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ABSTRACT 

Structural condition assessment is a major component in a structural health 

monitoring system. A large scale structural system may have complex boundary 

conditions and uncertainties due to the discreteness of geometric and material 

properties. Models on the boundary conditions and any innovative vibration 

control device for seismic protection in a large scale civil structure may not be 

accurate. Another obstacle for large scale civil structural condition assessment is 

that the current damage detection methods are either insensitive to local structural 

damage or sensitive to measurement noise. It is difficult to conduct structural 

condition evaluation for large structures partially because of these points. 

Numerous structural condition assessment methods have been proposed. The 

structural condition assessment methods in frequency domain always need large 

number of measured data. The methods in time domain are alternative solutions to 

structural health monitoring which needs as few data as possible. Though a lot of 

work has been done in this field, there are yet some gaps which limit the 

application of this kind of method. It is usually difficult to conduct the parameter 

identification in large scale structural system also due to the computational 

efficiency, accuracy and convergence. Previous time response sensitivity methods 

commonly assume the structure is connected rigidly to the base and the 

base-superstructure interaction is rarely taken into consideration. Most of the 

sensitivity methods in time domain commonly need the record of the excitation or 
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need an assumption of the function of the external force time history. Also the 

initial structural responses, e.g. acceleration, velocity and displacement, are 

commonly assumed to be zero but they are always unknown and non-zero values. 

Time-variant structural parameter identification is difficult to be identified with 

the existing time response sensitivity methods. Efficient structural control can 

ensure the structural reliability of the structure during the severe earthquake or 

other harsh environmental load. The integrated system of structural control and 

model updating would make the structural control algorithm more stable and 

effective. However, only the integrated system with model updating method in 

frequency domain has been investigated. This thesis aim to propose a framework 

to conduct the structural condition assessment and structural control based on 

substructure methods which could improve the computational effort, perform the 

general out-put only structural condition evaluation, including load evaluation and 

damage detection, conduct the time-variant structural condition evaluation and 

implement the smart structure with the integration of structural control and 

structural health monitoring. 

The time response sensitivity method in time domain with substructure 

method is an alternative solution to large scale structural condition assessment, 

which needs as few data as possible. Several components of work in structural 

condition assessment and structural control are completed in this thesis. Firstly, a 

substructural external force identification method based on the equation in state 

space with the First-Order Hold discrete and Tikhonov regularization is presented. 
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This method makes good use of this limited but accurate analytical information of 

the target substructure for the inverse identification of moving or static external 

force acting on the structure. Secondly, a general response sensitivity method 

based on the two-stage identification for structural model updating considering the 

nonlinear support-superstructure interaction is developed. The two-stage 

identification method proposed previously for substructural condition assessment 

is illustrated, proved and improved. With the two-stage method the interface forces 

are identified in the first stage and the local damage is detected in the second stage. 

In this study, a concept of pseudo structure is constructed for illustration and proof. 

Furthermore, two new computational methods are proposed to improve the first 

stage identification. A time window force identification method is presented to 

reduce the computation effort of the first stage identification. The structural 

responses of the first time step are always supposed as zero with time domain 

response sensitivity method in previous research work. However, the initial 

structural responses are unknown and non-zero practically. In general, and a 

method for the simultaneous identification of the unknown force and initial 

responses are also presented for the first stage identification. An adaptive 

regularization method is employed for the model updating in the second stage. 

Thirdly, a time-variant structural parameter is proposed based on time window 

identification method. With this method, the abrupt structural damage during the 

earthquake could be identified. Lastly, a new combined system of adaptive 

structural control and structural evaluation is proposed. The structural control 
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system is implemented with the LQG which is an effective control method for the 

vibration mitigation of structures. The structural control is adaptive with the 

changes of the structural parameters via the structural evaluation system. A 

modified adaptive regularization method is used in the solution of the structural 

evaluation via model updating. The combination of the structural control and 

evaluation is designed as decentralized autonomous to guarantee the reliability 

under the harsh environmental excitation. The decentralized autonomous control 

system explores the substructure method which is more efficient in calculation 

with smaller mass, damping and stiffness matrices for the structural evaluation. 

All these proposed methods in this thesis are verified by numerical simulation. The 

two-stage identification method and time-variant damping identification is also 

verified by laboratory work. Results show that the proposed methods on the 

structural condition assessment are effective and perform satisfactorily even there 

is noise in the measurement. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

During the long-term service, civil engineering structures may be subject to 

some the hazards or deterioration, such as earthquake typhoon, fire, explosion 

and long-term fatigue damage. To mitigate the vibration and monitoring the 

condition important modern structures are always built as smart structures and 

instrumented with structural health monitoring system and structural vibration 

control system. Structural vibration control system and structural health 

monitoring system will play an important role to reduce and predict the potential 

damage, to ensure the safety and reliability of the structural system and provide 

detailed guideline for more efficient maintenance after long-term service or 

hazards.  

As the two important components of modern smart structure both of the 

structural condition assessment and control have received considerable attention 

respectively from the researchers in the last few decades. The integrated system 

with the function of structural control and structural health monitoring has also 

been another active field of the smart structure.  



 2 

1.1.1 Background of Structural Condition Assessment 

Damage detection and model updating are vital aspects of structural 

condition assessment. The damage of structure could be generally defined as an 

abnormal change which adversely affects the performance of the system in an 

comprehensive review paper (Doebling et al. 1998). Increasing interest has been 

attracted to structural condition assessment due to the natural catastrophes such 

as earthquake and typhoon, dynamic load, permanent static load and so on. With 

the successive investigation of researchers the damage will be defined as the 

changes of materials or geometric properties of systems, including the boundary 

condition the connectivity, which adversely affects the performance of the system 

(Farra et al., 2001). A four-level damage detection procedure was proposed by 

Rytter (1993) as  

Level 1: Damage detection Determination of the presence of damage in the 

structure; 

Level 2: Damage localization: Level 1 plus determination of the probable 

location of the damage; 

Level 3: (Damage Quantification): Level 2 plus quantification of the 

severity of the damage; 

Level 4: (Consequence): Level 3 plus prediction of the remaining useful life 

of the structure. 

These four series steps provide a practical guideline to damage detection 

(Yao and Natke 1994; Park et al. 1997; Stubbs et al. 1998, 2000). This thesis 
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focuses on the second and third level investigation of damage detection. Model 

updating method is also presented in this thesis which considers the model error 

as well as abnormal changes of the structural properties. The structural damage in 

this Thesis is also defined the loss of the stiffness as majority of existing research 

literatures.  

The damage could be classified as linear damage or nonlinear damage. The 

damage is linear if the initially linear structure still retains the linear elastic 

property (Doebling et al., 1998). Research in this field has produced substantial 

literature and numerous has been applied to detect damage in mechanical, 

aeronautical and civil engineering systems. The damage is nonlinear if the 

initially linear structure behaves nonlinearly after the damage (Doabling et al., 

1998). The nonlinear damage will also be reflected in the structural response and 

the parameters derived from the structure response. Without considering the 

nonlinear structural damage, the linear damage identification method would 

provide unexpected results for the nonlinear damage identification. A detailed 

report summarizes the nonlinearity identification method (Kerschen, Worden, 

Vakakis and Golinval 2006). But the literature related to nonlinear parameter 

identification and nonlinear damage identification is still insufficient for the 

inverse problem in practical civil engineering.  

Visual inspections of the structural damage by experts were commonly used 

for the structural condition assessment of civil engineering structure in the past. 

However, time consuming labor works as well as subjective experience are 
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required for the experts’ inspection. There are some effective tools for the 

structural condition assessment. Nondestructive damage evaluation (NDE) 

methods and technique are also developed in practice, such as acoustic and 

ultrasonic methods. With the NDE methods local experiment will be done. But 

these series technique require of a priori of the damage location which is always 

unknown in practice and many defect exists inside the structural component. 

Moreover, some critical components of the structure are inaccessible to inspect 

within their service life, such as main pier of offshore platforms, the bottom of 

floating structures and mid bottom decks of long span bridges and so on. The 

NDE of structure might disturber the daily service of the civil engineering 

infrastructures. These kinds of methods cannot be directly applied in the large 

size civil engineering structures due to these limitations.  

The investigation of vibration-based structural condition assessment 

methods as an effective means for the damage detection attracted considerable 

attention of researchers recently. It is known that the defect or damage in the 

structural material property will be reflected in the information of structural 

responses and the parameters derived from the structural response by Fast 

Fourier Transformation (Cooley and Tukey, 1965), wavelet analysis and other 

efficient tools. It is possible to conduct the evaluation for the condition of 

structural systems with limited number of sensors.  

The vibration-based structural condition assessment method could be 

classified into two broad categories, which are response-based method (Cawley 
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and Adams 1979; Salawu 1997a, 1997b; Uzgider et al. 1993; Zhang et al. 1992, 

1993) and modeling-based method (Mottershead et al. 1993; Collins et al. 1974; 

Abdalla et al. 1998, 2000). With response-based methods, the time consuming 

analytical model updating work could be avoided. However, the identification of 

damage location and severity in Level 2 and 3 requires a large number of sensors 

and time consuming work on data processing. The external excitation is always 

unknown. The response-based approach needs to consider all damage scenarios 

which are time consuming and not practical for large size structures. With the 

modeling-based method, the abnormal changes could be represented analytically 

by physical parameters, such as mass, stiffness and damping, or the function of 

them, such as analytical natural frequency, analytical mode shape and analytical 

modal strain energy, which could be derived from the analytical structural 

response. The damage could be located and quantified by inverse analysis with 

the difference between the analytical data and measured data. The pre-event 

evaluation of structure would provide the guideline to structural design. The 

post-event condition assessment and successive maintenance could also be 

fulfilled with the model-based methods. Appropriate compromises are sought by 

researchers between the accuracy and simplification of the practical engineering 

problems to reduce the computational time of the structural condition 

assessment. 

Another aspect of structural condition assessment is load environment 

identification. The dynamic load is an important source causing the damage and 
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the dynamic load environment assessment is an important component in the 

structural condition assessment and health monitoring of a structure (Balageas 

2002; Boller and Staszewski 2004). It is impossible to measure the excitation of 

the structure directly under most circumstances due to the lack of accessibility to 

the loading position or the need of a large number of sensors. The dynamic 

responses of a civil engineering structure subject to time varying loads have been 

studied for a few decades with indirect method. A lot of force re-constructions or 

force identification methods have been proposed and analyzed. Various researches 

in the field of force identification, such as bridge-vehicle interaction problem, 

wind load identification and base excitation identification can be found (Busby 

and Trujillo 1998; Kucharski 2000; Law and Chan 1997).  

Although the aforementioned research works include most aspects in the 

dynamic analysis of civil structures and force identification, the force 

identification method is frequently based on the finite element model which often 

contains some errors practically. Furthermore, the force identification method is 

almost based on the Zero-Order Hold discrete in previous studies. The 

conventional ZOH discretization of the continuous equation of motion gives 

satisfactory results when the number of external excitation is small and the 

sampling period is short. However, when the number of unknown external forces 

increases, particularly with a more complicated structural system, this method 

may be inaccurate. With the ZOH discrete analysis, the result will be also less 

accurate when the sampling rate is low. This is because the force is continuous in 
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practice. The First-Order Hold discrete assumption will be closer to the real force 

time history than the ZOH discrete.  

The common type of errors is found in modeling the boundary conditions 

which affects the accuracy of both the forward and backward analysis result. The 

analysis of large size civil structures is always subject to the problem of 

insufficient or incorrect information on the analytical model including the 

uncertainties of geometric and physical properties, and connections at the 

boundaries. Research on the inverse problem of damage detection has been 

conducted with the substructure method in the last two decades. However, few 

literatures have taken into account the errors and uncertainties in the finite element 

model of the structure for structural condition assessment. Therefore, in the 

structural condition assessment and model updating of this Thesis, the 

uncertainties have to be considered for a full description of the dynamic response 

of the structural system. The structural condition assessment of a determined 

structure has to mitigate the uncertainties steadily with the iterative inverse 

analysis and provides more reliable results to engineers.  

1.1.2 Background of Structural Vibration Control 

Passive, active, semi-active and hybrid control methods have been actively 

investigated and implemented in a large number of modern buildings and bridges 

to mitigate the structural vibration due to the wind or earthquake. Passive control 

devices, such as base isolation and braces, are widely used in civil engineering 
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structures but they cannot be adaptive to the structural parameters. For more than 

three decades, researchers have investigated the application of active, hybrid, and 

semi-active control methods and devices to remove the limitation of passive 

approaches and to reduce structural responses. Kajima Corporation implemented 

the first active control to a full scale building in 1989 (Kobori et al. 1990). The aim 

of the active control is to conduct the structural control during the strong wind and 

moderate earthquake (Spencer et al. 2003). Hybrid-control strategies of civil 

engineering structures also have been investigated by many researchers to ensure 

the control efficiency and reliability of both the structure and control system 

during the harsh earthquake event (Housner et al. 1997; Adeli and Saleh 1998; 

Kareem et al. 1999; Nishitani and Inoue 2001; Yang and Dyke 2003; Casciati 2003; 

Faravelli 1994; Spencer 2003). The hybrid structural control is a combination of 

the passive control, active control or semi-active control. The hybrid structural 

system is more reliable than the active control system. The active control can also 

be work with a limited number of response feedbacks of the sensing system for 

the hybrid control system during the strong wind or moderate earthquake. The 

semi-active control and passive control could also reduce the structural response 

even the failure of active control. Considering the reliability and efficiency, the 

hybrid control is now generally applied in practical engineering (Faravelli and 

Spencer 2003).  

However, majority of the control strategies are designed for the centralized 

control system without considering the changes in structural properties in the 
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past. With the centralized control of structural vibration of large system a higher 

demand will be required on sensing system, controller and actuator. Large 

number of sensors and actuators are needed for the control of large size structures. 

Higher requirements of sensors, data transmission facility, the computational 

hardware, actuators as well as the central controller are needed to be fulfilled 

(Lunze 1992). The centralized structural control strategies may not be reliable as 

expected due to the possible failure of the active control function during the 

severe earthquake. The decentralized control strategy has been proposed to 

remove these limitations in areas of power transmission network, economic 

systems and space dynamic systems (Sandel 1978; Ahmadian 1994; Siljak 1996; 

Bakule 2008). However, research on decentralized structural control for 

large-scale reports (Lynch and Law 2000; Swartz and Lynch 2006; Wang 2007a, 

2007b; Loh et al. 2007) structural systems is still limited.  

1.2 Research Objectives 

The primary research work presented in this Thesis aims to develop a 

structural condition assessment with time-invariant or time-variant parameter and 

to perform a theoretical study of decentralized control strategy with substructure 

method. The specific objectives of the whole research work will be achieved with 

the completion of the following aspects: 

(1) To develop force identification method for substructure with first-order 

hold discrete method considering force at a fix-position force and moving 
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force.  

(2) To develop a new two-stage model updating method for structural 

condition assessment with substructure methods. A general response 

sensitivity method for substructural model updating is proved and 

illustrated.  

(3) Two new computational methods are proposed to improve the first stage 

identification. Firstly, a time window force identification method is 

proposed to reduce the computation effort of the first stage identification. 

Secondly, in general, a method for the simultaneous identification of the 

unknown force and initial responses is also presented for the force 

identification.  

(4) Two time-variant structural parameter identification methods are proposed 

based on Chebyshev polynomial and time window identification method. 

With this post-event method, the abrupt structural damage and bilinear 

property of brace during the earthquake could be identified.  

(5) A new decentralized autonomous control system with substructure method 

is presented. The structural control is adaptive with the updating of the 

structural parameters of the system via the structural evaluation system.  

1.3 Major contribution of this thesis 

A large-scale structural system may have complex boundary conditions and 

uncertainties in the material properties. The large-scale structure is complicated 
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and models on the boundary conditions and any innovative device for seismic 

protection may not be accurate. It is difficult to conduct structural condition 

evaluation for large structures partial because of these points. 

Numerous of structural condition assessment methods have been proposed. 

The structural methods in frequency domain always need large number of 

measured data. The structural condition assessment in time domain is an 

alternative solution to structural health monitoring which needs as few data as 

possible. Though a lot of work has been done in this field, there are yet some gaps 

which limit the application of this kind of method. It is usually difficult to conduct 

the parameter identification in large scale structural system due to the calculation 

efficiency, accuracy and convergence. Previous time response sensitivity methods 

commonly assume the structure is connected rigidly to the base and the 

base-superstructure interaction is never taken into consideration. Most of the 

sensitivity methods in time domain commonly needs the record of the excitation or 

needs an assumption of the function of the external force time history. The force 

identification method is always based on the Zero-Order Hold discrete method 

which may cause large error to the identification result. Also the structural initial 

responses, i.e. acceleration, velocity and displacement, are commonly assumed to 

be zero but they are always unknown and non-zero values. Time-variant structural 

parameter identification is difficult to be identified with the existing time response 

sensitivity methods.  

Structural control would ensure the structural reliability of the structure 
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during the severe earthquake. The integrated system of structural control and 

model updating would make the structural control algorithm more stable and 

effective. However, only the integrated system with model updating method in 

frequency domain has been investigated. Model updating method in frequency 

domain commonly needs a large number of measured data from structural system 

with existing proposed method. 

Since the gaps mentioned before, this thesis aim to propose a series method 

based on substructure methods which could improve the computational effort 

considering the time-variant or time-invariant model error and damage, perform 

the general out-put only structural condition assessment, including load 

identification and damage detection, conduct the time-variant structural condition 

evaluation and implement the smart structure with the integration of structural 

control and structural health monitoring. 

The response sensitivity method in time domain is an alternative solution to 

structural condition assessment, which needs as few data as possible. Several 

components of work in structural condition assessment with substructure method 

are completed in this thesis. Firstly, a substructural external force identification 

method based on the equation in state space with the First-Order Hold discrete and 

Tikhonov regularization is presented. This method makes good use of this limited 

but accurate analytical information of the structure for the inverse identification of 

moving or static external force acting on the structure.  

Secondly, a general response sensitivity method based on the two-stage 
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identification for structural model updating considering the nonlinear 

support-superstructure interaction is developed. The two-stage identification 

method for substructural condition assessment is illustrated, proved and improved. 

In this study, a concept of pseudo structure is constructed for illustration and proof. 

Furthermore, two new computational methods are proposed to improve the first 

stage identification. A time window force identification method is proposed to 

reduce the computation effort of the first stage identification. The initial structural 

response, i.e. the acceleration, velocity and displacement at all dofs of the 

structural system, is always supposed as zero with time domain response 

sensitivity method in previous research work. However, the initial structural 

response is unknown and non-zero practically. In general, and a method for the 

simultaneous identification of the unknown force and initial responses is also 

presented for the first stage identification. An adaptive regularization method is 

employed for the model updating in the second stage.  

Thirdly, a time-variant structural parameter identification based on 

Chebyshev polynomial is proposed for damping identification. The time window 

identification method is developed to conduct the time-variant parameters 

identification. With this method, the abrupt structural damage during the 

earthquake could be identified.  

Lastly, a new decentralized autonomous control system is proposed. The 

structural control system is implemented with the LQG which is an effective 

control method for the vibration mitigation of structures. The structural control is 
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adaptive with the updating of the structural parameters of the system via the 

structural evaluation system. A modified adaptive regularization method is used in 

the solution of the structural evaluation via model updating. The autonomous 

decentralized control system employs the substructure method proposed in this 

thesis which is more efficient in calculation with smaller mass, damping and 

stiffness matrices for the structural evaluation.  

All these proposed methods in this thesis are verified by numerical simulation. 

The two-stage identification method and time-variant damping identification is 

also verified by laboratory work. Results show that the proposed methods on the 

structural condition assessment are effective and with good performance even 

there is noise in the measurement. 

1.4 Outline of the Thesis 

The contents of this Thesis will be divided into eight Chapters. The outline is 

given as follows: 

In Chapter 1, research background will be introduced. The research 

objectives and the contributions of this thesis are also stated in this Chapter. An 

outline of the Thesis is presented at the end of this Chapter. 

In Chapter 2, a detail literature review on existing research work related to the 

following topics will be addressed: structural condition assessment, substructural 

system identification, regularization method for inverse analysis and a review of 

integrated structural control system. At the end of Chapter 2, the critical issues 
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and limitation of existing structural condition assessment and control methods 

are presented. 

In Chapter 3, a force identification method for a substructure is proposed to 

identify external forces acting on a portion of a structural system based on the 

modified First-Order Hold (FOH) Discrete method in state space. A flat plate 

structure is investigated to illustrate the effectiveness and accuracy of the 

proposed method. Two cases, force on a fixed-position and moving force, are 

studied. A plate structure is divided into three substructures with both excitation 

and measurements in a target substructure. Both the interface forces between the 

substructures and the excitation forces are unknown and they are identified with 

the proposed method. 

In Chapter 4, two substructure identification methods are proposed to handle 

two types of assessment problems. For the first problem, the finite element model 

(FEM) of the whole structure is required and the external forces acting on the 

structure are identified in state space with FEM of the whole structure. For the 

second problem, the FEM of the whole structure is assume unknown but the FEM 

of the target substructure is available. Both the external forces acting on the 

substructure and the interface forces of the substructure are identified using the 

FEM of the substructure. In both Scenarios, the perturbations in the substructural 

parameters are identified with substructure method and the FEM of the 

substructure is updated in iteration steps. A general response sensitivity method is 

proposed addressing the deficiency of existing sensitivity method for damage 
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detection/model updating of a substructure with the analogous evolution of a 

pseudo substructure in the model updating process. Two new computational 

techniques are proposed to improve the first stage of force identification which are: 

a time window force identification method to improve the computation efficiency, 

and a method of simultaneous identification of the interface force and the initial 

responses in a short time window. The updated results from seismic excitation of a 

shearing frame structure are shown to be accurate even with measurement noise 

and unknown initial responses of the structure.  

In Chapter 5, two identification methods are proposed for structural 

time-variant parameters identification. This Chapter reviews on the iterative 

regularization methods for the system identification and propose a general 

sensitivity-based method for the identification of both the time-variant and 

time-invariant damping in a structural system. A new method for the time-variant 

storey stiffness identification based on windowed measured data is presented. The 

time history of measured acceleration is divided into short non-overlapping time 

windows. The structural parameter is taken as invariant in each time window since 

the period of each time window is very small. This idea originates from of average 

acceleration step-by-step integration method. A two-phase identification strategy 

is applied to ensure the physical meaning and convergence of the proposed 

identification algorithm. In the first phase, the initial structural response is 

identified with the Tikhonov regularization method. In the second phase, the 

structural parameter is identified with a modified adaptive regularization method. 
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In Chapter 6, a new integrated system of structural control and evaluation is 

proposed. The control system is autonomous and decentralized with each 

controller independent. A substructural damage detection algorithm is applied for 

this system, which would be more efficient in calculation. The structural 

evaluation system in each distributed substructure performs the structural 

evaluation and the interface force between substructures is updated iteratively in 

iterations in the time domain. A modified adaptive Tikhonov regularization 

method is employed in the structural evaluation system for model updating to 

ensure the physical meaning of structural parameters. The implementation of the 

integrated system is verified with a 16-storey planar shear frame structure. Results 

of damage detection are accurate even with 10% measurement noise and the effect 

of structural control is noted to improve with the updated structural parameters. 

In Chapter 7, experimental investigation of the force identification method 

with FOH discrete method, the two-stage structural condition assessment method 

and time-variant damping identification method will be presented. A nine-bay 

cantilever space frame and a two-dimensional frame were fabricated in the 

laboratory of The Hong Kong Polytechnic University tested for the validation of 

the proposed methods. 

In Chapter 8, conclusions are drawn from the research work presented in the 

Thesis. Due to the limitation of the time and the author’ knowledge, some 

recommendations on the future work related to the problems of the structural 

condition assessment and control with substructure methods are addressed. 
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CHAPTER 2 

LITERATURE REVIEW 

The structural condition assessment and vibration control include a broad 

range of topics and cover interdisciplinary subjects, such as civil engineering, 

mechanical engineering, automation and so on. The investigation of 

vibration-based structural damage detection was first conducted in offshore oil 

industry in the 1970s and early 1980s. Due to the harsh environmental changes, 

such as the marine growth, the measurement noise, and time-variant mass, the 

early stage investigation of vibration-based damage detection method lacked of 

success. This attempt to damage detection in structures was suspended in the mid 

of 1980s. And these methods again attracted increasing interest in the last two 

decades with the application in mechanical engineering, aerospace engineering 

and recently in civil engineering with the development of concerning disciplinary. 

There are two kinds of structural dynamic problems which could be 

distinguished as the forward problem and inverse problem. The forward problem 

can be defined as finding the solution of structural system with the known 

structural model and input. The inverse problem contains two kinds of problems 

which are to identify the system input with the response, boundary condition and 

system model and to identify the system model with the given inputs, response 

and boundary conditions.  
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This Chapter aims to provide a review of the recent studies on the fields of 

structural condition assessment and structural control with vibration-based 

method of civil engineering structures. The literature review on structural 

condition assessment will focus on the load identification method, damage 

detection method based on the structural vibration, substructural system 

identification regularization method and structural control with substructure 

model updating and damage detection and the review on the structural vibration 

control will include centralized control and decentralized structural control.  

This Chapter mainly covers the following topics. Firstly, a general review 

on structural condition assessment including load identification, damage 

detection, model updating will be provided. Secondly, the application of 

substructure methods in structural condition assessment system identification is 

presented. Thirdly, the investigation of the effective tool of regularization 

methods is reviewed. Fourthly, the recent works on integrated system with the 

function of structural control and structural condition assessment based on 

decentralized structural control are explored. Finally, critical issues and 

shortcomings are in existing methods are discussed.  

2.1 Structural Condition Assessment 

The dynamic structural response analysis and condition assessment of 

building and bridges subject to external excitation has been studied for decades. 

Considerable research works on structural performance evaluation, online and 
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offline structural condition assessment can be found in conferences and journals. 

The structural model updating, damage detection and external excitation 

evaluation are important components of structural condition assessment. The 

following reviews on structural condition assessment will focus on these parts. 

Structural damage detection and structural model updating have been active 

research fields in the past three decades (Abdalla et al. 2000). An excellent 

detailed review report on structural damage detection provided by Doebling et al. 

(1998) which summarize various types of existing damage detection methods. 

There are also a lot of methods for loading evaluation. A general summarization 

of problems of force identification was presented by Stevens (1984) and a review 

on moving load identification was provided by Fryba (1999). A selected review 

of the recent developments in structural condition assessment of civil engineering 

structure will be listed in this Chapter.  

2.1.1 Load Identification Methods of Structures 

The forward and inverse problems of building and bridges subject to the 

external excitation have been investigated for a few decades while the inverse 

problem of the evaluation of the external excitation is only with partial success. 

The external excitation estimation methods fall into two categories, which are the 

direct method and indirect method. With the direct method the force transducers 

are installed where the forces apply. Traditional ways to measure the vehicle axle 

load by stopping and weighing vehicle using weighbridge or loadometer are 
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expensive and inefficient. Considerable investigations and tests have been carried 

out since the late 60s and early 70s (Moses 1979; Davis and Sommerville 1987; 

Freund and Bonaquist 1989; Zhi et al. 1999) to control the overweight vehicles. 

Two famous research projects, COST 323 and WAVE, were carried out in Europe 

(Jacob 1994; Jacob and O’Brien 1996). However, the above system can only 

measure the equivalent static loads but not time history of moving loads. In fact, 

the dynamic response of a bridge due to moving loads can be significant, and 

Cebon (1987) concluded that the dynamic wheel loads may increase road surface 

damage by a factor of two to four over that due to static ones. 

With the indirect method other sensors, such as the accelerometers, the 

strain gauges and Fiber Bragg Grating (FBG) placed on the nodes of structure, 

are utilized to evaluate the dynamic time history of the force. In general, it is very 

difficult to measure the external applied force on a structure in real time, while 

response measurement is more accurate than that of the force. The force 

identification method provides an alternative method to solve the above problem. 

Therefore the time-varying force time history identification from measured 

responses contributed greatly to the indirect methods for force measurement 

(Steltzner and Kammer 1999). A review on the inverse analysis for indirect force 

identification methods was presented by Inoue et al. (2001). The identification of 

fixed-position environmental load is nearly the same with the moving force 

evaluation but there is no need to consider the time-variant shape function to 

describe the force position in this problem. The knowledge of the dynamic 
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characteristics of these external forces of structures becomes a requirement in 

engineering design and structural condition assessment. As mentioned before, the 

force identification is the second problem of the inverse problem. 

Moving force identification and wind load identification are two typical 

indirect force identification problems. Bridges are subject to the damaging effects 

of the daily traffics. The structural conditions of the bridge will be affected by the 

operation loads including the dead load, live load, wind load and seismic load, etc. 

Among these loads, the moving vehicular axle load plays a vital role in the 

condition assessment especially for median span bridges. The importance of 

investigating the moving loads on top of the bridge deck was first recognized in 

the 19th century. Following the collapses of some railway bridges in Great Britain, 

engineers and researchers began to pay more attention to the dynamic behavior of 

the bridge under moving vehicular loads, and further research on new techniques 

for the bridge design and bridge condition assessment had been carried out 

(Cantieni 1983, 1992; Chan 1988, 1990). The estimation of moving load on 

bridge is very important for bridge design and bridge condition assessment. A 

general summarization of moving load identification has been proposed by Fryba 

(1999). Various types of structural models include single-/multi-span 

uniform/non-uniform beam/plate/shell with elastic/non-elastic structural Young’s 

modulus, with/without prestressed force. The overweight moving load may cause 

excessive damages to the bridge structure and may even result in great collapse. 

The accurate evaluation of moving load, reliable assessment of bridge condition 
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and effective control of the transportation network become a crucial problem and it 

draws attention of many researchers (Chan 1999; Law et al. 2008; Busby and 

Trujillo 1998; Kucharski 2000; Zhu and Law 2000, 2001, 2002).  

