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ABSTRACT 

 

Transit network uncertainties commonly exist in transit systems due to day-to-day and 

within-day demand variation, congestion, adverse weather, and road incidents. Typical 

phenomena include frequency instability at downstream stops such as vehicle bunching, 

unexpectedly lengthy passenger waiting times, and over-crowded services followed by 

empty runs. Under such circumstances, the interests of both transit passengers and 

service suppliers are affected. Transit passengers may be subjected to travel time 

unreliability, and service suppliers may be subjected to profit fluctuation and poorly 

specified levels of service. Hence, uncertainty is an inevitable aspect of transit planning, 

especially affecting passenger flow prediction and transit network design. 

 

In this study, transit network uncertainties have been examined from the perspectives of 

both transit passengers and suppliers. Two new dynamic transit network assignment 

models have been developed to reflect passenger reaction to network uncertainties. The 

first is a single-class reliability-based transit assignment model, developed to reflect 

risk-averse passenger travel decisions as to departure time and route choices. In order 

to account for travel time reliability, passenger effective travel time, which includes 

average travel time plus a safety margin to cope with uncertainty, is adopted as 

dis-utility function. This model is formulated as a fixed point problem which can be 

solved by a heuristic solution algorithm. A numerical example shows the existence of 

service deviations under transit network equilibrium conditions, such as vehicle 

bunching and overtaking.  
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The second is a new multi-class reliability-based transit assignment model. A safety 

margin is differentiated for different passenger classes, as passengers have different 

risk-taking attitudes towards random generalized travel costs (including both travel 

times and monetary costs). Network congestion is also reflected in this model by 

introducing an overload parameter on vehicle design capacity constraint on random 

passenger boarding demand. A network example connecting the Kowloon area to Hong 

Kong International Airport illustrates the ability of this model to demonstrate that 

different passenger risk-taking attitudes greatly impact passenger route and departure 

time choices, and subsequently both monetary and time costs. 

 

With taking account of the effects of network uncertainties, another two transit line 

scheduling models have been developed to serve a transit supplier’s different planning 

purposes. Of concern to the transit authority, social welfare aspects, such as passenger 

travel time efficiency and reliability, are improved by a proposed line scheduling model. 

The interaction between service supply and passenger behavior response is reflected in 

the bi-level formulation of the scheduling problem. The upper level of the model 

optimizes the integrated transit service attributes, while the lower level predicts 

passenger travel decisions under transit network uncertainties. The bi-level problem is 

solved by applying the genetic algorithm (GA). The numerical results show that transit 

service reliability under network uncertainties can be improved by the adjustment of 

line schedules, without the need for extra vehicle resources. 
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Of relevant to the private transit operator, a new transit line scheduling model has been 

proposed to reflect the competition between operators in the deregulated transit market 

under conditions of network uncertainty. The operator’s profit is considerably affected 

by service irregularity, as well as the passenger’s response to the irregular service. The 

operator’s risk preference determines how the variability of random profit is measured. 

Thus, the objective of the operator in the transit line scheduling model is to maximize 

the  -confident profit, defined as the stochastic profit within a confidence threshold. 

The passenger’s response to the change of line schedules is formulated as a 

reliability-based user stochastic equilibrium (RSUE) constraint. The  -confident 

profit maximization model is formulated as a variational inequality (VI) problem and 

solved by an adapted diagonalization algorithm. This model shows that the ignorance 

of network uncertainties and operator risk preferences can result in over-optimism on 

profit when developing the transit line schedules. 
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j
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2 ( )n
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sB   The total passenger boarding time at stop s of line l  

a
ljiT ,,  The actual arrival time and departure time of the i th transit vehicle of line 
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d
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( )l
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    The passenger perception error 

TC  The total stochastic passenger travel time, including the effective travel 

time, early or late arrival penalty, and the perception error 

GC  Passenger generalized travel cost composed of the total stochastic 

passenger travel time and the monetary cost 

( )x  The Normal cumulative probability function  

( )P   Passenger flow proportion function 

,l iF    The stochastic passenger flow of i th transit vehicle of line l  

,t uF    The passenger stochastic flow on route u  departing at time t  
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j
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kR    The stochastic revenue of operator k  

kC    The stochastic cost of operator k  

kS    The operator’s risk preference margin 

 

Deterministic Variables and Functions 

1n    The mean number of passengers boarding at Phase 1 of the PAB process 

2n    The mean number of passengers boarding at Phase 2 of the PAB process 

jq   The number of passengers waiting at the beginning of Phase 2 of the PAB 

process in interval j  

t  The passenger arrival time at a stop, also denoted as the passenger 

departure time as access time is not allowed for in this study 
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CHAPTER 1 

INTRODUCTION 

 

1.1 STATEMENT OF THE PROBLEM 

 

Hong Kong is a densely populated city, with a total population of 7.026 millions, 

and with over 11 million personal trips being made daily. The public transport 

system carries over 90% of these trips for various activities. However, the current 

increasing travel demand provides great challenges as regards the provision of 

efficient and reliable transit services, particularly, as far as Hong Kong is concerned, 

for bus modes in congested road network. Insufficient capacity and unreliable 

service at peak periods are frequent bus passenger complaints. Dissatisfaction with 

the service offered is likely to cause a loss of bus patronage and a change for other 

transport modes.  

 

The causes of insufficient bus capacity and unreliable service during peak and 

off-peak periods often lie in transit network uncertainties. The transit network 

uncertainty phenomena, such as long passenger queues, passenger overload delays, 

vehicle bunching and vehicle overtaking at bus stops, commonly exist in most 

metropolitan cities. The sources of transit network uncertainties, analogous with 

road network uncertainties, are derived from both demand and supply sides. The 

differences, however, lie in many aspects. On the demand side, uncertainties stem 
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not only from within-day or day-to-day demand variation, but also from passenger 

random arrival patterns at bus stops. On the supply side, congestion, adverse 

weather conditions, and road incidents result not only in stochastic on-road travel 

times, but also in vehicle unbalanced dwell times at bus stops and unbalanced 

passenger loads.  All of the above lead to further poor transit system performance. 

 

To tackle these uncertainty problems, in the short term, a dynamic transit 

assignment model is needed to predict passenger flow and the system operation 

status at peak periods. Passengers’ temporal travel characteristics, such as departure 

times at the origins of journeys and estimated arrival times at destinations, are 

important factors which affect their choices of travel routes and modes. Passengers’ 

individual reliability evaluations, such as travel time reliability and arrival time 

punctuality, are also determining factors in their travel choices. Further, the 

consistency of line schedules in the provision of transit service especially affects 

passenger travel decisions. 

 

Transit line schedule design is an important factor promoting system improvement 

at the operational planning stage. The design of vehicle dispatching times at the 

origin terminal can balance passenger boarding demand and maintain the reliability 

of passenger waiting time. Consideration of network uncertainties, such as the 

with-in day or day-to-day passenger flow fluctuations and service irregularities, can 

be built into line schedule design models with the aim to improve the level of transit 
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service. Transit line schedule design allows for different market regimes, i.e. 

regulated or deregulated transit markets. The regulated market transit system is 

often operated by government authorities and aims to improve total social welfare, 

whereas the deregulated market system is often operated by private operators and 

aims to maximize individual company profits. For both types of service suppliers, 

transit line schedule design, allowing for network uncertainties, can improve service 

efficiency and effectiveness. The optimal transit line schedules can save passenger 

waiting time, improve service travel time reliability, attract passenger patronage and 

balance fleet size between lines. 

 

1.2 LITERATURE REVIEW 

 

Interests in dynamic transit operation and design models stem from the need to 

predict daily passenger travel times and peak period passenger flows under specific 

service configurations. Transit assignment and line schedule problems are basic and 

typical problems affecting transit short-term planning. Models proposed for such 

problems, however are mostly built, assuming either that network configurations are 

precisely known without variations, or that the transit system runs in an ideal totally 

predictable way without uncertainties. Such assumptions overlook transit network 

uncertainties and the resulting influences brought by these uncertainties to a transit 

system. The following brief and general literature review aims at identifying a 

potential research area. The advantages and limitations of existing models given and 
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explored in the literature are discussed. Additional examples, specifically relevant to 

the contents of each of the following chapters are presented for ease of access, at the 

head of each chapter. 

 

Transit planning models presented in the literature, mostly differ as regards the 

following: (a) the planning horizon, and (b) the network environment. Regarding 

the planning horizon viewpoint, public transportation planning has been categorized 

broadly into long-term and short-term problems (Black, 1981). The essential 

elements considered in long-term transit planning are mainly resource consumption 

(budget, subsidy, and pricing) and environmental changes (land use policy and 

population density). The researchers however have focused on short-term transit 

planning as affected by transit network characteristics and passenger behavioral 

responses. As regards the network environment viewpoint, problems that received 

most attention are network congestion (Ghoseiri et al., 2004), connectivity 

(Beimborn et al., 2003), and uncertainty (Teodorovic et al., 1994; Yan and Tang, 

2008). The effects of network uncertainties, in particular, have received much recent 

attention (Hickman, 2001; Nuzzolo et al., 2001; Yang and Lam, 2006; Yan and Tang, 

2008). It appears, however, that the influences of these effects in a dynamic 

environment have not been sufficiently studied.  

 

The classification of existing transit network assignment and design models as 

regards both the planning horizons and network environments is shown in Table 1.1. 
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It is assumed in the static transit assignment (STA) and strategic transit network 

design (STND) models that both the transit network attributes and passenger flow 

patterns are deterministic in relation to long-term planning. The reliability-based 

static transit assignment (RSTA) and strategic stochastic transit network design 

(SSTND) models relaxed the assumption of an ideal network environment with its 

deterministic passenger demand and actual service configuration. Instead, 

passengers are allowed to select transit routes on the basis of travel time budget (the 

average travel time plus a safety margin for on-time arrival reliability). Operators 

are allowed to select transit design schemes which improve transit service reliability 

or accommodate network uncertainties by their risk preferences, respectively from 

the design objectives by public or private operators. However, these models ignore 

day-to-day and within-day demand and service changes. The transit network was 

only studied taking a long-term static perspective when models were formulated. 

 

To model temporal passenger demand and transit service changes, it is necessary to 

extend the transit network from a static one to a dynamic one. The demand 

variations, service attribute evolutions and passenger behavioral responses are 

typical aspects which need to be considered at the short-term planning stage. When 

the dynamic transit assignment (DTA) and transit network operation (TNO) models 

were formulated, the network environment was assumed reliable. Neither of these 

models was influenced by adverse weather conditions and road incidents. Such 

models may be applicable to cities with low public transport demand, where transit 
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services arrive on schedule and service frequency is low. However, for more 

frequent transit services in cities where passenger demand is high and road 

networks are also congested, transit network uncertainties certainly exist and affect 

transit system operation. To the best of the author’s knowledge, no assignment and 

network design models have been developed under network uncertainties and 

dynamic modeling horizon. To fill this research gap, the present study proposes two 

reliability-based dynamic transit assignment (RDTA) transit assignment models for 

the single and multiple passenger classes and two stochastic transit network 

operation (STNO) transit network design models, seen from government authority 

and private company’s perspectives. 

 

Table 1.1 Classifications of Transit Network Assignment and Design Models 

Network uncertainties?  

No Yes 

Assignment STA RSTA Long-term 

(Static) Operation and Design STND SSTND 

Assignment DTA RDTA 

Modeling 

Horizon? 

Short-term 

(Dynamic) Operation and Design TNO STNO 

where 

STA   

STND  

DTA   

TNO 

RSTA  

SSTND 

RDTA 

STNO 

 

= 

= 

= 

= 

= 

= 

= 

= 

 

Static Transit Assignment Model (Last and Leak, 1976; Cominetti and Correa, 2001) 

Strategic Transit Network Design Model (Murray et al., 1998) 

Dynamic Transit Assignment Model (Hamdouch and Lauphongpanich, 2008) 

Transit Network Operation Model (Fu et al., 2003; Lee and Vuchic, 2005) 

Reliability-based Static Transit Assignment Model (Yang and Lam, 2006) 

Strategic Stochastic Transit Network Design Model (Li et al., 2009, Sumalee et al., 2006)

Reliability-based Dynamic Transit Assignment Model 

Stochastic Transit Network Operation Model  
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1.3 RESEARCH QUESTIONS AND OBJECTIVES  

 

In this study, three important aspects of the transit design and operation processes 

have been investigated: 1) passenger travel behaviors under network uncertainties, 2) 

transit line schedule design by service suppliers allowing for their own risk 

preferences, and 3) passenger responses and feedbacks on the reliability of transit 

service configurations.  

 

To achieve the objectives (set out immediately below), the following research 

questions have to be answered: “How do network uncertainties arise and how do they 

affect transit operators and passengers?” Hence the resulting research problems have 

three dimensions: the sources of uncertainties, passenger behavior responses, and 

operator planning strategies. 

 

In line with the above dimensions, the objectives of this research are as follows: 

(1) To specify sources of network uncertainties from both the demand and supply 

sides and to discuss the impacts on transit passengers and operators 

(2) To develop a dynamic transit assignment model for short-term planning with 

explicit consideration of passenger responses to network uncertainties in terms 

of travel time reliability 

(3) To extend the single-class stochastic transit assignment model to multi-class for 

estimating passenger flows in congested transit networks  
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(4) To investigate the transit line scheduling problem in an unreliable network 

environment and hence to optimize transit system performance as measured by 

service efficiency and reliability 

(5) To optimize and predict private operators’ transit schedule design schemes taking 

account of their risk preferences in a competitive transit market. 

 

1.4 STRUCTURE OF THE THESIS 

 

A novel dynamic transit assignment model under uncertainties is described in 

Chapter 2. Sources of uncertainties derived from demand and supply sides are 

discussed, and the resulting stochastic service configurations are given. The 

schedule-based dynamic transit assignment approach is used to model the dynamic 

transit network uncertainties and passenger behavioral responses. A dynamic 

network loading procedure embedding the stochastic passenger arriving and 

boarding (PAB) process is also presented. The proposed reliability-based stochastic 

user equilibrium (RSUE) transit assignment model is formulated as a fixed-point 

problem and solved using a heuristic algorithm. Some key findings are illustrated 

using a test network. 

 

The transit assignment model given in Chapter 2 is further developed in Chapter 3. 

A new multi-class RSUE dynamic transit assignment model is proposed. 

Heterogeneous passenger risk-taking attitudes towards random travel time are 
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considered. Passenger route and departure time choices differ, not only from their 

travel time perception, but also their individual reliability requirements. The vehicle 

design capacity constraint on the stochastic passenger demand is also discussed, 

aiming to reflect the variation of passenger in-vehicle loading. The merits of the 

proposed model are illustrated by a numerical example, based on a simplified transit 

network connecting Tsing Yi new town to Hong Kong International Airport. 

 

A transit line scheduling problem with network uncertainties is explored and 

described in Chapter 4. The objective of the line scheduling problem is to integrate 

service reliability improvements into an overall average target of saving total 

passenger network travel time. A bi-level problem is formulated to find the optimal 

schedule scheme. An array of uneven headways for each line is optimized in the 

upper level model, while passenger responses to line schedule schemes are 

considered in the lower level model. The bi-level problem is solved by a Genetic 

Algorithm (GA). The numerical result shows that the proposed model can utilize 

existing fleet resources to reach an optimization objective in terms of operational 

efficiency and service reliability. 

 

The line scheduling problem from a transit operator perspective is explored and the 

results are given in Chapter 5. Each transit operator’s line schedules under a 

competitive market and uncertain network conditions are optimized. Both operator 

and passenger risk preferences are taken into account. This line schedule problem is 
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modeled as a Variational Inequality (VI) problem with equilibrium constraints. The 

objective is to maximize the individual operator’s  -confidence profit, defined as 

the stochastic profit within a confidence threshold. The equilibrium constraint is a 

RSUE problem. The diagonalization algorithm is adapted to solve the VI problem. A 

simple network is used to illustrate the performance of the model and solution 

algorithm. The structure of the thesis is shown in Figure 1.1. 

 

Transit Network Design Models Transit Assignment Models 

Propose the transit line scheduling 

model considering demand and 

supply interaction under network 

uncertainties (Chapter 4) 

Optimize and predict transit 

operators’ schedule design 

schemes under network 

uncertainties in the competitive 

transit market (Chapter 5) 

Objective (a) 

Introduction (Chapter 1) 

Conclusions (Chapter 6) 

Specification of various transit network uncertainties (Chapter 2) 

Develop the schedule-based 

dynamic transit assignment 

model under transit network 

uncertainties (Chapter 2) 

Extend the dynamic transit 

assignment model to the 

multi-user class RSUE model 

(Chapter 3) 

Objective (b) 

Objective (c) 

Objective (d) 

Objective (e) 

 

Figure 1.1 Structure of the Thesis 
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CHAPTER 2  

DYNAMIC TRANSIT ASSIGNMENT MODEL FOR 

CONGESTED TRANSIT NETWORKS WITH UNCERTAINTIES 

 

A novel dynamic transit assignment model with demand and supply uncertainties is 

proposed and described in this chapter. The demand uncertainty is due to passenger 

random arrival at transit stops and day-to-day travel demand variation. The supply 

uncertainty is due to vehicle on-road travel time and dwelling time variability. The 

concept of passenger effective travel time (travel time budget) was adopted in the 

passenger travel choice model to account for passenger risk-taking attitudes towards 

the unreliable travel time. The interaction of demand and supply uncertainties, 

represented as passenger arriving, queuing and boarding stochasticity, is also 

modeled explicitly in the passenger travel choice model. In particular, the analytical 

expression of passenger waiting time and vehicle dwelling time are derived. A new 

network loading procedure is presented to capture the evolution of transit service 

configurations. The proposed model is formulated as a fixed-point problem and 

solved by heuristic solution algorithm. The numerical results show that this model 

can generate passenger travel route and departure time choices under uncertainties 

and generate the resulting transit service spatial and temporal attributes. This chapter 

is an edited version of: Zhang, Y.Q., Lam, W.H.K. and Sumalee, A. (2009) Dynamic 

transit assignment model for congested transit networks with uncertainties. The 88rd 

Transportation Research Board Meeting, CD-ROM, 09-2486. 
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2.1 INTRODUCTION 

 

A reliable transit system can provide efficiency and productivity for both 

passengers and transit agencies. Deterioration of transit networks, however, 

commonly exists and severely affects level of transit service. For example, vehicle 

double-heading, knocking-on (bunching) and overtaking phenomena usually occur, 

causing unexpectedly long waiting times for passengers and low productivity for 

transit runs. Various topics, such as route performance enhancement (Powell and 

Sheffi, 1983; Sumalee et al., 2006), optimal vehicle holding time (Hickman, 2001), 

and optimal slack time (Carey, 1998; Zhao et al., 2006) have been investigated, as 

described in the literature, to alleviate the impact of uncertainty on the performance 

of transit systems. 

