0.5914	0.6600
	1600	0.2900	0.4321	0.9887	0.9219	0.9570	0.7011	0.0835	0.3985	0.9579	0.9516	0.9830	0.5606	0.6309
	1700	0.1687	0.2300	0.9887	0.9203	0.9670	0.6398	0.0293	0.1986	0.9579	0.9501	0.9805	0.5071	0.5735
21-Nov-10	0900	0.3048	0.4424	0.9859	0.9232	0.9529	0.7051	0.0928	0.4092	0.9516	0.9528	0.9808	0.5642	0.6347
	1000	0.3394	0.4935	0.9865	0.9237	0.9469	0.7207	0.1171	0.4630	0.9529	0.9532	0.9774	0.5815	0.6511
	1100	0.3341	0.5005	0.9887	0.9249	0.9472	0.7211	0.1131	0.4704	0.9579	0.9543	0.9776	0.5825	0.6518
	1200	0.3318	0.4991	0.9868	0.9252	0.9486	0.7204	0.1114	0.4689	0.9535	0.9545	0.9784	0.5810	0.6507
	1300	0.3320	0.5026	0.9868	0.9251	0.9486	0.7210	0.1116	0.4726	0.9535	0.9545	0.9784	0.5816	0.6513
	1400	0.3331	0.4965	0.9886	0.9236	0.9478	0.7202	0.1124	0.4662	0.9575	0.9531	0.9779	0.5814	0.6508
	1500	0.3080	0.4623	0.9887	0.9225	0.9514	0.7091	0.0950	0.4301	0.9579	0.9521	0.9800	0.5695	0.6393
	1600	0.2453	0.3573	0.9887	0.9211	0.9650	0.6796	0.0592	0.3220	0.9579	0.9509	0.9870	0.5398	0.6097
	1700	0.1210	0.1569	0.9885	0.9219	0.9848	0.6208	0.0159	0.1300	0.9572	0.9516	0.9956	0.4935	0.5572
21-Dec-10	0900	0.2733	0.3924	0.9850	0.9233	0.9590	0.6905	0.0738	0.3577	0.9496	0.9529	0.9840	0.5490	0.6197
10	1000	0.3197	0.4652	0.9882	0.9235	0.9506	0.7124	0.1028	0.4331	0.9567	0.9531	0.9795	0.5726	0.6425
	1100	0.3277	0.4863	0.9869	0.9242	0.9481	0.7170	0.1025	0.4554	0.9536	0.9536	0.9781	0.5775	0.6473
	1200	0.3259	0.4913	0.9887	0.9251	0.9492	0.7170	0.1003	0.4607	0.9577	0.9545	0.9788	0.5790	0.6485
	1300	0.3259	0.4913	0.9883	0.9231	0.9492	0.7181	0.1071	0.4607	0.9569	0.9539	0.9787	0.5788	0.6484
	1400	0.3251	0.4914	0.9868	0.9244	0.9491	0.7163	0.1072	0.4527	0.9535	0.9534	0.9788	0.5765	0.6464
	1500	0.3231	0.4658	0.9881	0.9239	0.9494	0.7069	0.1000	0.4327	0.9566	0.9526	0.9807	0.5668	0.6369
	1600	0.3047	0.4518	0.9887	0.9231	0.9527	0.6784	0.0927	0.4190	0.9500	0.9526	0.9869	0.5388	0.6086
	1700	0.1285	0.1684	0.9873	0.9216	0.9834	0.6240	0.0178	0.1404	0.9548	0.9513	0.9951	0.4953	0.5597

Simulation Model Set No.: 8 Window size: Large Orientation: West Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{VX,UD,R}$	$\mathbf{P}_{V \boxtimes U \boxtimes R}$	$\mathrm{P}_{VX,PG,R}$	P_{FS}	$P_{ES,BD,R}$	$P_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$P_{EX,PG,R}$	P_{ES}	P_{DP}
21-Jan-10	0900	0.3851	0.5238	0.9887	0.8943	0.9550	0.7366	0.1666	0.4959	0.9579	0.9246	0.9813	0.6033	0.6700
	1000	0.4685	0.6285	0.9887	0.8947	0.9388	0.7706	0.2541	0.6082	0.9579	0.9250	0.9720	0.6514	0.7110
	1100	0.4848	0.6589	0.9881	0.9005	0.9339	0.7789	0.2714	0.6410	0.9563	0.9310	0.9691	0.6628	0.7208
	1200	0.4614	0.6363	0.9887	0.9006	0.9375	0.7703	0.2384	0.6163	0.9579	0.9311	0.9716	0.6478	0.7091
	1300	0.4359	0.6316	0.9865	0.9087	0.9427	0.7650	0.2071	0.6111	0.9539	0.9390	0.9748	0.6365	0.7007
	1400	0.3967	0.5744	0.9874	0.9087	0.9466	0.7468	0.1664	0.5493	0.9547	0.9392	0.9772	0.6124	0.6796
	1500	0.3522	0.5128	0.9871	0.9084	0.9544	0.7275	0.1274	0.4834	0.9541	0.9389	0.9816	0.5882	0.6578
	1600	0.2791	0.4080	0.9887	0.9070	0.9667	0.6953	0.0771	0.3736	0.9579	0.9375	0.9880	0.5537	0.6245
	1700	0.1713	0.2327	0.9887	0.9069	0.9822	0.6436	0.0296	0.1998	0.9579	0.9374	0.9948	0.5087	0.5761
21-Feb-10	0900	0.4450	0.6006	0.9887	0.8936	0.9454	0.7617	0.2225	0.5778	0.9579	0.9239	0.9761	0.6358	0.6987
	1000	0.5049	0.6708	0.9887	0.8940	0.9317	0.7847	0.2955	0.6538	0.9579	0.9243	0.9678	0.6728	0.7288
	1100	0.5007	0.6729	0.9887	0.8964	0.9311	0.7841	0.2885	0.6561	0.9579	0.9268	0.9675	0.6709	0.7275
	1200	0.4641	0.6409	0.9887	0.9009	0.9386	0.7721	0.2396	0.6211	0.9579	0.9314	0.9724	0.6492	0.7107
	1300	0.4295	0.6255	0.9887	0.9093	0.9447	0.7633	0.1985	0.6043	0.9578	0.9396	0.9761	0.6334	0.6984
	1400	0.3965	0.5834	0.9887	0.9100	0.9464	0.7486	0.1654	0.5589	0.9577	0.9404	0.9771	0.6144	0.6815
	1500	0.3697	0.5430	0.9871	0.9094	0.9513	0.7362	0.1415	0.5155	0.9541	0.9398	0.9799	0.5983	0.6673
	1600	0.3108	0.4605	0.9887	0.9087	0.9609	0.7106	0.0967	0.4282	0.9579	0.9392	0.9851	0.5695	0.6400
	1700	0.2116	0.3037	0.9887	0.9081	0.9766	0.6640	0.0440	0.2685	0.9579	0.9386	0.9925	0.5251	0.5946
21-Mar-10	0900	0.4888	0.6506	0.9881	0.8936	0.9353	0.7781	0.2800	0.6322	0.9563	0.9238	0.9697	0.6637	0.7209
	1000	0.5194	0.6872	0.9887	0.8939	0.9275	0.7900	0.3180	0.6717	0.9579	0.9242	0.9650	0.6832	0.7366
	1100	0.4918	0.6636	0.9887	0.8968	0.9342	0.7812	0.2759	0.6458	0.9579	0.9272	0.9695	0.6652	0.7232
	1200	0.4254	0.6014	0.9887	0.9029	0.9479	0.7586	0.1949	0.5783	0.9579	0.9335	0.9780	0.6275	0.6930
	1300	0.3824	0.5750	0.9887	0.9123	0.9547	0.7462	0.1524	0.5498	0.9579	0.9426	0.9818	0.6094	0.6778
	1400	0.3713	0.5550	0.9887	0.9122	0.9532	0.7397	0.1426	0.5283	0.9579	0.9425	0.9810	0.6021	0.6709
	1500	0.3590	0.5381	0.9887	0.9105	0.9533	0.7336	0.1324	0.5103	0.9579	0.9409	0.9810	0.5953	0.6645
	1600	0.3208	0.4808	0.9887	0.9091	0.9593	0.7160	0.1035	0.4495	0.9579	0.9395	0.9843	0.5753	0.6457
	1700	0.2376	0.3459	0.9887	0.9083	0.9729	0.6765	0.0553	0.3104	0.9579	0.9387	0.9909	0.5360	0.6062
21-Apr-10	0900	0.5104	0.6781	0.9887	0.8937	0.9307	0.7870	0.3054	0.6620	0.9579	0.9240	0.9672	0.6775	0.7323
	1000	0.5158	0.6856	0.9885	0.8939	0.9296	0.7893	0.3088	0.6698	0.9574	0.9242	0.9666	0.6798	0.7346
	1100	0.4487	0.6195	0.9887	0.8985	0.9452	0.7662	0.2204	0.5978	0.9579	0.9290	0.9764	0.6390	0.7026
	1200	0.3696	0.5422	0.9887	0.9085	0.9600	0.7386	0.1410	0.5146	0.9579	0.9389	0.9846	0.5996	0.6691
	1300	0.3276	0.5138	0.9887	0.9158	0.9650	0.7255	0.1086	0.4843	0.9579	0.9459	0.9871	0.5842	0.6548
	1400	0.3444	0.5292	0.9887	0.9143	0.9592	0.7305	0.1207	0.5006	0.9579	0.9445	0.9842	0.5906	0.6605
	1500	0.3532	0.5342	0.9887	0.9114	0.9555	0.7322	0.1276	0.5061	0.9579	0.9418	0.9822	0.5932	0.6627
	1600	0.3272	0.4912	0.9866	0.9103	0.9590	0.7190	0.1080	0.4604	0.9530	0.9407	0.9841	0.5779	0.6484
	1700	0.2509	0.3728	0.9887	0.9088	0.9713	0.6839	0.0617	0.3376	0.9579	0.9393	0.9902	0.5427	0.6133
21-May-10	0900	0.5418	0.7126	0.9887	0.8924	0.9241	0.7987	0.3432	0.6991	0.9579	0.9226	0.9630	0.6962	0.7474
	1000	0.5230	0.6951	0.9887	0.8934	0.9277	0.7922	0.3149	0.6800	0.9579	0.9237	0.9655	0.6836	0.7379
	1100	0.4371	0.6063	0.9887	0.8986	0.9479	0.7619	0.2073	0.5835	0.9579	0.9291	0.9779	0.6323	0.6971
	1200	0.3885	0.5790	0.9886	0.9114	0.9573	0.7490	0.1580	0.5541	0.9577	0.9418	0.9832	0.6122	0.6806
	1300	0.3150	0.5124	0.9887	0.9185	0.9672	0.7229	0.1003	0.4829	0.9579	0.9484	0.9882	0.5815	0.6522
	1400	0.3337	0.5173	0.9866	0.9143	0.9613	0.7260	0.1128	0.4880	0.9530	0.9445	0.9853	0.5849	0.6554
	1500	0.3505	0.5354	0.9887	0.9119	0.9558	0.7318	0.1255	0.5073	0.9579	0.9423	0.9824	0.5928	0.6623
	1600	0.3336	0.5044	0.9866	0.9099	0.9579	0.7224	0.1127	0.4744	0.9531	0.9403	0.9835	0.5818	0.6521
	1700	0.2688	0.4017	0.9887	0.9086	0.9684	0.6923	0.0712	0.3672	0.9579	0.9390	0.9888	0.5508	0.6216
21-Jun-10	0900	0.5165	0.6860	0.9887	0.8940	0.9295	0.7896	0.3127	0.6704	0.9579	0.9243	0.9664	0.6814	0.7355
	1000	0.5070	0.6788	0.9887	0.8947	0.9311	0.7865	0.2966	0.6624	0.9579	0.9251	0.9676	0.6747	0.7306
	1100	0.4347	0.6053	0.9887	0.8988	0.9479	0.7611	0.2044	0.5825	0.9579	0.9293	0.9780	0.6311	0.6961
	1200	0.3816	0.5670	0.9887	0.9102	0.9584	0.7455	0.1515	0.5411	0.9579	0.9406	0.9838	0.6077	0.6766
	1300	0.3215	0.5179	0.9887	0.9180	0.9669	0.7253	0.1044	0.4887	0.9579	0.9480	0.9881	0.5839	0.6546
	1400	0.3296	0.5156	0.9887	0.9149	0.9623	0.7254	0.1099	0.4863	0.9579	0.9451	0.9858	0.5847	0.6550
	1500	0.3515	0.5396	0.9887	0.9127	0.9554	0.7328	0.1262	0.5118	0.9579	0.9430	0.9822	0.5939	0.6633
	1600	0.3380	0.5163	0.9887	0.9114	0.9565	0.7256	0.1158	0.4870	0.9579	0.9418	0.9828	0.5860	0.6558
		0.2774	0.4249											

Simulation Model Set No.: 8 Window size: Large Orientation: West Existence of obstruction: Yes

Date	Time	$\mathbf{P}_{FS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{VS,US,R}$	$\mathbf{P}_{FS,PG,R}$	P_{ν_S}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.5220	0.6916	0.9887	0.8936	0.9288	0.7916	0.3180	0.6764	0.9579	0.9239	0.9661	0.6842	0.7379
	1000	0.5163	0.6880	0.9887	0.8940	0.9294	0.7898	0.3087	0.6724	0.9579	0.9243	0.9665	0.6803	0.7351
	1100	0.4477	0.6169	0.9887	0.8982	0.9461	0.7658	0.2189	0.5950	0.9579	0.9286	0.9769	0.6381	0.7019
	1200	0.3769	0.5569	0.9887	0.9094	0.9594	0.7428	0.1473	0.5303	0.9579	0.9398	0.9843	0.6045	0.6737
	1300	0.3258	0.5238	0.9887	0.9183	0.9663	0.7272	0.1072	0.4950	0.9579	0.9482	0.9878	0.5859	0.6565
	1400	0.3281	0.5125	0.9887	0.9159	0.9629	0.7248	0.1087	0.4829	0.9579	0.9460	0.9861	0.5838	0.6543
	1500	0.3487	0.5379	0.9887	0.9124	0.9555	0.7317	0.1240	0.5099	0.9579	0.9427	0.9823	0.5928	0.6623
	1600	0.3417	0.5185	0.9866	0.9117	0.9561	0.7265	0.1187	0.4894	0.9530	0.9421	0.9826	0.5864	0.6565
	1700	0.2815	0.4269	0.9887	0.9094	0.9663	0.6992	0.0784	0.3932	0.9579	0.9399	0.9878	0.5576	0.6284
21-Aug-10	0900	0.5184	0.6874	0.9887	0.8933	0.9296	0.7902	0.3132	0.6719	0.9579	0.9235	0.9666	0.6818	0.7360
	1000	0.5221	0.6929	0.9887	0.8937	0.9281	0.7917	0.3166	0.6777	0.9579	0.9239	0.9657	0.6838	0.7378
	1100	0.4560	0.6256	0.9886	0.8976	0.9437	0.7686	0.2288	0.6045	0.9575	0.9281	0.9755	0.6427	0.7056
	1200	0.3718	0.5452	0.9887	0.9077	0.9594	0.7394	0.1429	0.5177	0.9579	0.9382	0.9843	0.6006	0.6700
	1300	0.3287	0.6629	0.9887	0.8779	0.9647	0.7450	0.1094	0.6451	0.9579	0.9068	0.9870	0.6079	0.6764
	1400	0.3423	0.5244	0.9867	0.9139	0.9603	0.7291	0.1192	0.4956	0.9532	0.9441	0.9848	0.5883	0.6587
	1500	0.3538	0.5363	0.9887	0.9119	0.9555	0.7327	0.1280	0.5082	0.9579	0.9422	0.9823	0.5938	0.6633
	1600	0.3311	0.4997	0.9887	0.9105	0.9582	0.7216	0.1108	0.4695	0.9579	0.9409	0.9837	0.5813	0.6515
	1700	0.2599	0.3884	0.9887	0.9088	0.9695	0.6882	0.0664	0.3536	0.9579	0.9393	0.9893	0.5469	0.6176
1-Sep-10	0900	0.5169	0.6840	0.9887	0.8929	0.9300	0.7894	0.3107	0.6681	0.9579	0.9231	0.9668	0.6802	0.7348
	1000	0.5266	0.6977	0.9887	0.8941	0.9268	0.7933	0.3213	0.6829	0.9579	0.9244	0.9649	0.6862	0.7398
	1100	0.4786	0.6525	0.9887	0.8973	0.9376	0.7770	0.2557	0.6337	0.9579	0.9278	0.9718	0.6565	0.7168
	1200	0.4064	0.5847	0.9887	0.9059	0.9515	0.7523	0.1748	0.5601	0.9579	0.9364	0.9801	0.6180	0.6852
	1300	0.3711	0.5605	0.9887	0.9128	0.9550	0.7411	0.1423	0.5341	0.9579	0.9432	0.9820	0.6033	0.6722
	1400	0.3707	0.5559	0.9887	0.9120	0.9529	0.7395	0.1419	0.5293	0.9579	0.9424	0.9808	0.6020	0.6708
	1500	0.3595	0.5384	0.9868	0.9115	0.9532	0.7335	0.1327	0.5105	0.9534	0.9419	0.9810	0.5947	0.6641
	1600 1700	0.3091 0.2093	0.4658 0.3017	0.9887 0.9887	0.9099	0.9610 0.9766	0.7111 0.6632	0.0955 0.0429	0.4336 0.2665	0.9578 0.9579	0.9404	0.9851 0.9925	0.5701 0.5245	0.6406 0.5938
11.0 - 10	0900		0.6682		0.8929	0.9338	0.7844				0.9232	0.9693		
21-Oct-10	1000	0.5032	0.0082	0.9887	0.8929	0.9338	0.7943	0.2882	0.6507	0.9579	0.9232		0.6699	0.7271
								0.3252	0.6866	0.9563		0.9641	0.6877	0.7410
	1100	0.4966	0.6726	0.9887	0.8974	0.9321	0.7834	0.2777	0.6554	0.9579	0.9278	0.9684	0.6673	0.7253
	1200	0.4496	0.6327	0.9876	0.9046		0.7679	0.2200	0.6121	0.9553	0.9351	0.9738	0.6409	0.7044
	1300 1400	0.4146 0.3898	0.6018 0.5722	0.9887 0.9872	0.9099	0.9449 0.9481	0.7558 0.7453	0.1828 0.1590	0.5786 0.5467	0.9579 0.9543	0.9404	0.9763 0.9781	0.6237 0.6096	0.6898 0.6775
	1500	0.3476	0.5722	0.9872	0.9104	0.9481	0.7453	0.1390	0.4846	0.9543	0.9408	0.9781	0.5878	0.6574
			0.3140	0.9887		0.9543		0.1232			0.9406			
	1600	0.2698			0.9087		0.6922	0.0717	0.3653	0.9579 0.9579		0.9886	0.5507	0.6214
	1700	0.1504	0.2003	0.9887	0.9079	0.9849	0.6339		0.1693		0.9384	0.9958	0.5015	0.5677
21-Nov-10	0900	0.4644	0.6204	0.9887	0.8931	0.9393	0.7682	0.2495	0.5991	0.9578	0.9233	0.9720	0.6480	0.7081
	1000	0.5166	0.6834	0.9887	0.8933	0.9271	0.7884	0.3135	0.6674	0.9579	0.9235	0.9646	0.6807	0.7346
	1100	0.5047	0.6778	0.9887	0.8959	0.9291	0.7853	0.2930	0.6612	0.9579	0.9262	0.9663	0.6731	0.7292
	1200	0.4553	0.6335	0.9886	0.9026	0.9374	0.7685	0.2276	0.6130	0.9575	0.9332	0.9717	0.6436	0.7060
	1300	0.4224	0.6433	0.9877	0.9120	0.8441	0.7363	0.1915	0.6237	0.9554	0.9421	0.8655	0.6141	0.6752
	1400	0.3781	0.5501	0.9887	0.9083	0.9487	0.7389	0.1492	0.5232	0.9579	0.9388	0.9784	0.6027	0.6708
	1500	0.3257	0.4761	0.9887	0.9076	0.9589	0.7162	0.1071	0.4445	0.9579	0.9381	0.9841	0.5756	0.6459
	1600	0.2432	0.3480	0.9882	0.9063	0.9731	0.6780	0.0583	0.3126	0.9567	0.9368	0.9910	0.5369	0.6075
	1700	0.1172	0.1474	0.9885	0.9056	0.9886	0.6174	0.0151	0.1213	0.9572	0.9361	0.9971	0.4904	0.5539
1-Dec-10	0900	0.4281	0.5746	0.9887	0.8926	0.9466	0.7534	0.2112	0.5498	0.9579	0.9228	0.9763	0.6270	0.6902
	1000	0.5014	0.6642	0.9887	0.8927	0.9304	0.7823	0.2955	0.6466	0.9579	0.9229	0.9665	0.6712	0.7267
	1100	0.5022	0.6736	0.9887	0.8956	0.9296	0.7841	0.2910	0.6567	0.9579	0.9259	0.9665	0.6716	0.7278
	1200	0.4642	0.6412	0.9887	0.9012	0.9366	0.7717	0.2382	0.6214	0.9579	0.9317	0.9712	0.6486	0.7101
	1300	0.4423	0.6594	0.9865	0.9118	0.9451	0.7721	0.2134	0.6410	0.9534	0.9418	0.9761	0.6442	0.7082
	1400	0.3839	0.5555	0.9875	0.9079	0.9477	0.7407	0.1542	0.5289	0.9550	0.9384	0.9779	0.6047	0.6727
	1500	0.3306	0.4810	0.9882	0.9076	0.9579	0.7179	0.1105	0.4496	0.9567	0.9381	0.9835	0.5773	0.6476
	1600	0.2484	0.3559	0.9887	0.9072	0.9718	0.6805	0.0608	0.3206	0.9579	0.9377	0.9904	0.5394	0.6099
	1700	0.1266	0.1669	0.9884	0.9070	0.9873	0.6228	0.0173	0.1391	0.9570	0.9374	0.9966	0.4943	0.5585

Simulation Model Set No.: 9 Window size: Large Orientation: North Existence of obstruction: No

