

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF COMPUTING

Overhead-Aware Real-Time Scheduling for

Streaming Applications on Multiprocessor

Systems-on-Chip

By

YI WANG

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

July 2011

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, exceptwhere due acknowledgement

has been made in the text.

(Signature)

(Name of Student)

ii

ABSTRACT

With increasing demand for high-performance multimedia inbattery-driven mobile devices,

multicore architecture such as MPSoC (Multiprocessor System-on- Chip) is becoming widely

adopted in embedded systems. When real-time streaming applications such as Internet video

conferences and surveillance digital video recorders are executed on such chip multiproces-

sors, both time performance and energy consumption need to be considered. In order to

fully take advantage of the multicore architecture of MPSoCs, various techniques have been

proposed to explore and increase parallelism of streaming applications. These paralleliza-

tion techniques usually impose a large amount of intercore communications with significant

energy overhead and intercore communication overhead. By minimizing these overheads,

a shorter period can be applied and system performance such as energy consumption and

memory usage can be improved. In this thesis, we have attacked these problems from several

aspects including the optimization of time performance, energy consumption, and memory

usage for streaming applications on MPSoCs considering various overheads.

First, we focus on solving the energy optimization problem for real-time streaming

applications on MPSoCs by combining task-level coarse-grained software pipelining with

DPM (dynamic power management) and DVS (dynamic voltage scaling) considering transi-

tion overhead, intercore communication, and discrete voltage levels. We propose a two-phase

approach to solve the problem. In the first phase, we propose acoarse-grained task paral-

lelization algorithm to transform a periodic dependent task graph into a set of independent

tasks by exploiting the periodic feature of streaming applications. In the second phase, we

propose a genetic algorithm that can search and find the best schedule with the minimum

energy consumption. Experimental results show that our approach can achieve a 24.4% re-

duction in energy consumption compared with previous work.

iii

Second, we jointly optimize computation and communicationtask scheduling for

streaming applications on MPSoCs with the objective of minimizing schedule length by

totally removing intercore communication overhead. By minimizing schedule length, the

system performance can be improved by adopting a smaller period or exploring the slacks

generated for energy reduction with DVS. To guarantee the schedulability of communication

tasks, we perform the schedulability analysis, and theoretically obtain the upper bound of

the times needed to reschedule each computation task. Basedon the analysis, we formulate

the scheduling problem as an ILP (Integer Linear Programming) formulation and obtain

an optimal solution. Experimental results show that our technique can achieve a 27.72%

reduction in schedule length and a 14.98% reduction in energy consumption compared with

previous work.

Third, we study the problem of removing intercore communication overhead for

streaming applications on MPSoCs with the objective of minimizing the overall memory

usage. The intercore communication overhead not only impacts time performance consider-

ably but also influences the total memory usage of MPSoC architecture. Our basic idea is to

let tasks with intra-period data dependencies transform tointer-period data dependencies so

as to totally remove the intercore communication overhead.To solve the problem, we first

perform analysis and obtain the bounds of the times needed toreschedule each task. Then

we formulate the scheduling problem as an ILP model to obtainan optimal schedule. We

also propose a heuristic approach to efficiently obtain a near optimal solution. Experimental

results show that the proposed approach can significantly reduce the schedule length and

improve the memory usage compared with previous work.

Keywords: Real-time, task scheduling, energy overhead, communication overhead, stream-

ing applications, MPSoC.

iv

PUBLICATIONS

Journal Papers

1. Yi Wang, Hui Liu, Duo Liu, Zhiwei Qin, Zili Shao, E. H.-M. Sha, “Overhead-Aware

Energy Optimization for Real-Time Streaming Applicationson Multiprocessor System-

on-Chip”,ACM Transactions on Design Automation of Electronic Systems (TODAES),

Volume 16, Issue 2, pages 14:1-14:32, March 2011.

2. Yi Wang, Duo Liu, Zhiwei Qin, Zili Shao, “Optimally Removing Inter-Core Com-

munication Overhead for Streaming Applications on MPSoCs”, Accepted inIEEE

Transactions on Computers (TC), 2011.

3. Duo Liu, Yi Wang, Zili Shao, Minyi Guo, Jingling Xue, “Optimally Maximizing

Iteration-Level Loop Parallelism”, Accepted inIEEE Transactions on Parallel and

Distributed Systems (TPDS), 2011.

4. Duo Liu,Yi Wang, Zhiwei Qin, Zili Shao, Yong Guan, “A Space Reuse Strategy for

Flash Translation Layers in SLC NAND Flash Memory Storage Systems”, Accepted

in IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2011.

5. Meng Wang,Yi Wang, Duo Liu, Zhiwei Qin, Zili Shao, “Compiler-Assisted Leakage-

Aware Loop Scheduling for Embedded VLIW DSP Processors”,Elsevier Journal of

Systems and Software (JSS), Volume 83, Issue 5, pages 772-785, May 2010.

6. Miao Liu, Duo Liu,Yi Wang, Meng Wang, Zili Shao, “On Improving Real-Time In-

terrupt Latencies of Hybrid Operating Systems with Two-Level Hardware Interrupts”,

IEEE Transactions on Computers (TC), Volume 60, Number 7, pages 978-991, July

2011.

v

7. Hongxing Wei, Bin Wang,Yi Wang, Zili Shao, Keith C.C.Chan, “Staying-Alive Path

Planning with Energy Optimization for Mobile Robots”, Accepted inElsevier Expert

Systems With Applications (ESWA), 2011.

Conference Papers

1. Yi Wang, Luis Angel D. Bathen, Zili Shao, Nikil D. Dutt, “3D-FlashMap: A Physical-

Location-Aware Block Mapping Strategy for 3D NAND Flash Memory”, in Proceed-

ings of the 15th Design, Automation and Test in Europe (DATE 2012), Dresden, Ger-

many, March 12-16, 2012.

2. Yi Wang, Duo Liu, Zhiwei Qin, Zili Shao, “An Endurance-Enhanced Flash Transla-

tion Layer via Reuse for NAND Flash Memory Storage Systems”,in Proceedings of

the 14th Design, Automation and Test in Europe (DATE 2011), pages 14-20, Grenoble,

France, March 14-18, 2011.

3. Yi Wang, Duo Liu, Zhiwei Qin, Zili Shao, “Memory-Aware Optimal Scheduling with

Communication Overhead Minimization for Streaming Applications on Chip Multi-

processors”, inProceedings of the 31st IEEE Real-Time Systems Symposium (RTSS

2010), pages 350-359, San Diego, CA, USA, November 30 - December 4,2010.

4. Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, Zili Shao, “Optimal Task Scheduling by

Removing Inter-core Communication Overhead for StreamingApplications on MP-

SoC”, inProceedings of the 16th IEEE Real-Time and Embedded Technology and Ap-

plications Symposium (RTAS 2010), pages 195-204, Stockholm, Sweden, April 12-16,

2010.

5. Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, Zili Shao, Yong Guan, “RNFTL: A

Reuse-Aware NAND Flash Translation Layer for Flash Memory”, in Proceedings of

the ACM SIGPLAN/SIGBED 2010 Conference on Languages, Compilers and Tools for

vi

Embedded Systems (LCTES 2010), pages 163-172, Stockholm, Sweden, April 12-16,

2010.

6. Zhiwei Qin,Yi Wang, Duo Liu, Zili Shao, Yong Guan, “MNFTL: An Efficient Flash

Translation Layer for MLC NAND Flash Memory Storage Systems”, in Proceedings

of the 48th IEEE/ACM Design Automation Conference (DAC 2011), pages 17-22, San

Diego, CA, USA, June 5-10, 2011.

7. Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, “A Two-Level Caching Mechanism for

Demand-Based Page-Level Address Mapping in NAND Flash Memory Storage Sys-

tems”, in Proceedings of the 17th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS 2011), pages 157-166, Chicago, IL, USA, April 11-

14, 2011.

8. Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, “Demand-Based Block-Level Address

Mapping in Large-Scale NAND Flash Storage Systems”, inProceedings of the 8th

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and Sys-

tem Synthesis (CODES +ISSS 2010), pages 173-182, Scottsdale, Arizona, USA, Oc-

tober 24-29, 2010.

9. Meng Wang,Yi Wang, Duo Liu, Zili Shao, “Improving the Reliability of Embedded

Systems with Cache and SPM”, inProceeding of the 2009 IEEE International Sym-

posium on Trust, Security and Privacy for Pervasive Applicationsin conjunction with

the 2009 IEEE International Conference on Mobile Ad-hoc andSensor Systems (MASS

2009), pages 825-830, Macau, China, October 12-15, 2009.

10. Duo Liu, Tianzheng Wang,Yi Wang, Zhiwei Qin, Zili Shao, “A Block-Level Flash

Memory Management Scheme for Reducing Write Activities in PCM-based Embed-

ded Systems”, inProceedings of the 15th Design, Automation and Test in Europe

(DATE 2012), Dresden, Germany, March 12-16, 2012.

vii

11. Duo Liu, Tianzheng Wang,Yi Wang, Zhiwei Qin, Zili Shao, “PCM-FTL: A Write-

Activity-Aware NAND Flash Memory Management Scheme for PCM-based Embed-

ded Systems”, inProceeding of the 32nd IEEE Real-Time Systems Symposium (RTSS

2011), Vienna, Austria, November 29-December 2, 2011.

12. Meng Wang, Duo Liu,Yi Wang, Zili Shao, “Loop Scheduling with Memory Ac-

cess Reduction under Register Constraints for DSP Applications”, in Proceeding of

the 2009 IEEE Workshop on Signal Processing Systems (SiPS 2009), pages 139-144,

Tampere, Finland, October 7-9, 2009.

viii

ACKNOWLEDGEMENTS

First and foremost, I want to express my gratitude to my supervisor, Prof. Zili Shao, whose

expertise, understanding, and patience, added considerably to my graduate experience. I

appreciate his vast knowledge and skill in many areas and hisprofessional supervision. It

is my great pleasure to be a student of Prof. Shao, and I want tothank him for supporting

me over the years, and for giving me so much freedom to exploreand discover new areas of

research. Without his help and support, this body of work would not have been possible.

I want to thank my co-supervisor, Prof. Jiannong Cao, for hisguidance, encourage-

ment and advice. I also express my gratitude to the other members of Prof. Shao’s research

group - Duo Liu, Zhiwei Qin, Dr. Meng Wang, Tianzheng Wang, Guohui Wang, Chunjing

Mao, and Luguang Wang - for the assistance they provided during my Ph.D. study. I also

would like to thank all my teachers from whom I learned so muchin my long journey of

formal education. Specially thanks go to Prof. Zhijun Wang,Prof. Yan Liu, Prof. Bin Xiao,

Prof. Qin Lu, Prof. Lei Zhang, and Dr. King Hong Cheung at the Hong Kong Polytech-

nic University. Furthermore, I acknowledge my gratitude toDr. Yang Liu, Dr. Dongmin

Guo, Dr. Xiaocui Sun, Kunfeng Lai, Dr. Guobin Liu, Weichao Li, Yi Yuan, and Dr. Hao

Wang, who shared with me the pleasure of the Ph.D. study at theHong Kong Polytechnic

University.

I must acknowledge Prof. Nikil D. Dutt at University of California, Irvine, for of-

fering me the opportunity to visit UCI. His truly scientist intuition and invaluable guidance

inspires and enriches my intellectual maturity that I will benefit from, for a long time to come.

I offer my regards and blessings to all of those who supportedme in different respects dur-

ing my visit at UCI. I would especially like to acknowledge Luis Bathen, Abbas Banaiyan,

Kazuyuki Tanimura, and Jun Yong Shin, who have directly or indirectly collaborated on my

ix

research.

I want to thank Prof. Henry C. B. Chan from the Hong Kong Polytechnic University

for kindly being the Chairman of the Board of Examiners (BoE). I also thank Prof. Yi Pan

from Georgia State University, and Prof. Cho-Li Wang from the University of Hong Kong,

for kindly taking time out from their busy schedule to serve as my external examiners.

I recognize that this thesis would not have been possible without the financial as-

sistance from the Hong Kong Polytechnic University. I appreciate Prof. Shao and the

Department of Computing for offering me the travel grants toattend several international

conferences. I acknowledge the grant for Research Student Attachment Program from the

Hong Kong Polytechnic University for giving me the financialsupport to visit University of

California.

Finally, I want to thank my family. They educated and guided me and have watched

over me every step of way. I want to thank them for their endless love, support, and encour-

agement through my entire life, for letting me pursue my dream for so long and so far away

from home, and for giving me the motivation to finish this thesis.

x

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY. .. ii

ABSTRACT .. iii

PUBLICATIONS .. v

ACKNOWLEDGEMENTS ix

LIST OF FIGURES .. xiv

LIST OF TABLES .. xvi

CHAPTER 1. INTRODUCTION. 1

1.1 Related Work .. 3

1.1.1 Energy Optimization Techniques for Single and Multiple Processors 3

1.1.2 Communication-Aware Task Scheduling 5

1.1.3 Scheduling for Streaming Applications 6

1.2 The Unified Research Framework .. 7

1.3 Contributions .. 9

1.4 Thesis Organization .. 10

CHAPTER 2. OVERHEAD-AWARE ENERGY OPTIMIZATION FOR STREAMING
APPLICATIONS ON MPSOCS 11

2.1 Overview .. 11

2.2 Models and Concepts .. 14

2.2.1 System Model .. 14

2.2.2 Task Model .. 14

2.2.3 Power Model .. 16

2.2.4 Retiming .. 18

2.2.5 Genetic Algorithm .. 19

2.2.6 Problem Statement .. 19

2.3 Motivational Example .. 20

2.4 Lower-bound Analysis .. 23

xi

2.5 Task Parallelization and Scheduling 25

2.5.1 The RDAG Algorithm for Task Parallelization 27

2.5.2 The GeneS Algorithm for Energy Optimization 35

2.6 Experiments .. 42

2.6.1 Experimental Setup .. 42

2.6.2 Results and Discussion .. 44

2.7 Summary .. 54

CHAPTER 3. OPTIMALLY REMOVING INTERCORE COMMUNICATION OVER-
HEAD FOR STREAMING APPLICATIONS ON MPSOCS. 56

3.1 Overview .. 56

3.2 Models and Concepts .. 58

3.2.1 System Model .. 59

3.2.2 Task Model .. 59

3.2.3 Static Schedule .. 60

3.2.4 Communication/Computation Overlapping and Retiming 61

3.2.5 Problem Analysis .. 64

3.2.6 Problem Statement .. 65

3.3 Schedulability Analysis .. 66

3.3.1 Bounds of Relative Retiming Values 66

3.3.2 Bounds of the Prologue Length .. 72

3.4 Optimal Joint Computation and Communication Task Scheduling 76

3.4.1 Joint Computation and Communication Task Scheduling(JCCTS) 76

3.4.2 The Extension for Minimizing Energy Consumption 81

3.5 Experiments .. 82

3.5.1 Experimental Setup .. 82

3.5.2 Results and Discussion .. 84

3.6 Summary .. 89

CHAPTER 4. MEMORY-AWARE SCHEDULING WITH COMMUNICATION OVER-
HEAD MINIMIZATION FOR STREAMING APPLICATIONS ON
MPSOCS. 90

4.1 Overview .. 90

4.2 Models and Concepts .. 92

4.2.1 System Model .. 92

4.2.2 Application Model and Communication Overhead. 93

xii

4.2.3 Static Schedule .. 94

4.2.4 Task Rescheduling and Retiming 94

4.3 Motivational Example and Problem Statement 96

4.4 Memory-Aware Task Scheduling for Minimizing the Intercore Communication
Overhead .. 99

4.4.1 The Bounds Analysis of Retiming Value 100

4.4.2 The Analysis of Extra Memory Usage 103

4.4.3 Integer Linear Programming Formulation 105

4.4.4 A Heuristic Approach. .. 109

4.5 Experiments .. 114

4.5.1 Experimental Setup .. 114

4.5.2 Results and Discussion .. 116

4.6 Summary .. 121

CHAPTER 5. CONCLUSION AND FUTURE WORK. 122

5.1 Conclusion .. 122

5.2 Future Work .. 124

REFERENCES .. 125

xiii

LIST OF FIGURES

1.1 The Unified Research Framework. .. 8

2.1 A Multiprocessor SoC Architecture. 15

2.2 A Motivational Example. (a) The original DFG. (b) The retimed DFG using
our RDAG algorithm. (c) The task information. (d) The schedule generated
by the list scheduling in Landskov et al. [59] without power management (the
energy is137µJ). (e) The schedule generated by the DAG-based scheduling
algorithm in Zhang et al. [115] with DVS and DPM (the energy is73.4µJ).
(f) The schedule generated by our technique (the energy is25µJ). (g) The
schedule generated by our technique with a tight timing constraint (8µs). 21

2.3 An Example of the RDAG Algorithm. (a) The original DFGG. (b) The re-
timed DFGGr. (c) The static schedule generated fromG. (d) The pipelined
schedule generated fromGr. 29

2.4 Latency and Memory Overhead of the RDAG Algorithm. 35

2.5 Chromosome Representation and Its Corresponding Task Schedule. 37

2.6 The Crossover Operator Generates New Chromosomes: Chromosomes 3 and
Chromosome 4. .. 38

2.7 The Mutation Operator. TaskTD is selected to perform mutation, and its
voltage level is changed fromVdd2 to Vdd1 . 38

2.8 An Example of the GeneS Algorithm. 40

2.9 The Changing Tendency of Energy and Timing Constraint with Three Algo-
rithms under Different Number of Processor Cores on Benchmark TGFF-1. . . 50

3.1 The MPSoC Architecture. .. 59

3.2 A DAG and Its Schedule. .. 61

3.3 Given the initial DAG and schedule in Figure 3.2, (a) a newschedule in
which the intercore communication overhead caused byCT 1

3 andCT 1
4 is

removed by overlapping communication and computation, and(b) the corre-
sponding DAG with the node weightR(T1) of computation taskT1 changed
to 1. .. 62

3.4 Given the initial DAG and schedule in Figure 3.2, (a) a newschedule in
which the intercore communication overhead is totally removed, and (b) the
corresponding DAG. .. 62

3.5 An Exemplary Task Schedule of Theorem 3.3.1. 68

3.6 An Exemplary Task Schedule of Property 3.3.1. 69

3.7 An Exemplary Task Schedule of Property 3.3.2. 71

3.8 An Exemplary Task Schedule of Property 3.3.3. 72

xiv

3.9 A Run Time Example of the Proposed Approach. 75

3.10 The Maximum Retiming ValueRmax of Each Benchmark Running on 2, 3,
and 4 Processor cores. .. 88

4.1 The MPSoC Architecture. .. 92

4.2 A Motivational Example. (a) A DAG. (b) The objective computation task
schedule of the DAG. (c) The schedule considering intercorecommunica-
tion overhead. (d) and (e) two schedules in which intercore communication
overheads are totally removed while they are with differentmemory usages.. . 97

4.3 A Task Schedule of Theorem 4.4.1. .. 102

4.4 Analysis of Memory Usage for Intercore Communication TaskCT i
j 104

4.5 A Runtime Example of MAOTS. (a) A DAG. (b) An initial schedule of the
DAG. (c) Objective task schedule of all computation tasks that totally re-
moves intercore communication overhead. (d) The executiontime of each
computation task and that of each communication task, and the release time
of each computation task. (e) The bounds of relative retiming value of each
pair of tasks. (f) The bounds of the retiming value of each task. (g) The
optimal task schedule by our approach MAOTS. 107

4.6 Schedule Length by Task Schedules PEDF [115], Schedule2D [111], and the
proposed approach (MAOTS) on 2, 3, and 4 processor cores. 115

4.7 Memory Usage of Schedule2D [111], JCCTS [106], and the Proposed Ap-
proach MAOTS on 2, 3, and 4 Processor Cores. 117

4.8 Memory Usage of Heuristic Approach (HMAOTS) and Memory-Aware Op-
timal Task Scheduling (MAOTS) on 2, 3, and 4 processor cores.. 120

xv

LIST OF TABLES

2.1 The Voltage Levels, Frequencies and Power Consumption based on the Power
Model of the Mobile Athlon4 Processor [7]. 42

2.2 Benchmark Descriptions and Characteristics. 44

2.3 The Energy of Each Benchmark under Various Timing Constraints on 2, 3,
4 Processor Cores. .. 46

2.4 The Energy of Each Benchmark under Various Timing Constraints on 6 and
8 Processor Cores. .. 47

2.5 The Comparison of Energy Consumption by the GeneS Algorithm and the
Lower Bound Energy ConsumptionELB. 49

2.6 The Comparison for the Schedules Generated by PEDF, SpringS, and GeneS
on TGFF-2, afat Task Graph. 51

2.7 The Prologue Latency of Our RDAG Algorithm with Different Timing Con-
straints. .. 52

2.8 Power Consumption and Transition Time for Memory. 53

2.9 The Memory Energy Consumption of the PEDF Algorithm and the RDAG
Algorithm. .. 54

3.1 Comparison in Schedule Length of Our JCCTS Approach and the STC Al-
gorithm in Chen et al. [24] on 2, 3, and 4 Processor Cores. 85

3.2 Comparison in Energy Consumption of Our JCCTS Approach and the FLSSR
Algorithm in Zhu et al. [117] on 2, 3, and 4 Processor Cores. 87

4.1 Comparison in Time Cost of Heuristic Approach (HMAOTS) and Memory-
Aware Optimal Task Scheduling (MAOTS) on 2, 3, and 4 processor cores. . . . 119

xvi

CHAPTER 1

INTRODUCTION

Continuing advances in chip technology with the increasingly dense integration of intellec-

tual property cores have created new opportunities in embedded applications. More and more

embedded systems adopt the multiprocessor system-on-chip(MPSoC) to integrate multiple

processor cores along with other hardware subsystems to implement a system. MPSoCs

are not simply traditional multiprocessors shrunk to a single chip but have been designed to

fulfill the unique requirements of embedded applications [109].

MPSoCs are often application specific, and they have very tight constraints in terms

of computation power and memory space. In order to fully utilize the computation power

of multiprocessor architecture, embedded applications can be customized to explore coarse-

grained parallelism. Streaming applications are typically computationally-intensive with a

lot of parallelism, and thus they are perfect candidates forbeing executed on MPSoCs. When

streaming applications are running on MPSoCs, they are often required to provide real-time

response with low power consumption. Task-level parallelism of streaming applications on

MPSoCs is explored by executing multiple tasks on differentprocessor cores concurrently.

However, most of the existing optimal scheduling techniques on MPSoC architectures do not

consider several overheads caused by task-level parallelism techniques.

In this thesis, we address the challenges in handling overheads in parallel process-

ing of streaming applications on MPSoC architectures. Specifically, two major overheads

(i.e., energy consumption overhead and intercore communication overhead) are considered

in designing optimal task schedules. We present overhead-aware task scheduling schemes

to optimize energy consumption, real-time performance, and memory usage for streaming

applications on MPSoC architectures.

1

First, energy consumption becomes one of the important constraints for the design of

multiprocessor system-on-chips, particularly for battery-operated embedded systems. With

the increasing of operating frequency and transistor density of MPSoCs, energy consumption

of these highly integrated and complex designs is becoming amajor concern. DPM (dynamic

power management) and DVS (dynamic voltage scaling) techniques are widely used to opti-

mize energy consumption. When DPM and DVS are applied for energy optimization, several

energy overheads (i.e., transition energy overhead associated with the sleep mode, transition

energy overhead caused by voltage changes, and energy overhead by intercore communica-

tion) should be taken into account. In this thesis, we consider these energy overheads and

provide a complete and energy efficient schedule.

Second, on-chip communication architectures have numerous sources of delay due

to signal propagation along the wires, synchronization (e.g., handshaking), transfer modes

(e.g., pipeline access), and arbitration mechanisms [82].With the increasing of the number of

system components and the processing gap between processorcores and memory, the delay

caused by intercore communication will incur intercore communication overhead, which will

significantly influence both time performance and power consumption of the system. In this

thesis, we aim to totally remove the intercore communication overhead and to generate an

energy-efficient optimal schedule with the minimum schedule length.

Third, memory usage is becoming an important factor for streaming applications on

MPSoC architectures. Memory takes up a large chunk of on-chip area, as much as 70%

in some cases [73]. Estimates indicate that this figure will go up to 90% in the coming

years [5]. Parallel processing of streaming applications needs to store intermediate data

streams across different processor cores, which directly accounts for the memory usage of

the system. Intercore communication overhead directly influences the optimization of task

schedule and significantly impacts the memory usage. In thisthesis, we propose an optimal

solution that can totally remove intercore communication overhead and generate a schedule

with the minimum memory usage.

The rest of this chapter is organized as follows: Section 1.1presents the related

2

work. Section 1.2 presents the unified research framework. Section 1.3 summarizes the

contributions of this thesis. Section 1.4 gives the outlines of the thesis.

1.1 Related Work

In this section, we outline previous approaches related to task scheduling for streaming ap-

plications on multiprocessor system-on-chips. In the previous work, there has been work

done in three main domains: (I) Energy optimization techniques for single and multiple

processors, (II) Communication-aware task scheduling, and (III) Scheduling for streaming

applications. We briefly describe these approaches, and detailed comparisons with represen-

tative techniques are presented in respective chapters.

1.1.1 Energy Optimization Techniques for Single and Multiple Processors

DVS is one of the most effective techniques for energy optimization. Therefore, a lot of

DVS scheduling techniques have been proposed in previous work. For periodic independent

tasks, the DVS scheduling has been extensively studied for single and multiple processors.

For single processor, Aydin et al. [12] showed that for any periodic task, it is optimal for all

of its task instances to run at the same processor speed on an ideal DVS processor. Jejurikar

and Gupta [44] considered periodic tasks on a processor withdiscrete speed levels. Several

studies have been conducted in the DVS scheduling on single processor based on dynamic

priority [12, 23, 74] or fixed priority [16, 96, 100]. For multiple processors, several studies

[4, 13, 22] focused on DVS scheduling on homogeneous multiple processors while other

work [41,69,70,114] focused on heterogeneous multiple processors. Recent work [11,116]

studied system-wide energy minimization for periodic and aperiodic tasks on a processor

with continuous speed levels. They separate task executioninto on-chip/off-chip cycles,

which are applicable for both CPU and memory. Niu and Quan [77] proposed an approach

for system-wide dynamic power management for multimedia portable devices. In all of the

above work, the task model is based onperiodic independent tasksat process or thread level.

3

In this thesis, we considerperiodic dependent taskswhich can better model stream-based

applications such as MPEG-4 AVC decoder [107].

There have been a lot of studies of DVS scheduling for dependent tasks on multipro-

cessor systems with multiple voltage levels. Hua and Qu [40]studied the voltage setup prob-

lem and proposed an approach to select optimal voltage levels. Gruian and Kuchcinski [36]

introduced a scheduling approach. In their approach, basedon a given fixed task assignment,

the delays of all tasks are scaled down by the ratio of the timing constraint over the critical

path length. Luo and Jha [69] proposed an approach to evenly distribute slacks based on a

fixed task scheduling. Zhang et al. [115] proposed a framework that integrates task schedul-

ing and voltage selection together to minimize the energy consumption for dependent tasks

on multiple processors. However, these works focus ondependenttask model instead of

periodic dependenttask model. With the dependent task model, only intra-iteration data de-

pendencies are considered. In our work, we further exploit inter-iteration data dependencies

by utilizing the periodic characteristics of the periodic dependent task model.

Several recent studies have explored the periodic behaviorof periodic tasks with

pipelining and parallel processing [50,62,99]. In Kim et al. [50], a power reduction technique

is proposed to optimize energy by exploring pipelining and parallel processing in unipro-

cessor systems. This uniprocessor-based technique cannotbe directly applied to solve our

multiprocessor-based problem. In Shao et al. [99], a loop scheduling technique is proposed

to minimize energy by exploring inter-iteration dependencies for applications with loops

on multi-core systems. The given technique, however, is based on loop optimization with

instruction-level parallelism; thus, it is not applicableto the periodic task model. In Li and

Martinez [62], an analytical model is developed to study thepower-performance issues of

running parallel applications on chip multiprocessors. The proposed technique shows that,

parallel computing can bring significant power-performance benefits over uniprocessor sys-

tems.

4

1.1.2 Communication-Aware Task Scheduling

Since the early 1990s, several on-chip bus-based communication architecture standards have

been proposed to handle the communication needs of emergingSoC designs [82]. These

popular standards include ARM Microcontroller Bus Architecture (AMBA) versions 2.0 [8]

and 3.0 [9], IBM CoreConnect [42], STMicroelectronics STBus [102], Sonics SMART In-

terconnect [101], OpenCores Wishbone [79], and Altera Avalon [6]. Our proposed approach

is based on ARM-based architecture, but the proposed approach can be extended to all bus-

based communication architectures.

There is a large body of work dealing with performance estimation models for com-

munication architecture. The estimation-based models forcommunication architecture per-

formance exploration can be roughly classified into three categories: the static estimation,

the dynamic estimation, and the hybrid estimation [82].

Static estimation methods try to estimate the communication delay in applications

statically. Some early work [86, 89, 113] focused on the estimation of communication delay

for high-level synthesis in the context of distributed embedded real-time systems. Other work

proposed communication delay model to ensure the performance constraints are satisfied

during the design flow of hardware/software component integration [34, 55, 56]. Renner et

al. [92,93] proposed the communication model that considers the delay caused by the specific

protocol. Cho et al. [25] proposed a delay model for AMBA AHB [8] single shared bus.

Dynamic or simulation-based performance estimation models provide more accu-

rate estimation. There have been several approaches based on cycle accurate models [67],

pin-accurate bus cycle accurate models [47, 97, 98], transaction-based bus cycle accurate

models [18, 19, 54, 78, 83, 84]. Hybrid communication architecture performance estima-

tion approaches attempts to combine the static estimation and dynamic simulation-based

approaches to speed up communication architecture performance estimation while generat-

ing accurate performance exploration results. Some approaches are trace-based approach

[57, 58], while other approaches are queuing theory-based approach [52, 53]. These com-

munication performance estimation can provide accurate results that can be utilized in the

5

design of proposed overhead-aware scheduling schemes.

The intercore communication scheduling on multi-core architectures has been inves-

tigated in previous work. Several studies have been conducted in communication and task

scheduling for mesh network [27,39,118], grid environment[120], cluster architecture [110],

and multi-layer bus architecture [38]. Our work focuses on the shared bus architecture, so

these techniques cannot be directly applied. Based on the shard bus architecture, which is

the most widely used interconnection architecture, several techniques have been proposed in

bus access policy and bus access scheduling [35, 37, 94]. In [87, 88], real-time bus schedul-

ing policies including event-triggered scheduling and time-triggered scheduling have been

investigated. In Lehoczky and Sha [60], real-time bus scheduling algorithms considering the

issues of task preemption, priority level granularity, andbuffering are proposed. There have

been also several studies in communication mechanisms suchas task migration and data

migration for real-time multimedia MPSoC architectures [2, 49, 80]. These techniques can

provide good solutions for bus arbitration and communication synthesis. However, all the

aforementioned work is not designed to reduce intercore communication overhead. Several

communication-aware task allocation and scheduling frameworks for MPSoC architectures

are proposed [29, 68, 95, 105]. By increasing the parallelism, these techniques may cause

more intercore communications. Our technique is a good supplement for these techniques

by helping effectively reducing intercore communication overhead.

1.1.3 Scheduling for Streaming Applications

In this thesis, streaming applications are modeled as periodic dependent tasks. In previous

work, a lot of techniques have been proposed to solve the scheduling problem for periodic

tasks. For scheduling independent tasks, a number of studies have been conducted [15,

22, 41]. These techniques, however, cannot be directly applied to perform scheduling for

periodic dependent tasks. Several techniques have been proposed to solve the scheduling

problem for periodic dependent tasks on multicore architectures [1, 24, 26, 64, 117]. The

above techniques can generate optimal or near-optimal taskschedules. However, in these

6

techniques, intercore communication overhead is not considered. So they may not provide

good solutions to our problem.

Several approaches have been conducted to improve the performance of streaming

applications with different architectures [31, 43, 119]. In Foroozannejad et al. [31], a fine-

grained analysis of temporal behavior of buffer allocationfor streaming application is per-

formed. In Issenin and Dutt [43], an energy-aware co-synthesis of both memory and TDMA

bus-based communication architecture for streaming applications is proposed. In Zhu et

al. [119], a scheduling technique for streaming applications on hybrid CPU/FPGA architec-

tures is proposed to minimize the buffer requirement with throughput guarantees. For the

above approaches, the data dependency relations for streaming applications are fixed inside

each period. It may limit the optimization for performance (e.g., throughout, schedule length,

and energy consumption). In Wang et al. [106], a task scheduling technique that changes the

data dependency relations across different periods is proposed. However, it does not con-

sider the extra memory usage to store the data among different periods. Our technique can

combine with the above approaches to generate an optimal task schedule with the minimum

memory usage.

1.2 The Unified Research Framework

In this section, we present the unified research framework for the proposed techniques. Fig-

ure 1.1 illustrates the sketch of our research framework.

In this thesis, streaming applications that process streams of data are modeled as

periodic dependent tasks, in which streams of data are communicated from task to task.

Periodic dependent tasks are represented by a Directed Acyclic Graph (DAG).

The system architecture adopted in this thesis is a typical MPSoC system, which

consists of a set of processor cores, a shared bus, a bus arbiter, and a shared on-chip mem-

ory. A shared bus is adopted as it is one of the most widely usedon-chip communication

architectures.

7

Overhead-

Aware Energy

Optimization

System Model

Processor

Core

Interface

...
Processor

Core

Interface

Processor

Core

Interface

Bus

Bus

Arbiter

Interface

Memory

Interface

Task Model

MPSoC Architecture

(Streaming Applications)

Periodic Dependant Tasks

Optimally

Removing

Intercore

Communication

Overhead

Memory-Aware

Scheduling with

Communication

Overhead

Minimization

(Chapter 2) (Chapter 3) (Chapter 4)

Directed Acyclic

Graph (DAG)

Problem Formulation

Figure 1.1. The Unified Research Framework.

Based on the system model and the application model, three task scheduling prob-

lems are formulated to optimize energy consumption, timingperformance, and memory us-

age of streaming applications considering several overheads caused by parallel processing of

streaming applications on MPSoC architectures.

For the first scheme, in Chapter 2, we studied the energy optimization problem for

real-time streaming applications on multiprocessor system-on-chips considering several en-

ergy overheads. For the second scheme, in Chapter 3, we aimedto totally remove intercore

communication overhead and to generate an optimal task schedule in which the schedule

8

length can be minimized with the minimum prologue length. For the third scheme, in Chap-

ter 4, we studied the problem of totally removing intercore communication overhead with

the objective of minimizing the overall memory usage.

1.3 Contributions

The contributions of this thesis are summarized as follows.

• The major contribution of this thesis is the idea of considering several overheads aris-

ing from the adoption of parallel processing of streaming applications on MPSoC

architectures. To solve the overhead-aware optimization problem, this thesis intro-

duces three scheduling schemes. These schemes are built on previous work on task-

level software pipelining, which could provide good performance for computationally-

intensive streaming applications on multiprocessor architectures. We extend the retim-

ing technique and change the data dependency relationshipsacross different periods.

This could fully utilize the computation power of multiprocessor architectures, and get

time slots to exploit DVS and DPM techniques to reduce energyconsumption.