The wind action on a structure is very similar to that with moving vehicles 

passing on top of a bridge deck. The wind load effect on the structures has also 

been investigated extensively (Simiu 1996). When a proper wind load model is 

adopted, the responses of the structure can be formulated explicitly as a function 

of the wind load, and the wind load can then be identified from the structural 

responses in the inverse analysis. Chen and Li (2001) estimate the wind load 

acting on a shear building system using a general statistical average algorithm 

based on the system responses, including the displacements, velocities and 

accelerations from all degrees of freedom (DOFs), and with unknown structural 

parameters. Wind load identification is usually based on the basic wind pressure 

calculated from the long term records of wind speed and direction data in the area 

of structure and the statistical information, considering the surface roughness of 

the ground, coefficient of the shape of the structure for the wind load, coefficient 

of wind pressure variation with height and the magnifying effect caused by the 

fluctuating wind components and so on (Kolousek 1984). Chen and Li (2001) 

estimate the wind load acting on a shear building system using a general statistical 

average algorithm based on the system responses, including the displacements, 

velocities and accelerations from all degrees of freedom (DOFs), and with 

unknown structural parameters.  
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Except the moving force, wind load there are also some other types of 

forces, such as cable forces on the power transmission tower, suspension force on 

the bridges and so on. They are also important for the structural design, 

evaluation and maintenance. Enormous methods have been proposed for the 

identification of these forces, including deterministic methods, stochastic 

methods and methods based on artificial intelligence (Uhl 2007). The 

deterministic methods require the model of the structural system and the 

identification results strongly depend on the accuracy of the model. The 

estimation of model parameters is based on the input measurement only or 

input/output measurement. The structural responses with low noise level and 

accurate system model could help improve the identification result. The 

identification of the time-variant structural parameter could also modify the load 

identification result in case of the time-variant structural system with 

deterministic method. Stochastic methods require the statistical relationship 

between the input and output. The relationship is evaluated based on the 

experimental measurement of the input and output the structural system and with 

relationship the estimation of the external excitation. Regression model is 

commonly used in the force identification. And a dedicated procedure of the 

regression model for load identification has been presented by Uhl (1998). 

Artificial intelligence has also been used in load identification with artificial 

neural-network algorithms, fuzzy algorithms and genetic algorithms. The learn 

process is required to recognized and learn the pattern between the load and the 
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structural responses. In the learning process large number of data and the 

accurate measurement are required. The learn process from the practical structure 

could be substituted by numerical simulation due to the difficulty of the force 

direct measurement.  

The deterministic method includes two main classes of frequency domain 

method and time domain method (Simonian 1981; Anger 1990; Cannon et al. 

1986; Law et al. 1999). The frequency response function based on least squares 

approach is the most widely used and these series methods can be applied in 

various force identification problems with the spectral analysis. Frequency 

response function and measured responses are always required for the force 

identification method in frequency domain to obtain the spectrum of excitation 

force. The identification of the external force could be conducted mutual energy 

theorem proved by Heaviside in 1892. With the measured response and the FRF 

matrix, the inverse analysis of the external excitation could be conducted through 

their product. The time history of the dynamic force at the expected frequency 

can be calculated with the inverse Fourier transform on the previous multiplying. 

The modal superposition technique is typically used to decompose the equation of 

motion of the system in which the response of structure is represented by a set of 

modal shapes with different amplitudes. The equation of motion of a dynamic 

system, which is a partial differential equation, is transformed into a set of 

ordinary differential equations which can be easily solved by numerical methods 

such as the Newmark-β method.  



 26 

Method in time domain could identify the force with the relation between 

the system and responses of the structural system with the known force position 

and in form of convolution integral. This method was firstly proposed by Law et 

al. (1997) for the moving force identification and the relationship of moving axle 

force and modal response is formulated in form of convolution integral. The 

discrete form of equation of motion of the system for each vibration mode can be 

obtained by assuming the time history of moving forces to be step functions in 

small time intervals which is also the Zero-Order Hold discrete method (Busby 

and Trujillo 1998). The time history of the external forces on a simply supported 

beam can be identified by solving the time discrete equations. The application of 

this method on identifying the moving forces on a multi-span continuous bridge 

was investigated by Zhu and Law (2000, 2001, 2002). The research was also 

extended to study the possibility of identifying axle loads when applied to real 

bridge-vehicle system with road surface roughness and incomplete vehicle speed. 

Experimental tests showed that the method can identify individual axle loads 

travelling at non-uniform speed with small error (Zhu and Law 2003). The effect 

of bearing stiffness on the bridge support was also included in this moving force 

identification procedure by Zhu and Law (2006).  

There are some conventional methods applied in the load identification. In 

many practical engineering problems, the boundary conditions are not known 

and the locations of loads are known. In these problems, the target is limited to 

identify the time history and amplitude of the time history of the external forces. 



 27 

With both the time domain method and frequency method, the least-squares 

method is commonly used in the procedure of identification. The least-squares 

methods, singular value decomposition (TSVD) based least-squares methods and 

Tikhonov regularization methods (Law et al. 2001) for the force identification 

have been investigated in numerous of reference (Yu and Chan 2003). 

2.1.2 Damage Detection Methods Based on the Structural 

Vibration 

Structural damage could be defined as the reduction of structural 

loading-bear capacity structural. The structural damages always result from 

environmental loadings such as earthquake, wind, snow and ice and the corrosion 

from the rain and moisture. As mentioned before, conventional Non-Destructive 

Tests includes: penetration, magnetic particle, eddy current, ultrasonic, and 

radiographic tests. Optimization method has also been applied to the optimal 

matrix (Rodden 1967; Brock 1968; Baruch 1978). These traditional methods bear 

several limitations when testing in practical engineering due to the penetration 

depth, the priori of the damage location and inaccessibility of the damage location. 

In this section, a review of structural damage detection and model updating 

parameters will be conducted in two aspects, which are time-invariant parameters 

identification and time-variant parameters identification. 

2.1.2.1 Time-invariant Damage Identification 

The vibration-based damage index methods as a kind of generally applied 
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method in engineering possesses the merit that they can be simply realized in 

engineering problems. In this process, the structural parameters are assumed as 

invariant when the damage is small. Damage index methods use changes in 

natural frequencies, mode shapes or other modal parameters calculated from the 

measured response to detect damage and can avoid the limitations above. With the 

difference between the modal data from the damaged and the intact structures or 

analytical model information on the damage location and even the extent could be 

obtained. However, these kinds of methods always do not provide the 

quantitative information about the structural damage. Existing approaches could 

be classified into the following categories based on the parameters used in the 

damage detection: (1) methods with the shifts of natural frequency; (2) methods 

with the mode shape changes; (3) methods with the variation of mode shape 

curvatures; (4) methods using modal flexibility changes; (5) methods using modal 

strain energy changes; and (6) methods using frequency response function. 

Methods based on Natural Frequency 

In the early stage of damage detection only the shifts of the frequency is the 

most effective and reliable method due to the easy implementation of the natural 

frequency measurement and immature modal analysis methods. A comprehensive 

review on the damage detection with the changes of natural frequency was 

presented by Salawu in 1997. Two types of damage detection methods conducted 

with the shifts of the frequency. The first type method is forward problem. With 

the first type method, the analytical frequency changes of all damage cases are 
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compared with the measured frequency shifts and the best match is supposed as 

the suspect one (Vandiver 1975, 1977). This kind of method was used in offshore 

structures in 1970s (Vandiver 1975, 1977; Wojnarowski, et al. 1977). With the 

direct comparison of natural frequency only the location of damage could be 

found. Cawley and Adams (1979) employed the ratio of the frequency changes to 

detect the damage in composite materials. The ratio between the frequency shift 

of the ith and jth mode is denoted as /i j  . However this method could only 

detect the position of the damage but cannot quantify the damage severity as 

presented by Lu (2005) and Li (2008). And the method is limited to the single 

damage scenario. A formulation could be used to illustrate the problem. The 

change of the ith modal frequency could be represented as a function of the 

severity vector α and position vector s of the damage as follows 

 ( , )i if  α s  (2.1) 

With Taylor series expansion ignoring the higher order terms Eq. (2.1) can be 

written as 
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Considering the damage severity as small value then /i j   can be calculated 

as 
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When the ratio between different natural frequency shifts of simulated analytical 

damage scenario matches the experimental measurement, the possible damage 

site is located. The ratios of frequency changes are also adopted for damage 
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detection by Friswell et al. (1994). A series of damage scenarios are assumed. 

The ratios are calculated for several low modes of the experimental structure and 

the analytical damaged structure with intact structural model. When the damage 

scenario of analytical structure matches the inspected structure, the damage 

scenario is supposed as the suspect one. The shifts pattern of a deterministic 

mode could be applied to identify the structural parameters changes. Messina et 

al. (1996) proposed a parameter defined as Damage Location Assurance 

Criterion for the location j calculated as  
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where f is the measured frequency change vector of structure with single 

damage, j f  is the theoretical frequency change vector for a damage of a 

known level at location j. The location with highest value of DLAC is regard as 

the damage location. The method mentioned above was constrained to the single 

damage identification. The multiple damage detection was proposed and 

calculated with the parameter of multiple damage location assurance criterion. 

The size of the damage is also formulate as  
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where D  is the stiffness reduction factor. 

The second method with the shifts of frequency is inverse problem. In the 

second method, the damage location and severity detection is formulated and 

calculated as inverse problem for model updating. Lifshiz and Rotem (1969) 
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conducted the damage detection with inverse analysis from the shifts of the 

natural frequency and found that the modulus changes related to the structural 

natural frequency shifts. The method with natural frequency sensitivity with 

respect to the structural damage was developed in 1990s. A large number of 

studies were conducted based on the sensitivity analysis of modal frequency to 

structural damage (Stubbs and Osegueda 1990). Penny et al. (1993) proposed a 

method to detect the damage by the experimental measurement and the analytical 

simulated cases with the idea of error function and least-squares. They also found 

the identification results with frequency shifts methods are sensitive to 

measurement noise (Penny et al., 1993; Messina et al., 1996; Farrar et al. 1994). 

Friswell et al. (1994) presented a damage detection method based on a known 

likely damage scenarios. An accurate model is assumed and the ratios of 

frequency changes of low modes are calculated for all the postulated damage 

scenarios. The corresponding ratios are also calculated for the inspected structure. 

A power law relation is used to fit these two sets of values. When the damage 

scenario of the real structure match to the set of assumed damages, the correct 

type of damage will produce a fit depicted by a unity-slope line. For all other 

types of damage, the fit will be inexact. Salawu (1997a) proposed a global 

damage integrity index that is based on a weighted ratio of the damaged natural 

frequency to the undamaged natural frequency. The weights could reflect the 

relative sensitivity of each mode to the different damage location. The local 

integrity index is calculated by weighting the global index with the square of the 
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ratio of damaged mode amplitude to the intact mode amplitude on a particular 

measurement point. 

Currently, it is practical to conduct damage detection with frequency shifts 

when the measurement could be performed in an acceptable environment. New 

established closed-form sensitivity equation relating the change in stiffness and 

shifts in natural frequency was established by Xu et al. (2004) which was verified 

by numerical simulation and laboratory work.  

The advantages of application with frequency shifts possess could be 

summarized as the number of sensors is not large and the measured natural 

frequency is subjected to less measurement noise than other modal parameters. It 

is possible to implement the long term structural health monitoring with the 

frequency-based method. However, there are some significant limitations with 

this kind of methods although ongoing and future work may help resolve these 

difficulties. The low sensitivity of the natural frequency shifts to structural 

damage requires small error in measurement and large level of damage. 

Furthermore, as a global characteristic of structural system, shifts of frequency 

could reflect the existence of structural properties changes to some extent but 

these shifts cannot clearly illustrate the local damage. In other words, the 

frequencies cannot provide clear information to locate and quantify the local 

characteristics of structure. Higher modal frequencies are more sensitive to the 

structural changes however the higher modal frequencies are difficult to measure 

due to the measurement noise and less contribution to the response.  
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Methods based on Mode Shapes 

A numerical study was conducted numerically to obtain the natural 

frequencies and modal shapes by Yuen (1985) with a finite element model of 

uniform cross-sectioned cantilever. In this study the systematic approach was 

used to locate the damage position according the changes in mode shape and 

mode-shape-slope parameters. It is shown that the changes in the eigenvector 

definitely relate to the location and severity of structural damage. 

The structural changes will cause the changes in mode shapes in the vicinity 

of damage components. Two generally used methods are the comparison of the 

modal assurance criterion (MAC) proposed by West (1984) the coordinate modal 

assurance criterion (COMAC) from the measurement before and after damage. 

MAC indicates the correlation between two sets of mode shapes obtained from 

the measurement before and after the damage while COMAC indicates the 

correlation between the modes shapes on selected measurement point of the 

structure. MAC is calculated as 
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where s and r are selected any two eigenvectors of a structural system. In the 

cases of model updating, the mode shape pairs from a tested structure and its 

corresponding analytical model are used to calculate the MAC values. It is noted 

that the value of MAC ranges from 0 to 1 with a value of 1 to indicating identical 

mode shapes and 0.0 for orthogonal ones. COMAC (Lieven and Ewins 1988) is 

calculated 
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where k and t denotes the coordinate index and mode index respectively, A and B 

denote the state after and before the structural damage. It is noted that the 

calculation of COMAC involves not only the mode indices but also the structural 

DOFs and coordinate information. 

Rizos et al. (1990) developed the analytical model of a cantilever beam with 

a transverse surface crack extending uniformly along the width to locate and 

quantify the damage. In this study open crack (Abdel et al. 1999, 2001) model 

was applied and compatibility condition between the two sections was derived 

based on the crack-strain-energy function. The beam was excited at a natural 

frequency and the vibration magnitudes were measured on two points. It shows 

that the crack location can be found and depth can be estimated with satisfactory 

accuracy from the measured amplitudes, the respective vibration frequency and an 

analytical solution of the dynamic response. In the study by Bakir et al. (2007) the 

MAC values and the relative differences of the frequencies was minimized to 

update a multi-storey complex structure with a complicated damage pattern. 

Stubbs et al. (1990) reported an investigation of a scale model of offshore 

platform structure with damage and found that the changes of mode shapes could 

not be related to damage in this study. Fox (1992) presented a comparison study 

between identification results with natural frequency and mode shape data. A 

simple case of a uniform beam with a crack was considered. And results from 

finite element analysis and from experimental modal analysis were presented. The 
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study showed that the single vibration mode such as the MAC was relatively not 

sensitive to the saw cut damage. A node-line MAC, a MAC with measurement 

point close to a node for one particular mode is more sensitive indicator of mode 

shape changes caused by damage. Simply graphical comparison of the relative 

changes in mode shapes proved to be the effective way to detect the damage 

location at resonant frequencies and with measured mode shapes. To locate the 

damage, a simple method of correlating the node point which show relatively 

little changes in resonant frequencies with the corresponding peak amplitude 

points in modes which show large changes at resonant frequencies was proposed. 

A method of scaling the relative changes in mode shape to identify the location 

of the damage was also proposed by Fox. Based on the changes in mode shapes 

Mayes (1992, 1995) proposed a method known as structural translational and 

rotational error checking (STREC). With the ratios of relative modal 

displacements, STREC assessed the difference of structural stiffness between 

two different sets of DOFs. With STREC, the stiffness comparison of the tested 

structure and analytical model or the comparison of two tested structure could be 

obtain. Srinivasan and Kot (1992) found the changes of mode shapes were more 

sensitive to the damage than resonant frequency on the shell structure. The 

damage could be quantified with the value of MAC comparing the damage and 

intact mode shapes. Lam et al. (1995) defined a mode shape normalized by the 

change in natural frequency of another mode as a “damage signature” which is 

only a function of crack location. A set of possible signatures is computed 
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analytically considering all possible damage states. The measured signatures 

were selected when they gave the best match to the measurements using the 

MAC. 

Based on the concept of MAC, Lieven and Ewins (1988) proposed COMAC 

calculated as Eq. (2.7). Kim et al. (1992) investigated the MAC and its variation 

due to the structural damage. With the Partial MAC in conjunction and COMAC 

the location of damage could be isolated. Ko et al. (1994) presented a method 

that used a combination of MAC, COMAC and sensitivity analysis to detect 

damage in steel frame structures. The sensitivities of the analytical mode shapes 

to particular damage locations were computed to determine which DOF is most 

relevant. The author distinguished the mode shape pairs which could be used for 

damage detection with the analysis of MAC calculated from the damaged 

structure and intact structure. The results demonstrated that not all mode pairs 

were effective to conduct the damage detection and the indication of damage 

might be masked by some modes that were not sensitive to the damage. Messina 

et al. (1998) developed a method which is an extension of the multiple damage 

location assurance criterions (MDLAC) by using incomplete mode shape instead 

of modal frequency. A plane truss structure is analyzed as a numerical example 

to compare the performance of the proposed method with the multiple damage 

location assurance criterions. Results indicate that the new method is more 

accurate and robust in damage localization with or without noise effect. The 

result of Salawu and Williams (1994) also showed experimentally that a selected 
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mode shapes could be applied for the damage detection but not all the mode 

shapes perform as good indicator. Salawu and Williams (1994) showed that the 

values of MAC can be utilized to indicate which modes are sensitive to the 

damage.  

The damage detection methods with mode shapes combined with other 

parameters are also investigated. A method was proposed by Skjaeraek et al. 

(1996) to localize structural damage in reinforced concrete (RC) structures 

excited by earthquake using the two lowest smoothed frequencies and mode 

shape coordinates which are used as an input via a substructure iteration 

technique. The optimal sensor placement issue for the damage detection has also 

been examined. Incomplete measurement was used for damaged structural 

elements identification by Cobb and Liebst (1997). Optimization method was 

applied in this method to minimize the deviations between the measured and 

analytical modal frequencies and partial mode shapes. Damage could be 

identified by determining the element stiffness changes to match the measured 

data of the damaged structure. Parloo et al. (2003) used mode shape sensitivities 

to damage detection with calculated sensitivities matrix from the experimentally 

determined mode shapes. Therefore, the finite element model for the test 

structure is not necessary. Pascual et al. (2005) proposed a new method in form 

of the expansion of mode shape for damage assessment and they obtained 

satisfactory results. 

As the previous literature shown, critical issues with mode-shapes based on 
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damage index method contain that the location of the selection of mode, the 

optimal placement of limited number of sensors. Mode shapes inherently reflect 

the spatial information of the structural changes while only high mode shapes, 

which are difficult to obtain, are sensitive to changes of structure 

Methods based on Mode Shape Curvatures/Strain Mode Shapes 

The changes in structural parameters could be reflected in the mode shapes, 

however, the corresponding changes in mode shapes are not sensitive to the 

changes in structural parameters. New parameters developed from mode shape 

derivatives, such as curvatures, were used as an alternative tool to for damage 

detection. The curvature of beam is firstly calculated as 

 = =y y
R

   (2.8) 

where  is strain, R is radius of curvature and  is curvature. It is noted that 

there is a direct relationship between curvature and bending strain for beams, 

plates, and shells and the curvature can be obtained by strain measurement.  

Pandey et al (1991) presented that the changes of mode shape curvature can 

be used for damage detection for a simply supported beam model they 

considered. With finite central difference method and the analytical modal 

displacements curvature values at measurement point i can be calculated as 

 2
1 1( 2 ) /i i i i h        (2.9) 

where h is the length of the element. The analytical finite element model is not 

needed if the response of intact structure can be measured. But the rotational 

components cannot be obtained through the measurement of displacement 
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responses or acceleration responses. 

Ratcliffe (1997) developed the method based on mode shape data and this 

method did not require a priori knowledge of the undamaged structure. When 

damage is severe (a localized thickness reduction of more than 10%), this method 

can identify the location of damage successfully with a finite difference 

approximation of Laplace's differential operator to the mode shape. However, 

when damage is not severe, processing of the Laplacian output is required before 

the location can be determined. Testing locations are required close to each other 

and testing points are in good enough or large errors will be aroused by central 

difference method. Chance et al. (1994) found that errors will be introduced 

when numerical curvature of mode shapes may arise. Nwosu et al (1995) 

investigated the strain changes with a crack in a tubular T-joint. These data can 

be measured at a relatively large distance from the crack. 

Abdo and Hori (2002) presented that rotation of mode shapes may be 

available to the damage detection. They conduct a simulation with a beam and 

the numerical results of their studies clarify that the rotation of mode shape 

contains the characteristic of the damage localization even though the 

displacement modes cannot localize the damage. The simulation results also 

indicate that the rotations of modes are robust in multi-damage with different 

damage level. Furthermore, the method with the changes in the rotation of mode 

shape does not need very fine grid of measurements to detect and locate damage, 

effectively.  
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There are some drawbacks in applications with the mode shapes and their 

derivatives. Firstly, a large number of sensors are required with mode shapes or 

mode shape curvatures. Secondly, the measurement of mode shape or their 

derivates are sensitive to the measurement noise and uncertainties on structural 

system. Thirdly, the rotational mode shapes are still difficult to measure though 

they are more sensitive to structural parameter changes. Lastly, all these method 

only based on mode shapes or curvature techniques cannot be practically applied 

to large size structural system. 

Methods based on Flexibility Matrix Changes 

Another class of damage detection methods with flexibility matrix to 

estimate changes structure stiffness was proposed. The flexibility matrix can be 

derived from the mass-normalized measured mode shapes and frequencies and 

with this method the flexibility matrix is also called modal flexibility. Generally, 

damage is identified with the comparison of flexibility matrices synthesized from 

the modes of the damaged structure and undamaged structure or FEM of 

structure. The modal flexibility can be approximately estimated from a few lower 

modes data of the structure which overcome the drawback of incomplete 

measurement of modes. Therefore, many research works focused on this type of 

methods.  

Raghavendrachar et al. (1994) and Aktan (1994) illustrated the method with 

modal flexibility as a tool for nondestructive evaluation of bridge-foundation-soil 

systems. In their study, the modal flexibility is found to be more sensitive to the 
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local damages than natural frequencies or mode shapes. Pandey and Biswas 

(1994) presented a damage detection and localization method based on variation 

in the measured flexibility of the structure. Numerical example and experimental 

work with linear local damages were conducted with this proposed method. 

Results showed that the estimation of the damage location and severity could be 

obtained from just the first two measured modes of the structure. Toksoy and 

Aktan (1994) proposed a bridge-condition assessment method for evaluating the 

global state of health. This method was formulated based on modal flexibility 

directly obtained by measured modal test data. The method was proven and 

experimental and numerical investigations were conducted to a three-span 

reinforced-concrete high-way bridge. They observed that anomalies in the 

deflection profile can indicate damage even without a baseline data set. 

Zhang and Aktan (1995 and 1998) studied the derivative of modal flexibility, 

called uniform load surface (ULS), which is defined as the deformation shape of 

the structure subjected to a uniform unit load. In their study, the effect of 

truncation error on modal flexibility was investigated through a numerical 

example and the experimental results from a three-span highway bridge. They 

concluded that modal flexibility coefficient, especially the off-diagonal terms of 

the matrix where the loading location is different from the deflection location, are 

very sensitive to the frequency band used. Wu and Law (2004) developed a 

damage detection method with variation of uniform load surface (ULS) curvature 

for two-dimensional plate structures. A new approach to compute the ULS 
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curvature was proposed based on the Chebyshev polynomial approximation, 

instead of the central difference method. In their studies it is found that the ULS 

curvature is sensitive to the presence of local damages, even with truncated, 

incomplete, and noisy measurements. 

Methods based on Modal Strain Energy Changes 

The combination of the finite element model and mode shapes was 

developed by some research to conduct the damage detection and some more 

damage indicators, such as modal strain energy changes was proposed. Some 

studies indicated that damage detection method based on modal strain energy 

changes is efficient to localize structural damage. The general definition of 

modal strain energy of a structure with respect to the i-th mode can be expressed 

as 

 1
2

T
i i iMSE   K  (2.10) 

where ϕ is the modal displacement shape of the ith mode, and K is the stiffness 

matrix of the structural system. 

Yao et al. (1992) presented a method to detect damage with the concept of 

strain mode shape. It is assumed in their studies that a new state of force 

equilibrium is realized when structure subject to damage and this change of force 

distribution can be noted from the modal strain energy of the structure before and 

after the damage. However, internal force redistribution is different between 

different modes. Therefore different outcomes will be attained with different 

testing modes. Topole and Stubbs (1995) adopted method for damage detection 
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with limited modal parameters of the damage structure. Stubbs and Kim (1996) 

improved this method and utilized the modal strain energy to localize and 

quantify the damage without baseline modal properties. Stubbs and Kim (1996) 

improved the method by using the modal strain energy to localize and estimate 

the severity of the damage without baseline modal parameters. 

Law et al. (1998) developed the use of modal strain energy named 

Elemental Energy Quotient (EEQ). The EEQ of the jth element and the ith mode 

is defined as 
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where Ke
j is the jth elemental stiffness matrix, Me

j is the jth elemental mass 

matrix. Shi et al. (1998) and Abdel (2001) proposed the concept of the Elemental 

Modal Strain Energy (EMSE) to detect the location of damage. This method 

makes use of the change of modal strain energy in each structural element before 

and after the occurrence of damage. Information required in the identification is 

the measured mode shapes and elemental stiffness matrix only without knowledge 

of the complete stiffness and mass matrices of the structure. The Modal Strain 

Energy Change Ratio (MSECR) could be a meaningful indicator for damage 

localization. The authors also presented two damage quantification algorithms 

based on sensitivity analysis of modal strain energy (Shi et al. 2000a, 2000b; Shi 

et al. 2002). 

Methods based on Frequency Response Function (FRF) 

Considering indirect calculation of modal data from the polluted 
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measurement the FRF data is more reliable and reasonable than the measured 

modal data for the damage detection. The FRF can be used for the damage 

detection.  

Samman et al (1991) used a pattern recognition method to study the changes 

in FRF signals for structural damage detection. In their studies a scaled model of 

a highway bridge was used to investigate the change in FRF signals caused by 

the development of cracks in its girders. Wang and Liou (1991) proposed a new 

method to identify joint parameters with two set of measured FRFs of a 

substructure with and without the effect of joints. Numerical simulation and 

experiments are used to verify the proposed method with some strategies to 

overcome the adverse effects of noise. Law et al (1992) developed the sensitivity 

based on the change in FRF at any point, rather than just at the resonances. 

Therefore, many points of the FRF around the resonances are considered and a 

least-squares method is applied to identify the changes in physical parameters. 

Wu et al. (1992) used a back prop neural network with the first 200 points of the 

frequency response function as input to identify the damage in a three-storey 

building model. Chaudhry and Ganino (1994) utilized measured FRF data over a 

specified frequency range as input to a back prop neural network to identify the 

presence and severity of delamination in debonded beams. Park et al. (2003) 

proposed detection technique based upon an incompletely measured 

experimental model but based upon incompletely measured frequency responses 

without accurate finite element model. Their work also discusses frequency 
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regions where the suggested method works satisfactorily. Ni et al. (2006) 

presented an experimental investigation of seismic damage in a 38-storey tall 

building model with measured FRFs and neural networks. Juan and Dyke (2000) 

presented and experimentally verified a new technique to identify damage based 

on changes in the component transfer functions of the structure or transfer 

function between the floors of a structure.  

The structural input information is commonly required in the identification 

of frequency response function of structure. This is quite difficult for large civil 

engineering structures. Furthermore, there is still no good method to select 

interested frequency bound and mitigate the adverse effect of the noise. 

Sensitivity-based Damage Detection Method 

The sensitivity-based method is another class of method for structural 

damage detection which is based on the first-order Taylor series expansion. An 

objective function is defined and optimization method is applied to minimize the 

function of residual errors caused by structural matrices perturbations. The 

residual ri denoting the difference of parameters between the damaged structure 

and those of the initial structure. The parameters could include the frequencies, 

mode shapes, modal strain energy and the response in time history and so on. A 

linearized relation between the sensitivity matrix S, the perturbation in the 

unknowns, δp and r can be expressed as 

 r S p  (2.12) 

Jahn (1948) derived the complete formulae for eigenvalue and eigenvector 
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sensitivities in a first-order Taylor series for a standard eigenproblem to improve 

an approximate set of eigenvalues and eigenvectors. That method was also 

illustrated by a numerical example. The theory was then extended by Fox and 

Kapoor (1968) to the case of generalized symmetric eigenvalue problems by 

considering changes of physical parameters in the mass and stiffness matrices. In 

their studies exact expressions for the rates of change of eigenvalues and 

eigenvectors with respect to the design parameters of the actual structure was 

presented and it is indicated that these derivatives can be used successfully to 

approximate the analysis of new structural designs. The proposed method later 

named as ‘modal method’ requires all the modes of the system to be available in 

order to calculate the required eigenvalue and eigenvector sensitivities which is 

sometimes computationally expensive especially for matrix of large dimension. To 

overcome this probelm, Nelson (1976) developed a simplified procedure to 

determine the derivatives of eigenvectors of nth order which can generally 

applied to symmetric or nonsymmetric systems. The improved method just 

requires knowledge of one eigenvalue and its associated left and right eignvector. 

Collins et al. (1974) applied the eigen-sensitivity analysis to FEM updating 

firstly. Based on the work of Collins et al. Chen and Garba (1980) proposed a 

method to calculate the Jacobian matrix with a matrix perturbation method. 

Hajela and Soeiro (1990) investigated the inverse problem of damage 

identification with the sensitivity method and nonlinear optimization technique. 

Lin et al (1995) improved the inverse eignsensitivity method for structural model 
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updating employing both analytical and experimental modal. The sensitivity of 

the modal strain energy (MSE) to damage is also derived and used in damage 

identification (Shi et al., 2000b). Abdel (2001) studied the application using the 

sensitivity-based updating approaches, in which the sensitivity of the natural 

frequencies, mode shapes and modal curvatures to damage are combined to 

construct the sensitivity matrix. A structural damage detection method through 

the sensitivity-based finite element model updating procedure was presented by 

Hemez and Farhat (1995). They formulated the sensitivities at the element level. 

