THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the
printed version, the printed version shall prevail.

THE HONG KONG POLYTECHNIC UNIVERSITY
DEPARTMENT OF COMPUTING

Overhead-Aware Real-Time Scheduling for
Streaming Applications on Multiprocessor

Systems-on-Chip

By
YI WANG

A Thesis Submitted in Partial Fulfillment of
the Requirements for the Degree of

Doctor of Philosophy

July 2011

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

CERTIFICATE OF ORIGINALITY

| hereby declare that this thesis is my own work and that, ¢ddst of my knowledge and
belief, it reproduces no material previously published aitten, nor material that has been
accepted for the award of any other degree or diploma, exdepte due acknowledgement

has been made in the text.

(Signature)

(Name of Student)

ABSTRACT

With increasing demand for high-performance multimedibattery-driven mobile devices,
multicore architecture such as MPSoC (Multiprocessoreégsin- Chip) is becoming widely
adopted in embedded systems. When real-time streamingajp@hs such as Internet video
conferences and surveillance digital video recordersxewged on such chip multiproces-
sors, both time performance and energy consumption need tmihsidered. In order to
fully take advantage of the multicore architecture of MPSo@rious techniques have been
proposed to explore and increase parallelism of streanpptications. These paralleliza-
tion techniques usually impose a large amount of interconensunications with significant
energy overhead and intercore communication overhead. iBynmzing these overheads,
a shorter period can be applied and system performance sueheagy consumption and
memory usage can be improved. In this thesis, we have attélokse problems from several
aspects including the optimization of time performancesrgy consumption, and memory

usage for streaming applications on MPSoCs consideringusoverheads.

First, we focus on solving the energy optimization problemreal-time streaming
applications on MPSoCs by combining task-level coars@gdasoftware pipelining with
DPM (dynamic power management) and DVS (dynamic voltagkengpaconsidering transi-
tion overhead, intercore communication, and discretegeltevels. We propose a two-phase
approach to solve the problem. In the first phase, we propasage-grained task paral-
lelization algorithm to transform a periodic dependenktgaph into a set of independent
tasks by exploiting the periodic feature of streaming aggtions. In the second phase, we
propose a genetic algorithm that can search and find the tlestisle with the minimum
energy consumption. Experimental results show that ourcgmh can achieve a 24.4% re-

duction in energy consumption compared with previous work.

Second, we jointly optimize computation and communicata&sk scheduling for
streaming applications on MPSoCs with the objective of mining schedule length by
totally removing intercore communication overhead. By imiging schedule length, the
system performance can be improved by adopting a smalledoer exploring the slacks
generated for energy reduction with DVS. To guarantee thedidability of communication
tasks, we perform the schedulability analysis, and thexaigt obtain the upper bound of
the times needed to reschedule each computation task. Bagbé analysis, we formulate
the scheduling problem as an ILP (Integer Linear Programgjniormulation and obtain
an optimal solution. Experimental results show that ouhmégue can achieve a 27.72%
reduction in schedule length and a 14.98% reduction in gn@gsumption compared with

previous work.

Third, we study the problem of removing intercore commutiicaoverhead for
streaming applications on MPSoCs with the objective of miming the overall memory
usage. The intercore communication overhead not only itsfiace performance consider-
ably but also influences the total memory usage of MPSoCtathre. Our basic idea is to
let tasks with intra-period data dependencies transforimtés-period data dependencies so
as to totally remove the intercore communication overhdadsolve the problem, we first
perform analysis and obtain the bounds of the times needezsbthedule each task. Then
we formulate the scheduling problem as an ILP model to old@aioptimal schedule. We
also propose a heuristic approach to efficiently obtain a ogtmal solution. Experimental
results show that the proposed approach can significardiyceethe schedule length and

improve the memory usage compared with previous work.

Keywords: Real-time, task scheduling, energy overhead, communitatrerhead, stream-

ing applications, MPSoC.

PUBLICATIONS

Journal Papers

1. Yi Wang, Hui Liu, Duo Liu, Zhiwei Qin, Zili Shao, E. H.-M. Sha, “Ovedad-Aware
Energy Optimization for Real-Time Streaming Applicati@msMultiprocessor System-
on-Chip”,ACM Transactions on Design Automation of Electronic Syst@@DAES)
Volume 16, Issue 2, pages 14:1-14:32, March 2011.

2. Yi Wang, Duo Liu, Zhiwei Qin, Zili Shao, “Optimally Removing Intgtore Com-
munication Overhead for Streaming Applications on MPSe@sicepted InlEEE

Transactions on Computers (T.Q011.

3. Duo Liu, Yi Wang, Zili Shao, Minyi Guo, Jingling Xue, “Optimally Maximizing
Iteration-Level Loop Parallelism”, Accepted IEEE Transactions on Parallel and

Distributed Systems (TPD32011.

4. Duo Liu,Yi Wang, Zhiwei Qin, Zili Shao, Yong Guan, “A Space Reuse Strategy fo
Flash Translation Layers in SLC NAND Flash Memory Storagst&ws”, Accepted
in IEEE Transactions on Very Large Scale Integration Systan& 1) 2011.

5. Meng WangYi Wang, Duo Liu, Zhiwei Qin, Zili Shao, “Compiler-Assisted Leakag
Aware Loop Scheduling for Embedded VLIW DSP ProcessdesSevier Journal of
Systems and Software (JS®)lume 83, Issue 5, pages 772-785, May 2010.

6. Miao Liu, Duo Liu,Yi Wang, Meng Wang, Zili Shao, “On Improving Real-Time In-
terrupt Latencies of Hybrid Operating Systems with Two-¢lddardware Interrupts”,
IEEE Transactions on Computers (T,GJolume 60, Number 7, pages 978-991, July
2011.

7. Hongxing Wei, Bin WangYi Wang, Zili Shao, Keith C.C.Chan, “Staying-Alive Path
Planning with Energy Optimization for Mobile Robots”, Agted inElsevier Expert
Systems With Applications (ESW2)11.

Conference Papers

1. YiWang, Luis Angel D. Bathen, Zili Shao, Nikil D. Dutt, “3D-FlashNta A Physical-
Location-Aware Block Mapping Strategy for 3D NAND Flash Mery”, in Proceed-
ings of the 15th Design, Automation and Test in Europe (DAOTE2Y Dresden, Ger-
many, March 12-16, 2012.

2. Yi Wang, Duo Liu, Zhiwei Qin, Zili Shao, “An Endurance-Enhanced $Halransla-
tion Layer via Reuse for NAND Flash Memory Storage SystenmsRroceedings of
the 14th Design, Automation and Test in Europe (DATE 20ddges 14-20, Grenoble,
France, March 14-18, 2011.

3. Yi Wang, Duo Liu, Zhiwei Qin, Zili Shao, “Memory-Aware Optimal Scteling with
Communication Overhead Minimization for Streaming Apgtions on Chip Multi-
processors”, irProceedings of the 31st IEEE Real-Time Systems Symposil@5(R
2010) pages 350-359, San Diego, CA, USA, November 30 - Decem!#£14).

4. Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, Zili Shao, “Optimal Task Sxtuling by
Removing Inter-core Communication Overhead for Streandipglications on MP-
SoC”, inProceedings of the 16th IEEE Real-Time and Embedded Temiyahd Ap-
plications Symposium (RTAS 20,1pages 195-204, Stockholm, Sweden, April 12-16,
2010.

5. Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, Zili Shao, Yong Guan, “RNFTA
Reuse-Aware NAND Flash Translation Layer for Flash Mempm"Proceedings of

the ACM SIGPLAN/SIGBED 2010 Conference on Languages, Gansipnd Tools for

Vi

10.

Embedded Systems (LCTES 20p@)ges 163-172, Stockholm, Sweden, April 12-16,
2010.

. Zhiwei Qin,Yi Wang, Duo Liu, Zili Shao, Yong Guan, “MNFTL: An Efficient Flash

Translation Layer for MLC NAND Flash Memory Storage Syst&ns Proceedings
of the 48th IEEE/ACM Design Automation Conference (DAC 2Qddges 17-22, San
Diego, CA, USA, June 5-10, 2011.

. Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, “A Two-Level Caching Mechanism for

Demand-Based Page-Level Address Mapping in NAND Flash Mgr8Storage Sys-
tems”, in Proceedings of the 17th IEEE Real-Time and Embedded Temiyaind
Applications Symposium (RTAS 201dages 157-166, Chicago, IL, USA, April 11-
14, 2011.

. Zhiwei Qin, Yi Wang, Duo Liu, Zili Shao, “Demand-Based Block-Level Address

Mapping in Large-Scale NAND Flash Storage Systems”Piaceedings of the 8th
IEEE/ACM/IFIP International Conference on Hardware/Sadte Codesign and Sys-
tem Synthesis (CODES +ISSS 2Q¥f3ges 173-182, Scottsdale, Arizona, USA, Oc-
tober 24-29, 2010.

Meng Wang,Yi Wang, Duo Liu, Zili Shao, “Improving the Reliability of Embedded
Systems with Cache and SPM”, Rroceeding of the 2009 IEEE International Sym-
posium on Trust, Security and Privacy for Pervasive Appioresin conjunction with
the 2009 IEEE International Conference on Mobile Ad-hoc &edsor Systems (MASS
2009) pages 825-830, Macau, China, October 12-15, 2009.

Duo Liu, Tianzheng Wangyi Wang, Zhiwei Qin, Zili Shao, “A Block-Level Flash
Memory Management Scheme for Reducing Write Activities @MPbased Embed-
ded Systems”, irProceedings of the 15th Design, Automation and Test in Europ
(DATE 2012) Dresden, Germany, March 12-16, 2012.

Vil

11. Duo Liu, Tianzheng Wangyi Wang, Zhiwei Qin, Zili Shao, “PCM-FTL: A Write-

12.

Activity-Aware NAND Flash Memory Management Scheme for PO&ksed Embed-
ded Systems”, ifProceeding of the 32nd IEEE Real-Time Systems SymposiuBs(RT
2011) Vienna, Austria, November 29-December 2, 2011.

Meng Wang, Duo LiuYi Wang, Zili Shao, “Loop Scheduling with Memory Ac-
cess Reduction under Register Constraints for DSP Appitsit, in Proceeding of
the 2009 IEEE Workshop on Signal Processing Systems (S5, pages 139-144,
Tampere, Finland, October 7-9, 2009.

viii

ACKNOWLEDGEMENTS

First and foremost, | want to express my gratitude to my sugper, Prof. Zili Shao, whose
expertise, understanding, and patience, added consigeémamy graduate experience. |
appreciate his vast knowledge and skill in many areas angrbiessional supervision. It
IS my great pleasure to be a student of Prof. Shao, and | wahattk him for supporting
me over the years, and for giving me so much freedom to explodediscover new areas of

research. Without his help and support, this body of workld/owt have been possible.

| want to thank my co-supervisor, Prof. Jiannong Cao, forghisiance, encourage-
ment and advice. | also express my gratitude to the other raesvd$ Prof. Shao’s research
group - Duo Liu, Zhiwei Qin, Dr. Meng Wang, Tianzheng Wang,0dBui Wang, Chunjing
Mao, and Luguang Wang - for the assistance they providechgumy Ph.D. study. | also
would like to thank all my teachers from whom | learned so mucimy long journey of
formal education. Specially thanks go to Prof. Zhijun WaAmf. Yan Liu, Prof. Bin Xiao,
Prof. Qin Lu, Prof. Lei Zhang, and Dr. King Hong Cheung at theng Kong Polytech-
nic University. Furthermore, | acknowledge my gratitudeDio Yang Liu, Dr. Dongmin
Guo, Dr. Xiaocui Sun, Kunfeng Lai, Dr. Guobin Liu, Weichaqg bii Yuan, and Dr. Hao
Wang, who shared with me the pleasure of the Ph.D. study atiting Kong Polytechnic

University.

I must acknowledge Prof. Nikil D. Dutt at University of Calihia, Irvine, for of-
fering me the opportunity to visit UCI. His truly scientisttuition and invaluable guidance
inspires and enriches my intellectual maturity that | wédhfit from, for along time to come.
| offer my regards and blessings to all of those who suppartedn different respects dur-
ing my visit at UCI. | would especially like to acknowledgeitBathen, Abbas Banaiyan,

Kazuyuki Tanimura, and Jun Yong Shin, who have directly dirigctly collaborated on my

research.

| want to thank Prof. Henry C. B. Chan from the Hong Kong Padliataic University
for kindly being the Chairman of the Board of Examiners (BdEglso thank Prof. Yi Pan
from Georgia State University, and Prof. Cho-Li Wang frora thniversity of Hong Kong,

for kindly taking time out from their busy schedule to sergenay external examiners.

| recognize that this thesis would not have been possibleowitthe financial as-
sistance from the Hong Kong Polytechnic University. | apmte Prof. Shao and the
Department of Computing for offering me the travel grantaitiend several international
conferences. | acknowledge the grant for Research StudémthAnent Program from the
Hong Kong Polytechnic University for giving me the financalpport to visit University of

California.

Finally, I want to thank my family. They educated and guidegland have watched
over me every step of way. | want to thank them for their ersllege, support, and encour-
agement through my entire life, for letting me pursue my dréar so long and so far away

from home, and for giving me the motivation to finish this tlkes

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY .\ttt i i
AB ST RAC T . i iii
PUBLICATIONS . .ottt ettt e e e e e %
ACKNOWLEDGEMENTS ... ettt et as iX
LISTOF FIGURES e e i Xiv
LIST OF TABLES ... o e e e e XVi
CHAPTER 1. INTRODUCTION. ...\ttt e et e e e e e ans 1
1.1 Related WOrK o e e e 3
1.1.1 Energy Optimization Techniques for Single and MidtiProcessors 3
1.1.2 Communication-Aware Task Scheduling.........couueeovooeo.. 5
1.1.3 Scheduling for Streaming Applicationsl 6
1.2 The Unified Research Framework immmnee i i, 7
1.3 CoNtribBULIONS ... e e 9
1.4 Thesis Organizationouiiiiiiii et e e 10
CHAPTER 2. OVERHEAD-AWARE ENERGY OPTIMIZATION FOR STREANNG
APPLICATIONS ONMPSOCSo eiiees 11
2.1 OVBIVIBW . .ottt e e e e e e e e e e 11
2.2 Models and CONCEPLSttt et et e e e 14
2.2.1 SystemModelo e 14
2.2.2 TaskModel 14
2.2.3 POWEr MOGelt e 16
2.2 4 ReUMING ...ttt e e e o 18
2.2.5 Genetic Algorithm o e 19
2.2.6 Problem Statement i 19
2.3 Motivational Example 20
2.4 Lower-bound ANalYSIS.t 23

Xi

2.5 Task Parallelization and Schedulingo 25

2.5.1 The RDAG Algorithm for Task Parallelization 27
2.5.2 The GeneS Algorithm for Energy Optimization 35
2.6 EXPeIMENIS ..o e 42
2.6.1 Experimental Setupot 42
2.6.2 Results and DISCUSSIONuut ittt et i e et aiee s 44
2.7 SUMIMATY et et e e et e e e et et 54
CHAPTER 3. OPTIMALLY REMOVING INTERCORE COMMUNICATION OVIR-
HEAD FOR STREAMING APPLICATIONS ON MPSOCS. 56
I 0 I O 1 = VT 56
3.2 Models and CONCEPLSottt et ittt e i e e e 58
3.2.1 SystemModelo e 59
3.2.2 Task MOdel e 59
3.2.3 Static Schedule 60
3.2.4 Communication/Computation Overlapping and Retgmin.............. 61
3.2.5 Problem Analysis.o e 64
3.2.6 Problem Statement 65
3.3 Schedulability Analysis. e 66
3.3.1 Bounds of Relative Retiming Values ..., 66
3.3.2 Bounds of the Prologue Length.......... ...t 72
3.4 Optimal Joint Computation and Communication Task Sclegl................ 76
3.4.1 Joint Computation and Communication Task Sched@@gTS) 76
3.4.2 The Extension for Minimizing Energy Consumption 81
3.5 EXPOIMENIS ..o e 82
3.5.1 Experimental Setupot 82
3.5.2 Results and DIiSCUSSIONttt ittt i et ieens 84
B0 SUMIMIAIY Lttt et e et e e et et et e e e e e e 89

CHAPTER 4. MEMORY-AWARE SCHEDULING WITH COMMUNICATION OVIR-
HEAD MINIMIZATION FOR STREAMING APPLICATIONS ON

MPSOCS . .. 90

A1 OVEIVIEW . .ttt e ettt et e e e e et e s e e e e 90
4.2 Models and CONCEPLSttt ettt e et e i e e 92
421 SystemModelo 92

4.2.2 Application Model and Communication Overhead. 93

xii

4.2.3 StaticSchedule 94

4.2.4 Task Reschedulingand Retiming eeeeiiiiinnnn... 94
4.3 Motivational Example and Problem Statement ..o e iiviiao.... 96
4.4 Memory-Aware Task Scheduling for Minimizing the Intere Communication

OVEINEAd .. i e 99
4.4.1 The Bounds Analysis of RetimingValue 100
4.4.2 The Analysis of ExtraMemoryUsageccoevviiiiiiiinnn.. 103
4.4.3 Integer Linear Programming Formulation 105
4.4.4 A HeuristiC AppProach. ... e 109
4.5 EXPeIMENES o 114
4.5.1 Experimental Setupot e e 114
4.5.2 Results and DISCUSSIONuiiiuiit it i s e e i aeens 116
4.6 SUMMAIY ..ttt ettt e e et e et et e e e e e e e 121
CHAPTER 5. CONCLUSION AND FUTUREWORK.t n 122
5.1 CONCIUSION . ..t e e e e e e e 122
5.2 FUIUIE WK .. e e e e 124
REFERENCES e e 125

Xiii

11

2.1
2.2

2.3

24
25
2.6

2.7

2.8
2.9

3.1
3.2
3.3

3.4

3.5
3.6
3.7
3.8

LIST OF FIGURES

The Unified Research Framework. ...t e i, 8
A Multiprocessor SOC Architecture. ..o 15
A Motivational Example. (a) The original DFG. (b) Theine¢d DFG using

our RDAG algorithm. (c) The task information. (d) The schiedyenerated

by the list scheduling in Landskov et al. [59] without poweamagement (the
energy isl37u.J). (e) The schedule generated by the DAG-based scheduling
algorithm in Zhang et al. [115] with DVS and DPM (the energy3dsiu.J).

(f) The schedule generated by our technique (the energy.s). (g) The
schedule generated by our technique with a tight timing aimg 8us). 21

An Example of the RDAG Algorithm. (a) The original DK@ (b) The re-
timed DFGG,.. (c) The static schedule generated fraim(d) The pipelined

schedule generated frof,.. e 29
Latency and Memory Overhead of the RDAG Algorithm. 35
Chromosome Representation and Its Corresponding Tdsd8le. 37
The Crossover Operator Generates New ChromosomesnGhoones 3 and
ChromoSsSOmMe 4. ... 38
The Mutation Operator. Task, is selected to perform mutation, and its
voltage level is changed frofi;;, tO Vg, . oo 38
An Example of the GeneS Algorithm. oo ... 40
The Changing Tendency of Energy and Timing Constraitit Wnree Algo-

rithms under Different Number of Processor Cores on Benckm@FF-1. .. 50

The MPSOC Architecture.o i i 59
ADAG and Its Schedule.cc i e e 61
Given the initial DAG and schedule in Figure 3.2, (a) a remedule in

which the intercore communication overhead caused’#y and CT} is
removed by overlapping communication and computation (ehthe corre-
sponding DAG with the node weiglft(7}) of computation task’; changed

100 0 62

Given the initial DAG and schedule in Figure 3.2, (a) a rsmlhedule in
which the intercore communication overhead is totally reeth and (b) the

corresponding DAG. e 62
An Exemplary Task Schedule of Theorem 3.3.1.ttt 68
An Exemplary Task Schedule of Property 3.3.1.oveeevvvevene... 69
An Exemplary Task Schedule of Property 3.3.2. ... oo 71
An Exemplary Task Schedule of Property 3.3.3. ..o 72

Xiv

3.9

A Run Time Example of the Proposed Approach.cceu.iioo....

3.10 The Maximum Retiming Valu&,,., of Each Benchmark Running on 2, 3,

4.1
4.2

4.3
4.4

4.5

4.6

4.7

4.8

AN 4 PrOCESSOr COMBS. . . ittt et et e e e e e e e e e e

The MPSOC ArChiteCtUIe.t e e e e e e

A Motivational Example. (a) A DAG. (b) The objective coutgtion task
schedule of the DAG. (c) The schedule considering intercoramunica-
tion overhead. (d) and (e) two schedules in which intercoraraunication

overheads are totally removed while they are with differaatmory usages.. .

A Task Schedule of Theorem 4.4.1. it
Analysis of Memory Usage for Intercore Communicatioak‘l@Tj

A Runtime Example of MAOTS. (a) A DAG. (b) An initial schalé of the
DAG. (c) Objective task schedule of all computation taslas tiotally re-
moves intercore communication overhead. (d) The exectitoa of each
computation task and that of each communication task, andelease time
of each computation task. (e) The bounds of relative retywadue of each
pair of tasks. (f) The bounds of the retiming value of eaclk. ta(g) The
optimal task schedule by our approach MAOTS. . .

Schedule Length by Task Schedules PEDF [115], Schelatﬁlleﬂ], and the
proposed approach (MAOTS) on 2, 3, and 4 processor coresS............

Memory Usage of Schedule2D [111], JCCTS [106] and tlm@d%red Ap-
proach MAOTS on 2, 3, and 4 Processor Cores.. :

Memory Usage of Heuristic Approach (HMAOTS) and Memérlyare Op-
timal Task Scheduling (MAOTS) on 2, 3, and 4 processor cotes.

XV

75

88

97
102

2.1

2.2
2.3

2.4

2.5

2.6

2.7

2.8
29

3.1

3.2

4.1

LIST OF TABLES

The Voltage Levels, Frequencies and Power Consumpdisedon the Power
Model of the Mobile Athlon4 Processor [7].ooiimaee ... 42
Benchmark Descriptions and Characteristics.cccovvinn... 44
The Energy of Each Benchmark under Various Timing Cairgs on 2, 3,

4 PrOCESSOI COMBS. .ttt e ettt e et e e e v 46
The Energy of Each Benchmark under Various Timing Caigs on 6 and

8 ProCesSSOr COrBS. ..ttt e ——— e 47
The Comparison of Energy Consumption by the GeneS Algarand the
Lower Bound Energy Consumptidi, g.......ccvvvieiiii i 49
The Comparison for the Schedules Generated by PEDRgShrand GeneS

on TGFF-2, datTask Graph. ... i e i anaas 51
The Prologue Latency of Our RDAG Algorithm with Diffetefiming Con-
SETAINES. ..ot e 52
Power Consumption and Transition Time for Memory. . I o 1o
The Memory Energy Consumption of the PEDF Algorlthm amel RDAG
AlGOrtNM. L e 54
Comparison in Schedule Length of Our JCCTS Approach laa&TC Al-
gorithm in Chen et al. [24] on 2, 3, and 4 Processor Cores.. e . 85
Comparison in Energy Consumption of Our JCCTS Approadhraae FLSSR
Algorithmin Zhu et al. [117] on 2, 3, and 4 Processor Cores... oo, 87
Comparison in Time Cost of Heuristic Approach (HMAOT &jidlemory-

Aware Optimal Task Scheduling (MAOTS) on 2, 3, and 4 procesetes. ... 119

XVi

CHAPTER 1
INTRODUCTION

Continuing advances in chip technology with the incredgidgnse integration of intellec-
tual property cores have created new opportunities in eddxbdpplications. More and more
embedded systems adopt the multiprocessor system-or{MR$oC) to integrate multiple
processor cores along with other hardware subsystems tienmept a system. MPSoCs
are not simply traditional multiprocessors shrunk to a leirfpip but have been designed to

fulfill the unique requirements of embedded applicatior¥]1

MPSoCs are often application specific, and they have vehy tignstraints in terms
of computation power and memory space. In order to fullyizgithe computation power
of multiprocessor architecture, embedded applicationdeacustomized to explore coarse-
grained parallelism. Streaming applications are typycaetimputationally-intensive with a
lot of parallelism, and thus they are perfect candidatebéang executed on MPSoCs. When
streaming applications are running on MPSoCs, they ar@ ofiguired to provide real-time
response with low power consumption. Task-level paraihelof streaming applications on
MPSoCs is explored by executing multiple tasks on diffemotessor cores concurrently.
However, most of the existing optimal scheduling technsgpre MPSoC architectures do not

consider several overheads caused by task-level pasatlédichniques.

In this thesis, we address the challenges in handling oadehe parallel process-
ing of streaming applications on MPSoC architectures. tHpalty, two major overheads
(i.e., energy consumption overhead and intercore comratiaicoverhead) are considered
in designing optimal task schedules. We present overheadeatask scheduling schemes
to optimize energy consumption, real-time performance, memory usage for streaming

applications on MPSoC architectures.

First, energy consumption becomes one of the importanti@nts for the design of
multiprocessor system-on-chips, particularly for batteperated embedded systems. With
the increasing of operating frequency and transistor teaEMPS0Cs, energy consumption
of these highly integrated and complex designs is becomingjar concern. DPM (dynamic
power management) and DVS (dynamic voltage scaling) teciesi are widely used to opti-
mize energy consumption. When DPM and DVS are applied faiggregptimization, several
energy overheads (i.e., transition energy overhead agedaowvith the sleep mode, transition
energy overhead caused by voltage changes, and energyeaddsi intercore communica-
tion) should be taken into account. In this thesis, we cardidese energy overheads and

provide a complete and energy efficient schedule.

Second, on-chip communication architectures have nursesources of delay due
to signal propagation along the wires, synchronizatiog.(dandshaking), transfer modes
(e.g., pipeline access), and arbitration mechanisms |8&h the increasing of the number of
system components and the processing gap between process®land memory, the delay
caused by intercore communication will incur intercore camication overhead, which will
significantly influence both time performance and power aargion of the system. In this
thesis, we aim to totally remove the intercore communicatieerhead and to generate an

energy-efficient optimal schedule with the minimum schedeihgth.

Third, memory usage is becoming an important factor forastieg applications on
MPSoC architectures. Memory takes up a large chunk of op-alea, as much as 70%
in some cases [73]. Estimates indicate that this figure vailug to 90% in the coming
years [5]. Parallel processing of streaming applicatioesds to store intermediate data
streams across different processor cores, which directgunts for the memory usage of
the system. Intercore communication overhead directly@nites the optimization of task
schedule and significantly impacts the memory usage. Irtlbiss, we propose an optimal
solution that can totally remove intercore communicativerbead and generate a schedule

with the minimum memory usage.

The rest of this chapter is organized as follows: Sectionptekents the related

work. Section 1.2 presents the unified research framewodcti& 1.3 summarizes the

contributions of this thesis. Section 1.4 gives the oudliokthe thesis.

1.1 Related Work

In this section, we outline previous approaches relatedgk $cheduling for streaming ap-
plications on multiprocessor system-on-chips. In the ijoev work, there has been work
done in three main domains: (I) Energy optimization techagjfor single and multiple
processors, (II) Communication-aware task schedulind,(#) Scheduling for streaming
applications. We briefly describe these approaches, aadattomparisons with represen-

tative techniques are presented in respective chapters.

1.1.1 Energy Optimization Techniques for Single and Multige Processors

DVS is one of the most effective techniques for energy oation. Therefore, a lot of
DVS scheduling techniques have been proposed in previots Wwor periodic independent
tasks, the DVS scheduling has been extensively studiedrfglesand multiple processors.
For single processor, Aydin et al. [12] showed that for anyqukic task, it is optimal for all
of its task instances to run at the same processor speed dearDVS processor. Jejurikar
and Gupta [44] considered periodic tasks on a processordigtete speed levels. Several
studies have been conducted in the DVS scheduling on simgtegsor based on dynamic
priority [12, 23, 74] or fixed priority [16, 96, 100]. For mipte processors, several studies
[4,13, 22] focused on DVS scheduling on homogeneous melfpbcessors while other
work [41, 69, 70, 114] focused on heterogeneous multiplegssors. Recent work [11,116]
studied system-wide energy minimization for periodic apdradic tasks on a processor
with continuous speed levels. They separate task executtoron-chip/off-chip cycles,
which are applicable for both CPU and memory. Niu and Quah pr@posed an approach
for system-wide dynamic power management for multimedrégide devices. In all of the

above work, the task model is basedpmriodic independent taslks process or thread level.

In this thesis, we considgreriodic dependent taskghich can better model stream-based

applications such as MPEG-4 AVC decoder [107].

There have been a lot of studies of DVS scheduling for dep@ndsks on multipro-
cessor systems with multiple voltage levels. Hua and Qugdfied the voltage setup prob-
lem and proposed an approach to select optimal voltagesle@lian and Kuchcinski [36]
introduced a scheduling approach. In their approach, basedjiven fixed task assignment,
the delays of all tasks are scaled down by the ratio of thentinabnstraint over the critical
path length. Luo and Jha [69] proposed an approach to evéstlybdte slacks based on a
fixed task scheduling. Zhang et al. [115] proposed a framlewat integrates task schedul-
ing and voltage selection together to minimize the energywsomption for dependent tasks
on multiple processors. However, these works focuslependentask model instead of
periodic dependertask model. With the dependent task model, only intra-itenedata de-
pendencies are considered. In our work, we further expitatiiteration data dependencies

by utilizing the periodic characteristics of the periodepéndent task model.

Several recent studies have explored the periodic beha¥iperiodic tasks with
pipelining and parallel processing [50,62,99]. In Kim e{&0], a power reduction technique
is proposed to optimize energy by exploring pipelining aadafiel processing in unipro-
cessor systems. This uniprocessor-based technique daamttectly applied to solve our
multiprocessor-based problem. In Shao et al. [99], a lobedaling technique is proposed
to minimize energy by exploring inter-iteration dependesdor applications with loops
on multi-core systems. The given technique, however, isdas loop optimization with
instruction-level parallelism; thus, it is not applicalbdethe periodic task model. In Li and
Martinez [62], an analytical model is developed to study pbeer-performance issues of
running parallel applications on chip multiprocessorse Pphoposed technique shows that,
parallel computing can bring significant power-performabenefits over uniprocessor sys-

tems.

1.1.2 Communication-Aware Task Scheduling

Since the early 1990s, several on-chip bus-based commiam@achitecture standards have
been proposed to handle the communication needs of emesgiGgdesigns [82]. These
popular standards include ARM Microcontroller Bus Architee (AMBA) versions 2.0 [8]
and 3.0 [9], IBM CoreConnect [42], STMicroelectronics SBH@02], Sonics SMART In-
terconnect [101], OpenCores Wishbone [79], and Altera@w#b]. Our proposed approach
is based on ARM-based architecture, but the proposed agipozen be extended to all bus-

based communication architectures.

There is a large body of work dealing with performance edimnanodels for com-
munication architecture. The estimation-based modelsdarmunication architecture per-
formance exploration can be roughly classified into thréegmies: the static estimation,

the dynamic estimation, and the hybrid estimation [82].

Static estimation methods try to estimate the communicaliglay in applications
statically. Some early work [86, 89, 113] focused on thenegtion of communication delay
for high-level synthesis in the context of distributed ehthed real-time systems. Other work
proposed communication delay model to ensure the perfarenaanstraints are satisfied
during the design flow of hardware/software component nattggn [34, 55, 56]. Renner et
al. [92,93] proposed the communication model that consither delay caused by the specific

protocol. Cho et al. [25] proposed a delay model for AMBA AHB §ingle shared bus.

Dynamic or simulation-based performance estimation nwogebvide more accu-
rate estimation. There have been several approaches bassdle accurate models [67],
pin-accurate bus cycle accurate models [47, 97, 98], trtiosabased bus cycle accurate
models [18, 19, 54, 78, 83, 84]. Hybrid communication aettilre performance estima-
tion approaches attempts to combine the static estimahdndgnamic simulation-based
approaches to speed up communication architecture peafaenestimation while generat-
ing accurate performance exploration results. Some appesaare trace-based approach
[57, 58], while other approaches are queuing theory-bapptbach [52,53]. These com-

munication performance estimation can provide accurateltethat can be utilized in the

design of proposed overhead-aware scheduling schemes.

The intercore communication scheduling on multi-core geckures has been inves-
tigated in previous work. Several studies have been coaduntcommunication and task
scheduling for mesh network [27,39,118], grid environnj&&0], cluster architecture [110],
and multi-layer bus architecture [38]. Our work focuses lo& shared bus architecture, so
these techniques cannot be directly applied. Based on #rd &lus architecture, which is
the most widely used interconnection architecture, sétechniques have been proposed in
bus access policy and bus access scheduling [35, 37,947]88], real-time bus schedul-
ing policies including event-triggered scheduling andetitriggered scheduling have been
investigated. In Lehoczky and Sha [60], real-time bus scliegl algorithms considering the
issues of task preemption, priority level granularity, éudfering are proposed. There have
been also several studies in communication mechanismsasitdsk migration and data
migration for real-time multimedia MPSoC architectures4®, 80]. These techniques can
provide good solutions for bus arbitration and communaagynthesis. However, all the
aforementioned work is not designed to reduce intercorentanication overhead. Several
communication-aware task allocation and scheduling freonles for MPSoC architectures
are proposed [29, 68, 95, 105]. By increasing the paratiglthese techniques may cause
more intercore communications. Our technique is a goodlsopmt for these techniques

by helping effectively reducing intercore communicatimexhead.

1.1.3 Scheduling for Streaming Applications

In this thesis, streaming applications are modeled as gerstiependent tasks. In previous
work, a lot of techniques have been proposed to solve thedatihg problem for periodic
tasks. For scheduling independent tasks, a number of stindiee been conducted [15,
22,41]. These techniques, however, cannot be directlyieppd perform scheduling for
periodic dependent tasks. Several techniques have beposa® to solve the scheduling
problem for periodic dependent tasks on multicore archites [1, 24, 26, 64,117]. The

above techniques can generate optimal or near-optimalsigsédules. However, in these

techniques, intercore communication overhead is not densd. So they may not provide

good solutions to our problem.

Several approaches have been conducted to improve thermarfoe of streaming
applications with different architectures [31, 43, 119). Horoozannejad et al. [31], a fine-
grained analysis of temporal behavior of buffer allocafionstreaming application is per-
formed. In Issenin and Dutt [43], an energy-aware co-s\sithef both memory and TDMA
bus-based communication architecture for streaming egipdns is proposed. In Zhu et
al. [119], a scheduling technique for streaming applicegion hybrid CPU/FPGA architec-
tures is proposed to minimize the buffer requirement witlodlghput guarantees. For the
above approaches, the data dependency relations for stigeapplications are fixed inside
each period. It may limit the optimization for performaneey(, throughout, schedule length,
and energy consumption). In Wang et al. [106], a task scivegltéchnique that changes the
data dependency relations across different periods isogeap However, it does not con-
sider the extra memory usage to store the data among diffeegionds. Our technique can
combine with the above approaches to generate an optinkat¢agdule with the minimum

memory usage.

1.2 The Unified Research Framework

In this section, we present the unified research framewarth®proposed techniques. Fig-

ure 1.1 illustrates the sketch of our research framework.

In this thesis, streaming applications that process steaindata are modeled as
periodic dependent tasks, in which streams of data are coneated from task to task.