100	P_{ES} P_{DP}	PG,R	R PES	$P_{EX,UX,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,BD,R}$	P_{FS}	$\mathbf{P}_{VX,PG,R}$	$\mathbf{P}_{FX,UX,R}$	$\mathbf{P}_{VX,UD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{IX,BD,R}$	Time	Date
1100	0.6721 0.71														21-Jan-10
1200	0.7105 0.74														
1300	0.7222 0.74														
1400	0.7252 0.75														
1500	0.7304 0.75														
1600	0.7382 0.75												0.6889		
21-Feb-10	0.7375 0.75	890	7 0.8	0.9387	0.6789	0.8420	0.5849	0.7803	0.8327	0.9083	0.6927	0.8442	0.6861	1500	
21-Feb-10	0.7077 0.73														
1000	0.6105 0.66	617	5 0.9	0.9365	0.6811	0.6399	0.2821	0.7274	0.9219	0.9060	0.6960	0.6583	0.4997	1700	
1100	0.7055 0.74														21-Feb-10
1200	0.7304 0.75														
1300	0.7305 0.75												0.6696		
1400 0.7048 0.8657 0.6713 0.9124 0.8080 0.7783 0.6522 0.8692 0.6643 0.9427 0.8655 0.7614 0.9105 0.8050 0.8050 0.7804 0.8522 0.8692 0.8691 0.8050 0.8051 0.8050 0.8051 0.8050 0.8651 0.9054 0.8051 0.8050 0.7809 0.6107 0.8453 0.6678 0.9389 0.8874 0.7514 0.8050 0.7542 0.9070 0.8896 0.75799 0.4260 0.7444 0.6771 0.9375 0.9383 0.6051 0.8050 0.7582 0.9060 0.8087 0.7579 0.4260 0.7444 0.6771 0.9375 0.9383 0.6051 0.9050 0.8087 0.7582 0.9069 0.8087 0.7852 0.8844 0.8555 0.7055 0.9404 0.8452 0.7582 0.9060 0.8087 0.7879 0.7822 0.5884 0.8855 0.7055 0.9404 0.8452 0.7582 0.9060 0.8087 0.7783 0.5555 0.8734 0.8505 0.9464 0.8452 0.7582 0.9060 0.8087 0.7783 0.5555 0.8734 0.8505 0.9464 0.8452 0.7582 0.9060 0.9872 0.7783 0.5555 0.8734 0.8505 0.9464 0.8452 0.7582 0.9060 0.9872 0.9782 0.9854 0.8850 0.4644 0.9468 0.8763 0.9061 0.9464 0.9468 0.	0.7229 0.74														
1500 0.7227 0.8697 0.6741 0.9105 0.8505 0.7830 0.6522 0.8692 0.6661 0.9409 0.8627 0.7510 0.7510 0.0409 0.8627 0.7510 0.0409 0.8627 0.7510 0.0409 0.8627 0.7510 0.0409 0.8627 0.7510 0.0506 0.7542 0.6907 0.9070 0.8896 0.7579 0.4260 0.7444 0.6771 0.9375 0.9383 0.6010 0.0682 0.06678 0.9805 0.7582 0.9089 0.0610 0.7844 0.6771 0.9375 0.9383 0.6010 0.0682 0.06678 0.9805 0.7582 0.9069 0.88074 0.7587 0.4260 0.7444 0.6771 0.9375 0.9383 0.6010 0.0682 0.06678 0.9805 0.9805 0.06678 0.9805 0.06	0.7273 0.74				0.6644	0.8544			0.8180	0.9133		0.8558			
1600	0.7467 0.76														
21-Mar-10	0.7586 0.77			0.9409		0.8692			0.8050		0.6741	0.8697			
21-Mar-10	0.7446 0.76														
1000	0.6737 0.71	383	5 0.9	0.9375	0.6771	0.7444	0.4260	0.7579	0.8896	0.9070	0.6907	0.7542	0.5960	1700	
1100	0.7354 0.76														21-Mar-10
1200	0.7438 0.76														
1300	0.7295 0.75	576	9 0.8	0.9439	0.6896	0.8734	0.5553	0.7753	0.8000	0.9136	0.7090	0.8736	0.6701	1100	
1400	0.7074 0.73	763	8 0.8	0.9468	0.6541	0.8509	0.5128	0.7618	0.8191	0.9167	0.6556	0.8526	0.6464	1200	
1500	0.7127 0.73	767	8 0.8	0.9478	0.6350	0.8491	0.5393	0.7603	0.8194	0.9178	0.6262	0.8508	0.6613	1300	
1600	0.7479 0.76	570	8 0.8	0.9448	0.6474	0.8720	0.6328	0.7745	0.7994	0.9146	0.6454	0.8722	0.7122	1400	
1700	0.7680 0.77	433	0.8	0.9420	0.6464	0.8850	0.6921	0.7805	0.7860	0.9116	0.6440	0.8846	0.7445	1500	
21-Apr-10 0900 0.7078 0.8974 0.7450 0.9082 0.7705 0.7865 0.6248 0.8985 0.7145 0.9387 0.8270 0.7060 0.8998 0.7235 0.9120 0.7651 0.7813 0.6214 0.9001 0.6993 0.4223 0.8214 0.7061 0.7813 0.6214 0.8901 0.6993 0.4223 0.8214 0.7061 0.7813 0.6214 0.8901 0.6993 0.4223 0.8214 0.7061 0.7813 0.6214 0.8901 0.6564 0.9478 0.8214 0.7061 0.7813 0.8214 0.7814 0.7814 0.7814 0.6011 0.6319 0.9414 0.8164 0.7814	0.7660 0.77	616	2 0.8	0.9392	0.6581	0.8726	0.6771	0.7844	0.8040	0.9087	0.6621	0.8728	0.7362	1600	
1000 0,7060 0,8989 0,7235 0,9120 0,7651 0,7813 0,6214 0,900 0,6093 0,9423 0,8214 0,7 1100 0,6623 0,8750 0,6695 0,9177 0,7942 0,7664 0,4812 0,8749 0,6664 0,9478 0,8210 0,7 1200 0,6163 0,8462 0,5718 0,9231 0,8184 0,7385 0,4608 0,8441 0,6001 0,9526 0,8758 0,66 1300 0,6457 0,8497 0,5561 0,9224 0,8184 0,7429 0,5114 0,879 0,5901 0,9921 0,8730 0,66 1400 0,7268 0,8820 0,0012 0,9174 0,8184 0,7679 0,6598 0,8834 0,6188 0,9475 0,8409 1,700 0,7699 0,7699 0,9068 0,8814 0,7679 0,6598 0,8834 0,6188 0,9475 0,8409 0,770 0,770 0,7802 0,7270 0,8919 0,6642 0,9399 0,8144 0,710 0,700 0,6917 0,8355 0,6599 0,9068 0,8111 0,7766 0,5965 0,8326 0,6567 0,9373 0,8971 0,7 121-May-10 0,000 0,7339 0,9156 0,7590 0,9082 0,7449 0,7915 0,6729 0,9157 0,7240 0,9386 0,7991 0,7 1100 0,6737 0,8829 0,6437 0,9198 0,7832 0,7603 0,5502 0,8833 0,6462 0,9496 0,8407 0,7 1100 0,6673 0,8829 0,6437 0,9198 0,7832 0,7603 0,5502 0,8833 0,6462 0,9496 0,8407 0,7 1200 0,6498 0,8814 0,4010 0,9267 0,7755 0,7266 0,5187 0,8418 0,8504 0,7449 0,7915 0,7064 0,9484 0,8910 0,7865 0,8706 0,7769 0,7766 0,7765 0,7664 0,9657 0,9434 0,8014 0,706 0	0.7137 0.74	174	0 0.9	0.9370	0.6729	0.7996	0.5268	0.7727	0.8640	0.9065	0.6845	0.8049	0.6539	1700	
1100	0.7571 0.77	270	7 0.8	0.9387	0.7145	0.8985	0.6248	0.7865	0.7705	0.9082	0.7450	0.8974	0.7078	0900	21-Apr-10
1200	0.7525 0.76	214	3 0.8	0.9423	0.6993	0.9001	0.6214	0.7813	0.7651	0.9120	0.7235	0.8989	0.7060	1000	
1300	0.7176 0.74	520	8 0.8	0.9478	0.6564	0.8749	0.5412	0.7634	0.7942	0.9177	0.6595	0.8750	0.6623	1100	
1400 0.7268 0.8830 0.6012 0.9174 0.7834 0.7679 0.6598 0.8834 0.6188 0.6184 0.7165 0.7	0.6777 0.70	758	6 0.8	0.9526	0.6001	0.8441	0.4608	0.7385	0.8184	0.9231	0.5718	0.8462	0.6163	1200	
1500 0.7695 0.9001 0.6217 0.9130 0.7605 0.7785 0.7368 0.9014 0.6191 0.9434 0.8164 0.7766 0.9016 0.7785 0.7862 0.7270 0.8019 0.6542 0.9399 0.8344 0.7765 0.7862 0.7270 0.8019 0.6542 0.9399 0.8344 0.7765 0.7862 0.7270 0.8019 0.6542 0.9399 0.8344 0.7076 0.7862 0.7270 0.8019 0.6542 0.9393 0.8971 0.7081 0.7861 0.7862 0.7	0.6935 0.71	730	1 0.8	0.9521	0.5901	0.8479	0.5114	0.7429	0.8154	0.9224	0.5561	0.8497	0.6457	1300	
1600 0.7640 0.8911 0.6561 0.9094 0.7775 0.7862 0.7270 0.8919 0.6542 0.3999 0.8344 0.7	0.7510 0.75	409	5 0.8	0.9475	0.6188	0.8834	0.6598	0.7679	0.7834	0.9174	0.6012	0.8830	0.7268	1400	
21-May-10	0.7788 0.77		4 0.8	0.9434	0.6319	0.9014	0.7368		0.7605	0.9130	0.6217	0.9001	0.7695	1500	
21-May-10 0900 0.7339 0.9156 0.7590 0.9082 0.7449 0.7915 0.6729 0.9175 0.7240 0.9386 0.7991 0.7910 0.000 0.7218 0.9199 0.7185 0.9131 0.7468 0.7814 0.6506 0.9127 0.6957 0.9434 0.8014 0.7910 0.7916 0.6729 0.9175 0.7240 0.9386 0.7991 0.7918 0.7918 0.7919 0.7832 0.7831 0.7832 0.	0.7811 0.78	344	9 0.8	0.9399	0.6542	0.8919	0.7270	0.7862	0.7775	0.9094	0.6561	0.8911	0.7640	1600	
1000 0.7218 0.9100 0.7185 0.9131 0.7468 0.7814 0.6506 0.9127 0.6957 0.9434 0.8014 0.7814 0.7	0.7368 0.75	971	3 0.8	0.9373	0.6567	0.8326	0.5965	0.7766	0.8411	0.9068	0.6599	0.8355	0.6917	1700	
1100	0.7740 0.78	991	6 0.7	0.9386	0.7240	0.9175	0.6729	0.7915	0.7449	0.9082	0.7590	0.9156	0.7339	0900	21-May-10
1200	0.7606 0.77	014	4 0.8	0.9434	0.6957	0.9127	0.6506	0.7814	0.7468	0.9131	0.7185	0.9109	0.7218	1000	
1300	0.7182 0.73														
1300	0.6865 0.70	322	8.08	0.9558	0.5485	0.8817	0.5187	0.7266	0.7753	0.9267	0.4910	0.8814	0.6498	1200	
1400	0.6941 0.71			0.9544	0.5593	0.8650	0.5315			0.9251	0.5079	0.8657	0.6570	1300	
1500 0.7876 0.9108 0.6157 0.9135 0.7433 0.7791 0.7684 0.9126 0.6281 0.9438 0.7972 0.7500 0.7500 0.7500 0.7660 0.7	0.7552 0.76														
1600 0.7828 0.9905 0.6413 0.9907 0.7806 0.7860 0.7860 0.7649 0.9964 0.6446 0.9401 0.8133 0.7	0.7876 0.78														
1700 0.7271 0.8620 0.6540 0.9066 0.8140 0.7814 0.6611 0.8609 0.6528 0.9711 0.8704 0.7211 0.7211 0.7211 0.7211 0.7814 0.7814 0.6745 0.9139 0.7145 0.9388 0.7977 0.7071 0.7071 0.7072 0.7073 0.9131 0.7411 0.7799 0.6642 0.9138 0.6838 0.9435 0.7949 0.7073 0.7074 0.7072 0.7627 0.8515 0.8918 0.6555 0.9493 0.8289 0.7949 0.7074 0.7072 0.7627 0.8515 0.8918 0.6455 0.9493 0.8289 0.7949 0.7074 0.7	0.7911 0.78														
1000 0,7292 0,9120 0,7073 0,9131 0,7411 0,7799 0,6642 0,9138 0,6883 0,9435 0,7949 0,7 1100 0,6844 0,8910 0,6427 0,9193 0,7720 0,7627 0,8815 0,8918 0,6455 0,9493 0,8289 0,7 1200 0,6593 0,8853 0,076 0,9263 0,7688 0,7309 0,5359 0,8853 0,5919 0,9552 0,8255 0,8518 0,6455 0,9463 0,946	0.7587 0.77														
1000 0,7292 0,9120 0,7073 0,9131 0,7411 0,7799 0,6642 0,9138 0,6883 0,9435 0,7949 0,7 1100 0,6844 0,8910 0,6427 0,9193 0,7720 0,7627 0,8815 0,8918 0,6455 0,9493 0,8289 0,7 1200 0,6593 0,8853 0,076 0,9263 0,7688 0,7309 0,5359 0,8853 0,5919 0,9552 0,8255 0,8518 0,6455 0,9463 0,946	0.7718 0.78	977	8 0.7	0.9388	0.7145	0.9139	0.6745	0.7884	0.7439	0.9083	0.7451	0.9122	0.7348	0900	21-Jun-10
1100 0.6844 0.8910 0.6427 0.9193 0.7720 0.7627 0.5815 0.8918 0.6455 0.9493 0.8258 0.7681 0.7682 0.7	0.7629 0.77														
1200 0.6593 0.8853 0.5076 0.9263 0.7688 0.7309 0.5359 0.8858 0.5591 0.9555 0.8255 0.66 1300 0.6679 0.8762 0.4903 0.9260 0.7824 0.7323 0.5514 0.8762 0.5479 0.9552 0.8998 0.6 1400 0.7428 0.8958 0.5654 0.9194 0.7637 0.7624 0.6891 0.8996 0.5960 0.9494 0.8201 0.7 1500 0.7978 0.9167 0.6040 0.9141 0.7316 0.7774 0.7863 0.9187 0.6266 0.9444 0.7844 0.78	0.7284 0.74														
1300 0.6679 0.8762 0.4903 0.9260 0.7824 0.7323 0.5514 0.8762 0.4579 0.9552 0.8398 0.66 1400 0.7428 0.8958 0.5654 0.9194 0.7637 0.7624 0.6891 0.8969 0.5960 0.4943 0.8201 0.7 1500 0.7978 0.9167 0.6040 0.9141 0.7316 0.7774 0.7863 0.9187 0.6206 0.9444 0.7844 0.78	0.6941 0.71														
1400 0.7428 0.8958 0.5654 0.9194 0.7637 0.7624 0.6891 0.8969 0.5960 0.9493 0.8201 0.7 1500 0.7978 0.9167 0.6040 0.9141 0.7316 0.7774 0.7863 0.9187 0.6206 0.9444 0.7844 0.7	0.6982 0.71														
1500 0.7978 0.9167 0.6040 0.9141 0.7316 0.7774 0.7863 0.9187 0.6206 0.9444 0.7844 0.7	0.7554 0.75														
	0.7911 0.78														
	0.7947 0.78			0.9444	0.6322	0.9137	0.7867	0.7774	0.7437	0.9097	0.6221	0.9107	0.7978	1600	
	0.7744 0.78														

Simulation Model Set No.: 9 Window size: Large Orientation: North Existence of obstruction: No

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FS,US,R}$	$\mathbf{P}_{VS,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$P_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.7299	0.9108	0.7540	0.9077	0.7497	0.7900	0.6654	0.9125	0.7206	0.9381	0.8044	0.7707	0.7804
	1000	0.7260	0.9111	0.7157	0.9125	0.7445	0.7813	0.6582	0.9128	0.6939	0.9429	0.7987	0.7624	0.7719
	1100	0.6802	0.8891	0.6506	0.9187	0.7753	0.7635	0.5737	0.8898	0.6506	0.9486	0.8324	0.7269	0.7452
	1200	0.6381	0.8728	0.5241	0.9260	0.7867	0.7313	0.4982	0.8725	0.5697	0.9552	0.8443	0.6841	0.7077
	1300	0.6539	0.8707	0.4829	0.9266	0.7883	0.7282	0.5260	0.8703	0.5432	0.9558	0.8459	0.6885	0.7084
	1400	0.7306	0.8894	0.5717	0.9199	0.7729	0.7620	0.6669	0.8902	0.6000	0.9497	0.8299	0.7491	0.7555
	1500	0.7902	0.9127	0.6077	0.9143	0.7393	0.7776	0.7735	0.9146	0.6230	0.9445	0.7931	0.7880	0.7828
	1600	0.7992	0.9122	0.6416	0.9097	0.7452	0.7870	0.7886	0.9140	0.6447	0.9401	0.7996	0.7983	0.7927
	1700	0.7499	0.8766	0.6518	0.9062	0.8029	0.7861	0.7022	0.8765	0.6514	0.9368	0.8606	0.7736	0.7799
21-Aug-10	0900	0.7107	0.9003	0.7528	0.9075	0.7686	0.7884	0.6301	0.9015	0.7198	0.9380	0.8250	0.7600	0.7742
	1000	0.7096	0.9021	0.7295	0.9120	0.7614	0.7828	0.6280	0.9035	0.7034	0.9424	0.8174	0.7554	0.7691
	1100	0.6667	0.8782	0.6586	0.9175	0.7907	0.7639	0.5492	0.8783	0.6558	0.9476	0.8484	0.7202	0.7420
	1200	0.6142	0.8471	0.5836	0.9233	0.8180	0.7401	0.4569	0.8451	0.6076	0.9529	0.8754	0.6780	0.7090
	1300	0.6409	0.8493	0.5472	0.9229	0.8152	0.7400	0.5032	0.8474	0.5844	0.9525	0.8727	0.6894	0.7147
	1400	0.7213	0.8809	0.5980	0.9178	0.7852	0.7661	0.6497	0.8812	0.6167	0.9479	0.8427	0.7470	0.7566
	1500	0.7713	0.9015	0.6203	0.9134	0.7588	0.7785	0.7402	0.9029	0.6310	0.9437	0.8145	0.7798	0.7791
	1600	0.7715	0.8958	0.6534	0.9096	0.7714	0.7867	0.7404	0.8968	0.6524	0.9400	0.8280	0.7851	0.7859
	1700	0.7075	0.8472	0.6594	0.9067	0.8318	0.7799	0.6251	0.8451	0.6563	0.9372	0.8886	0.7474	0.7636
21-Sep-10	0900	0.6838	0.8838	0.7637	0.9073	0.7936	0.7878	0.5805	0.8841	0.7275	0.9378	0.8512	0.7460	0.7669
	1000	0.6897	0.8890	0.7283	0.9112	0.7825	0.7811	0.5912	0.8897	0.7024	0.9416	0.8399	0.7440	0.7625
	1100	0.6603	0.8688	0.6891	0.9152	0.8044	0.7698	0.5375	0.8683	0.6760	0.9454	0.8622	0.7207	0.7452
	1200	0.6385	0.8470	0.6380	0.9182	0.8228	0.7569	0.4986	0.8450	0.6425	0.9482	0.8801	0.6999	0.7284
	1300	0.6687	0.8539	0.6204	0.9178	0.8157	0.7607	0.5527	0.8524	0.6311	0.9479	0.8733	0.7166	0.7386
	1400	0.7275	0.8791	0.6422	0.9148	0.7905	0.7765	0.6612	0.8793	0.6451	0.9450	0.8482	0.7571	0.7668
	1500	0.7581	0.8903	0.6479	0.9113	0.7794	0.7838	0.7170	0.8911	0.6489	0.9417	0.8367	0.7770	0.7804
	1600	0.7388	0.8716	0.6695	0.9081	0.8076	0.7871	0.6818	0.8713	0.6630	0.9386	0.8654	0.7690	0.7781
	1700	0.6289	0.8154	0.6919	0.9060	0.8790	0.7734	0.4816	0.8109	0.6777	0.9365	0.9299	0.7030	0.7382
21-Oct-10	0900	0.6521	0.8617	0.7600	0.9065	0.8202	0.7827	0.5227	0.8608	0.7246	0.9370	0.8776	0.7259	0.7543
	1000	0.6708	0.8728	0.7469	0.9090	0.8055	0.7831	0.5565	0.8726	0.7154	0.9395	0.8630	0.7355	0.7593
	1100	0.6649	0.8649	0.7030	0.9126	0.8098	0.7741	0.5458	0.8641	0.6852	0.9429	0.8675	0.7254	0.7497
	1200	0.6646	0.8252	0.6751	0.8913	0.8168	0.7620	0.5453	0.8215	0.6666	0.9215	0.8744	0.7134	0.7377
	1300	0.6896	0.8606	0.6627	0.9136	0.8126	0.7735	0.5910	0.8595	0.6587	0.9438	0.8702	0.7357	0.7546
	1400	0.7202	0.8711	0.6767	0.9116	0.8026	0.7825	0.6475	0.8708	0.6678	0.9420	0.8603	0.7573	0.7699
	1500	0.7238	0.8661	0.6837	0.9092	0.8110	0.7860	0.6544	0.8654	0.6724	0.9397	0.8687	0.7609	0.7735
	1600	0.6709	0.8199	0.6792	0.9076	0.8535	0.7758	0.5568	0.8158	0.6693	0.9381	0.9083	0.7247	0.7502
	1700	0.4899	0.6390	0.7022	0.9059	0.9263	0.7241	0.2690	0.6190	0.6847	0.9364	0.9647	0.6036	0.6638
21-Nov-10	0900	0.6095	0.8235	0.7629	0.9048	0.8548	0.7755	0.4482	0.8197	0.7276	0.9352	0.9091	0.6989	0.7372
	1000	0.6479	0.8493	0.7627	0.9056	0.8344	0.7839	0.5152	0.8475	0.7276	0.9360	0.8901	0.7237	0.7538
	1100	0.6587	0.8523	0.7305	0.9069	0.8298	0.7803	0.5345	0.8507	0.7051	0.9372	0.8857	0.7259	0.7531
	1200	0.6661	0.8506	0.7071	0.9085	0.8291	0.7777	0.5480	0.8489	0.6892	0.9388	0.8851	0.7271	0.7524
	1300	0.6806	0.8522	0.6954	0.9091	0.8259	0.7788	0.5746	0.8506	0.6810	0.9394	0.8822	0.7347	0.7568
	1400	0.6892	0.8506	0.7029	0.9075	0.8299	0.7831	0.5906	0.8488	0.6861	0.9378	0.8859	0.7414	0.7623
	1500	0.6745	0.8331	0.7056	0.9062	0.8463	0.7814	0.5636	0.8300	0.6877	0.9365	0.9013	0.7318	0.7566
	1600	0.6020	0.7667	0.7112	0.9049	0.8868	0.7641	0.4358	0.7580	0.6916	0.9353	0.9360	0.6817	0.7229
	1700	0.3889	0.5226	0.7076	0.9052	0.9485	0.6863	0.1602	0.4940	0.6895	0.9356	0.9783	0.5476	0.6170
21-Dec-10	0900	0.5739	0.7927	0.7653	0.9040	0.8751	0.7673	0.3901	0.7864	0.7294	0.9344	0.9265	0.6763	0.7218
	1000	0.6311	0.8352	0.7653	0.9043	0.8480	0.7814	0.4853	0.8323	0.7298	0.9347	0.9026	0.7132	0.7473
	1100	0.6508	0.8459	0.7416	0.9059	0.8370	0.7811	0.5202	0.8438	0.7131	0.9362	0.8923	0.7224	0.7517
	1200	0.6604	0.8467	0.7255	0.9073	0.8337	0.7801	0.5377	0.8446	0.7018	0.9376	0.8893	0.7260	0.7530
	1300	0.6717	0.8465	0.7065	0.9074	0.8337	0.7796	0.5583	0.8445	0.6889	0.9377	0.8893	0.7306	0.7551
	1400	0.6779	0.8436	0.7143	0.9060	0.8383	0.7832	0.5697	0.8413	0.6942	0.9363	0.8935	0.7357	0.7595
	1500	0.6638	0.8263	0.7177	0.9047	0.8538	0.7816	0.5441	0.8227	0.6962	0.9350	0.9078	0.7264	0.7540
	1600	0.5988	0.7643	0.7090	0.9044	0.8888	0.7630	0.4302	0.7554	0.6903	0.9347	0.9375	0.6793	0.7211
	1700	0.4042	0.5430	0.7200	0.9043	0.9462	0.6950	0.1746	0.5157	0.6979	0.9347	0.9770	0.5577	0.6263

Simulation Model Set No.: 10 Window size: Large Orientation: East Existence of obstruction: No

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FX,UX,R}$	$\mathbf{P}_{VX,PG,R}$	$P_{\nu x}$	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.6938	0.8653	0.7092	0.8899	0.8015	0.7777	0.6007	0.8642	0.6915	0.9186	0.8534	0.7409	0.7593
	1000	0.7504	0.9093	0.7140	0.9008	0.7277	0.7810	0.7028	0.9105	0.6947	0.9312	0.7753	0.7724	0.7767
	1100	0.7544	0.9177	0.7211	0.9071	0.7058	0.7793	0.7099	0.9195	0.6992	0.9374	0.7509	0.7735	0.7764
	1200	0.7333	0.9095	0.7160	0.9097	0.7480	0.7837	0.6717	0.9111	0.6953	0.9401	0.8016	0.7673	0.7755
	1300	0.7069	0.8916	0.7118	0.9072	0.7719	0.7796	0.6230	0.8924	0.6918	0.9377	0.8280	0.7509	0.7652
	1400	0.6797	0.8713	0.7232	0.9069	0.7995	0.7790	0.5729	0.8709	0.6995	0.9373	0.8568	0.7364	0.7577
	1500	0.6430	0.8397	0.7166	0.9058	0.8317	0.7721	0.5064	0.8372	0.6954	0.9362	0.8881	0.7121	0.7421
	1600	0.5746	0.7761	0.7127	0.9048	0.8738	0.7551	0.3912	0.7683	0.6930	0.9352	0.9254	0.6662	0.7107
	1700	0.4248	0.6068	0.7010	0.9062	0.9279	0.7023	0.1969	0.5841	0.6855	0.9365	0.9657	0.5728	0.6375
21-Feb-10	0900	0.7529	0.9008	0.7096	0.8908	0.7713	0.7905	0.7076	0.9019	0.6904	0.9202	0.8248	0.7795	0.7850
	1000	0.7866	0.9263	0.6868	0.9014	0.7086	0.7829	0.7665	0.9284	0.6750	0.9319	0.7560	0.7904	0.7866
	1100	0.7754	0.9271	0.6899	0.9088	0.6956	0.7780	0.7473	0.9293	0.6771	0.9392	0.7409	0.7822	0.7801
	1200	0.7398	0.9142	0.6831	0.9126	0.7344	0.7767	0.6837	0.9161	0.6725	0.9429	0.7869	0.7654	0.7711
	1300	0.7043	0.8939	0.7012	0.9114	0.7671	0.7765	0.6182	0.8949	0.6843	0.9417	0.8233	0.7477	0.7621
	1400	0.6827	0.8757	0.6982	0.9101	0.7923	0.7743	0.5783	0.8756	0.6822	0.9405	0.8498	0.7347	0.7545
	1500	0.6609	0.8542	0.7034	0.9087	0.8147	0.7723	0.5385	0.8527	0.6858	0.9391	0.8723	0.7215	0.7469
	1600	0.6109	0.8085	0.6920	0.9079	0.8498	0.7597	0.4505	0.8034	0.6782	0.9384	0.9050	0.6867	0.7232
	1700	0.4943	0.6876	0.6838	0.9078	0.9032	0.7234	0.2752	0.6718	0.6729	0.9382	0.9485	0.6097	0.6665
21-Mar-10	0900	0.7956	0.9165	0.6570	0.8966	0.7304	0.7839	0.7700	0.9181	0.6547	0.9266	0.7795	0.7895	0.7867
	1000	0.8024	0.9317	0.6346	0.9068	0.6842	0.7723	0.7921	0.9338	0.6405	0.9373	0.7267	0.7886	0.7805
	1100	0.7742	0.9269	0.6390	0.9143	0.6909	0.7678	0.7453	0.9291	0.6436	0.9445	0.7353	0.7743	0.7710
	1200	0.7144	0.9020	0.6285	0.9181	0.7536	0.7644	0.6369	0.9034	0.6366	0.9481	0.8087	0.7442	0.7543
	1300	0.6707	0.8747	0.6416	0.9171	0.7892	0.7608	0.5564	0.8745	0.6449	0.9471	0.8468	0.7195	0.7402
	1400	0.6670	0.8626	0.6669	0.9137	0.8044	0.7664	0.5496	0.8617	0.6615	0.9440	0.8621	0.7207	0.7435
	1500	0.6646	0.8516	0.6909	0.9110	0.8151	0.7710	0.5452	0.8499	0.6775	0.9414	0.8725	0.7220	0.7465
	1600	0.6321	0.8193	0.6846	0.9096	0.8412	0.7633	0.4871	0.8151	0.6733	0.9399	0.8972	0.6992	0.7313
	1700	0.5371	0.7244	0.6753	0.9095	0.8888	0.7351	0.3338	0.7120	0.6673	0.9398	0.9376	0.6341	0.6846
21-Apr-10	0900	0.8168	0.9269	0.6417	0.9035	0.7162	0.7852	0.8140	0.9289	0.6449	0.9340	0.7655	0.8030	0.7941
	1000	0.8138	0.9334	0.5714	0.9115	0.6876	0.7657	0.8112	0.9357	0.5998	0.9419	0.7320	0.7889	0.7773
	1100	0.7565	0.9153	0.5596	0.9194	0.7215	0.7562	0.7139	0.9172	0.5923	0.9493	0.7726	0.7583	0.7572
	1200	0.6669	0.8792	0.5265	0.9245	0.7764	0.7372	0.5495	0.8794	0.5712	0.9539	0.8336	0.7015	0.7193
	1300	0.6238	0.8458	0.5681	0.9230	0.8142	0.7385	0.4733	0.8437	0.5977	0.9526	0.8718	0.6808	0.7097
	1400	0.6504	0.8468	0.6302	0.9175	0.8166	0.7568	0.5197	0.8448	0.6374	0.9476	0.8741	0.7051	0.7309
	1500	0.6690	0.8486	0.6672	0.9139	0.8150	0.7677	0.5533	0.8468	0.6615	0.9442	0.8726	0.7214	0.7445
	1600	0.6478	0.8248	0.6664	0.9122	0.8335	0.7632	0.5150	0.8211	0.6610	0.9425	0.8903	0.7065	0.7349
	1700	0.5665	0.7460	0.6689	0.9119	0.8777	0.7422	0.3779	0.7355	0.6627	0.9423	0.9287	0.6513	0.6967
21-May-10	0900	0.8297	0.9405	0.6120	0.9059	0.6844	0.7767	0.8636	0.9431	0.6224	0.9364	0.7284	0.8118	0.7943
	1000	0.8292	0.9386	0.5323	0.9144	0.6755	0.7604	0.8357	0.9412	0.5737	0.9446	0.7180	0.7909	0.7757
	1100	0.7531	0.9127	0.5150	0.9225	0.7229	0.7476	0.7079	0.9146	0.5639	0.9521	0.7739	0.7505	0.7491
	1200	0.6818	0.8940	0.4411	0.9288	0.7513	0.7215	0.5768	0.8950	0.5158	0.9577	0.8062	0.6981	0.7098
	1300	0.6125	0.8386	0.5273	0.9258	0.8187	0.7287	0.4540	0.8360	0.5718	0.9551	0.8761	0.6686	0.6986
	1400	0.6500	0.8405	0.6087	0.9186	0.8222	0.7535	0.5191	0.8380	0.6238	0.9486	0.8794	0.7020	0.7278
	1500	0.6744	0.8472	0.6513	0.9144	0.8169	0.7666	0.5630	0.8452	0.6513	0.9446	0.8743	0.7228	0.7447
	1600	0.6616	0.8301	0.6644	0.9123	0.8308	0.7665	0.5399	0.8268	0.6599	0.9426	0.8876	0.7155	0.7410
	1700	0.5945	0.7660	0.6721	0.9117	0.8698	0.7511	0.4230	0.7573	0.6650	0.9420	0.9222	0.6700	0.7105
21-Jun-10	0900	0.8299	0.9295	0.6262	0.9070	0.7061	0.7838	0.8341	0.9316	0.6349	0.9375	0.7537	0.8067	0.7952
	1000	0.8194	0.9312	0.5410	0.9145	0.6899	0.7623	0.8197	0.9335	0.5804	0.9447	0.7347	0.7884	0.7753
	1100	0.7594	0.9113	0.5107	0.9219	0.7272	0.7494	0.7192	0.9131	0.5611	0.9516	0.7792	0.7546	0.7520
	1200	0.6861	0.8901	0.4451	0.9280	0.7546	0.7236	0.5845	0.8909	0.5183	0.9570	0.8101	0.7012	0.7124
	1300	0.6228	0.8448	0.4994	0.9268	0.8111	0.7253	0.4716	0.8426	0.5538	0.9559	0.8688	0.6711	0.6982
	1400	0.6480	0.8384	0.5909	0.9202	0.8228	0.7498	0.5154	0.8357	0.6122	0.9500	0.8800	0.6983	0.7240
	1500	0.6778	0.8482	0.6401	0.9158	0.8153	0.7653	0.5693	0.8462	0.6438	0.9460	0.8729	0.7236	0.7444
	1600	0.6712	0.8358	0.6615	0.9135	0.8254	0.7680	0.5572	0.8330	0.6577	0.9438	0.8827	0.7214	0.7447

Simulation Model Set No.: 10 Window size: Large Orientation: East Existence of obstruction: No

