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Abstract

Motivated by Ling’s (2007) DAR ) model, in this thesis, we study new classes of
GARCH and GARCH-in-mean models which have applicationsrtarfcial data such
as treasury bill rate and stock indices. Unlike the previmosiels in the literature, the
conditional variances in our considered models are spddaefunctions of the time-
lagged observable returns instead of the usual unobsereaturs. Such a setting for
the conditional variance enables us to give some new irsighhe analysis of financial
time series.

Under the framework of an alternative specification in thaditonal variance,
this study considers the following aspects. First, we gaimr Ling’s (2007) DAR
(p) model by considering a piecewise linear conditional meateiad of the single lin-
ear conditional mean in the existing models. Issues abaatnpeter estimation and
threshold test are discussed. Secondly, for a specific rancARCH-M model, we
study its ergodicity conditions. Under some regularityuasgtions, it can be shown
that the quasi maximum likelihood estimator for the modedsgmptotically normal.
We then attempt to investigate the relationship betwedn(cisnditional variance) and
return (conditional mean) based on a class of semiparam@&RCH-M models, in
which the conditional mean is specified as an unknown smawtttion and the condi-
tional variance is set as a known parametric function ofdalggturns. Approaches are
given to estimate the unknown function and parameters. dere motivated by the
time varying property of the risk aversion and the functicwefficient autoregressive
model, we propose a functional deient autoregressive GARCH-M model to capture
the variation of the risk aversion. By treating the risk @@n as a function of one

day lagged return, we are able to study how yesterday’'sirettects today’s risk mag-



nitude. Estimates for the unknown function and parametersliscussed. Finally, we
generalize the proposed functional ffa@ent autoregressive GARCH-M model to func-
tional codticient GARCH-M model, from which, we can describe tlieet of common
factors to risk aversion. Improved estimators for the patans are given and, under
some regularity conditions, we can prove that the paramestimators are consistent.
For all the proposed models, simulations are conductedstesashe performance
of the related approaches. Applications to real data aceassidered. It is demon-
strated that our studied models can have comparable or htitey performance as

compared to other well known models.



Acknowledgements

| wish to express my most sincere gratitude to my chief superyDr. Heung
Wong, for his guidance, encouragement and understandieigtiog years. | benefited
from numerous discussions with him on the ideas and resudtepted in this thesis.

| am greatly indebted to my co-supervisors, Dr. Wai-Cheyngnd Prof. Yuan
Li, for their enthusiastic guidance and support. Prof. Yuastimulated my interest in
Non(Semi)-parametric time series analysis while he wassiging my Master thesis
at Guangzhou University and provided many valuable advices

| am grateful to my senior fellow apprentice Fan Zhang forkirgl help in both
study and life. | also would like to thank my friends, Yan Lgarzhangyou Chen and
Lin Shu, for their help in the past years.

| shall express my sincere thanks to all theffsta the Department of Applied
Mathematics at the Hong Kong Polytechnic University forithénd assistance, and |
greatly appreciate the financial support from The Hong Koalytechnic University,
whose research studentship supported me in the past thaese ye

Finally and most of all, | would like to thank my parents and wije, the ones
love me and | love. Their care, encouragement and understardabled me to finish

my study.



Contents

CERTIFICATION OF ORIGINALITY . . . . . . . o o o e i
Abstract . . . . . . il
Acknowledgements . . . . . . ... e v
Listof Figures . . . . . . . . . . . e e ivi
Listof Tables . . . . . . . . . . . . . . IX
Chapter 1  Introduction . . . . . . . . . .. . . .. .. 1

Chapter 2 A Class of Threshold Autoregressive Conditional Ht-

eroscedasticModels. . . . . ... ... oo 7
2.1 Background . . . .. ... 7
2.2 Estimation and ThresholdfiéctTest . . . . . .. ... ... ...... 10
2.2.1 Parametricestimation . . . . . .. .. ... ... 0oL 10
2.2.2 Thresholdfecttest . .. ... ... ... .. ... ...... 12

2.3 Simulations and Empirical Studies . . . . .. ... ... ... ... 15
2.3.1 Simulations . . . . . ... 15
2.3.2 Empiricalstudies . . . ... ... ... 16
2.4 Proofs . . . . .. 21
2.5 SUMMANY . . . . e e e e 31

Chapter 3  An Alternative GARCH-M Model: Structure and Estim ation . 32

3.1 Background . . . .. ... 32

3.2 Ergodicity and Estimation. . . . . . .. ... ... .. L. 34
3.2.1 Geometricergodicity . . . . .. ... ... .. 34
3.2.2 Quasi maximum likelihood estimation . . . . . ... .. ... 38

\



3.3 Simulations and Empirical Studies . . . . .. ... ... ... 39

3.3.1 Simulations . . . ... ... 39
3.3.2 Empiricalstudies . ... ... ... ... .. .. .. ... ... 40
3.4 Proofs . . . . . .. 45
3.5 Summary . ... 55
Chapter 4  Semiparametric (G)ARCH-M Models . . . . .. .. ... ... 57
4.1 Background . . . . . ... e 57
4.2 A Semiparametric ARCH-M Model . ... ............... 59
4.2.1 Modelandestimation . . . . . ... ... ... ... .. ..., 59
422 Someadjustments. . . . ... .. ... . e 62
423 Simulations . . . . ... 63
4.3 A Semiparametric GARCH-M Model . . .. .. ... ... ...... 65
4.3.1 Modelandestimation . . . . .. ... ... ... ... ..... 65
4.3.2 Simulations . . . . ... L 69
433 Proofs . . . ... 71
4.4 Empirical Studies . . . . . ... 76
45 SumMmMary . . ... e e e e e 80

Chapter 5 A Functional Codfficient Autoregressive GARCH-M Model . . 81

5.1 Background . . . . . ... 81
5.2 Estimation and Goodnessof FitTest . . . . . ... ... .... .. 84
521 Estimation. . . .. .. ... ... ... 84
5.2.2 Goodnessoffittest . . . ... .. ... .. ... . L. 86
53 Simulations . . . . .. ... .. 88
5.4 Empirical Studies . . . . . ... L 92
5.4.1 Analysis for monthly excessreturn . . ... ... ... ... 29

5.4.2 Rolling estimation for weekly excessreturn . . . . . .. ... 97

55 Summary . ... e 98
Chapter 6 A Functional Codficient GARCH-M Model . . . .. ... ... 99
6.1 Background . . . . . . . ... 99



6.2 Estimation . . . . . . . ... 100

6.2.1 Estimatingthe function . . . . .. .. ... ... .. ...... 100
6.2.2 Estimating the parameters . . . . . .. ... .. ... .. ... 102
6.3 Simulations and Empirical Studies . . . . .. ... ... ... ... 105
6.3.1 Simulations . . . . . ... 105
6.3.2 Empiricalstudies . . . . ... ... ... o 111
6.4 Proofs . . . .. .. ... 115
6.5 Summary . . ... e e 128
Chapter 7 Conclusions. . . . . . . . . . . . ... .. . . 129
AppendiX . . . . e e e e 131
References . . . . . . . . . e 136

Vil



List of Figures

3.1
3.2
3.3

4.1

5.1
5.2

5.3

5.4

6.1

6.2

Plots ofth{}2%% , (solid line) and(h?}?%%  (circle). . . . . .. ... ... 44
Plots off f"}2%,, (solid line) and{ f*}>%, (circle). . . . .. ... .... 44
Plots of(6!}1° (solid line) and{¢?}%? (dashed line). . . . .. ... ... 45

Plots of estimated(h;) for model (4.32) (solid line), (4.33) (dashed

liNe). . . . 79
Plots ofy; (the monthly excessreturn). . . . .. .. ... ... .... 92
Plots ofy!*, () and its corresponding in-sample forecasts from model
(5.8) (=), (B.9) +). . . v 94
Plots of estimated volatility cfiecient for model (5.8) (dotted line),

(5.9) (solid line) and (5.10) (dashedline). ... ... ........ 95
Plots of{6"}%> (solid line) and{s?}> (dashed line). . . . ... ... .. 97

Plots ofni(y;_;) from (6.16) (solid line) and the related confidence band

(dashedlines). . . .. . . . . . . ... 113
Plots of(6"}'%? (solid line) and{s?}!%’ (dashed line). . . . ... ... .. 115

viii



List of Tables

2.1 Results of the simulation experiments for assessingimgrical size

and power with and without intercept. . . . . . . .. ... ... .. .. 71
2.2 Percentiles of dlierence series between upper and lower bounds. . . . . 20
3.1 Medians and standard deviations of (Q)MLEs for mod&-@3) . . . . 41
3.2 Percentiles of dierences between error sequences. . . . ... ... .. 43

4.1 Medians and standard deviations of parameter estirfatés 4.3-4.4 . 70

4.2 In-sample and out-of-sample forecast performance. . . ... . .. 78
5.1 Results of the simulation experiments for parametemeson. . . . . . 91
5.2 In-sample and out-of-sample forecast performance. . . .. .. .. 93
5.3 Percentiles of errorsequences. . . . ... .. ... .. .. ..., 98
6.1 Results of the parameter estimation for Ex6.1-6.2.. ...... . .. .. 108
6.2 Results of the parameter estimation for Ex6.3-6.4.. ...... . . . . . 109
6.3 In-sample and out-of-sample forecast performance. . ... .. .. 112
6.4 Percentilesof errorsequences. . . . ... . ... ... ... ..., 114



Chapter 1

Introduction

The famous ARCH (autoregressive conditional heterostiejlasodel was proposed by
Engle (1982) and was then generalized to GARCH (generadm¢aregressive condi-
tional heteroscedastic) model by Bollerslev (1986). (G&Rmodels have been suc-
cessfully used to describe the clustering phenomenon dttek volatility and hence
they are widely applied in practice. Following the publioas of (G)ARCH models,
there have been numerous extensions which can be summiarteeximajor directions.
The first class of extensions focuses on the purely parasmatrdels such as Nelson'’s
(1991) EGARCH (exponential GARCH), the GJR model of Glosteal. (1993), the
TARCH (threshold ARCH) of Zakoian (1994) and the GARCH-M (B&H-in-mean)
model of Engle et al. (1987). More variants of the param&AdRCH specification can
be found in Degiannakis and Xekalaki (2004). Besides thelpparametric extensions,
with the rapid development in computing power, nonparaimatrd semiparametric sta-
tistical approaches are also widely adopted to study th@aR&H models. For example,

Engle and Goralez-Rivera (1991), Linton (1993), Drost and Klaassen (339Gdied



the GARCH type models by assuming the error density as sokreown function. Pa-
gan and Hong (1991), Engle and Ng (1993aréié and Tsybakov (1997), Yang (2006)
considered nonparametric and semiparametric forms of ategilty function. Linton
and Perron (2003), Christensen et al. (2008), Conrad andrivean{2008) investigated
the relationship between mean and variance based on semigtic and nonparamet-
ric methods. For a survey article, one can refer to Lintor9@0

There are three fundamental topics when we study the (G)ARGHels and they
are respectively estimation, testing, and stability cbods. Many theoretical results
have been obtained for the (G)ARCH models. Some of them afellas/s. Nelson
(1990), and Bougerol and Picard (1992) established camditior the stationarity and
ergodicity of the GARCH process. Lee and Hansen (1994), andddaine (1996)
proved the consistency and asymptotic normality of the iguasimum likelihood es-
timator (QMLE) for the GARCH (1, 1). Jensen and Rahbek (20@tained some
limiting results on QMLE of GARCH (1, 1) process for the natginary case and
Berkes et al. (2003) considered the structure and estimé&tiothe general GARCH
(p,g) process. Ling and McAleer (2002a, b) derived conditionstfe existence of
moments in the GARCHY, q) processes. The formulas for theoretical autocorrelation
function in the GARCH p, q) model were discussed by He and d®rirta (1999a, b)
and Karanasos (1999).

The GARCH-in-mean (GARCH-M) model proposed by Engle et H8(7) is also
a generalization from the original GARCH models. It is usefudescribe relations
between the first and second conditional moments of stoakre{French et al., 1987),

output growth (Caporale and McKiernan, 1996) and inflatiates (Grier and Perry,



2000) etc. Hong (1991) derived the autocorrelation stnector a GARCH-M process.
Motivated by Nelson (1990), Schepper and Goovaerts (19@@ljes] the probability
density of the variance and mean for GARCH-M models. As tordselts of QMLE
and stability conditions for GARCH-M model, to our knowlexjdew theoretical results
are available until the recent results of Meitz and Saikko{#908) and Christensen et
al. (2008). Meitz and Saikkonen (2008) gave a principletidgthe stability conditions
of GARCH-M model though the article itself mainly focused applications to the
GARCH model and ACD (autoregressive conditional duratimodel. Christensen et
al. (2008) provided the asymptotic theory of QMLE for a GARGHtype model,
where a diferent specification for the conditional variance was adbpie compared
to the traditional one. From a technical perspective, wesagnthat the diiculty for
handling the traditional GARCH-M models partly lies in thentplicated structure of
the score function or the derivatives of the quasi likelithdanction with respect to the
parameter vector. The fact stems from that the usual emor, &aye;, in the (G)ARCH
equation is unobservable, which causes the perplexinggiecuexpressions for the
related derivatives (Engle et al., 1987, Bera and Ra, 1995¢lated derivatives were
in simpler forms, then it would be slightly easier to studg BARCH-M-type models.
Ling (2007) proposed a DARp] (double autoregressive) model where the condi-
tional variance, sajx, was set aby = w + ary? , + -+ + aloytz_ID instead of the previous
h = w+aus? | +--- +apst ,. Here,{yis,s=1,---, p} are the observable time lagged
series andei_s, S = 1,---, p} are the usual unobservable error terms. In Ling (2007),
some novel theoretical results (Remark 3.2) were acquifedthe case op = 1, Ling

(2004) demonstrated that the DAR(1) model was superioréaigual ARCH models



for the considered data. Ling’s idea comes from Weiss (198®re the conditional
varianceh; can depend omys}{j), {ss}Eié and some other exogenous variables. In this
regard he has made it more attractive and insightful. Fousiual GARCH-M model, if
we also substitute the error tewnin the (G)ARCH equation by the observalylgthen

the derivatives of the quasi likelihood function with resp® the parameters would be
largely simplified. The reason is the observahleill not be treated as a function of the
unknown parameters. Such a property is very useful and idlesas to find an alterna-
tive way to study the (G)ARCH-in-mean model in both parametnd semiparametric
forms (Christensen et al., 2008).

By assuming the conditional varianbgis purely driven by the observablys}t%,

(p can bex), in this thesis, we study several extensions of the ARCH(@&)ARCH-M
models. Some results about estimation, testing, and gyatdnditions are obtained.
In addition, two research articles (Zhang et al., 2011a,dveheen written based on
Chapter 2 and Chapter 3 respectively.

Based on Ling’s (2007) DARY) model, in Chapter 2, we study a class of TARCH
(threshold autoregressive conditional heteroscedastidel by considering a piecewise
linear mean equation instead of a single linear mean equdimvided the threshold is
given, the asymptotic results for the QMLE of other unknowngmeters are acquired.
Based on the Lagrange Multiplier principle, a threshdi@& test is considered and
its asymptotic null distribution is shown to be a functioéla zero-mean Gaussian
process. Approximate methods are given to compute the ymreentage points and

simulation results show that they perform well. From the eiog studies, we know

that the original model can be improved when the threshfié&teis considered.



In Chapter 3, we study a special case of the GARCH-in-Meananpbposed
by Christensen et al. (2008). The conditions about geometgodicity are discussed
and under certain regularity assumptions, the asymptotimality of the QMLE for the
model is proved. Simulations demonstrate that the estimatiethod performs well and
the given empirical studies indicate the considered moagldomparable performance
in data modelling as compared to the standard one. The sesditate that the model
of Christensen et al. (2008) can be useful because it preddalternative way to study
the GARCH-in-Mean fect.

Aiming to find the relationship between the excess returmddmnal mean) and
risk (conditional variance), in Chapter 4, we consider aipanametric (G)ARCH-M
model. We firstly discuss a semiparametric ARCH-M model,cnthehaves like the
restricted single-index model. Following the method of Ared Tong (2006), we give
steps to estimate the model. We then discuss a semipara@aiRCH-M model which
generalizes the model in Christensen et al. (2008) by censigla more flexible form
of the conditional variance. An improved approach is giveegtimate the parameters
and some theoretical results are discussed. Through giongait is shown that the
estimation methods perform well. When applying the modelpractical data, they
witness nonlinear relationships between the excess rétomditional mean) and the
risk (conditional variance), and it seems that a higher dsks not necessarily guar-
antee a higher excess return. Such results imply that thelesiimear relationships or
some other commonly adopted monotonically increasingrpatiac relations could be
misspecified.

Chapter 5 proposes a class of functional fioent autoregressive GARCH-M



models to analyze some excess return series which area@dulased on the weighted
stock indices. Oterent from the time-varying parameter GARCH-M model of Chou
et al. (1992), we consider the volatility déeient as an unknown smooth function of
time-lagged returns instead of a random walk. Such a settiagles us to study the ef-
fect of the previous return to the present risk aversion. ggreach is given to estimate
the model and simulation results demonstrate that the ieafioce of our method is
satisfactory. Through the empirical studies, it is seehtti@proposed model can better
capture the variation of the excess return series as coahparthe purely parametric
models. Moreover, some reasonable results and interjoreta@bout risk aversion are
presented.

In Chapter 6, we generalize the functional ffiméent autoregressive GARCH-M
model in Chapter 5 to functional cfiient GARCH-M model, from which, we can
describe the féect of common factors to the risk aversion. For the genezdlinodel,
the estimation approach is improved. Under some regulaoigitions, we can show
that the parametric estimators are consistent. Simukstaod empirical studies are
conducted to show that our method is satisfactory and agigbc

Finally, brief conclusions and prospects for future resleare given in Chapter 7.

Some key Matlab codes are presented in the Appendix.



Chapter 2

A Class of Threshold Autoregressive

Conditional Heteroscedastic Models

2.1 Background

In a recent paper, Ling (2007) considers the double ARof DAR (p) model, which

has the form

Vi = 91Yt—1 + -+ eiyt_i + -+ prt—p + &, E = Q\/h_,

& ~1.i.d0,1).h =w+ay?, +---+ap (2.1)

wherew,a > 0,t € N = {-p,---,0,1,2,---}, ys IS independent ofe} fort > s.
Let 7 be theo-field generated bye,---,e;, Y0, --,Y-pl,t € N, then we have
vari|Fi1) = w + ay?, +--- + apys ,. As mentioned in the paper, model (2.1) is a
special case of the ARMA-ARCH models in Weiss (1986), buififieds from Engle’s
(1982) ARCH model if at least ortg # 0. The diference lies in the specifications of the

7



conditional variance: Engle’s (1982) conditional variang driven by the unobserved
errors while the conditional variance of model (2.1) deseod the past observations.
Such a specification of the conditional variance brings Imoielty and dificulty. The
novel result acquired by Ling (2007) is that the quasi maximiikelihood estimation
can be still consistent and asymptotically normal wig = oo, which usually does
not hold any more for the classical AR(model with i.i.d errors. Oficulty lies in find-
ing the conditions under which the series generated fronmtbéel is stationary and
geometrically ergodic. Though Ling (2007) has gottenfiiGgent and necessary condi-
tion about stationarity and ergodicity for model (2.1) wkeen i.i.d. N(O, 1), it is still

a difficult problem for the general case.

Whenp = 1, model (2.1) becomes the DAR(1) model whose theoreticalli®
and practical application have been well discussed by L2094), Ling and Li (2008)
for both stationary and nonstationary cases. When DAR(1dehwas applied to the
US 3-month treasure bill rate series in Ling (2004), it wasnid that the model was
superior to the usual AR(1) model, and seemed to be able ta getre reliable statis-
tical inference when compared to the usual AR(1)-GARCH}In&del. Nevertheless,
since financial data usually present some asymmefiecteor nonlinear relationship, it
is helpful to take these factors into account. A well-knowaltto deal with this is the
threshold autoregressive model because of its ability pouca some important charac-
teristics such as jumps and limit cycles (Tong and Lim, 198®yg, 1990, Li and Lam,
1995). Consequently, it is worthwhile to consider a gemegdl DAR(p) model, which
is piecewise linear in the mean function.

In this chapter we consider the following threshold autogegive conditional het-



eroscedastic (TARCH) model:

Yo =60+ X0, OYiei + 1(Yeea < 1)(Go + 224 diviei) + & & = @ Vh,

& ~iid(0 1) =w+a?, +- - +anym (2.2)

wherew,a > 0,te N ={-m,---,0,1,2,---}, ysis independent ofe,} fort > s, I(-) is
the indicator function and is the threshold parameter. For simplicity, the nonnegativ
integersp, d, m are assumed to be known and satisfixkOp < m1 < d < m. The
threshold parameteris assumed to have a known bounded numerical réygsually
a finite interval. Whemy = ¢g = ¢; = 0, p = m, model (2.2) is reduced to Ling’s (2007)
DAR(p) model. Ify.i(i = 1,---,m) in the conditional variance equation of (2.2) is
replaced bys,_; (i = 1,---,m), then the model would become Li and Lam’s (1995)
TARCH model. The dierence is that: the former belongs to Weiss’ ARCH-type model
while the latter is an Engle’s ARCH-type model. Moreover,kax the distribution of
the processge;} to the general case instead of the original normal distiobut

The chapter is arranged as follows. In Section 2.2, we dssitiesQMLE, threshold
effect test and some associated asymptotic properties. Siondand empirical studies
are shown in Section 2.3. All proofs are putin Section 2.A/@@dummarize the chapter

in Section 2.5.



2.2 Estimation and Threshold Hfect Test

2.2.1 Parametric estimation

For simplicity, we assume the threshold parametemodel (2.2) is known. In practice,
as that has been done in the subsequent Section 2.3.2, wel@girtlze idea of Li and
Lam (1995) to estimate. Lety = (67,¢7,a),60 = (6o, ,0p)> ¢ = (¢, »bp)",
a=(w,a, - ,an" andy € ¥, which is a bounded parameter space for model (2.2).
All throughout this chapter, the superscriptdenotes the transpose of a vector or a
matrix. Suppose that the true parametér= (0°, °",a%)" is an interior point of¥.
Without loss of generality, we consid#ras a neighborhood @f°. We need to estimate
y based on the observatiofyg}]_; and initial valuesy, - - - , y1-m.

Consider the following quasi conditional log-likelihoaghfction (apart from a con-

stant term)

C [ 1 12(p)
)= Y0 = 3|3 leoni) - 37| 23)
We have
oY) _ _}(1_ Stz(‘ﬁ)) 1 o) &) da(y) (2.4)
a2\ h@/h@ dw  h@) oy '

Phy) _ 1 (1_283(w))8n(w)8n(w)+st(w) () 0z(w)
oy 2hg(y) h(y) ) o oy () YT
_ 1 38t(¢)38t(¢)+8t(lﬁ) de(y) oY) (2.5)
h(w) oy oyt hw) oy dyT '

10




where

8‘9(;_‘(9"[’) ==L Y1 Yep)'s
5«‘;2{’) = =1 (Yrea <DL Vi1, -, Yep) ' agatgp) =0,
oh(y) _ oh(y) _  oh(y) T
5 = a6 "% aa ~ G Yer s Yom (2.6)

For the sake of convenience, we put= h(yo), & = &o), s = E€ — 1, Yy =
(L Y1, Yep)s Ya = (LY2,, -+, Y2 Then the following theorem holds under

Assumptions 2.1-2.2 in Section 2.4.

Theorem 2.1 For model (2.2) with known threshold and the considered glas
likelihood function k() given by (2.3), under Assumptions 2.1-2.2 in Section 2.4,
there exists a fixed open neighborhoo@/t) c ¥ such that with probability one, as

T = o0, Ly () has an unique maximum poit in U. Furthermore, VT ({1 — o) —

N(O, Q1QsQ 1), whereQs, Q are respectively given by
hit Yy Y:‘Lrt 4 (ytr;[d <r) YltYIt 0

El 4 (YRde)Yltert 4 (ytr;[dﬁf)yltYIt 0 , and
0 0 AN

21 (Yi_g<
h% Yo YIt (ythtd <r) Yy YIt 0

2l (Yi—g< 21 (Yi—d<
E (Yth td <r) Ylt YIt (yth[d <r) Ylt Y]-l_-t 0

0 0 2 Ya Y5,
Remark 2.1 Through the proof in Section 2.4, it is known tH&§? < oo is not required
to guarantee the validity of the theorem, which is conststgth Ling ( 2007). The

matricesQ,, Qs can be calculated by the relevant sample means after thenptaes

11



have been estimated.

2.2.2 Threshold #fect test

In this section, we consider the test for the threshdlda, i.e., to test

Ho:¢o=¢1=---=¢p=0.

Such a test is nonstandard because the threshold paranetrsent under,. From

(2.3) and (2.4), we have

E{0°Lr (¢)/(9¢0a")} = E{9°L1(y)/(060a")} = O.