Periodic dependent tasks are represented by a DirectedidGraph (DAG).

The system architecture adopted in this thesis is a typid@BMC system, which
consists of a set of processor cores, a shared bus, a busr,aabid a shared on-chip mem-
ory. A shared bus is adopted as it is one of the most widely ogsechip communication

architectures.

Optimally Memory-Aware
Overhead- Removing Scheduling with
Aware Energy Intercore Communication

Problem Formulation Optimization Communication Overhead
Overhead Minimization

(Chapter 2) (Chapter 3) (Chapter 4)

Periodic D dant Task

eriodic ependant 1asks Directed Acyclic

Task Model Graph (DAG

(Streaming Applications) raph ()

Processor Processor Processor
Core Core Core
\Interface/ \Interface/ lInterface /

us |

[Bl
System Model
Interface Interface
Bus
Arbiter Memory

MPSoC Architecture

Figure 1.1. The Unified Research Framework.

Based on the system model and the application model, ths&estdneduling prob-
lems are formulated to optimize energy consumption, tinpiegormance, and memory us-
age of streaming applications considering several ovesheaused by parallel processing of

streaming applications on MPSoC architectures.

For the first scheme, in Chapter 2, we studied the energy ggatiron problem for
real-time streaming applications on multiprocessor sgsb@-chips considering several en-
ergy overheads. For the second scheme, in Chapter 3, we ton@dlly remove intercore

communication overhead and to generate an optimal taskdsthen which the schedule

length can be minimized with the minimum prologue lengthr. the third scheme, in Chap-
ter 4, we studied the problem of totally removing intercooenenunication overhead with

the objective of minimizing the overall memory usage.

1.3 Contributions

The contributions of this thesis are summarized as follows.

e The major contribution of this thesis is the idea of congigseveral overheads aris-
ing from the adoption of parallel processing of streamingligations on MPSoC
architectures. To solve the overhead-aware optimizatroblpm, this thesis intro-
duces three scheduling schemes. These schemes are buivooug work on task-
level software pipelining, which could provide good penfiance for computationally-
intensive streaming applications on multiprocessor gechires. We extend the retim-
ing technique and change the data dependency relatiorstipss different periods.
This could fully utilize the computation power of multipegsor architectures, and get

time slots to exploit DVS and DPM techniques to reduce eneagysumption.

e To handle various energy overheads, we transform a peraependent tasks into
independent tasks. By completely removing precedencéaesa abundant idle task
slacks incurred by precedence relations among tasks catilizeds In this way,
more opportunities are provided to do scheduling with epengtimization. Then
we propose a genetic algorithm to search the best scheduws&dening several energy

overheads.

e To handle intercore communication overheads, we rescaesiyeral tasks into the
previous execution process (or prologue) and overlap teeuton of computation
tasks with that of communication tasks. This can generatskagchedule by adopt-
ing a shorter period and with the maximum throughput. Défarfrom the tradi-
tional pipelining technique, the number of pipeline stagksach task is determined

by the allocation of computation tasks and the associatesicore communication

tasks. Two scheduling schemes are proposed with the olgeadif minimizing the

maximum retiming value, and minimizing the extra memorygéesa

e The schedulablility analysis in this thesis provides véghttbounds. For the problem
of removing intercore communication overheads, the resufitthe analysis can be

utilized in the ILP model to efficiently obtain the solution.

¢ We implement a simulator based on the ARM-based MPSoC syatehitecture to
evaluate the proposed schemes. We conduct experiment®anuhce with represen-

tative schemes. Experimental results prove the effeatisenf the proposed schemes.

1.4 Thesis Organization

The rest of this thesis is organized as follows.

¢ In Chapter 2, we handle the energy overhead and propose phtage approach to
solve problem. In the first phase, we present the RDAG algorio transform a set
of periodic dependant tasks into a set of independent tdakihe second phase, we
propose a genetic algorithm GeneS to generate the schetldge/minimum energy

consumption.

¢ In Chapter 3, we handle the intercore communication overaea propose a scheme
called JCCTS to obtain an optimal task schedule that totallyoves intercore com-

munication overhead with the minimum prologue length.

¢ In Chapter 4, we handle the intercore communication overea propose a scheme
called MAOTS to obtain an optimal task schedule with the munin extra memory
usage. We also present a heuristic approach HMAOTS to effigiebtain a near

optimal schedule.

¢ In Chapter 5, we present conclusions and possible futueetitins of research arising

from this work.

10

CHAPTER 2

OVERHEAD-AWARE ENERGY OPTIMIZATION FOR STREAMING

APPLICATIONS ON MPSOCS

2.1 Overview

With increasing demand for high-performance multimedibattery-driven mobile devices,
multi-core architecture such as MPSoC (Multiprocessotesgson-Chip) is becoming widely
adopted in embedded systems. The examples include TI TM388867 DaVinci proces-
sors, Freescale MSC8122 and MSC8126 multicore DSP prasegd®M ARM11 MPCore
and Intel Atom processors. Some multicore processors suéiR& ARM11 MPCore and
Intel Atom processors provide multiple voltage levels fowlpower optimization. When
real-time streaming applications such as Internet videderences and surveillance digital
video recorders are executed on such chip multiprocedsotis time performance and en-
ergy consumption need to be considered as energy consummptiae of the most important
performance metrics in embedded systems. Therefore, dnbes an important research

problem to optimize energy consumption for streaming apgilbons on MPSoCs.

To solve this problem, several issues need to be taken ictwiat. First, a stream-
ing application can be modeled as periodic dependent tagksi-time systems, in which a
stream of data is treated as a sequence of requests thahaced®y the streaming applica-
tion when arrived [111]. In this chapter, the periodic bebaef dependent tasks is explored
with task-level software pipelining [20, 21, 85]. Second{tbdynamic power management
(DPM) and dynamic voltage scaling (DVS) should be appliedfeergy optimization. DPM
exploits idle times of a processor and turns off power sugplys to reduce static energy

caused by leakage power [45]. DVS reduces energy consumipgi@djusting supply volt-

11

ages of processors [45]. Here, we assume that DPM and DVS eapied for each

processor core independently. As a chip multiprocessorguoatain many processor cores,
we need to consider the trade-off between adjusting vadtdyeDVS and turning off by

DPM in energy optimization. Third, various practical issuecluding transition overhead
caused by mode/voltage changes in DPM/DVS, discrete wleagls and intercore commu-
nication should be considered for a practical solution.ifi@lall issues into consideration,
in the chapter, we focus on energy consumption optimizdtostreaming applications by

combining task-level coarse-grained software pipelinuitpy DVS and DPM techniques.

Our work is closely related to the previous work [1,14,481®8®,111,115], in which
periodic dependent tasks are modeled by task graphs (Badeatyclic Graph (DAG)). In
Xu et al. [111], an energy-aware scheduling technique ipgsed to minimize energy con-
sumption while satisfying both throughput and response twith pipelining. In Zhang et
al. [115], an energy optimization framework is proposedriegrate task scheduling and
voltage selection together. In Acharya and Mahapatra [1¢chnique is developed to uti-
lize slacks based on service rate and change in intervaltdtic and dynamic scheduling
schemes, and a fault-tolerant scheme is incorporated hietslack management technique
to implement reliable systems. In Kianzad et al. [48], aegnated framework combining
task assignment, scheduling, and power management usnagigelgorithm is proposed.
In Bamabha and Bhattacharyya [14], a periodic graph modedptored to effectively select
voltage levels of iterative applications on multiprocessgstems. In the above work, the
intra-iteration precedence relations of a task graph atemanged, which limits the opti-
mization for both performance and energy. In Liu et al. [@0frse-grained software pipelin-
ing is applied to solve real-time streaming applicationdiPSoC, and a DVS scheduling
technique is proposed to optimize energy based on it. Howéwve technique is built on
the assumption that there are no intercore communicatierhead and transition overhead
with mode/voltage changes in DVS. In Wang et al. [106], a &dkeduling technique that
changes the data dependency relations across differaatlpeés proposed to effectively re-
move intercore communication overhead. However, it doésowsider several overheads

(i.e., transition overhead, sleep overhead). In this wekconsider various practical issues

12

and propose a genetic algorithm to solve the problem.

In this chapter, we propose a two-phase approach to solventbigly minimization
problem for periodic dependent tasks on MPSoC architegttwasidering various practical
issues. In our approach, we first completely remove the gezu relations of tasks based
on task-level software pipelining, and then perform enesgtimization. Our two-phase

approach is summarized as follows.

¢ In the first phase, we propose a coarse-grained task-leftelase pipelining algo-
rithm called RDAG to transform periodic dependent taske mtset of independent
tasks based on the retiming technique [61]. In RDAG, we nggtasks and put tasks
from different periods into one loop kernel so as to competemove precedence
relations. In this way, abundant idle slacks incurred bycedence relations among
tasks can be utilized. In addition, after transforming aeshejent task graph into a set
of independent tasks, more opportunities are provided teatb@eduling with energy
optimization by simultaneously considering multiple farst such as dynamic/static

power, sleep/voltage transition overheads, and intercomemunication.

¢ In the second phase, we propose a scheduling algorithm,S;ém@ptimize energy
consumption based on the results obtained in the first plizeeeS is a genetic algo-
rithm, and it can search and find the best schedule withindhgisn space generated

by gene evolution.

To the best of our knowledge, this is the first work to solveahergy optimization problem
for periodic dependent tasks on MPSoCs by combining tasi-koftware pipelining with

DVS and DPM considering various practical issues.

We conduct experiments on a set of benchmarks from Embedgigdris Synthe-
sis Benchmarks Suite (E3S) [104] and TGFF [28]. The bencksnmom E3S consist of
various multimedia applications such as JPEG compresioaompression, RGB to CYMK
conversion, RGB to YIQ conversion, and FFT/IFFT. TGFF isdugegenerate several syn-
thetic task graphs. We compare our technique with the apprmeZhang et al. [115] that

13

applied DVS and DPM but without software pipelining. The esimental results show that
our technique can achieve better results compared withréhequs work. On average, our
GeneS algorithm can achieve&.4% reduction in energy consumption compared with the
approach in Zhang et al. [115]. For systems with tight timiogstraints, our approach can

obtain a feasible solution while the approach in Zhang i4b] cannot.

The remainder of this chapter is organized as follows. 8e@i2 describes models
and defines the problem. Section 2.3 gives a motivationahpl@ Section 2.4 analyzes the
lower bound of the energy consumption. Our two-phase appnsgresented in Section 2.5.

Experimental results are provided in Section 2.6. The amich is presented in Section 2.7.

2.2 Models and Concepts

In this section, we first introduce system architecture,liagpon model and some basic

concepts that will be used in the later sections and thenel#fsmproblem.

2.2.1 System Model

In this chapter, we employ an MPSoC architecture shown imriei@.1. The architecture
consists of\/ processor core§PFE;, PFE,, - -- , PE)}, and each processor core has its own
data and program memory. The programmable bus controliglemments a predefined bus
protocol and assigns bus access rights to individual cdfestask needs to read data that

are not available in its local memory, intercore commurmdicahappens.

2.2.2 Task Model

Streaming applications are modeled as periodic dependski.t We use Directed Acyclic
Graph (DAG) to represent periodic dependent tasks. DAG isegial case of Data Flow
Graph (DFG). ADFGG = (V, E, p, (), is a node-weighted and edge-weighted directed

graph.V = {Ty,Ts,--- T, } is the node set, and each node denotes a periodicd4gk) is

14

Processor Processor Processor
Core 1l Core 2 Core N
Local Local Local
Memory Memory Memory

Bus

Bus Controller

Figure 2.1. A Multiprocessor SoC Architecture.

the number of clock cycles to compute taSK7; € V). E is the edge set to represent data
dependency among task nodes. An e@ifie7}) € E represents that the data generated by
T; is needed in order to compui®, andcom(T;, T;) is used to represent the data volume
associated with taskg and7}. p(1;,7}) is a function to represent the number of delays for
an edg€T;, T;) € E. The edge without delay represents the intra-iteratioa dapendency,
which means the dependencies inside one period, while the etth delays represents
the inter-iteration data dependency, which means the digmeires among different periods.
The number of delays represents the number of periods ietlolvor an edg€l;, 7}) € E,
initially p(7;,7};) = 0; later it may be changed as we group tasks from differenbpsrinto

one period in our technique.

A staticschedule of a given DFG is a repeated pattern of an executitire @orre-
sponding periodic dependent tasks. In other words, a steltiedule is used to represent the
execution ofone period of periodic dependent tasks. In this chapter, the executiame
period is callecbne iteration as well. A schedule implies both schedule step assignmeint an
processor core allocation. A static schedule must obeyegpemtiency relations of the DAG

portion of the DFG. The DAG is obtained by removing all edgé&$welays in the DFG.

15

2.2.3 Power Model

In this chapter, a processor core in an MPSoC can supportfeith (Dynamic Power Man-
agement) and DVS (Dynamic Voltage Scaling). A processoe can operate &t different
voltage/frequency levels,(Via, . f1), Vady, f2) - - -, (Vaa,, fx)}» in which it consumes both
dynamic power and static power. Without loss of generality, assume that the voltage
levels fromV,,, to V4, are in ascending order, in whidhy,, is the lowest voltage level and
Vaa, 1S the highest voltage level. The voltage level of a processte can be changed inde-
pendently by voltage-level-setting instructions withoudluencing other cores. A processor

core has one sleep mode as well in which it is deactivated esgdtes reduced power.

Given a static schedulg, its total energy consumptioi,.,; (S), can be represented

as follows:

Etotal<S> = Et_dynamic(s) + Et_static(S) + Et_sleep<S> + Et_sleepOH(S)

2.1
+Et_tranOH<S) + Et_comm(S)' ()

Here, E;_iynamic(S) is the total dynamic energy consumptidiy, s;q.ic(.S) is the to-
tal static energy consumptiof;_q..,(S) is the total energy consumption in the sleep mode,
E: qeepor(S) is the total transition energy overhead associated witBlgep modeE; 44,01 (S)
is the total transition energy overhead caused by voltagegds, and;(.S) is the total
energy overhead by intercore communication. Next, we thtce how to calculate them one

by one.

The dynamic power consumption of a processor core at a \wleaglV,, is calcu-

lated based on the power model in Rabaey et al. [91]:

denamic(vdd) - OSW . fop . ‘/Yd2du (22)

whereCjsyy is the capacitance, anfl, is the frequency of a processor core at voltage level

Vaa- Then, the dynamic energy consumption of a tAskunning at voltage levely, is

C(T3)

= C(T;) - Csw - Vg, (2.3)
fop

Edynamic (,I‘zu ‘/dd) = denamic(‘/dd) '

whereC'(T;) is the number of cycles of task.

16

Different leakage sources contribute to the static powesamption in a processor
core. The major contributors are the subthreshold leakagertt and the reverse bias junc-
tion current. Based on the model in Martin et al. [72], theist@ower consumptionts; ;..

can be expressed as

Pstatic(vdd) = Lsubn * Vdd + |%s| ' [j (24)

wherel,,;, is the subthreshold current,, is the body bias voltage, arndis the reverse bias

junction current.

For the energy consumed in the sleep mode,gt, be the time duration in which a
processor core is in the sleep mode andHgt., be the corresponding power consumption.

Then the energy consumed in the sleep madeg,,, is calculated by

Esleep = L sleep * tsleep- (25)

It takes both time and energy for a processor core to enteaimd exit from the sleep mode.
Let tqeepon b€ the time transition overhead ahg..,on be the energy transition overhead
associated with one transition for entering into and egifiom the sleep mode. The total

energy transition overhead can be obtained by the produiofo ; and the transition time.

Besides dynamic power and static power, we need to consadlertime and energy
overheads during voltage transitions. According to thegrawodel in [17,76], for a voltage
change from/y,, to V4, the time transitiort-z 4y can be calculated by

2-Cpp

Inrax

: “/;ldj - ‘/;ldi

trrRAN = ; (2.6)

whereCpp is the capacitance of the voltage converter, and x is the maximum output

current of the converter.

The energy transition overhe&, ..oz includes the energy consumed by the voltage

converter,Erran_pc, @and the energy consumed by a processor core during thétimans
Ergran-cpu, SO

Eiranon = Erran—pe + Erran—cpu- (2.7)

17

For a voltage change froi, t0 Vya,, Erran-pc and Erran—cpu are calculated by

Erpan-pc =a-Cpp - |V, — dedj| (2.8)

Erran—cpru = Prran - trran- (2.9)

Here,« is the efficiency factor of the voltage convert®y;z 4 is the power consumption at

the voltage level entered in the transition.

The energy consumed by intercore communication betweénZtaand taskT; is

calculated by
com(T;, T))

e (2.10)

Ecomm(ﬂ; ,I‘]) = Pcomm :

whereP.,,,., is the power consumption of the shared bus in one clock cyele(7;,T;) is
the data volume transferred between tekandT};, and B is the bus bandwidth. From the
above, we can obtain the total energy consumption of a séhéguadding all components

together.

2.2.4 Retiming

Retiming is originally proposed to minimize the cycle périof a synchronous circuit by
evenly distributing registers [61]. It has been extendeddioedule data flow graphs on
parallel systems [20, 21, 85]. In this chapter, we generatevaloop kernel by regrouping
tasks from different periods so as to remove intra-iteratiependencies. We use retiming to

model this regrouping.

Given a DFGG = (V, E, p, (), a retimingr of G is a function that maps each node
T; in V to an integer(7;). Basically, by retiming a task node in a DFG once, a delay
is drawn fromeachof its incoming edges, and then pushedetxhof its outgoing edges.
Every retiming operation corresponds to a software pipalioperation, and as shown in
Section 2.5.1, retiming a node once means one copy of ttksgasoved into the prologue.
From the program point of view, the retiming technique regoa loop body and attempts

to remove intra-iteration dependencies among nodes. &neformed loop body after the

18

retiming can be obtained based on the retiming values of {#{¥. The delay count of
an edgg7;,T;) ((1;,T;) € E) after retiming,p, (T}, T;), is named the retimed delay count,
and can be calculated by/(T;,T;) = r(T;) — r(T}) [61]. An edge(T;,T;) € E with delay
countp(7;,7;) > 0 means that the computation of nodg at the (th iteration requires
data produced by nodg at thel — p(T;,T;) th iteration. A retiming function- is legal if
the retimed delay counts of all edges in the retimed gr@plare nonnegative. An illegal
retiming function occurs when the retimed delay count of edge becomes negative, and

this situation implies a reference to nonavailable datanfeofuture period.

2.2.5 Genetic Algorithm

Genetic Algorithm (GA) is an iterative procedure to simalatolution for a population of
candidate solutions to the optimization problem. In thiapter, we adopt genetic algo-
rithms to solve our energy optimization problem. In a genalgorithm, each iteration step
is called ageneration and each candidate solution is calledrmomosomehat consists of
several pairs ofjeneq75]. A genetic algorithm begins with an initial populatiofh chro-
mosomes. Two genetic reproduction operatorgtationandcrossover(recombination), are
designed to create new chromosomes for the next generdt@number of chromosomes
in each generation is constant. Thus, a fitness functiored tesevaluate each chromosome,
and only those chromosomes with higher fithess value wilkEbecsed to form the new popu-
lation of the next generation. This evolution process igatpd until a termination condition
has been reached. The chromosome with the highest fithass ivathe last generation is

selected as the final solution [3].

2.2.6 Problem Statement

For a DFG used to model given dependent periodic tasks, tbdhead-aware energy opti-

mization problem is defined as follows:

Given a DFGG = (V, E, p, C), a timing constrain’C', an MPSoC with\/ proces-

19

sor cores{ PE,, PE,,--- , PE)}, and each processor core withdiscrete voltage levels,
{Viadys Vads, - - -, Vaa, }» find voltage assignment for each task and a static schedalethat
the schedule has the minimum energy consumption withinntivegt constraintl’C, that is,
for each taskl; (T; € V), find its assignment, its release time and its voltage laweth shat
for the obtained static schedufg the schedule length of is less than or equal t&'C' and

the total energy consumption 8f E;yq; (S), is minimized.

2.3 Motivational Example

In this section, we motivate the energy optimization prabley showing how to schedule a
DFG. We compare energy consumption of the schedules geddrgtthe list scheduling in

Landskov et al. [59], the algorithm in Zhang et al. [115], anudl technique.

Figure 2.2(a) shows the DFG that is used to model periodienidgnt tasks. In the
DFG, each node represents a task, and the number besidecgchepresents the number
of clock cycles needed to execute the node. The edge betweearodes represents data de-
pendency, and if two nodes of an edge are assigned to diffgrecessor cores in a schedule,
intercore communication will occur. For example, In theeshile shown in Figure 2.2(d),

there are two intercore communications— C andC — E.

We assume that there are two processor cores in this MPSaCgauh core has
two voltage/frequency levels, the high level and the loveleBased on the dynamic power
model in Equation (2.2)Fynamic = Csw - fop- Vi, Without loss of generality, we assume that
Csw = 1nF’; the voltage/frequency pair i2Y, 1G H z) at the high level andl{/,0.5GH z)
at the low level. Therefore, we gét; = 4W, P, = 0.5W, C Py = 1ns, andC P, = 2ns,
where Py and P, are used to represent the high-level and low-level poweswaptions,
respectively, and' Py andC Py, are the high-level and low-level clock periods, respetyive
The number of clock cycles of a node is not changed with DV&isTkve get the execution
time and energy consumption of each node in Figure 2.2(cgrevthe time unit ig.s and
the energy unit ig..J. For simplicity, we assume that the transition time ovedied ;.s for

each voltage change, the transition energy overhead freimigfn to low voltage levels is ap-

20

PE1 [BUS|PE2 PE1 |BUS|PE2

6000 °

1000
an () 10)
3000 e
1000 e

(a) (b)

High Voltage Low Voltage

Task Time | Energy | Time | Energy

(ns) (uh) (ps) (uh)

D - High Level Voltage

l:l Low Level Voltage
- Sleep mode (including

the transition time)

C.E* lIl Transition Mode

Inter-core
-
Communication

24 12

A-B*

m g QO w >

—_— W = BN N
>

_— W = BN

(c) (d) (e) (6]

Figure 2.2. A Motivational Example. (a) The original DFG) {the retimed DFG using our
RDAG algorithm. (c) The task information. (d) The schedweagrated by the list scheduling
in Landskov et al. [59] without power management (the enesdg7..J). () The schedule
generated by the DAG-based scheduling algorithm in Zhaag Et15] with DVS and DPM
(the energy i53.4.J). (f) The schedule generated by our technique (the energyis).

(g9) The schedule generated by our technique with a tightgmabnstraint§.s).

proximately4..J, and one from the low to high voltage level$..J. The time overhead and
energy overhead to enter into and exit from the sleep modéarand2u./, respectively,
and the sleep state poweridW. The read/write communication power through the com-
munication bus i$.51/, and the communication time between two taskgis. The static
power is0.25W. These assumptions are only for demonstration purposete®nique is

general enough to deal with general cases, as discusseadrisdgtions.

Assume that the timing constraintigu.s. The first schedule shown in Figure 2.2(d)
is obtained by the traditional list scheduling algorithm_Landskov et al. [59] that focuses

on optimizing time performance without power managememt=igure 2.2(d), we can see

21

that both processor cores operate at the high voltage levehé best time performance.
There are some idle slacks in the schedule; however, theytée utilized because of the
data dependencies. Based on Equation (2.1), we can obeadatti energy of the schedule:
Eiotai(S) = Er_aynamic(S) + Ei_static(S) + Et_comm (S) = P X 32 + Pyatic X 16 X 2+ Prgpyp, X
2x1=4x3240.25 x 324 0.5 x 2=13TuJ.

The second schedule shown in Figure 2.2(e) is obtained bipAlG& based schedul-
ing algorithm in [115] that applies DPM and DVS to minimizestbnergy consumption.
From the schedule, we can see that on the first core, @8sK8g, T, andTg are assigned
the high voltage level due to the timing constraint. On theosd core, task- is assigned
the low voltage level with DVS, and the idle slacks are turim@d the sleep mode with
DPM. Based on Equation 2.1, we can obtain the total energhi@ttheduleE; ., (S) =
Ey aynamic(S) + Ei_static(S) + Ep_comm(S) + Ei_sieep(S) + By siceporr(S)= Py x 16 + P, x 2
+ Paatic X (16 +2) + Peopm X 2 X 1+ Pyjeep X (16 =2 —5)+ Egeeporr X 1 =4 x 16 +0.5 x 2

+025 x18+05x2+0.1x9+2=64+14+454+1+094+2=734puJ.

The schedule generated by our approach is shown in Figuf®.ar2our approach,
we first use our RDAG algorithm (shown in Section 2.5.1) togfarm all the intra-iteration
data dependencies in Figure 2.2(a) into the inter-itematiata dependencies as shown in
Figure 2.2(b). This step makes all tasks in one iteratiombdependent of each other. Next,
we use our GeneS scheduling algorithm (shown in Sectio Bofgenerate a task schedule
shown in Figure 2.2(f). Because we adopt coarse-graindwvad pipelining, the slacks
caused by the intra-iteration data dependencies aremesdiiAt the same time, because we
can overlap communication and computation, the slacksecHoyg intercore communication
can be reused as well (for the intercore communication imrei@.2(f)-(g), the symbok
represents the data dependence to the next period). Inhledde in Figure 2.2(f), as all
idle slacks can be fully utilized, all the tasks can be exed it the low voltage level. Based
on Equation (2.1), we can obtain the total energy of the sdee®,;(.S) = Ei_aynamic(S)

+ By static(S) + Etcomm(S) = P, X 32+ Pyatic X 16 X 2+ Py X 2x 1 =0.5 x 32+ 0.25 X

32405x2=16+8+1=25ul.

22

If given a tight timing constraint smaller thad s, the two DAG-based scheduling
algorithms cannot obtain feasible solutions while our apph can. Figure 2.2(g) shows the

schedule obtained by our technique with the timing constfais.

From these results, we can see that our technique can e#fiyateduce energy con-
sumption. Based on the schedule obtained by our approackagks can be scheduled with
the insertion of voltage-setting instructions. The tegiei can be integrated into compilers
or real-time O.S. to generate energy-efficient code. Ne&tywll present the details of our

approach.

2.4 Lower-bound Analysis

In this section, we conduct lower-bound analysis for theg@neptimization problem defined

in Section 2.2.6. In our two-phase approach as shown in@e2tb, in the first phase, we
transform intra-iteration data dependencies into irntemation dependencies so as to make
all tasks independent of each other inside a period (Se2tih6). With this transformation,
the problem defined is changed tiven a set of independent tasks, a timing constrait

an MPSoC with\ cores,{PE,, PE,,---, PEy}, and each core with discrete voltage
levels,{Vaa,, Vad,, - - - » Vaa, }» find voltage assignment for each task and a static schedule
such that the schedule has the minimum energy consumptibmhe timing constraint

TC'. Next, we study the lower bound of the above problem.

The problem of finding an optimal task schedule with the mummenergy consump-
tion for a single-core or multicore system is known to be Mifplete [30,39,66,90]. For our
problem with independent tasks on multicore systems, efficalgorithms to obtain lower
bounds do not exist from the previous work. Therefore, wepsfsnour problem to be a
single-core scheduling problem, and use its solution agpipeoximate lower bound of our
problem. The simplified problem is defined as follow&ven a set of independent tasks, a
single-core system with discrete voltage level$,Vaq,, Via,, - - -, Vag, }» @ timing constraint
M - TC, assuming that there is no transition overhead for voltagenges, find voltage as-

signment for each task and a static schedule such that tredlstdhas the minimum energy

23

consumption within the timing constrainf - 7C'.

In the simplified problem, we put all available time slotsnrall cores to one core
(M - TC) and assume an ideal case without transition overhead ftageochanges. In
our problem, a task cannot be divided into subtasks and reesitp different cores, and
transition overhead associated with voltage changes vstaide in practice; therefore, the
result obtained by an optimal solution for this simplifiedlplem must not be worse (should
be better in most cases) than that by an optimal solution ofpooblem. On the other
hand, in our approach, the dependencies among tasks imsdeeoiod are removed so tasks
have more freedom to be moved around. For tasks assignece@athe processor core,
transition overhead can be minimized by grouping tasks thigrsame voltage level together
and scheduling groups following ascending order in termgotibige levels. So the results
obtained by our approach are close to those obtained by algimtutions for this simplified
problem. Therefore, optimal solutions of the simplifiedlgeon can serve as the theoretical

lower bound of our problem.

In Liu et al. [66], this simplified problem is proved to be NBraeplete, and a pseudo-
polynomial algorithm based on dynamic programming is ps&goto obtain optimal solu-
tions. Although the proposed algorithm is pseudo-polyradias its complexity is related to
the timing constraint, the algorithm is efficient in praeta&s the execution time of each task
is upper bounded by a constant. However, the proposed #igoim Liu et al. [66] focuses
on optimizing energy consumption with DVS only. Next, basedt, by applying both DVS

and DPM, we propose a new algorithm called OLB to obtain tiaetdound.

In Algorithm 2.4.1, we separate the total available time itwto parts,I'ime_DV S
andTime_DPM. Time_DV S is the time period managed by DVS to schedule all tasks;
Time_DPM is the idle time managed by DPM. Initial§/ime_DV S is set asM - TC
to represent that all the available time is used for task @wi@t and managed by DVS;
Time_DPM is set as zero to represent that there is no idle time to begeadray DPM. For
Time_DV' S, the time period for DVS, Algorithm DPVS in [66] is called tbi@in an optimal

voltage assignment for all tasks ¥n with Time_DV S as the timing constraint. Based on

24

the voltage assignment, we obtain the total execution tifredl tasks and compare it with
Time_DV S. If there is idle slack, we then apply the lowest voltage otoitompute the
idle energy as we can always move the idle slack next to tlketas are executed with the

lowest voltage level.

ForTime_D P M, the time period for DPM, we attempt to apply DPM to save energ
If Time_DP M is greater thad'C', considering that a schedule will be repeatedly executed,
it means that one processor core is completely idle; thussamdurn it off outside the loop
so its energy i¥'C' - Py..,. We calculate how many idle cores @BY¥me_DPM/TC and
put these cores into the sleep mode. Then we attempt to &ppBly/ on the remaining time
(Time_DPM%TC) in Time_DPM, and the time period will be put into the sleep mode if
we can save more energy by doing that. Finally, we calculeddtal energy based on the
power model in Section 2.2.3, and record the minimum enecggraingly. At the end of
each iteration]ime_DV S is decreased by oné&ime_DPM is increased by one, and the
above procedure is repeated so all combinations with DVSdd can be obtained. The
C

}fi) that is the minimum time we need

to execute all tasks (the processor core is operating atiginest voltage at that time).

algorithm stops whefi'ime_DV'S becomes .,

As shown in Liu et al. [66], the complexity of Algorithm DPVS®(T'C' - n) where
TC is the timing constraint, and is the number of tasks. So the complexity of Algo-
rithm 2.4.1 isO(TC? - n). Usually, the execution time of each task is upper bounded by
constant. S@'C' is equal to @Qn°) (c is a constant). In this case, Algorithm 2.4.1 is polyno-

mial.

2.5 Task Parallelization and Scheduling

In this section, we propose our two-phase approach for tasKIplization and energy opti-
mization. Because intra-iteration data dependencies d¥@ Bot only impede parallelism
but also cause abundant idle slacks on processor coregys plnegative role on energy
minimization. Hence, in the first phase, we propose an algorcalled RDAG to remove

intra-iteration data dependencies in Section 2.5.1. Ouk®&Blgorithm transforms a depen-

25

Algorithm 2.4.1 Algorithm OLB (Obtain the Lower Bound of the Energy Consuiopy
Input: A task setl” with n independent taskd/ = {73, T%,---T,}, timing constraintM - T'C,

a processor core witk different voltage/frequency level§(Vyq, , f1), (Vady, f2)s -+, (Vad, ,

fk)}(vddl < Vg, < ... < Vddk)-

Output: E7 g, the lower bound of the energy consumption.
C(Tx)
Je

1: Erg + oo, Min_Time — ZTZEV
if M -TC < Min_Time then

No feasible solution and exit.

2

3

4: end if

5: Time. DV S < M -TC; Time_DPM <+ 0.

6: while Time_DV S > Min_Time do

7 Using Time_DV S as the timing constraint, call Algorithm DPVS in Liu et al6]&o obtain
an optimal voltage assignment for all tasksVin and letE;_gy,qmic be the total dynamic
energy with the voltage assignment.

8: For the obtained voltage assignment, M};(7;)/f(1;) be the corresponding voltage
level/frequency off;. Total Time-DV'S < > 1., C(T3)/ f(T3), and min_voltage <
min{Vy(T3)}, T; € V.

9: if (Time_DV'S — Total Time_DVS) > 0then

10: Eigie < (Time_DV'S — Total Time_DV S) - Pyynamic(min_voltage).
11: else

12: FEige + 0.

13: endif

14: Epvs < Eiaynamic + Pstatic - Time_DV S + Ejqe.

15: NumSleepCore < Time_DPM /TC; Egcepcore < NumSleepCore - T'C - Pyjeep.
16: Time_.DPM < Time_ DPM%TC;, Eppy < Psiatic - Time_DPM.

17: if Time_DPM > tgccpon then

18: it (Pyeep - (Time_DPM — tgeeporr) + Esiceporr) < Eppar then
19: Put the core into the sleep mode for the time pefiagie_D P M.
20: Eppum < Paieep - (Time_-DPM — tgceporr) + Esteepor-

21: end if

22: endif

23: if g > (EDVS + Eppy + EsleepCOTe) then

24: Erg <+ Epvs + Eppym + Esieepcore-

25: endif

26: Time.DVS < Time_DVS — 1, Time_DPM < Time_DPM + 1.
27: end while

26

Algorithm 2.5.1 The RDAG Algorithm
Input: ADFGG = (V,E,p,C).

Output: The retiming value:(7;) of each task;.

1: for each taskl; € V do
22 r(T;)«0

3: end for

4: for eachT; € V do

5 if T; is a leaf nodghen
6: ENQUEUE(Q,T;)
7 tail <+ T;

8 end if

9: end for

10: while Q # () do

11: T;+ DEQUEUE(Q)

12: for each parent node€; of T; do

13: r(T}) < max{r(T}),r(T;) + 1}
14: if tail # T; then

15: ENQUEUE(Q,Ty)

16: tail < Tj

17: end if

18: end for

19: end while

dent task graph into a set of independent tasks. We will alatyae the prologue latency and
the extra memory overhead caused by the RDAG algorithm. Trhére second phase, we
propose a scheduling algorithm called GeneS that adopteetig@pproach to perform en-

ergy optimization considering DVS, DPM and various transibverheads in Section 2.5.2.

2.5.1 The RDAG Algorithm for Task Parallelization

(1) The RDAG AlgorithmIntra-iteration data dependency in task graphs may impeade p
allelism and cause idle slacks on processor cores. For dganpe to the intra-iteration
dependencies of the DFG, in Figure 2.2(d) and Figure 2.2¢e)schedules can utilize at

most two processor cores, in other words, there is no morevgéi three or more processor

27

cores. The idle slacks in Figure 2.2(d) and Figure 2.2(e) plaegative role in energy con-
sumption. Hence, if we get rid of intra-iteration data degencies, we can obtain more de-
sign space to reduce idle slacks or achieve better pasalieln this way, more opportunities
are provided for energy optimization. Motivated by this, prepose the RDAG algorithm
for task parallelization by transforming a DFG into a new DW{# only inter-iteration data

dependencies.