 

Recently, attention has been given to the effects of uncertainties related to what has 

been termed, the transit network assignment problem. Nuzzolo et al. (2001) 

developed a doubly dynamic assignment model to investigate the demand and 

supply interaction with regular and irregular transit services. The source of 

uncertainties considered in their paper, however, was mainly the interaction 

between transit vehicles and private cars on the roads, while the irregular service 

configuration was given exogenously. Latterly, Yang and Lam (2006) have 

proposed a probit-type reliability-based transit assignment model for a congested 

transit network with unreliable services. The transit vehicle running time was 
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assumed to follow a normal distribution, and passenger travel choice was based on 

the quadratic travel disutility function proposed by Yin and Ieda (2001). However, 

the dynamic effects in transit networks have not yet been considered, as their model 

was mainly designed for strategic planning rather than operational improvements. 

 

 

  Note: PAB = Passenger Arriving and Boarding  

     RSUE = Reliability Stochastic User Equilibrium 

Figure 2.1 Sources, Evolutions and Interactions of Transit Network Uncertainties  

 

Systematically, sources of uncertainties can be divided into the supply side (road 

conditions, weather, and incidents) and demand side (within-day or day-to-day 

variation of passenger demand). As shown in Figure 2.1, passenger boarding time 

variation and vehicle on-road running time irregularity are regarded as exogenous 

uncertainties. These factors are independent of passenger route and departure time 
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choices, but do affect these choices in turn. Hence the stochastic passenger arrivals 

over time are endogenously decided by passenger behavior responses. Vehicle dwell 

time uncertainty is derived from the stochastic passenger boarding process, which is 

determined by the random passenger boarding time (exogenously) and the number of 

boarding passengers (endogenously).  

 

By the explicit consideration of passenger waiting time and the transit deviations 

from timetables, a dynamic transit assignment model is proposed for transit 

operation improvement. Specifically, a dynamic network loading model embedding 

a stochastic process is proposed to allow for the uncertainty in passenger arriving 

and boarding (PAB) process. This process is explicitly described in Section 2.2.1 

and 2.2.2. By embedding the PAB process, the proposed model can assign 

time-dependent passenger flow and illustrate transit system evolution in an 

uncertain and congested transit network. 

 

In Section 2.2 of this chapter, a dynamic transit assignment model allowing for the 

exogenous and endogenous uncertainties is formulated. The analytical expressions 

for stochastic transit service variables are derived in Subsection 2.2.1. Passenger 

attitude towards risk and the related effective travel time is presented in Subsection 

2.2.4. The solution algorithm embedding a novel dynamic loading model is 

presented in Section 2.3. Finally, a numerical example is presented, followed by the 

study conclusions and discussion of further research. 



15 
 

 

2.2 MODEL FORMULATION 

 

The passenger demand day-to-day variation is assumed to follow the Normal 

distribution. rsQ  denotes the passenger demand between an origin-destination (OD) 

pair r - s  on a specific day. For each time interval ,...),,(... 11  iiii   of the 

period under investigation, it is further assumed that passenger arrivals during each 

time interval i  for a line l  is an inhomogeneous Poisson process 

}0),({ lQ with arrival rate ( )  . According to the Central Limit Theorem, the 

total number of passengers for each line l  over the whole period lQ  can be 

approximated by )(lQ . Passenger demand for all OD and for all lines can then be 

defined as:  

,

( ) rs
l l

l r s

Q Al Q   ,   

where lAl  is the number of transfer passengers joining line l .  

 

When the transit vehicle arrives, if the vehicle has spare capacity, passengers 

waiting in the queue will start boarding. However, the number of passengers 

boarding and the total boarding time can not be easily ascertained because the time 

interval between successive passenger arrivals and the boarding time for each 

passenger are stochastic. Even though the boarding time mean value and passenger 

arrival rate are easier to obtain, these mean values are not adequate for the 

representation of transit network configurations and passenger travel behavior. 

(2.1) 
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To model the passenger boarding process, Renewal theory and the M/G/1 queue 

technique are applied to obtain the analytical expression for boarding passenger 

loads and total passenger boarding time, and thereby the stochastic vehicle dwelling 

time and run headway. The Markovian property of the PAB process is introduced 

below. The formulation of the other stochastic variables mentioned above is then 

presented. 

 

2.2.1 Passenger Arriving and Boarding (PAB) Process 

 

In the following discussion, the stochastic process of passenger arriving, queuing 

and boarding is described by a set of variables. The notation used particularly for 

this section is given below: 

E    The state space of Markov chain, {0,1,2,...}E  

    The time period of the PAB process 

t    The time interval for passenger boarding, t   

tN   The stochastic number of passengers boarding the vehicle at time 

interval t  

tv     Passengers get aboard at time interval t , 0,1,..., , ,...v i k  

( )t   The passenger arrival rate at time interval t  

)(tG   The cumulative density function of individual passenger boarding time  

kp    The probability that the number of boarding passengers equals k  
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ikp  The one-step transition probability of the number of boarding 

passengers from i  to k  

B    The stochastic busy period of the PAB process: 

D    The stochastic number of boarding passengers during the PAB process 

b    The mean of passenger boarding time (passenger boarding rate) 

b    The standard deviation of passenger boarding time 

    The traffic intensity of the PAB process 

 

Proposition The passenger arriving and boarding process { , 1}tN t   generated at 

each time interval t  is an irreducible, periodic, and time-homogenous Markov chain 

and the one-step probability is: 

( )

0

1
( )

0

( ( ) )
( ),                       0,

( )!

( ( ) )
{ 1} ( ),      1,  1,

( 1)!

0,                                              1,  1.

k
t t

k i
t t

t t
e dG t i

k

t t
P v k i e dG t k i i

k i

k i i









 

  





        
   





  

 

Proof. During the time period  , assuming tv  represents the number of passengers 

boarding at time interval t , it is obvious that { , 1}tv t   is IID (independently and 

identically distributed):  

 ( )

0

( ( ) )
{ } ( )

!

k
t t

k t

t t
p P v k e dG t

k
     , 0k , t  , 

which means the number of boarding passengers at time interval t  is 

independently and identically following the right-hand-side distribution. 

(2.2) 

(2.3) 
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Let tN   represent the number of passengers boarding at time interval t , the number 

of passengers boarding at time interval 1t   is then: 

1
1

1,

1 , 0,

0,
t t t

t
t t

N v if N
N

v if N

 


 


     
 1t  . 

Since { , 1}tv t   is IID, define tv v , 1t  , there is: 

1
,

1 , 0,

0,
t t

t
t

N v if N
N

v if N

 

 

     
1t  . 

It can be observed from the above equation, that when tN   is known, 1tN 
  is simply 

related to the arriving process, but not related to the previous 1 2, ,..., tN N N   . Thus 

{ , 1}tN t   is a Markov chain with state space {0,1,2,...}E . 

The one-step transition probability is: 

1

{ 1}, 1
{ | }

{ }, 0ik t t

P v k i i
p P N k N i

P v k i
 


   
      

. 

When 1i : 

1
( )

0

( ( ) )
( ), 1

{ 1} ( 1)!

0, 1

k i
t tt t

e dG t k i
P v k i k i

k i

   
      

  

 . 

When 1i : 

( )

0

( ( ) )
{ } ( )

!

k
t tt t

P v k e dG t
k

    . 

Hence Equation (2.2) is obtained. 

 

It is obvious from the one-step transition expression that ikp  ( , 0,1,2,...)i k   is not 

related to the time origin. 0ikp   means that there is a non-zero probability from 

one state to the other. Thus, the two auxiliary states are accessible. Hence, 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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{ , 1}tN t   is an irreducible, periodic, and time-homogenous Markov chain. 

 

To maintain integrity, the following definitions of the M/G/1 queue are presented 

below (Medhi, 2003): 

Definition 1 In the M/G/1 queuing system, the mean and variance of busy period B  

is:  

1/ ( ), 1,
[ ]

, 1,
bE B

  


  
 

 
 

2 2 3( ) / (1 ) , 1,
var[ ]

, 1,
b bB

   


   
 

 
 

where   and b  are the rates of arrival and service respectively, and /b    is 

the traffic intensity. b  is the standard deviation of the service time. 

 

Definition 2 In the M/G/1 queue, during the busy period, the mean and variance of 

the number of customers served D  is: 

1/ (1 ), 1,
[ ]

, 1,
E D

 


 
  

 

3(1 ) / (1 ) , 1,
var[ ]

, 1.
D

   


   
 

 
. 

 

Recent transit assignment models (Larrain and Muñoz, 2008) allow for passenger 

service time (boarding and alighting time) to be taken into consideration with vehicle 

dwelling time. The connection between vehicle dwelling time and the number of 

boarding passengers was regarded as deterministic and linear. However, the transit 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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vehicle dwelling is a stochastic process involving passengers arriving, queuing, 

boarding and alighting. Lam et al. (1998) investigated the train dwelling time at 

several main rail stations in Hong Kong, and found that the train dwelling time 

followed a normal distribution.  

 

The bus and train dwelling time are quite different for inward and outward trips. On 

the outward trip at peak travel time, bus boarding time has a greater weighting than 

alighting time, and vice versa for the inward trip. It is also common for a bus to wait 

for a rushing passenger, belatedly attempting to join the bus. The PAB process 

discussed below is particularly modeled for outward bus trips; otherwise both the 

service time and boarding passengers are likely to be inaccurately estimated in the 

stochastic environment. 

 

The behavior of passengers arriving, queuing and boarding and relating these 

activities to vehicle dwelling time, were analyzed using the PAB process. The process 

is divided into two consecutive phases. Phase 1 relates to a continuous boarding 

process and Phase 2 relates to those occasions when vehicles wait for passengers, 

hurrying to catch the vehicle. Both phases are constrained by vehicle capacity. Within 

the small time interval i  (say 1 minute), passenger boarding is a Renewal process, 

and the mean and variance of passenger boarding time )( iB   can be derived as: 

( )

0
[ ( )] ( )iN

i perB xdB x


   ,  

and 

(2.13) 
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( ) ( )2 2 2

0 0
var[ ( )] ( ) [ ( )]i iN N

i per perB x dB x xdB x 
 

   , 

where ( ) ( )iN
perB t  is the ( )iN  th convolution of ( )perB t . ( )iN   is the stochastic 

number of passengers boarding within time interval i . ( )perB t  is the cumulative 

density function of the boarding time for each passenger perB , which follows the 

Normal distribution 2~ ( , )per b bB N   . Note that the coincidence of the mean of total 

passenger boarding time and the time interval i  (the number of passengers 

boarding equals the service rate): 

( ) ( )

0
E[ ( )] ( ) E[ ] E[ ( )] E[ ]i iN N

i per per i per iB xdB x B N B   


     . 

  

Hence, the mean number of boarding passengers in Phase 1 is: 

1 E[ ( )]
E[ ]

i
i

i i per

n N
B

   . 

The PAB process is completed in Phase 2, where the number of boarding passengers 

in this phase is: 

jj qn  )(2  , 

where jq  is the number of passengers waiting at the beginning of interval j . 

Applying the same logic as that applied above, the mean and variance of passenger 

boarding time for this interval is: 

2

0
E[ ( )] ( )n

j perB xdB x


   

2 22 2 2

0 0
var[ ( )] ( ) [ ( )]n n

j per perB x dB x xdB x
 

   . 

The )( 21 nn  th convolution of perB  still follows a Normal distribution, so the total 

passenger boarding time at stop s  of line l  follows the Normal distribution: 

(2.14) 

(15)

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.15) 



22 
 

2
1 2 1 2( ) ~ [( ) , ( ) ]l

s b bB N n n n n    .  

 

During the morning peak hour, when outward trips comprise the heaviest travel 

demand, the above PAB model can capture the main service process. During the 

afternoon peak, when alighting occupies the main service time, the alighting time 

model developed by Adamski (1992) and Lam et al. (1998) can be added to the 

passenger choice models. 

 

2.2.2 Transit Route and Departure Time Choice Model 

 

The transit network is redefined as a hyper-graph in which the passenger transit 

travel decisions are similar to those in the road network, i.e. choice of travel route and 

departure time. The principle of DSUE (Dynamic Stochastic User Equilibrium) was 

adopted for the representation of transit network temporal characteristics. The total 

passenger travel time consists of (i) passenger waiting time, (ii) in-vehicle travel time, 

(iii) in-vehicle waiting time, (iv) transfer time (if transfer is needed), (v) the early and 

late arrival penalty at destination, and (vi) the passenger travel perception error. 

Passenger travel strategy is assumed pre-determined, which is appropriate when 

passengers make travel decisions taking into account travel time reliabilities. 

 

The schedule-based transit network is illustrated in the diachronic graph (Nuzzolo et 

al., 2003). The transit line operation together with incidents during operation (such 

(2.20) 
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as schedule coordination, vehicle encountering and overtaking phenomena) can be 

represented on such a graph by the time and space illustrations of vehicle trajectories. 

Given a transit network ( , , )I J L  and a defined transit vehicle i  of line l  at 

stop j , , ,
a

i j lT  and , ,
d

i j lT  can uniquely define the random vehicle arrival and 

departure times.  

 

Passenger waiting time is derived from the difference between passenger arrival time 

t  and vehicle arrival time , ,
a

i j lT . a
lj,i,T  is denoted as the vector of vehicle arrival time 

at stop j  for all vehicles of line l . Denote Tw  is denoted as the delayed waiting 

time if there is an overload delay from a previous vehicle. Tw  equals the headway 

between two sequential vehicles of the same line. 

( ) min[ ]l
jAv t t Tw   a

i,j,lT    

represents the earliest vehicle arrival time after passenger arrived at time t  of line l  

at stop j . The passenger waiting time with respect to vehicle arrival time is: 

( ) l
jTw t Av t  . 

The passenger waiting time also follows the Normal distribution, drawn from the 

distribution of vehicle arrival times. The mean and variance of the passenger waiting 

time can be defined as:  

[ ( )] E( )l
jE Tw t Av t  ,  

var[ ( )] var( )l
jTw t Av . 

The in-vehicle travel time and the in-vehicle waiting time can be derived from the 

vehicle running time model as: 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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1, , , ,
a d

i j l i j lT T Tv   ,  

, , , ,
d a l

i j l i j l jT T Av  , 

where Tv  is the transit stochastic vehicle on-road time between two adjacent stops. 

Similar to the assumption made in Chen et al. (1999) and Lam et al. (2008), Tv  is 

also assumed to follow the Normal distribution. For generality, the on-road time for 

each transit line segment is independently and identically distributed (IID). 

 

The early or late penalty is deduced from passenger departure time, perceived travel 

time and desired arrival time at destination: 

1 1

2 2

( )          if ,

( ) ( )          if ,

0                             otherwise.

s s s s

s s s s

t ett t t ett t

tp t t ett t t ett t



       

        



 

where ],[ 21
ssss tt   is the desired arrival time window at destination s carrying 

no schedule delay penalty.    (   ) is the unit value of time of arriving early (late) 

(i.e. schedule delay) at the destination. 

 

ett  is the effective travel time which consists of the mean travel time plus a safety 

margin which ensures travel time reliability. It is plausible to assume that most 

passengers in the modeling period are risk-averse since that period consists of the 

morning or evening peak when most travelers are commuters. Thus, 0.95   is set 

for the passenger confidence interval (95% confident of a punctual arrival at 

destination). The effective travel time is defined as: 

1[ ] ( ) [ ]ett E C Std C    , 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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where the total passenger travel time C  is the sum of passenger waiting time, 

in-vehicle travel time, in-vehicle waiting time, and transfer time. Each element is 

multiplied by weighting coefficients to convert each component to an equivalent unit 

of time: 

1 2 3C Tw Tv Tr     . 

 

Denoting the perception error as  , which is a stochastic variable following the 

Normal distribution, the total perceived travel time of a passenger departing at t , 

choosing transit route u  is: 

4( , ) ( , ) ( , )TC t u ett t u tp t u    . 

The parameter 4  is the weighting coefficients for early or late penalty. 

 

2.2.3 Fixed-point Problem for RSUE 

 

F  is denoted as the set of stochastic passenger flow variables on route u  between 

OD pair departing at time t , which satisfies: 

, ,[ ] [ ] [ ]rs rs rs
t u t u

t u t u

E F E Al E Q   ,  

where ,
rs

t uF F , ,
rs
t uAl Al , and Al  is the number of alighting passengers at each 

transit route. The following fixed-point problem can then be derived as a dynamic 

transit assignment model under uncertainty. In the proposed model, both the transit 

route and departure time choices are considered simultaneously: 

(2.29) 

(2.30)

(2.31) 
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t,u t,u t,uf - q P (f ) = 0  

where q is the vector of expected passenger OD demand; f  is the vector of the mean 

passenger flow; and P is the vector of passenger departure time and route choice 

probabilities:  

, , ,( )t u t u t uf q P f  . 