Date	Time	$\mathbf{P}_{FS,BD,R}$	$\mathbf{P}_{FS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FS,US,R}$	$\mathbf{P}_{VS,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.8338	0.9322	0.6419	0.9052	0.7074	0.7882	0.8416	0.9344	0.6450	0.9357	0.7557	0.8120	0.8001
	1000	0.8243	0.9343	0.5503	0.9131	0.6856	0.7644	0.8279	0.9367	0.5864	0.9434	0.7297	0.7920	0.7782
	1100	0.7662	0.9157	0.5229	0.9211	0.7201	0.7520	0.7314	0.9177	0.5689	0.9508	0.7710	0.7596	0.7558
	1200	0.6790	0.8877	0.4606	0.9278	0.7593	0.7254	0.5716	0.8884	0.5286	0.9568	0.8153	0.6992	0.7123
	1300	0.6192	0.8490	0.4959	0.9274	0.8075	0.7235	0.4652	0.8472	0.5516	0.9565	0.8653	0.6686	0.6960
	1400	0.6388	0.8360	0.5943	0.9204	0.8254	0.7484	0.4990	0.8331	0.6144	0.9502	0.8826	0.6930	0.7207
	1500	0.6729	0.8476	0.6467	0.9155	0.8158	0.7652	0.5603	0.8456	0.6481	0.9457	0.8735	0.7213	0.7433
	1600	0.6688	0.8362	0.6658	0.9132	0.8253	0.7682	0.5529	0.8333	0.6605	0.9435	0.8826	0.7205	0.7443
	1700	0.6121	0.7821	0.6690	0.9123	0.8607	0.7552	0.4525	0.7748	0.6627	0.9427	0.9146	0.6815	0.7183
21-Aug-10	0900	0.8251	0.9310	0.6504	0.9025	0.7144	0.7889	0.8286	0.9332	0.6505	0.9330	0.7638	0.8095	0.7992
	1000	0.8201	0.9359	0.5728	0.9109	0.6842	0.7670	0.8217	0.9384	0.6007	0.9413	0.7282	0.7925	0.7797
	1100	0.7633	0.9179	0.5542	0.9191	0.7173	0.7562	0.7262	0.9199	0.5889	0.9490	0.7677	0.7614	0.7588
	1200	0.6702	0.8818	0.5185	0.9249	0.7724	0.7359	0.5556	0.8821	0.5661	0.9543	0.8293	0.7023	0.7191
	1300	0.6234	0.8470	0.5625	0.9236	0.8124	0.7371	0.4727	0.8449	0.5941	0.9531	0.8700	0.6798	0.7085
	1400	0.6477	0.8457	0.6276	0.9181	0.8173	0.7557	0.5150	0.8436	0.6357	0.9481	0.8748	0.7031	0.7294
	1500	0.6685	0.8489	0.6728	0.9142	0.8149	0.7686	0.5523	0.8471	0.6652	0.9444	0.8726	0.7219	0.7452
	1600	0.6526	0.8288	0.6655	0.9122	0.8307	0.7641	0.5236	0.8254	0.6604	0.9426	0.8877	0.7097	0.7369
	1700	0.5791	0.7577	0.6698	0.9117	0.8723	0.7460	0.3979	0.7482	0.6632	0.9421	0.9244	0.6597	0.7029
21-Sep-10	0900	0.8146	0.9306	0.6567	0.8987	0.7122	0.7861	0.8080	0.9328	0.6544	0.9291	0.7606	0.8021	0.7941
	1000	0.8105	0.9374	0.6285	0.9078	0.6843	0.7744	0.8072	0.9399	0.6363	0.9383	0.7285	0.7945	0.7844
	1100	0.7654	0.9250	0.6229	0.9155	0.7038	0.7660	0.7300	0.9273	0.6328	0.9457	0.7518	0.7696	0.7678
	1200	0.6970	0.8939	0.6146	0.9187	0.7632	0.7588	0.6046	0.8949	0.6275	0.9487	0.8194	0.7316	0.7452
	1300	0.6620	0.8689	0.6311	0.9174	0.7954	0.7575	0.5405	0.8685	0.6380	0.9475	0.8532	0.7127	0.7351
	1400	0.6652	0.8609	0.6699	0.9139	0.8056	0.7665	0.5463	0.8599	0.6632	0.9442	0.8635	0.7199	0.7432
	1500	0.6611	0.8487	0.6967	0.9112	0.8168	0.7711	0.5388	0.8468	0.6810	0.9416	0.8744	0.7203	0.7457
	1600	0.6188	0.8074	0.6849	0.9101	0.8476	0.7599	0.4640	0.8023	0.6731	0.9405	0.9031	0.6900	0.7249
	1700	0.4985	0.6833	0.6769	0.9101	0.9011	0.7223	0.2800	0.6672	0.6678	0.9405	0.9470	0.6095	0.6659
21-Oct-10	0900	0.7903	0.9275	0.6969	0.8950	0.7240	0.7894	0.7740	0.9298	0.6819	0.9254	0.7741	0.7972	0.7933
	1000	0.7970	0.9384	0.7021	0.9050	0.6766	0.7818	0.7854	0.9410	0.6854	0.9355	0.7187	0.7948	0.7883
	1100	0.7682	0.9286	0.6870	0.9103	0.7013	0.7776	0.7351	0.9310	0.6746	0.9407	0.7490	0.7794	0.7785
	1200	0.7243	0.9081	0.6831	0.9122	0.7439	0.7743	0.6552	0.9098	0.6719	0.9425	0.7983	0.7563	0.7653
	1300	0.6922	0.8861	0.7008	0.9112	0.7783	0.7752	0.5958	0.8866	0.6838	0.9416	0.8354	0.7406	0.7579
	1400	0.6739	0.8678	0.6972	0.9093	0.8012	0.7730	0.5621	0.8673	0.6814	0.9397	0.8589	0.7290	0.7510
	1500	0.6425	0.8380	0.7105	0.9078	0.8291	0.7701	0.5056	0.8353	0.6904	0.9383	0.8860	0.7103	0.7402
	1600	0.5653	0.7655	0.6883	0.9080	0.8730	0.7468	0.3762	0.7567	0.6755	0.9385	0.9250	0.6558	0.7013
	1700	0.3875	0.5554	0.7007	0.9088	0.9353	0.6867	0.1582	0.5287	0.6841	0.9392	0.9704	0.5507	0.6187
21-Nov-10	0900	0.7452	0.9080	0.7421	0.8903	0.7302	0.7839	0.6937	0.9094	0.7155	0.9200	0.7747	0.7719	0.7779
	1000	0.7683	0.9303	0.7501	0.9052	0.6625	0.7777	0.7351	0.9325	0.7212	0.9355	0.6971	0.7791	0.7784
	1100	0.7537	0.9282	0.7457	0.9102	0.6692	0.7753	0.7089	0.9304	0.7170	0.9404	0.7060	0.7708	0.7731
	1200	0.7228	0.9043	0.7334	0.9077	0.7576	0.7857	0.6524	0.9057	0.7068	0.9382	0.8123	0.7637	0.7747
	1300	0.6950	0.8837	0.7359	0.9064	0.7856	0.7833	0.6010	0.8840	0.7083	0.9369	0.8422	0.7476	0.7654
	1400	0.6658	0.8580	0.7315	0.9051	0.8176	0.7796	0.5475	0.8567	0.7056	0.9355	0.8742	0.7293	0.7544
	1500	0.6222	0.8189	0.7299	0.9040	0.8510	0.7710	0.4699	0.8147	0.7049	0.9344	0.9055	0.7004	0.7357
	1600	0.5324	0.7298	0.7219	0.9039	0.8962	0.7445	0.3284	0.7178	0.6996	0.9343	0.9431	0.6401	0.6923
	1700	0.3324	0.7298	0.7219	0.9057	0.8902	0.6664	0.3284	0.4370	0.7046	0.9343	0.9431	0.5255	0.5960
21-Dec-10	0900	0.7149	0.8899	0.7560	0.8831	0.7570	0.7823	0.6378	0.8903	0.7260	0.9115	0.8017	0.7553	0.7688
	1000	0.7544	0.9233	0.7651	0.9029	0.6745	0.7788	0.7103	0.9252	0.7329	0.9332	0.7095	0.7735	0.7761
	1100	0.7507	0.9253	0.7580	0.9029	0.6709	0.7767	0.7034	0.9232	0.7329	0.9332	0.7072	0.7706	0.7737
	1200	0.7256	0.9282	0.7449	0.9079	0.7595	0.7896	0.6575	0.9284	0.7270	0.9384	0.7072	0.7682	0.7789
	1300	0.7256	0.8852	0.7449	0.9079	0.7858	0.7845	0.6053	0.8857	0.7105	0.9354	0.8142	0.7496	0.7671
	1400	0.6665	0.8852	0.7479	0.9049	0.7858	0.7830	0.5488	0.8583	0.7103	0.9354	0.8422	0.7323	0.7576
	1500	0.6233	0.8393	0.7479	0.9036	0.8183	0.7850	0.5488	0.8383	0.7171	0.9340	0.8747	0.7040	0.7376
	1600	0.5358	0.7361	0.7299	0.9029	0.8950	0.7474	0.3333	0.7247	0.7053	0.9333	0.9422	0.6438	0.6956
	1700	0.3460	0.4944	0.7079	0.9045	0.9495	0.6709	0.1293	0.4643	0.6908	0.9348	0.9789	0.5320	0.6014

Simulation Model Set No.: 11 Window size: Large Orientation: South Existence of obstruction: No

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{VX,UD,R}$	$P_{VX,UX,R}$	$P_{VX,PG,R}$	P_{FS}	$P_{ES,BD,R}$	$P_{ES,BS,R}$	$P_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$P_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jan-10	0900	0.7341	0.8371	0.5996	0.9251	0.8035	0.7687	0.6689	0.8340	0.6111	0.9544	0.8555	0.7475	0.7581
	1000	0.7561	0.8980	0.5789	0.9256	0.7255	0.7587	0.7978	0.8987	0.5945	0.9549	0.7727	0.7855	0.7721
	1100	0.7767	0.9189	0.5561	0.9263	0.6864	0.7524	0.8349	0.9206	0.5797	0.9555	0.7280	0.7912	0.7718
	1200	0.7785	0.9266	0.5308	0.9267	0.6674	0.7443	0.8397	0.9284	0.5619	0.9559	0.7054	0.7867	0.7655
	1300	0.8340	0.9305	0.5425	0.9264	0.6627	0.7601	0.8321	0.9325	0.5724	0.9556	0.7001	0.7858	0.7729
	1400	0.8021	0.9262	0.6445	0.9258	0.6742	0.7726	0.7921	0.9281	0.6477	0.9551	0.7138	0.7886	0.7806
	1500	0.7657	0.9092	0.6958	0.9251	0.7070	0.7788	0.7301	0.9106	0.6829	0.9544	0.7512	0.7776	0.7782
	1600	0.6963	0.8653	0.7348	0.9245	0.7684	0.7778	0.6040	0.8642	0.7103	0.9540	0.8165	0.7427	0.7603
	1700	0.5262	0.7083	0.7316	0.9240	0.8770	0.7383	0.3208	0.6942	0.7073	0.9535	0.9210	0.6329	0.6856
21-Feb-10	0900	0.7722	0.8668	0.5888	0.9256	0.7799	0.7749	0.7342	0.8660	0.6071	0.9550	0.8341	0.7713	0.7731
	1000	0.8220	0.9097	0.5662	0.9267	0.7152	0.7726	0.8225	0.9112	0.5932	0.9559	0.7638	0.7945	0.7836
	1100	0.8344	0.9234	0.5300	0.9281	0.6849	0.7633	0.8412	0.9255	0.5702	0.9571	0.7282	0.7926	0.7779
	1200	0.8310	0.9277	0.4978	0.9292	0.6736	0.7542	0.8336	0.9298	0.5483	0.9580	0.7144	0.7839	0.7690
	1300	0.8285	0.9338	0.5116	0.9293	0.6619	0.7537	0.8264	0.9362	0.5585	0.9581	0.7006	0.7820	0.7679
	1400	0.8027	0.9304	0.6308	0.9281	0.6726	0.7708	0.7942	0.9327	0.6383	0.9571	0.7136	0.7883	0.7796
	1500	0.7773	0.9122	0.6842	0.9213	0.7035	0.7787	0.7507	0.9135	0.6733	0.9501	0.7504	0.7828	0.7808
	1600	0.7222	0.8838	0.7238	0.9253	0.7651	0.7847	0.6516	0.8841	0.7001	0.9547	0.8196	0.7614	0.7731
	1700	0.5923	0.7779	0.7360	0.9247	0.8570	0.7619	0.4201	0.7702	0.7088	0.9541	0.9086	0.6787	0.7203
21-Mar-10	0900	0.7752	0.8802	0.5859	0.9271	0.7566	0.7710	0.7461	0.8802	0.6090	0.9562	0.8096	0.7739	0.7724
	1000	0.8102	0.9093	0.5492	0.9287	0.7079	0.7646	0.8044	0.9108	0.5857	0.9576	0.7550	0.7852	0.7749
	1100	0.8093	0.9168	0.5128	0.9306	0.6937	0.7553	0.8042	0.9187	0.5625	0.9593	0.7386	0.7790	0.7672
	1200	0.7844	0.9133	0.5050	0.9321	0.7013	0.7492	0.7631	0.9150	0.5575	0.9605	0.7476	0.7648	0.7570
	1300	0.7704	0.9148	0.5362	0.9320	0.7038	0.7521	0.7388	0.9166	0.5776	0.9604	0.7511	0.7612	0.7566
	1400	0.7690	0.9181	0.6195	0.9303	0.6943	0.7644	0.7363	0.9201	0.6310	0.9590	0.7394	0.7693	0.7669
	1500	0.7594	0.9122	0.6807	0.9283	0.7072	0.7753	0.7191	0.9138	0.6711	0.9573	0.7544	0.7728	0.7741
	1600	0.7208	0.8868	0.7187	0.9265	0.7563	0.7816	0.6489	0.8872	0.6967	0.9557	0.8102	0.7587	0.7702
	1700	0.6132	0.7989	0.7240	0.9254	0.8519	0.7672	0.4549	0.7930	0.7003	0.9547	0.9069	0.6928	0.7300
21-Apr-10	0900	0.7792	0.8841	0.5943	0.9277	0.7593	0.7749	0.7532	0.8844	0.6144	0.9568	0.8148	0.7792	0.7771
	1000	0.7922	0.8999	0.5530	0.9296	0.7339	0.7665	0.7760	0.9011	0.5881	0.9584	0.7867	0.7799	0.7732
	1100	0.7592	0.8917	0.5042	0.9323	0.7472	0.7519	0.7188	0.8925	0.5569	0.9607	0.8018	0.7551	0.7535
	1200	0.7070	0.8814	0.4540	0.9347	0.7590	0.7312	0.6231	0.8817	0.5243	0.9627	0.8149	0.7158	0.7235
	1300	0.6948	0.8833	0.4994	0.9342	0.7590	0.7365	0.6006	0.8837	0.5539	0.9623	0.8149	0.7141	0.7253
	1400	0.7254	0.8974	0.6106	0.9313	0.7415	0.7615	0.6571	0.8985	0.6248	0.9599	0.7955	0.7469	0.7542
	1500	0.7356	0.8985	0.6724	0.9286	0.7388	0.7743	0.6759	0.8996	0.6650	0.9576	0.7921	0.7609	0.7676
	1600	0.7068	0.8766	0.7043	0.9270	0.7746	0.7789	0.6230	0.8764	0.6865	0.9561	0.8313	0.7496	0.7643
	1700	0.6143	0.8004	0.7094	0.9270	0.7746	0.7639	0.6230	0.8764	0.6900	0.9554	0.9029	0.6910	0.7043
21-May-10	0900	0.7794	0.8837	0.5880	0.9279	0.7632	0.7749	0.7548	0.8841	0.6104	0.9570	0.8192	0.7797	0.7773
uy 10	1000	0.7754	0.8905	0.5509	0.9300	0.7417	0.7625	0.7478	0.8913	0.5868	0.9588	0.7957	0.7697	0.7661
	1100	0.7201	0.8700	0.5032	0.9330	0.7771	0.7465	0.6474	0.8696	0.5563	0.9613	0.8342	0.7320	0.7393
	1200	0.6814	0.8789	0.4118	0.9361	0.7598	0.7170	0.5759	0.8791	0.4961	0.9639	0.8157	0.6935	0.7052
	1300	0.6466	0.8608	0.4118	0.9351	0.7858	0.7251	0.5130	0.8598	0.5436	0.9631	0.8434	0.6825	0.7032
	1400	0.6928	0.8778	0.6051	0.9331	0.7704	0.7570	0.5969	0.8778	0.6214	0.9601	0.8271	0.7273	0.7038
	1500	0.7169	0.8887	0.6727	0.9290	0.7565	0.7730	0.6415	0.8893	0.6652	0.9579	0.8119	0.7507	0.7618
	1600	0.6982	0.8717	0.7012	0.9272	0.7816	0.7773	0.6069	0.8713	0.6843	0.9563	0.8387	0.7440	0.7606
	1700	0.6214	0.8082	0.7087	0.9264	0.8429	0.7656	0.4686	0.8031	0.6896	0.9556	0.8988	0.6958	0.7307
1-Jun-10	0900	0.7629	0.8742	0.5907	0.9281	0.7732	0.7724	0.7252	0.8740	0.6121	0.9571	0.8300	0.7699	0.7712
	1000	0.7618	0.8815	0.5565	0.9300	0.7621	0.7643	0.7234	0.8818	0.5903	0.9588	0.8182	0.7643	0.7643
	1100	0.7136	0.8638	0.5154	0.9327	0.7834	0.7478	0.6353	0.8630	0.5641	0.9611	0.8409	0.7294	0.7386
	1200	0.6659	0.8649	0.4244	0.9357	0.7770	0.7178	0.5478	0.8642	0.5046	0.9636	0.8343	0.6861	0.7019
	1300	0.6357	0.8540	0.4675	0.9354	0.7916	0.7200	0.4939	0.8525	0.5332	0.9633	0.8494	0.6737	0.6968
	1400	0.6771	0.8695	0.6051	0.9321	0.7802	0.7544	0.5681	0.8690	0.6213	0.9605	0.8375	0.7177	0.7360
	1500	0.7106	0.8864	0.4331	0.9293	0.7601	0.7289	0.6299	0.8870	0.5107	0.9582	0.8161	0.7161	0.7225
	1600	0.6991	0.8735	0.6939	0.9275	0.7790	0.7759	0.6087	0.8733	0.6792	0.9566	0.8362	0.7435	0.7597
		0.6334	0.8093	0.7088	0.9231	0.8342	0.7661							

Simulation Model Set No.: 11 Window size: Large Orientation: South Existence of obstruction: No

Date	Time	$\mathbf{P}_{VS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FS,US,R}$	$\mathbf{P}_{FS,PG,R}$	P_{ν_S}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Jul-10	0900	0.7697	0.8773	0.5915	0.9279	0.7704	0.7740	0.7374	0.8773	0.6126	0.9569	0.8270	0.7743	0.7742
	1000	0.7729	0.8874	0.5573	0.9298	0.7542	0.7660	0.7430	0.8880	0.5909	0.9586	0.8096	0.7708	0.7684
	1100	0.7291	0.8737	0.5125	0.9327	0.7738	0.7502	0.6639	0.8735	0.5623	0.9611	0.8308	0.7390	0.7446
	1200	0.6702	0.8657	0.4283	0.9357	0.7764	0.7195	0.5554	0.8650	0.5074	0.9636	0.8336	0.6893	0.7044
	1300	0.6463	0.8646	0.4564	0.9359	0.7792	0.7190	0.5125	0.8638	0.5260	0.9638	0.8365	0.6784	0.6987
	1400	0.6816	0.8746	0.6058	0.9324	0.7740	0.7548	0.5764	0.8745	0.6218	0.9608	0.8310	0.7204	0.7376
	1500	0.7169	0.8909	0.6630	0.9294	0.7533	0.7707	0.6414	0.8917	0.6587	0.9583	0.8087	0.7492	0.7600
	1600	0.7075	0.8806	0.7022	0.9273	0.7711	0.7784	0.6241	0.8808	0.6847	0.9565	0.8279	0.7498	0.7641
	1700	0.6408	0.8264	0.7155	0.9262	0.8294	0.7710	0.5026	0.8227	0.6938	0.9555	0.8864	0.7096	0.7403
21-Aug-10	0900	0.7822	0.8848	0.5978	0.9275	0.7606	0.7768	0.7591	0.8852	0.6166	0.9566	0.8164	0.7821	0.7795
	1000	0.7941	0.9002	0.5573	0.9295	0.7341	0.7679	0.7796	0.9015	0.5908	0.9584	0.7870	0.7818	0.7748
	1100	0.7609	0.8917	0.5027	0.9321	0.7474	0.7521	0.7219	0.8925	0.5560	0.9606	0.8021	0.7560	0.7541
	1200	0.7052	0.8801	0.4543	0.9348	0.7606	0.7311	0.6198	0.8803	0.5245	0.9629	0.8167	0.7148	0.7229
	1300	0.6892	0.8804	0.4933	0.9344	0.7618	0.7343	0.5902	0.8806	0.5499	0.9625	0.8180	0.7097	0.7220
	1400	0.7196	0.8940	0.6007	0.9316	0.7462	0.7590	0.6464	0.8950	0.6185	0.9601	0.8008	0.7422	0.7506
	1500	0.7358	0.9000	0.6700	0.9289	0.7374	0.7739	0.6763	0.9012	0.6634	0.9578	0.7907	0.7607	0.7673
	1600	0.7120	0.8813	0.7084	0.9271	0.7688	0.7802	0.6326	0.8815	0.6891	0.9562	0.8252	0.7533	0.7667
	1700	0.6275	0.8126	0.7155	0.9260	0.8394	0.7681	0.4793	0.8079	0.6941	0.9553	0.8957	0.7007	0.7344
21-Sep-10	0900	0.7996	0.8960	0.5750	0.9271	0.7403	0.7733	0.7887	0.8970	0.6021	0.9562	0.7931	0.7873	0.7803
	1000	0.8223	0.9160	0.5333	0.9287	0.7069	0.7657	0.8260	0.9179	0.5755	0.9577	0.7556	0.7920	0.7789
	1100	0.8088	0.9180	0.4916	0.9310	0.7000	0.7534	0.8047	0.9200	0.5488	0.9596	0.7473	0.7783	0.7658
	1200	0.7775	0.9124	0.4944	0.9324	0.7107	0.7480	0.7515	0.9142	0.5506	0.9608	0.7597	0.7614	0.7547
	1300	0.7672	0.9149	0.5442	0.9317	0.7280	0.7595	0.7333	0.9168	0.5825	0.9602	0.7803	0.7655	0.7625
	1400	0.7709	0.9193	0.5696	0.9297	0.7031	0.7585	0.7399	0.9214	0.5987	0.9585	0.7512	0.7664	0.7624
	1500	0.7606	0.9132	0.6962	0.9274	0.7184	0.7816	0.7214	0.9151	0.6806	0.9565	0.7692	0.7783	0.7799
	1600	0.7103	0.8794	0.7286	0.9257	0.7773	0.7853	0.6294	0.8796	0.7026	0.9550	0.8344	0.7560	0.7707
	1700	0.5757	0.7642	0.7250	0.9251	0.8716	0.7575	0.3925	0.7553	0.7001	0.9545	0.9238	0.6675	0.7125
21-Oct-10	0900	0.8186	0.9024	0.5766	0.9259	0.7341	0.7776	0.8174	0.9037	0.5987	0.9552	0.7855	0.7964	0.7870
	1000	0.8501	0.9284	0.5347	0.9274	0.6773	0.7667	0.8660	0.9308	0.5709	0.9565	0.7195	0.8007	0.7837
	1100	0.8465	0.9338	0.5189	0.9284	0.6741	0.7630	0.8634	0.9363	0.5649	0.9573	0.7165	0.7991	0.7811
	1200	0.8317	0.9342	0.5086	0.9289	0.6773	0.7584	0.8420	0.9368	0.5597	0.9578	0.7206	0.7914	0.7749
	1300	0.8153	0.9342	0.5753	0.9286	0.6706	0.7642	0.8158	0.9368	0.6023	0.9576	0.7119	0.7891	0.7767
	1400	0.7976	0.9299	0.6616	0.9272	0.6818	0.7774	0.7863	0.9323	0.6582	0.9564	0.7253	0.7915	0.7845
	1500	0.7620	0.9111	0.7162	0.9258	0.7239	0.7866	0.7240	0.9129	0.6946	0.9551	0.7746	0.7825	0.7845
	1600	0.6776	0.8516	0.7345	0.9247	0.8097	0.7823	0.5690	0.8498	0.7069	0.9541	0.8666	0.7364	0.7593
	1700	0.4736	0.6506	0.7297	0.9247	0.9097	0.7243	0.2492	0.6316	0.7039	0.9541	0.9518	0.6021	0.6632
21-Nov-10	0900	0.7407	0.8880	0.5611	0.9250	0.7315	0.7515	0.7900	0.8884	0.5749	0.9544	0.7760	0.7776	0.7646
	1000	0.7099	0.9257	0.5149	0.9260	0.6517	0.7190	0.8653	0.9277	0.5372	0.9553	0.6844	0.7867	0.7528
	1100	0.7185	0.9380	0.4886	0.9268	0.6200	0.7096	0.8812	0.9403	0.5201	0.9560	0.6473	0.7844	0.7470
	1200	0.8000	0.9405	0.4923	0.9269	0.6251	0.7333	0.8707	0.9429	0.5275	0.9560	0.6540	0.7839	0.7586
	1300	0.8445	0.9368	0.5416	0.9262	0.6395	0.7571	0.8350	0.9391	0.5761	0.9555	0.6717	0.7836	0.7704
	1400	0.7928	0.9285	0.6923	0.9258	0.6493	0.7722	0.7773	0.9306	0.6815	0.9551	0.6819	0.7848	0.7785
	1500	0.7475	0.8682	0.7380	0.8682	0.7014	0.7667	0.6978	0.8671	0.7136	0.8937	0.7414	0.7572	0.7619
	1600	0.6491	0.8311	0.7503	0.9243	0.7891	0.7687	0.5185	0.8275	0.7221	0.9538	0.8339	0.7121	0.7404
	1700	0.4035	0.5621	0.7382	0.9240	0.9220	0.6968	0.1770	0.5364	0.7121	0.9535	0.9583	0.5634	0.6301
21-Dec-10	0900	0.7467	0.8671	0.5718	0.9239	0.7564	0.7585	0.7497	0.8662	0.5816	0.9534	0.8009	0.7655	0.7620
	1000	0.6705	0.9178	0.5218	0.9247	0.6636	0.7119	0.8525	0.9195	0.5377	0.9541	0.6967	0.7830	0.7475
	1100	0.6953	0.9346	0.5087	0.9250	0.6319	0.7098	0.8790	0.9369	0.5303	0.9544	0.6607	0.7873	0.7486
	1200	0.7276	0.9394	0.5037	0.9250	0.6277	0.7169	0.8758	0.9418	0.5309	0.9544	0.6566	0.7864	0.7517
	1300	0.8570	0.9235	0.5213	0.9028	0.6279	0.7486	0.8547	0.9254	0.5518	0.9330	0.6569	0.7784	0.7635
	1400	0.8017	0.9335	0.6960	0.9240	0.6354	0.7719	0.7929	0.9357	0.6843	0.9535	0.6645	0.7884	0.7801
	1500	0.7580	0.9113	0.7403	0.9238	0.6798	0.7773	0.7168	0.9128	0.7163	0.9533	0.7145	0.7733	0.7753
	1600	0.6646	0.8429	0.7563	0.9233	0.7777	0.7724	0.5459	0.8401	0.7269	0.9529	0.8212	0.7224	0.7474
	1700	0.4361	0.6029	0.7446	0.9235	0.9092	0.7093	0.2111	0.5802	0.7168	0.9531	0.9473	0.5817	0.6455

Simulation Model Set No.: 12 Window size: Large Orientation: West Existence of obstruction: No