Following Davies (1977, 1987), the LM test statistic for outl hypothesis is

S= SUPUf(Cr - I—:C_ll—r)_lnr’ (2.7)
reR
where
_10Lr(v)
ny = T2 ;¢ |§T,aT,¢:o,
1_ (6Lt (v)
C = ~7E| aaer ) lir-ar0=0
c - _1 ALt () i
' T\ dgogr | or-are=0
Lo L L1 () o
' T\ 909¢7 ) or-aro=0

Heredr, ar are the QMLESs under the null hypothesis, and the above estimare con-
sistent due to Theorem 3.1 in Ling (2007). Under the fram&wbtagrange Multiplier
test (Silvey, 1959), the above quantitigsC, C,, L, are asymptotically convergent to the
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ones that are evaluated at the true valuegfanda underH,. With the abuse of nota-
tion, in the rest of this chaptey,, C, C,, L, stand for the quantities evaluated at the true

value ofg anda underHy. Then we have the following theorem:

Theorem 2.2 Suppose Assumptions 2.1-2.3 in Section 2.4 hold, then thepastic
distribution of{z,} is identical to that of &p + 1)-dimensional Gaussian proce§s}

indexed by the threshold parametet R. Forr, s€ R, we have

fr ~ Np+1(0, Cr - L:C_ll—r), CO\(fr’ fs) = Cmin(r,s) - L:C_ll—s-

Also, the asymptotic null distribution of the LM test stitiS in (2.7) is given by the

distribution of sup .z &7(C; — LTC1L,)%,.

Remark 2.2 Theorem 2.2 is similar to Wong and Li’s (1997) Theorem, butaarns
different situations. Moreover, our Assumptions 2.1-2.3 arakeein contrast with
theirs (e.g.Eef <  is a little stronger thalce! < o). The proof is a generalization of

Chan (1990), Wong and Li (1997) , which is given in Section 2.4

In practice, it is necessary to estimate the upper percemamts of the asymp-
totic null distribution forS. For model (2.2), note that, = L;, C, andC - C;
are positive definite. Then there exist an invertible ma@iand a diagonal matrix
D = diagAa(r),- -, Ap+a(r)} such thatQC is an identity matrix andQC, Q" = D,
with all {2;(r)} being strictly between 0 and 1. L& = (Byr, -+ -, Bpiar)™. ThenBy's

are independent Gaussian processes with mean zero and

cov(By, Bis) = Ai{min(r, s)} — Ai(r)Ai(s).

13



As a result,

B2 B2
‘f:(cr _ L:C_ll_r)_lfr — { 1r p+1r }

/ll(r) - /l%(l’) /lp+1(r) - /1[2)+1(r)

Whenp = 0, we need to compute

i i Z0.(0 1 2.8
r{ﬂlﬁfl?r?sﬁzm> }’( <,81 <ﬁ2< ) ()

for a givenz, whereB; = min{A,(r)} andB, = max,(r)} forr € R. For thep > O cases,

we want to evaluate

P [ Bil‘ B|23+1r ] (2 9)
rsupl ————+---+ - >Yyo. .
reR /ll(r) - /li(r) /lp+1(r) - /l€+1(r)

Based on Chan and Tong (1990), and Chan (1991), by usingitgsssimilar to Wong

and Li (1997), the probability in (2.8) can be approximatgd b

(;)% exp(—é)(yz— 7—2/ + :—;)y = %Iog {%} (2.10)

and the probability in (2.9) can be approximated by

p+1

dt
1- exp{—ZX%H(y) ( pz - 1) ; ff{adr}, (2.11)

Where)(fm(-) denotes the probability density function of tpedistribution with ( + 1)

degree of freedom ang= % log{Ai(r)/(1 — Ai(r))}.

It remains to find the matriXQ or the Ai(r)’s. Note thatC,C — C, are positive
definite matrices. Le€~2 be the inverse of the matri®? that satisfie€zCz = C, then
C-2(C - C,)C % is also positive definite. Denote the eigenvalue€of(C — C,)C2

by (61(r),-- -, dp+1(r))” and accordingly there exists an orthogonal ma@ixsatisfying

14



QiC%(C - C,)C2Qy = diaddu(r), - , 5pua(r)}, namely,
| - QiC2C,C2Q, = diagy(r), -+ , Spea(r)}.

Here,l is an identity matrix of suitable dimension. DefiQe= Q;C‘%, then we have

QCQ =1,QGQ" =diagl - 61(r), - , 1= 6p.a(r)}.

By definition, it is known thafl — 6;(r)}’'s are exactly the eigenvalues 6f:C,C 2.
Hence, to evaluate the probabilities in (2.8-2.9), we firstted to estimate the eigen-

values of the matri)C‘%CrC‘%.

2.3 Simulations and Empirical Studies

2.3.1 Simulations

This section examines the performance of the proposed LMiteEnite samples
through Monte Carlo simulations. We give examplesdoes 1,p < m < 2 as fol-

lows.

M1: y; = 0.1+ e vh,h =02+ 0.16y?, + 0.0%2,.

M2: y; = 0.36yi_1 + & Vh, hy = 0.3+ 0.497 .

M3: y; = 0.3yi1 + 0.1y + @ Vh, hy = 0.5+ 0.1y2 | + 0.1y2 .
M4: y; = 0.1+ 0.3yi_1 + & Vh, h = 0.5+ 032y ,.

M5: y; = 0.6 — 0.4I(y;-1 < 0) + & Vh,, hy = 0.3+ 0.15y2 ; + 0.1y? ,..
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M6: yi = 0.1+ 0.1y;-1 — I (V-1 < 0)(0.2 + 0.2y;_1) + & Vh, hy = 0.05+ 0.36y2 ;.

M7: y; = 0.4y1 — 0.3y_11 (Vi1 < 0) + & Vhe, hy = 0.25+ 0.4y? .

M8: yi = 0.1y 1 + 0.1y; » + (0.2y1-1 — 0.15y; 2)I (Y1 < 0) + & Vh,

h = 0.5+0.16y2, +0.1y2 .

In the above examples, the i.i.d (0, 1) process in (2.2) imset ~ i.i.d. N(0,1). M1-
M4 are used to check the empirical size and M5-M8 are adometemonstrate the
power of the test. We conduct 1000 replications with samjgesd =100, 300 and
500 for each of the above examples. Following Wong and Li {)9®e choose, the
numerical range for the threshold, to be the intervals betwbe 10th percentile and
90th percentile of;. The empirical sizes or powers at the nominal upper 10%, 5%,
2.5% and 1% points are listed in Table 2.1.

Table 2.1 shows that both sizes and powers behave well. Theieahsize in each
case gets closer to the nominal level (especially at the malnevels of 2.5% and 1%)

and the test gets more powerful with increasing sample size.

2.3.2 Empirical studies

Ling (2004) applied the DAR(1) model to the US 3-month tregdaill rate series from
July 1972 to August 2001 and found that the model fitted tha datl as compared to
the common AR(1) model. For comparison, we also considesahes set of data except
for a longer period from January 1951 to October 2008 (tp&34 observations).

We takex; to be the logarithms of the observed series gnd x; — x_;. Based on
Ling (2004), it is reasonable to apply model (2.2) wyith- m=d = 1 andfy = ¢ = 0
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Table 2.1: Results of the simulation experiments for agsgsbe empirical size and
power with and without intercept.
Empirical size and power

Model pmd Sample size 10.0% 5.0% 2.5% 1.0%
M1 021 T =100 5.9 3.1 1.4 0.3
T =300 5.4 2.7 1.3 0.5
T =500 6.0 3.1 1.8 0.7
M2+ 111 T =100 6.7 3.2 1.3 0.8
T =300 9.8 5.1 2.2 0.7
T =500 9.9 5.0 2.3 1.2
M3 221 T =100 13.8 8.1 6.5 4.6
T =300 10.7 51 3.1 2.1
T =500 12.9 6.3 2.8 0.9
M4 111 T =100 17.9 14.6 11.7 10.3
T =300 7.1 4.3 3.0 2.0
T =500 7.2 3.7 1.7 1.0
M5 021 T =100 51.2 37.5 27.2 16.9
T =300 97.5 94.8 90.8 85.3
T =500 100.0 99.8 99.8 990.1
M6 111 T =100 89.8 83.3 77.2 67.5
T =300 89.3 82.2 75.4 64.5
T =500 90.3 83.9 76.9 66.8
M7 111 T =100 17.1 9.6 52 2.4
T =300 49.7 37.8 28.0 15.3
T =500 71.1 61.4 50.2 37.8
M8+ 221 T =100 30.1 21.9 17.5 14.9
T =300 59.6 38.3 27.1 16.7
T =500 58.36 46.2 35.9 24.5

Notes: (1) Testing with no intercept; (2) Number of replicatiei©00.
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to the considered data, which has the form

Ve = Oyea + ¢yl (er <T) + & Jo +ay? . & ~i.i.d(0,1). (2.12)

Before fitting the data by model (2.12), we first test whetherO is significant, namely
we consider the hypothesi : ¢ = 0. With the numerical rangR being the interval
between the 10th percentile and 90th percentilg,dhe p value for the considered test
is 0.0194, which shows that it is reasonable to introduceltreshold part. To estimate
the threshold parameterwe adopt the idea of Li and Lam (1995). Denote the potential

candidates for by R = {ry,r,,--- , 1.}, the estimation of is performed by considering

rQ%xLT(JfT(r)),

wherey(r) is the maximizer of the quasi log-likelihood given by (2«@}h the thresh-
old parameter being fixed.

For comparison, we ugg}*°to estimate model (2.12) and lealyg} 22 for out-of-
sample forecasts. TakRas a series of evenly spaced point&iwith step length being

0.001. Then we get = —0.0422, based on which, the estimation results of (2.12) are as

follows:

Yt = %%7133)%_1 + %%313§)%/t-1| (Vi-1 < —0.0422)+ & Vh,
h = 0.0022+ O.765)€yt2_1, & ~ i.i.d(0, 1). (2.13)

(0.0004)  (0.2075

The values in parentheses are the corresponding standard @tich are calculated
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based on Theorem 2.1. We also estimate the DAR(1) model lmaskithg (2004):

yt = (%6%919-)%/t_1 + € \/ﬁ7

h = 0.0021+0.7740% | e ~i..d(0, 1) (2.14)

Moreover, we have the results below:

For (2.13),
E(log| 0.3149+ ¢ V0.7656|) = —0.8957< O,
E(log| 0.3149- e V0.7656]) = —0.9483< 0.
For (2.14),

E(log| 0.4009+ & V0.7740]) = —0.8236< 0,

E(log| 0.4009- & v0.7740]) = —0.8381< 0.

Note that (2.12) and DAR(1) model can be rewritten respelbtias

Vi = Oyi-1 + e Varlyeal + oY1l (Y1 < 1) + & w+a1y2w+ \/a—l|Yt—l|),

Vi = Y1 + & Vaulyi1| + &(

< )
w+ary? |+ varlyi-1l

Bothayi_1l(Yi-1 < 1) andw/(/w + awy? ;+ vauly-1]) areo(ly:_1l) asy:_1 goes to infinity.

We know from Example 4.1 in Cline and Pu (2004) that the eggchparameters for the
above models satisfy the geometric ergodicity conditidiee statisticQ(M) in Li and

Mak (1994) withM = 3,6, 12 are used for checking the adequacy of the model (2.13)
and their values ar€@(3) = 0.8764< x2, s = 7.815 Q(6) = 55123< x2 4 = 12592

andQ(12) = 16.8462< Xizo% = 21.026, which suggests that model (2.13) is adequate
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for the considered data at the 5% level . The value of theilagdthood for model (2.13)
is 1436 and that for model (2.14) is 1434.4.
Next we apply model (2.13-2.14) to obtain one step aheadésts for{y,}%%3. We

642

get

693

1 X
for (2.13) RMSE= JS—Z Z (Vi — $0)2 = 0.1253

=642

693

for (2.14), RMS E= 1 Z (Vi — $1)2 = 0.1281
52 t=642

We have also computed the one-step ahead forecast intental85% confidence level

for each case. Denotgy, uy as the upper bound series, which are respectively calcu-
lated according to (2.13) and (2.14). Similarly Igtandl,; denote the corresponding
lower bounds. We list the percentiles of théeience series between upper and lower
bounds in Table 2.2. It can be seen from the table that modE3)2enerates slightly
narrower confidence intervals. In term of the log-likelido@lues, the RMSEs and the
distance between the estimated bounds, we know that mad&)) (2 superior to model

(2.14) for the considered data.

Table 2.2: Percentiles offllerence series between upper and lower bounds.

Difference Percentiles

series 10% 25% 50% 75% 90%
{ug — Iy} 0.1873 0.1978 0.2418 0.3487 0.6746
{upt — I} 0.1875 0.1981 0.2425 0.3502 0.6781

It makes sense to consider Li and Lam’s ( 1995) TARCH modéh witerp; =
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p. = 1,d = 1 for the data. The model is

Vi = 0¥ 1 + BYeal (Vi1 < 1) + &, & = & Vhy,

h=w+ al8t2_1, e ~ 1.i.d. N(O, 1). (2.15)

Before fitting the data by model (2.15), we apply the methoth& special case (A)
of Wong and Li (1997) to test whetheris significantly diferent from zero, namely
Ho : ¢ = 0. Thep value for the considered test is computed as 0.5591 by anpBsis
the interval between the 10th percentile and 90th pereeoty;, which suggestg = 0

in (2.15). Hence we switch to estimate the model

Vi = 0Yi1 + &, & = @ 4Jw + are? & ~ i.i.d. N(O, 1).

Based on observatior}$*°, we shall get

yt = (%6%§5%)3/t—1 +éeL,E =6 \/ﬁ7

h = 00022+ 0.8567%7 . e ~ i.i.d. N(0. 1) (2.16)

Using (2.16), we obtain one step ahead forecastg 42 with a RMSE of 0.1330,
which is larger than that of model (2.13) and (2.14) respebti Thus model (2.13)

seems to be more reasonable than (2.16) for the consideteed da

2.4 Proofs

We make the following assumptions for model (2.2).
Assumption 2.1. The serieqy;} generated from model (2.2) is strictly stationary and
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geometrically ergodic for the considered parameter spface

Assumption 2.2. The i.i.d (0, 1) processe} satisfiesE€' < oo, and is absolutely
continuous with a continuous symmetric probability dgn&inction which is positive
everywhere.

Assumption 2.3. The procesgy;} is p-mixing with an exponential decreasing rate,
l.e., there exists a between 0 and 1 such tha(m) = O(u™),m € N, where
o(m) = supicorr(f, g)|, the supremum being over all square integrabkendg which

are measurable with respect{te, t < 0} and{y;, t > m}, respectively.

Remark 2.3 To judge the geometric ergodicity required in Assumptioh, 2ve can
make use of Cline and Pu (2004) (e.g., Corollary 2.2, The@dirand Example 4.1).
Part of the conditions in Assumptions 2.2-2.3 have been tadopy Chan (1990) to

weaken the condition of normality for the error term.

Lemma 2.1 (Lemma 1 of Jensen and Rahbek, 20Dénote k() as a function of the
observationsy - - - , yr and the parametey € ¥ C R¢. Suppose/ is an interior point

of ¥. Assume (-) : R - R is three times continuouslyfirentiable iny and that
Al: As T— oo, VT L (o)/0w — N(O, Qs), Qs > O.
A2: As T— oo, L1 (o) /o™ — Q, > 0.

A3 MaX jyc1....ps2 SURengq |0°LT (W) /Oi0w 00| < cr.

Here N¥) is a neighborhood af, and0 < ¢y BN C,0 < ¢ < 0. Then there exists a

fixed open neighborhood(¥y) € N(yo) such that

B1: As T — oo, with probability one that there exists a minimum pajgtof Ly ()
in U(yo) and Lr(y) is convex in Wyo). Moreover, i is unique and solves
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dLr(r)/0y = 0.

B2: As T— oo, yr — tho N VT (7 — o) = N(O, Q'QsQ™).

Proof of Theorem 2.1

Let
L = 2 S loghw) + £ 2 2 Y ) @.17)
T T & n(w) T4
and it can be shown:
W) _s?(w)) 1 o) 26) e
o - (1 o) | B T h() aw (2.18)

Phw) _ 1 (Zsf(w)_l) oh(y) oh(y)  2s oY) denly)
ooyt hg(y) \ hi(y) o oyt K(y) o Oy
N 2 0e(y) 9&i(y)  2e(¥) dex(y) Oi(y) (2.19)
h@) oy oy~  h@y) oy oy’ '

and
Phw)  _ [2(1_ 3s$(w)) 1 oh(y) oh(y) aht(w)]
O O Ok h(v) | h3(y) o Oy Oy
+ [4&(‘#) aht(W) aht(W) 38t(¢) + 48t(¢) aht(W) agt(W) 3ht(¢)
hi(w) o Oy Oy hXW) O Oy Oy
+48t(W) 38t(¢) aht(lﬁ) aht(lﬂ)]
hB() i Oy Oy
_[ 2 aht(lﬁ) agt(W) agt(W) + 2 aé‘t(lﬁ) agt(W) aht(W)
he(w) oy Oy Oy hE(y) Oy Oy Oy
2 ast(w) aht('vl’) Gst(elf)
Here,ly,i = 1,2, 3 mean the corresponding quantities expressed in the pnectratee

pairs of square brackets. To prove Theorem 2.1, we just meestify A1-A3 described

in the above Lemma 2.1.
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Recallhy = h(0), & = &(0), s = E€ — 1. From the above (2.17-2.20), we know

aL%wa C &\ Lohy  2s0s
T = Ly =__,==-=
v Z ( ht)ht5¢+ he oy
1 T
= — > S.
Consider any non-zero vector= (Ci,--- ,Cy)",q = 2p+ m+ 3, we have

L) o 1 o) %
reTL (=) =W

t=1
Given the information set up to time— 1, %1 = o(€.1, -, €L Yo, > Yomil)s
then we knowmW,} is a martingale dference with respect to the information set, and

E(W?.F-1) = C"2E(S(S{|-Z-1)c. Itis not difficult to get

ohy ohy 4 0g Oe
E(SiS{|F#-1) = %6_;1:6_;0; + Ha_lﬁt('ﬁl’i = Qs (2.21)
i

In fact, we have

E(S:S{|#-1)

_ 1 8ht 28t aSt 1 8ht 28t aSt
) E{[(l ht) haw " Gw] [(1 ht) hay "y &w] 'JH}

-E {[A?% aht aht a&‘t Gst Ght Bzast Gst ] |L%_1} .

aw oy "oy au P oy ar T X ooy

In the above expressions,, A2, B, B? are given as

At:( 85)& At:(l_z%t2+8_?)i Bt:% |3t2:4_'9t2
t t

hy h2) h?2’ h hZ’
and we have
Eg - 4
E(ABi.Zi1) = 0, E(Af|F11) = et;; hz’ E(Bf|Fi-1) = e
T
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Noteoh,/dy, dei /0y are part of#,_;, then we get (2.21). Consequently, we have
T 1 T b
Z EW?Fr1) = C [? Z QS,t) C — C'QsC,
t=1 t=1

where

S aht Hht 4(98t 8&
Qs = E(Qs;) = E(5— —— . 2.22
s (Qsy) (h?t?MWJrhtﬁww’) ( )

Furthermore, given any > 0, we have

| =

T T
D E[WRI(WH > 0)] = = D E[csiSiel(csiSid = 6°T))
t=1 t=1

E|c"S:Sel(IcSSie) = 6°T)| —

The above limit can be explained by the fact tR&ls; < co. By the martingale central

limit theorem, see, for example, Theorem 35.12 in Billieys{1995), we have proved

thatyl, W, 5 N(0, c'Qsc), which means

a *
VT L(;l(;["’) 5 N, Q) (2.23)

namely condition Al is satisfied.

Applying the double expectation formula we can get

PliWo)\ _ (Lo 20s st _
( P ) B E(h2 oy oy H%W) = @29

L (o) Zazl t (o) LR
oyt T o™

which means A2 holds.
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We next verify condition A3. For eaah € ¥, from (2.6) it is not dificult to show

oh(y) 1
i h(y)l”

dex() ‘
i W

are bounded by some constants that are independentidte

2(1_3s$(w>)<6(1+85(w>) ) RO ()

() @) ™ we R

then from (2.20) we know there exist finite positive const&it C, andC; satisfying

the following:

&) &)

el < Co(1+ ht(lﬁ)) Iz < Co(1+ he(2)

) llal < Cg

Note the true value of the parameter vector is denoted as(6°", ¢°°, a°)*. We have

al) = yi—I[bo+ 29%4 +1(Yi-a < 1)(o + Zpl $iyr-i)l
= o+ (08— 00) + 2(9? - 0
+ (Ye-a < 1)((6 — ¢o) + 2(@0 — $i)Y1-i)]
= e Vho+ [Bo + iﬁi)&—i]-
Recall the i.i.d (0, 1) process is independent of;_s for s > 0. Using the formula

(X +Y)? < 2(x* + y?), then we have

8t2('7[’) < Zetz w° +2m a10yt i (BO"‘ Z _1BiY- |)
h(y) ~ w+ M ay?. w+Ilay?

Using the Cauchy-Schwarz inequality, we havgl{x)?> = (L;%.1? <

(Xt X)(ZiLy 19). As a result, we havesg + X7, Bivei)® < (p+ 1)(B85 + Z1 BYYVe)-

26



Recall the considered parameter sp#ads bounded, then it can be shown that

of + Z0AVe Z[Qla?)f_i < o + —Z[Qlaioyf_i <L o),
w+Ilay,, o Zlay; o a

where, we assume, < w < wy, a_ < a < ay. Analogously,

p ) 2 2 P 2\2
(BO + Zi;lﬁly;_l) < (p + 1)180 + le:lﬁl Zt—l
W+ 2 &Y W + X Ay

= O(1).

Puttingw; = C(1 + €°) with C being a certain positive constant that depends only on the

parameter spack, then from the above discussion, we know

1 T
< ?ZWt —>p Ew < +00.
t=1

FPL(Y, ¥)

2yt | B0

LKL P2 yeN(yo)

Proof of Theorem 2.2:

Define

and letu, = (n,,77)", ¢ = (¢}, C5)". Here,c" is any nonzero constant vector acd=
(Ci0, -+ »C1p)7> C2 = (Ca0, -+ , Cp)™. CoONsider

T

. 1 Et 8& 8&
U = G+ G = Y o [——(c;— + c;—)] - YU,
; VT L he 706 Z

then we know{U,} is a martingale dference with respect t@;_;. Using analogous

discussion to (2.23), we can show

LT C
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Hence, on the condition that, = 0, we have
L
n. = N{0,(C, - LiC 'L, )}.

Forr # s letu.s = (n%,, nf, nL)7, then it can be similarly obtained that

C Lr I—S
L
Ur,s — N Oa L;’r Cr Cmin(r,s) >
L; C;“lin(r,s) Cs

and conditionally(n,, ns)’ converges in distribution to

Cr Cmin(r,s) L}'
N<O, - C‘1(|_r Ls) .
cr Cs LZ

min(r,s)

Hence,(n;, ns) asymptotically follows a joint normal distribution with éhcovariance
beingCint.g — LTC L.

Let b > 0, Dy(—o0, o0)(Dy[—b, b]) denote the function spaces with each element
f : R(-b,b])) — R being right continuous and having left-hand limit. Equip
Dy(—o00, 00)(Dy[—b, b]) with the topology of uniform convergence over compacskset
Let Cy(—o0, ) be the subspace @y(—oo, o0) consisting of functions continuous ev-
erywhere. More details on these spaces can be found in @qi®84). Now,
{1y, —00 <1 < oo} lives onD ;1 (—00, o).