• To handle various energy overheads, we transform a periodicdependent tasks into

independent tasks. By completely removing precedence relations, abundant idle task

slacks incurred by precedence relations among tasks can be utilized. In this way,

more opportunities are provided to do scheduling with energy optimization. Then

we propose a genetic algorithm to search the best schedule considering several energy

overheads.

• To handle intercore communication overheads, we reschedule several tasks into the

previous execution process (or prologue) and overlap the execution of computation

tasks with that of communication tasks. This can generate a task schedule by adopt-

ing a shorter period and with the maximum throughput. Different from the tradi-

tional pipelining technique, the number of pipeline stagesof each task is determined

by the allocation of computation tasks and the associated intercore communication

9

tasks. Two scheduling schemes are proposed with the objectives of minimizing the

maximum retiming value, and minimizing the extra memory usage.

• The schedulablility analysis in this thesis provides very tight bounds. For the problem

of removing intercore communication overheads, the results of the analysis can be

utilized in the ILP model to efficiently obtain the solution.

• We implement a simulator based on the ARM-based MPSoC systemarchitecture to

evaluate the proposed schemes. We conduct experiments and compare with represen-

tative schemes. Experimental results prove the effectiveness of the proposed schemes.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

• In Chapter 2, we handle the energy overhead and propose a two-phase approach to

solve problem. In the first phase, we present the RDAG algorithm to transform a set

of periodic dependant tasks into a set of independent tasks.In the second phase, we

propose a genetic algorithm GeneS to generate the schedule with the minimum energy

consumption.

• In Chapter 3, we handle the intercore communication overhead and propose a scheme

called JCCTS to obtain an optimal task schedule that totallyremoves intercore com-

munication overhead with the minimum prologue length.

• In Chapter 4, we handle the intercore communication overhead and propose a scheme

called MAOTS to obtain an optimal task schedule with the minimum extra memory

usage. We also present a heuristic approach HMAOTS to efficiently obtain a near

optimal schedule.

• In Chapter 5, we present conclusions and possible future directions of research arising

from this work.

10

CHAPTER 2

OVERHEAD-AWARE ENERGY OPTIMIZATION FOR STREAMING

APPLICATIONS ON MPSOCS

2.1 Overview

With increasing demand for high-performance multimedia inbattery-driven mobile devices,

multi-core architecture such as MPSoC (Multiprocessor System-on-Chip) is becoming widely

adopted in embedded systems. The examples include TI TMS320DM6467 DaVinci proces-

sors, Freescale MSC8122 and MSC8126 multicore DSP processors, ARM ARM11 MPCore

and Intel Atom processors. Some multicore processors such as ARM ARM11 MPCore and

Intel Atom processors provide multiple voltage levels for low power optimization. When

real-time streaming applications such as Internet video conferences and surveillance digital

video recorders are executed on such chip multiprocessors,both time performance and en-

ergy consumption need to be considered as energy consumption is one of the most important

performance metrics in embedded systems. Therefore, it becomes an important research

problem to optimize energy consumption for streaming applications on MPSoCs.

To solve this problem, several issues need to be taken into account. First, a stream-

ing application can be modeled as periodic dependent tasks in real-time systems, in which a

stream of data is treated as a sequence of requests that are serviced by the streaming applica-

tion when arrived [111]. In this chapter, the periodic behavior of dependent tasks is explored

with task-level software pipelining [20, 21, 85]. Second, both dynamic power management

(DPM) and dynamic voltage scaling (DVS) should be applied for energy optimization. DPM

exploits idle times of a processor and turns off power supplyso as to reduce static energy

caused by leakage power [45]. DVS reduces energy consumption by adjusting supply volt-

11

ages of processors [45]. Here, we assume that DPM and DVS can be applied for each

processor core independently. As a chip multiprocessor maycontain many processor cores,

we need to consider the trade-off between adjusting voltages by DVS and turning off by

DPM in energy optimization. Third, various practical issues including transition overhead

caused by mode/voltage changes in DPM/DVS, discrete voltage levels and intercore commu-

nication should be considered for a practical solution. Taking all issues into consideration,

in the chapter, we focus on energy consumption optimizationfor streaming applications by

combining task-level coarse-grained software pipeliningwith DVS and DPM techniques.

Our work is closely related to the previous work [1,14,48,66,106,111,115], in which

periodic dependent tasks are modeled by task graphs (Directed Acyclic Graph (DAG)). In

Xu et al. [111], an energy-aware scheduling technique is proposed to minimize energy con-

sumption while satisfying both throughput and response time with pipelining. In Zhang et

al. [115], an energy optimization framework is proposed to integrate task scheduling and

voltage selection together. In Acharya and Mahapatra [1], atechnique is developed to uti-

lize slacks based on service rate and change in intervals forstatic and dynamic scheduling

schemes, and a fault-tolerant scheme is incorporated into the slack management technique

to implement reliable systems. In Kianzad et al. [48], an integrated framework combining

task assignment, scheduling, and power management using genetic algorithm is proposed.

In Bamabha and Bhattacharyya [14], a periodic graph model isexplored to effectively select

voltage levels of iterative applications on multiprocessor systems. In the above work, the

intra-iteration precedence relations of a task graph are not changed, which limits the opti-

mization for both performance and energy. In Liu et al. [66],coarse-grained software pipelin-

ing is applied to solve real-time streaming applications onMPSoC, and a DVS scheduling

technique is proposed to optimize energy based on it. However, the technique is built on

the assumption that there are no intercore communication overhead and transition overhead

with mode/voltage changes in DVS. In Wang et al. [106], a taskscheduling technique that

changes the data dependency relations across different periods is proposed to effectively re-

move intercore communication overhead. However, it does not consider several overheads

(i.e., transition overhead, sleep overhead). In this work,we consider various practical issues

12

and propose a genetic algorithm to solve the problem.

In this chapter, we propose a two-phase approach to solve theenergy minimization

problem for periodic dependent tasks on MPSoC architectures considering various practical

issues. In our approach, we first completely remove the precedence relations of tasks based

on task-level software pipelining, and then perform energyoptimization. Our two-phase

approach is summarized as follows.

• In the first phase, we propose a coarse-grained task-level software pipelining algo-

rithm called RDAG to transform periodic dependent tasks into a set of independent

tasks based on the retiming technique [61]. In RDAG, we regroup tasks and put tasks

from different periods into one loop kernel so as to completely remove precedence

relations. In this way, abundant idle slacks incurred by precedence relations among

tasks can be utilized. In addition, after transforming a dependent task graph into a set

of independent tasks, more opportunities are provided to doscheduling with energy

optimization by simultaneously considering multiple factors such as dynamic/static

power, sleep/voltage transition overheads, and intercorecommunication.

• In the second phase, we propose a scheduling algorithm, GeneS, to optimize energy

consumption based on the results obtained in the first phase.GeneS is a genetic algo-

rithm, and it can search and find the best schedule within the solution space generated

by gene evolution.

To the best of our knowledge, this is the first work to solve theenergy optimization problem

for periodic dependent tasks on MPSoCs by combining task-level software pipelining with

DVS and DPM considering various practical issues.

We conduct experiments on a set of benchmarks from Embedded Systems Synthe-

sis Benchmarks Suite (E3S) [104] and TGFF [28]. The benchmarks from E3S consist of

various multimedia applications such as JPEG compression/decompression, RGB to CYMK

conversion, RGB to YIQ conversion, and FFT/IFFT. TGFF is used to generate several syn-

thetic task graphs. We compare our technique with the approach in Zhang et al. [115] that

13

applied DVS and DPM but without software pipelining. The experimental results show that

our technique can achieve better results compared with the previous work. On average, our

GeneS algorithm can achieve a24.4% reduction in energy consumption compared with the

approach in Zhang et al. [115]. For systems with tight timingconstraints, our approach can

obtain a feasible solution while the approach in Zhang et al.[115] cannot.

The remainder of this chapter is organized as follows. Section 2.2 describes models

and defines the problem. Section 2.3 gives a motivational example. Section 2.4 analyzes the

lower bound of the energy consumption. Our two-phase approach is presented in Section 2.5.

Experimental results are provided in Section 2.6. The conclusion is presented in Section 2.7.

2.2 Models and Concepts

In this section, we first introduce system architecture, application model and some basic

concepts that will be used in the later sections and then define the problem.

2.2.1 System Model

In this chapter, we employ an MPSoC architecture shown in Figure 2.1. The architecture

consists ofM processor cores{PE1, PE2, · · · , PEM}, and each processor core has its own

data and program memory. The programmable bus controller implements a predefined bus

protocol and assigns bus access rights to individual cores.If a task needs to read data that

are not available in its local memory, intercore communication happens.

2.2.2 Task Model

Streaming applications are modeled as periodic dependent tasks. We use Directed Acyclic

Graph (DAG) to represent periodic dependent tasks. DAG is a special case of Data Flow

Graph (DFG). A DFG,G = (V,E, ρ, C), is a node-weighted and edge-weighted directed

graph.V = {T1, T2, · · ·Tn} is the node set, and each node denotes a periodic task.C(Ti) is

14

Local

Memory

Local

Memory

Local

Memory

Bus Controller

Bus

Processor

Core N

Processor

Core 2

Processor

Core 1

Figure 2.1. A Multiprocessor SoC Architecture.

the number of clock cycles to compute taskTi (Ti ∈ V). E is the edge set to represent data

dependency among task nodes. An edge(Ti, Tj) ∈ E represents that the data generated by

Ti is needed in order to computeTj , andcom(Ti, Tj) is used to represent the data volume

associated with tasksTi andTj . ρ(Ti, Tj) is a function to represent the number of delays for

an edge(Ti, Tj) ∈ E. The edge without delay represents the intra-iteration data dependency,

which means the dependencies inside one period, while the edge with delays represents

the inter-iteration data dependency, which means the dependencies among different periods.

The number of delays represents the number of periods involved. For an edge(Ti, Tj) ∈ E,

initially ρ(Ti, Tj) = 0; later it may be changed as we group tasks from different periods into

one period in our technique.

A staticschedule of a given DFG is a repeated pattern of an execution of the corre-

sponding periodic dependent tasks. In other words, a staticschedule is used to represent the

execution ofone period of periodic dependent tasks. In this chapter, the executionof one

period is calledone iteration as well. A schedule implies both schedule step assignment and

processor core allocation. A static schedule must obey the dependency relations of the DAG

portion of the DFG. The DAG is obtained by removing all edges with delays in the DFG.

15

2.2.3 Power Model

In this chapter, a processor core in an MPSoC can support bothDPM (Dynamic Power Man-

agement) and DVS (Dynamic Voltage Scaling). A processor core can operate atk different

voltage/frequency levels,{(Vdd1 , f1), (Vdd2 , f2), . . . , (Vddk , fk)}, in which it consumes both

dynamic power and static power. Without loss of generality,we assume that the voltage

levels fromVdd1 to Vddk are in ascending order, in whichVdd1 is the lowest voltage level and

Vddk is the highest voltage level. The voltage level of a processor core can be changed inde-

pendently by voltage-level-setting instructions withoutinfluencing other cores. A processor

core has one sleep mode as well in which it is deactivated and dissipates reduced power.

Given a static scheduleS, its total energy consumption,Etotal(S), can be represented

as follows:

Etotal(S) = Et dynamic(S) + Et static(S) + Et sleep(S) + Et sleepOH(S)
+Et tranOH(S) + Et comm(S).

(2.1)

Here,Et dynamic(S) is the total dynamic energy consumption,Et static(S) is the to-

tal static energy consumption,Et sleep(S) is the total energy consumption in the sleep mode,

Et sleepOH(S) is the total transition energy overhead associated with thesleep mode,Et tranOH(S)

is the total transition energy overhead caused by voltage changes, andEt comm(S) is the total

energy overhead by intercore communication. Next, we introduce how to calculate them one

by one.

The dynamic power consumption of a processor core at a voltage levelVdd is calcu-

lated based on the power model in Rabaey et al. [91]:

Pdynamic(Vdd) = CSW · fop · V
2
dd, (2.2)

whereCSW is the capacitance, andfop is the frequency of a processor core at voltage level

Vdd. Then, the dynamic energy consumption of a taskTi running at voltage levelVdd is

Edynamic(Ti, Vdd) = Pdynamic(Vdd) ·
C(Ti)

fop
= C(Ti) · CSW · V

2
dd, (2.3)

whereC(Ti) is the number of cycles of taskTi.

16

Different leakage sources contribute to the static power consumption in a processor

core. The major contributors are the subthreshold leakage current and the reverse bias junc-

tion current. Based on the model in Martin et al. [72], the static power consumption,Pstatic,

can be expressed as

Pstatic(Vdd) = Isubn · Vdd + |Vbs| · Ij , (2.4)

whereIsubn is the subthreshold current,Vbs is the body bias voltage, andIj is the reverse bias

junction current.

For the energy consumed in the sleep mode, lettsleep be the time duration in which a

processor core is in the sleep mode and letPsleep be the corresponding power consumption.

Then the energy consumed in the sleep mode,Esleep, is calculated by

Esleep = Psleep · tsleep. (2.5)

It takes both time and energy for a processor core to enter into and exit from the sleep mode.

Let tsleepOH be the time transition overhead andEsleepOH be the energy transition overhead

associated with one transition for entering into and exiting from the sleep mode. The total

energy transition overhead can be obtained by the product ofPsleepOH and the transition time.

Besides dynamic power and static power, we need to consider both time and energy

overheads during voltage transitions. According to the power model in [17,76], for a voltage

change fromVddi to Vddj , the time transitiontTRAN can be calculated by

tTRAN =
2 · CDD

IMAX

· |Vddj − Vddi |, (2.6)

whereCDD is the capacitance of the voltage converter, andIMAX is the maximum output

current of the converter.

The energy transition overheadEtranOH includes the energy consumed by the voltage

converter,ETRAN−DC , and the energy consumed by a processor core during the transition,

ETRAN−CPU , so

EtranOH = ETRAN−DC + ETRAN−CPU . (2.7)

17

For a voltage change fromVddi to Vddj , ETRAN−DC andETRAN−CPU are calculated by

ETRAN−DC = α · CDD · |V
2
ddi
− V 2

ddj
| (2.8)

ETRAN−CPU = PTRAN · tTRAN . (2.9)

Here,α is the efficiency factor of the voltage converter,PTRAN is the power consumption at

the voltage level entered in the transition.

The energy consumed by intercore communication between task Ti and taskTj is

calculated by

Ecomm(Ti, Tj) = Pcomm ·
com(Ti, Tj)

B
, (2.10)

wherePcomm is the power consumption of the shared bus in one clock cycle,com(Ti, Tj) is

the data volume transferred between tasksTi andTj , andB is the bus bandwidth. From the

above, we can obtain the total energy consumption of a schedule by adding all components

together.

2.2.4 Retiming

Retiming is originally proposed to minimize the cycle period of a synchronous circuit by

evenly distributing registers [61]. It has been extended toschedule data flow graphs on

parallel systems [20, 21, 85]. In this chapter, we generate anew loop kernel by regrouping

tasks from different periods so as to remove intra-iteration dependencies. We use retiming to

model this regrouping.

Given a DFGG = (V,E, ρ, C), a retimingr of G is a function that maps each node

Ti in V to an integerr(Ti). Basically, by retiming a task node in a DFG once, a delay

is drawn fromeachof its incoming edges, and then pushed toeachof its outgoing edges.

Every retiming operation corresponds to a software pipelining operation, and as shown in

Section 2.5.1, retiming a node once means one copy of this task is moved into the prologue.

From the program point of view, the retiming technique regroups a loop body and attempts

to remove intra-iteration dependencies among nodes. The transformed loop body after the

18

retiming can be obtained based on the retiming values of nodes [20]. The delay count of

an edge(Ti, Tj) ((Ti, Tj) ∈ E) after retiming,ρr(Ti, Tj), is named the retimed delay count,

and can be calculated byρr(Ti, Tj) = r(Ti) − r(Tj) [61]. An edge(Ti, Tj) ∈ E with delay

count ρ(Ti, Tj) > 0 means that the computation of nodeTj at theℓth iteration requires

data produced by nodeTi at theℓ − ρ(Ti, Tj) th iteration. A retiming functionr is legal if

the retimed delay counts of all edges in the retimed graphGr are nonnegative. An illegal

retiming function occurs when the retimed delay count of oneedge becomes negative, and

this situation implies a reference to nonavailable data from a future period.

2.2.5 Genetic Algorithm

Genetic Algorithm (GA) is an iterative procedure to simulate evolution for a population of

candidate solutions to the optimization problem. In this chapter, we adopt genetic algo-

rithms to solve our energy optimization problem. In a genetic algorithm, each iteration step

is called ageneration, and each candidate solution is called achromosomethat consists of

several pairs ofgenes[75]. A genetic algorithm begins with an initial populationof chro-

mosomes. Two genetic reproduction operators,mutationandcrossover(recombination), are

designed to create new chromosomes for the next generation.The number of chromosomes

in each generation is constant. Thus, a fitness function is used to evaluate each chromosome,

and only those chromosomes with higher fitness value will be selected to form the new popu-

lation of the next generation. This evolution process is repeated until a termination condition

has been reached. The chromosome with the highest fitness value in the last generation is

selected as the final solution [3].

2.2.6 Problem Statement

For a DFG used to model given dependent periodic tasks, the overhead-aware energy opti-

mization problem is defined as follows:

Given a DFGG = (V,E, ρ, C), a timing constraintTC, an MPSoC withM proces-

19

sor cores,{PE1, PE2, · · · , PEM}, and each processor core withk discrete voltage levels,

{Vdd1 , Vdd2 , . . . , Vddk}, find voltage assignment for each task and a static schedule such that

the schedule has the minimum energy consumption within the timing constraintTC, that is,

for each taskTi (Ti ∈ V), find its assignment, its release time and its voltage level such that

for the obtained static scheduleS, the schedule length ofS is less than or equal toTC and

the total energy consumption ofS, Etotal(S), is minimized.

2.3 Motivational Example

In this section, we motivate the energy optimization problem by showing how to schedule a

DFG. We compare energy consumption of the schedules generated by the list scheduling in

Landskov et al. [59], the algorithm in Zhang et al. [115], andour technique.

Figure 2.2(a) shows the DFG that is used to model periodic dependent tasks. In the

DFG, each node represents a task, and the number beside each node represents the number

of clock cycles needed to execute the node. The edge between two nodes represents data de-

pendency, and if two nodes of an edge are assigned to different processor cores in a schedule,

intercore communication will occur. For example, In the schedule shown in Figure 2.2(d),

there are two intercore communications:A− C andC − E.

We assume that there are two processor cores in this MPSoC, and each core has

two voltage/frequency levels, the high level and the low level. Based on the dynamic power

model in Equation (2.2),Pdynamic = CSW ·fop·V
2
dd, without loss of generality, we assume that

CSW = 1nF ; the voltage/frequency pair is (2V, 1GHz) at the high level and (1V, 0.5GHz)

at the low level. Therefore, we getPH = 4W , PL = 0.5W , CPH = 1ns, andCPL = 2ns,

wherePH andPL are used to represent the high-level and low-level power consumptions,

respectively, andCPH andCPL are the high-level and low-level clock periods, respectively.

The number of clock cycles of a node is not changed with DVS. Thus, we get the execution

time and energy consumption of each node in Figure 2.2(c), where the time unit isµs and

the energy unit isµJ . For simplicity, we assume that the transition time overhead is1µs for

each voltage change, the transition energy overhead from the high to low voltage levels is ap-

20

A

B

D

E

C

A

B

D

E

C

High Voltage

Time

(s)

Energy

(J)

Low Voltage

Time

(s)

Energy

(J)

Task

A

B

C

D

E

6

4

1

3

1

24

16

4

12

4

12

8

2

6

2

6

4

1

3

1

6000

1000

r(TA) = 3

r(TB) = 2

r(TC) = 1

r(TD) = 1

r(TE) = 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

BUSPE1 PE2

A

B

D

C

A-C

C-E

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

BUSPE1 PE2

A

B

D

E

C

A-C

C-E

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

BUSPE1 PE2

B

D

E

A

C
A-B*

C-E*

1

2

3

4

5

6

7

8

BUSPE1 PE2

B

D

A

A-B*

EC-E*(a) (b)

(c) (d) (e) (f)

(g)

High Level Voltage

Low Level Voltage

Sleep mode (including

the transition time)

! Transition Mode

A-B
Inter-core

Communication

C

E

4000

3000

1000

6000

1000

4000

3000

1000

Figure 2.2. A Motivational Example. (a) The original DFG. (b) The retimed DFG using our

RDAG algorithm. (c) The task information. (d) The schedule generated by the list scheduling

in Landskov et al. [59] without power management (the energyis 137µJ). (e) The schedule

generated by the DAG-based scheduling algorithm in Zhang etal. [115] with DVS and DPM

(the energy is73.4µJ). (f) The schedule generated by our technique (the energy is25µJ).

(g) The schedule generated by our technique with a tight timing constraint (8µs).

proximately4µJ , and one from the low to high voltage levels0.5µJ . The time overhead and

energy overhead to enter into and exit from the sleep mode are5µs and2µJ , respectively,

and the sleep state power is0.1W . The read/write communication power through the com-

munication bus is0.5W , and the communication time between two tasks is1µs. The static

power is0.25W . These assumptions are only for demonstration purpose. Ourtechnique is

general enough to deal with general cases, as discussed in later sections.

Assume that the timing constraint is16µs. The first schedule shown in Figure 2.2(d)

is obtained by the traditional list scheduling algorithm inLandskov et al. [59] that focuses

on optimizing time performance without power management. In Figure 2.2(d), we can see

21

that both processor cores operate at the high voltage level for the best time performance.

There are some idle slacks in the schedule; however, they cannot be utilized because of the

data dependencies. Based on Equation (2.1), we can obtain the total energy of the schedule:

Etotal(S) = Et dynamic(S) + Et static(S) + Et comm(S) = PH×32 + Pstatic×16×2+ Pcomm×

2× 1= 4× 32 + 0.25× 32 + 0.5× 2 = 137µJ .

The second schedule shown in Figure 2.2(e) is obtained by theDAG-based schedul-

ing algorithm in [115] that applies DPM and DVS to minimize the energy consumption.

From the schedule, we can see that on the first core, tasksTA, TB, TD, andTE are assigned

the high voltage level due to the timing constraint. On the second core, taskTC is assigned

the low voltage level with DVS, and the idle slacks are turnedinto the sleep mode with

DPM. Based on Equation 2.1, we can obtain the total energy of the schedule:Etotal(S) =

Et dynamic(S) + Et static(S) + Et comm(S) + Et sleep(S) + Et sleepOH(S)= PH × 16 + PL × 2

+ Pstatic× (16+2) + Pcomm×2×1 + Psleep× (16−2−5)+EsleepOH×1 = 4×16 + 0.5×2

+ 0.25× 18 +0.5× 2 + 0.1× 9 + 2 = 64 + 1 + 4.5 + 1 + 0.9 + 2 = 73.4µJ .

The schedule generated by our approach is shown in Figure 2.2(f). In our approach,

we first use our RDAG algorithm (shown in Section 2.5.1) to transform all the intra-iteration

data dependencies in Figure 2.2(a) into the inter-iteration data dependencies as shown in

Figure 2.2(b). This step makes all tasks in one iteration be independent of each other. Next,

we use our GeneS scheduling algorithm (shown in Section 2.5.2 to generate a task schedule

shown in Figure 2.2(f). Because we adopt coarse-grained software pipelining, the slacks

caused by the intra-iteration data dependencies are reclaimed. At the same time, because we

can overlap communication and computation, the slacks caused by intercore communication

can be reused as well (for the intercore communication in Figure 2.2(f)-(g), the symbol∗

represents the data dependence to the next period). In the schedule in Figure 2.2(f), as all

idle slacks can be fully utilized, all the tasks can be executed at the low voltage level. Based

on Equation (2.1), we can obtain the total energy of the schedule: Etotal(S) = Et dynamic(S)

+ Et static(S) + Et comm(S) = PL×32 + Pstatic×16×2 + Pcomm×2×1 = 0.5×32+0.25×

32 + 0.5× 2 = 16 + 8 + 1 = 25µJ .

22

If given a tight timing constraint smaller than14µs, the two DAG-based scheduling

algorithms cannot obtain feasible solutions while our approach can. Figure 2.2(g) shows the

schedule obtained by our technique with the timing constraint 8µs.

From these results, we can see that our technique can effectively reduce energy con-

sumption. Based on the schedule obtained by our approach, the tasks can be scheduled with

the insertion of voltage-setting instructions. The technique can be integrated into compilers

or real-time O.S. to generate energy-efficient code. Next, we will present the details of our

approach.

2.4 Lower-bound Analysis

In this section, we conduct lower-bound analysis for the energy optimization problem defined

in Section 2.2.6. In our two-phase approach as shown in Section 2.5, in the first phase, we

transform intra-iteration data dependencies into inter-iteration dependencies so as to make

all tasks independent of each other inside a period (Section2.2.6). With this transformation,

the problem defined is changed to:Given a set of independent tasks, a timing constraintTC,

an MPSoC withM cores,{PE1, PE2, · · · , PEM}, and each core withk discrete voltage

levels,{Vdd1 , Vdd2 , · · · , Vddk}, find voltage assignment for each task and a static schedule

such that the schedule has the minimum energy consumption within the timing constraint

TC. Next, we study the lower bound of the above problem.

The problem of finding an optimal task schedule with the minimum energy consump-

tion for a single-core or multicore system is known to be NP-complete [30,39,66,90]. For our

problem with independent tasks on multicore systems, efficient algorithms to obtain lower

bounds do not exist from the previous work. Therefore, we simplify our problem to be a

single-core scheduling problem, and use its solution as theapproximate lower bound of our

problem. The simplified problem is defined as follows:Given a set of independent tasks, a

single-core system withk discrete voltage levels,{Vdd1 , Vdd2 , . . . , Vddk}, a timing constraint

M · TC, assuming that there is no transition overhead for voltage changes, find voltage as-

signment for each task and a static schedule such that the schedule has the minimum energy

23

consumption within the timing constraintM · TC.

In the simplified problem, we put all available time slots from all cores to one core

(M · TC) and assume an ideal case without transition overhead for voltage changes. In

our problem, a task cannot be divided into subtasks and assigned to different cores, and

transition overhead associated with voltage changes is inevitable in practice; therefore, the

result obtained by an optimal solution for this simplified problem must not be worse (should

be better in most cases) than that by an optimal solution of our problem. On the other

hand, in our approach, the dependencies among tasks inside one period are removed so tasks

have more freedom to be moved around. For tasks assigned on the same processor core,

transition overhead can be minimized by grouping tasks withthe same voltage level together

and scheduling groups following ascending order in terms ofvoltage levels. So the results

obtained by our approach are close to those obtained by optimal solutions for this simplified

problem. Therefore, optimal solutions of the simplified problem can serve as the theoretical

lower bound of our problem.

In Liu et al. [66], this simplified problem is proved to be NP-complete, and a pseudo-

polynomial algorithm based on dynamic programming is proposed to obtain optimal solu-

tions. Although the proposed algorithm is pseudo-polynomial as its complexity is related to

the timing constraint, the algorithm is efficient in practice as the execution time of each task

is upper bounded by a constant. However, the proposed algorithm in Liu et al. [66] focuses

on optimizing energy consumption with DVS only. Next, basedon it, by applying both DVS

and DPM, we propose a new algorithm called OLB to obtain the lower bound.

In Algorithm 2.4.1, we separate the total available time into two parts,T ime DV S

andT ime DPM . T ime DV S is the time period managed by DVS to schedule all tasks;

T ime DPM is the idle time managed by DPM. Initially,T ime DV S is set asM · TC

to represent that all the available time is used for task execution and managed by DVS;

T ime DPM is set as zero to represent that there is no idle time to be managed by DPM. For

T ime DV S, the time period for DVS, Algorithm DPVS in [66] is called to obtain an optimal

voltage assignment for all tasks inV with T ime DV S as the timing constraint. Based on

24

the voltage assignment, we obtain the total execution time of all tasks and compare it with

T ime DV S. If there is idle slack, we then apply the lowest voltage on itto compute the

idle energy as we can always move the idle slack next to the task that are executed with the

lowest voltage level.

ForT ime DPM , the time period for DPM, we attempt to apply DPM to save energy.

If T ime DPM is greater thanTC, considering that a schedule will be repeatedly executed,

it means that one processor core is completely idle; thus, wecan turn it off outside the loop

so its energy isTC · Psleep. We calculate how many idle cores byT ime DPM/TC and

put these cores into the sleep mode. Then we attempt to applyDPM on the remaining time

(T ime DPM%TC) in T ime DPM , and the time period will be put into the sleep mode if

we can save more energy by doing that. Finally, we calculate the total energy based on the

power model in Section 2.2.3, and record the minimum energy accordingly. At the end of

each iteration,T ime DV S is decreased by one,T ime DPM is increased by one, and the

above procedure is repeated so all combinations with DVS andDPM can be obtained. The

algorithm stops whenT ime DV S becomes
∑

Ti∈V
C(Ti)
fk

that is the minimum time we need

to execute all tasks (the processor core is operating at the highest voltage at that time).

As shown in Liu et al. [66], the complexity of Algorithm DPVS isO(TC · n) where

TC is the timing constraint, andn is the number of tasks. So the complexity of Algo-

rithm 2.4.1 isO(TC2 · n). Usually, the execution time of each task is upper bounded bya

constant. SoTC is equal to O(nc) (c is a constant). In this case, Algorithm 2.4.1 is polyno-

mial.

2.5 Task Parallelization and Scheduling

In this section, we propose our two-phase approach for task parallelization and energy opti-

mization. Because intra-iteration data dependencies of a DFG not only impede parallelism

but also cause abundant idle slacks on processor cores, it plays a negative role on energy

minimization. Hence, in the first phase, we propose an algorithm called RDAG to remove

intra-iteration data dependencies in Section 2.5.1. Our RDAG algorithm transforms a depen-

25

Algorithm 2.4.1 Algorithm OLB (Obtain the Lower Bound of the Energy Consumption)
Input: A task setV with n independent tasks,V = {T1, T2, · · · Tn}, timing constraintM · TC,

a processor core withk different voltage/frequency levels{(Vdd1 , f1), (Vdd2 , f2), . . . , (Vddk ,

fk)}(Vdd1 < Vdd2 < . . . < Vddk).

Output: ELB , the lower bound of the energy consumption.

1: ELB ←∞; Min Time←
∑

Ti∈V
C(Ti)
fk

.

2: if M · TC < Min T ime then

3: No feasible solution and exit.

4: end if

5: T ime DV S ←M · TC; T ime DPM ← 0.

6: while T ime DV S ≥Min Time do

7: UsingT ime DV S as the timing constraint, call Algorithm DPVS in Liu et al. [66] to obtain

an optimal voltage assignment for all tasks inV , and letEt dynamic be the total dynamic

energy with the voltage assignment.

8: For the obtained voltage assignment, letVdd(Ti)/f(Ti) be the corresponding voltage

level/frequency ofTi. Total T ime DV S ←
∑

Ti∈V
C(Ti)/f(Ti), and min voltage←

min{Vdd(Ti)}, Ti ∈ V .

9: if (T ime DV S − Total T ime DV S) > 0 then

10: Eidle ← (T ime DV S − Total T ime DV S) · Pdynamic(min voltage).

11: else

12: Eidle ← 0.

13: end if

14: EDV S ← Et dynamic + Pstatic · T ime DV S + Eidle.

15: NumSleepCore← T ime DPM/TC; EsleepCore ← NumSleepCore · TC · Psleep.

16: T ime DPM ← T ime DPM%TC; EDPM ← Pstatic · T ime DPM .

17: if T ime DPM > tsleepOH then

18: if (Psleep · (T ime DPM − tsleepOH) + EsleepOH) < EDPM then

19: Put the core into the sleep mode for the time periodT ime DPM .

20: EDPM ← Psleep · (T ime DPM − tsleepOH) + EsleepOH.

21: end if

22: end if

23: if ELB > (EDV S + EDPM + EsleepCore) then

24: ELB ← EDV S + EDPM + EsleepCore.

25: end if

26: T ime DV S ← T ime DV S − 1; T ime DPM ← T ime DPM + 1.

27: end while

26

Algorithm 2.5.1 The RDAG Algorithm
Input: A DFGG = (V,E, ρ,C).

Output: The retiming valuer(Ti) of each taskTi.

1: for each taskTi ∈ V do

2: r(Ti)← 0

3: end for

4: for eachTi ∈ V do

5: if Ti is a leaf nodethen

6: ENQUEUE(Q,Ti)

7: tail ← Ti

8: end if

9: end for

10: while Q 6= ∅ do

11: Ti ← DEQUEUE(Q)

12: for each parent nodeTj of Ti do

13: r(Tj)← max{r(Tj), r(Ti) + 1}

14: if tail 6= Tj then

15: ENQUEUE(Q,Tj)

16: tail← Tj

17: end if

18: end for

19: end while

dent task graph into a set of independent tasks. We will also analyze the prologue latency and

the extra memory overhead caused by the RDAG algorithm. Thenin the second phase, we

propose a scheduling algorithm called GeneS that adopts a genetic approach to perform en-

ergy optimization considering DVS, DPM and various transition overheads in Section 2.5.2.

2.5.1 The RDAG Algorithm for Task Parallelization

(1) The RDAG Algorithm.Intra-iteration data dependency in task graphs may impede par-

allelism and cause idle slacks on processor cores. For example, due to the intra-iteration

dependencies of the DFG, in Figure 2.2(d) and Figure 2.2(e),the schedules can utilize at

most two processor cores, in other words, there is no more gain with three or more processor

27

cores. The idle slacks in Figure 2.2(d) and Figure 2.2(e) play a negative role in energy con-

sumption. Hence, if we get rid of intra-iteration data dependencies, we can obtain more de-

sign space to reduce idle slacks or achieve better parallelism. In this way, more opportunities

are provided for energy optimization. Motivated by this, wepropose the RDAG algorithm

for task parallelization by transforming a DFG into a new DFGwith only inter-iteration data

dependencies.

According to the definition of retiming, in order to transform periodic dependent

tasks into a set of periodic independent tasks, we need to addat least one delay onto each

edge of the original DFG. At the same time, we need to find out the minimum retiming

value for each node because a big retiming value may cause a big prologue and epilogue. To

achieve this, we use Equation (2.11) to calculate the retiming value of each node as follows:

r(Ti) =

{

max{r(Ti), r(Tj) + 1}, if Ti is Tj ’s parent
0, if Ti is a leaf node

(2.11)

In Equation (2.11), basically, for each leaf node, we set itsretiming value as0; the

retiming value of each non-leaf node is calculated from bottom to top. Based on Equation

(2.11), we design the RDAG algorithm that is shown in Algorithm 2.5.1.

In the RDAG algorithm, two procedures,ENQUEUE andDEQUEUE, are used

for the INSERT and DELETE operations on a queue, respectively. In Lines 1-3, we assign

the initial retiming value of each node to0. In Lines 4-9, we find out all the leaf nodes and

put them into a queue namedQ, and store the current tail element ofQ into a variable named

tail. Next, in Lines 10-19, we calculate the retiming value of each node based on Equation

(2.11) in a breadth-first manner. Especially, in Lines 14-17, we judge if the parent nodeTj of

nodeTi is the tail element of the current queue. IfTj happens to be the tail element, then we

do not need to put nodeTj into the queue again. In such a way, we can avoid putting extra

adjacent nodes into the queue which will cause unnecessary redundant calculations.

An example is given in Figure 2.3 to show the potential impactthat the RDAG al-

gorithm can provide for scheduling. Figure 2.3(a) is used tomodel a streaming application

with periodic dependent tasks and the execution time of eachtask is listed beside each node.