 

Theorem. At least one solution of the fix-point problem exists. 

Proof. F  is a convex and compact set, and P(f)  is continuous on F , then 

following the Fixed-Point Theorem (Gasinski and Papageorgiou, 2005), at least one 

solution exists for the above fixed-point problem. 

                                                                                                   

2.3 DYNAMIC NETWORK LOADING AND ALGORITHM 

 

The loading of passengers is obviously triggered when transit vehicles arrive at stops. 

Passengers are loaded according to the two boarding phases described in Section 2.2. 

Passengers loaded at previous stops affect the configuration of transit vehicles 

arriving thereafter. This is because the available vehicle capacity and the deviation 

from schedules at downstream stops are usually determined by service configurations 

at upstream stops. The evolution of transit service configurations are explicitly taken 

into account throughout the simulation process.  

 

Lam et al. (2008) proposed an algorithm to solve the multi-class reliability-based 

(2.32) 

(2.33) 
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stochastic user equilibrium (RSUE) problem for a road network. This algorithm has 

been adapted to solve the fixed-point model proposed and described in this chapter. 

Uncertainty effects are recorded in the time-incremental micro-simulation procedure 

to enable the modeling of boarding delays and schedule deviations. The framework 

of the solution algorithm is shown in Figure 2.2.  

 

 

Figure 2.2 Flow Chart of the Solution Algorithm 

 

2.4 NUMERICAL EXAMPLE 

 

The small transit network shown in Figure 2.3 was used for the numerical test. This 

network is similar to the test network adopted by Lam et al. (1999) and De Cea and 

Fernandez (1993). However, the network has been slightly altered, in that transit 
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services in Line 4 have been deleted, and Line 1 links every node between origin 

node 1N  and destination node 4N  instead of linking them directly. This 

alternative better represents service lines in a CBD area at a morning peak period.  

 

 

Figure 2.3 Example Transit Network 

 

Table 2.1 Transit Routes List by Transit Lines and Links 

Route Order of transit links Transfer node OD pair 
1 L1, e1 – L1, e2 – L1, e3 -- 

2 L2, e1 – L2, e2 – L1, e3 N3 
3 L2, e1 – L1, e2 – L1, e3 N2 
4 L2, e1 – L3, e2 – L3, e3 N3 
5 L2, e1 – L2, e2 – L3, e3 N2 

N1--N4 

6 L1, e2 – L1, e3 -- 
7 L2, e2 – L1, e3 N3 
8 L2, e2 – L3, e3 N3 
9 L3, e2 – L3, e3 -- 

N2--N4 

10 L1, e3 -- 
11 L3, e3 -- 

N2--N4 

 

The morning peak period between 8:00-9:00 was simulated in this test. Three OD 

pairs were included: OD 1 from node 1N  to 4N , OD 2 from node 2N  to 4N , and 

OD 3 from node 3N  to 4N .  It was assumed that the maximum number of transfers 

is 1. The routes associated with OD pairs represented by lines, segments, and transfer 

nodes are shown in Table 2.1. Some input data include:  

L3, e3 

L1, e3 

L2, e1 

L3, e2 

L2, e2 

L1, e2 L1, e1 

N1 N2 N3 N4 
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the confidence level of passengers: 95.0 ; 

the waiting time weighting coefficients: 1 2  ; 

the in-vehicle travel time weighting coefficients: 2 1  ; 

the transfer weighting coefficients: 3 2  ; 

the early or late penalty: 4 1  , 5.0 , 2   ; 

the vehicle capacities for Line1, Line2 and Line3 are the same: 

120321  lll capcapcap ; 

the original headways for each line: 1 7lh   min, 2 8lh   min, 3 10lh   min;  

and the mean of OD demand: 14 400q  , 24 600q  , 34 300q  . 

 

 

Figure 2.4 Convergence Results of the Solution Algorithm 

 

Some “jumps” of occasional increases was observed in Figure 2.4 of the thesis. The 
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frequency and range of “jumps” are affected by the number of Monte Carlo 

simulations, the expected value of passenger perception error, and the property of 

passenger generalized cost function in the proposed problem. These “jumps” shown 

in Figure 2.4 have two reasons. The first reason is that the descent direction in the 

method of successive algorithm (MSA) is generated by the inner Monte Carlo 

simulation. The number of the Monte Carlo simulation determines the efficiency 

and effectiveness of the inner Monte Carlo simulation. The trade off between the 

number of simulation and the algorithm efficiency causes the “jumps” in the 

convergence process. The second reason is that the moving step is fixed in MSA 

algorithm, which can overshoot the optimal moving step size and thus cause 

“jumps”. Figure 2.5 shows the test results of algorithm convergence at different 

number of inner Monte Carlo simulations. It shows that as the number of Monte 

Carlo simulations increases, the proposed MSA-type algorithm converges to the 

optimal solution more quickly and smoothly. 

 

 

Figure 2.5 Convergence with Different Number of Monte Carlo Simulations 
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Figure 2.6 Passenger Departure Time Choices with and without the PAB 

Process  

 

The temporal passenger flow on two routes for travel between OD pair 3N -- 4N , 

with and without the simulation of the PAB process, is shown in Figure 2.6. With the 

PAB process simulation, some passengers switch from Route 10 to Route 11. The 

shift of passenger flows between the two routes is because of the aggregated 
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randomness of Line 1 at downstream node 3N . The peak period also shifts from 

around 55min (in the upper figure) to around 45min (in lower figure) after taking into 

account the PAB process. This is because the boarding delay and the overload delay 

within the PAB process is taken into account in the travel decisions. The result 

indicates that neglecting transit network uncertainties is likely to overestimate 

passenger flows on the long lines and inaccurately predict a posterior peak 

passenger departure time. In fact, passengers tend to choose the more reliable short 

lines and depart early to ensure the on-time arrivals. 

 

 

Figure 2.7 Vehicle Capacity Utilization of Line 1 and Line 3 at Terminal N4 

 

The other reason for the shift of passengers from Route 10 to Route 11 illustrated in 
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Figure 2.6 might be the capacity constraints. As shown in Figure 2.7, the 3rd to 11th 

vehicles of Line 1 are mostly occupied, mainly because of the travel demand of OD 

pair N1--N4 and OD pair N2--N4. The above situation means the passengers who 

intended to join Line 3 have to choose other transit lines because of the capacity 

shortage. Only the 5th and 6th vehicles of Line 3 are full loaded, which means Line 3 

has sufficient capacity for passenger travel demand. Thus, passengers considering 

travel time reliability and overload delay shift their travel demand from the long line, 

Line 1 to the short line, Line 3.  

 

 

Figure 2.8 Passenger Departure time Choices with and without the Effect of 

Uncertainties 

 

Figure 2.8 shows the proportion of passengers departing at the study time period and 
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between OD pair 2N -- 4N , with and without taking random network attributes into 

account. Passengers depart earlier when they take random network attributes into 

account than when they don’t. This is because the risk-averse passengers include 

additional safety margins in to their travel time budget to ensure the punctuality. The 

result indicates that the neglect of passenger responses to network uncertainties will 

cause the later estimation of peak period, which further affect the transit operational 

efficiency. 

 

Table 2.2 Mean and Variance of Vehicle Dwell Time of Line 1 

Runs 

Stops    
1st 2nd 3rd 4th 5th 6th 7th 8th 

0.25/0.22 0.35/0.26 0.55/0.33 1.0/0.45 3.10/0.79 4.60/0.96 0/0 0/0 

0/0 0.25/0.22 0.35/0.26 2.70/0.73 4.20/0.92 0/0 0/0 0/0 Stop 1 

-- -- -- -- -- -- -- -- 

0.95/0.44 1.00/0.45 1.55/0.56 4.50/0.95 2.90/0.76 1.40/0.53 0/0 0/0 

0/0 0/0 0.55/0.33 0.70/0.37 0/0 0/04 0/0 0/0 Stop 2 

0/0 0.45/0.30 0.85/0.41 6.00/1.10 6.00/1.10 0/0 0/0 0/0 

1.70/0.58 1.65/0.57 3.90/0.88 0.45/0.30 0/0 0/0 0/0 6.00/1.10

-- -- -- -- -- -- -- -- Stop 3 

0/0 0.35/0.26 2.75/0.74 0/0 0/0 6.00/1.10 6.00/1.10 6.00/1.10

 Note: The Stops 1, 2, and 3 are the nodes N1, N2, and N3 representatively 

 

The bunching problem, caused by uncertainties in vehicle dwelling time and journey 

time, also decreases the operational efficiency of transit services. The mean and 

variance of vehicle dwelling times for each line and run at each stop is given in Table 
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2.2. The vehicle dwelling time is up to 6 min for several runs, due to the highly 

congested situation in the test case. Such vehicle dwelling delay can cause severe 

vehicle stop congestion and affect road traffic externally. In practice, the service 

capacity and travel demand model should be calibrated against actual data. 
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Figure 2.9 Sensitivity Analysis for Passenger Transfer Penalty  

 

Passenger transfer penalty has been investigated in the previous related studies on 

the basis of different definition of transfer penalty and transfer context. Alger et al. 

(1975) examined the penalty for transfers between subway, rail, and bus in 

Stockholm, Sweden. Variables related to passenger behavior comfort and 
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convenience such as waiting time, number of transfers, and seat availability are 

considered during the transfer. Han (1987) tested the influence of transfer on bus 

path choice in Taipei, Taiwan. A binary choice model is used to estimate the transfer 

penalty based on the data collected from bus passenger interviews. Liu et al. (1997) 

examined modal choice and transfer between auto and transit using survey data in 

New Jersey. Wardman et al. (2001) collected the data from stated preference survey 

among bus, rail, and auto in Edinburgh and Glasgow, United Kingdom. Transfer 

penalty between each two modes are specified. Because of the different definition 

and research context of transfer penalty, the survey results were found quite 

different, varying from less than 2 minutes to up to 50 minutes. They may even be 

ignored in the previous transit assignment and network design models. In this study, 

the sensitivity analysis is carried out to reveal the shift of passenger flows between 

long and short routes affected by different values of passenger transfer penalty for 

assessing their effects on route choices of transit passengers. 

 

Figure 2.9 shows the sensitivity analysis results for passenger transfer penalty and 

the impact of transfer penalty on passenger departure time and route choices of OD 

2. When transfer penalty is equal to 0, passengers prefer to choose transfer routes 

(particularly transferring to short bus route) rather than non-transfer short or long 

bus routes; As transfer penalty arises moderately (from 0 to 4), passengers who 

chosen non-transfer routes increase; When transfer penalty is very high (7.5 and 11 

equivalent minutes), more passengers choose non-transfer routes rather than transfer 
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routes. This implies that the route choices of passengers at downstream are affected 

by the route choices of passengers at upstream. 

 

2.5 SUMMARY 

 

The model proposed in this chapter assigned passenger demand to a transit network, 

and generated the transit service configurations in a congested network under 

uncertainties. The properties of the PAB process at transit stops were first analyzed 

and then used to estimate the mean and variance of passenger waiting time and 

vehicle dwelling time at stops. The analytical expressions for the mean and variance 

of these delays were combined into the passenger travel dis-utility function as the 

determinants for the transit travel choice. The dynamic stochastic user equilibrium 

model for representing passenger route and departure time choices was then 

formulated. 

 

The perception error term was assumed to follow the Normal distribution, which 

provided the Probit-type network equilibrium model. Passengers in this model are 

assumed to consider both the mean travel time and a safety margin (derived from the 

mean and variance of travel time) in their travel decisions. The proposed model was 

tested on a simple network to highlight the effect resulting from passenger arriving, 

queuing, and boarding processes, being included in the transit assignment model.  
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The results showed great differences between the passenger flow profiles (combined 

route and departure time choices) obtained from the models when network 

uncertainty was allowed for. The results also showed a shift in the travel demand 

profile to earlier time periods to ensure on-time arrivals. The other key feature of the 

model was its ability to replicate the bus bunching phenomena which underpins 

transit service quality in practice. 

 

Though the numerical example was unrealistic so far as a general transit network is 

concerned, it still represents the typical transit network states when congestion 

becomes extreme. From this perspective, the numerical example is sensible in 

showing that extreme congestion needs special attention as it leads to severe impacts 

on a transit network. A practical transit network, connecting Kowloon urban area to 

the Hong Kong International Airport (HKIA), will be given in Chapter 3 to show 

passenger travel route and departure time choices under transit network uncertainties 

and congestion.   

 

Further research based on this chapter includes: 

i) Extending to a multi-class model with a random distribution of the 

 parameters governing passenger risk-taking behaviors. 

ii) Incorporating the dynamic transit assignment model into the transit 

short-term network design model to study the interactions between short-term 

operational schemes and passenger behavior responses. 
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Extension to multi-user class problem will be presented in following Chapter 3, and 

further extensions will be described in Chapters 4 and 5, with respect to the regulated 

and deregulated market regimes in transit networks under uncertainties.  
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CHAPTER 3  

THE MULTI-CLASS SCHEDULE-BASED TRANSIT 

ASSIGNMENT MODEL UNDER NETWORK UNCERTAINTIES 

 

Demand and supply uncertainties at schedule-based transit network levels strongly 

impact passenger travel behaviors. In this chapter, a new multi-class reliability-based 

dynamic transit assignment model is proposed. Passenger travel behaviors vary 

because of the heterogeneous risk-taking attitudes towards random generalized travel 

cost in congested network with uncertainties. Passenger transit route and departure 

time choices are affected by respective passenger reliability requirements. Vehicle 

design capacity constraint on stochastic passenger demand is captured by an overload 

congestion parameter. The proposed model is formulated as a fixed-point problem, 

and solved by a heuristic algorithm. The numerical results show that passenger 

risk-taking attitudes will greatly impact passenger travel route and departure time 

choices, as well as monetary and time costs. This chapter is an edited version of: 

Zhang, Y.Q., Lam, W.H.K., Sumalee, A., Lo, H.K., and Tong, C.O. (2010) The 

multi-class schedule-based transit assignment model in network with uncertainties. 

Public Transport, Vol. 2, pp. 69-86. 
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3.1 INTRODUCTION  

 

In the previous chapter, passenger travel route and departure time choices with the 

singular risk-averse attitude toward network uncertainties have been studied. 

However, passengers may have different risk perceptions when facing network 

uncertainties in their travels, as it is likely that they will value travel time reliability 

differently, depending both on their income levels and trip purposes (Noland and 

Polak, 2002; Lam et al., 2008). In this chapter of the research study, multi-class 

passengers’ different attitudes toward stochastic generalized travel cost are 

considered as 1) risk-prone, 2) risk-neutral and 3) risk-averse, and embedded in the 

RSUE model by a step function with anticipated possibility of on-time arrival.  

 

In literature, Modeling techniques for transit assignment problems are largely 

categorized as frequency-based (De Cea and Fernandez, 1993; Cominetti and Correa, 

2001; Schmöcker et al., 2008) and schedule-based (Wilson and Nuzzolo, 2004; Poon 

et al., 2004; Hamdouch and Lawphongpanich, 2008) methods. These two modeling 

methods serve different planning purposes. The former aims at long-term planning 

such as land use and transport development projects, while the latter is better suited to 

short-term transit operations and service planning such as transit timetabling and 

vehicle scheduling.  

 

Transit assignment models have recently emphasized the influence of uncertainties in 
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frequency-based frameworks. The vertex failure in transit networks has been studied 

by Bell et al. (2002). A particular type of vertex failure (failure to board a full service) 

has been investigated by the absorbing Markov chain model. The notion of 

failure-to-board has been further applied in frequency-based transit assignment 

models with common line problems (Kurauchi et al., 2004). Yang and Lam (2006) 

proposed a probit-type reliability-based transit assignment model for congested 

networks with unreliable transit services. Stochastic passenger in-vehicle travel time, 

impacted by vehicle on-road running time uncertainties, was considered by Szeto et 

al. (2009). The stochastic passenger waiting time and the stochastic capacity, from 

the perspective of a line rather than a run, were studied. Similar to the research of 

Spiess and Florian (1989), stochastic passenger waiting time was found to be due to 

random passenger arrival and stochastic distributed line headways. Stochastic vehicle 

capacity stems from headway variation of the line due to congestion on the roads and 

delays at bus stops. 

 

The above frequency-based models can be used to study aggregated stochastic effects 

of a specific transit line from the static perspectives. However, uncertainties exist in 

both vehicle running and dwelling process in line operation. The influences of 

uncertainties are also different for each run. The schedule-based model provides a 

means to investigate uncertainties within the vehicle operation process. Nuzzolo et al. 

(2001) have investigated the dynamic transit systems with regular and irregular 

services. The road congestion uncertainty resulting from irregular service is defined 
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exogenously. Teklu et al. (2007) studied the day-to-day passengers learning processes 

regarding stochasticity in transit networks by a micro-simulation-based approach. 

The variance of passenger perceived cost is given by an equation of line frequency 

and passenger in-vehicle travel time, but without justification. These models 

represent uncertain passenger perceived travel cost and transit network operation 

status, do not, however, cover the evolution and interaction of uncertainties and 

impacts on passenger travel behavior. 

