

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

The Hong Kong Polytechnic University

Department of Computing

Iterative Uncertain

Frequent Pattern Mining

with Trees

WANG Shu

A thesis submitted in partial fulfilment of the requirements

for the degree of Master of Philosophy

August 2011

lbsys
Text Box
This thesis in electronic version is provided to the Library by the author. In the case where its contents is different from the printed version, the printed version shall prevail.

 I

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my

knowledge and belief, it reproduces no material previously published or written, nor

material that has been accepted for the award of any other degree or diploma, except

where due acknowledgement has been made in the text.

WANG Shu

 II

Abstract

Many frequent-pattern mining algorithms were designed to handle precise data, such

as the FP-tree structure and the FP-growth algorithm. In data mining research,

attention has been turned to mining frequent patterns in uncertain data recently. A

common way to represent the uncertainty of a data item in transactional databases is

to associate it with an existential probability. In this thesis, we propose two solutions

for uncertain frequent pattern mining.

One solution is a novel uncertain-frequent-pattern discovery structure, the

mUF-tree, for storing summarized and uncertain information about frequent patterns.

With the mUF-tree, the UF-Evolve algorithm can utilize the shuffling and merging

techniques to generate iterative versions of the tree. Its main purpose is to discover

new uncertain frequent patterns from these iterative versions.

The other solution is the mUF-trie structure and the UF-Prune algorithm. In the

mUF-trie, the uncertain information about frequent patterns is summarized in the

lexicographic order, which facilitates mining uncertain frequent patterns separately

for each item. With the mUF-trie, the UF-Prune algorithm can continuously generate

a sub-trie for each item, utilize the shuffling and merging techniques to generate

iterative versions of the sub-trie, and prune away the processed items in the mUF-trie.

As in the mUF-tree, the new structure can support the discovery of new uncertain

frequent patterns relating to each item from iterative versions of its sub-trie.

Our preliminary performance study shows that the UF-Evolve and UF-Prune

algorithms are efficient and scalable for mining additional uncertain frequent patterns.

We have also proposed an application and some extended work of the two solutions.

The uncertain frequent pattern mining for rural systems can find out special patterns

 III

relating to productivity and sustainability to improve profitability or environmental

gain for valuable crops, and the extensions are related to incremental uncertain

frequent pattern mining with the mUF-tree and mUF-trie.

 IV

Publications arising from the thesis

1. Wang, S., and Ng, V. UF-tree: Uncertain Frequent Pattern Mining for Rural

Systems. Proceedings of the Knowledge Discovery for Rural Systems 2010,

PAKDD 2010, Hyderabad, India, pp. 115-128, 2010.

2. Wang, S., and Ng, V. UF-Evolve: Uncertain Frequent Pattern Mining. ICEIS

2011 - 13th International Conference on Enterprise Information Systems,

Volume 1, pp. 74-84, Beijing, China, 8 - 11 June, 2011.

(Best Student Paper Award)

3. Wang, S., and Ng, V. UF-Evolve: Uncertain Frequent Pattern Mining. Selected

Papers submitted for Springer-Verlag LNBIP Series Book, Lecture Notes,

Business Information Processing (LNBIP) published by Springer-Verlag.

 V

Acknowledgements

I would like to express my sincere thanks to my Chief Supervisor, Dr. Vincent Ng,

who spent much time on discussing the research work with me. He gave me

constructive suggestions and valuable guidance through the whole period of research

study. His professional advice, enthusiastic brainstorming and useful critiques helped

me to develop new ideas and solve problems during the research study.

My special thank is extended to the BoE Chair and external examiners for

kindly reading and evaluating my thesis.

I would like to thank Department of Computing, who provided support in many

aspects during my research study.

Last but not least, I want to thank my parents and friends, who provided me

encouragements and supports in tangible and intangible ways.

WANG Shu

 VI

Table of contents

Abstract ... II

Publications arising from the thesis .. IV

Acknowledgements..V

List of figures, tables and abbreviations ...VIII

Chapter 1 : Introduction ... 1

Chapter 2 : Literature Review .. 3

2.1 Uncertain Data Representations.. 3

2.2 Data Mining on Precise Data .. 4

2.3 Data Mining on Uncertain Data .. 6

2.4 Incremental Data Mining on Precise Data... 8

Chapter 3 : Iterative Mining of Uncertain Data..11

3.1 Problem Statement ..11

3.2 Our Approaches.. 14

Chapter 4 : mUF-tree ... 16

4.1 mUF-tree: Design and Construction.. 16

4.2 Discovering New Uncertain Frequent Patterns.. 20

4.2.1 Preliminary Definitions.. 21

4.2.2 The UF-Evolve Algorithm ... 29

Chapter 5 : mUF-trie.. 37

5.1 mUF-trie: Design and Construction .. 37

5.2 Discovering New Uncertain Frequent Patterns.. 43

5.2.1 Preliminary Definitions.. 44

5.2.2 The UF-Prune Algorithm ... 45

 VII

Chapter 6 : Performance Study... 54

6.1 Performance of UF-Evolve with FP-growth.. 54

6.1.1 Data Preparation .. 54

6.1.2 Experiments... 55

6.2 Performance of UF-Prune with UF-Evolve ... 61

6.2.1 Data Preparation .. 61

6.2.2 Experiments... 61

Chapter 7 : Application and Extended Work... 69

7.1 Uncertain Frequent Pattern Mining for Rural Data.................................... 69

7.2 Incremental Uncertain Frequent Pattern Mining.. 71

7.2.1 Incrementally Updating of mUF-tree ... 72

7.2.2 Incrementally Updating of mUF-trie .. 73

Chapter 8 : Conclusions and Suggestions for Future Research................................ 76

8.1 Conclusions.. 76

8.2 Suggestions for Future Research... 77

References ... 80

 VIII

List of figures, tables and

abbreviations

Figure 1. The FP-tree for data in Table 1 .. 5

Figure 2. mUF-tree .. 16

Figure 3. UF-Construct .. 18

Figure 4. The mUF-tree for data in Table 2... 20

Figure 5. mUF-tree(right)2 ... 23

Figure 6. mUF-tree(right)3 ... 24

Figure 7. mUF-tree(right)4 ... 24

Figure 8. mUF-tree(right)5 ... 25

Figure 9. mUF-tree(right)6 ... 26

Figure 10. Single prefix-path part and multipath part of an mUF-tree..................... 29

Figure 11. UF-Evolve... 30

Figure 12. UF-Mine ... 31

Figure 13. UF-Shuffle .. 33

Figure 14. UF-Shuffle_2 .. 34

Figure 15. UF-Merge ... 35

Figure 16. mUF-trie ... 38

Figure 17. UF-Build... 40

Figure 18. The mUF-trie for data in Table 6 ... 42

Figure 19. ST(a)... 45

Figure 20. UF-Prune .. 46

Figure 21. UF-Reorganize.. 49

Figure 22. ST(a)’ ... 49

 IX

Figure 23. ST(a)1’ after shuffling N4 and N5 to their MAP...................................... 50

Figure 24. ST(a)1’ after merging N4 with N6 and N5 with N7................................... 50

Figure 25. ST(a)’ after shuffling and merging... 51

Figure 26. mUF-trie after pruning item a.. 52

Figure 27. ST(b) .. 52

Figure 28. Runtime with number of records for UF-Evolve and FP-growth............ 56

Figure 29. Number of shuffles with number of records for UF-Evolve 57

Figure 30. Number of mined frequent patterns with number of records for UF-Evolve

and FP-growth.. 57

Figure 31. Runtime with minimum support threshold for UF-Evolve and FP-growth

... 58

Figure 32. Number of shuffles with minimum support threshold for UF-Evolve..... 59

Figure 33. Number of mined frequent patterns with minimum support threshold for

UF-Evolve and FP-growth.. 59

Figure 34. Number of mined frequent patterns in each iteration for UF-Evolve 60

Figure 35. Runtime with number of records for UF-Prune and UF-Evolve 62

Figure 36. Number of shuffles with number of records for UF-Prune and UF-Evolve

... 62

Figure 37. Number of mined frequent patterns with number of records for UF-Prune

and UF-Evolve ... 63

Figure 38. Number of shuffles with number of records for UF-Prune 64

Figure 39. Runtime with minimum support threshold for UF-Prune and UF-Evolve65

Figure 40. Number of shuffles with minimum support threshold for UF-Prune and

UF-Evolve ... 66

Figure 41. Number of mined frequent patterns with minimum support threshold for

UF-Prune and UF-Evolve... 66

 X

Figure 42. Number of mined frequent patterns for UF-Evolve, UF-Prune and

complete set ... 67

Figure 43. UF-Update .. 73

Figure 44. UF-Increment.. 75

 XI

Table 1. A precise transaction database... 5

Table 2. An uncertain database. .. 12

Table 3. Shuffle cases... 28

Table 4. Shuffle cases with corresponding path pairs.. 28

Table 5. Discovered uncertain frequent patterns after two iterations with mUF-tree 36

Table 6. An uncertain database for mUF-trie .. 41

Table 7. Discovered uncertain frequent patterns with mUF-trie 53

Table 8. Discovered frequent patterns for UF-Evolve and FP-growth 60

Table 9. Discovered frequent patterns for UF-Prune ... 68

Table 10. An uncertain database on sensor readings.. 70

Table 11. Four cases for ai in UDB and udb with minimum support threshold in

percentage .. 74

 XII

Abbreviation 1. Uncertain Record (R) .. 11

Abbreviation 2. Uncertain Database (UDB) ... 11

Abbreviation 3. Maximum Merging Threshold (γ) ... 13

Abbreviation 4. Uncertain Frequent Pattern (UFP) .. 14

Abbreviation 5. Uncertain Frequent Pattern Tree for Merging (mUF-tree) 16

Abbreviation 6. Common Items (CI) .. 21

Abbreviation 7. Maximum Attainable Peak (MAP) ... 22

Abbreviation 8. Shuffle Case (SC) ... 27

Abbreviation 9. Common Ancestor Path (CAP) ... 28

Abbreviation 10. Uncertain Frequent Pattern Trie for Mering (mUF-trie) 38

Abbreviation 11. Sub-trie (ST) ... 44

Abbreviation 12. Normalized Value Range (NVR) .. 69

 1

Chapter 1 : Introduction

Data uncertainty is often found in real-world applications because of measurement

inaccuracy, sampling discrepancy, outdated data sources, or other errors. One type of

data uncertainty is existential uncertainty. In existential uncertainty, it is uncertain

about the presence or absence of some items or events. For example, we may highly

suspect, while cannot guarantee, that a patient suffers from an illness based on a few

symptoms. The uncertainty of such suspicion can be expressed in terms of existential

probability. If Ri represents a patient record, then each item within Ri represents an

illness and is associated with an existential probability expressing the likelihood of

the patient suffering from that illness. As an example, a patient can have an 80%

likelihood of suffering from fever, and a 60% likelihood of suffering from H1N1.

Many frequent-pattern mining algorithms were designed to handle precise data.

Recently, attention has been turned to mining frequent patterns in uncertain data. Han

et al. [16] proposed the FP-tree structure, which is an extended prefix-tree structure

for storing compressed, crucial information about frequent patterns, and developed

an efficient FP-growth algorithm. In our work, we extend the FP-tree for mining

uncertain data. Our key contributions are (i) the development of the mUF-tree

structure to summarize the content of records consisting of uncertain data, (ii) the

idea of shuffling and merging nodes of mUF-tree, whose difference in existential

probabilities is small, to derive more uncertain frequent patterns by the UF-Evolve

algorithm, (iii) the development of the mUF-trie structure to summarize the content

of records consisting of uncertain data in the lexicographic order, and (iv) the idea of

mining uncertain frequent patterns for each item with better efficiency by the

UF-Prune algorithm.

 2

Some existing models compute expected supports and mine frequent patterns in

the form of an itemset with the expected support. This calculation incurs much

information loss since the mined frequent patterns do not contain any probability

information. In our model, we aim to keep the probability information in our problem

settings and definitions, and display the probability information in the mined

frequent patterns, which are the significance and also the advantage over the others.

