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Abstract

Motivated by Ling’s (2007) DAR (p) model, in this thesis, we study new classes of

GARCH and GARCH-in-mean models which have applications to financial data such

as treasury bill rate and stock indices. Unlike the previousmodels in the literature, the

conditional variances in our considered models are specified as functions of the time-

lagged observable returns instead of the usual unobservable errors. Such a setting for

the conditional variance enables us to give some new insights in the analysis of financial

time series.

Under the framework of an alternative specification in the conditional variance,

this study considers the following aspects. First, we generalize Ling’s (2007) DAR

(p) model by considering a piecewise linear conditional mean instead of the single lin-

ear conditional mean in the existing models. Issues about parameter estimation and

threshold test are discussed. Secondly, for a specific parametric GARCH-M model, we

study its ergodicity conditions. Under some regularity assumptions, it can be shown

that the quasi maximum likelihood estimator for the model isasymptotically normal.

We then attempt to investigate the relationship between risk (conditional variance) and

return (conditional mean) based on a class of semiparametric GARCH-M models, in

which the conditional mean is specified as an unknown smooth function and the condi-

tional variance is set as a known parametric function of lagged returns. Approaches are

given to estimate the unknown function and parameters. Moreover, motivated by the

time varying property of the risk aversion and the functional coefficient autoregressive

model, we propose a functional coefficient autoregressive GARCH-M model to capture

the variation of the risk aversion. By treating the risk aversion as a function of one

day lagged return, we are able to study how yesterday’s return affects today’s risk mag-
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nitude. Estimates for the unknown function and parameters are discussed. Finally, we

generalize the proposed functional coefficient autoregressive GARCH-M model to func-

tional coefficient GARCH-M model, from which, we can describe the effect of common

factors to risk aversion. Improved estimators for the parameters are given and, under

some regularity conditions, we can prove that the parametric estimators are consistent.

For all the proposed models, simulations are conducted to assess the performance

of the related approaches. Applications to real data are also considered. It is demon-

strated that our studied models can have comparable or better fitting performance as

compared to other well known models.
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Chapter 1

Introduction

The famous ARCH (autoregressive conditional heteroscedastic) model was proposed by

Engle (1982) and was then generalized to GARCH (generalizedautoregressive condi-

tional heteroscedastic) model by Bollerslev (1986). (G)ARCH models have been suc-

cessfully used to describe the clustering phenomenon of thestock volatility and hence

they are widely applied in practice. Following the publications of (G)ARCH models,

there have been numerous extensions which can be summarizedin two major directions.

The first class of extensions focuses on the purely parametric models such as Nelson’s

(1991) EGARCH (exponential GARCH), the GJR model of Glostenet al. (1993), the

TARCH (threshold ARCH) of Zakoian (1994) and the GARCH-M (GARCH-in-mean)

model of Engle et al. (1987). More variants of the parametricGARCH specification can

be found in Degiannakis and Xekalaki (2004). Besides the purely parametric extensions,

with the rapid development in computing power, nonparametric and semiparametric sta-

tistical approaches are also widely adopted to study the (G)ARCH models. For example,

Engle and Gonz´alez-Rivera (1991), Linton (1993), Drost and Klaassen (1997) studied
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the GARCH type models by assuming the error density as some unknown function. Pa-

gan and Hong (1991), Engle and Ng (1993), H¨ardle and Tsybakov (1997), Yang (2006)

considered nonparametric and semiparametric forms of the volatility function. Linton

and Perron (2003), Christensen et al. (2008), Conrad and Mammen (2008) investigated

the relationship between mean and variance based on semiparametric and nonparamet-

ric methods. For a survey article, one can refer to Linton (2009).

There are three fundamental topics when we study the (G)ARCHmodels and they

are respectively estimation, testing, and stability conditions. Many theoretical results

have been obtained for the (G)ARCH models. Some of them are asfollows. Nelson

(1990), and Bougerol and Picard (1992) established conditions for the stationarity and

ergodicity of the GARCH process. Lee and Hansen (1994), and Lumsdaine (1996)

proved the consistency and asymptotic normality of the quasi maximum likelihood es-

timator (QMLE) for the GARCH (1, 1). Jensen and Rahbek (2004)obtained some

limiting results on QMLE of GARCH (1, 1) process for the nonstationary case and

Berkes et al. (2003) considered the structure and estimation for the general GARCH

(p, q) process. Ling and McAleer (2002a, b) derived conditions for the existence of

moments in the GARCH (p, q) processes. The formulas for theoretical autocorrelation

function in the GARCH (p, q) model were discussed by He and Ter¨asvirta (1999a, b)

and Karanasos (1999).

The GARCH-in-mean (GARCH-M) model proposed by Engle et al. (1987) is also

a generalization from the original GARCH models. It is useful to describe relations

between the first and second conditional moments of stock returns (French et al., 1987),

output growth (Caporale and McKiernan, 1996) and inflation rates (Grier and Perry,
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2000) etc. Hong (1991) derived the autocorrelation structure for a GARCH-M process.

Motivated by Nelson (1990), Schepper and Goovaerts (1999) studied the probability

density of the variance and mean for GARCH-M models. As to theresults of QMLE

and stability conditions for GARCH-M model, to our knowledge, few theoretical results

are available until the recent results of Meitz and Saikkonen (2008) and Christensen et

al. (2008). Meitz and Saikkonen (2008) gave a principle to study the stability conditions

of GARCH-M model though the article itself mainly focused onapplications to the

GARCH model and ACD (autoregressive conditional duration)model. Christensen et

al. (2008) provided the asymptotic theory of QMLE for a GARCH-M-type model,

where a different specification for the conditional variance was adopted as compared

to the traditional one. From a technical perspective, we cansay that the difficulty for

handling the traditional GARCH-M models partly lies in the complicated structure of

the score function or the derivatives of the quasi likelihood function with respect to the

parameter vector. The fact stems from that the usual error term, sayεt, in the (G)ARCH

equation is unobservable, which causes the perplexing recursion expressions for the

related derivatives (Engle et al., 1987, Bera and Ra, 1995).If related derivatives were

in simpler forms, then it would be slightly easier to study the GARCH-M-type models.

Ling (2007) proposed a DAR (p) (double autoregressive) model where the condi-

tional variance, sayht, was set asht = ω + a1y2
t−1 + · · · + apy2

t−p instead of the previous

ht = ω + a1ε
2
t−1 + · · · + apε

2
t−p. Here,{yt−s, s= 1, · · · , p} are the observable time lagged

series and{εt−s, s = 1, · · · , p} are the usual unobservable error terms. In Ling (2007),

some novel theoretical results (Remark 3.2) were acquired.For the case ofp = 1, Ling

(2004) demonstrated that the DAR(1) model was superior to the usual ARCH models
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for the considered data. Ling’s idea comes from Weiss (1986)where the conditional

varianceht can depend on{ys}t−1
t−p, {εs}t−1

t−q and some other exogenous variables. In this

regard he has made it more attractive and insightful. For theusual GARCH-M model, if

we also substitute the error termεs in the (G)ARCH equation by the observableys, then

the derivatives of the quasi likelihood function with respect to the parameters would be

largely simplified. The reason is the observableys will not be treated as a function of the

unknown parameters. Such a property is very useful and it enables us to find an alterna-

tive way to study the (G)ARCH-in-mean model in both parametric and semiparametric

forms (Christensen et al., 2008).

By assuming the conditional varianceht is purely driven by the observable{ys}t−1
t−p

(p can be∞), in this thesis, we study several extensions of the ARCH and(G)ARCH-M

models. Some results about estimation, testing, and stability conditions are obtained.

In addition, two research articles (Zhang et al., 2011a, b) have been written based on

Chapter 2 and Chapter 3 respectively.

Based on Ling’s (2007) DAR(p) model, in Chapter 2, we study a class of TARCH

(threshold autoregressive conditional heteroscedastic)model by considering a piecewise

linear mean equation instead of a single linear mean equation. Provided the threshold is

given, the asymptotic results for the QMLE of other unknown parameters are acquired.

Based on the Lagrange Multiplier principle, a threshold effect test is considered and

its asymptotic null distribution is shown to be a functionalof a zero-mean Gaussian

process. Approximate methods are given to compute the upperpercentage points and

simulation results show that they perform well. From the empirical studies, we know

that the original model can be improved when the threshold effect is considered.
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In Chapter 3, we study a special case of the GARCH-in-Mean model proposed

by Christensen et al. (2008). The conditions about geometric ergodicity are discussed

and under certain regularity assumptions, the asymptotic normality of the QMLE for the

model is proved. Simulations demonstrate that the estimation method performs well and

the given empirical studies indicate the considered model has comparable performance

in data modelling as compared to the standard one. The results indicate that the model

of Christensen et al. (2008) can be useful because it provides an alternative way to study

the GARCH-in-Mean effect.

Aiming to find the relationship between the excess return (conditional mean) and

risk (conditional variance), in Chapter 4, we consider a semiparametric (G)ARCH-M

model. We firstly discuss a semiparametric ARCH-M model, which behaves like the

restricted single-index model. Following the method of Xiaand Tong (2006), we give

steps to estimate the model. We then discuss a semiparametric GARCH-M model which

generalizes the model in Christensen et al. (2008) by considering a more flexible form

of the conditional variance. An improved approach is given to estimate the parameters

and some theoretical results are discussed. Through simulations, it is shown that the

estimation methods perform well. When applying the models to practical data, they

witness nonlinear relationships between the excess return(conditional mean) and the

risk (conditional variance), and it seems that a higher riskdoes not necessarily guar-

antee a higher excess return. Such results imply that the simple linear relationships or

some other commonly adopted monotonically increasing parametric relations could be

misspecified.

Chapter 5 proposes a class of functional coefficient autoregressive GARCH-M
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models to analyze some excess return series which are calculated based on the weighted

stock indices. Different from the time-varying parameter GARCH-M model of Chou

et al. (1992), we consider the volatility coefficient as an unknown smooth function of

time-lagged returns instead of a random walk. Such a settingenables us to study the ef-

fect of the previous return to the present risk aversion. An approach is given to estimate

the model and simulation results demonstrate that the performance of our method is

satisfactory. Through the empirical studies, it is seen that the proposed model can better

capture the variation of the excess return series as compared to the purely parametric

models. Moreover, some reasonable results and interpretation about risk aversion are

presented.

In Chapter 6, we generalize the functional coefficient autoregressive GARCH-M

model in Chapter 5 to functional coefficient GARCH-M model, from which, we can

describe the effect of common factors to the risk aversion. For the generalized model,

the estimation approach is improved. Under some regularityconditions, we can show

that the parametric estimators are consistent. Simulations and empirical studies are

conducted to show that our method is satisfactory and applicable.

Finally, brief conclusions and prospects for future research are given in Chapter 7.

Some key Matlab codes are presented in the Appendix.

6



Chapter 2

A Class of Threshold Autoregressive

Conditional Heteroscedastic Models

2.1 Background

In a recent paper, Ling (2007) considers the double AR (p) or DAR (p) model, which

has the form

yt = θ1yt−1 + · · · + θiyt−i + · · · + θpyt−p + εt, εt = et

√
ht,

et ∼ i.i.d(0, 1), ht = ω + a1y2
t−1 + · · · + apy2

t−p, (2.1)

whereω, ai > 0, t ∈ N ≡ {−p, · · · , 0, 1, 2, · · · }, ys is independent of{et} for t > s.

Let Ft be theσ-field generated by{et, · · · , e1, y0, · · · , y−p}, t ∈ N , then we have

var(yt|Ft−1) = ω + a1y2
t−1 + · · · + apy2

t−p. As mentioned in the paper, model (2.1) is a

special case of the ARMA-ARCH models in Weiss (1986), but it differs from Engle’s

(1982) ARCH model if at least oneθi , 0. The difference lies in the specifications of the
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conditional variance: Engle’s (1982) conditional variance is driven by the unobserved

errors while the conditional variance of model (2.1) depends on the past observations.

Such a specification of the conditional variance brings bothnovelty and difficulty. The

novel result acquired by Ling (2007) is that the quasi maximum likelihood estimation

can be still consistent and asymptotically normal whenEy2
t = ∞, which usually does

not hold any more for the classical AR(p) model with i.i.d errors. Difficulty lies in find-

ing the conditions under which the series generated from themodel is stationary and

geometrically ergodic. Though Ling (2007) has gotten a sufficient and necessary condi-

tion about stationarity and ergodicity for model (2.1) whenet ∼ i.i.d. N(0, 1), it is still

a difficult problem for the general case.

When p = 1, model (2.1) becomes the DAR(1) model whose theoretical results

and practical application have been well discussed by Ling (2004), Ling and Li (2008)

for both stationary and nonstationary cases. When DAR(1) model was applied to the

US 3-month treasure bill rate series in Ling (2004), it was found that the model was

superior to the usual AR(1) model, and seemed to be able to geta more reliable statis-

tical inference when compared to the usual AR(1)-GARCH(1, 1) model. Nevertheless,

since financial data usually present some asymmetric effect or nonlinear relationship, it

is helpful to take these factors into account. A well-known tool to deal with this is the

threshold autoregressive model because of its ability to capture some important charac-

teristics such as jumps and limit cycles (Tong and Lim, 1980,Tong, 1990, Li and Lam,

1995). Consequently, it is worthwhile to consider a generalized DAR(p) model, which

is piecewise linear in the mean function.

In this chapter we consider the following threshold autoregressive conditional het-
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eroscedastic (TARCH) model:

yt = θ0 +
∑p

i=1 θiyt−i + I (yt−d ≤ r)(φ0 +
∑p

i=1 φiyt−i) + εt, εt = et
√

ht,

et ∼ i.i.d(0, 1), ht = ω + a1y2
t−1 + · · · + amy2

t−m, (2.2)

whereω, ai > 0, t ∈ N ≡ {−m, · · · , 0, 1, 2, · · · }, ys is independent of{et} for t > s, I (·) is

the indicator function andr is the threshold parameter. For simplicity, the nonnegative

integersp, d,m are assumed to be known and satisfy 0≤ p ≤ m, 1 ≤ d ≤ m. The

threshold parameterr is assumed to have a known bounded numerical rangeR̃, usually

a finite interval. Whenθ0 = φ0 = φi = 0, p = m, model (2.2) is reduced to Ling’s (2007)

DAR(p) model. If yt−i (i = 1, · · · ,m) in the conditional variance equation of (2.2) is

replaced byεt−i (i = 1, · · · ,m), then the model would become Li and Lam’s (1995)

TARCH model. The difference is that: the former belongs to Weiss’ ARCH-type model

while the latter is an Engle’s ARCH-type model. Moreover, werelax the distribution of

the process{εt} to the general case instead of the original normal distribution.

The chapter is arranged as follows. In Section 2.2, we discuss the QMLE, threshold

effect test and some associated asymptotic properties. Simulations and empirical studies

are shown in Section 2.3. All proofs are put in Section 2.4 andwe summarize the chapter

in Section 2.5.
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2.2 Estimation and Threshold Effect Test

2.2.1 Parametric estimation

For simplicity, we assume the threshold parameterr in model (2.2) is known. In practice,

as that has been done in the subsequent Section 2.3.2, we can adopt the idea of Li and

Lam (1995) to estimater. Let ψ = (θτ, φτ, aτ)τ, θ = (θ0, · · · , θp)τ, φ = (φ0, · · · , φp)τ,

a = (ω, a1, · · · , am)τ andψ ∈ Ψ, which is a bounded parameter space for model (2.2).

All throughout this chapter, the superscriptτ denotes the transpose of a vector or a

matrix. Suppose that the true parameterψ0 = (θ0τ, φ0τ, a0τ)τ is an interior point ofΨ.

Without loss of generality, we considerΨ as a neighborhood ofψ0. We need to estimate

ψ based on the observations{yt}Tt=1 and initial valuesy0, · · · , y1−m.

Consider the following quasi conditional log-likelihood function (apart from a con-

stant term)

LT(ψ) =
T

∑

t=1

l t(ψ) =
T

∑

t=1

[

−1
2

loght(ψ) − 1
2
ε2

t (ψ)
ht(ψ)

]

. (2.3)

We have

∂l t(ψ)
∂ψ

= −1
2

(

1− ε
2
t (ψ)

ht(ψ)

)

1
ht(ψ)

∂ht(ψ)
∂ψ

− εt(ψ)
ht(ψ)

∂εt(ψ)
∂ψ

, (2.4)

∂2l t(ψ)
∂ψ∂ψτ

=
1

2h2
t (ψ)

(

1− 2ε2
t (ψ)

ht(ψ)

)

∂ht(ψ)
∂ψ

∂ht(ψ)
∂ψτ

+
εt(ψ)

h2
t (ψ)

∂ht(ψ)
∂ψ

∂εt(ψ)
∂ψτ

− 1
ht(ψ)

∂εt(ψ)
∂ψ

∂εt(ψ)
∂ψτ

+
εt(ψ)

h2
t (ψ)

∂εt(ψ)
∂ψ

∂ht(ψ)
∂ψτ

, (2.5)
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where

∂εt(ψ)
∂θ

= −(1, yt−1, · · · , yt−p)
τ,

∂εt(ψ)
∂φ

= −I (yt−d ≤ r)(1, yt−1, · · · , yt−p)
τ,
∂εt(ψ)
∂a

= 0,

∂ht(ψ)
∂φ

=
∂ht(ψ)
∂θ

= 0,
∂ht(ψ)
∂a

= (1, y2
t−1, · · · , y2

t−m)τ. (2.6)

For the sake of convenience, we putht = ht(ψ0), εt = εt(ψ0), ς = Ee4
t − 1,Y1t =

(1, yt−1, · · · , yt−p)τ, Y2t = (1, y2
t−1, · · · , y2

t−m)τ. Then the following theorem holds under

Assumptions 2.1-2.2 in Section 2.4.

Theorem 2.1 For model (2.2) with known threshold and the considered quasi log-

likelihood function LT(ψ) given by (2.3), under Assumptions 2.1-2.2 in Section 2.4,

there exists a fixed open neighborhood U(ψ0) ⊂ Ψ such that with probability one, as

T →∞ , LT(ψ) has an unique maximum pointψ̂T in U. Furthermore,
√

T(ψ̂T −ψ0)
L−→

N(0,Ω−1
I ΩSΩ

−1
I ), whereΩS,ΩI are respectively given by

E



















































4
ht

Y1tYτ
1t

4I(yt−d≤r)
ht

Y1tYτ
1t 0

4I(yt−d≤r)
ht

Y1tYτ
1t

4I(yt−d≤r)
ht

Y1tYτ
1t 0

0 0 ς

h2
t
Y2tYτ

2t



















































, and

E



















































2
ht

Y1tYτ
1t

2I(yt−d≤r)
ht

Y1tYτ
1t 0

2I(yt−d≤r)
ht

Y1tYτ
1t

2I(yt−d≤r)
ht

Y1tYτ
1t 0

0 0 1
h2

t
Y2tYτ

2t



















































.

Remark 2.1 Through the proof in Section 2.4, it is known thatEy2
t < ∞ is not required

to guarantee the validity of the theorem, which is consistent with Ling ( 2007). The

matricesΩI , ΩS can be calculated by the relevant sample means after the parameters
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have been estimated.

2.2.2 Threshold effect test

In this section, we consider the test for the threshold effect, i.e., to test

H0 : φ0 = φ1 = · · · = φp = 0.

Such a test is nonstandard because the threshold parameterr is absent underH0. From

(2.3) and (2.4), we have

E{∂2LT(ψ)/(∂φ∂aτ)} = E{∂2LT(ψ)/(∂θ∂aτ)} = 0.

Following Davies (1977, 1987), the LM test statistic for ournull hypothesis is

S = sup
r∈R̃

ητr (Cr − Lτr C
−1Lr )

−1ηr , (2.7)

where

ηr = T−
1
2
∂LT(ψ)
∂φ

|θ̂T , âT , φ=0,

C = − 1
T

E

(

∂2LT(ψ)
∂θ∂θτ

)

|θ̂T , âT , φ=0,

Cr = −
1
T

E

(

∂2LT(ψ)
∂φ∂φτ

)

|θ̂T , âT , φ=0,

Lr = −
1
T

E

(

∂2LT(ψ)
∂θ∂φτ

)

|θ̂T , âT , φ=0.

Hereθ̂T, âT are the QMLEs under the null hypothesis, and the above estimators are con-

sistent due to Theorem 3.1 in Ling (2007). Under the framework of Lagrange Multiplier

test (Silvey, 1959), the above quantitiesηr ,C,Cr , Lr are asymptotically convergent to the
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ones that are evaluated at the true values forθ anda underH0. With the abuse of nota-

tion, in the rest of this chapter,ηr ,C,Cr , Lr stand for the quantities evaluated at the true

value ofθ anda underH0. Then we have the following theorem:

Theorem 2.2 Suppose Assumptions 2.1-2.3 in Section 2.4 hold, then the asymptotic

distribution of{ηr } is identical to that of a(p + 1)-dimensional Gaussian process{ξr}

indexed by the threshold parameter r∈ R. For r, s∈ R, we have

ξr ∼ Np+1(0,Cr − Lτr C
−1Lr ), cov(ξr , ξs) = Cmin(r,s) − Lτr C

−1Ls.

Also, the asymptotic null distribution of the LM test statistic S in (2.7) is given by the

distribution of supr∈R̃ξ
τ
r (Cr − Lτr C

−1Lr)−1ξr .

Remark 2.2 Theorem 2.2 is similar to Wong and Li’s (1997) Theorem, but concerns

different situations. Moreover, our Assumptions 2.1-2.3 are weaker in contrast with

theirs (e.g.,Eε4
t < ∞ is a little stronger thanEe4

t < ∞). The proof is a generalization of

Chan (1990), Wong and Li (1997) , which is given in Section 2.4.

In practice, it is necessary to estimate the upper percentage points of the asymp-

totic null distribution for S. For model (2.2), note thatCr = Lr , Cr and C − Cr

are positive definite. Then there exist an invertible matrixQ and a diagonal matrix

D = diag{λ1(r), · · · , λp+1(r)} such thatQCQτ is an identity matrix andQCr Qτ = D,

with all {λi(r)} being strictly between 0 and 1. LetQξr = (B1r , · · · , Bp+1,r)τ. ThenBir ’s

are independent Gaussian processes with mean zero and

cov(Bir , Bis) = λi{min(r, s)} − λi(r)λi(s).
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As a result,

ξτr (Cr − Lτr C
−1Lr)

−1ξr =















B2
1r

λ1(r) − λ2
1(r)
+ · · · +

B2
p+1,r

λp+1(r) − λ2
p+1(r)















.

Whenp = 0, we need to compute

Pr

{

sup
β1≤λ1(r)≤β2

B2
1r

λ1(r) − λ2
1(r)

> z2

}

, (0 < β1 < β2 < 1) (2.8)

for a givenz, whereβ1 = min{λ1(r)} andβ2 = max{λ1(r)} for r ∈ R̃. For thep > 0 cases,

we want to evaluate

Pr















sup
r∈R̃















B2
1r

λ1(r) − λ2
1(r)
+ · · · +

B2
p+1,r

λp+1(r) − λ2
p+1(r)















> y















. (2.9)

Based on Chan and Tong (1990), and Chan (1991), by using techniques similar to Wong

and Li (1997), the probability in (2.8) can be approximated by

(

2
π

)
1
2

exp

(

−z2

2

) (

γz− γ
z
+

1
z

)

, γ =
1
2

log

{

β2(1− β1)
β1(1− β2)

}

, (2.10)

and the probability in (2.9) can be approximated by

1− exp















−2χ2
p+1(y)

(

y
p+ 1

− 1

) p+1
∑

i=1

∫

R̃

dti
dr

dr















, (2.11)

whereχ2
p+1(·) denotes the probability density function of theχ2-distribution with (p+1)

degree of freedom andti = 1
2 log{λi(r)/(1− λi(r))}.

It remains to find the matrixQ or theλi(r)’s. Note thatC,C − Cr are positive

definite matrices. LetC−
1
2 be the inverse of the matrixC

1
2 that satisfiesC

1
2C

1
2 = C, then

C−
1
2 (C − Cr)C−

1
2 is also positive definite. Denote the eigenvalues ofC−

1
2 (C − Cr)C−

1
2

by (δ1(r), · · · , δp+1(r))τ and accordingly there exists an orthogonal matrixQ1 satisfying
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Qτ
1C
− 1

2 (C −Cr)C−
1
2 Q1 = diag{δ1(r), · · · , δp+1(r)}, namely,

I − Qτ
1C
− 1

2CrC
− 1

2 Q1 = diag{δ1(r), · · · , δp+1(r)}.

Here,I is an identity matrix of suitable dimension. DefineQ = Qτ
1C
− 1

2 , then we have

QCQτ = I ,QCr Q
τ = diag{1− δ1(r), · · · , 1− δp+1(r)}.

By definition, it is known that{1 − δi(r)}’s are exactly the eigenvalues ofC−
1
2CrC−

1
2 .

Hence, to evaluate the probabilities in (2.8-2.9), we firstly need to estimate the eigen-

values of the matrixC−
1
2CrC−

1
2 .

2.3 Simulations and Empirical Studies

2.3.1 Simulations

This section examines the performance of the proposed LM test in finite samples

through Monte Carlo simulations. We give examples ford = 1, p ≤ m ≤ 2 as fol-

lows.

M1: yt = 0.1+ et
√

ht, ht = 0.2+ 0.16y2
t−1 + 0.09y2

t−2.

M2: yt = 0.36yt−1 + et
√

ht, ht = 0.3+ 0.49y2
t−1.

M3: yt = 0.3yt−1 + 0.1yt−2 + et

√
ht, ht = 0.5+ 0.1y2

t−1 + 0.1y2
t−2.

M4: yt = 0.1+ 0.3yt−1 + et

√
ht, ht = 0.5+ 0.32y2

t−1.

M5: yt = 0.6− 0.4I (yt−1 ≤ 0)+ et

√
ht, ht = 0.3+ 0.15y2

t−1 + 0.1y2
t−2.
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M6: yt = 0.1+ 0.1yt−1 − I (yt−1 ≤ 0)(0.2+ 0.2yt−1) + et

√
ht, ht = 0.05+ 0.36y2

t−1.

M7: yt = 0.4yt−1 − 0.3yt−1I (yt−1 ≤ 0)+ et
√

ht, ht = 0.25+ 0.4y2
t−1.

M8: yt = 0.1yt−1 + 0.1yt−2 + (0.2yt−1 − 0.15yt−2)I (yt−1 ≤ 0)+ et
√

ht,

ht = 0.5+ 0.16y2
t−1 + 0.1y2

t−2.

In the above examples, the i.i.d (0, 1) process in (2.2) is setaset ∼ i.i.d. N(0, 1). M1-

M4 are used to check the empirical size and M5-M8 are adopted to demonstrate the

power of the test. We conduct 1000 replications with sample sizesT=100, 300 and

500 for each of the above examples. Following Wong and Li (1997), we choosẽR, the

numerical range for the threshold, to be the intervals between the 10th percentile and

90th percentile ofyt. The empirical sizes or powers at the nominal upper 10%, 5%,

2.5% and 1% points are listed in Table 2.1.

Table 2.1 shows that both sizes and powers behave well. The empirical size in each

case gets closer to the nominal level (especially at the nominal levels of 2.5% and 1%)

and the test gets more powerful with increasing sample size.