According to the definition of retiming, in order to transfoperiodic dependent
tasks into a set of periodic independent tasks, we need t@tldést one delay onto each
edge of the original DFG. At the same time, we need to find oetnttnimum retiming
value for each node because a big retiming value may cauggpadiogue and epilogue. To

achieve this, we use Equation (2.11) to calculate the rainmalue of each node as follows:

max{r(1;),r(1;) + 1}, if T;is T}'s parent

r(Ti) = { 0, if T; is a leaf node (2.11)

In Equation (2.11), basically, for each leaf node, we setetsning value a%); the
retiming value of each non-leaf node is calculated fromdoutto top. Based on Equation

(2.11), we design the RDAG algorithm that is shown in Algamit2.5.1.

In the RDAG algorithm, two procedureENQU EUE and DEQU EU E, are used
for the INSERT and DELETE operations on a queue, respegtivelLines 1-3, we assign
the initial retiming value of each node to In Lines 4-9, we find out all the leaf nodes and
put them into a queue naméy and store the current tail element®@ifnto a variable named
tail. Next, in Lines 10-19, we calculate the retiming value offeaode based on Equation
(2.11) in a breadth-first manner. Especially, in Lines 14vi€ judge if the parent nodg of
nodeT; is the tail element of the current queueIlfhappens to be the tail element, then we
do not need to put nodg; into the queue again. In such a way, we can avoid putting extra

adjacent nodes into the queue which will cause unnecessdmpndant calculations.

An example is given in Figure 2.3 to show the potential impghat the RDAG al-
gorithm can provide for scheduling. Figure 2.3(a) is usethtmlel a streaming application

with periodic dependent tasks and the execution time of &esttis listed beside each node.

28

1 D A [B D
1
r(TA):Z C

H(Ty) =1

r(Te)=1 * peri 3 peroid
1(p) H(Tp) =0

(@) (©)
1.\[Zud 3r-d 4/h

period period period period

1)
1 >
1 G >
(@) .
prologue loop kernel epilogue
(b) (@

Figure 2.3. An Example of the RDAG Algorithm. (a) The oridik#G G. (b) The retimed
DFG G... (c) The static schedule generated fr6in (d) The pipelined schedule generated

from G,.

Based on our RDAG algorithm, we obtain the retiming valueagrenode, and the corre-
sponding retiming values are listed &4;) for each taskl;. Figure 2.3(b) is the retimed
DFG obtained by the RDAG algorithm, in which the count of gslaf an edge is repre-
sented by the number of bars. In Figure 2.3(b), there is at le@e delay on each edge;
therefore, all tasks are independent of each other in oratite@. Suppose that we have a
four-core MPSoC, according to Figure 2.3(a) and Figurel®, 3(e generate different sched-
ules as shown in Figure 2.3(c) and Figure 2.3(d), respdygtite Figure 2.3(c), we can see
that, due to the inherent data dependency of the applicat@enschedule can only use 2
cores and the schedule length in each period is 3 time uniter Adopting the RDAG al-
gorithm, in Figure 2.3(d), the scheduler can effectiveketadvantage of 4 processor cores.
In Figure 2.3(d), each period of the loop kernel consists taisks coming from 3 different

iterations, and the schedule length in each period in the keonel is reduced to 1 time unit.

With the RDAG algorithm, by transforming intra-iteratioegendencies into inter-

iteration dependencies, we can utilize more processosdoracrease parallelism. How-

29

ever, as shown in Figure 2.3(d), an extra prologue is adderter to make all tasks indepen-
dent of each other inside one period. Although the prologumly executed once, it causes
the extra latency in the beginning. Also, we may need more ongito hold data caused
by regrouping different periods of tasks into one iteratibiext, we analyze the prologue
latency of the RDAG algorithm, and discuss the memory owstheaused by the RDAG

algorithm.

(2) Prologue LatencyThe prologue latency of the RDAG algorithm is caused by redah

ing tasks to previous periods with earlier release timeh&RDAG algorithm, the prologue
latency is equal to the time duration of the prologue, arsldietermined by the maximum re-
timing values among all tasks. Given a DFG, Btologue_Latency represent the prologue

latency, and it can be calculated by

Prologue_Latency = Ty - I = maz{r(T;)} - I,(T; € V), (2.12)

wherer,,.. is the maximum retiming value among all taskdinand! is the period.

The maximum retiming value obtained by RDAG is determinedh®ydependency
relations of a DFG. Note that the prologue is only executert@o the overhead it introduces
is one-time delay. Typical streaming applications suchigis-performance multimedia be-
long to soft real-time applications in which deadline mssaee not desirable but allowed.
Therefore, as long as the prologue latency is not too langetexhnique can be applied to
optimize streaming applications on MPSoC. On the other harglreaming application is
repeatedly executed for many times. After waiting for theation of the prologue, tasks
can be periodically executed in the new loop kernel. As opragch can greatly reduce the
schedule length of each period, we can either apply a shoeteyd or apply DVS and DPM
for energy optimization. So we can benefit from each periati@loop kernel after waiting

for the execution of the prologue that only executes once.

(3) Memory OverheadAs the RDAG algorithm regroups tasks from different periods
one period, extra memory space is needed to hold data aciftesemt periods. In this

section, we analyze the memory space required by our methodnake comprehensive

30

analysis, the memory space needed by both intracore consation and intercore commu-
nication is included. Given a DFG that models a streamindiegdon, a retiming function

obtained by the RDAG algorithm in Section 2.5.1, and a stetlzedule obtained in Sec-
tion 2.5.2, our objective is to obtain the maximum memorycepaeeded by our approach.
Based on this, we can analyze the extra energy caused bytthex@emory space introduced

by our approach and perform comparison with the previougkwor

In order to achieve this, we need to analyze all data trans#estatic schedule across
the prologue and all periods. However, as a static schedllbenwepeatedly executed start-
ing from the first period as shown in Figure 2.3, all the menspgce can be obtained by
analyzing the data transfer in the prologue and the firsbgerin a schedule, data transfer
is associated with two tasks of an edge of a DFG. For an €figé’;) in a DFG, we need a
data buffer to hold the data from the time when they are géeeiay 7; to the time when
T; is finished, and this time period is callée lifetime segmertf a data buffer. The life-
time segment of a data buffer is representedagart, end, volume > in which “start”
represents the start time of the segmeat,d” represents the end time of the segment, and
“volume” represents the data volume that needs to be transferredghrthe data buffer.
Given a lifetime segment;, we usdi.start, li.end andli.volume to represent its start time,
end time, and data volume, respectively. To analyze all wlatesfer in the prologue and the
first period, next, we first obtain the lifetime segments btlata buffers associated with all
intracore communication and intercore communication,\wwadhen conduct lifetime anal-
ysis so as to obtain the total data volume of each time unitutiyng all lifetime segments

together.

Algorithm ObtainLifetime() in Algorithm 2.5.2 is used to collect the lifeterseg-
ments of all data buffers needed for data transfer in theogue and the first period. In
Algorithm 2.5.2, we first obtain the maximum retiming valug,,., among all nodes. As
the prologue withr,,... - I (I is the period) is added in the schedule in our method, this
should be counted for calculating the abstract release rahtimes of a task. Given a static
scheduleS, for a taskl; € V, let Ry, be its release time i, then its abstract release time

in the first period is,,... - I + Rr,. In the algorithm, we add the lifetime segment of each

31

Algorithm 2.5.2 Algorithm ObtainLifetime()
Input: ADFG G = (V, E,p,C), aretiming function, periodI, a static schedul&' in which for

taskT;, Ry, is its release time an877r, is its execution time irb.
Output: A lifetime segment setD B_Li fetime_Set, that contains all lifetime segments of all data

buffers in the prologue and the first period.

1: Sort all nodes ifV in topological ordering.

2! Tmae < max{r(T;)},T; € V.

3: for eachT; € V following the topological ordedo

4: for each of7}’s adjacent nod&; in G do

50 (T3, Ty) = r(T3) — r(T)).

6: for rt=0; rt < r(T;); rt++ do

7 Add /i, the lifetime segment of the data buffer that holds the datesterred froni; to

Tj, into DB_Li fetime_Set, in which

8: li.start <— (rmaz—1t)- [+ Ry, +ETT;
9: li.end <(rmae—t4+pr (T3, T)) - I + R, +ETr; |
10: li.volume < com(T;, Tj).
11: if li.end > ("maz + 1) - I then
12: li.end < (Tyaz + 1) - 1.
13: end if
14: end for
15: end for
16: end for

data buffer associated with each edge into a set followiagdpological order. For an edge
(T;,T;) € E, after retiming, its delay count js.(7;, 7). So in the first period, the lifetime
segment of the data buffer associated with 7;) should begin withr,,,., - I + Ry, +ETr,
and end with(r,,q. + p.(T3,T})) - I+Rr,+ETr,, and its data volume isom/(T;,T;). As
defined in Section 2.2.4, by retiming a node once, one of iy dmoved into the prologue.
So for (7;,7}), after obtaining its lifetime segment in the first periodrrespondingly, we
addr(T;) (the retiming value off;) lifetime segments with one period time difference into
the set for these data buffers in the prologue. For each s#gimés end time is over the

first period whose the abstract time(is,., + 1) - I, we change it to bér,,,,, + 1) - I as we

32

only need to calculate up to the first period.

Algorithm Lifetime_Analysis() in Algorithm 2.5.3 is to perform lifetime analgso
we can obtain the total data volume of each time unit. ThetimbtAlgorithm 2.5.3 is
the lifetime segment sef) B_Li fetime_Set, that contains all lifetime segments of all data
buffers in the prologue and the first period obtained in Allgon 2.5.2. In Algorithm 2.5.3,
in each iteration, we first sort all lifetime segmentdif®_Li fetime_Set in ascending order
in terms of their start times as some new segments may be auddte set. Then following
the order, we remove the first two segments frbiB _Li f etime_Set and compare their start
and end times. Basically, when their start times are equalcembine them together and
put the new segments back infdB_Li fetime_Set. Otherwise, we output a new lifetime
segment that is generated by the start times of the two sdgrasrthe data volume of this
time period is fixed; then we combine other parts of the twarsags and put them back into
DB_Lifetime_Set. The above procedure is repeated umiB_Li fetime_Set is empty or
there is only one elementis MB_Li fetime_Set when we can directly output that element.
The output of Algorithm 2.5.3 is a set that contains disjdifgtime segments and each
segment represents the total data volume we need to stdne tnme period from its start
time to its end time. Based on it, therefore, we can find theimas memory space needed

by our method.

Using the DFG and schedule in Figure 2.2 as an example, Fyd(a) shows the
given DFG, the retiming values obtained by our RDAG alganitland the schedule obtained
by our GeneS algorithm in Section 2.5.2. Based on the DF@ireg function and schedule
in Figure 2.4(a), by applying Algorithm 2.5.2, we can obtal#_Li fetime_Set, which is
the set that contains all lifetime segments of all data bsffe the prologue and the first
period, shown in Figure 2.4(b). Figure 2.4(c) shdiustal_Lifetime_Set, the output of
Algorithm 2.5.3 based oW B_Li fetime_Set in Figure 2.4(b). Because of limited space, we
only list the first three items df'otal_Li fetime_Set in Figure 2.4(c). The corresponding
schedule with the prologue and the first period is shown inf&@@.4(d), in which the lifetime
segments of all data transfer are provided. From it, we cartts it is not easy to obtain

the maximum space needed directly from a schedule.

33

Algorithm 2.5.3 Algorithm Lifetime_Analysis()

Input: DB_Lifetime_Set obtained from Algorithm Obtairbifetime().
Output: A lifetime segment sefl'otal_Li f etime_Set, by which we can obtain the total data volume

of each time unit in the prologue and the first period.

1: while DB_Lifetime_Set is not emptydo
2 if There is only one segment B _Li fetime_Set then
3: Remove the segment froM B_Li fetime_Set, and add it intdl"otal _Li f etime_Set.
4: Exit.
5. endif
6 Sort all lifetime segments iV B_Li fetime_Set in ascending order in terms of start times of
all lifetime segments.
7: Remove the first two lifetime segments, andit,, from DB _Li fetime_Set.
8: if lty.start = lty.start then
9: if lt1.end = lty.end then
10: Add < [ty.start, Ity .end, lt.volume + lts.volume > into DB _Li fetime_Set.
11: else
12: if It1.end > lts.end then
13: Add two lifetime segmentsx [ty.start, Ity.end, lt.volume + lts.volume > and
< ltg.end, lt1.end, lty.volume >, into DB_Li fetime_Set.
14: else
15: Add two lifetime segmentsx [ty.start, lty.end, lt1.volume + lty.volume > and
< lt1.end, lty.end, Ity volume >, into D B_Li fetime_Set.
16: end if
17: end if
18: else
19: if lt1.end < lty.start then
20: Add < lty.start, Ity .end, lt;.volume > into Total _Li f etime_Set.
21: Add < lty.start, lty.end, lts.volume > into DB_Li fetime_Set.
22: else
23: Add < [ty.start, lty.start, lt1.volume > into Total_Li fetime_Set.
24: if It1.end = lty.end then
25: Add < lty.start, Ity.end, Ity .volume + lty.volume > into DB_Li fetime_Set.
26: else
27: if It1.end > lty.end then
28: Add two lifetime segmentsk lto.start, lto.end, It .volume + lto.volume > and
< ltg.end, lt1.end, Ity .volume >, into DB_Li fetime_Set.
29: else
30: Add two lifetime segmentsk lto.start, lt1.end, It1.volume + lty.volume > and
< lt1.end, lty.end, Ity volume >, into DB_Li fetime_Set.
31 end if
32: end if
33: end if
34: endif
35: end while

34

DB_Lifetime_Set (for all data buffers)
i {<12, 24, com(A,B)> <12,46, com(A,C)>24, 46, com(B,D)>
Time <28, 40, com(A,B)> <28,62, com(A,C)>40, 62, com(B,D)>
0 4 8120 ‘16 <44, 56, com(A,B)><44,64, com(A,C)>, <46, 64, com(C,E)>
-- <46, 64, com(D,E)> <56, 64, com(B,D)%60, 64, com(A,B)>
C ‘ <60, 64, com(A,C)><62, 64, cor(nb()C,E)>, <62, 64, com(D,E,

P1 A

Total_Lifetime_Set (for total data volume per time unil

®2p2| B | D |E

{<12. 24, com(A,B)+com(A,C)> <24, 28, com(A,C)+com(B,D):
<28, 40, 2*com(A,C)+com(B,D))+com(A,B)> - - -~

‘ (@) (©
| < -
Time Prologue ‘ 1st Period ‘
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

[}
[—— -

A NNWe| Eewnd

P L e [] I & [of[LN R b

E
~— —comtA,By—| = —com(AB) — > -~ | — com(AB) — ~ gom(A,B)
7 = com®BB) - - Tam— =1 -
4__'CO|'T1fCTE)' —t— 1=
‘—'—"COmeTE)' Y A

com(A,C) aEEERE com(AL) = com(AC)

Figure 2.4. Latency and Memory Overhead of the RDAG Alganith

The complexity of Algorithm 2.5.2 i€ (| E|) in which E'is the total number of edges
in a DFG, as we need to traverse each edge in order to obtanatagransfer associated
with it. So for DB_Li fetime_Set, the output of Algorithm 2.5.2, its total segment number
is bounded byO(|E|). In Algorithm 2.5.3, we try to find all disjoint sets of all thiéetime
segments iNDB_Lifetime_Set in terms of their start and end times, and the maximum
number of all the disjoint sets is 2|DB_Lifetime_Set|. Therefore, the complexity of

Algorithm 2.5.3isO(| E]).

2.5.2 The GeneS Algorithm for Energy Optimization

In this section, we propose our genetic scheduling algworitGeneS, to perform energy
optimization with DVS and DPM. GeneS can search and find tls¢ $ishedule within the
solution space generated by gene evolution. Next, we firgidoce three key components

of our GeneS algorithm, chromosome representation, cvessmd mutation (the two basic

35

genetic operators), and the fitness function. We then preseriGeneS algorithm.

(1) Chromosome and Schedula.our approach, each chromosorgg,consists of two lists

of genes]I and2. The content in lisil represents the task assignment of each task, and the
content in list(2 represents the voltage level of each task. For each tagksksassignment
and voltage selection form a pair of genes. Given a chromesara generate a schedule

with energy optimization as follows.

e Step 1. Construct task groupsFollowing the genes of tasks, put the tasks that are

assigned into the same processor core and have the samgeveNal into the same

group.

e Step 2. Generate a schedule with DPMor each processor core, if there are some
task groups assigned on it, sort the groups in ascending iorterms of their voltage
levels and schedule them following the order. If there ale stacks after all the task
groups have been scheduled on a core, move all the idle dlatke location that is
immediately next to the first task group (with the lowest ag level in the core). Put
the idle slacks into the sleep mode if we can save energy lmgdbi For a processor

core, if there is no any task scheduled on it, put it into tleeglimode.

As just shown, when generating a schedule based on a chramepse first group all tasks
based on their voltage levels on the same core and then deltbdgroups following ascend-
ing order in terms of the voltage levels. In this way, we canimize the total energy/time
transition overhead on the core based on Equations (2.69)), (2.8), and (2.9). We also
move all the idle slacks next to the group with the lowestagét level and attempt to put
them into the sleep mode if we can save energy. For a processothat is completely idle,

as we can turned it off outside the loop so its powerds,,.

Figure 2.5 shows a chromosome and its corresponding tasisleh In Figure 2.5(a),
from each pair of genes of a task, we can obtain its task asgighand voltage selection.
For example, tasi{; is assigned to processé&rE; with the voltage level,,,. Therefore,

PFE; andV,,, forms a pair of genes for task;. Given the chromosome in Figure 2.5(a), the

36

A B C D E |:| Low level voltage (Vqa1)
(IT) |PEl1 |PEl |PE2 |PEl |PEIl I tigh level volage (Vax)

Q) Va2 [Vaez |Vaar |Vaaz |[Vdae - Sleep mode (including

the transition time)

(a)

Figure 2.5. Chromosome Representation and Its Correspgiidisk Schedule.

task schedule can be generated as shown in Figure 2.5(thd=@sks that map to processor
core PE}, their voltage levels are the samié,{,) so there is only one task group. Similarly
we can obtain the schedule 61, in which we put the idle slacks into the sleep mode with

DPM.

(2) Crossover and MutationiVe use two genetic operatorspssoveandmutation to create

new generations of chromosomes. The crossover operatmtsglenes from parent chro-
mosomes and creates new pairs of offspring. For each pahrofrosomes, we randomly
select the crossover point of two chromosomes to swap teeieg) and create a new pair of

chromosomes. Figure 2.6 shows an example of the crossogeatop

In this example, we perform crossover to create chromosoaredhromosome 4
from chromosome 1 and chromosome 2. We use a vertical baptesent the crossover
point. To generate a new pair of offspring, the genes befayssover point (the genes of
tasksT, andTp) of chromosome 1 and the genes after the crossover poingéhes of
tasksT, Tp andTg) of chromosome 2 form chromosome 3. Similarly, the geneasks
T4 andT of chromosome 2 and the genes of ta8ks T, andTr of chromosome 1 form

the chromosome 4.

The mutation operator is used to maintain the genetic diydrem one generation to
another. In our approach, for each chromosome, we perfortatian by randomly selecting

one task and decreasing its voltage for one voltage levgiurgi2.7 shows an example of

37

Chromosome 1 Chromosome 3

A B C D E A B C D E
(IT) |PE2 |PE2 |PE1 |PE2 |PEI (IT) |PE2 |PE2 |PE1 |PEl |PEIl
() |Vaez |Vaaz |Vaar |Vaee |Vaae (@) "\Vaiz |Vaaz |Vaar [Vaar |Vaa

Chromosome 2 Chromosome 4

A B C D E A B C D E
(ITy |PE1 |[PE2 |PE2 |PEl |PEl (IT) g PE1 |PE2 |PE2 |PE2 |PE1
Q) Vi [Vaaz |Vaar |Vaa [Vaa Q) Vi Vi (Vi |Vae [V

crossover point crossover point

Figure 2.6. The Crossover Operator Generates New Chroneso@hromosomes 3 and

Chromosome 4.

Chromosome 1 Chromosome 2
A B C D E A B C D E
() [PE2 [PE2 [PE1 |[PE2 |PEI () [PE2 [PE2 [PE1 [PE2 |PEI
Q) Vi |Vae |Vaa |Vae |Vae Q) |Vaez |Vae |Vaar [Vaar |Vaa

|]

Figure 2.7. The Mutation Operator. Tagk is selected to perform mutation, and its voltage

level is changed fronW,, to V,, .

the mutation operator. In this example, after mutation vibleage level of task', changes

from Vg, to Vg, .

(3) Fitness FunctionThe fitness function is designed to evaluate each chromosoarder

to find a schedule with the minimum energy within the soluspace generated by gene evo-
lution. Given the timing constraiftC', a chromosomég; whose schedule lengthig¢;) and
whose energy consumption 15, (§;) that is calculated based on the schedule associated
with it, the fitness valuefitness(¢;), is defined by

1 C .
fitness(&;) = { (J;mez(&)’ ;C i égji (2.13)

)

In the fitness function, both the timing constraiit’ and the energy consumption

Eia (&) are taken into account. We compare the timing constfA@itwith the schedule

38

Algorithm 2.5.4 The GeneS Algorithm

Input: A set of independent tasks, the timing constrdit, M processor cores, and each processor

core withk different voltage level§Vyg, , Vad,, - -+ 5 Vid, -

Output: An objective task schedule with the minimum energy consionpt

1:

N g A ow N

10:
11:
12:
13:
14:

Generate the initial generation wiflic chromosomes. In each chromosome, the voltage level
of each task is set as the highest voltagg , and the task assignment is randomly selected.
Calculate the fithess value of each chromosome based oni&yQat 3.
Sort chromosomes in the ascending order of the fitness value.
Remove%Nc chromosomes whose fitness values are smaller.
Perform crossover on the preserdd chromosomes to create anothe¥ chromosomes.
Calculate the fitness value of each newly generated chram$ased on Equation 2.13.
Sort the preserveéINC chromosomes and the newly genera%é\ﬂc chromosomes in ascending
order in terms of the fithess values, and remé\iég chromosomes whose fitness values are
smaller.
Randomly seIec};NC chromosomes from the preserv%ﬂfc chromosomes to perform mutation
and generatéNC chromosomes.
Let the currentVo chromosomes be chromosomes in the new generation.
if the termination condition is satisfieden

Let the chromosome with the biggest fithess value be the blgtan.
else

Go to Step 4.

end if

length L(&;) of the chromosomé;. If the schedule lengtld(¢;) is greater than the timing

constraint/’C', the fitness value of the chromosoefitness(&;), is equal to zero since the

schedule is not feasible; otherwise, its fithess value as@e when its total energy consump-

tion Eyqi (&) decreases. Using this fitness function, we can select tleendgome with the

highest fitness value to be the solution of our energy miration problem.

(4) The GeneS Algorithnin this section, we present our genetic algorithm, Gene§eter-

ate the objective task schedule with the minimum energywopsion. Our GeneS algorithm

is shown in Algorithm 2.5.4.

In GeneS, we start from an initial population that is randpggnerated by a number

39

Initial Generation /~ ol / Chromosome 1 N\ New Generation

A B D|E A B C D _E
Chromosome 1 an [PE2 [PE1 |PE2 |PE1 PE2 (m) [PE2 [PE1 [PE2 [PE1 [PE1 | Chromosome 1
A B _C D E Q) |Vddz |Vﬂd2 |Vdd2 |VdﬂZ Vaa | (V) |delz |Vddz |Vudz |V«dz |lez | A B C D E
(m) [PE1 [PE1 [PE1 [PE1 [PE1 | (m[PE2 [PE1 [PE2 [PE1 [PE1 |
(9] |Vdﬂ1 |Vdd2 |Vﬂd2 |Vdd2 |Vdﬂ1 | Chromosome 2 Gl (ﬂ)lvduz |Vmﬂ |Vddl |Vddz |Vdd2 |
A B _C DJE || A B _C D _E]
Chromosome 2 Sort, | [PE2 [PET [PE1 [PE1 [PE1 (m) [PE2 [PE1 [PE1 [PE1 [PE2 | Chromosome 2
A B _C D E i> (@) [Vaaz |Vaaz [Vaaz [Vaar [Vaaz | (@ [Vaar [Vaar [Vaar [Vaar [Vaar | A B _C D _E
(m [PE1 [PE2 [PE2 [PE1 [PE1 | (m[PE2 [PE2 [PE1 [PE1 [PE1 |

(@) |Vaaz |Vaaz [Vaaz |Vaaz |Vaaz H Ghron o s (ﬂ)lVddz |V.mz |VddZ |V.m| |Vdd2 |

:
A B _C D E
Chmmos"mell)v‘/zE () [PE2 [PE1 [PE2 [PE1 [PE2 |

A B (€
AN G o @ WW Q) |Vm |V.mz |V.mz |Vdd1 |Vm |
) [PE2 [PE1 [PE2 [PEI1 [PE2 | (@) [Vaaz [Vaaz [Vaar Paaz [Vaaz |
@) |Vddz |Vd|l2 |Vdd2 |V|ld1 |Vddz |

Chromosome 3 Chromosome 3

A B _C D E
() [PE2 [PE1 [PE2 [PE1 [PE1 |

g (@) [Vaaz [Vaaz [Vaaz [Vaar [Vaar |
Chromosome (3/4)*N¢

A B _C D E
(m [PE2 [PE2 [PE1 [PE1 [PE1 |

Crossover

Sort| Sort

Chromosome 4 Chromosome 4

Chromosome 1

(@) [Vaaz [Vaaz [Vaar [Vaar [Vaar |

A B _C D E
(m[PE2 [PE1 [PE1 [PE1 [PE2 |
(Q)lvddz |Vdd2 |Vdd2 |Vddz |vdd2 |

A B _C D E
(m) [PE2 [PE2 [PE1 [PE1 [PE1 | A B _C D
@) Vo [Vaaz [Voaz [Vaaz [Vart | an [PE2 [PE1 [PE2 [PE1 [PEI

@) [Vaaz [Vasz [Vasz [Vaaz [Vaar |

Randomly select (1/4)*N(|
8 chromosomes and
‘ O mesme 2 perform Mutation

A B i D E
Chromosome N1 (II) |PE2 |PE1 |PE1 |PE1 [PE2

Chromosome (3/4)*Nc+1
Q) |Vm|z |Vdu2 |vdd1 |Vud2 ad2 |

Chromosome N1

A B _C D E
am [PE2 [PE1 [PE2 [PE1 [PE1 |

A B _C D E
() [PE2 [PE1 [PE2 [PE1 [PE2 |
(®) [Vaaz [Vaar [Vaar [Vasz [Vaaz |

A B _C D E
() [PE1 [PE1 [PE2 [PE1 [PE2 |

() |Vdd2 |V4dz |Vdd2 |Vu42 |Vauz | H (V) |Vdd2 |Vdd2 |V.mz |Vddz |V¢J|l2 |
Chromosome N2 5
A B CQLD E [Chromosome N¢
ACh::moZ]meév <L @) [PE2 [PE2 [PE1 |PE2 [PEI1 - |P§z |Pl<1232 |1>|€1 |P1]3)1 |PEl | . Cl;romocsom; Nc .
Q) [Vaar [Vaar [Vaar [Vaa [V
a1 [PE2 [PE1 [PE1 [PE1 [PEL | @ [Vaa: [Vaar | "'l! az [V | @) [Var [Vors [Vorz [Voar [Vaut | () [PE2 [PE2 [PE1 [PE1 [PEL |

(@ [Va [Vaar [Vaar [Vaar [Vaar | (@) [Vaaz [Vaaz [Vaar [Vaar [Vaar |

Figure 2.8. An Example of the GeneS Algorithm.

of chromosomes. The number of chromosomes in each generattenoted byV.. For
each chromosomg in the initial generation, the task assignments are rangaelected,

and the voltage level of each task is assigned with the higlodisge level Vg, .

Starting from the initial population, we iteratively penfio crossover and mutation
operators over the chromosomes to create new generati@asedBn the fitness function,
we calculate the fitness value of each chromosome. The avétagss value of each gener-
ation will be increased as we only keep the chromosomes wgtheh fithess value through
evolution. The algorithm terminates when the predefinedimas number of generations

is reached.

We give an example in Figure 2.8 to illustrate our GeneS dlyor Given the DFG
in Figure 2.2(a), the power model in Figure 2.2(c), two peswe core{ PFE,, PE,}, and the

timing constrain’C' = 16, after applying our RDAG algorithm on the DFG, we can obtain a

40

set of independent tasks. As they are independent of eaeh tthy can be scheduled in any
orders in one period. Following GeneS, we first generatenitialigeneration withVg chro-
mosomes, in which all tasks in each chromosome are assigtiethe highest voltage level
Vaa,- We can calculate the fitness value of each chromosome,hsort &nd removéNC
chromosomes that have the smaller fitness values. The peelsyrfc chromosomes form
iNC pairs of chromosomes. For each pair of chromosomes, werpedimssover and gen-
erate two new chromosomes. For the presef®d chromosomes and the newly generated
%NC chromosomes, we sort them by the fithess values and remO\ﬁd\/Llae:hromosomes
with the smaller fithess values. From the currémc chromosomes, we randomly select
1Nc chromosomes and perform mutation operation. Then we sef Al chromosomes
and theiNC chromosomes newly generated by the fitness values. Tkesdromosomes

form the new generation for gene evolution.

The complexity of our GeneS algorithm is governed by sorthgpmosomes and
constructing schedules from chromosomes. Netbe the number of generations in the
GeneS algorithm, lelVs be the number of chromosomes in each generation, andbet
the number of tasks. To generate a new generation, the Gégeran will sort the N
chromosomes two times, so the corresponding complexi®(i§. log N¢). To construct
a schedule from a chromosome, in which we can obtain its greengsumption at the same
time, we need to group tasks based on their voltage levdltask groups based on their
voltage levels and then schedule task groups. It tekeg to group each task, takes at most
O(n log n) to sort all groups in one core, and take&r) to perform scheduling. Therefore,
the complexity isO(n log n) for constructing a schedule from one chromosome. So for
each generation, it tak&3(N¢ - n log n) to construct schedules from chromosomes as we
totally need to generatb}NC schedules (the times to calculate the fitness values). Tineis,

complexity of our GeneS algorithm {3(Ng - No log No + Ng - N¢ - n log n).

41

\oltage Freq. Power || Voltage Freq. Power

Vaia(V) | fop(MHz) | PW) || Vaa(V) | fop(MHz) | P(W)

1.2 500 9.2 1.25 600 12.0
1.3 700 151 1.35 800 18.6
14 1000 25.0

Table 2.1. The Voltage Levels, Frequencies and Power Copisoiimbased on the Power
Model of the Mobile Athlon4 Processor [7].

2.6 Experiments

In this section, we evaluate and compare our approach vatREDF algorithm [115] and the
SpringS algorithm [65] in terms of three performance metr{d) the energy consumption,
(2) the minimum valid timing constraint, and (3) the extehfparallelism. We will also

present the results of prologue latency and memory overbieaigr approach.

2.6.1 Experimental Setup

(1) Power Model The experiments are conducted based on the power moded ¢\
Mobile Athlon4 DVS processor [7]. The AMD Mobile Athlon4 pressor can operate at
various voltage levels in the range bR — 1.4V with 50mV steps, and the corresponding
frequencies vary froi00M H z to 1G H =z with 100M H z steps [76]. The power is calculated
bY Piynamic = Csw + fop - Viiy [91], whereClsyy is 12.75n F from the data sheet of the AMD
Mobile Athlon4 processor [7]. The five voltage levels, andititorresponding frequencies

and power consumption are shown in Table 2.1.

The time overhead during a voltage transition among fiveagaltevels is calculated

based on Equation 2.6;z4n = 220 . \Vaa; — Vaa,|, iIn whichCpp and Iy 4x are set as

Inrax

12pF and16mA [7]. The energy transition overhead is calculated basedqations (2.8)
and (2.9). For the energy consumed by the convefigkay_pc = a - Cpp - |V — V;ilj\,

ais seta%).9 [17].

AMD Mobile Athlon4 DVS processors have low power sleep stdkat can be uti-

42

lized when systems are idle. The power consumed in the stagpis2.41/ [76]. For the
transition involving sleep states, considering the syoctzation delay with off-chip compo-
nents such as memory, the transition time is quite largak#g at leasims to synchronize
with the main memory entering in or exiting from the sleefes{@]. The power consump-
tion for transition overhead associated with one transitow entering into and exiting from
the sleep mode is assumed to be the power consumption atithgestevel entering from the
sleep mode. The power of the bus is assumed tBlBe1V. For static energy consumption,
Piatic = Lsuon-Vaa+|Vas|- 1;, the subthreshold currefy,,;, is setaf501.A [7], the body bias

voltageV, is set a$).4V/, and the reverse bias junction currénis set ast.8 x 10714 [72].

(2) BenchmarksWe conduct experiments on 12 benchmarks as shown in Tabl&&@ng
them, the first 9 benchmarks are obtained from Embedded 8gs$gnthesis Benchmarks
(E3S) [104]. ES3S is largely based on data from the Embeddetddiocessor Benchmark
Consortium (EEMBC). Consumer-1 and consumer-2 are emidedtfesumer electronic ap-
plications including tasks like JPEG compression, JPEGmgcession, high pass gray-
scale filter, RGB to CYMK conversion and RGB to YIQ conversiett. Auto-industry-1,
auto-industry-2 and auto-industry-3 come from embeddéalgnglustry applications includ-
ing major tasks like FFT (Fast Fourier Transform), finitéfine impulse response filter,
IDCT (Inverse Discrete Cosine Transform), IFFT (InversetHeourier Transform), ma-
trix arithmetic, road speed calculation, table lookup amerpolation, etc. telecom-1 and
telecom-2 represent embedded telecom applications ¢mgseds tasks like autocorrelation-
data (pulse, sine, and speech), convolution encoder-gkEa2dt, xk4r2dt, and xk3r2dt),
viterbi GSM decoder-data, etc. Office-1 describes an endxbddfice application which
consists of tasks like dithering, image rotation and texicpssing. Network-1 is an em-
bedded network application including tasks like OSPF/&Xij&, route lookup/patricia, and

packet flow, etc.

Besides the 9 benchmarks, we use TGFF [28] to generate 3dpetask graphs,
TGFF-1, TGFF-2 and TGFF-3. Among them, TGFF-1 islian graph while TGFF-2 is
a fat graph. Basically, in TGFF-1, it has very long critical paém¢ith and there are not

many independent nodes; in TGFF-2, its critical path istiredly short and there are many

43

Benchmarks | No. of | No. of | Execution time of
tasks | cycles | critical path (us)
consumer-1 7 11050 8
consumer-2 5 16520 10
auto-industry-1| 6 13607 9
auto-industry-2| 4 351120 348
auto-industry-3| 9 1397567 1392
telecom-1 4 53900 51
telecom-2 6 438900 395
office-1 5 3311000 2584
network-1 4 264127 263
TGFF-1 6 90000 83
TGFF-2 8 170000 58
TGFF-3 24 924000 563

Table 2.2. Benchmark Descriptions and Characteristics.

independent nodes. Table 2.2 illustrates the detailednmdton of each benchmark. In
Table 2.2, “No. of tasks” represents the number of tasksc¢h é@anchmark; “No. of cycles”
represents the total number of clock cycles in each bendfrfiaxecution time of critical

path” represents the total execution time of tasks alongtitieal path, and each task is with

the highest voltage/frequency lev@ély,, , fx).