28

4
th

period

2
nd

period

3
rd

period

1st

period

A

B

D

C

A

B

D

C

(a)

(b)

PE1

PE2

A ……

1st period

(c)

(d)

r(TA) = 2

r(TB) = 1

r(TC) = 1

r(TD) = 0

B D

C

A

2
nd

period

B D

C

A

3
rd

peroid

B D

C

A

4
th

period

B D

C

PE1

0

PE2

A

1 2 3 4 5 6

prologue

A A

B B

PE3

PE4

C C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

B

C

D D

loop kernel

epilogue

……

……

……

……

……

……
Time

Time
1

1

1

1

1

1

1

1

0 1 2 3 4 5 6 8 9 10 117 12 ……

Figure 2.3. An Example of the RDAG Algorithm. (a) The original DFG G. (b) The retimed

DFG Gr. (c) The static schedule generated fromG. (d) The pipelined schedule generated

fromGr.

Based on our RDAG algorithm, we obtain the retiming value of each node, and the corre-

sponding retiming values are listed asr(Ti) for each taskTi. Figure 2.3(b) is the retimed

DFG obtained by the RDAG algorithm, in which the count of delays of an edge is repre-

sented by the number of bars. In Figure 2.3(b), there is at least one delay on each edge;

therefore, all tasks are independent of each other in one iteration. Suppose that we have a

four-core MPSoC, according to Figure 2.3(a) and Figure 2.3(b), we generate different sched-

ules as shown in Figure 2.3(c) and Figure 2.3(d), respectively. In Figure 2.3(c), we can see

that, due to the inherent data dependency of the application, the schedule can only use 2

cores and the schedule length in each period is 3 time units. After adopting the RDAG al-

gorithm, in Figure 2.3(d), the scheduler can effectively take advantage of 4 processor cores.

In Figure 2.3(d), each period of the loop kernel consists of 4tasks coming from 3 different

iterations, and the schedule length in each period in the loop kernel is reduced to 1 time unit.

With the RDAG algorithm, by transforming intra-iteration dependencies into inter-

iteration dependencies, we can utilize more processor cores to increase parallelism. How-

29

ever, as shown in Figure 2.3(d), an extra prologue is added inorder to make all tasks indepen-

dent of each other inside one period. Although the prologue is only executed once, it causes

the extra latency in the beginning. Also, we may need more memory to hold data caused

by regrouping different periods of tasks into one iteration. Next, we analyze the prologue

latency of the RDAG algorithm, and discuss the memory overhead caused by the RDAG

algorithm.

(2) Prologue Latency.The prologue latency of the RDAG algorithm is caused by reschedul-

ing tasks to previous periods with earlier release time. In the RDAG algorithm, the prologue

latency is equal to the time duration of the prologue, and it is determined by the maximum re-

timing values among all tasks. Given a DFG, letPrologue Latency represent the prologue

latency, and it can be calculated by

Prologue Latency = rmax · I = max{r(Ti)} · I, (Ti ∈ V), (2.12)

wherermax is the maximum retiming value among all tasks inV , andI is the period.

The maximum retiming value obtained by RDAG is determined bythe dependency

relations of a DFG. Note that the prologue is only executed once so the overhead it introduces

is one-time delay. Typical streaming applications such as high-performance multimedia be-

long to soft real-time applications in which deadline misses are not desirable but allowed.

Therefore, as long as the prologue latency is not too large, our technique can be applied to

optimize streaming applications on MPSoC. On the other hand, a streaming application is

repeatedly executed for many times. After waiting for the execution of the prologue, tasks

can be periodically executed in the new loop kernel. As our approach can greatly reduce the

schedule length of each period, we can either apply a shorterperiod or apply DVS and DPM

for energy optimization. So we can benefit from each period inthe loop kernel after waiting

for the execution of the prologue that only executes once.

(3) Memory Overhead.As the RDAG algorithm regroups tasks from different periodsinto

one period, extra memory space is needed to hold data across different periods. In this

section, we analyze the memory space required by our method.To make comprehensive

30

analysis, the memory space needed by both intracore communication and intercore commu-

nication is included. Given a DFG that models a streaming application, a retiming function

obtained by the RDAG algorithm in Section 2.5.1, and a staticschedule obtained in Sec-

tion 2.5.2, our objective is to obtain the maximum memory space needed by our approach.

Based on this, we can analyze the extra energy caused by the extra memory space introduced

by our approach and perform comparison with the previous work.

In order to achieve this, we need to analyze all data transferin a static schedule across

the prologue and all periods. However, as a static schedule will be repeatedly executed start-

ing from the first period as shown in Figure 2.3, all the memoryspace can be obtained by

analyzing the data transfer in the prologue and the first period. In a schedule, data transfer

is associated with two tasks of an edge of a DFG. For an edge(Ti, Tj) in a DFG, we need a

data buffer to hold the data from the time when they are generated byTi to the time when

Tj is finished, and this time period is calledthe lifetime segmentof a data buffer. The life-

time segment of a data buffer is represented as< start, end, volume > in which “start”

represents the start time of the segment, “end” represents the end time of the segment, and

“volume” represents the data volume that needs to be transferred through the data buffer.

Given a lifetime segment,li, we useli.start, li.end andli.volume to represent its start time,

end time, and data volume, respectively. To analyze all datatransfer in the prologue and the

first period, next, we first obtain the lifetime segments of all data buffers associated with all

intracore communication and intercore communication, andwe then conduct lifetime anal-

ysis so as to obtain the total data volume of each time unit by putting all lifetime segments

together.

Algorithm ObtainLifetime() in Algorithm 2.5.2 is used to collect the lifetime seg-

ments of all data buffers needed for data transfer in the prologue and the first period. In

Algorithm 2.5.2, we first obtain the maximum retiming value,rmax, among all nodes. As

the prologue withrmax · I (I is the period) is added in the schedule in our method, this

should be counted for calculating the abstract release and end times of a task. Given a static

scheduleS, for a taskTi ∈ V , letRTi
be its release time inS, then its abstract release time

in the first period isrmax · I + RTi
. In the algorithm, we add the lifetime segment of each

31

Algorithm 2.5.2 Algorithm ObtainLifetime()
Input: A DFG G = (V,E, ρ,C), a retiming functionr, periodI, a static scheduleS in which for

taskTi, RTi
is its release time andETTi

is its execution time inS.

Output: A lifetime segment set,DB Lifetime Set, that contains all lifetime segments of all data

buffers in the prologue and the first period.

1: Sort all nodes inV in topological ordering.

2: rmax ← max{r(Ti)}, Ti ∈ V .

3: for eachTi ∈ V following the topological orderdo

4: for each ofTi’s adjacent nodeTj in G do

5: ρr(Ti, Tj)← r(Ti)− r(Tj).

6: for rt=0; rt≤ r(Ti); rt++ do

7: Add li, the lifetime segment of the data buffer that holds the data transferred fromTi to

Tj , intoDB Lifetime Set, in which

8: li.start← (rmax−rt)· I + RTi
+ETTi

;

9: li.end←(rmax−rt+ρr(Ti, Tj)) · I + RTj
+ETTj

;

10: li.volume← com(Ti, Tj).

11: if li.end > (rmax + 1) · I then

12: li.end← (rmax + 1) · I.

13: end if

14: end for

15: end for

16: end for

data buffer associated with each edge into a set following the topological order. For an edge

(Ti, Tj) ∈ E, after retiming, its delay count isρr(Ti, Tj). So in the first period, the lifetime

segment of the data buffer associated with(Ti, Tj) should begin withrmax · I + RTi
+ETTi

and end with(rmax + ρr(Ti, Tj)) · I+RTj
+ETTj

, and its data volume iscom(Ti, Tj). As

defined in Section 2.2.4, by retiming a node once, one of its copy is moved into the prologue.

So for (Ti, Tj), after obtaining its lifetime segment in the first period, correspondingly, we

addr(Ti) (the retiming value ofTi) lifetime segments with one period time difference into

the set for these data buffers in the prologue. For each segment, if its end time is over the

first period whose the abstract time is(rmax + 1) · I, we change it to be(rmax + 1) · I as we

32

only need to calculate up to the first period.

Algorithm Lifetime Analysis() in Algorithm 2.5.3 is to perform lifetime analysis so

we can obtain the total data volume of each time unit. The input of Algorithm 2.5.3 is

the lifetime segment set,DB Lifetime Set, that contains all lifetime segments of all data

buffers in the prologue and the first period obtained in Algorithm 2.5.2. In Algorithm 2.5.3,

in each iteration, we first sort all lifetime segments inDB Lifetime Set in ascending order

in terms of their start times as some new segments may be addedinto the set. Then following

the order, we remove the first two segments fromDB Lifetime Set and compare their start

and end times. Basically, when their start times are equal, we combine them together and

put the new segments back intoDB Lifetime Set. Otherwise, we output a new lifetime

segment that is generated by the start times of the two segments as the data volume of this

time period is fixed; then we combine other parts of the two segments and put them back into

DB Lifetime Set. The above procedure is repeated untilDB Lifetime Set is empty or

there is only one element is inDB Lifetime Set when we can directly output that element.

The output of Algorithm 2.5.3 is a set that contains disjointlifetime segments and each

segment represents the total data volume we need to store in the time period from its start

time to its end time. Based on it, therefore, we can find the maximum memory space needed

by our method.

Using the DFG and schedule in Figure 2.2 as an example, Figure2.4(a) shows the

given DFG, the retiming values obtained by our RDAG algorithm, and the schedule obtained

by our GeneS algorithm in Section 2.5.2. Based on the DFG, retiming function and schedule

in Figure 2.4(a), by applying Algorithm 2.5.2, we can obtainDB Lifetime Set, which is

the set that contains all lifetime segments of all data buffers in the prologue and the first

period, shown in Figure 2.4(b). Figure 2.4(c) showsTotal Lifetime Set, the output of

Algorithm 2.5.3 based onDB Lifetime Set in Figure 2.4(b). Because of limited space, we

only list the first three items ofTotal Lifetime Set in Figure 2.4(c). The corresponding

schedule with the prologue and the first period is shown in Figure 2.4(d), in which the lifetime

segments of all data transfer are provided. From it, we can see that it is not easy to obtain

the maximum space needed directly from a schedule.

33

Algorithm 2.5.3 Algorithm Lifetime Analysis()
Input: DB Lifetime Set obtained from Algorithm ObtainLifetime().
Output: A lifetime segment set,Total Lifetime Set, by which we can obtain the total data volume

of each time unit in the prologue and the first period.
1: while DB Lifetime Set is not emptydo
2: if There is only one segment inDB Lifetime Set then
3: Remove the segment fromDB Lifetime Set, and add it intoTotal Lifetime Set.
4: Exit.
5: end if
6: Sort all lifetime segments inDB Lifetime Set in ascending order in terms of start times of

all lifetime segments.
7: Remove the first two lifetime segments,lt1 andlt2, fromDB Lifetime Set.
8: if lt1.start = lt2.start then
9: if lt1.end = lt2.end then

10: Add < lt1.start, lt1.end, lt1.volume+ lt2.volume > into DB Lifetime Set.
11: else
12: if lt1.end > lt2.end then
13: Add two lifetime segments:< lt1.start, lt2.end, lt1.volume + lt2.volume > and

< lt2.end, lt1.end, lt1.volume >, intoDB Lifetime Set.
14: else
15: Add two lifetime segments:< lt1.start, lt1.end, lt1.volume + lt2.volume > and

< lt1.end, lt2.end, lt2.volume >, intoDB Lifetime Set.
16: end if
17: end if
18: else
19: if lt1.end ≤ lt2.start then
20: Add < lt1.start, lt1.end, lt1.volume > into Total Lifetime Set.
21: Add < lt2.start, lt2.end, lt2.volume > into DB Lifetime Set.
22: else
23: Add < lt1.start, lt2.start, lt1.volume > into Total Lifetime Set.
24: if lt1.end = lt2.end then
25: Add< lt2.start, lt1.end, lt1.volume+ lt2.volume > into DB Lifetime Set.
26: else
27: if lt1.end > lt2.end then
28: Add two lifetime segments:< lt2.start, lt2.end, lt1.volume+ lt2.volume > and

< lt2.end, lt1.end, lt1.volume >, intoDB Lifetime Set.
29: else
30: Add two lifetime segments:< lt2.start, lt1.end, lt1.volume+ lt2.volume > and

< lt1.end, lt2.end, lt2.volume >, intoDB Lifetime Set.
31: end if
32: end if
33: end if
34: end if
35: end while

34

A

C
B

D

E

r(A)=3
r(B)=2
r(C)=1
r(D)=1

�������
�������
�������
�������

��������
��������
��������
��������

���������
���������
���������
���������

���������
���������
���������
���������

C C

E

0 4 8 1612 20 24 3632 28 40 44 48 52 56 60 64

com(B,D)
com(A,B) com(A,B) com(A,B) com(A,B)

com(B,D)

com(A,C)
com(A,C) com(A,C) com(A,C)

com(C,E)
com(D,E)

<28, 40, 2*com(A,C)+com(B,D))+com(A,B)>

{ <12, 24, com(A,B)+com(A,C)> <24, 28, com(A,C)+com(B,D)>
}

{

(a)

Time Prologue 1st Period

(d)

}

(c)

(b)

<24, 46, com(B,D)>
<28, 40, com(A,B)> <28,62, com(A,C)>,

<60, 64, com(A,B)>

<12, 24, com(A,B)> <12,46, com(A,C)>,

<44,64, com(A,C)>, <46, 64, com(C,E)>
<46, 64, com(D,E)> <56, 64, com(B,D)>
<60, 64, com(A,C)>, <62, 64, com(D,E)>

<40, 62, com(B,D)>
<44, 56, com(A,B)>

<62, 64, com(C,E)>

Total_Lifetime_Set (for total data volume per time unit)

DB_Lifetime_Set (for all data buffers)

,

, ,

,
, ,

,
,
,,

,
,
,

0

P1

P2

Time

4 128 16

C

E

P1

P2

A

B

A

B D

A

B D

A

A

B D

Figure 2.4. Latency and Memory Overhead of the RDAG Algorithm.

The complexity of Algorithm 2.5.2 isO(|E|) in whichE is the total number of edges

in a DFG, as we need to traverse each edge in order to obtain thedata transfer associated

with it. So forDB Lifetime Set, the output of Algorithm 2.5.2, its total segment number

is bounded byO(|E|). In Algorithm 2.5.3, we try to find all disjoint sets of all thelifetime

segments inDB Lifetime Set in terms of their start and end times, and the maximum

number of all the disjoint sets is 2· |DB Lifetime Set|. Therefore, the complexity of

Algorithm 2.5.3 isO(|E|).

2.5.2 The GeneS Algorithm for Energy Optimization

In this section, we propose our genetic scheduling algorithm, GeneS, to perform energy

optimization with DVS and DPM. GeneS can search and find the best schedule within the

solution space generated by gene evolution. Next, we first introduce three key components

of our GeneS algorithm, chromosome representation, crossover and mutation (the two basic

35

genetic operators), and the fitness function. We then present our GeneS algorithm.

(1) Chromosome and Schedule.In our approach, each chromosome,ξi, consists of two lists

of genes,Π andΩ. The content in listΠ represents the task assignment of each task, and the

content in listΩ represents the voltage level of each task. For each task, itstask assignment

and voltage selection form a pair of genes. Given a chromosome, we generate a schedule

with energy optimization as follows.

• Step 1. Construct task groups.Following the genes of tasks, put the tasks that are

assigned into the same processor core and have the same voltage level into the same

group.

• Step 2. Generate a schedule with DPM.For each processor core, if there are some

task groups assigned on it, sort the groups in ascending order in terms of their voltage

levels and schedule them following the order. If there are idle slacks after all the task

groups have been scheduled on a core, move all the idle slacksto the location that is

immediately next to the first task group (with the lowest voltage level in the core). Put

the idle slacks into the sleep mode if we can save energy by doing it. For a processor

core, if there is no any task scheduled on it, put it into the sleep mode.

As just shown, when generating a schedule based on a chromosome, we first group all tasks

based on their voltage levels on the same core and then schedule the groups following ascend-

ing order in terms of the voltage levels. In this way, we can minimize the total energy/time

transition overhead on the core based on Equations (2.6), (2.7), (2.8), and (2.9). We also

move all the idle slacks next to the group with the lowest voltage level and attempt to put

them into the sleep mode if we can save energy. For a processorcore that is completely idle,

as we can turned it off outside the loop so its power isPsleep.

Figure 2.5 shows a chromosome and its corresponding task schedule. In Figure 2.5(a),

from each pair of genes of a task, we can obtain its task assignment and voltage selection.

For example, taskTB is assigned to processorPE1 with the voltage levelVdd2 . Therefore,

PE1 andVdd2 forms a pair of genes for taskTB. Given the chromosome in Figure 2.5(a), the

36

PE1 PE1 PE2 PE1 PE1

Vdd2 Vdd2 Vdd1 Vdd2 Vdd2

A B C D E

()

(!)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

BUS

PE1

PE2

A B D E

C

A-C* C-E (b)

(a)

Low level voltage (Vdd1)

High level voltage (Vdd2)

Sleep mode (including

the transition time)

Figure 2.5. Chromosome Representation and Its Corresponding Task Schedule.

task schedule can be generated as shown in Figure 2.5(b). Forthe tasks that map to processor

corePE1, their voltage levels are the same (Vdd2) so there is only one task group. Similarly

we can obtain the schedule onPE2 in which we put the idle slacks into the sleep mode with

DPM.

(2) Crossover and Mutation.We use two genetic operators,crossoverandmutation, to create

new generations of chromosomes. The crossover operator selects genes from parent chro-

mosomes and creates new pairs of offspring. For each pair of chromosomes, we randomly

select the crossover point of two chromosomes to swap their genes, and create a new pair of

chromosomes. Figure 2.6 shows an example of the crossover operator.

In this example, we perform crossover to create chromosome 3and chromosome 4

from chromosome 1 and chromosome 2. We use a vertical bar to represent the crossover

point. To generate a new pair of offspring, the genes before crossover point (the genes of

tasksTA andTB) of chromosome 1 and the genes after the crossover point (thegenes of

tasksTC , TD andTE) of chromosome 2 form chromosome 3. Similarly, the genes of tasks

TA andTB of chromosome 2 and the genes of tasksTC , TD andTE of chromosome 1 form

the chromosome 4.

The mutation operator is used to maintain the genetic diversity from one generation to

another. In our approach, for each chromosome, we perform mutation by randomly selecting

one task and decreasing its voltage for one voltage level. Figure 2.7 shows an example of

37

PE2 PE2 PE1 PE2 PE1

Vdd2 Vdd2 Vdd1 Vdd2 Vdd2

A B C D E

()

(!)

Chromosome 1

PE2 PE2 PE1 PE1 PE1

Vdd2 Vdd2 Vdd1 Vdd1 Vdd2

A B C D E

()

(!)

Chromosome 3

PE1 PE2 PE2 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd1 Vdd2

A B C D E

()

(!)

Chromosome 2

PE1 PE2 PE2 PE2 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

()

(!)

Chromosome 4

crossover point crossover point

Figure 2.6. The Crossover Operator Generates New Chromosomes: Chromosomes 3 and

Chromosome 4.

PE2 PE2 PE1 PE2 PE1

Vdd2 Vdd2 Vdd1 Vdd2 Vdd2

A B C D E

()

(!)

Chromosome 1

PE2 PE2 PE1 PE2 PE1

Vdd2 Vdd2 Vdd1 Vdd1 Vdd2

A B C D E

()

(!)

Chromosome 2

Figure 2.7. The Mutation Operator. TaskTD is selected to perform mutation, and its voltage

level is changed fromVdd2 to Vdd1 .

the mutation operator. In this example, after mutation, thevoltage level of taskTD changes

from Vdd2 to Vdd1 .

(3) Fitness Function.The fitness function is designed to evaluate each chromosomein order

to find a schedule with the minimum energy within the solutionspace generated by gene evo-

lution. Given the timing constraintTC, a chromosomeξi whose schedule length isL(ξi) and

whose energy consumption isEtotal(ξi) that is calculated based on the schedule associated

with it, the fitness value,fitness(ξi), is defined by

fitness(ξi) =

{ 1
Etotal(ξi)

, TC ≥ L(ξi)

0, TC < L(ξi).
(2.13)

In the fitness function, both the timing constraintTC and the energy consumption

Etotal(ξi) are taken into account. We compare the timing constraintTC with the schedule

38

Algorithm 2.5.4 The GeneS Algorithm
Input: A set of independent tasks, the timing constraintTC, M processor cores, and each processor

core withk different voltage levels{Vdd1 , Vdd2 , · · · , Vddk}.

Output: An objective task schedule with the minimum energy consumption.

1: Generate the initial generation withNC chromosomes. In each chromosome, the voltage level

of each task is set as the highest voltageVddk , and the task assignment is randomly selected.

2: Calculate the fitness value of each chromosome based on Equation 2.13.

3: Sort chromosomes in the ascending order of the fitness value.

4: Remove12NC chromosomes whose fitness values are smaller.

5: Perform crossover on the preserved1
2NC chromosomes to create another1

2NC chromosomes.

6: Calculate the fitness value of each newly generated chromosome based on Equation 2.13.

7: Sort the preserved12NC chromosomes and the newly generated1
2NC chromosomes in ascending

order in terms of the fitness values, and remove1
4NC chromosomes whose fitness values are

smaller.

8: Randomly select14NC chromosomes from the preserved3
4NC chromosomes to perform mutation

and generate14NC chromosomes.

9: Let the currentNC chromosomes be chromosomes in the new generation.

10: if the termination condition is satisfiedthen

11: Let the chromosome with the biggest fitness value be the best solution.

12: else

13: Go to Step 4.

14: end if

lengthL(ξi) of the chromosomeξi. If the schedule lengthL(ξi) is greater than the timing

constraintTC, the fitness value of the chromosomeξi, fitness(ξi), is equal to zero since the

schedule is not feasible; otherwise, its fitness value increases when its total energy consump-

tionEtotal(ξi) decreases. Using this fitness function, we can select the chromosome with the

highest fitness value to be the solution of our energy minimization problem.

(4) The GeneS Algorithm.In this section, we present our genetic algorithm, GeneS, togener-

ate the objective task schedule with the minimum energy consumption. Our GeneS algorithm

is shown in Algorithm 2.5.4.

In GeneS, we start from an initial population that is randomly generated by a number

39

PE1 PE1 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 1

()

(!)

Initial Generation

PE1 PE2 PE2 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 2

()

(!)

PE2 PE2 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 4

()

(!)

...

PE2 PE1 PE2 PE1 PE2

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 3

()

(!)

Sort

PE2 PE1 PE2 PE1 PE2

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 1

()

(!)

PE2 PE1 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 2

()

(!)

PE2 PE2 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome NC/2

()

(!)

...

PE1 PE1 PE2 PE1 PE2

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome NC-1

()

(!)

PE2 PE1 PE2 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 1

()

(!)

PE2 PE1 PE1 PE1 PE2

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 2

()

(!)

PE2 PE2 PE1 PE2 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome NC/2

()

(!)

...

PE2 PE1 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome NC

()

(!)

Crossover Sort

PE2 PE1 PE2 PE1 PE1

Vdd2 Vdd2 Vdd1 Vdd2 Vdd2

A B C D E

Chromosome 1

()

(!)

New Generation

PE2 PE2 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd1 Vdd2

A B C D E

Chromosome 2

()

(!)

PE2 PE1 PE1 PE1 PE2

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 4

()

(!)

...

PE2 PE1 PE2 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 3

()

(!)

PE2 PE1 PE2 PE1 PE2

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome NC-1

()

(!)

PE2 PE2 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome NC

()

(!)

PE2 PE1 PE2 PE1 PE1

Vdd2 Vdd2 Vdd1 Vdd2 Vdd2

A B C D E

Chromosome (3/4)*NC+1

()

(!)

PE2 PE2 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd1 Vdd2

A B C D E

Chromosome NC

()

(!)

...
Randomly select (1/4)*NC

chromosomes and

perform Mutation

PE2 PE1 PE2 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 1

()

(!)

...

PE2 PE1 PE1 PE1 PE2

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 2

()

(!)

PE2 PE1 PE2 PE1 PE2

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome 3

()

(!)

PE2 PE2 PE1 PE1 PE1

Vdd2 Vdd2 Vdd2 Vdd2 Vdd2

A B C D E

Chromosome (3/4)*NC

()

(!)

Sort

Figure 2.8. An Example of the GeneS Algorithm.

of chromosomes. The number of chromosomes in each generation is denoted byNC . For

each chromosomeξi in the initial generation, the task assignments are randomly selected,

and the voltage level of each task is assigned with the highest voltage level,Vddk .

Starting from the initial population, we iteratively perform crossover and mutation

operators over the chromosomes to create new generations. Based on the fitness function,

we calculate the fitness value of each chromosome. The average fitness value of each gener-

ation will be increased as we only keep the chromosomes with higher fitness value through

evolution. The algorithm terminates when the predefined maximum number of generations

is reached.

We give an example in Figure 2.8 to illustrate our GeneS algorithm. Given the DFG

in Figure 2.2(a), the power model in Figure 2.2(c), two processor core{PE1, PE2}, and the

timing constraintTC = 16, after applying our RDAG algorithm on the DFG, we can obtain a

40

set of independent tasks. As they are independent of each other, they can be scheduled in any

orders in one period. Following GeneS, we first generate the initial generation withNC chro-

mosomes, in which all tasks in each chromosome are assigned with the highest voltage level

Vdd2 . We can calculate the fitness value of each chromosome, sort them and remove1
2
NC

chromosomes that have the smaller fitness values. The preserved 1
2
NC chromosomes form

1
4
NC pairs of chromosomes. For each pair of chromosomes, we perform crossover and gen-

erate two new chromosomes. For the preserved1
2
NC chromosomes and the newly generated

1
2
NC chromosomes, we sort them by the fitness values and remove the1

4
NC chromosomes

with the smaller fitness values. From the current3
4
NC chromosomes, we randomly select

1
4
NC chromosomes and perform mutation operation. Then we sort the 3

4
NC chromosomes

and the1
4
NC chromosomes newly generated by the fitness values. TheseNC chromosomes

form the new generation for gene evolution.

The complexity of our GeneS algorithm is governed by sortingchromosomes and

constructing schedules from chromosomes. LetNG be the number of generations in the

GeneS algorithm, letNC be the number of chromosomes in each generation, and letn be

the number of tasks. To generate a new generation, the GeneS algorithm will sort theNC

chromosomes two times, so the corresponding complexity isO(NC log NC). To construct

a schedule from a chromosome, in which we can obtain its energy consumption at the same

time, we need to group tasks based on their voltage level, sort task groups based on their

voltage levels and then schedule task groups. It takesO(n) to group each task, takes at most

O(n log n) to sort all groups in one core, and takesO(n) to perform scheduling. Therefore,

the complexity isO(n log n) for constructing a schedule from one chromosome. So for

each generation, it takesO(NC · n log n) to construct schedules from chromosomes as we

totally need to generate13
4
NC schedules (the times to calculate the fitness values). Thus,the

complexity of our GeneS algorithm isO(NG ·NC log NC +NG ·NC · n log n).

41

Voltage Freq. Power Voltage Freq. Power

Vdd(V) fop(MHz) P (W) Vdd(V) fop(MHz) P (W)

1.2 500 9.2 1.25 600 12.0

1.3 700 15.1 1.35 800 18.6

1.4 1000 25.0

Table 2.1. The Voltage Levels, Frequencies and Power Consumption based on the Power

Model of the Mobile Athlon4 Processor [7].

2.6 Experiments

In this section, we evaluate and compare our approach with the PEDF algorithm [115] and the

SpringS algorithm [65] in terms of three performance metrics: (1) the energy consumption,

(2) the minimum valid timing constraint, and (3) the extent of parallelism. We will also

present the results of prologue latency and memory overheadof our approach.

2.6.1 Experimental Setup

(1) Power Model. The experiments are conducted based on the power model of the AMD

Mobile Athlon4 DVS processor [7]. The AMD Mobile Athlon4 processor can operate at

various voltage levels in the range of1.2 − 1.4V with 50mV steps, and the corresponding

frequencies vary from500MHz to1GHz with 100MHz steps [76]. The power is calculated

by Pdynamic = CSW · fop · V
2
dd [91], whereCSW is 12.75nF from the data sheet of the AMD

Mobile Athlon4 processor [7]. The five voltage levels, and their corresponding frequencies

and power consumption are shown in Table 2.1.

The time overhead during a voltage transition among five voltage levels is calculated

based on Equation 2.6,tTRAN = 2·CDD

IMAX
· |Vddj − Vddi |, in whichCDD andIMAX are set as

12pF and16mA [7]. The energy transition overhead is calculated based on Equations (2.8)

and (2.9). For the energy consumed by the converter,ETRAN−DC = α · CDD · |V
2
ddi
− V 2

ddj
|,

α is set as0.9 [17].

AMD Mobile Athlon4 DVS processors have low power sleep states that can be uti-

42

lized when systems are idle. The power consumed in the sleep state is2.4W [76]. For the

transition involving sleep states, considering the synchronization delay with off-chip compo-

nents such as memory, the transition time is quite large. It takes at least5ms to synchronize

with the main memory entering in or exiting from the sleep state [7]. The power consump-

tion for transition overhead associated with one transition for entering into and exiting from

the sleep mode is assumed to be the power consumption at the voltage level entering from the

sleep mode. The power of the bus is assumed to be147mW . For static energy consumption,

Pstatic = Isubn ·Vdd+|Vbs|·Ij , the subthreshold currentIsubn is set as250µA [7], the body bias

voltageVbs is set as0.4V , and the reverse bias junction currentIj is set as4.8×10−10A [72].

(2) Benchmarks.We conduct experiments on 12 benchmarks as shown in Table 2.2. Among

them, the first 9 benchmarks are obtained from Embedded Systems Synthesis Benchmarks

(E3S) [104]. E3S is largely based on data from the Embedded Microprocessor Benchmark

Consortium (EEMBC). Consumer-1 and consumer-2 are embedded consumer electronic ap-

plications including tasks like JPEG compression, JPEG decompression, high pass gray-

scale filter, RGB to CYMK conversion and RGB to YIQ conversion, etc. Auto-industry-1,

auto-industry-2 and auto-industry-3 come from embedded auto-industry applications includ-

ing major tasks like FFT (Fast Fourier Transform), finite/infinite impulse response filter,

IDCT (Inverse Discrete Cosine Transform), IFFT (Inverse Fast Fourier Transform), ma-

trix arithmetic, road speed calculation, table lookup and interpolation, etc. telecom-1 and

telecom-2 represent embedded telecom applications consisting of tasks like autocorrelation-

data (pulse, sine, and speech), convolution encoder-data (xk5r2dt, xk4r2dt, and xk3r2dt),

viterbi GSM decoder-data, etc. Office-1 describes an embedded office application which

consists of tasks like dithering, image rotation and text processing. Network-1 is an em-

bedded network application including tasks like OSPF/Dijkstra, route lookup/patricia, and

packet flow, etc.

Besides the 9 benchmarks, we use TGFF [28] to generate 3 periodic task graphs,

TGFF-1, TGFF-2 and TGFF-3. Among them, TGFF-1 is aslim graph while TGFF-2 is

a fat graph. Basically, in TGFF-1, it has very long critical path length and there are not

many independent nodes; in TGFF-2, its critical path is relatively short and there are many

43

Benchmarks No. of No. of Execution time of

tasks cycles critical path (µs)

consumer-1 7 11050 8

consumer-2 5 16520 10

auto-industry-1 6 13607 9

auto-industry-2 4 351120 348

auto-industry-3 9 1397567 1392

telecom-1 4 53900 51

telecom-2 6 438900 395

office-1 5 3311000 2584

network-1 4 264127 263

TGFF-1 6 90000 83

TGFF-2 8 170000 58

TGFF-3 24 924000 563

Table 2.2. Benchmark Descriptions and Characteristics.

independent nodes. Table 2.2 illustrates the detailed information of each benchmark. In

Table 2.2, “No. of tasks” represents the number of tasks in each benchmark; “No. of cycles”

represents the total number of clock cycles in each benchmark; “Execution time of critical

path” represents the total execution time of tasks along thecritical path, and each task is with

the highest voltage/frequency level(Vddk , fk).

2.6.2 Results and Discussion

In this section, we evaluate the energy consumption ofone iterationof each benchmark under

different timing constraints and different number of processor cores using three algorithms,

GeneS, SpringS [65], and PEDF [115].

GeneS is our scheduling algorithm that uses genetic approach to solve energy mini-

mization problem forperiodic dependent taskson multicore architecture. In the experiments,

the maximum number of generations is set as5000, and the number of chromosomes in each

44

generation is set as64. SpringS is a scheduling algorithm proposed in Liu et al. [65]. PEDF

is a DVS scheduling algorithm used to solve the energy minimization problem for depen-

dent tasks on multiple variable voltage processors. Instead of fixing the task assignment like

Gruian and Kuchcinski [36] or task scheduling like Luo and Jha [69], a two-phase frame-

work has been proposed in the PEDF algorithm that integratestask assignment, ordering

and voltage selection together to iteratively generate a schedule. So the PEDF algorithm

performs better in energy consumption compared with the list scheduling algorithm and the

algorithms in Gruian and Kuchcinski [36] and Luo and Jha [69]. Therefore, PEDF is selected

for comparison in the chapter.

(1) Energy Consumption.Table 2.3 and Table 2.4 show the experimental results for allthe

12 benchmarks running on 2, 3, 4, 6, and 8 processor cores. In Table 2.3 and Table 2.4,

column “TC Range (µs)” represents timing constraints we used that start from theminimum

execution time and increase by2µs each step. Columns “PEDF (µJ),” “SpringS (µJ),”

and “GeneS (µJ)” represent the energy consumption obtained by corresponding algorithms.

Column “PEDF over GeneS(%)” represents the percentage of how much extra energy is

saved by GeneS compared to PEDF. “-” means for a timing constraint, PEDF or SpringS

cannot find a solution. Note that for each benchmark, experimental results are separated into

two parts based on different ranges of timing constraints. We call the timing constraint at the

partition pointthe critical timing constraint. On the left part, the timing constraint is smaller

than the critical timing constraint, and the PEDF algorithmhas no solution under these small

timing constraints. On the contrary, on the right part, the timing constraints are bigger than

the critical timing constraint, and PEDF can find feasible schedules. In the experiments, we

test each benchmark with different timing constraints. Starting from the minimum timing

constraint to perform task scheduling, we gradually increase the timing constraint by2µs

each step. The experiment results list the average energy consumption of each benchmark

for different ranges of timing constraints.