2.3.2 Empirical studies

Ling (2004) applied the DAR(1) model to the US 3-month treasury bill rate series from

July 1972 to August 2001 and found that the model fitted the data well as compared to

the common AR(1) model. For comparison, we also consider thesame set of data except

for a longer period from January 1951 to October 2008 (totally 694 observations).

We takext to be the logarithms of the observed series andyt = xt − xt−1. Based on

Ling (2004), it is reasonable to apply model (2.2) withp = m = d = 1 andθ0 = φ0 = 0
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Table 2.1: Results of the simulation experiments for assessing the empirical size and
power with and without intercept.

Empirical size and power
Model p m d Sample size 10.0% 5.0% 2.5% 1.0%

M1 0 2 1 T = 100 5.9 3.1 1.4 0.3
T = 300 5.4 2.7 1.3 0.5
T = 500 6.0 3.1 1.8 0.7

M2† 1 1 1 T = 100 6.7 3.2 1.3 0.8
T = 300 9.8 5.1 2.2 0.7
T = 500 9.9 5.0 2.3 1.2

M3† 2 2 1 T = 100 13.8 8.1 6.5 4.6
T = 300 10.7 5.1 3.1 2.1
T = 500 12.9 6.3 2.8 0.9

M4 1 1 1 T = 100 17.9 14.6 11.7 10.3
T = 300 7.1 4.3 3.0 2.0
T = 500 7.2 3.7 1.7 1.0

M5 0 2 1 T = 100 51.2 37.5 27.2 16.9
T = 300 97.5 94.8 90.8 85.3
T = 500 100.0 99.8 99.8 99.1

M6 1 1 1 T = 100 89.8 83.3 77.2 67.5
T = 300 89.3 82.2 75.4 64.5
T = 500 90.3 83.9 76.9 66.8

M7† 1 1 1 T = 100 17.1 9.6 5.2 2.4
T = 300 49.7 37.8 28.0 15.3
T = 500 71.1 61.4 50.2 37.8

M8† 2 2 1 T = 100 30.1 21.9 17.5 14.9
T = 300 59.6 38.3 27.1 16.7
T = 500 58.36 46.2 35.9 24.5

Notes: (1)†Testing with no intercept; (2) Number of replications=1000.
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to the considered data, which has the form

yt = θyt−1 + φyt−1I (yt−1 ≤ r) + et

√

ω + a1y2
t−1, et ∼ i.i.d(0, 1). (2.12)

Before fitting the data by model (2.12), we first test whetherφ = 0 is significant, namely

we consider the hypothesisH0 : φ = 0. With the numerical rangẽR being the interval

between the 10th percentile and 90th percentile ofyt, thep value for the considered test

is 0.0194, which shows that it is reasonable to introduce thethreshold part. To estimate

the threshold parameterr, we adopt the idea of Li and Lam (1995). Denote the potential

candidates forr byR = {r1, r2, · · · , rL}, the estimation ofr is performed by considering

max
r∈R

LT(ψ̂T(r)),

whereψ̂T(r) is the maximizer of the quasi log-likelihood given by (2.3)with the thresh-

old parameterr being fixed.

For comparison, we use{yt}640
1 to estimate model (2.12) and leave{yt}693

641 for out-of-

sample forecasts. TakeR as a series of evenly spaced points inR̃with step length being

0.001. Then we get ˆr = −0.0422, based on which, the estimation results of (2.12) are as

follows:

yt = 0.3149
(0.0732)

yt−1 + 0.2188
(0.1337)

yt−1I (yt−1 ≤ −0.0422)+ et

√
ht,

ht = 0.0022
(0.0004)

+ 0.7656
(0.2075)

y2
t−1, et ∼ i.i.d(0, 1). (2.13)

The values in parentheses are the corresponding standard errors which are calculated
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based on Theorem 2.1. We also estimate the DAR(1) model basedon Ling (2004):

yt = 0.4009
(0.0614)

yt−1 + et
√

ht,

ht = 0.0021
(0.0004)

+ 0.7740
(0.2081)

y2
t−1, et ∼ i.i.d(0, 1). (2.14)

Moreover, we have the results below:

For (2.13),

E(log | 0.3149+ et

√
0.7656 |) = −0.8957< 0,

E(log | 0.3149− et

√
0.7656 |) = −0.9483< 0.

For (2.14),

E(log | 0.4009+ et

√
0.7740 |) = −0.8236< 0,

E(log | 0.4009− et

√
0.7740 |) = −0.8381< 0.

Note that (2.12) and DAR(1) model can be rewritten respectively as

yt = θyt−1 + et
√

a1|yt−1| + φyt−1I (yt−1 ≤ r) + et( ω√
ω+a1y2

t−1+
√

a1|yt−1|
),

yt = θyt−1 + et
√

a1|yt−1| + et( ω√
ω+a1y2

t−1+
√

a1|yt−1|
).

Bothφyt−1I (yt−1 ≤ r) andω/(
√

ω + a1y2
t−1+
√

a1|yt−1|) areo(|yt−1|) asyt−1 goes to infinity.

We know from Example 4.1 in Cline and Pu (2004) that the estimated parameters for the

above models satisfy the geometric ergodicity conditions.The statisticQ(M) in Li and

Mak (1994) withM = 3, 6, 12 are used for checking the adequacy of the model (2.13)

and their values areQ(3) = 0.8764< χ2
3,0.95 = 7.815,Q(6) = 5.5123< χ2

6,0.95 = 12.592,

andQ(12)= 16.8462< χ2
12,0.95 = 21.026, which suggests that model (2.13) is adequate

19



for the considered data at the 5% level . The value of the log-likelihood for model (2.13)

is 1436 and that for model (2.14) is 1434.4.

Next we apply model (2.13-2.14) to obtain one step ahead forecasts for{yt}693
642. We

get

for (2.13), RMS E=

√

√

1
52

693
∑

t=642

(yt − ŷt)2 = 0.1253,

for (2.14), RMS E=

√

√

1
52

693
∑

t=642

(yt − ŷt)2 = 0.1281.

We have also computed the one-step ahead forecast intervalswith 95% confidence level

for each case. Denoteuat, ubt as the upper bound series, which are respectively calcu-

lated according to (2.13) and (2.14). Similarly letlat and lbt denote the corresponding

lower bounds. We list the percentiles of the difference series between upper and lower

bounds in Table 2.2. It can be seen from the table that model (2.13) generates slightly

narrower confidence intervals. In term of the log-likelihood values, the RMSEs and the

distance between the estimated bounds, we know that model (2.13) is superior to model

(2.14) for the considered data.

Table 2.2: Percentiles of difference series between upper and lower bounds.

Difference Percentiles
series 10% 25% 50% 75% 90%
{uat − lat} 0.1873 0.1978 0.2418 0.3487 0.6746
{ubt − lbt} 0.1875 0.1981 0.2425 0.3502 0.6781

It makes sense to consider Li and Lam’s ( 1995) TARCH model with orderp1 =
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p2 = 1, d = 1 for the data. The model is

yt = θyt−1 + φyt−1I (yt−1 ≤ r) + εt, εt = et
√

ht,

ht = ω + a1ε
2
t−1, et ∼ i.i.d. N(0, 1). (2.15)

Before fitting the data by model (2.15), we apply the method inthe special case (A)

of Wong and Li (1997) to test whetherφ is significantly different from zero, namely

H0 : φ = 0. Thep value for the considered test is computed as 0.5591 by choosing R̃as

the interval between the 10th percentile and 90th percentile ofyt, which suggestsφ = 0

in (2.15). Hence we switch to estimate the model

yt = θyt−1 + εt, εt = et

√

ω + a1ε
2
t−1, et ∼ i.i.d. N(0, 1).

Based on observations{yt}640
1 , we shall get

yt = 0.2603
(0.0259)

yt−1 + εt, εt = et

√
ht,

ht = 0.0022
(0.0001)

+ 0.8567
(0.0704)

ε2
t−1, et ∼ i.i.d. N(0, 1). (2.16)

Using (2.16), we obtain one step ahead forecasts for{yt}693
642 with a RMSE of 0.1330,

which is larger than that of model (2.13) and (2.14) respectively. Thus model (2.13)

seems to be more reasonable than (2.16) for the considered data.

2.4 Proofs

We make the following assumptions for model (2.2).

Assumption 2.1. The series{yt} generated from model (2.2) is strictly stationary and

21



geometrically ergodic for the considered parameter spaceΨ.

Assumption 2.2. The i.i.d (0, 1) process{et} satisfiesEe4
t < ∞, and is absolutely

continuous with a continuous symmetric probability density function which is positive

everywhere.

Assumption 2.3. The process{yt} is ρ-mixing with an exponential decreasing rate,

i.e., there exists aµ between 0 and 1 such thatρ(m) = O(µm),m ∈ N , where

ρ(m) = sup|corr(f , g)|, the supremum being over all square integrablef andg which

are measurable with respect to{yt, t ≤ 0} and{yt, t ≥ m}, respectively.

Remark 2.3 To judge the geometric ergodicity required in Assumption 2.1, we can

make use of Cline and Pu (2004) (e.g., Corollary 2.2, Theorem3.5 and Example 4.1).

Part of the conditions in Assumptions 2.2-2.3 have been adopted by Chan (1990) to

weaken the condition of normality for the error term.

Lemma 2.1 (Lemma 1 of Jensen and Rahbek, 2004)Denote LT(ψ) as a function of the

observations y1, · · · , yT and the parameterψ ∈ Ψ ⊆ Rk. Supposeψ0 is an interior point

ofΨ. Assume LT(·) : Rk → R is three times continuously differentiable inψ and that

A1: As T→∞,
√

T∂LT(ψ0)/∂ψ
L−→ N(0,ΩS),ΩS > 0.

A2: As T→∞, ∂2LT(ψ0)/∂ψ∂ψτ
p
−→ ΩI > 0.

A3: maxi, j,k=1,··· ,p+2 supψ∈N(ψ0)

∣

∣

∣∂3LT(ψ)/∂ψi∂ψ j∂ψk

∣

∣

∣ ≤ cT .

Here N(ψ0) is a neighborhood ofψ0 and0 ≤ cT
p
−→ c, 0 < c < ∞. Then there exists a

fixed open neighborhood U(ψ0) ⊆ N(ψ0) such that

B1: As T→ ∞, with probability one that there exists a minimum pointψ̂T of LT(ψ)

in U(ψ0) and LT(ψ) is convex in U(ψ0). Moreover, ψ̂T is unique and solves
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∂LT(ψ̂T)/∂ψ = 0.

B2: As T→ ∞, ψ̂T − ψ0
p
−→ 0,

√
T(ψ̂T − ψ0)

L−→ N(0,Ω−1
I ΩSΩ

−1
I ).

Proof of Theorem 2.1:

Let

L∗T(ψ) =
1
T

T
∑

t=1

[log ht(ψ) +
ε2

t (ψ)

ht(ψ)
] =

1
T

T
∑

t=1

l∗t (ψ), (2.17)

and it can be shown:

∂l∗t (ψ)

∂ψ
=

(

1−
ε2

t (ψ)

ht(ψ)

)

1
ht(ψ)

∂ht(ψ)
∂ψ

+
2εt(ψ)
ht(ψ)

∂εt(ψ)
∂ψ

, (2.18)

∂2l∗t (ψ)

∂ψ∂ψτ
=

1

h2
t (ψ)

(

2ε2
t (ψ)

ht(ψ)
− 1

)

∂ht(ψ)
∂ψ

∂ht(ψ)
∂ψτ

− 2εt

h2
t (ψ)

∂ht(ψ)
∂ψ

∂εt(ψ)
∂ψτ

+
2

ht(ψ)
∂εt(ψ)
∂ψ

∂εt(ψ)
∂ψτ

− 2εt(ψ)

h2
t (ψ)

∂εt(ψ)
∂ψ

∂ht(ψ)
∂ψτ

, (2.19)

and

∂3l∗t (ψ)

∂ψi∂ψ j∂ψk
=

[

2

(

1− 3ε2
t (ψ)

ht(ψ)

)

1

h3
t (ψ)

∂ht(ψ)
∂ψi

∂ht(ψ)
∂ψ j

∂ht(ψ)
∂ψk

]

+

[

4εt(ψ)

h3
t (ψ)

∂ht(ψ)
∂ψi

∂ht(ψ)
∂ψ j

∂εt(ψ)
∂ψk

+
4εt(ψ)

h3
t (ψ)

∂ht(ψ)
∂ψi

∂εt(ψ)
∂ψ j

∂ht(ψ)
∂ψk

+
4εt(ψ)

h3
t (ψ)

∂εt(ψ)
∂ψi

∂ht(ψ)
∂ψ j

∂ht(ψ)
∂ψk

]

−
[

2

h2
t (ψ)

∂ht(ψ)
∂ψi

∂εt(ψ)
∂ψ j

∂εt(ψ)
∂ψk

+
2

h2
t (ψ)

∂εt(ψ)
∂ψi

∂εt(ψ)
∂ψ j

∂ht(ψ)
∂ψk

+
2

h2
t (ψ)

∂εt(ψ)
∂ψi

∂ht(ψ)
∂ψ j

∂εt(ψ)
∂ψk

]

:= l1t + l2t + l3t. (2.20)

Here,l it , i = 1, 2, 3 mean the corresponding quantities expressed in the preceding three

pairs of square brackets. To prove Theorem 2.1, we just need to verify A1-A3 described

in the above Lemma 2.1.
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Recallht = ht(ψ0), εt = εt(ψ0), ς = Ee4
t − 1. From the above (2.17-2.20), we know

√
T
∂L∗T(ψ0)

∂ψ
=

1
√

T

T
∑

t=1

[(

1− ε
2
t

ht

)

1
ht

∂ht

∂ψ
+

2εt

ht

∂εt

∂ψ

]

:=
1
√

T

T
∑

t=1

St.

Consider any non-zero vectorc = (c1, · · · , cq)τ, q = 2p+m+ 3 , we have

√
Tcτ

∂L∗T(ψ0)

∂ψ
=

T
∑

t=1

(

1
√

T
cτSt

)

:=
T

∑

t=1

Wt.

Given the information set up to timet − 1, Ft−1 = σ(et−1, · · · , e1, y0, · · · , y−m+1),

then we know{Wt} is a martingale difference with respect to the information set, and

E(W2
t |Ft−1) = cτ 1

T E(StSτ
t |Ft−1)c. It is not difficult to get

E(StS
τ
t |Ft−1) =

ς

h2
t

∂ht

∂ψ

∂ht

∂ψτ
+

4
ht

∂εt

∂ψ

∂εt

∂ψτ
:= ΩS,t. (2.21)

In fact, we have

E(StS
τ
t |Ft−1)

= E

{[(

1− ε
2
t

ht

)

1
ht

∂ht

∂ψ
+

2εt

ht

∂εt

∂ψ

] [(

1− ε
2
t

ht

)

1
ht

∂ht

∂ψτ
+

2εt

ht

∂εt

∂ψτ

]

|Ft−1

}

= E

{[

A2
t

∂ht

∂ψ

∂ht

∂ψτ
+ AtBt

∂ht

∂ψ

∂εt

∂ψτ
+ BtAt

∂εt

∂ψ

∂ht

∂ψτ
+ B2

t

∂εt

∂ψ

∂εt

∂ψτ

]

|Ft−1

}

.

In the above expressions,At,A2
t , Bt, B2

t are given as

At =

(

1− ε
2
t

ht

)

1
ht
,A2

t =

(

1− 2
ε2

t

ht
+
ε4

t

h2
t

)

1

h2
t

, Bt =
2εt

ht
, B2

t =
4ε2

t

h2
t

,

and we have

E(AtBt|Ft−1) = 0,E(A2
t |Ft−1) =

Ee4
t − 1

h2
t

=
ς

h2
t

,E(B2
t |Ft−1) =

4
ht
.
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Note∂ht/∂ψ, ∂εt/∂ψ are part ofFt−1, then we get (2.21). Consequently, we have

T
∑

t=1

E(W2
t |Ft−1) = cτ















1
T

T
∑

t=1

ΩS,t















c
p
→ cτΩSc,

where

ΩS = E(ΩS,t) = E(
ς

h2
t

∂ht

∂ψ

∂ht

∂ψτ
+

4
ht

∂εt

∂ψ

∂εt

∂ψτ
). (2.22)

Furthermore, given anyδ > 0, we have

T
∑

t=1

E
[

W2
t I (|Wt| ≥ δ)

]

=
1
T

T
∑

t=1

E
[

cτStS
τ
t cI(|cτStS

τ
t c| ≥ δ2T)

]

= E
[

cτS1S
τ
1cI(|cτS1S

τ
1c| ≥ δ2T)

]

−→ 0.

The above limit can be explained by the fact thatEΩS,t < ∞. By the martingale central

limit theorem, see, for example, Theorem 35.12 in Billingsley (1995), we have proved

that
∑T

t=1 Wt
L→ N(0, cτΩSc), which means

√
T
∂L∗T(ψ0)

∂ψ

L−→ N(0,ΩS), (2.23)

namely condition A1 is satisfied.

Applying the double expectation formula we can get

E

(

∂2l∗t (ψ0)

∂ψ∂ψτ

)

= E

(

1

h2
t

∂ht

∂ψ

∂ht

∂ψτ
+

2
ht

∂εt

∂ψ

∂εt

∂ψτ

)

:= ΩI , (2.24)

∂2L∗t (ψ0)

∂ψ∂ψτ
=

1
T

T
∑

t=1

∂2l∗t (ψ0)

∂ψ∂ψτ
p
−→ ΩI ,

which means A2 holds.
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We next verify condition A3. For eachψ ∈ Ψ, from (2.6) it is not difficult to show

∣

∣

∣

∣

∣

∂ht(ψ)
∂ψi

1
ht(ψ)

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∣

∂εt(ψ)
∂ψi

1
√

ht(ψ)

∣

∣

∣

∣

∣

∣

∣

are bounded by some constants that are independent ofψ. Note

2

(

1−
3ε2

t (ψ)

ht(ψ)

)

< 6

(

1+
ε2

t (ψ)

ht(ψ)

)

, and
4εt(ψ)
√

ht(ψ)
< 4(1+

ε2
t (ψ)

ht(ψ)
),

then from (2.20) we know there exist finite positive constants C1,C2 andC3 satisfying

the following:

|l1t| ≤ C1(1+
ε2

t (ψ)

ht(ψ)
), |l2t| ≤ C2(1+

ε2
t (ψ)

ht(ψ)
), |l3t| ≤ C3.

Note the true value of the parameter vector is denoted asψ0 = (θ0τ, φ0τ, a0τ)τ. We have

εt(ψ) = yt − [θ0 +

p
∑

i=1

θiyt−i + I (yt−d ≤ r)(φ0 +

p
∑

i=1

φiyt−i)]

= εt + [(θ0
0 − θ0) +

p
∑

i=1

(θ0
i − θi)yt−i

+I (yt−d ≤ r)((φ0
0 − φ0) +

p
∑

i=1

(φ0
i − φi)yt−i)]

:= et

√

ht + [β0 +

p
∑

i=1

βiyt−i].

Recall the i.i.d (0, 1) processet is independent ofyt−s for s > 0. Using the formula

(x+ y)2 ≤ 2(x2 + y2), then we have

ε2
t (ψ)

ht(ψ)
≤ 2e2

t ·
ω0 + Σm

i=1a
0
i y

2
t−i

ω + Σm
i=1aiy2

t−i

+ 2
(β0 +

∑p
i=1 βiyt−i)2

ω + Σ
p
i=1aiy2

t−i

.

Using the Cauchy-Schwarz inequality, we have (
∑n

i=1 xi)2 = (
∑n

i=1 xi .1)2 ≤

(
∑n

i=1 x2
i )(

∑n
i=1 12). As a result, we have (β0 +

∑p
i=1 βiyt−i)2 ≤ (p + 1)(β2

0 +
∑p

i=1 β
2
i y

2
t−i).
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Recall the considered parameter spaceΨ is bounded, then it can be shown that

ω0 + Σm
i=1a

0
i y

2
t−i

ω + Σm
i=1aiy2

t−i

≤ ω
0

ω
+
Σm

i=1a
0
i y

2
t−i

Σm
i=1aiy2

t−i

≤ ωU

ωL
+

aU

aL
= O(1),

where, we assumeωL ≤ ω ≤ ωU , aL ≤ a ≤ aU . Analogously,

(β0 +
∑p

i=1 βiyt−i)2

ω + Σ
p
i=1aiy2

t−i

≤ (p+ 1)
β2

0 +
∑p

i=1 β
2
i y

2
t−i

ω + Σ
p
i=1aiy2

t−i

= O(1).

Puttingwt = C(1+ e2
t ) with C being a certain positive constant that depends only on the

parameter spaceΨ, then from the above discussion, we know

max
i, j,k=1,··· ,p+2

sup
ψ∈N(ψ0)

∣

∣

∣

∣

∣

∣

∂3L∗T(Y, ψ)

∂ψi∂ψ j∂ψk

∣

∣

∣

∣

∣

∣

≤ 1
T

T
∑

t=1

wt
p
−→ Ewt < +∞.

Proof of Theorem 2.2:

Define

η∞ = T−
1
2
∂LT(ψ)
∂θ

=
1
√

T

T
∑

t=1

[

−εt

ht

∂εt

∂θ

]

,

and letur = (ητ∞, η
τ
r )
τ, c∗ = (cτ1, c

τ
2)
τ. Here,c∗ is any nonzero constant vector andc1 =

(c10, · · · , c1p)τ, c2 = (c20, · · · , c2p)τ. Consider

c∗τur = cτ1η∞ + cτ2ηr =

T
∑

t=1

1
√

T

[

−εt

ht
(cτ1

∂εt

∂θ
+ cτ2

∂εt

∂φ
)

]

=

T
∑

t=1

Ut,

then we know{Ut} is a martingale difference with respect toFt−1. Using analogous

discussion to (2.23), we can show

ur
L→ N































0,































C Lr

Lτr Cr





























































.
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Hence, on the condition thatη∞ = 0, we have

ηr
L→ N

{

0,
(

Cr − Lτr C
−1Lr

)}

.

For r , s, let ur,s = (ητ∞, η
τ
r , η

τ
s)
τ, then it can be similarly obtained that

ur,s
L→ N



















































0,



















































C Lr Ls

Lτr Cr Cmin(r,s)

Lτs Cτ
min(r,s) Cs





































































































,

and conditionally,(ηr , ηs)
′ converges in distribution to

N































0,































Cr Cmin(r,s)

Cτ
min(r,s) Cs































−































Lτr

Lτs































C−1

(

Lr Ls

)































.

Hence,(ηr , ηs) asymptotically follows a joint normal distribution with the covariance

beingCmin(r,s) − Lτr C
−1Ls.

Let b > 0,Dk(−∞,∞)(Dk[−b, b]) denote the function spaces with each element

f : R([−b, b]) −→ Rk being right continuous and having left-hand limit. Equip

Dk(−∞,∞)(Dk[−b, b]) with the topology of uniform convergence over compact sets.

Let Ck(−∞,∞) be the subspace ofDk(−∞,∞) consisting of functions continuous ev-

erywhere. More details on these spaces can be found in Pollard (1984). Now,

{ηr ,−∞ < r < ∞} lives onDp+1(−∞,∞).

Subsequently, we show thatηr converges weakly to{ξr} in Dp+1(−∞,∞) and each

realization of{ξr} belongs toCp+1(−∞,∞) almost surely. It suffices to verify the tight-

ness of{ηr ,−b ≤ r ≤ b} componentwise. Without loss of generality, consider the last
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component of{ηr ,−b ≤ r ≤ b}. It is tight if and only if

gT(r) =
1
√

T

T
∑

t=1

[

εt

ht
yt−pI (yt−d ≤ r)

]

is tight.

Let −b ≤ s ≤ r ≤ b be two arbitrary numbers,Mi ,Ki (i=1, 2) be constants inde-

pendent ofT. Then

gT(r) − gT(s) =
1
√

T

T
∑

t=1

[

εt

ht
yt−pI (s< yt−d ≤ r)

]

.

For i = 1, · · · , p, andδ = 1, 2, 3, 4, noted, p ≤ m, andy2
t−i/ht = O(1), then we have

E

{
∣

∣

∣

∣

∣

εt

ht
yt−i I (s< yt−d ≤ r)

∣

∣

∣

∣

∣

δ
}

≤ E

{

(1+
y4

t−i

h2
t

)I (s< yt−d ≤ r)E

(

(1+
ε4

t

h2
t

)|Ft−1

)}

≤ M1E {I (s< yt−d ≤ r)} ≤ M2(r − s). (2.25)

Let ζt =
1√
T
εt

ht
yt−pI (s < yt−d ≤ r). Applying Assumption 2.3 and Lemma 3.6 in Peligrad

(1982), we have

E|gT(r) − gT(s)|4 ≤ K1(T
1
4 ||ζt||4 + T

1
2 ||ζt||2)4

≤ K2[(r − s)/T + (r − s)2]. (2.26)

Here|| · ||δ means the usualLδ norm. The second line in the above inequalities follows

from (2.25). For [−b, b], consider a partition{−b = r0 < r1 < · · · < rL = b} with

u > 0, r j = r j−1 + u, 0 ≤ j ≤ L − 1 andrL − rL−1 ≤ u. Define

κt,i =
1
√

T

|εtyt−p|
ht

I (r i−1 < yt−d ≤ r i),
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then,∀i, for r i−1 ≤ r ≤ r i, we have

|gT(r) − gT(s)| ≤
T

∑

t=1

κt,i . (2.27)

Based on (2.25), it is not difficult to show

sup
i

T
∑

t=1

κt,i = uOp(
√

T). (2.28)

In fact, we know that

Pr















1
√

Tu
supi

T
∑

t=1

κt,i > δ















≤ Pr















T
∑

t=1

supi κt,i >
√

Tuδ















≤ TE[supi κt,i]√
Tuδ

=

√
TE[supi κt,i]

uδ
.

In the above inequalities, we use the stationarity of{supi κt,i}Tt=1 (which is easily satisfied

according to Assumption 2.1) and the Markov inequality. In terms of (2.25), it is easy

to show that

Ms :=
√

TE[supi κt,i]

= E

[

supi
|εtyt−p|

ht
I (r i−1 < yt−d ≤ r i)

]

≤ E

[ |εtyt−p|
ht

]

< ∞.

For any givenǫ > 0, putδ > Ms/(uǫ), then we have

Pr















1
√

Tu
supi

T
∑

t=1

κt,i > δ















< ǫ,

which means 1√
Tu

supi
∑T

t=1 κt,i = Op(1), namelysupi
∑T

t=1 κt,i = uOp(
√

T).
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In terms of (2.26-2.28), by applying similar discussion used in the proof of Theo-

rem 22.1 of Billingsley (1968), we can show the tightness of{gT(r),−b ≤ r ≤ b}.

2.5 Summary

This chapter considers a class of threshold ARCH model by adding threshold effect in

the mean equation of the DAR (p) model proposed by Ling (2007). Provided the thresh-

old is known, the QMLE of other parameters is shown to be asymptotically normal. A

LM test is proposed for testing the threshold effect and approximate methods are given

to tabulate the upper percentage points of the asymptoticalnull distribution. From the

simulation results, it is shown that the considered methodsperform well. Via the em-

pirical studies, it is seen that the proposed model has improvement over existing models

for the considered data.
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Chapter 3

An Alternative GARCH-M Model:

Structure and Estimation

3.1 Background

GARCH-M models have been widely studied since they were proposed by Engle, et al.