This allows the identification to focus on the structural members susceptible to 

damage, and also improves the computational efficiency comparing with the 

sensitivity analysis in system level. 

The methods for damage detection reviewed above are based on the modal 

parameters in frequency domain. Sensitivity method in time domain has been 

investigated and applied extensively for damage detection based on structural 

response in time domain without the need of modal extraction procedure which 

may cause the loss of information and affect the results of damage identification. 

Law et al. (2005) developed the sensitivity-based damage detection method 

basing on the wavelet packet energy of the measured accelerations and the 

method can identify damage of a structure from a few measurement locations. 

Law and Li (2006) used the wavelet coefficient sensitivity of structural response 

with respect to a system parameter for structural condition assessment. The 

sensitivity matrix of response with respect to the structural parameters is derived 
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to locate and quantify local damages with as few as a single sensor (Zhu and Law 

2007a, 2007b). Lu and Law (2007b) identified the external excitations and the 

local damage of the structure simultaneously. Sensitivity method based on a new 

adaptive regularization method has been proposed by Li and Law (2010). A plane 

truss was studied numerically and the results indicated that method can 

satisfactorily conduct the structural damage detection even with measurement 

noise. 

2.1.2.2 Time-variant Structural Parameter 

Numerous methods have been developed for time-variant structural condition 

assessment and model updating in the past. Kerschen et al. (2006) reviewed the 

investigations on the time-variant structural parameter identification have also 

been conducted for linear or nonlinear structures over the last two decades. Shi et 

al. (2007) studied a linear time-varying multiple degrees-of-freedom system 

identification method based on Hilbert transformation and empirical mode 

decomposition was proposed. The time-variant parameters on a shear frame 

structure could be identified fairly accurate with measurement noise while some 

fluctuations are found in the identification results.  

The Kalman filter is an effective mean to system parameter identification and 

input estimation for a linear or nonlinear structure. Haykin et al. (1997) 

investigated two forms of the extended recursive least-squares algorithm were 

considered for the identification of system parameter and the tracking of a chirped 

sinusoid in additive noise. Other time-variant parameter identification methods 



 49 

were also proposed. Yang et al. (2004) proposed an online identification of 

nonlinear hysteretic structure with an adaptive track techniques based on 

least-squares estimation proposed. Nonlinear normal modes analysis considering 

the nonlinearity of structural system was stated by Kerschen et al. (2009). Tang et 

al. (2006) proposed an online sequential weighted least-squares support vector 

machine technique to quantify the structural parameter changes when the 

measurement involves damage events based on the work of Yang et al. (2004). 

Yang at al. (2007) proposed an adaptive tracking technique based on extended 

Kalman filter for structural parameters and their changes identification which 

could consider the nonlinear components of structure. Li and Law (2009) 

investigate the dynamic response sensitivity method and proposed a moving time 

window to identify the time-variant damping ratio. The time-variant damping 

ratio can be identified accurately though there are some fluctuations near the 

abrupt changes of the damping ratio. Jin et al. (2000) conducted nonlinear finite 

element analysis with an energy index approach for damage detection in highway 

bridges.  

These methods reviewed above remove the assumption that the time of 

occurrence of the anomalies is known a priori. Hence, these methods could be 

applied to conduct the structural condition assessment online. However, most 

existing methods for time-variant parameter identification do not consider the 

uncertainties in the structural parameters or measurements. Comparing to the 

time-invariant structural parameters identification method, the number of 
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time-variant structural identification method is still limited for the engineering 

inverse problems.  

2.2 Substructural System Identification 

The substructure methods allow structural condition assessment of large or 

complex structures, which might be evaluated with global methods due to the 

insufficient information. Local characteristics, which may have no significant 

impact on the whole system, can be identified with substructure methods. With 

the substructure methods distributed or parallel structural analysis could be 

conducted. Due to these advantages substructure methods have been applied 

extensively for structural condition assessment in the field of aerospace 

engineering, mechanical engineering and civil engineering.  

Increasing interest has been focused on this topic in the last two decades due 

to the leap of computation power with modern computer. The large and complex 

structural system can be divided into smaller substructures for separate assessment 

with a reduced number of unknown parameters. Substructural synthesis method 

has been applied to analyze complex structures since 1960s. In this section, a 

review on substructure method in structural condition assessment will be 

presented in frequency domain and time domain. 
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2.2.1 Substructural Condition Assessment Methods in 

Frequency Domain 

The frequency response function is widely used in experimental 

substructure method. The equation of motion could be written as 

 Mx + Cx + Kx = F   (2.13) 

with the compatibility condition and equilibrium condition 

 ,  ( )T Bx 0 L g 0  (2.14) 

where B operate on the interface DOFs and is the Boolean matrix when the 

interface force matching with each other among the substructures and matrix L is 

a geometric operator to connect the DOFs in the global structure with those in the 

independent substructures. Performing Fourier transform on the equation above 

the governing equation in frequency domain be obtain as 

 ,  ( )T Bx 0 L g 0  (2.15) 
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where x(ω), f(ω) and g(ω) denote the amplitude of the harmonic response and 

forces, HP is a bleck-diagonal matrix containing the dynamic stiffness matrices 

of the substructures as 

 2( )P P P Pj     H M C K  (2.17) 

Equation (2.12) can be written in coupled form as  
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where ω is omitted for brevity. The displacement can be obtained as 

  1 1 1 1 1( ) ( ) ( ( ) ) ( )P P T P T P     x H f H B B H B B H f  (2.19) 

The frequency domain substructure methods primarily use the coupling dynamic 

stiffness HP while the dynamic stiffness matrix HP is difficult to obtain. It is 

commonly obtained with the inverting the measured receptance matrix and 

ususlly carrided out as coupling the impedance matrix (HP)-1 (Imregun and Robb 

1992, 1993; D’ Ambrogio et al. 2004). 

The assembled matrix can be expressed as 
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 (2.20) 

The Equation (2.15) can be decoupled in with the following equation 

  x q  (2.21) 

where Φ is mode shapes matrix. The undamped eigenproblem with dynamic 

substructure method could be obtained as 
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Φ Φ
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 (2.22) 

The main idea of substructure method in frequency domain could be summarized 

as to extract the eigensolutions and eigensensitivities (Kron 1963). 

2.2.2 Substructural Condition Assessment Methods in 

Time Domain 

Koh et al. (1991) proposed a substructure method to estimate the structural 

parameters in time domain. The equation of motion of the substructure 
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considered can be written as  
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where subscript l and B denote the internal coordinates and interface boundary 

coordinates of a substructure, respectively. Koh et al. (1991) formulated and 

solve the equation of motion for the substructures with the extended Kalman 

filter and a weighed global iteration algorithm. The substructures with or without 

overlapping members were considered respectively. Koh et al. (2003) proposed 

the quasi-static displacement vector to release the requirement of measured 

displacement and velocity at the interface of substructures and only the 

acceleration measurement on the interface is required. 

Yun and Lee (1997) proposed a substructural identification method with 

application of an extended Kalman method. In their research, the state and 

observation equation with and without overlapping members for the identification 

of structural parameters are solved respectively. An auto-regressive moving 

average method with stochastic input model has been presented for substructure 

measurements with noise. Yun and Bahng (2000) adopted a neural network for 

substructural identification of a complex system. 

Tee et al. (2005) proposed two system identification methods for 

substructures. The first one adopted first-order state space formulation in state 

space with eigensystem realization algorithm and the Kalman filter identification 

method. The identification was conducted in the global level to obtain the second 

order model parameters. The second one conducted both the first-order and 
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second order identification at substructural level. Koh et al. (2006) and Tee et al 

(2009) also applied the condensation method for substructural identification. 

With the condensation method, fewer sensors are required for the structural 

measurement. Yang et al. (2007) and Huang et al. (2008) also applied 

substructure method in the proposed sequential nonlinear least-square estimation 

with only a limited number of response data.  

Time domain identification with substructure methods have also been used 

for the simultaneous identification of structural parameters and input time history 

of the applied excitation (Sandesha and Shankar 2008). The substructural 

parameters, including the unknown interface forces at the ends of the 

substructure, were identified iteratively. The method proposed by Sandesh (2008) 

requires the measurement of accelerations at all the interior DOFs but not 

interface DOFs of the substructure. The effect of noisy data was also studied. 

Even with measurement noise, the proposed substructural method could identify 

the structural parameters with appreciable accuracy and with a considerable 

saving of CPU time. Damage identification method for a plate was proposed with 

an inverse time domain formulation Sandesha (2009). The time domain 

acceleration responses need to be measured at certain locations which includes 

the acceleration at the interface as well as certain points at the interior DOFs. 

Since the computational effort of identification using the global finite element 

model of the plate proved prohibitive, the substructure method was used. The 

substructure was condensed of the rotary DOF’s for increased computational 
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improvement. The Genetic Algorithm (GA) and Particle Swarm Optimization 

(PSO) were used to solve the inverse problem. In their study, the PSO algorithm 

proved superior to GA in convergence and accuracy. 

2.3 Regularization Methods 

Since the relationship between the vibration parameter R and the fractional 

stiffness change parameter α is nonlinear, a nonlinear model updating technique, 

like the Gauss-Newton method, is required. The Gauss-Newton method in the 

damage detection procedure can be described as 

 0 0 1 0 1 2( ) ( ) ( ) ( )d        R α R α S α α S α α α   (2.24) 

where subscript d denotes the damage state, subscript 0 denotes the initial state of 

the structural parameter and S denotes the sensitivity matrix. Ignoring the higher 

terms the Equation (2.24) can be written as 

 0 0 1( ) ( ) ( )d   R α R α S α α  (2.25) 

The damage identification equation for the (k+1)th iteration can be written as 

 1k k k  R S α  (2.26) 

where 0 0( )S S α , 1 0 1( )  S S α α , 1( ) ( )k k k  R R α R α . 

A problem is well-posed if its solution exits, is unique, and continuously 

depends on errors present in problem formulation. If the problem fails to fulfill 

any of these conditions, then it is said to be ill-posed. Like many other inverse 

problems, model updating involved in Equation (2.26), which could also be used 

for damage detection, may be ill-posed. Regularization techniques are needed to 
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provide bounds to the solution. Research in this area has built on the early work 

of Tikhonov (1977), and Tikhonov regularization is performed as 

 2 22
2 2

( , )J       x S α R α  (2.27) 

The basic idea is to minimize the cost function in Equation (2.27) by searching 

for a solution Δx . The two terms are balanced with the value of the regularization 

parameter λ. Hansen (1992, 1998) have proposed regularization methods for 

obtaining a solution to the inverse problem It is shown that a stable solution 

scheme can be achieved by imposing certain constraints with adjustable a priori 

weighting parameters. 

The two most widely used regularization methods are Tikhonov 

regularization (Tikhonov 1995) and truncated singular value decomposition 

(Weber et al. 2009). Tikhonov parameter was determined through trial-and-error 

in the early application to system identification and model updating (Rothwell 

and Drachman 1989; Ojalvo and Ting 1990; Mottershead and Foster 1991; 

Fregolent et al. 1996). Busby and Trujillo (1997) applied both the L-curve 

method and generalized cross validation (GCV) to choose the optimal 

regularization parameter. Ziaei-Rad and Imregun (1999) summarized the 

performance of existing regularization method applied to model updating. Mares 

et al. (2002) investigated the robust estimation technique and Tikhonov 

regularization method for the output-error-based model updating with measured 

modal parameters. 

Truncated SVD is another form of regularization by truncating the last 
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several small singular values to improve the conditioning of matrix. In effect, the 

TSVD technique can be described as a filter that helps overcome the instability 

by filtering out the smallest singular values of the matrix. A trial-and-error 

procedure is used by Mottershead and Foster (1991) to determine the truncation 

parameter. Ren (2005) presented a method for determination of the truncation 

level. However, similar to the regularization method the difficulty is the 

determination of the truncation parameter.  

The most frequently used conditions (Friswell and Mottershead 1995) are: 

(a) α 0 , which means that the parameter values will be small; (b) 0α α , which 

means that the total parameter changes with respect to the reference model will be 

small and (c) 1 0k α , which denotes that the parameter increment between 

iterations will be small. In the above conditions, the parameter variations or the 

updated parameters are bounded with a fixed reference vector. Li and Law (2010) 

proposed an adaptive regularization method. In their study, the discrimination of 

possible damaged elements and undamaged elements is done from results 

obtained in previous iterations via a new side condition. Their method aims to 

limit the local change in damaged structural elements in each iteration and to 

force the variation of other undamaged elements close to zero. A simulation of a 

thirty-one bar plane truss was investigated and the results indicated that method 

are greatly improved even with large noise contamination in the measurement 
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2.4 Structural Vibration Control  

Over the last three decades, the research and application of structural control 

system have attacked considerable attention. Before the concept of structural 

control was imported into civil engineering the concepts of vibration absorption 

and vibration damping and the techniques were developed to aircraft during the 

Second World War. From 1960s great efforts have been undertaken to develop 

passive, active, semi-active and hybrid structural control algorithm into a 

workable technology (Soong and Spencer 2000). These structural control 

algorithm and devices have been extensively investigated and implemented in a 

large number of modern buildings and bridges to mitigate the structural vibration 

due to the wind or earthquake.  

Passive energy dissipation systems or control devices, such as base isolation 

and braces, are widely used in civil engineering structures to enhancing the 

damping, stiffness. These devices could both service as dissipation devices 

during the earthquake and rehabilitation of aging structures (Soong et al. 2005; 

Constantinou et al. 1998). They are characterized by their capability to energy 

dissipation and strength enhancement.  

In accordance to the way of energy dissipation the passive devices could be 

classified as base isolation system, vibration absorbing system and vibration 

damping system. The base isolation system is commonly installed between the 

foundation and superstructure to absorb the earthquake input energy and mitigate 

the vibration of superstructure. The base isolations always have a large stiffness 
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in vertical direction and flexible stiffness in horizontal direction with a high 

damping elastomeric bearing (Pong et al. 1994a, 1994b, 1994c; Constantinou et 

al. 1992). Tuned mass damper (TMD), tuned liquid damper (TLD) and tuned 

liquid column damper (TLCD) are typical vibration absorbing devices. With 

these devices, the earthquake input is transformed into kinetic energy of moving 

mass or liquid (Kareem, 1994). Metallic damper, friction damper and viscoelastic 

damper are typical vibration damping devices (Skinner et al. 1980; Whittaker et 

al. 1991; Pall et al 1980; Soong 2005). Passive devices possess many advantages 

including the low cost, no requirement of external energy input and stable 

performance during the earthquake. But they cannot be adaptive to the structural 

parameters. 

For more than three decades, researchers have investigated the application of 

active, hybrid, and semi-active control methods and devices to remove the 

limitation of passive approaches and to reduce structural responses. Compared 

with the passive control system, the active control system has a relatively short 

history. Kajima Corporation implemented the first active control to a full scale 

building in 1989 (Kobori et al. 1991). Purely active structural control system 

consists of three parts, which are sensors, devices to possess the measured 

response and calculate the control force, and actuators to implement the control 

force. The aim of the active control is to conduct the structural control during the 

strong wind and moderate earthquake (Spencer et al. 2003). Considerable optimal 

control algorithms have been investigated to implement the structural control 
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under different conditions (Skelton 1988; Soong 1990; Widrow and Lehr 1990; 

Zadeh 1965). The advantages of active control includes the insensitivity to site 

condition and excitation, flexibility to control algorithm and selectivity to control 

objectives such as the safety of structure or human comfort on platform. Despite 

the advantages mentioned above, the active control systems require external 

power, large control force. The semi-active control devices which are commonly 

viewed as controllable passive devices can partially overcome the limitation of 

the active control system. The difference between the active control devices and 

semi-active control devices is that the semi-control devices do not directly add 

energy to the structural system. 

Hybrid-control strategies of civil engineering structures also have been 

investigated by many researchers to ensure the control efficiency and reliability of 

both the structure and control system during the harsh earthquake event (Housner 

et al. 1997; Adeli and Saleh 1998; Kareem et al. 1999; Nishitani and Inoue 2001; 

Yang and Dyke 2003; Casciati 2003; Faravelli and Spencer 2003). The hybrid 

structural control is a combination of the passive control, active control or 

semi-active control. The hybrid structural system is more reliable than the active 

control system. The active control can also be work with a limited number of 

response feedbacks of the sensing system for the hybrid control system during 

the strong wind or moderate earthquake. The main benefit of the semi-active 

control devices and hybrid control devices is that they could also reduce the 

structural response even the failure of active control. Considering the reliability 
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and efficiency, the hybrid control is now generally applied in practical 

engineering (Faravelli and Spencer 2003).  

Majority of research works stated above on the structural control strategies 

were designed for the centralized control system and did not consider the 

changes in structural properties in the past. In a centralized structural control 

system, the structural responses measured by sensor system in a structure are 

transmitted into a central controller where the value of control force are 

determined and then transmitted to all actuators in a central manner. To conduct 

the centralized structural vibration control of large system, a higher demand will 

be required on sensing system, controller and actuator. Large number of sensors 

and actuators are needed for the control of large size structures. Higher 

requirements of sensors, data transmission facility, the computational hardware, 

actuators as well as the central controller are needed to be fulfilled (Lunze 1992). 

The centralized structural control strategies may not be reliable as expected due 

to the possible failure of the active control function during the severe earthquake. 

Sandel (1978), Ahmadian (1994), and Bakule (2008) proposed the decentralized 

control strategies to remove these limitations in areas of power transmission 

network, economic systems and space dynamic systems. However, research on 

decentralized structural control for large-scale structural systems is still limited. 

With the development of the techniques of structural control and structural 

health monitoring the combination of these two techniques is necessary 

considering the changes in structural system. All of the passive control, 
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semi-active control, active control and hybrid control could be applied in this 

integrated system. The integration of structural parameter identification and 

semi-active control has been investigated by Xu and Chen (2007a, 2007b). They 

proposed the concept of an integrated system with semi-active friction dampers 

and parameter identification system. Their research indicated that the integrated 

system is efficient to conduct the structural control with updated structural model. 

The integrated system is centralized and the parameter identification is conducted 

in frequency domain which needs a large number of measurement data. The 

on-line implementation of structural control and evaluation of a large scale 

structure are difficult due to the complicated computation with matrices. 

Moreover, the reliability of the structural control and evaluation results will also 

reduce in a large scale structural system during severe earthquake with centralized 

control system.  

2.5 Critical Issues and Shortcomings in Existing 

Methods of Structural Condition Assessment and 

Structural Control 

Although the vibration based structural condition assessment and structural 

control have investigated intensively, there are a number of issues that need to be 

addressed to make this method more practical so that this method could be 

commonly applied to engineering problems. The structural control and condition 

assessment is still extremely difficult due to the large and complex structure 
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system with the considerable proposed methods. Output-only strategies are 

required for the practical engineering inverse problem (Lardies, 1998; Li et al. 

1999a, 1999b). These issues includes the computational burden related with the 

structural model updating and force identification, the uncertainty in the 

measured vibration data and in the structural model, the incompleteness of 

measurement data, the ill-conditioning in inverse problem and the effect of the 

varying operational and environmental conditions.  

Firstly, it is difficult to locate the local abnormality with global 

measurement for a large scale structural system (Brownjohn, 2007; Farrar and 

Worden 2007). The changes of global dynamic properties may not be sensitive 

enough to the local changes. A study by Worden et al. (2005) indicated that those 

indices sensitive to local damage are also sensitive to environmental conditions 

and measurement noise.  

Secondly, complex boundary conditions and uncertainties exist due to the 

discreteness of components in the finite element model and variability in the 

material properties. Models on the boundary conditions and any innovative device 

for seismic protection in a large-scale civil structure may not be accurate. These 

uncertainties may render the optimization process ill-conditioned (Friswell et al. 

2007). Large number of unknowns may adverse the convergence property in 

inverse analysis. 

Thirdly, substructure methods could reduce the number of unknown 

parameters and improve the computational efficiency. However, the substructure 
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methods bear the problem of incompleteness of measurement data and the 

measurement location. Many techniques work very well in example cases but 

perform poorly when subject to the measurement limitations imposed by 

practical modal testing. These limitations usually arise because of the fact that 

the further bear limitation of the number of sensor and sensor position. Most of 

the substructure methods in time domain commonly need the record of the 

excitation or needs certain point measurement, such as interface DOFs or all 

responses of interior DOFs.  

Fourthly, structural control would ensure the structural reliability of the 

structure during the severe earthquake. The integrated system of structural control 

and model updating would make the structural control algorithm more stable and 

effective. However, only the integrated system with model updating method in 

frequency domain has been investigated. Since the gaps illustrated before, this 

thesis aim to propose a series method based on substructure method which could 

improve the computational effort, perform the general out-put only structural 

condition evaluation, including load evaluation and damage detection, conduct the 

time-variant structural condition evaluation and implement the smart structure 

with the integration of structural control and structural health monitoring. 

Based on the existing problems and shortcomings in structural condition 

assessment and structural control, the aspects below deserve further exploration. 

The time response sensitivity method in time domain with substructure methods is 

an alternative solution to structural condition assessment, which needs as few data 
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as possible. A fairly accurate substructural external force identification method is 

needed to develop to identify both the interface force and external force without 

accurate model of the boundary condition. A general response sensitivity method 

based on the two-stage identification for substructural model updating is needed 

to be developed with general sensor placement. A time-variant parameters 

identification method is developed without the exact time of the damage and 

initial structural response. A new combined system of adaptive structural control 

and structural evaluation is developed with the effective structural control and 

structural condition assessment.  
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CHAPTER 3 

SUBSTRUCTURAL FORCE IDENTIFICATION 

3.1 Introduction 

The dynamic load environment assessment is the first kind of inverse 

problem as mentioned in Chapter 2. Dynamic load assessment is an important 

component in the structural condition assessment and health monitoring of a 

structure. It is impossible to measure the excitation of the structure directly under 

most circumstances due to the lack of accessibility to the loading position or the 

need of a large number of sensors. A lot of force re-constructions methods or 

force identification methods have been proposed and analyzed (Law and Chan 

1997; Busby and Trujillo 1995; Kucharski 2000). The force identification method 

is frequently based on the finite element model which is often inaccurate. There 

are some model errors in the finite element model. The most common type of 

errors is found in modeling the boundary conditions which affects the accuracy 

of both the forward and backward analysis result. And most existing methods 

have not considered the real boundary conditions of the structure. Research on 

the inverse problem has been conducted with the substructure method in the last 

two decades. However, very few literatures have taken into account the error in 

the finite element model of the structure.  

A lot of force re-constructions or force identification methods have been 
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proposed and analyzed with regularization method. The equation for the force 

identification has been formulated in state space (Trujillo and Busby 1997; Law, 

Bu and Zhu 2005; Law and Fang 2001) and directly solved with regularization 

method with the Zero-Order Hold (ZOH) Discrete method. The external forces 

acting on the structure can be identified when the number of external force is 

small. Others have employed the ZOH discrete method and first-order 

regularization in force identification based on the dynamic programming method, 

but the computation is very time consuming (Trujillo and Busby 1997; Law and 

Fang 2001). The discretization of the continuous state space equation will 

influence the accuracy of the calculated response especially the acceleration. It 

would subsequently affect the assessment result in an inverse problem. However, 

there is few literatures discussing on the accuracy of force identification based on 

different discretization methods of the continuous function.  

The conventional ZOH discretization of the continuous equation of motion 

gives satisfactory results when the number of external excitation is small (Law 

and Fang 2001; Trujillo and Busby 1997). However, when the number of external 

forces that need to be identified increases, particularly with a more complicated 

structural system, this method is not accurate.  

Engineering analysis with a large-scale structure always has the problem of 

insufficient and incorrect information on the analytical model of the structure 

including connections at the boundaries. It is, however, much easier to have an 

accurate model of a portion of the structure through detail and vigorous desktop 
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study and field inspection. The method proposed in this Chapter attempts to 

make good use of this limited but accurate analytical information of the structure 

for the inverse identification of external forces acting on the structure. A force 

identification strategy is proposed to identify external forces acting on a portion 

of a structural system based on the modified FOH discrete method of the state 

space equation. The structure could be divided into substructures with both the 

excitation and measurements in each target substructure. Both the interface 

forces between the substructures and the excitation on each target substructure 

are taken as unknown and they will be identified with the proposed method. It is 

noted that there may be a large number of forces to be identified.  

This Chapter will present the development of the indirect assessment 

method with substructure methods. With this method the interface forces as well 

as external excitation could be identified and FOH discrete method could provide 

a more accurate identification results than the ZOH discrete method. The 

equation of motion of substructure for the forward problem is given in Section 3.2. 

Basic theory of the ZOH discrete method, FOH discrete method and the force 

identification method with substructure technique based on FOH discrete method 

will be illustrated in Section 3.3. The implementation procedure for the force 

identification including the identification of force at a fixed position and moving 

will be presented respectively in Section 3.4. Numerical simulation will be 

conducted in Section 3.5 which includes comparisons of the forward analysis and 

inverse analysis with the ZOH discrete method and FOH discrete method. A 
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discussion on the effect of the number of sensors will be provided in Section 3.6. 

A summary will be given at the end of this Chapter. 

3.2 Dynamic Responses of a Substructure 

If a structure is subject to external excitation, the equation of motion of the 

structural system can be written as 

 Mx + Cx + Kx LF   (3.1) 

where matrices M, C, and K are the mass, damping and stiffness matrixes of the 

structural system respectively. F is the vector of external excitation forces on the 

structure and L is the mapping matrix for the input excitation forces. x , 

x and x are vectors of acceleration, velocity and displacement of the structural 

system respectively. Rayleigh damping is assumed for the structure, 

 1 2a a   C M K  (3.2) 

where a1 and a2 are the damping coefficients. 

The whole structural system can be divided into substructures with one 

substructure selected as the target substructure for assessment as shown in Figure 

3.1 with the substructures linked at the interface dofs. Equation (3.1) can be 

rewritten as 

0

0

rr ri r rr ri r rr ri r r r

ir ii is i ir ii is i ir ii is i i i

si ss s si ss s si ss s s s

             
                          
                         

M M 0 x C C 0 x K K x L F
M M M x C C C x K K K x L F

0 M M x 0 C C x K K x L F

 
 
 

 (3.3) 

where the subscripts s, i and r denote the DOFs of Substructure 1, the interface 

DOFs between the substructures and the DOFs of Substructure 2 respectively. 
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Equation (3.1) can then be rewritten as 

 , , , , , ,( ) ( ) ( )w r w s w r w s w r w s     M M x C C x K K x LF   (3.4) 

where 

'
,

rr ri

w r ir ii

 
   
  

M M 0
M M M 0

0 0 0
, '

,

rr ri

w r ir ii

 
   
  

C C 0
C C C 0

0 0 0
, '

,

rr ri

w r ir ii

 
   
  

K K 0
Κ K K 0

0 0 0
 

''
,w s ii is

si ss

 
   
  

0 0 0
M 0 M M

0 M M
, ''

,w s ii is

si ss

 
   
  

0 0 0
C 0 C C

0 C C
, ''

,w s ii is

si ss

 
   
  

0 0 0
K 0 K K

0 K K
 

and the single and double quotation marks denote the contribution of the system 

matrices associated with the interface DOFs to Substructures 1 and 2 respectively. 

The following equations of motion of the substructures can be derived from 

Equations (3.3) and (3.4) including the contributions from the interface DOFs. 

 ' ' '
rr ri r rr ri r rr ri r r r

ir ii i ir ii i ir ii i i i

s s s

C C
             

                          
                         

M M 0 x C C 0 x K K 0 x L F
M M 0 x 0 x K K 0 x L F

0 0 0 x 0 0 0 x 0 0 0 x 0

 
 
 

 (3.5) 

 '' '' '' '' ''

0r r r

ii is i ii is i ii is i i i

si ss s si ss s si ss s s s

             
                          
                         

0 0 0 x 0 0 0 x 0 0 0 x
0 M M x 0 C C x 0 K K x L F
0 M M x 0 C C x 0 K K x L F

 
 
 

 (3.6) 

 " '' ' '
i i i i i i L F L F L F  (3.7) 

where '
iL  and "

iL are the mapping matrices for the force vectors '
iF  and "

iF  

respectively. 

The equation of motion of the Substructure 1 with ‘s’ DOFs can be extracted 

from Equation (3.6) as 

        
r r r

si ss i si ss i si ss i s s

s s s

     
            
     
     

x x x
0 M M x 0 C C x 0 K K x L F

x x x

 
 
 

 (3.8) 
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Rewrite Equation (3.8) into 

 ( )ss s ss s ss s s s si i si i si i     M x C x K x L F M x C x K x     (3.9) 

The right-hand-side of Equation (3.9) consists of two parts. The first term 

s sL F  is the vector of external forces and the second term 

( )si i si i si i  M x C x K x   is the vector of internal forces associated with the 

interface DOFs. In fact, vector ( )si i si i si i  M x C x K x   consists of the interface 

forces which can be taken as another set of external forces acting on the 

substructure. 

3.3 Force Identification of the Target Substructure  

3.3.1 ZOH Discrete Method in Force Identification 

The equation of motion of the structural system shown in Equation (3.1) can 

be expressed in the state space as following 

 C C  z A z B L F  (3.10) 

where   
 
 

x
z =

x
, 1 1

C
 

 
    

0 I
A

M K M C
 and  

1
C



 
  
 

0
B

M
 and the 

superscript C denotes matrices for the continuous system. Vector 1( ) nst y R  is 

assumed to represent the output of the structural system and it is assembled from 

the measurements with 

 a v d  y R x R x R x   (3.11) 

where aR , vR and m ndof
d

R R are the output influence matrices for the measured 

acceleration, velocity and displacement respectively, m is the dimension of the 
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measured responses and ndof is the number of dofs of the structure. Equation (3.11) 

can be rewritten as 

 C C   y R z D L F  (3.12) 

where 1 1[ ]C
d a v a

   R R R M K R R M C  and 1C
a

D R M . When the 

external force is known or measured, the value of state variable z and y can be 

calculated accurately. However, in practice, the measurement data is discrete and 

the continuous state equation is required to be transformed into discrete equation. 