The rest of the thesis is organized as follows. Chapter 2 gives a literature review

and Chapter 3 describes the problem statement and our approaches. Chapter 4

introduces the mUF-tree, the UF-Evolve algorithm and other supporting algorithms

to discover uncertain frequent patterns iteratively. Chapter 5 describes the mUF-trie

and the UF-Prune algorithm. Chapter 6 presents our performance study and its results.

Next, Chapter 7 describes an application of our algorithm for rural data and the

approach for incremental mining with uncertain data. Finally, Chapter 8 concludes

our work and suggests some future related research.

 3

Chapter 2 : Literature Review

2.1 Uncertain Data Representations

Antova et al. [5] proposed U-relations, a succinct and purely relational representation

system for uncertain databases. U-relations support attribute-level uncertainty using

vertical partitioning. When considering positive relational algebra extended by an

operation for computing possible answers, a query on the logical level can be

translated into, and evaluated as, a single relational algebra query on the U-relational

representation. Positive relational algebra queries are evaluated purely relationally on

U-relations, and this query evaluation approach takes full advantage of query

evaluation and optimization techniques on vertical partitions.

Antova et al. [6] proposed I-SQL, which is an analog to SQL for the case of

incomplete information. They also proposed World-set Algebra, which is a language

that supports the contemplation on alternatives and can map from a complete

database to an incomplete one comprising several possible worlds. World-set Algebra

formalizes a clean fragment of I-SQL, which is similar as relational algebra

formalizes SQL.

Hunter et al. [18] extended a logic-based framework to modeling and merging

uncertain information that is defined at different levels of granularity of XML

textentries, and to modeling and reasoning with XML documents that contain

semantically heterogeneous uncertain information on more complex elements in

XML sub-trees. One advantage of the uncertainty XML model is that it focuses on

multiple XML datasets and provides a set of means to merge options with uncertainty

from different sources on textentries and sub-trees.

Keijzer [19] proposed to use probabilistic XML in data integration to facilitate

 4

unattended integration. Instead of asking a user, the system should decide itself if

elements refer to the same real-world object. The integration result with conflicts is

stored, rather than resolving conflicts at integration time. At query time, the conflicts

are resolved and the user’s feedback to query results can be used to reduce the

uncertainty in the database.

2.2 Data Mining on Precise Data

In 1994, Agrawal et al. [4] developed two algorithms, Apriori and AprioriTid, for

solving the problem of discovering all significant association rules between items in

a large database of sales transactions. Since then, there are many interests to improve

the performance of association mining. Malik et al. [27] proposed HDO

(Hamming-Distance-based greedy transaction reordering scheme), and aHDO, a

linear-time approximation to HDO. These two data mining algorithms use trie and

bitmap-based representations to optimize the support (i.e. frequency) counting

performance.

Han et al. [16] proposed the FP-tree structure and the FP-growth algorithm for

efficiently mining frequent patterns without generation of candidate itemsets for

precise data. It consists of two phases. The first phase focuses on constructing the

FP-tree from the database, and the second phase focuses on applying FP-growth to

derive frequent patterns from the FP-tree. Each node in the FP-tree consists of three

attributes, item-name, count and node-link. In the FP-tree, each entry in the

associated header table consists of two fields: (1) item-name, and (2) head of

node-links (a pointer pointing to the first node in the FP-tree carrying the item-name).

Suppose there is a precise transaction database as shown in Table 1, and the

minimum support threshold is 3. Then, the FP-tree together with the associated

 5

node-links is shown in Figure 1.

TID Items

1 f, a, c, d, g, i, m, p

2 a, b, c, f, l, m, o

3 b, f, h, j, o

4 b, c, k, s, p

5 a, f, c, e, l, p, m, n

Table 1. A precise transaction database

Figure 1. The FP-tree for data in Table 1

The first advantage of using the FP-tree is related to its size. It is highly

compact and is usually substantially smaller than the original database. Another

advantage is that the FP-growth algorithm applies a pattern growth method and never

generates any nonexistent candidate itemsets because the itemset in each transaction

is always included in the corresponding path of the FP-tree. The third advantage is

that the FP-growth algorithm applies a partitioning-based divide-and-conquer

method and recursively constructs conditional FP-trees with conditional

pattern-bases.

 6

The FP-tree structure and the FP-growth algorithm are so popular that they have

been adopted or extended many times [3, 8, 21, 29, 33]. For example, Borgelt [8]

described a C implementation of the FP-growth algorithm, which contains two

variants of the core operation of computing a projection of an FP-tree, and

Krakovetskiy [21] proposed the conception of strong itemsets, which solves the

problem of huge number of candidate generation in mining association rules.

2.3 Data Mining on Uncertain Data

Chau et al. [10] considered data uncertainty when data mining is performed on

uncertain data, in order to obtain high quality data mining results. They proposed a

framework for possible research directions in the area of uncertain data mining. They

also proposed the UK-means clustering algorithm, which modifies the traditional

K-means algorithm to handle data uncertainty in data mining.

Chui et al. [14] proposed the U-Apriori algorithm, which processes transactions

whose items are associated with existential probabilities. The advantage of the

existential uncertain data model is that it allows more information to be captured by

the dataset. The disadvantage of retaining such information is that the size of the

dataset would be much larger. They also introduced a trimming strategy to reduce the

number of candidates that need to be counted based on the Apriori approach. The

Apriori heuristic achieves good performance gained by (possibly significantly)

reducing the size of candidate sets. However, in situations with a large number of

frequent patterns, long patterns, or low minimum support thresholds, an Apriori-like

algorithm may suffer from the two nontrivial issues. It is costly to handle a huge

number of candidate sets; and it is tedious to repeatedly scan the database and check

a large set of candidates by pattern matching, which is especially true for mining

 7

long patterns.

Leung et al. [22, 23] proposed the UF-tree structure, a different tree structure

than the FP-tree for capturing the content of transactions consisting of uncertain data,

and the UF-growth algorithm, a mining algorithm for finding frequent patterns from

the UF-tree. Each node in the UF-tree stores item, expected support and occurrence

(i.e. the number of transactions containing such an item). UF-growth computes

expected supports of itemsets and finds frequent patterns from the UF-tree. The

expected support of an itemset in a transaction is the expected probability (over all

“possible worlds”) of coexistence of all the items in the itemset. The expected

support of an itemset in a database is the sum of the expected probabilities of the

itemset over all transactions. This calculation incurs much information loss.

Sun et al. [30] proposed two algorithms to discover frequent patterns and

association rules from probabilistic data under the Possible World Semantics in

bottom-up and top-down manners, and extended these two algorithms to discover

maximal frequent patterns. The tuple-uncertainty model adopted in [30] is used for

probabilistic databases. Each tuple is associated with a measuring equipment or

sensor, and the probability for each tuple is determined by sensor measurement errors,

as well as the uncertainty caused by the information extraction in the system.

Therefore, each tuple carries an existential probability attribute, which denotes the

confidence that the tuple exists. This is a simple database design. Yet this semantics

is not adopted in our research, since we have different semantics which is described

next.

There are different models for uncertain data. In one model adopted in [14, 22,

23], each item is associated with an existential probability. Another model in [30] is

to associate an existential probability to each transaction instead of individual items

in a transaction. In our research, we use the first model, in which each item is

 8

associated with an existential probability. Since for the applications and data we used,

such as patient records and rural data, each item is associated with a measuring

equipment or sensor, the probabilities of different items in the same record are

independent. But we aim to avoid the information loss incurred by computing

expected supports, and display the probability information in the mined frequent

patterns. Therefore, in Chapter 6, we do not compare our methods with the existing

uncertain data mining methods.

2.4 Incremental Data Mining on Precise Data

Adnan et al. [2] proposed an incremental algorithm that can update the FP-tree

incrementally without scanning the old database and with a minimal scanning of the

incremental database. First, they extended the FP-tree to include every attribute that

occurs at least once in the database. This facilitates mining frequent patterns with

different support thresholds without constructing several FP-trees to satisfy the

purpose. Second, they extended the FP-tree to reflect updates to the corresponding

database by scanning only the updated portion. This reduces execution time in

general.

Chang et al. [9] proposed the NFUP (New Fast UPdate) algorithm for

incrementally mining association rules from large transaction databases. NFUP uses

the information available from a following partition to avoid the rescanning of the

original database, and only requires the scanning of the incremental database. For

some newly generated frequent itemsets in the incremental database, NFUP does not

need to rescan the original database, but accumulates their occurrence counts and

deletes obviously infrequent itemsets. Thus, NFUP can determine new frequent

itemsets at the latest time intervals.

 9

Cheung et al. [12] proposed the FUP2 algorithm, which is a general incremental

updating technique for maintaining the association rules discovered in a database in

the cases of insertion, deletion and modification of transactions in the database. FUP2

can update the discovered association rules when new transactions are added to the

database, and old transactions are removed from it. FUP2 makes use of the previous

mining results to reduce the amount of work that has to be done to discover the

association rules in the updated database.

Cheung et al. [13] proposed the CATS Tree structure, which extends the idea of

FP-tree to improve storage compression and allow frequent pattern mining without

generation of candidate itemsets. There are some advantages of CATS Tree. The first

advantage is that once a CATS Tree is built, frequent pattern mining with different

supports can be performed without rebuilding the tree structure. The second

advantage is that CATS Tree allows single pass frequent pattern mining over the

database and thus can mine transaction streams. The third advantage is that CATS

Tree allows insertion and deletion of transactions or even a single transaction at any

time. This makes CATS Tree suitable for real time transactional frequent pattern

mining with modifications.

Ezeife et al. [15] proposed two algorithms for incrementally maintaining

association rules in the updated database. One is the DB-tree algorithm, which stores

all the database information in an FP-tree structure and requires no rescan of the

original database for all update cases. The other is the PotFP-tree (Potential Frequent

Pattern tree) algorithm, which uses a prediction of future possible frequent itemsets

to reduce the number of times the original database needs to be scanned when

previous small itemsets become large after database update. The two algorithms are

based on a generalized FP-tree structure that store more items on the tree rather than

only those that are frequent, and thus reduce the required number of database scans.

 10

Hong et al. [17] proposed the FUFP-tree (Fast Updated FP-tree) structure,

which modifies the FP-tree construction algorithm for handling new transactions, and

makes the tree update process easier. They also proposed the incremental FUFP-tree

maintenance structure and algorithm, which handle new transaction insertion in data

mining.

 11

Chapter 3 : Iterative Mining of

Uncertain Data

Given an uncertain database and a minimum support threshold, we propose to solve

the problem of discovering a possible set of uncertain frequent patterns in two

phases.

• In the first phase, a tree is constructed for storing summarized and uncertain

information about a given database.

• In the second phase, algorithms are applied for iteratively discovering new

uncertain frequent patterns from the tree with shuffling and merging.

3.1 Problem Statement

In this section, we state some definitions before introducing our target problem. First,

we define what an uncertain record and an uncertain database are.

Definition 1. Uncertain Record (R). Let I = {a1, a2, …, ak} be a set of items. An

uncertain record R = {(a1:p1), (a2:p2), …, (am:pm)}, where (ai ∈ I) ∧ (each ai is

unique with pi as the probability indicating its existence).

Definition 2. Uncertain Database (UDB). An uncertain database UDB consists of

multiple uncertain records, i.e. UDB = <R1, R2, …, Rn>.

An example of an uncertain database is shown in Table 2.