(1987), which can be generally described as

yt = Fm(ht) + εt, εt = et

√
ht,

et ∼ i.i.d(0, 1), ht = Fh(yt−1, ht−1), (3.1)

whereFm(·) is the conditional mean function andFh(·, ·) is the conditional variance

function. Model (3.1) includes many cases of the existing GARCH-M models by putting

Fm(ht) = δ loght, δht, δ
√

ht andFh(yt−1, ht−1) = ω+α(yt−1− Fm(ht−1))2+ βht−1. It is well

known in the literature that there are two difficult problems to deal with GARCH-M

models. The first is under what conditions the model is geometrically ergodic and the
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second is whether its quasi maximum likelihood estimator (QMLE) is asymptotically

normal. Fortunately, some recent works shed insights to thesolutions of these problems.

WhenFh(yt−1, ht−1) = Fh(yt−1 − Fm(ht−1), ht−1), Meitz and Saikkonen (2008) proposed

a principle to study the geometric ergodicity of (3.1) though they mainly focused on

applications to the GARCH and ACD (autoregressive conditional duration) models. By

assumingFh(yt−1, ht−1) = ω + αy2
t−1 + βht−1, Christensen et al. (2008) listed several

conditions in their Assumption A for generally specified functionsFm(ht) (except for

some unknown parameters), under which the QMLE for (3.1) is asymptotically normal.

Christensen et al. (2008) also gave empirical studies to demonstrate that the setting of

Fh(yt−1, ht−1) = ω+ αy2
t−1 + βht−1 is sensible for analyzing real data. Consequently, for a

special case of model (3.1), we can apply the results of Meitzand Saikkonen (2008) and

Christensen et al. (2008) to study the ergodicity conditions and the limiting properties

of the QMLE.

To be exact, we consider the following model

yt = δ
√

ht + εt, εt = et
√

ht, (3.2)

et ∼ i.i.d(0, 1), ht = ω + αy2
t−1 + βht−1, (3.3)

where 0< ω, α, 0 < β < 1, et is independent ofys, s < t, and it has a continuous

symmetric density function onR. Denoteθ = (δ, ω, α, β)τ as the unknown parameter

vector andθ ∈ Θ, whereΘ is assumed to have the formΘ := {θ : δL ≤ δ ≤ δU , 0 <

ωL ≤ ω ≤ ωU , 0 < αL ≤ α ≤ αU , 0 < βL ≤ β ≤ βU < 1}. All throughout this chapter,

the superscriptτ denotes the transpose of a vector or a matrix. The above (3.2-3.3) is a

special case of the model in Christensen et al. (2008), by setting m(ht) = δ
√

ht. If y2
t−1
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in (3.3) is substituted byε2
t−1, thenht becomes the usual GARCH case for which, to the

best of our knowledge, few results have been available for the asymptotic normality of

QMLE for (3.1). For simplicity, we focus on the case of (3.3),which enables us to study

the ergodicity and the QMLE for the considered model. In fact, such a setting for the

conditional variance in (3.3) is not new. Ling (2004) and Ling (2007) took advantage

of such specifications for the conditional variance with a finite order and some novel

results were achieved (See Remark 3.2 in Ling, 2007). Cline (2007a) also adopted

an analogous GARCH process when studying the geometric ergodicity of a class of

nonlinear AR-GARCH models.

The chapter is arranged as follows. In Section 3.2, we discuss the geometric ergod-

icity and the asymptotic normality of the QMLE for the considered model. Simulations

and empirical studies are given in Section 3.3. Proofs are put in Section 3.4 and we

summarize the chapter in Section 3.5.

3.2 Ergodicity and Estimation

3.2.1 Geometric ergodicity

Puttingσt =
√

ht, we can reformulate (3.2) and (3.3) as

yt = (δ + et)σt, (3.4)

σt =

√

ω + αy2
t−1 + βσ

2
t−1. (3.5)

Recallet is an independent and identically distributed process withmean 0 and variance

1, andet is independent of (ys, σs), s < t. Definezt = (yt, σt), with yt beingYt andσt
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beingXt, then we can respectively consider (3.4) and (3.5) as special cases of equations

(4) and (5) in Meitz and Saikkonen (2008). According to Proposition 1 of Meitz and

Saikkonen (2008), if the processσt is Vσ geometrically ergodic, then we havezt to be

Vz geometrically ergodic for some functionVz. Hence, it suffices to study the ergodicity

of σt.

By simple recursion, we have

σt =

√

ω + [α(δ + et−1)2 + β]σ2
t−1 := F(σt−1, et−1). (3.6)

Henceσt can be viewed as a Markov chain of its own and studied in isolation from yt.

Following the notations in Cline (2007a), we can rewrite (3.6) as

σt = B(σt−1, et) +C(σt−1, et),

where,

B(x, e) =
√

α(δ + e)2 + βx,

C(x, e) = ω/
{
√

α(δ + e)2 + βx+
√

ω + [α(δ + e)2 + β]x2
}

. (3.7)

Obviously,B(x, e) is homogeneous inx and satisfies 0< |B(x/|x|, e)| ≤ b̄(1 + |e|) for

some finiteb̄, and|C(x, e)| = O(1) ≤ c̄(1+ |e|) for some finite ¯c. Hence, (3.6) belongs to

the framework of (1.2) of Cline (2007a) and we may apply Cline’s (2007a) approach to

study the ergodicity ofσt. Define a related Markov process as

σ∗t = B(σ∗t−1, et) =
√

α(δ + et)2 + βσ∗t−1. (3.8)
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Let W∗
t = |B(σ∗t−1/|σ∗t−1|, et)| = |B(1, et)| =

√

α(δ + et)2 + β, then we have

γ := E(log(W∗
t )) =

1
2

E
{

log[α(δ + et)
2 + β]

}

. (3.9)

To study the geometric ergodicity ofσt, we further define the Lyapounov exponent as

γ̄ := lim inf
T→∞

lim sup
σ→∞

1
T

E

(

log

(

1+ σT

1+ σ0

)
∣

∣

∣

∣

∣

∣

σ0 = σ

)

. (3.10)

Then we have the following theorem.

Theorem 3.1 For the consideredΘ, suppose Assumption 3.1 in Section 3.4 holds, then

{σt} generated from (3.6) and{σ∗t } from (3.8) areφ-irreducible and aperiodic T chains

on (0,+∞). Furthermore,γ̄ is equivalently evaluated byγ and geometric ergodicity of

{σt} is implied by a negative value ofγ, namely E
{

log[α(δ + et)2 + β]
}

< 0.

Proof: It follows from Cline (2007a), and Cline and Pu (1999)that, when{σt} is φ-

irreducible and aperiodic, geometric ergodicity of{σt} is implied by a negative value

of γ̄. As mentioned before (3.6) is a special case of the recursionmodel (1.2) of Cline

(2007a). If we can show that the listed conditions A.1-A.4 inCline (2007a) are satisfied

for (3.6), then ¯γ is equivalent toγ. As a result, to prove Theorem 3.1, it suffices to

verify the mentioned conditions for (3.6). Referring to Section 5 of Cline (2007a),

under Assumption 3.1 in Section 3.4, we can see the conditions A.1, A.2 and A.4 in

Cline (2007a) are trivially satisfied for (3.6). Next we are to show that{σt} and{σ∗t } are

φ-irreducible and aperiodic T chains on (0,+∞), which implies A.3 of Cline (2007a)

holds. We just consider the case of{σ∗t } and the conclusion for{σt} can be acquired

analogously.

Recallσ∗t=B(σ∗t−1, et) and B(σ, e) =
√

α(δ + e)2 + βσ. We have∂B(σ,e)
∂e = α(δ +
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e)σ/
√

α(δ + e)2 + β. Suppose the continuous density function foret is f (e) and we

define the control set

Oe = {e∈ R : f (e) > 0}.

Under Assumption 3.1 in Section 3.4, we knowOe = R. Let {ut} ⊂ Oe be a deter-

ministic control sequence corresponded to{et}. Put ut = −δ + c for t = 1, · · · , k,

where c is a small positive constant such thatαUc2 + βU < 1 and k satisfies that

(αc2 + β)kσ2
0 < 1/β (noteαc2 + β < 1 ) for some initial positive valueσ0. Then we

have ∂B
∂e(σ0, u1) = αcσ0/

√

αc2 + β, which is nonzero for any positive initial valueσ0.

Applying Proposition 7.1.2 of Meyn and Tweedie (1993), we show that {σ∗t } is a T-

chain.

Define the control sequence asσc
t = B(σc

t−1, ut), and we know (σc
k)

2 = (αc2 +

β)kσ2
0 < 1/β. Setuk+1 = −δ +

√

1
α
( 1

(σc
k)2 − β) then we shall getσc

k+1 = B(σc
k, uk+1) = 1.

For t ≥ k + 2, put ut = −δ +
√

1−β
α

and then we shall getσc
t = 1 for t ≥ k + 2,

which means thatσc = 1 is a globally attracting state for{σc
t }. By using Proposition

7.2.5, Theorem 7.2.6 of Meyn and Tweedie (1993), we know{σ∗t } is ψ-irreducible. The

above convergence property also shows that any circle must contain the state{σc}. From

Proposition 7.3.4 of Meyn and Tweedie (1993), aperiodicityfollows.

Remark 3.1 In practice, as in Cline (2007b), we can evaluate the expectation γ given

in (3.9) by simulation approach after the parameters are estimated, or find the ergodic

range for a certain parameter when others are fixed. Whenα(δ2+1)+β < 1, by Jensen’s

inequality, we immediately haveγ < 0.
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3.2.2 Quasi maximum likelihood estimation

Recallθ = (δ, ω, α, β)τ andθ ∈ Θ, which is a bounded parameter space for model (3.2-

3.3). Suppose that the true parameterθ0 = (δ0, ω0, α0, β0)τ is an interior point of the

considered parameter spaceΘ. We need to estimateθ based on the observations{yt}Tt=1

and initial valuesy0, y−1, y−2, · · · . Following the convention in the literature, we consider

the quasi conditional log-likelihood function (apart froma constant term):

LT(θ) =
1
T

T
∑

t=1

l t(θ) =
1
T

T
∑

t=1

[log ht(θ) +
ε2

t (θ)

ht(θ)
], (3.11)

whereεt(θ) = yt − δ
√

ht(θ). For the sake of convenience, we put

ς = Ee4
t − 1, ht = ht(θ0), εt = yt − δ0

√
ht,

Ht =
[

1/(1− β0),
∑∞

l=1 β
l−1
0 y2

t−l ,
∑∞

l=1 β
l−1
0 ht−l

]τ
,

then the following theorem holds under Assumptions 3.1-3.2in Section 3.4.

Theorem 3.2 For model (3.2-3.3) and the quasi log-likelihood function LT(θ) (3.11),

suppose that Assumptions 3.1-3.2 in Section 3.4 hold, then there exists a fixed open

neighborhood U(θ0) ⊂ Θ such that with probability one, as T→ ∞ , LT(θ) has an

unique minimum point̂θT in U. Furthermore,
√

T(θ̂T − θ0)
L−→ N(0,Ω−1

I ΩSΩ
−1
I ), where

ΩS = E































4 2δ0
ht

Hτ
t

2δ0
ht

Ht
ς+δ2

0

h2
t

HtHτ
t































andΩI = E































2 δ0
ht

Hτ
t

δ0
ht

Ht
1+δ2

0/2

h2
t

HtHτ
t































.

Remark 3.2 The proof of Theorem 3.2 in Section 3.4 is a generalization ofJensen and

Rahbek (2004), through which, it is known thatEy2
t < ∞ is not required to guarantee

the validity of the theorem. Such a result is consistent withLing (2007). In practice, an
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initial valueh0 is needed for the calculation ofLT(θ), ht,Ht. The matricesΩI ,ΩS can be

approximated by the relevant sample means after the parameters have been estimated.

3.3 Simulations and Empirical Studies

3.3.1 Simulations

This section examines the performance of the (Q)MLE throughMonte Carlo experi-

ments. We study the medians and standard deviations (SD) of the estimates. The series

yt is generated through model (3.2-3.3). Recallθ = (δ, ω, α, β)τ, then the following cases

are considered

θ = (0.1, 0.05, 0.2, 0.5)τ, et ∼ i.i.d.N(0, 1),

θ = (1.5, 0.2, 0.1, 0.5)τ, et ∼ i.i.d.N(0, 1),

θ = (0.1, 0.05, 0.7, 0.35)τ, et ∼ i.i.d.N(0, 1),

θ = (−0.2, 0.1, 0.8, 0.2)τ, et ∼ i.i.d.N(0, 1),

θ = (0.6, 0.01, 0.1, 0.85)τ, et ∼ i.i.d. t(10),

θ = (−1.2, 0.5, 0.15, 0.3)τ, et ∼ i.i.d. t(6),

θ = (0.5, 1.2, 0.1, 0.6)τ, et ∼ i.i.d. t(4),

θ = (0.05, 0.1, 0.2, 0.6)τ, et ∼ i.i.d. t(3).

Hereet ∼ i.i.d. t(k) meanset is the innovation series that follows the distributiont(k)

independently. The sample sizes areT = 300, 600, and the number of replications is

1000. To run the estimation, we set the initial value for the conditional varianceh0 =
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var(yt) andθ = (δ, ω, α, β)τ ∈ [−10, 10]× [0.0001, 10]× [0.0001, 0.99]× [0.0001, 0.99].

The results are summarized in Table 3.1, from which, we know the medians are

close to the true values and the standard deviations are relatively small in most cases.

Moreover, larger sample sizes witness a convergence trend (smaller SDs) for all cases.

The simulation results indicate that the estimation performs well in finite samples.

3.3.2 Empirical studies

In this section, model (3.2-3.3) is applied to some real datasets. We analyze the excess

return data on the CRSP value weighted indices, which include the NYSE, the AMEX

and NASDAQ. Such data can be regarded as a reasonable proxy for the stock market

and it was also studied by Conrad and Mammen (2008) in a different way. The riskless

rate used to compute the excess returns is one-month Treasury bill rate (from Ibbotson

Associates).

First, we study the monthly data from July 1926 to February 2009 (totally 992

observations). Take the excess return series{yt}992
t=1 for estimation and use (3.2-3.3) to fit

the data. By minimizing (3.11), we get the estimates

yt = 0.1244
(0.0320)

√
ht + εt, εt = et

√
ht,

ht = 0.6206
(0.3172)

+ 0.1278
(0.0296)

y2
t−1 + 0.8553

(0.0299)
ht−1. (3.12)

The values in parentheses are the corresponding standard errors which are calculated

based on Theorem 3.2. Simple calculation givesα(δ2 + 1) + β = 0.9851 < 1 for

(3.12). As mentioned in Remark 3.1, this implies the estimates satisfy the geomet-

ric ergodicity conditions. The Ljung-Box statistics of thestandardized residuals give
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Table 3.1: Medians and standard deviations of (Q)MLEs for model (3.2-3.3)

θ = (δ, ω, α, β)τ δ̂ ω̂ α̂ β̂

T=300
(0.1, 0.05, 0.2, 0.5)τ Median 0.1037 0.0538 0.1898 0.4539

SD 0.0588 0.0287 0.0790 0.2016
(1.5, 0.2, 0.1, 0.5)τ Median 1.5131 0.2113 0.0978 0.4827

SD 0.0835 0.0811 0.0217 0.1060
(0.1, 0.05, 0.7, 0.35)τ Median 0.1023 0.0562 0.6310 0.3433

SD 0.0592 0.0181 0.0811 0.0746
(−0.2, 0.1, 0.8, 0.2)τ Median -0.2038 0.1055 0.7602 0.1927

SD 0.0594 0.025 0.0980 0.0654
(0.6, 0.01, 0.1, 0.85)τ Median 0.6010 0.0161 0.1007 0.8266

SD 0.0340 0.0774 0.0416 0.1555
(−1.2, 0.5, 0.15, 0.3)τ Median -1.2048 0.5182 0.1459 0.2598

SD 0.0681 0.3244 0.0499 0.1649
(0.5, 1.2, 0.1, 0.6)τ Median 0.5028 1.4814 0.0965 0.5126

SD 0.0373 1.0076 0.1031 0.2789
(0.05, 0.1, 0.2, 0.6)τ Median 0.0488 0.1316 0.1952 0.4525

SD 0.0318 0.1138 0.2340 0.2909
T=600

(0.1, 0.05, 0.2, 0.5)τ Median 0.1016 0.0521 0.2029 0.4749
SD 0.0413 0.0207 0.0579 0.1514

(1.5, 0.2, 0.1, 0.5)τ Median 1.5014 0.2068 0.1003 0.4903
SD 0.0623 0.0512 0.0158 0.0720

(0.1, 0.05, 0.7, 0.35)τ Median 0.1025 0.0551 0.6384 0.3458
SD 0.0408 0.0120 0.0549 0.0510

(−0.2, 0.1, 0.8, 0.2)τ Median -0.2012 0.1039 0.7693 0.1977
SD 0.0400 0.0179 0.0654 0.0491

(0.6, 0.01, 0.1, 0.85)τ Median 0.6008 0.0123 0.1009 0.8398
SD 0.0181 0.0205 0.0266 0.0487

(−1.2, 0.5, 0.15, 0.3)τ Median -1.2005 0.5106 0.1484 0.2882
SD 0.0266 0.1436 0.0304 0.1205

(0.5, 1.2, 0.1, 0.6)τ Median 0.5016 1.3271 0.0991 0.5602
SD 0.0231 0.8422 0.0832 0.2326

(0.05, 0.1, 0.2, 0.6)τ Median 0.0493 0.1137 0.1906 0.5415
SD 0.0237 0.0864 0.1947 0.2448

Notes: (1) Number of replications=1000; (2) Different error distributions are used.
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Q(3) = 5.8743 (0.118),Q(12)= 17.406 (0.135), where the values in the parentheses are

the relatedp-values. The Ljung-Box statistics for the squared standardized residuals

showQ(3) = 1.4144 (0.702),Q(12) = 6.5556 (0.886). For comparison, we also fit the

data by the traditional GARCH-M model:

yt = 0.1719
(0.03145)

√
ht + εt, εt = et

√
ht,

ht = 0.7018
(0.2201)

+ 0.1378
(0.0197)

ε2
t−1 + 0.8543

(0.0174)
ht−1. (3.13)

For (3.13), the Ljung-Box statistics of the standardized residuals give Q(3) =

5.4967 (0.139), Q(12)= 17.829 (0.121). The Ljung-Box statistics for the squared stan-

dardized residuals showQ(3) = 1.9389 (0.585), Q(12) = 6.2185 (0.905). From the

computed values of the Ljung-Box statistics, we can see thatboth (3.12) and (3.13) are

adequate at the 5% level1.

For (3.12), we calculate the RMSE (root mean squared error) and the MAE (mean

absolute error) for the in-sample forecasts as 5.4539, 3.8223 and the corresponding ones

of (3.13) are 5.4669, 3.8185. Denotehn
t , h

o
t to be the conditional variances calculated

from (3.12) and (3.13) respectively. Correspondingly, we denote f n
t , f o

t the in-sample

forecasting values. To give clear comparison, we plot{hn
t }990

t=600 (solid line) and{ho
t }990

t=600

(circle) in Figure 3.1,{ f n
t }990

t=600 (solid line) and{ f o
t }990

t=600 (circle) in Figure 3.2. From the

RMSEs, MAEs, and plots in the figures, we can see that both conditional variances and

forecasts generated form (3.12) and (3.13) are quite similar, though{ f n
t } is generally a

bit smaller than{ f o
t }. The above results mean that (3.12) has comparable fitting effect

to that of (3.13) for the considered data, which can be insightful because a different

1The objective of empirical studies is to compare the performance between the considered model and
the traditional one, while it should be noted that Christensen et al. (2008) has shown semiparametric
GARCH-in-Mean models may be more practical when analyzing the real data.

42



GARCH process is applied.

Next, we apply the model (3.2-3.3) and the traditional GARCH-M model to the

weekly data from 05/07/1963 to 27/02/2009 (totally 2383 observations). Similar to

Chou et al. (1992), we choose the weekly data rather than the daily data to avoid the

documented anomalies of day-of-the-week effects. Since 30/04/1971, for each quarter,

we estimate a value forδ or the Market Price of the Risk (Merton, 1980) based on both

(3.2-3.3) and the traditional model. We use the previous 400observations to estimate the

parameter and totally 165 estimators are acquired. For eachestimation, we record the

corresponding in-sample forecast RMSE and MAE. Let{δn
i }165

i=1, {δo
i }165

i=1 be the estimated

δ values from (3.2-3.3) and the traditional model respectively. Accordingly, denote

{REn
i }165

i=1, {REo
i }165

i=1, {MEn
i }165

i=1, {MEo
i }165

i=1 to be the respective RMSE and MAE sequences.

To compare, we list the percentiles of the differences between the error sequences in

Table 3.2, and plot the{δn
i }165

i=1 (solid line),{δo
i }165

i=1 (dashed line) in Figure 3.3.

Table 3.2: Percentiles of differences between error sequences.

Difference Percentiles
series 10% 25% 50% 75% 90%

{REo
i − REn

i } -0.0004 -0.0000 0.0011 0.0035 0.0070
{MEo

i − MEn
i } -0.0067 -0.0054 -0.0042 -0.0033 -0.0017

Based on Table 3.2, it is shown that the differences between the error sequences

recorded from the two models are negligible. In terms of Figure 3.3, we can see the

trajectory of{δn
i } is analogous to that of{δo

i }, though the latter one is a bit higher. Con-

sequently, similar to the results obtained from the monthlydata, model (3.2-3.3) has

comparable fitting performance to that of the traditional one for the considered data.
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Figure 3.1: Plots of{hn
t }990

t=600 (solid line) and{ho
t }990

t=600 (circle).
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Figure 3.2: Plots of{ f n
t }990

t=600 (solid line) and{ f o
t }990

t=600 (circle).
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Figure 3.3: Plots of{δn
i }165

i=1 (solid line) and{δo
i }165

i=1 (dashed line).

3.4 Proofs

We make the following assumptions for model (3.2-3.3).

Assumption 3.1. The i.i.d (0, 1) process{et} satisfiesEe4
t < ∞, and has a continuous

symmetric probability density function which is positive everywhere.

Assumption 3.2.The series{yt, ht} generated from model (3.2-3.3) are strictly station-

ary and ergodic for the considered parameter spaceΘ.

Before giving the proof for Theorem 3.2, we need to show some expressions and

state several lemmas. In terms of (3.11), it is not difficult to get the derivatives of the

quasi likelihood function with respect toθ:

∂l t(θ)
∂θ
=

(

1− ε
2
t (θ)

ht(θ)

)

1
ht(θ)

∂ht(θ)
∂θ
+

2εt(θ)
ht(θ)

∂εt(θ)
∂θ

, (3.14)
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∂2l t(θ)
∂θ∂θτ

= − 1

h2
t (θ)

(

1− 2ε2
t (θ)

ht(θ)

)

∂ht(θ)
∂θ

∂ht(θ)
∂θτ

− 2εt(θ)

h2
t (θ)

∂ht(θ)
∂θ

∂εt(θ)
∂θτ

+
2

ht(θ)
∂εt(θ)
∂θ

∂εt(θ)
∂θτ

+
2εt(θ)
ht(θ)

∂2εt(θ)
∂θ∂θτ

−2εt(θ)

h2
t (θ)

∂εt(θ)
∂θ

∂ht(θ)
∂θτ

+
1

ht(θ)

(

1− ε
2
t (θ)

ht(θ)

)

∂2ht(θ)
∂θ∂θτ

. (3.15)

Let symbol variabless1, s2, s3 take values from symbol set{i, j, k}. Then we further have

∂3lt(θ)
∂θi∂θ j∂θk

= d1t(θ) + d2t(θ) + d3t(θ) where,

d1t(θ) =
2(ht(θ) − 3ε2

t (θ))

h4
t (θ)

∂ht(θ)
∂θi

∂ht(θ)
∂θ j

∂ht(θ)
∂θk

+
2εt(θ)

h3
t (θ)

∑

s1,s2,s3

∂ht(θ)
∂θs1

∂ht(θ)
∂θs2

∂εt(θ)
∂θs3

− 1

h2
t (θ)

∑

s1,s2,s3

∂ht(θ)
∂θs1

∂εt(θ)
∂θs2

∂εt(θ)
∂θs3

, (3.16)

d2t(θ) =

(

ε2
t (θ)

h3
t (θ)
− 1

2h2
t (θ)

)

∑

s1,s2,s3

∂ht(θ)
∂θs1

∂2ht(θ)
∂θs2∂θs3

− εt(θ)

h2
t (θ)

∑

s1,s2,s3

∂ht(θ)
∂θs1

∂2εt(θ)
∂θs2∂θs3

− εt(θ)

h2
t (θ)

∑

s1,s2,s3

∂εt(θ)
∂θs1

∂2ht(θ)
∂θs2∂θs3

+
1

ht(θ)

∑

s1,s2,s3

∂εt(θ)
∂θs1

∂2εt(θ)
∂θs2∂θs3

, (3.17)

and

d3t(θ) =
1

ht(θ)

(

1− ε
2
t (θ)

ht(θ)

)

∂3ht(θ)
∂θi∂θ j∂θk

+
2εt(θ)
ht(θ)

∂3εt(θ)
∂θi∂θ j∂θk

. (3.18)
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Note thatεt(θ) = yt − δ
√

ht(θ), then we can show

∂εt(θ)
∂θi

= − ∂δ
∂θi

√

ht(θ) −
δ

2
√

ht(θ)

∂ht(θ)
∂θi

, (3.19)

∂2εt(θ)
∂θi∂θ j

=
δ

4ht(θ)
√

ht(θ)

∂ht(θ)
∂θi

∂ht(θ)
∂θ j

− 1

2
√

ht(θ)

[

∂δ

∂θi

∂ht(θ)
∂θ j

+
∂ht(θ)
∂θi

∂δ

∂θ j
+ δ

∂2ht(θ)
∂θi∂θ j

]

, (3.20)

∂3εt(θ)
∂θi∂θ j∂θk

=
δ

8ht(θ)
√

ht(θ)

∑

s1,s2,s3

∂2ht(θ)
∂θs1∂θs2

∂ht(θ)
∂θs3

+
1

8ht(θ)
√

ht(θ)

∑

s1,s2,s3

∂δ

∂θs1

∂ht(θ)
∂θs2

∂ht(θ)
∂θs3

− 1

4
√

ht(θ)

∑

s1,s2,s3

∂2ht(θ)
∂θs1∂θs2

∂δ

∂θs3

− δ

2
√

ht(θ)

∂3ht(θ)
∂θi∂θ j∂θk

− 3δ

8h2
t (θ)
√

ht(θ)

∂ht(θ)
∂θi

∂ht(θ)
∂θ j

∂ht(θ)
∂θk

. (3.21)

Simple recursion gives

ht(θ) = ω + αy2
t−1 + βht−1(θ) = ω/(1− β) + α

∞
∑

l=1

βl−1y2
t−l , (3.22)

and hence

∂ht(θ)
∂δ

= 0,
∂ht(θ)
∂ω

=
1

1− β,

∂ht(θ)
∂α

=

∞
∑

l=1

βl−1y2
t−l ,

∂ht(θ)
∂β

=

∞
∑

l=1

βl−1ht−l(θ). (3.23)

Define

ht(β) =
ω0

1− β + α0

∞
∑

l=1

βl−1y2
t−l , (3.24)

then we have the following lemma.