21-Feb-10 0900 1000 1100 1200 1200 1200 1200 12	$P_{VS,BD,R}$	Date T	$\mathbf{P}_{VX,BS,R}$	$\mathbf{P}_{FX,UD,R}$	$\mathbf{P}_{FX,UX,R}$	$\mathbf{P}_{FX,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{EX,UX,R}$	$\mathbf{P}_{ES,PG,R}$	P_{ES}	\mathbf{P}_{DP}
21-Feb-10	0.5973	21-Jan-10 0	0.7561	0.6696	0.9125	0.8775	0.7520	0.4278	0.7465	0.6637	0.9428	0.9285	0.6708	0.7114
1200 1300 1400 1500 1600 1700 1000 1100 1200 1300 1400 1500 1200	0.6823	10	0.8294	0.6607	0.9123	0.8348	0.7722	0.5780	0.8260	0.6576	0.9426	0.8912	0.7289	0.7506
21-Feb-10	0.7277	1	0.8634	0.6311	0.9132	0.8024	0.7752	0.6615	0.8625	0.6382	0.9435	0.8597	0.7549	0.7650
1400	0.7582	13	0.8843	0.6104	0.9139	0.7758	0.7754	0.7163	0.8846	0.6248	0.9441	0.8321	0.7703	0.7728
21-Feb-10	0.7906	1:	0.9065	0.5828	0.9152	0.7465	0.7744	0.7728	0.9080	0.6072	0.9454	0.8002	0.7848	0.7796
21-Feb-10	0.8139		0.9196	0.5826	0.9139	0.6950	0.7679	0.8109	0.9214	0.6070	0.9441	0.7383	0.7892	0.7785
21-Feb-10	0.7610		0.9152	0.5788	0.9096	0.7064	0.7554	0.8191	0.9168	0.5912	0.9399	0.7505	0.7899	0.7726
21-Feb-10	0.6994		0.8863	0.7341	0.8995	0.7616	0.7769	0.7553	0.8864	0.7121	0.9297	0.8085	0.7960	0.7864
21-Mar-10	0.6402		0.7585	0.7519	0.8839	0.8733	0.7738	0.4838	0.7488	0.7251	0.9085	0.9165	0.6975	0.7356
21-May-10 21-Jun-10 21-Jun	0.6263	21-Feb-10 09	0.7860	0.6708	0.9130	0.8609	0.7599	0.4771	0.7791	0.6642	0.9433	0.9146	0.6912	0.7256
21-Mar-10 1000 1100 1200	0.6953	16	0.8427	0.6496	0.9139	0.8210	0.7721	0.6017	0.8404	0.6501	0.9442	0.8783	0.7360	0.7540
21-Mar-10	0.7286	1	0.8678	0.6288	0.9154	0.7958	0.7742	0.6631	0.8673	0.6366	0.9456	0.8534	0.7550	0.7646
21-Mar-10	0.7529	1:	0.8850	0.5874	0.9168	0.7733	0.7696	0.7073	0.8855	0.6101	0.9469	0.8300	0.7642	0.7669
1400 1500 1600 1700 21-Mar-10 1000 1100 1200 1300 1600 1700 1500 1600 1700 1200 1300 1400 1200 1300 1400 1200 1300 1400 1200 1300 1400 1500 1600 1700 1500 1600 1700 1700 1700 1700 1700 1700 17	0.7909		0.9099	0.5763	0.9179	0.7387	0.7719	0.7744	0.9116	0.6030	0.9480	0.7920	0.7840	0.7780
21-Mar-10	0.8248		0.9259	0.5568	0.9159	0.6964	0.7677	0.8297	0.9281	0.5905	0.9460	0.7385	0.7938	0.7808
21-Mar-10 1600 1700 1000 1200 1000 1200	0.8224		0.9289	0.5927	0.9104	0.6962	0.7733	0.8486	0.9311	0.6097	0.9408	0.7418	0.8049	0.7891
21-Mar-10 0900 1100 1200 1300 1400 1500 1600 1700 1000 1000 1000 1000 1200 1300 1400 1500 1600 1700 21-May-10 0900 1000 1200 1300 1400 1500 1600 1700 221-Jun-10 0900 1700 1500 1600 1700 1200 1300 1400 1500 1600 1700 1200 1700	0.7889		0.9095	0.7051	0.9034	0.7542	0.7971	0.8055	0.9110	0.6882	0.9339	0.8075	0.8132	0.8051
1000 1100 1200 1300 1400 1500 1600 1700 1000 1100 1200 1300 1400 1500 1700 1200 1300 1400 1500 1700 1200 1300 1400 1500 1700 1700 1700 1700 1700 1700 17	0.7041		0.8319	0.7462	0.8927	0.8516	0.7960	0.6158	0.8286	0.7172	0.9201	0.9025	0.7543	0.7752
1000 1100 1200 1300 1400 1500 1600 1700 1000 1100 1200 1300 1400 1500 1700 1200 1300 1400 1500 1700 1200 1300 1400 1500 1700 1700 1700 1700 1700 1700 17	0.6507	21-Mar-10 0	0.8148	0.6633	0.9144	0.8416	0.7643	0.5202	0.8103	0.6594	0.9446	0.8974	0.7077	0.7360
21-Apr-10 21-Apr	0.6932		0.8484	0.6413	0.9159	0.8148	0.7695	0.5977	0.8465	0.6449	0.9460	0.8722	0.7337	0.7516
1200 1300 1400 1500 1600 1700 1000 1100 1200 1200 1200 1200 1200 1200 1200 1200 1300 1400 1200 1300 1400 1200 1300 1400 1500 1600 1700 1500 1600 1700 1200 1300 1500 1600 1700 1200	0.7058		0.8598	0.6197	0.9183	0.8034	0.7678	0.6210	0.8587	0.6308	0.9483	0.8610	0.7393	0.7535
21-Apr-10 0900 1500 1500 1500 1500 1500 1500 15	0.7172		0.8712	0.5644	0.9209	0.7891	0.7589	0.6420	0.8708	0.5954	0.9507	0.8466	0.7393	0.7491
1400 1500 1690 1700 21-Apr-10 9000 1000 1200 1300 1400 1500 1700 9000 1000 1100 1200 1300 1400 1700 1200 1300 1400 1700 1700 1700 1700 1700 1700 17	0.7605		0.9001	0.5340	0.9221	0.7506	0.7587	0.7212	0.9014	0.5760	0.9518	0.8055	0.7610	0.7599
1500 1600 1700 11-Apr-10 0900 1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500 1500 1700 1500 1700 1500 1700 1500 1700 1500 1700 17	0.8121		0.9257	0.5276	0.9192	0.6890	0.7575	0.8089	0.9279	0.5719	0.9491	0.7332	0.7821	0.7698
21-Apr-10 9000 1700 1100 1200 1300 1400 1500 1600 1700 1200 1300 1600 1700 1200 1300 1400 1700 1700 1200 1300 1400 1500 1600 1700 1700 1700 1700 1700 1700 17														
21-Apr-10 0900 1000 1100 1200 1300 1400 1500 1600 1700 21-May-10 0900 1000 1300 1400 1500 1700 1200 1300 1400 1500 1500 1600 1700 1700 1700 1200 1200 1200 1200 12	0.8176		0.9322	0.5654	0.9130	0.6804	0.7636	0.8459	0.9344	0.5909	0.9433	0.7224	0.7975	0.7805
2!-Apr-10 0900 1000 1100 1200 1300 1400 1500 1600 1700 1000 1100 1200 1300 1400 1500 1600 1700 1700 1000 1100 1200 1700 1000 1100 1200 1700 17	0.7936 0.7321		0.9212 0.8618	0.6907 0.7142	0.9047 0.8951	0.7284 0.8293	0.7906 0.7964	0.8253 0.6739	0.9230 0.8606	0.6779	0.9352 0.9236	0.7784 0.8826	0.8150 0.7721	0.8028 0.7842
1000 1100 1200 1300 1400 1500 1700 1000 1100 1200 1300 1400 1200 1300 1400 1500 1500 1600 1700 21-Jun-10 0900 1000 1100	0.6627		0.8326	0.6480	0.9167	0.8258	0.7634	0.5417	0.8295	0.6490	0.9469	0.8830	0.7141	0.7387
1100 1200 1300 1400 1500 1600 1700 1000 1000 1200 1300 1400 1500 1500 1700 1500 1700 1500 1700 17	0.6797		0.8477	0.6257	0.9186	0.8138	0.7631	0.5727	0.8457	0.6345	0.9486	0.8715	0.7229	0.7430
22-00 1300 1400 1500 1600 1700 21-May-10 0900 1000 1100 1500 1400 1500 1600 1700 0900 1000 1100 1100 1200	0.6640		0.8430	0.5793	0.9223	0.8162	0.7510	0.5442	0.8407	0.6048	0.9520	0.8713	0.7068	0.7289
1300 1400 1500 1600 1700 21-May-10 9900 1100 1200 1300 1400 1500 1600 1700 21-Jun-10 9900 1100 1100	0.6551		0.8510	0.5053	0.9223	0.8054	0.7310	0.5284	0.8492	0.5576	0.9560	0.8631	0.6918	0.7289
1400 1500 1600 1700 1600 1700 1000 1100 1200 1300 1400 1500 1700 9900 1000 1100 1200														
1500 1600 1700 1000 1000 1100 1200 1300 1400 1500 1600 1700 21-Jun-10 0900 1000 1100	0.7158		0.8882	0.4790	0.9266	0.7616	0.7389	0.6395	0.8889	0.5407	0.9558	0.8177	0.7259	0.7324
1600 1700 21-May-10 9900 1000 1100 1200 1300 1400 1500 1600 1700 9900 1000 1100 1200	0.7977		0.9230	0.4991	0.9212	0.7048	0.7528	0.7858	0.9252	0.5537	0.9510	0.7530	0.7737	0.7633
1700 1700 1000 1000 1100 1200 1300 1400 1500 1600 1700 1000 1000 1100 1200	0.8281		0.9321	0.5688	0.9142	0.6894	0.7696	0.8323	0.9344	0.5982	0.9444	0.7339	0.7963	0.7830
21-May-10 0900 1000 1100 1200 1300 1400 1500 1600 1700 221-Jun-10 0900 1100 1200	0.8138		0.9214	0.6637	0.9072	0.7326	0.7925	0.8094	0.9233	0.6593	0.9377	0.7845	0.8071	0.7998
1000 1100 1200 1300 1400 1500 1600 1700 21-Jun-10 0900 1000 1100	0.7339	1	0.8697	0.7007	0.9038	0.8265	0.7960	0.6740	0.8690	0.6840	0.9342	0.8835	0.7729	0.7844
1100 1200 1300 1400 1500 1600 1700 1-Jun-10 0900 1000 1100 1200	0.6615		0.8377	0.6624	0.9166	0.8241	0.7660	0.5396	0.8350	0.6585	0.9467	0.8813	0.7158	0.7409
1200 1300 1400 1500 1600 1700 21-Jun-10 0900 1000 1100	0.6647		0.8443	0.6350	0.9194	0.8178	0.7615	0.5453	0.8421	0.6406	0.9493	0.8753	0.7146	0.7381
1300 1400 1500 1600 1700 21-Jun-10 0900 1000 1100 1200	0.6335		0.8321	0.5756	0.9240	0.8262	0.7437	0.4899	0.8290	0.6025	0.9535	0.8833	0.6872	0.7154
1400 1500 1600 1700 21-Jun-10 0900 1000 1100 1200	0.6492		0.8682	0.4696	0.9297	0.7845	0.7235	0.5177	0.8676	0.5346	0.9585	0.8419	0.6830	0.7032
1500 1600 1700 21-Jun-10 0900 1000 1100 1200	0.6905	1.	0.8877	0.4534	0.9292	0.7609	0.7277	0.5927	0.8883	0.5240	0.9580	0.8169	0.7061	0.7169
1600 1700 21-Jun-10 0900 1000 1100 1200	0.7795	1-	0.9205	0.5304	0.9230	0.7023	0.7528	0.7546	0.9225	0.5738	0.9525	0.7493	0.7658	0.7593
1700 21-Jun-10 0900 1000 1100 1200	0.8281	1:	0.9362	0.5513	0.9159	0.6749	0.7632	0.8312	0.9386	0.5843	0.9460	0.7164	0.7909	0.7771
1700 21-Jun-10 0900 1000 1100 1200	0.8180	10	0.9278	0.6304	0.9086	0.7108	0.7827	0.8163	0.9299	0.6350	0.9390	0.7587	0.8012	0.7920
1000 1100 1200	0.7527	1	0.8862	0.6812	0.9033	0.7983	0.7920	0.7019	0.8864	0.6706	0.9336	0.8536	0.7775	0.7848
1100 1200	0.6593	1-Jun-10 09	0.8385	0.6659	0.9174	0.8215	0.7656	0.5357	0.8358	0.6607	0.9474	0.8790	0.7147	0.7401
1200	0.6657	10	0.8469	0.6421	0.9197	0.8140	0.7624	0.5473	0.8448	0.6451	0.9496	0.8717	0.7161	0.7392
1200	0.6367	1	0.8356	0.5820	0.9238	0.8221	0.7451	0.4959	0.8327	0.6066	0.9533	0.8793	0.6900	0.7175
	0.6386		0.8613	0.4822	0.9294	0.7917	0.7238	0.4992	0.8603	0.5427	0.9582	0.8494	0.6782	0.7010
	0.6801		0.8858	0.4521	0.9296	0.7602	0.7244	0.5736	0.8864	0.5231	0.9584	0.8163	0.6988	0.7116
1400	0.7694		0.9177	0.5265	0.9236	0.7149	0.7527	0.7370	0.9197	0.5712	0.9531	0.7651	0.7616	0.7571
1500	0.8244		0.9380	0.5574	0.9165	0.6791	0.7649	0.8296	0.9406	0.5909	0.9466	0.7224	0.7931	0.7790
1600	0.8190		0.9310	0.6350	0.9097	0.7092	0.7839	0.8196	0.9333	0.6405	0.9401	0.7224	0.8041	0.7940
1700	0.8190		0.9310	0.6929	0.9097	0.7895	0.7966	0.8196	0.9333	0.6405	0.9401	0.7579	0.7889	0.7940

Simulation Model Set No.: 12 Window size: Large Orientation: West Existence of obstruction: No

Date	Time	$\mathbf{P}_{FS,BD,R}$	$\mathbf{P}_{VS,BS,R}$	$\mathbf{P}_{VS,UD,R}$	$\mathbf{P}_{FS,US,R}$	$\mathbf{P}_{VS,PG,R}$	P_{FS}	$\mathbf{P}_{ES,BD,R}$	$\mathbf{P}_{ES,BS,R}$	$\mathbf{P}_{ES,UD,R}$	$\mathbf{P}_{ES,US,R}$	$\mathbf{P}_{ES,PG,R}$	\mathbf{P}_{ES}	P_{DP}
21-Jul-10	0900	0.6575	0.8347	0.6569	0.9170	0.8245	0.7637	0.5324	0.8318	0.6548	0.9471	0.8818	0.7121	0.7379
	1000	0.6681	0.8462	0.6330	0.9192	0.8152	0.7616	0.5517	0.8442	0.6393	0.9491	0.8728	0.7165	0.7390
	1100	0.6411	0.8355	0.5835	0.9233	0.8229	0.7466	0.5033	0.8327	0.6075	0.9528	0.8801	0.6929	0.7198
	1200	0.6284	0.8506	0.4886	0.9292	0.8035	0.7239	0.4813	0.8488	0.5469	0.9581	0.8613	0.6730	0.6985
	1300	0.6807	0.8865	0.4381	0.9302	0.7591	0.7219	0.5747	0.8871	0.5140	0.9589	0.8151	0.6973	0.7096
	1400	0.7708	0.9179	0.5145	0.9240	0.7149	0.7509	0.7398	0.9200	0.5635	0.9535	0.7652	0.7611	0.7560
	1500	0.8270	0.9380	0.5475	0.9166	0.6785	0.7636	0.8338	0.9406	0.5846	0.9467	0.7217	0.7932	0.7784
	1600	0.8294	0.9356	0.6373	0.9091	0.7034	0.7861	0.8372	0.9381	0.6420	0.9396	0.7514	0.8101	0.7981
	1700	0.7717	0.9009	0.6917	0.9045	0.7873	0.7983	0.7410	0.9021	0.6777	0.9350	0.8447	0.7938	0.7960
21-Aug-10	0900	0.6598	0.8306	0.6530	0.9165	0.8274	0.7636	0.5366	0.8274	0.6522	0.9466	0.8845	0.7128	0.7382
	1000	0.6785	0.8470	0.6282	0.9185	0.8143	0.7632	0.5706	0.8450	0.6361	0.9485	0.8720	0.7224	0.7428
	1100	0.6628	0.8423	0.5830	0.9222	0.8173	0.7515	0.5420	0.8399	0.6072	0.9518	0.8748	0.7066	0.7291
	1200	0.6480	0.8471	0.5098	0.9269	0.8094	0.7337	0.5156	0.8451	0.5605	0.9561	0.8672	0.6879	0.7108
	1300	0.7059	0.8841	0.4774	0.9270	0.7663	0.7367	0.6212	0.8846	0.5396	0.9562	0.8228	0.7194	0.7281
	1400	0.7891	0.9195	0.5069	0.9219	0.7106	0.7531	0.7711	0.9216	0.5586	0.9516	0.7598	0.7702	0.7617
	1500	0.8305	0.9343	0.5617	0.9148	0.6855	0.7683	0.8371	0.9367	0.5936	0.9450	0.7295	0.7968	0.7825
	1600	0.8222	0.9264	0.6493	0.9076	0.7231	0.7902	0.8235	0.9285	0.6498	0.9381	0.7738	0.8091	0.7997
	1700	0.7498	0.8811	0.7023	0.9034	0.8149	0.7989	0.7023	0.8811	0.6849	0.9338	0.8723	0.7830	0.7909
21-Sep-10	0900	0.6672	0.8279	0.6560	0.9147	0.8316	0.7666	0.5499	0.8244	0.6543	0.9449	0.8884	0.7179	0.7422
	1000	0.6993	0.8534	0.6353	0.9169	0.8089	0.7693	0.6090	0.8519	0.6407	0.9470	0.8668	0.7368	0.7530
	1100	0.7047	0.8604	0.6135	0.9196	0.8021	0.7663	0.6188	0.8594	0.6267	0.9495	0.8599	0.7378	0.7520
	1200	0.7197	0.8749	0.5457	0.9222	0.7834	0.7554	0.6467	0.8748	0.5835	0.9519	0.8409	0.7383	0.7468
	1300	0.7739	0.9070	0.5243	0.9220	0.7365	0.7576	0.7452	0.9087	0.5698	0.9517	0.7900	0.7666	0.7621
	1400	0.8281	0.9315	0.5239	0.9174	0.6892	0.7617	0.8354	0.9340	0.5695	0.9475	0.7347	0.7921	0.7769
	1500	0.8488	0.9380	0.6038	0.9102	0.6891	0.7816	0.8665	0.9406	0.6205	0.9406	0.7346	0.8136	0.7976
	1600	0.8221	0.9209	0.7047	0.9029	0.7538	0.8073	0.8264	0.9230	0.6863	0.9334	0.8092	0.8224	0.8149
	1700	0.7036	0.8396	0.7392	0.9004	0.8638	0.8003	0.6172	0.8370	0.7099	0.9309	0.9173	0.7585	0.7794
21-Oct-10	0900	0.6706	0.8218	0.6754	0.9130	0.8388	0.7718	0.5562	0.8178	0.6671	0.9433	0.8950	0.7225	0.7472
	1000	0.7172	0.8582	0.6510	0.9139	0.8083	0.7770	0.6422	0.8570	0.6510	0.9441	0.8658	0.7509	0.7639
	1100	0.7465	0.8797	0.6094	0.9162	0.7779	0.7723	0.6959	0.8799	0.6241	0.9464	0.8350	0.7629	0.7676
	1200	0.7769	0.8997	0.5692	0.9176	0.7515	0.7689	0.7506	0.9010	0.5984	0.9476	0.8068	0.7755	0.7722
	1300	0.8134	0.9218	0.5430	0.9171	0.7067	0.7646	0.8125	0.9240	0.5818	0.9472	0.7550	0.7884	0.7765
	1400	0.8452	0.9340	0.5573	0.9132	0.6828	0.7703	0.8594	0.9365	0.5882	0.9434	0.7266	0.8028	0.7865
	1500	0.8216	0.9289	0.6417	0.9064	0.7123	0.7860	0.8554	0.9313	0.6415	0.9369	0.7612	0.8167	0.8013
	1600	0.7730	0.8897	0.7370	0.8998	0.8019	0.8085	0.7574	0.8904	0.7090	0.9301	0.8587	0.8058	0.8072
	1700	0.5942	0.7286	0.7531	0.8923	0.9162	0.7702	0.4165	0.7164	0.7203	0.9198	0.9578	0.6760	0.7231
21-Nov-10	0900	0.6448	0.7964	0.6798	0.9103	0.8610	0.7677	0.5097	0.7904	0.6706	0.9406	0.9144	0.7056	0.7366
	1000	0.7049	0.8454	0.6732	0.9104	0.8266	0.7804	0.6194	0.8433	0.6660	0.9408	0.8828	0.7463	0.7634
	1100	0.7425	0.8801	0.6353	0.9166	0.7966	0.7813	0.6884	0.8802	0.6411	0.9466	0.8532	0.7670	0.7741
	1200	0.7761	0.8941	0.6105	0.9130	0.7648	0.7784	0.7482	0.8950	0.6249	0.9433	0.8200	0.7809	0.7797
	1300	0.8072	0.9200	0.5853	0.9160	0.6926	0.7663	0.8013	0.9221	0.6088	0.9460	0.7355	0.7860	0.7761
	1400	0.8473	0.9268	0.5083	0.9141	0.6594	0.7544	0.8430	0.9288	0.5403	0.9442	0.6937	0.7803	0.7674
	1500	0.6873	0.9145	0.5638	0.9071	0.6954	0.7301	0.8239	0.9160	0.5710	0.9376	0.7343	0.7842	0.7572
	1600	0.7213	0.8617	0.7622	0.8861	0.7810	0.7876	0.6996	0.8602	0.7344	0.9134	0.8239	0.7776	0.7826
	1700	0.7213	0.6291	0.7556	0.8813	0.9235	0.7331	0.3092	0.6083	0.7344	0.9057	0.9596	0.6209	0.7820
21-Dec-10	0900	0.6124	0.7653	0.6844	0.9094	0.8794	0.7602	0.4531	0.7565	0.6738	0.9398	0.9299	0.6833	0.7218
21 1500-10	1000	0.6874	0.8307	0.6787	0.9092	0.8405	0.7782	0.5873	0.8274	0.6699	0.9396	0.8958	0.7354	0.7568
	1100	0.7328	0.8641	0.6455	0.9092	0.8008	0.7785	0.6707	0.8632	0.6479	0.9390	0.8583	0.7597	0.7691
	1200	0.7681	0.8875	0.6252	0.9100	0.7760	0.7809	0.7342	0.8881	0.6344	0.9410	0.8320	0.7788	0.7799
	1300	0.8003	0.8873	0.6252	0.9117	0.7760	0.7809	0.7902	0.8881	0.6344	0.9421	0.8320	0.7788	0.7799
	1400	0.8550	0.9147	0.5947	0.9154	0.7307	0.7428	0.7902	0.9167	0.5312	0.9455	0.6505	0.7707	0.7567
	1500	0.8550	0.9265	0.5273	0.9144	0.6207	0.7428	0.8429	0.9286	0.5312	0.9444	0.6505	0.7784	0.7466
	1600	0.7229	0.8669	0.7615	0.8887	0.7705	0.7861	0.7164	0.8658	0.7338	0.9170	0.8123	0.7826	0.7843
	1700	0.5418	0.6615	0.7670	0.8790	0.9093	0.7448	0.3548	0.6433	0.7380	0.9030	0.9475	0.6420	0.6934

APPENDIX J: Conversions from P_{DP} to DPI for all simulation model sets

Conversion from P_{DP} to DPI for simulation model set 1

Simulation Model Set No.: 1 Window size: Small Orientation: North Existence of obstruction: Yes

Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	\mathbf{P}_{DP}	DPI	Date	Time	P_{DP}	DPI
21-Jan-10	0900	0.5867	3	21-Apr-10	0900	0.6084	3	21-Jul-10	0900	0.6054	3	21-Oct-10	0900	0.6181	3
	1000	0.6181	3		1000	0.6151	3		1000	0.6082	3		1000	0.6367	3
	1100	0.6342	3		1100	0.6034	3		1100	0.5947	3		1100	0.6389	3
	1200	0.6404	3		1200	0.5933	3		1200	0.5874	3		1200	0.6374	3
	1300	0.6425	3		1300	0.5952	3		1300	0.5871	3		1300	0.6395	3
	1400	0.6395	3		1400	0.6086	3		1400	0.5957	3		1400	0.6378	3
	1500	0.6241	3		1500	0.6157	3		1500	0.6099	3		1500	0.6232	3
	1600	0.6003	3		1600	0.6039	3		1600	0.6062	3		1600	0.5899	3
	1700	0.5561	3	21-May-10	1700	0.5738	3		1700	0.5829	3		1700	0.5457	3
1-Feb-10	0900	0.5991	3	21-May-10	0900	0.6100	3	21-Aug-10	0900	0.6087	3	21-Nov-10	0900	0.6114	3
	1000		3		1000	0.6086	3		1000	0.6157	3		1000	0.6401	3
	1100 0.6334	3		1100	0.5935	3		1100	0.6041	3		1100	0.6510	3	
		3		1200	0.5922	3		1200	0.5931	3		1200	0.6516	3	
	1300	0.6390	3		1300	0.5849	3		1300	0.5932	3		1300	0.6490	3
	1400	0.6381	3		1400	0.5983	3		1400	0.6059	3		1400	0.6423	3
	1500	0.6294	3		1500	0.6100	3		1500	0.6151	3		1500	0.6223	3
	1600	0.6067	3		1600	0.6030	3		1600	0.6064	3		1600	0.5870	3
	1700	0.5672	3		1700	0.5775	3		1700	0.5779	3		1700	0.5384	3
1-Mar-10	0900	0.6063	3	21-Jun-10	0900	0.6028	3	21-Sep-10	0900	0.6144	3	21-Dec-10	0900	0.6018	3
	1000	0.6232	3		1000	0.6042	3		1000	0.6258	3		1000	0.6348	3
	1100	0.6250	3		1100	0.5912	3		1100	0.6226	3		1100	0.6494	3
	1200	0.6176	3		1200	0.5869	3		1200	0.6144	3		1200	0.6519	3
	1300	0.6188	3		1300	0.5826	3		1300	0.6168	3		1300	0.6516	3
	1400	0.6251	3		1400	0.5939	3		1400	0.6256	3		1400	0.6471	3
	1500	0.6253	3		1500	0.6074	3		1500	0.6254	3		1500	0.6293	3
	1600	0.6093	3		1600	0.6029	3		1600	0.6038	3		1600	0.5922	3
	1700	0.5726	3		1700	0.5803	3		1700	0.5638	3		1700	0.5431	3

Conversion from P_{DP} to DPI for simulation model set 2

Simulation Model Set No.: 2 Window size: Small Orientation: East Existence of obstruction: Yes

Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DP
21-Jan-10	0900	0.5579	3	21-Apr-10	0900	0.5781	3	21-Jul-10	0900	0.5795	3	21-Oct-10	0900	0.5749	3
	1000	0.5767	3		1000	0.5838	3		1000	0.5827	3		1000	0.5889	3
	1100	0.5900	3		1100	0.5806	3		1100	0.5774	3		1100	0.5968	3
	1200	0.6055	3		1200	0.5799	3		1200	0.5798	3		1200	0.6066	3
	1300	0.6141	3		1300	0.5938	3		1300	0.5906	3		1300	0.6213	3
	1400	0.6253	3		1400	0.6181	3		1400	0.6134	3		1400	0.6333	3
	1500	0.6211	3		1500	0.6333	3		1500	0.6348	3		1500	0.6284	3
	1600	0.6029	3		1600	0.6258	3		1600	0.6351	3		1600	0.5980	3
	1700	0.5603	3		1700	0.5908	3		1700	0.6073	3		1700	0.5515	3
21-Feb-10	0900	0.5647	3	21-May-10	0900	0.5813	3	21-Aug-10	0900	0.5780	3	21-Nov-10	0900	0.5679	3
	1000 0.5814 3 1100 0.5918 3 1200 0.6026 3			1000	0.5812	3		1000	0.5837	3		1000	0.5836	3	
		3		1100	0.5763	3		1100	0.5805	3		1100	0.5959	3	
		3		1200	0.5873	3		1200	0.5784	3		1200	0.6086	3	
	1300	0.6082	3		1300	0.5916	3		1300	0.5912	3		1300	0.6231	3
	1400	0.6271	3		1400	0.6167	3		1400	0.6152	3		1400	0.6305	3
	1500	0.6304	3		1500	0.6357	3		1500	0.6344	3		1500	0.6225	3
	1600	0.6146	3		1600	0.6312	3		1600	0.6292	3		1600	0.5935	3
	1700	0.5752	3		1700	0.5999	3		1700	0.5954	3		1700	0.5427	3
21-Mar-10	0900	0.5716	3	21-Jun-10	0900	0.5809	3	21-Sep-10	0900	0.5761	3	21-Dec-10	0900	0.5604	3
	1000	0.5832	3		1000	0.5830	3		1000	0.5845	3		1000	0.5776	3
	1100	0.5868	3		1100	0.5773	3		1100	0.5870	3		1100	0.5912	3
	1200	0.5946	3		1200	0.5835	3		1200	0.5913	3		1200	0.6091	3
	1300 0.6044 3 1400 0.6237 3 1500 0.6345 3	3		1300	0.5907	3		1300	0.6073	3		1300	0.6195	3	
		0.6237	3		1400	0.6129	3		1400	0.6282	3		1400	0.6291	3
		0.6345	3		1500	0.6361	3		1500	0.6365	3		1500	0.6239	3
	1600	0.6248	3		1600	0.6328	3		1600	0.6201	3		1600	0.5948	3
	1700	0.5871	3		1700	0.6047	3		1700	0.5752	3		1700	0.5468	3

Simulation Model Set No.: 3 Window size: Small Orientation: South Existence of obstruction: Yes

Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI
21-Jan-10	0900	0.5613	3	21-Apr-10	0900	0.6015	3	21-Jul-10	0900	0.6091	3	21-Oct-10	0900	0.5828	3
	1000	0.5750	3		1000	0.6014	3		1000	0.5218	3		1000	0.5877	3
	1100	0.5808	3		1100	0.5864	3		1100	0.5919	3		1100	0.5845	3
	1200	0.5797	3		1200	0.5746	3		1200	0.5811	3		1200	0.5808	3
	1300	0.5798	3		1300	0.5761	3		1300	0.5812	3		1300	0.5823	3
	1400	0.5814	3		1400	0.5905	3		1400	0.5924	3		1400	0.5877	3
	1500	0.5759	3		1500	0.6025	3		1500	0.6094	3		1500	0.5850	3
	1600	0.5643	3		1600	0.5978	3		1600	0.6108	3		1600	0.5691	3
	1700	0.5419	3		1700	0.5731	3		1700	0.5891	3		1700	0.5406	3
21-Feb-10	0900	0.5732	3	21-May-10	0900	0.6128	3	21-Aug-10	0900	0.6030	3	21-Nov-10	0900	0.5695	3
	1000	0.5856	3		1000	0.6081	3		1000	0.6025	3		1000	0.5785	3
	1100 0.5863 1200 0.5817	0.5863	3		1100	0.5883	3		1100	0.5870	3		1100	0.5806	3
		0.5817	3		1200	0.5859	3		1200	0.5747	3		1200	0.5795	3
	1300	0.5806	3		1300	0.5800	3		1300	0.5760	3		1300	0.5799	3
	1400	0.5849	3		1400	0.5950	3		1400	0.5895	3		1400	0.5786	3
	1500	0.5869	3		1500	0.6097	3		1500	0.6030	3		1500	0.5728	3
	1600	0.5768	3		1600	0.6064	3		1600	0.6010	3		1600	0.5566	3
	1700	0.5543	3		1700	0.5825	3		1700	0.5771	3		1700	0.5321	3
21-Mar-10	0900	0.5885	3	21-Jun-10	0900	0.6104	3	21-Sep-10	0900	0.5927	3	21-Dec-10	0900	0.5617	3
	1000	0.5941	3		1000	0.6088	3		1000	0.5948	3		1000	0.5735	3
	1100	0.5875	3		1100	0.5922	3		1100	0.5853	3		1100	0.5777	3
	1200	0.5795	3		1200	0.5873	3		1200	0.5765	3		1200	0.5781	3
	1300	0.5787	3		1300	0.5831	3		1300	0.5786	3		1300	0.5782	3
	1400	0.5864	3		1400	0.5956	3		1400	0.5898	3		1400	0.5769	3
	1500	0.5934	3		1500	0.6121	3		1500	0.5978	3		1500	0.5705	3
	1600	0.5893	3		1600	0.6101	3		1600	0.5876	3		1600	0.5560	3
	1700	0.5657	3		1700	0.5890	3		1700	0.5590	3		1700	0.5333	3

Conversion from P_{DP} to DPI for simulation model set 4

Simulation Model Set No.: 4 Window size: Small Orientation: West Existence of obstruction: Yes

Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	\mathbf{P}_{DP}	DPI
21-Jan-10	0900	0.5909	3	21-Apr-10	0900	0.6317	3	21-Jul-10	0900	0.6349	3	21-Oct-10	0900	0.6262	3
	1000	0.6173	3		1000	0.6329	3		1000	0.6338	3		1000	0.6376	3
	1100	0.6513	3		1100	0.6113	3		1100	0.6115	3		1100	0.6261	3
	1200	0.6157	3		1200	0.5882	3		1200	0.5904	3		1200	0.6112	3
	1300	0.6092	3		1300	0.5784	3		1300	0.5781	3		1300	0.5994	3
	1400	0.5936	3		1400	0.5805	3		1400	0.5764	3		1400	0.5907	3
	1500	0.5804	3		1500	0.5825	3		1500	0.5823	3		1500	0.5796	3
	1600	0.5619	3		1600	0.5761	3		1600	0.5806	3		1600	0.5598	3
	1700	0.5386	3		1700	0.5561	3		1700	0.5639	3		1700	0.5346	3
21-Feb-10	0900	0.6087	3	21-May-10	0900	0.6418	3	21-Aug-10	0900	0.6332	3	21-Nov-10	0900	0.6153	3
	1000	0.6286	3		1000	0.6350	3		1000	0.6354	3		1000	0.6335	3
	1100	0.6284	3		1100	0.6082	3		1100	0.6136	3		1100	0.6299	3
	1200	0.6162	3		1200	0.5944	3		1200	0.5884	3		1200	0.6127	3
	1300	0.6050	3		1300	0.5759	3		1300	0.5787	3		1300	0.6012	3
	1400	0.5940	3		1400	0.5790	3		1400	0.5796	3		1400	0.5874	3
	1500	0.5861	3		1500	0.5822	3		1500	0.5825	3		1500	0.5740	3
	1600	0.5706	3		1600	0.5770	3		1600	0.5769	3		1600	0.5532	3
	1700	0.5472	3		1700	0.5602	3		1700	0.5583	3		1700	0.5296	3
21-Mar-10	0900	0.6237	3	21-Jun-10	0900	0.6332	3	21-Sep-10	0900	0.6322	3	21-Dec-10	0900	0.6054	3
	1000	0.6352	3		1000	0.6301	3		1000	0.6361	3		1000	0.6277	3
	1100	0.6255	3		1100	0.6073	3		1100	0.6206	3		1100	0.6292	3
	1200	0.6043	3		1200	0.5920	3		1200	0.5977	3		1200	0.6152	3
	1300	0.5930	3		1300	0.5767	3		1300	0.5883	3		1300	0.6135	3
	1400	0.6288	3		1400	0.5770	3		1400	0.5874	3		1400	0.5896	3
	1500	0.5841	3		1500	0.5827	3		1500	0.5840	3		1500	0.5744	3
	1600	0.5732	3		1600	0.5790	3		1600	0.5704	3		1600	0.5545	3
	1700	0.5526	3		1700	0.5638	3		1700	0.5468	3		1700	0.5311	3

Simulation Model Set No.: 5 Window size: Large Orientation: North Existence of obstruction: Yes

Date	Time	P_{DP}	DPI	Date	Time	\mathbf{P}_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI
21-Jan-10	0900	0.6623	3	21-Apr-10	0900	0.6967	4	21-Jul-10	0900	0.6922	4	21-Oct-10	0900	0.7089	4
	1000	0.7101	4		1000	0.7059	4		1000	0.6970	4		1000	0.7363	4
	1100	0.7319	4		1100	0.6909	4		1100	0.6789	4		1100	0.7394	4
	1200	0.7405	4		1200	0.6755	4		1200	0.6687	3		1200	0.7375	4
	1300	0.7446	4		1300	0.6783	4		1300	0.6678	3		1300	0.7397	4
	1400	0.7393	4		1400	0.6986	4		1400	0.6808	4		1400	0.7377	4
	1500	0.7209	4		1500	0.7076	4		1500	0.7017	4		1500	0.7180	4
	1600	0.6822	4		1600	0.6921	4		1600	0.6967	4		1600	0.6689	3
	1700	0.6079	3		1700	0.6437	3		1700	0.6602	3		1700	0.5908	3
21-Feb-10	0900	0.6805	4	21-May-10	0900	0.6990	4	21-Aug-10	0900	0.6971	4	21-Nov-10	0900	0.7005	4
	1000	0.7182	4		1000	0.6980	4		1000	0.7072	4		1000	0.7391	4
	1100	0.7318	4		1100	0.6760	4		1100	0.6915	4		1100	0.7539	4
	1200	0.7343	4		1200	0.6779	4		1200	0.6746	3		1200	0.7563	4
	1300	0.7392	4		1300	0.6659	3		1300	0.6753	4		1300	0.7552	4
	1400	0.7381	4		1400	0.6843	4		1400	0.6951	4		1400	0.7432	4
	1500	0.7268	4		1500	0.7013	4		1500	0.7085	4		1500	0.7162	4
	1600	0.6937	4		1600	0.6917	4		1600	0.6958	4		1600	0.6652	3
	1700	0.6307	3		1700	0.6494	3		1700	0.6508	3		1700	0.5740	3
21-Mar-10	0900	0.6927	4	21-Jun-10	0900	0.6902	4	21-Sep-10	0900	0.7051	4	21-Dec-10	0900	0.6844	4
	1000	0.7206	4		1000	0.6918	4		1000	0.7215	4		1000	0.7318	4
	1100	0.7192	4		1100	0.6735	3		1100	0.7169	4		1100	0.7514	4
	1200	0.7098	4		1200	0.6700	3		1200	0.7059	4		1200	0.7562	4
	1300	0.7103	4		1300	0.6630	3		1300	0.7097	4		1300	0.7567	4
	1400	0.7206	4		1400	0.6790	4		1400	0.7218	4		1400	0.7498	4
	1500	0.7204	4		1500	0.6992	4		1500	0.7208	4		1500	0.7250	4
	1600	0.6979	4		1600	0.6920	4		1600	0.6912	4		1600	0.6700	3
	1700	0.6425	3		1700	0.6569	3		1700	0.6263	3		1700	0.5832	3

Conversion from P_{DP} to DPI for simulation model set 6

Simulation Model Set No.: 6 Window size: Large Orientation: East Existence of obstruction: Yes

Date	Time	P_{DP}	DPI	Date	Time	\mathbf{P}_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI
21-Jan-10	0900	0.6161	3	21-Apr-10	0900	0.6529	3	21-Jul-10	0900	0.6553	3	21-Oct-10	0900	0.6475	3
	1000	0.6497	3		1000	0.6608	3		1000	0.6610	3		1000	0.6693	3
	1100	0.6706	3		1100	0.6569	3		1100	0.6529	3		1100	0.6822	4
	1200	0.6939	4		1200	0.6562	3		1200	0.6576	3		1200	0.6954	4
	1300	0.7044	4		1300	0.6739	3		1300	0.6717	3		1300	0.7156	4
	1400	0.7175	4		1400	0.7117	4		1400	0.7025	4		1400	0.7316	4
	1500	0.7143	4		1500	0.7330	4		1500	0.7360	4		1500	0.7264	4
	1600	0.6861	4		1600	0.7219	4		1600	0.7373	4		1600	0.6817	4
	1700	0.6147	3		1700	0.6695	3		1700	0.6960	4		1700	0.5994	3
21-Feb-10	0900	0.6292	3	21-May-10	0900	0.6592	3	21-Aug-10	0900	0.6517	3	21-Nov-10	0900	0.6343	3
	1000	0.6589	3		1000	0.6602	3		1000	0.6610	3		1000	0.6603	3
	1200 0.68	0.6741	3		1100	0.6506	3		1100	0.6568	3		1100	0.6799	4
		0.6889	4		1200	0.6692	3		1200	0.6540	3		1200	0.6987	4
	1300	0.7042	4		1300	0.6719	3		1300	0.6709	3		1300	0.7167	4
	1400	0.7236	4		1400	0.7078	4		1400	0.7071	4		1400	0.7274	4
	1500	0.7277	4		1500	0.7366	4		1500	0.7339	4		1500	0.7153	4
	1600	0.7051	4		1600	0.7301	4		1600	0.7273	4		1600	0.6701	3
	1700	0.6432	3		1700	0.6844	4		1700	0.6785	4		1700	0.5802	3
21-Mar-10	0900	0.6426	3	21-Jun-10	0900	0.6566	3	21-Sep-10	0900	0.6505	3	21-Dec-10	0900	0.6209	3
	1000	0.6619	3		1000	0.6610	3		1000	0.6654	3		1000	0.6519	3
	1100	0.6680	3		1100	0.6523	3		1100	0.6683	3		1100	0.6727	3
	1200	0.6753	4		1200	0.6637	3		1200	0.6743	3		1200	0.7013	4
	1300	0.6902	4		1300	0.6709	3		1300	0.6956	4		1300	0.7124	4
	1300 1400	0.7189	4		1400	0.7024	4		1400	0.7256	4		1400	0.7259	4
	1500	0.7341	4		1500	0.7363	4		1500	0.7387	4		1500	0.7176	4
	1600	0.7206	4		1600	0.7327	4		1600	0.7153	4		1600	0.6736	3
	1700	0.6637	3		1700	0.6932	4		1700	0.6455	3		1700	0.5875	3

Simulation Model Set No.: 7 Window size: Large Orientation: South Existence of obstruction: Yes

Date	Time	\mathbf{P}_{DP}	DPI												
21-Jan-10	0900	0.6183	3	21-Apr-10	0900	0.6840	4	21-Jul-10	0900	0.6955	4	21-Oct-10	0900	0.6583	3
	1000	0.6456	3		1000	0.6854	4		1000	0.6939	4		1000	0.6676	3
	1100	0.6523	3		1100	0.6629	3		1100	0.6701	3		1100	0.6606	3
	1200	0.6513	3		1200	0.6453	3		1200	0.6566	3		1200	0.6541	3
	1300	0.6513	3		1300	0.6465	3		1300	0.6553	3		1300	0.6565	3
	1400	0.6509	3		1400	0.6688	3		1400	0.6702	3		1400	0.6646	3
	1500	0.6460	3		1500	0.6848	4		1500	0.6947	4		1500	0.6600	3
	1600	0.6235	3		1600	0.6767	4		1600	0.6952	4		1600	0.6309	3
	1700	0.5789	3		1700	0.6364	3		1700	0.6618	3		1700	0.5735	3
21-Feb-10	0900	0.6407	3	21-May-10	0900	0.7006	4	21-Aug-10	0900	0.6864	4	21-Nov-10	0900	0.6347	3
	1000	0.6625	3		1000	0.6935	4		1000	0.6879	4		1000	0.6511	3
	1100	0.6630	3	11 12	1100	0.6662	3		1100	0.6651	3		1100	0.6518	3
	1200	0.6552	3		1200	0.6639	3		1200	0.6453	3		1200	0.6507	3
	1300	0.6532	3		1300	0.6520	3		1300	0.6467	3		1300	0.6513	3
	1400	0.6607	3		1400	0.6732	3		1400	0.6667	3		1400	0.6508	3
	1500	0.6621	3		1500	0.6938	4		1500	0.6856	4		1500	0.6393	3
	1600	0.6464	3		1600	0.6891	4		1600	0.6812	4		1600	0.6097	3
	1700	0.6035	3		1700	0.6519	3		1700	0.6430	3		1700	0.5572	3
21-Mar-10	0900	0.6604	3	21-Jun-10	0900	0.6968	4	21-Sep-10	0900	0.6717	3	21-Dec-10	0900	0.6197	3
	1000	0.6756	4		1000	0.6943	4		1000	0.6782	4		1000	0.6425	3
	1100	0.6656	3		1100	0.6702	3		1100	0.6624	3		1100	0.6473	3
	1200	0.6508	3		1200	0.6645	3		1200	0.6474	3		1200	0.6485	3
	1300	0.6497	3	1	1300	0.6574	3		1300	0.6513	3		1300	0.6484	3
	1400	0.6633	3		1400	0.6745	3		1400	0.6684	3		1400	0.6464	3
	1500	0.6728	3		1500	0.6984	4		1500	0.6786	4		1500	0.6369	3
	1600	0.6618	3		1600	0.6952	4		1600	0.6615	3		1600	0.6086	3
	1700	0.6252	3		1700	0.6621	3		1700	0.6099	3		1700	0.5597	3

Conversion from P_{DP} to DPI for simulation model set 8

Simulation Model Set No.: 8 Window size: Large Orientation: West Existence of obstruction: Yes

Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DP
21-Jan-10	0900	0.6700	3	21-Apr-10	0900	0.7323	4	21-Jul-10	0900	0.7379	4	21-Oct-10	0900	0.7271	4
	1000	0.7110	4		1000	0.7346	4		1000	0.7351	4		1000	0.7410	4
	1100	0.7208	4		1100	0.7026	4		1100	0.7019	4		1100	0.7253	4
	1200	0.7091	4		1200	0.6691	3		1200	0.6737	3		1200	0.7044	4
	1300	0.7007	4		1300	0.6548	3		1300	0.6565	3		1300	0.6898	4
	1400	0.6796	4		1400	0.6605	3		1400	0.6543	3		1400	0.6775	4
	1500	0.6578	3		1500	0.6627	3		1500	0.6623	3		1500	0.6574	3
	1600	0.6245	3		1600	0.6484	3		1600	0.6565	3		1600	0.6214	3
	1700	0.5761	3		1700	0.6133	3		1700	0.6284	3		1700	0.5677	3
21-Feb-10	0900	0.6987	4	21-May-10	0900	0.7474	4	21-Aug-10	0900	0.7360	4	21-Nov-10	0900	0.7081	4
	1000	0.7288	4	4 11	1000	0.7379	4		1000	0.7378	4		1000	0.7346	4
	1100	0.7275	4		1100	0.6971	4		1100	0.7056	4		1100	0.7292	4
	1200	0.7107	4		1200	0.6806	4		1200	0.6700	3		1200	0.7060	4
	1300	0.6984	4		1300	0.6522	3		1300	0.6764	4		1300	0.6752	4
	1400	0.6815	4		1400	0.6554	3		1400	0.6587	3		1400	0.6708	3
	1500	0.6673	3		1500	0.6623	3		1500	0.6633	3		1500	0.6459	3
	1600	0.6400	3		1600	0.6521	3		1600	0.6515	3		1600	0.6075	3
	1700	0.5946	3		1700	0.6216	3		1700	0.6176	3		1700	0.5539	3
21-Mar-10	0900	0.7209	4	21-Jun-10	0900	0.7355	4	21-Sep-10	0900	0.7348	4	21-Dec-10	0900	0.6902	4
	1000	0.7366	4		1000	0.7306	4		1000	0.7398	4		1000	0.7267	4
	1100	0.7232	4		1100	0.6961	4		1100	0.7168	4		1100	0.7278	4
	1200	0.6930	4		1200	0.6766	4		1200	0.6852	4		1200	0.7101	4
	1300	1300 0.6778 4 1400 0.6709 3 1500 0.6645 3		1300	0.6546	3		1300	0.6722	3		1300	0.7082	4	
	1400			1400	0.6550	3		1400	0.6708	3		1400	0.6727	3	
	1500			1500	0.6633	3		1500	0.6641	3		1500	0.6476	3	
	1600	0.6457	3		1600	0.6558	3		1600	0.6406	3		1600	0.6099	3
	1700	0.6062	3		1700	0.6273	3		1700	0.5938	3		1700	0.5585	3

Simulation Model Set No.: 9 Window size: Large Orientation: North Existence of obstruction: No

Date	Time	P_{DP}	DPI	Date	Time	\mathbf{P}_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI
21-Jan-10	0900	0.7175	4	21-Apr-10	0900	0.7718	4	21-Jul-10	0900	0.7804	4	21-Oct-10	0900	0.7543	4
	1000	0.7424	4		1000	0.7669	4		1000	0.7719	4		1000	0.7593	4
	1100	0.7492	4		1100	0.7405	4		1100	0.7452	4		1100	0.7497	4
	1200	0.7504	4		1200	0.7081	4		1200	0.7077	4		1200	0.7377	4
	1300	0.7532	4		1300	0.7182	4		1300	0.7084	4		1300	0.7546	4
	1400	0.7583	4		1400	0.7595	4		1400	0.7555	4		1400	0.7699	4
	1500	0.7589	4		1500	0.7786	4		1500	0.7828	4		1500	0.7735	4
	1600	0.7399	4		1600	0.7836	4		1600	0.7927	4		1600	0.7502	4
	1700	0.6689	3		1700	0.7567	4		1700	0.7799	4		1700	0.6638	3
21-Feb-10	0900	0.7412	4	21-May-10	0900	0.7827	4	21-Aug-10	0900	0.7742	4	21-Nov-10	0900	0.7372	4
	1000	0.7555	4		1000	0.7710	4		1000	0.7691	4		1000	0.7538	4
	1100	0.7540	4		1100	0.7393	4		1100	0.7420	4		1100	0.7531	4
	1200	1200 0.7473 4	4		1200	0.7066	4		1200	0.7090	4		1200	0.7524	4
	1300	0.7495	4		1300	0.7144	4		1300	0.7147	4		1300	0.7568	4
	1400	0.7625	4		1400	0.7600	4		1400	0.7566	4		1400	0.7623	4
	1500	0.7708	4		1500	0.7833	4		1500	0.7791	4		1500	0.7566	4
	1600	0.7628	4		1600	0.7885	4		1600	0.7859	4		1600	0.7229	4
	1700	0.7158	4		1700	0.7700	4		1700	0.7636	4		1700	0.6170	3
21-Mar-10	0900	0.7600	4	21-Jun-10	0900	0.7801	4	21-Sep-10	0900	0.7669	4	21-Dec-10	0900	0.7218	4
	1000	0.7630	4		1000	0.7714	4		1000	0.7625	4		1000	0.7473	4
	1100	0.7524	4		1100	0.7455	4		1100	0.7452	4		1100	0.7517	4
	1200	0.7346	4		1200	0.7125	4		1200	0.7284	4		1200	0.7530	4
	1300	0.7365	4		1300	0.7153	4		1300	0.7386	4		1300	0.7551	4
	1400	0.7612	4		1400	0.7589	4		1400	0.7668	4		1400	0.7595	4
	1500	0.7742	4		1500	0.7843	4		1500	0.7804	4		1500	0.7540	4
	1600	0.7752	4		1600	0.7888	4		1600	0.7781	4		1600	0.7211	4
	1700	0.7432	4		1700	0.7804	4		1700	0.7382	4		1700	0.6263	3

Conversion from P_{DP} to DPI for simulation model set 10

Simulation Model Set No.: 10 Window size: Large Orientation: East Existence of obstruction: No

Date	Time	\mathbf{P}_{DP}	DPI												
21-Jan-10	0900	0.7593	4	21-Apr-10	0900	0.7941	4	21-Jul-10	0900	0.8001	4	21-Oct-10	0900	0.7933	4
	1000	0.7767	4		1000	0.7773	4		1000	0.7782	4		1000	0.7883	4
	1100	0.7764	4		1100	0.7572	4		1100	0.7558	4		1100	0.7785	4
	1200	0.7755	4		1200	0.7193	4		1200	0.7123	4		1200	0.7653	4
	1300	0.7652	4		1300	0.7097	4		1300	0.6960	4		1300	0.7579	4
	1400	0.7577	4		1400	0.7309	4		1400	0.7207	4		1400	0.7510	4
	1500	0.7421	4		1500	0.7445	4		1500	0.7433	4		1500	0.7402	4
	1600	0.7107	4		1600	0.7349	4		1600	0.7443	4		1600	0.7013	4
	1700	0.6375	3		1700	0.6967	4		1700	0.7183	4		1700	0.6187	3
21-Feb-10	0900	0.7850	4	21-May-10	0900	0.7943	4	21-Aug-10	0900	0.7992	4	21-Nov-10	0900	0.7779	4
	1000	0.7866	4		1000	0.7757	4		1000	0.7797	4		1000	0.7784	4
	1100	0.7801	4		1100	0.7491	4		1100	0.7588	4		1100	0.7731	4
	1200	0.7711	4		1200	0.7098	4		1200	0.7191	4		1200	0.7747	4
	1300	0.7621	4		1300	0.6986	4		1300	0.7085	4		1300	0.7654	4
	1400	0.7545	4		1400	0.7278	4		1400	0.7294	4		1400	0.7544	4
	1500	0.7469	4		1500	0.7447	4		1500	0.7452	4		1500	0.7357	4
	1600	0.7232	4		1600	0.7410	4		1600	0.7369	4		1600	0.6923	4
	1700	0.6665	3		1700	0.7105	4		1700	0.7029	4		1700	0.5960	3
21-Mar-10	0900	0.7867	4	21-Jun-10	0900	0.7952	4	21-Sep-10	0900	0.7941	4	21-Dec-10	0900	0.7688	4
	1000	0.7805	4		1000	0.7753	4		1000	0.7844	4		1000	0.7761	4
	1100	0.7710	4		1100	0.7520	4		1100	0.7678	4		1100	0.7737	4
	1200	0.7543	4		1200	0.7124	4		1200	0.7452	4		1200	0.7789	4
	1300	0.7402	4		1300	0.6982	4		1300	0.7351	4		1300	0.7671	4
	1400	0.7435	4		1400	0.7240	4		1400	0.7432	4		1400	0.7576	4
	1500	0.7465	4		1500	0.7444	4		1500	0.7457	4		1500	0.7395	4
	1600	0.7313	4		1600	0.7447	4		1600	0.7249	4		1600	0.6956	4
	1700	0.6846	4		1700	0.7196	4		1700	0.6659	3		1700	0.6014	3

Conversion from P_{DP} to DPI for simulation model set 11

Simulation Model Set No.: 11 Window size: Large Orientation: South Existence of obstruction: No

Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	\mathbf{P}_{DP}	DPI
21-Jan-10	0900	0.7581	4	21-Apr-10	0900	0.7771	4	21-Jul-10	0900	0.7742	4	21-Oct-10	0900	0.7870	4
	1000	0.7721	4		1000	0.7732	4		1000	0.7684	4		1000	0.7837	4
	1100	0.7718	4		1100	0.7535	4		1100	0.7446	4		1100	0.7811	4
	1200	0.7655	4		1200	0.7235	4		1200	0.7044	4		1200	0.7749	4
	1300	0.7729	4		1300	0.7253	4		1300	0.6987	4		1300	0.7767	4
	1400	0.7806	4		1400	0.7542	4		1400	0.7376	4		1400	0.7845	4
	1500	0.7782	4		1500	0.7676	4		1500	0.7600	4		1500	0.7845	4
	1600	0.7603	4		1600	0.7643	4		1600	0.7641	4		1600	0.7593	4
	1700	0.6856	4		1700	0.7274	4		1700	0.7403	4		1700	0.6632	3
21-Feb-10	0900	0.7731	4	21-May-10	0900	0.7773	4	21-Aug-10	0900	0.7795	4	21-Nov-10	0900	0.7646	4
	1000	0.7836	4		1000	0.7661	4		1000	0.7748	4		1000	0.7528	4
	1100	0.7779	7779 4		1100	0.7393	4		1100	0.7541	4		1100	0.7470	4
	1200	0.7690			1200	0.7052	4		1200	0.7229	4		1200	0.7586	4
	1300	0.7679	4		1300	0.7038	4		1300	0.7220	4		1300	0.7704	4
	1400	0.7796	4		1400	0.7421	4		1400	0.7506	4		1400	0.7785	4
	1500	0.7808	4		1500	0.7618	4		1500	0.7673	4		1500	0.7619	4
	1600	0.7731	4		1600	0.7606	4		1600	0.7667	4		1600	0.7404	4
	1700	0.7203	4		1700	0.7307	4		1700	0.7344	4		1700	0.6301	3
21-Mar-10	0900	0.7724	4	21-Jun-10	0900	0.7712	4	21-Sep-10	0900	0.7803	4	21-Dec-10	0900	0.7620	4
	1000	0.7749	4		1000	0.7643	4		1000	0.7789	4		1000	0.7475	4
	1100	0.7672	4		1100	0.7386	4		1100	0.7658	4		1100	0.7486	4
	1200	0.7570	4		1200	0.7019	4		1200	0.7547	4		1200	0.7517	4
	1200 0.7570 4 1300 0.7566 4	4		1300	0.6968	4		1300	0.7625	4		1300	0.7635	4	
	1400	0.7669	4		1400	0.7360	4		1400	0.7624	4		1400	0.7801	4
	1500	0.7741	4		1500	0.7225	4		1500	0.7799	4		1500	0.7753	4
	1600	0.7702	4		1600	0.7597	4		1600	0.7707	4		1600	0.7474	4
	1700	0.7300	4		1700	0.7338	4		1700	0.7125	4		1700	0.6455	3

Conversion from P_{DP} to DPI for simulation model set 12

Simulation Model Set No.: 12 Window size: Large Orientation: West Existence of obstruction: No

Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DPI	Date	Time	P_{DP}	DP
21-Jan-10	0900	0.7114	4	21-Apr-10	0900	0.7387	4	21-Jul-10	0900	0.7379	4	21-Oct-10	0900	0.7472	4
	1000	0.7506	4		1000	0.7430	4		1000	0.7390	4		1000	0.7639	4
	1100	0.7650	4		1100	0.7289	4		1100	0.7198	4		1100	0.7676	4
	1200	0.7728	4		1200	0.7130	4		1200	0.6985	4		1200	0.7722	4
	1300	0.7796	4		1300	0.7324	4		1300	0.7096	4		1300	0.7765	4
	1400	0.7785	4		1400	0.7633	4		1400	0.7560	4		1400	0.7865	4
	1500	0.7726	4		1500	0.7830	4		1500	0.7784	4		1500	0.8013	4
	1600	0.7864	4		1600	0.7998	4		1600	0.7981	4		1600	0.8072	4
	1700	0.7356	4		1700	0.7844	4		1700	0.7960	4		1700	0.7231	4
21-Feb-10	0900	0.7256	4	21-May-10	0900	0.7409	4	21-Aug-10	0900	0.7382	4	21-Nov-10	0900	0.7366	4
	1100	0.7540	4		1000	0.7381	4		1000	0.7428	4		1000	0.7634	4
		0.7646	4		1100	0.7154	4		1100	0.7291	4		1100	0.7741	4
	1200	0.7669	4		1200	0.7032	4		1200	0.7108	4		1200	0.7797	4
	1300	0.7780	4		1300	0.7169	4		1300	0.7281	4		1300	0.7761	4
	1400	0.7808	4		1400	0.7593	4		1400	0.7617	4		1400	0.7674	4
	1500	0.7891	4		1500	0.7771	4		1500	0.7825	4		1500	0.7572	4
	1600	0.8051	4		1600	0.7920	4		1600	0.7997	4		1600	0.7826	4
	1700	0.7752	4		1700	0.7848	4		1700	0.7909	4		1700	0.6770	4
21-Mar-10	0900	0.7360	4	21-Jun-10	0900	0.7401	4	21-Sep-10	0900	0.7422	4	21-Dec-10	0900	0.7218	4
	1000	0.7516	4		1000	0.7392	4		1000	0.7530	4		1000	0.7568	4
	1100	0.7535	4		1100	0.7175	4		1100	0.7520	4		1100	0.7691	4
	1200	0.7491	4		1200	0.7010	4		1200	0.7468	4		1200	0.7799	4
	1300	0.7599	4		1300	0.7116	4		1300	0.7621	4		1300	0.7881	4
	1400	0.7698	4		1400	0.7571	4		1400	0.7769	4		1400	0.7567	4
	1500	0.7805	4		1500	0.7790	4		1500	0.7976	4		1500	0.7466	4
	1600	0.8028	4		1600	0.7940	4		1600	0.8149	4		1600	0.7843	4
	1700	0.7842	4		1700	0.7927	4		1700	0.7794	4		1700	0.6934	4

APPENDIX K: Possible electric lighting energy saving amount in all simulation model sets

Possible electric lighting energy saving amount in simulation model set 1

Simulation Model Set No.: 1 Window size: Small Orientation: North Existence of obstruction: Yes

Date	Time	P_{ES}	ES												
21-Jan-10	0900	0.5213	8.86	21-Apr-10	0900	0.5406	9.19	21-Jul-10	0900	0.5376	9.14	21-Oct-10	0900	0.5500	9.35
	1000	0.5510	9.37		1000	0.5469	9.30		1000	0.5402	9.18		1000	0.5687	9.67
	1100	0.5673	9.64		1100	0.5359	9.11		1100	0.5280	8.98		1100	0.5707	9.70
	1200	0.5737	9.75		1200	0.5266	8.95		1200	0.5212	8.86		1200	0.5692	9.68
	1300	0.5758	9.79		1300	0.5281	8.98		1300	0.5208	8.85		1300	0.5713	9.71
	1400	0.5725	9.73		1400	0.5407	9.19		1400	0.5287	8.99		1400	0.5696	9.68
	1500	0.5568	9.47		1500	0.5474	9.30		1500	0.5417	9.21		1500	0.5550	9.43
	1600	0.5339	9.08		1600	0.5363	9.12		1600	0.5382	9.15		1600	0.5231	8.89
	1700	0.4944	8.40		1700	0.5089	8.65		1700	0.5168	8.79		1700	0.4856	8.26
21-Feb-10	0900	0.5320	9.04	21-May-10	0900	0.5419	9.21	21-Aug-10	0900	0.5409	9.20	21-Nov-10	0900	0.5446	9.26
	1000	0.5562	9.46		1000	0.5407	9.19		1000	0.5475	9.31		1000	0.5734	9.75
	1100	0.5657	9.62		1100	0.5266	8.95		1100	0.5366	9.12		1100	0.5849	9.94
	1200	0.5673	9.64		1200	0.5258	8.94		1200	0.5263	8.95		1200	0.5855	9.95
	1300	0.5712	9.71		1300	0.5192	8.83		1300	0.5265	8.95		1300	0.5825	9.90
	1400	0.5703	9.70		1400	0.5310	9.03		1400	0.5381	9.15		1400	0.5758	9.79
	1500	0.5614	9.54		1500	0.5418	9.21		1500	0.5468	9.30		1500	0.5554	9.44
	1600	0.5390	9.16		1600	0.5354	9.10		1600	0.5385	9.15		1600	0.5220	8.87
	1700	0.5035	8.56		1700	0.5123	8.71		1700	0.5124	8.71		1700	0.4800	8.16
21-Mar-10	0900	0.5387	9.16	21-Jun-10	0900	0.5354	9.10	21-Sep-10	0900	0.5464	9.29	21-Dec-10	0900	0.5356	9.10
	1000	0.5551	9.44		1000	0.5366	9.12		1000	0.5574	9.47		1000	0.5682	9.66
	1100	0.5568	9.47		1100	0.5248	8.92		1100	0.5543	9.42		1100	0.5834	9.92
	1200	0.5497	9.34		1200	0.5211	8.86		1200	0.5464	9.29		1200	0.5861	9.96
	1300	0.5506	9.36		1300	0.5173	8.79		1300	0.5486	9.33		1300	0.5857	9.96
	1400	0.5569	9.47		1400	0.5270	8.96		1400	0.5571	9.47		1400	0.5810	9.88
	1500	0.5570	9.47		1500	0.5394	9.17		1500	0.5567	9.46		1500	0.5627	9.57
	1600	0.5413	9.20		1600	0.5352	9.10		1600	0.5361	9.11		1600	0.5266	8.95
	1700	0.5080	8.64		1700	0.5148	8.75		1700	0.5003	8.51		1700	0.4839	8.23

 $ES_t = 997 \text{ W/m}^2$ About 54% of electric lighting energy consumption could be saved throughout the year.