 12

Record ID Item:probability pairs

1 (a:0.2), (f:0.8), (g:0.1), (d:0.3), (c:0.2)

2 (a:0.2), (d:0.3), (c:0.2), (f:0.8)

3 (b:0.3), (f:0.8), (a:0.2)

4 (a:0.4), (c:0.7), (d:0.6), (f:0.8)

5 (f:0.8)

6 (a:0.7), (c:0.4), (b:0.5)

7 (a:0.7)

8 (f:0.8), (a:0.4), (c:0.7), (d:0.6)

9 (b:0.5), (a:0.7), (c:0.4)

10 (d:0.4), (e:0.5), (f:1.0), (a:0.1)

11 (e:0.6), (c:0.3), (d:0.5), (a:0.1), (f:1.0)

12 (a:0.1), (f:1.0), (c:0.3), (d:0.5)

13 (a:0.1), (f:1.0)

14 (f:1.0)

15 (d:0.4), (c:0.4), (b:0.2)

16 (b:0.2)

17 (b:0.2), (f:0.6)

18 (b:0.2)

Table 2. An uncertain database.

In an uncertain database, it is often that an item with a probability appears in a

record while the same item with a different probability appears in another record. For

example, in Table 2, (d:0.4) appears in the 10
th

 record while (d:0.5) appears in the

11th record. Given a predefined minimum support threshold, it can be observed that

 13

an item with a specific probability may not have sufficient support (i.e. the number of

records containing it in UDB) to be a frequent pattern.

In order to have more and longer frequent patterns, one can consider merging

the same items with only small differences in their respective probabilities for

satisfying the support requirement. For instance, we can consider (d:0.4) and (d:0.5)

as a group with a probability range [0.4-0.5]. Hence, for a group of item:probability

pairs in which all items are the same, a [lowerbound-upperbound] can be used to

represent the spread of probabilities for the item. Once the item:probability pairs are

grouped, more frequent patterns would be found. With this idea, we now define

maximum merging threshold and uncertain frequent pattern.

Definition 3. Maximum Merging Threshold (γ). A maximum merging threshold

γ is used to determine whether two item:probability pairs can be merged. Suppose

an item a with probability (a:p1) appears in a record while the same item with another

probability (a:p2) appears in another record. If abs(p1 – p2) γ≤ , then (a:p1) and (a:p2)

can be merged and represented as (a:[l-u]), where (l = min(p1, p2)) ∧ (u = max(p1,

p2)). Here, (a:[l-u]) means it is of item a with l as its lowerbound and u as its

upperbound of their respective existential probabilities.

 The maximum merging threshold can be defined by users. Here, we define a

uniform maximum merging threshold for all items, and for all probability values of

the same item. In fact, a different user can define different maximum merging

thresholds for different items, and for different probability intervals of the same item

to suit particular applications. There is only a small change in the proposed

algorithms.

 14

Definition 4. Uncertain Frequent Pattern (UFP). An uncertain frequent pattern

UFP is represented as (a1:[l1-u1])(a2:[l2-u2])…(ak:[lk-uk]):s, where (s is the support for

UFP) ∧ (s ≥ a predefined minimum support threshold). A record R contains an

UFP if for each (ai:[li-ui]) ∈ UFP, ∃ (aj:pj) ∈ R, such that (ai = aj) ∧ (li ≤ pj

≤ ui).

3.2 Our Approaches

Given an uncertain database, a minimum support threshold and a maximum merging

threshold, we are interested in mining a possible set of uncertain frequent patterns.

We propose two methods. The first method is the mUF-tree structure with the

UF-Evolve algorithm. It solves the problem in two phases.

• In the first phase, an mUF-tree is constructed for storing summarized and

uncertain information about frequent patterns.

• In the second phase, the UF-Evolve algorithm, which utilizes the shuffling and

merging techniques to generate iterative versions of the mUF-tree, is applied for

discovering new uncertain frequent patterns. It can either shuffle and merge the

most suitable pair of paths each time, or shuffle and merge many pairs of paths

at once.

However, UF-Evolve shuffles the whole mUF-tree iteratively, which demands

much computational effort. Hence, we further develop a trie structure in the

lexicographic order that can facilitate the generation of a sub-trie for each item, and

an algorithm that can shuffle each sub-trie rather than the whole trie and discover as

many uncertain frequent patterns as possible for each item.

So we propose the second method, the mUF-trie structure with the UF-Prune

 15

algorithm, which also solves the problem in two phases. The two phases are similar

to that of the mUF-tree, except a pruning step to improve its discovery efficiency.

 16

Chapter 4 : mUF-tree

In this chapter, we introduce the mUF-tree, which is for storing summarized and

uncertain information about frequent patterns, and its construction algorithm. Next,

we discuss the mUF-tree based mining algorithm, UF-Evolve, which utilizes the

shuffling and merging techniques to generate iterative versions of the mUF-tree for

discovering new uncertain frequent patterns.

4.1 mUF-tree: Design and Construction

Given an uncertain database, we propose to use an mUF-tree to store summarized

and uncertain information about frequent patterns. An mUF-tree with its header table

is shown in Figure 2.

Figure 2. mUF-tree

Definition 5. Uncertain Frequent Pattern Tree for Merging (mUF-tree). An

mUF-tree has the following characteristics.

1. An mUF-tree has a virtual root. Each node in the mUF-tree consists of five

 17

attributes, item, lowerbound, upperbound, frequency and node-link.

Lowerbound and upperbound register the spread of existential probabilities of

the corresponding item. To facilitate tree traversal, nodes with the same

item:[lowerbound-upperbound] are linked in sequence via node-links. In Figure

2, ai:[li-ui]:fi in node Ni represents item:[lowerbound-upperbound]:frequency.

2. In the mUF-tree, each entry in the header table consists of four values: (1) item,

(2) lowerbound-upperbound, (3) support (the cumulative frequency of the

item:[lowerbound-upperbound] in the mUF-tree), and (4) head of node-links,

which is a pointer pointing to the first node in the mUF-tree carrying the

item:[lowerbound-upperbound].

3. In the header table, item:[lowerbound-upperbound] pairs are in the descending

order of supports.

The UF-Construct algorithm is used to construct an initial mUF-tree from an

uncertain database. Unlike the FP-tree construction algorithm [16], UF-Construct

scans the database without specifying a minimum support threshold. Hence, the

mUF-tree constructed contains all information. Figure 3 shows the steps of the

UF-Construct algorithm.

 18

Figure 3. UF-Construct

With the records in Table 2 of Chapter 3, the mUF-tree together with the

associated node-links is shown in Figure 4. Since the constructed mUF-tree is large,

we split it into two parts. Figure 4(a) shows the header table with the left half of the

mUF-tree, and Figure 4(b) shows the right half of the mUF-tree. For the ease of

understanding, we only show some of the node-links.

 19

Figure 4(a). mUF-tree(left)

 20

Figure 4(b). mUF-tree(right)

Figure 4. The mUF-tree for data in Table 2

4.2 Discovering New Uncertain Frequent Patterns

The mUF-tree constructed in Figure 4 has items with their probability ranges in

which lowerbound and upperbound are equal to the original probability. If we want

to use the FP-growth algorithm [16] to mine frequent patterns with mUF-tree(right)

in Figure 4(b), we can consider ai:[li-ui] as an item. Then, FP-growth will discover a

set of four frequent patterns {(b:[0.2-0.2]):4, (a:[0.1-0.1]):4,

(f:[1.0-1.0])(a:[0.1-0.1]):4, (f:[1.0-1.0]):5} with the minimum support threshold be 3.

In an mUF-tree, it is often that an item with a [lowerbound-upperbound] appears

in a node while the same item with another [lowerbound-upperbound] appears in

another node. For example, in Figure 4(b), d:[0.4-0.4] appears in N15 while d:[0.5-0.5]

appears in N18. One can consider merging these items when there are only small

differences in their various [lowerbound-upperbound] for satisfying the support. For

 21

example, we can merge d:[0.4-0.4] and d:[0.5-0.5] as d:[0.4-0.5]. Hence, for a group

of item:[lowerbound-upperbound] pairs of the same item, we can use a combined

[lowerbound-upperbound] to represent it. Once the item:[lowerbound-upperbound]

pairs are grouped, more general frequent patterns can be found.

Here, we are proposing to further discover new uncertain frequent patterns by

utilizing shuffling and merging of the mUF-tree. Nodes can be merged to evolve into

another mUF-tree for further pattern mining. The steps can be repeated until merging

is not possible.

4.2.1 Preliminary Definitions

For the ease of later discussion, some definitions are stated before presenting the

algorithms.

Definition 6. Within Range. Given a maximum merging threshold γ , two nodes Nb

and Nc are within range if (Nb.ab = Nc.ac) ∧ (abs(max(Nb.ub, Nc.uc) – min(Nb.lb,

Nc.lc)) γ≤).

In Figure 4(b), given a maximum merging threshold 0.3, N15 and N18 are within

range. Also, N16 and N19 are within range.

Definition 7. Common Items (CI). Given a pair of paths PB = <Nb1Nb2…Nbk> and

PC = <Nc1Nc2…Ncm>, CI(PB, PC) = {a1, a2, …, an} is a sequence of ordered items,

where (n ≤ k) ∧ (n ≤ m) ∧ (∀ i ∈ {1, 2, …, n}, there is a node in PB and a

node in PC, such that these two nodes contain ai and are within range).

 22

In Figure 4(b), given a pair of paths PB = <N15N16> and PC = <N17N18N19>,

then CI(PB, PC) = {d, e}. We intend to merge the nodes corresponding to common

items in the two paths. However, it is difficult to merge N15 with N18 and N16 with

N19 directly. These nodes should be moved in the same order first. Here, we define

the Maximum Attainable Peak (MAP) of a node in a path, and how to shuffle a node

to its MAP.

Definition 8. Maximum Attainable Peak (MAP). Given a_set = {a11, a12, …, a1k}

as a sequence of ordered items, and a path PB = <N21N22…N2m>, where the items in

a_set is a subset of the items in PB. Each item a1i in a_set is taken out sequentially

and is traced along PB. If the position of a1i in PB is not as in a_set, the node N2j

containing a1i will be moved upward until the position of a1i in PB is as in a_set. The

final position is called the MAP of N2j in PB.

Definition 9. Shuffling a Node to MAP. Given a node N2j and its MAP in a path PB,

N2j can be swapped with its parent node and do this repeatedly until it reaches the

MAP in PB. There are two possible cases for shuffling the node N2j with its parent

Nq.

• Case 1: N2j.f2j = Nq.fq. Swap N2j and Nq.

• Case 2: N2j.f2j < Nq.fq. Create a new node, Nr, with the same property of Nq

except Nr.fr = Nq.fq – N2j.f2j. Make Nr as another child of the parent of Nq. Set

Nq.fq = N2j.f2j. Update the header table and node-links within the mUF-tree, and

then follow the step of Case 1 for N2j and Nq.

In Figure 4(b), given a_set = {d, e}, then the MAP of N18 in the path

<N17N18N19> is the 1
st
 position. We shuffle N18 with N17, and follow the step of Case

 23

1 afterwards. mUF-tree(right) evolves into mUF-tree(right)2, as shown in Figure 5.

Figure 5. mUF-tree(right)2

After shuffling N18 to its MAP, the MAP of N19 in the updated path

<N18N17N19> is the 2
nd

 position. N19 will be shuffled with N17, which follows the

steps of Case 2. A new node N24 is created and N17 is modified, which evolves into

mUF-tree(right)3, as shown in Figure 6. Then N19 is shuffled with N17, while the tree

will be evolved into mUF-tree(right)4, as shown in Figure 7.

 24

Figure 6. mUF-tree(right)3

Figure 7. mUF-tree(right)4

After shuffling, the nodes corresponding to common items are above other

nodes in the two paths. It is straightforward now to merge N15 with N18 and N16 with

 25

N19. Next, we define how two candidate nodes can be merged to form a new node.

Definition 10. Merging Nodes. If two nodes Nb and Nc are within range, they can be

merged as a new node Nq, where (Nq.aq = Nb.ab) ∧ (Nq.lq = min(Nb.lb, Nc.lc)) ∧

(Nq.uq = max(Nb.ub, Nc.uc)) ∧ (Nq.fq = Nb.fb + Nc.fc).

N15 and N18 are merged as a new node N25, which evolves into mUF-tree(right)5,

as shown in Figure 8. Next, N16 is merged with N19 as a new node N26, which

evolves into mUF-tree(right)6, as shown in Figure 9.