Lemma 3.1 Let ht(θ), ht(β) be given as in (3.22) and (3.24). Note that ht(θ0) = ht(β0) =
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ht, then we have ht(β) = ht + (β − β0)
∑∞

l=1 β
l−1ht−l , ht = ht(β) + (β0 − β)

∑∞
l=1 β

l−1
0 ht−l(β)

and for any t, s

sup
θ∈Θ

ht(θ)
hs(θ)

≤ κ1 sup
βL≤β≤βU

ht(β)
hs(β)

,

sup
θ∈Θ

1
ht(θ)

≤ κ2 sup
βL≤β≤βU

1
ht(β)

,

whereκ1 = max (αU

α0
,
ωU

ω0
)/min (αL

α0
, ωL
ω0

) andκ2 = 1/min (αL
α0
, ωL
ω0

).

Proof: Note that

ht(β) = ω0 + α0y
2
t−1 + βht−1(β) = ht + βht−1(β) − β0ht−1,

and hence

ht(β) − ht = β[ht−1(β) − ht−1] + (β − β0)ht−1

= β2[ht−2(β) − ht−2] + (β − β0)[ht−1 + βht−2]

= · · · = (β − β0)
∞
∑

l=1

βl−1ht−l ,

namely the first equality holds. The second equality can be derived analogously. It is

known

ht(θ) = ω/(1− β) + α
∞
∑

l=1

βl−1y2
t−l ≤ ωU/(1− β) + αU

∞
∑

l=1

βl−1y2
t−l

≤ ωU

ω0
ω0/(1− β) +

αU

α0
α0

∞
∑

l=1

βl−1y2
t−l ≤ max(

αU

α0
,
ωU

ω0
)ht(β). (3.25)

Similarly, we can getht(θ) ≥ min(αL
α0
, ωL
ω0

)ht(β), which together with (3.25) implies the

last two inequalities hold.
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Lemma 3.2 Define the processes

umt(a, b, c) = mΣ∞l=1a
l−mΠm−1

n=1 (l − n)Πl
k=1

1
c(δ0 + et−k)2 + b

(3.26)

for m= 1, . . . , 4 (whereΠ0
n=1 = 1). Then for each p≥ 1 there existβL andβU defined in

Θ such that

E[umt(β0, βL, κ3α0)]
p < ∞,E[umt(βU , β0, α0)]

p < ∞. (3.27)

where,κ3 = (1− βU)/(2− β0 − βU).

Proof: The lemma can be established by similar argument to the proof of Lemma 3 in

Jensen and Rahbek (2004).

By (3.23), it is not difficult to get

h1t(θ) :=
1

ht(θ)
∂ht(θ)
∂β

=

∞
∑

l=1

βl−1ht−l(θ)
ht(θ)

, (3.28)

h2t(θ) :=
1

ht(θ)
∂2ht(θ)
∂β2

= 2
∞
∑

l=1

(l − 1)βl−2ht−l(θ)
ht(θ)

, (3.29)

h3t(θ) :=
1

ht(θ)
∂3ht(θ)
∂β3

= 3
∞
∑

l=1

(l − 1)(l − 2)βl−3ht−l(θ)
ht(θ)

, (3.30)

and that

sup
θ∈Θ

hit(θ) ≤ κ1 sup
βl≤β≤βU

hit(β) (3.31)

with κ1 being given in Lemma 3.1. In fact we can easily get the above (3.28-3.30) by

the following simple but useful equalities: Let{Zk,−∞ ≤ k ≤ t} be a sequence, then we
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have

Σ∞l=1β
l−1Σ∞k=1β

k−1Zt−l−k = Σ
∞
l=1(l − 1)βl−2Zt−l , (3.32)

2Σ∞l=1(l − 1)βl−2Σ∞k=1β
k−1Zt−l−k = Σ

∞
l=1(l − 1)(l − 2)βl−3Zt−l , (3.33)

and

3Σ∞l=1(l − 1)(l − 2)βl−3Σ∞k=1β
k−1Zt−l−k

= Σ∞l=1(l − 1)(l − 2)(l − 3)βl−4Zt−l . (3.34)

Lemma 3.3 Let 0 < βL ≤ β, andβ0 ≤ βU < 1, then

ht

ht(β)
≤































κ4 for β0 ≤ β

1+ (β0 − βL)u1t(β0, βL, κ3α0) for β ≤ β0

,

h1t(β) ≤































κ4u1t(βU , β0, α0) +
κ4
2 (βU − β0)u2t(βU , β0, α0) for β0 ≤ β

u1t(β0, βL, κ3α0) for β ≤ β0

,

h2t(β) ≤































κ4u2t(βU , β0, α0) +
κ4
3 (βU − β0)u3t(βU , β0, α0) for β0 ≤ β

u2t(β0, βL, κ3α0) for β ≤ β0

,

h3t(β) ≤































κ4u3t(βU , β0, α0) +
κ4
4 (βU − β0)u4t(βU , β0, α0) for β0 ≤ β

u3t(β0, βL, κ3α0) for β ≤ β0

,

whereκ4 = (2− β0 − βL)/(1− β0), andκ3 is given in Lemma 3.2.

Proof: Whenβ0 ≤ β, we knowΣ∞l=1β
l−1
0 y2

t−l ≤ Σ∞l=1β
l−1y2

t−l . In terms of (3.24), we have

ht

ht(β)
≤ 1− β

1− β0
+
Σ∞l=1β

l−1
0 y2

t−l

Σ∞l=1β
l−1y2

t−l

≤ 1− βL

1− β0
+ 1 = κ4. (3.35)
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Whenβ ≤ β0, we knowΣ∞l=1β
l−1y2

t−l ≤ Σ∞l=1β
l−1
0 y2

t−l . Similar to (3.35), we have

ht(β)
ht
≤ 1− β0

1− β +
Σ∞l=1β

l−1y2
t−l

Σ∞l=1β
l−1
0 y2

t−l

≤ 1− β0

1− βU
+ 1 =

1
κ3
, (3.36)

which impliesht/ht(β) ≥ κ3, and hence it can be shown

ht−l(β)
ht(β)

=

l
∏

k=1

ht−k(β)
ht−k+1(β)

=

l
∏

k=1

ht−k(β)

ω0 + α0y2
t−k + βht−k(β)

≤
l

∏

k=1

1

α0(δ0 + et−k)2 ht−k

ht−k(β) + β
≤

l
∏

k=1

1
κ3α0(δ0 + et−k)2 + βL

. (3.37)

Further, in terms of Lemma 3.1 and (3.37), we have

ht

ht(β)
=

ht(β) + (β0 − β)
∑∞

l=1 β
l−1
0 ht−l(β)

ht(β)

≤ 1+ (β0 − βL)
∞
∑

l=1

βl−1
0

l
∏

k=1

1
κ3α0(δ0 + et−k)2 + βL

,

which ends the proof of the first inequality. For the other three inequalities, based on

(3.32-3.34), they can be shown by analogous argument and we only give the proof for

the last one. By definition

h3t(β) =
1

ht(β)
∂3ht(β)
∂β3

= 3
∞
∑

l=1

(l − 1)(l − 2)βl−3ht−l(β)
ht(β)

.

Whenβ ≤ β0, the inequality holds by (3.37). Next, forβ0 ≤ β, Lemma 3.1 yields

h3t(β) = 3
∞
∑

l=1

(l − 1)(l − 2)βl−3ht−l + (β − β0)
∑∞

s=1 β
s−1ht−l−s

ht(β)

= 3
∞
∑

l=1

(l − 1)(l − 2)βl−3 ht−l

ht(β)

+(β − β0)
∞
∑

l=1

(l − 1)(l − 2)(l − 3)βl−4 ht−l

ht(β)
.
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The second equality can be explained by (3.34). Note that, providedβ0 ≤ β, (3.35) gives

ht−l

ht(β)
=

ht

ht(β)
.
ht−l

ht
≤ κ4

l
∏

k=1

1
α0(δ0 + et−k)2 + β0

, (3.38)

and hence the last inequality follows.

Proof of Theorem 3.2:

According to Lemma 2.1, it suffices to show the conditions A1-A3 in the lemma

hold. We consider condition A1 first. Recallht = ht(θ0), εt = εt(θ0), ς = Ee4
t − 1. From

(3.14-3.15), we know

√
T
∂LT(θ0)
∂θ

=
1
√

T

T
∑

t=1

[(

1−
ε2

t

ht

)

1
ht

∂ht

∂θ
+

2εt

ht

∂εt

∂θ

]

:=
1
√

T

T
∑

t=1

St.

Consider any non-zero vectorc = (c1, c2, c3, c4)τ, we have

√
Tcτ

∂LT(θ0)
∂θ

=

T
∑

t=1

(

1
√

T
cτSt

)

:=
T

∑

t=1

Wt.

Let Ft−1 := σ(et−1, · · · , e1, y0, y−1, · · · ) be the information set up to timet − 1 , then

we know {Wt} is a martingale difference with respect toFt−1, and E(W2
t |Ft−1) =

cτ 1
T E(StSτ

t |Ft−1)c. Under Assumptions 3.1-3.2, it is not difficult to get

E(StS
τ
t |Ft−1) =

ς

h2
t

∂ht

∂θ

∂ht

∂θτ
+

4
h0t

∂εt

∂θ

∂εt

∂θτ
:= ΩS,t. (3.39)

Consequently, we have

T
∑

t=1

E(W2
t |Ft−1) = cτ















1
T

T
∑

t=1

ΩS,t















c
p
→ cτΩSc,
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where

ΩS = E(ΩS,t) = E

(

ς

h2
t

∂ht

∂θ

∂ht

∂θτ
+

4
ht

∂εt

∂θ

∂εt

∂θτ

)

. (3.40)

Furthermore, given anyδ > 0, we have

T
∑

t=1

E
[

W2
t I (|Wt| ≥ δ)

]

=
1
T

T
∑

t=1

E
[

cτStS
τ
t cI(|cτStS

τ
t c| ≥ δ2T)

]

= E
[

cτS1S
τ
1cI(|cτS1S

τ
1c| ≥ δ2T)

]

−→ 0.

The above limit can be explained by the fact:E
[

S1Sτ
1

]

= EΩS,1 < ∞. By the martingale

central limit theorem, see, for example, Theorem 35.12 in Billingsley (1995) we deduce

that
∑T

t=1 Wt
L→ N(0, cτΩSc), which means

√
T
∂LT(θ0)
∂θ

L−→ N(0,ΩS). (3.41)

Applying the double expectation formula we shall get

E

(

∂2l t(θ0)
∂θ∂θτ

)

= E

(

1

h2
t

∂ht

∂θ

∂ht

∂θτ
+

2
ht

∂εt

∂θ

∂εt

∂θτ

)

:= ΩI , (3.42)

∂2Lt(θ0)
∂θ∂θτ

=
1
T

T
∑

t=1

∂2l t(θ0)
∂θ∂θτ

p
−→ ΩI ,

which means A2 holds.

For condition A3, we just show supθ∈Θ
∣

∣

∣∂3LT(θ)/∂β3
∣

∣

∣ is controlled by a positive

ergodic sequence that has desired moments. Other cases can be easily proved by noting

the fact that∂iht(θ)/∂δi = 0, and∂ jht(θ)/∂ω j = ∂ jht(θ)/∂α j = 0 for i = 1, 2, 3, j = 2, 3.
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Moreover,

1
ht

∂ht

∂ω
=

1
ht(1− β)

≤ 1
ωL(1− βU)

< ∞, and

1
ht

∂ht

∂α
=

∑∞
l=1 β

l−1y2
t−l

ω( 1
1−β ) + α(Σ∞l=1β

l−1y2
t−l)

<
1
αL

< ∞,

which can be derived from (3.23). Based on (3.19-3.21), we have

m1t(θ) :=
1
√

ht(θ)

∂εt(θ)
∂β

= −δ
2

h1t(θ), (3.43)

m2t(θ) :=
1
√

ht(θ)

∂2εt(θ)
∂β2

=
δ

4
h2

1t(θ) −
δ

2
h2t(θ), and (3.44)

m3t(θ) :=
1
√

ht(θ)

∂3εt(θ)
∂β3

=
3δ
4

h1t(θ)h2t(θ)

−δ
2

h3t(θ) −
3δ
8

h3
1t(θ). (3.45)

Then according to (3.16-3.18), it can be calculated that

∂3l t(θ)
∂β3

= 2

(

1− 3ε2
t (θ)

ht(θ)

)

h3
1t(θ) +

12εt(θ)√
ht(θ)

h2
1t(θ)m1t(θ) − 6h1t(θ)m

2
1t(θ)

+

(

6ε2
t (θ)

ht(θ)
− 3

)

h1t(θ)h2t(θ) −
6εt(θ)√

ht(θ)
h1t(θ)m2t(θ)

− 6εt(θ)√
ht(θ)

h2t(θ)m1t(θ) + 6m1t(θ)m2t(θ)

+

(

1− ε
2
t (θ)

ht(θ)

)

h3t(θ) +
2εt(θ)√

ht(θ)
m3t(θ). (3.46)

We also have

ε2
t (θ)

ht(θ)
=

[yt − δ
√

ht(θ)]2

ht(θ)
≤ 2

(

y2
t

ht(θ)
+ δ2

)

= 2

[

(δ0 + et)
2 ht

ht(θ)
+ δ2

]

≤ 2

[

κ2(δ0 + et)
2 ht

ht(β)
+ δ2

U

]

:= Vt(β). (3.47)
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Based on Lemma 3.1 and Lemma 3.3, it can be shown that

Vt(β) ≤































2
[

κ2κ4(δ0 + et)2 + δ2
U

]

for β0 ≤ β

2
{

κ2(δ0 + et)2 [

1+ (β0 − βL)u1t(β0, βL, κ3α0)
]

+ δ2
U

}

for β ≤ β0

.

(3.48)

Noteεt(θ)/
√

ht(θ) ≤ ε2
t (θ)/ht(θ) + 1. In terms of Lemma 3.1 and (3.43-3.46), then there

exists a constantK such that

∣

∣

∣

∣

∣

∣

∂3l t(θ)
∂β3

∣

∣

∣

∣

∣

∣

≤ K(Vt(β) + 1)
[

h3
1t(β) + h2

1t(β)m∗1t(β) + h1t(β)m∗21t (β)

+h1t(β)h2t(β) + h1t(β)m∗2t(β) + h2t(β)m∗1t(β)

+m∗1t(β)m∗2t(β) + h3t(β) +m∗3t(β)
]

:= wt(β), (3.49)

wherem∗1t(β) = δUκ1h1t(β),m∗2t(β) = δUκ1[h2
1t(β) + h2t(β)] and

m∗3t(β) = 2δUκ1[h1t(β)h2t(β) + h3t(β) + h3
1t(β)].

From Lemma 3.2, Lemma 3.3 and (3.48), we knowwt(β) in (3.49) is bounded by some

positive ergodicwt that has desired moments. Hence we have shown A3 holds for the

case of∂3l t(θ)/∂β3. Other situations can be proved by similar argument, which ends the

proof of Theorem 3.2.

3.5 Summary

In this chapter, we study a special case of the GARCH-M type model proposed by

Christensen et al. (2008). Ergodicity conditions are discussed, and by checking the

conditions listed in Lemma 1 of Jensen and Rahbek (2004), we show that the QMLE
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of the model is asymptotically normal. Through simulationsand empirical studies, it is

seen that the estimation performs well and the considered GARCH-M model has com-

parable performance in data modeling as compared to the traditional one. Our results

indicate that the model of Christensen et al. (2008) can be useful because it gives an

alternative way to study the GARCH-in-Mean effect.
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Chapter 4

Semiparametric (G)ARCH-M Models

4.1 Background

The relationship between the risk (conditional volatility) and return (conditional mean)

is undoubtedly an important topic in finance and many researchers have paid efforts to

investigate it. Among the preceding results, the ARCH-M model proposed by Engle, et

al. (1987) plays an important role for describing such a relationship. Letyt denote the

excess return of a stock market andht denote the conditional volatility at timet. Define

Ft−1 as the information set up to timet − 1, then three usual forms areE(yt|Ft−1) =

δht,E(yt|Ft−1) = δ loght andE(yt|Ft−1) = δ
√

ht. Some other generalized forms can

be found in Das and Sarkar (2000). Based on the above forms, many empirical studies

have been done to analyze real data such as Chou (1988), Chou et al. (1992) and Fama

and French (1989). Mixed results about the coefficient δ were obtained (Chou et al.,

1992). Such a phenomenon suggests that it can be restrictiveto assume the relationship

as some parametric form. Recently, Christensen et al. (2008) have proposed a class of

semiparametric GARCH-M models to study the conditional volatility and conditional
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mean. Their model is given by

yt = m(ht) + εt, εt = et
√

ht,

et ∼ i.i.d(0, 1), ht = ω + αy2
t−1 + βht−1. (4.1)

In the above model, the conditional mean (expected excess return) is formulated as an

unknown smooth functionm(·). Such a description is more flexible compared to that

of the usual parametric models. Another novelty of model (4.1) lies in that an adjusted

GARCH (1, 1) process is adopted. The specified conditional volatility ht has a nice

property that: with known parametersω, α andβ, ht is determined by the observable

{ys}t−1
s=−∞.

Motivated by model (4.1), we are interested in the followingtwo aspects. Firstly

it is what the ARCH-in-mean case of (4.1) looks like. Because, on some occasions,

considering the finite ordered memory is already adequate. Secondly it is how to deal

with (4.1) when we consider a general form of the conditionalvolatility ht driven by

the observed{ys}t−1
s=−∞. Such a generalization enables us to take asymmetric effect into

account when describing the conditional volatility (e.g.,ht = ω+α[1+ηI (yt−1 ≤ 0)]y2
t−1+

βht−1 ). In this chapter, we give some results with respect to thesetwo aspects.

Section 4.2 studies a semiparametric ARCH-M model and the associated estima-

tion method is discussed. In Section 4.3, we consider a generalized semiparametric

GARCH-M model from (4.1) and some related issues are investigated. Empirical stud-

ies based on the considered two models are displayed in Section 4.4 and a summary is

given in Section 4.5.
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4.2 A Semiparametric ARCH-M Model

4.2.1 Model and estimation

In this section, for ease of exposition, we study the following semiparametric ARCH-M

model

yt = m(ht) + εt, εt = et

√
ht,

et ∼ i.i.d(0, 1), ht = θ0 + θ1y2
t−1 + · · · + θLy2

t−L, (4.2)

where,m(·) is an unknown smooth function,θ0 > 0, 1 > θ1 ≥ θ2 ≥ · · · ≥ θL ≥ 0.

Model (4.2) can be considered as a ARCH-in-mean case of model(4.1). We can expect

long memory exists ifθL , 0 whenL is large. Denoteθ = (θ0, θ1, · · · , θL)τ,Wt =

(1, y2
t−1, · · · , y2

t−L). All throughout this chapter, the superscriptτ denotes the transpose of

a vector or a matrix. Then we can rewrite (4.2) as

yt = m(Wtθ) + εt, εt = et

√

Wtθ, et ∼ i.i.d(0, 1), (4.3)

which is similar to the constrained single-index model studied by Xia and Tong (2006).

We can thus apply Xia and Tong’s (2006) idea to estimate model(4.3) with some ad-

justments. In the literature of single-index model, the usual way is to restrict‖ θ ‖= 1

or ΣL
l=0θl = 1 for identifiability. Before giving a proper adjustment foridentifiability

condition for model (4.2), we supposeΣL
l=0θl = 1 and give the estimation procedure

first.

Following Xia and Tong (2006), we have local linear expansion of m(Wtθ) at point
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w

m(Wtθ) = aw + bw(Wt − w)θ +O{|(Wt − w)θ|2},

whereaw = m(wθ), bw = m′(wθ). Let K(v) be a symmetric kernel function,h be a

bandwidth,Kh(v) = h−1K(v/h) and Wi j = Wi − Wj. By the principle of local linear

smoother, we estimateaw andbw by minimizing

n−1
n

∑

i=1

{Yi − aw − bw(Wt − w)θ}2Kh((Wt − w)θ).

Let ai = m(Wiθ), bi = m′(Wiθ), i = 1, · · · , n, andα = (a1, · · · , an, b1, · · · , bn)τ. Fol-

lowing Xia and Tong (2006), the best approximation ofθ should minimize the overall

departure for allw =Wj , j = 1, · · · , n. Thus we can estimateα andθ by

min
α,θ

n−1
n

∑

j=1

n
∑

i=1

{Yi − a j − b jWi jθ}2Kh(Wi jθ) (4.4)

subject to the constraints: 1> θ0 ≥ θ1 ≥ · · · ≥ θL ≥ 0. The minimization problem in

(4.4) can be solved by quadratic programming. Let

Y =



















































y1

...

yn



















































n×1

, W =



















































W1

...

Wn



















































n×(L+1)

, 1n =



















































1

...

1



















































n×1

,

Ui,θ =



















































Wi1θ

. . .

Winθ



















































n×n

andUθ =



















































U1,θ

...

Un,θ



















































n2×n

.
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Further,Y = Y⊗ 1n, I⊗n = 1n ⊗ In and

Wθ,h = diag{Kh(W11θ), · · · ,Kh(W1nθ), · · · ,Kh(Wn1θ), · · · ,Kh(Wnnθ)}.

Here In is then × n unit matrix and⊗ denotes the Kronecker product. Following Xia

and Tong (2006), the minimization of (4.4) can be achieved bythe following algorithm.

Step A: Given an initial estimatẽθ of θ (we can set the initial estimate forθ as

θ̃ = (L, L − 1, · · · , 1, 0)/
∑L

l=0 l. ), then the minimization of (4.4) becomes

min
α
{Y − (I⊗n

...Uθ̃)α}τWθ̃,h{Y − (I⊗n
...Uθ̃)α}. (4.5)

Let

Cθ̃,h = (I⊗n
...Uθ̃)

τWθ̃,hY,

Dθ̃,h = (I⊗n
...Uθ̃)

τWθ̃,h(I
⊗
n
...Uθ̃).

Minimization of (4.5) is equivalent to

min
α
{ατDθ̃,hα − 2Cτ

θ̃,h
α}. (4.6)

SinceDθ̃,h andCθ̃,h are independent ofα, minimization of (4.6) is a typical quadratic

programming problem forα.

Step B: Putγ = (θ0 − θ1, θ1 − θ2, · · · , θL−1 − θL, θL)τ. Let B be such thatBγ = θ.

Define

Qθ̃,h = Bτ
∑n

j=1 b2
j

∑n
i=1 Kh(Wi j θ̃)Wτ

i j Wi j B,

Pθ̃,h = Bτ
∑n

j=1 b j
∑n

i=1 Kh(Wi j θ̃)Wτ
i j (Yi − a j).
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Givenα, minimization of (4.4) is equivalent to

min
γ
{γτQθ̃,hγ − 2Pτ

θ̃,h
γ} (4.7)

subject toγ > 0. Denote ˜γ to be the solution of the above quadratic programming. Let

θ̃ = Bγ̃, θ̃ = θ̃/sum(̃θ).

Repeat steps A and B until convergence. Denote the final estimates forθ andm(v)

by θ̂, m̂(v).

4.2.2 Some adjustments

Some adjustments are needed for (4.2) before Xia and Tong’s (2006) method may be

adopted. RecallWt = (1, y2
t−1, · · · , y2

t−L), whose first element is a fixed constant rather

than some random variable. Hence the first element ofWi j is zero. Incorporated with the

characteristic of the matrixB, it is easy to see that either the first row or the first column

of Qθ̃,h is composed of zeros and the first element ofPθ̃,h is also zero. Consequently, no

matter what value the first element inγ takes, it does not affect the value of{γτQθ̃,hγ −

2Pτ

θ̃,h
γ} in (4.7). The above property makes it hard to directly estimate γ(1), namely

θ0 − θ1, from (4.4).

To avoid the above difficulty in estimation, a possible approach we can apply is to

assume thatθ0 in (4.2) is known. As a result, we only need to estimateθ1, · · · , θL. With

an abuse of notation, we still putθ = (θ1, · · · , θL)τ. To make the model identifiable, we

can assume
∑L

l=1 θl = λ, 0 < λ ≤ 1. Whenλ < 1 and the functionm(h) is O(1) or o(h),

according to Theorem 1 in Lu (1998), we know that the series generated from model

(4.2) is geometrically ergodic. Hence it is sensible to consider the identifiability condi-
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tion like
∑L

l=1 θl = λ, 0 < λ < 1, because for time series models, ergodicity is usually a

necessary condition for the study of the limiting properties of parametric estimators.

Based on the assumption thatθ0 is known, we can estimate model (4.2) with slight

revision of the method given in Section 4.2.1. To tackle (4.6), we add the knownθ0 into

θ to get the estimation forα. To deal with (4.7), we delete the first row and first column

of Qθ̃,h and the first element ofPθ̃,h to estimateθ. The originalθ̃ = θ̃/sum(̃θ) should be

changed tõθ = λθ̃/sum(̃θ).

4.2.3 Simulations

In this section, simulation experiments are conducted to show that the proposed method

works satisfactorily. Because the quadratic programming in (4.7) is relatively time-

consuming when the sample size or the lagL is large, hence we just give two examples.

Some improvement (faster method) may be achieved by adopting other method in ap-

proximatingm(·) (e.g., spline method of Wang and Yang, 2009). The data is generated

from the model

yt = m(ht) + εt, εt = et
√

ht,

et ∼ i.i.N(0, 1), ht = θ0 + θ1y2
t−1 + · · · + θLy2

t−L.

Ex 4.1: θ0 = 0.18, L = 20, θi = 1/(0.5i + 1), θi = 0.9 ∗ θi/sum(θi), i = 1, · · · , 20 and

m(v) = cos(1.5v).

Ex 4.2: θ0 = 0.03, L = 100, θi = 1/(0.5i + 1), θi = 0.9 ∗ θi/sum(θi), i = 1, · · · , 100 and

m(v) = cos(0.5v).
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In the above two examples, we setλ in the preceding section asλ = 0.9. When applying

steps A and B to estimate Ex 4.1-4.2, the kernel functionK(·) in (4.4) is chosen as

K(x) = 0.75(1− x2)I (|x| ≤ 1). For the choice of the bandwidthh, we follow Xia and

Tong (2006) by takingh = cnn−1/5, wherecn = 1.06·std(Wtθ). The convergence criterion

is set as||θ̂(i+1) − θ̂(i)|| ≤ 0.001.

We conduct 100 replications with sample size n=500 for Ex 4.1-4.2. The estimated

results are shown in Array 4.1. In each subplot of Array 4.1, the three dashed lines are

the 10%, 50% and 90% percentile lines obtained from 100 replications and the solid

lines are the plots of true values ofm(·) or θ. From Array 4.1, it is seen that the true

values ofθ andm(·) are close to the corresponding medians (Q50) and lie withinthe

interval of [Q10,Q90] for most cases. The results suggest that the proposed estimators

for either the parametric part or functional part are satisfactory.
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100 simulations withn = 500 andL = 20 for Ex 4.1.
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Array 4.1: Results of the simulation experiments for Ex 4.1-4.2.