Possible electric lighting energy saving amount in simulation model set 2

Simulation Model Set No.: 2 Window size: Small Orientation: East Existence of obstruction: Yes

Date	Time	\mathbf{P}_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	\mathbf{P}_{ES}	ES
21-Jan-10	0900	0.4955	8.42	21-Apr-10	0900	0.5126	8.71	21-Jul-10	0900	0.5140	8.74	21-Oct-10	0900	0.5100	8.67
	1000	0.5115	8.70		1000	0.5177	8.80		1000	0.5168	8.79		1000	0.5221	8.88
	1100	0.5233	8.90		1100	0.5150	8.75		1100	0.5124	8.71		1100	0.5295	9.00
	1200	0.5379	9.14		1200	0.5149	8.75		1200	0.5149	8.75		1200	0.5388	9.16
	1300	0.5458	9.28		1300	0.5269	8.96		1300	0.5241	8.91		1300	0.5528	9.40
	1400	0.5572	9.47		1400	0.5500	9.35		1400	0.5451	9.27		1400	0.5650	9.61
	1500	0.5539	9.42		1500	0.5656	9.62		1500	0.5669	9.64		1500	0.5607	9.53
	1600	0.5368	9.13		1600	0.5583	9.49		1600	0.5676	9.65		1600	0.5316	9.04
	1700	0.4985	8.47		1700	0.5247	8.92		1700	0.5401	9.18		1700	0.4907	8.34
21-Feb-10	0900	0.5012	8.52	21-May-10	0900	0.5153	8.76	21-Aug-10	0900	0.5126	8.71	21-Nov-10	0900	0.5039	8.57
	1000	0.5156	8.76		1000	0.5159	8.77		1000	0.5177	8.80		1000	0.5175	8.80
	1100	0.5250	8.92		1100	0.5114	8.69		1100	0.5149	8.75		1100	0.5287	8.99
	1200	0.5351	9.10		1200	0.5213	8.86		1200	0.5135	8.73		1200	0.5407	9.19
	1300	0.5401	9.18		1300	0.5250	8.93		1300	0.5246	8.92		1300	0.5546	9.43
	1400	0.5587	9.50		1400	0.5487	9.33		1400	0.5471	9.30		1400	0.5630	9.57
	1500	0.5627	9.57		1500	0.5681	9.66		1500	0.5666	9.63		1500	0.5560	9.45
	1600	0.5473	9.30		1600	0.5639	9.59		1600	0.5617	9.55		1600	0.5285	8.98
	1700	0.5113	8.69		1700	0.5335	9.07		1700	0.5290	8.99		1700	0.4838	8.23
21-Mar-10	0900	0.5072	8.62	21-Jun-10	0900	0.5150	8.76	21-Sep-10	0900	0.5113	8.69	21-Dec-10	0900	0.4975	8.46
	1000	0.5175	8.80		1000	0.5170	8.79		1000	0.5188	8.82		1000	0.5123	8.71
	1100	0.5206	8.85		1100	0.5123	8.71		1100	0.5207	8.85		1100	0.5247	8.92
	1200	0.5285	8.98		1200	0.5180	8.81		1200	0.5248	8.92		1200	0.5411	9.20
	1300	0.5370	9.13		1300	0.5241	8.91		1300	0.5394	9.17		1300	0.5510	9.37
	1400	0.5556	9.45		1400	0.5448	9.26		1400	0.5598	9.52		1400	0.5614	9.54
	1500	0.5671	9.64		1500	0.5681	9.66		1500	0.5688	9.67		1500	0.5575	9.48
	1600	0.5576	9.48		1600	0.5652	9.61		1600	0.5525	9.39		1600	0.5297	9.01
	1700	0.5218	8.87		1700	0.5377	9.14		1700	0.5107	8.68		1700	0.4872	8.28

Simulation Model Set No.: 3 Window size: Small Orientation: South Existence of obstruction: Yes

Date	Time	\mathbf{P}_{ES}	ES												
21-Jan-10	0900	0.4984	8.47	21-Apr-10	0900	0.5338	9.08	21-Jul-10	0900	0.5412	9.20	21-Oct-10	0900	0.5169	8.79
	1000	0.5103	8.68		1000	0.5338	9.07		1000	0.4821	8.20		1000	0.5214	8.86
	1100	0.5150	8.76		1100	0.5204	8.85		1100	0.5252	8.93		1100	0.5184	8.81
	1200	0.5143	8.74		1200	0.5103	8.68		1200	0.5162	8.78		1200	0.5152	8.76
	1300	0.5144	8.74		1300	0.5117	8.70		1300	0.5162	8.78		1300	0.5168	8.79
	1400	0.5161	8.77		1400	0.5243	8.91		1400	0.5257	8.94		1400	0.5213	8.86
	1500	0.5111	8.69		1500	0.5349	9.09		1500	0.5414	9.20		1500	0.5191	8.83
	1600	0.5010	8.52		1600	0.5307	9.02		1600	0.5427	9.23		1600	0.5051	8.59
	1700	0.4829	8.21		1700	0.5086	8.65		1700	0.5227	8.89		1700	0.4818	8.19
21-Feb-10	0900	0.5085	8.64	21-May-10	0900	0.5443	9.25	21-Aug-10	0900	0.5352	9.10	21-Nov-10	0900	0.5053	8.59
	1000	0.5194	8.83		1000	0.5399	9.18		1000	0.5349	9.09		1000	0.5132	8.72
	1100	0.5200	8.84		1100	0.5220	8.87		1100	0.5212	8.86		1100	0.5149	8.75
	1200	0.5162	8.78		1200	0.5205	8.85		1200	0.5103	8.68		1200	0.5142	8.74
	1300	0.5152	8.76		1300	0.5151	8.76		1300	0.5116	8.70		1300	0.5145	8.75
	1400	0.5190	8.82		1400	0.5281	8.98		1400	0.5232	8.89		1400	0.5135	8.73
	1500	0.5207	8.85		1500	0.5416	9.21		1500	0.5354	9.10		1500	0.5083	8.64
	1600	0.5121	8.71		1600	0.5386	9.16		1600	0.5336	9.07		1600	0.4945	8.41
	1700	0.4928	8.38		1700	0.5170	8.79		1700	0.5121	8.71		1700	0.4756	8.09
21-Mar-10	0900	0.5219	8.87	21-Jun-10	0900	0.5425	9.22	21-Sep-10	0900	0.5258	8.94	21-Dec-10	0900	0.4988	8.48
	1000	0.5270	8.96		1000	0.5409	9.19		1000	0.5279	8.97		1000	0.5088	8.65
	1100	0.5212	8.86		1100	0.5256	8.94		1100	0.5192	8.83		1100	0.5124	8.71
	1200	0.5144	8.74		1200	0.5213	8.86		1200	0.5116	8.70		1200	0.5129	8.72
	1300	0.5137	8.73		1300	0.5176	8.80		1300	0.5137	8.73		1300	0.5129	8.72
	1400	0.5205	8.85		1400	0.5287	8.99		1400	0.5236	8.90		1400	0.5117	8.70
	1500	0.5267	8.95		1500	0.5440	9.25		1500	0.5305	9.02		1500	0.5063	8.61
	1600	0.5227	8.89		1600	0.5422	9.22		1600	0.5214	8.86		1600	0.4941	8.40
	1700	0.5021	8.54		1700	0.5227	8.89		1700	0.4967	8.44		1700	0.4764	8.10

Possible electric lighting energy saving amount in simulation model set 4

Simulation Model Set No.: 4 Window size: Small Orientation: West

Existence of	obstruction:	Yes													
Date	Time	\mathbf{P}_{ES}	ES	Date	Time	\mathbf{P}_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	P_{ES}	ES
21-Jan-10	0900	0.5252	8.93	21-Apr-10	0900	0.5641	9.59	21-Jul-10	0900	0.5672	9.64	21-Oct-10	0900	0.5585	9.49
	1000	0.5500	9.35		1000	0.5649	9.60		1000	0.5657	9.62		1000	0.5695	9.68
	1100	0.5842	9.93		1100	0.5430	9.23		1100	0.5432	9.23		1100	0.5573	9.47
	1200	0.5472	9.30		1200	0.5214	8.86		1200	0.5232	8.89		1200	0.5426	9.22
	1300	0.5410	9.20		1300	0.5128	8.72		1300	0.5125	8.71		1300	0.5315	9.04
	1400	0.5262	8.95		1400	0.5149	8.75		1400	0.5114	8.69		1400	0.5236	8.90
	1500	0.5143	8.74		1500	0.5165	8.78		1500	0.5164	8.78		1500	0.5135	8.73
	1600	0.4985	8.47		1600	0.5106	8.68		1600	0.5144	8.75		1600	0.4968	8.45
	1700	0.4800	8.16		1700	0.4938	8.39		1700	0.5004	8.51		1700	0.4770	8.11
21-Feb-10	0900	0.5416	9.21	21-May-10	0900	0.5742	9.76	21-Aug-10	0900	0.5655	9.61	21-Nov-10	0900	0.5485	9.32
	1100	0.5608	9.53		1000	0.5667	9.63		1000	0.5673	9.64		1000	0.5661	9.62
		0.5599	9.52		1100	0.5401	9.18		1100	0.5453	9.27		1100	0.5613	9.54
	1200	0.5477	9.31		1200	0.5271	8.96		1200	0.5217	8.87		1200	0.5442	9.25
	1300	0.5368	9.13		1300	0.5110	8.69		1300	0.5130	8.72		1300	0.5331	9.06
	1400	0.5267	8.95		1400	0.5133	8.73		1400	0.5140	8.74		1400	0.5207	8.85
	1500	0.5194	8.83		1500	0.5163	8.78		1500	0.5166	8.78		1500	0.5086	8.65
	1600	0.5058	8.60		1600	0.5116	8.70		1600	0.5114	8.69		1600	0.4913	8.35
	1700	0.4865	8.27		1700	0.4972	8.45		1700	0.4956	8.43		1700	0.4734	8.05
21-Mar-10	0900	0.5566	9.46	21-Jun-10	0900	0.5657	9.62	21-Sep-10	0900	0.5647	9.60	21-Dec-10	0900	0.5392	9.17
	1000	0.5676	9.65		1000	0.5620	9.55		1000	0.5679	9.65		1000	0.5607	9.53
	1100	0.5570	9.47		1100	0.5394	9.17		1100	0.5521	9.39		1100	0.5607	9.53
	1200	0.5362	9.12		1200	0.5251	8.93		1200	0.5303	9.01		1200	0.5465	9.29
	1300	0.5260	8.94		1300	0.5116	8.70		1300	0.5217	8.87		1300	0.5452	9.27
	1400	0.5643	9.59		1400	0.5120	8.70		1400	0.5205	8.85		1400	0.5224	8.88
	1500	0.5179	8.80		1500	0.5167	8.78		1500	0.5175	8.80		1500	0.5090	8.65
	1600	0.5083	8.64		1600	0.5135	8.73		1600	0.5058	8.60		1600	0.4923	8.37
	1700	0.4909	8.34		1700	0.5002	8.50		1700	0.4862	8.27		1700	0.4745	8.07

 $ES_t = 972 \text{ W/m}^2$ About 53% of electric lighting energy consumption could be saved throughout the year

Simulation Model Set No.: 5 Window size: Large Orientation: North Existence of obstruction: Yes

Date	Time	\mathbf{P}_{ES}	ES	Date	Time	\mathbf{P}_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	\mathbf{P}_{ES}	ES
21-Jan-10	0900	0.5946	10.11	21-Apr-10	0900	0.6328	10.76	21-Jul-10	0900	0.6274	10.67	21-Oct-10	0900	0.6475	11.01
	1000	0.6501	11.05		1000	0.6432	10.93		1000	0.6325	10.75		1000	0.6814	11.58
	1100	0.6775	11.52		1100	0.6249	10.62		1100	0.6110	10.39		1100	0.6851	11.65
	1200	0.6886	11.71		1200	0.6070	10.32		1200	0.5993	10.19		1200	0.6826	11.60
	1300	0.6935	11.79		1300	0.6102	10.37		1300	0.5982	10.17		1300	0.6856	11.66
	1400	0.6867	11.67		1400	0.6340	10.78		1400	0.6131	10.42		1400	0.6832	11.61
	1500	0.6633	11.28		1500	0.6456	10.97		1500	0.6380	10.85		1500	0.6583	11.19
	1600	0.6172	10.49		1600	0.6275	10.67		1600	0.6326	10.75		1600	0.6006	10.21
	1700	0.5391	9.16		1700	0.5739	9.76		1700	0.5915	10.06		1700	0.5220	8.87
21-Feb-10	0900	0.6141	10.44	21-May-10	0900	0.6350	10.79	21-Aug-10	0900	0.6331	10.76	21-Nov-10	0900	0.6385	10.85
	1000	0.6590	11.20		1000	0.6334	10.77		1000	0.6447	10.96		1000	0.6865	11.67
	1100	0.6763	11.50		1100	0.6076	10.33		1100	0.6256	10.64		1100	0.7058	12.00
	1200	0.6794	11.55		1200	0.6092	10.36		1200	0.6059	10.30		1200	0.7087	12.05
	1300	0.6855	11.65		1300	0.5963	10.14		1300	0.6068	10.32		1300	0.6994	11.89
	1400	0.6841	11.63		1400	0.6173	10.49		1400	0.6298	10.71		1400	0.6921	11.76
	1500	0.6697	11.39		1500	0.6376	10.84		1500	0.6465	10.99		1500	0.6579	11.18
	1600	0.6293	10.70		1600	0.6269	10.66		1600	0.6317	10.74		1600	0.5970	10.15
	1700	0.5606	9.53		1700	0.5806	9.87		1700	0.5813	9.88		1700	0.5080	8.64
21-Mar-10	0900	0.6284	10.68	21-Jun-10	0900	0.6251	10.63	21-Sep-10	0900	0.6427	10.93	21-Dec-10	0900	0.6200	10.54
	1000	0.6570	11.17		1000	0.6264	10.65		1000	0.6625	11.26		1000	0.6777	11.52
	1100	0.6599	11.22		1100	0.6049	10.28		1100	0.6564	11.16		1100	0.7028	11.95
	1200	0.6481	11.02		1200	0.6005	10.21		1200	0.6429	10.93		1200	0.7089	12.05
	1300	0.6485	11.02		1300	0.5931	10.08		1300	0.6474	11.01		1300	0.7093	12.06
	1400	0.6617	11.25		1400	0.6111	10.39		1400	0.6627	11.27		1400	0.7006	11.91
	1500	0.6618	11.25		1500	0.6352	10.80		1500	0.6617	11.25		1500	0.6691	11.38
	1600	0.6343	10.78		1600	0.6273	10.66		1600	0.6260	10.64		1600	0.6043	10.27
	1700	0.5725	9.73		1700	0.5880	10.00		1700	0.5557	9.45		1700	0.5162	8.78

 $ES_t = 1,167 \text{ W/m}^2$ About 64% of electric lighting energy consumption could be saved throughout the year.

Possible electric lighting energy saving amount in simulation model set 6

Simulation Model Set No.: 6 Window size: Large Orientation: East Existence of obstruction: Yes

Date	Time	\mathbf{P}_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	P_{ES}	ES
21-Jan-10	0900	0.5457	9.28	21-Apr-10	0900	0.5830	9.91	21-Jul-10	0900	0.5855	9.95	21-Oct-10	0900	0.5774	9.82
	1000	0.5798	9.86		1000	0.5913	10.05		1000	0.5914	10.05		1000	0.6008	10.21
	1100	0.6025	10.24		1100	0.5867	9.97		1100	0.5826	9.90		1100	0.6149	10.45
	1200	0.6283	10.68		1200	0.5858	9.96		1200	0.5871	9.98		1200	0.6302	10.71
	1300	0.6416	10.91		1300	0.6051	10.29		1300	0.6023	10.24		1300	0.6549	11.13
	1400	0.6584	11.19		1400	0.6500	11.05		1400	0.6385	10.85		1400	0.6754	11.48
	1500	0.6551	11.14		1500	0.6779	11.52		1500	0.6808	11.57		1500	0.6688	11.37
	1600	0.6221	10.58		1600	0.6640	11.29		1600	0.6826	11.60		1600	0.6148	10.45
	1700	0.5461	9.28		1700	0.6015	10.22		1700	0.6316	10.74		1700	0.5299	9.01
21-Feb-10	0900	0.5586	9.50	21-May-10	0900	0.5898	10.03	21-Aug-10	0900	0.5818	9.89	21-Nov-10	0900	0.5638	9.59
	1000	0.5895	10.02		1000	0.5906	10.04		1000	0.5915	10.06		1000	0.5913	10.0
	1100	0.6060	10.30		1100	0.5802	9.86		1100	0.5866	9.97		1100	0.6129	10.4
	1200	0.6223	10.58		1200	0.5994	10.19		1200	0.5835	9.92		1200	0.6340	10.78
	1300	0.6408	10.89		1300	0.6028	10.25		1300	0.6017	10.23		1300	0.6568	11.1
	1400	0.6653	11.31		1400	0.6455	10.97		1400	0.6444	10.96		1400	0.6713	11.4
	1500	0.6710	11.41		1500	0.6824	11.60		1500	0.6788	11.54		1500	0.6571	11.1
	1600	0.6431	10.93		1600	0.6744	11.46		1600	0.6706	11.40		1600	0.6051	10.29
	1700	0.5735	9.75		1700	0.6187	10.52		1700	0.6115	10.40		1700	0.5134	8.73
21-Mar-10	0900	0.5722	9.73	21-Jun-10	0900	0.5870	9.98	21-Sep-10	0900	0.5805	9.87	21-Dec-10	0900	0.5504	9.36
	1000	0.5926	10.07		1000	0.5914	10.05		1000	0.5964	10.14		1000	0.5822	9.90
	1100	0.5990	10.18		1100	0.5820	9.89		1100	0.5992	10.19		1100	0.6050	10.29
	1200	0.6066	10.31		1200	0.5935	10.09		1200	0.6055	10.29		1200	0.6364	10.82
	1300	0.6239	10.61		1300	0.6015	10.23		1300	0.6301	10.71		1300	0.6513	11.0
	1400	0.6595	11.21		1400	0.6391	10.86		1400	0.6674	11.35		1400	0.6691	11.3
	1500	0.6795	11.55		1500	0.6814	11.58		1500	0.6845	11.64		1500	0.6600	11.2
	1600	0.6625	11.26		1600	0.6771	11.51		1600	0.6546	11.13		1600	0.6089	10.3
	1700	0.5956	10.12		1700	0.6284	10.68		1700	0.5747	9.77		1700	0.5205	8.85

 $ES_i = 1,133 \text{ W/m}^2$ About 62% of electric lighting energy consumption could be saved throughout the year.

Simulation Model Set No.: 7 Window size: Large Orientation: South Existence of obstruction: Yes

Date	Time	\mathbf{P}_{ES}	ES												
21-Jan-10	0900	0.5480	9.32	21-Apr-10	0900	0.6183	10.51	21-Jul-10	0900	0.6315	10.74	21-Oct-10	0900	0.5893	10.02
	1000	0.5759	9.79		1000	0.6192	10.53		1000	0.6291	10.70		1000	0.5994	10.19
	1100	0.5827	9.91		1100	0.5931	10.08		1100	0.6010	10.22		1100	0.5915	10.06
	1200	0.5818	9.89		1200	0.5745	9.77		1200	0.5861	9.96		1200	0.5845	9.94
	1300	0.5818	9.89		1300	0.5759	9.79		1300	0.5847	9.94		1300	0.5870	9.98
	1400	0.5815	9.89		1400	0.6000	10.20		1400	0.6013	10.22		1400	0.5963	10.14
	1500	0.5764	9.80		1500	0.6188	10.52		1500	0.6299	10.71		1500	0.5914	10.05
	1600	0.5534	9.41		1600	0.6098	10.37		1600	0.6309	10.73		1600	0.5606	9.53
	1700	0.5113	8.69		1700	0.5658	9.62		1700	0.5928	10.08		1700	0.5071	8.62
21-Feb-10	0900	0.5705	9.70	21-May-10	0900	0.6373	10.83	21-Aug-10	0900	0.6209	10.55	21-Nov-10	0900	0.5642	9.59
	1000	0.5941	10.10		1000	0.6284	10.68		1000	0.6222	10.58		1000	0.5815	9.89
	1100	0.5945	10.11		1100	0.5967	10.14		1100	0.5956	10.12		1100	0.5825	9.90
	1200	0.5855	9.95		1200	0.5936	10.09		1200	0.5742	9.76		1200	0.5810	9.88
	1300	0.5834	9.92		1300	0.5813	9.88		1300	0.5761	9.79		1300	0.5816	9.89
	1400	0.5918	10.06		1400	0.6047	10.28		1400	0.5976	10.16		1400	0.5814	9.88
	1500	0.5937	10.09		1500	0.6291	10.69		1500	0.6196	10.53		1500	0.5695	9.68
	1600	0.5768	9.81		1600	0.6241	10.61		1600	0.6148	10.45		1600	0.5398	9.18
	1700	0.5337	9.07		1700	0.5822	9.90		1700	0.5728	9.74		1700	0.4935	8.39
21-Mar-10	0900	0.5936	10.09	21-Jun-10	0900	0.6332	10.76	21-Sep-10	0900	0.6054	10.29	21-Dec-10	0900	0.5490	9.33
	1000	0.6085	10.34		1000	0.6295	10.70		1000	0.6111	10.39		1000	0.5726	9.73
	1100	0.5966	10.14		1100	0.6013	10.22		1100	0.5933	10.09		1100	0.5775	9.82
	1200	0.5807	9.87		1200	0.5945	10.11		1200	0.5771	9.81		1200	0.5790	9.84
	1300	0.5796	9.85		1300	0.5869	9.98		1300	0.5809	9.88		1300	0.5788	9.84
	1400	0.5943	10.10		1400	0.6061	10.30		1400	0.6000	10.20		1400	0.5765	9.80
	1500	0.6053	10.29		1500	0.6344	10.78		1500	0.6119	10.40		1500	0.5668	9.64
	1600	0.5946	10.11		1600	0.6311	10.73		1600	0.5929	10.08		1600	0.5388	9.16
	1700	0.5548	9.43		1700	0.5931	10.08		1700	0.5396	9.17		1700	0.4953	8.42

 $ES_t = 1,079 \text{ W/m}^2$ About 59% of electric lighting energy consumption could be saved throughout the year.

Possible electric lighting energy saving amount in simulation model set 8

Simulation Model Set No.: 8 Window size: Large Orientation: West Existence of obstruction: Yes

Date	Time	P_{ES}	ES	Date	Time	\mathbf{P}_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	P_{ES}	ES
21-Jan-10	0900	0.6033	10.26	21-Apr-10	0900	0.6775	11.52	21-Jul-10	0900	0.6842	11.63	21-Oct-10	0900	0.6699	11.39
	1000	0.6514	11.07		1000	0.6798	11.56		1000	0.6803	11.57		1000	0.6877	11.69
	1100	0.6628	11.27		1100	0.6390	10.86		1100	0.6381	10.85		1100	0.6673	11.34
	1200	0.6478	11.01		1200	0.5996	10.19		1200	0.6045	10.28		1200	0.6409	10.90
	1300	0.6365	10.82		1300	0.5842	9.93		1300	0.5859	9.96		1300	0.6237	10.60
	1400	0.6124	10.41		1400	0.5906	10.04		1400	0.5838	9.92		1400	0.6096	10.36
	1500	0.5882	10.00		1500	0.5932	10.09		1500	0.5928	10.08		1500	0.5878	9.99
	1600	0.5537	9.41		1600	0.5779	9.82		1600	0.5864	9.97		1600	0.5507	9.36
	1700	0.5087	8.65		1700	0.5427	9.23		1700	0.5576	9.48		1700	0.5015	8.53
21-Feb-10	0900	0.6358	10.81	21-May-10	0900	0.6962	11.83	21-Aug-10	0900	0.6818	11.59	21-Nov-10	0900	0.6480	11.02
	1000	0.6728	11.44		1000	0.6836	11.62		1000	0.6838	11.63		1000	0.6807	11.57
	1100	0.6709	11.41		1100	0.6323	10.75		1100	0.6427	10.93		1100	0.6731	11.44
	1200	0.6492	11.04		1200	0.6122	10.41		1200	0.6006	10.21		1200	0.6436	10.94
	1300	0.6334	10.77		1300	0.5815	9.89		1300	0.6079	10.33		1300	0.6141	10.44
	1400	0.6144	10.44		1400	0.5849	9.94		1400	0.5883	10.00		1400	0.6027	10.25
	1500	0.5983	10.17		1500	0.5928	10.08		1500	0.5938	10.09		1500	0.5756	9.78
	1600	0.5695	9.68		1600	0.5818	9.89		1600	0.5813	9.88		1600	0.5369	9.13
	1700	0.5251	8.93		1700	0.5508	9.36		1700	0.5469	9.30		1700	0.4904	8.34
21-Mar-10	0900	0.6637	11.28	21-Jun-10	0900	0.6814	11.58	21-Sep-10	0900	0.6802	11.56	21-Dec-10	0900	0.6270	10.66
	1000	0.6832	11.61		1000	0.6747	11.47		1000	0.6862	11.67		1000	0.6712	11.41
	1100	0.6652	11.31		1100	0.6311	10.73		1100	0.6565	11.16		1100	0.6716	11.42
	1200	0.6275	10.67		1200	0.6077	10.33		1200	0.6180	10.51		1200	0.6486	11.03
	1300	0.6094	10.36		1300	0.5839	9.93		1300	0.6033	10.26		1300	0.6442	10.95
	1400	0.6021	10.24		1400	0.5847	9.94		1400	0.6020	10.23		1400	0.6047	10.28
	1500	0.5953	10.12		1500	0.5939	10.10		1500	0.5947	10.11		1500	0.5773	9.81
	1600	0.5753	9.78		1600	0.5860	9.96		1600	0.5701	9.69		1600	0.5394	9.17
	1700	0.5360	9.11		1700	0.5566	9.46		1700	0.5245	8.92		1700	0.4943	8.40

 $ES_{T} = 1,125 \text{ W/m}^2$ About 61% of electric lighting energy consumption could be saved throughout the year.