 

In this chapter, a new multi-class reliability-based dynamic transit assignment model 

is developed. Passenger travel choice, such as mode, line, route, and departure time, 

varies in accordance with heterogeneous risk-taking attitudes. The stochastic 

passenger generalized travel cost consists of stochastic passenger in-vehicle travel 

time (composed of vehicle dwelling and running time), waiting time, transfer time, 

early or late penalty, passenger cost perception error, and out-of-pocket fares. 

Passenger stochastic waiting time can be the waiting time for the first arriving vehicle, 

or vehicles arriving thereafter, due to the passenger’s inability to board the first 

vehicle. Congestion and vehicle capacity constraints are the main reasons for this 

situation (overload delay). Under demand uncertainties, the deterministic physical 

vehicle constraint is adjusted by imposing a performance parameter to constrain 

stochastic in-vehicle passengers.  

 

This chapter is organized as follows. Section 3.2 introduces the formulation of the 
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proposed multi-class reliability-based stochastic user equilibrium (RSUE) model on 

the schedule-based transit modeling framework. The capacity constraint problem for 

stochastic passenger demand is also discussed in this section. Section 3.3 introduces 

the heuristic solution algorithm. In Section 3.4, a numerical example based on the 

transit network from the Kowloon area to Hong Kong International Airport is carried 

out to illustrate the application of the model, solution algorithm, and some important 

insights.  

 

3.2 MODEL FORMULATION 

 

3.2.1 Capacity Constraint Problem for Stochastic Passenger Demand 

 

Wirasinghe (2003) revealed that bus load status can vary from being underutilized to 

being overloaded with respect to the different dispatching time and elapsed travel 

time. In this stochastic network, as passenger boarding demand and the resulting 

overload situation are stochastic, a pre-assumed overload parameter is used to 

represent the possibility of vehicle full-loaded situation. The overload parameter 

produces a new practical capacity constraint for the stochastic boarding demand 

instead of the design capacity constraint. The practical vehicle capacity constraint 

with overload parameter   is able to represent the overall transit vehicle overload 

situation with   possibility. The equation then implies that the probability of 

passengers loads ( j
lQ ) in j th run of line l   exceeds the vehicle actual capacity 
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lcap  by  : 

 }{ l
j

l capQP . 

 

The difference between on-board passengers and vehicle capacity is 

l
j

l
j

l capQCAP  . lcap  is a constant and j
lQ  follows Normal distribution, so the 

mean and standard deviation thereby can be written as: l
j

l
j

l capQECAPE  )()(  

and ( ) ( )j j
l lStd CAP Std Q  . Standardizing this variable with the given confidence 

interval, the probability of overloading is: 

0 ( )
{ 0} 1 ( )

( )

j
j l l

l j
l

E Q cap
P CAP

Std Q
  

      

Be reminded that the mean and variance both equal the square of standard deviation 

of the number of passengers loaded under the assumption of Poisson distribution. 

Hence the standard deviation is substituted by the square root of the mean: 

1( ) ( ) (1 ) 0j j
l l lE Q E Q cap      . 

The unique value of )( j
lQE  can be found by solving the square root equation, 

revealing the practical capacity constraint in the stochastic network loading.  

 

3.2.2 Modeling Transit Demand and Service 

  

The schedule-based transit network is illustrated in the diachronic graph (Nuzzolo et 

al., 2003). Passenger movement and transit line running attributes (such as the 

schedule coordination and the vehicle encountering or overtaking phenomena) can be 

represented in the graph by a time and space illustration of vehicle trajectories. Given 

(3.1) 

(3.2) 

(3.3) 
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a transit network ),,( LJI , the stochastic vehicle arrival time and departure time of 

vehicle ljiV ,, , the i th transit vehicle of line l  at stop j , are described as a
ljiT ,,  and 

d
ljiT ,, . The i th vehicle and )1( i th vehicle of the same line may meet on the road or 

stop due to the stochastic vehicle dwell time and on-road running time. 

 

As described in Section 2.3, passenger arriving process at each time interval i  for 

each line l  is assumed to follow the inhomogeneous Poisson process }0),({ lQ . 

On the arrival of the transit vehicle, if that vehicle has spare capacity, the passenger 

waiting in the queue will start boarding. However, it is difficult to ascertain the 

number of passengers getting aboard and the total boarding time for the process, 

when the time interval between successive passengers and time for each passenger 

boarding are stochastic. Although the mean values of boarding time and arrival rate 

are more easily obtained, they may not be sufficiently adequate for representing 

transit network attributes and passengers’ reaction under various uncertain issues. 

 

To model the boarding process, the M/G/1 queue in queuing theory and renewal 

theory is applied to get the analytical expression of the stochastic passenger 

boarding time, thereby the stochastic dwelling time and run headway of transit 

vehicles. The Markovian property of the passenger arriving and boarding (PAB) 

process and the derivation of the total passenger boarding time, vehicle dwell time, 

as well as the number of passenger boarding the bus have been described in Chapter 

2, Equations (2.1-2.20). 
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3.2.3 Modeling Passengers’ Risk-taking Behaviors and Travel Choices 

 

Consider the following general class of passengers: 1) They have a desired arrival 

time, and know the travel time is not certain; 2) They choose the best departure time 

and transit route as long as the   (percent) confidence of on-time arrival is met. To 

represent such travel choices considering the reliability requirements, the 

Chance-constrained model is applied to convert the following stochastic 

programming problem into a deterministic presentation: 

Min c  

s.t. { }P C c   , 

where C  is the stochastic travel time.  

 

Classify passengers into m  classes. Such passengers are taken as having different 

confidence levels and are able to introduce different safety margins by a step 

function: 

( ),  ( , , ) ,  [0,1]m ma sf        . 

ett  is the effective travel time (ETT) which consists of the mean passenger travel 

time and safety margin:  

1( ) E( ( , )) ( ) Std( ( , ))m mett C t u C t u     , 

where m  represents the confidence level that m th class passengers hold for their 

on-time arrival requirement. ( , )C t u  represents passengers’ stochastic travel time on 

route u  and departure time t . Waiting time consists of (i) passenger waiting time at 

(3.4 a) 

(3.4 b) 

(3.5) 

(3.6) 
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stops, (ii) the in-vehicle travel time, including passenger in-vehicle waiting time after 

boarding, (iii) passenger transfer time (if transfer is needed). Each element is 

multiplied by a weighting coefficient to convert each component to the equivalent 

unit of time, as shown in Equation (2.29). 

 

Passenger generalized travel cost of class m  is the summation of ETT, the early or 

late arrival penalty at destination, and the fares on the transit route. Mathematically, 

passenger generalized travel cost is defined by passenger classes: 

4 5( )m mGC ett tp t cf      , 

The parameters 4  and 5  are the weighting coefficients of early or late penalty 

and transit fares. 

 

Passenger waiting time is derived from the difference between passenger arrival time 

t  and vehicle arrival time. Denote a
lj,i,T  as the vector of vehicle arrival time at stop 

j  for all vehicles of line l  and Tw  as delayed waiting time if there is overload 

delay from the previous vehicle, and Tw  equals the headways between two 

sequential vehicles of the same line. The passenger waiting time, with respect to the 

vehicle arrival time, has been defined in Equation (2.22), and also follows the 

Normal distribution. 

 

The in-vehicle travel time and the in-vehicle waiting time can be derived from the 

vehicle running time models, which have been presented in Equations (2.25-2.26). 

(3.7) 
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Passenger transfer time consists of the waiting time at the transfer stop multiplied by 

the transfer penalty coefficient 3 . The early or late penalty is deduced from 

passenger departure time, perceived travel time and desired destination arrival time, 

given in Equation (2.27).  

 

  represents passengers perception error when making travel decisions. It is a 

stochastic variable following the Normal distribution. Probabilities of passengers of 

class m  choosing route r for travel at time t can be expressed as follows: 

, Pr{ ( , ) ( , ),  ,  }m m m
t uP GC t u GC t u t t u u        . 

 

The stochastic equilibrium condition has been characterized by the following 

equation (Sheffi, 1985): 

u uf q P  , 

where q  is the average passenger demand for a single OD pair, uf  and uP  are the 

respective passenger flow and passenger flow probabilities of a route connecting the 

OD. The single-class dynamic RSUE condition developed in Chapter 2 is extended to 

the multi-class situation in this chapter, written as a fixed-point problem: 

f - q P(f) = 0 , 

where f  is the vector of ,
m

t uf , representing passenger class m  choosing route u  

with the departure time t ; P( )f  is the vector of , ( )m
t uP f , representing the 

probability of passenger class m  choosing route u  with the departure time t ; and 

q  is the vector of expected passenger OD demand. In addition, the regular network 

(3.8) 

(3.9) 

(3.10) 
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flow conservation holds: 

,
,

( )m m
t u

t u

q q P f  ,  

,
,

( )m
t u

m t u

q q P f  . 

 

3.3 SOLUTION ALGORITHM 

 

Recently, Lam et al. (2008) proposed an algorithm for their reliability-based 

stochastic user equilibrium (RSUE) model on the road network, the framework of 

which can be adapted for solving the fixed-point problem given above in this 

chapter. Under congested conditions in the transit network, when passenger 

boarding process is delayed at stops, the uncertainty effects should be considered in 

the estimation of  passenger loading distribution. 

 

The loading of passengers, is triggered when the transit vehicle arrives at a stop, 

forming the first time interval. Passengers are loaded according to the two boarding 

phases previously described in Section 2.2.1. The practical vehicle capacity, set 

according to the probability of vehicle full-loading, constrains the random 

passenger boarding demand. Passenger loading process at upstream stops, affect 

transit service configuration thereafter, i.e. the occupied passenger loads and 

deviated schedules, affect the generalized travel cost at the downstream stops. The 

service-load dependency is taken into account through the explicit loading process. 

(3.11) 

(3.12) 
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3.4 NUMERICAL EXAMPLE 

 

A simple transit network is used to present the impact of network uncertainties on 

different passenger travel behaviors. The transit network connects Kowloon urban 

area to the Hong Kong International Airport (HKIA) as shown in Figure 3.1(a). Four 

transit lines were considered, the Airport Express Line (AEL), Mass Transit Railway 

(MTR), Bus line 1 (Bus-1) and Bus line 2 (Bus-2). There are two OD demand pairs 

connecting the two origins (Kowloon and Tsing Yi) to the destination HKIA.  

 

Passengers go to the airport for multiple purposes, primarily when making a plane 

trip but also to, pick up passengers or visit the nearby museum. Their awareness of 

trip time and the dependence on trip time reliability are distinguishable. The 

numerical example is designed to: (1) analyze the effects of demand variation on 

departure time and route choice in the multi-class network; (2) show how the transit 

service reliability, by different modes, affects the passenger departure time, route 

choices and waiting time (3) compare, in terms of average actual travel time and 

effective travel time, the assignment result under several modeling scenarios.  

 

The Hong Kong air flight departure peak period is from 11:00 am to 1:00 pm, and the 

transit network rush hour to HKIA is around 2 hours prior to flight departures. The 

transit network study period of the example transit network is thus chosen to be the 

morning rush period, from 8:00 am to 12:00 noon. Passenger check-in at the airport is 
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usually, 1 hour before flight departure time. Hence, for this study, passenger desired 

arrival time is set at 12:00 am.  

 

 

(a) The simplified transit network between Kowloon and HKIA 

       

  

 

 

(b) The alternative representation of the transit network by transit links 

Figure 3.1 Transit Network of the Numerical Example 

 

Total passenger demands during the above rush hour have one destination but two 

origins. They are: 1) from Kowloon (node N1) to HKIA (node N4) q
14=20000 (pass), 

and 2) from Tsing Yi (node N2) to HKIA (node N4) q
24=10000 (pass). Figure 3.1 (b) 

shows the alternative representation of the example transit network in terms of transit 

lines and links. 

 

 

L1 (AEL) 

L2 (MTR) 

L3 (Bus line 1)

L4 (Bus line 2)L1(S2)

N3

N2

L2(S3) 
N1 

L3(S5) 

L2(S4) L1(S1)

L4(S6)

N4 

L4(S7)
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Table 3.1 Basic Transit Line Data for the Example Transit Network 

Transit line AEL (L1) MTR (L2) Bus-1 (L3) Bus-2 (L4) 

Kl (pass/veh) 500 1500 120 120 

Transit link S1 S2 S3 S4 S5 S6 S7 

In-vehicle time 
(min) 

Mean / 
Standard Deviation 

8/ 
1 

12/
1 

9/ 
1.732

11/ 
1.732

24/ 
2.828 

28/ 
3.162 

35/ 
4 

Dwell time (sec) 
Mean / 

Standard Deviation 
23.377/2.241 

-/- 
(shuttle 
service) 

2.410 Boardings /

1.828 Boardings

- 60 9 14 26 17 
Transit fare (HK$) 

90 17 
3.5 

33 

 

Table 3.2 Transit Routes List by Transit Links 

Route Order of transit links OD pair 
1 S1– S2 

2 S3– S2 

3 S3– S7 

4 S3– S4– S5 

5 S6– S2 

6 S6– S7 

7 S6–S4– S5 

N1---N4 

8 S2 

9 S7 

10 S4– S5 

N2---N4 

 

Table 3.1 gives the basic transit line data for the transit network example. All 

available transit routes and line attributes are listed in Table 3.2. AEL is operated 

strictly according to the given timetable. Owing to their exclusive right-of-way 

operation, AEL and MTR are more reliable than bus lines as the running time 
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variance is small. The data provided in Table 3.1 are either real data from transit 

agencies or that gained from practical experience and information systems such as 

EasyGo (a research and development product from the Land Surveying and 

Geo-Informatics Department of Hong Kong Polytechnic University). 

 

The OD demand multiplier is denoted as   to represent various passenger demand 

levels. Other input data include: 

 the confidence level of risk-neutral, moderate risk-averse and high risk-averse 

 passengers: 1 2 30.5, 0.7, 0.95     ; 

the waiting time parameter: 1 2  ; 

the in-vehicle travel time parameter: 2 1  ; 

the transfer parameter: 3 2  ; 

the early or late penalty parameter: 4 1  , 0.2   , 2   ; 

the fare parameter: 5 0.5  ; and 

 the dispatching headways of AEL, MTR, Bus Line 1, and Bus Line 2 

 respectively: 10minAELh  , 5minMTRh  , 1 4minbush   ,  2 12minbush   . 

 

The passenger departure time choices are illustrated in Figure 3.2. Different classes 

of passengers are included. It is shown that high risk-averse passengers did not 

choose Route 4 (taking the MTR first and then transferring to the bus). Their choices 

are likely to have been influenced by the substantial unreliable waiting time and 

transfer delays in Route 4. Passenger demand for Route 1 varied significantly in 
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accordance with different passenger classes. Most risk-averse passengers but only a 

few risk-neutral passengers chose the more expensive yet more reliable route. The 

indication is that the risk-averse passengers choose the more expensive routes for the 

sake of reliability. They try to avoid risks by including safety margin in travel 

decisions. The extra monetary cost to ensure travel time reliability during peak period 

could be considered as an unfair penalty imposed on risk-averse passengers. 

 

It is also observed from Figure 3.2 that risk-neutral and moderate risk-averse 

passengers increased due to the congestion caused by increased demand. The 

departure time range did not change for the risk-neutral passengers, but was 

expanded for the moderate risk-averse passengers. The expansion of the departure 

time range indicates that risk-averse passengers try to avoid the demand driven 

uncertainties: vehicle dwelling times at transit stops. 

 

Table 3.3 shows the proportion of passengers who have been forced to wait at the 

Kowloon station (i.e. N1) owing to the insufficient capacity in the first arriving 

vehicle. The assignment results of single-class RSUE and multi-class RSUE models 

are compared. From the table, it is seen that most congested periods were the same for 

both models (from 10:00 to 11:00). However the multi-class RSUE model showed an 

alleviation of overload congestion as the percentage of passengers on the same 

journey decreased. This decrease is due to the travel decisions made by risk-averse 

passengers, who possibly chose to change to earlier departure times or more reliable 
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transit modes. 

 

 

Notes: RN=Risk Neutral MRA=Moderate Risk Averse HRA=High Risk Averse 

Figure 3.2 Departure Time Choices of Multi-Class Passengers 

 

Table 3.3 Estimated Proportions of Passengers Waiting at Node N1 
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        Time 
Model 

8:00 -- 8:30 -- 9:00 -- 9:30 -- 10:00 – 10:30 -- 11:00 -- 11:30 -- 12:00 

Single-class 
RSUE 

 0 0 2% 9% 33% 16% 10% 2%  

Multi-class 
RSUE 

 0 1% 8% 9% 16% 24% 11% 1%  

 

Table 3.4 shows passenger generalized travel cost, effective travel time, expected 

travel time, and each cost component of the generalized travel cost, when the demand 

multiplier 1.0   and 1.5   respectively. It should be noted that the effective 

travel time and expected travel time were the same for risk-neutral passengers, which 

means that network uncertainties have no impact on passenger average in-vehicle 

travel time and average waiting time. This demonstrates that the SUE model presents 

a special case of the multi-class RSUE model when network uncertainties are not 

considered.  

 

However the risk-neutral passengers had the highest generalized travel cost for both 

the above scenarios ( 1.0   and 1.5  ). The highest component of their 

generalized travel cost were early or late penalties, suggesting that these passengers 

did not recognize possible network uncertainties and unreliable travel time and 

therefore failed to add a safety margin to their expected travel time. As a result, such 

passengers departed during the most congested time period (35% waiting time when 

1.5  ) or chose the time-consuming route (29% in-vehicle travel time when 1  ) 

for travel.  
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Of the three passenger classes, the high risk-averse passengers were subjected to the 

lowest generalized travel cost but the highest monetary cost, compared with that of 

other passengers. The high risk-averse passengers appeared willing to pay extra 

money to ensure travel time reliability. Thus, their cost of early or late penalty is the 

lowest among three passengers classes (takes 27% of generalized travel cost), hence 

maintaining the reliability of on-time arrival. The highest cost component for 

moderate risk-averse passengers lay in early or late arrival penalties and waiting time, 

indicating the possibility of overload delays as the result of later departures. 