4.3 A Semiparametric GARCH-M Model

4.3.1 Model and estimation

Motivated by Yang (2006) and Engle and Ng (1993), in this section we study a general

case of (4.1) which has the form

yt = m(ht) + εt, εt = et
√

ht,

et ∼ i.i.d(0, 1), ht = v(yt−1, φ) + βht−1, (4.8)
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wherem(·) is an unknown smooth function,v(y, φ) is a known function (except for the

unknown parameters) and it can be called the “news impact curve ” as in Engle and

Ng (1993). Whenφ = (ω, α)τ, v(y, φ) = ω + αy2, (4.8) is reduced to (4.1). When

φ = (ω, α, η)τ, v(y, φ) = ω + α[1 + ηI (y ≤ 0)]y2, asymmetric factor for the condi-

tional volatility is considered. For model (4.8), there aretwo unknown parts:m(·) and

θ = (φτ, β)τ. We describe the estimation in two parts. The first one is estimating the

functions when the parameters are known and the second is to estimate the parameters

consistently.

Suppose that the true values of the parametersφ, β are known, sayφ0, β0, then

ht = v(yt−1, φ0) + β0ht−1 =

∞
∑

l=1

βl−1
0 v(yt−l , φ0) (4.9)

can be considered as an observable quantity provided thaty0, h0 are given. We shall

have

E(yt|ht = h) = m(h), var (yt|ht = h) = h. (4.10)

Equation (4.10) gives a basis for the following estimation procedure. For any fixed

h ∈ A, a set as described in Assumption 4.3 in Section 4.3.3, definethe estimator

m̂(λ)(h) = λ!b−λEτ
λ(Z

τWZ)−1ZτWY, 0 ≤ λ ≤ p (4.11)

where

Z =



















































1 h1−h
b · · · (h1−h

b )p

...
...

. . .
...

1 hn−h
b · · · (hn−h

b )p



















































,W = diag



















































1
nKb(h1 − h)

...

1
nKb(hn − h)



















































, and
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Y = (y1, · · · , yn)τ. In addition, all elements of the (p+ 1) vectorEλ are zeros except the

(λ + 1)th element is 1,p > 0 is an odd integer,b > 0 is a bandwidth varying with the

sample sizen, andKb(·) = 1
bK( ·b) with K(·) being a compactly supported and symmet-

ric kernel function. From Yang (2006) or Fan and Gijbels (1996), under Assumptions

4.1-4.4 in Section 4.3.3, we know (4.11) behaves like the standard univariate local poly-

nomial estimator. Let||K||22 =
∫

K2(h)dhandK∗λ(h) be defined as in (4.22), then we have

the following theorem. The proof is quite standard and is omitted.

Theorem 4.1 Under Assumptions 4.1-4.4 in Section 4.3.3, for any fixed h∈ A and

λ ≥ 0 such that p− λ is odd, when nb2λ+1 → ∞, nb2p+3 = O(1), the estimator̂m(λ)(h) in

(4.11) satisfies

√
nb2λ+1{m̂(λ)(h) −m(λ)(h) − bp+1−λbλ(h)} D→ N(0, vλ(h)), (4.12)

where bλ(h) = λ!Λλ,p+1m(p+1)(h)/(p+ 1)!, vλ(h) = (λ!)2||K∗
λ
||22hϕ−1(h), ϕ(·) is the density

of ht andΛλ,p+1 is defined in (4.23).

In practice, the parameters in (4.8) are unknown. What follows we shall give a

method to estimate them. Letθ = (φτ, β)τ, φ = (φ1, · · · , φq)τ. For simplicity, suppose that

θ lies in the interior ofΘ = [φ1L, φ1U]×· · ·×[φqL, φqU]×[βL, βU], where 0< βL < βU < 1.

For θ ∈ Θ, define

ht(θ) = v(yt−1, φ) + βht−1(θ) =
∑∞

l=1 β
l−1v(yt−l , φ), (4.13)

m(θ, h) = E(yt|ht(θ) = h), (4.14)

L(θ) = E
{[

loght(θ) +
[yt−m(θ,ht(θ))]2

ht(θ)

]

π(h̃t)
}

, (4.15)

whereπ(·) is a nonnegative weight function whose compact support is contained inA.
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The series̃ht satisfiesht(θ) ≤ h̃t, θ ∈ Θ, t = 1, 2, · · · . Let φU = (φ1U , · · · , φqU)τ, then,

without loss of generality, we can put

h̃t = v(yt−1, φU) + βU h̃t−1. (4.16)

Whenn→∞, it is known thatL(θ) can be consistently estimated by

Ln(θ) =
1
n

n
∑

t=1

{

loght(θ) +
[yt −m(θ, ht(θ))]2

ht(θ)

}

π(h̃t). (4.17)

Under Assumption 4.6,L(θ) has an unique minimum point atθ0 and is locally convex.

Hence, under some regularity conditions, the minimizer ofLn(θ) is expected to locate

the true parameterθ0 consistently. However, in practice, we still have no idea about

m(θ, ht(θ)) and hence the minimizer ofLn(θ) is not practicable. To obtain a feasible

estimator, for eachh ∈ A, θ ∈ Θ, define the estimator ofm(θ, h) in (4.14) as

m̂(θ, h) = Eτ
0(Z

τ
θWθZθ)

−1Zτ
θWθY, (4.18)

where

Zθ =



















































1 h1(θ)−h
b · · · (h1(θ)−h

b )p

...
...

. . .
...

1 hn(θ)−h
b · · · (hn(θ)−h

b )p



















































andWθ = diag



















































1
nKb(h1(θ) − h)

...

1
nKb(hn(θ) − h)



















































.

Define next

L̂n(θ) =
1
n

n
∑

t=1

{

loght(θ) +
[yt − m̂(θ, ht(θ))]2

ht(θ)

}

π(h̃t), (4.19)

θ̂n = arg min
θ∈Θ

L̂n(θ). (4.20)
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The above estimator̂θn is reduced to that of Christensen et al. (2008) if we setπ(h̃t) = 1

for t = 1, · · · , n. However, the added weight functionπ(·) is not redundant. It is known,

for boundary point of{ht(θ)}, the estimator in (4.18) may be seriously biased because

of inadequate observations. By appropriate choice forπ(·), we can avoid to use the

estimates ofm(θ, ·) for boundary points to compute (4.19). The addedπ(·) is also useful

to establish the following theorem, from which, it is known thatθ̂n converges to the true

value in probability.

Theorem 4.2 Under Assumptions 4.1-4.7 in Section 4.3.3, as n→ ∞ and

(√
nb

)−1
logn = o(1), we havêθn

P→ θ0.

Proof: See Section 4.3.3.

4.3.2 Simulations

In this section, we examine the estimation performance by simulation studies. The data

is generated from (4.8) with specifyingλ = (ω, α, η)τ, v(y, λ) = ω + α[1 + ηI (y ≤ 0)]y2.

Putθ = (ω, α, η, β)τ and the examples are given as follows.

Ex 4.3: θ = (0.01, 0.2, 0.1, 0.5)τ, m(h) = 0.5 sin(3+ 30h).

Ex 4.4: θ = (0.02, 0.2, 0.3, 0.7)τ, m(h) = 0.4− exp(−3h2).

For each of the above examples, we conduct 500 replications with sample sizes

n = 400, 800, 1200 respectively. To estimateθ and m(·) for Ex 4.3-4.4, we set

Θ = [0.001, 0.1] × [0.05, 0.6] × [0.01, 0.6] × [0.1, 0.9]. The p in expression (4.11) is

set equal to 1, namely we apply the local linear regression. For the choice of the band-

width b, like Xia and Tong (2006), we simply putb = 1.06 · std(ht(θ)) · n−1/5. As to the
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weight function, following Yang (2002), we putπ(h) = I (h ∈ A), whereA is set as the

interval between the 10th and 90th percentiles of the explanatory variable.

We study the medians and standard deviations (SD) of the estimators for the pa-

rameters and the results are displayed in Table 4.1. For the functional part, we overlay

the 500 function estimates ˆm(h) with the true functionm(h) on the same scale for all

the considered sample sizes. The plots are displayed in Array 4.2 (dashed lines are the

estimated curves and the real line is the true curve). From Table 4.1, we can see the

medians are close to the true values in most cases and the standard deviation becomes

smaller when the sample size gets larger. In terms of the plots in Array 4.2, it is shown

that the estimated functions capture the trend of the true function and it also witnesses

better fitting performance when the sample size gets larger.All the above implies the

considered estimates are satisfactory.

Table 4.1: Medians and standard deviations of parameter estimates for Ex 4.3-4.4

θ = (ω, α, η, β)τ ω̂ α̂ η̂ β̂

T=400
(0.01, 0.2, 0.1, 0.5)τ Median 0.0010 0.2048 0.0930 0.5266

SD 0.0093 0.0538 0.2066 0.1087
(0.02, 0.2, 0.3, 0.7)τ Median 0.0171 0.1985 0.3427 0.6912

SD 0.0292 0.0613 0.2577 0.0836
T=800

(0.01, 0.2, 0.1, 0.5)τ Median 0.0048 0.2084 0.1122 0.5152
SD 0.0072 0.0375 0.1664 0.0817

(0.02, 0.2, 0.3, 0.7)τ Median 0.0185 0.1923 0.3438 0.7000
SD 0.0224 0.0468 0.2340 0.0620

T=1200
(0.01, 0.2, 0.1, 0.5)τ Median 0.0059 0.2071 0.1186 0.5151

SD 0.0069 0.0288 0.1393 0.0703
(0.02, 0.2, 0.3, 0.7)τ Median 0.0189 0.1967 0.3471 0.7011

SD 0.0179 0.0385 0.2158 0.0494

Note: Number of replications=500.
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Array 4.2: Results of the function estimates for Ex 4.3-4.4.

4.3.3 Proofs

In this part, we give a brief proof for Theorem 4.2 based on theresults of Yang (2006).

An alternative proof with weaker conditions can be obtainedby referring to the ideas in

Chapter 6. Firstly, we make the following assumptions for model (4.8).

Assumption 4.1. The i.i.d (0, 1) process{et} satisfiesEe4
t < ∞, and has a continuous

symmetric probability density function which is positive everywhere.

Assumption 4.2.The functionm(·) has Lipschitz continuous (p+ 1)th derivative.

Assumption 4.3.The process{ht} has a stationary densityϕ(·) which is Lipschitz con-

tinuous and satisfy infh∈Aϕ(h) > 0, whereA is a compact subset ofR with nonempty

interior.

Assumption 4.4. The processes{(ht, ht(θ), h̃t)}t≥1, θ ∈ Θ are uniformly geometrically

ergodic andφ-mixing. Further the processes have stationary densitiesϕ(h, hθ, h̃) and

there are two constantsmandM such that 0< m≤ ϕθ(h) ≤ M < ∞, h ∈ A, θ ∈ Θ where
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ϕθ(·) is the marginal stationary density ofht(θ).

Assumption 4.5.The functionm(θ, h), θ ∈ Θ defined in (4.14) satisfies

sup
θ∈Θ

sup
h∈A
|m

(i+ j)(θ, h)
∂θi∂h j

| < ∞, 0 ≤ i ≤ 1, 0 ≤ j ≤ p+ 1

and the process{yt} satisfiesE exp{a|yt|r} < +∞ for some constantsa > 0 andr > 0.

Assumption 4.6. The functionL(θ) in (4.15) is continuous and has a positive definite

Hessian matrix at its unique minimumθ0.

Assumption 4.7.There exists a stationary positive processes{wt} depending only onΘ

such that for anyθ1, θ2 ∈ Θ

∥

∥

∥

∥

∥

1
ht(θ1)

∂ht(θ2)
∂θ

∥

∥

∥

∥

∥

≤ wt,Ewt < +∞.

Remark 4.1 Assumption 4.4 is similar to the conclusion of Lemma A.1 in Yang (2006),

and it is useful to show the uniform convergence of some variables as in Lemma A.2 of

Yang (2006). Assumption 4.7 is helpful to establish the uniform laws of large numbers

and whenm(h) = γ
√

h, it can be shown that the conditions in Assumption 4.7 are

satisfied (See Chapter 3). Other assumptions have also been analogously applied by

Yang (2006).
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Following the notations in Yang (2006), denoteµr(K) =
∫

ur K(u)duand define the

matrixS as

S =





























































































µ0(K) 0 µ2(K) · · · 0

0 µ2(K) 0 · · · µp+1(K)

µ2(K) 0
. . . · · · 0

...
...

...
. . .

...

0 µp+1(K) 0 · · · µ2p(K)





























































































. (4.21)

Let S−1 = (sλλ′)0≤λ,λ′≤p. As in Fan and Gijbels (1996) page 64 or Yang (2006), we further

define the equivalent kernel

K∗λ(u) =
p

∑

λ′=0

sλλ′u
λ′K(u), λ = 0, 1, . . . , p. (4.22)

It is not difficult to have

∫

K∗λ(u)uλ
′′
du=



















































1 λ′′ = λ,

0 0≤ λ′′ ≤ p, λ′′ , λ,

Λλ,p+1 λ′′ = p+ 1,

(4.23)

whereΛλ,p+1 is a nonzero constant.

Proof of Theorem 4.2:

Based on Assumptions 4.1-4.5, using similar argument to theproof of lemma A.3

in Yang (2006), we can get

sup
θ∈Θ

sup
h∈A
|m(θ, h) − m̂(θ, h)| = op(1). (4.24)
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Simple calculation gives

[yt − m̂(θ, ht(θ))]
2 = [yt −m(θ, ht(θ))]

2 + [m(θ, ht(θ)) − m̂(θ, ht(θ))]
2

+2[yt −m(θ, ht(θ))][m(θ, ht(θ)) − m̂(θ, ht(θ))]. (4.25)

Then, according to (4.17) and (4.19), we have

L̂n(θ) − Ln(θ) =
1
n

n
∑

t=1

{

[m(θ, ht(θ)) − m̂(θ, ht(θ))]2

ht(θ)

}

π(h̃t)

+
2
n

n
∑

t=1

{

[yt −m(θ, ht(θ))][m(θ, ht(θ)) − m̂(θ, ht(θ))]
ht(θ)

}

π(h̃t).(4.26)

In conjunction with (4.25) and Assumption 4.5, we know

sup
θ∈Θ
|L̂n(θ) − Ln(θ)| = op(1). (4.27)

From (4.17), for anyθ1, θ2 ∈ Θ, it can be derived that

Ln(θ1) − Ln(θ2) =
1
n

n
∑

t=1

[I1t + I2t + I3t] π(h̃t), (4.28)

where

I1t = loght(θ1) − loght(θ2) =
1

ht(θ∗1,t)

∂ht(θ∗1,t)

∂θτ
(θ1 − θ2),

I2t = [yt −m(θ1, ht(θ1))]
2

(

1
ht(θ1)

− 1
ht(θ2)

)

= [yt −m(θ1, ht(θ1))]
2 1

h2
t (θ
∗
2,t)

∂ht(θ∗2,t)

∂θτ
(θ1 − θ2),
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and

I3t =
1

ht(θ2)

{

[yt −m(θ1, ht(θ1))]
2 − [yt −m(θ2, ht(θ2))]

2
}

= − [

2yt −m(θ1, ht(θ1)) −m(θ2, ht(θ2))
]

×
[

∂m(θ1, ht(θ∗3,t))

∂h
1

ht(θ2)

∂ht(θ∗3,t)

∂θτ
+
∂m(θ∗4,t, ht(θ2))

∂θτ
1

ht(θ2)

]

×(θ1 − θ2).

In the above expressions,θ∗i,t, i = 1, 2, 3, 4, t = 1, 2, · · · , n are parameter vectors between

θ1 and θ2. According to Assumption 4.5 and Assumption 4.7, we know there exist

B1t, B2t, B3t (independent ofθ1, θ2) such that

|I1t | ≤ B1t‖θ1 − θ2‖, |I2t| ≤ B2t‖θ1 − θ2‖ and |I3t | ≤ B3t‖θ1 − θ2‖. (4.29)

Consequently, we get

|Ln(θ1) − Ln(θ2)| ≤














1
n

n
∑

t=1

[B1t + B2t + B3t] π(h̃t)















‖θ1 − θ2‖

:= Bn‖θ1 − θ2‖,

with Bn = Op(1). In terms of Lemma 1 and Theorem 1 in Andrews (1992), we know

sup
θ∈Θ
|Ln(θ) − L(θ)| = op(1). (4.30)

By the triangle inequality, (4.27) and (4.30) imply that

sup
θ∈Θ
|L̂n(θ) − L(θ)| = op(1). (4.31)
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Under Assumption 4.6, applying Lemma 14.3 (page 258) and Theorem 2.12 (page 28)

in Kosorok (2006), we then havêθn − θ0 = op(1), which ends the proof of the theorem.

4.4 Empirical Studies

In this section, based on model (4.2) and (4.8), we study the monthly excess return data

on the CRSP value weighted indices, including the NYSE, the AMEX and NASDAQ.

The riskless rate used to compute the excess returns is the one-month Treasury bill rate

(from Ibbotson Associates). The range of the considered data is from July 1926 to

February 2009 (totally 992 observations).

First, we model the data by (4.2). Before fitting the data , we need to get a reason-

able estimate forθ0 in model (4.2), which is assumed to be known. As a compromise,

we approximateθ0 by ω̂ which is estimated from the parametric model below:

yt = m(ht, δ) + εt, εt = et
√

ht,

et ∼ i.i.d(0, 1), ht = ω + αy2
t−1 + βht−1,

where,m(ht, δ) can beδht, δ
√

ht, δ loght or other forms. In our study, we putm(ht, δ) =

δht, which is commonly applied in the literature. For the choices of L, the lagged time,

in our study, we try two casesL = 100,L = 200 withλ = 0.9. The results are displayed

in Array 4.3.

From the plots in Array 4.3, we can see that the estimated results are similar for

the two candidates ofL. There is no obvious cut (θi = 0 wheni is bigger than somej)

for θ in each case, implying that there may be long-memory cumulative effect for the

conditional variance. According to the estimated mean function m̂(·), it is suggested
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that the nonlinear relationship between risk and return could be more reasonable and it

seems that a higherht (risk) does not necessarily correspond to higherm(ht) (return).

Estimation withL = 100.
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Estimation withL = 200.
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Array 4.3: Results of the empirical studies based on (4.2).

Next, we study the data by (4.8). Take{yt}992
t=1 to be the considered excess return se-

ries. For comparison, we use{yt}900
t=1 to estimate model (4.8) and leave{yt}992

t=901 for out-of-

sample forecasts. Before minimizing (4.20) to get the estimation for the parameters, we

need to set a proper scopeΘ for the parameters. To get a reasonable scope, we first esti-

mate three parametric models by puttingm(ht) = δht,m(ht) = δ loght,m(ht) = δ
√

ht and

the conditional varianceht in (4.8) is specified byht = ω+α[1+ηI (yt−1 ≤ 0)]y2
t−1+βht−1.

Recall θ = (ω, α, η, β)τ, then the estimates ofθ in the above three parametric mod-

els are respectively [0.9108, 0.1075, 0.7227, 0.8328]τ, [0.7980, 0.1102, 0.7497, 0.8337]τ

and [0.8147, 0.1104, 0.7336, 0.8332]τ. According to the above results, we setΘ =
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[0.05, 1] × [0.01, 0.5] × [0.5, 10]× [0.1, 0.95]. Then we get:

yt = m(ht) + εt, εt = et
√

ht,

ht = 0.9567+ 0.0351[1+ 2.6854I (yt−1 ≤ 0)]y2
t−1 + 0.8798ht−1. (4.32)

For comparison, we also estimate the model of Christensen etal. (2008), namely (4.1),

based on the same data set. They are

yt = m(ht) + εt, εt = et
√

ht,

ht = 0.8301+ 0.0865y2
t−1 + 0.8744ht−1. (4.33)

We tabulate the RMSEs and the MAEs for both in-sample forecasts and out-of-sample

forecasts in Table 4.2 for (4.32-4.33). According to tabulated fitting errors, it is seen

that model (4.32) has better performance than that of model (4.33), which empirically

justifies the generalization of the conditional variance. Thus it makes sense to take the

asymmetric factors into account for the considered data.

Table 4.2: In-sample and out-of-sample forecast performance.

Model RMSE (in) MAE (in) RMSE (out) MAE (out)
(4.32) 4.9760 3.6824 4.5249 3.3013
(4.33) 5.0960 3.7137 4.6163 3.3486

Set a grid vector forht ash = [12 : 0.25 : 30] which is contained in the intervals

between 10th and 90th percentiles of the estimatedht for both (4.32) and (4.33). Based

on the observations{yt}900
t=1, we can estimate the value ofm(h(i)) (i = 1, · · · , 73) accord-

ing to (4.11) in Section 4.3.1 and (7) of Christensen et al. (2008). We plot the estimated

m̂(·) from (4.32) (solid line) and (4.33) (dashed line) in Figure4.1. Similar to the plots
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in Array 4.3, we can see that both the estimated curves are nonlinear and they are not

monotonically increasing either. The above results indicate the traditional parametric

specifications for the conditional mean such asm(ht) = δht, δ loght, δ
√

ht may not be

appropriate. From Figure 4.1, it is worthwhile to further consider the following two

questions. Firstly, how to interpret the behavior ofm(ht) in the figure? Partial answer

can be found in Rossi and Timmermann (2010), where non-monotonic relation between

conditional volatility and expected stock market returns has been evidenced. The sec-

ond question is whether we can obtain similarly shaped curves when a different data set

is applied. We leave the detailed interpretations for future study.
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Figure 4.1: Plots of estimated ˆm(ht) for model (4.32) (solid line), (4.33) (dashed line).
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4.5 Summary

In this chapter, we study the relationship between risk (conditional variance) and return

(conditional mean) by semiparametric (G)ARCH-M models. Byadopting the idea of the

constrained single-index model of Xia and Tong (2006), we give a method to estimate

the considered semiparametric ARCH-M model, which enablesus to check the long

memory of the conditional volatility. Motivated by Christensen et al. (2008), we further

study their model by considering a general “news impact curve ” , which allows to take

the asymmetric factor into account. An improved estimationmethod is proposed for

the generalized model. Through the simulations, it is shownthat the proposed estimates

perform well. From the empirical studies, we find that the curve betweenht (conditional

variance) andm(ht) (conditional mean) is neither linear nor monotonically increasing for

the considered data. Such a phenomenon implies that the traditional parametric forms

such asm(ht) = δht, δ loght, δ
√

ht may not be appropriate.
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Chapter 5

A Functional Coefficient

Autoregressive GARCH-M Model

5.1 Background

ARCH-M models have been considered by many researchers since they were proposed

by Engle, et al. (1987). One of its forms is

yt = δht + εt, εt = et

√
ht,

et ∼ i.i.d N(0, 1), ht = ω + αε
2
t−1 + βht−1. (5.1)

There are different appellations forδ such as: “price of volatility ” in Chou et al. (1992)

and “relative risk aversion parameter ” in Das and Sarkar (2010). In this chapter, we

simply address it as volatility coefficient. Many empirical studies have been done based

on (5.1), but mixed results were reported. For example, Glosten et al. (1993) obtained

a negative value forδ and Harvey (1989) foundδ nonconstant and counter-cyclical.
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Backus and Gregory (1988) argued that the relationship between the conditional mean

and the conditional variance was not necessarily linear. Toexplain the above phenom-

ena, Chou et al. (1992) proposed a time-varying parameter GARCH-M (henceforth

TVP-GARCH-M) model to capture the variation of the volatility coefficient. The TVP-

GARCH-M model has the form

yt = δtht + εt, εt = et

√
ht, δt = δt−1 + vt,

et ∼ i.i.d N(0, 1), ht = ω + αη
2
t−1 + βht−1. (5.2)

Here, the GARCH surprise variableηt := yt − Et−1(yt) with Et−1(yt) is the optimal fore-

cast ofyt given all information up to timet − 1. The errorsεt, vt are assumed to be

uncorrelated Gaussian variates with zero means and variancesht andQ, respectively.

The coefficient δt in (5.2) is assumed to follow a random walk, which together with

the system parameters, can be estimated by the Kalman filter and maximum likelihood

methods.

Motivated by the TVP-GARCH-M model (5.2), it is sensible to study the GARCH-

M model (5.1) with a time-varying volatility coefficient. When explaining why theδt

was time-varying, Chou et al. (1992) suggested some macroeconomic variables such

as inflation rate and interest rate could have impact on it. Therefore it is worthwhile

to considerδ as a function of some explanatory variables. Because of the availability

of data and complexity in computation, it is hard to cover allthe related factors. An

alternative method is to assumeδ as a function of the time-lagged returns, sayδ =

δ(yt−1), which is a standard approach in time series analysis. A further argument about

settingδ = δ(yt−1) can be given as follows. As in Chou et al. (1992) and Das and Sarkar
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(2010), we can consider the volatility coefficientδ to be a measure of risk aversion. It is

generally accepted that yesterday’s return has impact on today’s risk attitude or the risk

aversion. Hence it is reasonable to assumeδ = δ(yt−1).

In this chapter, we shall study the following functional coefficient autoregressive

GARCH-M (henceforth FCA-GARCH-M ) model:

yt = δ(yt−1)ht + εt, εt = et

√
ht,

et ∼ i.i.d(0, 1), ht = ω + αy2
t−1 + βht−1. (5.3)

Hereω, α, β > 0,ys is independent of{et} for t > s, andδ(·) is an unknown smooth func-

tion. Also,ht is assumed to be driven by an alternative GARCH (1, 1) process, where

the originalε2
t−1 is replaced by the observabley2

t−1. Similar to (5.2), such modification

for ht is helpful to estimating the model and it has been adopted by Christensen et al.

(2008). Model (5.3) belongs to the scope of semiparametric models because it includes

a nonparametric partδ(·) and a parametric partht. Consideringδ(·) in (5.3) as a measure

of risk aversion as in Chou et al. (1992), the improvement of (5.3) lies in that it enables

us to understand the impact of previous return to the presentrisk aversion. Whenht is

observable, model (5.3) is reduced to the common functionalcoefficient autoregressive

model which has been well discussed by Chen and Tsay (1993), Chen and Liu (2001),

among others.

This chapter is arranged as follows. In Section 5.2, we explain the idea about

estimation. Practical procedure for testing goodness of fitis also given. Simulation

and empirical studies are respectively shown in Section 5.3and Section 5.4. We give a

summary in Section 5.5.
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5.2 Estimation and Goodness of Fit Test

In this section, we give an approach to estimate the parametric part and functional part

of the model. The method is based on the ideas of functional coefficient model of Cai

et al. (2000) and the quasi maximum likelihood estimation. Following the principle

of bootstrap test of Cai et al. (2000), we also give practicalprocedure to construct a

goodness of fit test.

5.2.1 Estimation

For model (5.3), we need to estimate the system parametersω, α, β and the valueδ(u0)

for a givenu0 based on the observations{yt}Tt=1. Let θ = (ω, α, β)τ andθ ∈ Θ, which

is the considered parameter space including the true value,sayθ0, of θ. All throughout

this chapter, the superscriptτ denotes the transpose of a vector or a matrix. We apply

two-step method to estimate the model. The first step is to estimate the functionδ(·)

providedθ is given. The second step is to estimateθ based on the obtained function

estimates in the first step. The details are as followed.

Givenθ, thenht(θ) is determined according to (5.3) and hence it may be considered

as an observable quantity. Suppose the functionδ(·) has second derivative at pointu0.