Figure 8. mUF-tree(right)5

 26

Figure 9. mUF-tree(right)6

Definition 11. Overlap. Given a path PB, overlap(PB) is true if any node in PB has

more than one child.

In Figure 4(b), given PB = <N13N14N15N16> and PC = <N17N18N19>, then

overlap(PB) since N14 in PB has two children, and !overlap(PC) (i.e. not overlap(PC))

since each node in PC has no more than one child.

Definition 12. Above. Given a_set = {a11, a12, …, a1k} and a path PB =

<N21N22…N2m>, above(a_set , PB) is true if (k ≤ m) ∧ (∀ i ∈ {1, 2, …, k}, a1i

= N2i.a2i).

In Figure 4(b), given a_set = {d, e}, PB = <N15N16> and PC = <N17N18N19>,

then above(a_set, PB) since d and e are above other items in PB, and !above(a_set,

PC) since d and e are not above other items in PC.

 27

Other than the shuffling cases presented in Definition 9, there can be five cases

for shuffling a pair of paths PB and PC. In Case 1, both PB and PC do not share

common nodes with any other paths in the mUF-tree. Therefore, PB and PC can be

shuffled without affecting others. In Case 2, PB does not share common nodes with

any other paths, but PC does. However, the nodes with common items in PC are

above other nodes. Therefore, we do not need to shuffle PC. Case 3 is similar to Case

2 with the situations in PB and PC interchanged. In Case 4, both PB and PC share

common nodes with other paths, and there are nodes having common items above

other nodes. Therefore, neither PB nor PC needs to be shuffled. For all the four cases,

PB and PC can be merged after shuffling if necessary.

All other conditions besides the above are considered as Case 0. In Case 0,

shuffling is not performed as it may induce too much effort in restructuring of the

whole mUF-tree. Here, we define the five cases formally below.

Definition 13. Shuffle Case (SC). Given a pair of paths PB and PC, and a_set =

CI(PB, PC), there are five shuffle cases.

• SC(PB, PC) = 1 if !overlap(PB) ∧ !overlap(PC).

• SC(PB, PC) = 2 if !overlap(PB) ∧ overlap(PC) ∧ above(a_set, PC).

• SC(PB, PC) = 3 if overlap(PB) ∧ above(a_set, PB) ∧ !overlap(PC).

• SC(PB, PC) = 4 if overlap(PB) ∧ above(a_set, PB) ∧ overlap(PC) ∧

above(a_set, PC).

• SC(PB, PC) = 0 for other conditions.

For the ease of understanding, the different shuffle cases and their respective

criteria are summarized in Table 3.

 28

SC(PB, PC) !overlap(PC)
overlap(PC) ∧

above(a_set, PC)

!overlap(PB) 1 2

overlap(PB) ∧

above(a_set, PB)
3 4

Table 3. Shuffle cases

Take the mUF-tree in Figure 4 as an example. Given a maximum merging

threshold 0.3, then the shuffle cases with the corresponding path pairs are shown in

Table 4.

PB PC CI(PB, PC) SC(PB, PC)

<N15N16> <N17N18N19> {d, e} 1

<N10N11N12> <N20N21N22> {b, c} 2

<N2N3N4N5> <N7N8N9> {a, d} 3

<N1N2N3N4N5> <N13N14N15N16> {f, a, d} 4

<N10N11N12> <N13N14N17N18N19> {c} 0

<N1N7N8N9> <N20N23> {f} 0

<N1N2N6> <N10N11N12> {b} 0

<N1N2N6> <N20N23> {b, f} 0

<N1N7N8N9> <N20N21N22> {c, d} 0

Table 4. Shuffle cases with corresponding path pairs

Definition 14. Common Ancestor Path (CAP). Given a pair of paths PB =

<Nb1Nb2…Nbk> and PC = <Nc1Nc2…Ncm>, CAP(PB, PC) is <Nb1Nb2…Nbn>, where

 29

(n ≤ k) ∧ (n ≤ m) ∧ (∀ i ∈ {1, 2, …, n}, Nbi and Nci are the same node).

In Figure 4(b), given a pair of paths PB = <N13N14N15N16> and PC =

<N13N14N17N18N19>, then CAP(PB, PC) = <N13N14>.

Definition 15. Single Prefix-Path Part and Multipath Part. The single prefix-path

part of an mUF-tree consists of a single path from the root to Nk, the first node may

contain more than one child. The multipath part of an mUF-tree consists of the

descendants of Nk, with a virtual root connecting to the children of Nk as the parent.

For the mUF-tree shown in Figure 2, the single prefix-path part and the

multipath part are shown in Figure 10.

Figure 10. Single prefix-path part and multipath part of an mUF-tree

4.2.2 The UF-Evolve Algorithm

With the aforementioned definitions, we present the UF-Evolve algorithm for mining

frequent patterns in an uncertain database by using an mUF-tree. The algorithm

 30

integrates the UF-Mine algorithm for finding out the possible frequent patterns and

the UF-Shuffle algorithm for moving and merging the nodes in the mUF-tree

iteratively. Figure 11 shows the steps of the UF-Evolve algorithm.

Figure 11. UF-Evolve

The UF-Mine algorithm is a variant of the FP-growth algorithm [16]. It has two

phases. It first attempts to find frequent patterns in the single prefix-path part of the

given mUF-tree, and then continues to work out the multipath part. The details are

shown in Figure 12.

 31

Figure 12. UF-Mine

Note that in line (17) of Figure 12, (FPS(P) × FPS(Q)) means concatenating

each frequent pattern FPi in FPS(P) with each frequent pattern FPj in FPS(Q), with

support equal to FPj.support. In order to illustrate how the algorithms work, we

continue to use the running example in Figure 4(b). Suppose the minimum support

threshold is 3, and the maximum merging threshold is 0.3. Initially, UF-Mine returns

 32

a set of uncertain frequent patterns as {(b:[0.2-0.2]):4, (a:[0.1-0.1]):4,

(f:[1.0-1.0])(a:[0.1-0.1]):4, (f:[1.0-1.0]):5}.

An important part of our work is the UF-Shuffle algorithm, which is shown in

Figure 13. When it is called by UF-Evolve, it collects the set of paths under the root

and finds the most suitable pair of paths to shuffle and merge. The most suitable pair

of paths is the one with the largest number of common items, and with a shuffle case

1, 2, 3 or 4. This is because we are more interested in mining longer frequent patterns.

If there is more than one pair of paths, the leftmost pair of paths is selected to be the

most suitable pair. At present, we do not aim to mine all possible frequent patterns.

There are two reasons. One reason is that the shuffle cases 1, 2, 3 and 4 limit the

possible number of shuffles. The other reason is that the characteristic of probability

values limits the possible number of frequent patterns. For example, there are several

item:probability pairs in an uncertain database, but in different records, i.e. (a:0.1),

(a:0.3) and (a:0.5). Suppose the maximum merging threshold is 0.3. If we merge

(a:0.1) with (a:0.3), then we will miss the patterns arising from merging (a:0.3) with

(a:0.5). Therefore, finding all patterns is impossible for us.

 33

Figure 13. UF-Shuffle

There can be different versions of the UF-Shuffle algorithm. Figure 14 shows

UF-Shuffle_2, which is a variant of UF-Shuffle. When it is called by UF-Evolve, it

collects the set of paths under the root and attempts to shuffle and merge each pair of

paths. If a pair of paths are shuffled and merged, they will be removed from the set of

paths since they have been modified and no longer exist. UF-Shuffle shuffles and

 34

merges the most suitable pair of paths in each iteration, which would mine longer

and intermediate frequent patterns; while UF-Shuffle_2 shuffles and merges many

pairs of paths in each iteration, which will save some computational effort. In our

experiments presented in Chapter 6, we have adopted the UF-Shuffle algorithm only.

The reason is that UF-Shuffle returns the intermediate results after each step of

shuffling and merging, and UF-Shuffle_2 only returns the results after the final

merge for mining.

Figure 14. UF-Shuffle_2

 35

After shuffling, candidate nodes can then be merged with respective updating.

The algorithm of UF-Merge is shown in Figure 15.

Figure 15. UF-Merge

In continuing the running example, UF-Shuffle is called to shuffle

mUF-tree(right) in Figure 4(b), and it generates mUF-tree(right)4, as shown in Figure

7. UF-Merge is then invoked to recommend the pair of paths to be merged (i.e.

<N15N16> and <N18N19N17>). It merges the pair of paths, and returns the generated

mUF-tree(right)6, as shown in Figure 9.

After having a new mUF-tree, UF-Mine is invoked again and returns a new set

of uncertain frequent patterns as {(d:[0.4-0.5]):3, (a:[0.1-0.1])(d:[0.4-0.5]):3,

(f:[1.0-1.0])(d:[0.4-0.5]):3, (f:[1.0-1.0])(a:[0.1-0.1])(d:[0.4-0.5]):3, (b:[0.2-0.2]):4,

(a:[0.1-0.1]):4, (f:[1.0-1.0])(a:[0.1-0.1]):4, (f:[1.0-1.0]):5}. Then, UF-Evolve

combines the original set of uncertain frequent patterns with the new set. The

discovered uncertain frequent patterns in the two iterations are shown in Table 5. The

 36

algorithms continue until no new mUF-tree can be constructed.

Uncertain frequent patterns

mined in 1st iteration

New uncertain frequent patterns

mined in 2nd iteration

(b:[0.2-0.2]):4

(a:[0.1-0.1]):4

(f:[1.0-1.0])(a:[0.1-0.1]):4

(f:[1.0-1.0]):5

(d:[0.4-0.5]):3

(a:[0.1-0.1])(d:[0.4-0.5]):3

(f:[1.0-1.0])(d:[0.4-0.5]):3

(f:[1.0-1.0])(a:[0.1-0.1])(d:[0.4-0.5]):3

Table 5. Discovered uncertain frequent patterns after two iterations with mUF-tree

 37

Chapter 5 : mUF-trie

In Chapter 4, the UF-Evolve algorithm collects the set of paths under the root of the

mUF-tree and finds the pairs of paths to shuffle and merge. It shuffles the whole

mUF-tree repeatedly, which demands much computational effort. What is more, the

candidate paths in the whole mUF-tree are long, and the shuffle cases 1, 2, 3 and 4

limit the possible number of shuffles. Therefore, we want to improve these aspects

and find uncertain frequent patterns more efficiently.

In this chapter, we introduce the mUF-trie, which is for storing summarized and

uncertain information about frequent patterns in the lexicographic order. Its

construction algorithm facilitates the generation of sub-tries and mining uncertain

frequent patterns for each item. The mUF-trie utilizes the UF-Prune algorithm, which

continuously generates a sub-trie for each item, applies the shuffling and merging

techniques to generate iterative versions of the sub-trie for discovering new patterns,

and prunes away the item in the mUF-trie. UF-Prune can shuffle each sub-trie rather

than the whole mUF-trie and discover as many uncertain frequent patterns as

possible for each item.

5.1 mUF-trie: Design and Construction

Given an uncertain database, an mUF-trie is used to store summarized and uncertain

information about frequent patterns. It has a header table as shown in Figure 16. The

attributes in each node and the columns in the header table are the same as that in the

mUF-tree, but the uncertain information is summarized and stored in a different

order.

 38

Figure 16. mUF-trie

Definition 16. Uncertain Frequent Pattern Trie for Merging (mUF-trie). An

mUF-trie has the following characteristics.

1. An mUF-trie has a virtual root. Each node in the mUF-trie consists of five

attributes, item, lowerbound, upperbound, frequency and node-link.

Lowerbound and upperbound register the spread of existential probabilities of

the corresponding item. To facilitate trie traversal, nodes with the same

item:[lowerbound-upperbound] are linked in sequence via node-links. In Figure

16, ai:[li-ui]:fi in node Ni represents item:[lowerbound-upperbound]:frequency.

2. In the mUF-trie, each entry in the header table consists of four values: (1) item,

(2) lowerbound-upperbound, (3) support (the cumulative frequency of the

item:[lowerbound-upperbound] in the mUF-trie), and (4) head of node-links,

which is a pointer pointing to the first node in the mUF-trie carrying the

item:[lowerbound-upperbound].