Simulation Model Set No.: 9 Window size: Large Orientation: North Existence of obstruction: No

Date	Time	\mathbf{P}_{ES}	ES												
21-Jan-10	0900	0.6721	11.43	21-Apr-10	0900	0.7571	12.87	21-Jul-10	0900	0.7707	13.10	21-Oct-10	0900	0.7259	12.34
	1000	0.7105	12.08		1000	0.7525	12.79		1000	0.7624	12.96		1000	0.7355	12.50
	1100	0.7222	12.28		1100	0.7176	12.20		1100	0.7269	12.36		1100	0.7254	12.33
	1200	0.7252	12.33		1200	0.6777	11.52		1200	0.6841	11.63		1200	0.7134	12.13
	1300	0.7304	12.42		1300	0.6935	11.79		1300	0.6885	11.71		1300	0.7357	12.51
	1400	0.7382	12.55		1400	0.7510	12.77		1400	0.7491	12.73		1400	0.7573	12.87
	1500	0.7375	12.54		1500	0.7788	13.24		1500	0.7880	13.40		1500	0.7609	12.94
	1600	0.7077	12.03		1600	0.7811	13.28		1600	0.7983	13.57		1600	0.7247	12.32
	1700	0.6105	10.38		1700	0.7368	12.53		1700	0.7736	13.15		1700	0.6036	10.26
21-Feb-10	0900	0.7055	11.99	21-May-10	0900	0.7740	13.16	21-Aug-10	0900	0.7600	12.92	21-Nov-10	0900	0.6989	11.88
	1000	0.7304	12.42		1000	0.7606	12.93		1000	0.7554	12.84		1000	0.7237	12.30
	1100	0.7305	12.42		1100	0.7182	12.21		1100	0.7202	12.24		1100	0.7259	12.34
	1200	0.7229	12.29		1200	0.6865	11.67		1200	0.6780	11.53		1200	0.7271	12.36
	1300	0.7273	12.36		1300	0.6941	11.80		1300	0.6894	11.72		1300	0.7347	12.49
	1400	0.7467	12.69		1400	0.7552	12.84		1400	0.7470	12.70		1400	0.7414	12.60
	1500	0.7586	12.90		1500	0.7876	13.39		1500	0.7798	13.26		1500	0.7318	12.44
	1600	0.7446	12.66		1600	0.7911	13.45		1600	0.7851	13.35		1600	0.6817	11.59
	1700	0.6737	11.45		1700	0.7587	12.90		1700	0.7474	12.71		1700	0.5476	9.31
21-Mar-10	0900	0.7354	12.50	21-Jun-10	0900	0.7718	13.12	21-Sep-10	0900	0.7460	12.68	21-Dec-10	0900	0.6763	11.50
	1000	0.7438	12.64		1000	0.7629	12.97		1000	0.7440	12.65		1000	0.7132	12.13
	1100	0.7295	12.40		1100	0.7284	12.38		1100	0.7207	12.25		1100	0.7224	12.28
	1200	0.7074	12.03		1200	0.6941	11.80		1200	0.6999	11.90		1200	0.7260	12.34
	1300	0.7127	12.12		1300	0.6982	11.87		1300	0.7166	12.18		1300	0.7306	12.42
	1400	0.7479	12.72		1400	0.7554	12.84		1400	0.7571	12.87		1400	0.7357	12.51
	1500	0.7680	13.06		1500	0.7911	13.45		1500	0.7770	13.21		1500	0.7264	12.35
	1600	0.7660	13.02		1600	0.7947	13.51		1600	0.7690	13.07		1600	0.6793	11.55
	1700	0.7137	12.13		1700	0.7744	13.16		1700	0.7030	11.95		1700	0.5577	9.48

 $ES_t = 1,339 \text{ W/m}^2$ About 73% of electric lighting energy consumption could be saved throughout the year.

Possible electric lighting energy saving amount in simulation model set 10

Simulation Model Set No.: 10 Window size: Large Orientation: East Existence of obstruction: No

Date	Time	\mathbf{P}_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	\mathbf{P}_{ES}	ES	Date	Time	\mathbf{P}_{ES}	ES
21-Jan-10	0900	0.7409	12.60	21-Apr-10	0900	0.8030	13.65	21-Jul-10	0900	0.8120	13.80	21-Oct-10	0900	0.7972	13.55
	1000	0.7724	13.13		1000	0.7889	13.41		1000	0.7920	13.46		1000	0.7948	13.51
	1100	0.7735	13.15		1100	0.7583	12.89		1100	0.7596	12.91		1100	0.7794	13.25
	1200	0.7673	13.04		1200	0.7015	11.93		1200	0.6992	11.89		1200	0.7563	12.86
	1300	0.7509	12.77		1300	0.6808	11.57		1300	0.6686	11.37		1300	0.7406	12.59
	1400	0.7364	12.52		1400	0.7051	11.99		1400	0.6930	11.78		1400	0.7290	12.39
	1500	0.7121	12.11		1500	0.7214	12.26		1500	0.7213	12.26		1500	0.7103	12.08
	1600	0.6662	11.33		1600	0.7065	12.01		1600	0.7205	12.25		1600	0.6558	11.15
	1700	0.5728	9.74		1700	0.6513	11.07		1700	0.6815	11.59		1700	0.5507	9.36
21-Feb-10	0900	0.7795	13.25	21-May-10	0900	0.8118	13.80	21-Aug-10	0900	0.8095	13.76	21-Nov-10	0900	0.7719	13.12
	1000	0.7904	13.44		1000	0.7909	13.45		1000	0.7925	13.47		1000	0.7791	13.24
	1100	0.7822	13.30		1100	0.7505	12.76		1100	0.7614	12.94		1100	0.7708	13.10
	1200	0.7654	13.01		1200	0.6981	11.87		1200	0.7023	11.94		1200	0.7637	12.98
	1300	0.7477	12.71		1300	0.6686	11.37		1300	0.6798	11.56		1300	0.7476	12.71
	1400	0.7347	12.49		1400	0.7020	11.93		1400	0.7031	11.95		1400	0.7293	12.40
	1500	0.7215	12.27		1500	0.7228	12.29		1500	0.7219	12.27		1500	0.7004	11.91
	1600	0.6867	11.67		1600	0.7155	12.16		1600	0.7097	12.06		1600	0.6401	10.88
	1700	0.6097	10.36		1700	0.6700	11.39		1700	0.6597	11.21		1700	0.5255	8.93
21-Mar-10	0900	0.7895	13.42	21-Jun-10	0900	0.8067	13.71	21-Sep-10	0900	0.8021	13.64	21-Dec-10	0900	0.7553	12.84
	1000	0.7886	13.41		1000	0.7884	13.40		1000	0.7945	13.51		1000	0.7735	13.15
	1100	0.7743	13.16		1100	0.7546	12.83		1100	0.7696	13.08		1100	0.7706	13.10
	1200	0.7442	12.65		1200	0.7012	11.92		1200	0.7316	12.44		1200	0.7682	13.06
	1300	0.7195	12.23		1300	0.6711	11.41		1300	0.7127	12.12		1300	0.7496	12.74
	1400	0.7207	12.25		1400	0.6983	11.87		1400	0.7199	12.24		1400	0.7323	12.45
	1500	0.7220	12.27		1500	0.7236	12.30		1500	0.7203	12.24		1500	0.7040	11.97
	1600	0.6992	11.89		1600	0.7214	12.26		1600	0.6900	11.73		1600	0.6438	10.95
	1700	0.6341	10.78		1700	0.6828	11.61		1700	0.6095	10.36		1700	0.5320	9.04

 $ES_i = 1,331 \text{ W/m}^2$ About 72% of electric lighting energy consumption could be saved throughout the year.

Possible electric lighting energy saving amount in simulation model set 11

Simulation Model Set No.: 11 Window size: Large Orientation: South Existence of obstruction: No

Date	Time	\mathbf{P}_{ES}	ES												
21-Jan-10	0900	0.7475	12.71	21-Apr-10	0900	0.7792	13.25	21-Jul-10	0900	0.7743	13.16	21-Oct-10	0900	0.7964	13.54
	1000	0.7855	13.35		1000	0.7799	13.26		1000	0.7708	13.10		1000	0.8007	13.61
	1100	0.7912	13.45		1100	0.7551	12.84		1100	0.7390	12.56		1100	0.7991	13.58
	1200	0.7867	13.37		1200	0.7158	12.17		1200	0.6893	11.72		1200	0.7914	13.45
	1300	0.7858	13.36		1300	0.7141	12.14		1300	0.6784	11.53		1300	0.7891	13.42
	1400	0.7886	13.41		1400	0.7469	12.70		1400	0.7204	12.25		1400	0.7915	13.46
	1500	0.7776	13.22		1500	0.7609	12.93		1500	0.7492	12.74		1500	0.7825	13.30
	1600	0.7427	12.63		1600	0.7496	12.74		1600	0.7498	12.75		1600	0.7364	12.52
	1700	0.6329	10.76		1700	0.6910	11.75		1700	0.7096	12.06		1700	0.6021	10.24
21-Feb-10	0900	0.7713	13.11	21-May-10	0900	0.7797	13.25	21-Aug-10	0900	0.7821	13.30	21-Nov-10	0900	0.7776	13.22
	1000	0.7945	13.51		1000	0.7697	13.08		1000	0.7818	13.29		1000	0.7867	13.37
	1100	0.7926	13.47		1100	0.7320	12.44		1100	0.7560	12.85		1100	0.7844	13.33
	1200	0.7839	13.33		1200	0.6935	11.79		1200	0.7148	12.15		1200	0.7839	13.33
	1300	0.7820	13.29		1300	0.6825	11.60		1300	0.7097	12.07		1300	0.7836	13.32
	1400	0.7883	13.40		1400	0.7273	12.36		1400	0.7422	12.62		1400	0.7848	13.34
	1500	0.7828	13.31		1500	0.7507	12.76		1500	0.7607	12.93		1500	0.7572	12.87
	1600	0.7614	12.94		1600	0.7440	12.65		1600	0.7533	12.81		1600	0.7121	12.11
	1700	0.6787	11.54		1700	0.6958	11.83		1700	0.7007	11.91		1700	0.5634	9.58
21-Mar-10	0900	0.7739	13.16	21-Jun-10	0900	0.7699	13.09	21-Sep-10	0900	0.7873	13.38	21-Dec-10	0900	0.7655	13.01
	1000	0.7852	13.35		1000	0.7643	12.99		1000	0.7920	13.46		1000	0.7830	13.31
	1100	0.7790	13.24		1100	0.7294	12.40		1100	0.7783	13.23		1100	0.7873	13.38
	1200	0.7648	13.00		1200	0.6861	11.66		1200	0.7614	12.94		1200	0.7864	13.37
	1300	0.7612	12.94		1300	0.6737	11.45		1300	0.7655	13.01		1300	0.7784	13.23
	1400	0.7693	13.08		1400	0.7177	12.20		1400	0.7664	13.03		1400	0.7884	13.40
	1500	0.7728	13.14		1500	0.7161	12.17		1500	0.7783	13.23		1500	0.7733	13.15
	1600	0.7587	12.90		1600	0.7435	12.64		1600	0.7560	12.85		1600	0.7224	12.28
	1700	0.6928	11.78		1700	0.7016	11.93		1700	0.6675	11.35		1700	0.5817	9.89

 $ES_t = 1,376 \text{ W/m}^2$ About 75% of electric lighting energy consumption could be saved throughout the year.

Possible electric lighting energy saving amount in simulation model set 12

Simulation Model Set No.: 12 Window size: Large Orientation: West Existence of obstruction: No

Date	Time	P_{ES}	ES	Date	Time	\mathbf{P}_{ES}	ES	Date	Time	P_{ES}	ES	Date	Time	P_{ES}	ES
21-Jan-10	0900	0.6708	11.40	21-Apr-10	0900	0.7141	12.14	21-Jul-10	0900	0.7121	12.11	21-Oct-10	0900	0.7225	12.28
	1000	0.7289	12.39		1000	0.7229	12.29		1000	0.7165	12.18		1000	0.7509	12.77
	1100	0.7549	12.83		1100	0.7068	12.02		1100	0.6929	11.78		1100	0.7629	12.97
	1200	0.7703	13.09		1200	0.6918	11.76		1200	0.6730	11.44		1200	0.7755	13.18
	1300	0.7848	13.34		1300	0.7259	12.34		1300	0.6973	11.85		1300	0.7884	13.40
	1400	0.7892	13.42		1400	0.7737	13.15		1400	0.7611	12.94		1400	0.8028	13.65
	1500	0.7899	13.43		1500	0.7963	13.54		1500	0.7932	13.48		1500	0.8167	13.88
	1600	0.7960	13.53		1600	0.8071	13.72		1600	0.8101	13.77		1600	0.8058	13.70
	1700	0.6975	11.86		1700	0.7729	13.14		1700	0.7938	13.49		1700	0.6760	11.49
21-Feb-10	0900	0.6912	11.75	21-May-10	0900	0.7158	12.17	21-Aug-10	0900	0.7128	12.12	21-Nov-10	0900	0.7056	11.99
	1000	0.7360	12.51		1000	0.7146	12.15		1000	0.7224	12.28		1000	0.7463	12.69
	1100	0.7550	12.84		1100	0.6872	11.68		1100	0.7066	12.01		1100	0.7670	13.04
	1200	0.7642	12.99		1200	0.6830	11.61		1200	0.6879	11.69		1200	0.7809	13.28
	1300	0.7840	13.33		1300	0.7061	12.00		1300	0.7194	12.23		1300	0.7860	13.36
	1400	0.7938	13.49		1400	0.7658	13.02		1400	0.7702	13.09		1400	0.7803	13.27
	1500	0.8049	13.68		1500	0.7909	13.45		1500	0.7968	13.54		1500	0.7842	13.33
	1600	0.8132	13.82		1600	0.8012	13.62		1600	0.8091	13.76		1600	0.7776	13.22
	1700	0.7543	12.82		1700	0.7775	13.22		1700	0.7830	13.31		1700	0.6209	10.56
21-Mar-10	0900	0.7077	12.03	21-Jun-10	0900	0.7147	12.15	21-Sep-10	0900	0.7179	12.20	21-Dec-10	0900	0.6833	11.62
	1000	0.7337	12.47		1000	0.7161	12.17		1000	0.7368	12.53		1000	0.7354	12.50
	1100	0.7393	12.57		1100	0.6900	11.73		1100	0.7378	12.54		1100	0.7597	12.91
	1200	0.7393	12.57		1200	0.6782	11.53		1200	0.7383	12.55		1200	0.7788	13.24
	1300	0.7610	12.94		1300	0.6988	11.88		1300	0.7666	13.03		1300	0.7947	13.5
	1400	0.7821	13.30		1400	0.7616	12.95		1400	0.7921	13.47		1400	0.7707	13.10
	1500	0.7975	13.56		1500	0.7931	13.48		1500	0.8136	13.83		1500	0.7784	13.23
	1600	0.8150	13.85		1600	0.8041	13.67		1600	0.8224	13.98		1600	0.7826	13.30
	1700	0.7721	13.12		1700	0.7889	13.41		1700	0.7585	12.89		1700	0.6420	10.9

 $ES_{T} = 1,379 \text{ W/m}^2$ About 75% of electric lighting energy consumption could be saved throughout the year.

APPENDIX L: Summary of survey information

There were four surveys in this thesis.

- Survey 1: Online survey on occupants' preferred cellular office daylighting design
- Survey 2: Online survey on building design practitioners' opinions about cellular office daylighting design
- Survey 3: Survey on occupants' visual satisfaction and judgment on electric lighting energy saving potential to a daylit cellular office
- Survey 4: Survey on importance levels of various daylighting attributes towards the overall daylighting performance of a cellular office

Survey No.	No. of invitations		Response rate	Gende M	er F	Age di <21	istributi 21-30	ion 31-40	41-50	>50	Focus group
1	262	102	39%	49%	51%	1%	59%	25%	14%	1%	Local office workers, except those working in building and construction engineering field
2	133	102	77%	77%	23%	0%	65%	25%	9%	1%	Architects (41), lighting or interior designers (9), and building services engineers (52), who have experience in dealing with local office projects
3	125	125	100%	68%	32%	0%	2%	12%	30%	56%	"Standard" cellular office occupants
4	252	181	72%	83%	17%	0%	3%	10%	35%	52%	Cellular office occupants
	Part 1 Part 2	Percentage:									

REFERENCES

- Akinci S.A., Kaynak S.A., Atilgan E.B. and Aksoy E.A. (2007). Where does the logistic regression analysis stand in marketing literature? A comparison of the market positioning of prominent marketing. *European Journal of Marketing*, 41(5/6), 537-567.
- Alshaibani K. (1997). Average daylight factor for clear sky conditions. *Lighting Research and Technology*, 29(4), 192-196.
- Anaokar S. and Moeck M. (2005) Validation of high dynamic range imaging to luminance measurement. *Leukos*, 2(2), 133-144.
- Arndt W. (1955). The calculation of reflected daylight. *Proceedings of the 13th CIE Session*, Paris, France, 2, Secretariat report 3.2 A/10-11.
- Bagley S.C., White H. and Golomb B.A. (2003). Logistic regression in the medical literature: Standards for use and reporting, with particular attention to one medical domain. *Journal of Clinical Epidemiology*, *54*(10), 979-985.
- Baker N., Fanchiotti A. and Steemers K. (1993). *Daylighting in architect: A European reference book*. London: Commission of the European Communities.
- Battiato S., Castorina A. and Manucuso M. (2003). High dynamic range imaging for digital still camera: An overview. *Journal of Electronic Imaging*, *12*(3), 459-469.
- Begemann S.H.A., van den Beld G. and Tenner J.A.D. (1997). Daylight, artificial light and people in an office environment, overview of visual and biological responses. *Industrial Ergonomics*, 20, 231-239.
- Bellia L., Minichiello F. and Sibilio S. (2002). Setting up a CCD photometer for lighting research and design. *Building and Environment*, *37*(11), 1099-1106.
- Bernecker C. (1994). Biological effects of architectural lighting and their associated energy utilization. *Journal of the Illuminating Engineering Society*, 23, 31-39.
- Berutto V. and Fontoynont M. (1995). Applications of CCD cameras to lighting research: Review and extension to the measurement of glare indices. *Proceedings of the 23rd CIE Session*, New Delhi, India, *1*, 192-195.
- Bitter C. and van Ierland J.F.A.A. (1965). Appreciation of sunlight in the home. *Proceedings of the CIE Intersessional Conference on Sunlight in Buildings*, Newcastle, UK, 27-37.
- Blume M. (1998). An anatomy of Morningstar ratings. *Financial Analysts Journal*, 54(2), 19-27.

- Boyce P.R. (2003). *Human factors in lighting, 2nd Edition*. London: Lighting Research Center.
- BRE (1986). Building Research Establishment digest 309: Estimating daylight in buildings: Part 1. Garston, Watford: Building Research Establishment.
- BRE (1988). Building Research Establishment report: Daylighting as a passive solar energy option: An assessment of its potential in non-domestic buildings. Garston, Watford: Building Research Establishment. (BR 129)
- BRE (1995). Building Research Establishment report Site layout planning for daylight and sunlight: A guide to good practice. Garston, Watford: Building Research Establishment. (BR 209)
- BRE (1999). *Environmental design guide*. London: Construction Research Communications, Building Research Establishment.
- BREEAM (2006). Building Research Establishment Environmental Assessment Method. Garston, Watford: Building Research Establishment.
- BSI (1992). British Standard: Lighting for buildings Part 2: Code of practice for daylighting. London: British Standards Institution. (BS 8206: Part 2: 1992)
- Buchbinder L. (1942). The bactericidal effects of daylight and sunlight on chained gram positive cocci in simulated room environment: Theoretical and practical considerations. *Aerobiology*. Washington D.C.: American Association for the Advancement of Science.
- Butler D.L. and Biner P.M. (1989). Effects of setting on window preferences and factors associated with those preferences. *Environment and Behavior*, 21, 17-31.
- Cai H. and Chung T.M. (2009). Quality of high dynamic range images for luminance data acquisition versus aperture size of camera and exposre ranges. *Proceedings of the IES Annual Conference: Realizing the Future Research to Application*, Seattle, Washington, USA.
- Cai H. and Chung T.M. (2010). Introduction to high dynamic range photogrammetric techniques: Begninning of a new lighting stage. *Proceedings of the IES Annual Conference*, Toronto, Canada.
- Canter D. (1975). Environmental interaction: Psychological approaches to our physical surroundings. London: Surrey University Press.
- Chain C., Dumortier D. and Fontoynont M. (2001). Consideration of daylight's colour. *Energy and Buildings*, *33*, 193-198.

- Chauvel P., Collins J.B., Dogniaux R. and Longmore J. (1982). Glare from windows: Current views of the problem. *Lighting Research and Technology*, *14*(1), 31-46.
- Cheung H.D. (2005). Daylighting performance assessment methods for high-rise residential buildings in a dense urban environment. PhD Thesis, The Hong Kong Polytechnic University, Hong Kong.
- Cheung H.D. and Chung T.M. (2003). Calculation of mean daylight factor in a building interior within a dense urban environment. *Proceedings of the CIB Student Chapters International Symposium Innovation in Construction and Real Estate*, Hong Kong, China, 273-282.
- Chew M.Y.L. and Das S. (2008). Building grading systems: A review of the state-of-the-art. *Architectural Science Review*, 51(1), 3-13.
- Chiang C.M. and Lai C.M. (2002). A study on the comprehensive indicator of indoor environment assessment for occupants' health in Taiwan. *Building and Environment*, 37, 387-392.
- Choi U., Johnson R., and Selkowitz S. (1984). The impact of daylighting on peak electrical demand. *Energy and Buildings*, 6(4), 387-399.
- Chung T.M. (1992). A study of luminous efficacy of daylight in Hong Kong. *Energy* and *Buildings*, 19(1), 45-50.
- Chung T.M. (2003). Daylighting in Hong Kong: Potential and problems. *Lighting Research and Technology*, *35*(1), 39-41.
- Chung T.M. (2004). Daylighting design for urban buildings. *CIE* (*Hong Kong*) *Technical Publication*, 2, 60-65.
- Chung T.M. (2005). On the calculation of daylight glare index. *Proceedings of the 5th Lux Pacifica Towards a Sustainable Lighting Future*, Cairns, Australia, 81-86.
- Chung T.M. and Burnett J. (1999). Lighting criteria in the Hong Kong Building Environmental Assessment. *Lighting Research and Technology*, *31*(3), 89-95.
- CIBSE (1999). Daylighting and window design lighting guide LG10. London: Chartered Institution of Building Services Engineers.
- CIBSE (2002). *Code for lighting*. London: Chartered Institution of Building Services Engineers.
- CIE (1955). *Natural daylight: Official recommendation*. Compte Rendu CIE 13th Session. Paris: Commission Internationale de l'Eclairage.
- CIE (1970). *International Commission on Illumination technical report: Daylight*. Vienna: Commission Internationale de l'Eclairage. (CIE 16 70)

- CIE (1973). *International Commission on Illumination publication: Standardization of luminance distribution on clear skies*. Vienna: Commission Internationale de l'Eclairage. (CIE 22 TC-4.2)
- CIE (1994). International Commission on Illumination technical report: Spatial distribution of daylight Luminance distributions of various reference skies. Vienna: Commission Internationale de l'Eclairage. (CIE 110-1994)
- CIE (2003). *International Commission on Illumination standard: Spatial distribution of daylight CIE standard general sky*. Vienna: Commission Internationale de l'Eclairage.
- CIE (2004). *Ocular Lighting Effects on Human Physiology and Behaviour*. Vienna: Commission Internationale de l'Eclairage. (CIE 158-2004)
- Coombes C.A. and Harrison A.W. (1988). Angular distribution of overcast sky short wavelength radiance. *Solar Energy*, 40(2), 161-166.
- Crisp V.H.C. and Littlefair P.J. (1984). Average daylight factor prediction. *Proceedings of the CIBSE National Lighting Conference*, Cambridge, UK, 234-243.
- Cuttle C. (1983). People and windows in workplaces. *Proceedings of the People amd Physical Environment Research Conference*, Wellington, New Zealand, 203-212.
- Czeisler C.A., Allan J.S., Strogatz S.H., Ronda J.M., Sanchez R., Rios C.D., Freitag W.O., Richardson G.S. and Kronauer R.E. (1986). Bright light resets the human circadian pacemaker independent of the timing of the sleep-wake cycle. *Science*, 233(4764), 667–671.
- Czeisler C.A., Johnson M.P., Duffy J.F., Brown E.N., Ronda J.M. and Kronauer R.E. (1990). Exposure to bright light and darkness to treat physiologic maladaptation to night work. *The New England Journal of Medicine*, *322*(18), 1253-1259.
- Day R. and Creed C. (1996). Sunlight in dwellings: Validation of insolation criteria. *Lighting Research and Technology*, 28(1), 43-51.
- Debevec P.E. and Malik J. (1997). Recovering high dynamic range radiance maps from photographs. *Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques*, Los Angeles, CA, USA, 369-378.
- DIALux (2011). *DIALux user manual version 4.9*. Retrieved April 28 2011, from <www.dialux.com>
- Dresler A. (1954). The 'reflected component' in daylighting design. *Transactions of the Illuminating Engineering Society*, 19(2), 50-60.