Then forx in a small neighborhood [u0 − b, u0 + b], we have

δ(x) ≈ δ(u0) + δ
′(u0)(x− u0):=a0 + a1(x− u0).

Based on{yt, ht(θ)}Tt=1, we can define the estimators for (a0, a1) by

(â0(u0, θ), â1(u0, θ)) = min
a0,a1

T
∑

t=2

{yt − [a0 + a1(yt−1 − u0)]ht(θ)}2kb(yt−1 − u0).
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Here,kb(·) = b−1k(·/b) with k(·) being a kernel function andb > 0 a bandwidth. Fol-

lowing Cai et al. (2000), we have

δ̂(u0, θ) := â0(u0, θ) =
T

∑

t=2

KT(yt−1 − u0, ht(θ))yt, (5.4)

where

KT(u, x) = (1, 0)(HτWH)−1(x, ux)τkb(u),

H being a (T−1)×2 matrix with (hi(θ), hi(θ)(yi−1−u0)) as its (i−1)th row (i = 2, · · · ,T),

andW = diag{kb(y1 − u0), · · · , kb(yT−1 − u0)}. Let u0 take values in{yt−1}Tt=2 one by one,

then we can get a series of estimators{δ̂(yt−1, θ)}Tt=2 based on (5.4).

Define∆̂T(θ) = (δ̂(y1, θ), · · · , δ̂(yT−1, θ))τ, then we get following approximate quasi

log likelihood function

LT(θ, ∆̂T(θ)) =
T

∑

t=2

l t(θ, δ̂(yt−1, θ)) =
T

∑

t=2

[−1
2

loght(θ) −
1
2
ε̂2

t (θ)
ht(θ)

], (5.5)

whereε̂t(θ) = yt− δ̂(yt−1, θ)ht(θ). Let θ̂T = maxθ∈Θ LT(θ, ∆̂T(θ)) which may be considered

as an estimator forθ. Based on (5.4),δ(u0) is then approximated bŷδ(u0, θ̂T).

In practice, because of the complicated form ofδ̂(yt−1, θ), it is not easy to directly

calculate the maximizer̂θT = maxθ∈Θ LT(θ, ∆̂T(θ)). Subsequently, we give an algorithm

to obtainθ̂T . The procedure can be seen a generalization of Christensen et al. (2008).

Step 1: Assign a set of initial parameterŝθ(i)(i = 0) and computeht(θ̂(i)) for

t = 2, · · · ,T, according to model (5.3)1.

1Initial value for θ can be acquired by estimating the model (5.3) withδ(·) being a constantδ. The
sample variance of{yt}Tt=1 can be used as an initial value forht.

85



Step 2:Based on the sequence{yt, ht(θ̂(i))}Tt=1, we can get{δ̂(y1, θ
(i)), · · · , δ̂(yT−1, θ

(i))} by

(5.4).

Step 3: Update θ̂(i) (i.e., find θ̂(i+1) ) by performing quasi maximum likelihood

estimation on the GARCH(1, 1) model

ε̂
(i)
t =

√
htet,

et ∼ i.i.d(0, 1), ht = ω + αy2
t−1 + βht−1,

where,ε̂(i)
t = yt − δ̂(yt−1, θ

(i))ht(θ̂(i)), t = 2, · · · ,T.

Step 4: Repeat steps 1-3 until convergence.

5.2.2 Goodness of fit test

After estimating the FCA-GARCH-M model (5.3), a possible question is whether the

proposed model performs better than the GARCH-M model with aconstant volatility

coefficient. Equivalently, we want to test the hypothesis for model (5.3):

H0 : δ(·) = δ vs H1 : δ(·) = δ(yt−1).

By applying the method of Cai et al. (2000), we give the following procedure to test the

above hypothesis approximately. Letδ̂0 (a constant),̂δ1(·) (a function),θ̂0 andθ̂1 be the

estimators ofδ(·), θ underH0 andH1 respectively. Calculate the RSS (residual sum of
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squares) underH0 as

RS S0 = (T − 1)−1ΣT
t=2{yt − δ̂0ht(θ̂0)}2

and the RSS underH1 as

RS S1 = (T − 1)−1ΣT
t=2{yt − δ̂1(yt−1, θ̂1)ht(θ̂1)}2.

The test statistic is defined to be

ΛT = RS S0/RS S1 − 1. (5.6)

We reject the null hypothesis for large values ofΛT . The following steps are used to

evaluate thep-value of the test.

Step I: Generate the bootstrap residuals{ε∗t }Tt=2 from the centered residuals{ε̂t − ¯̂ε}Tt=2,

where

ε̂t = yt − δ̂1(yt−1, θ̂1)ht(θ̂1), ¯̂ε =
1

T − 1
ΣT

t=2ε̂t

and definey∗t = δ̂0ht(θ̂0) + ε∗t .

Step II: Let y∗1 = y1. According to (5.6), calculate the test statisticΛ∗T based on

{y∗t }Tt=1.

Step III: Replicate steps I-IIK times to get a sequence{Λ∗T,i}Ki=1. The null hy-

pothesis will be rejected whenΛT is greater than the upper-α point of {Λ∗T,i}Ki=1.
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As mentioned in Cai et al. (2000) that thep-value of the above test is the rela-

tive frequency of the event{Λ∗T ≥ ΛT} in the above replications. For more details about

the test, one may refer to Cai et al. (2000), Lee and Ullah (2000) and Kreiss et al.

(2008).

5.3 Simulations

In this section, we give three simulation examples to examine the performance of the

considered estimators. Series are simulated from the model

yt = δ(yt−1)ht + εt, εt = et
√

ht,

et ∼ i.i.d N(0, 1), ht = ω + αy2
t−1 + βht−1.

The cases considered are:

Ex 5.1: δ(x) = 0.4− (0.659+ 1.26x)e−3.1x2
, (ω, α, β)τ = (0.1, 0.1, 0.55)τ.

Ex 5.2: δ(x) = 0.2sin2(πx)/x, (ω, α, β)τ = (0.5, 0.1, 0.75)τ.

Ex 5.3: δ(x) = 0.3I (x > 0)− 0.3I (x ≤ 0), (ω, α, β)τ = (0.2, 0.2, 0.3)τ.

When applying steps 1-4 to estimate Ex 5.1-5.3, the kernel function k(·) in (5.4) is

chosen ask(x) = 0.75(1− x2)I (|x| ≤ 1). We adoptAMS(b)-minimized method of Cai

et al. (2000) for choice of the bandwidthb. Let m andQ be two positive integers such

thatT > mQ. The idea is first to use the sub-series of lengthsT − qm(q = 1, · · · ,Q) to

estimate the coefficient functionδ(·) for the next segment of the time series of lengthm

and then to compute the one-step ahead forecast errors. The bandwidthb is chosen to
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minimize the average of the mean square forecast errors

AMS(b) = ΣQ
q=1AMSq(b),

where

AMSq(b) =
1
m

t=T−qm+m
∑

t=T−qm+1

[yt − δ̂(yt−1, θ)ht(θ)]
2

andδ̂(·) are computed from the sample{yt−1, ht}T−qm
t=1 .

In our simulations, we applym= [0.1T], Q = 4. To run the estimation, we assume

the parameters satisfyingω ∈ [0.005, 1], α ∈ [0.005, 0.9] and β ∈ [0.1, 0.99]. The

convergence criterion is set as||θ̂(i+1)
T − θ̂(i)

T || ≤ 0.0001. We conduct 500 replications

with sample size T=400, 800, 1200 respectively for each of the above examples. The

estimation results for the parameters are given in Table 5.1and those for the function

δ(·) restricted on the grid vectoru0 = [−0.5 : 0.01 : 0.5] are displayed in Array 5.1. In

Table 5.1, Q10, Q50 and Q90 denote respectively the 10%, 50% and 90% percentiles of

the estimators among 500 replications. SD means the standard deviation. In each row

of Array 5.1, for each grid pointu0(i) (i = 1, · · · , 101), we plot the true valueδ(u0(i))

(solid line) and the 10%, 50% and 90% percentiles of{δ̂ j(u0(i))}500
j=1 (dashed line) in the

left figure. For clear comparison, we just plot the percentile lines that are estimated

under the sample size 1200. The right figure is the box plot of the RMSE sequences for

T = 400, 800, 1200 (from left to the right). Ex 5.1-5.3 corresponds to (a),(b) and (c)

respectively.

From Table 5.1, it is shown that, in most cases, the true values of parameters are

close to the corresponding medians (Q50) and are contained in the interval [Q10,Q90].

From Array 5.1, we can see that most of the estimated values for the functions are close

89



to the true ones. From Table 5.1 and the box plots in Array 5.1,both the SDs and

RMSEs get smaller gradually when the sample size becomes larger. Simulation results

suggest that the considered estimators for either the parametric part or the functional

part are asymptotically convergent to the true ones.
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Array 5.1: Results of the simulation experiments for function estimation.

90



Table 5.1: Results of the simulation experiments for parameter estimation.

Example True value Q10 Q50 Q90 SD

Ex 5.1 ω = 0.1 0.0236 0.0999 0.2314 0.0753
(T=400) α = 0.1 0.0050 0.0500 0.1295 0.0511

β = 0.55 0.1000 0.5563 0.8832 0.2845

Ex 5.1 ω = 0.1 0.0418 0.1002 0.2168 0.0615
(T=800) α = 0.1 0.0299 0.0722 0.1235 0.0380

β = 0.55 0.1000 0.5573 0.7866 0.2295

Ex 5.1 ω = 0.1 0.0485 0.0996 0.1892 0.0541
(T=1200) α = 0.1 0.0336 0.0748 0.1229 0.0344

β = 0.55 0.2334 0.5661 0.7660 0.2002

Ex 5.2 ω = 0.5 0.1898 0.5038 1.0000 0.2902
(T=400) α = 0.1 0.0080 0.0526 0.1162 0.0398

β = 0.75 0.6225 0.7821 0.9081 0.1074

Ex 5.2 ω = 0.5 0.2314 0.4678 0.8290 0.2222
(T=800) α = 0.1 0.0348 0.0702 0.1050 0.0277

β = 0.75 0.6595 0.7819 0.8734 0.0835

Ex 5.2 ω = 0.5 0.2722 0.4790 0.7897 0.2005
(T=1200) α = 0.1 0.0459 0.0772 0.1076 0.0246

β = 0.75 0.6639 0.7747 0.8557 0.0742

Ex 5.3 ω = 0.2 0.0825 0.1966 0.2888 0.0772
(T=400) α = 0.2 0.0374 0.1278 0.2359 0.0754

β = 0.3 0.1000 0.3230 0.6846 0.2263

Ex 5.3 ω = 0.2 0.1203 0.2044 0.2757 0.0586
(T=800) α = 0.2 0.0923 0.1542 0.2264 0.0520

β = 0.3 0.1000 0.2986 0.5551 0.1667

Ex 5.3 ω = 0.2 0.1367 0.1991 0.2673 0.0493
(T=1200) α = 0.2 0.1109 0.1633 0.2217 0.0432

β = 0.3 0.1174 0.3225 0.4941 0.1420
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5.4 Empirical Studies

In this section, we apply (5.3) to model real data sets. We analyze the monthly and

weekly excess returns on the CRSP value weighted indices, which include the NYSE,

the AMEX and NASDAQ. These data can be regarded as reasonableproxies for the

stock market and they were also studied by Conrad and Mammen (2008) in a different

perspective. The riskless rate used to compute the excess returns is one-month Treasury

bill rate (from Ibbotson Associates).

5.4.1 Analysis for monthly excess return
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Figure 5.1: Plots ofyt (the monthly excess return).

The range of the data considered is from July 1926 to February2009 (totally 992

observations). The return series{yt}992
t=1 is plotted in Figure 5.1. For comparison, we use

{yt}900
t=1 to estimate model (5.3) and leave{yt}992

t=901 for out-of-sample forecasts. To get a
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reasonable parameter space, we first fit the data{yt}900
t=1 by (5.1) and (5.3) withδ(·) being

a constant. Their results are:

yt = 0.0291ht + εt, εt = et
√

ht,

et ∼ i.i.d(0, 1), ht = 0.9307+ 0.1161ε2
t−1 + 0.8516ht−1. (5.7)

yt = 0.0207ht + εt, εt = et

√
ht,

et ∼ i.i.d(0, 1), ht = 0.7288+ 0.1523y2
t−1 + 0.8306ht−1. (5.8)

Based on the above estimates, we may reasonably setΘ as ω ∈ [0.001, 10], α ∈

[0.001, 0.9] andβ ∈ [0.001, 0.99]. Applying steps 1-4 in Section 5.2, we get the es-

timation:

yt = δ(yt−1)ht + εt, εt = et
√

ht,

et ∼ i.i.d(0, 1), ht = 0.8192+ 0.0977y2
t−1 + 0.8673ht−1. (5.9)

We also get the test statisticΛ900 = 0.0987 and the 90%, 95%, 97.5%, 99% percentiles

of the bootstrap test statistic sequence{Λ∗900,i}1000
i=1 (based on 1000 re-samplings) to be

0.0459, 0.0568, 0.0640 and 0.0822. It is found the calculatedΛ900 is greater than all the

above percentiles, leading to the rejection ofH0 : δ(·) = δ.

The RMSEs and MAEs for both in-sample and out-of-sample forecasts are pre-

sented in Table 5.2. It is found that model (5.8) has similar fitting performance to that of

Table 5.2: In-sample and out-of-sample forecast performance.

Model RMSE (in) MAE (in) RMSE (out) MAE (out)
(5.7) 5.5502 3.8918 4.7471 3.4076
(5.8) 5.5271 3.8825 4.6851 3.4014
(5.9) 5.2886 3.7397 4.5573 3.3579
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model (5.7) for the parametric case. Our results empirically justify the modification for

the conditional variance of (5.3). On the whole, the FC-GARCH-M model (5.9) has the

best forecasting performance. To illustrate the results graphically, we plot part of the

in-sample forecasts in Figure 5.2 (to have a better graph, wedo not plot the forecasted

values from (5.7) whose performance is comparable to that of(5.8)). From the figure,

it is shown that model (5.9) can better capture the variationof the excess return series

compared to the model (5.8).
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Figure 5.2: Plots ofy151
t=50 (−) and its corresponding in-sample forecasts from model (5.8)

(−·), (5.9) (−+).

It is of some interest to study the relationship between the volatility coefficient δ

and the time-lagged excess returnyt−1. Set a grid vector foryt−1 asu0 = (−3 : 0.1 : 4).

Based on{yt}900
t=1 and model (5.9), the estimate of eachδ(u0(i)) (i = 1, · · · , 71) can be

gotten via (5.4). We plot the estimatedδ̂(·) in Figure 5.3 (solid line). It is shown that the

obtainedδ̂(·) is nonconstant and can take positive or negative values. Such a result is
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consistent with those of Backus and Gregory (1993) and Rossiand Timmermann (2010).

Namely, the relation between equity premium and conditional volatility is unrestricted

with increasing, decreasing, flat or non-monotonic patterns. To compare, we also plot

the estimated value ofδ = 0.0207 (dotted line) in model (5.8) in the same figure. For
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Figure 5.3: Plots of estimated volatility coefficient for model (5.8) (dotted line), (5.9)
(solid line) and (5.10) (dashed line).

certainr ∈ (0, 1), it is shown that whenyt−1 < r, about two thirds of the valueŝδ(·) are

under the dotted line ofδ = 0.0207. On the contrary, whenyt−1 > r, more than two

thirds of the valueŝδ(·) are above the dotted line ofδ = 0.0207. The results suggest

there may exist some effect of asymmetry.

To give a further understanding, we suppose the unknown function δ(·) has a form

of δ(yt−1) = δ1I (yt−1 > r) + δ2I (yt−1 ≤ r), where we apply the idea of Tong’s (1990)

SETAR model to capture the asymmetric effect. Following the idea of Li and Lam

(1995), we can estimate the threshold parameterr and other parameters in the GARCH
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equation. Assuming the thresholdr belongs to the interval between 25% and 75%

percentiles ofyt−1, based on{yt}900
t=1, the estimates are

yt =
[

0.0329I (yt−1 > 0.3950)+ 0.0060I (yt−1 ≤ 0.3950)
]

ht + εt,

εt = et

√
ht, et ∼ i.i.d(0, 1), ht = 1.3445+ 0.1347y2

t−1 + 0.8159ht−1. (5.10)

We see ˆr = 0.3950 ∈ (0, 1), δ̂1 = 0.0329> δ̂2 = 0.0060. This seems reasonable ac-

cording to Figure 5.3. Applying (5.10) to do the in-sample and out-of-sample forecasts,

the computed RMSEs are 5.5172, 4.6074 respectively and the corresponding MAEs are

3.8792, 3.3585. From results presented in Table 5.2, the forecasting performance of

(5.10) is seen more satisfactory than (5.7-5.8) but not as good as (5.9). The calculated

RMSEs and MAEs for (5.10) give empirical evidences for its usefulness in data mod-

elling. However, here we only take advantage of model (5.10)to justify the proposed

FC-GARCH-M model. The properties of estimators and threshold effect test about

model (5.10) can be interesting topics for future research.

We have also added the estimatedδ1 = 0.0329, δ2 = 0.006 of (5.10) in Figure 5.3

(dashed line). By considering the volatility coefficientδ as a measure of risk aversion,

the above asymmetric effect can be explained by a common phenomenon in psychology:

When the acquired return is small (less than 0.3950 for example, which usually happens

when the stock is at a low price), people are not that risk averse and they tend to take

risk to get higher returns. Once a high return (larger than 0.3950 for example, which

usually means the stock is at a high price already) has been obtained, they are easy to

become conservative and it will require higher premium for per unit of risk to attract

them to invest on the risky assets.
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5.4.2 Rolling estimation for weekly excess return

Next, we apply model (5.3) to the weekly excess return from 05/07/1963 to 27/02/2009

(totally 2383 observations). Since 30/04/1971, for each quarter, we firstly estimate val-

ues ofδ based on (5.3) withδ(·) = δ and (5.1). The previous 400 observations are used

to estimate the parameters and totally 165 estimators are obtained. Let{δn
i }165

i=1, {δo
i }165

i=1 be

the estimatedδ values for each quarter based on (5.3) withδ(·) = δ and (5.1) respec-

tively. These estimated results are plotted in Figure 5.4. We can see both the estimated

sequences are time-varying rather than constant. These results are consistent with those

of Chou et al. (1992) and Das and Sarkar (2010). Moreover it isshown that{δn
i } has

similar trajectory to that of{δo
i } though the latter one is a bit higher.
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Figure 5.4: Plots of{δn
i }165

i=1 (solid line) and{δo
i }165

i=1 (dashed line).

To show the superiority of model (5.3), we also fit each group of data that is used

to estimate the constantδ. The corresponding fitting errors, RMSEs and MAEs, are also

recorded. Denote{REn
i }165

i=1, {REo
i }165

i=1, {REf
i }165

i=1, {MEn
i }165

i=1, {MEo
i }165

i=1, {ME f
i }165

i=1 to be the
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RMSE and MAE sequences, which are respectively acquired from (5.3) withδ(·) = δ,

(5.1) and (5.3). For comparison, we list the percentiles of the error sequences in Table

5.3. It is seen that the performance of considered two parametric models are similar, and

model (5.3) appears to perform most satisfactorily as the fitting errors are much smaller

in most cases.

Table 5.3: Percentiles of error sequences.

Error Percentiles
series 10% 25% 50% 75% 90%
{REn} 1.6311 1.9439 2.0694 2.3211 2.5376
{REo} 1.6371 1.9602 2.0836 2.3238 2.5427
{REf } 0.5264 0.6717 1.0186 1.2529 1.3780
{MEn} 1.2201 1.4414 1.5891 1.7243 1.8407
{MEo} 1.2099 1.4420 1.5874 1.7255 1.8696
{ME f } 0.2282 0.3048 0.4984 0.6403 0.8251

5.5 Summary

Motivated by the time-varying risk aversion and the functional coefficient autoregres-

sive model, a functional coefficient autoregressive GARCH-M model is studied. We

consider the volatility coefficient in a modified GARCH-M model as an unknown func-

tion of the time lagged excess return. Such a setting is useful to seek for the relationship

between present risk aversion and the previous return. An approach is given to estimate

the parameters and the unknown function. From the simulation studies, it seems that the

considered method works effectively. Empirical studies show that the proposed model

can capture the variation of the excess return series well. Moreover, the model can also

shed insight on the choice of some potential parametric models.
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Chapter 6

A Functional Coefficient GARCH-M

Model

6.1 Background

Motivated by the FCA-GARCH-M model (5.3), in this chapter, we further consider the

following functional coefficient GARCH-M (FC-GARCH-M) model of the form

yt = m(Ut)ht + εt, εt = et

√
ht,

et ∼ i.i.d(0, 1), ht = υ(yt−1, φ) + βht−1. (6.1)

Here {yt,Ut} are observable series and (ys,Us) is independent of{et} for t > s. θ =

(φτ, β)τ is the unknown parameter vector andm(·) is an unknown smooth function. All

throughout this chapter, the superscriptτ denotes the transpose of a vector or a matrix.

υ(·, φ) is a known positive function and, as Yang (2006) or Engle andNg (1993), it can

be considered as an “impact news curve”. For the specified conditional varianceht of

99



(6.1), the originalεt−1 is replaced by the observableyt−1. Similar to model (5.3), such

a modification forht is helpful to estimating the model becauseht is deterministic once

the parametersφ andβ are known. If we setUt = yt−1, φ = (ω, α)τ, υ(y, φ) = ω + αy2,

then (6.1) is reduced to (5.3). Whenht is observable, model (6.1) becomes the common

functional coefficient model which has been well discussed by Cai et al. (2000)and Cai

et al. (2009).

This chapter is arranged as follows. In Section 6.2, we explain the idea about

estimation and some related asymptotic results are given. Simulation and empirical

studies are shown in Section 6.3. Detailed proof for Theorem6.2 is presented in Section

6.4 and we summarize the chapter in Section 6.5.

6.2 Estimation

For the considered model (6.1), there are two unknown parts:m(·) andθ = (φτ, β)τ.

In this section, we describe the estimation in two subsections: the first is estimating the

function provided the parameters are known and the second isto estimate the parameters

consistently.

6.2.1 Estimating the function

Suppose that the true values of the parametersφ, β are known, sayφ0, β0, then

ht := v(yt−1, φ0) + β0ht−1 =

∞
∑

l=1

βl−1
0 v(yt−l , φ0) (6.2)
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can be considered as an observable quantity provided thaty0, h0 are given. We know

E(yt |Ut = u, ht = h) = m(u)h, var(yt|Ut = u, ht = h) = h. (6.3)

As mentioned before, whenht is observable, model (6.1) becomes the common func-

tional coefficient model of Cai et al. (2000). Hence, as in Cai et al. (2000), we can

apply the local linear smoothing technique to estimate the unknown functionm(·). As-

sume the process{Ut} to have a continuous pdff (u) satisfying infu∈A f (u) > 0, whereA

is a compact subset ofR with nonempty interior. For any fixedu ∈ A, based on (10-11)

of Cai et al. (2000), define the estimator ofm(u) in (6.3) by

m̂(u) = Eτ
0(Z

τWZ)−1ZτWY, (6.4)

where

Z =



















































h1 h1(
U1−u

b )

...
...

hn hn(
Un−u

b )



















































,W = diag



















































1
nkb(U1 − u)

...

1
nkb(Un − u)



















































,

Y = (y1, · · · , yn)τ andE0 = (1, 0)τ. b > 0 is a bandwidth varying with the sample sizen,

kb(·) = 1
bk( ·b) with k(·) being a compactly supported and symmetric kernel function. For

the sake of convenience, we put

µ j =
∫ +∞
−∞ xjk(x)dx, υ j =

∫ +∞
−∞ xjk2(x)dx, σ j(u) = E(h j

t |Ut = u),

c0 = µ2/(µ2 − µ2
1) andc1 = −µ1/(µ2 − µ2

1). (6.5)

Based on Cai et al. (2000), under conditions A and B in Section6.4, we know (6.4)

behaves like the standard functional coefficient estimator. Hence, we state the following
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theorem without proof.

Theorem 6.1 Under conditions A and B in Section 6.4, for any fixed u∈ A, the estima-

tor m̂(u) in (6.4) satisfies

√
nb{m̂(u) −m(u) − b2

2

µ2
2 − µ1µ3

µ2 − µ2
1

m
′′
(u)} D→ N(0,Σ(u)), (6.6)

whereΣ(u) =
c2

0υ0+2c0c1υ1+c2
1υ2

f (u) × σ3(u)
σ2

2(u)
and f(u) is given in condition A.2 in Section 6.4.

Remark 6.1 One can find detailed proof in Cai et al. (2000). The expression of Σ(u)

can be easily obtained by incorporating Theorem 2 of Cai et al. (2000) and the equality

var (yt|Ut = u, ht = h) = h in (6.3).

6.2.2 Estimating the parameters

In practice, the parameters in (6.1) are unknown. Now we givea method to estimate

them. Letθ = (φτ, β)τ, φ = (φ1, · · · , φr)τ. For simplicity, suppose thatθ lies in the

interior ofΘ = [φ1L, φ1U ] × · · · × [φrL , φrU ] × [βL, βU], where 0< βL < βU < 1. For

θ ∈ Θ, define

ht(θ) = v(yt−1, φ) + βht−1(θ) =
∑∞

l=1 β
l−1v(yt−l , φ), (6.7)

and we assume the conditional mean ofyt given Ut = u, ht(θ) = h has the following

form

E(yt |Ut = u, ht(θ) = h) = m(θ, u)h. (6.8)
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Treating{yt,Ut, ht(θ)} as observable processes, (6.8) enables us to estimatem(θ, u) in the

framework of (1-2) of Cai et al. (2000). Define

L(θ) := E

{[

loght(θ) +
[yt −m(θ,Ut)ht(θ)]2

ht(θ)

]

π(Ut)

}

, (6.9)

whereπ(·) is a nonnegative weight function whose compact support is contained inA.

Whenn→ ∞, it is known thatL(θ) can be consistently estimated by

Ln(θ) =
1
n

n
∑

t=1

{

loght(θ) +
[yt −m(θ,Ut)ht(θ)]2

ht(θ)

}

π(Ut). (6.10)

Under condition C.6 in Section 6.4,L(θ) has an unique minimum point atθ0 and is

locally convex. Hence the minimizer ofLn(θ) should locate the true parameterθ0 con-

sistently under some regularity conditions. However, in practice, we still have no idea

aboutm(θ,Ut) and hence the minimizer ofLn(θ) is not practicable. To obtain a feasible

estimator, for eachu ∈ A, θ ∈ Θ, define the estimator ofm(θ, u) in (6.8) by

m̂(θ, u) = Eτ
0(Z

τ
θWZθ)

−1Zτ
θWY, (6.11)

where

Zθ =



















































h1(θ) h1(θ)(
U1−u

b )

...
...

hn(θ) hn(θ)(
Un−u

b )



















































.

Recall that the estimator ˆm(θ, u) in (6.11) is based on the assumption (6.8). Define next

L̂n(θ) :=
1
n

n
∑

t=1

{

loght(θ) +
[yt − m̂(θ,Ut)ht(θ)]2

ht(θ)

}

π(Ut), (6.12)
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θ̂n := arg min
θ∈Θ

L̂n(θ). (6.13)

Based on{yt, Ut}nt=1 and giveny0, h0(θ), we can get the minimizer̂θn. The above esti-

mator θ̂n is similar to that adopted in Chapter 5 if we setπ(Ut) = 1 for t = 1, · · · , n.