3. In the mUF-trie, items are in the lexicographic order from left to right and from

top to bottom. If siblings are of the same item, they are in the ascending order of

lowerbounds (if lowerbounds are the same, use upperbounds instead) from left

 39

to right. In the header table, items are in the lexicographic order from top to

bottom. If the item:[lowerbound-upperbound] pairs are of the same item, they

are in the ascending order of lowerbounds (if lowerbounds are the same, use

upperbounds instead) from top to bottom. This ordering is called

mUF-trie-ordering.

The UF-Build algorithm is used to construct an initial mUF-trie from an

uncertain database. UF-Build scans the database once and collects items whose

supports in the database are no less than a predefined threshold. Here, we do not only

collect frequent item:probability pairs, but also frequent items with different

probabilities, since these item with different probabilities may be further grouped.

Unlike the FP-tree construction algorithm [16], UF-Build sorts the frequent items in

each record. In the constructed mUF-trie, the items are ordered in mUF-trie-ordering.

This ordering facilitates the generation and mining of the sub-trie for each item.

Compared with mUF-tree, the mUF-trie has a predefined minimum support threshold.

The mUF-tree collects the set of item:probability pairs and sorts them in the

descending order of supports, while the mUF-trie collects the set of frequent items.

Figure 17 shows the steps of the UF-Build algorithm.

 40

Figure 17. UF-Build

With the records in Table 6, the mUF-trie together with the associated

node-links is shown in Figure 18 with the minimum support threshold be 4. Since the

constructed mUF-trie is large, we split it into two parts. Figure 18(a) shows the

header table with the left half of the mUF-trie, and Figure 18(b) shows the right half

of the mUF-trie. For the ease of understanding, we only show some of the

node-links.

 41

Record ID Item:probability pairs

1 (c:0.7), (f:0.4)

2 (d:0.4), (e:0.4), (a:0.5), (c:0.2)

3 (c:0.2), (g:0.2), (d:0.4), (e:0.4), (a:0.5)

4 (b:0.1), (a:0.1), (c:0.3), (e:0.6), (d:0.5)

5 (f:0.4), (c:0.7)

6 (d:0.5), (a:0.5)

7 (b:0.5), (a:0.2), (c:0.6)

8 (f:0.4), (d:0.4), (b:0.5), (g:0.5), (a:0.2)

9 (a:0.7)

10 (b:0.1), (d:0.4), (a:0.1)

11 (d:0.5), (b:0.7), (g:0.3), (c:0.4), (a:0.7)

12 (a:0.7), (c:0.4), (b:0.7), (d:0.5)

13 (d:0.4), (e:0.5), (a:0.1), (b:0.1)

14 (a:0.7), (b:0.7)

15 (f:0.4), (a:0.2), (b:0.5), (d:0.4)

16 (a:0.7), (d:1.0), (c:0.2)

17 (c:0.2), (a:0.7)

18 (b:0.1), (a:0.1), (d:0.5), (c:0.3)

Table 6. An uncertain database for mUF-trie

 42

Figure 18(a). mUF-trie(left)

Figure 18(b). mUF-trie(right)

Figure 18. The mUF-trie for data in Table 6

 43

5.2 Discovering New Uncertain Frequent Patterns

The mUF-trie constructed in Figure 18 has items with their probability ranges in

which lowerbound and upperbound are equal to the original probability. If we want

to use the FP-growth algorithm [16] to mine frequent patterns with the mUF-trie in

Figure 18, we can consider ai:[li-ui] as an item. Then, FP-growth will discover a set

of six frequent patterns {(a:[0.1-0.1])(b:[0.1-0.1]):4, (a:[0.7-0.7]):6, (c:[0.2-0.2]):4,

(d:[0.4-0.4]):6, (d:[0.5-0.5]):5, (f:[0.4-0.4]):4} with the minimum support threshold

be 4.

As with the mUF-tree, in an mUF-trie, there is an item with a

[lowerbound-upperbound] appears in a node while the same item with another

[lowerbound-upperbound] appears in another node. Similarly, one can consider

merging the same items when there are only small differences in their various

[lowerbound-upperbound] for satisfying the support. For example, in Figure 18(a),

d:[0.4-0.4] appears in N6 while d:[0.5-0.5] appears in N4; we can merge d:[0.4-0.4]

and d:[0.5-0.5] as d:[0.4-0.5]. Once the item:[lowerbound-upperbound] pairs are

grouped, more general frequent patterns can be found.

Again, we propose to continuously generate a sub-trie for each item from the

mUF-trie, further discover new uncertain frequent patterns relating to the item by

utilizing shuffling and merging of the sub-trie, and prune away the item in the

mUF-trie afterwards. In each sub-trie, nodes can be merged to evolve into another

sub-trie for further pattern mining, and the steps can be repeated until merging is not

possible.

 44

5.2.1 Preliminary Definitions

For the ease of later discussion, some definitions are stated in this section.

Definition 17. Sub-trie (ST). With an mUF-trie T, given an item ai ∈ T and a

minimum support threshold σ , we define ST(ai) as a newly generated mUF-trie that

consists of the nodes corresponding to ai, a virtual root connecting to these nodes as

the parent, and these nodes’ descendants. Scan ST(ai) once and collect a_set as the

set of items with their respective supports < σ . In ST(ai), prune away the nodes with

items in a_set, and order the remaining nodes in mUF-trie-ordering. Let Nj be the j
th

child of the root of ST(ai). ST(ai)j is defined as an mUF-trie that consists of Nj and its

descendents, with Nj as the root. Note that ST(ai) ∉ T, but ST(ai)j ∈ ST(ai).

Definition 18. Pruning Away a Node in mUF-trie. A node Ni in an mUF-trie can be

pruned away by removing it from the mUF-trie, reconnecting its parent with its

children, if any, and updating the header table and node-links within the mUF-trie.

With the mUF-trie shown in Figure 18, given an item a and a minimum support

threshold 4, ST(a) is shown in Figure 19. The node corresponding to item f is pruned

away since the support of f in ST(a) is 2. ST(a) includes ST(a)1, ST(a)2, ST(a)3 and

ST(a)4.

 45

Figure 19. ST(a)

5.2.2 The UF-Prune Algorithm

With the aforementioned definitions, we present the UF-Prune algorithm for mining

frequent patterns in an uncertain database by using an mUF-trie. The algorithm

integrates the UF-Mine algorithm for finding out the possible frequent patterns and

the UF-Reorganize algorithm for moving and merging the nodes in sub-tries

iteratively. Figure 20 shows the steps of the UF-Prune algorithm.

 46

Figure 20. UF-Prune

In order to illustrate how the algorithms work, we continue to use the running

example in Figure 18. Suppose the minimum support threshold is 4, and the

maximum merging threshold is 0.3. UF-Prune generates ST(a), as shown in Figure

19. Then, it calls UF-Mine to mine ST(a)1, ST(a)2, ST(a)3 and ST(a)4, and UF-Mine

returns a set of uncertain frequent patterns, which is {(a:[0.1-0.1])(b:[0.1-0.1]):4,

(a:[0.7-0.7]):6}.

The core algorithm is the UF-Reorganize algorithm, which is shown in Figure

21. When it is called by UF-Prune with ST(ai), it first attempts to merge the nodes

corresponding to ai, and then attempts to shuffle and merge pairs of paths under each

 47

ai. In the continuing example, UF-Prune calls UF-Reorganize to shuffle ST(a) in

Figure 19. UF-Reorganize first attempts to merge the nodes corresponding to item a,

which are N1, N8, N12 and N17, and generates ST(a)’, as shown in Figure 22.

 48

 49

Figure 21. UF-Reorganize

Figure 22. ST(a)’

Then, UF-Reorganize tries to shuffle and merge pairs of paths under N23 and

N24 in Figure 22. UF-Reorganize shuffles the nodes in ST(a)1’, and ST(a)1’ evolves

into Figure 23. The result is a pair of paths (i.e. <N4N5N3> and <N6N7>) to be

merged by using UF-Merge. UF-Merge merges the pair of paths, and ST(a)1’ evolves

into Figure 24. Similarly, UF-Reorganize and UF-Merge shuffle and merge the nodes

in ST(a)2’.

 50

Figure 23. ST(a)1’ after shuffling N4 and N5 to their MAP

Figure 24. ST(a)1’ after merging N4 with N6 and N5 with N7

After that, ST(a)’ evolves into Figure 25.

 51

Figure 25. ST(a)’ after shuffling and merging

UF-Prune calls UF-Mine to mine ST(a)1’ and ST(a)2’, and UF-Mine returns a

new set of uncertain frequent patterns, which is {(a:[0.1-0.2]):7,

(a:[0.1-0.2])(b:[0.1-0.1])(d:[0.4-0.5]):4, (a:[0.5-0.7]):9, (a:[0.5-0.7])(c:[0.2-0.4]):6,

(a:[0.5-0.7])(c:[0.2-0.4])(d:[0.4-0.5]):4}. After processing ST(a), we have discovered

uncertain frequent patterns for item a. In order not to repeat these patterns in the

following mining process, UF-Prune prunes away the nodes corresponding to item a,

and orders the remaining nodes in the mUF-trie-ordering. The mUF-trie evolves as

shown in Figure 26.

 52

Figure 26. mUF-trie after pruning item a

UF-Prune generates ST(b), as shown in Figure 27.

Figure 27. ST(b)

For each item, a sub-trie is generated, being mined, its nodes would then be

shuffled and merged if possible, and being mined again. Finally, we get the set of

uncertain frequent patterns as shown in Table 7. We have observed that UF-Prune can

mine more specific uncertain frequent patterns for each item, while UF-Evolve can

mine more general uncertain frequent patterns for all items, as shown in Table 5.

Then, people can choose the different algorithms accordingly.

 53

Item ai

Uncertain frequent patterns

mined in ST(ai)

New uncertain frequent patterns

mined in ST(ai)’

a

(a:[0.1-0.1])(b:[0.1-0.1]):4

(a:[0.7-0.7]):6

(a:[0.1-0.2]):7

(a:[0.1-0.2])(b:[0.1-0.1])(d:[0.4-0.5]):4

(a:[0.5-0.7]):9

(a:[0.5-0.7])(c:[0.2-0.4]):6

(a:[0.5-0.7])(c:[0.2-0.4])(d:[0.4-0.5]):4

b

(b:[0.1-0.1]):4 (b:[0.1-0.1])(d:[0.4-0.5]):4

(b:[0.5-0.7]):6

(b:[0.5-0.7])(d:[0.4-0.5]):4

c
(c:[0.2-0.2]):4 (c:[0.2-0.4]):8

(c:[0.2-0.4])(d:[0.4-0.5]):6

d
(d:[0.4-0.4]):6

(d:[0.5-0.5]):5

(d:[0.4-0.5]):11

(d:[0.4-0.5])(e:[0.4-0.6]):4

e (e:[0.4-0.6]):4

f (f:[0.4-0.4]):4

Table 7. Discovered uncertain frequent patterns with mUF-trie

 54

Chapter 6 : Performance Study

In this chapter, we present some performance results of UF-Evolve, UF-Prune and

FP-growth. Since the existing uncertain data mining methods do not have the same

semantic meaning as our proposed methods, they do not merge the probabilities to

obtain more frequent patterns. Some of them compute expected supports and mine

frequent patterns in the form of an itemset with the expected support [14, 22, 23].

Therefore, we have not compared our methods with those. FP-growth is not for

uncertain data mining, but we utilize it with some special arrangements in order to

have a consistent and direct comparison. All experiments have been performed on a

2.83 GHz Xeon server with 3.00 GB of RAM, running Microsoft Windows Server

2003. The programs are written in Java. Runtime here means the total execution time,

i.e. the period between input and output, instead of CPU time. Also, all runtime

measurements of UF-Evolve/UF-Prune/FP-growth included the time of constructing

mUF-trees/mUF-tries/FP-trees from the original databases. We have done many trials,

while we have only selected those representative experiments to be included in this

chapter.