Subsequently, we show thgt converges weakly t¢¢,} in Dp,1(—c0, c0) and each
realization of{&} belongs taCy,1(—c0, o0) almost surely. It sfiices to verify the tight-

ness of{n,, —b < r < b} componentwise. Without loss of generality, consider tls¢ la
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component ofn,, —b < r < b}. Itis tight if and only if

T

_ 1 \la
gr(r) = = t:Zl [hth—p|(Yt—d <T)

is tight.
Let —-b < s < r < b be two arbitrary numbersvi;, K; (i=1, 2) be constants inde-

pendent ofl . Then

;
gr(r) —gr(s) = \/if ; [%yt—pl (S<VYta < r)] :

Fori=1---,p,ands =1,2,3,4, noted,p<m, andytz_i/ht = O(1), then we have
E
E {‘Hth—ﬂ(S <VYig <)

)
AT

<E {(1 + F‘)I (S< Vg < r)E((l + E—g)m_l)}

< MIE{I(S< Yig < 1)} < My(r —9). (2.25)

Let = %%yt_pl (S < Vg <T1). Applying Assumption 2.3 and Lemma 3.6 in Peligrad

(1982), we have

Elgr(r) - gr(9* < Ko(THllzlla + T2

IA

Ko[(r — 9)/T + (r — 97]. (2.26)

Here|| - | means the usudl’ norm. The second line in the above inequalities follows
from (2.25). For b, b], consider a partitiorf—-b = rp < r; < --- < r. = b} with

u>0,rj=rji1+u0<j<L-1andr,—r__; <u. Define

:i|«9th—p|
VT I

Ki, I(ri1 < Yt-a < 1),
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then,vi, forri_; <r <rj, we have

T

gr(r) = gr(9 < D ki

t=1

(2.27)

Based on (2.25), it is not flicult to show

;
sup Z kij = UO( VT). (2.28)
Iot=1

In fact, we know that

T T
Pr{—sup. ZK } < Pr{z sup; i > \/fué}
t=1

=1
< TE[sup; ] ‘/-TE[SU Pi K]

O VTw uo

In the above inequalities, we use the stationaritysofp; }tT: 1 (which is easily satisfied

according to Assumption 2.1) and the Markov inequality.dmrts of (2.25), it is easy

to show that

‘/TE[SU Pi Kt

=
I

letYi—pl

= E[SUpi t)r/: PI(riis < Yea <)
t

|8ti-/]tt—p|] < o0

IA

i
For any givere > 0, puts > M¢/(ue), then we have

T
Pr{—sup. ZK“ > 6}
t=

which meansvl?su pi Sk = Op(1), namelysup; YL, ki = UO,(VT).
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In terms of (2.26-2.28), by applying similar discussiondisethe proof of Theo-

rem 22.1 of Billingsley (1968), we can show the tightnesge(r), —b < r < b}.

2.5 Summary

This chapter considers a class of threshold ARCH model byngdtireshold &ect in
the mean equation of the DAR)Ymodel proposed by Ling (2007). Provided the thresh-
old is known, the QMLE of other parameters is shown to be asgtigally normal. A
LM test is proposed for testing the threshofteet and approximate methods are given
to tabulate the upper percentage points of the asymptatidbtlistribution. From the
simulation results, it is shown that the considered metipaatorm well. Via the em-
pirical studies, it is seen that the proposed model has ivgonent over existing models

for the considered data.
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Chapter 3

An Alternative GARCH-M Model:

Structure and Estimation

3.1 Background

GARCH-M models have been widely studied since they weregseg by Engle, et al.

(1987), which can be generally described as

Vi = F(h) + &, 60 = & vh,

& ~ 1.1.d(0, 1), hy = Fn(yt-1, he-a), 3.1

where F(-) is the conditional mean function arfel (-, ) is the conditional variance
function. Model (3.1) includes many cases of the existingR&l-M models by putting
Frm(h) = 6loghy, 6hy, VA andFr(yie1, hi1) = w + a(yier — Fm(hie1))? + Bhis. Itis well

known in the literature that there are twdtiiult problems to deal with GARCH-M
models. The first is under what conditions the model is genoadlly ergodic and the
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second is whether its quasi maximum likelihood estimatdvi@) is asymptotically
normal. Fortunately, some recent works shed insights tedhgions of these problems.
WhenFp(Yi_1, h-1) = Fr(Yier — Fm(he_1), h_1), Meitz and Saikkonen (2008) proposed
a principle to study the geometric ergodicity of (3.1) thbufey mainly focused on
applications to the GARCH and ACD (autoregressive cond#ialuration) models. By
assumingFn(Yi-1, -1) = @ + ay?; + Bhy, Christensen et al. (2008) listed several
conditions in their Assumption A for generally specified ¢tians F,(h;) (except for
some unknown parameters), under which the QMLE for (3.13ysmptotically normal.
Christensen et al. (2008) also gave empirical studies taodstrate that the setting of
Frn(Ye1, 1) = w + ay? | + Bh_q is sensible for analyzing real data. Consequently, for a
special case of model (3.1), we can apply the results of MeitzSaikkonen (2008) and
Christensen et al. (2008) to study the ergodicity condgiand the limiting properties
of the QMLE.

To be exact, we consider the following model

Yo = 6 Vhi + &, & = & Vi, (3.2)

e ~ i.i.d0,1),h = w + ay? | + Bhe1, (3.3)

where 0< w,a,0 < B < 1, g is independent of, s < t, and it has a continuous
symmetric density function oR. Denotef = (6, w, @,B)" as the unknown parameter
vector and € ©, where® is assumed to have the foréh := {0 : 6, < 6 < 6y,0 <
w.<w<wy,0<a <a<ay,0< B <B < By < 1. All throughout this chapter,
the superscript denotes the transpose of a vector or a matrix. The above3(3)2s a

special case of the model in Christensen et al. (2008), tingen(h;) = 6 vh. If y2
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in (3.3) is substituted by? |, thenh, becomes the usual GARCH case for which, to the
best of our knowledge, few results have been available matdymptotic normality of
QMLE for (3.1). For simplicity, we focus on the case of (3M}ich enables us to study
the ergodicity and the QMLE for the considered model. In,faath a setting for the
conditional variance in (3.3) is not new. Ling (2004) andd.i{2007) took advantage
of such specifications for the conditional variance with @dirorder and some novel
results were achieved (See Remark 3.2 in Ling, 2007). CRk@®7{a) also adopted
an analogous GARCH process when studying the geometridieryoof a class of
nonlinear AR-GARCH models.

The chapter is arranged as follows. In Section 3.2, we dssitiesgeometric ergod-
icity and the asymptotic normality of the QMLE for the corsied model. Simulations
and empirical studies are given in Section 3.3. Proofs atarp8ection 3.4 and we

summarize the chapter in Section 3.5.

3.2 Ergodicity and Estimation

3.2.1 Geometric ergodicity

Puttingo, = vh, we can reformulate (3.2) and (3.3) as

Yo = (6 + &)o, (3.4)

ot = \/a) +ay?, +po . (3.5)

Recallg is an independent and identically distributed process miglan 0 and variance
1, ande is independent ofy, o), s < t. Definez = (v, o), with y; beingY; and o
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beingX;, then we can respectively consider (3.4) and (3.5) as dp=sgas of equations
(4) and (5) in Meitz and Saikkonen (2008). According to Pspon 1 of Meitz and
Saikkonen (2008), if the process is V,, geometrically ergodic, then we haxzgeto be
V, geometrically ergodic for some functi®df. Hence, it stfices to study the ergodicity
of .

By simple recursion, we have

o= o+ +e1)?+flo? , = Flois, ) (36)

Henceo can be viewed as a Markov chain of its own and studied in igwidtom y;.

Following the notations in Cline (2007a), we can rewrité}&as
oy = B(ot-1, &) + C(ot-1, &),
where,

B(x, €) = va(s + €)? + BX,

C(x.€) = w/ {0 + €7 + fx + Vw +[a(5 + €7+ A]¥]. (3.7)

Obviously, B(x, €) is homogeneous i and satisfies G |B(x/|x],€)] < b_(l + |€) for
some finiteb, and|C(x, e)] = O(1) < c(1 + |¢]) for some finitec. Hence, (3.6) belongs to
the framework of (1.2) of Cline (2007a) and we may apply C#rf2007a) approach to

study the ergodicity of. Define a related Markov process as

o; = B(oi_1, @) = Va(d + &) + Bor_,. (3.8)
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LetW = |B(oy_,/los 4. &)l = IB(L, &) = y/a(s + &)? + B, then we have
1
y = E(log(W)) = SE {logle(s + &)® + ]} (3.9)

To study the geometric ergodicity of, we further define the Lyapounov exponent as

3 = liminf Iimsup%E(log(lJro-T)

i
To0 oo 1+o0g

oo = 0'). (3.10)

Then we have the following theorem.

Theorem 3.1 For the considere®, suppose Assumption 3.1 in Section 3.4 holds, then
{ot} generated from (3.6) andr;} from (3.8) areg-irreducible and aperiodic T chains
on (0, +0). Furthermore,y is equivalently evaluated byand geometric ergodicity of

{o} is implied by a negative value of namely Elog[a(s + &)? + ]} < 0.

Proof. It follows from Cline (2007a), and Cline and Pu (1999at, when{o} is ¢-
irreducible and aperiodic, geometric ergodicity{ot} is implied by a negative value
of y. As mentioned before (3.6) is a special case of the recursimatel (1.2) of Cline
(2007a). If we can show that the listed conditions A.1-A.Llme (2007a) are satisfied
for (3.6), theny is equivalent toy. As a result, to prove Theorem 3.1, itfBoes to
verify the mentioned conditions for (3.6). Referring to @t 5 of Cline (2007a),
under Assumption 3.1 in Section 3.4, we can see the condi#toh, A.2 and A.4 in
Cline (2007a) are trivially satisfied for (3.6). Next we aveshow thafo} and{c;} are
¢-irreducible and aperiodic T chains on, {&-), which implies A.3 of Cline (2007a)
holds. We just consider the casef{of;} and the conclusion fofo;} can be acquired

analogously.

Recall o;=B(0 ;,8) andB(o,€) = +a(s +€)? + fo. We haveZZ2 = o(s +
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e)o/ \a(s + €2 + 5. Suppose the continuous density function éiis f(e) and we
define the control set

O.={eeR: f(e) > 0}.

Under Assumption 3.1 in Section 3.4, we kn@y = R. Let {u} c O, be a deter-
ministic control sequence corresponded{¢g. Putuy, = -6 + cfort = 1,--- K,
wherec is a small positive constant such thajc®> + Sy < 1 andk satisfies that
(ac® + P)o? < 1/B (noteac? + B < 1) for some initial positive value,. Then we
have (oo, U1) = acoo/ \/ac? + B, which is nonzero for any positive initial valug.
Applying Proposition 7.1.2 of Meyn and Tweedie (1993), wewhthat{o}} is aT-
chain.

Define the control sequence a§ = B(c¢ ,,u;), and we know §¢)? = (ac?® +

B0l < 1/B. Setuw1 = —6 + [2( — B) then we shall getrf, ; = B(0, Uca) = 1.
k

(o
Fort > k+ 2, putu, = -6 + /=£ and then we shall get{ = 1 fort > k + 2,

which means that® = 1 is a globally attracting state fgo¢}. By using Proposition
7.2.5, Theorem 7.2.6 of Meyn and Tweedie (1993), we kfofy is y-irreducible. The

above convergence property also shows that any circle ronttio the statéor-°}. From

Proposition 7.3.4 of Meyn and Tweedie (1993), aperiodifotiows.

Remark 3.1 In practice, as in Cline (2007b), we can evaluate the expenta given
in (3.9) by simulation approach after the parameters armatdd, or find the ergodic
range for a certain parameter when others are fixed. Wh#&n- 1)+ < 1, by Jensen’s

inequality, we immediately have < 0.
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3.2.2 Quasi maximum likelihood estimation

Recalld = (6, w, @, B)" andd € ©, which is a bounded parameter space for model (3.2-
3.3). Suppose that the true parameigr= (6o, wo, o, Bo)” IS an interior point of the
considered parameter spa@e We need to estimatbased on the observatiofs),_,

and initial valueso, y_1, Y-, - - - . Following the convention in the literature, we consider

the quasi conditional log-likelihood function (apart fr@aconstant term):

Lr(0) =

. 1 £2(6)
1(6) = = llog hy(6) + —=1, (3.11)
2M0=5 0

—| =

whereg(0) = y; — 6 Vh(6). For the sake of convenience, we put

¢ =Eé -1, h =h(bh), & = Y — 60 Vhy,

He = [1/(1 - Bo). S 852 it Ay e

then the following theorem holds under Assumptions 3.1k83ection 3.4.

Theorem 3.2 For model (3.2-3.3) and the quasi log-likelihood functiop(d) (3.11),
suppose that Assumptions 3.1-3.2 in Section 3.4 hold, thene exists a fixed open
neighborhood W;) c ® such that with probability one, as o , Lt(d) has an

unique minimum poir; in U. Furthermore, VT (6r — 6) — N(O, Q1050 Y), where

4 FH 2 PHf
Qs =E and Q=E
26 §+03 s 1+62/2
ZoH, “RHHT RHe —gHHT

Remark 3.2 The proof of Theorem 3.2 in Section 3.4 is a generalizatiofeosen and
Rahbek (2004), through which, it is known tHay? < oo is not required to guarantee
the validity of the theorem. Such a result is consistent wittg (2007). In practice, an
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initial valuehg is needed for the calculation &f (6), h;, H;. The matrice€,, Qs can be

approximated by the relevant sample means after the pagesitetve been estimated.

3.3 Simulations and Empirical Studies

3.3.1 Simulations

This section examines the performance of the (Q)MLE throMgimte Carlo experi-
ments. We study the medians and standard deviations (Sbg@&dtimates. The series
y; is generated through model (3.2-3.3). Reéad (6, w, a, B)7, then the following cases

are considered

6 = (0.1,0.05,0.2,0.5), & ~ i.i.d.N(0, 1),

>

= (15,0.2,0.1,05), & ~ i.i.d.N(0, 1),

S

= (0.1,0.05,0.7,0.35), & ~ i.i.d.N(0, 1),

9 = (-0.2,0.1,0.8,0.2), & ~ i.i.d.N(0, 1),

6 = (0.6,0.010.1,0.85Y, & ~ i.i.d.t(10),
0 = (-1.2,0.5,0.15,0.3), & ~ i.i.d.t(6),
0 = (0.5,1.2,0.1,0.6), & ~ i.i.d.t(4),

9 = (0.05,0.1,0.2,0.6), & ~ i.i.d.t(3).

Heree ~ i.i.d.t(k) meansg is the innovation series that follows the distributitgk)
independently. The sample sizes dre= 300 600, and the number of replications is
1000. To run the estimation, we set the initial value for thaditional variancéy, =
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var(y,) andd = (6, w, o, B)* € [-10, 10] x [0.0001, 10] x [0.0001, 0.99] x [0.0001, 0.99].
The results are summarized in Table 3.1, from which, we krfeevmhedians are

close to the true values and the standard deviations arevedyasmall in most cases.

Moreover, larger sample sizes withess a convergence teenaller SDs) for all cases.

The simulation results indicate that the estimation penfowell in finite samples.

3.3.2 Empirical studies

In this section, model (3.2-3.3) is applied to some real data. We analyze the excess
return data on the CRSP value weighted indices, which irctid NYSE, the AMEX
and NASDAQ. Such data can be regarded as a reasonable prothefetock market
and it was also studied by Conrad and Mammen (2008) irffardint way. The riskless
rate used to compute the excess returns is one-month Tydaiuate (from Ibbotson
Associates).

First, we study the monthly data from July 1926 to Februar@®@otally 992
observations). Take the excess return seig¥”? for estimation and use (3.2-3.3) to fit

the data. By minimizing (3.11), we get the estimates

Yt = 0'124)4\/5 + &, & = & Vh,

(0.0320

— 2
h 02705+ 02107, + 98B @12

The values in parentheses are the corresponding standard @tich are calculated
based on Theorem 3.2. Simple calculation giu¢& + 1) + 8 = 0.9851 < 1 for

(3.12). As mentioned in Remark 3.1, this implies the estanatatisfy the geomet-
ric ergodicity conditions. The Ljung-Box statistics of temndardized residuals give
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Table 3.1: Medians and standard deviations of (Q)MLEs fodeh¢3.2-3.3)

A A

0= (5w ap) 5 & & B
T=300
(0.1,0.05,0.2,05) Median 0.1037 0.0538 0.1898 0.4539
SD  0.0588 0.0287 0.0790 0.2016
(15,0.2,0.1,057 Median 1.5131 0.2113 0.0978 0.4827
SD  0.0835 0.0811 0.0217 0.1060
(0.1,0.05,0.7,0.35F Median 0.1023 0.0562 0.6310 0.3433
SD  0.0592 0.0181 0.0811 0.0746
(-0.2,0.1,0.8,0.2)° Median -0.2038 0.1055 0.7602 0.1927
SD  0.0594 0.025 0.0980 0.0654
(0.6,0.01,0.1,0.85F Median 0.6010 0.0161 0.1007 0.8266
SD  0.0340 0.0774 0.0416 0.1555
(-1.2,05,0.15,0.3F Median -1.2048 0.5182 0.1459 0.2598
SD  0.0681 0.3244 0.0499 0.1649
(05,1.2,0.1,0.67 Median 0.5028 1.4814 0.0965 0.5126
SD  0.0373 1.0076 0.1031 0.2789
(0.05,0.1,0.2,0.6) Median 0.0488 0.1316 0.1952 0.4525
SD  0.0318 0.1138 0.2340 0.2909
T=600
(0.1,0.05,0.2,05) Median 0.1016 0.0521 0.2029 0.4749
SD  0.0413 0.0207 0.0579 0.1514
(15,0.2,0.1,057 Median 1.5014 0.2068 0.1003 0.4903
SD  0.0623 0.0512 0.0158 0.0720
(0.1,0.05,0.7,0.35F Median 0.1025 0.0551 0.6384 0.3458
SD  0.0408 0.0120 0.0549 0.0510
(-0.2,0.1,0.8,0.2) Median -0.2012 0.1039 0.7693 0.1977
SD  0.0400 0.0179 0.0654 0.0491
(0.6,0.01,0.1,0.85F Median 0.6008 0.0123 0.1009 0.8398
SD  0.0181 0.0205 0.0266 0.0487
(-1.2,05,0.15,0.3F Median -1.2005 0.5106 0.1484 0.2882
SD  0.0266 0.1436 0.0304 0.1205
(05,1.2,0.1,0.67 Median 0.5016 1.3271 0.0991 0.5602
SD  0.0231 0.8422 0.0832 0.2326
(0.05,0.1,0.2,0.6)° Median 0.0493 0.1137 0.1906 0.5415
SD  0.0237 0.0864 0.1947 0.2448

Notes: (1) Number of replicatioe4.000; (2) Dtterent error distributions are used.

41



Q(3) =5.8743(0118) Q(12) = 17.406 (Q135), where the values in the parentheses are
the relatedp-values. The Ljung-Box statistics for the squared standaddresiduals
showQ(3) = 1.4144(0702) Q(12) = 6.5556 (0886) For comparison, we also fit the

data by the traditional GARCH-M model:

yt O 1719\/_ + Et, Et = e( \/ﬁ,

(0.03145)
h: = 0.7018+ 0.137882 ~, +0.8543h;_;. (3.13)
(0.2201)  (0.0197) (0.0174)

For (3.13), the Ljung-Box statistics of the standardizedideals give Q(3) =
5.4967 (0139) Q(12) = 17.829(Q121). The Ljung-Box statistics for the squared stan-
dardized residuals sho@(3) = 1.9389 (0585) Q(12) = 6.2185 (0905) From the
computed values of the Ljung-Box statistics, we can seehibihi (3.12) and (3.13) are
adequate at the 5% level

For (3.12), we calculate the RMSE (root mean squared ernatYfze MAE (mean
absolute error) for the in-sample forecasts as 5.453923.88d the corresponding ones
of (3.13) are 5.4669, 3.8185. Dendig h? to be the conditional variances calculated
from (3.12) and (3.13) respectively. Correspondingly, weatef, f° the in-sample
forecasting values. To give clear comparison, we (P ~e0o (solid line) and {h0) 2%

t=600

(circle) in Figure 3.1{ 2%, (solid line) and( f°}2%9; (circle) in Figure 3.2. From the
RMSEs, MAEs, and plots in the figures, we can see that bothitonal variances and
forecasts generated form (3.12) and (3.13) are quite sintilaugh({ f"} is generally a

bit smaller than( f°}. The above results mean that (3.12) has comparable fittiegte

to that of (3.13) for the considered data, which can be infigbhecause a dierent

The objective of empirical studies is to compare the perforoe between the considered model and
the traditional one, while it should be noted that Chriséenet al. (2008) has shown semiparametric
GARCH-in-Mean models may be more practical when analyziegeal data.
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GARCH process is applied.

Next, we apply the model (3.2-3.3) and the traditional GARMHnNodel to the
weekly data from 0®7/1963 to 2702/2009 (totally 2383 observations). Similar to
Chou et al. (1992), we choose the weekly data rather thandite dhta to avoid the
documented anomalies of day-of-the-wedleets. Since 304/1971, for each quarter,
we estimate a value f@ror the Market Price of the Risk (Merton, 1980) based on both
(3.2-3.3) and the traditional model. We use the previousod@rvations to estimate the
parameter and totally 165 estimators are acquired. For estoiation, we record the
corresponding in-sample forecast RMSE and MAE. {§Bf'%>, {5°}:%° be the estimated
6 values from (3.2-3.3) and the traditional model respebtivéccordingly, denote

REMHS, (REPHS, {MED, {MEPHS? to be the respective RMSE and MAE sequences.
To compare, we list the percentiles of thételiences between the error sequences in

Table 3.2, and plot thgs"}!°? (solid line),{5°}:%? (dashed line) in Figure 3.3.

Table 3.2: Percentiles offiierences between error sequences.

Difference Percentiles
series 10% 25% 50% 75% 90%
{RE°-RE"} -0.0004 -0.0000 0.0011 0.0035 0.0070
{ME®’ - ME"} -0.0067 -0.0054 -0.0042 -0.0033 -0.0017

Based on Table 3.2, it is shown that théfeliences between the error sequences
recorded from the two models are negligible. In terms of Feg8L3, we can see the
trajectory of{d!"} is analogous to that db?}, though the latter one is a bit higher. Con-
sequently, similar to the results obtained from the monttdta, model (3.2-3.3) has
comparable fitting performance to that of the traditiona &or the considered data.
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Figure 3.1: Plots ofh{}2% . (solid line) and{h?}>%  (circle).

0.3
600 650 700 750 800 850 900 950

Figure 3.2: Plots of f"}2%, (solid line) and{ f*}>%,, (circle).

44



0.25

0.2

0.15

0.1

0.05

-0.05

_0'1 | | | | | | | |
0 20 40 60 80 100 120 140 160

Figure 3.3: Plots ofs!}!%? (solid line) and(s?}'%> (dashed line).

3.4 Proofs

We make the following assumptions for model (3.2-3.3).
Assumption 3.1. The i.i.d (0, 1) procesga ]} satisfiesE€ < c, and has a continuous
symmetric probability density function which is positiveeeywhere.
Assumption 3.2. The seriegy;, h} generated from model (3.2-3.3) are strictly station-
ary and ergodic for the considered parameter sgace

Before giving the proof for Theorem 3.2, we need to show soxpeessions and
state several lemmas. In terms of (3.11), it is ndficlilt to get the derivatives of the

quasi likelihood function with respect to

a(0) :(1 gf(e)) 1 oh(6) = 2&(6) 9ei(6) (3.14)

80 “h) O 96 | e o0
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e 1 (1 28?(9))8ht(9)8ht(9) 2&(0) ohi(0) de(6)
80067 h(6) @) ] 90 967  h¥H) 06 06"
2 0g(0) 0e(0) N 2&4(0) 0%&(0)

h(@) 06 067 — h(6) 9606
_2a(0) 9e(0) ou(6) | 1 (1_83(9))02ht(9)
h2@) 08 d6"  h(h) h(6) ) 98067

(3.15)

Let symbol variables,, s,, s; take values from symbol sét |, k}. Then we further have

ZUD- = dy(6) + da(6) + c(6) Where,

2(ny(6) — 3&2(6)) dhy(6) dhy(6) dhy(6)
ht(6) 06, 96; 06y

L 2a(0) D ohy(6) ohe(6) den(6)
h3(9) oL, 005 065, 00
Z oh(6) de(0) O=(6)
h2(9) 80, 005, 00s,

dy:(6) =

(3.16)

S1#9#S3

(20 1 oh(6) (o)
=) = (h?(e) - zhae))&;m 56, 90,00,

_=(0) D dhy(6) 9°e(6)
h2(60) (&2, 905 065,005,
&(6) dei(6) 92hy(6)
hZ(Q) S1##ES 005, 005,005,

Z (98t(9) Gzet(e)
0951 80528053’

ht (9) (3.17)

S1£9#S

and

da(6) = — (1_ il (9)) PO 2:(0)_5°a(0)

“h@\" O] 96:66,00  T(6) 36:06;06, (3.18)
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Note thate(0) = y; — 6 Vh(), then we can show

20~ 2 @) - 5o O
96, 2vh(@) 96 °
Pe(0) (5 ah(6) oh(6)
96,00;  4h(6) V(@) 96 06,
1 [aa (o)  oh(o) 85, *hi(0)
2Vh(@) |96 96, o6, 06;  06,00; |
Bel0) 5 9°h(0) oh(9)
96:00;06k — 8h(6) VI(®) o A, 905,005, 365,
1 96 ohy(6) ohy(0)
8ht(9)\/W oS, 005 065, 00,
0*hy(6) 95
4@ ok, 005,005, 005,
) 0°h(6)
2 h(@) 606,06
¥ ahy(6) ohy(6) ohy(6)
8h(0) V(@) 06 0; 96 |

(3.19)

(3.20)

(3.21)

Simple recursion gives

(O) = w + Y2y + B a(0) = w/(1-B) + e D B2, (3.22)
1=1

and hence

oh(6) Oﬁht(H)_ 1
6 7 dw  1-p

aht(e) — N IBI -1 2., aht(e) ZIBI lht I(@) (323)

o —

Define

@) = 15 + a0 D AN (3.24)
I=1

then we have the following lemma.