- Dufton A.F. (1946). Protractors for the computation of Daylight Factors. *Building Research and Technology*, *Paper 28*. London: Department of Scientific and Industrial Research, H.M.S.O.
- EMSD (2007). Code of practice for energy efficiency of lighting installations. Hong Kong: The Electrical & Mechanical Services Department of the Government of Hong Kong Special Administration Region.
- EMSD (2009). *Hong Kong energy end-user data 2009*. Hong Kong: The Electrical & Mechanical Services Department of the Government of Hong Kong Special Administration Region.
- Enarun D., Littlefair P. (1995). Luminance models for overcast skies: Assessment using measured data. *Lighting Research and Technology*, 27(1), 53-58.
- ENERGY STAR (1992). *Guidelines for ENERGY STAR qualified new homes*. US: The Environmental Protection Agency of the Government of the United States. Retrieved April 28 2011, from
 - <www.energystar.gov/index.cfm?c=home.index>
- Engelsen O., Brustad M., Aksnes L. and Lund E. (2005). Daily duration of Vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. *Photochemistry and Photobiology*, 81(6), 1287–1290.
- Escuyer S. and Fontoynont M. (2001). Testing in situ of automatic ambient lighting plus manually controlled task lighting: Office occupants reactions. *Proceedings of the 9th European Lighting Conference (Lux Europa)*, Reykjavik, Iceland, 70-75.
- Evans M. (1980). Housing, climate and comfort. London: Architectural Press.
- Evans B.H. (1981). Daylight in architecture. New York: McGraw-Hill.
- Fontoynont M. (2002). Perceived performance of daylighting systems: lighting efficacy and agreeableness. *Solar Energy*, 73(2), 83-94.
- Fritz S. (1955). Illuminance and luminance under overcast skies. *Journal of the Optical Society of America*, 45(10), 820-825.
- Garrod L.P. (1944). Some observations on hospital dust with special reference to light as a hygienic safeguard. *British Medical Journal*, *Feb*, 245-247.
- Gilgen A., & Barrier A. (1976). Sunlight and natural lighting indoors. *Environmental factors in urban planning*. London: Taylor & Francis.
- Halonen L. and Lehtovaara J. (1995). Need of individual control to improve daylight utilization and user's satisfaction in integrated lighting systems. *Proceedings of*

- the 23rd Session of the CIE, New Delhi, India, 1, 200-203.
- Harrison A.W. (1991). Directional sky luminance vs cloud cover and solar position. *Solar Energy*, 46, 13-19.
- Harrison A.W. and Coombes C.A. (1988). An opaque cloud cover model of sky short wavelength radiance. *Solar Energy*, *41*, 387-392.
- Hawkes R.J., Loe D.L. and Rowlands E. (1979). A note towards the understanding of lighting quality. *Journal of the Illuminating Engineering Society*, 8, 111-120.
- Heerwagen J.H. and Heerwagen D.R. (1986). Lighting and psychological comfort. Lighting Design and Application, 16(4), 47-51.
- HK-BEAM (1996a). Hong Kong Building Environmental Assessment Method Version 1/96: An Environmental Assessment for New Air Conditioned Offices Premises. Hong Kong: Hong Kong Building Environmental Assessment Method Society.
- HK-BEAM (1996b). Hong Kong Building Environmental Assessment Method Version 2/96: An Environmental Assessment for Existing Air Conditioned Offices Premises. Hong Kong: Hong Kong Building Environmental Assessment Method Society.
- HK-BEAM (2003a). Hong Kong Building Environmental Assessment Method Pilot Version 5/03: An Environmental Assessment for New Building Developments. Hong Kong: Hong Kong Building Environmental Assessment Method Society.
- HK-BEAM (2003b). Hong Kong Building Environmental Assessment Method Pilot Version 5/03: An Environmental Assessment for Existing Building Developments. Hong Kong: Hong Kong Building Environmental Assessment Method Society.
- HK-BEAM (1999a). Hong Kong Building Environmental Assessment Method Version 5/04: An Environmental Assessment for Existing Buildings. Hong Kong: Hong Kong Building Environmental Assessment Method Society.
- HK-BEAM (2004). Hong Kong Building Environmental Assessment Method Version 4/04: An Environmental Assessment for New Buildings. Hong Kong Building Environmental Assessment Method Society.
- HKO (2009). *Hong Kong Observatory almanac 2009*. Hong Kong: The Hong Kong Observatory of the Government of Hong Kong Special Administration Region.
- HKO (2010). *Climate of Hong Kong*. Hong Kong: The Hong Kong Observatory of the Government of Hong Kong Special Administration Region. Retrieved April 28 2011, from www.hko.gov.hk/cis/climahk e.htm>

- HKSAR (1997). *CAP 123F Building (Planning) Regulations Lighting and Ventilation*. Hong Kong: The Government of the Hong Kong Special Administrative Region.
- HKSAR (2005). Buildings Department PNAP278 Lighting and Ventilation Requirements Performance-based Approach. Hong Kong: The Government of the Hong Kong Special Administrative Region.
- Hopkinson R.G. (1954). Measurements of sky luminance distribution at Stockholm. Journal of the Optical Society of America, 44(6), 455-459.
- Hopkinson R.G. (1963). Architectural physics: Lighting. London: H.M.S.O.
- Hopkinson R.G. (1969). The lighting of buildings. London: Faber & Faber.
- Hopkinson R.G. (1972). Glare from daylighting in buildings. *Applied Ergonomics*, 3(4), 206-215.
- Hopkinson R.G., Petherbridge P. and Longmore J. (1954). An empirical formula for the computation of the indirect component of daylight factor. *Transactions of the Illuminating Engineering Society*, *19*(7), 201-219.
- Hopkinson R.G., Petherbridge P. and Longmore J. (1966a). *Daylight in architecture*. London: Heinemann.
- Hopkinson R.G., Petherbridge P. and Longmore J. (1966b). *Daylighting*. London: Heinemann.
- Horst R.L., Silverman E.B., Kershner R.L., Mahaffey D.L. and Parris H.L. (1988). Research study on the effects of illumination on performance of control room tasks. *Proceedings of IEEE Fourth Conference on Human Factors and Power Plants*. Monterey, Calif, Piscataway, N.J. Institute of Electrical and Electronics Engineers, 238-246.
- Hunt D.R.G. (1979). The use of artificial lighting in relation to daylight levels and occupancy. *Building and Environment*, 14(1), 21-33.
- IES (1972). *Technical Report No. 4: Daytime lighting in buildings*. London: Illuminating Engineering Society.
- IESNA (1989). *IES Recommended practice for the lumen method of daylight calculations*. New York: Illuminating Engineering Society of North America. (RP-23-1989)
- IESNA (1999). *IESNA Recommended practice of daylighting*. New York: Illuminating Engineering Society of North America. (RP-5-99)

- IESNA (2000). *The IESNA Lighting Handbook, 9th Edition*. New York: Illuminating Engineering Society of North America.
- Igawa N. and Nakamura H. (2001). All sky model as a standard sky for the simulation of daylit environment. *Building and Environment*, *36*, 763-770.
- Inanici M.N. (2006). Evaluation of high dynamic range photography as a luminance data acquisition system. *Lighting Research and Technology*, 38(2), 123-136.
- ISO (2002). *Light of work places*. Geneva: International Organization for Standardization. (ISO 8995:2002)
- Iwata T., Hatao A., Skukaya M. and Kimura K. (1994). Visual comfort in the daylit luminous environment: Structural model for evaluation. *Lighting Research and Technology*, 26(2), 91-97.
- Iwata T., Shukuya M., Somekawa N. and Kimura K. (1992a). Experimental study on discomfort glare caused by windows, part 1: Subjective response to glare from a simulated window. *Journal of Architectural Planning and Environmental Engineering*, 432, 21-33.
- Iwata T., Shukuya M., Somekawa N. and Kimura K. (1992b). Experimental study on discomfort glare caused by windows: part 2: Subjective response to glare from actual windows. *Journal of Architectural Planning and Environmental Engineering*, 439, 19-33.
- Iwata T. and Tokura M. (1998). Examination of the limitations of predicted glare sensation vote (PGSV) as a glare index for a large source. *Lighting Research and Technology*, 30(2), 81-88.
- Jacobs A. (2007). High dynamic range imaging and its application in building research. *Advances in Building Energy Research*, *1*, 177-202.
- Jacobs A. (2008). *WebHDR Camera Calibration*. Retrieved April 28 2011, from http://luxal.dachary.org/webhdr/calibrate.shtml
- Kanji G.K. (2006). 100 Statistical tests, 3rd edition. London: Sage.
- Karlen M. (1993). Space planning basics. New York: John Wiley & Sons.
- Keighley E.C. (1973a). Visual requirements and reduced fenestration in offices: A study of multiple apertures and window area. *Building Science*, 8, 321-331.
- Keighley E.C. (1973b). Visual requirements and reduced fenestration in offices: A study of window shape. *Building Science*, *8*, 311-320.
- Kimball H.H. and Hand I.F. (1921). Sky-brightness and daylight-illumination measurements. *Monthly Weather Review*, 49(9), 481-488.

- Kimball H.H. and Hand I.F. (1922). Daylight illumination on horizontal, vertical and sloping surfaces. *Monthly Weather Review*, *50*(12), 615-628.
- Kittler R. (1967). Standardization of outdoor conditions for the calculation of daylight factor with clear skies. *Proceedings of the CIE Conference on Sunlight in Buildings*, Rotterdam, The Netherlands, 273-285.
- Kittler R., Perez R. and Darula S. (1997). A new generation of sky standards. *Proceedings of the 8th European Lighting Conference (Lux Europa)*, Amsterdam, The Netherlands, 359-373.
- Klingenberg H., & Seidl M. (1982). Seidl M. Sonne im Wohnbereich Bewertung and Anforderungen [Sunlight in dwellings Evaluation and requirements]. *Licht Forschung*, 4(2), 45-51.
- Lam W.M.C. (1986). *Sunlighting as formgiver for architecture*. New York: Van Nostrand Reinhold Company.
- Lam J.C. and Li D.H.W. (1996a). Luminous efficacy of daylight under different sky conditions. *Energy Conversion and Management*, *37*(12), 1703-1711.
- Lam J.C. and Li D.H.W. (1996b). Correlation between global solar radiation and its direct and diffuse components. *Building and Environment*, *31*(6), 527-535.
- Lau S.S.Y., Lee W.Y.W., Baharuddin and Leung K.C.D. (2005). A comparison between prescriptive approach and performance based approach on daylight for Hong Kong. *Proceedings of the Conference on Sustainable Building South-East Asia*, Malaysia, 376-383.
- LEED (2000). Green building rating system for new construction and major renovations. Leadership in Energy and Environmental Design, US: The United States Green Building Council. Retrieved April 28 2011, from www.usgbc.org/DisplayPage.aspx?CMSPageID=1988>
- Leung Y.K., Yeung K.H., Ginn E.W.L. and Leung W.M. (2004). *Climate change in Hong Kong, Technical Note No. 107*. Hong Kong: The Hong Kong Observatory of the Government of Hong Kong Special Administration Region.
- Li D.H.W. and Lam J.C. (2001). An analysis of climatic parameters and sky condition classification. *Building and Environment*, *36*, 435-445.
- Li D.H.W., Lam J.C. and Wong S.L. (2002). Daylighting and its implications to overall thermal transfer value (OTTV) determinations. *Energy*, *27*, 991-1008.
- Li D.H.W., Lau C.C.S. and Lam J.C. (2003). Study of 15 sky luminance patterns against Hong Kong data. *Architectural Science Review*, 46, 61-68.

- Li D.H.W., Lau C.C.S. and Lam J.C. (2004). Overcast sky conditions and luminance distribution in Hong Kong. *Building and Environment*, *39*(1). 101-108.
- Li D.H.W. and Tsang E.K.W. (2008). An analysis of daylighting performance for office buildings in Hong Kong. *Building and Environment*, 43(9), 1446-1458.
- Li D.H.W., Wong S.L., Tsang C.L. and Cheung G.H.W. (2006). A study of the daylighting performance and energy use in heavily obstructed residential buildings via computer simulation techniques. *Energy and Buildings*, 38, 1343-1348.
- Likert R. (1932). A technique for the measurement of attitudes. *Archives of Psychology*, 140, 1-55.
- Littlefair P.J. (1984). Daylight availability for lighting controls. *Proceedings of the CIBSE National Lighting Conference*, Cambridge, UK, 215-233.
- Littlefair P.J. (2001). Daylight, sunlight and solar gain in the urban environment. *Solar Energy*, 70(3), 177-185.
- Liu B.Y.H. and Jordan R.C. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. *Solar Energy*, 4(3), 1-19.
- Loe D.L., Mansfield K.P. and Rowlands E. (1994). Appearance of lit environment and its relevance inlighting design: experimental study. *Lighting Research and Technology*, 26(3), 119-133.
- Longmore J. (1975). Daylighting: A current view. *Light and lighting*, *May/June*, 113-119.
- Love J.A. (1992). The evolution of performance indicators for the evaluation of daylighting systems. *Conference record of the Annual meeting of the Industry Applications Society of the IEEE*, Piscataway, N.J. Institute of Electric and Electronic Engineers, 1830-1836.
- Love J.A. and Navvab M. (1994). The vertical-to-horizontal illuminance ratio: A new indicator of daylighting performance. *Journal of the Illuminating Engineering Society*, 23(2), 50-61.
- Ludlow A.M. (1972). The broad classification of the visual scene: A preliminary study. *Vision and lighting, Report No. 3*.
- Lukman N., Ibrahim B.N. and Hayman S. (2002). Daylighting design rules of thumb. *Proceedings of 36th ANZAScA Conference*, Deakin University, 347-354.
- Lynes J.A. (1979). A sequence for lighting design. *Lighting Research and Technology*, 11(2), 102-106.

- Lynes J.A., Burt W., Jackson G.K. and Cuttle C. (1966). The flow of light into buildings. *Transactions of the Illuminating Engineering Society*, 31(3), 67-71.
- Mardaljevic J. (1995). Validation of a lighting simulation program under real sky conditions. *Lighting Research and Technology*, 27(4), 181-188.
- Mardaljevic J. (2000). Simulation of annual daylighting profiles for internal illuminances. *Lighting Research and Technology*, 32(3), 111-118.
- Mardaljevic J., Painter B. and Andersen M. (2009). Transmission illuminance proxy HDR imaging: A new technique to quantify luminous flux. *Lighting Research and Technology*, 41(1), 27-49.
- Mardaljevic J. and Rylatt M. (2003). Irradiation mapping of complex urban environments: An image-based approach. *Energy and Buildings*, *35*(1), 27-35.
- Markus T.A. (1967). The significance of sunshine and view for office workers. *Proceedings of the CIE Conference on Sunlight in Buildings*, Rotterdam, The Netherlands, 59-93.
- McDermott L.H. and Gordon-Smith G.W. (1951). Daylight illumination recorded at Teddington., *Proceedings of Building Research Congress Division 3 Part III*, London, UK, 156-161.
- McKennan G.T. and Parry C.M. (1984). An investigation of task lighting for offices. *Lighting Research and Technology*, *16*(4), 171-186.
- Mitsunaga T. and Nayar S.K. (1999). Radiometric self calibration. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. Fort Collins, Colorado, USA, 374-380.
- Moon P. and Spencer D.E. (1942). Illumination from a non-uniform sky. *Illumination Engineering*, *37*, 707-726.
- Moore T., Carter D.J. and Slater A.I. (2002). User attitudes toward occupant controlled office lighting. *Lighting Research and Technology*, *34*(3), 207-219.
- Morrow-Howell N. and Proctor E. (1993). The use of logistic regression in social work research. *Journal of Social Service Research*, *16*(1), 87-104.
- Mui K.W. and Wong L.T. (2006a). Acceptable illumination level for office occupants. *Architectural Science Review*, 49(2), 116-119.
- Mui K.W. and Wong L.T. (2006b). Minimum acceptable noise level for office occupants. *Building Services Engineering Research and Technology*, 27(3), 249-254.

- Mui K.W., Wong L.T. and Hui P.S. (2009). Indoor environmental quality benchmarks for air-conditioned offices in the subtropics. *Indoor and Built Environment*, 18(2), 123-129.
- Muneer T. (1995). Solar irradiance and illuminance models for Japan I: Sloped surfaces. *Lighting Research and Technology*, 27(4), 209-222.
- Muneer T. (1998). Evaluation of the CIE overcast sky model against Japanese data. *Energy and Buildings*, *27*, 175-177.
- Muneer T. (2004). *Solar radiation and daylight models, 2nd Edition*. Oxford: Elsevier Butterworth-Heinemann.
- Muneer T. and Angus R.C. (1994). Daylight factors based on real sky distributions. *Proceedings of the CIBSE National Lighting Conference,* Cambridge, UK, 260-266.
- Nabil A. and Mardaljevic J. (2005). Useful daylight illuminance: A new paradigm for assessing daylight in buildings. *Lighting Research and Technology*, *37*(1), 41-59.
- Nazzal A.A. (2000). A new daylight glare evaluation method. *Journal of Light and Visual Environment*, 24(2), 19-27.
- Nazzal A.A. (2001a). Prediction of discomfort glare from daylight: A new approach and its experimental verification. *Light and Engineering*, *9*(4), 49-64.
- Nazzal A.A. (2001b). A new daylight glare evaluation method: Introduction of the monitoring protocol and calculation method. *Energy and Buildings*, *33*, 257-265.
- Nazzal A.A. and Chutarat A. (2001). A new daylight evaluation method: A comparison of the exising glare index and the proposed method, and an exploration of daylight control strategies. *Architectural Science Review*, 44(1), 71-82.
- Ne'eman E., Craddock J. and Hopkinson R.G. (1976). Sunlight requirements in buildings I: Social survey. *Building and Environment*, 11(4), 217-238.
- Ne'eman E. and Hopkinson R.G. (1970). Critical minimum acceptable window size, a study of window design and provision of view. *Lighting Research and Technology*, 2, 17-27.
- Ne'eman E., Sweitzer G. and Vine E. (1984). Office worker response to lighting and daylighting issues in workplace environments: A pilot survey. *Energy and Buildings*, 6, 159-171.
- Newsham G. and Veitch J. (2001). Lighting quality recommendations for VDT

- offices: a new method of derivation. *Lighting Research and Technology*, 33(2). 97-116.
- Nicol F., Wilson M. and Chianoarella C. (2006). Using field measurements of desktop illuminance in European offices to investigate its dependence on outdoor conditions and its effect on occupant satisfaction, and the use fo lights and blinds. *Energy and Buildings*, 38, 802-813.
- Ng E. (2001). A simplified daylighting design tool for high-density urban residential buildings. *Lighting Research and Technology*, *33*(4), 259-272.
- Ng E. (2003). Studies on daylight design and regulation of high-density residential housing in Hong Kong. *Lighting Research and Technology*, *35*(2), 127-139.
- Ng E., Cheng V., Gadi A., Mu J., Lee M. and Gadi A. (2007). Defining standard skies for Hong Kong. *Building and Environment*, 42, 866-876.
- Ng E. and Tregenza P.R. (2001). A design tool for regulating daylight availability for high density housing in Hong Kong. *Technical report for Anthony Ng Architects Ltd. and Buildings Department*. Hong Kong: The Government of the Hong Kong Special Administrative Region. (TA00491)
- Norris D. and Tillett L. (1997). Daylight and productivity: Is there a causal link? *Proceedings of Glass Processing Days Conference*, Tampere, Finland.
- Orland B. (1988). Aesthetic preference for rural landscapes: Some resident and visitor differences. *Environmental aesthetics*. Cambridge: Cambridge University Press, 364-378.
- Osgood C.E., Suci G.J. and Tannenbau P.H. (1957). *The measurement of meaning*. Urbana: University of Illinois Press.
- Osterhaus W.K.E. (2001). Discomfort glare from daylight in computer offices: What do we really know? Proceedings of the 9th European Lighting Conference (Lux Europa), Reykjavik, Iceland, 448-456.
- Osterhaus W.K.E. (2005). Discomfort glare assessment and prevention for daylight applications in office environments. *Solar Energy*, 79, 140-158.
- Page J.K. (1990). *Indoor environment: Health aspects of air quality, thermal environment, light and noise*. Geneva: Would Health Organization. (WHO/EHE/RUD/90.2)
- Paix D. (1963). Measurements of the luminance distribution of the sky near Sydney, Australia. *IES Monograph No. 6A*. London: The Illuminating Engineering Society.

- Palladio A. (1965). The four books of architecture: with a new introduction by Adolf K. Placzek. New York: Dover Publications.
- Parpairi K., Baker N.V., Steemers K.A. and Compagnon R. (2002). The luminance differences index: A new indicator of user preferences in daylit spaces. *Lighting Research and Technology*, 34(1), 56-58.
- Perez R., Seals R. and Michalsky J. (1993). All-weather model for sky luminance distribution – preliminary configuration and validation. *Solar Energy*, 50(3), 235-245.
- Perraudeau M. (1988). Luminance models. *Proceedings of the CIBSE National Lighting Conference*, Cambridge, UK, 291-292.
- Petherbridge P. (1955). The brightness distribution of the overcast sky when the ground is snow-covered. *Quarterly Journal of the Royal Meteorological Society*, 81(349), 476-478.
- Pleijel G. (1954). The computation of natural radiation in architecture and town planning. *Meddelande Bull.*, *Statens Namnd for Byggnadsforskning*, *Stockholm 25*, 30.
- Pollio V. (1960). *Vitruvuis: The ten books on architecture*. New York: Dover Publications.
- Portney L.G. and Watkins M.P. (2000). *Foundations of clinical research: Application to practice, 2nd edition.* NJ: Prentice-Hall Health.
- Price G.M. (1914). *The modern factory: safety, sanitation and welfare.* New York: John Wiley & Sons.
- Rea M.S., Ouellette M.J. and Tiller D.K. (1990). The effects of luminous surroundings on visual performance, pupil size, and human preference. *Journal of the Illuminating Engineering Society*, 19(2), 45-58.
- Reinhard E., Ward G., Pattanaik S. and Debevec P. (2006). *High dynamic range imaging: Acquisition, display and image-based lighting*. San Francisco: Morgan Kaufmann.
- Reinhart C.F. (2002). Effects of interior design on the daylight availability in open plan offices. *Conference Proceedings of the 2002 ACEEE Summer Study on Energy Efficiency in Buildings*, Pacific Grove, CA, USA, 1-12.
- Reinhart C.F. and Herkel S. (2000). The simulation of annual daylight illuminance distributions A state-of-art comparison of six RADIANCE-based daylight

- simulation for a test office with external blinds. *Energy and Buildings*, 32, 167-187.
- Reinhart C.F. and Walkenhorst O. (2001). Validation of dynamic RADIANCE-based daylight simulation for a test office with external blinds. *Energy and Buildings*, *33*, 683-697.
- Reiter R.J. (1991). Pineal gland: interface between the photoperiodic environment and the endocrine system. *Trends in Endocrinology & Metabolism*, 2(1), 13-19.
- Richards S.J. and Rennhackkamp W.M.H. (1959). Measurement of outdoor lighting conditions and their application in design for interior illumination. *South African Electrical Review*, *50*, 39.
- Robbins C.L. (1986). *Daylighting: Design and analysis*. New York: Van Nostrand Reinhold.
- Robertson M.A., Borman S. and Stevenson R.L. (1999) Dynamic range improvement through multiple exposures. *Proceedings of the IEEE International Conference on Image Processing*, Kobe, Japan, 159-163.
- Roche L. (2002). Summertime performance of automated lighting and blinds control system. *Lighting Research and Technology*, *34*(1), 11-27.
- Roche L., Dewey E. and Littlefair P. (2000). Occupant reactions to daylight in offices. *Lighting Research and Technology*, 32(3),119-126.
- Robson E.R. (1874). School architecture: Being practical remarks on the planning, designing, building and furnishing of school-houses. London: John Murray.
- Rodgers N.C., Ballinger J.A. and Dunkerley C. (1979). An analysis of innovative methods in natural lighting. *Architectural Science Review*, 22(2), 44-48.
- Rutten A. J. F. (1994). Sky luminance research imperative for adequate control of temporary supplementary artificial lighting installations. *Building and Environment*, 29(1), 105-111.
- Saini B.S. (1973). Building Environment: An illustrated analysis of problems in hot dry lands. Sydney: Angus & Robertson.
- Santamouris M. (2006). *Environmental design of urban buildings: An integrated approach*. London: Earthscan.
- Saraiji R. and Mistrick R. (1993). The development of coefficients of utilization for light shelves. *Journal of the Illuminating Engineering Society, Winter*, 139-162.
- Saunders J.E. (1969). The role of the level and diversity of horizontal illumination in an appraisal of a simple office task. *Lighting Research and Technology*, *1*, 37-46.

- Schernhammer E.S., Laden F., Speizer F.E., Willett W.C., Hunter D.J., Kawachi I. and Colditz G.A. (2001). Rotating night shifts and risk of breast cancer in women participating in the nurses' health study. *Journal of the National Cancer Institute*, *93*(20), 1563–1568.
- Scholl A., Manthey L., Helm R. and Steiner M. (2005). Solving multiattribute design problems with analytic hierarchy process and conjoint analysis: An empirical comparison. *European Journal of Operational Research*, *164*, 760-777.
- Schramm W. (1901). Über die Verteilung des Lichtes in der Atmosphäre. *Schriften d. Naturw. Vereins f. Schl.-Holst.*, 12(1), 81-129.
- Schrum L. and Parker D.S. (1996). Daylight dimming and energy savings: The effects of window orientation and blinds. *Proceedings of the 1996 International Solar Conference, Solar Engineering*, American Society of Mechanical Engineers, 507.
- Seetzen J., Heidrich W., Stuerzlinger W., Ward G., Whitehead L., Trentacoste M., Ghosh A. and Vorozcovs A. (2004). High dynamic range display systems. Proceedings of the 33rd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 760-768.
- Sliney D.H., Wangemann R.T., Franks J.K. and Wolbarsht M.L. (1976). Visual sensitivity of the eye to infrared laser radiation. *Journal of the Optical Society of America*, 66(4), 339–341.
- Slater A.I. and Boyce P.R. (1990). Illuminance uniformity on desks: Where is the limit? *Lighting Research and Technology*, 22, 165-174.
- Slater A.I., Perry M.J. and Carter D.J. (1993). Illuminance differences between desks: Limits of acceptability. *Lighting Research and Technology*, *25*, 91-103.
- Stein B. and Reynolds J.S. (2006). *Mechanical and electrical equipment for buildings* (10th edition). New York: Wiley.
- Stevens R.G. and Rea M.S. (2001). Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. *Cancer Causes Control*, 12(3), 279–287.
- Steven M.D. and Unsworth M.H. (1980). The angular distribution and interception of diffuse solar radiation below overcast skies. *Quarterly Journal of the Royal Meteorological Society*, 106(447), 57-61.

- Taylor L.H., Sucov E.W. and Shaffer D.H. (1975). Office lighting and performance. *Lighting Design and Application*, *5*(5), 30-36.
- Tennessen C.M. and Cimprich B. (1995). View to nature: effect on attention. *Journal of Environmental Psychology*. 15, 77-85.
- The Standard (2010a). Retrieved April 28 2011, from www.thestandard.com.hk/news_detail.asp?pp_cat=30&art_id=99871&sid=2873 0053&con type=1&d str=20100628&sear year=2010>
- The Standard (2010b). Retrieved April 28 2011, from www.thestandard.com.hk/news_detail.asp?we_cat=4&art_id=101217&sid=2911 0377&con type=1&d str=20100802&fc=1>
- Todd J.A., Crawley D., Geissler S. and Lindsey G. (2001). Comparative assessment of environmental performance tools and the role of the green building challenge. *Building Research and Information*, 29(5), 324-335.
- Tokura M., Iwata T. and Shukuya M. (1996). Experimental study on discomfort glare caused by windows, part 3: Development of a method for evaluating discomfort glare from a large light source. *Journal of Architecture, Planning and Environmental Engineering*, 489, 17-25.
- Tregenza P.R. (1980). The daylight factor and actual illuminance ratios. *Lighting Research and Technology*, 12(2), 64-68.
- Tregenza P.R. (1987). Subdivision of the sky hemisphere for luminance measurement. *Lighting Research and Technology*, *12*(2), 64-68.
- Tregenza P.R. (1989). Modification of the split-flux formulae for mean daylight factor and internal reflected component with large external obstructions. *Lighting Research and Technology*, 21, 125-128.
- Trotter A.P. (1951). The early years of illuminating engineering in Great Britain. Transactions of the Illuminating Engineering Society, 16(3), 57.
- Tuaycharoen N. and Tregenza P.R. (2005). Discomfort glare from interesting images. *Lighting Research and Technology*, *37*(4), 329-341.
- Turner D.P. (1969). Windows and environment. Newton-le-Willows: Pilkington Bros. Ltd/McCorquoadale and Co.
- Van Ierland J.F.A.A. (1967). *Two thousand Dutch office workers evaluate lighting, Publication 283*. Delft, The Netherlands: Research Institute for Environmental Hygiene, TNO.
- Veitch J.A. (2001). Psychological processes influencing lighting quality. Journal of

- the Illuminating Engineering Society, 30(1), 124-140.
- Veitch J.A. and Gifford R. (1996). Assessing beliefs about lighting effects on health, performance, mood, and social behavior. *Environment and Behavior*, 28(4), 446-470.
- Veitch J.A., Hine D.W. and Gifford R. (1993). End users' knowledge, beliefs, and preferences for lighting. *Journal of Interior Design*, 19(2), 15-26.
- Veitch J.A. and Newsham (1998). Determinants of lighting quality I: State of the science. *Journal of the Illuminating Engineering Society*, 27(1), 92-106.
- Velds M. (2000). Assessment of lighting quality in office rooms with daylighting systems. PhD Thesis, Delft University of Technology, The Netherlands.
- Velds M. and van der Voorden M. (1996). Development of a visual comfort evaluation method. *Proceedings of the 41st Annual Convention of the IESANZ Living with light the human element*, Perth, Australia.
- Virtusphere (2001). Retrieved April 28 2011, from <www.virtusphere.com>
- Wagner & Co. (2007). Retrieved April 28 2011, from www.solarpanelstore.com/pdf/en-sun-path-indicator-ba-0701-1122g000.pdf
- Waldram P.J. and Waldram J.M. (1923). Window design and the measurement and predetermination of daylight illumination. *The Illuminating Engineer*, 16(45), 86-87, 122.
- Walkenhorst O., Luther J., Reinhart C. and Timmer J. (2002). Dynamic annual daylight simulations based on one-hour and one-minute means of irradiance data. *Solar Energy*, 72(5), 385-395.
- Webb A.R. (2006). Considerations for lighting in the built environment: Non-visual effects of light. *Energy and Buildings*, *38*, 721-727.
- Wienold J. and Christoffersen J. (2006). Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. *Energy and Buildings*, *38*, 743-757.
- Winkelmann F. C., and Lokmanhekim M. (1985). Sun-control options in a high-rise office building. *Energy and Buildings*, 8(1), 1-13.
- Wolf S., Stefanov E. and Riemann M. (1995). Image resolved measurement of luminance using a CCD camera. *Light and Engineering*, *3*(3), 34-44.
- Xiao F., DiCarlo J.M., Catrysse P.B. and Wandell B.A. (2002). High dynamic range imaging of natural scenes. Proceedings of Tenth Color Imaging Conference:

Color Science and Engineering Systems, Technologies, and Applications, Scottsdale, Arizona, USA. 337-342.