6.1 Performance of UF-Evolve with FP-growth

6.1.1 Data Preparation

The experiments are done on a synthetic database (T10.I4.D3K), which is generated

by using the techniques in [34]. In this database, the average record length is 10, the

average length of a pattern is 4, and the number of records is 3K. Besides, we set the

number of items as 1000. All the probabilities for the items are randomly generated,

with a uniform distribution in the range [0, 1].

 55

For UF-Evolve, each record in the database consists of multiple item:probability

pairs; while for FP-growth, each record in the database consists of multiple items.

These two representations have different semantic meanings. In order to carry out a

consistent comparison of UF-Evolve with FP-growth, we make the following

arrangements.

• First, a UDB is generated for UF-Evolve. Each record in UDB consists of

multiple (ai:pi).

• Based on UDB, we generate a special database UDB’ for FP-growth. Each

record in UDB’ consists of multiple (aj:[lj-uj]), where aj = ai, and lj = uj = pi.

FP-growth treats each (aj:[lj-uj]) as an item.

• While constructing an mUF-tree from UDB, we keep the Record IDs in the

corresponding nodes. When UF-Evolve generates iterative versions of the

mUF-tree, we record the changes of [lowerbound-upperbound] in the nodes

together with their Record IDs.

• We use the Record IDs to trace back to the records in UDB’ and change the

corresponding lj and uj. Then, there will be iterative versions of UDB’ for

discovering new frequent patterns by FP-growth.

With these arrangements, we can have a consistent comparison for the runtime

and number of mined frequent patterns of the two algorithms.

6.1.2 Experiments

In the first experiment, we measured the runtime, number of shuffles and number of

mined frequent patterns with different numbers of records for UF-Evolve and

FP-growth. The number of records varies from 0.5K to 3K, the minimum support

 56

threshold is 3%, and the maximum merging threshold is 0.3. The runtime results of

UF-Evolve and FP-growth are shown in Figure 28. UF-Evolve is faster and more

scalable than FP-growth. The number of shuffles of UF-Evolve is shown in Figure 29.

Since when the number of records increased, UF-Evolve shuffled a bigger mUF-tree.

The numbers of mined frequent patterns of UF-Evolve and FP-growth are shown in

Figure 30. The two curves overlapped since the two algorithms mined the same

numbers and the same sets of frequent patterns.

0

2

4

6

0 0.5 1 1.5 2 2.5 3 3.5

Number of records (K)

R
un

tim
e

(s
ec

o
nd

s)

(l
o
g

sc
al

e)

UF-Evolve FP-growth

Figure 28. Runtime with number of records for UF-Evolve and FP-growth

 57

0

500

1000

1500

2000

0 0.5 1 1.5 2 2.5 3 3.5

Number of records (K)

N
u
m

b
er

 o
f

sh
uf

fl
es

UF-Evolve

Figure 29. Number of shuffles with number of records for UF-Evolve

0

5

10

15

20

25

0.5 1 1.5 2 2.5 3

Number of records (K)

N
u
m

b
er

 o
f

m
in

ed
 f

re
q
ue

nt

p
at

te
rn

s

UF-Evolve FP-growth

Figure 30. Number of mined frequent patterns with number of records for UF-Evolve

and FP-growth

In the second experiment, we measured the runtime, number of shuffles and

number of mined frequent patterns with different minimum support thresholds for

UF-Evolve and FP-growth. The minimum support threshold varies from 0.1% to 8%,

the number of records is 3K, and the maximum merging threshold is 0.3. The

runtime results of UF-Evolve and FP-growth are shown in Figure 31. UF-Evolve is

 58

faster than FP-growth. When the minimum support threshold increased, the runtime

of both UF-Evolve and FP-growth decreased. Since when the minimum support

threshold is high, UF-Evolve processes fewer and smaller conditional mUF-trees.

The number of shuffles of UF-Evolve is shown in Figure 32. When the minimum

support threshold increased, the number of shuffles of UF-Evolve remained the same.

This is because for the same database, UF-Evolve always generates and shuffles the

same mUF-tree, regardless of the different minimum support thresholds. The

numbers of mined frequent patterns of UF-Evolve and FP-growth are shown in

Figure 33. The two curves overlapped since the two algorithms mined the same

numbers and the same sets of frequent patterns. When the minimum support

threshold increased, the numbers of mined frequent patterns of both UF-Evolve and

FP-growth decreased. This is because when the minimum support threshold is high,

the frequent patterns are short and the set of such patterns is not large.

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9

Minimum support threshold (%)

R
un

tim
e

(s
ec

o
nd

s)

(l
o
g

sc
al

e)

UF-Evolve FP-growth

Figure 31. Runtime with minimum support threshold for UF-Evolve and FP-growth

 59

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8 9

Minimum support threshold (%)

N
u
m

b
er

 o
f

sh
uf

fl
es

UF-Evolve

Figure 32. Number of shuffles with minimum support threshold for UF-Evolve

0

1

2

3

4

5

0.1
1 2 3 4 5 6 7 8

Minimum support threshold (%)

N
u
m

be
r

o
f

m
in

ed
 f

re
q
ue

nt

p
at

te
rn

s
(l

o
g

sc
al

e)

UF-Evolve FP-growth

Figure 33. Number of mined frequent patterns with minimum support threshold for

UF-Evolve and FP-growth

In the third experiment, we measured the number of mined frequent patterns in

each iteration for UF-Evolve. The number of records is 3K, the minimum support

threshold is 0.1%, and the maximum merging threshold is 0.3. As shown in Figure 34,

the UF-Evolve algorithm discovered new frequent patterns from iterative versions of

mUF-tree, and the number of mined frequent patterns kept increasing until stabilized.

 60

0

5000

10000

15000

0 500 1000 1500 2000

Number of iterations

N
u
m

b
er

 o
f

m
in

ed
 f

re
q
ue

nt

p
at

te
rn

s

UF-Evolve

Figure 34. Number of mined frequent patterns in each iteration for UF-Evolve

For the above experiments, UF-Evolve and FP-growth mined the same numbers

and the same sets of frequent patterns. Some of the discovered frequent patterns are

shown in Table 8. Here, the supports for frequent patterns are shown as (support

count)/(number of records in UDB) in percentage.

Frequent patterns

mined in 1
st
 iteration

New frequent patterns

mined in 2
nd

 iteration

New frequent patterns

mined in 3
rd

 iteration

(59757:[0.3-0.3]):4%

(45370:[0.7-0.7]):5%

…

(29340:[0.1-0.3]):3%

(59757:[0.3-0.4])

(22360:[0.3-0.3])

(18474:[0.5-0.7])

(29340:[0.1-0.3]):3%

…

(45973:[0.2-0.3]):4%

(38212:[0.8-0.8])

(8885:[0.2-0.5])

(45973:[0.2-0.3]):4%

…

Table 8. Discovered frequent patterns for UF-Evolve and FP-growth

 61

6.2 Performance of UF-Prune with UF-Evolve

6.2.1 Data Preparation

The experiments are done on a synthetic database (T10.I4.D15K), which is generated

by using the techniques in [34]. In this database, the average record length is 10, and

the average length of a pattern is 4. We generated the number of records as 15K,

which is different from that in Section 6.1.1. Since UF-Evolve and FP-growth have

long execution time, we selected up to 3K records for these experiments. Also, we

use smaller databases of up to 3K records for comparing UF-Prune with UF-Evolve,

but we can use larger databases of up to 15K records for testing UF-Prune. The

number of items is stayed the same as 1000. Each record in the database consists of

multiple item:probability pairs. All the probabilities for the items are randomly

generated, with a uniform distribution in the range [0, 1]. We will have a consistent

comparison for the runtime, number of shuffles and number of mined frequent

patterns for the two algorithms.

6.2.2 Experiments

In the first experiment, we measured the runtime, number of shuffles and number of

mined frequent patterns with different numbers of records for UF-Prune and

UF-Evolve. The number of records varies from 0.5K to 3K, the minimum support

threshold is 3%, and the maximum merging threshold is 0.3. The runtime results of

UF-Prune and UF-Evolve are shown in Figure 35. UF-Prune is faster and more

scalable than UF-Evolve. The numbers of shuffles of UF-Prune and UF-Evolve are

shown in Figure 36. UF-Prune is expected to shuffle more than UF-Evolve. Note that

UF-Evolve shuffles the whole mUF-tree. The candidate paths are long and the

shuffle cases 1, 2, 3 and 4 limit the possible number of shuffles. On the other hand,

 62

UF-Prune shuffles small sub-tries. The candidate paths would be short and the

shuffle cases would have less limitation. The numbers of mined frequent patterns of

UF-Prune and UF-Evolve are shown in Figure 37. UF-Prune discovered more

frequent patterns than UF-Evolve.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5

Number of records (K)

R
un

tim
e

(s
ec

o
nd

s)

(l
o
g

sc
al

e)

UF-Prune UF-Evolve

Figure 35. Runtime with number of records for UF-Prune and UF-Evolve

0

1000

2000

3000

4000

5000

0 0.5 1 1.5 2 2.5 3 3.5

Number of records (K)

N
um

be
r

of
 s

h
uf

fl
es

UF-Prune UF-Evolve

Figure 36. Number of shuffles with number of records for UF-Prune and UF-Evolve

 63

0

50

100

150

0 0.5 1 1.5 2 2.5 3 3.5

Number of records (K)

N
um

b
er

 o
f

m
in

ed
 f

re
q
ue

nt

p
at

te
rn

s

UF-Prune UF-Evolve

Figure 37. Number of mined frequent patterns with number of records for UF-Prune

and UF-Evolve

Since the runtime of UF-Evolve is increasing exponentially, when the number

of records becomes large, UF-Evolve is extremely slow. However, UF-Prune is much

faster. We tested it with up to 15K records, the minimum support threshold is 3%,

and the maximum merging threshold is 0.3. As shown in Figure 38, the number of

shuffles of UF-Prune has been increasing linearly. Since when the database size

increased, there would be more different probability values for the same item, the

mUF-trie became larger, and the number of shuffles also increased.

 64

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of records (K)

N
um

be
r

of
 s

h
uf

fl
es

UF-Prune

Figure 38. Number of shuffles with number of records for UF-Prune

In the second experiment, we measured the runtime, number of shuffles and

number of mined frequent patterns with different minimum support thresholds for

UF-Prune and UF-Evolve. The minimum support threshold varies from 0.1% to 8%,

the number of records is 3K, and the maximum merging threshold is 0.3. The

runtime results of UF-Prune and UF-Evolve are shown in Figure 39. UF-Prune is

faster than UF-Evolve. When the minimum support threshold increased, the runtime

of both UF-Prune and UF-Evolve decreased. Since when the minimum support

threshold is high, UF-Prune constructs and processes a small mUF-trie. The numbers

of shuffles of UF-Prune and UF-Evolve are shown in Figure 40. When the minimum

support threshold is low, UF-Prune shuffles more than UF-Evolve. When the

minimum support threshold is high, UF-Prune shuffles fewer times than UF-Evolve.

When the minimum support threshold increased, the number of shuffles of UF-Prune

decreased. On the other hand, UF-Evolve remained the same under the same

condition. This is because when the minimum support threshold is high, UF-Prune

shuffles small sub-tries. However, for the same database, UF-Evolve always

generates and shuffles the same mUF-tree, regardless of the different minimum

 65

support thresholds. The numbers of mined frequent patterns of UF-Prune and

UF-Evolve are shown in Figure 41. Most of the time, UF-Prune discovered more

frequent patterns than UF-Evolve. When the minimum support threshold increased,

the numbers of mined frequent patterns of both UF-Prune and UF-Evolve decreased.