Lemma 3.1 Let h(0), hy(B) be given as in (3.22) and (3.24). Note thgbvh) = h(Bo) =
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h;, then we have{B) = hy + (8 — Bo) X2t B e, by = he(B) + (Bo — B) X218y theai (B)

and forany s

h(6) h(s)

Su <kKk1 S S

e ne(8) "5 S, Pe(B)
1

Su < Su

e ) = s By

wherek; = max (&, 2%)/ min (£, £) andk, = 1/ mln("L, ZE)-

ap’ wo @p’ wo

Proof: Note that

h(B) = wo + ozoyf_l + phe_1(B) = he + Bhi1(8) — Bohi-1,

and hence

h(@B) —he = Blh1(8) — hea] + (B — Bo)he-1
= B[h-2(B) — hea] + (B — Bo)lh_1 + Bhi_3]

=g Y
1=1

namely the first equality holds. The second equality can bsettanalogously. It is

known

h(6)

NS o ST I yons

IA

oo/ (L=) + - Za Zﬁ' s maxCl o). (3.25)

Similarly, we can gety(6) > min(%, “£)h(8), which together with (3.25) implies the

ap’ wo

last two inequalities hold.
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Lemma 3.2 Define the processes

1
Umi(&, b, €) = mx>, @111 - n)IT, _

2
COETT (920

form=1,...,4 (wherell’_, = 1). Then for each p 1there exisp_ andgy defined in

® such that
E[Umt(ﬁo,ﬁL,Ksao)]p < 09, E[Umt(ﬁu,ﬁo, ao)]p < 0. (3-27)

wherexs; = (1 - u)/(2 - Bo — Bu)-

Proof: The lemma can be established by similar argumente@ibof of Lemma 3 in
Jensen and Rahbek (2004).

By (3.23), it is not dificult to get

hy(6) = ﬁ%ﬁ = 2 g1 hr:'(g;), (3.28)
hy(6) := ﬁazh‘;(f) = 220 - 1),3'-2%, (3.29)
ha(6) := ﬁagah‘;@ = 320 ~1)( - 2),3'—3%, (3.30)
and that
suphy(6) < 1 sup hy(B) (3.31)
06 Bi<B<pu

with «x; being given in Lemma 3.1. In fact we can easily get the abo\28¢3.30) by
the following simple but useful equalities: Lg,, — < k < t} be a sequence, then we
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have

IB IS Z k= T (1 - 1B 2, (3.32)

257 (1 - DB 2w = T (1 - (1 - 2877, (3.33)

and

3z (1= 1) - 2)B7°52 B2k

= I2,(-1)0 - 2)( - 3)B“Z. (3.34)

Lemma 3.3 Let0 < 8. < B, andBy < Sy < 1, then

he 3 K4 for Bo <

h(B) ~ ,
1+ (Bo — Br)ust(Bo. BL, k3o) for B <po
KkaUzt(Bu s Bo, @o) + %3 (Bu — Po)Uz(Bu, Bo, @o) for Bo <

hy(B) < )
Uzt(Bo, BL, kao) for B <po
KaUzt(Bu, Bo, @o) + 5 (Bu — Bo)Uat(Bu, Bo, ao) for o <

hx(B) < ,
Uzt (Bo, BL, k3o) for B < fo
Kk4Uzt(Bu > Bo, o) + 7 (Bu — Bo)Ua(Bu, Bo, @o) for Bo <

ha(B) < ,
Uat(Bo, AL, kao) for B <po

wherex, = (2— 80— BL)/(1 — Bo), andks is given in Lemma 3.2.

Proof: Whens, < 8, we know=Z>, 85 2y2 | < &> 5'-1y2 . In terms of (3.24), we have

h _1-p +Er21/3'o‘1y?_| 1-A
h@B) ~ 1-Bo =282, ~ 1-f
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Wheng < By, we knowZ> g-ly? < > gl=1y2 Similar to (3.35), we have
=1 t-I 1=2~20 Jt-I

) _1-po mlﬁ"lytzl 1-fo ,_1 (3.36)

which impliesh/h(B8) > «3, and hence it can be shown

B he(B) k(B)
h(g) D ha(B) D wo + aoy?, + Bhii(B)

1

1 1
. 3.37
= 1—[ ao(do + € )2 +p 1—[ Kk3ao(do + &-k)? + BL ( )

k=1 k(,B) k=1

Further, in terms of Lemma 3.1 and (3.37), we have

h _ h(B) + (Bo — ) Zloilﬁlo_lht—l (B)
h(B) h(B)

1+ (Bo—pL) Z/J’I -
-1

IA

1—[ Kk3o(0o + € k)2 +B

k=1
which ends the proof of the first inequality. For the otheethinequalities, based on

(3.32-3.34), they can be shown by analogous argument anadlyeyive the proof for

the last one. By definition

1 °h(s)
h(B) o3

-3 ht—l(ﬁ)
h(8)

ha(8) = =3 (1-1)(1-2)
=1

Wheng < o, the inequality holds by (3.37). Next, f8p < 3, Lemma 3.1 yields

shi + (B = Bo) ot B heics
h(B3)

ha(8) = 3> (1-1)(1-2)
1=1

g oval-s el
3;0 D-28 0

+(8 - Bo) Z(I -1)(1-2)(1 - 3)ﬁl—4h
=1

h(8)’
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The second equality can be explained by (3.34). Note thatjgeds, < 8, (3.35) gives

1
h(@) @) h ] ao(do + @x)? +Bo’

(3.38)

and hence the last inequality follows.

Proof of Theorem 3.2:

According to Lemma 2.1, it gfices to show the conditions A1-A3 in the lemma
hold. We consider condition A1 first. Recéll = h(6o), & = (6o), s = E€ — 1. From
(3.14-3.15), we know

Lt(6) 1 « g2\ 1oh, 25 0e 1 «
ani iUl [ L Y e Y
T \/T; h)h oo " h o6 \/T; t

Consider any non-zero vector= (¢, C,, C3, C4)7, We have

L) _ (L el N
VTc - _;—cSt ._ZWt.

Let %1 = o(e_1, - ,€1, Y0, Y-1, - -) be the information set up to time— 1 , then
we know {W;} is a martingale dference with respect to%_;, and E(W?.%,_1) =

CT%E(StS{L%_l)C. Under Assumptions 3.1-3.2, it is nofflilcult to get

S aht Ght 4 (98t aSt

E(SS{| %)= Ss———+ —— - = . .
(StS{l-F1-1) he 06 06" + ho 00 967 Qs (3.39)

Consequently, we have

T T

1
Z E(VVtZL%—l) =Cc'| = Z Qsy|C 4 C'QsC,
t=1 T =1
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where

4 s, e
h, 00 067

s oh ohy

s = Elfdsy) = E(@ o0 o0 "

) . (3.40)

Furthermore, given any > 0, we have

T T
Z E|W2I (W > 6)] = %Z E|cSiSel(crsiSidl = 6°T)|
t=1
E

t=1

|c"SiSTel(IcS:Sid) > 6°T)| — O.

The above limit can be explained by the faEt[Slsﬂ = EQg1 < 0. By the martingale

central limit theorem, see, for example, Theorem 35.12 ilngsley (1995) we deduce
that )T, Wi = N(0, c"Qsc), which means

VT a"g((f") L5 N, Q). (3.41)

Applying the double expectation formula we shall get

=Q 3.42
00067 h2 86 96 by 96 aeT) " (3.42)

Li(6) 1~ 0%h(6o)
= = — Q,
060"~ T &4 9606

(azh(eo)) _ E(ia_hta_ht , 20898

which means A2 holds.

For condition A3, we just show sy [6°L+(6)/98° is controlled by a positive

ergodic sequence that has desired moments. Other cases easily proved by noting

the fact thav'h,(0)/06' = 0, andd’h(6)/dw! = d'h(6)/da) = 0 fori = 1,2,3,j = 2,3.
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Moreover,

la—ht = ! < ! < o0, and
how h(1-p) " w(l-pBu) ’
1oh _ SBTYE

h da w(ﬁ) +a(EZR ) a

which can be derived from (3.23). Based on (3.19-3.21), we ha

1 8& (9) 0

my(6) = NYOREE = _Ehlt(e)’
2
Ma(9) = \/%a;(f) - %hi(e)—ghz(e), and
3,
m@h=ﬁ%ﬁ£@=§m@M@

~Sha(6) ~ S(6).

Then according to (3.16-3.18), it can be calculated that

B3 hy(6) Vh(6)
. (G;i (H(j) _ 3) hy(6)hax(6) — %hn(e)ma(e)
_ %ha(g)mn(e) + 6myy (6) M ()
N (1 _ ‘ig)) ) ha(6) + f/g%mst(@)-

We also have

&@:mamw24 )
hy(6) hy(6) hy(6)

= (%+afmb+¥

< |:K2((50 + e[) h_(ﬁ) + (52 Vt(ﬁ)
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20— 21- )0 + 2 mu) - e 0

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)



Based on Lemma 3.1 and Lemma 3.3, it can be shown that

2 [K2K4((50 + Q)z + (56] for ﬁO < :8
Vi(B) < :

2{K2(5o +@)?[1+ (Bo — Bu)Ux(Bo. BL, k3ao)] + 56} for B < fo
(3.48)

Notee(6)/ Vh(6) < £2(6)/h(6) + 1. In terms of Lemma 3.1 and (3.43-3.46), then there

exists a constarkK such that

5%1,(6)
op°

< K(Vi(8) + 1) [N (8) + hi,(BIML,(B) + hu(B)M(8)
+hut(B)z(B) + hu(B)miy () + haa(B) M (6)

+My, (B)M(B) + ha(B) + Mg (B)] = w(B), (3.49)
wherem; (8) = suxihu(B), M5, (8) = uki[hf,(B) + hx(B)] and
M (8) = 20uki[hu(B)hx(B) + ha(B) + h3,(B)].

From Lemma 3.2, Lemma 3.3 and (3.48), we knayB) in (3.49) is bounded by some
positive ergodiay; that has desired moments. Hence we have shown A3 holds for the
case 0f°l;(F)/9p3. Other situations can be proved by similar argument, whidse¢he

proof of Theorem 3.2.

3.5 Summary

In this chapter, we study a special case of the GARCH-M typelehproposed by
Christensen et al. (2008). Ergodicity conditions are dssed, and by checking the
conditions listed in Lemma 1 of Jensen and Rahbek (2004),how shat the QMLE
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of the model is asymptotically normal. Through simulatiansl empirical studies, it is
seen that the estimation performs well and the considereR@#AM model has com-
parable performance in data modeling as compared to theidraed one. Our results
indicate that the model of Christensen et al. (2008) can b&lbecause it gives an

alternative way to study the GARCH-in-Meafiext.
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Chapter 4

Semiparametric (G)ARCH-M Models

4.1 Background

The relationship between the risk (conditional volatjliynd return (conditional mean)
is undoubtedly an important topic in finance and many reseaschave paidféorts to
investigate it. Among the preceding results, the ARCH-M eigmoposed by Engle, et
al. (1987) plays an important role for describing such ati@hghip. Lety; denote the
excess return of a stock market amdienote the conditional volatility at tinte Define
Z_1 as the information set up to tinte- 1, then three usual forms abBy;|.%_1) =
oh,, E(il-Z-1) = dlogh andE(y.%.1) = 6 Vh.. Some other generalized forms can
be found in Das and Sarkar (2000). Based on the above fornmg; emapirical studies
have been done to analyze real data such as Chou (1988), Calb{©92) and Fama
and French (1989). Mixed results about thefiioent§ were obtained (Chou et al.,
1992). Such a phenomenon suggests that it can be resttect@gsume the relationship
as some parametric form. Recently, Christensen et al. {2t8& proposed a class of
semiparametric GARCH-M models to study the conditionahtibty and conditional
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mean. Their model is given by

Vi = m(hy) + &, & = & Vh,

& ~i.i.d(0,1).h = w+ay?, +hy. (4.1)

In the above model, the conditional mean (expected excaas)as formulated as an
unknown smooth functiom(:). Such a description is more flexible compared to that
of the usual parametric models. Another novelty of modél)(#les in that an adjusted
GARCH (1, 1) process is adopted. The specified conditionkdtNity h; has a nice
property that: with known parametedss o andg, h; is determined by the observable
{Ysleheor

Motivated by model (4.1), we are interested in the following aspects. Firstly
it is what the ARCH-in-mean case of (4.1) looks like. Becaus®some occasions,
considering the finite ordered memory is already adequateor®lly it is how to deal
with (4.1) when we consider a general form of the conditioratility h, driven by
the observedys}'-* .. Such a generalization enables us to take asymmetectento
account when describing the conditional volatility (elg = w+a[1+7l (-1 < O)]y? ,+
Bh_1 ). In this chapter, we give some results with respect to thesespects.

Section 4.2 studies a semiparametric ARCH-M model and thecéated estima-
tion method is discussed. In Section 4.3, we consider a gkned semiparametric
GARCH-M model from (4.1) and some related issues are inyattd. Empirical stud-
ies based on the considered two models are displayed ino§etd and a summary is

given in Section 4.5.

58



4.2 A Semiparametric ARCH-M Model

4.2.1 Model and estimation

In this section, for ease of exposition, we study the follagvsemiparametric ARCH-M

model

i = m(hy) + &, & = & Vhy,

& ~i..d(0,1),hy = 6o+ 61y2 | + -+ 62, (4.2)

where, m(:) is an unknown smooth functiody > 0,1 > 6, > 6, > --- > 6. > 0.
Model (4.2) can be considered as a ARCH-in-mean case of ngdgl We can expect
long memory exists i, # 0 whenL is large. Denot&# = (6p,01,---,0.)" W, =

(Ly2,.---,¥2)). All throughout this chapter, the superscrifdenotes the transpose of

a vector or a matrix. Then we can rewrite (4.2) as
Vi = M(W0) + &, & = e VW0, & ~ 1.i.d(0, 1), (4.3)

which is similar to the constrained single-index model stddby Xia and Tong (2006).
We can thus apply Xia and Tong’s (2006) idea to estimate m@da) with some ad-
justments. In the literature of single-index model, thealisvay is to restrict| 6 ||= 1
or - ,6 = 1 for identifiability. Before giving a proper adjustment fiolentifiability
condition for model (4.2), we suppo& ,6 = 1 and give the estimation procedure
first.

Following Xia and Tong (2006), we have local linear expangibm(W,0) at point
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M(Wi6) = ay, + by(W, — W)8 + Of[(W; — w)6J?},

wherea,, = mwod),b, = n'(wd). Let K(v) be a symmetric kernel functior be a
bandwidth,Kn(v) = h™K(v/h) andW,; = W, — W,. By the principle of local linear
smoother, we estimatg, andb,, by minimizing

n

1Y = aw — Bu(W = WOPK((W; — w)e).

i=1
Leta = m(W0),b; = m(Wf),i = 1,---,n,anda = (a, -+, &, by, -+, by)". Fol-
lowing Xia and Tong (2006), the best approximatiordathould minimize the overall
departure foralv=W,, j = 1,--- ,n. Thus we can estimateandé by

n n
rg’ien nt Z; ZI:{Yi — aj — bjW;;0°Kn(Wi;6) (4.4)
=1 i=

subject to the constraints: 2 6y > 6; > --- > . > 0. The minimization problem in

(4.4) can be solved by quadratic programming. Let

Y1 W, 1

Y = . ’ W = . s 1n = ’
Yn W, 1

nx1 nx(L+1) nx1
W16 U
Ui,g = and Ug =

Win0 Une

nxn nZxn
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Further,Y =Y® 1,12 =1,®Il,and
Wy = diagKp(Wi16), - - -, Kn(Wan6), - - -, Kn(Winb), - - -, Kn(Whn6)}.

Herel, is then x n unit matrix and® denotes the Kronecker product. Following Xia
and Tong (2006), the minimization of (4.4) can be achievethkyfollowing algorithm.
Step A Given an initial estimat® of 6 (we can set the initial estimate foras

6=(LL-1---,10) 35l ), then the minimization of (4.4) becomes
min{Y — (12:Up)a} Wy no{Y — (15:Uz)a}. (4.5)
Let

Cin = (I3:Up)" Wy Y,

Diin = (I7:U)"Wyn(17:Up).
Minimization of (4.5) is equivalent to
min{a"Dypa — 2C7 o} (4.6)

SinceD;y, andCj, are independent af, minimization of (4.6) is a typical quadratic
programming problem fat.
Step BPuty = (g — 61,01 — 05,--- ,0._1 — 6.,0,)". Let B be such thaBy = 6.

Define

Qin = B" 21 07 Ty Kn(W6) W)W B,

Pin = B" 21y by Ty Kn(WiA)WE (Y, — ay).
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Givena, minimization of (4.4) is equivalent to

minty Qs = 2P ) @.7)

subject toy > 0. Denoteyto be the solution of the above quadratic programming. Let
6 = BY, 6 = 6/sum§).
Repeat steps A and B until convergence. Denote the final asiord andm(v)

by 8, (V).

4.2.2 Some adjustments

Some adjustments are needed for (4.2) before Xia and ToR2Q@6) method may be
adopted. RecaW; = (1,y2,,---,y?,), whose first element is a fixed constant rather
than some random variable. Hence the first elemeW ofs zero. Incorporated with the
characteristic of the matril, it is easy to see that either the first row or the first column
of Qz1 is composed of zeros and the first elemen®gf is also zero. Consequently, no
matter what value the first elementyrtakes, it does notfgect the value ofy™Q; .y —
ZPg’hy} in (4.7). The above property makes it hard to directly estandl), namely
0 — 01, from (4.4).

To avoid the above liculty in estimation, a possible approach we can apply is to
assume thal, in (4.2) is known. As a result, we only need to estimate- - , 6,. With
an abuse of notation, we still pat= (6, - - -, 6.)". To make the model identifiable, we
can assumg, 6 = 1,0 < 1 < 1. When2 < 1 and the functiomn(h) is O(1) or o(h),
according to Theorem 1 in Lu (1998), we know that the serieseegded from model
(4.2) is geometrically ergodic. Hence it is sensible to adersthe identifiability condi-
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tion like 3}—, 6, = 1,0 < A < 1, because for time series models, ergodicity is usually a

necessary condition for the study of the limiting propestaé parametric estimators.
Based on the assumption ttsigtis known, we can estimate model (4.2) with slight

revision of the method given in Section 4.2.1. To tackle Y4M@ add the know#, into

6 to get the estimation far. To deal with (4.7), we delete the first row and first column

of Q;, and the first element d?;, to estimated. The originald = /sum@) should be

changed t@ = 16/sum§).

4.2.3 Simulations

In this section, simulation experiments are conducted éwvghat the proposed method
works satisfactorily. Because the quadratic programmm@i7) is relatively time-
consuming when the sample size or thellag large, hence we just give two examples.
Some improvement (faster method) may be achieved by adpptirer method in ap-
proximatingm(-) (e.g., spline method of Wang and Yang, 2009). The data isrgéed

from the model

yi = m(hy) + &, & = & Vh,

& ~ N0, 1), hy = g+ 61y2  + -+ 6Ly2 .

Ex4.1: 6o = 0.18 L = 20,6, = 1/(0.51 + 1),6; = 0.9 %« ;/sum@,),i = 1,---,20 and

m(v) = cog1.5v).

Ex4.2: 6o = 0.03 L =1006; = 1/(0.51 + 1),6 = 0.9 « 6;/sum@;),i = 1,---,100 and
m(v) = cog0.5v).
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In the above two examples, we gdh the preceding section as= 0.9. When applying
steps A and B to estimate Ex 4.1-4.2, the kernel funckdr) in (4.4) is chosen as
K(x) = 0.75(1- x®)I(]x| < 1). For the choice of the bandwidth we follow Xia and
Tong (2006) by takindgy = ¢,n"/°, wherec, = 1.06-std(W;6). The convergence criterion
is set ag)g™+? — 69| < 0.001.

We conduct 100 replications with sample sizébQ0 for Ex 4.1-4.2. The estimated
results are shown in Array 4.1. In each subplot of Array g, three dashed lines are
the 10%, 50% and 90% percentile lines obtained from 100ca&jtins and the solid
lines are the plots of true values o) or 8. From Array 4.1, it is seen that the true
values off and m(-) are close to the corresponding medians (Q50) and lie witien
interval of [Q10, Q90] for most cases. The results suggest that the proposethé&sts

for either the parametric part or functional part are satisiry.
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100 simulations witm = 500 andL = 20 for Ex 4.1.

08

0.6

-04
1

m() b

100 simulations witm = 500 andL = 100 for Ex 4.2.

05

_osk -~

m() 0

Array 4.1: Results of the simulation experiments for Ex 4.2

4.3 A Semiparametric GARCH-M Model

4.3.1 Model and estimation

Motivated by Yang (2006) and Engle and Ng (1993), in thisisecve study a general

case of (4.1) which has the form

yi = m(hy) + &, & = & Vhy,

& ~ 1.1.d(0, 1), hy = V(Yi-1, @) + Bhi_a, (4.8)

65



wherem(:) is an unknown smooth functior(y, ¢) is a known function (except for the
unknown parameters) and it can be called the “news impaeecuias in Engle and
Ng (1993). Whenp = (w,a)",V(Y,¢) = w + ay?, (4.8) is reduced to (4.1). When
¢ = (w,a,n)",UY,$) = w+ o[l +nl(y < 0)ly?, asymmetric factor for the condi-
tional volatility is considered. For model (4.8), there a&® unknown partsm(-) and

0 = (¢7,B)". We describe the estimation in two parts. The first one isreding the
functions when the parameters are known and the second sitoage the parameters
consistently.

Suppose that the true values of the parametgssare known, say, Sy, then

M = V(yi 1, ¢o) + Bl s = ) Ao V(Y11 o) (4.9)
=1

can be considered as an observable quantity provided/ghlag are given. We shall

have
E(y:lh; = h) = m(h), var (y;/h, = h) = h. (4.10)

Equation (4.10) gives a basis for the following estimationgedure. For any fixed

h € A, a set as described in Assumption 4.3 in Section 4.3.3, ddgfenestimator

mO(h) = Ab™E(Z'W2D)'Z’WY0< A< p (4.11)
where
15t (5t o(hy — h)
Z=|: . ,W = diag : , and
1 hnb_h . (h”_b_h)p %Kb(hn _ h)
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Y = (Y1, ,Yn)". Inaddition, all elements of thgp(+ 1) vectorE, are zeros except the
(1 + 1)th element is 1p > 0 is an odd integel) > 0 is a bandwidth varying with the
sample siza, andKy() = %K(S) with K(-) being a compactly supported and symmet-
ric kernel function. From Yang (2006) or Fan and Gijbels @Qnder Assumptions
4.1-4.4in Section 4.3.3, we know (4.11) behaves like thedsted univariate local poly-
nomial estimator. LefK||5 = fKZ(h)dh andK (h) be defined as in (4.22), then we have

the following theorem. The proof is quite standard and isttadi

Theorem 4.1 Under Assumptions 4.1-4.4 in Section 4.3.3, for any fixed A and
A > 0such that p- 1 is odd, when nB*! — co, nb?P*3 = O(1), the estimatof?(h) in

(4.11) satisfies
VAR () — m(h) — bP* b, (h)} = N(O, va(h)), (4.12)

where Q(h) = UA p 1P (h)/(p + 1)1, va(h) = (A)?IK:I2hg~2(h), ¢(-) is the density

of hh and A p.1 is defined in (4.23).

In practice, the parameters in (4.8) are unknown. What \fiddlave shall give a
method to estimate them. L@t (¢, 8)", ¢ = (¢1,- - - , ¢q)". FOr simplicity, suppose that
6 liesin the interior o® = [¢11, dp1u] X- - - X[PqL, dqu]l X [BL. Bul, where O< B < By < 1.

Foré € ©, define

hi(6) = V(Yi-1, 8) + Bhe1(6) = X121 B V(i1 8), (4.13)
m(o, h) = E(yilh(6) = h), (4.14)
L(6) = E{[loghy(6) + X=TEROE | (1)) (4.15)

wherern(-) is a nonnegative weight function whose compact supporvmsained inA.
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The seriedy, satisfieshy(6) < h,6 € ©,t = 1,2,--- . Let ¢y = (¢, - »dqu)’, then,

without loss of generality, we can put

he = V(Ye_1, ¢u) + Buha. (4.16)

Whenn — oo, it is known thatl(6) can be consistently estimated by

n

L0 =1 ), {loah(@ +

t=1

[y — m(6, h(6))]?
h(6)

}n(ﬁt). (4.17)

Under Assumption 4.6,(6) has an unique minimum point 6§ and is locally convex.
Hence, under some regularity conditions, the minimizek,@#) is expected to locate
the true parametel, consistently. However, in practice, we still have no ideawb
m(0, h(6)) and hence the minimizer df,(0) is not practicable. To obtain a feasible

estimator, for each € A, 6 € ©, define the estimator an(6, h) in (4.14) as

(9, h) = E5(Z5WaZs) " Z5W,Y, (4.18)
where
1 hOh @by Kp(ha(6) - h)
Zo=|: = . : andW, = diag
1 hn(i)—h o (hn(i)—h)p %Kb(hn(e) —h)
Define next
. 1 [yr — (6, ht(e))]z} ;
L.(0) = = logh(6) + hy), 4.19
0 n;{ ghi(6) h{O) n(hy) ( )
6, = arg 5n([)n|:n(9)- (4.20)
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The above estimatdk, is reduced to that of Christensen et al. (2008) if werhd) = 1

fort =1,---,n. However, the added weight functiai() is not redundant. It is known,

for boundary point ofh,(6)}, the estimator in (4.18) may be seriously biased because
of inadequate observations. By appropriate choicerfgr we can avoid to use the
estimates om(6, -) for boundary points to compute (4.19). The addéjlis also useful

to establish the following theorem, from which, it is knovnatd, converges to the true

value in probability.