In Table 2.3 and Table 2.4, the results show that with tight timing constraints, the

PEDF algorithm cannot achieve a feasible solution while ours can. By extending the timing

constraint, PEDF may obtain feasible solutions. On average, GeneS achieves a24.4% reduc-

45

TC Range PEDFSpringSGeneS TC Range PEDFSpringSGeneSPEDF over
Benchmark (µs) (µJ) (µJ) (µJ) (µs) (µJ) (µJ) (µJ) GeneS (%)

2-core
consumer-1 8–13 – 249 197 14–19 362 264 264 27.1
consumer-2 10–15 – 391 330 16–22 471 376 311 34.0

auto-1 7–13 – 296 235 14–26 367 315 315 14.2
auto-2 335–348 – 11739 8596 349–705 7828 6476 6449 17.6
auto-3 830–1392 – 31622 25326 1393–2792 30716 30437 24136 21.4

telecomm-1 41–51 – 1600 1176 52–110 1473 1457 1261 14.4
telecomm-2 330–395 – 12445 9107 396–900 13590 12910 11087 18.4

office-1 1925–2584 – 80913 79695 2585–5725 79710 74893 74893 6.0
network-1 253–263 – 8849 6484 264–606 9366 9211 8422 10.1
TGFF-1 48–65 – 2142 2113 66–110 2627 1875 1833 30.2
TGFF-2 87–97 – – 4183 98–180 3671 3607 3288 10.4
TGFF-3 464–591 – 22263 22263 592–1000 21513 19216 19216 10.7

average 17.9
3-core

consumer-1 5–13 – 271 269 14–19 491 413 413 15.9
consumer-2 6–11 – 421 375 12–22 708 452 452 36.2

auto-1 5–13 – 340 316 14–26 542 469 469 13.5
auto-2 335–348 – 14880 8758 349–705 15229 15205 13695 10.1
auto-3 550–1392 – 32907 30489 1393–2792 30850 30502 30502 1.1

telecomm-1 41–51 – 2022 1176 52–110 2040 1934 1643 19.5
telecomm-2 330–395 – 15779 9108 396–900 18302 17768 14124 22.8

office-1 1925–2584 – 89819 71274 2585–572512153710130977556 36.2
network-1 253–263 – 11223 6484 264–606 14020 12752 10327 26.3
TGFF-1 33–65 – 2017 1992 66–110 4005 2429 2429 39.4
TGFF-2 57–61 – 4236 4236 62–180 4124 3923 2778 32.6
TGFF-3 309–504 – 21085 21085 505–700 23329 18046 18046 22.6

average 23.0
4-core

consumer-1 5–13 – 344 319 14–19 666 565 565 15.2
consumer-2 5–10 – 441 375 11–22 998 590 590 40.9

auto-1 5–13 – 422 376 14–26 542 515 515 5.0
auto-2 335–348 – 18021 8783 349–705 22722 21596 16781 26.1
auto-3 696–1392 – 32591 29799 1393–2792 30970 26014 26014 16.0

telecomm-1 41–51 – 2444 1176 52–110 3083 2742 2024 34.3
telecomm-2 330–395 – 19114 9108 396–900 24374 22625 17160 29.6

office-1 1925–2584 – 11056178493 2585–572516705713091195268 43.0
network-1 253–263 – 11223 6484 264–606 14020 12752 10327 26.3
TGFF-1 33–65 – 2173 1966 66–110 5198 3238 3238 37.7
TGFF-2 44–59 – 4199 4172 60–180 5181 4625 3702 28.5
TGFF-3 233–465 – 20362 14862 466–700 23899 17655 17655 26.1

average 27.4

Table 2.3. The Energy of Each Benchmark under Various TimingConstraints on 2, 3, 4
Processor Cores.

46

TC Range PEDFSpringSGeneS TC Range PEDFSpringSGeneSPEDF over

Benchmark (µs) (µJ) (µJ) (µJ) (µs) (µJ) (µJ) (µJ) GeneS (%)

6-core

consumer-1 5–13 – 489 419 14–19 1063 867 867 18.4

consumer-2 5–10 – 509 375 11–22 1186 742 742 37.4

auto-1 5–13 – 587 496 14–26 827 771 771 6.8

auto-2 335–348 – 18021 8783 349–705 22722 21596 16781 26.1

auto-3 696–1392 – 49354 47501 1393–2792 42449 40632 40632 4.3

telecomm-1 41–51 – 2444 1176 52–110 3083 2742 2024 34.3

telecomm-2 330–395 – 25783 9108 396–900 36517 32339 23232 36.4

office-1 1925–2584 – 13130278493 2585–5725225593160513112979 49.9

network-1 253–263 – 11223 6484 264–606 14020 12752 10327 26.3

TGFF-1 33–65 – 2173 1966 66–110 5198 3238 3238 37.7

TGFF-2 44–59 – 4199 4172 60–180 5181 4625 3702 28.5

TGFF-3 161–321 – 20429 13256 322–600 26214 22168 22168 15.4

average 26.8

8-core

consumer-1 5–13 – 561 469 14–19 1201 1018 1018 15.2

consumer-2 5–10 – 509 375 11–22 1186 742 742 37.4

auto-1 5–13 – 587 496 14–26 827 771 771 6.8

auto-2 335–348 – 18021 8783 349–705 22722 21596 16781 26.1

auto-3 696–1392 – 60890 57622 1393–2792 77374 67009 67009 13.4

telecomm-1 41–51 – 2444 1176 52–110 3083 2742 2024 34.3

telecomm-2 330–395 – 25783 9108 396–900 36517 32339 23232 36.4

office-1 1925–2584 – 13130278493 2585–5725225593160513112979 49.9

network-1 253–263 – 11223 6484 264–606 14020 12752 10327 26.3

TGFF-1 33–65 – 2173 1966 66–110 5198 3238 3238 37.7

TGFF-2 44–59 – 4199 4172 60–180 5181 4625 3702 28.5

TGFF-3 122–243 – 20597 12785 244–550 29413 26373 26373 10.3

average 26.9

Table 2.4. The Energy of Each Benchmark under Various TimingConstraints on 6 and 8

Processor Cores.

47

tion in energy consumption compared with PEDF. For two groups of timing constraints, our

algorithm can save extra energy consumption compared with SpringS. From these experi-

mental results, we can see that (1) our scheduling algorithmdoes not have a strict require-

ment on timing constraint and can be applied for those embedded systems with tight timing

constraint, and (2) our scheduling algorithm can perform better compared with PEDF and

SpringS for different number of processor cores.

In order to evaluate our proposed approach with larger number of processor cores,

we also present the experiment results on 6 and 8 processor cores. In Table 2.4, we can

see that our approach can also achieve significant energy reduction compared to the PEDF

algorithm and the SpringS algorithm. For the MPSoC with 6 and8 processor cores, our

GeneS algorithm can save average26.8% and26.9% of energy consumption, respectively,

compared to the PEDF algorithm.

At this point, we have analyzed the data in one table horizontally. Now we fix

the benchmark and analyze the data in the table vertically. This analysis helps us iden-

tify whether or not the scheduling algorithm can effectively take advantage of the potential

computation power of multiple processor cores. For simplicity, the last benchmark, TGFF-3,

is used as an example. The experimental results show that when the number of processor

cores is increased from 2 to 8, the minimum valid timing constraint for GeneS (by which we

can obtain a feasible solution) is reduced from464µs to 122µs while it is not changed for

PEDF. This shows that our GeneS algorithm can effectively exploit the potential of multicore

architectures to minimize the energy consumption.

In Section 2.4, we have analyzed the lower bound energy consumptionELB. As we

mentioned in Section 2.4,ELB is the lower bound energy consumption that is close to the

optimal solution, and an optimal solution for multicore processors may not achieve it. Here

we compare the energy consumption obtained by the GeneS algorithm and the lower bound

energy consumptionELB. Table 2.5 shows the experimental results. From the results, we

can see that, for all 12 benchmarks, the GeneS algorithm can generate the task schedule with

energy consumption close to the lower bound energy consumption ELB. For benchmark

48

2-core 4-core 6-core 8-core

Benchmark TC Range GeneS ELB GeneS ELB GeneS ELB GeneS ELB

(µs) (µJ) (µJ) (µJ) (µJ) (µJ) (µJ) (µJ) (µJ)

consumer-1 5–19 232 216 414 381 592 523 680 666

consumer-2 5–22 319 309 459 440 627 590 627 590

auto-1 5–26 290 257 429 401 643 610 643 610

auto-2 335–705 7049 6499 14660 14660 14660 14660 14660 14660

auto-3 696–2792 24659 20017 27374 24518 42450 39448 62374 58963

telecomm-1 41–110 1189 1125 1640 1122 1640 1122 1640 1122

telecomm-2 330–900 10267 9842 15625 13416 17241 14890 17241 14890

office-1 1925–5725 77290 67835 85901 72794 100241 79493 100241 79493

network-1 253–606 7705 6546 8850 7308 8850 7308 8850 7308

TGFF-1 33–110 1909 1717 2710 1935 2710 1935 2710 1935

TGFF-2 44–180 3381 3135 3756 3534 3756 3534 3756 3534

TGFF-3 122–1000 20220 18147 16502 16191 17293 16962 18147 17075

Table 2.5. The Comparison of Energy Consumption by the GeneSAlgorithm and the Lower

Bound Energy ConsumptionELB.

auto-2 running on 4, 6, or 8 processor cores, the energy consumption of the GeneS algorithm

is the same as the lower bound energy consumptionELB.

(2) Optimization Trade-Off on Energy, Number of Processor Cores and Timing Constraint.

We have compared energy consumption of all benchmarks with different algorithms. In this

section, we will list detailed data of two benchmarks and analyze other gains and trade-offs

in terms of energy, number of processor cores and timing constraint. We use TGFF-1 and

TGFF-2 as examples. TGFF-1 is aslim DFG while TGFF-2 is afat DFG. Basically, in the

slim DFG, it has very long critical path length and there are not a lot of independent nodes;

in the fat DFG, its critical path is relatively short and there are many independent nodes. We

attempt to use the two extreme cases to compare GeneS with SpringS and PEDF.

Figure 2.9 shows the trend of TGFF-1 with three algorithms interms of the minimum

valid timing constraint and energy consumption on 2, 3, and 4processor cores, respectively.

49

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115

2000

3000

4000

5000

6000

7000

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

Timing Constraint (s)

 PEDF(2)

 PEDF(3)

 PEDF(4)

 SPRINGS(2)

 SPRINGS(3)

 SPRINGS(4)

 GENES(2)

 GENES(3)

 GENES(4)

Figure 2.9. The Changing Tendency of Energy and Timing Constraint with Three Algorithms

under Different Number of Processor Cores on Benchmark TGFF-1.

In this figure, the notation GeneS(x), SpringS(x) and PEDF(x) represent the execution trace

of corresponding algorithm onx processor cores.

From this figure, we can see that: (1) When the timing constraints are in the scope

[33µs, 65µs], PEDF cannot find a feasible solution while SpringS and GeneScan, which

means that GeneS does not put a lot of limitation on timing constraints. This is important for

embedded systems, especially for those with tight timing constraints. (2) When the timing

constraints are more than65µs, all of three algorithms can find feasible solutions. However,

PEDF and SpringS consumes more energy than GeneS. (3) When the number of processor

cores is increased, for GeneS, the minimum feasible timing constraint is reduced from48µs

to 33µs. However, for PEDF, it is always65µs no matter on 2, 3 or 4 processor cores. This

comparison shows that GeneS can take advantage of the benefitof multiple processor cores

to generate a feasible schedule with more tight timing constraint. (4) Although SpringS can

also get feasible solutions in timing constraints[33µs, 65µs], GeneS can save more energy

compared to SpringS.

From this analysis, we can see that GeneS can achieve better energy consumption

compared with the PEDF algorithm [115] and the SpringS algorithm [65] for theslimDFG.

Table 2.6 shows the result of TGFF-2, thefat task graph. For simplicity, we list the

50

2-core 3-core 4-core

TC PEDF SpringS GeneS PEDF SpringS GeneS PEDF SpringS GeneS

(µs) (µJ) (µJ) (µs) (µJ) (µJ) (µJ) (µJ) (µJ) (µJ)

44 – – – – – – – 4398 4398

58 – – – – 4283 4283 – 3861 3861

60 – – – – 4188 4188 6001 3952 3912

62 – – – 4651 4120 4118 5923 3845 3833

88 – – 4233 4150 3684 3658 4587 3237 2123

98 4191 4172 4074 3897 3413 3399 4345 3604 2493

100 4129 4065 4065 3784 3467 3413 4197 3678 2567

120 3874 3779 3750 3605 3315 1411 4422 4414 3307

140 3687 3638 3464 3870 3867 1951 5158 5150 4047

160 3310 3300 3300 4423 4419 2491 5894 5886 4787

180 3326 3324 1955 4975 4971 3031 6630 6622 5527

Table 2.6. The Comparison for the Schedules Generated by PEDF, SpringS, and GeneS on

TGFF-2, afat Task Graph.

part of the data derived from the selected timing constraints to show the trend. From the

results, similar conclusion can be obtained as for theslim DFG. Some little differences are

that, for thefat DFG, PEDF behaves better than it does for theslim DFG. PEDF can use

more processor cores compared to the case of theslim DFG, while its parallelism is still not

as good as that of GeneS. The energy gap between GeneS and PEDFis reduced. However,

GeneS still performs better than PEDF. On average, GeneS canachieve23.8% improvement

over PEDF in energy consumption for thefat DFG. And also, GeneS still performs better

than SpringS regarding energy consumption.

(3) Prologue Latency.In Section 2.5.1, we have analyzed the prologue latency of the RDAG

algorithm. The prologue latencyPrologue Latency is the time duration in the prologue.

Table 2.7 shows the prologue latency of each benchmark with different timing constraints.

From the results, we can see that, our approach causes several periods of prologue latency. As

discussed before, however, the prologue is only executed once, so the overhead it introduces

51

TC Range Prologue Latency TC Range Prologue Latency

Benchmark (µs) (µs) (µs) (µs)

consumer-1 5–12 38 13–19 65

consumer-2 5–15 34 16–22 64

auto-1 5–13 56 14–26 103

auto-2 335–348 1021 349–705 1319

auto-3 696–1392 6936 1393–2792 14640

telecomm-1 41–51 137 52–110 228

telecomm-2 330–395 1468 396–900 2568

office-1 1925–2584 6751 2585–5725 10782

network-1 253–263 772 264–606 1242

TGFF-1 33–65 260 66–110 389

TGFF-2 44–59 135 60–180 221

TGFF-3 122–500 3970 501–700 7565

Table 2.7. The Prologue Latency of Our RDAG Algorithm with Different Timing Con-

straints.

is one-time delay. After waiting for the execution of the prologue, tasks can be periodically

executed in the new loop kernel as a streaming application isusually repeatedly executed for

many times. As our approach can greatly reduce the schedule length of each period as shown

above, we can either apply a shorter period or apply DVS and DPM for energy optimization.

As we can benefit from each period in the loop kernel, it is usually worth waiting for the

execution of the prologue.

(4) Memory Overhead.In this section, we give a case study to illustrate the energycon-

sumption caused by the memory subsystem with different methods. We have analyzed the

memory overhead caused by the RDAG algorithm in Section 2.5.1. Using our approach,

extra memory space is needed to hold data across different periods as the RDAG algorithm

regroups tasks from different periods into one period. Therefore, we should conduct analysis

based on the energy overhead caused by the extra memory spacefrom our method. However,

we cannot find a consistent SRAM energy model that can clearlyshow the relation between

52

Power State/Transition Power Time

Active 300mW -

Standby 180mW -

Nap 30mW -

Powerdown 3mW -

Active→ Standby 240mW 1 memory cycle

Active→ Nap 160mW 8 memory cycle

Active→ powerdown 15mW 8 memory cycle

Standby→ Active 240mW +6ns

Nap→ Active 160mW +60ns

Powerdown→ Active 15mW +6000ns

Table 2.8. Power Consumption and Transition Time for Memory.

memory size and energy consumption. For most SRAM chips, only one power consumption

parameter is provided, so we cannot effectively evaluate the energy consumption caused by

the extra memory space. On the other hand, based on the memorylifetime analysis in Al-

gorithm 2.5.3, we can apply DPM to turn off memory subsystem when it is idle. So in this

section, we use Rambus DRAM (RDRAM) as an exemplary memory subsystem to compare

the energy consumption between our approach and PEDF by applying DPM.

The power model of RDRAM is listed in Table 2.8. RDRAM offers four power

modes: active, standby, nap, and powerdown. The energy consumption in each mode and

transition times between different modes are listed in Table 2.8. Rambus RDRAM chip runs

at the frequency of1600MHz and provides a peak transfer rate of3.2GB/s [81].

Table 2.9 shows the energy consumption of memory subsystem by the PEDF algo-

rithm and the RDAG algorithm for processing one iteration ofeach benchmark. As our

approach changes intra-iteration data dependencies into inter-iteration data dependencies,

the memory chip has to be in active mode during the whole period. For the PEDF algorithm,

memory chip can be put in the standby or power down mode to saveenergy consumption.

53

PEDF (µJ)

Benchmark TC Range (µs) GeneS (µJ) 2-core 4-core 6-core 8-core

consumer-1 14–19 5.0 3.3 3.1 3.1 3.1

consumer-2 16–32 7.2 5.7 5.6 5.6 5.6

auto-1 14–26 6.0 4.2 4.1 4.1 4.1

auto-2 349–705 158.1 135.7 114.9 114.9 114.9

auto-3 1393–2792 627.8 525.2 517.1 517.1 517.1

telecomm-1 52–110 24.3 10.0 9.3 9.3 9.3

telecomm-2 396–900 194.4 156.6 143.1 137.7 137.7

office-1 2585–5725 1246.5 1027.8 963.0 938.7 938.7

network-1 264–606 130.5 100.8 95.4 95.4 95.4

TGFF-1 85–110 29.3 24.7 23.9 22.0 22.0

TGFF-2 121–180 45.2 40.8 39.5 39.5 39.5

TGFF-3 564–1000 234.6 224.1 216.3 213.1 210.1

Table 2.9. The Memory Energy Consumption of the PEDF Algorithm and the RDAG Algo-

rithm.

Compared to the energy consumption by the PEDF algorithm, our approach causes extra

memory consumption overhead. Compared to the energy consumption caused by processor

cores, however, the extra energy consumption of memory subsystem caused by our approach

is relatively small. If taking the energy consumption caused by memory as one of the com-

ponents of the overall energy consumptionEtotal, our approach can still significantly reduce

the overall energy consumption compared to the PEDF algorithm.

2.7 Summary

In this chapter, we proposed a two-phase approach to solve the energy optimization prob-

lem for periodic dependent tasks on MPSoCs considering various overheads. In the first

phase, we proposed a coarse-grained task-level software pipelining algorithm called RDAG

to transform periodic dependent tasks into a set of independent tasks based on the retiming

54

technique [61]. In the second phase, we proposed a genetic algorithm called GeneS for en-

ergy optimization. We conducted experiments with a set of benchmarks from E3S [104] and

TGFF [28]. The experimental results show that through the combination of software pipelin-

ing with DVS and DPM, our approach can fully exploit the potential of MPSoC architectures

and the periodic characteristic of streaming applicationsto reduce energy consumption.

55

CHAPTER 3

OPTIMALLY REMOVING INTERCORE COMMUNICATION OVERHEAD FOR

STREAMING APPLICATIONS ON MPSOCS

3.1 Overview

In real-time systems, a streaming application can be modeled as periodic dependent tasks, in

which a stream of data are treated as a sequence of requests that are serviced by the stream-

ing application when arrived [111]. To process continuous stream of data, streaming appli-

cations are usually computation-intensive and highly parallelizable [111]; therefore, they are

very suitable to be executed on MPSoC (Multiprocessor System-on-Chip) architectures. In

order to fully take advantage of the multi-core architecture of MPSoCs, various techniques

have been proposed to explore and increase parallelisms of streaming applications. These

parallelization techniques usually impose a large amount of intercore communications with

significant communication overhead [63]. By removing intercore communication overhead,

system performance such as time performance and energy consumption can be improved.

Therefore, it becomes an important research problem to effectively remove intercore com-

munication overhead for streaming applications on MPSoC architectures.

An MPSoC is usually designed for a specific streaming application with special hard-

ware and software. Therefore, to optimize a specific streaming application on an MPSoC,

one of the key challenges is to generate a good task schedule so that it can satisfy all real-time

requests by fully utilizing the computation power of the MPSoC. Then the schedule can be

generated by compilers and statically loaded into processor cores or integrated into real-time

operating systems. So this chapter aims to develop a scheduling technique for streaming

applications on MPSoC architectures.

56

In the previous work, a lot of techniques have been proposed to solve the schedul-

ing problem for periodic tasks. For scheduling independenttasks, a number of studies have

been conducted [15, 22, 41] and several techniques have beenproposed. These techniques,

however, cannot be directly applied to perform scheduling for periodic dependent tasks.

Several studies have been conducted for scheduling periodic dependent tasks on multi-core

architectures [24, 64, 115, 117]. However, intercore communication overhead is not consid-

ered. So they may not provide good solutions to our problem. In [29, 68, 95, 105], several

communication-aware task allocation and scheduling frameworks for MPSoC architectures

are proposed. By increasing the parallelism, these techniques may cause more intercore com-

munications. Our technique is a good supplement for these techniques by helping effectively

reducing intercore communication overhead.

In this chapter, we propose an approach to totally remove intercore communication

overhead by jointly optimizing computation and communication task scheduling for stream-

ing applications on MPSoCs. In particular, in our technique, we reschedule both computation

and intercore communication tasks such that the execution of computation and communica-

tion tasks of one period can be totally overlapped and the intercore communication overhead

is totally removed. Our basic idea is to let some computationand intercore communication

tasks be executed in earlier periods (the newly-added periods are calledthe prologue) such

that intercore data transfer can be finished before the execution of the tasks that need the data

to start. So one problem arises, how to do rescheduling such that the schedule length can be

minimized with the minimum prologue length while the intercore communication overhead

can be totally removed in each period?

To solve this problem, we first perform schedulability analysis for communication

tasks, and theoretically obtain the upper bound of the timesneeded to reschedule each com-

putation task. Based on this analysis, we formulate the problem as an ILP (Integer Linear

Programming) formulation and obtain an optimal solution with joint computation and com-

munication task scheduling. The solution ensures that the intercore communication over-

head is totally removed while the schedule length is minimized with the minimum prologue

length. As our schedulability analysis produces very tightbounds, the ILP formulation can

57

be solved efficiently in practice. To the best of our knowledge, this is the first work to opti-

mally remove intercore communication overhead with joint computation and communication

task scheduling for streaming applications on MPSoCs.

We have implemented our technique and conducted experiments based on the pro-

cessor model of ARM11 MPCore processors [10]. Our techniqueis evaluated with a set

of benchmarks from both real-life streaming applications and synthetic task graphs includ-

ing Embedded Systems Synthesis Benchmarks (E3S) [104], TGFF [28], Automatic Target

Recognition (ATR) [71], Computerized Numerical Control (CNC) [51], and an image en-

hancement application [103]. We compare our technique withthe algorithms from Chen et

al. [24] and Zhu et al. [117], respectively. The algorithm inChen et al. [24] is a performance-

oriented task scheduling algorithm that can generate near-optimal solutions for periodic de-

pendent tasks on multi-core architectures; the algorithm in Zhu et al. [117] is a power-aware

DVS scheduling algorithm that can effectively optimize energy consumption of streaming

applications on MPSoCs. The experimental results show thatour technique can obtain better

performance compared to these algorithms by effectively removing intercore communication

overhead. Our technique can achieve a 27.72% reduction in schedule length compared with

the algorithm in Chen et al. [24], and a 14.98% reduction in energy consumption compared

with the one in Zhu et al. [117] on average.

The remainder of this chapter is organized as follows. In Section 3.2, we present our

system models and formally define the problem. In Section 3.3, we perform schedulability

analysis, and get constraints that will be integrated into the ILP formulation in Section 3.4.

Our optimal joint computation and communication task scheduling technique is presented in

Section 3.4. Section 3.5 presents experimental results. Finally, we conclude the chapter and

discuss the future work in Section 3.6.

3.2 Models and Concepts

In this section, we introduce several models that will be used in later sections, and then

provide the problem formulation.

58

Processor

Core P1

Interface

...
Processor

Core P2

Interface

Processor

Core PM

Interface

Shared Bus

Arbiter

Interface

Figure 3.1. The MPSoC Architecture.

3.2.1 System Model

In this chapter, we employ a typical MPSoC architecture shown in Figure 3.1. The MPSoC

architecture consists ofM processor cores{P1, P2, . . . , PM}, a shared bus, and a bus arbiter.

TheM processor cores communicate through a shared bus. The shared bus is adopted as it is

the most widely used interconnection architecture. Bus access requests from processor cores

are managed by the bus arbiter.

3.2.2 Task Model

In this chapter, streaming applications are modeled as periodic dependent tasks, and pe-

riodic dependent tasks are represented by Directed AcyclicGraph (DAG). A DAGG=

(V,E, CT,R) is a node-weighted directed acyclic graph.V= {T1, T2, . . . , Tn} is the node

set, and each node represents one periodic task.E ⊆ V × V is the edge set that defines the

data dependency relations for all nodes inV . Each directed edge,(Ti, Tj) ∈ E (Ti, Tj∈ V),

represents the data dependency between tasksTi andTj , i.e., the execution ofTj needs the

results generated by the execution ofTi in the same period.CT : E 7→ Z is a function that

associates every directed edge(Ti, Tj) ∈ E with a communication taskCT i
j to denote the

corresponding data transfer from taskTi to taskTj.

R : V 7→ Z is a function that associates every taskTi ∈ V with a non-negative weight

59

R(Ti). Node weight represents extended data dependency relations. Initially, all nodes are

used to represent data dependency relations inside one period (intra-period dependency),

so each node weight is zero. As shown later, in our technique,tasks from different periods

are regrouped into one period in order to overlap the execution of intercore communication

and computation tasks. Therefore, a task node with positiveweight is introduced to describe

the data dependency relation across multiple periods with other tasks (inter-period depen-

dency), and the node weight represents the number of periods involved. We will discuss this

in detail in Section 3.2.4.

3.2.3 Static Schedule

A static schedule of a DAG is a repeated pattern for the execution of one periodof the

corresponding periodic dependent tasks. Static scheduling approaches offer a set of benefits

to embedded applications including the predictability of worst case schedules and the ability

to use complex heuristics [112]. In our work, a static schedule contains both control step

assignment (when to start) and processor-core allocation (where to be executed). A schedule

must obey all data dependency relations of a DAG. Assuming that I is the period of the

given computation tasks and intercore communication tasks, I implies the deadline of the

schedule, and the schedule must be finished inI. Given a static schedule, we useTi,ℓ and

CT i
j,ℓ (ℓ ≥ 1) to represent computation taskTi and communication taskCT i

j in periodℓ,

respectively. As a schedule is repeatedly executed in each period, Ti andTi,ℓ (CT i
j and

CT i
j,ℓ) are used interchangeably if it is clear from the context.

Given a schedule, letri be the release time (schedule step) of taskTi in the first period

and letI be the period. Then the release time ofTi in theℓth period isri,ℓ = ri+(ℓ−1)I, ℓ ≥

1. Similarly, for a communication taskCT i
j between tasksTi andTj , letrij be the release time

of CT i
j in the first period, then its release time in theℓth period isrij,ℓ = rij+(ℓ−1)I, ℓ ≥ 1. ei

is used to represent the execution time of computation taskTi, andeij is used to represent the

execution time of communication taskCT i
j . e

i
j is determined by the assignment of tasksTi

andTj : if Ti andTj are assigned to the same processor core, it is an intracore communication

60

2nd period
(a)

0 5

CT3
1

T1

1 2 3 4 106 7 8 9 1511 12 13 14 16 17 18

P1 T2

P2 T3

P3 T4

BUS CT4
1

CT5
3

CT5
4

T5

...

CT3
1

T1 T2

T3

T4

CT4
1

CT5
3

CT5
4

T5

1st period

T1

T4

T3

T2

T5

(b)

...

Figure 3.2. A DAG and Its Schedule.

and we assumeeij is equal to zero; otherwise, it is an intercore communication andeij is equal

to c(Ti, Tj)/B, in whichc(Ti, Tj) is the data volume transferred andB is the bus bandwidth.

An example is given in Figure 3.2. In Figure 3.2(a), an exemplary DAG is given to

model periodic dependent tasks. In the DAG, there are five tasks and the execution time of

each task is 2 time units. There are six edges. For each edge, there is one communication task

associated. The execution time of an intercore communication task is 1 time unit and that of

an intracore communication task is zero. Let the periodI be 9 time units. In Figure 3.2(b),

a schedule for the DAG is given. The schedule is repeatedly executed in each period and

the schedule length of one period is 9 time units. From this example, we can see that the

intercore communication introduces big overhead (3 time units) such that the schedule length

is increased and a big period has to be used correspondingly.

3.2.4 Communication/Computation Overlapping and Retiming

Figure 3.2 shows that if intercore communication overhead can be removed, then the sched-

ule length in each period can be reduced. We found this can be achieved by regrouping tasks

from different periods with joint computation and communication task rescheduling. This

is illustrated in Figure 3.3. Given the initial schedule shown in Figure 3.2(b), as each task

is periodic, in Figure 3.3(a), we reschedule periodic taskT1 to make it execute one period

ahead ofT3 andT4. The newly-added period is calledprologue. As a result, communica-

tion tasksCT 1
3 andCT 1

4 that transfer data from taskT1 to T3 andT4, respectively, can be

61

35 36

CT3
1

T1 T2

T3

T4

CT4
1

CT5
3

CT5
4

T5

CT3
1

T1 T2

T3

T4

CT4
1

CT5
3

CT5
4

T5

CT3
1

T1P1

P2

P3

BUS CT4
1

prologue

...

...

(a)

CT3
1

T1 T2

T3

T4

CT4
1

CT5
3

CT5
4

T5

T1

T4

T3

T2

T5

(b)

R(T1)=1

1st period

2nd period

3rd period

0 51 2 3 4 106 7 8 9 1511 12 13 14 2016 17 18 19 21 22 23 24 25 3026 27 28 29 31 32 33 34
R(T2)=0

R(T3)=0 R(T5)=0

R(T4)=0

Figure 3.3. Given the initial DAG and schedule in Figure 3.2,(a) a new schedule in which the

intercore communication overhead caused byCT 1
3 andCT 1

4 is removed by overlapping com-

munication and computation, and (b) the corresponding DAG with the node weightR(T1) of

computation taskT1 changed to 1.

18 36

CT3
1

T1P1

P2

P3

BUS CT4
1

CT3
1

T1 T2

T3

T4

CT4
1

CT5
3

CT5
4

CT3
1

T1 T2

T3

T4

CT4
1

CT5
3

CT5
4

T5

prologue

 ...

...

(b)(a)

CT3
1

T1

T3

T4

CT4
1

CT5
3

CT5
4

T5

1st period

2nd period

0 51 2 3 4 106 7 8 9 1511 12 13 14 2016 17 19 21 22 23 24 ...25 3026 27 28 29 31 32 33 34 35

T1

T4

T3

T2

T5

R(T1)=2

R(T2)=0

R(T3)=1 R(T5)=0

R(T4)=1

Figure 3.4. Given the initial DAG and schedule in Figure 3.2,(a) a new schedule in which

the intercore communication overhead is totally removed, and (b) the corresponding DAG.

rescheduled to be executed one period ahead ofT4 andT5 (in the prologue) as well. In such

a way, the data required byT3 andT4 from T1 are always available in a period; thus, the

intercore communication overhead (caused by the communication tasksCT 1
3 andCT 1

4) can

be removed inside the schedule, and the schedule length is reduced from 9 to 8.

By adding a prologue and rescheduling some tasks into it, we can effectively remove

intercore communication overhead in a schedule by overlapping the execution of communi-

cation and computation tasks as shown in Figure 3.3. In this chapter, we apply retiming [61]

to describe how many periods of a task node are rescheduled into the prologue and how

this influences data dependency relations in a given DAG. Theretiming technique is origi-

nally proposed to minimize the cycle period of a synchronouscircuit by evenly distributing

registers [61]. We extend it and it is defined as follows:

Definition 3.2.1. (Retiming) Given a DAGG= (V,E, CT,R), retimingR of G is a func-

62

tion that maps each nodeTi, Ti ∈ V , to an integerR(Ti). R(Ti) is the retiming value ofTi.

R(Ti) = 0 initially; by retimingTi once, if it is legal,R(Ti) = R(Ti) + 1, and one period of

taskTi is rescheduled into the prologue.

As defined above, we use retiming to model task nodes that are rescheduled into the

prologue for overlapping communication and computation. Basically,R(Ti) represents how

many periods of taskTi are rescheduled into the prologue, and its initial value is zero. Simi-

larly, for communication taskCT i
j , its retiming valueR(CT i

j) representshow many periods

of communication taskCT i
j are rescheduled into the prologue. Let the prologue lengthbe

the number of periods in the prologue, and the prologue length can be calculated byRmax×I

whereRmax is the maximum retiming value among all tasks (Rmax = {max{R(Ti)}, Ti ∈

V }) andI is the period. For example, in Figure 3.3(a), one period of taskT1 is rescheduled

into the prologue; so its retiming valueR(T1) becomes 1, and the retiming values of other

nodes are zero. The prologue length is one.

Based on the data dependency relations in a DAG and its retiming function, we can

construct the retimed graph. A retimed graph is used to represent new data dependencies

generated by rescheduling task nodes into the prologue. In aretimed graph, a node weight

R(Ti) of a task nodeTi may be greater than zero as inter-period data dependencies may be

introduced by the rescheduling. In general, given a retimedgraphGR, for an edge(Ti, Tj)

of GR, if R(Ti) − R(Tj) > 0, it represents that the data generated byTi atR(Ti) − R(Tj)

period(s) before are needed in order to executeTj . For example, in Figure 3.3(b), for an

edge(T1, T3), R(T1)−R(T3) = 1. It represents thatT3 is dependent onT1 one period before

as the data generated byT1 one period before are needed byT3. This can be seen from

Figure 3.3(a) asT1 is rescheduled one period ahead ofT3 for overlapping communication

and computation.

A retiming function must be legal in order to preserve the semantic correctness.For

each edge(Ti, Tj) ∈ E, a retiming function R of G is legal if the relative retiming value

R(Ti)−R(Tj) is non-negative.If R(Ti)−R(Tj) is negative, it implies that the data generated

63

by Ti from a period in the future are needed in order to executeTj in the current period. This

cannot occur in a correct program. IfGR is a retimed graph ofG derived by a legal retiming

functionR, thenGR is functionally equivalent toG [61].

3.2.5 Problem Analysis

Given a schedule, our objective is to remove intercore communication overhead and at the

same time the schedule length is minimized with the minimum prologue length. By minimiz-

ing schedule length, the system performance can be improvedby adopting a smaller period

or exploring the slacks generated for energy reduction withDVS. On the other hand, a longer

prologue not only introduces more delays in the beginning but also requires more data buffers

to hold intercore communication data. So we want to minimizethe prologue length as well.

Figure 3.4(a) shows the objective schedule that we want to achieve for the initial DAG and

schedule in Figure 3.2. From this example, we can see that we can easily obtain the objective

schedule of all computation tasks of one period by removing all the intercore communication

overhead and rescheduling each computation task as early aspossible. However, it is not triv-

ial to determine how many periods of one task should be rescheduled into the prologue and

how to reschedule communication tasks such that the schedule length is minimized with the

minimum prologue length. The problem is difficult as we cannot achieve this by reschedul-

ing task nodes into the prologue freely with the constraint of the minimum prologue length.

Another difficulty is that removing intercore communication overhead itself cannot directly

reduce the schedule length. We still need to reschedule communication tasks such that they

can finish before the schedule length in each period. For example, in Figure 3.4(a), in each

period, communication tasksCT 3
5 andCT 4

5 are scheduled to start at 4 and 5, respectively,

while they start at 5 and 6, respectively, in the initial schedule in Figure 3.2(b).

Let the objective task scheduleObj Sch be the schedule that we want to achieve.