 

Table 3.4 Generalized Travel Cost by Passenger Classes 

OD demand multiplier 1   OD demand multiplier 1.5           Passenger Classes )(α

 Parameters      RN 0.5 MRA 0.7 HRA 0.95 RN 0.5 MRA 0.7 HRA 0.95

Generalized travel cost (min) 119.36 118.50 107.79 338.95 256.55 162.49 

Effective travel time (min)  61.51 60.54 47.042 122.89 115.36 73.53 

Expected travel time (min) 61.51 54.85 43.06 122.89 109.88 69.21 

Monetary cost (%) 9% 20% 35% 3% 11% 27% 

Early or late penalty (%) 41% 37% 27% 57% 43% 27% 

In-vehicle time (%) 29% 15% 10% 13% 11% 12% 

Waiting time (%) 21% 28% 28% 27% 35% 34% 

In-vehicle 4.09 2.58 1.52 4.08 2.51 1.55 Standard 

deviation (min) Waiting 1.56 0.73 0.69 1.58 0.82 0.77 

Notes: RN=Risk Neutral MRA=Moderate Risk Averse HRA=High Risk Averse 
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Figure 3.3 Stochastic Passenger Loads under Vehicle Design Capacity 

Constraint 

 

Passenger loads in vehicles with deterministic capacity under stochastic passenger 

demand are illustrated in Figure 3.3. The standard deviations of stochastic full-loaded 

passengers represent different degree of variations on full-loaded passengers. The 

average number of stochastic full-loaded passengers under vehicle design capacity 

varies considerably in accordance with different overload parameter  . For example, 

when 0.5  , the average number of stochastic full-loaded passengers under 

vehicle design capacity constraint equaled the design capacity 120. It means that the 
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probability of vehicle overload at peak period was 50%. When 0.1  , the average 

number of stochastic full-loaded passengers under vehicle design capacity constraint 

was 107, which was less than the design capacity (i.e. equivalent to the average 

number of stochastic full-loaded passenger plus one standard deviation as shown in 

Figure 3.3). It indicates that the probability of vehicle overload at peak period was 

comparatively small. Thus, the ignorance of stochastic passenger boarding demand 

resulted in low profitability of transit runs. When 0.9  , the average number of 

stochastic full-loaded passengers under vehicle design capacity constraint was 135, 

exceeded the design capacity. It implies that nearly 67% of waiting passengers could 

not be able to get on the first-coming vehicle. Severe underestimation of passenger 

boarding demand could lead to a degraded level of transit service. Thus, the overload 

parameter   in the congested transit network under uncertainties should be 

carefully calibrated to meet the acceptable level of transit service. 

 

3.5 SUMMARY 

 

A new reliability-based dynamic transit assignment model has been presented in this 

chapter to investigate multi-class passengers travel decisions including route and 

departure time choices in congested and stochastic transit networks with uncertainties. 

The proposed model has been shown to be capable of accounting for the impact of 

uncertainties with respect to passenger travel time, waiting time, vehicle dwelling 

time, as well as transit service reliability. It is noted that the SUE model presents a 
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special case (passengers are risk-neutral) to those presented by the multi-class RSUE 

model. The results of the multi-class RSUE transit assignment model show that when 

traveling on the same transit network, risk-neutral passengers suffer the highest 

generalized travel cost, in comparison with that suffered by the risk-averse 

passengers. Risk-averse passengers are likely to choose the less risky options, 

regardless of the higher monetary cost, and appear willing to spend more money in 

the hope of benefits of reliability.  

 

This chapter also demonstrated the importance of demand and demand-driven 

uncertainties in transport networks. The effects of such uncertainties influence 

passenger departure time choices and determine passengers’ travel reliability of 

reaching destination on time. The ignorance of such uncertainties, when transit 

planners making the short-term passenger flow prediction or transit operational 

design, could lead to a rapid degradation of transit services in the ever changing 

situations of any city. 

 

The above study has provided a new fundamental tool for transit service evaluation 

and transit network design under demand and supply uncertainties in the 

schedule-based network framework. Further research investigates transit planners 

operational network design with the input of passenger flow produced in the RSUE 

models developed in Chapters 2 and 3. The typical operational transit network design, 

transit schedule design, with the advantages of operational flexibility and economical 
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feasibility are proposed to meet the planners’ interests. The regulated and deregulated 

transit systems, as the progress of liberalization of transit market, are investigated 

respectively in Chapters 4 and 5.  
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CHAPTER 4  

TRANSIT LINE SCHEDULE DESIGN IN DYNAMIC TRANSIT 

NETWORK WITH DEMAND AND SUPPLY UNCERTAITIES 

 

A novel transit schedule design model for dynamic transit networks with 

uncertainties is proposed in this chapter. An array of uneven headways for each 

transit line is designed to optimize the integrated transit service efficiency and 

reliability. As passenger route and departure time choices are impacted by transit line 

schedules, the line schedule design problem is formulated as a bi-level problem to 

enable demand and supply interaction. The objective of the upper-level model is the 

integrated optimization of the transit network. The reliability-based dynamic transit 

assignment model is formulated in the lower-level model to present passenger 

behavior responses to transit network uncertainties, arising from both demand and 

supply sides. The above bi-level problem is solved by the Genetic Algorithm (GA) 

approach. A numerical example is used to illustrate the performance of the proposed 

model and solution algorithm. The numerical results demonstrate that the optimal 

line schedule can save the total network travel time, improve travel time reliability, 

and balance fleet size between lines. This chapter is an edited version of: Zhang, 

Y.Q., Lam, W.H.K., and Sumalee, A. (2010) Transit schedule design in dynamic 

transit network with demand and supply uncertainties. Journal of the Eastern Asia 

Society for Transportation Studies, Vol.8, pp. 1425-1435. 
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4.1 INTRODUCTION 

 

In Chapters 2 and 3, the schedule-based transit assignment models considering 

passenger risk-taking attitudes have been developed. The models can predict 

passenger temporal and spatial flow in an unreliable transit network during a study 

period. Such prediction produces a solid basis for the short-tem transit network 

design and operation as passenger flow influences both the source of profit and the 

major cause of network congestion and uncertainties. In this chapter, passenger flow 

by transit route and passenger departure time is utilized to evaluate the potential of 

transit line schedule schemes proposed by a transit authority. To this end the transit 

line scheduling model can produce optimal transit line schedules accounting for 

passenger behavior responses under uncertainties. 

 

The growth of city population density and the subsequent high mobility 

requirements call for efficient and reliable public transit services. Setting transit 

routes and frequencies are the main components of transit network design. However 

the two planning tasks lie on different planning levels. The former aims at 

long-term planning, such as the change of transit lines at network levels, and is 

implemented over long term periods. The latter aims at short-term planning and 

usually includes the setting of transit frequencies or headways. The planning 

purpose is to ensure adequate adaptability for both the day-to-day and within-day 

passenger demand variation. 
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Time-varying passenger demand, adverse weather, and traffic incidents often cause 

uncertainties in transit networks. These uncertainties from both demand and supply 

sides severely affect transit services and cause vehicle double-heading, bunching and 

overtaking phenomena. The unexpected prolonged waiting time and overload delay 

for passengers severely impact transit service reliability. Efficiency is another 

significant concern of transit agencies. Empty seats in the vehicle are an obvious 

cause of low productivity, while the overloaded vehicles during peak make it 

impossible for all waiting passengers to board. Thus, when considering transit 

scheduling problems, the saving of network travel time should be considered, not 

only in average situations, but also in uncertain network environments with 

embedding reliability components.  

 

Studies have found the setting of a reasonable timetable could save on the number of 

operating vehicles (Ceder, 2003; Gao et al., 2004; Uchida et al., 2007) and improve 

the level of transit service, such as maximizing social benefit (Furth and Wilson, 

1981), maintaining headway regulation (Ding and Chien, 2001), improving line 

connection and timetable synchronization (Ceder et al., 2001; Fleurrent et al., 2005). 

To combine the passenger travel decisions, in response to different service 

configurations, into the transit network design process, more researchers have 

proposed the multi-level programming (Fernandez et al. 2008; Zhou and Lam, 2001; 

Gao et al., 2004) or applied the iterative approach (Lee and Vuchic, 2005; Yan and 

Tang, 2008).  
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The bi-level model developed by Gao et al. (2004) and Uchida et al. (2007) 

considered the interaction between service and demand, and carried out sensitivity 

analysis to determine the transit frequencies. Normally, the frequency for each line is 

a fixed number and the transit assignment model at the lower level is static. The 

implication is that passenger demand is constant over time, and the running of the 

transit vehicles matches that set out in the timetable. However, the bi-level transit 

scheduling model could be more practical, if demand and service uncertainties are 

considered on the basis of the schedule-based transit modeling framework. It would 

also better allow for transit scheduling flexibility and rapid response to demand 

variation.  

 

The bi-level model presented in this chapter is a reliability-based dynamic transit 

schedule design model. The objectives of the model are to 1) minimize the integrated 

value of network travel time and uncertainties and 2) balance the number of vehicles 

dispatched on each line. The lower-level model is a schedule-based transit 

assignment model under network uncertainties, which generates the passenger 

time-dependent demand and stochastic passenger travel time. The uneven headway 

given in the upper-level can also be reflected in the lower-level model by the 

time-space network representation.  

 

Setting uneven dispatching headways, however, is a multivariable problem, too 

complex for mathematical programming, because of the large number of variables 
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and constraints. A mathematical programming or optimization method is feasible 

when dealing with frequency setting problems with even headways (Gao et al., 2004; 

Uchida et al., 2007). In view of the above, heuristic methods (Ceder, 2003; Yan and 

Chen, 2002) are used instead of analytical methods to find a feasible and reasonable 

solution for uneven headway setting problems.  

 

The genetic algorithm (GA), in particular, provides a robust search and a near optimal 

solution in a reasonable time. Hence it is widely applied in transit route design and 

scheduling problems (Pattnaik et al., 1998; Kidawi et al., 2005; Shrivastava and 

O'Mahon, 2006). GA is an adaptive heuristic search algorithm which produces 

solutions by natural evolution and selection. It is also capable of solving bi-level 

problems with large variable dimensions. In this chapter of the study, GA is applied to 

find the best headways for each transit line.  

 

This chapter is organized as follows. In section 4.2, the reliability-based stochastic 

user equilibrium (RSUE) model in the lower-level and the optimization model in 

the upper-level are described in the formulation of the bi-level scheduling problem. 

The GA with the intelligence of assigning transit demand and dealing with 

scheduling constraints is discussed in section 4.3. The numerical example is carried 

out to show the performance of the model in section 4.4. The summary of this 

chapter is given in Section 4.5. 
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4.2 THE BI-LEVEL MODEL: INTEGRATED OPTIMIZATION OF 

TRANSIT EFFICIENCY AND RELIABILITY 

 

4.2.1 Network Presentation 

 

The transit service network is normally represented by either a time-space trajectory 

graph (Powell and Sheffi, 1983; Ceder, 2007), time-space diachronic model (Nuzzolo 

et al., 2001), or time-extended model (Hamdouch and Lawphongpanich, 2008). The 

time-space trajectory model, particularly, can illustrate the departure and arrival of 

transit vehicles spatially and temporally. Hence the operation incidents, such as 

schedule deviation, vehicles encountering and overtaking, can also be presented. As 

shown in Figure 4.1, even headways may not be maintained throughout the line run. 

However, the uneven dispatching headways, which take into account passenger 

demand and vehicle run time variations over time periods, are shown to better 

maintain transit service regularity. 

 

Given a transit network ( , , )I J L , the i th transit vehicle of line l  at j th stop, 

, ,i j lV , can uniquely define the related arrival time and departure times:  , ,
a

i j lT , , ,
d

i j lT . 

The i th vehicle and ( 1)i  th vehicle of the same line may meet at the j th stop 

owing to the variations in vehicle dwelling time and on-road travel time. The 

stochastic vehicle on-road time, due to traffic accident and incidents on the road 

(Chen et al., 1999) or the adverse weather (Lam et al., 2008) is evident in the real 
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world and has been studied extensively. Modeling the stochastic vehicle dwelling 

time, however, is more complicated and has yet to be given attention. 

 

 

Figure 4.1 Transit Vehicle Time-Space Trajectories with Vehicle Bunching 

 

4.2.2 The Upper-Level Model 

 

In general, network design problems are concerned with two groups: network 

planners (government authorities) and network users (passengers). Passengers’ travel 

behaviors follow the dynamic RSUE principle proposed in Chapter 2. The 

government authorities try to save the total passenger network travel cost in order to 

enhance the level of transit service. The demand and service interaction in a 

congested network with demand and supply uncertainties is considered by 
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formulating a bi-level model as shown in Equation (4.1).  

 

The upper-level model Equation (4.1 a) is an optimization model with explicit and 

implicit decision variables. f is the implicit decision variable deduced from the 

lower-level RSUE model. h  is the vector of headways, constituting the connection 

of the upper and lower level models. h  is assumed to be integers and the feasible 

lower and upper constraints for the headways of each line held. 1  is the convention 

factor for unit equivalence of network travel time and the variance. The network 

travel time efficiency and reliability is represented by the mean and weighted 

variance of total network travel cost, E[ )]TC P(f,h  and var[ )]TC P(f,h  

respectively. The convention factor ( 1 ) can be adjusted to meet the evaluation 

demand of different transit networks. 

(Upper-Level) 1min   E[ )] var[ )]Z    TC P(f,h TC P(f,h  

where ( , )P f h  solves: 

(Lower-Level) ( , )  f q P f h 0 . 

 

4.2.3 The Lower-Level Model 

 

As shown in Section 2.2.4, F  is the set of passenger flow variables on route u  

between the OD pair departing at time t . The following fixed-point problem has 

been derived for the dynamic transit assignment model under uncertainty. Both the 

route and departure time choices are simultaneously considered: 

(4.1 a) 

(4.1 b) 
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f - q P(f) = 0  

where q is the vector of expected passenger OD demand, f  is the vector of the mean  

passenger flow; and P is the vector of passenger departure time and route choice 

probabilities: 

( )f qP f . 

q  is the vector of expected passenger OD demand, and P(f)  is the vector of ,t uP , 

representing the probability of passengers choosing route u  with the departure time 

t . The probabilities are obtained by finding optimal passenger travel routes and 

departure times, which also generate the minimum passenger generalized travel 

cost: 

, Pr{ ( , ) ( , ),  ,  }t uP TC t u TC t u t t u u        . 

where ( , )TC t u  is the stochastic passenger generalized travel cost: 

 4( , ) ( , ) ( , )TC t u ett t u tp t u    . 

ett  is the summation of effective travel time, tp  is the early or late arrival penalty, 

and   is passenger perception error. Parameter 4  is the weighting coefficient of 

early or late penalty. The definition and formulation of transit service, passenger 

demand, and their interaction, have been elaborated in Section 2.2, From Equation 

(2.1) to Equation (2.33). 

 

4.3 GENETIC ALGORITHM 

 

Although the transit network design problems are well modeled as the bi-level 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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problems, the non-linearity and large-size nature limits the development of a solution 

algorithm. The adapted heuristic approaches (Gao et al. 2004; Uchida et al., 2005; 

Fan and Machemehl, 2006; Shrivastava and O'Mahon, 2006) or practical approaches 

(Ceder, 2003) are widely applied in finding solutions for transit network design 

problems. 

 

Ceder (2003) proposed three graphical procedures to determine uneven headways to 

balance passenger count. The passenger travel decision and transit service attributes 

interaction, however, is not considered in these procedures. Gao et al. (2004) 

designed a heuristic solution algorithm based on sensitivity analysis to solve the 

bi-level model. The nonlinear and implicit function of passenger flow in the 

lower-level model is approximated by a linear formulation in order to refine the 

sensitivity of the upper-level model. Yan et al. (2006) developed the stochastic 

demand scheduling model. The scenario decomposition method was applied and 

stochastic events were decomposed into predetermined stochastic passenger demand 

scenarios. 

 

In the non-convex, non-linear and stochastic optimization problem, it is robust to use 

genetic algorithm (GA) to search for the global optimal solution within a reasonable 

computational time. The advantages of GA over conventional optimization 

algorithms, in solving transportation network design problem, have been reported by 

Fan and Machemehl (2006) and Pattnaik et al. (1998). Table 4.1 summarizes the pros 
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and cons of using GA for solving transit line schedule design problems. 

 

Table 4.1 Pros and Cons of Genetic Algorithm 

Algorithm Literature Pros Cons 

Genetic 

Algorithm (GA) 

Shrivastava 

and O'Mahon 

(2006) 

Good global search 

capability  

Fast random search in 

solution space 

 Limitation in local search

 Feedback information is 

not used in following 

search 

Simulated 

Annealing (SA) 

Friesz et al. 

(1992) 

 Good at local search 

capability 

 Susceptible to parameters

 Limitation in global 

search 

Graphical 

procedures 
Ceder (2003)

 Simple mathematical 

manipulation 

 Ignorance of modeling 

information like attributes 

interaction and alternation

Heuristic 

algorithm based 

on sensitivity 

analysis 

Gao et al. 