This is because when the minimum support threshold is high, the frequent patterns

are short and the set of such patterns is not large.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Minimum support threshold (%)

R
un

tim
e

(s
ec

o
nd

s)

(l
o
g

sc
al

e)

UF-Prune UF-Evolve

Figure 39. Runtime with minimum support threshold for UF-Prune and UF-Evolve

0

5000

10000

15000

20000

0 1 2 3 4 5 6 7 8 9

Minimum support threshold (%)

N
um

be
r

of
 s

h
uf

fl
es

UF-Prune UF-Evolve

 66

Figure 40. Number of shuffles with minimum support threshold for UF-Prune and

UF-Evolve

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Minimum support threshold (%)

N
um

b
er

 o
f

m
in

ed
 f

re
q
ue

nt

pa
tte

rn
s

(l
o
g

sc
al

e)

UF-Prune UF-Evolve

Figure 41. Number of mined frequent patterns with minimum support threshold for

UF-Prune and UF-Evolve

In the third experiment, we measured the number of mined frequent patterns for

UF-Evolve, UF-Prune and the complete set. The number of records is 100, the

minimum support threshold is 5%, and the maximum merging threshold is 0.3. As

shown in Figure 42, UF-Prune mined more frequent patterns than UF-Evolve, but

both of them could not mine the complete set of frequent patterns. Through this

experiment, we can estimate that around 15% of the frequent patterns have been

missed for UF-Evolve and UF-Prune.

 67

0

10

20

30

40

50

60

70

N
u
m
b
e
r

o
f

mi
n
e
d

f
r
e
q
u
e
n
t
p
a
t
t
e
r
n
s

UF-Evolve UF-Prune Complete set

Figure 42. Number of mined frequent patterns for UF-Evolve, UF-Prune and

complete set

For the above experiments, some of the discovered frequent patterns for

UF-Prune are shown in Table 9. Here, the supports for frequent patterns are shown as

(support count)/(number of records in UDB) in percentage.

Item ai

Frequent patterns

mined in ST(ai)

New frequent patterns

mined in ST(ai)’

29340

(29340:[0.1-0.1]):3% (18474:[0.5-0.7])

(22360:[0.3-0.3])

(29340:[0.1-0.3])

(59757:[0.3-0.4]):3%

45370 (45370:[0.7-0.7]):5%

45973

(45973:[0.2-0.2]):4% (38212:[0.8-0.8])

(45973:[0.2-0.3])

(8885:[0.2-0.5]):4%

 68

59757 (59757:[0.3-0.3]):4%

… … …

Table 9. Discovered frequent patterns for UF-Prune

After all the experiments, we conclude that UF-Evolve is faster and more

scalable than FP-growth, while UF-Prune is even faster and more scalable than

UF-Evolve. UF-Evolve/UF-Prune discovered new frequent patterns from iterative

versions of mUF-tree/sub-trie, and the number of mined frequent patterns kept

increasing until stabilized. Most of the time, UF-Prune discovered more frequent

patterns than UF-Evolve.

 69

Chapter 7 : Application and

Extended Work

7.1 Uncertain Frequent Pattern Mining for Rural Data

The mUF-tree and mUF-trie can be applied to different applications. Here, we

describe its use on uncertain rural data. Nowadays, many farmers grow crops which

can gain better profits and are more concerned about the productivity and

sustainability. It implies that different environmental and control factors, such as

temperature, humidity, rainfall, pests, defects and soil salinity should be better

controlled or monitored. If they can find out special patterns relating to productivity

and sustainability, especially for valuable crops such as grapes in a vineyard,

profitability or environmental gain would be improved. Also, it is getting common

that a farm is divided into different blocks and sensors are installed (or people are

employed) for monitoring. However, due to cost and sensor reliability, the readings

may not be accurate and the collected data would be uncertain overtime. This type of

data uncertainty is value uncertainty as compared with existential uncertainty in our

previous chapters.

Adinarayana et al. [1] proposed an integration of Geo-ICT (location based

services, spatial decision making and geo-computations) and Sensor Network

(distributed sensing units pertaining to weather, crop and soil parameters under

micro-climatic conditions) in agricultural systems. This helps farmers to combat

inclement climate conditions and the global climate changes.

In value uncertainty, an item can be modeled as a closed value range [x1-x2]

which bounds its possible values. A Normalized Value Range (NVR) can be used to

represent the uncertain data during a collection period. Suppose each factor has a

 70

normal range [lb-ub], then a value range [x1-x2] of the sensor device will be casted to

an NVR][21

lbub

lbx

lbub

lbx

−

−
−

−

−
. For example, assume that the normal range of a

temperature reading is [–10
o
C-40

o
C], then a value range [10

o
C-20

o
C] of the

temperature readings will be casted to an NVR [0.4-0.6] (i.e.

]
)10(40

)10(20

)10(40

)10(10
[

−−

−−
−

−−

−−
). If Ri represents a daily record of some sensors, then each

item within Ri represents a factor and is associated with an NVR expressing the

range of the readings of the corresponding sensor after normalization. For instance,

in Ri, it can have an NVR [0.4-0.6] of the temperature, and an NVR [0.1-0.2] of the

pests.

In an uncertain database on sensor readings, each record consists of multiple

(ai:[pi1-pi2]), where ai is an item with [pi1-pi2] as the NVR. An example uncertain

database on sensor readings is shown in Table 10, where a = temperature, b =

humidity, c = rainfall, d = pests, e = defects and f = soil salinity.

Record ID Item:NVR pairs

1 (d:[0.4-0.5]), (a:[0.1-0.4]), (e:[0.5-0.8])

2 (a:[0.1-0.4]), (d:[0.5-0.7]), (c:[0.3-0.5]), (e:[0.6-0.8])

3 (c:[0.3-0.5]), (a:[0.1-0.4]), (d:[0.5-0.7])

4 (a:[0.1-0.4])

5 (b:[0.2-0.4]), (d:[0.4-0.5]), (c:[0.3-0.5])

6 (f:[0.6-0.9]), (b:[0.2-0.4])

7 (b:[0.2-0.4])

8 (b:[0.2-0.4])

Table 10. An uncertain database on sensor readings

 71

We can easily map the NVRs and directly store in a UDB with the lowerbound

and upperbound information. The UDB would be the same structure as we discussed

in Chapter 3. Then, mUF-tree and mUF-trie together with their respective algorithms

can be applied for the pattern discovery.

Suppose we take the uncertain data in Table 10 as an example. Let the minimum

support threshold be 3, and the maximum merging threshold be 0.3. With the

mUF-tree and UF-Evolve, the set of uncertain frequent patterns is {(c:[0.3-0.5]):3,

(b:[0.2-0.4]):4, (a:[0.1-0.4]):4, (d:[0.4-0.7]):3, (a:[0.1-0.4])(d:[0.4-0.7]):3}. For

interpretation, the discovered pattern (a:[0.1-0.4])(d:[0.4-0.7]):3 means that when the

temperature is between –5
o
C to 10

o
C, 40% to 70% of the plants have pests on them.

7.2 Incremental Uncertain Frequent Pattern Mining

In real-world applications, uncertain databases usually grow over time. When an

incremental database udb is added to an original database UDB, we get the updated

database {UDB ∪ udb}. The initial mUF-tree/mUF-trie constructed from UDB

need to be updated. Some algorithms solve this problem by reprocessing {UDB ∪

udb} to reconstruct an mUF-tree/mUF-trie, which is time-consuming and wastes the

initial mUF-tree/mUF-trie. Inspired by [9, 17], we propose to keep the initial

mUF-tree/mUF-trie before the first iteration and update it with the incremental

database. Due to the different characteristics between the mUF-tree and mUF-trie,

there are two different ways to update the mUF-tree and mUF-trie.

The initial mUF-tree already contains the information about all items in UDB.

After udb is added to UDB, some new items may arise and be included in the

mUF-tree. Therefore, udb will be processed.

The initial mUF-trie only contains the information about frequent items in UDB.

 72

After udb is added to UDB, some new frequent items may arise and be included in

the mUF-trie, and some old frequent items may become infrequent and be removed

from the mUF-trie. Therefore, udb will be processed, and if necessary, UDB will be

reprocessed.

After the initial mUF-tree/mUF-trie has been updated, some existing uncertain

frequent patterns may no longer exist, while some new patterns may be discovered.

When considering incremental mining, it would be better to use the minimum

support threshold in percentage instead of support counts. In the next two sections,

we will consider the minimum support threshold in percentage.

7.2.1 Incrementally Updating of mUF-tree

The UF-Update algorithm is used to incrementally update the initial mUF-tree with

udb. UF-Update scans udb without specifying a minimum support threshold. The

updated mUF-tree contains the information about all items in udb. Since the initial

mUF-tree already contains the information about all items in UDB, there is no need

to reprocess UDB. Figure 43 shows the steps of the UF-Update algorithm.

 73

Figure 43. UF-Update

For lines (1) - (4) of Figure 43, in order not to distort the order of

item:proabaility pairs in the initial mUF-tree, UF-Update keeps the order of

item:probability pairs in a_set and appends new item:probability pairs arising from

udb to the end of a_set.

7.2.2 Incrementally Updating of mUF-trie

With the minimum support threshold in percentage ξ , there are four cases for an

item ai in UDB and udb. In Case 1, ai is frequent in UDB and also frequent in udb.

Therefore, in {UDB ∪ udb}, ai.support ≥ |{UDB ∪ udb}| ξ× , and ai is always

frequent. Since ai is already included in the initial mUF-trie, its support will be

updated by processing udb. In Case 2, ai is frequent in UDB but infrequent in udb. It

may be frequent in {UDB ∪ udb}. Since ai is already included in the initial

 74

mUF-trie, this is to be determined by processing udb. In Case 3, ai is infrequent in

UDB but frequent in udb. It may be frequent in {UDB ∪ udb}. Since ai is not

included in the initial mUF-trie, this is to be determined by processing udb and

reprocessing UDB. In Case 4, ai is infrequent in UDB and also infrequent in udb.

Therefore, in {UDB ∪ udb}, ai.support < |{UDB ∪ udb}| ξ× , and ai in always

infrequent. The four cases are shown in Table 11.

udb

UDB

ai.support ≥

|udb| ξ×

ai.support <

|udb| ξ×

ai.support ≥

|UDB| ξ×

Case 1:

Frequent

Case 2:

To be determined

ai.support <

|UDB| ξ×

Case 3:

To be determined

Case 4:

Infrequent

Table 11. Four cases for ai in UDB and udb with minimum support threshold in

percentage

Given a minimum support threshold in percentage, the UF-Increment algorithm

is used to incrementally update the initial mUF-trie with udb. UF-Increment scans

udb once and collects only frequent items in udb. Then, UF-Increment processes udb

as in Case 1, Case 2 and Case 3, and reprocesses UDB as in Case 3 if necessary.

After possible pruning, the updated mUF-trie contains the information about frequent

items in {UDB ∪ udb}, and the items are ordered in mUF-trie-ordering. Figure 44

shows the steps of the UF-Increment algorithm.

 75

Figure 44. UF-Increment

 76

Chapter 8 : Conclusions and

Suggestions for Future

Research

8.1 Conclusions

In the thesis, we have developed two solutions for iterative uncertain frequent pattern

mining with mUF-tree and mUF-trie. The first contribution is the proposal of the

mUF-tree structure, which is a novel uncertain-frequent-pattern discover structure.

The core idea is to allow the merging data of the same items but with small

differences in their existence probabilities. Its related UF-Evolve algorithm can

utilize the shuffling and merging techniques to iteratively discover new uncertain

frequent patterns. With the mUF-tree, patterns not discovered before because of its

insufficient support counts would now appear. This enhances users in finding

interesting patterns amongst uncertain data.

The mUF-tree requires much computational effort. Hence, the next contribution

of our work is the enhancement of the mUF-tree to mUF-trie structure. Uncertain

information is arranged in the lexicographic order to reduce the shuffling and

merging effort. Together with the UF-Prune algorithm, it can continuously generate a

sub-trie for each item. After performing the shuffling and merging steps on the

sub-trie, the processed item would be pruned away.