The objective task schedule includes the objective computation task scheduleObj Comp Sch

and the objective communication task scheduleObj Commu Sch. Let the objective com-

putation task scheduleObj Comp Sch be the objective static schedule of all computa-

64

tion tasks, which totally removes the intercore communication overhead with the minimum

schedule lengthSlength. Given a DAG and an initial scheduleInit Sch, an objective com-

putation task schedule can be generated by rescheduling each computation task as early

as possible from initial scheduleInit Sch. The objective communication task schedule

Obj Commu Sch is the objective static schedule of all intercore communication tasks with

schedule lengthSlength.

Then the problem of removing intercore communication overhead is transformed to

the problem of minimizing the prologue length of the objective computation task schedule

with the minimum schedule length. Specifically, given the objective computation task sched-

ule, we want to get, how many periods of each computation taskTi are rescheduled into the

prologue (the retiming valueR(Ti)); how many periods of each communication taskCT i
j are

rescheduled into the prologue (the retiming valuesR(CT i
j)); and the release timerij of each

communication taskCT i
j in the objective communication task scheduleObj Commu Sch.

3.2.6 Problem Statement

Based on the above problem analysis, we further clarify the problem as follows:

Given a DAGG= (V,E, CT,R), an MPSoC platform withM processor cores, an

initial scheduleInit Sch and an objective computation task scheduleObj Comp Sch with

schedule lengthSlength, we will study the following two problems:

• What is the upper bound of the prologue length of the objective computation task

schedule to guarantee all intercore communication tasks are schedulable in each pe-

riod with the schedule lengthSlength?

• How to perform joint computation and communication task scheduling such that an

objective task scheduleObj Sch in which intercore communication overhead is totally

removed can be generated with the minimum prologue length?

65

3.3 Schedulability Analysis

In this section, we perform schedulability analysis for jointly optimizing computation and

communication task scheduling for streaming applicationson MPSoCs. We first analyze the

schedulability of each communication task, and theoretically get the minimum and maximum

relative retiming values of each pair of computation tasks. Then, based on this analysis

and data dependency relations in the DAG, we iteratively getthe minimum and maximum

retiming values of each task, and get the upper bound ofthe prologue lengthto guarantee

computation tasks can totally overlap with communication tasks. The bounds on the relative

retiming value of each pair of computation tasks, the boundson the retiming value of each

task, and the bounds on the prologue length will become the constraints of our integer linear

programming formulation in Section 3.4. These constraintssignificantly reduce the search

space and greatly improve the efficiency for finding the optimal solution.

3.3.1 Bounds of Relative Retiming Values

In this section, we analyze the bounds of the relative retiming value. The relative retiming

value of each pair of computation tasks represents the number of periods involved to guar-

antee the schedulability of the associated intercore communication task. Specifically, for a

pair of computation tasksTi andTj , (Ti, Tj) ∈ E, we useR̂min(Ti, Tj) andR̂max(Ti, Tj) to

denote that, relative to the retimed taskTj, the minimum and maximum extra numbers of

times to perform retiming for taskTi to ensure the schedulability of the associated intercore

communication taskCT i
j .

Based on the objective computation task schedule generatedfrom the initial schedule,

we propose the following theorem to analyze the schedulability of each communication task

and get the minimum and maximum relative retiming values of each pair of computation

tasks. The derived relative retiming values can be used to get the upper bound of the prologue

length.

Theorem 3.3.1.For a directed edge(Ti, Tj)∈E (Ti, Tj∈V), computation tasksTi andTj

66

associate with a communication taskCT i
j in theℓth period of the objective computation task

schedule. After retiming taskTi for R(Ti) times and retiming taskTj for R(Tj) times, as

long as the retimed taskTi,ℓ−R(Ti) is retimed at most two more times relative to the retimed

taskTj,ℓ−R(Tj), the associated intercore communication taskCT i
j is always schedulable on

the bus during the time span between the finishing time of the retimed taskTi,ℓ−R(Ti) and the

release time of the retimed taskTj,ℓ−R(Tj).

Proof. After retiming taskTi for two times relative to the retimed taskTj,ℓ−R(Tj), taskTi

will be scheduled in periodℓ − R(Tj) − 2, which is two periods ahead of the retimed task

Tj,ℓ−R(Tj). Then the time span between the finishing time of the retimed taskTi,ℓ−R(Ti) and

the release time of the retimed taskTj,ℓ−R(Tj) is always greater than or equal to periodI. As

all intercore communication tasks periodically execute ineach period, in one period of time,

we can find one and exactly one intercore communication taskCT i
j that has data dependency

with taskTi and taskTj . Let the intercore communication taskCT i
j in periodℓ−R(Tj)− 1

be the retimed communication task that associates with tasks Ti,ℓ−R(Ti) andTj,ℓ−R(Tj). Its

release time is no earlier than the finishing time ofTi,ℓ−R(Ti), and its finishing time is no

later than the release time ofTj,ℓ−R(Tj). Therefore, the associated intercore communication

taskCT i
j is always schedulable on the bus during that time span. An example is given in

Figure 3.5.

Theorem 3.3.1 gives an upper bound of the maximum relative retiming value of each

pair of computation tasks,̂Rmax(Ti, Tj) ≤ 2, (Ti, Tj)∈E (Ti, Tj∈V). In order to preserve

legal retiming,R(Ti)− R(Tj) ≥ 0. Then,0 ≤ R̂min(Ti, Tj) ≤ R̂max(Ti, Tj) ≤ 2.

For a communication taskCT i
j associated with tasksTi andTj , if tasksTi andTj

are assigned to the same processor core, it is an intracore communication and the execu-

tion time of the intracore communication task is equal to zero. Therefore,R̂min(Ti, Tj) =

67

period -R(Tj)-2

Ti

CTj
i

P1

P2

BUS

Tj

release time

period -R(Tj)-1

Ti

CTj
i

Tj

period -R(Tj)

Ti

CTj
i

Tj

period

Ti

CTj
i

Tj

retiming R(Ti) times

...

retiming
R(Tj) times

...

release time

release timerelease time

release time release time

 I

Figure 3.5. An Exemplary Task Schedule of Theorem 3.3.1.

R̂max(Ti, Tj) = 0. For tasksTi andTj with intercore communication taskCT i
j , (Ti, Tj) ∈

E (Ti, Tj∈V), by comparing the earliest finishing timeri + ei + eij of CT i
j with the release

timerj of taskTj and the schedule lengthSlength in the objective computation task schedule,

we can further narrow down the range of the minimum and maximum relative retiming val-

ues of each pair of tasks. Based on one period of the objectivecomputation task schedule,

we propose the following properties to further analyze the minimum and maximum relative

retiming values of each pair of tasksTi andTj , (Ti, Tj)∈E (Ti, Tj∈V).

Property 3.3.1. For computation tasksTi andTj , (Ti, Tj)∈E (Ti, Tj∈V), in one period of

the objective computation task schedule, ifri + ei + eij≤ rj, then by retiming taskTi for at

most once relative to the retimed taskTj , the associated intercore communication taskCT i
j

is schedulable on the bus. That is,R̂min(Ti, Tj) = 0, R̂max(Ti, Tj) = 1.

Proof. After retiming taskTj for R(Tj) times, taskTj is rescheduled in the periodℓ−R(Tj).

In periodℓ−R(Tj), the finishing time of the retimed taskTi is ri + ei− (ℓ−R(Tj)) · I, and

the release time of the retimed taskTj is rj − (ℓ − R(Tj)) · I. According to the condition,

in periodℓ−R(Tj), the time span between the finishing time of taskTi and the release time

of taskTj is greater than or equal to the execution timeeij of communication taskCT i
j . An

example is shown in Figure 3.6.

68

period -R(Tj)-1

Ti

CTj
i

P1

P2

BUS

Tj

release time

... ...

release time

release time

 I

period -R(Tj)

Ti

CTj
i

Tj

period

Ti

CTj
i

Tj

release time

^ Rmin(Ti,Tj)=0^ Rmax(Ti,Tj)=1

release time

schedule lengthschedule length schedule length

retiming R(Tj) times

23

Figure 3.6. An Exemplary Task Schedule of Property 3.3.1.

As each communication task is periodically executed in eachperiod, if communica-

tion taskCT i
j is scheduled in this time span (time span1 in Figure 3.6), there is no need

to perform extra retiming for taskTi relative to taskTj . Therefore,R̂min(Ti, Tj) = 0. If

communication taskCT i
j is not scheduled in this time span, one more extra retiming have to

be performed for taskTi relative to taskTj. Then the time span between retimed tasksTi and

Tj is greater than periodI. Since both time span2 and time span3 are greater thaneij; and

the sum of time span2 and time span3 are greater than or equal toI + eij , either scheduling

communication taskCT i
j in time span2 or in time span3 can guarantee that its release time

is no earlier than the finishing time of the retimed taskTi in periodℓ − R(Tj) − 1, and its

finishing time is no later than the release time ofTj,ℓ−R(Tj). Therefore, by retiming taskTi

for at most once relative to the retiming of taskTj, the associated intercore communication

taskCT i
j is schedulable on the bus.

Property 3.3.2. For computation tasksTi andTj , (Ti, Tj)∈E (Ti, Tj∈V), in one period of

the objective computation task schedule with schedule length Slength, if rj < ri + ei + eij≤

69

Slength or eij ≤ rj < ri+ei+eij, then by retiming taskTi for once or at most twice relative to

that of taskTj , the associated intercore communication taskCT i
j is schedulable on the bus.

That is,R̂min(Ti, Tj) = 1, R̂max(Ti, Tj) = 2.

Proof. According to the conditionrj < ri+ei+eij , in periodℓ−R(Tj), the time span between

the finishing time of taskTi and the release time of taskTj is less than the execution time

of communication taskCT i
j . Then at least one more extra retiming have to be performed

for taskTi relative to taskTj . An example is shown in Figure 3.7. After retimingTi one

more period ahead ofTj, either time span4 in periodℓ−R(Tj)− 1 or time span5 in period

ℓ − R(Tj) is greater thaneij . If communication taskCT i
j is scheduled in time span4 or

scheduled in time span5, there is no need to perform extra retiming for taskTi relative to

taskTj . Therefore,R̂min(Ti, Tj) = 1. If communication taskCT i
j is neither scheduled in

time span4 nor scheduled in time span5, one more extra retiming for taskTi is needed.

Then taskTi is scheduled two periods ahead of the retimed taskTj,ℓ−R(Tj). According to

Theorem 3.3.1, the upper bound of the relative retiming value of each pair of computation

tasksTi andTj is 2. Therefore, by retiming taskTi for once or at most twice relative to the

retiming of taskTj , the associated intercore communication taskCT i
j is schedulable on the

bus.

Property 3.3.3. For computation tasksTi andTj , (Ti, Tj)∈E (Ti, Tj∈V), in one period of

the objective computation task schedule with schedule lengthSlength, if ri + ei + eij> Slength

andrj < eij , then by retiming taskTi for exactly twice relative to that of taskTj , the associ-

ated intercore communication taskCT i
j is schedulable on the bus. That is,R̂min(Ti, Tj) =

R̂max(Ti, Tj) = 2.

70

period -R(Tj)-2

Ti

CTj
i

P1

P2

BUS

release time

...

 I

^ Rmax(Ti,Tj)=2

schedule length

54

Tj

period -R(Tj)-1

Ti

CTj
i

^ Rmin(Ti,Tj)=1

schedule length

Tj

release time

period -R(Tj)

Ti

CTj
i schedule length

Tj

release time

period

Ti

CTj
i schedule length

Tj

release time

retiming
R(Tj) times release timerelease time

...

Figure 3.7. An Exemplary Task Schedule of Property 3.3.2.

Proof. According to the conditionri + ei + eij> Slength andrj < eij, in the objective com-

putation task schedule, the time span between the finishing time of taskTi and the release

time of taskTj is less than the execution timeeij of communication taskCT i
j . Therefore,

at least one more extra retiming have to be performed for taskTi relative to taskTj . An

example is shown in Figure 3.8. After retimingTi one more period ahead ofTj , both time

span6 and time span7 are less thaneij . TaskTi has to perform retiming twice to guarantee

the schedulability of communication taskCT i
j . Therefore,R̂min(Ti, Tj) = 2. According to

Theorem 3.3.1, the upper bound of the relative retiming value of each pair of computation

tasksTi andTj is 2. Therefore, by retiming taskTi for exactly twice relative to the retiming

of taskTj , the associated intercore communication taskCT i
j is schedulable on the bus.

Property 3.3.4. If task Ti and taskTj are assigned to the same processor core, it is an

intracore communication. Then,̂Rmin(Ti, Tj) = R̂max(Ti, Tj) = 0.

The above four properties classify the pair of the minimum and maximum relative

retiming values (̂Rmin(Ti, Tj), R̂max(Ti, Tj)) of computation tasks(Ti, Tj)∈E (Ti, Tj∈V)

into four cases: [0, 0], [0, 1], [1, 2], and [2, 2]. For computation tasksTi andTj associated

71

period -R(Tj)-2

Ti

CTj
i

P1

P2

BUS

release time

...

 I

^ Rmax(Ti,Tj)=

schedule length

6

Tj

period -R(Tj)-1

Ti

CTj
i

^ Rmin(Ti,Tj)=2

schedule length

Tj

release time

period -R(Tj)

Ti

CTj
i schedule length

Tj

release time

period

Ti

CTj
i schedule length

Tj

release time

retiming
R(Tj) times release timerelease time

...

7

Figure 3.8. An Exemplary Task Schedule of Property 3.3.3.

with communication taskCT i
j , by checking the above four properties, we can get the mini-

mum and maximum relative retiming values of each pair of computation tasks. The derived

relative retiming values can be used to obtain the upper bound of the prologue length.

3.3.2 Bounds of the Prologue Length

Based on the definition of prologue length, to minimize the prologue length is equivalent

to the problem of reducing the maximum retiming value of all task nodes in the DAG. We

observe that the retiming value of each task node also holds certain bounds. In this section,

using the minimum and maximum relative retiming values (R̂min(Ti, Tj), R̂max(Ti, Tj)) of

each pair of computation tasks(Ti, Tj)∈E (Ti, Tj∈V) derived from Section 3.3.1 as the

input, by checking the data dependency in the DAG, we proposeAlgorithm 3.3.1 to itera-

tively get the pair ofthe minimum and maximum retiming values (Rmin(Ti), Rmax(Ti))

of each taskTi, and getthe upper bound of the prologue lengthsupPlength. The derived

upper bound of the prologue length holds the constraints of the integer linear programming

formulation.

Algorithm 3.3.1 presents a bottom-up approach to obtain thepair of the minimum and

maximum retiming values of each taskTi. Starting from tasks that do not have any successor

72

Algorithm 3.3.1 Get the Upper Bound of the Prologue Length for the Objective Computation

Task Schedule
Input: A DAG G= (V,E,CT,R), the minimum and maximum relative retiming

values (̂Rmin(Ti, Tj), R̂max(Ti, Tj)) of each pair of computation tasks(Ti, Tj),

(Ti, Tj)∈E (Ti, Tj∈V).

Output: The minimum and maximum retiming values (Rmin(Ti), Rmax(Ti)) of each taskTi, the

upper bound of the maximum retiming value of all task nodessupR(T), the upper bound of the

prologue lengthsupPlength.

1: for eachTi ∈ V do

2: Rmin(Ti)← 0, Rmax(Ti)← 0

3: end for

4: if Ti ∈ V has successor task(s)then

5: for each successor taskTj of taskTi do

6: if R̂min(Ti, Tj) + Rmin(Tj) > Rmin(Ti) then

7: Rmin(Ti)← R̂min(Ti, Tj)+Rmin(Tj)

8: end if

9: if R̂max(Ti, Tj) + Rmax(Tj) > Rmax(Ti) then

10: Rmax(Ti)← R̂max(Ti, Tj)+Rmax(Tj)

11: end if

12: end for

13: end if

14: supR(T)← {max{Rmax(Ti)}, Ti ∈ V }

15: supPlength← supR(T) ×I

tasks, Algorithm 3.3.1 iteratively checks the data dependency relations in the DAG and gets

the minimum and maximum retiming values of each predecessortask. For a taskTi that

does not have any successor tasks, both its minimum and maximum retiming values are

equal to zero,Rmin(Ti) = Rmax(Ti) = 0. For a taskTi with at least one successor tasks, this

corresponds to at least one edge pointing from taskTi to other task nodes in the task graph.

For each successor taskTj of taskTi, (Ti, Tj)∈E (Ti, Tj∈V), the value ofR̂min(Ti, Tj)

+ Rmin(Tj) can be obtained. Among these values, the maximum value ofR̂min(Ti, Tj) +

Rmin(Tj) will be assigned toRmin(Ti). Similarly, the maximum of̂Rmax(Ti, Tj) + Rmax(Tj)

73

will be assigned toRmax(Ti). After got the upper bound of the maximum retiming value of

all tasks,supR(T) ={max{Rmax(Ti)}, Ti ∈ V }, we can derive the upper bound of the

prologue length,supPlength = supR(T) ×I.

We use a run time example in Figure 3.9 to illustrate the proposed approach. Given

a DAG in Figure 3.9(a) and the initial task schedule in Figure3.9(b), the execution time of

each computation task and each communication task are derived, shown in Figure 3.9(c).

By totally removing the intercore communication overhead and getting the earlier release

time of each computation task, an objective computation schedule of one period is generated

in Figure 3.9(d). In Figure 3.9(e), each pair of the numbers represents the minimum and

maximum relative retiming values of each pair of tasks, respectively, which can be obtained

by checking the four properties in Section 3.3.1. For example, taskTA and taskTC associate

with intercore communication taskCTA
C . From Figure 3.9(c), we can get the execution time

of taskTA, eA = 2, and get the execution time of communication taskCTA
C , eAC = 1. In

the objective computation task schedule in Figure 3.9(d) with schedule lengthSlength = 13,

we can obtain the finishing time of taskTA, rA + eA = 2, and the release time of taskTC ,

rC = 2. As rC < rA + eA + eAC < Slength, it satisfies the condition of Property 3.3.2.

Therefore,R̂min(TA, TC) = 1, R̂max(TA, TC) = 2.

To get the pair of the minimum and maximum retiming values of each task, we it-

eratively check the data dependency relations in the DAG using a breadth-first manner. In

Figure 3.9(f), we put each pair of the minimum and maximum retiming values of each task

above each task node. For a task that does not have any successor tasks, (e.g., taskTI),

both its minimum and maximum retiming values are equal to zero. For a task with at least

one successor tasks (e.g., taskTA), the maximum value of̂Rmin(Ti, Tj) + Rmin(Tj) will be

assigned toRmin(Ti). For example, taskTA has two successor tasks,TB andTC . The max-

imum value between̂Rmin(TA, TB) + Rmin(TB) andR̂min(TA, TC) + Rmin(TC) is 2. Thus,

Rmin(TA) is 2. Similarly, the maximum of̂Rmax(Ti, Tj) + Rmax(Tj) will be assigned to

Rmax(Ti). Therefore,R̂max(TA, TB) + Rmax(TB) = 4 will be assigned toRmax(TA). Then

the minimum and maximum retiming values of taskTA are 2 and 4, respectively. Follow the

data dependency in the DAG (from taskTI to taskTA), we can iteratively get the minimum

74

(Rmin (Ti), Rmax (Ti))

= (Rmin (TA), Rmax (TA))

= (2 , 4)

(2,4)

(c) (d)

eA = 2 eB = 2 eC = 2

eD = 5 eE = 4 eF = 5

eG = 3 eH = 3 eI = 1

eB
A = 0 eC

A = 1 eD
B = 0

eE
B

= 2 eE
C

= 0 eF
C

= 1

eG
D

= 2 eG
E

= 0 eH
E

= 1

eH
F

= 0 eI
G

= 2 eI
H

= 0

B

D

A E

G

C H

I

F

(a)

(f)

25 30 35

0 5 10 15 20

A B

C

D

GE

F H I
A
C

B
E

C
F

D
G

E
H

G
I

40

P1

P2

P3

BUS

...

1st period 2nd period

(b)

0 5 10 15 20

P1

P2

P3

...

B

D

A E

G

C H

I

F

2

1

1

0

0

0

2

1

(h)

P1

P2

P3

BUS

(g)

B

D

A E

G

C H

I

F

(2,4)

(1,2)

prologue

1st period 2nd period

...

(2,4)

(1,2)

(1,2)

(0,0)

(0,0)

(0,0)

2
R (Ti)

= R (TA)

= 2

(e)

^ ^(Rmin(TA,TB) , Rmax(TA,TB))=(0,0)

^ ^(Rmin(TA,TC) , Rmax(TA,TC))=(1,2)

^ ^(Rmin(TB,TD) , Rmax(TB,TD))=(0,0)

^ ^(Rmin(TB,TE) , Rmax(TB,TE))=(1,2)

^ ^(Rmin(TC,TE) , Rmax(TC,TE))=(0,0)

^ ^(Rmin(TC,TF) , Rmax(TC,TF))=(1,2)

^ ^(Rmin(TD,TG) , Rmax(TD,TG))=(1,2)

^ ^(Rmin(TE,TG) , Rmax(TE,TG))=(0,0)

^ ^(Rmin(TE,TH) , Rmax(TE,TH))=(0,1)

^ ^(Rmin(TF,TH) , Rmax(TF,TH))=(0,0)

^ ^(Rmin(TG,TI) , Rmax(TG,TI))=(1,2)

^ ^(Rmin(TH,TI) , Rmax(TH,TI))=(0,0)

25 30 350 5 10 15 20 40 45 50 55 60 65 70

A B

C

D

GE

F H I
A
C

B
E

C
F

D
G

E
H

G
I

A B

C

D

GE

F H I

A B D A B

C

D

G

A B D

GE

F H I

A B

C

D

GE

F H I

C E

A
C

B
E

D
G

A
C

B
E

C
F

D
G

E
H

G
I

A
C

B
E

C
F

D
G

E
H

G
I

R(TA) = 2 R(TB) = 2 R(TC) = 1

R(TD) = 2 R(TE) = 1 R(TF) = 0

R(TG) = 1 R(TH) = 0 R(TI) = 0

Figure 3.9. A Run Time Example of the Proposed Approach.

75

and maximum retiming values of each task. Among them, the maximum retiming value of

all taskssupR(T) is 4, which is equal to the maximum retiming value of taskTA. Therefore,

the upper bound of the prologue lengthsupPlength= supR(T) ×I, is 4 periods of time.

3.4 Optimal Joint Computation and Communication Task Scheduling

In this section, we first propose our approach that jointly optimizes computation and commu-

nication task scheduling. An ILP model is presented to solvethe intercore communication

overhead minimization problem and obtain an optimal task schedule with the minimum pro-

logue length. Then, as an extension, in Section 3.4.2, we combine our approach with DVS

techniques to save energy consumption.

3.4.1 Joint Computation and Communication Task Scheduling(JCCTS)

Our joint computation and communication task scheduling approach is shown in Al-

gorithm 3.4.1. Given a DAG and an initial task scheduleInit Sch, an objective computation

task schedule of one period can be generated, in which each computation task is rescheduled

as early as possible and intercore communication overhead is totally removed. Then the re-

lease time and the execution time of each computation task inone period of the objective

computation task schedule can be obtained. Based on the objective computation task sched-

ule, we perform schedulability analysis in Section 3.3.1 and get the bounds of the relative

retiming value of each pair of computation tasks. Then we useAlgorithm 3.3.1 to get the

bounds on the retiming value of each task and the bouns on the prologue length. The derived

constraints are integrated into our integer linear programming formulation.

In the ILP model, the objective function seeks to minimize the maximum retiming

value of all task nodes. In order to generate the optimal solution, the ILP model considers

the following constraints:

(1) System Architecture. Constraint 1 represents that, for a shared bus, when a communica-

tion taskCT i
j has been scheduled to start execution at timerij , no other communication tasks

76

Algorithm 3.4.1 Joint Computation and Communication Task Scheduling (JCCTS)
Input: A DAG G= (V,E,CT,R) and an initial task scheduleInit Sch.

Output: An optimal objective task scheduleObj Sch.

1: Perform schedulability analysis is Section 3.3 and obtain the constraints of the ILP formulation.

2: Add the following constraints into the ILP formulation:

∀CT i
j , CT i′

j′ ∈ CT, rij ≤ ri
′

j′ :

ri
′

j′ − rij ≥ eij (1)

∀CT i
j ∈ CT, (Ti, Tj) ∈ E, (Ti, Tj ∈ V) :

rij ≥ 0 (2)

rij ≤ I − eij (3)

rij +R(Ti) · I −R(CT i
j) · I ≥ ri + ei (4)

rij +R(Tj) · I −R(CT i
j) · I ≤ rj − eij (5)

R(CT i
j)−R(Ti) ≤ 0 (6)

R(CT i
j)−R(Tj) ≥ 0 (7)

R(Ti)−R(Tj) ≥ R̂min(Ti, Tj) (8)

R(Ti) ≥ Rmin(Ti) (9)

R(Ti) ≤ Rmax(Ti) (10)

R(Ti)−Rmax ≤ 0 (11)

Rmax ≤ supR(T) (12)

3: Set the objective function: MinimizeRmax.

4: Find the feasible release time of each communication task, the retiming value of each computa-

tion task, and the retiming value of each communication taskthat satisfy the ILP formulation.

5: Generate objective task scheduleObj Sch based on the release time, the execution time, and the

retiming value of each computation task and each communication task.

77

CT i′

j′ can start execution until the communication taskCT i
j has completed its execution.

(2) Characteristics of Periodic Dependent Tasks.Considering theℓth period of the objective

computation task schedule,ℓ ≥ 1, Constraint 2 and Constraint 3 illustrate that, each com-

munication taskCT i
j,ℓ should be schedulable in the time span [(ℓ − 1) · I, ℓI]. That is, the

release timerij of intercore communication taskCT i
j should be no earlier than the start of

the period, and the finishing timerij + eij of communication taskCT i
j should be no later than

the end of the period.
{

(ℓ− 1) · I ≤ rij + (ℓ− 1) · I
rij + (ℓ− 1) · I ≤ ℓ · I − eij

By simplifying the above inequalities and moving variablesto the left-hand side of the in-

equalities, we can obtain the following constraints.
{

rij ≥ 0
rij ≤ I − eij

Constraint 4 and Constraint 5 satisfy the constraints of data dependency to ensure that in-

tercore communication taskCT i
j is schedulable during the time span between the finishing

time of retimed taskTi,ℓ−R(Ti) and the release time of retimed taskTj,ℓ−R(Tj).
{

ri + ei − R(Ti) · I ≤ rij − R(CT i
j) · I

rij + eij − R(CT i
j) · I ≤ rj −R(Tj) · I

We can simplify the above expressions and move variables to the left-hand side of the in-

equalities. Then we get the formulations of Constraint 4 andConstraint 5.
{

rij +R(Ti) · I − R(CT i
j) · I ≥ ri + ei

rij +R(Tj) · I −R(CT i
j) · I ≤ rj − eij

(3) Legal Retiming. Constraint 6 and Constraint 7 preserve the semantic correctness to keep

the retiming function legal. For computation tasksTi andTj , (Ti, Tj)∈E (Ti, Tj∈V), the

retiming value of taskTj is always less than or equal to the retiming value of taskTi.

R(Tj) ≤ R(Ti)

Similarly, the retiming value of the associated intercore communication taskCT i
j is no more

than the retiming value of taskTi, and it is no less than the retiming value of taskTj .

R(Tj) ≤ R(CT i
j) ≤ R(Ti)

78

Therefore, we can obtain the formulation of Constraint 6 andConstraint 7.

{

R(CT i
j)− R(Ti) ≤ 0

R(CT i
j)− R(Tj) ≥ 0

(4) The Bound of the Relative Retiming Value. In Section 3.3.1, we proposed four properties

to analyze the relative retiming value of each pair of computation tasks. By checking the

conditions of these four properties, the bound of the relative retiming value can be obtained.

Constraint 8 gives the lower bound of the relative retiming value of each pair of tasks. To

guarantee the schedulability of the intercore communication taskCT i
j , the retimed compu-

tation taskTi should be at least̂Rmin(Ti, Tj) periods ahead of the retimed computation task

Tj.

R(Ti)− R(Tj) ≥ R̂min(Ti, Tj)

(5) The Bound of the Prologue Length. In Section 3.3.2, we proposed Algorithm 3.3.1 to

get the bounds on the retiming value of each task and the bounds on the prologue length.

For each taskTi, its minimum retiming valueRmin(Ti) and its maximum retiming value

Rmax(Ti) can be obtained. Then the retiming value of each taskTi, R(Ti), is always greater

than or equal to its minimum retiming valueRmin(Ti), and it is always less than or equal to its

maximum retiming valueRmax(Ti). Therefore,R(Ti) is in the range[Rmin(Ti), Rmax(Ti)].

Rmin(Ti) ≤ R(Ti) ≤ Rmax(Ti)

Then we get the formulations of Constraint 9 and Constraint 10.

{

R(Ti) ≥ Rmin(Ti)
R(Ti) ≤ Rmax(Ti)

Constraint 11 finds the maximum retiming valueRmax ={max{R(Ti)}, Ti ∈ V } among all

computation tasks.

R(Ti)− Rmax ≤ 0

Constraint 12 restricts that the maximum retiming valueRmax should be less than or equal

to the upper bound of the retiming valuesupR(T), which is the number of periods of time

79

for the upper bound of the prologue lengthsupPlength. Then, we get the formulation of

Constraint 12.

Rmax ≤ supR(T)

The objective function of the ILP formulation tries to minimize the maximum retiming value

Rmax, which is the number of periods of tasks in the prologue. Using this ILP model, it

can derive the release timerij of each intercore communication taskCT i
j in the first period

of the objective task schedule. It can also get the retiming valueR(CT i
j) of each intercore

communication taskCT i
j and the retiming valueR(Ti) of each computation taskTi. Then

an optimal objective communication task schedule can be generated based on the derived

release time and the retiming value of each communication task. Communication taskCT i
j

is first released atrij − R(CT i
j) · I, and it is periodically executed in each of the following

periods. Similarly, computation taskTi is first released atri−R(Ti) · I, and it is periodically

executed in each of the following periods. As the objective function of the ILP formulation

seeks to minimizeRmax, the computation task schedule with the minimum prologue length

is guaranteed.

As the ILP model integrates several constraints (e.g., the bounds of the relative re-

timing value, and the bound of the prologue length), these constraints greatly reduce search

space for finding the optimal solution. The proposed approach can efficiently solve the prob-

lem and provide the optimal communication task schedule to ensure that the corresponding

prologue length of the objective computation task scheduleis minimized.

We continue to use Figure 3.9 as an example. Figure 3.9(g) shows the objective task

schedule generated by the proposed approach, in which the intercore communication over-

head is totally removed and the schedule length in each period is greatly reduced. Compared

with the initial task schedule in Figure 3.9(b), the schedule length is reduced from 17 to 13.

The objective task schedule in Figure 3.9(g) is generated based on the results derived from

the ILP formulation. Each computation task or each communication task can get its corre-

sponding release time. For example, the ILP formulation gets the retiming value of taskTA,

R(TA) = 2. So the first release of taskTA will be rescheduled two periods ahead of the first

80

period of objective task schedule. Then taskTA is periodically executed in each of the fol-

lowing periods. For intercore communication tasks, the ILPformulation can get the release

time rij and the retiming valueR(CT i
j) of each communication taskCT i

j . For example, the

ILP formulation gets the retiming value of communication task CTA
C , R(CTA

C) = 1, and

it obtains the release time of communication taskCTA
C , rAC = 0. We can see that the first

release of communication taskCTA
C is one period ahead of the first period of the objective

communication task schedule. After that, communication taskCTA
C is periodically executed

in each of the following periods. In Figure 3.9(h), the number above each task node rep-

resents the retiming value of each computation task. The maximum retiming value of all

tasks is 2, which is equal to the retiming value of computation taskTA (i.e.,R(TA) = 2).

Therefore, the prologue length is in 2 periods of time.

3.4.2 The Extension for Minimizing Energy Consumption

After removing intercore communication overhead, the proposed technique can reduce sched-

ule length in each period. By utilizing the slacks generated, it is possible to reduce energy

consumption by exploring existing power-aware techniques, such as DVS. Here, we present

how to extend our technique to save energy consumption.

Given an initial task schedule and the objective schedule length, we can first explore a

DVS technique to generate an objective computation task schedule with the minimum energy

consumption. In this way, the scheduling slacks caused by the intercore communication

overhead can be fully utilized. For the second step, based onthe objective computation task

schedule, the proposed technique can be used to generate an optimal objective schedule.

As DVS techniques can generate energy efficient objective computation task schedule, these

techniques can be served as the input task schedule of our technique. Note that our technique

is general enough to cope with various DVS techniques. Therefore, various DVS techniques

can be explored to generate an objective computation task schedule. Combined with DVS

techniques, our technique can be extended to reduce energy consumption and improve the

system performance.

81

3.5 Experiments

To evaluate the effectiveness of our approach, we conduct experiments on various bench-

marks from both real-life streaming applications and synthetic task graphs. The objective of

the evaluation is to quantify the gains of our approach over the previous work in terms of

two performance metrics: schedule length and energy consumption. Our approach is com-

pared with the STC algorithm [24] and the FLSSR algorithm [117]. The STC algorithm is a

performance-oriented task scheduling algorithm that can generate near-optimal solutions for

periodic dependent tasks on multi-core architectures; theFLSSR algorithm is a power-aware

DVS scheduling algorithm that can effectively optimize energy consumption of streaming

applications on MPSoCs. So they are selected to do comparison. In this section, we first

introduce the experimental environment and performance metrics. Then we present the ex-

perimental results and discussion.

3.5.1 Experimental Setup

Our experiments are conducted based on the processor model of ARM11 MPCore processor

[10]. The ARM11 MPCore processor implements ARM11 microarchitecture and can be

configured to contain between one and four processors [10]. Therefore, we implement a

simulator based on the processor model of ARM11 MPCore and tests various benchmarks

under 2, 3, and 4 processor cores. The ARM11 MPCore utilizes asingle 64-bit AMBA AXI

system bus to interconnect different cores and provides throughput of 1.3Gbytes/sec. In our

experiments, the ARM11 MPCore operates at 3 typical frequencies: 333MHz, 400MHz and

532MHz.

We use the following metrics to evaluate the performance of our approach: (1)Sched-

ule length. By removing intercore communication overhead, our approach can reduce the

schedule length in each period such that the system performance can be improved by adopt-

ing a shorter period. For each benchmark, the initial task schedule is generated by the Start-

ing Time Controller (STC) algorithm in [24] because of its reasonably good performance for

task mapping and task ordering for multi-core platform. We test the schedule length of each

82

benchmark with the frequency of 333MHz. We also present the corresponding experimental

results on the maximum retiming valueRmax among all tasks for each benchmark. (2)En-

ergy consumption. By fully utilizing the slacks obtained from the proposed communication

overhead minimization approach, the energy consumption can be reduced by combining it

with DVS (Dynamic Voltage Scaling) techniques. The initialpower-aware task schedule is

generated by the DVS algorithm, Fixed-order List Scheduling with Shared Slack Reclama-

tion (FLSSR) in Zhu et al. [117], which provides relatively good scheduling for periodic

dependent tasks running on MPSoC architectures. We presentthe experimental results on

energy consumption under different periods with differentnumbers of processor cores.