Theorem 4.2 Under Assumptions 4.1-4.7 in Section 4.3.3, as - o and

(\/H))_l logn = o(1), we have), - 6.

Proof: See Section 4.3.3.

4.3.2 Simulations

In this section, we examine the estimation performance foysition studies. The data
is generated from (4.8) with specifying= (w, a,n)", V(y, 1) = w + a[1 + nl(y < O)]y°.

Putf = (w, a, n,B)" and the examples are given as follows.
Ex 4.3: 6 =(0.01,0.2,0.1,0.5)", m(h) = 0.5 sin(3+ 30h).
Ex 4.4: 6 =(0.02,0.2,0.3,0.7)", m(h) = 0.4 — exp(-3h?).

For each of the above examples, we conduct 500 replicatiatits sample sizes

n 400,800 1200 respectively. To estimate and m(-) for Ex 4.3-4.4, we set

G

[0.001,0.1] x [0.05,0.6] x [0.01,0.6] x [0.1,0.9]. The p in expression (4.11) is
set equal to 1, namely we apply the local linear regressiontte choice of the band-
width b, like Xia and Tong (2006), we simply pbt= 1.06- std(6)) - n"*/°. As to the
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weight function, following Yang (2002), we puat{h) = I(h € A), whereA is set as the
interval between the 10th and 90th percentiles of the egbtap variable.

We study the medians and standard deviations (SD) of theaisirs for the pa-
rameters and the results are displayed in Table 4.1. Foutkaibnal part, we overlay
the 500 function estimates(h) with the true functiorm(h) on the same scale for all
the considered sample sizes. The plots are displayed iry AtBa(dashed lines are the
estimated curves and the real line is the true curve). FrooheTal, we can see the
medians are close to the true values in most cases and tliasiageviation becomes
smaller when the sample size gets larger. In terms of the pldArray 4.2, it is shown
that the estimated functions capture the trend of the troetion and it also witnesses
better fitting performance when the sample size gets layéthe above implies the

considered estimates are satisfactory.

Table 4.1: Medians and standard deviations of parametenasts for Ex 4.3-4.4

A

0 = (w, @, n.B) 2 a Ui B
T=400
(0.0L0.2,0.1,0.5)" Median 0.0010 0.2048 0.0930 0.5266
SD 0.0093 0.0538 0.2066 0.1087
(0.02,0.2,0.3,0.7)" Median 0.0171 0.1985 0.3427 0.6912
SD 0.0292 0.0613 0.2577 0.0836
T=800
(0.04,0.2,0.1,0.5)" Median 0.0048 0.2084 0.1122 0.5152
SD 0.0072 0.0375 0.1664 0.0817
(0.020.2,0.3,0.7)" Median 0.0185 0.1923 0.3438 0.7000
SD 0.0224 0.0468 0.2340 0.0620
T=1200
(0.0L0.2,0.2,0.5)" Median 0.0059 0.2071 0.1186 0.5151
SD 0.0069 0.0288 0.1393 0.0703
(0.020.2,0.3,0.7)" Median 0.0189 0.1967 0.3471 0.7011
SD 0.0179 0.0385 0.2158 0.0494

Note: Number of replicatior<500.
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Ex 4.3: n=400 Ex 4.3: B-800 Ex 4.3: 1200

0 0 0
04 04 04
02 02 02
o o o
9 -0 -0
04 04 o4
-0 06| -0
0 0 0

Ex 4.4: n=400 Ex 4.4: =800 Ex 4.4: 1200

Array 4.2: Results of the function estimates for Ex 4.3-4.4.

4.3.3 Proofs

In this part, we give a brief proof for Theorem 4.2 based onrésailts of Yang (2006).
An alternative proof with weaker conditions can be obtaibgdeferring to the ideas in
Chapter 6. Firstly, we make the following assumptions fodei{4.8).

Assumption 4.1. The i.i.d (0, 1) procesga} satisfiesE€ < o, and has a continuous
symmetric probability density function which is positiveeeywhere.

Assumption 4.2.The functionm(-) has Lipschitz continuougp(+ 1)th derivative.
Assumption 4.3.The processh} has a stationary density-) which is Lipschitz con-
tinuous and satisfy infa ¢(h) > 0, whereA is a compact subset & with nonempty
interior.

Assumption 4.4. The processef(h;, h(6), h)}=1,0 € © are uniformly geometrically
ergodic andp-mixing. Further the processes have stationary densi{iesh,, h) and
there are two constantsandM such that 6 m < gy(h) < M < co,h € A, 6 € ® where
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@e(+) Is the marginal stationary density kf6).

Assumption 4.5.The functionm(@, h), 6 € © defined in (4.14) satisfies

m+ (g, h)
SUpsSuUp| ————

90 hea 060N |<,0<i<L0<j<p+1
S €

and the process,} satisfiesE explaly;|'} < +oo for some constants > 0 andr > 0.
Assumption 4.6. The functionL(6) in (4.15) is continuous and has a positive definite
Hessian matrix at its unique minimugy.

Assumption 4.7.There exists a stationary positive procegsesdepending only o®

such that for any;, 6, € ®

1 oh(6,)
h(6:) 00

< W, EwW < +00.

Remark 4.1 Assumption 4.4 is similar to the conclusion of Lemma A.1 imy42006),

and it is useful to show the uniform convergence of some blesaas in Lemma A.2 of
Yang (2006). Assumption 4.7 is helpful to establish the amif laws of large numbers
and whenm(h) = y vh, it can be shown that the conditions in Assumption 4.7 are
satisfied (See Chapter 3). Other assumptions have also be@ygausly applied by

Yang (2006).
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Following the notations in Yang (2006), denpi€K) = furK(u)du and define the

matrix S as
Ho(K) 0 ua(K) - 0
0 uaK) 0 - upa(K)
S = u(K) 0 0 . (4.21)
0 ppua(K) 0 -+ pop(K)

LetS™ = (Sir)o<rr<p- AS in Fan and Gijbels (1996) page 64 or Yang (2006), we further

define the equivalent kernel
P
K:(u) = Z swu'K),1=0,1,...,p. (4.22)
=0

It is not difficult to have

1 =,
fKﬁ(U)UA"dU =4 0 0<A<pA#4, (4.23)

Appr V' =p+1,

whereA, .1 iS @ nonzero constant.
Proof of Theorem 4.2:
Based on Assumptions 4.1-4.5, using similar argument tetbef of lemma A.3

in Yang (2006), we can get

supsup|m(@, h) — Mg, h)| = op(1). (4.24)

0c® heA
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Simple calculation gives

[y: — M0, h(0))]* = [y: — m(6, h(6))]* + [M(6, he(6)) — (6, he(6))]°

+2[y: — m(6, h(O))1Lm(6. h(6)) — (6, he(6))].  (4.25)

Then, according to (4.17) and (4.19), we have

n A 5 3
Ln(0) - La(0) = % D {[m(e,ht(e))h (er;l(e,ht(e))] }n(n)
t=1 t

25 [ [y — (0, h(O)Im(6. h(6)) — A0, h(@)] | -
W2 Z} { o }n(m).(4.26>

In conjunction with (4.25) and Assumption 4.5, we know

Sup“:n(e) — La(0)l = Op(l)- (4.27)

0c®

From (4.17), for any, 6, € O, it can be derived that

Lo(0) ~ Ln(02) = = 3" [ha+ L + Il (), (4.28)
t=1

where

1 oh(6r)
(@) W(Hl — 6y),

e 2( 1 1
[ye — M(61, he(61))] (ht(91) ht(92))
1 aht(ezt)

hf(@;’t) o007

loghy(61) — loghy(62) =

=
Il

N
|

= [y; — m(61, hy(62))]° (61 — 6y),
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and

S
7 (6
= — [ZYt — m(Hl, ht(el)) - m(HZa ht(QZ))]

oML h(E5)) 1 oh(es)  amie;.h(6) 1
4 oh  hie) oor | oo m@J

{[y: = M6, he(BL)]? = [yt — M6, h(62))))

X(@l - 092) .

In the above expression,,i = 1,2,3,4,t=1,2,--- ,nare parameter vectors between
61 and6,. According to Assumption 4.5 and Assumption 4.7, we knowehexist

Bit, B2, B3 (independent off1, 6,) such that

1] < Byll61 — 62ll, 1] < Ball61 — 62l and |[l5| < Bgil|61 — 62| (4.29)

Consequently, we get

ILn(61) — La(62)|

IA

{% Z [By + Byt + Byl ﬂ(ﬁt)} 161 — 62|
t=1

Bnll61 — 6l

with B, = Op(1). In terms of Lemma 1 and Theorem 1 in Andrews (1992), we know
su@pl Ln(6) — L(O)| = 0p(1). (4.30)
fe

By the triangle inequality, (4.27) and (4.30) imply that

suplLa(6) — L(6)] = 0p(). (4.31)

0cO®
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Under Assumption 4.6, applying Lemma 14.3 (page 258) anaiEme 2.12 (page 28)

in Kosorok (2006), we then havg — ¢, = 0,(1), which ends the proof of the theorem.

4.4 Empirical Studies

In this section, based on model (4.2) and (4.8), we study thatinty excess return data
on the CRSP value weighted indices, including the NYSE, tMEX and NASDAQ.
The riskless rate used to compute the excess returns is #amonth Treasury bill rate
(from Ibbotson Associates). The range of the considered dafrom July 1926 to
February 2009 (totally 992 observations).

First, we model the data by (4.2). Before fitting the data , eedto get a reason-
able estimate fof, in model (4.2), which is assumed to be known. As a compromise,

we approximat®, by & which is estimated from the parametric model below:

Vi = m(hy, 6) + &, & = & Vhy,

& ~i.i.d(0, 1).h = w + ay? | + By,

where,m(h,, 6) can beshy, § vVhy, 5 logh, or other forms. In our study, we paoi(h, 6) =
ohy, which is commonly applied in the literature. For the cheioéL, the lagged time,
in our study, we try two casds= 100,L = 200 withA = 0.9. The results are displayed
in Array 4.3.

From the plots in Array 4.3, we can see that the estimatedtseste similar for
the two candidates df. There is no obvious cut(= 0 wheni is bigger than somg)
for 6 in each case, implying that there may be long-memory curvelaffect for the
conditional variance. According to the estimated mean tionan(-), it is suggested

76



that the nonlinear relationship between risk and returrccba more reasonable and it

seems that a highéx (risk) does not necessarily correspond to highér,) (return).

Estimation withL = 100.

Estimation withL = 200.

() 0

Array 4.3: Results of the empirical studies based on (4.2).

Next, we study the data by (4.8). Takg}? to be the considered excess return se-
ries. For comparison, we ugg}?% to estimate model (4.8) and leayg} %%, for out-of-
sample forecasts. Before minimizing (4.20) to get the ediion for the parameters, we
need to set a proper sco@dor the parameters. To get a reasonable scope, we first esti-
mate three parametric models by puttingh,) = sh, m(h,) = 6 logh, m(h,) = 6 vh; and
the conditional varianci, in (4.8) is specified by = w+a[1+nl (Vi1 < 0)Iy2 , +Bh_1.
Recalld = (w,a,n,B)", then the estimates @f in the above three parametric mod-
els are respectively [0108 0.10750.7227,0.8328F, [0.7980 0.1102 0.7497,0.8337F

and [081470.1104 0.7336 0.8332F. According to the above results, we gt =
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[0.05,1] x[0.01,0.5] x [0.5,10] x [0.1, 0.95]. Then we get:

Vi = m(hy) + &, & = & Vh,

h = 0.9567+ 0.0351[1+ 2.6854 (yi_1 < O)]y? , + 0.8798, ;. (4.32)

For comparison, we also estimate the model of Christensah €008), namely (4.1),

based on the same data set. They are

Vi = m(hy) + &, & = & Vh,

h; = 0.8301+ 0.08657 , + 0.8744 ;. (4.33)

We tabulate the RMSEs and the MAEs for both in-sample fotsaa®d out-of-sample
forecasts in Table 4.2 for (4.32-4.33). According to tabedafitting errors, it is seen
that model (4.32) has better performance than that of madaB), which empirically
justifies the generalization of the conditional varianclud it makes sense to take the

asymmetric factors into account for the considered data.

Table 4.2: In-sample and out-of-sample forecast perfooman

Model RMSE (in) MAE (in) RMSE (out) MAE (out)
(4.32) 4.9760 3.6824 4.5249 3.3013
(4.33) 5.0960 3.7137 4.6163 3.3486

Set a grid vector foh; ash = [12 : 0.25 : 30] which is contained in the intervals
between 10th and 90th percentiles of the estimb¢éor both (4.32) and (4.33). Based
on the observationg;}7%, we can estimate the value w(h(i)) (i = 1,--- , 73) accord-
ing to (4.11) in Section 4.3.1 and (7) of Christensen et &108). We plot the estimated
m(-) from (4.32) (solid line) and (4.33) (dashed line) in Figdr&. Similar to the plots
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in Array 4.3, we can see that both the estimated curves areanand they are not
monotonically increasing either. The above results irtdithe traditional parametric
specifications for the conditional mean suchnal,) = oh, 6 logh, 6 vVh; may not be
appropriate. From Figure 4.1, it is worthwhile to furthemswaler the following two
questions. Firstly, how to interpret the behaviomahy) in the figure? Partial answer
can be found in Rossi and Timmermann (2010), where non-rnooimitelation between
conditional volatility and expected stock market returas been evidenced. The sec-
ond question is whether we can obtain similarly shaped sumreen a dierent data set

is applied. We leave the detailed interpretations for fistudy.

0.9

0.85

0.8

0.75

0.7

m(h)

0.65

0.6

0.55

0.5

0.45 Il Il Il Il Il Il Il Il
12 14 16 18 20 22 24 26 28 30

Figure 4.1: Plots of estimated(ty;) for model (4.32) (solid line), (4.33) (dashed line).
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4.5 Summary

In this chapter, we study the relationship between riskddenal variance) and return
(conditional mean) by semiparametric (G)ARCH-M models.a8ppting the idea of the
constrained single-index model of Xia and Tong (2006), we @i method to estimate
the considered semiparametric ARCH-M model, which enabteto check the long
memory of the conditional volatility. Motivated by Christgen et al. (2008), we further
study their model by considering a general “news impactetrwhich allows to take
the asymmetric factor into account. An improved estimatiwethod is proposed for
the generalized model. Through the simulations, it is shilvahthe proposed estimates
perform well. From the empirical studies, we find that thevelretweer, (conditional
variance) andn(h;) (conditional mean) is neither linear nor monotonicallgreasing for
the considered data. Such a phenomenon implies that thedred parametric forms

such asn(h,) = éh,, 6 logh, § Vh, may not be appropriate.
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Chapter 5

A Functional Coefficient

Autoregressive GARCH-M Model

5.1 Background

ARCH-M models have been considered by many researchers thiag were proposed

by Engle, et al. (1987). One of its forms is

Vi = oh + &, & = & Vh,

e ~iid NO 1).h = w+ e +phs. (5.1)

There are dferent appellations fafsuch as: “price of volatility ” in Chou et al. (1992)
and “relative risk aversion parameter ” in Das and Sarkal@20In this chapter, we
simply address it as volatility céiécient. Many empirical studies have been done based
on (5.1), but mixed results were reported. For example, t@iost al. (1993) obtained

a negative value fos and Harvey (1989) found nonconstant and counter-cyclical.
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Backus and Gregory (1988) argued that the relationshipdetthe conditional mean
and the conditional variance was not necessarily lineaexpdain the above phenom-
ena, Chou et al. (1992) proposed a time-varying parametdR@4AM (henceforth
TVP-GARCH-M) model to capture the variation of the volayilcodticient. The TVP-

GARCH-M model has the form

Vi = 0thy + &, 80 = & Vhi, 8¢ = 81 + W,

& ~iid NO 1).h = w+an? , +phy. (5.2)

Here, the GARCH surprise variable:= y; — Ei_1(y;) with Ei_1(y;) is the optimal fore-
cast ofy; given all information up to timé¢ — 1. The errorss, vy are assumed to be
uncorrelated Gaussian variates with zero means and vasapand Q, respectively.
The codficient ; in (5.2) is assumed to follow a random walk, which togethethwi
the system parameters, can be estimated by the Kalman fidemaximum likelihood
methods.

Motivated by the TVP-GARCH-M model (5.2), itis sensible tady the GARCH-
M model (5.1) with a time-varying volatility cdgcient. When explaining why thé&
was time-varying, Chou et al. (1992) suggested some mamnoeac variables such
as inflation rate and interest rate could have impact on iterdfore it is worthwhile
to considers as a function of some explanatory variables. Because ofvhiéahility
of data and complexity in computation, it is hard to covertiad related factors. An
alternative method is to assumeas a function of the time-lagged returns, say
6(Y-1), which is a standard approach in time series analysis. théuargument about

settings = d(y;_1) can be given as follows. As in Chou et al. (1992) and Das ankbsa
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(2010), we can consider the volatility dGeienté to be a measure of risk aversion. Itis
generally accepted that yesterday’s return has impactdayt®risk attitude or the risk
aversion. Hence it is reasonable to assames(y;_1).

In this chapter, we shall study the following functional ffaxent autoregressive

GARCH-M (henceforth FCA-GARCH-M ) model:

Vi = (Y1)t + &, & = & Vhy,

& ~ i.i.d(0, 1), h = w + ay? | + iy, (5.3)

Herew, @, > 0,ysis independent offe } for t > s, andd(-) is an unknown smooth func-
tion. Also, h; is assumed to be driven by an alternative GARCH (1, 1) procelssre
the originale? , is replaced by the observabfg,. Similar to (5.2), such modification
for h; is helpful to estimating the model and it has been adoptedhrst@nsen et al.
(2008). Model (5.3) belongs to the scope of semiparametodats because it includes
a nonparametric pa#s(-) and a parametric pant. Considering(-) in (5.3) as a measure
of risk aversion as in Chou et al. (1992), the improvemenbd@)(lies in that it enables
us to understand the impact of previous return to the pregdnaversion. Wheih, is
observable, model (5.3) is reduced to the common functiooeilicient autoregressive
model which has been well discussed by Chen and Tsay (1988)) énd Liu (2001),
among others.

This chapter is arranged as follows. In Section 5.2, we éxplze idea about
estimation. Practical procedure for testing goodness o$ fitiso given. Simulation
and empirical studies are respectively shown in Sectiormabd3Section 5.4. We give a

summary in Section 5.5.
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5.2 Estimation and Goodness of Fit Test

In this section, we give an approach to estimate the paranpetrt and functional part
of the model. The method is based on the ideas of functioretlicent model of Cai
et al. (2000) and the quasi maximum likelihood estimatioolldwing the principle
of bootstrap test of Cai et al. (2000), we also give practraktedure to construct a

goodness of fit test.

5.2.1 Estimation

For model (5.3), we need to estimate the system parameterg and the valué(ug)
for a givenu, based on the observatiohg)”,. Letd = (w,a,p)" andd € ©, which
is the considered parameter space including the true vedly®y, of 6. All throughout
this chapter, the superscriptdenotes the transpose of a vector or a matrix. We apply
two-step method to estimate the model. The first step is imat# the functions(-)
providedd is given. The second step is to estimétbased on the obtained function
estimates in the first step. The details are as followed.

Givend, thenh(0) is determined according to (5.3) and hence it may be coreide
as an observable quantity. Suppose the funai{@nhas second derivative at poind.

Then forxin a small neighborhoodif — b, uy + b], we have
0(X) =~ 6(Ug) + &' (Ug)(X — Ug):=ap + a1(X — Up).
Based ory;, ht(e)}tT: 1» we can define the estimators fag(a;) by

.
(Bo(uo. 6). B1(Uo. ) = min > (e ~ [20 + @1(Ye-1 ~ Uo)]Mu(6))Ke(yoos — o).
»Al t=2
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Here,ky(-) = b1k(-/b) with k(-) being a kernel function ank > 0 a bandwidth. Fol-

lowing Cai et al. (2000), we have

]
5(uo, 0) = Bo(Uo, 0) = > Kr (Y1 — Uo, (@)Y, (5.4)
t=2

where

Kr(u, X) = (1, 0)(H'WH) (%, ux)"ks(U),

H being a T —1)x 2 matrix with (y(6), hi(0)(yi-1—up)) asits (—1)throw ( = 2,--- ,T),
andW = diagky(y1 — Uo). - - - , Ko(yr_1 — Uo)}. Letug take values iry._1}._, one by one,
then we can get a series of estimat@(s;_1, 6)}._, based on (5.4).

DefineAr(6) = (5(y, 6), - - - , (yr_1, 6))7, then we get following approximate quasi
log likelihood function

129

oL (5.5)

T T
Le(6.Ar(6) = 3 W0.5042.6) = Y [ logh(6) -
t=2 t=2

wheres;(6) = yi—d(Yi_1, O)h(6). Letfr = maxee Lt (6, At(6)) which may be considered
as an estimator fat. Based on (5.4)5(uo) is then approximated by(Uo, 67).

In practice, because of the complicated formdf_1, 6), it is not easy to directly
calculate the maximizef = maX.e L1 (6, AT(Q)). Subsequently, we give an algorithm

to obtainér. The procedure can be seen a generalization of Christens&n(2008).

Step 1: Assign a set of initial parameter®)(i = 0) and computeh,(69) for

t=2,---, T, according to model (5.3)

LInitial value for# can be acquired by estimating the model (5.3) with being a constant. The
sample variance qﬁ/t}thl can be used as an initial value far
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Step 2: Based on the sequengg, h(69)}T,, we can geto(ys, 69), - - -, 5(yr_1, 60)} by

(5.4).

Step 3: Update 6" (i.e., find 60+ ) by performing quasi maximum likelihood

estimation on the GARCH(1, 1) model

&) = VA,

& ~ 1..d(0,1),hy = w + aytz_l + Bh_1,

where,& =y, — 8(y_1, 0O (@D), t = 2,- -, T.

Step 4: Repeat steps 1-3 until convergence.

5.2.2 Goodness of fit test

After estimating the FCA-GARCH-M model (5.3), a possiblesgtion is whether the
proposed model performs better than the GARCH-M model witlorastant volatility

codticient. Equivalently, we want to test the hypothesis for md¢ae):

Ho:6() =06 vs Hy:6(-) = 6(Vi-1).

By applying the method of Cai et al. (2000), we give the folilogyprocedure to test the
above hypothesis approximately. ld&t(a constant)s;(-) (a function),d, andd; be the
estimators ob(-), & underHy andH; respectively. Calculate the RSS (residual sum of
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squares) unddfly as

RSS = (T — )= ,{y — 6ohi(Bo)}?

and the RSS undét; as

RSS =(T-1)'=l{y— 61(Yi_1, 01)e(61))%

The test statistic is defined to be

A1 =RS$/RSS - 1. (5.6)

We reject the null hypothesis for large valuesAaf. The following steps are used to
evaluate the-value of the test.

Step I: Generate the bootstrap residugds}’, from the centered residuag — &};_,,

where

- 2 ~ AN T 1 .
& = Yt — 01(Yt-1, 01)he(61), & = ﬁZtT:Zst

and definey; = dohy(6o) + ;.

Step Il Lety; = y;. According to (5.6), calculate the test statisti¢ based on

Wiy

Step lll: Replicate steps I-IIK times to get a sequenc{e\i‘r,i}iﬁl. The null hy-

pothesis will be rejected wheky is greater than the upperpoint of{Af‘r,i}iK:l.
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As mentioned in Cai et al. (2000) that thevalue of the above test is the rela-
tive frequency of the everdi\: > At} in the above replications. For more details about
the test, one may refer to Cai et al. (2000), Lee and Ullah @@hd Kreiss et al.

(2008).

5.3 Simulations

In this section, we give three simulation examples to exantie performance of the

considered estimators. Series are simulated from the model

Vi = S(Veer)he + &, & = & Vh,

g ~i.id N(O,1),h =w+ ozytz_1 + Bhy_1.
The cases considered are:

Ex 5.1: 6(X) = 0.4 — (0.659+ 1.26x)e 31X (w, @, B)" = (0.1, 0.1, 0.55Y.
Ex 5.2: 6(X) = 0.2sir?(nX)/X, (w, @, B)" = (0.5,0.1,0.75Y.