Based on the ZOH discrete method (Franklin, Powell and Workman 1998), 

Equations (3.10) and (3.12) can be converted into the following discrete 

equations as 

  ( 1) ( ) ( )D Dj j j    z A z B L F  (3.13) 

 ( ) ( ) ( ) ( 1,2, , )j j j j N    y Hz J L F   (3.14) 

where superscript D denotes the matrices for the discrete structural system. N is the 

total number of sampling points, dt is the time step between the state variables 

( )jz  and ( 1)j z  , exp( )D C dt A A , 1( ) ( )D C D C B A A I B , CH R  

and CJ D . 

The output ( )jy  is solved from Equations (3.13) and (3.14) with zero 

initial conditions of responses in terms of the previous input 

( ),  ( 0,1, , )k k jF   and we have 

 
0

( ) ( )
j

k
k

j j k


   y H L F  (3.15) 

where 0 H J  and ( 1)( )D k D
k

H H A B . 

The constants in matrix Hk in Equation (3.15) are the system Markov 
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parameters. Equation (3.15) can be rewritten to give the matrix convolution 

equation as 

 LY H F  (3.16) 

where    

0

1 0

1 2 0

L S

N N 

 
 
 
 
 
 

H 0 0
H H 0

H L
0

H H H




  


,          S

L
 
 
 
 
 
 

L 0 0
0 0

L
0

0 0 L




  


, 

 (0) (1) ( 1)
TT T TN Y y y y , 

 (0) (1) ( 1)
TT T TN F F F F . 

Matrix LH  is constant for a specific structural system, and the response 

vector Y can be derived from the measured responses. The external force vector 

F can be identified from Equation (3.16) which is an ill-posed inverse problem in 

structural mechanics. 

3.3.2 Triangle FOH Discrete Method 

When the number of external forces increases, the influence of these forces 

on the response of the structural system increases correspondingly, and an 

inaccurate matrix DB  will result with large error in the state variable. This is 

because the force in a sampling period has been assumed to be constant as shown 

in Equation (3.13). This discretization within a sampling period is treated 

differently in the FOH discrete method, namely the triangle hold discrete method, 

where the discrete data is interpolated as 

 ( 1) ( )( ) ( ) ( )         ( ( 1)   1,2 1)u i u iu t u i t iT iT t i T i N
T

 
           (3.17) 

where T is the sampling period. 
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 u LF  (3.18) 

Define the unite impulse function  as 

 
  0 

( )
  0   0 

t
t

t


 
  

 (3.19) 

where ( ) 1t dt



 . 

The impulse response and block diagram of the modified FOH are shown in 

Appendix A. The Laplace transformation of the extrapolation filter (Franklin, 

Powell and Workman 1998) that follows the impulse sampling is 

 2

2( )
Ts Ts

tri
e eH s

Ts

 
  (3.20) 

Based on the block diagram in Appendix A, the state variables v and w are 

defined as 

 /v w T  (3.21) 

 ( ) ( ) 2 ( ) ( ) ( ) ( )w u t T t T u t t u t T t T          (3.22) 

where ( )t is the unit impulse shown in Equation (3.19). It can be shown from 

the integration of Equations (3.21) and (3.22) that v(i)=u(i) and w(i)=u(i+1)-u(i), 

and a new state space equation can be derived as 

 
0 0

0 0 1/ 0
0 0 0 1

C C

T u
      
             
            

z A B z
v v
w w





 (3.23) 

where u  as shown in Appendix A can be taken as the input impulse function. 

The matrix on right-hand-side of the Equation (3.23) is defined as 

 1/
C C

T T
 
   
  

A B 0
F 0 0

0 0 0

 (3.24) 
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If the one step solution to Equation (3.23) is written as 

 ( 1) ( )TF TiT e iT    (3.25) 

then 

 exp( )TT
 
   
  

1 2Φ Γ Γ
F 0 1 0

0 0 1

 (3.26) 

The equation in variable x can be written as 

 1 2( 1) ( ) ( ) ( )i x i v i w i   x Φ Γ Γ  (3.27) 

If a new state is defined as 2( ) ( ) ( )i i i z x Γ u , Equation (3.27) for the 

modified FOH can be rewritten as 

 ( 1) ( ) ( )D Di i i  z A z B u  (3.28) 

The output equation is 

 ( ) ( ) ( )D Di i i y C z D u  (3.29) 

The parameter for the state equation can then be represented as 

 1 2 2

2

,
,

,

D

D

D

D

A
B
C H
D J H

 

  



 

Γ Γ Γ

Γ

 (3.30) 

Based on the above modified FOH discrete method, the force identification 

can be conducted following Equations (3.10) to (3.16) with more accurate results 

than the previous ZOH discrete method as shown in the following studies. 

3.3.3 Force Identification based on the FOH Discrete 

Method 

The external force identification based on the FOH discrete method can also 
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be written in the form of Equation (3.16) which is ill-posed. A straightforward 

least-squares solution will produce unbounded solution. Regularization method 

would provide an improved solution to the ill-posed problem. The damped 

least-squares method proposed by Tikhonov (1963) is adopted to give bounds to 

this problem. Equation (3.31) shows the application of the regularization method 

in force identification as 

 ( )T T
L L L   H Y H H P  (3.31) 

where λ is the non-negative damping coefficient governing the participation of 

the least-squares error in the solution. Solving Equation (3.31) is equivalent to 

minimizing the function 

 2 2( , ) LJ P    H P Y P  (3.32) 

The L-curve method proposed by Hansen (1992) is applied in this Chapter 

to find the optimal regularization parameter . The relative percentage error in 

the identified external forces can be calculated as 

 100%id true

true

error


 
F F

F
 (3.33) 

where Ftrue is the real force acting on the substructure and Fid is the identified 

external force. 

When there is no noise in the measured response, the external forces can be 

identified fairly accurately. However, the identified force will fluctuate close to 

the real force when there is measurement noise. To mitigate the influence of 

noise, the Chebyshev Polynomial can be applied to approximate the time history 

of response as 
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1

( )
Nm

k k
k m m

m

c t


x T  (3.34) 

where k indicates the k th measured response and Nm denotes the number of 

terms of the Chebyshev Polynomial. The coefficient of the Chebyshev 

Polynomial k
mc  can be taken as unknowns in the curve fitting via the 

regularization method. The influence of noise can be moderated to certain extent 

through the iterative updating of the polynomial coefficients. Eighty terms of the 

polynomial is selected in this study when the position of the excitation force is 

fixed. 

3.3.4 Moving Force Identification 

When a vertically acting external force is acting on a flat plate finite 

element, the equivalent nodal force of the plate element can be represent though 

the shape function as 
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 (3.35) 

where x and y are the local coordinates in the i th element, lx and ly are the length 

and width of the plate element and / yy l  , / xx l   proposed by Wu (2006). 
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The nodal force vector only consists of force Fz and moments Mx and My as 

F={Fz, Mx, My}T. The equivalent nodal forces at the four nodes of the plate 

element can be shown as follows: 

 
1, 1 1, 2 1, 3

2, 4 2, 5 2, 6

3, 7 3, 8 3, 9

4, 10 4, 11 4, 12

z x y

z x y

z x y

z x y

f N F M N F M N F
f N F M N F M N F
f N F M N F M N F
f N F M N F M N F

     

     

     

     

 (3.36) 

Though the mapping matrix L of the force is time-variant for a moving force, 

the interface forces can also be identified simultaneously through Equations 

(3.31) and (3.32). The mapping matrix Ls will take up the following form as 

 
1

2
S

N

 
 
 
 
 
 

L 0 0
0 L 0

L
0

0 0 L




  


 (3.37) 

where Lk is the mapping matrix at the location of the k th sampling point. 

3.4 Implementation Procedure 

Step 1: Divide the structure into substructures and obtain the mass, damping and 

stiffness matrices of the target substructure.  

Step 2: Conduct dynamic measurement on the substructure. 

Step 3: Obtain the matrix of system Markov parameters from the finite element 

model of the substructure based on the FOH discrete method from 

Equations (3.29) and (3.30). If the force is a moving force, matrix LH  is 

obtained from Equation (3.16). 

Step 4: Identify the forces acting on the substructure including the interface forces 
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through the damped least-squares method in Equation (3.31) based on the 

FEM of the substructure. 

It should be noted that this approach of force identification only needs the 

finite element model of the target substructure. 

3.5 Simulation Study with a Flat Plate Structure 

In this section, force identification of a plate structure is investigated in state 

space with the ZOH and the FOH discrete method. A 32m×9m flat plate made 

of concrete is investigated to verify the proposed method of substructural force 

identification. The flat plate shown in Figure 3.2 is divided into 16×3=48 

elements with size 2.0m×3.0m each. The substructure in the middle of the plate 

consists of 24 elements is taken as the target substructure in this simulation. The 

thickness of the plate is 0.15m and is fix-supported along its two short edges. The 

mass density, elastic modulus of material and Poisson ratio are 2500 kg/m3, 

3.25×1010 N/m2 and 0.2 respectively. The plate is assumed to exhibit Rayleigh 

damping and the damping ratios of the first two modes are taken to be 0.01 and 

0.005 respectively. 

Mindlin plate element could be used to investigate the moderately thick 

shell with thickness-to-width ratio as 1/10. When the shell is thick, high-order of 

the shear deformation should be considered because the Mindlin’s solution is 

only for the moderately thick shell element (Reissner, 1945; Mindlin, 1951; Lim 

et al. 1995). The thickness-to-width ratio in this study is about 1.67% (0.15/9) 
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which is thinner than moderately thick shell element. For simplicity, the shear 

deformation is not considered in this thesis. But for practical engineering 

problem, the forward and inverse analysis should take the shear deformation into 

consideration for higher accuracy if the plate is thick enough. It should be noted 

that the formulation and implementation procedure in this Section is generally 

proposed. 

3.5.1 Accuracy of Response from the Discrete State Space 

Function 

The response of the substructure is calculated in state space assuming zero 

initial structural response of the structure. The acceleration of the flat plate 

structure at Node 13 is calculated to investigate the accuracy of the time response 

in state space. The response of the substructure is solved through the state space 

Equations (3.29) and (3.30) with the known external force at Node 14 and the 

interface forces calculated from the finite element model of the whole structure. 

Figure 3.3 gives comparison of the acceleration at Node 13 obtained from the 

ZOH discrete method and modified FOH discrete method. The calculated 

acceleration from the ZOH discrete method differs greatly from the acceleration 

calculated from using the Matlab command ‘lsim’ which serves as the reference 

response, while the acceleration calculated from the FOH discrete method is very 

close to the reference acceleration. The FOH discrete method is noted to be 

accurate with linear interpolation of the force between sampling points as shown 
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in Figure 3.4. 

The vertical responses at all the nodes of the substructure are calculated 

from the FOH state space equation and the ZOH state space equation with 

sampling rates of 200 and 500 Hz. The results are compared with the reference 

solution from Matlab command ‘lism’ in Figure 5 for 500 Hz sampling rate. The 

norm of errors of solution from ZOH state space equation and FOH state space 

equation are shown in Table 3.1. It is noted from Figure 3.5 and results from 200 

Hz sampling rate (not shown) that the solution based on both the ZOH and FOH 

discrete methods will become more accurate when the sampling rate increases. 

Comparison in Table 3.1 shows that the solution based on FOH discrete method 

is more accurate than the solution calculated from ZOH discrete method of the 

state space equation. Therefore, it is recommended that the FOH discrete method 

be applied in the force identification in state space with relatively large sampling 

rate. 

3.5.2 Force Identification 

3.5.2.1 Fixed Position Force 

The acceleration in the z-direction under the applied force at Node 14 are 

calculated at Nodes 1-8, 9-20 and 29-36 and there are 28 “measured” 

accelerations for the force identification. Zero initial conditions are assumed for 

the structure. An external force acts vertically along the z-direction on the flat 

plate structure at Node 14 and is modeled as 
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 ( ) 500(sin(30 0.3 ) sin(45 0.2 ) sin(55 0.16 ))F t t t t N           (3.38) 

The 24 interface forces and the excitation force on the target substructure 

are evaluated with the force identification method based on FOH discrete 

methods in state space. The force identification results based on the FOH discrete 

method are shown in Figure 3.6. The identified force time histories at the 

interface and the excitation force almost overlap with the true curves indicating 

the accuracy of the proposed method. Sampling rate is 1000Hz and the data from 

the first 0.3s of the time history of the force is used for the identification.  

When there is noise in the “measured” response, the polluted response is 

simulated by adding a random component to the “measured” responses as 

 ( )m P noiseE N  x x x    (3.39) 

where Ep is the percentage noise level, Nnoise is a standard normal distribution 

vector with zero mean and unit standard deviation, ( )x   is the standard 

deviation of the “measured” acceleration response. When there is 5% noise in the 

measured response, the identified force time histories from FOH discrete method 

is shown alongside the true forces in Figure 3.7. The identified forces are close to 

the true forces but with more variations in the moments Mx. This may be due to 

the lacking of angular acceleration information in the “measured” response. The 

relative error in the identified forces is calculated as 11.56%. However the 

applied force at Node 14 is accurately identified and is almost overlapping with 

the true force. 

3.5.2.2 Moving Force on a Substructure 
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A second scenario is studied with a force moving along the y-direction of 

the plate between the two ends of the substructure at 40 meter per second as 

shown in Figure 2. The force time history is 

 ( ) (150sin(5 0.3 ) 100sin(10 0.2 ))t t t N      F  (3.39) 

The acceleration in the z-direction under the applied moving force are 

calculated at Nodes 1-4, 6, 7, 9, 10, 11, 12, 14, 15, 18, 19, 22, 23, 25, 26, 27, 28, 

30, 31, 33-36 and the first 0.4 s of responses are used for the force identification. 

These responses are arbitrarily selected for the study. In this simulation, the force 

start from the beginning of substructure but not the beginning of the whole 

structure. The moving force can be identified as shown in Figure 3.8 without 

noise in the measurement and in Figure 3.9 with 6% noise in the measurement. 

The results show that the proposed method is accurate with the identification of a 

moving force. For the case with polluted measurements, the error in the initial 

value of the identified force affects the first part of the identified force time 

history. The second halve of the identified time history is almost overlapping 

with the true force with the reduction of initial value effect indicating the 

accuracy of the proposed method with polluted measurement.  

3.5.2.3 Moving Force on the Whole Structure 

The third simulation is more general, in which the moving force moves 

from one end to the other end of the whole structure. The force time history is set 

as 

( ) (130sin(5 0.3 ) 120sin(15 0.2 ) 110sin(20 0.1 ))F t t t t N            
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The “measured” acceleration responses are identical as those for the second 

simulation and 0.8s of the acceleration is used to evaluate the moving force. The 

sampling rate in this simulation is 100 Hz for a reduced computation effort. In 

this general case, the identified moving force on the substructure without noise in 

the ‘measured’ acceleration is shown in Figure 3.10, and the one with 5% noise 

in the measured response is shown in Figure 3.11. In the first 0.2s and last 0.2s, 

only the interface forces are acting on the substructure and therefore the 

identified moving force is zero. The results in this simulation show that the 

moving force identification is not sensitive to the measurement noise. The 

proposed method can be recommended for large bridge system without 

considering too much the errors and uncertainties in the finite element model of 

the structure. 

3.6 Discussion on the Number of Sensors 

In the simulation studies of this Chapter, the number of sensors is more than 

the number of unknown forces. When the number of sensors is less than the 

number of the external forces, the solution to the Equation (3.16) will not be 

unique. However, the regularization method always makes sure that the number 

of the equation is equal to the number of the unknowns as noted in Equation 

(3.31). HL is an NsensorNunknownf matrix with Nsensor being the number of 

the measured discrete data and Nunknownf is the number of the unknowns in 

external forces. Therefore, as noted in Equation (3.16) Nsensor is also the 
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number of equation considering the size of HL. Through the regularization 

method as Equation (3.31), the number of the equation is changed to Nunknownf. 

Therefore, a small change in the number of sensors will not have great influence 

in the identification result in general, and the uniqueness of the solution can be 

ensured by the regularization method and the optimal parameter λ. When there is 

noise in the measurement, it is recommended that the number of the sensors is 

more than or equal to the number of the external forces. When the number of the 

measured acceleration is reduced to 18 and only the acceleration at Nodes 1, 4, 6, 

7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 33, 36 are calculated as measured 

response without noise, the moving force can also be identified with 0.77% error. 

If the number of the measured acceleration is reduced to 14, nearly half of the 

number of the external force, and the accelerations at Node 1, 4, 6, 9, 12, 15, 18, 

19, 22, 25, 28, 31, 33, 36 are used for the force identification, the error will 

become large in the identified moving force as shown in Figure 3.12. It may be 

concluded that less information from the system will result in the larger optimal 

parameter λ, which will make the force identification not very accurate. 

3.7 Conclusions 

Engineering analysis with a large-scale structure always has the problem of 

insufficient and incorrect information on the analytical model of the structure 

including connections at the boundaries. It is, however, much easier to have an 

accurate model of a portion of the structure through detail and vigorous desktop 
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study and field inspection. A method is proposed in this Chapter to make good 

use of this limited but accurate analytical information of the structure for the 

inverse identification of external force acting on the structure.  

A substructural external force identification method based on the equation in 

state space with the FOH discrete and Tikhonov regularization is presented in 

this Chapter. This method only needs measurements in time domain, such as 

acceleration, and information on the finite element model of a substructure. Its 

effectiveness is illustrated with the identification of a time varying force acting at 

a fixed location and a time varying moving force on top of a flat plate structure. 

In the forward problem of dynamic response prediction and the inverse 

problem of force identification, the FOH discrete method is shown to be more 

accurate than the ZOH discrete method due to the interpolation of the force 

between adjacent sampling points. Both the interface forces and the excitation 

force can be identified fairly accurately based on the FOH discrete method in 

state space even with polluted measurements with 6% noise. It is recommended 

in practice that the sampling rate should be set relatively high for an improved 

accuracy. It is also noted that there is a large number of forces to be identified in 

the problem and yet the applied force can be obtained with good accuracy. 
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Table 3.1 – Error of solution of state space equation 
 

Sampling rate Error (ZOH)(%) Error (FOH)(%) 
200 

500 

178.6 

78.12 

11.72 

5.65 
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Figure 3.1 - Structure and substructures 

 
 

 

 
Figure 3.2 - 32m×9m flat plate structure 



 89 

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time (s)

A
cc

el
er

at
io

n 
(m

/s
2 )

 

 
Accurate solution
Zero order hold discrete method
First order hold discrete method

 

(a) Acceleration in z-direction 
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(b) Angular acceleration in plane x-z 

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Time (s)

A
ng

ul
ar

 A
cc

el
er

at
io

n 
(1

/s
2 )

 

 
Accurate solution
Zero order hold discrete
First order hold discrete

 

(c) Angular acceleration in plane y-z 
Figure 3.3 - Structural response on Node 13 
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Figure 3.4 - Discretization at a peak of the applied force at Node 14 from ZOH 

and FOH discrete method 
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(7) Node 10             (8) Node 11             (9) Node 12 
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(10) Node 13             (11) Node 14             (12) Node 15 
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(16) Node 19             (17) Node 20             (18) Node 21 
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Figure 3.5 - Structural response of z-direction with 500 Hz sampling rate 
(_____accurate, ……. from ZOH, _._._  from FOH) 
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Figure 3.6 - Identified external forces based on the modified FOH discrete 
method without noise (___ real force; ---- identified force) 
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Figure 3.7 - Identified forces based on the modified FOH discrete method with 

5% noise (___ real force,  ----   identified force) 
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Figure 3.8 - Identified moving forces based on the modified FOH discrete 

method without noise without noise (___ real force,  ----   identified force) 
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Figure 3.9 - Identified moving forces based on the modified FOH discrete 

method with 6% noise (___ real force, ---- identified force) 
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Figure 3.10 - Identified moving forces based on the modified FOH discrete 

method without noise ( ___ real force, ---- identified force) 
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Figure 3.11 - Identified moving forces based on the modified FOH discrete 

method with 5% noise (___ real force,  ---- identified force) 
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Figure 3.12 Identified moving forces based on the modified FOH discrete 
method with 14 sensors without noise (___ real force, ---- identified force) 
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CHAPTER 4 

TWO-STAGE METHODS FOR DAMAGE 

DETECTION OF SUBSTRUCTURES 

4.1 Introduction 

Chapter 3 proposed a methodology for the substructural dynamic load 

assessment without the information on boundary conditions and without damage 

or model error on the target substructure. In this Chapter, a new two-stage 

structural condition assessment method will be proposed and implemented to 

conduct the structural condition assessment even when there is model error or 

local damage on the structure. A large scale structural system may have complex 

boundary conditions and uncertainties due to the discreteness of components in the 

finite element model and variability in the material properties. Models on the 

boundary conditions of a structure and any innovative device for seismic 

protection of a structure may be inaccurate, and it is difficult to conduct model 

updating for a large structure. 

In the past few decades, many methods have been developed for structural 

model updating and damage detection. These methods can be broadly classified 

into three categories which are time domain method, frequency-domain method 

and time-frequency domain method as listed in Chapter 2. It is commonly known 
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that measured responses from a structure could be used to assess the conditions 

of the structure with information on the location and features of local damages. 

However, when the structural system is very large and complex, it is impossible 

to gather sufficient responses for the assessment. The assessment of the structural 

system may also be difficult and inaccurate due to the large size of the analytical 

model in the computation with poor convergence and efficiency.  

To improve the computational efficiency and convergence property, the 

substructure method introduced in Chapter 3 is an alternative tool to conduct the 

inverse analysis for large size structures. Increasing interest has been focused on 

this topic in the last two decades due to the leap of computation power with 

modern computer. The large and complex structural system can be divided into 

smaller substructures for separate assessment with a reduced number of unknown 

parameters. Substructural synthesis method has been applied to analyze complex 

structures since 1960s by Hurty. A substructural identification method has been 

proposed by Koh et al. (1991) with application of an extended Kalman method to 

solve the state and observation equation with and without overlapping members 

for the identification of structural parameters. An auto-regressive moving average 

method with stochastic input model has been presented by Yun and Lee (1997) for 

substructure measurements with noise. 

Condensation method can also be applied to damage identification to reduce 

the computational time. The reduction of DOFs of a structure can be achieved by 

applying the Guyan static condensation method which, however, does not take the 
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dynamic property of structure into account. The iterative Improved Reduced 

System (IRS) method (Friswell 1995) has also been applied in the numerical 

simulations, but the response of the condensed finite element model is not always 

matching closely to the response from the original finite element model. The 

dynamic responses of the condensed model of the structure cannot accurately 

represent those of the original structure. It is noted that the dynamic responses of 

the substructure could be accurately simulated if the interface conditions of the 

substructure could be accurately modeled.  

Sensitivity method in time domain has been investigated and applied 

extensively for damage detection. The sensitivity matrix of response with respect 

to the structural parameters is derived to locate and quantify local damages with as 

few as a single sensor (Zhu and Law 2007; Lu and Law 2007a). Lu and Law 

identified the external excitations and the local damage of the structure 

simultaneously (Lu and Law 2007b). A general response sensitivity method is 

proposed addressing the deficiency of existing sensitivity method for damage 

detection/model updating of a substructure (Ding and Law 2010) with the 

analogous evolution of a pseudo substructure in the model updating process. This 

method takes into account the inaccurate modeling or lack of information on the 

nonlinear boundary conditions.  

In Chapter 3, a force identification method was proposed to identify the 

external force and interface forces. This Chapter will develop a two-stage 

structural condition assessment method with substructure methods without 
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measurement of the input. Both the excitation and structural parameter could be 

identified with this method. An introduction to the equations of motion for the 

structural system and each substructural system is given in Section 4.2. Existing 

response sensitivity method will be presented and a general response sensitivity 

method for substructural condition assessment is proposed in Section 4.3. In 

Section 4.4, two new computational techniques are proposed to improve the first 

stage of force identification which are: (a) a time window force identification 

method to improve the computation efficiency, and (b) a method of simultaneous 

identification of the interface force and the initial responses in a time segment, i.e. 

the acceleration, velocity and displacement, at all DOFs of the structural system. 

In Section 4.5, two procedures of implementation for substructure identification 

methods are proposed to handle two types of assessment problems. For the first 

problem (Scenario A), the finite element model (FEM) of the whole structure is 

required and for the second problem (Scenario B), only the FEM of the target 

substructure is available. Two types of numerical simulations are conducted in 

Section 4.6 including linear interface force and nonlinear interface force. A 

discussion and conclusion are given in Section 4.7.  

4.2 Structural and Substructural Dynamic 

Responses 

The structural system is assumed to be linear as shown in Figure (4.1). The 

equation of motion of the structural system can be partitioned as 
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 ( )
( )

ss sr ss sr ss srs s s s s s
g

rs rr rs rr rs rrr r r r r r

x
              

                               

M M C C K Kx x x MG L F
M M C C K Kx x x MG L F

 


 
 (4.1) 

where the subscript s denotes Substructure 1 above the support and soil mass, and 

subscript r denotes Substructure 2 which is the rest of the structural system. 

Subscripts sr and rs denote the interface dofs of the structure. In the following 

study, Substructure 1 is selected to be the target substructure for model updating. It 

is noted that Substructure 2 consisting of the ground support and soil mass may 

behave nonlinearly. Moreover, the finite element model of Substructure 2 may not 

be accurately known in practice. The equation of motion of Substructure 1 

includes the interaction with Substructure 2 as 

 ( ) ( )ss s ss s ss s s g s s sr r sr r sr rx       M x C x K x MG L F M x C x K x      (4.2) 

where the term ( )sr r sr r sr r  M x C x K x   represents the set of interface forces 

between the two substructures. Usually the interface forces cannot be accurately 

represented by ( )sr r sr r sr r  M x C x K x   as an accurate finite element model of 

the interface is always difficult to achieve or the interface forces may be a 

nonlinear function of the responses. Equation (4) can in general be written as 

 ( )ss s ss s ss s s g s s inx     M x C x K x MG L F F    (4.3) 

where inF denotes the interface forces. 

4.3 Sensitivity Methods 

4.3.1 Existing Response Sensitivity Method 

Existing time domain response sensitivity method always assumes a set of 
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well-known boundary conditions or with boundaries of the structure modeled with 

an extremely large stiffness (Zhang et al. 2010; Li et al. 2011). For the frame 

structure shown in Figure 4.1, only Substructure 1 is considered since the 

responses of Substructure 2 at the interface, i.e. rx , rx and rx , are assumed to be 

zero or close to zero. The term Fin in Equation (4.3) is ignored and the equation of 

motion of the substructure becomes 

 ( )ss s ss s ss s s g s sx    M x C x K x MG L F    (4.4) 

Assuming the damage extent of the ith element in the superstructure is 

represented by a reduction factor, i , a change of the global stiffness matrix of 

Substructure 1 can be described as 

 
1

Ne

i i
i




 Κ K  (4.5) 

where Ne denotes the number of finite elements of the superstructure. 

Performing differentiation to both sides of Equation (4.5) with respect to the 

structural parameters i , existing sensitivity method would give directly 

 2
s s s ss ss

ss ss ss s s
i i i i i

a
    
    

    
    

x x x K KM C K x x
    (4.6) 

The system is assumed to be at rest initially. The responses x , x and x are 

obtained by the step-by-step time integration method from Equation (4.4). The 

convergence property is presented in Appendix B for the integrity of thesis. They 

are then substituted into Equation (4.6). The sensitivity matrices 

/s i x , /s i x , /s i x  can then be solved similarly by the step-by-step time 

integration Newmark- method from Equation (4.6). The local anomalies of the 
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structure can then be found with the sensitivity method with different optimization 

tools. 

4.3.2 The General Response Sensitivity Method 

In practice, rigid boundary conditions of a substructure are rare and the 

nonlinear boundary conditions are difficult to model correctly. The inclusion of the 

actual boundary conditions in the model updating may produce significant effect 

on the updating results. Figure 4.2 shows a structural system with base isolation 

which may behave nonlinearly under lateral load. When the interaction between 

the support and superstructure is taken into consideration, existing sensitivity 

method described in Section 4.2 is not applicable for the model updating as shown 

below. 

The interface force Fin in Equation (4.3) is known to be a function of the 

structural parameters i  when the interaction between two substructures is 

included. Applying differentiation with respect to the structural parameter i  to 

both sides of Equation (4.3), we get 

 2
s s s ss ss in

ss ss ss s s
i i i i i i

a
     
     

     
     

x x x K K FM C K x x
    (4.7) 

Equation (4.7) is different from Equation (4.6) with an extra term /in i F  

on the right-hand-side. The sensitivities matrices /s i x , /s i x , /s i x  

are coupled with /in i F  and all of them are derivatives with respect to i . 

They cannot be obtained by the Newmark- method. It can, however, be solved 

with the general sensitivity method described below. 
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The general sensitivity method is based on the evolution of a pseudo 

structural system in the iterative model updating process. The pseudo structural 

system illustrated in Figure 4.3 consists of Substructure 1 in the initial intact state 

with the interface forces when the whole structure is under the effect of earthquake 

excitation. The pseudo system is subject to the interface forces and the external 

excitation forces, Fpseudo, which are identical to those acting on the real 

Substructure 1 with local anomalies during the data collection for model updating. 