For the shuffling and merging techniques in the UF-Evolve and UF-Prune

algorithms, we find that there are two cases for shuffling a node with its parent node

and five cases for shuffling a pair of paths. We also showed the detailed steps of

merging two nodes to form a new one. The maximum merging threshold can be

 77

defined by users. A different user can define different maximum merging thresholds

for different items, and for different probability intervals of the same item to deal

with different applications in uncertain frequent pattern mining.

A set of the preliminary experiments have been conducted to compare the

performance of UF-Evolve, UF-Prune and FP-growth. It shows that the UF-Evolve

and UF-Prune algorithms are efficient and scalable for mining additional uncertain

frequent patterns with different sizes of uncertain databases and with different

minimum support thresholds, but UF-Prune with mUF-trie is faster and more

scalable than UF-Evolve with mUF-tree. The number of shuffles of UF-Prune

depends on the size of the uncertain database and the minimum support threshold;

while that of UF-Evolve depends on the size of the uncertain database only. Also,

UF-Prune can discover more frequent patterns than UF-Evolve most of the time.

Our idea does not limit to the aforementioned applications. It can be

transformed for another possible representation of uncertain information and be

applied to discover uncertain patterns of environmental and control factors for

improving crop growing in rural systems. Towards the end of our work, we have

attempted to design approaches to solve the incremental uncertain frequent pattern

mining problem with the two new structures, mUF-tree and mUF-trie.

8.2 Suggestions for Future Research

The work presented in the thesis is only a starting point of other potential related

research work. There are certainly different possible extension and improvement of

our work. First, the incremental uncertain frequent pattern mining with mUF-tree and

mUF-trie should be implemented and reviewed. The UF-Update/UF-Increment

algorithm will be implemented to update the mUF-tree/mUF-trie with an incremental

 78

uncertain database. After updating, we want to maintain the structure which

facilitates the shuffling, merging and mining. It would help to verify the ideas and

performance of the algorithms.

Second, we are interested to extend our work to a distributed environment for

discovering uncertain frequent patterns between different sites or nodes. One needs

to consider how to shuffle and merge trees from different nodes in the distributed

sites. If messages are to be sent for shuffling and merging instructions, the question is

a good design of the mUF-tree/mUF-trie information. The next question is the

coordination of the messages as well as the local or global pattern discovery step

afterwards. The number of messages to be passed is to be considered and the

relationships between locally frequent and globally frequent patterns are to be

studied.

Another extension of our work is to adopt the mUF-tree and mUF-trie to

represent other types of uncertain data, such as heterogeneous uncertain streaming

XML data in publish/subscribe systems. For example, given an Uncertain XML

Document (XMLD), we can use a tree structure (TreeD) to store the information in

XMLD. Upon receiving an XML Query (XMLQ), we can use another tree structure

(TreeQ) to store the information in XMLQ. The tree structure facilitates transforming

TreeD to match against TreeQ, traversing the transformed TreeD, getting the nodes

in the transformed TreeD in a specific order, and generating a result for the query.

An interesting issue is when the query is for the discovery of some uncertain patterns

with a set of given constraints, how to represent the XML data and the query with

good querying performance would be a challenging task.

Also, we can consider our work for quantitative association rule mining. The

mined frequent patterns in our work are similar to quantitative association rules. Note

that the databases would be different. We will consider revising our algorithms for

 79

mining quantitative association rules.

Last but not least, it is important to further improve the performance of the

UF-Evolve and UF-Prune algorithms, study their performance in different running

conditions, and decide a way to ensure obtaining “good” uncertain frequent patterns.

For the runtime perspective, we should improve the shuffling procedures in the

UF-Shuffle and UF-Reorganize algorithms to make them execute faster. For the

memory space consideration, we should improve the various data structures used in

the algorithms to allow bigger databases and efficient use of storage space. In the

preliminary experiments, we have studied the performance of the algorithms in

various running conditions, i.e. different numbers of records, different minimum

support thresholds, different numbers of iterations, and randomly generated

probabilities for the items. We also plan to study their performance in different

running conditions, such as different maximum merging thresholds, and different

probability generation methods for the items. So far, we have not decided the way to

measure “good” uncertain frequent patterns for uncertain databases. We suggest

deciding a quality measure, which includes the requirements, such as pattern length,

common item length and shuffle case. Then we can mine a possible set of “good”

uncertain frequent patterns from an uncertain database.

 80

References

[1] Adinarayana, J., Sudharsan, D., Tripathy, A. K., Arun, J., Desai, U. B.,

Merchant, S. N., Naveen, C., Ashwani, R., Das, I., Ninomiya, S., Hirafuji, M.,

Kiura, T., Tanaka, K., and Fukatsu, T. Towards Integration of Geo-ICT and

Sensor Network in Agri-Systems. INSAIT-II National Conference on

Agro-Informatics and Precision Farming, 02-03.12.2009, Raichur, India,

http://www.acr.edu.in/info/infofile/147.pdf.

[2] Adnan, M., Alhajj, R., and Barker, K. Constructing Complete FP-Tree for

Incremental Mining of Frequent Patterns in Dynamic Databases. M. Ali and R.

Dapoigny (Eds.): IEA/AIE 2006, LNAI 4031, pp. 363-372, 2006.

[3] Aggarwal, C. C., and Li, Y. Frequent Pattern Mining with Uncertain Data.

KDD’09, June 28-July 1, 2009, Paris, France, pp. 29-37.

[4] Agrawal, R., and Srikant, R. Fast Algorithms for Mining Association Rules.

Proceedings of the 20th VLDB Conference, Santiago, Chile, 1994, pp. 487-499.

[5] Antova, L., Jansen, T., Koch, C., and Olteanu, D. Fast and Simple Relational

Processing of Uncertain Data. ICDE 2008, pp. 983-992.

[6] Antova, L., Koch, C., and Olteanu, D. From Complete to Incomplete

Information and Back. SIGMOD’07, June 12-14, 2007, Beijing, China, pp.

713-724.

[7] Bodon, F. A Trie-based APRIORI Implementation for Mining Frequent Item

Sequences. OSDM’05, August 21, 2005, Chicago, Illinois, USA, pp. 56-65.

[8] Borgelt, C. An Implementation of the FP-growth Algorithm. OSDM’05, August

21, 2005, Chicago, Illinois, USA, pp. 1-5.

 81

[9] Chang, C. C., Li, Y. C., and Lee, J. S. An Efficient Algorithm for Incremental

Mining of Association Rules. Proceedings of the 15th International Workshop

on Research Issues in Data Engineering: Stream Data Mining and Applications

(RIDE-SDMA’05), pp. 3-10, 2005.

[10] Chau, M., Cheng, R., and Kao, B. Uncertain Data Mining: A New Research

Direction. Proceedings of the Workshop on the Sciences of the Artificial,

Hualien, Taiwan, December 7-8, 2005, pp. 1-8.

[11] Cheung, D. W., Han, J., Ng, V. T., Fu, A. W., and Fu, Y. A Fast Distributed

Algorithm for Mining Association Rules. 1996 IEEE, pp. 31-42.

[12] Cheung, D. W., Lee, S. D., and Kao, B. A General Incremental Technique for

Maintaining Discovered Association Rules. Proceedings of the Fifth

International Conference on Database Systems for Advanced Applications,

Melbourne, Australia, April 1-4, 1997, pp. 185-194.

[13] Cheung, W., and Zaiane, O. R. Incremental Mining of Frequent Patterns

Without Candidate Generation or Support Constraint. Proceedings of the

Seventh International Database Engineering and Applications Symposium

(IDEAS’03), pp. 111-116, 2003.

[14] Chui, C. K., Kao, B., and Hung, E. Mining Frequent Itemsets from Uncertain

Data. Z.-H. Zhou, H. Li, and Q. Yang (Eds.): PAKDD 2007, LNAI 4426, pp.

47-58, 2007.

[15] Ezeife, C. I., and Su, Y. Mining Incremental Association Rules with Generalized

FP-Tree. R. Cohen and B. Spencer (Eds.): AI 2002, LNAI 2338, pp. 147-160,

2002.

[16] Han, J., Pei, J., Yin, Y., and Mao, R. Mining Frequent Patterns without

Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining and

Knowledge Discovery, 8, 53-87, 2004.

 82

[17] Hong, T. P., Lin, C. W., and Wu, Y. L. Incrementally Fast Updated Frequent

Pattern Trees. Expert Systems with Applications 34 (2008), 2424-2435.

[18] Hunter, A., and Liu, W. Merging Uncertain Information with Semantic

Heterogeneity in XML. http://www.cs.qub.ac.uk/~W.Liu/sac.pdf.

[19] Keijzer, A. D. Probabilistic XML in Information Integration. Proceedings of the

VLDB2006 Ph.D. Workshop, Seoul, Rep of Korea, 2006, pp. 1-5.

[20] Keijzer, A. D., and Keulen, M. V. Quality Measures in Uncertain Data

Management. H. Prade and V.S. Subrahmanian (Eds.): SUM 2007, LNAI 4772,

pp. 104-115, 2007.

[21] Krakovetskiy, A. U. Search Method of Associative Rules Using Strong Itemsets

and FP-tree. Automatics and Information Measuring Facilities, 2008, pp. 1-4.

[22] Leung, C. K. S., Carmichael, C., and Hao, B. Efficient Mining of Frequent

Patterns from Uncertain Data. ICDM-DUNE 2007, pp. 1-19.

[23] Leung, C. K. S., Mateo, M. A. F., and Brajczuk, D. A. A Tree-Based Approach

for Frequent Pattern Mining from Uncertain Data. T. Washio et al. (Eds.):

PAKDD 2008, LNAI 5012, pp. 653-661, 2008.

[24] Li, H. F., Lee, S. Y., and Shan, M. K. An Efficient Algorithm for Mining

Frequent Itemsets over the Entire History of Data Streams.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.81.9955.

[25] Li, H. F., Lee, S. Y., and Shan, M. K. Online Mining (Recently) Maximal

Frequent Itemsets over Data Streams. Proceedings of the 15th International

Workshop on Research Issues in Data Engineering: Stream Data Mining and

Applications (RIDE-SDMA’05), pp. 11-18, 2005.

[26] Li, H. F., Shan, M. K., and Lee, S. Y. Online Mining of Frequent Query Trees

over XML Data Streams. WWW 2006, May 23-26, 2006, Edinburgh, Scotland,

pp. 959-960.

 83

[27] Malik, H. H., and Kender, J. R. Optimizing Frequency Queries for Data Mining

Applications.

http://www.cs.columbia.edu/~hhm2104/papers/Malik_ICDM07.pdf.

[28] Ni, Y., and Chan, C. Y. Dissemination of Heterogeneous XML Data in

Publish/Subscribe Systems. CIKM’09, November 2-6, 2009, Hong Kong, China,

pp. 127-136.

[29] Sanderson, R. ARM: A Priori and Data Structures.

http://www.csc.liv.ac.uk/~azaroth/courses/current/comp527/lectures/comp527-1

9.pdf.

[30] Sun, L., Cheng, R., Cheung, D. W., and Cheng, J. Mining Uncertain Data with

Probabilistic Guarantees. KDD’10, July 25-28, 2010, Washington, DC, USA,

pp. 273-282.

[31] Terrovitis, M., Passas, S., Vassiliadis, P., and Sellis, T. A Combination of

Trie-trees and Inverted Files for the Indexing of Set-valued Attributes.

CIKM’06, November 5-11, 2006, Arlington, Virginia, USA, pp. 728-737.

[32] Zhang, W., Lin, X., Pei, J., and Zhang, Y. Managing Uncertain Data:

Probabilistic Approaches. Proceedings of the Ninth International Conference on

Web-Age Information Management, 2008, pp. 405-412.

[33] 楊, 婉祺, 康 , 聖祥 , 羅 , 貴魁 , and 楊 , 達立 Fuzzy Data Mining with

Multi-Level Using FP-tree Like Structure.

http://www.mis.stut.edu.tw/result/2008/03-2.pdf.

[34] IBM Quest Market-Basket Synthetic Data Generator.

http://www.cs.loyola.edu/~cgiannel/assoc_gen.html.