Ex 5.3: 6(X) = 0.31(x > 0) — 0.3(x < 0), (w, @, f) = (0.2,0.2,0.3)".

When applying steps 1-4 to estimate Ex 5.1-5.3, the kernattion k(-) in (5.4) is
chosen a&(x) = 0.75(1- x®)I(|x| < 1). We adoptAMS(b)-minimized method of Cai
et al. (2000) for choice of the bandwidith Let mandQ be two positive integers such
thatT > mQ. The idea is first to use the sub-series of lengthsgm(q=1,---,Q) to
estimate the cdicient functions(-) for the next segment of the time series of length
and then to compute the one-step ahead forecast errors. ahldevizithb is chosen to
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minimize the average of the mean square forecast errors
AMS(b) = 2 AMS,(b),

where

t=T—-qm+m

AMSq(b):% Z [V — 6(¥e1. O)Ne(6)]?

t=T-gm+1

T—-gm

andé(-) are computed from the samgg 1, h}! ™™

In our simulations, we applgn = [0.1T], Q = 4. To run the estimation, we assume
the parameters satisfying € [0.005 1], € [0.0050.9] andg € [0.1,0.99]. The
convergence criterion is set #& ™ — V| < 0.0001. We conduct 500 replications
with sample size ¥400, 800, 1200 respectively for each of the above examplhs. T
estimation results for the parameters are given in TableabdLthose for the function
6(+) restricted on the grid vectap = [-0.5 : 0.01 : 05] are displayed in Array 5.1. In
Table 5.1, Q10, Q50 and Q90 denote respectively the 10%, 5@P9@% percentiles of
the estimators among 500 replications. SD means the sthdéaration. In each row
of Array 5.1, for each grid poindp(i) (i = 1,---,101), we plot the true valu&uy(i))
(solid line) and the 10%, 50% and 90% percentileisSqJ(fuo(i))}?gf (dashed line) in the
left figure. For clear comparison, we just plot the percertiihes that are estimated
under the sample size 1200. The right figure is the box pldi@RMSE sequences for
T = 400,800 1200 (from left to the right). Ex 5.1-5.3 corresponds to (&),and (c)
respectively.

From Table 5.1, it is shown that, in most cases, the true gabfiparameters are

close to the corresponding medians (Q50) and are contairtbée interval 210, Q90].

From Array 5.1, we can see that most of the estimated valugsdédunctions are close
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to the true ones. From Table 5.1 and the box plots in Array Both the SDs and
RMSEs get smaller gradually when the sample size becongrléBimulation results
suggest that the considered estimators for either the mrianpart or the functional

part are asymptotically convergent to the true ones.
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Array 5.1: Results of the simulation experiments for fuostestimation.
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Table 5.1: Results of the simulation experiments for patanmestimation.

Example Truevalue Q10 Q50 Q90 SD

Ex5.1 w=01 0.0236 0.0999 0.2314 0.0753
(T=400) «@=01 0.0050 0.0500 0.1295 0.0511
£ =055 0.1000 0.5563 0.8832 0.2845

Ex5.1 w=01 0.0418 0.1002 0.2168 0.0615
(T=800) «=01 0.0299 0.0722 0.1235 0.0380
£ =055 0.1000 0.5573 0.7866 0.2295

Ex5.1 w=01 0.0485 0.0996 0.1892 0.0541
(T=1200) o =01 0.0336 0.0748 0.1229 0.0344
L =055 0.2334 0.5661 0.7660 0.2002

Ex 5.2 w=05 0.1898 0.5038 1.0000 0.2902
(T=400) «@=01 0.0080 0.0526 0.1162 0.0398
p =075 0.6225 0.7821 0.9081 0.1074

Ex 5.2 w=05 0.2314 0.4678 0.8290 0.2222
(T=800) a«=01 0.0348 0.0702 0.1050 0.0277
p =075 0.6595 0.7819 0.8734 0.0835

Ex 5.2 w=05 0.2722 0.4790 0.7897 0.2005
(T=1200) o =01 0.0459 0.0772 0.1076 0.0246
p=075 0.6639 0.7747 0.8557 0.0742

Ex 5.3 w=02 0.0825 0.1966 0.2888 0.0772
(T=400) «@=02 0.0374 0.1278 0.2359 0.0754
=03 0.1000 0.3230 0.6846 0.2263

Ex 5.3 w=02 01203 0.2044 0.2757 0.0586
(T=800) «@=0.2 0.0923 0.1542 0.2264 0.0520
=03 0.1000 0.2986 0.5551 0.1667

Ex 5.3 w=02 0.1367 0.1991 0.2673 0.0493
(T=1200) o =02 0.1109 0.1633 0.2217 0.0432
=03 01174 0.3225 0.4941 0.1420
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5.4 Empirical Studies

In this section, we apply (5.3) to model real data sets. Wéyaaghe monthly and
weekly excess returns on the CRSP value weighted indicashwiclude the NYSE,
the AMEX and NASDAQ. These data can be regarded as reasopebiees for the
stock market and they were also studied by Conrad and Mam2@&8) in a diferent
perspective. The riskless rate used to compute the exdessses one-month Treasury

bill rate (from Ibbotson Associates).

5.4.1 Analysis for monthly excess return
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Figure 5.1: Plots of; (the monthly excess return).

The range of the data considered is from July 1926 to Feb2@09 (totally 992
observations). The return seri{eys}?jf is plotted in Figure 5.1. For comparison, we use
V)29 to estimate model (5.3) and leayg}?°2 . for out-of-sample forecasts. To get a

t=1 t=901
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reasonable parameter space, we first fit the {;@}@f by (5.1) and (5.3) witlé(-) being

a constant. Their results are:

y; = 0.0291h; + &, & = & Vh,
& ~i.i.d(0,1), h = 0.9307+ 01162 , + 0.8518 1. (5.7)
yt = OOZOW‘It + Et, Et = Q \/H,

& ~i.i.d(0, 1), h = 0.7288+ 0.15237 , + 0.8306h ;. (5.8)

Based on the above estimates, we may reasonablp st w € [0.00110], @ €
[0.001,0.9] andpB € [0.001,0.99]. Applying steps 1-4 in Section 5.2, we get the es-

timation:

Vi = 8(Ye1)ht + &, & = & Vhy,

e ~ i.i.d(0, 1), h = 0.8192+ 0.097%2 , + 0.8673y ;. (5.9)

We also get the test statisthgoo = 0.0987 and the 90%, 95%, 97.5%, 99% percentiles
of the bootstrap test statistic sequeriag,,; }-°° (based on 1000 re-samplings) to be
0.0459, 0.0568, 0.0640 and 0.0822. Itis found the calcdilatg, is greater than all the
above percentiles, leading to the rejectiorHgf: 6(:) = 6.

The RMSEs and MAEs for both in-sample and out-of-samplectasts are pre-

sented in Table 5.2. Itis found that model (5.8) has simitén§j performance to that of

Table 5.2: In-sample and out-of-sample forecast perfooman

Model RMSE (in) MAE (in) RMSE (out) MAE (out)

(5.7) 5.5502 3.8918 4.7471 3.4076
(5.8) 5.5271 3.8825 4.6851 3.4014
(5.9 5.2886 3.7397 4.5573 3.3579
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model (5.7) for the parametric case. Our results empigigasitify the modification for
the conditional variance of (5.3). On the whole, the FC-GARKI model (5.9) has the
best forecasting performance. To illustrate the resulplgically, we plot part of the
in-sample forecasts in Figure 5.2 (to have a better grapljovaot plot the forecasted
values from (5.7) whose performance is comparable to théi.8)). From the figure,
it is shown that model (5.9) can better capture the variatiiotine excess return series

compared to the model (5.8).
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Figure 5.2: Plots o§*>% (-) and its corresponding in-sample forecasts from mode) (5.8

t=50
(=), (5.9) &+).

It is of some interest to study the relationship between thatiity coefficients
and the time-lagged excess retyyn. Set a grid vector foy;_; asup = (=3 : 0.1 : 4).
Based ony;}?% and model (5.9), the estimate of eafflo(i)) (i = 1,---,71) can be
gotten via (5.4). We plot the estimate) in Figure 5.3 (solid line). It is shown that the

obtaineds(-) is nonconstant and can take positive or negative valuesh Suesult is
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consistent with those of Backus and Gregory (1993) and RossTimmermann (2010).
Namely, the relation between equity premium and conditigakatility is unrestricted
with increasing, decreasing, flat or non-monotonic pagteifo compare, we also plot

the estimated value @& = 0.0207 (dotted line) in model (5.8) in the same figure. For

0.1

0.08
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delta(yl_l)

0.02F

-0.02

-0.04
-3
y(t-1)

Figure 5.3: Plots of estimated volatility ddieient for model (5.8) (dotted line), (5.9)
(solid line) and (5.10) (dashed line).

certainr € (0, 1), it is shown that wheg,_; < r, about two thirds of the value¥-) are
under the dotted line aof = 0.0207. On the contrary, wheyp ; > r, more than two
thirds of the values(-) are above the dotted line 6f= 0.0207. The results suggest
there may exist somdfect of asymmetry.

To give a further understanding, we suppose the unknowrtibmé(-) has a form
of 5(Yi-1) = 01l(Yi-1 > 1) + 02l (Yiu1 < 1), where we apply the idea of Tong’s (1990)
SETAR model to capture the asymmetrifeet. Following the idea of Li and Lam
(1995), we can estimate the threshold paranreterd other parameters in the GARCH
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equation. Assuming the threshaldbelongs to the interval between 25% and 75%

percentiles ofi_1, based ory;}7%, the estimates are

yi = [0.0329 (y;_1 > 0.3950)+ 0.0060 (yi_; < 0.3950) h; + &,

& = e Vh, & ~ii.d(0 1), h = 1.3445+ 0.134%2 | + 0.815% ;.  (5.10)

We seer "= 0.3950 € (0,1),5; = 0.0329> 5, = 0.0060. This seems reasonable ac-
cording to Figure 5.3. Applying (5.10) to do the in-samplé ant-of-sample forecasts,
the computed RMSEs are 5.5172, 4.6074 respectively andthesponding MAEs are
3.8792, 3.3585. From results presented in Table 5.2, thexésting performance of
(5.10) is seen more satisfactory than (5.7-5.8) but not asl@s (5.9). The calculated
RMSEs and MAEs for (5.10) give empirical evidences for itefuless in data mod-
elling. However, here we only take advantage of model (5taQuistify the proposed
FC-GARCH-M model. The properties of estimators and thrikleffect test about
model (5.10) can be interesting topics for future research.

We have also added the estimated= 0.0329 6, = 0.006 of (5.10) in Figure 5.3
(dashed line). By considering the volatility dieients as a measure of risk aversion,
the above asymmetridtect can be explained by a common phenomenon in psychology:
When the acquired return is small (less than 0.3950 for el@myhich usually happens
when the stock is at a low price), people are not that riskssvand they tend to take
risk to get higher returns. Once a high return (larger th&%0 for example, which
usually means the stock is at a high price already) has be@mel, they are easy to
become conservative and it will require higher premium fer pnit of risk to attract

them to invest on the risky assets.
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5.4.2 Rolling estimation for weekly excess return

Next, we apply model (5.3) to the weekly excess return frof@0%963 to 2702/2009
(totally 2383 observations). Since/8@/1971, for each quarter, we firstly estimate val-
ues ofs based on (5.3) witli(-) = 6 and (5.1). The previous 400 observations are used
to estimate the parameters and totally 165 estimators &aield. Let(s!'}!°>, {6°}1°° be

the estimated values for each quarter based on (5.3) wif) = 6 and (5.1) respec-
tively. These estimated results are plotted in Figure 5.4.cé&h see both the estimated
sequences are time-varying rather than constant. Thadésrase consistent with those
of Chou et al. (1992) and Das and Sarkar (2010). Moreovershewn that{é"} has

similar trajectory to that ofo?} though the latter one is a bit higher.

0.16
0.14f |
0.12f

o1f
0.08
0.06
0.04f

0.02

-0.02

_004 Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160

Figure 5.4: Plots ofs!}'% (solid line) and(¢?}'%> (dashed line).

To show the superiority of model (5.3), we also fit each grougata that is used
to estimate the consta#it The corresponding fitting errors, RMSEs and MAEs, are also
recorded. DenoteRE"}16, {REP}ES, { E HOS {MEMS, {(MEPHS?, {MEif}ilf’l5 to be the

i=17 |:1’ 1 | 1
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RMSE and MAE sequences, which are respectively acquired {f03) withs(-) = 6,
(5.1) and (5.3). For comparison, we list the percentiledefdrror sequences in Table
5.3. Itis seen that the performance of considered two paraneodels are similar, and
model (5.3) appears to perform most satisfactorily as thedierrors are much smaller

in most cases.

Table 5.3: Percentiles of error sequences.

Error Percentiles

series 10% 25% 50% 75% 90%
{(RE"} 1.6311 1.9439 2.0694 2.3211 2.5376
{(RE’} 1.6371 1.9602 2.0836 2.3238 2.5427
(RE'} 0.5264 0.6717 1.0186 1.2529 1.3780
{(ME"} 1.2201 1.4414 1.5891 1.7243 1.8407
{ME®°} 1.2099 1.4420 1.5874 1.7255 1.8696
(MEf} 0.2282 0.3048 0.4984 0.6403 0.8251

5.5 Summary

Motivated by the time-varying risk aversion and the funetibcodficient autoregres-
sive model, a functional céiécient autoregressive GARCH-M model is studied. We
consider the volatility cocient in a modified GARCH-M model as an unknown func-
tion of the time lagged excess return. Such a setting is Use$seek for the relationship
between present risk aversion and the previous return. Aroaph is given to estimate
the parameters and the unknown function. From the simulatiadies, it seems that the
considered method workgtectively. Empirical studies show that the proposed model
can capture the variation of the excess return series weliebVer, the model can also

shed insight on the choice of some potential parametric tsode
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Chapter 6

A Functional Coefficient GARCH-M

Model

6.1 Background

Motivated by the FCA-GARCH-M model (5.3), in this chaptee wrther consider the

following functional co#icient GARCH-M (FC-GARCH-M) model of the form

Vi = MUph, + &, & = & Vhy,

& ~ 1.1.d(0, 1), hy = v(Yi-1, @) + Bhe1. (6.1)

Here {y;, Ui} are observable series ang,U;) is independent ofe} fort > s. 6 =

(¢7, B)" is the unknown parameter vector amf) is an unknown smooth function. All
throughout this chapter, the superscrifgtenotes the transpose of a vector or a matrix.
v(-, ¢) is a known positive function and, as Yang (2006) or Engleldgd1993), it can

be considered as an “impact news curve”. For the specifieditonal varianceh; of
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(6.1), the originak:_, is replaced by the observable;. Similar to model (5.3), such
a modification forh, is helpful to estimating the model becaugés deterministic once
the parameterg andg are known. If we set; = yi_1,¢ = (w, @)™, v(Y, ¢) = w + ay?,
then (6.1) is reduced to (5.3). Whanis observable, model (6.1) becomes the common
functional codicient model which has been well discussed by Cai et al. (2800)Cai
et al. (2009).

This chapter is arranged as follows. In Section 6.2, we éxplee idea about
estimation and some related asymptotic results are giveémul&ion and empirical
studies are shown in Section 6.3. Detailed proof for Thedetms presented in Section

6.4 and we summarize the chapter in Section 6.5.

6.2 Estimation

For the considered model (6.1), there are two unknown panfg: andé = (¢7,5)".
In this section, we describe the estimation in two subsestithe first is estimating the
function provided the parameters are known and the secao@#imate the parameters

consistently.

6.2.1 Estimating the function

Suppose that the true values of the parametgdsare known, sayy, 8o, then

e 1= V(Yo 1, o) + Bohka = > Ao V(Y11 o) (6.2)
=1
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can be considered as an observable quantity providegghatare given. We know

E(Yt|Ut =Uu, ht = h) = m(U)h, Var(ytlut =Uu, ht = h) = h (63)

As mentioned before, whem is observable, model (6.1) becomes the common func-
tional codficient model of Cai et al. (2000). Hence, as in Cai et al. (200@) can
apply the local linear smoothing technique to estimate tilenawn functionm(-). As-
sume the procegd);} to have a continuous pdf(u) satisfying infca f(u) > 0, whereA

Is a compact subset & with nonempty interior. For any fixed € A, based on (10-11)

of Cai et al. (2000), define the estimatorofu) in (6.3) by

mu) = Ex(Z’W2)'Z'wY, (6.4)
where
h]_ hl(Ulb_u) %kb(ul - U)
Z=|": : , W = diag : ;
hn ha(2t) ko(Un — 1)

Y = (Y, -, Yn)" andEgy = (1,0)". b > 0 is a bandwidth varying with the sample size
Ko(-) = %k(;b) with k(-) being a compactly supported and symmetric kernel functan

the sake of convenience, we put

= [ xik()dx vy = [ xR)dx oj(u) = E(h U = u),

Co = pa/(uz — (%) andcy = —u1/(uz — 3). (6.5)

Based on Cai et al. (2000), under conditions A and B in Sedidnwe know (6.4)

behaves like the standard functional fim@ent estimator. Hence, we state the following
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theorem without proof.

Theorem 6.1 Under conditions A and B in Section 6.4, for any fixed A, the estima-
tor m(u) in (6.4) satisfies

Vibii(u) — m(u) - %2,13—_,11,:%,,@} 2 N, Z(W), (6.6)

H2 — My

Cauo+2C0C1U1+Ciu2 5 73U

whereX(u) = T o2(u)

and f(u) is given in condition A.2 in Section 6.4.

Remark 6.1 One can find detailed proof in Cai et al. (2000). The expressid(u)
can be easily obtained by incorporating Theorem 2 of Cai.€2800) and the equality

var (y{JU; = u, hy = h) = hin (6.3).

6.2.2 Estimating the parameters

In practice, the parameters in (6.1) are unknown. Now we gineethod to estimate
them. Letd = (¢", B)", ¢ = (¢1.---, ¢;)7. For simplicity, suppose that lies in the

interior of © = [¢11, ¢1u] X -+ X [, dru] X [BL, Bul, where O< B < By < 1. For

6 € ®, define

he(6) = V(Ye-1, ¢) + Bhi_a(6) = X521 B~ V(Y 9), (6.7)

and we assume the conditional mearyofiiven U; = u, hy(6) = h has the following

form

E(ytlUt = u, h(6) = h) = m(6, u)h. (6.8)
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Treatingly;, Uy, hy(0)} as observable processes, (6.8) enables us to estin(atd in the

framework of (1-2) of Cai et al. (2000). Define

_ 2
L(9) = E{[Iog h(6) + m(i,(g)t)ht(e)] ]n(Ut)}, (6.9)

wheren(-) is a nonnegative weight function whose compact supporbmgasned inA.

Whenn — oo, it is known thatlL(¢) can be consistently estimated by

n

L0 =5 floah(®) +

t=1

[y — m(6, Up)hy(0)]2
h(6)

}n(Ut). (6.10)

Under condition C.6 in Section 6.4,(/) has an unique minimum point & and is
locally convex. Hence the minimizer &f,(¢) should locate the true parametigrcon-

sistently under some regularity conditions. However, iacgice, we still have no idea

aboutm(0, U;) and hence the minimizer &f,(6) is not practicable. To obtain a feasible

estimator, for each € A, 8 € O, define the estimator af(6, u) in (6.8) by
Mg, u) = Ex(ZIWZ) 1 ZZWY, (6.11)

where

hi(6) M(6)(55)

ha(6) P (6)(%5)

Recall that the estimataon(d, u) in (6.11) is based on the assumption (6.8). Define next

n

La(6) := % Z {Iog he(8) +

t=1

[yi — (6, U)h(0)]2
h(6)

}n(Ut), (6.12)
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6, 1= arg ér)gei)nlin(e). (6.13)

Based only;, Ui}, and givenyy, hy(6), we can get the minimizet,. The above esti-
matoré, is similar to that adopted in Chapter 5 if we s€t;) = 1 fort = 1,--- ,n.
However, the added weight functiarf-) is not redundant. It is known, for boundary
point of {U}, the estimator in (6.11) may be seriously biased becausedequate ob-
servations. By appropriate choice faf), we can avoid to use the estimateswp, -)
for boundary points in computing (6.12). The add€d;) is also useful to establish the
following theorem, from which, we kno#, converges to the true value in probability

under some regularity conditions.

Theorem 6.2 Under conditions A and C in Section 6.4, as# c,b — 0, we have

en — 90

Proof: See Section 6.4.

After we have obtained,, the value ofm(u) can be approximated by(&,, u).
The related confidence intervals can be computed based aréirhes.1 by treating
6, as the true valué,. In practice, to get the estimator of (6.13), we need to mizém
(6.12) with respect té € ©. By generalizing the idea of Linton and Perron (2003), the

following procedure can be used to obtain the minimizer:

Step 1: Provide a set of initial paramete$® (i = 0), computeh,(§”) fort = 1,---,n

according to (6.7)

Lnitial value for@ can be obtained by estimating model (6.1) with) being a constani and the
sample variance qg/t}{: 1 can be used as an initial value faror h(6).
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Step 2: Based on the sequengg, U, h,(9")}1,, calculate
{m(é(i), Ul)’ T m(é(i)’ Un)}

in terms of (6.11).

Step 3: Update 89 to 60D by performing weighted quasi maximum likelihood

estimation (WQMLE) on a GARCH (1, 1) model

&) = Vhe,

e ~ i.i.d(0, 1), h(6)

V(Vi-1, ¢) + Bhe_1(6),

where&? = yi— Mm@, U)h(69), t = 1, --- ,n. Namely, considefz"} as an observable
series and acqui+Y) by minimizing
n

00 -1 logh(@ +

t=1

GR%
P (6)

l”(Ut)

with respect t@ € ©.

Step 4: Repeat steps 1-3 until convergence.

6.3 Simulations and Empirical Studies

6.3.1 Simulations

In this section, we give four simulation examples to dem@stthat the proposed esti-
mators for the parameters and functions are satisfacttng.s€ries are generated from
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the model

vt = mUph, + &, & = & Vh,

& ~ i.i.d N(O,1),h = v(Yr-1, ) + Bhi_1.

The cases considered are:

Ex 6.1 m(X) = 0.4 — (0.659+ 1.26X)e 32, u(y, ¢) = w + a[1 + nl(y < O)]y?,

U = Vi1, (w, @, 7, 8)° = (0.1,0.12, -0.3, 0.55).

Ex 6.2: m(X) = 0.2sir?(7X), v(Y, ) = w + ay?,

U, ~i.i.d U(=1 1), (w,@,B)" = (0.5,0.1,0.75).

Ex 6.3: m(x) = 0.31(x > 0) — 0.31(x < 0), v(y,¢) = w + ay?, U; = 0.8U_1 + \,

Vi ~ i.i.d N(0,0.36), (w,a,8)" = (0.2,0.2,0.3).

Ex 6.4: m(xX) = 0.7, v(y,®) = w + alyl, Uy = 0.6U;_; + 0.3U_5 + W,

Vi ~ i.i.d N(0,0.64), (w,a, )" = (0.08,0.1,0.8)".

When applying steps 1-4 of Section 6.2 to estimate Ex 6.1t6etkernel functiork(-)

in (6.11) is chosen alg(x) = 0.75(1- x?)I(]x| < 1). For the choice of the bandwidth
b, as described in Chapter 5, we adé S(b)-minimized method of Cai et al. (2000)
to save the cost of computation. For the weight functéhin (6.12), following Yang
(2002), we putr(u) = I(u € A), whereA is set to be the interval between the 10th
and 90th percentiles of the explanatory variable For the estimation of the system
parameters, we set € [0.005 1],a € [0.005009],7 € [-1,1] andpB € [0.1,0.99].
The convergence criterion 8! — 4¥|| < 0.0001. We conduct 500 replications with
sample sizen = 400, 800, 1200 respectively for each of the above examples.
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For the part of parameter estimates, we calculate theirepéles and standard
deviations. The results are displayed in Table 6.1 and T&Blelin the tables, Q10, Q50
and Q90 denote respectively the 10%, 50% and 90% perceatiteg estimators, and
SD the standard deviation. For the part of function estiomtunder sample size =
1200, we plot the estimated cumgu) with median performance (whose RMSE is close
to the median among 500 replications) and the true functi@)in the same figure. The
plots are displayed in the left column of Array 6.1 (dashee s the estimated curve
and solid line is the true curve). For comparison, in thetrgdlumn of Array 6.1, we
give box plots for the RMSE sequences 1ok 400 800, 1200 (from left to the right).

From Table 6.1 and Table 6.2, we can see the medians are clttsettue values in
most cases. The standard deviation becomes smaller whearige size gets larger.
From the estimated curves in the left column of Array 6.1s éen that the estimated
functions with median performance can capture the truelsenhe box plots of RMSEs
in the right column witness a better fitting performance wthernsample size gets larger.