2.6.2 Results and Discussion

In this section, we evaluate the energy consumptiamnefiterationof each benchmark under
different timing constraints and different number of preg@& cores using three algorithms,

GeneS, SpringS [65], and PEDF [115].

GeneS is our scheduling algorithm that uses genetic apprtoagolve energy mini-
mization problem foperiodic dependent tasks multicore architecture. In the experiments,

the maximum number of generations is seb@%), and the number of chromosomes in each

44

generation is set &l. SpringS is a scheduling algorithm proposed in Liu et al].[6%DF

is a DVS scheduling algorithm used to solve the energy miation problem for depen-
dent tasks on multiple variable voltage processors. Idstééixing the task assignment like
Gruian and Kuchcinski [36] or task scheduling like Luo and J&9], a two-phase frame-
work has been proposed in the PEDF algorithm that integtasdsassignment, ordering
and voltage selection together to iteratively generateh@dde. So the PEDF algorithm
performs better in energy consumption compared with thediseduling algorithm and the
algorithms in Gruian and Kuchcinski [36] and Luo and Jha [@%]erefore, PEDF is selected

for comparison in the chapter.

(1) Energy ConsumptionTable 2.3 and Table 2.4 show the experimental results fahall
12 benchmarks running on 2, 3, 4, 6, and 8 processor coresalie 2.3 and Table 2.4,
column “TC Rangey(s)” represents timing constraints we used that start frormttmemum
execution time and increase Ry.s each step. Columns “PEDF:.{),” “SpringS (u.J),”
and “GeneSy(.J)” represent the energy consumption obtained by correspgradgorithms.
Column “PEDF over GeneS(%)” represents the percentage wfrhoch extra energy is
saved by GeneS compared to PEDF. “-” means for a timing canstrPEDF or SpringS
cannot find a solution. Note that for each benchmark, experiad results are separated into
two parts based on different ranges of timing constrainis ce the timing constraint at the
partition pointthe critical timing constraintOn the left part, the timing constraint is smaller
than the critical timing constraint, and the PEDF algoritmas no solution under these small
timing constraints. On the contrary, on the right part, thertg constraints are bigger than
the critical timing constraint, and PEDF can find feasibleestules. In the experiments, we
test each benchmark with different timing constraints.rt®tg from the minimum timing
constraint to perform task scheduling, we gradually inseethe timing constraint b¥us
each step. The experiment results list the average energuowption of each benchmark

for different ranges of timing constraints.

In Table 2.3 and Table 2.4, the results show that with tighirig constraints, the
PEDF algorithm cannot achieve a feasible solution whiless@an. By extending the timing

constraint, PEDF may obtain feasible solutions. On avei@geeS achieves2.4% reduc-

45

TC Range [PEDFSpring$sene$ TC Range | PEDF|Spring$sene$EDF over
Benchmark| (us) ()| (uJ) | (uJ) (1s) (1) | () | (uJ) |GenesS (%)
2-core
consumer-1 8-13 — | 249 | 197 14-19 362 | 264 | 264 | 27.1
consumer-2| 10-15 — | 391 | 330 16-22 471 | 376 | 311 34.0
auto-1 7-13 - | 296 | 235 14-26 367 | 315 | 315 14.2
auto-2 335-348 | — |11739|8596| 349-705 | 7828| 6476 |6449| 17.6
auto-3 830-1392 | — |31622|25326G 1393-2792(30716 3043724136 21.4
telecomm-1] 41-51 — | 1600 | 1176| 52-110 | 1473| 1457|1261 14.4
telecomm-2| 330-395 | — | 12445 9107| 396-900 {13590 12910{11087 18.4
office-1 1925-2584| — | 80913(7969% 2585-5725| 79710 7489374893 6.0
network-1 | 253-263 | — | 8849 |6484| 264-606 | 9366| 9211 |8422| 10.1
TGFF-1 48-65 - | 2142 |2113|| 66-110 | 2627| 1875|1833| 30.2
TGFF-2 87-97 - — |4183| 98-180 | 3671| 3607|3288 10.4
TGFF-3 464-591 | — |22263)22263 592-1000 |21513 19216|19216 10.7
average 17.9
3-core
consumer-1 5-13 - | 271 | 269 14-19 491 | 413 | 413 15.9
consumer-2 6-11 - | 421 | 375 12-22 708 | 452 | 452 36.2
auto-1 5-13 — | 340 | 316 14-26 542 | 469 | 469 135
auto-2 335-348 | — |14880|8758| 349-705 |15229 1520513695 10.1
auto-3 550-1392 | — |32907|30489 1393-2792 30850 30502130502 1.1
telecomm-1| 41-51 — | 2022 | 1176|| 52-110 | 2040| 1934 |1643| 195
telecomm-2| 330-395 | — | 15779 9108| 396-900 |18302 1776814124 22.8
office-1 1925-2584| — | 89819(71274 2585-5725/12153y10130977556 36.2
network-1 | 253-263 | — |11223|6484| 264-606 |14020 12752/10327 26.3
TGFF-1 33-65 — | 2017 |1992|| 66-110 | 4005| 2429|2429 39.4
TGFF-2 57-61 — | 4236 |4236| 62-180 | 4124| 3923|2778 32.6
TGFF-3 309-504 | — |210852108% 505-700 |23329 18046/18046 22.6
average 23.0
4-core
consumer-1 5-13 — | 344 | 319 14-19 666 | 565 | 565 15.2
consumer-2 5-10 — | 441 | 375 11-22 998 | 590 | 590 | 40.9
auto-1 5-13 - | 422 | 376 14-26 542 | 515 | 515 5.0
auto-2 335-348 | — |18021|8783| 349-705 22722 21596{16781 26.1
auto-3 696-1392 | — | 3259129799 1393-2792 30970 2601426014 16.0
telecomm-1| 41-51 — | 2444 11176| 52-110 | 3083| 2742 |2024| 34.3
telecomm-2| 330-395 | — |19114/9108| 396900 |24374 22625(17160 29.6
office-1 1925-2584| — |11056178493 2585-5725/16705¥13091195268 43.0
network-1 | 253-263 | — |11223|6484| 264-606 |14020 12752/10327 26.3
TGFF-1 33-65 — | 2173 |1966| 66-110 | 5198| 3238 |3238| 37.7
TGFF-2 44-59 — | 4199 |4172|| 60-180 | 5181 4625|3702| 28.5
TGFF-3 233-465 | — |20362|14867 466—700 23899 17655/1765% 26.1
average 27.4

Table 2.3. The Energy of Each Benchmark under Various TinGogstraints on 2, 3, 4
Processor Cores.

46

TC Range PEDHRSpring$sene$ TC Range | PEDFSpring$GeneSEDF over
Benchmark| (us) ()| () | (nJ) (1s) (1) | (uJ) | (uJ) |GeneS (%)
6-core
consumer-1 5-13 - 489 | 419 14-19 1063| 867 | 867 18.4
consumer-2 5-10 - 509 | 375 11-22 1186| 742 | 742 374
auto-1 5-13 — 587 | 496 14-26 827 | 771 | 771 6.8
auto-2 335-348 | — |18021|8783| 349-705 |22722 2159616781 26.1
auto-3 696-1392 | — |49354|47501 1393-2792|42449 40632|40632 4.3
telecomm-1| 41-51 — | 2444 11176| 52-110 | 3083| 2742 | 2024 34.3
telecomm-2| 330-395 | — |25783|9108| 396-900 |36517 3233923232 36.4
office-1 1925-2584| — |13130278493 2585-5725[225593160513112979 49.9
network-1 253-263 | — |11223|6484| 264-606 |14020 12752/10327] 26.3
TGFF-1 33-65 — | 2173 |1966| 66-110 | 5198| 3238 | 3238| 37.7
TGFF-2 44-59 — | 4199 (4172 60-180 | 5181| 4625|3702| 285
TGFF-3 161-321 | — |20429|13256| 322-600 (26214 2216822168 15.4
average 26.8
8-core
consumer-1 5-13 - 561 | 469 14-19 1201| 1018 | 1018| 15.2
consumer-2 5-10 — 509 | 375 11-22 1186| 742 | 742 374
auto-1 5-13 — 587 | 496 14-26 827 | 771 | 771 6.8
auto-2 335-348 | - |18021|8783| 349-705 |22722 21596/16781 26.1
auto-3 696-1392 | — |60890|57622 1393-2792| 77374 67009/67009 13.4
telecomm-1| 41-51 — | 2444 11176| 52-110 | 3083| 2742 | 2024 34.3
telecomm-2| 330-395 | — |25783/9108|| 396-900 |36517/ 32339/232321 36.4
office-1 1925-2584| — |13130278493 2585-5725[225593160513112979 49.9
network-1 253-263 | — |11223]6484| 264-606 |14020 12752/10327] 26.3
TGFF-1 33-65 — | 2173 |1966| 66-110 | 5198| 3238 | 3238| 37.7
TGFF-2 44-59 — | 4199 (4172 60-180 | 5181| 4625|3702| 285
TGFF-3 122-243 | — |20597|1278% 244-550 |29413 2637326373 10.3
average 26.9

Table 2.4. The Energy of Each Benchmark under Various Tindngstraints on 6 and 8

Processor Cores.

a7

tion in energy consumption compared with PEDF. For two gsoafiiiming constraints, our
algorithm can save extra energy consumption compared vpitin@S. From these experi-
mental results, we can see that (1) our scheduling algorithes not have a strict require-
ment on timing constraint and can be applied for those endxkdgstems with tight timing
constraint, and (2) our scheduling algorithm can perforttelbeeompared with PEDF and

SpringS for different number of processor cores.

In order to evaluate our proposed approach with larger narmbprocessor cores,
we also present the experiment results on 6 and 8 processss. cth Table 2.4, we can
see that our approach can also achieve significant energgtred compared to the PEDF
algorithm and the SpringS algorithm. For the MPSoC with 6 8rtocessor cores, our
GeneS algorithm can save average’?% and26.9% of energy consumption, respectively,

compared to the PEDF algorithm.

At this point, we have analyzed the data in one table horabnt Now we fix
the benchmark and analyze the data in the table verticallyis @nalysis helps us iden-
tify whether or not the scheduling algorithm can effecyvielke advantage of the potential
computation power of multiple processor cores. For sinitylithe last benchmark, TGFF-3,
is used as an example. The experimental results show that thleenumber of processor
cores is increased from 2 to 8, the minimum valid timing caxist for GeneS (by which we
can obtain a feasible solution) is reduced fraéd s to 122us while it is not changed for
PEDF. This shows that our GeneS algorithm can effectivgiaithe potential of multicore

architectures to minimize the energy consumption.

In Section 2.4, we have analyzed the lower bound energy ocopison £, 5. As we
mentioned in Section 2.4, 5 is the lower bound energy consumption that is close to the
optimal solution, and an optimal solution for multicore pessors may not achieve it. Here
we compare the energy consumption obtained by the Gene8thlgand the lower bound
energy consumptiof,z. Table 2.5 shows the experimental results. From the resuéis
can see that, for all 12 benchmarks, the GeneS algorithmererate the task schedule with

energy consumption close to the lower bound energy consompt, z. For benchmark

48

2-core 4-core 6-core 8-core
Benchmark| TC Range|| GeneS| Erp || GeneS| Erp GeneS| ELp GeneS| Erp
(us) (W) | () | (W) | W) ||) | () || (u]) | (n])
consumer-1 5-19 232 216 414 381 592 523 680 666
consumer-2| 5-22 319 309 459 440 627 590 627 590
auto-1 5-26 290 257 429 401 643 610 643 610
auto-2 335-705 || 7049 | 6499 || 14660 | 14660| 14660 | 14660| 14660 | 14660
auto-3 696-2792|| 24659 | 20017 || 27374 | 24518 | 42450 | 39448| 62374 | 58963
telecomm-1| 41-110 1189 | 1125 || 1640 | 1122 1640 | 1122 1640 | 1122
telecomm-2| 330-900 || 10267 | 9842 | 15625 | 13416| 17241 | 14890| 17241 | 14890
office-1 | 1925-5725| 77290 | 67835| 85901 | 72794 | 100241| 79493 || 100241| 79493
network-1 | 253-606 | 7705 | 6546 | 8850 | 7308 8850 | 7308 8850 | 7308
TGFF-1 33-110 1909 | 1717 || 2710 | 1935 2710 | 1935 2710 | 1935
TGFF-2 44-180 3381 | 3135 || 3756 | 3534 3756 | 3534 3756 | 3534
TGFF-3 | 122-1000|| 20220 | 18147 | 16502 | 16191| 17293 | 16962| 18147 | 17075

Table 2.5. The Comparison of Energy Consumption by the Gé&hg&ithm and the Lower

Bound Energy Consumptioh; z.

auto-2 running on 4, 6, or 8 processor cores, the energy ogutsan of the GeneS algorithm

is the same as the lower bound energy consumpgign

(2) Optimization Trade-Off on Energy, Number of Processor €amed Timing Constraint.
We have compared energy consumption of all benchmarks vifdreht algorithms. In this
section, we will list detailed data of two benchmarks andymeaother gains and trade-offs
in terms of energy, number of processor cores and timingtins We use TGFF-1 and
TGFF-2 as examples. TGFF-1 isbm DFG while TGFF-2 is dat DFG. Basically, in the
slim DFG, it has very long critical path length and there aseanlot of independent nodes;
in the fat DFG, its critical path is relatively short and thare many independent nodes. We

attempt to use the two extreme cases to compare GeneS witlyS@and PEDF.

Figure 2.9 shows the trend of TGFF-1 with three algorithnteims of the minimum

valid timing constraint and energy consumption on 2, 3, apdog¢essor cores, respectively.

49

7000

6000

—»— PEDF(2)
—v— PEDF(3)
—4A— PEDF(4)
—® SPRINGS(2)
—® SPRINGS(3)
—O— SPRINGS(4)
—e— GENES(2)
—%— GENES(3)
—*— GENES(4)

5000

4000

3000

Energy Consumption (uJ)

2000

: : : : : : : : : : : : : R e
30 3 40 45 50 5 60 65 70 75 8 8 90 95 100 105 110 115
Timing Constraint (us)

Figure 2.9. The Changing Tendency of Energy and Timing Gamgtwith Three Algorithms

under Different Number of Processor Cores on Benchmark FGFF

In this figure, the notation Gene§(SpringSk) and PEDFX) represent the execution trace

of corresponding algorithm axiprocessor cores.

From this figure, we can see that: (1) When the timing congare in the scope
[33us, 65us], PEDF cannot find a feasible solution while SpringS and Gesst which
means that GeneS does not put a lot of limitation on timingtramts. This is important for
embedded systems, especially for those with tight timingstraints. (2) When the timing
constraints are more tha@ s, all of three algorithms can find feasible solutions. Howeve
PEDF and SpringS consumes more energy than GeneS. (3) Wienrttiber of processor
cores is increased, for GeneS, the minimum feasible timimgicaint is reduced from8.s
to 33us. However, for PEDF, it is alwayS5..s no matter on 2, 3 or 4 processor cores. This
comparison shows that GeneS can take advantage of the b&mafittiple processor cores
to generate a feasible schedule with more tight timing camt (4) Although SpringS can
also get feasible solutions in timing constraif#3us, 65us], GeneS can save more energy

compared to SpringS.

From this analysis, we can see that GeneS can achieve be#igyyeconsumption

compared with the PEDF algorithm [115] and the SpringS aigar [65] for theslim DFG.

Table 2.6 shows the result of TGFF-2, tiae task graph. For simplicity, we list the

50

2-core 3-core 4-core

TC || PEDF | SpringS| GeneS| PEDF | SpringS| GeneS|| PEDF | SpringS| GeneS

(ms) || (wJ) | (ud) (ns) || (wJ) | (uJ) () || W) | (uJ) (1)

44 - - - - - - - 4398 | 4398
58 - - - - 4283 4283 - 3861 3861
60 - - - - 4188 4188 || 6001 | 3952 3912
62 - - - 4651 | 4120 | 4118 || 5923 | 3845 3833
88 - - 4233 || 4150 | 3684 | 3658 | 4587 | 3237 2123

98 | 4191 | 4172 | 4074 || 3897 | 3413 3399 || 4345 | 3604 | 2493

100| 4129 | 4065 | 4065 || 3784 | 3467 3413 || 4197 | 3678 2567

120| 3874 | 3779 3750 || 3605 | 3315 1411 || 4422 | 4414 | 3307

140| 3687 | 3638 3464 || 3870 | 3867 1951 || 5158 | 5150 | 4047

160| 3310 | 3300 3300 || 4423 | 4419 2491 || 5894 | 5886 | 4787

180| 3326 | 3324 1955 || 4975 | 4971 3031 || 6630 | 6622 5527

Table 2.6. The Comparison for the Schedules Generated by-PEDINgS, and GeneS on
TGFF-2, afat Task Graph.

part of the data derived from the selected timing constsaimtshow the trend. From the
results, similar conclusion can be obtained as forslira DFG. Some little differences are
that, for thefat DFG, PEDF behaves better than it does for shism DFG. PEDF can use
more processor cores compared to the case dlimeDFG, while its parallelism is still not
as good as that of GeneS. The energy gap between GeneS and$ED&ced. However,
Genes still performs better than PEDF. On average, Gene&ctaeve23.8% improvement
over PEDF in energy consumption for thee DFG. And also, GeneS still performs better

than SpringS regarding energy consumption.

(3) Prologue Latencyln Section 2.5.1, we have analyzed the prologue latencysoRIDAG
algorithm. The prologue latencirologue_Latency is the time duration in the prologue.
Table 2.7 shows the prologue latency of each benchmark wireht timing constraints.
From the results, we can see that, our approach causeslggravds of prologue latency. As

discussed before, however, the prologue is only executed, @ the overhead it introduces

51

TC Range | Prologue_Latency || TC Range | Prologue_Latency
Benchmark (8) (8) (18) (us)
consumer-1 5-12 38 13-19 65
consumer-2 5-15 34 16-22 64
auto-1 5-13 56 14-26 103
auto-2 335-348 1021 349-705 1319
auto-3 696-1392 6936 1393-2792 14640
telecomm-1| 41-51 137 52-110 228
telecomm-2|| 330-395 1468 396-900 2568
office-1 1925-2584 6751 2585-5725 10782
network-1 253-263 772 264-606 1242
TGFF-1 33-65 260 66-110 389
TGFF-2 44-59 135 60-180 221
TGFF-3 122-500 3970 501-700 7565

Table 2.7. The Prologue Latency of Our RDAG Algorithm withffBient Timing Con-

straints.

is one-time delay. After waiting for the execution of the lpgue, tasks can be periodically
executed in the new loop kernel as a streaming applicatiosually repeatedly executed for
many times. As our approach can greatly reduce the scheshdé of each period as shown
above, we can either apply a shorter period or apply DVS and P energy optimization.
As we can benefit from each period in the loop kernel, it is ligweorth waiting for the

execution of the prologue.

(4) Memory OverheadlIn this section, we give a case study to illustrate the eneayy
sumption caused by the memory subsystem with different odsth\We have analyzed the
memory overhead caused by the RDAG algorithm in Sectioril2.6lsing our approach,
extra memory space is needed to hold data across differentipeas the RDAG algorithm
regroups tasks from different periods into one period. €foee, we should conduct analysis
based on the energy overhead caused by the extra memoryfgpaar method. However,

we cannot find a consistent SRAM energy model that can clshdy the relation between

52

Power State/Transition Power Time

Active 300mw -
Standby 180mw -
Nap 30mw -
Powerdown 3mw -

Active — Standby 240mW | 1 memory cycle
Active — Nap 160mwW | 8 memory cycle

Active — powerdown | 15mW | 8 memory cycle

Standby— Active 240mw +6ns
Nap— Active 160mwW +60ns
Powerdown— Active 15mw +6000ns

Table 2.8. Power Consumption and Transition Time for Memory

memory size and energy consumption. For most SRAM chipy,@m power consumption
parameter is provided, so we cannot effectively evaluaestiergy consumption caused by
the extra memory space. On the other hand, based on the méfabnge analysis in Al-
gorithm 2.5.3, we can apply DPM to turn off memory subsystememvit is idle. So in this
section, we use Rambus DRAM (RDRAM) as an exemplary memdrgy®iem to compare

the energy consumption between our approach and PEDF byiagRPM.

The power model of RDRAM is listed in Table 2.8. RDRAM offersuf power
modes: active, standby, nap, and powerdown. The energyogi®n in each mode and
transition times between different modes are listed ind&8. Rambus RDRAM chip runs

at the frequency of600M H z and provides a peak transfer rate3dfG B/ s [81].

Table 2.9 shows the energy consumption of memory subsysyetmebPEDF algo-
rithm and the RDAG algorithm for processing one iterationreath benchmark. As our
approach changes intra-iteration data dependenciesritégiteration data dependencies,
the memory chip has to be in active mode during the whole defor the PEDF algorithm,

memory chip can be put in the standby or power down mode to esa@ryy consumption.

53

PEDF (u.J)
Benchmark| TC Range (s) || GeneSf.J) || 2-core | 4-core | 6-core | 8-core
consumer-1 14-19 5.0 3.3 3.1 3.1 3.1
consumer-2 16-32 7.2 5.7 5.6 5.6 5.6
auto-1 14-26 6.0 4.2 4.1 4.1 4.1
auto-2 349-705 158.1 135.7 | 1149 | 1149 | 114.9
auto-3 1393-2792 627.8 525.2 | 517.1| 517.1| 517.1
telecomm-1 52-110 24.3 10.0 9.3 9.3 9.3
telecomm-2 396-900 194.4 156.6 | 143.1| 137.7 | 137.7
office-1 2585-5725 1246.5 1027.8| 963.0 | 938.7 | 938.7
network-1 264-606 130.5 100.8 | 954 | 954 | 954
TGFF-1 85-110 29.3 24.7 23.9 22.0 22.0
TGFF-2 121-180 45.2 40.8 39.5 39.5 39.5
TGFF-3 564-1000 234.6 224.1 | 216.3| 213.1| 210.1

Table 2.9. The Memory Energy Consumption of the PEDF Algponiand the RDAG Algo-

rithm.

Compared to the energy consumption by the PEDF algorithmapproach causes extra
memory consumption overhead. Compared to the energy cqisgmtaused by processor
cores, however, the extra energy consumption of memoryystdrs caused by our approach
is relatively small. If taking the energy consumption calibg memory as one of the com-
ponents of the overall energy consumptigg;,;, our approach can still significantly reduce

the overall energy consumption compared to the PEDF algurit

2.7 Summary

In this chapter, we proposed a two-phase approach to sodvertbrgy optimization prob-
lem for periodic dependent tasks on MPSoCs consideringwsroverheads. In the first
phase, we proposed a coarse-grained task-level softwaeémng algorithm called RDAG

to transform periodic dependent tasks into a set of indegr@nidsks based on the retiming

54

technique [61]. In the second phase, we proposed a gengtidtaim called GeneS for en-
ergy optimization. We conducted experiments with a set athenarks from E3S [104] and
TGFF [28]. The experimental results show that through theldoation of software pipelin-
ing with DVS and DPM, our approach can fully exploit the pditaiof MPSoC architectures

and the periodic characteristic of streaming applicatiorreduce energy consumption.

55

CHAPTER 3

OPTIMALLY REMOVING INTERCORE COMMUNICATION OVERHEAD FOR

STREAMING APPLICATIONS ON MPSOCS

3.1 Overview

In real-time systems, a streaming application can be mddegeriodic dependent tasks, in
which a stream of data are treated as a sequence of requegsssefserviced by the stream-
ing application when arrived [111]. To process continudusasn of data, streaming appli-
cations are usually computation-intensive and highly lpgizable [111]; therefore, they are
very suitable to be executed on MPSoC (Multiprocessor 8yste-Chip) architectures. In
order to fully take advantage of the multi-core architeetof MPSoCs, various techniques
have been proposed to explore and increase parallelisniseai®ng applications. These
parallelization techniques usually impose a large amofimtercore communications with
significant communication overhead [63]. By removing intge communication overhead,
system performance such as time performance and energyraptisn can be improved.
Therefore, it becomes an important research problem tctefédy remove intercore com-

munication overhead for streaming applications on MPSaefitactures.

An MPSoC is usually designed for a specific streaming apjpdicavith special hard-
ware and software. Therefore, to optimize a specific stregrapplication on an MPSoC,
one of the key challenges is to generate a good task schetlillatst can satisfy all real-time
requests by fully utilizing the computation power of the MES Then the schedule can be
generated by compilers and statically loaded into processes or integrated into real-time
operating systems. So this chapter aims to develop a sehgdechnique for streaming

applications on MPSoC architectures.

56

In the previous work, a lot of techniques have been proposedlive the schedul-
ing problem for periodic tasks. For scheduling independesks, a number of studies have
been conducted [15, 22, 41] and several techniques havepoeposed. These techniques,
however, cannot be directly applied to perform schedulimgpferiodic dependent tasks.
Several studies have been conducted for scheduling pedegiendent tasks on multi-core
architectures [24, 64,115, 117]. However, intercore comication overhead is not consid-
ered. So they may not provide good solutions to our problen{29, 68, 95, 105], several
communication-aware task allocation and scheduling freonles for MPSoC architectures
are proposed. By increasing the parallelism, these teabsimay cause more intercore com-
munications. Our technique is a good supplement for thebmigues by helping effectively

reducing intercore communication overhead.

In this chapter, we propose an approach to totally remowsdote communication
overhead by jointly optimizing computation and communmatask scheduling for stream-
ing applications on MPSoCs. In particular, in our techniquereschedule both computation
and intercore communication tasks such that the execufioaroputation and communica-
tion tasks of one period can be totally overlapped and tleegote communication overhead
is totally removed. Our basic idea is to let some computadioshintercore communication
tasks be executed in earlier periods (the newly-added ¢eace calledhe prologué such
that intercore data transfer can be finished before the &reaf the tasks that need the data
to start. So one problem arises, how to do rescheduling fiathite schedule length can be
minimized with the minimum prologue length while the intere communication overhead

can be totally removed in each period?

To solve this problem, we first perform schedulability as&yfor communication
tasks, and theoretically obtain the upper bound of the tineesled to reschedule each com-
putation task. Based on this analysis, we formulate thelpnolas an ILP (Integer Linear
Programming) formulation and obtain an optimal solutiothvjpint computation and com-
munication task scheduling. The solution ensures thatrite¥dore communication over-
head is totally removed while the schedule length is mingdiwith the minimum prologue

length. As our schedulability analysis produces very tlyhiinds, the ILP formulation can

57

be solved efficiently in practice. To the best of our knowlkeddis is the first work to opti-
mally remove intercore communication overhead with joorhputation and communication

task scheduling for streaming applications on MPSoCs.

We have implemented our technique and conducted expesnbased on the pro-
cessor model of ARM11 MPCore processors [10]. Our techniguevaluated with a set
of benchmarks from both real-life streaming applicationd aynthetic task graphs includ-
ing Embedded Systems Synthesis Benchmarks (E3S) [104]FT&8], Automatic Target
Recognition (ATR) [71], Computerized Numerical ControINC) [51], and an image en-
hancement application [103]. We compare our technique thghalgorithms from Chen et
al. [24] and Zhu et al. [117], respectively. The algorithn@Cinen et al. [24] is a performance-
oriented task scheduling algorithm that can generate oytamal solutions for periodic de-
pendent tasks on multi-core architectures; the algorithZhiu et al. [117] is a power-aware
DVS scheduling algorithm that can effectively optimize myeconsumption of streaming
applications on MPSoCs. The experimental results showotivaechnique can obtain better
performance compared to these algorithms by effectivehoreng intercore communication
overhead. Our technique can achieve a 27.72% reductiomedste length compared with
the algorithm in Chen et al. [24], and a 14.98% reduction iergyn consumption compared

with the one in Zhu et al. [117] on average.

The remainder of this chapter is organized as follows. IrtiSe8.2, we present our
system models and formally define the problem. In Sectionv@e3perform schedulability
analysis, and get constraints that will be integrated ihelt.P formulation in Section 3.4.
Our optimal joint computation and communication task sciied technique is presented in
Section 3.4. Section 3.5 presents experimental resuliglliziwe conclude the chapter and

discuss the future work in Section 3.6.

3.2 Models and Concepts

In this section, we introduce several models that will beduiselater sections, and then

provide the problem formulation.

58

Processor Processor Processor
Core P, Core P, Core Py
Interface Interface Interface

Shared Bus
Interface
Arbiter

Figure 3.1. The MPSoC Architecture.

3.2.1 System Model

In this chapter, we employ a typical MPSoC architecture showFigure 3.1. The MPSoC
architecture consists dff processor core§P, P, ..., Py}, a shared bus, and a bus arbiter.
The M processor cores communicate through a shared bus. Thelsheres adopted as it is

the most widely used interconnection architecture. Bussgoequests from processor cores

are managed by the bus arbiter.

3.2.2 Task Model

In this chapter, streaming applications are modeled a®gierdependent tasks, and pe-
riodic dependent tasks are represented by Directed Acylaph (DAG). A DAG G=
(V,E,CT, R) is a node-weighted directed acyclic gragh= {7}, Ts,...,T,} is the node
set, and each node represents one periodic task.V x V' is the edge set that defines the
data dependency relations for all noded’inEach directed edg€7;, 7)) € £ (T;,T;€ V),
represents the data dependency between tBsksdTj, i.e., the execution df; needs the
results generated by the executioriZpin the same periodC'T : E — Z is a function that

associates every directed edge, 7;) € E with a communication task'T} to denote the

corresponding data transfer from tagko taskT’,.

R :V — Zis afunction that associates every tdsk 1 with a non-negative weight

59

R(T;). Node weight represents extended data dependency ralatiwitially, all nodes are
used to represent data dependency relations inside oradfgrira-period dependency),
so each node weight is zero. As shown later, in our technigis&s from different periods
are regrouped into one period in order to overlap the exacwi intercore communication
and computation tasks. Therefore, a task node with positarght is introduced to describe
the data dependency relation across multiple periods witbrdasksifter-period depen-
dency), and the node weight represents the number of periodsvastoMe will discuss this

in detail in Section 3.2.4.

3.2.3 Static Schedule

A static schedule of a DAG is a repeated pattern for the elatutf one periodof the
corresponding periodic dependent tasks. Static schepapproaches offer a set of benefits
to embedded applications including the predictability ofst case schedules and the ability
to use complex heuristics [112]. In our work, a static scledontains both control step
assignment (when to start) and processor-core allocatibarg to be executed). A schedule
must obey all data dependency relations of a DAG. Assumiagths the period of the
given computation tasks and intercore communication taSksiplies the deadline of the
schedule, and the schedule must be finished iGiven a static schedule, we ugg, and
CTJ{Z (¢ > 1) to represent computation ta§k and communication tas@Tj in period/,
respectively. As a schedule is repeatedly executed in eaghdy7; andT; , ((JT}' and

CT]{Z) are used interchangeably if it is clear from the context.

Given a schedule, let be the release time (schedule step) of tBsk the first period
and let! be the period. Then the release timé&pin the/th periodisr; , = r;+((—1)I,(>
1. Similarly, for a communication task7; between task®; andT}, letr} be the release time
of CT} inthe first period, then its release time in thie period is- , = ri+((—1)1,0 > 1. ¢;
is used to represent the execution time of computation][asande; is used to represent the
execution time of communication taékfj. e§. is determined by the assignment of tagks

andT;: if 7; andT} are assigned to the same processor core, itis an intracon@gnication

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

BB D i — —
| Al

I I [>
I I 1
T ws [B el feded

. L : »

1st period 2nd period
(a) (b)

Figure 3.2. A DAG and Its Schedule.

and we assume is equal to zero; otherwise, itis an intercore communicediode’, is equal

to ¢(T;,T;)/ B, in which¢(7;, T}) is the data volume transferred aBds the bus bandwidth.

An example is given in Figure 3.2. In Figure 3.2(a), an exampDAG is given to
model periodic dependent tasks. In the DAG, there are fivestasd the execution time of
each task is 2 time units. There are six edges. For each édge j$ one communication task
associated. The execution time of an intercore commupicadisk is 1 time unit and that of
an intracore communication task is zero. Let the pefide 9 time units. In Figure 3.2(b),
a schedule for the DAG is given. The schedule is repeatedigugrd in each period and
the schedule length of one period is 9 time units. From th&rgde, we can see that the
intercore communication introduces big overhead (3 timisysuch that the schedule length

is increased and a big period has to be used correspondingly.

3.2.4 Communication/Computation Overlapping and Retimirg

Figure 3.2 shows that if intercore communication overheadl®e removed, then the sched-
ule length in each period can be reduced. We found this cantbeeed by regrouping tasks
from different periods with joint computation and commuation task rescheduling. This
is illustrated in Figure 3.3. Given the initial schedule whan Figure 3.2(b), as each task
is periodic, in Figure 3.3(a), we reschedule periodic tAsko make it execute one period
ahead of7; andT},. The newly-added period is callgaologue As a result, communica-

tion tasksC'Ty andCT) that transfer data from task to 73 and T}, respectively, can be

61

?1 2 3 4 ‘5 6 7 8 91‘0111213141‘5161718192‘0212223242‘5262728293‘0313233343‘536---
o [[R oo o T o ["

R(T2)=0

» I (» A A]| (-] [~ -
b s s — 1
P | L [T [
T T T T
BUS i i W i crilerd|cTs|crd § crj|cri|ers|ers
‘ prologue I 1st period I 2nd period ‘ 3rd period
(a) (b)

Figure 3.3. Given the initial DAG and schedule in Figure 822 a new schedule in which the
intercore communication overhead causediy} andCT} is removed by overlapping com-
munication and computation, and (b) the corresponding DA tlue node weigh?(7;) of

computation task; changed to 1.

?1 2 3 4 ‘5 6 7 8 91‘0111213141‘5161718192‘021222324252627282930313233343536---
o [oo oo R e R Y

P, % Ts Ts
P | 3 T, 3 T,
i T T
BUS | e erdjerd]crslcrd § crd[crllendlerd
‘ pmh‘:gue 1st period ‘ 2nd period
(a) (b)

Figure 3.4. Given the initial DAG and schedule in Figure 3&,a new schedule in which

the intercore communication overhead is totally removad, (&) the corresponding DAG.

rescheduled to be executed one period ahedd ahd7; (in the prologue) as well. In such
a way, the data required bB§ and 7, from T, are always available in a period; thus, the
intercore communication overhead (caused by the commiimiceasksC'T) andCT}) can

be removed inside the schedule, and the schedule lengttiusad from 9 to 8.