The response of the pseudo structure in the kth updating iteration, zk, can be 

represented as 

 
1

( , )     ( 1,2,3  )k pseudo kf k   



z F α
α 0

 (4.8) 

Since Fpseudo remains the same in subsequent iterations of model updating, 

Equation (4.8) is then rewritten as a function of damaged target Substructure 1. 

The response of the pseudo structure in the updating can therefore be represented 

as 

 
1

( )     ( 1, 2,3  )k kf k   


z α
α 0

 (4.9) 

The equation of motion of the pseudo structural system can therefore be 

represented similar to Equation (4.3) as 

 ( ) ( )ss s ss s ss s s g s s in damagex     M x C x K x MG L F F    (4.10) 

where subscript damage denotes the interface forces corresponding to the damage 

state of the substructure, and (Fin)damage is not a function of the stiffness reduction 

factor i . Hence, the equation of derivatives in Equation (4.7) becomes Equation 
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(4.6) which can be solved to find the corresponding response sensitivity matrices. 

The model updating of the real structure is analogous to the model updating of the 

pseudo structure. 

In the following studies, the “measured” response, mx , is obtained as the 

analytical solution of the equation of motion in Equation (4.10) from the finite 

element model including local anomalies. If acceleration is taken as the 

“measured” information, the Taylor series expansion on the difference between the 

“measured” response and the calculated response, x , from Equation (4.10) can be 

written as 

 2( )m o
   


xx x α α
α
   (4.11) 

where o(2) is the residual term of the series expansion. The unknown stiffness 

reduction vector α  can be calculated from Equation (4.11) with an optimization 

method. It should be noted that the identification equation has no requirement of 

zero initial values for the solution as discussed in Section 4.4.2 below. 

4.4 The Computation Algorithm 

The present study takes both the interface forces and the local damages of the 

structure as unknowns, and they will be identified in an iterative optimization. A 

two-stage method with two new computational techniques is described below for 

the iterative substructural model updating. 
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4.4.1 Identification of the Interface Force in the First 

Stage 

The equation of motion of the structure in Equation (3.10) can be expressed 

in the state space considering the external force and excitation as 

 C C
gz   z A B MGx L F （- ） (4.12) 

Vector of output of the structural system can be expressed as a combination of 

acceleration, velocity and displacement measurements as 

 a v d  y R x R x R x   (4.13) 

with aR , vR and m Ndof
d

R R which are the output influence matrices for the 

measured acceleration, velocity and displacement respectively, m is the dimension 

of the measured responses and Ndof is the number of DOFs of the structure. 

Equation (4.13) can be rewritten as 

 ( )gx     y Rz D M L F  (4.14) 

where 1 1[ ]d a v a
   R R R M K R R M C  and 1

a
D R M . 

Equations (4.12) and (4.14) can be converted into the following discrete equations 

as 

 ( 1) ( ) ( ( ))D D
gj j j      z A z B MGx L F  (4.15) 

 ( ) ( ) ( ( )) ( 1,2, , )gj j j j N      y Rz D Mx L F   (4.16) 

Superscript D denotes that the matrices are for the discrete structural system. N is 

the total number of sampling points, dt is the time step between the state variables 

( )jz  and ( 1)j z , and exp( )D C dt A A , 1( ) ( )D C D C B A A I B  which are 

the same as illustrated in Chapter 3. 
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The output ( )jy  can be expressed in terms of the previous input 

( ), ( )k k 0 ,1, , jF   and gx  from Equations (4.15) and (4.16) with zero initial 

responses as follows 

 
0

( ) ( ( ) ( ))
j

k g
k

j j k j k


      y H MGx L F  (4.17) 

where 0 H D  and 1
D

k kH RA B . The constants in matrix Hk in Equation (4.17) 

are the system Markov parameters. Equation (4.17) can be rewritten as 

 G g L Y H x H F  (4.18) 

where   

0

1 0
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L
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0
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0
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 
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H
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
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0 0
0 0

0
0 0

S

 
  
 
  

MG
MG

G

MG




  


，

 (0) (1) ( 1)
TT T TN Y y y y  ,  (0) (1) ( 1)

TT T TN F F F F . 

Matrix HL is constant for a system, and the response vector Y can be 

formulated from the measured responses. The identification equation for the 

vector of forces can be written in least-squares sense as  

 1( ) )T T
L L L G g

 F H H H Y H x(  (4.19) 

Regularization method would provide an improved solution to the ill-posed 

problem in Equation (4.19), and the damped least-squares method (Tikhonov 1963; 

Law, Bu and Zhu 2005; Hansen 1992) is adopted to give bounds to the problem. 

Equation (4.20) shows the application of the regularization method in force 

identification as 
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1

) ( )

( ) )

T T
L G g L L

T T
L L L G g



 

  

  

H Y H x H H I F

F H H I H Y H x





(

(
 (4.20) 

where λ is the non-negative damping coefficient governing the participation of the 

least-squares error in the solution. This force identification procedure is the same 

as presented in Section 3.4. 

4.4.2 New Strategies for the First Stage Identification 

4.4.2.1 Time Window Force Identification 

The size of matrix HL is proportional to the number of sampling points in the 

measured data and the number of unknowns in the time history of forces. 

Calculation with a large matrix HL is time consuming and can cause computation 

error. In this study, the measured data is divided into several time segments and the 

time history of the unknown interface forces will be identified in each time 

segment. The initial response values in each segment are calculated from the 

identified forces of the previous segment. With the proposed method, the interface 

forces in all time segments are identified separately in the first stage, while in the 

second stage the local anomalies are identified with the complete measured 

response time history. 

4.4.2.2 Identification of Non-zero Initial Responses 

When the initial response of the structure is not zero, the time history of 

responses of a structure is a function of the initial state, external forces and 

structural parameters. The response vector can therefore be represented as 
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 0( , , )Y Y F αf  (4.21) 

where Y0 is the initial responses of the structural system. When the structural 

system is linear, the responses of the structure can be considered as the summation 

of free vibration due to the non-zero initial responses and the forced vibration due 

to external excitations. Equation (4.21) can be rewritten as 

 0( , ) ( , )Y = Y + Y = Y α F αfr fo g h  (4.22) 

where Yfr = g(Y0, α)and Yfo = h(F, α) are respectively the responses of free 

vibration and forced vibration. 

Considering the free vibration only, the initial response of the structure could 

be represented as the summation of all mode shapes of the structure as 

 0
 
 
 

Φ 0
Y = β

0 Φ
 (4.23) 

where Φ is the normalized mode shape matrix of the structure and β is a 

(2Ndof)1 unknown vector of contribution coefficients of the vibration modes. 

Initial response vector Y0 has dimensions (2Ndof)1 consisting of the 

displacements and velocities. It is noted that the acceleration can be computed 

based on the equation of motion. The total response due to free vibration and 

forced vibration of the structure could be represented as 

 ini L Y Y β H F  (4.24) 

where Yini is the free vibration response vector of the structure arising from the 

vector of initial response at all DOFs of the structure. Equation (4.24) can be 

written as: 
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  ini L
 

  
 

β
Y Y H

F
 (4.25) 

It is noted that the last vector in Equation (4.25) consists of the unknown force 

coefficients and the contributing coefficient vector β  on the initial response of 

the system, and it can be obtained with any optimization method. 

4.4.2.3 Model Updating with Adaptive Regularization Method 

Iterative regularization methods are usually adopted in practical inverse 

problems, such as load identification, model updating and damage detection. The 

objective function in the problem of model updating in Equation (4.11) with 

Tikhonov regularization method is defined as 

 
2 21 1 2 1( , )k k k k kJ          α S α x  (4.26) 

where S is the sensitivity matrix calculated from Equation (4.6) and k denotes the 

kth iteration of the identification. 

Inverse problem is always ill-posed and measurement noise may have 

adverse effect in the process of identification. The iterative identification methods 

should be able to ensure the significance of the structural parameters and mitigate 

the unfavorable effect of noise in the identification. An adaptive regularization 

method with an adaptive upper limit on the identified damage based on results 

from last iteration step is adopted. The objective function of the optimization is 

expressed as 

 
1

1 1 2 ,*

1
( , )

k
k k k k i k

i
J   


 



      α S α x α α  (4.27) 

where ,*kα  is a value to coordinate the constraint of the solution in the i th 
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iteration in the model updating process. Parameter ,*kα can be defined as 

 1,*

1 1

    0     if   ( ) 0
( )

( )               if   ( ) 0

k
k

j
ik

j k k
k k

j j
i i




 



 


  

   




 
 (4.28) 

where the subscript j denotes the j th element of the target structure. 
1

 ( )
k

k
j

i




 is 

the cumulative identified change of stiffness. The local anomaly can then be 

calculated iteratively with the identified optimal parameter   as 

 
1 2 1

1

(( ) ) ( ) ( )k T T k k
mk k k

k
k k

 



  
   

  
 

x x xα I x x
α α α

α α α

    
 (4.29) 

At the end of the model updating, the pseudo structure should have been 

updated such that the interface forces and the FEM are identically to those of the 

damage state of the structure. 

4.5 Implementation Procedure 

4.5.1 For Scenario A when the FEM of the Whole 

Structure is Known 

When the FEM of the whole structure is known, the implementation 

procedure of the two-stage identification is described as follows 

Step 1: Conduct dynamic measurement on the structure. 

Step 2: The matrix of system Markov parameters, HL in Equation (4.18), is 

obtained from finite element model of the structural system. 

Step 3: The external forces are obtained from the damped least-squares method in 
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Equation (4.20). 

Step 4: Divide the structure into substructures and obtain the mass, damping and 

stiffness matrices of the target substructure. 

Step 5: Compute the interface forces from the intact finite element model under the 

action of the identified external forces. 

Step 6: Compute responses of the substructure from Equation (4.3) and the 

sensitivity of responses with respect to structural parameters of the 

substructure from Equation (4.6). 

Step 7: The changes of the substructure parameters are calculated by damped 

least-squares method in Equation (4.29) from the sensitivity of the 

responses of the substructure. 

Step 8: Update the finite element model. 

Step 9: Repeat Steps 6 to 8 until the convergence condition in Equation (4.30) is 

met. 

The convergence criteria is defined as 

 1

1

k k

k

Tol 





 



 (4.30) 

where k denotes the number of iteration and Tol is a small prescribed value which 

is taken equal to 10-6 for all studies in this work. 

Step 10: The two-stage identification procedure can be repeated by updating 

the parameters of the whole structure and repeat Steps 2 to 9 for a higher accuracy. 
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4.5.2 For Scenario B when only the FEM of the 

Substructure is Known 

Step 1: Obtain the mass, damping and stiffness matrices of the target sub-structure 

only. 

Step 2: Construct the pseudo structural system. 

Step 3: Conduct measurement on the target sub-structure. 

Step 4: Identify the interface forces of the pseudo structural system starting with 

the intact model of the pseudo sub-structure in state space as Equation 

(4.18).  

Step 5: Compute responses of the pseudo structure with the intact finite element 

model from Equation (4.10) with the identified interface forces. 

Step 6: The response sensitivities with respect to the stiffness reduction factor n  

of the sub-structure /i n x , /i n x  and /i n x  are calculated from 

Equation (4.6). 

Step 7: The local changes of the parameters n  of the pseudo sub-structure are 

calculated from Equation (4.29) with the sensitivity matrix calculated in 

Step 6. 

Step 8: Update the FEM of the pseudo structure. 

Step 9: Repeat Steps 4 to 7 if the convergence criteria in Equation (4.30) is not met. 

Otherwise the computation stops. 



 120 

4.6 Numerical Simulation Studies 

4.6.1 Simulation Study of a Linear Structure 

A two-dimensional 50-meter high planar truss structure shown in Figure 4.4 

is investigated to illustrate the proposed methods. It is a simplified model of a 

popular type of power transmission tower structure in China. The truss structure 

consists of 14 nodes each with two DOFs. The two ends of each truss element are 

assumed hinged and the structure is found on rigid supports at Nodes 1 and 2 with 

hinges. It has five levels with 10m high each. 

The truss structure is divided into two substructures. Substructure 1 contains 

nodes from 1 to 4 and the elements between them and Substructure 2 consists of 

nodes from 7 to 14 and the elements between them. Nodes 5 and 6 are the interface 

nodes. When they are mapped with the substructure domains in Equations (3.5) 

and (3.6) in Chapter 3, Substructures 1 and 2 corresponds to domains r and s 

respectively while Nodes 5 and 6 belong to domain i. The matrices with 

superscript ‘ are for members between Nodes 5 and 6 and Substructure 1 while 

those matrices with superscript “ are for members between Nodes 5 and 6 and 

Substructure 2. The element numbers of Substructure 2 are also shown in Figure 

4.5. Local damages are assumed to be 10% reduction in the elemental stiffnesses 

for elements 8 and 11 of Substructure 2. The mass density of material is 7.8×103 

kg/m3 and the elastic modulus of material is 2.06 GPA. The cross-sectional area of 

each truss element is 3.5×10-3m2. 
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Dynamic external forces are assumed to act horizontally on Substructure 2 at 

Nodes 13 and 14 as shown in Figure 4.5. The external forces are modeled as 

13

14

( ) 65sin(30 0.3 ) 60sin(60 0.143 ) 55sin(80 0.12 )

( ) 60sin(40 0.4 ) 55sin(70 0.167 ) 50sin(90 0.11 )

F t t t t N

F t t t t N

     

     

     

       

When there is noise in the “measured” response, the polluted response is 

simulated by adding a random component to the “measured” responses as 

Equation (3.39). 

The error of identification of the interface forces and the local damages are 

calculated as 

 1 100%id true

true

F F
error

F


   (4.31) 

 2 100%id true

true

error
 



   (4.32) 

4.6.1.1 Two-stage Assessment for Scenario A 

External forces acting on the structure are identified from Equation (4.20). 

The sampling rate is 1000 Hz and 0.5s of the horizontal acceleration at Nodes 9, 10, 

11 and 12 are ‘measured’ for studies in Scenario A. The identified forces are 

shown in Figures 4.6 and 4.7 for cases without and with 10% noise in the 

“measured” responses respectively. The error of identification calculated from 

Equations (4.31) and (4.32). The optimized regularization parameters under 

different noise levels are shown in Table 4.1. The force identification accuracy is 

noted decreasing with increasing noise level in the responses. However, results in 

Figure 4.7 show that the external forces are not sensitive to noise and they are 
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fairly accurately identified even with 10% noise based on the FEM of the whole 

structure. 

The damage detection of a substructure requires the knowledge on the 

responses at the interface DOFs for the calculation of the interface forces. The 

dynamic responses of the substructure are then calculated from Equation (4.10) for 

the identification of the local damages of the substructure from Equation (4.29). 

The accuracy of using the damaged and intact finite element model in the 

calculation of the interface forces is studied for the case without measurement 

noise in the responses ”measured” at Nodes 9 to 12. The identified interface forces 

at Nodes 5 and 6 from both finite element models are plotted in Figures 4.8(a) to 

4.8(d). They are found almost overlapping with each other indicating that the use 

of the intact finite element model is accurate enough for the estimation of the 

interface forces of the whole structure. 

The identified external forces from the first stage of the method based on the 

FEM are used for the second stage of damage detection. When there is no noise in 

the measured responses of the structure, the result of damage detection shown in 

Figure 4.9 is very good indicating the formulation of the substructure damage 

detection problem is accurate. 

The assessment results for the cases with 10% noise level are shown in Figure 

4.10. The error of identified results is noted to increase with increasing noise level. 

However in the case with 10% noise level in the measured acceleration, the local 

damages can still be identified fairly accurately with good location information 
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and two small false positives in Elements 7 and 14. 

The results on the external forces and local damages are quite good in the 

above studies and there is no need to update the finite element model of the 

structure and repeat with another iteration of force and damage identification. 

4.6.1.2 Two-stage Assessment for Scenario B 

When only the FEM of the target substructure is known, the interface forces 

of the substructure are taken as external forces acting on the substructure which 

can also be identified from Equation (4.20). However, with the increasing number 

of the external forces, force identification may not be accurate and converging due 

to the influence of the measurement noise. To moderate the influence of noise, the 

measured response is least-squares fitted with the Chebyshev Polynomial. The 

number of terms in the Chebyshev Polynomial also has an effect on the accuracy 

of approximation. A study is made on the optimal number of terms for the 

polynomial to have the best fit of the response. An iterative method with 

regularization is used for the study. The error curve for using 120 terms in the 

polynomial is shown in Figure 4.11(a). The error with reference to the unpolluted 

response is smallest after the first iteration of identification, and it becomes larger 

with more iterations. Figure 4.11(b) shows the error curve for using 80 terms in the 

polynomial and the error becomes smaller with increasing iterations. Therefore 80 

terms are adopted in the Chebyshev Polynomial approximation in the following 

studies. The comparison of the unpolluted response, polluted response and the 

curve-fitting approximated response of the horizontal acceleration at Node 13 on 
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one of the curve peaks in Figure 4.12 shows that the approximation is well done. 

Figures 4.13(a) and 4.13(b) show the external force identification results 

based on the FEM of the target substructure without noise where both vertical and 

horizontal ‘measured’ accelerations from Nodes 9, 11 and 14 are used for the 

external forces identification and the sampling rate is also set as 1000 Hz. 

Information from six sensors is used to identify the six unknown forces. The 

identified forces with 10% noise are shown in Figures 4.14(a) and (b). The 

external forces can also be identified fairly accurately based on the Chebyshev 

Polynomial approximation and the identification results converge with the damped 

least-square method. 

The errors of the identified external forces of the substructure with 10% noise 

are 17.9% and 14.4% for the cases without and with approximations in the 

‘measured’ responses. The approximation of the polluted response of the structure 

can effectively reduce the identification errors from noisy measurements. 

Comparison of the above with results in Table 4.2 shows that the error of the 

identified external forces based on the whole structure is smaller than that based on 

the substructure FEM. That is because the interface forces are treated as external 

forces in the latter identification. The measurement noise would have more 

adverse effect when there are more unknowns in the force identification. When the 

FEM of the whole structure is available, the first identification method (Scenario 

A) is recommended for the evaluation of the structural conditions. 

When only the FEM of the substructure is known, the external forces and the 
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interface forces of the substructure have been identified. All the responses at the 

nodes of the substructure can then be calculated through the equation of motion of 

the substructure. It is obvious that any model error in other parts outside the target 

substructure does not have any influence on the assessment result. The identified 

external forces from last study are used for damage detection of the substructure. 

When there is noise in the measurement, the responses of the substructure are 

also moderated with Chebyshev Polynomial as Equation (3.34) in Chapter 3. The 

assessment results for the cases without noise and with 10% noise are shown in 

Figures 4.15 and 4.16 respectively. The errors in the identified results are larger 

compared to those in Figures 4.9 and 4.10 for Scenario A. This is due to the larger 

errors in the identified external forces and interface forces. However, the results 

are noted not sensitive to the noise level due to the Chebyshev Polynomial 

approximation. In the case of 10% noise level in the measured acceleration, the 

location and the severity of the substructure can still be identified fairly accurately 

with few false positives. 

4.6.2 Simulation with a Nonlinear Structure 

A fifteen-storey planar shear frame structure with nonlinear base isolations as 

shown in Figure 4.17 is investigated to illustrate the general response sensitivity 

method. The base isolation between the structure and the foundation is represented 

with a bilinear hysteresis model. The vertical stiffness of the base isolation is 

assumed as infinitely large. The relationship between the force and horizontal 
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displacement is shown in Figure 4.18 where b =0.15 is the ratio of the post-yield 

stiffness to pre-yield elastic stiffness defined by KE, and dy is the yielding 

displacement. The horizontal restoring force of the isolation is defined as 

 (1 )b b E b b E bF K x K z     (4.33) 

where subscript b denotes the base isolation, xb is the horizontal deformation, and 

zb is the horizontal elastic storey drift between ground floor and first floor, KE =0.1 

108 N/m and dy =0.01 m. The mass of each floor is 4105 kg and the stiffness of 

each floor is 2108 N/m. 

The structure is assumed subject to the N-S El-Centro 1940 earthquake 

ground motion with the peak ground acceleration scaled to 0.3g. The sampling rate 

of acceleration measurement is 100Hz. Six scenarios with 10% reduction of 

stiffness in 8th floor and 13th floor are studied and they are shown in Table 4.3. The 

calculated horizontal acceleration responses from Equation (4.10) at the 1th, 5th 

and 10th floors are taken as the “measured” responses for all these six scenarios. 

Additionally, the horizontal displacement of the 1st floor is also used in the first 

stage of force identification in the last two scenarios. This is because the constant 

shift value in the time history of external forces can be difficult to identify with 

acceleration response only. 

In the first four scenarios, 6 seconds of “measured” data are used for the 

model updating. The “measured” data for the last two scenarios begin at 1.5s after 

the earthquake excitation and only two seconds of data are utilized for the initial 

response identification, interface force identification and damage detection. The 
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“measured” data is divided into four segments for the time window force 

identification in Scenarios 3 and 4 while the whole set of data is used for the other 

scenarios. There is only one interface force at the nonlinear base isolation to be 

identified in all scenarios due to symmetry. 

Note that the base isolations are performing nonlinearly with the hysteretic 

curves shown in Figure 4.19. When there is noise in the “measured” response, the 

polluted response is simulated with the Equation (3.39). The error of identification 

of the interface forces and the local damages are calculated as 

 1 100%id true

true

F F
error

F


   (4.34) 

 2 100%id true

true

error
 



   (4.35) 

where Fid and id are the identified interface forces and local damages respectively 

and Ftrue and true are the real interface force and local damages of the structure 

respectively. 

In the first two scenarios, the number of unknowns in the first stage is 600 and 

the measured data is 3600 which is also the number of equations. The size of 

matrix HL is 1800600. The number of equations is much larger than the number 

of unknowns in these two scenarios. In each time segment for force identification 

of the third and fourth scenarios, there are 150 unknowns and 3150 equations. 

The size of matrix HL is 450150 which is one-sixteenth the size of HL in the first 

two scenarios. In the last two scenarios the number of unknowns in the first stage 

is (200+215)=230 and the number of equations is 4200. 
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In the second stage of structural model updating, there are 15 unknowns in all 

six scenarios. The number of equations is 1800 in the first four Scenarios and 600 

in the last two Scenarios. The identification problems in this study are all 

over-determined. 

The error of identification for both the interface forces and the local damages 

as well as the computation time required for each Scenario are shown in Table 4.4 

together with the required number of iterations. The results of model updating are 

shown in Figures 4.20 to 4.25. The stiffnesses shown are the storey stiffnesses of 

the multi-storey frame. 

Figures 4.20 and 4.21 show that the proposed method without measurement 

noise can identify the damage very accurately but with a very long calculation time 

as shown in Table 4.4. The calculation of interface forces is time consuming with a 

large number of unknowns and a large matrix HL. Difference is noted at the peaks 

of the force time history in Figure 4.21 when there is 10% measurement noise. 

However the position and severity of damage could still be found accurately as 

shown in Figure 4.21. The errors in force identification and damage detection 

calculated with Equations (4.34) and (4.35) are shown in Table 4.4. The 

measurement noise and accuracy in the identified forces are noted affecting the 

damage detection result. 

When the time window identification method is applied in Scenarios 3 and 4, 

the computation time is reduced significantly as shown in Table 4.4. The interface 

force and the damage can be identified accurately as shown in Figures 4.22 and 
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4.23 when there is no measurement noise. The errors of identification shown in 

Table 4.4 for the identified force are comparable to those from the case without 

using the time window force identification method. The identified results for 

damage are slightly poorer than those for Scenarios 1 and 2 but the damage 

location can still be identified. This may be due to the cumulative errors in the 

calculated initial responses in each time segment. 

The initial responses, the interface forces and the local damages are all 

identified together in Scenarios 5 and 6. The initial responses and the interface 

forces are identified in the first stage and the local damage is identified in the 

second stage with the proposed method. Figures 4.24 and 4.25 are the 

identification results without and with 10% measurement noise respectively. The 

norm of the damage detection error in Table 4.4 is large compared with those for 

Scenarios 1 to 4. The large errors in the damage detection as shown in Figure 25 

are due to both the errors of identification in the initial responses and the interface 

force. However, the local damage could still be localized with the polluted 

measurement. 

4.7 Conclusions 

A general response sensitivity method based on two-stage identification is 

proposed with the idea of substructure model updating in the time domain. The 

proposed method is analogous to the evolution of a pseudo structure with iterative 

model updating. Two substructural damage detection methods are presented to 
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identify external excitations and local damages iteratively in a substructure with 

time domain information. In the first method, the finite element model of the 

whole structure is required and a selected substructure is assessed for its structural 

conditions. In the second method, only the finite element model of the selected 

substructure is required with the dynamic measurement and excitation within the 

same substructure. Exact knowledge on the boundary conditions of the 

substructure is not necessary. The second method allows a damage detection 

strategy with distributed sensors in a substructure grouped into a cluster as shown 

in Figure 4.26. A cluster head is assigned to coordinate the sensor nodes in its 

cluster and to collect the measured data from the nodes. The identification 

algorithm is embedded into the on-board computational core of each cluster head 

in the sensor network for the detection of local damage in that substructure. The 

damage detection could be conducted simultaneously with parallel computing.  

Two new techniques of time windows force identification and initial response 

identification are also proposed to improve the computation efficiency with force 

identification. These improvements enable a more flexible application of the 

sensitivity approach in engineering practice. The errors in the first stage of force 

identification are found contributing to the error in the second stage of damage 

detection. However, the location of damage could still be identified from polluted 

measurement with the adaptive regularization method. 
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Table 4.1 - Error of force identification and regularization parameters 
 

Noise level (%) Error (%) Optimal    

0 0.73  10-5  

1 2.1  10-5 

5 7.6  1.083×10-5  

10 13.0  2.276×10-5 

 
Table 4.2 - Error of force identification and regularization parameters 

 

Noise level (%) Error (%) Optimal    

0 0.02 0.008 

1 2.10 0.089 

5 2.66 0. 10 

10 2.84 0. 30 

 
 

Table 4.3- Damage Scenarios 
 

Damage scenarios Initial response 
Time Window 

Force identification 
Noise level (%) 

1 0 

2 

No 

10 

3 0 

4 

zero 

Yes 

10 

5 0 

6 
unknown No 

10 
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Table 4.4 - Condition assessment results 

 

Errors (%) 

Damage 

Scenarios 
Force 

Identification 

Damage 

detection 

Required 

computation 

time (s) 

Number of 

iterations 

1 5.5510-3 8.3710-2 1493 93 

2 13.920 24.04 1511 106 

3 9.410-3 0.042 94 92 

4 14.360 32.97 97 104 

5 2.710-3 0.030 111 53 

6 9.470 62.25 113 58 
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Figure 4.1- Structure and substructures 

 

 
Figure 4.2 - Structural system with base isolation 
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Figure 4.3 - Pseudo target structure 
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Figure 4.4 - Configuration of the structural system 
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Figure 4.5 - Selected Substructure and External Forces 
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Figure 4.6 (a) - Identified force at Node 13 of Scenario A without noise  
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Figure 4.6 (b) - Identified force at Node 14 of Scenario A without noise  
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Figure 4.7 (a) - Identified force at Node 13 of Scenario A with 10% noise  

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-200

-150

-100

-50

0

50

100

150

200

Time (s)

Fo
rc

e 
(N

)

 

 
Real force
Identified force

 
 

Figure 4.7 (b) - Identified force at Node 14 of Scenario A with 10% noise  
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Figure 4.8 (a) - Horizontal interface force comparison at Node 5 
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Figure 4.8 (b) - Vertical interface force comparison at Node 5 
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Figure 4.8 (c) - Horizontal interface force comparison at Node 6 
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Figure 4.8 (d) - Vertical interface force comparison at Node 6 
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Figure 4.9 - Identified damages of Scenario A without noise  
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Figure 4.10 - Identified damages of Scenario A with 10% noise  
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Figure 4.11 (a) - Error versus number of iteration with 120 terms 
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Figure 4.11 (b) - Error versus number of iteration with 80 terms 
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Figure 4.12 - Comparison of horizontal response at Node 13 with 80 terms 
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Figure 4.13 (a) - Identified force at Node 13 of Scenario B without noise 
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Figure 4.13 (b) - Identified force at Node 15 of Scenario B without noise  
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Figure 4.14 (a) - Identified force at Node 13 of Scenario B with 10% noise  
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Figure 4.14 (b) - Identified force at Node 15 of Scenario with 10% noise B 
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Figure 4.15 - Identified damages of Scenario B without noise  
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Figure 4.16 - Identified damages of Scenario B with 10% noise  

 
 

 
 
 
 

Figure 4.17 - Fifteen-storey shear frame 
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Figure 4.18 - Relationship between force and displacement of bilinear restoring 
force model 
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Figure 4.19 - Hysteresis loop of the base isolation 
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Figure 4.20 - Identified forces of Scenarios 1 and 2 
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Figure 4.21 - Identified damages of Scenarios 1 and 2 
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Figure 4.22 - Identified forces of Scenarios 3 and 4 
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Figure 4.23 - Identified damages of Scenarios 3 and 4 
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Figure 4.24 - Identified forces of Scenarios 5 and 6 
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Figure 4.25 - Identified damages of Scenarios 5 and 6 
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Figure 4.26 - Distributed sensors network 
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CHAPTER 5 

TIME-VARIANT STRUCTURAL PARAMETER 

IDENTIFICATION 

5.1 Introduction 

Chapter 4 proposed a new substructural condition assessment approach with 

a general response sensitivity method and provided a proof and illustration for 

the proposed method considering the nonlinear component of the structure. All 

the methods proposed for structural condition assessment in Chapter 4 were for 

time-invariant structural system. In practical engineering problem, the structural 

parameters are always time-variant during the strong wind or seismic excitation.  