However, the added weight functionπ(·) is not redundant. It is known, for boundary

point of {Ut}, the estimator in (6.11) may be seriously biased because of inadequate ob-

servations. By appropriate choice forπ(·), we can avoid to use the estimates ofm(θ, ·)

for boundary points in computing (6.12). The addedπ(Ut) is also useful to establish the

following theorem, from which, we knoŵθn converges to the true value in probability

under some regularity conditions.

Theorem 6.2 Under conditions A and C in Section 6.4, as n→ ∞, b → 0, we have

θ̂n
P→ θ0.

Proof: See Section 6.4.

After we have obtained̂θn, the value ofm(u) can be approximated by ˆm(θ̂n, u).

The related confidence intervals can be computed based on Theorem 6.1 by treating

θ̂n as the true valueθ0. In practice, to get the estimator of (6.13), we need to minimize

(6.12) with respect toθ ∈ Θ. By generalizing the idea of Linton and Perron (2003), the

following procedure can be used to obtain the minimizer:

Step 1: Provide a set of initial parametersθ̂(i)(i = 0), computeht(θ̂(i)) for t = 1, · · · , n

according to (6.7)1.

1Initial value for θ can be obtained by estimating model (6.1) withm(·) being a constantδ and the
sample variance of{yt}Tt=1 can be used as an initial value forht or ht(θ).
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Step 2: Based on the sequence{yt,Ut, ht(θ̂(i))}nt=1, calculate

{

m̂(θ̂(i),U1), · · · , m̂(θ̂(i),Un)
}

in terms of (6.11).

Step 3: Update θ̂(i) to θ̂(i+1) by performing weighted quasi maximum likelihood

estimation (WQMLE) on a GARCH (1, 1) model

ε̂
(i)
t =

√

htet,

et ∼ i.i.d(0, 1), ht(θ) = v(yt−1, φ) + βht−1(θ),

where,ε̂(i)
t = yt− m̂(θ̂(i),Ut)ht(θ̂(i)), t = 1, · · · , n. Namely, consider{ε̂(i)

t } as an observable

series and acquirêθ(i+1) by minimizing

L̂(i)
n (θ) =

1
n

n
∑

t=1













loght(θ) +
(ε̂(i)

t )2

ht(θ)













π(Ut)

with respect toθ ∈ Θ.

Step 4: Repeat steps 1-3 until convergence.

6.3 Simulations and Empirical Studies

6.3.1 Simulations

In this section, we give four simulation examples to demonstrate that the proposed esti-

mators for the parameters and functions are satisfactory. The series are generated from
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the model

yt = m(Ut)ht + εt, εt = et
√

ht,

et ∼ i.i.d N(0, 1), ht = υ(yt−1, φ) + βht−1.

The cases considered are:

Ex 6.1: m(x) = 0.4− (0.659+ 1.26x)e−3.1x2
, υ(y, φ) = ω + α[1 + ηI (y ≤ 0)]y2,

Ut = yt−1, (ω, α, η, β)τ = (0.1, 0.12,−0.3, 0.55)τ.

Ex 6.2: m(x) = 0.2sin2(πx), υ(y, φ) = ω + αy2,

Ut ∼ i.i.d U(−1, 1), (ω, α, β)τ = (0.5, 0.1, 0.75)τ.

Ex 6.3: m(x) = 0.3I (x > 0)− 0.3I (x ≤ 0), υ(y, φ) = ω + αy2, Ut = 0.8Ut−1 + vt,

vt ∼ i.i.d N(0, 0.36), (ω, α, β)τ = (0.2, 0.2, 0.3)τ.

Ex 6.4: m(x) = 0.7x, υ(y, φ) = ω + α|y|, Ut = 0.6Ut−1 + 0.3Ut−2 + vt,

vt ∼ i.i.d N(0, 0.64), (ω, α, β)τ = (0.08, 0.1, 0.8)τ.

When applying steps 1-4 of Section 6.2 to estimate Ex 6.1-6.4, the kernel functionk(·)

in (6.11) is chosen ask(x) = 0.75(1− x2)I (|x| ≤ 1). For the choice of the bandwidth

b, as described in Chapter 5, we adoptAMS(b)-minimized method of Cai et al. (2000)

to save the cost of computation. For the weight functionπ(·) in (6.12), following Yang

(2002), we putπ(u) = I (u ∈ A), whereA is set to be the interval between the 10th

and 90th percentiles of the explanatory variableUt. For the estimation of the system

parameters, we setω ∈ [0.005, 1], α ∈ [0.005, 0.9], η ∈ [−1, 1] andβ ∈ [0.1, 0.99].

The convergence criterion is||θ̂(i+1)
n − θ̂(i)

n || ≤ 0.0001. We conduct 500 replications with

sample sizen = 400, 800, 1200 respectively for each of the above examples.
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For the part of parameter estimates, we calculate their percentiles and standard

deviations. The results are displayed in Table 6.1 and Table6.2. In the tables, Q10, Q50

and Q90 denote respectively the 10%, 50% and 90% percentilesof the estimators, and

SD the standard deviation. For the part of function estimation, under sample sizen =

1200, we plot the estimated curve ˆm(u) with median performance (whose RMSE is close

to the median among 500 replications) and the true functionm(u) in the same figure. The

plots are displayed in the left column of Array 6.1 (dashed line is the estimated curve

and solid line is the true curve). For comparison, in the right column of Array 6.1, we

give box plots for the RMSE sequences forT = 400, 800, 1200 (from left to the right).

From Table 6.1 and Table 6.2, we can see the medians are close to the true values in

most cases. The standard deviation becomes smaller when thesample size gets larger.

From the estimated curves in the left column of Array 6.1, it is seen that the estimated

functions with median performance can capture the true trends. The box plots of RMSEs

in the right column witness a better fitting performance whenthe sample size gets larger.

These suggest that the considered estimators perform well.
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Table 6.1: Results of the parameter estimation for Ex 6.1-6.2.

Example True value Q10 Q50 Q90 SD

ω = 0.1 0.0245 0.1146 0.2140 0.0700
Ex 6.1 α = 0.12 0.0239 0.1264 0.3862 0.1515

(N=400) η = −0.3 -1.0000 -0.3645 1.0000 0.8193
β = 0.55 0.1000 0.4556 0.8515 0.2835

ω = 0.1 0.0381 0.1131 0.2040 0.0600
Ex 6.1 α = 0.12 0.0350 0.1233 0.3145 0.1092

(N=800) η = −0.3 -1.0000 -0.3014 1.0000 0.7240
β = 0.55 0.1000 0.4940 0.8091 0.2451

ω = 0.1 0.0361 0.1021 0.1918 0.0562
Ex 6.1 α = 0.12 0.0393 0.1189 0.2529 0.0864

(N=1200) η = −0.3 -0.9749 -0.2819 1.0000 0.6242
β = 0.55 0.1537 0.5372 0.8197 0.2289

Ex 6.2 ω = 0.5 0.1703 0.5713 1.0000 0.3112
(N=400) α = 0.1 0.0302 0.0819 0.1539 0.0492

β = 0.75 0.5683 0.7304 0.8855 0.1227

Ex 6.2 ω = 0.5 0.2658 0.5464 1.0000 0.2580
(N=800) α = 0.1 0.0545 0.0954 0.1450 0.0370

β = 0.75 0.5855 0.7300 0.8465 0.0978

Ex 6.2 ω = 0.5 0.2957 0.5462 0.9548 0.2312
(N=1200) α = 0.1 0.0596 0.0952 0.1384 0.0303

β = 0.75 0.6045 0.7371 0.8349 0.0860

Note: Number of replications=500.
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Table 6.2: Results of the parameter estimation for Ex 6.3-6.4.

Example True value Q10 Q50 Q90 SD

Ex 6.3 ω = 0.2 0.0973 0.2020 0.2811 0.0723
(N=400) α = 0.2 0.0828 0.1743 0.2814 0.0780

β = 0.3 0.1000 0.2724 0.6053 0.2061

Ex 6.3 ω = 0.2 0.1239 0.1978 0.2763 0.0590
(N=800) α = 0.2 0.1074 0.1869 0.2649 0.0603

β = 0.3 0.1000 0.3063 0.5305 0.1698

Ex 6.3 ω = 0.2 0.1321 0.1996 0.2677 0.0510
(N=1200) α = 0.2 0.1267 0.1903 0.2558 0.0493

β = 0.3 0.1000 0.3037 0.5073 0.1460

Ex 6.4 ω = 0.08 0.0438 0.1445 0.5407 0.1961
(N=400) α = 0.1 0.0493 0.1349 0.2744 0.0886

β = 0.8 0.1005 0.6827 0.8600 0.2305

Ex 6.4 ω = 0.08 0.0489 0.1036 0.2056 0.0879
(N=800) α = 0.1 0.0697 0.1192 0.1961 0.0557

β = 0.8 0.5919 0.7455 0.8422 0.1219

Ex 6.4 ω = 0.08 0.0547 0.0983 0.1682 0.0576
(N=1200) α = 0.1 0.0729 0.1149 0.1706 0.0423

β = 0.8 0.6599 0.7599 0.8377 0.0817

Note: Number of replications=500.
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Array 6.1: Results of the function estimation for Ex 6.1-6.4.
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6.3.2 Empirical studies

In this section, we apply model (6.1) to study some real data sets. We analyze the

monthly and weekly excess returns on the CRSP value weightedindices, including

NYSE, AMEX and NASDAQ. These data can be regarded as reasonable proxies for the

stock market and they have been studied by other researchers. The riskless rate used to

compute the excess returns is one-month Treasury bill rate (from Ibbotson Associates).

To apply model (6.1), we setUt = yt−1, υ(y, φ) = ω + α[1 + ηI (y ≤ 0)]y2. As in

Chapter 5, this setting forUt enables us to understand the impact of previous return on

the present risk aversion. The specified conditional variance takes the asymmetric effect

into account, namely positive and negative returns will cause asymmetric fluctuations.

Firstly, we analyze the monthly excess returns from July 1926 to February 2009 (totally

992 observations). Take{yt}992
t=1 to be the considered excess return series. For compari-

son, we use{yt}900
t=1 to estimate model (6.1) and leave{yt}992

t=901 for out-of-sample forecasts.

Before estimating the model (6.1), we display the followingtwo fitted models based on

{yt}900
t=1:

yt = 0.0291ht + εt, εt = et

√
ht,

et ∼ i.i.d(0, 1), ht = 0.9307+ 0.1161ε2
t−1 + 0.8516ht−1, (6.14)

yt = 0.0207ht + εt, εt = et
√

ht,

et ∼ i.i.d(0, 1), ht = 0.7288+ 0.1523y2
t−1 + 0.8306ht−1. (6.15)

Here (6.14) is the traditional GARCH-M model, (6.15) is the FC-GARCH-M model

with m(·) = m, a constant, andυ(y, φ) = ω + αy2. Based on the above two results, for

estimating (6.1) withUt = yt−1, υ(y, φ) = ω + α[1 + ηI (y ≤ 0)]y2, we set the parametric
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spaceΘ asω ∈ [0.001, 10], α ∈ [0.001, 0.9], η ∈ [0.001, 1000], β ∈ [0.1, 0.99].Applying

steps 1-4 in Section 6.2, we shall get the estimates with the basis of{yt}900
t=1 :

yt = m(yt−1)ht + εt, εt = et
√

ht, et ∼ i.i.d(0, 1),

ht = 0.8442+ 0.0532[1+ 2.4782I (yt−1 ≤ 0)]y2
t−1 + 0.8663ht−1. (6.16)

To compare, we also estimate the TVP-GARCH-M model (5.2) based on{yt}900
t=1. The

result is

yt = δtht + εt, εt = et

√
ht, δt = δt−1 + vt,

et ∼ i.i.d N(0, 1), ht = 0.7472+ 0.1176η2
t−1 + 0.8592ht−1. (6.17)

The estimated value ofQ (the variance ofvt in (6.17)) is 2.2 × 10−6 which is quite

small. This implies that (6.17) is close to the original model (6.14) because model (5.2)

converges to (5.1) whenQ becomes small (Chou et al. 1992). The mean of the estimated

δt is 0.024 which is near the fixed value 0.029 in (6.14).

We also tabulate the RMSEs and MAEs for both the in-sample andout-of-sample

forecasts in Table 6.3. For coefficient-fixed cases, it is found that models (6.14-6.15)

Table 6.3: In-sample and out-of-sample forecast performance.

Model RMSE (in) MAE (in) RMSE (out) MAE (out)
(6.14) 5.5524 3.8926 4.7356 3.4048
(6.15) 5.5295 3.8837 4.6692 3.3955
(6.16) 5.2130 3.7257 4.5455 3.3648
(6.17) 5.5275 3.8360 4.6518 3.3936

have comparable performance which empirically justifies the modification of the condi-

tional variance that is driven by the past returns. For the time-varying cases, (6.16) has
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better fitting performance than that of model (6.17). On the whole, model (6.16) has the

best forecasting performance for the considered data.

It is of some interest to study the relationship between the volatility coefficient and

the time-lagged excess returnyt−1. Set a grid vector foryt−1 asu0 = (−3 : 0.1 : 4).

Based on{yt}900
t=1 and (6.16), we can estimate the value of eachm(u0(i)) (i = 1, · · · , 71)

according to (6.4). The estimated ˆm(·) (solid line) and the related 95% confidence band

(dashed line) are plotted in Figure 6.1. From the plots, it isseen that the estimated ˆm(·)

is similarly shaped to that of Figure 5.3 in Chapter 5. Hence,we can adopt analogous

interpretation for the plots.
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Figure 6.1: Plots of ˆm(yt−1) from (6.16) (solid line) and the related confidence band
(dashed lines).

Next, we apply model (6.1) to the weekly excess returns from 05/07/1963 to

27/02/2009 (totally 2383 observations). Starting from 30/04/1971, for each quarter, we

firstly estimate constant volatility coefficient δ based on (6.1) withm(·) = δ, υ(y, φ) =
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ω + αy2 and (5.1). The previous 400 observations are used to estimate the parameter

and totally 165 estimators are obtained. Let{δn
i }165

i=1, {δo
i }165

i=1 be the respective estimated

coefficient values which are plotted in Figure 6.2. We can see from the plots that the

estimated two sequences are time-varying rather than constant. These results are con-

sistent with those in Chou et al. (1992) and Das and Sarkar (2010). Moreover,{δn
i } has

similar trajectory to that of{δo
i } though the latter one is a bit higher.

For each group of the data used to estimate the constant volatility coefficient in the

above, we also fit them by (6.1) (withUt = yt−1, υ(y, φ) = ω+α[1+ηI (y ≤ 0)]y2) and the

TVP-GARCH-M model (5.2). The corresponding fitting errors are calculated. Denote

{REn
i }165

i=1, {REo
i }165

i=1, {REf
i }165

i=1, {REv
i }165

i=1, {MEn
i }165

i=1, {MEo
i }165

i=1, {ME f
i }165

i=1, {MEv
i }165

i=1 to be

the RMSE and MAE sequences, which are respectively recordedfrom the (6.1) with

m(·) = δ, υ(y, φ) = ω + αy2, (5.1), (6.1) withUt = yt−1, υ(y, φ) = ω + α[1 + ηI (y ≤ 0)]y2

and (5.2). For comparison, we list the percentiles of the error sequences in Table 6.4.

Table 6.4: Percentiles of error sequences.

Error Percentiles
series 10% 25% 50% 75% 90%
{REn} 1.5497 1.9206 2.0948 2.3285 2.5447
{REo} 1.5483 1.9243 2.1051 2.3314 2.5481
{REf } 0.6140 0.8271 1.1946 1.4306 1.7550
{REv} 1.5582 1.9220 2.0975 2.3309 2.5551
{MEn} 1.1938 1.4320 1.5796 1.7312 1.8669
{MEo} 1.1816 1.4311 1.5712 1.7312 1.8786
{ME f } 0.2644 0.3833 0.6321 0.8758 1.1117
{MEv} 1.2040 1.4373 1.5857 1.7312 1.8835

From the table, similar to the case of the monthly data, it is seen that the two constant-

coefficient models have comparable fitting performance. According to the values in the

fourth and eighth rows, we can see that the performance of TVP-GARCH-M model is
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i=1 (dashed line).

similar to the two coefficient-fixed models. This implies the volatility coefficient does

not necessarily vary in the form of a random walk and can take some other forms. On

the whole, the FC-GARCH-M model (6.1) seems to be superior toother models (the

fitting errors are much smaller in most cases) for the considered data.

6.4 Proofs

We first state some conditions for model (6.1). Throughout this section, we letM,m

denote certain positive constants, which may take different values at different places.

Condition A

A.1 The kernel functionk(·) in (6.4) is a bounded density with a bounded support

[−1, 1].
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A.2 The process{Ut} has a continuous pdff (u) satisfying infu∈A f (u) > 0, whereA is

a compact subset ofR with nonempty interior. For eachu ∈ A, | f ′(x)| is bounded

whenx takes values in a neighborhood ofu.

Condition B

B.1 Theα-mixing processes{(yt,Ut, ht)} satisfies
∑

lc[α(l)]1−2/δ < ∞ for someδ > 2,

c > 1− 2/δ, whereht is given in (6.2).

B.2 E{y2
0 + y2

l |U0 = u0, h0 = w,Ul = ul , hl = v} ≤ M < ∞ for all l ≥ 1,w, v ∈ R, u0 and

ul in a neighborhood ofu.

B.3 b→ 0 andnb→ ∞. Further, there exists a sequence of positive integerssn such

thatsn→ ∞, sn = o(
√

nb),
√

n/bα(sn)→ 0, asn→ ∞.

B.4 There existsδ∗ > δ, whereδ is given in B.1, such thatE{|y|δ∗ |U = v, h = w} ≤

M < ∞ for all w ∈ R andv in a neighborhood ofu, andα(n) = O(n−δ
∗∗

) where

δ∗∗ ≥ δδ∗/{2(δ∗ − δ)}.

B.5 Eh2δ∗
t < ∞, andn1/2−δ/4bδ/δ

∗−1/2−δ/4 = O(1).

B.6 Let conditional density of (U0,Ul) given (h0, hl), say f (u0, ul |h0, hl), satisfies that

| f (u0, ul |h0, hl)| ≤ M < ∞ for all l ≤ 1 and f (ut|ht) ≤ M < ∞, where f (u|h) is the

conditional density ofU givenht = h.

Condition C

C.1 For eachθ ∈ Θ, the process{(yt,Ut, ht(θ))} generated from (6.1) is strictly station-

ary and ergodic.
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C.2 For eachθ ∈ Θ, u ∈ A, functions m(θ, x) in (6.8), σ2(θ, x) in (6.21),

||∂m(θ,u)
∂θ
||, |∂m2(θ,x)

∂x2 | and |∂σ2(θ,x)
∂x | are uniformly bounded whenx takes values in a

neighborhood ofu.

C.3 For anyθ1, θ2 ∈ Θ, there exist two positive processes{w1t}, {w2t} (independent of

θ1, θ2) such that|| 1
ht(θ1)

∂ht(θ2)
∂θ
|| ≤ w1t andht(θ1)/ht(θ2) ≤ w2t.

C.4 Ew1t < ∞,Ew2t < ∞,E|yt| < ∞,Eht(θU) < ∞, wherew1t,w2t are given in C.3 and

ht(θU) is described in (6.23).

C.5 The functionυ(y, φ) ≥ m> 0 holds uniformly.

C.6 The functionL(θ) defined in (6.9) is continuous and has a positive definite Hessian

matrix at its unique minimumθ0.

Remark 6.2 Conditions A and B are basically the same as those in Cai et al.(2000).

Conditions C.1, C.2, C.5 and C.6 have been analogously adopted by Yang (2006). C.3

and C.4 are useful for proving uniform convergence in probability for some processes.

And they hold for the case of the usual GARCH (1, 1) process (Jensen and Rahbek,

2004), which gives some basis for the assumptions.

Before giving the proof of Theorem 6.2, we firstly state threeuseful lemmas.

Lemma 6.1 Let Gn(θ) = Qn(θ) − Q(θ), where Q(θ) is a nonrandom function that is

continuous inθ ∈ Θ, andΘ is a bounded metric space. Suppose forθ, θ1, θ2 ∈ Θ,

Qn(θ)
P→ Q(θ), |Qn(θ1) − Qn(θ2)| ≤ Bn||θ1 − θ2|| and Bn = Op(1), then we have

supθ∈Θ |Gn(θ)| = op(1).

Proof: The lemma is a direct result based on Lemma 1 and Theorem 1 in Andrews

(1992).
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Lemma 6.2 Suppose Qn(θ) is an approximation of nonrandom continuous function

Q(θ), which has an unique minimumθ0 in Θ. Let

θ̂n = arg min
θ∈Θ

Qn(θ),

if supθ∈Θ |Qn(θ) − Q(θ)| = op(1), then we havêθn
P→ θ0.

Proof: The lemma is a direct result following Lemma 14.3 (page 258) and Theorem

2.12 (page 28) in Kosorok (2006).

Lemma 6.3 Let θ ∈ Θ,

An(θ) =































A11(θ) + a11
n (θ) A12(θ) + a12

n (θ)

A21(θ) + a21
n (θ) A22(θ) + a22

n (θ)































and A(θ) =































A11(θ) A12(θ)

A21(θ) A22(θ)































.

For 1 ≤ i, j ≤ 2, if supθ∈Θ |a
i, j
n (θ)| = op(1) and the element of nonsingular matrix A(θ)

satisfiessupθ∈Θ |Ai, j(θ)| = Op(1), then we have An(θ)−1 = A(θ)−1 + ρn(θ). Hereρn(θ) =

(ρi, j
n (θ))1≤i, j≤2 andsupθ∈Θ |ρ

i, j
n (θ)| = op(1).

Proof: Simple algebra yields|An(θ)| = |A(θ)|+an(θ), supθ∈Θ |an(θ)| = op(1). By definition,

we know the elements in the first row and the first column ofAn(θ)−1 andA−1(θ) are

respectively|An(θ)|−1[A22(θ) + a22
n (θ)] and |A(θ)|−1A22(θ). Let

ρ1,1
n (θ) = |An(θ)|−1[A22(θ) + a22

n (θ)] − |A(θ)|−1A22(θ)

=
a2,2

n (θ)|A(θ)| − A2,2(θ)an(θ)
|A(θ)|2 + an(θ)|A(θ)| ,

then we know supθ∈Θ |ρ1,1
n (θ)| = op(1) when 0, |A(θ)| = O(1). Using similar argument

to other elements ofAn(θ)−1 andA−1(θ), then the proof can be completed.
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Proof of Theorem 6.2:

Define

Sn(θ) = Zτ
θWZθ =































Sn,0(θ) Sn,1(θ)

Sn,1(θ) Sn,2(θ)































, (6.18)

where,

Sn, j(θ) =
1
n

n
∑

t=1

h2
t (θ)

(Ut − u
b

) j

kb(Ut − u), j = 0, 1, 2. (6.19)

For eachθ ∈ Θ, under condition C.1, we know thatSn, j(θ) = ESn, j(θ) + op(1). Here

ESn, j(θ) = E[h2
t (θ)(

Ut − u
b

) jkb(Ut − u)]

= E[σ2(θ,Ut)(
Ut − u

b
) jkb(Ut − u)]

=

∫ +∞

−∞
f (Ut)σ2(θ,Ut)(

Ut − u
b

) jkb(Ut − u)dUt

=

∫ +1

−1
f (bx+ u)σ2(θ, bx+ u)xjk(x)dx

= µ j · f (u)σ2(θ, u) + R(θ). (6.20)

In the above expressions,σi(θ, u) is defined as

σi(θ, u) = E[hi
t(θ)|Ut = u]. (6.21)

R(θ) is given by

R(θ) = b f(u)
∫ +1

−1

∂σ2(θ, bλ1x+ u)
∂u

xj+1k(x)dx

+bσ2(θ, u)
∫ +1

−1
f ′(bλ2x+ u)xj+1k(x)dx

+b2

∫ +1

−1

∂σ2(θ, bλ1x+ u)
∂u

f ′(bλ2x+ u)xj+2k(x)dx,
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whereλ1, λ2 ∈ [0, 1]. Under conditions A.2 and C.2, we know that

f (x), f ′(x), σ2(θ, x) and∂σ2(θ, x)/∂x

are uniformly bounded in a neighborhood ofu. As a result, it is easy to have

sup
θ∈Θ
|R(θ)| = o(1), (6.22)

asb→ 0. From (6.19), we know that

Sn, j(θ1) − Sn, j(θ2)

=
1
n

n
∑

t=1

(
Ut − u

b
) jkb(Ut − u)[h2

t (θ1) − h2
t (θ2)]

=
2
n

n
∑

t=1

(
Ut − u

b
) jkb(Ut − u)h2

t (θ
∗
1,t)

1
ht(θ∗1,t)

∂ht(θ∗1,t)

∂θτ
(θ1 − θ2).

Hereθ∗1,t and the subsequentθ∗i,t, i = 2, · · · , 8, t = 1, · · · , n are parameter vectors between

θ1 andθ2. Without loss of generality, we can suppose there exists aθU ∈ Θ such that

ht(θU) ≥ ht(θ), θ ∈ Θ, t = 1, 2, · · · . (6.23)

PutB1n =
2
n

∑n
t=1 |Ut−u

b | jkb(Ut − u)h2
t (θU)w1t and we know|Sn, j(θ1) − Sn, j(θ2)| ≤ B1n||θ1 −

θ2||. Based on C.2 and C.4, it is easy to showB1n = Op(1). According to Lemma 6.1,

we have

sup
θ∈Θ
|Sn, j(θ) − ESn, j(θ)| = op(1). (6.24)

(6.20), (6.22) and (6.24) imply that

Sn, j(θ) = µ j f (u)σ2(θ, u) + rn, j(θ), sup
θ∈Θ
|rn, j(θ)| = op(1). (6.25)
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Consequently, we have

Sn(θ) = f (u)σ2(θ, u)S + rn(θ), (6.26)

asn→ ∞, b→ 0, where

S =































µ0 µ1

µ1 µ2































, rn(θ) =































rn,0(θ) rn,1(θ)

rn,1(θ) rn,2(θ)































. (6.27)

Applying Lemma 6.3, we know that there is a matrixRn(θ) of the form

Rn(θ) =































Rn,0(θ) Rn,1(θ)

Rn,1(θ) Rn,2(θ)































, sup
θ∈Θ
|Rn, j(θ)| = op(1) (6.28)

such that

Sn(θ)
−1 =

S−1

f (u)σ2(θ, u)
+ Rn(θ). (6.29)

SupposeS−1 = (Si, j)0≤i, j≤1, then it can be calculated that

S−1
n (θ)Zτ

θ
W = 1

f (u)σ2(θ,u)S
−1Zτ

θ
W+ Rn(θ)Zτ

θ
W,

S−1Zτ
θ
W = 1

n































K0,b(U1 − u)h1(θ) · · · K0,b(Un − u)hn(θ)

K1,b(U1 − u)h1(θ) · · · K1,b(Un − u)hn(θ)































,

Rn(θ)Zτ
θ
W = 1

n































C11(θ) · · · C1n(θ)

C21(θ) · · · C2n(θ)































,
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where

K j(x) =
∑1

i=0 S ji xik(x), j = 0, 1,K j,b(x) = 1
bK j(x/b), (6.30)

C1, j(θ) =
∑1

l=0 Rn,l(θ)kb(U j − u)h j(θ)(
U j−u

b )l , 1 ≤ j ≤ n,

C2, j(θ) =
∑2

l=1 Rn,l(θ)kb(U j − u)h j(θ)(
U j−u

b )l−1, 1 ≤ j ≤ n. (6.31)

It is not difficult to prove supθ∈Θ |Ci, j(θ)| = op(1) in terms of (6.28) fori = 1, 2, j =

1, · · · , n. Let E1 = (0, 1)τ, by definition, we know

Eτ
0(Z

τ
θWZθ)

−1Zτ
θWZθE0 = 1,Eτ

0(Z
τ
θWZθ)

−1Zτ
θWZθE1 = 0.