By adding a prologue and rescheduling some tasks into it anestfectively remove
intercore communication overhead in a schedule by overrigpgpe execution of communi-
cation and computation tasks as shown in Figure 3.3. In tlapter, we apply retiming [61]
to describe how many periods of a task node are rescheduledhi@ prologue and how
this influences data dependency relations in a given DAG.ré&tmning technique is origi-
nally proposed to minimize the cycle period of a synchronotalit by evenly distributing

registers [61]. We extend it and it is defined as follows:

Definition 3.2.1. (Retiming) Given a DAGG= (V, E,CT, R), retiming R of G is a func-

62

tion that maps each nodg, 7; € V, to an integerR(T;). R(T;) is the retiming value of’;.
R(T;) = Oinitially; by retiming7; once, if it is legal,R(7;) = R(T;) + 1, and one period of

taskT; is rescheduled into the prologue.

As defined above, we use retiming to model task nodes thaeacheduled into the
prologue for overlapping communication and computatioasiBally, R(7;) represents how
many periods of task; are rescheduled into the prologuend its initial value is zero. Simi-
larly, for communication task'T}, its retiming valueR(C'T}) representfiow many periods
of communication tas@Tj are rescheduled into the prologuket the prologue lengthbe
the number of periods in the prologue, and the prologue tecayt be calculated b¥, .. x I
whereR,,,. is the maximum retiming value among all task,(,, = {max{R(T;)}, T; €
V'}) and! is the period. For example, in Figure 3.3(a), one period sif 73 is rescheduled
into the prologue; so its retiming valug(7;) becomes 1, and the retiming values of other

nodes are zero. The prologue length is one.

Based on the data dependency relations in a DAG and its reggifanction, we can
construct the retimed graph. A retimed graph is used to setenew data dependencies
generated by rescheduling task nodes into the prologuerdtimmed graph, a node weight
R(T;) of a task nodd; may be greater than zero as inter-period data dependenaieben
introduced by the rescheduling. In general, given a retigrephG'r, for an edge(7;, 7))
of Gg, if R(T;) — R(T;) > 0, it represents that the data generated’bwt R(7;) — R(7})
period(s) before are needed in order to exedyteFor example, in Figure 3.3(b), for an
edge(T,T3), R(Th) — R(Ts) = 1. It represents thal; is dependent offi; one period before
as the data generated [y one period before are needed By. This can be seen from
Figure 3.3(a) a9 is rescheduled one period aheadigffor overlapping communication

and computation.

A retiming function must be legal in order to preserve the aefic correctnesg-or
each edg€T;,T;) € E, aretiming function R of GG is legal if the relative retiming value

R(T;)—R(T}) is non-negative.lf R(T;)—R(1}) is negative, itimplies that the data generated

63

by T’ from a period in the future are needed in order to exe€ita the current period. This
cannot occur in a correct program.dfz is a retimed graph of derived by a legal retiming

function R, thenGfp, is functionally equivalent ta- [61].

3.2.5 Problem Analysis

Given a schedule, our objective is to remove intercore comaoation overhead and at the
same time the schedule length is minimized with the minimushggue length. By minimiz-
ing schedule length, the system performance can be impimyadopting a smaller period
or exploring the slacks generated for energy reduction BiS. On the other hand, a longer
prologue not only introduces more delays in the beginnirigtao requires more data buffers
to hold intercore communication data. So we want to minintieeprologue length as well.
Figure 3.4(a) shows the objective schedule that we wanthieee for the initial DAG and
schedule in Figure 3.2. From this example, we can see thaaweasily obtain the objective
schedule of all computation tasks of one period by removiitgaintercore communication
overhead and rescheduling each computation task as eqdgsible. However, it is not triv-
ial to determine how many periods of one task should be redbe into the prologue and
how to reschedule communication tasks such that the salézhgdth is minimized with the
minimum prologue length. The problem is difficult as we carahieve this by reschedul-
ing task nodes into the prologue freely with the constraiihe minimum prologue length.
Another difficulty is that removing intercore communicatioverhead itself cannot directly
reduce the schedule length. We still need to reschedule corgation tasks such that they
can finish before the schedule length in each period. For pkaanm Figure 3.4(a), in each
period, communication tasks72 andC'T; are scheduled to start at 4 and 5, respectively,

while they start at 5 and 6, respectively, in the initial gile in Figure 3.2(b).

Let the objective task scheduleDb;j_Sch be the schedule that we want to achieve.
The objective task schedule includes the objective contipateask schedul®bj_Comp_Sch
and the objective communication task schedutg _Commu_Sch. Letthe objective com-

putation task scheduleObj_Comp_Sch be the objective static schedule of all computa-

64

tion tasks, which totally removes the intercore commuincabverhead with the minimum
schedule lengttyy.,,,.,. Given a DAG and an initial schedulexit_Sch, an objective com-
putation task schedule can be generated by reschedulifgogaeputation task as early
as possible from initial schedulewit_Sch. The objective communication task schedule
Obj _Commu_Sch is the objective static schedule of all intercore commutiocetasks with

schedule lengtlic,, 1.

Then the problem of removing intercore communication ogacthis transformed to
the problem of minimizing the prologue length of the objeetcomputation task schedule
with the minimum schedule length. Specifically, given thgotive computation task sched-
ule, we want to get, how many periods of each computation’faske rescheduled into the
prologue (the retiming valug(T;)); how many periods of each communication task’ are
rescheduled into the prologue (the retiming val&6'T")); and the release timg of each

communication tasK?Tji in the objective communication task schedlej_Commu_Sch.

3.2.6 Problem Statement

Based on the above problem analysis, we further clarify tbblpm as follows:

Given a DAGG= (V, E,CT, R), an MPSoC platform with\/ processor cores, an
initial schedulelnit_Sch and an objective computation task schedulg _Comp_Sch with

schedule lengtl¥;.,, ., we will study the following two problems:

e What is the upper bound of the prologue length of the objeatmputation task
schedule to guarantee all intercore communication taskssahedulable in each pe-

riod with the schedule lengthi.,,;:,?

e How to perform joint computation and communication taskesiching such that an
objective task schedut@b;j _Sch in which intercore communication overhead is totally

removed can be generated with the minimum prologue length?

65

3.3 Schedulability Analysis

In this section, we perform schedulability analysis fonjty optimizing computation and
communication task scheduling for streaming applicatmm®PSoCs. We first analyze the
schedulability of each communication task, and theorlyigat the minimum and maximum
relative retiming values of each pair of computation taskshen, based on this analysis
and data dependency relations in the DAG, we iterativeltlgetminimum and maximum
retiming values of each tasknd get the upper bound tife prologue lengthio guarantee
computation tasks can totally overlap with communicatesks. The bounds on the relative
retiming value of each pair of computation tasks, the boundthe retiming value of each
task, and the bounds on the prologue length will become thstraints of our integer linear
programming formulation in Section 3.4. These constraigaificantly reduce the search

space and greatly improve the efficiency for finding the optisolution.

3.3.1 Bounds of Relative Retiming Values

In this section, we analyze the bounds of the relative reignvialue. The relative retiming
value of each pair of computation tasks represents the nuafheeriods involved to guar-
antee the schedulability of the associated intercore camgation task. Specifically, for a
pair of computation task®; and T}, (T}, T;) € E, We USeR, (T}, T;) and Ryn..(T;, T;) to
denote that, relative to the retimed taBk the minimum and maximum extra numbers of
times to perform retiming for task; to ensure the schedulability of the associated intercore

communication tasl@Tj.

Based on the objective computation task schedule gendratadhe initial schedule,
we propose the following theorem to analyze the schedutiabifleach communication task
and get the minimum and maximum relative retiming valuesawhepair of computation
tasks. The derived relative retiming values can be usedthgepper bound of the prologue

length.

Theorem 3.3.1.For a directed edg€T;,T;)cE (T;,T;€V), computation task¥; and 7

66

associate with a communication taSK’; in the /th period of the objective computation task
schedule. After retiming task; for R(7;) times and retiming tasK) for R(7}) times, as
long as the retimed task; ,_r(r,) is retimed at most two more times relative to the retimed
task T} . r(r;), the associated intercore communication t&&k; is always schedulable on
the bus during the time span between the finishing time oftiv@ed task; ,_r,) and the

release time of the retimed ta8k, g7,

Proof. After retiming task7; for two times relative to the retimed tadk , r(r,), taskT;

will be scheduled in period — R(7;) — 2, which is two periods ahead of the retimed task
T - r(r;)- Then the time span between the finishing time of the retirasl'X; ,_r(7,) and
the release time of the retimed taBk,_r(r;) is always greater than or equal to peribdAs

all intercore communication tasks periodically executeach period, in one period of time,
we can find one and exactly one intercore communication(fﬁ?jkhat has data dependency
with task7; and taskr;. Let the intercore communication taéK’; in period? — R(T;) — 1

be the retimed communication task that associates witts thsk r(r,) andT} o r(r,). Its
release time is no earlier than the finishing timelpf_g(7,), and its finishing time is no
later than the release time @ ,_r(r,). Therefore, the associated intercore communication
taskCTj is always schedulable on the bus during that time span. Ampbais given in

Figure 3.5. O

Theorem 3.3.1 gives an upper bound of the maximum relattumirgy value of each
pair of computation taskSRma. (T}, T;) < 2, (T;, T;)€E (T;, T;€V). In order to preserve
legal retiming,R(T;) — R(T}) > 0. Then,0 < Rpin (T3, T;) < Ropan (T3, Tj) < 2.

For a communication task'T; associated with taskg and T}, if tasksT; andT;
are assigned to the same processor core, it is an intracormgoication and the execu-

tion time of the intracore communication task is equal tcozéfherefore,l%mm(Ti, T;) =

67

release time retiming R(T)) times release time

Ti
retiming !

release time R(T) times! release time
Lt |

| 1 7] |

release time

7]]

|
|
|
|
|
|
|
T
! release time
|
|
|
|
|
|

period 1-R(T)-2 period 1-R(T)-1 period 1-R(T) period 1

Figure 3.5. An Exemplary Task Schedule of Theorem 3.3.1.

Rmax(Ti,Tj) = 0. For tasksl; and7} with intercore communication tastT]?, (T1;,1;) €

E (T;,T;€V), by comparing the earliest finishing time+ e; + e;'. of CT]? with the release
timer; of task7}; and the schedule leng#.,.,.;, in the objective computation task schedule,
we can further narrow down the range of the minimum and mamimelative retiming val-
ues of each pair of tasks. Based on one period of the objembgutation task schedule,
we propose the following properties to further analyze theimum and maximum relative
retiming values of each pair of tasksandT;, (T;,T;)€E (T;, T;€V).

Property 3.3.1. For computation task§; and 7}, (1;,1;)eE (1;,7;€V), in one period of
the objective computation task schedule; #- ¢; + e§§ r;, then by retiming task; for at

most once relative to the retimed teBk the associated intercore communication task’

is schedulable on the bus. That R, (T}, T}) = 0, Rinae (T}, T;) = 1.

Proof. After retiming taskl; for R(7}) times, taskl; is rescheduled in the peridd- R(7}).
In period? — R(T}), the finishing time of the retimed tagkisr; +e;, — (¢ — R(T})) - I, and
the release time of the retimed teBkis r; — (¢ — R(Tj)) - I. According to the condition,
in period? — R(Tj), the time span between the finishing time of td5kand the release time
of task7; is greater than or equal to the execution tifghf communication tasK?Tj. An

example is shown in Figure 3.6.

68

release time release time release time

v | |
Pl]] [n]] EnlE B
i i release time retilming R('II'-) times release time i
L I
1 I 1 1 I
1 I 1 1]
Pl] T B L I |
1 | JO) I 1 i >
i (O | Q' i i |
- Lt ! | |
i - 2/, > i i i
i i i i i i i i
BUS! CT} ! CT} : ! CT} ! R
| schedule length | schedule length | | schedule length |
=, I =,
— | I |
| i i |

1
| period 1-R(T)-1 period 1-R(T)
R T, T)=1 Roinl T T)=0

period 1

Figure 3.6. An Exemplary Task Schedule of Property 3.3.1.

As each communication task is periodically executed in gelod, if communica-
tion taskCT]? is scheduled in this time span (time spaim Figure 3.6), there is no need
to perform extra retiming for task; relative to taskr;. Therefore,Rmm(Ti,I}) =0. If
communication tasl@Tj is not scheduled in this time span, one more extra retiming ha
be performed for task; relative to taskl’;. Then the time span between retimed teskand
Tj; is greater than periodl. Since both time spa? and time spar3 are greater thaa;i; and
the sum of time spaf and time spas are greater than or equal fo+ e;ﬁ, either scheduling
communication tasK?Tj in time spark or in time spars8 can guarantee that its release time
is no earlier than the finishing time of the retimed td$kn period/ — R(7};) — 1, and its
finishing time is no later than the release timelpf_r,). Therefore, by retiming task;
for at most once relative to the retiming of tafk the associated intercore communication

taskCTj is schedulable on the bus. O

Property 3.3.2. For computation task$; and7}, (1;,7;)eE (1;,7;€V), in one period of

the objective computation task schedule with schedulahe$ig, ., if r; < r; +e; + e;ﬂg

69

Slength OF €5 < 1; < 134 €;+ €, then by retiming task; for once or at most twice relative to
that of task7}, the associated intercore communication task’ is schedulable on the bus.

That iS,RmZ‘n(T‘Z‘, 7}) = 17 Rmaa}(,-ri) T‘]) = 2.

Proof. According to the condition; < ri+ei+e;ﬂ, in period/—R(T}), the time span between
the finishing time of task; and the release time of tadk is less than the execution time
of communication taleTj. Then at least one more extra retiming have to be performed
for taskT; relative to taskl;. An example is shown in Figure 3.7. After retimifig one
more period ahead df;, either time spad in period? — R(7};) — 1 or time sparb in period

¢ — R(Ty) is greater thar!. If communication taskC'7T} is scheduled in time spaf or
scheduled in time spah there is no need to perform extra retiming for taskelative to
taskT;. Therefore,Rmm(ﬂ,I}) = 1. If communication taleTji is neither scheduled in
time spard nor scheduled in time spa¥ one more extra retiming for task is needed.
Then taskT; is scheduled two periods ahead of the retimed thsk z(r;). According to
Theorem 3.3.1, the upper bound of the relative retimingevalueach pair of computation
tasksT; andTj is 2. Therefore, by retiming task for once or at most twice relative to the
retiming of taskT}, the associated intercore communication task is schedulable on the

bus. O

Property 3.3.3. For computation task§; and 7}, (1;,1;)eE (1;,7;€V), in one period of
the objective computation task schedule with schedulehe®g, ., if r; + e; + e§> Slength
andr; < e;'., then by retiming task; for exactly twice relative to that of task;, the associ-
ated intercore communication taék]}? is schedulable on the bus. That }%mm(ﬂ-, T;) =

A

Rmax<T‘zﬁ T]) = 2.

70

release time release time release time release time

! period 1

| |
El] [(fE0] [ET] - [5

! | ! . retiming | . } i

: ! ! release time ﬂm\release time !

| | | I | |

| I | 1 | |
3 7 . O o I T
I T T T T T »

i | < - ldﬁb | : i

i - | 1 . | i |

| - 1 I = I | |

| : l | | }

BUS| cTj i cT) i cT} i i cTj |
L 1 »
T T T T v

schedule length \schedule length \schedule length | \schedule length i

| | i I :

|

I I

period 1-R(T;-2 period 1-R(T;)-1
A A
Rmax(T;, Tj)=2 Rumin(T, Tj)=1

period 1-R(T)

Figure 3.7. An Exemplary Task Schedule of Property 3.3.2.

Proof. According to the conditiom; + e; + e§.> Slengtr, @Nd7r; < ez'., in the objective com-
putation task schedule, the time span between the finishimg af task7; and the release
time of task7] is less than the execution timé of communication task’7;. Therefore,
at least one more extra retiming have to be performed for Tasklative to taskl;. An
example is shown in Figure 3.8. After retimifig one more period ahead @f, both time
span6 and time sparT are less thaa@. TaskT; has to perform retiming twice to guarantee
the schedulability of communication taék??. Therefore,}?mm(ﬂ,ﬂ) = 2. According to
Theorem 3.3.1, the upper bound of the relative retimingevalieach pair of computation
tasksT; and7} is 2. Therefore, by retiming task for exactly twice relative to the retiming

of taskT}, the associated intercore communication t&§k is schedulable on the bus. O

Property 3.3.4. If task 7; and task7) are assigned to the same processor core, it is an

intracore communication. The®,,.,,(T;, T}) = Ruaz (T}, T;) = 0.

The above four properties classify the pair of the minimurd araximum relative
retiming values Ryin (T}, T}), Rimaz (T}, T;)) of computation task¢T;, 7)) E (T;, T;€V)

into four cases:(, 0], [0, 1], [1,2], and [2,2]. For computation task$; and7); associated

71

release time release time release time release time

I

Py | JN J8 RN ||
! ! ! retiming ! i
| I release time R(T)) times release time i
| | | ——:\I :
I]
P2 |T; TI‘ | TJ‘ |
I T]
: : ©en®, ! : :
	> /			
o	=			
- 0 (Bt				
;	; i ;	i j		
BUS! cTj ! cTj ! cr) ! : c7j :
r t + t t T
'schedule length ischedule length ischedule length | ischedule length !
- > 2 -~ |
| I I] I H
| |] | | \
' period 1-R(T)-2 ' period I-R(T)-1 ' period I-R(T) ' ' period 1 '

R T T)= Roin(T, T))=2

Figure 3.8. An Exemplary Task Schedule of Property 3.3.3.

with communication task?Tj, by checking the above four properties, we can get the mini-
mum and maximum relative retiming values of each pair of cotaon tasks. The derived

relative retiming values can be used to obtain the upperdbo@ithe prologue length.

3.3.2 Bounds of the Prologue Length

Based on the definition of prologue length, to minimize thelgyue length is equivalent
to the problem of reducing the maximum retiming value of a#lik nodes in the DAG. We
observe that the retiming value of each task node also heldaic bounds. In this section,
using the minimum and maximum relative retiming valuésngl(ﬂ,ﬂ), Rmam(ﬂ,ﬂ)) of
each pair of computation taskg;, 7;)cE (7;,7;€V') derived from Section 3.3.1 as the
input, by checking the data dependency in the DAG, we propdgerithm 3.3.1 to itera-
tively get the pair othe minimum and maximum retiming values (R,.;»(1;), Rimaz(T3))

of each task;, and gethe upper bound of the prologue lengthsup P,,. The derived
upper bound of the prologue length holds the constrainteefriteger linear programming

formulation.

Algorithm 3.3.1 presents a bottom-up approach to obtaip#weof the minimum and

maximum retiming values of each tagk Starting from tasks that do not have any successor

712

Algorithm 3.3.1 Get the Upper Bound of the Prologue Length for the Objectivm@utation

Task Schedule
Input: A DAG G= (V,E,CT,R), the minimum and maximum relative retiming

values Rnin(Ti, Tj), Rinax (T3, T;)) of each pair of computation tasks(T;,T;),
(T3, Tj)EE (T}, T;€V).

Output: The minimum and maximum retiming valueR,{;,, (1;), Rma: (T;)) of each taskl;, the
upper bound of the maximum retiming value of all task nosigs R(T"), the upper bound of the

prologue lengtsup Pey, g¢,-

1: for eachT; € V do
20 Rpin(Ti) < 0, Ry (T) < 0
3: end for
4: if T; € V has successor task(ten
5. for each successor tagk of task7; do
6: if Ryin (T3, T;) + Ronin(T;) > Ruin(T;) then
7 Ronin(T3) 4= Binin(Ti, Tj)* Rnin (T)
8: end if
9: if Rinae(Th, T) + Rinax (Tj) > Rinas (T;) then
10: Ronaz(Ti) = Runaz(Ti, Tj) + Rinaar(T)
11: end if
12: end for
13: end if

14: supR(T) + {max{Rpma(T;)}, T; € V'}
15: supPiengen < supR(T) xI

tasks, Algorithm 3.3.1 iteratively checks the data depangeelations in the DAG and gets
the minimum and maximum retiming values of each predecdssétr For a task; that
does not have any successor tasks, both its minimum and maxiratiming values are
equal to zeroR,,,in(T;) = Rua.(T;) = 0. For a taskl; with at least one successor tasks, this
corresponds to at least one edge pointing from fgdk other task nodes in the task graph.
For each successor ta§k of task7;, (1;,1;)eE (1;,T;€V), the value of]%mm(Ti,Tj)

+ R,.in(1;) can be obtained. Among these values, the maximum vallfémgj(ﬂ,ﬂ) +

Rynin(T;) will be assigned taR, ., (T;). Similarly, the maximum of2,,,..(T;, Tj) + Ruax (T})

73

will be assigned taR,,....(T;). After got the upper bound of the maximum retiming value of
all tasks,supR(T) ={max{R...(T;)}, T; € V}, we can derive the upper bound of the
prologue lengthsup P, g, = supR(T") xI.

We use a run time example in Figure 3.9 to illustrate the psedapproach. Given
a DAG in Figure 3.9(a) and the initial task schedule in FigBu®b), the execution time of
each computation task and each communication task areedeshown in Figure 3.9(c).
By totally removing the intercore communication overhead getting the earlier release
time of each computation task, an objective computatioedgle of one period is generated
in Figure 3.9(d). In Figure 3.9(e), each pair of the numbegmesents the minimum and
maximum relative retiming values of each pair of tasks, eespely, which can be obtained
by checking the four properties in Section 3.3.1. For exanpkkl’, and taskl associate
with intercore communication task7/. From Figure 3.9(c), we can get the execution time
of taskT4, e4 = 2, and get the execution time of communication task%, e} = 1. In
the objective computation task schedule in Figure 3.9(th schedule lengtl§ie, g, = 13,
we can obtain the finishing time of tagk, 74 + e4 = 2, and the release time of tagk,
rec = 2. ASTc < Ta+ ea+ ed < Spiengm it Satisfies the condition of Property 3.3.2.

Therefore,Roin (Ta, Te) = 1, Rpas(Ta, Te) = 2.

To get the pair of the minimum and maximum retiming valuesadhetask, we it-
eratively check the data dependency relations in the DAGguaibreadth-first manner. In
Figure 3.9(f), we put each pair of the minimum and maximurmmetg values of each task
above each task node. For a task that does not have any suctaesss, (e.g., task)),
both its minimum and maximum retiming values are equal to.z€or a task with at least
one successor tasks (e.g., tdsR, the maximum value of%mm(TZ-, T;) + Rpin (1) will be
assigned td?,,,;,(7;). For example, task’y has two successor task; and7-. The max-
imum value betweem,,,;,, (T4, T) + Ruin(T5) and Rin (T, Te:) + Rumin(Te) is 2. Thus,
Ronin(T4) is 2. Similarly, the maximum ofR,,,.. (T}, T;) + Rinae(T}) Will be assigned to
Rinas(T}). Therefore Roee (T, Ts) + Rimas(Ts) = 4 will be assigned taR,,,q,(T4). Then
the minimum and maximum retiming values of té&kare 2 and 4, respectively. Follow the

data dependency in the DAG (from tagkto task74), we can iteratively get the minimum

74

0 5 10 15 20 25 30 35 40
| I T T T T T O T T O A [S SO AT SR A (R S I (IR A R IR
/@\ 2 AE[D] L,
®< /©>® Pl EINEEN | [C[E] -
©</® P EEEEMD | [FTEIN
® ol BB BB BFR B | |
1st period 2nd period
(@) (b)

0 5 10 15 20
eA=2eB=2eC=2 eéﬂ\zo eéA=1 eDB=0 |||||||||||||||I||||:...
ep=5ec=4 e=5 eE=2 es=0 ef=1 N |
b E F eGD=2 eGE=0 65:1 PZEEE—;_p
ec=3 ey=3 ;=1 ef=0 ef=2 ef'=0 P G

(c) (d)
(2.4)
(RuioTaT6) , Rua Ta Te)=(0.0) (R T, Te) , Rmar To, Te))=(1,2) o) 2
(Rm/‘n(TA:TC) Rmax(TA TC)) (172) (Rmin(TE;TG) Rmax(TE;TG))z(():O) @ :
2,4)
R TorTo) R To To)=(0.0) (R Te), Ao Te T)=(0.1) ®<:(1 - 2)/'(%;;%’
RuinTe.Te) , Ruax(Ta, Te)=(1,2) (Ruin(Te Th) , Runax(Tr, T))=(0,0) /0 0\
Pl To TE), o To TN=0.0) (RuinTo), Ararl To, TD)=(1,2) Tomiowe (T))\()~
(Rl To o), Rrad To TeN=(12) (R T T, Rra T T)=(00) | |_ {2 70 B’ 2D
=(2,4)
(e) ()
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
T T T T T T T T T T T T T T I O O T O [O T T T O A O T A T R A (R R S N A B T R IR
P [A[B[D] [A[B] D [ABL D] ,
P, | Mc E[c | [C[E][G] | CrEl[E] ,
Ps | ! ! F HI [F 1A,
BUS| cefl3d HElE m dE] Hel HY)
prologue 1st period 2nd period
(9)
/@\1 R(TA)=2 R(Ts)=2 R(Tc)=1
R(T) /©\ R(Tp)=2 R(Te)=1 R(T¢)=0
= R(Ty) © \®/® b E F
=2
\®/' R(Tg)=1 R(Ty)=0 R(T))=0

Figure 3.9. A Run Time Example of the Proposed Approach.

75

and maximum retiming values of each task. Among them, theémax retiming value of
all taskssup R(T) is 4, which is equal to the maximum retiming value of tdsk Therefore,

the upper bound of the prologue lengtlp P, ., = supR(T") x1, is 4 periods of time.

3.4 Optimal Joint Computation and Communication Task Schediling

In this section, we first propose our approach that jointtyrogzes computation and commu-
nication task scheduling. An ILP model is presented to stiteeintercore communication
overhead minimization problem and obtain an optimal tatledale with the minimum pro-
logue length. Then, as an extension, in Section 3.4.2, wébgwmrour approach with DVS

techniques to save energy consumption.

3.4.1 Joint Computation and Communication Task SchedulindJCCTS)

Our joint computation and communication task schedulingreg@ch is shown in Al-
gorithm 3.4.1. Given a DAG and an initial task schedlusét_Sch, an objective computation
task schedule of one period can be generated, in which eagputation task is rescheduled
as early as possible and intercore communication overlseiadailly removed. Then the re-
lease time and the execution time of each computation taskénperiod of the objective
computation task schedule can be obtained. Based on thetiebjeomputation task sched-
ule, we perform schedulability analysis in Section 3.3.d gat the bounds of the relative
retiming value of each pair of computation tasks. Then weAlgerithm 3.3.1 to get the
bounds on the retiming value of each task and the bouns ondlegpe length. The derived

constraints are integrated into our integer linear prognamg formulation.

In the ILP model, the objective function seeks to minimize thaximum retiming
value of all task nodes. In order to generate the optimaltewiuthe ILP model considers

the following constraints:

(1) System ArchitectureConstraint 1 represents that, for a shared bus, when a coroaiu

tion taskCTj has been scheduled to start execution at tri;’neo other communication tasks

76

Algorithm 3.4.1 Joint Computation and Communication Task Scheduling (J®CT
Input: A DAG G= (V, E,CT, R) and an initial task scheduleit_Sch.

Output: An optimal objective task scheduigb;j_Sch.
1: Perform schedulability analysis is Section 3.3 and obtaénconstraints of the ILP formulation.

2: Add the following constraints into the ILP formulation:

(veri,ori e ot v <
-T2 (1)
VCT] € CT, (T;,Ty) € E, (T;,T; € V) :
rj 20 (2)
sl-g (3)
ri+ R(T;) - I = R(CT))-1>ri+e; (4)
rt+ R(T) - 1—-R(CT))- I <rj—¢; (5)
R(CT}) - R(T;) <0 (6)
R(CT}) - R(T}) > 0 (7)
R(T3) = R(T}) > Rpin(T3, T) (8)
R(T;) > Rinin(T3) (9)
R(T;) < Rpao(Th) (10)
R(T;) — Riaz <0 (11)
Ryar < supR(T) (12)

3: Set the objective function: Minimiz&,,,...

4: Find the feasible release time of each communication tagkidtiming value of each computa-
tion task, and the retiming value of each communication thaksatisfy the ILP formulation.

5: Generate objective task schedalé;j_Sch based on the release time, the execution time, and the

retiming value of each computation task and each commuaictask.

77

CT}’Z can start execution until the communication t€§1§? has completed its execution.

(2) Characteristics of Periodic Dependent Taskansidering théth period of the objective
computation task schedulé,> 1, Constraint 2 and Constraint 3 illustrate that, each com-
munication taskCT?, should be schedulable in the time spah{ 1) - 1, ¢I]. That is, the
release time«;ﬁ of intercore communication ta&RTj should be no earlier than the start of
the period, and the finishing timé + ¢/ of communication task'T’} should be no later than

the end of the period.
(l?—l)-IST;‘—I—(f—l)-‘I
i+l =1)-1<0-1—¢

By simplifying the above inequalities and moving variabieghe left-hand side of the in-

equalities, we can obtain the following constraints.
{ 7’; >0
ri < I — e’
Constraint 4 and Constraint 5 satisfy the constraints i dapendency to ensure that in-
tercore communication tagk7} is schedulable during the time span between the finishing

time of retimed tasK’; ,_r(r;) and the release time of retimed taBk_ (7).

ri+e — R(T) -1 <ri—R(CTj)-1
ritel — R(CT}) -1 <r; — R(Ty) - I

We can simplify the above expressions and move variabldsetdeft-hand side of the in-
equalities. Then we get the formulations of Constraint 4 @odstraint 5.
{ rt+ R(T;) - I — R(CT)) - I >ri+e;
i+ R(Tj) - I — R(CT}) - I <rj—e}
(3) Legal Retiming Constraint 6 and Constraint 7 preserve the semantic ¢coegsto keep
the retiming function legal. For computation tasksand7}, (1;,1;)eE (1;,T;€V), the

retiming value of task’; is always less than or equal to the retiming value of tAsk

Similarly, the retiming value of the associated intercammunication task’T’ is no more

than the retiming value of task, and it is no less than the retiming value of tdsk
R(T}) < R(CT}) < R(T})

78

Therefore, we can obtain the formulation of Constraint 6 @ndstraint 7.

R(CT)) ~ R(T,) <0
{ R(CT}) - R(Tj) > 0

(4) The Bound of the Relative Retiming ValureSection 3.3.1, we proposed four properties
to analyze the relative retiming value of each pair of corapan tasks. By checking the
conditions of these four properties, the bound of the netatetiming value can be obtained.
Constraint 8 gives the lower bound of the relative retimiatue of each pair of tasks. To
guarantee the schedulability of the intercore communjoala'isk(}il}?, the retimed compu-
tation taskl; should be at Ieas‘fimm(Ti, T;) periods ahead of the retimed computation task

T.

g

(5) The Bound of the Prologue Lengtln Section 3.3.2, we proposed Algorithm 3.3.1 to
get the bounds on the retiming value of each task and the Isoomdhe prologue length.
For each task;, its minimum retiming valueR,,;,(7;) and its maximum retiming value
R....(T;) can be obtained. Then the retiming value of each fask(7;), is always greater
than or equal to its minimum retiming valug,;, (7;), and it is always less than or equal to its

maximum retiming value?,,... (7;). Therefore R(T;) is in the rang@R,,in (1;), Rmaz (T3)]-
Rmzn(,-rz) S R(T;) S Rmam(ﬂ)

Then we get the formulations of Constraint 9 and Constraint 1

(T3)

{ R(T;) > Runin
Rmam(ﬂ)

R(T;)

IN IV

Constraint 11 finds the maximum retiming valiig,,., ={maz{R(T;)},T; € V} among all

computation tasks.

Constraint 12 restricts that the maximum retiming valg,, should be less than or equal

to the upper bound of the retiming valsep R(7"), which is the number of periods of time

79

for the upper bound of the prologue lengthp F.,.,.». Then, we get the formulation of

Constraint 12.

Rpaz < supR(T)

The objective function of the ILP formulation tries to minga the maximum retiming value
R, Which is the number of periods of tasks in the prologue. @dims ILP model, it
can derive the release tim*? of each intercore communication taélTj in the first period
of the objective task schedule. It can also get the retimHige/R((JTj) of each intercore
communication task’7 and the retiming valug(7;) of each computation task,. Then
an optimal objective communication task schedule can bergéed based on the derived
release time and the retiming value of each communicatsi tdommunication tas@T]?

is first released at; — R(CT}) - I, and it is periodically executed in each of the following
periods. Similarly, computation tagk is first released at, — R(7;) - I, and it is periodically
executed in each of the following periods. As the objectiuaction of the ILP formulation
seeks to minimiz&r,,..., the computation task schedule with the minimum prologugtle

is guaranteed.

As the ILP model integrates several constraints (e.g., tumdtls of the relative re-
timing value, and the bound of the prologue length), thesesitaints greatly reduce search
space for finding the optimal solution. The proposed apgrecaa efficiently solve the prob-
lem and provide the optimal communication task schedul@soie that the corresponding

prologue length of the objective computation task schegul@inimized.

We continue to use Figure 3.9 as an example. Figure 3.9(gysstie objective task
schedule generated by the proposed approach, in whichtéreane communication over-
head is totally removed and the schedule length in eachgerigreatly reduced. Compared
with the initial task schedule in Figure 3.9(b), the schedahgth is reduced from 17 to 13.
The objective task schedule in Figure 3.9(g) is generatsddan the results derived from
the ILP formulation. Each computation task or each commationo task can get its corre-
sponding release time. For example, the ILP formulatios get retiming value of task},

R(T4) = 2. So the first release of tagk, will be rescheduled two periods ahead of the first

80

period of objective task schedule. Then td3kis periodically executed in each of the fol-
lowing periods. For intercore communication tasks, the iduPnulation can get the release
time 7% and the retiming valu&(CT;) of each communication tagk7;. For example, the
ILP formulation gets the retiming value of communicatiosk&77, R(CTZ) = 1, and

it obtains the release time of communication task?, r& = 0. We can see that the first
release of communication tagki; is one period ahead of the first period of the objective
communication task schedule. After that, communicatisk €77/ is periodically executed

in each of the following periods. In Figure 3.9(h), the numakove each task node rep-
resents the retiming value of each computation task. Theamanr retiming value of all
tasks is 2, which is equal to the retiming value of computatask?, (i.e., R(T4) = 2).

Therefore, the prologue length is in 2 periods of time.

3.4.2 The Extension for Minimizing Energy Consumption

After removing intercore communication overhead, the psgual technique can reduce sched-
ule length in each period. By utilizing the slacks generatieild possible to reduce energy
consumption by exploring existing power-aware technigaaesh as DVS. Here, we present

how to extend our technique to save energy consumption.

Given an initial task schedule and the objective schedulgtle we can first explore a
DVS technique to generate an objective computation taskckdh with the minimum energy
consumption. In this way, the scheduling slacks caused éyirttercore communication
overhead can be fully utilized. For the second step, basedeoabjective computation task
schedule, the proposed technique can be used to generafgismaloobjective schedule.
As DVS techniques can generate energy efficient objectirgectation task schedule, these
techniques can be served as the input task schedule of tnnigee. Note that our technique
is general enough to cope with various DVS techniques. Toexevarious DVS techniques
can be explored to generate an objective computation tdsdsée. Combined with DVS
techniques, our technique can be extended to reduce enengyrmption and improve the

system performance.