In this chapter, a processor core in an MPSoC can support DVS.The dynamic power

consumption of a processor core at a voltage levelVdd is calculated based on the power

model in Rabaey et al. [91]:Pdynamic(Vdd) = CSW · fop · V
2
dd, whereCSW is the capaci-

tance, andfop is the frequency of a processor core at voltage levelVdd. The operating voltage

Vdd of each ARM11 MPCore is set as 1.22V, 1.33V, and 1.47V for its corresponding clock

frequency, and the capacitanceCSW is set as 40pF from the data sheet of Freescale Semicon-

ductor i.MX35 multimedia application processor [33]. The i.MX35 processor implements an

ARM11 microprocessor core, and it is designed for automotive entertainment and navigation

applications [33].

We conduct experiments on various benchmarks from E3S [104], ATR [71], CNC

[51], Image Enhancement [103], and TGFF [28]. Among them,consumerfrom Embedded

Systems Synthesis Benchmarks (E3S) represents an embeddedconsumer electronic applica-

tion consisting of tasks like JPEG compression, JPEG decompression, high pass gray-scale

filter, RGB to CYMK conversion, and RGB to YIQ conversion.Telecomfrom E3S repre-

sents an embedded telecom application. ATR is a streaming application that does pattern

matching of targets in images. CNC controller is an automatic machining tool which is used

to produce real-time user-designed work pieces. Image enhancement application uses So-

bel gradient, histogram, and Laplacian to improve the imagequality. kseriesparallel and

kseriesparallel xoverfrom TGFF are several synthetic task graphs generated by TGFF us-

ing the sample input files that come with the software package.

83

We implement the simulator in C. Based on this simulator, we can generate the ob-

jective computation task schedule and obtain the constraints for integer linear programming

(ILP) formulation. The ILP formulation is solved by the opensource program linear pro-

gramming solver, LPsolve5.5 [32]. Both the simulator and LPsolve5.5 are running on a

2.83GHz Intel Core2 Quad processor with 4GB memory.

3.5.2 Results and Discussion

In this section, we present and discuss the experimental results. We first compare our ap-

proach with the STC algorithm [24] in terms of schedule length. Then we present the results

in energy consumption obtained by our approach and the FLSSRalgorithm [117]. Finally,

we present the prologue length introduced by our approach.

(1) Schedule Length.Table 3.1 presents the experimental results in schedule length obtained

by our approach (“JCCTS”) and the STC algorithm in [24] (“STC”) under 2, 3, and 4 pro-

cessor cores. Columns “# of task”, “# of edge”, “STC (µs)”, “JCCTS (µs)”, and “Reduction

(%)” represent the number of tasks, the number of edges, the schedule length from the STC

algorithm, the schedule length from our approach, and the average reduction in schedule

length in one period by comparing our approach with the STC algorithm, respectively. From

the experimental results, our approach can achieve an average 27.72% reduction in schedule

length compared with the STC algorithm.

With the same period, for both our approach and the STC algorithm, the schedule

length can be reduced when the number of processor cores increases. This can be observed

in Table 3.1 in which for each benchmark, less schedule length can be obtained with 3 or 4

cores compared with that with 2 cores. However, for our approach, it can be observed that

the schedule length does not increase when the number of processor cores increases from

3 to 4 for some benchmarks such asconsumerandtelecom. This is because the number of

tasks in these benchmarks is relatively small. The parallelism of the benchmark has been

fully exploited by our approach when the number of processorcores increases from 2 to 3.

Therefore, the additional processor cores cannot provide more benefit as there are not more

84

Table 3.1. Comparison in Schedule Length of Our JCCTS Approach and the STC Algorithm
in Chen et al. [24] on 2, 3, and 4 Processor Cores.

Benchmarks # of task # of edge STC (µs) JCCTS (µs) Reduction (%)
2 processor cores

consumer1 7 8 75543 72132 4.52
consumer2 5 4 52798 46704 11.54
telecom 6 6 947 813 14.15
ATR 14 15 11988 10694 10.79
CNC 8 9 1866 1091 41.53
image 8 11 272 210 22.79
kseriesparallel1 30 33 2644 1316 50.23
kseriesparallel2 20 19 1391 905 34.94
kseriesparallel3 62 61 5276 2769 47.52
kseriesparallel4 47 46 3876 2118 45.36
kseriesparallel xover1 30 37 2788 1342 51.87
kseriesparallel xover2 21 24 1380 905 34.42
kseriesparallel xover3 38 41 2490 1694 31.97
kseriesparallel xover4 27 30 1732 1152 33.49

3 processor cores
consumer1 7 8 76145 63681 16.37
consumer2 5 4 52758 46704 11.48
telecom 6 6 939 813 13.42
ATR 14 15 7799 7403 5.08
CNC 8 9 1417 884 37.61
image 8 11 225 189 16
kseriesparallel1 30 33 2069 997 51.81
kseriesparallel2 20 19 1083 665 38.6
kseriesparallel3 62 61 4209 1974 53.1
kseriesparallel4 47 46 2878 1578 45.17
kseriesparallel xover1 30 37 2017 1016 49.63
kseriesparallel xover2 21 24 994 658 33.8
kseriesparallel xover3 38 41 1774 1152 35.06
kseriesparallel xover4 27 30 1185 987 16.71

4 processor cores
consumer1 7 8 72621 63681 12.31
consumer2 5 4 52734 46704 11.43
telecom 6 6 930 813 12.58
ATR 14 15 7671 7403 3.49
CNC 8 9 959 868 9.49
image 8 11 208 189 9.13
kseriesparallel1 30 33 1674 815 51.31
kseriesparallel2 20 19 666 570 14.41
kseriesparallel3 62 61 3636 1661 54.32
kseriesparallel4 47 46 2196 1316 40.07
kseriesparallel xover1 30 37 1485 844 43.16
kseriesparallel xover2 21 24 823 650 21.02
kseriesparallel xover3 38 41 1225 1110 9.39
kseriesparallel xover4 27 30 1069 931 12.91

85

tasks can be executed in parallel.

(2) Energy Consumption.As an extension of the proposed approach, energy consumption

can be reduced by combining our approach with the DVS technique. We evaluate and com-

pare our approach with the FLSSR algorithm in [117]. Table 3.2 shows the results for all

14 benchmarks with 2, 3 and 4 processor cores, in which column“Timing Constraints (µs)”

refers to the range of the timing constraints, and columns “FLSSR (µJ)”, “JCCTS (µJ)”,

and “Reduction (%)” represent the energy consumption obtained by the FLSSR algorithm,

the energy consumption obtained by our approach, and the reduction in energy consumption

by comparing our approach with the FLSSR algorithm, respectively. The range of the tim-

ing constraints is determined by the minimum timing constraint and the maximum timing

constraint. The minimum timing constraint refers to the tightest timing constraint that can

generate a feasible schedule by the FLSSR algorithm, while the maximum timing constraint

refers to the smallest timing constraint of a feasible schedule in which each task operates

at its lowest frequency. In the experiments, we test each benchmark with different timing

constraints. Starting from the minimum timing constraint to perform task scheduling, we

gradually increase the timing constraint by 20µs each time. The experimental results list the

average energy consumption of each benchmark for differentranges of timing constraints.

From the experimental results, we observe that, with the increasing of the number

of processor cores, the improvement steadily increases. This is because increasing the par-

allelism may cause more intercore communications, which leads to more intercore commu-

nication overheads. Our approach can further effectively reduce the energy consumption

by utilizing the slacks generated from the removal of intercore communication overhead.

We also observe that, for real-life streaming applications(benchmarksconsumer, telecom,

ATR, CNC, andimage), our approach can achieve a reduction between 5.90% and 19.52%

compared with the FLSSR algorithm. For synthetic task graphs with higher numbers of

tasks (benchmarkskseriesparallel, andkseriesparallel xover), our approach can obtain up

to 28.51% reduction in energy consumption (kseriesparallel xover3for 4 processor cores).

This observation also shows that the proposed technique cantake advantage of multiple pro-

cessor cores to reduce energy consumption. Although the FLSSR algorithm can get feasible

86

Table 3.2. Comparison in Energy Consumption of Our JCCTS Approach and the FLSSR
Algorithm in Zhu et al. [117] on 2, 3, and 4 Processor Cores.

Timing Constraints (µs) FLSSR (µJ) JCCTS (µJ) Reduction (%)
2-core

consumer1 77806 – 112237 2588.53 2430.57 6.10
consumer2 55416 – 81112 1869.30 1638.26 12.36
telecom 539 – 1018 30.10 26.15 13.12
ATR 11869 – 17459 504.52 474.76 5.90
CNC 1081 – 1541 40.89 36.99 9.53
image 234 – 330 8.80 8.23 6.48
kseriesparallel1 1341 – 1999 52.20 49.90 4.42
kseriesparallel2 949 – 1388 35.97 33.61 6.57
kseriesparallel3 3708 – 5333 142.16 133.62 6.01
kseriesparallel4 2688 – 3994 102.58 96.80 5.63
kseriesparallel xover1 2008 – 2858 77.44 69.98 9.63
kseriesparallel xover2 860 – 1246 33.86 30.35 10.35
kseriesparallel xover3 1650 – 2462 67.98 60.82 10.54
kseriesparallel xover4 1175 – 1718 47.70 41.03 13.98
Average 8.62

3-core
consumer1 66327 – 95023 2424.69 2255.60 6.97
consumer2 55416 – 81112 1869.30 1638.26 12.36
telecom 539 – 1018 30.10 26.15 13.12
ATR 9474 – 14264 502.13 405.52 19.24
CNC 884 – 1277 43.00 34.61 19.52
image 223 – 308 11.12 9.31 16.24
kseriesparallel1 1153 – 1621 48.37 43.71 9.64
kseriesparallel2 823 – 1137 33.98 28.97 14.74
kseriesparallel3 2896 – 4249 124.84 113.12 9.39
kseriesparallel4 2315 – 3247 97.12 82.49 15.06
kseriesparallel xover1 843 – 2493 79.75 66.67 16.40
kseriesparallel xover2 750 – 1025 32.94 27.58 16.27
kseriesparallel xover3 1548 – 2157 71.41 54.63 23.50
kseriesparallel xover4 1040 – 1514 53.13 40.88 23.06
Average 15.39

4-core
consumer1 66327 – 95023 2424.69 2255.60 6.97
consumer2 55416 – 81112 1869.30 1638.26 12.36
telecom 539 – 1018 30.10 26.15 13.12
ATR 9474 – 14264 502.13 405.52 19.24
CNC 884 – 1277 43.00 34.61 19.52
image 223 – 308 11.12 9.31 16.24
kseriesparallel1 1059 – 1434 56.53 41.24 27.05
kseriesparallel2 561 – 1074 38.90 28.21 27.48
kseriesparallel3 1625 – 3707 148.94 111.64 25.04
kseriesparallel4 1228 – 3060 111.97 81.38 27.32
kseriesparallel xover1 843 – 2493 83.07 64.74 22.07
kseriesparallel xover2 695 – 970 36.37 27.45 24.53
kseriesparallel xover3 1147 – 2056 76.96 55.02 28.51
kseriesparallel xover4 1040 – 1514 53.09 40.49 23.73
Average 20.94

87

Figure 3.10. The Maximum Retiming ValueRmax of Each Benchmark Running on 2, 3, and

4 Processor cores.

solutions under the same timing constraint as those for our approach, our approach can save

extra energy consumption compared with FLSSR by helping it fully utilizing the empty time

slots caused by intercore communication overheads. For each benchmark under different

timing constraints, with the decreasing of the timing constraint, the energy reduction of our

approach over FLSSR is accordingly increased. For each benchmark running on different

processor cores with the same timing constraint, the energyconsumption on 2 or 3 proces-

sor cores is greater than or equal to the energy consumption running on 4 processor cores.

This result also shows that our approach can utilize multiple processor cores to minimize the

energy consumption. From the above analysis, we can conclude that the proposed approach

can achieve better energy consumption compared with the energy-efficient task scheduling

algorithm FLSSR.

(3) Prologue Length.The observations in Section 3.3 point to the maximum retiming value

among all tasks as a direct factor that influences the prologue length. In this section, we

study the impact of prologue length (i.e., the maximum retiming value). Figure 3.10 shows

the maximum retiming valueRmax of each benchmark with 2, 3, and 4 processor cores, re-

spectively. From the results, we can see that, our approach causes several periods of prologue

latency. As discussed before, however, the prologue is onlyexecuted once. So the overhead

88

introduced is one-time delay. After waiting for the execution of the prologue, tasks can be

periodically executed in the new loop kernel as a streaming application is usually repeatedly

executed for many times. Since our approach can effectivelyreduce the schedule length of

each period as shown above, we can either apply a shorter period or apply DVS for energy

optimization. Considering the benefit obtained from each period after the prologue, it is

usually worth waiting for the execution of the prologue.

3.6 Summary

This chapter studied the problem of minimizing intercore communication overhead for stream-

ing applications running on MPSoC architectures. We jointly optimize computation and in-

tercore communication task scheduling such that intercorecommunication overhead can be

totally removed and the schedule length can be minimized. Specifically, we first performed

schedulability analysis and theoretically obtained the upper bound on the prologue length of

the computation task schedule. Then we presented an ILP (Integer Linear Programming) for-

mulation to generate an optimal objective task schedule. The experimental results show that

our technique can significantly reduce schedule length and energy consumption compared

with representative techniques.

89

CHAPTER 4

MEMORY-AWARE SCHEDULING WITH COMMUNICATION OVERHEAD

MINIMIZATION FOR STREAMING APPLICATIONS ON MPSOCS

4.1 Overview

Streaming applications that process streams of data are often modeled as periodic dependent

tasks, in which streams of data are communicated from task totask [108, 111]. Streaming

applications are data intensive and highly parallelizable; therefore, they are very suitable to

be executed on Multiprocessor System-on-Chips (MPSoCs). To fully utilize the computa-

tion capacity of MPSoCs, various techniques have been explored to increase parallelism of

streaming applications. However, this may cause a large amount of intercore communica-

tions with considerable communication overhead. Streaming applications often have firm

real-time requirements. The communication overhead posesa challenge for multicore hard

real-time systems, since most of the existing theoretically optimal scheduling techniques on

multicore architectures assume zero cost for intercore communications. By removing inter-

core communication overhead, a shorter period can be applied and system performance (e.g.,

throughput) can be improved. Therefore, it becomes an important research problem to effec-

tively reduce intercore communication overhead for streaming applications on MPSoCs.

In this chapter, we effectively remove intercore communication overhead and gen-

erate an optimal task schedule with the minimum memory usagefor streaming applications

on MPSoC architectures. Specifically, in the proposed technique, we jointly reschedule both

computation and intercore communication tasks and let a limited number of tasks reschedule

into earlier periods (the newly-added preprocessing step is calledprologue). After trans-

forming intra-period data dependencies into inter-perioddata dependencies, the execution of

90

computation tasks and that of intercore communication tasks in each period can be totally

overlapped and the intercore communication overhead can beeffectively removed.

Since streaming applications are data intensive, fairly large shared buffers would be

required to store the processing results between tasks. As aresult, total size of the buffer

arrays usually accounts for a significant portion of the application binary memory footprint

[31]. Our approach will generate an optimal task schedule with the maximum application

throughput while minimizing the overall memory usage, which would be of great value in

the resource constrained embedded multiprocessor systems. To the best of our knowledge,

this is the first work that totally removes intercore communication overhead considering the

memory usage with joint computation and communication taskscheduling for streaming

applications on MPSoC architectures.

To solve the problem, we first perform schedulability analysis and theoretically ob-

tain the upper bound of the times needed to reschedule each computation task. Based on

this analysis, we formulate the problem as an ILP (Integer Linear Programming) model and

obtain an optimal solution with the objective of minimizingthe overall memory usage. As

the schedulability analysis produces very tight bounds, they can significantly reduce the

search space of our ILP formulation and greatly improve the efficiency for finding the opti-

mal solution. We also propose a heuristic approach Heuristic Memory-Aware Optimal Task

Scheduling (HMAOTS) to efficiently obtain a near optimal solution.

We evaluate the proposed technique with a set of benchmarks from both real-life

streaming applications and synthetic task graphs, including E3S (Embedded Systems Syn-

thesis Benchmarks) [104], CNC (Computerized Numerical Control) [51], ATR (Automatic

Target Recognition) [71], an image enhancement application [103], and TGFF [28]. We im-

plement a simulator based on the processor model of ARM11 MPCore processor [10]. We

compare the proposed technique with the approaches in [111,115] and [106] in terms of

schedule length and memory usage. Experimental results show that the proposed technique

can achieve 14.71% and 12.25% reduction in schedule length compared with the approaches

in [111] and [115], respectively; and also 15.98% and 32.45%reduction in memory usage

91

Figure 4.1. The MPSoC Architecture.

compared with the approaches in [106] and [111], respectively.

The rest of this chapter is organized as follows. Section 4.2introduces models and

concepts used in this chapter. Section 4.3 gives a motivational example and formally defines

the problem. Section 4.4 proposes our optimal joint computation and communication task

scheduling technique. Section 4.5 presents experimental results. Finally, we conclude the

chapter in Section 4.6.

4.2 Models and Concepts

4.2.1 System Model

In this chapter, we consider a typical MPSoC system architecture shown in Figure 4.1. The

MPSoC architecture consists ofM homogenous processor cores{P1, P2, . . . , PM}, a shared

bus, a bus arbiter, and a shared on-chip memory. Every processor core is connected via the

bus to a shared memory. A shared bus is adopted as it is one of the most widely used on-chip

communication architectures. A shared on-chip memory is used for intercore communica-

tion. The accesses from a processor core to the shared memoryare not cached. Bus access

requests from processor cores are managed by the bus arbiter. This target architecture is a

generic and typical infrastructure for new generation MPSoC architecture [94].

92

4.2.2 Application Model and Communication Overhead

In this chapter, streaming applications are modeled as periodic dependent tasks and repre-

sented by a Directed Acyclic Graph (DAG). For a DAGG= (V,E, CT), V= {T1, T2, . . . , Tn}

is the node set, and each node represents one periodic task.E ⊆ V × V is the edge set, and

each directed edge,(Ti, Tj) ∈ E (Ti, Tj∈ V), represents the data dependency between tasks

Ti andTj. That is, the execution ofTj needs the results generated by the execution ofTi.

CT : E 7→ Z is a function that associates every directed edge(Ti, Tj) ∈ E with a communi-

cation taskCT i
j to denote the corresponding data transfer from taskTi to taskTj .

The data transfer between two dependent tasks involves different components in sys-

tem architecture: processor cores, bus, and the shared on-chip memory. If two tasks with

the data dependency are assigned to different processor cores, an intercore communication is

issued and the shared on-chip memory is used to store the intermediate communication. The

processor core is able to initiate write operations to shared on-chip memory by providing an

address and control information, which normally takes one bus clock cycle. The communi-

cation latency orcommunication overheadis the length of time incurred in communicating

a message containing a number of words from a source processor core to a target processor

core. This is the time overhead for a message to cross throughthe bandwidth bottleneck in

the bus system.

According to the property of the shared bus, only one component in system architec-

ture (i.e., processor core, on-chip memory) is allowed to actively use the bus at any one time.

The shared bus has a finite capacity or communication bandwidth B. Therefore, to transmit

D(Ti, Tj) amount of data volume from taskTi to taskTj , the communication overhead is

⌈D(Ti, Tj)/B⌉. On-chip memory will allocate the memory space to hold the intermediate

data. The required memory space is released until the targetprocessor core signals back to

the bus arbiter the success of the data transfer.

93

4.2.3 Static Schedule

For a task schedule, letp be the period of each computation task and that of each intercore

communication task.p implies the deadline of the schedule, and the schedule must be fin-

ished inp. LetSi be the release time (start time) of taskTi in the first period. For taskTi in

theℓth period (i.e.,Ti,ℓ), the release time ofTi,ℓ is Si,ℓ = Si + (ℓ − 1) · p, ℓ ≥ 1. Similarly,

for a communication taskCT i
j associated with tasksTi andTj , let Si

j be the release time of

taskCT i
j in the first period, then its release time in theℓth period isSi

j,ℓ = Si
j + (ℓ− 1) · p,

ℓ ≥ 1.

Let ci be the execution time of computation taskTi, andcij denotes the execution

time of communication taskCT i
j . c

i
j is determined by the assignment of tasksTi andTj : if

Ti andTj are assigned to the same processor core, it is an intracore communication and we

assumecij is equal to zero; otherwise, it is an intercore communication andcij is equal to

⌈D(Ti, Tj)/B⌉, whereD(Ti, Tj) is the data volume transferred andB is the bus bandwidth.

A schedule must obey all data dependency relations of a DAG. For each directed edge

(Ti, Tj) ∈ E in the DAG, taskTj has data dependency with taskTi. In each period of the

schedule, the execution of computation taskTj has to wait the completion of computation

taskTi and the corresponding communication taskCT i
j .

4.2.4 Task Rescheduling and Retiming

In this chapter, we utilize the feature of periodic dependent tasks and reschedule several tasks

into previous periods so as to overlap the execution of computation tasks and that of intercore

communication tasks. After rescheduling tasks into previous periods, data dependency rela-

tions are changed across different periods, and the newly-added preprocessing step is called

prologue. In this chapter, we apply retiming technique [61] to describe how many periods

of a task node are rescheduled into the prologue and how this influences data dependency

relations for a given DAG. The retiming technique is originally proposed to minimize the

cycle period of a synchronous circuit by evenly distributing registers [61]. We extend it and

94

redefine it as follows:

Definition 4.2.1. (Retiming) Given a DAGG= (V,E, CT), retimingR : V 7→ Z is a

function that maps each nodeTi, Ti ∈ V , to an integerR(Ti). Retiming function represents

extended data dependency relations. By retimingTi once, if it is legal, one period of taskTi

is rescheduled into the prologue.

Definition 4.2.2. (Retiming value)Given a DAGG= (V,E, CT), the retiming valueR(Ti)

of a computation taskTi, Ti ∈ V , denotes the number of periods of taskTi that are resched-

uled into the prologue; similarly, the retiming valueR(CT i
j) of an intercore communication

taskCT i
j , (Ti, Tj) ∈ E (Ti, Tj∈ V), denotes the number of periods of taskCT i

j that are

rescheduled into the prologue.

Definition 4.2.3. (Legal retiming)Given a DAGG= (V,E, CT), for each edge(Ti, Tj) ∈

E (Ti, Tj∈ V), a retiming functionR is legal if the relative retiming valueR(Ti) − R(Tj)

is non-negative.

A retiming function must be legal in order to preserve the semantic correctness. If

R(Ti)−R(Tj) is negative, it implies that the data generated byTi in current period is needed

in order to executeTj in previous periods. This cannot be feasible in a task schedule.

Initially, all tasks are scheduled inside one period and it represents anintra-period

dependency, and the retiming value is zero. After performing retiming,tasks from different

periods are regrouped into one period in order to overlap theexecution of computation and

intercore communication tasks. Then, a non-negative retiming value represents the data

dependency relations across multiple periods (inter-period dependency).

95

4.3 Motivational Example and Problem Statement

Given an initial schedule with intercore communication overhead, the objective is to totally

remove the intercore communication overhead and generate aschedule with the minimum

memory usage. By removing the intercore communication overhead, the system perfor-

mance can be improved by adopting a smaller period and the throughput is improved. On

the other hand, a longer prologue not only introduces more delays in the beginning, but also

it requires more data buffers to hold intercore communication data. So we want to minimize

the memory usage as well.

A DAG is shown in Figure 4.2(a). In the DAG, there are four tasks and the execution

time of each task is 2 time units. There are four edges, and each edge associates with one

communication task. The execution time of each intercore communication task is 1 time unit

and that of each intracore communication task is zero.

The intercore communication overhead poses a challenge formulticore real-time sys-

tems since theoretically optimal scheduling techniques onmulticore architectures mostly

assume zero cost for intercore communications. Based on this assumption, the optimal com-

putation task schedule can be generated as the one shown in Figure 4.2(b). Let the periodp

be 6 time units. The schedule is repeatedly executed in each period and the schedule length

(the total execution time of a schedule) of one period is 6.

Although the task schedule in Figure 4.2(b) is the optimal computation task schedule

in terms of the minimum schedule length, this does not hold true in context of intercore com-

munication overheads. Since intercore communication overheads may not be negligible, the

occurrence of intercore communication overheads will leadto a longer schedule length. This

may compromise the predictability of existing theoretically optimal scheduling techniques.

Figure 4.2(c) shows the schedule that considers the intercore communication over-

head. In this task schedule, taskT3 can start execution only after the completion of task

T1 and intercore communication taskCT 1
3 . As a result, intercore communication taskCT 1

3

introduces the overhead (the latency of execution) for one time unit. From this example, we

can see that the intercore communication (communication tasksCT 1
3 andCT 3

4) introduces

96

(a)

CT3
1

T1P1

P2

Latency CT3
1

T1 T2

T3

CT4
3

T1

T3

T4

0 52 3 4 106 8 9 1511 12 14 16 17

(d)

18131 7

(c)

CT3
1

T1P1

P2

Latency CT3
1

T1T2

T3

CT4
3

T2

T3

T4 ...T4

16

CT4
3

CT3
1

T1P1

P2

CT3
1

T1 T2

T3

CT4
3

CT3
1

T1

T3

T4

0 52 3 4 106 8 9 1511 12 14131 7

T1 T4

T2

T3

Memory

Usage

D(T1,T3) D(T1,T3)

D(T3,T4)

(b)

T1P1

P2

T2

T3

T4 T1 T2

T3

T4

CT3
1

T2

CT4
3

T1

T3

T4

D(T3,T4)

D(T1,T3)

2019 21 22 2423

...

T2T1

T3

T4

Latency

0 52 3 4 106 8 9 1511 12 14 16 17 18131 7

Memory

Usage

D(T1,T3)

D(T1,T3)

D(T3,T4)

D(T3,T4)

D(T1,T3)

2019 21 22 2423

CT4
3

CT3
1

D(T1,T3)

...T2T1

T3

T4

0 52 3 4 106 8 9 1511 12 14 16 17 18131 7

...

...

...

...

...

(e)

CT3
1

T1 T2

T3

T4

CT4
3

17 18 2019 21 22 2423

Figure 4.2. A Motivational Example. (a) A DAG. (b) The objective computation task sched-

ule of the DAG. (c) The schedule considering intercore communication overhead. (d) and (e)

two schedules in which intercore communication overheads are totally removed while they

are with different memory usages.

big overhead (2 time units) such that the schedule length is increased and a long period (8

time units) has to be used correspondingly.

The computation task schedule that totally removes the effects of intercore commu-

nication overhead is denoted asthe objective computation task schedule. Given a DAG and

an initial schedule with intercore communication overheads, the objective computation task

97

schedule can be generated by rescheduling each computationtask with earlier release time.

The generation of the objective computation task schedule considers the data dependency

in the DAG while assuming that the execution time of each communication task is equal to

zero. For example, given a DAG and its initial schedule in Figure 4.2(a) and (c), the objective

computation task schedule can be generated like the task schedule in Figure 4.2(b).

In order to ensure the objective computation task schedule as the one in Figure 4.2(b),

intercore communication tasks have to be rescheduled. We found this can be achieved by

overlapping the execution of intercore communication and computation tasks from different

periods with joint communication and computation task rescheduling. This is illustrated in

Figure 4.2(d).

Given the DAG in Figure 4.2(a) and the objective computationtask schedule in Fig-

ure 4.2(b), as each task is periodic, we reschedule two periods of taskT1 and one period

of taskT3 into the prologue. In Figure 4.2(d), by adopting the retiming technique, the data

required by taskT3 from taskT1 are always available inside a period, and the intercore com-

munication overhead caused by communication taskCT 1
3 can be removed inside the sched-

ule. After adopting the processing step, the schedule length is reduced from 8 time units to

6 time units, and the objective computation task schedule inFigure 4.2(b) is guaranteed.

From this example, we can also see that the objective computation task schedule

of one period can be obtained by removing all the intercore communication overhead and

rescheduling each computation task as early as possible. However, it is not trivial to deter-

mine the retiming value (how many periods of one task rescheduled into the prologue) of

each computation task. The problem is difficult as we cannot achieve this by rescheduling

tasks into the prologue freely without considering the constraint of memory usage. And

it is not easy to reschedule intercore communication tasks to ensure the schedule length is

minimized with the minimum memory usage. For example, although task schedules in Fig-

ure 4.2(d) and (e) have the same schedule for computation tasks, the memory usage of these

two schedules are different.

For the schedule in Figure 4.2(d), in one period of time, it needs to store one period of

98

data volume for communication taskCT 1
3 and one period of data volume for communication

taskCT 3
4 . Compared with the schedule in Figure 4.2(d), the schedule in Figure 4.2(e) needs

an extra communication buffer to store one more period of data volume for communication

taskCT 1
3 in the schedule. This example illustrates that, it is necessary to obtain a task sched-

ule that totally removes intercore communication overheads while minimizing the memory

usage to store the data transfers of streaming applications.

Based on the models and problem analysis, we further formulate the problem as

follows:

Given a DAGG= (V,E, CT), an MPSoC architecture withM processor cores, and

an initial task scheduleInit Sch of the DAGG, how to jointly reschedule computation tasks

and intercore communication tasks such that the objective computation task schedule with

the minimum schedule length can be generated with the minimum extra memory usage?

4.4 Memory-Aware Task Scheduling for Minimizing the Intercore Communication

Overhead

In this section, we present a Memory-Aware Optimal Task Scheduling (MAOTS) approach

that jointly optimizes computation and communication taskschedule. We will first analyze

the bounds of the relative retiming value in Section 4.4.1, and we analyze the extra memory

usage caused by retiming operations in Section 4.4.2. The results of the analysis will be in-

tegrated into the constraints of the integer linear programming (ILP) model in Section 4.4.3.

The ILP model is provided to obtain the optimal solution for the problem of removing inter-

core communication overheads with the objective of minimizing extra memory usage caused

by retiming. As these constraints hold very tight bounds, they can greatly reduce the search

space of ILP model and significantly improve the efficiency for finding the optimal solution.

Based on the analysis, in Section 4.4.4, we also formulate the target problem into several

subproblems and propose a heuristic approach (HMAOTS) to generate a near optimal solu-

tion.

99

4.4.1 The Bounds Analysis of Retiming Value

The relative retiming value of each pair of computation tasks represents the number of peri-

ods involved to guarantee the schedulability of the associated intercore communication task.

Specifically, for a pair of computation tasksTi andTj with data dependency relations in the

DAG, (Ti, Tj) ∈ E (Ti, Tj ∈ V), we useR̂min(Ti, Tj) andR̂max(Ti, Tj) to denote that, rela-

tive to the retimed taskTj, the minimum and the maximum extra number of times to perform

retiming for taskTi to ensure the schedulability of the associated intercore communication

taskCT i
j .

Based on the objective computation task schedule generatedfrom the initial sched-

ule, we propose the following theorem and properties to analyze the schedulability of each

communication task and get the minimum and the maximum relative retiming value of each

pair of computation tasks. The derived relative retiming values can be used to get the bound

of the retiming value of each task, and they will become the constraints of the integer linear

programming formulation.

Property 4.4.1. If computation tasksTi andTj, (Ti, Tj) ∈ E (Ti, Tj ∈ V), are assigned to

the same processor core, it is an intracore communication. Then,R̂min(Ti, Tj) = R̂max(Ti, Tj)

= 0.

Property 4.4.1 gives the case for the pair of computation tasks Ti andTj that are

assigned to the same processor core. In this case, there is noneed to perform retiming op-

erations to reschedule computation taskTi relative to computation taskTj . For computation

tasks that are mapped to different processor cores, the following theorem gives the upper

bound of the relative retiming value of each pair of tasks.

Theorem 4.4.1.For a pair of computation tasksTi andTj , (Ti, Tj)∈E (Ti, Tj∈V), assigned

to different processor cores, computation tasksTi andTj associate with an intercore com-

munication taskCT i
j in the ℓth period of the objective computation task schedule. After

retiming taskTi forR(Ti) times and retiming taskTj forR(Tj) times, as long as the retimed

100

taskTi,ℓ−R(Ti) is rescheduled at most one more period relative to the retimed taskTj,ℓ−R(Tj),

the associated intercore communication taskCT i
j is schedulable on bus during the time span

between the finishing time of the retimed taskTi,ℓ−R(Ti) and the release time of the retimed

taskTj,ℓ−R(Tj).

Proof. The objective computation task schedule obeys the data dependency relations in the

DAG. In theℓth period of the objective computation task schedule, the finishing time of task

Ti is no later than the release time of taskTj. After retiming taskTi for one time relative to

the retimed taskTj,ℓ−R(Tj), taskTi will be scheduled in periodℓ−R(Tj)− 1, which is one

period ahead of the retimed taskTj,ℓ−R(Tj). Then the time span between the finishing time of

the retimed taskTi,ℓ−R(Ti) and the release time of the retimed taskTj,ℓ−R(Tj) is always greater

than or equal to periodp. As all intercore communication tasks periodically execute in each

period, in one period of time, there is one and exactly one intercore communication taskCT i
j

that has data dependency with taskTi and taskTj . Let this intercore communication task

CT i
j be the retimed communication task that associates with tasks Ti,ℓ−R(Ti) andTj,ℓ−R(Tj).

Its release time is no earlier than the finishing time ofTi,ℓ−R(Ti), and its finishing time is no

later than the release time ofTj,ℓ−R(Tj). Therefore, the associated intercore communication

taskCT i
j is always schedulable on bus during that time span. An example is illustrated in

Figure 4.3.

Theorem 4.4.1 gives the upper bound of the maximum relative retiming value of each

pair of computation tasks,̂Rmax(Ti, Tj) ≤ 1, (Ti, Tj)∈E (Ti, Tj∈V). This tight constraint

provides a good property for rescheduling each computationtask. This upper bound also

implies that the maximum latency introduced by the proposedretiming technique is in one

period of time, which can ensure the basic functionality requirements for most of commer-

cial available streaming applications. For the lower boundof the relative retiming value, the

101

Ti

CTj
i

1

2

Latency

Tj

retiming R Ti times

...

Si,l

...

 p

Ti

CTj
i

Tj

Ti

CTj
i

Tj

retiming
R Tj times

Sj,l

Si,l -R Ti p

Sj,l -R Tj p

S
i
j,lS

i
j,l -R Tj p

period l-R(Tj)-1 period lperiod l-R(Tj)

Figure 4.3. A Task Schedule of Theorem 4.4.1.

property of legal retiming constraints that the relative retiming value of each pair of com-

putation tasks is non-negative,R(Ti) − R(Tj) ≥ 0. Then, the lower bound of the relative

retiming value of each pair of computation tasks is zero. Based on these analysis, the bounds

of the relative retiming value is [0, 1]. That is,0 ≤ R̂min(Ti, Tj) ≤ R̂max(Ti, Tj) ≤ 1.

Property 4.4.2. For a pair of computation tasksTi andTj , (Ti, Tj)∈E (Ti, Tj∈V), assigned

to different processor cores, computation tasksTi andTj associate with an intercore com-

munication taskCT i
j . If Si + ci + cij > Sj, taskTi needs to retiming once and exactly

once relative to taskTj to ensure the schedulability of communication taskCT i
j . That is,

R̂min(Ti, Tj) = R̂max(Ti, Tj) = 1.

Property 4.4.2 illustrates the case that the time span between the finishing time of

taskTi and the release time of taskTj is not sufficient to hold the execution of communica-

tion taskCT i
j . In this case, the retimed taskTi,ℓ−R(Ti) has to rescheduled at least one more

period ahead of the retimed taskTj,ℓ−R(Tj). According to Theorem 4.4.1, the maximum rel-

ative retiming value is bounded by one. Therefore, the minimum and the maximum relative

retiming value of the case in Property 4.4.2 are both equal toone.