(2004) 

 The uniqueness solution 

of  global optimization

 Good time efficiency 

 Restrict requirements on 

objective function 

convexity 

 

In the application of GA, the decision variables are usually represented by 

chromosomes, constituted by genes. These chromosomes are generated randomly 

and evaluated to find their fitness values. The translation of chromosomes from 

numerical strings into technical operational forms is the key issue in GA. The most 

common coding method is to transform the variables to a binary string (Goldberg, 

1989). The population generation is operated by three main operators: reproduction, 

crossover, and mutation. Reproduction selects best strings in the population, 

crossover exchanges the information among mating pool strings and mutation, 

making the local search near the current solution. At the end of each generation 

process, if the termination criterion (length of generation, computation time, use of 
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memory) is met, the genetic process terminates. Otherwise, the population is 

iteratively generated and evaluated by the above three operators.  

 

The formulated bi-level problem shown in Section 4.2 is solved by using an altered 

Genetic Algorithm (GA) approach. The lower level Probit-based dynamic 

assignment model is solved by the MSA-type of algorithm, for a new generation of 

feasible headways. The genetic algorithm for solving the bi-level problem is 

outlined as follows:  

Step 0 At the initial generation of the GA, a number of populations are produced. 

Step 1 Perform the reliability-based dynamic transit assignment with given feasible 

transit route set between each OD pair:  

Step 1.1 Initialize the transit passenger flow on transit routes and departure 

time; 

Step 1.2 Simulate the PAB process and obtain the passenger flows based on the 

current generalized travel cost and transit system attributes, using the Monte 

Carlo simulation; 

Step 1.3 Update the transit passenger flows of the two classes using the method 

of successive averages (MSA); 

Step 1.4 Check the convergence of the inner iteration, and calculate the mean 

and variance of the network travel time. 

 Step 2 Choose the best two designs according to the fitness function from the 

 last generation (the parents), simply the objective function, are kept in set.  
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 Step 3 Crossover and mutation points are randomly chosen for the evolution of

  the next generation. 

 Step 4 Check the stopping criteria of the outer iteration. Go to Step 2 if the 

 stopping criterion is not met; Stop, otherwise. 

 

4.4 NUMERICAL EXAMPLE 

 

The small transit network used for the numerical test is the same as that shown in 

Figure 2.3. The morning peak period between 8:00-9:00 is considered in this 

example. The routes associated with lines, links, transfer nodes, and OD pairs are as 

that shown in Table 2.1.  

 

The GA parameters were tuned for the proposed objective function. The best 

combination of crossover and mutation probabilities was selected, based on the 

value of the objective function (lowest). The population size was decided on the 

combined basis of the generation number, required for convergence, and the fitness 

value calculation time, for each individual in the population pool. The tuning of 

parameters was executed by several trials with different sets of parameter values. 

The following values were adopted: 

Size of each chromosome strings: 18 (the total number of line headways of 

three lines); 

Seed: 1 (8,8,8,8,8,8,8)lh  , 2 (8,8,8,8,8,8,8)lh  , 3 (15,15,15,15)lh  (min, the 
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original headways of each line); 

Population size: 30; 

Elite count: 2; 

Crossover probability: 0.8; 

Mutation probability: 0.2; and 

Number of generations: 50 generations or till convergence. 

Other input data include: the parameters for early or late penalties 5.0 , 

2 ; vehicle capacity for Line1, Line2 and Line3 is given by: 

1 2 3 120l l lcap cap cap    (passengers/vehicle); and a mean OD demand is 

14 400q  , 24 600q  , 34 200q   (passengers/hour). 

 

Table 4.2 shows the service comparison attributes of the three lines before and after 

the transit schedule design, with the convention factor of variance of passenger 

network travel time 5.01   and different OD multipliers. It can be seen that the 

optimal transit schedules, not only saved passenger total travel time and enhanced 

service reliability, but also enabled the reschedule of vehicles to other lines to 

alleviate congestion. For the normal (OD multiplier 1.0  ) and congested 

( 1.2  ) network conditions, both total passengers’ generalized travel cost and the 

cost of uncertainties (the weighted variance of total passengers’ generalized travel 

cost) decreased following the schedule design. It is also shown that one vehicle in 

Line 2 was scheduled to Line 1 when demand increased. 
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Table 4.2 Service Attributes Comparison before and after Line Schedule 

Design ( 5.01  ) 

OD multiplier 1.0 1.2 

Dispatching headways (min) Even Balanced Even Balanced 

Line 1 8 11,8,9,10,6,5,9 8 4,4,3,11,7,10,10,7

Line 2 8 10,9,5,5,9,4,10 8 13,7,5,9,6,10 

Line 3 15 15, 10, 11, 20 15 12,9,11,11 

Total passengers’ generalized 
travel cost 

9614.5 9043 12265 11382 

Cost of uncertainties 1266.8 1103.5 1505.3 1450.5 

Note: Cost of uncertainties: the weighted variance of total passengers’ generalized 

    travel cost. 

 

To better understand when to reschedule vehicles from Line 2 to Line 1, occupied 

and available vehicle capacity before and after the schedule design are illustrated in 

Figure 4.2. When the network was not congested, the utilization of vehicles was 

improved, but not to a large extent. Two vehicles in Line 2 were not utilized at all 

before and after the schedule design. This means that the number of vehicles is 

more than enough to accommodate passenger demand. However, when demand 

increased by 20%, there was vehicle shortage on Line 1. Therefore one vehicle was 

scheduled from Line 2 to Line 1 to alleviate this shortage. In addition, one vehicle 

in Line 2 still remained unutilized, but was not rescheduled to any other lines. This 

is a consequence of maximum headway and fleet size constraints. 
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Figure 4.2 Vehicle Capacity Illustration for Different OD Multipliers 

 

The change of vehicle schedules impacted passenger travel decisions. It can be seen 

from Figure 4.3, passenger traveling between node N1 and N4 on Route 4 was 

smoother after the transit network schedule design. The more discretized passenger 

flow distribution is intuitively beneficial in saving passenger waiting time and travel 

time, as well as in maintaining transit service reliability. Passengers depart later 

after schedule design in Page 75 because Route 4 is a transfer route from Line 2 to 

Line 3. The line schedule of Line 3 after design is postponed comparing to the 
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schedule before design. 

 

 

Figure 4.3 Passenger Departure Time Choices on Route 4 before and after Line 

Schedule Design 

 

Figure 4.4 shows the sensitivity analysis results for different passenger lateness 

penalty under respective optimal transit line schedules. Passenger departure time is 

influenced by both passenger lateness penalty and the designed transit vehicle 

schedule. The results of the sensitivity analysis indicate that passengers taking Line 

1 (Routes 1, 2 and 3) of OD 1 depart early because the line schedule after 

optimization is ahead of the schedule before optimization. When the lateness 

penalty is equal to 4, passengers depart earlier after optimization because the line 

schedule accommodated passengers’ needs of early departure when the lateness 

penalty is high. 
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Figure 4.4 Passenger Departure Time of Line 1 (Route 1, 2 and 3) with Different 

Passenger Lateness Penalty 

 

4.5 SUMMARY 

 

A new bi-level model for solving transit scheduling problems in dynamic and 

stochastic transit networks has been proposed in this chapter. The upper-level model 

involves the change of transit schedule to simultaneously optimize the transit 

network efficiency and reliability. The lower-level model explicitly considers the 

demand and supply uncertainties, as well as passenger behavioral responses. The 

bi-level model was solved by Genetic algorithm, which produced a stabled 

approximation of the optimal transit line schedules. 

 

The numerical example showed the effectiveness of the transit scheduling model 
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and the solution algorithm. After the transit line schedule design, the data showed a 

saving in total passengers’ generalized travel cost, while the number of vehicles on 

different lines was also better balanced. The passenger load profile, after the vehicle 

schedule alternation, was smoother, which implied a better level of transit service 

had been developed. 
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CHAPTER 5  

TRANSIT LINE SCHEDULE DESIGN UNDER NETWORK 

UNCERTAINTIES IN OLIGOPOLY TRANSIT MARKET  

 

In this chapter, a new model is proposed for solving the line schedule design 

problems under transit network uncertainties in a deregulated competitive transit 

market. In a regulated transit market, where transit service is run by government 

authorities, transit line schedule design aims at saving passenger travel time and 

improving passenger travel time reliability. However, this may not be true in a 

deregulated transit market, in which private operators aim at profit maximization. 

Scheduling problems have been investigated in the literature mostly from 

deterministic perspectives. In the proposed model, both operator and passenger risk 

preferences are considered under network uncertainties with respect to the demand 

and supply sides. The objective is to maximize individual operators’  -confident 

profit, defined as the stochastic profit within a confidence threshold  . The 

proposed model is expressed as an equivalent variational inequality (VI) problem 

with equilibrium constraint. The equilibrium constraint is the RSUE problem 

proposed in Chapter 3. A diagonalization algorithm is adapted to solve the VI 

problem. A simple network is used to illustrate the performance of the model and 

solution algorithm together with discussion on some insightful findings. This chapter 

is an edited version of: a working paper prepared by Zhang, Y.Q., Lam, W.H.K., and 

Sumalee, A. (2011) for submission to SCI journal. 
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5.1 INTRODUCTION 

 

In transit markets which are not fully deregulated, transit companies operate under 

franchise grants or concessions by authorities (for example, the subway in London, 

the bus and railway in Hong Kong, and the railway and tram in Melbourne). 

Franchises can alleviate some negative effects such as safety hazards and informal 

ownership structures (Gomez-Lobo, 2007). However, the scope of operation is 

limited when the route, fare and frequency are ruled by authorities by granting 

franchises. Thus, the method for transit private operators to improve service quality 

and attract passenger patronage lies in short-term transit operational planning. 

 

Transit operational planning (including frequency and timetable setting, vehicle and 

crew scheduling) provides a mean by which existing resources can be used in 

response to variations in transit networks and markets to enhance service efficiency. 

The flexibility of transit operational planning, however, has not yet been well 

investigated (Guihaire and Hao, 2008). Only a small number of airline competition 

models (Powell, 1982; Powell and Winston, 1983) have investigated transit fare, 

frequency and capacity optimization problems, accounting for passenger demand 

variations. Recently, many frequency optimization and timetable synchronization 

models have been studied by transit researchers (Ceder et al., 2001; Gao et al., 2004; 

Li et al., 2009). However, these models deal mostly with static transit problems for 

long-time planning purposes. The dynamics and randomness of passenger demand 
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and transit service still needs research attention. 

 

In franchised transit markets, each operator aims to maximize profit, but also ensures 

that profit variation over the course of time is acceptable. The operator’s revenue 

and cost, constituting net profit, are adversely impacted by network uncertainties 

from demand and supply sides. Revenue is random, mainly due to the variability of 

passenger patronage. The sources of such variability are identified as (a) day-to-day 

passenger total demand variation and (b) passenger choice variation as regards 

departure time and travel route. The cost variability lies in the operation processes, 

such as dispatching and traveling. In addition, the shortage of vehicles, resulting 

from insufficient slackness time, prolonged on-road time, terminal congestion, and 

emergency events, can further lead to vehicle availability problems (Higgins, et al., 

1996). In such instances, extra vehicles are needed to meet the frequency constraints 

of franchise requirements. The extra dispatching cost varies significantly, possibly in 

accordance with overtime work, vehicle renting or vehicle sharing agreements 

(Zuckerman and Tapiero, 1980).  

 

The transit line schedule can impact both a transit operator’s revenue and cost. A 

transit schedule which reflects passenger need, such as acceptable waiting time and 

fair in-vehicle congestion, can attract more passengers and generate more revenue. 

However, such schedules may conflict with dispatching reliability or encounter 

severe road congestion. These risks will be in accordance with the different 
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risk-taking attitudes and may, therefore be valued differently by transit operators 

Behavioral characteristics of competitive transit operators, the resulting transit line 

schedules, and the reaction of passenger travel decisions are the practical problems 

which may be better addressed by scientific appraisal methods. 

 

However, few studies, reported in the literature, are seen to investigate the 

risk-taking behavior of transit companies. The behavioral characteristics of operators, 

however, have been studied as regards road traffic network design (Chen et al. 2007) 

or airline competition models (Powell and Winston, 1983). Different criteria have 

been used in the examination of stochasticity in network design problems. Included 

are the mean-variance optimizing models (Chen et al., 2003) and probability 

maximizing models (Sumalee et al., 2006; Chootinan et al., 2005). Chen et al. (2007) 

adopted the Value-at Risk measure to model planners risk preferences. The 

confidence level   as regards total travel time is used to identify planner’s level of 

risk. A variant of chance-constrained model is used to minimize the total travel time. 

 

In this chapter, the  -confident profit is considered rather than the generalized 

utility or average profit in previous models. The  -confident profit is defined by 

operator risk preferences. Chance-constrained programming is applied to reflect the 

  probability marginal effect. The advantages of the  -confident profit model, 

compared to the previous transit operation models, are 1) the ability to reflect 

operators’ varying risk preferences and (2) the absence of the need for exogenous 
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parameters for the consideration of profit reliability when stochastic profit 

characteristics are examined.  

 

A bi-level model is formulated in the form of the Stackelberg game to represent the 

interaction between operator line schedules and passenger travel decisions. 

Uncertainties in dynamic transit networks are investigated by considering 

time-dependent demand and supply interaction in the schedule-based modeling 

framework. In the lower-level model, the RSUE transit assignment model proposed 

in Chapter 3 is applied to represent passengers’ route and departure time choices. In 

the upper-level model, operators decide the best line schedule schemes to maximize 

their  -confident profit, given the pre-defined level of confidence  . 

 

The transit line scheduling problem, with the objective to maximize the  -confident 

profit for each competitive operator, is a multi-variable bi-level transit network 

optimization problem. Such problems are difficult to solve using mathematical 

optimization methods because of their discrete, non-linearity, and combinatorial 

natures (Baaj and Mahmassani, 1991; Zhao and Zeng, 2008). One of the most 

common approaches used to solve the nonlinear and asymmetry equilibrium 

problems is the diagonalization method (Dafermos, 1982; Friesz et al., 1984; Harker, 

1984). The diagonalization method is adapted in this chapter to find the equilibrium 

solution for operators with risk preferences, while convexity of the objective 

function is demonstrated. 
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This chapter is organized as follows: the basic stochastic assumptions are given and 

discussed in Section 5.2. The bi-level modeling framework is presented in Section 

5.3 and included are a lower-level RSUE model, upper-level  -confident profit 

maximization model, and bi-level formulation. The competition model is described 

in Section 5.4, together with the proof of solution existence and uniqueness. The 

diagonalization algorithm is presented in Section 5.5. Finally a simple transit network 

in Hong Kong, from TsingYi to Hong Kong International Airport, is used to show the 

performance of the proposed model and algorithm. 

 

5.2. BASIC ASSUMPTIONS AND NOTATION 

 

The schedule-based transit network is used to present the transit service temporal and 

spatial evolution. A vehicle’s arrival and departure can be explicitly represented in 

the schedule-based transit network by the illustration of vehicle trajectory by time 

and space dimensions. The vehicle dwell time, as the response of passenger arriving, 

boarding, and alighting processes, particularly, is also accessible. The illustration of 

the vehicle time and space trajectory in the schedule-based transit network is shown 

in Figure 4.1 of Chapter 4. 

 

Define , ,(..., ,...)l u l uA a  as the line-route incidence matrix, and ,...)(..., ,, klkl bB   as 

the line-agency incidence matrix: 
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,

1     if line  forms part of route 

0   Otherwise l u

l u
a





, 





 Otherwise  0

operator by run  is  line if    1
,

kl
b kl . 

Using these vector operations, the incidence relationships can now be written in 

matrix notation as: 

,
i

l l u u
u i

F a F ,  

,
k

l k l
l

b  . 

 

Several assumptions for studying the stochastic effects are made and given in this 

chapter: 

 

A1. Operators dispatch vehicles exactly in accordance with the schedule. However, 

vehicle arrival, departure, and availability at terminals are affected by many factors, 

such as stochastic run time, level of slackness, terminal congestion, and emergency 

events (Higgins, et al., 1996). As vehicle dispatching availability is random, extra 

vehicles may be needed from stock, or by renting or sharing agreements with other 

transit companies (Zuckerman and Tapiero, 1980). It is assumed that the stochastic 

variable of dispatching an unplanned vehicle pD   follows the Bernoulli 

distribution: 

~ ( , (1 ))d d d
pD p p p .  

dp  is the probability the extra vehicle is used according to the current line schedule 

when the stochastic time of vehicle availability for dispatching is later than the 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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scheduled dispatching time: 

, , , ,1( )d a
l i l i l ip P g T  .  

 

The cost of running the extra vehicle is also stochastic, as the cost may stem from 

such as hiring vehicles from other transport agencies or from drivers’ overtime 

payment. The cost of dispatching each vehicle is also assumed to follow the Normal 

distribution: 

~ ( , )cd cd
l l lCd N   . 

Assuming the independence of the probability of dispatching an extra vehicle and the 

cost for dispatching, the penalty for dispatching the extra vehicle (dispatching penalty 

for short) is presented as: 

2

, , , , ,~ ( , (1 ) )d cd d d cd
l i l i l l i l i l iCd N p p p  . 

 

A2. The vehicle on-road running and individual passenger boarding times are both 

stochastic and assumed to follow the Normal distribution. Both standard deviations 

are assumed to be the positive linear function of the mean value. This can be 

interpreted as the longer the trip/boarding time, the greater the uncertainties. Their 

corresponding connections, evaluated by the coefficient variation (CV, the quotient 

of mean and standard deviation), are constant.  Following this assumption, the CV 

of these two stochastic variables are given as vβ  and bβ . The distributions of these 

two stochastic variables are: 

2 2
, , , , ,1 , , , ,1~ ( ( ), ( ))a a a a

l i l i n l i v l i n l iTv N E T T E T T  ,  

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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and 

2 2( ) ~ ( , )b b bB N β
 

    . 