81

3.5 Experiments

To evaluate the effectiveness of our approach, we condysraxments on various bench-
marks from both real-life streaming applications and sghthtask graphs. The objective of
the evaluation is to quantify the gains of our approach olergrevious work in terms of

two performance metrics: schedule length and energy copisom Our approach is com-
pared with the STC algorithm [24] and the FLSSR algorithm/[LThe STC algorithm is a

performance-oriented task scheduling algorithm that earetate near-optimal solutions for
periodic dependent tasks on multi-core architectured-L&SR algorithm is a power-aware
DVS scheduling algorithm that can effectively optimize igyeconsumption of streaming
applications on MPSoCs. So they are selected to do compariscthis section, we first

introduce the experimental environment and performandeicee Then we present the ex-

perimental results and discussion.

3.5.1 Experimental Setup

Our experiments are conducted based on the processor nigeeMil1 MPCore processor
[10]. The ARM11 MPCore processor implements ARM11 micrb#@scture and can be
configured to contain between one and four processors [1Qgrefore, we implement a
simulator based on the processor model of ARM11 MPCore astd t@rious benchmarks
under 2, 3, and 4 processor cores. The ARM11 MPCore utilizasghe 64-bit AMBA AXI
system bus to interconnect different cores and providesigirput of 1.3Gbytes/sec. In our
experiments, the ARM11 MPCore operates at 3 typical fregesn 333MHz, 400MHz and
532MHz.

We use the following metrics to evaluate the performanceiobpproach: (1yched-
ule length By removing intercore communication overhead, our apgraaan reduce the
schedule length in each period such that the system penfm@nzan be improved by adopt-
ing a shorter period. For each benchmark, the initial tablkeduale is generated by the Start-
ing Time Controller (STC) algorithm in [24] because of itasenably good performance for

task mapping and task ordering for multi-core platform. & the schedule length of each

82

benchmark with the frequency of 333MHz. We also presentoneesponding experimental
results on the maximum retiming valug, .., among all tasks for each benchmark. E2)-
ergy consumptionBy fully utilizing the slacks obtained from the proposedroaunication
overhead minimization approach, the energy consumptiarbeareduced by combining it
with DVS (Dynamic Voltage Scaling) techniques. The inipalwer-aware task schedule is
generated by the DVS algorithm, Fixed-order List Schedwuith Shared Slack Reclama-
tion (FLSSR) in Zhu et al. [117], which provides relativelga scheduling for periodic
dependent tasks running on MPSoC architectures. We préseeiperimental results on

energy consumption under different periods with differ@mnbers of processor cores.

In this chapter, a processor core in an MPSoC can support DMSdynamic power
consumption of a processor core at a voltage léyglis calculated based on the power
model in Rabaey et al. [911P,namic(Vaa) = Csw - fop - V.2, WhereCgy, is the capaci-
tance, and,, is the frequency of a processor core at voltage |1&ygl The operating voltage
V44 Of each ARM11 MPCore is set as 1.22V, 1.33V, and 1.47V forasesponding clock
frequency, and the capacitanCeyy is set as 40pF from the data sheet of Freescale Semicon-
ductor i.MX35 multimedia application processor [33]. THdX35 processor implements an
ARM11 microprocessor core, and it is designed for autoneaivtertainment and navigation

applications [33].

We conduct experiments on various benchmarks from E3S [JOER [71], CNC
[51], Image Enhancement [103], and TGFF [28]. Among theamsumeifrom Embedded
Systems Synthesis Benchmarks (E3S) represents an embzatdeoner electronic applica-
tion consisting of tasks like JPEG compression, JPEG deoessjpn, high pass gray-scale
filter, RGB to CYMK conversion, and RGB to YIQ conversiofelecomfrom E3S repre-
sents an embedded telecom application. ATR is a streamiplicapon that does pattern
matching of targets in images. CNC controller is an autoemaachining tool which is used
to produce real-time user-designed work pieces. Imageneeiaent application uses So-
bel gradient, histogram, and Laplacian to improve the imgggity. kseriesparallel and
kseriesparallel_xoverfrom TGFF are several synthetic task graphs generated by-TGF

ing the sample input files that come with the software package

83

We implement the simulator in C. Based on this simulator, e generate the ob-
jective computation task schedule and obtain the conssréoninteger linear programming
(ILP) formulation. The ILP formulation is solved by the opsource program linear pro-
gramming solver, LBsolve5.5 [32]. Both the simulator and LBolve5.5 are running on a

2.83GHz Intel Core2 Quad processor with 4GB memory.

3.5.2 Results and Discussion

In this section, we present and discuss the experimentaltsedNVe first compare our ap-
proach with the STC algorithm [24] in terms of schedule l&ndthen we present the results
in energy consumption obtained by our approach and the FLEB&Rithm [117]. Finally,

we present the prologue length introduced by our approach.

(1) Schedule Lengthlable 3.1 presents the experimental results in schedulghertained
by our approach (“*JCCTS") and the STC algorithm in [24] (“SYGnder 2, 3, and 4 pro-
cessor cores. Columns “# of task”, “# of edge”, “ST&)", “JCCTS {us)”, and “Reduction
(%)” represent the number of tasks, the number of edgesctiexisle length from the STC
algorithm, the schedule length from our approach, and tieeage reduction in schedule
length in one period by comparing our approach with the STGr&hm, respectively. From
the experimental results, our approach can achieve ange/gia72% reduction in schedule

length compared with the STC algorithm.

With the same period, for both our approach and the STC dkgorithe schedule
length can be reduced when the number of processor coremages. This can be observed
in Table 3.1 in which for each benchmark, less schedule lteogih be obtained with 3 or 4
cores compared with that with 2 cores. However, for our aggmoit can be observed that
the schedule length does not increase when the number céggoccores increases from
3 to 4 for some benchmarks sucha@ssumerandtelecom This is because the number of
tasks in these benchmarks is relatively small. The parsthebf the benchmark has been
fully exploited by our approach when the number of processoes increases from 2 to 3.

Therefore, the additional processor cores cannot proviole menefit as there are not more

84

Table 3.1. Comparison in Schedule Length of Our JCCTS Ampr@ad the STC Algorithm
in Chen et al. [24] on 2, 3, and 4 Processor Cores.

Benchmarks | # oftask | # of edge| STC (us) | JCCTS fus) | Reduction ¢)
2 processor cores
consumerl 7 8 75543 72132 4.52
consumer2 5 4 52798 46704 11.54
telecom 6 6 947 813 14.15
ATR 14 15 11988 10694 10.79
CNC 8 9 1866 1091 41.53
image 8 11 272 210 22.79
kseriesparallell 30 33 2644 1316 50.23
kseriesparallel2 20 19 1391 905 34.94
kseriesparallel3 62 61 5276 2769 47.52
kseriesparallel4 47 46 3876 2118 45.36
kseriesparallelxoverl 30 37 2788 1342 51.87
kseriesparallelLxover2 21 24 1380 905 34.42
kseriesparallelLxover3 38 41 2490 1694 31.97
kseriesparalleLxover4 27 30 1732 1152 33.49
3 processor cores
consumerl 7 8 76145 63681 16.37
consumer2 5 4 52758 46704 11.48
telecom 6 6 939 813 13.42
ATR 14 15 7799 7403 5.08
CNC 8 9 1417 884 37.61
image 8 11 225 189 16
kseriesparallell 30 33 2069 997 51.81
kseriesparallel2 20 19 1083 665 38.6
kseriesparallel3 62 61 4209 1974 53.1
kseriesparallel4 47 46 2878 1578 45.17
kseriesparalleLxoverl 30 37 2017 1016 49.63
kseriesparalleLxover2 21 24 994 658 33.8
kseriesparalleLxover3 38 41 1774 1152 35.06
kseriesparallelxover4 27 30 1185 987 16.71
4 processor cores
consumerl 7 8 72621 63681 12.31
consumer2 5 4 52734 46704 11.43
telecom 6 6 930 813 12.58
ATR 14 15 7671 7403 3.49
CNC 8 9 959 868 9.49
image 8 11 208 189 9.13
kseriesparallell 30 33 1674 815 51.31
kseriesparallel2 20 19 666 570 14.41
kseriesparallel3 62 61 3636 1661 54.32
kseriesparallel4 47 46 2196 1316 40.07
kseriesparallelLxoverl 30 37 1485 844 43.16
kseriesparallelLxover2 21 24 823 650 21.02
kseriesparallelxover3 38 41 1225 1110 9.39
kseriesparallelxover4 27 30 1069 931 12.91

85

tasks can be executed in parallel.

(2) Energy ConsumptionAs an extension of the proposed approach, energy consumptio
can be reduced by combining our approach with the DVS tecienitdve evaluate and com-
pare our approach with the FLSSR algorithm in [117]. Tab®shows the results for all
14 benchmarks with 2, 3 and 4 processor cores, in which coldimmng Constraints ()"
refers to the range of the timing constraints, and columnsS$R (J)”, “JCCTS (J)”,
and “Reduction (%)” represent the energy consumption nbthby the FLSSR algorithm,
the energy consumption obtained by our approach, and thietied in energy consumption
by comparing our approach with the FLSSR algorithm, respelgt The range of the tim-
ing constraints is determined by the minimum timing constrand the maximum timing
constraint. The minimum timing constraint refers to thdwtegt timing constraint that can
generate a feasible schedule by the FLSSR algorithm, wigleniaximum timing constraint
refers to the smallest timing constraint of a feasible saked which each task operates
at its lowest frequency. In the experiments, we test eaclkteark with different timing
constraints. Starting from the minimum timing constramiperform task scheduling, we
gradually increase the timing constraint by.@@ach time. The experimental results list the

average energy consumption of each benchmark for diffeegngfes of timing constraints.

From the experimental results, we observe that, with theeasing of the number
of processor cores, the improvement steadily increases. g because increasing the par-
allelism may cause more intercore communications, whiadd¢o more intercore commu-
nication overheads. Our approach can further effectivetiuce the energy consumption
by utilizing the slacks generated from the removal of inbeeccommunication overhead.
We also observe that, for real-life streaming applicati@e@chmarksonsumertelecom
ATR CNC, andimagsg, our approach can achieve a reduction between 5.90% ab@%?9.
compared with the FLSSR algorithm. For synthetic task gsaptth higher numbers of
tasks (benchmarksseriesparallel, andkseriesparallel xover), our approach can obtain up
to 28.51% reduction in energy consumptiésédriesparallel xover3for 4 processor cores).
This observation also shows that the proposed techniquekaradvantage of multiple pro-

cessor cores to reduce energy consumption. Although th&RLsggorithm can get feasible

86

Table 3.2. Comparison in Energy Consumption of Our JCCTSréggh and the FLSSR
Algorithm in Zhu et al. [117] on 2, 3, and 4 Processor Cores.
| Timing Constraintss) | FLSSR {..J) | JCCTS {.J) | Reduction (%)

2-core

consumerl 77806 — 112237 2588.53 2430.57 6.10
consumer2 55416 — 81112 1869.30 1638.26 12.36
telecom 539 -1018 30.10 26.15 13.12
ATR 11869 — 17459 504.52 474.76 5.90
CNC 1081 — 1541 40.89 36.99 9.53
image 234 - 330 8.80 8.23 6.48
kseriesparallell 1341 - 1999 52.20 49.90 4.42
kseriesparallel2 949 — 1388 35.97 33.61 6.57
kseriesparallel3 3708 — 5333 142.16 133.62 6.01
kseriesparallel4 2688 — 3994 102.58 96.80 5.63
kseriesparalleLxoverl 2008 — 2858 77.44 69.98 9.63
kseriesparalleLxover2 860 — 1246 33.86 30.35 10.35
kseriesparallel xover3 1650 — 2462 67.98 60.82 10.54
kseriesparalleLxover4 1175-1718 47.70 41.03 13.98
Average 8.62
3-core
consumerl 66327 — 95023 2424.69 2255.60 6.97
consumer2 55416 — 81112 1869.30 1638.26 12.36
telecom 539 -1018 30.10 26.15 13.12
ATR 9474 — 14264 502.13 405.52 19.24
CNC 884 — 1277 43.00 34.61 19.52
image 223 -308 11.12 9.31 16.24
kseriesparallell 1153 - 1621 48.37 43.71 9.64
kseriesparallel2 823 - 1137 33.98 28.97 14.74
kseriesparallel3 2896 — 4249 124.84 113.12 9.39
kseriesparallel4 2315 — 3247 97.12 82.49 15.06
kseriesparalleLxoverl 843 — 2493 79.75 66.67 16.40
kseriesparalleLxover2 750 — 1025 32.94 27.58 16.27
kseriesparalleLxover3 1548 — 2157 71.41 54.63 23.50
kseriesparalleLxover4 1040 — 1514 53.13 40.88 23.06
Average 15.39
4-core
consumerl 66327 — 95023 2424.69 2255.60 6.97
consumer2 55416 — 81112 1869.30 1638.26 12.36
telecom 539 -1018 30.10 26.15 13.12
ATR 9474 — 14264 502.13 405.52 19.24
CNC 884 — 1277 43.00 34.61 19.52
image 223 -308 11.12 9.31 16.24
kseriesparallell 1059 — 1434 56.53 41.24 27.05
kseriesparallel2 561 -1074 38.90 28.21 27.48
kseriesparallel3 1625 - 3707 148.94 111.64 25.04
kseriesparallel4 1228 — 3060 111.97 81.38 27.32
kseriesparalleLxoverl 843 — 2493 83.07 64.74 22.07
kseriesparalleLxover2 695 — 970 36.37 27.45 24.53
kseriesparalleLxover3 1147 — 2056 76.96 55.02 28.51
kseriesparalleLxover4 1040 - 1514 53.09 40.49 23.73
Average 20.94

87

Figure 3.10. The Maximum Retiming Value,,.. of Each Benchmark Running on 2, 3, and

4 Processor cores.

solutions under the same timing constraint as those for mproach, our approach can save
extra energy consumption compared with FLSSR by helpingli titilizing the empty time
slots caused by intercore communication overheads. Fdr leacchmark under different
timing constraints, with the decreasing of the timing coaist, the energy reduction of our
approach over FLSSR is accordingly increased. For eachhbear& running on different
processor cores with the same timing constraint, the ermyggumption on 2 or 3 proces-
sor cores is greater than or equal to the energy consumptioning on 4 processor cores.
This result also shows that our approach can utilize melfpbcessor cores to minimize the
energy consumption. From the above analysis, we can canthad the proposed approach
can achieve better energy consumption compared with thrgeeéficient task scheduling

algorithm FLSSR.

(3) Prologue LengthThe observations in Section 3.3 point to the maximum retinvialue
among all tasks as a direct factor that influences the preldgoigth. In this section, we
study the impact of prologue length (i.e., the maximum retgrvalue). Figure 3.10 shows
the maximum retiming valu&,,,.. of each benchmark with 2, 3, and 4 processor cores, re-
spectively. From the results, we can see that, our appra@addes several periods of prologue

latency. As discussed before, however, the prologue is@xdguted once. So the overhead

88

introduced is one-time delay. After waiting for the exeountbf the prologue, tasks can be
periodically executed in the new loop kernel as a streamppdj@ation is usually repeatedly
executed for many times. Since our approach can effectreglyice the schedule length of
each period as shown above, we can either apply a shortedparapply DVS for energy
optimization. Considering the benefit obtained from eachopeafter the prologue, it is

usually worth waiting for the execution of the prologue.

3.6 Summary

This chapter studied the problem of minimizing intercorsmoaunication overhead for stream-
ing applications running on MPSoC architectures. We jginpitimize computation and in-
tercore communication task scheduling such that interconemunication overhead can be
totally removed and the schedule length can be minimizedci8pally, we first performed
schedulability analysis and theoretically obtained theangound on the prologue length of
the computation task schedule. Then we presented an ILEy@nLinear Programming) for-
mulation to generate an optimal objective task schedule.ekperimental results show that
our technique can significantly reduce schedule length aedyg consumption compared

with representative techniques.

89

CHAPTER 4

MEMORY-AWARE SCHEDULING WITH COMMUNICATION OVERHEAD

MINIMIZATION FOR STREAMING APPLICATIONS ON MPSOCS

4.1 Overview

Streaming applications that process streams of data ae wivdeled as periodic dependent
tasks, in which streams of data are communicated from tasksto[108, 111]. Streaming
applications are data intensive and highly parallelizathlerefore, they are very suitable to
be executed on Multiprocessor System-on-Chips (MPSoGs)Yully utilize the computa-
tion capacity of MPSoCs, various techniques have been eglo increase parallelism of
streaming applications. However, this may cause a largeuatraf intercore communica-
tions with considerable communication overhead. Stregmpplications often have firm
real-time requirements. The communication overhead pasbsllenge for multicore hard
real-time systems, since most of the existing theoretiagitimal scheduling techniques on
multicore architectures assume zero cost for intercorentonications. By removing inter-
core communication overhead, a shorter period can be ajgtié system performance (e.qg.,
throughput) can be improved. Therefore, it becomes an itapbresearch problem to effec-

tively reduce intercore communication overhead for stiegrapplications on MPSoCs.

In this chapter, we effectively remove intercore commutiicaoverhead and gen-
erate an optimal task schedule with the minimum memory uagereaming applications
on MPSoC architectures. Specifically, in the proposed tecten we jointly reschedule both
computation and intercore communication tasks and letisddmumber of tasks reschedule
into earlier periods (the newly-added preprocessing Seglledprologug. After trans-

forming intra-period data dependencies into inter-pedath dependencies, the execution of

90

computation tasks and that of intercore communicationstaiskeach period can be totally

overlapped and the intercore communication overhead caffdetively removed.

Since streaming applications are data intensive, fairtydahared buffers would be
required to store the processing results between tasks. résudt, total size of the buffer
arrays usually accounts for a significant portion of the iagibn binary memory footprint
[31]. Our approach will generate an optimal task scheduté tiie maximum application
throughput while minimizing the overall memory usage, vwhieould be of great value in
the resource constrained embedded multiprocessor sysi@ntbe best of our knowledge,
this is the first work that totally removes intercore comnaation overhead considering the
memory usage with joint computation and communication sgkeduling for streaming

applications on MPSoC architectures.

To solve the problem, we first perform schedulability anialgsd theoretically ob-
tain the upper bound of the times needed to reschedule eacputation task. Based on
this analysis, we formulate the problem as an ILP (Integae&r Programming) model and
obtain an optimal solution with the objective of minimizitige overall memory usage. As
the schedulability analysis produces very tight boundsy ttan significantly reduce the
search space of our ILP formulation and greatly improve tfieiency for finding the opti-
mal solution. We also propose a heuristic approach Heaidgmory-Aware Optimal Task

Scheduling (HMAQOTS) to efficiently obtain a near optimaligan.

We evaluate the proposed technique with a set of benchmeoks lfoth real-life
streaming applications and synthetic task graphs, inctu&3S (Embedded Systems Syn-
thesis Benchmarks) [104], CNC (Computerized Numericalt@n[51], ATR (Automatic
Target Recognition) [71], an image enhancement applicgfio3], and TGFF [28]. We im-
plement a simulator based on the processor model of ARM11 & @rocessor [10]. We
compare the proposed technique with the approaches in J15),and [106] in terms of
schedule length and memory usage. Experimental resulis ttan the proposed technique
can achieve 14.71% and 12.25% reduction in schedule lengtipared with the approaches

in [111] and [115], respectively; and also 15.98% and 32.488tiction in memory usage

91

Processor Processor
Core Core ooe
k Interface) k Interface)

Bus

Figure 4.1. The MPSoC Architecture.

Processor
Core

compared with the approaches in [106] and [111], respdygtive

The rest of this chapter is organized as follows. Sectionmtrdduces models and
concepts used in this chapter. Section 4.3 gives a mothatexample and formally defines
the problem. Section 4.4 proposes our optimal joint contpartaand communication task
scheduling technique. Section 4.5 presents experimesdalts. Finally, we conclude the

chapter in Section 4.6.

4.2 Models and Concepts

4.2.1 System Model

In this chapter, we consider a typical MPSoC system ardhiteshown in Figure 4.1. The
MPSoC architecture consists bf homogenous processor cokdsy, P, . .., Py}, a shared
bus, a bus arbiter, and a shared on-chip memory. Every @morcesre is connected via the
bus to a shared memory. A shared bus is adopted as it is one wifdbkt widely used on-chip
communication architectures. A shared on-chip memory esldsr intercore communica-
tion. The accesses from a processor core to the shared mangompt cached. Bus access
requests from processor cores are managed by the bus .affhisrtarget architecture is a

generic and typical infrastructure for new generation ME&cchitecture [94].

92

4.2.2 Application Model and Communication Overhead

In this chapter, streaming applications are modeled asgierdependent tasks and repre-
sented by a Directed Acyclic Graph (DAG). ForaDAG= (V, E,CT),V={Ty,T,,...,T,}

Is the node set, and each node represents one periodidtask/ x V is the edge set, and
each directed edgé€T;, T;) € E (1;,1,€ V), represents the data dependency between tasks
T; andT}. That is, the execution df; needs the results generated by the executidfj.of
CT : E — Zis afunction that associates every directed €dg€l;) € E with a communi-

cation tasICTj to denote the corresponding data transfer from fadk taskT;.

The data transfer between two dependent tasks involveseiiff components in sys-
tem architecture: processor cores, bus, and the sharelipmeemory. If two tasks with
the data dependency are assigned to different processs, @rintercore communication is
issued and the shared on-chip memory is used to store thimigdéate communication. The
processor core is able to initiate write operations to sharechip memory by providing an
address and control information, which normally takes amedock cycle. The communi-
cation latency ocommunication overhead the length of time incurred in communicating
a message containing a number of words from a source procas®oto a target processor
core. This is the time overhead for a message to cross thiitkegbandwidth bottleneck in

the bus system.

According to the property of the shared bus, only one compiinesystem architec-
ture (i.e., processor core, on-chip memory) is allowed tivaly use the bus at any one time.
The shared bus has a finite capacity or communication banld\iidTherefore, to transmit
D(T;,T;) amount of data volume from task to task7};, the communication overhead is
[D(T;,T;)/B]. On-chip memory will allocate the memory space to hold thiermediate
data. The required memory space is released until the targeéssor core signals back to

the bus arbiter the success of the data transfer.

93

4.2.3 Static Schedule

For a task schedule, Iptbe the period of each computation task and that of each oreerc
communication taskp implies the deadline of the schedule, and the schedule neust-b
ished inp. Let S; be the release time (start time) of tégkin the first period. For task; in
the ¢th period (i.e.,T; ¢), the release time df; , is S;, = S; + (¢ — 1) - p, ¢ > 1. Similarly,
for a communication task?Tj? associated with taskg andT’;, let Sj. be the release time of
task(JTji in the first period, then its release time in ttk period isSJ{g = S;i +—-1)p,
¢>1.

Let ¢; be the execution time of computation tagk and c§. denotes the execution
time of communication tas@Tj. c§ is determined by the assignment of ta8ksaind7;: if
T; andT}; are assigned to the same processor core, it is an intracomaenication and we
assume’; is equal to zero; otherwise, it is an intercore communicagiodc; is equal to

'D(T;,T;)/B], whereD(T;, T;) is the data volume transferred aBds the bus bandwidth.

A schedule must obey all data dependency relations of a DAfx&ch directed edge
(T;,T;) € E inthe DAG, taskl; has data dependency with taBk In each period of the
schedule, the execution of computation tdskhas to wait the completion of computation

taskT; and the corresponding communication tﬁ]@l

4.2.4 Task Rescheduling and Retiming

In this chapter, we utilize the feature of periodic depentksks and reschedule several tasks
into previous periods so as to overlap the execution of caatjon tasks and that of intercore
communication tasks. After rescheduling tasks into previgeriods, data dependency rela-
tions are changed across different periods, and the nesdgehpreprocessing step is called
prologue In this chapter, we apply retiming technique [61] to ddseifow many periods
of a task node are rescheduled into the prologue and howrthiences data dependency
relations for a given DAG. The retiming technique is oriding@roposed to minimize the

cycle period of a synchronous circuit by evenly distribgtregisters [61]. We extend it and

94

redefine it as follows:

Definition 4.2.1. (Retiming) Given a DAGG= (V, E,CT), retimingR : V +— Zis a
function that maps each nodg, 7; € V, to an integerR(7;). Retiming function represents
extended data dependency relations. By retinfingnce, if it is legal, one period of task

is rescheduled into the prologue.

Definition 4.2.2. (Retiming value)Given a DAGG= (V, E, CT), the retiming valuéR (T;)
of a computation task;, 7; € V, denotes the number of periods of tdskhat are resched-
uled into the prologue; similarly, the retiming val®(CT}) of an intercore communication
taskCT}, (T;,T;) € E (T;,T;e V), denotes the number of periods of task that are

rescheduled into the prologue.

Definition 4.2.3. (Legal retiming) Given a DAGG= (V, E, CT), for each edg€T;,T;) €
E (T;,T;e V), aretiming functioriR is legal if the relative retiming valu® (7;) — R(7})

IS non-negative.

A retiming function must be legal in order to preserve the @etic correctness. If
R(T;)—R(T;) is negative, it implies that the data generated’biy current period is needed

in order to execut&} in previous periods. This cannot be feasible in a task sdeedu

Initially, all tasks are scheduled inside one period an@presents amtra-period
dependencyand the retiming value is zero. After performing retimitagks from different
periods are regrouped into one period in order to overlagxeeution of computation and
intercore communication tasks. Then, a non-negative netjraalue represents the data

dependency relations across multiple periodte(-period dependengy

95

4.3 Motivational Example and Problem Statement

Given an initial schedule with intercore communicationnnad, the objective is to totally
remove the intercore communication overhead and generstheaule with the minimum
memory usage. By removing the intercore communicationtmest, the system perfor-
mance can be improved by adopting a smaller period and tbedhput is improved. On
the other hand, a longer prologue not only introduces mdegydén the beginning, but also
it requires more data buffers to hold intercore communicatiata. So we want to minimize

the memory usage as well.

A DAG is shown in Figure 4.2(a). In the DAG, there are four taakd the execution
time of each task is 2 time units. There are four edges, anu edge associates with one
communication task. The execution time of each interconemaanication task is 1 time unit

and that of each intracore communication task is zero.

The intercore communication overhead poses a challengetfticore real-time sys-
tems since theoretically optimal scheduling techniquesnaitticore architectures mostly
assume zero cost for intercore communications. Based sassumption, the optimal com-
putation task schedule can be generated as the one showguire Bi.2(b). Let the periog
be 6 time units. The schedule is repeatedly executed in ezrabdpand the schedule length

(the total execution time of a schedule) of one period is 6.

Although the task schedule in Figure 4.2(b) is the optimahpotation task schedule
in terms of the minimum schedule length, this does not haoielitn context of intercore com-
munication overheads. Since intercore communicationh@magts may not be negligible, the
occurrence of intercore communication overheads will teadlonger schedule length. This

may compromise the predictability of existing theoreticabtimal scheduling techniques.

Figure 4.2(c) shows the schedule that considers the inee@@mmunication over-
head. In this task schedule, tagk can start execution only after the completion of task
T, and intercore communication taékl;. As a result, intercore communication taSH’;
introduces the overhead (the latency of execution) for one unit. From this example, we

can see that the intercore communication (communicatisksta7; andCT}) introduces

96

v

=
3
3

o N W] [
|

P, | .’

Latency:

0 1 2 3 4 5 6 7

1 3
CT3 CTy

|- ———

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
(©)

P 7| 7 n T

v

| I 1]]
P, | | i | |
: : : ! : g
Latencyi i cr! i m i cri|cr} i
r T T T T bl
Memory, l l ? D(TI»Ts) :
Usage ; ; : D(T ;,T4) D(T3,T4) | R
0 1 2 3 4 5 6 7 8 9 10 11 12 2 23 24 "

(d)

P T 7 T -

v

I |]]
I | I]
P, = | [l
; . ; , >
| i i 3 |
Latency cri | cri i A cr; i Ty :
T T T T
| 1
I 1

|
|
r
i
Memory! | D(T,,T)) D(T5T)

|
|
i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 4.2. A Motivational Example. (a) A DAG. (b) The objeetcomputation task sched-
ule of the DAG. (c) The schedule considering intercore comigation overhead. (d) and (e)
two schedules in which intercore communication overheagl$aally removed while they

are with different memory usages.

big overhead (2 time units) such that the schedule lengthcieased and a long period (8

time units) has to be used correspondingly.

The computation task schedule that totally removes thetsfigf intercore commu-
nication overhead is denoted th& objective computation task scheduBaven a DAG and

an initial schedule with intercore communication overtsdle objective computation task

97

schedule can be generated by rescheduling each computadiowith earlier release time.
The generation of the objective computation task schedubsiders the data dependency
in the DAG while assuming that the execution time of each camioation task is equal to
zero. For example, given a DAG and its initial schedule irurégd.2(a) and (c), the objective

computation task schedule can be generated like the taskigiehin Figure 4.2(b).

In order to ensure the objective computation task schedtleseone in Figure 4.2(b),
intercore communication tasks have to be rescheduled. Wwlfthis can be achieved by
overlapping the execution of intercore communication asdutation tasks from different
periods with joint communication and computation task hesiling. This is illustrated in

Figure 4.2(d).

Given the DAG in Figure 4.2(a) and the objective computatask schedule in Fig-
ure 4.2(b), as each task is periodic, we reschedule two ¢eb task7; and one period
of task T3 into the prologue. In Figure 4.2(d), by adopting the retigiiachnique, the data
required by task’; from task7; are always available inside a period, and the intercore com-
munication overhead caused by communication &gk can be removed inside the sched-
ule. After adopting the processing step, the schedule leisgeduced from 8 time units to

6 time units, and the objective computation task schedufegare 4.2(b) is guaranteed.

From this example, we can also see that the objective coripuiteask schedule
of one period can be obtained by removing all the intercoramanication overhead and
rescheduling each computation task as early as possibleeVso, it is not trivial to deter-
mine the retiming value (how many periods of one task resdleeldinto the prologue) of
each computation task. The problem is difficult as we canobieae this by rescheduling
tasks into the prologue freely without considering the ¢@ust of memory usage. And
it is not easy to reschedule intercore communication taslensure the schedule length is
minimized with the minimum memory usage. For example, aigiotask schedules in Fig-
ure 4.2(d) and (e) have the same schedule for computatiks, e memory usage of these

two schedules are different.

For the schedule in Figure 4.2(d), in one period of time, @deeto store one period of

98

data volume for communication taék’y and one period of data volume for communication
taskCT;. Compared with the schedule in Figure 4.2(d), the schedufégure 4.2(e) needs
an extra communication buffer to store one more period a galume for communication
taskCTy in the schedule. This example illustrates that, it is nesrys® obtain a task sched-
ule that totally removes intercore communication overBeakile minimizing the memory

usage to store the data transfers of streaming applications

Based on the models and problem analysis, we further foteabe problem as

follows:

Given a DAGG= (V, E,CT), an MPSoC architecture with/ processor cores, and
an initial task schedulénit_Sch of the DAGG, how to jointly reschedule computation tasks
and intercore communication tasks such that the objectoreputation task schedule with

the minimum schedule length can be generated with the mmiextra memory usage?

4.4 Memory-Aware Task Scheduling for Minimizing the Intercore Communication

Overhead

In this section, we present a Memory-Aware Optimal Task 8aheg (MAOTS) approach
that jointly optimizes computation and communication taskedule. We will first analyze
the bounds of the relative retiming value in Section 4.4nt, &we analyze the extra memory
usage caused by retiming operations in Section 4.4.2. Tudtseof the analysis will be in-
tegrated into the constraints of the integer linear prognamg (ILP) model in Section 4.4.3.
The ILP model is provided to obtain the optimal solution foe problem of removing inter-
core communication overheads with the objective of miningzxtra memory usage caused
by retiming. As these constraints hold very tight boundsyttan greatly reduce the search
space of ILP model and significantly improve the efficienayfiieding the optimal solution.
Based on the analysis, in Section 4.4.4, we also formulaedaiget problem into several
subproblems and propose a heuristic approach (HMAOTS)riergée a near optimal solu-

tion.

99

4.4.1 The Bounds Analysis of Retiming Value

The relative retiming value of each pair of computation sagpresents the number of peri-
ods involved to guarantee the schedulability of the assetiatercore communication task.
Specifically, for a pair of computation tasksand7; with data dependency relations in the
DAG, (T;,T;) € E (T}, T; € V), We USER, i, (T}, T;) andRq. (T3, T;) to denote that, rela-
tive to the retimed task}, the minimum and the maximum extra number of times to perform
retiming for taskT; to ensure the schedulability of the associated intercomenmonication

taskCTj.

Based on the objective computation task schedule genediratedthe initial sched-
ule, we propose the following theorem and properties toyaeahe schedulability of each
communication task and get the minimum and the maximumivelegtiming value of each
pair of computation tasks. The derived relative retiminiyiga can be used to get the bound
of the retiming value of each task, and they will become thestraints of the integer linear

programming formulation.

Property 4.4.1. If computation task§; and 7}, (7;,7;) € E (1;,T; € V), are assigned to
the same processor core, itis anintracore communicatid)mnmmm(ﬂ, T;) = ﬁmax(Ti, T3)
= 0.

Property 4.4.1 gives the case for the pair of computatiokstds and7; that are
assigned to the same processor core. In this case, therensedato perform retiming op-
erations to reschedule computation tdSkelative to computation task;. For computation
tasks that are mapped to different processor cores, thenioldy theorem gives the upper
bound of the relative retiming value of each pair of tasks.

Theorem 4.4.1.For a pair of computation taskg, and 7}, (1;,17;)eE (1;,1;€V), assigned
to different processor cores, computation tagksind 7; associate with an intercore com-
munication tasICTji in the /th period of the objective computation task schedule. After

retiming taskZ; for R(7;) times and retiming task; for R(7}) times, as long as the retimed

100

taskT; . r(r;) is rescheduled at most one more period relative to the retitask?); , _r(r),
the associated intercore communication ta&k’ is schedulable on bus during the time span
between the finishing time of the retimed td$k 1,y and the release time of the retimed

taskTM,R(Tj) .

Proof. The objective computation task schedule obeys the datandepey relations in the
DAG. In the/th period of the objective computation task schedule, thsHing time of task

T; is no later than the release time of task After retiming taskl; for one time relative to
the retimed tasK; ,_x(r;,), taskT; will be scheduled in period — R(7}) — 1, which is one
period ahead of the retimed task, r(r;). Then the time span between the finishing time of
the retimed tasl; ,_x(r,) and the release time of the retimed td$k_r(r,) is always greater
than or equal to periog. As all intercore communication tasks periodically exeaateach
period, in one period of time, there is one and exactly oreréare communication tagk7’/
that has data dependency with taSkand taskl;. Let this intercore communication task
CT; be the retimed communication task that associates witls sk r 1,y and T ;).