These suggest that the considered estimators perform well.
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Table 6.1: Results of the parameter estimation for Ex 621-6.

Example Truevalue Q10 Q50 Q90 SD
w=01 0.0245 0.1146 0.2140 0.0700
Ex6.1 =012 0.0239 0.1264 0.3862 0.1515
(N=400) n=-03 -1.0000 -0.3645 1.0000 0.8193
B=055 0.1000 0.4556 0.8515 0.2835
w=01 0.0381 0.1131 0.2040 0.0600
Ex6.1 =012 0.0350 0.1233 0.3145 0.1092
(N=800) n=-03 -1.0000 -0.3014 1.0000 0.7240
B=055 0.1000 0.4940 0.8091 0.2451
w=01 0.0361 0.1021 0.1918 0.0562
Ex 6.1 =012 0.0393 0.1189 0.2529 0.0864
(N=1200) 5 =-03 -0.9749 -0.2819 1.0000 0.6242
B=055 0.1537 0.5372 0.8197 0.2289
Ex 6.2 w=05 0.1703 0.5713 1.0000 0.3112
(N=400) «=01 0.0302 0.0819 0.1539 0.0492
B=075 05683 0.7304 0.8855 0.1227
Ex 6.2 w=05 0.2658 0.5464 1.0000 0.2580
(N=800) «a=01 0.0545 0.0954 0.1450 0.0370
B=075 0.5855 0.7300 0.8465 0.0978
Ex 6.2 w=05 0.2957 0.5462 0.9548 0.2312
(N=1200) @ =01 0.0596 0.0952 0.1384 0.0303
B=075 0.6045 0.7371 0.8349 0.0860

Note: Number of replicatior<500.
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Table 6.2: Results of the parameter estimation for Ex 643-6.

Example Truevalue Q10 Q50 Q90 SD
Ex 6.3 w=02 0.0973 0.2020 0.2811 0.0723
(N=400) «=02 0.0828 0.1743 0.2814 0.0780
p=03 0.1000 0.2724 0.6053 0.2061
Ex 6.3 w=02 01239 0.1978 0.2763 0.0590
(N=800) «a=02 0.1074 0.1869 0.2649 0.0603
p =03 0.1000 0.3063 0.5305 0.1698
Ex 6.3 w=02 01321 0.1996 0.2677 0.0510
(N=1200) «a=0.2 0.1267 0.1903 0.2558 0.0493
p =03 0.1000 0.3037 0.5073 0.1460
Ex6.4 «©=0.08 0.0438 0.1445 0.5407 0.1961
(N=400) a =01 0.0493 0.1349 0.2744 0.0886
p =08 0.1005 0.6827 0.8600 0.2305
Ex6.4 «©=0.08 0.0489 0.1036 0.2056 0.0879
(N=800) a=01 0.0697 0.1192 0.1961 0.0557
p=08 05919 0.7455 0.8422 0.1219
Ex6.4 «©=0.08 0.0547 0.0983 0.1682 0.0576
(N=1200) «a=0.1 0.0729 0.1149 0.1706 0.0423
p=08 0.6599 0.7599 0.8377 0.0817

Note: Number of replicationsb00.
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6.3.2 Empirical studies

In this section, we apply model (6.1) to study some real data. sWe analyze the
monthly and weekly excess returns on the CRSP value weightikdes, including
NYSE, AMEX and NASDAQ. These data can be regarded as reaopaixies for the
stock market and they have been studied by other researdiersiskless rate used to
compute the excess returns is one-month Treasury bill fraten (bbotson Associates).

To apply model (6.1), we sél; = yi_1,u(Y,¢) = w + a[1 + nl(y < 0)]y?. Asin
Chapter 5, this setting fdd; enables us to understand the impact of previous return on
the present risk aversion. The specified conditional vagdakes the asymmetriéect
into account, namely positive and negative returns willseaasymmetric fluctuations.
Firstly, we analyze the monthly excess returns from Julyelt®Zebruary 2009 (totally
992 observations). Takg:}:°* to be the considered excess return series. For compari-

son, we usgy;} %2 to estimate model (6.1) and leajye}°%), for out-of-sample forecasts.

Before estimating the model (6.1), we display the followiwg fitted models based on

{200

yi = 0.0291n + &, & = & Vhy,
& ~ i.i.d(0,1). b = 0.9307+ 0.1161%2 , + 0.8516h,_;, (6.14)
yt = OOZOW‘It + Et, &t = Q \/ﬁ,

e ~ i.i.d(0, 1), h = 0.7288+ 0.15237 , + 0.8306h ;. (6.15)

Here (6.14) is the traditional GARCH-M model, (6.15) is the-5ARCH-M model
with m(-) = m, a constant, and(y, ) = w + ay?. Based on the above two results, for
estimating (6.1) withJ; = yi_1, v(Y, ¢) = w + a[1 + 5l (y < 0)]y?, we set the parametric
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spaced asw € [0.001, 10], @ € [0.001,0.9], 7 € [0.001, 1000] B € [0.1, 0.99]. Applying

steps 1-4 in Section 6.2, we shall get the estimates withakisf{y,}?°? :

Yi = Mye1)h + &, & = @ Vh, & ~1.0.d(0, 1),

h = 0.8442+ 0.0532[1+ 2.4782(y—1 < 0)]y? , + 0.8663,_;. (6.16)

To compare, we also estimate the TVP-GARCH-M model (5.2pbam({y;}?%. The

result is

Vi = 0thy + &1, 80 = & Vhi, 8 = 81 + W,

& ~i.i.d N(0,1),h = 0.7472+0.117672 , + 0.8592;_;. (6.17)

The estimated value d® (the variance of in (6.17)) is 22 x 107 which is quite

small. This implies that (6.17) is close to the original miq@el4) because model (5.2)

converges to (5.1) whe@ becomes small (Chou et al. 1992). The mean of the estimated

6 is 0.024 which is near the fixed value 0.029 in (6.14).

We also tabulate the RMSEs and MAEs for both the in-samplecat@f-sample

forecasts in Table 6.3. For ciheient-fixed cases, it is found that models (6.14-6.15)

Table 6.3: In-sample and out-of-sample forecast perfooman

Model RMSE (in) MAE (in) RMSE (out) MAE (out)

(6.14) 55524  3.8926 4.7356 3.4048
(6.15) 55295  3.8837 4.6692 3.3955
(6.16) 52130  3.7257 4.5455 3.3648
(6.17) 55275  3.8360 4.6518 3.3936

have comparable performance which empirically justifiestiodification of the condi-
tional variance that is driven by the past returns. For timetvarying cases, (6.16) has
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better fitting performance than that of model (6.17). On thel, model (6.16) has the
best forecasting performance for the considered data.

It is of some interest to study the relationship between thatility coefficient and
the time-lagged excess retuyn;. Set a grid vector fog;_; asug = (-3 : 0.1 : 4).
Based onfy;}°) and (6.16), we can estimate the value of emfty(i)) (i = 1,---,71)
according to (6.4). The estimated-) (solid line) and the related 95% confidence band
(dashed line) are plotted in Figure 6.1. From the plots, seisn that the estimatea(-J
is similarly shaped to that of Figure 5.3 in Chapter 5. Henee can adopt analogous

interpretation for the plots.
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Figure 6.1: Plots ofm(y;_;) from (6.16) (solid line) and the related confidence band
(dashed lines).

Next, we apply model (6.1) to the weekly excess returns fr&0)1963 to
27/02/2009 (totally 2383 observations). Starting fromy(§1971, for each quarter, we
firstly estimate constant volatility céfecients based on (6.1) witlm(-) = 6, v(y, ¢) =
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w + ay? and (5.1). The previous 400 observations are used to estithatparameter
and totally 165 estimators are obtained. L&§%, {6°}'° be the respective estimated
codficient values which are plotted in Figure 6.2. We can see fitoenplots that the
estimated two sequences are time-varying rather thanamnsthese results are con-
sistent with those in Chou et al. (1992) and Das and Sarkdi0)20oreover{s!'} has
similar trajectory to that ofo?} though the latter one is a bit higher.

For each group of the data used to estimate the constantiplatefficient in the
above, we also fit them by (6.1) (with, = yi_1, v(y, ¢) = w+a[1+7l(y < 0)]y?) and the
TVP-GARCH-M model (5.2). The corresponding fitting errore aalculated. Denote

RENS, (RELS, (RENS, (RENS, (METNS, (MEPHS, (ME[IE, (MEYES to be
the RMSE and MAE sequences, which are respectively recdrded the (6.1) with

m(-) = 6, u(Y, @) = w + ay?, (5.1), (6.1) withU; = y_1, v(Y, ¢) = w + a[1 + nl(y < 0)]y?

and (5.2). For comparison, we list the percentiles of theresequences in Table 6.4.

Table 6.4: Percentiles of error sequences.

Error Percentiles

series  10% 25% 50% 75% 90%
{(RE"} 1.5497 1.9206 2.0948 2.3285 2.5447
{RE°} 1.5483 1.9243 2.1051 2.3314 2.5481
(RE'} 0.6140 0.8271 1.1946 1.4306 1.7550
{(REY} 1.5582 1.9220 2.0975 2.3309 2.5551

{ME"} 1.1938 1.4320 1.5796 1.7312 1.8669
{ME®} 1.1816 1.4311 1.5712 1.7312 1.8786
{ME"} 0.2644 0.3833 0.6321 0.8758 1.1117
{MEY} 1.2040 1.4373 1.5857 1.7312 1.8835

From the table, similar to the case of the monthly data, ieensthat the two constant-
codticient models have comparable fitting performance. Accagrthrthe values in the
fourth and eighth rows, we can see that the performance ofGXRCH-M model is
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Figure 6.2: Plots ofs!}!5? (solid line) and(s?}'%> (dashed line).

similar to the two cofficient-fixed models. This implies the volatility déieient does
not necessarily vary in the form of a random walk and can takeesother forms. On
the whole, the FC-GARCH-M model (6.1) seems to be superiatiher models (the

fitting errors are much smaller in most cases) for the consdldata.

6.4 Proofs

We first state some conditions for model (6.1). Throughoig $ection, we leM, m
denote certain positive constants, which may takkergnt values at étierent places.

Condition A

A.1 The kernel functiork(-) in (6.4) is a bounded density with a bounded support
[-1,1].
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A.2 The proces$U,} has a continuous pdf(u) satisfying infca f(u) > 0, whereAis
a compact subset & with nonempty interior. For eaalne A, |f’(X)| is bounded

whenx takes values in a neighborhoodwof

Condition B

B.1 Thea-mixing processef{y;, U;, hy)} satisfiesy’ I[a(1)]1%° < oo for somes > 2,

c>1-2/6, whereh is given in (6.2).

B.2 E{y; + y?|Uo = Up,hp =w,U; =u,hy=v} <M < eoforalll >1,w,veR upand

u; in a neighborhood aod.

B.3 b —» 0 andnb — . Further, there exists a sequence of positive integessich

thats, — o, s, = o( Vnb), ¥Yn/ba(s,) = 0, asn — .

B.4 There exist$* > ¢, whereg is given in B.1, such thaE{ly]’|U = v,h = w} <
M < oo for all w € Randv in a neighborhood ofi, ande(n) = O(n™") where

5 > 66" /{2(5" - 0)}.

B.5 Eh[26* < o0, andnl/2—6/4b6/6*—1/2—6/4 — O(l)

B.6 Let conditional density oflfo, U)) given (o, hy), say f (uo, ulhg, hy), satisfies that
[f(Uo, ulho, )] < M < o foralll <1 andf(ulh) <M < oo, wheref(ulh) is the

conditional density ot givenh, = h.

Condition C

C.1 For eacl® € O, the proces§(y;, U;, hi(6))} generated from (6.1) is strictly station-
ary and ergodic.
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C.2 For eachd € O,u e A, functions m(6,x) in (6.8), 02(6,%) in (6.21),

am(e.u) | | IP(O.X)
1=l =5z

| and |6‘Tg—f’x)| are uniformly bounded wher takes values in a

neighborhood ofi.

C.3 For anyvy, 6, € O, there exist two positive process@g;}, {wx} (independent of

61, 05) such that] 7= "2 < wy, andhy(61)/(62) < War,

C.4 Ewy < 0o, Ewy < o0, Elyt| < o0, ER(6y) < o0, wherewy,, wy are given in C.3 and

hy(6y) is described in (6.23).
C.5 The functioru(y, ) = m> 0 holds uniformly.

C.6 The functiorL(0) defined in (6.9) is continuous and has a positive definitestdas

matrix at its unique minimunto.

Remark 6.2 Conditions A and B are basically the same as those in Cai €2a00).

Conditions C.1, C.2, C.5 and C.6 have been analogously eddt Yang (2006). C.3
and C.4 are useful for proving uniform convergence in prdiglior some processes.
And they hold for the case of the usual GARCH (1, 1) processs@e and Rahbek,

2004), which gives some basis for the assumptions.

Before giving the proof of Theorem 6.2, we firstly state thuseful lemmas.

Lemma 6.1 Let G,(0) = Qn(0) — Q(6), where @0) is a nonrandom function that is
continuous ind € O, and® is a bounded metric space. Suppose dot,, 0, € O,
Qu(6) > Q). IQu(62) ~ Qu(82) < Bulle — 62l and B, = Op(1), then we have
SURce IGn(0)] = 0p(1).

Proof: The lemma is a direct result based on Lemma 1 and The&ren Andrews
(1992).
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Lemma 6.2 Suppose I0) is an approximation of nonrandom continuous function

Q(#), which has an unique minimuég in ©. Let
b = arg minQy(6).

if SURe IQn(6) — Q(O)| = 0p(1), then we haveé, A Oo.

Proof: The lemma is a direct result following Lemma 14.3 @&%8) and Theorem

2.12 (page 28) in Kosorok (2006).

Lemma 6.3 Letd € O,

Aq1(6) + ag(6) Ax(6) + ag?(6) A11(9) As2(6)
An(6) = and A0) =

Ax1(0) + aZH(0) Ax(6) + aZ4(0) Az(6) A2(6)

Forl <i,j <2 if SURe |ain’j(9)| = 0p(1) and the element of nonsingular matrixgh
satisfiessup,e |Aj(0)] = Op(1), then we have A6) = AB)™ + pn(h). Herepn(6) =

(07)(6))1<i <2 @andsup,.e lor (6)] = 0p(1).

Proof: Simple algebra yields,(0)| = |A(0)|+an(6), SUR.e lan(6)] = 0p(1). By definition,
we know the elements in the first row and the first colummg®)* and A-1(6) are

respectivelyAn(0) " [Ax(6) + a24(6)] and |A(B)| 1 Ax2(6). Let

P (O) = 1ANO) T [Ax2(6) + a5H(O)] — IAB) ™ Anal6)

a2 (O)IAB)] — Ax2(0)an(6)
T AWG) + an(0)A@)

then we know sup, [on'(6)] = 0,(1) when 0% |A(6)| = O(1). Using similar argument

to other elements ok,(0)~* andA=1(6), then the proof can be completed.
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Proof of Theorem 6.2:

Define

Sn,O(e) Sn,l(g)
Sn(0) = ZWZ, = , (6.18)

Sn,l(e) Sn,Z(‘g)

where,

18 Ui — uy/ .

S0i(0) = = > O (Z—) k(Ui -0, ] =0.1.2 (6.19)
t=1

For eachy € ®, under condition C.1, we know th&, ;(0) = ES;j(6) + 0p(1). Here

EL(0)(~ k(U - )]
Ui —u
b

[ 1m0, LT v, - e

E Sn, ] (9)

E[o2(6, U)( ) ko(Uy — )]

+1
f f (bX+ U)o2(6, bx + u)x'k(X)dx
-1

1 - F(U)or2(6, u) + R(). (6.20)

In the above expressions; (6, u) is defined as
ai(6,u) = E[h(6)IU; = u]. (6.21)

R(6) is given by

R() = bf(u) f Il 9a2(6,

+1
+ba5(6, u) f f/(DApX + U)X k(X)d X
-1

+1
o f 27202 11+ U 2K
-1

ki
0 X THk(x)dx
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whereA,, 4, € [0, 1]. Under conditions A.2 and C.2, we know that
f(X), T'(X), 02(0, X) anddo,(6, X)/Ox
are uniformly bounded in a neighborhoodwfAs a result, it is easy to have
sup|R(0)| = o(1), (6.22)
0c®
asb — 0. From (6.19), we know that

Snj(01) — Snj(62)

_ % Z(Utb‘ %)ike(Uy — W)[M3(61) — h2(6,)]
t=1

2 Ui —ug 1 oh(67)
- £ E j U, —u 2 o (6, — 65).
n t:1( b ) kb( t )h[( l,t) ht(@it) 897. ( 1 2)
Hered , and the subseque@[t[,i =2,---,8,t=1,---,nare parameter vectors between

61 andd,. Without loss of generality, we can suppose there existsa® such that
h(6y) > h(6),0 € ©,t=1,2,---. (6.23)

PUtBy, = 2 3L 254 ko(Ur — U)hZ(8u) W and we knowSy, (61) — Snj(62)| < Bnlls —
6-||. Based on C.2 and C.4, it is easy to shBw = Oy(1). According to Lemma 6.1,

we have
su@plSn, i(0) — ES,(0)] = 0p(1). (6.24)
fe

(6.20), (6.22) and (6.24) imply that

Sn(6) = 11 T (We(6. 1) + T (6). SUPIT 4)] = 0(L) (6.25)
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Consequently, we have
Sn(6) = F(W)o2(6, U)S + rn(6),

asn — oco,b — 0, where

Mo M1 Mo(6) rn1(6)
S= ,M(0) =

H1 M2 Ma(6) rn2(6)

Applying Lemma 6.3, we know that there is a matRxy0) of the form

Rno(6) Ry1(6)
Rn(6) = , SUPIRy;(0)] = 0p(1)

Ru1(6) Rua(0) | *°
such that

-1

_ S
Sn(0)* = o6 + Ra(6).

Supposes = (S")o. j<1, then it can be calculated that

S, HOZZW = STZIW + R,()Z3 W,

1
f(u)o2(6.u)

o1 | Koo(Us = 0)s(6) -+ Kos(Un ~ u)(®)
S ZHWZH

Kip(Ur —u)hy(0) - -+ Kyp(Un — Uu)hn(6)

Rn(Q)ZTW— 1 C11(9) Cln(‘g)

C21(‘9) C2n(‘9)
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where

Ki(¥) = 2o STXk(X), j = 0, 1, Kjp(x) = £K;(x/b), (6.30)
C1i(6) = Tio Ru@ko(U; — wh()(). 1< j <n,

C2i(6) = 221 Ru(@ko(Uj — Wy (O)(-5) L 1< j<n. (6.31)

It is not difficult to prove supg |Cij(6)] = 0p(1) in terms of (6.28) foi = 1,2,] =
1,---,n. LetE; = (0,1)7, by definition, we know

ENZWZ) 'ZZWZE, = 1, El(ZZWZ) *ZZWZE; = 0.

Then we have

m(e, u) — m(o, u)

= EXZW2)'Z;WY - me, WEHZIWZ) ' ZWZEo

_am(e, u)
ou

bEN(ZIWZ) 'ZIWZE,

= {E{Sn(6)'ZZWLY — Mg]}

+ {Egsn(e)-lzgw[l\/lg - m(6, U)ZyEq - amgz, W bzeEl]}

= 12(6) + 15(6), (6.32)

whereMg = (m(6, U1)hy(0), - - -, m(6, U,)ha(0))7, 1.(6) andl,(#) mean the corresponding
items in the preceding two pairs of braces. Via some algelwalculations, we further

get

11(6) = 112(6) + 112(9), (6.33)
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where

It is not difficult to obtain that (here we omit th@(1) term ——

deductions)

Define

1206) = = " Cu@). - M6, UD(@).
t=1

f(u)o- ,u)

111(61) — 1112(62)

% D Kon(Ut = U)yi[he(6) - hi(6)]
t=1
+%1 ; Kon(Us — U)m(6s, U[h2(6) — h2(65)]

+_—l Z KO,b(Ut — U)htz(GZ)[m(ela Ut) - m(92, Ut)]

— Z Kob(Ut — U)ythe(65,) h (;— ) é(QTZt) (61 — 62)

) 1 (o Zt)
+— Z Ko b(Ut - U)m(‘91 t)h ('93t)ht(9 ) 007
+— Z Kob(Ut — U)NZ(62) ( -0 )(91 — 62).

Ban = ~ Z Ks (Ut = Ulyelh(60)waq
= Z K p(Ur — U)h2(Gu)wi

e Z Ko(Ut = WhE(60),
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1 n
110 = S0y 2 00Ut~ WD 6. LK@,

6-)

(6.34)

(6.35)

for simplifying the

(6.36)



where

1
o 1
Ki(X) = Zo ISMIX'K(X). | = 0.1 Kjp(x) = ZKj(x/b). (6.37)

Then, in terms of C.2 and C.3, for certdifh, we have

[111(61) — 112(62)] < Bonll61 — 62|l (6.38)

It is easy to showB,, = Oy(1) based on C.2 and C.4. Applying Lemma 6.1:t¢6), we

shall get

§u®p||11(9) — E[111(0)]] = ~:’U®p||11(9)| = 0p(1) (6.39)

by noting thatm(0, U)h(6) = E[yi|U;, h(6)] in terms of (6.8), which implies that

E[111(6)] = 0. In fact, (apart from th&(1) term+--55), based on (6.34), we have

E[l12(0)]

E{Kop(Ut — u)he()[y: — m(6, Up)he(6)]}

E{Kon(Ut — Wh(O)[y: — E[y:|U¢, he(6)]]}

E{Kon(Ut — Wh(8)y: — Kop(Ur — u)he(0)E[y:|U¢, h(6)]}

E{Kon(Ut — Wh(6)y: — E[Kop(Ur — u)he(0)y:|Ut, h(6)]}

= 0.

One can also easily see gupll12(0)| = 0,(1) based on (6.31) and (6.35). Incorporated

with (6.39), it follows that

§u®p| 11(6)] = 0p(1). (6.40)
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We next show that syg, |12(6)| = 0p(1). Recall that

12(6) = E5Sn(6)1ZEW/| M, — m(6, U)ZyEq - amge YzE,
= 121(6) + 122(6),
where
1 n
121(0) = W Z Kon(Ut — Whi(6)[m(@, Uy)
—m(o,u) - 2 (9 "4,
1 m( ) 1t)
= _znf(u)az(e'u)'ZKOb(ut RO — 5 (U - U
(6.41)
0 = 1Y 0 6,0 - e, - D0, - 0
= on cht(e)ht(e) ( ’ “)(Ut - W2 (6.42)
Here, foreach = 1,--- ,n, U, takes value betweamandU;. Foru € A, under C.2, it
can be derived that
Mb? Uy —
SUPIz(0) < s D KoLy~ U=
= b?0p(1) = 0p(1),b — 0. (6.43)
From (6.31), supg l122(0)] = 0p(1), in conjunction with (6.43), which gives
supll2(6)] = 0p(1). (6.44)

0O
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(6.32), (6.40) and (6.44) imply that
sup|m(@, u) — m(6, u)| = op(1). (6.45)
6c®

From (6.10), it is not diicult to get

Ln(61) — Ln(62)

_ 1 Z[Iog h(6) - loghy(62)](Uy)

Z[ht(g G )][yt m(61. U)h(@)]°(Uy)

Z (1= O, UOR (@Y - [y - (e U
1 t( St)
= —Z m(U t)ht(e ) o6 ——— (01— 6)

1 aht (9&)
hie;,) 96

L - s, U@L (61~ 62)
t=1

+_—l Z :‘:t((zt; {2yt — m(61, Un)he(61) — m(62, U)he(62)]

om k(05 ¢
%ht(em m(z. Uy) (8)

X[ 1}(61 - 62). (6.46)

Note that O< 7(U;) impliesU; € A andh(8) > m> 0 for all § € ® under C.5. Define

n

B =+ 3 n{Uwa + Znya + (0 (U

tl

+F Z[|Yt| + e (6u)]m(Ue)(Wat + Way).
=1
Then we know
ILn(61) — Ln(62) < Banll61 — 62| (6.47)

for someM and it is easy to shows, = Oy(1). Applying Lemma 6.1 td_,(6), then it
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follows that
su@pl Ln(6) — L(O)| = 0p(1). (6.48)
e

It is not difficult to derive that

[y: — (6, UDh(®)]* = [y: — m(6, UDhe(6)]% + hZ(6)[m(6, Uy) — (6, Uy)]?

+2[y: — (6, Uhe(0)][m(6, Ur) — m(6, Up)]1h(6).