 

5.3 THE BI-LEVEL FRAMEWORK FOR A SINGLE TRANSIT OPERATOR 

 

In order to make clear the relationships between transit operators and passengers, an 

interaction between a single operator and passengers is firstly investigated. In such a 

case, the transit operator optimizes his interest by structuring the line schedule. At 

the same time, both stochastic passenger demand and travel choice, in response to 

line schedule changes, are taken into account. The line scheduling problem is 

represented as a leader-follower Stackelberg game, in which the transit operator is 

the leader and passengers are the followers. It is assumed that the operator can 

influence but cannot control passenger departure time and route choices.  

 

The operator’s objective function adopted for this task is to maximize the net profit 

(revenue minus cost) by structuring efficient line schedules. The operator’s revenue 

R  and cost C , as well as the net profit  : 

R C    

are all stochastic. In a stochastic demand and supply transit network environment, the 

operator aims not only to gain the expected profit, but also to meet the reliability 

requirement measured by a confidence level. Given such confidence level  , the 

operator’s profit maximization can be formulated as a chance-constrained 

(5.10) 

(5.11) 



91 
 

programming as follows:  

Max   

s.t.   }{P , 

where   is the stochastic profit and   is the threshold of the stochastic profit. 

Equation (5.12) can then be converted into a deterministic presentation as: 

Max 1( ) ( ) ( )E Std       , 

where   is the   - confident profit defined before. 

 

Given the probability distribution of the stochastic revenue and cost, the above   - 

confident (Chen et al., 2007) profit is expanded as: 

1( ) ( ) { ( ) ( )}E R C Std R Std C        

where the mean stochastic revenue is the sum of the transit fares of the full passenger 

flow on run i  line l . The standard deviation is the square root of the mean, 

according to the Poisson process assumption: 

, ,

,( ) ( ( ))
l u l i

l l i
l A i

E R cf E F
 

    , 

, ,

2
,( ) ( ( ))

l u l i

l l i
l A i

Std R cf E F
 

    . 

In the above two equations, ,l iF  is the stochastic passenger flow of i th transit 

vehicle of line l . The stochastic passenger flow is determined by the equilibrium 

constraint. lcf  is the transit fare of line l . 

  

The cost is the sum of the capital and operation costs for the study period. The 

(5.12 a)

(5.12 b)

(5.13) 

(5.14) 

(5.15) 

(5.16) 
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operation cost consists of vehicle on-road operation cost (including running and 

dwelling time) and the cost of extra vehicles introduced to cover the temporary 

vehicle unavailability. The increased run cost may result from renting or sharing 

agreements with other transit companies. Additional cost may also be generated from 

the need for additional crew, vehicles, or fuel. For representation simplicity, the 

additional cost, possibly generated at dispatching, is termed the dispatching penalty.  

The hourly capital and operation costs for each line are denoted as lcc  and lco , 

respectively. The cost is the sum of capital cost lcc , dispatching penalty lCd , 

running time cost lCv , and dwelling time cost , ( )l iCw  . The mean and variance of 

total cost are: 

,

, ,( ) ( ) ( )
l i

l l l l i l i
i Π

E C cc E(Cd ) E Cv E Cw (F ( ))


     , 

,

2 2
, ,( ) var( ) ( ( ) ( ))

l i

l v l l i l i
i Π

Std C Cd β E Cv E Cw (F ( ))


     . 

 

The stochastic vehicle dwell time is shown as a function of passenger flow and 

individual passenger boarding time in Equation (5.10), Section 5.2: 

2 2
, , , ,) ~ ( ( ( )) , ( ( )) )l i l i l i b l i b bCw (F ( )) N E F E F        . 

vβ  and bβ  represents the coefficient variations of the vehicle on-road running time 

and individual passenger boarding time. 

 

According to the above derivations in Equations (5.15-5.19) and vehicle stochastic 

dispatching penalty function in Equation (5.8), the  - confident profit function of 

(5.17) 

(5.18) 

(5.19) 
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one operator k , consisting of the revenue kR , cost kC , and the operator’s risk 

preference margin kS , is: 

( )=E( ) E( ) ( )k k k kR C S    . 

s.t. 

, ,

, ,( ) ( )
l k l i

k
l b l l i l i

l B i

R cf co F g
 

    , 

,

, ,( )
l i

k cd d
l l l i l i l l

i

C cc p g co Tv


    ,  

and 

, ,

,

2 2 2 2
, ,

1

2 2 2
, ,

( ) ( ( ))

( ) ( )
( )

l k l i

l i

l b l b l i l i
k l B i

cd d
l l i l i v l l

i

{ cf β co E F g

S
p g β co E(Tv )}


  


  



 
 

  

 


. 

The  -confident profit maximization problem for a single operator k  given 

confidence level k  is: 

max (g , )
k

k k k

g
  . 

 

5.4 THE BI-LEVEL FRAMEWORK FOR COMPETITIVE TRANSIT 

OPERATORS 

 

The introduction of private operators for transit services has been adopted in many 

cities to alleviate the government’s fiscal burden. The objective of private operators, 

however, is profit maximization rather than welfare gain or efficient utilization of 

vehicles. Consequently, a Nash game is initiated between different transit operators. 

As the profit fluctuates following the network demand and service variation, 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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operators are likely to have different profit confidence levels, when considering and 

deciding upon transit network design schemes. In this section, a bi-level problem is 

formulated. The upper-level problem represents the Nash game between transit 

operators and the lower-level problem represents passenger responses to operators’ 

line schedule schemes. The Stackelberg game between operators and passengers is 

described in Section 5.3.  

 

Operator line schedule strategies, including the transit line schedule and risk 

preference, have significant effects on passenger route choices and transit line flow 

patterns. The interaction between operators and passengers lead to a competition in 

which each operator seeks to maximize his own revenue. The revenue directly relates 

to the volume of boarding passengers on the line. In turn, passenger flow on the line is 

dependent on vehicle arrival time. Each operator in this competitive market seeks to 

attract as many passengers as possible onto his own service lines, while the total 

passenger demand is stochastic, but follows the fixed mean and other recognized 

stochastic properties. 

 

5.4.1 Convexity of the  -Confident Profit Function 

 

Many researchers have studied the existence and uniqueness of a VI problem by 

demonstrating the objective function to be strictly increasing, continuously 

differentiable, and convex. In the following part of this section, the convexity of each 
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component of the operator  -confident profit function is shown, so that the 

convexity of profit function can remain by the summation. The second derivative of 

the mean of the stochastic revenue function is: 

,

22
, ,

2 2
, ,

( ( ))( )
( )

l k

k
l i l i

l b l
l Bl i l i

E F gE R
cf co

g g





  

   

 

As discussed in Section 3.1, the passenger flow is assigned by a RSUE model. 

Passenger perception error is assumed to follow the Normal distribution and the 

probability of passenger flow distribution ( ( , ))P gc t u  is a function of passenger 

generalized travel cost ( , )gc t u . Thus the second derivative of the expected 

passenger flow is: 
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When the mean of the stochastic term (passenger perception error in generalized 

travel cost)   is larger than zero, the second term in Equation (5.26) 

3

( ( , ) )

2
GC

GC

gc t l 
 

 
 is negative. The convexity of passenger flow with respect to the 

change of line schedule is thus determined by the last term. The passenger stochastic 

travel time ( , )C t l , defined in Equation (2.29) consists of passengers waiting time, 

(5.25) 

(5.26) 
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in-vehicle travel time, and transfer time. These terms and the vehicle arrival time 

have linear relationships, which can be observed from Equations (2.23-2.27). Thus 

the second derivatives of the mean and standard deviation of the ( , )C t l  equals 

zero: 

2 1

2
,

( ( ( , )) ( ) ( ( , ))
0

l i

E C t l Std C t l

g

   



 

and Equation (5.26) equals zero: 

2
,

2
,
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
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The second derivative of the mean of the stochastic operator cost function is 
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As stated in Section 5.2, the probability of punctually dispatching the vehicle ,l iV  is 

the function of the cumulative density function (CDF) of the Normal distribution: 

,

2, , ,
( ) ( )

l igd
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The second derivative of the probability of punctually dispatching is: 
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It can be observed from the above equation, if ,
cd
ll ig  , 
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
. Thus, the negative of the mean of the stochastic cost function is 

convex, as the cost is a negative component in the   - confident profit function. 

 

The second derivative of operator  -confident risk preference measure: 
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The second derivative of the square-root function is definitely positive. The formula 

inside the square root, which determines the signs of the second derivative, is also 

positive as there is no negative component. Thus, the confident value 1( )   is the 

only factor determining whether the second derivative is positive or negative.  

 

In this chapter, heterogeneous risk-aversion operators are considered in the oligopoly 

transit market. These risk-averse operators can also represent the majority of transit 

agencies, as reliability of profit is an important factor in the transit system design and 

operation. The risk preference   is from the highest confidence (lowest risk) to the 

average situation (risk is not considered), which means the sign of the second 

derivative of the operator’s  -confident risk preference measure is positive. Similar 

to the cost component, the negative of the risk preference measure is convex, as it is a 

negative component in the operator’s  -confident profit function. 

(5.32) 
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The convexity of the mean revenue, cost, and the operator’s risk preference has been 

demonstrated in the section above. Thus the operator k ’s  -confident profit, the 

summation of the three components, is also convex.  

 

5.4.2 The Formulation of Generalized Nash Equilibrium 

 

The strategies of each operator are affected by others operators. This leads to a 

generalized Nash game presented by Harker and Pang (1990), formulated as: 

* * *k k k k k k(G ,G ) (G ,G )   . 

where ,=( , , )l iG g  , is the vector of passenger line schedule. * denotes the 

optimal line schedule strategy, and k  denotes operators, other than operator 

k in the market. According to Harker (1991), the above general Nash equilibrium 

(GNE) can be formulated as a quasi-variational inequality (QVI) problem: 

* T *( ) ( ) 0k k k

k

V G G G  . 

( )kV G  is the negative gradient of the profit k : 

( ) ( )k

k k

G
V G y , 

where 

(5.33) 

(5.34) 

(5.35) 
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For the full Cartesian product of the individual operator’s strategy sets, the equivalent 

VI problem for the Nash game is simply the summation of the individual operator’s 

first-order conditions (Harker and Pang, 1990): 

find G  such that 

*( ) ( ) 0k

k T

G
k K

G G G


   . 

The above variational equivalent formulation in Equation (5.37) is equivalent to the 

following mathematic programming: 

', '

0
' , ' ,

( , )
min

l j

k l
l j

k k
g

l S j O l j

u
du

g

 

 




  , 

and also equivalent to  

max ( , )
k

k k

G
G G . 

 

5.5 SOLUTION ALGORITHM 

 

The diagonalization algorithm is also known as the nonlinear Jocabi method, 

popularly used in studies and reported in the literature to solve nonlinear and 

asymmetry equilibrium problems. It is widely used to solve both traffic equilibrium 

(5.36) 

(5.37) 

(5.38) 

(5.39) 
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problems (Dafermos, 1982; Friesz et al., 1984) and equilibrium network design 

problems (Harker, 1984; Friesz and Harker, 1983). From each iterative step of the 

diagonalization algorithm, an iterative decision variable is produced. The 

diagonalization of the objective function is performed to obtain the optimal objective 

function value by finding the optimal diagonalization variable. The algorithm 

continues until a satisfactory termination criterion is met. 

 

The algorithm starts by selecting an initial 0G , followed by solving the variational 

inequality by step ( 1,2,...)n n  : 

T 1 ( ) 0n n n(G ,G ) G G    , 

The equivalent form of Equations (5.37-5.39), the variational inequality with respect 

to each individual operator Equation (5.40), is then solved by the diagonalization 

algorithm.  

 

The steps of the solution algorithm to the equilibrium   - confident schedule design 

problem are as follows: 

Step 0 Choose an initial 0G , set 0n  . 

Step 1 Solve Equation (5.40) for , 1k nG   for each 1,2,...,k m : 

 Step 1.1 Initialization for the start of diagonalization.  

Step 1.2 Find the temporary optimal line schedule , 1
,

k n
l jg   for each line and run, 

where , 1 ', , , 1 ,
, ', ' , 1 , , 1{ ,..., , , ,...}k n k n k n k n k n

l j l j l j l j l jg g g g g 
   , based on the equilibrium 

passenger flow. The distribution of passenger travel choices is obtained by the 

(5.40) 
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MSA-type algorithm for the lower-level RSUE problem, responding to the 

updated line schedules. 

Step 1.3 Find the temporary optimal line schedules , 1k nG   for each operator. 

, 1k nG   is the feasible descent direction of line schedules of operator k  at each 

line and run, but not the whole operation. As the actual relationship between 

operator’s line schedule and their  -confident profit is not obvious, the 

enumeration with all combination from ,k nG  to , 1k nG   is performed by the 

change of single minute.  

Step 2 If , 1 ,k n k nG G   for all 1,2,...,k m , stop; otherwise, set 1n n  , and 

return to Step 1. 

 

5.6 NUMERICAL EXAMPLE 

 

A simplified network connecting Tsing Yi New Town and HKIA is portrayed in 

Figure 5.1. There are two services between these two locations, the Airport express 

line (AEL) and a bus line. During the study period of 1 hour, each line has 6 runs to 

dispatch. The expected time of vehicle availability for both lines is 

(2,12,22,32,42,52)G  , and the latest time constraint for dispatching is 

ˆ (9,19,29,39,49,59)G  . AEL is an express rail line, thus the designed capacity (500 

persons/vehicle) is much larger than the bus line (120 persons/vehicle). The service 

reliability of AEL is also much higher than that of the bus line, but the capital and 

operation cost is relatively higher. Table 5.1 shows the respective capital cost, 
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operation cost, and the extra cost of dispatching an extra run. 

 

The designed dispatching time should be lager or at least equal to the average vehicle 

availability time. The initial dispatching time vector, which is the same as the 

expected vehicle availability time 0G G , is used to initiate the solution algorithm. 

In the case of the two operators both holding a strong risk-averse attitude towards 

stochastic profits, 95%AEL Bus   , the convergence of the algorithm and the 

optimal line schedule schemes are listed in Table 5.2.  

 

 

 

Figure 5.1 Example Transit Network  

 

Table 5.1 Transit System Capital and Operation Costs 

Unit: HK$/veh/hr AEL Bus 
Capital Cost 2000 600 

Operation Cost 500 80 

Dispatching Penalty:
Mean/ 

Standard Deviation 

,2000 d
l ip /

, ,1000 (1 )d d
l i l ip p   

,600 d
l ip / 

, ,600 (1 )d d
l i l ip p   

 

The designed dispatching time should be lager or at least equal to the average vehicle 

availability time. The initial dispatching time vector, which is the same as the 

expected vehicle availability time 0G G , is used to initiate the solution algorithm. 

N1L1 
N2 

L1 (AEL) 

L2 (Bus line) L2 
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In the case of the two operators both holding a strong risk-averse attitude towards 

stochastic profits, 95%AEL Bus   , the convergence of the algorithm and the 

optimal line schedule schemes are listed in Table 5.2.  

 

It can be observed in Table 5.2, that the algorithm stopped after 6 iterations when the 

optimal line schedules converged. At equilibrium, both operators’ 95% confident 

profits were considerably improved compared to the initial confident profits. This is 

because 1) the operation cost, including the dispatching penalty, decreased 

dramatically by rescheduling the lines; 2) the revenue, generated by passenger 

patronage, was balanced between the two operators at equilibrium. When equilibrium 

was reached, the  -confident profit function was still fluctuating (see Iterations 5 

and 6). This is because the stochastic network loading resulted in slight passenger 

loading variation. 