Its release time is no earlier than the finishing tim&pf = (7,), and its finishing time is no
later than the release time ©§ ,_(r,). Therefore, the associated intercore communication
taskCTj Is always schedulable on bus during that time span. An exampllustrated in

Figure 4.3. O

Theorem 4.4.1 gives the upper bound of the maximum relatithening value of each
pair of computation task$g,...(T;, T;) < 1, (T}, T;)€E (T;, T,€V). This tight constraint
provides a good property for rescheduling each computaéisk. This upper bound also
implies that the maximum latency introduced by the propaséiching technique is in one
period of time, which can ensure the basic functionalityuregments for most of commer-

cial available streaming applications. For the lower boofithe relative retiming value, the

101

Sis-R(T)p retiming R(T;) times S

| |
pl | | T, B R
| | v
I i ' S -R(T)- retiming S I
: | >p i -R(Tp R(T)) times e :
I]
P, | 7 N 7 | .
: Sju-R(T)p
|

| | i

| |)il
1| | N

| |

:4— period I-R(Tj)-1 —»<—— period I-R(Tj)) — [« period | ——»

Figure 4.3. A Task Schedule of Theorem 4.4.1.

property of legal retiming constraints that the relativeméng value of each pair of com-
putation tasks is non-negativg(7;) — R(1;) > 0. Then, the lower bound of the relative
retiming value of each pair of computation tasks is zero eBam these analysis, the bounds

of the relative retiming value i9)[1]. That iS,0 < Rin (T3, Tj) < Ronaa (T3, Tj) < 1.

Property 4.4.2. For a pair of computation tasks; andT;, (T;, T;)eE (T;,T;€V), assigned
to different processor cores, computation tagksind 7; associate with an intercore com-
munication taleTj. If S; + ¢ + c;l > §;, taskT; needs to retiming once and exactly

once relative to tasK; to ensure the schedulability of communication task’. That is,

Ronin(Tis Tj) = Ronae (T3, Tj) = 1.

Property 4.4.2 illustrates the case that the time span leetvlee finishing time of
taskT; and the release time of ta8k is not sufficient to hold the execution of communica-
tion taskCTj. In this case, the retimed ta8k,_x(r,) has to rescheduled at least one more
period ahead of the retimed tagk, ;). According to Theorem 4.4.1, the maximum rel-
ative retiming value is bounded by one. Therefore, the mimmand the maximum relative

retiming value of the case in Property 4.4.2 are both equahéo

The above theorem and properties classify the minimum aadtaximum rela-

tive retiming value Roin (T3, T}), Romaz (T3, T;)) of computation task$; and Ty, (T;,T;) €

102

E (T;,T; € V), into three cases0[0], [0, 1], and [1, 1]. For computation task%; and7’;
associated with communication tangj the minimum and the maximum relative retiming
value can be obtained by checking the above theorem andrgespeThe derived relative
retiming values can be used to obtain the bounds of the megivalue of each computation

task.

We adopt a breadth-first manner that follows the data depmydeslations in the
DAG and obtain the minimum and the maximum retiming value.&dask that does not have
any successor tasks, there is no need to reschedule thkesétasthe prologue. Therefore,

both its minimum and its maximum retiming value are equaleimz
Rmzn(,-rz) = Rmaw(,-ri) - 07 ,I‘z ek

For a task with at least one successor tasks, the retiming wdlthis task is bounded by the
maximum retiming value of its successor tasks. The follgngguation is used to obtain the

minimum and the maximum retiming value of a task that hasastlene successor tasks.

{ Ronin(Ts) = maa{Roin(T3 1) + R T} (7, 1) € B (1 Ty € V)

Rmaa}(ﬂ) - ma"r{,]émaa: (,I‘zu T7j) + Rmax(irj)}

4.4.2 The Analysis of Extra Memory Usage

After obtained the bounds of retiming value of each compuatask, we further analyze

how the retiming value of each task influences the memoryeausagtore the associated
intercore communication tasks. For the target multipregesrchitecture adopted in this
chapter, the shared memory is accessed by multiple pracessss with intent to provide

intermediate data storage for the input/output data stsesmong different processor cores.
Data streams that are processed by streaming applicatierssaxed in the dedicated mem-
ory space in the shared memory, such that the streamingcapph can fetch the data for

processing.

Data streams transferred between streaming applicatrerma@deled as an intercore

communication task’7;, and the data volum®(T;, T}) of intercore communication task

103

retiming R(T;) times

T T
| retiming R(T)) times

|
|
pl o [Tl N | (EE
: | retiming R(CT}) times I |
| I I |
il |
ool [@[] @ 0 L[] ®m |
| I] |]
| | | |
semary #ﬁ i
Usge | | | -, D)]
! | I | I | | -
[I ‘\ I I I
| i | i . | |
| S;.1-R(T))-p-p | Si-R(T)p Sj+¢;-R(T)p | |
:47 period [-R(T))-1 4>:<7 period I-R(T) 4>f !47 period / 4>:

Figure 4.4. Analysis of Memory Usage for Intercore Commatian TaskCTj.

CT}' will directly account for a portion of the memory usage. We tie following property

to analyze data volume transferred between a pair of retcoetputation tasks.

Property 4.4.3. For a pair of computation tasks; and 7}, (7;,17;)eE (1;,7;€V), associ-
ated with an intercore communication ta@’[T; the data volume for transferring one period
of intercore communication task7; is D(T;, T;). After retiming taskr; for R(T;) times
and retiming task’; for R(T;) times, the total data volume transferred between the retime

tasksT; andT} is [- (S; + ¢; — Si) + R(CT}) — R(Tj)] - D(T;, Tj).

The buffer to store data voluni®(T;, T;) is allocated from the starting time of inter-
core communication task7;, and it is released when tagk finishes its execution. If the
lifetime of D(T;, T;) crosses different periods, it will cause extra memory usagtore the
data volume for intercore communication tasks. If commaitiim taskC'7T} is rescheduled
to period/ — R(CT}) and taskr} is rescheduled to periotl— R(T}), the data volume will
across at mosR(CT}) — R(T;) periods.

In order to minimize the extra memory space, communicamCTj should be
rescheduled as close as possible to computationasiMore specifically, as illustrated

in Figure 4.4, if the finishing time of the retimed tagk, is later than the starting time

104

of the retimed communication tagk7;, of the next period, i.e.s!, — R(T;) - p +p <
Sje +¢; — R(T;) - p, an extra memory space is necessary. In this cgsei- ¢; — Si, > p.
This property implies that, as long as communication @3k is released within the period

[S)¢+ ¢; — p, Sj + ¢;], no extra memory usage is consumed.

4.4.3 Integer Linear Programming Formulation

Integer linear programming (ILP) provides a mechanism tbtlge optimal solution of a
problem in which all of its constraints can be formulated iagdr constraints of integer
variables. In this section, an integer linear programmirgglet is provided to obtain the
optimal solution for the problem of removing the intercommunication overhead with

the objective of minimizing memory usage.

Given a DAG and its initial schedule, we can formulate angetdinear program-

ming model as follows.

Minimize 37 S (S;+¢; — S1) + R(CTY) — R(T})] - D(T,, T))

(T;,Tj)eE

Subject to

(VOT!,CT}, € CT, Si < 5%
Si'>0
SJ:’S p/i_ Cé'i

VCT; € CT, (T, Tj) € B, (T, T; € V) :
R(T3) = R(T}) = Romin(T3, T;)

,\,.\,.\
W N =
= —

n N
+
S

/?3

3

SN~— .

V

S
=~~~
— O O 00 ~J O O =
S N N N N N N

Q
3
Z -
NIV
@

|

O@

Due to the data dependency relations in the DAG, the retimaige R(CT}) of
each communication tasik]}? is bounded by the retiming value of tasksandT;, R(T;) >

R(CT}) > R(T;). The retiming value of each computation task is further lteahby its

105

minimum and the maximum retiming valu& {,;,, (1), Rma(73)). These linear constraints

can be used to formulate the ILP model to solve the problem.

In the ILP model, the objective function seeks to minimize threrall memory usage
to store intercore communications. L&be the schedule length of the objective computation
task schedule that is derived from the initial task schedane " ¢, (73, T;) € E, denotes
the sum of the execution time of all communication tasks. nTtie new periog’ for the

optimal task schedule can be obtaingds max{L, " ¢’}.

Given a set of intercore communication tasks, ConstraindlGonstraint 2 illustrate
that, in each periog/, the release timé’j of a communication tasK?Tj should be in the
time span [0p’ — c§]. Constraint 3 restricts that every two intercore commatian tasks
scheduled on a shared bus are allocated without any cofthet.is, when a communication
taskCTj has been scheduled to releases}ltno other communication taSRij can start
its execution only after the completion of communicatiosidé?ilj. Constraint 4 gives the
lower bound of the relative retiming value of each pair ok&svhich can be obtained by the
analysis in Section 4.4.1. Constraint 5 and Constraint Grertat the retiming value of each
task is bounded by the minimum and the maximum retiming vaitniéch can be obtained by
the analysis in Section 4.4.1. Constraint 7 and ConstrginéServe the semantic correctness
to keep the retiming function legal. Constraint 9 illustathat communication tas]KTj has
to be allocated to shared memory before the finishing of thxé period’s retimed task’;.
Constraint 10 and Constraint 11 follow the data dependsrtoiensure that communication
task(JTji Is schedulable between the finishing time of the retimed fTasknd the release

time of retimed task’;.

Using this ILP formulation, we can obtain the retiming vaRI€l’;) of each computa-
tion taskT;, the retiming valuék (C'T;) of each intercore communication taSK/, and the
release time5’ of each intercore communication task’;. Based on these results derived

from the ILP model, an optimal task schedule can be generated

We use a runtime example in Figure 4.5 to illustrate our apgitoBased on the initial

schedule in Figure 4.5(b) and the objective computatiok sakedule in Figure 4.5(c), we

106

T, | 1, | T;

T.

I 1
3 | |
‘ ‘
3 | T |
1 s
I I

‘CT;I ‘ cr} ‘ crf

7
CTs

crf

cri

10 11 12 13 14 15 16 17 18 19 20 21 22 -
(b)

1 | D(T, T
i i DT, Ty)
! ! D(T,Ty)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
(¢4]

5
i ‘ =2 =2 =0 ¢j= =1 S S,=2
I | i
P2 A 1 a=2 ¢=2 , o=0 =2 5=2
l | =1 c¢=1 (i=9
Py ..' ! Cs cs=2 i S5 = Ss=4
T C& =
‘ ‘ =2 =2 ¢i=0 ¢;=0 s S5=6
Latency 3 3 5 6 =1 7 8
0 1 2 3 4 5 6 7 8 .
(c) (d)
A A A A Rmin T sRmax T, = 393
Ruid T T2) s Ruad Tu TN =000 Ry T T5) s Rl T3, 7)) = (1,1) Ruin(T1)> RnalT1)) = (3,3)
A A A A (Rmin(TZ)’ Rmax(TZ)) = (090)
(fmin(T T3), Ifma.x(Th T3)) = (L.1) Ruin(TsT7) 5 Riuax(Ty T)) = (0,0) Royin(T3)s Rina(T5)) = (2,2)
RuninT1,Ty) 5 Rnarx(T1, T4)) = (1,1) A A (Ruin(T4)s Rua(Ty)) = (1,1)
N N (Ruin(T5,Ts) 5 Riuox(Ts, T)) = (0,0)
Ruuin(T1T6) 5 Ruas(T1,Te)) = (0,1) R R Roin(T5)s Rex(T5)) = (0,0)
a A Rmin T’T sRmax T)T = 191 Rmin T 5Rmax T = 191
RuT 19 , R T, 79y = 00 FrrTo D) Bl T) = (LD o
A A . =
A) A _ R,,,i,, T,T ,RmaxT,T _ 1,1 min\ 1L 7)s Bmax\ 17, ’
(len(T3’ T6) k] Rmnx(T3’ T6)) (0’0) ((7 8) (7 8)) () (Rmin(Ts)a Rmax(T8)) = (0,0)
(¢) ®
.] (7] . O -
. | - EE | i
n | | — [nln]
Latencyi e tariter H cri|crl|cri|cri CT§ cry w
i D(T,,Ty) DT, Ty D(T,,T)| -~
i D(T,,T) I D(T,,T)
3 L] D(T,,Ty) ‘
Memory | D(T,,T) ‘ |
Usage i D(T,, Ty ‘ i
I
I
0

1
1
|
|
|
|
|
|
I
|
I
3

1 2 3 4 5 6 7 8

Figure 4.5. A Runtime Example of MAOTS. (a) A DAG. (b) An iratischedule of the
DAG. (c) Objective task schedule of all computation taskat tiotally removes intercore
communication overhead. (d) The execution time of each coation task and that of each
communication task, and the release time of each compntédgk. (e) The bounds of
relative retiming value of each pair of tasks. (f) The bouafithe retiming value of each

task. (g) The optimal task schedule by our approach MAOTS.

107

can obtain the execution timg of each computation task;, the execution time;l of each
communication tasICTj, and the release timg&; of each computation task;, which are
shown in Figure 4.5(d). Then, by checking Theorem 4.4.1pény 4.4.1 and Property 4.4.2,
the minimum and the maximum relative retiming value of eaain @f computation tasks can
be obtained. For example, tagkand taskl; are assigned to different processor cores (pro-
cessor coré’; and P, respectively). They associate with an intercore comnatiun task.
Then, (]@mm(Tl,Tﬁ),ﬁmM(Tl,TG))z(O, 1). For tasks with data dependency relations as-
signed to the same processor core (i.e., taskBdT), (Roin(Ti, T;), Rumae (T, T;))=(0, 0).

Using the minimum and the maximum relative retiming valueneel in Figure 4.5(e),
the bounds of the retiming value of each task can be obtaifed.a task that does not
have any successor tasks, (i.e., tagk both its minimum and its maximum retiming value
are equal to zero. For a task with at least one successor, tdekgnaximum value of
Romin (T3, T;) + Roin(T;) Will be assigned toR,,;,(T;). For example, task} has two
successor taskgy and7,. The maximum value betwee?f%lmax(Tg,Tt;) + Ronaz(Ts) and
Romaz (T3, Tr) + Ronaz (T7) i8 2. TAUSR 00 (T5) is 2. Similarly, the maximum oR,.i,, (15, T;)

+ Ruin (1) will be assigned t&R,,;,, (7;). ThereforeR,,;,(13) is 2. Then the minimum and
the maximum retiming value of task; are both equal to 2. Follow the data dependency
relations in the DAG (from tasK; to taskT}), we can iteratively get the minimum and the
maximum retiming value of each task. The results are listdeigure 4.5(f). The results of
the bound analysis will become the constraints of the ILEnfdation in the next section.

As the schedulability analysis produces very tight bouttds|LP formulation can be solved

efficiently in practice.

To illustrate how to generate the optimal task schedule,oméiicue to use Figure 4.5
as an example. It includes the generation of task scheduleofmputation tasks and the
generation of task schedule for intercore communicatisksaThe task schedule of com-
putation tasks can be generated based on the objective tatmoputask schedule in Fig-
ure 4.5(c) and the derived retiming val®&T;) of each computation task. For example,
the ILP formulation gets the retiming value of taBk R(77) = 3. Then the first release of

taskT; will be rescheduled three periods ahead of the first periddetask schedule, and

108

three periods of task; will be allocated to the prologue. For intercore communaatasks,
the ILP formulation can obtain the release tisieand retiming valueR (CT;) of each in-
tercore communication tas]l]}?. Similar to the generation of task schedule of computation
tasks,R(CT}) periods of an intercore communication task is rescheduiethe prologue.
For example, the ILP formulation obtains the release timateircore communication task
CTy, Si = 0, and gets the retiming value 6fT}, R(CTy) = 2. In the task schedule in
Figure 4.5(g), we can see that the first release of commumicgskCTy is two periods
ahead of the first period of the objective schedule. Aftet,tbammunication task’T; is
periodically executed in each of the following periods. igufe 4.5(g), intercore commu-
nication overhead is totally removed and a shorter periaih{8 units) is applied with the

minimum memory usage.

4.4.4 A Heuristic Approach

In this section, we present a heuristic approach (HMAOTS3dlve the memory-
aware task scheduling problem. HMAQOTS consists of thregsstim the first step, in Algo-
rithm 4.4.1, communication tasks are classified to two tiffé groups and inserted into two
queues); and(@)s,, respectively. Tasks i@); will influence the maximum retiming value and
the memory usage of the task schedule, while task$ iwill not influence the memory us-
age. Communication tasks in each queue are sorted into thetorocally increasing order
by deadline. Tasks iy, have higher priority than tasks (., and tasks irf); can preempt
tasks inQ),. In the second step, in Algorithm 4.4.2, empty time slotatzd by allocating
tasks in@); could be used to schedule tasks)r, and tasks i), will be scheduled in each
time slot based on Best Fit Decreasing algorithm [46]. Inldse step, based on the release
time and execution time of each task, Algorithm 4.4.3 olg#ne retiming value of each task

and generate the final task schedule.

For the first step, in lines 1-12 of Algorithm 4.4.1, the W&i@ﬁ((]ﬁ) of each task
CT} is calculated and the deadline of task is assigned basedeonetight. For tasks with

the zero weight, .6 R0 (T3) = Rmin(Ti) and R ez (1) = Rpin(T}), retiming values

109

Algorithm 4.4.1 A Heuristic Approach for Memory-Aware Optimal Task Schedgl
(HMAOQOTS)
Input: A set of communication tasks i); and@-, periodp.
Output: The task schedul§chedule_Q).
1: for each communication ta&fRTj do
2: if Rmax(ﬂ) > Rmax(Tj) > Rmm(Tz) > Rmm(Tj) then

3: W(CT]Z) — (Rmam(Tl) — Rmm(Tj)) . 'D(TZ,T]), d; — Sj, S]Z — S + ¢,
INSERT(QLCTJ?).

4: else

3 W(CT;) (Rmaz (L) — Rinin(T3) + Rinaz(Tj) — Rmin (1)) - D(T, Tj).
6: if Rimaz(T3) = Rmin(T3) andR 4z (Tj) = Rumin (1) then

7: d§ —p, S;ﬁ +— S; + ¢;, INSERT(Q>, CTJ?').

8: else

9: d; < S;j, 8§ + Si + ¢;, INSERTQ1, CT)).
10: end if
11: endif
12: end for

13: while Q1 # 0 do
14: ReturnValue— Schedulef, CT})
15: if ReturnValue sSwuccess then

16: Continue.

17: else

18: if W(CT}) > W(CT}) then

19: t «t — ¢, ReturnValue— Schedule(, CT?)

20: if ReturnValue =Swuccess then

21: INSERT(Q2, CT), Continue.

22: else

23: d; < S; + ¢;, ReturnValue— Schedule(, CT})
24: if ReturnValue =Success then

25: INSERTQ2, CT%), Continue.

26: else

27: t « t+ !, DELETEQs, CT}), INSERT(Q,, CT}), Continue.
28: end if

29: end if

30: end if

31: endif

32: end while

33: for each communication taleT]? in Q> do
34: Si«t,t« t+cj, DELETEQ2, CT)).
35: end for

36: GetRetimingValue().

110

Algorithm 4.4.2 Schedulef, CT}).
Input: Earliest available time, a communication tas@Tj in Q1 to be scheduled on bus, commu-

nication tasks irQ,.
Output: Release time of communication taélil“j if it returns Success.
1:ift < Sj? then
2: Schedule tasks i), to time slot E, S}] using Best Fit Decreasing.
3: for each task?Tj,’ scheduled in time slot[S] do
4: St « t+ ci, DELETE(Qy, CT}).
5: end for
6: t<« S]i- + cé-, DELETE@Q;, CTJ?'), ReturnSuccess.
7: endif
8: if t < d — ¢ then
9: S]i- —t,t S; + c?, DELETE@Q;:, CTJ?'), ReturnSuccess.
10: end if

11: ReturnFailure.

of 7; andTj are fixed. Therefore, the associated communication taskuailinfluence the
memory usage of the schedule. These tasks will be inserted)in Other communication
tasks with non-zero weight will be inserted indQ. Lines 13-32 schedule each taskgn.

The taskC'T; with larger weight will have higher priority, and it can prept the previous

taskC'T?; with smaller weight.

For the second step, Algorithm 4.4.1 will call functihedule(t, CT}) to schedule
taskC'T; at timet. FunctionSchedule(t, CT;), which is shown in Algorithm 4.4.2, com-
pares the release tinﬁ. with the earliest available time If ¢ is less than or equal t6¢, a
time slot between and Sj. is created, and this time slot can be used to allocate tasi¢s.in
FunctionSchedule(t, CT;) adopts Best Fit Decreasing algorithm to schedule tasksrie ti
slot [t, Si]. If t is greater tharb, function Schedule(t, CT}) will check if ¢ is less than or
equal tod; — ¢. If it satisfies the condition, in line 10 of Algorithm 4.4.@ommunication
taskCTj? will be scheduled at time If time ¢ satisfies neither the condition in line 1 nor that

inline 9, functionSchedule(t, CT;) will return Failure.

111

For the last step, Algorithm 4.4.3 will get the retiming valaf each task. Lines
1-6 will initialize the retiming value of each task as 0, aratte leaf node in the DAG
will be inserted into queué). In lines 7-19, Algorithm 4.4.3 iteratively gets the retngi
value of each computation tagk. If communication taleTj can be scheduled between
the finishing time of tasK’; and the release time of tagk inside the same period, the larger
value betweerR(7;) and R(T;) will be assigned toR(7;). Otherwise, the larger value
betweerR (7;) andR(7;) + 1 will be assigned t&R(T;). In line 16, taskZ; will be inserted
into queuea?, and it will be used to generate the retiming value of its poegsor tasks. Lines
20-26 get the retiming value of each intercore communin&ﬁek@]}?. If the finishing time
of taskCT]? is no later than the finishing time of tagk and the retiming value of task is
greater than the retiming value of taBk R(7;) — 1 will be assigned t&(CT}). Otherwise,
R(T;) will be assigned tar(CT}) to guarantee that intercore communication task' is

finished before the completion of tagkin the next period.

Here we analyze the time complexity of the proposed heamdgorithm HMAOTS.
Given a set o computation tasks and a setwfintercore communication tasks, in Algo-
rithm 4.4.1, the first “for” loop contains at most iterations and each iteration takes linear
time. Therefore, the time complexity of lines 1-120¢m). For the “while” loop in Algo-
rithm 4.4.1 (lines 13-32), it calls function Sched@jle&’]}?) in line 14. The time complexity
of the function is bounded by Best Fit Decreasing algorithnline 2 of Algorithm 4.4.2.
The time complexity of Best Fit Decreasing algorithn@iénlogm), so the time complexity
of the “while” loop is O(m?logm). The time complexity of the last “while” loop i©(m).
For function GetRetimingValue() in Algorithm 4.4.3, thene complexity of the first “for”
loop (lines 1-6) i (n); the “while” loop (lines 7-19) take® (mn); and the time complexity
of the last “for” loop (lines 20-26) i$)(m). Based on this analysis, the time complexity of

Algorithm HMAQOTS isO(m?2logm)+O(mn).

112

Algorithm 4.4.3 GetRetimingValue().

Input: ADAG G = (V, E,CT), release time and execution time of each task.
Output: Retiming value of each task.

1: for each taskl; € V do

N

R(T;) + 0.

3: if T; is a leaf nodaghen

e

ENQUEUEQ, T).
5: end if

6: end for

N

while Q # () do

«

T; + DEQUEUEQ).

9. for each communication tagkT; associated with taskg andT; do

10: if S;+¢ < S;i ande? + c§ < Sj then
11: R(T;) < max{R(T;), R(T;)}.

12: else

13: R(T;) « max{R(T;), R(T;) + 1}.
14: end if

15: if tail # T; then

16: ENQUEUEQ, T;), tail + T;.

17: end if

18: end for

19: end while

20: for each communication ta&fRTj associated with taskg andT; do

21 if R(T;) > R(T}) andsS; + ¢; > Sk + ¢ then

22: R(CT}) + R(T;) — 1.
23: else

24: R(CT}) < R(T;).

25: endif

26: end for

113

4.5 Experiments

To evaluate the effectiveness of the proposed approachpmauct a series of experiments
on various benchmarks from both real-life streaming appilbms and synthetic task graphs.
We compare and evaluate the proposed approach over theeamtve schemes in Xu et
al. [111], Zhang et al. [115], and Wang et al. [106], in termigveo performance metrics:

schedule length and memory usage. In this section, we firsidace the experimental setup

and performance metrics. Then, we present the experim@stalts and discussion.

4.5.1 Experimental Setup

(1) Experimental SetupWe conduct experiments on various benchmarks from both real
life streaming applications and synthetic task graphs.efveal-life task graphs are ob-
tained from benchmarks E3S [104], CNC [51], ATR [111], anchja enhancement [103].
Among them,consumeifrom Embedded Systems Synthesis Benchmarks (E3S) repgesen
an embedded consumer electronic applicatAutofrom E3S is an embedded auto-industry
application. Telecomfrom E3S represents an embedded telecom application. CHE co
troller is an automatic machining tool which is used to prasteal-time user-designed work
pieces. ATR is a streaming application that does pattercmrag of targets in images. Im-
age enhancement application uses Sobel gradient, histpgrad Laplacian to improve the
image quality. The synthetic task graphs were generatedGif1v3.5 [28]. Benchmarks
kseriesparallel and kseriesparallel xover are generated by TGFF using the sample input

files that come with the software package.

We implement a simulator based on the processor model of ARMBCore mul-
ticore processor microarchitecture [10]. The ARM11 MPCprecessor implements the
ARM11 microarchitecture and can be configured to containaufour ARM11 proces-
sors [10]. The ARM11 MPCore adopts a single 64-bit AMBA AXlks$ym bus to intercon-
nect different processor cores and provides the maximusngfmput of 1.3Gbytes/sec. In the
experiments, each ARM11 MPCore is configured to operateeatréguency of 620MHz.

The simulator can generate the objective computation tebkdule and obtain the con-

114

W PEDF 2-core
OMAOTS 2-core
@ PEDF 3-core
TOMAOTS 3-core @
@ PEDF 4-core
OMAOTS 4-core

e >
s\““ev o e \e@m e o a‘a\\e\ ‘a\\e\'I— ‘a\\e\ a‘a\\e\ oo e e
co™ oo e s Y s \e\ e Ne\ \e
*se“e \‘se‘\e » e ‘ése(\e By . va‘a\ - @\ e . paya\ -
o "

B Schedule2D 2-core
OMAOTS 2-core
@ Schedule2D 3-core

(b)
O MAOTS 3-core
@ Schedule2D 4-core
O MAOTS 4-core

0
K® eSS o g“ﬁeﬁ sumeﬂ e\ed)‘“ o\\\c e9® ‘a\\e\\ (a\\e\l Ya\\e\?’ a‘a\\e\

(s (s (s (s ora
¥ e w2 W s aes S qes S jes
e e et e

A\ e o otk
SONIRS Sy
\\e of e\ @

Figure 4.6. Schedule Length by Task Schedules PEDF [115d&de2D [111], and the

proposed approach (MAOTS) on 2, 3, and 4 processor cores.

straints for the integer linear programming formulationheTILP model is solved by the
open source program linear programming solverdoRe 5.5 [32]. Both the simulator and

LP_solve5.5 are running on a 2.83GHz Intel Core2 Quad processor VB chemory.

(2) Performance MetricsTwo performance metrics are used to evaluate the effe@sseaf

the proposed approach:

Schedule length By removing intercore communication overhead, our apgroa
can reduce the schedule length in each period such that shensyperformance can be im-
proved by adopting a shorter period. Applying a shorterqaeninplies the improvement for
application throughput, which is the primary concern foeating applications. For each
benchmark, we compare with the task schedules generatduek @ajgorithmSchedul e2D
in [111] and the algorithnrPEDF in [115]. Schedule2D [111] is an algorithm that jointly per-
forms processor allocation and task scheduling for stregmapplications on multiprocessor
architectures. The generated schedule consists of nauftipeline stages and it is proved
to be an optimal allocation for the amount of time in each jmgestage. PEDF [115] is
selected for comparison because of its reasonably goodrpeahce for task mapping and

task ordering for multicore platform. We test each benctkraad obtain the schedule length

115

in each period.

Memory usage By rescheduling tasks with inter-period dependency, nuaia
buffers are required to hold intercore communication d&ar approach can generate the
task schedule with the objective of minimizing the memorgges We compare the proposed
approach with the algorithrBchedul e2D in [111] and the algorithnd CCTS in [106].
Both of these schemes allocate tasks into different pipedtages and change data depen-
dency relations across different periods. JCCTS [106] &sk $cheduling technique consid-
ering intercore communication overhead. However, in thehhique, the memory usage is
not considered. We present experimental results on mensaryeufor each benchmark un-
der different numbers of processor cores. In this thesiglae@propose a heuristic approach
HMAQOTS to efficiently obtain a near optimal solution. We ccamgthe memory usage and

time cost of the heuristic approach and the proposed ILIBebaptimal solution.

45.2 Results and Discussion

In this section, we present the experimental results of thpgsed approach and the previous
work in terms of schedule length and memory usage. W&HSE, Schedul e2D, JCCTS,
andMACQTS to represent the experimental results generated by tagkigsbhg in Zhang et

al. [115], Xu et al. [111], Wang et al. [106], and the propoapg@roach, respectively.

Figure 4.6 shows the experimental results for schedulehesfgask schedules PEDF,
Schedule2D, and the proposed approach under 2, 3, and spooadres. The task sched-
ules PEDF and Schedule2D are used to generate the initkasthgdule. In Figure 4.6(a),
we normalize the schedule length of PEDF and the proposewagprunning on different
number of processor cores by the schedule length of PEDRnguom 2 processor cores. In
Figure 4.6(b), we normalize the schedule length of Sch&iuknd the proposed approach
running on different number of processor cores by the sdeddngth of Schedule2D run-
ning on 2 processor cores. For task schedule PEDF, which mateshange intra-period
data dependency relation, the proposed technique can getpadormance gains when the

number of processor cores is increased. This is becausemeite processor cores, the par-

116

Figure 4.7. Memory Usage of Schedule2D [111], JCCTS [10&],the Proposed Approach

MAOTS on 2, 3, and 4 Processor Cores.

allelism is accordingly increased with more intercore caminations. For benchmarks with
relatively small number of tasks (i.e., auto, consumet®) reduction of schedule length on
2 processor cores are the same as the one on 3 processormcé®oessor cores. This is
due to the parallelism of these benchmarks has been exphloith the smaller number of
processor cores. The additional processor cores may neidprmore performance gains.
For task schedule Schedule2D, which changes data depsgmnadaitons across different pe-
riods, using more numbers of processor cores will directtyease the number of pipeline
stages in the schedule. From the results, we can see thlath&iincreasing of the number
of processor cores, the schedule length accordingly deedea@©On average, compared with
PEDF and Schedule2D, our approach can achieve 12.25% artPa4eduction in schedule
length.

In the second set of experiments, we test the memory usagadbrbenchmark un-
der different numbers of processor cores. Figure 4.7 shiogvsstsults for memory usage of

task schedules Schedule2D, JCCTS, and the proposed abpnoder 2, 3, and 4 processor

117

cores. In Figure 4.7, we normalize the memory usage by theaneraquirement for Sched-
ule2D running on 4 processor cores. It can be seen from th#éselsat for each benchmark,
the proposed approach gives better memory usage than athapproaches. For memory
usage, our approach can achieve a 32.45% reduction on awaagpared with Schedule2D,
and a 15.98% reduction on average compared with JCCTS. $Skesthedule Schedule2D
adopts different pipeline stages and each stage is expexteel mapped on the processor
cores. Therefore, tasks in the same pipeline stage will ttesame retiming value. This
may cause unnecessary rescheduling for intercore comation¢asks and take extra mem-
ory usage to store the intercore communication data. JCE&Tiseitask schedule that has
the objective of minimizing the prologue. By minimizing tpeologue, less pipeline stages
are adopted. However, more intercore communication tasi§s lme rescheduled into the
prologue, which causes extra memory usage. From the resufttapproach can effectively
reduce the intercore communication overhead while minimgithe extra memory usage to

store the intercore communications.

In the third set of experiments, we test the memory usageteniiihhe cost of the pro-
posed heuristic approach (HMAOTS) and the proposed ILRdapproach Memory-Aware
Optimal Task Scheduling (MAOTS). Although the ILP model atain optimal solution
for the memory-aware task scheduling problem, it is an Nie-paoblem to solve the ILP
model. Therefore, the ILP model may take very long time totpetresults. Table 4.1
presents the time cost for the heuristic approach and théodded optimal solution. From
the experimental results, we can see that ILP-based MAOP®aph takes much longer
time to get results compared with the one from the heurigiic@ach HMAOTS. For bench-
mark sprand3 generated by TGFF [28], the ILP-based approach MAOTS cagebthe
results after 3 days, while the heuristic approach HMAOTBEN get the results for less

than one minute.

Figure 4.8 presents the experiential results for the memeage of heuristic ap-
proach HMAOTS and the proposed ILP-based optimal task sdimgdVMAOTS. From the
experimental results, we can see that, for most benchnthgkbkeuristic approach can obtain

near-optimal solutions. To generate an optimal solutioafgeneral problem, the ILP-based

118

Table 4.1. Comparison in Time Cost of Heuristic Approach (MDTS) and Memory-Aware

Optimal Task Scheduling (MAOTS) on 2, 3, and 4 processorsore

of | # of HMAOTS | MAOTS HMAOTS | MAOTS HMAOTS | MAOTS
Benchmarks task |edge (s) (s) (s) (s) (s) (s)
ATR 14| 15 0.23 0.92 0.53 13.25 0.53 13.73
auto 6 9 0.23 0.93 0.53 12.15 0.43 7.89
consumerl 7 8 0.43 6.88 0.53 13.40 0.75 36.74
consumer2 5 4 0.23 0.91 0.43 6.88 0.43 6.88
telecom3 6 6 0.53 13.25 0.47 7.52 0.49 12.26
CNC 8 9 0.33 2.97 0.53 13.26 0.53 13.29
image 8| 11 0.53 11.77 0.83 53.13 0.83 54.36
kseriesparallell 30| 33 0.54 15.11 0.84 92.22 1.34 216.33
kseriesparallel2 20| 19 0.43 6.88 0.63 22.69 0.74 36.26
kseriesparallel3 62| 61 0.60 14.57 0.89 56.97 1.01 81.82
kseriesparallel4 47| 46 0.44 7.06 0.84 53.78 1.14 137.95
kseriesparalleLxoverl 30| 37 0.54 13.24 1.04| 104.22 1.34 226.46
kseriesparallelxover? 21| 24 0.74 36.26 0.84 54.77 1.04 105.66
kseriesparalleLxoverd 38 | 41 0.58 14.33 1.08| 107.88 1.47 248.51
kseriesparalleLxover4 27 | 30 0.58 12.11 0.92 51.14 1.38 213.53
sprandl 199 | 279 9.99 | 2705.56 11.96 | 4569.76 16.82| 13314.68
sprand2 498 | 698 25.9544702.27 32.83196347.07 34.63 [115773.52
sprand3 998 1452 52.67 - 71.03 - 82.24 -

119

m HMAOTS 2-core
B MAOTS 2-core
® HMAOTS 3-core
m MAOTS 3-core
® HMAOTS 4-core
B MAOTS 4-core

28esn Alowan 28esn Alowa 23esn Alowa

Figure 4.8. Memory Usage of Heuristic Approach (HMAOTS) ateimory-Aware Optimal
120

Task Scheduling (MAOTS) on 2, 3, and 4 processor cores.

approach MAOTS is recommended to be used, which can obtaiogtimal solution with
the minimum memory usage. When the task graph becomes tdorige ILP model to
solve, the proposed heuristic approach is recommendedusdak which gives near-optimal

results with less time compared with the ILP-based optirakiton.