Numerous methods have been developed for time-variant structural 

condition assessment and model updating in the past. Investigations on the 

time-variant structural parameter identification have also been conducted for 

linear or nonlinear structures over the last two decades (Kerschen, Worden, 

Vakakis and Golinval 2006). A linear time-varying multiple degrees-of-freedom 

system identification method based on the Hilbert transformation and empirical 

mode decomposition was proposed (Shi, Law and Li 2007) while some 

fluctuations are found in the identification results. The Kalman filter is an 

effective means of system parameter identification and input estimation for a 



 149 

linear or nonlinear structure. Two forms of the extended recursive least-squares 

algorithm were considered for the identification of system parameter and the 

tracking of a chirped sinusoid with additive noise (Haykin, Sayed, Zeidler, Yee 

and Wei 1997). Other time-variant parameter identification methods were also 

proposed, such as, the online identification of nonlinear hysteretic structure with 

an adaptive tracking techniques based on least-squares estimation (Yang and Lin 

2004), nonlinear normal modes analysis which considered the nonlinearity of 

structural system (Kerschen, Peeters, Golinval and Vakakis 2009a, 2009b) an 

online sequential weighted least-squares support vector machine technique to 

quantify the structural parameter changes when the measurement involves 

damage events (Tang, Xue, Chen, and Sato 2006), an adaptive tracking technique 

based on extended Kalman filter for structural parameters and their changes 

identification (Yang, Pan and Lin 2007), the dynamic response sensitivity 

method (Li and Law 2009) with a moving time window (Zhu and Law 2007). 

These methods remove the assumption that the time of occurrence of the 

anomalies is known a priori. Hence, these methods could be applied to conduct 

the structural condition assessment online. However, most existing methods for 

time-variant parameter identification do not consider the uncertainties in the 

structural parameters or measurements. 

In this Chapter, two identification methods are proposed for structural 

time-variant parameters identification. Section 5.2 reviews on the iterative 

regularization methods for the system identification and propose a general 
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sensitivity-based method for the identification of both the time-variant and 

time-invariant damping in a structural system. In Section 5.3 a new method for 

the time-variant parameter identification based on windowed measured data is 

presented. Section 5.4 provides the conclusion of this Chapter. 

5.2 Time-Variant Damping Identification 

Damping plays an important role in the dynamic behavior of a structural 

system. It is, however, difficult to measure and is always a subject of active 

research. The identification of damping can be conducted by direct or indirect 

means, and it requires an appropriate damping model and an effective damping 

identification method. Several damping models have been proposed, such as the 

Rayleigh damping proposed by Rayleigh (1877), Caughey damping (Caughey 

and O'Kelly 1965), and the modal damping (Hasselman 1972). Rayleigh 

damping model is commonly used in engineering practice due to its simplicity. 

The Caughey damping model includes more coefficients in its description and is 

more accurate than the Rayleigh damping which is, in fact, a two-term Caughey 

damping approximation. However, with the large number of coefficients in the 

Caughey damping model, inappropriate damping coefficients may lead to a 

negative modal damping ratio which cannot exist in nature. The modal damping 

model is more general and the damping matrix can be expressed in terms of the 

mode shape matrix, modal damping ratios and the modal angular frequencies. 

The problem of damping identification has been reported previously 
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(Rayleigh 1877; Caughey and O'Kelly 1965; Hasselman 1972) and most of the 

application studies adopted the classical Rayleigh damping in the modeling of a 

structural system (Chu, Soong and Reinborn 2006). Methods in the frequency 

domain include the matrix method and modal method (Phani and Woodhouse 

2007). Others in the time domain are the logarithmic-decrement method, Ibrahim 

time-domain (ITD) method proposed by Ibrahim and Mikulcik (1977), Station 

time domain algorithm (STD) method proposed by Ibrahim (1986) and modal 

damping ratio identification method (Li and Law 2009). A wavelet-based 

approach has been studied for a one-degree-of-freedom (DOF) nonlinear system 

(Joseph et al. 2005). Reference by Prandina, Mottershead and Bonisoli (2009a) 

revisited several selected approaches of damping identification and compared 

their performances in numerical study with a cantilever beam. There is also 

literature investigating multiple DOFs systems (Prandina, Mottershead and 

Bonisoli 2009b) with the energy balance approach. It is known that a complex 

structural system always has uncertainties in the material property and boundary 

condition leading to difficulties in the modeling of the damping properties. 

The time domain methods could be applied in large scale structural system 

with the advantages of requiring a small number of sensors. Reference (Shi, Law 

and Xu 2009) has investigated damping in systems of multiple DOFs based on the 

Hilbert transform and the empirical mode decomposition with forced vibration 

response data. The methodology is verified with the simulation of a 2-DOFs 

system and a four-storey shear frame structure. Reference (Shi, Law and Li 2007) 
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also conducted the time-varying damping identification with the subspace-based 

method and a 2-DOFs lump mass model is numerically studied to verify the 

proposed method. Fluctuations are found in the time histories of the identified 

results. 

The vibration-based structural health monitoring has become an 

increasingly attractive research area. Accurate knowledge on the property of the 

structural system would contribute greatly to the success of the structural health 

monitoring and vibration-based structural condition assessment. The damping 

property of a structure will influence the structural health monitoring results at 

different stages of the service life of the structure. It is noted that the direct 

identification of each factor in the damping matrix is difficult in a complex 

structure. Appropriate damping model is therefore necessary for the identification 

of a complex structural system with a large number of DOFs. Modal damping 

ratio identification with a time domain method has been proposed (Li and Law 

2009) where identification of an abrupt change of the modal damping has been 

investigated with a moving window applied to the "measured" data. The results 

for damping in the higher modes, such as the last five modes in the study of Li 

and Law (2009), are not very accurate even in numerical simulation without 

measurement noise. This Chapter proposed the time-variant Rayleigh damping 

and modal damping identification method which could be applied to large scale 

structural system. The time-variant damping is represented by the Chebyshev 

polynomial. The proposed method will be verified with numerical studies and 
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laboratory work.  

5.2.1 The Iterative Regularization Methods 

Many methods have been proposed for the system parameter identification. 

The parameters can be identified with regularization method which is an efficient 

tool for the discrete ill-posed inverse problem (Tikhonov 1963; Hansen 1992). 

One typical type of discrete ill-posed problems is Ax = b  with min Ax - b . 

The singular values of matrix A will be close to zero if the matrix is 

ill-conditioned. This type of problem is very common in the load assessment and 

structural parameter identification. An efficient iterative technique is needed for 

the regularization method as the identified results may diverge due to errors in 

the initial structural model or measurement noise (Hansen 1992). The Newton’s 

method, Quasi-Newton method, Gauss-Newton method, and 

Levenberg-Marquardt methods are all suitable (Levenberg 1944; Marquardt 1963; 

Fan 2003; Dan, Yamashita and Fukushima 2002) for solving an iterative 

regularization solution, and some of them have good numerical stability with 

quadratic rate of convergence (Levenberg 1944). But real engineering problems 

are very different from numerical simulation due to the existence of model errors 

or measurement noise which affects the stability and convergence of the solution. 

Iteration method is usually adopted in the model updating process with 

Newton’s method, Quasi-Newton method, Gauss-Newton method or 

Levenberg-Marquardt method where the last one is a modified Gauss-Newton 
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method. In Newton’s method, the system equation can be written as 

 ( ) ( )( )k k kF J  θ θ θ  (5.1) 

 1k k k  θ θ θ  (5.2) 

where ( )kF θ  is the structural response which is a function of the excitation and the 

system parameters, and k denotes the k th iteration step. '( ) ( )k kJ Fθ θ  is the 

Jacobian of F at the point kθ . '( )kF θ  is the differentiation of structural response 

with respect to structural parameter vector θ. The response ( )kF θ  can be 

obtained through the equation of motion of the structural system via the 

step-by-step time integration. However, there are limitations when the classical 

Newton method is used in the structural condition assessment. Firstly, the 

accuracy of identification results is related to the initial values of iteration and 

the noise level (Li and Law 2009). Secondly, the Jacobian of F in each iteration 

step should be a square matrix and nonsingular. However, the identification 

problem is ill-posed in most cases and ( )kJ θ is not always a square matrix. When 

this occurs, Gauss-Newton method can be used instead in the form of 

 ( ( )) ( ) ( ( )) ( )( )k T k k T k kJ F J J  θ θ θ θ θ  (5.3) 

Gauss-Newton method also requires the initial values to be close to the solution 

but this is not practical for real application with uncertainties and model errors 

particularly in a large scale structural system. The inverse of the 

matrix ( ( )) ( )k T kJ Jθ θ can be obtained from Moore-Penrose inverse when 

( ( )) ( )k T kJ Jθ θ  is singular. Various numerical regularization techniques have been 

applied to investigate this ill-posed problem, and Equation (5.3) can be written as 
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 ( ( )) ( ) (( ( )) ( ) )( )k T k k T k kJ F J J    θ θ θ θ I θ  (5.4) 

which is usually named as the Tikhonov Regularization. The optimal parameter λ 

can be sought through the L-curve method or the generalized cross-validation 

method (Golub, Heath and Wahaba 1979). To find the solution of Equation (5.4) is 

equivalent to finding the optimal parameter λ in the minimization of the following 

objective function as 

 ( )k kJ F  θ θ  (5.5) 

A fairly accurate solution of Equation (5.1) can be obtained through the 

regularized Gauss-Newton method. Hansen. (1998) presented this direct 

regularization method and gave a comparison of numerical results with other 

ways dependent on the initial value. When there is noise in the measurement or 

error in the finite element model, the identified result may diverge with an 

inappropriate regularization parameter leading to an inaccurate solution. The 

ill-posed problem in practice always needs a constraint to ensure the physical 

meaning of the identified parameters. Such a constraint has been proposed on the 

iterative increment (Hassiotis and Garrett 1995). A projected least-squares 

algorithm for the positive quadratic programming has been implemented by Lai 

(2005) where the unconstrained minimization solution of the quadratic objective 

function is firstly computed as the initial value and it is subsequently projected 

on the boundaries of the constraints. 

A general iterative regularization method is proposed in this study with an 

additional constraint on the identified parameters. New limits are proposed and 
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added to the structural parameter considering the physical meaning. The initial 

values are all set equal to zero. The unconstrained solution of the objective 

function is firstly calculated and the summation of solution is projected on the 

boundary of constraints (Lai 2005; Lin 2007). The subsequent iterations are 

therefore not dependent on the initial value. The modified iterative method 

considering the physical meaning of the parameter is shown as 

 1(( ( )) ( ) ) ( ( )) ( )k k T k T kJ J J F    θ θ θ I θ θ  (5.6) 

 1 ( )k k kdiag     θ θ θ  (5.7) 

where k is the modified iterative vector and ( )diag  is a diagonal matrix with 

, ,

, ,

, ,

( - )/            if  <

           1                         if  <
( )/           if  >              

k k k k
low r i i i i i low r i

k k k
i low r i i i up r i

k k k k
up r i i i i i up r i
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      

       

 


  
  

 (5.8) 

and low and up denote the lower and upper fractions to define the limits of the 

constraint on the summation of the solution, and their selection would affect the 

convergence rate of computation. k denotes the number of the iteration step and i 

denotes the i th factor in the diagonal matrix. r,i is the ith factor in the reference 

vector, which can be defined or determined according to the real problem under 

study. The above constraint can be generalized as 

 
1 1

1 1
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    or else                                            
max( ) min( )max( , )
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k k
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 
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


 

θ θ

θ θ
θ θ

      







 (5.9) 

where  is a scalar coefficient on the increment in an iteration instead of 

( )diag  in Equation (5.7). up up r   is the upper limit and low low r    is the 

lower limit of the constraint respectively.  is a coefficient less than unity and 
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equals to 0.5 in simulations of this Chapter. The convergence property with the 

constraint in Equations (5.8) and (5.9) has been demonstrated by Fletcher (1987). 

The proposed iterative regularization method with new limits considering the 

physical meaning of parameter as described in Equations (5.6) to (5.9) will be 

applied to identify the damping of the structure in the following studies. 

The error of the converged solution for Equation (5.1) can be written as 

 error mea cal x x x  (5.10) 

where meax is the measured response from the structure,  ( )cal Fx θ is the 

calculated response from the updated parameters of the structural system and 

xerror is the vector of difference between the measured response and the 

re-constructed response. 

Different damping models are reviewed in the following paragraphs. 

Structural responses based on these damping models are calculated from the 

equation of motion of the structure and they are subsequently used in the inverse 

analysis of damping identification. The stiffness and mass matrices of the 

structural system are assumed unchanged in the following studies. 

5.2.2 The Time-invariant Rayleigh Damping 

As the equation of motion, classical Rayleigh damping is assumed as a 

linear combination of the stiffness and mass matrices with the 

form 1 2a a C M K , where a1 and a2 are the coefficients of Rayleigh damping. 

Performing differentiation to both sides of Equation (5.11) with respect to the 
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parameters ia , we have 

 1 2
1 1 1

( )a a
a a a
  

    
  

x x xM M K K Mx
    (5.11) 

 1 2
2 2 2

( )a a
a a a
  

    
  

x x xM M K K Kx
    (5.12) 

The responses of the structure are calculated from equation of motion. The 

sensitivities / ia x , / ia x and / ia x  with respect to the Rayleigh damping 

coefficients can then be solved by step-by-step time integration Newmark- 

method from Equations (5.11) and (5.12). Equation (5.6) can therefore be 

rewritten as 

 1 1

2 1 2 1 2 1 2

([  ] [  ] ) ([  ] ( ))T T
mea cal

a
a a a a a a a





       

          

x x x x x xI x x
         (5.13) 

Since the i th modal damping ratio of the structure ξi should be larger than zero, 

the constraint in Equation (5.9) on the vector 1 2[  ]Ta a is given as follows: 
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

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 (5.14) 

where iξ  is the i th modal damping ratio, low and up are the lower and upper 

limits and they are set equal to 0.0 and 1.0 respectively in this Chapter. It is noted 

that a structure cannot take up a negative damping nor an over-damped structure 

would exist in nature. The initial values of a1 and a2 are equal to zero. The 

constraint in Equation (5.14) ensures the physical meaning of the Rayleigh 

damping and the modal damping ratio is not lost in the updating process, i.e. the 

identification result can always give a positive modal damping ratio. 
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5.2.3 The Time-variant Rayleigh Damping 

The Rayleigh coefficients are assumed as time-variant with 

1 2( ) ( ) ( )t a t a t C M K                         (5.15) 

and the time history of the coefficients are modeled by the Chebyshev orthogonal 

polynomial as 

 ( ) (t)t a cT  (5.16) 

 1

2

( )
( )

( )
t

t
t

 
  
 

T M
T

T K
 (5.17) 

where 1 ,1 ,1
1

( ) ( )
mN

m m
m

a t c T t


 , 2 ,2 ,2
1

( ) ( )
mN

m m
m

a t c T t


 , Nm is the number of terms of the 

polynomial, c is the coefficient matrix, ,1mT and ,2mT  are  the time basis of the 

orthogonal polynomial for a1(t) and a2(t) and a=[a1 a2]T is a vector of the Rayleigh 

damping coefficients. 

The equation of motion of the structure can be written as 

 ,1 ,1 ,2 ,2
1 1

( ) ( ( ) ( ) ) ( ) ( ) ( )
m mN N

m m m m
m m

t c T t c T t t t t
 

    Mx M K x Kx LF   (5.18) 

Performing differentiation to both sides of Equation (5.18) with respect 

to ,m ic , we have 
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t t tc T t c T t T t t
c c c

  
    

  x x xM Μ K Mx
    (5.19) 
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    

  x x xM M K K Kx
    (5.20) 

The responses of the structure are calculated from equation of motion. The 

sensitivities ,( ) / m it c x , ,( ) / m it c x and ,( ) / m it c x  with respect to the 
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Chebyshey polynomial coefficients can then be solved by step-by-step 

Newmark- integration method from Equations (5.19) and (5.20). Equation (5.6) 

can be rewritten for this case as 

 1(( ) ) (( ) ( ))T T
mea cal    

  
  
x x xc I x x
c c c
      (5.21) 

It is noted that the damping of the structure can be written in a more 

convenient form as 

 1 1( ) 2T
n n  

 
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  

C Φ Φ



 (5.22) 

where Φ  is the mode shape matrix, n is the angular frequency for the nth 

mode of the structure. The time-varying damping model can be modeled, in 

general, as follows for the damping identification. In the k+1th iterative step, the 

modal damping ratio can be represented as 

 1k k k  ξ ξ ξ  (5.23) 

where k  is the iterative increment of the modal damping ratio vector at the 

kth step, which can be written according Equation (5.22) as 

 ( ( )) 1/ (2 )   ( 1,2 )k T
nt n Ndof  

 
   
  

ξ Φ c T Φ



…  (5.24) 

where c is expressed in Equation (5.21) and Ndof is the number of DOFs of the 

structure. The constraint on the modal damping ratio can also be defined as 

Equation (5.14), and the iterative formulation can be modified according to 

Equation (5.7) as 

 1k k k   c c c  (5.25) 



 161 

It should be noted that the time-variant Rayleigh damping model can also 

represent the time-invariant Rayleigh damping as there is a time constant term in 

the Chebyshev polynomial. 

5.2.4 Time-variant Modal Damping 

If the structural damping is described in terms of more than two modes, i.e. 

it is assumed as the general form of the Cauchy damping with 
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where al is the lth coefficient of the Caughey damping. The sensitivity of 

response of the structure with respect to the coefficients of Caughey damping can 

be derived based on the equation of motion as 
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However, there is a high possibility that an inappropriate Caughey damping 

coefficient may lead to negative modal damping ratios of the structure. 

Modal damping is a more general damping model and is briefly described in 

this section for damping identification. Time-invariant modal damping 

identification has been investigated previously (Li and Law 2009) and it is 

expressed in terms of the mode shape matrix and modal damping ratios as 
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where  n  and Mn are the n th mode shape vector and modal mass respectively. 

The modal damping of the structure can be assumed as time-variant damping 
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represented as 
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with 
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or 

 m( ) ( )t tξ cT  (5.31) 

where ( )n t  is the n th time-variant modal damping ratio. c is a matrix of the 

Chebyshev Polynomial coefficients and Tm(t) is a matrix of the Chebyshev 

Polynomial. The sensitivity of the response of the structure with respect to the 

coefficients cm,n of the modal damping ratio can be derived based on the equation 

of motion as 
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The sensitivity of the damping matrix can be computed as 
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Based on the sensitivity matrix ,/ n
m nc x  with respect to the coefficients, 

the time-variant Chebyshev polynomial coefficients can be calculated through 

the iterative regularization method as shown in Equation (5.6) which is rewritten 

for this case as 

 1(( ) ) ( ) ( )T T
mea cal    

  
  
x x xc I x x
c c c
      (5.34) 

Since 
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 ( )k k
m t ξ c T  (5.35) 

and the iterative procedure can be implemented similar to Equation (5.25) as 

 1k k k   c c c  (5.36) 

It should be noted that modal damping is equivalent to Caughey damping 

when the number of parameters of Caughey damping is equal to the number of 

the DOFs of the structure. 

5.2.5 Numerical Simulation Studies 

A nine-bay cantilever space frame structure is investigated numerically with 

the three damping models described in Sections 5.2.2 to 5.2.4 to illustrate the 

effectiveness of the proposed iterative regularization identification method. The 

space frame consists of 69 three-dimensional Euler-Bernoulli beam elements and 

29 nodes each of which has six DOFs as shown in Figure 5.1. The total number 

of DOFs of the structure is 178. The structural members are rigidly joined 

together. The distance between the centers of each pair of adjacent nodes is 0.5m. 

The whole cantilever space frame structure is joined to a rigid support at three 

nodes. Large stiffnesses of 106kN/m and 106kN-m/rad are used to model the 

translational and rotational flexibilities at the support DOFs. The property of 

material of the structure is shown in Table 5.1 and the first 8 natural frequencies 

are 5.141, 10.935, 15.066, 19.841, 27.566, 39.746, 52.553 and 60.618Hz 

respectively. The mode shapes are referred to reference of Li and Law (2008). 

Free vibration of the structure was obtained by a sudden release of a 3.72 kg 
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mass hanging at Node 29 of the structure. The sampling rate is 1000Hz and one 

second of acceleration record is used for the simulation studies except otherwise 

stated. 

5.2.5.1 Time-invariant Rayleigh Damping Identification 

The damping of the structure is assumed as time-invariant Rayleigh 

damping and is calculated from the first two modal frequencies and modal 

damping ratios as 
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 (5.37) 

where 1  and 2  are the first two modal damping ratios assumed as 0.05. The 

response of the structure in the forward problem is then calculated through the 

step-by-step time integration method. The calculated vertical response at Node 

18 serves as the ‘measured’ response in the inverse problem of damping 

identification. 

The error of identification is defined as 

 / 100%Ray id real realerror coeff coeff coeff    (5.38) 

where idcoeff is the vector of identified Rayleigh coefficients and realcoeff is the 

vector of real set of Rayleigh coefficients. Two cases, without and with 10% 

white noise in the calculated acceleration, are studied and the error of 

identification calculated from Equation (5.38) are respectively 4.9710-5% and 

0.76%. Figure 5.2 shows the curves of real and reconstructed responses at Node 

18 with updated damping and they are almost overlapping even in the case with 
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10% white noise in the measurement. The Rayleigh damping can be identified 

with high accuracy even with 10% noise in the measurement. 

5.2.5.2 Time-variant Rayleigh Damping Identification 

In this section, two time-variant Rayleigh damping models are explored. 

The time varying Rayleigh damping coefficients are modeled in the forward 

problem as 

 , , , ,
1

( ) ( )
mN

tva n tin n m n m n
m

a t a c T t


   (5.39a) 

 , 1.5( 1)

1(1 )
30 10m n m

mc     (5.39b) 

where ,tin na is the n th factor of the of Rayleigh damping coefficient vector 

calculated from Equation (5.37), ,tva na is the n th factor of the time-variant 

Rayleigh damping coefficient vector. The second term on the right-hand-side of 

Equation (5.39b) ensures the damping value is higher for higher order terms; the 

second term ensures the fluctuation for higher order terms will be decreasing. 

The resulting Rayleigh damping coefficients are increasing monotonously as 

shown in Figure 5.3. The influence of higher order terms in Equations (5.39a) 

and (5.39b) is constrained with increasing value of m and the time histories of the 

Rayleigh damping coefficients are close to a quadratic function. Nm is taken 

equal to six, and a one second record of the acceleration from Node 18 serves as 

the ‘measured’ response. Similarly, the ‘measured’ acceleration and the 

acceleration calculated from the identified damping with and without noise are 

shown in Figure 5.4. The error of the re-constructed acceleration is very small 
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when there is 10% white noise in the measurement and the reconstructed 

acceleration and the ‘measured’ response are nearly overlapping. The norm of 

errors between the re-constructed response and the ‘measured’ response 

calculated from Equation (5.38) are 8.61610-4% and 14.69% for the cases 

without and with 10% noise respectively. These results show that the 

time-variant assumption on damping may be a more general damping model for 

identification though the measurement noise would influence the identification 

result much more than that obtained from the time-invariant Rayleigh damping 

model. The damping can be identified but with a slightly reduced accuracy which 

may be due to the large number of terms to be identified in the time-variant 

damping model. 

Next, the time-variant Rayleigh damping is represented with a fast-varying 

representation as shown in Figure 5.5 for the two coefficients. The fluctuating 

time histories of the Rayleigh damping coefficients should ideally need more 

terms in the Chebyshev polynomial for representation (Nm equals to 6 in this 

study) and they are subsequently taken as unknowns in the inverse problem. The 

error between the identified time-variant Rayleigh damping and the real damping 

are 9.0510-4% and 15.12% for the cases without noise and with 10% noise 

respectively. 

5.2.5.3 Time-variant Modal Damping Identification 

In this section, three types of time-variant modal damping models are 

explored. The sampling rate is changed to 200 Hz. The time-variant modal 
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damping is modeled for the study as 
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where n denotes the n th mode and m denotes the m th term of the Chebyshev 

polynomial. The first term on the right-hand-side of Equation (5.40b) ensures the 

damping value does not deviate too much from 0.05; the second term ensures the 

damping value is higher for higher order terms; the last term ensures the 

fluctuation for higher order terms will be decreasing. Each modal damping ratio 

increases monotonously with time as shown in Figure 5.6 for the first eight 

modes. This form of modeling the damping ratio in Equations (5.40a) and (5.40b) 

can reduce the contribution of higher order terms of the Chebyshev polynomial 

in the time-variant modal damping which ensures a monotonous increase of the 

damping ratio with time. 

Case 1 

The first eight modal damping are targeted for identification and the 

remaining higher modal damping is assumed constant at zero. The error of 

damping ratio in identification is calculated as 

 , , , ,/ 100%ratio im id im real im real imerror DR DR DR    (5.41) 

where ,id imDR is the identified damping ratio of the im th mode and ,real imDR is 

the real modal damping of the im th mode. Only the damping ratio of vertical 

mode can be identified from the ‘measured’ vertical acceleration at Node 18 and 
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the error of identification is shown in Table 5.2. 

The error of identification from vertical responses at Nodes 18 and 23 is 

shown in Table 5.3. The ‘measured’ vertical response from Node 18 of the 

structure and the re-constructed response at the same DOF based on the 

identified damping ratio are shown in Figure 5.7 showing some large errors at the 

peaks of the response curves when there is 10% noise. The convergence curves 

are shown in Figure 5.8 with and without 10% noise in the measurement. The 

error in acceleration is calculated as / 100%mea cal meaerror   x x x   . The error 

of identification reduces monotonically when there is no noise in the 

measurement while it fluctuates with decreasing magnitude at increasing iterative 

step when there is measurement noise. All the above results show that the 

time-variant modal damping can be identified accurately with the proposed 

iterative regularization method. Moreover, it should be noted that the 

time-variant modal damping identification method can also be applied to identify 

the time-invariant damping in practice. 

Case 2 

In this case only the modal damping ratios of the first fifteen modes are 

considered in the identification and the damping ratios of the other higher modes 

are assumed to be zeros. The error of identification for each modal damping 

calculated from Equation (5.41) is shown in Figure 5.9 when there is no noise in 

the measurement. The damping ratios of the first fifteen modes are identified 

very accurately. This indicates that the proposed method can detect the higher 
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order modal damping even though they have very small participation in the 

structural response. 

Case 3 

A fluctuating modal damping ratio is studied in which the damping ratio is 

slow-varying but increasing with time. The time histories of the first eight modal 

damping ratios are shown in Figure 5.10 and the remaining higher modal 

damping is assumed constant at zero. The ‘measured’ response for the 

identification is the vertical acceleration at Nodes 18 and 23. The error of 

identification calculated according to Equation (5.41) between the identified 

damping ratio and the real modal damping is respectively 8.7610-7% and 8.13% 

for the cases without noise and with 10% white noise in the measurement. 

5.3 Time-variant Stiffness Identification with 

Uncertainty in Structure 

A structure may suffer from abrupt damages when under severe earthquake 

and some structural components may perform nonlinearly. It is therefore 

important to evaluate the condition of structural components and the load bearing 

capacity of the structural system after the earthquake. However, it is difficult to 

judge when and where the damage occurs based on the measurements from the 

structural system. It is also a tough work to assess the severity of the damage. 

Moreover, the measurement is always polluted by noise and the analysis results 

are commonly influenced by model error.  
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Sensitivity methods in time domain have been investigated and applied 

extensively for time-invariant parameter identification of linear structures. The 

sensitivity matrix of response with respect to the structural parameters is derived 

to locate and quantify the damage (Li and Law 2010) or damping ratio in 

reference (Lu and Law 2007). It has been demonstrated that only a few sensors 

are needed for the damage detection with the sensitivity method in time domain. 

The simultaneous identification of the external excitation and the local damage 

has been implemented by Lu and Law with sensitivity method (Ding and Law 

2011). Time-variant damping ratio identification method has been presented with 

Chebyshev polynomial or a moving time window by Li and Law (2010). 

However, these literatures did not consider the non-zero initial structural 

response or the nonlinearity of structure, both of which would influence the 

identification result. In this Section, a method will be proposed to identify the 

time-variant parameters including the linear components and nonlinear 

components. 

A new time window identification method was proposed in Section 4.4.2 

without the information of initial structural response for time-invariant linear 

system. In this Section, the time window identification method will be extended 

to apply to the time-variant structure even the structure with bilinear components. 

The time history of measured acceleration is divided into short non-overlapping 

time windows. The initial structural responses are unknown and the structural 

parameters are assumed to be invariant in each of these short time windows. This 
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idea originates from the average acceleration step-by-step integration method. A 

new two-phase identification strategy is developed to ensure the physical 

meaning and convergence of the proposed identification algorithm. In the first 

phase, the initial structural response is identified with the Tikhonov 

regularization method and in the second phase, the structural parameter is 

identified with a modified adaptive regularization method. Three types of 

structures subject to seismic ground motion are investigated to validate the 

proposed method, i.e. a linear shear frame with abrupt damage, a linear shear 

frame with nonlinear base isolation on the first floor and a shear frame with 

seismic resisting bracing on each floor. 

5.3.1 Sensitivity Method for the Time-variant Structural 

Parameters Identification 

5.3.1.1 Discrete Time History of Time-variant Structural Parameter 

The structural parameter is always time-variant during a seismic event or 

under the strong wind. Considering the time-variant stiffness of the structural 

system, the equation of motion can be written as 

 ( ) ( ) ( ) ( ) ( )gt t t t x t   Mx Cx K x MG    (5.42) 

where ( )tx , ( )tx , ( )tx , K(t) and ( )g tx  are all time-variant. When the stiffness of 

the structure is nonlinear, Equation (5.42) could be written as 

 ( ) ( ) ( , ) ( ) ( )gt t t x t x t   Mx Cx K x MG    (5.43) 

The continuous equation of motion of the structural system could be discretized in 
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the nth short time window and the equation of motion can be written as 

 ( ) ( ) ( , ) ( ) ( )n n n n g nt t t x t x t   Mx Cx K x MG    (5.44) 

where subscript n denotes the nth time window. In this study, it is assumed that the 

structural parameter is a constant in each short time window. 