 

Table 5.2 Convergence of the Solution Algorithm 

Rail operator Bus operator 

Iteration 
line schedules (min) 

95% 
confident 

profit 
(HK$) 

line schedules (min) 

95% 
confident 

profit 
(HK$) 

0 2  12  22  32  42  52 711 2  12  22  32  42  52 615 
1 6  14  27  37  48  57 879 7  14  26  37  49  58 1696 
2 7  14  26  38  47  59 937 8  14  27  39  49  58 1757 
3 8  15  28  36  48  59 994 9  17  28  38  49  58 2018 
4 8  15  27  39  48  59 1231 9  19  28  39  49  59 2013 
5 9  14  28  39  48  59 1178 9  18  28  39  49  59 2078 
6 9  14  28  39  48  59 1166 9  18  28  39  49  59 2052 
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Table 5.3 Service Attributes by Operator Risk Preferences and Network 

Congestion and Uncertainty Levels 

Scenarios As AI AII AIII AIV 

OD 1.0 

BO’s SD 2.0 

RO RN (50%)

BO RN (50%)

RO RN (50%)

BO RA (95%)

RO RA (95%) 

BO RN (50%) 

RO RA (95%)

BO RA (95%)

Schedule 7 14 27 38 46 58 8 15 28 39 49 58 9 15 26 39 48 59 9 14 28 39 48 59

Patronage  256 259 252 256 

Profit  

Mean/SD (CV) 

2566/991 

(0.38624) 

2891/975 

(0.3373) 

2465/963 

(0.3907) 

2750/963 

(0.3502) 

R 

O 

Dispatching cost  

Mean/SD (% profit) 

192/224 

(7.482/22.60)

47/121 

(1.626/12.41)

53/129 

(2.150/13.40) 

8/50 

(0.290/5.192)

Schedule  7 16 27 37 48 58 9 18 29 39 49 59 8 16 27 38 48 58 9 18 28 39 49 59

Patronage  239 234 243 237 

Profit  

Mean/SD (CV) 

2756/532 

(0.1930) 

2734/463 

(0.1693) 

2819/531 

(0.1884) 

2817/465 

(0.1651) 

B 

O 

Dispatching cost  

Mean/SD (% profit) 

168/308 

(6.096/57.89)

50/173 

(1.829/37.37)

138/280 

(4.90/52.73) 

50/173 

(1.775/37.20)

Scenarios Bs BI BII BIII BIV 

OD 1.2 

BO’s SD 2.5 

RO RN (50%)

BO RN (50%)

RO RN (50%)

BO RA (95%)

RO RA (95%) 

BO RN (50%) 

RO RA (95%)

BO RA (95%)

Schedule  6 14 28 37 47 57 6 14 26 38 48 57 8 15 29 39 48 57 8 15 28 37 47 57

Patronage  337 349 332 344 R 

O Profit  

Mean/SD (CV) 

7424/1128 

(0.1519) 

8138/1148 

(0.1411) 

7271/1102 

(0.1516) 

7989/1121 

(0.1403) 

 
Dispatching cost  

Mean/SD (% of Profit) 

193/237 

(2.600/21.01)

199/241 

(2.445/20.99)

48/123 

(0.6602/11.62) 

45/121 

(0.5633/10.79)

Schedule  9 14 25 37 49 58 9 18 27 37 49 59 9 15 26 38 48 59 9 19 29 38 49 59

Patronage  261 252 262 255 B 

O Profit  

Mean/SD (CV) 

3106/642 

(0.2067) 

3088/556 

(0.1801) 

3248/608 

(0.1872) 

3245/524 

(0.1615) 

 
Dispatching cost  

Mean/SD (% profit) 

430/453 

(13.73/70.56)

198/332 

(6.412/59.71)

315/403 

(9.698/66.28) 

125/269 

(3.852/51.34)

Note:  RO=Rail Operator     BO=Bus Operator 

  SD=Standard Deviation    CV=Correlated Variation 

   RN=Risk Neutral ( 0.5  )  RA=Risk Averse ( 0.95  ) 
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The competitions between the rail and bus operators are categorized into four 

scenarios, each according to one of the four combinations of their risk-neutral and 

risk-averse attitudes towards the stochastic profit. In Scenario I, both operators are 

risk-neutral; in Scenarios II and III operators have different risk preferences; in 

Scenario IV both operators are risk-averse. Both the congested and uncongested 

network conditions are considered in the model. The four scenarios when the 

network is not congested are denoted respectively as Scenarios AI-AIV, with 

parameters of demand multiplier and network congestion: 1.0; 2.0bβ   . The 

congested four scenarios are denoted respectively as Scenarios BI-BIV, with 

parameters of demand multiplier and network congestion: 1.2; 2.5bβ   . The 

optimal line schedules and the relevant passenger patronage, the mean, standard 

deviation and coefficient variation of profit, and the particular dispatching cost in 

the congested and uncongested network are presented in Tables 5.3. The 

 -confident profit distributions for different transit network situation are illustrated 

in Figure 5.2. Unit for the schedule is minute, passenger patronage is passenger per 

hour, profit and cost is HK$ per hour. 

 

The rail and bus operators having the same risk preferences (either risk-neutral at 

Scenario AI or both risk-averse at Scenario AIV) are first considered. It is shown in 

Table 5.3 that the dispatching costs (both mean and standard deviation) are the 

highest when both operators are risk-neutral and the lowest when both operators are 

risk-averse. The line schedules are mostly postponed 1-2 min to reach the higher 
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confidence of transit profit. When the transit network became congested and the 

travel time randomness became more severe for bus, operators’ optimal line 

schedules are delayed even later to compensate for dispatching uncertainty. The 

dispatching time of the second and third buses is delayed up to 5 min, from 14 and 25 

min (at Scenario BI) to 19 and 29 min (at Scenario BIV).  

 

It can also be observed that, if both operators’ risk preferences are not considered in 

the competition model, their average profits are underestimated though the profit 

stochasticity is higher. Rail operator’s average profit increases from 2566 

(risk-neutral, Scenario AI) to 2750 (risk-averse, Scenario AIV), and bus from 2756 

to 2817 while passenger patronage does not greatly change. Their stochasticity of 

profit is saved from 991 to 963 and 532 and 465 respectively.  

 

When the road network became congested and the bus mode became unreliable, rail 

and bus operators’ risk-averse preferences (Scenario BIV) lead to an increase in 

passenger rail patronage  (from 337 to 344), but a reduction in bus patronage(from 

261 to 255). Rail passenger patronage is seen to increases significantly in Scenario 

BIV compared to Scenario AIV (from 256 to 344), while bus passenger patronage 

does not greatly increase (from 237 to 255). The difference in the change of 

passenger patronage indicates that rail is more attractive to passengers when the 

transit network environment is adversely congested, with the aggravation of 

uncertainties, especially when operators’ risk preferences are risk-averse. Bus 
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operators, thus have to balance passenger patronage (revenue) and dispatching 

penalty (cost component) in order to maximize the profit. 

 

It can be observed from the change of CV when the network becomes more congested 

and vehicle running time becomes more stochastic. The CV of rail operator’s profit is 

too large (higher than 0.3) when the OD demand is small at Scenarios AI-AIV, 

indicating the high possibility of negative profit. The CV becomes smaller (lower 

than 0.2) when passenger demand increased at Scenarios B, possibly indicating that 

ignorance of network uncertainties causes loss of rail mode profit. Based on the data 

in Table 5.3, short-term planning schemes appear unable to improve the loss of profit 

for the rail company. Hence the proposal of frequency reduction should be attempted 

in the long-term planning, provided that the minimum frequency is guaranteed.  

 

For the bus company, dispatching cost saving is important to maintain profit stability. 

The bus company’s average profit at Scenarios AIII and BIII is the highest; however 

the standard deviation of profit is also high, indicating profit instability. The bus 

operator’s 90-confident profit at Scenario AIV (risk-averse while rail operator 

risk-neutral) is HK$2221, higher than the 90-confident profit at Scenario AIII 

(risk-neutral while rail operator risk-neutral). Hence it could be concluded that the 

bus operator, running an unreliable and low capacity transit service, has to balance 

operation cost and passenger patronage, in order to increase both the profit itself as 

well as profit stability. 
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Figure 5.2 Stochastic Profit Curves by Operator Risk Preferences and Network 

Congestion and Uncertainty Levels 
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Scenarios AII, AIII, BII and BIII show the influences of market competition when 

rail and bus operators hold different risk preferences. By changing the line schedule, 

the rail operator gained the highest passenger patronage by being risk-neutral (259 

and 349 respectively in Scenarios AII and BII), while the bus operator had the lowest 

passenger patronage by being risk-averse (259 and 349 respectively). Thus the most 

favorable transit market Scenario for the rail company is risk-neutral, and for the bus 

company, is risk-averse.  

 

The same result can be drawn from Figure 5.2. In Figures 5.2(a) and (c), lines with 

dark hollow triangles, representing the rail operator’s stochastic profit curves when 

the rail operator risk-neutral and the bus operator risk-averse, have the highest 

 -confident profit at all confidence levels. These two figures implicate that the rail 

operator’s preference is to be risk-neutral regardless of the risk preference of an 

opponent. A possible reason relates to the economics of running an expensively built 

transit mode. Operating at high capacity better ensures a financial return on the 

capital investment. The greatest concern is to attract more passengers, rather than 

trying to save operation costs. On the other hand, in Figures 5.2 (b) and (d), lines with 

dark solid dots, representing the bus operator’s stochastic profit curves when the rail 

and the bus operators both risk-averse, overpass other lines when the confidence level 

is higher than 0.6. These two figures indicate that the bus company can gain a higher 

confident profit when risk-averse (  higher than 60 in Figure 5.2 (b) and (d)), but 

lower when a risk-neutral policy is adopted. Thus, the rail and bus operator reach the 
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equilibrium of the game, Scenario AII or BIV. 

 

The  -confident profit curves of rail and bus operators also shows that if operators’ 

risk-taking behavior is not considered, their profits are both underestimated (lines 

with solid triangles and dots above lines with hollow triangles and dots). Moreover, 

the rail and bus operators have very different risk preferences when competing in the 

same transit market. The rail operator always prefers to be risk-neutral as the 

risk-neutral profit curves (the lines with hollow triangles) are always above the 

risk-averse profit curves (lines with solid triangles).  

 

5.7 SUMMARY 

 

In this chapter, the line schedule design problem under network uncertainties has 

been investigated in a competitive transit market. Operators’ risk preferences facing 

profit uncertainties and the recursive impacts on their optimal transit line schedules 

have been discussed. Each individual operator’s  -confident profit, defined as the 

stochastic profit within a confidence threshold, has been maximized by the proposed 

model. The Stackelberg equilibrium between operators and passengers has been 

formulated as a VI problem and solved by the adapted diagonalization algorithm. 

 

The numerical results give the following important insights: 

1)  The risk-averse operators tended to postpone the line schedule by a few 
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minutes to maintain the reliable availability of transit vehicles.  

2)  If operators’ risk preferences were not considered, the average profits were 

underestimated and the stochasticity of profit was higher for both rail and bus 

operators. 

3)  Rail was more attractive to passengers when the transit network environment 

was adversely congested with the aggravation of uncertainties, especially when 

both operators were risk-averse. Bus operator had to balance the passenger 

patronage (revenue) and dispatching penalty (cost component) in order to 

maximize profit. 

4)  The rail operator always preferred to be risk-neutral no matter the risk preference 

held by the opponent. This is because, when operating a reliable, high capacity, 

and expensively built transit mode, the rail company depended strongly on 

attracting more passengers, rather than saving operation cost.  

5) The rail operator has a high possibility of losing profit when the OD demand is 

small (though the average profit was positive, the CV of profit was very high, 

larger than 0.3). The CV became much smaller (lower than 0.2) when passenger 

demand increased. Thus, the rail operator was recommended to propose 

long-term planning strategies to the authority, such as to decrease train 

frequency.  

6)  When both operators were free to choose the optimal risk preference for transit 

 market competition, the Stackelberg equilibrium was rail operator risk-neutral 

 and bus operator risk-averse. 
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CHAPTER 6  

CONCLUSIONS 

 

6.1 INTRODUCTION 

 

Passenger demand prediction and transit line scheduling are important strategies in 

improving short-term transit operations. Many models, assuming the study network 

to be static and deterministic, have been proposed to study these strategies. The lack 

of recognition of network uncertainties and temporal evolution of transit system, 

however lead to biased prediction of passenger demand profiles and vehicle 

operation. Inefficiency of transit schedules, will fail to reflect passenger boarding 

demand at each stop and time period, causing long passenger waiting time and 

over-load delay, and finally will lead to the degradation of transit service and a 

change of passenger mode choice.  

 

The research described in this thesis has explored the transit assignment and 

short-term planning models for solving passenger flow prediction and transit 

schedule design problems under network uncertainties. Two RSUE transit 

assignment models were proposed for passenger flow prediction in networks with 

single-class risk-averse passengers and multi-class risk preference passengers. Two 

transit line scheduling models were developed in this research study taken account 

of passenger travel choices explored in the two proposed transit assignment models.  
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The main objectives of the research, as stated in Chapter 1, have been to: (a) specify 

sources of transit network uncertainties, (b) develop dynamic transit assignment 

models with various passenger risk taking attitudes under transit network 

uncertainties, and (c) investigate the transit line scheduling problem under different 

market regimes with uncertainties. The key findings are summarized in Section 6.2. 

 

6.2. KEY FINDINGS 

 

6.2.1 The Sources of Uncertainties 

 

Transit network uncertainties have been determined from passenger demand and 

transit supply sides, as described in Chapter 2. The generation and influence of 

uncertainties in transit assignment and line schedule design models were found to 

differ. For the proposed RSUE transit assignment models, the impacts of 

uncertainties were mainly based on passenger random travel time (or travel 

cost/disutility) and random transit vehicle operation time.  Uncertainty of vehicle 

dispatching schedules was another main cause of the degraded transit service or risk 

of operation profit, as examined by the transit line schedule design model in 

Chapter 5.  

 

In the proposed RSUE transit assignment models, the given and fixed stochastic 

properties of transit service and passenger demand patterns were specified as 
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exogenous uncertainties. The deduced stochastic phenomena were endogenous 

uncertainties, which included passenger waiting time and vehicle dwell time. They 

were the result of the interaction between the random arrivals of passengers and 

transit vehicles. The proposed PAB (passenger arriving and boarding) process 

described such interaction completely and derived the analytical expressions of 

these endogenous uncertainties. The PAB process duration length was indicative of 

the prolonged vehicle dwell time and vehicle bunching problem at stops and further 

low passenger loading proficiency. 

 

The randomness of passenger in-vehicle time and waiting time decreased in the 

transit network with multi-class risk preferences passengers compared to that with 

single-class risk preference passengers. Such decrease, however incurred high 

monetary cost of risk-averse passengers, as to ensure travel time reliability. Those 

risk-averse passengers may change to other expensive lines or modes with higher 

reliability services. Transit network uncertainties imposed higher monetary cost on 

risk-averse passengers. It was found in the multi-class assignment results that the 

peak period of passenger waiting time at stops was more decentralized and later 

than that shown in the single-class assignment, as the passenger risk-taking attitudes 

would greatly impact passenger route and departure time choices. 

 

The usage of vehicle design capacity could be improved by introducing an overload 

parameter in the RSUE transit assignment models to take account the effects of the 
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stochastic passenger boarding demand. Otherwise, in congested transit networks, 

the practical number of passengers on-board would be underestimated and lead to 

severe in-vehicle congestion and passenger over-load delays at stops. 

 

6.2.2 Passenger Behavior Responses 

 

Two novel RSUE transit assignment models, predicting passenger travel decisions, 

such as travel route and departure time choices given the pre-specified transit 

service configurations, were proposed in Chapters 2 and 3. Neglecting transit 

network uncertainties resulted in biased estimation of passenger flow on transit 

lines or inaccurate estimation of passenger departure during peak periods. Under 

uncertainties, passengers included additional safety margins in their travel decision 

(and journey plan) to avoid network uncertainties. Passengers with travel time 

reliability requirements tended to depart earlier than those without, to ensure 

on-time arrivals and accommodate for unexpected delays. The downstream 

passengers shifted from long lines to short lines because of the long-line aggregated 

randomness. The adverse effects of such estimates can be poor level of transit 

service and shifts of passenger travel demand to other transport modes.  

 

The risk-averse passengers (confidence level 0.5  ) chose the more expensive 

routes than other risk-neutral ( 0.5  ) and risk-prone ( 0.5  ) passengers for the 

sake of travel time reliability. The extra monetary cost to ensure travel time 
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reliability during peak period was an unfair penalty imposed on risk-averse 

passengers. The overload congestion at peak periods in the multi-class RSUE model 

was less severe and the peak period was longer than that in the single-class RSUE 

model. Passenger travel decisions with various risk preferences were distinguished 

by different travel time safety margins for different reliability requirements. 

 

In the regulated transit market where transit system was operated by government 

authorities, passenger behavior responses to the improved transit line schedules 

caused a more discretized passenger flow distribution and therefore saved passenger 

waiting time and maintained transit service reliability. In the deregulated transit 

market fully explored in Chapter 5, it was found that passengers change their transit 

mode choices while bus and rail operators have different risk preferences and 

relevant optimized transit line schedules.  

 

6.2.3 Operator Planning Strategies 

 

Two novel transit bi-level transit line scheduling models were proposed under 

different transit market regimes. The transit assignment models proposed in 

Chapters 2 and 3 were applied as sub-models in the estimation of passenger 

behavior responses to alternative transit line schedules. Transit system performance 

such as service efficiency and reliability could be improved in transit market 

regulated by government authorities. The total passengers’ generalized travel cost 
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was reduced and the fleet size was also balanced among different lines without the 

extra cost of fleet resources. The passenger loading profile was also more balanced, 

which implicated a better level of transit service.  

 

The Nash equilibrium between operators was rail operator risk-neutral and bus 

operator risk-averse in the deregulated transit market running by private bus and rail 

operators. Both operators’ average profits under market equilibrium were 

underestimated and their profit variations were overestimated if their risk 

preferences were not considered. This is because they tended to postpone line 

schedules by a few minutes to maintain the reliable availability of transit vehicles.  

Rail operators had a high possibility of profit loss in un-congested transit networks, 

as the stochasticity of profit, particularly when influenced by passenger patronage, 

was very high. Thus, the rail operator was recommended to propose a decrease of 

frequency in the uncongested transit network.  

 

6.3 FUTURE RESEARCH 

 

Based on this research study, several areas may merit further study: 

1)  Extending the proposed model with consideration of elastic demand so as to 

reflect passenger demand response to transit service improvements which are 

based on the result of transit line schedule optimization under network 

uncertainties;  
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2) Exploring efficient reliability-based transit path finding algorithm and applying 

this algorithm to the transit assignment and network design models under 

uncertainties so as to enhance the scope of model applications in practice; 

3) carrying out sensitivity analyses to investigate transit operation tactics such as 

 short-turning, stop-skipping, and vehicle holding to promote optimal operation 

 strategies; 

4)  calibrating stochastic parameters, such as boarding time per passenger, 

 passenger arrival and OD demand variations; 

5)  incorporating passenger travel strategies into the dynamic reliability-based 

 transit assignment model; 

6)  designing more effective algorithms to guarantee optimality for the transit 

 network design models; 

7)  investigating the integration of cooperative and non-cooperative competition 

 between transit operators under network uncertainties; 

8) incorporating technological advantages into transit network design and 

 operation, to enable the operator to deal with unexpected schedule variations. 
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