4.6 Summary

In this chapter, we have considered the task schedulindearobf removing intercore com-
munication overhead for streaming applications runninyl®soC architectures. We totally
removed intercore communication overhead by reschedtdsig with intra-period data de-
pendencies into inter-period data dependencies, suclththaxecution of computation and
that of intercore communication tasks can be overlappedamdrter period can be applied.
We performed analysis and presented an ILP model to obtaapamal schedule with the
minimum memory usage. We also proposed a heuristic algotithefficiently obtain a near
optimal solution. Experimental results show that the psggbapproach can significantly
reduce the schedule length and improve the memory usageatethwiith representative

techniques.

121

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Streaming applications are data intensive and highly [gdible; therefore, they are very
suitable to be executed on Multiprocessor System-on-QiMipEsSoCs). To fully utilize the

computation capacity of MPSoCs, various techniques haee b&plored to increase par-
allelism of streaming applications. However, this may eaadarge amount of intercore
communications with considerable energy overhead antcmte communication overhead.
In this thesis, we investigated overhead-aware task stihgaichemes for streaming appli-
cations on MPSoC architectures, which can provide commsahe solutions and generate
optimal task schedules for resource-constrained MPSd@tactures. Specifically, we pro-
posed three scheduling schemes to optimize energy congumfpitne performance, and

memory usage of streaming applications on MPSoCs.

e For the first scheme, we proposed a two-phase approach te swvenergy opti-
mization problem for streaming applications on MPSoCs ictamsg various energy
overheads. In the first phase, we proposed a coarse-grasietetel software pipelin-
ing algorithm RDAG to transform a set of periodic dependasks into a set of pe-
riodic independent tasks based on the retiming technignehd second phase, we
proposed a genetic algorithm GeneS for energy optimizabmsidering various over-
heads. We conducted experiments on a set of benchmarksrifepéal results show
that through the combination of software pipelining with ®&nd DPM considering

several energy overheads, our approach can fully expleipttiential of MPSoC ar-

122

chitectures and the periodic characteristic of streampplieations to reduce energy

consumption.

For the second scheme, we studied the problem of minimiziteyrgore commu-

nication overhead for streaming applications running onS@@ architectures. We
jointly optimized computation task schedule and interam@&munication task sched-
ule such that intercore communication overheads can bé/tamoved and the sched-
ule length can be minimized. We first performed schedulgb@nalysis and theo-
retically obtained the upper bound on the prologue lengtthefcomputation task
schedule. Then we presented an ILP formulation to generat@ptimal objective

task schedule. Experimental results show that our teclkrign significantly reduce

schedule length and energy consumption compared withseptative techniques.

For the third scheme, we considered the task schedulindggimotf removing intercore
communication overhead for streaming applications rumoim MPSoC architectures
to minimize the extra memory usage caused by retiming. Védlyoemoved intercore
communication overhead by rescheduling tasks with inénaepd data dependencies
into inter-period data dependencies, such that the exacaticomputation and that of
intercore communication tasks can be overlapped and aestp@tiod can be applied.
We performed analysis and presented an ILP model to obtaptamal schedule with
the minimum memory usage. We also proposed a heuristicitiigoto efficiently
obtain a near optimal solution. Experimental results shiwat the proposed approach
can significantly reduce schedule length and improve memsage compared with

representative techniques.

The proposed schemes are integrated into the overhea@-tagrscheduling frame-

work, which can be a good supplement to the previous work odetiray for MPSoC archi-

tectures, communication protocols and standards, as svalittve research on communication-

centric design and exploration for MPSoC architectures.e €kploration of our design

methodology can create a comprehensive study that imprp@sthe state-of-the-art. Re-

123

sults of applying our schemes on several benchmarks for @deloesystems have shown the

effectiveness of the proposed schemes for resource-aearesirMPSoC designs.

5.2 Future Work

The work presented in this thesis can be extended in diffelieections in the future.

e First, task splitting and task migration are not allowedhis twork. How to combine
our approach with task splitting and task migration can betaré direction for us to

explore.

e Second, our approach is based on the shared bus architett@eavill extend our
approach to other intercore communication infrastrust{gach as crossbar and mesh)

and propose a general model that can be applied to diffeystera architectures.

e Third, for the minimization of the intercore communicatioverhead, task mapping
of computation tasks is predefined. It is an interesting lerolio exploit the trade-off

between intercore communication overhead and energy ogotsen of the tasks.

e Finally, a possible research direction is to integrate eaghhique into a compiler or

real-time operating systems to leverage system-wide groengsumption.

124

[1]

REFERENCES

Subrata Acharya and Rabi Mahapatra. A dynamic slack gemant technique
for real-time distributed embedded system$EEE Transactions on Computers

57(2):215-230, 2008.

[2] Andrea Acquaviva, Andrea Alimonda, Salvatore Cartal Btichele Pittau. Assessing

[3]

task migration impact on embedded soft real-time streammuliimedia applications.

EURASIP Journal on Embedded Systep@8:1-15, 2008.

Enrigue Alba and José M. Troya. A survey of parallel dizited genetic algorithms.

Complexity 4(4):31-52, 1999.

[4] Tarek A. AIEnawy and Hakan Aydin. Energy-aware taskeditoon for rate monotonic

scheduling. IrProceedings of the 11th IEEE Real Time on Embedded Technaiay
Applications Symposium (RTAS '0pages 213-223, 2005.

[5] Alan Allan, Don Edenfeld, William H. Joyner, Jr., AndreB: Kahng, Mike Rodgers,

and Yervant Zorian. 2001 technology roadmap for semicotwisic Computey

35:42-53, January 2002.

[6] Altera Corporation. Altera Avalon Interface Specificas.

http://www.altera.com/literature/manual/mavalonspec.pdf2010.

[7] AMD. Mobile AMD Athlon 4 processor model 6 CPGA data she&tlvanced Micro

Devices, Techical Report 24319ovember 2001.

[8] ARM. ARM AMBA specification and multilayer AHB specificetn (rev 2.0).

http://www.arm.com/2001.

125

[9] ARM. ARM AMBA 3.0 AXI specification. http://www.arm.com/armtech/AX2011.

[10] ARM. ARM11 MPCore multicore processor microarchitaet
http://lwww.arm.com/products/processors/classic/atfaim11-mpcore.php June

2011.

[11] Hakan Aydin, Vinay Devadas, and Dakai Zhu. Systemilemergy management for
periodic real-time tasks. IRroceedings of the 27th IEEE International Real-Time

Systems Symposium (RTSS, @dges 313-322, 2006.

[12] Hakan Aydin, Rami Melhem, Daniel Mossé, and Pedroisléjlvarez. Determining
optimal processor speeds for periodic real-time tasksafterent power characteris-
tics. InProceedings of the 13th Euromicro Conference on Real-Tyate8is (ECRTS
'01), pages 225-232, 2001.

[13] Hakan Aydin and Qi Yang. Energy-aware partitioning foultiprocessor real-time
systems. IrProceedings of the 17th International Symposium on Pdrate Dis-

tributed Processing (IPDPS '03pages 113-121, 2003.

[14] Neal K. Bambha and Shuvra S. Bhattacharyya. A joint p@pegformance optimiza-
tion algorithm for multiprocessor systems using a peri@pgrconstruct. l#roceed-
ings of the 13th international symposium on System systi&s$S '0Q)pages 91-97,
2000.

[15] Sanjoy K. Baruah, Louis E. Rosier, and R. R. Howell. Aitfums and complexity
concerning the preemptive scheduling of periodic, reakttasks on one processor.

Real-Time System2(4):301-324, 1990.

[16] Enrico Bini, Giorgio Buttazzo, and Giuseppe Lipari. €80 modulation in energy-
aware real-time systems. Rroceedings of the 17th Euromicro Conference on Real-

Time Systems (ECRTS '0Bhages 3—10, 2005.

126

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Thomas David Burd. Energy-Efficient processor system desighhD thesis, De-
partment of Electrical Engineering and Computer Sciendes;ersity of California,

Berkeley, 2001.

Lukai Cai and Daniel Gajski. Transaction level modgliran overview. InPro-
ceedings of the 1st IEEE/ACM/IFIP international conferermn Hardware/software

codesign and system synthesis (CODES+ISSS pagjes 19-24, 2003.

M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pierglisnd C. Turchetti.
Transaction-level models for AMBA bus architecture usingt®mC 2.0. InPro-
ceedings of the conference on Design, Automation and Tdstinope (DATE '03)
pages 26-31, 2003.

Liang-Fang Chao and Andrea LaPaugh. Rotation schegtusi loop pipelining algo-
rithm. In Proceedings of the 30th international Design Automationi€ence (DAC

'93), pages 566-572, 1993.

Liang-Fang Chao and Edwin Hsing-Mean Sha. Static salivegl of uniform nested
loops. InProceedings of 7th International Parallel Processing Sgsipm (IPPS '93)

pages 254258, 1993.

Jian-Jia Chen and Tei-Wei Kuo. Energy-efficient schieduof periodic real-time
tasks over homogeneous multiprocessors.Piloceedings of the 2nd International

Workshop on Power-Aware Real-Time Computing (PARC0&ges 30-35, 2005.

Jian-Jia Chen, Tei-Wei Kuo, and Chi-Sheng Shih. & approximation clock rate
assignment for periodic real-time tasks on a voltage#sgarocessor. IRProceedings
of the 5th ACM international conference on Embedded so&EMSOFT '05)pages
247-250, 2005.

Ya-Shu Chen, Chi-Sheng Shih, and Tei-Wei Kuo. Dynaragktscheduling and pro-
cessing element allocation for multi-function SoCsPhoceedings of the 13th IEEE
Real Time and Embedded Technology and Applications Syomp¢RITAS '07)pages
81-90, 2007.

127

[25] Young-Sin Cho, Eun-Ju Choi, and Kyoung-Rok Cho. Madgland analysis of the
system bus latency on the SoC platform. Rroceedings of the 2006 international

workshop on System-level interconnect prediction (SL&), Pages 6774, 2006.

[26] Chen-Ling Chou and Radu Marculescu. User-aware dyoaask allocation in
networks-on-chip. IrProceedings of the conference on Design, automation and tes

in Europe (DATE '08)pages 1232-1237, 2008.

[27] Seo DaeHo and Mithuna Thottethodi. Disjoint-path nogt Efficient communication
for streaming applications. Froceedings of the 2009 IEEE International Symposium

on Parallel&Distributed Processing (IPDPS '09Qages 1-12, 2009.

[28] Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFFsktgraphs for free.
In Proceedings of the Sixth International Workshop on Harat@oftware Codesign

(CODES '98) pages 97-101, 1998.

[29] Emiliano Dolif, Michele Lombardi, Martino Ruggiero, ighela Milano, and Luca
Benini. Communication-aware stochastic allocation arttedaling framework for
conditional task graphs in multi-processor systems-dp-dh Proceedings of the 7th
ACM & IEEE international conference on Embedded softwald$OFT '07) pages
47-56, 2007.

[30] Hesham El-Rewini, Hesham H. Ali, and Ted Lewis. Taskeshiling in multiprocess-
ing systemsComputey 28(12):27-37, 1995.

[31] Mohammad H. Foroozannejad, Matin Hashemi, Trevor Ld¢tes, and Soheil Ghiasi.
Look into details: the benefits of fine-grain streaming hudfiealysis. InProceedings
of the ACM SIGPLAN/SIGBED 2010 conference on Languagesitas) and tools
for embedded systems (LCTES ’‘Jfgges 27-36, 2010.

[32] Free Software Foundation, Inc. lgwlve 5.5. http://Ipsolve.sourceforge.net/5,5/
2010.

128

[33] Freescale Semiconductor, Inc. i.MX35 Multimedia Aipptions Processors.
http://www.freescale.com/webapp/sps/site/taxonepiygode=IMX35FFAMILY,
2010.

[34] Guy Gogniat, Michel Auguin, Luc Bianco, and Alain Pegaiet. Communication
synthesis and HW/SW integration for embedded system debidtroceedings of the
6th international workshop on Hardware/software codesiG®DES/CASHE '98)
pages 49-53, 1998.

[35] Sathish Gopalakrishnan, Lui Sha, and Marco Caccamad Hzal-time communica-
tion in bus-based networks. Proceedings of the 25th IEEE International Real-Time

Systems Symposium (RTSS, @éges 405-414, 2004.

[36] Flavius Gruian and Krzysztof Kuchcinski. LEneS: taskaduling for low-energy
systems using variable supply voltage processorsPrateedings of the 2001 Asia
and South Pacific Design Automation Conference (ASP-DA(; jtdges 449-455,
2001.

[37] Zonghua Gu, Xiugiang He, and Mingxuan Yuan. Optimiaatof static task and
bus access schedules for time-triggered distributed eddskdystems with model-
checking. InProceedings of the 44th annual Design Automation ConferédDAC

'07), pages 294-299, 2007.

[38] Pi-Cheng Hsiu, Der-Nien Lee, and Tei-Wei Kuo. Multisg bus optimization for
real-time task scheduling with chain-based precedencsti@onts. InProceedings of

the 30th IEEE Real-Time Systems Symposium (RTSS$&ags 479-488, 20009.

[39] Jingcao Hu and Radu Marculescu. Energy-aware comratiaitand task scheduling
for network-on-chip architectures under real-time caaists. InProceedings of the
conference on Design, automation and test in Europe (DAH, fages 234-239,
2004.

129

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Shaoxiong Hua and Gang Qu. V\oltage setup problem foregltd systems with
multiple voltages. IEEE Transactions on Very Large Scale Integration Systems

13(7):869-872, 2005,

Chia-Mei Hung, Jian-Jia Chen, and Tei-Wei Kuo. Eneedfieient real-time task
scheduling for a DVS system with a non-DVS processing elénarProceedings of
the 27th IEEE International Real-Time Systems Symposidr8 $R06) pages 303—
312, 2006.

IBM. IBM CoreConnect bus architecture https://www-01.ibm.com/chips/ tech-

lib/techlib.nsf/products/CoreConneBus Architecture 2011.

llya Issenin and Nikil Dutt. Data reuse driven energyage MPSoC co-synthesis
of memory and communication architecture for streamindiegions. InProceed-
ings of the 4th international conference on Hardware/safewcodesign and system

synthesis (CODES+ISSS 'O@ages 294—299, 2006.

Ravindra Jejurikar and Rajesh Gupta. Dynamic voltagisg for systemwide en-
ergy minimization in real-time embedded systems.Pmceedings of the 2004 in-
ternational symposium on Low power electronics and desi§hRED '04) pages

78-81, 2004.

Niraj K. Jha. Low power system scheduling and synthesis Proceedings of the
2001 IEEE/ACM international conference on Computer-aidedign (ICCAD '01)
pages 259-263, 2001.

David S. JohnsonNear-optimal bin packing algorithmaviassachusetts Institute of

Technology Press, Cambridge, MA, USA, 1973.

Praveen Kalla, X. Sharon Hu, and Jorg Henkel. A flexifobanework for commu-
nication evaluation in SoC desigrinternational Journal of Parallel Programming

36:457-477, October 2008.

130

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Vida Kianzad, Shuvra S. Bhattacharyya, and Gang Qu. RE¥S An integrated
energy-driven approach for task graph scheduling on diged embedded systems.
In Proceedings of the 2005 IEEE International Conference oplidation-Specific
Systems, Architecture Processors (ASAP,'@apes 191-197, 2005.

Minyoung Kim, Sudarshan Banerjee, Nikil Dutt, and MalVenkatasubramanian.
Design space exploration of real-time multi-media MPSoGth imeterogeneous
scheduling policies. IProceedings of the 4th international conference on Hard-

ware/software codesign and system synthesis (CODES+08%$ages 16-21, 2006.

Nam Sung Kim, Taeho Kgil, K. Bowman, V. De, and T. Mudgetal power-optimal
pipelining and parallel processing under process vanatio nanometer technology.
In Proceedings of the 2005 IEEE/ACM International conferemcéComputer-aided
design (ICCAD '05)pages 535-540, 2005.

Namyun Kim, Minsoo Ryu, Seongsoo Hong, M. Saksena, @Hda Choi, and Heon-
shik Shin. Visual assessment of a real-time system desigasa study on a CNC
controller. InProceedings of the 17th IEEE International Real-Time Sgyst8ympo-

sium (RTSS '96pages 300-310, 1996.

Sungchan Kim, Chaeseok Im, and Soonhoi Ha. Schedudeeaperformance esti-
mation of communication architecture for efficient desigace exploration. IfPro-
ceedings of the 1st IEEE/ACM/IFIP international confererman Hardware/software

codesign and system synthesis (CODES+ISSS pagjes 195-200, 2003.

Sungchan Kim, Chaeseok Im, and Soonhoi Ha. Schedudeeaperformance esti-
mation of communication architecture for efficient desigace exploration.|EEE

Transactions on Very Large Scale Integration Systeif@539-552, May 2005.

Young-Taek Kim, Taehun Kim, Youngduk Kim, Chulho ShiBui-Young Chung,
Kyu-Myung Choi, Jeong-Taek Kong, and Soo-Kwan Eo. Fast acdrate transac-

tion level modeling of an extended AMBA 2.0 bus architectureProceedings of the

131

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

conference on Design, Automation and Test in Europe (DABE; fiages 138-139,
2005.

Peter Woigt Knudsen and Jan Madsen. Communicatiormeson for hard-
ware/software codesign. Proceedings of the 6th international workshop on Hard-

ware/software codesign (CODES/CASHE '9Q&ges 55-59, 1998.

Peter Voigt Knudsen and Jan Madsen. Integrating comeation protocol selection
with partitioning in hardware/software codesign.Rroceedings of the 11th interna-

tional symposium on System synthesis (ISSS p2jes 111-116, 1998.

Kanishka Lahiri, Sujit Dey, and Anand Raghunathan. féterance analysis of sys-
tems with multi-channel communication architectures. Phoceedings of the 13th

International Conference on VLSI Design (VLSID '0pages 530-537, 2000.

Kanishka Lahiri, Anand Raghunathan, and Sujit Dey. t8yslevel performance
analysis for designing on-chip communication architeesulEEE Transactions on

Computer-Aided Design of Integrated Circuits and Syst@d5):768—783, 2001.

David Landskov, Scott Davidson, Bruce Shriver, andiBlatW. Mallett. Local mi-
crocode compaction techniqueACM Computing Surveyd2(3):261-294, Septem-
ber 1980.

John P. Lehoczky and Lui Sha. Performance of real-time $cheduling algo-
rithms. InProceedings of the 1986 ACM SIGMETRICS joint internati@oaiference
on Computer performance modelling, measurement and evatuéSIGMETRICS

'86/PERFORMANCE '86)pages 44-53, 1986.

Charles E. Leiserson and James B. Saxe. Retiming synohs circuitry. Algorith-

mica, 6:5-35, 1991.

Jian Li and José F. Martinez. Power-performance iclemations of parallel comput-
ing on chip multiprocessordACM Transactions on Architecture and Code Optimiza-

tion, 2(4):397-422, 2005.

132

[63] Yu-Hsien Lin, Chiaheng Tu, Chi-Sheng Shih, and Shiteang. Zero-buffer inter-
core process communication protocol for heterogeneous-purk platforms. Iril5th
IEEE International Conference on Embedded and Real-Tinmpliing Systems and

Applications (RTCSA '09pages 69-78, 2009.

[64] Cong Liu and James H. Anderson. Scheduling suspendaipkeined tasks with non-
preemptive sections in soft real-time multiprocessorayst InProceedings of the
16th IEEE Real Time and Embedded Technology and ApplicaBgmposium (RTAS
'10), pages 23-32, 2010.

[65] Hui Liu, Zili Shao, Meng Wang, and Ping Chen. Overheague system-level joint
energy and performance optimization for streaming apgtina on multiprocessor
systems-on-chip. IfProceedings of the 2008 Euromicro Conference on Real-Time

Systems (ECRTS '08)ages 92-101, 2008.

[66] Hui Liu, Zili Shao, Meng Wang, Junzhao Du, Chun Jason amnel Zhiping Jia. Com-
bining coarse-grained software pipelining with DVS foredhling real-time periodic
dependent tasks on multi-core embedded systdosnal of Signal Processing Sys-

tems 57(2):249-262, 2009.

[67] Mirko Loghi, Federico Angiolini, Davide Bertozzi, Lac Benini, and Roberto
Zafalon. Analyzing on-chip communication in a MPSoC emmir@nt. InProceed-
ings of the conference on Design, automation and test in iI(DATE '04) pages

752-757, 2004.

[68] Alessio Guerri Luca Benini, Davide Bertozzi and MichdWilano. Allocation,
scheduling and voltage scaling on energy aware MPSoCkedture Notes in Com-
puter Science, Integration of Al and OR Techniques in CairgtiProgramming for

Combinatorial Optimization Problempages 44-58. Springer, 2006.

[69] Jiong Luo and Niraj K. Jha. Power-conscious joint sahied) of periodic task graphs

and aperiodic tasks in distributed real-time embeddedryst InProceedings of the

133

[70]

[71]

[72]

[73]

[74]

[75]

[76]

2000 IEEE/ACM international conference on Computer-aidedign (ICCAD '00)
pages 357-364, 2000.

Jiong Luo and Niraj K. Jha. Power-efficient schedulinglieterogeneous distributed
real-time embedded system&EE Transactions on Computer-Aided Design of Inte-

grated Circuits and System®6(6):1161-1170, June 2007.

A. Mahalanobis, B. V. K. Vijaya Kumar, and S. R. F. Simsistance-classifier cor-
relation filters for multiclass target recognition. Applied Opticsvolume 35, pages

3127-3133, 1996.

Steven M. Martin, Krisztian Flautner, Trevor MudgedaDavid Blaauw. Combined
dynamic voltage scaling and adaptive body biasing for lguaaver microprocessors
under dynamic workloads. IRroceedings of the 2002 IEEE/ACM international con-

ference on Computer-aided design (ICCAD 'O@ages 721-725, 2002.

Samy Meftali, Ferid Gharsalli, Frederic Rousseau, Ahdhed A. Jerraya. An op-
timal memory allocation for application-specific multipessor system-on-chip. In
Proceedings of the 14th international symposium on Syssgmihesis (ISSS '01)
pages 19-24, 2001.

Pedro Mejia-Alvarez, Eugene Levner, and Daniel Mogs#aptive scheduling server
for power-aware real-time tasksACM Transactions in Embedded Computing Sys-

tems 3(2):284-306, 2004.

Melanie Mitchell. An introduction to genetic algorithmdhe MIT Press, Cambridge,

MA, USA, 1996.

Bren Mochocki, Xiaobo Sharon Hu, and Gang Quan. A uniéipdroach to variable
voltage scheduling for nonideal DVS processoiiSEE Transactions on Computer-

Aided Design of Integrated Circuits and Syste@8(9):1370-1377, 2004.

134

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Linwei Niu and Gang Quan. System-wide dynamic power ag@ament for portable
multimedia devices. IProceedings of the Eighth IEEE International Symposium on

Multimedia (ISM '06) pages 97-104, 2006.

Osamu Ogawa, Sylvain Bayon de Noyer, Pascal Chauvésua Shinohara, Yoshi-
haru Watanabe, Hiroshi Niizuma, Takayuki Sasaki, and Yakal. A practical ap-
proach for bus architecture optimization at transactimelle In Proceedings of the
conference on Design, Automation and Test in Europe (DABE;, fiages 176-181,
2003.

OpenCores. WISHBONE System-on-Chip (SoC) IntercahnArchitecture.
http://cdn.opencores.org/downloads/wbsjdcpdf 2010.

O. Ozturk, M. Kandemir, S. W. Son, and M. Karakoy. Sdiexitode/data migra-
tion for reducing communication energy in embedded MPSaGitactures. IrPro-
ceedings of the 16th ACM Great Lakes symposium on VLSI (GRISUB), pages
386-391, 2006.

Vivek Pandey, Weihang Jiang, Yuanyuan Zhou, and Rz&idnchini. DMA-aware
memory energy management. Pnoceedings of the twelfth international symposium

on High-Performance Computer Architecture (HPCA 'Oédges 133-144, 2006.

Sudeep Pasricha and Nikil DutOn-Chip Communication Architectures: System on

chip interconnectMorgan Kaufmann Publishers, Burlington, MA, USA, 2008.

Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-RomdhaBetending the trans-
action level modeling approach for fast communication gecture exploration. In
Proceedings of the 41st annual Design Automation ConferéDA&C '04) pages 113—
118, 2004.

Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdharnéast exploration
of bus-based on-chip communication architectures. Ptaceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/sudre codesign and sys-

tem synthesis (CODES+ISSS 'pdges 242—247, 2004.

135

[85] Nelson Luiz Passos and Edwin Hsing-Mean Sha. Achietitigparallelism using
multidimensional retimingIEEE Transactions on Parallel and Distributed Systems

7(11):1150-1163, 1996.

[86] D.-T. Peng and K.G. Shin. Static allocation of periotisks with precedence con-
straints in distributed real-time systems.Rroceedings of the 9th International Con-

ference on Distributed Computing Systems (ICDCS,’g8yes 190 —198, 1989.

[87] Paul Pop, Petru Eles, Zebo Peng, and Traian Pop. Asadysl optimization of dis-
tributed real-time embedded systems.Pimceedings of the 41st annual conference

on Design automation (DAC 'O4pages 593-625, 2004.

[88] Traian Pop, Petru Eles, and Zebo Peng. Design optiroizaf mixed time/event-
triggered distributed embedded systems.Pinceedings of the 1st IEEE/ACM/IFIP
international conference on Hardware/software codesigmd asystem synthesis

(CODES+ISSS "03)pages 83-89, New York, NY, USA, 2003. ACM.

[89] Shiv Prakash and Alice C. Parker. Readings in hardwaf®yare co-design. chapter
SOS: synthesis of application-specific heterogeneousipnutessor systems, pages

324-337. Kluwer Academic Publishers, Norwell, MA, USA, 200

[90] Gang Quan and X. Sharon Hu. Minimum energy fixed-pryastheduling for variable
voltage processor. IRroceedings of the conference on Design, automation and tes

in Europe (DATE '02)pages 782—-787, 2002.

[91] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje lidikdDigital Integrated
Circuits, 2nd edition Prentice Hall, Englewood Cliffs, N.J, 2002.

[92] Frank-Michael Renner, Juergen Becker, and Manfredgi@de Communication per-
formance models for architecture-precise prototypingaf-time embedded systems.
In Proceedings of the 10th IEEE International Workshop on BR&yistem Prototyping
(RSP '99) pages 108-113, 1999.

136

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

Frank-Michael Renner, Juergen Becker, and Manfredi@&e Automated commu-
nication synthesis for architecture-precise rapid pyqiioig of real-time embedded
system. InProceedings of the 11th IEEE International Workshop on B&ystem
Prototyping (RSP 2000pages 154-159, 2000.

Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebg PBus access optimization
for predictable implementation of real-time applicati@msmultiprocessor systems-
on-chip. InProceedings of the 28th IEEE International Real-Time $gst&ympo-
sium (RTSS '07)pages 49-60, 2007.

Martino Ruggiero, Alessio Guerri, Davide BertozziaghRcesco Poletti, and Michela
Milano. Communication-aware allocation and schedulirgfework for stream-
oriented multi-processor systems-on-chip.Pimceedings of the conference on De-

sign, automation and test in Europe (DATE '0pages 3-8, 2006.

Saowanee Saewong and Ragunathan (Raj) Rajkumar. idataabltage-scaling for
fixed-priority RT-systems. IfProceedings of the The 9th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTASpaggs 106—-114, 2003.

Gunar Schirner and Rainer Domer. Quantitative anslystransaction level models
for the AMBA bus. InProceedings of the conference on Design, automation and tes

in Europe (DATE '06)pages 230-235, 2006.

Luc Séméria and Abhijit Ghosh. Methodology for haede/software co-verification
in C/C++. InProceedings of the 2000 Asia and South Pacific Design Automat
Conference (ASP-DAC '00pages 405-408, 2000.

Zili Shao, Meng Wang, Ying Chen, Chun Xue, Meikang Qingdd.aurence T. Yang.
Real-time dynamic voltage loop scheduling for multi-coneébedded system3sEEE

Transactions on Circuits and Systems Il (TCAS$SS8H(5):445-449, May 2007.

Dongkun Shin, Jihong Kim, and Seongsoo Lee. Low-gnengra-task voltage
scheduling using static timing analysis. Rmoceedings of the 38th annual Design

Automation Conference (DAC 'Olpages 438-443, 2001.

137

[101] Sonics Inc. SonicsSX SMART Interconnect solution.

http://www.sonicsinc.com/sonicsSX.hga10.

[102] STMicroelectronics. STBus Interconnehttp://www.st.com/stonline/products/ tech-

nologies11302010/soc/stbus.hi@010.

[103] Fei Sun, Srivaths Ravi, Anand Raghunathan, and NirajJKa. Synthesis of
application-specific heterogeneous multiprocessor sctires using extensible pro-
cessors. IfProceedings of the 18th International Conference on VLSli@re(VLSID
'05), pages 551-556, 2005.

[104] Keith S. Vallerio and Niraj K. Jha. Task graph extraotfor embedded system syn-
thesis. InProceedings of the 16th International Conference on VLSi@re(VLSID
'03), pages 480-486, 2003.

[105] Girish Varatkar and Radu Marculescu. Communicaawmare task scheduling and
voltage selection for total systems energy minimizatianPioceedings of the 2003
IEEE/ACM international conference on Computer-aided giegiICCAD '03) pages
510-517, 2003.

[106] Yi Wang, Duo Liu, Meng Wang, Zhiwei Qin, and Zili Shao.ptimal task schedul-
ing by removing inter-core communication overhead forastrang applications on
MPSoC. InProceedings of the 16th IEEE Real Time and Embedded Teahnalal
Applications Symposium (RTAS '1pages 195-204, 2010.

[107] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaand|, Ajay Luthra. Overview of
the H.264/AVC video coding standardEEE Transactions on Circuits and Systems
for Video Technologyl3(7):560-576, 2003.

[108] Maarten H. Wiggers, Marco J. G. Bekooij, and Gerard J.Svhit. Buffer capacity
computation for throughput constrained streaming apiina with data-dependent
inter-task communication. IRroceedings of the 14th IEEE Real Time and Embedded

Technology and Applications Symposium (RTAS, 'p&yes 183—-194, 2008.

138

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Wayne Wolf, A.A. Jerraya, and Grant Martin. Multipessor System-on-Chip (MP-
SoC) TechnologylEEE Transactions on Computer-Aided Design of Integrataed C
cuits and System27(10):1701 —-1713, oct. 2008.

Cathy Qun Xu, Chun Jason Xue, Bessie C. Hu, and Edwin HSiM. Computation
and data transfer co-scheduling for interconnection busmazation. InProceedings
of the 2009 Asia and South Pacific Design Automation Conter¢ASP-DAC '09)
pages 311-316, 2009.

Ruibin Xu, Rami Melhem, and Daniel Mosse. Energy-asaheduling for streaming
applications on chip multiprocessors. Pnoceedings of the 28th IEEE International

Real-Time Systems Symposium (RTSS fiades 25-38, 2007.

Chengmo Yang and Alex Orailoglu. Towards no-cost éislegMPSoC static sched-
ules through exploitation of logical-to-physical core maqy latitude. InProceedings
of the conference on Design, automation and test in Europd @B309), pages 63—69,

2009.

Ti-Yen Yen and Wayne Wolf. Communication synthesisfistributed embedded sys-
tems. InProceedings of the 1995 IEEE/ACM international conferemcé&omputer-

aided design (ICCAD '95)pages 288-294, 1995.

Yang Yu and Viktor K. Prasanna. Power-aware resoulioeation for independent
tasks in heterogeneous real-time systems.Pioceedings of the 9th International

Conference on Parallel and Distributed Systems (ICPAD$, 02ges 341-348, 2002.

Yumin Zhang, Xiaobo Sharon Hu, and Danny Z. Chen. Taleduling and volt-
age selection for energy minimization. Rroceedings of the 39th annual Design

Automation Conference (DAC '03)ages 183-188, 2002.

Xiliang Zhong and Cheng-Zhong Xu. Frequency-awarergy optimization for
real-time periodic and aperiodic tasks. HRroceedings of the 2007 ACM SIG-
PLAN/SIGBED conference on Languages, compilers, and tooésnbedded systems
(LCTES '07) pages 21-30, 2007.

139

[117] Dakai Zhu, Rami Melhem, and Bruce R. Childers. Schieduwith dynamic volt-
age/speed adjustment using slack reclamation in multgzsar real-time systems.

IEEE Transactions on Parallel and Distributed Systet7):686—700, 2003.

[118] Jun Zhu, Ingo Sander, and Axel Jantsch. Energy eftici#aaming applications with
guaranteed throughput on MPSoCs. Rroceedings of the 8th ACM international
conference on Embedded software (EMSOFT,'p8yes 119-128, 2008.

[119] Jun Zhu, Ingo Sander, and Axel Jantsch. Buffer minatian of real-time streaming
applications scheduling on hybrid CPU/FPGA architecturesProceedings of the
conference on Design, automation and test in Europe (DA®BE; {fages 1506 — 1511,
20009.

[120] Qian Zhu and Gagan Agrawal. Resource allocation fsirithuted streaming applica-
tions. InProceedings of the 2008 37th International Conference aalkd Process-

ing (ICPP ’08), pages 414-421, 2008.

140

	927_001
	927_002
	927_003
	927_004
	927_005
	927_006
	927_007
	927_008
	927_009
	927_010
	927_011
	927_012
	927_013
	927_014
	927_015
	927_016
	927_017
	927_018
	927_019
	927_020
	927_021
	927_022
	927_023
	927_024
	927_025
	927_026
	927_027
	927_028
	927_029
	927_030
	927_031
	927_032
	927_033
	927_034
	927_035
	927_036
	927_037
	927_038
	927_039
	927_040
	927_041
	927_042
	927_043
	927_044
	927_045
	927_046
	927_047
	927_048
	927_049
	927_050
	927_051
	927_052
	927_053
	927_054
	927_055
	927_056
	927_057
	927_058
	927_059
	927_060
	927_061
	927_062
	927_063
	927_064
	927_065
	927_066
	927_067
	927_068
	927_069
	927_070
	927_071
	927_072
	927_073
	927_074
	927_075
	927_076
	927_077
	927_078
	927_079
	927_080
	927_081
	927_082
	927_083
	927_084
	927_085
	927_086
	927_087
	927_088
	927_089
	927_090
	927_091
	927_092
	927_093
	927_094
	927_095
	927_096
	927_097
	927_098
	927_099
	927_100
	927_101
	927_102
	927_103
	927_104
	927_105
	927_106
	927_107
	927_108
	927_109
	927_110
	927_111
	927_112
	927_113
	927_114
	927_115
	927_116
	927_117
	927_118
	927_119
	927_120
	927_121
	927_122
	927_123
	927_124
	927_125
	927_126
	927_127
	927_128
	927_129
	927_130
	927_131
	927_132
	927_133
	927_134
	927_135
	927_136
	927_137
	927_138
	927_139
	927_140
	927_141
	927_142
	927_143
	927_144
	927_145
	927_146
	927_147
	927_148
	927_149
	927_150
	927_151
	927_152
	927_153
	927_154
	927_155
	927_156