Then we have

m̂(θ, u) −m(θ, u)

= Eτ
0(Z

τ
θWZθ)

−1Zτ
θWY−m(θ, u)Eτ

0(Z
τ
θWZθ)

−1Zτ
θWZθE0

−∂m(θ, u)
∂u

bEτ
0(Z

τ
θWZθ)

−1Zτ
θWZθE1

= {Eτ
0Sn(θ)

−1Zτ
θW [Y− Mθ]}

+

{

Eτ
0Sn(θ)

−1Zτ
θW

[

Mθ −m(θ, u)ZθE0 −
∂m(θ, u)
∂u

bZθE1

]}

:= I1(θ) + I2(θ), (6.32)

whereMθ = (m(θ,U1)h1(θ), · · · ,m(θ,Un)hn(θ))τ, I1(θ) andI2(θ) mean the corresponding

items in the preceding two pairs of braces. Via some algebraic calculations, we further

get

I1(θ) = I11(θ) + I12(θ), (6.33)
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where

I11(θ) =
1

n f(u)σ2(θ, u)

n
∑

t=1

K0,b(Ut − u)ht(θ)[yt −m(θ,Ut)ht(θ)], (6.34)

I12(θ) =
1
n

n
∑

t=1

C1,t(θ)[yt −m(θ,Ut)ht(θ)]. (6.35)

It is not difficult to obtain that (here we omit theO(1) term 1
f (u)σ2(θ,u) for simplifying the

deductions)

I11(θ1) − I11(θ2)

=
1
n

n
∑

t=1

K0,b(Ut − u)yt[ht(θ1) − ht(θ2)]

+
−1
n

n
∑

t=1

K0,b(Ut − u)m(θ1,Ut)[h
2
t (θ1) − h2

t (θ2)]

+
−1
n

n
∑

t=1

K0,b(Ut − u)h2
t (θ2)[m(θ1,Ut) −m(θ2,Ut)]

=
1
n

n
∑

t=1

K0,b(Ut − u)ytht(θ
∗
2,t)

1
ht(θ∗2,t)

∂ht(θ∗2,t)

∂θτ
(θ1 − θ2)

+
−2
n

n
∑

t=1

K0,b(Ut − u)m(θ1,Ut)h
2
t (θ
∗
3,t)

1
ht(θ∗3,t)

∂ht(θ∗3,t)

∂θτ
(θ1 − θ2)

+
−1
n

n
∑

t=1

K0,b(Ut − u)h2
t (θ2)

∂m(θ∗4,t,Ut)

∂θτ
(θ1 − θ2). (6.36)

Define

B2n =
1
n

n
∑

t=1

K∗0,b(Ut − u)|yt|ht(θU)w1t

+
2M
n

n
∑

t=1

K∗0,b(Ut − u)h2
t (θU)w1t

+
M
n

n
∑

t=1

K∗0,b(Ut − u)h2
t (θU),
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where

K∗j (x) =
1

∑

i=0

|S ji ||x|ik(x), j = 0, 1,K∗j,b(x) =
1
b

K∗j (x/b). (6.37)

Then, in terms of C.2 and C.3, for certainM, we have

|I11(θ1) − I11(θ2)| ≤ B2n||θ1 − θ2||. (6.38)

It is easy to showB2n = Op(1) based on C.2 and C.4. Applying Lemma 6.1 toI11(θ), we

shall get

sup
θ∈Θ
|I11(θ) − E[I11(θ)]| = sup

θ∈Θ
|I11(θ)| = op(1) (6.39)

by noting thatm(θ,Ut)ht(θ) = E[yt |Ut, ht(θ)] in terms of (6.8), which implies that

E[I11(θ)] = 0. In fact, (apart from theO(1) term 1
f (u)σ2(θ,u)), based on (6.34), we have

E[I11(θ)] = E{K0,b(Ut − u)ht(θ)[yt −m(θ,Ut)ht(θ)]}

= E{K0,b(Ut − u)ht(θ)[yt − E[yt|Ut, ht(θ)]] }

= E{K0,b(Ut − u)ht(θ)yt − K0,b(Ut − u)ht(θ)E[yt |Ut, ht(θ)]}

= E{K0,b(Ut − u)ht(θ)yt − E[K0,b(Ut − u)ht(θ)yt |Ut, ht(θ)]}

= 0.

One can also easily see supθ∈Θ |I12(θ)| = op(1) based on (6.31) and (6.35). Incorporated

with (6.39), it follows that

sup
θ∈Θ
|I1(θ)| = op(1). (6.40)
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We next show that supθ∈Θ |I2(θ)| = op(1). Recall that

I2(θ) = Eτ
0Sn(θ)

−1Zτ
θW

[

Mθ −m(θ, u)ZθE0 −
∂m(θ, u)
∂u

bZθE1

]

= I21(θ) + I22(θ),

where

I21(θ) =
1

n f(u)σ2(θ, u)

n
∑

t=1

K0,b(Ut − u)h2
t (θ)[m(θ,Ut)

−m(θ, u) − ∂m(θ, u)
∂u

(Ut − u)]

=
1

2n f(u)σ2(θ, u)

n
∑

t=1

K0,b(Ut − u)h2
t (θ)

∂2m(θ, u∗1,t)

∂u2
(Ut − u)2,

(6.41)

I22(θ) =
1
n

n
∑

t=1

C1,t(θ)

[

m(θ,Ut) −m(θ, u) − ∂m(θ, u)
∂u

(Ut − u)

]

ht(θ)

=
1
2n

n
∑

t=1

C1,t(θ)ht(θ)
∂2m(θ, u∗1,t)

∂u2
(Ut − u)2. (6.42)

Here, for eacht = 1, · · · , n, u∗1,t takes value betweenu andUt. Foru ∈ A, under C.2, it

can be derived that

sup
θ∈Θ
|I21(θ)| ≤

Mb2

n f(u)

n
∑

t=1

K∗0,b(Ut − u)h2
t (θU)(

Ut − u
b

)2

= b2Op(1) = op(1), b→ 0. (6.43)

From (6.31), supθ∈Θ |I22(θ)| = op(1), in conjunction with (6.43), which gives

sup
θ∈Θ
|I2(θ)| = op(1). (6.44)
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(6.32), (6.40) and (6.44) imply that

sup
θ∈Θ
|m̂(θ, u) −m(θ, u)| = op(1). (6.45)

From (6.10), it is not difficult to get

Ln(θ1) − Ln(θ2)

=
1
n

n
∑

t=1

[log ht(θ1) − loght(θ2)]π(Ut)

+
1
n

n
∑

t=1

[
1

ht(θ1)
− 1

ht(θ2)
][yt −m(θ1,Ut)ht(θ1)]

2π(Ut)

+
1
n

n
∑

t=1

π(Ut)
ht(θ2)

{

[yt −m(θ1,Ut)ht(θ1)]
2 − [yt −m(θ2,Ut)ht(θ2)]

2
}

=
1
n

n
∑

t=1

π(Ut)
1

ht(θ∗5,t)

∂ht(θ∗5,t)

∂θτ
(θ1 − θ2)

+
1
n

n
∑

t=1

[yt −m(θ1,Ut)ht(θ1)]
2π(Ut)

1

h2
t (θ
∗
6,t)

∂ht(θ∗6,t)

∂θτ
(θ1 − θ2)

+
−1
n

n
∑

t=1

π(Ut)
ht(θ2)

{[2yt −m(θ1,Ut)ht(θ1) −m(θ2,Ut)ht(θ2)]

×[
∂m(θ∗7,t,Ut)

∂θτ
ht(θ1) +m(θ2,Ut)

∂ht(θ∗8,t)

∂θτ
]}(θ1 − θ2). (6.46)

Note that 0< π(Ut) impliesUt ∈ A andht(θ) ≥ m> 0 for all θ ∈ Θ under C.5. Define

B3n =
1
n

n
∑

t=1

π(Ut)w1t +
M
n

n
∑

t=1

[|yt| + ht(θU)]2π(Ut)w1t

+
M
n

n
∑

t=1

[|yt| + ht(θU)]π(Ut)(w1,t + w2,t).

Then we know

|Ln(θ1) − Ln(θ2)| ≤ B3n||θ1 − θ2|| (6.47)

for someM and it is easy to showB3n = Op(1). Applying Lemma 6.1 toLn(θ), then it
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follows that

sup
θ∈Θ
|Ln(θ) − L(θ)| = op(1). (6.48)

It is not difficult to derive that

[yt − m̂(θ,Ut)ht(θ)]
2 = [yt −m(θ,Ut)ht(θ)]

2 + h2
t (θ)[m(θ,Ut) − m̂(θ,Ut)]

2

+2[yt −m(θ,Ut)ht(θ)][m(θ,Ut) − m̂(θ,Ut)]ht(θ).

From (6.10) and (6.12), it follows that

L̂n(θ) − Ln(θ) =
1
n

n
∑

t=1

π(Ut)ht(θ)[m(θ,Ut) − m̂(θ,Ut)]
2

+
2
n

n
∑

t=1

π(Ut)[m(θ,Ut) − m̂(θ,Ut)][yt −m(θ,Ut)ht(θ)].

Further,

sup
θ∈Θ
|Ln(θ) − L̂n(θ)| ≤

1
n

n
∑

t=1

π(Ut)ht(θU) sup
θ∈Θ

[m(θ,Ut) − m̂(θ,Ut)]
2

+
2
n

n
∑

t=1

π(Ut)[|yt| + Mht(θU)] sup
θ∈Θ
|m(θ,Ut) − m̂(θ,Ut)|

= op(1). (6.49)

(6.48) and (6.49) imply that

sup
θ∈Θ
|L(θ) − L̂n(θ)| = op(1). (6.50)

Under condition C.6, and applying Lemma 6.2, we obtain the consistency from (6.50).
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6.5 Summary

In this chapter, motivated by the FCA-GARCH-M model in Chapter 5, we further study

a functional coefficient GARCH-M model, where the volatility coefficient is treated as

an unknown function of a certain variable. Such a setting enables us to study the rela-

tionship between risk aversion and some related variable (e.g., the time-lagged return).

An improved approach is given to estimate the parameters in the GARCH equation.

Under some regularity conditions, the parametric estimators are shown to be consistent.

Simulation studies have shown the method performs well. Through the empirical stud-

ies, the proposed FC-GARCH-M model seems to be superior to the usual parametric

models for the considered data.
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Chapter 7

Conclusions

In this thesis, based on previous work in the literature (e.g., Ling, 2004, Christensen et

al., 2008, Cai et al., 2000), we have studied some parametricand semiparametric models

for financial time series. Besides the TARCH model in Chapter2, we mainly consider

the GARCH-in-Mean models by assuming the conditional variance to be driven by the

past returns. Such a setting for the conditional variance makes it slightly easier to study

related issues in estimation and inference. Some theoretical results have been obtained

such as: asymptotic null distribution (Theorem 2.2) in Chapter 2, geometric ergodicity

condition (Theorem 3.1) and asymptotic normality (Theorem3.2) in Chapter 3, consis-

tency (Theorem 6.2) in Chapter 6. The conducted simulation studies for the considered

models suggest that the proposed methods work satisfactorily. From the empirical stud-

ies, for the considered data, it is seen that the proposed models have comparable or

better fitting performance as compared to the traditional ones. Moreover, some inter-

esting results have been gotten like the relationship between the conditional mean and

variance (Chapter 4), and the relations between volatilitycoefficient and time lagged
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return (Chapters 5-6).

Our study reveals that there are several areas that may be worthwhile to be ex-

plored further. First, when we study the asymptotic properties for the QMLE of the

considered TARCH model in Chapter 2, assuming the thresholdparameter is known is

rather restrictive. The results would be more general if onecan study the estimation of

all the parameters (including the threshold parameter) jointly. Second, for the specific

GARCH-in-Mean model in Chapter 3, it is worthwhile to further study the QMLE of

the model for non-stationary cases (namely the true parameters are located in a non-

stationary region.). Conditions for the existence of moments can also be an interesting

topic. It would be a significant contribution if one can studythe ergodicity and QMLE

for other popular choices of the mean function, such asm(ht) = δht,m(ht) = δ loght.

Third, for the semiparametric models discussed in Chapters4 and 6, though parametric

estimators are shown to be consistent, we have not established the asymptotic normality

of the estimators. Also, few theoretical results about the functional estimation in Chap-

ters 4 and 6 have been given. Future studies are expected to fill this gap. Finally, for

empirical studies in Chapters 5-6, besides the time lagged returns, further study of the

relationship between volatility coefficient and other explanatory variables is of practical

value.
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Appendix

In this part, we present the Matlab codes for estimating the models (6.15-6.17) in Chapter 6. The codes
for previous chapters can be analogously developed based onthe presented ones and hence we omit
them. The codes for (6.14) are similar to those of (6.15) and hence we do not present them here either.

A.1 Matlab Code for the estimation of model (6.15)

To get (6.15), given observations{yt}Tt=1, we equivalently need to estimateθ = (δ, a0, a1, a2) for
the model below:

yt = δht + εt, εt = et
√

ht,

et ∼ i.i.d (0, 1), ht = a0 + a1y2
t−1 + a2ht−1.

The codes are as follows:

f unc t i on t h e t a=garchmn ( y )
format compact ;
d a t a=y ;
% i n i t i a l v a l u e s
s s=s td ( d a t a ) ;
h0=s s ˆ 2 ;
d e l t a=0 . 2 ;
a0=0 . 2 ;
a1=0 . 5 ;
a2=0 . 1 ;
t h e t a=[ d e l t a a0 a1 a2 ] ;

% c o n s t r a i n t s
t h e t a L=[−2 0 .0001 0 .0001 0 . 0 0 0 1 ] ;
t he taU= [2 50 0 .99 0 . 9 9 ] ;
% o p t i m i z a t i o n o p t i o n s
o p t o p t=o p t i m s e t ( ’ Max I te r ’ , 1 0 0 0 ) ;
[ x , f v a l ]= fmincon ( @garch l ik , t h e t a , [ ] , [ ] , [ ] , [ ] , . . .
t he taL , the taU , [ ] , op top t , da ta , h0 ) ;
t h e t a=x ; l i k =− f v a l ;
[ l i k ,V] = g a r c h l i k 0 ( t h e t a , da ta , h0 ) ;

f unc t i on l i k =g a r c h l i k ( t h e t a , da ta , h0 )
[ l i k ,V] = g a r c h l i k 0 ( t h e t a , da ta , h0 ) ;

f unc t i on [ l i k ,V] = g a r c h l i k 0 ( t h e t a , da ta , h0 )
d e l t a= t h e t a ( 1 ) ;
a0= t h e t a ( 2 ) ;
a1= t h e t a ( 3 ) ;
a2= t h e t a ( 4 ) ;
N= s i z e( d a t a ) ;
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V=ze ros(N+1 ) ;
VV=h0 ;
V(1 )=VV;
l i k =0 . ; % n e g a t i v e l i k e l i h o o d
f o r i ndx=1:N

er ro r =d a t a ( indx )− d e l t a∗ VV;
l i k = l i k +( er ro r ˆ 2 ) /VV+ l og (VV) ;
VV=a0+a1∗ d a t a ( indx ) ˆ2+ a2∗VV;
V( indx+1)=VV;

end

A.2 Matlab Code for the estimation of model (6.16)

To get (6.16), given observations{yt, }Tt=1, we equivalently need to estimateθ = (ω, α, η, β) for the
model below:

yt = m(yt−1)ht + εt, εt = et
√

ht, et ∼ i.i.d(0, 1),

ht = ω + α[1 + ηI (yt−1 ≤ 0)]y2
t−1 + βht−1.

The codes are followed:

f unc t i on y=FCE(Y,U,X, U0 , b )
N= l eng th (Y ) ;
l = l eng th (U0 ) ;
I=ones (N, 1 ) ;
y = [ ] ;
f o r i =1: l

Ui=U−U0( i )∗ I ;
KI = ( 0 . 7 5/b )∗ ( I −Ui . ∗ Ui / ( b ˆ 2 ) ) .∗ ( abs( Ui ) / b<0 . 9 9 9 ) ;
S11=sum( KI . ∗X. ∗X) ;
S12=sum( KI . ∗X. ∗X. ∗ Ui ) ;
S21=sum( KI . ∗X. ∗X. ∗ Ui ) ;
S22=sum( KI . ∗X. ∗X. ∗ Ui . ∗ Ui ) ;
T1=sum( KI . ∗X. ∗Y) ;
T2=sum( KI . ∗X. ∗Y. ∗ Ui ) ;
fenmu=S22∗S11−S12∗S21 ;
f e n z i=S22∗T1−S12∗T2 ;

i f fenmu==0
temp= f e n z i / ( fenmu+0 . 0 0 0 1 ) ;

e l s e
temp= f e n z i / fenmu ;

end
y=[ y ; temp ] ;

end

The above function “FCM ”is used to estimate the common functional coefficient model proposed by Cai
et al. (2000). The inputs Y,U,X are observation vectors. U0 is the grid point vector which has the same
length to that of output y. b is the given bandwidth.

f unc t i on t h e t a= WQMLE(Y, error ,U, t h e t a 0 )
format compact ;
d a t a 1=Y;
d a t a 2=er ro r ;
s s=s td ( d a t a 1 ) ;
Vbar=s s ˆ 2 ;
omega= t h e t a 0 ( 1 ) ;
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a l p h a= t h e t a 0 ( 2 ) ;
e t a= t h e t a 0 ( 3 ) ;
beta= t h e t a 0 ( 4 ) ;
pa r=[ omega a l p h a e t abeta ] ;
% c o n s t r a i n t s
parL= [0 .001 0 .001 0 .001 0 . 1 ] ;
parU=[ 10 0 .9 1000 0 . 9 9 ] ;
% o p t i m i z a t i o n o p t i o n s
o p t o p t=o p t i m s e t ( ’ Max I te r ’ ,1000 , ’ La rgeSca le ’ , ’ o f f ’ ) ;
[ x , f v a l , hess]= fmincon ( @garch l ik , par , [ ] , [ ] , [ ] , [ ] , . . .
parL , parU , [ ] , op top t , da ta1 , da ta2 , Vbar ,U ) ;
pa r=x ;
t h e t a=x ;
s t d e r r s=diag ( sq r t ( i nv ( hess) ) ) ’
l i k =− f v a l ;
[ l i k ,V] = g a r c h l i k 0 ( par , da ta1 , da ta2 , Vbar ,U ) ;

f unc t i on l i k =g a r c h l i k ( par , da ta1 , da ta2 , Vbar ,U)
[ l i k ,V] = g a r c h l i k 0 ( par , da ta1 , da ta2 , Vbar ,U ) ;

f unc t i on [ l i k ,V] = g a r c h l i k 0 ( par , da ta1 , da ta2 , Vbar ,U)
omega=pa r ( 1 ) ;
a l p h a=pa r ( 2 ) ;
e t a=pa r ( 3 ) ;
beta=pa r ( 4 ) ;
N= s i z e( d a t a 1 ) ;
V=ze ros(N+1 ) ;
VV=Vbar ;
V(1 )=VV;
P10= p r c t i l e (U, 1 0 ) ; P90= p r c t i l e (U, 9 0 ) ;
l i k =0 . ; % n e g a t i v e l i k e l i h o o d
f o r i ndx=1:N−1

l i k = l i k + ( ( d a t a 2 ( indx ) ˆ 2 )/VV+ l og (VV) ) ∗ ( P10<=U( indx ) )∗ (U( indx )<=P90 ) ;
VV=omega + a l p h a∗(1+ e t a∗ ( d a t a 1 ( indx )<=0))∗ d a t a 1 ( indx ) ˆ2+ beta∗VV ;
V( indx+1)=VV;

end

The above function “WQMLE ”is for the weighted QMLE in Step 3 in Section 6.2.2. The elements of
inputs Y, error are respectively yt, ε̂

(i)
t in Step 3. The elements of input U are the lagged returns and the

input “theta0 ”is the initial value for the output “theta”. Based on the above two functions, “FCM ”and
“WQMLE ”, we give the following function “estimate ”to estimate the model. For the function “estimate
”, the input “theta0 ”is an initial estimator for the parameter vector and Y is the observation vector.

f unc t i on [ t h e t a e wucha ]= e s t i m a t e (Y, t h e t a 0 )
N= l eng th (Y ) ;
k=50;
temp= t h e t a 0 ;
wuchas= [ ] ;
f o r j =1: k
V=ones (N , 1 ) ;
V(1 ,1 )= s td (Y ) ˆ 2 ;
f o r i =2:N
V( i , 1 )= t h e t a 0 (1 )+ t h e t a 0 (2 )∗ ( 1+ t h e t a 0 ( 3 )∗ (Y( i −1)<=0))∗Y( i − 1 ) ˆ 2 . . .
+ t h e t a 0 ( 4 )∗V( i −1 ,1 ) ;

end
X=V;
Y1=Y( 5 0 :N ) ;
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U1=Y( 4 9 :N−1 ) ;
X1=X( 5 0 :N) ;
h=1.06∗ s td (U1 )∗ (N−5 1 ) ˆ (−1 /5 ) ;
M=FCE(Y1 , U1 , X1 , U1 , h ) ;
e r r o r 1=Y1−M. ∗X1 ;
t h e t a 1=WQMLE(Y1 , e r r o r 1 , U1 , t h e t a 0 )
c l c
wucha=norm ( t h e t a 1− t h e t a 0 ) ;
i f wucha<=0.0001

break
e l s e

t h e t a 0= t h e t a 1 ;
temp=[ temp ; t h e t a 1 ] ;
wuchas=[ wuchas ; wucha ] ;

end
end
t h e t a e= t h e t a 1 ;
t h e t a e s=temp ;

A.3 Matlab Code for the estimation of model (6.17)

To estimate model (6.17), namely we are to estimate

yt = δtht + εt, εt = et
√

ht, δt = δt−1 + vt,

et ∼ i.i.d N(0, 1), ht = a0 + a1η
2
t−1 + a2ht−1.

Here, the GARCH surprise variableηt := yt − Et−1(yt) with Et−1(yt) being the optimal forecast ofyt

given all information up to timet − 1. The errorsεt, vt are assumed to be uncorrelated Gaussians with
zero means and variancesht andQ, respectively. In above model, the coefficientδt is assumed to follow
a random walk, which together with the system parameters, can be estimated by the Kalman filter (see
page 399-400 in Section 13.8 in Hamilton 1994 ) and maximum likelihood methods. The codes are
presented as follows:

f unc t i on [ t h e t a l i k h f ] = ka lmanes t ( y )
format l ong ;
% i n i t i a l v a l u e s
i n i = [10 2 va r ( y ) 0 . 0 0 1 ] ; %i n i =[b10 , p10 , h0 , e ta0 ] ;
a0=0 . 9 ;
a1=0 . 1 ;
a2=0 . 6 ;
Q=50;
pa r=[ a0 a1 a2 Q] ;
% c o n s t r a i n t s
parL= [0 .000001 0 .000001 0 .000001 0 . 0 0 0 0 0 1 ] ;
parU=[ 10000 0 .999 0 .999 10000 ] ;
% o p t i m i z a t i o n o p t i o n s
o p t o p t=o p t i m s e t ( ’ MaxFunEvals ’ , 5000 , ’ Max I te r ’ , 5 0 0 0 , . . .
’ TolFun ’ ,10ˆ−10 , ’ TolX ’ , 1 0 ˆ −1 0 , . . .
’ TolCon ’ ,10ˆ−10 , ’ D i sp lay ’ , ’ i t e r ’ , ’ La rgeSca le ’ , ’ o f f ’ )

[ x , f v a l , hess]= fmincon ( @garch l ik , par , [ ] , [ ] , [ ] , [ ] , . . .
parL , parU , [ ] , op top t , y , i n i ) ;
pa r=x ;
t h e t a=pa r ;
s t d e r r s=diag ( sq r t ( i nv ( hess) ) ) ’ ;
l i k =− f v a l
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[ l i k , h , f ] = g a r c h l i k 0 ( par , y , i n i ) ;

f unc t i on l i k =g a r c h l i k ( par , y , i n i )
[ l i k , h , f ] = g a r c h l i k 0 ( par , y , i n i ) ;

f unc t i on [ l i k , h , f ] = g a r c h l i k 0 ( par , y , i n i )
a0=pa r ( 1 ) ;
a1=pa r ( 2 ) ;
a2=pa r ( 3 ) ;
Q=pa r ( 4 ) ;
N= l eng th ( y ) ;
h=ze ros(N , 1 ) ; % h=(h1 , h2 , h t , . . . , hN )
H=ze ros(N , 1 ) ; % H=(H1 , H2 , Ht , . . . , HN) , va r ( e t a t )=H t
b=ze ros(N , 1 ) ; % b=( b1 | 0 , . . . , b t | t −1 , . . , bN|N−1)
p=ze ros(N , 1 ) ; % p=( p1 | 0 , . . . , p t | t −1 , . . , pN|N−1)
e=ze ros(N , 1 ) ; % e means e t a=( e ta1 , e t a t , . . . , etaN )
f=ze ros(N , 1 ) ;
b10= i n i ( 1 ) ; p10= i n i ( 2 ) ; h0= i n i ( 3 ) ; e t a 0= i n i ( 4 ) ;
h (1 )= a0+a1∗ e t a 0 ˆ2+a2∗h0 ;
f (1 )=b ( 1 )∗ h ( 1 ) ;
e (1 )=y (1)−b ( 1 )∗ h ( 1 ) ;
H(1 )=h (1 )+h ( 1 ) ˆ 2∗ p ( 1 ) ;
l i k = 0 . ; % n e g a t i v e l i k e l i h o o d
f o r t =1:N−1

temp1=b ( t )+p ( t )∗ ( y ( t )−b ( t )∗ h ( t ) ) / ( h ( t )∗ p ( t )+1 ) ;
temp2=p ( t )−p ( t ) ˆ 2∗ h ( t ) / ( h ( t )∗ p ( t )+1 ) ;
b ( t+1)= temp1 ;
p ( t+1)= temp2+Q;
h ( t+1)=a0+a1∗e ( t ) ˆ2+ a2∗h ( t ) ;
f ( t +1)=b ( t +1)∗h ( t +1 ) ;
e ( t+1)=y ( t +1)−b ( t +1)∗h ( t +1 ) ;
H( t +1)=h ( t+1)+h ( t +1) ˆ2∗p ( t +1 ) ;
l i k = l i k +( e ( t +1 ) ˆ 2 )/H( t +1)+ l og (H( t +1 ) ) ;

end
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