The above theorem and properties classify the minimum and the maximum rela-

tive retiming value (̂Rmin(Ti, Tj), R̂max(Ti, Tj)) of computation tasksTi andTj , (Ti, Tj) ∈

102

E (Ti, Tj ∈ V), into three cases: [0, 0], [0, 1], and [1, 1]. For computation tasksTi andTj

associated with communication taskCT i
j , the minimum and the maximum relative retiming

value can be obtained by checking the above theorem and properties. The derived relative

retiming values can be used to obtain the bounds of the retiming value of each computation

task.

We adopt a breadth-first manner that follows the data dependency relations in the

DAG and obtain the minimum and the maximum retiming value. For a task that does not have

any successor tasks, there is no need to reschedule these tasks into the prologue. Therefore,

both its minimum and its maximum retiming value are equal to zero.

Rmin(Ti) = Rmax(Ti) = 0, Ti ∈ E

For a task with at least one successor tasks, the retiming value of this task is bounded by the

maximum retiming value of its successor tasks. The following equation is used to obtain the

minimum and the maximum retiming value of a task that has at least one successor tasks.

{

Rmin(Ti) = max{R̂min(Ti, Tj) +Rmin(Tj)} ∀ (Ti, Tj) ∈ E (Ti, Tj ∈ V)
Rmax(Ti) = max{R̂max(Ti, Tj) +Rmax(Tj)}

4.4.2 The Analysis of Extra Memory Usage

After obtained the bounds of retiming value of each computation task, we further analyze

how the retiming value of each task influences the memory usage to store the associated

intercore communication tasks. For the target multiprocessor architecture adopted in this

chapter, the shared memory is accessed by multiple processor cores with intent to provide

intermediate data storage for the input/output data streams among different processor cores.

Data streams that are processed by streaming applications are stored in the dedicated mem-

ory space in the shared memory, such that the streaming application can fetch the data for

processing.

Data streams transferred between streaming applications are modeled as an intercore

communication taskCT i
j , and the data volumeD(Ti, Tj) of intercore communication task

103

TiP1

P2

Latency

Tj

retiming R(Ti) times

......Ti Ti

retiming R(Tj) times

period l-R(Tj)-1 period lperiod l-R(Tj)

Tj Tj

Memory

Usage

D(Ti ,Tj)

D(Ti ,Tj)

D(Ti ,Tj)

CTj
i

Sj,l +cj -R(Tj) pS
i
j,l -R(Tj) p-p

CTj
i

CTj
i

S
i
j,l -R(Tj) p

...

retiming R(CT
i
j) times

...

Figure 4.4. Analysis of Memory Usage for Intercore Communication TaskCT i
j .

CT i
j will directly account for a portion of the memory usage. We use the following property

to analyze data volume transferred between a pair of retimedcomputation tasks.

Property 4.4.3. For a pair of computation tasksTi andTj , (Ti, Tj)∈E (Ti, Tj∈V), associ-

ated with an intercore communication taskCT i
j , the data volume for transferring one period

of intercore communication taskCT i
j is D(Ti, Tj). After retiming taskTi for R(Ti) times

and retiming taskTj forR(Tj) times, the total data volume transferred between the retimed

tasksTi andTj is ⌈1
p
· (Sj + cj − Si

j) +R(CT i
j)−R(Tj)⌉ · D(Ti, Tj).

The buffer to store data volumeD(Ti, Tj) is allocated from the starting time of inter-

core communication taskCT i
j , and it is released when taskTj finishes its execution. If the

lifetime ofD(Ti, Tj) crosses different periods, it will cause extra memory usageto store the

data volume for intercore communication tasks. If communication taskCT i
j is rescheduled

to periodℓ−R(CT i
j) and taskTj is rescheduled to periodℓ−R(Tj), the data volume will

across at mostR(CT i
j)−R(Tj) periods.

In order to minimize the extra memory space, communication taskCT i
j should be

rescheduled as close as possible to computation taskTj . More specifically, as illustrated

in Figure 4.4, if the finishing time of the retimed taskTj,ℓ is later than the starting time

104

of the retimed communication taskCT i
j,ℓ of the next period, i.e.,Si

j,ℓ − R(Tj) · p + p <

Sj,ℓ + cj −R(Tj) · p, an extra memory space is necessary. In this case,Sj,ℓ + cj − Si
j,ℓ > p.

This property implies that, as long as communication taskCT i
j is released within the period

[Sj,ℓ + cj − p, Sj,ℓ + cj], no extra memory usage is consumed.

4.4.3 Integer Linear Programming Formulation

Integer linear programming (ILP) provides a mechanism to get the optimal solution of a

problem in which all of its constraints can be formulated as linear constraints of integer

variables. In this section, an integer linear programming model is provided to obtain the

optimal solution for the problem of removing the intercore communication overhead with

the objective of minimizing memory usage.

Given a DAG and its initial schedule, we can formulate an integer linear program-

ming model as follows.

Minimize
∑

(Ti,Tj)∈E

⌈
1

p′
· (Sj + cj − Si

j) +R(CT i
j)−R(Tj)⌉ · D(Ti, Tj)

Subject to

∀CT i
j , CT i′

j′ ∈ CT, Si
j ≤ Si′

j′ :
Si
j ≥ 0 (1)

Si
j ≤ p′ − cij (2)

Si′

j′ − Si
j ≥ cij (3)

∀CT i
j ∈ CT, (Ti, Tj) ∈ E, (Ti, Tj ∈ V) :

R(Ti)−R(Tj) ≥ R̂min(Ti, Tj) (4)
R(Ti) ≥ Rmin(Ti) (5)
R(Ti) ≤ Rmax(Ti) (6)
R(Ti)−R(CT i

j) ≥ 0 (7)
R(Tj)−R(CT i

j) ≤ 0 (8)
R(Ti)−R(CT i

j) ≤ 1 (9)
Si
j +R(Ti) · p

′ −R(CT i
j) · p

′ ≥ Si + ci (10)
Si
j +R(Tj) · p

′ −R(CT i
j) · p

′ ≤ Sj − cij (11)

Due to the data dependency relations in the DAG, the retimingvalueR(CT i
j) of

each communication taskCT i
j is bounded by the retiming value of tasksTi andTj,R(Ti) ≥

R(CT i
j) ≥ R(Tj). The retiming value of each computation task is further bounded by its

105

minimum and the maximum retiming value (Rmin(Ti),Rmax(Ti)). These linear constraints

can be used to formulate the ILP model to solve the problem.

In the ILP model, the objective function seeks to minimize the overall memory usage

to store intercore communications. LetL be the schedule length of the objective computation

task schedule that is derived from the initial task schedule, and
∑

cij , (Ti, Tj) ∈ E, denotes

the sum of the execution time of all communication tasks. Then the new periodp′ for the

optimal task schedule can be obtained,p′ = max{L,
∑

cij}.

Given a set of intercore communication tasks, Constraint 1 and Constraint 2 illustrate

that, in each periodp′, the release timeSi
j of a communication taskCT i

j should be in the

time span [0,p′ − cij]. Constraint 3 restricts that every two intercore communication tasks

scheduled on a shared bus are allocated without any conflict.That is, when a communication

taskCT i
j has been scheduled to release atSi

j, no other communication taskCT i′

j′ can start

its execution only after the completion of communication taskCT i
j . Constraint 4 gives the

lower bound of the relative retiming value of each pair of tasks, which can be obtained by the

analysis in Section 4.4.1. Constraint 5 and Constraint 6 ensure that the retiming value of each

task is bounded by the minimum and the maximum retiming value, which can be obtained by

the analysis in Section 4.4.1. Constraint 7 and Constraint 8preserve the semantic correctness

to keep the retiming function legal. Constraint 9 illustrates that communication taskCT i
j has

to be allocated to shared memory before the finishing of the next period’s retimed taskTj .

Constraint 10 and Constraint 11 follow the data dependencies to ensure that communication

taskCT i
j is schedulable between the finishing time of the retimed taskTi and the release

time of retimed taskTj .

Using this ILP formulation, we can obtain the retiming valueR(Ti) of each computa-

tion taskTi, the retiming valueR(CT i
j) of each intercore communication taskCT i

j , and the

release timeSi
j of each intercore communication taskCT i

j . Based on these results derived

from the ILP model, an optimal task schedule can be generated.

We use a runtime example in Figure 4.5 to illustrate our approach. Based on the initial

schedule in Figure 4.5(b) and the objective computation task schedule in Figure 4.5(c), we

106

T1

T4T3T2

T7T6T5

T8

T1P1

P2

Latency

T2
...

0 51 2 3 4 6 7 8 ...

P3

T3

T4

T5

T6

T7

T8

(b)

CT3
1

T1P1

P2

Latency

T2

CT7
3

...

0 51 2 3 4 106 7 8 9 1511 12 13 14 16 ...

P3

T3

T4

T5

T6

T7

T8

CT4
1

CT6
1

CT8
6

CT8
7

CT3
1

T2

CT7
3

T3

T4

T5

T6

T7

T8

CT4
1

CT6
1

CT8
6

CT8
7

18 2017 19 21 22

(e)

^ ^
(Rmin(T1,T2) , Rmax(T1,T2)) = (0,0)

^ ^
(Rmin(T1,T3) , Rmax(T1,T3)) = (1,1)

^ ^
(Rmin(T1,T4) , Rmax(T1,T4)) = (1,1)

^ ^
(Rmin(T1,T6) , Rmax(T1,T6)) = (0,1)

^ ^
(Rmin(T2,T5) , Rmax(T2,T5)) = (0,0)

^ ^
(Rmin(T3,T6) , Rmax(T3,T6)) = (0,0)

^ ^
(Rmin(T3,T7) , Rmax(T3,T7)) = (1,1)

^ ^
(Rmin(T4,T7) , Rmax(T4,T7)) = (0,0)

^ ^
(Rmin(T5,T8) , Rmax(T5,T8)) = (0,0)

^ ^
(Rmin(T6,T8) , Rmax(T6,T8)) = (1,1)

^ ^
(Rmin(T7,T8) , Rmax(T7,T8)) = (1,1)

(f)

(d)

S1 = 0 S2 = 2

S3 = 2 S4 = 2

S5 = 4 S6 = 4

S7 = 4 S8 = 6

c1 = 2 c2 = 2

c3 = 2 c4 = 2

c5 = 2 c6 = 2

c7 = 2 c8 = 2

c2
1

= 0 c3
1

= 1

c4
1

= 1 c6
1

= 1

c5
2

= 0 c6
3

= 0

c7
3

= 1

c7
4

= 0

c8
5

= 0

c8
6

= 1

c8
7

= 1

(Rmin(T1), Rmax(T1)) = (3,3)

(Rmin(T2), Rmax(T2)) = (0,0)

(Rmin(T3), Rmax(T3)) = (2,2)

(Rmin(T4), Rmax(T4)) = (1,1)

(Rmin(T5), Rmax(T5)) = (0,0)

(Rmin(T6), Rmax(T6)) = (1,1)

(Rmin(T7), Rmax(T7)) = (1,1)

(Rmin(T8), Rmax(T8)) = (0,0)

P1

P2

Latency

0 51 2 3 4 106 7 8 9 1511 12 13 14 16

P3

18 2017 19 21 22

T1 T1

T3

CT3
1

T1

T3

T4

T6

T7

CT7
3

CT4
1

CT6
1

CT3
1

T1 T2

T3

T4

T5

T6

T7

T8

CT8
6

CT8
7

CT7
3

CT4
1

CT6
1

CT3
1

CT4
1

CT6
1

CT3
1

2523 24 26 28 3027 29 31 32

...

...

(a)

(c)

(g)

T1

D(T1,T3)

D(T1,T4)

D(T1,T6)

D(T3,T7)

D(T1,T3)

D(T6,T8)

D(T7,T8)

Memory

Usage

D(T1,T4)

D(T1,T6)

D(T3,T7)

D(T1,T3)

D(T1,T4)

D(T1,T6)

D(T1,T3) ...

...

...

Figure 4.5. A Runtime Example of MAOTS. (a) A DAG. (b) An initial schedule of the

DAG. (c) Objective task schedule of all computation tasks that totally removes intercore

communication overhead. (d) The execution time of each computation task and that of each

communication task, and the release time of each computation task. (e) The bounds of

relative retiming value of each pair of tasks. (f) The boundsof the retiming value of each

task. (g) The optimal task schedule by our approach MAOTS.

107

can obtain the execution timeci of each computation taskTi, the execution timecij of each

communication taskCT i
j , and the release timeSi of each computation taskTi, which are

shown in Figure 4.5(d). Then, by checking Theorem 4.4.1, Property 4.4.1 and Property 4.4.2,

the minimum and the maximum relative retiming value of each pair of computation tasks can

be obtained. For example, taskT1 and taskT6 are assigned to different processor cores (pro-

cessor coreP1 andP2, respectively). They associate with an intercore communication task.

Then, (R̂min(T1, T6), R̂max(T1, T6))=(0, 1). For tasks with data dependency relations as-

signed to the same processor core (i.e., tasksT1 andT2), (R̂min(Ti, Tj), R̂max(Ti, Tj))=(0, 0).

Using the minimum and the maximum relative retiming value derived in Figure 4.5(e),

the bounds of the retiming value of each task can be obtained.For a task that does not

have any successor tasks, (i.e., taskT8), both its minimum and its maximum retiming value

are equal to zero. For a task with at least one successor tasks, the maximum value of

R̂min(Ti, Tj) + Rmin(Tj) will be assigned toRmin(Ti). For example, taskT3 has two

successor tasks,T6 andT7. The maximum value between̂Rmax(T3, T6) + Rmax(T6) and

R̂max(T3, T7) +Rmax(T7) is 2. Thus,Rmax(T3) is 2. Similarly, the maximum of̂Rmin(Ti, Tj)

+Rmin(Tj) will be assigned toRmin(Ti). Therefore,Rmin(T3) is 2. Then the minimum and

the maximum retiming value of taskT3 are both equal to 2. Follow the data dependency

relations in the DAG (from taskT8 to taskT1), we can iteratively get the minimum and the

maximum retiming value of each task. The results are listed in Figure 4.5(f). The results of

the bound analysis will become the constraints of the ILP formulation in the next section.

As the schedulability analysis produces very tight bounds,the ILP formulation can be solved

efficiently in practice.

To illustrate how to generate the optimal task schedule, we continue to use Figure 4.5

as an example. It includes the generation of task schedule for computation tasks and the

generation of task schedule for intercore communication tasks. The task schedule of com-

putation tasks can be generated based on the objective computation task schedule in Fig-

ure 4.5(c) and the derived retiming valueR(Ti) of each computation taskTi. For example,

the ILP formulation gets the retiming value of taskT1,R(T1) = 3. Then the first release of

taskT1 will be rescheduled three periods ahead of the first period ofthe task schedule, and

108

three periods of taskT1 will be allocated to the prologue. For intercore communication tasks,

the ILP formulation can obtain the release timeSi
j and retiming valueR(CT i

j) of each in-

tercore communication taskCT i
j . Similar to the generation of task schedule of computation

tasks,R(CT i
j) periods of an intercore communication task is rescheduled into the prologue.

For example, the ILP formulation obtains the release time ofintercore communication task

CT 1
3 , S1

3 = 0, and gets the retiming value ofCT 1
3 , R(CT 1

3) = 2. In the task schedule in

Figure 4.5(g), we can see that the first release of communication taskCT 1
3 is two periods

ahead of the first period of the objective schedule. After that, communication taskCT 1
3 is

periodically executed in each of the following periods. In Figure 4.5(g), intercore commu-

nication overhead is totally removed and a shorter period (8time units) is applied with the

minimum memory usage.

4.4.4 A Heuristic Approach

In this section, we present a heuristic approach (HMAOTS) tosolve the memory-

aware task scheduling problem. HMAOTS consists of three steps. In the first step, in Algo-

rithm 4.4.1, communication tasks are classified to two different groups and inserted into two

queuesQ1 andQ2, respectively. Tasks inQ1 will influence the maximum retiming value and

the memory usage of the task schedule, while tasks inQ2 will not influence the memory us-

age. Communication tasks in each queue are sorted into the monotonically increasing order

by deadline. Tasks inQ1 have higher priority than tasks inQ2, and tasks inQ1 can preempt

tasks inQ2. In the second step, in Algorithm 4.4.2, empty time slots created by allocating

tasks inQ1 could be used to schedule tasks inQ2, and tasks inQ2 will be scheduled in each

time slot based on Best Fit Decreasing algorithm [46]. In thelast step, based on the release

time and execution time of each task, Algorithm 4.4.3 obtains the retiming value of each task

and generate the final task schedule.

For the first step, in lines 1-12 of Algorithm 4.4.1, the weight W (CT i
j) of each task

CT i
j is calculated and the deadline of task is assigned based on the weight. For tasks with

the zero weight, i.e.,Rmax(Ti) = Rmin(Ti) andRmax(Tj) = Rmin(Tj), retiming values

109

Algorithm 4.4.1 A Heuristic Approach for Memory-Aware Optimal Task Scheduling
(HMAOTS)
Input: A set of communication tasks inQ1 andQ2, periodp.
Output: The task scheduleSchedule Q.

1: for each communication taskCT i
j do

2: if Rmax(Ti) > Rmax(Tj) > Rmin(Ti) > Rmin(Tj) then
3: W (CT i

j) ← (Rmax(Ti) − Rmin(Tj)) · D(Ti, Tj), dij ← Sj, Si
j ← Si + ci,

INSERT(Q1, CT i
j).

4: else
5: W (CT i

j)← (Rmax(Ti)−Rmin(Ti) +Rmax(Tj)−Rmin(Tj)) · D(Ti, Tj).
6: if Rmax(Ti) = Rmin(Ti) andRmax(Tj) = Rmin(Tj) then
7: dij ← p, Si

j ← Si + ci, INSERT(Q2, CT i
j).

8: else
9: dij ← Sj, Si

j ← Si + ci, INSERT(Q1, CT i
j).

10: end if
11: end if
12: end for
13: while Q1 6= ∅ do
14: ReturnValue← Schedule(t, CT i

j)
15: if ReturnValue =Success then
16: Continue.
17: else
18: if W (CT i

j) > W (CT i′

j′) then

19: t← t− ci
′

j′ , ReturnValue← Schedule(t, CT i
j)

20: if ReturnValue =Success then
21: INSERT(Q2, CT i′

j′), Continue.
22: else
23: dij ← Sj + cj, ReturnValue← Schedule(t, CT i

j)
24: if ReturnValue =Success then
25: INSERT(Q2, CT i′

j′), Continue.
26: else
27: t← t+ ci

′

j′ , DELETE(Q1, CT i
j), INSERT(Q2, CT i

j), Continue.
28: end if
29: end if
30: end if
31: end if
32: end while
33: for each communication taskCT i

j in Q2 do
34: Si

j ← t, t← t+ cij , DELETE(Q2, CT i
j).

35: end for
36: GetRetimingValue().

110

Algorithm 4.4.2 Schedule(t, CT i
j).

Input: Earliest available timet, a communication taskCT i
j in Q1 to be scheduled on bus, commu-

nication tasks inQ2.

Output: Release time of communication taskCT i
j if it returnsSuccess.

1: if t ≤ Si
j then

2: Schedule tasks inQ2 to time slot [t, Si
j] using Best Fit Decreasing.

3: for each taskCT i′

j′ scheduled in time slot [t, Si
j] do

4: Si′

j′ ← t+ ci
′

j′ , DELETE(Q2, CT i′

j′).

5: end for

6: t← Si
j + cij , DELETE(Q1, CT i

j), ReturnSuccess.

7: end if

8: if t ≤ dij − cij then

9: Si
j ← t, t← Si

j + cij , DELETE(Q1, CT i
j), ReturnSuccess.

10: end if

11: ReturnFailure.

of Ti andTj are fixed. Therefore, the associated communication task will not influence the

memory usage of the schedule. These tasks will be inserted into Q2. Other communication

tasks with non-zero weight will be inserted intoQ1. Lines 13-32 schedule each task inQ1.

The taskCT i
j with larger weight will have higher priority, and it can preempt the previous

taskCT i′

j′ with smaller weight.

For the second step, Algorithm 4.4.1 will call functionSchedule(t, CT i
j) to schedule

taskCT i
j at timet. FunctionSchedule(t, CT i

j), which is shown in Algorithm 4.4.2, com-

pares the release timeSi
j with the earliest available timet. If t is less than or equal toSi

j, a

time slot betweent andSi
j is created, and this time slot can be used to allocate tasks inQ2.

FunctionSchedule(t, CT i
j) adopts Best Fit Decreasing algorithm to schedule tasks to time

slot [t, Si
j]. If t is greater thanSi

j , functionSchedule(t, CT i
j) will check if t is less than or

equal todij − cij. If it satisfies the condition, in line 10 of Algorithm 4.4.2,communication

taskCT i
j will be scheduled at timet. If time t satisfies neither the condition in line 1 nor that

in line 9, functionSchedule(t, CT i
j) will return Failure.

111

For the last step, Algorithm 4.4.3 will get the retiming value of each task. Lines

1-6 will initialize the retiming value of each task as 0, and each leaf node in the DAGG

will be inserted into queueQ. In lines 7-19, Algorithm 4.4.3 iteratively gets the retiming

value of each computation taskTi. If communication taskCT i
j can be scheduled between

the finishing time of taskTi and the release time of taskTj inside the same period, the larger

value betweenR(Ti) andR(Tj) will be assigned toR(Ti). Otherwise, the larger value

betweenR(Ti) andR(Tj) + 1 will be assigned toR(Ti). In line 16, taskTi will be inserted

into queueQ, and it will be used to generate the retiming value of its predecessor tasks. Lines

20-26 get the retiming value of each intercore communication taskCT i
j . If the finishing time

of taskCT i
j is no later than the finishing time of taskTi and the retiming value of taskTi is

greater than the retiming value of taskTj ,R(Ti)−1 will be assigned toR(CT i
j). Otherwise,

R(Ti) will be assigned toR(CT i
j) to guarantee that intercore communication taskCT i

j is

finished before the completion of taskTi in the next period.

Here we analyze the time complexity of the proposed heuristic algorithm HMAOTS.

Given a set ofn computation tasks and a set ofm intercore communication tasks, in Algo-

rithm 4.4.1, the first “for” loop contains at mostm iterations and each iteration takes linear

time. Therefore, the time complexity of lines 1-12 isO(m). For the “while” loop in Algo-

rithm 4.4.1 (lines 13-32), it calls function Schedule(t, CT i
j) in line 14. The time complexity

of the function is bounded by Best Fit Decreasing algorithm in line 2 of Algorithm 4.4.2.

The time complexity of Best Fit Decreasing algorithm isO(mlogm), so the time complexity

of the “while” loop isO(m2logm). The time complexity of the last “while” loop isO(m).

For function GetRetimingValue() in Algorithm 4.4.3, the time complexity of the first “for”

loop (lines 1-6) isO(n); the “while” loop (lines 7-19) takesO(mn); and the time complexity

of the last “for” loop (lines 20-26) isO(m). Based on this analysis, the time complexity of

Algorithm HMAOTS isO(m2logm)+O(mn).

112

Algorithm 4.4.3 GetRetimingValue().
Input: A DAG G = (V,E,CT), release time and execution time of each task.

Output: Retiming value of each task.

1: for each taskTi ∈ V do

2: R(Ti)← 0.

3: if Ti is a leaf nodethen

4: ENQUEUE(Q,Ti).

5: end if

6: end for

7: while Q 6= ∅ do

8: Tj ← DEQUEUE(Q).

9: for each communication taskCT i
j associated with tasksTi andTj do

10: if Si + ci ≤ Si
j andSi

j + cij ≤ Sj then

11: R(Ti)← max{R(Ti),R(Tj)}.

12: else

13: R(Ti)← max{R(Ti),R(Tj) + 1}.

14: end if

15: if tail 6= Ti then

16: ENQUEUE(Q,Ti), tail← Ti.

17: end if

18: end for

19: end while

20: for each communication taskCT i
j associated with tasksTi andTj do

21: if R(Ti) > R(Tj) andSi + ci ≥ Si
j + cij then

22: R(CT i
j)←R(Ti)− 1.

23: else

24: R(CT i
j)←R(Ti).

25: end if

26: end for

113

4.5 Experiments

To evaluate the effectiveness of the proposed approach, we conduct a series of experiments

on various benchmarks from both real-life streaming applications and synthetic task graphs.

We compare and evaluate the proposed approach over the representative schemes in Xu et

al. [111], Zhang et al. [115], and Wang et al. [106], in terms of two performance metrics:

schedule length and memory usage. In this section, we first introduce the experimental setup

and performance metrics. Then, we present the experimentalresults and discussion.

4.5.1 Experimental Setup

(1) Experimental Setup.We conduct experiments on various benchmarks from both real-

life streaming applications and synthetic task graphs. Several real-life task graphs are ob-

tained from benchmarks E3S [104], CNC [51], ATR [111], and Image enhancement [103].

Among them,consumerfrom Embedded Systems Synthesis Benchmarks (E3S) represents

an embedded consumer electronic application.Autofrom E3S is an embedded auto-industry

application. Telecomfrom E3S represents an embedded telecom application. CNC con-

troller is an automatic machining tool which is used to produce real-time user-designed work

pieces. ATR is a streaming application that does pattern matching of targets in images. Im-

age enhancement application uses Sobel gradient, histogram, and Laplacian to improve the

image quality. The synthetic task graphs were generated by TGFF v3.5 [28]. Benchmarks

kseriesparallel andkseriesparallel xover are generated by TGFF using the sample input

files that come with the software package.

We implement a simulator based on the processor model of ARM11 MPCore mul-

ticore processor microarchitecture [10]. The ARM11 MPCoreprocessor implements the

ARM11 microarchitecture and can be configured to contain up to four ARM11 proces-

sors [10]. The ARM11 MPCore adopts a single 64-bit AMBA AXI system bus to intercon-

nect different processor cores and provides the maximum throughput of 1.3Gbytes/sec. In the

experiments, each ARM11 MPCore is configured to operate at the frequency of 620MHz.

The simulator can generate the objective computation task schedule and obtain the con-

114

0.00

0.20

0.40

0.60

0.80

1.00

ATR auto

consumer1

consumer2

telecom3
CNC

image

kseries_parallel1

kseries_parallel2

kseries_parallel3

kseries_parallel4

kseries_parallel_xover1

kseries_parallel_xover2

kseries_parallel_xover3

kseries_parallel_xover4

Schedule2D 2-core

MAOTS 2-core

Schedule2D 3-core

MAOTS 3-core

Schedule2D 4-core

MAOTS 4-core

(a)

(b)

0.00

0.20

0.40

0.60

0.80

1.00

ATR auto

consumer1

consumer2

telecom3
CNC

image

kseries_parallel1

kseries_parallel2

kseries_parallel3

kseries_parallel4

kseries_parallel_xover1

kseries_parallel_xover2

kseries_parallel_xover3

kseries_parallel_xover4

PEDF 2-core

MAOTS 2-core

PEDF 3-core

MAOTS 3-core

PEDF 4-core

MAOTS 4-core

Figure 4.6. Schedule Length by Task Schedules PEDF [115], Schedule2D [111], and the

proposed approach (MAOTS) on 2, 3, and 4 processor cores.

straints for the integer linear programming formulation. The ILP model is solved by the

open source program linear programming solver, LPsolve5.5 [32]. Both the simulator and

LP solve5.5 are running on a 2.83GHz Intel Core2 Quad processor with 4GB memory.

(2) Performance Metrics.Two performance metrics are used to evaluate the effectiveness of

the proposed approach:

Schedule length. By removing intercore communication overhead, our approach

can reduce the schedule length in each period such that the system performance can be im-

proved by adopting a shorter period. Applying a shorter period implies the improvement for

application throughput, which is the primary concern for streaming applications. For each

benchmark, we compare with the task schedules generated by the algorithmSchedule2D

in [111] and the algorithmPEDF in [115]. Schedule2D [111] is an algorithm that jointly per-

forms processor allocation and task scheduling for streaming applications on multiprocessor

architectures. The generated schedule consists of multiple pipeline stages and it is proved

to be an optimal allocation for the amount of time in each pipeline stage. PEDF [115] is

selected for comparison because of its reasonably good performance for task mapping and

task ordering for multicore platform. We test each benchmark and obtain the schedule length

115

in each period.

Memory usage. By rescheduling tasks with inter-period dependency, moredata

buffers are required to hold intercore communication data.Our approach can generate the

task schedule with the objective of minimizing the memory usage. We compare the proposed

approach with the algorithmSchedule2D in [111] and the algorithmJCCTS in [106].

Both of these schemes allocate tasks into different pipeline stages and change data depen-

dency relations across different periods. JCCTS [106] is a task scheduling technique consid-

ering intercore communication overhead. However, in this technique, the memory usage is

not considered. We present experimental results on memory usage for each benchmark un-

der different numbers of processor cores. In this thesis, wealso propose a heuristic approach

HMAOTS to efficiently obtain a near optimal solution. We compare the memory usage and

time cost of the heuristic approach and the proposed ILP-based optimal solution.

4.5.2 Results and Discussion

In this section, we present the experimental results of the proposed approach and the previous

work in terms of schedule length and memory usage. We usePEDF,Schedule2D,JCCTS,

andMAOTS to represent the experimental results generated by task scheduling in Zhang et

al. [115], Xu et al. [111], Wang et al. [106], and the proposedapproach, respectively.

Figure 4.6 shows the experimental results for schedule length of task schedules PEDF,

Schedule2D, and the proposed approach under 2, 3, and 4 processor cores. The task sched-

ules PEDF and Schedule2D are used to generate the initial task schedule. In Figure 4.6(a),

we normalize the schedule length of PEDF and the proposed approach running on different

number of processor cores by the schedule length of PEDF running on 2 processor cores. In

Figure 4.6(b), we normalize the schedule length of Schedule2D and the proposed approach

running on different number of processor cores by the schedule length of Schedule2D run-

ning on 2 processor cores. For task schedule PEDF, which doesnot change intra-period

data dependency relation, the proposed technique can get more performance gains when the

number of processor cores is increased. This is because, with more processor cores, the par-

116

ATRautoconsumer1

consumer2

telecom3
CNCimagekseries_parallel1

kseries_parallel2

kseries_parallel3

kseries_parallel4

kseries_parallel_xover1

kseries_parallel_xover2

kseries_parallel_xover3

kseries_parallel_xover4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

MAOTS 2-core

JCCTS 2-core

Schedule2D 2-core

MAOTS 3-core

JCCTS 3-core

Schedule2D 3-core

MAOTS 4-core

JCCTS 4-core

Schedule2D 4-core

Figure 4.7. Memory Usage of Schedule2D [111], JCCTS [106], and the Proposed Approach

MAOTS on 2, 3, and 4 Processor Cores.

allelism is accordingly increased with more intercore communications. For benchmarks with

relatively small number of tasks (i.e., auto, consumer2), the reduction of schedule length on

2 processor cores are the same as the one on 3 processor cores or 4 processor cores. This is

due to the parallelism of these benchmarks has been exploited with the smaller number of

processor cores. The additional processor cores may not provide more performance gains.

For task schedule Schedule2D, which changes data dependency relations across different pe-

riods, using more numbers of processor cores will directly increase the number of pipeline

stages in the schedule. From the results, we can see that, with the increasing of the number

of processor cores, the schedule length accordingly decreased. On average, compared with

PEDF and Schedule2D, our approach can achieve 12.25% and 14.71% reduction in schedule

length.

In the second set of experiments, we test the memory usage foreach benchmark un-

der different numbers of processor cores. Figure 4.7 shows the results for memory usage of

task schedules Schedule2D, JCCTS, and the proposed approach under 2, 3, and 4 processor

117

cores. In Figure 4.7, we normalize the memory usage by the memory requirement for Sched-

ule2D running on 4 processor cores. It can be seen from the results that for each benchmark,

the proposed approach gives better memory usage than other two approaches. For memory

usage, our approach can achieve a 32.45% reduction on average compared with Schedule2D,

and a 15.98% reduction on average compared with JCCTS. The task schedule Schedule2D

adopts different pipeline stages and each stage is expectedto be mapped on the processor

cores. Therefore, tasks in the same pipeline stage will havethe same retiming value. This

may cause unnecessary rescheduling for intercore communication tasks and take extra mem-

ory usage to store the intercore communication data. JCCTS is the task schedule that has

the objective of minimizing the prologue. By minimizing theprologue, less pipeline stages

are adopted. However, more intercore communication tasks may be rescheduled into the

prologue, which causes extra memory usage. From the results, our approach can effectively

reduce the intercore communication overhead while minimizing the extra memory usage to

store the intercore communications.

In the third set of experiments, we test the memory usage and the time cost of the pro-

posed heuristic approach (HMAOTS) and the proposed ILP-based approach Memory-Aware

Optimal Task Scheduling (MAOTS). Although the ILP model canobtain optimal solution

for the memory-aware task scheduling problem, it is an NP-hard problem to solve the ILP

model. Therefore, the ILP model may take very long time to getthe results. Table 4.1

presents the time cost for the heuristic approach and the ILP-based optimal solution. From

the experimental results, we can see that ILP-based MAOTS approach takes much longer

time to get results compared with the one from the heuristic approach HMAOTS. For bench-

mark sp rand3 generated by TGFF [28], the ILP-based approach MAOTS cannotget the

results after 3 days, while the heuristic approach HMAOTS still can get the results for less

than one minute.

Figure 4.8 presents the experiential results for the memoryusage of heuristic ap-

proach HMAOTS and the proposed ILP-based optimal task scheduling MAOTS. From the

experimental results, we can see that, for most benchmarks,the heuristic approach can obtain

near-optimal solutions. To generate an optimal solution for a general problem, the ILP-based

118

Table 4.1. Comparison in Time Cost of Heuristic Approach (HMAOTS) and Memory-Aware

Optimal Task Scheduling (MAOTS) on 2, 3, and 4 processor cores.

of # of HMAOTS MAOTS HMAOTS MAOTS HMAOTS MAOTS

Benchmarks task edge (s) (s) (s) (s) (s) (s)

ATR 14 15 0.23 0.92 0.53 13.25 0.53 13.73

auto 6 9 0.23 0.93 0.53 12.15 0.43 7.89

consumer1 7 8 0.43 6.88 0.53 13.40 0.75 36.74

consumer2 5 4 0.23 0.91 0.43 6.88 0.43 6.88

telecom3 6 6 0.53 13.25 0.47 7.52 0.49 12.26

CNC 8 9 0.33 2.97 0.53 13.26 0.53 13.29

image 8 11 0.53 11.77 0.83 53.13 0.83 54.36

kseriesparallel1 30 33 0.54 15.11 0.84 92.22 1.34 216.33

kseriesparallel2 20 19 0.43 6.88 0.63 22.69 0.74 36.26

kseriesparallel3 62 61 0.60 14.57 0.89 56.97 1.01 81.82

kseriesparallel4 47 46 0.44 7.06 0.84 53.78 1.14 137.95

kseriesparallel xover1 30 37 0.54 13.24 1.04 104.22 1.34 226.46

kseriesparallel xover2 21 24 0.74 36.26 0.84 54.77 1.04 105.66

kseriesparallel xover3 38 41 0.58 14.33 1.08 107.88 1.47 248.51

kseriesparallel xover4 27 30 0.58 12.11 0.92 51.14 1.38 213.53

sp rand1 199 279 9.99 2705.56 11.96 4569.76 16.82 13314.68

sp rand2 498 698 25.95 44702.27 32.83 96347.07 34.63 115773.52

sp rand3 998 1452 52.67 – 71.03 – 82.24 –

119

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

M
e

m
o

ry
 u

sa
g

e

HMAOTS 2-core

MAOTS 2-core

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

M
e

m
o

ry
 u

sa
g

e

HMAOTS 3-core

MAOTS 3-core

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

M
e

m
o

ry
 u

sa
g

e

HMAOTS 4-core

MAOTS 4-core

Figure 4.8. Memory Usage of Heuristic Approach (HMAOTS) andMemory-Aware Optimal

Task Scheduling (MAOTS) on 2, 3, and 4 processor cores.