5.3.1.2 Identification in a Time Window  

A general method is presented in this section to identify the initial structural 

responses and parameter in each time window. The time history responses Y is a 

function of the initial structural response Y0, external force F and structural 

parameter α. The response vector can therefore be represented as 

 0( , , )Y Y F αf  (5.45) 

The responses of the structure can be considered as the summation of free 

vibration due to the non-zero initial responses and the forced vibration in each time 

segments. Equation (5.45) can be rewritten as 

 0( , ) ( , )   Y Y Y Y α F αm fr fo g h  (5.46) 

where subscript m denotes the measured response, Yfr = g(Y0,α) and Yfo = h(F, α) 

are respectively the responses of free vibration and forced vibration response. 

Considering the free vibration only, the initial structural response could be 

represented as the summation of all mass-normalized mode shapes of the structure 

which is the same as Equation (4.23). Considering the structural model error the 

total response as shown in Equation (5.46) due to free vibration and forced 

vibration of the structure could be represented as 

 m fo ini   Y Y Y β S α  (5.47) 
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where Yini is the free vibration response vector of the structure arising from the 

vector of initial response at all dofs of the structure. Equation (5.47) can be written 

as 

  m fo ini
 

    

β
Y Y Y S

α
 (5.48) 

It is noted that the unknown vector on the right-hand-side of Equation (5.48) 

consists of the coefficient vector β  and the stiffness change coefficients. A two 

phase algorithm is proposed in next section for the identification of these unknown 

parameters. 

5.3.2 Identification with Modified Adaptive 

Regularization Method 

Iterative regularization methods are usually adopted in practical inverse 

problems, such as model updating and force identification. The problem in 

Equation (5.48) could be directly solved by iterative Tikhonov regularization 

with the following objective function 

 
221 1 1 1 2 1 1( , , )

Tk k k k k k k k k
frJ               α β Y β S α x β α  (5.49) 

where S is the sensitivity matrix calculated from Equation (4.6) in Chapter 4 and 

k denotes the kth iteration of the identification. Inverse problem is always 

ill-posed and measurement noise may have adverse effect in the process of model 

updating. But the convergence and physical meaning of structural parameters 

cannot be guaranteed due to the adverse influence of measurement noise. 

A two phase identification algorithm is described as follows. The initial 



 174 

structural response is identified in the first phase while the structural parameter is 

identified in the second phase. Therefore, the iterative Tikhonov regularization 

method is directly applied with the objective function 

 
2 21 1 2 1( , )k k k k k

frJ       β Y β x β  (5.50) 

A modified adaptive regularization method is utilized in the second phase. An 

adaptive regularization method has been proposed as presented by Li and Law 

(2010) with an adaptive limit on the summation of the identified changes based 

on results of last iteration steps. The objective function of optimization in the 

model updating is expressed as 
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where ,*kα  is a value to coordinate the constraint of the solution in the i th 

iteration in the damage detection process. Parameter ,*kα can be defined as 
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where the subscript j denotes the j th element of the structure. 
1
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 is the 

cumulative identified change of stiffness. The local damage can then be detected 

iteratively with the obtained optimal parameter 2
a  as 
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 (5.53) 

However, this method could only detect the changes of the structure with a fairly 

accurate initial analytical model. If there is positive model error involved, they 
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cannot be identified with this method as noted in Equations (5.51) and (5.52). It 

is assumed in this study that the Young’s modulus of material follows a normal 

distribution, and the parameter is simulated in the same way as the uncertainties 

of measurement as shown in Equation (3.39). The standard deviation of Young’s 

modulus is taken to be 0.05 times of its mean value in this study. The above 

adaptive regularization method is modified to take care of the model errors. The 

initial stiffness of the structural elements is increased by a positive factor of 1.3 

such that the identified stiffness change will all have negative values. The 

adaptive regularization method could then be applied for damage detection via 

model updating with different values of initial model errors. 

5.3.3 Implementation Procedure 

Step 1: Obtain the mass, damping and stiffness matrices of the initial structural 

model, which may be inaccurate. 

Step 2: Conduct measurement on the structure. 

Step 3: Divide the measurement time history into different non-overlapping short 

time segments. 

Step 4: Identify initial structural response of the first time segment with Tikhonov 

regularization method. 

Step 5: Identify structural parameter with the proposed modified adaptive 

regularization method in the first segment. 

Step 6: Repeat Steps 4 and 5 until the following convergence criteria are met. 
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where k denotes the number of iteration and Tol1 and Tol2 are the prescribed 

value which are taken as 10-4 for all studies in this work. 

Step 7: Repeat Steps 4 to 6 for the next time segment. The responses at the last time 

instant of the last time segment are taken as the initial estimation of the 

initial responses of the new time segment. 

5.3.4 Numerical Simulation Studies 

There are three cases of time-variant parameter identification studied in this 

Section, one of which is a linear frame with abrupt damage and the other two 

cases are for a linear frame with nonlinear dissipative components. The mass of 

each storey is 4105 kg and the stiffness of each floor is 2108 N/m. The base 

excitation is the earthquake ground motion record of N-S El-Centro (1940) with 

the peak ground acceleration scaled to 0.3g. The sampling rate of measurement is 

2000Hz. There are 800 sampling points in each time window and of 0.4 s 

duration there are 75 windows in the whole time duration. When there is noise in 

the “measured” response, the polluted response is simulated by adding a normal 

random term to the unpolluted structural responses as Equation (3.39) in Chapter 

3. 

5.3.4.1 Shear Frame with Abrupt Damage 

In the first case, a linear shear frame structure described above with 
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15-storeys and rigid base connection as shown in Figure 5.11 is investigated. A 

numerical simulation study with 5% initial model error in the FEM modeled as 

the measurement noise as shown in Equation (3.39) and 20% abrupt reduction of 

stiffness in the 2nd and 5th floor is conducted. The time of occurrence of the 

abrupt stiffness reduction is 2s from the beginning of the excitation. The 

horizontal accelerations at the 3rd, 6th 10th and 15th floor floors are taken as the 

“measured” responses.  

Figures 5.12(a) and 5.12(b) are comparisons of the real stiffness time 

histories and the identified stiffness time histories of the 2nd and 5th floor. The 

time of occurrence, location and severity of the abrupt damage could be 

identified accurately without noise in the measurement. The identified structural 

stiffness at the end of the 30s duration is shown as Figure 5.13 with very accurate 

results. Figures 5.14(a) and 5.14(b) gives the comparison of the stiffness time 

history identification results of the 2nd and 5th floor with 10% measurement noise. 

The identified damage extent and location are acceptable with 10% measurement 

noise although there is a large error at the beginning of the time history and some 

small fluctuations in the stiffness time history. Figure 5.15 shows the identified 

structural stiffness at the end of the 30s duration when there is 10% measurement 

noise. It is noted that the error of stiffness identification is a little bit larger than 

that obtained from measurement without noise. 

5.3.4.2 Shear Frame with Nonlinear Seismic Isolations 

This case studies the same frame structure described earlier with 10-storeys 
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as shown in Figure 5.16 with additional base isolation to the first floor. A bilinear 

stiffness model is used to simulate the base isolation with the relationship 

between the restoring force and horizontal displacement shown in Figure 4.18. 

The horizontal restoring force of the isolation is defined as Equation (4.32) in 

Chapter 4 where KE =2 107 N/m and dy =0.01 m. The horizontal acceleration 

responses at the 3rd, 6th and 10th floor are taken as ‘measured’ response. 

This numerical simulation study also includes initial model error in the 

finite element model. There is 5% model error but no stiffness reduction in the 

main structure above the base isolation. Again 30s of measured data divided into 

75 short time segments is used for the identification. Figure 5.16 shows that the 

time history of the nonlinear storey stiffness of the first floor could be identified 

accurately without measurement noise. But there are some small errors when 

there is softening effect of the base isolation. Figure 5.17 is the identified result 

when there is 10% measurement noise. There are notable yet small fluctuations 

in the identified stiffness time history with large errors at the beginning of the 

time history. However the identification result is fairly accurate and acceptable. 

The identification results of time-invariant parameters are not listed and the norm 

of the identification error of time-invariant parameter is 1.95%. 

5.3.4.3 Shear Frame with Nonlinear Seismic Isolations 

The linear frame structure described above with 10-storey and bracing 

member in each floor as shown in Figure 5.18 is investigated. The bracing 

members are also simulated with a bilinear stiffness model with b =0.05, KE =5 
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107 N/m and dy =0.015 m. The horizontal acceleration responses at the 3rd, 5th, 

8th and 10th floor are taken as measured response. Figure 5.19 and Figure 5.20 are 

the identification results without and with 10% measurement noise respectively. 

Results indicate that all the bracing members exhibit the bilinear performance 

during the earthquake excitation. The time history of the nonlinear storey 

stiffness at each floor could be identified accurately when there is no noise. The 

fluctuation is, however, larger than that found in Section 5.3.4.2 when both 

nonlinear stiffness and measurement noise exist. However the results still show 

clearly the bilinear stiffness and their time of occurrence. 

5.3.5 Discussions 

In the first phase of identification in Section 5.3.4.1, the number of 

unknowns is 30 denoting the number of unknown initial displacement and 

velocity at all storeys of the structure, and the number of measured data is 4800 

which is also the number of equations for the identification in each time segment. 

The size of matrix Yini is 320030. In the second phase of this case study, the 

number of unknown is 15 which is the number of unknown storey stiffness and 

the size of the sensitivity matrix S is 320015 matrix.  

In Section 5.3.4.2, the number of the measured data is also 4800. The size 

of matrix Yini is 320020 and the size of S is 320010. The number of equations 

and unknowns in Section 5.3.4.3 is the same as that in Section 5.3.4.2. In these 

three cases, the number of equations is much larger than the number of 
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unknowns and they are all over-determined problems. It is demonstrated from the 

numerical simulations that the time-variant parameters could be identified with 

the identification problem linearlized in a small time window 

5.4 Conclusions 

In this Chapter, new methods are proposed for time-variant damping 

identification and time-variant stiffness identification. Damping identification is 

conducted firstly. Rayleigh damping is very suitable for engineering purpose but 

it is not accurate enough for dynamic analysis of a structure. Modal damping is 

noted to be very promising for structural condition assessment and is a general 

damping model. 

Three damping models, time-invariant Rayleigh damping, the time-variant 

Rayleigh damping and time-variant modal damping, are investigated in this 

Chapter and an iterative regularization identification method is proposed to 

identify these three types of damping. A constraint is added to ensure the physical 

significance of the modal damping ratio in the solution process. Chebyshev 

polynomial is employed in this Chapter to approximate the time-variant Rayleigh 

damping coefficients and modal damping ratios. Only a few terms in the 

polynomial is required as the structural damping will not usually change rapidly 

with time. In the numerical simulation, the forward problem and inverse problem 

employ the same damping model. The damping can be identified with accurate 

result even with 10% noise in the measurement. However, the modal damping 
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model is more general and accurate for modeling the structural dynamics as 

illustrated in the experimental verification. 

When the modal damping ratios are difficult to estimate or there is some 

innovative energy dissipation devices installed in the structural system, it is 

suggested that the damping can be initially assumed as time-invariant Rayleigh 

damping for a rough estimation to form a set of reference values for the 

subsequent more accurate time-variant damping identification. It is also 

recommended that the time-variant modal damping be utilized for the long-term 

structural health monitoring because there may be significant changes in the 

damping mechanism with time due to the changing environmental conditions and 

structure in the service life of the structure. 

Secondly, a time-variant parameter identification method is developed with 

short time duration of data. Exact knowledge or assumption on the initial 

structural responses is not necessary. A two-phase identification algorithm is 

presented to conduct the identification in each time segment. In the first phase, 

the initial structural response is identified with iterative Tikhonov regularization 

method while the structural model is updated with a modified adaptive 

regularization method. The time of occurrence, location and severity of local 

change in the storey stiffness can be identified with acceptable results even when 

the measurement is polluted with noise. This linearlized approach with in short 

time duration not only could identify the linear abrupt loss of stiffness but also 

could identify the nonlinear stiffness, and it could be applied to the structural 
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condition assessment in the event of a severe earthquake.  
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Table 5.1 - Material and geometrical properties of members 
 

Properties Member 

Young modulus (N/m2) 2.101011 

Area (m2) 6.59710-5 

Density (kg/m3) 1.212610+4 

Poisson ratio 0.3 

Mass of ball bolt (kg) 0.232 

Additional Mass at the joints (kg) 0.16 

Moment of area Iy (m4) 3.64510-9 

Moment of area Iz (m4) 3.64510-9 

Torsional rigidity J [m4] 7.29010-9 

 

 
Table 5.2 - Error of identification from Node 18 without noise (time-variant 

modal damping) 
 

Mode number Error (%) 

1H * 

1V 5.19110-9 

2H * 

1T * 

3H * 

4H * 

5H * 

2V 2.190610-4 

(H - horizontal mode; T: torsional mode; V: vertical mode) 
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Table 5.3(a) - Error of identification from Nodes 18 and 23without noise 
(time-variant modal damping) 

 

Mode number Error (%) 

1H 5.793810-10 

1V 3.573310-9 

2H 2.759010-6 

1T 3.366810-8 

3H 7.347310-7 

4H 1.089610-4 

5H 2.854710-6 

2V 5.487610-7 

 (H - horizontal mode; T: torsional mode; V: vertical mode) 

 
Table 5.3(b) - Error of identification from Nodes 18 and 23with 10% noise 

(time-variant modal damping) 
 

Mode number Error (%) 

1H 1.010 

1V 23.92 

2H 1.78 

1T 7.86 

3H 2.11 

4H 10.96 

5H 9.29 

2V 5.67 

(H - horizontal mode; T: torsional mode; V: vertical mode) 
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Table 5.4 - Number of unknowns and equations for different types of damping 
identification in both Simulation and Experiment 

 

Damping model Number of unknowns Number of equations 

Time-invariant Rayleigh damping 2 1000 

Time-variant Rayleigh damping 26=12 1000 

Time-variant modal damping  86=48 200 
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Figure 5.1 - A nine-bay space frame structure hanging with a free falling mass 
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(a) without noise 
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(b) with 10% noise 
 

Figure 5.2 - Comparison of acceleration on Node 18 with time-invariant 
Rayleigh damping ( ___real, ---- reconstructed) 
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(a) Coefficient a1 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10-6

Time (s)

R
ay

le
ig

h 
da

m
pi

ng
 c

oe
ffi

ci
en

t (
s)

 
(b) Coefficient a2 

 
Figure 5.3 - Monotonous time history of Rayleigh damping coefficients 

 



 188 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

 
(a) without noise 
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(b) with 10% noise 

 
Figure 5.4 - Comparison of acceleration at Node 18 with time-variant Rayleigh 

damping (___real, ---- reconstructed) 
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(b) Coefficient a2 

 
Figure 5.5 - Fluctuating time history of Rayleigh damping coefficients 
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(a) The first mode 
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(b) The second mode 
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(c) The third mode 
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(d) The fourth mode 
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(e) The fifth mode 
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(f) The sixth mode 
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(g) The seventh mode 
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(h) The eighth mode 

 
Figure 5.6 - Time history of the modal damping ratios  
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(a) without noise 
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(b) with 10% noise 

 
Figure 5.7 - Comparison of acceleration at Node 18 with time-variant modal 

damping ( ___real, ---- reconstructed) 
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(b) With 10% noise 

 
Figure 5.8 - Convergence curves with iteration step in modal damping 

identification  
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Figure 5.9 - Norm of the error in the coefficient of the modal damping ratio after 
50 iterative steps 
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(a) The first mode 
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(b) The second mode 
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(c) The third mode 
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(d) The fourth mode 
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(e) The fifth mode 
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(f) The sixth mode 
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(g) The seventh mode 
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(h) The eighth mode 

 
Figure 5.10 Fluctuating time history of modal damping ratios 
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Figure 5.11 - Fifteen-storey shear frame 
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(a) The stiffness of the 2nd floor 
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(b) The stiffness of the 5th floor 

Figure 5.12 - Time-variant stiffness identification result without noise 
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Figure 5.13 - Time-variant stiffness identification result of the last time step 
without noise 
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(a) The stiffness of the 2nd floor 
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(b) The stiffness of the 5th floor 

 
Figure 5.14 - Time-variant stiffness identification result with 10% noise 
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Figure 5.15 - Time-variant stiffness identification result of the last time window 
with 10% noise 
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Figure 5.16 - Ten-storey shear frame with nonlinear base isolation  
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Figure 5.17 - Nonlinear time-variant stiffness identification result without noise 
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Figure 5.18 - Nonlinear time-variant stiffness identification result with 10% noise 
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Figure 5.19 - Ten-storey shear frame with resisting bracings at each floor 
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(2) Stiffness of 2nd floor 
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(3) Stiffness of 3rd floor 
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(4) Stiffness of 4th floor 
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(5) Stiffness of 5th floor 
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(6) Stiffness of 6th floor 
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(7) Stiffness of 7th floor 
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(8) Stiffness of 8th floor 
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(9) Stiffness of 9th floor 
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(10) Stiffness of 10th floor 

Figure 5.20 - Nonlinear time-variant stiffness identification result without noise 
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(1) Stiffness of 1st floor 
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(2) Stiffness of 2nd floor 
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(3) Stiffness of 3rd floor 
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(4) Stiffness of 4th floor 
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(5) Stiffness of 5th floor 
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(6) Stiffness of 6th floor 
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(7) Stiffness of 7th floor 
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(8) Stiffness of 8th floor 
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(9) Stiffness of 9th floor 
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(10) Stiffness of 10th floor 

 
Figure 5.21 - Nonlinear time-variant stiffness identification result with 10% noise 
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CHAPTER 6 

INTEGRATION OF STRUCTURAL CONTROL 

AND STRUCTURAL EVALUATION FOR 

LARGE SCALE STRUCTURAL SYSTEM 

6.1 Introduction 

An integrated system of structural control and health monitoring can be 

implemented in modern structures with multi-purpose sensor system. The 

integration system not only promotes the reliability of the smart structure but also 

provides information on the condition of the smart structure. Both the structural 

vibration control and evaluation are important areas of structural engineering and 

they are of great importance for the structural safety and reliability. The 

combination of these two techniques is necessary since the structure control 

algorithm is always based on the parameters of the structural system. When the 

initial finite element model of the structure is inaccurate, the effect of structural 

control may not be effective. Existence of model errors and local damage will 

influence the optimal control effect.  

The integration of structural parameter identification and semi-active 

control has been investigated by Xu and Chen (2007a, 2007b) where the concept 

of an integrated system with semi-active friction dampers is introduced. The 
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integrated system is centralized and the parameter identification is conducted in 

frequency domain which needs plenty of measurement data. The on-line 

implementation of structural control and evaluation of a large scale structure are 

difficult due to the complicated calculation with large mass, damping and 

stiffness matrices. Moreover, the reliability of the structural control and 

evaluation results will also reduce in a large scale structural system during severe 

earthquake with centralized control system.  

In control theory, the linear-quadratic-Gaussian (LQG) control problem is 

one of the most fundamental optimal control problems. It concerns uncertain linear 

system disturbed by additive white Gaussian noise, having incomplete state 

information (i.e. not all the state variables are measured and available for feedback) 

and undergoing control subject to quadratic costs. Moreover the solution is unique 

and constitutes a linear dynamic feedback control law that is easily computed and 

implemented. The LQG controller is also fundamental to the optimal perturbation 

control of non-linear systems (Athans 1971).  

Negative stiffness control has been investigated with active and semi active 

control system (Iemura and M. Pradono 2003; Li and Ou 2006; Wu, Shi and Ou 

2010) with the absolute acceleration of a structure reduced effectively. But the 

structural system with the control force will become unstable when the negative 

stiffness performed on the structure is more than the real stiffness of the structure. 

The pseudo negative control method would guarantee the stability of structural 

control with a constraint on the negative stiffness. The design of the pseudo 
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negative stiffness control is always based on the structural parameters. An accurate 

model of the structure is always not available in practice or the structure may 

exhibit some local damages, which will lead to unfavorable effect on the structural 

control. Therefore, the control algorithm will be more reliable with more 

information on the structural parameters. Structural evaluation should update the 

structural parameters before appropriate structural control is implemented. The 

final integrated system of structural control will therefore be adaptive to this 

information. 

In this Chapter, a new combined system of decentralized autonomous and 

structural evaluation is proposed. Section 6.2 reviews on two structural control 

algorithms which will be used in the proposed integrated system. Section 6.3 will 

illustrate the methodologies of centralized autonomous control and decentralized 

control algorithm. Implementation procedure will be provided for the proposed 

algorithm in Section 6.4. In Section 6.5 gives the numerical to validate the 

proposed control algorithm. A modified adaptive regularization method proposed 

in Chapter 5 will be used in the solution of the structural evaluation via model 

updating in Section 6.5. Conclusions on the proposed integrated system will be 

presented in Section 6.6. 

6.2 Structural Control Algorithm  

6.2.1 LQG Control 

LQG control is convenient to implement in practice. When only part of the 
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structural response can be measured, the LQG method can be applied based on 

state space equation of the system. Considering the state space equation of the 

structural system as  

 1( ) ( ) ( ) ( ) ( )gt t t x t    z Az BU MG   (6.1) 

where 1( )t  is the system noise, ( )tz denote the state vector, U(t) is the time 

history of control force, B is the location matrix of the control force and ( )g tx  is 

the horizontal earthquake ground acceleration. x , x and x are vectors of 

acceleration, velocity and displacement of the structural system respectively. 
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. A Kalman filter can be 

constructed as: 

 ˆˆ ˆ( ) ( ) ( ) ( )g et t x    z Az MG K Y Y   (6.2) 

 1
0
T

e
K PC R  (6.3) 

where Ke is the control gain of the LQG control, P is the Riccati matrix, Y and 

ˆ ( )tY are the measured vector of x and the estimation vector of Y from the 

Kalman filter respectively. R is the weighing matrix of LQR method. The 

objective function applying the Kalman filter can be constructed as: 

 ˆ ˆ{[ ( ) ( )] [ ( ) ( )]}TJ E t t t t  z z z z  (6.4) 

where ˆ( )z t  is the estimation matrix of ( )z t . The control system can be 

represented in state space as 

 0ˆ ˆ( ) ( ) ( )e et t   z A BG K C z K Y  (6.5) 

 0
ˆ ˆ( ) ( )t tY C z  (6.6) 

where C0 is the transformation matrix. A negative stiffness could be added to the 
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structure with this control algorithm (H. J. Liu 2007). 

6.2.2 Pseudo Negative Stiffness (PNS) Control 

The negative stiffness control method introduces the negative stiffness and 

viscous damping to the structural system. It has been shown that when the value 

of the negative stiffness equal to the structural stiffness but with an opposite sign, 

the system would have the maximum reduction effect in the acceleration 

response. To conduct the stable vibration control, the absolute value of the 

negative stiffness should be constrained to be smaller than the true value of the 

stiffness of the structure with the PNS control method. 

With the PSN control, the control force applied on the first floor can be 

represented as 

 
0 0

0 0 0

0

( )      ( ) ( ) &  ( ) ( ) 0
( ) ( )         ( ) ( ) &  ( ) ( ) 0

0               ( ) ( ) 0                              

ns ns

ns

k x t f t k x t f t x t
t f t f t k x t f t x t

f t x t

  
  
 

U  (6.7) 

where 0 1 1( ) ns nsf t k x c x    (B. Wu et al. 2009), and kns and cns are the pseudo 

negative stiffness and the damping in the device. 

6.3 Autonomous Control 

6.3.1 Centralized Autonomous Structural Control System 

The equation of motion for a structural system subject to earthquake with 

installation of control devices can be written as  

 ( ) gx    Mx Cx Kx MG DU    (6.7) 
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where matrices M, C, and K are the mass, damping and stiffness matrices of the 

structural system respectively, and D is the location matrix of the control forces. 

A 16-storey planar shear frame shown in Figure 6.1 serves as an example to 

illustrate the proposed integration system. In this centralized autonomous 

structural system, the controller will control all the actuators installed on the 

structural system.  

The centralized autonomous control system consists of the function of 

structural vibration control and structural condition evaluation. With the 

integrated system, identifying and updating the structural parameters is necessary 

to ensure the effectiveness of the structural control. Various model updating 

methods could be alternatively applied in this function as proposed by Xu and 

Chen (2007a) according to the practical condition. The structural control could 

be conducted with the updated model and implemented with the sensor system, 

data acquisition system and data transmission system. As illustrated by Xu and 

Chen (2007a) the updated structural model facilitates the implementation of 

structural vibration control and provides a reference state for subsequent damage 

detection.  

The flow chart of the centralized structural control could be shown as Figure 

6.2. At the beginning the structural control is based on the initial model of the 

structure. It would then base later on the updated structural parameters 

transferred from the stage of structural evaluation. The value t0 in Figure 6.2 

denotes the required time duration for the structural evaluation and it depends on 
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the computing speed of the computer and the number of DOFs of the structural 

system.  

6.3.2 Decentralized Autonomous Structural Control 

System 

Though the centralized autonomous structural control system is adaptive to 

the structural model and parameters the decentralized autonomous structural 

control system is more reliable and stable than the centralized structural control 

system. The rest of this Chapter will focus on decentralized autonomous control 

algorithm which is implemented with the integrated distributed control system 

and structural evaluation system based on substructure methods proposed in 

Chapter 4. A 16-storey planar shear frame in Figure 6.3 serves as an example to 

illustrate the proposed decentralized autonomous control algorithm. In this 

Section, control forces based on PNS control and LQG control are applied on the 

1st floor and on the 11th floor and 12th floor respectively as shown in Figure 6.3. 

The LQG control algorithm, PNS control algorithm introduced earlier in this 

Chapter and the substructure method proposed in Chapter 4 are integrated to 

implement the decentralized autonomous structural vibration control.  

The decentralized autonomous structural vibration control is conducted with 

separate controller on each substructure. The structural system can be divided 

into substructures with independent controller and control forces. Figure 6.3 

shows the division of the building frame structure into two substructures linked 
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at the interface DOFs. Based on this sub-division of the structure, Equation (6.7) 

can be rewritten as 

11 12 1 11 12 1 11 12 1 1 1 1

21 22 2 21 22 2 21 22 2 2 2 2

( )
( ) gx
               

                                 

M M x C C x K K x MG D U
M M x C C x K K x MG D U

 


 
 (6.8) 

Equation of motion of Substructure 1 can then be rewritten as 

 11 1 11 1 11 1 1 1 1 12 2 12 2 12 2( ) ( )gx       M x C x K x MG D U M x C x K x      (6.9) 

The right-hand-side of Equation (6.9) consists of three parts which are the 

seismic excitation, control force and interface forces. 1 1D U  is the control force 

which is also a part of external force of the target substructure and the term 

12 2 12 2 12 2( )  M x C x K x   is the vector of internal forces associated with the 

interface DOFs. In fact, this vector of interface forces can be taken as another set 

of external forces acting on the substructure. The responses 1x , 1x  and 1x  in 

Equation (6.9) can then be solved using the step-by-step Newmark- integration 

method. For Substructure 2 the equation of motion can also be represented as 

 22 2 22 2 22 2 2 2 2 21 1 21 1 21 1( ) ( )gx       M x C x K x MG D U M x C x K x      (6.10) 

In the stage of structural evaluation, it is time consuming to identify the 

interface forces between substructures. To avoid this obstacle, the interface 

forces of the substructure are calculated from the structural responses of the 

initial finite element model in the first step of structural evaluation. In the 

subsequent steps, the interface forces are calculated with the updated structural 

model. The flow chart of the decentralized autonomous system of each 

substructure is the same as the centralized autonomous system shown in Figure 

6.2. The structural control is based on the initial model of the structure at the 
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beginning of the control operation, and it is then based later on the updated 

structural parameters transferred from the stage of structural evaluation.  

6.4 Implementation Procedure 

The implementation procedure of the decentralized autonomous structural 

control of the structure during an earthquake is described as follows. The stage of 

structural evaluation is followed with the stage of structural control. 

Stage of substructural evaluation: 

Step 1: Divide the structure into substructures and obtain the mass, damping and 

stiffness matrices of substructures. 

Step 2: Conduct dynamic measurement on the substructures. 

Step 3: Compute the interface forces from the intact finite element model (in the 

first iteration) or the updated FEM (in other iterations). 

Step 4: Compute responses of substructures from Equations (6.9) and (6.10) and 

the sensitivity of responses with respect to structural parameters of the 

substructure from Equation (4.6) in Chapter 4. 

Step 5: The changes of the substructure parameters are solved with the adaptive 

Tikhonov regularization in Equation (4.30) of Chapter 4. 

Step 6: Repeat Steps 3 to 6 until the convergence condition defined in Chapter 4 is 

met. 

Step 7: Update the FEM and transfer the FEM to the control system. 

Stage of structural control: 
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Step 1: Perform structural control on each distributed substructure with the initial 

FEM of the structure at time steps when t t0 and with the updated FEM 

when t >t0. t0 is taken to be 2.65 s in this study. 

6.5 Numerical Simulation 

A 16-storey planar shear frame structure is investigated to illustrate the 

proposed adaptive integrated system. The sampling rate of measurement is 

100Hz. The mass of each floor is 4105 kg and the stiffness of each floor is 

2108 N/m. 

The excitation is the earthquake ground motion record of N-S El-Centrol 

(1940) with the peak ground acceleration scaled to 0.3g. The horizontal 

accelerations on the 2th, 5th, 7th, 10th, 13th and 15th floors are taken as the 

“measured” responses for structural control and model updating. Two cases are 

studied in the simulation. Case (a) there is 10% stiffness reduction of the 

structure in the 3rd floor and 11th floor. It is assumed that the initial structural 

model is the intact. In Case (b) the uncertainty in the storey stiffness is assumed 

to follow a normal distribution and simulated the same way as the measurement 

noise. The mean value is taken as 2108 N/m and standard deviation is taken as 

0.052108 N/m. The initial stiffness of the finite element model is taken as 1.2 

times of the mean value for application of the modified adaptive regularization 

method. 