From (6.10) and (6.12), it follows that

L)~ (@) = = > m(UDREIME, Uy - (e, Uy
t=1

n

+§ Z a(U)[m(6, Uy) — M6, Uy][y: — m(6, Up)h(6)].

t=1
Further,

n

SUpILA(®) - Lof@)] < = > #(U)(60) suim(@, Uy) - e, UpJ?
0cO n =1 S0

n

2 3" AU + M (6] Supimi6. Uy — e, U

t=1

= 0p(1). (6.49)
(6.48) and (6.49) imply that
SUpIL(®) - La(6)] = 0p(2). (6.50)

Under condition C.6, and applying Lemma 6.2, we obtain thestency from (6.50).
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6.5 Summary

In this chapter, motivated by the FCA-GARCH-M model in Cleags, we further study
a functional cofficient GARCH-M model, where the volatility c@iecient is treated as
an unknown function of a certain variable. Such a settindpksaus to study the rela-
tionship between risk aversion and some related varialde, tbe time-lagged return).
An improved approach is given to estimate the parametersem3ARCH equation.
Under some regularity conditions, the parametric estinsaice shown to be consistent.
Simulation studies have shown the method performs wellodgin the empirical stud-
ies, the proposed FC-GARCH-M model seems to be superioretsiial parametric

models for the considered data.
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Chapter 7

Conclusions

In this thesis, based on previous work in the literature.(&.igg, 2004, Christensen et
al., 2008, Cai et al., 2000), we have studied some paranagttisemiparametric models
for financial time series. Besides the TARCH model in Chapteve mainly consider
the GARCH-in-Mean models by assuming the conditional vexgéeto be driven by the
past returns. Such a setting for the conditional variandeasd slightly easier to study
related issues in estimation and inference. Some thealegisults have been obtained
such as: asymptotic null distribution (Theorem 2.2) in Gbag, geometric ergodicity
condition (Theorem 3.1) and asymptotic normality (TheoB8) in Chapter 3, consis-
tency (Theorem 6.2) in Chapter 6. The conducted simulatiatias for the considered
models suggest that the proposed methods work satisfgctenom the empirical stud-
ies, for the considered data, it is seen that the proposecisibdve comparable or
better fitting performance as compared to the traditionasorMoreover, some inter-
esting results have been gotten like the relationship beiviee conditional mean and

variance (Chapter 4), and the relations between volatlgfficient and time lagged
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return (Chapters 5-6).

Our study reveals that there are several areas that may libwile to be ex-
plored further. First, when we study the asymptotic prapsrfor the QMLE of the
considered TARCH model in Chapter 2, assuming the thregberia@meter is known is
rather restrictive. The results would be more general if carestudy the estimation of
all the parameters (including the threshold parameten}ljoi Second, for the specific
GARCH-in-Mean model in Chapter 3, it is worthwhile to furtheudy the QMLE of
the model for non-stationary cases (namely the true pasmate located in a non-
stationary region.). Conditions for the existence of motaean also be an interesting
topic. It would be a significant contribution if one can stullg ergodicity and QMLE
for other popular choices of the mean function, suclnéds) = éh, m(h;) = §logh.
Third, for the semiparametric models discussed in Chagtarsl 6, though parametric
estimators are shown to be consistent, we have not estattlish asymptotic normality
of the estimators. Also, few theoretical results about thmefional estimation in Chap-
ters 4 and 6 have been given. Future studies are expectetittosfijap. Finally, for
empirical studies in Chapters 5-6, besides the time laggenins, further study of the
relationship between volatility céiécient and other explanatory variables is of practical

value.
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Appendix

In this part, we present the Matlab codes for estimating tbdets (6.15-6.17) in Chapter 6. The codes
for previous chapters can be analogously developed basékeopresented ones and hence we omit
them. The codes for (6.14) are similar to those of (6.15) artth we do not present them here either.

A.1 Matlab Code for the estimation of model (6.15)

To get (6.15), given observatior{yt}thl, we equivalently need to estimate = (6, ao, a1,ap) for
the model below:

yi = ohy + &, & = & Vhy,
& ~i.i.d(0,1), h = ap + a1y? ; + azhi_1.

The codes are as follows:

function theta=garchmn(y)

format compact;

data=y;

% initial values

ss=std(data);

hO=ss " 2;

delta=0.2;

a0=0.2;

al=0.5;

a2=0.1;

theta=[delta a0 al a2];

% constraints

thetal=[-2 0.0001 0.0001 0.00017;
thetaU=[2 50 0.99 0.99];
% optimization options
optopt=optimset ('Maxlter’,1000);

[x, fval]=fmincon(@garchlik ,theta ,[], [I.[]1.[].,.--
thetalL , thetaU ,[],optopt,data,h0);
theta=x; lik=-fval;

[lik ,V]=garchlikO (theta, data, h0);

function lik=garchlik (theta ,bdata,b h0)
[lik ,V]=garchlikO (theta ,data ,h0);

function [lik ,V] = garchlikO (theta ,data,bhO)
delta=theta (1);

a0=theta (2);

al=theta (3);

a2=theta (4);

N=size(data);
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V=zeros(N+1);
W=hO;
V(1)=W;
lik =0.; % negative likelihood
for indx=1:N
error=data(indx)deltax W;
lik =lik +(error "2)/W+log (W);
W=alO+al«data (indx) 2 a2xWV,
V(indx+1)=wW;
end

A.2 Matlab Code for the estimation of model (6.16)

To get (6.16), given observationy, }thl, we equivalently need to estimate = (w,a,n,) for the
model below:

yi = M(Ye1)he + &t & = & Vhe, & ~ 1.i.d(0, 1),
he = w + o1 + nl (Y1 < 0)y?; + Bhe1.

The codes are followed:

function y=FCE(Y,U,X,U0,b)
N=length(Y);
I=length (U0);
I=ones(N,1);
y=I[1;
for i=1:1
Ui=U-U0(i)=1;
KI=(0.75/b)*(1-Ui.«Ui/(b"2)).x(abs(Ui)/b<0.999);
Sll=sum(KI.xX.xX);
S12=sum(Kl.*X.«X.xUi);
S21=sum(Kl.*X.«X.xUi);
S22=sum(Kl.=X.«X.xUi.xUi);
Tl=sum(KI.xX.*Y);
T2=sum(KI.«X.xY.xUi);
fenmu=S22+S11-S12«S21;
fenzi=S22+«T1-S12«T2;
if fenmu==0
temp=fenzi/(fenmu+0.0001);
else
temp=fenzi/fenmu;
end
y=[y;temp];
end

The above function “FCM "is used to estimate the common fonel cogficient model proposed by Cai
et al. (2000). The inputs ¥, X are observation vectors. dds the grid point vector which has the same
length to that of outputy. b is the given bandwidth.

function theta= WQMLE(Y, error ,U, theta0)
format compact;

dataly;

dataZzerror ;

ss=std(datal);

Vbar=ss " 2;

omegathetaO(1);
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alpha=theta0 (2);

eta=thetaO (3);

beta=thetaO (4);

par=[omega alpha etabeta];

% constraints

parL=[0.001 0.001 0.001 O0.1];

parU=[ 10 0.9 1000 0.99];

% optimization options

optopt=optimset ('Maxlter’,1000, 'LargeScale’,’ off’);
[x, fval, hess|= fmincon(@garchlik, par, [], [I., [I. [I.
parL, parU, [], optopt, datal,hdata2,Vbar,U);
par=x;

theta=x;

stderrs=diag(sqrt(inv(hess)))’

lik =—fval;

[lik ,V]=garchlikO (par, datal,h data2, Vbar,U);

function lik=garchlik (par, datal, data2,Vbar,hU)
[lik ,V]=garchlik0 (par, datal, data2, Vbar,U);

function [lik ,V]=garchlikO (par, datal, data2, Vbar,hU)

omegapar(1);

alpha=par(2);

eta=par (3);

beta=par (4);

N=size(datal);

V=zeros(N+1);

W=Vbar;

V(1)=W;

P10=prctile (U,10); P9&prctile (U,90);

lik =0.; % negative likelihood

for indx=1:N-1
lik=Ilik +((data2 (indx)"2YW+log(W)) = (P10<=U(indx ))*(U(indx)<=P90);
W=o0omega+ alphax(l+etax(datal(indxkx=0))xdatal(indx) 2 betaxW ;
V(indx+1)=W,

end

The above function “WQMLE "is for the weighted QMLE in Stem3Section 6.2.2. The elements of
inputs Yerror are respectivelytyéﬁ') in Step 3. The elements of input U are the lagged returns amd th
input “thetaO "is the initial value for the output “theta”. Bsed on the above two functions, “FCM "and
“WQMLE ", we give the following function “estimate "to estiate the model. For the function “estimate
", the input “thetaO "is an initial estimator for the paramet vector and Y is the observation vector.

function [theta.e wuchakestimate(Y, thetaO)
N=length(Y);

k=50;

temp=thetaO;

wuchas=[];

for j=1:k

V=o0ones(N,1);

V(1,1)=std(Y)"2;

for i=2:N

V(i,l)=thetaO(1}thetaO (2x(1+theta0 (3)(Y(i -1)<=0))«Y(i =1)"2...
+thetaO (4)%V(i -1,1);

end

X=V;

Y1=Y(50:N);
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Ul=Y(49:N-1);
X1=X(50:N);
h=1.06«std (Ul)*(N-51)"(-1/5);
M=FCE(Y1,U1,X1,U1,h);
errorl=Y1-M.xX1;
theta WQMLE(Y1, errorl ,Ul, theta0)
clc
wuchanorm (thetal-theta0);
if wucha<=0.0001
break
else
thetaG=thetal;
temp=[temp;thetal];
wuchas=[wuchas;wucha];
end
end
thetae=thetal;
thetaestemp;

A.3 Matlab Code for the estimation of model (6.17)

To estimate model (6.17), namely we are to estimate

Vi = 0the + &, & = & Vhy, 6t = 61 + W4,
e ~iid N0, 1),h =a+an? , +ah.

Here, the GARCH surprise variabig := y; — E_1(yt) with Ei_1(y;) being the optimal forecast of
given all information up to timé — 1. The errorss, ¢ are assumed to be uncorrelated Gaussians with
zero means and varianclesandQ, respectively. In above model, the ¢heients; is assumed to follow

a random walk, which together with the system parameterspeaestimated by the Kalman filter (see
page 399-400 in Section 13.8 in Hamilton 1994 ) and maximdkealihood methods. The codes are
presented as follows:

function [theta lik h f] = kalmanest(y)

format long;

% initial values

ini=[10 2 var(y) 0.001];%ini=[b10, pl0, hO, etaO];
a0=0.9;

al=0.1;

a2=0.6;

Q=50;

par=[a0 al a2 Q];

% constraints

parL=[0.000001 0.000001 0.000001 0.0000017;
parU=[ 10000 0.999 0.999 10000];

% optimization options

optopt=optimset ('MaxFunEvals’, 5000, 'Maxlter’ ,5000,...
"TolFun’,10"-10,'TolX’,10"-10,...

"TolCon’,10"-10, 'Display’,’iter ', LargeScale’, off’")

[x, fval, hesg=fmincon(@garchlik, par, [], [1, [1., [].--.
parL, parU, [], optopt, y, ini);

par=x;

theta=par;

stderrs=diag(sqrt(inv(hess)))’;

lik =—fval

134



[lik , h, f]=garchlikO (par, y, ini);
function lik=garchlik (par,y,ini)
[lik ,h,f]=garchlikO (par, y, ini);

function [lik ,h,f]=garchlikO (par, y, ini)
a0=par (1);

al=par(2);

a2=par (3);

Q=par (4);

N=length(y);

h=zeros(N,1); % h=(h1, h2, ht,..., hN)

H=zeros(N,1); % H=(H1, H2, Ht,..., HN), var(etat)=H_t
b=zeros(N,1); % b=(b1j0, ..., btjt-1, .., bNN-1)
p=zeros(N,1); % p=(pl/0, ..., ptit-1, .., pNN-1)
e=zeros(N,1); % e means eta(etal, etat, ..., etaN)

f=zeros(N,1);

b10=ini (1);pl0=ini(2);h0=ini (3);etal=ini(4);

h(1l)=a0O+al«eta0"2+ra2+h0;

f(1)=b(1)+h(1);

e(1)=y(1)-b(1)xh(1);

H(1)=h(1)+h(1) " 2+p(1);

lik = 0.; % negative likelihood

for t=1:N-1
templb (t)+p(t)(y(t)-b(t)«h(t))/(h(t)+p(t)+1);
temp2=p(t)-p(t)"2«h(t)/(h(t)=p(t)+1);
b(t+1)=templ;
p(t+l)=temp2Q;
h(t+l)=a0+alxe(t) 2+a2«h(t);
f(t+1)=b(t+1)xh(t+1);
e(t+1l)=y(t+1)-b(t+1)«h(t+1);
H(t+1)=h(t+1)+h(t+1) 2«xp(t+1);
lik=lik +(e(t+1)"2)/H(t+1)+log(H(t+1));

end

135



References

Andrews, D. W. K. (1992). Generic uniform convergendeconometric Theorg

241-257.

Backus, D. and Gregory, A. (1993). Theoretical relationsvieen risk premiums and

conditional varianceslournal of Business and Economic Statisfi¢sl 77-185.

Bera, A. K. and Ra, S. (1995). A test for the presence of cartit heteroskedasticity

within ARCH-M framework.Econometric Reviews4(4)473-485.
Billingsley, P. (1968) Convergence of Probability Measura#/iley, New York.
Billingsley, P. (1995) Probability and Measurg3rd edition. Wiley, New York.

Bollerslev, T. (1986). Generalized autoregressive caothi heteroskedasticityour-

nal of Econometric81307-327.

Bougerol, P. and Picard, N. (1992). Stationarity of GARCléd&sses and of some

non-negative time seriedournal of Econometric§2 115-128.

Cai, Z. , Fan, J. and Yao, Q. (2000). FunctionalfGoent regression models for
nonlinear time seriesJournal of the American Statistical Associatiéh 941-
956.

136



Cai, Z., Li, Q. and Park, Y. J. (2009). Functional-@o®ent models for nonstationary

time series datalournal of Econometric$48101-113.

Caporale, T. and McKiernan, B. (1996). The relationshipMeein output variabil-
ity and growth: evidence from post war UK dat&cottish Journal of Political

Economy43229-236.

Chan, K. S. (1990). Testing for threshold autoregressidre Annals of Statistick3

1886-1894.

Chan, K. S. (1991). Percentage points of likelihood ratgigdor threshold autore-

gressionJournal of the Royal Statistical Society5B 691-696.

Chan, K. S. and Tong, H. (1990). On likelihood ratio testdfoeshold autoregression.

Journal of the Royal Statistical SocietyoB 469-476.

Chen, R. and Liu, L. (2001). Functional Gteient Autoregressive Models: Estima-

tion and Tests of Hypothese¥ournal of the Time Series Analy@2151-173.

Chen, R. and Tsay, R. S. (1993). Functionalffioent autoregressive modelournal

of the American Statistical Associati88 298-308.

Chou, R. (1988). \Volatility persistence and stock valuaticsome empirical evidence

using GARCH.Journal of Applied Econometric3279-294.

Chou, R., Engle, R. F. and Kane, A. (1992). Measuring risksaga from excess

returns on a Stock Indexdournal of Econometric§2201-224.

Christensen, B. J., Dahl, C. M. and Iglesias, E. M. (2008mifarametric inference
in a GARCH-in-Mean modeManuscript, Michigan State University

137



Cline, D. B. H. (2007a). Stability of nonlinear stochastcursions with application

to nonlinear AR-GARCH model#Advances in Applied Probabili§0 462-491.

Cline, D. B. H. (2007b). Evaluating the Lyapounov exponamd axistence of mo-
ments for threshold AR-ARCH model3ournal of Time Series Analys?8 241-

260.

Cline, D. B. H. and Pu, H. H. (1999). Geometric ergodicity ohhnear time series.

Statistica Sinica9 1103-1118.

Cline, D. B. H. and Pu, H. H. (2004). Stability and the Lyapownexponent of thresh-

old AR-ARCH modelsThe Annals of Applied Probabiliti4 1920-1949.

Conrad, C. and Mammen, E. (2008). Nonparametric Regressidratent Covariates
with an Application to Semi-parametric GARCH-in-Mean M&levlanuscript,

University of Mannheim

Das, S. and Sarkar, N. (2000). An ARCH in the nonlinear meR@A-NM) Model.

Sankhya Ser B2 327-344.

Das, S. and Sarkar, N. (2010). Is the relative risk aversemarpeter constant over

time? A multi-country studyEmpirical Economic88 605-617.

Davies, R. B. (1977). Hypothesis testing when a nuisancanpeter is present only

under the alternativeBiometrika64 247-254.

Davies, R. B. (1987). Hypothesis testing when a nuisancanpeter is present only
under the alternativeBiometrika74 33-43.

138



Degiannakis, S. and Xekalaki, E. (2004). ARCH models: aa@v@Quality Technology

and Quantitative Managemeht271-324.

Drost, F. C. and Klaassen, C. A. J. (1997)ffiient estimation in semiparametric

GARCH models.Journal of Econometric81193-221.

Engle, R. F. (1982). Autoregressive Conditional Heterdas#city with Estimates of

the Variance of United Kingdom Inflatiofeconometricéb0(4) 987-1007.

Engle, R. F. and Gomez-Rivera, G. (1991). Semiparametric ARCH modétsurnal

of Business and Economic Statist®c345-359.

Engle, R. F., Lilien, D. M. and Robins, R. P. (1987). Estimgttime varying risk

premia in the term structure: the ARCH-M modEkconometricéb5 391-407.

Engle, R. F. and Ng, V. (1993). Measuring and testing the ohpénews on volatility.

Journal of Financet81749-1778.

Fama, E. F. and French, K. R. (1989). Business conditionseapdcted returns on

stock and bondslournal of Financial Economic85 23-49.

Fan, J. and Gijbels, I. (1996l.ocal polynomial modeling and its applicationShap-

man & Hall, London.

French, K. R., Schwert, G. W. and Stambaugh, R. F. (1987).e&bep stock returns

and volatility. Journal of Financial Economic$9 3-29.

Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993) h®retationship between
the expected value and the volatility of the nominal excetisrn on stocksThe
Journal of FinanceXLVIIl 1779-1801.

139



Grier, K. B. and Perry, M. J. (2000). Thefects of real and nominal uncertainty
on inflation and output growth: some GARCH-M evidendeurnal of Applied

Econometric4545-58.

Hardle, W. and Tsybakov, A. B. (1997). Local polynomial estiora of the volatility

function. Journal of Econometric81223-242.

Harvey, C. (1989). Is the expected compensation for maatility constant through

time. Manuscript, Duke University

Hamilton, J. D. (1994). Time Series Analysis. Princetonvwgnsity Press, Princeton.

He, C. and TasSvirta, T. (1999a). Fourth moment structure of the GAR@] pro-

cessesEconometric Theor{5824-846.

He, C. and TeaasSvirta, T. (1999b). Properties of moments of a family of GARC

processeslournal of Econometric82 173-192.

Hong, E. P. (1991). The autocorrelation structure for theRGM-M process.Eco-

nomics letter87 129-132.

Jensen, S. T and Rahbek, A. (2004). Asymptotic inferencedorstationary GARCH.

Econometric theorg01203-1226.

Karanasos, M. (1999). The second moment and the autocoearfanction of the

squared errors of the GARCH moddburnal of Econometric8063-76.

Kosorok, M. R. (2006) Introduction to Empirical Processes and Semiparametric In
ference Springer, New York.

140



Kreiss, J. P., Neumann, M. and Yao, Q. (2008). Bootstrag tessimple structures in

nonparametric time series regressismatistics and its interfacg(2) 367-380.

Lee, S-W. and Hansen, B. E. (1994). Asymptotic theory forG#RCH (1, 1) quasi-

maximum likelihood estimatoEconometric Theorg0 29-52.

Lee, T-H. and Ullah, A. (2000). Nonparametric bootstrapstésr neglected nonlin-

earity in time series regression modeé¥anuscript, University of California

Li, W. K. and LAM, K. (1995). Modelling the asymmetry in stoodturns using thresh-

old ARCH model.Statisticiand4 333-41.

Li, W. K. and Mak, T. K. (1994). On the squared residual autcelations in non-linear
time series with conditional heteroskedasticltyurnal of time series analysib

627-636.

Ling, S. (2004). Estimation and testing of stationarity double autoregressive mod-

els.Journal of the Royal Statistical Society @5 63-78.

Ling, S. (2007). A double AR®) model: structure and estimatioBtatistica Sinica

17161-175.

Ling, S. and Li, D. (2008). Asymptotic inference for a noatginary double AR(1)

model.Biometrika95 257-263.

Ling, S. and McAleer, M. (2002a). Necessary anélisient moment conditions for
the GARCH (o, gq) and asymmetric power GARCHy(q) models. Econometric
Theoryl18722-729.

141



Ling, S. and McAleer, M. (2002b). Stationarity and the exigte of moments of a

family of GARCH processeslournal of Econometric06109-117.

Linton, O. B. (1993). Adaptive estimation in ARCH modeEconometric Theorg

539-569.

Linton, O. B. (2009). Semiparametric and nonparametric AR@odeling, in An-
dersen, T. G., Davis, R. A., Kreiss, J. P. and Mikosch, Ths.jetlandbook of

Financial Time SerigsSpringer.

Linton, O. B. and Perron, B. (2003). The shape of the risk juem evidence from
a semiparametric generalized autoregressive condtietaldskedasticity model.

Journal of Business and Economic Statisf2d$3) 354-367.

Lu, Z. D. (1998). On the geometric ergodicity of a non-lineatoregressive model
with an autoregressive conditional heteroscedastic t8tatistica Sinicé8 1205-

1217.

Lumsdaine, R. L. (1996). Consistency and asymptotic ndatynalf the quasi-
maximum likelihood estimator in IGARCH (1, 1) and covarianstationary

GARCH (1, 1) modelsEconometric&64 575-596.

Meitz, M. and Saikkonen, P. (2008). Ergodicity, mixing, adstence of moments of
a class of markov models with applications to GARCH and ACRiels. Econo-

metric Theory24 1291-1320.

Merton, R. (1980). On estimating the expected return on tagket: An exploratory
investigation. Journal of Financial Economic8 323-361.

142



Meyn, S.P. and Tweedie, R. L. (1993Markov Chains and Stochastic Stability

Springer-Verlag, London.

Nelson, D. B. (1990). ARCH models adfdision approximationslournal of Econo-

metrics45 7-38.

Nelson, D. B. (1991). Conditional heteroskedasticity isedseturns: a new approach.

Econometricéb9 347-370.

Pagan, A. R. and Hong, Y. S. (1991). Nonparametric Estimadiod the Risk Pre-
mium, in Barnett, W., Powell, J. and Tauchen, G. E. (ed$éonparametric and
Semiparametric Methods in Econometrics and Statist@ambridge University

Press.

Peligrad, M. (1982). Invariance principles for mixing seque of random variables.

The Annual of Probabilityt 0 968-981.

Pollard, D. (1984)Convergence of Stochastic ProceSgringer, New York.

Rossi, A. and Timmermann, A. (2010). What is the shape ofigkereturn relation?

Manuscript, University of California San Diego, CREATES

Schepper, A. D. and Goovaerts, M. J. (1999). The GARCH (I Inrodel: results
for the densities of the variance and the mdasurance: Mathematics and Eco-

nomics24 83-94.

Silvey, S. D. (1959). The Lagrangian Multiplier testhe Annuals of Mathematical
Statistics30 389-407.

143



Tong, H. (1990). Nonlinear Time Series: A Dynamical System ApproaCixford

University Press, Oxford.

Tong, H. and Lim, K. S. (1980). Threshold autoregressianiticycles and cyclical

data (with Discussion}Journal of the Royal Statistical Society4R 245-92.

Wang, L. and Yang, L. (2009). Spline estimation of singldern models. Statistic

Sinical9 765-783.

Weiss, A. A. (1986). Asymptotic theory for ARCH models: estition and testing.

Econometric theorg 101-131.

Wong, C. S. and Li, W. K. (1997). Testing for threshold augpession with condi-

tional heteroscedasticitidiometrika84 407-418.

Xia, Y. and Tong, H. (2006). Cumulativefects of air pollution on public health.

Statistics in Medicin@5 3548-3559.

Xia, Y., Tong, H. and Li, W. K. (1999). On extended partiallpdar single-index

models.Biometrika86 831-842.

Xia, Y., Tong, H. and Li, W. K. (2002). Single-index volatyfimodels and estimation.

Statistica Sinicdl2 785-799.

Yang, L. (2002). Direct estimation in an additive model whbka components are

proportional.Statistica Sinicd 2 801-821.

Yang, L. (2006). A semiparametric GARCH model for foreigrcleange volatility.

Journal of Econometric$30365-384.

144



Zakoian, J. M. (1994). Threshold heteroskedastic modisrnal of Economic Dy-

namics and Control8931-995.

Zhang, X., Wong, H., Li, Y. and Ip, W. (2011a). A class of threkl autoregressive

conditional heteroscedastic modeftatistics and Its Interfacé (2) 149-158.

Zhang, X., Wong, H., Li, Y. and Ip, W. (2011b). An alternatiGARCH-in-Mean
model: structure and estimation. (Accepted ®ymmunications in Statistics -

Theory and Methods

145