120

approach MAOTS is recommended to be used, which can obtain the optimal solution with

the minimum memory usage. When the task graph becomes too bigfor the ILP model to

solve, the proposed heuristic approach is recommended to beused, which gives near-optimal

results with less time compared with the ILP-based optimal solution.

4.6 Summary

In this chapter, we have considered the task scheduling problem of removing intercore com-

munication overhead for streaming applications running onMPSoC architectures. We totally

removed intercore communication overhead by reschedulingtasks with intra-period data de-

pendencies into inter-period data dependencies, such thatthe execution of computation and

that of intercore communication tasks can be overlapped anda shorter period can be applied.

We performed analysis and presented an ILP model to obtain anoptimal schedule with the

minimum memory usage. We also proposed a heuristic algorithm to efficiently obtain a near

optimal solution. Experimental results show that the proposed approach can significantly

reduce the schedule length and improve the memory usage compared with representative

techniques.

121

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Streaming applications are data intensive and highly parallelizable; therefore, they are very

suitable to be executed on Multiprocessor System-on-Chips(MPSoCs). To fully utilize the

computation capacity of MPSoCs, various techniques have been explored to increase par-

allelism of streaming applications. However, this may cause a large amount of intercore

communications with considerable energy overhead and intercore communication overhead.

In this thesis, we investigated overhead-aware task scheduling schemes for streaming appli-

cations on MPSoC architectures, which can provide comprehensive solutions and generate

optimal task schedules for resource-constrained MPSoC architectures. Specifically, we pro-

posed three scheduling schemes to optimize energy consumption, time performance, and

memory usage of streaming applications on MPSoCs.

• For the first scheme, we proposed a two-phase approach to solve the energy opti-

mization problem for streaming applications on MPSoCs considering various energy

overheads. In the first phase, we proposed a coarse-grained task-level software pipelin-

ing algorithm RDAG to transform a set of periodic dependent tasks into a set of pe-

riodic independent tasks based on the retiming technique. In the second phase, we

proposed a genetic algorithm GeneS for energy optimizationconsidering various over-

heads. We conducted experiments on a set of benchmarks. Experimental results show

that through the combination of software pipelining with DVS and DPM considering

several energy overheads, our approach can fully exploit the potential of MPSoC ar-

122

chitectures and the periodic characteristic of streaming applications to reduce energy

consumption.

• For the second scheme, we studied the problem of minimizing intercore commu-

nication overhead for streaming applications running on MPSoC architectures. We

jointly optimized computation task schedule and intercorecommunication task sched-

ule such that intercore communication overheads can be totally removed and the sched-

ule length can be minimized. We first performed schedulability analysis and theo-

retically obtained the upper bound on the prologue length ofthe computation task

schedule. Then we presented an ILP formulation to generate an optimal objective

task schedule. Experimental results show that our technique can significantly reduce

schedule length and energy consumption compared with representative techniques.

• For the third scheme, we considered the task scheduling problem of removing intercore

communication overhead for streaming applications running on MPSoC architectures

to minimize the extra memory usage caused by retiming. We totally removed intercore

communication overhead by rescheduling tasks with intra-period data dependencies

into inter-period data dependencies, such that the execution of computation and that of

intercore communication tasks can be overlapped and a shorter period can be applied.

We performed analysis and presented an ILP model to obtain anoptimal schedule with

the minimum memory usage. We also proposed a heuristic algorithm to efficiently

obtain a near optimal solution. Experimental results show that the proposed approach

can significantly reduce schedule length and improve memoryusage compared with

representative techniques.

The proposed schemes are integrated into the overhead-aware task scheduling frame-

work, which can be a good supplement to the previous work on modeling for MPSoC archi-

tectures, communication protocols and standards, as well as active research on communication-

centric design and exploration for MPSoC architectures. The exploration of our design

methodology can create a comprehensive study that improvesupon the state-of-the-art. Re-

123

sults of applying our schemes on several benchmarks for embedded systems have shown the

effectiveness of the proposed schemes for resource-constrained MPSoC designs.

5.2 Future Work

The work presented in this thesis can be extended in different directions in the future.

• First, task splitting and task migration are not allowed in this work. How to combine

our approach with task splitting and task migration can be a future direction for us to

explore.

• Second, our approach is based on the shared bus architecture. We will extend our

approach to other intercore communication infrastructures (such as crossbar and mesh)

and propose a general model that can be applied to different system architectures.

• Third, for the minimization of the intercore communicationoverhead, task mapping

of computation tasks is predefined. It is an interesting problem to exploit the trade-off

between intercore communication overhead and energy consumption of the tasks.

• Finally, a possible research direction is to integrate our technique into a compiler or

real-time operating systems to leverage system-wide energy consumption.

124

REFERENCES

[1] Subrata Acharya and Rabi Mahapatra. A dynamic slack management technique

for real-time distributed embedded systems.IEEE Transactions on Computers,

57(2):215–230, 2008.

[2] Andrea Acquaviva, Andrea Alimonda, Salvatore Carta, and Michele Pittau. Assessing

task migration impact on embedded soft real-time streamingmultimedia applications.

EURASIP Journal on Embedded Systems, 2008:1–15, 2008.

[3] Enrique Alba and José M. Troya. A survey of parallel distributed genetic algorithms.

Complexity, 4(4):31–52, 1999.

[4] Tarek A. AlEnawy and Hakan Aydin. Energy-aware task allocation for rate monotonic

scheduling. InProceedings of the 11th IEEE Real Time on Embedded Technology and

Applications Symposium (RTAS ’05), pages 213–223, 2005.

[5] Alan Allan, Don Edenfeld, William H. Joyner, Jr., AndrewB. Kahng, Mike Rodgers,

and Yervant Zorian. 2001 technology roadmap for semiconductors. Computer,

35:42–53, January 2002.

[6] Altera Corporation. Altera Avalon Interface Specifications.

http://www.altera.com/literature/manual/mnlavalonspec.pdf, 2010.

[7] AMD. Mobile AMD Athlon 4 processor model 6 CPGA data sheet. Advanced Micro

Devices, Techical Report 24319, November 2001.

[8] ARM. ARM AMBA specification and multilayer AHB specification (rev 2.0).

http://www.arm.com/, 2001.

125

[9] ARM. ARM AMBA 3.0 AXI specification. http://www.arm.com/armtech/AXI, 2011.

[10] ARM. ARM11 MPCore multicore processor microarchitecture.

http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php, June

2011.

[11] Hakan Aydin, Vinay Devadas, and Dakai Zhu. System-level energy management for

periodic real-time tasks. InProceedings of the 27th IEEE International Real-Time

Systems Symposium (RTSS ’06), pages 313–322, 2006.

[12] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedro Mej´ıa-Alvarez. Determining

optimal processor speeds for periodic real-time tasks withdifferent power characteris-

tics. InProceedings of the 13th Euromicro Conference on Real-Time Systems (ECRTS

’01), pages 225–232, 2001.

[13] Hakan Aydin and Qi Yang. Energy-aware partitioning formultiprocessor real-time

systems. InProceedings of the 17th International Symposium on Parallel and Dis-

tributed Processing (IPDPS ’03), pages 113–121, 2003.

[14] Neal K. Bambha and Shuvra S. Bhattacharyya. A joint power/performance optimiza-

tion algorithm for multiprocessor systems using a period graph construct. InProceed-

ings of the 13th international symposium on System synthesis (ISSS ’00), pages 91–97,

2000.

[15] Sanjoy K. Baruah, Louis E. Rosier, and R. R. Howell. Algorithms and complexity

concerning the preemptive scheduling of periodic, real-time tasks on one processor.

Real-Time Systems, 2(4):301–324, 1990.

[16] Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. Speed modulation in energy-

aware real-time systems. InProceedings of the 17th Euromicro Conference on Real-

Time Systems (ECRTS ’05), pages 3–10, 2005.

126

[17] Thomas David Burd. Energy-Efficient processor system design. PhD thesis, De-

partment of Electrical Engineering and Computer Sciences,University of California,

Berkeley, 2001.

[18] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview. InPro-

ceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis (CODES+ISSS ’03), pages 19–24, 2003.

[19] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Turchetti.

Transaction-level models for AMBA bus architecture using SystemC 2.0. InPro-

ceedings of the conference on Design, Automation and Test inEurope (DATE ’03),

pages 26–31, 2003.

[20] Liang-Fang Chao and Andrea LaPaugh. Rotation scheduling: a loop pipelining algo-

rithm. In Proceedings of the 30th international Design Automation Conference (DAC

’93), pages 566–572, 1993.

[21] Liang-Fang Chao and Edwin Hsing-Mean Sha. Static scheduling of uniform nested

loops. InProceedings of 7th International Parallel Processing Symposium (IPPS ’93),

pages 254–258, 1993.

[22] Jian-Jia Chen and Tei-Wei Kuo. Energy-efficient scheduling of periodic real-time

tasks over homogeneous multiprocessors. InProceedings of the 2nd International

Workshop on Power-Aware Real-Time Computing (PARC’05), pages 30–35, 2005.

[23] Jian-Jia Chen, Tei-Wei Kuo, and Chi-Sheng Shih. 1 +ǫ approximation clock rate

assignment for periodic real-time tasks on a voltage-scaling processor. InProceedings

of the 5th ACM international conference on Embedded software (EMSOFT ’05), pages

247–250, 2005.

[24] Ya-Shu Chen, Chi-Sheng Shih, and Tei-Wei Kuo. Dynamic task scheduling and pro-

cessing element allocation for multi-function SoCs. InProceedings of the 13th IEEE

Real Time and Embedded Technology and Applications Symposium (RTAS ’07), pages

81–90, 2007.

127

[25] Young-Sin Cho, Eun-Ju Choi, and Kyoung-Rok Cho. Modeling and analysis of the

system bus latency on the SoC platform. InProceedings of the 2006 international

workshop on System-level interconnect prediction (SLIP ’06), pages 67–74, 2006.

[26] Chen-Ling Chou and Radu Marculescu. User-aware dynamic task allocation in

networks-on-chip. InProceedings of the conference on Design, automation and test

in Europe (DATE ’08), pages 1232–1237, 2008.

[27] Seo DaeHo and Mithuna Thottethodi. Disjoint-path routing: Efficient communication

for streaming applications. InProceedings of the 2009 IEEE International Symposium

on Parallel&Distributed Processing (IPDPS ’09), pages 1–12, 2009.

[28] Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: task graphs for free.

In Proceedings of the Sixth International Workshop on Hardware/Software Codesign

(CODES ’98), pages 97–101, 1998.

[29] Emiliano Dolif, Michele Lombardi, Martino Ruggiero, Michela Milano, and Luca

Benini. Communication-aware stochastic allocation and scheduling framework for

conditional task graphs in multi-processor systems-on-chip. In Proceedings of the 7th

ACM & IEEE international conference on Embedded software (EMSOFT ’07), pages

47–56, 2007.

[30] Hesham El-Rewini, Hesham H. Ali, and Ted Lewis. Task scheduling in multiprocess-

ing systems.Computer, 28(12):27–37, 1995.

[31] Mohammad H. Foroozannejad, Matin Hashemi, Trevor L. Hodges, and Soheil Ghiasi.

Look into details: the benefits of fine-grain streaming buffer analysis. InProceedings

of the ACM SIGPLAN/SIGBED 2010 conference on Languages, compilers, and tools

for embedded systems (LCTES ’10), pages 27–36, 2010.

[32] Free Software Foundation, Inc. Lpsolve 5.5. http://lpsolve.sourceforge.net/5.5/,

2010.

128

[33] Freescale Semiconductor, Inc. i.MX35 Multimedia Applications Processors.

http://www.freescale.com/webapp/sps/site/taxonomy.jsp?code=IMX35FAMILY,

2010.

[34] Guy Gogniat, Michel Auguin, Luc Bianco, and Alain Pegatoquet. Communication

synthesis and HW/SW integration for embedded system design. In Proceedings of the

6th international workshop on Hardware/software codesign(CODES/CASHE ’98),

pages 49–53, 1998.

[35] Sathish Gopalakrishnan, Lui Sha, and Marco Caccamo. Hard real-time communica-

tion in bus-based networks. InProceedings of the 25th IEEE International Real-Time

Systems Symposium (RTSS ’04), pages 405–414, 2004.

[36] Flavius Gruian and Krzysztof Kuchcinski. LEneS: task scheduling for low-energy

systems using variable supply voltage processors. InProceedings of the 2001 Asia

and South Pacific Design Automation Conference (ASP-DAC ’01), pages 449–455,

2001.

[37] Zonghua Gu, Xiuqiang He, and Mingxuan Yuan. Optimization of static task and

bus access schedules for time-triggered distributed embedded systems with model-

checking. InProceedings of the 44th annual Design Automation Conference (DAC

’07), pages 294–299, 2007.

[38] Pi-Cheng Hsiu, Der-Nien Lee, and Tei-Wei Kuo. Multi-layer bus optimization for

real-time task scheduling with chain-based precedence constraints. InProceedings of

the 30th IEEE Real-Time Systems Symposium (RTSS ’09), pages 479–488, 2009.

[39] Jingcao Hu and Radu Marculescu. Energy-aware communication and task scheduling

for network-on-chip architectures under real-time constraints. InProceedings of the

conference on Design, automation and test in Europe (DATE ’04), pages 234–239,

2004.

129

[40] Shaoxiong Hua and Gang Qu. Voltage setup problem for embedded systems with

multiple voltages. IEEE Transactions on Very Large Scale Integration Systems,

13(7):869–872, 2005.

[41] Chia-Mei Hung, Jian-Jia Chen, and Tei-Wei Kuo. Energy-efficient real-time task

scheduling for a DVS system with a non-DVS processing element. In Proceedings of

the 27th IEEE International Real-Time Systems Symposium (RTSS ’06), pages 303–

312, 2006.

[42] IBM. IBM CoreConnect bus architecture.https://www-01.ibm.com/chips/ tech-

lib/techlib.nsf/products/CoreConnectBusArchitecture, 2011.

[43] Ilya Issenin and Nikil Dutt. Data reuse driven energy-aware MPSoC co-synthesis

of memory and communication architecture for streaming applications. InProceed-

ings of the 4th international conference on Hardware/software codesign and system

synthesis (CODES+ISSS ’06), pages 294–299, 2006.

[44] Ravindra Jejurikar and Rajesh Gupta. Dynamic voltage scaling for systemwide en-

ergy minimization in real-time embedded systems. InProceedings of the 2004 in-

ternational symposium on Low power electronics and design (ISLPED ’04), pages

78–81, 2004.

[45] Niraj K. Jha. Low power system scheduling and synthesis. In Proceedings of the

2001 IEEE/ACM international conference on Computer-aideddesign (ICCAD ’01),

pages 259–263, 2001.

[46] David S. Johnson.Near-optimal bin packing algorithms. Massachusetts Institute of

Technology Press, Cambridge, MA, USA, 1973.

[47] Praveen Kalla, X. Sharon Hu, and Jörg Henkel. A flexibleframework for commu-

nication evaluation in SoC design.International Journal of Parallel Programming,

36:457–477, October 2008.

130

[48] Vida Kianzad, Shuvra S. Bhattacharyya, and Gang Qu. CASPER: An integrated

energy-driven approach for task graph scheduling on distributed embedded systems.

In Proceedings of the 2005 IEEE International Conference on Application-Specific

Systems, Architecture Processors (ASAP ’05), pages 191–197, 2005.

[49] Minyoung Kim, Sudarshan Banerjee, Nikil Dutt, and Nalini Venkatasubramanian.

Design space exploration of real-time multi-media MPSoCs with heterogeneous

scheduling policies. InProceedings of the 4th international conference on Hard-

ware/software codesign and system synthesis (CODES+ISSS ’06), pages 16–21, 2006.

[50] Nam Sung Kim, Taeho Kgil, K. Bowman, V. De, and T. Mudge. Total power-optimal

pipelining and parallel processing under process variations in nanometer technology.

In Proceedings of the 2005 IEEE/ACM International conferenceon Computer-aided

design (ICCAD ’05), pages 535–540, 2005.

[51] Namyun Kim, Minsoo Ryu, Seongsoo Hong, M. Saksena, Chong-Ho Choi, and Heon-

shik Shin. Visual assessment of a real-time system design: acase study on a CNC

controller. InProceedings of the 17th IEEE International Real-Time Systems Sympo-

sium (RTSS ’96), pages 300–310, 1996.

[52] Sungchan Kim, Chaeseok Im, and Soonhoi Ha. Schedule-aware performance esti-

mation of communication architecture for efficient design space exploration. InPro-

ceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis (CODES+ISSS ’03), pages 195–200, 2003.

[53] Sungchan Kim, Chaeseok Im, and Soonhoi Ha. Schedule-aware performance esti-

mation of communication architecture for efficient design space exploration.IEEE

Transactions on Very Large Scale Integration Systems, 13:539–552, May 2005.

[54] Young-Taek Kim, Taehun Kim, Youngduk Kim, Chulho Shin,Eui-Young Chung,

Kyu-Myung Choi, Jeong-Taek Kong, and Soo-Kwan Eo. Fast and accurate transac-

tion level modeling of an extended AMBA 2.0 bus architecture. In Proceedings of the

131

conference on Design, Automation and Test in Europe (DATE ’05), pages 138–139,

2005.

[55] Peter Voigt Knudsen and Jan Madsen. Communication estimation for hard-

ware/software codesign. InProceedings of the 6th international workshop on Hard-

ware/software codesign (CODES/CASHE ’98), pages 55–59, 1998.

[56] Peter Voigt Knudsen and Jan Madsen. Integrating communication protocol selection

with partitioning in hardware/software codesign. InProceedings of the 11th interna-

tional symposium on System synthesis (ISSS ’98), pages 111–116, 1998.

[57] Kanishka Lahiri, Sujit Dey, and Anand Raghunathan. Performance analysis of sys-

tems with multi-channel communication architectures. InProceedings of the 13th

International Conference on VLSI Design (VLSID ’00), pages 530–537, 2000.

[58] Kanishka Lahiri, Anand Raghunathan, and Sujit Dey. System-level performance

analysis for designing on-chip communication architectures. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 20(6):768–783, 2001.

[59] David Landskov, Scott Davidson, Bruce Shriver, and Patrick W. Mallett. Local mi-

crocode compaction techniques.ACM Computing Surveys, 12(3):261–294, Septem-

ber 1980.

[60] John P. Lehoczky and Lui Sha. Performance of real-time bus scheduling algo-

rithms. InProceedings of the 1986 ACM SIGMETRICS joint internationalconference

on Computer performance modelling, measurement and evaluation (SIGMETRICS

’86/PERFORMANCE ’86), pages 44–53, 1986.

[61] Charles E. Leiserson and James B. Saxe. Retiming synchronous circuitry.Algorith-

mica, 6:5–35, 1991.

[62] Jian Li and José F. Martı́nez. Power-performance considerations of parallel comput-

ing on chip multiprocessors.ACM Transactions on Architecture and Code Optimiza-

tion, 2(4):397–422, 2005.

132

[63] Yu-Hsien Lin, Chiaheng Tu, Chi-Sheng Shih, and Shih-Hao Hung. Zero-buffer inter-

core process communication protocol for heterogeneous multi-core platforms. In15th

IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA ’09), pages 69–78, 2009.

[64] Cong Liu and James H. Anderson. Scheduling suspendable, pipelined tasks with non-

preemptive sections in soft real-time multiprocessor systems. InProceedings of the

16th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS

’10), pages 23–32, 2010.

[65] Hui Liu, Zili Shao, Meng Wang, and Ping Chen. Overhead-aware system-level joint

energy and performance optimization for streaming applications on multiprocessor

systems-on-chip. InProceedings of the 2008 Euromicro Conference on Real-Time

Systems (ECRTS ’08), pages 92–101, 2008.

[66] Hui Liu, Zili Shao, Meng Wang, Junzhao Du, Chun Jason Xue, and Zhiping Jia. Com-

bining coarse-grained software pipelining with DVS for scheduling real-time periodic

dependent tasks on multi-core embedded systems.Journal of Signal Processing Sys-

tems, 57(2):249–262, 2009.

[67] Mirko Loghi, Federico Angiolini, Davide Bertozzi, Luca Benini, and Roberto

Zafalon. Analyzing on-chip communication in a MPSoC environment. InProceed-

ings of the conference on Design, automation and test in Europe (DATE ’04), pages

752–757, 2004.

[68] Alessio Guerri Luca Benini, Davide Bertozzi and Michela Milano. Allocation,

scheduling and voltage scaling on energy aware MPSoCs. InLecture Notes in Com-

puter Science, Integration of AI and OR Techniques in Constraint Programming for

Combinatorial Optimization Problems, pages 44–58. Springer, 2006.

[69] Jiong Luo and Niraj K. Jha. Power-conscious joint scheduling of periodic task graphs

and aperiodic tasks in distributed real-time embedded systems. InProceedings of the

133

2000 IEEE/ACM international conference on Computer-aideddesign (ICCAD ’00),

pages 357–364, 2000.

[70] Jiong Luo and Niraj K. Jha. Power-efficient scheduling for heterogeneous distributed

real-time embedded systems.IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 26(6):1161–1170, June 2007.

[71] A. Mahalanobis, B. V. K. Vijaya Kumar, and S. R. F. Sims. Distance-classifier cor-

relation filters for multiclass target recognition. InApplied Optics, volume 35, pages

3127–3133, 1996.

[72] Steven M. Martin, Krisztian Flautner, Trevor Mudge, and David Blaauw. Combined

dynamic voltage scaling and adaptive body biasing for lowerpower microprocessors

under dynamic workloads. InProceedings of the 2002 IEEE/ACM international con-

ference on Computer-aided design (ICCAD ’02), pages 721–725, 2002.

[73] Samy Meftali, Ferid Gharsalli, Frederic Rousseau, andAhmed A. Jerraya. An op-

timal memory allocation for application-specific multiprocessor system-on-chip. In

Proceedings of the 14th international symposium on Systemssynthesis (ISSS ’01),

pages 19–24, 2001.

[74] Pedro Mejia-Alvarez, Eugene Levner, and Daniel Mossé. Adaptive scheduling server

for power-aware real-time tasks.ACM Transactions in Embedded Computing Sys-

tems, 3(2):284–306, 2004.

[75] Melanie Mitchell.An introduction to genetic algorithms. The MIT Press, Cambridge,

MA, USA, 1996.

[76] Bren Mochocki, Xiaobo Sharon Hu, and Gang Quan. A unifiedapproach to variable

voltage scheduling for nonideal DVS processors.IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 23(9):1370–1377, 2004.

134

[77] Linwei Niu and Gang Quan. System-wide dynamic power management for portable

multimedia devices. InProceedings of the Eighth IEEE International Symposium on

Multimedia (ISM ’06), pages 97–104, 2006.

[78] Osamu Ogawa, Sylvain Bayon de Noyer, Pascal Chauvet, Katsuya Shinohara, Yoshi-

haru Watanabe, Hiroshi Niizuma, Takayuki Sasaki, and Yuji Takai. A practical ap-

proach for bus architecture optimization at transaction level. In Proceedings of the

conference on Design, Automation and Test in Europe (DATE ’03), pages 176–181,

2003.

[79] OpenCores. WISHBONE System-on-Chip (SoC) Interconnect Architecture.

http://cdn.opencores.org/downloads/wbspecb4.pdf, 2010.

[80] O. Ozturk, M. Kandemir, S. W. Son, and M. Karakoy. Selective code/data migra-

tion for reducing communication energy in embedded MPSoC architectures. InPro-

ceedings of the 16th ACM Great Lakes symposium on VLSI (GLSVLSI ’06), pages

386–391, 2006.

[81] Vivek Pandey, Weihang Jiang, Yuanyuan Zhou, and Ricardo Bianchini. DMA-aware

memory energy management. InProceedings of the twelfth international symposium

on High-Performance Computer Architecture (HPCA ’06), pages 133–144, 2006.

[82] Sudeep Pasricha and Nikil Dutt.On-Chip Communication Architectures: System on

chip interconnect. Morgan Kaufmann Publishers, Burlington, MA, USA, 2008.

[83] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Extending the trans-

action level modeling approach for fast communication architecture exploration. In

Proceedings of the 41st annual Design Automation Conference (DAC ’04), pages 113–

118, 2004.

[84] Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Fast exploration

of bus-based on-chip communication architectures. InProceedings of the 2nd

IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-

tem synthesis (CODES+ISSS ’04), pages 242–247, 2004.

135

[85] Nelson Luiz Passos and Edwin Hsing-Mean Sha. Achievingfull parallelism using

multidimensional retiming.IEEE Transactions on Parallel and Distributed Systems,

7(11):1150–1163, 1996.

[86] D.-T. Peng and K.G. Shin. Static allocation of periodictasks with precedence con-

straints in distributed real-time systems. InProceedings of the 9th International Con-

ference on Distributed Computing Systems (ICDCS ’89), pages 190 –198, 1989.

[87] Paul Pop, Petru Eles, Zebo Peng, and Traian Pop. Analysis and optimization of dis-

tributed real-time embedded systems. InProceedings of the 41st annual conference

on Design automation (DAC ’04), pages 593–625, 2004.

[88] Traian Pop, Petru Eles, and Zebo Peng. Design optimization of mixed time/event-

triggered distributed embedded systems. InProceedings of the 1st IEEE/ACM/IFIP

international conference on Hardware/software codesign and system synthesis

(CODES+ISSS ’03), pages 83–89, New York, NY, USA, 2003. ACM.

[89] Shiv Prakash and Alice C. Parker. Readings in hardware/software co-design. chapter

SOS: synthesis of application-specific heterogeneous multiprocessor systems, pages

324–337. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

[90] Gang Quan and X. Sharon Hu. Minimum energy fixed-priority scheduling for variable

voltage processor. InProceedings of the conference on Design, automation and test

in Europe (DATE ’02), pages 782–787, 2002.

[91] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated

Circuits, 2nd edition. Prentice Hall, Englewood Cliffs, N.J, 2002.

[92] Frank-Michael Renner, Juergen Becker, and Manfred Glesner. Communication per-

formance models for architecture-precise prototyping of real-time embedded systems.

In Proceedings of the 10th IEEE International Workshop on Rapid System Prototyping

(RSP ’99), pages 108–113, 1999.

136

[93] Frank-Michael Renner, Juergen Becker, and Manfred Glesner. Automated commu-

nication synthesis for architecture-precise rapid prototyping of real-time embedded

system. InProceedings of the 11th IEEE International Workshop on Rapid System

Prototyping (RSP 2000), pages 154–159, 2000.

[94] Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebo Peng. Bus access optimization

for predictable implementation of real-time applicationson multiprocessor systems-

on-chip. InProceedings of the 28th IEEE International Real-Time Systems Sympo-

sium (RTSS ’07), pages 49–60, 2007.

[95] Martino Ruggiero, Alessio Guerri, Davide Bertozzi, Francesco Poletti, and Michela

Milano. Communication-aware allocation and scheduling framework for stream-

oriented multi-processor systems-on-chip. InProceedings of the conference on De-

sign, automation and test in Europe (DATE ’06), pages 3–8, 2006.

[96] Saowanee Saewong and Ragunathan (Raj) Rajkumar. Practical voltage-scaling for

fixed-priority RT-systems. InProceedings of the The 9th IEEE Real-Time and Em-

bedded Technology and Applications Symposium (RTAS ’03), pages 106–114, 2003.

[97] Gunar Schirner and Rainer Dömer. Quantitative analysis of transaction level models

for the AMBA bus. InProceedings of the conference on Design, automation and test

in Europe (DATE ’06), pages 230–235, 2006.

[98] Luc Séméria and Abhijit Ghosh. Methodology for hardware/software co-verification

in C/C++. In Proceedings of the 2000 Asia and South Pacific Design Automation

Conference (ASP-DAC ’00), pages 405–408, 2000.

[99] Zili Shao, Meng Wang, Ying Chen, Chun Xue, Meikang Qiu, and Laurence T. Yang.

Real-time dynamic voltage loop scheduling for multi-core embedded systems.IEEE

Transactions on Circuits and Systems II (TCAS-II), 54(5):445–449, May 2007.

[100] Dongkun Shin, Jihong Kim, and Seongsoo Lee. Low-energy intra-task voltage

scheduling using static timing analysis. InProceedings of the 38th annual Design

Automation Conference (DAC ’01), pages 438–443, 2001.

137

[101] Sonics Inc. SonicsSX SMART Interconnect solution.

http://www.sonicsinc.com/sonicsSX.htm, 2010.

[102] STMicroelectronics. STBus Interconnect.http://www.st.com/stonline/products/ tech-

nologies11302010/soc/stbus.htm, 2010.

[103] Fei Sun, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha. Synthesis of

application-specific heterogeneous multiprocessor architectures using extensible pro-

cessors. InProceedings of the 18th International Conference on VLSI Design (VLSID

’05), pages 551–556, 2005.

[104] Keith S. Vallerio and Niraj K. Jha. Task graph extraction for embedded system syn-

thesis. InProceedings of the 16th International Conference on VLSI Design (VLSID

’03), pages 480–486, 2003.

[105] Girish Varatkar and Radu Marculescu. Communication-aware task scheduling and

voltage selection for total systems energy minimization. In Proceedings of the 2003

IEEE/ACM international conference on Computer-aided design (ICCAD ’03), pages

510–517, 2003.

[106] Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, and Zili Shao. Optimal task schedul-

ing by removing inter-core communication overhead for streaming applications on

MPSoC. InProceedings of the 16th IEEE Real Time and Embedded Technology and

Applications Symposium (RTAS ’10), pages 195–204, 2010.

[107] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard,and Ajay Luthra. Overview of

the H.264/AVC video coding standard.IEEE Transactions on Circuits and Systems

for Video Technology, 13(7):560–576, 2003.

[108] Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard J. M. Smit. Buffer capacity

computation for throughput constrained streaming applications with data-dependent

inter-task communication. InProceedings of the 14th IEEE Real Time and Embedded

Technology and Applications Symposium (RTAS ’08), pages 183–194, 2008.

138

[109] Wayne Wolf, A.A. Jerraya, and Grant Martin. Multiprocessor System-on-Chip (MP-

SoC) Technology.IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 27(10):1701 –1713, oct. 2008.

[110] Cathy Qun Xu, Chun Jason Xue, Bessie C. Hu, and Edwin H. M. Sha. Computation

and data transfer co-scheduling for interconnection bus minimization. InProceedings

of the 2009 Asia and South Pacific Design Automation Conference (ASP-DAC ’09),

pages 311–316, 2009.

[111] Ruibin Xu, Rami Melhem, and Daniel Mosse. Energy-aware scheduling for streaming

applications on chip multiprocessors. InProceedings of the 28th IEEE International

Real-Time Systems Symposium (RTSS ’07), pages 25–38, 2007.

[112] Chengmo Yang and Alex Orailoglu. Towards no-cost adaptive MPSoC static sched-

ules through exploitation of logical-to-physical core mapping latitude. InProceedings

of the conference on Design, automation and test in Europe (DATE ’09), pages 63–69,

2009.

[113] Ti-Yen Yen and Wayne Wolf. Communication synthesis for distributed embedded sys-

tems. InProceedings of the 1995 IEEE/ACM international conferenceon Computer-

aided design (ICCAD ’95), pages 288–294, 1995.

[114] Yang Yu and Viktor K. Prasanna. Power-aware resource allocation for independent

tasks in heterogeneous real-time systems. InProceedings of the 9th International

Conference on Parallel and Distributed Systems (ICPADS ’02), pages 341–348, 2002.

[115] Yumin Zhang, Xiaobo Sharon Hu, and Danny Z. Chen. Task scheduling and volt-

age selection for energy minimization. InProceedings of the 39th annual Design

Automation Conference (DAC ’02), pages 183–188, 2002.

[116] Xiliang Zhong and Cheng-Zhong Xu. Frequency-aware energy optimization for

real-time periodic and aperiodic tasks. InProceedings of the 2007 ACM SIG-

PLAN/SIGBED conference on Languages, compilers, and toolsfor embedded systems

(LCTES ’07), pages 21–30, 2007.

139

[117] Dakai Zhu, Rami Melhem, and Bruce R. Childers. Scheduling with dynamic volt-

age/speed adjustment using slack reclamation in multiprocessor real-time systems.

IEEE Transactions on Parallel and Distributed Systems, 14(7):686–700, 2003.

[118] Jun Zhu, Ingo Sander, and Axel Jantsch. Energy efficient streaming applications with

guaranteed throughput on MPSoCs. InProceedings of the 8th ACM international

conference on Embedded software (EMSOFT ’08), pages 119–128, 2008.

[119] Jun Zhu, Ingo Sander, and Axel Jantsch. Buffer minimization of real-time streaming

applications scheduling on hybrid CPU/FPGA architectures. In Proceedings of the

conference on Design, automation and test in Europe (DATE ’09), pages 1506 – 1511,

2009.

[120] Qian Zhu and Gagan Agrawal. Resource allocation for distributed streaming applica-

tions. InProceedings of the 2008 37th International Conference on Parallel Process-

ing (ICPP ’08), pages 414–421, 2008.

140

	927_001
	927_002
	927_003
	927_004
	927_005
	927_006
	927_007
	927_008
	927_009
	927_010
	927_011
	927_012
	927_013
	927_014
	927_015
	927_016
	927_017
	927_018
	927_019
	927_020
	927_021
	927_022
	927_023
	927_024
	927_025
	927_026
	927_027
	927_028
	927_029
	927_030
	927_031
	927_032
	927_033
	927_034
	927_035
	927_036
	927_037
	927_038
	927_039
	927_040
	927_041
	927_042
	927_043
	927_044
	927_045
	927_046
	927_047
	927_048
	927_049
	927_050
	927_051
	927_052
	927_053
	927_054
	927_055
	927_056
	927_057
	927_058
	927_059
	927_060
	927_061
	927_062
	927_063
	927_064
	927_065
	927_066
	927_067
	927_068
	927_069
	927_070
	927_071
	927_072
	927_073
	927_074
	927_075
	927_076
	927_077
	927_078
	927_079
	927_080
	927_081
	927_082
	927_083
	927_084
	927_085
	927_086
	927_087
	927_088
	927_089
	927_090
	927_091
	927_092
	927_093
	927_094
	927_095
	927_096
	927_097
	927_098
	927_099
	927_100
	927_101
	927_102
	927_103
	927_104
	927_105
	927_106
	927_107
	927_108
	927_109
	927_110
	927_111
	927_112
	927_113
	927_114
	927_115
	927_116
	927_117
	927_118
	927_119
	927_120
	927_121
	927_122
	927_123
	927_124
	927_125
	927_126
	927_127
	927_128
	927_129
	927_130
	927_131
	927_132
	927_133
	927_134
	927_135
	927_136
	927_137
	927_138
	927_139
	927_140
	927_141
	927_142
	927_143
	927_144
	927_145
	927_146
	927_147
	927_148
	927_149
	927_150
	927_151
	927_152
	927_153
	927_154
	927_155
	927_156