In the simulation, the first 2.5 second acceleration of the measured data is 
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used for the structural evaluation. Since the time required for model updating of 

the structure is 0.15 s (depending on the computing speed of the CPU), the 

structure control is therefore conducted with the initial structural parameters in 

the first 2.65 s, and structural control after the first 2.65 seconds is based on the 

updated structural parameters. 

The damage detection results of the first case are shown as Figure 6.4 

without noise in the measurement and in Figure 6.5 with 10% noise in the 

measurement. Though there are some small errors in the identified result with 

noise in the measurement, the structural parameters are closer to the real 

structural model than the initial structural model. The acceleration response of 

the 16th floor is shown in Figure 6.6. It is shown that the acceleration is reduced 

more effectively with the updated model parameters. The parameters 

identification results of the second case are shown in Figure 6.7 without noise in 

measurement and in Figure 6.8 with 10% noise. The identified results are fairly 

accurate from contaminated measurement with some small errors. The structural 

control with the updated model parameters performs more effectively as shown 

in Figure 6.8. 

6.6 Conclusions 

A general decentralized autonomous control algorithm is proposed based on 

a general integration of structural control and structural evaluation system. A 

substructure technique is applied in the integrated system. Time response 
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sensitivity method for damage detection is presented for the structural evaluation 

of each substructure in the time domain. A modified adaptive Tikhonov 

regularization method is applied to identify the structural model error and local 

damage. Due to the computational time required for the structural evaluation, the 

control force is calculated from the initial structural model at the beginning and 

with the updated structural parameters after the structural evaluation system 

transfers the updated parameters to the control system. In the numerical 

simulation, the structural parameters could be identified accurately with 10% 

noise in the measurement and the structural control is noted to be more effective 

with the updated model. The integrated decentralized autonomous system could 

be implemented with wireless sensor technology or hybrid sensory system to 

have a reduced cost and more convenience for the long-term structural health 

monitoring and structural control. 
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Figure 6.1 16-storey of shear frame with control device 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 - Flow chart of the integration system 
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Figure 6.3 - 16-storey of shear frame with decentralized control method 
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(b) Substructure 2 

 
Figure 6.3 - Damage detection results without noise 
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(b) Substructure 2 

Figure 6.4 - Damage detection results with 10% noise 
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Figure 6.5 - Comparison of acceleration of the 16th floor (Case a) 
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(b) Substructure 2 
Figure 6.6 - Parameters identification results without noise 
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Figure 6.7 - Parameters identification results with 10% noise 
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Figure 6.8 - Comparison of acceleration of the 16th floor Case 2 
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CHAPTER 7 

LABORATORY WORK VALIDATION 

7.1 Introduction 

New structural condition assessment methods have been proposed and 

extensive numerical studies have been performed in the previous three Chapters. 

The numerical results demonstrated that the proposed method is sensitive to local 

structural parameters identification but insensitive to measurement noise, and 

model errors. This method can identify both location and severity of structural 

stiffness reduction satisfactorily. Nevertheless, the experimental investigation is 

necessary before the applications of these methods to practical engineering. This 

Chapter will present experimental investigations on some of these methods. Two 

structures, which are nine-bay space frame structure and two-dimensional frame, 

were built in the laboratory of The Hong Kong Polytechnic University for the 

methods validation. Measurements from the nine-bay cantilever space frame 

structure are used to validate the effectiveness of the proposed damping 

identification method with very accurate results. The experimental work with the 

two-dimensional frame was conducted to validate the proposed force 

identification methods and the two-stage substructural condition assessment 

method. 
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7.2 Experimental Work for Damping Identification 

7.2.1 Dynamic Test of the Frame Structure 

The nine-bay cantilever space frame was fabricated and tested in the 

laboratory as shown in Figure 7.1 (a). Members of the space frame were alloy steel 

tubes and they were connected to the ball joints as shown in Figure 7.1 (b) with a 

screw shown in Figure 7.1 (c). All the connection bolts were tightened with a 

torque wrench which provided the same torque for all joints to reduce human 

errors in the model fabrication. The physical properties of material and geometric 

properties are shown in Table 5.1 in Chapter 5. The finite element model with node 

number and member number systems is shown in Figure 5.1. A mass of 3.72kg 

was released freely from Node 29 to generate free vibration of the space frame. 

The vertical acceleration at Node 18 was measured with a B&K 4371 piezoelectric 

accelerometer. The sampling rate was 1000Hz and a one-second data was 

collected for the identification of damping models as described in Sections 5.1 and 

5.2. The vertical acceleration from Nodes 18 and 23 were measured for the modal 

damping identification as described in Section 5.3 where the sampling rate was 

200 Hz and also a one-second duration of data was used. The number of 

identification equations and unknowns for studies on different damping 

identification is the same as those shown in Table 5.4. 
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7.2.2 Damping Identification of the Space Frame 

Structure 

Figure 7.2 gives the measured response and the calculated response of the 

vertical acceleration at Node 18 for the time-invariant Rayleigh damping model. 

Figure 7.3 shows the comparison of responses based on the time-variant Rayleigh 

damping model. In the first 0.5s of the time history, the fluctuation of the measured 

response is large which is due to the impulsive action of the free falling mass 

which might induce a broad spectrum of excitation. There are differences close to 

the peaks of the curves throughout the whole time duration. This can be explained 

as the effect of environmental noise in the measurement. Model errors distributed 

in the mass, stiffness of the structure and connection of base support might also 

contribute to this differences. The error of the constructed response is calculated as 

 / 100%acc mea cal calerror   x x x    (7.1) 

where meax , calx  are the measured and re-constructed accelerations respectively. 

The errors in the first second of identification for the three types of damping 

models are 43.6%, 37.2% and 26.3% respectively. 

The above observations show that the time-variant modal damping 

identification is more accurate but it is also time consuming due to a large number 

of unknowns to be identified when all the modes are considered. It may be 

concluded that the time-variant damping is more accurate to describe the dynamic 

property of the structure and the time-variant modal ratio gives a more general 

description on the structural damping. 
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7.2.3 Discussions 

It should be noted that the laboratory test was subject to excitations from 

operating mechanical systems in the surroundings. The test structure was slightly 

vibrating all the time, and the initial response of the structure was not zero at the 

beginning of the recorded data. The study was repeated with a longer duration of 

measurement for the time-variant damping identification to try to reduce the 

influence of initial value of the structural response caused by the environmental 

excitation. The sampling rate was changed to 200Hz and 3s measured acceleration 

from Node 18 was used in the two types of time-variant damping identification. 

The differences between the measured and re-constructed response curves on both 

the time-variant Rayleigh damping model and the time-variant modal damping 

model improve towards the end of time history but there are still some noticeable 

differences in the peaks at the beginning of the time history. The modal damping 

model gives better prediction in the first second of the time period than the other 

model. The errors of identification for the time-variant Rayleigh and time-variant 

modal damping models are respectively 35.6% and 22.4% which are slightly less 

than that from previous study with 1s response measurement. 

The error of damping identification with experimental measured data is noted 

to be larger than those from the numerical studies due to the measurement noise 

and initial model errors. Also the type of damping is unknown in experiment while 

the type of damping is known with the simulation matching the type of damping 

model in the identification algorithm. 
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7.3 Tests of a Two-dimension Frame for Structural 

Condition Assessment 

7.3.1 Experimental Arrangement 

In this section the proposed structural external excitation identification 

methods described in Section 3.3 and the two-stage structural condition 

assessment method proposed in Chapter 4 will be validated with the experimental 

studies of a two-dimensional frame. The seven-story two-dimensional steel frame 

as shown in Figure 7.4 was fabricated and tested in the laboratory of The Hong 

Kong Polytechnic University. The finite element model consists of 56 elements 

and 51 nodes as shown in Figure 7.5. The tests of data were recorded with 

DEWESoft software and NI data acquisition equipment. The physical properties 

of the 7-storey steel frame are listed in Table 7.1. Two lumped mass were placed 

on each floor of the frame structure to simulate the effect of the floor slab, and the 

weight and their locations are of the lumped mass is listed in Table 7.2. The two 

supports of the frame were welded to the steel base plate and the plate was 

connected firmly to the ground simulating rigidly fixity to the ground. The finite 

element model consists of 56 elements and 51 nodes as shown in Figure 7.5. The 

test data was recorded with DEWESoft software and NI data acquisition 

equipment. 

The intact structure was tested with free vibration tests and hammer impact 

tests respectively. Only the acceleration responses were used for the external 
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excitation identification and structural model updating. The first seven frequencies 

of the intact structure are shown in Table 7.3. The stiffness of the structure was 

updated based on the first seven frequencies and mode shapes with the optimal 

function ‘fmincon’ of MATLAB. The initial Young’s modulus is set as 2.01011 

N/m2 for all components of the frame structure. The updated Young’ modulus of 

beam is 2.21011 N/m2 and the updated Young’s modulus of column is 1.91011 

N/m2. The first seven frequencies of the updated structure and the percentage of 

the errors are shown in Table 7.3. It is noted that the updated modal parameters 

are very close to the tested frame structure. 

Firstly, with the measured acceleration responses from the intact structure 

was used to estimate the external excitation with the proposed force identification 

method with FOH discrete method as presented in Section 3.3 of Chapter 3. 

Secondly, the two-stage model updating method as the described procedure in 

Section 4.5.2 was conducted on the intact structure. It is noted that the updated 

model of the structure may be still inaccurate though the model has been updated 

with the modal parameters in frequency domain. The model updating based on 

the time domain information could obtain more accurate model for the next stage 

of study. Thirdly a single-damage scenario was inflicted to a column in the 4th 

floor of the 7-storey frame with the width of the left column on the 4th floor was 

reduced from 49.89mm to 40mm with 5.0 mm from both sides of the left columns 

as shown in Figure 7.6. The structural condition assessment of the frame was 

conducted with free vibration tests. Finally a multi-damage scenario was studied 
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with a similar the structural damage to the left column in the 2nd floor. The 

damage levels are the same at the 2nd floor and the 4th floor. The model updating 

was conducted on the damaged structure with hammer impact tests applying. 

Both the free vibration tests and hammer impact tests will be described in the 

following Sections. 

7.3.2 Force Identification of the Intact Structure with 

FOH Discrete Method 

The whole structure was divided into two parts for the force identification 

with substructure method as shown in Figure 7.5. The target substructure consists 

of the Elements from 5 to 56 and Nodes 4-51 except Node 9.  

The impact force of hammer was identified based on the measured 

acceleration response. The acceleration responses in the x-direction were 

measured at Nodes 4, 11, 15, 18, 25, 32, 39 and 46 for the force identification in 

this section and the Nodes positions are shown in Figure 7.5. The impact force is 

applied horizontally on Node 50 with a hammer. The sampling rate is 1000Hz 

and as few as 160 sampling points are used for the impact force identification. 

There is no information on the interface forces. Figure 7.7 shows the external 

force identification result of the hammer impact force on Node 50 and the 

measured force from the hammer. It is noted that the measured force and the 

identified force are similar but there are also some fluctuations in the time history 

of the identified force, which are mainly from the effect of operational mechanical 
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system in the laboratory. It is should be noted that the manual hitting of the 

hammer may be not absolutely horizontal, which may cause that the identified 

force is a little different from the measured force at the peak. The errors between 

the numerical response and measured acceleration response calculated from 

Equation (7.1) are 10.42% with ZOH discrete method and 7.53% with FOH 

discrete method as presented in Chapter 3. It is demonstrated that the force 

identification accuracy of substructure with FOH method is acceptable. In the 

following study, the FOH method is applied in force identification for higher 

accuracy. 

7.3.3 Model Updating with Two-stage Method 

7.3.3.1 Two-stage Model Updating on the Intact Structure 

The free vibration test is conducted by the free falling of a hanging mass to 

update the structural model of the intact frame. The force of the hanging mass is 

40N and it is applied in x-direction horizontally at Node 50 with a mechanism as 

shown in Figure 7.8. The positions of sensors are the same as those for the 

previous study. The sampling rate is 1000Hz and 0.8s of the data was used for 

force identification and the last 0.5s of the date was used for the structural model 

updating to avoid the very high frequency response generated by the impact 

action. The implementation procedure of the method in Chapter 4 was adopted. It 

is noted that the model updating in this section is for the whole frame to obtain a 

more accurate structural model. 
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The force identification result of from the falling mass tests based on the 

FOH discrete method is shown in Figure 7.9. It is shown that the force time history 

applying on Node 50 is nearly 40N before the falling which is consistent with the 

weight of the mass. It is also indicated that the time of the release of the mass is 

at around 0.265s from the beginning. The indentified result of the external force 

could reflect the whole process of the falling of the mass. But there are some 

fluctuations in the time history of the force especially close to the release of the 

mass. There may be three sources that cause such the fluctuations. The first one 

is that the hanging mass was not absolutely still and was interacting with the frame 

all the time. The second one is the operating mechanical systems in the 

surroundings as mentioned in Section 7.2. It is shown in Figure 7.9 that the 

fluctuation near the abrupt release of the string becomes a little larger. This may 

be due to the manual cutting of the string. The model updating result is shown in 

Figure 7.10. The model error of the intact structure may mainly be caused by the 

uncertainties of geometric property and Young’s modulus and the welding of the 

beam and column joints. The updated structural parameters of the intact structure 

could be used as initial reference for the successive model updating.  

7.3.3.2 Two-stage Model Updating on the Damaged Structure 

The frame structure was divided into two substructures as shown in Figure 

7.5 for validation of the two-stage substructural condition assessment method 

validation. The structure is divided into two substructures similar to the in 

Section 7.3.2. Two cases are studied in this Section. A single damage case is 
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studied firstly with free vibration generated by the abrupt release of the hanging 

mass as shown in Figure 7.8. Accelerometers are placed on the Nodes 18, 25, 29, 

32, 36, 39, 43 and 46 in the x-direction. The sampling rate is 1000Hz. 0.8s 

measured acceleration responses were used for the force identification while last 

0.4s measured acceleration were utilized for the structural model updating. 

Reason of this selection is the same as for study in Section 7.3.3. The external 

force identification result is shown as Figure 7.11 and the damage detection 

result is shown in Figure 7.12. The characteristics of the identified force 

identification are consistent with the external force identification result in Section 

7.3.3.1. The time history of the identified force is consistent with the measured 

force though there are some fluctuations and a little difference at the peak. Local 

damage could be located at Element 26 and the damage level is demonstrated as 

5.56%. This value is less than the true condition of this experiment calculated as 

8.3 % from an equivalent element with the same displacement under a transverse 

load. It is noted that the summation of the damage of Element 26 and Element 28 

nearly equal to the true damage level of the structure. This is because both of 

these elements are at the same level contributing to the same storey stiffness. 

Secondly, a multi-damage case was studied with the initial structural model 

obtained in Section 7.3.3.1. The horizontal acceleration responses in the 

x-direction under the horizontal hammer impact at the 7th floor at Node 50 were 

measured at Nodes 11, 17, 22, 29, 36, 38, 43 and 46. Also, 0.8s measured data 

was used for the force identification and last 0.5s measured data was used for 
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model updating. The impact force applied on the damaged structure is identified 

as Figure 7.13. It is shown that the peak of the impact force is very clear but 

there are also some small fluctuations before and after the peak of the impact 

force. As illustrated in Section 7.3.2, the fluctuations may be due to the excitations 

from operating mechanical systems in the surroundings and manual hitting with 

the hammer. Figure 7.14 is the model updating result. It is demonstrated in that 

the damage could be located on Elements 10 and Element 26 with the proposed 

method while there are some errors in other components, especially in Elements 

12 and Element 28. This observation is similar to that for the single damage case 

as Elements 10 and 12 are at the second storey while Elements 26 and 28 are at 

the 4th storey and they are performed together to contribute to the storey stiffness 

at each level. The total summations of damages at these two levels are 5.62% and 

2.60% respectively which are close to the equivalent value of 8.3%. 

7.4 Summaries 

The time-variant damping identification method and the two-stage 

substructural condition assessment method described in previous Chapters were 

experimentally examined in this Chapter. A nine-bay space frame and a 

seven-storey two-dimensional frame were fabricated for hammer impact tests 

and free vibration tests.  

Firstly, the nine-bay space frame structure is tested with free vibration tests 

to identify the damping of the structure. The parameters of time-invariant 
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Rayleigh damping, time-variant Rayleigh damping and time-variant modal 

damping were identified with the measured data to examine the accuracy of 

damping model as well as the proposed damping identification method. It was 

found that the time-variant modal damping was more accurate than the 

time-variant Rayleigh damping model when conducting the structural dynamic 

analysis. When the modal damping ratios are difficult to estimate or there is some 

innovative energy dissipation devices installed in the structural system, it is 

suggested that the damping can be initially assumed as time-invariant Rayleigh 

damping for a rough estimation to form a set of reference values for the subsequent 

more accurate time-variant damping identification. It is also recommended that the 

time-variant modal damping be utilized for the long-term structural health 

monitoring because there may be significant changes in the damping mechanism 

with time due to the changing environmental conditions and structure in the 

service life of the structure. 

Secondly, the experimental data of a seven-storey frame were analyzed to 

conduct the external force identification and substructural model updating. A 

substructural external force identification method based on the equation in state 

space with the FOH discrete was experimentally studied in this Chapter. This 

method only needs acceleration responses measurement, and information on the 

finite element model of a substructure. The external force could be identified 

satisfactorily with the substructure method. It was also found that the proposed 

force identification method based on FOH discrete method was more accurate 



 241 

than the existing force identification method with ZOH discrete method. With the 

proposed two-stage method, the location and severity of the single damage 

scenario and multi-damage scenario could be identified satisfactorily though 

there are some errors in the intact elements. It is also found in this study that the 

symmetry of the structure affects the identification results with time domain 

method. It should be noted that the theoretical value of the damage may be 

different from the real case, but the identified results are close to the true values. 
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Table 7.1 - The property of the seven-storey frame 

 

Properties Member 

Area of the beam (mm2) 49.988.92 

Area of the column (mm2) 49.894.85 

Density of the beam (kg/m3) 7850 

Density of the column (kg/m3) 7734 

Poisson ratio 0.3 

Moment of area Iz (m4) 3.64510-9 

Torsional rigidity J [m4] 7.29010-9 

 
 
 
 

Table 7.2 - The weight and location of the lumped masses 
 

Storey 

number 

Node  

number 

Weight 

(Kg) 

Node  

number 

Weight 

(Kg) 

1 5 3.9456 7 3.9631 

2 12 3.9231 14 3.9199 

3 19 3.9568 21 3.9350 

4 26 3.9247 28 3.9372 

5 33 3.9476 35 3.9772 

6 40 3.9682 42 3.9687 

7 47 3.9571 49 3.9321 

 
 
 
 
 
 
 
 
 



 243 

 
Table 7.3 - The first seven frequencies comparison 

 

No. of  

frequency 

Intact structure 

(Hz) 

Updated numerical 

model (Hz) 

Error 

(%) 

1 2.53 2.53 0.0 

2 7.66 7.67 0.13 

3 12.85 12.86 0.077 

4 18.04 18.00 0.22 

5 22.98 22.90 0.35 

6 26.98 27.01 0.11 

7 29.91 29.88 0.10 
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(a) A nine-bay space frame in laboratory 

 

 

      b) The joint connection      (c) The ball joint of the connection 

 
Figure 7.1 - Photographs of the three-dimensional space frame 



 245 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time (s)

A
cc

el
er

at
io
n 

(m
/s

2 )

 
Figure 7.2 - Comparison of acceleration at Node 18 with time-invariant Rayleigh 

damping model laboratory work (___real, ---- reconstructed) 
 
 
 
 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

Time (s)

Ac
ce

le
ra

tio
n 

(m
/s

2 )

 
Figure 7.3 - Comparison of acceleration at Node 18 with time-variant Rayleigh 

damping model laboratory work (___real, ---- reconstructed) 

 

 

 

 



 246 

 
Figure 7.4 - Photographs of the two-dimension frame 
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Figure 7.5 - Two-dimension seven-storey frame structure 

 
Figure 7.6 - Photographs of the damaged column 
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Figure 7.7 - Impact hammer force identification of intact structure with FOH 
discrete method 

 
 

 

 

Figure 7.8 - Photographs of the hanging mass on the two-dimension frame 
 

Hanging mass 
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Figure 7.9 - Force identification of the abrupt falling of the mass on the intact 

structure with FOH discrete method 
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Figure 7.10 - Model updating result of the intact structure 
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Figure 7.11 - Force identification of the abrupt falling of the mass on damaged 
structure with FOH discrete method 
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Figure 7.12 - Damage detection of the single damage scenario 
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Figure 7.13 - Impact hammer force identification of damaged structure with FOH 
discrete method 
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Figure 7.14 - Damage detection of the multi-damage scenario 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

The dissertation has established a frame work aiming to systematically 

propose and develop structural condition assessment method and structural 

vibration control algorithm with substructure techniques. A detailed illustration 

and proof to substructural condition assessment method with time domain 

response sensitivity method is provided which contributes to the development of 

the substructural methods with structural response in time domain. On the basis 

of this detailed proof and illustration two substructural condition assessment 

methods are presented with two-stage identification method. In the first method, 

the FEM of the whole structure is needed while only the FEM. This method 

could improve the computational efficiency with less unknown structural 

parameters. In the second method only the FEM of the target substructure is 

required. This method enables structural health monitoring of the large-scale 

structure only with the information from target substructure. Two new 

computational techniques are proposed to improve the first stage identification, 

which are: a time window force identification method to reduce the computation 

effort; and a method for the simultaneous identification of the unknown interface 

force and the initial structural responses of each time window. The time window 
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identification method is originated from the average acceleration integration 

method. And the time window identification method is developed for the 

time-variant parameter identification and nonlinear parameter identification. A 

decentralized autonomous structural control system is proposed with the first 

substructure method. Numerical simulations and experimental works are 

conducted to investigate the effectiveness and efficiency of the partially proposed 

methods. The results and findings are summarized as follows. 

Firstly, a force identification method with FOH discrete method was 

proposed for a substructure with the FEM of the substructure only. The 

formulation of the force identification with FOH method is derived numerically. 

Numerical simulation studies have been conducted with three cases of a force 

applied on a fixed position, a moving force only on the target substructure and a 

moving force on the whole structure for general application purpose. The results 

of the numerical examples indicate that the external force can be identified 

accurately though there are some errors in the interface forces of the target 

substructure. The simulation studies also demonstrate that the number of the 

sensors could be less than the number of forces relative low level of 

measurement noise. A laboratory work of a seven-storey frame is investigated to 

validate the proposed force identification method. The identification results 

indicate that the external force could be identified accurately with the proposed 

method and noisy measurement in laboratory. 

Secondly, a detailed proof and illustration to substructural condition 
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assessment method with the analogous evolution of a pseudo substructure in the 

model updating process in time domain is provided. The formulation presented in 

Section 4.3.2 provides a basis on the substructural sensitivity matrices and 

removes the limitations with ideal modeling of the boundary condition of 

substructure. The presented approach is capable for general application with 

substructures in the sensitivity approach of analysis. Based on the proof and 

illustration, two general substructural condition assessment methods are 

proposed based on the two-stage identification method. In the first method, the 

finite element model of the whole structure is required and a selected substructure 

is assessed for its structural conditions. In the second method, only the finite 

element model of the selected substructure is required with the dynamic 

measurement and excitation within the same substructure. This method could be 

applied for substructural model updating considering the nonlinear 

support-structure interaction. Exact knowledge on the boundary conditions of the 

substructure is not necessary. The proposed method is analogous to the evolution 

of a pseudo structure with iterative model updating. The numerical simulations in 

Section 4.6 indicate that the structural damage could be located and quantified 

with the proposed two-stage substructural condition assessment method. A 

two-dimensional seven-storey frame is tested in laboratory with the second 

two-stage method. The identification results show that the method is applicable 

to locate and quantify the structural damage.   

Thirdly, two new computational techniques are proposed to improve the 
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force identification, which are: a time window force identification method to 

reduce the computation effort; and a method for the simultaneous identification of 

the unknown interface force and the initial structural responses of each time 

window. Formulations for the simultaneous identification of unknown interface 

force and initial structural responses are derived in Section 4.4.2. Simulations in 

Section 4.6 also illustrate that the new techniques could improve the 

computational efficiency and remove the priori assumption of initial structural 

response satisfactorily.  

Fourthly, two methods are developed for time-variant structural condition 

assessment. In the first method, the time history of time-variant parameter is 

represent with Chebyshev polynomial and the coefficients of polynomial is 

identified based on the difference between the measured response and calculated 

response. Experiments of nine-bay space frame are studied to validate the 

proposed time-variant damping identification method. The identification results 

indicate that the time-variant modal damping is more accurate than the 

time-variant Rayleigh damping model when conducting the structural dynamic 

analysis. In the second method, a time window identification method is 

developed for the time-variant parameter identification. A two-phase 

identification algorithm is presented to conduct the identification in each time 

segment. In the first phase, the initial structural response is identified with iterative 

Tikhonov regularization method while the structural model is updated with a 

modified adaptive regularization method. The occurrence time, location and 
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severity of local changes in the storey stiffness can be identified with acceptable 

results even when the measurement is polluted by noise. The presented work 

indicates that the proposed method can be applied to conduct the post-earthquake 

structural condition evaluation.  

Finally, a new decentralized autonomous control algorithm is proposed based 

on a general integration of structural control and structural evaluation system. A 

substructure technique proposed in Section 4.5.1 is employed in the integrated 

system. Time response sensitivity method for damage detection is employed for 

the structural evaluation of each substructure. A modified adaptive Tikhonov 

regularization method is applied to identify the structural model error and local 

damage. In the numerical simulation, the structural parameters could be identified 

accurately with 10% noise in the measurement and the structural control is noted 

to be more effective with the updated model. It is indicated that the integrated 

decentralized autonomous system could be implemented with distributed wireless 

sensor technology to have a reduced cost and more convenience for the long-term 

structural health monitoring and structural control. 

8.2 Recommendations 

Structural condition assessment and structural vibration control with 

substructure methods has developed in this thesis. And some aspects can be 

improved and expended as follows: 

1 The inverse analysis may be adversely are affected by the uncertainties of 
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structural system, excitation and measurements. This thesis only 

considered the uncertainties of materials and measurements. The 

uncertainties need to be fully considered in the further research including 

the temperature effect. The recommendations to search the optimal 

parameter with regularization methods due to different sources of 

uncertainties are desirable. 

2 Time-variant stiffness identification method is only validated by 

numerical simulation. Experimental work is required before the 

engineering application of this proposed method. Experimental 

verification of the proposed method on large-scale structure is also 

necessary.  

3 In this thesis the linear damage model is assumed to be permanent 

reduction of stiffness and the nonlinear damage model is assumed to be 

bilinear model. However there are a number of patterns of the crack or 

damage in practice, especially the nonlinear structural damage model. 

More damage model is needed to be considered in the further research. 

4 The time-variant model of Rayleigh damping and modal damping ratio 

may be different from the practical condition. More research work is 

required to obtain an accurate model to describe the damping mechanism 

of civil structural system. 

5 The proposed substructural condition assessment methods are applied to 

shear building, truss structure and two-dimensional frame. Further 
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investigation aiming to extend this method to complicated structure with 

more interface forces is recommended.  

6 The proposed two-stage substructural condition assessment methods can 

be utilized to identify the external forces and detect the damage. The 

accuracy of the force identification in the first stage may affect the 

damage detection result. Further investigation of a simultaneous 

identification of external force and damage is recommended. The 

influence of model uncertainties could be mitigated with this idea.  

7 The measurement in both numerical simulation and experimental 

investigation are the acceleration responses from translational 

degree-of-freedom. The rotational measurement may be more sensitive to 

the changes of structure. It is recommended that rotational measurement 

could be utilized in further inverse problem with the development of data 

acquisition system and sensors. Hybrid measurement from the structural 

could provide more information about the changes of structure. 

Methodology based on the hybrid measurement is recommended to be 

developed for the structural condition assessment. Dynamic strain 

measured by FBG is also alternative measurement.  

8 The decentralized autonomous control system based on the presented 

substructure method is proposed in this thesis. Further experimental 

validation is needed and other types of decentralized autonomous control 

system based on frequency domain structural condition assessment 
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method is suggested. 
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Appendix A 

Impulse response of the extrapolation filter (Franklin et al. 1998) for the modified 

first-order hold (triangle hold) is shown as the following figure 

 

 

Figure A-I - Impulse response of the extrapolation filter  

 

 

 

Figure A-II - Block diagram of the triangle-hold equivalent 
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Appendix B 

Convergence on the Newmark’s Constant Average Acceleration Method (Koh, 

2010) is presented in this Appendix.  

The Equation of motion could be written as 

   Mx Cx Kx LF   (B.1) 

With Newmark constant step-by-step integration method, the velocity and 

displacement could be represented by the following two equations 
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Substitution in to the equilibrium equation and the following equation could be 

obtained: 

 12
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The stability can be investigated with free vibration of the undamped single degree 

of freedom as follows: 

 2 0x x   (B.4) 

Written the Equation (B.3) with F=0, C=0, 2
k kx x  and 2 /k m   
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And 



 262 

 
2 2 2

1 2 2 2 2

4 4
4 4k k k

t tx x x
t t
 
 

 
 

  
   (B.7) 

Equations (B.6) and (B.7) can be written in state space as 
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The eigenvalues of Equation (B.8) can be written as 
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 is always complex due to 2 2 0t   . The spectral is 
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Therefore, the Newmark constant average acceleration method is unconditionally 

stable. 
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